xref: /linux/net/ipv4/tcp_input.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 
97 int sysctl_tcp_thin_dupack __read_mostly;
98 
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101 
102 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
103 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
104 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
105 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
106 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
107 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
108 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
109 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
111 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123 
124 /* Adapt the MSS value used to make delayed ack decision to the
125  * real world.
126  */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 	struct inet_connection_sock *icsk = inet_csk(sk);
130 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 	unsigned int len;
132 
133 	icsk->icsk_ack.last_seg_size = 0;
134 
135 	/* skb->len may jitter because of SACKs, even if peer
136 	 * sends good full-sized frames.
137 	 */
138 	len = skb_shinfo(skb)->gso_size ? : skb->len;
139 	if (len >= icsk->icsk_ack.rcv_mss) {
140 		icsk->icsk_ack.rcv_mss = len;
141 	} else {
142 		/* Otherwise, we make more careful check taking into account,
143 		 * that SACKs block is variable.
144 		 *
145 		 * "len" is invariant segment length, including TCP header.
146 		 */
147 		len += skb->data - skb_transport_header(skb);
148 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 		    /* If PSH is not set, packet should be
150 		     * full sized, provided peer TCP is not badly broken.
151 		     * This observation (if it is correct 8)) allows
152 		     * to handle super-low mtu links fairly.
153 		     */
154 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 			/* Subtract also invariant (if peer is RFC compliant),
157 			 * tcp header plus fixed timestamp option length.
158 			 * Resulting "len" is MSS free of SACK jitter.
159 			 */
160 			len -= tcp_sk(sk)->tcp_header_len;
161 			icsk->icsk_ack.last_seg_size = len;
162 			if (len == lss) {
163 				icsk->icsk_ack.rcv_mss = len;
164 				return;
165 			}
166 		}
167 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 	}
171 }
172 
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 	struct inet_connection_sock *icsk = inet_csk(sk);
176 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177 
178 	if (quickacks == 0)
179 		quickacks = 2;
180 	if (quickacks > icsk->icsk_ack.quick)
181 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183 
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 	struct inet_connection_sock *icsk = inet_csk(sk);
187 	tcp_incr_quickack(sk);
188 	icsk->icsk_ack.pingpong = 0;
189 	icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191 
192 /* Send ACKs quickly, if "quick" count is not exhausted
193  * and the session is not interactive.
194  */
195 
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 	const struct inet_connection_sock *icsk = inet_csk(sk);
199 
200 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202 
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 	if (tp->ecn_flags & TCP_ECN_OK)
206 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208 
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 	if (tcp_hdr(skb)->cwr)
212 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214 
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219 
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 	if (!(tp->ecn_flags & TCP_ECN_OK))
223 		return;
224 
225 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 	case INET_ECN_NOT_ECT:
227 		/* Funny extension: if ECT is not set on a segment,
228 		 * and we already seen ECT on a previous segment,
229 		 * it is probably a retransmit.
230 		 */
231 		if (tp->ecn_flags & TCP_ECN_SEEN)
232 			tcp_enter_quickack_mode((struct sock *)tp);
233 		break;
234 	case INET_ECN_CE:
235 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 			/* Better not delay acks, sender can have a very low cwnd */
237 			tcp_enter_quickack_mode((struct sock *)tp);
238 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 		}
240 		/* fallinto */
241 	default:
242 		tp->ecn_flags |= TCP_ECN_SEEN;
243 	}
244 }
245 
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 		tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251 
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 		tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257 
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 		return true;
262 	return false;
263 }
264 
265 /* Buffer size and advertised window tuning.
266  *
267  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268  */
269 
270 static void tcp_fixup_sndbuf(struct sock *sk)
271 {
272 	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
273 
274 	sndmem *= TCP_INIT_CWND;
275 	if (sk->sk_sndbuf < sndmem)
276 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
277 }
278 
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280  *
281  * All tcp_full_space() is split to two parts: "network" buffer, allocated
282  * forward and advertised in receiver window (tp->rcv_wnd) and
283  * "application buffer", required to isolate scheduling/application
284  * latencies from network.
285  * window_clamp is maximal advertised window. It can be less than
286  * tcp_full_space(), in this case tcp_full_space() - window_clamp
287  * is reserved for "application" buffer. The less window_clamp is
288  * the smoother our behaviour from viewpoint of network, but the lower
289  * throughput and the higher sensitivity of the connection to losses. 8)
290  *
291  * rcv_ssthresh is more strict window_clamp used at "slow start"
292  * phase to predict further behaviour of this connection.
293  * It is used for two goals:
294  * - to enforce header prediction at sender, even when application
295  *   requires some significant "application buffer". It is check #1.
296  * - to prevent pruning of receive queue because of misprediction
297  *   of receiver window. Check #2.
298  *
299  * The scheme does not work when sender sends good segments opening
300  * window and then starts to feed us spaghetti. But it should work
301  * in common situations. Otherwise, we have to rely on queue collapsing.
302  */
303 
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
306 {
307 	struct tcp_sock *tp = tcp_sk(sk);
308 	/* Optimize this! */
309 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
310 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
311 
312 	while (tp->rcv_ssthresh <= window) {
313 		if (truesize <= skb->len)
314 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
315 
316 		truesize >>= 1;
317 		window >>= 1;
318 	}
319 	return 0;
320 }
321 
322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
323 {
324 	struct tcp_sock *tp = tcp_sk(sk);
325 
326 	/* Check #1 */
327 	if (tp->rcv_ssthresh < tp->window_clamp &&
328 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
329 	    !sk_under_memory_pressure(sk)) {
330 		int incr;
331 
332 		/* Check #2. Increase window, if skb with such overhead
333 		 * will fit to rcvbuf in future.
334 		 */
335 		if (tcp_win_from_space(skb->truesize) <= skb->len)
336 			incr = 2 * tp->advmss;
337 		else
338 			incr = __tcp_grow_window(sk, skb);
339 
340 		if (incr) {
341 			incr = max_t(int, incr, 2 * skb->len);
342 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343 					       tp->window_clamp);
344 			inet_csk(sk)->icsk_ack.quick |= 1;
345 		}
346 	}
347 }
348 
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350 static void tcp_fixup_rcvbuf(struct sock *sk)
351 {
352 	u32 mss = tcp_sk(sk)->advmss;
353 	int rcvmem;
354 
355 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
356 		 tcp_default_init_rwnd(mss);
357 
358 	if (sk->sk_rcvbuf < rcvmem)
359 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
360 }
361 
362 /* 4. Try to fixup all. It is made immediately after connection enters
363  *    established state.
364  */
365 void tcp_init_buffer_space(struct sock *sk)
366 {
367 	struct tcp_sock *tp = tcp_sk(sk);
368 	int maxwin;
369 
370 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
371 		tcp_fixup_rcvbuf(sk);
372 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
373 		tcp_fixup_sndbuf(sk);
374 
375 	tp->rcvq_space.space = tp->rcv_wnd;
376 
377 	maxwin = tcp_full_space(sk);
378 
379 	if (tp->window_clamp >= maxwin) {
380 		tp->window_clamp = maxwin;
381 
382 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
383 			tp->window_clamp = max(maxwin -
384 					       (maxwin >> sysctl_tcp_app_win),
385 					       4 * tp->advmss);
386 	}
387 
388 	/* Force reservation of one segment. */
389 	if (sysctl_tcp_app_win &&
390 	    tp->window_clamp > 2 * tp->advmss &&
391 	    tp->window_clamp + tp->advmss > maxwin)
392 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
393 
394 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
395 	tp->snd_cwnd_stamp = tcp_time_stamp;
396 }
397 
398 /* 5. Recalculate window clamp after socket hit its memory bounds. */
399 static void tcp_clamp_window(struct sock *sk)
400 {
401 	struct tcp_sock *tp = tcp_sk(sk);
402 	struct inet_connection_sock *icsk = inet_csk(sk);
403 
404 	icsk->icsk_ack.quick = 0;
405 
406 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
407 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
408 	    !sk_under_memory_pressure(sk) &&
409 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
410 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
411 				    sysctl_tcp_rmem[2]);
412 	}
413 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
414 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
415 }
416 
417 /* Initialize RCV_MSS value.
418  * RCV_MSS is an our guess about MSS used by the peer.
419  * We haven't any direct information about the MSS.
420  * It's better to underestimate the RCV_MSS rather than overestimate.
421  * Overestimations make us ACKing less frequently than needed.
422  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
423  */
424 void tcp_initialize_rcv_mss(struct sock *sk)
425 {
426 	const struct tcp_sock *tp = tcp_sk(sk);
427 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
428 
429 	hint = min(hint, tp->rcv_wnd / 2);
430 	hint = min(hint, TCP_MSS_DEFAULT);
431 	hint = max(hint, TCP_MIN_MSS);
432 
433 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
434 }
435 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
436 
437 /* Receiver "autotuning" code.
438  *
439  * The algorithm for RTT estimation w/o timestamps is based on
440  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
441  * <http://public.lanl.gov/radiant/pubs.html#DRS>
442  *
443  * More detail on this code can be found at
444  * <http://staff.psc.edu/jheffner/>,
445  * though this reference is out of date.  A new paper
446  * is pending.
447  */
448 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
449 {
450 	u32 new_sample = tp->rcv_rtt_est.rtt;
451 	long m = sample;
452 
453 	if (m == 0)
454 		m = 1;
455 
456 	if (new_sample != 0) {
457 		/* If we sample in larger samples in the non-timestamp
458 		 * case, we could grossly overestimate the RTT especially
459 		 * with chatty applications or bulk transfer apps which
460 		 * are stalled on filesystem I/O.
461 		 *
462 		 * Also, since we are only going for a minimum in the
463 		 * non-timestamp case, we do not smooth things out
464 		 * else with timestamps disabled convergence takes too
465 		 * long.
466 		 */
467 		if (!win_dep) {
468 			m -= (new_sample >> 3);
469 			new_sample += m;
470 		} else {
471 			m <<= 3;
472 			if (m < new_sample)
473 				new_sample = m;
474 		}
475 	} else {
476 		/* No previous measure. */
477 		new_sample = m << 3;
478 	}
479 
480 	if (tp->rcv_rtt_est.rtt != new_sample)
481 		tp->rcv_rtt_est.rtt = new_sample;
482 }
483 
484 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
485 {
486 	if (tp->rcv_rtt_est.time == 0)
487 		goto new_measure;
488 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
489 		return;
490 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
491 
492 new_measure:
493 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
494 	tp->rcv_rtt_est.time = tcp_time_stamp;
495 }
496 
497 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
498 					  const struct sk_buff *skb)
499 {
500 	struct tcp_sock *tp = tcp_sk(sk);
501 	if (tp->rx_opt.rcv_tsecr &&
502 	    (TCP_SKB_CB(skb)->end_seq -
503 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
504 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
505 }
506 
507 /*
508  * This function should be called every time data is copied to user space.
509  * It calculates the appropriate TCP receive buffer space.
510  */
511 void tcp_rcv_space_adjust(struct sock *sk)
512 {
513 	struct tcp_sock *tp = tcp_sk(sk);
514 	int time;
515 	int space;
516 
517 	if (tp->rcvq_space.time == 0)
518 		goto new_measure;
519 
520 	time = tcp_time_stamp - tp->rcvq_space.time;
521 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
522 		return;
523 
524 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
525 
526 	space = max(tp->rcvq_space.space, space);
527 
528 	if (tp->rcvq_space.space != space) {
529 		int rcvmem;
530 
531 		tp->rcvq_space.space = space;
532 
533 		if (sysctl_tcp_moderate_rcvbuf &&
534 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
535 			int new_clamp = space;
536 
537 			/* Receive space grows, normalize in order to
538 			 * take into account packet headers and sk_buff
539 			 * structure overhead.
540 			 */
541 			space /= tp->advmss;
542 			if (!space)
543 				space = 1;
544 			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
545 			while (tcp_win_from_space(rcvmem) < tp->advmss)
546 				rcvmem += 128;
547 			space *= rcvmem;
548 			space = min(space, sysctl_tcp_rmem[2]);
549 			if (space > sk->sk_rcvbuf) {
550 				sk->sk_rcvbuf = space;
551 
552 				/* Make the window clamp follow along.  */
553 				tp->window_clamp = new_clamp;
554 			}
555 		}
556 	}
557 
558 new_measure:
559 	tp->rcvq_space.seq = tp->copied_seq;
560 	tp->rcvq_space.time = tcp_time_stamp;
561 }
562 
563 /* There is something which you must keep in mind when you analyze the
564  * behavior of the tp->ato delayed ack timeout interval.  When a
565  * connection starts up, we want to ack as quickly as possible.  The
566  * problem is that "good" TCP's do slow start at the beginning of data
567  * transmission.  The means that until we send the first few ACK's the
568  * sender will sit on his end and only queue most of his data, because
569  * he can only send snd_cwnd unacked packets at any given time.  For
570  * each ACK we send, he increments snd_cwnd and transmits more of his
571  * queue.  -DaveM
572  */
573 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
574 {
575 	struct tcp_sock *tp = tcp_sk(sk);
576 	struct inet_connection_sock *icsk = inet_csk(sk);
577 	u32 now;
578 
579 	inet_csk_schedule_ack(sk);
580 
581 	tcp_measure_rcv_mss(sk, skb);
582 
583 	tcp_rcv_rtt_measure(tp);
584 
585 	now = tcp_time_stamp;
586 
587 	if (!icsk->icsk_ack.ato) {
588 		/* The _first_ data packet received, initialize
589 		 * delayed ACK engine.
590 		 */
591 		tcp_incr_quickack(sk);
592 		icsk->icsk_ack.ato = TCP_ATO_MIN;
593 	} else {
594 		int m = now - icsk->icsk_ack.lrcvtime;
595 
596 		if (m <= TCP_ATO_MIN / 2) {
597 			/* The fastest case is the first. */
598 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
599 		} else if (m < icsk->icsk_ack.ato) {
600 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
601 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
602 				icsk->icsk_ack.ato = icsk->icsk_rto;
603 		} else if (m > icsk->icsk_rto) {
604 			/* Too long gap. Apparently sender failed to
605 			 * restart window, so that we send ACKs quickly.
606 			 */
607 			tcp_incr_quickack(sk);
608 			sk_mem_reclaim(sk);
609 		}
610 	}
611 	icsk->icsk_ack.lrcvtime = now;
612 
613 	TCP_ECN_check_ce(tp, skb);
614 
615 	if (skb->len >= 128)
616 		tcp_grow_window(sk, skb);
617 }
618 
619 /* Called to compute a smoothed rtt estimate. The data fed to this
620  * routine either comes from timestamps, or from segments that were
621  * known _not_ to have been retransmitted [see Karn/Partridge
622  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
623  * piece by Van Jacobson.
624  * NOTE: the next three routines used to be one big routine.
625  * To save cycles in the RFC 1323 implementation it was better to break
626  * it up into three procedures. -- erics
627  */
628 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
629 {
630 	struct tcp_sock *tp = tcp_sk(sk);
631 	long m = mrtt; /* RTT */
632 
633 	/*	The following amusing code comes from Jacobson's
634 	 *	article in SIGCOMM '88.  Note that rtt and mdev
635 	 *	are scaled versions of rtt and mean deviation.
636 	 *	This is designed to be as fast as possible
637 	 *	m stands for "measurement".
638 	 *
639 	 *	On a 1990 paper the rto value is changed to:
640 	 *	RTO = rtt + 4 * mdev
641 	 *
642 	 * Funny. This algorithm seems to be very broken.
643 	 * These formulae increase RTO, when it should be decreased, increase
644 	 * too slowly, when it should be increased quickly, decrease too quickly
645 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
646 	 * does not matter how to _calculate_ it. Seems, it was trap
647 	 * that VJ failed to avoid. 8)
648 	 */
649 	if (m == 0)
650 		m = 1;
651 	if (tp->srtt != 0) {
652 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
653 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
654 		if (m < 0) {
655 			m = -m;		/* m is now abs(error) */
656 			m -= (tp->mdev >> 2);   /* similar update on mdev */
657 			/* This is similar to one of Eifel findings.
658 			 * Eifel blocks mdev updates when rtt decreases.
659 			 * This solution is a bit different: we use finer gain
660 			 * for mdev in this case (alpha*beta).
661 			 * Like Eifel it also prevents growth of rto,
662 			 * but also it limits too fast rto decreases,
663 			 * happening in pure Eifel.
664 			 */
665 			if (m > 0)
666 				m >>= 3;
667 		} else {
668 			m -= (tp->mdev >> 2);   /* similar update on mdev */
669 		}
670 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
671 		if (tp->mdev > tp->mdev_max) {
672 			tp->mdev_max = tp->mdev;
673 			if (tp->mdev_max > tp->rttvar)
674 				tp->rttvar = tp->mdev_max;
675 		}
676 		if (after(tp->snd_una, tp->rtt_seq)) {
677 			if (tp->mdev_max < tp->rttvar)
678 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
679 			tp->rtt_seq = tp->snd_nxt;
680 			tp->mdev_max = tcp_rto_min(sk);
681 		}
682 	} else {
683 		/* no previous measure. */
684 		tp->srtt = m << 3;	/* take the measured time to be rtt */
685 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
686 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
687 		tp->rtt_seq = tp->snd_nxt;
688 	}
689 }
690 
691 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
692  * routine referred to above.
693  */
694 void tcp_set_rto(struct sock *sk)
695 {
696 	const struct tcp_sock *tp = tcp_sk(sk);
697 	/* Old crap is replaced with new one. 8)
698 	 *
699 	 * More seriously:
700 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
701 	 *    It cannot be less due to utterly erratic ACK generation made
702 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
703 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
704 	 *    is invisible. Actually, Linux-2.4 also generates erratic
705 	 *    ACKs in some circumstances.
706 	 */
707 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
708 
709 	/* 2. Fixups made earlier cannot be right.
710 	 *    If we do not estimate RTO correctly without them,
711 	 *    all the algo is pure shit and should be replaced
712 	 *    with correct one. It is exactly, which we pretend to do.
713 	 */
714 
715 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
716 	 * guarantees that rto is higher.
717 	 */
718 	tcp_bound_rto(sk);
719 }
720 
721 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
722 {
723 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
724 
725 	if (!cwnd)
726 		cwnd = TCP_INIT_CWND;
727 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
728 }
729 
730 /*
731  * Packet counting of FACK is based on in-order assumptions, therefore TCP
732  * disables it when reordering is detected
733  */
734 void tcp_disable_fack(struct tcp_sock *tp)
735 {
736 	/* RFC3517 uses different metric in lost marker => reset on change */
737 	if (tcp_is_fack(tp))
738 		tp->lost_skb_hint = NULL;
739 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
740 }
741 
742 /* Take a notice that peer is sending D-SACKs */
743 static void tcp_dsack_seen(struct tcp_sock *tp)
744 {
745 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
746 }
747 
748 static void tcp_update_reordering(struct sock *sk, const int metric,
749 				  const int ts)
750 {
751 	struct tcp_sock *tp = tcp_sk(sk);
752 	if (metric > tp->reordering) {
753 		int mib_idx;
754 
755 		tp->reordering = min(TCP_MAX_REORDERING, metric);
756 
757 		/* This exciting event is worth to be remembered. 8) */
758 		if (ts)
759 			mib_idx = LINUX_MIB_TCPTSREORDER;
760 		else if (tcp_is_reno(tp))
761 			mib_idx = LINUX_MIB_TCPRENOREORDER;
762 		else if (tcp_is_fack(tp))
763 			mib_idx = LINUX_MIB_TCPFACKREORDER;
764 		else
765 			mib_idx = LINUX_MIB_TCPSACKREORDER;
766 
767 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
768 #if FASTRETRANS_DEBUG > 1
769 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
770 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
771 			 tp->reordering,
772 			 tp->fackets_out,
773 			 tp->sacked_out,
774 			 tp->undo_marker ? tp->undo_retrans : 0);
775 #endif
776 		tcp_disable_fack(tp);
777 	}
778 
779 	if (metric > 0)
780 		tcp_disable_early_retrans(tp);
781 }
782 
783 /* This must be called before lost_out is incremented */
784 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
785 {
786 	if ((tp->retransmit_skb_hint == NULL) ||
787 	    before(TCP_SKB_CB(skb)->seq,
788 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
789 		tp->retransmit_skb_hint = skb;
790 
791 	if (!tp->lost_out ||
792 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
793 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
794 }
795 
796 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
797 {
798 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
799 		tcp_verify_retransmit_hint(tp, skb);
800 
801 		tp->lost_out += tcp_skb_pcount(skb);
802 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
803 	}
804 }
805 
806 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
807 					    struct sk_buff *skb)
808 {
809 	tcp_verify_retransmit_hint(tp, skb);
810 
811 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
812 		tp->lost_out += tcp_skb_pcount(skb);
813 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
814 	}
815 }
816 
817 /* This procedure tags the retransmission queue when SACKs arrive.
818  *
819  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
820  * Packets in queue with these bits set are counted in variables
821  * sacked_out, retrans_out and lost_out, correspondingly.
822  *
823  * Valid combinations are:
824  * Tag  InFlight	Description
825  * 0	1		- orig segment is in flight.
826  * S	0		- nothing flies, orig reached receiver.
827  * L	0		- nothing flies, orig lost by net.
828  * R	2		- both orig and retransmit are in flight.
829  * L|R	1		- orig is lost, retransmit is in flight.
830  * S|R  1		- orig reached receiver, retrans is still in flight.
831  * (L|S|R is logically valid, it could occur when L|R is sacked,
832  *  but it is equivalent to plain S and code short-curcuits it to S.
833  *  L|S is logically invalid, it would mean -1 packet in flight 8))
834  *
835  * These 6 states form finite state machine, controlled by the following events:
836  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
837  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
838  * 3. Loss detection event of two flavors:
839  *	A. Scoreboard estimator decided the packet is lost.
840  *	   A'. Reno "three dupacks" marks head of queue lost.
841  *	   A''. Its FACK modification, head until snd.fack is lost.
842  *	B. SACK arrives sacking SND.NXT at the moment, when the
843  *	   segment was retransmitted.
844  * 4. D-SACK added new rule: D-SACK changes any tag to S.
845  *
846  * It is pleasant to note, that state diagram turns out to be commutative,
847  * so that we are allowed not to be bothered by order of our actions,
848  * when multiple events arrive simultaneously. (see the function below).
849  *
850  * Reordering detection.
851  * --------------------
852  * Reordering metric is maximal distance, which a packet can be displaced
853  * in packet stream. With SACKs we can estimate it:
854  *
855  * 1. SACK fills old hole and the corresponding segment was not
856  *    ever retransmitted -> reordering. Alas, we cannot use it
857  *    when segment was retransmitted.
858  * 2. The last flaw is solved with D-SACK. D-SACK arrives
859  *    for retransmitted and already SACKed segment -> reordering..
860  * Both of these heuristics are not used in Loss state, when we cannot
861  * account for retransmits accurately.
862  *
863  * SACK block validation.
864  * ----------------------
865  *
866  * SACK block range validation checks that the received SACK block fits to
867  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
868  * Note that SND.UNA is not included to the range though being valid because
869  * it means that the receiver is rather inconsistent with itself reporting
870  * SACK reneging when it should advance SND.UNA. Such SACK block this is
871  * perfectly valid, however, in light of RFC2018 which explicitly states
872  * that "SACK block MUST reflect the newest segment.  Even if the newest
873  * segment is going to be discarded ...", not that it looks very clever
874  * in case of head skb. Due to potentional receiver driven attacks, we
875  * choose to avoid immediate execution of a walk in write queue due to
876  * reneging and defer head skb's loss recovery to standard loss recovery
877  * procedure that will eventually trigger (nothing forbids us doing this).
878  *
879  * Implements also blockage to start_seq wrap-around. Problem lies in the
880  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
881  * there's no guarantee that it will be before snd_nxt (n). The problem
882  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
883  * wrap (s_w):
884  *
885  *         <- outs wnd ->                          <- wrapzone ->
886  *         u     e      n                         u_w   e_w  s n_w
887  *         |     |      |                          |     |   |  |
888  * |<------------+------+----- TCP seqno space --------------+---------->|
889  * ...-- <2^31 ->|                                           |<--------...
890  * ...---- >2^31 ------>|                                    |<--------...
891  *
892  * Current code wouldn't be vulnerable but it's better still to discard such
893  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
894  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
895  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
896  * equal to the ideal case (infinite seqno space without wrap caused issues).
897  *
898  * With D-SACK the lower bound is extended to cover sequence space below
899  * SND.UNA down to undo_marker, which is the last point of interest. Yet
900  * again, D-SACK block must not to go across snd_una (for the same reason as
901  * for the normal SACK blocks, explained above). But there all simplicity
902  * ends, TCP might receive valid D-SACKs below that. As long as they reside
903  * fully below undo_marker they do not affect behavior in anyway and can
904  * therefore be safely ignored. In rare cases (which are more or less
905  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
906  * fragmentation and packet reordering past skb's retransmission. To consider
907  * them correctly, the acceptable range must be extended even more though
908  * the exact amount is rather hard to quantify. However, tp->max_window can
909  * be used as an exaggerated estimate.
910  */
911 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
912 				   u32 start_seq, u32 end_seq)
913 {
914 	/* Too far in future, or reversed (interpretation is ambiguous) */
915 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
916 		return false;
917 
918 	/* Nasty start_seq wrap-around check (see comments above) */
919 	if (!before(start_seq, tp->snd_nxt))
920 		return false;
921 
922 	/* In outstanding window? ...This is valid exit for D-SACKs too.
923 	 * start_seq == snd_una is non-sensical (see comments above)
924 	 */
925 	if (after(start_seq, tp->snd_una))
926 		return true;
927 
928 	if (!is_dsack || !tp->undo_marker)
929 		return false;
930 
931 	/* ...Then it's D-SACK, and must reside below snd_una completely */
932 	if (after(end_seq, tp->snd_una))
933 		return false;
934 
935 	if (!before(start_seq, tp->undo_marker))
936 		return true;
937 
938 	/* Too old */
939 	if (!after(end_seq, tp->undo_marker))
940 		return false;
941 
942 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
943 	 *   start_seq < undo_marker and end_seq >= undo_marker.
944 	 */
945 	return !before(start_seq, end_seq - tp->max_window);
946 }
947 
948 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
949  * Event "B". Later note: FACK people cheated me again 8), we have to account
950  * for reordering! Ugly, but should help.
951  *
952  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
953  * less than what is now known to be received by the other end (derived from
954  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
955  * retransmitted skbs to avoid some costly processing per ACKs.
956  */
957 static void tcp_mark_lost_retrans(struct sock *sk)
958 {
959 	const struct inet_connection_sock *icsk = inet_csk(sk);
960 	struct tcp_sock *tp = tcp_sk(sk);
961 	struct sk_buff *skb;
962 	int cnt = 0;
963 	u32 new_low_seq = tp->snd_nxt;
964 	u32 received_upto = tcp_highest_sack_seq(tp);
965 
966 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
967 	    !after(received_upto, tp->lost_retrans_low) ||
968 	    icsk->icsk_ca_state != TCP_CA_Recovery)
969 		return;
970 
971 	tcp_for_write_queue(skb, sk) {
972 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
973 
974 		if (skb == tcp_send_head(sk))
975 			break;
976 		if (cnt == tp->retrans_out)
977 			break;
978 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
979 			continue;
980 
981 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
982 			continue;
983 
984 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
985 		 * constraint here (see above) but figuring out that at
986 		 * least tp->reordering SACK blocks reside between ack_seq
987 		 * and received_upto is not easy task to do cheaply with
988 		 * the available datastructures.
989 		 *
990 		 * Whether FACK should check here for tp->reordering segs
991 		 * in-between one could argue for either way (it would be
992 		 * rather simple to implement as we could count fack_count
993 		 * during the walk and do tp->fackets_out - fack_count).
994 		 */
995 		if (after(received_upto, ack_seq)) {
996 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
997 			tp->retrans_out -= tcp_skb_pcount(skb);
998 
999 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1000 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1001 		} else {
1002 			if (before(ack_seq, new_low_seq))
1003 				new_low_seq = ack_seq;
1004 			cnt += tcp_skb_pcount(skb);
1005 		}
1006 	}
1007 
1008 	if (tp->retrans_out)
1009 		tp->lost_retrans_low = new_low_seq;
1010 }
1011 
1012 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1013 			    struct tcp_sack_block_wire *sp, int num_sacks,
1014 			    u32 prior_snd_una)
1015 {
1016 	struct tcp_sock *tp = tcp_sk(sk);
1017 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1018 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1019 	bool dup_sack = false;
1020 
1021 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1022 		dup_sack = true;
1023 		tcp_dsack_seen(tp);
1024 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1025 	} else if (num_sacks > 1) {
1026 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1027 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1028 
1029 		if (!after(end_seq_0, end_seq_1) &&
1030 		    !before(start_seq_0, start_seq_1)) {
1031 			dup_sack = true;
1032 			tcp_dsack_seen(tp);
1033 			NET_INC_STATS_BH(sock_net(sk),
1034 					LINUX_MIB_TCPDSACKOFORECV);
1035 		}
1036 	}
1037 
1038 	/* D-SACK for already forgotten data... Do dumb counting. */
1039 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1040 	    !after(end_seq_0, prior_snd_una) &&
1041 	    after(end_seq_0, tp->undo_marker))
1042 		tp->undo_retrans--;
1043 
1044 	return dup_sack;
1045 }
1046 
1047 struct tcp_sacktag_state {
1048 	int reord;
1049 	int fack_count;
1050 	int flag;
1051 };
1052 
1053 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1054  * the incoming SACK may not exactly match but we can find smaller MSS
1055  * aligned portion of it that matches. Therefore we might need to fragment
1056  * which may fail and creates some hassle (caller must handle error case
1057  * returns).
1058  *
1059  * FIXME: this could be merged to shift decision code
1060  */
1061 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1062 				  u32 start_seq, u32 end_seq)
1063 {
1064 	int err;
1065 	bool in_sack;
1066 	unsigned int pkt_len;
1067 	unsigned int mss;
1068 
1069 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1070 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1071 
1072 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1073 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1074 		mss = tcp_skb_mss(skb);
1075 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1076 
1077 		if (!in_sack) {
1078 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1079 			if (pkt_len < mss)
1080 				pkt_len = mss;
1081 		} else {
1082 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1083 			if (pkt_len < mss)
1084 				return -EINVAL;
1085 		}
1086 
1087 		/* Round if necessary so that SACKs cover only full MSSes
1088 		 * and/or the remaining small portion (if present)
1089 		 */
1090 		if (pkt_len > mss) {
1091 			unsigned int new_len = (pkt_len / mss) * mss;
1092 			if (!in_sack && new_len < pkt_len) {
1093 				new_len += mss;
1094 				if (new_len > skb->len)
1095 					return 0;
1096 			}
1097 			pkt_len = new_len;
1098 		}
1099 		err = tcp_fragment(sk, skb, pkt_len, mss);
1100 		if (err < 0)
1101 			return err;
1102 	}
1103 
1104 	return in_sack;
1105 }
1106 
1107 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1108 static u8 tcp_sacktag_one(struct sock *sk,
1109 			  struct tcp_sacktag_state *state, u8 sacked,
1110 			  u32 start_seq, u32 end_seq,
1111 			  bool dup_sack, int pcount)
1112 {
1113 	struct tcp_sock *tp = tcp_sk(sk);
1114 	int fack_count = state->fack_count;
1115 
1116 	/* Account D-SACK for retransmitted packet. */
1117 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1118 		if (tp->undo_marker && tp->undo_retrans &&
1119 		    after(end_seq, tp->undo_marker))
1120 			tp->undo_retrans--;
1121 		if (sacked & TCPCB_SACKED_ACKED)
1122 			state->reord = min(fack_count, state->reord);
1123 	}
1124 
1125 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1126 	if (!after(end_seq, tp->snd_una))
1127 		return sacked;
1128 
1129 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1130 		if (sacked & TCPCB_SACKED_RETRANS) {
1131 			/* If the segment is not tagged as lost,
1132 			 * we do not clear RETRANS, believing
1133 			 * that retransmission is still in flight.
1134 			 */
1135 			if (sacked & TCPCB_LOST) {
1136 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1137 				tp->lost_out -= pcount;
1138 				tp->retrans_out -= pcount;
1139 			}
1140 		} else {
1141 			if (!(sacked & TCPCB_RETRANS)) {
1142 				/* New sack for not retransmitted frame,
1143 				 * which was in hole. It is reordering.
1144 				 */
1145 				if (before(start_seq,
1146 					   tcp_highest_sack_seq(tp)))
1147 					state->reord = min(fack_count,
1148 							   state->reord);
1149 				if (!after(end_seq, tp->high_seq))
1150 					state->flag |= FLAG_ORIG_SACK_ACKED;
1151 			}
1152 
1153 			if (sacked & TCPCB_LOST) {
1154 				sacked &= ~TCPCB_LOST;
1155 				tp->lost_out -= pcount;
1156 			}
1157 		}
1158 
1159 		sacked |= TCPCB_SACKED_ACKED;
1160 		state->flag |= FLAG_DATA_SACKED;
1161 		tp->sacked_out += pcount;
1162 
1163 		fack_count += pcount;
1164 
1165 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1166 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1167 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1168 			tp->lost_cnt_hint += pcount;
1169 
1170 		if (fack_count > tp->fackets_out)
1171 			tp->fackets_out = fack_count;
1172 	}
1173 
1174 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1175 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1176 	 * are accounted above as well.
1177 	 */
1178 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1179 		sacked &= ~TCPCB_SACKED_RETRANS;
1180 		tp->retrans_out -= pcount;
1181 	}
1182 
1183 	return sacked;
1184 }
1185 
1186 /* Shift newly-SACKed bytes from this skb to the immediately previous
1187  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1188  */
1189 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1190 			    struct tcp_sacktag_state *state,
1191 			    unsigned int pcount, int shifted, int mss,
1192 			    bool dup_sack)
1193 {
1194 	struct tcp_sock *tp = tcp_sk(sk);
1195 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1196 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1197 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1198 
1199 	BUG_ON(!pcount);
1200 
1201 	/* Adjust counters and hints for the newly sacked sequence
1202 	 * range but discard the return value since prev is already
1203 	 * marked. We must tag the range first because the seq
1204 	 * advancement below implicitly advances
1205 	 * tcp_highest_sack_seq() when skb is highest_sack.
1206 	 */
1207 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1208 			start_seq, end_seq, dup_sack, pcount);
1209 
1210 	if (skb == tp->lost_skb_hint)
1211 		tp->lost_cnt_hint += pcount;
1212 
1213 	TCP_SKB_CB(prev)->end_seq += shifted;
1214 	TCP_SKB_CB(skb)->seq += shifted;
1215 
1216 	skb_shinfo(prev)->gso_segs += pcount;
1217 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1218 	skb_shinfo(skb)->gso_segs -= pcount;
1219 
1220 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1221 	 * in theory this shouldn't be necessary but as long as DSACK
1222 	 * code can come after this skb later on it's better to keep
1223 	 * setting gso_size to something.
1224 	 */
1225 	if (!skb_shinfo(prev)->gso_size) {
1226 		skb_shinfo(prev)->gso_size = mss;
1227 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1228 	}
1229 
1230 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1231 	if (skb_shinfo(skb)->gso_segs <= 1) {
1232 		skb_shinfo(skb)->gso_size = 0;
1233 		skb_shinfo(skb)->gso_type = 0;
1234 	}
1235 
1236 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1237 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1238 
1239 	if (skb->len > 0) {
1240 		BUG_ON(!tcp_skb_pcount(skb));
1241 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1242 		return false;
1243 	}
1244 
1245 	/* Whole SKB was eaten :-) */
1246 
1247 	if (skb == tp->retransmit_skb_hint)
1248 		tp->retransmit_skb_hint = prev;
1249 	if (skb == tp->lost_skb_hint) {
1250 		tp->lost_skb_hint = prev;
1251 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1252 	}
1253 
1254 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1255 	if (skb == tcp_highest_sack(sk))
1256 		tcp_advance_highest_sack(sk, skb);
1257 
1258 	tcp_unlink_write_queue(skb, sk);
1259 	sk_wmem_free_skb(sk, skb);
1260 
1261 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1262 
1263 	return true;
1264 }
1265 
1266 /* I wish gso_size would have a bit more sane initialization than
1267  * something-or-zero which complicates things
1268  */
1269 static int tcp_skb_seglen(const struct sk_buff *skb)
1270 {
1271 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1272 }
1273 
1274 /* Shifting pages past head area doesn't work */
1275 static int skb_can_shift(const struct sk_buff *skb)
1276 {
1277 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1278 }
1279 
1280 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1281  * skb.
1282  */
1283 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1284 					  struct tcp_sacktag_state *state,
1285 					  u32 start_seq, u32 end_seq,
1286 					  bool dup_sack)
1287 {
1288 	struct tcp_sock *tp = tcp_sk(sk);
1289 	struct sk_buff *prev;
1290 	int mss;
1291 	int pcount = 0;
1292 	int len;
1293 	int in_sack;
1294 
1295 	if (!sk_can_gso(sk))
1296 		goto fallback;
1297 
1298 	/* Normally R but no L won't result in plain S */
1299 	if (!dup_sack &&
1300 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1301 		goto fallback;
1302 	if (!skb_can_shift(skb))
1303 		goto fallback;
1304 	/* This frame is about to be dropped (was ACKed). */
1305 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1306 		goto fallback;
1307 
1308 	/* Can only happen with delayed DSACK + discard craziness */
1309 	if (unlikely(skb == tcp_write_queue_head(sk)))
1310 		goto fallback;
1311 	prev = tcp_write_queue_prev(sk, skb);
1312 
1313 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1314 		goto fallback;
1315 
1316 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1317 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1318 
1319 	if (in_sack) {
1320 		len = skb->len;
1321 		pcount = tcp_skb_pcount(skb);
1322 		mss = tcp_skb_seglen(skb);
1323 
1324 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1325 		 * drop this restriction as unnecessary
1326 		 */
1327 		if (mss != tcp_skb_seglen(prev))
1328 			goto fallback;
1329 	} else {
1330 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1331 			goto noop;
1332 		/* CHECKME: This is non-MSS split case only?, this will
1333 		 * cause skipped skbs due to advancing loop btw, original
1334 		 * has that feature too
1335 		 */
1336 		if (tcp_skb_pcount(skb) <= 1)
1337 			goto noop;
1338 
1339 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1340 		if (!in_sack) {
1341 			/* TODO: head merge to next could be attempted here
1342 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1343 			 * though it might not be worth of the additional hassle
1344 			 *
1345 			 * ...we can probably just fallback to what was done
1346 			 * previously. We could try merging non-SACKed ones
1347 			 * as well but it probably isn't going to buy off
1348 			 * because later SACKs might again split them, and
1349 			 * it would make skb timestamp tracking considerably
1350 			 * harder problem.
1351 			 */
1352 			goto fallback;
1353 		}
1354 
1355 		len = end_seq - TCP_SKB_CB(skb)->seq;
1356 		BUG_ON(len < 0);
1357 		BUG_ON(len > skb->len);
1358 
1359 		/* MSS boundaries should be honoured or else pcount will
1360 		 * severely break even though it makes things bit trickier.
1361 		 * Optimize common case to avoid most of the divides
1362 		 */
1363 		mss = tcp_skb_mss(skb);
1364 
1365 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1366 		 * drop this restriction as unnecessary
1367 		 */
1368 		if (mss != tcp_skb_seglen(prev))
1369 			goto fallback;
1370 
1371 		if (len == mss) {
1372 			pcount = 1;
1373 		} else if (len < mss) {
1374 			goto noop;
1375 		} else {
1376 			pcount = len / mss;
1377 			len = pcount * mss;
1378 		}
1379 	}
1380 
1381 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1382 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1383 		goto fallback;
1384 
1385 	if (!skb_shift(prev, skb, len))
1386 		goto fallback;
1387 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1388 		goto out;
1389 
1390 	/* Hole filled allows collapsing with the next as well, this is very
1391 	 * useful when hole on every nth skb pattern happens
1392 	 */
1393 	if (prev == tcp_write_queue_tail(sk))
1394 		goto out;
1395 	skb = tcp_write_queue_next(sk, prev);
1396 
1397 	if (!skb_can_shift(skb) ||
1398 	    (skb == tcp_send_head(sk)) ||
1399 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1400 	    (mss != tcp_skb_seglen(skb)))
1401 		goto out;
1402 
1403 	len = skb->len;
1404 	if (skb_shift(prev, skb, len)) {
1405 		pcount += tcp_skb_pcount(skb);
1406 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1407 	}
1408 
1409 out:
1410 	state->fack_count += pcount;
1411 	return prev;
1412 
1413 noop:
1414 	return skb;
1415 
1416 fallback:
1417 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1418 	return NULL;
1419 }
1420 
1421 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1422 					struct tcp_sack_block *next_dup,
1423 					struct tcp_sacktag_state *state,
1424 					u32 start_seq, u32 end_seq,
1425 					bool dup_sack_in)
1426 {
1427 	struct tcp_sock *tp = tcp_sk(sk);
1428 	struct sk_buff *tmp;
1429 
1430 	tcp_for_write_queue_from(skb, sk) {
1431 		int in_sack = 0;
1432 		bool dup_sack = dup_sack_in;
1433 
1434 		if (skb == tcp_send_head(sk))
1435 			break;
1436 
1437 		/* queue is in-order => we can short-circuit the walk early */
1438 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1439 			break;
1440 
1441 		if ((next_dup != NULL) &&
1442 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1443 			in_sack = tcp_match_skb_to_sack(sk, skb,
1444 							next_dup->start_seq,
1445 							next_dup->end_seq);
1446 			if (in_sack > 0)
1447 				dup_sack = true;
1448 		}
1449 
1450 		/* skb reference here is a bit tricky to get right, since
1451 		 * shifting can eat and free both this skb and the next,
1452 		 * so not even _safe variant of the loop is enough.
1453 		 */
1454 		if (in_sack <= 0) {
1455 			tmp = tcp_shift_skb_data(sk, skb, state,
1456 						 start_seq, end_seq, dup_sack);
1457 			if (tmp != NULL) {
1458 				if (tmp != skb) {
1459 					skb = tmp;
1460 					continue;
1461 				}
1462 
1463 				in_sack = 0;
1464 			} else {
1465 				in_sack = tcp_match_skb_to_sack(sk, skb,
1466 								start_seq,
1467 								end_seq);
1468 			}
1469 		}
1470 
1471 		if (unlikely(in_sack < 0))
1472 			break;
1473 
1474 		if (in_sack) {
1475 			TCP_SKB_CB(skb)->sacked =
1476 				tcp_sacktag_one(sk,
1477 						state,
1478 						TCP_SKB_CB(skb)->sacked,
1479 						TCP_SKB_CB(skb)->seq,
1480 						TCP_SKB_CB(skb)->end_seq,
1481 						dup_sack,
1482 						tcp_skb_pcount(skb));
1483 
1484 			if (!before(TCP_SKB_CB(skb)->seq,
1485 				    tcp_highest_sack_seq(tp)))
1486 				tcp_advance_highest_sack(sk, skb);
1487 		}
1488 
1489 		state->fack_count += tcp_skb_pcount(skb);
1490 	}
1491 	return skb;
1492 }
1493 
1494 /* Avoid all extra work that is being done by sacktag while walking in
1495  * a normal way
1496  */
1497 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1498 					struct tcp_sacktag_state *state,
1499 					u32 skip_to_seq)
1500 {
1501 	tcp_for_write_queue_from(skb, sk) {
1502 		if (skb == tcp_send_head(sk))
1503 			break;
1504 
1505 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1506 			break;
1507 
1508 		state->fack_count += tcp_skb_pcount(skb);
1509 	}
1510 	return skb;
1511 }
1512 
1513 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1514 						struct sock *sk,
1515 						struct tcp_sack_block *next_dup,
1516 						struct tcp_sacktag_state *state,
1517 						u32 skip_to_seq)
1518 {
1519 	if (next_dup == NULL)
1520 		return skb;
1521 
1522 	if (before(next_dup->start_seq, skip_to_seq)) {
1523 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1524 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1525 				       next_dup->start_seq, next_dup->end_seq,
1526 				       1);
1527 	}
1528 
1529 	return skb;
1530 }
1531 
1532 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1533 {
1534 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1535 }
1536 
1537 static int
1538 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1539 			u32 prior_snd_una)
1540 {
1541 	struct tcp_sock *tp = tcp_sk(sk);
1542 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1543 				    TCP_SKB_CB(ack_skb)->sacked);
1544 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1545 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1546 	struct tcp_sack_block *cache;
1547 	struct tcp_sacktag_state state;
1548 	struct sk_buff *skb;
1549 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1550 	int used_sacks;
1551 	bool found_dup_sack = false;
1552 	int i, j;
1553 	int first_sack_index;
1554 
1555 	state.flag = 0;
1556 	state.reord = tp->packets_out;
1557 
1558 	if (!tp->sacked_out) {
1559 		if (WARN_ON(tp->fackets_out))
1560 			tp->fackets_out = 0;
1561 		tcp_highest_sack_reset(sk);
1562 	}
1563 
1564 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1565 					 num_sacks, prior_snd_una);
1566 	if (found_dup_sack)
1567 		state.flag |= FLAG_DSACKING_ACK;
1568 
1569 	/* Eliminate too old ACKs, but take into
1570 	 * account more or less fresh ones, they can
1571 	 * contain valid SACK info.
1572 	 */
1573 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1574 		return 0;
1575 
1576 	if (!tp->packets_out)
1577 		goto out;
1578 
1579 	used_sacks = 0;
1580 	first_sack_index = 0;
1581 	for (i = 0; i < num_sacks; i++) {
1582 		bool dup_sack = !i && found_dup_sack;
1583 
1584 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1585 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1586 
1587 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1588 					    sp[used_sacks].start_seq,
1589 					    sp[used_sacks].end_seq)) {
1590 			int mib_idx;
1591 
1592 			if (dup_sack) {
1593 				if (!tp->undo_marker)
1594 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1595 				else
1596 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1597 			} else {
1598 				/* Don't count olds caused by ACK reordering */
1599 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1600 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1601 					continue;
1602 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1603 			}
1604 
1605 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1606 			if (i == 0)
1607 				first_sack_index = -1;
1608 			continue;
1609 		}
1610 
1611 		/* Ignore very old stuff early */
1612 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1613 			continue;
1614 
1615 		used_sacks++;
1616 	}
1617 
1618 	/* order SACK blocks to allow in order walk of the retrans queue */
1619 	for (i = used_sacks - 1; i > 0; i--) {
1620 		for (j = 0; j < i; j++) {
1621 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1622 				swap(sp[j], sp[j + 1]);
1623 
1624 				/* Track where the first SACK block goes to */
1625 				if (j == first_sack_index)
1626 					first_sack_index = j + 1;
1627 			}
1628 		}
1629 	}
1630 
1631 	skb = tcp_write_queue_head(sk);
1632 	state.fack_count = 0;
1633 	i = 0;
1634 
1635 	if (!tp->sacked_out) {
1636 		/* It's already past, so skip checking against it */
1637 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1638 	} else {
1639 		cache = tp->recv_sack_cache;
1640 		/* Skip empty blocks in at head of the cache */
1641 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1642 		       !cache->end_seq)
1643 			cache++;
1644 	}
1645 
1646 	while (i < used_sacks) {
1647 		u32 start_seq = sp[i].start_seq;
1648 		u32 end_seq = sp[i].end_seq;
1649 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1650 		struct tcp_sack_block *next_dup = NULL;
1651 
1652 		if (found_dup_sack && ((i + 1) == first_sack_index))
1653 			next_dup = &sp[i + 1];
1654 
1655 		/* Skip too early cached blocks */
1656 		while (tcp_sack_cache_ok(tp, cache) &&
1657 		       !before(start_seq, cache->end_seq))
1658 			cache++;
1659 
1660 		/* Can skip some work by looking recv_sack_cache? */
1661 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1662 		    after(end_seq, cache->start_seq)) {
1663 
1664 			/* Head todo? */
1665 			if (before(start_seq, cache->start_seq)) {
1666 				skb = tcp_sacktag_skip(skb, sk, &state,
1667 						       start_seq);
1668 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1669 						       &state,
1670 						       start_seq,
1671 						       cache->start_seq,
1672 						       dup_sack);
1673 			}
1674 
1675 			/* Rest of the block already fully processed? */
1676 			if (!after(end_seq, cache->end_seq))
1677 				goto advance_sp;
1678 
1679 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1680 						       &state,
1681 						       cache->end_seq);
1682 
1683 			/* ...tail remains todo... */
1684 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1685 				/* ...but better entrypoint exists! */
1686 				skb = tcp_highest_sack(sk);
1687 				if (skb == NULL)
1688 					break;
1689 				state.fack_count = tp->fackets_out;
1690 				cache++;
1691 				goto walk;
1692 			}
1693 
1694 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1695 			/* Check overlap against next cached too (past this one already) */
1696 			cache++;
1697 			continue;
1698 		}
1699 
1700 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1701 			skb = tcp_highest_sack(sk);
1702 			if (skb == NULL)
1703 				break;
1704 			state.fack_count = tp->fackets_out;
1705 		}
1706 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1707 
1708 walk:
1709 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1710 				       start_seq, end_seq, dup_sack);
1711 
1712 advance_sp:
1713 		i++;
1714 	}
1715 
1716 	/* Clear the head of the cache sack blocks so we can skip it next time */
1717 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1718 		tp->recv_sack_cache[i].start_seq = 0;
1719 		tp->recv_sack_cache[i].end_seq = 0;
1720 	}
1721 	for (j = 0; j < used_sacks; j++)
1722 		tp->recv_sack_cache[i++] = sp[j];
1723 
1724 	tcp_mark_lost_retrans(sk);
1725 
1726 	tcp_verify_left_out(tp);
1727 
1728 	if ((state.reord < tp->fackets_out) &&
1729 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1730 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1731 
1732 out:
1733 
1734 #if FASTRETRANS_DEBUG > 0
1735 	WARN_ON((int)tp->sacked_out < 0);
1736 	WARN_ON((int)tp->lost_out < 0);
1737 	WARN_ON((int)tp->retrans_out < 0);
1738 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1739 #endif
1740 	return state.flag;
1741 }
1742 
1743 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1744  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1745  */
1746 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1747 {
1748 	u32 holes;
1749 
1750 	holes = max(tp->lost_out, 1U);
1751 	holes = min(holes, tp->packets_out);
1752 
1753 	if ((tp->sacked_out + holes) > tp->packets_out) {
1754 		tp->sacked_out = tp->packets_out - holes;
1755 		return true;
1756 	}
1757 	return false;
1758 }
1759 
1760 /* If we receive more dupacks than we expected counting segments
1761  * in assumption of absent reordering, interpret this as reordering.
1762  * The only another reason could be bug in receiver TCP.
1763  */
1764 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1765 {
1766 	struct tcp_sock *tp = tcp_sk(sk);
1767 	if (tcp_limit_reno_sacked(tp))
1768 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1769 }
1770 
1771 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1772 
1773 static void tcp_add_reno_sack(struct sock *sk)
1774 {
1775 	struct tcp_sock *tp = tcp_sk(sk);
1776 	tp->sacked_out++;
1777 	tcp_check_reno_reordering(sk, 0);
1778 	tcp_verify_left_out(tp);
1779 }
1780 
1781 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1782 
1783 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1784 {
1785 	struct tcp_sock *tp = tcp_sk(sk);
1786 
1787 	if (acked > 0) {
1788 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1789 		if (acked - 1 >= tp->sacked_out)
1790 			tp->sacked_out = 0;
1791 		else
1792 			tp->sacked_out -= acked - 1;
1793 	}
1794 	tcp_check_reno_reordering(sk, acked);
1795 	tcp_verify_left_out(tp);
1796 }
1797 
1798 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1799 {
1800 	tp->sacked_out = 0;
1801 }
1802 
1803 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1804 {
1805 	tp->retrans_out = 0;
1806 	tp->lost_out = 0;
1807 
1808 	tp->undo_marker = 0;
1809 	tp->undo_retrans = 0;
1810 }
1811 
1812 void tcp_clear_retrans(struct tcp_sock *tp)
1813 {
1814 	tcp_clear_retrans_partial(tp);
1815 
1816 	tp->fackets_out = 0;
1817 	tp->sacked_out = 0;
1818 }
1819 
1820 /* Enter Loss state. If "how" is not zero, forget all SACK information
1821  * and reset tags completely, otherwise preserve SACKs. If receiver
1822  * dropped its ofo queue, we will know this due to reneging detection.
1823  */
1824 void tcp_enter_loss(struct sock *sk, int how)
1825 {
1826 	const struct inet_connection_sock *icsk = inet_csk(sk);
1827 	struct tcp_sock *tp = tcp_sk(sk);
1828 	struct sk_buff *skb;
1829 	bool new_recovery = false;
1830 
1831 	/* Reduce ssthresh if it has not yet been made inside this window. */
1832 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1833 	    !after(tp->high_seq, tp->snd_una) ||
1834 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1835 		new_recovery = true;
1836 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1837 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1838 		tcp_ca_event(sk, CA_EVENT_LOSS);
1839 	}
1840 	tp->snd_cwnd	   = 1;
1841 	tp->snd_cwnd_cnt   = 0;
1842 	tp->snd_cwnd_stamp = tcp_time_stamp;
1843 
1844 	tcp_clear_retrans_partial(tp);
1845 
1846 	if (tcp_is_reno(tp))
1847 		tcp_reset_reno_sack(tp);
1848 
1849 	tp->undo_marker = tp->snd_una;
1850 	if (how) {
1851 		tp->sacked_out = 0;
1852 		tp->fackets_out = 0;
1853 	}
1854 	tcp_clear_all_retrans_hints(tp);
1855 
1856 	tcp_for_write_queue(skb, sk) {
1857 		if (skb == tcp_send_head(sk))
1858 			break;
1859 
1860 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1861 			tp->undo_marker = 0;
1862 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1863 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1864 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1865 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1866 			tp->lost_out += tcp_skb_pcount(skb);
1867 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1868 		}
1869 	}
1870 	tcp_verify_left_out(tp);
1871 
1872 	tp->reordering = min_t(unsigned int, tp->reordering,
1873 			       sysctl_tcp_reordering);
1874 	tcp_set_ca_state(sk, TCP_CA_Loss);
1875 	tp->high_seq = tp->snd_nxt;
1876 	TCP_ECN_queue_cwr(tp);
1877 
1878 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1879 	 * loss recovery is underway except recurring timeout(s) on
1880 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1881 	 */
1882 	tp->frto = sysctl_tcp_frto &&
1883 		   (new_recovery || icsk->icsk_retransmits) &&
1884 		   !inet_csk(sk)->icsk_mtup.probe_size;
1885 }
1886 
1887 /* If ACK arrived pointing to a remembered SACK, it means that our
1888  * remembered SACKs do not reflect real state of receiver i.e.
1889  * receiver _host_ is heavily congested (or buggy).
1890  *
1891  * Do processing similar to RTO timeout.
1892  */
1893 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1894 {
1895 	if (flag & FLAG_SACK_RENEGING) {
1896 		struct inet_connection_sock *icsk = inet_csk(sk);
1897 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1898 
1899 		tcp_enter_loss(sk, 1);
1900 		icsk->icsk_retransmits++;
1901 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1902 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1903 					  icsk->icsk_rto, TCP_RTO_MAX);
1904 		return true;
1905 	}
1906 	return false;
1907 }
1908 
1909 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1910 {
1911 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1912 }
1913 
1914 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1915  * counter when SACK is enabled (without SACK, sacked_out is used for
1916  * that purpose).
1917  *
1918  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1919  * segments up to the highest received SACK block so far and holes in
1920  * between them.
1921  *
1922  * With reordering, holes may still be in flight, so RFC3517 recovery
1923  * uses pure sacked_out (total number of SACKed segments) even though
1924  * it violates the RFC that uses duplicate ACKs, often these are equal
1925  * but when e.g. out-of-window ACKs or packet duplication occurs,
1926  * they differ. Since neither occurs due to loss, TCP should really
1927  * ignore them.
1928  */
1929 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1930 {
1931 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1932 }
1933 
1934 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1935 {
1936 	struct tcp_sock *tp = tcp_sk(sk);
1937 	unsigned long delay;
1938 
1939 	/* Delay early retransmit and entering fast recovery for
1940 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1941 	 * available, or RTO is scheduled to fire first.
1942 	 */
1943 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
1944 	    (flag & FLAG_ECE) || !tp->srtt)
1945 		return false;
1946 
1947 	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
1948 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
1949 		return false;
1950 
1951 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
1952 				  TCP_RTO_MAX);
1953 	return true;
1954 }
1955 
1956 /* Linux NewReno/SACK/FACK/ECN state machine.
1957  * --------------------------------------
1958  *
1959  * "Open"	Normal state, no dubious events, fast path.
1960  * "Disorder"   In all the respects it is "Open",
1961  *		but requires a bit more attention. It is entered when
1962  *		we see some SACKs or dupacks. It is split of "Open"
1963  *		mainly to move some processing from fast path to slow one.
1964  * "CWR"	CWND was reduced due to some Congestion Notification event.
1965  *		It can be ECN, ICMP source quench, local device congestion.
1966  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1967  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1968  *
1969  * tcp_fastretrans_alert() is entered:
1970  * - each incoming ACK, if state is not "Open"
1971  * - when arrived ACK is unusual, namely:
1972  *	* SACK
1973  *	* Duplicate ACK.
1974  *	* ECN ECE.
1975  *
1976  * Counting packets in flight is pretty simple.
1977  *
1978  *	in_flight = packets_out - left_out + retrans_out
1979  *
1980  *	packets_out is SND.NXT-SND.UNA counted in packets.
1981  *
1982  *	retrans_out is number of retransmitted segments.
1983  *
1984  *	left_out is number of segments left network, but not ACKed yet.
1985  *
1986  *		left_out = sacked_out + lost_out
1987  *
1988  *     sacked_out: Packets, which arrived to receiver out of order
1989  *		   and hence not ACKed. With SACKs this number is simply
1990  *		   amount of SACKed data. Even without SACKs
1991  *		   it is easy to give pretty reliable estimate of this number,
1992  *		   counting duplicate ACKs.
1993  *
1994  *       lost_out: Packets lost by network. TCP has no explicit
1995  *		   "loss notification" feedback from network (for now).
1996  *		   It means that this number can be only _guessed_.
1997  *		   Actually, it is the heuristics to predict lossage that
1998  *		   distinguishes different algorithms.
1999  *
2000  *	F.e. after RTO, when all the queue is considered as lost,
2001  *	lost_out = packets_out and in_flight = retrans_out.
2002  *
2003  *		Essentially, we have now two algorithms counting
2004  *		lost packets.
2005  *
2006  *		FACK: It is the simplest heuristics. As soon as we decided
2007  *		that something is lost, we decide that _all_ not SACKed
2008  *		packets until the most forward SACK are lost. I.e.
2009  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2010  *		It is absolutely correct estimate, if network does not reorder
2011  *		packets. And it loses any connection to reality when reordering
2012  *		takes place. We use FACK by default until reordering
2013  *		is suspected on the path to this destination.
2014  *
2015  *		NewReno: when Recovery is entered, we assume that one segment
2016  *		is lost (classic Reno). While we are in Recovery and
2017  *		a partial ACK arrives, we assume that one more packet
2018  *		is lost (NewReno). This heuristics are the same in NewReno
2019  *		and SACK.
2020  *
2021  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2022  *  deflation etc. CWND is real congestion window, never inflated, changes
2023  *  only according to classic VJ rules.
2024  *
2025  * Really tricky (and requiring careful tuning) part of algorithm
2026  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2027  * The first determines the moment _when_ we should reduce CWND and,
2028  * hence, slow down forward transmission. In fact, it determines the moment
2029  * when we decide that hole is caused by loss, rather than by a reorder.
2030  *
2031  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2032  * holes, caused by lost packets.
2033  *
2034  * And the most logically complicated part of algorithm is undo
2035  * heuristics. We detect false retransmits due to both too early
2036  * fast retransmit (reordering) and underestimated RTO, analyzing
2037  * timestamps and D-SACKs. When we detect that some segments were
2038  * retransmitted by mistake and CWND reduction was wrong, we undo
2039  * window reduction and abort recovery phase. This logic is hidden
2040  * inside several functions named tcp_try_undo_<something>.
2041  */
2042 
2043 /* This function decides, when we should leave Disordered state
2044  * and enter Recovery phase, reducing congestion window.
2045  *
2046  * Main question: may we further continue forward transmission
2047  * with the same cwnd?
2048  */
2049 static bool tcp_time_to_recover(struct sock *sk, int flag)
2050 {
2051 	struct tcp_sock *tp = tcp_sk(sk);
2052 	__u32 packets_out;
2053 
2054 	/* Trick#1: The loss is proven. */
2055 	if (tp->lost_out)
2056 		return true;
2057 
2058 	/* Not-A-Trick#2 : Classic rule... */
2059 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2060 		return true;
2061 
2062 	/* Trick#4: It is still not OK... But will it be useful to delay
2063 	 * recovery more?
2064 	 */
2065 	packets_out = tp->packets_out;
2066 	if (packets_out <= tp->reordering &&
2067 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2068 	    !tcp_may_send_now(sk)) {
2069 		/* We have nothing to send. This connection is limited
2070 		 * either by receiver window or by application.
2071 		 */
2072 		return true;
2073 	}
2074 
2075 	/* If a thin stream is detected, retransmit after first
2076 	 * received dupack. Employ only if SACK is supported in order
2077 	 * to avoid possible corner-case series of spurious retransmissions
2078 	 * Use only if there are no unsent data.
2079 	 */
2080 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2081 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2082 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2083 		return true;
2084 
2085 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2086 	 * retransmissions due to small network reorderings, we implement
2087 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2088 	 * interval if appropriate.
2089 	 */
2090 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2091 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2092 	    !tcp_may_send_now(sk))
2093 		return !tcp_pause_early_retransmit(sk, flag);
2094 
2095 	return false;
2096 }
2097 
2098 /* Detect loss in event "A" above by marking head of queue up as lost.
2099  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2100  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2101  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2102  * the maximum SACKed segments to pass before reaching this limit.
2103  */
2104 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2105 {
2106 	struct tcp_sock *tp = tcp_sk(sk);
2107 	struct sk_buff *skb;
2108 	int cnt, oldcnt;
2109 	int err;
2110 	unsigned int mss;
2111 	/* Use SACK to deduce losses of new sequences sent during recovery */
2112 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2113 
2114 	WARN_ON(packets > tp->packets_out);
2115 	if (tp->lost_skb_hint) {
2116 		skb = tp->lost_skb_hint;
2117 		cnt = tp->lost_cnt_hint;
2118 		/* Head already handled? */
2119 		if (mark_head && skb != tcp_write_queue_head(sk))
2120 			return;
2121 	} else {
2122 		skb = tcp_write_queue_head(sk);
2123 		cnt = 0;
2124 	}
2125 
2126 	tcp_for_write_queue_from(skb, sk) {
2127 		if (skb == tcp_send_head(sk))
2128 			break;
2129 		/* TODO: do this better */
2130 		/* this is not the most efficient way to do this... */
2131 		tp->lost_skb_hint = skb;
2132 		tp->lost_cnt_hint = cnt;
2133 
2134 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2135 			break;
2136 
2137 		oldcnt = cnt;
2138 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2139 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2140 			cnt += tcp_skb_pcount(skb);
2141 
2142 		if (cnt > packets) {
2143 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2144 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2145 			    (oldcnt >= packets))
2146 				break;
2147 
2148 			mss = skb_shinfo(skb)->gso_size;
2149 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2150 			if (err < 0)
2151 				break;
2152 			cnt = packets;
2153 		}
2154 
2155 		tcp_skb_mark_lost(tp, skb);
2156 
2157 		if (mark_head)
2158 			break;
2159 	}
2160 	tcp_verify_left_out(tp);
2161 }
2162 
2163 /* Account newly detected lost packet(s) */
2164 
2165 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2166 {
2167 	struct tcp_sock *tp = tcp_sk(sk);
2168 
2169 	if (tcp_is_reno(tp)) {
2170 		tcp_mark_head_lost(sk, 1, 1);
2171 	} else if (tcp_is_fack(tp)) {
2172 		int lost = tp->fackets_out - tp->reordering;
2173 		if (lost <= 0)
2174 			lost = 1;
2175 		tcp_mark_head_lost(sk, lost, 0);
2176 	} else {
2177 		int sacked_upto = tp->sacked_out - tp->reordering;
2178 		if (sacked_upto >= 0)
2179 			tcp_mark_head_lost(sk, sacked_upto, 0);
2180 		else if (fast_rexmit)
2181 			tcp_mark_head_lost(sk, 1, 1);
2182 	}
2183 }
2184 
2185 /* CWND moderation, preventing bursts due to too big ACKs
2186  * in dubious situations.
2187  */
2188 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2189 {
2190 	tp->snd_cwnd = min(tp->snd_cwnd,
2191 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2192 	tp->snd_cwnd_stamp = tcp_time_stamp;
2193 }
2194 
2195 /* Nothing was retransmitted or returned timestamp is less
2196  * than timestamp of the first retransmission.
2197  */
2198 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2199 {
2200 	return !tp->retrans_stamp ||
2201 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2202 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2203 }
2204 
2205 /* Undo procedures. */
2206 
2207 #if FASTRETRANS_DEBUG > 1
2208 static void DBGUNDO(struct sock *sk, const char *msg)
2209 {
2210 	struct tcp_sock *tp = tcp_sk(sk);
2211 	struct inet_sock *inet = inet_sk(sk);
2212 
2213 	if (sk->sk_family == AF_INET) {
2214 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2215 			 msg,
2216 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2217 			 tp->snd_cwnd, tcp_left_out(tp),
2218 			 tp->snd_ssthresh, tp->prior_ssthresh,
2219 			 tp->packets_out);
2220 	}
2221 #if IS_ENABLED(CONFIG_IPV6)
2222 	else if (sk->sk_family == AF_INET6) {
2223 		struct ipv6_pinfo *np = inet6_sk(sk);
2224 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2225 			 msg,
2226 			 &np->daddr, ntohs(inet->inet_dport),
2227 			 tp->snd_cwnd, tcp_left_out(tp),
2228 			 tp->snd_ssthresh, tp->prior_ssthresh,
2229 			 tp->packets_out);
2230 	}
2231 #endif
2232 }
2233 #else
2234 #define DBGUNDO(x...) do { } while (0)
2235 #endif
2236 
2237 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2238 {
2239 	struct tcp_sock *tp = tcp_sk(sk);
2240 
2241 	if (unmark_loss) {
2242 		struct sk_buff *skb;
2243 
2244 		tcp_for_write_queue(skb, sk) {
2245 			if (skb == tcp_send_head(sk))
2246 				break;
2247 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2248 		}
2249 		tp->lost_out = 0;
2250 		tcp_clear_all_retrans_hints(tp);
2251 	}
2252 
2253 	if (tp->prior_ssthresh) {
2254 		const struct inet_connection_sock *icsk = inet_csk(sk);
2255 
2256 		if (icsk->icsk_ca_ops->undo_cwnd)
2257 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2258 		else
2259 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2260 
2261 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2262 			tp->snd_ssthresh = tp->prior_ssthresh;
2263 			TCP_ECN_withdraw_cwr(tp);
2264 		}
2265 	} else {
2266 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2267 	}
2268 	tp->snd_cwnd_stamp = tcp_time_stamp;
2269 	tp->undo_marker = 0;
2270 }
2271 
2272 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2273 {
2274 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2275 }
2276 
2277 /* People celebrate: "We love our President!" */
2278 static bool tcp_try_undo_recovery(struct sock *sk)
2279 {
2280 	struct tcp_sock *tp = tcp_sk(sk);
2281 
2282 	if (tcp_may_undo(tp)) {
2283 		int mib_idx;
2284 
2285 		/* Happy end! We did not retransmit anything
2286 		 * or our original transmission succeeded.
2287 		 */
2288 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2289 		tcp_undo_cwnd_reduction(sk, false);
2290 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2291 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2292 		else
2293 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2294 
2295 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2296 	}
2297 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2298 		/* Hold old state until something *above* high_seq
2299 		 * is ACKed. For Reno it is MUST to prevent false
2300 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2301 		tcp_moderate_cwnd(tp);
2302 		return true;
2303 	}
2304 	tcp_set_ca_state(sk, TCP_CA_Open);
2305 	return false;
2306 }
2307 
2308 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2309 static bool tcp_try_undo_dsack(struct sock *sk)
2310 {
2311 	struct tcp_sock *tp = tcp_sk(sk);
2312 
2313 	if (tp->undo_marker && !tp->undo_retrans) {
2314 		DBGUNDO(sk, "D-SACK");
2315 		tcp_undo_cwnd_reduction(sk, false);
2316 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2317 		return true;
2318 	}
2319 	return false;
2320 }
2321 
2322 /* We can clear retrans_stamp when there are no retransmissions in the
2323  * window. It would seem that it is trivially available for us in
2324  * tp->retrans_out, however, that kind of assumptions doesn't consider
2325  * what will happen if errors occur when sending retransmission for the
2326  * second time. ...It could the that such segment has only
2327  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2328  * the head skb is enough except for some reneging corner cases that
2329  * are not worth the effort.
2330  *
2331  * Main reason for all this complexity is the fact that connection dying
2332  * time now depends on the validity of the retrans_stamp, in particular,
2333  * that successive retransmissions of a segment must not advance
2334  * retrans_stamp under any conditions.
2335  */
2336 static bool tcp_any_retrans_done(const struct sock *sk)
2337 {
2338 	const struct tcp_sock *tp = tcp_sk(sk);
2339 	struct sk_buff *skb;
2340 
2341 	if (tp->retrans_out)
2342 		return true;
2343 
2344 	skb = tcp_write_queue_head(sk);
2345 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2346 		return true;
2347 
2348 	return false;
2349 }
2350 
2351 /* Undo during loss recovery after partial ACK or using F-RTO. */
2352 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2353 {
2354 	struct tcp_sock *tp = tcp_sk(sk);
2355 
2356 	if (frto_undo || tcp_may_undo(tp)) {
2357 		tcp_undo_cwnd_reduction(sk, true);
2358 
2359 		DBGUNDO(sk, "partial loss");
2360 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2361 		if (frto_undo)
2362 			NET_INC_STATS_BH(sock_net(sk),
2363 					 LINUX_MIB_TCPSPURIOUSRTOS);
2364 		inet_csk(sk)->icsk_retransmits = 0;
2365 		if (frto_undo || tcp_is_sack(tp))
2366 			tcp_set_ca_state(sk, TCP_CA_Open);
2367 		return true;
2368 	}
2369 	return false;
2370 }
2371 
2372 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2373  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2374  * It computes the number of packets to send (sndcnt) based on packets newly
2375  * delivered:
2376  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2377  *	cwnd reductions across a full RTT.
2378  *   2) If packets in flight is lower than ssthresh (such as due to excess
2379  *	losses and/or application stalls), do not perform any further cwnd
2380  *	reductions, but instead slow start up to ssthresh.
2381  */
2382 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2383 {
2384 	struct tcp_sock *tp = tcp_sk(sk);
2385 
2386 	tp->high_seq = tp->snd_nxt;
2387 	tp->tlp_high_seq = 0;
2388 	tp->snd_cwnd_cnt = 0;
2389 	tp->prior_cwnd = tp->snd_cwnd;
2390 	tp->prr_delivered = 0;
2391 	tp->prr_out = 0;
2392 	if (set_ssthresh)
2393 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2394 	TCP_ECN_queue_cwr(tp);
2395 }
2396 
2397 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2398 			       int fast_rexmit)
2399 {
2400 	struct tcp_sock *tp = tcp_sk(sk);
2401 	int sndcnt = 0;
2402 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2403 	int newly_acked_sacked = prior_unsacked -
2404 				 (tp->packets_out - tp->sacked_out);
2405 
2406 	tp->prr_delivered += newly_acked_sacked;
2407 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2408 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2409 			       tp->prior_cwnd - 1;
2410 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2411 	} else {
2412 		sndcnt = min_t(int, delta,
2413 			       max_t(int, tp->prr_delivered - tp->prr_out,
2414 				     newly_acked_sacked) + 1);
2415 	}
2416 
2417 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2418 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2419 }
2420 
2421 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2422 {
2423 	struct tcp_sock *tp = tcp_sk(sk);
2424 
2425 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2426 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2427 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2428 		tp->snd_cwnd = tp->snd_ssthresh;
2429 		tp->snd_cwnd_stamp = tcp_time_stamp;
2430 	}
2431 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2432 }
2433 
2434 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2435 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2436 {
2437 	struct tcp_sock *tp = tcp_sk(sk);
2438 
2439 	tp->prior_ssthresh = 0;
2440 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2441 		tp->undo_marker = 0;
2442 		tcp_init_cwnd_reduction(sk, set_ssthresh);
2443 		tcp_set_ca_state(sk, TCP_CA_CWR);
2444 	}
2445 }
2446 
2447 static void tcp_try_keep_open(struct sock *sk)
2448 {
2449 	struct tcp_sock *tp = tcp_sk(sk);
2450 	int state = TCP_CA_Open;
2451 
2452 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2453 		state = TCP_CA_Disorder;
2454 
2455 	if (inet_csk(sk)->icsk_ca_state != state) {
2456 		tcp_set_ca_state(sk, state);
2457 		tp->high_seq = tp->snd_nxt;
2458 	}
2459 }
2460 
2461 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2462 {
2463 	struct tcp_sock *tp = tcp_sk(sk);
2464 
2465 	tcp_verify_left_out(tp);
2466 
2467 	if (!tcp_any_retrans_done(sk))
2468 		tp->retrans_stamp = 0;
2469 
2470 	if (flag & FLAG_ECE)
2471 		tcp_enter_cwr(sk, 1);
2472 
2473 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2474 		tcp_try_keep_open(sk);
2475 		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2476 			tcp_moderate_cwnd(tp);
2477 	} else {
2478 		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2479 	}
2480 }
2481 
2482 static void tcp_mtup_probe_failed(struct sock *sk)
2483 {
2484 	struct inet_connection_sock *icsk = inet_csk(sk);
2485 
2486 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2487 	icsk->icsk_mtup.probe_size = 0;
2488 }
2489 
2490 static void tcp_mtup_probe_success(struct sock *sk)
2491 {
2492 	struct tcp_sock *tp = tcp_sk(sk);
2493 	struct inet_connection_sock *icsk = inet_csk(sk);
2494 
2495 	/* FIXME: breaks with very large cwnd */
2496 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2497 	tp->snd_cwnd = tp->snd_cwnd *
2498 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2499 		       icsk->icsk_mtup.probe_size;
2500 	tp->snd_cwnd_cnt = 0;
2501 	tp->snd_cwnd_stamp = tcp_time_stamp;
2502 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2503 
2504 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2505 	icsk->icsk_mtup.probe_size = 0;
2506 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2507 }
2508 
2509 /* Do a simple retransmit without using the backoff mechanisms in
2510  * tcp_timer. This is used for path mtu discovery.
2511  * The socket is already locked here.
2512  */
2513 void tcp_simple_retransmit(struct sock *sk)
2514 {
2515 	const struct inet_connection_sock *icsk = inet_csk(sk);
2516 	struct tcp_sock *tp = tcp_sk(sk);
2517 	struct sk_buff *skb;
2518 	unsigned int mss = tcp_current_mss(sk);
2519 	u32 prior_lost = tp->lost_out;
2520 
2521 	tcp_for_write_queue(skb, sk) {
2522 		if (skb == tcp_send_head(sk))
2523 			break;
2524 		if (tcp_skb_seglen(skb) > mss &&
2525 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2526 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2527 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2528 				tp->retrans_out -= tcp_skb_pcount(skb);
2529 			}
2530 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2531 		}
2532 	}
2533 
2534 	tcp_clear_retrans_hints_partial(tp);
2535 
2536 	if (prior_lost == tp->lost_out)
2537 		return;
2538 
2539 	if (tcp_is_reno(tp))
2540 		tcp_limit_reno_sacked(tp);
2541 
2542 	tcp_verify_left_out(tp);
2543 
2544 	/* Don't muck with the congestion window here.
2545 	 * Reason is that we do not increase amount of _data_
2546 	 * in network, but units changed and effective
2547 	 * cwnd/ssthresh really reduced now.
2548 	 */
2549 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2550 		tp->high_seq = tp->snd_nxt;
2551 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2552 		tp->prior_ssthresh = 0;
2553 		tp->undo_marker = 0;
2554 		tcp_set_ca_state(sk, TCP_CA_Loss);
2555 	}
2556 	tcp_xmit_retransmit_queue(sk);
2557 }
2558 EXPORT_SYMBOL(tcp_simple_retransmit);
2559 
2560 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2561 {
2562 	struct tcp_sock *tp = tcp_sk(sk);
2563 	int mib_idx;
2564 
2565 	if (tcp_is_reno(tp))
2566 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2567 	else
2568 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2569 
2570 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2571 
2572 	tp->prior_ssthresh = 0;
2573 	tp->undo_marker = tp->snd_una;
2574 	tp->undo_retrans = tp->retrans_out;
2575 
2576 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2577 		if (!ece_ack)
2578 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2579 		tcp_init_cwnd_reduction(sk, true);
2580 	}
2581 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2582 }
2583 
2584 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2585  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2586  */
2587 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2588 {
2589 	struct inet_connection_sock *icsk = inet_csk(sk);
2590 	struct tcp_sock *tp = tcp_sk(sk);
2591 	bool recovered = !before(tp->snd_una, tp->high_seq);
2592 
2593 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2594 		if (flag & FLAG_ORIG_SACK_ACKED) {
2595 			/* Step 3.b. A timeout is spurious if not all data are
2596 			 * lost, i.e., never-retransmitted data are (s)acked.
2597 			 */
2598 			tcp_try_undo_loss(sk, true);
2599 			return;
2600 		}
2601 		if (after(tp->snd_nxt, tp->high_seq) &&
2602 		    (flag & FLAG_DATA_SACKED || is_dupack)) {
2603 			tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2604 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2605 			tp->high_seq = tp->snd_nxt;
2606 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2607 						  TCP_NAGLE_OFF);
2608 			if (after(tp->snd_nxt, tp->high_seq))
2609 				return; /* Step 2.b */
2610 			tp->frto = 0;
2611 		}
2612 	}
2613 
2614 	if (recovered) {
2615 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2616 		icsk->icsk_retransmits = 0;
2617 		tcp_try_undo_recovery(sk);
2618 		return;
2619 	}
2620 	if (flag & FLAG_DATA_ACKED)
2621 		icsk->icsk_retransmits = 0;
2622 	if (tcp_is_reno(tp)) {
2623 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2624 		 * delivered. Lower inflight to clock out (re)tranmissions.
2625 		 */
2626 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2627 			tcp_add_reno_sack(sk);
2628 		else if (flag & FLAG_SND_UNA_ADVANCED)
2629 			tcp_reset_reno_sack(tp);
2630 	}
2631 	if (tcp_try_undo_loss(sk, false))
2632 		return;
2633 	tcp_xmit_retransmit_queue(sk);
2634 }
2635 
2636 /* Undo during fast recovery after partial ACK. */
2637 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2638 				 const int prior_unsacked)
2639 {
2640 	struct tcp_sock *tp = tcp_sk(sk);
2641 
2642 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2643 		/* Plain luck! Hole if filled with delayed
2644 		 * packet, rather than with a retransmit.
2645 		 */
2646 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2647 
2648 		/* We are getting evidence that the reordering degree is higher
2649 		 * than we realized. If there are no retransmits out then we
2650 		 * can undo. Otherwise we clock out new packets but do not
2651 		 * mark more packets lost or retransmit more.
2652 		 */
2653 		if (tp->retrans_out) {
2654 			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2655 			return true;
2656 		}
2657 
2658 		if (!tcp_any_retrans_done(sk))
2659 			tp->retrans_stamp = 0;
2660 
2661 		DBGUNDO(sk, "partial recovery");
2662 		tcp_undo_cwnd_reduction(sk, true);
2663 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2664 		tcp_try_keep_open(sk);
2665 		return true;
2666 	}
2667 	return false;
2668 }
2669 
2670 /* Process an event, which can update packets-in-flight not trivially.
2671  * Main goal of this function is to calculate new estimate for left_out,
2672  * taking into account both packets sitting in receiver's buffer and
2673  * packets lost by network.
2674  *
2675  * Besides that it does CWND reduction, when packet loss is detected
2676  * and changes state of machine.
2677  *
2678  * It does _not_ decide what to send, it is made in function
2679  * tcp_xmit_retransmit_queue().
2680  */
2681 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2682 				  const int prior_unsacked,
2683 				  bool is_dupack, int flag)
2684 {
2685 	struct inet_connection_sock *icsk = inet_csk(sk);
2686 	struct tcp_sock *tp = tcp_sk(sk);
2687 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2688 				    (tcp_fackets_out(tp) > tp->reordering));
2689 	int fast_rexmit = 0;
2690 
2691 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2692 		tp->sacked_out = 0;
2693 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2694 		tp->fackets_out = 0;
2695 
2696 	/* Now state machine starts.
2697 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2698 	if (flag & FLAG_ECE)
2699 		tp->prior_ssthresh = 0;
2700 
2701 	/* B. In all the states check for reneging SACKs. */
2702 	if (tcp_check_sack_reneging(sk, flag))
2703 		return;
2704 
2705 	/* C. Check consistency of the current state. */
2706 	tcp_verify_left_out(tp);
2707 
2708 	/* D. Check state exit conditions. State can be terminated
2709 	 *    when high_seq is ACKed. */
2710 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2711 		WARN_ON(tp->retrans_out != 0);
2712 		tp->retrans_stamp = 0;
2713 	} else if (!before(tp->snd_una, tp->high_seq)) {
2714 		switch (icsk->icsk_ca_state) {
2715 		case TCP_CA_CWR:
2716 			/* CWR is to be held something *above* high_seq
2717 			 * is ACKed for CWR bit to reach receiver. */
2718 			if (tp->snd_una != tp->high_seq) {
2719 				tcp_end_cwnd_reduction(sk);
2720 				tcp_set_ca_state(sk, TCP_CA_Open);
2721 			}
2722 			break;
2723 
2724 		case TCP_CA_Recovery:
2725 			if (tcp_is_reno(tp))
2726 				tcp_reset_reno_sack(tp);
2727 			if (tcp_try_undo_recovery(sk))
2728 				return;
2729 			tcp_end_cwnd_reduction(sk);
2730 			break;
2731 		}
2732 	}
2733 
2734 	/* E. Process state. */
2735 	switch (icsk->icsk_ca_state) {
2736 	case TCP_CA_Recovery:
2737 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2738 			if (tcp_is_reno(tp) && is_dupack)
2739 				tcp_add_reno_sack(sk);
2740 		} else {
2741 			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2742 				return;
2743 			/* Partial ACK arrived. Force fast retransmit. */
2744 			do_lost = tcp_is_reno(tp) ||
2745 				  tcp_fackets_out(tp) > tp->reordering;
2746 		}
2747 		if (tcp_try_undo_dsack(sk)) {
2748 			tcp_try_keep_open(sk);
2749 			return;
2750 		}
2751 		break;
2752 	case TCP_CA_Loss:
2753 		tcp_process_loss(sk, flag, is_dupack);
2754 		if (icsk->icsk_ca_state != TCP_CA_Open)
2755 			return;
2756 		/* Fall through to processing in Open state. */
2757 	default:
2758 		if (tcp_is_reno(tp)) {
2759 			if (flag & FLAG_SND_UNA_ADVANCED)
2760 				tcp_reset_reno_sack(tp);
2761 			if (is_dupack)
2762 				tcp_add_reno_sack(sk);
2763 		}
2764 
2765 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2766 			tcp_try_undo_dsack(sk);
2767 
2768 		if (!tcp_time_to_recover(sk, flag)) {
2769 			tcp_try_to_open(sk, flag, prior_unsacked);
2770 			return;
2771 		}
2772 
2773 		/* MTU probe failure: don't reduce cwnd */
2774 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2775 		    icsk->icsk_mtup.probe_size &&
2776 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2777 			tcp_mtup_probe_failed(sk);
2778 			/* Restores the reduction we did in tcp_mtup_probe() */
2779 			tp->snd_cwnd++;
2780 			tcp_simple_retransmit(sk);
2781 			return;
2782 		}
2783 
2784 		/* Otherwise enter Recovery state */
2785 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2786 		fast_rexmit = 1;
2787 	}
2788 
2789 	if (do_lost)
2790 		tcp_update_scoreboard(sk, fast_rexmit);
2791 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2792 	tcp_xmit_retransmit_queue(sk);
2793 }
2794 
2795 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
2796 {
2797 	tcp_rtt_estimator(sk, seq_rtt);
2798 	tcp_set_rto(sk);
2799 	inet_csk(sk)->icsk_backoff = 0;
2800 }
2801 EXPORT_SYMBOL(tcp_valid_rtt_meas);
2802 
2803 /* Read draft-ietf-tcplw-high-performance before mucking
2804  * with this code. (Supersedes RFC1323)
2805  */
2806 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2807 {
2808 	/* RTTM Rule: A TSecr value received in a segment is used to
2809 	 * update the averaged RTT measurement only if the segment
2810 	 * acknowledges some new data, i.e., only if it advances the
2811 	 * left edge of the send window.
2812 	 *
2813 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2814 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2815 	 *
2816 	 * Changed: reset backoff as soon as we see the first valid sample.
2817 	 * If we do not, we get strongly overestimated rto. With timestamps
2818 	 * samples are accepted even from very old segments: f.e., when rtt=1
2819 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2820 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2821 	 * in window is lost... Voila.	 			--ANK (010210)
2822 	 */
2823 	struct tcp_sock *tp = tcp_sk(sk);
2824 
2825 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2826 }
2827 
2828 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2829 {
2830 	/* We don't have a timestamp. Can only use
2831 	 * packets that are not retransmitted to determine
2832 	 * rtt estimates. Also, we must not reset the
2833 	 * backoff for rto until we get a non-retransmitted
2834 	 * packet. This allows us to deal with a situation
2835 	 * where the network delay has increased suddenly.
2836 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2837 	 */
2838 
2839 	if (flag & FLAG_RETRANS_DATA_ACKED)
2840 		return;
2841 
2842 	tcp_valid_rtt_meas(sk, seq_rtt);
2843 }
2844 
2845 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2846 				      const s32 seq_rtt)
2847 {
2848 	const struct tcp_sock *tp = tcp_sk(sk);
2849 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2850 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2851 		tcp_ack_saw_tstamp(sk, flag);
2852 	else if (seq_rtt >= 0)
2853 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2854 }
2855 
2856 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2857 {
2858 	const struct inet_connection_sock *icsk = inet_csk(sk);
2859 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2860 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2861 }
2862 
2863 /* Restart timer after forward progress on connection.
2864  * RFC2988 recommends to restart timer to now+rto.
2865  */
2866 void tcp_rearm_rto(struct sock *sk)
2867 {
2868 	const struct inet_connection_sock *icsk = inet_csk(sk);
2869 	struct tcp_sock *tp = tcp_sk(sk);
2870 
2871 	/* If the retrans timer is currently being used by Fast Open
2872 	 * for SYN-ACK retrans purpose, stay put.
2873 	 */
2874 	if (tp->fastopen_rsk)
2875 		return;
2876 
2877 	if (!tp->packets_out) {
2878 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2879 	} else {
2880 		u32 rto = inet_csk(sk)->icsk_rto;
2881 		/* Offset the time elapsed after installing regular RTO */
2882 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2883 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2884 			struct sk_buff *skb = tcp_write_queue_head(sk);
2885 			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2886 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2887 			/* delta may not be positive if the socket is locked
2888 			 * when the retrans timer fires and is rescheduled.
2889 			 */
2890 			if (delta > 0)
2891 				rto = delta;
2892 		}
2893 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2894 					  TCP_RTO_MAX);
2895 	}
2896 }
2897 
2898 /* This function is called when the delayed ER timer fires. TCP enters
2899  * fast recovery and performs fast-retransmit.
2900  */
2901 void tcp_resume_early_retransmit(struct sock *sk)
2902 {
2903 	struct tcp_sock *tp = tcp_sk(sk);
2904 
2905 	tcp_rearm_rto(sk);
2906 
2907 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
2908 	if (!tp->do_early_retrans)
2909 		return;
2910 
2911 	tcp_enter_recovery(sk, false);
2912 	tcp_update_scoreboard(sk, 1);
2913 	tcp_xmit_retransmit_queue(sk);
2914 }
2915 
2916 /* If we get here, the whole TSO packet has not been acked. */
2917 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2918 {
2919 	struct tcp_sock *tp = tcp_sk(sk);
2920 	u32 packets_acked;
2921 
2922 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2923 
2924 	packets_acked = tcp_skb_pcount(skb);
2925 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2926 		return 0;
2927 	packets_acked -= tcp_skb_pcount(skb);
2928 
2929 	if (packets_acked) {
2930 		BUG_ON(tcp_skb_pcount(skb) == 0);
2931 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2932 	}
2933 
2934 	return packets_acked;
2935 }
2936 
2937 /* Remove acknowledged frames from the retransmission queue. If our packet
2938  * is before the ack sequence we can discard it as it's confirmed to have
2939  * arrived at the other end.
2940  */
2941 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
2942 			       u32 prior_snd_una)
2943 {
2944 	struct tcp_sock *tp = tcp_sk(sk);
2945 	const struct inet_connection_sock *icsk = inet_csk(sk);
2946 	struct sk_buff *skb;
2947 	u32 now = tcp_time_stamp;
2948 	int fully_acked = true;
2949 	int flag = 0;
2950 	u32 pkts_acked = 0;
2951 	u32 reord = tp->packets_out;
2952 	u32 prior_sacked = tp->sacked_out;
2953 	s32 seq_rtt = -1;
2954 	s32 ca_seq_rtt = -1;
2955 	ktime_t last_ackt = net_invalid_timestamp();
2956 
2957 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2958 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2959 		u32 acked_pcount;
2960 		u8 sacked = scb->sacked;
2961 
2962 		/* Determine how many packets and what bytes were acked, tso and else */
2963 		if (after(scb->end_seq, tp->snd_una)) {
2964 			if (tcp_skb_pcount(skb) == 1 ||
2965 			    !after(tp->snd_una, scb->seq))
2966 				break;
2967 
2968 			acked_pcount = tcp_tso_acked(sk, skb);
2969 			if (!acked_pcount)
2970 				break;
2971 
2972 			fully_acked = false;
2973 		} else {
2974 			acked_pcount = tcp_skb_pcount(skb);
2975 		}
2976 
2977 		if (sacked & TCPCB_RETRANS) {
2978 			if (sacked & TCPCB_SACKED_RETRANS)
2979 				tp->retrans_out -= acked_pcount;
2980 			flag |= FLAG_RETRANS_DATA_ACKED;
2981 			ca_seq_rtt = -1;
2982 			seq_rtt = -1;
2983 		} else {
2984 			ca_seq_rtt = now - scb->when;
2985 			last_ackt = skb->tstamp;
2986 			if (seq_rtt < 0) {
2987 				seq_rtt = ca_seq_rtt;
2988 			}
2989 			if (!(sacked & TCPCB_SACKED_ACKED))
2990 				reord = min(pkts_acked, reord);
2991 			if (!after(scb->end_seq, tp->high_seq))
2992 				flag |= FLAG_ORIG_SACK_ACKED;
2993 		}
2994 
2995 		if (sacked & TCPCB_SACKED_ACKED)
2996 			tp->sacked_out -= acked_pcount;
2997 		if (sacked & TCPCB_LOST)
2998 			tp->lost_out -= acked_pcount;
2999 
3000 		tp->packets_out -= acked_pcount;
3001 		pkts_acked += acked_pcount;
3002 
3003 		/* Initial outgoing SYN's get put onto the write_queue
3004 		 * just like anything else we transmit.  It is not
3005 		 * true data, and if we misinform our callers that
3006 		 * this ACK acks real data, we will erroneously exit
3007 		 * connection startup slow start one packet too
3008 		 * quickly.  This is severely frowned upon behavior.
3009 		 */
3010 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3011 			flag |= FLAG_DATA_ACKED;
3012 		} else {
3013 			flag |= FLAG_SYN_ACKED;
3014 			tp->retrans_stamp = 0;
3015 		}
3016 
3017 		if (!fully_acked)
3018 			break;
3019 
3020 		tcp_unlink_write_queue(skb, sk);
3021 		sk_wmem_free_skb(sk, skb);
3022 		if (skb == tp->retransmit_skb_hint)
3023 			tp->retransmit_skb_hint = NULL;
3024 		if (skb == tp->lost_skb_hint)
3025 			tp->lost_skb_hint = NULL;
3026 	}
3027 
3028 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3029 		tp->snd_up = tp->snd_una;
3030 
3031 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3032 		flag |= FLAG_SACK_RENEGING;
3033 
3034 	if (flag & FLAG_ACKED) {
3035 		const struct tcp_congestion_ops *ca_ops
3036 			= inet_csk(sk)->icsk_ca_ops;
3037 
3038 		if (unlikely(icsk->icsk_mtup.probe_size &&
3039 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3040 			tcp_mtup_probe_success(sk);
3041 		}
3042 
3043 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3044 		tcp_rearm_rto(sk);
3045 
3046 		if (tcp_is_reno(tp)) {
3047 			tcp_remove_reno_sacks(sk, pkts_acked);
3048 		} else {
3049 			int delta;
3050 
3051 			/* Non-retransmitted hole got filled? That's reordering */
3052 			if (reord < prior_fackets)
3053 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3054 
3055 			delta = tcp_is_fack(tp) ? pkts_acked :
3056 						  prior_sacked - tp->sacked_out;
3057 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3058 		}
3059 
3060 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3061 
3062 		if (ca_ops->pkts_acked) {
3063 			s32 rtt_us = -1;
3064 
3065 			/* Is the ACK triggering packet unambiguous? */
3066 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3067 				/* High resolution needed and available? */
3068 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3069 				    !ktime_equal(last_ackt,
3070 						 net_invalid_timestamp()))
3071 					rtt_us = ktime_us_delta(ktime_get_real(),
3072 								last_ackt);
3073 				else if (ca_seq_rtt >= 0)
3074 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3075 			}
3076 
3077 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3078 		}
3079 	}
3080 
3081 #if FASTRETRANS_DEBUG > 0
3082 	WARN_ON((int)tp->sacked_out < 0);
3083 	WARN_ON((int)tp->lost_out < 0);
3084 	WARN_ON((int)tp->retrans_out < 0);
3085 	if (!tp->packets_out && tcp_is_sack(tp)) {
3086 		icsk = inet_csk(sk);
3087 		if (tp->lost_out) {
3088 			pr_debug("Leak l=%u %d\n",
3089 				 tp->lost_out, icsk->icsk_ca_state);
3090 			tp->lost_out = 0;
3091 		}
3092 		if (tp->sacked_out) {
3093 			pr_debug("Leak s=%u %d\n",
3094 				 tp->sacked_out, icsk->icsk_ca_state);
3095 			tp->sacked_out = 0;
3096 		}
3097 		if (tp->retrans_out) {
3098 			pr_debug("Leak r=%u %d\n",
3099 				 tp->retrans_out, icsk->icsk_ca_state);
3100 			tp->retrans_out = 0;
3101 		}
3102 	}
3103 #endif
3104 	return flag;
3105 }
3106 
3107 static void tcp_ack_probe(struct sock *sk)
3108 {
3109 	const struct tcp_sock *tp = tcp_sk(sk);
3110 	struct inet_connection_sock *icsk = inet_csk(sk);
3111 
3112 	/* Was it a usable window open? */
3113 
3114 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3115 		icsk->icsk_backoff = 0;
3116 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3117 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3118 		 * This function is not for random using!
3119 		 */
3120 	} else {
3121 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3122 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3123 					  TCP_RTO_MAX);
3124 	}
3125 }
3126 
3127 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3128 {
3129 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3130 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3131 }
3132 
3133 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3134 {
3135 	const struct tcp_sock *tp = tcp_sk(sk);
3136 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3137 		!tcp_in_cwnd_reduction(sk);
3138 }
3139 
3140 /* Check that window update is acceptable.
3141  * The function assumes that snd_una<=ack<=snd_next.
3142  */
3143 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3144 					const u32 ack, const u32 ack_seq,
3145 					const u32 nwin)
3146 {
3147 	return	after(ack, tp->snd_una) ||
3148 		after(ack_seq, tp->snd_wl1) ||
3149 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3150 }
3151 
3152 /* Update our send window.
3153  *
3154  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3155  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3156  */
3157 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3158 				 u32 ack_seq)
3159 {
3160 	struct tcp_sock *tp = tcp_sk(sk);
3161 	int flag = 0;
3162 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3163 
3164 	if (likely(!tcp_hdr(skb)->syn))
3165 		nwin <<= tp->rx_opt.snd_wscale;
3166 
3167 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3168 		flag |= FLAG_WIN_UPDATE;
3169 		tcp_update_wl(tp, ack_seq);
3170 
3171 		if (tp->snd_wnd != nwin) {
3172 			tp->snd_wnd = nwin;
3173 
3174 			/* Note, it is the only place, where
3175 			 * fast path is recovered for sending TCP.
3176 			 */
3177 			tp->pred_flags = 0;
3178 			tcp_fast_path_check(sk);
3179 
3180 			if (nwin > tp->max_window) {
3181 				tp->max_window = nwin;
3182 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3183 			}
3184 		}
3185 	}
3186 
3187 	tp->snd_una = ack;
3188 
3189 	return flag;
3190 }
3191 
3192 /* RFC 5961 7 [ACK Throttling] */
3193 static void tcp_send_challenge_ack(struct sock *sk)
3194 {
3195 	/* unprotected vars, we dont care of overwrites */
3196 	static u32 challenge_timestamp;
3197 	static unsigned int challenge_count;
3198 	u32 now = jiffies / HZ;
3199 
3200 	if (now != challenge_timestamp) {
3201 		challenge_timestamp = now;
3202 		challenge_count = 0;
3203 	}
3204 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3205 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3206 		tcp_send_ack(sk);
3207 	}
3208 }
3209 
3210 static void tcp_store_ts_recent(struct tcp_sock *tp)
3211 {
3212 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3213 	tp->rx_opt.ts_recent_stamp = get_seconds();
3214 }
3215 
3216 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3217 {
3218 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3219 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3220 		 * extra check below makes sure this can only happen
3221 		 * for pure ACK frames.  -DaveM
3222 		 *
3223 		 * Not only, also it occurs for expired timestamps.
3224 		 */
3225 
3226 		if (tcp_paws_check(&tp->rx_opt, 0))
3227 			tcp_store_ts_recent(tp);
3228 	}
3229 }
3230 
3231 /* This routine deals with acks during a TLP episode.
3232  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3233  */
3234 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3235 {
3236 	struct tcp_sock *tp = tcp_sk(sk);
3237 	bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3238 			     !(flag & (FLAG_SND_UNA_ADVANCED |
3239 				       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3240 
3241 	/* Mark the end of TLP episode on receiving TLP dupack or when
3242 	 * ack is after tlp_high_seq.
3243 	 */
3244 	if (is_tlp_dupack) {
3245 		tp->tlp_high_seq = 0;
3246 		return;
3247 	}
3248 
3249 	if (after(ack, tp->tlp_high_seq)) {
3250 		tp->tlp_high_seq = 0;
3251 		/* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3252 		if (!(flag & FLAG_DSACKING_ACK)) {
3253 			tcp_init_cwnd_reduction(sk, true);
3254 			tcp_set_ca_state(sk, TCP_CA_CWR);
3255 			tcp_end_cwnd_reduction(sk);
3256 			tcp_set_ca_state(sk, TCP_CA_Open);
3257 			NET_INC_STATS_BH(sock_net(sk),
3258 					 LINUX_MIB_TCPLOSSPROBERECOVERY);
3259 		}
3260 	}
3261 }
3262 
3263 /* This routine deals with incoming acks, but not outgoing ones. */
3264 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3265 {
3266 	struct inet_connection_sock *icsk = inet_csk(sk);
3267 	struct tcp_sock *tp = tcp_sk(sk);
3268 	u32 prior_snd_una = tp->snd_una;
3269 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3270 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3271 	bool is_dupack = false;
3272 	u32 prior_in_flight;
3273 	u32 prior_fackets;
3274 	int prior_packets = tp->packets_out;
3275 	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3276 	int acked = 0; /* Number of packets newly acked */
3277 
3278 	/* If the ack is older than previous acks
3279 	 * then we can probably ignore it.
3280 	 */
3281 	if (before(ack, prior_snd_una)) {
3282 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3283 		if (before(ack, prior_snd_una - tp->max_window)) {
3284 			tcp_send_challenge_ack(sk);
3285 			return -1;
3286 		}
3287 		goto old_ack;
3288 	}
3289 
3290 	/* If the ack includes data we haven't sent yet, discard
3291 	 * this segment (RFC793 Section 3.9).
3292 	 */
3293 	if (after(ack, tp->snd_nxt))
3294 		goto invalid_ack;
3295 
3296 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3297 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3298 		tcp_rearm_rto(sk);
3299 
3300 	if (after(ack, prior_snd_una))
3301 		flag |= FLAG_SND_UNA_ADVANCED;
3302 
3303 	prior_fackets = tp->fackets_out;
3304 	prior_in_flight = tcp_packets_in_flight(tp);
3305 
3306 	/* ts_recent update must be made after we are sure that the packet
3307 	 * is in window.
3308 	 */
3309 	if (flag & FLAG_UPDATE_TS_RECENT)
3310 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3311 
3312 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3313 		/* Window is constant, pure forward advance.
3314 		 * No more checks are required.
3315 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3316 		 */
3317 		tcp_update_wl(tp, ack_seq);
3318 		tp->snd_una = ack;
3319 		flag |= FLAG_WIN_UPDATE;
3320 
3321 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3322 
3323 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3324 	} else {
3325 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3326 			flag |= FLAG_DATA;
3327 		else
3328 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3329 
3330 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3331 
3332 		if (TCP_SKB_CB(skb)->sacked)
3333 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3334 
3335 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3336 			flag |= FLAG_ECE;
3337 
3338 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3339 	}
3340 
3341 	/* We passed data and got it acked, remove any soft error
3342 	 * log. Something worked...
3343 	 */
3344 	sk->sk_err_soft = 0;
3345 	icsk->icsk_probes_out = 0;
3346 	tp->rcv_tstamp = tcp_time_stamp;
3347 	if (!prior_packets)
3348 		goto no_queue;
3349 
3350 	/* See if we can take anything off of the retransmit queue. */
3351 	acked = tp->packets_out;
3352 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3353 	acked -= tp->packets_out;
3354 
3355 	if (tcp_ack_is_dubious(sk, flag)) {
3356 		/* Advance CWND, if state allows this. */
3357 		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
3358 			tcp_cong_avoid(sk, ack, prior_in_flight);
3359 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3360 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3361 				      is_dupack, flag);
3362 	} else {
3363 		if (flag & FLAG_DATA_ACKED)
3364 			tcp_cong_avoid(sk, ack, prior_in_flight);
3365 	}
3366 
3367 	if (tp->tlp_high_seq)
3368 		tcp_process_tlp_ack(sk, ack, flag);
3369 
3370 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3371 		struct dst_entry *dst = __sk_dst_get(sk);
3372 		if (dst)
3373 			dst_confirm(dst);
3374 	}
3375 
3376 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3377 		tcp_schedule_loss_probe(sk);
3378 	return 1;
3379 
3380 no_queue:
3381 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3382 	if (flag & FLAG_DSACKING_ACK)
3383 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3384 				      is_dupack, flag);
3385 	/* If this ack opens up a zero window, clear backoff.  It was
3386 	 * being used to time the probes, and is probably far higher than
3387 	 * it needs to be for normal retransmission.
3388 	 */
3389 	if (tcp_send_head(sk))
3390 		tcp_ack_probe(sk);
3391 
3392 	if (tp->tlp_high_seq)
3393 		tcp_process_tlp_ack(sk, ack, flag);
3394 	return 1;
3395 
3396 invalid_ack:
3397 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3398 	return -1;
3399 
3400 old_ack:
3401 	/* If data was SACKed, tag it and see if we should send more data.
3402 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3403 	 */
3404 	if (TCP_SKB_CB(skb)->sacked) {
3405 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3406 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3407 				      is_dupack, flag);
3408 	}
3409 
3410 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3411 	return 0;
3412 }
3413 
3414 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3415  * But, this can also be called on packets in the established flow when
3416  * the fast version below fails.
3417  */
3418 void tcp_parse_options(const struct sk_buff *skb,
3419 		       struct tcp_options_received *opt_rx, int estab,
3420 		       struct tcp_fastopen_cookie *foc)
3421 {
3422 	const unsigned char *ptr;
3423 	const struct tcphdr *th = tcp_hdr(skb);
3424 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3425 
3426 	ptr = (const unsigned char *)(th + 1);
3427 	opt_rx->saw_tstamp = 0;
3428 
3429 	while (length > 0) {
3430 		int opcode = *ptr++;
3431 		int opsize;
3432 
3433 		switch (opcode) {
3434 		case TCPOPT_EOL:
3435 			return;
3436 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3437 			length--;
3438 			continue;
3439 		default:
3440 			opsize = *ptr++;
3441 			if (opsize < 2) /* "silly options" */
3442 				return;
3443 			if (opsize > length)
3444 				return;	/* don't parse partial options */
3445 			switch (opcode) {
3446 			case TCPOPT_MSS:
3447 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3448 					u16 in_mss = get_unaligned_be16(ptr);
3449 					if (in_mss) {
3450 						if (opt_rx->user_mss &&
3451 						    opt_rx->user_mss < in_mss)
3452 							in_mss = opt_rx->user_mss;
3453 						opt_rx->mss_clamp = in_mss;
3454 					}
3455 				}
3456 				break;
3457 			case TCPOPT_WINDOW:
3458 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3459 				    !estab && sysctl_tcp_window_scaling) {
3460 					__u8 snd_wscale = *(__u8 *)ptr;
3461 					opt_rx->wscale_ok = 1;
3462 					if (snd_wscale > 14) {
3463 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3464 								     __func__,
3465 								     snd_wscale);
3466 						snd_wscale = 14;
3467 					}
3468 					opt_rx->snd_wscale = snd_wscale;
3469 				}
3470 				break;
3471 			case TCPOPT_TIMESTAMP:
3472 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3473 				    ((estab && opt_rx->tstamp_ok) ||
3474 				     (!estab && sysctl_tcp_timestamps))) {
3475 					opt_rx->saw_tstamp = 1;
3476 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3477 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3478 				}
3479 				break;
3480 			case TCPOPT_SACK_PERM:
3481 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3482 				    !estab && sysctl_tcp_sack) {
3483 					opt_rx->sack_ok = TCP_SACK_SEEN;
3484 					tcp_sack_reset(opt_rx);
3485 				}
3486 				break;
3487 
3488 			case TCPOPT_SACK:
3489 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3490 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3491 				   opt_rx->sack_ok) {
3492 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3493 				}
3494 				break;
3495 #ifdef CONFIG_TCP_MD5SIG
3496 			case TCPOPT_MD5SIG:
3497 				/*
3498 				 * The MD5 Hash has already been
3499 				 * checked (see tcp_v{4,6}_do_rcv()).
3500 				 */
3501 				break;
3502 #endif
3503 			case TCPOPT_EXP:
3504 				/* Fast Open option shares code 254 using a
3505 				 * 16 bits magic number. It's valid only in
3506 				 * SYN or SYN-ACK with an even size.
3507 				 */
3508 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3509 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3510 				    foc == NULL || !th->syn || (opsize & 1))
3511 					break;
3512 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3513 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3514 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3515 					memcpy(foc->val, ptr + 2, foc->len);
3516 				else if (foc->len != 0)
3517 					foc->len = -1;
3518 				break;
3519 
3520 			}
3521 			ptr += opsize-2;
3522 			length -= opsize;
3523 		}
3524 	}
3525 }
3526 EXPORT_SYMBOL(tcp_parse_options);
3527 
3528 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3529 {
3530 	const __be32 *ptr = (const __be32 *)(th + 1);
3531 
3532 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3533 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3534 		tp->rx_opt.saw_tstamp = 1;
3535 		++ptr;
3536 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3537 		++ptr;
3538 		tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3539 		return true;
3540 	}
3541 	return false;
3542 }
3543 
3544 /* Fast parse options. This hopes to only see timestamps.
3545  * If it is wrong it falls back on tcp_parse_options().
3546  */
3547 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3548 				   const struct tcphdr *th, struct tcp_sock *tp)
3549 {
3550 	/* In the spirit of fast parsing, compare doff directly to constant
3551 	 * values.  Because equality is used, short doff can be ignored here.
3552 	 */
3553 	if (th->doff == (sizeof(*th) / 4)) {
3554 		tp->rx_opt.saw_tstamp = 0;
3555 		return false;
3556 	} else if (tp->rx_opt.tstamp_ok &&
3557 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3558 		if (tcp_parse_aligned_timestamp(tp, th))
3559 			return true;
3560 	}
3561 
3562 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3563 	if (tp->rx_opt.saw_tstamp)
3564 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3565 
3566 	return true;
3567 }
3568 
3569 #ifdef CONFIG_TCP_MD5SIG
3570 /*
3571  * Parse MD5 Signature option
3572  */
3573 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3574 {
3575 	int length = (th->doff << 2) - sizeof(*th);
3576 	const u8 *ptr = (const u8 *)(th + 1);
3577 
3578 	/* If the TCP option is too short, we can short cut */
3579 	if (length < TCPOLEN_MD5SIG)
3580 		return NULL;
3581 
3582 	while (length > 0) {
3583 		int opcode = *ptr++;
3584 		int opsize;
3585 
3586 		switch(opcode) {
3587 		case TCPOPT_EOL:
3588 			return NULL;
3589 		case TCPOPT_NOP:
3590 			length--;
3591 			continue;
3592 		default:
3593 			opsize = *ptr++;
3594 			if (opsize < 2 || opsize > length)
3595 				return NULL;
3596 			if (opcode == TCPOPT_MD5SIG)
3597 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3598 		}
3599 		ptr += opsize - 2;
3600 		length -= opsize;
3601 	}
3602 	return NULL;
3603 }
3604 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3605 #endif
3606 
3607 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3608  *
3609  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3610  * it can pass through stack. So, the following predicate verifies that
3611  * this segment is not used for anything but congestion avoidance or
3612  * fast retransmit. Moreover, we even are able to eliminate most of such
3613  * second order effects, if we apply some small "replay" window (~RTO)
3614  * to timestamp space.
3615  *
3616  * All these measures still do not guarantee that we reject wrapped ACKs
3617  * on networks with high bandwidth, when sequence space is recycled fastly,
3618  * but it guarantees that such events will be very rare and do not affect
3619  * connection seriously. This doesn't look nice, but alas, PAWS is really
3620  * buggy extension.
3621  *
3622  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3623  * states that events when retransmit arrives after original data are rare.
3624  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3625  * the biggest problem on large power networks even with minor reordering.
3626  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3627  * up to bandwidth of 18Gigabit/sec. 8) ]
3628  */
3629 
3630 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3631 {
3632 	const struct tcp_sock *tp = tcp_sk(sk);
3633 	const struct tcphdr *th = tcp_hdr(skb);
3634 	u32 seq = TCP_SKB_CB(skb)->seq;
3635 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3636 
3637 	return (/* 1. Pure ACK with correct sequence number. */
3638 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3639 
3640 		/* 2. ... and duplicate ACK. */
3641 		ack == tp->snd_una &&
3642 
3643 		/* 3. ... and does not update window. */
3644 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3645 
3646 		/* 4. ... and sits in replay window. */
3647 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3648 }
3649 
3650 static inline bool tcp_paws_discard(const struct sock *sk,
3651 				   const struct sk_buff *skb)
3652 {
3653 	const struct tcp_sock *tp = tcp_sk(sk);
3654 
3655 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3656 	       !tcp_disordered_ack(sk, skb);
3657 }
3658 
3659 /* Check segment sequence number for validity.
3660  *
3661  * Segment controls are considered valid, if the segment
3662  * fits to the window after truncation to the window. Acceptability
3663  * of data (and SYN, FIN, of course) is checked separately.
3664  * See tcp_data_queue(), for example.
3665  *
3666  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3667  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3668  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3669  * (borrowed from freebsd)
3670  */
3671 
3672 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3673 {
3674 	return	!before(end_seq, tp->rcv_wup) &&
3675 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3676 }
3677 
3678 /* When we get a reset we do this. */
3679 void tcp_reset(struct sock *sk)
3680 {
3681 	/* We want the right error as BSD sees it (and indeed as we do). */
3682 	switch (sk->sk_state) {
3683 	case TCP_SYN_SENT:
3684 		sk->sk_err = ECONNREFUSED;
3685 		break;
3686 	case TCP_CLOSE_WAIT:
3687 		sk->sk_err = EPIPE;
3688 		break;
3689 	case TCP_CLOSE:
3690 		return;
3691 	default:
3692 		sk->sk_err = ECONNRESET;
3693 	}
3694 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3695 	smp_wmb();
3696 
3697 	if (!sock_flag(sk, SOCK_DEAD))
3698 		sk->sk_error_report(sk);
3699 
3700 	tcp_done(sk);
3701 }
3702 
3703 /*
3704  * 	Process the FIN bit. This now behaves as it is supposed to work
3705  *	and the FIN takes effect when it is validly part of sequence
3706  *	space. Not before when we get holes.
3707  *
3708  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3709  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3710  *	TIME-WAIT)
3711  *
3712  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3713  *	close and we go into CLOSING (and later onto TIME-WAIT)
3714  *
3715  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3716  */
3717 static void tcp_fin(struct sock *sk)
3718 {
3719 	struct tcp_sock *tp = tcp_sk(sk);
3720 	const struct dst_entry *dst;
3721 
3722 	inet_csk_schedule_ack(sk);
3723 
3724 	sk->sk_shutdown |= RCV_SHUTDOWN;
3725 	sock_set_flag(sk, SOCK_DONE);
3726 
3727 	switch (sk->sk_state) {
3728 	case TCP_SYN_RECV:
3729 	case TCP_ESTABLISHED:
3730 		/* Move to CLOSE_WAIT */
3731 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3732 		dst = __sk_dst_get(sk);
3733 		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3734 			inet_csk(sk)->icsk_ack.pingpong = 1;
3735 		break;
3736 
3737 	case TCP_CLOSE_WAIT:
3738 	case TCP_CLOSING:
3739 		/* Received a retransmission of the FIN, do
3740 		 * nothing.
3741 		 */
3742 		break;
3743 	case TCP_LAST_ACK:
3744 		/* RFC793: Remain in the LAST-ACK state. */
3745 		break;
3746 
3747 	case TCP_FIN_WAIT1:
3748 		/* This case occurs when a simultaneous close
3749 		 * happens, we must ack the received FIN and
3750 		 * enter the CLOSING state.
3751 		 */
3752 		tcp_send_ack(sk);
3753 		tcp_set_state(sk, TCP_CLOSING);
3754 		break;
3755 	case TCP_FIN_WAIT2:
3756 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3757 		tcp_send_ack(sk);
3758 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3759 		break;
3760 	default:
3761 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3762 		 * cases we should never reach this piece of code.
3763 		 */
3764 		pr_err("%s: Impossible, sk->sk_state=%d\n",
3765 		       __func__, sk->sk_state);
3766 		break;
3767 	}
3768 
3769 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3770 	 * Probably, we should reset in this case. For now drop them.
3771 	 */
3772 	__skb_queue_purge(&tp->out_of_order_queue);
3773 	if (tcp_is_sack(tp))
3774 		tcp_sack_reset(&tp->rx_opt);
3775 	sk_mem_reclaim(sk);
3776 
3777 	if (!sock_flag(sk, SOCK_DEAD)) {
3778 		sk->sk_state_change(sk);
3779 
3780 		/* Do not send POLL_HUP for half duplex close. */
3781 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3782 		    sk->sk_state == TCP_CLOSE)
3783 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3784 		else
3785 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3786 	}
3787 }
3788 
3789 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3790 				  u32 end_seq)
3791 {
3792 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3793 		if (before(seq, sp->start_seq))
3794 			sp->start_seq = seq;
3795 		if (after(end_seq, sp->end_seq))
3796 			sp->end_seq = end_seq;
3797 		return true;
3798 	}
3799 	return false;
3800 }
3801 
3802 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3803 {
3804 	struct tcp_sock *tp = tcp_sk(sk);
3805 
3806 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3807 		int mib_idx;
3808 
3809 		if (before(seq, tp->rcv_nxt))
3810 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3811 		else
3812 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3813 
3814 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3815 
3816 		tp->rx_opt.dsack = 1;
3817 		tp->duplicate_sack[0].start_seq = seq;
3818 		tp->duplicate_sack[0].end_seq = end_seq;
3819 	}
3820 }
3821 
3822 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3823 {
3824 	struct tcp_sock *tp = tcp_sk(sk);
3825 
3826 	if (!tp->rx_opt.dsack)
3827 		tcp_dsack_set(sk, seq, end_seq);
3828 	else
3829 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3830 }
3831 
3832 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3833 {
3834 	struct tcp_sock *tp = tcp_sk(sk);
3835 
3836 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3837 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3838 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3839 		tcp_enter_quickack_mode(sk);
3840 
3841 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3842 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3843 
3844 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3845 				end_seq = tp->rcv_nxt;
3846 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3847 		}
3848 	}
3849 
3850 	tcp_send_ack(sk);
3851 }
3852 
3853 /* These routines update the SACK block as out-of-order packets arrive or
3854  * in-order packets close up the sequence space.
3855  */
3856 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3857 {
3858 	int this_sack;
3859 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3860 	struct tcp_sack_block *swalk = sp + 1;
3861 
3862 	/* See if the recent change to the first SACK eats into
3863 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3864 	 */
3865 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3866 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3867 			int i;
3868 
3869 			/* Zap SWALK, by moving every further SACK up by one slot.
3870 			 * Decrease num_sacks.
3871 			 */
3872 			tp->rx_opt.num_sacks--;
3873 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3874 				sp[i] = sp[i + 1];
3875 			continue;
3876 		}
3877 		this_sack++, swalk++;
3878 	}
3879 }
3880 
3881 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3882 {
3883 	struct tcp_sock *tp = tcp_sk(sk);
3884 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3885 	int cur_sacks = tp->rx_opt.num_sacks;
3886 	int this_sack;
3887 
3888 	if (!cur_sacks)
3889 		goto new_sack;
3890 
3891 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3892 		if (tcp_sack_extend(sp, seq, end_seq)) {
3893 			/* Rotate this_sack to the first one. */
3894 			for (; this_sack > 0; this_sack--, sp--)
3895 				swap(*sp, *(sp - 1));
3896 			if (cur_sacks > 1)
3897 				tcp_sack_maybe_coalesce(tp);
3898 			return;
3899 		}
3900 	}
3901 
3902 	/* Could not find an adjacent existing SACK, build a new one,
3903 	 * put it at the front, and shift everyone else down.  We
3904 	 * always know there is at least one SACK present already here.
3905 	 *
3906 	 * If the sack array is full, forget about the last one.
3907 	 */
3908 	if (this_sack >= TCP_NUM_SACKS) {
3909 		this_sack--;
3910 		tp->rx_opt.num_sacks--;
3911 		sp--;
3912 	}
3913 	for (; this_sack > 0; this_sack--, sp--)
3914 		*sp = *(sp - 1);
3915 
3916 new_sack:
3917 	/* Build the new head SACK, and we're done. */
3918 	sp->start_seq = seq;
3919 	sp->end_seq = end_seq;
3920 	tp->rx_opt.num_sacks++;
3921 }
3922 
3923 /* RCV.NXT advances, some SACKs should be eaten. */
3924 
3925 static void tcp_sack_remove(struct tcp_sock *tp)
3926 {
3927 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3928 	int num_sacks = tp->rx_opt.num_sacks;
3929 	int this_sack;
3930 
3931 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3932 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3933 		tp->rx_opt.num_sacks = 0;
3934 		return;
3935 	}
3936 
3937 	for (this_sack = 0; this_sack < num_sacks;) {
3938 		/* Check if the start of the sack is covered by RCV.NXT. */
3939 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3940 			int i;
3941 
3942 			/* RCV.NXT must cover all the block! */
3943 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3944 
3945 			/* Zap this SACK, by moving forward any other SACKS. */
3946 			for (i=this_sack+1; i < num_sacks; i++)
3947 				tp->selective_acks[i-1] = tp->selective_acks[i];
3948 			num_sacks--;
3949 			continue;
3950 		}
3951 		this_sack++;
3952 		sp++;
3953 	}
3954 	tp->rx_opt.num_sacks = num_sacks;
3955 }
3956 
3957 /* This one checks to see if we can put data from the
3958  * out_of_order queue into the receive_queue.
3959  */
3960 static void tcp_ofo_queue(struct sock *sk)
3961 {
3962 	struct tcp_sock *tp = tcp_sk(sk);
3963 	__u32 dsack_high = tp->rcv_nxt;
3964 	struct sk_buff *skb;
3965 
3966 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3967 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3968 			break;
3969 
3970 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3971 			__u32 dsack = dsack_high;
3972 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3973 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3974 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3975 		}
3976 
3977 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3978 			SOCK_DEBUG(sk, "ofo packet was already received\n");
3979 			__skb_unlink(skb, &tp->out_of_order_queue);
3980 			__kfree_skb(skb);
3981 			continue;
3982 		}
3983 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3984 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3985 			   TCP_SKB_CB(skb)->end_seq);
3986 
3987 		__skb_unlink(skb, &tp->out_of_order_queue);
3988 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3989 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3990 		if (tcp_hdr(skb)->fin)
3991 			tcp_fin(sk);
3992 	}
3993 }
3994 
3995 static bool tcp_prune_ofo_queue(struct sock *sk);
3996 static int tcp_prune_queue(struct sock *sk);
3997 
3998 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
3999 				 unsigned int size)
4000 {
4001 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4002 	    !sk_rmem_schedule(sk, skb, size)) {
4003 
4004 		if (tcp_prune_queue(sk) < 0)
4005 			return -1;
4006 
4007 		if (!sk_rmem_schedule(sk, skb, size)) {
4008 			if (!tcp_prune_ofo_queue(sk))
4009 				return -1;
4010 
4011 			if (!sk_rmem_schedule(sk, skb, size))
4012 				return -1;
4013 		}
4014 	}
4015 	return 0;
4016 }
4017 
4018 /**
4019  * tcp_try_coalesce - try to merge skb to prior one
4020  * @sk: socket
4021  * @to: prior buffer
4022  * @from: buffer to add in queue
4023  * @fragstolen: pointer to boolean
4024  *
4025  * Before queueing skb @from after @to, try to merge them
4026  * to reduce overall memory use and queue lengths, if cost is small.
4027  * Packets in ofo or receive queues can stay a long time.
4028  * Better try to coalesce them right now to avoid future collapses.
4029  * Returns true if caller should free @from instead of queueing it
4030  */
4031 static bool tcp_try_coalesce(struct sock *sk,
4032 			     struct sk_buff *to,
4033 			     struct sk_buff *from,
4034 			     bool *fragstolen)
4035 {
4036 	int delta;
4037 
4038 	*fragstolen = false;
4039 
4040 	if (tcp_hdr(from)->fin)
4041 		return false;
4042 
4043 	/* Its possible this segment overlaps with prior segment in queue */
4044 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4045 		return false;
4046 
4047 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4048 		return false;
4049 
4050 	atomic_add(delta, &sk->sk_rmem_alloc);
4051 	sk_mem_charge(sk, delta);
4052 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4053 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4054 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4055 	return true;
4056 }
4057 
4058 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4059 {
4060 	struct tcp_sock *tp = tcp_sk(sk);
4061 	struct sk_buff *skb1;
4062 	u32 seq, end_seq;
4063 
4064 	TCP_ECN_check_ce(tp, skb);
4065 
4066 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4067 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4068 		__kfree_skb(skb);
4069 		return;
4070 	}
4071 
4072 	/* Disable header prediction. */
4073 	tp->pred_flags = 0;
4074 	inet_csk_schedule_ack(sk);
4075 
4076 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4077 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4078 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4079 
4080 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4081 	if (!skb1) {
4082 		/* Initial out of order segment, build 1 SACK. */
4083 		if (tcp_is_sack(tp)) {
4084 			tp->rx_opt.num_sacks = 1;
4085 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4086 			tp->selective_acks[0].end_seq =
4087 						TCP_SKB_CB(skb)->end_seq;
4088 		}
4089 		__skb_queue_head(&tp->out_of_order_queue, skb);
4090 		goto end;
4091 	}
4092 
4093 	seq = TCP_SKB_CB(skb)->seq;
4094 	end_seq = TCP_SKB_CB(skb)->end_seq;
4095 
4096 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4097 		bool fragstolen;
4098 
4099 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4100 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4101 		} else {
4102 			kfree_skb_partial(skb, fragstolen);
4103 			skb = NULL;
4104 		}
4105 
4106 		if (!tp->rx_opt.num_sacks ||
4107 		    tp->selective_acks[0].end_seq != seq)
4108 			goto add_sack;
4109 
4110 		/* Common case: data arrive in order after hole. */
4111 		tp->selective_acks[0].end_seq = end_seq;
4112 		goto end;
4113 	}
4114 
4115 	/* Find place to insert this segment. */
4116 	while (1) {
4117 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4118 			break;
4119 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4120 			skb1 = NULL;
4121 			break;
4122 		}
4123 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4124 	}
4125 
4126 	/* Do skb overlap to previous one? */
4127 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4128 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4129 			/* All the bits are present. Drop. */
4130 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4131 			__kfree_skb(skb);
4132 			skb = NULL;
4133 			tcp_dsack_set(sk, seq, end_seq);
4134 			goto add_sack;
4135 		}
4136 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4137 			/* Partial overlap. */
4138 			tcp_dsack_set(sk, seq,
4139 				      TCP_SKB_CB(skb1)->end_seq);
4140 		} else {
4141 			if (skb_queue_is_first(&tp->out_of_order_queue,
4142 					       skb1))
4143 				skb1 = NULL;
4144 			else
4145 				skb1 = skb_queue_prev(
4146 					&tp->out_of_order_queue,
4147 					skb1);
4148 		}
4149 	}
4150 	if (!skb1)
4151 		__skb_queue_head(&tp->out_of_order_queue, skb);
4152 	else
4153 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4154 
4155 	/* And clean segments covered by new one as whole. */
4156 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4157 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4158 
4159 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4160 			break;
4161 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4162 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4163 					 end_seq);
4164 			break;
4165 		}
4166 		__skb_unlink(skb1, &tp->out_of_order_queue);
4167 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4168 				 TCP_SKB_CB(skb1)->end_seq);
4169 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4170 		__kfree_skb(skb1);
4171 	}
4172 
4173 add_sack:
4174 	if (tcp_is_sack(tp))
4175 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4176 end:
4177 	if (skb)
4178 		skb_set_owner_r(skb, sk);
4179 }
4180 
4181 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4182 		  bool *fragstolen)
4183 {
4184 	int eaten;
4185 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4186 
4187 	__skb_pull(skb, hdrlen);
4188 	eaten = (tail &&
4189 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4190 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4191 	if (!eaten) {
4192 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4193 		skb_set_owner_r(skb, sk);
4194 	}
4195 	return eaten;
4196 }
4197 
4198 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4199 {
4200 	struct sk_buff *skb = NULL;
4201 	struct tcphdr *th;
4202 	bool fragstolen;
4203 
4204 	if (size == 0)
4205 		return 0;
4206 
4207 	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4208 	if (!skb)
4209 		goto err;
4210 
4211 	if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4212 		goto err_free;
4213 
4214 	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4215 	skb_reset_transport_header(skb);
4216 	memset(th, 0, sizeof(*th));
4217 
4218 	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4219 		goto err_free;
4220 
4221 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4222 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4223 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4224 
4225 	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4226 		WARN_ON_ONCE(fragstolen); /* should not happen */
4227 		__kfree_skb(skb);
4228 	}
4229 	return size;
4230 
4231 err_free:
4232 	kfree_skb(skb);
4233 err:
4234 	return -ENOMEM;
4235 }
4236 
4237 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4238 {
4239 	const struct tcphdr *th = tcp_hdr(skb);
4240 	struct tcp_sock *tp = tcp_sk(sk);
4241 	int eaten = -1;
4242 	bool fragstolen = false;
4243 
4244 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4245 		goto drop;
4246 
4247 	skb_dst_drop(skb);
4248 	__skb_pull(skb, th->doff * 4);
4249 
4250 	TCP_ECN_accept_cwr(tp, skb);
4251 
4252 	tp->rx_opt.dsack = 0;
4253 
4254 	/*  Queue data for delivery to the user.
4255 	 *  Packets in sequence go to the receive queue.
4256 	 *  Out of sequence packets to the out_of_order_queue.
4257 	 */
4258 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4259 		if (tcp_receive_window(tp) == 0)
4260 			goto out_of_window;
4261 
4262 		/* Ok. In sequence. In window. */
4263 		if (tp->ucopy.task == current &&
4264 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4265 		    sock_owned_by_user(sk) && !tp->urg_data) {
4266 			int chunk = min_t(unsigned int, skb->len,
4267 					  tp->ucopy.len);
4268 
4269 			__set_current_state(TASK_RUNNING);
4270 
4271 			local_bh_enable();
4272 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4273 				tp->ucopy.len -= chunk;
4274 				tp->copied_seq += chunk;
4275 				eaten = (chunk == skb->len);
4276 				tcp_rcv_space_adjust(sk);
4277 			}
4278 			local_bh_disable();
4279 		}
4280 
4281 		if (eaten <= 0) {
4282 queue_and_out:
4283 			if (eaten < 0 &&
4284 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4285 				goto drop;
4286 
4287 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4288 		}
4289 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4290 		if (skb->len)
4291 			tcp_event_data_recv(sk, skb);
4292 		if (th->fin)
4293 			tcp_fin(sk);
4294 
4295 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4296 			tcp_ofo_queue(sk);
4297 
4298 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4299 			 * gap in queue is filled.
4300 			 */
4301 			if (skb_queue_empty(&tp->out_of_order_queue))
4302 				inet_csk(sk)->icsk_ack.pingpong = 0;
4303 		}
4304 
4305 		if (tp->rx_opt.num_sacks)
4306 			tcp_sack_remove(tp);
4307 
4308 		tcp_fast_path_check(sk);
4309 
4310 		if (eaten > 0)
4311 			kfree_skb_partial(skb, fragstolen);
4312 		if (!sock_flag(sk, SOCK_DEAD))
4313 			sk->sk_data_ready(sk, 0);
4314 		return;
4315 	}
4316 
4317 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4318 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4319 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4320 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4321 
4322 out_of_window:
4323 		tcp_enter_quickack_mode(sk);
4324 		inet_csk_schedule_ack(sk);
4325 drop:
4326 		__kfree_skb(skb);
4327 		return;
4328 	}
4329 
4330 	/* Out of window. F.e. zero window probe. */
4331 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4332 		goto out_of_window;
4333 
4334 	tcp_enter_quickack_mode(sk);
4335 
4336 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4337 		/* Partial packet, seq < rcv_next < end_seq */
4338 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4339 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4340 			   TCP_SKB_CB(skb)->end_seq);
4341 
4342 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4343 
4344 		/* If window is closed, drop tail of packet. But after
4345 		 * remembering D-SACK for its head made in previous line.
4346 		 */
4347 		if (!tcp_receive_window(tp))
4348 			goto out_of_window;
4349 		goto queue_and_out;
4350 	}
4351 
4352 	tcp_data_queue_ofo(sk, skb);
4353 }
4354 
4355 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4356 					struct sk_buff_head *list)
4357 {
4358 	struct sk_buff *next = NULL;
4359 
4360 	if (!skb_queue_is_last(list, skb))
4361 		next = skb_queue_next(list, skb);
4362 
4363 	__skb_unlink(skb, list);
4364 	__kfree_skb(skb);
4365 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4366 
4367 	return next;
4368 }
4369 
4370 /* Collapse contiguous sequence of skbs head..tail with
4371  * sequence numbers start..end.
4372  *
4373  * If tail is NULL, this means until the end of the list.
4374  *
4375  * Segments with FIN/SYN are not collapsed (only because this
4376  * simplifies code)
4377  */
4378 static void
4379 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4380 	     struct sk_buff *head, struct sk_buff *tail,
4381 	     u32 start, u32 end)
4382 {
4383 	struct sk_buff *skb, *n;
4384 	bool end_of_skbs;
4385 
4386 	/* First, check that queue is collapsible and find
4387 	 * the point where collapsing can be useful. */
4388 	skb = head;
4389 restart:
4390 	end_of_skbs = true;
4391 	skb_queue_walk_from_safe(list, skb, n) {
4392 		if (skb == tail)
4393 			break;
4394 		/* No new bits? It is possible on ofo queue. */
4395 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4396 			skb = tcp_collapse_one(sk, skb, list);
4397 			if (!skb)
4398 				break;
4399 			goto restart;
4400 		}
4401 
4402 		/* The first skb to collapse is:
4403 		 * - not SYN/FIN and
4404 		 * - bloated or contains data before "start" or
4405 		 *   overlaps to the next one.
4406 		 */
4407 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4408 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4409 		     before(TCP_SKB_CB(skb)->seq, start))) {
4410 			end_of_skbs = false;
4411 			break;
4412 		}
4413 
4414 		if (!skb_queue_is_last(list, skb)) {
4415 			struct sk_buff *next = skb_queue_next(list, skb);
4416 			if (next != tail &&
4417 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4418 				end_of_skbs = false;
4419 				break;
4420 			}
4421 		}
4422 
4423 		/* Decided to skip this, advance start seq. */
4424 		start = TCP_SKB_CB(skb)->end_seq;
4425 	}
4426 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4427 		return;
4428 
4429 	while (before(start, end)) {
4430 		struct sk_buff *nskb;
4431 		unsigned int header = skb_headroom(skb);
4432 		int copy = SKB_MAX_ORDER(header, 0);
4433 
4434 		/* Too big header? This can happen with IPv6. */
4435 		if (copy < 0)
4436 			return;
4437 		if (end - start < copy)
4438 			copy = end - start;
4439 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4440 		if (!nskb)
4441 			return;
4442 
4443 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4444 		skb_set_network_header(nskb, (skb_network_header(skb) -
4445 					      skb->head));
4446 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4447 						skb->head));
4448 		skb_reserve(nskb, header);
4449 		memcpy(nskb->head, skb->head, header);
4450 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4451 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4452 		__skb_queue_before(list, skb, nskb);
4453 		skb_set_owner_r(nskb, sk);
4454 
4455 		/* Copy data, releasing collapsed skbs. */
4456 		while (copy > 0) {
4457 			int offset = start - TCP_SKB_CB(skb)->seq;
4458 			int size = TCP_SKB_CB(skb)->end_seq - start;
4459 
4460 			BUG_ON(offset < 0);
4461 			if (size > 0) {
4462 				size = min(copy, size);
4463 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4464 					BUG();
4465 				TCP_SKB_CB(nskb)->end_seq += size;
4466 				copy -= size;
4467 				start += size;
4468 			}
4469 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4470 				skb = tcp_collapse_one(sk, skb, list);
4471 				if (!skb ||
4472 				    skb == tail ||
4473 				    tcp_hdr(skb)->syn ||
4474 				    tcp_hdr(skb)->fin)
4475 					return;
4476 			}
4477 		}
4478 	}
4479 }
4480 
4481 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4482  * and tcp_collapse() them until all the queue is collapsed.
4483  */
4484 static void tcp_collapse_ofo_queue(struct sock *sk)
4485 {
4486 	struct tcp_sock *tp = tcp_sk(sk);
4487 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4488 	struct sk_buff *head;
4489 	u32 start, end;
4490 
4491 	if (skb == NULL)
4492 		return;
4493 
4494 	start = TCP_SKB_CB(skb)->seq;
4495 	end = TCP_SKB_CB(skb)->end_seq;
4496 	head = skb;
4497 
4498 	for (;;) {
4499 		struct sk_buff *next = NULL;
4500 
4501 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4502 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4503 		skb = next;
4504 
4505 		/* Segment is terminated when we see gap or when
4506 		 * we are at the end of all the queue. */
4507 		if (!skb ||
4508 		    after(TCP_SKB_CB(skb)->seq, end) ||
4509 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4510 			tcp_collapse(sk, &tp->out_of_order_queue,
4511 				     head, skb, start, end);
4512 			head = skb;
4513 			if (!skb)
4514 				break;
4515 			/* Start new segment */
4516 			start = TCP_SKB_CB(skb)->seq;
4517 			end = TCP_SKB_CB(skb)->end_seq;
4518 		} else {
4519 			if (before(TCP_SKB_CB(skb)->seq, start))
4520 				start = TCP_SKB_CB(skb)->seq;
4521 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4522 				end = TCP_SKB_CB(skb)->end_seq;
4523 		}
4524 	}
4525 }
4526 
4527 /*
4528  * Purge the out-of-order queue.
4529  * Return true if queue was pruned.
4530  */
4531 static bool tcp_prune_ofo_queue(struct sock *sk)
4532 {
4533 	struct tcp_sock *tp = tcp_sk(sk);
4534 	bool res = false;
4535 
4536 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4537 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4538 		__skb_queue_purge(&tp->out_of_order_queue);
4539 
4540 		/* Reset SACK state.  A conforming SACK implementation will
4541 		 * do the same at a timeout based retransmit.  When a connection
4542 		 * is in a sad state like this, we care only about integrity
4543 		 * of the connection not performance.
4544 		 */
4545 		if (tp->rx_opt.sack_ok)
4546 			tcp_sack_reset(&tp->rx_opt);
4547 		sk_mem_reclaim(sk);
4548 		res = true;
4549 	}
4550 	return res;
4551 }
4552 
4553 /* Reduce allocated memory if we can, trying to get
4554  * the socket within its memory limits again.
4555  *
4556  * Return less than zero if we should start dropping frames
4557  * until the socket owning process reads some of the data
4558  * to stabilize the situation.
4559  */
4560 static int tcp_prune_queue(struct sock *sk)
4561 {
4562 	struct tcp_sock *tp = tcp_sk(sk);
4563 
4564 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4565 
4566 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4567 
4568 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4569 		tcp_clamp_window(sk);
4570 	else if (sk_under_memory_pressure(sk))
4571 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4572 
4573 	tcp_collapse_ofo_queue(sk);
4574 	if (!skb_queue_empty(&sk->sk_receive_queue))
4575 		tcp_collapse(sk, &sk->sk_receive_queue,
4576 			     skb_peek(&sk->sk_receive_queue),
4577 			     NULL,
4578 			     tp->copied_seq, tp->rcv_nxt);
4579 	sk_mem_reclaim(sk);
4580 
4581 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4582 		return 0;
4583 
4584 	/* Collapsing did not help, destructive actions follow.
4585 	 * This must not ever occur. */
4586 
4587 	tcp_prune_ofo_queue(sk);
4588 
4589 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4590 		return 0;
4591 
4592 	/* If we are really being abused, tell the caller to silently
4593 	 * drop receive data on the floor.  It will get retransmitted
4594 	 * and hopefully then we'll have sufficient space.
4595 	 */
4596 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4597 
4598 	/* Massive buffer overcommit. */
4599 	tp->pred_flags = 0;
4600 	return -1;
4601 }
4602 
4603 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4604  * As additional protections, we do not touch cwnd in retransmission phases,
4605  * and if application hit its sndbuf limit recently.
4606  */
4607 void tcp_cwnd_application_limited(struct sock *sk)
4608 {
4609 	struct tcp_sock *tp = tcp_sk(sk);
4610 
4611 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4612 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4613 		/* Limited by application or receiver window. */
4614 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4615 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4616 		if (win_used < tp->snd_cwnd) {
4617 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4618 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4619 		}
4620 		tp->snd_cwnd_used = 0;
4621 	}
4622 	tp->snd_cwnd_stamp = tcp_time_stamp;
4623 }
4624 
4625 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4626 {
4627 	const struct tcp_sock *tp = tcp_sk(sk);
4628 
4629 	/* If the user specified a specific send buffer setting, do
4630 	 * not modify it.
4631 	 */
4632 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4633 		return false;
4634 
4635 	/* If we are under global TCP memory pressure, do not expand.  */
4636 	if (sk_under_memory_pressure(sk))
4637 		return false;
4638 
4639 	/* If we are under soft global TCP memory pressure, do not expand.  */
4640 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4641 		return false;
4642 
4643 	/* If we filled the congestion window, do not expand.  */
4644 	if (tp->packets_out >= tp->snd_cwnd)
4645 		return false;
4646 
4647 	return true;
4648 }
4649 
4650 /* When incoming ACK allowed to free some skb from write_queue,
4651  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4652  * on the exit from tcp input handler.
4653  *
4654  * PROBLEM: sndbuf expansion does not work well with largesend.
4655  */
4656 static void tcp_new_space(struct sock *sk)
4657 {
4658 	struct tcp_sock *tp = tcp_sk(sk);
4659 
4660 	if (tcp_should_expand_sndbuf(sk)) {
4661 		int sndmem = SKB_TRUESIZE(max_t(u32,
4662 						tp->rx_opt.mss_clamp,
4663 						tp->mss_cache) +
4664 					  MAX_TCP_HEADER);
4665 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4666 				     tp->reordering + 1);
4667 		sndmem *= 2 * demanded;
4668 		if (sndmem > sk->sk_sndbuf)
4669 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4670 		tp->snd_cwnd_stamp = tcp_time_stamp;
4671 	}
4672 
4673 	sk->sk_write_space(sk);
4674 }
4675 
4676 static void tcp_check_space(struct sock *sk)
4677 {
4678 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4679 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4680 		if (sk->sk_socket &&
4681 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4682 			tcp_new_space(sk);
4683 	}
4684 }
4685 
4686 static inline void tcp_data_snd_check(struct sock *sk)
4687 {
4688 	tcp_push_pending_frames(sk);
4689 	tcp_check_space(sk);
4690 }
4691 
4692 /*
4693  * Check if sending an ack is needed.
4694  */
4695 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4696 {
4697 	struct tcp_sock *tp = tcp_sk(sk);
4698 
4699 	    /* More than one full frame received... */
4700 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4701 	     /* ... and right edge of window advances far enough.
4702 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4703 	      */
4704 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4705 	    /* We ACK each frame or... */
4706 	    tcp_in_quickack_mode(sk) ||
4707 	    /* We have out of order data. */
4708 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4709 		/* Then ack it now */
4710 		tcp_send_ack(sk);
4711 	} else {
4712 		/* Else, send delayed ack. */
4713 		tcp_send_delayed_ack(sk);
4714 	}
4715 }
4716 
4717 static inline void tcp_ack_snd_check(struct sock *sk)
4718 {
4719 	if (!inet_csk_ack_scheduled(sk)) {
4720 		/* We sent a data segment already. */
4721 		return;
4722 	}
4723 	__tcp_ack_snd_check(sk, 1);
4724 }
4725 
4726 /*
4727  *	This routine is only called when we have urgent data
4728  *	signaled. Its the 'slow' part of tcp_urg. It could be
4729  *	moved inline now as tcp_urg is only called from one
4730  *	place. We handle URGent data wrong. We have to - as
4731  *	BSD still doesn't use the correction from RFC961.
4732  *	For 1003.1g we should support a new option TCP_STDURG to permit
4733  *	either form (or just set the sysctl tcp_stdurg).
4734  */
4735 
4736 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4737 {
4738 	struct tcp_sock *tp = tcp_sk(sk);
4739 	u32 ptr = ntohs(th->urg_ptr);
4740 
4741 	if (ptr && !sysctl_tcp_stdurg)
4742 		ptr--;
4743 	ptr += ntohl(th->seq);
4744 
4745 	/* Ignore urgent data that we've already seen and read. */
4746 	if (after(tp->copied_seq, ptr))
4747 		return;
4748 
4749 	/* Do not replay urg ptr.
4750 	 *
4751 	 * NOTE: interesting situation not covered by specs.
4752 	 * Misbehaving sender may send urg ptr, pointing to segment,
4753 	 * which we already have in ofo queue. We are not able to fetch
4754 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4755 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4756 	 * situations. But it is worth to think about possibility of some
4757 	 * DoSes using some hypothetical application level deadlock.
4758 	 */
4759 	if (before(ptr, tp->rcv_nxt))
4760 		return;
4761 
4762 	/* Do we already have a newer (or duplicate) urgent pointer? */
4763 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4764 		return;
4765 
4766 	/* Tell the world about our new urgent pointer. */
4767 	sk_send_sigurg(sk);
4768 
4769 	/* We may be adding urgent data when the last byte read was
4770 	 * urgent. To do this requires some care. We cannot just ignore
4771 	 * tp->copied_seq since we would read the last urgent byte again
4772 	 * as data, nor can we alter copied_seq until this data arrives
4773 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4774 	 *
4775 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4776 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4777 	 * and expect that both A and B disappear from stream. This is _wrong_.
4778 	 * Though this happens in BSD with high probability, this is occasional.
4779 	 * Any application relying on this is buggy. Note also, that fix "works"
4780 	 * only in this artificial test. Insert some normal data between A and B and we will
4781 	 * decline of BSD again. Verdict: it is better to remove to trap
4782 	 * buggy users.
4783 	 */
4784 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4785 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4786 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4787 		tp->copied_seq++;
4788 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4789 			__skb_unlink(skb, &sk->sk_receive_queue);
4790 			__kfree_skb(skb);
4791 		}
4792 	}
4793 
4794 	tp->urg_data = TCP_URG_NOTYET;
4795 	tp->urg_seq = ptr;
4796 
4797 	/* Disable header prediction. */
4798 	tp->pred_flags = 0;
4799 }
4800 
4801 /* This is the 'fast' part of urgent handling. */
4802 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4803 {
4804 	struct tcp_sock *tp = tcp_sk(sk);
4805 
4806 	/* Check if we get a new urgent pointer - normally not. */
4807 	if (th->urg)
4808 		tcp_check_urg(sk, th);
4809 
4810 	/* Do we wait for any urgent data? - normally not... */
4811 	if (tp->urg_data == TCP_URG_NOTYET) {
4812 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4813 			  th->syn;
4814 
4815 		/* Is the urgent pointer pointing into this packet? */
4816 		if (ptr < skb->len) {
4817 			u8 tmp;
4818 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4819 				BUG();
4820 			tp->urg_data = TCP_URG_VALID | tmp;
4821 			if (!sock_flag(sk, SOCK_DEAD))
4822 				sk->sk_data_ready(sk, 0);
4823 		}
4824 	}
4825 }
4826 
4827 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4828 {
4829 	struct tcp_sock *tp = tcp_sk(sk);
4830 	int chunk = skb->len - hlen;
4831 	int err;
4832 
4833 	local_bh_enable();
4834 	if (skb_csum_unnecessary(skb))
4835 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4836 	else
4837 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4838 						       tp->ucopy.iov);
4839 
4840 	if (!err) {
4841 		tp->ucopy.len -= chunk;
4842 		tp->copied_seq += chunk;
4843 		tcp_rcv_space_adjust(sk);
4844 	}
4845 
4846 	local_bh_disable();
4847 	return err;
4848 }
4849 
4850 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4851 					    struct sk_buff *skb)
4852 {
4853 	__sum16 result;
4854 
4855 	if (sock_owned_by_user(sk)) {
4856 		local_bh_enable();
4857 		result = __tcp_checksum_complete(skb);
4858 		local_bh_disable();
4859 	} else {
4860 		result = __tcp_checksum_complete(skb);
4861 	}
4862 	return result;
4863 }
4864 
4865 static inline bool tcp_checksum_complete_user(struct sock *sk,
4866 					     struct sk_buff *skb)
4867 {
4868 	return !skb_csum_unnecessary(skb) &&
4869 	       __tcp_checksum_complete_user(sk, skb);
4870 }
4871 
4872 #ifdef CONFIG_NET_DMA
4873 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4874 				  int hlen)
4875 {
4876 	struct tcp_sock *tp = tcp_sk(sk);
4877 	int chunk = skb->len - hlen;
4878 	int dma_cookie;
4879 	bool copied_early = false;
4880 
4881 	if (tp->ucopy.wakeup)
4882 		return false;
4883 
4884 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4885 		tp->ucopy.dma_chan = net_dma_find_channel();
4886 
4887 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4888 
4889 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4890 							 skb, hlen,
4891 							 tp->ucopy.iov, chunk,
4892 							 tp->ucopy.pinned_list);
4893 
4894 		if (dma_cookie < 0)
4895 			goto out;
4896 
4897 		tp->ucopy.dma_cookie = dma_cookie;
4898 		copied_early = true;
4899 
4900 		tp->ucopy.len -= chunk;
4901 		tp->copied_seq += chunk;
4902 		tcp_rcv_space_adjust(sk);
4903 
4904 		if ((tp->ucopy.len == 0) ||
4905 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4906 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4907 			tp->ucopy.wakeup = 1;
4908 			sk->sk_data_ready(sk, 0);
4909 		}
4910 	} else if (chunk > 0) {
4911 		tp->ucopy.wakeup = 1;
4912 		sk->sk_data_ready(sk, 0);
4913 	}
4914 out:
4915 	return copied_early;
4916 }
4917 #endif /* CONFIG_NET_DMA */
4918 
4919 /* Does PAWS and seqno based validation of an incoming segment, flags will
4920  * play significant role here.
4921  */
4922 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4923 				  const struct tcphdr *th, int syn_inerr)
4924 {
4925 	struct tcp_sock *tp = tcp_sk(sk);
4926 
4927 	/* RFC1323: H1. Apply PAWS check first. */
4928 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4929 	    tcp_paws_discard(sk, skb)) {
4930 		if (!th->rst) {
4931 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4932 			tcp_send_dupack(sk, skb);
4933 			goto discard;
4934 		}
4935 		/* Reset is accepted even if it did not pass PAWS. */
4936 	}
4937 
4938 	/* Step 1: check sequence number */
4939 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4940 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4941 		 * (RST) segments are validated by checking their SEQ-fields."
4942 		 * And page 69: "If an incoming segment is not acceptable,
4943 		 * an acknowledgment should be sent in reply (unless the RST
4944 		 * bit is set, if so drop the segment and return)".
4945 		 */
4946 		if (!th->rst) {
4947 			if (th->syn)
4948 				goto syn_challenge;
4949 			tcp_send_dupack(sk, skb);
4950 		}
4951 		goto discard;
4952 	}
4953 
4954 	/* Step 2: check RST bit */
4955 	if (th->rst) {
4956 		/* RFC 5961 3.2 :
4957 		 * If sequence number exactly matches RCV.NXT, then
4958 		 *     RESET the connection
4959 		 * else
4960 		 *     Send a challenge ACK
4961 		 */
4962 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
4963 			tcp_reset(sk);
4964 		else
4965 			tcp_send_challenge_ack(sk);
4966 		goto discard;
4967 	}
4968 
4969 	/* step 3: check security and precedence [ignored] */
4970 
4971 	/* step 4: Check for a SYN
4972 	 * RFC 5691 4.2 : Send a challenge ack
4973 	 */
4974 	if (th->syn) {
4975 syn_challenge:
4976 		if (syn_inerr)
4977 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4978 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
4979 		tcp_send_challenge_ack(sk);
4980 		goto discard;
4981 	}
4982 
4983 	return true;
4984 
4985 discard:
4986 	__kfree_skb(skb);
4987 	return false;
4988 }
4989 
4990 /*
4991  *	TCP receive function for the ESTABLISHED state.
4992  *
4993  *	It is split into a fast path and a slow path. The fast path is
4994  * 	disabled when:
4995  *	- A zero window was announced from us - zero window probing
4996  *        is only handled properly in the slow path.
4997  *	- Out of order segments arrived.
4998  *	- Urgent data is expected.
4999  *	- There is no buffer space left
5000  *	- Unexpected TCP flags/window values/header lengths are received
5001  *	  (detected by checking the TCP header against pred_flags)
5002  *	- Data is sent in both directions. Fast path only supports pure senders
5003  *	  or pure receivers (this means either the sequence number or the ack
5004  *	  value must stay constant)
5005  *	- Unexpected TCP option.
5006  *
5007  *	When these conditions are not satisfied it drops into a standard
5008  *	receive procedure patterned after RFC793 to handle all cases.
5009  *	The first three cases are guaranteed by proper pred_flags setting,
5010  *	the rest is checked inline. Fast processing is turned on in
5011  *	tcp_data_queue when everything is OK.
5012  */
5013 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5014 			const struct tcphdr *th, unsigned int len)
5015 {
5016 	struct tcp_sock *tp = tcp_sk(sk);
5017 
5018 	if (unlikely(sk->sk_rx_dst == NULL))
5019 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5020 	/*
5021 	 *	Header prediction.
5022 	 *	The code loosely follows the one in the famous
5023 	 *	"30 instruction TCP receive" Van Jacobson mail.
5024 	 *
5025 	 *	Van's trick is to deposit buffers into socket queue
5026 	 *	on a device interrupt, to call tcp_recv function
5027 	 *	on the receive process context and checksum and copy
5028 	 *	the buffer to user space. smart...
5029 	 *
5030 	 *	Our current scheme is not silly either but we take the
5031 	 *	extra cost of the net_bh soft interrupt processing...
5032 	 *	We do checksum and copy also but from device to kernel.
5033 	 */
5034 
5035 	tp->rx_opt.saw_tstamp = 0;
5036 
5037 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5038 	 *	if header_prediction is to be made
5039 	 *	'S' will always be tp->tcp_header_len >> 2
5040 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5041 	 *  turn it off	(when there are holes in the receive
5042 	 *	 space for instance)
5043 	 *	PSH flag is ignored.
5044 	 */
5045 
5046 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5047 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5048 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5049 		int tcp_header_len = tp->tcp_header_len;
5050 
5051 		/* Timestamp header prediction: tcp_header_len
5052 		 * is automatically equal to th->doff*4 due to pred_flags
5053 		 * match.
5054 		 */
5055 
5056 		/* Check timestamp */
5057 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5058 			/* No? Slow path! */
5059 			if (!tcp_parse_aligned_timestamp(tp, th))
5060 				goto slow_path;
5061 
5062 			/* If PAWS failed, check it more carefully in slow path */
5063 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5064 				goto slow_path;
5065 
5066 			/* DO NOT update ts_recent here, if checksum fails
5067 			 * and timestamp was corrupted part, it will result
5068 			 * in a hung connection since we will drop all
5069 			 * future packets due to the PAWS test.
5070 			 */
5071 		}
5072 
5073 		if (len <= tcp_header_len) {
5074 			/* Bulk data transfer: sender */
5075 			if (len == tcp_header_len) {
5076 				/* Predicted packet is in window by definition.
5077 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5078 				 * Hence, check seq<=rcv_wup reduces to:
5079 				 */
5080 				if (tcp_header_len ==
5081 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5082 				    tp->rcv_nxt == tp->rcv_wup)
5083 					tcp_store_ts_recent(tp);
5084 
5085 				/* We know that such packets are checksummed
5086 				 * on entry.
5087 				 */
5088 				tcp_ack(sk, skb, 0);
5089 				__kfree_skb(skb);
5090 				tcp_data_snd_check(sk);
5091 				return 0;
5092 			} else { /* Header too small */
5093 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5094 				goto discard;
5095 			}
5096 		} else {
5097 			int eaten = 0;
5098 			int copied_early = 0;
5099 			bool fragstolen = false;
5100 
5101 			if (tp->copied_seq == tp->rcv_nxt &&
5102 			    len - tcp_header_len <= tp->ucopy.len) {
5103 #ifdef CONFIG_NET_DMA
5104 				if (tp->ucopy.task == current &&
5105 				    sock_owned_by_user(sk) &&
5106 				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5107 					copied_early = 1;
5108 					eaten = 1;
5109 				}
5110 #endif
5111 				if (tp->ucopy.task == current &&
5112 				    sock_owned_by_user(sk) && !copied_early) {
5113 					__set_current_state(TASK_RUNNING);
5114 
5115 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5116 						eaten = 1;
5117 				}
5118 				if (eaten) {
5119 					/* Predicted packet is in window by definition.
5120 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5121 					 * Hence, check seq<=rcv_wup reduces to:
5122 					 */
5123 					if (tcp_header_len ==
5124 					    (sizeof(struct tcphdr) +
5125 					     TCPOLEN_TSTAMP_ALIGNED) &&
5126 					    tp->rcv_nxt == tp->rcv_wup)
5127 						tcp_store_ts_recent(tp);
5128 
5129 					tcp_rcv_rtt_measure_ts(sk, skb);
5130 
5131 					__skb_pull(skb, tcp_header_len);
5132 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5133 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5134 				}
5135 				if (copied_early)
5136 					tcp_cleanup_rbuf(sk, skb->len);
5137 			}
5138 			if (!eaten) {
5139 				if (tcp_checksum_complete_user(sk, skb))
5140 					goto csum_error;
5141 
5142 				if ((int)skb->truesize > sk->sk_forward_alloc)
5143 					goto step5;
5144 
5145 				/* Predicted packet is in window by definition.
5146 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5147 				 * Hence, check seq<=rcv_wup reduces to:
5148 				 */
5149 				if (tcp_header_len ==
5150 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5151 				    tp->rcv_nxt == tp->rcv_wup)
5152 					tcp_store_ts_recent(tp);
5153 
5154 				tcp_rcv_rtt_measure_ts(sk, skb);
5155 
5156 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5157 
5158 				/* Bulk data transfer: receiver */
5159 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5160 						      &fragstolen);
5161 			}
5162 
5163 			tcp_event_data_recv(sk, skb);
5164 
5165 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5166 				/* Well, only one small jumplet in fast path... */
5167 				tcp_ack(sk, skb, FLAG_DATA);
5168 				tcp_data_snd_check(sk);
5169 				if (!inet_csk_ack_scheduled(sk))
5170 					goto no_ack;
5171 			}
5172 
5173 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5174 				__tcp_ack_snd_check(sk, 0);
5175 no_ack:
5176 #ifdef CONFIG_NET_DMA
5177 			if (copied_early)
5178 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5179 			else
5180 #endif
5181 			if (eaten)
5182 				kfree_skb_partial(skb, fragstolen);
5183 			sk->sk_data_ready(sk, 0);
5184 			return 0;
5185 		}
5186 	}
5187 
5188 slow_path:
5189 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5190 		goto csum_error;
5191 
5192 	if (!th->ack && !th->rst)
5193 		goto discard;
5194 
5195 	/*
5196 	 *	Standard slow path.
5197 	 */
5198 
5199 	if (!tcp_validate_incoming(sk, skb, th, 1))
5200 		return 0;
5201 
5202 step5:
5203 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5204 		goto discard;
5205 
5206 	tcp_rcv_rtt_measure_ts(sk, skb);
5207 
5208 	/* Process urgent data. */
5209 	tcp_urg(sk, skb, th);
5210 
5211 	/* step 7: process the segment text */
5212 	tcp_data_queue(sk, skb);
5213 
5214 	tcp_data_snd_check(sk);
5215 	tcp_ack_snd_check(sk);
5216 	return 0;
5217 
5218 csum_error:
5219 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5220 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5221 
5222 discard:
5223 	__kfree_skb(skb);
5224 	return 0;
5225 }
5226 EXPORT_SYMBOL(tcp_rcv_established);
5227 
5228 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5229 {
5230 	struct tcp_sock *tp = tcp_sk(sk);
5231 	struct inet_connection_sock *icsk = inet_csk(sk);
5232 
5233 	tcp_set_state(sk, TCP_ESTABLISHED);
5234 
5235 	if (skb != NULL) {
5236 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5237 		security_inet_conn_established(sk, skb);
5238 	}
5239 
5240 	/* Make sure socket is routed, for correct metrics.  */
5241 	icsk->icsk_af_ops->rebuild_header(sk);
5242 
5243 	tcp_init_metrics(sk);
5244 
5245 	tcp_init_congestion_control(sk);
5246 
5247 	/* Prevent spurious tcp_cwnd_restart() on first data
5248 	 * packet.
5249 	 */
5250 	tp->lsndtime = tcp_time_stamp;
5251 
5252 	tcp_init_buffer_space(sk);
5253 
5254 	if (sock_flag(sk, SOCK_KEEPOPEN))
5255 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5256 
5257 	if (!tp->rx_opt.snd_wscale)
5258 		__tcp_fast_path_on(tp, tp->snd_wnd);
5259 	else
5260 		tp->pred_flags = 0;
5261 
5262 	if (!sock_flag(sk, SOCK_DEAD)) {
5263 		sk->sk_state_change(sk);
5264 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5265 	}
5266 }
5267 
5268 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5269 				    struct tcp_fastopen_cookie *cookie)
5270 {
5271 	struct tcp_sock *tp = tcp_sk(sk);
5272 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5273 	u16 mss = tp->rx_opt.mss_clamp;
5274 	bool syn_drop;
5275 
5276 	if (mss == tp->rx_opt.user_mss) {
5277 		struct tcp_options_received opt;
5278 
5279 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5280 		tcp_clear_options(&opt);
5281 		opt.user_mss = opt.mss_clamp = 0;
5282 		tcp_parse_options(synack, &opt, 0, NULL);
5283 		mss = opt.mss_clamp;
5284 	}
5285 
5286 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5287 		cookie->len = -1;
5288 
5289 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5290 	 * the remote receives only the retransmitted (regular) SYNs: either
5291 	 * the original SYN-data or the corresponding SYN-ACK is lost.
5292 	 */
5293 	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5294 
5295 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5296 
5297 	if (data) { /* Retransmit unacked data in SYN */
5298 		tcp_for_write_queue_from(data, sk) {
5299 			if (data == tcp_send_head(sk) ||
5300 			    __tcp_retransmit_skb(sk, data))
5301 				break;
5302 		}
5303 		tcp_rearm_rto(sk);
5304 		return true;
5305 	}
5306 	tp->syn_data_acked = tp->syn_data;
5307 	return false;
5308 }
5309 
5310 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5311 					 const struct tcphdr *th, unsigned int len)
5312 {
5313 	struct inet_connection_sock *icsk = inet_csk(sk);
5314 	struct tcp_sock *tp = tcp_sk(sk);
5315 	struct tcp_fastopen_cookie foc = { .len = -1 };
5316 	int saved_clamp = tp->rx_opt.mss_clamp;
5317 
5318 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5319 	if (tp->rx_opt.saw_tstamp)
5320 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5321 
5322 	if (th->ack) {
5323 		/* rfc793:
5324 		 * "If the state is SYN-SENT then
5325 		 *    first check the ACK bit
5326 		 *      If the ACK bit is set
5327 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5328 		 *        a reset (unless the RST bit is set, if so drop
5329 		 *        the segment and return)"
5330 		 */
5331 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5332 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5333 			goto reset_and_undo;
5334 
5335 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5336 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5337 			     tcp_time_stamp)) {
5338 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5339 			goto reset_and_undo;
5340 		}
5341 
5342 		/* Now ACK is acceptable.
5343 		 *
5344 		 * "If the RST bit is set
5345 		 *    If the ACK was acceptable then signal the user "error:
5346 		 *    connection reset", drop the segment, enter CLOSED state,
5347 		 *    delete TCB, and return."
5348 		 */
5349 
5350 		if (th->rst) {
5351 			tcp_reset(sk);
5352 			goto discard;
5353 		}
5354 
5355 		/* rfc793:
5356 		 *   "fifth, if neither of the SYN or RST bits is set then
5357 		 *    drop the segment and return."
5358 		 *
5359 		 *    See note below!
5360 		 *                                        --ANK(990513)
5361 		 */
5362 		if (!th->syn)
5363 			goto discard_and_undo;
5364 
5365 		/* rfc793:
5366 		 *   "If the SYN bit is on ...
5367 		 *    are acceptable then ...
5368 		 *    (our SYN has been ACKed), change the connection
5369 		 *    state to ESTABLISHED..."
5370 		 */
5371 
5372 		TCP_ECN_rcv_synack(tp, th);
5373 
5374 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5375 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5376 
5377 		/* Ok.. it's good. Set up sequence numbers and
5378 		 * move to established.
5379 		 */
5380 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5381 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5382 
5383 		/* RFC1323: The window in SYN & SYN/ACK segments is
5384 		 * never scaled.
5385 		 */
5386 		tp->snd_wnd = ntohs(th->window);
5387 
5388 		if (!tp->rx_opt.wscale_ok) {
5389 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5390 			tp->window_clamp = min(tp->window_clamp, 65535U);
5391 		}
5392 
5393 		if (tp->rx_opt.saw_tstamp) {
5394 			tp->rx_opt.tstamp_ok	   = 1;
5395 			tp->tcp_header_len =
5396 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5397 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5398 			tcp_store_ts_recent(tp);
5399 		} else {
5400 			tp->tcp_header_len = sizeof(struct tcphdr);
5401 		}
5402 
5403 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5404 			tcp_enable_fack(tp);
5405 
5406 		tcp_mtup_init(sk);
5407 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5408 		tcp_initialize_rcv_mss(sk);
5409 
5410 		/* Remember, tcp_poll() does not lock socket!
5411 		 * Change state from SYN-SENT only after copied_seq
5412 		 * is initialized. */
5413 		tp->copied_seq = tp->rcv_nxt;
5414 
5415 		smp_mb();
5416 
5417 		tcp_finish_connect(sk, skb);
5418 
5419 		if ((tp->syn_fastopen || tp->syn_data) &&
5420 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5421 			return -1;
5422 
5423 		if (sk->sk_write_pending ||
5424 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5425 		    icsk->icsk_ack.pingpong) {
5426 			/* Save one ACK. Data will be ready after
5427 			 * several ticks, if write_pending is set.
5428 			 *
5429 			 * It may be deleted, but with this feature tcpdumps
5430 			 * look so _wonderfully_ clever, that I was not able
5431 			 * to stand against the temptation 8)     --ANK
5432 			 */
5433 			inet_csk_schedule_ack(sk);
5434 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5435 			tcp_enter_quickack_mode(sk);
5436 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5437 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5438 
5439 discard:
5440 			__kfree_skb(skb);
5441 			return 0;
5442 		} else {
5443 			tcp_send_ack(sk);
5444 		}
5445 		return -1;
5446 	}
5447 
5448 	/* No ACK in the segment */
5449 
5450 	if (th->rst) {
5451 		/* rfc793:
5452 		 * "If the RST bit is set
5453 		 *
5454 		 *      Otherwise (no ACK) drop the segment and return."
5455 		 */
5456 
5457 		goto discard_and_undo;
5458 	}
5459 
5460 	/* PAWS check. */
5461 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5462 	    tcp_paws_reject(&tp->rx_opt, 0))
5463 		goto discard_and_undo;
5464 
5465 	if (th->syn) {
5466 		/* We see SYN without ACK. It is attempt of
5467 		 * simultaneous connect with crossed SYNs.
5468 		 * Particularly, it can be connect to self.
5469 		 */
5470 		tcp_set_state(sk, TCP_SYN_RECV);
5471 
5472 		if (tp->rx_opt.saw_tstamp) {
5473 			tp->rx_opt.tstamp_ok = 1;
5474 			tcp_store_ts_recent(tp);
5475 			tp->tcp_header_len =
5476 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5477 		} else {
5478 			tp->tcp_header_len = sizeof(struct tcphdr);
5479 		}
5480 
5481 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5482 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5483 
5484 		/* RFC1323: The window in SYN & SYN/ACK segments is
5485 		 * never scaled.
5486 		 */
5487 		tp->snd_wnd    = ntohs(th->window);
5488 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5489 		tp->max_window = tp->snd_wnd;
5490 
5491 		TCP_ECN_rcv_syn(tp, th);
5492 
5493 		tcp_mtup_init(sk);
5494 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5495 		tcp_initialize_rcv_mss(sk);
5496 
5497 		tcp_send_synack(sk);
5498 #if 0
5499 		/* Note, we could accept data and URG from this segment.
5500 		 * There are no obstacles to make this (except that we must
5501 		 * either change tcp_recvmsg() to prevent it from returning data
5502 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5503 		 *
5504 		 * However, if we ignore data in ACKless segments sometimes,
5505 		 * we have no reasons to accept it sometimes.
5506 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5507 		 * is not flawless. So, discard packet for sanity.
5508 		 * Uncomment this return to process the data.
5509 		 */
5510 		return -1;
5511 #else
5512 		goto discard;
5513 #endif
5514 	}
5515 	/* "fifth, if neither of the SYN or RST bits is set then
5516 	 * drop the segment and return."
5517 	 */
5518 
5519 discard_and_undo:
5520 	tcp_clear_options(&tp->rx_opt);
5521 	tp->rx_opt.mss_clamp = saved_clamp;
5522 	goto discard;
5523 
5524 reset_and_undo:
5525 	tcp_clear_options(&tp->rx_opt);
5526 	tp->rx_opt.mss_clamp = saved_clamp;
5527 	return 1;
5528 }
5529 
5530 /*
5531  *	This function implements the receiving procedure of RFC 793 for
5532  *	all states except ESTABLISHED and TIME_WAIT.
5533  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5534  *	address independent.
5535  */
5536 
5537 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5538 			  const struct tcphdr *th, unsigned int len)
5539 {
5540 	struct tcp_sock *tp = tcp_sk(sk);
5541 	struct inet_connection_sock *icsk = inet_csk(sk);
5542 	struct request_sock *req;
5543 	int queued = 0;
5544 	bool acceptable;
5545 
5546 	tp->rx_opt.saw_tstamp = 0;
5547 
5548 	switch (sk->sk_state) {
5549 	case TCP_CLOSE:
5550 		goto discard;
5551 
5552 	case TCP_LISTEN:
5553 		if (th->ack)
5554 			return 1;
5555 
5556 		if (th->rst)
5557 			goto discard;
5558 
5559 		if (th->syn) {
5560 			if (th->fin)
5561 				goto discard;
5562 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5563 				return 1;
5564 
5565 			/* Now we have several options: In theory there is
5566 			 * nothing else in the frame. KA9Q has an option to
5567 			 * send data with the syn, BSD accepts data with the
5568 			 * syn up to the [to be] advertised window and
5569 			 * Solaris 2.1 gives you a protocol error. For now
5570 			 * we just ignore it, that fits the spec precisely
5571 			 * and avoids incompatibilities. It would be nice in
5572 			 * future to drop through and process the data.
5573 			 *
5574 			 * Now that TTCP is starting to be used we ought to
5575 			 * queue this data.
5576 			 * But, this leaves one open to an easy denial of
5577 			 * service attack, and SYN cookies can't defend
5578 			 * against this problem. So, we drop the data
5579 			 * in the interest of security over speed unless
5580 			 * it's still in use.
5581 			 */
5582 			kfree_skb(skb);
5583 			return 0;
5584 		}
5585 		goto discard;
5586 
5587 	case TCP_SYN_SENT:
5588 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5589 		if (queued >= 0)
5590 			return queued;
5591 
5592 		/* Do step6 onward by hand. */
5593 		tcp_urg(sk, skb, th);
5594 		__kfree_skb(skb);
5595 		tcp_data_snd_check(sk);
5596 		return 0;
5597 	}
5598 
5599 	req = tp->fastopen_rsk;
5600 	if (req != NULL) {
5601 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5602 		    sk->sk_state != TCP_FIN_WAIT1);
5603 
5604 		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5605 			goto discard;
5606 	}
5607 
5608 	if (!th->ack && !th->rst)
5609 		goto discard;
5610 
5611 	if (!tcp_validate_incoming(sk, skb, th, 0))
5612 		return 0;
5613 
5614 	/* step 5: check the ACK field */
5615 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5616 				      FLAG_UPDATE_TS_RECENT) > 0;
5617 
5618 	switch (sk->sk_state) {
5619 	case TCP_SYN_RECV:
5620 		if (!acceptable)
5621 			return 1;
5622 
5623 		/* Once we leave TCP_SYN_RECV, we no longer need req
5624 		 * so release it.
5625 		 */
5626 		if (req) {
5627 			tcp_synack_rtt_meas(sk, req);
5628 			tp->total_retrans = req->num_retrans;
5629 
5630 			reqsk_fastopen_remove(sk, req, false);
5631 		} else {
5632 			/* Make sure socket is routed, for correct metrics. */
5633 			icsk->icsk_af_ops->rebuild_header(sk);
5634 			tcp_init_congestion_control(sk);
5635 
5636 			tcp_mtup_init(sk);
5637 			tcp_init_buffer_space(sk);
5638 			tp->copied_seq = tp->rcv_nxt;
5639 		}
5640 		smp_mb();
5641 		tcp_set_state(sk, TCP_ESTABLISHED);
5642 		sk->sk_state_change(sk);
5643 
5644 		/* Note, that this wakeup is only for marginal crossed SYN case.
5645 		 * Passively open sockets are not waked up, because
5646 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5647 		 */
5648 		if (sk->sk_socket)
5649 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5650 
5651 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5652 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5653 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5654 
5655 		if (tp->rx_opt.tstamp_ok)
5656 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5657 
5658 		if (req) {
5659 			/* Re-arm the timer because data may have been sent out.
5660 			 * This is similar to the regular data transmission case
5661 			 * when new data has just been ack'ed.
5662 			 *
5663 			 * (TFO) - we could try to be more aggressive and
5664 			 * retransmitting any data sooner based on when they
5665 			 * are sent out.
5666 			 */
5667 			tcp_rearm_rto(sk);
5668 		} else
5669 			tcp_init_metrics(sk);
5670 
5671 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5672 		tp->lsndtime = tcp_time_stamp;
5673 
5674 		tcp_initialize_rcv_mss(sk);
5675 		tcp_fast_path_on(tp);
5676 		break;
5677 
5678 	case TCP_FIN_WAIT1: {
5679 		struct dst_entry *dst;
5680 		int tmo;
5681 
5682 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5683 		 * Fast Open socket and this is the first acceptable
5684 		 * ACK we have received, this would have acknowledged
5685 		 * our SYNACK so stop the SYNACK timer.
5686 		 */
5687 		if (req != NULL) {
5688 			/* Return RST if ack_seq is invalid.
5689 			 * Note that RFC793 only says to generate a
5690 			 * DUPACK for it but for TCP Fast Open it seems
5691 			 * better to treat this case like TCP_SYN_RECV
5692 			 * above.
5693 			 */
5694 			if (!acceptable)
5695 				return 1;
5696 			/* We no longer need the request sock. */
5697 			reqsk_fastopen_remove(sk, req, false);
5698 			tcp_rearm_rto(sk);
5699 		}
5700 		if (tp->snd_una != tp->write_seq)
5701 			break;
5702 
5703 		tcp_set_state(sk, TCP_FIN_WAIT2);
5704 		sk->sk_shutdown |= SEND_SHUTDOWN;
5705 
5706 		dst = __sk_dst_get(sk);
5707 		if (dst)
5708 			dst_confirm(dst);
5709 
5710 		if (!sock_flag(sk, SOCK_DEAD)) {
5711 			/* Wake up lingering close() */
5712 			sk->sk_state_change(sk);
5713 			break;
5714 		}
5715 
5716 		if (tp->linger2 < 0 ||
5717 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5718 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5719 			tcp_done(sk);
5720 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5721 			return 1;
5722 		}
5723 
5724 		tmo = tcp_fin_time(sk);
5725 		if (tmo > TCP_TIMEWAIT_LEN) {
5726 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5727 		} else if (th->fin || sock_owned_by_user(sk)) {
5728 			/* Bad case. We could lose such FIN otherwise.
5729 			 * It is not a big problem, but it looks confusing
5730 			 * and not so rare event. We still can lose it now,
5731 			 * if it spins in bh_lock_sock(), but it is really
5732 			 * marginal case.
5733 			 */
5734 			inet_csk_reset_keepalive_timer(sk, tmo);
5735 		} else {
5736 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5737 			goto discard;
5738 		}
5739 		break;
5740 	}
5741 
5742 	case TCP_CLOSING:
5743 		if (tp->snd_una == tp->write_seq) {
5744 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5745 			goto discard;
5746 		}
5747 		break;
5748 
5749 	case TCP_LAST_ACK:
5750 		if (tp->snd_una == tp->write_seq) {
5751 			tcp_update_metrics(sk);
5752 			tcp_done(sk);
5753 			goto discard;
5754 		}
5755 		break;
5756 	}
5757 
5758 	/* step 6: check the URG bit */
5759 	tcp_urg(sk, skb, th);
5760 
5761 	/* step 7: process the segment text */
5762 	switch (sk->sk_state) {
5763 	case TCP_CLOSE_WAIT:
5764 	case TCP_CLOSING:
5765 	case TCP_LAST_ACK:
5766 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5767 			break;
5768 	case TCP_FIN_WAIT1:
5769 	case TCP_FIN_WAIT2:
5770 		/* RFC 793 says to queue data in these states,
5771 		 * RFC 1122 says we MUST send a reset.
5772 		 * BSD 4.4 also does reset.
5773 		 */
5774 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5775 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5776 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5777 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5778 				tcp_reset(sk);
5779 				return 1;
5780 			}
5781 		}
5782 		/* Fall through */
5783 	case TCP_ESTABLISHED:
5784 		tcp_data_queue(sk, skb);
5785 		queued = 1;
5786 		break;
5787 	}
5788 
5789 	/* tcp_data could move socket to TIME-WAIT */
5790 	if (sk->sk_state != TCP_CLOSE) {
5791 		tcp_data_snd_check(sk);
5792 		tcp_ack_snd_check(sk);
5793 	}
5794 
5795 	if (!queued) {
5796 discard:
5797 		__kfree_skb(skb);
5798 	}
5799 	return 0;
5800 }
5801 EXPORT_SYMBOL(tcp_rcv_state_process);
5802