xref: /linux/net/ipv4/tcp_ipv4.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  *		IPv4 specific functions
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  */
18 
19 /*
20  * Changes:
21  *		David S. Miller	:	New socket lookup architecture.
22  *					This code is dedicated to John Dyson.
23  *		David S. Miller :	Change semantics of established hash,
24  *					half is devoted to TIME_WAIT sockets
25  *					and the rest go in the other half.
26  *		Andi Kleen :		Add support for syncookies and fixed
27  *					some bugs: ip options weren't passed to
28  *					the TCP layer, missed a check for an
29  *					ACK bit.
30  *		Andi Kleen :		Implemented fast path mtu discovery.
31  *	     				Fixed many serious bugs in the
32  *					request_sock handling and moved
33  *					most of it into the af independent code.
34  *					Added tail drop and some other bugfixes.
35  *					Added new listen semantics.
36  *		Mike McLagan	:	Routing by source
37  *	Juan Jose Ciarlante:		ip_dynaddr bits
38  *		Andi Kleen:		various fixes.
39  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
40  *					coma.
41  *	Andi Kleen		:	Fix new listen.
42  *	Andi Kleen		:	Fix accept error reporting.
43  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
44  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
45  *					a single port at the same time.
46  */
47 
48 #define pr_fmt(fmt) "TCP: " fmt
49 
50 #include <linux/bottom_half.h>
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/module.h>
54 #include <linux/random.h>
55 #include <linux/cache.h>
56 #include <linux/jhash.h>
57 #include <linux/init.h>
58 #include <linux/times.h>
59 #include <linux/slab.h>
60 #include <linux/sched.h>
61 
62 #include <net/net_namespace.h>
63 #include <net/icmp.h>
64 #include <net/inet_hashtables.h>
65 #include <net/tcp.h>
66 #include <net/transp_v6.h>
67 #include <net/ipv6.h>
68 #include <net/inet_common.h>
69 #include <net/timewait_sock.h>
70 #include <net/xfrm.h>
71 #include <net/secure_seq.h>
72 #include <net/busy_poll.h>
73 #include <net/rstreason.h>
74 
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
80 #include <linux/inetdevice.h>
81 #include <linux/btf_ids.h>
82 
83 #include <crypto/hash.h>
84 #include <linux/scatterlist.h>
85 
86 #include <trace/events/tcp.h>
87 
88 #ifdef CONFIG_TCP_MD5SIG
89 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
90 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
91 #endif
92 
93 struct inet_hashinfo tcp_hashinfo;
94 EXPORT_SYMBOL(tcp_hashinfo);
95 
96 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
97 
98 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
99 {
100 	return secure_tcp_seq(ip_hdr(skb)->daddr,
101 			      ip_hdr(skb)->saddr,
102 			      tcp_hdr(skb)->dest,
103 			      tcp_hdr(skb)->source);
104 }
105 
106 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
107 {
108 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
109 }
110 
111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
112 {
113 	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
114 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
115 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
116 	struct tcp_sock *tp = tcp_sk(sk);
117 	int ts_recent_stamp;
118 
119 	if (reuse == 2) {
120 		/* Still does not detect *everything* that goes through
121 		 * lo, since we require a loopback src or dst address
122 		 * or direct binding to 'lo' interface.
123 		 */
124 		bool loopback = false;
125 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
126 			loopback = true;
127 #if IS_ENABLED(CONFIG_IPV6)
128 		if (tw->tw_family == AF_INET6) {
129 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
130 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
131 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
132 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
133 				loopback = true;
134 		} else
135 #endif
136 		{
137 			if (ipv4_is_loopback(tw->tw_daddr) ||
138 			    ipv4_is_loopback(tw->tw_rcv_saddr))
139 				loopback = true;
140 		}
141 		if (!loopback)
142 			reuse = 0;
143 	}
144 
145 	/* With PAWS, it is safe from the viewpoint
146 	   of data integrity. Even without PAWS it is safe provided sequence
147 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
148 
149 	   Actually, the idea is close to VJ's one, only timestamp cache is
150 	   held not per host, but per port pair and TW bucket is used as state
151 	   holder.
152 
153 	   If TW bucket has been already destroyed we fall back to VJ's scheme
154 	   and use initial timestamp retrieved from peer table.
155 	 */
156 	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
157 	if (ts_recent_stamp &&
158 	    (!twp || (reuse && time_after32(ktime_get_seconds(),
159 					    ts_recent_stamp)))) {
160 		/* inet_twsk_hashdance_schedule() sets sk_refcnt after putting twsk
161 		 * and releasing the bucket lock.
162 		 */
163 		if (unlikely(!refcount_inc_not_zero(&sktw->sk_refcnt)))
164 			return 0;
165 
166 		/* In case of repair and re-using TIME-WAIT sockets we still
167 		 * want to be sure that it is safe as above but honor the
168 		 * sequence numbers and time stamps set as part of the repair
169 		 * process.
170 		 *
171 		 * Without this check re-using a TIME-WAIT socket with TCP
172 		 * repair would accumulate a -1 on the repair assigned
173 		 * sequence number. The first time it is reused the sequence
174 		 * is -1, the second time -2, etc. This fixes that issue
175 		 * without appearing to create any others.
176 		 */
177 		if (likely(!tp->repair)) {
178 			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
179 
180 			if (!seq)
181 				seq = 1;
182 			WRITE_ONCE(tp->write_seq, seq);
183 			tp->rx_opt.ts_recent	   = READ_ONCE(tcptw->tw_ts_recent);
184 			tp->rx_opt.ts_recent_stamp = ts_recent_stamp;
185 		}
186 
187 		return 1;
188 	}
189 
190 	return 0;
191 }
192 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
193 
194 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
195 			      int addr_len)
196 {
197 	/* This check is replicated from tcp_v4_connect() and intended to
198 	 * prevent BPF program called below from accessing bytes that are out
199 	 * of the bound specified by user in addr_len.
200 	 */
201 	if (addr_len < sizeof(struct sockaddr_in))
202 		return -EINVAL;
203 
204 	sock_owned_by_me(sk);
205 
206 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
207 }
208 
209 /* This will initiate an outgoing connection. */
210 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
211 {
212 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
213 	struct inet_timewait_death_row *tcp_death_row;
214 	struct inet_sock *inet = inet_sk(sk);
215 	struct tcp_sock *tp = tcp_sk(sk);
216 	struct ip_options_rcu *inet_opt;
217 	struct net *net = sock_net(sk);
218 	__be16 orig_sport, orig_dport;
219 	__be32 daddr, nexthop;
220 	struct flowi4 *fl4;
221 	struct rtable *rt;
222 	int err;
223 
224 	if (addr_len < sizeof(struct sockaddr_in))
225 		return -EINVAL;
226 
227 	if (usin->sin_family != AF_INET)
228 		return -EAFNOSUPPORT;
229 
230 	nexthop = daddr = usin->sin_addr.s_addr;
231 	inet_opt = rcu_dereference_protected(inet->inet_opt,
232 					     lockdep_sock_is_held(sk));
233 	if (inet_opt && inet_opt->opt.srr) {
234 		if (!daddr)
235 			return -EINVAL;
236 		nexthop = inet_opt->opt.faddr;
237 	}
238 
239 	orig_sport = inet->inet_sport;
240 	orig_dport = usin->sin_port;
241 	fl4 = &inet->cork.fl.u.ip4;
242 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
243 			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
244 			      orig_dport, sk);
245 	if (IS_ERR(rt)) {
246 		err = PTR_ERR(rt);
247 		if (err == -ENETUNREACH)
248 			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
249 		return err;
250 	}
251 
252 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
253 		ip_rt_put(rt);
254 		return -ENETUNREACH;
255 	}
256 
257 	if (!inet_opt || !inet_opt->opt.srr)
258 		daddr = fl4->daddr;
259 
260 	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
261 
262 	if (!inet->inet_saddr) {
263 		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
264 		if (err) {
265 			ip_rt_put(rt);
266 			return err;
267 		}
268 	} else {
269 		sk_rcv_saddr_set(sk, inet->inet_saddr);
270 	}
271 
272 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
273 		/* Reset inherited state */
274 		tp->rx_opt.ts_recent	   = 0;
275 		tp->rx_opt.ts_recent_stamp = 0;
276 		if (likely(!tp->repair))
277 			WRITE_ONCE(tp->write_seq, 0);
278 	}
279 
280 	inet->inet_dport = usin->sin_port;
281 	sk_daddr_set(sk, daddr);
282 
283 	inet_csk(sk)->icsk_ext_hdr_len = 0;
284 	if (inet_opt)
285 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
286 
287 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
288 
289 	/* Socket identity is still unknown (sport may be zero).
290 	 * However we set state to SYN-SENT and not releasing socket
291 	 * lock select source port, enter ourselves into the hash tables and
292 	 * complete initialization after this.
293 	 */
294 	tcp_set_state(sk, TCP_SYN_SENT);
295 	err = inet_hash_connect(tcp_death_row, sk);
296 	if (err)
297 		goto failure;
298 
299 	sk_set_txhash(sk);
300 
301 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
302 			       inet->inet_sport, inet->inet_dport, sk);
303 	if (IS_ERR(rt)) {
304 		err = PTR_ERR(rt);
305 		rt = NULL;
306 		goto failure;
307 	}
308 	tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
309 	/* OK, now commit destination to socket.  */
310 	sk->sk_gso_type = SKB_GSO_TCPV4;
311 	sk_setup_caps(sk, &rt->dst);
312 	rt = NULL;
313 
314 	if (likely(!tp->repair)) {
315 		if (!tp->write_seq)
316 			WRITE_ONCE(tp->write_seq,
317 				   secure_tcp_seq(inet->inet_saddr,
318 						  inet->inet_daddr,
319 						  inet->inet_sport,
320 						  usin->sin_port));
321 		WRITE_ONCE(tp->tsoffset,
322 			   secure_tcp_ts_off(net, inet->inet_saddr,
323 					     inet->inet_daddr));
324 	}
325 
326 	atomic_set(&inet->inet_id, get_random_u16());
327 
328 	if (tcp_fastopen_defer_connect(sk, &err))
329 		return err;
330 	if (err)
331 		goto failure;
332 
333 	err = tcp_connect(sk);
334 
335 	if (err)
336 		goto failure;
337 
338 	return 0;
339 
340 failure:
341 	/*
342 	 * This unhashes the socket and releases the local port,
343 	 * if necessary.
344 	 */
345 	tcp_set_state(sk, TCP_CLOSE);
346 	inet_bhash2_reset_saddr(sk);
347 	ip_rt_put(rt);
348 	sk->sk_route_caps = 0;
349 	inet->inet_dport = 0;
350 	return err;
351 }
352 EXPORT_SYMBOL(tcp_v4_connect);
353 
354 /*
355  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
356  * It can be called through tcp_release_cb() if socket was owned by user
357  * at the time tcp_v4_err() was called to handle ICMP message.
358  */
359 void tcp_v4_mtu_reduced(struct sock *sk)
360 {
361 	struct inet_sock *inet = inet_sk(sk);
362 	struct dst_entry *dst;
363 	u32 mtu;
364 
365 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
366 		return;
367 	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
368 	dst = inet_csk_update_pmtu(sk, mtu);
369 	if (!dst)
370 		return;
371 
372 	/* Something is about to be wrong... Remember soft error
373 	 * for the case, if this connection will not able to recover.
374 	 */
375 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
376 		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
377 
378 	mtu = dst_mtu(dst);
379 
380 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
381 	    ip_sk_accept_pmtu(sk) &&
382 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
383 		tcp_sync_mss(sk, mtu);
384 
385 		/* Resend the TCP packet because it's
386 		 * clear that the old packet has been
387 		 * dropped. This is the new "fast" path mtu
388 		 * discovery.
389 		 */
390 		tcp_simple_retransmit(sk);
391 	} /* else let the usual retransmit timer handle it */
392 }
393 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
394 
395 static void do_redirect(struct sk_buff *skb, struct sock *sk)
396 {
397 	struct dst_entry *dst = __sk_dst_check(sk, 0);
398 
399 	if (dst)
400 		dst->ops->redirect(dst, sk, skb);
401 }
402 
403 
404 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
405 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
406 {
407 	struct request_sock *req = inet_reqsk(sk);
408 	struct net *net = sock_net(sk);
409 
410 	/* ICMPs are not backlogged, hence we cannot get
411 	 * an established socket here.
412 	 */
413 	if (seq != tcp_rsk(req)->snt_isn) {
414 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
415 	} else if (abort) {
416 		/*
417 		 * Still in SYN_RECV, just remove it silently.
418 		 * There is no good way to pass the error to the newly
419 		 * created socket, and POSIX does not want network
420 		 * errors returned from accept().
421 		 */
422 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
423 		tcp_listendrop(req->rsk_listener);
424 	}
425 	reqsk_put(req);
426 }
427 EXPORT_SYMBOL(tcp_req_err);
428 
429 /* TCP-LD (RFC 6069) logic */
430 void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
431 {
432 	struct inet_connection_sock *icsk = inet_csk(sk);
433 	struct tcp_sock *tp = tcp_sk(sk);
434 	struct sk_buff *skb;
435 	s32 remaining;
436 	u32 delta_us;
437 
438 	if (sock_owned_by_user(sk))
439 		return;
440 
441 	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
442 	    !icsk->icsk_backoff)
443 		return;
444 
445 	skb = tcp_rtx_queue_head(sk);
446 	if (WARN_ON_ONCE(!skb))
447 		return;
448 
449 	icsk->icsk_backoff--;
450 	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
451 	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
452 
453 	tcp_mstamp_refresh(tp);
454 	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
455 	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
456 
457 	if (remaining > 0) {
458 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
459 					  remaining, TCP_RTO_MAX);
460 	} else {
461 		/* RTO revert clocked out retransmission.
462 		 * Will retransmit now.
463 		 */
464 		tcp_retransmit_timer(sk);
465 	}
466 }
467 EXPORT_SYMBOL(tcp_ld_RTO_revert);
468 
469 /*
470  * This routine is called by the ICMP module when it gets some
471  * sort of error condition.  If err < 0 then the socket should
472  * be closed and the error returned to the user.  If err > 0
473  * it's just the icmp type << 8 | icmp code.  After adjustment
474  * header points to the first 8 bytes of the tcp header.  We need
475  * to find the appropriate port.
476  *
477  * The locking strategy used here is very "optimistic". When
478  * someone else accesses the socket the ICMP is just dropped
479  * and for some paths there is no check at all.
480  * A more general error queue to queue errors for later handling
481  * is probably better.
482  *
483  */
484 
485 int tcp_v4_err(struct sk_buff *skb, u32 info)
486 {
487 	const struct iphdr *iph = (const struct iphdr *)skb->data;
488 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
489 	struct tcp_sock *tp;
490 	const int type = icmp_hdr(skb)->type;
491 	const int code = icmp_hdr(skb)->code;
492 	struct sock *sk;
493 	struct request_sock *fastopen;
494 	u32 seq, snd_una;
495 	int err;
496 	struct net *net = dev_net(skb->dev);
497 
498 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
499 				       iph->daddr, th->dest, iph->saddr,
500 				       ntohs(th->source), inet_iif(skb), 0);
501 	if (!sk) {
502 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
503 		return -ENOENT;
504 	}
505 	if (sk->sk_state == TCP_TIME_WAIT) {
506 		/* To increase the counter of ignored icmps for TCP-AO */
507 		tcp_ao_ignore_icmp(sk, AF_INET, type, code);
508 		inet_twsk_put(inet_twsk(sk));
509 		return 0;
510 	}
511 	seq = ntohl(th->seq);
512 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
513 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
514 				     type == ICMP_TIME_EXCEEDED ||
515 				     (type == ICMP_DEST_UNREACH &&
516 				      (code == ICMP_NET_UNREACH ||
517 				       code == ICMP_HOST_UNREACH)));
518 		return 0;
519 	}
520 
521 	if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) {
522 		sock_put(sk);
523 		return 0;
524 	}
525 
526 	bh_lock_sock(sk);
527 	/* If too many ICMPs get dropped on busy
528 	 * servers this needs to be solved differently.
529 	 * We do take care of PMTU discovery (RFC1191) special case :
530 	 * we can receive locally generated ICMP messages while socket is held.
531 	 */
532 	if (sock_owned_by_user(sk)) {
533 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
534 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
535 	}
536 	if (sk->sk_state == TCP_CLOSE)
537 		goto out;
538 
539 	if (static_branch_unlikely(&ip4_min_ttl)) {
540 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
541 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
542 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
543 			goto out;
544 		}
545 	}
546 
547 	tp = tcp_sk(sk);
548 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
549 	fastopen = rcu_dereference(tp->fastopen_rsk);
550 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
551 	if (sk->sk_state != TCP_LISTEN &&
552 	    !between(seq, snd_una, tp->snd_nxt)) {
553 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
554 		goto out;
555 	}
556 
557 	switch (type) {
558 	case ICMP_REDIRECT:
559 		if (!sock_owned_by_user(sk))
560 			do_redirect(skb, sk);
561 		goto out;
562 	case ICMP_SOURCE_QUENCH:
563 		/* Just silently ignore these. */
564 		goto out;
565 	case ICMP_PARAMETERPROB:
566 		err = EPROTO;
567 		break;
568 	case ICMP_DEST_UNREACH:
569 		if (code > NR_ICMP_UNREACH)
570 			goto out;
571 
572 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
573 			/* We are not interested in TCP_LISTEN and open_requests
574 			 * (SYN-ACKs send out by Linux are always <576bytes so
575 			 * they should go through unfragmented).
576 			 */
577 			if (sk->sk_state == TCP_LISTEN)
578 				goto out;
579 
580 			WRITE_ONCE(tp->mtu_info, info);
581 			if (!sock_owned_by_user(sk)) {
582 				tcp_v4_mtu_reduced(sk);
583 			} else {
584 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
585 					sock_hold(sk);
586 			}
587 			goto out;
588 		}
589 
590 		err = icmp_err_convert[code].errno;
591 		/* check if this ICMP message allows revert of backoff.
592 		 * (see RFC 6069)
593 		 */
594 		if (!fastopen &&
595 		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
596 			tcp_ld_RTO_revert(sk, seq);
597 		break;
598 	case ICMP_TIME_EXCEEDED:
599 		err = EHOSTUNREACH;
600 		break;
601 	default:
602 		goto out;
603 	}
604 
605 	switch (sk->sk_state) {
606 	case TCP_SYN_SENT:
607 	case TCP_SYN_RECV:
608 		/* Only in fast or simultaneous open. If a fast open socket is
609 		 * already accepted it is treated as a connected one below.
610 		 */
611 		if (fastopen && !fastopen->sk)
612 			break;
613 
614 		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
615 
616 		if (!sock_owned_by_user(sk))
617 			tcp_done_with_error(sk, err);
618 		else
619 			WRITE_ONCE(sk->sk_err_soft, err);
620 		goto out;
621 	}
622 
623 	/* If we've already connected we will keep trying
624 	 * until we time out, or the user gives up.
625 	 *
626 	 * rfc1122 4.2.3.9 allows to consider as hard errors
627 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
628 	 * but it is obsoleted by pmtu discovery).
629 	 *
630 	 * Note, that in modern internet, where routing is unreliable
631 	 * and in each dark corner broken firewalls sit, sending random
632 	 * errors ordered by their masters even this two messages finally lose
633 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
634 	 *
635 	 * Now we are in compliance with RFCs.
636 	 *							--ANK (980905)
637 	 */
638 
639 	if (!sock_owned_by_user(sk) &&
640 	    inet_test_bit(RECVERR, sk)) {
641 		WRITE_ONCE(sk->sk_err, err);
642 		sk_error_report(sk);
643 	} else	{ /* Only an error on timeout */
644 		WRITE_ONCE(sk->sk_err_soft, err);
645 	}
646 
647 out:
648 	bh_unlock_sock(sk);
649 	sock_put(sk);
650 	return 0;
651 }
652 
653 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
654 {
655 	struct tcphdr *th = tcp_hdr(skb);
656 
657 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
658 	skb->csum_start = skb_transport_header(skb) - skb->head;
659 	skb->csum_offset = offsetof(struct tcphdr, check);
660 }
661 
662 /* This routine computes an IPv4 TCP checksum. */
663 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
664 {
665 	const struct inet_sock *inet = inet_sk(sk);
666 
667 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
668 }
669 EXPORT_SYMBOL(tcp_v4_send_check);
670 
671 #define REPLY_OPTIONS_LEN      (MAX_TCP_OPTION_SPACE / sizeof(__be32))
672 
673 static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb,
674 				 const struct tcp_ao_hdr *aoh,
675 				 struct ip_reply_arg *arg, struct tcphdr *reply,
676 				 __be32 reply_options[REPLY_OPTIONS_LEN])
677 {
678 #ifdef CONFIG_TCP_AO
679 	int sdif = tcp_v4_sdif(skb);
680 	int dif = inet_iif(skb);
681 	int l3index = sdif ? dif : 0;
682 	bool allocated_traffic_key;
683 	struct tcp_ao_key *key;
684 	char *traffic_key;
685 	bool drop = true;
686 	u32 ao_sne = 0;
687 	u8 keyid;
688 
689 	rcu_read_lock();
690 	if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq),
691 				 &key, &traffic_key, &allocated_traffic_key,
692 				 &keyid, &ao_sne))
693 		goto out;
694 
695 	reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) |
696 				 (aoh->rnext_keyid << 8) | keyid);
697 	arg->iov[0].iov_len += tcp_ao_len_aligned(key);
698 	reply->doff = arg->iov[0].iov_len / 4;
699 
700 	if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1],
701 			    key, traffic_key,
702 			    (union tcp_ao_addr *)&ip_hdr(skb)->saddr,
703 			    (union tcp_ao_addr *)&ip_hdr(skb)->daddr,
704 			    reply, ao_sne))
705 		goto out;
706 	drop = false;
707 out:
708 	rcu_read_unlock();
709 	if (allocated_traffic_key)
710 		kfree(traffic_key);
711 	return drop;
712 #else
713 	return true;
714 #endif
715 }
716 
717 /*
718  *	This routine will send an RST to the other tcp.
719  *
720  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
721  *		      for reset.
722  *	Answer: if a packet caused RST, it is not for a socket
723  *		existing in our system, if it is matched to a socket,
724  *		it is just duplicate segment or bug in other side's TCP.
725  *		So that we build reply only basing on parameters
726  *		arrived with segment.
727  *	Exception: precedence violation. We do not implement it in any case.
728  */
729 
730 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb,
731 			      enum sk_rst_reason reason)
732 {
733 	const struct tcphdr *th = tcp_hdr(skb);
734 	struct {
735 		struct tcphdr th;
736 		__be32 opt[REPLY_OPTIONS_LEN];
737 	} rep;
738 	const __u8 *md5_hash_location = NULL;
739 	const struct tcp_ao_hdr *aoh;
740 	struct ip_reply_arg arg;
741 #ifdef CONFIG_TCP_MD5SIG
742 	struct tcp_md5sig_key *key = NULL;
743 	unsigned char newhash[16];
744 	struct sock *sk1 = NULL;
745 	int genhash;
746 #endif
747 	u64 transmit_time = 0;
748 	struct sock *ctl_sk;
749 	struct net *net;
750 	u32 txhash = 0;
751 
752 	/* Never send a reset in response to a reset. */
753 	if (th->rst)
754 		return;
755 
756 	/* If sk not NULL, it means we did a successful lookup and incoming
757 	 * route had to be correct. prequeue might have dropped our dst.
758 	 */
759 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
760 		return;
761 
762 	/* Swap the send and the receive. */
763 	memset(&rep, 0, sizeof(rep));
764 	rep.th.dest   = th->source;
765 	rep.th.source = th->dest;
766 	rep.th.doff   = sizeof(struct tcphdr) / 4;
767 	rep.th.rst    = 1;
768 
769 	if (th->ack) {
770 		rep.th.seq = th->ack_seq;
771 	} else {
772 		rep.th.ack = 1;
773 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
774 				       skb->len - (th->doff << 2));
775 	}
776 
777 	memset(&arg, 0, sizeof(arg));
778 	arg.iov[0].iov_base = (unsigned char *)&rep;
779 	arg.iov[0].iov_len  = sizeof(rep.th);
780 
781 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
782 
783 	/* Invalid TCP option size or twice included auth */
784 	if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh))
785 		return;
786 
787 	if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt))
788 		return;
789 
790 #ifdef CONFIG_TCP_MD5SIG
791 	rcu_read_lock();
792 	if (sk && sk_fullsock(sk)) {
793 		const union tcp_md5_addr *addr;
794 		int l3index;
795 
796 		/* sdif set, means packet ingressed via a device
797 		 * in an L3 domain and inet_iif is set to it.
798 		 */
799 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
800 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
801 		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
802 	} else if (md5_hash_location) {
803 		const union tcp_md5_addr *addr;
804 		int sdif = tcp_v4_sdif(skb);
805 		int dif = inet_iif(skb);
806 		int l3index;
807 
808 		/*
809 		 * active side is lost. Try to find listening socket through
810 		 * source port, and then find md5 key through listening socket.
811 		 * we are not loose security here:
812 		 * Incoming packet is checked with md5 hash with finding key,
813 		 * no RST generated if md5 hash doesn't match.
814 		 */
815 		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
816 					     NULL, 0, ip_hdr(skb)->saddr,
817 					     th->source, ip_hdr(skb)->daddr,
818 					     ntohs(th->source), dif, sdif);
819 		/* don't send rst if it can't find key */
820 		if (!sk1)
821 			goto out;
822 
823 		/* sdif set, means packet ingressed via a device
824 		 * in an L3 domain and dif is set to it.
825 		 */
826 		l3index = sdif ? dif : 0;
827 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
828 		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
829 		if (!key)
830 			goto out;
831 
832 
833 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
834 		if (genhash || memcmp(md5_hash_location, newhash, 16) != 0)
835 			goto out;
836 
837 	}
838 
839 	if (key) {
840 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
841 				   (TCPOPT_NOP << 16) |
842 				   (TCPOPT_MD5SIG << 8) |
843 				   TCPOLEN_MD5SIG);
844 		/* Update length and the length the header thinks exists */
845 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
846 		rep.th.doff = arg.iov[0].iov_len / 4;
847 
848 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
849 				     key, ip_hdr(skb)->saddr,
850 				     ip_hdr(skb)->daddr, &rep.th);
851 	}
852 #endif
853 	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
854 	if (rep.opt[0] == 0) {
855 		__be32 mrst = mptcp_reset_option(skb);
856 
857 		if (mrst) {
858 			rep.opt[0] = mrst;
859 			arg.iov[0].iov_len += sizeof(mrst);
860 			rep.th.doff = arg.iov[0].iov_len / 4;
861 		}
862 	}
863 
864 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
865 				      ip_hdr(skb)->saddr, /* XXX */
866 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
867 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
868 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
869 
870 	/* When socket is gone, all binding information is lost.
871 	 * routing might fail in this case. No choice here, if we choose to force
872 	 * input interface, we will misroute in case of asymmetric route.
873 	 */
874 	if (sk)
875 		arg.bound_dev_if = sk->sk_bound_dev_if;
876 
877 	trace_tcp_send_reset(sk, skb, reason);
878 
879 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
880 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
881 
882 	arg.tos = ip_hdr(skb)->tos;
883 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
884 	local_bh_disable();
885 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
886 	sock_net_set(ctl_sk, net);
887 	if (sk) {
888 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
889 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
890 		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
891 				   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
892 		transmit_time = tcp_transmit_time(sk);
893 		xfrm_sk_clone_policy(ctl_sk, sk);
894 		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
895 			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
896 	} else {
897 		ctl_sk->sk_mark = 0;
898 		ctl_sk->sk_priority = 0;
899 	}
900 	ip_send_unicast_reply(ctl_sk,
901 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
902 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
903 			      &arg, arg.iov[0].iov_len,
904 			      transmit_time, txhash);
905 
906 	xfrm_sk_free_policy(ctl_sk);
907 	sock_net_set(ctl_sk, &init_net);
908 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
909 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
910 	local_bh_enable();
911 
912 #ifdef CONFIG_TCP_MD5SIG
913 out:
914 	rcu_read_unlock();
915 #endif
916 }
917 
918 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
919    outside socket context is ugly, certainly. What can I do?
920  */
921 
922 static void tcp_v4_send_ack(const struct sock *sk,
923 			    struct sk_buff *skb, u32 seq, u32 ack,
924 			    u32 win, u32 tsval, u32 tsecr, int oif,
925 			    struct tcp_key *key,
926 			    int reply_flags, u8 tos, u32 txhash)
927 {
928 	const struct tcphdr *th = tcp_hdr(skb);
929 	struct {
930 		struct tcphdr th;
931 		__be32 opt[(MAX_TCP_OPTION_SPACE  >> 2)];
932 	} rep;
933 	struct net *net = sock_net(sk);
934 	struct ip_reply_arg arg;
935 	struct sock *ctl_sk;
936 	u64 transmit_time;
937 
938 	memset(&rep.th, 0, sizeof(struct tcphdr));
939 	memset(&arg, 0, sizeof(arg));
940 
941 	arg.iov[0].iov_base = (unsigned char *)&rep;
942 	arg.iov[0].iov_len  = sizeof(rep.th);
943 	if (tsecr) {
944 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
945 				   (TCPOPT_TIMESTAMP << 8) |
946 				   TCPOLEN_TIMESTAMP);
947 		rep.opt[1] = htonl(tsval);
948 		rep.opt[2] = htonl(tsecr);
949 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
950 	}
951 
952 	/* Swap the send and the receive. */
953 	rep.th.dest    = th->source;
954 	rep.th.source  = th->dest;
955 	rep.th.doff    = arg.iov[0].iov_len / 4;
956 	rep.th.seq     = htonl(seq);
957 	rep.th.ack_seq = htonl(ack);
958 	rep.th.ack     = 1;
959 	rep.th.window  = htons(win);
960 
961 #ifdef CONFIG_TCP_MD5SIG
962 	if (tcp_key_is_md5(key)) {
963 		int offset = (tsecr) ? 3 : 0;
964 
965 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
966 					  (TCPOPT_NOP << 16) |
967 					  (TCPOPT_MD5SIG << 8) |
968 					  TCPOLEN_MD5SIG);
969 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
970 		rep.th.doff = arg.iov[0].iov_len/4;
971 
972 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
973 				    key->md5_key, ip_hdr(skb)->saddr,
974 				    ip_hdr(skb)->daddr, &rep.th);
975 	}
976 #endif
977 #ifdef CONFIG_TCP_AO
978 	if (tcp_key_is_ao(key)) {
979 		int offset = (tsecr) ? 3 : 0;
980 
981 		rep.opt[offset++] = htonl((TCPOPT_AO << 24) |
982 					  (tcp_ao_len(key->ao_key) << 16) |
983 					  (key->ao_key->sndid << 8) |
984 					  key->rcv_next);
985 		arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key);
986 		rep.th.doff = arg.iov[0].iov_len / 4;
987 
988 		tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset],
989 				key->ao_key, key->traffic_key,
990 				(union tcp_ao_addr *)&ip_hdr(skb)->saddr,
991 				(union tcp_ao_addr *)&ip_hdr(skb)->daddr,
992 				&rep.th, key->sne);
993 	}
994 #endif
995 	arg.flags = reply_flags;
996 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
997 				      ip_hdr(skb)->saddr, /* XXX */
998 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
999 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
1000 	if (oif)
1001 		arg.bound_dev_if = oif;
1002 	arg.tos = tos;
1003 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
1004 	local_bh_disable();
1005 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
1006 	sock_net_set(ctl_sk, net);
1007 	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
1008 			   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
1009 	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
1010 			   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
1011 	transmit_time = tcp_transmit_time(sk);
1012 	ip_send_unicast_reply(ctl_sk,
1013 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
1014 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
1015 			      &arg, arg.iov[0].iov_len,
1016 			      transmit_time, txhash);
1017 
1018 	sock_net_set(ctl_sk, &init_net);
1019 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
1020 	local_bh_enable();
1021 }
1022 
1023 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
1024 {
1025 	struct inet_timewait_sock *tw = inet_twsk(sk);
1026 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
1027 	struct tcp_key key = {};
1028 #ifdef CONFIG_TCP_AO
1029 	struct tcp_ao_info *ao_info;
1030 
1031 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
1032 		/* FIXME: the segment to-be-acked is not verified yet */
1033 		ao_info = rcu_dereference(tcptw->ao_info);
1034 		if (ao_info) {
1035 			const struct tcp_ao_hdr *aoh;
1036 
1037 			if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) {
1038 				inet_twsk_put(tw);
1039 				return;
1040 			}
1041 
1042 			if (aoh)
1043 				key.ao_key = tcp_ao_established_key(ao_info, aoh->rnext_keyid, -1);
1044 		}
1045 	}
1046 	if (key.ao_key) {
1047 		struct tcp_ao_key *rnext_key;
1048 
1049 		key.traffic_key = snd_other_key(key.ao_key);
1050 		key.sne = READ_ONCE(ao_info->snd_sne);
1051 		rnext_key = READ_ONCE(ao_info->rnext_key);
1052 		key.rcv_next = rnext_key->rcvid;
1053 		key.type = TCP_KEY_AO;
1054 #else
1055 	if (0) {
1056 #endif
1057 #ifdef CONFIG_TCP_MD5SIG
1058 	} else if (static_branch_unlikely(&tcp_md5_needed.key)) {
1059 		key.md5_key = tcp_twsk_md5_key(tcptw);
1060 		if (key.md5_key)
1061 			key.type = TCP_KEY_MD5;
1062 #endif
1063 	}
1064 
1065 	tcp_v4_send_ack(sk, skb,
1066 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
1067 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
1068 			tcp_tw_tsval(tcptw),
1069 			READ_ONCE(tcptw->tw_ts_recent),
1070 			tw->tw_bound_dev_if, &key,
1071 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
1072 			tw->tw_tos,
1073 			tw->tw_txhash);
1074 
1075 	inet_twsk_put(tw);
1076 }
1077 
1078 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
1079 				  struct request_sock *req)
1080 {
1081 	struct tcp_key key = {};
1082 
1083 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
1084 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
1085 	 */
1086 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
1087 					     tcp_sk(sk)->snd_nxt;
1088 
1089 #ifdef CONFIG_TCP_AO
1090 	if (static_branch_unlikely(&tcp_ao_needed.key) &&
1091 	    tcp_rsk_used_ao(req)) {
1092 		const union tcp_md5_addr *addr;
1093 		const struct tcp_ao_hdr *aoh;
1094 		int l3index;
1095 
1096 		/* Invalid TCP option size or twice included auth */
1097 		if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
1098 			return;
1099 		if (!aoh)
1100 			return;
1101 
1102 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1103 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1104 		key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET,
1105 					      aoh->rnext_keyid, -1);
1106 		if (unlikely(!key.ao_key)) {
1107 			/* Send ACK with any matching MKT for the peer */
1108 			key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1);
1109 			/* Matching key disappeared (user removed the key?)
1110 			 * let the handshake timeout.
1111 			 */
1112 			if (!key.ao_key) {
1113 				net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n",
1114 						     addr,
1115 						     ntohs(tcp_hdr(skb)->source),
1116 						     &ip_hdr(skb)->daddr,
1117 						     ntohs(tcp_hdr(skb)->dest));
1118 				return;
1119 			}
1120 		}
1121 		key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC);
1122 		if (!key.traffic_key)
1123 			return;
1124 
1125 		key.type = TCP_KEY_AO;
1126 		key.rcv_next = aoh->keyid;
1127 		tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req);
1128 #else
1129 	if (0) {
1130 #endif
1131 #ifdef CONFIG_TCP_MD5SIG
1132 	} else if (static_branch_unlikely(&tcp_md5_needed.key)) {
1133 		const union tcp_md5_addr *addr;
1134 		int l3index;
1135 
1136 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1137 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1138 		key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1139 		if (key.md5_key)
1140 			key.type = TCP_KEY_MD5;
1141 #endif
1142 	}
1143 
1144 	tcp_v4_send_ack(sk, skb, seq,
1145 			tcp_rsk(req)->rcv_nxt,
1146 			tcp_synack_window(req) >> inet_rsk(req)->rcv_wscale,
1147 			tcp_rsk_tsval(tcp_rsk(req)),
1148 			READ_ONCE(req->ts_recent),
1149 			0, &key,
1150 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
1151 			ip_hdr(skb)->tos,
1152 			READ_ONCE(tcp_rsk(req)->txhash));
1153 	if (tcp_key_is_ao(&key))
1154 		kfree(key.traffic_key);
1155 }
1156 
1157 /*
1158  *	Send a SYN-ACK after having received a SYN.
1159  *	This still operates on a request_sock only, not on a big
1160  *	socket.
1161  */
1162 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1163 			      struct flowi *fl,
1164 			      struct request_sock *req,
1165 			      struct tcp_fastopen_cookie *foc,
1166 			      enum tcp_synack_type synack_type,
1167 			      struct sk_buff *syn_skb)
1168 {
1169 	const struct inet_request_sock *ireq = inet_rsk(req);
1170 	struct flowi4 fl4;
1171 	int err = -1;
1172 	struct sk_buff *skb;
1173 	u8 tos;
1174 
1175 	/* First, grab a route. */
1176 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1177 		return -1;
1178 
1179 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1180 
1181 	if (skb) {
1182 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1183 
1184 		tos = READ_ONCE(inet_sk(sk)->tos);
1185 
1186 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1187 			tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1188 			      (tos & INET_ECN_MASK);
1189 
1190 		if (!INET_ECN_is_capable(tos) &&
1191 		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1192 			tos |= INET_ECN_ECT_0;
1193 
1194 		rcu_read_lock();
1195 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1196 					    ireq->ir_rmt_addr,
1197 					    rcu_dereference(ireq->ireq_opt),
1198 					    tos);
1199 		rcu_read_unlock();
1200 		err = net_xmit_eval(err);
1201 	}
1202 
1203 	return err;
1204 }
1205 
1206 /*
1207  *	IPv4 request_sock destructor.
1208  */
1209 static void tcp_v4_reqsk_destructor(struct request_sock *req)
1210 {
1211 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1212 }
1213 
1214 #ifdef CONFIG_TCP_MD5SIG
1215 /*
1216  * RFC2385 MD5 checksumming requires a mapping of
1217  * IP address->MD5 Key.
1218  * We need to maintain these in the sk structure.
1219  */
1220 
1221 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1222 EXPORT_SYMBOL(tcp_md5_needed);
1223 
1224 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1225 {
1226 	if (!old)
1227 		return true;
1228 
1229 	/* l3index always overrides non-l3index */
1230 	if (old->l3index && new->l3index == 0)
1231 		return false;
1232 	if (old->l3index == 0 && new->l3index)
1233 		return true;
1234 
1235 	return old->prefixlen < new->prefixlen;
1236 }
1237 
1238 /* Find the Key structure for an address.  */
1239 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1240 					   const union tcp_md5_addr *addr,
1241 					   int family, bool any_l3index)
1242 {
1243 	const struct tcp_sock *tp = tcp_sk(sk);
1244 	struct tcp_md5sig_key *key;
1245 	const struct tcp_md5sig_info *md5sig;
1246 	__be32 mask;
1247 	struct tcp_md5sig_key *best_match = NULL;
1248 	bool match;
1249 
1250 	/* caller either holds rcu_read_lock() or socket lock */
1251 	md5sig = rcu_dereference_check(tp->md5sig_info,
1252 				       lockdep_sock_is_held(sk));
1253 	if (!md5sig)
1254 		return NULL;
1255 
1256 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1257 				 lockdep_sock_is_held(sk)) {
1258 		if (key->family != family)
1259 			continue;
1260 		if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX &&
1261 		    key->l3index != l3index)
1262 			continue;
1263 		if (family == AF_INET) {
1264 			mask = inet_make_mask(key->prefixlen);
1265 			match = (key->addr.a4.s_addr & mask) ==
1266 				(addr->a4.s_addr & mask);
1267 #if IS_ENABLED(CONFIG_IPV6)
1268 		} else if (family == AF_INET6) {
1269 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1270 						  key->prefixlen);
1271 #endif
1272 		} else {
1273 			match = false;
1274 		}
1275 
1276 		if (match && better_md5_match(best_match, key))
1277 			best_match = key;
1278 	}
1279 	return best_match;
1280 }
1281 EXPORT_SYMBOL(__tcp_md5_do_lookup);
1282 
1283 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1284 						      const union tcp_md5_addr *addr,
1285 						      int family, u8 prefixlen,
1286 						      int l3index, u8 flags)
1287 {
1288 	const struct tcp_sock *tp = tcp_sk(sk);
1289 	struct tcp_md5sig_key *key;
1290 	unsigned int size = sizeof(struct in_addr);
1291 	const struct tcp_md5sig_info *md5sig;
1292 
1293 	/* caller either holds rcu_read_lock() or socket lock */
1294 	md5sig = rcu_dereference_check(tp->md5sig_info,
1295 				       lockdep_sock_is_held(sk));
1296 	if (!md5sig)
1297 		return NULL;
1298 #if IS_ENABLED(CONFIG_IPV6)
1299 	if (family == AF_INET6)
1300 		size = sizeof(struct in6_addr);
1301 #endif
1302 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1303 				 lockdep_sock_is_held(sk)) {
1304 		if (key->family != family)
1305 			continue;
1306 		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1307 			continue;
1308 		if (key->l3index != l3index)
1309 			continue;
1310 		if (!memcmp(&key->addr, addr, size) &&
1311 		    key->prefixlen == prefixlen)
1312 			return key;
1313 	}
1314 	return NULL;
1315 }
1316 
1317 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1318 					 const struct sock *addr_sk)
1319 {
1320 	const union tcp_md5_addr *addr;
1321 	int l3index;
1322 
1323 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1324 						 addr_sk->sk_bound_dev_if);
1325 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1326 	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1327 }
1328 EXPORT_SYMBOL(tcp_v4_md5_lookup);
1329 
1330 static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
1331 {
1332 	struct tcp_sock *tp = tcp_sk(sk);
1333 	struct tcp_md5sig_info *md5sig;
1334 
1335 	md5sig = kmalloc(sizeof(*md5sig), gfp);
1336 	if (!md5sig)
1337 		return -ENOMEM;
1338 
1339 	sk_gso_disable(sk);
1340 	INIT_HLIST_HEAD(&md5sig->head);
1341 	rcu_assign_pointer(tp->md5sig_info, md5sig);
1342 	return 0;
1343 }
1344 
1345 /* This can be called on a newly created socket, from other files */
1346 static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1347 			    int family, u8 prefixlen, int l3index, u8 flags,
1348 			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1349 {
1350 	/* Add Key to the list */
1351 	struct tcp_md5sig_key *key;
1352 	struct tcp_sock *tp = tcp_sk(sk);
1353 	struct tcp_md5sig_info *md5sig;
1354 
1355 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1356 	if (key) {
1357 		/* Pre-existing entry - just update that one.
1358 		 * Note that the key might be used concurrently.
1359 		 * data_race() is telling kcsan that we do not care of
1360 		 * key mismatches, since changing MD5 key on live flows
1361 		 * can lead to packet drops.
1362 		 */
1363 		data_race(memcpy(key->key, newkey, newkeylen));
1364 
1365 		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1366 		 * Also note that a reader could catch new key->keylen value
1367 		 * but old key->key[], this is the reason we use __GFP_ZERO
1368 		 * at sock_kmalloc() time below these lines.
1369 		 */
1370 		WRITE_ONCE(key->keylen, newkeylen);
1371 
1372 		return 0;
1373 	}
1374 
1375 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1376 					   lockdep_sock_is_held(sk));
1377 
1378 	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1379 	if (!key)
1380 		return -ENOMEM;
1381 
1382 	memcpy(key->key, newkey, newkeylen);
1383 	key->keylen = newkeylen;
1384 	key->family = family;
1385 	key->prefixlen = prefixlen;
1386 	key->l3index = l3index;
1387 	key->flags = flags;
1388 	memcpy(&key->addr, addr,
1389 	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1390 								 sizeof(struct in_addr));
1391 	hlist_add_head_rcu(&key->node, &md5sig->head);
1392 	return 0;
1393 }
1394 
1395 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1396 		   int family, u8 prefixlen, int l3index, u8 flags,
1397 		   const u8 *newkey, u8 newkeylen)
1398 {
1399 	struct tcp_sock *tp = tcp_sk(sk);
1400 
1401 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1402 		if (tcp_md5_alloc_sigpool())
1403 			return -ENOMEM;
1404 
1405 		if (tcp_md5sig_info_add(sk, GFP_KERNEL)) {
1406 			tcp_md5_release_sigpool();
1407 			return -ENOMEM;
1408 		}
1409 
1410 		if (!static_branch_inc(&tcp_md5_needed.key)) {
1411 			struct tcp_md5sig_info *md5sig;
1412 
1413 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1414 			rcu_assign_pointer(tp->md5sig_info, NULL);
1415 			kfree_rcu(md5sig, rcu);
1416 			tcp_md5_release_sigpool();
1417 			return -EUSERS;
1418 		}
1419 	}
1420 
1421 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1422 				newkey, newkeylen, GFP_KERNEL);
1423 }
1424 EXPORT_SYMBOL(tcp_md5_do_add);
1425 
1426 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1427 		     int family, u8 prefixlen, int l3index,
1428 		     struct tcp_md5sig_key *key)
1429 {
1430 	struct tcp_sock *tp = tcp_sk(sk);
1431 
1432 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1433 		tcp_md5_add_sigpool();
1434 
1435 		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) {
1436 			tcp_md5_release_sigpool();
1437 			return -ENOMEM;
1438 		}
1439 
1440 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1441 			struct tcp_md5sig_info *md5sig;
1442 
1443 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1444 			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1445 			rcu_assign_pointer(tp->md5sig_info, NULL);
1446 			kfree_rcu(md5sig, rcu);
1447 			tcp_md5_release_sigpool();
1448 			return -EUSERS;
1449 		}
1450 	}
1451 
1452 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1453 				key->flags, key->key, key->keylen,
1454 				sk_gfp_mask(sk, GFP_ATOMIC));
1455 }
1456 EXPORT_SYMBOL(tcp_md5_key_copy);
1457 
1458 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1459 		   u8 prefixlen, int l3index, u8 flags)
1460 {
1461 	struct tcp_md5sig_key *key;
1462 
1463 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1464 	if (!key)
1465 		return -ENOENT;
1466 	hlist_del_rcu(&key->node);
1467 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1468 	kfree_rcu(key, rcu);
1469 	return 0;
1470 }
1471 EXPORT_SYMBOL(tcp_md5_do_del);
1472 
1473 void tcp_clear_md5_list(struct sock *sk)
1474 {
1475 	struct tcp_sock *tp = tcp_sk(sk);
1476 	struct tcp_md5sig_key *key;
1477 	struct hlist_node *n;
1478 	struct tcp_md5sig_info *md5sig;
1479 
1480 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1481 
1482 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1483 		hlist_del_rcu(&key->node);
1484 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1485 		kfree_rcu(key, rcu);
1486 	}
1487 }
1488 
1489 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1490 				 sockptr_t optval, int optlen)
1491 {
1492 	struct tcp_md5sig cmd;
1493 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1494 	const union tcp_md5_addr *addr;
1495 	u8 prefixlen = 32;
1496 	int l3index = 0;
1497 	bool l3flag;
1498 	u8 flags;
1499 
1500 	if (optlen < sizeof(cmd))
1501 		return -EINVAL;
1502 
1503 	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1504 		return -EFAULT;
1505 
1506 	if (sin->sin_family != AF_INET)
1507 		return -EINVAL;
1508 
1509 	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1510 	l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1511 
1512 	if (optname == TCP_MD5SIG_EXT &&
1513 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1514 		prefixlen = cmd.tcpm_prefixlen;
1515 		if (prefixlen > 32)
1516 			return -EINVAL;
1517 	}
1518 
1519 	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1520 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1521 		struct net_device *dev;
1522 
1523 		rcu_read_lock();
1524 		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1525 		if (dev && netif_is_l3_master(dev))
1526 			l3index = dev->ifindex;
1527 
1528 		rcu_read_unlock();
1529 
1530 		/* ok to reference set/not set outside of rcu;
1531 		 * right now device MUST be an L3 master
1532 		 */
1533 		if (!dev || !l3index)
1534 			return -EINVAL;
1535 	}
1536 
1537 	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1538 
1539 	if (!cmd.tcpm_keylen)
1540 		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1541 
1542 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1543 		return -EINVAL;
1544 
1545 	/* Don't allow keys for peers that have a matching TCP-AO key.
1546 	 * See the comment in tcp_ao_add_cmd()
1547 	 */
1548 	if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false))
1549 		return -EKEYREJECTED;
1550 
1551 	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1552 			      cmd.tcpm_key, cmd.tcpm_keylen);
1553 }
1554 
1555 static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp,
1556 				   __be32 daddr, __be32 saddr,
1557 				   const struct tcphdr *th, int nbytes)
1558 {
1559 	struct tcp4_pseudohdr *bp;
1560 	struct scatterlist sg;
1561 	struct tcphdr *_th;
1562 
1563 	bp = hp->scratch;
1564 	bp->saddr = saddr;
1565 	bp->daddr = daddr;
1566 	bp->pad = 0;
1567 	bp->protocol = IPPROTO_TCP;
1568 	bp->len = cpu_to_be16(nbytes);
1569 
1570 	_th = (struct tcphdr *)(bp + 1);
1571 	memcpy(_th, th, sizeof(*th));
1572 	_th->check = 0;
1573 
1574 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1575 	ahash_request_set_crypt(hp->req, &sg, NULL,
1576 				sizeof(*bp) + sizeof(*th));
1577 	return crypto_ahash_update(hp->req);
1578 }
1579 
1580 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1581 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1582 {
1583 	struct tcp_sigpool hp;
1584 
1585 	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1586 		goto clear_hash_nostart;
1587 
1588 	if (crypto_ahash_init(hp.req))
1589 		goto clear_hash;
1590 	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2))
1591 		goto clear_hash;
1592 	if (tcp_md5_hash_key(&hp, key))
1593 		goto clear_hash;
1594 	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1595 	if (crypto_ahash_final(hp.req))
1596 		goto clear_hash;
1597 
1598 	tcp_sigpool_end(&hp);
1599 	return 0;
1600 
1601 clear_hash:
1602 	tcp_sigpool_end(&hp);
1603 clear_hash_nostart:
1604 	memset(md5_hash, 0, 16);
1605 	return 1;
1606 }
1607 
1608 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1609 			const struct sock *sk,
1610 			const struct sk_buff *skb)
1611 {
1612 	const struct tcphdr *th = tcp_hdr(skb);
1613 	struct tcp_sigpool hp;
1614 	__be32 saddr, daddr;
1615 
1616 	if (sk) { /* valid for establish/request sockets */
1617 		saddr = sk->sk_rcv_saddr;
1618 		daddr = sk->sk_daddr;
1619 	} else {
1620 		const struct iphdr *iph = ip_hdr(skb);
1621 		saddr = iph->saddr;
1622 		daddr = iph->daddr;
1623 	}
1624 
1625 	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1626 		goto clear_hash_nostart;
1627 
1628 	if (crypto_ahash_init(hp.req))
1629 		goto clear_hash;
1630 
1631 	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len))
1632 		goto clear_hash;
1633 	if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2))
1634 		goto clear_hash;
1635 	if (tcp_md5_hash_key(&hp, key))
1636 		goto clear_hash;
1637 	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1638 	if (crypto_ahash_final(hp.req))
1639 		goto clear_hash;
1640 
1641 	tcp_sigpool_end(&hp);
1642 	return 0;
1643 
1644 clear_hash:
1645 	tcp_sigpool_end(&hp);
1646 clear_hash_nostart:
1647 	memset(md5_hash, 0, 16);
1648 	return 1;
1649 }
1650 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1651 
1652 #endif
1653 
1654 static void tcp_v4_init_req(struct request_sock *req,
1655 			    const struct sock *sk_listener,
1656 			    struct sk_buff *skb)
1657 {
1658 	struct inet_request_sock *ireq = inet_rsk(req);
1659 	struct net *net = sock_net(sk_listener);
1660 
1661 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1662 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1663 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1664 }
1665 
1666 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1667 					  struct sk_buff *skb,
1668 					  struct flowi *fl,
1669 					  struct request_sock *req,
1670 					  u32 tw_isn)
1671 {
1672 	tcp_v4_init_req(req, sk, skb);
1673 
1674 	if (security_inet_conn_request(sk, skb, req))
1675 		return NULL;
1676 
1677 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1678 }
1679 
1680 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1681 	.family		=	PF_INET,
1682 	.obj_size	=	sizeof(struct tcp_request_sock),
1683 	.rtx_syn_ack	=	tcp_rtx_synack,
1684 	.send_ack	=	tcp_v4_reqsk_send_ack,
1685 	.destructor	=	tcp_v4_reqsk_destructor,
1686 	.send_reset	=	tcp_v4_send_reset,
1687 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1688 };
1689 
1690 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1691 	.mss_clamp	=	TCP_MSS_DEFAULT,
1692 #ifdef CONFIG_TCP_MD5SIG
1693 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1694 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1695 #endif
1696 #ifdef CONFIG_TCP_AO
1697 	.ao_lookup	=	tcp_v4_ao_lookup_rsk,
1698 	.ao_calc_key	=	tcp_v4_ao_calc_key_rsk,
1699 	.ao_synack_hash	=	tcp_v4_ao_synack_hash,
1700 #endif
1701 #ifdef CONFIG_SYN_COOKIES
1702 	.cookie_init_seq =	cookie_v4_init_sequence,
1703 #endif
1704 	.route_req	=	tcp_v4_route_req,
1705 	.init_seq	=	tcp_v4_init_seq,
1706 	.init_ts_off	=	tcp_v4_init_ts_off,
1707 	.send_synack	=	tcp_v4_send_synack,
1708 };
1709 
1710 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1711 {
1712 	/* Never answer to SYNs send to broadcast or multicast */
1713 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1714 		goto drop;
1715 
1716 	return tcp_conn_request(&tcp_request_sock_ops,
1717 				&tcp_request_sock_ipv4_ops, sk, skb);
1718 
1719 drop:
1720 	tcp_listendrop(sk);
1721 	return 0;
1722 }
1723 EXPORT_SYMBOL(tcp_v4_conn_request);
1724 
1725 
1726 /*
1727  * The three way handshake has completed - we got a valid synack -
1728  * now create the new socket.
1729  */
1730 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1731 				  struct request_sock *req,
1732 				  struct dst_entry *dst,
1733 				  struct request_sock *req_unhash,
1734 				  bool *own_req)
1735 {
1736 	struct inet_request_sock *ireq;
1737 	bool found_dup_sk = false;
1738 	struct inet_sock *newinet;
1739 	struct tcp_sock *newtp;
1740 	struct sock *newsk;
1741 #ifdef CONFIG_TCP_MD5SIG
1742 	const union tcp_md5_addr *addr;
1743 	struct tcp_md5sig_key *key;
1744 	int l3index;
1745 #endif
1746 	struct ip_options_rcu *inet_opt;
1747 
1748 	if (sk_acceptq_is_full(sk))
1749 		goto exit_overflow;
1750 
1751 	newsk = tcp_create_openreq_child(sk, req, skb);
1752 	if (!newsk)
1753 		goto exit_nonewsk;
1754 
1755 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1756 	inet_sk_rx_dst_set(newsk, skb);
1757 
1758 	newtp		      = tcp_sk(newsk);
1759 	newinet		      = inet_sk(newsk);
1760 	ireq		      = inet_rsk(req);
1761 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1762 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1763 	newsk->sk_bound_dev_if = ireq->ir_iif;
1764 	newinet->inet_saddr   = ireq->ir_loc_addr;
1765 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1766 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1767 	newinet->mc_index     = inet_iif(skb);
1768 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1769 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1770 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1771 	if (inet_opt)
1772 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1773 	atomic_set(&newinet->inet_id, get_random_u16());
1774 
1775 	/* Set ToS of the new socket based upon the value of incoming SYN.
1776 	 * ECT bits are set later in tcp_init_transfer().
1777 	 */
1778 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1779 		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1780 
1781 	if (!dst) {
1782 		dst = inet_csk_route_child_sock(sk, newsk, req);
1783 		if (!dst)
1784 			goto put_and_exit;
1785 	} else {
1786 		/* syncookie case : see end of cookie_v4_check() */
1787 	}
1788 	sk_setup_caps(newsk, dst);
1789 
1790 	tcp_ca_openreq_child(newsk, dst);
1791 
1792 	tcp_sync_mss(newsk, dst_mtu(dst));
1793 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1794 
1795 	tcp_initialize_rcv_mss(newsk);
1796 
1797 #ifdef CONFIG_TCP_MD5SIG
1798 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1799 	/* Copy over the MD5 key from the original socket */
1800 	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1801 	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1802 	if (key && !tcp_rsk_used_ao(req)) {
1803 		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1804 			goto put_and_exit;
1805 		sk_gso_disable(newsk);
1806 	}
1807 #endif
1808 #ifdef CONFIG_TCP_AO
1809 	if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET))
1810 		goto put_and_exit; /* OOM, release back memory */
1811 #endif
1812 
1813 	if (__inet_inherit_port(sk, newsk) < 0)
1814 		goto put_and_exit;
1815 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1816 				       &found_dup_sk);
1817 	if (likely(*own_req)) {
1818 		tcp_move_syn(newtp, req);
1819 		ireq->ireq_opt = NULL;
1820 	} else {
1821 		newinet->inet_opt = NULL;
1822 
1823 		if (!req_unhash && found_dup_sk) {
1824 			/* This code path should only be executed in the
1825 			 * syncookie case only
1826 			 */
1827 			bh_unlock_sock(newsk);
1828 			sock_put(newsk);
1829 			newsk = NULL;
1830 		}
1831 	}
1832 	return newsk;
1833 
1834 exit_overflow:
1835 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1836 exit_nonewsk:
1837 	dst_release(dst);
1838 exit:
1839 	tcp_listendrop(sk);
1840 	return NULL;
1841 put_and_exit:
1842 	newinet->inet_opt = NULL;
1843 	inet_csk_prepare_forced_close(newsk);
1844 	tcp_done(newsk);
1845 	goto exit;
1846 }
1847 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1848 
1849 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1850 {
1851 #ifdef CONFIG_SYN_COOKIES
1852 	const struct tcphdr *th = tcp_hdr(skb);
1853 
1854 	if (!th->syn)
1855 		sk = cookie_v4_check(sk, skb);
1856 #endif
1857 	return sk;
1858 }
1859 
1860 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1861 			 struct tcphdr *th, u32 *cookie)
1862 {
1863 	u16 mss = 0;
1864 #ifdef CONFIG_SYN_COOKIES
1865 	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1866 				    &tcp_request_sock_ipv4_ops, sk, th);
1867 	if (mss) {
1868 		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1869 		tcp_synq_overflow(sk);
1870 	}
1871 #endif
1872 	return mss;
1873 }
1874 
1875 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1876 							   u32));
1877 /* The socket must have it's spinlock held when we get
1878  * here, unless it is a TCP_LISTEN socket.
1879  *
1880  * We have a potential double-lock case here, so even when
1881  * doing backlog processing we use the BH locking scheme.
1882  * This is because we cannot sleep with the original spinlock
1883  * held.
1884  */
1885 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1886 {
1887 	enum skb_drop_reason reason;
1888 	struct sock *rsk;
1889 
1890 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1891 		struct dst_entry *dst;
1892 
1893 		dst = rcu_dereference_protected(sk->sk_rx_dst,
1894 						lockdep_sock_is_held(sk));
1895 
1896 		sock_rps_save_rxhash(sk, skb);
1897 		sk_mark_napi_id(sk, skb);
1898 		if (dst) {
1899 			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1900 			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1901 					     dst, 0)) {
1902 				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1903 				dst_release(dst);
1904 			}
1905 		}
1906 		tcp_rcv_established(sk, skb);
1907 		return 0;
1908 	}
1909 
1910 	if (tcp_checksum_complete(skb))
1911 		goto csum_err;
1912 
1913 	if (sk->sk_state == TCP_LISTEN) {
1914 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1915 
1916 		if (!nsk)
1917 			return 0;
1918 		if (nsk != sk) {
1919 			reason = tcp_child_process(sk, nsk, skb);
1920 			if (reason) {
1921 				rsk = nsk;
1922 				goto reset;
1923 			}
1924 			return 0;
1925 		}
1926 	} else
1927 		sock_rps_save_rxhash(sk, skb);
1928 
1929 	reason = tcp_rcv_state_process(sk, skb);
1930 	if (reason) {
1931 		rsk = sk;
1932 		goto reset;
1933 	}
1934 	return 0;
1935 
1936 reset:
1937 	tcp_v4_send_reset(rsk, skb, sk_rst_convert_drop_reason(reason));
1938 discard:
1939 	kfree_skb_reason(skb, reason);
1940 	/* Be careful here. If this function gets more complicated and
1941 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1942 	 * might be destroyed here. This current version compiles correctly,
1943 	 * but you have been warned.
1944 	 */
1945 	return 0;
1946 
1947 csum_err:
1948 	reason = SKB_DROP_REASON_TCP_CSUM;
1949 	trace_tcp_bad_csum(skb);
1950 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1951 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1952 	goto discard;
1953 }
1954 EXPORT_SYMBOL(tcp_v4_do_rcv);
1955 
1956 int tcp_v4_early_demux(struct sk_buff *skb)
1957 {
1958 	struct net *net = dev_net(skb->dev);
1959 	const struct iphdr *iph;
1960 	const struct tcphdr *th;
1961 	struct sock *sk;
1962 
1963 	if (skb->pkt_type != PACKET_HOST)
1964 		return 0;
1965 
1966 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1967 		return 0;
1968 
1969 	iph = ip_hdr(skb);
1970 	th = tcp_hdr(skb);
1971 
1972 	if (th->doff < sizeof(struct tcphdr) / 4)
1973 		return 0;
1974 
1975 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1976 				       iph->saddr, th->source,
1977 				       iph->daddr, ntohs(th->dest),
1978 				       skb->skb_iif, inet_sdif(skb));
1979 	if (sk) {
1980 		skb->sk = sk;
1981 		skb->destructor = sock_edemux;
1982 		if (sk_fullsock(sk)) {
1983 			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1984 
1985 			if (dst)
1986 				dst = dst_check(dst, 0);
1987 			if (dst &&
1988 			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1989 				skb_dst_set_noref(skb, dst);
1990 		}
1991 	}
1992 	return 0;
1993 }
1994 
1995 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1996 		     enum skb_drop_reason *reason)
1997 {
1998 	u32 tail_gso_size, tail_gso_segs;
1999 	struct skb_shared_info *shinfo;
2000 	const struct tcphdr *th;
2001 	struct tcphdr *thtail;
2002 	struct sk_buff *tail;
2003 	unsigned int hdrlen;
2004 	bool fragstolen;
2005 	u32 gso_segs;
2006 	u32 gso_size;
2007 	u64 limit;
2008 	int delta;
2009 
2010 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
2011 	 * we can fix skb->truesize to its real value to avoid future drops.
2012 	 * This is valid because skb is not yet charged to the socket.
2013 	 * It has been noticed pure SACK packets were sometimes dropped
2014 	 * (if cooked by drivers without copybreak feature).
2015 	 */
2016 	skb_condense(skb);
2017 
2018 	skb_dst_drop(skb);
2019 
2020 	if (unlikely(tcp_checksum_complete(skb))) {
2021 		bh_unlock_sock(sk);
2022 		trace_tcp_bad_csum(skb);
2023 		*reason = SKB_DROP_REASON_TCP_CSUM;
2024 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
2025 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
2026 		return true;
2027 	}
2028 
2029 	/* Attempt coalescing to last skb in backlog, even if we are
2030 	 * above the limits.
2031 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
2032 	 */
2033 	th = (const struct tcphdr *)skb->data;
2034 	hdrlen = th->doff * 4;
2035 
2036 	tail = sk->sk_backlog.tail;
2037 	if (!tail)
2038 		goto no_coalesce;
2039 	thtail = (struct tcphdr *)tail->data;
2040 
2041 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
2042 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
2043 	    ((TCP_SKB_CB(tail)->tcp_flags |
2044 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
2045 	    !((TCP_SKB_CB(tail)->tcp_flags &
2046 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
2047 	    ((TCP_SKB_CB(tail)->tcp_flags ^
2048 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
2049 	    !tcp_skb_can_collapse_rx(tail, skb) ||
2050 	    thtail->doff != th->doff ||
2051 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
2052 		goto no_coalesce;
2053 
2054 	__skb_pull(skb, hdrlen);
2055 
2056 	shinfo = skb_shinfo(skb);
2057 	gso_size = shinfo->gso_size ?: skb->len;
2058 	gso_segs = shinfo->gso_segs ?: 1;
2059 
2060 	shinfo = skb_shinfo(tail);
2061 	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
2062 	tail_gso_segs = shinfo->gso_segs ?: 1;
2063 
2064 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
2065 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
2066 
2067 		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
2068 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
2069 			thtail->window = th->window;
2070 		}
2071 
2072 		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
2073 		 * thtail->fin, so that the fast path in tcp_rcv_established()
2074 		 * is not entered if we append a packet with a FIN.
2075 		 * SYN, RST, URG are not present.
2076 		 * ACK is set on both packets.
2077 		 * PSH : we do not really care in TCP stack,
2078 		 *       at least for 'GRO' packets.
2079 		 */
2080 		thtail->fin |= th->fin;
2081 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2082 
2083 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2084 			TCP_SKB_CB(tail)->has_rxtstamp = true;
2085 			tail->tstamp = skb->tstamp;
2086 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
2087 		}
2088 
2089 		/* Not as strict as GRO. We only need to carry mss max value */
2090 		shinfo->gso_size = max(gso_size, tail_gso_size);
2091 		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
2092 
2093 		sk->sk_backlog.len += delta;
2094 		__NET_INC_STATS(sock_net(sk),
2095 				LINUX_MIB_TCPBACKLOGCOALESCE);
2096 		kfree_skb_partial(skb, fragstolen);
2097 		return false;
2098 	}
2099 	__skb_push(skb, hdrlen);
2100 
2101 no_coalesce:
2102 	/* sk->sk_backlog.len is reset only at the end of __release_sock().
2103 	 * Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach
2104 	 * sk_rcvbuf in normal conditions.
2105 	 */
2106 	limit = ((u64)READ_ONCE(sk->sk_rcvbuf)) << 1;
2107 
2108 	limit += ((u32)READ_ONCE(sk->sk_sndbuf)) >> 1;
2109 
2110 	/* Only socket owner can try to collapse/prune rx queues
2111 	 * to reduce memory overhead, so add a little headroom here.
2112 	 * Few sockets backlog are possibly concurrently non empty.
2113 	 */
2114 	limit += 64 * 1024;
2115 
2116 	limit = min_t(u64, limit, UINT_MAX);
2117 
2118 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
2119 		bh_unlock_sock(sk);
2120 		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
2121 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
2122 		return true;
2123 	}
2124 	return false;
2125 }
2126 EXPORT_SYMBOL(tcp_add_backlog);
2127 
2128 int tcp_filter(struct sock *sk, struct sk_buff *skb)
2129 {
2130 	struct tcphdr *th = (struct tcphdr *)skb->data;
2131 
2132 	return sk_filter_trim_cap(sk, skb, th->doff * 4);
2133 }
2134 EXPORT_SYMBOL(tcp_filter);
2135 
2136 static void tcp_v4_restore_cb(struct sk_buff *skb)
2137 {
2138 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
2139 		sizeof(struct inet_skb_parm));
2140 }
2141 
2142 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
2143 			   const struct tcphdr *th)
2144 {
2145 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
2146 	 * barrier() makes sure compiler wont play fool^Waliasing games.
2147 	 */
2148 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
2149 		sizeof(struct inet_skb_parm));
2150 	barrier();
2151 
2152 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2153 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2154 				    skb->len - th->doff * 4);
2155 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2156 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
2157 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2158 	TCP_SKB_CB(skb)->sacked	 = 0;
2159 	TCP_SKB_CB(skb)->has_rxtstamp =
2160 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
2161 }
2162 
2163 /*
2164  *	From tcp_input.c
2165  */
2166 
2167 int tcp_v4_rcv(struct sk_buff *skb)
2168 {
2169 	struct net *net = dev_net(skb->dev);
2170 	enum skb_drop_reason drop_reason;
2171 	int sdif = inet_sdif(skb);
2172 	int dif = inet_iif(skb);
2173 	const struct iphdr *iph;
2174 	const struct tcphdr *th;
2175 	bool refcounted;
2176 	struct sock *sk;
2177 	int ret;
2178 	u32 isn;
2179 
2180 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2181 	if (skb->pkt_type != PACKET_HOST)
2182 		goto discard_it;
2183 
2184 	/* Count it even if it's bad */
2185 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2186 
2187 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2188 		goto discard_it;
2189 
2190 	th = (const struct tcphdr *)skb->data;
2191 
2192 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2193 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2194 		goto bad_packet;
2195 	}
2196 	if (!pskb_may_pull(skb, th->doff * 4))
2197 		goto discard_it;
2198 
2199 	/* An explanation is required here, I think.
2200 	 * Packet length and doff are validated by header prediction,
2201 	 * provided case of th->doff==0 is eliminated.
2202 	 * So, we defer the checks. */
2203 
2204 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2205 		goto csum_error;
2206 
2207 	th = (const struct tcphdr *)skb->data;
2208 	iph = ip_hdr(skb);
2209 lookup:
2210 	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2211 			       skb, __tcp_hdrlen(th), th->source,
2212 			       th->dest, sdif, &refcounted);
2213 	if (!sk)
2214 		goto no_tcp_socket;
2215 
2216 	if (sk->sk_state == TCP_TIME_WAIT)
2217 		goto do_time_wait;
2218 
2219 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2220 		struct request_sock *req = inet_reqsk(sk);
2221 		bool req_stolen = false;
2222 		struct sock *nsk;
2223 
2224 		sk = req->rsk_listener;
2225 		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2226 			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2227 		else
2228 			drop_reason = tcp_inbound_hash(sk, req, skb,
2229 						       &iph->saddr, &iph->daddr,
2230 						       AF_INET, dif, sdif);
2231 		if (unlikely(drop_reason)) {
2232 			sk_drops_add(sk, skb);
2233 			reqsk_put(req);
2234 			goto discard_it;
2235 		}
2236 		if (tcp_checksum_complete(skb)) {
2237 			reqsk_put(req);
2238 			goto csum_error;
2239 		}
2240 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2241 			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2242 			if (!nsk) {
2243 				inet_csk_reqsk_queue_drop_and_put(sk, req);
2244 				goto lookup;
2245 			}
2246 			sk = nsk;
2247 			/* reuseport_migrate_sock() has already held one sk_refcnt
2248 			 * before returning.
2249 			 */
2250 		} else {
2251 			/* We own a reference on the listener, increase it again
2252 			 * as we might lose it too soon.
2253 			 */
2254 			sock_hold(sk);
2255 		}
2256 		refcounted = true;
2257 		nsk = NULL;
2258 		if (!tcp_filter(sk, skb)) {
2259 			th = (const struct tcphdr *)skb->data;
2260 			iph = ip_hdr(skb);
2261 			tcp_v4_fill_cb(skb, iph, th);
2262 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2263 		} else {
2264 			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2265 		}
2266 		if (!nsk) {
2267 			reqsk_put(req);
2268 			if (req_stolen) {
2269 				/* Another cpu got exclusive access to req
2270 				 * and created a full blown socket.
2271 				 * Try to feed this packet to this socket
2272 				 * instead of discarding it.
2273 				 */
2274 				tcp_v4_restore_cb(skb);
2275 				sock_put(sk);
2276 				goto lookup;
2277 			}
2278 			goto discard_and_relse;
2279 		}
2280 		nf_reset_ct(skb);
2281 		if (nsk == sk) {
2282 			reqsk_put(req);
2283 			tcp_v4_restore_cb(skb);
2284 		} else {
2285 			drop_reason = tcp_child_process(sk, nsk, skb);
2286 			if (drop_reason) {
2287 				enum sk_rst_reason rst_reason;
2288 
2289 				rst_reason = sk_rst_convert_drop_reason(drop_reason);
2290 				tcp_v4_send_reset(nsk, skb, rst_reason);
2291 				goto discard_and_relse;
2292 			}
2293 			sock_put(sk);
2294 			return 0;
2295 		}
2296 	}
2297 
2298 process:
2299 	if (static_branch_unlikely(&ip4_min_ttl)) {
2300 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2301 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2302 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2303 			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2304 			goto discard_and_relse;
2305 		}
2306 	}
2307 
2308 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2309 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2310 		goto discard_and_relse;
2311 	}
2312 
2313 	drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr,
2314 				       AF_INET, dif, sdif);
2315 	if (drop_reason)
2316 		goto discard_and_relse;
2317 
2318 	nf_reset_ct(skb);
2319 
2320 	if (tcp_filter(sk, skb)) {
2321 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2322 		goto discard_and_relse;
2323 	}
2324 	th = (const struct tcphdr *)skb->data;
2325 	iph = ip_hdr(skb);
2326 	tcp_v4_fill_cb(skb, iph, th);
2327 
2328 	skb->dev = NULL;
2329 
2330 	if (sk->sk_state == TCP_LISTEN) {
2331 		ret = tcp_v4_do_rcv(sk, skb);
2332 		goto put_and_return;
2333 	}
2334 
2335 	sk_incoming_cpu_update(sk);
2336 
2337 	bh_lock_sock_nested(sk);
2338 	tcp_segs_in(tcp_sk(sk), skb);
2339 	ret = 0;
2340 	if (!sock_owned_by_user(sk)) {
2341 		ret = tcp_v4_do_rcv(sk, skb);
2342 	} else {
2343 		if (tcp_add_backlog(sk, skb, &drop_reason))
2344 			goto discard_and_relse;
2345 	}
2346 	bh_unlock_sock(sk);
2347 
2348 put_and_return:
2349 	if (refcounted)
2350 		sock_put(sk);
2351 
2352 	return ret;
2353 
2354 no_tcp_socket:
2355 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2356 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2357 		goto discard_it;
2358 
2359 	tcp_v4_fill_cb(skb, iph, th);
2360 
2361 	if (tcp_checksum_complete(skb)) {
2362 csum_error:
2363 		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2364 		trace_tcp_bad_csum(skb);
2365 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2366 bad_packet:
2367 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2368 	} else {
2369 		tcp_v4_send_reset(NULL, skb, sk_rst_convert_drop_reason(drop_reason));
2370 	}
2371 
2372 discard_it:
2373 	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2374 	/* Discard frame. */
2375 	kfree_skb_reason(skb, drop_reason);
2376 	return 0;
2377 
2378 discard_and_relse:
2379 	sk_drops_add(sk, skb);
2380 	if (refcounted)
2381 		sock_put(sk);
2382 	goto discard_it;
2383 
2384 do_time_wait:
2385 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2386 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2387 		inet_twsk_put(inet_twsk(sk));
2388 		goto discard_it;
2389 	}
2390 
2391 	tcp_v4_fill_cb(skb, iph, th);
2392 
2393 	if (tcp_checksum_complete(skb)) {
2394 		inet_twsk_put(inet_twsk(sk));
2395 		goto csum_error;
2396 	}
2397 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th, &isn)) {
2398 	case TCP_TW_SYN: {
2399 		struct sock *sk2 = inet_lookup_listener(net,
2400 							net->ipv4.tcp_death_row.hashinfo,
2401 							skb, __tcp_hdrlen(th),
2402 							iph->saddr, th->source,
2403 							iph->daddr, th->dest,
2404 							inet_iif(skb),
2405 							sdif);
2406 		if (sk2) {
2407 			inet_twsk_deschedule_put(inet_twsk(sk));
2408 			sk = sk2;
2409 			tcp_v4_restore_cb(skb);
2410 			refcounted = false;
2411 			__this_cpu_write(tcp_tw_isn, isn);
2412 			goto process;
2413 		}
2414 	}
2415 		/* to ACK */
2416 		fallthrough;
2417 	case TCP_TW_ACK:
2418 		tcp_v4_timewait_ack(sk, skb);
2419 		break;
2420 	case TCP_TW_RST:
2421 		tcp_v4_send_reset(sk, skb, SK_RST_REASON_TCP_TIMEWAIT_SOCKET);
2422 		inet_twsk_deschedule_put(inet_twsk(sk));
2423 		goto discard_it;
2424 	case TCP_TW_SUCCESS:;
2425 	}
2426 	goto discard_it;
2427 }
2428 
2429 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2430 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2431 	.twsk_destructor= tcp_twsk_destructor,
2432 };
2433 
2434 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2435 {
2436 	struct dst_entry *dst = skb_dst(skb);
2437 
2438 	if (dst && dst_hold_safe(dst)) {
2439 		rcu_assign_pointer(sk->sk_rx_dst, dst);
2440 		sk->sk_rx_dst_ifindex = skb->skb_iif;
2441 	}
2442 }
2443 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2444 
2445 const struct inet_connection_sock_af_ops ipv4_specific = {
2446 	.queue_xmit	   = ip_queue_xmit,
2447 	.send_check	   = tcp_v4_send_check,
2448 	.rebuild_header	   = inet_sk_rebuild_header,
2449 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2450 	.conn_request	   = tcp_v4_conn_request,
2451 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2452 	.net_header_len	   = sizeof(struct iphdr),
2453 	.setsockopt	   = ip_setsockopt,
2454 	.getsockopt	   = ip_getsockopt,
2455 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2456 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2457 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2458 };
2459 EXPORT_SYMBOL(ipv4_specific);
2460 
2461 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2462 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2463 #ifdef CONFIG_TCP_MD5SIG
2464 	.md5_lookup		= tcp_v4_md5_lookup,
2465 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2466 	.md5_parse		= tcp_v4_parse_md5_keys,
2467 #endif
2468 #ifdef CONFIG_TCP_AO
2469 	.ao_lookup		= tcp_v4_ao_lookup,
2470 	.calc_ao_hash		= tcp_v4_ao_hash_skb,
2471 	.ao_parse		= tcp_v4_parse_ao,
2472 	.ao_calc_key_sk		= tcp_v4_ao_calc_key_sk,
2473 #endif
2474 };
2475 #endif
2476 
2477 /* NOTE: A lot of things set to zero explicitly by call to
2478  *       sk_alloc() so need not be done here.
2479  */
2480 static int tcp_v4_init_sock(struct sock *sk)
2481 {
2482 	struct inet_connection_sock *icsk = inet_csk(sk);
2483 
2484 	tcp_init_sock(sk);
2485 
2486 	icsk->icsk_af_ops = &ipv4_specific;
2487 
2488 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2489 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2490 #endif
2491 
2492 	return 0;
2493 }
2494 
2495 #ifdef CONFIG_TCP_MD5SIG
2496 static void tcp_md5sig_info_free_rcu(struct rcu_head *head)
2497 {
2498 	struct tcp_md5sig_info *md5sig;
2499 
2500 	md5sig = container_of(head, struct tcp_md5sig_info, rcu);
2501 	kfree(md5sig);
2502 	static_branch_slow_dec_deferred(&tcp_md5_needed);
2503 	tcp_md5_release_sigpool();
2504 }
2505 #endif
2506 
2507 void tcp_v4_destroy_sock(struct sock *sk)
2508 {
2509 	struct tcp_sock *tp = tcp_sk(sk);
2510 
2511 	trace_tcp_destroy_sock(sk);
2512 
2513 	tcp_clear_xmit_timers(sk);
2514 
2515 	tcp_cleanup_congestion_control(sk);
2516 
2517 	tcp_cleanup_ulp(sk);
2518 
2519 	/* Cleanup up the write buffer. */
2520 	tcp_write_queue_purge(sk);
2521 
2522 	/* Check if we want to disable active TFO */
2523 	tcp_fastopen_active_disable_ofo_check(sk);
2524 
2525 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2526 	skb_rbtree_purge(&tp->out_of_order_queue);
2527 
2528 #ifdef CONFIG_TCP_MD5SIG
2529 	/* Clean up the MD5 key list, if any */
2530 	if (tp->md5sig_info) {
2531 		struct tcp_md5sig_info *md5sig;
2532 
2533 		md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
2534 		tcp_clear_md5_list(sk);
2535 		call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu);
2536 		rcu_assign_pointer(tp->md5sig_info, NULL);
2537 	}
2538 #endif
2539 	tcp_ao_destroy_sock(sk, false);
2540 
2541 	/* Clean up a referenced TCP bind bucket. */
2542 	if (inet_csk(sk)->icsk_bind_hash)
2543 		inet_put_port(sk);
2544 
2545 	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2546 
2547 	/* If socket is aborted during connect operation */
2548 	tcp_free_fastopen_req(tp);
2549 	tcp_fastopen_destroy_cipher(sk);
2550 	tcp_saved_syn_free(tp);
2551 
2552 	sk_sockets_allocated_dec(sk);
2553 }
2554 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2555 
2556 #ifdef CONFIG_PROC_FS
2557 /* Proc filesystem TCP sock list dumping. */
2558 
2559 static unsigned short seq_file_family(const struct seq_file *seq);
2560 
2561 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2562 {
2563 	unsigned short family = seq_file_family(seq);
2564 
2565 	/* AF_UNSPEC is used as a match all */
2566 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2567 		net_eq(sock_net(sk), seq_file_net(seq)));
2568 }
2569 
2570 /* Find a non empty bucket (starting from st->bucket)
2571  * and return the first sk from it.
2572  */
2573 static void *listening_get_first(struct seq_file *seq)
2574 {
2575 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2576 	struct tcp_iter_state *st = seq->private;
2577 
2578 	st->offset = 0;
2579 	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2580 		struct inet_listen_hashbucket *ilb2;
2581 		struct hlist_nulls_node *node;
2582 		struct sock *sk;
2583 
2584 		ilb2 = &hinfo->lhash2[st->bucket];
2585 		if (hlist_nulls_empty(&ilb2->nulls_head))
2586 			continue;
2587 
2588 		spin_lock(&ilb2->lock);
2589 		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2590 			if (seq_sk_match(seq, sk))
2591 				return sk;
2592 		}
2593 		spin_unlock(&ilb2->lock);
2594 	}
2595 
2596 	return NULL;
2597 }
2598 
2599 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2600  * If "cur" is the last one in the st->bucket,
2601  * call listening_get_first() to return the first sk of the next
2602  * non empty bucket.
2603  */
2604 static void *listening_get_next(struct seq_file *seq, void *cur)
2605 {
2606 	struct tcp_iter_state *st = seq->private;
2607 	struct inet_listen_hashbucket *ilb2;
2608 	struct hlist_nulls_node *node;
2609 	struct inet_hashinfo *hinfo;
2610 	struct sock *sk = cur;
2611 
2612 	++st->num;
2613 	++st->offset;
2614 
2615 	sk = sk_nulls_next(sk);
2616 	sk_nulls_for_each_from(sk, node) {
2617 		if (seq_sk_match(seq, sk))
2618 			return sk;
2619 	}
2620 
2621 	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2622 	ilb2 = &hinfo->lhash2[st->bucket];
2623 	spin_unlock(&ilb2->lock);
2624 	++st->bucket;
2625 	return listening_get_first(seq);
2626 }
2627 
2628 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2629 {
2630 	struct tcp_iter_state *st = seq->private;
2631 	void *rc;
2632 
2633 	st->bucket = 0;
2634 	st->offset = 0;
2635 	rc = listening_get_first(seq);
2636 
2637 	while (rc && *pos) {
2638 		rc = listening_get_next(seq, rc);
2639 		--*pos;
2640 	}
2641 	return rc;
2642 }
2643 
2644 static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2645 				const struct tcp_iter_state *st)
2646 {
2647 	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2648 }
2649 
2650 /*
2651  * Get first established socket starting from bucket given in st->bucket.
2652  * If st->bucket is zero, the very first socket in the hash is returned.
2653  */
2654 static void *established_get_first(struct seq_file *seq)
2655 {
2656 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2657 	struct tcp_iter_state *st = seq->private;
2658 
2659 	st->offset = 0;
2660 	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2661 		struct sock *sk;
2662 		struct hlist_nulls_node *node;
2663 		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2664 
2665 		cond_resched();
2666 
2667 		/* Lockless fast path for the common case of empty buckets */
2668 		if (empty_bucket(hinfo, st))
2669 			continue;
2670 
2671 		spin_lock_bh(lock);
2672 		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2673 			if (seq_sk_match(seq, sk))
2674 				return sk;
2675 		}
2676 		spin_unlock_bh(lock);
2677 	}
2678 
2679 	return NULL;
2680 }
2681 
2682 static void *established_get_next(struct seq_file *seq, void *cur)
2683 {
2684 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2685 	struct tcp_iter_state *st = seq->private;
2686 	struct hlist_nulls_node *node;
2687 	struct sock *sk = cur;
2688 
2689 	++st->num;
2690 	++st->offset;
2691 
2692 	sk = sk_nulls_next(sk);
2693 
2694 	sk_nulls_for_each_from(sk, node) {
2695 		if (seq_sk_match(seq, sk))
2696 			return sk;
2697 	}
2698 
2699 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2700 	++st->bucket;
2701 	return established_get_first(seq);
2702 }
2703 
2704 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2705 {
2706 	struct tcp_iter_state *st = seq->private;
2707 	void *rc;
2708 
2709 	st->bucket = 0;
2710 	rc = established_get_first(seq);
2711 
2712 	while (rc && pos) {
2713 		rc = established_get_next(seq, rc);
2714 		--pos;
2715 	}
2716 	return rc;
2717 }
2718 
2719 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2720 {
2721 	void *rc;
2722 	struct tcp_iter_state *st = seq->private;
2723 
2724 	st->state = TCP_SEQ_STATE_LISTENING;
2725 	rc	  = listening_get_idx(seq, &pos);
2726 
2727 	if (!rc) {
2728 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2729 		rc	  = established_get_idx(seq, pos);
2730 	}
2731 
2732 	return rc;
2733 }
2734 
2735 static void *tcp_seek_last_pos(struct seq_file *seq)
2736 {
2737 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2738 	struct tcp_iter_state *st = seq->private;
2739 	int bucket = st->bucket;
2740 	int offset = st->offset;
2741 	int orig_num = st->num;
2742 	void *rc = NULL;
2743 
2744 	switch (st->state) {
2745 	case TCP_SEQ_STATE_LISTENING:
2746 		if (st->bucket > hinfo->lhash2_mask)
2747 			break;
2748 		rc = listening_get_first(seq);
2749 		while (offset-- && rc && bucket == st->bucket)
2750 			rc = listening_get_next(seq, rc);
2751 		if (rc)
2752 			break;
2753 		st->bucket = 0;
2754 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2755 		fallthrough;
2756 	case TCP_SEQ_STATE_ESTABLISHED:
2757 		if (st->bucket > hinfo->ehash_mask)
2758 			break;
2759 		rc = established_get_first(seq);
2760 		while (offset-- && rc && bucket == st->bucket)
2761 			rc = established_get_next(seq, rc);
2762 	}
2763 
2764 	st->num = orig_num;
2765 
2766 	return rc;
2767 }
2768 
2769 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2770 {
2771 	struct tcp_iter_state *st = seq->private;
2772 	void *rc;
2773 
2774 	if (*pos && *pos == st->last_pos) {
2775 		rc = tcp_seek_last_pos(seq);
2776 		if (rc)
2777 			goto out;
2778 	}
2779 
2780 	st->state = TCP_SEQ_STATE_LISTENING;
2781 	st->num = 0;
2782 	st->bucket = 0;
2783 	st->offset = 0;
2784 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2785 
2786 out:
2787 	st->last_pos = *pos;
2788 	return rc;
2789 }
2790 EXPORT_SYMBOL(tcp_seq_start);
2791 
2792 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2793 {
2794 	struct tcp_iter_state *st = seq->private;
2795 	void *rc = NULL;
2796 
2797 	if (v == SEQ_START_TOKEN) {
2798 		rc = tcp_get_idx(seq, 0);
2799 		goto out;
2800 	}
2801 
2802 	switch (st->state) {
2803 	case TCP_SEQ_STATE_LISTENING:
2804 		rc = listening_get_next(seq, v);
2805 		if (!rc) {
2806 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2807 			st->bucket = 0;
2808 			st->offset = 0;
2809 			rc	  = established_get_first(seq);
2810 		}
2811 		break;
2812 	case TCP_SEQ_STATE_ESTABLISHED:
2813 		rc = established_get_next(seq, v);
2814 		break;
2815 	}
2816 out:
2817 	++*pos;
2818 	st->last_pos = *pos;
2819 	return rc;
2820 }
2821 EXPORT_SYMBOL(tcp_seq_next);
2822 
2823 void tcp_seq_stop(struct seq_file *seq, void *v)
2824 {
2825 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2826 	struct tcp_iter_state *st = seq->private;
2827 
2828 	switch (st->state) {
2829 	case TCP_SEQ_STATE_LISTENING:
2830 		if (v != SEQ_START_TOKEN)
2831 			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2832 		break;
2833 	case TCP_SEQ_STATE_ESTABLISHED:
2834 		if (v)
2835 			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2836 		break;
2837 	}
2838 }
2839 EXPORT_SYMBOL(tcp_seq_stop);
2840 
2841 static void get_openreq4(const struct request_sock *req,
2842 			 struct seq_file *f, int i)
2843 {
2844 	const struct inet_request_sock *ireq = inet_rsk(req);
2845 	long delta = req->rsk_timer.expires - jiffies;
2846 
2847 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2848 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2849 		i,
2850 		ireq->ir_loc_addr,
2851 		ireq->ir_num,
2852 		ireq->ir_rmt_addr,
2853 		ntohs(ireq->ir_rmt_port),
2854 		TCP_SYN_RECV,
2855 		0, 0, /* could print option size, but that is af dependent. */
2856 		1,    /* timers active (only the expire timer) */
2857 		jiffies_delta_to_clock_t(delta),
2858 		req->num_timeout,
2859 		from_kuid_munged(seq_user_ns(f),
2860 				 sock_i_uid(req->rsk_listener)),
2861 		0,  /* non standard timer */
2862 		0, /* open_requests have no inode */
2863 		0,
2864 		req);
2865 }
2866 
2867 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2868 {
2869 	int timer_active;
2870 	unsigned long timer_expires;
2871 	const struct tcp_sock *tp = tcp_sk(sk);
2872 	const struct inet_connection_sock *icsk = inet_csk(sk);
2873 	const struct inet_sock *inet = inet_sk(sk);
2874 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2875 	__be32 dest = inet->inet_daddr;
2876 	__be32 src = inet->inet_rcv_saddr;
2877 	__u16 destp = ntohs(inet->inet_dport);
2878 	__u16 srcp = ntohs(inet->inet_sport);
2879 	int rx_queue;
2880 	int state;
2881 
2882 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2883 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2884 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2885 		timer_active	= 1;
2886 		timer_expires	= icsk->icsk_timeout;
2887 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2888 		timer_active	= 4;
2889 		timer_expires	= icsk->icsk_timeout;
2890 	} else if (timer_pending(&sk->sk_timer)) {
2891 		timer_active	= 2;
2892 		timer_expires	= sk->sk_timer.expires;
2893 	} else {
2894 		timer_active	= 0;
2895 		timer_expires = jiffies;
2896 	}
2897 
2898 	state = inet_sk_state_load(sk);
2899 	if (state == TCP_LISTEN)
2900 		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2901 	else
2902 		/* Because we don't lock the socket,
2903 		 * we might find a transient negative value.
2904 		 */
2905 		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2906 				      READ_ONCE(tp->copied_seq), 0);
2907 
2908 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2909 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2910 		i, src, srcp, dest, destp, state,
2911 		READ_ONCE(tp->write_seq) - tp->snd_una,
2912 		rx_queue,
2913 		timer_active,
2914 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2915 		icsk->icsk_retransmits,
2916 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2917 		icsk->icsk_probes_out,
2918 		sock_i_ino(sk),
2919 		refcount_read(&sk->sk_refcnt), sk,
2920 		jiffies_to_clock_t(icsk->icsk_rto),
2921 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2922 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2923 		tcp_snd_cwnd(tp),
2924 		state == TCP_LISTEN ?
2925 		    fastopenq->max_qlen :
2926 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2927 }
2928 
2929 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2930 			       struct seq_file *f, int i)
2931 {
2932 	long delta = tw->tw_timer.expires - jiffies;
2933 	__be32 dest, src;
2934 	__u16 destp, srcp;
2935 
2936 	dest  = tw->tw_daddr;
2937 	src   = tw->tw_rcv_saddr;
2938 	destp = ntohs(tw->tw_dport);
2939 	srcp  = ntohs(tw->tw_sport);
2940 
2941 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2942 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2943 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2944 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2945 		refcount_read(&tw->tw_refcnt), tw);
2946 }
2947 
2948 #define TMPSZ 150
2949 
2950 static int tcp4_seq_show(struct seq_file *seq, void *v)
2951 {
2952 	struct tcp_iter_state *st;
2953 	struct sock *sk = v;
2954 
2955 	seq_setwidth(seq, TMPSZ - 1);
2956 	if (v == SEQ_START_TOKEN) {
2957 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2958 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2959 			   "inode");
2960 		goto out;
2961 	}
2962 	st = seq->private;
2963 
2964 	if (sk->sk_state == TCP_TIME_WAIT)
2965 		get_timewait4_sock(v, seq, st->num);
2966 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2967 		get_openreq4(v, seq, st->num);
2968 	else
2969 		get_tcp4_sock(v, seq, st->num);
2970 out:
2971 	seq_pad(seq, '\n');
2972 	return 0;
2973 }
2974 
2975 #ifdef CONFIG_BPF_SYSCALL
2976 struct bpf_tcp_iter_state {
2977 	struct tcp_iter_state state;
2978 	unsigned int cur_sk;
2979 	unsigned int end_sk;
2980 	unsigned int max_sk;
2981 	struct sock **batch;
2982 	bool st_bucket_done;
2983 };
2984 
2985 struct bpf_iter__tcp {
2986 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2987 	__bpf_md_ptr(struct sock_common *, sk_common);
2988 	uid_t uid __aligned(8);
2989 };
2990 
2991 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2992 			     struct sock_common *sk_common, uid_t uid)
2993 {
2994 	struct bpf_iter__tcp ctx;
2995 
2996 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2997 	ctx.meta = meta;
2998 	ctx.sk_common = sk_common;
2999 	ctx.uid = uid;
3000 	return bpf_iter_run_prog(prog, &ctx);
3001 }
3002 
3003 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
3004 {
3005 	while (iter->cur_sk < iter->end_sk)
3006 		sock_gen_put(iter->batch[iter->cur_sk++]);
3007 }
3008 
3009 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
3010 				      unsigned int new_batch_sz)
3011 {
3012 	struct sock **new_batch;
3013 
3014 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3015 			     GFP_USER | __GFP_NOWARN);
3016 	if (!new_batch)
3017 		return -ENOMEM;
3018 
3019 	bpf_iter_tcp_put_batch(iter);
3020 	kvfree(iter->batch);
3021 	iter->batch = new_batch;
3022 	iter->max_sk = new_batch_sz;
3023 
3024 	return 0;
3025 }
3026 
3027 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
3028 						 struct sock *start_sk)
3029 {
3030 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3031 	struct bpf_tcp_iter_state *iter = seq->private;
3032 	struct tcp_iter_state *st = &iter->state;
3033 	struct hlist_nulls_node *node;
3034 	unsigned int expected = 1;
3035 	struct sock *sk;
3036 
3037 	sock_hold(start_sk);
3038 	iter->batch[iter->end_sk++] = start_sk;
3039 
3040 	sk = sk_nulls_next(start_sk);
3041 	sk_nulls_for_each_from(sk, node) {
3042 		if (seq_sk_match(seq, sk)) {
3043 			if (iter->end_sk < iter->max_sk) {
3044 				sock_hold(sk);
3045 				iter->batch[iter->end_sk++] = sk;
3046 			}
3047 			expected++;
3048 		}
3049 	}
3050 	spin_unlock(&hinfo->lhash2[st->bucket].lock);
3051 
3052 	return expected;
3053 }
3054 
3055 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
3056 						   struct sock *start_sk)
3057 {
3058 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3059 	struct bpf_tcp_iter_state *iter = seq->private;
3060 	struct tcp_iter_state *st = &iter->state;
3061 	struct hlist_nulls_node *node;
3062 	unsigned int expected = 1;
3063 	struct sock *sk;
3064 
3065 	sock_hold(start_sk);
3066 	iter->batch[iter->end_sk++] = start_sk;
3067 
3068 	sk = sk_nulls_next(start_sk);
3069 	sk_nulls_for_each_from(sk, node) {
3070 		if (seq_sk_match(seq, sk)) {
3071 			if (iter->end_sk < iter->max_sk) {
3072 				sock_hold(sk);
3073 				iter->batch[iter->end_sk++] = sk;
3074 			}
3075 			expected++;
3076 		}
3077 	}
3078 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
3079 
3080 	return expected;
3081 }
3082 
3083 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
3084 {
3085 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3086 	struct bpf_tcp_iter_state *iter = seq->private;
3087 	struct tcp_iter_state *st = &iter->state;
3088 	unsigned int expected;
3089 	bool resized = false;
3090 	struct sock *sk;
3091 
3092 	/* The st->bucket is done.  Directly advance to the next
3093 	 * bucket instead of having the tcp_seek_last_pos() to skip
3094 	 * one by one in the current bucket and eventually find out
3095 	 * it has to advance to the next bucket.
3096 	 */
3097 	if (iter->st_bucket_done) {
3098 		st->offset = 0;
3099 		st->bucket++;
3100 		if (st->state == TCP_SEQ_STATE_LISTENING &&
3101 		    st->bucket > hinfo->lhash2_mask) {
3102 			st->state = TCP_SEQ_STATE_ESTABLISHED;
3103 			st->bucket = 0;
3104 		}
3105 	}
3106 
3107 again:
3108 	/* Get a new batch */
3109 	iter->cur_sk = 0;
3110 	iter->end_sk = 0;
3111 	iter->st_bucket_done = false;
3112 
3113 	sk = tcp_seek_last_pos(seq);
3114 	if (!sk)
3115 		return NULL; /* Done */
3116 
3117 	if (st->state == TCP_SEQ_STATE_LISTENING)
3118 		expected = bpf_iter_tcp_listening_batch(seq, sk);
3119 	else
3120 		expected = bpf_iter_tcp_established_batch(seq, sk);
3121 
3122 	if (iter->end_sk == expected) {
3123 		iter->st_bucket_done = true;
3124 		return sk;
3125 	}
3126 
3127 	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
3128 		resized = true;
3129 		goto again;
3130 	}
3131 
3132 	return sk;
3133 }
3134 
3135 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
3136 {
3137 	/* bpf iter does not support lseek, so it always
3138 	 * continue from where it was stop()-ped.
3139 	 */
3140 	if (*pos)
3141 		return bpf_iter_tcp_batch(seq);
3142 
3143 	return SEQ_START_TOKEN;
3144 }
3145 
3146 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3147 {
3148 	struct bpf_tcp_iter_state *iter = seq->private;
3149 	struct tcp_iter_state *st = &iter->state;
3150 	struct sock *sk;
3151 
3152 	/* Whenever seq_next() is called, the iter->cur_sk is
3153 	 * done with seq_show(), so advance to the next sk in
3154 	 * the batch.
3155 	 */
3156 	if (iter->cur_sk < iter->end_sk) {
3157 		/* Keeping st->num consistent in tcp_iter_state.
3158 		 * bpf_iter_tcp does not use st->num.
3159 		 * meta.seq_num is used instead.
3160 		 */
3161 		st->num++;
3162 		/* Move st->offset to the next sk in the bucket such that
3163 		 * the future start() will resume at st->offset in
3164 		 * st->bucket.  See tcp_seek_last_pos().
3165 		 */
3166 		st->offset++;
3167 		sock_gen_put(iter->batch[iter->cur_sk++]);
3168 	}
3169 
3170 	if (iter->cur_sk < iter->end_sk)
3171 		sk = iter->batch[iter->cur_sk];
3172 	else
3173 		sk = bpf_iter_tcp_batch(seq);
3174 
3175 	++*pos;
3176 	/* Keeping st->last_pos consistent in tcp_iter_state.
3177 	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
3178 	 */
3179 	st->last_pos = *pos;
3180 	return sk;
3181 }
3182 
3183 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
3184 {
3185 	struct bpf_iter_meta meta;
3186 	struct bpf_prog *prog;
3187 	struct sock *sk = v;
3188 	uid_t uid;
3189 	int ret;
3190 
3191 	if (v == SEQ_START_TOKEN)
3192 		return 0;
3193 
3194 	if (sk_fullsock(sk))
3195 		lock_sock(sk);
3196 
3197 	if (unlikely(sk_unhashed(sk))) {
3198 		ret = SEQ_SKIP;
3199 		goto unlock;
3200 	}
3201 
3202 	if (sk->sk_state == TCP_TIME_WAIT) {
3203 		uid = 0;
3204 	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
3205 		const struct request_sock *req = v;
3206 
3207 		uid = from_kuid_munged(seq_user_ns(seq),
3208 				       sock_i_uid(req->rsk_listener));
3209 	} else {
3210 		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3211 	}
3212 
3213 	meta.seq = seq;
3214 	prog = bpf_iter_get_info(&meta, false);
3215 	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3216 
3217 unlock:
3218 	if (sk_fullsock(sk))
3219 		release_sock(sk);
3220 	return ret;
3221 
3222 }
3223 
3224 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3225 {
3226 	struct bpf_tcp_iter_state *iter = seq->private;
3227 	struct bpf_iter_meta meta;
3228 	struct bpf_prog *prog;
3229 
3230 	if (!v) {
3231 		meta.seq = seq;
3232 		prog = bpf_iter_get_info(&meta, true);
3233 		if (prog)
3234 			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3235 	}
3236 
3237 	if (iter->cur_sk < iter->end_sk) {
3238 		bpf_iter_tcp_put_batch(iter);
3239 		iter->st_bucket_done = false;
3240 	}
3241 }
3242 
3243 static const struct seq_operations bpf_iter_tcp_seq_ops = {
3244 	.show		= bpf_iter_tcp_seq_show,
3245 	.start		= bpf_iter_tcp_seq_start,
3246 	.next		= bpf_iter_tcp_seq_next,
3247 	.stop		= bpf_iter_tcp_seq_stop,
3248 };
3249 #endif
3250 static unsigned short seq_file_family(const struct seq_file *seq)
3251 {
3252 	const struct tcp_seq_afinfo *afinfo;
3253 
3254 #ifdef CONFIG_BPF_SYSCALL
3255 	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3256 	if (seq->op == &bpf_iter_tcp_seq_ops)
3257 		return AF_UNSPEC;
3258 #endif
3259 
3260 	/* Iterated from proc fs */
3261 	afinfo = pde_data(file_inode(seq->file));
3262 	return afinfo->family;
3263 }
3264 
3265 static const struct seq_operations tcp4_seq_ops = {
3266 	.show		= tcp4_seq_show,
3267 	.start		= tcp_seq_start,
3268 	.next		= tcp_seq_next,
3269 	.stop		= tcp_seq_stop,
3270 };
3271 
3272 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
3273 	.family		= AF_INET,
3274 };
3275 
3276 static int __net_init tcp4_proc_init_net(struct net *net)
3277 {
3278 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3279 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3280 		return -ENOMEM;
3281 	return 0;
3282 }
3283 
3284 static void __net_exit tcp4_proc_exit_net(struct net *net)
3285 {
3286 	remove_proc_entry("tcp", net->proc_net);
3287 }
3288 
3289 static struct pernet_operations tcp4_net_ops = {
3290 	.init = tcp4_proc_init_net,
3291 	.exit = tcp4_proc_exit_net,
3292 };
3293 
3294 int __init tcp4_proc_init(void)
3295 {
3296 	return register_pernet_subsys(&tcp4_net_ops);
3297 }
3298 
3299 void tcp4_proc_exit(void)
3300 {
3301 	unregister_pernet_subsys(&tcp4_net_ops);
3302 }
3303 #endif /* CONFIG_PROC_FS */
3304 
3305 /* @wake is one when sk_stream_write_space() calls us.
3306  * This sends EPOLLOUT only if notsent_bytes is half the limit.
3307  * This mimics the strategy used in sock_def_write_space().
3308  */
3309 bool tcp_stream_memory_free(const struct sock *sk, int wake)
3310 {
3311 	const struct tcp_sock *tp = tcp_sk(sk);
3312 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3313 			    READ_ONCE(tp->snd_nxt);
3314 
3315 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3316 }
3317 EXPORT_SYMBOL(tcp_stream_memory_free);
3318 
3319 struct proto tcp_prot = {
3320 	.name			= "TCP",
3321 	.owner			= THIS_MODULE,
3322 	.close			= tcp_close,
3323 	.pre_connect		= tcp_v4_pre_connect,
3324 	.connect		= tcp_v4_connect,
3325 	.disconnect		= tcp_disconnect,
3326 	.accept			= inet_csk_accept,
3327 	.ioctl			= tcp_ioctl,
3328 	.init			= tcp_v4_init_sock,
3329 	.destroy		= tcp_v4_destroy_sock,
3330 	.shutdown		= tcp_shutdown,
3331 	.setsockopt		= tcp_setsockopt,
3332 	.getsockopt		= tcp_getsockopt,
3333 	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3334 	.keepalive		= tcp_set_keepalive,
3335 	.recvmsg		= tcp_recvmsg,
3336 	.sendmsg		= tcp_sendmsg,
3337 	.splice_eof		= tcp_splice_eof,
3338 	.backlog_rcv		= tcp_v4_do_rcv,
3339 	.release_cb		= tcp_release_cb,
3340 	.hash			= inet_hash,
3341 	.unhash			= inet_unhash,
3342 	.get_port		= inet_csk_get_port,
3343 	.put_port		= inet_put_port,
3344 #ifdef CONFIG_BPF_SYSCALL
3345 	.psock_update_sk_prot	= tcp_bpf_update_proto,
3346 #endif
3347 	.enter_memory_pressure	= tcp_enter_memory_pressure,
3348 	.leave_memory_pressure	= tcp_leave_memory_pressure,
3349 	.stream_memory_free	= tcp_stream_memory_free,
3350 	.sockets_allocated	= &tcp_sockets_allocated,
3351 	.orphan_count		= &tcp_orphan_count,
3352 
3353 	.memory_allocated	= &tcp_memory_allocated,
3354 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3355 
3356 	.memory_pressure	= &tcp_memory_pressure,
3357 	.sysctl_mem		= sysctl_tcp_mem,
3358 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3359 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3360 	.max_header		= MAX_TCP_HEADER,
3361 	.obj_size		= sizeof(struct tcp_sock),
3362 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3363 	.twsk_prot		= &tcp_timewait_sock_ops,
3364 	.rsk_prot		= &tcp_request_sock_ops,
3365 	.h.hashinfo		= NULL,
3366 	.no_autobind		= true,
3367 	.diag_destroy		= tcp_abort,
3368 };
3369 EXPORT_SYMBOL(tcp_prot);
3370 
3371 static void __net_exit tcp_sk_exit(struct net *net)
3372 {
3373 	if (net->ipv4.tcp_congestion_control)
3374 		bpf_module_put(net->ipv4.tcp_congestion_control,
3375 			       net->ipv4.tcp_congestion_control->owner);
3376 }
3377 
3378 static void __net_init tcp_set_hashinfo(struct net *net)
3379 {
3380 	struct inet_hashinfo *hinfo;
3381 	unsigned int ehash_entries;
3382 	struct net *old_net;
3383 
3384 	if (net_eq(net, &init_net))
3385 		goto fallback;
3386 
3387 	old_net = current->nsproxy->net_ns;
3388 	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3389 	if (!ehash_entries)
3390 		goto fallback;
3391 
3392 	ehash_entries = roundup_pow_of_two(ehash_entries);
3393 	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3394 	if (!hinfo) {
3395 		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3396 			"for a netns, fallback to the global one\n",
3397 			ehash_entries);
3398 fallback:
3399 		hinfo = &tcp_hashinfo;
3400 		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3401 	}
3402 
3403 	net->ipv4.tcp_death_row.hashinfo = hinfo;
3404 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3405 	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3406 }
3407 
3408 static int __net_init tcp_sk_init(struct net *net)
3409 {
3410 	net->ipv4.sysctl_tcp_ecn = 2;
3411 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3412 
3413 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3414 	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3415 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3416 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3417 	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3418 
3419 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3420 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3421 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3422 
3423 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3424 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3425 	net->ipv4.sysctl_tcp_syncookies = 1;
3426 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3427 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3428 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3429 	net->ipv4.sysctl_tcp_orphan_retries = 0;
3430 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3431 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3432 	net->ipv4.sysctl_tcp_tw_reuse = 2;
3433 	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3434 
3435 	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3436 	tcp_set_hashinfo(net);
3437 
3438 	net->ipv4.sysctl_tcp_sack = 1;
3439 	net->ipv4.sysctl_tcp_window_scaling = 1;
3440 	net->ipv4.sysctl_tcp_timestamps = 1;
3441 	net->ipv4.sysctl_tcp_early_retrans = 3;
3442 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3443 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3444 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3445 	net->ipv4.sysctl_tcp_max_reordering = 300;
3446 	net->ipv4.sysctl_tcp_dsack = 1;
3447 	net->ipv4.sysctl_tcp_app_win = 31;
3448 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3449 	net->ipv4.sysctl_tcp_frto = 2;
3450 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3451 	/* This limits the percentage of the congestion window which we
3452 	 * will allow a single TSO frame to consume.  Building TSO frames
3453 	 * which are too large can cause TCP streams to be bursty.
3454 	 */
3455 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3456 	/* Default TSQ limit of 16 TSO segments */
3457 	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3458 
3459 	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3460 	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3461 
3462 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3463 	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3464 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3465 	net->ipv4.sysctl_tcp_autocorking = 1;
3466 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3467 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3468 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3469 	if (net != &init_net) {
3470 		memcpy(net->ipv4.sysctl_tcp_rmem,
3471 		       init_net.ipv4.sysctl_tcp_rmem,
3472 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3473 		memcpy(net->ipv4.sysctl_tcp_wmem,
3474 		       init_net.ipv4.sysctl_tcp_wmem,
3475 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3476 	}
3477 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3478 	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3479 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3480 	net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
3481 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3482 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3483 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3484 
3485 	/* Set default values for PLB */
3486 	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3487 	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3488 	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3489 	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3490 	/* Default congestion threshold for PLB to mark a round is 50% */
3491 	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3492 
3493 	/* Reno is always built in */
3494 	if (!net_eq(net, &init_net) &&
3495 	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3496 			       init_net.ipv4.tcp_congestion_control->owner))
3497 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3498 	else
3499 		net->ipv4.tcp_congestion_control = &tcp_reno;
3500 
3501 	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3502 	net->ipv4.sysctl_tcp_shrink_window = 0;
3503 
3504 	net->ipv4.sysctl_tcp_pingpong_thresh = 1;
3505 	net->ipv4.sysctl_tcp_rto_min_us = jiffies_to_usecs(TCP_RTO_MIN);
3506 
3507 	return 0;
3508 }
3509 
3510 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3511 {
3512 	struct net *net;
3513 
3514 	tcp_twsk_purge(net_exit_list);
3515 
3516 	list_for_each_entry(net, net_exit_list, exit_list) {
3517 		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3518 		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3519 		tcp_fastopen_ctx_destroy(net);
3520 	}
3521 }
3522 
3523 static struct pernet_operations __net_initdata tcp_sk_ops = {
3524        .init	   = tcp_sk_init,
3525        .exit	   = tcp_sk_exit,
3526        .exit_batch = tcp_sk_exit_batch,
3527 };
3528 
3529 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3530 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3531 		     struct sock_common *sk_common, uid_t uid)
3532 
3533 #define INIT_BATCH_SZ 16
3534 
3535 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3536 {
3537 	struct bpf_tcp_iter_state *iter = priv_data;
3538 	int err;
3539 
3540 	err = bpf_iter_init_seq_net(priv_data, aux);
3541 	if (err)
3542 		return err;
3543 
3544 	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3545 	if (err) {
3546 		bpf_iter_fini_seq_net(priv_data);
3547 		return err;
3548 	}
3549 
3550 	return 0;
3551 }
3552 
3553 static void bpf_iter_fini_tcp(void *priv_data)
3554 {
3555 	struct bpf_tcp_iter_state *iter = priv_data;
3556 
3557 	bpf_iter_fini_seq_net(priv_data);
3558 	kvfree(iter->batch);
3559 }
3560 
3561 static const struct bpf_iter_seq_info tcp_seq_info = {
3562 	.seq_ops		= &bpf_iter_tcp_seq_ops,
3563 	.init_seq_private	= bpf_iter_init_tcp,
3564 	.fini_seq_private	= bpf_iter_fini_tcp,
3565 	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3566 };
3567 
3568 static const struct bpf_func_proto *
3569 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3570 			    const struct bpf_prog *prog)
3571 {
3572 	switch (func_id) {
3573 	case BPF_FUNC_setsockopt:
3574 		return &bpf_sk_setsockopt_proto;
3575 	case BPF_FUNC_getsockopt:
3576 		return &bpf_sk_getsockopt_proto;
3577 	default:
3578 		return NULL;
3579 	}
3580 }
3581 
3582 static struct bpf_iter_reg tcp_reg_info = {
3583 	.target			= "tcp",
3584 	.ctx_arg_info_size	= 1,
3585 	.ctx_arg_info		= {
3586 		{ offsetof(struct bpf_iter__tcp, sk_common),
3587 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3588 	},
3589 	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3590 	.seq_info		= &tcp_seq_info,
3591 };
3592 
3593 static void __init bpf_iter_register(void)
3594 {
3595 	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3596 	if (bpf_iter_reg_target(&tcp_reg_info))
3597 		pr_warn("Warning: could not register bpf iterator tcp\n");
3598 }
3599 
3600 #endif
3601 
3602 void __init tcp_v4_init(void)
3603 {
3604 	int cpu, res;
3605 
3606 	for_each_possible_cpu(cpu) {
3607 		struct sock *sk;
3608 
3609 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3610 					   IPPROTO_TCP, &init_net);
3611 		if (res)
3612 			panic("Failed to create the TCP control socket.\n");
3613 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3614 
3615 		/* Please enforce IP_DF and IPID==0 for RST and
3616 		 * ACK sent in SYN-RECV and TIME-WAIT state.
3617 		 */
3618 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3619 
3620 		sk->sk_clockid = CLOCK_MONOTONIC;
3621 
3622 		per_cpu(ipv4_tcp_sk, cpu) = sk;
3623 	}
3624 	if (register_pernet_subsys(&tcp_sk_ops))
3625 		panic("Failed to create the TCP control socket.\n");
3626 
3627 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3628 	bpf_iter_register();
3629 #endif
3630 }
3631