xref: /linux/net/ipv4/tcp_ipv4.c (revision 308b7dee3e5c767e88bbecceff3883c8b17c55b6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  *		IPv4 specific functions
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  */
18 
19 /*
20  * Changes:
21  *		David S. Miller	:	New socket lookup architecture.
22  *					This code is dedicated to John Dyson.
23  *		David S. Miller :	Change semantics of established hash,
24  *					half is devoted to TIME_WAIT sockets
25  *					and the rest go in the other half.
26  *		Andi Kleen :		Add support for syncookies and fixed
27  *					some bugs: ip options weren't passed to
28  *					the TCP layer, missed a check for an
29  *					ACK bit.
30  *		Andi Kleen :		Implemented fast path mtu discovery.
31  *	     				Fixed many serious bugs in the
32  *					request_sock handling and moved
33  *					most of it into the af independent code.
34  *					Added tail drop and some other bugfixes.
35  *					Added new listen semantics.
36  *		Mike McLagan	:	Routing by source
37  *	Juan Jose Ciarlante:		ip_dynaddr bits
38  *		Andi Kleen:		various fixes.
39  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
40  *					coma.
41  *	Andi Kleen		:	Fix new listen.
42  *	Andi Kleen		:	Fix accept error reporting.
43  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
44  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
45  *					a single port at the same time.
46  */
47 
48 #define pr_fmt(fmt) "TCP: " fmt
49 
50 #include <linux/bottom_half.h>
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/module.h>
54 #include <linux/random.h>
55 #include <linux/cache.h>
56 #include <linux/fips.h>
57 #include <linux/jhash.h>
58 #include <linux/init.h>
59 #include <linux/times.h>
60 #include <linux/slab.h>
61 #include <linux/sched.h>
62 #include <linux/sock_diag.h>
63 
64 #include <net/aligned_data.h>
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/tcp_ecn.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/inet_ecn.h>
74 #include <net/timewait_sock.h>
75 #include <net/xfrm.h>
76 #include <net/secure_seq.h>
77 #include <net/busy_poll.h>
78 #include <net/rstreason.h>
79 #include <net/psp.h>
80 
81 #include <linux/inet.h>
82 #include <linux/ipv6.h>
83 #include <linux/stddef.h>
84 #include <linux/proc_fs.h>
85 #include <linux/seq_file.h>
86 #include <linux/inetdevice.h>
87 #include <linux/btf_ids.h>
88 #include <linux/skbuff_ref.h>
89 
90 #include <crypto/md5.h>
91 
92 #include <trace/events/tcp.h>
93 
94 #ifdef CONFIG_TCP_MD5SIG
95 static void tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
96 				__be32 daddr, __be32 saddr, const struct tcphdr *th);
97 #endif
98 
99 struct inet_hashinfo tcp_hashinfo;
100 
101 static DEFINE_PER_CPU(struct sock_bh_locked, ipv4_tcp_sk) = {
102 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
103 };
104 
105 static DEFINE_MUTEX(tcp_exit_batch_mutex);
106 
107 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
108 {
109 	return secure_tcp_seq(ip_hdr(skb)->daddr,
110 			      ip_hdr(skb)->saddr,
111 			      tcp_hdr(skb)->dest,
112 			      tcp_hdr(skb)->source);
113 }
114 
115 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
116 {
117 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
118 }
119 
120 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
121 {
122 	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
123 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
124 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
125 	struct tcp_sock *tp = tcp_sk(sk);
126 	int ts_recent_stamp;
127 	u32 reuse_thresh;
128 
129 	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2)
130 		reuse = 0;
131 
132 	if (reuse == 2) {
133 		/* Still does not detect *everything* that goes through
134 		 * lo, since we require a loopback src or dst address
135 		 * or direct binding to 'lo' interface.
136 		 */
137 		bool loopback = false;
138 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
139 			loopback = true;
140 #if IS_ENABLED(CONFIG_IPV6)
141 		if (tw->tw_family == AF_INET6) {
142 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
143 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
144 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
145 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
146 				loopback = true;
147 		} else
148 #endif
149 		{
150 			if (ipv4_is_loopback(tw->tw_daddr) ||
151 			    ipv4_is_loopback(tw->tw_rcv_saddr))
152 				loopback = true;
153 		}
154 		if (!loopback)
155 			reuse = 0;
156 	}
157 
158 	/* With PAWS, it is safe from the viewpoint
159 	   of data integrity. Even without PAWS it is safe provided sequence
160 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
161 
162 	   Actually, the idea is close to VJ's one, only timestamp cache is
163 	   held not per host, but per port pair and TW bucket is used as state
164 	   holder.
165 
166 	   If TW bucket has been already destroyed we fall back to VJ's scheme
167 	   and use initial timestamp retrieved from peer table.
168 	 */
169 	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
170 	reuse_thresh = READ_ONCE(tw->tw_entry_stamp) +
171 		       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse_delay);
172 	if (ts_recent_stamp &&
173 	    (!twp || (reuse && time_after32(tcp_clock_ms(), reuse_thresh)))) {
174 		/* inet_twsk_hashdance_schedule() sets sk_refcnt after putting twsk
175 		 * and releasing the bucket lock.
176 		 */
177 		if (unlikely(!refcount_inc_not_zero(&sktw->sk_refcnt)))
178 			return 0;
179 
180 		/* In case of repair and re-using TIME-WAIT sockets we still
181 		 * want to be sure that it is safe as above but honor the
182 		 * sequence numbers and time stamps set as part of the repair
183 		 * process.
184 		 *
185 		 * Without this check re-using a TIME-WAIT socket with TCP
186 		 * repair would accumulate a -1 on the repair assigned
187 		 * sequence number. The first time it is reused the sequence
188 		 * is -1, the second time -2, etc. This fixes that issue
189 		 * without appearing to create any others.
190 		 */
191 		if (likely(!tp->repair)) {
192 			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
193 
194 			if (!seq)
195 				seq = 1;
196 			WRITE_ONCE(tp->write_seq, seq);
197 			tp->rx_opt.ts_recent	   = READ_ONCE(tcptw->tw_ts_recent);
198 			tp->rx_opt.ts_recent_stamp = ts_recent_stamp;
199 		}
200 
201 		return 1;
202 	}
203 
204 	return 0;
205 }
206 EXPORT_IPV6_MOD_GPL(tcp_twsk_unique);
207 
208 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr_unsized *uaddr,
209 			      int addr_len)
210 {
211 	/* This check is replicated from tcp_v4_connect() and intended to
212 	 * prevent BPF program called below from accessing bytes that are out
213 	 * of the bound specified by user in addr_len.
214 	 */
215 	if (addr_len < sizeof(struct sockaddr_in))
216 		return -EINVAL;
217 
218 	sock_owned_by_me(sk);
219 
220 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
221 }
222 
223 /* This will initiate an outgoing connection. */
224 int tcp_v4_connect(struct sock *sk, struct sockaddr_unsized *uaddr, int addr_len)
225 {
226 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
227 	struct inet_timewait_death_row *tcp_death_row;
228 	struct inet_sock *inet = inet_sk(sk);
229 	struct tcp_sock *tp = tcp_sk(sk);
230 	struct ip_options_rcu *inet_opt;
231 	struct net *net = sock_net(sk);
232 	__be16 orig_sport, orig_dport;
233 	__be32 daddr, nexthop;
234 	struct flowi4 *fl4;
235 	struct rtable *rt;
236 	int err;
237 
238 	if (addr_len < sizeof(struct sockaddr_in))
239 		return -EINVAL;
240 
241 	if (usin->sin_family != AF_INET)
242 		return -EAFNOSUPPORT;
243 
244 	nexthop = daddr = usin->sin_addr.s_addr;
245 	inet_opt = rcu_dereference_protected(inet->inet_opt,
246 					     lockdep_sock_is_held(sk));
247 	if (inet_opt && inet_opt->opt.srr) {
248 		if (!daddr)
249 			return -EINVAL;
250 		nexthop = inet_opt->opt.faddr;
251 	}
252 
253 	orig_sport = inet->inet_sport;
254 	orig_dport = usin->sin_port;
255 	fl4 = &inet->cork.fl.u.ip4;
256 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
257 			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
258 			      orig_dport, sk);
259 	if (IS_ERR(rt)) {
260 		err = PTR_ERR(rt);
261 		if (err == -ENETUNREACH)
262 			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
263 		return err;
264 	}
265 
266 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
267 		ip_rt_put(rt);
268 		return -ENETUNREACH;
269 	}
270 
271 	if (!inet_opt || !inet_opt->opt.srr)
272 		daddr = fl4->daddr;
273 
274 	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
275 
276 	if (!inet->inet_saddr) {
277 		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
278 		if (err) {
279 			ip_rt_put(rt);
280 			return err;
281 		}
282 	} else {
283 		sk_rcv_saddr_set(sk, inet->inet_saddr);
284 	}
285 
286 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
287 		/* Reset inherited state */
288 		tp->rx_opt.ts_recent	   = 0;
289 		tp->rx_opt.ts_recent_stamp = 0;
290 		if (likely(!tp->repair))
291 			WRITE_ONCE(tp->write_seq, 0);
292 	}
293 
294 	inet->inet_dport = usin->sin_port;
295 	sk_daddr_set(sk, daddr);
296 
297 	inet_csk(sk)->icsk_ext_hdr_len = psp_sk_overhead(sk);
298 	if (inet_opt)
299 		inet_csk(sk)->icsk_ext_hdr_len += inet_opt->opt.optlen;
300 
301 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
302 
303 	/* Socket identity is still unknown (sport may be zero).
304 	 * However we set state to SYN-SENT and not releasing socket
305 	 * lock select source port, enter ourselves into the hash tables and
306 	 * complete initialization after this.
307 	 */
308 	tcp_set_state(sk, TCP_SYN_SENT);
309 	err = inet_hash_connect(tcp_death_row, sk);
310 	if (err)
311 		goto failure;
312 
313 	sk_set_txhash(sk);
314 
315 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
316 			       inet->inet_sport, inet->inet_dport, sk);
317 	if (IS_ERR(rt)) {
318 		err = PTR_ERR(rt);
319 		rt = NULL;
320 		goto failure;
321 	}
322 	tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
323 	/* OK, now commit destination to socket.  */
324 	sk->sk_gso_type = SKB_GSO_TCPV4;
325 	sk_setup_caps(sk, &rt->dst);
326 	rt = NULL;
327 
328 	if (likely(!tp->repair)) {
329 		if (!tp->write_seq)
330 			WRITE_ONCE(tp->write_seq,
331 				   secure_tcp_seq(inet->inet_saddr,
332 						  inet->inet_daddr,
333 						  inet->inet_sport,
334 						  usin->sin_port));
335 		WRITE_ONCE(tp->tsoffset,
336 			   secure_tcp_ts_off(net, inet->inet_saddr,
337 					     inet->inet_daddr));
338 	}
339 
340 	atomic_set(&inet->inet_id, get_random_u16());
341 
342 	if (tcp_fastopen_defer_connect(sk, &err))
343 		return err;
344 	if (err)
345 		goto failure;
346 
347 	err = tcp_connect(sk);
348 
349 	if (err)
350 		goto failure;
351 
352 	return 0;
353 
354 failure:
355 	/*
356 	 * This unhashes the socket and releases the local port,
357 	 * if necessary.
358 	 */
359 	tcp_set_state(sk, TCP_CLOSE);
360 	inet_bhash2_reset_saddr(sk);
361 	ip_rt_put(rt);
362 	sk->sk_route_caps = 0;
363 	inet->inet_dport = 0;
364 	return err;
365 }
366 EXPORT_IPV6_MOD(tcp_v4_connect);
367 
368 /*
369  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
370  * It can be called through tcp_release_cb() if socket was owned by user
371  * at the time tcp_v4_err() was called to handle ICMP message.
372  */
373 void tcp_v4_mtu_reduced(struct sock *sk)
374 {
375 	struct inet_sock *inet = inet_sk(sk);
376 	struct dst_entry *dst;
377 	u32 mtu;
378 
379 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
380 		return;
381 	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
382 	dst = inet_csk_update_pmtu(sk, mtu);
383 	if (!dst)
384 		return;
385 
386 	/* Something is about to be wrong... Remember soft error
387 	 * for the case, if this connection will not able to recover.
388 	 */
389 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
390 		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
391 
392 	mtu = dst_mtu(dst);
393 
394 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
395 	    ip_sk_accept_pmtu(sk) &&
396 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
397 		tcp_sync_mss(sk, mtu);
398 
399 		/* Resend the TCP packet because it's
400 		 * clear that the old packet has been
401 		 * dropped. This is the new "fast" path mtu
402 		 * discovery.
403 		 */
404 		tcp_simple_retransmit(sk);
405 	} /* else let the usual retransmit timer handle it */
406 }
407 EXPORT_IPV6_MOD(tcp_v4_mtu_reduced);
408 
409 static void do_redirect(struct sk_buff *skb, struct sock *sk)
410 {
411 	struct dst_entry *dst = __sk_dst_check(sk, 0);
412 
413 	if (dst)
414 		dst->ops->redirect(dst, sk, skb);
415 }
416 
417 
418 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
419 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
420 {
421 	struct request_sock *req = inet_reqsk(sk);
422 	struct net *net = sock_net(sk);
423 
424 	/* ICMPs are not backlogged, hence we cannot get
425 	 * an established socket here.
426 	 */
427 	if (seq != tcp_rsk(req)->snt_isn) {
428 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
429 	} else if (abort) {
430 		/*
431 		 * Still in SYN_RECV, just remove it silently.
432 		 * There is no good way to pass the error to the newly
433 		 * created socket, and POSIX does not want network
434 		 * errors returned from accept().
435 		 */
436 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
437 		tcp_listendrop(req->rsk_listener);
438 	}
439 	reqsk_put(req);
440 }
441 EXPORT_IPV6_MOD(tcp_req_err);
442 
443 /* TCP-LD (RFC 6069) logic */
444 void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
445 {
446 	struct inet_connection_sock *icsk = inet_csk(sk);
447 	struct tcp_sock *tp = tcp_sk(sk);
448 	struct sk_buff *skb;
449 	s32 remaining;
450 	u32 delta_us;
451 
452 	if (sock_owned_by_user(sk))
453 		return;
454 
455 	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
456 	    !icsk->icsk_backoff)
457 		return;
458 
459 	skb = tcp_rtx_queue_head(sk);
460 	if (WARN_ON_ONCE(!skb))
461 		return;
462 
463 	icsk->icsk_backoff--;
464 	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
465 	icsk->icsk_rto = inet_csk_rto_backoff(icsk, tcp_rto_max(sk));
466 
467 	tcp_mstamp_refresh(tp);
468 	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
469 	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
470 
471 	if (remaining > 0) {
472 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, remaining, false);
473 	} else {
474 		/* RTO revert clocked out retransmission.
475 		 * Will retransmit now.
476 		 */
477 		tcp_retransmit_timer(sk);
478 	}
479 }
480 EXPORT_IPV6_MOD(tcp_ld_RTO_revert);
481 
482 /*
483  * This routine is called by the ICMP module when it gets some
484  * sort of error condition.  If err < 0 then the socket should
485  * be closed and the error returned to the user.  If err > 0
486  * it's just the icmp type << 8 | icmp code.  After adjustment
487  * header points to the first 8 bytes of the tcp header.  We need
488  * to find the appropriate port.
489  *
490  * The locking strategy used here is very "optimistic". When
491  * someone else accesses the socket the ICMP is just dropped
492  * and for some paths there is no check at all.
493  * A more general error queue to queue errors for later handling
494  * is probably better.
495  *
496  */
497 
498 int tcp_v4_err(struct sk_buff *skb, u32 info)
499 {
500 	const struct iphdr *iph = (const struct iphdr *)skb->data;
501 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
502 	struct net *net = dev_net_rcu(skb->dev);
503 	const int type = icmp_hdr(skb)->type;
504 	const int code = icmp_hdr(skb)->code;
505 	struct request_sock *fastopen;
506 	struct tcp_sock *tp;
507 	u32 seq, snd_una;
508 	struct sock *sk;
509 	int err;
510 
511 	sk = __inet_lookup_established(net, iph->daddr, th->dest, iph->saddr,
512 				       ntohs(th->source), inet_iif(skb), 0);
513 	if (!sk) {
514 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
515 		return -ENOENT;
516 	}
517 	if (sk->sk_state == TCP_TIME_WAIT) {
518 		/* To increase the counter of ignored icmps for TCP-AO */
519 		tcp_ao_ignore_icmp(sk, AF_INET, type, code);
520 		inet_twsk_put(inet_twsk(sk));
521 		return 0;
522 	}
523 	seq = ntohl(th->seq);
524 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
525 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
526 				     type == ICMP_TIME_EXCEEDED ||
527 				     (type == ICMP_DEST_UNREACH &&
528 				      (code == ICMP_NET_UNREACH ||
529 				       code == ICMP_HOST_UNREACH)));
530 		return 0;
531 	}
532 
533 	if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) {
534 		sock_put(sk);
535 		return 0;
536 	}
537 
538 	bh_lock_sock(sk);
539 	/* If too many ICMPs get dropped on busy
540 	 * servers this needs to be solved differently.
541 	 * We do take care of PMTU discovery (RFC1191) special case :
542 	 * we can receive locally generated ICMP messages while socket is held.
543 	 */
544 	if (sock_owned_by_user(sk)) {
545 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
546 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
547 	}
548 	if (sk->sk_state == TCP_CLOSE)
549 		goto out;
550 
551 	if (static_branch_unlikely(&ip4_min_ttl)) {
552 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
553 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
554 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
555 			goto out;
556 		}
557 	}
558 
559 	tp = tcp_sk(sk);
560 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
561 	fastopen = rcu_dereference(tp->fastopen_rsk);
562 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
563 	if (sk->sk_state != TCP_LISTEN &&
564 	    !between(seq, snd_una, tp->snd_nxt)) {
565 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
566 		goto out;
567 	}
568 
569 	switch (type) {
570 	case ICMP_REDIRECT:
571 		if (!sock_owned_by_user(sk))
572 			do_redirect(skb, sk);
573 		goto out;
574 	case ICMP_SOURCE_QUENCH:
575 		/* Just silently ignore these. */
576 		goto out;
577 	case ICMP_PARAMETERPROB:
578 		err = EPROTO;
579 		break;
580 	case ICMP_DEST_UNREACH:
581 		if (code > NR_ICMP_UNREACH)
582 			goto out;
583 
584 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
585 			/* We are not interested in TCP_LISTEN and open_requests
586 			 * (SYN-ACKs send out by Linux are always <576bytes so
587 			 * they should go through unfragmented).
588 			 */
589 			if (sk->sk_state == TCP_LISTEN)
590 				goto out;
591 
592 			WRITE_ONCE(tp->mtu_info, info);
593 			if (!sock_owned_by_user(sk)) {
594 				tcp_v4_mtu_reduced(sk);
595 			} else {
596 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
597 					sock_hold(sk);
598 			}
599 			goto out;
600 		}
601 
602 		err = icmp_err_convert[code].errno;
603 		/* check if this ICMP message allows revert of backoff.
604 		 * (see RFC 6069)
605 		 */
606 		if (!fastopen &&
607 		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
608 			tcp_ld_RTO_revert(sk, seq);
609 		break;
610 	case ICMP_TIME_EXCEEDED:
611 		err = EHOSTUNREACH;
612 		break;
613 	default:
614 		goto out;
615 	}
616 
617 	switch (sk->sk_state) {
618 	case TCP_SYN_SENT:
619 	case TCP_SYN_RECV:
620 		/* Only in fast or simultaneous open. If a fast open socket is
621 		 * already accepted it is treated as a connected one below.
622 		 */
623 		if (fastopen && !fastopen->sk)
624 			break;
625 
626 		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
627 
628 		if (!sock_owned_by_user(sk))
629 			tcp_done_with_error(sk, err);
630 		else
631 			WRITE_ONCE(sk->sk_err_soft, err);
632 		goto out;
633 	}
634 
635 	/* If we've already connected we will keep trying
636 	 * until we time out, or the user gives up.
637 	 *
638 	 * rfc1122 4.2.3.9 allows to consider as hard errors
639 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
640 	 * but it is obsoleted by pmtu discovery).
641 	 *
642 	 * Note, that in modern internet, where routing is unreliable
643 	 * and in each dark corner broken firewalls sit, sending random
644 	 * errors ordered by their masters even this two messages finally lose
645 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
646 	 *
647 	 * Now we are in compliance with RFCs.
648 	 *							--ANK (980905)
649 	 */
650 
651 	if (!sock_owned_by_user(sk) &&
652 	    inet_test_bit(RECVERR, sk)) {
653 		WRITE_ONCE(sk->sk_err, err);
654 		sk_error_report(sk);
655 	} else	{ /* Only an error on timeout */
656 		WRITE_ONCE(sk->sk_err_soft, err);
657 	}
658 
659 out:
660 	bh_unlock_sock(sk);
661 	sock_put(sk);
662 	return 0;
663 }
664 
665 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
666 {
667 	struct tcphdr *th = tcp_hdr(skb);
668 
669 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
670 	skb->csum_start = skb_transport_header(skb) - skb->head;
671 	skb->csum_offset = offsetof(struct tcphdr, check);
672 }
673 
674 /* This routine computes an IPv4 TCP checksum. */
675 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
676 {
677 	const struct inet_sock *inet = inet_sk(sk);
678 
679 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
680 }
681 EXPORT_IPV6_MOD(tcp_v4_send_check);
682 
683 #define REPLY_OPTIONS_LEN      (MAX_TCP_OPTION_SPACE / sizeof(__be32))
684 
685 static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb,
686 				 const struct tcp_ao_hdr *aoh,
687 				 struct ip_reply_arg *arg, struct tcphdr *reply,
688 				 __be32 reply_options[REPLY_OPTIONS_LEN])
689 {
690 #ifdef CONFIG_TCP_AO
691 	int sdif = tcp_v4_sdif(skb);
692 	int dif = inet_iif(skb);
693 	int l3index = sdif ? dif : 0;
694 	bool allocated_traffic_key;
695 	struct tcp_ao_key *key;
696 	char *traffic_key;
697 	bool drop = true;
698 	u32 ao_sne = 0;
699 	u8 keyid;
700 
701 	rcu_read_lock();
702 	if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq),
703 				 &key, &traffic_key, &allocated_traffic_key,
704 				 &keyid, &ao_sne))
705 		goto out;
706 
707 	reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) |
708 				 (aoh->rnext_keyid << 8) | keyid);
709 	arg->iov[0].iov_len += tcp_ao_len_aligned(key);
710 	reply->doff = arg->iov[0].iov_len / 4;
711 
712 	if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1],
713 			    key, traffic_key,
714 			    (union tcp_ao_addr *)&ip_hdr(skb)->saddr,
715 			    (union tcp_ao_addr *)&ip_hdr(skb)->daddr,
716 			    reply, ao_sne))
717 		goto out;
718 	drop = false;
719 out:
720 	rcu_read_unlock();
721 	if (allocated_traffic_key)
722 		kfree(traffic_key);
723 	return drop;
724 #else
725 	return true;
726 #endif
727 }
728 
729 /*
730  *	This routine will send an RST to the other tcp.
731  *
732  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
733  *		      for reset.
734  *	Answer: if a packet caused RST, it is not for a socket
735  *		existing in our system, if it is matched to a socket,
736  *		it is just duplicate segment or bug in other side's TCP.
737  *		So that we build reply only basing on parameters
738  *		arrived with segment.
739  *	Exception: precedence violation. We do not implement it in any case.
740  */
741 
742 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb,
743 			      enum sk_rst_reason reason)
744 {
745 	const struct tcphdr *th = tcp_hdr(skb);
746 	struct {
747 		struct tcphdr th;
748 		__be32 opt[REPLY_OPTIONS_LEN];
749 	} rep;
750 	const __u8 *md5_hash_location = NULL;
751 	const struct tcp_ao_hdr *aoh;
752 	struct ip_reply_arg arg;
753 #ifdef CONFIG_TCP_MD5SIG
754 	struct tcp_md5sig_key *key = NULL;
755 	unsigned char newhash[16];
756 	struct sock *sk1 = NULL;
757 #endif
758 	u64 transmit_time = 0;
759 	struct sock *ctl_sk;
760 	struct net *net;
761 	u32 txhash = 0;
762 
763 	/* Never send a reset in response to a reset. */
764 	if (th->rst)
765 		return;
766 
767 	/* If sk not NULL, it means we did a successful lookup and incoming
768 	 * route had to be correct. prequeue might have dropped our dst.
769 	 */
770 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
771 		return;
772 
773 	/* Swap the send and the receive. */
774 	memset(&rep, 0, sizeof(rep));
775 	rep.th.dest   = th->source;
776 	rep.th.source = th->dest;
777 	rep.th.doff   = sizeof(struct tcphdr) / 4;
778 	rep.th.rst    = 1;
779 
780 	if (th->ack) {
781 		rep.th.seq = th->ack_seq;
782 	} else {
783 		rep.th.ack = 1;
784 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
785 				       skb->len - (th->doff << 2));
786 	}
787 
788 	memset(&arg, 0, sizeof(arg));
789 	arg.iov[0].iov_base = (unsigned char *)&rep;
790 	arg.iov[0].iov_len  = sizeof(rep.th);
791 
792 	net = sk ? sock_net(sk) : skb_dst_dev_net_rcu(skb);
793 
794 	/* Invalid TCP option size or twice included auth */
795 	if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh))
796 		return;
797 
798 	if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt))
799 		return;
800 
801 #ifdef CONFIG_TCP_MD5SIG
802 	rcu_read_lock();
803 	if (sk && sk_fullsock(sk)) {
804 		const union tcp_md5_addr *addr;
805 		int l3index;
806 
807 		/* sdif set, means packet ingressed via a device
808 		 * in an L3 domain and inet_iif is set to it.
809 		 */
810 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
811 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
812 		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
813 	} else if (md5_hash_location) {
814 		const union tcp_md5_addr *addr;
815 		int sdif = tcp_v4_sdif(skb);
816 		int dif = inet_iif(skb);
817 		int l3index;
818 
819 		/*
820 		 * active side is lost. Try to find listening socket through
821 		 * source port, and then find md5 key through listening socket.
822 		 * we are not loose security here:
823 		 * Incoming packet is checked with md5 hash with finding key,
824 		 * no RST generated if md5 hash doesn't match.
825 		 */
826 		sk1 = __inet_lookup_listener(net, NULL, 0, ip_hdr(skb)->saddr,
827 					     th->source, ip_hdr(skb)->daddr,
828 					     ntohs(th->source), dif, sdif);
829 		/* don't send rst if it can't find key */
830 		if (!sk1)
831 			goto out;
832 
833 		/* sdif set, means packet ingressed via a device
834 		 * in an L3 domain and dif is set to it.
835 		 */
836 		l3index = sdif ? dif : 0;
837 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
838 		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
839 		if (!key)
840 			goto out;
841 
842 		tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
843 		if (memcmp(md5_hash_location, newhash, 16) != 0)
844 			goto out;
845 	}
846 
847 	if (key) {
848 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
849 				   (TCPOPT_NOP << 16) |
850 				   (TCPOPT_MD5SIG << 8) |
851 				   TCPOLEN_MD5SIG);
852 		/* Update length and the length the header thinks exists */
853 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
854 		rep.th.doff = arg.iov[0].iov_len / 4;
855 
856 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
857 				     key, ip_hdr(skb)->saddr,
858 				     ip_hdr(skb)->daddr, &rep.th);
859 	}
860 #endif
861 	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
862 	if (rep.opt[0] == 0) {
863 		__be32 mrst = mptcp_reset_option(skb);
864 
865 		if (mrst) {
866 			rep.opt[0] = mrst;
867 			arg.iov[0].iov_len += sizeof(mrst);
868 			rep.th.doff = arg.iov[0].iov_len / 4;
869 		}
870 	}
871 
872 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
873 				      ip_hdr(skb)->saddr, /* XXX */
874 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
875 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
876 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
877 
878 	/* When socket is gone, all binding information is lost.
879 	 * routing might fail in this case. No choice here, if we choose to force
880 	 * input interface, we will misroute in case of asymmetric route.
881 	 */
882 	if (sk)
883 		arg.bound_dev_if = sk->sk_bound_dev_if;
884 
885 	trace_tcp_send_reset(sk, skb, reason);
886 
887 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
888 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
889 
890 	/* ECN bits of TW reset are cleared */
891 	arg.tos = ip_hdr(skb)->tos & ~INET_ECN_MASK;
892 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
893 	local_bh_disable();
894 	local_lock_nested_bh(&ipv4_tcp_sk.bh_lock);
895 	ctl_sk = this_cpu_read(ipv4_tcp_sk.sock);
896 
897 	sock_net_set(ctl_sk, net);
898 	if (sk) {
899 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
900 				   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
901 		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
902 				   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
903 		transmit_time = tcp_transmit_time(sk);
904 		xfrm_sk_clone_policy(ctl_sk, sk);
905 		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
906 			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
907 	} else {
908 		ctl_sk->sk_mark = 0;
909 		ctl_sk->sk_priority = 0;
910 	}
911 	ip_send_unicast_reply(ctl_sk, sk,
912 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
913 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
914 			      &arg, arg.iov[0].iov_len,
915 			      transmit_time, txhash);
916 
917 	xfrm_sk_free_policy(ctl_sk);
918 	sock_net_set(ctl_sk, &init_net);
919 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
920 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
921 	local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock);
922 	local_bh_enable();
923 
924 #ifdef CONFIG_TCP_MD5SIG
925 out:
926 	rcu_read_unlock();
927 #endif
928 }
929 
930 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
931    outside socket context is ugly, certainly. What can I do?
932  */
933 
934 static void tcp_v4_send_ack(const struct sock *sk,
935 			    struct sk_buff *skb, u32 seq, u32 ack,
936 			    u32 win, u32 tsval, u32 tsecr, int oif,
937 			    struct tcp_key *key,
938 			    int reply_flags, u8 tos, u32 txhash)
939 {
940 	const struct tcphdr *th = tcp_hdr(skb);
941 	struct {
942 		struct tcphdr th;
943 		__be32 opt[(MAX_TCP_OPTION_SPACE  >> 2)];
944 	} rep;
945 	struct net *net = sock_net(sk);
946 	struct ip_reply_arg arg;
947 	struct sock *ctl_sk;
948 	u64 transmit_time;
949 
950 	memset(&rep.th, 0, sizeof(struct tcphdr));
951 	memset(&arg, 0, sizeof(arg));
952 
953 	arg.iov[0].iov_base = (unsigned char *)&rep;
954 	arg.iov[0].iov_len  = sizeof(rep.th);
955 	if (tsecr) {
956 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
957 				   (TCPOPT_TIMESTAMP << 8) |
958 				   TCPOLEN_TIMESTAMP);
959 		rep.opt[1] = htonl(tsval);
960 		rep.opt[2] = htonl(tsecr);
961 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
962 	}
963 
964 	/* Swap the send and the receive. */
965 	rep.th.dest    = th->source;
966 	rep.th.source  = th->dest;
967 	rep.th.doff    = arg.iov[0].iov_len / 4;
968 	rep.th.seq     = htonl(seq);
969 	rep.th.ack_seq = htonl(ack);
970 	rep.th.ack     = 1;
971 	rep.th.window  = htons(win);
972 
973 #ifdef CONFIG_TCP_MD5SIG
974 	if (tcp_key_is_md5(key)) {
975 		int offset = (tsecr) ? 3 : 0;
976 
977 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
978 					  (TCPOPT_NOP << 16) |
979 					  (TCPOPT_MD5SIG << 8) |
980 					  TCPOLEN_MD5SIG);
981 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
982 		rep.th.doff = arg.iov[0].iov_len/4;
983 
984 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
985 				    key->md5_key, ip_hdr(skb)->saddr,
986 				    ip_hdr(skb)->daddr, &rep.th);
987 	}
988 #endif
989 #ifdef CONFIG_TCP_AO
990 	if (tcp_key_is_ao(key)) {
991 		int offset = (tsecr) ? 3 : 0;
992 
993 		rep.opt[offset++] = htonl((TCPOPT_AO << 24) |
994 					  (tcp_ao_len(key->ao_key) << 16) |
995 					  (key->ao_key->sndid << 8) |
996 					  key->rcv_next);
997 		arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key);
998 		rep.th.doff = arg.iov[0].iov_len / 4;
999 
1000 		tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset],
1001 				key->ao_key, key->traffic_key,
1002 				(union tcp_ao_addr *)&ip_hdr(skb)->saddr,
1003 				(union tcp_ao_addr *)&ip_hdr(skb)->daddr,
1004 				&rep.th, key->sne);
1005 	}
1006 #endif
1007 	arg.flags = reply_flags;
1008 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
1009 				      ip_hdr(skb)->saddr, /* XXX */
1010 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
1011 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
1012 	if (oif)
1013 		arg.bound_dev_if = oif;
1014 	arg.tos = tos;
1015 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
1016 	local_bh_disable();
1017 	local_lock_nested_bh(&ipv4_tcp_sk.bh_lock);
1018 	ctl_sk = this_cpu_read(ipv4_tcp_sk.sock);
1019 	sock_net_set(ctl_sk, net);
1020 	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
1021 			   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
1022 	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
1023 			   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
1024 	transmit_time = tcp_transmit_time(sk);
1025 	ip_send_unicast_reply(ctl_sk, sk,
1026 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
1027 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
1028 			      &arg, arg.iov[0].iov_len,
1029 			      transmit_time, txhash);
1030 
1031 	sock_net_set(ctl_sk, &init_net);
1032 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
1033 	local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock);
1034 	local_bh_enable();
1035 }
1036 
1037 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb,
1038 				enum tcp_tw_status tw_status)
1039 {
1040 	struct inet_timewait_sock *tw = inet_twsk(sk);
1041 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
1042 	struct tcp_key key = {};
1043 	u8 tos = tw->tw_tos;
1044 
1045 	/* Cleaning only ECN bits of TW ACKs of oow data or is paws_reject,
1046 	 * while not cleaning ECN bits of other TW ACKs to avoid these ACKs
1047 	 * being placed in a different service queues (Classic rather than L4S)
1048 	 */
1049 	if (tw_status == TCP_TW_ACK_OOW)
1050 		tos &= ~INET_ECN_MASK;
1051 
1052 #ifdef CONFIG_TCP_AO
1053 	struct tcp_ao_info *ao_info;
1054 
1055 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
1056 		/* FIXME: the segment to-be-acked is not verified yet */
1057 		ao_info = rcu_dereference(tcptw->ao_info);
1058 		if (ao_info) {
1059 			const struct tcp_ao_hdr *aoh;
1060 
1061 			if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) {
1062 				inet_twsk_put(tw);
1063 				return;
1064 			}
1065 
1066 			if (aoh)
1067 				key.ao_key = tcp_ao_established_key(sk, ao_info,
1068 								    aoh->rnext_keyid, -1);
1069 		}
1070 	}
1071 	if (key.ao_key) {
1072 		struct tcp_ao_key *rnext_key;
1073 
1074 		key.traffic_key = snd_other_key(key.ao_key);
1075 		key.sne = READ_ONCE(ao_info->snd_sne);
1076 		rnext_key = READ_ONCE(ao_info->rnext_key);
1077 		key.rcv_next = rnext_key->rcvid;
1078 		key.type = TCP_KEY_AO;
1079 #else
1080 	if (0) {
1081 #endif
1082 	} else if (static_branch_tcp_md5()) {
1083 		key.md5_key = tcp_twsk_md5_key(tcptw);
1084 		if (key.md5_key)
1085 			key.type = TCP_KEY_MD5;
1086 	}
1087 
1088 	tcp_v4_send_ack(sk, skb,
1089 			tcptw->tw_snd_nxt, READ_ONCE(tcptw->tw_rcv_nxt),
1090 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
1091 			tcp_tw_tsval(tcptw),
1092 			READ_ONCE(tcptw->tw_ts_recent),
1093 			tw->tw_bound_dev_if, &key,
1094 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
1095 			tos,
1096 			tw->tw_txhash);
1097 
1098 	inet_twsk_put(tw);
1099 }
1100 
1101 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
1102 				  struct request_sock *req)
1103 {
1104 	struct tcp_key key = {};
1105 
1106 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
1107 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
1108 	 */
1109 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
1110 					     tcp_sk(sk)->snd_nxt;
1111 
1112 #ifdef CONFIG_TCP_AO
1113 	if (static_branch_unlikely(&tcp_ao_needed.key) &&
1114 	    tcp_rsk_used_ao(req)) {
1115 		const union tcp_md5_addr *addr;
1116 		const struct tcp_ao_hdr *aoh;
1117 		int l3index;
1118 
1119 		/* Invalid TCP option size or twice included auth */
1120 		if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
1121 			return;
1122 		if (!aoh)
1123 			return;
1124 
1125 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1126 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1127 		key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET,
1128 					      aoh->rnext_keyid, -1);
1129 		if (unlikely(!key.ao_key)) {
1130 			/* Send ACK with any matching MKT for the peer */
1131 			key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1);
1132 			/* Matching key disappeared (user removed the key?)
1133 			 * let the handshake timeout.
1134 			 */
1135 			if (!key.ao_key) {
1136 				net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n",
1137 						     addr,
1138 						     ntohs(tcp_hdr(skb)->source),
1139 						     &ip_hdr(skb)->daddr,
1140 						     ntohs(tcp_hdr(skb)->dest));
1141 				return;
1142 			}
1143 		}
1144 		key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC);
1145 		if (!key.traffic_key)
1146 			return;
1147 
1148 		key.type = TCP_KEY_AO;
1149 		key.rcv_next = aoh->keyid;
1150 		tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req);
1151 #else
1152 	if (0) {
1153 #endif
1154 	} else if (static_branch_tcp_md5()) {
1155 		const union tcp_md5_addr *addr;
1156 		int l3index;
1157 
1158 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1159 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1160 		key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1161 		if (key.md5_key)
1162 			key.type = TCP_KEY_MD5;
1163 	}
1164 
1165 	/* Cleaning ECN bits of TW ACKs of oow data or is paws_reject */
1166 	tcp_v4_send_ack(sk, skb, seq,
1167 			tcp_rsk(req)->rcv_nxt,
1168 			tcp_synack_window(req) >> inet_rsk(req)->rcv_wscale,
1169 			tcp_rsk_tsval(tcp_rsk(req)),
1170 			req->ts_recent,
1171 			0, &key,
1172 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
1173 			ip_hdr(skb)->tos & ~INET_ECN_MASK,
1174 			READ_ONCE(tcp_rsk(req)->txhash));
1175 	if (tcp_key_is_ao(&key))
1176 		kfree(key.traffic_key);
1177 }
1178 
1179 /*
1180  *	Send a SYN-ACK after having received a SYN.
1181  *	This still operates on a request_sock only, not on a big
1182  *	socket.
1183  */
1184 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1185 			      struct flowi *fl,
1186 			      struct request_sock *req,
1187 			      struct tcp_fastopen_cookie *foc,
1188 			      enum tcp_synack_type synack_type,
1189 			      struct sk_buff *syn_skb)
1190 {
1191 	struct inet_request_sock *ireq = inet_rsk(req);
1192 	struct flowi4 fl4;
1193 	int err = -1;
1194 	struct sk_buff *skb;
1195 	u8 tos;
1196 
1197 	/* First, grab a route. */
1198 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1199 		return -1;
1200 
1201 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1202 
1203 	if (skb) {
1204 		tcp_rsk(req)->syn_ect_snt = inet_sk(sk)->tos & INET_ECN_MASK;
1205 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1206 
1207 		tos = READ_ONCE(inet_sk(sk)->tos);
1208 
1209 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1210 			tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1211 			      (tos & INET_ECN_MASK);
1212 
1213 		if (!INET_ECN_is_capable(tos) &&
1214 		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1215 			tos |= INET_ECN_ECT_0;
1216 
1217 		rcu_read_lock();
1218 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1219 					    ireq->ir_rmt_addr,
1220 					    rcu_dereference(ireq->ireq_opt),
1221 					    tos);
1222 		rcu_read_unlock();
1223 		err = net_xmit_eval(err);
1224 	}
1225 
1226 	return err;
1227 }
1228 
1229 /*
1230  *	IPv4 request_sock destructor.
1231  */
1232 static void tcp_v4_reqsk_destructor(struct request_sock *req)
1233 {
1234 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1235 }
1236 
1237 #ifdef CONFIG_TCP_MD5SIG
1238 /*
1239  * RFC2385 MD5 checksumming requires a mapping of
1240  * IP address->MD5 Key.
1241  * We need to maintain these in the sk structure.
1242  */
1243 
1244 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1245 EXPORT_IPV6_MOD(tcp_md5_needed);
1246 
1247 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1248 {
1249 	if (!old)
1250 		return true;
1251 
1252 	/* l3index always overrides non-l3index */
1253 	if (old->l3index && new->l3index == 0)
1254 		return false;
1255 	if (old->l3index == 0 && new->l3index)
1256 		return true;
1257 
1258 	return old->prefixlen < new->prefixlen;
1259 }
1260 
1261 /* Find the Key structure for an address.  */
1262 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1263 					   const union tcp_md5_addr *addr,
1264 					   int family, bool any_l3index)
1265 {
1266 	const struct tcp_sock *tp = tcp_sk(sk);
1267 	struct tcp_md5sig_key *key;
1268 	const struct tcp_md5sig_info *md5sig;
1269 	__be32 mask;
1270 	struct tcp_md5sig_key *best_match = NULL;
1271 	bool match;
1272 
1273 	/* caller either holds rcu_read_lock() or socket lock */
1274 	md5sig = rcu_dereference_check(tp->md5sig_info,
1275 				       lockdep_sock_is_held(sk));
1276 	if (!md5sig)
1277 		return NULL;
1278 
1279 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1280 				 lockdep_sock_is_held(sk)) {
1281 		if (key->family != family)
1282 			continue;
1283 		if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX &&
1284 		    key->l3index != l3index)
1285 			continue;
1286 		if (family == AF_INET) {
1287 			mask = inet_make_mask(key->prefixlen);
1288 			match = (key->addr.a4.s_addr & mask) ==
1289 				(addr->a4.s_addr & mask);
1290 #if IS_ENABLED(CONFIG_IPV6)
1291 		} else if (family == AF_INET6) {
1292 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1293 						  key->prefixlen);
1294 #endif
1295 		} else {
1296 			match = false;
1297 		}
1298 
1299 		if (match && better_md5_match(best_match, key))
1300 			best_match = key;
1301 	}
1302 	return best_match;
1303 }
1304 EXPORT_IPV6_MOD(__tcp_md5_do_lookup);
1305 
1306 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1307 						      const union tcp_md5_addr *addr,
1308 						      int family, u8 prefixlen,
1309 						      int l3index, u8 flags)
1310 {
1311 	const struct tcp_sock *tp = tcp_sk(sk);
1312 	struct tcp_md5sig_key *key;
1313 	unsigned int size = sizeof(struct in_addr);
1314 	const struct tcp_md5sig_info *md5sig;
1315 
1316 	/* caller either holds rcu_read_lock() or socket lock */
1317 	md5sig = rcu_dereference_check(tp->md5sig_info,
1318 				       lockdep_sock_is_held(sk));
1319 	if (!md5sig)
1320 		return NULL;
1321 #if IS_ENABLED(CONFIG_IPV6)
1322 	if (family == AF_INET6)
1323 		size = sizeof(struct in6_addr);
1324 #endif
1325 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1326 				 lockdep_sock_is_held(sk)) {
1327 		if (key->family != family)
1328 			continue;
1329 		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1330 			continue;
1331 		if (key->l3index != l3index)
1332 			continue;
1333 		if (!memcmp(&key->addr, addr, size) &&
1334 		    key->prefixlen == prefixlen)
1335 			return key;
1336 	}
1337 	return NULL;
1338 }
1339 
1340 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1341 					 const struct sock *addr_sk)
1342 {
1343 	const union tcp_md5_addr *addr;
1344 	int l3index;
1345 
1346 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1347 						 addr_sk->sk_bound_dev_if);
1348 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1349 	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1350 }
1351 EXPORT_IPV6_MOD(tcp_v4_md5_lookup);
1352 
1353 static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
1354 {
1355 	struct tcp_sock *tp = tcp_sk(sk);
1356 	struct tcp_md5sig_info *md5sig;
1357 
1358 	md5sig = kmalloc(sizeof(*md5sig), gfp);
1359 	if (!md5sig)
1360 		return -ENOMEM;
1361 
1362 	sk_gso_disable(sk);
1363 	INIT_HLIST_HEAD(&md5sig->head);
1364 	rcu_assign_pointer(tp->md5sig_info, md5sig);
1365 	return 0;
1366 }
1367 
1368 /* This can be called on a newly created socket, from other files */
1369 static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1370 			    int family, u8 prefixlen, int l3index, u8 flags,
1371 			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1372 {
1373 	/* Add Key to the list */
1374 	struct tcp_md5sig_key *key;
1375 	struct tcp_sock *tp = tcp_sk(sk);
1376 	struct tcp_md5sig_info *md5sig;
1377 
1378 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1379 	if (key) {
1380 		/* Pre-existing entry - just update that one.
1381 		 * Note that the key might be used concurrently.
1382 		 * data_race() is telling kcsan that we do not care of
1383 		 * key mismatches, since changing MD5 key on live flows
1384 		 * can lead to packet drops.
1385 		 */
1386 		data_race(memcpy(key->key, newkey, newkeylen));
1387 
1388 		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1389 		 * Also note that a reader could catch new key->keylen value
1390 		 * but old key->key[], this is the reason we use __GFP_ZERO
1391 		 * at sock_kmalloc() time below these lines.
1392 		 */
1393 		WRITE_ONCE(key->keylen, newkeylen);
1394 
1395 		return 0;
1396 	}
1397 
1398 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1399 					   lockdep_sock_is_held(sk));
1400 
1401 	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1402 	if (!key)
1403 		return -ENOMEM;
1404 
1405 	memcpy(key->key, newkey, newkeylen);
1406 	key->keylen = newkeylen;
1407 	key->family = family;
1408 	key->prefixlen = prefixlen;
1409 	key->l3index = l3index;
1410 	key->flags = flags;
1411 	memcpy(&key->addr, addr,
1412 	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1413 								 sizeof(struct in_addr));
1414 	hlist_add_head_rcu(&key->node, &md5sig->head);
1415 	return 0;
1416 }
1417 
1418 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1419 		   int family, u8 prefixlen, int l3index, u8 flags,
1420 		   const u8 *newkey, u8 newkeylen)
1421 {
1422 	struct tcp_sock *tp = tcp_sk(sk);
1423 
1424 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1425 		if (fips_enabled) {
1426 			pr_warn_once("TCP-MD5 support is disabled due to FIPS\n");
1427 			return -EOPNOTSUPP;
1428 		}
1429 
1430 		if (tcp_md5sig_info_add(sk, GFP_KERNEL))
1431 			return -ENOMEM;
1432 
1433 		if (!static_branch_inc(&tcp_md5_needed.key)) {
1434 			struct tcp_md5sig_info *md5sig;
1435 
1436 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1437 			rcu_assign_pointer(tp->md5sig_info, NULL);
1438 			kfree_rcu(md5sig, rcu);
1439 			return -EUSERS;
1440 		}
1441 	}
1442 
1443 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1444 				newkey, newkeylen, GFP_KERNEL);
1445 }
1446 EXPORT_IPV6_MOD(tcp_md5_do_add);
1447 
1448 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1449 		     int family, u8 prefixlen, int l3index,
1450 		     struct tcp_md5sig_key *key)
1451 {
1452 	struct tcp_sock *tp = tcp_sk(sk);
1453 
1454 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1455 
1456 		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC)))
1457 			return -ENOMEM;
1458 
1459 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1460 			struct tcp_md5sig_info *md5sig;
1461 
1462 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1463 			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1464 			rcu_assign_pointer(tp->md5sig_info, NULL);
1465 			kfree_rcu(md5sig, rcu);
1466 			return -EUSERS;
1467 		}
1468 	}
1469 
1470 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1471 				key->flags, key->key, key->keylen,
1472 				sk_gfp_mask(sk, GFP_ATOMIC));
1473 }
1474 EXPORT_IPV6_MOD(tcp_md5_key_copy);
1475 
1476 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1477 		   u8 prefixlen, int l3index, u8 flags)
1478 {
1479 	struct tcp_md5sig_key *key;
1480 
1481 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1482 	if (!key)
1483 		return -ENOENT;
1484 	hlist_del_rcu(&key->node);
1485 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1486 	kfree_rcu(key, rcu);
1487 	return 0;
1488 }
1489 EXPORT_IPV6_MOD(tcp_md5_do_del);
1490 
1491 void tcp_clear_md5_list(struct sock *sk)
1492 {
1493 	struct tcp_sock *tp = tcp_sk(sk);
1494 	struct tcp_md5sig_key *key;
1495 	struct hlist_node *n;
1496 	struct tcp_md5sig_info *md5sig;
1497 
1498 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1499 
1500 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1501 		hlist_del(&key->node);
1502 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1503 		kfree(key);
1504 	}
1505 }
1506 
1507 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1508 				 sockptr_t optval, int optlen)
1509 {
1510 	struct tcp_md5sig cmd;
1511 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1512 	const union tcp_md5_addr *addr;
1513 	u8 prefixlen = 32;
1514 	int l3index = 0;
1515 	bool l3flag;
1516 	u8 flags;
1517 
1518 	if (optlen < sizeof(cmd))
1519 		return -EINVAL;
1520 
1521 	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1522 		return -EFAULT;
1523 
1524 	if (sin->sin_family != AF_INET)
1525 		return -EINVAL;
1526 
1527 	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1528 	l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1529 
1530 	if (optname == TCP_MD5SIG_EXT &&
1531 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1532 		prefixlen = cmd.tcpm_prefixlen;
1533 		if (prefixlen > 32)
1534 			return -EINVAL;
1535 	}
1536 
1537 	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1538 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1539 		struct net_device *dev;
1540 
1541 		rcu_read_lock();
1542 		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1543 		if (dev && netif_is_l3_master(dev))
1544 			l3index = dev->ifindex;
1545 
1546 		rcu_read_unlock();
1547 
1548 		/* ok to reference set/not set outside of rcu;
1549 		 * right now device MUST be an L3 master
1550 		 */
1551 		if (!dev || !l3index)
1552 			return -EINVAL;
1553 	}
1554 
1555 	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1556 
1557 	if (!cmd.tcpm_keylen)
1558 		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1559 
1560 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1561 		return -EINVAL;
1562 
1563 	/* Don't allow keys for peers that have a matching TCP-AO key.
1564 	 * See the comment in tcp_ao_add_cmd()
1565 	 */
1566 	if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false))
1567 		return -EKEYREJECTED;
1568 
1569 	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1570 			      cmd.tcpm_key, cmd.tcpm_keylen);
1571 }
1572 
1573 static void tcp_v4_md5_hash_headers(struct md5_ctx *ctx,
1574 				    __be32 daddr, __be32 saddr,
1575 				    const struct tcphdr *th, int nbytes)
1576 {
1577 	struct {
1578 		struct tcp4_pseudohdr ip;
1579 		struct tcphdr tcp;
1580 	} h;
1581 
1582 	h.ip.saddr = saddr;
1583 	h.ip.daddr = daddr;
1584 	h.ip.pad = 0;
1585 	h.ip.protocol = IPPROTO_TCP;
1586 	h.ip.len = cpu_to_be16(nbytes);
1587 	h.tcp = *th;
1588 	h.tcp.check = 0;
1589 	md5_update(ctx, (const u8 *)&h, sizeof(h.ip) + sizeof(h.tcp));
1590 }
1591 
1592 static noinline_for_stack void
1593 tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1594 		    __be32 daddr, __be32 saddr, const struct tcphdr *th)
1595 {
1596 	struct md5_ctx ctx;
1597 
1598 	md5_init(&ctx);
1599 	tcp_v4_md5_hash_headers(&ctx, daddr, saddr, th, th->doff << 2);
1600 	tcp_md5_hash_key(&ctx, key);
1601 	md5_final(&ctx, md5_hash);
1602 }
1603 
1604 noinline_for_stack void
1605 tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1606 		    const struct sock *sk, const struct sk_buff *skb)
1607 {
1608 	const struct tcphdr *th = tcp_hdr(skb);
1609 	__be32 saddr, daddr;
1610 	struct md5_ctx ctx;
1611 
1612 	if (sk) { /* valid for establish/request sockets */
1613 		saddr = sk->sk_rcv_saddr;
1614 		daddr = sk->sk_daddr;
1615 	} else {
1616 		const struct iphdr *iph = ip_hdr(skb);
1617 		saddr = iph->saddr;
1618 		daddr = iph->daddr;
1619 	}
1620 
1621 	md5_init(&ctx);
1622 	tcp_v4_md5_hash_headers(&ctx, daddr, saddr, th, skb->len);
1623 	tcp_md5_hash_skb_data(&ctx, skb, th->doff << 2);
1624 	tcp_md5_hash_key(&ctx, key);
1625 	md5_final(&ctx, md5_hash);
1626 }
1627 EXPORT_IPV6_MOD(tcp_v4_md5_hash_skb);
1628 
1629 #endif
1630 
1631 static void tcp_v4_init_req(struct request_sock *req,
1632 			    const struct sock *sk_listener,
1633 			    struct sk_buff *skb)
1634 {
1635 	struct inet_request_sock *ireq = inet_rsk(req);
1636 	struct net *net = sock_net(sk_listener);
1637 
1638 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1639 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1640 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1641 }
1642 
1643 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1644 					  struct sk_buff *skb,
1645 					  struct flowi *fl,
1646 					  struct request_sock *req,
1647 					  u32 tw_isn)
1648 {
1649 	tcp_v4_init_req(req, sk, skb);
1650 
1651 	if (security_inet_conn_request(sk, skb, req))
1652 		return NULL;
1653 
1654 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1655 }
1656 
1657 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1658 	.family		=	PF_INET,
1659 	.obj_size	=	sizeof(struct tcp_request_sock),
1660 	.send_ack	=	tcp_v4_reqsk_send_ack,
1661 	.destructor	=	tcp_v4_reqsk_destructor,
1662 	.send_reset	=	tcp_v4_send_reset,
1663 };
1664 
1665 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1666 	.mss_clamp	=	TCP_MSS_DEFAULT,
1667 #ifdef CONFIG_TCP_MD5SIG
1668 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1669 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1670 #endif
1671 #ifdef CONFIG_TCP_AO
1672 	.ao_lookup	=	tcp_v4_ao_lookup_rsk,
1673 	.ao_calc_key	=	tcp_v4_ao_calc_key_rsk,
1674 	.ao_synack_hash	=	tcp_v4_ao_synack_hash,
1675 #endif
1676 #ifdef CONFIG_SYN_COOKIES
1677 	.cookie_init_seq =	cookie_v4_init_sequence,
1678 #endif
1679 	.route_req	=	tcp_v4_route_req,
1680 	.init_seq	=	tcp_v4_init_seq,
1681 	.init_ts_off	=	tcp_v4_init_ts_off,
1682 	.send_synack	=	tcp_v4_send_synack,
1683 };
1684 
1685 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1686 {
1687 	/* Never answer to SYNs send to broadcast or multicast */
1688 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1689 		goto drop;
1690 
1691 	return tcp_conn_request(&tcp_request_sock_ops,
1692 				&tcp_request_sock_ipv4_ops, sk, skb);
1693 
1694 drop:
1695 	tcp_listendrop(sk);
1696 	return 0;
1697 }
1698 EXPORT_IPV6_MOD(tcp_v4_conn_request);
1699 
1700 
1701 /*
1702  * The three way handshake has completed - we got a valid synack -
1703  * now create the new socket.
1704  */
1705 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1706 				  struct request_sock *req,
1707 				  struct dst_entry *dst,
1708 				  struct request_sock *req_unhash,
1709 				  bool *own_req)
1710 {
1711 	struct inet_request_sock *ireq;
1712 	bool found_dup_sk = false;
1713 	struct inet_sock *newinet;
1714 	struct tcp_sock *newtp;
1715 	struct sock *newsk;
1716 #ifdef CONFIG_TCP_MD5SIG
1717 	const union tcp_md5_addr *addr;
1718 	struct tcp_md5sig_key *key;
1719 	int l3index;
1720 #endif
1721 	struct ip_options_rcu *inet_opt;
1722 
1723 	if (sk_acceptq_is_full(sk))
1724 		goto exit_overflow;
1725 
1726 	newsk = tcp_create_openreq_child(sk, req, skb);
1727 	if (!newsk)
1728 		goto exit_nonewsk;
1729 
1730 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1731 	inet_sk_rx_dst_set(newsk, skb);
1732 
1733 	newtp		      = tcp_sk(newsk);
1734 	newinet		      = inet_sk(newsk);
1735 	ireq		      = inet_rsk(req);
1736 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1737 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1738 	newinet->mc_index     = inet_iif(skb);
1739 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1740 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1741 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1742 	if (inet_opt)
1743 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1744 	atomic_set(&newinet->inet_id, get_random_u16());
1745 
1746 	/* Set ToS of the new socket based upon the value of incoming SYN.
1747 	 * ECT bits are set later in tcp_init_transfer().
1748 	 */
1749 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1750 		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1751 
1752 	if (!dst) {
1753 		dst = inet_csk_route_child_sock(sk, newsk, req);
1754 		if (!dst)
1755 			goto put_and_exit;
1756 	} else {
1757 		/* syncookie case : see end of cookie_v4_check() */
1758 	}
1759 	sk_setup_caps(newsk, dst);
1760 
1761 	tcp_ca_openreq_child(newsk, dst);
1762 
1763 	tcp_sync_mss(newsk, dst_mtu(dst));
1764 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1765 
1766 	tcp_initialize_rcv_mss(newsk);
1767 
1768 #ifdef CONFIG_TCP_MD5SIG
1769 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1770 	/* Copy over the MD5 key from the original socket */
1771 	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1772 	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1773 	if (key && !tcp_rsk_used_ao(req)) {
1774 		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1775 			goto put_and_exit;
1776 		sk_gso_disable(newsk);
1777 	}
1778 #endif
1779 #ifdef CONFIG_TCP_AO
1780 	if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET))
1781 		goto put_and_exit; /* OOM, release back memory */
1782 #endif
1783 
1784 	if (__inet_inherit_port(sk, newsk) < 0)
1785 		goto put_and_exit;
1786 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1787 				       &found_dup_sk);
1788 	if (likely(*own_req)) {
1789 		tcp_move_syn(newtp, req);
1790 		ireq->ireq_opt = NULL;
1791 	} else {
1792 		newinet->inet_opt = NULL;
1793 
1794 		if (!req_unhash && found_dup_sk) {
1795 			/* This code path should only be executed in the
1796 			 * syncookie case only
1797 			 */
1798 			bh_unlock_sock(newsk);
1799 			sock_put(newsk);
1800 			newsk = NULL;
1801 		}
1802 	}
1803 	return newsk;
1804 
1805 exit_overflow:
1806 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1807 exit_nonewsk:
1808 	dst_release(dst);
1809 exit:
1810 	tcp_listendrop(sk);
1811 	return NULL;
1812 put_and_exit:
1813 	newinet->inet_opt = NULL;
1814 	inet_csk_prepare_forced_close(newsk);
1815 	tcp_done(newsk);
1816 	goto exit;
1817 }
1818 EXPORT_IPV6_MOD(tcp_v4_syn_recv_sock);
1819 
1820 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1821 {
1822 #ifdef CONFIG_SYN_COOKIES
1823 	const struct tcphdr *th = tcp_hdr(skb);
1824 
1825 	if (!th->syn)
1826 		sk = cookie_v4_check(sk, skb);
1827 #endif
1828 	return sk;
1829 }
1830 
1831 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1832 			 struct tcphdr *th, u32 *cookie)
1833 {
1834 	u16 mss = 0;
1835 #ifdef CONFIG_SYN_COOKIES
1836 	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1837 				    &tcp_request_sock_ipv4_ops, sk, th);
1838 	if (mss) {
1839 		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1840 		tcp_synq_overflow(sk);
1841 	}
1842 #endif
1843 	return mss;
1844 }
1845 
1846 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1847 							   u32));
1848 /* The socket must have it's spinlock held when we get
1849  * here, unless it is a TCP_LISTEN socket.
1850  *
1851  * We have a potential double-lock case here, so even when
1852  * doing backlog processing we use the BH locking scheme.
1853  * This is because we cannot sleep with the original spinlock
1854  * held.
1855  */
1856 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1857 {
1858 	enum skb_drop_reason reason;
1859 	struct sock *rsk;
1860 
1861 	reason = psp_sk_rx_policy_check(sk, skb);
1862 	if (reason)
1863 		goto err_discard;
1864 
1865 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1866 		struct dst_entry *dst;
1867 
1868 		dst = rcu_dereference_protected(sk->sk_rx_dst,
1869 						lockdep_sock_is_held(sk));
1870 
1871 		sock_rps_save_rxhash(sk, skb);
1872 		sk_mark_napi_id(sk, skb);
1873 		if (dst) {
1874 			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1875 			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1876 					     dst, 0)) {
1877 				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1878 				dst_release(dst);
1879 			}
1880 		}
1881 		tcp_rcv_established(sk, skb);
1882 		return 0;
1883 	}
1884 
1885 	if (tcp_checksum_complete(skb))
1886 		goto csum_err;
1887 
1888 	if (sk->sk_state == TCP_LISTEN) {
1889 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1890 
1891 		if (!nsk)
1892 			return 0;
1893 		if (nsk != sk) {
1894 			reason = tcp_child_process(sk, nsk, skb);
1895 			if (reason) {
1896 				rsk = nsk;
1897 				goto reset;
1898 			}
1899 			return 0;
1900 		}
1901 	} else
1902 		sock_rps_save_rxhash(sk, skb);
1903 
1904 	reason = tcp_rcv_state_process(sk, skb);
1905 	if (reason) {
1906 		rsk = sk;
1907 		goto reset;
1908 	}
1909 	return 0;
1910 
1911 reset:
1912 	tcp_v4_send_reset(rsk, skb, sk_rst_convert_drop_reason(reason));
1913 discard:
1914 	sk_skb_reason_drop(sk, skb, reason);
1915 	/* Be careful here. If this function gets more complicated and
1916 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1917 	 * might be destroyed here. This current version compiles correctly,
1918 	 * but you have been warned.
1919 	 */
1920 	return 0;
1921 
1922 csum_err:
1923 	reason = SKB_DROP_REASON_TCP_CSUM;
1924 	trace_tcp_bad_csum(skb);
1925 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1926 err_discard:
1927 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1928 	goto discard;
1929 }
1930 EXPORT_SYMBOL(tcp_v4_do_rcv);
1931 
1932 int tcp_v4_early_demux(struct sk_buff *skb)
1933 {
1934 	struct net *net = dev_net_rcu(skb->dev);
1935 	const struct iphdr *iph;
1936 	const struct tcphdr *th;
1937 	struct sock *sk;
1938 
1939 	if (skb->pkt_type != PACKET_HOST)
1940 		return 0;
1941 
1942 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1943 		return 0;
1944 
1945 	iph = ip_hdr(skb);
1946 	th = tcp_hdr(skb);
1947 
1948 	if (th->doff < sizeof(struct tcphdr) / 4)
1949 		return 0;
1950 
1951 	sk = __inet_lookup_established(net, iph->saddr, th->source,
1952 				       iph->daddr, ntohs(th->dest),
1953 				       skb->skb_iif, inet_sdif(skb));
1954 	if (sk) {
1955 		skb->sk = sk;
1956 		skb->destructor = sock_edemux;
1957 		if (sk_fullsock(sk)) {
1958 			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1959 
1960 			if (dst)
1961 				dst = dst_check(dst, 0);
1962 			if (dst &&
1963 			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1964 				skb_dst_set_noref(skb, dst);
1965 		}
1966 	}
1967 	return 0;
1968 }
1969 
1970 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1971 		     enum skb_drop_reason *reason)
1972 {
1973 	u32 tail_gso_size, tail_gso_segs;
1974 	struct skb_shared_info *shinfo;
1975 	const struct tcphdr *th;
1976 	struct tcphdr *thtail;
1977 	struct sk_buff *tail;
1978 	unsigned int hdrlen;
1979 	bool fragstolen;
1980 	u32 gso_segs;
1981 	u32 gso_size;
1982 	u64 limit;
1983 	int delta;
1984 	int err;
1985 
1986 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1987 	 * we can fix skb->truesize to its real value to avoid future drops.
1988 	 * This is valid because skb is not yet charged to the socket.
1989 	 * It has been noticed pure SACK packets were sometimes dropped
1990 	 * (if cooked by drivers without copybreak feature).
1991 	 */
1992 	skb_condense(skb);
1993 
1994 	tcp_cleanup_skb(skb);
1995 
1996 	if (unlikely(tcp_checksum_complete(skb))) {
1997 		bh_unlock_sock(sk);
1998 		trace_tcp_bad_csum(skb);
1999 		*reason = SKB_DROP_REASON_TCP_CSUM;
2000 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
2001 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
2002 		return true;
2003 	}
2004 
2005 	/* Attempt coalescing to last skb in backlog, even if we are
2006 	 * above the limits.
2007 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
2008 	 */
2009 	th = (const struct tcphdr *)skb->data;
2010 	hdrlen = th->doff * 4;
2011 
2012 	tail = sk->sk_backlog.tail;
2013 	if (!tail)
2014 		goto no_coalesce;
2015 	thtail = (struct tcphdr *)tail->data;
2016 
2017 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
2018 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
2019 	    ((TCP_SKB_CB(tail)->tcp_flags |
2020 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
2021 	    !((TCP_SKB_CB(tail)->tcp_flags &
2022 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
2023 	    ((TCP_SKB_CB(tail)->tcp_flags ^
2024 	      TCP_SKB_CB(skb)->tcp_flags) &
2025 	     (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)) ||
2026 	    !tcp_skb_can_collapse_rx(tail, skb) ||
2027 	    thtail->doff != th->doff ||
2028 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)) ||
2029 	    /* prior to PSP Rx policy check, retain exact PSP metadata */
2030 	    psp_skb_coalesce_diff(tail, skb))
2031 		goto no_coalesce;
2032 
2033 	__skb_pull(skb, hdrlen);
2034 
2035 	shinfo = skb_shinfo(skb);
2036 	gso_size = shinfo->gso_size ?: skb->len;
2037 	gso_segs = shinfo->gso_segs ?: 1;
2038 
2039 	shinfo = skb_shinfo(tail);
2040 	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
2041 	tail_gso_segs = shinfo->gso_segs ?: 1;
2042 
2043 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
2044 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
2045 
2046 		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
2047 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
2048 			thtail->window = th->window;
2049 		}
2050 
2051 		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
2052 		 * thtail->fin, so that the fast path in tcp_rcv_established()
2053 		 * is not entered if we append a packet with a FIN.
2054 		 * SYN, RST, URG are not present.
2055 		 * ACK is set on both packets.
2056 		 * PSH : we do not really care in TCP stack,
2057 		 *       at least for 'GRO' packets.
2058 		 */
2059 		thtail->fin |= th->fin;
2060 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2061 
2062 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2063 			TCP_SKB_CB(tail)->has_rxtstamp = true;
2064 			tail->tstamp = skb->tstamp;
2065 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
2066 		}
2067 
2068 		/* Not as strict as GRO. We only need to carry mss max value */
2069 		shinfo->gso_size = max(gso_size, tail_gso_size);
2070 		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
2071 
2072 		sk->sk_backlog.len += delta;
2073 		__NET_INC_STATS(sock_net(sk),
2074 				LINUX_MIB_TCPBACKLOGCOALESCE);
2075 		kfree_skb_partial(skb, fragstolen);
2076 		return false;
2077 	}
2078 	__skb_push(skb, hdrlen);
2079 
2080 no_coalesce:
2081 	/* sk->sk_backlog.len is reset only at the end of __release_sock().
2082 	 * Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach
2083 	 * sk_rcvbuf in normal conditions.
2084 	 */
2085 	limit = ((u64)READ_ONCE(sk->sk_rcvbuf)) << 1;
2086 
2087 	limit += ((u32)READ_ONCE(sk->sk_sndbuf)) >> 1;
2088 
2089 	/* Only socket owner can try to collapse/prune rx queues
2090 	 * to reduce memory overhead, so add a little headroom here.
2091 	 * Few sockets backlog are possibly concurrently non empty.
2092 	 */
2093 	limit += 64 * 1024;
2094 
2095 	limit = min_t(u64, limit, UINT_MAX);
2096 
2097 	err = sk_add_backlog(sk, skb, limit);
2098 	if (unlikely(err)) {
2099 		bh_unlock_sock(sk);
2100 		if (err == -ENOMEM) {
2101 			*reason = SKB_DROP_REASON_PFMEMALLOC;
2102 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
2103 		} else {
2104 			*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
2105 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
2106 		}
2107 		return true;
2108 	}
2109 	return false;
2110 }
2111 EXPORT_IPV6_MOD(tcp_add_backlog);
2112 
2113 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason)
2114 {
2115 	struct tcphdr *th = (struct tcphdr *)skb->data;
2116 
2117 	return sk_filter_trim_cap(sk, skb, th->doff * 4, reason);
2118 }
2119 EXPORT_IPV6_MOD(tcp_filter);
2120 
2121 static void tcp_v4_restore_cb(struct sk_buff *skb)
2122 {
2123 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
2124 		sizeof(struct inet_skb_parm));
2125 }
2126 
2127 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
2128 			   const struct tcphdr *th)
2129 {
2130 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
2131 	 * barrier() makes sure compiler wont play fool^Waliasing games.
2132 	 */
2133 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
2134 		sizeof(struct inet_skb_parm));
2135 	barrier();
2136 
2137 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2138 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2139 				    skb->len - th->doff * 4);
2140 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2141 	TCP_SKB_CB(skb)->tcp_flags = tcp_flags_ntohs(th);
2142 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2143 	TCP_SKB_CB(skb)->sacked	 = 0;
2144 	TCP_SKB_CB(skb)->has_rxtstamp =
2145 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
2146 }
2147 
2148 /*
2149  *	From tcp_input.c
2150  */
2151 
2152 int tcp_v4_rcv(struct sk_buff *skb)
2153 {
2154 	struct net *net = dev_net_rcu(skb->dev);
2155 	enum skb_drop_reason drop_reason;
2156 	enum tcp_tw_status tw_status;
2157 	int sdif = inet_sdif(skb);
2158 	int dif = inet_iif(skb);
2159 	const struct iphdr *iph;
2160 	const struct tcphdr *th;
2161 	struct sock *sk = NULL;
2162 	bool refcounted;
2163 	int ret;
2164 	u32 isn;
2165 
2166 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2167 	if (skb->pkt_type != PACKET_HOST)
2168 		goto discard_it;
2169 
2170 	/* Count it even if it's bad */
2171 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2172 
2173 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2174 		goto discard_it;
2175 
2176 	th = (const struct tcphdr *)skb->data;
2177 
2178 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2179 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2180 		goto bad_packet;
2181 	}
2182 	if (!pskb_may_pull(skb, th->doff * 4))
2183 		goto discard_it;
2184 
2185 	/* An explanation is required here, I think.
2186 	 * Packet length and doff are validated by header prediction,
2187 	 * provided case of th->doff==0 is eliminated.
2188 	 * So, we defer the checks. */
2189 
2190 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2191 		goto csum_error;
2192 
2193 	th = (const struct tcphdr *)skb->data;
2194 	iph = ip_hdr(skb);
2195 lookup:
2196 	sk = __inet_lookup_skb(skb, __tcp_hdrlen(th), th->source,
2197 			       th->dest, sdif, &refcounted);
2198 	if (!sk)
2199 		goto no_tcp_socket;
2200 
2201 	if (sk->sk_state == TCP_TIME_WAIT)
2202 		goto do_time_wait;
2203 
2204 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2205 		struct request_sock *req = inet_reqsk(sk);
2206 		bool req_stolen = false;
2207 		struct sock *nsk;
2208 
2209 		sk = req->rsk_listener;
2210 		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2211 			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2212 		else
2213 			drop_reason = tcp_inbound_hash(sk, req, skb,
2214 						       &iph->saddr, &iph->daddr,
2215 						       AF_INET, dif, sdif);
2216 		if (unlikely(drop_reason)) {
2217 			sk_drops_skbadd(sk, skb);
2218 			reqsk_put(req);
2219 			goto discard_it;
2220 		}
2221 		if (tcp_checksum_complete(skb)) {
2222 			reqsk_put(req);
2223 			goto csum_error;
2224 		}
2225 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2226 			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2227 			if (!nsk) {
2228 				inet_csk_reqsk_queue_drop_and_put(sk, req);
2229 				goto lookup;
2230 			}
2231 			sk = nsk;
2232 			/* reuseport_migrate_sock() has already held one sk_refcnt
2233 			 * before returning.
2234 			 */
2235 		} else {
2236 			/* We own a reference on the listener, increase it again
2237 			 * as we might lose it too soon.
2238 			 */
2239 			sock_hold(sk);
2240 		}
2241 		refcounted = true;
2242 		nsk = NULL;
2243 		if (!tcp_filter(sk, skb, &drop_reason)) {
2244 			th = (const struct tcphdr *)skb->data;
2245 			iph = ip_hdr(skb);
2246 			tcp_v4_fill_cb(skb, iph, th);
2247 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen,
2248 					    &drop_reason);
2249 		}
2250 		if (!nsk) {
2251 			reqsk_put(req);
2252 			if (req_stolen) {
2253 				/* Another cpu got exclusive access to req
2254 				 * and created a full blown socket.
2255 				 * Try to feed this packet to this socket
2256 				 * instead of discarding it.
2257 				 */
2258 				tcp_v4_restore_cb(skb);
2259 				sock_put(sk);
2260 				goto lookup;
2261 			}
2262 			goto discard_and_relse;
2263 		}
2264 		nf_reset_ct(skb);
2265 		if (nsk == sk) {
2266 			reqsk_put(req);
2267 			tcp_v4_restore_cb(skb);
2268 		} else {
2269 			drop_reason = tcp_child_process(sk, nsk, skb);
2270 			if (drop_reason) {
2271 				enum sk_rst_reason rst_reason;
2272 
2273 				rst_reason = sk_rst_convert_drop_reason(drop_reason);
2274 				tcp_v4_send_reset(nsk, skb, rst_reason);
2275 				goto discard_and_relse;
2276 			}
2277 			sock_put(sk);
2278 			return 0;
2279 		}
2280 	}
2281 
2282 process:
2283 	if (static_branch_unlikely(&ip4_min_ttl)) {
2284 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2285 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2286 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2287 			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2288 			goto discard_and_relse;
2289 		}
2290 	}
2291 
2292 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2293 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2294 		goto discard_and_relse;
2295 	}
2296 
2297 	drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr,
2298 				       AF_INET, dif, sdif);
2299 	if (drop_reason)
2300 		goto discard_and_relse;
2301 
2302 	nf_reset_ct(skb);
2303 
2304 	if (tcp_filter(sk, skb, &drop_reason))
2305 		goto discard_and_relse;
2306 
2307 	th = (const struct tcphdr *)skb->data;
2308 	iph = ip_hdr(skb);
2309 	tcp_v4_fill_cb(skb, iph, th);
2310 
2311 	skb->dev = NULL;
2312 
2313 	if (sk->sk_state == TCP_LISTEN) {
2314 		ret = tcp_v4_do_rcv(sk, skb);
2315 		goto put_and_return;
2316 	}
2317 
2318 	sk_incoming_cpu_update(sk);
2319 
2320 	bh_lock_sock_nested(sk);
2321 	tcp_segs_in(tcp_sk(sk), skb);
2322 	ret = 0;
2323 	if (!sock_owned_by_user(sk)) {
2324 		ret = tcp_v4_do_rcv(sk, skb);
2325 	} else {
2326 		if (tcp_add_backlog(sk, skb, &drop_reason))
2327 			goto discard_and_relse;
2328 	}
2329 	bh_unlock_sock(sk);
2330 
2331 put_and_return:
2332 	if (refcounted)
2333 		sock_put(sk);
2334 
2335 	return ret;
2336 
2337 no_tcp_socket:
2338 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2339 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2340 		goto discard_it;
2341 
2342 	tcp_v4_fill_cb(skb, iph, th);
2343 
2344 	if (tcp_checksum_complete(skb)) {
2345 csum_error:
2346 		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2347 		trace_tcp_bad_csum(skb);
2348 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2349 bad_packet:
2350 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2351 	} else {
2352 		tcp_v4_send_reset(NULL, skb, sk_rst_convert_drop_reason(drop_reason));
2353 	}
2354 
2355 discard_it:
2356 	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2357 	/* Discard frame. */
2358 	sk_skb_reason_drop(sk, skb, drop_reason);
2359 	return 0;
2360 
2361 discard_and_relse:
2362 	sk_drops_skbadd(sk, skb);
2363 	if (refcounted)
2364 		sock_put(sk);
2365 	goto discard_it;
2366 
2367 do_time_wait:
2368 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2369 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2370 		inet_twsk_put(inet_twsk(sk));
2371 		goto discard_it;
2372 	}
2373 
2374 	tcp_v4_fill_cb(skb, iph, th);
2375 
2376 	if (tcp_checksum_complete(skb)) {
2377 		inet_twsk_put(inet_twsk(sk));
2378 		goto csum_error;
2379 	}
2380 
2381 	tw_status = tcp_timewait_state_process(inet_twsk(sk), skb, th, &isn,
2382 					       &drop_reason);
2383 	switch (tw_status) {
2384 	case TCP_TW_SYN: {
2385 		struct sock *sk2 = inet_lookup_listener(net, skb, __tcp_hdrlen(th),
2386 							iph->saddr, th->source,
2387 							iph->daddr, th->dest,
2388 							inet_iif(skb),
2389 							sdif);
2390 		if (sk2) {
2391 			inet_twsk_deschedule_put(inet_twsk(sk));
2392 			sk = sk2;
2393 			tcp_v4_restore_cb(skb);
2394 			refcounted = false;
2395 			__this_cpu_write(tcp_tw_isn, isn);
2396 			goto process;
2397 		}
2398 
2399 		drop_reason = psp_twsk_rx_policy_check(inet_twsk(sk), skb);
2400 		if (drop_reason)
2401 			break;
2402 	}
2403 		/* to ACK */
2404 		fallthrough;
2405 	case TCP_TW_ACK:
2406 	case TCP_TW_ACK_OOW:
2407 		tcp_v4_timewait_ack(sk, skb, tw_status);
2408 		break;
2409 	case TCP_TW_RST:
2410 		tcp_v4_send_reset(sk, skb, SK_RST_REASON_TCP_TIMEWAIT_SOCKET);
2411 		inet_twsk_deschedule_put(inet_twsk(sk));
2412 		goto discard_it;
2413 	case TCP_TW_SUCCESS:;
2414 	}
2415 	goto discard_it;
2416 }
2417 
2418 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2419 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2420 };
2421 
2422 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2423 {
2424 	struct dst_entry *dst = skb_dst(skb);
2425 
2426 	if (dst && dst_hold_safe(dst)) {
2427 		rcu_assign_pointer(sk->sk_rx_dst, dst);
2428 		sk->sk_rx_dst_ifindex = skb->skb_iif;
2429 	}
2430 }
2431 EXPORT_IPV6_MOD(inet_sk_rx_dst_set);
2432 
2433 const struct inet_connection_sock_af_ops ipv4_specific = {
2434 	.queue_xmit	   = ip_queue_xmit,
2435 	.send_check	   = tcp_v4_send_check,
2436 	.rebuild_header	   = inet_sk_rebuild_header,
2437 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2438 	.conn_request	   = tcp_v4_conn_request,
2439 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2440 	.net_header_len	   = sizeof(struct iphdr),
2441 	.setsockopt	   = ip_setsockopt,
2442 	.getsockopt	   = ip_getsockopt,
2443 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2444 };
2445 EXPORT_IPV6_MOD(ipv4_specific);
2446 
2447 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2448 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2449 #ifdef CONFIG_TCP_MD5SIG
2450 	.md5_lookup		= tcp_v4_md5_lookup,
2451 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2452 	.md5_parse		= tcp_v4_parse_md5_keys,
2453 #endif
2454 #ifdef CONFIG_TCP_AO
2455 	.ao_lookup		= tcp_v4_ao_lookup,
2456 	.calc_ao_hash		= tcp_v4_ao_hash_skb,
2457 	.ao_parse		= tcp_v4_parse_ao,
2458 	.ao_calc_key_sk		= tcp_v4_ao_calc_key_sk,
2459 #endif
2460 };
2461 
2462 static void tcp4_destruct_sock(struct sock *sk)
2463 {
2464 	tcp_md5_destruct_sock(sk);
2465 	tcp_ao_destroy_sock(sk, false);
2466 	inet_sock_destruct(sk);
2467 }
2468 #endif
2469 
2470 /* NOTE: A lot of things set to zero explicitly by call to
2471  *       sk_alloc() so need not be done here.
2472  */
2473 static int tcp_v4_init_sock(struct sock *sk)
2474 {
2475 	struct inet_connection_sock *icsk = inet_csk(sk);
2476 
2477 	tcp_init_sock(sk);
2478 
2479 	icsk->icsk_af_ops = &ipv4_specific;
2480 
2481 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2482 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2483 	sk->sk_destruct = tcp4_destruct_sock;
2484 #endif
2485 
2486 	return 0;
2487 }
2488 
2489 static void tcp_release_user_frags(struct sock *sk)
2490 {
2491 #ifdef CONFIG_PAGE_POOL
2492 	unsigned long index;
2493 	void *netmem;
2494 
2495 	xa_for_each(&sk->sk_user_frags, index, netmem)
2496 		WARN_ON_ONCE(!napi_pp_put_page((__force netmem_ref)netmem));
2497 #endif
2498 }
2499 
2500 void tcp_v4_destroy_sock(struct sock *sk)
2501 {
2502 	struct tcp_sock *tp = tcp_sk(sk);
2503 
2504 	tcp_release_user_frags(sk);
2505 
2506 	xa_destroy(&sk->sk_user_frags);
2507 
2508 	trace_tcp_destroy_sock(sk);
2509 
2510 	tcp_clear_xmit_timers(sk);
2511 
2512 	tcp_cleanup_congestion_control(sk);
2513 
2514 	tcp_cleanup_ulp(sk);
2515 
2516 	/* Cleanup up the write buffer. */
2517 	tcp_write_queue_purge(sk);
2518 
2519 	/* Check if we want to disable active TFO */
2520 	tcp_fastopen_active_disable_ofo_check(sk);
2521 
2522 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2523 	skb_rbtree_purge(&tp->out_of_order_queue);
2524 
2525 	/* Clean up a referenced TCP bind bucket. */
2526 	if (inet_csk(sk)->icsk_bind_hash)
2527 		inet_put_port(sk);
2528 
2529 	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2530 
2531 	/* If socket is aborted during connect operation */
2532 	tcp_free_fastopen_req(tp);
2533 	tcp_fastopen_destroy_cipher(sk);
2534 	tcp_saved_syn_free(tp);
2535 
2536 	sk_sockets_allocated_dec(sk);
2537 }
2538 EXPORT_IPV6_MOD(tcp_v4_destroy_sock);
2539 
2540 #ifdef CONFIG_PROC_FS
2541 /* Proc filesystem TCP sock list dumping. */
2542 
2543 static unsigned short seq_file_family(const struct seq_file *seq);
2544 
2545 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2546 {
2547 	unsigned short family = seq_file_family(seq);
2548 
2549 	/* AF_UNSPEC is used as a match all */
2550 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2551 		net_eq(sock_net(sk), seq_file_net(seq)));
2552 }
2553 
2554 /* Find a non empty bucket (starting from st->bucket)
2555  * and return the first sk from it.
2556  */
2557 static void *listening_get_first(struct seq_file *seq)
2558 {
2559 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2560 	struct tcp_iter_state *st = seq->private;
2561 
2562 	st->offset = 0;
2563 	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2564 		struct inet_listen_hashbucket *ilb2;
2565 		struct hlist_nulls_node *node;
2566 		struct sock *sk;
2567 
2568 		ilb2 = &hinfo->lhash2[st->bucket];
2569 		if (hlist_nulls_empty(&ilb2->nulls_head))
2570 			continue;
2571 
2572 		spin_lock(&ilb2->lock);
2573 		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2574 			if (seq_sk_match(seq, sk))
2575 				return sk;
2576 		}
2577 		spin_unlock(&ilb2->lock);
2578 	}
2579 
2580 	return NULL;
2581 }
2582 
2583 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2584  * If "cur" is the last one in the st->bucket,
2585  * call listening_get_first() to return the first sk of the next
2586  * non empty bucket.
2587  */
2588 static void *listening_get_next(struct seq_file *seq, void *cur)
2589 {
2590 	struct tcp_iter_state *st = seq->private;
2591 	struct inet_listen_hashbucket *ilb2;
2592 	struct hlist_nulls_node *node;
2593 	struct inet_hashinfo *hinfo;
2594 	struct sock *sk = cur;
2595 
2596 	++st->num;
2597 	++st->offset;
2598 
2599 	sk = sk_nulls_next(sk);
2600 	sk_nulls_for_each_from(sk, node) {
2601 		if (seq_sk_match(seq, sk))
2602 			return sk;
2603 	}
2604 
2605 	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2606 	ilb2 = &hinfo->lhash2[st->bucket];
2607 	spin_unlock(&ilb2->lock);
2608 	++st->bucket;
2609 	return listening_get_first(seq);
2610 }
2611 
2612 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2613 {
2614 	struct tcp_iter_state *st = seq->private;
2615 	void *rc;
2616 
2617 	st->bucket = 0;
2618 	st->offset = 0;
2619 	rc = listening_get_first(seq);
2620 
2621 	while (rc && *pos) {
2622 		rc = listening_get_next(seq, rc);
2623 		--*pos;
2624 	}
2625 	return rc;
2626 }
2627 
2628 static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2629 				const struct tcp_iter_state *st)
2630 {
2631 	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2632 }
2633 
2634 /*
2635  * Get first established socket starting from bucket given in st->bucket.
2636  * If st->bucket is zero, the very first socket in the hash is returned.
2637  */
2638 static void *established_get_first(struct seq_file *seq)
2639 {
2640 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2641 	struct tcp_iter_state *st = seq->private;
2642 
2643 	st->offset = 0;
2644 	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2645 		struct sock *sk;
2646 		struct hlist_nulls_node *node;
2647 		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2648 
2649 		cond_resched();
2650 
2651 		/* Lockless fast path for the common case of empty buckets */
2652 		if (empty_bucket(hinfo, st))
2653 			continue;
2654 
2655 		spin_lock_bh(lock);
2656 		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2657 			if (seq_sk_match(seq, sk))
2658 				return sk;
2659 		}
2660 		spin_unlock_bh(lock);
2661 	}
2662 
2663 	return NULL;
2664 }
2665 
2666 static void *established_get_next(struct seq_file *seq, void *cur)
2667 {
2668 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2669 	struct tcp_iter_state *st = seq->private;
2670 	struct hlist_nulls_node *node;
2671 	struct sock *sk = cur;
2672 
2673 	++st->num;
2674 	++st->offset;
2675 
2676 	sk = sk_nulls_next(sk);
2677 
2678 	sk_nulls_for_each_from(sk, node) {
2679 		if (seq_sk_match(seq, sk))
2680 			return sk;
2681 	}
2682 
2683 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2684 	++st->bucket;
2685 	return established_get_first(seq);
2686 }
2687 
2688 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2689 {
2690 	struct tcp_iter_state *st = seq->private;
2691 	void *rc;
2692 
2693 	st->bucket = 0;
2694 	rc = established_get_first(seq);
2695 
2696 	while (rc && pos) {
2697 		rc = established_get_next(seq, rc);
2698 		--pos;
2699 	}
2700 	return rc;
2701 }
2702 
2703 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2704 {
2705 	void *rc;
2706 	struct tcp_iter_state *st = seq->private;
2707 
2708 	st->state = TCP_SEQ_STATE_LISTENING;
2709 	rc	  = listening_get_idx(seq, &pos);
2710 
2711 	if (!rc) {
2712 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2713 		rc	  = established_get_idx(seq, pos);
2714 	}
2715 
2716 	return rc;
2717 }
2718 
2719 static void *tcp_seek_last_pos(struct seq_file *seq)
2720 {
2721 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2722 	struct tcp_iter_state *st = seq->private;
2723 	int bucket = st->bucket;
2724 	int offset = st->offset;
2725 	int orig_num = st->num;
2726 	void *rc = NULL;
2727 
2728 	switch (st->state) {
2729 	case TCP_SEQ_STATE_LISTENING:
2730 		if (st->bucket > hinfo->lhash2_mask)
2731 			break;
2732 		rc = listening_get_first(seq);
2733 		while (offset-- && rc && bucket == st->bucket)
2734 			rc = listening_get_next(seq, rc);
2735 		if (rc)
2736 			break;
2737 		st->bucket = 0;
2738 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2739 		fallthrough;
2740 	case TCP_SEQ_STATE_ESTABLISHED:
2741 		if (st->bucket > hinfo->ehash_mask)
2742 			break;
2743 		rc = established_get_first(seq);
2744 		while (offset-- && rc && bucket == st->bucket)
2745 			rc = established_get_next(seq, rc);
2746 	}
2747 
2748 	st->num = orig_num;
2749 
2750 	return rc;
2751 }
2752 
2753 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2754 {
2755 	struct tcp_iter_state *st = seq->private;
2756 	void *rc;
2757 
2758 	if (*pos && *pos == st->last_pos) {
2759 		rc = tcp_seek_last_pos(seq);
2760 		if (rc)
2761 			goto out;
2762 	}
2763 
2764 	st->state = TCP_SEQ_STATE_LISTENING;
2765 	st->num = 0;
2766 	st->bucket = 0;
2767 	st->offset = 0;
2768 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2769 
2770 out:
2771 	st->last_pos = *pos;
2772 	return rc;
2773 }
2774 EXPORT_IPV6_MOD(tcp_seq_start);
2775 
2776 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2777 {
2778 	struct tcp_iter_state *st = seq->private;
2779 	void *rc = NULL;
2780 
2781 	if (v == SEQ_START_TOKEN) {
2782 		rc = tcp_get_idx(seq, 0);
2783 		goto out;
2784 	}
2785 
2786 	switch (st->state) {
2787 	case TCP_SEQ_STATE_LISTENING:
2788 		rc = listening_get_next(seq, v);
2789 		if (!rc) {
2790 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2791 			st->bucket = 0;
2792 			st->offset = 0;
2793 			rc	  = established_get_first(seq);
2794 		}
2795 		break;
2796 	case TCP_SEQ_STATE_ESTABLISHED:
2797 		rc = established_get_next(seq, v);
2798 		break;
2799 	}
2800 out:
2801 	++*pos;
2802 	st->last_pos = *pos;
2803 	return rc;
2804 }
2805 EXPORT_IPV6_MOD(tcp_seq_next);
2806 
2807 void tcp_seq_stop(struct seq_file *seq, void *v)
2808 {
2809 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2810 	struct tcp_iter_state *st = seq->private;
2811 
2812 	switch (st->state) {
2813 	case TCP_SEQ_STATE_LISTENING:
2814 		if (v != SEQ_START_TOKEN)
2815 			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2816 		break;
2817 	case TCP_SEQ_STATE_ESTABLISHED:
2818 		if (v)
2819 			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2820 		break;
2821 	}
2822 }
2823 EXPORT_IPV6_MOD(tcp_seq_stop);
2824 
2825 static void get_openreq4(const struct request_sock *req,
2826 			 struct seq_file *f, int i)
2827 {
2828 	const struct inet_request_sock *ireq = inet_rsk(req);
2829 	long delta = req->rsk_timer.expires - jiffies;
2830 
2831 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2832 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2833 		i,
2834 		ireq->ir_loc_addr,
2835 		ireq->ir_num,
2836 		ireq->ir_rmt_addr,
2837 		ntohs(ireq->ir_rmt_port),
2838 		TCP_SYN_RECV,
2839 		0, 0, /* could print option size, but that is af dependent. */
2840 		1,    /* timers active (only the expire timer) */
2841 		jiffies_delta_to_clock_t(delta),
2842 		req->num_timeout,
2843 		from_kuid_munged(seq_user_ns(f),
2844 				 sk_uid(req->rsk_listener)),
2845 		0,  /* non standard timer */
2846 		0, /* open_requests have no inode */
2847 		0,
2848 		req);
2849 }
2850 
2851 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2852 {
2853 	int timer_active;
2854 	unsigned long timer_expires;
2855 	const struct tcp_sock *tp = tcp_sk(sk);
2856 	const struct inet_connection_sock *icsk = inet_csk(sk);
2857 	const struct inet_sock *inet = inet_sk(sk);
2858 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2859 	__be32 dest = inet->inet_daddr;
2860 	__be32 src = inet->inet_rcv_saddr;
2861 	__u16 destp = ntohs(inet->inet_dport);
2862 	__u16 srcp = ntohs(inet->inet_sport);
2863 	u8 icsk_pending;
2864 	int rx_queue;
2865 	int state;
2866 
2867 	icsk_pending = smp_load_acquire(&icsk->icsk_pending);
2868 	if (icsk_pending == ICSK_TIME_RETRANS ||
2869 	    icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2870 	    icsk_pending == ICSK_TIME_LOSS_PROBE) {
2871 		timer_active	= 1;
2872 		timer_expires	= tcp_timeout_expires(sk);
2873 	} else if (icsk_pending == ICSK_TIME_PROBE0) {
2874 		timer_active	= 4;
2875 		timer_expires	= tcp_timeout_expires(sk);
2876 	} else if (timer_pending(&icsk->icsk_keepalive_timer)) {
2877 		timer_active	= 2;
2878 		timer_expires	= icsk->icsk_keepalive_timer.expires;
2879 	} else {
2880 		timer_active	= 0;
2881 		timer_expires = jiffies;
2882 	}
2883 
2884 	state = inet_sk_state_load(sk);
2885 	if (state == TCP_LISTEN)
2886 		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2887 	else
2888 		/* Because we don't lock the socket,
2889 		 * we might find a transient negative value.
2890 		 */
2891 		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2892 				      READ_ONCE(tp->copied_seq), 0);
2893 
2894 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2895 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2896 		i, src, srcp, dest, destp, state,
2897 		READ_ONCE(tp->write_seq) - tp->snd_una,
2898 		rx_queue,
2899 		timer_active,
2900 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2901 		READ_ONCE(icsk->icsk_retransmits),
2902 		from_kuid_munged(seq_user_ns(f), sk_uid(sk)),
2903 		READ_ONCE(icsk->icsk_probes_out),
2904 		sock_i_ino(sk),
2905 		refcount_read(&sk->sk_refcnt), sk,
2906 		jiffies_to_clock_t(icsk->icsk_rto),
2907 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2908 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2909 		tcp_snd_cwnd(tp),
2910 		state == TCP_LISTEN ?
2911 		    fastopenq->max_qlen :
2912 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2913 }
2914 
2915 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2916 			       struct seq_file *f, int i)
2917 {
2918 	long delta = tw->tw_timer.expires - jiffies;
2919 	__be32 dest, src;
2920 	__u16 destp, srcp;
2921 
2922 	dest  = tw->tw_daddr;
2923 	src   = tw->tw_rcv_saddr;
2924 	destp = ntohs(tw->tw_dport);
2925 	srcp  = ntohs(tw->tw_sport);
2926 
2927 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2928 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2929 		i, src, srcp, dest, destp, READ_ONCE(tw->tw_substate), 0, 0,
2930 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2931 		refcount_read(&tw->tw_refcnt), tw);
2932 }
2933 
2934 #define TMPSZ 150
2935 
2936 static int tcp4_seq_show(struct seq_file *seq, void *v)
2937 {
2938 	struct tcp_iter_state *st;
2939 	struct sock *sk = v;
2940 
2941 	seq_setwidth(seq, TMPSZ - 1);
2942 	if (v == SEQ_START_TOKEN) {
2943 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2944 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2945 			   "inode");
2946 		goto out;
2947 	}
2948 	st = seq->private;
2949 
2950 	if (sk->sk_state == TCP_TIME_WAIT)
2951 		get_timewait4_sock(v, seq, st->num);
2952 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2953 		get_openreq4(v, seq, st->num);
2954 	else
2955 		get_tcp4_sock(v, seq, st->num);
2956 out:
2957 	seq_pad(seq, '\n');
2958 	return 0;
2959 }
2960 
2961 #ifdef CONFIG_BPF_SYSCALL
2962 union bpf_tcp_iter_batch_item {
2963 	struct sock *sk;
2964 	__u64 cookie;
2965 };
2966 
2967 struct bpf_tcp_iter_state {
2968 	struct tcp_iter_state state;
2969 	unsigned int cur_sk;
2970 	unsigned int end_sk;
2971 	unsigned int max_sk;
2972 	union bpf_tcp_iter_batch_item *batch;
2973 };
2974 
2975 struct bpf_iter__tcp {
2976 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2977 	__bpf_md_ptr(struct sock_common *, sk_common);
2978 	uid_t uid __aligned(8);
2979 };
2980 
2981 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2982 			     struct sock_common *sk_common, uid_t uid)
2983 {
2984 	struct bpf_iter__tcp ctx;
2985 
2986 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2987 	ctx.meta = meta;
2988 	ctx.sk_common = sk_common;
2989 	ctx.uid = uid;
2990 	return bpf_iter_run_prog(prog, &ctx);
2991 }
2992 
2993 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
2994 {
2995 	union bpf_tcp_iter_batch_item *item;
2996 	unsigned int cur_sk = iter->cur_sk;
2997 	__u64 cookie;
2998 
2999 	/* Remember the cookies of the sockets we haven't seen yet, so we can
3000 	 * pick up where we left off next time around.
3001 	 */
3002 	while (cur_sk < iter->end_sk) {
3003 		item = &iter->batch[cur_sk++];
3004 		cookie = sock_gen_cookie(item->sk);
3005 		sock_gen_put(item->sk);
3006 		item->cookie = cookie;
3007 	}
3008 }
3009 
3010 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
3011 				      unsigned int new_batch_sz, gfp_t flags)
3012 {
3013 	union bpf_tcp_iter_batch_item *new_batch;
3014 
3015 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3016 			     flags | __GFP_NOWARN);
3017 	if (!new_batch)
3018 		return -ENOMEM;
3019 
3020 	memcpy(new_batch, iter->batch, sizeof(*iter->batch) * iter->end_sk);
3021 	kvfree(iter->batch);
3022 	iter->batch = new_batch;
3023 	iter->max_sk = new_batch_sz;
3024 
3025 	return 0;
3026 }
3027 
3028 static struct sock *bpf_iter_tcp_resume_bucket(struct sock *first_sk,
3029 					       union bpf_tcp_iter_batch_item *cookies,
3030 					       int n_cookies)
3031 {
3032 	struct hlist_nulls_node *node;
3033 	struct sock *sk;
3034 	int i;
3035 
3036 	for (i = 0; i < n_cookies; i++) {
3037 		sk = first_sk;
3038 		sk_nulls_for_each_from(sk, node)
3039 			if (cookies[i].cookie == atomic64_read(&sk->sk_cookie))
3040 				return sk;
3041 	}
3042 
3043 	return NULL;
3044 }
3045 
3046 static struct sock *bpf_iter_tcp_resume_listening(struct seq_file *seq)
3047 {
3048 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3049 	struct bpf_tcp_iter_state *iter = seq->private;
3050 	struct tcp_iter_state *st = &iter->state;
3051 	unsigned int find_cookie = iter->cur_sk;
3052 	unsigned int end_cookie = iter->end_sk;
3053 	int resume_bucket = st->bucket;
3054 	struct sock *sk;
3055 
3056 	if (end_cookie && find_cookie == end_cookie)
3057 		++st->bucket;
3058 
3059 	sk = listening_get_first(seq);
3060 	iter->cur_sk = 0;
3061 	iter->end_sk = 0;
3062 
3063 	if (sk && st->bucket == resume_bucket && end_cookie) {
3064 		sk = bpf_iter_tcp_resume_bucket(sk, &iter->batch[find_cookie],
3065 						end_cookie - find_cookie);
3066 		if (!sk) {
3067 			spin_unlock(&hinfo->lhash2[st->bucket].lock);
3068 			++st->bucket;
3069 			sk = listening_get_first(seq);
3070 		}
3071 	}
3072 
3073 	return sk;
3074 }
3075 
3076 static struct sock *bpf_iter_tcp_resume_established(struct seq_file *seq)
3077 {
3078 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3079 	struct bpf_tcp_iter_state *iter = seq->private;
3080 	struct tcp_iter_state *st = &iter->state;
3081 	unsigned int find_cookie = iter->cur_sk;
3082 	unsigned int end_cookie = iter->end_sk;
3083 	int resume_bucket = st->bucket;
3084 	struct sock *sk;
3085 
3086 	if (end_cookie && find_cookie == end_cookie)
3087 		++st->bucket;
3088 
3089 	sk = established_get_first(seq);
3090 	iter->cur_sk = 0;
3091 	iter->end_sk = 0;
3092 
3093 	if (sk && st->bucket == resume_bucket && end_cookie) {
3094 		sk = bpf_iter_tcp_resume_bucket(sk, &iter->batch[find_cookie],
3095 						end_cookie - find_cookie);
3096 		if (!sk) {
3097 			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
3098 			++st->bucket;
3099 			sk = established_get_first(seq);
3100 		}
3101 	}
3102 
3103 	return sk;
3104 }
3105 
3106 static struct sock *bpf_iter_tcp_resume(struct seq_file *seq)
3107 {
3108 	struct bpf_tcp_iter_state *iter = seq->private;
3109 	struct tcp_iter_state *st = &iter->state;
3110 	struct sock *sk = NULL;
3111 
3112 	switch (st->state) {
3113 	case TCP_SEQ_STATE_LISTENING:
3114 		sk = bpf_iter_tcp_resume_listening(seq);
3115 		if (sk)
3116 			break;
3117 		st->bucket = 0;
3118 		st->state = TCP_SEQ_STATE_ESTABLISHED;
3119 		fallthrough;
3120 	case TCP_SEQ_STATE_ESTABLISHED:
3121 		sk = bpf_iter_tcp_resume_established(seq);
3122 		break;
3123 	}
3124 
3125 	return sk;
3126 }
3127 
3128 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
3129 						 struct sock **start_sk)
3130 {
3131 	struct bpf_tcp_iter_state *iter = seq->private;
3132 	struct hlist_nulls_node *node;
3133 	unsigned int expected = 1;
3134 	struct sock *sk;
3135 
3136 	sock_hold(*start_sk);
3137 	iter->batch[iter->end_sk++].sk = *start_sk;
3138 
3139 	sk = sk_nulls_next(*start_sk);
3140 	*start_sk = NULL;
3141 	sk_nulls_for_each_from(sk, node) {
3142 		if (seq_sk_match(seq, sk)) {
3143 			if (iter->end_sk < iter->max_sk) {
3144 				sock_hold(sk);
3145 				iter->batch[iter->end_sk++].sk = sk;
3146 			} else if (!*start_sk) {
3147 				/* Remember where we left off. */
3148 				*start_sk = sk;
3149 			}
3150 			expected++;
3151 		}
3152 	}
3153 
3154 	return expected;
3155 }
3156 
3157 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
3158 						   struct sock **start_sk)
3159 {
3160 	struct bpf_tcp_iter_state *iter = seq->private;
3161 	struct hlist_nulls_node *node;
3162 	unsigned int expected = 1;
3163 	struct sock *sk;
3164 
3165 	sock_hold(*start_sk);
3166 	iter->batch[iter->end_sk++].sk = *start_sk;
3167 
3168 	sk = sk_nulls_next(*start_sk);
3169 	*start_sk = NULL;
3170 	sk_nulls_for_each_from(sk, node) {
3171 		if (seq_sk_match(seq, sk)) {
3172 			if (iter->end_sk < iter->max_sk) {
3173 				sock_hold(sk);
3174 				iter->batch[iter->end_sk++].sk = sk;
3175 			} else if (!*start_sk) {
3176 				/* Remember where we left off. */
3177 				*start_sk = sk;
3178 			}
3179 			expected++;
3180 		}
3181 	}
3182 
3183 	return expected;
3184 }
3185 
3186 static unsigned int bpf_iter_fill_batch(struct seq_file *seq,
3187 					struct sock **start_sk)
3188 {
3189 	struct bpf_tcp_iter_state *iter = seq->private;
3190 	struct tcp_iter_state *st = &iter->state;
3191 
3192 	if (st->state == TCP_SEQ_STATE_LISTENING)
3193 		return bpf_iter_tcp_listening_batch(seq, start_sk);
3194 	else
3195 		return bpf_iter_tcp_established_batch(seq, start_sk);
3196 }
3197 
3198 static void bpf_iter_tcp_unlock_bucket(struct seq_file *seq)
3199 {
3200 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3201 	struct bpf_tcp_iter_state *iter = seq->private;
3202 	struct tcp_iter_state *st = &iter->state;
3203 
3204 	if (st->state == TCP_SEQ_STATE_LISTENING)
3205 		spin_unlock(&hinfo->lhash2[st->bucket].lock);
3206 	else
3207 		spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
3208 }
3209 
3210 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
3211 {
3212 	struct bpf_tcp_iter_state *iter = seq->private;
3213 	unsigned int expected;
3214 	struct sock *sk;
3215 	int err;
3216 
3217 	sk = bpf_iter_tcp_resume(seq);
3218 	if (!sk)
3219 		return NULL; /* Done */
3220 
3221 	expected = bpf_iter_fill_batch(seq, &sk);
3222 	if (likely(iter->end_sk == expected))
3223 		goto done;
3224 
3225 	/* Batch size was too small. */
3226 	bpf_iter_tcp_unlock_bucket(seq);
3227 	bpf_iter_tcp_put_batch(iter);
3228 	err = bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2,
3229 					 GFP_USER);
3230 	if (err)
3231 		return ERR_PTR(err);
3232 
3233 	sk = bpf_iter_tcp_resume(seq);
3234 	if (!sk)
3235 		return NULL; /* Done */
3236 
3237 	expected = bpf_iter_fill_batch(seq, &sk);
3238 	if (likely(iter->end_sk == expected))
3239 		goto done;
3240 
3241 	/* Batch size was still too small. Hold onto the lock while we try
3242 	 * again with a larger batch to make sure the current bucket's size
3243 	 * does not change in the meantime.
3244 	 */
3245 	err = bpf_iter_tcp_realloc_batch(iter, expected, GFP_NOWAIT);
3246 	if (err) {
3247 		bpf_iter_tcp_unlock_bucket(seq);
3248 		return ERR_PTR(err);
3249 	}
3250 
3251 	expected = bpf_iter_fill_batch(seq, &sk);
3252 	WARN_ON_ONCE(iter->end_sk != expected);
3253 done:
3254 	bpf_iter_tcp_unlock_bucket(seq);
3255 	return iter->batch[0].sk;
3256 }
3257 
3258 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
3259 {
3260 	/* bpf iter does not support lseek, so it always
3261 	 * continue from where it was stop()-ped.
3262 	 */
3263 	if (*pos)
3264 		return bpf_iter_tcp_batch(seq);
3265 
3266 	return SEQ_START_TOKEN;
3267 }
3268 
3269 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3270 {
3271 	struct bpf_tcp_iter_state *iter = seq->private;
3272 	struct tcp_iter_state *st = &iter->state;
3273 	struct sock *sk;
3274 
3275 	/* Whenever seq_next() is called, the iter->cur_sk is
3276 	 * done with seq_show(), so advance to the next sk in
3277 	 * the batch.
3278 	 */
3279 	if (iter->cur_sk < iter->end_sk) {
3280 		/* Keeping st->num consistent in tcp_iter_state.
3281 		 * bpf_iter_tcp does not use st->num.
3282 		 * meta.seq_num is used instead.
3283 		 */
3284 		st->num++;
3285 		sock_gen_put(iter->batch[iter->cur_sk++].sk);
3286 	}
3287 
3288 	if (iter->cur_sk < iter->end_sk)
3289 		sk = iter->batch[iter->cur_sk].sk;
3290 	else
3291 		sk = bpf_iter_tcp_batch(seq);
3292 
3293 	++*pos;
3294 	/* Keeping st->last_pos consistent in tcp_iter_state.
3295 	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
3296 	 */
3297 	st->last_pos = *pos;
3298 	return sk;
3299 }
3300 
3301 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
3302 {
3303 	struct bpf_iter_meta meta;
3304 	struct bpf_prog *prog;
3305 	struct sock *sk = v;
3306 	uid_t uid;
3307 	int ret;
3308 
3309 	if (v == SEQ_START_TOKEN)
3310 		return 0;
3311 
3312 	if (sk_fullsock(sk))
3313 		lock_sock(sk);
3314 
3315 	if (unlikely(sk_unhashed(sk))) {
3316 		ret = SEQ_SKIP;
3317 		goto unlock;
3318 	}
3319 
3320 	if (sk->sk_state == TCP_TIME_WAIT) {
3321 		uid = 0;
3322 	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
3323 		const struct request_sock *req = v;
3324 
3325 		uid = from_kuid_munged(seq_user_ns(seq),
3326 				       sk_uid(req->rsk_listener));
3327 	} else {
3328 		uid = from_kuid_munged(seq_user_ns(seq), sk_uid(sk));
3329 	}
3330 
3331 	meta.seq = seq;
3332 	prog = bpf_iter_get_info(&meta, false);
3333 	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3334 
3335 unlock:
3336 	if (sk_fullsock(sk))
3337 		release_sock(sk);
3338 	return ret;
3339 
3340 }
3341 
3342 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3343 {
3344 	struct bpf_tcp_iter_state *iter = seq->private;
3345 	struct bpf_iter_meta meta;
3346 	struct bpf_prog *prog;
3347 
3348 	if (!v) {
3349 		meta.seq = seq;
3350 		prog = bpf_iter_get_info(&meta, true);
3351 		if (prog)
3352 			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3353 	}
3354 
3355 	if (iter->cur_sk < iter->end_sk)
3356 		bpf_iter_tcp_put_batch(iter);
3357 }
3358 
3359 static const struct seq_operations bpf_iter_tcp_seq_ops = {
3360 	.show		= bpf_iter_tcp_seq_show,
3361 	.start		= bpf_iter_tcp_seq_start,
3362 	.next		= bpf_iter_tcp_seq_next,
3363 	.stop		= bpf_iter_tcp_seq_stop,
3364 };
3365 #endif
3366 static unsigned short seq_file_family(const struct seq_file *seq)
3367 {
3368 	const struct tcp_seq_afinfo *afinfo;
3369 
3370 #ifdef CONFIG_BPF_SYSCALL
3371 	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3372 	if (seq->op == &bpf_iter_tcp_seq_ops)
3373 		return AF_UNSPEC;
3374 #endif
3375 
3376 	/* Iterated from proc fs */
3377 	afinfo = pde_data(file_inode(seq->file));
3378 	return afinfo->family;
3379 }
3380 
3381 static const struct seq_operations tcp4_seq_ops = {
3382 	.show		= tcp4_seq_show,
3383 	.start		= tcp_seq_start,
3384 	.next		= tcp_seq_next,
3385 	.stop		= tcp_seq_stop,
3386 };
3387 
3388 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
3389 	.family		= AF_INET,
3390 };
3391 
3392 static int __net_init tcp4_proc_init_net(struct net *net)
3393 {
3394 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3395 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3396 		return -ENOMEM;
3397 	return 0;
3398 }
3399 
3400 static void __net_exit tcp4_proc_exit_net(struct net *net)
3401 {
3402 	remove_proc_entry("tcp", net->proc_net);
3403 }
3404 
3405 static struct pernet_operations tcp4_net_ops = {
3406 	.init = tcp4_proc_init_net,
3407 	.exit = tcp4_proc_exit_net,
3408 };
3409 
3410 int __init tcp4_proc_init(void)
3411 {
3412 	return register_pernet_subsys(&tcp4_net_ops);
3413 }
3414 
3415 void tcp4_proc_exit(void)
3416 {
3417 	unregister_pernet_subsys(&tcp4_net_ops);
3418 }
3419 #endif /* CONFIG_PROC_FS */
3420 
3421 /* @wake is one when sk_stream_write_space() calls us.
3422  * This sends EPOLLOUT only if notsent_bytes is half the limit.
3423  * This mimics the strategy used in sock_def_write_space().
3424  */
3425 bool tcp_stream_memory_free(const struct sock *sk, int wake)
3426 {
3427 	const struct tcp_sock *tp = tcp_sk(sk);
3428 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3429 			    READ_ONCE(tp->snd_nxt);
3430 
3431 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3432 }
3433 EXPORT_SYMBOL(tcp_stream_memory_free);
3434 
3435 struct proto tcp_prot = {
3436 	.name			= "TCP",
3437 	.owner			= THIS_MODULE,
3438 	.close			= tcp_close,
3439 	.pre_connect		= tcp_v4_pre_connect,
3440 	.connect		= tcp_v4_connect,
3441 	.disconnect		= tcp_disconnect,
3442 	.accept			= inet_csk_accept,
3443 	.ioctl			= tcp_ioctl,
3444 	.init			= tcp_v4_init_sock,
3445 	.destroy		= tcp_v4_destroy_sock,
3446 	.shutdown		= tcp_shutdown,
3447 	.setsockopt		= tcp_setsockopt,
3448 	.getsockopt		= tcp_getsockopt,
3449 	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3450 	.keepalive		= tcp_set_keepalive,
3451 	.recvmsg		= tcp_recvmsg,
3452 	.sendmsg		= tcp_sendmsg,
3453 	.splice_eof		= tcp_splice_eof,
3454 	.backlog_rcv		= tcp_v4_do_rcv,
3455 	.release_cb		= tcp_release_cb,
3456 	.hash			= inet_hash,
3457 	.unhash			= inet_unhash,
3458 	.get_port		= inet_csk_get_port,
3459 	.put_port		= inet_put_port,
3460 #ifdef CONFIG_BPF_SYSCALL
3461 	.psock_update_sk_prot	= tcp_bpf_update_proto,
3462 #endif
3463 	.enter_memory_pressure	= tcp_enter_memory_pressure,
3464 	.leave_memory_pressure	= tcp_leave_memory_pressure,
3465 	.stream_memory_free	= tcp_stream_memory_free,
3466 	.sockets_allocated	= &tcp_sockets_allocated,
3467 
3468 	.memory_allocated	= &net_aligned_data.tcp_memory_allocated,
3469 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3470 
3471 	.memory_pressure	= &tcp_memory_pressure,
3472 	.sysctl_mem		= sysctl_tcp_mem,
3473 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3474 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3475 	.max_header		= MAX_TCP_HEADER,
3476 	.obj_size		= sizeof(struct tcp_sock),
3477 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3478 	.twsk_prot		= &tcp_timewait_sock_ops,
3479 	.rsk_prot		= &tcp_request_sock_ops,
3480 	.h.hashinfo		= NULL,
3481 	.no_autobind		= true,
3482 	.diag_destroy		= tcp_abort,
3483 };
3484 EXPORT_SYMBOL(tcp_prot);
3485 
3486 static void __net_exit tcp_sk_exit(struct net *net)
3487 {
3488 	if (net->ipv4.tcp_congestion_control)
3489 		bpf_module_put(net->ipv4.tcp_congestion_control,
3490 			       net->ipv4.tcp_congestion_control->owner);
3491 }
3492 
3493 static void __net_init tcp_set_hashinfo(struct net *net)
3494 {
3495 	struct inet_hashinfo *hinfo;
3496 	unsigned int ehash_entries;
3497 	struct net *old_net;
3498 
3499 	if (net_eq(net, &init_net))
3500 		goto fallback;
3501 
3502 	old_net = current->nsproxy->net_ns;
3503 	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3504 	if (!ehash_entries)
3505 		goto fallback;
3506 
3507 	ehash_entries = roundup_pow_of_two(ehash_entries);
3508 	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3509 	if (!hinfo) {
3510 		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3511 			"for a netns, fallback to the global one\n",
3512 			ehash_entries);
3513 fallback:
3514 		hinfo = &tcp_hashinfo;
3515 		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3516 	}
3517 
3518 	net->ipv4.tcp_death_row.hashinfo = hinfo;
3519 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3520 	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3521 }
3522 
3523 static int __net_init tcp_sk_init(struct net *net)
3524 {
3525 	net->ipv4.sysctl_tcp_ecn = TCP_ECN_IN_ECN_OUT_NOECN;
3526 	net->ipv4.sysctl_tcp_ecn_option = TCP_ACCECN_OPTION_FULL;
3527 	net->ipv4.sysctl_tcp_ecn_option_beacon = TCP_ACCECN_OPTION_BEACON;
3528 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3529 
3530 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3531 	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3532 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3533 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3534 	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3535 
3536 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3537 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3538 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3539 
3540 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3541 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3542 	net->ipv4.sysctl_tcp_syncookies = 1;
3543 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3544 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3545 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3546 	net->ipv4.sysctl_tcp_orphan_retries = 0;
3547 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3548 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3549 	net->ipv4.sysctl_tcp_tw_reuse = 2;
3550 	net->ipv4.sysctl_tcp_tw_reuse_delay = 1 * MSEC_PER_SEC;
3551 	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3552 
3553 	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3554 	tcp_set_hashinfo(net);
3555 
3556 	net->ipv4.sysctl_tcp_sack = 1;
3557 	net->ipv4.sysctl_tcp_window_scaling = 1;
3558 	net->ipv4.sysctl_tcp_timestamps = 1;
3559 	net->ipv4.sysctl_tcp_early_retrans = 3;
3560 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3561 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3562 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3563 	net->ipv4.sysctl_tcp_max_reordering = 300;
3564 	net->ipv4.sysctl_tcp_dsack = 1;
3565 	net->ipv4.sysctl_tcp_app_win = 31;
3566 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3567 	net->ipv4.sysctl_tcp_frto = 2;
3568 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3569 	net->ipv4.sysctl_tcp_rcvbuf_low_rtt = USEC_PER_MSEC;
3570 	/* This limits the percentage of the congestion window which we
3571 	 * will allow a single TSO frame to consume.  Building TSO frames
3572 	 * which are too large can cause TCP streams to be bursty.
3573 	 */
3574 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3575 	/* Default TSQ limit of 4 MB */
3576 	net->ipv4.sysctl_tcp_limit_output_bytes = 4 << 20;
3577 
3578 	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3579 	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3580 
3581 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3582 	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3583 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3584 	net->ipv4.sysctl_tcp_autocorking = 1;
3585 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3586 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3587 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3588 	if (net != &init_net) {
3589 		memcpy(net->ipv4.sysctl_tcp_rmem,
3590 		       init_net.ipv4.sysctl_tcp_rmem,
3591 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3592 		memcpy(net->ipv4.sysctl_tcp_wmem,
3593 		       init_net.ipv4.sysctl_tcp_wmem,
3594 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3595 	}
3596 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3597 	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 10 * NSEC_PER_USEC;
3598 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3599 	net->ipv4.sysctl_tcp_comp_sack_rtt_percent = 33;
3600 	net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
3601 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3602 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3603 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3604 
3605 	/* Set default values for PLB */
3606 	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3607 	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3608 	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3609 	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3610 	/* Default congestion threshold for PLB to mark a round is 50% */
3611 	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3612 
3613 	/* Reno is always built in */
3614 	if (!net_eq(net, &init_net) &&
3615 	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3616 			       init_net.ipv4.tcp_congestion_control->owner))
3617 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3618 	else
3619 		net->ipv4.tcp_congestion_control = &tcp_reno;
3620 
3621 	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3622 	net->ipv4.sysctl_tcp_shrink_window = 0;
3623 
3624 	net->ipv4.sysctl_tcp_pingpong_thresh = 1;
3625 	net->ipv4.sysctl_tcp_rto_min_us = jiffies_to_usecs(TCP_RTO_MIN);
3626 	net->ipv4.sysctl_tcp_rto_max_ms = TCP_RTO_MAX_SEC * MSEC_PER_SEC;
3627 
3628 	return 0;
3629 }
3630 
3631 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3632 {
3633 	struct net *net;
3634 
3635 	/* make sure concurrent calls to tcp_sk_exit_batch from net_cleanup_work
3636 	 * and failed setup_net error unwinding path are serialized.
3637 	 *
3638 	 * tcp_twsk_purge() handles twsk in any dead netns, not just those in
3639 	 * net_exit_list, the thread that dismantles a particular twsk must
3640 	 * do so without other thread progressing to refcount_dec_and_test() of
3641 	 * tcp_death_row.tw_refcount.
3642 	 */
3643 	mutex_lock(&tcp_exit_batch_mutex);
3644 
3645 	tcp_twsk_purge(net_exit_list);
3646 
3647 	list_for_each_entry(net, net_exit_list, exit_list) {
3648 		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3649 		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3650 		tcp_fastopen_ctx_destroy(net);
3651 	}
3652 
3653 	mutex_unlock(&tcp_exit_batch_mutex);
3654 }
3655 
3656 static struct pernet_operations __net_initdata tcp_sk_ops = {
3657        .init	   = tcp_sk_init,
3658        .exit	   = tcp_sk_exit,
3659        .exit_batch = tcp_sk_exit_batch,
3660 };
3661 
3662 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3663 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3664 		     struct sock_common *sk_common, uid_t uid)
3665 
3666 #define INIT_BATCH_SZ 16
3667 
3668 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3669 {
3670 	struct bpf_tcp_iter_state *iter = priv_data;
3671 	int err;
3672 
3673 	err = bpf_iter_init_seq_net(priv_data, aux);
3674 	if (err)
3675 		return err;
3676 
3677 	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ, GFP_USER);
3678 	if (err) {
3679 		bpf_iter_fini_seq_net(priv_data);
3680 		return err;
3681 	}
3682 
3683 	return 0;
3684 }
3685 
3686 static void bpf_iter_fini_tcp(void *priv_data)
3687 {
3688 	struct bpf_tcp_iter_state *iter = priv_data;
3689 
3690 	bpf_iter_fini_seq_net(priv_data);
3691 	kvfree(iter->batch);
3692 }
3693 
3694 static const struct bpf_iter_seq_info tcp_seq_info = {
3695 	.seq_ops		= &bpf_iter_tcp_seq_ops,
3696 	.init_seq_private	= bpf_iter_init_tcp,
3697 	.fini_seq_private	= bpf_iter_fini_tcp,
3698 	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3699 };
3700 
3701 static const struct bpf_func_proto *
3702 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3703 			    const struct bpf_prog *prog)
3704 {
3705 	switch (func_id) {
3706 	case BPF_FUNC_setsockopt:
3707 		return &bpf_sk_setsockopt_proto;
3708 	case BPF_FUNC_getsockopt:
3709 		return &bpf_sk_getsockopt_proto;
3710 	default:
3711 		return NULL;
3712 	}
3713 }
3714 
3715 static struct bpf_iter_reg tcp_reg_info = {
3716 	.target			= "tcp",
3717 	.ctx_arg_info_size	= 1,
3718 	.ctx_arg_info		= {
3719 		{ offsetof(struct bpf_iter__tcp, sk_common),
3720 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3721 	},
3722 	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3723 	.seq_info		= &tcp_seq_info,
3724 };
3725 
3726 static void __init bpf_iter_register(void)
3727 {
3728 	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3729 	if (bpf_iter_reg_target(&tcp_reg_info))
3730 		pr_warn("Warning: could not register bpf iterator tcp\n");
3731 }
3732 
3733 #endif
3734 
3735 void __init tcp_v4_init(void)
3736 {
3737 	int cpu, res;
3738 
3739 	for_each_possible_cpu(cpu) {
3740 		struct sock *sk;
3741 
3742 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3743 					   IPPROTO_TCP, &init_net);
3744 		if (res)
3745 			panic("Failed to create the TCP control socket.\n");
3746 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3747 
3748 		/* Please enforce IP_DF and IPID==0 for RST and
3749 		 * ACK sent in SYN-RECV and TIME-WAIT state.
3750 		 */
3751 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3752 
3753 		sk->sk_clockid = CLOCK_MONOTONIC;
3754 
3755 		per_cpu(ipv4_tcp_sk.sock, cpu) = sk;
3756 	}
3757 	if (register_pernet_subsys(&tcp_sk_ops))
3758 		panic("Failed to create the TCP control socket.\n");
3759 
3760 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3761 	bpf_iter_register();
3762 #endif
3763 }
3764