1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * IPv4 specific functions 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 */ 18 19 /* 20 * Changes: 21 * David S. Miller : New socket lookup architecture. 22 * This code is dedicated to John Dyson. 23 * David S. Miller : Change semantics of established hash, 24 * half is devoted to TIME_WAIT sockets 25 * and the rest go in the other half. 26 * Andi Kleen : Add support for syncookies and fixed 27 * some bugs: ip options weren't passed to 28 * the TCP layer, missed a check for an 29 * ACK bit. 30 * Andi Kleen : Implemented fast path mtu discovery. 31 * Fixed many serious bugs in the 32 * request_sock handling and moved 33 * most of it into the af independent code. 34 * Added tail drop and some other bugfixes. 35 * Added new listen semantics. 36 * Mike McLagan : Routing by source 37 * Juan Jose Ciarlante: ip_dynaddr bits 38 * Andi Kleen: various fixes. 39 * Vitaly E. Lavrov : Transparent proxy revived after year 40 * coma. 41 * Andi Kleen : Fix new listen. 42 * Andi Kleen : Fix accept error reporting. 43 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 44 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 45 * a single port at the same time. 46 */ 47 48 #define pr_fmt(fmt) "TCP: " fmt 49 50 #include <linux/bottom_half.h> 51 #include <linux/types.h> 52 #include <linux/fcntl.h> 53 #include <linux/module.h> 54 #include <linux/random.h> 55 #include <linux/cache.h> 56 #include <linux/jhash.h> 57 #include <linux/init.h> 58 #include <linux/times.h> 59 #include <linux/slab.h> 60 #include <linux/sched.h> 61 62 #include <net/net_namespace.h> 63 #include <net/icmp.h> 64 #include <net/inet_hashtables.h> 65 #include <net/tcp.h> 66 #include <net/transp_v6.h> 67 #include <net/ipv6.h> 68 #include <net/inet_common.h> 69 #include <net/timewait_sock.h> 70 #include <net/xfrm.h> 71 #include <net/secure_seq.h> 72 #include <net/busy_poll.h> 73 74 #include <linux/inet.h> 75 #include <linux/ipv6.h> 76 #include <linux/stddef.h> 77 #include <linux/proc_fs.h> 78 #include <linux/seq_file.h> 79 #include <linux/inetdevice.h> 80 #include <linux/btf_ids.h> 81 82 #include <crypto/hash.h> 83 #include <linux/scatterlist.h> 84 85 #include <trace/events/tcp.h> 86 87 #ifdef CONFIG_TCP_MD5SIG 88 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 89 __be32 daddr, __be32 saddr, const struct tcphdr *th); 90 #endif 91 92 struct inet_hashinfo tcp_hashinfo; 93 EXPORT_SYMBOL(tcp_hashinfo); 94 95 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk); 96 97 static u32 tcp_v4_init_seq(const struct sk_buff *skb) 98 { 99 return secure_tcp_seq(ip_hdr(skb)->daddr, 100 ip_hdr(skb)->saddr, 101 tcp_hdr(skb)->dest, 102 tcp_hdr(skb)->source); 103 } 104 105 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb) 106 { 107 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr); 108 } 109 110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 111 { 112 int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse); 113 const struct inet_timewait_sock *tw = inet_twsk(sktw); 114 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 115 struct tcp_sock *tp = tcp_sk(sk); 116 117 if (reuse == 2) { 118 /* Still does not detect *everything* that goes through 119 * lo, since we require a loopback src or dst address 120 * or direct binding to 'lo' interface. 121 */ 122 bool loopback = false; 123 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX) 124 loopback = true; 125 #if IS_ENABLED(CONFIG_IPV6) 126 if (tw->tw_family == AF_INET6) { 127 if (ipv6_addr_loopback(&tw->tw_v6_daddr) || 128 ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) || 129 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) || 130 ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr)) 131 loopback = true; 132 } else 133 #endif 134 { 135 if (ipv4_is_loopback(tw->tw_daddr) || 136 ipv4_is_loopback(tw->tw_rcv_saddr)) 137 loopback = true; 138 } 139 if (!loopback) 140 reuse = 0; 141 } 142 143 /* With PAWS, it is safe from the viewpoint 144 of data integrity. Even without PAWS it is safe provided sequence 145 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 146 147 Actually, the idea is close to VJ's one, only timestamp cache is 148 held not per host, but per port pair and TW bucket is used as state 149 holder. 150 151 If TW bucket has been already destroyed we fall back to VJ's scheme 152 and use initial timestamp retrieved from peer table. 153 */ 154 if (tcptw->tw_ts_recent_stamp && 155 (!twp || (reuse && time_after32(ktime_get_seconds(), 156 tcptw->tw_ts_recent_stamp)))) { 157 /* In case of repair and re-using TIME-WAIT sockets we still 158 * want to be sure that it is safe as above but honor the 159 * sequence numbers and time stamps set as part of the repair 160 * process. 161 * 162 * Without this check re-using a TIME-WAIT socket with TCP 163 * repair would accumulate a -1 on the repair assigned 164 * sequence number. The first time it is reused the sequence 165 * is -1, the second time -2, etc. This fixes that issue 166 * without appearing to create any others. 167 */ 168 if (likely(!tp->repair)) { 169 u32 seq = tcptw->tw_snd_nxt + 65535 + 2; 170 171 if (!seq) 172 seq = 1; 173 WRITE_ONCE(tp->write_seq, seq); 174 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 175 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 176 } 177 sock_hold(sktw); 178 return 1; 179 } 180 181 return 0; 182 } 183 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 184 185 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr, 186 int addr_len) 187 { 188 /* This check is replicated from tcp_v4_connect() and intended to 189 * prevent BPF program called below from accessing bytes that are out 190 * of the bound specified by user in addr_len. 191 */ 192 if (addr_len < sizeof(struct sockaddr_in)) 193 return -EINVAL; 194 195 sock_owned_by_me(sk); 196 197 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len); 198 } 199 200 /* This will initiate an outgoing connection. */ 201 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 202 { 203 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 204 struct inet_timewait_death_row *tcp_death_row; 205 struct inet_sock *inet = inet_sk(sk); 206 struct tcp_sock *tp = tcp_sk(sk); 207 struct ip_options_rcu *inet_opt; 208 struct net *net = sock_net(sk); 209 __be16 orig_sport, orig_dport; 210 __be32 daddr, nexthop; 211 struct flowi4 *fl4; 212 struct rtable *rt; 213 int err; 214 215 if (addr_len < sizeof(struct sockaddr_in)) 216 return -EINVAL; 217 218 if (usin->sin_family != AF_INET) 219 return -EAFNOSUPPORT; 220 221 nexthop = daddr = usin->sin_addr.s_addr; 222 inet_opt = rcu_dereference_protected(inet->inet_opt, 223 lockdep_sock_is_held(sk)); 224 if (inet_opt && inet_opt->opt.srr) { 225 if (!daddr) 226 return -EINVAL; 227 nexthop = inet_opt->opt.faddr; 228 } 229 230 orig_sport = inet->inet_sport; 231 orig_dport = usin->sin_port; 232 fl4 = &inet->cork.fl.u.ip4; 233 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 234 sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport, 235 orig_dport, sk); 236 if (IS_ERR(rt)) { 237 err = PTR_ERR(rt); 238 if (err == -ENETUNREACH) 239 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 240 return err; 241 } 242 243 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 244 ip_rt_put(rt); 245 return -ENETUNREACH; 246 } 247 248 if (!inet_opt || !inet_opt->opt.srr) 249 daddr = fl4->daddr; 250 251 tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; 252 253 if (!inet->inet_saddr) { 254 err = inet_bhash2_update_saddr(sk, &fl4->saddr, AF_INET); 255 if (err) { 256 ip_rt_put(rt); 257 return err; 258 } 259 } else { 260 sk_rcv_saddr_set(sk, inet->inet_saddr); 261 } 262 263 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 264 /* Reset inherited state */ 265 tp->rx_opt.ts_recent = 0; 266 tp->rx_opt.ts_recent_stamp = 0; 267 if (likely(!tp->repair)) 268 WRITE_ONCE(tp->write_seq, 0); 269 } 270 271 inet->inet_dport = usin->sin_port; 272 sk_daddr_set(sk, daddr); 273 274 inet_csk(sk)->icsk_ext_hdr_len = 0; 275 if (inet_opt) 276 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 277 278 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 279 280 /* Socket identity is still unknown (sport may be zero). 281 * However we set state to SYN-SENT and not releasing socket 282 * lock select source port, enter ourselves into the hash tables and 283 * complete initialization after this. 284 */ 285 tcp_set_state(sk, TCP_SYN_SENT); 286 err = inet_hash_connect(tcp_death_row, sk); 287 if (err) 288 goto failure; 289 290 sk_set_txhash(sk); 291 292 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 293 inet->inet_sport, inet->inet_dport, sk); 294 if (IS_ERR(rt)) { 295 err = PTR_ERR(rt); 296 rt = NULL; 297 goto failure; 298 } 299 tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst); 300 /* OK, now commit destination to socket. */ 301 sk->sk_gso_type = SKB_GSO_TCPV4; 302 sk_setup_caps(sk, &rt->dst); 303 rt = NULL; 304 305 if (likely(!tp->repair)) { 306 if (!tp->write_seq) 307 WRITE_ONCE(tp->write_seq, 308 secure_tcp_seq(inet->inet_saddr, 309 inet->inet_daddr, 310 inet->inet_sport, 311 usin->sin_port)); 312 WRITE_ONCE(tp->tsoffset, 313 secure_tcp_ts_off(net, inet->inet_saddr, 314 inet->inet_daddr)); 315 } 316 317 atomic_set(&inet->inet_id, get_random_u16()); 318 319 if (tcp_fastopen_defer_connect(sk, &err)) 320 return err; 321 if (err) 322 goto failure; 323 324 err = tcp_connect(sk); 325 326 if (err) 327 goto failure; 328 329 return 0; 330 331 failure: 332 /* 333 * This unhashes the socket and releases the local port, 334 * if necessary. 335 */ 336 tcp_set_state(sk, TCP_CLOSE); 337 inet_bhash2_reset_saddr(sk); 338 ip_rt_put(rt); 339 sk->sk_route_caps = 0; 340 inet->inet_dport = 0; 341 return err; 342 } 343 EXPORT_SYMBOL(tcp_v4_connect); 344 345 /* 346 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 347 * It can be called through tcp_release_cb() if socket was owned by user 348 * at the time tcp_v4_err() was called to handle ICMP message. 349 */ 350 void tcp_v4_mtu_reduced(struct sock *sk) 351 { 352 struct inet_sock *inet = inet_sk(sk); 353 struct dst_entry *dst; 354 u32 mtu; 355 356 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 357 return; 358 mtu = READ_ONCE(tcp_sk(sk)->mtu_info); 359 dst = inet_csk_update_pmtu(sk, mtu); 360 if (!dst) 361 return; 362 363 /* Something is about to be wrong... Remember soft error 364 * for the case, if this connection will not able to recover. 365 */ 366 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 367 WRITE_ONCE(sk->sk_err_soft, EMSGSIZE); 368 369 mtu = dst_mtu(dst); 370 371 if (inet->pmtudisc != IP_PMTUDISC_DONT && 372 ip_sk_accept_pmtu(sk) && 373 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 374 tcp_sync_mss(sk, mtu); 375 376 /* Resend the TCP packet because it's 377 * clear that the old packet has been 378 * dropped. This is the new "fast" path mtu 379 * discovery. 380 */ 381 tcp_simple_retransmit(sk); 382 } /* else let the usual retransmit timer handle it */ 383 } 384 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 385 386 static void do_redirect(struct sk_buff *skb, struct sock *sk) 387 { 388 struct dst_entry *dst = __sk_dst_check(sk, 0); 389 390 if (dst) 391 dst->ops->redirect(dst, sk, skb); 392 } 393 394 395 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 396 void tcp_req_err(struct sock *sk, u32 seq, bool abort) 397 { 398 struct request_sock *req = inet_reqsk(sk); 399 struct net *net = sock_net(sk); 400 401 /* ICMPs are not backlogged, hence we cannot get 402 * an established socket here. 403 */ 404 if (seq != tcp_rsk(req)->snt_isn) { 405 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 406 } else if (abort) { 407 /* 408 * Still in SYN_RECV, just remove it silently. 409 * There is no good way to pass the error to the newly 410 * created socket, and POSIX does not want network 411 * errors returned from accept(). 412 */ 413 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 414 tcp_listendrop(req->rsk_listener); 415 } 416 reqsk_put(req); 417 } 418 EXPORT_SYMBOL(tcp_req_err); 419 420 /* TCP-LD (RFC 6069) logic */ 421 void tcp_ld_RTO_revert(struct sock *sk, u32 seq) 422 { 423 struct inet_connection_sock *icsk = inet_csk(sk); 424 struct tcp_sock *tp = tcp_sk(sk); 425 struct sk_buff *skb; 426 s32 remaining; 427 u32 delta_us; 428 429 if (sock_owned_by_user(sk)) 430 return; 431 432 if (seq != tp->snd_una || !icsk->icsk_retransmits || 433 !icsk->icsk_backoff) 434 return; 435 436 skb = tcp_rtx_queue_head(sk); 437 if (WARN_ON_ONCE(!skb)) 438 return; 439 440 icsk->icsk_backoff--; 441 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT; 442 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 443 444 tcp_mstamp_refresh(tp); 445 delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb)); 446 remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us); 447 448 if (remaining > 0) { 449 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 450 remaining, TCP_RTO_MAX); 451 } else { 452 /* RTO revert clocked out retransmission. 453 * Will retransmit now. 454 */ 455 tcp_retransmit_timer(sk); 456 } 457 } 458 EXPORT_SYMBOL(tcp_ld_RTO_revert); 459 460 /* 461 * This routine is called by the ICMP module when it gets some 462 * sort of error condition. If err < 0 then the socket should 463 * be closed and the error returned to the user. If err > 0 464 * it's just the icmp type << 8 | icmp code. After adjustment 465 * header points to the first 8 bytes of the tcp header. We need 466 * to find the appropriate port. 467 * 468 * The locking strategy used here is very "optimistic". When 469 * someone else accesses the socket the ICMP is just dropped 470 * and for some paths there is no check at all. 471 * A more general error queue to queue errors for later handling 472 * is probably better. 473 * 474 */ 475 476 int tcp_v4_err(struct sk_buff *skb, u32 info) 477 { 478 const struct iphdr *iph = (const struct iphdr *)skb->data; 479 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2)); 480 struct tcp_sock *tp; 481 const int type = icmp_hdr(skb)->type; 482 const int code = icmp_hdr(skb)->code; 483 struct sock *sk; 484 struct request_sock *fastopen; 485 u32 seq, snd_una; 486 int err; 487 struct net *net = dev_net(skb->dev); 488 489 sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, 490 iph->daddr, th->dest, iph->saddr, 491 ntohs(th->source), inet_iif(skb), 0); 492 if (!sk) { 493 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 494 return -ENOENT; 495 } 496 if (sk->sk_state == TCP_TIME_WAIT) { 497 /* To increase the counter of ignored icmps for TCP-AO */ 498 tcp_ao_ignore_icmp(sk, AF_INET, type, code); 499 inet_twsk_put(inet_twsk(sk)); 500 return 0; 501 } 502 seq = ntohl(th->seq); 503 if (sk->sk_state == TCP_NEW_SYN_RECV) { 504 tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB || 505 type == ICMP_TIME_EXCEEDED || 506 (type == ICMP_DEST_UNREACH && 507 (code == ICMP_NET_UNREACH || 508 code == ICMP_HOST_UNREACH))); 509 return 0; 510 } 511 512 if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) { 513 sock_put(sk); 514 return 0; 515 } 516 517 bh_lock_sock(sk); 518 /* If too many ICMPs get dropped on busy 519 * servers this needs to be solved differently. 520 * We do take care of PMTU discovery (RFC1191) special case : 521 * we can receive locally generated ICMP messages while socket is held. 522 */ 523 if (sock_owned_by_user(sk)) { 524 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 525 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 526 } 527 if (sk->sk_state == TCP_CLOSE) 528 goto out; 529 530 if (static_branch_unlikely(&ip4_min_ttl)) { 531 /* min_ttl can be changed concurrently from do_ip_setsockopt() */ 532 if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) { 533 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 534 goto out; 535 } 536 } 537 538 tp = tcp_sk(sk); 539 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 540 fastopen = rcu_dereference(tp->fastopen_rsk); 541 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 542 if (sk->sk_state != TCP_LISTEN && 543 !between(seq, snd_una, tp->snd_nxt)) { 544 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 545 goto out; 546 } 547 548 switch (type) { 549 case ICMP_REDIRECT: 550 if (!sock_owned_by_user(sk)) 551 do_redirect(skb, sk); 552 goto out; 553 case ICMP_SOURCE_QUENCH: 554 /* Just silently ignore these. */ 555 goto out; 556 case ICMP_PARAMETERPROB: 557 err = EPROTO; 558 break; 559 case ICMP_DEST_UNREACH: 560 if (code > NR_ICMP_UNREACH) 561 goto out; 562 563 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 564 /* We are not interested in TCP_LISTEN and open_requests 565 * (SYN-ACKs send out by Linux are always <576bytes so 566 * they should go through unfragmented). 567 */ 568 if (sk->sk_state == TCP_LISTEN) 569 goto out; 570 571 WRITE_ONCE(tp->mtu_info, info); 572 if (!sock_owned_by_user(sk)) { 573 tcp_v4_mtu_reduced(sk); 574 } else { 575 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) 576 sock_hold(sk); 577 } 578 goto out; 579 } 580 581 err = icmp_err_convert[code].errno; 582 /* check if this ICMP message allows revert of backoff. 583 * (see RFC 6069) 584 */ 585 if (!fastopen && 586 (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH)) 587 tcp_ld_RTO_revert(sk, seq); 588 break; 589 case ICMP_TIME_EXCEEDED: 590 err = EHOSTUNREACH; 591 break; 592 default: 593 goto out; 594 } 595 596 switch (sk->sk_state) { 597 case TCP_SYN_SENT: 598 case TCP_SYN_RECV: 599 /* Only in fast or simultaneous open. If a fast open socket is 600 * already accepted it is treated as a connected one below. 601 */ 602 if (fastopen && !fastopen->sk) 603 break; 604 605 ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th); 606 607 if (!sock_owned_by_user(sk)) { 608 WRITE_ONCE(sk->sk_err, err); 609 610 sk_error_report(sk); 611 612 tcp_done(sk); 613 } else { 614 WRITE_ONCE(sk->sk_err_soft, err); 615 } 616 goto out; 617 } 618 619 /* If we've already connected we will keep trying 620 * until we time out, or the user gives up. 621 * 622 * rfc1122 4.2.3.9 allows to consider as hard errors 623 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 624 * but it is obsoleted by pmtu discovery). 625 * 626 * Note, that in modern internet, where routing is unreliable 627 * and in each dark corner broken firewalls sit, sending random 628 * errors ordered by their masters even this two messages finally lose 629 * their original sense (even Linux sends invalid PORT_UNREACHs) 630 * 631 * Now we are in compliance with RFCs. 632 * --ANK (980905) 633 */ 634 635 if (!sock_owned_by_user(sk) && 636 inet_test_bit(RECVERR, sk)) { 637 WRITE_ONCE(sk->sk_err, err); 638 sk_error_report(sk); 639 } else { /* Only an error on timeout */ 640 WRITE_ONCE(sk->sk_err_soft, err); 641 } 642 643 out: 644 bh_unlock_sock(sk); 645 sock_put(sk); 646 return 0; 647 } 648 649 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 650 { 651 struct tcphdr *th = tcp_hdr(skb); 652 653 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 654 skb->csum_start = skb_transport_header(skb) - skb->head; 655 skb->csum_offset = offsetof(struct tcphdr, check); 656 } 657 658 /* This routine computes an IPv4 TCP checksum. */ 659 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 660 { 661 const struct inet_sock *inet = inet_sk(sk); 662 663 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 664 } 665 EXPORT_SYMBOL(tcp_v4_send_check); 666 667 #define REPLY_OPTIONS_LEN (MAX_TCP_OPTION_SPACE / sizeof(__be32)) 668 669 static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb, 670 const struct tcp_ao_hdr *aoh, 671 struct ip_reply_arg *arg, struct tcphdr *reply, 672 __be32 reply_options[REPLY_OPTIONS_LEN]) 673 { 674 #ifdef CONFIG_TCP_AO 675 int sdif = tcp_v4_sdif(skb); 676 int dif = inet_iif(skb); 677 int l3index = sdif ? dif : 0; 678 bool allocated_traffic_key; 679 struct tcp_ao_key *key; 680 char *traffic_key; 681 bool drop = true; 682 u32 ao_sne = 0; 683 u8 keyid; 684 685 rcu_read_lock(); 686 if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq), 687 &key, &traffic_key, &allocated_traffic_key, 688 &keyid, &ao_sne)) 689 goto out; 690 691 reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) | 692 (aoh->rnext_keyid << 8) | keyid); 693 arg->iov[0].iov_len += tcp_ao_len_aligned(key); 694 reply->doff = arg->iov[0].iov_len / 4; 695 696 if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1], 697 key, traffic_key, 698 (union tcp_ao_addr *)&ip_hdr(skb)->saddr, 699 (union tcp_ao_addr *)&ip_hdr(skb)->daddr, 700 reply, ao_sne)) 701 goto out; 702 drop = false; 703 out: 704 rcu_read_unlock(); 705 if (allocated_traffic_key) 706 kfree(traffic_key); 707 return drop; 708 #else 709 return true; 710 #endif 711 } 712 713 /* 714 * This routine will send an RST to the other tcp. 715 * 716 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 717 * for reset. 718 * Answer: if a packet caused RST, it is not for a socket 719 * existing in our system, if it is matched to a socket, 720 * it is just duplicate segment or bug in other side's TCP. 721 * So that we build reply only basing on parameters 722 * arrived with segment. 723 * Exception: precedence violation. We do not implement it in any case. 724 */ 725 726 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) 727 { 728 const struct tcphdr *th = tcp_hdr(skb); 729 struct { 730 struct tcphdr th; 731 __be32 opt[REPLY_OPTIONS_LEN]; 732 } rep; 733 const __u8 *md5_hash_location = NULL; 734 const struct tcp_ao_hdr *aoh; 735 struct ip_reply_arg arg; 736 #ifdef CONFIG_TCP_MD5SIG 737 struct tcp_md5sig_key *key = NULL; 738 unsigned char newhash[16]; 739 struct sock *sk1 = NULL; 740 int genhash; 741 #endif 742 u64 transmit_time = 0; 743 struct sock *ctl_sk; 744 struct net *net; 745 u32 txhash = 0; 746 747 /* Never send a reset in response to a reset. */ 748 if (th->rst) 749 return; 750 751 /* If sk not NULL, it means we did a successful lookup and incoming 752 * route had to be correct. prequeue might have dropped our dst. 753 */ 754 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 755 return; 756 757 /* Swap the send and the receive. */ 758 memset(&rep, 0, sizeof(rep)); 759 rep.th.dest = th->source; 760 rep.th.source = th->dest; 761 rep.th.doff = sizeof(struct tcphdr) / 4; 762 rep.th.rst = 1; 763 764 if (th->ack) { 765 rep.th.seq = th->ack_seq; 766 } else { 767 rep.th.ack = 1; 768 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 769 skb->len - (th->doff << 2)); 770 } 771 772 memset(&arg, 0, sizeof(arg)); 773 arg.iov[0].iov_base = (unsigned char *)&rep; 774 arg.iov[0].iov_len = sizeof(rep.th); 775 776 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 777 778 /* Invalid TCP option size or twice included auth */ 779 if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh)) 780 return; 781 782 if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt)) 783 return; 784 785 #ifdef CONFIG_TCP_MD5SIG 786 rcu_read_lock(); 787 if (sk && sk_fullsock(sk)) { 788 const union tcp_md5_addr *addr; 789 int l3index; 790 791 /* sdif set, means packet ingressed via a device 792 * in an L3 domain and inet_iif is set to it. 793 */ 794 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; 795 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 796 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 797 } else if (md5_hash_location) { 798 const union tcp_md5_addr *addr; 799 int sdif = tcp_v4_sdif(skb); 800 int dif = inet_iif(skb); 801 int l3index; 802 803 /* 804 * active side is lost. Try to find listening socket through 805 * source port, and then find md5 key through listening socket. 806 * we are not loose security here: 807 * Incoming packet is checked with md5 hash with finding key, 808 * no RST generated if md5 hash doesn't match. 809 */ 810 sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo, 811 NULL, 0, ip_hdr(skb)->saddr, 812 th->source, ip_hdr(skb)->daddr, 813 ntohs(th->source), dif, sdif); 814 /* don't send rst if it can't find key */ 815 if (!sk1) 816 goto out; 817 818 /* sdif set, means packet ingressed via a device 819 * in an L3 domain and dif is set to it. 820 */ 821 l3index = sdif ? dif : 0; 822 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 823 key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET); 824 if (!key) 825 goto out; 826 827 828 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 829 if (genhash || memcmp(md5_hash_location, newhash, 16) != 0) 830 goto out; 831 832 } 833 834 if (key) { 835 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 836 (TCPOPT_NOP << 16) | 837 (TCPOPT_MD5SIG << 8) | 838 TCPOLEN_MD5SIG); 839 /* Update length and the length the header thinks exists */ 840 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 841 rep.th.doff = arg.iov[0].iov_len / 4; 842 843 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 844 key, ip_hdr(skb)->saddr, 845 ip_hdr(skb)->daddr, &rep.th); 846 } 847 #endif 848 /* Can't co-exist with TCPMD5, hence check rep.opt[0] */ 849 if (rep.opt[0] == 0) { 850 __be32 mrst = mptcp_reset_option(skb); 851 852 if (mrst) { 853 rep.opt[0] = mrst; 854 arg.iov[0].iov_len += sizeof(mrst); 855 rep.th.doff = arg.iov[0].iov_len / 4; 856 } 857 } 858 859 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 860 ip_hdr(skb)->saddr, /* XXX */ 861 arg.iov[0].iov_len, IPPROTO_TCP, 0); 862 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 863 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; 864 865 /* When socket is gone, all binding information is lost. 866 * routing might fail in this case. No choice here, if we choose to force 867 * input interface, we will misroute in case of asymmetric route. 868 */ 869 if (sk) 870 arg.bound_dev_if = sk->sk_bound_dev_if; 871 872 trace_tcp_send_reset(sk, skb); 873 874 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != 875 offsetof(struct inet_timewait_sock, tw_bound_dev_if)); 876 877 arg.tos = ip_hdr(skb)->tos; 878 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); 879 local_bh_disable(); 880 ctl_sk = this_cpu_read(ipv4_tcp_sk); 881 sock_net_set(ctl_sk, net); 882 if (sk) { 883 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 884 inet_twsk(sk)->tw_mark : sk->sk_mark; 885 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? 886 inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority); 887 transmit_time = tcp_transmit_time(sk); 888 xfrm_sk_clone_policy(ctl_sk, sk); 889 txhash = (sk->sk_state == TCP_TIME_WAIT) ? 890 inet_twsk(sk)->tw_txhash : sk->sk_txhash; 891 } else { 892 ctl_sk->sk_mark = 0; 893 ctl_sk->sk_priority = 0; 894 } 895 ip_send_unicast_reply(ctl_sk, 896 skb, &TCP_SKB_CB(skb)->header.h4.opt, 897 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 898 &arg, arg.iov[0].iov_len, 899 transmit_time, txhash); 900 901 xfrm_sk_free_policy(ctl_sk); 902 sock_net_set(ctl_sk, &init_net); 903 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 904 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); 905 local_bh_enable(); 906 907 #ifdef CONFIG_TCP_MD5SIG 908 out: 909 rcu_read_unlock(); 910 #endif 911 } 912 913 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 914 outside socket context is ugly, certainly. What can I do? 915 */ 916 917 static void tcp_v4_send_ack(const struct sock *sk, 918 struct sk_buff *skb, u32 seq, u32 ack, 919 u32 win, u32 tsval, u32 tsecr, int oif, 920 struct tcp_key *key, 921 int reply_flags, u8 tos, u32 txhash) 922 { 923 const struct tcphdr *th = tcp_hdr(skb); 924 struct { 925 struct tcphdr th; 926 __be32 opt[(MAX_TCP_OPTION_SPACE >> 2)]; 927 } rep; 928 struct net *net = sock_net(sk); 929 struct ip_reply_arg arg; 930 struct sock *ctl_sk; 931 u64 transmit_time; 932 933 memset(&rep.th, 0, sizeof(struct tcphdr)); 934 memset(&arg, 0, sizeof(arg)); 935 936 arg.iov[0].iov_base = (unsigned char *)&rep; 937 arg.iov[0].iov_len = sizeof(rep.th); 938 if (tsecr) { 939 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 940 (TCPOPT_TIMESTAMP << 8) | 941 TCPOLEN_TIMESTAMP); 942 rep.opt[1] = htonl(tsval); 943 rep.opt[2] = htonl(tsecr); 944 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 945 } 946 947 /* Swap the send and the receive. */ 948 rep.th.dest = th->source; 949 rep.th.source = th->dest; 950 rep.th.doff = arg.iov[0].iov_len / 4; 951 rep.th.seq = htonl(seq); 952 rep.th.ack_seq = htonl(ack); 953 rep.th.ack = 1; 954 rep.th.window = htons(win); 955 956 #ifdef CONFIG_TCP_MD5SIG 957 if (tcp_key_is_md5(key)) { 958 int offset = (tsecr) ? 3 : 0; 959 960 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 961 (TCPOPT_NOP << 16) | 962 (TCPOPT_MD5SIG << 8) | 963 TCPOLEN_MD5SIG); 964 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 965 rep.th.doff = arg.iov[0].iov_len/4; 966 967 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 968 key->md5_key, ip_hdr(skb)->saddr, 969 ip_hdr(skb)->daddr, &rep.th); 970 } 971 #endif 972 #ifdef CONFIG_TCP_AO 973 if (tcp_key_is_ao(key)) { 974 int offset = (tsecr) ? 3 : 0; 975 976 rep.opt[offset++] = htonl((TCPOPT_AO << 24) | 977 (tcp_ao_len(key->ao_key) << 16) | 978 (key->ao_key->sndid << 8) | 979 key->rcv_next); 980 arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key); 981 rep.th.doff = arg.iov[0].iov_len / 4; 982 983 tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset], 984 key->ao_key, key->traffic_key, 985 (union tcp_ao_addr *)&ip_hdr(skb)->saddr, 986 (union tcp_ao_addr *)&ip_hdr(skb)->daddr, 987 &rep.th, key->sne); 988 } 989 #endif 990 arg.flags = reply_flags; 991 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 992 ip_hdr(skb)->saddr, /* XXX */ 993 arg.iov[0].iov_len, IPPROTO_TCP, 0); 994 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 995 if (oif) 996 arg.bound_dev_if = oif; 997 arg.tos = tos; 998 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); 999 local_bh_disable(); 1000 ctl_sk = this_cpu_read(ipv4_tcp_sk); 1001 sock_net_set(ctl_sk, net); 1002 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 1003 inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark); 1004 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? 1005 inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority); 1006 transmit_time = tcp_transmit_time(sk); 1007 ip_send_unicast_reply(ctl_sk, 1008 skb, &TCP_SKB_CB(skb)->header.h4.opt, 1009 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 1010 &arg, arg.iov[0].iov_len, 1011 transmit_time, txhash); 1012 1013 sock_net_set(ctl_sk, &init_net); 1014 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 1015 local_bh_enable(); 1016 } 1017 1018 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 1019 { 1020 struct inet_timewait_sock *tw = inet_twsk(sk); 1021 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 1022 struct tcp_key key = {}; 1023 #ifdef CONFIG_TCP_AO 1024 struct tcp_ao_info *ao_info; 1025 1026 if (static_branch_unlikely(&tcp_ao_needed.key)) { 1027 /* FIXME: the segment to-be-acked is not verified yet */ 1028 ao_info = rcu_dereference(tcptw->ao_info); 1029 if (ao_info) { 1030 const struct tcp_ao_hdr *aoh; 1031 1032 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) { 1033 inet_twsk_put(tw); 1034 return; 1035 } 1036 1037 if (aoh) 1038 key.ao_key = tcp_ao_established_key(ao_info, aoh->rnext_keyid, -1); 1039 } 1040 } 1041 if (key.ao_key) { 1042 struct tcp_ao_key *rnext_key; 1043 1044 key.traffic_key = snd_other_key(key.ao_key); 1045 key.sne = READ_ONCE(ao_info->snd_sne); 1046 rnext_key = READ_ONCE(ao_info->rnext_key); 1047 key.rcv_next = rnext_key->rcvid; 1048 key.type = TCP_KEY_AO; 1049 #else 1050 if (0) { 1051 #endif 1052 #ifdef CONFIG_TCP_MD5SIG 1053 } else if (static_branch_unlikely(&tcp_md5_needed.key)) { 1054 key.md5_key = tcp_twsk_md5_key(tcptw); 1055 if (key.md5_key) 1056 key.type = TCP_KEY_MD5; 1057 #endif 1058 } 1059 1060 tcp_v4_send_ack(sk, skb, 1061 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 1062 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 1063 tcp_tw_tsval(tcptw), 1064 tcptw->tw_ts_recent, 1065 tw->tw_bound_dev_if, &key, 1066 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 1067 tw->tw_tos, 1068 tw->tw_txhash); 1069 1070 inet_twsk_put(tw); 1071 } 1072 1073 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 1074 struct request_sock *req) 1075 { 1076 struct tcp_key key = {}; 1077 1078 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 1079 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 1080 */ 1081 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : 1082 tcp_sk(sk)->snd_nxt; 1083 1084 #ifdef CONFIG_TCP_AO 1085 if (static_branch_unlikely(&tcp_ao_needed.key) && 1086 tcp_rsk_used_ao(req)) { 1087 const union tcp_md5_addr *addr; 1088 const struct tcp_ao_hdr *aoh; 1089 int l3index; 1090 1091 /* Invalid TCP option size or twice included auth */ 1092 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 1093 return; 1094 if (!aoh) 1095 return; 1096 1097 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 1098 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; 1099 key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, 1100 aoh->rnext_keyid, -1); 1101 if (unlikely(!key.ao_key)) { 1102 /* Send ACK with any matching MKT for the peer */ 1103 key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1); 1104 /* Matching key disappeared (user removed the key?) 1105 * let the handshake timeout. 1106 */ 1107 if (!key.ao_key) { 1108 net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n", 1109 addr, 1110 ntohs(tcp_hdr(skb)->source), 1111 &ip_hdr(skb)->daddr, 1112 ntohs(tcp_hdr(skb)->dest)); 1113 return; 1114 } 1115 } 1116 key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC); 1117 if (!key.traffic_key) 1118 return; 1119 1120 key.type = TCP_KEY_AO; 1121 key.rcv_next = aoh->keyid; 1122 tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req); 1123 #else 1124 if (0) { 1125 #endif 1126 #ifdef CONFIG_TCP_MD5SIG 1127 } else if (static_branch_unlikely(&tcp_md5_needed.key)) { 1128 const union tcp_md5_addr *addr; 1129 int l3index; 1130 1131 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 1132 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; 1133 key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 1134 if (key.md5_key) 1135 key.type = TCP_KEY_MD5; 1136 #endif 1137 } 1138 1139 /* RFC 7323 2.3 1140 * The window field (SEG.WND) of every outgoing segment, with the 1141 * exception of <SYN> segments, MUST be right-shifted by 1142 * Rcv.Wind.Shift bits: 1143 */ 1144 tcp_v4_send_ack(sk, skb, seq, 1145 tcp_rsk(req)->rcv_nxt, 1146 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, 1147 tcp_rsk_tsval(tcp_rsk(req)), 1148 READ_ONCE(req->ts_recent), 1149 0, &key, 1150 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 1151 ip_hdr(skb)->tos, 1152 READ_ONCE(tcp_rsk(req)->txhash)); 1153 if (tcp_key_is_ao(&key)) 1154 kfree(key.traffic_key); 1155 } 1156 1157 /* 1158 * Send a SYN-ACK after having received a SYN. 1159 * This still operates on a request_sock only, not on a big 1160 * socket. 1161 */ 1162 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 1163 struct flowi *fl, 1164 struct request_sock *req, 1165 struct tcp_fastopen_cookie *foc, 1166 enum tcp_synack_type synack_type, 1167 struct sk_buff *syn_skb) 1168 { 1169 const struct inet_request_sock *ireq = inet_rsk(req); 1170 struct flowi4 fl4; 1171 int err = -1; 1172 struct sk_buff *skb; 1173 u8 tos; 1174 1175 /* First, grab a route. */ 1176 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 1177 return -1; 1178 1179 skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb); 1180 1181 if (skb) { 1182 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 1183 1184 tos = READ_ONCE(inet_sk(sk)->tos); 1185 1186 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)) 1187 tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) | 1188 (tos & INET_ECN_MASK); 1189 1190 if (!INET_ECN_is_capable(tos) && 1191 tcp_bpf_ca_needs_ecn((struct sock *)req)) 1192 tos |= INET_ECN_ECT_0; 1193 1194 rcu_read_lock(); 1195 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 1196 ireq->ir_rmt_addr, 1197 rcu_dereference(ireq->ireq_opt), 1198 tos); 1199 rcu_read_unlock(); 1200 err = net_xmit_eval(err); 1201 } 1202 1203 return err; 1204 } 1205 1206 /* 1207 * IPv4 request_sock destructor. 1208 */ 1209 static void tcp_v4_reqsk_destructor(struct request_sock *req) 1210 { 1211 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); 1212 } 1213 1214 #ifdef CONFIG_TCP_MD5SIG 1215 /* 1216 * RFC2385 MD5 checksumming requires a mapping of 1217 * IP address->MD5 Key. 1218 * We need to maintain these in the sk structure. 1219 */ 1220 1221 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ); 1222 EXPORT_SYMBOL(tcp_md5_needed); 1223 1224 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new) 1225 { 1226 if (!old) 1227 return true; 1228 1229 /* l3index always overrides non-l3index */ 1230 if (old->l3index && new->l3index == 0) 1231 return false; 1232 if (old->l3index == 0 && new->l3index) 1233 return true; 1234 1235 return old->prefixlen < new->prefixlen; 1236 } 1237 1238 /* Find the Key structure for an address. */ 1239 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1240 const union tcp_md5_addr *addr, 1241 int family, bool any_l3index) 1242 { 1243 const struct tcp_sock *tp = tcp_sk(sk); 1244 struct tcp_md5sig_key *key; 1245 const struct tcp_md5sig_info *md5sig; 1246 __be32 mask; 1247 struct tcp_md5sig_key *best_match = NULL; 1248 bool match; 1249 1250 /* caller either holds rcu_read_lock() or socket lock */ 1251 md5sig = rcu_dereference_check(tp->md5sig_info, 1252 lockdep_sock_is_held(sk)); 1253 if (!md5sig) 1254 return NULL; 1255 1256 hlist_for_each_entry_rcu(key, &md5sig->head, node, 1257 lockdep_sock_is_held(sk)) { 1258 if (key->family != family) 1259 continue; 1260 if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX && 1261 key->l3index != l3index) 1262 continue; 1263 if (family == AF_INET) { 1264 mask = inet_make_mask(key->prefixlen); 1265 match = (key->addr.a4.s_addr & mask) == 1266 (addr->a4.s_addr & mask); 1267 #if IS_ENABLED(CONFIG_IPV6) 1268 } else if (family == AF_INET6) { 1269 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6, 1270 key->prefixlen); 1271 #endif 1272 } else { 1273 match = false; 1274 } 1275 1276 if (match && better_md5_match(best_match, key)) 1277 best_match = key; 1278 } 1279 return best_match; 1280 } 1281 EXPORT_SYMBOL(__tcp_md5_do_lookup); 1282 1283 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk, 1284 const union tcp_md5_addr *addr, 1285 int family, u8 prefixlen, 1286 int l3index, u8 flags) 1287 { 1288 const struct tcp_sock *tp = tcp_sk(sk); 1289 struct tcp_md5sig_key *key; 1290 unsigned int size = sizeof(struct in_addr); 1291 const struct tcp_md5sig_info *md5sig; 1292 1293 /* caller either holds rcu_read_lock() or socket lock */ 1294 md5sig = rcu_dereference_check(tp->md5sig_info, 1295 lockdep_sock_is_held(sk)); 1296 if (!md5sig) 1297 return NULL; 1298 #if IS_ENABLED(CONFIG_IPV6) 1299 if (family == AF_INET6) 1300 size = sizeof(struct in6_addr); 1301 #endif 1302 hlist_for_each_entry_rcu(key, &md5sig->head, node, 1303 lockdep_sock_is_held(sk)) { 1304 if (key->family != family) 1305 continue; 1306 if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX)) 1307 continue; 1308 if (key->l3index != l3index) 1309 continue; 1310 if (!memcmp(&key->addr, addr, size) && 1311 key->prefixlen == prefixlen) 1312 return key; 1313 } 1314 return NULL; 1315 } 1316 1317 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1318 const struct sock *addr_sk) 1319 { 1320 const union tcp_md5_addr *addr; 1321 int l3index; 1322 1323 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), 1324 addr_sk->sk_bound_dev_if); 1325 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 1326 return tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 1327 } 1328 EXPORT_SYMBOL(tcp_v4_md5_lookup); 1329 1330 static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp) 1331 { 1332 struct tcp_sock *tp = tcp_sk(sk); 1333 struct tcp_md5sig_info *md5sig; 1334 1335 md5sig = kmalloc(sizeof(*md5sig), gfp); 1336 if (!md5sig) 1337 return -ENOMEM; 1338 1339 sk_gso_disable(sk); 1340 INIT_HLIST_HEAD(&md5sig->head); 1341 rcu_assign_pointer(tp->md5sig_info, md5sig); 1342 return 0; 1343 } 1344 1345 /* This can be called on a newly created socket, from other files */ 1346 static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1347 int family, u8 prefixlen, int l3index, u8 flags, 1348 const u8 *newkey, u8 newkeylen, gfp_t gfp) 1349 { 1350 /* Add Key to the list */ 1351 struct tcp_md5sig_key *key; 1352 struct tcp_sock *tp = tcp_sk(sk); 1353 struct tcp_md5sig_info *md5sig; 1354 1355 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags); 1356 if (key) { 1357 /* Pre-existing entry - just update that one. 1358 * Note that the key might be used concurrently. 1359 * data_race() is telling kcsan that we do not care of 1360 * key mismatches, since changing MD5 key on live flows 1361 * can lead to packet drops. 1362 */ 1363 data_race(memcpy(key->key, newkey, newkeylen)); 1364 1365 /* Pairs with READ_ONCE() in tcp_md5_hash_key(). 1366 * Also note that a reader could catch new key->keylen value 1367 * but old key->key[], this is the reason we use __GFP_ZERO 1368 * at sock_kmalloc() time below these lines. 1369 */ 1370 WRITE_ONCE(key->keylen, newkeylen); 1371 1372 return 0; 1373 } 1374 1375 md5sig = rcu_dereference_protected(tp->md5sig_info, 1376 lockdep_sock_is_held(sk)); 1377 1378 key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO); 1379 if (!key) 1380 return -ENOMEM; 1381 1382 memcpy(key->key, newkey, newkeylen); 1383 key->keylen = newkeylen; 1384 key->family = family; 1385 key->prefixlen = prefixlen; 1386 key->l3index = l3index; 1387 key->flags = flags; 1388 memcpy(&key->addr, addr, 1389 (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) : 1390 sizeof(struct in_addr)); 1391 hlist_add_head_rcu(&key->node, &md5sig->head); 1392 return 0; 1393 } 1394 1395 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1396 int family, u8 prefixlen, int l3index, u8 flags, 1397 const u8 *newkey, u8 newkeylen) 1398 { 1399 struct tcp_sock *tp = tcp_sk(sk); 1400 1401 if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) { 1402 if (tcp_md5_alloc_sigpool()) 1403 return -ENOMEM; 1404 1405 if (tcp_md5sig_info_add(sk, GFP_KERNEL)) { 1406 tcp_md5_release_sigpool(); 1407 return -ENOMEM; 1408 } 1409 1410 if (!static_branch_inc(&tcp_md5_needed.key)) { 1411 struct tcp_md5sig_info *md5sig; 1412 1413 md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk)); 1414 rcu_assign_pointer(tp->md5sig_info, NULL); 1415 kfree_rcu(md5sig, rcu); 1416 tcp_md5_release_sigpool(); 1417 return -EUSERS; 1418 } 1419 } 1420 1421 return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags, 1422 newkey, newkeylen, GFP_KERNEL); 1423 } 1424 EXPORT_SYMBOL(tcp_md5_do_add); 1425 1426 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1427 int family, u8 prefixlen, int l3index, 1428 struct tcp_md5sig_key *key) 1429 { 1430 struct tcp_sock *tp = tcp_sk(sk); 1431 1432 if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) { 1433 tcp_md5_add_sigpool(); 1434 1435 if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) { 1436 tcp_md5_release_sigpool(); 1437 return -ENOMEM; 1438 } 1439 1440 if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) { 1441 struct tcp_md5sig_info *md5sig; 1442 1443 md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk)); 1444 net_warn_ratelimited("Too many TCP-MD5 keys in the system\n"); 1445 rcu_assign_pointer(tp->md5sig_info, NULL); 1446 kfree_rcu(md5sig, rcu); 1447 tcp_md5_release_sigpool(); 1448 return -EUSERS; 1449 } 1450 } 1451 1452 return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, 1453 key->flags, key->key, key->keylen, 1454 sk_gfp_mask(sk, GFP_ATOMIC)); 1455 } 1456 EXPORT_SYMBOL(tcp_md5_key_copy); 1457 1458 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, 1459 u8 prefixlen, int l3index, u8 flags) 1460 { 1461 struct tcp_md5sig_key *key; 1462 1463 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags); 1464 if (!key) 1465 return -ENOENT; 1466 hlist_del_rcu(&key->node); 1467 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1468 kfree_rcu(key, rcu); 1469 return 0; 1470 } 1471 EXPORT_SYMBOL(tcp_md5_do_del); 1472 1473 void tcp_clear_md5_list(struct sock *sk) 1474 { 1475 struct tcp_sock *tp = tcp_sk(sk); 1476 struct tcp_md5sig_key *key; 1477 struct hlist_node *n; 1478 struct tcp_md5sig_info *md5sig; 1479 1480 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1481 1482 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 1483 hlist_del_rcu(&key->node); 1484 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1485 kfree_rcu(key, rcu); 1486 } 1487 } 1488 1489 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname, 1490 sockptr_t optval, int optlen) 1491 { 1492 struct tcp_md5sig cmd; 1493 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1494 const union tcp_md5_addr *addr; 1495 u8 prefixlen = 32; 1496 int l3index = 0; 1497 bool l3flag; 1498 u8 flags; 1499 1500 if (optlen < sizeof(cmd)) 1501 return -EINVAL; 1502 1503 if (copy_from_sockptr(&cmd, optval, sizeof(cmd))) 1504 return -EFAULT; 1505 1506 if (sin->sin_family != AF_INET) 1507 return -EINVAL; 1508 1509 flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX; 1510 l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX; 1511 1512 if (optname == TCP_MD5SIG_EXT && 1513 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { 1514 prefixlen = cmd.tcpm_prefixlen; 1515 if (prefixlen > 32) 1516 return -EINVAL; 1517 } 1518 1519 if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex && 1520 cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) { 1521 struct net_device *dev; 1522 1523 rcu_read_lock(); 1524 dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex); 1525 if (dev && netif_is_l3_master(dev)) 1526 l3index = dev->ifindex; 1527 1528 rcu_read_unlock(); 1529 1530 /* ok to reference set/not set outside of rcu; 1531 * right now device MUST be an L3 master 1532 */ 1533 if (!dev || !l3index) 1534 return -EINVAL; 1535 } 1536 1537 addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr; 1538 1539 if (!cmd.tcpm_keylen) 1540 return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags); 1541 1542 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1543 return -EINVAL; 1544 1545 /* Don't allow keys for peers that have a matching TCP-AO key. 1546 * See the comment in tcp_ao_add_cmd() 1547 */ 1548 if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false)) 1549 return -EKEYREJECTED; 1550 1551 return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags, 1552 cmd.tcpm_key, cmd.tcpm_keylen); 1553 } 1554 1555 static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp, 1556 __be32 daddr, __be32 saddr, 1557 const struct tcphdr *th, int nbytes) 1558 { 1559 struct tcp4_pseudohdr *bp; 1560 struct scatterlist sg; 1561 struct tcphdr *_th; 1562 1563 bp = hp->scratch; 1564 bp->saddr = saddr; 1565 bp->daddr = daddr; 1566 bp->pad = 0; 1567 bp->protocol = IPPROTO_TCP; 1568 bp->len = cpu_to_be16(nbytes); 1569 1570 _th = (struct tcphdr *)(bp + 1); 1571 memcpy(_th, th, sizeof(*th)); 1572 _th->check = 0; 1573 1574 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); 1575 ahash_request_set_crypt(hp->req, &sg, NULL, 1576 sizeof(*bp) + sizeof(*th)); 1577 return crypto_ahash_update(hp->req); 1578 } 1579 1580 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1581 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1582 { 1583 struct tcp_sigpool hp; 1584 1585 if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp)) 1586 goto clear_hash_nostart; 1587 1588 if (crypto_ahash_init(hp.req)) 1589 goto clear_hash; 1590 if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2)) 1591 goto clear_hash; 1592 if (tcp_md5_hash_key(&hp, key)) 1593 goto clear_hash; 1594 ahash_request_set_crypt(hp.req, NULL, md5_hash, 0); 1595 if (crypto_ahash_final(hp.req)) 1596 goto clear_hash; 1597 1598 tcp_sigpool_end(&hp); 1599 return 0; 1600 1601 clear_hash: 1602 tcp_sigpool_end(&hp); 1603 clear_hash_nostart: 1604 memset(md5_hash, 0, 16); 1605 return 1; 1606 } 1607 1608 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1609 const struct sock *sk, 1610 const struct sk_buff *skb) 1611 { 1612 const struct tcphdr *th = tcp_hdr(skb); 1613 struct tcp_sigpool hp; 1614 __be32 saddr, daddr; 1615 1616 if (sk) { /* valid for establish/request sockets */ 1617 saddr = sk->sk_rcv_saddr; 1618 daddr = sk->sk_daddr; 1619 } else { 1620 const struct iphdr *iph = ip_hdr(skb); 1621 saddr = iph->saddr; 1622 daddr = iph->daddr; 1623 } 1624 1625 if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp)) 1626 goto clear_hash_nostart; 1627 1628 if (crypto_ahash_init(hp.req)) 1629 goto clear_hash; 1630 1631 if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len)) 1632 goto clear_hash; 1633 if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2)) 1634 goto clear_hash; 1635 if (tcp_md5_hash_key(&hp, key)) 1636 goto clear_hash; 1637 ahash_request_set_crypt(hp.req, NULL, md5_hash, 0); 1638 if (crypto_ahash_final(hp.req)) 1639 goto clear_hash; 1640 1641 tcp_sigpool_end(&hp); 1642 return 0; 1643 1644 clear_hash: 1645 tcp_sigpool_end(&hp); 1646 clear_hash_nostart: 1647 memset(md5_hash, 0, 16); 1648 return 1; 1649 } 1650 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1651 1652 #endif 1653 1654 static void tcp_v4_init_req(struct request_sock *req, 1655 const struct sock *sk_listener, 1656 struct sk_buff *skb) 1657 { 1658 struct inet_request_sock *ireq = inet_rsk(req); 1659 struct net *net = sock_net(sk_listener); 1660 1661 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1662 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1663 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb)); 1664 } 1665 1666 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1667 struct sk_buff *skb, 1668 struct flowi *fl, 1669 struct request_sock *req, 1670 u32 tw_isn) 1671 { 1672 tcp_v4_init_req(req, sk, skb); 1673 1674 if (security_inet_conn_request(sk, skb, req)) 1675 return NULL; 1676 1677 return inet_csk_route_req(sk, &fl->u.ip4, req); 1678 } 1679 1680 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1681 .family = PF_INET, 1682 .obj_size = sizeof(struct tcp_request_sock), 1683 .rtx_syn_ack = tcp_rtx_synack, 1684 .send_ack = tcp_v4_reqsk_send_ack, 1685 .destructor = tcp_v4_reqsk_destructor, 1686 .send_reset = tcp_v4_send_reset, 1687 .syn_ack_timeout = tcp_syn_ack_timeout, 1688 }; 1689 1690 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1691 .mss_clamp = TCP_MSS_DEFAULT, 1692 #ifdef CONFIG_TCP_MD5SIG 1693 .req_md5_lookup = tcp_v4_md5_lookup, 1694 .calc_md5_hash = tcp_v4_md5_hash_skb, 1695 #endif 1696 #ifdef CONFIG_TCP_AO 1697 .ao_lookup = tcp_v4_ao_lookup_rsk, 1698 .ao_calc_key = tcp_v4_ao_calc_key_rsk, 1699 .ao_synack_hash = tcp_v4_ao_synack_hash, 1700 #endif 1701 #ifdef CONFIG_SYN_COOKIES 1702 .cookie_init_seq = cookie_v4_init_sequence, 1703 #endif 1704 .route_req = tcp_v4_route_req, 1705 .init_seq = tcp_v4_init_seq, 1706 .init_ts_off = tcp_v4_init_ts_off, 1707 .send_synack = tcp_v4_send_synack, 1708 }; 1709 1710 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1711 { 1712 /* Never answer to SYNs send to broadcast or multicast */ 1713 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1714 goto drop; 1715 1716 return tcp_conn_request(&tcp_request_sock_ops, 1717 &tcp_request_sock_ipv4_ops, sk, skb); 1718 1719 drop: 1720 tcp_listendrop(sk); 1721 return 0; 1722 } 1723 EXPORT_SYMBOL(tcp_v4_conn_request); 1724 1725 1726 /* 1727 * The three way handshake has completed - we got a valid synack - 1728 * now create the new socket. 1729 */ 1730 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1731 struct request_sock *req, 1732 struct dst_entry *dst, 1733 struct request_sock *req_unhash, 1734 bool *own_req) 1735 { 1736 struct inet_request_sock *ireq; 1737 bool found_dup_sk = false; 1738 struct inet_sock *newinet; 1739 struct tcp_sock *newtp; 1740 struct sock *newsk; 1741 #ifdef CONFIG_TCP_MD5SIG 1742 const union tcp_md5_addr *addr; 1743 struct tcp_md5sig_key *key; 1744 int l3index; 1745 #endif 1746 struct ip_options_rcu *inet_opt; 1747 1748 if (sk_acceptq_is_full(sk)) 1749 goto exit_overflow; 1750 1751 newsk = tcp_create_openreq_child(sk, req, skb); 1752 if (!newsk) 1753 goto exit_nonewsk; 1754 1755 newsk->sk_gso_type = SKB_GSO_TCPV4; 1756 inet_sk_rx_dst_set(newsk, skb); 1757 1758 newtp = tcp_sk(newsk); 1759 newinet = inet_sk(newsk); 1760 ireq = inet_rsk(req); 1761 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1762 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1763 newsk->sk_bound_dev_if = ireq->ir_iif; 1764 newinet->inet_saddr = ireq->ir_loc_addr; 1765 inet_opt = rcu_dereference(ireq->ireq_opt); 1766 RCU_INIT_POINTER(newinet->inet_opt, inet_opt); 1767 newinet->mc_index = inet_iif(skb); 1768 newinet->mc_ttl = ip_hdr(skb)->ttl; 1769 newinet->rcv_tos = ip_hdr(skb)->tos; 1770 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1771 if (inet_opt) 1772 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1773 atomic_set(&newinet->inet_id, get_random_u16()); 1774 1775 /* Set ToS of the new socket based upon the value of incoming SYN. 1776 * ECT bits are set later in tcp_init_transfer(). 1777 */ 1778 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)) 1779 newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK; 1780 1781 if (!dst) { 1782 dst = inet_csk_route_child_sock(sk, newsk, req); 1783 if (!dst) 1784 goto put_and_exit; 1785 } else { 1786 /* syncookie case : see end of cookie_v4_check() */ 1787 } 1788 sk_setup_caps(newsk, dst); 1789 1790 tcp_ca_openreq_child(newsk, dst); 1791 1792 tcp_sync_mss(newsk, dst_mtu(dst)); 1793 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); 1794 1795 tcp_initialize_rcv_mss(newsk); 1796 1797 #ifdef CONFIG_TCP_MD5SIG 1798 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif); 1799 /* Copy over the MD5 key from the original socket */ 1800 addr = (union tcp_md5_addr *)&newinet->inet_daddr; 1801 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 1802 if (key && !tcp_rsk_used_ao(req)) { 1803 if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key)) 1804 goto put_and_exit; 1805 sk_gso_disable(newsk); 1806 } 1807 #endif 1808 #ifdef CONFIG_TCP_AO 1809 if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET)) 1810 goto put_and_exit; /* OOM, release back memory */ 1811 #endif 1812 1813 if (__inet_inherit_port(sk, newsk) < 0) 1814 goto put_and_exit; 1815 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash), 1816 &found_dup_sk); 1817 if (likely(*own_req)) { 1818 tcp_move_syn(newtp, req); 1819 ireq->ireq_opt = NULL; 1820 } else { 1821 newinet->inet_opt = NULL; 1822 1823 if (!req_unhash && found_dup_sk) { 1824 /* This code path should only be executed in the 1825 * syncookie case only 1826 */ 1827 bh_unlock_sock(newsk); 1828 sock_put(newsk); 1829 newsk = NULL; 1830 } 1831 } 1832 return newsk; 1833 1834 exit_overflow: 1835 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1836 exit_nonewsk: 1837 dst_release(dst); 1838 exit: 1839 tcp_listendrop(sk); 1840 return NULL; 1841 put_and_exit: 1842 newinet->inet_opt = NULL; 1843 inet_csk_prepare_forced_close(newsk); 1844 tcp_done(newsk); 1845 goto exit; 1846 } 1847 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1848 1849 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1850 { 1851 #ifdef CONFIG_SYN_COOKIES 1852 const struct tcphdr *th = tcp_hdr(skb); 1853 1854 if (!th->syn) 1855 sk = cookie_v4_check(sk, skb); 1856 #endif 1857 return sk; 1858 } 1859 1860 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 1861 struct tcphdr *th, u32 *cookie) 1862 { 1863 u16 mss = 0; 1864 #ifdef CONFIG_SYN_COOKIES 1865 mss = tcp_get_syncookie_mss(&tcp_request_sock_ops, 1866 &tcp_request_sock_ipv4_ops, sk, th); 1867 if (mss) { 1868 *cookie = __cookie_v4_init_sequence(iph, th, &mss); 1869 tcp_synq_overflow(sk); 1870 } 1871 #endif 1872 return mss; 1873 } 1874 1875 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 1876 u32)); 1877 /* The socket must have it's spinlock held when we get 1878 * here, unless it is a TCP_LISTEN socket. 1879 * 1880 * We have a potential double-lock case here, so even when 1881 * doing backlog processing we use the BH locking scheme. 1882 * This is because we cannot sleep with the original spinlock 1883 * held. 1884 */ 1885 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1886 { 1887 enum skb_drop_reason reason; 1888 struct sock *rsk; 1889 1890 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1891 struct dst_entry *dst; 1892 1893 dst = rcu_dereference_protected(sk->sk_rx_dst, 1894 lockdep_sock_is_held(sk)); 1895 1896 sock_rps_save_rxhash(sk, skb); 1897 sk_mark_napi_id(sk, skb); 1898 if (dst) { 1899 if (sk->sk_rx_dst_ifindex != skb->skb_iif || 1900 !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check, 1901 dst, 0)) { 1902 RCU_INIT_POINTER(sk->sk_rx_dst, NULL); 1903 dst_release(dst); 1904 } 1905 } 1906 tcp_rcv_established(sk, skb); 1907 return 0; 1908 } 1909 1910 if (tcp_checksum_complete(skb)) 1911 goto csum_err; 1912 1913 if (sk->sk_state == TCP_LISTEN) { 1914 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1915 1916 if (!nsk) 1917 return 0; 1918 if (nsk != sk) { 1919 reason = tcp_child_process(sk, nsk, skb); 1920 if (reason) { 1921 rsk = nsk; 1922 goto reset; 1923 } 1924 return 0; 1925 } 1926 } else 1927 sock_rps_save_rxhash(sk, skb); 1928 1929 reason = tcp_rcv_state_process(sk, skb); 1930 if (reason) { 1931 rsk = sk; 1932 goto reset; 1933 } 1934 return 0; 1935 1936 reset: 1937 tcp_v4_send_reset(rsk, skb); 1938 discard: 1939 kfree_skb_reason(skb, reason); 1940 /* Be careful here. If this function gets more complicated and 1941 * gcc suffers from register pressure on the x86, sk (in %ebx) 1942 * might be destroyed here. This current version compiles correctly, 1943 * but you have been warned. 1944 */ 1945 return 0; 1946 1947 csum_err: 1948 reason = SKB_DROP_REASON_TCP_CSUM; 1949 trace_tcp_bad_csum(skb); 1950 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1951 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1952 goto discard; 1953 } 1954 EXPORT_SYMBOL(tcp_v4_do_rcv); 1955 1956 int tcp_v4_early_demux(struct sk_buff *skb) 1957 { 1958 struct net *net = dev_net(skb->dev); 1959 const struct iphdr *iph; 1960 const struct tcphdr *th; 1961 struct sock *sk; 1962 1963 if (skb->pkt_type != PACKET_HOST) 1964 return 0; 1965 1966 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1967 return 0; 1968 1969 iph = ip_hdr(skb); 1970 th = tcp_hdr(skb); 1971 1972 if (th->doff < sizeof(struct tcphdr) / 4) 1973 return 0; 1974 1975 sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, 1976 iph->saddr, th->source, 1977 iph->daddr, ntohs(th->dest), 1978 skb->skb_iif, inet_sdif(skb)); 1979 if (sk) { 1980 skb->sk = sk; 1981 skb->destructor = sock_edemux; 1982 if (sk_fullsock(sk)) { 1983 struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst); 1984 1985 if (dst) 1986 dst = dst_check(dst, 0); 1987 if (dst && 1988 sk->sk_rx_dst_ifindex == skb->skb_iif) 1989 skb_dst_set_noref(skb, dst); 1990 } 1991 } 1992 return 0; 1993 } 1994 1995 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1996 enum skb_drop_reason *reason) 1997 { 1998 u32 tail_gso_size, tail_gso_segs; 1999 struct skb_shared_info *shinfo; 2000 const struct tcphdr *th; 2001 struct tcphdr *thtail; 2002 struct sk_buff *tail; 2003 unsigned int hdrlen; 2004 bool fragstolen; 2005 u32 gso_segs; 2006 u32 gso_size; 2007 u64 limit; 2008 int delta; 2009 2010 /* In case all data was pulled from skb frags (in __pskb_pull_tail()), 2011 * we can fix skb->truesize to its real value to avoid future drops. 2012 * This is valid because skb is not yet charged to the socket. 2013 * It has been noticed pure SACK packets were sometimes dropped 2014 * (if cooked by drivers without copybreak feature). 2015 */ 2016 skb_condense(skb); 2017 2018 skb_dst_drop(skb); 2019 2020 if (unlikely(tcp_checksum_complete(skb))) { 2021 bh_unlock_sock(sk); 2022 trace_tcp_bad_csum(skb); 2023 *reason = SKB_DROP_REASON_TCP_CSUM; 2024 __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 2025 __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 2026 return true; 2027 } 2028 2029 /* Attempt coalescing to last skb in backlog, even if we are 2030 * above the limits. 2031 * This is okay because skb capacity is limited to MAX_SKB_FRAGS. 2032 */ 2033 th = (const struct tcphdr *)skb->data; 2034 hdrlen = th->doff * 4; 2035 2036 tail = sk->sk_backlog.tail; 2037 if (!tail) 2038 goto no_coalesce; 2039 thtail = (struct tcphdr *)tail->data; 2040 2041 if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq || 2042 TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield || 2043 ((TCP_SKB_CB(tail)->tcp_flags | 2044 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) || 2045 !((TCP_SKB_CB(tail)->tcp_flags & 2046 TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) || 2047 ((TCP_SKB_CB(tail)->tcp_flags ^ 2048 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) || 2049 !mptcp_skb_can_collapse(tail, skb) || 2050 skb_cmp_decrypted(tail, skb) || 2051 thtail->doff != th->doff || 2052 memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th))) 2053 goto no_coalesce; 2054 2055 __skb_pull(skb, hdrlen); 2056 2057 shinfo = skb_shinfo(skb); 2058 gso_size = shinfo->gso_size ?: skb->len; 2059 gso_segs = shinfo->gso_segs ?: 1; 2060 2061 shinfo = skb_shinfo(tail); 2062 tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen); 2063 tail_gso_segs = shinfo->gso_segs ?: 1; 2064 2065 if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) { 2066 TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq; 2067 2068 if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) { 2069 TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq; 2070 thtail->window = th->window; 2071 } 2072 2073 /* We have to update both TCP_SKB_CB(tail)->tcp_flags and 2074 * thtail->fin, so that the fast path in tcp_rcv_established() 2075 * is not entered if we append a packet with a FIN. 2076 * SYN, RST, URG are not present. 2077 * ACK is set on both packets. 2078 * PSH : we do not really care in TCP stack, 2079 * at least for 'GRO' packets. 2080 */ 2081 thtail->fin |= th->fin; 2082 TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2083 2084 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2085 TCP_SKB_CB(tail)->has_rxtstamp = true; 2086 tail->tstamp = skb->tstamp; 2087 skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 2088 } 2089 2090 /* Not as strict as GRO. We only need to carry mss max value */ 2091 shinfo->gso_size = max(gso_size, tail_gso_size); 2092 shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF); 2093 2094 sk->sk_backlog.len += delta; 2095 __NET_INC_STATS(sock_net(sk), 2096 LINUX_MIB_TCPBACKLOGCOALESCE); 2097 kfree_skb_partial(skb, fragstolen); 2098 return false; 2099 } 2100 __skb_push(skb, hdrlen); 2101 2102 no_coalesce: 2103 /* sk->sk_backlog.len is reset only at the end of __release_sock(). 2104 * Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach 2105 * sk_rcvbuf in normal conditions. 2106 */ 2107 limit = ((u64)READ_ONCE(sk->sk_rcvbuf)) << 1; 2108 2109 limit += ((u32)READ_ONCE(sk->sk_sndbuf)) >> 1; 2110 2111 /* Only socket owner can try to collapse/prune rx queues 2112 * to reduce memory overhead, so add a little headroom here. 2113 * Few sockets backlog are possibly concurrently non empty. 2114 */ 2115 limit += 64 * 1024; 2116 2117 limit = min_t(u64, limit, UINT_MAX); 2118 2119 if (unlikely(sk_add_backlog(sk, skb, limit))) { 2120 bh_unlock_sock(sk); 2121 *reason = SKB_DROP_REASON_SOCKET_BACKLOG; 2122 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); 2123 return true; 2124 } 2125 return false; 2126 } 2127 EXPORT_SYMBOL(tcp_add_backlog); 2128 2129 int tcp_filter(struct sock *sk, struct sk_buff *skb) 2130 { 2131 struct tcphdr *th = (struct tcphdr *)skb->data; 2132 2133 return sk_filter_trim_cap(sk, skb, th->doff * 4); 2134 } 2135 EXPORT_SYMBOL(tcp_filter); 2136 2137 static void tcp_v4_restore_cb(struct sk_buff *skb) 2138 { 2139 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4, 2140 sizeof(struct inet_skb_parm)); 2141 } 2142 2143 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph, 2144 const struct tcphdr *th) 2145 { 2146 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 2147 * barrier() makes sure compiler wont play fool^Waliasing games. 2148 */ 2149 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 2150 sizeof(struct inet_skb_parm)); 2151 barrier(); 2152 2153 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 2154 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 2155 skb->len - th->doff * 4); 2156 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 2157 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 2158 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 2159 TCP_SKB_CB(skb)->sacked = 0; 2160 TCP_SKB_CB(skb)->has_rxtstamp = 2161 skb->tstamp || skb_hwtstamps(skb)->hwtstamp; 2162 } 2163 2164 /* 2165 * From tcp_input.c 2166 */ 2167 2168 int tcp_v4_rcv(struct sk_buff *skb) 2169 { 2170 struct net *net = dev_net(skb->dev); 2171 enum skb_drop_reason drop_reason; 2172 int sdif = inet_sdif(skb); 2173 int dif = inet_iif(skb); 2174 const struct iphdr *iph; 2175 const struct tcphdr *th; 2176 bool refcounted; 2177 struct sock *sk; 2178 int ret; 2179 u32 isn; 2180 2181 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2182 if (skb->pkt_type != PACKET_HOST) 2183 goto discard_it; 2184 2185 /* Count it even if it's bad */ 2186 __TCP_INC_STATS(net, TCP_MIB_INSEGS); 2187 2188 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 2189 goto discard_it; 2190 2191 th = (const struct tcphdr *)skb->data; 2192 2193 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) { 2194 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2195 goto bad_packet; 2196 } 2197 if (!pskb_may_pull(skb, th->doff * 4)) 2198 goto discard_it; 2199 2200 /* An explanation is required here, I think. 2201 * Packet length and doff are validated by header prediction, 2202 * provided case of th->doff==0 is eliminated. 2203 * So, we defer the checks. */ 2204 2205 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 2206 goto csum_error; 2207 2208 th = (const struct tcphdr *)skb->data; 2209 iph = ip_hdr(skb); 2210 lookup: 2211 sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo, 2212 skb, __tcp_hdrlen(th), th->source, 2213 th->dest, sdif, &refcounted); 2214 if (!sk) 2215 goto no_tcp_socket; 2216 2217 if (sk->sk_state == TCP_TIME_WAIT) 2218 goto do_time_wait; 2219 2220 if (sk->sk_state == TCP_NEW_SYN_RECV) { 2221 struct request_sock *req = inet_reqsk(sk); 2222 bool req_stolen = false; 2223 struct sock *nsk; 2224 2225 sk = req->rsk_listener; 2226 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 2227 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2228 else 2229 drop_reason = tcp_inbound_hash(sk, req, skb, 2230 &iph->saddr, &iph->daddr, 2231 AF_INET, dif, sdif); 2232 if (unlikely(drop_reason)) { 2233 sk_drops_add(sk, skb); 2234 reqsk_put(req); 2235 goto discard_it; 2236 } 2237 if (tcp_checksum_complete(skb)) { 2238 reqsk_put(req); 2239 goto csum_error; 2240 } 2241 if (unlikely(sk->sk_state != TCP_LISTEN)) { 2242 nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb); 2243 if (!nsk) { 2244 inet_csk_reqsk_queue_drop_and_put(sk, req); 2245 goto lookup; 2246 } 2247 sk = nsk; 2248 /* reuseport_migrate_sock() has already held one sk_refcnt 2249 * before returning. 2250 */ 2251 } else { 2252 /* We own a reference on the listener, increase it again 2253 * as we might lose it too soon. 2254 */ 2255 sock_hold(sk); 2256 } 2257 refcounted = true; 2258 nsk = NULL; 2259 if (!tcp_filter(sk, skb)) { 2260 th = (const struct tcphdr *)skb->data; 2261 iph = ip_hdr(skb); 2262 tcp_v4_fill_cb(skb, iph, th); 2263 nsk = tcp_check_req(sk, skb, req, false, &req_stolen); 2264 } else { 2265 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2266 } 2267 if (!nsk) { 2268 reqsk_put(req); 2269 if (req_stolen) { 2270 /* Another cpu got exclusive access to req 2271 * and created a full blown socket. 2272 * Try to feed this packet to this socket 2273 * instead of discarding it. 2274 */ 2275 tcp_v4_restore_cb(skb); 2276 sock_put(sk); 2277 goto lookup; 2278 } 2279 goto discard_and_relse; 2280 } 2281 nf_reset_ct(skb); 2282 if (nsk == sk) { 2283 reqsk_put(req); 2284 tcp_v4_restore_cb(skb); 2285 } else { 2286 drop_reason = tcp_child_process(sk, nsk, skb); 2287 if (drop_reason) { 2288 tcp_v4_send_reset(nsk, skb); 2289 goto discard_and_relse; 2290 } 2291 sock_put(sk); 2292 return 0; 2293 } 2294 } 2295 2296 process: 2297 if (static_branch_unlikely(&ip4_min_ttl)) { 2298 /* min_ttl can be changed concurrently from do_ip_setsockopt() */ 2299 if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) { 2300 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 2301 drop_reason = SKB_DROP_REASON_TCP_MINTTL; 2302 goto discard_and_relse; 2303 } 2304 } 2305 2306 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2307 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2308 goto discard_and_relse; 2309 } 2310 2311 drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr, 2312 AF_INET, dif, sdif); 2313 if (drop_reason) 2314 goto discard_and_relse; 2315 2316 nf_reset_ct(skb); 2317 2318 if (tcp_filter(sk, skb)) { 2319 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2320 goto discard_and_relse; 2321 } 2322 th = (const struct tcphdr *)skb->data; 2323 iph = ip_hdr(skb); 2324 tcp_v4_fill_cb(skb, iph, th); 2325 2326 skb->dev = NULL; 2327 2328 if (sk->sk_state == TCP_LISTEN) { 2329 ret = tcp_v4_do_rcv(sk, skb); 2330 goto put_and_return; 2331 } 2332 2333 sk_incoming_cpu_update(sk); 2334 2335 bh_lock_sock_nested(sk); 2336 tcp_segs_in(tcp_sk(sk), skb); 2337 ret = 0; 2338 if (!sock_owned_by_user(sk)) { 2339 ret = tcp_v4_do_rcv(sk, skb); 2340 } else { 2341 if (tcp_add_backlog(sk, skb, &drop_reason)) 2342 goto discard_and_relse; 2343 } 2344 bh_unlock_sock(sk); 2345 2346 put_and_return: 2347 if (refcounted) 2348 sock_put(sk); 2349 2350 return ret; 2351 2352 no_tcp_socket: 2353 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2354 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2355 goto discard_it; 2356 2357 tcp_v4_fill_cb(skb, iph, th); 2358 2359 if (tcp_checksum_complete(skb)) { 2360 csum_error: 2361 drop_reason = SKB_DROP_REASON_TCP_CSUM; 2362 trace_tcp_bad_csum(skb); 2363 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); 2364 bad_packet: 2365 __TCP_INC_STATS(net, TCP_MIB_INERRS); 2366 } else { 2367 tcp_v4_send_reset(NULL, skb); 2368 } 2369 2370 discard_it: 2371 SKB_DR_OR(drop_reason, NOT_SPECIFIED); 2372 /* Discard frame. */ 2373 kfree_skb_reason(skb, drop_reason); 2374 return 0; 2375 2376 discard_and_relse: 2377 sk_drops_add(sk, skb); 2378 if (refcounted) 2379 sock_put(sk); 2380 goto discard_it; 2381 2382 do_time_wait: 2383 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 2384 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2385 inet_twsk_put(inet_twsk(sk)); 2386 goto discard_it; 2387 } 2388 2389 tcp_v4_fill_cb(skb, iph, th); 2390 2391 if (tcp_checksum_complete(skb)) { 2392 inet_twsk_put(inet_twsk(sk)); 2393 goto csum_error; 2394 } 2395 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th, &isn)) { 2396 case TCP_TW_SYN: { 2397 struct sock *sk2 = inet_lookup_listener(net, 2398 net->ipv4.tcp_death_row.hashinfo, 2399 skb, __tcp_hdrlen(th), 2400 iph->saddr, th->source, 2401 iph->daddr, th->dest, 2402 inet_iif(skb), 2403 sdif); 2404 if (sk2) { 2405 inet_twsk_deschedule_put(inet_twsk(sk)); 2406 sk = sk2; 2407 tcp_v4_restore_cb(skb); 2408 refcounted = false; 2409 __this_cpu_write(tcp_tw_isn, isn); 2410 goto process; 2411 } 2412 } 2413 /* to ACK */ 2414 fallthrough; 2415 case TCP_TW_ACK: 2416 tcp_v4_timewait_ack(sk, skb); 2417 break; 2418 case TCP_TW_RST: 2419 tcp_v4_send_reset(sk, skb); 2420 inet_twsk_deschedule_put(inet_twsk(sk)); 2421 goto discard_it; 2422 case TCP_TW_SUCCESS:; 2423 } 2424 goto discard_it; 2425 } 2426 2427 static struct timewait_sock_ops tcp_timewait_sock_ops = { 2428 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 2429 .twsk_unique = tcp_twsk_unique, 2430 .twsk_destructor= tcp_twsk_destructor, 2431 }; 2432 2433 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 2434 { 2435 struct dst_entry *dst = skb_dst(skb); 2436 2437 if (dst && dst_hold_safe(dst)) { 2438 rcu_assign_pointer(sk->sk_rx_dst, dst); 2439 sk->sk_rx_dst_ifindex = skb->skb_iif; 2440 } 2441 } 2442 EXPORT_SYMBOL(inet_sk_rx_dst_set); 2443 2444 const struct inet_connection_sock_af_ops ipv4_specific = { 2445 .queue_xmit = ip_queue_xmit, 2446 .send_check = tcp_v4_send_check, 2447 .rebuild_header = inet_sk_rebuild_header, 2448 .sk_rx_dst_set = inet_sk_rx_dst_set, 2449 .conn_request = tcp_v4_conn_request, 2450 .syn_recv_sock = tcp_v4_syn_recv_sock, 2451 .net_header_len = sizeof(struct iphdr), 2452 .setsockopt = ip_setsockopt, 2453 .getsockopt = ip_getsockopt, 2454 .addr2sockaddr = inet_csk_addr2sockaddr, 2455 .sockaddr_len = sizeof(struct sockaddr_in), 2456 .mtu_reduced = tcp_v4_mtu_reduced, 2457 }; 2458 EXPORT_SYMBOL(ipv4_specific); 2459 2460 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 2461 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 2462 #ifdef CONFIG_TCP_MD5SIG 2463 .md5_lookup = tcp_v4_md5_lookup, 2464 .calc_md5_hash = tcp_v4_md5_hash_skb, 2465 .md5_parse = tcp_v4_parse_md5_keys, 2466 #endif 2467 #ifdef CONFIG_TCP_AO 2468 .ao_lookup = tcp_v4_ao_lookup, 2469 .calc_ao_hash = tcp_v4_ao_hash_skb, 2470 .ao_parse = tcp_v4_parse_ao, 2471 .ao_calc_key_sk = tcp_v4_ao_calc_key_sk, 2472 #endif 2473 }; 2474 #endif 2475 2476 /* NOTE: A lot of things set to zero explicitly by call to 2477 * sk_alloc() so need not be done here. 2478 */ 2479 static int tcp_v4_init_sock(struct sock *sk) 2480 { 2481 struct inet_connection_sock *icsk = inet_csk(sk); 2482 2483 tcp_init_sock(sk); 2484 2485 icsk->icsk_af_ops = &ipv4_specific; 2486 2487 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 2488 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 2489 #endif 2490 2491 return 0; 2492 } 2493 2494 #ifdef CONFIG_TCP_MD5SIG 2495 static void tcp_md5sig_info_free_rcu(struct rcu_head *head) 2496 { 2497 struct tcp_md5sig_info *md5sig; 2498 2499 md5sig = container_of(head, struct tcp_md5sig_info, rcu); 2500 kfree(md5sig); 2501 static_branch_slow_dec_deferred(&tcp_md5_needed); 2502 tcp_md5_release_sigpool(); 2503 } 2504 #endif 2505 2506 void tcp_v4_destroy_sock(struct sock *sk) 2507 { 2508 struct tcp_sock *tp = tcp_sk(sk); 2509 2510 trace_tcp_destroy_sock(sk); 2511 2512 tcp_clear_xmit_timers(sk); 2513 2514 tcp_cleanup_congestion_control(sk); 2515 2516 tcp_cleanup_ulp(sk); 2517 2518 /* Cleanup up the write buffer. */ 2519 tcp_write_queue_purge(sk); 2520 2521 /* Check if we want to disable active TFO */ 2522 tcp_fastopen_active_disable_ofo_check(sk); 2523 2524 /* Cleans up our, hopefully empty, out_of_order_queue. */ 2525 skb_rbtree_purge(&tp->out_of_order_queue); 2526 2527 #ifdef CONFIG_TCP_MD5SIG 2528 /* Clean up the MD5 key list, if any */ 2529 if (tp->md5sig_info) { 2530 struct tcp_md5sig_info *md5sig; 2531 2532 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 2533 tcp_clear_md5_list(sk); 2534 call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu); 2535 rcu_assign_pointer(tp->md5sig_info, NULL); 2536 } 2537 #endif 2538 tcp_ao_destroy_sock(sk, false); 2539 2540 /* Clean up a referenced TCP bind bucket. */ 2541 if (inet_csk(sk)->icsk_bind_hash) 2542 inet_put_port(sk); 2543 2544 BUG_ON(rcu_access_pointer(tp->fastopen_rsk)); 2545 2546 /* If socket is aborted during connect operation */ 2547 tcp_free_fastopen_req(tp); 2548 tcp_fastopen_destroy_cipher(sk); 2549 tcp_saved_syn_free(tp); 2550 2551 sk_sockets_allocated_dec(sk); 2552 } 2553 EXPORT_SYMBOL(tcp_v4_destroy_sock); 2554 2555 #ifdef CONFIG_PROC_FS 2556 /* Proc filesystem TCP sock list dumping. */ 2557 2558 static unsigned short seq_file_family(const struct seq_file *seq); 2559 2560 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2561 { 2562 unsigned short family = seq_file_family(seq); 2563 2564 /* AF_UNSPEC is used as a match all */ 2565 return ((family == AF_UNSPEC || family == sk->sk_family) && 2566 net_eq(sock_net(sk), seq_file_net(seq))); 2567 } 2568 2569 /* Find a non empty bucket (starting from st->bucket) 2570 * and return the first sk from it. 2571 */ 2572 static void *listening_get_first(struct seq_file *seq) 2573 { 2574 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2575 struct tcp_iter_state *st = seq->private; 2576 2577 st->offset = 0; 2578 for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) { 2579 struct inet_listen_hashbucket *ilb2; 2580 struct hlist_nulls_node *node; 2581 struct sock *sk; 2582 2583 ilb2 = &hinfo->lhash2[st->bucket]; 2584 if (hlist_nulls_empty(&ilb2->nulls_head)) 2585 continue; 2586 2587 spin_lock(&ilb2->lock); 2588 sk_nulls_for_each(sk, node, &ilb2->nulls_head) { 2589 if (seq_sk_match(seq, sk)) 2590 return sk; 2591 } 2592 spin_unlock(&ilb2->lock); 2593 } 2594 2595 return NULL; 2596 } 2597 2598 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket). 2599 * If "cur" is the last one in the st->bucket, 2600 * call listening_get_first() to return the first sk of the next 2601 * non empty bucket. 2602 */ 2603 static void *listening_get_next(struct seq_file *seq, void *cur) 2604 { 2605 struct tcp_iter_state *st = seq->private; 2606 struct inet_listen_hashbucket *ilb2; 2607 struct hlist_nulls_node *node; 2608 struct inet_hashinfo *hinfo; 2609 struct sock *sk = cur; 2610 2611 ++st->num; 2612 ++st->offset; 2613 2614 sk = sk_nulls_next(sk); 2615 sk_nulls_for_each_from(sk, node) { 2616 if (seq_sk_match(seq, sk)) 2617 return sk; 2618 } 2619 2620 hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2621 ilb2 = &hinfo->lhash2[st->bucket]; 2622 spin_unlock(&ilb2->lock); 2623 ++st->bucket; 2624 return listening_get_first(seq); 2625 } 2626 2627 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2628 { 2629 struct tcp_iter_state *st = seq->private; 2630 void *rc; 2631 2632 st->bucket = 0; 2633 st->offset = 0; 2634 rc = listening_get_first(seq); 2635 2636 while (rc && *pos) { 2637 rc = listening_get_next(seq, rc); 2638 --*pos; 2639 } 2640 return rc; 2641 } 2642 2643 static inline bool empty_bucket(struct inet_hashinfo *hinfo, 2644 const struct tcp_iter_state *st) 2645 { 2646 return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain); 2647 } 2648 2649 /* 2650 * Get first established socket starting from bucket given in st->bucket. 2651 * If st->bucket is zero, the very first socket in the hash is returned. 2652 */ 2653 static void *established_get_first(struct seq_file *seq) 2654 { 2655 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2656 struct tcp_iter_state *st = seq->private; 2657 2658 st->offset = 0; 2659 for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) { 2660 struct sock *sk; 2661 struct hlist_nulls_node *node; 2662 spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket); 2663 2664 cond_resched(); 2665 2666 /* Lockless fast path for the common case of empty buckets */ 2667 if (empty_bucket(hinfo, st)) 2668 continue; 2669 2670 spin_lock_bh(lock); 2671 sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) { 2672 if (seq_sk_match(seq, sk)) 2673 return sk; 2674 } 2675 spin_unlock_bh(lock); 2676 } 2677 2678 return NULL; 2679 } 2680 2681 static void *established_get_next(struct seq_file *seq, void *cur) 2682 { 2683 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2684 struct tcp_iter_state *st = seq->private; 2685 struct hlist_nulls_node *node; 2686 struct sock *sk = cur; 2687 2688 ++st->num; 2689 ++st->offset; 2690 2691 sk = sk_nulls_next(sk); 2692 2693 sk_nulls_for_each_from(sk, node) { 2694 if (seq_sk_match(seq, sk)) 2695 return sk; 2696 } 2697 2698 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); 2699 ++st->bucket; 2700 return established_get_first(seq); 2701 } 2702 2703 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2704 { 2705 struct tcp_iter_state *st = seq->private; 2706 void *rc; 2707 2708 st->bucket = 0; 2709 rc = established_get_first(seq); 2710 2711 while (rc && pos) { 2712 rc = established_get_next(seq, rc); 2713 --pos; 2714 } 2715 return rc; 2716 } 2717 2718 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2719 { 2720 void *rc; 2721 struct tcp_iter_state *st = seq->private; 2722 2723 st->state = TCP_SEQ_STATE_LISTENING; 2724 rc = listening_get_idx(seq, &pos); 2725 2726 if (!rc) { 2727 st->state = TCP_SEQ_STATE_ESTABLISHED; 2728 rc = established_get_idx(seq, pos); 2729 } 2730 2731 return rc; 2732 } 2733 2734 static void *tcp_seek_last_pos(struct seq_file *seq) 2735 { 2736 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2737 struct tcp_iter_state *st = seq->private; 2738 int bucket = st->bucket; 2739 int offset = st->offset; 2740 int orig_num = st->num; 2741 void *rc = NULL; 2742 2743 switch (st->state) { 2744 case TCP_SEQ_STATE_LISTENING: 2745 if (st->bucket > hinfo->lhash2_mask) 2746 break; 2747 rc = listening_get_first(seq); 2748 while (offset-- && rc && bucket == st->bucket) 2749 rc = listening_get_next(seq, rc); 2750 if (rc) 2751 break; 2752 st->bucket = 0; 2753 st->state = TCP_SEQ_STATE_ESTABLISHED; 2754 fallthrough; 2755 case TCP_SEQ_STATE_ESTABLISHED: 2756 if (st->bucket > hinfo->ehash_mask) 2757 break; 2758 rc = established_get_first(seq); 2759 while (offset-- && rc && bucket == st->bucket) 2760 rc = established_get_next(seq, rc); 2761 } 2762 2763 st->num = orig_num; 2764 2765 return rc; 2766 } 2767 2768 void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2769 { 2770 struct tcp_iter_state *st = seq->private; 2771 void *rc; 2772 2773 if (*pos && *pos == st->last_pos) { 2774 rc = tcp_seek_last_pos(seq); 2775 if (rc) 2776 goto out; 2777 } 2778 2779 st->state = TCP_SEQ_STATE_LISTENING; 2780 st->num = 0; 2781 st->bucket = 0; 2782 st->offset = 0; 2783 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2784 2785 out: 2786 st->last_pos = *pos; 2787 return rc; 2788 } 2789 EXPORT_SYMBOL(tcp_seq_start); 2790 2791 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2792 { 2793 struct tcp_iter_state *st = seq->private; 2794 void *rc = NULL; 2795 2796 if (v == SEQ_START_TOKEN) { 2797 rc = tcp_get_idx(seq, 0); 2798 goto out; 2799 } 2800 2801 switch (st->state) { 2802 case TCP_SEQ_STATE_LISTENING: 2803 rc = listening_get_next(seq, v); 2804 if (!rc) { 2805 st->state = TCP_SEQ_STATE_ESTABLISHED; 2806 st->bucket = 0; 2807 st->offset = 0; 2808 rc = established_get_first(seq); 2809 } 2810 break; 2811 case TCP_SEQ_STATE_ESTABLISHED: 2812 rc = established_get_next(seq, v); 2813 break; 2814 } 2815 out: 2816 ++*pos; 2817 st->last_pos = *pos; 2818 return rc; 2819 } 2820 EXPORT_SYMBOL(tcp_seq_next); 2821 2822 void tcp_seq_stop(struct seq_file *seq, void *v) 2823 { 2824 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2825 struct tcp_iter_state *st = seq->private; 2826 2827 switch (st->state) { 2828 case TCP_SEQ_STATE_LISTENING: 2829 if (v != SEQ_START_TOKEN) 2830 spin_unlock(&hinfo->lhash2[st->bucket].lock); 2831 break; 2832 case TCP_SEQ_STATE_ESTABLISHED: 2833 if (v) 2834 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); 2835 break; 2836 } 2837 } 2838 EXPORT_SYMBOL(tcp_seq_stop); 2839 2840 static void get_openreq4(const struct request_sock *req, 2841 struct seq_file *f, int i) 2842 { 2843 const struct inet_request_sock *ireq = inet_rsk(req); 2844 long delta = req->rsk_timer.expires - jiffies; 2845 2846 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2847 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2848 i, 2849 ireq->ir_loc_addr, 2850 ireq->ir_num, 2851 ireq->ir_rmt_addr, 2852 ntohs(ireq->ir_rmt_port), 2853 TCP_SYN_RECV, 2854 0, 0, /* could print option size, but that is af dependent. */ 2855 1, /* timers active (only the expire timer) */ 2856 jiffies_delta_to_clock_t(delta), 2857 req->num_timeout, 2858 from_kuid_munged(seq_user_ns(f), 2859 sock_i_uid(req->rsk_listener)), 2860 0, /* non standard timer */ 2861 0, /* open_requests have no inode */ 2862 0, 2863 req); 2864 } 2865 2866 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2867 { 2868 int timer_active; 2869 unsigned long timer_expires; 2870 const struct tcp_sock *tp = tcp_sk(sk); 2871 const struct inet_connection_sock *icsk = inet_csk(sk); 2872 const struct inet_sock *inet = inet_sk(sk); 2873 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2874 __be32 dest = inet->inet_daddr; 2875 __be32 src = inet->inet_rcv_saddr; 2876 __u16 destp = ntohs(inet->inet_dport); 2877 __u16 srcp = ntohs(inet->inet_sport); 2878 int rx_queue; 2879 int state; 2880 2881 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2882 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2883 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2884 timer_active = 1; 2885 timer_expires = icsk->icsk_timeout; 2886 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2887 timer_active = 4; 2888 timer_expires = icsk->icsk_timeout; 2889 } else if (timer_pending(&sk->sk_timer)) { 2890 timer_active = 2; 2891 timer_expires = sk->sk_timer.expires; 2892 } else { 2893 timer_active = 0; 2894 timer_expires = jiffies; 2895 } 2896 2897 state = inet_sk_state_load(sk); 2898 if (state == TCP_LISTEN) 2899 rx_queue = READ_ONCE(sk->sk_ack_backlog); 2900 else 2901 /* Because we don't lock the socket, 2902 * we might find a transient negative value. 2903 */ 2904 rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) - 2905 READ_ONCE(tp->copied_seq), 0); 2906 2907 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2908 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2909 i, src, srcp, dest, destp, state, 2910 READ_ONCE(tp->write_seq) - tp->snd_una, 2911 rx_queue, 2912 timer_active, 2913 jiffies_delta_to_clock_t(timer_expires - jiffies), 2914 icsk->icsk_retransmits, 2915 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2916 icsk->icsk_probes_out, 2917 sock_i_ino(sk), 2918 refcount_read(&sk->sk_refcnt), sk, 2919 jiffies_to_clock_t(icsk->icsk_rto), 2920 jiffies_to_clock_t(icsk->icsk_ack.ato), 2921 (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk), 2922 tcp_snd_cwnd(tp), 2923 state == TCP_LISTEN ? 2924 fastopenq->max_qlen : 2925 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2926 } 2927 2928 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2929 struct seq_file *f, int i) 2930 { 2931 long delta = tw->tw_timer.expires - jiffies; 2932 __be32 dest, src; 2933 __u16 destp, srcp; 2934 2935 dest = tw->tw_daddr; 2936 src = tw->tw_rcv_saddr; 2937 destp = ntohs(tw->tw_dport); 2938 srcp = ntohs(tw->tw_sport); 2939 2940 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2941 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2942 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2943 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2944 refcount_read(&tw->tw_refcnt), tw); 2945 } 2946 2947 #define TMPSZ 150 2948 2949 static int tcp4_seq_show(struct seq_file *seq, void *v) 2950 { 2951 struct tcp_iter_state *st; 2952 struct sock *sk = v; 2953 2954 seq_setwidth(seq, TMPSZ - 1); 2955 if (v == SEQ_START_TOKEN) { 2956 seq_puts(seq, " sl local_address rem_address st tx_queue " 2957 "rx_queue tr tm->when retrnsmt uid timeout " 2958 "inode"); 2959 goto out; 2960 } 2961 st = seq->private; 2962 2963 if (sk->sk_state == TCP_TIME_WAIT) 2964 get_timewait4_sock(v, seq, st->num); 2965 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2966 get_openreq4(v, seq, st->num); 2967 else 2968 get_tcp4_sock(v, seq, st->num); 2969 out: 2970 seq_pad(seq, '\n'); 2971 return 0; 2972 } 2973 2974 #ifdef CONFIG_BPF_SYSCALL 2975 struct bpf_tcp_iter_state { 2976 struct tcp_iter_state state; 2977 unsigned int cur_sk; 2978 unsigned int end_sk; 2979 unsigned int max_sk; 2980 struct sock **batch; 2981 bool st_bucket_done; 2982 }; 2983 2984 struct bpf_iter__tcp { 2985 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2986 __bpf_md_ptr(struct sock_common *, sk_common); 2987 uid_t uid __aligned(8); 2988 }; 2989 2990 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 2991 struct sock_common *sk_common, uid_t uid) 2992 { 2993 struct bpf_iter__tcp ctx; 2994 2995 meta->seq_num--; /* skip SEQ_START_TOKEN */ 2996 ctx.meta = meta; 2997 ctx.sk_common = sk_common; 2998 ctx.uid = uid; 2999 return bpf_iter_run_prog(prog, &ctx); 3000 } 3001 3002 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter) 3003 { 3004 while (iter->cur_sk < iter->end_sk) 3005 sock_gen_put(iter->batch[iter->cur_sk++]); 3006 } 3007 3008 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter, 3009 unsigned int new_batch_sz) 3010 { 3011 struct sock **new_batch; 3012 3013 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz, 3014 GFP_USER | __GFP_NOWARN); 3015 if (!new_batch) 3016 return -ENOMEM; 3017 3018 bpf_iter_tcp_put_batch(iter); 3019 kvfree(iter->batch); 3020 iter->batch = new_batch; 3021 iter->max_sk = new_batch_sz; 3022 3023 return 0; 3024 } 3025 3026 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq, 3027 struct sock *start_sk) 3028 { 3029 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 3030 struct bpf_tcp_iter_state *iter = seq->private; 3031 struct tcp_iter_state *st = &iter->state; 3032 struct hlist_nulls_node *node; 3033 unsigned int expected = 1; 3034 struct sock *sk; 3035 3036 sock_hold(start_sk); 3037 iter->batch[iter->end_sk++] = start_sk; 3038 3039 sk = sk_nulls_next(start_sk); 3040 sk_nulls_for_each_from(sk, node) { 3041 if (seq_sk_match(seq, sk)) { 3042 if (iter->end_sk < iter->max_sk) { 3043 sock_hold(sk); 3044 iter->batch[iter->end_sk++] = sk; 3045 } 3046 expected++; 3047 } 3048 } 3049 spin_unlock(&hinfo->lhash2[st->bucket].lock); 3050 3051 return expected; 3052 } 3053 3054 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq, 3055 struct sock *start_sk) 3056 { 3057 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 3058 struct bpf_tcp_iter_state *iter = seq->private; 3059 struct tcp_iter_state *st = &iter->state; 3060 struct hlist_nulls_node *node; 3061 unsigned int expected = 1; 3062 struct sock *sk; 3063 3064 sock_hold(start_sk); 3065 iter->batch[iter->end_sk++] = start_sk; 3066 3067 sk = sk_nulls_next(start_sk); 3068 sk_nulls_for_each_from(sk, node) { 3069 if (seq_sk_match(seq, sk)) { 3070 if (iter->end_sk < iter->max_sk) { 3071 sock_hold(sk); 3072 iter->batch[iter->end_sk++] = sk; 3073 } 3074 expected++; 3075 } 3076 } 3077 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); 3078 3079 return expected; 3080 } 3081 3082 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq) 3083 { 3084 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 3085 struct bpf_tcp_iter_state *iter = seq->private; 3086 struct tcp_iter_state *st = &iter->state; 3087 unsigned int expected; 3088 bool resized = false; 3089 struct sock *sk; 3090 3091 /* The st->bucket is done. Directly advance to the next 3092 * bucket instead of having the tcp_seek_last_pos() to skip 3093 * one by one in the current bucket and eventually find out 3094 * it has to advance to the next bucket. 3095 */ 3096 if (iter->st_bucket_done) { 3097 st->offset = 0; 3098 st->bucket++; 3099 if (st->state == TCP_SEQ_STATE_LISTENING && 3100 st->bucket > hinfo->lhash2_mask) { 3101 st->state = TCP_SEQ_STATE_ESTABLISHED; 3102 st->bucket = 0; 3103 } 3104 } 3105 3106 again: 3107 /* Get a new batch */ 3108 iter->cur_sk = 0; 3109 iter->end_sk = 0; 3110 iter->st_bucket_done = false; 3111 3112 sk = tcp_seek_last_pos(seq); 3113 if (!sk) 3114 return NULL; /* Done */ 3115 3116 if (st->state == TCP_SEQ_STATE_LISTENING) 3117 expected = bpf_iter_tcp_listening_batch(seq, sk); 3118 else 3119 expected = bpf_iter_tcp_established_batch(seq, sk); 3120 3121 if (iter->end_sk == expected) { 3122 iter->st_bucket_done = true; 3123 return sk; 3124 } 3125 3126 if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) { 3127 resized = true; 3128 goto again; 3129 } 3130 3131 return sk; 3132 } 3133 3134 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos) 3135 { 3136 /* bpf iter does not support lseek, so it always 3137 * continue from where it was stop()-ped. 3138 */ 3139 if (*pos) 3140 return bpf_iter_tcp_batch(seq); 3141 3142 return SEQ_START_TOKEN; 3143 } 3144 3145 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3146 { 3147 struct bpf_tcp_iter_state *iter = seq->private; 3148 struct tcp_iter_state *st = &iter->state; 3149 struct sock *sk; 3150 3151 /* Whenever seq_next() is called, the iter->cur_sk is 3152 * done with seq_show(), so advance to the next sk in 3153 * the batch. 3154 */ 3155 if (iter->cur_sk < iter->end_sk) { 3156 /* Keeping st->num consistent in tcp_iter_state. 3157 * bpf_iter_tcp does not use st->num. 3158 * meta.seq_num is used instead. 3159 */ 3160 st->num++; 3161 /* Move st->offset to the next sk in the bucket such that 3162 * the future start() will resume at st->offset in 3163 * st->bucket. See tcp_seek_last_pos(). 3164 */ 3165 st->offset++; 3166 sock_gen_put(iter->batch[iter->cur_sk++]); 3167 } 3168 3169 if (iter->cur_sk < iter->end_sk) 3170 sk = iter->batch[iter->cur_sk]; 3171 else 3172 sk = bpf_iter_tcp_batch(seq); 3173 3174 ++*pos; 3175 /* Keeping st->last_pos consistent in tcp_iter_state. 3176 * bpf iter does not do lseek, so st->last_pos always equals to *pos. 3177 */ 3178 st->last_pos = *pos; 3179 return sk; 3180 } 3181 3182 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v) 3183 { 3184 struct bpf_iter_meta meta; 3185 struct bpf_prog *prog; 3186 struct sock *sk = v; 3187 uid_t uid; 3188 int ret; 3189 3190 if (v == SEQ_START_TOKEN) 3191 return 0; 3192 3193 if (sk_fullsock(sk)) 3194 lock_sock(sk); 3195 3196 if (unlikely(sk_unhashed(sk))) { 3197 ret = SEQ_SKIP; 3198 goto unlock; 3199 } 3200 3201 if (sk->sk_state == TCP_TIME_WAIT) { 3202 uid = 0; 3203 } else if (sk->sk_state == TCP_NEW_SYN_RECV) { 3204 const struct request_sock *req = v; 3205 3206 uid = from_kuid_munged(seq_user_ns(seq), 3207 sock_i_uid(req->rsk_listener)); 3208 } else { 3209 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3210 } 3211 3212 meta.seq = seq; 3213 prog = bpf_iter_get_info(&meta, false); 3214 ret = tcp_prog_seq_show(prog, &meta, v, uid); 3215 3216 unlock: 3217 if (sk_fullsock(sk)) 3218 release_sock(sk); 3219 return ret; 3220 3221 } 3222 3223 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v) 3224 { 3225 struct bpf_tcp_iter_state *iter = seq->private; 3226 struct bpf_iter_meta meta; 3227 struct bpf_prog *prog; 3228 3229 if (!v) { 3230 meta.seq = seq; 3231 prog = bpf_iter_get_info(&meta, true); 3232 if (prog) 3233 (void)tcp_prog_seq_show(prog, &meta, v, 0); 3234 } 3235 3236 if (iter->cur_sk < iter->end_sk) { 3237 bpf_iter_tcp_put_batch(iter); 3238 iter->st_bucket_done = false; 3239 } 3240 } 3241 3242 static const struct seq_operations bpf_iter_tcp_seq_ops = { 3243 .show = bpf_iter_tcp_seq_show, 3244 .start = bpf_iter_tcp_seq_start, 3245 .next = bpf_iter_tcp_seq_next, 3246 .stop = bpf_iter_tcp_seq_stop, 3247 }; 3248 #endif 3249 static unsigned short seq_file_family(const struct seq_file *seq) 3250 { 3251 const struct tcp_seq_afinfo *afinfo; 3252 3253 #ifdef CONFIG_BPF_SYSCALL 3254 /* Iterated from bpf_iter. Let the bpf prog to filter instead. */ 3255 if (seq->op == &bpf_iter_tcp_seq_ops) 3256 return AF_UNSPEC; 3257 #endif 3258 3259 /* Iterated from proc fs */ 3260 afinfo = pde_data(file_inode(seq->file)); 3261 return afinfo->family; 3262 } 3263 3264 static const struct seq_operations tcp4_seq_ops = { 3265 .show = tcp4_seq_show, 3266 .start = tcp_seq_start, 3267 .next = tcp_seq_next, 3268 .stop = tcp_seq_stop, 3269 }; 3270 3271 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 3272 .family = AF_INET, 3273 }; 3274 3275 static int __net_init tcp4_proc_init_net(struct net *net) 3276 { 3277 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops, 3278 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo)) 3279 return -ENOMEM; 3280 return 0; 3281 } 3282 3283 static void __net_exit tcp4_proc_exit_net(struct net *net) 3284 { 3285 remove_proc_entry("tcp", net->proc_net); 3286 } 3287 3288 static struct pernet_operations tcp4_net_ops = { 3289 .init = tcp4_proc_init_net, 3290 .exit = tcp4_proc_exit_net, 3291 }; 3292 3293 int __init tcp4_proc_init(void) 3294 { 3295 return register_pernet_subsys(&tcp4_net_ops); 3296 } 3297 3298 void tcp4_proc_exit(void) 3299 { 3300 unregister_pernet_subsys(&tcp4_net_ops); 3301 } 3302 #endif /* CONFIG_PROC_FS */ 3303 3304 /* @wake is one when sk_stream_write_space() calls us. 3305 * This sends EPOLLOUT only if notsent_bytes is half the limit. 3306 * This mimics the strategy used in sock_def_write_space(). 3307 */ 3308 bool tcp_stream_memory_free(const struct sock *sk, int wake) 3309 { 3310 const struct tcp_sock *tp = tcp_sk(sk); 3311 u32 notsent_bytes = READ_ONCE(tp->write_seq) - 3312 READ_ONCE(tp->snd_nxt); 3313 3314 return (notsent_bytes << wake) < tcp_notsent_lowat(tp); 3315 } 3316 EXPORT_SYMBOL(tcp_stream_memory_free); 3317 3318 struct proto tcp_prot = { 3319 .name = "TCP", 3320 .owner = THIS_MODULE, 3321 .close = tcp_close, 3322 .pre_connect = tcp_v4_pre_connect, 3323 .connect = tcp_v4_connect, 3324 .disconnect = tcp_disconnect, 3325 .accept = inet_csk_accept, 3326 .ioctl = tcp_ioctl, 3327 .init = tcp_v4_init_sock, 3328 .destroy = tcp_v4_destroy_sock, 3329 .shutdown = tcp_shutdown, 3330 .setsockopt = tcp_setsockopt, 3331 .getsockopt = tcp_getsockopt, 3332 .bpf_bypass_getsockopt = tcp_bpf_bypass_getsockopt, 3333 .keepalive = tcp_set_keepalive, 3334 .recvmsg = tcp_recvmsg, 3335 .sendmsg = tcp_sendmsg, 3336 .splice_eof = tcp_splice_eof, 3337 .backlog_rcv = tcp_v4_do_rcv, 3338 .release_cb = tcp_release_cb, 3339 .hash = inet_hash, 3340 .unhash = inet_unhash, 3341 .get_port = inet_csk_get_port, 3342 .put_port = inet_put_port, 3343 #ifdef CONFIG_BPF_SYSCALL 3344 .psock_update_sk_prot = tcp_bpf_update_proto, 3345 #endif 3346 .enter_memory_pressure = tcp_enter_memory_pressure, 3347 .leave_memory_pressure = tcp_leave_memory_pressure, 3348 .stream_memory_free = tcp_stream_memory_free, 3349 .sockets_allocated = &tcp_sockets_allocated, 3350 .orphan_count = &tcp_orphan_count, 3351 3352 .memory_allocated = &tcp_memory_allocated, 3353 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3354 3355 .memory_pressure = &tcp_memory_pressure, 3356 .sysctl_mem = sysctl_tcp_mem, 3357 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3358 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3359 .max_header = MAX_TCP_HEADER, 3360 .obj_size = sizeof(struct tcp_sock), 3361 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3362 .twsk_prot = &tcp_timewait_sock_ops, 3363 .rsk_prot = &tcp_request_sock_ops, 3364 .h.hashinfo = NULL, 3365 .no_autobind = true, 3366 .diag_destroy = tcp_abort, 3367 }; 3368 EXPORT_SYMBOL(tcp_prot); 3369 3370 static void __net_exit tcp_sk_exit(struct net *net) 3371 { 3372 if (net->ipv4.tcp_congestion_control) 3373 bpf_module_put(net->ipv4.tcp_congestion_control, 3374 net->ipv4.tcp_congestion_control->owner); 3375 } 3376 3377 static void __net_init tcp_set_hashinfo(struct net *net) 3378 { 3379 struct inet_hashinfo *hinfo; 3380 unsigned int ehash_entries; 3381 struct net *old_net; 3382 3383 if (net_eq(net, &init_net)) 3384 goto fallback; 3385 3386 old_net = current->nsproxy->net_ns; 3387 ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries); 3388 if (!ehash_entries) 3389 goto fallback; 3390 3391 ehash_entries = roundup_pow_of_two(ehash_entries); 3392 hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries); 3393 if (!hinfo) { 3394 pr_warn("Failed to allocate TCP ehash (entries: %u) " 3395 "for a netns, fallback to the global one\n", 3396 ehash_entries); 3397 fallback: 3398 hinfo = &tcp_hashinfo; 3399 ehash_entries = tcp_hashinfo.ehash_mask + 1; 3400 } 3401 3402 net->ipv4.tcp_death_row.hashinfo = hinfo; 3403 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2; 3404 net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128); 3405 } 3406 3407 static int __net_init tcp_sk_init(struct net *net) 3408 { 3409 net->ipv4.sysctl_tcp_ecn = 2; 3410 net->ipv4.sysctl_tcp_ecn_fallback = 1; 3411 3412 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 3413 net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS; 3414 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 3415 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 3416 net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS; 3417 3418 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; 3419 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; 3420 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; 3421 3422 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; 3423 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; 3424 net->ipv4.sysctl_tcp_syncookies = 1; 3425 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 3426 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; 3427 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; 3428 net->ipv4.sysctl_tcp_orphan_retries = 0; 3429 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; 3430 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; 3431 net->ipv4.sysctl_tcp_tw_reuse = 2; 3432 net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1; 3433 3434 refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1); 3435 tcp_set_hashinfo(net); 3436 3437 net->ipv4.sysctl_tcp_sack = 1; 3438 net->ipv4.sysctl_tcp_window_scaling = 1; 3439 net->ipv4.sysctl_tcp_timestamps = 1; 3440 net->ipv4.sysctl_tcp_early_retrans = 3; 3441 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION; 3442 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */ 3443 net->ipv4.sysctl_tcp_retrans_collapse = 1; 3444 net->ipv4.sysctl_tcp_max_reordering = 300; 3445 net->ipv4.sysctl_tcp_dsack = 1; 3446 net->ipv4.sysctl_tcp_app_win = 31; 3447 net->ipv4.sysctl_tcp_adv_win_scale = 1; 3448 net->ipv4.sysctl_tcp_frto = 2; 3449 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1; 3450 /* This limits the percentage of the congestion window which we 3451 * will allow a single TSO frame to consume. Building TSO frames 3452 * which are too large can cause TCP streams to be bursty. 3453 */ 3454 net->ipv4.sysctl_tcp_tso_win_divisor = 3; 3455 /* Default TSQ limit of 16 TSO segments */ 3456 net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536; 3457 3458 /* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */ 3459 net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX; 3460 3461 net->ipv4.sysctl_tcp_min_tso_segs = 2; 3462 net->ipv4.sysctl_tcp_tso_rtt_log = 9; /* 2^9 = 512 usec */ 3463 net->ipv4.sysctl_tcp_min_rtt_wlen = 300; 3464 net->ipv4.sysctl_tcp_autocorking = 1; 3465 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2; 3466 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200; 3467 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120; 3468 if (net != &init_net) { 3469 memcpy(net->ipv4.sysctl_tcp_rmem, 3470 init_net.ipv4.sysctl_tcp_rmem, 3471 sizeof(init_net.ipv4.sysctl_tcp_rmem)); 3472 memcpy(net->ipv4.sysctl_tcp_wmem, 3473 init_net.ipv4.sysctl_tcp_wmem, 3474 sizeof(init_net.ipv4.sysctl_tcp_wmem)); 3475 } 3476 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC; 3477 net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC; 3478 net->ipv4.sysctl_tcp_comp_sack_nr = 44; 3479 net->ipv4.sysctl_tcp_backlog_ack_defer = 1; 3480 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE; 3481 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0; 3482 atomic_set(&net->ipv4.tfo_active_disable_times, 0); 3483 3484 /* Set default values for PLB */ 3485 net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */ 3486 net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3; 3487 net->ipv4.sysctl_tcp_plb_rehash_rounds = 12; 3488 net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60; 3489 /* Default congestion threshold for PLB to mark a round is 50% */ 3490 net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2; 3491 3492 /* Reno is always built in */ 3493 if (!net_eq(net, &init_net) && 3494 bpf_try_module_get(init_net.ipv4.tcp_congestion_control, 3495 init_net.ipv4.tcp_congestion_control->owner)) 3496 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control; 3497 else 3498 net->ipv4.tcp_congestion_control = &tcp_reno; 3499 3500 net->ipv4.sysctl_tcp_syn_linear_timeouts = 4; 3501 net->ipv4.sysctl_tcp_shrink_window = 0; 3502 3503 net->ipv4.sysctl_tcp_pingpong_thresh = 1; 3504 3505 return 0; 3506 } 3507 3508 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 3509 { 3510 struct net *net; 3511 3512 tcp_twsk_purge(net_exit_list); 3513 3514 list_for_each_entry(net, net_exit_list, exit_list) { 3515 inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo); 3516 WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount)); 3517 tcp_fastopen_ctx_destroy(net); 3518 } 3519 } 3520 3521 static struct pernet_operations __net_initdata tcp_sk_ops = { 3522 .init = tcp_sk_init, 3523 .exit = tcp_sk_exit, 3524 .exit_batch = tcp_sk_exit_batch, 3525 }; 3526 3527 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3528 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta, 3529 struct sock_common *sk_common, uid_t uid) 3530 3531 #define INIT_BATCH_SZ 16 3532 3533 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux) 3534 { 3535 struct bpf_tcp_iter_state *iter = priv_data; 3536 int err; 3537 3538 err = bpf_iter_init_seq_net(priv_data, aux); 3539 if (err) 3540 return err; 3541 3542 err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ); 3543 if (err) { 3544 bpf_iter_fini_seq_net(priv_data); 3545 return err; 3546 } 3547 3548 return 0; 3549 } 3550 3551 static void bpf_iter_fini_tcp(void *priv_data) 3552 { 3553 struct bpf_tcp_iter_state *iter = priv_data; 3554 3555 bpf_iter_fini_seq_net(priv_data); 3556 kvfree(iter->batch); 3557 } 3558 3559 static const struct bpf_iter_seq_info tcp_seq_info = { 3560 .seq_ops = &bpf_iter_tcp_seq_ops, 3561 .init_seq_private = bpf_iter_init_tcp, 3562 .fini_seq_private = bpf_iter_fini_tcp, 3563 .seq_priv_size = sizeof(struct bpf_tcp_iter_state), 3564 }; 3565 3566 static const struct bpf_func_proto * 3567 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id, 3568 const struct bpf_prog *prog) 3569 { 3570 switch (func_id) { 3571 case BPF_FUNC_setsockopt: 3572 return &bpf_sk_setsockopt_proto; 3573 case BPF_FUNC_getsockopt: 3574 return &bpf_sk_getsockopt_proto; 3575 default: 3576 return NULL; 3577 } 3578 } 3579 3580 static struct bpf_iter_reg tcp_reg_info = { 3581 .target = "tcp", 3582 .ctx_arg_info_size = 1, 3583 .ctx_arg_info = { 3584 { offsetof(struct bpf_iter__tcp, sk_common), 3585 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3586 }, 3587 .get_func_proto = bpf_iter_tcp_get_func_proto, 3588 .seq_info = &tcp_seq_info, 3589 }; 3590 3591 static void __init bpf_iter_register(void) 3592 { 3593 tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON]; 3594 if (bpf_iter_reg_target(&tcp_reg_info)) 3595 pr_warn("Warning: could not register bpf iterator tcp\n"); 3596 } 3597 3598 #endif 3599 3600 void __init tcp_v4_init(void) 3601 { 3602 int cpu, res; 3603 3604 for_each_possible_cpu(cpu) { 3605 struct sock *sk; 3606 3607 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 3608 IPPROTO_TCP, &init_net); 3609 if (res) 3610 panic("Failed to create the TCP control socket.\n"); 3611 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 3612 3613 /* Please enforce IP_DF and IPID==0 for RST and 3614 * ACK sent in SYN-RECV and TIME-WAIT state. 3615 */ 3616 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO; 3617 3618 per_cpu(ipv4_tcp_sk, cpu) = sk; 3619 } 3620 if (register_pernet_subsys(&tcp_sk_ops)) 3621 panic("Failed to create the TCP control socket.\n"); 3622 3623 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3624 bpf_iter_register(); 3625 #endif 3626 } 3627