xref: /linux/net/ipv4/tcp_ipv4.c (revision 2bd87951de659df3381ce083342aaf5b1ea24689)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  *		IPv4 specific functions
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  */
18 
19 /*
20  * Changes:
21  *		David S. Miller	:	New socket lookup architecture.
22  *					This code is dedicated to John Dyson.
23  *		David S. Miller :	Change semantics of established hash,
24  *					half is devoted to TIME_WAIT sockets
25  *					and the rest go in the other half.
26  *		Andi Kleen :		Add support for syncookies and fixed
27  *					some bugs: ip options weren't passed to
28  *					the TCP layer, missed a check for an
29  *					ACK bit.
30  *		Andi Kleen :		Implemented fast path mtu discovery.
31  *	     				Fixed many serious bugs in the
32  *					request_sock handling and moved
33  *					most of it into the af independent code.
34  *					Added tail drop and some other bugfixes.
35  *					Added new listen semantics.
36  *		Mike McLagan	:	Routing by source
37  *	Juan Jose Ciarlante:		ip_dynaddr bits
38  *		Andi Kleen:		various fixes.
39  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
40  *					coma.
41  *	Andi Kleen		:	Fix new listen.
42  *	Andi Kleen		:	Fix accept error reporting.
43  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
44  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
45  *					a single port at the same time.
46  */
47 
48 #define pr_fmt(fmt) "TCP: " fmt
49 
50 #include <linux/bottom_half.h>
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/module.h>
54 #include <linux/random.h>
55 #include <linux/cache.h>
56 #include <linux/jhash.h>
57 #include <linux/init.h>
58 #include <linux/times.h>
59 #include <linux/slab.h>
60 #include <linux/sched.h>
61 
62 #include <net/net_namespace.h>
63 #include <net/icmp.h>
64 #include <net/inet_hashtables.h>
65 #include <net/tcp.h>
66 #include <net/transp_v6.h>
67 #include <net/ipv6.h>
68 #include <net/inet_common.h>
69 #include <net/timewait_sock.h>
70 #include <net/xfrm.h>
71 #include <net/secure_seq.h>
72 #include <net/busy_poll.h>
73 
74 #include <linux/inet.h>
75 #include <linux/ipv6.h>
76 #include <linux/stddef.h>
77 #include <linux/proc_fs.h>
78 #include <linux/seq_file.h>
79 #include <linux/inetdevice.h>
80 #include <linux/btf_ids.h>
81 
82 #include <crypto/hash.h>
83 #include <linux/scatterlist.h>
84 
85 #include <trace/events/tcp.h>
86 
87 #ifdef CONFIG_TCP_MD5SIG
88 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
89 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
90 #endif
91 
92 struct inet_hashinfo tcp_hashinfo;
93 EXPORT_SYMBOL(tcp_hashinfo);
94 
95 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
96 
97 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
98 {
99 	return secure_tcp_seq(ip_hdr(skb)->daddr,
100 			      ip_hdr(skb)->saddr,
101 			      tcp_hdr(skb)->dest,
102 			      tcp_hdr(skb)->source);
103 }
104 
105 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
106 {
107 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
108 }
109 
110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111 {
112 	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
113 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
114 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115 	struct tcp_sock *tp = tcp_sk(sk);
116 
117 	if (reuse == 2) {
118 		/* Still does not detect *everything* that goes through
119 		 * lo, since we require a loopback src or dst address
120 		 * or direct binding to 'lo' interface.
121 		 */
122 		bool loopback = false;
123 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
124 			loopback = true;
125 #if IS_ENABLED(CONFIG_IPV6)
126 		if (tw->tw_family == AF_INET6) {
127 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
128 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
129 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
130 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
131 				loopback = true;
132 		} else
133 #endif
134 		{
135 			if (ipv4_is_loopback(tw->tw_daddr) ||
136 			    ipv4_is_loopback(tw->tw_rcv_saddr))
137 				loopback = true;
138 		}
139 		if (!loopback)
140 			reuse = 0;
141 	}
142 
143 	/* With PAWS, it is safe from the viewpoint
144 	   of data integrity. Even without PAWS it is safe provided sequence
145 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
146 
147 	   Actually, the idea is close to VJ's one, only timestamp cache is
148 	   held not per host, but per port pair and TW bucket is used as state
149 	   holder.
150 
151 	   If TW bucket has been already destroyed we fall back to VJ's scheme
152 	   and use initial timestamp retrieved from peer table.
153 	 */
154 	if (tcptw->tw_ts_recent_stamp &&
155 	    (!twp || (reuse && time_after32(ktime_get_seconds(),
156 					    tcptw->tw_ts_recent_stamp)))) {
157 		/* In case of repair and re-using TIME-WAIT sockets we still
158 		 * want to be sure that it is safe as above but honor the
159 		 * sequence numbers and time stamps set as part of the repair
160 		 * process.
161 		 *
162 		 * Without this check re-using a TIME-WAIT socket with TCP
163 		 * repair would accumulate a -1 on the repair assigned
164 		 * sequence number. The first time it is reused the sequence
165 		 * is -1, the second time -2, etc. This fixes that issue
166 		 * without appearing to create any others.
167 		 */
168 		if (likely(!tp->repair)) {
169 			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
170 
171 			if (!seq)
172 				seq = 1;
173 			WRITE_ONCE(tp->write_seq, seq);
174 			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
175 			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
176 		}
177 		sock_hold(sktw);
178 		return 1;
179 	}
180 
181 	return 0;
182 }
183 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
184 
185 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
186 			      int addr_len)
187 {
188 	/* This check is replicated from tcp_v4_connect() and intended to
189 	 * prevent BPF program called below from accessing bytes that are out
190 	 * of the bound specified by user in addr_len.
191 	 */
192 	if (addr_len < sizeof(struct sockaddr_in))
193 		return -EINVAL;
194 
195 	sock_owned_by_me(sk);
196 
197 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
198 }
199 
200 /* This will initiate an outgoing connection. */
201 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
202 {
203 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
204 	struct inet_timewait_death_row *tcp_death_row;
205 	struct inet_sock *inet = inet_sk(sk);
206 	struct tcp_sock *tp = tcp_sk(sk);
207 	struct ip_options_rcu *inet_opt;
208 	struct net *net = sock_net(sk);
209 	__be16 orig_sport, orig_dport;
210 	__be32 daddr, nexthop;
211 	struct flowi4 *fl4;
212 	struct rtable *rt;
213 	int err;
214 
215 	if (addr_len < sizeof(struct sockaddr_in))
216 		return -EINVAL;
217 
218 	if (usin->sin_family != AF_INET)
219 		return -EAFNOSUPPORT;
220 
221 	nexthop = daddr = usin->sin_addr.s_addr;
222 	inet_opt = rcu_dereference_protected(inet->inet_opt,
223 					     lockdep_sock_is_held(sk));
224 	if (inet_opt && inet_opt->opt.srr) {
225 		if (!daddr)
226 			return -EINVAL;
227 		nexthop = inet_opt->opt.faddr;
228 	}
229 
230 	orig_sport = inet->inet_sport;
231 	orig_dport = usin->sin_port;
232 	fl4 = &inet->cork.fl.u.ip4;
233 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
234 			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
235 			      orig_dport, sk);
236 	if (IS_ERR(rt)) {
237 		err = PTR_ERR(rt);
238 		if (err == -ENETUNREACH)
239 			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
240 		return err;
241 	}
242 
243 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
244 		ip_rt_put(rt);
245 		return -ENETUNREACH;
246 	}
247 
248 	if (!inet_opt || !inet_opt->opt.srr)
249 		daddr = fl4->daddr;
250 
251 	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
252 
253 	if (!inet->inet_saddr) {
254 		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
255 		if (err) {
256 			ip_rt_put(rt);
257 			return err;
258 		}
259 	} else {
260 		sk_rcv_saddr_set(sk, inet->inet_saddr);
261 	}
262 
263 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
264 		/* Reset inherited state */
265 		tp->rx_opt.ts_recent	   = 0;
266 		tp->rx_opt.ts_recent_stamp = 0;
267 		if (likely(!tp->repair))
268 			WRITE_ONCE(tp->write_seq, 0);
269 	}
270 
271 	inet->inet_dport = usin->sin_port;
272 	sk_daddr_set(sk, daddr);
273 
274 	inet_csk(sk)->icsk_ext_hdr_len = 0;
275 	if (inet_opt)
276 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
277 
278 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
279 
280 	/* Socket identity is still unknown (sport may be zero).
281 	 * However we set state to SYN-SENT and not releasing socket
282 	 * lock select source port, enter ourselves into the hash tables and
283 	 * complete initialization after this.
284 	 */
285 	tcp_set_state(sk, TCP_SYN_SENT);
286 	err = inet_hash_connect(tcp_death_row, sk);
287 	if (err)
288 		goto failure;
289 
290 	sk_set_txhash(sk);
291 
292 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
293 			       inet->inet_sport, inet->inet_dport, sk);
294 	if (IS_ERR(rt)) {
295 		err = PTR_ERR(rt);
296 		rt = NULL;
297 		goto failure;
298 	}
299 	tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
300 	/* OK, now commit destination to socket.  */
301 	sk->sk_gso_type = SKB_GSO_TCPV4;
302 	sk_setup_caps(sk, &rt->dst);
303 	rt = NULL;
304 
305 	if (likely(!tp->repair)) {
306 		if (!tp->write_seq)
307 			WRITE_ONCE(tp->write_seq,
308 				   secure_tcp_seq(inet->inet_saddr,
309 						  inet->inet_daddr,
310 						  inet->inet_sport,
311 						  usin->sin_port));
312 		WRITE_ONCE(tp->tsoffset,
313 			   secure_tcp_ts_off(net, inet->inet_saddr,
314 					     inet->inet_daddr));
315 	}
316 
317 	atomic_set(&inet->inet_id, get_random_u16());
318 
319 	if (tcp_fastopen_defer_connect(sk, &err))
320 		return err;
321 	if (err)
322 		goto failure;
323 
324 	err = tcp_connect(sk);
325 
326 	if (err)
327 		goto failure;
328 
329 	return 0;
330 
331 failure:
332 	/*
333 	 * This unhashes the socket and releases the local port,
334 	 * if necessary.
335 	 */
336 	tcp_set_state(sk, TCP_CLOSE);
337 	inet_bhash2_reset_saddr(sk);
338 	ip_rt_put(rt);
339 	sk->sk_route_caps = 0;
340 	inet->inet_dport = 0;
341 	return err;
342 }
343 EXPORT_SYMBOL(tcp_v4_connect);
344 
345 /*
346  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
347  * It can be called through tcp_release_cb() if socket was owned by user
348  * at the time tcp_v4_err() was called to handle ICMP message.
349  */
350 void tcp_v4_mtu_reduced(struct sock *sk)
351 {
352 	struct inet_sock *inet = inet_sk(sk);
353 	struct dst_entry *dst;
354 	u32 mtu;
355 
356 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
357 		return;
358 	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
359 	dst = inet_csk_update_pmtu(sk, mtu);
360 	if (!dst)
361 		return;
362 
363 	/* Something is about to be wrong... Remember soft error
364 	 * for the case, if this connection will not able to recover.
365 	 */
366 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
367 		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
368 
369 	mtu = dst_mtu(dst);
370 
371 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
372 	    ip_sk_accept_pmtu(sk) &&
373 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
374 		tcp_sync_mss(sk, mtu);
375 
376 		/* Resend the TCP packet because it's
377 		 * clear that the old packet has been
378 		 * dropped. This is the new "fast" path mtu
379 		 * discovery.
380 		 */
381 		tcp_simple_retransmit(sk);
382 	} /* else let the usual retransmit timer handle it */
383 }
384 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
385 
386 static void do_redirect(struct sk_buff *skb, struct sock *sk)
387 {
388 	struct dst_entry *dst = __sk_dst_check(sk, 0);
389 
390 	if (dst)
391 		dst->ops->redirect(dst, sk, skb);
392 }
393 
394 
395 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
396 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
397 {
398 	struct request_sock *req = inet_reqsk(sk);
399 	struct net *net = sock_net(sk);
400 
401 	/* ICMPs are not backlogged, hence we cannot get
402 	 * an established socket here.
403 	 */
404 	if (seq != tcp_rsk(req)->snt_isn) {
405 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
406 	} else if (abort) {
407 		/*
408 		 * Still in SYN_RECV, just remove it silently.
409 		 * There is no good way to pass the error to the newly
410 		 * created socket, and POSIX does not want network
411 		 * errors returned from accept().
412 		 */
413 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
414 		tcp_listendrop(req->rsk_listener);
415 	}
416 	reqsk_put(req);
417 }
418 EXPORT_SYMBOL(tcp_req_err);
419 
420 /* TCP-LD (RFC 6069) logic */
421 void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
422 {
423 	struct inet_connection_sock *icsk = inet_csk(sk);
424 	struct tcp_sock *tp = tcp_sk(sk);
425 	struct sk_buff *skb;
426 	s32 remaining;
427 	u32 delta_us;
428 
429 	if (sock_owned_by_user(sk))
430 		return;
431 
432 	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
433 	    !icsk->icsk_backoff)
434 		return;
435 
436 	skb = tcp_rtx_queue_head(sk);
437 	if (WARN_ON_ONCE(!skb))
438 		return;
439 
440 	icsk->icsk_backoff--;
441 	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
442 	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
443 
444 	tcp_mstamp_refresh(tp);
445 	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
446 	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
447 
448 	if (remaining > 0) {
449 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
450 					  remaining, TCP_RTO_MAX);
451 	} else {
452 		/* RTO revert clocked out retransmission.
453 		 * Will retransmit now.
454 		 */
455 		tcp_retransmit_timer(sk);
456 	}
457 }
458 EXPORT_SYMBOL(tcp_ld_RTO_revert);
459 
460 /*
461  * This routine is called by the ICMP module when it gets some
462  * sort of error condition.  If err < 0 then the socket should
463  * be closed and the error returned to the user.  If err > 0
464  * it's just the icmp type << 8 | icmp code.  After adjustment
465  * header points to the first 8 bytes of the tcp header.  We need
466  * to find the appropriate port.
467  *
468  * The locking strategy used here is very "optimistic". When
469  * someone else accesses the socket the ICMP is just dropped
470  * and for some paths there is no check at all.
471  * A more general error queue to queue errors for later handling
472  * is probably better.
473  *
474  */
475 
476 int tcp_v4_err(struct sk_buff *skb, u32 info)
477 {
478 	const struct iphdr *iph = (const struct iphdr *)skb->data;
479 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
480 	struct tcp_sock *tp;
481 	const int type = icmp_hdr(skb)->type;
482 	const int code = icmp_hdr(skb)->code;
483 	struct sock *sk;
484 	struct request_sock *fastopen;
485 	u32 seq, snd_una;
486 	int err;
487 	struct net *net = dev_net(skb->dev);
488 
489 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
490 				       iph->daddr, th->dest, iph->saddr,
491 				       ntohs(th->source), inet_iif(skb), 0);
492 	if (!sk) {
493 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
494 		return -ENOENT;
495 	}
496 	if (sk->sk_state == TCP_TIME_WAIT) {
497 		/* To increase the counter of ignored icmps for TCP-AO */
498 		tcp_ao_ignore_icmp(sk, AF_INET, type, code);
499 		inet_twsk_put(inet_twsk(sk));
500 		return 0;
501 	}
502 	seq = ntohl(th->seq);
503 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
504 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
505 				     type == ICMP_TIME_EXCEEDED ||
506 				     (type == ICMP_DEST_UNREACH &&
507 				      (code == ICMP_NET_UNREACH ||
508 				       code == ICMP_HOST_UNREACH)));
509 		return 0;
510 	}
511 
512 	if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) {
513 		sock_put(sk);
514 		return 0;
515 	}
516 
517 	bh_lock_sock(sk);
518 	/* If too many ICMPs get dropped on busy
519 	 * servers this needs to be solved differently.
520 	 * We do take care of PMTU discovery (RFC1191) special case :
521 	 * we can receive locally generated ICMP messages while socket is held.
522 	 */
523 	if (sock_owned_by_user(sk)) {
524 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
525 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
526 	}
527 	if (sk->sk_state == TCP_CLOSE)
528 		goto out;
529 
530 	if (static_branch_unlikely(&ip4_min_ttl)) {
531 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
532 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
533 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
534 			goto out;
535 		}
536 	}
537 
538 	tp = tcp_sk(sk);
539 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
540 	fastopen = rcu_dereference(tp->fastopen_rsk);
541 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
542 	if (sk->sk_state != TCP_LISTEN &&
543 	    !between(seq, snd_una, tp->snd_nxt)) {
544 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
545 		goto out;
546 	}
547 
548 	switch (type) {
549 	case ICMP_REDIRECT:
550 		if (!sock_owned_by_user(sk))
551 			do_redirect(skb, sk);
552 		goto out;
553 	case ICMP_SOURCE_QUENCH:
554 		/* Just silently ignore these. */
555 		goto out;
556 	case ICMP_PARAMETERPROB:
557 		err = EPROTO;
558 		break;
559 	case ICMP_DEST_UNREACH:
560 		if (code > NR_ICMP_UNREACH)
561 			goto out;
562 
563 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
564 			/* We are not interested in TCP_LISTEN and open_requests
565 			 * (SYN-ACKs send out by Linux are always <576bytes so
566 			 * they should go through unfragmented).
567 			 */
568 			if (sk->sk_state == TCP_LISTEN)
569 				goto out;
570 
571 			WRITE_ONCE(tp->mtu_info, info);
572 			if (!sock_owned_by_user(sk)) {
573 				tcp_v4_mtu_reduced(sk);
574 			} else {
575 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
576 					sock_hold(sk);
577 			}
578 			goto out;
579 		}
580 
581 		err = icmp_err_convert[code].errno;
582 		/* check if this ICMP message allows revert of backoff.
583 		 * (see RFC 6069)
584 		 */
585 		if (!fastopen &&
586 		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
587 			tcp_ld_RTO_revert(sk, seq);
588 		break;
589 	case ICMP_TIME_EXCEEDED:
590 		err = EHOSTUNREACH;
591 		break;
592 	default:
593 		goto out;
594 	}
595 
596 	switch (sk->sk_state) {
597 	case TCP_SYN_SENT:
598 	case TCP_SYN_RECV:
599 		/* Only in fast or simultaneous open. If a fast open socket is
600 		 * already accepted it is treated as a connected one below.
601 		 */
602 		if (fastopen && !fastopen->sk)
603 			break;
604 
605 		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
606 
607 		if (!sock_owned_by_user(sk)) {
608 			WRITE_ONCE(sk->sk_err, err);
609 
610 			sk_error_report(sk);
611 
612 			tcp_done(sk);
613 		} else {
614 			WRITE_ONCE(sk->sk_err_soft, err);
615 		}
616 		goto out;
617 	}
618 
619 	/* If we've already connected we will keep trying
620 	 * until we time out, or the user gives up.
621 	 *
622 	 * rfc1122 4.2.3.9 allows to consider as hard errors
623 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
624 	 * but it is obsoleted by pmtu discovery).
625 	 *
626 	 * Note, that in modern internet, where routing is unreliable
627 	 * and in each dark corner broken firewalls sit, sending random
628 	 * errors ordered by their masters even this two messages finally lose
629 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
630 	 *
631 	 * Now we are in compliance with RFCs.
632 	 *							--ANK (980905)
633 	 */
634 
635 	if (!sock_owned_by_user(sk) &&
636 	    inet_test_bit(RECVERR, sk)) {
637 		WRITE_ONCE(sk->sk_err, err);
638 		sk_error_report(sk);
639 	} else	{ /* Only an error on timeout */
640 		WRITE_ONCE(sk->sk_err_soft, err);
641 	}
642 
643 out:
644 	bh_unlock_sock(sk);
645 	sock_put(sk);
646 	return 0;
647 }
648 
649 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
650 {
651 	struct tcphdr *th = tcp_hdr(skb);
652 
653 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
654 	skb->csum_start = skb_transport_header(skb) - skb->head;
655 	skb->csum_offset = offsetof(struct tcphdr, check);
656 }
657 
658 /* This routine computes an IPv4 TCP checksum. */
659 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
660 {
661 	const struct inet_sock *inet = inet_sk(sk);
662 
663 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
664 }
665 EXPORT_SYMBOL(tcp_v4_send_check);
666 
667 #define REPLY_OPTIONS_LEN      (MAX_TCP_OPTION_SPACE / sizeof(__be32))
668 
669 static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb,
670 				 const struct tcp_ao_hdr *aoh,
671 				 struct ip_reply_arg *arg, struct tcphdr *reply,
672 				 __be32 reply_options[REPLY_OPTIONS_LEN])
673 {
674 #ifdef CONFIG_TCP_AO
675 	int sdif = tcp_v4_sdif(skb);
676 	int dif = inet_iif(skb);
677 	int l3index = sdif ? dif : 0;
678 	bool allocated_traffic_key;
679 	struct tcp_ao_key *key;
680 	char *traffic_key;
681 	bool drop = true;
682 	u32 ao_sne = 0;
683 	u8 keyid;
684 
685 	rcu_read_lock();
686 	if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq),
687 				 &key, &traffic_key, &allocated_traffic_key,
688 				 &keyid, &ao_sne))
689 		goto out;
690 
691 	reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) |
692 				 (aoh->rnext_keyid << 8) | keyid);
693 	arg->iov[0].iov_len += tcp_ao_len_aligned(key);
694 	reply->doff = arg->iov[0].iov_len / 4;
695 
696 	if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1],
697 			    key, traffic_key,
698 			    (union tcp_ao_addr *)&ip_hdr(skb)->saddr,
699 			    (union tcp_ao_addr *)&ip_hdr(skb)->daddr,
700 			    reply, ao_sne))
701 		goto out;
702 	drop = false;
703 out:
704 	rcu_read_unlock();
705 	if (allocated_traffic_key)
706 		kfree(traffic_key);
707 	return drop;
708 #else
709 	return true;
710 #endif
711 }
712 
713 /*
714  *	This routine will send an RST to the other tcp.
715  *
716  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
717  *		      for reset.
718  *	Answer: if a packet caused RST, it is not for a socket
719  *		existing in our system, if it is matched to a socket,
720  *		it is just duplicate segment or bug in other side's TCP.
721  *		So that we build reply only basing on parameters
722  *		arrived with segment.
723  *	Exception: precedence violation. We do not implement it in any case.
724  */
725 
726 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
727 {
728 	const struct tcphdr *th = tcp_hdr(skb);
729 	struct {
730 		struct tcphdr th;
731 		__be32 opt[REPLY_OPTIONS_LEN];
732 	} rep;
733 	const __u8 *md5_hash_location = NULL;
734 	const struct tcp_ao_hdr *aoh;
735 	struct ip_reply_arg arg;
736 #ifdef CONFIG_TCP_MD5SIG
737 	struct tcp_md5sig_key *key = NULL;
738 	unsigned char newhash[16];
739 	struct sock *sk1 = NULL;
740 	int genhash;
741 #endif
742 	u64 transmit_time = 0;
743 	struct sock *ctl_sk;
744 	struct net *net;
745 	u32 txhash = 0;
746 
747 	/* Never send a reset in response to a reset. */
748 	if (th->rst)
749 		return;
750 
751 	/* If sk not NULL, it means we did a successful lookup and incoming
752 	 * route had to be correct. prequeue might have dropped our dst.
753 	 */
754 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
755 		return;
756 
757 	/* Swap the send and the receive. */
758 	memset(&rep, 0, sizeof(rep));
759 	rep.th.dest   = th->source;
760 	rep.th.source = th->dest;
761 	rep.th.doff   = sizeof(struct tcphdr) / 4;
762 	rep.th.rst    = 1;
763 
764 	if (th->ack) {
765 		rep.th.seq = th->ack_seq;
766 	} else {
767 		rep.th.ack = 1;
768 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
769 				       skb->len - (th->doff << 2));
770 	}
771 
772 	memset(&arg, 0, sizeof(arg));
773 	arg.iov[0].iov_base = (unsigned char *)&rep;
774 	arg.iov[0].iov_len  = sizeof(rep.th);
775 
776 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
777 
778 	/* Invalid TCP option size or twice included auth */
779 	if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh))
780 		return;
781 
782 	if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt))
783 		return;
784 
785 #ifdef CONFIG_TCP_MD5SIG
786 	rcu_read_lock();
787 	if (sk && sk_fullsock(sk)) {
788 		const union tcp_md5_addr *addr;
789 		int l3index;
790 
791 		/* sdif set, means packet ingressed via a device
792 		 * in an L3 domain and inet_iif is set to it.
793 		 */
794 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
795 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
796 		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
797 	} else if (md5_hash_location) {
798 		const union tcp_md5_addr *addr;
799 		int sdif = tcp_v4_sdif(skb);
800 		int dif = inet_iif(skb);
801 		int l3index;
802 
803 		/*
804 		 * active side is lost. Try to find listening socket through
805 		 * source port, and then find md5 key through listening socket.
806 		 * we are not loose security here:
807 		 * Incoming packet is checked with md5 hash with finding key,
808 		 * no RST generated if md5 hash doesn't match.
809 		 */
810 		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
811 					     NULL, 0, ip_hdr(skb)->saddr,
812 					     th->source, ip_hdr(skb)->daddr,
813 					     ntohs(th->source), dif, sdif);
814 		/* don't send rst if it can't find key */
815 		if (!sk1)
816 			goto out;
817 
818 		/* sdif set, means packet ingressed via a device
819 		 * in an L3 domain and dif is set to it.
820 		 */
821 		l3index = sdif ? dif : 0;
822 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
823 		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
824 		if (!key)
825 			goto out;
826 
827 
828 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
829 		if (genhash || memcmp(md5_hash_location, newhash, 16) != 0)
830 			goto out;
831 
832 	}
833 
834 	if (key) {
835 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
836 				   (TCPOPT_NOP << 16) |
837 				   (TCPOPT_MD5SIG << 8) |
838 				   TCPOLEN_MD5SIG);
839 		/* Update length and the length the header thinks exists */
840 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
841 		rep.th.doff = arg.iov[0].iov_len / 4;
842 
843 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
844 				     key, ip_hdr(skb)->saddr,
845 				     ip_hdr(skb)->daddr, &rep.th);
846 	}
847 #endif
848 	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
849 	if (rep.opt[0] == 0) {
850 		__be32 mrst = mptcp_reset_option(skb);
851 
852 		if (mrst) {
853 			rep.opt[0] = mrst;
854 			arg.iov[0].iov_len += sizeof(mrst);
855 			rep.th.doff = arg.iov[0].iov_len / 4;
856 		}
857 	}
858 
859 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
860 				      ip_hdr(skb)->saddr, /* XXX */
861 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
862 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
863 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
864 
865 	/* When socket is gone, all binding information is lost.
866 	 * routing might fail in this case. No choice here, if we choose to force
867 	 * input interface, we will misroute in case of asymmetric route.
868 	 */
869 	if (sk)
870 		arg.bound_dev_if = sk->sk_bound_dev_if;
871 
872 	trace_tcp_send_reset(sk, skb);
873 
874 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
875 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
876 
877 	arg.tos = ip_hdr(skb)->tos;
878 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
879 	local_bh_disable();
880 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
881 	sock_net_set(ctl_sk, net);
882 	if (sk) {
883 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
884 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
885 		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
886 				   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
887 		transmit_time = tcp_transmit_time(sk);
888 		xfrm_sk_clone_policy(ctl_sk, sk);
889 		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
890 			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
891 	} else {
892 		ctl_sk->sk_mark = 0;
893 		ctl_sk->sk_priority = 0;
894 	}
895 	ip_send_unicast_reply(ctl_sk,
896 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
897 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
898 			      &arg, arg.iov[0].iov_len,
899 			      transmit_time, txhash);
900 
901 	xfrm_sk_free_policy(ctl_sk);
902 	sock_net_set(ctl_sk, &init_net);
903 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
904 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
905 	local_bh_enable();
906 
907 #ifdef CONFIG_TCP_MD5SIG
908 out:
909 	rcu_read_unlock();
910 #endif
911 }
912 
913 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
914    outside socket context is ugly, certainly. What can I do?
915  */
916 
917 static void tcp_v4_send_ack(const struct sock *sk,
918 			    struct sk_buff *skb, u32 seq, u32 ack,
919 			    u32 win, u32 tsval, u32 tsecr, int oif,
920 			    struct tcp_key *key,
921 			    int reply_flags, u8 tos, u32 txhash)
922 {
923 	const struct tcphdr *th = tcp_hdr(skb);
924 	struct {
925 		struct tcphdr th;
926 		__be32 opt[(MAX_TCP_OPTION_SPACE  >> 2)];
927 	} rep;
928 	struct net *net = sock_net(sk);
929 	struct ip_reply_arg arg;
930 	struct sock *ctl_sk;
931 	u64 transmit_time;
932 
933 	memset(&rep.th, 0, sizeof(struct tcphdr));
934 	memset(&arg, 0, sizeof(arg));
935 
936 	arg.iov[0].iov_base = (unsigned char *)&rep;
937 	arg.iov[0].iov_len  = sizeof(rep.th);
938 	if (tsecr) {
939 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
940 				   (TCPOPT_TIMESTAMP << 8) |
941 				   TCPOLEN_TIMESTAMP);
942 		rep.opt[1] = htonl(tsval);
943 		rep.opt[2] = htonl(tsecr);
944 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
945 	}
946 
947 	/* Swap the send and the receive. */
948 	rep.th.dest    = th->source;
949 	rep.th.source  = th->dest;
950 	rep.th.doff    = arg.iov[0].iov_len / 4;
951 	rep.th.seq     = htonl(seq);
952 	rep.th.ack_seq = htonl(ack);
953 	rep.th.ack     = 1;
954 	rep.th.window  = htons(win);
955 
956 #ifdef CONFIG_TCP_MD5SIG
957 	if (tcp_key_is_md5(key)) {
958 		int offset = (tsecr) ? 3 : 0;
959 
960 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
961 					  (TCPOPT_NOP << 16) |
962 					  (TCPOPT_MD5SIG << 8) |
963 					  TCPOLEN_MD5SIG);
964 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
965 		rep.th.doff = arg.iov[0].iov_len/4;
966 
967 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
968 				    key->md5_key, ip_hdr(skb)->saddr,
969 				    ip_hdr(skb)->daddr, &rep.th);
970 	}
971 #endif
972 #ifdef CONFIG_TCP_AO
973 	if (tcp_key_is_ao(key)) {
974 		int offset = (tsecr) ? 3 : 0;
975 
976 		rep.opt[offset++] = htonl((TCPOPT_AO << 24) |
977 					  (tcp_ao_len(key->ao_key) << 16) |
978 					  (key->ao_key->sndid << 8) |
979 					  key->rcv_next);
980 		arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key);
981 		rep.th.doff = arg.iov[0].iov_len / 4;
982 
983 		tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset],
984 				key->ao_key, key->traffic_key,
985 				(union tcp_ao_addr *)&ip_hdr(skb)->saddr,
986 				(union tcp_ao_addr *)&ip_hdr(skb)->daddr,
987 				&rep.th, key->sne);
988 	}
989 #endif
990 	arg.flags = reply_flags;
991 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
992 				      ip_hdr(skb)->saddr, /* XXX */
993 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
994 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
995 	if (oif)
996 		arg.bound_dev_if = oif;
997 	arg.tos = tos;
998 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
999 	local_bh_disable();
1000 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
1001 	sock_net_set(ctl_sk, net);
1002 	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
1003 			   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
1004 	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
1005 			   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
1006 	transmit_time = tcp_transmit_time(sk);
1007 	ip_send_unicast_reply(ctl_sk,
1008 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
1009 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
1010 			      &arg, arg.iov[0].iov_len,
1011 			      transmit_time, txhash);
1012 
1013 	sock_net_set(ctl_sk, &init_net);
1014 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
1015 	local_bh_enable();
1016 }
1017 
1018 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
1019 {
1020 	struct inet_timewait_sock *tw = inet_twsk(sk);
1021 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
1022 	struct tcp_key key = {};
1023 #ifdef CONFIG_TCP_AO
1024 	struct tcp_ao_info *ao_info;
1025 
1026 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
1027 		/* FIXME: the segment to-be-acked is not verified yet */
1028 		ao_info = rcu_dereference(tcptw->ao_info);
1029 		if (ao_info) {
1030 			const struct tcp_ao_hdr *aoh;
1031 
1032 			if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) {
1033 				inet_twsk_put(tw);
1034 				return;
1035 			}
1036 
1037 			if (aoh)
1038 				key.ao_key = tcp_ao_established_key(ao_info, aoh->rnext_keyid, -1);
1039 		}
1040 	}
1041 	if (key.ao_key) {
1042 		struct tcp_ao_key *rnext_key;
1043 
1044 		key.traffic_key = snd_other_key(key.ao_key);
1045 		key.sne = READ_ONCE(ao_info->snd_sne);
1046 		rnext_key = READ_ONCE(ao_info->rnext_key);
1047 		key.rcv_next = rnext_key->rcvid;
1048 		key.type = TCP_KEY_AO;
1049 #else
1050 	if (0) {
1051 #endif
1052 #ifdef CONFIG_TCP_MD5SIG
1053 	} else if (static_branch_unlikely(&tcp_md5_needed.key)) {
1054 		key.md5_key = tcp_twsk_md5_key(tcptw);
1055 		if (key.md5_key)
1056 			key.type = TCP_KEY_MD5;
1057 #endif
1058 	}
1059 
1060 	tcp_v4_send_ack(sk, skb,
1061 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
1062 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
1063 			tcp_tw_tsval(tcptw),
1064 			tcptw->tw_ts_recent,
1065 			tw->tw_bound_dev_if, &key,
1066 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
1067 			tw->tw_tos,
1068 			tw->tw_txhash);
1069 
1070 	inet_twsk_put(tw);
1071 }
1072 
1073 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
1074 				  struct request_sock *req)
1075 {
1076 	struct tcp_key key = {};
1077 
1078 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
1079 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
1080 	 */
1081 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
1082 					     tcp_sk(sk)->snd_nxt;
1083 
1084 #ifdef CONFIG_TCP_AO
1085 	if (static_branch_unlikely(&tcp_ao_needed.key) &&
1086 	    tcp_rsk_used_ao(req)) {
1087 		const union tcp_md5_addr *addr;
1088 		const struct tcp_ao_hdr *aoh;
1089 		int l3index;
1090 
1091 		/* Invalid TCP option size or twice included auth */
1092 		if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
1093 			return;
1094 		if (!aoh)
1095 			return;
1096 
1097 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1098 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1099 		key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET,
1100 					      aoh->rnext_keyid, -1);
1101 		if (unlikely(!key.ao_key)) {
1102 			/* Send ACK with any matching MKT for the peer */
1103 			key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1);
1104 			/* Matching key disappeared (user removed the key?)
1105 			 * let the handshake timeout.
1106 			 */
1107 			if (!key.ao_key) {
1108 				net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n",
1109 						     addr,
1110 						     ntohs(tcp_hdr(skb)->source),
1111 						     &ip_hdr(skb)->daddr,
1112 						     ntohs(tcp_hdr(skb)->dest));
1113 				return;
1114 			}
1115 		}
1116 		key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC);
1117 		if (!key.traffic_key)
1118 			return;
1119 
1120 		key.type = TCP_KEY_AO;
1121 		key.rcv_next = aoh->keyid;
1122 		tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req);
1123 #else
1124 	if (0) {
1125 #endif
1126 #ifdef CONFIG_TCP_MD5SIG
1127 	} else if (static_branch_unlikely(&tcp_md5_needed.key)) {
1128 		const union tcp_md5_addr *addr;
1129 		int l3index;
1130 
1131 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1132 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1133 		key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1134 		if (key.md5_key)
1135 			key.type = TCP_KEY_MD5;
1136 #endif
1137 	}
1138 
1139 	/* RFC 7323 2.3
1140 	 * The window field (SEG.WND) of every outgoing segment, with the
1141 	 * exception of <SYN> segments, MUST be right-shifted by
1142 	 * Rcv.Wind.Shift bits:
1143 	 */
1144 	tcp_v4_send_ack(sk, skb, seq,
1145 			tcp_rsk(req)->rcv_nxt,
1146 			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
1147 			tcp_rsk_tsval(tcp_rsk(req)),
1148 			READ_ONCE(req->ts_recent),
1149 			0, &key,
1150 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
1151 			ip_hdr(skb)->tos,
1152 			READ_ONCE(tcp_rsk(req)->txhash));
1153 	if (tcp_key_is_ao(&key))
1154 		kfree(key.traffic_key);
1155 }
1156 
1157 /*
1158  *	Send a SYN-ACK after having received a SYN.
1159  *	This still operates on a request_sock only, not on a big
1160  *	socket.
1161  */
1162 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1163 			      struct flowi *fl,
1164 			      struct request_sock *req,
1165 			      struct tcp_fastopen_cookie *foc,
1166 			      enum tcp_synack_type synack_type,
1167 			      struct sk_buff *syn_skb)
1168 {
1169 	const struct inet_request_sock *ireq = inet_rsk(req);
1170 	struct flowi4 fl4;
1171 	int err = -1;
1172 	struct sk_buff *skb;
1173 	u8 tos;
1174 
1175 	/* First, grab a route. */
1176 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1177 		return -1;
1178 
1179 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1180 
1181 	if (skb) {
1182 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1183 
1184 		tos = READ_ONCE(inet_sk(sk)->tos);
1185 
1186 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1187 			tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1188 			      (tos & INET_ECN_MASK);
1189 
1190 		if (!INET_ECN_is_capable(tos) &&
1191 		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1192 			tos |= INET_ECN_ECT_0;
1193 
1194 		rcu_read_lock();
1195 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1196 					    ireq->ir_rmt_addr,
1197 					    rcu_dereference(ireq->ireq_opt),
1198 					    tos);
1199 		rcu_read_unlock();
1200 		err = net_xmit_eval(err);
1201 	}
1202 
1203 	return err;
1204 }
1205 
1206 /*
1207  *	IPv4 request_sock destructor.
1208  */
1209 static void tcp_v4_reqsk_destructor(struct request_sock *req)
1210 {
1211 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1212 }
1213 
1214 #ifdef CONFIG_TCP_MD5SIG
1215 /*
1216  * RFC2385 MD5 checksumming requires a mapping of
1217  * IP address->MD5 Key.
1218  * We need to maintain these in the sk structure.
1219  */
1220 
1221 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1222 EXPORT_SYMBOL(tcp_md5_needed);
1223 
1224 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1225 {
1226 	if (!old)
1227 		return true;
1228 
1229 	/* l3index always overrides non-l3index */
1230 	if (old->l3index && new->l3index == 0)
1231 		return false;
1232 	if (old->l3index == 0 && new->l3index)
1233 		return true;
1234 
1235 	return old->prefixlen < new->prefixlen;
1236 }
1237 
1238 /* Find the Key structure for an address.  */
1239 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1240 					   const union tcp_md5_addr *addr,
1241 					   int family, bool any_l3index)
1242 {
1243 	const struct tcp_sock *tp = tcp_sk(sk);
1244 	struct tcp_md5sig_key *key;
1245 	const struct tcp_md5sig_info *md5sig;
1246 	__be32 mask;
1247 	struct tcp_md5sig_key *best_match = NULL;
1248 	bool match;
1249 
1250 	/* caller either holds rcu_read_lock() or socket lock */
1251 	md5sig = rcu_dereference_check(tp->md5sig_info,
1252 				       lockdep_sock_is_held(sk));
1253 	if (!md5sig)
1254 		return NULL;
1255 
1256 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1257 				 lockdep_sock_is_held(sk)) {
1258 		if (key->family != family)
1259 			continue;
1260 		if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX &&
1261 		    key->l3index != l3index)
1262 			continue;
1263 		if (family == AF_INET) {
1264 			mask = inet_make_mask(key->prefixlen);
1265 			match = (key->addr.a4.s_addr & mask) ==
1266 				(addr->a4.s_addr & mask);
1267 #if IS_ENABLED(CONFIG_IPV6)
1268 		} else if (family == AF_INET6) {
1269 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1270 						  key->prefixlen);
1271 #endif
1272 		} else {
1273 			match = false;
1274 		}
1275 
1276 		if (match && better_md5_match(best_match, key))
1277 			best_match = key;
1278 	}
1279 	return best_match;
1280 }
1281 EXPORT_SYMBOL(__tcp_md5_do_lookup);
1282 
1283 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1284 						      const union tcp_md5_addr *addr,
1285 						      int family, u8 prefixlen,
1286 						      int l3index, u8 flags)
1287 {
1288 	const struct tcp_sock *tp = tcp_sk(sk);
1289 	struct tcp_md5sig_key *key;
1290 	unsigned int size = sizeof(struct in_addr);
1291 	const struct tcp_md5sig_info *md5sig;
1292 
1293 	/* caller either holds rcu_read_lock() or socket lock */
1294 	md5sig = rcu_dereference_check(tp->md5sig_info,
1295 				       lockdep_sock_is_held(sk));
1296 	if (!md5sig)
1297 		return NULL;
1298 #if IS_ENABLED(CONFIG_IPV6)
1299 	if (family == AF_INET6)
1300 		size = sizeof(struct in6_addr);
1301 #endif
1302 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1303 				 lockdep_sock_is_held(sk)) {
1304 		if (key->family != family)
1305 			continue;
1306 		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1307 			continue;
1308 		if (key->l3index != l3index)
1309 			continue;
1310 		if (!memcmp(&key->addr, addr, size) &&
1311 		    key->prefixlen == prefixlen)
1312 			return key;
1313 	}
1314 	return NULL;
1315 }
1316 
1317 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1318 					 const struct sock *addr_sk)
1319 {
1320 	const union tcp_md5_addr *addr;
1321 	int l3index;
1322 
1323 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1324 						 addr_sk->sk_bound_dev_if);
1325 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1326 	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1327 }
1328 EXPORT_SYMBOL(tcp_v4_md5_lookup);
1329 
1330 static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
1331 {
1332 	struct tcp_sock *tp = tcp_sk(sk);
1333 	struct tcp_md5sig_info *md5sig;
1334 
1335 	md5sig = kmalloc(sizeof(*md5sig), gfp);
1336 	if (!md5sig)
1337 		return -ENOMEM;
1338 
1339 	sk_gso_disable(sk);
1340 	INIT_HLIST_HEAD(&md5sig->head);
1341 	rcu_assign_pointer(tp->md5sig_info, md5sig);
1342 	return 0;
1343 }
1344 
1345 /* This can be called on a newly created socket, from other files */
1346 static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1347 			    int family, u8 prefixlen, int l3index, u8 flags,
1348 			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1349 {
1350 	/* Add Key to the list */
1351 	struct tcp_md5sig_key *key;
1352 	struct tcp_sock *tp = tcp_sk(sk);
1353 	struct tcp_md5sig_info *md5sig;
1354 
1355 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1356 	if (key) {
1357 		/* Pre-existing entry - just update that one.
1358 		 * Note that the key might be used concurrently.
1359 		 * data_race() is telling kcsan that we do not care of
1360 		 * key mismatches, since changing MD5 key on live flows
1361 		 * can lead to packet drops.
1362 		 */
1363 		data_race(memcpy(key->key, newkey, newkeylen));
1364 
1365 		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1366 		 * Also note that a reader could catch new key->keylen value
1367 		 * but old key->key[], this is the reason we use __GFP_ZERO
1368 		 * at sock_kmalloc() time below these lines.
1369 		 */
1370 		WRITE_ONCE(key->keylen, newkeylen);
1371 
1372 		return 0;
1373 	}
1374 
1375 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1376 					   lockdep_sock_is_held(sk));
1377 
1378 	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1379 	if (!key)
1380 		return -ENOMEM;
1381 
1382 	memcpy(key->key, newkey, newkeylen);
1383 	key->keylen = newkeylen;
1384 	key->family = family;
1385 	key->prefixlen = prefixlen;
1386 	key->l3index = l3index;
1387 	key->flags = flags;
1388 	memcpy(&key->addr, addr,
1389 	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1390 								 sizeof(struct in_addr));
1391 	hlist_add_head_rcu(&key->node, &md5sig->head);
1392 	return 0;
1393 }
1394 
1395 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1396 		   int family, u8 prefixlen, int l3index, u8 flags,
1397 		   const u8 *newkey, u8 newkeylen)
1398 {
1399 	struct tcp_sock *tp = tcp_sk(sk);
1400 
1401 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1402 		if (tcp_md5_alloc_sigpool())
1403 			return -ENOMEM;
1404 
1405 		if (tcp_md5sig_info_add(sk, GFP_KERNEL)) {
1406 			tcp_md5_release_sigpool();
1407 			return -ENOMEM;
1408 		}
1409 
1410 		if (!static_branch_inc(&tcp_md5_needed.key)) {
1411 			struct tcp_md5sig_info *md5sig;
1412 
1413 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1414 			rcu_assign_pointer(tp->md5sig_info, NULL);
1415 			kfree_rcu(md5sig, rcu);
1416 			tcp_md5_release_sigpool();
1417 			return -EUSERS;
1418 		}
1419 	}
1420 
1421 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1422 				newkey, newkeylen, GFP_KERNEL);
1423 }
1424 EXPORT_SYMBOL(tcp_md5_do_add);
1425 
1426 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1427 		     int family, u8 prefixlen, int l3index,
1428 		     struct tcp_md5sig_key *key)
1429 {
1430 	struct tcp_sock *tp = tcp_sk(sk);
1431 
1432 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1433 		tcp_md5_add_sigpool();
1434 
1435 		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) {
1436 			tcp_md5_release_sigpool();
1437 			return -ENOMEM;
1438 		}
1439 
1440 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1441 			struct tcp_md5sig_info *md5sig;
1442 
1443 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1444 			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1445 			rcu_assign_pointer(tp->md5sig_info, NULL);
1446 			kfree_rcu(md5sig, rcu);
1447 			tcp_md5_release_sigpool();
1448 			return -EUSERS;
1449 		}
1450 	}
1451 
1452 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1453 				key->flags, key->key, key->keylen,
1454 				sk_gfp_mask(sk, GFP_ATOMIC));
1455 }
1456 EXPORT_SYMBOL(tcp_md5_key_copy);
1457 
1458 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1459 		   u8 prefixlen, int l3index, u8 flags)
1460 {
1461 	struct tcp_md5sig_key *key;
1462 
1463 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1464 	if (!key)
1465 		return -ENOENT;
1466 	hlist_del_rcu(&key->node);
1467 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1468 	kfree_rcu(key, rcu);
1469 	return 0;
1470 }
1471 EXPORT_SYMBOL(tcp_md5_do_del);
1472 
1473 void tcp_clear_md5_list(struct sock *sk)
1474 {
1475 	struct tcp_sock *tp = tcp_sk(sk);
1476 	struct tcp_md5sig_key *key;
1477 	struct hlist_node *n;
1478 	struct tcp_md5sig_info *md5sig;
1479 
1480 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1481 
1482 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1483 		hlist_del_rcu(&key->node);
1484 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1485 		kfree_rcu(key, rcu);
1486 	}
1487 }
1488 
1489 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1490 				 sockptr_t optval, int optlen)
1491 {
1492 	struct tcp_md5sig cmd;
1493 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1494 	const union tcp_md5_addr *addr;
1495 	u8 prefixlen = 32;
1496 	int l3index = 0;
1497 	bool l3flag;
1498 	u8 flags;
1499 
1500 	if (optlen < sizeof(cmd))
1501 		return -EINVAL;
1502 
1503 	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1504 		return -EFAULT;
1505 
1506 	if (sin->sin_family != AF_INET)
1507 		return -EINVAL;
1508 
1509 	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1510 	l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1511 
1512 	if (optname == TCP_MD5SIG_EXT &&
1513 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1514 		prefixlen = cmd.tcpm_prefixlen;
1515 		if (prefixlen > 32)
1516 			return -EINVAL;
1517 	}
1518 
1519 	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1520 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1521 		struct net_device *dev;
1522 
1523 		rcu_read_lock();
1524 		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1525 		if (dev && netif_is_l3_master(dev))
1526 			l3index = dev->ifindex;
1527 
1528 		rcu_read_unlock();
1529 
1530 		/* ok to reference set/not set outside of rcu;
1531 		 * right now device MUST be an L3 master
1532 		 */
1533 		if (!dev || !l3index)
1534 			return -EINVAL;
1535 	}
1536 
1537 	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1538 
1539 	if (!cmd.tcpm_keylen)
1540 		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1541 
1542 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1543 		return -EINVAL;
1544 
1545 	/* Don't allow keys for peers that have a matching TCP-AO key.
1546 	 * See the comment in tcp_ao_add_cmd()
1547 	 */
1548 	if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false))
1549 		return -EKEYREJECTED;
1550 
1551 	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1552 			      cmd.tcpm_key, cmd.tcpm_keylen);
1553 }
1554 
1555 static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp,
1556 				   __be32 daddr, __be32 saddr,
1557 				   const struct tcphdr *th, int nbytes)
1558 {
1559 	struct tcp4_pseudohdr *bp;
1560 	struct scatterlist sg;
1561 	struct tcphdr *_th;
1562 
1563 	bp = hp->scratch;
1564 	bp->saddr = saddr;
1565 	bp->daddr = daddr;
1566 	bp->pad = 0;
1567 	bp->protocol = IPPROTO_TCP;
1568 	bp->len = cpu_to_be16(nbytes);
1569 
1570 	_th = (struct tcphdr *)(bp + 1);
1571 	memcpy(_th, th, sizeof(*th));
1572 	_th->check = 0;
1573 
1574 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1575 	ahash_request_set_crypt(hp->req, &sg, NULL,
1576 				sizeof(*bp) + sizeof(*th));
1577 	return crypto_ahash_update(hp->req);
1578 }
1579 
1580 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1581 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1582 {
1583 	struct tcp_sigpool hp;
1584 
1585 	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1586 		goto clear_hash_nostart;
1587 
1588 	if (crypto_ahash_init(hp.req))
1589 		goto clear_hash;
1590 	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2))
1591 		goto clear_hash;
1592 	if (tcp_md5_hash_key(&hp, key))
1593 		goto clear_hash;
1594 	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1595 	if (crypto_ahash_final(hp.req))
1596 		goto clear_hash;
1597 
1598 	tcp_sigpool_end(&hp);
1599 	return 0;
1600 
1601 clear_hash:
1602 	tcp_sigpool_end(&hp);
1603 clear_hash_nostart:
1604 	memset(md5_hash, 0, 16);
1605 	return 1;
1606 }
1607 
1608 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1609 			const struct sock *sk,
1610 			const struct sk_buff *skb)
1611 {
1612 	const struct tcphdr *th = tcp_hdr(skb);
1613 	struct tcp_sigpool hp;
1614 	__be32 saddr, daddr;
1615 
1616 	if (sk) { /* valid for establish/request sockets */
1617 		saddr = sk->sk_rcv_saddr;
1618 		daddr = sk->sk_daddr;
1619 	} else {
1620 		const struct iphdr *iph = ip_hdr(skb);
1621 		saddr = iph->saddr;
1622 		daddr = iph->daddr;
1623 	}
1624 
1625 	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1626 		goto clear_hash_nostart;
1627 
1628 	if (crypto_ahash_init(hp.req))
1629 		goto clear_hash;
1630 
1631 	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len))
1632 		goto clear_hash;
1633 	if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2))
1634 		goto clear_hash;
1635 	if (tcp_md5_hash_key(&hp, key))
1636 		goto clear_hash;
1637 	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1638 	if (crypto_ahash_final(hp.req))
1639 		goto clear_hash;
1640 
1641 	tcp_sigpool_end(&hp);
1642 	return 0;
1643 
1644 clear_hash:
1645 	tcp_sigpool_end(&hp);
1646 clear_hash_nostart:
1647 	memset(md5_hash, 0, 16);
1648 	return 1;
1649 }
1650 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1651 
1652 #endif
1653 
1654 static void tcp_v4_init_req(struct request_sock *req,
1655 			    const struct sock *sk_listener,
1656 			    struct sk_buff *skb)
1657 {
1658 	struct inet_request_sock *ireq = inet_rsk(req);
1659 	struct net *net = sock_net(sk_listener);
1660 
1661 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1662 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1663 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1664 }
1665 
1666 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1667 					  struct sk_buff *skb,
1668 					  struct flowi *fl,
1669 					  struct request_sock *req,
1670 					  u32 tw_isn)
1671 {
1672 	tcp_v4_init_req(req, sk, skb);
1673 
1674 	if (security_inet_conn_request(sk, skb, req))
1675 		return NULL;
1676 
1677 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1678 }
1679 
1680 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1681 	.family		=	PF_INET,
1682 	.obj_size	=	sizeof(struct tcp_request_sock),
1683 	.rtx_syn_ack	=	tcp_rtx_synack,
1684 	.send_ack	=	tcp_v4_reqsk_send_ack,
1685 	.destructor	=	tcp_v4_reqsk_destructor,
1686 	.send_reset	=	tcp_v4_send_reset,
1687 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1688 };
1689 
1690 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1691 	.mss_clamp	=	TCP_MSS_DEFAULT,
1692 #ifdef CONFIG_TCP_MD5SIG
1693 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1694 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1695 #endif
1696 #ifdef CONFIG_TCP_AO
1697 	.ao_lookup	=	tcp_v4_ao_lookup_rsk,
1698 	.ao_calc_key	=	tcp_v4_ao_calc_key_rsk,
1699 	.ao_synack_hash	=	tcp_v4_ao_synack_hash,
1700 #endif
1701 #ifdef CONFIG_SYN_COOKIES
1702 	.cookie_init_seq =	cookie_v4_init_sequence,
1703 #endif
1704 	.route_req	=	tcp_v4_route_req,
1705 	.init_seq	=	tcp_v4_init_seq,
1706 	.init_ts_off	=	tcp_v4_init_ts_off,
1707 	.send_synack	=	tcp_v4_send_synack,
1708 };
1709 
1710 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1711 {
1712 	/* Never answer to SYNs send to broadcast or multicast */
1713 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1714 		goto drop;
1715 
1716 	return tcp_conn_request(&tcp_request_sock_ops,
1717 				&tcp_request_sock_ipv4_ops, sk, skb);
1718 
1719 drop:
1720 	tcp_listendrop(sk);
1721 	return 0;
1722 }
1723 EXPORT_SYMBOL(tcp_v4_conn_request);
1724 
1725 
1726 /*
1727  * The three way handshake has completed - we got a valid synack -
1728  * now create the new socket.
1729  */
1730 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1731 				  struct request_sock *req,
1732 				  struct dst_entry *dst,
1733 				  struct request_sock *req_unhash,
1734 				  bool *own_req)
1735 {
1736 	struct inet_request_sock *ireq;
1737 	bool found_dup_sk = false;
1738 	struct inet_sock *newinet;
1739 	struct tcp_sock *newtp;
1740 	struct sock *newsk;
1741 #ifdef CONFIG_TCP_MD5SIG
1742 	const union tcp_md5_addr *addr;
1743 	struct tcp_md5sig_key *key;
1744 	int l3index;
1745 #endif
1746 	struct ip_options_rcu *inet_opt;
1747 
1748 	if (sk_acceptq_is_full(sk))
1749 		goto exit_overflow;
1750 
1751 	newsk = tcp_create_openreq_child(sk, req, skb);
1752 	if (!newsk)
1753 		goto exit_nonewsk;
1754 
1755 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1756 	inet_sk_rx_dst_set(newsk, skb);
1757 
1758 	newtp		      = tcp_sk(newsk);
1759 	newinet		      = inet_sk(newsk);
1760 	ireq		      = inet_rsk(req);
1761 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1762 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1763 	newsk->sk_bound_dev_if = ireq->ir_iif;
1764 	newinet->inet_saddr   = ireq->ir_loc_addr;
1765 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1766 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1767 	newinet->mc_index     = inet_iif(skb);
1768 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1769 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1770 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1771 	if (inet_opt)
1772 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1773 	atomic_set(&newinet->inet_id, get_random_u16());
1774 
1775 	/* Set ToS of the new socket based upon the value of incoming SYN.
1776 	 * ECT bits are set later in tcp_init_transfer().
1777 	 */
1778 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1779 		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1780 
1781 	if (!dst) {
1782 		dst = inet_csk_route_child_sock(sk, newsk, req);
1783 		if (!dst)
1784 			goto put_and_exit;
1785 	} else {
1786 		/* syncookie case : see end of cookie_v4_check() */
1787 	}
1788 	sk_setup_caps(newsk, dst);
1789 
1790 	tcp_ca_openreq_child(newsk, dst);
1791 
1792 	tcp_sync_mss(newsk, dst_mtu(dst));
1793 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1794 
1795 	tcp_initialize_rcv_mss(newsk);
1796 
1797 #ifdef CONFIG_TCP_MD5SIG
1798 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1799 	/* Copy over the MD5 key from the original socket */
1800 	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1801 	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1802 	if (key && !tcp_rsk_used_ao(req)) {
1803 		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1804 			goto put_and_exit;
1805 		sk_gso_disable(newsk);
1806 	}
1807 #endif
1808 #ifdef CONFIG_TCP_AO
1809 	if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET))
1810 		goto put_and_exit; /* OOM, release back memory */
1811 #endif
1812 
1813 	if (__inet_inherit_port(sk, newsk) < 0)
1814 		goto put_and_exit;
1815 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1816 				       &found_dup_sk);
1817 	if (likely(*own_req)) {
1818 		tcp_move_syn(newtp, req);
1819 		ireq->ireq_opt = NULL;
1820 	} else {
1821 		newinet->inet_opt = NULL;
1822 
1823 		if (!req_unhash && found_dup_sk) {
1824 			/* This code path should only be executed in the
1825 			 * syncookie case only
1826 			 */
1827 			bh_unlock_sock(newsk);
1828 			sock_put(newsk);
1829 			newsk = NULL;
1830 		}
1831 	}
1832 	return newsk;
1833 
1834 exit_overflow:
1835 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1836 exit_nonewsk:
1837 	dst_release(dst);
1838 exit:
1839 	tcp_listendrop(sk);
1840 	return NULL;
1841 put_and_exit:
1842 	newinet->inet_opt = NULL;
1843 	inet_csk_prepare_forced_close(newsk);
1844 	tcp_done(newsk);
1845 	goto exit;
1846 }
1847 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1848 
1849 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1850 {
1851 #ifdef CONFIG_SYN_COOKIES
1852 	const struct tcphdr *th = tcp_hdr(skb);
1853 
1854 	if (!th->syn)
1855 		sk = cookie_v4_check(sk, skb);
1856 #endif
1857 	return sk;
1858 }
1859 
1860 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1861 			 struct tcphdr *th, u32 *cookie)
1862 {
1863 	u16 mss = 0;
1864 #ifdef CONFIG_SYN_COOKIES
1865 	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1866 				    &tcp_request_sock_ipv4_ops, sk, th);
1867 	if (mss) {
1868 		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1869 		tcp_synq_overflow(sk);
1870 	}
1871 #endif
1872 	return mss;
1873 }
1874 
1875 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1876 							   u32));
1877 /* The socket must have it's spinlock held when we get
1878  * here, unless it is a TCP_LISTEN socket.
1879  *
1880  * We have a potential double-lock case here, so even when
1881  * doing backlog processing we use the BH locking scheme.
1882  * This is because we cannot sleep with the original spinlock
1883  * held.
1884  */
1885 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1886 {
1887 	enum skb_drop_reason reason;
1888 	struct sock *rsk;
1889 
1890 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1891 		struct dst_entry *dst;
1892 
1893 		dst = rcu_dereference_protected(sk->sk_rx_dst,
1894 						lockdep_sock_is_held(sk));
1895 
1896 		sock_rps_save_rxhash(sk, skb);
1897 		sk_mark_napi_id(sk, skb);
1898 		if (dst) {
1899 			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1900 			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1901 					     dst, 0)) {
1902 				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1903 				dst_release(dst);
1904 			}
1905 		}
1906 		tcp_rcv_established(sk, skb);
1907 		return 0;
1908 	}
1909 
1910 	if (tcp_checksum_complete(skb))
1911 		goto csum_err;
1912 
1913 	if (sk->sk_state == TCP_LISTEN) {
1914 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1915 
1916 		if (!nsk)
1917 			return 0;
1918 		if (nsk != sk) {
1919 			reason = tcp_child_process(sk, nsk, skb);
1920 			if (reason) {
1921 				rsk = nsk;
1922 				goto reset;
1923 			}
1924 			return 0;
1925 		}
1926 	} else
1927 		sock_rps_save_rxhash(sk, skb);
1928 
1929 	reason = tcp_rcv_state_process(sk, skb);
1930 	if (reason) {
1931 		rsk = sk;
1932 		goto reset;
1933 	}
1934 	return 0;
1935 
1936 reset:
1937 	tcp_v4_send_reset(rsk, skb);
1938 discard:
1939 	kfree_skb_reason(skb, reason);
1940 	/* Be careful here. If this function gets more complicated and
1941 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1942 	 * might be destroyed here. This current version compiles correctly,
1943 	 * but you have been warned.
1944 	 */
1945 	return 0;
1946 
1947 csum_err:
1948 	reason = SKB_DROP_REASON_TCP_CSUM;
1949 	trace_tcp_bad_csum(skb);
1950 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1951 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1952 	goto discard;
1953 }
1954 EXPORT_SYMBOL(tcp_v4_do_rcv);
1955 
1956 int tcp_v4_early_demux(struct sk_buff *skb)
1957 {
1958 	struct net *net = dev_net(skb->dev);
1959 	const struct iphdr *iph;
1960 	const struct tcphdr *th;
1961 	struct sock *sk;
1962 
1963 	if (skb->pkt_type != PACKET_HOST)
1964 		return 0;
1965 
1966 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1967 		return 0;
1968 
1969 	iph = ip_hdr(skb);
1970 	th = tcp_hdr(skb);
1971 
1972 	if (th->doff < sizeof(struct tcphdr) / 4)
1973 		return 0;
1974 
1975 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1976 				       iph->saddr, th->source,
1977 				       iph->daddr, ntohs(th->dest),
1978 				       skb->skb_iif, inet_sdif(skb));
1979 	if (sk) {
1980 		skb->sk = sk;
1981 		skb->destructor = sock_edemux;
1982 		if (sk_fullsock(sk)) {
1983 			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1984 
1985 			if (dst)
1986 				dst = dst_check(dst, 0);
1987 			if (dst &&
1988 			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1989 				skb_dst_set_noref(skb, dst);
1990 		}
1991 	}
1992 	return 0;
1993 }
1994 
1995 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1996 		     enum skb_drop_reason *reason)
1997 {
1998 	u32 tail_gso_size, tail_gso_segs;
1999 	struct skb_shared_info *shinfo;
2000 	const struct tcphdr *th;
2001 	struct tcphdr *thtail;
2002 	struct sk_buff *tail;
2003 	unsigned int hdrlen;
2004 	bool fragstolen;
2005 	u32 gso_segs;
2006 	u32 gso_size;
2007 	u64 limit;
2008 	int delta;
2009 
2010 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
2011 	 * we can fix skb->truesize to its real value to avoid future drops.
2012 	 * This is valid because skb is not yet charged to the socket.
2013 	 * It has been noticed pure SACK packets were sometimes dropped
2014 	 * (if cooked by drivers without copybreak feature).
2015 	 */
2016 	skb_condense(skb);
2017 
2018 	skb_dst_drop(skb);
2019 
2020 	if (unlikely(tcp_checksum_complete(skb))) {
2021 		bh_unlock_sock(sk);
2022 		trace_tcp_bad_csum(skb);
2023 		*reason = SKB_DROP_REASON_TCP_CSUM;
2024 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
2025 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
2026 		return true;
2027 	}
2028 
2029 	/* Attempt coalescing to last skb in backlog, even if we are
2030 	 * above the limits.
2031 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
2032 	 */
2033 	th = (const struct tcphdr *)skb->data;
2034 	hdrlen = th->doff * 4;
2035 
2036 	tail = sk->sk_backlog.tail;
2037 	if (!tail)
2038 		goto no_coalesce;
2039 	thtail = (struct tcphdr *)tail->data;
2040 
2041 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
2042 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
2043 	    ((TCP_SKB_CB(tail)->tcp_flags |
2044 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
2045 	    !((TCP_SKB_CB(tail)->tcp_flags &
2046 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
2047 	    ((TCP_SKB_CB(tail)->tcp_flags ^
2048 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
2049 	    !mptcp_skb_can_collapse(tail, skb) ||
2050 	    skb_cmp_decrypted(tail, skb) ||
2051 	    thtail->doff != th->doff ||
2052 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
2053 		goto no_coalesce;
2054 
2055 	__skb_pull(skb, hdrlen);
2056 
2057 	shinfo = skb_shinfo(skb);
2058 	gso_size = shinfo->gso_size ?: skb->len;
2059 	gso_segs = shinfo->gso_segs ?: 1;
2060 
2061 	shinfo = skb_shinfo(tail);
2062 	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
2063 	tail_gso_segs = shinfo->gso_segs ?: 1;
2064 
2065 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
2066 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
2067 
2068 		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
2069 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
2070 			thtail->window = th->window;
2071 		}
2072 
2073 		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
2074 		 * thtail->fin, so that the fast path in tcp_rcv_established()
2075 		 * is not entered if we append a packet with a FIN.
2076 		 * SYN, RST, URG are not present.
2077 		 * ACK is set on both packets.
2078 		 * PSH : we do not really care in TCP stack,
2079 		 *       at least for 'GRO' packets.
2080 		 */
2081 		thtail->fin |= th->fin;
2082 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2083 
2084 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2085 			TCP_SKB_CB(tail)->has_rxtstamp = true;
2086 			tail->tstamp = skb->tstamp;
2087 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
2088 		}
2089 
2090 		/* Not as strict as GRO. We only need to carry mss max value */
2091 		shinfo->gso_size = max(gso_size, tail_gso_size);
2092 		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
2093 
2094 		sk->sk_backlog.len += delta;
2095 		__NET_INC_STATS(sock_net(sk),
2096 				LINUX_MIB_TCPBACKLOGCOALESCE);
2097 		kfree_skb_partial(skb, fragstolen);
2098 		return false;
2099 	}
2100 	__skb_push(skb, hdrlen);
2101 
2102 no_coalesce:
2103 	/* sk->sk_backlog.len is reset only at the end of __release_sock().
2104 	 * Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach
2105 	 * sk_rcvbuf in normal conditions.
2106 	 */
2107 	limit = ((u64)READ_ONCE(sk->sk_rcvbuf)) << 1;
2108 
2109 	limit += ((u32)READ_ONCE(sk->sk_sndbuf)) >> 1;
2110 
2111 	/* Only socket owner can try to collapse/prune rx queues
2112 	 * to reduce memory overhead, so add a little headroom here.
2113 	 * Few sockets backlog are possibly concurrently non empty.
2114 	 */
2115 	limit += 64 * 1024;
2116 
2117 	limit = min_t(u64, limit, UINT_MAX);
2118 
2119 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
2120 		bh_unlock_sock(sk);
2121 		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
2122 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
2123 		return true;
2124 	}
2125 	return false;
2126 }
2127 EXPORT_SYMBOL(tcp_add_backlog);
2128 
2129 int tcp_filter(struct sock *sk, struct sk_buff *skb)
2130 {
2131 	struct tcphdr *th = (struct tcphdr *)skb->data;
2132 
2133 	return sk_filter_trim_cap(sk, skb, th->doff * 4);
2134 }
2135 EXPORT_SYMBOL(tcp_filter);
2136 
2137 static void tcp_v4_restore_cb(struct sk_buff *skb)
2138 {
2139 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
2140 		sizeof(struct inet_skb_parm));
2141 }
2142 
2143 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
2144 			   const struct tcphdr *th)
2145 {
2146 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
2147 	 * barrier() makes sure compiler wont play fool^Waliasing games.
2148 	 */
2149 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
2150 		sizeof(struct inet_skb_parm));
2151 	barrier();
2152 
2153 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2154 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2155 				    skb->len - th->doff * 4);
2156 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2157 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
2158 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2159 	TCP_SKB_CB(skb)->sacked	 = 0;
2160 	TCP_SKB_CB(skb)->has_rxtstamp =
2161 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
2162 }
2163 
2164 /*
2165  *	From tcp_input.c
2166  */
2167 
2168 int tcp_v4_rcv(struct sk_buff *skb)
2169 {
2170 	struct net *net = dev_net(skb->dev);
2171 	enum skb_drop_reason drop_reason;
2172 	int sdif = inet_sdif(skb);
2173 	int dif = inet_iif(skb);
2174 	const struct iphdr *iph;
2175 	const struct tcphdr *th;
2176 	bool refcounted;
2177 	struct sock *sk;
2178 	int ret;
2179 	u32 isn;
2180 
2181 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2182 	if (skb->pkt_type != PACKET_HOST)
2183 		goto discard_it;
2184 
2185 	/* Count it even if it's bad */
2186 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2187 
2188 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2189 		goto discard_it;
2190 
2191 	th = (const struct tcphdr *)skb->data;
2192 
2193 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2194 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2195 		goto bad_packet;
2196 	}
2197 	if (!pskb_may_pull(skb, th->doff * 4))
2198 		goto discard_it;
2199 
2200 	/* An explanation is required here, I think.
2201 	 * Packet length and doff are validated by header prediction,
2202 	 * provided case of th->doff==0 is eliminated.
2203 	 * So, we defer the checks. */
2204 
2205 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2206 		goto csum_error;
2207 
2208 	th = (const struct tcphdr *)skb->data;
2209 	iph = ip_hdr(skb);
2210 lookup:
2211 	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2212 			       skb, __tcp_hdrlen(th), th->source,
2213 			       th->dest, sdif, &refcounted);
2214 	if (!sk)
2215 		goto no_tcp_socket;
2216 
2217 	if (sk->sk_state == TCP_TIME_WAIT)
2218 		goto do_time_wait;
2219 
2220 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2221 		struct request_sock *req = inet_reqsk(sk);
2222 		bool req_stolen = false;
2223 		struct sock *nsk;
2224 
2225 		sk = req->rsk_listener;
2226 		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2227 			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2228 		else
2229 			drop_reason = tcp_inbound_hash(sk, req, skb,
2230 						       &iph->saddr, &iph->daddr,
2231 						       AF_INET, dif, sdif);
2232 		if (unlikely(drop_reason)) {
2233 			sk_drops_add(sk, skb);
2234 			reqsk_put(req);
2235 			goto discard_it;
2236 		}
2237 		if (tcp_checksum_complete(skb)) {
2238 			reqsk_put(req);
2239 			goto csum_error;
2240 		}
2241 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2242 			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2243 			if (!nsk) {
2244 				inet_csk_reqsk_queue_drop_and_put(sk, req);
2245 				goto lookup;
2246 			}
2247 			sk = nsk;
2248 			/* reuseport_migrate_sock() has already held one sk_refcnt
2249 			 * before returning.
2250 			 */
2251 		} else {
2252 			/* We own a reference on the listener, increase it again
2253 			 * as we might lose it too soon.
2254 			 */
2255 			sock_hold(sk);
2256 		}
2257 		refcounted = true;
2258 		nsk = NULL;
2259 		if (!tcp_filter(sk, skb)) {
2260 			th = (const struct tcphdr *)skb->data;
2261 			iph = ip_hdr(skb);
2262 			tcp_v4_fill_cb(skb, iph, th);
2263 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2264 		} else {
2265 			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2266 		}
2267 		if (!nsk) {
2268 			reqsk_put(req);
2269 			if (req_stolen) {
2270 				/* Another cpu got exclusive access to req
2271 				 * and created a full blown socket.
2272 				 * Try to feed this packet to this socket
2273 				 * instead of discarding it.
2274 				 */
2275 				tcp_v4_restore_cb(skb);
2276 				sock_put(sk);
2277 				goto lookup;
2278 			}
2279 			goto discard_and_relse;
2280 		}
2281 		nf_reset_ct(skb);
2282 		if (nsk == sk) {
2283 			reqsk_put(req);
2284 			tcp_v4_restore_cb(skb);
2285 		} else {
2286 			drop_reason = tcp_child_process(sk, nsk, skb);
2287 			if (drop_reason) {
2288 				tcp_v4_send_reset(nsk, skb);
2289 				goto discard_and_relse;
2290 			}
2291 			sock_put(sk);
2292 			return 0;
2293 		}
2294 	}
2295 
2296 process:
2297 	if (static_branch_unlikely(&ip4_min_ttl)) {
2298 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2299 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2300 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2301 			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2302 			goto discard_and_relse;
2303 		}
2304 	}
2305 
2306 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2307 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2308 		goto discard_and_relse;
2309 	}
2310 
2311 	drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr,
2312 				       AF_INET, dif, sdif);
2313 	if (drop_reason)
2314 		goto discard_and_relse;
2315 
2316 	nf_reset_ct(skb);
2317 
2318 	if (tcp_filter(sk, skb)) {
2319 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2320 		goto discard_and_relse;
2321 	}
2322 	th = (const struct tcphdr *)skb->data;
2323 	iph = ip_hdr(skb);
2324 	tcp_v4_fill_cb(skb, iph, th);
2325 
2326 	skb->dev = NULL;
2327 
2328 	if (sk->sk_state == TCP_LISTEN) {
2329 		ret = tcp_v4_do_rcv(sk, skb);
2330 		goto put_and_return;
2331 	}
2332 
2333 	sk_incoming_cpu_update(sk);
2334 
2335 	bh_lock_sock_nested(sk);
2336 	tcp_segs_in(tcp_sk(sk), skb);
2337 	ret = 0;
2338 	if (!sock_owned_by_user(sk)) {
2339 		ret = tcp_v4_do_rcv(sk, skb);
2340 	} else {
2341 		if (tcp_add_backlog(sk, skb, &drop_reason))
2342 			goto discard_and_relse;
2343 	}
2344 	bh_unlock_sock(sk);
2345 
2346 put_and_return:
2347 	if (refcounted)
2348 		sock_put(sk);
2349 
2350 	return ret;
2351 
2352 no_tcp_socket:
2353 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2354 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2355 		goto discard_it;
2356 
2357 	tcp_v4_fill_cb(skb, iph, th);
2358 
2359 	if (tcp_checksum_complete(skb)) {
2360 csum_error:
2361 		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2362 		trace_tcp_bad_csum(skb);
2363 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2364 bad_packet:
2365 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2366 	} else {
2367 		tcp_v4_send_reset(NULL, skb);
2368 	}
2369 
2370 discard_it:
2371 	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2372 	/* Discard frame. */
2373 	kfree_skb_reason(skb, drop_reason);
2374 	return 0;
2375 
2376 discard_and_relse:
2377 	sk_drops_add(sk, skb);
2378 	if (refcounted)
2379 		sock_put(sk);
2380 	goto discard_it;
2381 
2382 do_time_wait:
2383 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2384 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2385 		inet_twsk_put(inet_twsk(sk));
2386 		goto discard_it;
2387 	}
2388 
2389 	tcp_v4_fill_cb(skb, iph, th);
2390 
2391 	if (tcp_checksum_complete(skb)) {
2392 		inet_twsk_put(inet_twsk(sk));
2393 		goto csum_error;
2394 	}
2395 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th, &isn)) {
2396 	case TCP_TW_SYN: {
2397 		struct sock *sk2 = inet_lookup_listener(net,
2398 							net->ipv4.tcp_death_row.hashinfo,
2399 							skb, __tcp_hdrlen(th),
2400 							iph->saddr, th->source,
2401 							iph->daddr, th->dest,
2402 							inet_iif(skb),
2403 							sdif);
2404 		if (sk2) {
2405 			inet_twsk_deschedule_put(inet_twsk(sk));
2406 			sk = sk2;
2407 			tcp_v4_restore_cb(skb);
2408 			refcounted = false;
2409 			__this_cpu_write(tcp_tw_isn, isn);
2410 			goto process;
2411 		}
2412 	}
2413 		/* to ACK */
2414 		fallthrough;
2415 	case TCP_TW_ACK:
2416 		tcp_v4_timewait_ack(sk, skb);
2417 		break;
2418 	case TCP_TW_RST:
2419 		tcp_v4_send_reset(sk, skb);
2420 		inet_twsk_deschedule_put(inet_twsk(sk));
2421 		goto discard_it;
2422 	case TCP_TW_SUCCESS:;
2423 	}
2424 	goto discard_it;
2425 }
2426 
2427 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2428 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2429 	.twsk_unique	= tcp_twsk_unique,
2430 	.twsk_destructor= tcp_twsk_destructor,
2431 };
2432 
2433 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2434 {
2435 	struct dst_entry *dst = skb_dst(skb);
2436 
2437 	if (dst && dst_hold_safe(dst)) {
2438 		rcu_assign_pointer(sk->sk_rx_dst, dst);
2439 		sk->sk_rx_dst_ifindex = skb->skb_iif;
2440 	}
2441 }
2442 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2443 
2444 const struct inet_connection_sock_af_ops ipv4_specific = {
2445 	.queue_xmit	   = ip_queue_xmit,
2446 	.send_check	   = tcp_v4_send_check,
2447 	.rebuild_header	   = inet_sk_rebuild_header,
2448 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2449 	.conn_request	   = tcp_v4_conn_request,
2450 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2451 	.net_header_len	   = sizeof(struct iphdr),
2452 	.setsockopt	   = ip_setsockopt,
2453 	.getsockopt	   = ip_getsockopt,
2454 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2455 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2456 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2457 };
2458 EXPORT_SYMBOL(ipv4_specific);
2459 
2460 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2461 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2462 #ifdef CONFIG_TCP_MD5SIG
2463 	.md5_lookup		= tcp_v4_md5_lookup,
2464 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2465 	.md5_parse		= tcp_v4_parse_md5_keys,
2466 #endif
2467 #ifdef CONFIG_TCP_AO
2468 	.ao_lookup		= tcp_v4_ao_lookup,
2469 	.calc_ao_hash		= tcp_v4_ao_hash_skb,
2470 	.ao_parse		= tcp_v4_parse_ao,
2471 	.ao_calc_key_sk		= tcp_v4_ao_calc_key_sk,
2472 #endif
2473 };
2474 #endif
2475 
2476 /* NOTE: A lot of things set to zero explicitly by call to
2477  *       sk_alloc() so need not be done here.
2478  */
2479 static int tcp_v4_init_sock(struct sock *sk)
2480 {
2481 	struct inet_connection_sock *icsk = inet_csk(sk);
2482 
2483 	tcp_init_sock(sk);
2484 
2485 	icsk->icsk_af_ops = &ipv4_specific;
2486 
2487 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2488 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2489 #endif
2490 
2491 	return 0;
2492 }
2493 
2494 #ifdef CONFIG_TCP_MD5SIG
2495 static void tcp_md5sig_info_free_rcu(struct rcu_head *head)
2496 {
2497 	struct tcp_md5sig_info *md5sig;
2498 
2499 	md5sig = container_of(head, struct tcp_md5sig_info, rcu);
2500 	kfree(md5sig);
2501 	static_branch_slow_dec_deferred(&tcp_md5_needed);
2502 	tcp_md5_release_sigpool();
2503 }
2504 #endif
2505 
2506 void tcp_v4_destroy_sock(struct sock *sk)
2507 {
2508 	struct tcp_sock *tp = tcp_sk(sk);
2509 
2510 	trace_tcp_destroy_sock(sk);
2511 
2512 	tcp_clear_xmit_timers(sk);
2513 
2514 	tcp_cleanup_congestion_control(sk);
2515 
2516 	tcp_cleanup_ulp(sk);
2517 
2518 	/* Cleanup up the write buffer. */
2519 	tcp_write_queue_purge(sk);
2520 
2521 	/* Check if we want to disable active TFO */
2522 	tcp_fastopen_active_disable_ofo_check(sk);
2523 
2524 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2525 	skb_rbtree_purge(&tp->out_of_order_queue);
2526 
2527 #ifdef CONFIG_TCP_MD5SIG
2528 	/* Clean up the MD5 key list, if any */
2529 	if (tp->md5sig_info) {
2530 		struct tcp_md5sig_info *md5sig;
2531 
2532 		md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
2533 		tcp_clear_md5_list(sk);
2534 		call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu);
2535 		rcu_assign_pointer(tp->md5sig_info, NULL);
2536 	}
2537 #endif
2538 	tcp_ao_destroy_sock(sk, false);
2539 
2540 	/* Clean up a referenced TCP bind bucket. */
2541 	if (inet_csk(sk)->icsk_bind_hash)
2542 		inet_put_port(sk);
2543 
2544 	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2545 
2546 	/* If socket is aborted during connect operation */
2547 	tcp_free_fastopen_req(tp);
2548 	tcp_fastopen_destroy_cipher(sk);
2549 	tcp_saved_syn_free(tp);
2550 
2551 	sk_sockets_allocated_dec(sk);
2552 }
2553 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2554 
2555 #ifdef CONFIG_PROC_FS
2556 /* Proc filesystem TCP sock list dumping. */
2557 
2558 static unsigned short seq_file_family(const struct seq_file *seq);
2559 
2560 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2561 {
2562 	unsigned short family = seq_file_family(seq);
2563 
2564 	/* AF_UNSPEC is used as a match all */
2565 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2566 		net_eq(sock_net(sk), seq_file_net(seq)));
2567 }
2568 
2569 /* Find a non empty bucket (starting from st->bucket)
2570  * and return the first sk from it.
2571  */
2572 static void *listening_get_first(struct seq_file *seq)
2573 {
2574 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2575 	struct tcp_iter_state *st = seq->private;
2576 
2577 	st->offset = 0;
2578 	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2579 		struct inet_listen_hashbucket *ilb2;
2580 		struct hlist_nulls_node *node;
2581 		struct sock *sk;
2582 
2583 		ilb2 = &hinfo->lhash2[st->bucket];
2584 		if (hlist_nulls_empty(&ilb2->nulls_head))
2585 			continue;
2586 
2587 		spin_lock(&ilb2->lock);
2588 		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2589 			if (seq_sk_match(seq, sk))
2590 				return sk;
2591 		}
2592 		spin_unlock(&ilb2->lock);
2593 	}
2594 
2595 	return NULL;
2596 }
2597 
2598 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2599  * If "cur" is the last one in the st->bucket,
2600  * call listening_get_first() to return the first sk of the next
2601  * non empty bucket.
2602  */
2603 static void *listening_get_next(struct seq_file *seq, void *cur)
2604 {
2605 	struct tcp_iter_state *st = seq->private;
2606 	struct inet_listen_hashbucket *ilb2;
2607 	struct hlist_nulls_node *node;
2608 	struct inet_hashinfo *hinfo;
2609 	struct sock *sk = cur;
2610 
2611 	++st->num;
2612 	++st->offset;
2613 
2614 	sk = sk_nulls_next(sk);
2615 	sk_nulls_for_each_from(sk, node) {
2616 		if (seq_sk_match(seq, sk))
2617 			return sk;
2618 	}
2619 
2620 	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2621 	ilb2 = &hinfo->lhash2[st->bucket];
2622 	spin_unlock(&ilb2->lock);
2623 	++st->bucket;
2624 	return listening_get_first(seq);
2625 }
2626 
2627 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2628 {
2629 	struct tcp_iter_state *st = seq->private;
2630 	void *rc;
2631 
2632 	st->bucket = 0;
2633 	st->offset = 0;
2634 	rc = listening_get_first(seq);
2635 
2636 	while (rc && *pos) {
2637 		rc = listening_get_next(seq, rc);
2638 		--*pos;
2639 	}
2640 	return rc;
2641 }
2642 
2643 static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2644 				const struct tcp_iter_state *st)
2645 {
2646 	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2647 }
2648 
2649 /*
2650  * Get first established socket starting from bucket given in st->bucket.
2651  * If st->bucket is zero, the very first socket in the hash is returned.
2652  */
2653 static void *established_get_first(struct seq_file *seq)
2654 {
2655 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2656 	struct tcp_iter_state *st = seq->private;
2657 
2658 	st->offset = 0;
2659 	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2660 		struct sock *sk;
2661 		struct hlist_nulls_node *node;
2662 		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2663 
2664 		cond_resched();
2665 
2666 		/* Lockless fast path for the common case of empty buckets */
2667 		if (empty_bucket(hinfo, st))
2668 			continue;
2669 
2670 		spin_lock_bh(lock);
2671 		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2672 			if (seq_sk_match(seq, sk))
2673 				return sk;
2674 		}
2675 		spin_unlock_bh(lock);
2676 	}
2677 
2678 	return NULL;
2679 }
2680 
2681 static void *established_get_next(struct seq_file *seq, void *cur)
2682 {
2683 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2684 	struct tcp_iter_state *st = seq->private;
2685 	struct hlist_nulls_node *node;
2686 	struct sock *sk = cur;
2687 
2688 	++st->num;
2689 	++st->offset;
2690 
2691 	sk = sk_nulls_next(sk);
2692 
2693 	sk_nulls_for_each_from(sk, node) {
2694 		if (seq_sk_match(seq, sk))
2695 			return sk;
2696 	}
2697 
2698 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2699 	++st->bucket;
2700 	return established_get_first(seq);
2701 }
2702 
2703 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2704 {
2705 	struct tcp_iter_state *st = seq->private;
2706 	void *rc;
2707 
2708 	st->bucket = 0;
2709 	rc = established_get_first(seq);
2710 
2711 	while (rc && pos) {
2712 		rc = established_get_next(seq, rc);
2713 		--pos;
2714 	}
2715 	return rc;
2716 }
2717 
2718 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2719 {
2720 	void *rc;
2721 	struct tcp_iter_state *st = seq->private;
2722 
2723 	st->state = TCP_SEQ_STATE_LISTENING;
2724 	rc	  = listening_get_idx(seq, &pos);
2725 
2726 	if (!rc) {
2727 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2728 		rc	  = established_get_idx(seq, pos);
2729 	}
2730 
2731 	return rc;
2732 }
2733 
2734 static void *tcp_seek_last_pos(struct seq_file *seq)
2735 {
2736 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2737 	struct tcp_iter_state *st = seq->private;
2738 	int bucket = st->bucket;
2739 	int offset = st->offset;
2740 	int orig_num = st->num;
2741 	void *rc = NULL;
2742 
2743 	switch (st->state) {
2744 	case TCP_SEQ_STATE_LISTENING:
2745 		if (st->bucket > hinfo->lhash2_mask)
2746 			break;
2747 		rc = listening_get_first(seq);
2748 		while (offset-- && rc && bucket == st->bucket)
2749 			rc = listening_get_next(seq, rc);
2750 		if (rc)
2751 			break;
2752 		st->bucket = 0;
2753 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2754 		fallthrough;
2755 	case TCP_SEQ_STATE_ESTABLISHED:
2756 		if (st->bucket > hinfo->ehash_mask)
2757 			break;
2758 		rc = established_get_first(seq);
2759 		while (offset-- && rc && bucket == st->bucket)
2760 			rc = established_get_next(seq, rc);
2761 	}
2762 
2763 	st->num = orig_num;
2764 
2765 	return rc;
2766 }
2767 
2768 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2769 {
2770 	struct tcp_iter_state *st = seq->private;
2771 	void *rc;
2772 
2773 	if (*pos && *pos == st->last_pos) {
2774 		rc = tcp_seek_last_pos(seq);
2775 		if (rc)
2776 			goto out;
2777 	}
2778 
2779 	st->state = TCP_SEQ_STATE_LISTENING;
2780 	st->num = 0;
2781 	st->bucket = 0;
2782 	st->offset = 0;
2783 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2784 
2785 out:
2786 	st->last_pos = *pos;
2787 	return rc;
2788 }
2789 EXPORT_SYMBOL(tcp_seq_start);
2790 
2791 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2792 {
2793 	struct tcp_iter_state *st = seq->private;
2794 	void *rc = NULL;
2795 
2796 	if (v == SEQ_START_TOKEN) {
2797 		rc = tcp_get_idx(seq, 0);
2798 		goto out;
2799 	}
2800 
2801 	switch (st->state) {
2802 	case TCP_SEQ_STATE_LISTENING:
2803 		rc = listening_get_next(seq, v);
2804 		if (!rc) {
2805 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2806 			st->bucket = 0;
2807 			st->offset = 0;
2808 			rc	  = established_get_first(seq);
2809 		}
2810 		break;
2811 	case TCP_SEQ_STATE_ESTABLISHED:
2812 		rc = established_get_next(seq, v);
2813 		break;
2814 	}
2815 out:
2816 	++*pos;
2817 	st->last_pos = *pos;
2818 	return rc;
2819 }
2820 EXPORT_SYMBOL(tcp_seq_next);
2821 
2822 void tcp_seq_stop(struct seq_file *seq, void *v)
2823 {
2824 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2825 	struct tcp_iter_state *st = seq->private;
2826 
2827 	switch (st->state) {
2828 	case TCP_SEQ_STATE_LISTENING:
2829 		if (v != SEQ_START_TOKEN)
2830 			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2831 		break;
2832 	case TCP_SEQ_STATE_ESTABLISHED:
2833 		if (v)
2834 			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2835 		break;
2836 	}
2837 }
2838 EXPORT_SYMBOL(tcp_seq_stop);
2839 
2840 static void get_openreq4(const struct request_sock *req,
2841 			 struct seq_file *f, int i)
2842 {
2843 	const struct inet_request_sock *ireq = inet_rsk(req);
2844 	long delta = req->rsk_timer.expires - jiffies;
2845 
2846 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2847 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2848 		i,
2849 		ireq->ir_loc_addr,
2850 		ireq->ir_num,
2851 		ireq->ir_rmt_addr,
2852 		ntohs(ireq->ir_rmt_port),
2853 		TCP_SYN_RECV,
2854 		0, 0, /* could print option size, but that is af dependent. */
2855 		1,    /* timers active (only the expire timer) */
2856 		jiffies_delta_to_clock_t(delta),
2857 		req->num_timeout,
2858 		from_kuid_munged(seq_user_ns(f),
2859 				 sock_i_uid(req->rsk_listener)),
2860 		0,  /* non standard timer */
2861 		0, /* open_requests have no inode */
2862 		0,
2863 		req);
2864 }
2865 
2866 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2867 {
2868 	int timer_active;
2869 	unsigned long timer_expires;
2870 	const struct tcp_sock *tp = tcp_sk(sk);
2871 	const struct inet_connection_sock *icsk = inet_csk(sk);
2872 	const struct inet_sock *inet = inet_sk(sk);
2873 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2874 	__be32 dest = inet->inet_daddr;
2875 	__be32 src = inet->inet_rcv_saddr;
2876 	__u16 destp = ntohs(inet->inet_dport);
2877 	__u16 srcp = ntohs(inet->inet_sport);
2878 	int rx_queue;
2879 	int state;
2880 
2881 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2882 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2883 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2884 		timer_active	= 1;
2885 		timer_expires	= icsk->icsk_timeout;
2886 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2887 		timer_active	= 4;
2888 		timer_expires	= icsk->icsk_timeout;
2889 	} else if (timer_pending(&sk->sk_timer)) {
2890 		timer_active	= 2;
2891 		timer_expires	= sk->sk_timer.expires;
2892 	} else {
2893 		timer_active	= 0;
2894 		timer_expires = jiffies;
2895 	}
2896 
2897 	state = inet_sk_state_load(sk);
2898 	if (state == TCP_LISTEN)
2899 		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2900 	else
2901 		/* Because we don't lock the socket,
2902 		 * we might find a transient negative value.
2903 		 */
2904 		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2905 				      READ_ONCE(tp->copied_seq), 0);
2906 
2907 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2908 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2909 		i, src, srcp, dest, destp, state,
2910 		READ_ONCE(tp->write_seq) - tp->snd_una,
2911 		rx_queue,
2912 		timer_active,
2913 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2914 		icsk->icsk_retransmits,
2915 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2916 		icsk->icsk_probes_out,
2917 		sock_i_ino(sk),
2918 		refcount_read(&sk->sk_refcnt), sk,
2919 		jiffies_to_clock_t(icsk->icsk_rto),
2920 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2921 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2922 		tcp_snd_cwnd(tp),
2923 		state == TCP_LISTEN ?
2924 		    fastopenq->max_qlen :
2925 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2926 }
2927 
2928 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2929 			       struct seq_file *f, int i)
2930 {
2931 	long delta = tw->tw_timer.expires - jiffies;
2932 	__be32 dest, src;
2933 	__u16 destp, srcp;
2934 
2935 	dest  = tw->tw_daddr;
2936 	src   = tw->tw_rcv_saddr;
2937 	destp = ntohs(tw->tw_dport);
2938 	srcp  = ntohs(tw->tw_sport);
2939 
2940 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2941 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2942 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2943 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2944 		refcount_read(&tw->tw_refcnt), tw);
2945 }
2946 
2947 #define TMPSZ 150
2948 
2949 static int tcp4_seq_show(struct seq_file *seq, void *v)
2950 {
2951 	struct tcp_iter_state *st;
2952 	struct sock *sk = v;
2953 
2954 	seq_setwidth(seq, TMPSZ - 1);
2955 	if (v == SEQ_START_TOKEN) {
2956 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2957 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2958 			   "inode");
2959 		goto out;
2960 	}
2961 	st = seq->private;
2962 
2963 	if (sk->sk_state == TCP_TIME_WAIT)
2964 		get_timewait4_sock(v, seq, st->num);
2965 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2966 		get_openreq4(v, seq, st->num);
2967 	else
2968 		get_tcp4_sock(v, seq, st->num);
2969 out:
2970 	seq_pad(seq, '\n');
2971 	return 0;
2972 }
2973 
2974 #ifdef CONFIG_BPF_SYSCALL
2975 struct bpf_tcp_iter_state {
2976 	struct tcp_iter_state state;
2977 	unsigned int cur_sk;
2978 	unsigned int end_sk;
2979 	unsigned int max_sk;
2980 	struct sock **batch;
2981 	bool st_bucket_done;
2982 };
2983 
2984 struct bpf_iter__tcp {
2985 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2986 	__bpf_md_ptr(struct sock_common *, sk_common);
2987 	uid_t uid __aligned(8);
2988 };
2989 
2990 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2991 			     struct sock_common *sk_common, uid_t uid)
2992 {
2993 	struct bpf_iter__tcp ctx;
2994 
2995 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2996 	ctx.meta = meta;
2997 	ctx.sk_common = sk_common;
2998 	ctx.uid = uid;
2999 	return bpf_iter_run_prog(prog, &ctx);
3000 }
3001 
3002 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
3003 {
3004 	while (iter->cur_sk < iter->end_sk)
3005 		sock_gen_put(iter->batch[iter->cur_sk++]);
3006 }
3007 
3008 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
3009 				      unsigned int new_batch_sz)
3010 {
3011 	struct sock **new_batch;
3012 
3013 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3014 			     GFP_USER | __GFP_NOWARN);
3015 	if (!new_batch)
3016 		return -ENOMEM;
3017 
3018 	bpf_iter_tcp_put_batch(iter);
3019 	kvfree(iter->batch);
3020 	iter->batch = new_batch;
3021 	iter->max_sk = new_batch_sz;
3022 
3023 	return 0;
3024 }
3025 
3026 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
3027 						 struct sock *start_sk)
3028 {
3029 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3030 	struct bpf_tcp_iter_state *iter = seq->private;
3031 	struct tcp_iter_state *st = &iter->state;
3032 	struct hlist_nulls_node *node;
3033 	unsigned int expected = 1;
3034 	struct sock *sk;
3035 
3036 	sock_hold(start_sk);
3037 	iter->batch[iter->end_sk++] = start_sk;
3038 
3039 	sk = sk_nulls_next(start_sk);
3040 	sk_nulls_for_each_from(sk, node) {
3041 		if (seq_sk_match(seq, sk)) {
3042 			if (iter->end_sk < iter->max_sk) {
3043 				sock_hold(sk);
3044 				iter->batch[iter->end_sk++] = sk;
3045 			}
3046 			expected++;
3047 		}
3048 	}
3049 	spin_unlock(&hinfo->lhash2[st->bucket].lock);
3050 
3051 	return expected;
3052 }
3053 
3054 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
3055 						   struct sock *start_sk)
3056 {
3057 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3058 	struct bpf_tcp_iter_state *iter = seq->private;
3059 	struct tcp_iter_state *st = &iter->state;
3060 	struct hlist_nulls_node *node;
3061 	unsigned int expected = 1;
3062 	struct sock *sk;
3063 
3064 	sock_hold(start_sk);
3065 	iter->batch[iter->end_sk++] = start_sk;
3066 
3067 	sk = sk_nulls_next(start_sk);
3068 	sk_nulls_for_each_from(sk, node) {
3069 		if (seq_sk_match(seq, sk)) {
3070 			if (iter->end_sk < iter->max_sk) {
3071 				sock_hold(sk);
3072 				iter->batch[iter->end_sk++] = sk;
3073 			}
3074 			expected++;
3075 		}
3076 	}
3077 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
3078 
3079 	return expected;
3080 }
3081 
3082 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
3083 {
3084 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3085 	struct bpf_tcp_iter_state *iter = seq->private;
3086 	struct tcp_iter_state *st = &iter->state;
3087 	unsigned int expected;
3088 	bool resized = false;
3089 	struct sock *sk;
3090 
3091 	/* The st->bucket is done.  Directly advance to the next
3092 	 * bucket instead of having the tcp_seek_last_pos() to skip
3093 	 * one by one in the current bucket and eventually find out
3094 	 * it has to advance to the next bucket.
3095 	 */
3096 	if (iter->st_bucket_done) {
3097 		st->offset = 0;
3098 		st->bucket++;
3099 		if (st->state == TCP_SEQ_STATE_LISTENING &&
3100 		    st->bucket > hinfo->lhash2_mask) {
3101 			st->state = TCP_SEQ_STATE_ESTABLISHED;
3102 			st->bucket = 0;
3103 		}
3104 	}
3105 
3106 again:
3107 	/* Get a new batch */
3108 	iter->cur_sk = 0;
3109 	iter->end_sk = 0;
3110 	iter->st_bucket_done = false;
3111 
3112 	sk = tcp_seek_last_pos(seq);
3113 	if (!sk)
3114 		return NULL; /* Done */
3115 
3116 	if (st->state == TCP_SEQ_STATE_LISTENING)
3117 		expected = bpf_iter_tcp_listening_batch(seq, sk);
3118 	else
3119 		expected = bpf_iter_tcp_established_batch(seq, sk);
3120 
3121 	if (iter->end_sk == expected) {
3122 		iter->st_bucket_done = true;
3123 		return sk;
3124 	}
3125 
3126 	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
3127 		resized = true;
3128 		goto again;
3129 	}
3130 
3131 	return sk;
3132 }
3133 
3134 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
3135 {
3136 	/* bpf iter does not support lseek, so it always
3137 	 * continue from where it was stop()-ped.
3138 	 */
3139 	if (*pos)
3140 		return bpf_iter_tcp_batch(seq);
3141 
3142 	return SEQ_START_TOKEN;
3143 }
3144 
3145 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3146 {
3147 	struct bpf_tcp_iter_state *iter = seq->private;
3148 	struct tcp_iter_state *st = &iter->state;
3149 	struct sock *sk;
3150 
3151 	/* Whenever seq_next() is called, the iter->cur_sk is
3152 	 * done with seq_show(), so advance to the next sk in
3153 	 * the batch.
3154 	 */
3155 	if (iter->cur_sk < iter->end_sk) {
3156 		/* Keeping st->num consistent in tcp_iter_state.
3157 		 * bpf_iter_tcp does not use st->num.
3158 		 * meta.seq_num is used instead.
3159 		 */
3160 		st->num++;
3161 		/* Move st->offset to the next sk in the bucket such that
3162 		 * the future start() will resume at st->offset in
3163 		 * st->bucket.  See tcp_seek_last_pos().
3164 		 */
3165 		st->offset++;
3166 		sock_gen_put(iter->batch[iter->cur_sk++]);
3167 	}
3168 
3169 	if (iter->cur_sk < iter->end_sk)
3170 		sk = iter->batch[iter->cur_sk];
3171 	else
3172 		sk = bpf_iter_tcp_batch(seq);
3173 
3174 	++*pos;
3175 	/* Keeping st->last_pos consistent in tcp_iter_state.
3176 	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
3177 	 */
3178 	st->last_pos = *pos;
3179 	return sk;
3180 }
3181 
3182 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
3183 {
3184 	struct bpf_iter_meta meta;
3185 	struct bpf_prog *prog;
3186 	struct sock *sk = v;
3187 	uid_t uid;
3188 	int ret;
3189 
3190 	if (v == SEQ_START_TOKEN)
3191 		return 0;
3192 
3193 	if (sk_fullsock(sk))
3194 		lock_sock(sk);
3195 
3196 	if (unlikely(sk_unhashed(sk))) {
3197 		ret = SEQ_SKIP;
3198 		goto unlock;
3199 	}
3200 
3201 	if (sk->sk_state == TCP_TIME_WAIT) {
3202 		uid = 0;
3203 	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
3204 		const struct request_sock *req = v;
3205 
3206 		uid = from_kuid_munged(seq_user_ns(seq),
3207 				       sock_i_uid(req->rsk_listener));
3208 	} else {
3209 		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3210 	}
3211 
3212 	meta.seq = seq;
3213 	prog = bpf_iter_get_info(&meta, false);
3214 	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3215 
3216 unlock:
3217 	if (sk_fullsock(sk))
3218 		release_sock(sk);
3219 	return ret;
3220 
3221 }
3222 
3223 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3224 {
3225 	struct bpf_tcp_iter_state *iter = seq->private;
3226 	struct bpf_iter_meta meta;
3227 	struct bpf_prog *prog;
3228 
3229 	if (!v) {
3230 		meta.seq = seq;
3231 		prog = bpf_iter_get_info(&meta, true);
3232 		if (prog)
3233 			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3234 	}
3235 
3236 	if (iter->cur_sk < iter->end_sk) {
3237 		bpf_iter_tcp_put_batch(iter);
3238 		iter->st_bucket_done = false;
3239 	}
3240 }
3241 
3242 static const struct seq_operations bpf_iter_tcp_seq_ops = {
3243 	.show		= bpf_iter_tcp_seq_show,
3244 	.start		= bpf_iter_tcp_seq_start,
3245 	.next		= bpf_iter_tcp_seq_next,
3246 	.stop		= bpf_iter_tcp_seq_stop,
3247 };
3248 #endif
3249 static unsigned short seq_file_family(const struct seq_file *seq)
3250 {
3251 	const struct tcp_seq_afinfo *afinfo;
3252 
3253 #ifdef CONFIG_BPF_SYSCALL
3254 	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3255 	if (seq->op == &bpf_iter_tcp_seq_ops)
3256 		return AF_UNSPEC;
3257 #endif
3258 
3259 	/* Iterated from proc fs */
3260 	afinfo = pde_data(file_inode(seq->file));
3261 	return afinfo->family;
3262 }
3263 
3264 static const struct seq_operations tcp4_seq_ops = {
3265 	.show		= tcp4_seq_show,
3266 	.start		= tcp_seq_start,
3267 	.next		= tcp_seq_next,
3268 	.stop		= tcp_seq_stop,
3269 };
3270 
3271 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
3272 	.family		= AF_INET,
3273 };
3274 
3275 static int __net_init tcp4_proc_init_net(struct net *net)
3276 {
3277 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3278 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3279 		return -ENOMEM;
3280 	return 0;
3281 }
3282 
3283 static void __net_exit tcp4_proc_exit_net(struct net *net)
3284 {
3285 	remove_proc_entry("tcp", net->proc_net);
3286 }
3287 
3288 static struct pernet_operations tcp4_net_ops = {
3289 	.init = tcp4_proc_init_net,
3290 	.exit = tcp4_proc_exit_net,
3291 };
3292 
3293 int __init tcp4_proc_init(void)
3294 {
3295 	return register_pernet_subsys(&tcp4_net_ops);
3296 }
3297 
3298 void tcp4_proc_exit(void)
3299 {
3300 	unregister_pernet_subsys(&tcp4_net_ops);
3301 }
3302 #endif /* CONFIG_PROC_FS */
3303 
3304 /* @wake is one when sk_stream_write_space() calls us.
3305  * This sends EPOLLOUT only if notsent_bytes is half the limit.
3306  * This mimics the strategy used in sock_def_write_space().
3307  */
3308 bool tcp_stream_memory_free(const struct sock *sk, int wake)
3309 {
3310 	const struct tcp_sock *tp = tcp_sk(sk);
3311 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3312 			    READ_ONCE(tp->snd_nxt);
3313 
3314 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3315 }
3316 EXPORT_SYMBOL(tcp_stream_memory_free);
3317 
3318 struct proto tcp_prot = {
3319 	.name			= "TCP",
3320 	.owner			= THIS_MODULE,
3321 	.close			= tcp_close,
3322 	.pre_connect		= tcp_v4_pre_connect,
3323 	.connect		= tcp_v4_connect,
3324 	.disconnect		= tcp_disconnect,
3325 	.accept			= inet_csk_accept,
3326 	.ioctl			= tcp_ioctl,
3327 	.init			= tcp_v4_init_sock,
3328 	.destroy		= tcp_v4_destroy_sock,
3329 	.shutdown		= tcp_shutdown,
3330 	.setsockopt		= tcp_setsockopt,
3331 	.getsockopt		= tcp_getsockopt,
3332 	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3333 	.keepalive		= tcp_set_keepalive,
3334 	.recvmsg		= tcp_recvmsg,
3335 	.sendmsg		= tcp_sendmsg,
3336 	.splice_eof		= tcp_splice_eof,
3337 	.backlog_rcv		= tcp_v4_do_rcv,
3338 	.release_cb		= tcp_release_cb,
3339 	.hash			= inet_hash,
3340 	.unhash			= inet_unhash,
3341 	.get_port		= inet_csk_get_port,
3342 	.put_port		= inet_put_port,
3343 #ifdef CONFIG_BPF_SYSCALL
3344 	.psock_update_sk_prot	= tcp_bpf_update_proto,
3345 #endif
3346 	.enter_memory_pressure	= tcp_enter_memory_pressure,
3347 	.leave_memory_pressure	= tcp_leave_memory_pressure,
3348 	.stream_memory_free	= tcp_stream_memory_free,
3349 	.sockets_allocated	= &tcp_sockets_allocated,
3350 	.orphan_count		= &tcp_orphan_count,
3351 
3352 	.memory_allocated	= &tcp_memory_allocated,
3353 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3354 
3355 	.memory_pressure	= &tcp_memory_pressure,
3356 	.sysctl_mem		= sysctl_tcp_mem,
3357 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3358 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3359 	.max_header		= MAX_TCP_HEADER,
3360 	.obj_size		= sizeof(struct tcp_sock),
3361 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3362 	.twsk_prot		= &tcp_timewait_sock_ops,
3363 	.rsk_prot		= &tcp_request_sock_ops,
3364 	.h.hashinfo		= NULL,
3365 	.no_autobind		= true,
3366 	.diag_destroy		= tcp_abort,
3367 };
3368 EXPORT_SYMBOL(tcp_prot);
3369 
3370 static void __net_exit tcp_sk_exit(struct net *net)
3371 {
3372 	if (net->ipv4.tcp_congestion_control)
3373 		bpf_module_put(net->ipv4.tcp_congestion_control,
3374 			       net->ipv4.tcp_congestion_control->owner);
3375 }
3376 
3377 static void __net_init tcp_set_hashinfo(struct net *net)
3378 {
3379 	struct inet_hashinfo *hinfo;
3380 	unsigned int ehash_entries;
3381 	struct net *old_net;
3382 
3383 	if (net_eq(net, &init_net))
3384 		goto fallback;
3385 
3386 	old_net = current->nsproxy->net_ns;
3387 	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3388 	if (!ehash_entries)
3389 		goto fallback;
3390 
3391 	ehash_entries = roundup_pow_of_two(ehash_entries);
3392 	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3393 	if (!hinfo) {
3394 		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3395 			"for a netns, fallback to the global one\n",
3396 			ehash_entries);
3397 fallback:
3398 		hinfo = &tcp_hashinfo;
3399 		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3400 	}
3401 
3402 	net->ipv4.tcp_death_row.hashinfo = hinfo;
3403 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3404 	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3405 }
3406 
3407 static int __net_init tcp_sk_init(struct net *net)
3408 {
3409 	net->ipv4.sysctl_tcp_ecn = 2;
3410 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3411 
3412 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3413 	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3414 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3415 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3416 	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3417 
3418 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3419 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3420 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3421 
3422 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3423 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3424 	net->ipv4.sysctl_tcp_syncookies = 1;
3425 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3426 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3427 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3428 	net->ipv4.sysctl_tcp_orphan_retries = 0;
3429 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3430 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3431 	net->ipv4.sysctl_tcp_tw_reuse = 2;
3432 	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3433 
3434 	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3435 	tcp_set_hashinfo(net);
3436 
3437 	net->ipv4.sysctl_tcp_sack = 1;
3438 	net->ipv4.sysctl_tcp_window_scaling = 1;
3439 	net->ipv4.sysctl_tcp_timestamps = 1;
3440 	net->ipv4.sysctl_tcp_early_retrans = 3;
3441 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3442 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3443 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3444 	net->ipv4.sysctl_tcp_max_reordering = 300;
3445 	net->ipv4.sysctl_tcp_dsack = 1;
3446 	net->ipv4.sysctl_tcp_app_win = 31;
3447 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3448 	net->ipv4.sysctl_tcp_frto = 2;
3449 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3450 	/* This limits the percentage of the congestion window which we
3451 	 * will allow a single TSO frame to consume.  Building TSO frames
3452 	 * which are too large can cause TCP streams to be bursty.
3453 	 */
3454 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3455 	/* Default TSQ limit of 16 TSO segments */
3456 	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3457 
3458 	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3459 	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3460 
3461 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3462 	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3463 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3464 	net->ipv4.sysctl_tcp_autocorking = 1;
3465 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3466 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3467 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3468 	if (net != &init_net) {
3469 		memcpy(net->ipv4.sysctl_tcp_rmem,
3470 		       init_net.ipv4.sysctl_tcp_rmem,
3471 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3472 		memcpy(net->ipv4.sysctl_tcp_wmem,
3473 		       init_net.ipv4.sysctl_tcp_wmem,
3474 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3475 	}
3476 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3477 	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3478 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3479 	net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
3480 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3481 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3482 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3483 
3484 	/* Set default values for PLB */
3485 	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3486 	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3487 	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3488 	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3489 	/* Default congestion threshold for PLB to mark a round is 50% */
3490 	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3491 
3492 	/* Reno is always built in */
3493 	if (!net_eq(net, &init_net) &&
3494 	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3495 			       init_net.ipv4.tcp_congestion_control->owner))
3496 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3497 	else
3498 		net->ipv4.tcp_congestion_control = &tcp_reno;
3499 
3500 	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3501 	net->ipv4.sysctl_tcp_shrink_window = 0;
3502 
3503 	net->ipv4.sysctl_tcp_pingpong_thresh = 1;
3504 
3505 	return 0;
3506 }
3507 
3508 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3509 {
3510 	struct net *net;
3511 
3512 	tcp_twsk_purge(net_exit_list);
3513 
3514 	list_for_each_entry(net, net_exit_list, exit_list) {
3515 		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3516 		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3517 		tcp_fastopen_ctx_destroy(net);
3518 	}
3519 }
3520 
3521 static struct pernet_operations __net_initdata tcp_sk_ops = {
3522        .init	   = tcp_sk_init,
3523        .exit	   = tcp_sk_exit,
3524        .exit_batch = tcp_sk_exit_batch,
3525 };
3526 
3527 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3528 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3529 		     struct sock_common *sk_common, uid_t uid)
3530 
3531 #define INIT_BATCH_SZ 16
3532 
3533 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3534 {
3535 	struct bpf_tcp_iter_state *iter = priv_data;
3536 	int err;
3537 
3538 	err = bpf_iter_init_seq_net(priv_data, aux);
3539 	if (err)
3540 		return err;
3541 
3542 	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3543 	if (err) {
3544 		bpf_iter_fini_seq_net(priv_data);
3545 		return err;
3546 	}
3547 
3548 	return 0;
3549 }
3550 
3551 static void bpf_iter_fini_tcp(void *priv_data)
3552 {
3553 	struct bpf_tcp_iter_state *iter = priv_data;
3554 
3555 	bpf_iter_fini_seq_net(priv_data);
3556 	kvfree(iter->batch);
3557 }
3558 
3559 static const struct bpf_iter_seq_info tcp_seq_info = {
3560 	.seq_ops		= &bpf_iter_tcp_seq_ops,
3561 	.init_seq_private	= bpf_iter_init_tcp,
3562 	.fini_seq_private	= bpf_iter_fini_tcp,
3563 	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3564 };
3565 
3566 static const struct bpf_func_proto *
3567 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3568 			    const struct bpf_prog *prog)
3569 {
3570 	switch (func_id) {
3571 	case BPF_FUNC_setsockopt:
3572 		return &bpf_sk_setsockopt_proto;
3573 	case BPF_FUNC_getsockopt:
3574 		return &bpf_sk_getsockopt_proto;
3575 	default:
3576 		return NULL;
3577 	}
3578 }
3579 
3580 static struct bpf_iter_reg tcp_reg_info = {
3581 	.target			= "tcp",
3582 	.ctx_arg_info_size	= 1,
3583 	.ctx_arg_info		= {
3584 		{ offsetof(struct bpf_iter__tcp, sk_common),
3585 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3586 	},
3587 	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3588 	.seq_info		= &tcp_seq_info,
3589 };
3590 
3591 static void __init bpf_iter_register(void)
3592 {
3593 	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3594 	if (bpf_iter_reg_target(&tcp_reg_info))
3595 		pr_warn("Warning: could not register bpf iterator tcp\n");
3596 }
3597 
3598 #endif
3599 
3600 void __init tcp_v4_init(void)
3601 {
3602 	int cpu, res;
3603 
3604 	for_each_possible_cpu(cpu) {
3605 		struct sock *sk;
3606 
3607 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3608 					   IPPROTO_TCP, &init_net);
3609 		if (res)
3610 			panic("Failed to create the TCP control socket.\n");
3611 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3612 
3613 		/* Please enforce IP_DF and IPID==0 for RST and
3614 		 * ACK sent in SYN-RECV and TIME-WAIT state.
3615 		 */
3616 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3617 
3618 		per_cpu(ipv4_tcp_sk, cpu) = sk;
3619 	}
3620 	if (register_pernet_subsys(&tcp_sk_ops))
3621 		panic("Failed to create the TCP control socket.\n");
3622 
3623 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3624 	bpf_iter_register();
3625 #endif
3626 }
3627