1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * IPv4 specific functions 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 */ 18 19 /* 20 * Changes: 21 * David S. Miller : New socket lookup architecture. 22 * This code is dedicated to John Dyson. 23 * David S. Miller : Change semantics of established hash, 24 * half is devoted to TIME_WAIT sockets 25 * and the rest go in the other half. 26 * Andi Kleen : Add support for syncookies and fixed 27 * some bugs: ip options weren't passed to 28 * the TCP layer, missed a check for an 29 * ACK bit. 30 * Andi Kleen : Implemented fast path mtu discovery. 31 * Fixed many serious bugs in the 32 * request_sock handling and moved 33 * most of it into the af independent code. 34 * Added tail drop and some other bugfixes. 35 * Added new listen semantics. 36 * Mike McLagan : Routing by source 37 * Juan Jose Ciarlante: ip_dynaddr bits 38 * Andi Kleen: various fixes. 39 * Vitaly E. Lavrov : Transparent proxy revived after year 40 * coma. 41 * Andi Kleen : Fix new listen. 42 * Andi Kleen : Fix accept error reporting. 43 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 44 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 45 * a single port at the same time. 46 */ 47 48 #define pr_fmt(fmt) "TCP: " fmt 49 50 #include <linux/bottom_half.h> 51 #include <linux/types.h> 52 #include <linux/fcntl.h> 53 #include <linux/module.h> 54 #include <linux/random.h> 55 #include <linux/cache.h> 56 #include <linux/jhash.h> 57 #include <linux/init.h> 58 #include <linux/times.h> 59 #include <linux/slab.h> 60 61 #include <net/net_namespace.h> 62 #include <net/icmp.h> 63 #include <net/inet_hashtables.h> 64 #include <net/tcp.h> 65 #include <net/transp_v6.h> 66 #include <net/ipv6.h> 67 #include <net/inet_common.h> 68 #include <net/timewait_sock.h> 69 #include <net/xfrm.h> 70 #include <net/secure_seq.h> 71 #include <net/busy_poll.h> 72 73 #include <linux/inet.h> 74 #include <linux/ipv6.h> 75 #include <linux/stddef.h> 76 #include <linux/proc_fs.h> 77 #include <linux/seq_file.h> 78 #include <linux/inetdevice.h> 79 #include <linux/btf_ids.h> 80 81 #include <crypto/hash.h> 82 #include <linux/scatterlist.h> 83 84 #include <trace/events/tcp.h> 85 86 #ifdef CONFIG_TCP_MD5SIG 87 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 88 __be32 daddr, __be32 saddr, const struct tcphdr *th); 89 #endif 90 91 struct inet_hashinfo tcp_hashinfo; 92 EXPORT_SYMBOL(tcp_hashinfo); 93 94 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk); 95 96 static u32 tcp_v4_init_seq(const struct sk_buff *skb) 97 { 98 return secure_tcp_seq(ip_hdr(skb)->daddr, 99 ip_hdr(skb)->saddr, 100 tcp_hdr(skb)->dest, 101 tcp_hdr(skb)->source); 102 } 103 104 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb) 105 { 106 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr); 107 } 108 109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 110 { 111 int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse); 112 const struct inet_timewait_sock *tw = inet_twsk(sktw); 113 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 114 struct tcp_sock *tp = tcp_sk(sk); 115 116 if (reuse == 2) { 117 /* Still does not detect *everything* that goes through 118 * lo, since we require a loopback src or dst address 119 * or direct binding to 'lo' interface. 120 */ 121 bool loopback = false; 122 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX) 123 loopback = true; 124 #if IS_ENABLED(CONFIG_IPV6) 125 if (tw->tw_family == AF_INET6) { 126 if (ipv6_addr_loopback(&tw->tw_v6_daddr) || 127 ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) || 128 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) || 129 ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr)) 130 loopback = true; 131 } else 132 #endif 133 { 134 if (ipv4_is_loopback(tw->tw_daddr) || 135 ipv4_is_loopback(tw->tw_rcv_saddr)) 136 loopback = true; 137 } 138 if (!loopback) 139 reuse = 0; 140 } 141 142 /* With PAWS, it is safe from the viewpoint 143 of data integrity. Even without PAWS it is safe provided sequence 144 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 145 146 Actually, the idea is close to VJ's one, only timestamp cache is 147 held not per host, but per port pair and TW bucket is used as state 148 holder. 149 150 If TW bucket has been already destroyed we fall back to VJ's scheme 151 and use initial timestamp retrieved from peer table. 152 */ 153 if (tcptw->tw_ts_recent_stamp && 154 (!twp || (reuse && time_after32(ktime_get_seconds(), 155 tcptw->tw_ts_recent_stamp)))) { 156 /* In case of repair and re-using TIME-WAIT sockets we still 157 * want to be sure that it is safe as above but honor the 158 * sequence numbers and time stamps set as part of the repair 159 * process. 160 * 161 * Without this check re-using a TIME-WAIT socket with TCP 162 * repair would accumulate a -1 on the repair assigned 163 * sequence number. The first time it is reused the sequence 164 * is -1, the second time -2, etc. This fixes that issue 165 * without appearing to create any others. 166 */ 167 if (likely(!tp->repair)) { 168 u32 seq = tcptw->tw_snd_nxt + 65535 + 2; 169 170 if (!seq) 171 seq = 1; 172 WRITE_ONCE(tp->write_seq, seq); 173 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 174 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 175 } 176 sock_hold(sktw); 177 return 1; 178 } 179 180 return 0; 181 } 182 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 183 184 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr, 185 int addr_len) 186 { 187 /* This check is replicated from tcp_v4_connect() and intended to 188 * prevent BPF program called below from accessing bytes that are out 189 * of the bound specified by user in addr_len. 190 */ 191 if (addr_len < sizeof(struct sockaddr_in)) 192 return -EINVAL; 193 194 sock_owned_by_me(sk); 195 196 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr); 197 } 198 199 /* This will initiate an outgoing connection. */ 200 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 201 { 202 struct inet_bind_hashbucket *prev_addr_hashbucket = NULL; 203 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 204 struct inet_timewait_death_row *tcp_death_row; 205 __be32 daddr, nexthop, prev_sk_rcv_saddr; 206 struct inet_sock *inet = inet_sk(sk); 207 struct tcp_sock *tp = tcp_sk(sk); 208 struct ip_options_rcu *inet_opt; 209 struct net *net = sock_net(sk); 210 __be16 orig_sport, orig_dport; 211 struct flowi4 *fl4; 212 struct rtable *rt; 213 int err; 214 215 if (addr_len < sizeof(struct sockaddr_in)) 216 return -EINVAL; 217 218 if (usin->sin_family != AF_INET) 219 return -EAFNOSUPPORT; 220 221 nexthop = daddr = usin->sin_addr.s_addr; 222 inet_opt = rcu_dereference_protected(inet->inet_opt, 223 lockdep_sock_is_held(sk)); 224 if (inet_opt && inet_opt->opt.srr) { 225 if (!daddr) 226 return -EINVAL; 227 nexthop = inet_opt->opt.faddr; 228 } 229 230 orig_sport = inet->inet_sport; 231 orig_dport = usin->sin_port; 232 fl4 = &inet->cork.fl.u.ip4; 233 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 234 sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport, 235 orig_dport, sk); 236 if (IS_ERR(rt)) { 237 err = PTR_ERR(rt); 238 if (err == -ENETUNREACH) 239 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 240 return err; 241 } 242 243 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 244 ip_rt_put(rt); 245 return -ENETUNREACH; 246 } 247 248 if (!inet_opt || !inet_opt->opt.srr) 249 daddr = fl4->daddr; 250 251 tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; 252 253 if (!inet->inet_saddr) { 254 if (inet_csk(sk)->icsk_bind2_hash) { 255 prev_addr_hashbucket = inet_bhashfn_portaddr(tcp_death_row->hashinfo, 256 sk, net, inet->inet_num); 257 prev_sk_rcv_saddr = sk->sk_rcv_saddr; 258 } 259 inet->inet_saddr = fl4->saddr; 260 } 261 262 sk_rcv_saddr_set(sk, inet->inet_saddr); 263 264 if (prev_addr_hashbucket) { 265 err = inet_bhash2_update_saddr(prev_addr_hashbucket, sk); 266 if (err) { 267 inet->inet_saddr = 0; 268 sk_rcv_saddr_set(sk, prev_sk_rcv_saddr); 269 ip_rt_put(rt); 270 return err; 271 } 272 } 273 274 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 275 /* Reset inherited state */ 276 tp->rx_opt.ts_recent = 0; 277 tp->rx_opt.ts_recent_stamp = 0; 278 if (likely(!tp->repair)) 279 WRITE_ONCE(tp->write_seq, 0); 280 } 281 282 inet->inet_dport = usin->sin_port; 283 sk_daddr_set(sk, daddr); 284 285 inet_csk(sk)->icsk_ext_hdr_len = 0; 286 if (inet_opt) 287 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 288 289 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 290 291 /* Socket identity is still unknown (sport may be zero). 292 * However we set state to SYN-SENT and not releasing socket 293 * lock select source port, enter ourselves into the hash tables and 294 * complete initialization after this. 295 */ 296 tcp_set_state(sk, TCP_SYN_SENT); 297 err = inet_hash_connect(tcp_death_row, sk); 298 if (err) 299 goto failure; 300 301 sk_set_txhash(sk); 302 303 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 304 inet->inet_sport, inet->inet_dport, sk); 305 if (IS_ERR(rt)) { 306 err = PTR_ERR(rt); 307 rt = NULL; 308 goto failure; 309 } 310 /* OK, now commit destination to socket. */ 311 sk->sk_gso_type = SKB_GSO_TCPV4; 312 sk_setup_caps(sk, &rt->dst); 313 rt = NULL; 314 315 if (likely(!tp->repair)) { 316 if (!tp->write_seq) 317 WRITE_ONCE(tp->write_seq, 318 secure_tcp_seq(inet->inet_saddr, 319 inet->inet_daddr, 320 inet->inet_sport, 321 usin->sin_port)); 322 tp->tsoffset = secure_tcp_ts_off(net, inet->inet_saddr, 323 inet->inet_daddr); 324 } 325 326 inet->inet_id = prandom_u32(); 327 328 if (tcp_fastopen_defer_connect(sk, &err)) 329 return err; 330 if (err) 331 goto failure; 332 333 err = tcp_connect(sk); 334 335 if (err) 336 goto failure; 337 338 return 0; 339 340 failure: 341 /* 342 * This unhashes the socket and releases the local port, 343 * if necessary. 344 */ 345 tcp_set_state(sk, TCP_CLOSE); 346 ip_rt_put(rt); 347 sk->sk_route_caps = 0; 348 inet->inet_dport = 0; 349 return err; 350 } 351 EXPORT_SYMBOL(tcp_v4_connect); 352 353 /* 354 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 355 * It can be called through tcp_release_cb() if socket was owned by user 356 * at the time tcp_v4_err() was called to handle ICMP message. 357 */ 358 void tcp_v4_mtu_reduced(struct sock *sk) 359 { 360 struct inet_sock *inet = inet_sk(sk); 361 struct dst_entry *dst; 362 u32 mtu; 363 364 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 365 return; 366 mtu = READ_ONCE(tcp_sk(sk)->mtu_info); 367 dst = inet_csk_update_pmtu(sk, mtu); 368 if (!dst) 369 return; 370 371 /* Something is about to be wrong... Remember soft error 372 * for the case, if this connection will not able to recover. 373 */ 374 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 375 sk->sk_err_soft = EMSGSIZE; 376 377 mtu = dst_mtu(dst); 378 379 if (inet->pmtudisc != IP_PMTUDISC_DONT && 380 ip_sk_accept_pmtu(sk) && 381 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 382 tcp_sync_mss(sk, mtu); 383 384 /* Resend the TCP packet because it's 385 * clear that the old packet has been 386 * dropped. This is the new "fast" path mtu 387 * discovery. 388 */ 389 tcp_simple_retransmit(sk); 390 } /* else let the usual retransmit timer handle it */ 391 } 392 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 393 394 static void do_redirect(struct sk_buff *skb, struct sock *sk) 395 { 396 struct dst_entry *dst = __sk_dst_check(sk, 0); 397 398 if (dst) 399 dst->ops->redirect(dst, sk, skb); 400 } 401 402 403 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 404 void tcp_req_err(struct sock *sk, u32 seq, bool abort) 405 { 406 struct request_sock *req = inet_reqsk(sk); 407 struct net *net = sock_net(sk); 408 409 /* ICMPs are not backlogged, hence we cannot get 410 * an established socket here. 411 */ 412 if (seq != tcp_rsk(req)->snt_isn) { 413 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 414 } else if (abort) { 415 /* 416 * Still in SYN_RECV, just remove it silently. 417 * There is no good way to pass the error to the newly 418 * created socket, and POSIX does not want network 419 * errors returned from accept(). 420 */ 421 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 422 tcp_listendrop(req->rsk_listener); 423 } 424 reqsk_put(req); 425 } 426 EXPORT_SYMBOL(tcp_req_err); 427 428 /* TCP-LD (RFC 6069) logic */ 429 void tcp_ld_RTO_revert(struct sock *sk, u32 seq) 430 { 431 struct inet_connection_sock *icsk = inet_csk(sk); 432 struct tcp_sock *tp = tcp_sk(sk); 433 struct sk_buff *skb; 434 s32 remaining; 435 u32 delta_us; 436 437 if (sock_owned_by_user(sk)) 438 return; 439 440 if (seq != tp->snd_una || !icsk->icsk_retransmits || 441 !icsk->icsk_backoff) 442 return; 443 444 skb = tcp_rtx_queue_head(sk); 445 if (WARN_ON_ONCE(!skb)) 446 return; 447 448 icsk->icsk_backoff--; 449 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT; 450 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 451 452 tcp_mstamp_refresh(tp); 453 delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb)); 454 remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us); 455 456 if (remaining > 0) { 457 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 458 remaining, TCP_RTO_MAX); 459 } else { 460 /* RTO revert clocked out retransmission. 461 * Will retransmit now. 462 */ 463 tcp_retransmit_timer(sk); 464 } 465 } 466 EXPORT_SYMBOL(tcp_ld_RTO_revert); 467 468 /* 469 * This routine is called by the ICMP module when it gets some 470 * sort of error condition. If err < 0 then the socket should 471 * be closed and the error returned to the user. If err > 0 472 * it's just the icmp type << 8 | icmp code. After adjustment 473 * header points to the first 8 bytes of the tcp header. We need 474 * to find the appropriate port. 475 * 476 * The locking strategy used here is very "optimistic". When 477 * someone else accesses the socket the ICMP is just dropped 478 * and for some paths there is no check at all. 479 * A more general error queue to queue errors for later handling 480 * is probably better. 481 * 482 */ 483 484 int tcp_v4_err(struct sk_buff *skb, u32 info) 485 { 486 const struct iphdr *iph = (const struct iphdr *)skb->data; 487 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2)); 488 struct tcp_sock *tp; 489 struct inet_sock *inet; 490 const int type = icmp_hdr(skb)->type; 491 const int code = icmp_hdr(skb)->code; 492 struct sock *sk; 493 struct request_sock *fastopen; 494 u32 seq, snd_una; 495 int err; 496 struct net *net = dev_net(skb->dev); 497 498 sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, 499 iph->daddr, th->dest, iph->saddr, 500 ntohs(th->source), inet_iif(skb), 0); 501 if (!sk) { 502 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 503 return -ENOENT; 504 } 505 if (sk->sk_state == TCP_TIME_WAIT) { 506 inet_twsk_put(inet_twsk(sk)); 507 return 0; 508 } 509 seq = ntohl(th->seq); 510 if (sk->sk_state == TCP_NEW_SYN_RECV) { 511 tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB || 512 type == ICMP_TIME_EXCEEDED || 513 (type == ICMP_DEST_UNREACH && 514 (code == ICMP_NET_UNREACH || 515 code == ICMP_HOST_UNREACH))); 516 return 0; 517 } 518 519 bh_lock_sock(sk); 520 /* If too many ICMPs get dropped on busy 521 * servers this needs to be solved differently. 522 * We do take care of PMTU discovery (RFC1191) special case : 523 * we can receive locally generated ICMP messages while socket is held. 524 */ 525 if (sock_owned_by_user(sk)) { 526 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 527 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 528 } 529 if (sk->sk_state == TCP_CLOSE) 530 goto out; 531 532 if (static_branch_unlikely(&ip4_min_ttl)) { 533 /* min_ttl can be changed concurrently from do_ip_setsockopt() */ 534 if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) { 535 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 536 goto out; 537 } 538 } 539 540 tp = tcp_sk(sk); 541 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 542 fastopen = rcu_dereference(tp->fastopen_rsk); 543 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 544 if (sk->sk_state != TCP_LISTEN && 545 !between(seq, snd_una, tp->snd_nxt)) { 546 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 547 goto out; 548 } 549 550 switch (type) { 551 case ICMP_REDIRECT: 552 if (!sock_owned_by_user(sk)) 553 do_redirect(skb, sk); 554 goto out; 555 case ICMP_SOURCE_QUENCH: 556 /* Just silently ignore these. */ 557 goto out; 558 case ICMP_PARAMETERPROB: 559 err = EPROTO; 560 break; 561 case ICMP_DEST_UNREACH: 562 if (code > NR_ICMP_UNREACH) 563 goto out; 564 565 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 566 /* We are not interested in TCP_LISTEN and open_requests 567 * (SYN-ACKs send out by Linux are always <576bytes so 568 * they should go through unfragmented). 569 */ 570 if (sk->sk_state == TCP_LISTEN) 571 goto out; 572 573 WRITE_ONCE(tp->mtu_info, info); 574 if (!sock_owned_by_user(sk)) { 575 tcp_v4_mtu_reduced(sk); 576 } else { 577 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) 578 sock_hold(sk); 579 } 580 goto out; 581 } 582 583 err = icmp_err_convert[code].errno; 584 /* check if this ICMP message allows revert of backoff. 585 * (see RFC 6069) 586 */ 587 if (!fastopen && 588 (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH)) 589 tcp_ld_RTO_revert(sk, seq); 590 break; 591 case ICMP_TIME_EXCEEDED: 592 err = EHOSTUNREACH; 593 break; 594 default: 595 goto out; 596 } 597 598 switch (sk->sk_state) { 599 case TCP_SYN_SENT: 600 case TCP_SYN_RECV: 601 /* Only in fast or simultaneous open. If a fast open socket is 602 * already accepted it is treated as a connected one below. 603 */ 604 if (fastopen && !fastopen->sk) 605 break; 606 607 ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th); 608 609 if (!sock_owned_by_user(sk)) { 610 sk->sk_err = err; 611 612 sk_error_report(sk); 613 614 tcp_done(sk); 615 } else { 616 sk->sk_err_soft = err; 617 } 618 goto out; 619 } 620 621 /* If we've already connected we will keep trying 622 * until we time out, or the user gives up. 623 * 624 * rfc1122 4.2.3.9 allows to consider as hard errors 625 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 626 * but it is obsoleted by pmtu discovery). 627 * 628 * Note, that in modern internet, where routing is unreliable 629 * and in each dark corner broken firewalls sit, sending random 630 * errors ordered by their masters even this two messages finally lose 631 * their original sense (even Linux sends invalid PORT_UNREACHs) 632 * 633 * Now we are in compliance with RFCs. 634 * --ANK (980905) 635 */ 636 637 inet = inet_sk(sk); 638 if (!sock_owned_by_user(sk) && inet->recverr) { 639 sk->sk_err = err; 640 sk_error_report(sk); 641 } else { /* Only an error on timeout */ 642 sk->sk_err_soft = err; 643 } 644 645 out: 646 bh_unlock_sock(sk); 647 sock_put(sk); 648 return 0; 649 } 650 651 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 652 { 653 struct tcphdr *th = tcp_hdr(skb); 654 655 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 656 skb->csum_start = skb_transport_header(skb) - skb->head; 657 skb->csum_offset = offsetof(struct tcphdr, check); 658 } 659 660 /* This routine computes an IPv4 TCP checksum. */ 661 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 662 { 663 const struct inet_sock *inet = inet_sk(sk); 664 665 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 666 } 667 EXPORT_SYMBOL(tcp_v4_send_check); 668 669 /* 670 * This routine will send an RST to the other tcp. 671 * 672 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 673 * for reset. 674 * Answer: if a packet caused RST, it is not for a socket 675 * existing in our system, if it is matched to a socket, 676 * it is just duplicate segment or bug in other side's TCP. 677 * So that we build reply only basing on parameters 678 * arrived with segment. 679 * Exception: precedence violation. We do not implement it in any case. 680 */ 681 682 #ifdef CONFIG_TCP_MD5SIG 683 #define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED 684 #else 685 #define OPTION_BYTES sizeof(__be32) 686 #endif 687 688 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) 689 { 690 const struct tcphdr *th = tcp_hdr(skb); 691 struct { 692 struct tcphdr th; 693 __be32 opt[OPTION_BYTES / sizeof(__be32)]; 694 } rep; 695 struct ip_reply_arg arg; 696 #ifdef CONFIG_TCP_MD5SIG 697 struct tcp_md5sig_key *key = NULL; 698 const __u8 *hash_location = NULL; 699 unsigned char newhash[16]; 700 int genhash; 701 struct sock *sk1 = NULL; 702 #endif 703 u64 transmit_time = 0; 704 struct sock *ctl_sk; 705 struct net *net; 706 707 /* Never send a reset in response to a reset. */ 708 if (th->rst) 709 return; 710 711 /* If sk not NULL, it means we did a successful lookup and incoming 712 * route had to be correct. prequeue might have dropped our dst. 713 */ 714 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 715 return; 716 717 /* Swap the send and the receive. */ 718 memset(&rep, 0, sizeof(rep)); 719 rep.th.dest = th->source; 720 rep.th.source = th->dest; 721 rep.th.doff = sizeof(struct tcphdr) / 4; 722 rep.th.rst = 1; 723 724 if (th->ack) { 725 rep.th.seq = th->ack_seq; 726 } else { 727 rep.th.ack = 1; 728 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 729 skb->len - (th->doff << 2)); 730 } 731 732 memset(&arg, 0, sizeof(arg)); 733 arg.iov[0].iov_base = (unsigned char *)&rep; 734 arg.iov[0].iov_len = sizeof(rep.th); 735 736 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 737 #ifdef CONFIG_TCP_MD5SIG 738 rcu_read_lock(); 739 hash_location = tcp_parse_md5sig_option(th); 740 if (sk && sk_fullsock(sk)) { 741 const union tcp_md5_addr *addr; 742 int l3index; 743 744 /* sdif set, means packet ingressed via a device 745 * in an L3 domain and inet_iif is set to it. 746 */ 747 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; 748 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 749 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 750 } else if (hash_location) { 751 const union tcp_md5_addr *addr; 752 int sdif = tcp_v4_sdif(skb); 753 int dif = inet_iif(skb); 754 int l3index; 755 756 /* 757 * active side is lost. Try to find listening socket through 758 * source port, and then find md5 key through listening socket. 759 * we are not loose security here: 760 * Incoming packet is checked with md5 hash with finding key, 761 * no RST generated if md5 hash doesn't match. 762 */ 763 sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo, 764 NULL, 0, ip_hdr(skb)->saddr, 765 th->source, ip_hdr(skb)->daddr, 766 ntohs(th->source), dif, sdif); 767 /* don't send rst if it can't find key */ 768 if (!sk1) 769 goto out; 770 771 /* sdif set, means packet ingressed via a device 772 * in an L3 domain and dif is set to it. 773 */ 774 l3index = sdif ? dif : 0; 775 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 776 key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET); 777 if (!key) 778 goto out; 779 780 781 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 782 if (genhash || memcmp(hash_location, newhash, 16) != 0) 783 goto out; 784 785 } 786 787 if (key) { 788 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 789 (TCPOPT_NOP << 16) | 790 (TCPOPT_MD5SIG << 8) | 791 TCPOLEN_MD5SIG); 792 /* Update length and the length the header thinks exists */ 793 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 794 rep.th.doff = arg.iov[0].iov_len / 4; 795 796 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 797 key, ip_hdr(skb)->saddr, 798 ip_hdr(skb)->daddr, &rep.th); 799 } 800 #endif 801 /* Can't co-exist with TCPMD5, hence check rep.opt[0] */ 802 if (rep.opt[0] == 0) { 803 __be32 mrst = mptcp_reset_option(skb); 804 805 if (mrst) { 806 rep.opt[0] = mrst; 807 arg.iov[0].iov_len += sizeof(mrst); 808 rep.th.doff = arg.iov[0].iov_len / 4; 809 } 810 } 811 812 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 813 ip_hdr(skb)->saddr, /* XXX */ 814 arg.iov[0].iov_len, IPPROTO_TCP, 0); 815 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 816 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; 817 818 /* When socket is gone, all binding information is lost. 819 * routing might fail in this case. No choice here, if we choose to force 820 * input interface, we will misroute in case of asymmetric route. 821 */ 822 if (sk) { 823 arg.bound_dev_if = sk->sk_bound_dev_if; 824 if (sk_fullsock(sk)) 825 trace_tcp_send_reset(sk, skb); 826 } 827 828 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != 829 offsetof(struct inet_timewait_sock, tw_bound_dev_if)); 830 831 arg.tos = ip_hdr(skb)->tos; 832 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); 833 local_bh_disable(); 834 ctl_sk = this_cpu_read(ipv4_tcp_sk); 835 sock_net_set(ctl_sk, net); 836 if (sk) { 837 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 838 inet_twsk(sk)->tw_mark : sk->sk_mark; 839 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? 840 inet_twsk(sk)->tw_priority : sk->sk_priority; 841 transmit_time = tcp_transmit_time(sk); 842 xfrm_sk_clone_policy(ctl_sk, sk); 843 } 844 ip_send_unicast_reply(ctl_sk, 845 skb, &TCP_SKB_CB(skb)->header.h4.opt, 846 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 847 &arg, arg.iov[0].iov_len, 848 transmit_time); 849 850 ctl_sk->sk_mark = 0; 851 xfrm_sk_free_policy(ctl_sk); 852 sock_net_set(ctl_sk, &init_net); 853 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 854 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); 855 local_bh_enable(); 856 857 #ifdef CONFIG_TCP_MD5SIG 858 out: 859 rcu_read_unlock(); 860 #endif 861 } 862 863 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 864 outside socket context is ugly, certainly. What can I do? 865 */ 866 867 static void tcp_v4_send_ack(const struct sock *sk, 868 struct sk_buff *skb, u32 seq, u32 ack, 869 u32 win, u32 tsval, u32 tsecr, int oif, 870 struct tcp_md5sig_key *key, 871 int reply_flags, u8 tos) 872 { 873 const struct tcphdr *th = tcp_hdr(skb); 874 struct { 875 struct tcphdr th; 876 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 877 #ifdef CONFIG_TCP_MD5SIG 878 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 879 #endif 880 ]; 881 } rep; 882 struct net *net = sock_net(sk); 883 struct ip_reply_arg arg; 884 struct sock *ctl_sk; 885 u64 transmit_time; 886 887 memset(&rep.th, 0, sizeof(struct tcphdr)); 888 memset(&arg, 0, sizeof(arg)); 889 890 arg.iov[0].iov_base = (unsigned char *)&rep; 891 arg.iov[0].iov_len = sizeof(rep.th); 892 if (tsecr) { 893 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 894 (TCPOPT_TIMESTAMP << 8) | 895 TCPOLEN_TIMESTAMP); 896 rep.opt[1] = htonl(tsval); 897 rep.opt[2] = htonl(tsecr); 898 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 899 } 900 901 /* Swap the send and the receive. */ 902 rep.th.dest = th->source; 903 rep.th.source = th->dest; 904 rep.th.doff = arg.iov[0].iov_len / 4; 905 rep.th.seq = htonl(seq); 906 rep.th.ack_seq = htonl(ack); 907 rep.th.ack = 1; 908 rep.th.window = htons(win); 909 910 #ifdef CONFIG_TCP_MD5SIG 911 if (key) { 912 int offset = (tsecr) ? 3 : 0; 913 914 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 915 (TCPOPT_NOP << 16) | 916 (TCPOPT_MD5SIG << 8) | 917 TCPOLEN_MD5SIG); 918 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 919 rep.th.doff = arg.iov[0].iov_len/4; 920 921 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 922 key, ip_hdr(skb)->saddr, 923 ip_hdr(skb)->daddr, &rep.th); 924 } 925 #endif 926 arg.flags = reply_flags; 927 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 928 ip_hdr(skb)->saddr, /* XXX */ 929 arg.iov[0].iov_len, IPPROTO_TCP, 0); 930 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 931 if (oif) 932 arg.bound_dev_if = oif; 933 arg.tos = tos; 934 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); 935 local_bh_disable(); 936 ctl_sk = this_cpu_read(ipv4_tcp_sk); 937 sock_net_set(ctl_sk, net); 938 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 939 inet_twsk(sk)->tw_mark : sk->sk_mark; 940 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? 941 inet_twsk(sk)->tw_priority : sk->sk_priority; 942 transmit_time = tcp_transmit_time(sk); 943 ip_send_unicast_reply(ctl_sk, 944 skb, &TCP_SKB_CB(skb)->header.h4.opt, 945 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 946 &arg, arg.iov[0].iov_len, 947 transmit_time); 948 949 ctl_sk->sk_mark = 0; 950 sock_net_set(ctl_sk, &init_net); 951 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 952 local_bh_enable(); 953 } 954 955 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 956 { 957 struct inet_timewait_sock *tw = inet_twsk(sk); 958 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 959 960 tcp_v4_send_ack(sk, skb, 961 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 962 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 963 tcp_time_stamp_raw() + tcptw->tw_ts_offset, 964 tcptw->tw_ts_recent, 965 tw->tw_bound_dev_if, 966 tcp_twsk_md5_key(tcptw), 967 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 968 tw->tw_tos 969 ); 970 971 inet_twsk_put(tw); 972 } 973 974 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 975 struct request_sock *req) 976 { 977 const union tcp_md5_addr *addr; 978 int l3index; 979 980 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 981 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 982 */ 983 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : 984 tcp_sk(sk)->snd_nxt; 985 986 /* RFC 7323 2.3 987 * The window field (SEG.WND) of every outgoing segment, with the 988 * exception of <SYN> segments, MUST be right-shifted by 989 * Rcv.Wind.Shift bits: 990 */ 991 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 992 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; 993 tcp_v4_send_ack(sk, skb, seq, 994 tcp_rsk(req)->rcv_nxt, 995 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, 996 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off, 997 req->ts_recent, 998 0, 999 tcp_md5_do_lookup(sk, l3index, addr, AF_INET), 1000 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 1001 ip_hdr(skb)->tos); 1002 } 1003 1004 /* 1005 * Send a SYN-ACK after having received a SYN. 1006 * This still operates on a request_sock only, not on a big 1007 * socket. 1008 */ 1009 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 1010 struct flowi *fl, 1011 struct request_sock *req, 1012 struct tcp_fastopen_cookie *foc, 1013 enum tcp_synack_type synack_type, 1014 struct sk_buff *syn_skb) 1015 { 1016 const struct inet_request_sock *ireq = inet_rsk(req); 1017 struct flowi4 fl4; 1018 int err = -1; 1019 struct sk_buff *skb; 1020 u8 tos; 1021 1022 /* First, grab a route. */ 1023 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 1024 return -1; 1025 1026 skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb); 1027 1028 if (skb) { 1029 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 1030 1031 tos = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos) ? 1032 (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) | 1033 (inet_sk(sk)->tos & INET_ECN_MASK) : 1034 inet_sk(sk)->tos; 1035 1036 if (!INET_ECN_is_capable(tos) && 1037 tcp_bpf_ca_needs_ecn((struct sock *)req)) 1038 tos |= INET_ECN_ECT_0; 1039 1040 rcu_read_lock(); 1041 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 1042 ireq->ir_rmt_addr, 1043 rcu_dereference(ireq->ireq_opt), 1044 tos); 1045 rcu_read_unlock(); 1046 err = net_xmit_eval(err); 1047 } 1048 1049 return err; 1050 } 1051 1052 /* 1053 * IPv4 request_sock destructor. 1054 */ 1055 static void tcp_v4_reqsk_destructor(struct request_sock *req) 1056 { 1057 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); 1058 } 1059 1060 #ifdef CONFIG_TCP_MD5SIG 1061 /* 1062 * RFC2385 MD5 checksumming requires a mapping of 1063 * IP address->MD5 Key. 1064 * We need to maintain these in the sk structure. 1065 */ 1066 1067 DEFINE_STATIC_KEY_FALSE(tcp_md5_needed); 1068 EXPORT_SYMBOL(tcp_md5_needed); 1069 1070 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new) 1071 { 1072 if (!old) 1073 return true; 1074 1075 /* l3index always overrides non-l3index */ 1076 if (old->l3index && new->l3index == 0) 1077 return false; 1078 if (old->l3index == 0 && new->l3index) 1079 return true; 1080 1081 return old->prefixlen < new->prefixlen; 1082 } 1083 1084 /* Find the Key structure for an address. */ 1085 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1086 const union tcp_md5_addr *addr, 1087 int family) 1088 { 1089 const struct tcp_sock *tp = tcp_sk(sk); 1090 struct tcp_md5sig_key *key; 1091 const struct tcp_md5sig_info *md5sig; 1092 __be32 mask; 1093 struct tcp_md5sig_key *best_match = NULL; 1094 bool match; 1095 1096 /* caller either holds rcu_read_lock() or socket lock */ 1097 md5sig = rcu_dereference_check(tp->md5sig_info, 1098 lockdep_sock_is_held(sk)); 1099 if (!md5sig) 1100 return NULL; 1101 1102 hlist_for_each_entry_rcu(key, &md5sig->head, node, 1103 lockdep_sock_is_held(sk)) { 1104 if (key->family != family) 1105 continue; 1106 if (key->flags & TCP_MD5SIG_FLAG_IFINDEX && key->l3index != l3index) 1107 continue; 1108 if (family == AF_INET) { 1109 mask = inet_make_mask(key->prefixlen); 1110 match = (key->addr.a4.s_addr & mask) == 1111 (addr->a4.s_addr & mask); 1112 #if IS_ENABLED(CONFIG_IPV6) 1113 } else if (family == AF_INET6) { 1114 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6, 1115 key->prefixlen); 1116 #endif 1117 } else { 1118 match = false; 1119 } 1120 1121 if (match && better_md5_match(best_match, key)) 1122 best_match = key; 1123 } 1124 return best_match; 1125 } 1126 EXPORT_SYMBOL(__tcp_md5_do_lookup); 1127 1128 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk, 1129 const union tcp_md5_addr *addr, 1130 int family, u8 prefixlen, 1131 int l3index, u8 flags) 1132 { 1133 const struct tcp_sock *tp = tcp_sk(sk); 1134 struct tcp_md5sig_key *key; 1135 unsigned int size = sizeof(struct in_addr); 1136 const struct tcp_md5sig_info *md5sig; 1137 1138 /* caller either holds rcu_read_lock() or socket lock */ 1139 md5sig = rcu_dereference_check(tp->md5sig_info, 1140 lockdep_sock_is_held(sk)); 1141 if (!md5sig) 1142 return NULL; 1143 #if IS_ENABLED(CONFIG_IPV6) 1144 if (family == AF_INET6) 1145 size = sizeof(struct in6_addr); 1146 #endif 1147 hlist_for_each_entry_rcu(key, &md5sig->head, node, 1148 lockdep_sock_is_held(sk)) { 1149 if (key->family != family) 1150 continue; 1151 if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX)) 1152 continue; 1153 if (key->l3index != l3index) 1154 continue; 1155 if (!memcmp(&key->addr, addr, size) && 1156 key->prefixlen == prefixlen) 1157 return key; 1158 } 1159 return NULL; 1160 } 1161 1162 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1163 const struct sock *addr_sk) 1164 { 1165 const union tcp_md5_addr *addr; 1166 int l3index; 1167 1168 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), 1169 addr_sk->sk_bound_dev_if); 1170 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 1171 return tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 1172 } 1173 EXPORT_SYMBOL(tcp_v4_md5_lookup); 1174 1175 /* This can be called on a newly created socket, from other files */ 1176 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1177 int family, u8 prefixlen, int l3index, u8 flags, 1178 const u8 *newkey, u8 newkeylen, gfp_t gfp) 1179 { 1180 /* Add Key to the list */ 1181 struct tcp_md5sig_key *key; 1182 struct tcp_sock *tp = tcp_sk(sk); 1183 struct tcp_md5sig_info *md5sig; 1184 1185 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags); 1186 if (key) { 1187 /* Pre-existing entry - just update that one. 1188 * Note that the key might be used concurrently. 1189 * data_race() is telling kcsan that we do not care of 1190 * key mismatches, since changing MD5 key on live flows 1191 * can lead to packet drops. 1192 */ 1193 data_race(memcpy(key->key, newkey, newkeylen)); 1194 1195 /* Pairs with READ_ONCE() in tcp_md5_hash_key(). 1196 * Also note that a reader could catch new key->keylen value 1197 * but old key->key[], this is the reason we use __GFP_ZERO 1198 * at sock_kmalloc() time below these lines. 1199 */ 1200 WRITE_ONCE(key->keylen, newkeylen); 1201 1202 return 0; 1203 } 1204 1205 md5sig = rcu_dereference_protected(tp->md5sig_info, 1206 lockdep_sock_is_held(sk)); 1207 if (!md5sig) { 1208 md5sig = kmalloc(sizeof(*md5sig), gfp); 1209 if (!md5sig) 1210 return -ENOMEM; 1211 1212 sk_gso_disable(sk); 1213 INIT_HLIST_HEAD(&md5sig->head); 1214 rcu_assign_pointer(tp->md5sig_info, md5sig); 1215 } 1216 1217 key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO); 1218 if (!key) 1219 return -ENOMEM; 1220 if (!tcp_alloc_md5sig_pool()) { 1221 sock_kfree_s(sk, key, sizeof(*key)); 1222 return -ENOMEM; 1223 } 1224 1225 memcpy(key->key, newkey, newkeylen); 1226 key->keylen = newkeylen; 1227 key->family = family; 1228 key->prefixlen = prefixlen; 1229 key->l3index = l3index; 1230 key->flags = flags; 1231 memcpy(&key->addr, addr, 1232 (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) : 1233 sizeof(struct in_addr)); 1234 hlist_add_head_rcu(&key->node, &md5sig->head); 1235 return 0; 1236 } 1237 EXPORT_SYMBOL(tcp_md5_do_add); 1238 1239 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, 1240 u8 prefixlen, int l3index, u8 flags) 1241 { 1242 struct tcp_md5sig_key *key; 1243 1244 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags); 1245 if (!key) 1246 return -ENOENT; 1247 hlist_del_rcu(&key->node); 1248 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1249 kfree_rcu(key, rcu); 1250 return 0; 1251 } 1252 EXPORT_SYMBOL(tcp_md5_do_del); 1253 1254 static void tcp_clear_md5_list(struct sock *sk) 1255 { 1256 struct tcp_sock *tp = tcp_sk(sk); 1257 struct tcp_md5sig_key *key; 1258 struct hlist_node *n; 1259 struct tcp_md5sig_info *md5sig; 1260 1261 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1262 1263 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 1264 hlist_del_rcu(&key->node); 1265 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1266 kfree_rcu(key, rcu); 1267 } 1268 } 1269 1270 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname, 1271 sockptr_t optval, int optlen) 1272 { 1273 struct tcp_md5sig cmd; 1274 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1275 const union tcp_md5_addr *addr; 1276 u8 prefixlen = 32; 1277 int l3index = 0; 1278 u8 flags; 1279 1280 if (optlen < sizeof(cmd)) 1281 return -EINVAL; 1282 1283 if (copy_from_sockptr(&cmd, optval, sizeof(cmd))) 1284 return -EFAULT; 1285 1286 if (sin->sin_family != AF_INET) 1287 return -EINVAL; 1288 1289 flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX; 1290 1291 if (optname == TCP_MD5SIG_EXT && 1292 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { 1293 prefixlen = cmd.tcpm_prefixlen; 1294 if (prefixlen > 32) 1295 return -EINVAL; 1296 } 1297 1298 if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex && 1299 cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) { 1300 struct net_device *dev; 1301 1302 rcu_read_lock(); 1303 dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex); 1304 if (dev && netif_is_l3_master(dev)) 1305 l3index = dev->ifindex; 1306 1307 rcu_read_unlock(); 1308 1309 /* ok to reference set/not set outside of rcu; 1310 * right now device MUST be an L3 master 1311 */ 1312 if (!dev || !l3index) 1313 return -EINVAL; 1314 } 1315 1316 addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr; 1317 1318 if (!cmd.tcpm_keylen) 1319 return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags); 1320 1321 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1322 return -EINVAL; 1323 1324 return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags, 1325 cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL); 1326 } 1327 1328 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp, 1329 __be32 daddr, __be32 saddr, 1330 const struct tcphdr *th, int nbytes) 1331 { 1332 struct tcp4_pseudohdr *bp; 1333 struct scatterlist sg; 1334 struct tcphdr *_th; 1335 1336 bp = hp->scratch; 1337 bp->saddr = saddr; 1338 bp->daddr = daddr; 1339 bp->pad = 0; 1340 bp->protocol = IPPROTO_TCP; 1341 bp->len = cpu_to_be16(nbytes); 1342 1343 _th = (struct tcphdr *)(bp + 1); 1344 memcpy(_th, th, sizeof(*th)); 1345 _th->check = 0; 1346 1347 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); 1348 ahash_request_set_crypt(hp->md5_req, &sg, NULL, 1349 sizeof(*bp) + sizeof(*th)); 1350 return crypto_ahash_update(hp->md5_req); 1351 } 1352 1353 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1354 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1355 { 1356 struct tcp_md5sig_pool *hp; 1357 struct ahash_request *req; 1358 1359 hp = tcp_get_md5sig_pool(); 1360 if (!hp) 1361 goto clear_hash_noput; 1362 req = hp->md5_req; 1363 1364 if (crypto_ahash_init(req)) 1365 goto clear_hash; 1366 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2)) 1367 goto clear_hash; 1368 if (tcp_md5_hash_key(hp, key)) 1369 goto clear_hash; 1370 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1371 if (crypto_ahash_final(req)) 1372 goto clear_hash; 1373 1374 tcp_put_md5sig_pool(); 1375 return 0; 1376 1377 clear_hash: 1378 tcp_put_md5sig_pool(); 1379 clear_hash_noput: 1380 memset(md5_hash, 0, 16); 1381 return 1; 1382 } 1383 1384 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1385 const struct sock *sk, 1386 const struct sk_buff *skb) 1387 { 1388 struct tcp_md5sig_pool *hp; 1389 struct ahash_request *req; 1390 const struct tcphdr *th = tcp_hdr(skb); 1391 __be32 saddr, daddr; 1392 1393 if (sk) { /* valid for establish/request sockets */ 1394 saddr = sk->sk_rcv_saddr; 1395 daddr = sk->sk_daddr; 1396 } else { 1397 const struct iphdr *iph = ip_hdr(skb); 1398 saddr = iph->saddr; 1399 daddr = iph->daddr; 1400 } 1401 1402 hp = tcp_get_md5sig_pool(); 1403 if (!hp) 1404 goto clear_hash_noput; 1405 req = hp->md5_req; 1406 1407 if (crypto_ahash_init(req)) 1408 goto clear_hash; 1409 1410 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len)) 1411 goto clear_hash; 1412 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1413 goto clear_hash; 1414 if (tcp_md5_hash_key(hp, key)) 1415 goto clear_hash; 1416 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1417 if (crypto_ahash_final(req)) 1418 goto clear_hash; 1419 1420 tcp_put_md5sig_pool(); 1421 return 0; 1422 1423 clear_hash: 1424 tcp_put_md5sig_pool(); 1425 clear_hash_noput: 1426 memset(md5_hash, 0, 16); 1427 return 1; 1428 } 1429 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1430 1431 #endif 1432 1433 static void tcp_v4_init_req(struct request_sock *req, 1434 const struct sock *sk_listener, 1435 struct sk_buff *skb) 1436 { 1437 struct inet_request_sock *ireq = inet_rsk(req); 1438 struct net *net = sock_net(sk_listener); 1439 1440 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1441 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1442 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb)); 1443 } 1444 1445 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1446 struct sk_buff *skb, 1447 struct flowi *fl, 1448 struct request_sock *req) 1449 { 1450 tcp_v4_init_req(req, sk, skb); 1451 1452 if (security_inet_conn_request(sk, skb, req)) 1453 return NULL; 1454 1455 return inet_csk_route_req(sk, &fl->u.ip4, req); 1456 } 1457 1458 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1459 .family = PF_INET, 1460 .obj_size = sizeof(struct tcp_request_sock), 1461 .rtx_syn_ack = tcp_rtx_synack, 1462 .send_ack = tcp_v4_reqsk_send_ack, 1463 .destructor = tcp_v4_reqsk_destructor, 1464 .send_reset = tcp_v4_send_reset, 1465 .syn_ack_timeout = tcp_syn_ack_timeout, 1466 }; 1467 1468 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1469 .mss_clamp = TCP_MSS_DEFAULT, 1470 #ifdef CONFIG_TCP_MD5SIG 1471 .req_md5_lookup = tcp_v4_md5_lookup, 1472 .calc_md5_hash = tcp_v4_md5_hash_skb, 1473 #endif 1474 #ifdef CONFIG_SYN_COOKIES 1475 .cookie_init_seq = cookie_v4_init_sequence, 1476 #endif 1477 .route_req = tcp_v4_route_req, 1478 .init_seq = tcp_v4_init_seq, 1479 .init_ts_off = tcp_v4_init_ts_off, 1480 .send_synack = tcp_v4_send_synack, 1481 }; 1482 1483 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1484 { 1485 /* Never answer to SYNs send to broadcast or multicast */ 1486 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1487 goto drop; 1488 1489 return tcp_conn_request(&tcp_request_sock_ops, 1490 &tcp_request_sock_ipv4_ops, sk, skb); 1491 1492 drop: 1493 tcp_listendrop(sk); 1494 return 0; 1495 } 1496 EXPORT_SYMBOL(tcp_v4_conn_request); 1497 1498 1499 /* 1500 * The three way handshake has completed - we got a valid synack - 1501 * now create the new socket. 1502 */ 1503 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1504 struct request_sock *req, 1505 struct dst_entry *dst, 1506 struct request_sock *req_unhash, 1507 bool *own_req) 1508 { 1509 struct inet_request_sock *ireq; 1510 bool found_dup_sk = false; 1511 struct inet_sock *newinet; 1512 struct tcp_sock *newtp; 1513 struct sock *newsk; 1514 #ifdef CONFIG_TCP_MD5SIG 1515 const union tcp_md5_addr *addr; 1516 struct tcp_md5sig_key *key; 1517 int l3index; 1518 #endif 1519 struct ip_options_rcu *inet_opt; 1520 1521 if (sk_acceptq_is_full(sk)) 1522 goto exit_overflow; 1523 1524 newsk = tcp_create_openreq_child(sk, req, skb); 1525 if (!newsk) 1526 goto exit_nonewsk; 1527 1528 newsk->sk_gso_type = SKB_GSO_TCPV4; 1529 inet_sk_rx_dst_set(newsk, skb); 1530 1531 newtp = tcp_sk(newsk); 1532 newinet = inet_sk(newsk); 1533 ireq = inet_rsk(req); 1534 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1535 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1536 newsk->sk_bound_dev_if = ireq->ir_iif; 1537 newinet->inet_saddr = ireq->ir_loc_addr; 1538 inet_opt = rcu_dereference(ireq->ireq_opt); 1539 RCU_INIT_POINTER(newinet->inet_opt, inet_opt); 1540 newinet->mc_index = inet_iif(skb); 1541 newinet->mc_ttl = ip_hdr(skb)->ttl; 1542 newinet->rcv_tos = ip_hdr(skb)->tos; 1543 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1544 if (inet_opt) 1545 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1546 newinet->inet_id = prandom_u32(); 1547 1548 /* Set ToS of the new socket based upon the value of incoming SYN. 1549 * ECT bits are set later in tcp_init_transfer(). 1550 */ 1551 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)) 1552 newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK; 1553 1554 if (!dst) { 1555 dst = inet_csk_route_child_sock(sk, newsk, req); 1556 if (!dst) 1557 goto put_and_exit; 1558 } else { 1559 /* syncookie case : see end of cookie_v4_check() */ 1560 } 1561 sk_setup_caps(newsk, dst); 1562 1563 tcp_ca_openreq_child(newsk, dst); 1564 1565 tcp_sync_mss(newsk, dst_mtu(dst)); 1566 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); 1567 1568 tcp_initialize_rcv_mss(newsk); 1569 1570 #ifdef CONFIG_TCP_MD5SIG 1571 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif); 1572 /* Copy over the MD5 key from the original socket */ 1573 addr = (union tcp_md5_addr *)&newinet->inet_daddr; 1574 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 1575 if (key) { 1576 /* 1577 * We're using one, so create a matching key 1578 * on the newsk structure. If we fail to get 1579 * memory, then we end up not copying the key 1580 * across. Shucks. 1581 */ 1582 tcp_md5_do_add(newsk, addr, AF_INET, 32, l3index, key->flags, 1583 key->key, key->keylen, GFP_ATOMIC); 1584 sk_gso_disable(newsk); 1585 } 1586 #endif 1587 1588 if (__inet_inherit_port(sk, newsk) < 0) 1589 goto put_and_exit; 1590 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash), 1591 &found_dup_sk); 1592 if (likely(*own_req)) { 1593 tcp_move_syn(newtp, req); 1594 ireq->ireq_opt = NULL; 1595 } else { 1596 newinet->inet_opt = NULL; 1597 1598 if (!req_unhash && found_dup_sk) { 1599 /* This code path should only be executed in the 1600 * syncookie case only 1601 */ 1602 bh_unlock_sock(newsk); 1603 sock_put(newsk); 1604 newsk = NULL; 1605 } 1606 } 1607 return newsk; 1608 1609 exit_overflow: 1610 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1611 exit_nonewsk: 1612 dst_release(dst); 1613 exit: 1614 tcp_listendrop(sk); 1615 return NULL; 1616 put_and_exit: 1617 newinet->inet_opt = NULL; 1618 inet_csk_prepare_forced_close(newsk); 1619 tcp_done(newsk); 1620 goto exit; 1621 } 1622 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1623 1624 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1625 { 1626 #ifdef CONFIG_SYN_COOKIES 1627 const struct tcphdr *th = tcp_hdr(skb); 1628 1629 if (!th->syn) 1630 sk = cookie_v4_check(sk, skb); 1631 #endif 1632 return sk; 1633 } 1634 1635 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 1636 struct tcphdr *th, u32 *cookie) 1637 { 1638 u16 mss = 0; 1639 #ifdef CONFIG_SYN_COOKIES 1640 mss = tcp_get_syncookie_mss(&tcp_request_sock_ops, 1641 &tcp_request_sock_ipv4_ops, sk, th); 1642 if (mss) { 1643 *cookie = __cookie_v4_init_sequence(iph, th, &mss); 1644 tcp_synq_overflow(sk); 1645 } 1646 #endif 1647 return mss; 1648 } 1649 1650 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 1651 u32)); 1652 /* The socket must have it's spinlock held when we get 1653 * here, unless it is a TCP_LISTEN socket. 1654 * 1655 * We have a potential double-lock case here, so even when 1656 * doing backlog processing we use the BH locking scheme. 1657 * This is because we cannot sleep with the original spinlock 1658 * held. 1659 */ 1660 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1661 { 1662 enum skb_drop_reason reason; 1663 struct sock *rsk; 1664 1665 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1666 struct dst_entry *dst; 1667 1668 dst = rcu_dereference_protected(sk->sk_rx_dst, 1669 lockdep_sock_is_held(sk)); 1670 1671 sock_rps_save_rxhash(sk, skb); 1672 sk_mark_napi_id(sk, skb); 1673 if (dst) { 1674 if (sk->sk_rx_dst_ifindex != skb->skb_iif || 1675 !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check, 1676 dst, 0)) { 1677 RCU_INIT_POINTER(sk->sk_rx_dst, NULL); 1678 dst_release(dst); 1679 } 1680 } 1681 tcp_rcv_established(sk, skb); 1682 return 0; 1683 } 1684 1685 reason = SKB_DROP_REASON_NOT_SPECIFIED; 1686 if (tcp_checksum_complete(skb)) 1687 goto csum_err; 1688 1689 if (sk->sk_state == TCP_LISTEN) { 1690 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1691 1692 if (!nsk) 1693 goto discard; 1694 if (nsk != sk) { 1695 if (tcp_child_process(sk, nsk, skb)) { 1696 rsk = nsk; 1697 goto reset; 1698 } 1699 return 0; 1700 } 1701 } else 1702 sock_rps_save_rxhash(sk, skb); 1703 1704 if (tcp_rcv_state_process(sk, skb)) { 1705 rsk = sk; 1706 goto reset; 1707 } 1708 return 0; 1709 1710 reset: 1711 tcp_v4_send_reset(rsk, skb); 1712 discard: 1713 kfree_skb_reason(skb, reason); 1714 /* Be careful here. If this function gets more complicated and 1715 * gcc suffers from register pressure on the x86, sk (in %ebx) 1716 * might be destroyed here. This current version compiles correctly, 1717 * but you have been warned. 1718 */ 1719 return 0; 1720 1721 csum_err: 1722 reason = SKB_DROP_REASON_TCP_CSUM; 1723 trace_tcp_bad_csum(skb); 1724 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1725 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1726 goto discard; 1727 } 1728 EXPORT_SYMBOL(tcp_v4_do_rcv); 1729 1730 int tcp_v4_early_demux(struct sk_buff *skb) 1731 { 1732 struct net *net = dev_net(skb->dev); 1733 const struct iphdr *iph; 1734 const struct tcphdr *th; 1735 struct sock *sk; 1736 1737 if (skb->pkt_type != PACKET_HOST) 1738 return 0; 1739 1740 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1741 return 0; 1742 1743 iph = ip_hdr(skb); 1744 th = tcp_hdr(skb); 1745 1746 if (th->doff < sizeof(struct tcphdr) / 4) 1747 return 0; 1748 1749 sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, 1750 iph->saddr, th->source, 1751 iph->daddr, ntohs(th->dest), 1752 skb->skb_iif, inet_sdif(skb)); 1753 if (sk) { 1754 skb->sk = sk; 1755 skb->destructor = sock_edemux; 1756 if (sk_fullsock(sk)) { 1757 struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst); 1758 1759 if (dst) 1760 dst = dst_check(dst, 0); 1761 if (dst && 1762 sk->sk_rx_dst_ifindex == skb->skb_iif) 1763 skb_dst_set_noref(skb, dst); 1764 } 1765 } 1766 return 0; 1767 } 1768 1769 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1770 enum skb_drop_reason *reason) 1771 { 1772 u32 limit, tail_gso_size, tail_gso_segs; 1773 struct skb_shared_info *shinfo; 1774 const struct tcphdr *th; 1775 struct tcphdr *thtail; 1776 struct sk_buff *tail; 1777 unsigned int hdrlen; 1778 bool fragstolen; 1779 u32 gso_segs; 1780 u32 gso_size; 1781 int delta; 1782 1783 /* In case all data was pulled from skb frags (in __pskb_pull_tail()), 1784 * we can fix skb->truesize to its real value to avoid future drops. 1785 * This is valid because skb is not yet charged to the socket. 1786 * It has been noticed pure SACK packets were sometimes dropped 1787 * (if cooked by drivers without copybreak feature). 1788 */ 1789 skb_condense(skb); 1790 1791 skb_dst_drop(skb); 1792 1793 if (unlikely(tcp_checksum_complete(skb))) { 1794 bh_unlock_sock(sk); 1795 trace_tcp_bad_csum(skb); 1796 *reason = SKB_DROP_REASON_TCP_CSUM; 1797 __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1798 __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1799 return true; 1800 } 1801 1802 /* Attempt coalescing to last skb in backlog, even if we are 1803 * above the limits. 1804 * This is okay because skb capacity is limited to MAX_SKB_FRAGS. 1805 */ 1806 th = (const struct tcphdr *)skb->data; 1807 hdrlen = th->doff * 4; 1808 1809 tail = sk->sk_backlog.tail; 1810 if (!tail) 1811 goto no_coalesce; 1812 thtail = (struct tcphdr *)tail->data; 1813 1814 if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq || 1815 TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield || 1816 ((TCP_SKB_CB(tail)->tcp_flags | 1817 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) || 1818 !((TCP_SKB_CB(tail)->tcp_flags & 1819 TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) || 1820 ((TCP_SKB_CB(tail)->tcp_flags ^ 1821 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) || 1822 #ifdef CONFIG_TLS_DEVICE 1823 tail->decrypted != skb->decrypted || 1824 #endif 1825 thtail->doff != th->doff || 1826 memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th))) 1827 goto no_coalesce; 1828 1829 __skb_pull(skb, hdrlen); 1830 1831 shinfo = skb_shinfo(skb); 1832 gso_size = shinfo->gso_size ?: skb->len; 1833 gso_segs = shinfo->gso_segs ?: 1; 1834 1835 shinfo = skb_shinfo(tail); 1836 tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen); 1837 tail_gso_segs = shinfo->gso_segs ?: 1; 1838 1839 if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) { 1840 TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq; 1841 1842 if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) { 1843 TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq; 1844 thtail->window = th->window; 1845 } 1846 1847 /* We have to update both TCP_SKB_CB(tail)->tcp_flags and 1848 * thtail->fin, so that the fast path in tcp_rcv_established() 1849 * is not entered if we append a packet with a FIN. 1850 * SYN, RST, URG are not present. 1851 * ACK is set on both packets. 1852 * PSH : we do not really care in TCP stack, 1853 * at least for 'GRO' packets. 1854 */ 1855 thtail->fin |= th->fin; 1856 TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1857 1858 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1859 TCP_SKB_CB(tail)->has_rxtstamp = true; 1860 tail->tstamp = skb->tstamp; 1861 skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 1862 } 1863 1864 /* Not as strict as GRO. We only need to carry mss max value */ 1865 shinfo->gso_size = max(gso_size, tail_gso_size); 1866 shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF); 1867 1868 sk->sk_backlog.len += delta; 1869 __NET_INC_STATS(sock_net(sk), 1870 LINUX_MIB_TCPBACKLOGCOALESCE); 1871 kfree_skb_partial(skb, fragstolen); 1872 return false; 1873 } 1874 __skb_push(skb, hdrlen); 1875 1876 no_coalesce: 1877 /* Only socket owner can try to collapse/prune rx queues 1878 * to reduce memory overhead, so add a little headroom here. 1879 * Few sockets backlog are possibly concurrently non empty. 1880 */ 1881 limit = READ_ONCE(sk->sk_rcvbuf) + READ_ONCE(sk->sk_sndbuf) + 64*1024; 1882 1883 if (unlikely(sk_add_backlog(sk, skb, limit))) { 1884 bh_unlock_sock(sk); 1885 *reason = SKB_DROP_REASON_SOCKET_BACKLOG; 1886 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); 1887 return true; 1888 } 1889 return false; 1890 } 1891 EXPORT_SYMBOL(tcp_add_backlog); 1892 1893 int tcp_filter(struct sock *sk, struct sk_buff *skb) 1894 { 1895 struct tcphdr *th = (struct tcphdr *)skb->data; 1896 1897 return sk_filter_trim_cap(sk, skb, th->doff * 4); 1898 } 1899 EXPORT_SYMBOL(tcp_filter); 1900 1901 static void tcp_v4_restore_cb(struct sk_buff *skb) 1902 { 1903 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4, 1904 sizeof(struct inet_skb_parm)); 1905 } 1906 1907 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph, 1908 const struct tcphdr *th) 1909 { 1910 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 1911 * barrier() makes sure compiler wont play fool^Waliasing games. 1912 */ 1913 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 1914 sizeof(struct inet_skb_parm)); 1915 barrier(); 1916 1917 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1918 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1919 skb->len - th->doff * 4); 1920 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1921 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 1922 TCP_SKB_CB(skb)->tcp_tw_isn = 0; 1923 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1924 TCP_SKB_CB(skb)->sacked = 0; 1925 TCP_SKB_CB(skb)->has_rxtstamp = 1926 skb->tstamp || skb_hwtstamps(skb)->hwtstamp; 1927 } 1928 1929 /* 1930 * From tcp_input.c 1931 */ 1932 1933 int tcp_v4_rcv(struct sk_buff *skb) 1934 { 1935 struct net *net = dev_net(skb->dev); 1936 enum skb_drop_reason drop_reason; 1937 int sdif = inet_sdif(skb); 1938 int dif = inet_iif(skb); 1939 const struct iphdr *iph; 1940 const struct tcphdr *th; 1941 bool refcounted; 1942 struct sock *sk; 1943 int ret; 1944 1945 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 1946 if (skb->pkt_type != PACKET_HOST) 1947 goto discard_it; 1948 1949 /* Count it even if it's bad */ 1950 __TCP_INC_STATS(net, TCP_MIB_INSEGS); 1951 1952 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1953 goto discard_it; 1954 1955 th = (const struct tcphdr *)skb->data; 1956 1957 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) { 1958 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 1959 goto bad_packet; 1960 } 1961 if (!pskb_may_pull(skb, th->doff * 4)) 1962 goto discard_it; 1963 1964 /* An explanation is required here, I think. 1965 * Packet length and doff are validated by header prediction, 1966 * provided case of th->doff==0 is eliminated. 1967 * So, we defer the checks. */ 1968 1969 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 1970 goto csum_error; 1971 1972 th = (const struct tcphdr *)skb->data; 1973 iph = ip_hdr(skb); 1974 lookup: 1975 sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo, 1976 skb, __tcp_hdrlen(th), th->source, 1977 th->dest, sdif, &refcounted); 1978 if (!sk) 1979 goto no_tcp_socket; 1980 1981 process: 1982 if (sk->sk_state == TCP_TIME_WAIT) 1983 goto do_time_wait; 1984 1985 if (sk->sk_state == TCP_NEW_SYN_RECV) { 1986 struct request_sock *req = inet_reqsk(sk); 1987 bool req_stolen = false; 1988 struct sock *nsk; 1989 1990 sk = req->rsk_listener; 1991 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1992 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 1993 else 1994 drop_reason = tcp_inbound_md5_hash(sk, skb, 1995 &iph->saddr, &iph->daddr, 1996 AF_INET, dif, sdif); 1997 if (unlikely(drop_reason)) { 1998 sk_drops_add(sk, skb); 1999 reqsk_put(req); 2000 goto discard_it; 2001 } 2002 if (tcp_checksum_complete(skb)) { 2003 reqsk_put(req); 2004 goto csum_error; 2005 } 2006 if (unlikely(sk->sk_state != TCP_LISTEN)) { 2007 nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb); 2008 if (!nsk) { 2009 inet_csk_reqsk_queue_drop_and_put(sk, req); 2010 goto lookup; 2011 } 2012 sk = nsk; 2013 /* reuseport_migrate_sock() has already held one sk_refcnt 2014 * before returning. 2015 */ 2016 } else { 2017 /* We own a reference on the listener, increase it again 2018 * as we might lose it too soon. 2019 */ 2020 sock_hold(sk); 2021 } 2022 refcounted = true; 2023 nsk = NULL; 2024 if (!tcp_filter(sk, skb)) { 2025 th = (const struct tcphdr *)skb->data; 2026 iph = ip_hdr(skb); 2027 tcp_v4_fill_cb(skb, iph, th); 2028 nsk = tcp_check_req(sk, skb, req, false, &req_stolen); 2029 } else { 2030 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2031 } 2032 if (!nsk) { 2033 reqsk_put(req); 2034 if (req_stolen) { 2035 /* Another cpu got exclusive access to req 2036 * and created a full blown socket. 2037 * Try to feed this packet to this socket 2038 * instead of discarding it. 2039 */ 2040 tcp_v4_restore_cb(skb); 2041 sock_put(sk); 2042 goto lookup; 2043 } 2044 goto discard_and_relse; 2045 } 2046 nf_reset_ct(skb); 2047 if (nsk == sk) { 2048 reqsk_put(req); 2049 tcp_v4_restore_cb(skb); 2050 } else if (tcp_child_process(sk, nsk, skb)) { 2051 tcp_v4_send_reset(nsk, skb); 2052 goto discard_and_relse; 2053 } else { 2054 sock_put(sk); 2055 return 0; 2056 } 2057 } 2058 2059 if (static_branch_unlikely(&ip4_min_ttl)) { 2060 /* min_ttl can be changed concurrently from do_ip_setsockopt() */ 2061 if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) { 2062 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 2063 goto discard_and_relse; 2064 } 2065 } 2066 2067 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2068 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2069 goto discard_and_relse; 2070 } 2071 2072 drop_reason = tcp_inbound_md5_hash(sk, skb, &iph->saddr, 2073 &iph->daddr, AF_INET, dif, sdif); 2074 if (drop_reason) 2075 goto discard_and_relse; 2076 2077 nf_reset_ct(skb); 2078 2079 if (tcp_filter(sk, skb)) { 2080 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2081 goto discard_and_relse; 2082 } 2083 th = (const struct tcphdr *)skb->data; 2084 iph = ip_hdr(skb); 2085 tcp_v4_fill_cb(skb, iph, th); 2086 2087 skb->dev = NULL; 2088 2089 if (sk->sk_state == TCP_LISTEN) { 2090 ret = tcp_v4_do_rcv(sk, skb); 2091 goto put_and_return; 2092 } 2093 2094 sk_incoming_cpu_update(sk); 2095 2096 bh_lock_sock_nested(sk); 2097 tcp_segs_in(tcp_sk(sk), skb); 2098 ret = 0; 2099 if (!sock_owned_by_user(sk)) { 2100 ret = tcp_v4_do_rcv(sk, skb); 2101 } else { 2102 if (tcp_add_backlog(sk, skb, &drop_reason)) 2103 goto discard_and_relse; 2104 } 2105 bh_unlock_sock(sk); 2106 2107 put_and_return: 2108 if (refcounted) 2109 sock_put(sk); 2110 2111 return ret; 2112 2113 no_tcp_socket: 2114 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2115 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2116 goto discard_it; 2117 2118 tcp_v4_fill_cb(skb, iph, th); 2119 2120 if (tcp_checksum_complete(skb)) { 2121 csum_error: 2122 drop_reason = SKB_DROP_REASON_TCP_CSUM; 2123 trace_tcp_bad_csum(skb); 2124 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); 2125 bad_packet: 2126 __TCP_INC_STATS(net, TCP_MIB_INERRS); 2127 } else { 2128 tcp_v4_send_reset(NULL, skb); 2129 } 2130 2131 discard_it: 2132 SKB_DR_OR(drop_reason, NOT_SPECIFIED); 2133 /* Discard frame. */ 2134 kfree_skb_reason(skb, drop_reason); 2135 return 0; 2136 2137 discard_and_relse: 2138 sk_drops_add(sk, skb); 2139 if (refcounted) 2140 sock_put(sk); 2141 goto discard_it; 2142 2143 do_time_wait: 2144 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 2145 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2146 inet_twsk_put(inet_twsk(sk)); 2147 goto discard_it; 2148 } 2149 2150 tcp_v4_fill_cb(skb, iph, th); 2151 2152 if (tcp_checksum_complete(skb)) { 2153 inet_twsk_put(inet_twsk(sk)); 2154 goto csum_error; 2155 } 2156 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 2157 case TCP_TW_SYN: { 2158 struct sock *sk2 = inet_lookup_listener(net, 2159 net->ipv4.tcp_death_row.hashinfo, 2160 skb, __tcp_hdrlen(th), 2161 iph->saddr, th->source, 2162 iph->daddr, th->dest, 2163 inet_iif(skb), 2164 sdif); 2165 if (sk2) { 2166 inet_twsk_deschedule_put(inet_twsk(sk)); 2167 sk = sk2; 2168 tcp_v4_restore_cb(skb); 2169 refcounted = false; 2170 goto process; 2171 } 2172 } 2173 /* to ACK */ 2174 fallthrough; 2175 case TCP_TW_ACK: 2176 tcp_v4_timewait_ack(sk, skb); 2177 break; 2178 case TCP_TW_RST: 2179 tcp_v4_send_reset(sk, skb); 2180 inet_twsk_deschedule_put(inet_twsk(sk)); 2181 goto discard_it; 2182 case TCP_TW_SUCCESS:; 2183 } 2184 goto discard_it; 2185 } 2186 2187 static struct timewait_sock_ops tcp_timewait_sock_ops = { 2188 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 2189 .twsk_unique = tcp_twsk_unique, 2190 .twsk_destructor= tcp_twsk_destructor, 2191 }; 2192 2193 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 2194 { 2195 struct dst_entry *dst = skb_dst(skb); 2196 2197 if (dst && dst_hold_safe(dst)) { 2198 rcu_assign_pointer(sk->sk_rx_dst, dst); 2199 sk->sk_rx_dst_ifindex = skb->skb_iif; 2200 } 2201 } 2202 EXPORT_SYMBOL(inet_sk_rx_dst_set); 2203 2204 const struct inet_connection_sock_af_ops ipv4_specific = { 2205 .queue_xmit = ip_queue_xmit, 2206 .send_check = tcp_v4_send_check, 2207 .rebuild_header = inet_sk_rebuild_header, 2208 .sk_rx_dst_set = inet_sk_rx_dst_set, 2209 .conn_request = tcp_v4_conn_request, 2210 .syn_recv_sock = tcp_v4_syn_recv_sock, 2211 .net_header_len = sizeof(struct iphdr), 2212 .setsockopt = ip_setsockopt, 2213 .getsockopt = ip_getsockopt, 2214 .addr2sockaddr = inet_csk_addr2sockaddr, 2215 .sockaddr_len = sizeof(struct sockaddr_in), 2216 .mtu_reduced = tcp_v4_mtu_reduced, 2217 }; 2218 EXPORT_SYMBOL(ipv4_specific); 2219 2220 #ifdef CONFIG_TCP_MD5SIG 2221 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 2222 .md5_lookup = tcp_v4_md5_lookup, 2223 .calc_md5_hash = tcp_v4_md5_hash_skb, 2224 .md5_parse = tcp_v4_parse_md5_keys, 2225 }; 2226 #endif 2227 2228 /* NOTE: A lot of things set to zero explicitly by call to 2229 * sk_alloc() so need not be done here. 2230 */ 2231 static int tcp_v4_init_sock(struct sock *sk) 2232 { 2233 struct inet_connection_sock *icsk = inet_csk(sk); 2234 2235 tcp_init_sock(sk); 2236 2237 icsk->icsk_af_ops = &ipv4_specific; 2238 2239 #ifdef CONFIG_TCP_MD5SIG 2240 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 2241 #endif 2242 2243 return 0; 2244 } 2245 2246 void tcp_v4_destroy_sock(struct sock *sk) 2247 { 2248 struct tcp_sock *tp = tcp_sk(sk); 2249 2250 trace_tcp_destroy_sock(sk); 2251 2252 tcp_clear_xmit_timers(sk); 2253 2254 tcp_cleanup_congestion_control(sk); 2255 2256 tcp_cleanup_ulp(sk); 2257 2258 /* Cleanup up the write buffer. */ 2259 tcp_write_queue_purge(sk); 2260 2261 /* Check if we want to disable active TFO */ 2262 tcp_fastopen_active_disable_ofo_check(sk); 2263 2264 /* Cleans up our, hopefully empty, out_of_order_queue. */ 2265 skb_rbtree_purge(&tp->out_of_order_queue); 2266 2267 #ifdef CONFIG_TCP_MD5SIG 2268 /* Clean up the MD5 key list, if any */ 2269 if (tp->md5sig_info) { 2270 tcp_clear_md5_list(sk); 2271 kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu); 2272 tp->md5sig_info = NULL; 2273 } 2274 #endif 2275 2276 /* Clean up a referenced TCP bind bucket. */ 2277 if (inet_csk(sk)->icsk_bind_hash) 2278 inet_put_port(sk); 2279 2280 BUG_ON(rcu_access_pointer(tp->fastopen_rsk)); 2281 2282 /* If socket is aborted during connect operation */ 2283 tcp_free_fastopen_req(tp); 2284 tcp_fastopen_destroy_cipher(sk); 2285 tcp_saved_syn_free(tp); 2286 2287 sk_sockets_allocated_dec(sk); 2288 } 2289 EXPORT_SYMBOL(tcp_v4_destroy_sock); 2290 2291 #ifdef CONFIG_PROC_FS 2292 /* Proc filesystem TCP sock list dumping. */ 2293 2294 static unsigned short seq_file_family(const struct seq_file *seq); 2295 2296 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2297 { 2298 unsigned short family = seq_file_family(seq); 2299 2300 /* AF_UNSPEC is used as a match all */ 2301 return ((family == AF_UNSPEC || family == sk->sk_family) && 2302 net_eq(sock_net(sk), seq_file_net(seq))); 2303 } 2304 2305 /* Find a non empty bucket (starting from st->bucket) 2306 * and return the first sk from it. 2307 */ 2308 static void *listening_get_first(struct seq_file *seq) 2309 { 2310 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2311 struct tcp_iter_state *st = seq->private; 2312 2313 st->offset = 0; 2314 for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) { 2315 struct inet_listen_hashbucket *ilb2; 2316 struct hlist_nulls_node *node; 2317 struct sock *sk; 2318 2319 ilb2 = &hinfo->lhash2[st->bucket]; 2320 if (hlist_nulls_empty(&ilb2->nulls_head)) 2321 continue; 2322 2323 spin_lock(&ilb2->lock); 2324 sk_nulls_for_each(sk, node, &ilb2->nulls_head) { 2325 if (seq_sk_match(seq, sk)) 2326 return sk; 2327 } 2328 spin_unlock(&ilb2->lock); 2329 } 2330 2331 return NULL; 2332 } 2333 2334 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket). 2335 * If "cur" is the last one in the st->bucket, 2336 * call listening_get_first() to return the first sk of the next 2337 * non empty bucket. 2338 */ 2339 static void *listening_get_next(struct seq_file *seq, void *cur) 2340 { 2341 struct tcp_iter_state *st = seq->private; 2342 struct inet_listen_hashbucket *ilb2; 2343 struct hlist_nulls_node *node; 2344 struct inet_hashinfo *hinfo; 2345 struct sock *sk = cur; 2346 2347 ++st->num; 2348 ++st->offset; 2349 2350 sk = sk_nulls_next(sk); 2351 sk_nulls_for_each_from(sk, node) { 2352 if (seq_sk_match(seq, sk)) 2353 return sk; 2354 } 2355 2356 hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2357 ilb2 = &hinfo->lhash2[st->bucket]; 2358 spin_unlock(&ilb2->lock); 2359 ++st->bucket; 2360 return listening_get_first(seq); 2361 } 2362 2363 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2364 { 2365 struct tcp_iter_state *st = seq->private; 2366 void *rc; 2367 2368 st->bucket = 0; 2369 st->offset = 0; 2370 rc = listening_get_first(seq); 2371 2372 while (rc && *pos) { 2373 rc = listening_get_next(seq, rc); 2374 --*pos; 2375 } 2376 return rc; 2377 } 2378 2379 static inline bool empty_bucket(struct inet_hashinfo *hinfo, 2380 const struct tcp_iter_state *st) 2381 { 2382 return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain); 2383 } 2384 2385 /* 2386 * Get first established socket starting from bucket given in st->bucket. 2387 * If st->bucket is zero, the very first socket in the hash is returned. 2388 */ 2389 static void *established_get_first(struct seq_file *seq) 2390 { 2391 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2392 struct tcp_iter_state *st = seq->private; 2393 2394 st->offset = 0; 2395 for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) { 2396 struct sock *sk; 2397 struct hlist_nulls_node *node; 2398 spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket); 2399 2400 /* Lockless fast path for the common case of empty buckets */ 2401 if (empty_bucket(hinfo, st)) 2402 continue; 2403 2404 spin_lock_bh(lock); 2405 sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) { 2406 if (seq_sk_match(seq, sk)) 2407 return sk; 2408 } 2409 spin_unlock_bh(lock); 2410 } 2411 2412 return NULL; 2413 } 2414 2415 static void *established_get_next(struct seq_file *seq, void *cur) 2416 { 2417 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2418 struct tcp_iter_state *st = seq->private; 2419 struct hlist_nulls_node *node; 2420 struct sock *sk = cur; 2421 2422 ++st->num; 2423 ++st->offset; 2424 2425 sk = sk_nulls_next(sk); 2426 2427 sk_nulls_for_each_from(sk, node) { 2428 if (seq_sk_match(seq, sk)) 2429 return sk; 2430 } 2431 2432 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); 2433 ++st->bucket; 2434 return established_get_first(seq); 2435 } 2436 2437 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2438 { 2439 struct tcp_iter_state *st = seq->private; 2440 void *rc; 2441 2442 st->bucket = 0; 2443 rc = established_get_first(seq); 2444 2445 while (rc && pos) { 2446 rc = established_get_next(seq, rc); 2447 --pos; 2448 } 2449 return rc; 2450 } 2451 2452 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2453 { 2454 void *rc; 2455 struct tcp_iter_state *st = seq->private; 2456 2457 st->state = TCP_SEQ_STATE_LISTENING; 2458 rc = listening_get_idx(seq, &pos); 2459 2460 if (!rc) { 2461 st->state = TCP_SEQ_STATE_ESTABLISHED; 2462 rc = established_get_idx(seq, pos); 2463 } 2464 2465 return rc; 2466 } 2467 2468 static void *tcp_seek_last_pos(struct seq_file *seq) 2469 { 2470 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2471 struct tcp_iter_state *st = seq->private; 2472 int bucket = st->bucket; 2473 int offset = st->offset; 2474 int orig_num = st->num; 2475 void *rc = NULL; 2476 2477 switch (st->state) { 2478 case TCP_SEQ_STATE_LISTENING: 2479 if (st->bucket > hinfo->lhash2_mask) 2480 break; 2481 st->state = TCP_SEQ_STATE_LISTENING; 2482 rc = listening_get_first(seq); 2483 while (offset-- && rc && bucket == st->bucket) 2484 rc = listening_get_next(seq, rc); 2485 if (rc) 2486 break; 2487 st->bucket = 0; 2488 st->state = TCP_SEQ_STATE_ESTABLISHED; 2489 fallthrough; 2490 case TCP_SEQ_STATE_ESTABLISHED: 2491 if (st->bucket > hinfo->ehash_mask) 2492 break; 2493 rc = established_get_first(seq); 2494 while (offset-- && rc && bucket == st->bucket) 2495 rc = established_get_next(seq, rc); 2496 } 2497 2498 st->num = orig_num; 2499 2500 return rc; 2501 } 2502 2503 void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2504 { 2505 struct tcp_iter_state *st = seq->private; 2506 void *rc; 2507 2508 if (*pos && *pos == st->last_pos) { 2509 rc = tcp_seek_last_pos(seq); 2510 if (rc) 2511 goto out; 2512 } 2513 2514 st->state = TCP_SEQ_STATE_LISTENING; 2515 st->num = 0; 2516 st->bucket = 0; 2517 st->offset = 0; 2518 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2519 2520 out: 2521 st->last_pos = *pos; 2522 return rc; 2523 } 2524 EXPORT_SYMBOL(tcp_seq_start); 2525 2526 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2527 { 2528 struct tcp_iter_state *st = seq->private; 2529 void *rc = NULL; 2530 2531 if (v == SEQ_START_TOKEN) { 2532 rc = tcp_get_idx(seq, 0); 2533 goto out; 2534 } 2535 2536 switch (st->state) { 2537 case TCP_SEQ_STATE_LISTENING: 2538 rc = listening_get_next(seq, v); 2539 if (!rc) { 2540 st->state = TCP_SEQ_STATE_ESTABLISHED; 2541 st->bucket = 0; 2542 st->offset = 0; 2543 rc = established_get_first(seq); 2544 } 2545 break; 2546 case TCP_SEQ_STATE_ESTABLISHED: 2547 rc = established_get_next(seq, v); 2548 break; 2549 } 2550 out: 2551 ++*pos; 2552 st->last_pos = *pos; 2553 return rc; 2554 } 2555 EXPORT_SYMBOL(tcp_seq_next); 2556 2557 void tcp_seq_stop(struct seq_file *seq, void *v) 2558 { 2559 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2560 struct tcp_iter_state *st = seq->private; 2561 2562 switch (st->state) { 2563 case TCP_SEQ_STATE_LISTENING: 2564 if (v != SEQ_START_TOKEN) 2565 spin_unlock(&hinfo->lhash2[st->bucket].lock); 2566 break; 2567 case TCP_SEQ_STATE_ESTABLISHED: 2568 if (v) 2569 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); 2570 break; 2571 } 2572 } 2573 EXPORT_SYMBOL(tcp_seq_stop); 2574 2575 static void get_openreq4(const struct request_sock *req, 2576 struct seq_file *f, int i) 2577 { 2578 const struct inet_request_sock *ireq = inet_rsk(req); 2579 long delta = req->rsk_timer.expires - jiffies; 2580 2581 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2582 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2583 i, 2584 ireq->ir_loc_addr, 2585 ireq->ir_num, 2586 ireq->ir_rmt_addr, 2587 ntohs(ireq->ir_rmt_port), 2588 TCP_SYN_RECV, 2589 0, 0, /* could print option size, but that is af dependent. */ 2590 1, /* timers active (only the expire timer) */ 2591 jiffies_delta_to_clock_t(delta), 2592 req->num_timeout, 2593 from_kuid_munged(seq_user_ns(f), 2594 sock_i_uid(req->rsk_listener)), 2595 0, /* non standard timer */ 2596 0, /* open_requests have no inode */ 2597 0, 2598 req); 2599 } 2600 2601 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2602 { 2603 int timer_active; 2604 unsigned long timer_expires; 2605 const struct tcp_sock *tp = tcp_sk(sk); 2606 const struct inet_connection_sock *icsk = inet_csk(sk); 2607 const struct inet_sock *inet = inet_sk(sk); 2608 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2609 __be32 dest = inet->inet_daddr; 2610 __be32 src = inet->inet_rcv_saddr; 2611 __u16 destp = ntohs(inet->inet_dport); 2612 __u16 srcp = ntohs(inet->inet_sport); 2613 int rx_queue; 2614 int state; 2615 2616 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2617 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2618 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2619 timer_active = 1; 2620 timer_expires = icsk->icsk_timeout; 2621 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2622 timer_active = 4; 2623 timer_expires = icsk->icsk_timeout; 2624 } else if (timer_pending(&sk->sk_timer)) { 2625 timer_active = 2; 2626 timer_expires = sk->sk_timer.expires; 2627 } else { 2628 timer_active = 0; 2629 timer_expires = jiffies; 2630 } 2631 2632 state = inet_sk_state_load(sk); 2633 if (state == TCP_LISTEN) 2634 rx_queue = READ_ONCE(sk->sk_ack_backlog); 2635 else 2636 /* Because we don't lock the socket, 2637 * we might find a transient negative value. 2638 */ 2639 rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) - 2640 READ_ONCE(tp->copied_seq), 0); 2641 2642 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2643 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2644 i, src, srcp, dest, destp, state, 2645 READ_ONCE(tp->write_seq) - tp->snd_una, 2646 rx_queue, 2647 timer_active, 2648 jiffies_delta_to_clock_t(timer_expires - jiffies), 2649 icsk->icsk_retransmits, 2650 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2651 icsk->icsk_probes_out, 2652 sock_i_ino(sk), 2653 refcount_read(&sk->sk_refcnt), sk, 2654 jiffies_to_clock_t(icsk->icsk_rto), 2655 jiffies_to_clock_t(icsk->icsk_ack.ato), 2656 (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk), 2657 tcp_snd_cwnd(tp), 2658 state == TCP_LISTEN ? 2659 fastopenq->max_qlen : 2660 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2661 } 2662 2663 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2664 struct seq_file *f, int i) 2665 { 2666 long delta = tw->tw_timer.expires - jiffies; 2667 __be32 dest, src; 2668 __u16 destp, srcp; 2669 2670 dest = tw->tw_daddr; 2671 src = tw->tw_rcv_saddr; 2672 destp = ntohs(tw->tw_dport); 2673 srcp = ntohs(tw->tw_sport); 2674 2675 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2676 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2677 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2678 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2679 refcount_read(&tw->tw_refcnt), tw); 2680 } 2681 2682 #define TMPSZ 150 2683 2684 static int tcp4_seq_show(struct seq_file *seq, void *v) 2685 { 2686 struct tcp_iter_state *st; 2687 struct sock *sk = v; 2688 2689 seq_setwidth(seq, TMPSZ - 1); 2690 if (v == SEQ_START_TOKEN) { 2691 seq_puts(seq, " sl local_address rem_address st tx_queue " 2692 "rx_queue tr tm->when retrnsmt uid timeout " 2693 "inode"); 2694 goto out; 2695 } 2696 st = seq->private; 2697 2698 if (sk->sk_state == TCP_TIME_WAIT) 2699 get_timewait4_sock(v, seq, st->num); 2700 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2701 get_openreq4(v, seq, st->num); 2702 else 2703 get_tcp4_sock(v, seq, st->num); 2704 out: 2705 seq_pad(seq, '\n'); 2706 return 0; 2707 } 2708 2709 #ifdef CONFIG_BPF_SYSCALL 2710 struct bpf_tcp_iter_state { 2711 struct tcp_iter_state state; 2712 unsigned int cur_sk; 2713 unsigned int end_sk; 2714 unsigned int max_sk; 2715 struct sock **batch; 2716 bool st_bucket_done; 2717 }; 2718 2719 struct bpf_iter__tcp { 2720 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2721 __bpf_md_ptr(struct sock_common *, sk_common); 2722 uid_t uid __aligned(8); 2723 }; 2724 2725 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 2726 struct sock_common *sk_common, uid_t uid) 2727 { 2728 struct bpf_iter__tcp ctx; 2729 2730 meta->seq_num--; /* skip SEQ_START_TOKEN */ 2731 ctx.meta = meta; 2732 ctx.sk_common = sk_common; 2733 ctx.uid = uid; 2734 return bpf_iter_run_prog(prog, &ctx); 2735 } 2736 2737 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter) 2738 { 2739 while (iter->cur_sk < iter->end_sk) 2740 sock_put(iter->batch[iter->cur_sk++]); 2741 } 2742 2743 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter, 2744 unsigned int new_batch_sz) 2745 { 2746 struct sock **new_batch; 2747 2748 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz, 2749 GFP_USER | __GFP_NOWARN); 2750 if (!new_batch) 2751 return -ENOMEM; 2752 2753 bpf_iter_tcp_put_batch(iter); 2754 kvfree(iter->batch); 2755 iter->batch = new_batch; 2756 iter->max_sk = new_batch_sz; 2757 2758 return 0; 2759 } 2760 2761 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq, 2762 struct sock *start_sk) 2763 { 2764 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2765 struct bpf_tcp_iter_state *iter = seq->private; 2766 struct tcp_iter_state *st = &iter->state; 2767 struct hlist_nulls_node *node; 2768 unsigned int expected = 1; 2769 struct sock *sk; 2770 2771 sock_hold(start_sk); 2772 iter->batch[iter->end_sk++] = start_sk; 2773 2774 sk = sk_nulls_next(start_sk); 2775 sk_nulls_for_each_from(sk, node) { 2776 if (seq_sk_match(seq, sk)) { 2777 if (iter->end_sk < iter->max_sk) { 2778 sock_hold(sk); 2779 iter->batch[iter->end_sk++] = sk; 2780 } 2781 expected++; 2782 } 2783 } 2784 spin_unlock(&hinfo->lhash2[st->bucket].lock); 2785 2786 return expected; 2787 } 2788 2789 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq, 2790 struct sock *start_sk) 2791 { 2792 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2793 struct bpf_tcp_iter_state *iter = seq->private; 2794 struct tcp_iter_state *st = &iter->state; 2795 struct hlist_nulls_node *node; 2796 unsigned int expected = 1; 2797 struct sock *sk; 2798 2799 sock_hold(start_sk); 2800 iter->batch[iter->end_sk++] = start_sk; 2801 2802 sk = sk_nulls_next(start_sk); 2803 sk_nulls_for_each_from(sk, node) { 2804 if (seq_sk_match(seq, sk)) { 2805 if (iter->end_sk < iter->max_sk) { 2806 sock_hold(sk); 2807 iter->batch[iter->end_sk++] = sk; 2808 } 2809 expected++; 2810 } 2811 } 2812 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); 2813 2814 return expected; 2815 } 2816 2817 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq) 2818 { 2819 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2820 struct bpf_tcp_iter_state *iter = seq->private; 2821 struct tcp_iter_state *st = &iter->state; 2822 unsigned int expected; 2823 bool resized = false; 2824 struct sock *sk; 2825 2826 /* The st->bucket is done. Directly advance to the next 2827 * bucket instead of having the tcp_seek_last_pos() to skip 2828 * one by one in the current bucket and eventually find out 2829 * it has to advance to the next bucket. 2830 */ 2831 if (iter->st_bucket_done) { 2832 st->offset = 0; 2833 st->bucket++; 2834 if (st->state == TCP_SEQ_STATE_LISTENING && 2835 st->bucket > hinfo->lhash2_mask) { 2836 st->state = TCP_SEQ_STATE_ESTABLISHED; 2837 st->bucket = 0; 2838 } 2839 } 2840 2841 again: 2842 /* Get a new batch */ 2843 iter->cur_sk = 0; 2844 iter->end_sk = 0; 2845 iter->st_bucket_done = false; 2846 2847 sk = tcp_seek_last_pos(seq); 2848 if (!sk) 2849 return NULL; /* Done */ 2850 2851 if (st->state == TCP_SEQ_STATE_LISTENING) 2852 expected = bpf_iter_tcp_listening_batch(seq, sk); 2853 else 2854 expected = bpf_iter_tcp_established_batch(seq, sk); 2855 2856 if (iter->end_sk == expected) { 2857 iter->st_bucket_done = true; 2858 return sk; 2859 } 2860 2861 if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) { 2862 resized = true; 2863 goto again; 2864 } 2865 2866 return sk; 2867 } 2868 2869 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos) 2870 { 2871 /* bpf iter does not support lseek, so it always 2872 * continue from where it was stop()-ped. 2873 */ 2874 if (*pos) 2875 return bpf_iter_tcp_batch(seq); 2876 2877 return SEQ_START_TOKEN; 2878 } 2879 2880 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2881 { 2882 struct bpf_tcp_iter_state *iter = seq->private; 2883 struct tcp_iter_state *st = &iter->state; 2884 struct sock *sk; 2885 2886 /* Whenever seq_next() is called, the iter->cur_sk is 2887 * done with seq_show(), so advance to the next sk in 2888 * the batch. 2889 */ 2890 if (iter->cur_sk < iter->end_sk) { 2891 /* Keeping st->num consistent in tcp_iter_state. 2892 * bpf_iter_tcp does not use st->num. 2893 * meta.seq_num is used instead. 2894 */ 2895 st->num++; 2896 /* Move st->offset to the next sk in the bucket such that 2897 * the future start() will resume at st->offset in 2898 * st->bucket. See tcp_seek_last_pos(). 2899 */ 2900 st->offset++; 2901 sock_put(iter->batch[iter->cur_sk++]); 2902 } 2903 2904 if (iter->cur_sk < iter->end_sk) 2905 sk = iter->batch[iter->cur_sk]; 2906 else 2907 sk = bpf_iter_tcp_batch(seq); 2908 2909 ++*pos; 2910 /* Keeping st->last_pos consistent in tcp_iter_state. 2911 * bpf iter does not do lseek, so st->last_pos always equals to *pos. 2912 */ 2913 st->last_pos = *pos; 2914 return sk; 2915 } 2916 2917 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v) 2918 { 2919 struct bpf_iter_meta meta; 2920 struct bpf_prog *prog; 2921 struct sock *sk = v; 2922 bool slow; 2923 uid_t uid; 2924 int ret; 2925 2926 if (v == SEQ_START_TOKEN) 2927 return 0; 2928 2929 if (sk_fullsock(sk)) 2930 slow = lock_sock_fast(sk); 2931 2932 if (unlikely(sk_unhashed(sk))) { 2933 ret = SEQ_SKIP; 2934 goto unlock; 2935 } 2936 2937 if (sk->sk_state == TCP_TIME_WAIT) { 2938 uid = 0; 2939 } else if (sk->sk_state == TCP_NEW_SYN_RECV) { 2940 const struct request_sock *req = v; 2941 2942 uid = from_kuid_munged(seq_user_ns(seq), 2943 sock_i_uid(req->rsk_listener)); 2944 } else { 2945 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 2946 } 2947 2948 meta.seq = seq; 2949 prog = bpf_iter_get_info(&meta, false); 2950 ret = tcp_prog_seq_show(prog, &meta, v, uid); 2951 2952 unlock: 2953 if (sk_fullsock(sk)) 2954 unlock_sock_fast(sk, slow); 2955 return ret; 2956 2957 } 2958 2959 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v) 2960 { 2961 struct bpf_tcp_iter_state *iter = seq->private; 2962 struct bpf_iter_meta meta; 2963 struct bpf_prog *prog; 2964 2965 if (!v) { 2966 meta.seq = seq; 2967 prog = bpf_iter_get_info(&meta, true); 2968 if (prog) 2969 (void)tcp_prog_seq_show(prog, &meta, v, 0); 2970 } 2971 2972 if (iter->cur_sk < iter->end_sk) { 2973 bpf_iter_tcp_put_batch(iter); 2974 iter->st_bucket_done = false; 2975 } 2976 } 2977 2978 static const struct seq_operations bpf_iter_tcp_seq_ops = { 2979 .show = bpf_iter_tcp_seq_show, 2980 .start = bpf_iter_tcp_seq_start, 2981 .next = bpf_iter_tcp_seq_next, 2982 .stop = bpf_iter_tcp_seq_stop, 2983 }; 2984 #endif 2985 static unsigned short seq_file_family(const struct seq_file *seq) 2986 { 2987 const struct tcp_seq_afinfo *afinfo; 2988 2989 #ifdef CONFIG_BPF_SYSCALL 2990 /* Iterated from bpf_iter. Let the bpf prog to filter instead. */ 2991 if (seq->op == &bpf_iter_tcp_seq_ops) 2992 return AF_UNSPEC; 2993 #endif 2994 2995 /* Iterated from proc fs */ 2996 afinfo = pde_data(file_inode(seq->file)); 2997 return afinfo->family; 2998 } 2999 3000 static const struct seq_operations tcp4_seq_ops = { 3001 .show = tcp4_seq_show, 3002 .start = tcp_seq_start, 3003 .next = tcp_seq_next, 3004 .stop = tcp_seq_stop, 3005 }; 3006 3007 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 3008 .family = AF_INET, 3009 }; 3010 3011 static int __net_init tcp4_proc_init_net(struct net *net) 3012 { 3013 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops, 3014 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo)) 3015 return -ENOMEM; 3016 return 0; 3017 } 3018 3019 static void __net_exit tcp4_proc_exit_net(struct net *net) 3020 { 3021 remove_proc_entry("tcp", net->proc_net); 3022 } 3023 3024 static struct pernet_operations tcp4_net_ops = { 3025 .init = tcp4_proc_init_net, 3026 .exit = tcp4_proc_exit_net, 3027 }; 3028 3029 int __init tcp4_proc_init(void) 3030 { 3031 return register_pernet_subsys(&tcp4_net_ops); 3032 } 3033 3034 void tcp4_proc_exit(void) 3035 { 3036 unregister_pernet_subsys(&tcp4_net_ops); 3037 } 3038 #endif /* CONFIG_PROC_FS */ 3039 3040 /* @wake is one when sk_stream_write_space() calls us. 3041 * This sends EPOLLOUT only if notsent_bytes is half the limit. 3042 * This mimics the strategy used in sock_def_write_space(). 3043 */ 3044 bool tcp_stream_memory_free(const struct sock *sk, int wake) 3045 { 3046 const struct tcp_sock *tp = tcp_sk(sk); 3047 u32 notsent_bytes = READ_ONCE(tp->write_seq) - 3048 READ_ONCE(tp->snd_nxt); 3049 3050 return (notsent_bytes << wake) < tcp_notsent_lowat(tp); 3051 } 3052 EXPORT_SYMBOL(tcp_stream_memory_free); 3053 3054 struct proto tcp_prot = { 3055 .name = "TCP", 3056 .owner = THIS_MODULE, 3057 .close = tcp_close, 3058 .pre_connect = tcp_v4_pre_connect, 3059 .connect = tcp_v4_connect, 3060 .disconnect = tcp_disconnect, 3061 .accept = inet_csk_accept, 3062 .ioctl = tcp_ioctl, 3063 .init = tcp_v4_init_sock, 3064 .destroy = tcp_v4_destroy_sock, 3065 .shutdown = tcp_shutdown, 3066 .setsockopt = tcp_setsockopt, 3067 .getsockopt = tcp_getsockopt, 3068 .bpf_bypass_getsockopt = tcp_bpf_bypass_getsockopt, 3069 .keepalive = tcp_set_keepalive, 3070 .recvmsg = tcp_recvmsg, 3071 .sendmsg = tcp_sendmsg, 3072 .sendpage = tcp_sendpage, 3073 .backlog_rcv = tcp_v4_do_rcv, 3074 .release_cb = tcp_release_cb, 3075 .hash = inet_hash, 3076 .unhash = inet_unhash, 3077 .get_port = inet_csk_get_port, 3078 .put_port = inet_put_port, 3079 #ifdef CONFIG_BPF_SYSCALL 3080 .psock_update_sk_prot = tcp_bpf_update_proto, 3081 #endif 3082 .enter_memory_pressure = tcp_enter_memory_pressure, 3083 .leave_memory_pressure = tcp_leave_memory_pressure, 3084 .stream_memory_free = tcp_stream_memory_free, 3085 .sockets_allocated = &tcp_sockets_allocated, 3086 .orphan_count = &tcp_orphan_count, 3087 3088 .memory_allocated = &tcp_memory_allocated, 3089 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3090 3091 .memory_pressure = &tcp_memory_pressure, 3092 .sysctl_mem = sysctl_tcp_mem, 3093 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3094 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3095 .max_header = MAX_TCP_HEADER, 3096 .obj_size = sizeof(struct tcp_sock), 3097 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3098 .twsk_prot = &tcp_timewait_sock_ops, 3099 .rsk_prot = &tcp_request_sock_ops, 3100 .h.hashinfo = NULL, 3101 .no_autobind = true, 3102 .diag_destroy = tcp_abort, 3103 }; 3104 EXPORT_SYMBOL(tcp_prot); 3105 3106 static void __net_exit tcp_sk_exit(struct net *net) 3107 { 3108 if (net->ipv4.tcp_congestion_control) 3109 bpf_module_put(net->ipv4.tcp_congestion_control, 3110 net->ipv4.tcp_congestion_control->owner); 3111 } 3112 3113 static void __net_init tcp_set_hashinfo(struct net *net) 3114 { 3115 struct inet_hashinfo *hinfo; 3116 unsigned int ehash_entries; 3117 struct net *old_net; 3118 3119 if (net_eq(net, &init_net)) 3120 goto fallback; 3121 3122 old_net = current->nsproxy->net_ns; 3123 ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries); 3124 if (!ehash_entries) 3125 goto fallback; 3126 3127 ehash_entries = roundup_pow_of_two(ehash_entries); 3128 hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries); 3129 if (!hinfo) { 3130 pr_warn("Failed to allocate TCP ehash (entries: %u) " 3131 "for a netns, fallback to the global one\n", 3132 ehash_entries); 3133 fallback: 3134 hinfo = &tcp_hashinfo; 3135 ehash_entries = tcp_hashinfo.ehash_mask + 1; 3136 } 3137 3138 net->ipv4.tcp_death_row.hashinfo = hinfo; 3139 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2; 3140 net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128); 3141 } 3142 3143 static int __net_init tcp_sk_init(struct net *net) 3144 { 3145 net->ipv4.sysctl_tcp_ecn = 2; 3146 net->ipv4.sysctl_tcp_ecn_fallback = 1; 3147 3148 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 3149 net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS; 3150 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 3151 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 3152 net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS; 3153 3154 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; 3155 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; 3156 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; 3157 3158 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; 3159 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; 3160 net->ipv4.sysctl_tcp_syncookies = 1; 3161 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 3162 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; 3163 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; 3164 net->ipv4.sysctl_tcp_orphan_retries = 0; 3165 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; 3166 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; 3167 net->ipv4.sysctl_tcp_tw_reuse = 2; 3168 net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1; 3169 3170 refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1); 3171 tcp_set_hashinfo(net); 3172 3173 net->ipv4.sysctl_tcp_sack = 1; 3174 net->ipv4.sysctl_tcp_window_scaling = 1; 3175 net->ipv4.sysctl_tcp_timestamps = 1; 3176 net->ipv4.sysctl_tcp_early_retrans = 3; 3177 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION; 3178 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */ 3179 net->ipv4.sysctl_tcp_retrans_collapse = 1; 3180 net->ipv4.sysctl_tcp_max_reordering = 300; 3181 net->ipv4.sysctl_tcp_dsack = 1; 3182 net->ipv4.sysctl_tcp_app_win = 31; 3183 net->ipv4.sysctl_tcp_adv_win_scale = 1; 3184 net->ipv4.sysctl_tcp_frto = 2; 3185 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1; 3186 /* This limits the percentage of the congestion window which we 3187 * will allow a single TSO frame to consume. Building TSO frames 3188 * which are too large can cause TCP streams to be bursty. 3189 */ 3190 net->ipv4.sysctl_tcp_tso_win_divisor = 3; 3191 /* Default TSQ limit of 16 TSO segments */ 3192 net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536; 3193 3194 /* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */ 3195 net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX; 3196 3197 net->ipv4.sysctl_tcp_min_tso_segs = 2; 3198 net->ipv4.sysctl_tcp_tso_rtt_log = 9; /* 2^9 = 512 usec */ 3199 net->ipv4.sysctl_tcp_min_rtt_wlen = 300; 3200 net->ipv4.sysctl_tcp_autocorking = 1; 3201 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2; 3202 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200; 3203 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120; 3204 if (net != &init_net) { 3205 memcpy(net->ipv4.sysctl_tcp_rmem, 3206 init_net.ipv4.sysctl_tcp_rmem, 3207 sizeof(init_net.ipv4.sysctl_tcp_rmem)); 3208 memcpy(net->ipv4.sysctl_tcp_wmem, 3209 init_net.ipv4.sysctl_tcp_wmem, 3210 sizeof(init_net.ipv4.sysctl_tcp_wmem)); 3211 } 3212 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC; 3213 net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC; 3214 net->ipv4.sysctl_tcp_comp_sack_nr = 44; 3215 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE; 3216 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0; 3217 atomic_set(&net->ipv4.tfo_active_disable_times, 0); 3218 3219 /* Reno is always built in */ 3220 if (!net_eq(net, &init_net) && 3221 bpf_try_module_get(init_net.ipv4.tcp_congestion_control, 3222 init_net.ipv4.tcp_congestion_control->owner)) 3223 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control; 3224 else 3225 net->ipv4.tcp_congestion_control = &tcp_reno; 3226 3227 return 0; 3228 } 3229 3230 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 3231 { 3232 struct net *net; 3233 3234 tcp_twsk_purge(net_exit_list, AF_INET); 3235 3236 list_for_each_entry(net, net_exit_list, exit_list) { 3237 inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo); 3238 WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount)); 3239 tcp_fastopen_ctx_destroy(net); 3240 } 3241 } 3242 3243 static struct pernet_operations __net_initdata tcp_sk_ops = { 3244 .init = tcp_sk_init, 3245 .exit = tcp_sk_exit, 3246 .exit_batch = tcp_sk_exit_batch, 3247 }; 3248 3249 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3250 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta, 3251 struct sock_common *sk_common, uid_t uid) 3252 3253 #define INIT_BATCH_SZ 16 3254 3255 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux) 3256 { 3257 struct bpf_tcp_iter_state *iter = priv_data; 3258 int err; 3259 3260 err = bpf_iter_init_seq_net(priv_data, aux); 3261 if (err) 3262 return err; 3263 3264 err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ); 3265 if (err) { 3266 bpf_iter_fini_seq_net(priv_data); 3267 return err; 3268 } 3269 3270 return 0; 3271 } 3272 3273 static void bpf_iter_fini_tcp(void *priv_data) 3274 { 3275 struct bpf_tcp_iter_state *iter = priv_data; 3276 3277 bpf_iter_fini_seq_net(priv_data); 3278 kvfree(iter->batch); 3279 } 3280 3281 static const struct bpf_iter_seq_info tcp_seq_info = { 3282 .seq_ops = &bpf_iter_tcp_seq_ops, 3283 .init_seq_private = bpf_iter_init_tcp, 3284 .fini_seq_private = bpf_iter_fini_tcp, 3285 .seq_priv_size = sizeof(struct bpf_tcp_iter_state), 3286 }; 3287 3288 static const struct bpf_func_proto * 3289 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id, 3290 const struct bpf_prog *prog) 3291 { 3292 switch (func_id) { 3293 case BPF_FUNC_setsockopt: 3294 return &bpf_sk_setsockopt_proto; 3295 case BPF_FUNC_getsockopt: 3296 return &bpf_sk_getsockopt_proto; 3297 default: 3298 return NULL; 3299 } 3300 } 3301 3302 static struct bpf_iter_reg tcp_reg_info = { 3303 .target = "tcp", 3304 .ctx_arg_info_size = 1, 3305 .ctx_arg_info = { 3306 { offsetof(struct bpf_iter__tcp, sk_common), 3307 PTR_TO_BTF_ID_OR_NULL }, 3308 }, 3309 .get_func_proto = bpf_iter_tcp_get_func_proto, 3310 .seq_info = &tcp_seq_info, 3311 }; 3312 3313 static void __init bpf_iter_register(void) 3314 { 3315 tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON]; 3316 if (bpf_iter_reg_target(&tcp_reg_info)) 3317 pr_warn("Warning: could not register bpf iterator tcp\n"); 3318 } 3319 3320 #endif 3321 3322 void __init tcp_v4_init(void) 3323 { 3324 int cpu, res; 3325 3326 for_each_possible_cpu(cpu) { 3327 struct sock *sk; 3328 3329 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 3330 IPPROTO_TCP, &init_net); 3331 if (res) 3332 panic("Failed to create the TCP control socket.\n"); 3333 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 3334 3335 /* Please enforce IP_DF and IPID==0 for RST and 3336 * ACK sent in SYN-RECV and TIME-WAIT state. 3337 */ 3338 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO; 3339 3340 per_cpu(ipv4_tcp_sk, cpu) = sk; 3341 } 3342 if (register_pernet_subsys(&tcp_sk_ops)) 3343 panic("Failed to create the TCP control socket.\n"); 3344 3345 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3346 bpf_iter_register(); 3347 #endif 3348 } 3349