xref: /linux/net/ipv4/tcp_ipv4.c (revision 0526b56cbc3c489642bd6a5fe4b718dea7ef0ee8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  *		IPv4 specific functions
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  */
18 
19 /*
20  * Changes:
21  *		David S. Miller	:	New socket lookup architecture.
22  *					This code is dedicated to John Dyson.
23  *		David S. Miller :	Change semantics of established hash,
24  *					half is devoted to TIME_WAIT sockets
25  *					and the rest go in the other half.
26  *		Andi Kleen :		Add support for syncookies and fixed
27  *					some bugs: ip options weren't passed to
28  *					the TCP layer, missed a check for an
29  *					ACK bit.
30  *		Andi Kleen :		Implemented fast path mtu discovery.
31  *	     				Fixed many serious bugs in the
32  *					request_sock handling and moved
33  *					most of it into the af independent code.
34  *					Added tail drop and some other bugfixes.
35  *					Added new listen semantics.
36  *		Mike McLagan	:	Routing by source
37  *	Juan Jose Ciarlante:		ip_dynaddr bits
38  *		Andi Kleen:		various fixes.
39  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
40  *					coma.
41  *	Andi Kleen		:	Fix new listen.
42  *	Andi Kleen		:	Fix accept error reporting.
43  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
44  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
45  *					a single port at the same time.
46  */
47 
48 #define pr_fmt(fmt) "TCP: " fmt
49 
50 #include <linux/bottom_half.h>
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/module.h>
54 #include <linux/random.h>
55 #include <linux/cache.h>
56 #include <linux/jhash.h>
57 #include <linux/init.h>
58 #include <linux/times.h>
59 #include <linux/slab.h>
60 
61 #include <net/net_namespace.h>
62 #include <net/icmp.h>
63 #include <net/inet_hashtables.h>
64 #include <net/tcp.h>
65 #include <net/transp_v6.h>
66 #include <net/ipv6.h>
67 #include <net/inet_common.h>
68 #include <net/timewait_sock.h>
69 #include <net/xfrm.h>
70 #include <net/secure_seq.h>
71 #include <net/busy_poll.h>
72 
73 #include <linux/inet.h>
74 #include <linux/ipv6.h>
75 #include <linux/stddef.h>
76 #include <linux/proc_fs.h>
77 #include <linux/seq_file.h>
78 #include <linux/inetdevice.h>
79 #include <linux/btf_ids.h>
80 
81 #include <crypto/hash.h>
82 #include <linux/scatterlist.h>
83 
84 #include <trace/events/tcp.h>
85 
86 #ifdef CONFIG_TCP_MD5SIG
87 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
88 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
89 #endif
90 
91 struct inet_hashinfo tcp_hashinfo;
92 EXPORT_SYMBOL(tcp_hashinfo);
93 
94 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
95 
96 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
97 {
98 	return secure_tcp_seq(ip_hdr(skb)->daddr,
99 			      ip_hdr(skb)->saddr,
100 			      tcp_hdr(skb)->dest,
101 			      tcp_hdr(skb)->source);
102 }
103 
104 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
105 {
106 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
107 }
108 
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
112 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
113 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
114 	struct tcp_sock *tp = tcp_sk(sk);
115 
116 	if (reuse == 2) {
117 		/* Still does not detect *everything* that goes through
118 		 * lo, since we require a loopback src or dst address
119 		 * or direct binding to 'lo' interface.
120 		 */
121 		bool loopback = false;
122 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
123 			loopback = true;
124 #if IS_ENABLED(CONFIG_IPV6)
125 		if (tw->tw_family == AF_INET6) {
126 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
127 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
128 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
129 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
130 				loopback = true;
131 		} else
132 #endif
133 		{
134 			if (ipv4_is_loopback(tw->tw_daddr) ||
135 			    ipv4_is_loopback(tw->tw_rcv_saddr))
136 				loopback = true;
137 		}
138 		if (!loopback)
139 			reuse = 0;
140 	}
141 
142 	/* With PAWS, it is safe from the viewpoint
143 	   of data integrity. Even without PAWS it is safe provided sequence
144 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
145 
146 	   Actually, the idea is close to VJ's one, only timestamp cache is
147 	   held not per host, but per port pair and TW bucket is used as state
148 	   holder.
149 
150 	   If TW bucket has been already destroyed we fall back to VJ's scheme
151 	   and use initial timestamp retrieved from peer table.
152 	 */
153 	if (tcptw->tw_ts_recent_stamp &&
154 	    (!twp || (reuse && time_after32(ktime_get_seconds(),
155 					    tcptw->tw_ts_recent_stamp)))) {
156 		/* In case of repair and re-using TIME-WAIT sockets we still
157 		 * want to be sure that it is safe as above but honor the
158 		 * sequence numbers and time stamps set as part of the repair
159 		 * process.
160 		 *
161 		 * Without this check re-using a TIME-WAIT socket with TCP
162 		 * repair would accumulate a -1 on the repair assigned
163 		 * sequence number. The first time it is reused the sequence
164 		 * is -1, the second time -2, etc. This fixes that issue
165 		 * without appearing to create any others.
166 		 */
167 		if (likely(!tp->repair)) {
168 			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
169 
170 			if (!seq)
171 				seq = 1;
172 			WRITE_ONCE(tp->write_seq, seq);
173 			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
174 			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
175 		}
176 		sock_hold(sktw);
177 		return 1;
178 	}
179 
180 	return 0;
181 }
182 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
183 
184 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
185 			      int addr_len)
186 {
187 	/* This check is replicated from tcp_v4_connect() and intended to
188 	 * prevent BPF program called below from accessing bytes that are out
189 	 * of the bound specified by user in addr_len.
190 	 */
191 	if (addr_len < sizeof(struct sockaddr_in))
192 		return -EINVAL;
193 
194 	sock_owned_by_me(sk);
195 
196 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
197 }
198 
199 /* This will initiate an outgoing connection. */
200 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
201 {
202 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
203 	struct inet_timewait_death_row *tcp_death_row;
204 	struct inet_sock *inet = inet_sk(sk);
205 	struct tcp_sock *tp = tcp_sk(sk);
206 	struct ip_options_rcu *inet_opt;
207 	struct net *net = sock_net(sk);
208 	__be16 orig_sport, orig_dport;
209 	__be32 daddr, nexthop;
210 	struct flowi4 *fl4;
211 	struct rtable *rt;
212 	int err;
213 
214 	if (addr_len < sizeof(struct sockaddr_in))
215 		return -EINVAL;
216 
217 	if (usin->sin_family != AF_INET)
218 		return -EAFNOSUPPORT;
219 
220 	nexthop = daddr = usin->sin_addr.s_addr;
221 	inet_opt = rcu_dereference_protected(inet->inet_opt,
222 					     lockdep_sock_is_held(sk));
223 	if (inet_opt && inet_opt->opt.srr) {
224 		if (!daddr)
225 			return -EINVAL;
226 		nexthop = inet_opt->opt.faddr;
227 	}
228 
229 	orig_sport = inet->inet_sport;
230 	orig_dport = usin->sin_port;
231 	fl4 = &inet->cork.fl.u.ip4;
232 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
233 			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
234 			      orig_dport, sk);
235 	if (IS_ERR(rt)) {
236 		err = PTR_ERR(rt);
237 		if (err == -ENETUNREACH)
238 			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
239 		return err;
240 	}
241 
242 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
243 		ip_rt_put(rt);
244 		return -ENETUNREACH;
245 	}
246 
247 	if (!inet_opt || !inet_opt->opt.srr)
248 		daddr = fl4->daddr;
249 
250 	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
251 
252 	if (!inet->inet_saddr) {
253 		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
254 		if (err) {
255 			ip_rt_put(rt);
256 			return err;
257 		}
258 	} else {
259 		sk_rcv_saddr_set(sk, inet->inet_saddr);
260 	}
261 
262 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
263 		/* Reset inherited state */
264 		tp->rx_opt.ts_recent	   = 0;
265 		tp->rx_opt.ts_recent_stamp = 0;
266 		if (likely(!tp->repair))
267 			WRITE_ONCE(tp->write_seq, 0);
268 	}
269 
270 	inet->inet_dport = usin->sin_port;
271 	sk_daddr_set(sk, daddr);
272 
273 	inet_csk(sk)->icsk_ext_hdr_len = 0;
274 	if (inet_opt)
275 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
276 
277 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
278 
279 	/* Socket identity is still unknown (sport may be zero).
280 	 * However we set state to SYN-SENT and not releasing socket
281 	 * lock select source port, enter ourselves into the hash tables and
282 	 * complete initialization after this.
283 	 */
284 	tcp_set_state(sk, TCP_SYN_SENT);
285 	err = inet_hash_connect(tcp_death_row, sk);
286 	if (err)
287 		goto failure;
288 
289 	sk_set_txhash(sk);
290 
291 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
292 			       inet->inet_sport, inet->inet_dport, sk);
293 	if (IS_ERR(rt)) {
294 		err = PTR_ERR(rt);
295 		rt = NULL;
296 		goto failure;
297 	}
298 	/* OK, now commit destination to socket.  */
299 	sk->sk_gso_type = SKB_GSO_TCPV4;
300 	sk_setup_caps(sk, &rt->dst);
301 	rt = NULL;
302 
303 	if (likely(!tp->repair)) {
304 		if (!tp->write_seq)
305 			WRITE_ONCE(tp->write_seq,
306 				   secure_tcp_seq(inet->inet_saddr,
307 						  inet->inet_daddr,
308 						  inet->inet_sport,
309 						  usin->sin_port));
310 		tp->tsoffset = secure_tcp_ts_off(net, inet->inet_saddr,
311 						 inet->inet_daddr);
312 	}
313 
314 	inet->inet_id = get_random_u16();
315 
316 	if (tcp_fastopen_defer_connect(sk, &err))
317 		return err;
318 	if (err)
319 		goto failure;
320 
321 	err = tcp_connect(sk);
322 
323 	if (err)
324 		goto failure;
325 
326 	return 0;
327 
328 failure:
329 	/*
330 	 * This unhashes the socket and releases the local port,
331 	 * if necessary.
332 	 */
333 	tcp_set_state(sk, TCP_CLOSE);
334 	inet_bhash2_reset_saddr(sk);
335 	ip_rt_put(rt);
336 	sk->sk_route_caps = 0;
337 	inet->inet_dport = 0;
338 	return err;
339 }
340 EXPORT_SYMBOL(tcp_v4_connect);
341 
342 /*
343  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
344  * It can be called through tcp_release_cb() if socket was owned by user
345  * at the time tcp_v4_err() was called to handle ICMP message.
346  */
347 void tcp_v4_mtu_reduced(struct sock *sk)
348 {
349 	struct inet_sock *inet = inet_sk(sk);
350 	struct dst_entry *dst;
351 	u32 mtu;
352 
353 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
354 		return;
355 	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
356 	dst = inet_csk_update_pmtu(sk, mtu);
357 	if (!dst)
358 		return;
359 
360 	/* Something is about to be wrong... Remember soft error
361 	 * for the case, if this connection will not able to recover.
362 	 */
363 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
364 		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
365 
366 	mtu = dst_mtu(dst);
367 
368 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
369 	    ip_sk_accept_pmtu(sk) &&
370 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
371 		tcp_sync_mss(sk, mtu);
372 
373 		/* Resend the TCP packet because it's
374 		 * clear that the old packet has been
375 		 * dropped. This is the new "fast" path mtu
376 		 * discovery.
377 		 */
378 		tcp_simple_retransmit(sk);
379 	} /* else let the usual retransmit timer handle it */
380 }
381 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
382 
383 static void do_redirect(struct sk_buff *skb, struct sock *sk)
384 {
385 	struct dst_entry *dst = __sk_dst_check(sk, 0);
386 
387 	if (dst)
388 		dst->ops->redirect(dst, sk, skb);
389 }
390 
391 
392 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
393 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
394 {
395 	struct request_sock *req = inet_reqsk(sk);
396 	struct net *net = sock_net(sk);
397 
398 	/* ICMPs are not backlogged, hence we cannot get
399 	 * an established socket here.
400 	 */
401 	if (seq != tcp_rsk(req)->snt_isn) {
402 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
403 	} else if (abort) {
404 		/*
405 		 * Still in SYN_RECV, just remove it silently.
406 		 * There is no good way to pass the error to the newly
407 		 * created socket, and POSIX does not want network
408 		 * errors returned from accept().
409 		 */
410 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
411 		tcp_listendrop(req->rsk_listener);
412 	}
413 	reqsk_put(req);
414 }
415 EXPORT_SYMBOL(tcp_req_err);
416 
417 /* TCP-LD (RFC 6069) logic */
418 void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
419 {
420 	struct inet_connection_sock *icsk = inet_csk(sk);
421 	struct tcp_sock *tp = tcp_sk(sk);
422 	struct sk_buff *skb;
423 	s32 remaining;
424 	u32 delta_us;
425 
426 	if (sock_owned_by_user(sk))
427 		return;
428 
429 	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
430 	    !icsk->icsk_backoff)
431 		return;
432 
433 	skb = tcp_rtx_queue_head(sk);
434 	if (WARN_ON_ONCE(!skb))
435 		return;
436 
437 	icsk->icsk_backoff--;
438 	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
439 	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
440 
441 	tcp_mstamp_refresh(tp);
442 	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
443 	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
444 
445 	if (remaining > 0) {
446 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
447 					  remaining, TCP_RTO_MAX);
448 	} else {
449 		/* RTO revert clocked out retransmission.
450 		 * Will retransmit now.
451 		 */
452 		tcp_retransmit_timer(sk);
453 	}
454 }
455 EXPORT_SYMBOL(tcp_ld_RTO_revert);
456 
457 /*
458  * This routine is called by the ICMP module when it gets some
459  * sort of error condition.  If err < 0 then the socket should
460  * be closed and the error returned to the user.  If err > 0
461  * it's just the icmp type << 8 | icmp code.  After adjustment
462  * header points to the first 8 bytes of the tcp header.  We need
463  * to find the appropriate port.
464  *
465  * The locking strategy used here is very "optimistic". When
466  * someone else accesses the socket the ICMP is just dropped
467  * and for some paths there is no check at all.
468  * A more general error queue to queue errors for later handling
469  * is probably better.
470  *
471  */
472 
473 int tcp_v4_err(struct sk_buff *skb, u32 info)
474 {
475 	const struct iphdr *iph = (const struct iphdr *)skb->data;
476 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
477 	struct tcp_sock *tp;
478 	struct inet_sock *inet;
479 	const int type = icmp_hdr(skb)->type;
480 	const int code = icmp_hdr(skb)->code;
481 	struct sock *sk;
482 	struct request_sock *fastopen;
483 	u32 seq, snd_una;
484 	int err;
485 	struct net *net = dev_net(skb->dev);
486 
487 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
488 				       iph->daddr, th->dest, iph->saddr,
489 				       ntohs(th->source), inet_iif(skb), 0);
490 	if (!sk) {
491 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
492 		return -ENOENT;
493 	}
494 	if (sk->sk_state == TCP_TIME_WAIT) {
495 		inet_twsk_put(inet_twsk(sk));
496 		return 0;
497 	}
498 	seq = ntohl(th->seq);
499 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
500 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
501 				     type == ICMP_TIME_EXCEEDED ||
502 				     (type == ICMP_DEST_UNREACH &&
503 				      (code == ICMP_NET_UNREACH ||
504 				       code == ICMP_HOST_UNREACH)));
505 		return 0;
506 	}
507 
508 	bh_lock_sock(sk);
509 	/* If too many ICMPs get dropped on busy
510 	 * servers this needs to be solved differently.
511 	 * We do take care of PMTU discovery (RFC1191) special case :
512 	 * we can receive locally generated ICMP messages while socket is held.
513 	 */
514 	if (sock_owned_by_user(sk)) {
515 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
516 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
517 	}
518 	if (sk->sk_state == TCP_CLOSE)
519 		goto out;
520 
521 	if (static_branch_unlikely(&ip4_min_ttl)) {
522 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
523 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
524 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
525 			goto out;
526 		}
527 	}
528 
529 	tp = tcp_sk(sk);
530 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
531 	fastopen = rcu_dereference(tp->fastopen_rsk);
532 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
533 	if (sk->sk_state != TCP_LISTEN &&
534 	    !between(seq, snd_una, tp->snd_nxt)) {
535 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
536 		goto out;
537 	}
538 
539 	switch (type) {
540 	case ICMP_REDIRECT:
541 		if (!sock_owned_by_user(sk))
542 			do_redirect(skb, sk);
543 		goto out;
544 	case ICMP_SOURCE_QUENCH:
545 		/* Just silently ignore these. */
546 		goto out;
547 	case ICMP_PARAMETERPROB:
548 		err = EPROTO;
549 		break;
550 	case ICMP_DEST_UNREACH:
551 		if (code > NR_ICMP_UNREACH)
552 			goto out;
553 
554 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
555 			/* We are not interested in TCP_LISTEN and open_requests
556 			 * (SYN-ACKs send out by Linux are always <576bytes so
557 			 * they should go through unfragmented).
558 			 */
559 			if (sk->sk_state == TCP_LISTEN)
560 				goto out;
561 
562 			WRITE_ONCE(tp->mtu_info, info);
563 			if (!sock_owned_by_user(sk)) {
564 				tcp_v4_mtu_reduced(sk);
565 			} else {
566 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
567 					sock_hold(sk);
568 			}
569 			goto out;
570 		}
571 
572 		err = icmp_err_convert[code].errno;
573 		/* check if this ICMP message allows revert of backoff.
574 		 * (see RFC 6069)
575 		 */
576 		if (!fastopen &&
577 		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
578 			tcp_ld_RTO_revert(sk, seq);
579 		break;
580 	case ICMP_TIME_EXCEEDED:
581 		err = EHOSTUNREACH;
582 		break;
583 	default:
584 		goto out;
585 	}
586 
587 	switch (sk->sk_state) {
588 	case TCP_SYN_SENT:
589 	case TCP_SYN_RECV:
590 		/* Only in fast or simultaneous open. If a fast open socket is
591 		 * already accepted it is treated as a connected one below.
592 		 */
593 		if (fastopen && !fastopen->sk)
594 			break;
595 
596 		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
597 
598 		if (!sock_owned_by_user(sk)) {
599 			WRITE_ONCE(sk->sk_err, err);
600 
601 			sk_error_report(sk);
602 
603 			tcp_done(sk);
604 		} else {
605 			WRITE_ONCE(sk->sk_err_soft, err);
606 		}
607 		goto out;
608 	}
609 
610 	/* If we've already connected we will keep trying
611 	 * until we time out, or the user gives up.
612 	 *
613 	 * rfc1122 4.2.3.9 allows to consider as hard errors
614 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
615 	 * but it is obsoleted by pmtu discovery).
616 	 *
617 	 * Note, that in modern internet, where routing is unreliable
618 	 * and in each dark corner broken firewalls sit, sending random
619 	 * errors ordered by their masters even this two messages finally lose
620 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
621 	 *
622 	 * Now we are in compliance with RFCs.
623 	 *							--ANK (980905)
624 	 */
625 
626 	inet = inet_sk(sk);
627 	if (!sock_owned_by_user(sk) && inet->recverr) {
628 		WRITE_ONCE(sk->sk_err, err);
629 		sk_error_report(sk);
630 	} else	{ /* Only an error on timeout */
631 		WRITE_ONCE(sk->sk_err_soft, err);
632 	}
633 
634 out:
635 	bh_unlock_sock(sk);
636 	sock_put(sk);
637 	return 0;
638 }
639 
640 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
641 {
642 	struct tcphdr *th = tcp_hdr(skb);
643 
644 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
645 	skb->csum_start = skb_transport_header(skb) - skb->head;
646 	skb->csum_offset = offsetof(struct tcphdr, check);
647 }
648 
649 /* This routine computes an IPv4 TCP checksum. */
650 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
651 {
652 	const struct inet_sock *inet = inet_sk(sk);
653 
654 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
655 }
656 EXPORT_SYMBOL(tcp_v4_send_check);
657 
658 /*
659  *	This routine will send an RST to the other tcp.
660  *
661  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
662  *		      for reset.
663  *	Answer: if a packet caused RST, it is not for a socket
664  *		existing in our system, if it is matched to a socket,
665  *		it is just duplicate segment or bug in other side's TCP.
666  *		So that we build reply only basing on parameters
667  *		arrived with segment.
668  *	Exception: precedence violation. We do not implement it in any case.
669  */
670 
671 #ifdef CONFIG_TCP_MD5SIG
672 #define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED
673 #else
674 #define OPTION_BYTES sizeof(__be32)
675 #endif
676 
677 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
678 {
679 	const struct tcphdr *th = tcp_hdr(skb);
680 	struct {
681 		struct tcphdr th;
682 		__be32 opt[OPTION_BYTES / sizeof(__be32)];
683 	} rep;
684 	struct ip_reply_arg arg;
685 #ifdef CONFIG_TCP_MD5SIG
686 	struct tcp_md5sig_key *key = NULL;
687 	const __u8 *hash_location = NULL;
688 	unsigned char newhash[16];
689 	int genhash;
690 	struct sock *sk1 = NULL;
691 #endif
692 	u64 transmit_time = 0;
693 	struct sock *ctl_sk;
694 	struct net *net;
695 
696 	/* Never send a reset in response to a reset. */
697 	if (th->rst)
698 		return;
699 
700 	/* If sk not NULL, it means we did a successful lookup and incoming
701 	 * route had to be correct. prequeue might have dropped our dst.
702 	 */
703 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
704 		return;
705 
706 	/* Swap the send and the receive. */
707 	memset(&rep, 0, sizeof(rep));
708 	rep.th.dest   = th->source;
709 	rep.th.source = th->dest;
710 	rep.th.doff   = sizeof(struct tcphdr) / 4;
711 	rep.th.rst    = 1;
712 
713 	if (th->ack) {
714 		rep.th.seq = th->ack_seq;
715 	} else {
716 		rep.th.ack = 1;
717 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
718 				       skb->len - (th->doff << 2));
719 	}
720 
721 	memset(&arg, 0, sizeof(arg));
722 	arg.iov[0].iov_base = (unsigned char *)&rep;
723 	arg.iov[0].iov_len  = sizeof(rep.th);
724 
725 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
726 #ifdef CONFIG_TCP_MD5SIG
727 	rcu_read_lock();
728 	hash_location = tcp_parse_md5sig_option(th);
729 	if (sk && sk_fullsock(sk)) {
730 		const union tcp_md5_addr *addr;
731 		int l3index;
732 
733 		/* sdif set, means packet ingressed via a device
734 		 * in an L3 domain and inet_iif is set to it.
735 		 */
736 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
737 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
738 		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
739 	} else if (hash_location) {
740 		const union tcp_md5_addr *addr;
741 		int sdif = tcp_v4_sdif(skb);
742 		int dif = inet_iif(skb);
743 		int l3index;
744 
745 		/*
746 		 * active side is lost. Try to find listening socket through
747 		 * source port, and then find md5 key through listening socket.
748 		 * we are not loose security here:
749 		 * Incoming packet is checked with md5 hash with finding key,
750 		 * no RST generated if md5 hash doesn't match.
751 		 */
752 		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
753 					     NULL, 0, ip_hdr(skb)->saddr,
754 					     th->source, ip_hdr(skb)->daddr,
755 					     ntohs(th->source), dif, sdif);
756 		/* don't send rst if it can't find key */
757 		if (!sk1)
758 			goto out;
759 
760 		/* sdif set, means packet ingressed via a device
761 		 * in an L3 domain and dif is set to it.
762 		 */
763 		l3index = sdif ? dif : 0;
764 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
765 		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
766 		if (!key)
767 			goto out;
768 
769 
770 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
771 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
772 			goto out;
773 
774 	}
775 
776 	if (key) {
777 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
778 				   (TCPOPT_NOP << 16) |
779 				   (TCPOPT_MD5SIG << 8) |
780 				   TCPOLEN_MD5SIG);
781 		/* Update length and the length the header thinks exists */
782 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
783 		rep.th.doff = arg.iov[0].iov_len / 4;
784 
785 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
786 				     key, ip_hdr(skb)->saddr,
787 				     ip_hdr(skb)->daddr, &rep.th);
788 	}
789 #endif
790 	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
791 	if (rep.opt[0] == 0) {
792 		__be32 mrst = mptcp_reset_option(skb);
793 
794 		if (mrst) {
795 			rep.opt[0] = mrst;
796 			arg.iov[0].iov_len += sizeof(mrst);
797 			rep.th.doff = arg.iov[0].iov_len / 4;
798 		}
799 	}
800 
801 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
802 				      ip_hdr(skb)->saddr, /* XXX */
803 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
804 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
805 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
806 
807 	/* When socket is gone, all binding information is lost.
808 	 * routing might fail in this case. No choice here, if we choose to force
809 	 * input interface, we will misroute in case of asymmetric route.
810 	 */
811 	if (sk) {
812 		arg.bound_dev_if = sk->sk_bound_dev_if;
813 		if (sk_fullsock(sk))
814 			trace_tcp_send_reset(sk, skb);
815 	}
816 
817 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
818 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
819 
820 	arg.tos = ip_hdr(skb)->tos;
821 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
822 	local_bh_disable();
823 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
824 	sock_net_set(ctl_sk, net);
825 	if (sk) {
826 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
827 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
828 		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
829 				   inet_twsk(sk)->tw_priority : sk->sk_priority;
830 		transmit_time = tcp_transmit_time(sk);
831 		xfrm_sk_clone_policy(ctl_sk, sk);
832 	} else {
833 		ctl_sk->sk_mark = 0;
834 		ctl_sk->sk_priority = 0;
835 	}
836 	ip_send_unicast_reply(ctl_sk,
837 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
838 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
839 			      &arg, arg.iov[0].iov_len,
840 			      transmit_time);
841 
842 	xfrm_sk_free_policy(ctl_sk);
843 	sock_net_set(ctl_sk, &init_net);
844 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
845 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
846 	local_bh_enable();
847 
848 #ifdef CONFIG_TCP_MD5SIG
849 out:
850 	rcu_read_unlock();
851 #endif
852 }
853 
854 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
855    outside socket context is ugly, certainly. What can I do?
856  */
857 
858 static void tcp_v4_send_ack(const struct sock *sk,
859 			    struct sk_buff *skb, u32 seq, u32 ack,
860 			    u32 win, u32 tsval, u32 tsecr, int oif,
861 			    struct tcp_md5sig_key *key,
862 			    int reply_flags, u8 tos)
863 {
864 	const struct tcphdr *th = tcp_hdr(skb);
865 	struct {
866 		struct tcphdr th;
867 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
868 #ifdef CONFIG_TCP_MD5SIG
869 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
870 #endif
871 			];
872 	} rep;
873 	struct net *net = sock_net(sk);
874 	struct ip_reply_arg arg;
875 	struct sock *ctl_sk;
876 	u64 transmit_time;
877 
878 	memset(&rep.th, 0, sizeof(struct tcphdr));
879 	memset(&arg, 0, sizeof(arg));
880 
881 	arg.iov[0].iov_base = (unsigned char *)&rep;
882 	arg.iov[0].iov_len  = sizeof(rep.th);
883 	if (tsecr) {
884 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
885 				   (TCPOPT_TIMESTAMP << 8) |
886 				   TCPOLEN_TIMESTAMP);
887 		rep.opt[1] = htonl(tsval);
888 		rep.opt[2] = htonl(tsecr);
889 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
890 	}
891 
892 	/* Swap the send and the receive. */
893 	rep.th.dest    = th->source;
894 	rep.th.source  = th->dest;
895 	rep.th.doff    = arg.iov[0].iov_len / 4;
896 	rep.th.seq     = htonl(seq);
897 	rep.th.ack_seq = htonl(ack);
898 	rep.th.ack     = 1;
899 	rep.th.window  = htons(win);
900 
901 #ifdef CONFIG_TCP_MD5SIG
902 	if (key) {
903 		int offset = (tsecr) ? 3 : 0;
904 
905 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
906 					  (TCPOPT_NOP << 16) |
907 					  (TCPOPT_MD5SIG << 8) |
908 					  TCPOLEN_MD5SIG);
909 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
910 		rep.th.doff = arg.iov[0].iov_len/4;
911 
912 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
913 				    key, ip_hdr(skb)->saddr,
914 				    ip_hdr(skb)->daddr, &rep.th);
915 	}
916 #endif
917 	arg.flags = reply_flags;
918 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
919 				      ip_hdr(skb)->saddr, /* XXX */
920 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
921 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
922 	if (oif)
923 		arg.bound_dev_if = oif;
924 	arg.tos = tos;
925 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
926 	local_bh_disable();
927 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
928 	sock_net_set(ctl_sk, net);
929 	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
930 			   inet_twsk(sk)->tw_mark : sk->sk_mark;
931 	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
932 			   inet_twsk(sk)->tw_priority : sk->sk_priority;
933 	transmit_time = tcp_transmit_time(sk);
934 	ip_send_unicast_reply(ctl_sk,
935 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
936 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
937 			      &arg, arg.iov[0].iov_len,
938 			      transmit_time);
939 
940 	sock_net_set(ctl_sk, &init_net);
941 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
942 	local_bh_enable();
943 }
944 
945 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
946 {
947 	struct inet_timewait_sock *tw = inet_twsk(sk);
948 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
949 
950 	tcp_v4_send_ack(sk, skb,
951 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
952 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
953 			tcp_time_stamp_raw() + tcptw->tw_ts_offset,
954 			tcptw->tw_ts_recent,
955 			tw->tw_bound_dev_if,
956 			tcp_twsk_md5_key(tcptw),
957 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
958 			tw->tw_tos
959 			);
960 
961 	inet_twsk_put(tw);
962 }
963 
964 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
965 				  struct request_sock *req)
966 {
967 	const union tcp_md5_addr *addr;
968 	int l3index;
969 
970 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
971 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
972 	 */
973 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
974 					     tcp_sk(sk)->snd_nxt;
975 
976 	/* RFC 7323 2.3
977 	 * The window field (SEG.WND) of every outgoing segment, with the
978 	 * exception of <SYN> segments, MUST be right-shifted by
979 	 * Rcv.Wind.Shift bits:
980 	 */
981 	addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
982 	l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
983 	tcp_v4_send_ack(sk, skb, seq,
984 			tcp_rsk(req)->rcv_nxt,
985 			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
986 			tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
987 			req->ts_recent,
988 			0,
989 			tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
990 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
991 			ip_hdr(skb)->tos);
992 }
993 
994 /*
995  *	Send a SYN-ACK after having received a SYN.
996  *	This still operates on a request_sock only, not on a big
997  *	socket.
998  */
999 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1000 			      struct flowi *fl,
1001 			      struct request_sock *req,
1002 			      struct tcp_fastopen_cookie *foc,
1003 			      enum tcp_synack_type synack_type,
1004 			      struct sk_buff *syn_skb)
1005 {
1006 	const struct inet_request_sock *ireq = inet_rsk(req);
1007 	struct flowi4 fl4;
1008 	int err = -1;
1009 	struct sk_buff *skb;
1010 	u8 tos;
1011 
1012 	/* First, grab a route. */
1013 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1014 		return -1;
1015 
1016 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1017 
1018 	if (skb) {
1019 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1020 
1021 		tos = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos) ?
1022 				(tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1023 				(inet_sk(sk)->tos & INET_ECN_MASK) :
1024 				inet_sk(sk)->tos;
1025 
1026 		if (!INET_ECN_is_capable(tos) &&
1027 		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1028 			tos |= INET_ECN_ECT_0;
1029 
1030 		rcu_read_lock();
1031 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1032 					    ireq->ir_rmt_addr,
1033 					    rcu_dereference(ireq->ireq_opt),
1034 					    tos);
1035 		rcu_read_unlock();
1036 		err = net_xmit_eval(err);
1037 	}
1038 
1039 	return err;
1040 }
1041 
1042 /*
1043  *	IPv4 request_sock destructor.
1044  */
1045 static void tcp_v4_reqsk_destructor(struct request_sock *req)
1046 {
1047 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1048 }
1049 
1050 #ifdef CONFIG_TCP_MD5SIG
1051 /*
1052  * RFC2385 MD5 checksumming requires a mapping of
1053  * IP address->MD5 Key.
1054  * We need to maintain these in the sk structure.
1055  */
1056 
1057 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1058 EXPORT_SYMBOL(tcp_md5_needed);
1059 
1060 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1061 {
1062 	if (!old)
1063 		return true;
1064 
1065 	/* l3index always overrides non-l3index */
1066 	if (old->l3index && new->l3index == 0)
1067 		return false;
1068 	if (old->l3index == 0 && new->l3index)
1069 		return true;
1070 
1071 	return old->prefixlen < new->prefixlen;
1072 }
1073 
1074 /* Find the Key structure for an address.  */
1075 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1076 					   const union tcp_md5_addr *addr,
1077 					   int family)
1078 {
1079 	const struct tcp_sock *tp = tcp_sk(sk);
1080 	struct tcp_md5sig_key *key;
1081 	const struct tcp_md5sig_info *md5sig;
1082 	__be32 mask;
1083 	struct tcp_md5sig_key *best_match = NULL;
1084 	bool match;
1085 
1086 	/* caller either holds rcu_read_lock() or socket lock */
1087 	md5sig = rcu_dereference_check(tp->md5sig_info,
1088 				       lockdep_sock_is_held(sk));
1089 	if (!md5sig)
1090 		return NULL;
1091 
1092 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1093 				 lockdep_sock_is_held(sk)) {
1094 		if (key->family != family)
1095 			continue;
1096 		if (key->flags & TCP_MD5SIG_FLAG_IFINDEX && key->l3index != l3index)
1097 			continue;
1098 		if (family == AF_INET) {
1099 			mask = inet_make_mask(key->prefixlen);
1100 			match = (key->addr.a4.s_addr & mask) ==
1101 				(addr->a4.s_addr & mask);
1102 #if IS_ENABLED(CONFIG_IPV6)
1103 		} else if (family == AF_INET6) {
1104 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1105 						  key->prefixlen);
1106 #endif
1107 		} else {
1108 			match = false;
1109 		}
1110 
1111 		if (match && better_md5_match(best_match, key))
1112 			best_match = key;
1113 	}
1114 	return best_match;
1115 }
1116 EXPORT_SYMBOL(__tcp_md5_do_lookup);
1117 
1118 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1119 						      const union tcp_md5_addr *addr,
1120 						      int family, u8 prefixlen,
1121 						      int l3index, u8 flags)
1122 {
1123 	const struct tcp_sock *tp = tcp_sk(sk);
1124 	struct tcp_md5sig_key *key;
1125 	unsigned int size = sizeof(struct in_addr);
1126 	const struct tcp_md5sig_info *md5sig;
1127 
1128 	/* caller either holds rcu_read_lock() or socket lock */
1129 	md5sig = rcu_dereference_check(tp->md5sig_info,
1130 				       lockdep_sock_is_held(sk));
1131 	if (!md5sig)
1132 		return NULL;
1133 #if IS_ENABLED(CONFIG_IPV6)
1134 	if (family == AF_INET6)
1135 		size = sizeof(struct in6_addr);
1136 #endif
1137 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1138 				 lockdep_sock_is_held(sk)) {
1139 		if (key->family != family)
1140 			continue;
1141 		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1142 			continue;
1143 		if (key->l3index != l3index)
1144 			continue;
1145 		if (!memcmp(&key->addr, addr, size) &&
1146 		    key->prefixlen == prefixlen)
1147 			return key;
1148 	}
1149 	return NULL;
1150 }
1151 
1152 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1153 					 const struct sock *addr_sk)
1154 {
1155 	const union tcp_md5_addr *addr;
1156 	int l3index;
1157 
1158 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1159 						 addr_sk->sk_bound_dev_if);
1160 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1161 	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1162 }
1163 EXPORT_SYMBOL(tcp_v4_md5_lookup);
1164 
1165 static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
1166 {
1167 	struct tcp_sock *tp = tcp_sk(sk);
1168 	struct tcp_md5sig_info *md5sig;
1169 
1170 	md5sig = kmalloc(sizeof(*md5sig), gfp);
1171 	if (!md5sig)
1172 		return -ENOMEM;
1173 
1174 	sk_gso_disable(sk);
1175 	INIT_HLIST_HEAD(&md5sig->head);
1176 	rcu_assign_pointer(tp->md5sig_info, md5sig);
1177 	return 0;
1178 }
1179 
1180 /* This can be called on a newly created socket, from other files */
1181 static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1182 			    int family, u8 prefixlen, int l3index, u8 flags,
1183 			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1184 {
1185 	/* Add Key to the list */
1186 	struct tcp_md5sig_key *key;
1187 	struct tcp_sock *tp = tcp_sk(sk);
1188 	struct tcp_md5sig_info *md5sig;
1189 
1190 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1191 	if (key) {
1192 		/* Pre-existing entry - just update that one.
1193 		 * Note that the key might be used concurrently.
1194 		 * data_race() is telling kcsan that we do not care of
1195 		 * key mismatches, since changing MD5 key on live flows
1196 		 * can lead to packet drops.
1197 		 */
1198 		data_race(memcpy(key->key, newkey, newkeylen));
1199 
1200 		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1201 		 * Also note that a reader could catch new key->keylen value
1202 		 * but old key->key[], this is the reason we use __GFP_ZERO
1203 		 * at sock_kmalloc() time below these lines.
1204 		 */
1205 		WRITE_ONCE(key->keylen, newkeylen);
1206 
1207 		return 0;
1208 	}
1209 
1210 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1211 					   lockdep_sock_is_held(sk));
1212 
1213 	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1214 	if (!key)
1215 		return -ENOMEM;
1216 	if (!tcp_alloc_md5sig_pool()) {
1217 		sock_kfree_s(sk, key, sizeof(*key));
1218 		return -ENOMEM;
1219 	}
1220 
1221 	memcpy(key->key, newkey, newkeylen);
1222 	key->keylen = newkeylen;
1223 	key->family = family;
1224 	key->prefixlen = prefixlen;
1225 	key->l3index = l3index;
1226 	key->flags = flags;
1227 	memcpy(&key->addr, addr,
1228 	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1229 								 sizeof(struct in_addr));
1230 	hlist_add_head_rcu(&key->node, &md5sig->head);
1231 	return 0;
1232 }
1233 
1234 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1235 		   int family, u8 prefixlen, int l3index, u8 flags,
1236 		   const u8 *newkey, u8 newkeylen)
1237 {
1238 	struct tcp_sock *tp = tcp_sk(sk);
1239 
1240 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1241 		if (tcp_md5sig_info_add(sk, GFP_KERNEL))
1242 			return -ENOMEM;
1243 
1244 		if (!static_branch_inc(&tcp_md5_needed.key)) {
1245 			struct tcp_md5sig_info *md5sig;
1246 
1247 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1248 			rcu_assign_pointer(tp->md5sig_info, NULL);
1249 			kfree_rcu(md5sig, rcu);
1250 			return -EUSERS;
1251 		}
1252 	}
1253 
1254 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1255 				newkey, newkeylen, GFP_KERNEL);
1256 }
1257 EXPORT_SYMBOL(tcp_md5_do_add);
1258 
1259 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1260 		     int family, u8 prefixlen, int l3index,
1261 		     struct tcp_md5sig_key *key)
1262 {
1263 	struct tcp_sock *tp = tcp_sk(sk);
1264 
1265 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1266 		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC)))
1267 			return -ENOMEM;
1268 
1269 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1270 			struct tcp_md5sig_info *md5sig;
1271 
1272 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1273 			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1274 			rcu_assign_pointer(tp->md5sig_info, NULL);
1275 			kfree_rcu(md5sig, rcu);
1276 			return -EUSERS;
1277 		}
1278 	}
1279 
1280 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1281 				key->flags, key->key, key->keylen,
1282 				sk_gfp_mask(sk, GFP_ATOMIC));
1283 }
1284 EXPORT_SYMBOL(tcp_md5_key_copy);
1285 
1286 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1287 		   u8 prefixlen, int l3index, u8 flags)
1288 {
1289 	struct tcp_md5sig_key *key;
1290 
1291 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1292 	if (!key)
1293 		return -ENOENT;
1294 	hlist_del_rcu(&key->node);
1295 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1296 	kfree_rcu(key, rcu);
1297 	return 0;
1298 }
1299 EXPORT_SYMBOL(tcp_md5_do_del);
1300 
1301 static void tcp_clear_md5_list(struct sock *sk)
1302 {
1303 	struct tcp_sock *tp = tcp_sk(sk);
1304 	struct tcp_md5sig_key *key;
1305 	struct hlist_node *n;
1306 	struct tcp_md5sig_info *md5sig;
1307 
1308 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1309 
1310 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1311 		hlist_del_rcu(&key->node);
1312 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1313 		kfree_rcu(key, rcu);
1314 	}
1315 }
1316 
1317 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1318 				 sockptr_t optval, int optlen)
1319 {
1320 	struct tcp_md5sig cmd;
1321 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1322 	const union tcp_md5_addr *addr;
1323 	u8 prefixlen = 32;
1324 	int l3index = 0;
1325 	u8 flags;
1326 
1327 	if (optlen < sizeof(cmd))
1328 		return -EINVAL;
1329 
1330 	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1331 		return -EFAULT;
1332 
1333 	if (sin->sin_family != AF_INET)
1334 		return -EINVAL;
1335 
1336 	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1337 
1338 	if (optname == TCP_MD5SIG_EXT &&
1339 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1340 		prefixlen = cmd.tcpm_prefixlen;
1341 		if (prefixlen > 32)
1342 			return -EINVAL;
1343 	}
1344 
1345 	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1346 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1347 		struct net_device *dev;
1348 
1349 		rcu_read_lock();
1350 		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1351 		if (dev && netif_is_l3_master(dev))
1352 			l3index = dev->ifindex;
1353 
1354 		rcu_read_unlock();
1355 
1356 		/* ok to reference set/not set outside of rcu;
1357 		 * right now device MUST be an L3 master
1358 		 */
1359 		if (!dev || !l3index)
1360 			return -EINVAL;
1361 	}
1362 
1363 	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1364 
1365 	if (!cmd.tcpm_keylen)
1366 		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1367 
1368 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1369 		return -EINVAL;
1370 
1371 	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1372 			      cmd.tcpm_key, cmd.tcpm_keylen);
1373 }
1374 
1375 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1376 				   __be32 daddr, __be32 saddr,
1377 				   const struct tcphdr *th, int nbytes)
1378 {
1379 	struct tcp4_pseudohdr *bp;
1380 	struct scatterlist sg;
1381 	struct tcphdr *_th;
1382 
1383 	bp = hp->scratch;
1384 	bp->saddr = saddr;
1385 	bp->daddr = daddr;
1386 	bp->pad = 0;
1387 	bp->protocol = IPPROTO_TCP;
1388 	bp->len = cpu_to_be16(nbytes);
1389 
1390 	_th = (struct tcphdr *)(bp + 1);
1391 	memcpy(_th, th, sizeof(*th));
1392 	_th->check = 0;
1393 
1394 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1395 	ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1396 				sizeof(*bp) + sizeof(*th));
1397 	return crypto_ahash_update(hp->md5_req);
1398 }
1399 
1400 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1401 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1402 {
1403 	struct tcp_md5sig_pool *hp;
1404 	struct ahash_request *req;
1405 
1406 	hp = tcp_get_md5sig_pool();
1407 	if (!hp)
1408 		goto clear_hash_noput;
1409 	req = hp->md5_req;
1410 
1411 	if (crypto_ahash_init(req))
1412 		goto clear_hash;
1413 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1414 		goto clear_hash;
1415 	if (tcp_md5_hash_key(hp, key))
1416 		goto clear_hash;
1417 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1418 	if (crypto_ahash_final(req))
1419 		goto clear_hash;
1420 
1421 	tcp_put_md5sig_pool();
1422 	return 0;
1423 
1424 clear_hash:
1425 	tcp_put_md5sig_pool();
1426 clear_hash_noput:
1427 	memset(md5_hash, 0, 16);
1428 	return 1;
1429 }
1430 
1431 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1432 			const struct sock *sk,
1433 			const struct sk_buff *skb)
1434 {
1435 	struct tcp_md5sig_pool *hp;
1436 	struct ahash_request *req;
1437 	const struct tcphdr *th = tcp_hdr(skb);
1438 	__be32 saddr, daddr;
1439 
1440 	if (sk) { /* valid for establish/request sockets */
1441 		saddr = sk->sk_rcv_saddr;
1442 		daddr = sk->sk_daddr;
1443 	} else {
1444 		const struct iphdr *iph = ip_hdr(skb);
1445 		saddr = iph->saddr;
1446 		daddr = iph->daddr;
1447 	}
1448 
1449 	hp = tcp_get_md5sig_pool();
1450 	if (!hp)
1451 		goto clear_hash_noput;
1452 	req = hp->md5_req;
1453 
1454 	if (crypto_ahash_init(req))
1455 		goto clear_hash;
1456 
1457 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1458 		goto clear_hash;
1459 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1460 		goto clear_hash;
1461 	if (tcp_md5_hash_key(hp, key))
1462 		goto clear_hash;
1463 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1464 	if (crypto_ahash_final(req))
1465 		goto clear_hash;
1466 
1467 	tcp_put_md5sig_pool();
1468 	return 0;
1469 
1470 clear_hash:
1471 	tcp_put_md5sig_pool();
1472 clear_hash_noput:
1473 	memset(md5_hash, 0, 16);
1474 	return 1;
1475 }
1476 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1477 
1478 #endif
1479 
1480 static void tcp_v4_init_req(struct request_sock *req,
1481 			    const struct sock *sk_listener,
1482 			    struct sk_buff *skb)
1483 {
1484 	struct inet_request_sock *ireq = inet_rsk(req);
1485 	struct net *net = sock_net(sk_listener);
1486 
1487 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1488 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1489 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1490 }
1491 
1492 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1493 					  struct sk_buff *skb,
1494 					  struct flowi *fl,
1495 					  struct request_sock *req)
1496 {
1497 	tcp_v4_init_req(req, sk, skb);
1498 
1499 	if (security_inet_conn_request(sk, skb, req))
1500 		return NULL;
1501 
1502 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1503 }
1504 
1505 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1506 	.family		=	PF_INET,
1507 	.obj_size	=	sizeof(struct tcp_request_sock),
1508 	.rtx_syn_ack	=	tcp_rtx_synack,
1509 	.send_ack	=	tcp_v4_reqsk_send_ack,
1510 	.destructor	=	tcp_v4_reqsk_destructor,
1511 	.send_reset	=	tcp_v4_send_reset,
1512 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1513 };
1514 
1515 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1516 	.mss_clamp	=	TCP_MSS_DEFAULT,
1517 #ifdef CONFIG_TCP_MD5SIG
1518 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1519 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1520 #endif
1521 #ifdef CONFIG_SYN_COOKIES
1522 	.cookie_init_seq =	cookie_v4_init_sequence,
1523 #endif
1524 	.route_req	=	tcp_v4_route_req,
1525 	.init_seq	=	tcp_v4_init_seq,
1526 	.init_ts_off	=	tcp_v4_init_ts_off,
1527 	.send_synack	=	tcp_v4_send_synack,
1528 };
1529 
1530 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1531 {
1532 	/* Never answer to SYNs send to broadcast or multicast */
1533 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1534 		goto drop;
1535 
1536 	return tcp_conn_request(&tcp_request_sock_ops,
1537 				&tcp_request_sock_ipv4_ops, sk, skb);
1538 
1539 drop:
1540 	tcp_listendrop(sk);
1541 	return 0;
1542 }
1543 EXPORT_SYMBOL(tcp_v4_conn_request);
1544 
1545 
1546 /*
1547  * The three way handshake has completed - we got a valid synack -
1548  * now create the new socket.
1549  */
1550 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1551 				  struct request_sock *req,
1552 				  struct dst_entry *dst,
1553 				  struct request_sock *req_unhash,
1554 				  bool *own_req)
1555 {
1556 	struct inet_request_sock *ireq;
1557 	bool found_dup_sk = false;
1558 	struct inet_sock *newinet;
1559 	struct tcp_sock *newtp;
1560 	struct sock *newsk;
1561 #ifdef CONFIG_TCP_MD5SIG
1562 	const union tcp_md5_addr *addr;
1563 	struct tcp_md5sig_key *key;
1564 	int l3index;
1565 #endif
1566 	struct ip_options_rcu *inet_opt;
1567 
1568 	if (sk_acceptq_is_full(sk))
1569 		goto exit_overflow;
1570 
1571 	newsk = tcp_create_openreq_child(sk, req, skb);
1572 	if (!newsk)
1573 		goto exit_nonewsk;
1574 
1575 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1576 	inet_sk_rx_dst_set(newsk, skb);
1577 
1578 	newtp		      = tcp_sk(newsk);
1579 	newinet		      = inet_sk(newsk);
1580 	ireq		      = inet_rsk(req);
1581 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1582 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1583 	newsk->sk_bound_dev_if = ireq->ir_iif;
1584 	newinet->inet_saddr   = ireq->ir_loc_addr;
1585 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1586 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1587 	newinet->mc_index     = inet_iif(skb);
1588 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1589 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1590 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1591 	if (inet_opt)
1592 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1593 	newinet->inet_id = get_random_u16();
1594 
1595 	/* Set ToS of the new socket based upon the value of incoming SYN.
1596 	 * ECT bits are set later in tcp_init_transfer().
1597 	 */
1598 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1599 		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1600 
1601 	if (!dst) {
1602 		dst = inet_csk_route_child_sock(sk, newsk, req);
1603 		if (!dst)
1604 			goto put_and_exit;
1605 	} else {
1606 		/* syncookie case : see end of cookie_v4_check() */
1607 	}
1608 	sk_setup_caps(newsk, dst);
1609 
1610 	tcp_ca_openreq_child(newsk, dst);
1611 
1612 	tcp_sync_mss(newsk, dst_mtu(dst));
1613 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1614 
1615 	tcp_initialize_rcv_mss(newsk);
1616 
1617 #ifdef CONFIG_TCP_MD5SIG
1618 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1619 	/* Copy over the MD5 key from the original socket */
1620 	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1621 	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1622 	if (key) {
1623 		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1624 			goto put_and_exit;
1625 		sk_gso_disable(newsk);
1626 	}
1627 #endif
1628 
1629 	if (__inet_inherit_port(sk, newsk) < 0)
1630 		goto put_and_exit;
1631 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1632 				       &found_dup_sk);
1633 	if (likely(*own_req)) {
1634 		tcp_move_syn(newtp, req);
1635 		ireq->ireq_opt = NULL;
1636 	} else {
1637 		newinet->inet_opt = NULL;
1638 
1639 		if (!req_unhash && found_dup_sk) {
1640 			/* This code path should only be executed in the
1641 			 * syncookie case only
1642 			 */
1643 			bh_unlock_sock(newsk);
1644 			sock_put(newsk);
1645 			newsk = NULL;
1646 		}
1647 	}
1648 	return newsk;
1649 
1650 exit_overflow:
1651 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1652 exit_nonewsk:
1653 	dst_release(dst);
1654 exit:
1655 	tcp_listendrop(sk);
1656 	return NULL;
1657 put_and_exit:
1658 	newinet->inet_opt = NULL;
1659 	inet_csk_prepare_forced_close(newsk);
1660 	tcp_done(newsk);
1661 	goto exit;
1662 }
1663 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1664 
1665 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1666 {
1667 #ifdef CONFIG_SYN_COOKIES
1668 	const struct tcphdr *th = tcp_hdr(skb);
1669 
1670 	if (!th->syn)
1671 		sk = cookie_v4_check(sk, skb);
1672 #endif
1673 	return sk;
1674 }
1675 
1676 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1677 			 struct tcphdr *th, u32 *cookie)
1678 {
1679 	u16 mss = 0;
1680 #ifdef CONFIG_SYN_COOKIES
1681 	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1682 				    &tcp_request_sock_ipv4_ops, sk, th);
1683 	if (mss) {
1684 		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1685 		tcp_synq_overflow(sk);
1686 	}
1687 #endif
1688 	return mss;
1689 }
1690 
1691 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1692 							   u32));
1693 /* The socket must have it's spinlock held when we get
1694  * here, unless it is a TCP_LISTEN socket.
1695  *
1696  * We have a potential double-lock case here, so even when
1697  * doing backlog processing we use the BH locking scheme.
1698  * This is because we cannot sleep with the original spinlock
1699  * held.
1700  */
1701 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1702 {
1703 	enum skb_drop_reason reason;
1704 	struct sock *rsk;
1705 
1706 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1707 		struct dst_entry *dst;
1708 
1709 		dst = rcu_dereference_protected(sk->sk_rx_dst,
1710 						lockdep_sock_is_held(sk));
1711 
1712 		sock_rps_save_rxhash(sk, skb);
1713 		sk_mark_napi_id(sk, skb);
1714 		if (dst) {
1715 			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1716 			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1717 					     dst, 0)) {
1718 				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1719 				dst_release(dst);
1720 			}
1721 		}
1722 		tcp_rcv_established(sk, skb);
1723 		return 0;
1724 	}
1725 
1726 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
1727 	if (tcp_checksum_complete(skb))
1728 		goto csum_err;
1729 
1730 	if (sk->sk_state == TCP_LISTEN) {
1731 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1732 
1733 		if (!nsk)
1734 			goto discard;
1735 		if (nsk != sk) {
1736 			if (tcp_child_process(sk, nsk, skb)) {
1737 				rsk = nsk;
1738 				goto reset;
1739 			}
1740 			return 0;
1741 		}
1742 	} else
1743 		sock_rps_save_rxhash(sk, skb);
1744 
1745 	if (tcp_rcv_state_process(sk, skb)) {
1746 		rsk = sk;
1747 		goto reset;
1748 	}
1749 	return 0;
1750 
1751 reset:
1752 	tcp_v4_send_reset(rsk, skb);
1753 discard:
1754 	kfree_skb_reason(skb, reason);
1755 	/* Be careful here. If this function gets more complicated and
1756 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1757 	 * might be destroyed here. This current version compiles correctly,
1758 	 * but you have been warned.
1759 	 */
1760 	return 0;
1761 
1762 csum_err:
1763 	reason = SKB_DROP_REASON_TCP_CSUM;
1764 	trace_tcp_bad_csum(skb);
1765 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1766 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1767 	goto discard;
1768 }
1769 EXPORT_SYMBOL(tcp_v4_do_rcv);
1770 
1771 int tcp_v4_early_demux(struct sk_buff *skb)
1772 {
1773 	struct net *net = dev_net(skb->dev);
1774 	const struct iphdr *iph;
1775 	const struct tcphdr *th;
1776 	struct sock *sk;
1777 
1778 	if (skb->pkt_type != PACKET_HOST)
1779 		return 0;
1780 
1781 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1782 		return 0;
1783 
1784 	iph = ip_hdr(skb);
1785 	th = tcp_hdr(skb);
1786 
1787 	if (th->doff < sizeof(struct tcphdr) / 4)
1788 		return 0;
1789 
1790 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1791 				       iph->saddr, th->source,
1792 				       iph->daddr, ntohs(th->dest),
1793 				       skb->skb_iif, inet_sdif(skb));
1794 	if (sk) {
1795 		skb->sk = sk;
1796 		skb->destructor = sock_edemux;
1797 		if (sk_fullsock(sk)) {
1798 			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1799 
1800 			if (dst)
1801 				dst = dst_check(dst, 0);
1802 			if (dst &&
1803 			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1804 				skb_dst_set_noref(skb, dst);
1805 		}
1806 	}
1807 	return 0;
1808 }
1809 
1810 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1811 		     enum skb_drop_reason *reason)
1812 {
1813 	u32 limit, tail_gso_size, tail_gso_segs;
1814 	struct skb_shared_info *shinfo;
1815 	const struct tcphdr *th;
1816 	struct tcphdr *thtail;
1817 	struct sk_buff *tail;
1818 	unsigned int hdrlen;
1819 	bool fragstolen;
1820 	u32 gso_segs;
1821 	u32 gso_size;
1822 	int delta;
1823 
1824 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1825 	 * we can fix skb->truesize to its real value to avoid future drops.
1826 	 * This is valid because skb is not yet charged to the socket.
1827 	 * It has been noticed pure SACK packets were sometimes dropped
1828 	 * (if cooked by drivers without copybreak feature).
1829 	 */
1830 	skb_condense(skb);
1831 
1832 	skb_dst_drop(skb);
1833 
1834 	if (unlikely(tcp_checksum_complete(skb))) {
1835 		bh_unlock_sock(sk);
1836 		trace_tcp_bad_csum(skb);
1837 		*reason = SKB_DROP_REASON_TCP_CSUM;
1838 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1839 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1840 		return true;
1841 	}
1842 
1843 	/* Attempt coalescing to last skb in backlog, even if we are
1844 	 * above the limits.
1845 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1846 	 */
1847 	th = (const struct tcphdr *)skb->data;
1848 	hdrlen = th->doff * 4;
1849 
1850 	tail = sk->sk_backlog.tail;
1851 	if (!tail)
1852 		goto no_coalesce;
1853 	thtail = (struct tcphdr *)tail->data;
1854 
1855 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1856 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1857 	    ((TCP_SKB_CB(tail)->tcp_flags |
1858 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
1859 	    !((TCP_SKB_CB(tail)->tcp_flags &
1860 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
1861 	    ((TCP_SKB_CB(tail)->tcp_flags ^
1862 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1863 #ifdef CONFIG_TLS_DEVICE
1864 	    tail->decrypted != skb->decrypted ||
1865 #endif
1866 	    thtail->doff != th->doff ||
1867 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1868 		goto no_coalesce;
1869 
1870 	__skb_pull(skb, hdrlen);
1871 
1872 	shinfo = skb_shinfo(skb);
1873 	gso_size = shinfo->gso_size ?: skb->len;
1874 	gso_segs = shinfo->gso_segs ?: 1;
1875 
1876 	shinfo = skb_shinfo(tail);
1877 	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
1878 	tail_gso_segs = shinfo->gso_segs ?: 1;
1879 
1880 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1881 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1882 
1883 		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
1884 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1885 			thtail->window = th->window;
1886 		}
1887 
1888 		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
1889 		 * thtail->fin, so that the fast path in tcp_rcv_established()
1890 		 * is not entered if we append a packet with a FIN.
1891 		 * SYN, RST, URG are not present.
1892 		 * ACK is set on both packets.
1893 		 * PSH : we do not really care in TCP stack,
1894 		 *       at least for 'GRO' packets.
1895 		 */
1896 		thtail->fin |= th->fin;
1897 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1898 
1899 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1900 			TCP_SKB_CB(tail)->has_rxtstamp = true;
1901 			tail->tstamp = skb->tstamp;
1902 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1903 		}
1904 
1905 		/* Not as strict as GRO. We only need to carry mss max value */
1906 		shinfo->gso_size = max(gso_size, tail_gso_size);
1907 		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
1908 
1909 		sk->sk_backlog.len += delta;
1910 		__NET_INC_STATS(sock_net(sk),
1911 				LINUX_MIB_TCPBACKLOGCOALESCE);
1912 		kfree_skb_partial(skb, fragstolen);
1913 		return false;
1914 	}
1915 	__skb_push(skb, hdrlen);
1916 
1917 no_coalesce:
1918 	limit = (u32)READ_ONCE(sk->sk_rcvbuf) + (u32)(READ_ONCE(sk->sk_sndbuf) >> 1);
1919 
1920 	/* Only socket owner can try to collapse/prune rx queues
1921 	 * to reduce memory overhead, so add a little headroom here.
1922 	 * Few sockets backlog are possibly concurrently non empty.
1923 	 */
1924 	limit += 64 * 1024;
1925 
1926 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
1927 		bh_unlock_sock(sk);
1928 		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
1929 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1930 		return true;
1931 	}
1932 	return false;
1933 }
1934 EXPORT_SYMBOL(tcp_add_backlog);
1935 
1936 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1937 {
1938 	struct tcphdr *th = (struct tcphdr *)skb->data;
1939 
1940 	return sk_filter_trim_cap(sk, skb, th->doff * 4);
1941 }
1942 EXPORT_SYMBOL(tcp_filter);
1943 
1944 static void tcp_v4_restore_cb(struct sk_buff *skb)
1945 {
1946 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1947 		sizeof(struct inet_skb_parm));
1948 }
1949 
1950 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1951 			   const struct tcphdr *th)
1952 {
1953 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1954 	 * barrier() makes sure compiler wont play fool^Waliasing games.
1955 	 */
1956 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1957 		sizeof(struct inet_skb_parm));
1958 	barrier();
1959 
1960 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1961 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1962 				    skb->len - th->doff * 4);
1963 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1964 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1965 	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1966 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1967 	TCP_SKB_CB(skb)->sacked	 = 0;
1968 	TCP_SKB_CB(skb)->has_rxtstamp =
1969 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1970 }
1971 
1972 /*
1973  *	From tcp_input.c
1974  */
1975 
1976 int tcp_v4_rcv(struct sk_buff *skb)
1977 {
1978 	struct net *net = dev_net(skb->dev);
1979 	enum skb_drop_reason drop_reason;
1980 	int sdif = inet_sdif(skb);
1981 	int dif = inet_iif(skb);
1982 	const struct iphdr *iph;
1983 	const struct tcphdr *th;
1984 	bool refcounted;
1985 	struct sock *sk;
1986 	int ret;
1987 
1988 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
1989 	if (skb->pkt_type != PACKET_HOST)
1990 		goto discard_it;
1991 
1992 	/* Count it even if it's bad */
1993 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
1994 
1995 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1996 		goto discard_it;
1997 
1998 	th = (const struct tcphdr *)skb->data;
1999 
2000 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2001 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2002 		goto bad_packet;
2003 	}
2004 	if (!pskb_may_pull(skb, th->doff * 4))
2005 		goto discard_it;
2006 
2007 	/* An explanation is required here, I think.
2008 	 * Packet length and doff are validated by header prediction,
2009 	 * provided case of th->doff==0 is eliminated.
2010 	 * So, we defer the checks. */
2011 
2012 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2013 		goto csum_error;
2014 
2015 	th = (const struct tcphdr *)skb->data;
2016 	iph = ip_hdr(skb);
2017 lookup:
2018 	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2019 			       skb, __tcp_hdrlen(th), th->source,
2020 			       th->dest, sdif, &refcounted);
2021 	if (!sk)
2022 		goto no_tcp_socket;
2023 
2024 process:
2025 	if (sk->sk_state == TCP_TIME_WAIT)
2026 		goto do_time_wait;
2027 
2028 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2029 		struct request_sock *req = inet_reqsk(sk);
2030 		bool req_stolen = false;
2031 		struct sock *nsk;
2032 
2033 		sk = req->rsk_listener;
2034 		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2035 			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2036 		else
2037 			drop_reason = tcp_inbound_md5_hash(sk, skb,
2038 						   &iph->saddr, &iph->daddr,
2039 						   AF_INET, dif, sdif);
2040 		if (unlikely(drop_reason)) {
2041 			sk_drops_add(sk, skb);
2042 			reqsk_put(req);
2043 			goto discard_it;
2044 		}
2045 		if (tcp_checksum_complete(skb)) {
2046 			reqsk_put(req);
2047 			goto csum_error;
2048 		}
2049 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2050 			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2051 			if (!nsk) {
2052 				inet_csk_reqsk_queue_drop_and_put(sk, req);
2053 				goto lookup;
2054 			}
2055 			sk = nsk;
2056 			/* reuseport_migrate_sock() has already held one sk_refcnt
2057 			 * before returning.
2058 			 */
2059 		} else {
2060 			/* We own a reference on the listener, increase it again
2061 			 * as we might lose it too soon.
2062 			 */
2063 			sock_hold(sk);
2064 		}
2065 		refcounted = true;
2066 		nsk = NULL;
2067 		if (!tcp_filter(sk, skb)) {
2068 			th = (const struct tcphdr *)skb->data;
2069 			iph = ip_hdr(skb);
2070 			tcp_v4_fill_cb(skb, iph, th);
2071 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2072 		} else {
2073 			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2074 		}
2075 		if (!nsk) {
2076 			reqsk_put(req);
2077 			if (req_stolen) {
2078 				/* Another cpu got exclusive access to req
2079 				 * and created a full blown socket.
2080 				 * Try to feed this packet to this socket
2081 				 * instead of discarding it.
2082 				 */
2083 				tcp_v4_restore_cb(skb);
2084 				sock_put(sk);
2085 				goto lookup;
2086 			}
2087 			goto discard_and_relse;
2088 		}
2089 		nf_reset_ct(skb);
2090 		if (nsk == sk) {
2091 			reqsk_put(req);
2092 			tcp_v4_restore_cb(skb);
2093 		} else if (tcp_child_process(sk, nsk, skb)) {
2094 			tcp_v4_send_reset(nsk, skb);
2095 			goto discard_and_relse;
2096 		} else {
2097 			sock_put(sk);
2098 			return 0;
2099 		}
2100 	}
2101 
2102 	if (static_branch_unlikely(&ip4_min_ttl)) {
2103 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2104 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2105 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2106 			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2107 			goto discard_and_relse;
2108 		}
2109 	}
2110 
2111 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2112 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2113 		goto discard_and_relse;
2114 	}
2115 
2116 	drop_reason = tcp_inbound_md5_hash(sk, skb, &iph->saddr,
2117 					   &iph->daddr, AF_INET, dif, sdif);
2118 	if (drop_reason)
2119 		goto discard_and_relse;
2120 
2121 	nf_reset_ct(skb);
2122 
2123 	if (tcp_filter(sk, skb)) {
2124 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2125 		goto discard_and_relse;
2126 	}
2127 	th = (const struct tcphdr *)skb->data;
2128 	iph = ip_hdr(skb);
2129 	tcp_v4_fill_cb(skb, iph, th);
2130 
2131 	skb->dev = NULL;
2132 
2133 	if (sk->sk_state == TCP_LISTEN) {
2134 		ret = tcp_v4_do_rcv(sk, skb);
2135 		goto put_and_return;
2136 	}
2137 
2138 	sk_incoming_cpu_update(sk);
2139 
2140 	bh_lock_sock_nested(sk);
2141 	tcp_segs_in(tcp_sk(sk), skb);
2142 	ret = 0;
2143 	if (!sock_owned_by_user(sk)) {
2144 		ret = tcp_v4_do_rcv(sk, skb);
2145 	} else {
2146 		if (tcp_add_backlog(sk, skb, &drop_reason))
2147 			goto discard_and_relse;
2148 	}
2149 	bh_unlock_sock(sk);
2150 
2151 put_and_return:
2152 	if (refcounted)
2153 		sock_put(sk);
2154 
2155 	return ret;
2156 
2157 no_tcp_socket:
2158 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2159 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2160 		goto discard_it;
2161 
2162 	tcp_v4_fill_cb(skb, iph, th);
2163 
2164 	if (tcp_checksum_complete(skb)) {
2165 csum_error:
2166 		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2167 		trace_tcp_bad_csum(skb);
2168 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2169 bad_packet:
2170 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2171 	} else {
2172 		tcp_v4_send_reset(NULL, skb);
2173 	}
2174 
2175 discard_it:
2176 	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2177 	/* Discard frame. */
2178 	kfree_skb_reason(skb, drop_reason);
2179 	return 0;
2180 
2181 discard_and_relse:
2182 	sk_drops_add(sk, skb);
2183 	if (refcounted)
2184 		sock_put(sk);
2185 	goto discard_it;
2186 
2187 do_time_wait:
2188 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2189 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2190 		inet_twsk_put(inet_twsk(sk));
2191 		goto discard_it;
2192 	}
2193 
2194 	tcp_v4_fill_cb(skb, iph, th);
2195 
2196 	if (tcp_checksum_complete(skb)) {
2197 		inet_twsk_put(inet_twsk(sk));
2198 		goto csum_error;
2199 	}
2200 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2201 	case TCP_TW_SYN: {
2202 		struct sock *sk2 = inet_lookup_listener(net,
2203 							net->ipv4.tcp_death_row.hashinfo,
2204 							skb, __tcp_hdrlen(th),
2205 							iph->saddr, th->source,
2206 							iph->daddr, th->dest,
2207 							inet_iif(skb),
2208 							sdif);
2209 		if (sk2) {
2210 			inet_twsk_deschedule_put(inet_twsk(sk));
2211 			sk = sk2;
2212 			tcp_v4_restore_cb(skb);
2213 			refcounted = false;
2214 			goto process;
2215 		}
2216 	}
2217 		/* to ACK */
2218 		fallthrough;
2219 	case TCP_TW_ACK:
2220 		tcp_v4_timewait_ack(sk, skb);
2221 		break;
2222 	case TCP_TW_RST:
2223 		tcp_v4_send_reset(sk, skb);
2224 		inet_twsk_deschedule_put(inet_twsk(sk));
2225 		goto discard_it;
2226 	case TCP_TW_SUCCESS:;
2227 	}
2228 	goto discard_it;
2229 }
2230 
2231 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2232 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2233 	.twsk_unique	= tcp_twsk_unique,
2234 	.twsk_destructor= tcp_twsk_destructor,
2235 };
2236 
2237 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2238 {
2239 	struct dst_entry *dst = skb_dst(skb);
2240 
2241 	if (dst && dst_hold_safe(dst)) {
2242 		rcu_assign_pointer(sk->sk_rx_dst, dst);
2243 		sk->sk_rx_dst_ifindex = skb->skb_iif;
2244 	}
2245 }
2246 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2247 
2248 const struct inet_connection_sock_af_ops ipv4_specific = {
2249 	.queue_xmit	   = ip_queue_xmit,
2250 	.send_check	   = tcp_v4_send_check,
2251 	.rebuild_header	   = inet_sk_rebuild_header,
2252 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2253 	.conn_request	   = tcp_v4_conn_request,
2254 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2255 	.net_header_len	   = sizeof(struct iphdr),
2256 	.setsockopt	   = ip_setsockopt,
2257 	.getsockopt	   = ip_getsockopt,
2258 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2259 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2260 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2261 };
2262 EXPORT_SYMBOL(ipv4_specific);
2263 
2264 #ifdef CONFIG_TCP_MD5SIG
2265 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2266 	.md5_lookup		= tcp_v4_md5_lookup,
2267 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2268 	.md5_parse		= tcp_v4_parse_md5_keys,
2269 };
2270 #endif
2271 
2272 /* NOTE: A lot of things set to zero explicitly by call to
2273  *       sk_alloc() so need not be done here.
2274  */
2275 static int tcp_v4_init_sock(struct sock *sk)
2276 {
2277 	struct inet_connection_sock *icsk = inet_csk(sk);
2278 
2279 	tcp_init_sock(sk);
2280 
2281 	icsk->icsk_af_ops = &ipv4_specific;
2282 
2283 #ifdef CONFIG_TCP_MD5SIG
2284 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2285 #endif
2286 
2287 	return 0;
2288 }
2289 
2290 void tcp_v4_destroy_sock(struct sock *sk)
2291 {
2292 	struct tcp_sock *tp = tcp_sk(sk);
2293 
2294 	trace_tcp_destroy_sock(sk);
2295 
2296 	tcp_clear_xmit_timers(sk);
2297 
2298 	tcp_cleanup_congestion_control(sk);
2299 
2300 	tcp_cleanup_ulp(sk);
2301 
2302 	/* Cleanup up the write buffer. */
2303 	tcp_write_queue_purge(sk);
2304 
2305 	/* Check if we want to disable active TFO */
2306 	tcp_fastopen_active_disable_ofo_check(sk);
2307 
2308 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2309 	skb_rbtree_purge(&tp->out_of_order_queue);
2310 
2311 #ifdef CONFIG_TCP_MD5SIG
2312 	/* Clean up the MD5 key list, if any */
2313 	if (tp->md5sig_info) {
2314 		tcp_clear_md5_list(sk);
2315 		kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2316 		tp->md5sig_info = NULL;
2317 		static_branch_slow_dec_deferred(&tcp_md5_needed);
2318 	}
2319 #endif
2320 
2321 	/* Clean up a referenced TCP bind bucket. */
2322 	if (inet_csk(sk)->icsk_bind_hash)
2323 		inet_put_port(sk);
2324 
2325 	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2326 
2327 	/* If socket is aborted during connect operation */
2328 	tcp_free_fastopen_req(tp);
2329 	tcp_fastopen_destroy_cipher(sk);
2330 	tcp_saved_syn_free(tp);
2331 
2332 	sk_sockets_allocated_dec(sk);
2333 }
2334 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2335 
2336 #ifdef CONFIG_PROC_FS
2337 /* Proc filesystem TCP sock list dumping. */
2338 
2339 static unsigned short seq_file_family(const struct seq_file *seq);
2340 
2341 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2342 {
2343 	unsigned short family = seq_file_family(seq);
2344 
2345 	/* AF_UNSPEC is used as a match all */
2346 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2347 		net_eq(sock_net(sk), seq_file_net(seq)));
2348 }
2349 
2350 /* Find a non empty bucket (starting from st->bucket)
2351  * and return the first sk from it.
2352  */
2353 static void *listening_get_first(struct seq_file *seq)
2354 {
2355 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2356 	struct tcp_iter_state *st = seq->private;
2357 
2358 	st->offset = 0;
2359 	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2360 		struct inet_listen_hashbucket *ilb2;
2361 		struct hlist_nulls_node *node;
2362 		struct sock *sk;
2363 
2364 		ilb2 = &hinfo->lhash2[st->bucket];
2365 		if (hlist_nulls_empty(&ilb2->nulls_head))
2366 			continue;
2367 
2368 		spin_lock(&ilb2->lock);
2369 		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2370 			if (seq_sk_match(seq, sk))
2371 				return sk;
2372 		}
2373 		spin_unlock(&ilb2->lock);
2374 	}
2375 
2376 	return NULL;
2377 }
2378 
2379 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2380  * If "cur" is the last one in the st->bucket,
2381  * call listening_get_first() to return the first sk of the next
2382  * non empty bucket.
2383  */
2384 static void *listening_get_next(struct seq_file *seq, void *cur)
2385 {
2386 	struct tcp_iter_state *st = seq->private;
2387 	struct inet_listen_hashbucket *ilb2;
2388 	struct hlist_nulls_node *node;
2389 	struct inet_hashinfo *hinfo;
2390 	struct sock *sk = cur;
2391 
2392 	++st->num;
2393 	++st->offset;
2394 
2395 	sk = sk_nulls_next(sk);
2396 	sk_nulls_for_each_from(sk, node) {
2397 		if (seq_sk_match(seq, sk))
2398 			return sk;
2399 	}
2400 
2401 	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2402 	ilb2 = &hinfo->lhash2[st->bucket];
2403 	spin_unlock(&ilb2->lock);
2404 	++st->bucket;
2405 	return listening_get_first(seq);
2406 }
2407 
2408 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2409 {
2410 	struct tcp_iter_state *st = seq->private;
2411 	void *rc;
2412 
2413 	st->bucket = 0;
2414 	st->offset = 0;
2415 	rc = listening_get_first(seq);
2416 
2417 	while (rc && *pos) {
2418 		rc = listening_get_next(seq, rc);
2419 		--*pos;
2420 	}
2421 	return rc;
2422 }
2423 
2424 static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2425 				const struct tcp_iter_state *st)
2426 {
2427 	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2428 }
2429 
2430 /*
2431  * Get first established socket starting from bucket given in st->bucket.
2432  * If st->bucket is zero, the very first socket in the hash is returned.
2433  */
2434 static void *established_get_first(struct seq_file *seq)
2435 {
2436 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2437 	struct tcp_iter_state *st = seq->private;
2438 
2439 	st->offset = 0;
2440 	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2441 		struct sock *sk;
2442 		struct hlist_nulls_node *node;
2443 		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2444 
2445 		/* Lockless fast path for the common case of empty buckets */
2446 		if (empty_bucket(hinfo, st))
2447 			continue;
2448 
2449 		spin_lock_bh(lock);
2450 		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2451 			if (seq_sk_match(seq, sk))
2452 				return sk;
2453 		}
2454 		spin_unlock_bh(lock);
2455 	}
2456 
2457 	return NULL;
2458 }
2459 
2460 static void *established_get_next(struct seq_file *seq, void *cur)
2461 {
2462 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2463 	struct tcp_iter_state *st = seq->private;
2464 	struct hlist_nulls_node *node;
2465 	struct sock *sk = cur;
2466 
2467 	++st->num;
2468 	++st->offset;
2469 
2470 	sk = sk_nulls_next(sk);
2471 
2472 	sk_nulls_for_each_from(sk, node) {
2473 		if (seq_sk_match(seq, sk))
2474 			return sk;
2475 	}
2476 
2477 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2478 	++st->bucket;
2479 	return established_get_first(seq);
2480 }
2481 
2482 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2483 {
2484 	struct tcp_iter_state *st = seq->private;
2485 	void *rc;
2486 
2487 	st->bucket = 0;
2488 	rc = established_get_first(seq);
2489 
2490 	while (rc && pos) {
2491 		rc = established_get_next(seq, rc);
2492 		--pos;
2493 	}
2494 	return rc;
2495 }
2496 
2497 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2498 {
2499 	void *rc;
2500 	struct tcp_iter_state *st = seq->private;
2501 
2502 	st->state = TCP_SEQ_STATE_LISTENING;
2503 	rc	  = listening_get_idx(seq, &pos);
2504 
2505 	if (!rc) {
2506 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2507 		rc	  = established_get_idx(seq, pos);
2508 	}
2509 
2510 	return rc;
2511 }
2512 
2513 static void *tcp_seek_last_pos(struct seq_file *seq)
2514 {
2515 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2516 	struct tcp_iter_state *st = seq->private;
2517 	int bucket = st->bucket;
2518 	int offset = st->offset;
2519 	int orig_num = st->num;
2520 	void *rc = NULL;
2521 
2522 	switch (st->state) {
2523 	case TCP_SEQ_STATE_LISTENING:
2524 		if (st->bucket > hinfo->lhash2_mask)
2525 			break;
2526 		rc = listening_get_first(seq);
2527 		while (offset-- && rc && bucket == st->bucket)
2528 			rc = listening_get_next(seq, rc);
2529 		if (rc)
2530 			break;
2531 		st->bucket = 0;
2532 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2533 		fallthrough;
2534 	case TCP_SEQ_STATE_ESTABLISHED:
2535 		if (st->bucket > hinfo->ehash_mask)
2536 			break;
2537 		rc = established_get_first(seq);
2538 		while (offset-- && rc && bucket == st->bucket)
2539 			rc = established_get_next(seq, rc);
2540 	}
2541 
2542 	st->num = orig_num;
2543 
2544 	return rc;
2545 }
2546 
2547 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2548 {
2549 	struct tcp_iter_state *st = seq->private;
2550 	void *rc;
2551 
2552 	if (*pos && *pos == st->last_pos) {
2553 		rc = tcp_seek_last_pos(seq);
2554 		if (rc)
2555 			goto out;
2556 	}
2557 
2558 	st->state = TCP_SEQ_STATE_LISTENING;
2559 	st->num = 0;
2560 	st->bucket = 0;
2561 	st->offset = 0;
2562 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2563 
2564 out:
2565 	st->last_pos = *pos;
2566 	return rc;
2567 }
2568 EXPORT_SYMBOL(tcp_seq_start);
2569 
2570 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2571 {
2572 	struct tcp_iter_state *st = seq->private;
2573 	void *rc = NULL;
2574 
2575 	if (v == SEQ_START_TOKEN) {
2576 		rc = tcp_get_idx(seq, 0);
2577 		goto out;
2578 	}
2579 
2580 	switch (st->state) {
2581 	case TCP_SEQ_STATE_LISTENING:
2582 		rc = listening_get_next(seq, v);
2583 		if (!rc) {
2584 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2585 			st->bucket = 0;
2586 			st->offset = 0;
2587 			rc	  = established_get_first(seq);
2588 		}
2589 		break;
2590 	case TCP_SEQ_STATE_ESTABLISHED:
2591 		rc = established_get_next(seq, v);
2592 		break;
2593 	}
2594 out:
2595 	++*pos;
2596 	st->last_pos = *pos;
2597 	return rc;
2598 }
2599 EXPORT_SYMBOL(tcp_seq_next);
2600 
2601 void tcp_seq_stop(struct seq_file *seq, void *v)
2602 {
2603 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2604 	struct tcp_iter_state *st = seq->private;
2605 
2606 	switch (st->state) {
2607 	case TCP_SEQ_STATE_LISTENING:
2608 		if (v != SEQ_START_TOKEN)
2609 			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2610 		break;
2611 	case TCP_SEQ_STATE_ESTABLISHED:
2612 		if (v)
2613 			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2614 		break;
2615 	}
2616 }
2617 EXPORT_SYMBOL(tcp_seq_stop);
2618 
2619 static void get_openreq4(const struct request_sock *req,
2620 			 struct seq_file *f, int i)
2621 {
2622 	const struct inet_request_sock *ireq = inet_rsk(req);
2623 	long delta = req->rsk_timer.expires - jiffies;
2624 
2625 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2626 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2627 		i,
2628 		ireq->ir_loc_addr,
2629 		ireq->ir_num,
2630 		ireq->ir_rmt_addr,
2631 		ntohs(ireq->ir_rmt_port),
2632 		TCP_SYN_RECV,
2633 		0, 0, /* could print option size, but that is af dependent. */
2634 		1,    /* timers active (only the expire timer) */
2635 		jiffies_delta_to_clock_t(delta),
2636 		req->num_timeout,
2637 		from_kuid_munged(seq_user_ns(f),
2638 				 sock_i_uid(req->rsk_listener)),
2639 		0,  /* non standard timer */
2640 		0, /* open_requests have no inode */
2641 		0,
2642 		req);
2643 }
2644 
2645 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2646 {
2647 	int timer_active;
2648 	unsigned long timer_expires;
2649 	const struct tcp_sock *tp = tcp_sk(sk);
2650 	const struct inet_connection_sock *icsk = inet_csk(sk);
2651 	const struct inet_sock *inet = inet_sk(sk);
2652 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2653 	__be32 dest = inet->inet_daddr;
2654 	__be32 src = inet->inet_rcv_saddr;
2655 	__u16 destp = ntohs(inet->inet_dport);
2656 	__u16 srcp = ntohs(inet->inet_sport);
2657 	int rx_queue;
2658 	int state;
2659 
2660 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2661 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2662 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2663 		timer_active	= 1;
2664 		timer_expires	= icsk->icsk_timeout;
2665 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2666 		timer_active	= 4;
2667 		timer_expires	= icsk->icsk_timeout;
2668 	} else if (timer_pending(&sk->sk_timer)) {
2669 		timer_active	= 2;
2670 		timer_expires	= sk->sk_timer.expires;
2671 	} else {
2672 		timer_active	= 0;
2673 		timer_expires = jiffies;
2674 	}
2675 
2676 	state = inet_sk_state_load(sk);
2677 	if (state == TCP_LISTEN)
2678 		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2679 	else
2680 		/* Because we don't lock the socket,
2681 		 * we might find a transient negative value.
2682 		 */
2683 		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2684 				      READ_ONCE(tp->copied_seq), 0);
2685 
2686 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2687 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2688 		i, src, srcp, dest, destp, state,
2689 		READ_ONCE(tp->write_seq) - tp->snd_una,
2690 		rx_queue,
2691 		timer_active,
2692 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2693 		icsk->icsk_retransmits,
2694 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2695 		icsk->icsk_probes_out,
2696 		sock_i_ino(sk),
2697 		refcount_read(&sk->sk_refcnt), sk,
2698 		jiffies_to_clock_t(icsk->icsk_rto),
2699 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2700 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2701 		tcp_snd_cwnd(tp),
2702 		state == TCP_LISTEN ?
2703 		    fastopenq->max_qlen :
2704 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2705 }
2706 
2707 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2708 			       struct seq_file *f, int i)
2709 {
2710 	long delta = tw->tw_timer.expires - jiffies;
2711 	__be32 dest, src;
2712 	__u16 destp, srcp;
2713 
2714 	dest  = tw->tw_daddr;
2715 	src   = tw->tw_rcv_saddr;
2716 	destp = ntohs(tw->tw_dport);
2717 	srcp  = ntohs(tw->tw_sport);
2718 
2719 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2720 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2721 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2722 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2723 		refcount_read(&tw->tw_refcnt), tw);
2724 }
2725 
2726 #define TMPSZ 150
2727 
2728 static int tcp4_seq_show(struct seq_file *seq, void *v)
2729 {
2730 	struct tcp_iter_state *st;
2731 	struct sock *sk = v;
2732 
2733 	seq_setwidth(seq, TMPSZ - 1);
2734 	if (v == SEQ_START_TOKEN) {
2735 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2736 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2737 			   "inode");
2738 		goto out;
2739 	}
2740 	st = seq->private;
2741 
2742 	if (sk->sk_state == TCP_TIME_WAIT)
2743 		get_timewait4_sock(v, seq, st->num);
2744 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2745 		get_openreq4(v, seq, st->num);
2746 	else
2747 		get_tcp4_sock(v, seq, st->num);
2748 out:
2749 	seq_pad(seq, '\n');
2750 	return 0;
2751 }
2752 
2753 #ifdef CONFIG_BPF_SYSCALL
2754 struct bpf_tcp_iter_state {
2755 	struct tcp_iter_state state;
2756 	unsigned int cur_sk;
2757 	unsigned int end_sk;
2758 	unsigned int max_sk;
2759 	struct sock **batch;
2760 	bool st_bucket_done;
2761 };
2762 
2763 struct bpf_iter__tcp {
2764 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2765 	__bpf_md_ptr(struct sock_common *, sk_common);
2766 	uid_t uid __aligned(8);
2767 };
2768 
2769 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2770 			     struct sock_common *sk_common, uid_t uid)
2771 {
2772 	struct bpf_iter__tcp ctx;
2773 
2774 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2775 	ctx.meta = meta;
2776 	ctx.sk_common = sk_common;
2777 	ctx.uid = uid;
2778 	return bpf_iter_run_prog(prog, &ctx);
2779 }
2780 
2781 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
2782 {
2783 	while (iter->cur_sk < iter->end_sk)
2784 		sock_gen_put(iter->batch[iter->cur_sk++]);
2785 }
2786 
2787 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
2788 				      unsigned int new_batch_sz)
2789 {
2790 	struct sock **new_batch;
2791 
2792 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
2793 			     GFP_USER | __GFP_NOWARN);
2794 	if (!new_batch)
2795 		return -ENOMEM;
2796 
2797 	bpf_iter_tcp_put_batch(iter);
2798 	kvfree(iter->batch);
2799 	iter->batch = new_batch;
2800 	iter->max_sk = new_batch_sz;
2801 
2802 	return 0;
2803 }
2804 
2805 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
2806 						 struct sock *start_sk)
2807 {
2808 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2809 	struct bpf_tcp_iter_state *iter = seq->private;
2810 	struct tcp_iter_state *st = &iter->state;
2811 	struct hlist_nulls_node *node;
2812 	unsigned int expected = 1;
2813 	struct sock *sk;
2814 
2815 	sock_hold(start_sk);
2816 	iter->batch[iter->end_sk++] = start_sk;
2817 
2818 	sk = sk_nulls_next(start_sk);
2819 	sk_nulls_for_each_from(sk, node) {
2820 		if (seq_sk_match(seq, sk)) {
2821 			if (iter->end_sk < iter->max_sk) {
2822 				sock_hold(sk);
2823 				iter->batch[iter->end_sk++] = sk;
2824 			}
2825 			expected++;
2826 		}
2827 	}
2828 	spin_unlock(&hinfo->lhash2[st->bucket].lock);
2829 
2830 	return expected;
2831 }
2832 
2833 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
2834 						   struct sock *start_sk)
2835 {
2836 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2837 	struct bpf_tcp_iter_state *iter = seq->private;
2838 	struct tcp_iter_state *st = &iter->state;
2839 	struct hlist_nulls_node *node;
2840 	unsigned int expected = 1;
2841 	struct sock *sk;
2842 
2843 	sock_hold(start_sk);
2844 	iter->batch[iter->end_sk++] = start_sk;
2845 
2846 	sk = sk_nulls_next(start_sk);
2847 	sk_nulls_for_each_from(sk, node) {
2848 		if (seq_sk_match(seq, sk)) {
2849 			if (iter->end_sk < iter->max_sk) {
2850 				sock_hold(sk);
2851 				iter->batch[iter->end_sk++] = sk;
2852 			}
2853 			expected++;
2854 		}
2855 	}
2856 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2857 
2858 	return expected;
2859 }
2860 
2861 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
2862 {
2863 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2864 	struct bpf_tcp_iter_state *iter = seq->private;
2865 	struct tcp_iter_state *st = &iter->state;
2866 	unsigned int expected;
2867 	bool resized = false;
2868 	struct sock *sk;
2869 
2870 	/* The st->bucket is done.  Directly advance to the next
2871 	 * bucket instead of having the tcp_seek_last_pos() to skip
2872 	 * one by one in the current bucket and eventually find out
2873 	 * it has to advance to the next bucket.
2874 	 */
2875 	if (iter->st_bucket_done) {
2876 		st->offset = 0;
2877 		st->bucket++;
2878 		if (st->state == TCP_SEQ_STATE_LISTENING &&
2879 		    st->bucket > hinfo->lhash2_mask) {
2880 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2881 			st->bucket = 0;
2882 		}
2883 	}
2884 
2885 again:
2886 	/* Get a new batch */
2887 	iter->cur_sk = 0;
2888 	iter->end_sk = 0;
2889 	iter->st_bucket_done = false;
2890 
2891 	sk = tcp_seek_last_pos(seq);
2892 	if (!sk)
2893 		return NULL; /* Done */
2894 
2895 	if (st->state == TCP_SEQ_STATE_LISTENING)
2896 		expected = bpf_iter_tcp_listening_batch(seq, sk);
2897 	else
2898 		expected = bpf_iter_tcp_established_batch(seq, sk);
2899 
2900 	if (iter->end_sk == expected) {
2901 		iter->st_bucket_done = true;
2902 		return sk;
2903 	}
2904 
2905 	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
2906 		resized = true;
2907 		goto again;
2908 	}
2909 
2910 	return sk;
2911 }
2912 
2913 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
2914 {
2915 	/* bpf iter does not support lseek, so it always
2916 	 * continue from where it was stop()-ped.
2917 	 */
2918 	if (*pos)
2919 		return bpf_iter_tcp_batch(seq);
2920 
2921 	return SEQ_START_TOKEN;
2922 }
2923 
2924 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2925 {
2926 	struct bpf_tcp_iter_state *iter = seq->private;
2927 	struct tcp_iter_state *st = &iter->state;
2928 	struct sock *sk;
2929 
2930 	/* Whenever seq_next() is called, the iter->cur_sk is
2931 	 * done with seq_show(), so advance to the next sk in
2932 	 * the batch.
2933 	 */
2934 	if (iter->cur_sk < iter->end_sk) {
2935 		/* Keeping st->num consistent in tcp_iter_state.
2936 		 * bpf_iter_tcp does not use st->num.
2937 		 * meta.seq_num is used instead.
2938 		 */
2939 		st->num++;
2940 		/* Move st->offset to the next sk in the bucket such that
2941 		 * the future start() will resume at st->offset in
2942 		 * st->bucket.  See tcp_seek_last_pos().
2943 		 */
2944 		st->offset++;
2945 		sock_gen_put(iter->batch[iter->cur_sk++]);
2946 	}
2947 
2948 	if (iter->cur_sk < iter->end_sk)
2949 		sk = iter->batch[iter->cur_sk];
2950 	else
2951 		sk = bpf_iter_tcp_batch(seq);
2952 
2953 	++*pos;
2954 	/* Keeping st->last_pos consistent in tcp_iter_state.
2955 	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
2956 	 */
2957 	st->last_pos = *pos;
2958 	return sk;
2959 }
2960 
2961 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
2962 {
2963 	struct bpf_iter_meta meta;
2964 	struct bpf_prog *prog;
2965 	struct sock *sk = v;
2966 	bool slow;
2967 	uid_t uid;
2968 	int ret;
2969 
2970 	if (v == SEQ_START_TOKEN)
2971 		return 0;
2972 
2973 	if (sk_fullsock(sk))
2974 		slow = lock_sock_fast(sk);
2975 
2976 	if (unlikely(sk_unhashed(sk))) {
2977 		ret = SEQ_SKIP;
2978 		goto unlock;
2979 	}
2980 
2981 	if (sk->sk_state == TCP_TIME_WAIT) {
2982 		uid = 0;
2983 	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
2984 		const struct request_sock *req = v;
2985 
2986 		uid = from_kuid_munged(seq_user_ns(seq),
2987 				       sock_i_uid(req->rsk_listener));
2988 	} else {
2989 		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
2990 	}
2991 
2992 	meta.seq = seq;
2993 	prog = bpf_iter_get_info(&meta, false);
2994 	ret = tcp_prog_seq_show(prog, &meta, v, uid);
2995 
2996 unlock:
2997 	if (sk_fullsock(sk))
2998 		unlock_sock_fast(sk, slow);
2999 	return ret;
3000 
3001 }
3002 
3003 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3004 {
3005 	struct bpf_tcp_iter_state *iter = seq->private;
3006 	struct bpf_iter_meta meta;
3007 	struct bpf_prog *prog;
3008 
3009 	if (!v) {
3010 		meta.seq = seq;
3011 		prog = bpf_iter_get_info(&meta, true);
3012 		if (prog)
3013 			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3014 	}
3015 
3016 	if (iter->cur_sk < iter->end_sk) {
3017 		bpf_iter_tcp_put_batch(iter);
3018 		iter->st_bucket_done = false;
3019 	}
3020 }
3021 
3022 static const struct seq_operations bpf_iter_tcp_seq_ops = {
3023 	.show		= bpf_iter_tcp_seq_show,
3024 	.start		= bpf_iter_tcp_seq_start,
3025 	.next		= bpf_iter_tcp_seq_next,
3026 	.stop		= bpf_iter_tcp_seq_stop,
3027 };
3028 #endif
3029 static unsigned short seq_file_family(const struct seq_file *seq)
3030 {
3031 	const struct tcp_seq_afinfo *afinfo;
3032 
3033 #ifdef CONFIG_BPF_SYSCALL
3034 	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3035 	if (seq->op == &bpf_iter_tcp_seq_ops)
3036 		return AF_UNSPEC;
3037 #endif
3038 
3039 	/* Iterated from proc fs */
3040 	afinfo = pde_data(file_inode(seq->file));
3041 	return afinfo->family;
3042 }
3043 
3044 static const struct seq_operations tcp4_seq_ops = {
3045 	.show		= tcp4_seq_show,
3046 	.start		= tcp_seq_start,
3047 	.next		= tcp_seq_next,
3048 	.stop		= tcp_seq_stop,
3049 };
3050 
3051 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
3052 	.family		= AF_INET,
3053 };
3054 
3055 static int __net_init tcp4_proc_init_net(struct net *net)
3056 {
3057 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3058 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3059 		return -ENOMEM;
3060 	return 0;
3061 }
3062 
3063 static void __net_exit tcp4_proc_exit_net(struct net *net)
3064 {
3065 	remove_proc_entry("tcp", net->proc_net);
3066 }
3067 
3068 static struct pernet_operations tcp4_net_ops = {
3069 	.init = tcp4_proc_init_net,
3070 	.exit = tcp4_proc_exit_net,
3071 };
3072 
3073 int __init tcp4_proc_init(void)
3074 {
3075 	return register_pernet_subsys(&tcp4_net_ops);
3076 }
3077 
3078 void tcp4_proc_exit(void)
3079 {
3080 	unregister_pernet_subsys(&tcp4_net_ops);
3081 }
3082 #endif /* CONFIG_PROC_FS */
3083 
3084 /* @wake is one when sk_stream_write_space() calls us.
3085  * This sends EPOLLOUT only if notsent_bytes is half the limit.
3086  * This mimics the strategy used in sock_def_write_space().
3087  */
3088 bool tcp_stream_memory_free(const struct sock *sk, int wake)
3089 {
3090 	const struct tcp_sock *tp = tcp_sk(sk);
3091 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3092 			    READ_ONCE(tp->snd_nxt);
3093 
3094 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3095 }
3096 EXPORT_SYMBOL(tcp_stream_memory_free);
3097 
3098 struct proto tcp_prot = {
3099 	.name			= "TCP",
3100 	.owner			= THIS_MODULE,
3101 	.close			= tcp_close,
3102 	.pre_connect		= tcp_v4_pre_connect,
3103 	.connect		= tcp_v4_connect,
3104 	.disconnect		= tcp_disconnect,
3105 	.accept			= inet_csk_accept,
3106 	.ioctl			= tcp_ioctl,
3107 	.init			= tcp_v4_init_sock,
3108 	.destroy		= tcp_v4_destroy_sock,
3109 	.shutdown		= tcp_shutdown,
3110 	.setsockopt		= tcp_setsockopt,
3111 	.getsockopt		= tcp_getsockopt,
3112 	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3113 	.keepalive		= tcp_set_keepalive,
3114 	.recvmsg		= tcp_recvmsg,
3115 	.sendmsg		= tcp_sendmsg,
3116 	.sendpage		= tcp_sendpage,
3117 	.backlog_rcv		= tcp_v4_do_rcv,
3118 	.release_cb		= tcp_release_cb,
3119 	.hash			= inet_hash,
3120 	.unhash			= inet_unhash,
3121 	.get_port		= inet_csk_get_port,
3122 	.put_port		= inet_put_port,
3123 #ifdef CONFIG_BPF_SYSCALL
3124 	.psock_update_sk_prot	= tcp_bpf_update_proto,
3125 #endif
3126 	.enter_memory_pressure	= tcp_enter_memory_pressure,
3127 	.leave_memory_pressure	= tcp_leave_memory_pressure,
3128 	.stream_memory_free	= tcp_stream_memory_free,
3129 	.sockets_allocated	= &tcp_sockets_allocated,
3130 	.orphan_count		= &tcp_orphan_count,
3131 
3132 	.memory_allocated	= &tcp_memory_allocated,
3133 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3134 
3135 	.memory_pressure	= &tcp_memory_pressure,
3136 	.sysctl_mem		= sysctl_tcp_mem,
3137 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3138 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3139 	.max_header		= MAX_TCP_HEADER,
3140 	.obj_size		= sizeof(struct tcp_sock),
3141 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3142 	.twsk_prot		= &tcp_timewait_sock_ops,
3143 	.rsk_prot		= &tcp_request_sock_ops,
3144 	.h.hashinfo		= NULL,
3145 	.no_autobind		= true,
3146 	.diag_destroy		= tcp_abort,
3147 };
3148 EXPORT_SYMBOL(tcp_prot);
3149 
3150 static void __net_exit tcp_sk_exit(struct net *net)
3151 {
3152 	if (net->ipv4.tcp_congestion_control)
3153 		bpf_module_put(net->ipv4.tcp_congestion_control,
3154 			       net->ipv4.tcp_congestion_control->owner);
3155 }
3156 
3157 static void __net_init tcp_set_hashinfo(struct net *net)
3158 {
3159 	struct inet_hashinfo *hinfo;
3160 	unsigned int ehash_entries;
3161 	struct net *old_net;
3162 
3163 	if (net_eq(net, &init_net))
3164 		goto fallback;
3165 
3166 	old_net = current->nsproxy->net_ns;
3167 	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3168 	if (!ehash_entries)
3169 		goto fallback;
3170 
3171 	ehash_entries = roundup_pow_of_two(ehash_entries);
3172 	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3173 	if (!hinfo) {
3174 		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3175 			"for a netns, fallback to the global one\n",
3176 			ehash_entries);
3177 fallback:
3178 		hinfo = &tcp_hashinfo;
3179 		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3180 	}
3181 
3182 	net->ipv4.tcp_death_row.hashinfo = hinfo;
3183 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3184 	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3185 }
3186 
3187 static int __net_init tcp_sk_init(struct net *net)
3188 {
3189 	net->ipv4.sysctl_tcp_ecn = 2;
3190 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3191 
3192 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3193 	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3194 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3195 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3196 	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3197 
3198 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3199 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3200 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3201 
3202 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3203 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3204 	net->ipv4.sysctl_tcp_syncookies = 1;
3205 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3206 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3207 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3208 	net->ipv4.sysctl_tcp_orphan_retries = 0;
3209 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3210 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3211 	net->ipv4.sysctl_tcp_tw_reuse = 2;
3212 	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3213 
3214 	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3215 	tcp_set_hashinfo(net);
3216 
3217 	net->ipv4.sysctl_tcp_sack = 1;
3218 	net->ipv4.sysctl_tcp_window_scaling = 1;
3219 	net->ipv4.sysctl_tcp_timestamps = 1;
3220 	net->ipv4.sysctl_tcp_early_retrans = 3;
3221 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3222 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3223 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3224 	net->ipv4.sysctl_tcp_max_reordering = 300;
3225 	net->ipv4.sysctl_tcp_dsack = 1;
3226 	net->ipv4.sysctl_tcp_app_win = 31;
3227 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3228 	net->ipv4.sysctl_tcp_frto = 2;
3229 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3230 	/* This limits the percentage of the congestion window which we
3231 	 * will allow a single TSO frame to consume.  Building TSO frames
3232 	 * which are too large can cause TCP streams to be bursty.
3233 	 */
3234 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3235 	/* Default TSQ limit of 16 TSO segments */
3236 	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3237 
3238 	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3239 	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3240 
3241 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3242 	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3243 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3244 	net->ipv4.sysctl_tcp_autocorking = 1;
3245 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3246 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3247 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3248 	if (net != &init_net) {
3249 		memcpy(net->ipv4.sysctl_tcp_rmem,
3250 		       init_net.ipv4.sysctl_tcp_rmem,
3251 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3252 		memcpy(net->ipv4.sysctl_tcp_wmem,
3253 		       init_net.ipv4.sysctl_tcp_wmem,
3254 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3255 	}
3256 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3257 	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3258 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3259 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3260 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3261 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3262 
3263 	/* Set default values for PLB */
3264 	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3265 	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3266 	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3267 	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3268 	/* Default congestion threshold for PLB to mark a round is 50% */
3269 	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3270 
3271 	/* Reno is always built in */
3272 	if (!net_eq(net, &init_net) &&
3273 	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3274 			       init_net.ipv4.tcp_congestion_control->owner))
3275 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3276 	else
3277 		net->ipv4.tcp_congestion_control = &tcp_reno;
3278 
3279 	return 0;
3280 }
3281 
3282 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3283 {
3284 	struct net *net;
3285 
3286 	tcp_twsk_purge(net_exit_list, AF_INET);
3287 
3288 	list_for_each_entry(net, net_exit_list, exit_list) {
3289 		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3290 		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3291 		tcp_fastopen_ctx_destroy(net);
3292 	}
3293 }
3294 
3295 static struct pernet_operations __net_initdata tcp_sk_ops = {
3296        .init	   = tcp_sk_init,
3297        .exit	   = tcp_sk_exit,
3298        .exit_batch = tcp_sk_exit_batch,
3299 };
3300 
3301 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3302 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3303 		     struct sock_common *sk_common, uid_t uid)
3304 
3305 #define INIT_BATCH_SZ 16
3306 
3307 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3308 {
3309 	struct bpf_tcp_iter_state *iter = priv_data;
3310 	int err;
3311 
3312 	err = bpf_iter_init_seq_net(priv_data, aux);
3313 	if (err)
3314 		return err;
3315 
3316 	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3317 	if (err) {
3318 		bpf_iter_fini_seq_net(priv_data);
3319 		return err;
3320 	}
3321 
3322 	return 0;
3323 }
3324 
3325 static void bpf_iter_fini_tcp(void *priv_data)
3326 {
3327 	struct bpf_tcp_iter_state *iter = priv_data;
3328 
3329 	bpf_iter_fini_seq_net(priv_data);
3330 	kvfree(iter->batch);
3331 }
3332 
3333 static const struct bpf_iter_seq_info tcp_seq_info = {
3334 	.seq_ops		= &bpf_iter_tcp_seq_ops,
3335 	.init_seq_private	= bpf_iter_init_tcp,
3336 	.fini_seq_private	= bpf_iter_fini_tcp,
3337 	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3338 };
3339 
3340 static const struct bpf_func_proto *
3341 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3342 			    const struct bpf_prog *prog)
3343 {
3344 	switch (func_id) {
3345 	case BPF_FUNC_setsockopt:
3346 		return &bpf_sk_setsockopt_proto;
3347 	case BPF_FUNC_getsockopt:
3348 		return &bpf_sk_getsockopt_proto;
3349 	default:
3350 		return NULL;
3351 	}
3352 }
3353 
3354 static struct bpf_iter_reg tcp_reg_info = {
3355 	.target			= "tcp",
3356 	.ctx_arg_info_size	= 1,
3357 	.ctx_arg_info		= {
3358 		{ offsetof(struct bpf_iter__tcp, sk_common),
3359 		  PTR_TO_BTF_ID_OR_NULL },
3360 	},
3361 	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3362 	.seq_info		= &tcp_seq_info,
3363 };
3364 
3365 static void __init bpf_iter_register(void)
3366 {
3367 	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3368 	if (bpf_iter_reg_target(&tcp_reg_info))
3369 		pr_warn("Warning: could not register bpf iterator tcp\n");
3370 }
3371 
3372 #endif
3373 
3374 void __init tcp_v4_init(void)
3375 {
3376 	int cpu, res;
3377 
3378 	for_each_possible_cpu(cpu) {
3379 		struct sock *sk;
3380 
3381 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3382 					   IPPROTO_TCP, &init_net);
3383 		if (res)
3384 			panic("Failed to create the TCP control socket.\n");
3385 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3386 
3387 		/* Please enforce IP_DF and IPID==0 for RST and
3388 		 * ACK sent in SYN-RECV and TIME-WAIT state.
3389 		 */
3390 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3391 
3392 		per_cpu(ipv4_tcp_sk, cpu) = sk;
3393 	}
3394 	if (register_pernet_subsys(&tcp_sk_ops))
3395 		panic("Failed to create the TCP control socket.\n");
3396 
3397 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3398 	bpf_iter_register();
3399 #endif
3400 }
3401