xref: /linux/net/ipv4/tcp_ipv4.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  *		IPv4 specific functions
9  *
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  *
18  *	This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23 
24 /*
25  * Changes:
26  *		David S. Miller	:	New socket lookup architecture.
27  *					This code is dedicated to John Dyson.
28  *		David S. Miller :	Change semantics of established hash,
29  *					half is devoted to TIME_WAIT sockets
30  *					and the rest go in the other half.
31  *		Andi Kleen :		Add support for syncookies and fixed
32  *					some bugs: ip options weren't passed to
33  *					the TCP layer, missed a check for an
34  *					ACK bit.
35  *		Andi Kleen :		Implemented fast path mtu discovery.
36  *	     				Fixed many serious bugs in the
37  *					request_sock handling and moved
38  *					most of it into the af independent code.
39  *					Added tail drop and some other bugfixes.
40  *					Added new listen semantics.
41  *		Mike McLagan	:	Routing by source
42  *	Juan Jose Ciarlante:		ip_dynaddr bits
43  *		Andi Kleen:		various fixes.
44  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
45  *					coma.
46  *	Andi Kleen		:	Fix new listen.
47  *	Andi Kleen		:	Fix accept error reporting.
48  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
49  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
50  *					a single port at the same time.
51  */
52 
53 #define pr_fmt(fmt) "TCP: " fmt
54 
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65 
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/busy_poll.h>
77 
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/inetdevice.h>
84 
85 #include <crypto/hash.h>
86 #include <linux/scatterlist.h>
87 
88 #include <trace/events/tcp.h>
89 
90 #ifdef CONFIG_TCP_MD5SIG
91 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
92 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
93 #endif
94 
95 struct inet_hashinfo tcp_hashinfo;
96 EXPORT_SYMBOL(tcp_hashinfo);
97 
98 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
99 {
100 	return secure_tcp_seq(ip_hdr(skb)->daddr,
101 			      ip_hdr(skb)->saddr,
102 			      tcp_hdr(skb)->dest,
103 			      tcp_hdr(skb)->source);
104 }
105 
106 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
107 {
108 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
109 }
110 
111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
112 {
113 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
114 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115 	struct tcp_sock *tp = tcp_sk(sk);
116 	int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse;
117 
118 	if (reuse == 2) {
119 		/* Still does not detect *everything* that goes through
120 		 * lo, since we require a loopback src or dst address
121 		 * or direct binding to 'lo' interface.
122 		 */
123 		bool loopback = false;
124 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
125 			loopback = true;
126 #if IS_ENABLED(CONFIG_IPV6)
127 		if (tw->tw_family == AF_INET6) {
128 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
129 			    (ipv6_addr_v4mapped(&tw->tw_v6_daddr) &&
130 			     (tw->tw_v6_daddr.s6_addr[12] == 127)) ||
131 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
132 			    (ipv6_addr_v4mapped(&tw->tw_v6_rcv_saddr) &&
133 			     (tw->tw_v6_rcv_saddr.s6_addr[12] == 127)))
134 				loopback = true;
135 		} else
136 #endif
137 		{
138 			if (ipv4_is_loopback(tw->tw_daddr) ||
139 			    ipv4_is_loopback(tw->tw_rcv_saddr))
140 				loopback = true;
141 		}
142 		if (!loopback)
143 			reuse = 0;
144 	}
145 
146 	/* With PAWS, it is safe from the viewpoint
147 	   of data integrity. Even without PAWS it is safe provided sequence
148 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
149 
150 	   Actually, the idea is close to VJ's one, only timestamp cache is
151 	   held not per host, but per port pair and TW bucket is used as state
152 	   holder.
153 
154 	   If TW bucket has been already destroyed we fall back to VJ's scheme
155 	   and use initial timestamp retrieved from peer table.
156 	 */
157 	if (tcptw->tw_ts_recent_stamp &&
158 	    (!twp || (reuse && time_after32(ktime_get_seconds(),
159 					    tcptw->tw_ts_recent_stamp)))) {
160 		/* In case of repair and re-using TIME-WAIT sockets we still
161 		 * want to be sure that it is safe as above but honor the
162 		 * sequence numbers and time stamps set as part of the repair
163 		 * process.
164 		 *
165 		 * Without this check re-using a TIME-WAIT socket with TCP
166 		 * repair would accumulate a -1 on the repair assigned
167 		 * sequence number. The first time it is reused the sequence
168 		 * is -1, the second time -2, etc. This fixes that issue
169 		 * without appearing to create any others.
170 		 */
171 		if (likely(!tp->repair)) {
172 			tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
173 			if (tp->write_seq == 0)
174 				tp->write_seq = 1;
175 			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
176 			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
177 		}
178 		sock_hold(sktw);
179 		return 1;
180 	}
181 
182 	return 0;
183 }
184 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
185 
186 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
187 			      int addr_len)
188 {
189 	/* This check is replicated from tcp_v4_connect() and intended to
190 	 * prevent BPF program called below from accessing bytes that are out
191 	 * of the bound specified by user in addr_len.
192 	 */
193 	if (addr_len < sizeof(struct sockaddr_in))
194 		return -EINVAL;
195 
196 	sock_owned_by_me(sk);
197 
198 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
199 }
200 
201 /* This will initiate an outgoing connection. */
202 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
203 {
204 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
205 	struct inet_sock *inet = inet_sk(sk);
206 	struct tcp_sock *tp = tcp_sk(sk);
207 	__be16 orig_sport, orig_dport;
208 	__be32 daddr, nexthop;
209 	struct flowi4 *fl4;
210 	struct rtable *rt;
211 	int err;
212 	struct ip_options_rcu *inet_opt;
213 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
214 
215 	if (addr_len < sizeof(struct sockaddr_in))
216 		return -EINVAL;
217 
218 	if (usin->sin_family != AF_INET)
219 		return -EAFNOSUPPORT;
220 
221 	nexthop = daddr = usin->sin_addr.s_addr;
222 	inet_opt = rcu_dereference_protected(inet->inet_opt,
223 					     lockdep_sock_is_held(sk));
224 	if (inet_opt && inet_opt->opt.srr) {
225 		if (!daddr)
226 			return -EINVAL;
227 		nexthop = inet_opt->opt.faddr;
228 	}
229 
230 	orig_sport = inet->inet_sport;
231 	orig_dport = usin->sin_port;
232 	fl4 = &inet->cork.fl.u.ip4;
233 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
234 			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
235 			      IPPROTO_TCP,
236 			      orig_sport, orig_dport, sk);
237 	if (IS_ERR(rt)) {
238 		err = PTR_ERR(rt);
239 		if (err == -ENETUNREACH)
240 			IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
241 		return err;
242 	}
243 
244 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
245 		ip_rt_put(rt);
246 		return -ENETUNREACH;
247 	}
248 
249 	if (!inet_opt || !inet_opt->opt.srr)
250 		daddr = fl4->daddr;
251 
252 	if (!inet->inet_saddr)
253 		inet->inet_saddr = fl4->saddr;
254 	sk_rcv_saddr_set(sk, inet->inet_saddr);
255 
256 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
257 		/* Reset inherited state */
258 		tp->rx_opt.ts_recent	   = 0;
259 		tp->rx_opt.ts_recent_stamp = 0;
260 		if (likely(!tp->repair))
261 			tp->write_seq	   = 0;
262 	}
263 
264 	inet->inet_dport = usin->sin_port;
265 	sk_daddr_set(sk, daddr);
266 
267 	inet_csk(sk)->icsk_ext_hdr_len = 0;
268 	if (inet_opt)
269 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
270 
271 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
272 
273 	/* Socket identity is still unknown (sport may be zero).
274 	 * However we set state to SYN-SENT and not releasing socket
275 	 * lock select source port, enter ourselves into the hash tables and
276 	 * complete initialization after this.
277 	 */
278 	tcp_set_state(sk, TCP_SYN_SENT);
279 	err = inet_hash_connect(tcp_death_row, sk);
280 	if (err)
281 		goto failure;
282 
283 	sk_set_txhash(sk);
284 
285 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
286 			       inet->inet_sport, inet->inet_dport, sk);
287 	if (IS_ERR(rt)) {
288 		err = PTR_ERR(rt);
289 		rt = NULL;
290 		goto failure;
291 	}
292 	/* OK, now commit destination to socket.  */
293 	sk->sk_gso_type = SKB_GSO_TCPV4;
294 	sk_setup_caps(sk, &rt->dst);
295 	rt = NULL;
296 
297 	if (likely(!tp->repair)) {
298 		if (!tp->write_seq)
299 			tp->write_seq = secure_tcp_seq(inet->inet_saddr,
300 						       inet->inet_daddr,
301 						       inet->inet_sport,
302 						       usin->sin_port);
303 		tp->tsoffset = secure_tcp_ts_off(sock_net(sk),
304 						 inet->inet_saddr,
305 						 inet->inet_daddr);
306 	}
307 
308 	inet->inet_id = tp->write_seq ^ jiffies;
309 
310 	if (tcp_fastopen_defer_connect(sk, &err))
311 		return err;
312 	if (err)
313 		goto failure;
314 
315 	err = tcp_connect(sk);
316 
317 	if (err)
318 		goto failure;
319 
320 	return 0;
321 
322 failure:
323 	/*
324 	 * This unhashes the socket and releases the local port,
325 	 * if necessary.
326 	 */
327 	tcp_set_state(sk, TCP_CLOSE);
328 	ip_rt_put(rt);
329 	sk->sk_route_caps = 0;
330 	inet->inet_dport = 0;
331 	return err;
332 }
333 EXPORT_SYMBOL(tcp_v4_connect);
334 
335 /*
336  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
337  * It can be called through tcp_release_cb() if socket was owned by user
338  * at the time tcp_v4_err() was called to handle ICMP message.
339  */
340 void tcp_v4_mtu_reduced(struct sock *sk)
341 {
342 	struct inet_sock *inet = inet_sk(sk);
343 	struct dst_entry *dst;
344 	u32 mtu;
345 
346 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
347 		return;
348 	mtu = tcp_sk(sk)->mtu_info;
349 	dst = inet_csk_update_pmtu(sk, mtu);
350 	if (!dst)
351 		return;
352 
353 	/* Something is about to be wrong... Remember soft error
354 	 * for the case, if this connection will not able to recover.
355 	 */
356 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
357 		sk->sk_err_soft = EMSGSIZE;
358 
359 	mtu = dst_mtu(dst);
360 
361 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
362 	    ip_sk_accept_pmtu(sk) &&
363 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
364 		tcp_sync_mss(sk, mtu);
365 
366 		/* Resend the TCP packet because it's
367 		 * clear that the old packet has been
368 		 * dropped. This is the new "fast" path mtu
369 		 * discovery.
370 		 */
371 		tcp_simple_retransmit(sk);
372 	} /* else let the usual retransmit timer handle it */
373 }
374 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
375 
376 static void do_redirect(struct sk_buff *skb, struct sock *sk)
377 {
378 	struct dst_entry *dst = __sk_dst_check(sk, 0);
379 
380 	if (dst)
381 		dst->ops->redirect(dst, sk, skb);
382 }
383 
384 
385 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
386 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
387 {
388 	struct request_sock *req = inet_reqsk(sk);
389 	struct net *net = sock_net(sk);
390 
391 	/* ICMPs are not backlogged, hence we cannot get
392 	 * an established socket here.
393 	 */
394 	if (seq != tcp_rsk(req)->snt_isn) {
395 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
396 	} else if (abort) {
397 		/*
398 		 * Still in SYN_RECV, just remove it silently.
399 		 * There is no good way to pass the error to the newly
400 		 * created socket, and POSIX does not want network
401 		 * errors returned from accept().
402 		 */
403 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
404 		tcp_listendrop(req->rsk_listener);
405 	}
406 	reqsk_put(req);
407 }
408 EXPORT_SYMBOL(tcp_req_err);
409 
410 /*
411  * This routine is called by the ICMP module when it gets some
412  * sort of error condition.  If err < 0 then the socket should
413  * be closed and the error returned to the user.  If err > 0
414  * it's just the icmp type << 8 | icmp code.  After adjustment
415  * header points to the first 8 bytes of the tcp header.  We need
416  * to find the appropriate port.
417  *
418  * The locking strategy used here is very "optimistic". When
419  * someone else accesses the socket the ICMP is just dropped
420  * and for some paths there is no check at all.
421  * A more general error queue to queue errors for later handling
422  * is probably better.
423  *
424  */
425 
426 int tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
427 {
428 	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
429 	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
430 	struct inet_connection_sock *icsk;
431 	struct tcp_sock *tp;
432 	struct inet_sock *inet;
433 	const int type = icmp_hdr(icmp_skb)->type;
434 	const int code = icmp_hdr(icmp_skb)->code;
435 	struct sock *sk;
436 	struct sk_buff *skb;
437 	struct request_sock *fastopen;
438 	u32 seq, snd_una;
439 	s32 remaining;
440 	u32 delta_us;
441 	int err;
442 	struct net *net = dev_net(icmp_skb->dev);
443 
444 	sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
445 				       th->dest, iph->saddr, ntohs(th->source),
446 				       inet_iif(icmp_skb), 0);
447 	if (!sk) {
448 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
449 		return -ENOENT;
450 	}
451 	if (sk->sk_state == TCP_TIME_WAIT) {
452 		inet_twsk_put(inet_twsk(sk));
453 		return 0;
454 	}
455 	seq = ntohl(th->seq);
456 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
457 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
458 				     type == ICMP_TIME_EXCEEDED ||
459 				     (type == ICMP_DEST_UNREACH &&
460 				      (code == ICMP_NET_UNREACH ||
461 				       code == ICMP_HOST_UNREACH)));
462 		return 0;
463 	}
464 
465 	bh_lock_sock(sk);
466 	/* If too many ICMPs get dropped on busy
467 	 * servers this needs to be solved differently.
468 	 * We do take care of PMTU discovery (RFC1191) special case :
469 	 * we can receive locally generated ICMP messages while socket is held.
470 	 */
471 	if (sock_owned_by_user(sk)) {
472 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
473 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
474 	}
475 	if (sk->sk_state == TCP_CLOSE)
476 		goto out;
477 
478 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
479 		__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
480 		goto out;
481 	}
482 
483 	icsk = inet_csk(sk);
484 	tp = tcp_sk(sk);
485 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
486 	fastopen = tp->fastopen_rsk;
487 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
488 	if (sk->sk_state != TCP_LISTEN &&
489 	    !between(seq, snd_una, tp->snd_nxt)) {
490 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
491 		goto out;
492 	}
493 
494 	switch (type) {
495 	case ICMP_REDIRECT:
496 		if (!sock_owned_by_user(sk))
497 			do_redirect(icmp_skb, sk);
498 		goto out;
499 	case ICMP_SOURCE_QUENCH:
500 		/* Just silently ignore these. */
501 		goto out;
502 	case ICMP_PARAMETERPROB:
503 		err = EPROTO;
504 		break;
505 	case ICMP_DEST_UNREACH:
506 		if (code > NR_ICMP_UNREACH)
507 			goto out;
508 
509 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
510 			/* We are not interested in TCP_LISTEN and open_requests
511 			 * (SYN-ACKs send out by Linux are always <576bytes so
512 			 * they should go through unfragmented).
513 			 */
514 			if (sk->sk_state == TCP_LISTEN)
515 				goto out;
516 
517 			tp->mtu_info = info;
518 			if (!sock_owned_by_user(sk)) {
519 				tcp_v4_mtu_reduced(sk);
520 			} else {
521 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
522 					sock_hold(sk);
523 			}
524 			goto out;
525 		}
526 
527 		err = icmp_err_convert[code].errno;
528 		/* check if icmp_skb allows revert of backoff
529 		 * (see draft-zimmermann-tcp-lcd) */
530 		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
531 			break;
532 		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
533 		    !icsk->icsk_backoff || fastopen)
534 			break;
535 
536 		if (sock_owned_by_user(sk))
537 			break;
538 
539 		skb = tcp_rtx_queue_head(sk);
540 		if (WARN_ON_ONCE(!skb))
541 			break;
542 
543 		icsk->icsk_backoff--;
544 		icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
545 					       TCP_TIMEOUT_INIT;
546 		icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
547 
548 
549 		tcp_mstamp_refresh(tp);
550 		delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
551 		remaining = icsk->icsk_rto -
552 			    usecs_to_jiffies(delta_us);
553 
554 		if (remaining > 0) {
555 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
556 						  remaining, TCP_RTO_MAX);
557 		} else {
558 			/* RTO revert clocked out retransmission.
559 			 * Will retransmit now */
560 			tcp_retransmit_timer(sk);
561 		}
562 
563 		break;
564 	case ICMP_TIME_EXCEEDED:
565 		err = EHOSTUNREACH;
566 		break;
567 	default:
568 		goto out;
569 	}
570 
571 	switch (sk->sk_state) {
572 	case TCP_SYN_SENT:
573 	case TCP_SYN_RECV:
574 		/* Only in fast or simultaneous open. If a fast open socket is
575 		 * is already accepted it is treated as a connected one below.
576 		 */
577 		if (fastopen && !fastopen->sk)
578 			break;
579 
580 		if (!sock_owned_by_user(sk)) {
581 			sk->sk_err = err;
582 
583 			sk->sk_error_report(sk);
584 
585 			tcp_done(sk);
586 		} else {
587 			sk->sk_err_soft = err;
588 		}
589 		goto out;
590 	}
591 
592 	/* If we've already connected we will keep trying
593 	 * until we time out, or the user gives up.
594 	 *
595 	 * rfc1122 4.2.3.9 allows to consider as hard errors
596 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
597 	 * but it is obsoleted by pmtu discovery).
598 	 *
599 	 * Note, that in modern internet, where routing is unreliable
600 	 * and in each dark corner broken firewalls sit, sending random
601 	 * errors ordered by their masters even this two messages finally lose
602 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
603 	 *
604 	 * Now we are in compliance with RFCs.
605 	 *							--ANK (980905)
606 	 */
607 
608 	inet = inet_sk(sk);
609 	if (!sock_owned_by_user(sk) && inet->recverr) {
610 		sk->sk_err = err;
611 		sk->sk_error_report(sk);
612 	} else	{ /* Only an error on timeout */
613 		sk->sk_err_soft = err;
614 	}
615 
616 out:
617 	bh_unlock_sock(sk);
618 	sock_put(sk);
619 	return 0;
620 }
621 
622 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
623 {
624 	struct tcphdr *th = tcp_hdr(skb);
625 
626 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
627 	skb->csum_start = skb_transport_header(skb) - skb->head;
628 	skb->csum_offset = offsetof(struct tcphdr, check);
629 }
630 
631 /* This routine computes an IPv4 TCP checksum. */
632 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
633 {
634 	const struct inet_sock *inet = inet_sk(sk);
635 
636 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
637 }
638 EXPORT_SYMBOL(tcp_v4_send_check);
639 
640 /*
641  *	This routine will send an RST to the other tcp.
642  *
643  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
644  *		      for reset.
645  *	Answer: if a packet caused RST, it is not for a socket
646  *		existing in our system, if it is matched to a socket,
647  *		it is just duplicate segment or bug in other side's TCP.
648  *		So that we build reply only basing on parameters
649  *		arrived with segment.
650  *	Exception: precedence violation. We do not implement it in any case.
651  */
652 
653 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
654 {
655 	const struct tcphdr *th = tcp_hdr(skb);
656 	struct {
657 		struct tcphdr th;
658 #ifdef CONFIG_TCP_MD5SIG
659 		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
660 #endif
661 	} rep;
662 	struct ip_reply_arg arg;
663 #ifdef CONFIG_TCP_MD5SIG
664 	struct tcp_md5sig_key *key = NULL;
665 	const __u8 *hash_location = NULL;
666 	unsigned char newhash[16];
667 	int genhash;
668 	struct sock *sk1 = NULL;
669 #endif
670 	struct net *net;
671 	struct sock *ctl_sk;
672 
673 	/* Never send a reset in response to a reset. */
674 	if (th->rst)
675 		return;
676 
677 	/* If sk not NULL, it means we did a successful lookup and incoming
678 	 * route had to be correct. prequeue might have dropped our dst.
679 	 */
680 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
681 		return;
682 
683 	/* Swap the send and the receive. */
684 	memset(&rep, 0, sizeof(rep));
685 	rep.th.dest   = th->source;
686 	rep.th.source = th->dest;
687 	rep.th.doff   = sizeof(struct tcphdr) / 4;
688 	rep.th.rst    = 1;
689 
690 	if (th->ack) {
691 		rep.th.seq = th->ack_seq;
692 	} else {
693 		rep.th.ack = 1;
694 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
695 				       skb->len - (th->doff << 2));
696 	}
697 
698 	memset(&arg, 0, sizeof(arg));
699 	arg.iov[0].iov_base = (unsigned char *)&rep;
700 	arg.iov[0].iov_len  = sizeof(rep.th);
701 
702 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
703 #ifdef CONFIG_TCP_MD5SIG
704 	rcu_read_lock();
705 	hash_location = tcp_parse_md5sig_option(th);
706 	if (sk && sk_fullsock(sk)) {
707 		key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
708 					&ip_hdr(skb)->saddr, AF_INET);
709 	} else if (hash_location) {
710 		/*
711 		 * active side is lost. Try to find listening socket through
712 		 * source port, and then find md5 key through listening socket.
713 		 * we are not loose security here:
714 		 * Incoming packet is checked with md5 hash with finding key,
715 		 * no RST generated if md5 hash doesn't match.
716 		 */
717 		sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
718 					     ip_hdr(skb)->saddr,
719 					     th->source, ip_hdr(skb)->daddr,
720 					     ntohs(th->source), inet_iif(skb),
721 					     tcp_v4_sdif(skb));
722 		/* don't send rst if it can't find key */
723 		if (!sk1)
724 			goto out;
725 
726 		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
727 					&ip_hdr(skb)->saddr, AF_INET);
728 		if (!key)
729 			goto out;
730 
731 
732 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
733 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
734 			goto out;
735 
736 	}
737 
738 	if (key) {
739 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
740 				   (TCPOPT_NOP << 16) |
741 				   (TCPOPT_MD5SIG << 8) |
742 				   TCPOLEN_MD5SIG);
743 		/* Update length and the length the header thinks exists */
744 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
745 		rep.th.doff = arg.iov[0].iov_len / 4;
746 
747 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
748 				     key, ip_hdr(skb)->saddr,
749 				     ip_hdr(skb)->daddr, &rep.th);
750 	}
751 #endif
752 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
753 				      ip_hdr(skb)->saddr, /* XXX */
754 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
755 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
756 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
757 
758 	/* When socket is gone, all binding information is lost.
759 	 * routing might fail in this case. No choice here, if we choose to force
760 	 * input interface, we will misroute in case of asymmetric route.
761 	 */
762 	if (sk) {
763 		arg.bound_dev_if = sk->sk_bound_dev_if;
764 		if (sk_fullsock(sk))
765 			trace_tcp_send_reset(sk, skb);
766 	}
767 
768 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
769 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
770 
771 	arg.tos = ip_hdr(skb)->tos;
772 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
773 	local_bh_disable();
774 	ctl_sk = *this_cpu_ptr(net->ipv4.tcp_sk);
775 	if (sk)
776 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
777 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
778 	ip_send_unicast_reply(ctl_sk,
779 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
780 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
781 			      &arg, arg.iov[0].iov_len);
782 
783 	ctl_sk->sk_mark = 0;
784 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
785 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
786 	local_bh_enable();
787 
788 #ifdef CONFIG_TCP_MD5SIG
789 out:
790 	rcu_read_unlock();
791 #endif
792 }
793 
794 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
795    outside socket context is ugly, certainly. What can I do?
796  */
797 
798 static void tcp_v4_send_ack(const struct sock *sk,
799 			    struct sk_buff *skb, u32 seq, u32 ack,
800 			    u32 win, u32 tsval, u32 tsecr, int oif,
801 			    struct tcp_md5sig_key *key,
802 			    int reply_flags, u8 tos)
803 {
804 	const struct tcphdr *th = tcp_hdr(skb);
805 	struct {
806 		struct tcphdr th;
807 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
808 #ifdef CONFIG_TCP_MD5SIG
809 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
810 #endif
811 			];
812 	} rep;
813 	struct net *net = sock_net(sk);
814 	struct ip_reply_arg arg;
815 	struct sock *ctl_sk;
816 
817 	memset(&rep.th, 0, sizeof(struct tcphdr));
818 	memset(&arg, 0, sizeof(arg));
819 
820 	arg.iov[0].iov_base = (unsigned char *)&rep;
821 	arg.iov[0].iov_len  = sizeof(rep.th);
822 	if (tsecr) {
823 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
824 				   (TCPOPT_TIMESTAMP << 8) |
825 				   TCPOLEN_TIMESTAMP);
826 		rep.opt[1] = htonl(tsval);
827 		rep.opt[2] = htonl(tsecr);
828 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
829 	}
830 
831 	/* Swap the send and the receive. */
832 	rep.th.dest    = th->source;
833 	rep.th.source  = th->dest;
834 	rep.th.doff    = arg.iov[0].iov_len / 4;
835 	rep.th.seq     = htonl(seq);
836 	rep.th.ack_seq = htonl(ack);
837 	rep.th.ack     = 1;
838 	rep.th.window  = htons(win);
839 
840 #ifdef CONFIG_TCP_MD5SIG
841 	if (key) {
842 		int offset = (tsecr) ? 3 : 0;
843 
844 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
845 					  (TCPOPT_NOP << 16) |
846 					  (TCPOPT_MD5SIG << 8) |
847 					  TCPOLEN_MD5SIG);
848 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
849 		rep.th.doff = arg.iov[0].iov_len/4;
850 
851 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
852 				    key, ip_hdr(skb)->saddr,
853 				    ip_hdr(skb)->daddr, &rep.th);
854 	}
855 #endif
856 	arg.flags = reply_flags;
857 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
858 				      ip_hdr(skb)->saddr, /* XXX */
859 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
860 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
861 	if (oif)
862 		arg.bound_dev_if = oif;
863 	arg.tos = tos;
864 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
865 	local_bh_disable();
866 	ctl_sk = *this_cpu_ptr(net->ipv4.tcp_sk);
867 	if (sk)
868 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
869 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
870 	ip_send_unicast_reply(ctl_sk,
871 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
872 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
873 			      &arg, arg.iov[0].iov_len);
874 
875 	ctl_sk->sk_mark = 0;
876 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
877 	local_bh_enable();
878 }
879 
880 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
881 {
882 	struct inet_timewait_sock *tw = inet_twsk(sk);
883 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
884 
885 	tcp_v4_send_ack(sk, skb,
886 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
887 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
888 			tcp_time_stamp_raw() + tcptw->tw_ts_offset,
889 			tcptw->tw_ts_recent,
890 			tw->tw_bound_dev_if,
891 			tcp_twsk_md5_key(tcptw),
892 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
893 			tw->tw_tos
894 			);
895 
896 	inet_twsk_put(tw);
897 }
898 
899 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
900 				  struct request_sock *req)
901 {
902 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
903 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
904 	 */
905 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
906 					     tcp_sk(sk)->snd_nxt;
907 
908 	/* RFC 7323 2.3
909 	 * The window field (SEG.WND) of every outgoing segment, with the
910 	 * exception of <SYN> segments, MUST be right-shifted by
911 	 * Rcv.Wind.Shift bits:
912 	 */
913 	tcp_v4_send_ack(sk, skb, seq,
914 			tcp_rsk(req)->rcv_nxt,
915 			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
916 			tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
917 			req->ts_recent,
918 			0,
919 			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->saddr,
920 					  AF_INET),
921 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
922 			ip_hdr(skb)->tos);
923 }
924 
925 /*
926  *	Send a SYN-ACK after having received a SYN.
927  *	This still operates on a request_sock only, not on a big
928  *	socket.
929  */
930 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
931 			      struct flowi *fl,
932 			      struct request_sock *req,
933 			      struct tcp_fastopen_cookie *foc,
934 			      enum tcp_synack_type synack_type)
935 {
936 	const struct inet_request_sock *ireq = inet_rsk(req);
937 	struct flowi4 fl4;
938 	int err = -1;
939 	struct sk_buff *skb;
940 
941 	/* First, grab a route. */
942 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
943 		return -1;
944 
945 	skb = tcp_make_synack(sk, dst, req, foc, synack_type);
946 
947 	if (skb) {
948 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
949 
950 		rcu_read_lock();
951 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
952 					    ireq->ir_rmt_addr,
953 					    rcu_dereference(ireq->ireq_opt));
954 		rcu_read_unlock();
955 		err = net_xmit_eval(err);
956 	}
957 
958 	return err;
959 }
960 
961 /*
962  *	IPv4 request_sock destructor.
963  */
964 static void tcp_v4_reqsk_destructor(struct request_sock *req)
965 {
966 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
967 }
968 
969 #ifdef CONFIG_TCP_MD5SIG
970 /*
971  * RFC2385 MD5 checksumming requires a mapping of
972  * IP address->MD5 Key.
973  * We need to maintain these in the sk structure.
974  */
975 
976 DEFINE_STATIC_KEY_FALSE(tcp_md5_needed);
977 EXPORT_SYMBOL(tcp_md5_needed);
978 
979 /* Find the Key structure for an address.  */
980 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
981 					   const union tcp_md5_addr *addr,
982 					   int family)
983 {
984 	const struct tcp_sock *tp = tcp_sk(sk);
985 	struct tcp_md5sig_key *key;
986 	const struct tcp_md5sig_info *md5sig;
987 	__be32 mask;
988 	struct tcp_md5sig_key *best_match = NULL;
989 	bool match;
990 
991 	/* caller either holds rcu_read_lock() or socket lock */
992 	md5sig = rcu_dereference_check(tp->md5sig_info,
993 				       lockdep_sock_is_held(sk));
994 	if (!md5sig)
995 		return NULL;
996 
997 	hlist_for_each_entry_rcu(key, &md5sig->head, node) {
998 		if (key->family != family)
999 			continue;
1000 
1001 		if (family == AF_INET) {
1002 			mask = inet_make_mask(key->prefixlen);
1003 			match = (key->addr.a4.s_addr & mask) ==
1004 				(addr->a4.s_addr & mask);
1005 #if IS_ENABLED(CONFIG_IPV6)
1006 		} else if (family == AF_INET6) {
1007 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1008 						  key->prefixlen);
1009 #endif
1010 		} else {
1011 			match = false;
1012 		}
1013 
1014 		if (match && (!best_match ||
1015 			      key->prefixlen > best_match->prefixlen))
1016 			best_match = key;
1017 	}
1018 	return best_match;
1019 }
1020 EXPORT_SYMBOL(__tcp_md5_do_lookup);
1021 
1022 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1023 						      const union tcp_md5_addr *addr,
1024 						      int family, u8 prefixlen)
1025 {
1026 	const struct tcp_sock *tp = tcp_sk(sk);
1027 	struct tcp_md5sig_key *key;
1028 	unsigned int size = sizeof(struct in_addr);
1029 	const struct tcp_md5sig_info *md5sig;
1030 
1031 	/* caller either holds rcu_read_lock() or socket lock */
1032 	md5sig = rcu_dereference_check(tp->md5sig_info,
1033 				       lockdep_sock_is_held(sk));
1034 	if (!md5sig)
1035 		return NULL;
1036 #if IS_ENABLED(CONFIG_IPV6)
1037 	if (family == AF_INET6)
1038 		size = sizeof(struct in6_addr);
1039 #endif
1040 	hlist_for_each_entry_rcu(key, &md5sig->head, node) {
1041 		if (key->family != family)
1042 			continue;
1043 		if (!memcmp(&key->addr, addr, size) &&
1044 		    key->prefixlen == prefixlen)
1045 			return key;
1046 	}
1047 	return NULL;
1048 }
1049 
1050 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1051 					 const struct sock *addr_sk)
1052 {
1053 	const union tcp_md5_addr *addr;
1054 
1055 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1056 	return tcp_md5_do_lookup(sk, addr, AF_INET);
1057 }
1058 EXPORT_SYMBOL(tcp_v4_md5_lookup);
1059 
1060 /* This can be called on a newly created socket, from other files */
1061 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1062 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1063 		   gfp_t gfp)
1064 {
1065 	/* Add Key to the list */
1066 	struct tcp_md5sig_key *key;
1067 	struct tcp_sock *tp = tcp_sk(sk);
1068 	struct tcp_md5sig_info *md5sig;
1069 
1070 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen);
1071 	if (key) {
1072 		/* Pre-existing entry - just update that one. */
1073 		memcpy(key->key, newkey, newkeylen);
1074 		key->keylen = newkeylen;
1075 		return 0;
1076 	}
1077 
1078 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1079 					   lockdep_sock_is_held(sk));
1080 	if (!md5sig) {
1081 		md5sig = kmalloc(sizeof(*md5sig), gfp);
1082 		if (!md5sig)
1083 			return -ENOMEM;
1084 
1085 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1086 		INIT_HLIST_HEAD(&md5sig->head);
1087 		rcu_assign_pointer(tp->md5sig_info, md5sig);
1088 	}
1089 
1090 	key = sock_kmalloc(sk, sizeof(*key), gfp);
1091 	if (!key)
1092 		return -ENOMEM;
1093 	if (!tcp_alloc_md5sig_pool()) {
1094 		sock_kfree_s(sk, key, sizeof(*key));
1095 		return -ENOMEM;
1096 	}
1097 
1098 	memcpy(key->key, newkey, newkeylen);
1099 	key->keylen = newkeylen;
1100 	key->family = family;
1101 	key->prefixlen = prefixlen;
1102 	memcpy(&key->addr, addr,
1103 	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1104 				      sizeof(struct in_addr));
1105 	hlist_add_head_rcu(&key->node, &md5sig->head);
1106 	return 0;
1107 }
1108 EXPORT_SYMBOL(tcp_md5_do_add);
1109 
1110 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1111 		   u8 prefixlen)
1112 {
1113 	struct tcp_md5sig_key *key;
1114 
1115 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen);
1116 	if (!key)
1117 		return -ENOENT;
1118 	hlist_del_rcu(&key->node);
1119 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1120 	kfree_rcu(key, rcu);
1121 	return 0;
1122 }
1123 EXPORT_SYMBOL(tcp_md5_do_del);
1124 
1125 static void tcp_clear_md5_list(struct sock *sk)
1126 {
1127 	struct tcp_sock *tp = tcp_sk(sk);
1128 	struct tcp_md5sig_key *key;
1129 	struct hlist_node *n;
1130 	struct tcp_md5sig_info *md5sig;
1131 
1132 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1133 
1134 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1135 		hlist_del_rcu(&key->node);
1136 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1137 		kfree_rcu(key, rcu);
1138 	}
1139 }
1140 
1141 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1142 				 char __user *optval, int optlen)
1143 {
1144 	struct tcp_md5sig cmd;
1145 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1146 	u8 prefixlen = 32;
1147 
1148 	if (optlen < sizeof(cmd))
1149 		return -EINVAL;
1150 
1151 	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1152 		return -EFAULT;
1153 
1154 	if (sin->sin_family != AF_INET)
1155 		return -EINVAL;
1156 
1157 	if (optname == TCP_MD5SIG_EXT &&
1158 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1159 		prefixlen = cmd.tcpm_prefixlen;
1160 		if (prefixlen > 32)
1161 			return -EINVAL;
1162 	}
1163 
1164 	if (!cmd.tcpm_keylen)
1165 		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1166 				      AF_INET, prefixlen);
1167 
1168 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1169 		return -EINVAL;
1170 
1171 	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1172 			      AF_INET, prefixlen, cmd.tcpm_key, cmd.tcpm_keylen,
1173 			      GFP_KERNEL);
1174 }
1175 
1176 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1177 				   __be32 daddr, __be32 saddr,
1178 				   const struct tcphdr *th, int nbytes)
1179 {
1180 	struct tcp4_pseudohdr *bp;
1181 	struct scatterlist sg;
1182 	struct tcphdr *_th;
1183 
1184 	bp = hp->scratch;
1185 	bp->saddr = saddr;
1186 	bp->daddr = daddr;
1187 	bp->pad = 0;
1188 	bp->protocol = IPPROTO_TCP;
1189 	bp->len = cpu_to_be16(nbytes);
1190 
1191 	_th = (struct tcphdr *)(bp + 1);
1192 	memcpy(_th, th, sizeof(*th));
1193 	_th->check = 0;
1194 
1195 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1196 	ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1197 				sizeof(*bp) + sizeof(*th));
1198 	return crypto_ahash_update(hp->md5_req);
1199 }
1200 
1201 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1202 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1203 {
1204 	struct tcp_md5sig_pool *hp;
1205 	struct ahash_request *req;
1206 
1207 	hp = tcp_get_md5sig_pool();
1208 	if (!hp)
1209 		goto clear_hash_noput;
1210 	req = hp->md5_req;
1211 
1212 	if (crypto_ahash_init(req))
1213 		goto clear_hash;
1214 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1215 		goto clear_hash;
1216 	if (tcp_md5_hash_key(hp, key))
1217 		goto clear_hash;
1218 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1219 	if (crypto_ahash_final(req))
1220 		goto clear_hash;
1221 
1222 	tcp_put_md5sig_pool();
1223 	return 0;
1224 
1225 clear_hash:
1226 	tcp_put_md5sig_pool();
1227 clear_hash_noput:
1228 	memset(md5_hash, 0, 16);
1229 	return 1;
1230 }
1231 
1232 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1233 			const struct sock *sk,
1234 			const struct sk_buff *skb)
1235 {
1236 	struct tcp_md5sig_pool *hp;
1237 	struct ahash_request *req;
1238 	const struct tcphdr *th = tcp_hdr(skb);
1239 	__be32 saddr, daddr;
1240 
1241 	if (sk) { /* valid for establish/request sockets */
1242 		saddr = sk->sk_rcv_saddr;
1243 		daddr = sk->sk_daddr;
1244 	} else {
1245 		const struct iphdr *iph = ip_hdr(skb);
1246 		saddr = iph->saddr;
1247 		daddr = iph->daddr;
1248 	}
1249 
1250 	hp = tcp_get_md5sig_pool();
1251 	if (!hp)
1252 		goto clear_hash_noput;
1253 	req = hp->md5_req;
1254 
1255 	if (crypto_ahash_init(req))
1256 		goto clear_hash;
1257 
1258 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1259 		goto clear_hash;
1260 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1261 		goto clear_hash;
1262 	if (tcp_md5_hash_key(hp, key))
1263 		goto clear_hash;
1264 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1265 	if (crypto_ahash_final(req))
1266 		goto clear_hash;
1267 
1268 	tcp_put_md5sig_pool();
1269 	return 0;
1270 
1271 clear_hash:
1272 	tcp_put_md5sig_pool();
1273 clear_hash_noput:
1274 	memset(md5_hash, 0, 16);
1275 	return 1;
1276 }
1277 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1278 
1279 #endif
1280 
1281 /* Called with rcu_read_lock() */
1282 static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1283 				    const struct sk_buff *skb)
1284 {
1285 #ifdef CONFIG_TCP_MD5SIG
1286 	/*
1287 	 * This gets called for each TCP segment that arrives
1288 	 * so we want to be efficient.
1289 	 * We have 3 drop cases:
1290 	 * o No MD5 hash and one expected.
1291 	 * o MD5 hash and we're not expecting one.
1292 	 * o MD5 hash and its wrong.
1293 	 */
1294 	const __u8 *hash_location = NULL;
1295 	struct tcp_md5sig_key *hash_expected;
1296 	const struct iphdr *iph = ip_hdr(skb);
1297 	const struct tcphdr *th = tcp_hdr(skb);
1298 	int genhash;
1299 	unsigned char newhash[16];
1300 
1301 	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1302 					  AF_INET);
1303 	hash_location = tcp_parse_md5sig_option(th);
1304 
1305 	/* We've parsed the options - do we have a hash? */
1306 	if (!hash_expected && !hash_location)
1307 		return false;
1308 
1309 	if (hash_expected && !hash_location) {
1310 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1311 		return true;
1312 	}
1313 
1314 	if (!hash_expected && hash_location) {
1315 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1316 		return true;
1317 	}
1318 
1319 	/* Okay, so this is hash_expected and hash_location -
1320 	 * so we need to calculate the checksum.
1321 	 */
1322 	genhash = tcp_v4_md5_hash_skb(newhash,
1323 				      hash_expected,
1324 				      NULL, skb);
1325 
1326 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1327 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
1328 		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1329 				     &iph->saddr, ntohs(th->source),
1330 				     &iph->daddr, ntohs(th->dest),
1331 				     genhash ? " tcp_v4_calc_md5_hash failed"
1332 				     : "");
1333 		return true;
1334 	}
1335 	return false;
1336 #endif
1337 	return false;
1338 }
1339 
1340 static void tcp_v4_init_req(struct request_sock *req,
1341 			    const struct sock *sk_listener,
1342 			    struct sk_buff *skb)
1343 {
1344 	struct inet_request_sock *ireq = inet_rsk(req);
1345 	struct net *net = sock_net(sk_listener);
1346 
1347 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1348 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1349 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1350 }
1351 
1352 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1353 					  struct flowi *fl,
1354 					  const struct request_sock *req)
1355 {
1356 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1357 }
1358 
1359 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1360 	.family		=	PF_INET,
1361 	.obj_size	=	sizeof(struct tcp_request_sock),
1362 	.rtx_syn_ack	=	tcp_rtx_synack,
1363 	.send_ack	=	tcp_v4_reqsk_send_ack,
1364 	.destructor	=	tcp_v4_reqsk_destructor,
1365 	.send_reset	=	tcp_v4_send_reset,
1366 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1367 };
1368 
1369 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1370 	.mss_clamp	=	TCP_MSS_DEFAULT,
1371 #ifdef CONFIG_TCP_MD5SIG
1372 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1373 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1374 #endif
1375 	.init_req	=	tcp_v4_init_req,
1376 #ifdef CONFIG_SYN_COOKIES
1377 	.cookie_init_seq =	cookie_v4_init_sequence,
1378 #endif
1379 	.route_req	=	tcp_v4_route_req,
1380 	.init_seq	=	tcp_v4_init_seq,
1381 	.init_ts_off	=	tcp_v4_init_ts_off,
1382 	.send_synack	=	tcp_v4_send_synack,
1383 };
1384 
1385 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1386 {
1387 	/* Never answer to SYNs send to broadcast or multicast */
1388 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1389 		goto drop;
1390 
1391 	return tcp_conn_request(&tcp_request_sock_ops,
1392 				&tcp_request_sock_ipv4_ops, sk, skb);
1393 
1394 drop:
1395 	tcp_listendrop(sk);
1396 	return 0;
1397 }
1398 EXPORT_SYMBOL(tcp_v4_conn_request);
1399 
1400 
1401 /*
1402  * The three way handshake has completed - we got a valid synack -
1403  * now create the new socket.
1404  */
1405 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1406 				  struct request_sock *req,
1407 				  struct dst_entry *dst,
1408 				  struct request_sock *req_unhash,
1409 				  bool *own_req)
1410 {
1411 	struct inet_request_sock *ireq;
1412 	struct inet_sock *newinet;
1413 	struct tcp_sock *newtp;
1414 	struct sock *newsk;
1415 #ifdef CONFIG_TCP_MD5SIG
1416 	struct tcp_md5sig_key *key;
1417 #endif
1418 	struct ip_options_rcu *inet_opt;
1419 
1420 	if (sk_acceptq_is_full(sk))
1421 		goto exit_overflow;
1422 
1423 	newsk = tcp_create_openreq_child(sk, req, skb);
1424 	if (!newsk)
1425 		goto exit_nonewsk;
1426 
1427 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1428 	inet_sk_rx_dst_set(newsk, skb);
1429 
1430 	newtp		      = tcp_sk(newsk);
1431 	newinet		      = inet_sk(newsk);
1432 	ireq		      = inet_rsk(req);
1433 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1434 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1435 	newsk->sk_bound_dev_if = ireq->ir_iif;
1436 	newinet->inet_saddr   = ireq->ir_loc_addr;
1437 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1438 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1439 	newinet->mc_index     = inet_iif(skb);
1440 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1441 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1442 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1443 	if (inet_opt)
1444 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1445 	newinet->inet_id = newtp->write_seq ^ jiffies;
1446 
1447 	if (!dst) {
1448 		dst = inet_csk_route_child_sock(sk, newsk, req);
1449 		if (!dst)
1450 			goto put_and_exit;
1451 	} else {
1452 		/* syncookie case : see end of cookie_v4_check() */
1453 	}
1454 	sk_setup_caps(newsk, dst);
1455 
1456 	tcp_ca_openreq_child(newsk, dst);
1457 
1458 	tcp_sync_mss(newsk, dst_mtu(dst));
1459 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1460 
1461 	tcp_initialize_rcv_mss(newsk);
1462 
1463 #ifdef CONFIG_TCP_MD5SIG
1464 	/* Copy over the MD5 key from the original socket */
1465 	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1466 				AF_INET);
1467 	if (key) {
1468 		/*
1469 		 * We're using one, so create a matching key
1470 		 * on the newsk structure. If we fail to get
1471 		 * memory, then we end up not copying the key
1472 		 * across. Shucks.
1473 		 */
1474 		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1475 			       AF_INET, 32, key->key, key->keylen, GFP_ATOMIC);
1476 		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1477 	}
1478 #endif
1479 
1480 	if (__inet_inherit_port(sk, newsk) < 0)
1481 		goto put_and_exit;
1482 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1483 	if (likely(*own_req)) {
1484 		tcp_move_syn(newtp, req);
1485 		ireq->ireq_opt = NULL;
1486 	} else {
1487 		newinet->inet_opt = NULL;
1488 	}
1489 	return newsk;
1490 
1491 exit_overflow:
1492 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1493 exit_nonewsk:
1494 	dst_release(dst);
1495 exit:
1496 	tcp_listendrop(sk);
1497 	return NULL;
1498 put_and_exit:
1499 	newinet->inet_opt = NULL;
1500 	inet_csk_prepare_forced_close(newsk);
1501 	tcp_done(newsk);
1502 	goto exit;
1503 }
1504 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1505 
1506 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1507 {
1508 #ifdef CONFIG_SYN_COOKIES
1509 	const struct tcphdr *th = tcp_hdr(skb);
1510 
1511 	if (!th->syn)
1512 		sk = cookie_v4_check(sk, skb);
1513 #endif
1514 	return sk;
1515 }
1516 
1517 /* The socket must have it's spinlock held when we get
1518  * here, unless it is a TCP_LISTEN socket.
1519  *
1520  * We have a potential double-lock case here, so even when
1521  * doing backlog processing we use the BH locking scheme.
1522  * This is because we cannot sleep with the original spinlock
1523  * held.
1524  */
1525 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1526 {
1527 	struct sock *rsk;
1528 
1529 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1530 		struct dst_entry *dst = sk->sk_rx_dst;
1531 
1532 		sock_rps_save_rxhash(sk, skb);
1533 		sk_mark_napi_id(sk, skb);
1534 		if (dst) {
1535 			if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1536 			    !dst->ops->check(dst, 0)) {
1537 				dst_release(dst);
1538 				sk->sk_rx_dst = NULL;
1539 			}
1540 		}
1541 		tcp_rcv_established(sk, skb);
1542 		return 0;
1543 	}
1544 
1545 	if (tcp_checksum_complete(skb))
1546 		goto csum_err;
1547 
1548 	if (sk->sk_state == TCP_LISTEN) {
1549 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1550 
1551 		if (!nsk)
1552 			goto discard;
1553 		if (nsk != sk) {
1554 			if (tcp_child_process(sk, nsk, skb)) {
1555 				rsk = nsk;
1556 				goto reset;
1557 			}
1558 			return 0;
1559 		}
1560 	} else
1561 		sock_rps_save_rxhash(sk, skb);
1562 
1563 	if (tcp_rcv_state_process(sk, skb)) {
1564 		rsk = sk;
1565 		goto reset;
1566 	}
1567 	return 0;
1568 
1569 reset:
1570 	tcp_v4_send_reset(rsk, skb);
1571 discard:
1572 	kfree_skb(skb);
1573 	/* Be careful here. If this function gets more complicated and
1574 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1575 	 * might be destroyed here. This current version compiles correctly,
1576 	 * but you have been warned.
1577 	 */
1578 	return 0;
1579 
1580 csum_err:
1581 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1582 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1583 	goto discard;
1584 }
1585 EXPORT_SYMBOL(tcp_v4_do_rcv);
1586 
1587 int tcp_v4_early_demux(struct sk_buff *skb)
1588 {
1589 	const struct iphdr *iph;
1590 	const struct tcphdr *th;
1591 	struct sock *sk;
1592 
1593 	if (skb->pkt_type != PACKET_HOST)
1594 		return 0;
1595 
1596 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1597 		return 0;
1598 
1599 	iph = ip_hdr(skb);
1600 	th = tcp_hdr(skb);
1601 
1602 	if (th->doff < sizeof(struct tcphdr) / 4)
1603 		return 0;
1604 
1605 	sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1606 				       iph->saddr, th->source,
1607 				       iph->daddr, ntohs(th->dest),
1608 				       skb->skb_iif, inet_sdif(skb));
1609 	if (sk) {
1610 		skb->sk = sk;
1611 		skb->destructor = sock_edemux;
1612 		if (sk_fullsock(sk)) {
1613 			struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1614 
1615 			if (dst)
1616 				dst = dst_check(dst, 0);
1617 			if (dst &&
1618 			    inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1619 				skb_dst_set_noref(skb, dst);
1620 		}
1621 	}
1622 	return 0;
1623 }
1624 
1625 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb)
1626 {
1627 	u32 limit = sk->sk_rcvbuf + sk->sk_sndbuf;
1628 	struct skb_shared_info *shinfo;
1629 	const struct tcphdr *th;
1630 	struct tcphdr *thtail;
1631 	struct sk_buff *tail;
1632 	unsigned int hdrlen;
1633 	bool fragstolen;
1634 	u32 gso_segs;
1635 	int delta;
1636 
1637 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1638 	 * we can fix skb->truesize to its real value to avoid future drops.
1639 	 * This is valid because skb is not yet charged to the socket.
1640 	 * It has been noticed pure SACK packets were sometimes dropped
1641 	 * (if cooked by drivers without copybreak feature).
1642 	 */
1643 	skb_condense(skb);
1644 
1645 	skb_dst_drop(skb);
1646 
1647 	if (unlikely(tcp_checksum_complete(skb))) {
1648 		bh_unlock_sock(sk);
1649 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1650 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1651 		return true;
1652 	}
1653 
1654 	/* Attempt coalescing to last skb in backlog, even if we are
1655 	 * above the limits.
1656 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1657 	 */
1658 	th = (const struct tcphdr *)skb->data;
1659 	hdrlen = th->doff * 4;
1660 	shinfo = skb_shinfo(skb);
1661 
1662 	if (!shinfo->gso_size)
1663 		shinfo->gso_size = skb->len - hdrlen;
1664 
1665 	if (!shinfo->gso_segs)
1666 		shinfo->gso_segs = 1;
1667 
1668 	tail = sk->sk_backlog.tail;
1669 	if (!tail)
1670 		goto no_coalesce;
1671 	thtail = (struct tcphdr *)tail->data;
1672 
1673 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1674 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1675 	    ((TCP_SKB_CB(tail)->tcp_flags |
1676 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_URG) ||
1677 	    ((TCP_SKB_CB(tail)->tcp_flags ^
1678 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1679 #ifdef CONFIG_TLS_DEVICE
1680 	    tail->decrypted != skb->decrypted ||
1681 #endif
1682 	    thtail->doff != th->doff ||
1683 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1684 		goto no_coalesce;
1685 
1686 	__skb_pull(skb, hdrlen);
1687 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1688 		thtail->window = th->window;
1689 
1690 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1691 
1692 		if (after(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))
1693 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1694 
1695 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1696 
1697 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1698 			TCP_SKB_CB(tail)->has_rxtstamp = true;
1699 			tail->tstamp = skb->tstamp;
1700 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1701 		}
1702 
1703 		/* Not as strict as GRO. We only need to carry mss max value */
1704 		skb_shinfo(tail)->gso_size = max(shinfo->gso_size,
1705 						 skb_shinfo(tail)->gso_size);
1706 
1707 		gso_segs = skb_shinfo(tail)->gso_segs + shinfo->gso_segs;
1708 		skb_shinfo(tail)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
1709 
1710 		sk->sk_backlog.len += delta;
1711 		__NET_INC_STATS(sock_net(sk),
1712 				LINUX_MIB_TCPBACKLOGCOALESCE);
1713 		kfree_skb_partial(skb, fragstolen);
1714 		return false;
1715 	}
1716 	__skb_push(skb, hdrlen);
1717 
1718 no_coalesce:
1719 	/* Only socket owner can try to collapse/prune rx queues
1720 	 * to reduce memory overhead, so add a little headroom here.
1721 	 * Few sockets backlog are possibly concurrently non empty.
1722 	 */
1723 	limit += 64*1024;
1724 
1725 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
1726 		bh_unlock_sock(sk);
1727 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1728 		return true;
1729 	}
1730 	return false;
1731 }
1732 EXPORT_SYMBOL(tcp_add_backlog);
1733 
1734 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1735 {
1736 	struct tcphdr *th = (struct tcphdr *)skb->data;
1737 
1738 	return sk_filter_trim_cap(sk, skb, th->doff * 4);
1739 }
1740 EXPORT_SYMBOL(tcp_filter);
1741 
1742 static void tcp_v4_restore_cb(struct sk_buff *skb)
1743 {
1744 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1745 		sizeof(struct inet_skb_parm));
1746 }
1747 
1748 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1749 			   const struct tcphdr *th)
1750 {
1751 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1752 	 * barrier() makes sure compiler wont play fool^Waliasing games.
1753 	 */
1754 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1755 		sizeof(struct inet_skb_parm));
1756 	barrier();
1757 
1758 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1759 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1760 				    skb->len - th->doff * 4);
1761 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1762 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1763 	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1764 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1765 	TCP_SKB_CB(skb)->sacked	 = 0;
1766 	TCP_SKB_CB(skb)->has_rxtstamp =
1767 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1768 }
1769 
1770 /*
1771  *	From tcp_input.c
1772  */
1773 
1774 int tcp_v4_rcv(struct sk_buff *skb)
1775 {
1776 	struct net *net = dev_net(skb->dev);
1777 	int sdif = inet_sdif(skb);
1778 	const struct iphdr *iph;
1779 	const struct tcphdr *th;
1780 	bool refcounted;
1781 	struct sock *sk;
1782 	int ret;
1783 
1784 	if (skb->pkt_type != PACKET_HOST)
1785 		goto discard_it;
1786 
1787 	/* Count it even if it's bad */
1788 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
1789 
1790 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1791 		goto discard_it;
1792 
1793 	th = (const struct tcphdr *)skb->data;
1794 
1795 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
1796 		goto bad_packet;
1797 	if (!pskb_may_pull(skb, th->doff * 4))
1798 		goto discard_it;
1799 
1800 	/* An explanation is required here, I think.
1801 	 * Packet length and doff are validated by header prediction,
1802 	 * provided case of th->doff==0 is eliminated.
1803 	 * So, we defer the checks. */
1804 
1805 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1806 		goto csum_error;
1807 
1808 	th = (const struct tcphdr *)skb->data;
1809 	iph = ip_hdr(skb);
1810 lookup:
1811 	sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1812 			       th->dest, sdif, &refcounted);
1813 	if (!sk)
1814 		goto no_tcp_socket;
1815 
1816 process:
1817 	if (sk->sk_state == TCP_TIME_WAIT)
1818 		goto do_time_wait;
1819 
1820 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
1821 		struct request_sock *req = inet_reqsk(sk);
1822 		bool req_stolen = false;
1823 		struct sock *nsk;
1824 
1825 		sk = req->rsk_listener;
1826 		if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1827 			sk_drops_add(sk, skb);
1828 			reqsk_put(req);
1829 			goto discard_it;
1830 		}
1831 		if (tcp_checksum_complete(skb)) {
1832 			reqsk_put(req);
1833 			goto csum_error;
1834 		}
1835 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
1836 			inet_csk_reqsk_queue_drop_and_put(sk, req);
1837 			goto lookup;
1838 		}
1839 		/* We own a reference on the listener, increase it again
1840 		 * as we might lose it too soon.
1841 		 */
1842 		sock_hold(sk);
1843 		refcounted = true;
1844 		nsk = NULL;
1845 		if (!tcp_filter(sk, skb)) {
1846 			th = (const struct tcphdr *)skb->data;
1847 			iph = ip_hdr(skb);
1848 			tcp_v4_fill_cb(skb, iph, th);
1849 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
1850 		}
1851 		if (!nsk) {
1852 			reqsk_put(req);
1853 			if (req_stolen) {
1854 				/* Another cpu got exclusive access to req
1855 				 * and created a full blown socket.
1856 				 * Try to feed this packet to this socket
1857 				 * instead of discarding it.
1858 				 */
1859 				tcp_v4_restore_cb(skb);
1860 				sock_put(sk);
1861 				goto lookup;
1862 			}
1863 			goto discard_and_relse;
1864 		}
1865 		if (nsk == sk) {
1866 			reqsk_put(req);
1867 			tcp_v4_restore_cb(skb);
1868 		} else if (tcp_child_process(sk, nsk, skb)) {
1869 			tcp_v4_send_reset(nsk, skb);
1870 			goto discard_and_relse;
1871 		} else {
1872 			sock_put(sk);
1873 			return 0;
1874 		}
1875 	}
1876 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1877 		__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
1878 		goto discard_and_relse;
1879 	}
1880 
1881 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1882 		goto discard_and_relse;
1883 
1884 	if (tcp_v4_inbound_md5_hash(sk, skb))
1885 		goto discard_and_relse;
1886 
1887 	nf_reset(skb);
1888 
1889 	if (tcp_filter(sk, skb))
1890 		goto discard_and_relse;
1891 	th = (const struct tcphdr *)skb->data;
1892 	iph = ip_hdr(skb);
1893 	tcp_v4_fill_cb(skb, iph, th);
1894 
1895 	skb->dev = NULL;
1896 
1897 	if (sk->sk_state == TCP_LISTEN) {
1898 		ret = tcp_v4_do_rcv(sk, skb);
1899 		goto put_and_return;
1900 	}
1901 
1902 	sk_incoming_cpu_update(sk);
1903 
1904 	bh_lock_sock_nested(sk);
1905 	tcp_segs_in(tcp_sk(sk), skb);
1906 	ret = 0;
1907 	if (!sock_owned_by_user(sk)) {
1908 		ret = tcp_v4_do_rcv(sk, skb);
1909 	} else if (tcp_add_backlog(sk, skb)) {
1910 		goto discard_and_relse;
1911 	}
1912 	bh_unlock_sock(sk);
1913 
1914 put_and_return:
1915 	if (refcounted)
1916 		sock_put(sk);
1917 
1918 	return ret;
1919 
1920 no_tcp_socket:
1921 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1922 		goto discard_it;
1923 
1924 	tcp_v4_fill_cb(skb, iph, th);
1925 
1926 	if (tcp_checksum_complete(skb)) {
1927 csum_error:
1928 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
1929 bad_packet:
1930 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
1931 	} else {
1932 		tcp_v4_send_reset(NULL, skb);
1933 	}
1934 
1935 discard_it:
1936 	/* Discard frame. */
1937 	kfree_skb(skb);
1938 	return 0;
1939 
1940 discard_and_relse:
1941 	sk_drops_add(sk, skb);
1942 	if (refcounted)
1943 		sock_put(sk);
1944 	goto discard_it;
1945 
1946 do_time_wait:
1947 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1948 		inet_twsk_put(inet_twsk(sk));
1949 		goto discard_it;
1950 	}
1951 
1952 	tcp_v4_fill_cb(skb, iph, th);
1953 
1954 	if (tcp_checksum_complete(skb)) {
1955 		inet_twsk_put(inet_twsk(sk));
1956 		goto csum_error;
1957 	}
1958 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1959 	case TCP_TW_SYN: {
1960 		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1961 							&tcp_hashinfo, skb,
1962 							__tcp_hdrlen(th),
1963 							iph->saddr, th->source,
1964 							iph->daddr, th->dest,
1965 							inet_iif(skb),
1966 							sdif);
1967 		if (sk2) {
1968 			inet_twsk_deschedule_put(inet_twsk(sk));
1969 			sk = sk2;
1970 			tcp_v4_restore_cb(skb);
1971 			refcounted = false;
1972 			goto process;
1973 		}
1974 	}
1975 		/* to ACK */
1976 		/* fall through */
1977 	case TCP_TW_ACK:
1978 		tcp_v4_timewait_ack(sk, skb);
1979 		break;
1980 	case TCP_TW_RST:
1981 		tcp_v4_send_reset(sk, skb);
1982 		inet_twsk_deschedule_put(inet_twsk(sk));
1983 		goto discard_it;
1984 	case TCP_TW_SUCCESS:;
1985 	}
1986 	goto discard_it;
1987 }
1988 
1989 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1990 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1991 	.twsk_unique	= tcp_twsk_unique,
1992 	.twsk_destructor= tcp_twsk_destructor,
1993 };
1994 
1995 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1996 {
1997 	struct dst_entry *dst = skb_dst(skb);
1998 
1999 	if (dst && dst_hold_safe(dst)) {
2000 		sk->sk_rx_dst = dst;
2001 		inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2002 	}
2003 }
2004 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2005 
2006 const struct inet_connection_sock_af_ops ipv4_specific = {
2007 	.queue_xmit	   = ip_queue_xmit,
2008 	.send_check	   = tcp_v4_send_check,
2009 	.rebuild_header	   = inet_sk_rebuild_header,
2010 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2011 	.conn_request	   = tcp_v4_conn_request,
2012 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2013 	.net_header_len	   = sizeof(struct iphdr),
2014 	.setsockopt	   = ip_setsockopt,
2015 	.getsockopt	   = ip_getsockopt,
2016 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2017 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2018 #ifdef CONFIG_COMPAT
2019 	.compat_setsockopt = compat_ip_setsockopt,
2020 	.compat_getsockopt = compat_ip_getsockopt,
2021 #endif
2022 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2023 };
2024 EXPORT_SYMBOL(ipv4_specific);
2025 
2026 #ifdef CONFIG_TCP_MD5SIG
2027 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2028 	.md5_lookup		= tcp_v4_md5_lookup,
2029 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2030 	.md5_parse		= tcp_v4_parse_md5_keys,
2031 };
2032 #endif
2033 
2034 /* NOTE: A lot of things set to zero explicitly by call to
2035  *       sk_alloc() so need not be done here.
2036  */
2037 static int tcp_v4_init_sock(struct sock *sk)
2038 {
2039 	struct inet_connection_sock *icsk = inet_csk(sk);
2040 
2041 	tcp_init_sock(sk);
2042 
2043 	icsk->icsk_af_ops = &ipv4_specific;
2044 
2045 #ifdef CONFIG_TCP_MD5SIG
2046 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2047 #endif
2048 
2049 	return 0;
2050 }
2051 
2052 void tcp_v4_destroy_sock(struct sock *sk)
2053 {
2054 	struct tcp_sock *tp = tcp_sk(sk);
2055 
2056 	trace_tcp_destroy_sock(sk);
2057 
2058 	tcp_clear_xmit_timers(sk);
2059 
2060 	tcp_cleanup_congestion_control(sk);
2061 
2062 	tcp_cleanup_ulp(sk);
2063 
2064 	/* Cleanup up the write buffer. */
2065 	tcp_write_queue_purge(sk);
2066 
2067 	/* Check if we want to disable active TFO */
2068 	tcp_fastopen_active_disable_ofo_check(sk);
2069 
2070 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2071 	skb_rbtree_purge(&tp->out_of_order_queue);
2072 
2073 #ifdef CONFIG_TCP_MD5SIG
2074 	/* Clean up the MD5 key list, if any */
2075 	if (tp->md5sig_info) {
2076 		tcp_clear_md5_list(sk);
2077 		kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2078 		tp->md5sig_info = NULL;
2079 	}
2080 #endif
2081 
2082 	/* Clean up a referenced TCP bind bucket. */
2083 	if (inet_csk(sk)->icsk_bind_hash)
2084 		inet_put_port(sk);
2085 
2086 	BUG_ON(tp->fastopen_rsk);
2087 
2088 	/* If socket is aborted during connect operation */
2089 	tcp_free_fastopen_req(tp);
2090 	tcp_fastopen_destroy_cipher(sk);
2091 	tcp_saved_syn_free(tp);
2092 
2093 	sk_sockets_allocated_dec(sk);
2094 }
2095 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2096 
2097 #ifdef CONFIG_PROC_FS
2098 /* Proc filesystem TCP sock list dumping. */
2099 
2100 /*
2101  * Get next listener socket follow cur.  If cur is NULL, get first socket
2102  * starting from bucket given in st->bucket; when st->bucket is zero the
2103  * very first socket in the hash table is returned.
2104  */
2105 static void *listening_get_next(struct seq_file *seq, void *cur)
2106 {
2107 	struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2108 	struct tcp_iter_state *st = seq->private;
2109 	struct net *net = seq_file_net(seq);
2110 	struct inet_listen_hashbucket *ilb;
2111 	struct sock *sk = cur;
2112 
2113 	if (!sk) {
2114 get_head:
2115 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2116 		spin_lock(&ilb->lock);
2117 		sk = sk_head(&ilb->head);
2118 		st->offset = 0;
2119 		goto get_sk;
2120 	}
2121 	ilb = &tcp_hashinfo.listening_hash[st->bucket];
2122 	++st->num;
2123 	++st->offset;
2124 
2125 	sk = sk_next(sk);
2126 get_sk:
2127 	sk_for_each_from(sk) {
2128 		if (!net_eq(sock_net(sk), net))
2129 			continue;
2130 		if (sk->sk_family == afinfo->family)
2131 			return sk;
2132 	}
2133 	spin_unlock(&ilb->lock);
2134 	st->offset = 0;
2135 	if (++st->bucket < INET_LHTABLE_SIZE)
2136 		goto get_head;
2137 	return NULL;
2138 }
2139 
2140 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2141 {
2142 	struct tcp_iter_state *st = seq->private;
2143 	void *rc;
2144 
2145 	st->bucket = 0;
2146 	st->offset = 0;
2147 	rc = listening_get_next(seq, NULL);
2148 
2149 	while (rc && *pos) {
2150 		rc = listening_get_next(seq, rc);
2151 		--*pos;
2152 	}
2153 	return rc;
2154 }
2155 
2156 static inline bool empty_bucket(const struct tcp_iter_state *st)
2157 {
2158 	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2159 }
2160 
2161 /*
2162  * Get first established socket starting from bucket given in st->bucket.
2163  * If st->bucket is zero, the very first socket in the hash is returned.
2164  */
2165 static void *established_get_first(struct seq_file *seq)
2166 {
2167 	struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2168 	struct tcp_iter_state *st = seq->private;
2169 	struct net *net = seq_file_net(seq);
2170 	void *rc = NULL;
2171 
2172 	st->offset = 0;
2173 	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2174 		struct sock *sk;
2175 		struct hlist_nulls_node *node;
2176 		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2177 
2178 		/* Lockless fast path for the common case of empty buckets */
2179 		if (empty_bucket(st))
2180 			continue;
2181 
2182 		spin_lock_bh(lock);
2183 		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2184 			if (sk->sk_family != afinfo->family ||
2185 			    !net_eq(sock_net(sk), net)) {
2186 				continue;
2187 			}
2188 			rc = sk;
2189 			goto out;
2190 		}
2191 		spin_unlock_bh(lock);
2192 	}
2193 out:
2194 	return rc;
2195 }
2196 
2197 static void *established_get_next(struct seq_file *seq, void *cur)
2198 {
2199 	struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2200 	struct sock *sk = cur;
2201 	struct hlist_nulls_node *node;
2202 	struct tcp_iter_state *st = seq->private;
2203 	struct net *net = seq_file_net(seq);
2204 
2205 	++st->num;
2206 	++st->offset;
2207 
2208 	sk = sk_nulls_next(sk);
2209 
2210 	sk_nulls_for_each_from(sk, node) {
2211 		if (sk->sk_family == afinfo->family &&
2212 		    net_eq(sock_net(sk), net))
2213 			return sk;
2214 	}
2215 
2216 	spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2217 	++st->bucket;
2218 	return established_get_first(seq);
2219 }
2220 
2221 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2222 {
2223 	struct tcp_iter_state *st = seq->private;
2224 	void *rc;
2225 
2226 	st->bucket = 0;
2227 	rc = established_get_first(seq);
2228 
2229 	while (rc && pos) {
2230 		rc = established_get_next(seq, rc);
2231 		--pos;
2232 	}
2233 	return rc;
2234 }
2235 
2236 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2237 {
2238 	void *rc;
2239 	struct tcp_iter_state *st = seq->private;
2240 
2241 	st->state = TCP_SEQ_STATE_LISTENING;
2242 	rc	  = listening_get_idx(seq, &pos);
2243 
2244 	if (!rc) {
2245 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2246 		rc	  = established_get_idx(seq, pos);
2247 	}
2248 
2249 	return rc;
2250 }
2251 
2252 static void *tcp_seek_last_pos(struct seq_file *seq)
2253 {
2254 	struct tcp_iter_state *st = seq->private;
2255 	int offset = st->offset;
2256 	int orig_num = st->num;
2257 	void *rc = NULL;
2258 
2259 	switch (st->state) {
2260 	case TCP_SEQ_STATE_LISTENING:
2261 		if (st->bucket >= INET_LHTABLE_SIZE)
2262 			break;
2263 		st->state = TCP_SEQ_STATE_LISTENING;
2264 		rc = listening_get_next(seq, NULL);
2265 		while (offset-- && rc)
2266 			rc = listening_get_next(seq, rc);
2267 		if (rc)
2268 			break;
2269 		st->bucket = 0;
2270 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2271 		/* Fallthrough */
2272 	case TCP_SEQ_STATE_ESTABLISHED:
2273 		if (st->bucket > tcp_hashinfo.ehash_mask)
2274 			break;
2275 		rc = established_get_first(seq);
2276 		while (offset-- && rc)
2277 			rc = established_get_next(seq, rc);
2278 	}
2279 
2280 	st->num = orig_num;
2281 
2282 	return rc;
2283 }
2284 
2285 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2286 {
2287 	struct tcp_iter_state *st = seq->private;
2288 	void *rc;
2289 
2290 	if (*pos && *pos == st->last_pos) {
2291 		rc = tcp_seek_last_pos(seq);
2292 		if (rc)
2293 			goto out;
2294 	}
2295 
2296 	st->state = TCP_SEQ_STATE_LISTENING;
2297 	st->num = 0;
2298 	st->bucket = 0;
2299 	st->offset = 0;
2300 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2301 
2302 out:
2303 	st->last_pos = *pos;
2304 	return rc;
2305 }
2306 EXPORT_SYMBOL(tcp_seq_start);
2307 
2308 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2309 {
2310 	struct tcp_iter_state *st = seq->private;
2311 	void *rc = NULL;
2312 
2313 	if (v == SEQ_START_TOKEN) {
2314 		rc = tcp_get_idx(seq, 0);
2315 		goto out;
2316 	}
2317 
2318 	switch (st->state) {
2319 	case TCP_SEQ_STATE_LISTENING:
2320 		rc = listening_get_next(seq, v);
2321 		if (!rc) {
2322 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2323 			st->bucket = 0;
2324 			st->offset = 0;
2325 			rc	  = established_get_first(seq);
2326 		}
2327 		break;
2328 	case TCP_SEQ_STATE_ESTABLISHED:
2329 		rc = established_get_next(seq, v);
2330 		break;
2331 	}
2332 out:
2333 	++*pos;
2334 	st->last_pos = *pos;
2335 	return rc;
2336 }
2337 EXPORT_SYMBOL(tcp_seq_next);
2338 
2339 void tcp_seq_stop(struct seq_file *seq, void *v)
2340 {
2341 	struct tcp_iter_state *st = seq->private;
2342 
2343 	switch (st->state) {
2344 	case TCP_SEQ_STATE_LISTENING:
2345 		if (v != SEQ_START_TOKEN)
2346 			spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock);
2347 		break;
2348 	case TCP_SEQ_STATE_ESTABLISHED:
2349 		if (v)
2350 			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2351 		break;
2352 	}
2353 }
2354 EXPORT_SYMBOL(tcp_seq_stop);
2355 
2356 static void get_openreq4(const struct request_sock *req,
2357 			 struct seq_file *f, int i)
2358 {
2359 	const struct inet_request_sock *ireq = inet_rsk(req);
2360 	long delta = req->rsk_timer.expires - jiffies;
2361 
2362 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2363 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2364 		i,
2365 		ireq->ir_loc_addr,
2366 		ireq->ir_num,
2367 		ireq->ir_rmt_addr,
2368 		ntohs(ireq->ir_rmt_port),
2369 		TCP_SYN_RECV,
2370 		0, 0, /* could print option size, but that is af dependent. */
2371 		1,    /* timers active (only the expire timer) */
2372 		jiffies_delta_to_clock_t(delta),
2373 		req->num_timeout,
2374 		from_kuid_munged(seq_user_ns(f),
2375 				 sock_i_uid(req->rsk_listener)),
2376 		0,  /* non standard timer */
2377 		0, /* open_requests have no inode */
2378 		0,
2379 		req);
2380 }
2381 
2382 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2383 {
2384 	int timer_active;
2385 	unsigned long timer_expires;
2386 	const struct tcp_sock *tp = tcp_sk(sk);
2387 	const struct inet_connection_sock *icsk = inet_csk(sk);
2388 	const struct inet_sock *inet = inet_sk(sk);
2389 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2390 	__be32 dest = inet->inet_daddr;
2391 	__be32 src = inet->inet_rcv_saddr;
2392 	__u16 destp = ntohs(inet->inet_dport);
2393 	__u16 srcp = ntohs(inet->inet_sport);
2394 	int rx_queue;
2395 	int state;
2396 
2397 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2398 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2399 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2400 		timer_active	= 1;
2401 		timer_expires	= icsk->icsk_timeout;
2402 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2403 		timer_active	= 4;
2404 		timer_expires	= icsk->icsk_timeout;
2405 	} else if (timer_pending(&sk->sk_timer)) {
2406 		timer_active	= 2;
2407 		timer_expires	= sk->sk_timer.expires;
2408 	} else {
2409 		timer_active	= 0;
2410 		timer_expires = jiffies;
2411 	}
2412 
2413 	state = inet_sk_state_load(sk);
2414 	if (state == TCP_LISTEN)
2415 		rx_queue = sk->sk_ack_backlog;
2416 	else
2417 		/* Because we don't lock the socket,
2418 		 * we might find a transient negative value.
2419 		 */
2420 		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2421 
2422 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2423 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2424 		i, src, srcp, dest, destp, state,
2425 		tp->write_seq - tp->snd_una,
2426 		rx_queue,
2427 		timer_active,
2428 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2429 		icsk->icsk_retransmits,
2430 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2431 		icsk->icsk_probes_out,
2432 		sock_i_ino(sk),
2433 		refcount_read(&sk->sk_refcnt), sk,
2434 		jiffies_to_clock_t(icsk->icsk_rto),
2435 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2436 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2437 		tp->snd_cwnd,
2438 		state == TCP_LISTEN ?
2439 		    fastopenq->max_qlen :
2440 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2441 }
2442 
2443 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2444 			       struct seq_file *f, int i)
2445 {
2446 	long delta = tw->tw_timer.expires - jiffies;
2447 	__be32 dest, src;
2448 	__u16 destp, srcp;
2449 
2450 	dest  = tw->tw_daddr;
2451 	src   = tw->tw_rcv_saddr;
2452 	destp = ntohs(tw->tw_dport);
2453 	srcp  = ntohs(tw->tw_sport);
2454 
2455 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2456 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2457 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2458 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2459 		refcount_read(&tw->tw_refcnt), tw);
2460 }
2461 
2462 #define TMPSZ 150
2463 
2464 static int tcp4_seq_show(struct seq_file *seq, void *v)
2465 {
2466 	struct tcp_iter_state *st;
2467 	struct sock *sk = v;
2468 
2469 	seq_setwidth(seq, TMPSZ - 1);
2470 	if (v == SEQ_START_TOKEN) {
2471 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2472 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2473 			   "inode");
2474 		goto out;
2475 	}
2476 	st = seq->private;
2477 
2478 	if (sk->sk_state == TCP_TIME_WAIT)
2479 		get_timewait4_sock(v, seq, st->num);
2480 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2481 		get_openreq4(v, seq, st->num);
2482 	else
2483 		get_tcp4_sock(v, seq, st->num);
2484 out:
2485 	seq_pad(seq, '\n');
2486 	return 0;
2487 }
2488 
2489 static const struct seq_operations tcp4_seq_ops = {
2490 	.show		= tcp4_seq_show,
2491 	.start		= tcp_seq_start,
2492 	.next		= tcp_seq_next,
2493 	.stop		= tcp_seq_stop,
2494 };
2495 
2496 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2497 	.family		= AF_INET,
2498 };
2499 
2500 static int __net_init tcp4_proc_init_net(struct net *net)
2501 {
2502 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
2503 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
2504 		return -ENOMEM;
2505 	return 0;
2506 }
2507 
2508 static void __net_exit tcp4_proc_exit_net(struct net *net)
2509 {
2510 	remove_proc_entry("tcp", net->proc_net);
2511 }
2512 
2513 static struct pernet_operations tcp4_net_ops = {
2514 	.init = tcp4_proc_init_net,
2515 	.exit = tcp4_proc_exit_net,
2516 };
2517 
2518 int __init tcp4_proc_init(void)
2519 {
2520 	return register_pernet_subsys(&tcp4_net_ops);
2521 }
2522 
2523 void tcp4_proc_exit(void)
2524 {
2525 	unregister_pernet_subsys(&tcp4_net_ops);
2526 }
2527 #endif /* CONFIG_PROC_FS */
2528 
2529 struct proto tcp_prot = {
2530 	.name			= "TCP",
2531 	.owner			= THIS_MODULE,
2532 	.close			= tcp_close,
2533 	.pre_connect		= tcp_v4_pre_connect,
2534 	.connect		= tcp_v4_connect,
2535 	.disconnect		= tcp_disconnect,
2536 	.accept			= inet_csk_accept,
2537 	.ioctl			= tcp_ioctl,
2538 	.init			= tcp_v4_init_sock,
2539 	.destroy		= tcp_v4_destroy_sock,
2540 	.shutdown		= tcp_shutdown,
2541 	.setsockopt		= tcp_setsockopt,
2542 	.getsockopt		= tcp_getsockopt,
2543 	.keepalive		= tcp_set_keepalive,
2544 	.recvmsg		= tcp_recvmsg,
2545 	.sendmsg		= tcp_sendmsg,
2546 	.sendpage		= tcp_sendpage,
2547 	.backlog_rcv		= tcp_v4_do_rcv,
2548 	.release_cb		= tcp_release_cb,
2549 	.hash			= inet_hash,
2550 	.unhash			= inet_unhash,
2551 	.get_port		= inet_csk_get_port,
2552 	.enter_memory_pressure	= tcp_enter_memory_pressure,
2553 	.leave_memory_pressure	= tcp_leave_memory_pressure,
2554 	.stream_memory_free	= tcp_stream_memory_free,
2555 	.sockets_allocated	= &tcp_sockets_allocated,
2556 	.orphan_count		= &tcp_orphan_count,
2557 	.memory_allocated	= &tcp_memory_allocated,
2558 	.memory_pressure	= &tcp_memory_pressure,
2559 	.sysctl_mem		= sysctl_tcp_mem,
2560 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
2561 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
2562 	.max_header		= MAX_TCP_HEADER,
2563 	.obj_size		= sizeof(struct tcp_sock),
2564 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
2565 	.twsk_prot		= &tcp_timewait_sock_ops,
2566 	.rsk_prot		= &tcp_request_sock_ops,
2567 	.h.hashinfo		= &tcp_hashinfo,
2568 	.no_autobind		= true,
2569 #ifdef CONFIG_COMPAT
2570 	.compat_setsockopt	= compat_tcp_setsockopt,
2571 	.compat_getsockopt	= compat_tcp_getsockopt,
2572 #endif
2573 	.diag_destroy		= tcp_abort,
2574 };
2575 EXPORT_SYMBOL(tcp_prot);
2576 
2577 static void __net_exit tcp_sk_exit(struct net *net)
2578 {
2579 	int cpu;
2580 
2581 	module_put(net->ipv4.tcp_congestion_control->owner);
2582 
2583 	for_each_possible_cpu(cpu)
2584 		inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2585 	free_percpu(net->ipv4.tcp_sk);
2586 }
2587 
2588 static int __net_init tcp_sk_init(struct net *net)
2589 {
2590 	int res, cpu, cnt;
2591 
2592 	net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2593 	if (!net->ipv4.tcp_sk)
2594 		return -ENOMEM;
2595 
2596 	for_each_possible_cpu(cpu) {
2597 		struct sock *sk;
2598 
2599 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2600 					   IPPROTO_TCP, net);
2601 		if (res)
2602 			goto fail;
2603 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2604 
2605 		/* Please enforce IP_DF and IPID==0 for RST and
2606 		 * ACK sent in SYN-RECV and TIME-WAIT state.
2607 		 */
2608 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
2609 
2610 		*per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2611 	}
2612 
2613 	net->ipv4.sysctl_tcp_ecn = 2;
2614 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
2615 
2616 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2617 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2618 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2619 
2620 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2621 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2622 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2623 
2624 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2625 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2626 	net->ipv4.sysctl_tcp_syncookies = 1;
2627 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2628 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2629 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2630 	net->ipv4.sysctl_tcp_orphan_retries = 0;
2631 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2632 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2633 	net->ipv4.sysctl_tcp_tw_reuse = 2;
2634 
2635 	cnt = tcp_hashinfo.ehash_mask + 1;
2636 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
2637 	net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo;
2638 
2639 	net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 256);
2640 	net->ipv4.sysctl_tcp_sack = 1;
2641 	net->ipv4.sysctl_tcp_window_scaling = 1;
2642 	net->ipv4.sysctl_tcp_timestamps = 1;
2643 	net->ipv4.sysctl_tcp_early_retrans = 3;
2644 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
2645 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
2646 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
2647 	net->ipv4.sysctl_tcp_max_reordering = 300;
2648 	net->ipv4.sysctl_tcp_dsack = 1;
2649 	net->ipv4.sysctl_tcp_app_win = 31;
2650 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
2651 	net->ipv4.sysctl_tcp_frto = 2;
2652 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
2653 	/* This limits the percentage of the congestion window which we
2654 	 * will allow a single TSO frame to consume.  Building TSO frames
2655 	 * which are too large can cause TCP streams to be bursty.
2656 	 */
2657 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
2658 	/* Default TSQ limit of 16 TSO segments */
2659 	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
2660 	/* rfc5961 challenge ack rate limiting */
2661 	net->ipv4.sysctl_tcp_challenge_ack_limit = 1000;
2662 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
2663 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
2664 	net->ipv4.sysctl_tcp_autocorking = 1;
2665 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
2666 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
2667 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
2668 	if (net != &init_net) {
2669 		memcpy(net->ipv4.sysctl_tcp_rmem,
2670 		       init_net.ipv4.sysctl_tcp_rmem,
2671 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
2672 		memcpy(net->ipv4.sysctl_tcp_wmem,
2673 		       init_net.ipv4.sysctl_tcp_wmem,
2674 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
2675 	}
2676 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
2677 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
2678 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
2679 	spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock);
2680 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 60 * 60;
2681 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
2682 
2683 	/* Reno is always built in */
2684 	if (!net_eq(net, &init_net) &&
2685 	    try_module_get(init_net.ipv4.tcp_congestion_control->owner))
2686 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
2687 	else
2688 		net->ipv4.tcp_congestion_control = &tcp_reno;
2689 
2690 	return 0;
2691 fail:
2692 	tcp_sk_exit(net);
2693 
2694 	return res;
2695 }
2696 
2697 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2698 {
2699 	struct net *net;
2700 
2701 	inet_twsk_purge(&tcp_hashinfo, AF_INET);
2702 
2703 	list_for_each_entry(net, net_exit_list, exit_list)
2704 		tcp_fastopen_ctx_destroy(net);
2705 }
2706 
2707 static struct pernet_operations __net_initdata tcp_sk_ops = {
2708        .init	   = tcp_sk_init,
2709        .exit	   = tcp_sk_exit,
2710        .exit_batch = tcp_sk_exit_batch,
2711 };
2712 
2713 void __init tcp_v4_init(void)
2714 {
2715 	if (register_pernet_subsys(&tcp_sk_ops))
2716 		panic("Failed to create the TCP control socket.\n");
2717 }
2718