xref: /linux/net/ipv4/tcp_ipv4.c (revision 00389c58ffe993782a8ba4bb5a34a102b1f6fe24)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  *		IPv4 specific functions
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  */
18 
19 /*
20  * Changes:
21  *		David S. Miller	:	New socket lookup architecture.
22  *					This code is dedicated to John Dyson.
23  *		David S. Miller :	Change semantics of established hash,
24  *					half is devoted to TIME_WAIT sockets
25  *					and the rest go in the other half.
26  *		Andi Kleen :		Add support for syncookies and fixed
27  *					some bugs: ip options weren't passed to
28  *					the TCP layer, missed a check for an
29  *					ACK bit.
30  *		Andi Kleen :		Implemented fast path mtu discovery.
31  *	     				Fixed many serious bugs in the
32  *					request_sock handling and moved
33  *					most of it into the af independent code.
34  *					Added tail drop and some other bugfixes.
35  *					Added new listen semantics.
36  *		Mike McLagan	:	Routing by source
37  *	Juan Jose Ciarlante:		ip_dynaddr bits
38  *		Andi Kleen:		various fixes.
39  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
40  *					coma.
41  *	Andi Kleen		:	Fix new listen.
42  *	Andi Kleen		:	Fix accept error reporting.
43  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
44  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
45  *					a single port at the same time.
46  */
47 
48 #define pr_fmt(fmt) "TCP: " fmt
49 
50 #include <linux/bottom_half.h>
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/module.h>
54 #include <linux/random.h>
55 #include <linux/cache.h>
56 #include <linux/jhash.h>
57 #include <linux/init.h>
58 #include <linux/times.h>
59 #include <linux/slab.h>
60 
61 #include <net/net_namespace.h>
62 #include <net/icmp.h>
63 #include <net/inet_hashtables.h>
64 #include <net/tcp.h>
65 #include <net/transp_v6.h>
66 #include <net/ipv6.h>
67 #include <net/inet_common.h>
68 #include <net/timewait_sock.h>
69 #include <net/xfrm.h>
70 #include <net/secure_seq.h>
71 #include <net/busy_poll.h>
72 
73 #include <linux/inet.h>
74 #include <linux/ipv6.h>
75 #include <linux/stddef.h>
76 #include <linux/proc_fs.h>
77 #include <linux/seq_file.h>
78 #include <linux/inetdevice.h>
79 #include <linux/btf_ids.h>
80 
81 #include <crypto/hash.h>
82 #include <linux/scatterlist.h>
83 
84 #include <trace/events/tcp.h>
85 
86 #ifdef CONFIG_TCP_MD5SIG
87 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
88 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
89 #endif
90 
91 struct inet_hashinfo tcp_hashinfo;
92 EXPORT_SYMBOL(tcp_hashinfo);
93 
94 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
95 
96 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
97 {
98 	return secure_tcp_seq(ip_hdr(skb)->daddr,
99 			      ip_hdr(skb)->saddr,
100 			      tcp_hdr(skb)->dest,
101 			      tcp_hdr(skb)->source);
102 }
103 
104 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
105 {
106 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
107 }
108 
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
112 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
113 	struct tcp_sock *tp = tcp_sk(sk);
114 	int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse;
115 
116 	if (reuse == 2) {
117 		/* Still does not detect *everything* that goes through
118 		 * lo, since we require a loopback src or dst address
119 		 * or direct binding to 'lo' interface.
120 		 */
121 		bool loopback = false;
122 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
123 			loopback = true;
124 #if IS_ENABLED(CONFIG_IPV6)
125 		if (tw->tw_family == AF_INET6) {
126 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
127 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
128 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
129 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
130 				loopback = true;
131 		} else
132 #endif
133 		{
134 			if (ipv4_is_loopback(tw->tw_daddr) ||
135 			    ipv4_is_loopback(tw->tw_rcv_saddr))
136 				loopback = true;
137 		}
138 		if (!loopback)
139 			reuse = 0;
140 	}
141 
142 	/* With PAWS, it is safe from the viewpoint
143 	   of data integrity. Even without PAWS it is safe provided sequence
144 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
145 
146 	   Actually, the idea is close to VJ's one, only timestamp cache is
147 	   held not per host, but per port pair and TW bucket is used as state
148 	   holder.
149 
150 	   If TW bucket has been already destroyed we fall back to VJ's scheme
151 	   and use initial timestamp retrieved from peer table.
152 	 */
153 	if (tcptw->tw_ts_recent_stamp &&
154 	    (!twp || (reuse && time_after32(ktime_get_seconds(),
155 					    tcptw->tw_ts_recent_stamp)))) {
156 		/* In case of repair and re-using TIME-WAIT sockets we still
157 		 * want to be sure that it is safe as above but honor the
158 		 * sequence numbers and time stamps set as part of the repair
159 		 * process.
160 		 *
161 		 * Without this check re-using a TIME-WAIT socket with TCP
162 		 * repair would accumulate a -1 on the repair assigned
163 		 * sequence number. The first time it is reused the sequence
164 		 * is -1, the second time -2, etc. This fixes that issue
165 		 * without appearing to create any others.
166 		 */
167 		if (likely(!tp->repair)) {
168 			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
169 
170 			if (!seq)
171 				seq = 1;
172 			WRITE_ONCE(tp->write_seq, seq);
173 			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
174 			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
175 		}
176 		sock_hold(sktw);
177 		return 1;
178 	}
179 
180 	return 0;
181 }
182 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
183 
184 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
185 			      int addr_len)
186 {
187 	/* This check is replicated from tcp_v4_connect() and intended to
188 	 * prevent BPF program called below from accessing bytes that are out
189 	 * of the bound specified by user in addr_len.
190 	 */
191 	if (addr_len < sizeof(struct sockaddr_in))
192 		return -EINVAL;
193 
194 	sock_owned_by_me(sk);
195 
196 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
197 }
198 
199 /* This will initiate an outgoing connection. */
200 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
201 {
202 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
203 	struct inet_sock *inet = inet_sk(sk);
204 	struct tcp_sock *tp = tcp_sk(sk);
205 	__be16 orig_sport, orig_dport;
206 	__be32 daddr, nexthop;
207 	struct flowi4 *fl4;
208 	struct rtable *rt;
209 	int err;
210 	struct ip_options_rcu *inet_opt;
211 	struct inet_timewait_death_row *tcp_death_row = sock_net(sk)->ipv4.tcp_death_row;
212 
213 	if (addr_len < sizeof(struct sockaddr_in))
214 		return -EINVAL;
215 
216 	if (usin->sin_family != AF_INET)
217 		return -EAFNOSUPPORT;
218 
219 	nexthop = daddr = usin->sin_addr.s_addr;
220 	inet_opt = rcu_dereference_protected(inet->inet_opt,
221 					     lockdep_sock_is_held(sk));
222 	if (inet_opt && inet_opt->opt.srr) {
223 		if (!daddr)
224 			return -EINVAL;
225 		nexthop = inet_opt->opt.faddr;
226 	}
227 
228 	orig_sport = inet->inet_sport;
229 	orig_dport = usin->sin_port;
230 	fl4 = &inet->cork.fl.u.ip4;
231 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
232 			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
233 			      IPPROTO_TCP,
234 			      orig_sport, orig_dport, sk);
235 	if (IS_ERR(rt)) {
236 		err = PTR_ERR(rt);
237 		if (err == -ENETUNREACH)
238 			IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
239 		return err;
240 	}
241 
242 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
243 		ip_rt_put(rt);
244 		return -ENETUNREACH;
245 	}
246 
247 	if (!inet_opt || !inet_opt->opt.srr)
248 		daddr = fl4->daddr;
249 
250 	if (!inet->inet_saddr)
251 		inet->inet_saddr = fl4->saddr;
252 	sk_rcv_saddr_set(sk, inet->inet_saddr);
253 
254 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
255 		/* Reset inherited state */
256 		tp->rx_opt.ts_recent	   = 0;
257 		tp->rx_opt.ts_recent_stamp = 0;
258 		if (likely(!tp->repair))
259 			WRITE_ONCE(tp->write_seq, 0);
260 	}
261 
262 	inet->inet_dport = usin->sin_port;
263 	sk_daddr_set(sk, daddr);
264 
265 	inet_csk(sk)->icsk_ext_hdr_len = 0;
266 	if (inet_opt)
267 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
268 
269 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
270 
271 	/* Socket identity is still unknown (sport may be zero).
272 	 * However we set state to SYN-SENT and not releasing socket
273 	 * lock select source port, enter ourselves into the hash tables and
274 	 * complete initialization after this.
275 	 */
276 	tcp_set_state(sk, TCP_SYN_SENT);
277 	err = inet_hash_connect(tcp_death_row, sk);
278 	if (err)
279 		goto failure;
280 
281 	sk_set_txhash(sk);
282 
283 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
284 			       inet->inet_sport, inet->inet_dport, sk);
285 	if (IS_ERR(rt)) {
286 		err = PTR_ERR(rt);
287 		rt = NULL;
288 		goto failure;
289 	}
290 	/* OK, now commit destination to socket.  */
291 	sk->sk_gso_type = SKB_GSO_TCPV4;
292 	sk_setup_caps(sk, &rt->dst);
293 	rt = NULL;
294 
295 	if (likely(!tp->repair)) {
296 		if (!tp->write_seq)
297 			WRITE_ONCE(tp->write_seq,
298 				   secure_tcp_seq(inet->inet_saddr,
299 						  inet->inet_daddr,
300 						  inet->inet_sport,
301 						  usin->sin_port));
302 		tp->tsoffset = secure_tcp_ts_off(sock_net(sk),
303 						 inet->inet_saddr,
304 						 inet->inet_daddr);
305 	}
306 
307 	inet->inet_id = prandom_u32();
308 
309 	if (tcp_fastopen_defer_connect(sk, &err))
310 		return err;
311 	if (err)
312 		goto failure;
313 
314 	err = tcp_connect(sk);
315 
316 	if (err)
317 		goto failure;
318 
319 	return 0;
320 
321 failure:
322 	/*
323 	 * This unhashes the socket and releases the local port,
324 	 * if necessary.
325 	 */
326 	tcp_set_state(sk, TCP_CLOSE);
327 	ip_rt_put(rt);
328 	sk->sk_route_caps = 0;
329 	inet->inet_dport = 0;
330 	return err;
331 }
332 EXPORT_SYMBOL(tcp_v4_connect);
333 
334 /*
335  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
336  * It can be called through tcp_release_cb() if socket was owned by user
337  * at the time tcp_v4_err() was called to handle ICMP message.
338  */
339 void tcp_v4_mtu_reduced(struct sock *sk)
340 {
341 	struct inet_sock *inet = inet_sk(sk);
342 	struct dst_entry *dst;
343 	u32 mtu;
344 
345 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
346 		return;
347 	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
348 	dst = inet_csk_update_pmtu(sk, mtu);
349 	if (!dst)
350 		return;
351 
352 	/* Something is about to be wrong... Remember soft error
353 	 * for the case, if this connection will not able to recover.
354 	 */
355 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
356 		sk->sk_err_soft = EMSGSIZE;
357 
358 	mtu = dst_mtu(dst);
359 
360 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
361 	    ip_sk_accept_pmtu(sk) &&
362 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
363 		tcp_sync_mss(sk, mtu);
364 
365 		/* Resend the TCP packet because it's
366 		 * clear that the old packet has been
367 		 * dropped. This is the new "fast" path mtu
368 		 * discovery.
369 		 */
370 		tcp_simple_retransmit(sk);
371 	} /* else let the usual retransmit timer handle it */
372 }
373 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
374 
375 static void do_redirect(struct sk_buff *skb, struct sock *sk)
376 {
377 	struct dst_entry *dst = __sk_dst_check(sk, 0);
378 
379 	if (dst)
380 		dst->ops->redirect(dst, sk, skb);
381 }
382 
383 
384 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
385 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
386 {
387 	struct request_sock *req = inet_reqsk(sk);
388 	struct net *net = sock_net(sk);
389 
390 	/* ICMPs are not backlogged, hence we cannot get
391 	 * an established socket here.
392 	 */
393 	if (seq != tcp_rsk(req)->snt_isn) {
394 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
395 	} else if (abort) {
396 		/*
397 		 * Still in SYN_RECV, just remove it silently.
398 		 * There is no good way to pass the error to the newly
399 		 * created socket, and POSIX does not want network
400 		 * errors returned from accept().
401 		 */
402 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
403 		tcp_listendrop(req->rsk_listener);
404 	}
405 	reqsk_put(req);
406 }
407 EXPORT_SYMBOL(tcp_req_err);
408 
409 /* TCP-LD (RFC 6069) logic */
410 void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
411 {
412 	struct inet_connection_sock *icsk = inet_csk(sk);
413 	struct tcp_sock *tp = tcp_sk(sk);
414 	struct sk_buff *skb;
415 	s32 remaining;
416 	u32 delta_us;
417 
418 	if (sock_owned_by_user(sk))
419 		return;
420 
421 	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
422 	    !icsk->icsk_backoff)
423 		return;
424 
425 	skb = tcp_rtx_queue_head(sk);
426 	if (WARN_ON_ONCE(!skb))
427 		return;
428 
429 	icsk->icsk_backoff--;
430 	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
431 	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
432 
433 	tcp_mstamp_refresh(tp);
434 	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
435 	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
436 
437 	if (remaining > 0) {
438 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
439 					  remaining, TCP_RTO_MAX);
440 	} else {
441 		/* RTO revert clocked out retransmission.
442 		 * Will retransmit now.
443 		 */
444 		tcp_retransmit_timer(sk);
445 	}
446 }
447 EXPORT_SYMBOL(tcp_ld_RTO_revert);
448 
449 /*
450  * This routine is called by the ICMP module when it gets some
451  * sort of error condition.  If err < 0 then the socket should
452  * be closed and the error returned to the user.  If err > 0
453  * it's just the icmp type << 8 | icmp code.  After adjustment
454  * header points to the first 8 bytes of the tcp header.  We need
455  * to find the appropriate port.
456  *
457  * The locking strategy used here is very "optimistic". When
458  * someone else accesses the socket the ICMP is just dropped
459  * and for some paths there is no check at all.
460  * A more general error queue to queue errors for later handling
461  * is probably better.
462  *
463  */
464 
465 int tcp_v4_err(struct sk_buff *skb, u32 info)
466 {
467 	const struct iphdr *iph = (const struct iphdr *)skb->data;
468 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
469 	struct tcp_sock *tp;
470 	struct inet_sock *inet;
471 	const int type = icmp_hdr(skb)->type;
472 	const int code = icmp_hdr(skb)->code;
473 	struct sock *sk;
474 	struct request_sock *fastopen;
475 	u32 seq, snd_una;
476 	int err;
477 	struct net *net = dev_net(skb->dev);
478 
479 	sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
480 				       th->dest, iph->saddr, ntohs(th->source),
481 				       inet_iif(skb), 0);
482 	if (!sk) {
483 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
484 		return -ENOENT;
485 	}
486 	if (sk->sk_state == TCP_TIME_WAIT) {
487 		inet_twsk_put(inet_twsk(sk));
488 		return 0;
489 	}
490 	seq = ntohl(th->seq);
491 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
492 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
493 				     type == ICMP_TIME_EXCEEDED ||
494 				     (type == ICMP_DEST_UNREACH &&
495 				      (code == ICMP_NET_UNREACH ||
496 				       code == ICMP_HOST_UNREACH)));
497 		return 0;
498 	}
499 
500 	bh_lock_sock(sk);
501 	/* If too many ICMPs get dropped on busy
502 	 * servers this needs to be solved differently.
503 	 * We do take care of PMTU discovery (RFC1191) special case :
504 	 * we can receive locally generated ICMP messages while socket is held.
505 	 */
506 	if (sock_owned_by_user(sk)) {
507 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
508 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
509 	}
510 	if (sk->sk_state == TCP_CLOSE)
511 		goto out;
512 
513 	if (static_branch_unlikely(&ip4_min_ttl)) {
514 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
515 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
516 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
517 			goto out;
518 		}
519 	}
520 
521 	tp = tcp_sk(sk);
522 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
523 	fastopen = rcu_dereference(tp->fastopen_rsk);
524 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
525 	if (sk->sk_state != TCP_LISTEN &&
526 	    !between(seq, snd_una, tp->snd_nxt)) {
527 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
528 		goto out;
529 	}
530 
531 	switch (type) {
532 	case ICMP_REDIRECT:
533 		if (!sock_owned_by_user(sk))
534 			do_redirect(skb, sk);
535 		goto out;
536 	case ICMP_SOURCE_QUENCH:
537 		/* Just silently ignore these. */
538 		goto out;
539 	case ICMP_PARAMETERPROB:
540 		err = EPROTO;
541 		break;
542 	case ICMP_DEST_UNREACH:
543 		if (code > NR_ICMP_UNREACH)
544 			goto out;
545 
546 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
547 			/* We are not interested in TCP_LISTEN and open_requests
548 			 * (SYN-ACKs send out by Linux are always <576bytes so
549 			 * they should go through unfragmented).
550 			 */
551 			if (sk->sk_state == TCP_LISTEN)
552 				goto out;
553 
554 			WRITE_ONCE(tp->mtu_info, info);
555 			if (!sock_owned_by_user(sk)) {
556 				tcp_v4_mtu_reduced(sk);
557 			} else {
558 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
559 					sock_hold(sk);
560 			}
561 			goto out;
562 		}
563 
564 		err = icmp_err_convert[code].errno;
565 		/* check if this ICMP message allows revert of backoff.
566 		 * (see RFC 6069)
567 		 */
568 		if (!fastopen &&
569 		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
570 			tcp_ld_RTO_revert(sk, seq);
571 		break;
572 	case ICMP_TIME_EXCEEDED:
573 		err = EHOSTUNREACH;
574 		break;
575 	default:
576 		goto out;
577 	}
578 
579 	switch (sk->sk_state) {
580 	case TCP_SYN_SENT:
581 	case TCP_SYN_RECV:
582 		/* Only in fast or simultaneous open. If a fast open socket is
583 		 * already accepted it is treated as a connected one below.
584 		 */
585 		if (fastopen && !fastopen->sk)
586 			break;
587 
588 		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
589 
590 		if (!sock_owned_by_user(sk)) {
591 			sk->sk_err = err;
592 
593 			sk_error_report(sk);
594 
595 			tcp_done(sk);
596 		} else {
597 			sk->sk_err_soft = err;
598 		}
599 		goto out;
600 	}
601 
602 	/* If we've already connected we will keep trying
603 	 * until we time out, or the user gives up.
604 	 *
605 	 * rfc1122 4.2.3.9 allows to consider as hard errors
606 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
607 	 * but it is obsoleted by pmtu discovery).
608 	 *
609 	 * Note, that in modern internet, where routing is unreliable
610 	 * and in each dark corner broken firewalls sit, sending random
611 	 * errors ordered by their masters even this two messages finally lose
612 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
613 	 *
614 	 * Now we are in compliance with RFCs.
615 	 *							--ANK (980905)
616 	 */
617 
618 	inet = inet_sk(sk);
619 	if (!sock_owned_by_user(sk) && inet->recverr) {
620 		sk->sk_err = err;
621 		sk_error_report(sk);
622 	} else	{ /* Only an error on timeout */
623 		sk->sk_err_soft = err;
624 	}
625 
626 out:
627 	bh_unlock_sock(sk);
628 	sock_put(sk);
629 	return 0;
630 }
631 
632 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
633 {
634 	struct tcphdr *th = tcp_hdr(skb);
635 
636 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
637 	skb->csum_start = skb_transport_header(skb) - skb->head;
638 	skb->csum_offset = offsetof(struct tcphdr, check);
639 }
640 
641 /* This routine computes an IPv4 TCP checksum. */
642 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
643 {
644 	const struct inet_sock *inet = inet_sk(sk);
645 
646 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
647 }
648 EXPORT_SYMBOL(tcp_v4_send_check);
649 
650 /*
651  *	This routine will send an RST to the other tcp.
652  *
653  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
654  *		      for reset.
655  *	Answer: if a packet caused RST, it is not for a socket
656  *		existing in our system, if it is matched to a socket,
657  *		it is just duplicate segment or bug in other side's TCP.
658  *		So that we build reply only basing on parameters
659  *		arrived with segment.
660  *	Exception: precedence violation. We do not implement it in any case.
661  */
662 
663 #ifdef CONFIG_TCP_MD5SIG
664 #define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED
665 #else
666 #define OPTION_BYTES sizeof(__be32)
667 #endif
668 
669 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
670 {
671 	const struct tcphdr *th = tcp_hdr(skb);
672 	struct {
673 		struct tcphdr th;
674 		__be32 opt[OPTION_BYTES / sizeof(__be32)];
675 	} rep;
676 	struct ip_reply_arg arg;
677 #ifdef CONFIG_TCP_MD5SIG
678 	struct tcp_md5sig_key *key = NULL;
679 	const __u8 *hash_location = NULL;
680 	unsigned char newhash[16];
681 	int genhash;
682 	struct sock *sk1 = NULL;
683 #endif
684 	u64 transmit_time = 0;
685 	struct sock *ctl_sk;
686 	struct net *net;
687 
688 	/* Never send a reset in response to a reset. */
689 	if (th->rst)
690 		return;
691 
692 	/* If sk not NULL, it means we did a successful lookup and incoming
693 	 * route had to be correct. prequeue might have dropped our dst.
694 	 */
695 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
696 		return;
697 
698 	/* Swap the send and the receive. */
699 	memset(&rep, 0, sizeof(rep));
700 	rep.th.dest   = th->source;
701 	rep.th.source = th->dest;
702 	rep.th.doff   = sizeof(struct tcphdr) / 4;
703 	rep.th.rst    = 1;
704 
705 	if (th->ack) {
706 		rep.th.seq = th->ack_seq;
707 	} else {
708 		rep.th.ack = 1;
709 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
710 				       skb->len - (th->doff << 2));
711 	}
712 
713 	memset(&arg, 0, sizeof(arg));
714 	arg.iov[0].iov_base = (unsigned char *)&rep;
715 	arg.iov[0].iov_len  = sizeof(rep.th);
716 
717 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
718 #ifdef CONFIG_TCP_MD5SIG
719 	rcu_read_lock();
720 	hash_location = tcp_parse_md5sig_option(th);
721 	if (sk && sk_fullsock(sk)) {
722 		const union tcp_md5_addr *addr;
723 		int l3index;
724 
725 		/* sdif set, means packet ingressed via a device
726 		 * in an L3 domain and inet_iif is set to it.
727 		 */
728 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
729 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
730 		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
731 	} else if (hash_location) {
732 		const union tcp_md5_addr *addr;
733 		int sdif = tcp_v4_sdif(skb);
734 		int dif = inet_iif(skb);
735 		int l3index;
736 
737 		/*
738 		 * active side is lost. Try to find listening socket through
739 		 * source port, and then find md5 key through listening socket.
740 		 * we are not loose security here:
741 		 * Incoming packet is checked with md5 hash with finding key,
742 		 * no RST generated if md5 hash doesn't match.
743 		 */
744 		sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
745 					     ip_hdr(skb)->saddr,
746 					     th->source, ip_hdr(skb)->daddr,
747 					     ntohs(th->source), dif, sdif);
748 		/* don't send rst if it can't find key */
749 		if (!sk1)
750 			goto out;
751 
752 		/* sdif set, means packet ingressed via a device
753 		 * in an L3 domain and dif is set to it.
754 		 */
755 		l3index = sdif ? dif : 0;
756 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
757 		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
758 		if (!key)
759 			goto out;
760 
761 
762 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
763 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
764 			goto out;
765 
766 	}
767 
768 	if (key) {
769 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
770 				   (TCPOPT_NOP << 16) |
771 				   (TCPOPT_MD5SIG << 8) |
772 				   TCPOLEN_MD5SIG);
773 		/* Update length and the length the header thinks exists */
774 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
775 		rep.th.doff = arg.iov[0].iov_len / 4;
776 
777 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
778 				     key, ip_hdr(skb)->saddr,
779 				     ip_hdr(skb)->daddr, &rep.th);
780 	}
781 #endif
782 	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
783 	if (rep.opt[0] == 0) {
784 		__be32 mrst = mptcp_reset_option(skb);
785 
786 		if (mrst) {
787 			rep.opt[0] = mrst;
788 			arg.iov[0].iov_len += sizeof(mrst);
789 			rep.th.doff = arg.iov[0].iov_len / 4;
790 		}
791 	}
792 
793 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
794 				      ip_hdr(skb)->saddr, /* XXX */
795 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
796 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
797 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
798 
799 	/* When socket is gone, all binding information is lost.
800 	 * routing might fail in this case. No choice here, if we choose to force
801 	 * input interface, we will misroute in case of asymmetric route.
802 	 */
803 	if (sk) {
804 		arg.bound_dev_if = sk->sk_bound_dev_if;
805 		if (sk_fullsock(sk))
806 			trace_tcp_send_reset(sk, skb);
807 	}
808 
809 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
810 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
811 
812 	arg.tos = ip_hdr(skb)->tos;
813 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
814 	local_bh_disable();
815 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
816 	sock_net_set(ctl_sk, net);
817 	if (sk) {
818 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
819 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
820 		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
821 				   inet_twsk(sk)->tw_priority : sk->sk_priority;
822 		transmit_time = tcp_transmit_time(sk);
823 	}
824 	ip_send_unicast_reply(ctl_sk,
825 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
826 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
827 			      &arg, arg.iov[0].iov_len,
828 			      transmit_time);
829 
830 	ctl_sk->sk_mark = 0;
831 	sock_net_set(ctl_sk, &init_net);
832 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
833 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
834 	local_bh_enable();
835 
836 #ifdef CONFIG_TCP_MD5SIG
837 out:
838 	rcu_read_unlock();
839 #endif
840 }
841 
842 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
843    outside socket context is ugly, certainly. What can I do?
844  */
845 
846 static void tcp_v4_send_ack(const struct sock *sk,
847 			    struct sk_buff *skb, u32 seq, u32 ack,
848 			    u32 win, u32 tsval, u32 tsecr, int oif,
849 			    struct tcp_md5sig_key *key,
850 			    int reply_flags, u8 tos)
851 {
852 	const struct tcphdr *th = tcp_hdr(skb);
853 	struct {
854 		struct tcphdr th;
855 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
856 #ifdef CONFIG_TCP_MD5SIG
857 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
858 #endif
859 			];
860 	} rep;
861 	struct net *net = sock_net(sk);
862 	struct ip_reply_arg arg;
863 	struct sock *ctl_sk;
864 	u64 transmit_time;
865 
866 	memset(&rep.th, 0, sizeof(struct tcphdr));
867 	memset(&arg, 0, sizeof(arg));
868 
869 	arg.iov[0].iov_base = (unsigned char *)&rep;
870 	arg.iov[0].iov_len  = sizeof(rep.th);
871 	if (tsecr) {
872 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
873 				   (TCPOPT_TIMESTAMP << 8) |
874 				   TCPOLEN_TIMESTAMP);
875 		rep.opt[1] = htonl(tsval);
876 		rep.opt[2] = htonl(tsecr);
877 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
878 	}
879 
880 	/* Swap the send and the receive. */
881 	rep.th.dest    = th->source;
882 	rep.th.source  = th->dest;
883 	rep.th.doff    = arg.iov[0].iov_len / 4;
884 	rep.th.seq     = htonl(seq);
885 	rep.th.ack_seq = htonl(ack);
886 	rep.th.ack     = 1;
887 	rep.th.window  = htons(win);
888 
889 #ifdef CONFIG_TCP_MD5SIG
890 	if (key) {
891 		int offset = (tsecr) ? 3 : 0;
892 
893 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
894 					  (TCPOPT_NOP << 16) |
895 					  (TCPOPT_MD5SIG << 8) |
896 					  TCPOLEN_MD5SIG);
897 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
898 		rep.th.doff = arg.iov[0].iov_len/4;
899 
900 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
901 				    key, ip_hdr(skb)->saddr,
902 				    ip_hdr(skb)->daddr, &rep.th);
903 	}
904 #endif
905 	arg.flags = reply_flags;
906 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
907 				      ip_hdr(skb)->saddr, /* XXX */
908 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
909 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
910 	if (oif)
911 		arg.bound_dev_if = oif;
912 	arg.tos = tos;
913 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
914 	local_bh_disable();
915 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
916 	sock_net_set(ctl_sk, net);
917 	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
918 			   inet_twsk(sk)->tw_mark : sk->sk_mark;
919 	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
920 			   inet_twsk(sk)->tw_priority : sk->sk_priority;
921 	transmit_time = tcp_transmit_time(sk);
922 	ip_send_unicast_reply(ctl_sk,
923 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
924 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
925 			      &arg, arg.iov[0].iov_len,
926 			      transmit_time);
927 
928 	ctl_sk->sk_mark = 0;
929 	sock_net_set(ctl_sk, &init_net);
930 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
931 	local_bh_enable();
932 }
933 
934 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
935 {
936 	struct inet_timewait_sock *tw = inet_twsk(sk);
937 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
938 
939 	tcp_v4_send_ack(sk, skb,
940 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
941 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
942 			tcp_time_stamp_raw() + tcptw->tw_ts_offset,
943 			tcptw->tw_ts_recent,
944 			tw->tw_bound_dev_if,
945 			tcp_twsk_md5_key(tcptw),
946 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
947 			tw->tw_tos
948 			);
949 
950 	inet_twsk_put(tw);
951 }
952 
953 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
954 				  struct request_sock *req)
955 {
956 	const union tcp_md5_addr *addr;
957 	int l3index;
958 
959 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
960 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
961 	 */
962 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
963 					     tcp_sk(sk)->snd_nxt;
964 
965 	/* RFC 7323 2.3
966 	 * The window field (SEG.WND) of every outgoing segment, with the
967 	 * exception of <SYN> segments, MUST be right-shifted by
968 	 * Rcv.Wind.Shift bits:
969 	 */
970 	addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
971 	l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
972 	tcp_v4_send_ack(sk, skb, seq,
973 			tcp_rsk(req)->rcv_nxt,
974 			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
975 			tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
976 			req->ts_recent,
977 			0,
978 			tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
979 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
980 			ip_hdr(skb)->tos);
981 }
982 
983 /*
984  *	Send a SYN-ACK after having received a SYN.
985  *	This still operates on a request_sock only, not on a big
986  *	socket.
987  */
988 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
989 			      struct flowi *fl,
990 			      struct request_sock *req,
991 			      struct tcp_fastopen_cookie *foc,
992 			      enum tcp_synack_type synack_type,
993 			      struct sk_buff *syn_skb)
994 {
995 	const struct inet_request_sock *ireq = inet_rsk(req);
996 	struct flowi4 fl4;
997 	int err = -1;
998 	struct sk_buff *skb;
999 	u8 tos;
1000 
1001 	/* First, grab a route. */
1002 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1003 		return -1;
1004 
1005 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1006 
1007 	if (skb) {
1008 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1009 
1010 		tos = sock_net(sk)->ipv4.sysctl_tcp_reflect_tos ?
1011 				(tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1012 				(inet_sk(sk)->tos & INET_ECN_MASK) :
1013 				inet_sk(sk)->tos;
1014 
1015 		if (!INET_ECN_is_capable(tos) &&
1016 		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1017 			tos |= INET_ECN_ECT_0;
1018 
1019 		rcu_read_lock();
1020 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1021 					    ireq->ir_rmt_addr,
1022 					    rcu_dereference(ireq->ireq_opt),
1023 					    tos);
1024 		rcu_read_unlock();
1025 		err = net_xmit_eval(err);
1026 	}
1027 
1028 	return err;
1029 }
1030 
1031 /*
1032  *	IPv4 request_sock destructor.
1033  */
1034 static void tcp_v4_reqsk_destructor(struct request_sock *req)
1035 {
1036 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1037 }
1038 
1039 #ifdef CONFIG_TCP_MD5SIG
1040 /*
1041  * RFC2385 MD5 checksumming requires a mapping of
1042  * IP address->MD5 Key.
1043  * We need to maintain these in the sk structure.
1044  */
1045 
1046 DEFINE_STATIC_KEY_FALSE(tcp_md5_needed);
1047 EXPORT_SYMBOL(tcp_md5_needed);
1048 
1049 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1050 {
1051 	if (!old)
1052 		return true;
1053 
1054 	/* l3index always overrides non-l3index */
1055 	if (old->l3index && new->l3index == 0)
1056 		return false;
1057 	if (old->l3index == 0 && new->l3index)
1058 		return true;
1059 
1060 	return old->prefixlen < new->prefixlen;
1061 }
1062 
1063 /* Find the Key structure for an address.  */
1064 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1065 					   const union tcp_md5_addr *addr,
1066 					   int family)
1067 {
1068 	const struct tcp_sock *tp = tcp_sk(sk);
1069 	struct tcp_md5sig_key *key;
1070 	const struct tcp_md5sig_info *md5sig;
1071 	__be32 mask;
1072 	struct tcp_md5sig_key *best_match = NULL;
1073 	bool match;
1074 
1075 	/* caller either holds rcu_read_lock() or socket lock */
1076 	md5sig = rcu_dereference_check(tp->md5sig_info,
1077 				       lockdep_sock_is_held(sk));
1078 	if (!md5sig)
1079 		return NULL;
1080 
1081 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1082 				 lockdep_sock_is_held(sk)) {
1083 		if (key->family != family)
1084 			continue;
1085 		if (key->flags & TCP_MD5SIG_FLAG_IFINDEX && key->l3index != l3index)
1086 			continue;
1087 		if (family == AF_INET) {
1088 			mask = inet_make_mask(key->prefixlen);
1089 			match = (key->addr.a4.s_addr & mask) ==
1090 				(addr->a4.s_addr & mask);
1091 #if IS_ENABLED(CONFIG_IPV6)
1092 		} else if (family == AF_INET6) {
1093 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1094 						  key->prefixlen);
1095 #endif
1096 		} else {
1097 			match = false;
1098 		}
1099 
1100 		if (match && better_md5_match(best_match, key))
1101 			best_match = key;
1102 	}
1103 	return best_match;
1104 }
1105 EXPORT_SYMBOL(__tcp_md5_do_lookup);
1106 
1107 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1108 						      const union tcp_md5_addr *addr,
1109 						      int family, u8 prefixlen,
1110 						      int l3index, u8 flags)
1111 {
1112 	const struct tcp_sock *tp = tcp_sk(sk);
1113 	struct tcp_md5sig_key *key;
1114 	unsigned int size = sizeof(struct in_addr);
1115 	const struct tcp_md5sig_info *md5sig;
1116 
1117 	/* caller either holds rcu_read_lock() or socket lock */
1118 	md5sig = rcu_dereference_check(tp->md5sig_info,
1119 				       lockdep_sock_is_held(sk));
1120 	if (!md5sig)
1121 		return NULL;
1122 #if IS_ENABLED(CONFIG_IPV6)
1123 	if (family == AF_INET6)
1124 		size = sizeof(struct in6_addr);
1125 #endif
1126 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1127 				 lockdep_sock_is_held(sk)) {
1128 		if (key->family != family)
1129 			continue;
1130 		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1131 			continue;
1132 		if (key->l3index != l3index)
1133 			continue;
1134 		if (!memcmp(&key->addr, addr, size) &&
1135 		    key->prefixlen == prefixlen)
1136 			return key;
1137 	}
1138 	return NULL;
1139 }
1140 
1141 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1142 					 const struct sock *addr_sk)
1143 {
1144 	const union tcp_md5_addr *addr;
1145 	int l3index;
1146 
1147 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1148 						 addr_sk->sk_bound_dev_if);
1149 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1150 	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1151 }
1152 EXPORT_SYMBOL(tcp_v4_md5_lookup);
1153 
1154 /* This can be called on a newly created socket, from other files */
1155 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1156 		   int family, u8 prefixlen, int l3index, u8 flags,
1157 		   const u8 *newkey, u8 newkeylen, gfp_t gfp)
1158 {
1159 	/* Add Key to the list */
1160 	struct tcp_md5sig_key *key;
1161 	struct tcp_sock *tp = tcp_sk(sk);
1162 	struct tcp_md5sig_info *md5sig;
1163 
1164 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1165 	if (key) {
1166 		/* Pre-existing entry - just update that one.
1167 		 * Note that the key might be used concurrently.
1168 		 * data_race() is telling kcsan that we do not care of
1169 		 * key mismatches, since changing MD5 key on live flows
1170 		 * can lead to packet drops.
1171 		 */
1172 		data_race(memcpy(key->key, newkey, newkeylen));
1173 
1174 		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1175 		 * Also note that a reader could catch new key->keylen value
1176 		 * but old key->key[], this is the reason we use __GFP_ZERO
1177 		 * at sock_kmalloc() time below these lines.
1178 		 */
1179 		WRITE_ONCE(key->keylen, newkeylen);
1180 
1181 		return 0;
1182 	}
1183 
1184 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1185 					   lockdep_sock_is_held(sk));
1186 	if (!md5sig) {
1187 		md5sig = kmalloc(sizeof(*md5sig), gfp);
1188 		if (!md5sig)
1189 			return -ENOMEM;
1190 
1191 		sk_gso_disable(sk);
1192 		INIT_HLIST_HEAD(&md5sig->head);
1193 		rcu_assign_pointer(tp->md5sig_info, md5sig);
1194 	}
1195 
1196 	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1197 	if (!key)
1198 		return -ENOMEM;
1199 	if (!tcp_alloc_md5sig_pool()) {
1200 		sock_kfree_s(sk, key, sizeof(*key));
1201 		return -ENOMEM;
1202 	}
1203 
1204 	memcpy(key->key, newkey, newkeylen);
1205 	key->keylen = newkeylen;
1206 	key->family = family;
1207 	key->prefixlen = prefixlen;
1208 	key->l3index = l3index;
1209 	key->flags = flags;
1210 	memcpy(&key->addr, addr,
1211 	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1212 				      sizeof(struct in_addr));
1213 	hlist_add_head_rcu(&key->node, &md5sig->head);
1214 	return 0;
1215 }
1216 EXPORT_SYMBOL(tcp_md5_do_add);
1217 
1218 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1219 		   u8 prefixlen, int l3index, u8 flags)
1220 {
1221 	struct tcp_md5sig_key *key;
1222 
1223 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1224 	if (!key)
1225 		return -ENOENT;
1226 	hlist_del_rcu(&key->node);
1227 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1228 	kfree_rcu(key, rcu);
1229 	return 0;
1230 }
1231 EXPORT_SYMBOL(tcp_md5_do_del);
1232 
1233 static void tcp_clear_md5_list(struct sock *sk)
1234 {
1235 	struct tcp_sock *tp = tcp_sk(sk);
1236 	struct tcp_md5sig_key *key;
1237 	struct hlist_node *n;
1238 	struct tcp_md5sig_info *md5sig;
1239 
1240 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1241 
1242 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1243 		hlist_del_rcu(&key->node);
1244 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1245 		kfree_rcu(key, rcu);
1246 	}
1247 }
1248 
1249 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1250 				 sockptr_t optval, int optlen)
1251 {
1252 	struct tcp_md5sig cmd;
1253 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1254 	const union tcp_md5_addr *addr;
1255 	u8 prefixlen = 32;
1256 	int l3index = 0;
1257 	u8 flags;
1258 
1259 	if (optlen < sizeof(cmd))
1260 		return -EINVAL;
1261 
1262 	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1263 		return -EFAULT;
1264 
1265 	if (sin->sin_family != AF_INET)
1266 		return -EINVAL;
1267 
1268 	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1269 
1270 	if (optname == TCP_MD5SIG_EXT &&
1271 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1272 		prefixlen = cmd.tcpm_prefixlen;
1273 		if (prefixlen > 32)
1274 			return -EINVAL;
1275 	}
1276 
1277 	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1278 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1279 		struct net_device *dev;
1280 
1281 		rcu_read_lock();
1282 		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1283 		if (dev && netif_is_l3_master(dev))
1284 			l3index = dev->ifindex;
1285 
1286 		rcu_read_unlock();
1287 
1288 		/* ok to reference set/not set outside of rcu;
1289 		 * right now device MUST be an L3 master
1290 		 */
1291 		if (!dev || !l3index)
1292 			return -EINVAL;
1293 	}
1294 
1295 	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1296 
1297 	if (!cmd.tcpm_keylen)
1298 		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1299 
1300 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1301 		return -EINVAL;
1302 
1303 	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1304 			      cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
1305 }
1306 
1307 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1308 				   __be32 daddr, __be32 saddr,
1309 				   const struct tcphdr *th, int nbytes)
1310 {
1311 	struct tcp4_pseudohdr *bp;
1312 	struct scatterlist sg;
1313 	struct tcphdr *_th;
1314 
1315 	bp = hp->scratch;
1316 	bp->saddr = saddr;
1317 	bp->daddr = daddr;
1318 	bp->pad = 0;
1319 	bp->protocol = IPPROTO_TCP;
1320 	bp->len = cpu_to_be16(nbytes);
1321 
1322 	_th = (struct tcphdr *)(bp + 1);
1323 	memcpy(_th, th, sizeof(*th));
1324 	_th->check = 0;
1325 
1326 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1327 	ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1328 				sizeof(*bp) + sizeof(*th));
1329 	return crypto_ahash_update(hp->md5_req);
1330 }
1331 
1332 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1333 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1334 {
1335 	struct tcp_md5sig_pool *hp;
1336 	struct ahash_request *req;
1337 
1338 	hp = tcp_get_md5sig_pool();
1339 	if (!hp)
1340 		goto clear_hash_noput;
1341 	req = hp->md5_req;
1342 
1343 	if (crypto_ahash_init(req))
1344 		goto clear_hash;
1345 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1346 		goto clear_hash;
1347 	if (tcp_md5_hash_key(hp, key))
1348 		goto clear_hash;
1349 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1350 	if (crypto_ahash_final(req))
1351 		goto clear_hash;
1352 
1353 	tcp_put_md5sig_pool();
1354 	return 0;
1355 
1356 clear_hash:
1357 	tcp_put_md5sig_pool();
1358 clear_hash_noput:
1359 	memset(md5_hash, 0, 16);
1360 	return 1;
1361 }
1362 
1363 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1364 			const struct sock *sk,
1365 			const struct sk_buff *skb)
1366 {
1367 	struct tcp_md5sig_pool *hp;
1368 	struct ahash_request *req;
1369 	const struct tcphdr *th = tcp_hdr(skb);
1370 	__be32 saddr, daddr;
1371 
1372 	if (sk) { /* valid for establish/request sockets */
1373 		saddr = sk->sk_rcv_saddr;
1374 		daddr = sk->sk_daddr;
1375 	} else {
1376 		const struct iphdr *iph = ip_hdr(skb);
1377 		saddr = iph->saddr;
1378 		daddr = iph->daddr;
1379 	}
1380 
1381 	hp = tcp_get_md5sig_pool();
1382 	if (!hp)
1383 		goto clear_hash_noput;
1384 	req = hp->md5_req;
1385 
1386 	if (crypto_ahash_init(req))
1387 		goto clear_hash;
1388 
1389 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1390 		goto clear_hash;
1391 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1392 		goto clear_hash;
1393 	if (tcp_md5_hash_key(hp, key))
1394 		goto clear_hash;
1395 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1396 	if (crypto_ahash_final(req))
1397 		goto clear_hash;
1398 
1399 	tcp_put_md5sig_pool();
1400 	return 0;
1401 
1402 clear_hash:
1403 	tcp_put_md5sig_pool();
1404 clear_hash_noput:
1405 	memset(md5_hash, 0, 16);
1406 	return 1;
1407 }
1408 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1409 
1410 #endif
1411 
1412 static void tcp_v4_init_req(struct request_sock *req,
1413 			    const struct sock *sk_listener,
1414 			    struct sk_buff *skb)
1415 {
1416 	struct inet_request_sock *ireq = inet_rsk(req);
1417 	struct net *net = sock_net(sk_listener);
1418 
1419 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1420 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1421 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1422 }
1423 
1424 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1425 					  struct sk_buff *skb,
1426 					  struct flowi *fl,
1427 					  struct request_sock *req)
1428 {
1429 	tcp_v4_init_req(req, sk, skb);
1430 
1431 	if (security_inet_conn_request(sk, skb, req))
1432 		return NULL;
1433 
1434 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1435 }
1436 
1437 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1438 	.family		=	PF_INET,
1439 	.obj_size	=	sizeof(struct tcp_request_sock),
1440 	.rtx_syn_ack	=	tcp_rtx_synack,
1441 	.send_ack	=	tcp_v4_reqsk_send_ack,
1442 	.destructor	=	tcp_v4_reqsk_destructor,
1443 	.send_reset	=	tcp_v4_send_reset,
1444 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1445 };
1446 
1447 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1448 	.mss_clamp	=	TCP_MSS_DEFAULT,
1449 #ifdef CONFIG_TCP_MD5SIG
1450 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1451 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1452 #endif
1453 #ifdef CONFIG_SYN_COOKIES
1454 	.cookie_init_seq =	cookie_v4_init_sequence,
1455 #endif
1456 	.route_req	=	tcp_v4_route_req,
1457 	.init_seq	=	tcp_v4_init_seq,
1458 	.init_ts_off	=	tcp_v4_init_ts_off,
1459 	.send_synack	=	tcp_v4_send_synack,
1460 };
1461 
1462 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1463 {
1464 	/* Never answer to SYNs send to broadcast or multicast */
1465 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1466 		goto drop;
1467 
1468 	return tcp_conn_request(&tcp_request_sock_ops,
1469 				&tcp_request_sock_ipv4_ops, sk, skb);
1470 
1471 drop:
1472 	tcp_listendrop(sk);
1473 	return 0;
1474 }
1475 EXPORT_SYMBOL(tcp_v4_conn_request);
1476 
1477 
1478 /*
1479  * The three way handshake has completed - we got a valid synack -
1480  * now create the new socket.
1481  */
1482 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1483 				  struct request_sock *req,
1484 				  struct dst_entry *dst,
1485 				  struct request_sock *req_unhash,
1486 				  bool *own_req)
1487 {
1488 	struct inet_request_sock *ireq;
1489 	bool found_dup_sk = false;
1490 	struct inet_sock *newinet;
1491 	struct tcp_sock *newtp;
1492 	struct sock *newsk;
1493 #ifdef CONFIG_TCP_MD5SIG
1494 	const union tcp_md5_addr *addr;
1495 	struct tcp_md5sig_key *key;
1496 	int l3index;
1497 #endif
1498 	struct ip_options_rcu *inet_opt;
1499 
1500 	if (sk_acceptq_is_full(sk))
1501 		goto exit_overflow;
1502 
1503 	newsk = tcp_create_openreq_child(sk, req, skb);
1504 	if (!newsk)
1505 		goto exit_nonewsk;
1506 
1507 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1508 	inet_sk_rx_dst_set(newsk, skb);
1509 
1510 	newtp		      = tcp_sk(newsk);
1511 	newinet		      = inet_sk(newsk);
1512 	ireq		      = inet_rsk(req);
1513 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1514 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1515 	newsk->sk_bound_dev_if = ireq->ir_iif;
1516 	newinet->inet_saddr   = ireq->ir_loc_addr;
1517 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1518 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1519 	newinet->mc_index     = inet_iif(skb);
1520 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1521 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1522 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1523 	if (inet_opt)
1524 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1525 	newinet->inet_id = prandom_u32();
1526 
1527 	/* Set ToS of the new socket based upon the value of incoming SYN.
1528 	 * ECT bits are set later in tcp_init_transfer().
1529 	 */
1530 	if (sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)
1531 		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1532 
1533 	if (!dst) {
1534 		dst = inet_csk_route_child_sock(sk, newsk, req);
1535 		if (!dst)
1536 			goto put_and_exit;
1537 	} else {
1538 		/* syncookie case : see end of cookie_v4_check() */
1539 	}
1540 	sk_setup_caps(newsk, dst);
1541 
1542 	tcp_ca_openreq_child(newsk, dst);
1543 
1544 	tcp_sync_mss(newsk, dst_mtu(dst));
1545 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1546 
1547 	tcp_initialize_rcv_mss(newsk);
1548 
1549 #ifdef CONFIG_TCP_MD5SIG
1550 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1551 	/* Copy over the MD5 key from the original socket */
1552 	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1553 	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1554 	if (key) {
1555 		/*
1556 		 * We're using one, so create a matching key
1557 		 * on the newsk structure. If we fail to get
1558 		 * memory, then we end up not copying the key
1559 		 * across. Shucks.
1560 		 */
1561 		tcp_md5_do_add(newsk, addr, AF_INET, 32, l3index, key->flags,
1562 			       key->key, key->keylen, GFP_ATOMIC);
1563 		sk_gso_disable(newsk);
1564 	}
1565 #endif
1566 
1567 	if (__inet_inherit_port(sk, newsk) < 0)
1568 		goto put_and_exit;
1569 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1570 				       &found_dup_sk);
1571 	if (likely(*own_req)) {
1572 		tcp_move_syn(newtp, req);
1573 		ireq->ireq_opt = NULL;
1574 	} else {
1575 		newinet->inet_opt = NULL;
1576 
1577 		if (!req_unhash && found_dup_sk) {
1578 			/* This code path should only be executed in the
1579 			 * syncookie case only
1580 			 */
1581 			bh_unlock_sock(newsk);
1582 			sock_put(newsk);
1583 			newsk = NULL;
1584 		}
1585 	}
1586 	return newsk;
1587 
1588 exit_overflow:
1589 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1590 exit_nonewsk:
1591 	dst_release(dst);
1592 exit:
1593 	tcp_listendrop(sk);
1594 	return NULL;
1595 put_and_exit:
1596 	newinet->inet_opt = NULL;
1597 	inet_csk_prepare_forced_close(newsk);
1598 	tcp_done(newsk);
1599 	goto exit;
1600 }
1601 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1602 
1603 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1604 {
1605 #ifdef CONFIG_SYN_COOKIES
1606 	const struct tcphdr *th = tcp_hdr(skb);
1607 
1608 	if (!th->syn)
1609 		sk = cookie_v4_check(sk, skb);
1610 #endif
1611 	return sk;
1612 }
1613 
1614 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1615 			 struct tcphdr *th, u32 *cookie)
1616 {
1617 	u16 mss = 0;
1618 #ifdef CONFIG_SYN_COOKIES
1619 	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1620 				    &tcp_request_sock_ipv4_ops, sk, th);
1621 	if (mss) {
1622 		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1623 		tcp_synq_overflow(sk);
1624 	}
1625 #endif
1626 	return mss;
1627 }
1628 
1629 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1630 							   u32));
1631 /* The socket must have it's spinlock held when we get
1632  * here, unless it is a TCP_LISTEN socket.
1633  *
1634  * We have a potential double-lock case here, so even when
1635  * doing backlog processing we use the BH locking scheme.
1636  * This is because we cannot sleep with the original spinlock
1637  * held.
1638  */
1639 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1640 {
1641 	enum skb_drop_reason reason;
1642 	struct sock *rsk;
1643 
1644 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1645 		struct dst_entry *dst;
1646 
1647 		dst = rcu_dereference_protected(sk->sk_rx_dst,
1648 						lockdep_sock_is_held(sk));
1649 
1650 		sock_rps_save_rxhash(sk, skb);
1651 		sk_mark_napi_id(sk, skb);
1652 		if (dst) {
1653 			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1654 			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1655 					     dst, 0)) {
1656 				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1657 				dst_release(dst);
1658 			}
1659 		}
1660 		tcp_rcv_established(sk, skb);
1661 		return 0;
1662 	}
1663 
1664 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
1665 	if (tcp_checksum_complete(skb))
1666 		goto csum_err;
1667 
1668 	if (sk->sk_state == TCP_LISTEN) {
1669 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1670 
1671 		if (!nsk)
1672 			goto discard;
1673 		if (nsk != sk) {
1674 			if (tcp_child_process(sk, nsk, skb)) {
1675 				rsk = nsk;
1676 				goto reset;
1677 			}
1678 			return 0;
1679 		}
1680 	} else
1681 		sock_rps_save_rxhash(sk, skb);
1682 
1683 	if (tcp_rcv_state_process(sk, skb)) {
1684 		rsk = sk;
1685 		goto reset;
1686 	}
1687 	return 0;
1688 
1689 reset:
1690 	tcp_v4_send_reset(rsk, skb);
1691 discard:
1692 	kfree_skb_reason(skb, reason);
1693 	/* Be careful here. If this function gets more complicated and
1694 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1695 	 * might be destroyed here. This current version compiles correctly,
1696 	 * but you have been warned.
1697 	 */
1698 	return 0;
1699 
1700 csum_err:
1701 	reason = SKB_DROP_REASON_TCP_CSUM;
1702 	trace_tcp_bad_csum(skb);
1703 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1704 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1705 	goto discard;
1706 }
1707 EXPORT_SYMBOL(tcp_v4_do_rcv);
1708 
1709 int tcp_v4_early_demux(struct sk_buff *skb)
1710 {
1711 	const struct iphdr *iph;
1712 	const struct tcphdr *th;
1713 	struct sock *sk;
1714 
1715 	if (skb->pkt_type != PACKET_HOST)
1716 		return 0;
1717 
1718 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1719 		return 0;
1720 
1721 	iph = ip_hdr(skb);
1722 	th = tcp_hdr(skb);
1723 
1724 	if (th->doff < sizeof(struct tcphdr) / 4)
1725 		return 0;
1726 
1727 	sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1728 				       iph->saddr, th->source,
1729 				       iph->daddr, ntohs(th->dest),
1730 				       skb->skb_iif, inet_sdif(skb));
1731 	if (sk) {
1732 		skb->sk = sk;
1733 		skb->destructor = sock_edemux;
1734 		if (sk_fullsock(sk)) {
1735 			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1736 
1737 			if (dst)
1738 				dst = dst_check(dst, 0);
1739 			if (dst &&
1740 			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1741 				skb_dst_set_noref(skb, dst);
1742 		}
1743 	}
1744 	return 0;
1745 }
1746 
1747 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1748 		     enum skb_drop_reason *reason)
1749 {
1750 	u32 limit, tail_gso_size, tail_gso_segs;
1751 	struct skb_shared_info *shinfo;
1752 	const struct tcphdr *th;
1753 	struct tcphdr *thtail;
1754 	struct sk_buff *tail;
1755 	unsigned int hdrlen;
1756 	bool fragstolen;
1757 	u32 gso_segs;
1758 	u32 gso_size;
1759 	int delta;
1760 
1761 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1762 	 * we can fix skb->truesize to its real value to avoid future drops.
1763 	 * This is valid because skb is not yet charged to the socket.
1764 	 * It has been noticed pure SACK packets were sometimes dropped
1765 	 * (if cooked by drivers without copybreak feature).
1766 	 */
1767 	skb_condense(skb);
1768 
1769 	skb_dst_drop(skb);
1770 
1771 	if (unlikely(tcp_checksum_complete(skb))) {
1772 		bh_unlock_sock(sk);
1773 		trace_tcp_bad_csum(skb);
1774 		*reason = SKB_DROP_REASON_TCP_CSUM;
1775 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1776 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1777 		return true;
1778 	}
1779 
1780 	/* Attempt coalescing to last skb in backlog, even if we are
1781 	 * above the limits.
1782 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1783 	 */
1784 	th = (const struct tcphdr *)skb->data;
1785 	hdrlen = th->doff * 4;
1786 
1787 	tail = sk->sk_backlog.tail;
1788 	if (!tail)
1789 		goto no_coalesce;
1790 	thtail = (struct tcphdr *)tail->data;
1791 
1792 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1793 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1794 	    ((TCP_SKB_CB(tail)->tcp_flags |
1795 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
1796 	    !((TCP_SKB_CB(tail)->tcp_flags &
1797 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
1798 	    ((TCP_SKB_CB(tail)->tcp_flags ^
1799 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1800 #ifdef CONFIG_TLS_DEVICE
1801 	    tail->decrypted != skb->decrypted ||
1802 #endif
1803 	    thtail->doff != th->doff ||
1804 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1805 		goto no_coalesce;
1806 
1807 	__skb_pull(skb, hdrlen);
1808 
1809 	shinfo = skb_shinfo(skb);
1810 	gso_size = shinfo->gso_size ?: skb->len;
1811 	gso_segs = shinfo->gso_segs ?: 1;
1812 
1813 	shinfo = skb_shinfo(tail);
1814 	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
1815 	tail_gso_segs = shinfo->gso_segs ?: 1;
1816 
1817 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1818 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1819 
1820 		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
1821 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1822 			thtail->window = th->window;
1823 		}
1824 
1825 		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
1826 		 * thtail->fin, so that the fast path in tcp_rcv_established()
1827 		 * is not entered if we append a packet with a FIN.
1828 		 * SYN, RST, URG are not present.
1829 		 * ACK is set on both packets.
1830 		 * PSH : we do not really care in TCP stack,
1831 		 *       at least for 'GRO' packets.
1832 		 */
1833 		thtail->fin |= th->fin;
1834 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1835 
1836 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1837 			TCP_SKB_CB(tail)->has_rxtstamp = true;
1838 			tail->tstamp = skb->tstamp;
1839 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1840 		}
1841 
1842 		/* Not as strict as GRO. We only need to carry mss max value */
1843 		shinfo->gso_size = max(gso_size, tail_gso_size);
1844 		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
1845 
1846 		sk->sk_backlog.len += delta;
1847 		__NET_INC_STATS(sock_net(sk),
1848 				LINUX_MIB_TCPBACKLOGCOALESCE);
1849 		kfree_skb_partial(skb, fragstolen);
1850 		return false;
1851 	}
1852 	__skb_push(skb, hdrlen);
1853 
1854 no_coalesce:
1855 	/* Only socket owner can try to collapse/prune rx queues
1856 	 * to reduce memory overhead, so add a little headroom here.
1857 	 * Few sockets backlog are possibly concurrently non empty.
1858 	 */
1859 	limit = READ_ONCE(sk->sk_rcvbuf) + READ_ONCE(sk->sk_sndbuf) + 64*1024;
1860 
1861 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
1862 		bh_unlock_sock(sk);
1863 		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
1864 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1865 		return true;
1866 	}
1867 	return false;
1868 }
1869 EXPORT_SYMBOL(tcp_add_backlog);
1870 
1871 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1872 {
1873 	struct tcphdr *th = (struct tcphdr *)skb->data;
1874 
1875 	return sk_filter_trim_cap(sk, skb, th->doff * 4);
1876 }
1877 EXPORT_SYMBOL(tcp_filter);
1878 
1879 static void tcp_v4_restore_cb(struct sk_buff *skb)
1880 {
1881 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1882 		sizeof(struct inet_skb_parm));
1883 }
1884 
1885 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1886 			   const struct tcphdr *th)
1887 {
1888 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1889 	 * barrier() makes sure compiler wont play fool^Waliasing games.
1890 	 */
1891 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1892 		sizeof(struct inet_skb_parm));
1893 	barrier();
1894 
1895 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1896 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1897 				    skb->len - th->doff * 4);
1898 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1899 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1900 	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1901 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1902 	TCP_SKB_CB(skb)->sacked	 = 0;
1903 	TCP_SKB_CB(skb)->has_rxtstamp =
1904 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1905 }
1906 
1907 /*
1908  *	From tcp_input.c
1909  */
1910 
1911 int tcp_v4_rcv(struct sk_buff *skb)
1912 {
1913 	struct net *net = dev_net(skb->dev);
1914 	enum skb_drop_reason drop_reason;
1915 	int sdif = inet_sdif(skb);
1916 	int dif = inet_iif(skb);
1917 	const struct iphdr *iph;
1918 	const struct tcphdr *th;
1919 	bool refcounted;
1920 	struct sock *sk;
1921 	int ret;
1922 
1923 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
1924 	if (skb->pkt_type != PACKET_HOST)
1925 		goto discard_it;
1926 
1927 	/* Count it even if it's bad */
1928 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
1929 
1930 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1931 		goto discard_it;
1932 
1933 	th = (const struct tcphdr *)skb->data;
1934 
1935 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
1936 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
1937 		goto bad_packet;
1938 	}
1939 	if (!pskb_may_pull(skb, th->doff * 4))
1940 		goto discard_it;
1941 
1942 	/* An explanation is required here, I think.
1943 	 * Packet length and doff are validated by header prediction,
1944 	 * provided case of th->doff==0 is eliminated.
1945 	 * So, we defer the checks. */
1946 
1947 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1948 		goto csum_error;
1949 
1950 	th = (const struct tcphdr *)skb->data;
1951 	iph = ip_hdr(skb);
1952 lookup:
1953 	sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1954 			       th->dest, sdif, &refcounted);
1955 	if (!sk)
1956 		goto no_tcp_socket;
1957 
1958 process:
1959 	if (sk->sk_state == TCP_TIME_WAIT)
1960 		goto do_time_wait;
1961 
1962 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
1963 		struct request_sock *req = inet_reqsk(sk);
1964 		bool req_stolen = false;
1965 		struct sock *nsk;
1966 
1967 		sk = req->rsk_listener;
1968 		if (unlikely(tcp_inbound_md5_hash(sk, skb, &drop_reason,
1969 						  &iph->saddr, &iph->daddr,
1970 						  AF_INET, dif, sdif))) {
1971 			sk_drops_add(sk, skb);
1972 			reqsk_put(req);
1973 			goto discard_it;
1974 		}
1975 		if (tcp_checksum_complete(skb)) {
1976 			reqsk_put(req);
1977 			goto csum_error;
1978 		}
1979 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
1980 			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
1981 			if (!nsk) {
1982 				inet_csk_reqsk_queue_drop_and_put(sk, req);
1983 				goto lookup;
1984 			}
1985 			sk = nsk;
1986 			/* reuseport_migrate_sock() has already held one sk_refcnt
1987 			 * before returning.
1988 			 */
1989 		} else {
1990 			/* We own a reference on the listener, increase it again
1991 			 * as we might lose it too soon.
1992 			 */
1993 			sock_hold(sk);
1994 		}
1995 		refcounted = true;
1996 		nsk = NULL;
1997 		if (!tcp_filter(sk, skb)) {
1998 			th = (const struct tcphdr *)skb->data;
1999 			iph = ip_hdr(skb);
2000 			tcp_v4_fill_cb(skb, iph, th);
2001 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2002 		} else {
2003 			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2004 		}
2005 		if (!nsk) {
2006 			reqsk_put(req);
2007 			if (req_stolen) {
2008 				/* Another cpu got exclusive access to req
2009 				 * and created a full blown socket.
2010 				 * Try to feed this packet to this socket
2011 				 * instead of discarding it.
2012 				 */
2013 				tcp_v4_restore_cb(skb);
2014 				sock_put(sk);
2015 				goto lookup;
2016 			}
2017 			goto discard_and_relse;
2018 		}
2019 		if (nsk == sk) {
2020 			reqsk_put(req);
2021 			tcp_v4_restore_cb(skb);
2022 		} else if (tcp_child_process(sk, nsk, skb)) {
2023 			tcp_v4_send_reset(nsk, skb);
2024 			goto discard_and_relse;
2025 		} else {
2026 			sock_put(sk);
2027 			return 0;
2028 		}
2029 	}
2030 
2031 	if (static_branch_unlikely(&ip4_min_ttl)) {
2032 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2033 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2034 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2035 			goto discard_and_relse;
2036 		}
2037 	}
2038 
2039 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2040 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2041 		goto discard_and_relse;
2042 	}
2043 
2044 	if (tcp_inbound_md5_hash(sk, skb, &drop_reason, &iph->saddr,
2045 				 &iph->daddr, AF_INET, dif, sdif))
2046 		goto discard_and_relse;
2047 
2048 	nf_reset_ct(skb);
2049 
2050 	if (tcp_filter(sk, skb)) {
2051 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2052 		goto discard_and_relse;
2053 	}
2054 	th = (const struct tcphdr *)skb->data;
2055 	iph = ip_hdr(skb);
2056 	tcp_v4_fill_cb(skb, iph, th);
2057 
2058 	skb->dev = NULL;
2059 
2060 	if (sk->sk_state == TCP_LISTEN) {
2061 		ret = tcp_v4_do_rcv(sk, skb);
2062 		goto put_and_return;
2063 	}
2064 
2065 	sk_incoming_cpu_update(sk);
2066 
2067 	sk_defer_free_flush(sk);
2068 	bh_lock_sock_nested(sk);
2069 	tcp_segs_in(tcp_sk(sk), skb);
2070 	ret = 0;
2071 	if (!sock_owned_by_user(sk)) {
2072 		ret = tcp_v4_do_rcv(sk, skb);
2073 	} else {
2074 		if (tcp_add_backlog(sk, skb, &drop_reason))
2075 			goto discard_and_relse;
2076 	}
2077 	bh_unlock_sock(sk);
2078 
2079 put_and_return:
2080 	if (refcounted)
2081 		sock_put(sk);
2082 
2083 	return ret;
2084 
2085 no_tcp_socket:
2086 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2087 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2088 		goto discard_it;
2089 
2090 	tcp_v4_fill_cb(skb, iph, th);
2091 
2092 	if (tcp_checksum_complete(skb)) {
2093 csum_error:
2094 		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2095 		trace_tcp_bad_csum(skb);
2096 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2097 bad_packet:
2098 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2099 	} else {
2100 		tcp_v4_send_reset(NULL, skb);
2101 	}
2102 
2103 discard_it:
2104 	/* Discard frame. */
2105 	kfree_skb_reason(skb, drop_reason);
2106 	return 0;
2107 
2108 discard_and_relse:
2109 	sk_drops_add(sk, skb);
2110 	if (refcounted)
2111 		sock_put(sk);
2112 	goto discard_it;
2113 
2114 do_time_wait:
2115 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2116 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2117 		inet_twsk_put(inet_twsk(sk));
2118 		goto discard_it;
2119 	}
2120 
2121 	tcp_v4_fill_cb(skb, iph, th);
2122 
2123 	if (tcp_checksum_complete(skb)) {
2124 		inet_twsk_put(inet_twsk(sk));
2125 		goto csum_error;
2126 	}
2127 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2128 	case TCP_TW_SYN: {
2129 		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2130 							&tcp_hashinfo, skb,
2131 							__tcp_hdrlen(th),
2132 							iph->saddr, th->source,
2133 							iph->daddr, th->dest,
2134 							inet_iif(skb),
2135 							sdif);
2136 		if (sk2) {
2137 			inet_twsk_deschedule_put(inet_twsk(sk));
2138 			sk = sk2;
2139 			tcp_v4_restore_cb(skb);
2140 			refcounted = false;
2141 			goto process;
2142 		}
2143 	}
2144 		/* to ACK */
2145 		fallthrough;
2146 	case TCP_TW_ACK:
2147 		tcp_v4_timewait_ack(sk, skb);
2148 		break;
2149 	case TCP_TW_RST:
2150 		tcp_v4_send_reset(sk, skb);
2151 		inet_twsk_deschedule_put(inet_twsk(sk));
2152 		goto discard_it;
2153 	case TCP_TW_SUCCESS:;
2154 	}
2155 	goto discard_it;
2156 }
2157 
2158 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2159 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2160 	.twsk_unique	= tcp_twsk_unique,
2161 	.twsk_destructor= tcp_twsk_destructor,
2162 };
2163 
2164 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2165 {
2166 	struct dst_entry *dst = skb_dst(skb);
2167 
2168 	if (dst && dst_hold_safe(dst)) {
2169 		rcu_assign_pointer(sk->sk_rx_dst, dst);
2170 		sk->sk_rx_dst_ifindex = skb->skb_iif;
2171 	}
2172 }
2173 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2174 
2175 const struct inet_connection_sock_af_ops ipv4_specific = {
2176 	.queue_xmit	   = ip_queue_xmit,
2177 	.send_check	   = tcp_v4_send_check,
2178 	.rebuild_header	   = inet_sk_rebuild_header,
2179 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2180 	.conn_request	   = tcp_v4_conn_request,
2181 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2182 	.net_header_len	   = sizeof(struct iphdr),
2183 	.setsockopt	   = ip_setsockopt,
2184 	.getsockopt	   = ip_getsockopt,
2185 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2186 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2187 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2188 };
2189 EXPORT_SYMBOL(ipv4_specific);
2190 
2191 #ifdef CONFIG_TCP_MD5SIG
2192 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2193 	.md5_lookup		= tcp_v4_md5_lookup,
2194 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2195 	.md5_parse		= tcp_v4_parse_md5_keys,
2196 };
2197 #endif
2198 
2199 /* NOTE: A lot of things set to zero explicitly by call to
2200  *       sk_alloc() so need not be done here.
2201  */
2202 static int tcp_v4_init_sock(struct sock *sk)
2203 {
2204 	struct inet_connection_sock *icsk = inet_csk(sk);
2205 
2206 	tcp_init_sock(sk);
2207 
2208 	icsk->icsk_af_ops = &ipv4_specific;
2209 
2210 #ifdef CONFIG_TCP_MD5SIG
2211 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2212 #endif
2213 
2214 	return 0;
2215 }
2216 
2217 void tcp_v4_destroy_sock(struct sock *sk)
2218 {
2219 	struct tcp_sock *tp = tcp_sk(sk);
2220 
2221 	trace_tcp_destroy_sock(sk);
2222 
2223 	tcp_clear_xmit_timers(sk);
2224 
2225 	tcp_cleanup_congestion_control(sk);
2226 
2227 	tcp_cleanup_ulp(sk);
2228 
2229 	/* Cleanup up the write buffer. */
2230 	tcp_write_queue_purge(sk);
2231 
2232 	/* Check if we want to disable active TFO */
2233 	tcp_fastopen_active_disable_ofo_check(sk);
2234 
2235 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2236 	skb_rbtree_purge(&tp->out_of_order_queue);
2237 
2238 #ifdef CONFIG_TCP_MD5SIG
2239 	/* Clean up the MD5 key list, if any */
2240 	if (tp->md5sig_info) {
2241 		tcp_clear_md5_list(sk);
2242 		kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2243 		tp->md5sig_info = NULL;
2244 	}
2245 #endif
2246 
2247 	/* Clean up a referenced TCP bind bucket. */
2248 	if (inet_csk(sk)->icsk_bind_hash)
2249 		inet_put_port(sk);
2250 
2251 	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2252 
2253 	/* If socket is aborted during connect operation */
2254 	tcp_free_fastopen_req(tp);
2255 	tcp_fastopen_destroy_cipher(sk);
2256 	tcp_saved_syn_free(tp);
2257 
2258 	sk_sockets_allocated_dec(sk);
2259 }
2260 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2261 
2262 #ifdef CONFIG_PROC_FS
2263 /* Proc filesystem TCP sock list dumping. */
2264 
2265 static unsigned short seq_file_family(const struct seq_file *seq);
2266 
2267 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2268 {
2269 	unsigned short family = seq_file_family(seq);
2270 
2271 	/* AF_UNSPEC is used as a match all */
2272 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2273 		net_eq(sock_net(sk), seq_file_net(seq)));
2274 }
2275 
2276 /* Find a non empty bucket (starting from st->bucket)
2277  * and return the first sk from it.
2278  */
2279 static void *listening_get_first(struct seq_file *seq)
2280 {
2281 	struct tcp_iter_state *st = seq->private;
2282 
2283 	st->offset = 0;
2284 	for (; st->bucket <= tcp_hashinfo.lhash2_mask; st->bucket++) {
2285 		struct inet_listen_hashbucket *ilb2;
2286 		struct inet_connection_sock *icsk;
2287 		struct sock *sk;
2288 
2289 		ilb2 = &tcp_hashinfo.lhash2[st->bucket];
2290 		if (hlist_empty(&ilb2->head))
2291 			continue;
2292 
2293 		spin_lock(&ilb2->lock);
2294 		inet_lhash2_for_each_icsk(icsk, &ilb2->head) {
2295 			sk = (struct sock *)icsk;
2296 			if (seq_sk_match(seq, sk))
2297 				return sk;
2298 		}
2299 		spin_unlock(&ilb2->lock);
2300 	}
2301 
2302 	return NULL;
2303 }
2304 
2305 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2306  * If "cur" is the last one in the st->bucket,
2307  * call listening_get_first() to return the first sk of the next
2308  * non empty bucket.
2309  */
2310 static void *listening_get_next(struct seq_file *seq, void *cur)
2311 {
2312 	struct tcp_iter_state *st = seq->private;
2313 	struct inet_listen_hashbucket *ilb2;
2314 	struct inet_connection_sock *icsk;
2315 	struct sock *sk = cur;
2316 
2317 	++st->num;
2318 	++st->offset;
2319 
2320 	icsk = inet_csk(sk);
2321 	inet_lhash2_for_each_icsk_continue(icsk) {
2322 		sk = (struct sock *)icsk;
2323 		if (seq_sk_match(seq, sk))
2324 			return sk;
2325 	}
2326 
2327 	ilb2 = &tcp_hashinfo.lhash2[st->bucket];
2328 	spin_unlock(&ilb2->lock);
2329 	++st->bucket;
2330 	return listening_get_first(seq);
2331 }
2332 
2333 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2334 {
2335 	struct tcp_iter_state *st = seq->private;
2336 	void *rc;
2337 
2338 	st->bucket = 0;
2339 	st->offset = 0;
2340 	rc = listening_get_first(seq);
2341 
2342 	while (rc && *pos) {
2343 		rc = listening_get_next(seq, rc);
2344 		--*pos;
2345 	}
2346 	return rc;
2347 }
2348 
2349 static inline bool empty_bucket(const struct tcp_iter_state *st)
2350 {
2351 	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2352 }
2353 
2354 /*
2355  * Get first established socket starting from bucket given in st->bucket.
2356  * If st->bucket is zero, the very first socket in the hash is returned.
2357  */
2358 static void *established_get_first(struct seq_file *seq)
2359 {
2360 	struct tcp_iter_state *st = seq->private;
2361 
2362 	st->offset = 0;
2363 	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2364 		struct sock *sk;
2365 		struct hlist_nulls_node *node;
2366 		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2367 
2368 		/* Lockless fast path for the common case of empty buckets */
2369 		if (empty_bucket(st))
2370 			continue;
2371 
2372 		spin_lock_bh(lock);
2373 		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2374 			if (seq_sk_match(seq, sk))
2375 				return sk;
2376 		}
2377 		spin_unlock_bh(lock);
2378 	}
2379 
2380 	return NULL;
2381 }
2382 
2383 static void *established_get_next(struct seq_file *seq, void *cur)
2384 {
2385 	struct sock *sk = cur;
2386 	struct hlist_nulls_node *node;
2387 	struct tcp_iter_state *st = seq->private;
2388 
2389 	++st->num;
2390 	++st->offset;
2391 
2392 	sk = sk_nulls_next(sk);
2393 
2394 	sk_nulls_for_each_from(sk, node) {
2395 		if (seq_sk_match(seq, sk))
2396 			return sk;
2397 	}
2398 
2399 	spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2400 	++st->bucket;
2401 	return established_get_first(seq);
2402 }
2403 
2404 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2405 {
2406 	struct tcp_iter_state *st = seq->private;
2407 	void *rc;
2408 
2409 	st->bucket = 0;
2410 	rc = established_get_first(seq);
2411 
2412 	while (rc && pos) {
2413 		rc = established_get_next(seq, rc);
2414 		--pos;
2415 	}
2416 	return rc;
2417 }
2418 
2419 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2420 {
2421 	void *rc;
2422 	struct tcp_iter_state *st = seq->private;
2423 
2424 	st->state = TCP_SEQ_STATE_LISTENING;
2425 	rc	  = listening_get_idx(seq, &pos);
2426 
2427 	if (!rc) {
2428 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2429 		rc	  = established_get_idx(seq, pos);
2430 	}
2431 
2432 	return rc;
2433 }
2434 
2435 static void *tcp_seek_last_pos(struct seq_file *seq)
2436 {
2437 	struct tcp_iter_state *st = seq->private;
2438 	int bucket = st->bucket;
2439 	int offset = st->offset;
2440 	int orig_num = st->num;
2441 	void *rc = NULL;
2442 
2443 	switch (st->state) {
2444 	case TCP_SEQ_STATE_LISTENING:
2445 		if (st->bucket > tcp_hashinfo.lhash2_mask)
2446 			break;
2447 		st->state = TCP_SEQ_STATE_LISTENING;
2448 		rc = listening_get_first(seq);
2449 		while (offset-- && rc && bucket == st->bucket)
2450 			rc = listening_get_next(seq, rc);
2451 		if (rc)
2452 			break;
2453 		st->bucket = 0;
2454 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2455 		fallthrough;
2456 	case TCP_SEQ_STATE_ESTABLISHED:
2457 		if (st->bucket > tcp_hashinfo.ehash_mask)
2458 			break;
2459 		rc = established_get_first(seq);
2460 		while (offset-- && rc && bucket == st->bucket)
2461 			rc = established_get_next(seq, rc);
2462 	}
2463 
2464 	st->num = orig_num;
2465 
2466 	return rc;
2467 }
2468 
2469 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2470 {
2471 	struct tcp_iter_state *st = seq->private;
2472 	void *rc;
2473 
2474 	if (*pos && *pos == st->last_pos) {
2475 		rc = tcp_seek_last_pos(seq);
2476 		if (rc)
2477 			goto out;
2478 	}
2479 
2480 	st->state = TCP_SEQ_STATE_LISTENING;
2481 	st->num = 0;
2482 	st->bucket = 0;
2483 	st->offset = 0;
2484 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2485 
2486 out:
2487 	st->last_pos = *pos;
2488 	return rc;
2489 }
2490 EXPORT_SYMBOL(tcp_seq_start);
2491 
2492 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2493 {
2494 	struct tcp_iter_state *st = seq->private;
2495 	void *rc = NULL;
2496 
2497 	if (v == SEQ_START_TOKEN) {
2498 		rc = tcp_get_idx(seq, 0);
2499 		goto out;
2500 	}
2501 
2502 	switch (st->state) {
2503 	case TCP_SEQ_STATE_LISTENING:
2504 		rc = listening_get_next(seq, v);
2505 		if (!rc) {
2506 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2507 			st->bucket = 0;
2508 			st->offset = 0;
2509 			rc	  = established_get_first(seq);
2510 		}
2511 		break;
2512 	case TCP_SEQ_STATE_ESTABLISHED:
2513 		rc = established_get_next(seq, v);
2514 		break;
2515 	}
2516 out:
2517 	++*pos;
2518 	st->last_pos = *pos;
2519 	return rc;
2520 }
2521 EXPORT_SYMBOL(tcp_seq_next);
2522 
2523 void tcp_seq_stop(struct seq_file *seq, void *v)
2524 {
2525 	struct tcp_iter_state *st = seq->private;
2526 
2527 	switch (st->state) {
2528 	case TCP_SEQ_STATE_LISTENING:
2529 		if (v != SEQ_START_TOKEN)
2530 			spin_unlock(&tcp_hashinfo.lhash2[st->bucket].lock);
2531 		break;
2532 	case TCP_SEQ_STATE_ESTABLISHED:
2533 		if (v)
2534 			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2535 		break;
2536 	}
2537 }
2538 EXPORT_SYMBOL(tcp_seq_stop);
2539 
2540 static void get_openreq4(const struct request_sock *req,
2541 			 struct seq_file *f, int i)
2542 {
2543 	const struct inet_request_sock *ireq = inet_rsk(req);
2544 	long delta = req->rsk_timer.expires - jiffies;
2545 
2546 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2547 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2548 		i,
2549 		ireq->ir_loc_addr,
2550 		ireq->ir_num,
2551 		ireq->ir_rmt_addr,
2552 		ntohs(ireq->ir_rmt_port),
2553 		TCP_SYN_RECV,
2554 		0, 0, /* could print option size, but that is af dependent. */
2555 		1,    /* timers active (only the expire timer) */
2556 		jiffies_delta_to_clock_t(delta),
2557 		req->num_timeout,
2558 		from_kuid_munged(seq_user_ns(f),
2559 				 sock_i_uid(req->rsk_listener)),
2560 		0,  /* non standard timer */
2561 		0, /* open_requests have no inode */
2562 		0,
2563 		req);
2564 }
2565 
2566 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2567 {
2568 	int timer_active;
2569 	unsigned long timer_expires;
2570 	const struct tcp_sock *tp = tcp_sk(sk);
2571 	const struct inet_connection_sock *icsk = inet_csk(sk);
2572 	const struct inet_sock *inet = inet_sk(sk);
2573 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2574 	__be32 dest = inet->inet_daddr;
2575 	__be32 src = inet->inet_rcv_saddr;
2576 	__u16 destp = ntohs(inet->inet_dport);
2577 	__u16 srcp = ntohs(inet->inet_sport);
2578 	int rx_queue;
2579 	int state;
2580 
2581 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2582 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2583 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2584 		timer_active	= 1;
2585 		timer_expires	= icsk->icsk_timeout;
2586 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2587 		timer_active	= 4;
2588 		timer_expires	= icsk->icsk_timeout;
2589 	} else if (timer_pending(&sk->sk_timer)) {
2590 		timer_active	= 2;
2591 		timer_expires	= sk->sk_timer.expires;
2592 	} else {
2593 		timer_active	= 0;
2594 		timer_expires = jiffies;
2595 	}
2596 
2597 	state = inet_sk_state_load(sk);
2598 	if (state == TCP_LISTEN)
2599 		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2600 	else
2601 		/* Because we don't lock the socket,
2602 		 * we might find a transient negative value.
2603 		 */
2604 		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2605 				      READ_ONCE(tp->copied_seq), 0);
2606 
2607 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2608 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2609 		i, src, srcp, dest, destp, state,
2610 		READ_ONCE(tp->write_seq) - tp->snd_una,
2611 		rx_queue,
2612 		timer_active,
2613 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2614 		icsk->icsk_retransmits,
2615 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2616 		icsk->icsk_probes_out,
2617 		sock_i_ino(sk),
2618 		refcount_read(&sk->sk_refcnt), sk,
2619 		jiffies_to_clock_t(icsk->icsk_rto),
2620 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2621 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2622 		tp->snd_cwnd,
2623 		state == TCP_LISTEN ?
2624 		    fastopenq->max_qlen :
2625 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2626 }
2627 
2628 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2629 			       struct seq_file *f, int i)
2630 {
2631 	long delta = tw->tw_timer.expires - jiffies;
2632 	__be32 dest, src;
2633 	__u16 destp, srcp;
2634 
2635 	dest  = tw->tw_daddr;
2636 	src   = tw->tw_rcv_saddr;
2637 	destp = ntohs(tw->tw_dport);
2638 	srcp  = ntohs(tw->tw_sport);
2639 
2640 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2641 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2642 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2643 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2644 		refcount_read(&tw->tw_refcnt), tw);
2645 }
2646 
2647 #define TMPSZ 150
2648 
2649 static int tcp4_seq_show(struct seq_file *seq, void *v)
2650 {
2651 	struct tcp_iter_state *st;
2652 	struct sock *sk = v;
2653 
2654 	seq_setwidth(seq, TMPSZ - 1);
2655 	if (v == SEQ_START_TOKEN) {
2656 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2657 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2658 			   "inode");
2659 		goto out;
2660 	}
2661 	st = seq->private;
2662 
2663 	if (sk->sk_state == TCP_TIME_WAIT)
2664 		get_timewait4_sock(v, seq, st->num);
2665 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2666 		get_openreq4(v, seq, st->num);
2667 	else
2668 		get_tcp4_sock(v, seq, st->num);
2669 out:
2670 	seq_pad(seq, '\n');
2671 	return 0;
2672 }
2673 
2674 #ifdef CONFIG_BPF_SYSCALL
2675 struct bpf_tcp_iter_state {
2676 	struct tcp_iter_state state;
2677 	unsigned int cur_sk;
2678 	unsigned int end_sk;
2679 	unsigned int max_sk;
2680 	struct sock **batch;
2681 	bool st_bucket_done;
2682 };
2683 
2684 struct bpf_iter__tcp {
2685 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2686 	__bpf_md_ptr(struct sock_common *, sk_common);
2687 	uid_t uid __aligned(8);
2688 };
2689 
2690 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2691 			     struct sock_common *sk_common, uid_t uid)
2692 {
2693 	struct bpf_iter__tcp ctx;
2694 
2695 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2696 	ctx.meta = meta;
2697 	ctx.sk_common = sk_common;
2698 	ctx.uid = uid;
2699 	return bpf_iter_run_prog(prog, &ctx);
2700 }
2701 
2702 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
2703 {
2704 	while (iter->cur_sk < iter->end_sk)
2705 		sock_put(iter->batch[iter->cur_sk++]);
2706 }
2707 
2708 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
2709 				      unsigned int new_batch_sz)
2710 {
2711 	struct sock **new_batch;
2712 
2713 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
2714 			     GFP_USER | __GFP_NOWARN);
2715 	if (!new_batch)
2716 		return -ENOMEM;
2717 
2718 	bpf_iter_tcp_put_batch(iter);
2719 	kvfree(iter->batch);
2720 	iter->batch = new_batch;
2721 	iter->max_sk = new_batch_sz;
2722 
2723 	return 0;
2724 }
2725 
2726 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
2727 						 struct sock *start_sk)
2728 {
2729 	struct bpf_tcp_iter_state *iter = seq->private;
2730 	struct tcp_iter_state *st = &iter->state;
2731 	struct inet_connection_sock *icsk;
2732 	unsigned int expected = 1;
2733 	struct sock *sk;
2734 
2735 	sock_hold(start_sk);
2736 	iter->batch[iter->end_sk++] = start_sk;
2737 
2738 	icsk = inet_csk(start_sk);
2739 	inet_lhash2_for_each_icsk_continue(icsk) {
2740 		sk = (struct sock *)icsk;
2741 		if (seq_sk_match(seq, sk)) {
2742 			if (iter->end_sk < iter->max_sk) {
2743 				sock_hold(sk);
2744 				iter->batch[iter->end_sk++] = sk;
2745 			}
2746 			expected++;
2747 		}
2748 	}
2749 	spin_unlock(&tcp_hashinfo.lhash2[st->bucket].lock);
2750 
2751 	return expected;
2752 }
2753 
2754 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
2755 						   struct sock *start_sk)
2756 {
2757 	struct bpf_tcp_iter_state *iter = seq->private;
2758 	struct tcp_iter_state *st = &iter->state;
2759 	struct hlist_nulls_node *node;
2760 	unsigned int expected = 1;
2761 	struct sock *sk;
2762 
2763 	sock_hold(start_sk);
2764 	iter->batch[iter->end_sk++] = start_sk;
2765 
2766 	sk = sk_nulls_next(start_sk);
2767 	sk_nulls_for_each_from(sk, node) {
2768 		if (seq_sk_match(seq, sk)) {
2769 			if (iter->end_sk < iter->max_sk) {
2770 				sock_hold(sk);
2771 				iter->batch[iter->end_sk++] = sk;
2772 			}
2773 			expected++;
2774 		}
2775 	}
2776 	spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2777 
2778 	return expected;
2779 }
2780 
2781 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
2782 {
2783 	struct bpf_tcp_iter_state *iter = seq->private;
2784 	struct tcp_iter_state *st = &iter->state;
2785 	unsigned int expected;
2786 	bool resized = false;
2787 	struct sock *sk;
2788 
2789 	/* The st->bucket is done.  Directly advance to the next
2790 	 * bucket instead of having the tcp_seek_last_pos() to skip
2791 	 * one by one in the current bucket and eventually find out
2792 	 * it has to advance to the next bucket.
2793 	 */
2794 	if (iter->st_bucket_done) {
2795 		st->offset = 0;
2796 		st->bucket++;
2797 		if (st->state == TCP_SEQ_STATE_LISTENING &&
2798 		    st->bucket > tcp_hashinfo.lhash2_mask) {
2799 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2800 			st->bucket = 0;
2801 		}
2802 	}
2803 
2804 again:
2805 	/* Get a new batch */
2806 	iter->cur_sk = 0;
2807 	iter->end_sk = 0;
2808 	iter->st_bucket_done = false;
2809 
2810 	sk = tcp_seek_last_pos(seq);
2811 	if (!sk)
2812 		return NULL; /* Done */
2813 
2814 	if (st->state == TCP_SEQ_STATE_LISTENING)
2815 		expected = bpf_iter_tcp_listening_batch(seq, sk);
2816 	else
2817 		expected = bpf_iter_tcp_established_batch(seq, sk);
2818 
2819 	if (iter->end_sk == expected) {
2820 		iter->st_bucket_done = true;
2821 		return sk;
2822 	}
2823 
2824 	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
2825 		resized = true;
2826 		goto again;
2827 	}
2828 
2829 	return sk;
2830 }
2831 
2832 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
2833 {
2834 	/* bpf iter does not support lseek, so it always
2835 	 * continue from where it was stop()-ped.
2836 	 */
2837 	if (*pos)
2838 		return bpf_iter_tcp_batch(seq);
2839 
2840 	return SEQ_START_TOKEN;
2841 }
2842 
2843 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2844 {
2845 	struct bpf_tcp_iter_state *iter = seq->private;
2846 	struct tcp_iter_state *st = &iter->state;
2847 	struct sock *sk;
2848 
2849 	/* Whenever seq_next() is called, the iter->cur_sk is
2850 	 * done with seq_show(), so advance to the next sk in
2851 	 * the batch.
2852 	 */
2853 	if (iter->cur_sk < iter->end_sk) {
2854 		/* Keeping st->num consistent in tcp_iter_state.
2855 		 * bpf_iter_tcp does not use st->num.
2856 		 * meta.seq_num is used instead.
2857 		 */
2858 		st->num++;
2859 		/* Move st->offset to the next sk in the bucket such that
2860 		 * the future start() will resume at st->offset in
2861 		 * st->bucket.  See tcp_seek_last_pos().
2862 		 */
2863 		st->offset++;
2864 		sock_put(iter->batch[iter->cur_sk++]);
2865 	}
2866 
2867 	if (iter->cur_sk < iter->end_sk)
2868 		sk = iter->batch[iter->cur_sk];
2869 	else
2870 		sk = bpf_iter_tcp_batch(seq);
2871 
2872 	++*pos;
2873 	/* Keeping st->last_pos consistent in tcp_iter_state.
2874 	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
2875 	 */
2876 	st->last_pos = *pos;
2877 	return sk;
2878 }
2879 
2880 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
2881 {
2882 	struct bpf_iter_meta meta;
2883 	struct bpf_prog *prog;
2884 	struct sock *sk = v;
2885 	bool slow;
2886 	uid_t uid;
2887 	int ret;
2888 
2889 	if (v == SEQ_START_TOKEN)
2890 		return 0;
2891 
2892 	if (sk_fullsock(sk))
2893 		slow = lock_sock_fast(sk);
2894 
2895 	if (unlikely(sk_unhashed(sk))) {
2896 		ret = SEQ_SKIP;
2897 		goto unlock;
2898 	}
2899 
2900 	if (sk->sk_state == TCP_TIME_WAIT) {
2901 		uid = 0;
2902 	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
2903 		const struct request_sock *req = v;
2904 
2905 		uid = from_kuid_munged(seq_user_ns(seq),
2906 				       sock_i_uid(req->rsk_listener));
2907 	} else {
2908 		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
2909 	}
2910 
2911 	meta.seq = seq;
2912 	prog = bpf_iter_get_info(&meta, false);
2913 	ret = tcp_prog_seq_show(prog, &meta, v, uid);
2914 
2915 unlock:
2916 	if (sk_fullsock(sk))
2917 		unlock_sock_fast(sk, slow);
2918 	return ret;
2919 
2920 }
2921 
2922 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
2923 {
2924 	struct bpf_tcp_iter_state *iter = seq->private;
2925 	struct bpf_iter_meta meta;
2926 	struct bpf_prog *prog;
2927 
2928 	if (!v) {
2929 		meta.seq = seq;
2930 		prog = bpf_iter_get_info(&meta, true);
2931 		if (prog)
2932 			(void)tcp_prog_seq_show(prog, &meta, v, 0);
2933 	}
2934 
2935 	if (iter->cur_sk < iter->end_sk) {
2936 		bpf_iter_tcp_put_batch(iter);
2937 		iter->st_bucket_done = false;
2938 	}
2939 }
2940 
2941 static const struct seq_operations bpf_iter_tcp_seq_ops = {
2942 	.show		= bpf_iter_tcp_seq_show,
2943 	.start		= bpf_iter_tcp_seq_start,
2944 	.next		= bpf_iter_tcp_seq_next,
2945 	.stop		= bpf_iter_tcp_seq_stop,
2946 };
2947 #endif
2948 static unsigned short seq_file_family(const struct seq_file *seq)
2949 {
2950 	const struct tcp_seq_afinfo *afinfo;
2951 
2952 #ifdef CONFIG_BPF_SYSCALL
2953 	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
2954 	if (seq->op == &bpf_iter_tcp_seq_ops)
2955 		return AF_UNSPEC;
2956 #endif
2957 
2958 	/* Iterated from proc fs */
2959 	afinfo = pde_data(file_inode(seq->file));
2960 	return afinfo->family;
2961 }
2962 
2963 static const struct seq_operations tcp4_seq_ops = {
2964 	.show		= tcp4_seq_show,
2965 	.start		= tcp_seq_start,
2966 	.next		= tcp_seq_next,
2967 	.stop		= tcp_seq_stop,
2968 };
2969 
2970 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2971 	.family		= AF_INET,
2972 };
2973 
2974 static int __net_init tcp4_proc_init_net(struct net *net)
2975 {
2976 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
2977 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
2978 		return -ENOMEM;
2979 	return 0;
2980 }
2981 
2982 static void __net_exit tcp4_proc_exit_net(struct net *net)
2983 {
2984 	remove_proc_entry("tcp", net->proc_net);
2985 }
2986 
2987 static struct pernet_operations tcp4_net_ops = {
2988 	.init = tcp4_proc_init_net,
2989 	.exit = tcp4_proc_exit_net,
2990 };
2991 
2992 int __init tcp4_proc_init(void)
2993 {
2994 	return register_pernet_subsys(&tcp4_net_ops);
2995 }
2996 
2997 void tcp4_proc_exit(void)
2998 {
2999 	unregister_pernet_subsys(&tcp4_net_ops);
3000 }
3001 #endif /* CONFIG_PROC_FS */
3002 
3003 /* @wake is one when sk_stream_write_space() calls us.
3004  * This sends EPOLLOUT only if notsent_bytes is half the limit.
3005  * This mimics the strategy used in sock_def_write_space().
3006  */
3007 bool tcp_stream_memory_free(const struct sock *sk, int wake)
3008 {
3009 	const struct tcp_sock *tp = tcp_sk(sk);
3010 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3011 			    READ_ONCE(tp->snd_nxt);
3012 
3013 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3014 }
3015 EXPORT_SYMBOL(tcp_stream_memory_free);
3016 
3017 struct proto tcp_prot = {
3018 	.name			= "TCP",
3019 	.owner			= THIS_MODULE,
3020 	.close			= tcp_close,
3021 	.pre_connect		= tcp_v4_pre_connect,
3022 	.connect		= tcp_v4_connect,
3023 	.disconnect		= tcp_disconnect,
3024 	.accept			= inet_csk_accept,
3025 	.ioctl			= tcp_ioctl,
3026 	.init			= tcp_v4_init_sock,
3027 	.destroy		= tcp_v4_destroy_sock,
3028 	.shutdown		= tcp_shutdown,
3029 	.setsockopt		= tcp_setsockopt,
3030 	.getsockopt		= tcp_getsockopt,
3031 	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3032 	.keepalive		= tcp_set_keepalive,
3033 	.recvmsg		= tcp_recvmsg,
3034 	.sendmsg		= tcp_sendmsg,
3035 	.sendpage		= tcp_sendpage,
3036 	.backlog_rcv		= tcp_v4_do_rcv,
3037 	.release_cb		= tcp_release_cb,
3038 	.hash			= inet_hash,
3039 	.unhash			= inet_unhash,
3040 	.get_port		= inet_csk_get_port,
3041 	.put_port		= inet_put_port,
3042 #ifdef CONFIG_BPF_SYSCALL
3043 	.psock_update_sk_prot	= tcp_bpf_update_proto,
3044 #endif
3045 	.enter_memory_pressure	= tcp_enter_memory_pressure,
3046 	.leave_memory_pressure	= tcp_leave_memory_pressure,
3047 	.stream_memory_free	= tcp_stream_memory_free,
3048 	.sockets_allocated	= &tcp_sockets_allocated,
3049 	.orphan_count		= &tcp_orphan_count,
3050 	.memory_allocated	= &tcp_memory_allocated,
3051 	.memory_pressure	= &tcp_memory_pressure,
3052 	.sysctl_mem		= sysctl_tcp_mem,
3053 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3054 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3055 	.max_header		= MAX_TCP_HEADER,
3056 	.obj_size		= sizeof(struct tcp_sock),
3057 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3058 	.twsk_prot		= &tcp_timewait_sock_ops,
3059 	.rsk_prot		= &tcp_request_sock_ops,
3060 	.h.hashinfo		= &tcp_hashinfo,
3061 	.no_autobind		= true,
3062 	.diag_destroy		= tcp_abort,
3063 };
3064 EXPORT_SYMBOL(tcp_prot);
3065 
3066 static void __net_exit tcp_sk_exit(struct net *net)
3067 {
3068 	struct inet_timewait_death_row *tcp_death_row = net->ipv4.tcp_death_row;
3069 
3070 	if (net->ipv4.tcp_congestion_control)
3071 		bpf_module_put(net->ipv4.tcp_congestion_control,
3072 			       net->ipv4.tcp_congestion_control->owner);
3073 	if (refcount_dec_and_test(&tcp_death_row->tw_refcount))
3074 		kfree(tcp_death_row);
3075 }
3076 
3077 static int __net_init tcp_sk_init(struct net *net)
3078 {
3079 	int cnt;
3080 
3081 	net->ipv4.sysctl_tcp_ecn = 2;
3082 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3083 
3084 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3085 	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3086 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3087 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3088 	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3089 
3090 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3091 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3092 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3093 
3094 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3095 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3096 	net->ipv4.sysctl_tcp_syncookies = 1;
3097 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3098 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3099 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3100 	net->ipv4.sysctl_tcp_orphan_retries = 0;
3101 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3102 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3103 	net->ipv4.sysctl_tcp_tw_reuse = 2;
3104 	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3105 
3106 	net->ipv4.tcp_death_row = kzalloc(sizeof(struct inet_timewait_death_row), GFP_KERNEL);
3107 	if (!net->ipv4.tcp_death_row)
3108 		return -ENOMEM;
3109 	refcount_set(&net->ipv4.tcp_death_row->tw_refcount, 1);
3110 	cnt = tcp_hashinfo.ehash_mask + 1;
3111 	net->ipv4.tcp_death_row->sysctl_max_tw_buckets = cnt / 2;
3112 	net->ipv4.tcp_death_row->hashinfo = &tcp_hashinfo;
3113 
3114 	net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 128);
3115 	net->ipv4.sysctl_tcp_sack = 1;
3116 	net->ipv4.sysctl_tcp_window_scaling = 1;
3117 	net->ipv4.sysctl_tcp_timestamps = 1;
3118 	net->ipv4.sysctl_tcp_early_retrans = 3;
3119 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3120 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3121 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3122 	net->ipv4.sysctl_tcp_max_reordering = 300;
3123 	net->ipv4.sysctl_tcp_dsack = 1;
3124 	net->ipv4.sysctl_tcp_app_win = 31;
3125 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3126 	net->ipv4.sysctl_tcp_frto = 2;
3127 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3128 	/* This limits the percentage of the congestion window which we
3129 	 * will allow a single TSO frame to consume.  Building TSO frames
3130 	 * which are too large can cause TCP streams to be bursty.
3131 	 */
3132 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3133 	/* Default TSQ limit of 16 TSO segments */
3134 	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3135 	/* rfc5961 challenge ack rate limiting */
3136 	net->ipv4.sysctl_tcp_challenge_ack_limit = 1000;
3137 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3138 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3139 	net->ipv4.sysctl_tcp_autocorking = 1;
3140 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3141 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3142 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3143 	if (net != &init_net) {
3144 		memcpy(net->ipv4.sysctl_tcp_rmem,
3145 		       init_net.ipv4.sysctl_tcp_rmem,
3146 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3147 		memcpy(net->ipv4.sysctl_tcp_wmem,
3148 		       init_net.ipv4.sysctl_tcp_wmem,
3149 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3150 	}
3151 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3152 	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3153 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3154 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3155 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3156 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3157 
3158 	/* Reno is always built in */
3159 	if (!net_eq(net, &init_net) &&
3160 	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3161 			       init_net.ipv4.tcp_congestion_control->owner))
3162 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3163 	else
3164 		net->ipv4.tcp_congestion_control = &tcp_reno;
3165 
3166 	return 0;
3167 }
3168 
3169 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3170 {
3171 	struct net *net;
3172 
3173 	list_for_each_entry(net, net_exit_list, exit_list)
3174 		tcp_fastopen_ctx_destroy(net);
3175 }
3176 
3177 static struct pernet_operations __net_initdata tcp_sk_ops = {
3178        .init	   = tcp_sk_init,
3179        .exit	   = tcp_sk_exit,
3180        .exit_batch = tcp_sk_exit_batch,
3181 };
3182 
3183 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3184 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3185 		     struct sock_common *sk_common, uid_t uid)
3186 
3187 #define INIT_BATCH_SZ 16
3188 
3189 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3190 {
3191 	struct bpf_tcp_iter_state *iter = priv_data;
3192 	int err;
3193 
3194 	err = bpf_iter_init_seq_net(priv_data, aux);
3195 	if (err)
3196 		return err;
3197 
3198 	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3199 	if (err) {
3200 		bpf_iter_fini_seq_net(priv_data);
3201 		return err;
3202 	}
3203 
3204 	return 0;
3205 }
3206 
3207 static void bpf_iter_fini_tcp(void *priv_data)
3208 {
3209 	struct bpf_tcp_iter_state *iter = priv_data;
3210 
3211 	bpf_iter_fini_seq_net(priv_data);
3212 	kvfree(iter->batch);
3213 }
3214 
3215 static const struct bpf_iter_seq_info tcp_seq_info = {
3216 	.seq_ops		= &bpf_iter_tcp_seq_ops,
3217 	.init_seq_private	= bpf_iter_init_tcp,
3218 	.fini_seq_private	= bpf_iter_fini_tcp,
3219 	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3220 };
3221 
3222 static const struct bpf_func_proto *
3223 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3224 			    const struct bpf_prog *prog)
3225 {
3226 	switch (func_id) {
3227 	case BPF_FUNC_setsockopt:
3228 		return &bpf_sk_setsockopt_proto;
3229 	case BPF_FUNC_getsockopt:
3230 		return &bpf_sk_getsockopt_proto;
3231 	default:
3232 		return NULL;
3233 	}
3234 }
3235 
3236 static struct bpf_iter_reg tcp_reg_info = {
3237 	.target			= "tcp",
3238 	.ctx_arg_info_size	= 1,
3239 	.ctx_arg_info		= {
3240 		{ offsetof(struct bpf_iter__tcp, sk_common),
3241 		  PTR_TO_BTF_ID_OR_NULL },
3242 	},
3243 	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3244 	.seq_info		= &tcp_seq_info,
3245 };
3246 
3247 static void __init bpf_iter_register(void)
3248 {
3249 	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3250 	if (bpf_iter_reg_target(&tcp_reg_info))
3251 		pr_warn("Warning: could not register bpf iterator tcp\n");
3252 }
3253 
3254 #endif
3255 
3256 void __init tcp_v4_init(void)
3257 {
3258 	int cpu, res;
3259 
3260 	for_each_possible_cpu(cpu) {
3261 		struct sock *sk;
3262 
3263 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3264 					   IPPROTO_TCP, &init_net);
3265 		if (res)
3266 			panic("Failed to create the TCP control socket.\n");
3267 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3268 
3269 		/* Please enforce IP_DF and IPID==0 for RST and
3270 		 * ACK sent in SYN-RECV and TIME-WAIT state.
3271 		 */
3272 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3273 
3274 		per_cpu(ipv4_tcp_sk, cpu) = sk;
3275 	}
3276 	if (register_pernet_subsys(&tcp_sk_ops))
3277 		panic("Failed to create the TCP control socket.\n");
3278 
3279 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3280 	bpf_iter_register();
3281 #endif
3282 }
3283