1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 /* Note: divides are still a bit expensive. 241 * For the moment, only adjust scaling_ratio 242 * when we update icsk_ack.rcv_mss. 243 */ 244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 246 247 do_div(val, skb->truesize); 248 tcp_sk(sk)->scaling_ratio = val ? val : 1; 249 } 250 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 251 tcp_sk(sk)->advmss); 252 /* Account for possibly-removed options */ 253 if (unlikely(len > icsk->icsk_ack.rcv_mss + 254 MAX_TCP_OPTION_SPACE)) 255 tcp_gro_dev_warn(sk, skb, len); 256 } else { 257 /* Otherwise, we make more careful check taking into account, 258 * that SACKs block is variable. 259 * 260 * "len" is invariant segment length, including TCP header. 261 */ 262 len += skb->data - skb_transport_header(skb); 263 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 264 /* If PSH is not set, packet should be 265 * full sized, provided peer TCP is not badly broken. 266 * This observation (if it is correct 8)) allows 267 * to handle super-low mtu links fairly. 268 */ 269 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 270 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 271 /* Subtract also invariant (if peer is RFC compliant), 272 * tcp header plus fixed timestamp option length. 273 * Resulting "len" is MSS free of SACK jitter. 274 */ 275 len -= tcp_sk(sk)->tcp_header_len; 276 icsk->icsk_ack.last_seg_size = len; 277 if (len == lss) { 278 icsk->icsk_ack.rcv_mss = len; 279 return; 280 } 281 } 282 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 283 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 284 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 285 } 286 } 287 288 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 289 { 290 struct inet_connection_sock *icsk = inet_csk(sk); 291 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 292 293 if (quickacks == 0) 294 quickacks = 2; 295 quickacks = min(quickacks, max_quickacks); 296 if (quickacks > icsk->icsk_ack.quick) 297 icsk->icsk_ack.quick = quickacks; 298 } 299 300 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 301 { 302 struct inet_connection_sock *icsk = inet_csk(sk); 303 304 tcp_incr_quickack(sk, max_quickacks); 305 inet_csk_exit_pingpong_mode(sk); 306 icsk->icsk_ack.ato = TCP_ATO_MIN; 307 } 308 309 /* Send ACKs quickly, if "quick" count is not exhausted 310 * and the session is not interactive. 311 */ 312 313 static bool tcp_in_quickack_mode(struct sock *sk) 314 { 315 const struct inet_connection_sock *icsk = inet_csk(sk); 316 const struct dst_entry *dst = __sk_dst_get(sk); 317 318 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 319 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 320 } 321 322 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 323 { 324 if (tp->ecn_flags & TCP_ECN_OK) 325 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 326 } 327 328 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 329 { 330 if (tcp_hdr(skb)->cwr) { 331 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 332 333 /* If the sender is telling us it has entered CWR, then its 334 * cwnd may be very low (even just 1 packet), so we should ACK 335 * immediately. 336 */ 337 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 338 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 339 } 340 } 341 342 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 343 { 344 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 345 } 346 347 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 348 { 349 struct tcp_sock *tp = tcp_sk(sk); 350 351 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 352 case INET_ECN_NOT_ECT: 353 /* Funny extension: if ECT is not set on a segment, 354 * and we already seen ECT on a previous segment, 355 * it is probably a retransmit. 356 */ 357 if (tp->ecn_flags & TCP_ECN_SEEN) 358 tcp_enter_quickack_mode(sk, 2); 359 break; 360 case INET_ECN_CE: 361 if (tcp_ca_needs_ecn(sk)) 362 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 363 364 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 365 /* Better not delay acks, sender can have a very low cwnd */ 366 tcp_enter_quickack_mode(sk, 2); 367 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 368 } 369 tp->ecn_flags |= TCP_ECN_SEEN; 370 break; 371 default: 372 if (tcp_ca_needs_ecn(sk)) 373 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 374 tp->ecn_flags |= TCP_ECN_SEEN; 375 break; 376 } 377 } 378 379 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 380 { 381 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 382 __tcp_ecn_check_ce(sk, skb); 383 } 384 385 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 386 { 387 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 388 tp->ecn_flags &= ~TCP_ECN_OK; 389 } 390 391 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 392 { 393 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 394 tp->ecn_flags &= ~TCP_ECN_OK; 395 } 396 397 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 398 { 399 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 400 return true; 401 return false; 402 } 403 404 /* Buffer size and advertised window tuning. 405 * 406 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 407 */ 408 409 static void tcp_sndbuf_expand(struct sock *sk) 410 { 411 const struct tcp_sock *tp = tcp_sk(sk); 412 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 413 int sndmem, per_mss; 414 u32 nr_segs; 415 416 /* Worst case is non GSO/TSO : each frame consumes one skb 417 * and skb->head is kmalloced using power of two area of memory 418 */ 419 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 420 MAX_TCP_HEADER + 421 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 422 423 per_mss = roundup_pow_of_two(per_mss) + 424 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 425 426 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 427 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 428 429 /* Fast Recovery (RFC 5681 3.2) : 430 * Cubic needs 1.7 factor, rounded to 2 to include 431 * extra cushion (application might react slowly to EPOLLOUT) 432 */ 433 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 434 sndmem *= nr_segs * per_mss; 435 436 if (sk->sk_sndbuf < sndmem) 437 WRITE_ONCE(sk->sk_sndbuf, 438 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 439 } 440 441 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 442 * 443 * All tcp_full_space() is split to two parts: "network" buffer, allocated 444 * forward and advertised in receiver window (tp->rcv_wnd) and 445 * "application buffer", required to isolate scheduling/application 446 * latencies from network. 447 * window_clamp is maximal advertised window. It can be less than 448 * tcp_full_space(), in this case tcp_full_space() - window_clamp 449 * is reserved for "application" buffer. The less window_clamp is 450 * the smoother our behaviour from viewpoint of network, but the lower 451 * throughput and the higher sensitivity of the connection to losses. 8) 452 * 453 * rcv_ssthresh is more strict window_clamp used at "slow start" 454 * phase to predict further behaviour of this connection. 455 * It is used for two goals: 456 * - to enforce header prediction at sender, even when application 457 * requires some significant "application buffer". It is check #1. 458 * - to prevent pruning of receive queue because of misprediction 459 * of receiver window. Check #2. 460 * 461 * The scheme does not work when sender sends good segments opening 462 * window and then starts to feed us spaghetti. But it should work 463 * in common situations. Otherwise, we have to rely on queue collapsing. 464 */ 465 466 /* Slow part of check#2. */ 467 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 468 unsigned int skbtruesize) 469 { 470 const struct tcp_sock *tp = tcp_sk(sk); 471 /* Optimize this! */ 472 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 473 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 474 475 while (tp->rcv_ssthresh <= window) { 476 if (truesize <= skb->len) 477 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 478 479 truesize >>= 1; 480 window >>= 1; 481 } 482 return 0; 483 } 484 485 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 486 * can play nice with us, as sk_buff and skb->head might be either 487 * freed or shared with up to MAX_SKB_FRAGS segments. 488 * Only give a boost to drivers using page frag(s) to hold the frame(s), 489 * and if no payload was pulled in skb->head before reaching us. 490 */ 491 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 492 { 493 u32 truesize = skb->truesize; 494 495 if (adjust && !skb_headlen(skb)) { 496 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 497 /* paranoid check, some drivers might be buggy */ 498 if (unlikely((int)truesize < (int)skb->len)) 499 truesize = skb->truesize; 500 } 501 return truesize; 502 } 503 504 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 505 bool adjust) 506 { 507 struct tcp_sock *tp = tcp_sk(sk); 508 int room; 509 510 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 511 512 if (room <= 0) 513 return; 514 515 /* Check #1 */ 516 if (!tcp_under_memory_pressure(sk)) { 517 unsigned int truesize = truesize_adjust(adjust, skb); 518 int incr; 519 520 /* Check #2. Increase window, if skb with such overhead 521 * will fit to rcvbuf in future. 522 */ 523 if (tcp_win_from_space(sk, truesize) <= skb->len) 524 incr = 2 * tp->advmss; 525 else 526 incr = __tcp_grow_window(sk, skb, truesize); 527 528 if (incr) { 529 incr = max_t(int, incr, 2 * skb->len); 530 tp->rcv_ssthresh += min(room, incr); 531 inet_csk(sk)->icsk_ack.quick |= 1; 532 } 533 } else { 534 /* Under pressure: 535 * Adjust rcv_ssthresh according to reserved mem 536 */ 537 tcp_adjust_rcv_ssthresh(sk); 538 } 539 } 540 541 /* 3. Try to fixup all. It is made immediately after connection enters 542 * established state. 543 */ 544 static void tcp_init_buffer_space(struct sock *sk) 545 { 546 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 547 struct tcp_sock *tp = tcp_sk(sk); 548 int maxwin; 549 550 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 551 tcp_sndbuf_expand(sk); 552 553 tcp_mstamp_refresh(tp); 554 tp->rcvq_space.time = tp->tcp_mstamp; 555 tp->rcvq_space.seq = tp->copied_seq; 556 557 maxwin = tcp_full_space(sk); 558 559 if (tp->window_clamp >= maxwin) { 560 tp->window_clamp = maxwin; 561 562 if (tcp_app_win && maxwin > 4 * tp->advmss) 563 tp->window_clamp = max(maxwin - 564 (maxwin >> tcp_app_win), 565 4 * tp->advmss); 566 } 567 568 /* Force reservation of one segment. */ 569 if (tcp_app_win && 570 tp->window_clamp > 2 * tp->advmss && 571 tp->window_clamp + tp->advmss > maxwin) 572 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 573 574 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 575 tp->snd_cwnd_stamp = tcp_jiffies32; 576 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 577 (u32)TCP_INIT_CWND * tp->advmss); 578 } 579 580 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 581 static void tcp_clamp_window(struct sock *sk) 582 { 583 struct tcp_sock *tp = tcp_sk(sk); 584 struct inet_connection_sock *icsk = inet_csk(sk); 585 struct net *net = sock_net(sk); 586 int rmem2; 587 588 icsk->icsk_ack.quick = 0; 589 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 590 591 if (sk->sk_rcvbuf < rmem2 && 592 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 593 !tcp_under_memory_pressure(sk) && 594 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 595 WRITE_ONCE(sk->sk_rcvbuf, 596 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 597 } 598 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 599 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 600 } 601 602 /* Initialize RCV_MSS value. 603 * RCV_MSS is an our guess about MSS used by the peer. 604 * We haven't any direct information about the MSS. 605 * It's better to underestimate the RCV_MSS rather than overestimate. 606 * Overestimations make us ACKing less frequently than needed. 607 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 608 */ 609 void tcp_initialize_rcv_mss(struct sock *sk) 610 { 611 const struct tcp_sock *tp = tcp_sk(sk); 612 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 613 614 hint = min(hint, tp->rcv_wnd / 2); 615 hint = min(hint, TCP_MSS_DEFAULT); 616 hint = max(hint, TCP_MIN_MSS); 617 618 inet_csk(sk)->icsk_ack.rcv_mss = hint; 619 } 620 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 621 622 /* Receiver "autotuning" code. 623 * 624 * The algorithm for RTT estimation w/o timestamps is based on 625 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 626 * <https://public.lanl.gov/radiant/pubs.html#DRS> 627 * 628 * More detail on this code can be found at 629 * <http://staff.psc.edu/jheffner/>, 630 * though this reference is out of date. A new paper 631 * is pending. 632 */ 633 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 634 { 635 u32 new_sample = tp->rcv_rtt_est.rtt_us; 636 long m = sample; 637 638 if (new_sample != 0) { 639 /* If we sample in larger samples in the non-timestamp 640 * case, we could grossly overestimate the RTT especially 641 * with chatty applications or bulk transfer apps which 642 * are stalled on filesystem I/O. 643 * 644 * Also, since we are only going for a minimum in the 645 * non-timestamp case, we do not smooth things out 646 * else with timestamps disabled convergence takes too 647 * long. 648 */ 649 if (!win_dep) { 650 m -= (new_sample >> 3); 651 new_sample += m; 652 } else { 653 m <<= 3; 654 if (m < new_sample) 655 new_sample = m; 656 } 657 } else { 658 /* No previous measure. */ 659 new_sample = m << 3; 660 } 661 662 tp->rcv_rtt_est.rtt_us = new_sample; 663 } 664 665 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 666 { 667 u32 delta_us; 668 669 if (tp->rcv_rtt_est.time == 0) 670 goto new_measure; 671 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 672 return; 673 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 674 if (!delta_us) 675 delta_us = 1; 676 tcp_rcv_rtt_update(tp, delta_us, 1); 677 678 new_measure: 679 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 680 tp->rcv_rtt_est.time = tp->tcp_mstamp; 681 } 682 683 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 684 const struct sk_buff *skb) 685 { 686 struct tcp_sock *tp = tcp_sk(sk); 687 688 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 689 return; 690 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 691 692 if (TCP_SKB_CB(skb)->end_seq - 693 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 694 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 695 u32 delta_us; 696 697 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 698 if (!delta) 699 delta = 1; 700 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 701 tcp_rcv_rtt_update(tp, delta_us, 0); 702 } 703 } 704 } 705 706 /* 707 * This function should be called every time data is copied to user space. 708 * It calculates the appropriate TCP receive buffer space. 709 */ 710 void tcp_rcv_space_adjust(struct sock *sk) 711 { 712 struct tcp_sock *tp = tcp_sk(sk); 713 u32 copied; 714 int time; 715 716 trace_tcp_rcv_space_adjust(sk); 717 718 tcp_mstamp_refresh(tp); 719 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 720 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 721 return; 722 723 /* Number of bytes copied to user in last RTT */ 724 copied = tp->copied_seq - tp->rcvq_space.seq; 725 if (copied <= tp->rcvq_space.space) 726 goto new_measure; 727 728 /* A bit of theory : 729 * copied = bytes received in previous RTT, our base window 730 * To cope with packet losses, we need a 2x factor 731 * To cope with slow start, and sender growing its cwin by 100 % 732 * every RTT, we need a 4x factor, because the ACK we are sending 733 * now is for the next RTT, not the current one : 734 * <prev RTT . ><current RTT .. ><next RTT .... > 735 */ 736 737 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 738 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 739 u64 rcvwin, grow; 740 int rcvbuf; 741 742 /* minimal window to cope with packet losses, assuming 743 * steady state. Add some cushion because of small variations. 744 */ 745 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 746 747 /* Accommodate for sender rate increase (eg. slow start) */ 748 grow = rcvwin * (copied - tp->rcvq_space.space); 749 do_div(grow, tp->rcvq_space.space); 750 rcvwin += (grow << 1); 751 752 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 753 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 754 if (rcvbuf > sk->sk_rcvbuf) { 755 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 756 757 /* Make the window clamp follow along. */ 758 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 759 } 760 } 761 tp->rcvq_space.space = copied; 762 763 new_measure: 764 tp->rcvq_space.seq = tp->copied_seq; 765 tp->rcvq_space.time = tp->tcp_mstamp; 766 } 767 768 /* There is something which you must keep in mind when you analyze the 769 * behavior of the tp->ato delayed ack timeout interval. When a 770 * connection starts up, we want to ack as quickly as possible. The 771 * problem is that "good" TCP's do slow start at the beginning of data 772 * transmission. The means that until we send the first few ACK's the 773 * sender will sit on his end and only queue most of his data, because 774 * he can only send snd_cwnd unacked packets at any given time. For 775 * each ACK we send, he increments snd_cwnd and transmits more of his 776 * queue. -DaveM 777 */ 778 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 779 { 780 struct tcp_sock *tp = tcp_sk(sk); 781 struct inet_connection_sock *icsk = inet_csk(sk); 782 u32 now; 783 784 inet_csk_schedule_ack(sk); 785 786 tcp_measure_rcv_mss(sk, skb); 787 788 tcp_rcv_rtt_measure(tp); 789 790 now = tcp_jiffies32; 791 792 if (!icsk->icsk_ack.ato) { 793 /* The _first_ data packet received, initialize 794 * delayed ACK engine. 795 */ 796 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 797 icsk->icsk_ack.ato = TCP_ATO_MIN; 798 } else { 799 int m = now - icsk->icsk_ack.lrcvtime; 800 801 if (m <= TCP_ATO_MIN / 2) { 802 /* The fastest case is the first. */ 803 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 804 } else if (m < icsk->icsk_ack.ato) { 805 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 806 if (icsk->icsk_ack.ato > icsk->icsk_rto) 807 icsk->icsk_ack.ato = icsk->icsk_rto; 808 } else if (m > icsk->icsk_rto) { 809 /* Too long gap. Apparently sender failed to 810 * restart window, so that we send ACKs quickly. 811 */ 812 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 813 } 814 } 815 icsk->icsk_ack.lrcvtime = now; 816 817 tcp_ecn_check_ce(sk, skb); 818 819 if (skb->len >= 128) 820 tcp_grow_window(sk, skb, true); 821 } 822 823 /* Called to compute a smoothed rtt estimate. The data fed to this 824 * routine either comes from timestamps, or from segments that were 825 * known _not_ to have been retransmitted [see Karn/Partridge 826 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 827 * piece by Van Jacobson. 828 * NOTE: the next three routines used to be one big routine. 829 * To save cycles in the RFC 1323 implementation it was better to break 830 * it up into three procedures. -- erics 831 */ 832 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 833 { 834 struct tcp_sock *tp = tcp_sk(sk); 835 long m = mrtt_us; /* RTT */ 836 u32 srtt = tp->srtt_us; 837 838 /* The following amusing code comes from Jacobson's 839 * article in SIGCOMM '88. Note that rtt and mdev 840 * are scaled versions of rtt and mean deviation. 841 * This is designed to be as fast as possible 842 * m stands for "measurement". 843 * 844 * On a 1990 paper the rto value is changed to: 845 * RTO = rtt + 4 * mdev 846 * 847 * Funny. This algorithm seems to be very broken. 848 * These formulae increase RTO, when it should be decreased, increase 849 * too slowly, when it should be increased quickly, decrease too quickly 850 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 851 * does not matter how to _calculate_ it. Seems, it was trap 852 * that VJ failed to avoid. 8) 853 */ 854 if (srtt != 0) { 855 m -= (srtt >> 3); /* m is now error in rtt est */ 856 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 857 if (m < 0) { 858 m = -m; /* m is now abs(error) */ 859 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 860 /* This is similar to one of Eifel findings. 861 * Eifel blocks mdev updates when rtt decreases. 862 * This solution is a bit different: we use finer gain 863 * for mdev in this case (alpha*beta). 864 * Like Eifel it also prevents growth of rto, 865 * but also it limits too fast rto decreases, 866 * happening in pure Eifel. 867 */ 868 if (m > 0) 869 m >>= 3; 870 } else { 871 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 872 } 873 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 874 if (tp->mdev_us > tp->mdev_max_us) { 875 tp->mdev_max_us = tp->mdev_us; 876 if (tp->mdev_max_us > tp->rttvar_us) 877 tp->rttvar_us = tp->mdev_max_us; 878 } 879 if (after(tp->snd_una, tp->rtt_seq)) { 880 if (tp->mdev_max_us < tp->rttvar_us) 881 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 882 tp->rtt_seq = tp->snd_nxt; 883 tp->mdev_max_us = tcp_rto_min_us(sk); 884 885 tcp_bpf_rtt(sk); 886 } 887 } else { 888 /* no previous measure. */ 889 srtt = m << 3; /* take the measured time to be rtt */ 890 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 891 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 892 tp->mdev_max_us = tp->rttvar_us; 893 tp->rtt_seq = tp->snd_nxt; 894 895 tcp_bpf_rtt(sk); 896 } 897 tp->srtt_us = max(1U, srtt); 898 } 899 900 static void tcp_update_pacing_rate(struct sock *sk) 901 { 902 const struct tcp_sock *tp = tcp_sk(sk); 903 u64 rate; 904 905 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 906 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 907 908 /* current rate is (cwnd * mss) / srtt 909 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 910 * In Congestion Avoidance phase, set it to 120 % the current rate. 911 * 912 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 913 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 914 * end of slow start and should slow down. 915 */ 916 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 917 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 918 else 919 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 920 921 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 922 923 if (likely(tp->srtt_us)) 924 do_div(rate, tp->srtt_us); 925 926 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 927 * without any lock. We want to make sure compiler wont store 928 * intermediate values in this location. 929 */ 930 WRITE_ONCE(sk->sk_pacing_rate, 931 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 932 } 933 934 /* Calculate rto without backoff. This is the second half of Van Jacobson's 935 * routine referred to above. 936 */ 937 static void tcp_set_rto(struct sock *sk) 938 { 939 const struct tcp_sock *tp = tcp_sk(sk); 940 /* Old crap is replaced with new one. 8) 941 * 942 * More seriously: 943 * 1. If rtt variance happened to be less 50msec, it is hallucination. 944 * It cannot be less due to utterly erratic ACK generation made 945 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 946 * to do with delayed acks, because at cwnd>2 true delack timeout 947 * is invisible. Actually, Linux-2.4 also generates erratic 948 * ACKs in some circumstances. 949 */ 950 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 951 952 /* 2. Fixups made earlier cannot be right. 953 * If we do not estimate RTO correctly without them, 954 * all the algo is pure shit and should be replaced 955 * with correct one. It is exactly, which we pretend to do. 956 */ 957 958 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 959 * guarantees that rto is higher. 960 */ 961 tcp_bound_rto(sk); 962 } 963 964 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 965 { 966 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 967 968 if (!cwnd) 969 cwnd = TCP_INIT_CWND; 970 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 971 } 972 973 struct tcp_sacktag_state { 974 /* Timestamps for earliest and latest never-retransmitted segment 975 * that was SACKed. RTO needs the earliest RTT to stay conservative, 976 * but congestion control should still get an accurate delay signal. 977 */ 978 u64 first_sackt; 979 u64 last_sackt; 980 u32 reord; 981 u32 sack_delivered; 982 int flag; 983 unsigned int mss_now; 984 struct rate_sample *rate; 985 }; 986 987 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 988 * and spurious retransmission information if this DSACK is unlikely caused by 989 * sender's action: 990 * - DSACKed sequence range is larger than maximum receiver's window. 991 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 992 */ 993 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 994 u32 end_seq, struct tcp_sacktag_state *state) 995 { 996 u32 seq_len, dup_segs = 1; 997 998 if (!before(start_seq, end_seq)) 999 return 0; 1000 1001 seq_len = end_seq - start_seq; 1002 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1003 if (seq_len > tp->max_window) 1004 return 0; 1005 if (seq_len > tp->mss_cache) 1006 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1007 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1008 state->flag |= FLAG_DSACK_TLP; 1009 1010 tp->dsack_dups += dup_segs; 1011 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1012 if (tp->dsack_dups > tp->total_retrans) 1013 return 0; 1014 1015 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1016 /* We increase the RACK ordering window in rounds where we receive 1017 * DSACKs that may have been due to reordering causing RACK to trigger 1018 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1019 * without having seen reordering, or that match TLP probes (TLP 1020 * is timer-driven, not triggered by RACK). 1021 */ 1022 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1023 tp->rack.dsack_seen = 1; 1024 1025 state->flag |= FLAG_DSACKING_ACK; 1026 /* A spurious retransmission is delivered */ 1027 state->sack_delivered += dup_segs; 1028 1029 return dup_segs; 1030 } 1031 1032 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1033 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1034 * distance is approximated in full-mss packet distance ("reordering"). 1035 */ 1036 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1037 const int ts) 1038 { 1039 struct tcp_sock *tp = tcp_sk(sk); 1040 const u32 mss = tp->mss_cache; 1041 u32 fack, metric; 1042 1043 fack = tcp_highest_sack_seq(tp); 1044 if (!before(low_seq, fack)) 1045 return; 1046 1047 metric = fack - low_seq; 1048 if ((metric > tp->reordering * mss) && mss) { 1049 #if FASTRETRANS_DEBUG > 1 1050 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1051 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1052 tp->reordering, 1053 0, 1054 tp->sacked_out, 1055 tp->undo_marker ? tp->undo_retrans : 0); 1056 #endif 1057 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1058 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1059 } 1060 1061 /* This exciting event is worth to be remembered. 8) */ 1062 tp->reord_seen++; 1063 NET_INC_STATS(sock_net(sk), 1064 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1065 } 1066 1067 /* This must be called before lost_out or retrans_out are updated 1068 * on a new loss, because we want to know if all skbs previously 1069 * known to be lost have already been retransmitted, indicating 1070 * that this newly lost skb is our next skb to retransmit. 1071 */ 1072 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1073 { 1074 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1075 (tp->retransmit_skb_hint && 1076 before(TCP_SKB_CB(skb)->seq, 1077 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1078 tp->retransmit_skb_hint = skb; 1079 } 1080 1081 /* Sum the number of packets on the wire we have marked as lost, and 1082 * notify the congestion control module that the given skb was marked lost. 1083 */ 1084 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1085 { 1086 tp->lost += tcp_skb_pcount(skb); 1087 } 1088 1089 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1090 { 1091 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1092 struct tcp_sock *tp = tcp_sk(sk); 1093 1094 if (sacked & TCPCB_SACKED_ACKED) 1095 return; 1096 1097 tcp_verify_retransmit_hint(tp, skb); 1098 if (sacked & TCPCB_LOST) { 1099 if (sacked & TCPCB_SACKED_RETRANS) { 1100 /* Account for retransmits that are lost again */ 1101 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1102 tp->retrans_out -= tcp_skb_pcount(skb); 1103 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1104 tcp_skb_pcount(skb)); 1105 tcp_notify_skb_loss_event(tp, skb); 1106 } 1107 } else { 1108 tp->lost_out += tcp_skb_pcount(skb); 1109 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1110 tcp_notify_skb_loss_event(tp, skb); 1111 } 1112 } 1113 1114 /* Updates the delivered and delivered_ce counts */ 1115 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1116 bool ece_ack) 1117 { 1118 tp->delivered += delivered; 1119 if (ece_ack) 1120 tp->delivered_ce += delivered; 1121 } 1122 1123 /* This procedure tags the retransmission queue when SACKs arrive. 1124 * 1125 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1126 * Packets in queue with these bits set are counted in variables 1127 * sacked_out, retrans_out and lost_out, correspondingly. 1128 * 1129 * Valid combinations are: 1130 * Tag InFlight Description 1131 * 0 1 - orig segment is in flight. 1132 * S 0 - nothing flies, orig reached receiver. 1133 * L 0 - nothing flies, orig lost by net. 1134 * R 2 - both orig and retransmit are in flight. 1135 * L|R 1 - orig is lost, retransmit is in flight. 1136 * S|R 1 - orig reached receiver, retrans is still in flight. 1137 * (L|S|R is logically valid, it could occur when L|R is sacked, 1138 * but it is equivalent to plain S and code short-curcuits it to S. 1139 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1140 * 1141 * These 6 states form finite state machine, controlled by the following events: 1142 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1143 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1144 * 3. Loss detection event of two flavors: 1145 * A. Scoreboard estimator decided the packet is lost. 1146 * A'. Reno "three dupacks" marks head of queue lost. 1147 * B. SACK arrives sacking SND.NXT at the moment, when the 1148 * segment was retransmitted. 1149 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1150 * 1151 * It is pleasant to note, that state diagram turns out to be commutative, 1152 * so that we are allowed not to be bothered by order of our actions, 1153 * when multiple events arrive simultaneously. (see the function below). 1154 * 1155 * Reordering detection. 1156 * -------------------- 1157 * Reordering metric is maximal distance, which a packet can be displaced 1158 * in packet stream. With SACKs we can estimate it: 1159 * 1160 * 1. SACK fills old hole and the corresponding segment was not 1161 * ever retransmitted -> reordering. Alas, we cannot use it 1162 * when segment was retransmitted. 1163 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1164 * for retransmitted and already SACKed segment -> reordering.. 1165 * Both of these heuristics are not used in Loss state, when we cannot 1166 * account for retransmits accurately. 1167 * 1168 * SACK block validation. 1169 * ---------------------- 1170 * 1171 * SACK block range validation checks that the received SACK block fits to 1172 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1173 * Note that SND.UNA is not included to the range though being valid because 1174 * it means that the receiver is rather inconsistent with itself reporting 1175 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1176 * perfectly valid, however, in light of RFC2018 which explicitly states 1177 * that "SACK block MUST reflect the newest segment. Even if the newest 1178 * segment is going to be discarded ...", not that it looks very clever 1179 * in case of head skb. Due to potentional receiver driven attacks, we 1180 * choose to avoid immediate execution of a walk in write queue due to 1181 * reneging and defer head skb's loss recovery to standard loss recovery 1182 * procedure that will eventually trigger (nothing forbids us doing this). 1183 * 1184 * Implements also blockage to start_seq wrap-around. Problem lies in the 1185 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1186 * there's no guarantee that it will be before snd_nxt (n). The problem 1187 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1188 * wrap (s_w): 1189 * 1190 * <- outs wnd -> <- wrapzone -> 1191 * u e n u_w e_w s n_w 1192 * | | | | | | | 1193 * |<------------+------+----- TCP seqno space --------------+---------->| 1194 * ...-- <2^31 ->| |<--------... 1195 * ...---- >2^31 ------>| |<--------... 1196 * 1197 * Current code wouldn't be vulnerable but it's better still to discard such 1198 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1199 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1200 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1201 * equal to the ideal case (infinite seqno space without wrap caused issues). 1202 * 1203 * With D-SACK the lower bound is extended to cover sequence space below 1204 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1205 * again, D-SACK block must not to go across snd_una (for the same reason as 1206 * for the normal SACK blocks, explained above). But there all simplicity 1207 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1208 * fully below undo_marker they do not affect behavior in anyway and can 1209 * therefore be safely ignored. In rare cases (which are more or less 1210 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1211 * fragmentation and packet reordering past skb's retransmission. To consider 1212 * them correctly, the acceptable range must be extended even more though 1213 * the exact amount is rather hard to quantify. However, tp->max_window can 1214 * be used as an exaggerated estimate. 1215 */ 1216 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1217 u32 start_seq, u32 end_seq) 1218 { 1219 /* Too far in future, or reversed (interpretation is ambiguous) */ 1220 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1221 return false; 1222 1223 /* Nasty start_seq wrap-around check (see comments above) */ 1224 if (!before(start_seq, tp->snd_nxt)) 1225 return false; 1226 1227 /* In outstanding window? ...This is valid exit for D-SACKs too. 1228 * start_seq == snd_una is non-sensical (see comments above) 1229 */ 1230 if (after(start_seq, tp->snd_una)) 1231 return true; 1232 1233 if (!is_dsack || !tp->undo_marker) 1234 return false; 1235 1236 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1237 if (after(end_seq, tp->snd_una)) 1238 return false; 1239 1240 if (!before(start_seq, tp->undo_marker)) 1241 return true; 1242 1243 /* Too old */ 1244 if (!after(end_seq, tp->undo_marker)) 1245 return false; 1246 1247 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1248 * start_seq < undo_marker and end_seq >= undo_marker. 1249 */ 1250 return !before(start_seq, end_seq - tp->max_window); 1251 } 1252 1253 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1254 struct tcp_sack_block_wire *sp, int num_sacks, 1255 u32 prior_snd_una, struct tcp_sacktag_state *state) 1256 { 1257 struct tcp_sock *tp = tcp_sk(sk); 1258 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1259 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1260 u32 dup_segs; 1261 1262 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1263 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1264 } else if (num_sacks > 1) { 1265 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1266 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1267 1268 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1269 return false; 1270 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1271 } else { 1272 return false; 1273 } 1274 1275 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1276 if (!dup_segs) { /* Skip dubious DSACK */ 1277 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1278 return false; 1279 } 1280 1281 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1282 1283 /* D-SACK for already forgotten data... Do dumb counting. */ 1284 if (tp->undo_marker && tp->undo_retrans > 0 && 1285 !after(end_seq_0, prior_snd_una) && 1286 after(end_seq_0, tp->undo_marker)) 1287 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1288 1289 return true; 1290 } 1291 1292 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1293 * the incoming SACK may not exactly match but we can find smaller MSS 1294 * aligned portion of it that matches. Therefore we might need to fragment 1295 * which may fail and creates some hassle (caller must handle error case 1296 * returns). 1297 * 1298 * FIXME: this could be merged to shift decision code 1299 */ 1300 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1301 u32 start_seq, u32 end_seq) 1302 { 1303 int err; 1304 bool in_sack; 1305 unsigned int pkt_len; 1306 unsigned int mss; 1307 1308 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1309 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1310 1311 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1312 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1313 mss = tcp_skb_mss(skb); 1314 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1315 1316 if (!in_sack) { 1317 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1318 if (pkt_len < mss) 1319 pkt_len = mss; 1320 } else { 1321 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1322 if (pkt_len < mss) 1323 return -EINVAL; 1324 } 1325 1326 /* Round if necessary so that SACKs cover only full MSSes 1327 * and/or the remaining small portion (if present) 1328 */ 1329 if (pkt_len > mss) { 1330 unsigned int new_len = (pkt_len / mss) * mss; 1331 if (!in_sack && new_len < pkt_len) 1332 new_len += mss; 1333 pkt_len = new_len; 1334 } 1335 1336 if (pkt_len >= skb->len && !in_sack) 1337 return 0; 1338 1339 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1340 pkt_len, mss, GFP_ATOMIC); 1341 if (err < 0) 1342 return err; 1343 } 1344 1345 return in_sack; 1346 } 1347 1348 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1349 static u8 tcp_sacktag_one(struct sock *sk, 1350 struct tcp_sacktag_state *state, u8 sacked, 1351 u32 start_seq, u32 end_seq, 1352 int dup_sack, int pcount, 1353 u64 xmit_time) 1354 { 1355 struct tcp_sock *tp = tcp_sk(sk); 1356 1357 /* Account D-SACK for retransmitted packet. */ 1358 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1359 if (tp->undo_marker && tp->undo_retrans > 0 && 1360 after(end_seq, tp->undo_marker)) 1361 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1362 if ((sacked & TCPCB_SACKED_ACKED) && 1363 before(start_seq, state->reord)) 1364 state->reord = start_seq; 1365 } 1366 1367 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1368 if (!after(end_seq, tp->snd_una)) 1369 return sacked; 1370 1371 if (!(sacked & TCPCB_SACKED_ACKED)) { 1372 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1373 1374 if (sacked & TCPCB_SACKED_RETRANS) { 1375 /* If the segment is not tagged as lost, 1376 * we do not clear RETRANS, believing 1377 * that retransmission is still in flight. 1378 */ 1379 if (sacked & TCPCB_LOST) { 1380 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1381 tp->lost_out -= pcount; 1382 tp->retrans_out -= pcount; 1383 } 1384 } else { 1385 if (!(sacked & TCPCB_RETRANS)) { 1386 /* New sack for not retransmitted frame, 1387 * which was in hole. It is reordering. 1388 */ 1389 if (before(start_seq, 1390 tcp_highest_sack_seq(tp)) && 1391 before(start_seq, state->reord)) 1392 state->reord = start_seq; 1393 1394 if (!after(end_seq, tp->high_seq)) 1395 state->flag |= FLAG_ORIG_SACK_ACKED; 1396 if (state->first_sackt == 0) 1397 state->first_sackt = xmit_time; 1398 state->last_sackt = xmit_time; 1399 } 1400 1401 if (sacked & TCPCB_LOST) { 1402 sacked &= ~TCPCB_LOST; 1403 tp->lost_out -= pcount; 1404 } 1405 } 1406 1407 sacked |= TCPCB_SACKED_ACKED; 1408 state->flag |= FLAG_DATA_SACKED; 1409 tp->sacked_out += pcount; 1410 /* Out-of-order packets delivered */ 1411 state->sack_delivered += pcount; 1412 1413 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1414 if (tp->lost_skb_hint && 1415 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1416 tp->lost_cnt_hint += pcount; 1417 } 1418 1419 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1420 * frames and clear it. undo_retrans is decreased above, L|R frames 1421 * are accounted above as well. 1422 */ 1423 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1424 sacked &= ~TCPCB_SACKED_RETRANS; 1425 tp->retrans_out -= pcount; 1426 } 1427 1428 return sacked; 1429 } 1430 1431 /* Shift newly-SACKed bytes from this skb to the immediately previous 1432 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1433 */ 1434 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1435 struct sk_buff *skb, 1436 struct tcp_sacktag_state *state, 1437 unsigned int pcount, int shifted, int mss, 1438 bool dup_sack) 1439 { 1440 struct tcp_sock *tp = tcp_sk(sk); 1441 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1442 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1443 1444 BUG_ON(!pcount); 1445 1446 /* Adjust counters and hints for the newly sacked sequence 1447 * range but discard the return value since prev is already 1448 * marked. We must tag the range first because the seq 1449 * advancement below implicitly advances 1450 * tcp_highest_sack_seq() when skb is highest_sack. 1451 */ 1452 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1453 start_seq, end_seq, dup_sack, pcount, 1454 tcp_skb_timestamp_us(skb)); 1455 tcp_rate_skb_delivered(sk, skb, state->rate); 1456 1457 if (skb == tp->lost_skb_hint) 1458 tp->lost_cnt_hint += pcount; 1459 1460 TCP_SKB_CB(prev)->end_seq += shifted; 1461 TCP_SKB_CB(skb)->seq += shifted; 1462 1463 tcp_skb_pcount_add(prev, pcount); 1464 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1465 tcp_skb_pcount_add(skb, -pcount); 1466 1467 /* When we're adding to gso_segs == 1, gso_size will be zero, 1468 * in theory this shouldn't be necessary but as long as DSACK 1469 * code can come after this skb later on it's better to keep 1470 * setting gso_size to something. 1471 */ 1472 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1473 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1474 1475 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1476 if (tcp_skb_pcount(skb) <= 1) 1477 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1478 1479 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1480 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1481 1482 if (skb->len > 0) { 1483 BUG_ON(!tcp_skb_pcount(skb)); 1484 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1485 return false; 1486 } 1487 1488 /* Whole SKB was eaten :-) */ 1489 1490 if (skb == tp->retransmit_skb_hint) 1491 tp->retransmit_skb_hint = prev; 1492 if (skb == tp->lost_skb_hint) { 1493 tp->lost_skb_hint = prev; 1494 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1495 } 1496 1497 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1498 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1499 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1500 TCP_SKB_CB(prev)->end_seq++; 1501 1502 if (skb == tcp_highest_sack(sk)) 1503 tcp_advance_highest_sack(sk, skb); 1504 1505 tcp_skb_collapse_tstamp(prev, skb); 1506 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1507 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1508 1509 tcp_rtx_queue_unlink_and_free(skb, sk); 1510 1511 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1512 1513 return true; 1514 } 1515 1516 /* I wish gso_size would have a bit more sane initialization than 1517 * something-or-zero which complicates things 1518 */ 1519 static int tcp_skb_seglen(const struct sk_buff *skb) 1520 { 1521 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1522 } 1523 1524 /* Shifting pages past head area doesn't work */ 1525 static int skb_can_shift(const struct sk_buff *skb) 1526 { 1527 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1528 } 1529 1530 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1531 int pcount, int shiftlen) 1532 { 1533 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1534 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1535 * to make sure not storing more than 65535 * 8 bytes per skb, 1536 * even if current MSS is bigger. 1537 */ 1538 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1539 return 0; 1540 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1541 return 0; 1542 return skb_shift(to, from, shiftlen); 1543 } 1544 1545 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1546 * skb. 1547 */ 1548 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1549 struct tcp_sacktag_state *state, 1550 u32 start_seq, u32 end_seq, 1551 bool dup_sack) 1552 { 1553 struct tcp_sock *tp = tcp_sk(sk); 1554 struct sk_buff *prev; 1555 int mss; 1556 int pcount = 0; 1557 int len; 1558 int in_sack; 1559 1560 /* Normally R but no L won't result in plain S */ 1561 if (!dup_sack && 1562 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1563 goto fallback; 1564 if (!skb_can_shift(skb)) 1565 goto fallback; 1566 /* This frame is about to be dropped (was ACKed). */ 1567 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1568 goto fallback; 1569 1570 /* Can only happen with delayed DSACK + discard craziness */ 1571 prev = skb_rb_prev(skb); 1572 if (!prev) 1573 goto fallback; 1574 1575 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1576 goto fallback; 1577 1578 if (!tcp_skb_can_collapse(prev, skb)) 1579 goto fallback; 1580 1581 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1582 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1583 1584 if (in_sack) { 1585 len = skb->len; 1586 pcount = tcp_skb_pcount(skb); 1587 mss = tcp_skb_seglen(skb); 1588 1589 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1590 * drop this restriction as unnecessary 1591 */ 1592 if (mss != tcp_skb_seglen(prev)) 1593 goto fallback; 1594 } else { 1595 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1596 goto noop; 1597 /* CHECKME: This is non-MSS split case only?, this will 1598 * cause skipped skbs due to advancing loop btw, original 1599 * has that feature too 1600 */ 1601 if (tcp_skb_pcount(skb) <= 1) 1602 goto noop; 1603 1604 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1605 if (!in_sack) { 1606 /* TODO: head merge to next could be attempted here 1607 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1608 * though it might not be worth of the additional hassle 1609 * 1610 * ...we can probably just fallback to what was done 1611 * previously. We could try merging non-SACKed ones 1612 * as well but it probably isn't going to buy off 1613 * because later SACKs might again split them, and 1614 * it would make skb timestamp tracking considerably 1615 * harder problem. 1616 */ 1617 goto fallback; 1618 } 1619 1620 len = end_seq - TCP_SKB_CB(skb)->seq; 1621 BUG_ON(len < 0); 1622 BUG_ON(len > skb->len); 1623 1624 /* MSS boundaries should be honoured or else pcount will 1625 * severely break even though it makes things bit trickier. 1626 * Optimize common case to avoid most of the divides 1627 */ 1628 mss = tcp_skb_mss(skb); 1629 1630 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1631 * drop this restriction as unnecessary 1632 */ 1633 if (mss != tcp_skb_seglen(prev)) 1634 goto fallback; 1635 1636 if (len == mss) { 1637 pcount = 1; 1638 } else if (len < mss) { 1639 goto noop; 1640 } else { 1641 pcount = len / mss; 1642 len = pcount * mss; 1643 } 1644 } 1645 1646 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1647 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1648 goto fallback; 1649 1650 if (!tcp_skb_shift(prev, skb, pcount, len)) 1651 goto fallback; 1652 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1653 goto out; 1654 1655 /* Hole filled allows collapsing with the next as well, this is very 1656 * useful when hole on every nth skb pattern happens 1657 */ 1658 skb = skb_rb_next(prev); 1659 if (!skb) 1660 goto out; 1661 1662 if (!skb_can_shift(skb) || 1663 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1664 (mss != tcp_skb_seglen(skb))) 1665 goto out; 1666 1667 if (!tcp_skb_can_collapse(prev, skb)) 1668 goto out; 1669 len = skb->len; 1670 pcount = tcp_skb_pcount(skb); 1671 if (tcp_skb_shift(prev, skb, pcount, len)) 1672 tcp_shifted_skb(sk, prev, skb, state, pcount, 1673 len, mss, 0); 1674 1675 out: 1676 return prev; 1677 1678 noop: 1679 return skb; 1680 1681 fallback: 1682 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1683 return NULL; 1684 } 1685 1686 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1687 struct tcp_sack_block *next_dup, 1688 struct tcp_sacktag_state *state, 1689 u32 start_seq, u32 end_seq, 1690 bool dup_sack_in) 1691 { 1692 struct tcp_sock *tp = tcp_sk(sk); 1693 struct sk_buff *tmp; 1694 1695 skb_rbtree_walk_from(skb) { 1696 int in_sack = 0; 1697 bool dup_sack = dup_sack_in; 1698 1699 /* queue is in-order => we can short-circuit the walk early */ 1700 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1701 break; 1702 1703 if (next_dup && 1704 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1705 in_sack = tcp_match_skb_to_sack(sk, skb, 1706 next_dup->start_seq, 1707 next_dup->end_seq); 1708 if (in_sack > 0) 1709 dup_sack = true; 1710 } 1711 1712 /* skb reference here is a bit tricky to get right, since 1713 * shifting can eat and free both this skb and the next, 1714 * so not even _safe variant of the loop is enough. 1715 */ 1716 if (in_sack <= 0) { 1717 tmp = tcp_shift_skb_data(sk, skb, state, 1718 start_seq, end_seq, dup_sack); 1719 if (tmp) { 1720 if (tmp != skb) { 1721 skb = tmp; 1722 continue; 1723 } 1724 1725 in_sack = 0; 1726 } else { 1727 in_sack = tcp_match_skb_to_sack(sk, skb, 1728 start_seq, 1729 end_seq); 1730 } 1731 } 1732 1733 if (unlikely(in_sack < 0)) 1734 break; 1735 1736 if (in_sack) { 1737 TCP_SKB_CB(skb)->sacked = 1738 tcp_sacktag_one(sk, 1739 state, 1740 TCP_SKB_CB(skb)->sacked, 1741 TCP_SKB_CB(skb)->seq, 1742 TCP_SKB_CB(skb)->end_seq, 1743 dup_sack, 1744 tcp_skb_pcount(skb), 1745 tcp_skb_timestamp_us(skb)); 1746 tcp_rate_skb_delivered(sk, skb, state->rate); 1747 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1748 list_del_init(&skb->tcp_tsorted_anchor); 1749 1750 if (!before(TCP_SKB_CB(skb)->seq, 1751 tcp_highest_sack_seq(tp))) 1752 tcp_advance_highest_sack(sk, skb); 1753 } 1754 } 1755 return skb; 1756 } 1757 1758 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1759 { 1760 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1761 struct sk_buff *skb; 1762 1763 while (*p) { 1764 parent = *p; 1765 skb = rb_to_skb(parent); 1766 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1767 p = &parent->rb_left; 1768 continue; 1769 } 1770 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1771 p = &parent->rb_right; 1772 continue; 1773 } 1774 return skb; 1775 } 1776 return NULL; 1777 } 1778 1779 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1780 u32 skip_to_seq) 1781 { 1782 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1783 return skb; 1784 1785 return tcp_sacktag_bsearch(sk, skip_to_seq); 1786 } 1787 1788 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1789 struct sock *sk, 1790 struct tcp_sack_block *next_dup, 1791 struct tcp_sacktag_state *state, 1792 u32 skip_to_seq) 1793 { 1794 if (!next_dup) 1795 return skb; 1796 1797 if (before(next_dup->start_seq, skip_to_seq)) { 1798 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1799 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1800 next_dup->start_seq, next_dup->end_seq, 1801 1); 1802 } 1803 1804 return skb; 1805 } 1806 1807 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1808 { 1809 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1810 } 1811 1812 static int 1813 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1814 u32 prior_snd_una, struct tcp_sacktag_state *state) 1815 { 1816 struct tcp_sock *tp = tcp_sk(sk); 1817 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1818 TCP_SKB_CB(ack_skb)->sacked); 1819 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1820 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1821 struct tcp_sack_block *cache; 1822 struct sk_buff *skb; 1823 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1824 int used_sacks; 1825 bool found_dup_sack = false; 1826 int i, j; 1827 int first_sack_index; 1828 1829 state->flag = 0; 1830 state->reord = tp->snd_nxt; 1831 1832 if (!tp->sacked_out) 1833 tcp_highest_sack_reset(sk); 1834 1835 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1836 num_sacks, prior_snd_una, state); 1837 1838 /* Eliminate too old ACKs, but take into 1839 * account more or less fresh ones, they can 1840 * contain valid SACK info. 1841 */ 1842 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1843 return 0; 1844 1845 if (!tp->packets_out) 1846 goto out; 1847 1848 used_sacks = 0; 1849 first_sack_index = 0; 1850 for (i = 0; i < num_sacks; i++) { 1851 bool dup_sack = !i && found_dup_sack; 1852 1853 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1854 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1855 1856 if (!tcp_is_sackblock_valid(tp, dup_sack, 1857 sp[used_sacks].start_seq, 1858 sp[used_sacks].end_seq)) { 1859 int mib_idx; 1860 1861 if (dup_sack) { 1862 if (!tp->undo_marker) 1863 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1864 else 1865 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1866 } else { 1867 /* Don't count olds caused by ACK reordering */ 1868 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1869 !after(sp[used_sacks].end_seq, tp->snd_una)) 1870 continue; 1871 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1872 } 1873 1874 NET_INC_STATS(sock_net(sk), mib_idx); 1875 if (i == 0) 1876 first_sack_index = -1; 1877 continue; 1878 } 1879 1880 /* Ignore very old stuff early */ 1881 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1882 if (i == 0) 1883 first_sack_index = -1; 1884 continue; 1885 } 1886 1887 used_sacks++; 1888 } 1889 1890 /* order SACK blocks to allow in order walk of the retrans queue */ 1891 for (i = used_sacks - 1; i > 0; i--) { 1892 for (j = 0; j < i; j++) { 1893 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1894 swap(sp[j], sp[j + 1]); 1895 1896 /* Track where the first SACK block goes to */ 1897 if (j == first_sack_index) 1898 first_sack_index = j + 1; 1899 } 1900 } 1901 } 1902 1903 state->mss_now = tcp_current_mss(sk); 1904 skb = NULL; 1905 i = 0; 1906 1907 if (!tp->sacked_out) { 1908 /* It's already past, so skip checking against it */ 1909 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1910 } else { 1911 cache = tp->recv_sack_cache; 1912 /* Skip empty blocks in at head of the cache */ 1913 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1914 !cache->end_seq) 1915 cache++; 1916 } 1917 1918 while (i < used_sacks) { 1919 u32 start_seq = sp[i].start_seq; 1920 u32 end_seq = sp[i].end_seq; 1921 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1922 struct tcp_sack_block *next_dup = NULL; 1923 1924 if (found_dup_sack && ((i + 1) == first_sack_index)) 1925 next_dup = &sp[i + 1]; 1926 1927 /* Skip too early cached blocks */ 1928 while (tcp_sack_cache_ok(tp, cache) && 1929 !before(start_seq, cache->end_seq)) 1930 cache++; 1931 1932 /* Can skip some work by looking recv_sack_cache? */ 1933 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1934 after(end_seq, cache->start_seq)) { 1935 1936 /* Head todo? */ 1937 if (before(start_seq, cache->start_seq)) { 1938 skb = tcp_sacktag_skip(skb, sk, start_seq); 1939 skb = tcp_sacktag_walk(skb, sk, next_dup, 1940 state, 1941 start_seq, 1942 cache->start_seq, 1943 dup_sack); 1944 } 1945 1946 /* Rest of the block already fully processed? */ 1947 if (!after(end_seq, cache->end_seq)) 1948 goto advance_sp; 1949 1950 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1951 state, 1952 cache->end_seq); 1953 1954 /* ...tail remains todo... */ 1955 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1956 /* ...but better entrypoint exists! */ 1957 skb = tcp_highest_sack(sk); 1958 if (!skb) 1959 break; 1960 cache++; 1961 goto walk; 1962 } 1963 1964 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1965 /* Check overlap against next cached too (past this one already) */ 1966 cache++; 1967 continue; 1968 } 1969 1970 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1971 skb = tcp_highest_sack(sk); 1972 if (!skb) 1973 break; 1974 } 1975 skb = tcp_sacktag_skip(skb, sk, start_seq); 1976 1977 walk: 1978 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1979 start_seq, end_seq, dup_sack); 1980 1981 advance_sp: 1982 i++; 1983 } 1984 1985 /* Clear the head of the cache sack blocks so we can skip it next time */ 1986 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1987 tp->recv_sack_cache[i].start_seq = 0; 1988 tp->recv_sack_cache[i].end_seq = 0; 1989 } 1990 for (j = 0; j < used_sacks; j++) 1991 tp->recv_sack_cache[i++] = sp[j]; 1992 1993 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1994 tcp_check_sack_reordering(sk, state->reord, 0); 1995 1996 tcp_verify_left_out(tp); 1997 out: 1998 1999 #if FASTRETRANS_DEBUG > 0 2000 WARN_ON((int)tp->sacked_out < 0); 2001 WARN_ON((int)tp->lost_out < 0); 2002 WARN_ON((int)tp->retrans_out < 0); 2003 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2004 #endif 2005 return state->flag; 2006 } 2007 2008 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2009 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2010 */ 2011 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2012 { 2013 u32 holes; 2014 2015 holes = max(tp->lost_out, 1U); 2016 holes = min(holes, tp->packets_out); 2017 2018 if ((tp->sacked_out + holes) > tp->packets_out) { 2019 tp->sacked_out = tp->packets_out - holes; 2020 return true; 2021 } 2022 return false; 2023 } 2024 2025 /* If we receive more dupacks than we expected counting segments 2026 * in assumption of absent reordering, interpret this as reordering. 2027 * The only another reason could be bug in receiver TCP. 2028 */ 2029 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2030 { 2031 struct tcp_sock *tp = tcp_sk(sk); 2032 2033 if (!tcp_limit_reno_sacked(tp)) 2034 return; 2035 2036 tp->reordering = min_t(u32, tp->packets_out + addend, 2037 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2038 tp->reord_seen++; 2039 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2040 } 2041 2042 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2043 2044 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2045 { 2046 if (num_dupack) { 2047 struct tcp_sock *tp = tcp_sk(sk); 2048 u32 prior_sacked = tp->sacked_out; 2049 s32 delivered; 2050 2051 tp->sacked_out += num_dupack; 2052 tcp_check_reno_reordering(sk, 0); 2053 delivered = tp->sacked_out - prior_sacked; 2054 if (delivered > 0) 2055 tcp_count_delivered(tp, delivered, ece_ack); 2056 tcp_verify_left_out(tp); 2057 } 2058 } 2059 2060 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2061 2062 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2063 { 2064 struct tcp_sock *tp = tcp_sk(sk); 2065 2066 if (acked > 0) { 2067 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2068 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2069 ece_ack); 2070 if (acked - 1 >= tp->sacked_out) 2071 tp->sacked_out = 0; 2072 else 2073 tp->sacked_out -= acked - 1; 2074 } 2075 tcp_check_reno_reordering(sk, acked); 2076 tcp_verify_left_out(tp); 2077 } 2078 2079 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2080 { 2081 tp->sacked_out = 0; 2082 } 2083 2084 void tcp_clear_retrans(struct tcp_sock *tp) 2085 { 2086 tp->retrans_out = 0; 2087 tp->lost_out = 0; 2088 tp->undo_marker = 0; 2089 tp->undo_retrans = -1; 2090 tp->sacked_out = 0; 2091 tp->rto_stamp = 0; 2092 tp->total_rto = 0; 2093 tp->total_rto_recoveries = 0; 2094 tp->total_rto_time = 0; 2095 } 2096 2097 static inline void tcp_init_undo(struct tcp_sock *tp) 2098 { 2099 tp->undo_marker = tp->snd_una; 2100 /* Retransmission still in flight may cause DSACKs later. */ 2101 tp->undo_retrans = tp->retrans_out ? : -1; 2102 } 2103 2104 static bool tcp_is_rack(const struct sock *sk) 2105 { 2106 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2107 TCP_RACK_LOSS_DETECTION; 2108 } 2109 2110 /* If we detect SACK reneging, forget all SACK information 2111 * and reset tags completely, otherwise preserve SACKs. If receiver 2112 * dropped its ofo queue, we will know this due to reneging detection. 2113 */ 2114 static void tcp_timeout_mark_lost(struct sock *sk) 2115 { 2116 struct tcp_sock *tp = tcp_sk(sk); 2117 struct sk_buff *skb, *head; 2118 bool is_reneg; /* is receiver reneging on SACKs? */ 2119 2120 head = tcp_rtx_queue_head(sk); 2121 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2122 if (is_reneg) { 2123 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2124 tp->sacked_out = 0; 2125 /* Mark SACK reneging until we recover from this loss event. */ 2126 tp->is_sack_reneg = 1; 2127 } else if (tcp_is_reno(tp)) { 2128 tcp_reset_reno_sack(tp); 2129 } 2130 2131 skb = head; 2132 skb_rbtree_walk_from(skb) { 2133 if (is_reneg) 2134 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2135 else if (tcp_is_rack(sk) && skb != head && 2136 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2137 continue; /* Don't mark recently sent ones lost yet */ 2138 tcp_mark_skb_lost(sk, skb); 2139 } 2140 tcp_verify_left_out(tp); 2141 tcp_clear_all_retrans_hints(tp); 2142 } 2143 2144 /* Enter Loss state. */ 2145 void tcp_enter_loss(struct sock *sk) 2146 { 2147 const struct inet_connection_sock *icsk = inet_csk(sk); 2148 struct tcp_sock *tp = tcp_sk(sk); 2149 struct net *net = sock_net(sk); 2150 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2151 u8 reordering; 2152 2153 tcp_timeout_mark_lost(sk); 2154 2155 /* Reduce ssthresh if it has not yet been made inside this window. */ 2156 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2157 !after(tp->high_seq, tp->snd_una) || 2158 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2159 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2160 tp->prior_cwnd = tcp_snd_cwnd(tp); 2161 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2162 tcp_ca_event(sk, CA_EVENT_LOSS); 2163 tcp_init_undo(tp); 2164 } 2165 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2166 tp->snd_cwnd_cnt = 0; 2167 tp->snd_cwnd_stamp = tcp_jiffies32; 2168 2169 /* Timeout in disordered state after receiving substantial DUPACKs 2170 * suggests that the degree of reordering is over-estimated. 2171 */ 2172 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2173 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2174 tp->sacked_out >= reordering) 2175 tp->reordering = min_t(unsigned int, tp->reordering, 2176 reordering); 2177 2178 tcp_set_ca_state(sk, TCP_CA_Loss); 2179 tp->high_seq = tp->snd_nxt; 2180 tcp_ecn_queue_cwr(tp); 2181 2182 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2183 * loss recovery is underway except recurring timeout(s) on 2184 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2185 */ 2186 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2187 (new_recovery || icsk->icsk_retransmits) && 2188 !inet_csk(sk)->icsk_mtup.probe_size; 2189 } 2190 2191 /* If ACK arrived pointing to a remembered SACK, it means that our 2192 * remembered SACKs do not reflect real state of receiver i.e. 2193 * receiver _host_ is heavily congested (or buggy). 2194 * 2195 * To avoid big spurious retransmission bursts due to transient SACK 2196 * scoreboard oddities that look like reneging, we give the receiver a 2197 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2198 * restore sanity to the SACK scoreboard. If the apparent reneging 2199 * persists until this RTO then we'll clear the SACK scoreboard. 2200 */ 2201 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2202 { 2203 if (flag & FLAG_SACK_RENEGING && 2204 flag & FLAG_SND_UNA_ADVANCED) { 2205 struct tcp_sock *tp = tcp_sk(sk); 2206 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2207 msecs_to_jiffies(10)); 2208 2209 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2210 delay, TCP_RTO_MAX); 2211 return true; 2212 } 2213 return false; 2214 } 2215 2216 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2217 * counter when SACK is enabled (without SACK, sacked_out is used for 2218 * that purpose). 2219 * 2220 * With reordering, holes may still be in flight, so RFC3517 recovery 2221 * uses pure sacked_out (total number of SACKed segments) even though 2222 * it violates the RFC that uses duplicate ACKs, often these are equal 2223 * but when e.g. out-of-window ACKs or packet duplication occurs, 2224 * they differ. Since neither occurs due to loss, TCP should really 2225 * ignore them. 2226 */ 2227 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2228 { 2229 return tp->sacked_out + 1; 2230 } 2231 2232 /* Linux NewReno/SACK/ECN state machine. 2233 * -------------------------------------- 2234 * 2235 * "Open" Normal state, no dubious events, fast path. 2236 * "Disorder" In all the respects it is "Open", 2237 * but requires a bit more attention. It is entered when 2238 * we see some SACKs or dupacks. It is split of "Open" 2239 * mainly to move some processing from fast path to slow one. 2240 * "CWR" CWND was reduced due to some Congestion Notification event. 2241 * It can be ECN, ICMP source quench, local device congestion. 2242 * "Recovery" CWND was reduced, we are fast-retransmitting. 2243 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2244 * 2245 * tcp_fastretrans_alert() is entered: 2246 * - each incoming ACK, if state is not "Open" 2247 * - when arrived ACK is unusual, namely: 2248 * * SACK 2249 * * Duplicate ACK. 2250 * * ECN ECE. 2251 * 2252 * Counting packets in flight is pretty simple. 2253 * 2254 * in_flight = packets_out - left_out + retrans_out 2255 * 2256 * packets_out is SND.NXT-SND.UNA counted in packets. 2257 * 2258 * retrans_out is number of retransmitted segments. 2259 * 2260 * left_out is number of segments left network, but not ACKed yet. 2261 * 2262 * left_out = sacked_out + lost_out 2263 * 2264 * sacked_out: Packets, which arrived to receiver out of order 2265 * and hence not ACKed. With SACKs this number is simply 2266 * amount of SACKed data. Even without SACKs 2267 * it is easy to give pretty reliable estimate of this number, 2268 * counting duplicate ACKs. 2269 * 2270 * lost_out: Packets lost by network. TCP has no explicit 2271 * "loss notification" feedback from network (for now). 2272 * It means that this number can be only _guessed_. 2273 * Actually, it is the heuristics to predict lossage that 2274 * distinguishes different algorithms. 2275 * 2276 * F.e. after RTO, when all the queue is considered as lost, 2277 * lost_out = packets_out and in_flight = retrans_out. 2278 * 2279 * Essentially, we have now a few algorithms detecting 2280 * lost packets. 2281 * 2282 * If the receiver supports SACK: 2283 * 2284 * RFC6675/3517: It is the conventional algorithm. A packet is 2285 * considered lost if the number of higher sequence packets 2286 * SACKed is greater than or equal the DUPACK thoreshold 2287 * (reordering). This is implemented in tcp_mark_head_lost and 2288 * tcp_update_scoreboard. 2289 * 2290 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2291 * (2017-) that checks timing instead of counting DUPACKs. 2292 * Essentially a packet is considered lost if it's not S/ACKed 2293 * after RTT + reordering_window, where both metrics are 2294 * dynamically measured and adjusted. This is implemented in 2295 * tcp_rack_mark_lost. 2296 * 2297 * If the receiver does not support SACK: 2298 * 2299 * NewReno (RFC6582): in Recovery we assume that one segment 2300 * is lost (classic Reno). While we are in Recovery and 2301 * a partial ACK arrives, we assume that one more packet 2302 * is lost (NewReno). This heuristics are the same in NewReno 2303 * and SACK. 2304 * 2305 * Really tricky (and requiring careful tuning) part of algorithm 2306 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2307 * The first determines the moment _when_ we should reduce CWND and, 2308 * hence, slow down forward transmission. In fact, it determines the moment 2309 * when we decide that hole is caused by loss, rather than by a reorder. 2310 * 2311 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2312 * holes, caused by lost packets. 2313 * 2314 * And the most logically complicated part of algorithm is undo 2315 * heuristics. We detect false retransmits due to both too early 2316 * fast retransmit (reordering) and underestimated RTO, analyzing 2317 * timestamps and D-SACKs. When we detect that some segments were 2318 * retransmitted by mistake and CWND reduction was wrong, we undo 2319 * window reduction and abort recovery phase. This logic is hidden 2320 * inside several functions named tcp_try_undo_<something>. 2321 */ 2322 2323 /* This function decides, when we should leave Disordered state 2324 * and enter Recovery phase, reducing congestion window. 2325 * 2326 * Main question: may we further continue forward transmission 2327 * with the same cwnd? 2328 */ 2329 static bool tcp_time_to_recover(struct sock *sk, int flag) 2330 { 2331 struct tcp_sock *tp = tcp_sk(sk); 2332 2333 /* Trick#1: The loss is proven. */ 2334 if (tp->lost_out) 2335 return true; 2336 2337 /* Not-A-Trick#2 : Classic rule... */ 2338 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2339 return true; 2340 2341 return false; 2342 } 2343 2344 /* Detect loss in event "A" above by marking head of queue up as lost. 2345 * For RFC3517 SACK, a segment is considered lost if it 2346 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2347 * the maximum SACKed segments to pass before reaching this limit. 2348 */ 2349 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2350 { 2351 struct tcp_sock *tp = tcp_sk(sk); 2352 struct sk_buff *skb; 2353 int cnt; 2354 /* Use SACK to deduce losses of new sequences sent during recovery */ 2355 const u32 loss_high = tp->snd_nxt; 2356 2357 WARN_ON(packets > tp->packets_out); 2358 skb = tp->lost_skb_hint; 2359 if (skb) { 2360 /* Head already handled? */ 2361 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2362 return; 2363 cnt = tp->lost_cnt_hint; 2364 } else { 2365 skb = tcp_rtx_queue_head(sk); 2366 cnt = 0; 2367 } 2368 2369 skb_rbtree_walk_from(skb) { 2370 /* TODO: do this better */ 2371 /* this is not the most efficient way to do this... */ 2372 tp->lost_skb_hint = skb; 2373 tp->lost_cnt_hint = cnt; 2374 2375 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2376 break; 2377 2378 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2379 cnt += tcp_skb_pcount(skb); 2380 2381 if (cnt > packets) 2382 break; 2383 2384 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2385 tcp_mark_skb_lost(sk, skb); 2386 2387 if (mark_head) 2388 break; 2389 } 2390 tcp_verify_left_out(tp); 2391 } 2392 2393 /* Account newly detected lost packet(s) */ 2394 2395 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2396 { 2397 struct tcp_sock *tp = tcp_sk(sk); 2398 2399 if (tcp_is_sack(tp)) { 2400 int sacked_upto = tp->sacked_out - tp->reordering; 2401 if (sacked_upto >= 0) 2402 tcp_mark_head_lost(sk, sacked_upto, 0); 2403 else if (fast_rexmit) 2404 tcp_mark_head_lost(sk, 1, 1); 2405 } 2406 } 2407 2408 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2409 { 2410 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2411 before(tp->rx_opt.rcv_tsecr, when); 2412 } 2413 2414 /* skb is spurious retransmitted if the returned timestamp echo 2415 * reply is prior to the skb transmission time 2416 */ 2417 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2418 const struct sk_buff *skb) 2419 { 2420 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2421 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2422 } 2423 2424 /* Nothing was retransmitted or returned timestamp is less 2425 * than timestamp of the first retransmission. 2426 */ 2427 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2428 { 2429 return tp->retrans_stamp && 2430 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2431 } 2432 2433 /* Undo procedures. */ 2434 2435 /* We can clear retrans_stamp when there are no retransmissions in the 2436 * window. It would seem that it is trivially available for us in 2437 * tp->retrans_out, however, that kind of assumptions doesn't consider 2438 * what will happen if errors occur when sending retransmission for the 2439 * second time. ...It could the that such segment has only 2440 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2441 * the head skb is enough except for some reneging corner cases that 2442 * are not worth the effort. 2443 * 2444 * Main reason for all this complexity is the fact that connection dying 2445 * time now depends on the validity of the retrans_stamp, in particular, 2446 * that successive retransmissions of a segment must not advance 2447 * retrans_stamp under any conditions. 2448 */ 2449 static bool tcp_any_retrans_done(const struct sock *sk) 2450 { 2451 const struct tcp_sock *tp = tcp_sk(sk); 2452 struct sk_buff *skb; 2453 2454 if (tp->retrans_out) 2455 return true; 2456 2457 skb = tcp_rtx_queue_head(sk); 2458 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2459 return true; 2460 2461 return false; 2462 } 2463 2464 static void DBGUNDO(struct sock *sk, const char *msg) 2465 { 2466 #if FASTRETRANS_DEBUG > 1 2467 struct tcp_sock *tp = tcp_sk(sk); 2468 struct inet_sock *inet = inet_sk(sk); 2469 2470 if (sk->sk_family == AF_INET) { 2471 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2472 msg, 2473 &inet->inet_daddr, ntohs(inet->inet_dport), 2474 tcp_snd_cwnd(tp), tcp_left_out(tp), 2475 tp->snd_ssthresh, tp->prior_ssthresh, 2476 tp->packets_out); 2477 } 2478 #if IS_ENABLED(CONFIG_IPV6) 2479 else if (sk->sk_family == AF_INET6) { 2480 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2481 msg, 2482 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2483 tcp_snd_cwnd(tp), tcp_left_out(tp), 2484 tp->snd_ssthresh, tp->prior_ssthresh, 2485 tp->packets_out); 2486 } 2487 #endif 2488 #endif 2489 } 2490 2491 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2492 { 2493 struct tcp_sock *tp = tcp_sk(sk); 2494 2495 if (unmark_loss) { 2496 struct sk_buff *skb; 2497 2498 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2499 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2500 } 2501 tp->lost_out = 0; 2502 tcp_clear_all_retrans_hints(tp); 2503 } 2504 2505 if (tp->prior_ssthresh) { 2506 const struct inet_connection_sock *icsk = inet_csk(sk); 2507 2508 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2509 2510 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2511 tp->snd_ssthresh = tp->prior_ssthresh; 2512 tcp_ecn_withdraw_cwr(tp); 2513 } 2514 } 2515 tp->snd_cwnd_stamp = tcp_jiffies32; 2516 tp->undo_marker = 0; 2517 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2518 } 2519 2520 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2521 { 2522 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2523 } 2524 2525 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2526 { 2527 struct tcp_sock *tp = tcp_sk(sk); 2528 2529 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2530 /* Hold old state until something *above* high_seq 2531 * is ACKed. For Reno it is MUST to prevent false 2532 * fast retransmits (RFC2582). SACK TCP is safe. */ 2533 if (!tcp_any_retrans_done(sk)) 2534 tp->retrans_stamp = 0; 2535 return true; 2536 } 2537 return false; 2538 } 2539 2540 /* People celebrate: "We love our President!" */ 2541 static bool tcp_try_undo_recovery(struct sock *sk) 2542 { 2543 struct tcp_sock *tp = tcp_sk(sk); 2544 2545 if (tcp_may_undo(tp)) { 2546 int mib_idx; 2547 2548 /* Happy end! We did not retransmit anything 2549 * or our original transmission succeeded. 2550 */ 2551 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2552 tcp_undo_cwnd_reduction(sk, false); 2553 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2554 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2555 else 2556 mib_idx = LINUX_MIB_TCPFULLUNDO; 2557 2558 NET_INC_STATS(sock_net(sk), mib_idx); 2559 } else if (tp->rack.reo_wnd_persist) { 2560 tp->rack.reo_wnd_persist--; 2561 } 2562 if (tcp_is_non_sack_preventing_reopen(sk)) 2563 return true; 2564 tcp_set_ca_state(sk, TCP_CA_Open); 2565 tp->is_sack_reneg = 0; 2566 return false; 2567 } 2568 2569 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2570 static bool tcp_try_undo_dsack(struct sock *sk) 2571 { 2572 struct tcp_sock *tp = tcp_sk(sk); 2573 2574 if (tp->undo_marker && !tp->undo_retrans) { 2575 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2576 tp->rack.reo_wnd_persist + 1); 2577 DBGUNDO(sk, "D-SACK"); 2578 tcp_undo_cwnd_reduction(sk, false); 2579 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2580 return true; 2581 } 2582 return false; 2583 } 2584 2585 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2586 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2587 { 2588 struct tcp_sock *tp = tcp_sk(sk); 2589 2590 if (frto_undo || tcp_may_undo(tp)) { 2591 tcp_undo_cwnd_reduction(sk, true); 2592 2593 DBGUNDO(sk, "partial loss"); 2594 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2595 if (frto_undo) 2596 NET_INC_STATS(sock_net(sk), 2597 LINUX_MIB_TCPSPURIOUSRTOS); 2598 inet_csk(sk)->icsk_retransmits = 0; 2599 if (tcp_is_non_sack_preventing_reopen(sk)) 2600 return true; 2601 if (frto_undo || tcp_is_sack(tp)) { 2602 tcp_set_ca_state(sk, TCP_CA_Open); 2603 tp->is_sack_reneg = 0; 2604 } 2605 return true; 2606 } 2607 return false; 2608 } 2609 2610 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2611 * It computes the number of packets to send (sndcnt) based on packets newly 2612 * delivered: 2613 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2614 * cwnd reductions across a full RTT. 2615 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2616 * But when SND_UNA is acked without further losses, 2617 * slow starts cwnd up to ssthresh to speed up the recovery. 2618 */ 2619 static void tcp_init_cwnd_reduction(struct sock *sk) 2620 { 2621 struct tcp_sock *tp = tcp_sk(sk); 2622 2623 tp->high_seq = tp->snd_nxt; 2624 tp->tlp_high_seq = 0; 2625 tp->snd_cwnd_cnt = 0; 2626 tp->prior_cwnd = tcp_snd_cwnd(tp); 2627 tp->prr_delivered = 0; 2628 tp->prr_out = 0; 2629 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2630 tcp_ecn_queue_cwr(tp); 2631 } 2632 2633 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2634 { 2635 struct tcp_sock *tp = tcp_sk(sk); 2636 int sndcnt = 0; 2637 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2638 2639 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2640 return; 2641 2642 tp->prr_delivered += newly_acked_sacked; 2643 if (delta < 0) { 2644 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2645 tp->prior_cwnd - 1; 2646 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2647 } else { 2648 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2649 newly_acked_sacked); 2650 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2651 sndcnt++; 2652 sndcnt = min(delta, sndcnt); 2653 } 2654 /* Force a fast retransmit upon entering fast recovery */ 2655 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2656 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2657 } 2658 2659 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2660 { 2661 struct tcp_sock *tp = tcp_sk(sk); 2662 2663 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2664 return; 2665 2666 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2667 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2668 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2669 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2670 tp->snd_cwnd_stamp = tcp_jiffies32; 2671 } 2672 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2673 } 2674 2675 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2676 void tcp_enter_cwr(struct sock *sk) 2677 { 2678 struct tcp_sock *tp = tcp_sk(sk); 2679 2680 tp->prior_ssthresh = 0; 2681 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2682 tp->undo_marker = 0; 2683 tcp_init_cwnd_reduction(sk); 2684 tcp_set_ca_state(sk, TCP_CA_CWR); 2685 } 2686 } 2687 EXPORT_SYMBOL(tcp_enter_cwr); 2688 2689 static void tcp_try_keep_open(struct sock *sk) 2690 { 2691 struct tcp_sock *tp = tcp_sk(sk); 2692 int state = TCP_CA_Open; 2693 2694 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2695 state = TCP_CA_Disorder; 2696 2697 if (inet_csk(sk)->icsk_ca_state != state) { 2698 tcp_set_ca_state(sk, state); 2699 tp->high_seq = tp->snd_nxt; 2700 } 2701 } 2702 2703 static void tcp_try_to_open(struct sock *sk, int flag) 2704 { 2705 struct tcp_sock *tp = tcp_sk(sk); 2706 2707 tcp_verify_left_out(tp); 2708 2709 if (!tcp_any_retrans_done(sk)) 2710 tp->retrans_stamp = 0; 2711 2712 if (flag & FLAG_ECE) 2713 tcp_enter_cwr(sk); 2714 2715 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2716 tcp_try_keep_open(sk); 2717 } 2718 } 2719 2720 static void tcp_mtup_probe_failed(struct sock *sk) 2721 { 2722 struct inet_connection_sock *icsk = inet_csk(sk); 2723 2724 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2725 icsk->icsk_mtup.probe_size = 0; 2726 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2727 } 2728 2729 static void tcp_mtup_probe_success(struct sock *sk) 2730 { 2731 struct tcp_sock *tp = tcp_sk(sk); 2732 struct inet_connection_sock *icsk = inet_csk(sk); 2733 u64 val; 2734 2735 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2736 2737 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2738 do_div(val, icsk->icsk_mtup.probe_size); 2739 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2740 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2741 2742 tp->snd_cwnd_cnt = 0; 2743 tp->snd_cwnd_stamp = tcp_jiffies32; 2744 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2745 2746 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2747 icsk->icsk_mtup.probe_size = 0; 2748 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2749 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2750 } 2751 2752 /* Do a simple retransmit without using the backoff mechanisms in 2753 * tcp_timer. This is used for path mtu discovery. 2754 * The socket is already locked here. 2755 */ 2756 void tcp_simple_retransmit(struct sock *sk) 2757 { 2758 const struct inet_connection_sock *icsk = inet_csk(sk); 2759 struct tcp_sock *tp = tcp_sk(sk); 2760 struct sk_buff *skb; 2761 int mss; 2762 2763 /* A fastopen SYN request is stored as two separate packets within 2764 * the retransmit queue, this is done by tcp_send_syn_data(). 2765 * As a result simply checking the MSS of the frames in the queue 2766 * will not work for the SYN packet. 2767 * 2768 * Us being here is an indication of a path MTU issue so we can 2769 * assume that the fastopen SYN was lost and just mark all the 2770 * frames in the retransmit queue as lost. We will use an MSS of 2771 * -1 to mark all frames as lost, otherwise compute the current MSS. 2772 */ 2773 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2774 mss = -1; 2775 else 2776 mss = tcp_current_mss(sk); 2777 2778 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2779 if (tcp_skb_seglen(skb) > mss) 2780 tcp_mark_skb_lost(sk, skb); 2781 } 2782 2783 tcp_clear_retrans_hints_partial(tp); 2784 2785 if (!tp->lost_out) 2786 return; 2787 2788 if (tcp_is_reno(tp)) 2789 tcp_limit_reno_sacked(tp); 2790 2791 tcp_verify_left_out(tp); 2792 2793 /* Don't muck with the congestion window here. 2794 * Reason is that we do not increase amount of _data_ 2795 * in network, but units changed and effective 2796 * cwnd/ssthresh really reduced now. 2797 */ 2798 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2799 tp->high_seq = tp->snd_nxt; 2800 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2801 tp->prior_ssthresh = 0; 2802 tp->undo_marker = 0; 2803 tcp_set_ca_state(sk, TCP_CA_Loss); 2804 } 2805 tcp_xmit_retransmit_queue(sk); 2806 } 2807 EXPORT_SYMBOL(tcp_simple_retransmit); 2808 2809 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2810 { 2811 struct tcp_sock *tp = tcp_sk(sk); 2812 int mib_idx; 2813 2814 if (tcp_is_reno(tp)) 2815 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2816 else 2817 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2818 2819 NET_INC_STATS(sock_net(sk), mib_idx); 2820 2821 tp->prior_ssthresh = 0; 2822 tcp_init_undo(tp); 2823 2824 if (!tcp_in_cwnd_reduction(sk)) { 2825 if (!ece_ack) 2826 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2827 tcp_init_cwnd_reduction(sk); 2828 } 2829 tcp_set_ca_state(sk, TCP_CA_Recovery); 2830 } 2831 2832 static void tcp_update_rto_time(struct tcp_sock *tp) 2833 { 2834 if (tp->rto_stamp) { 2835 tp->total_rto_time += tcp_time_stamp(tp) - tp->rto_stamp; 2836 tp->rto_stamp = 0; 2837 } 2838 } 2839 2840 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2841 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2842 */ 2843 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2844 int *rexmit) 2845 { 2846 struct tcp_sock *tp = tcp_sk(sk); 2847 bool recovered = !before(tp->snd_una, tp->high_seq); 2848 2849 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2850 tcp_try_undo_loss(sk, false)) 2851 return; 2852 2853 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2854 /* Step 3.b. A timeout is spurious if not all data are 2855 * lost, i.e., never-retransmitted data are (s)acked. 2856 */ 2857 if ((flag & FLAG_ORIG_SACK_ACKED) && 2858 tcp_try_undo_loss(sk, true)) 2859 return; 2860 2861 if (after(tp->snd_nxt, tp->high_seq)) { 2862 if (flag & FLAG_DATA_SACKED || num_dupack) 2863 tp->frto = 0; /* Step 3.a. loss was real */ 2864 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2865 tp->high_seq = tp->snd_nxt; 2866 /* Step 2.b. Try send new data (but deferred until cwnd 2867 * is updated in tcp_ack()). Otherwise fall back to 2868 * the conventional recovery. 2869 */ 2870 if (!tcp_write_queue_empty(sk) && 2871 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2872 *rexmit = REXMIT_NEW; 2873 return; 2874 } 2875 tp->frto = 0; 2876 } 2877 } 2878 2879 if (recovered) { 2880 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2881 tcp_try_undo_recovery(sk); 2882 return; 2883 } 2884 if (tcp_is_reno(tp)) { 2885 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2886 * delivered. Lower inflight to clock out (re)transmissions. 2887 */ 2888 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2889 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2890 else if (flag & FLAG_SND_UNA_ADVANCED) 2891 tcp_reset_reno_sack(tp); 2892 } 2893 *rexmit = REXMIT_LOST; 2894 } 2895 2896 static bool tcp_force_fast_retransmit(struct sock *sk) 2897 { 2898 struct tcp_sock *tp = tcp_sk(sk); 2899 2900 return after(tcp_highest_sack_seq(tp), 2901 tp->snd_una + tp->reordering * tp->mss_cache); 2902 } 2903 2904 /* Undo during fast recovery after partial ACK. */ 2905 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2906 bool *do_lost) 2907 { 2908 struct tcp_sock *tp = tcp_sk(sk); 2909 2910 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2911 /* Plain luck! Hole if filled with delayed 2912 * packet, rather than with a retransmit. Check reordering. 2913 */ 2914 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2915 2916 /* We are getting evidence that the reordering degree is higher 2917 * than we realized. If there are no retransmits out then we 2918 * can undo. Otherwise we clock out new packets but do not 2919 * mark more packets lost or retransmit more. 2920 */ 2921 if (tp->retrans_out) 2922 return true; 2923 2924 if (!tcp_any_retrans_done(sk)) 2925 tp->retrans_stamp = 0; 2926 2927 DBGUNDO(sk, "partial recovery"); 2928 tcp_undo_cwnd_reduction(sk, true); 2929 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2930 tcp_try_keep_open(sk); 2931 } else { 2932 /* Partial ACK arrived. Force fast retransmit. */ 2933 *do_lost = tcp_force_fast_retransmit(sk); 2934 } 2935 return false; 2936 } 2937 2938 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2939 { 2940 struct tcp_sock *tp = tcp_sk(sk); 2941 2942 if (tcp_rtx_queue_empty(sk)) 2943 return; 2944 2945 if (unlikely(tcp_is_reno(tp))) { 2946 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2947 } else if (tcp_is_rack(sk)) { 2948 u32 prior_retrans = tp->retrans_out; 2949 2950 if (tcp_rack_mark_lost(sk)) 2951 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2952 if (prior_retrans > tp->retrans_out) 2953 *ack_flag |= FLAG_LOST_RETRANS; 2954 } 2955 } 2956 2957 /* Process an event, which can update packets-in-flight not trivially. 2958 * Main goal of this function is to calculate new estimate for left_out, 2959 * taking into account both packets sitting in receiver's buffer and 2960 * packets lost by network. 2961 * 2962 * Besides that it updates the congestion state when packet loss or ECN 2963 * is detected. But it does not reduce the cwnd, it is done by the 2964 * congestion control later. 2965 * 2966 * It does _not_ decide what to send, it is made in function 2967 * tcp_xmit_retransmit_queue(). 2968 */ 2969 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2970 int num_dupack, int *ack_flag, int *rexmit) 2971 { 2972 struct inet_connection_sock *icsk = inet_csk(sk); 2973 struct tcp_sock *tp = tcp_sk(sk); 2974 int fast_rexmit = 0, flag = *ack_flag; 2975 bool ece_ack = flag & FLAG_ECE; 2976 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2977 tcp_force_fast_retransmit(sk)); 2978 2979 if (!tp->packets_out && tp->sacked_out) 2980 tp->sacked_out = 0; 2981 2982 /* Now state machine starts. 2983 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2984 if (ece_ack) 2985 tp->prior_ssthresh = 0; 2986 2987 /* B. In all the states check for reneging SACKs. */ 2988 if (tcp_check_sack_reneging(sk, flag)) 2989 return; 2990 2991 /* C. Check consistency of the current state. */ 2992 tcp_verify_left_out(tp); 2993 2994 /* D. Check state exit conditions. State can be terminated 2995 * when high_seq is ACKed. */ 2996 if (icsk->icsk_ca_state == TCP_CA_Open) { 2997 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 2998 tp->retrans_stamp = 0; 2999 } else if (!before(tp->snd_una, tp->high_seq)) { 3000 switch (icsk->icsk_ca_state) { 3001 case TCP_CA_CWR: 3002 /* CWR is to be held something *above* high_seq 3003 * is ACKed for CWR bit to reach receiver. */ 3004 if (tp->snd_una != tp->high_seq) { 3005 tcp_end_cwnd_reduction(sk); 3006 tcp_set_ca_state(sk, TCP_CA_Open); 3007 } 3008 break; 3009 3010 case TCP_CA_Recovery: 3011 if (tcp_is_reno(tp)) 3012 tcp_reset_reno_sack(tp); 3013 if (tcp_try_undo_recovery(sk)) 3014 return; 3015 tcp_end_cwnd_reduction(sk); 3016 break; 3017 } 3018 } 3019 3020 /* E. Process state. */ 3021 switch (icsk->icsk_ca_state) { 3022 case TCP_CA_Recovery: 3023 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3024 if (tcp_is_reno(tp)) 3025 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3026 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3027 return; 3028 3029 if (tcp_try_undo_dsack(sk)) 3030 tcp_try_keep_open(sk); 3031 3032 tcp_identify_packet_loss(sk, ack_flag); 3033 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3034 if (!tcp_time_to_recover(sk, flag)) 3035 return; 3036 /* Undo reverts the recovery state. If loss is evident, 3037 * starts a new recovery (e.g. reordering then loss); 3038 */ 3039 tcp_enter_recovery(sk, ece_ack); 3040 } 3041 break; 3042 case TCP_CA_Loss: 3043 tcp_process_loss(sk, flag, num_dupack, rexmit); 3044 if (icsk->icsk_ca_state != TCP_CA_Loss) 3045 tcp_update_rto_time(tp); 3046 tcp_identify_packet_loss(sk, ack_flag); 3047 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3048 (*ack_flag & FLAG_LOST_RETRANS))) 3049 return; 3050 /* Change state if cwnd is undone or retransmits are lost */ 3051 fallthrough; 3052 default: 3053 if (tcp_is_reno(tp)) { 3054 if (flag & FLAG_SND_UNA_ADVANCED) 3055 tcp_reset_reno_sack(tp); 3056 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3057 } 3058 3059 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3060 tcp_try_undo_dsack(sk); 3061 3062 tcp_identify_packet_loss(sk, ack_flag); 3063 if (!tcp_time_to_recover(sk, flag)) { 3064 tcp_try_to_open(sk, flag); 3065 return; 3066 } 3067 3068 /* MTU probe failure: don't reduce cwnd */ 3069 if (icsk->icsk_ca_state < TCP_CA_CWR && 3070 icsk->icsk_mtup.probe_size && 3071 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3072 tcp_mtup_probe_failed(sk); 3073 /* Restores the reduction we did in tcp_mtup_probe() */ 3074 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3075 tcp_simple_retransmit(sk); 3076 return; 3077 } 3078 3079 /* Otherwise enter Recovery state */ 3080 tcp_enter_recovery(sk, ece_ack); 3081 fast_rexmit = 1; 3082 } 3083 3084 if (!tcp_is_rack(sk) && do_lost) 3085 tcp_update_scoreboard(sk, fast_rexmit); 3086 *rexmit = REXMIT_LOST; 3087 } 3088 3089 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3090 { 3091 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3092 struct tcp_sock *tp = tcp_sk(sk); 3093 3094 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3095 /* If the remote keeps returning delayed ACKs, eventually 3096 * the min filter would pick it up and overestimate the 3097 * prop. delay when it expires. Skip suspected delayed ACKs. 3098 */ 3099 return; 3100 } 3101 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3102 rtt_us ? : jiffies_to_usecs(1)); 3103 } 3104 3105 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3106 long seq_rtt_us, long sack_rtt_us, 3107 long ca_rtt_us, struct rate_sample *rs) 3108 { 3109 const struct tcp_sock *tp = tcp_sk(sk); 3110 3111 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3112 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3113 * Karn's algorithm forbids taking RTT if some retransmitted data 3114 * is acked (RFC6298). 3115 */ 3116 if (seq_rtt_us < 0) 3117 seq_rtt_us = sack_rtt_us; 3118 3119 /* RTTM Rule: A TSecr value received in a segment is used to 3120 * update the averaged RTT measurement only if the segment 3121 * acknowledges some new data, i.e., only if it advances the 3122 * left edge of the send window. 3123 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3124 */ 3125 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3126 flag & FLAG_ACKED) { 3127 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3128 3129 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3130 if (!delta) 3131 delta = 1; 3132 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3133 ca_rtt_us = seq_rtt_us; 3134 } 3135 } 3136 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3137 if (seq_rtt_us < 0) 3138 return false; 3139 3140 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3141 * always taken together with ACK, SACK, or TS-opts. Any negative 3142 * values will be skipped with the seq_rtt_us < 0 check above. 3143 */ 3144 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3145 tcp_rtt_estimator(sk, seq_rtt_us); 3146 tcp_set_rto(sk); 3147 3148 /* RFC6298: only reset backoff on valid RTT measurement. */ 3149 inet_csk(sk)->icsk_backoff = 0; 3150 return true; 3151 } 3152 3153 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3154 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3155 { 3156 struct rate_sample rs; 3157 long rtt_us = -1L; 3158 3159 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3160 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3161 3162 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3163 } 3164 3165 3166 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3167 { 3168 const struct inet_connection_sock *icsk = inet_csk(sk); 3169 3170 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3171 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3172 } 3173 3174 /* Restart timer after forward progress on connection. 3175 * RFC2988 recommends to restart timer to now+rto. 3176 */ 3177 void tcp_rearm_rto(struct sock *sk) 3178 { 3179 const struct inet_connection_sock *icsk = inet_csk(sk); 3180 struct tcp_sock *tp = tcp_sk(sk); 3181 3182 /* If the retrans timer is currently being used by Fast Open 3183 * for SYN-ACK retrans purpose, stay put. 3184 */ 3185 if (rcu_access_pointer(tp->fastopen_rsk)) 3186 return; 3187 3188 if (!tp->packets_out) { 3189 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3190 } else { 3191 u32 rto = inet_csk(sk)->icsk_rto; 3192 /* Offset the time elapsed after installing regular RTO */ 3193 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3194 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3195 s64 delta_us = tcp_rto_delta_us(sk); 3196 /* delta_us may not be positive if the socket is locked 3197 * when the retrans timer fires and is rescheduled. 3198 */ 3199 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3200 } 3201 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3202 TCP_RTO_MAX); 3203 } 3204 } 3205 3206 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3207 static void tcp_set_xmit_timer(struct sock *sk) 3208 { 3209 if (!tcp_schedule_loss_probe(sk, true)) 3210 tcp_rearm_rto(sk); 3211 } 3212 3213 /* If we get here, the whole TSO packet has not been acked. */ 3214 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3215 { 3216 struct tcp_sock *tp = tcp_sk(sk); 3217 u32 packets_acked; 3218 3219 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3220 3221 packets_acked = tcp_skb_pcount(skb); 3222 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3223 return 0; 3224 packets_acked -= tcp_skb_pcount(skb); 3225 3226 if (packets_acked) { 3227 BUG_ON(tcp_skb_pcount(skb) == 0); 3228 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3229 } 3230 3231 return packets_acked; 3232 } 3233 3234 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3235 const struct sk_buff *ack_skb, u32 prior_snd_una) 3236 { 3237 const struct skb_shared_info *shinfo; 3238 3239 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3240 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3241 return; 3242 3243 shinfo = skb_shinfo(skb); 3244 if (!before(shinfo->tskey, prior_snd_una) && 3245 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3246 tcp_skb_tsorted_save(skb) { 3247 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3248 } tcp_skb_tsorted_restore(skb); 3249 } 3250 } 3251 3252 /* Remove acknowledged frames from the retransmission queue. If our packet 3253 * is before the ack sequence we can discard it as it's confirmed to have 3254 * arrived at the other end. 3255 */ 3256 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3257 u32 prior_fack, u32 prior_snd_una, 3258 struct tcp_sacktag_state *sack, bool ece_ack) 3259 { 3260 const struct inet_connection_sock *icsk = inet_csk(sk); 3261 u64 first_ackt, last_ackt; 3262 struct tcp_sock *tp = tcp_sk(sk); 3263 u32 prior_sacked = tp->sacked_out; 3264 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3265 struct sk_buff *skb, *next; 3266 bool fully_acked = true; 3267 long sack_rtt_us = -1L; 3268 long seq_rtt_us = -1L; 3269 long ca_rtt_us = -1L; 3270 u32 pkts_acked = 0; 3271 bool rtt_update; 3272 int flag = 0; 3273 3274 first_ackt = 0; 3275 3276 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3277 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3278 const u32 start_seq = scb->seq; 3279 u8 sacked = scb->sacked; 3280 u32 acked_pcount; 3281 3282 /* Determine how many packets and what bytes were acked, tso and else */ 3283 if (after(scb->end_seq, tp->snd_una)) { 3284 if (tcp_skb_pcount(skb) == 1 || 3285 !after(tp->snd_una, scb->seq)) 3286 break; 3287 3288 acked_pcount = tcp_tso_acked(sk, skb); 3289 if (!acked_pcount) 3290 break; 3291 fully_acked = false; 3292 } else { 3293 acked_pcount = tcp_skb_pcount(skb); 3294 } 3295 3296 if (unlikely(sacked & TCPCB_RETRANS)) { 3297 if (sacked & TCPCB_SACKED_RETRANS) 3298 tp->retrans_out -= acked_pcount; 3299 flag |= FLAG_RETRANS_DATA_ACKED; 3300 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3301 last_ackt = tcp_skb_timestamp_us(skb); 3302 WARN_ON_ONCE(last_ackt == 0); 3303 if (!first_ackt) 3304 first_ackt = last_ackt; 3305 3306 if (before(start_seq, reord)) 3307 reord = start_seq; 3308 if (!after(scb->end_seq, tp->high_seq)) 3309 flag |= FLAG_ORIG_SACK_ACKED; 3310 } 3311 3312 if (sacked & TCPCB_SACKED_ACKED) { 3313 tp->sacked_out -= acked_pcount; 3314 } else if (tcp_is_sack(tp)) { 3315 tcp_count_delivered(tp, acked_pcount, ece_ack); 3316 if (!tcp_skb_spurious_retrans(tp, skb)) 3317 tcp_rack_advance(tp, sacked, scb->end_seq, 3318 tcp_skb_timestamp_us(skb)); 3319 } 3320 if (sacked & TCPCB_LOST) 3321 tp->lost_out -= acked_pcount; 3322 3323 tp->packets_out -= acked_pcount; 3324 pkts_acked += acked_pcount; 3325 tcp_rate_skb_delivered(sk, skb, sack->rate); 3326 3327 /* Initial outgoing SYN's get put onto the write_queue 3328 * just like anything else we transmit. It is not 3329 * true data, and if we misinform our callers that 3330 * this ACK acks real data, we will erroneously exit 3331 * connection startup slow start one packet too 3332 * quickly. This is severely frowned upon behavior. 3333 */ 3334 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3335 flag |= FLAG_DATA_ACKED; 3336 } else { 3337 flag |= FLAG_SYN_ACKED; 3338 tp->retrans_stamp = 0; 3339 } 3340 3341 if (!fully_acked) 3342 break; 3343 3344 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3345 3346 next = skb_rb_next(skb); 3347 if (unlikely(skb == tp->retransmit_skb_hint)) 3348 tp->retransmit_skb_hint = NULL; 3349 if (unlikely(skb == tp->lost_skb_hint)) 3350 tp->lost_skb_hint = NULL; 3351 tcp_highest_sack_replace(sk, skb, next); 3352 tcp_rtx_queue_unlink_and_free(skb, sk); 3353 } 3354 3355 if (!skb) 3356 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3357 3358 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3359 tp->snd_up = tp->snd_una; 3360 3361 if (skb) { 3362 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3363 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3364 flag |= FLAG_SACK_RENEGING; 3365 } 3366 3367 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3368 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3369 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3370 3371 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3372 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3373 sack->rate->prior_delivered + 1 == tp->delivered && 3374 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3375 /* Conservatively mark a delayed ACK. It's typically 3376 * from a lone runt packet over the round trip to 3377 * a receiver w/o out-of-order or CE events. 3378 */ 3379 flag |= FLAG_ACK_MAYBE_DELAYED; 3380 } 3381 } 3382 if (sack->first_sackt) { 3383 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3384 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3385 } 3386 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3387 ca_rtt_us, sack->rate); 3388 3389 if (flag & FLAG_ACKED) { 3390 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3391 if (unlikely(icsk->icsk_mtup.probe_size && 3392 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3393 tcp_mtup_probe_success(sk); 3394 } 3395 3396 if (tcp_is_reno(tp)) { 3397 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3398 3399 /* If any of the cumulatively ACKed segments was 3400 * retransmitted, non-SACK case cannot confirm that 3401 * progress was due to original transmission due to 3402 * lack of TCPCB_SACKED_ACKED bits even if some of 3403 * the packets may have been never retransmitted. 3404 */ 3405 if (flag & FLAG_RETRANS_DATA_ACKED) 3406 flag &= ~FLAG_ORIG_SACK_ACKED; 3407 } else { 3408 int delta; 3409 3410 /* Non-retransmitted hole got filled? That's reordering */ 3411 if (before(reord, prior_fack)) 3412 tcp_check_sack_reordering(sk, reord, 0); 3413 3414 delta = prior_sacked - tp->sacked_out; 3415 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3416 } 3417 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3418 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3419 tcp_skb_timestamp_us(skb))) { 3420 /* Do not re-arm RTO if the sack RTT is measured from data sent 3421 * after when the head was last (re)transmitted. Otherwise the 3422 * timeout may continue to extend in loss recovery. 3423 */ 3424 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3425 } 3426 3427 if (icsk->icsk_ca_ops->pkts_acked) { 3428 struct ack_sample sample = { .pkts_acked = pkts_acked, 3429 .rtt_us = sack->rate->rtt_us }; 3430 3431 sample.in_flight = tp->mss_cache * 3432 (tp->delivered - sack->rate->prior_delivered); 3433 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3434 } 3435 3436 #if FASTRETRANS_DEBUG > 0 3437 WARN_ON((int)tp->sacked_out < 0); 3438 WARN_ON((int)tp->lost_out < 0); 3439 WARN_ON((int)tp->retrans_out < 0); 3440 if (!tp->packets_out && tcp_is_sack(tp)) { 3441 icsk = inet_csk(sk); 3442 if (tp->lost_out) { 3443 pr_debug("Leak l=%u %d\n", 3444 tp->lost_out, icsk->icsk_ca_state); 3445 tp->lost_out = 0; 3446 } 3447 if (tp->sacked_out) { 3448 pr_debug("Leak s=%u %d\n", 3449 tp->sacked_out, icsk->icsk_ca_state); 3450 tp->sacked_out = 0; 3451 } 3452 if (tp->retrans_out) { 3453 pr_debug("Leak r=%u %d\n", 3454 tp->retrans_out, icsk->icsk_ca_state); 3455 tp->retrans_out = 0; 3456 } 3457 } 3458 #endif 3459 return flag; 3460 } 3461 3462 static void tcp_ack_probe(struct sock *sk) 3463 { 3464 struct inet_connection_sock *icsk = inet_csk(sk); 3465 struct sk_buff *head = tcp_send_head(sk); 3466 const struct tcp_sock *tp = tcp_sk(sk); 3467 3468 /* Was it a usable window open? */ 3469 if (!head) 3470 return; 3471 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3472 icsk->icsk_backoff = 0; 3473 icsk->icsk_probes_tstamp = 0; 3474 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3475 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3476 * This function is not for random using! 3477 */ 3478 } else { 3479 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3480 3481 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3482 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3483 } 3484 } 3485 3486 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3487 { 3488 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3489 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3490 } 3491 3492 /* Decide wheather to run the increase function of congestion control. */ 3493 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3494 { 3495 /* If reordering is high then always grow cwnd whenever data is 3496 * delivered regardless of its ordering. Otherwise stay conservative 3497 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3498 * new SACK or ECE mark may first advance cwnd here and later reduce 3499 * cwnd in tcp_fastretrans_alert() based on more states. 3500 */ 3501 if (tcp_sk(sk)->reordering > 3502 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3503 return flag & FLAG_FORWARD_PROGRESS; 3504 3505 return flag & FLAG_DATA_ACKED; 3506 } 3507 3508 /* The "ultimate" congestion control function that aims to replace the rigid 3509 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3510 * It's called toward the end of processing an ACK with precise rate 3511 * information. All transmission or retransmission are delayed afterwards. 3512 */ 3513 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3514 int flag, const struct rate_sample *rs) 3515 { 3516 const struct inet_connection_sock *icsk = inet_csk(sk); 3517 3518 if (icsk->icsk_ca_ops->cong_control) { 3519 icsk->icsk_ca_ops->cong_control(sk, rs); 3520 return; 3521 } 3522 3523 if (tcp_in_cwnd_reduction(sk)) { 3524 /* Reduce cwnd if state mandates */ 3525 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3526 } else if (tcp_may_raise_cwnd(sk, flag)) { 3527 /* Advance cwnd if state allows */ 3528 tcp_cong_avoid(sk, ack, acked_sacked); 3529 } 3530 tcp_update_pacing_rate(sk); 3531 } 3532 3533 /* Check that window update is acceptable. 3534 * The function assumes that snd_una<=ack<=snd_next. 3535 */ 3536 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3537 const u32 ack, const u32 ack_seq, 3538 const u32 nwin) 3539 { 3540 return after(ack, tp->snd_una) || 3541 after(ack_seq, tp->snd_wl1) || 3542 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3543 } 3544 3545 /* If we update tp->snd_una, also update tp->bytes_acked */ 3546 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3547 { 3548 u32 delta = ack - tp->snd_una; 3549 3550 sock_owned_by_me((struct sock *)tp); 3551 tp->bytes_acked += delta; 3552 tp->snd_una = ack; 3553 } 3554 3555 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3556 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3557 { 3558 u32 delta = seq - tp->rcv_nxt; 3559 3560 sock_owned_by_me((struct sock *)tp); 3561 tp->bytes_received += delta; 3562 WRITE_ONCE(tp->rcv_nxt, seq); 3563 } 3564 3565 /* Update our send window. 3566 * 3567 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3568 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3569 */ 3570 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3571 u32 ack_seq) 3572 { 3573 struct tcp_sock *tp = tcp_sk(sk); 3574 int flag = 0; 3575 u32 nwin = ntohs(tcp_hdr(skb)->window); 3576 3577 if (likely(!tcp_hdr(skb)->syn)) 3578 nwin <<= tp->rx_opt.snd_wscale; 3579 3580 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3581 flag |= FLAG_WIN_UPDATE; 3582 tcp_update_wl(tp, ack_seq); 3583 3584 if (tp->snd_wnd != nwin) { 3585 tp->snd_wnd = nwin; 3586 3587 /* Note, it is the only place, where 3588 * fast path is recovered for sending TCP. 3589 */ 3590 tp->pred_flags = 0; 3591 tcp_fast_path_check(sk); 3592 3593 if (!tcp_write_queue_empty(sk)) 3594 tcp_slow_start_after_idle_check(sk); 3595 3596 if (nwin > tp->max_window) { 3597 tp->max_window = nwin; 3598 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3599 } 3600 } 3601 } 3602 3603 tcp_snd_una_update(tp, ack); 3604 3605 return flag; 3606 } 3607 3608 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3609 u32 *last_oow_ack_time) 3610 { 3611 /* Paired with the WRITE_ONCE() in this function. */ 3612 u32 val = READ_ONCE(*last_oow_ack_time); 3613 3614 if (val) { 3615 s32 elapsed = (s32)(tcp_jiffies32 - val); 3616 3617 if (0 <= elapsed && 3618 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3619 NET_INC_STATS(net, mib_idx); 3620 return true; /* rate-limited: don't send yet! */ 3621 } 3622 } 3623 3624 /* Paired with the prior READ_ONCE() and with itself, 3625 * as we might be lockless. 3626 */ 3627 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3628 3629 return false; /* not rate-limited: go ahead, send dupack now! */ 3630 } 3631 3632 /* Return true if we're currently rate-limiting out-of-window ACKs and 3633 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3634 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3635 * attacks that send repeated SYNs or ACKs for the same connection. To 3636 * do this, we do not send a duplicate SYNACK or ACK if the remote 3637 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3638 */ 3639 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3640 int mib_idx, u32 *last_oow_ack_time) 3641 { 3642 /* Data packets without SYNs are not likely part of an ACK loop. */ 3643 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3644 !tcp_hdr(skb)->syn) 3645 return false; 3646 3647 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3648 } 3649 3650 /* RFC 5961 7 [ACK Throttling] */ 3651 static void tcp_send_challenge_ack(struct sock *sk) 3652 { 3653 struct tcp_sock *tp = tcp_sk(sk); 3654 struct net *net = sock_net(sk); 3655 u32 count, now, ack_limit; 3656 3657 /* First check our per-socket dupack rate limit. */ 3658 if (__tcp_oow_rate_limited(net, 3659 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3660 &tp->last_oow_ack_time)) 3661 return; 3662 3663 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3664 if (ack_limit == INT_MAX) 3665 goto send_ack; 3666 3667 /* Then check host-wide RFC 5961 rate limit. */ 3668 now = jiffies / HZ; 3669 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3670 u32 half = (ack_limit + 1) >> 1; 3671 3672 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3673 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3674 get_random_u32_inclusive(half, ack_limit + half - 1)); 3675 } 3676 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3677 if (count > 0) { 3678 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3679 send_ack: 3680 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3681 tcp_send_ack(sk); 3682 } 3683 } 3684 3685 static void tcp_store_ts_recent(struct tcp_sock *tp) 3686 { 3687 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3688 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3689 } 3690 3691 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3692 { 3693 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3694 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3695 * extra check below makes sure this can only happen 3696 * for pure ACK frames. -DaveM 3697 * 3698 * Not only, also it occurs for expired timestamps. 3699 */ 3700 3701 if (tcp_paws_check(&tp->rx_opt, 0)) 3702 tcp_store_ts_recent(tp); 3703 } 3704 } 3705 3706 /* This routine deals with acks during a TLP episode and ends an episode by 3707 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3708 */ 3709 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3710 { 3711 struct tcp_sock *tp = tcp_sk(sk); 3712 3713 if (before(ack, tp->tlp_high_seq)) 3714 return; 3715 3716 if (!tp->tlp_retrans) { 3717 /* TLP of new data has been acknowledged */ 3718 tp->tlp_high_seq = 0; 3719 } else if (flag & FLAG_DSACK_TLP) { 3720 /* This DSACK means original and TLP probe arrived; no loss */ 3721 tp->tlp_high_seq = 0; 3722 } else if (after(ack, tp->tlp_high_seq)) { 3723 /* ACK advances: there was a loss, so reduce cwnd. Reset 3724 * tlp_high_seq in tcp_init_cwnd_reduction() 3725 */ 3726 tcp_init_cwnd_reduction(sk); 3727 tcp_set_ca_state(sk, TCP_CA_CWR); 3728 tcp_end_cwnd_reduction(sk); 3729 tcp_try_keep_open(sk); 3730 NET_INC_STATS(sock_net(sk), 3731 LINUX_MIB_TCPLOSSPROBERECOVERY); 3732 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3733 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3734 /* Pure dupack: original and TLP probe arrived; no loss */ 3735 tp->tlp_high_seq = 0; 3736 } 3737 } 3738 3739 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3740 { 3741 const struct inet_connection_sock *icsk = inet_csk(sk); 3742 3743 if (icsk->icsk_ca_ops->in_ack_event) 3744 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3745 } 3746 3747 /* Congestion control has updated the cwnd already. So if we're in 3748 * loss recovery then now we do any new sends (for FRTO) or 3749 * retransmits (for CA_Loss or CA_recovery) that make sense. 3750 */ 3751 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3752 { 3753 struct tcp_sock *tp = tcp_sk(sk); 3754 3755 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3756 return; 3757 3758 if (unlikely(rexmit == REXMIT_NEW)) { 3759 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3760 TCP_NAGLE_OFF); 3761 if (after(tp->snd_nxt, tp->high_seq)) 3762 return; 3763 tp->frto = 0; 3764 } 3765 tcp_xmit_retransmit_queue(sk); 3766 } 3767 3768 /* Returns the number of packets newly acked or sacked by the current ACK */ 3769 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3770 { 3771 const struct net *net = sock_net(sk); 3772 struct tcp_sock *tp = tcp_sk(sk); 3773 u32 delivered; 3774 3775 delivered = tp->delivered - prior_delivered; 3776 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3777 if (flag & FLAG_ECE) 3778 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3779 3780 return delivered; 3781 } 3782 3783 /* This routine deals with incoming acks, but not outgoing ones. */ 3784 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3785 { 3786 struct inet_connection_sock *icsk = inet_csk(sk); 3787 struct tcp_sock *tp = tcp_sk(sk); 3788 struct tcp_sacktag_state sack_state; 3789 struct rate_sample rs = { .prior_delivered = 0 }; 3790 u32 prior_snd_una = tp->snd_una; 3791 bool is_sack_reneg = tp->is_sack_reneg; 3792 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3793 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3794 int num_dupack = 0; 3795 int prior_packets = tp->packets_out; 3796 u32 delivered = tp->delivered; 3797 u32 lost = tp->lost; 3798 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3799 u32 prior_fack; 3800 3801 sack_state.first_sackt = 0; 3802 sack_state.rate = &rs; 3803 sack_state.sack_delivered = 0; 3804 3805 /* We very likely will need to access rtx queue. */ 3806 prefetch(sk->tcp_rtx_queue.rb_node); 3807 3808 /* If the ack is older than previous acks 3809 * then we can probably ignore it. 3810 */ 3811 if (before(ack, prior_snd_una)) { 3812 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3813 if (before(ack, prior_snd_una - tp->max_window)) { 3814 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3815 tcp_send_challenge_ack(sk); 3816 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3817 } 3818 goto old_ack; 3819 } 3820 3821 /* If the ack includes data we haven't sent yet, discard 3822 * this segment (RFC793 Section 3.9). 3823 */ 3824 if (after(ack, tp->snd_nxt)) 3825 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3826 3827 if (after(ack, prior_snd_una)) { 3828 flag |= FLAG_SND_UNA_ADVANCED; 3829 icsk->icsk_retransmits = 0; 3830 3831 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3832 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3833 if (icsk->icsk_clean_acked) 3834 icsk->icsk_clean_acked(sk, ack); 3835 #endif 3836 } 3837 3838 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3839 rs.prior_in_flight = tcp_packets_in_flight(tp); 3840 3841 /* ts_recent update must be made after we are sure that the packet 3842 * is in window. 3843 */ 3844 if (flag & FLAG_UPDATE_TS_RECENT) 3845 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3846 3847 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3848 FLAG_SND_UNA_ADVANCED) { 3849 /* Window is constant, pure forward advance. 3850 * No more checks are required. 3851 * Note, we use the fact that SND.UNA>=SND.WL2. 3852 */ 3853 tcp_update_wl(tp, ack_seq); 3854 tcp_snd_una_update(tp, ack); 3855 flag |= FLAG_WIN_UPDATE; 3856 3857 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3858 3859 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3860 } else { 3861 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3862 3863 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3864 flag |= FLAG_DATA; 3865 else 3866 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3867 3868 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3869 3870 if (TCP_SKB_CB(skb)->sacked) 3871 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3872 &sack_state); 3873 3874 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3875 flag |= FLAG_ECE; 3876 ack_ev_flags |= CA_ACK_ECE; 3877 } 3878 3879 if (sack_state.sack_delivered) 3880 tcp_count_delivered(tp, sack_state.sack_delivered, 3881 flag & FLAG_ECE); 3882 3883 if (flag & FLAG_WIN_UPDATE) 3884 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3885 3886 tcp_in_ack_event(sk, ack_ev_flags); 3887 } 3888 3889 /* This is a deviation from RFC3168 since it states that: 3890 * "When the TCP data sender is ready to set the CWR bit after reducing 3891 * the congestion window, it SHOULD set the CWR bit only on the first 3892 * new data packet that it transmits." 3893 * We accept CWR on pure ACKs to be more robust 3894 * with widely-deployed TCP implementations that do this. 3895 */ 3896 tcp_ecn_accept_cwr(sk, skb); 3897 3898 /* We passed data and got it acked, remove any soft error 3899 * log. Something worked... 3900 */ 3901 WRITE_ONCE(sk->sk_err_soft, 0); 3902 icsk->icsk_probes_out = 0; 3903 tp->rcv_tstamp = tcp_jiffies32; 3904 if (!prior_packets) 3905 goto no_queue; 3906 3907 /* See if we can take anything off of the retransmit queue. */ 3908 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3909 &sack_state, flag & FLAG_ECE); 3910 3911 tcp_rack_update_reo_wnd(sk, &rs); 3912 3913 if (tp->tlp_high_seq) 3914 tcp_process_tlp_ack(sk, ack, flag); 3915 3916 if (tcp_ack_is_dubious(sk, flag)) { 3917 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3918 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3919 num_dupack = 1; 3920 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3921 if (!(flag & FLAG_DATA)) 3922 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3923 } 3924 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3925 &rexmit); 3926 } 3927 3928 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3929 if (flag & FLAG_SET_XMIT_TIMER) 3930 tcp_set_xmit_timer(sk); 3931 3932 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3933 sk_dst_confirm(sk); 3934 3935 delivered = tcp_newly_delivered(sk, delivered, flag); 3936 lost = tp->lost - lost; /* freshly marked lost */ 3937 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3938 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3939 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3940 tcp_xmit_recovery(sk, rexmit); 3941 return 1; 3942 3943 no_queue: 3944 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3945 if (flag & FLAG_DSACKING_ACK) { 3946 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3947 &rexmit); 3948 tcp_newly_delivered(sk, delivered, flag); 3949 } 3950 /* If this ack opens up a zero window, clear backoff. It was 3951 * being used to time the probes, and is probably far higher than 3952 * it needs to be for normal retransmission. 3953 */ 3954 tcp_ack_probe(sk); 3955 3956 if (tp->tlp_high_seq) 3957 tcp_process_tlp_ack(sk, ack, flag); 3958 return 1; 3959 3960 old_ack: 3961 /* If data was SACKed, tag it and see if we should send more data. 3962 * If data was DSACKed, see if we can undo a cwnd reduction. 3963 */ 3964 if (TCP_SKB_CB(skb)->sacked) { 3965 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3966 &sack_state); 3967 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3968 &rexmit); 3969 tcp_newly_delivered(sk, delivered, flag); 3970 tcp_xmit_recovery(sk, rexmit); 3971 } 3972 3973 return 0; 3974 } 3975 3976 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3977 bool syn, struct tcp_fastopen_cookie *foc, 3978 bool exp_opt) 3979 { 3980 /* Valid only in SYN or SYN-ACK with an even length. */ 3981 if (!foc || !syn || len < 0 || (len & 1)) 3982 return; 3983 3984 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3985 len <= TCP_FASTOPEN_COOKIE_MAX) 3986 memcpy(foc->val, cookie, len); 3987 else if (len != 0) 3988 len = -1; 3989 foc->len = len; 3990 foc->exp = exp_opt; 3991 } 3992 3993 static bool smc_parse_options(const struct tcphdr *th, 3994 struct tcp_options_received *opt_rx, 3995 const unsigned char *ptr, 3996 int opsize) 3997 { 3998 #if IS_ENABLED(CONFIG_SMC) 3999 if (static_branch_unlikely(&tcp_have_smc)) { 4000 if (th->syn && !(opsize & 1) && 4001 opsize >= TCPOLEN_EXP_SMC_BASE && 4002 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4003 opt_rx->smc_ok = 1; 4004 return true; 4005 } 4006 } 4007 #endif 4008 return false; 4009 } 4010 4011 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4012 * value on success. 4013 */ 4014 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4015 { 4016 const unsigned char *ptr = (const unsigned char *)(th + 1); 4017 int length = (th->doff * 4) - sizeof(struct tcphdr); 4018 u16 mss = 0; 4019 4020 while (length > 0) { 4021 int opcode = *ptr++; 4022 int opsize; 4023 4024 switch (opcode) { 4025 case TCPOPT_EOL: 4026 return mss; 4027 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4028 length--; 4029 continue; 4030 default: 4031 if (length < 2) 4032 return mss; 4033 opsize = *ptr++; 4034 if (opsize < 2) /* "silly options" */ 4035 return mss; 4036 if (opsize > length) 4037 return mss; /* fail on partial options */ 4038 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4039 u16 in_mss = get_unaligned_be16(ptr); 4040 4041 if (in_mss) { 4042 if (user_mss && user_mss < in_mss) 4043 in_mss = user_mss; 4044 mss = in_mss; 4045 } 4046 } 4047 ptr += opsize - 2; 4048 length -= opsize; 4049 } 4050 } 4051 return mss; 4052 } 4053 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4054 4055 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4056 * But, this can also be called on packets in the established flow when 4057 * the fast version below fails. 4058 */ 4059 void tcp_parse_options(const struct net *net, 4060 const struct sk_buff *skb, 4061 struct tcp_options_received *opt_rx, int estab, 4062 struct tcp_fastopen_cookie *foc) 4063 { 4064 const unsigned char *ptr; 4065 const struct tcphdr *th = tcp_hdr(skb); 4066 int length = (th->doff * 4) - sizeof(struct tcphdr); 4067 4068 ptr = (const unsigned char *)(th + 1); 4069 opt_rx->saw_tstamp = 0; 4070 opt_rx->saw_unknown = 0; 4071 4072 while (length > 0) { 4073 int opcode = *ptr++; 4074 int opsize; 4075 4076 switch (opcode) { 4077 case TCPOPT_EOL: 4078 return; 4079 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4080 length--; 4081 continue; 4082 default: 4083 if (length < 2) 4084 return; 4085 opsize = *ptr++; 4086 if (opsize < 2) /* "silly options" */ 4087 return; 4088 if (opsize > length) 4089 return; /* don't parse partial options */ 4090 switch (opcode) { 4091 case TCPOPT_MSS: 4092 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4093 u16 in_mss = get_unaligned_be16(ptr); 4094 if (in_mss) { 4095 if (opt_rx->user_mss && 4096 opt_rx->user_mss < in_mss) 4097 in_mss = opt_rx->user_mss; 4098 opt_rx->mss_clamp = in_mss; 4099 } 4100 } 4101 break; 4102 case TCPOPT_WINDOW: 4103 if (opsize == TCPOLEN_WINDOW && th->syn && 4104 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4105 __u8 snd_wscale = *(__u8 *)ptr; 4106 opt_rx->wscale_ok = 1; 4107 if (snd_wscale > TCP_MAX_WSCALE) { 4108 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4109 __func__, 4110 snd_wscale, 4111 TCP_MAX_WSCALE); 4112 snd_wscale = TCP_MAX_WSCALE; 4113 } 4114 opt_rx->snd_wscale = snd_wscale; 4115 } 4116 break; 4117 case TCPOPT_TIMESTAMP: 4118 if ((opsize == TCPOLEN_TIMESTAMP) && 4119 ((estab && opt_rx->tstamp_ok) || 4120 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4121 opt_rx->saw_tstamp = 1; 4122 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4123 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4124 } 4125 break; 4126 case TCPOPT_SACK_PERM: 4127 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4128 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4129 opt_rx->sack_ok = TCP_SACK_SEEN; 4130 tcp_sack_reset(opt_rx); 4131 } 4132 break; 4133 4134 case TCPOPT_SACK: 4135 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4136 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4137 opt_rx->sack_ok) { 4138 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4139 } 4140 break; 4141 #ifdef CONFIG_TCP_MD5SIG 4142 case TCPOPT_MD5SIG: 4143 /* The MD5 Hash has already been 4144 * checked (see tcp_v{4,6}_rcv()). 4145 */ 4146 break; 4147 #endif 4148 case TCPOPT_FASTOPEN: 4149 tcp_parse_fastopen_option( 4150 opsize - TCPOLEN_FASTOPEN_BASE, 4151 ptr, th->syn, foc, false); 4152 break; 4153 4154 case TCPOPT_EXP: 4155 /* Fast Open option shares code 254 using a 4156 * 16 bits magic number. 4157 */ 4158 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4159 get_unaligned_be16(ptr) == 4160 TCPOPT_FASTOPEN_MAGIC) { 4161 tcp_parse_fastopen_option(opsize - 4162 TCPOLEN_EXP_FASTOPEN_BASE, 4163 ptr + 2, th->syn, foc, true); 4164 break; 4165 } 4166 4167 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4168 break; 4169 4170 opt_rx->saw_unknown = 1; 4171 break; 4172 4173 default: 4174 opt_rx->saw_unknown = 1; 4175 } 4176 ptr += opsize-2; 4177 length -= opsize; 4178 } 4179 } 4180 } 4181 EXPORT_SYMBOL(tcp_parse_options); 4182 4183 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4184 { 4185 const __be32 *ptr = (const __be32 *)(th + 1); 4186 4187 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4188 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4189 tp->rx_opt.saw_tstamp = 1; 4190 ++ptr; 4191 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4192 ++ptr; 4193 if (*ptr) 4194 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4195 else 4196 tp->rx_opt.rcv_tsecr = 0; 4197 return true; 4198 } 4199 return false; 4200 } 4201 4202 /* Fast parse options. This hopes to only see timestamps. 4203 * If it is wrong it falls back on tcp_parse_options(). 4204 */ 4205 static bool tcp_fast_parse_options(const struct net *net, 4206 const struct sk_buff *skb, 4207 const struct tcphdr *th, struct tcp_sock *tp) 4208 { 4209 /* In the spirit of fast parsing, compare doff directly to constant 4210 * values. Because equality is used, short doff can be ignored here. 4211 */ 4212 if (th->doff == (sizeof(*th) / 4)) { 4213 tp->rx_opt.saw_tstamp = 0; 4214 return false; 4215 } else if (tp->rx_opt.tstamp_ok && 4216 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4217 if (tcp_parse_aligned_timestamp(tp, th)) 4218 return true; 4219 } 4220 4221 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4222 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4223 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4224 4225 return true; 4226 } 4227 4228 #ifdef CONFIG_TCP_MD5SIG 4229 /* 4230 * Parse MD5 Signature option 4231 */ 4232 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4233 { 4234 int length = (th->doff << 2) - sizeof(*th); 4235 const u8 *ptr = (const u8 *)(th + 1); 4236 4237 /* If not enough data remaining, we can short cut */ 4238 while (length >= TCPOLEN_MD5SIG) { 4239 int opcode = *ptr++; 4240 int opsize; 4241 4242 switch (opcode) { 4243 case TCPOPT_EOL: 4244 return NULL; 4245 case TCPOPT_NOP: 4246 length--; 4247 continue; 4248 default: 4249 opsize = *ptr++; 4250 if (opsize < 2 || opsize > length) 4251 return NULL; 4252 if (opcode == TCPOPT_MD5SIG) 4253 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4254 } 4255 ptr += opsize - 2; 4256 length -= opsize; 4257 } 4258 return NULL; 4259 } 4260 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4261 #endif 4262 4263 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4264 * 4265 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4266 * it can pass through stack. So, the following predicate verifies that 4267 * this segment is not used for anything but congestion avoidance or 4268 * fast retransmit. Moreover, we even are able to eliminate most of such 4269 * second order effects, if we apply some small "replay" window (~RTO) 4270 * to timestamp space. 4271 * 4272 * All these measures still do not guarantee that we reject wrapped ACKs 4273 * on networks with high bandwidth, when sequence space is recycled fastly, 4274 * but it guarantees that such events will be very rare and do not affect 4275 * connection seriously. This doesn't look nice, but alas, PAWS is really 4276 * buggy extension. 4277 * 4278 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4279 * states that events when retransmit arrives after original data are rare. 4280 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4281 * the biggest problem on large power networks even with minor reordering. 4282 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4283 * up to bandwidth of 18Gigabit/sec. 8) ] 4284 */ 4285 4286 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4287 { 4288 const struct tcp_sock *tp = tcp_sk(sk); 4289 const struct tcphdr *th = tcp_hdr(skb); 4290 u32 seq = TCP_SKB_CB(skb)->seq; 4291 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4292 4293 return (/* 1. Pure ACK with correct sequence number. */ 4294 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4295 4296 /* 2. ... and duplicate ACK. */ 4297 ack == tp->snd_una && 4298 4299 /* 3. ... and does not update window. */ 4300 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4301 4302 /* 4. ... and sits in replay window. */ 4303 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4304 } 4305 4306 static inline bool tcp_paws_discard(const struct sock *sk, 4307 const struct sk_buff *skb) 4308 { 4309 const struct tcp_sock *tp = tcp_sk(sk); 4310 4311 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4312 !tcp_disordered_ack(sk, skb); 4313 } 4314 4315 /* Check segment sequence number for validity. 4316 * 4317 * Segment controls are considered valid, if the segment 4318 * fits to the window after truncation to the window. Acceptability 4319 * of data (and SYN, FIN, of course) is checked separately. 4320 * See tcp_data_queue(), for example. 4321 * 4322 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4323 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4324 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4325 * (borrowed from freebsd) 4326 */ 4327 4328 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4329 u32 seq, u32 end_seq) 4330 { 4331 if (before(end_seq, tp->rcv_wup)) 4332 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4333 4334 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4335 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4336 4337 return SKB_NOT_DROPPED_YET; 4338 } 4339 4340 /* When we get a reset we do this. */ 4341 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4342 { 4343 trace_tcp_receive_reset(sk); 4344 4345 /* mptcp can't tell us to ignore reset pkts, 4346 * so just ignore the return value of mptcp_incoming_options(). 4347 */ 4348 if (sk_is_mptcp(sk)) 4349 mptcp_incoming_options(sk, skb); 4350 4351 /* We want the right error as BSD sees it (and indeed as we do). */ 4352 switch (sk->sk_state) { 4353 case TCP_SYN_SENT: 4354 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 4355 break; 4356 case TCP_CLOSE_WAIT: 4357 WRITE_ONCE(sk->sk_err, EPIPE); 4358 break; 4359 case TCP_CLOSE: 4360 return; 4361 default: 4362 WRITE_ONCE(sk->sk_err, ECONNRESET); 4363 } 4364 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4365 smp_wmb(); 4366 4367 tcp_write_queue_purge(sk); 4368 tcp_done(sk); 4369 4370 if (!sock_flag(sk, SOCK_DEAD)) 4371 sk_error_report(sk); 4372 } 4373 4374 /* 4375 * Process the FIN bit. This now behaves as it is supposed to work 4376 * and the FIN takes effect when it is validly part of sequence 4377 * space. Not before when we get holes. 4378 * 4379 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4380 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4381 * TIME-WAIT) 4382 * 4383 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4384 * close and we go into CLOSING (and later onto TIME-WAIT) 4385 * 4386 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4387 */ 4388 void tcp_fin(struct sock *sk) 4389 { 4390 struct tcp_sock *tp = tcp_sk(sk); 4391 4392 inet_csk_schedule_ack(sk); 4393 4394 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4395 sock_set_flag(sk, SOCK_DONE); 4396 4397 switch (sk->sk_state) { 4398 case TCP_SYN_RECV: 4399 case TCP_ESTABLISHED: 4400 /* Move to CLOSE_WAIT */ 4401 tcp_set_state(sk, TCP_CLOSE_WAIT); 4402 inet_csk_enter_pingpong_mode(sk); 4403 break; 4404 4405 case TCP_CLOSE_WAIT: 4406 case TCP_CLOSING: 4407 /* Received a retransmission of the FIN, do 4408 * nothing. 4409 */ 4410 break; 4411 case TCP_LAST_ACK: 4412 /* RFC793: Remain in the LAST-ACK state. */ 4413 break; 4414 4415 case TCP_FIN_WAIT1: 4416 /* This case occurs when a simultaneous close 4417 * happens, we must ack the received FIN and 4418 * enter the CLOSING state. 4419 */ 4420 tcp_send_ack(sk); 4421 tcp_set_state(sk, TCP_CLOSING); 4422 break; 4423 case TCP_FIN_WAIT2: 4424 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4425 tcp_send_ack(sk); 4426 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4427 break; 4428 default: 4429 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4430 * cases we should never reach this piece of code. 4431 */ 4432 pr_err("%s: Impossible, sk->sk_state=%d\n", 4433 __func__, sk->sk_state); 4434 break; 4435 } 4436 4437 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4438 * Probably, we should reset in this case. For now drop them. 4439 */ 4440 skb_rbtree_purge(&tp->out_of_order_queue); 4441 if (tcp_is_sack(tp)) 4442 tcp_sack_reset(&tp->rx_opt); 4443 4444 if (!sock_flag(sk, SOCK_DEAD)) { 4445 sk->sk_state_change(sk); 4446 4447 /* Do not send POLL_HUP for half duplex close. */ 4448 if (sk->sk_shutdown == SHUTDOWN_MASK || 4449 sk->sk_state == TCP_CLOSE) 4450 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4451 else 4452 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4453 } 4454 } 4455 4456 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4457 u32 end_seq) 4458 { 4459 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4460 if (before(seq, sp->start_seq)) 4461 sp->start_seq = seq; 4462 if (after(end_seq, sp->end_seq)) 4463 sp->end_seq = end_seq; 4464 return true; 4465 } 4466 return false; 4467 } 4468 4469 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4470 { 4471 struct tcp_sock *tp = tcp_sk(sk); 4472 4473 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4474 int mib_idx; 4475 4476 if (before(seq, tp->rcv_nxt)) 4477 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4478 else 4479 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4480 4481 NET_INC_STATS(sock_net(sk), mib_idx); 4482 4483 tp->rx_opt.dsack = 1; 4484 tp->duplicate_sack[0].start_seq = seq; 4485 tp->duplicate_sack[0].end_seq = end_seq; 4486 } 4487 } 4488 4489 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4490 { 4491 struct tcp_sock *tp = tcp_sk(sk); 4492 4493 if (!tp->rx_opt.dsack) 4494 tcp_dsack_set(sk, seq, end_seq); 4495 else 4496 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4497 } 4498 4499 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4500 { 4501 /* When the ACK path fails or drops most ACKs, the sender would 4502 * timeout and spuriously retransmit the same segment repeatedly. 4503 * The receiver remembers and reflects via DSACKs. Leverage the 4504 * DSACK state and change the txhash to re-route speculatively. 4505 */ 4506 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4507 sk_rethink_txhash(sk)) 4508 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4509 } 4510 4511 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4512 { 4513 struct tcp_sock *tp = tcp_sk(sk); 4514 4515 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4516 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4517 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4518 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4519 4520 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4521 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4522 4523 tcp_rcv_spurious_retrans(sk, skb); 4524 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4525 end_seq = tp->rcv_nxt; 4526 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4527 } 4528 } 4529 4530 tcp_send_ack(sk); 4531 } 4532 4533 /* These routines update the SACK block as out-of-order packets arrive or 4534 * in-order packets close up the sequence space. 4535 */ 4536 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4537 { 4538 int this_sack; 4539 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4540 struct tcp_sack_block *swalk = sp + 1; 4541 4542 /* See if the recent change to the first SACK eats into 4543 * or hits the sequence space of other SACK blocks, if so coalesce. 4544 */ 4545 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4546 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4547 int i; 4548 4549 /* Zap SWALK, by moving every further SACK up by one slot. 4550 * Decrease num_sacks. 4551 */ 4552 tp->rx_opt.num_sacks--; 4553 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4554 sp[i] = sp[i + 1]; 4555 continue; 4556 } 4557 this_sack++; 4558 swalk++; 4559 } 4560 } 4561 4562 void tcp_sack_compress_send_ack(struct sock *sk) 4563 { 4564 struct tcp_sock *tp = tcp_sk(sk); 4565 4566 if (!tp->compressed_ack) 4567 return; 4568 4569 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4570 __sock_put(sk); 4571 4572 /* Since we have to send one ack finally, 4573 * substract one from tp->compressed_ack to keep 4574 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4575 */ 4576 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4577 tp->compressed_ack - 1); 4578 4579 tp->compressed_ack = 0; 4580 tcp_send_ack(sk); 4581 } 4582 4583 /* Reasonable amount of sack blocks included in TCP SACK option 4584 * The max is 4, but this becomes 3 if TCP timestamps are there. 4585 * Given that SACK packets might be lost, be conservative and use 2. 4586 */ 4587 #define TCP_SACK_BLOCKS_EXPECTED 2 4588 4589 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4590 { 4591 struct tcp_sock *tp = tcp_sk(sk); 4592 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4593 int cur_sacks = tp->rx_opt.num_sacks; 4594 int this_sack; 4595 4596 if (!cur_sacks) 4597 goto new_sack; 4598 4599 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4600 if (tcp_sack_extend(sp, seq, end_seq)) { 4601 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4602 tcp_sack_compress_send_ack(sk); 4603 /* Rotate this_sack to the first one. */ 4604 for (; this_sack > 0; this_sack--, sp--) 4605 swap(*sp, *(sp - 1)); 4606 if (cur_sacks > 1) 4607 tcp_sack_maybe_coalesce(tp); 4608 return; 4609 } 4610 } 4611 4612 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4613 tcp_sack_compress_send_ack(sk); 4614 4615 /* Could not find an adjacent existing SACK, build a new one, 4616 * put it at the front, and shift everyone else down. We 4617 * always know there is at least one SACK present already here. 4618 * 4619 * If the sack array is full, forget about the last one. 4620 */ 4621 if (this_sack >= TCP_NUM_SACKS) { 4622 this_sack--; 4623 tp->rx_opt.num_sacks--; 4624 sp--; 4625 } 4626 for (; this_sack > 0; this_sack--, sp--) 4627 *sp = *(sp - 1); 4628 4629 new_sack: 4630 /* Build the new head SACK, and we're done. */ 4631 sp->start_seq = seq; 4632 sp->end_seq = end_seq; 4633 tp->rx_opt.num_sacks++; 4634 } 4635 4636 /* RCV.NXT advances, some SACKs should be eaten. */ 4637 4638 static void tcp_sack_remove(struct tcp_sock *tp) 4639 { 4640 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4641 int num_sacks = tp->rx_opt.num_sacks; 4642 int this_sack; 4643 4644 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4645 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4646 tp->rx_opt.num_sacks = 0; 4647 return; 4648 } 4649 4650 for (this_sack = 0; this_sack < num_sacks;) { 4651 /* Check if the start of the sack is covered by RCV.NXT. */ 4652 if (!before(tp->rcv_nxt, sp->start_seq)) { 4653 int i; 4654 4655 /* RCV.NXT must cover all the block! */ 4656 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4657 4658 /* Zap this SACK, by moving forward any other SACKS. */ 4659 for (i = this_sack+1; i < num_sacks; i++) 4660 tp->selective_acks[i-1] = tp->selective_acks[i]; 4661 num_sacks--; 4662 continue; 4663 } 4664 this_sack++; 4665 sp++; 4666 } 4667 tp->rx_opt.num_sacks = num_sacks; 4668 } 4669 4670 /** 4671 * tcp_try_coalesce - try to merge skb to prior one 4672 * @sk: socket 4673 * @to: prior buffer 4674 * @from: buffer to add in queue 4675 * @fragstolen: pointer to boolean 4676 * 4677 * Before queueing skb @from after @to, try to merge them 4678 * to reduce overall memory use and queue lengths, if cost is small. 4679 * Packets in ofo or receive queues can stay a long time. 4680 * Better try to coalesce them right now to avoid future collapses. 4681 * Returns true if caller should free @from instead of queueing it 4682 */ 4683 static bool tcp_try_coalesce(struct sock *sk, 4684 struct sk_buff *to, 4685 struct sk_buff *from, 4686 bool *fragstolen) 4687 { 4688 int delta; 4689 4690 *fragstolen = false; 4691 4692 /* Its possible this segment overlaps with prior segment in queue */ 4693 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4694 return false; 4695 4696 if (!mptcp_skb_can_collapse(to, from)) 4697 return false; 4698 4699 #ifdef CONFIG_TLS_DEVICE 4700 if (from->decrypted != to->decrypted) 4701 return false; 4702 #endif 4703 4704 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4705 return false; 4706 4707 atomic_add(delta, &sk->sk_rmem_alloc); 4708 sk_mem_charge(sk, delta); 4709 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4710 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4711 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4712 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4713 4714 if (TCP_SKB_CB(from)->has_rxtstamp) { 4715 TCP_SKB_CB(to)->has_rxtstamp = true; 4716 to->tstamp = from->tstamp; 4717 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4718 } 4719 4720 return true; 4721 } 4722 4723 static bool tcp_ooo_try_coalesce(struct sock *sk, 4724 struct sk_buff *to, 4725 struct sk_buff *from, 4726 bool *fragstolen) 4727 { 4728 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4729 4730 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4731 if (res) { 4732 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4733 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4734 4735 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4736 } 4737 return res; 4738 } 4739 4740 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4741 enum skb_drop_reason reason) 4742 { 4743 sk_drops_add(sk, skb); 4744 kfree_skb_reason(skb, reason); 4745 } 4746 4747 /* This one checks to see if we can put data from the 4748 * out_of_order queue into the receive_queue. 4749 */ 4750 static void tcp_ofo_queue(struct sock *sk) 4751 { 4752 struct tcp_sock *tp = tcp_sk(sk); 4753 __u32 dsack_high = tp->rcv_nxt; 4754 bool fin, fragstolen, eaten; 4755 struct sk_buff *skb, *tail; 4756 struct rb_node *p; 4757 4758 p = rb_first(&tp->out_of_order_queue); 4759 while (p) { 4760 skb = rb_to_skb(p); 4761 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4762 break; 4763 4764 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4765 __u32 dsack = dsack_high; 4766 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4767 dsack_high = TCP_SKB_CB(skb)->end_seq; 4768 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4769 } 4770 p = rb_next(p); 4771 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4772 4773 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4774 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4775 continue; 4776 } 4777 4778 tail = skb_peek_tail(&sk->sk_receive_queue); 4779 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4780 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4781 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4782 if (!eaten) 4783 __skb_queue_tail(&sk->sk_receive_queue, skb); 4784 else 4785 kfree_skb_partial(skb, fragstolen); 4786 4787 if (unlikely(fin)) { 4788 tcp_fin(sk); 4789 /* tcp_fin() purges tp->out_of_order_queue, 4790 * so we must end this loop right now. 4791 */ 4792 break; 4793 } 4794 } 4795 } 4796 4797 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4798 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4799 4800 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4801 unsigned int size) 4802 { 4803 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4804 !sk_rmem_schedule(sk, skb, size)) { 4805 4806 if (tcp_prune_queue(sk, skb) < 0) 4807 return -1; 4808 4809 while (!sk_rmem_schedule(sk, skb, size)) { 4810 if (!tcp_prune_ofo_queue(sk, skb)) 4811 return -1; 4812 } 4813 } 4814 return 0; 4815 } 4816 4817 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4818 { 4819 struct tcp_sock *tp = tcp_sk(sk); 4820 struct rb_node **p, *parent; 4821 struct sk_buff *skb1; 4822 u32 seq, end_seq; 4823 bool fragstolen; 4824 4825 tcp_ecn_check_ce(sk, skb); 4826 4827 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4828 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4829 sk->sk_data_ready(sk); 4830 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4831 return; 4832 } 4833 4834 /* Disable header prediction. */ 4835 tp->pred_flags = 0; 4836 inet_csk_schedule_ack(sk); 4837 4838 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4839 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4840 seq = TCP_SKB_CB(skb)->seq; 4841 end_seq = TCP_SKB_CB(skb)->end_seq; 4842 4843 p = &tp->out_of_order_queue.rb_node; 4844 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4845 /* Initial out of order segment, build 1 SACK. */ 4846 if (tcp_is_sack(tp)) { 4847 tp->rx_opt.num_sacks = 1; 4848 tp->selective_acks[0].start_seq = seq; 4849 tp->selective_acks[0].end_seq = end_seq; 4850 } 4851 rb_link_node(&skb->rbnode, NULL, p); 4852 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4853 tp->ooo_last_skb = skb; 4854 goto end; 4855 } 4856 4857 /* In the typical case, we are adding an skb to the end of the list. 4858 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4859 */ 4860 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4861 skb, &fragstolen)) { 4862 coalesce_done: 4863 /* For non sack flows, do not grow window to force DUPACK 4864 * and trigger fast retransmit. 4865 */ 4866 if (tcp_is_sack(tp)) 4867 tcp_grow_window(sk, skb, true); 4868 kfree_skb_partial(skb, fragstolen); 4869 skb = NULL; 4870 goto add_sack; 4871 } 4872 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4873 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4874 parent = &tp->ooo_last_skb->rbnode; 4875 p = &parent->rb_right; 4876 goto insert; 4877 } 4878 4879 /* Find place to insert this segment. Handle overlaps on the way. */ 4880 parent = NULL; 4881 while (*p) { 4882 parent = *p; 4883 skb1 = rb_to_skb(parent); 4884 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4885 p = &parent->rb_left; 4886 continue; 4887 } 4888 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4889 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4890 /* All the bits are present. Drop. */ 4891 NET_INC_STATS(sock_net(sk), 4892 LINUX_MIB_TCPOFOMERGE); 4893 tcp_drop_reason(sk, skb, 4894 SKB_DROP_REASON_TCP_OFOMERGE); 4895 skb = NULL; 4896 tcp_dsack_set(sk, seq, end_seq); 4897 goto add_sack; 4898 } 4899 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4900 /* Partial overlap. */ 4901 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4902 } else { 4903 /* skb's seq == skb1's seq and skb covers skb1. 4904 * Replace skb1 with skb. 4905 */ 4906 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4907 &tp->out_of_order_queue); 4908 tcp_dsack_extend(sk, 4909 TCP_SKB_CB(skb1)->seq, 4910 TCP_SKB_CB(skb1)->end_seq); 4911 NET_INC_STATS(sock_net(sk), 4912 LINUX_MIB_TCPOFOMERGE); 4913 tcp_drop_reason(sk, skb1, 4914 SKB_DROP_REASON_TCP_OFOMERGE); 4915 goto merge_right; 4916 } 4917 } else if (tcp_ooo_try_coalesce(sk, skb1, 4918 skb, &fragstolen)) { 4919 goto coalesce_done; 4920 } 4921 p = &parent->rb_right; 4922 } 4923 insert: 4924 /* Insert segment into RB tree. */ 4925 rb_link_node(&skb->rbnode, parent, p); 4926 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4927 4928 merge_right: 4929 /* Remove other segments covered by skb. */ 4930 while ((skb1 = skb_rb_next(skb)) != NULL) { 4931 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4932 break; 4933 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4934 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4935 end_seq); 4936 break; 4937 } 4938 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4939 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4940 TCP_SKB_CB(skb1)->end_seq); 4941 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4942 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 4943 } 4944 /* If there is no skb after us, we are the last_skb ! */ 4945 if (!skb1) 4946 tp->ooo_last_skb = skb; 4947 4948 add_sack: 4949 if (tcp_is_sack(tp)) 4950 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4951 end: 4952 if (skb) { 4953 /* For non sack flows, do not grow window to force DUPACK 4954 * and trigger fast retransmit. 4955 */ 4956 if (tcp_is_sack(tp)) 4957 tcp_grow_window(sk, skb, false); 4958 skb_condense(skb); 4959 skb_set_owner_r(skb, sk); 4960 } 4961 } 4962 4963 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4964 bool *fragstolen) 4965 { 4966 int eaten; 4967 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4968 4969 eaten = (tail && 4970 tcp_try_coalesce(sk, tail, 4971 skb, fragstolen)) ? 1 : 0; 4972 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4973 if (!eaten) { 4974 __skb_queue_tail(&sk->sk_receive_queue, skb); 4975 skb_set_owner_r(skb, sk); 4976 } 4977 return eaten; 4978 } 4979 4980 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4981 { 4982 struct sk_buff *skb; 4983 int err = -ENOMEM; 4984 int data_len = 0; 4985 bool fragstolen; 4986 4987 if (size == 0) 4988 return 0; 4989 4990 if (size > PAGE_SIZE) { 4991 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4992 4993 data_len = npages << PAGE_SHIFT; 4994 size = data_len + (size & ~PAGE_MASK); 4995 } 4996 skb = alloc_skb_with_frags(size - data_len, data_len, 4997 PAGE_ALLOC_COSTLY_ORDER, 4998 &err, sk->sk_allocation); 4999 if (!skb) 5000 goto err; 5001 5002 skb_put(skb, size - data_len); 5003 skb->data_len = data_len; 5004 skb->len = size; 5005 5006 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5007 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5008 goto err_free; 5009 } 5010 5011 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5012 if (err) 5013 goto err_free; 5014 5015 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5016 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5017 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5018 5019 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5020 WARN_ON_ONCE(fragstolen); /* should not happen */ 5021 __kfree_skb(skb); 5022 } 5023 return size; 5024 5025 err_free: 5026 kfree_skb(skb); 5027 err: 5028 return err; 5029 5030 } 5031 5032 void tcp_data_ready(struct sock *sk) 5033 { 5034 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5035 sk->sk_data_ready(sk); 5036 } 5037 5038 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5039 { 5040 struct tcp_sock *tp = tcp_sk(sk); 5041 enum skb_drop_reason reason; 5042 bool fragstolen; 5043 int eaten; 5044 5045 /* If a subflow has been reset, the packet should not continue 5046 * to be processed, drop the packet. 5047 */ 5048 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5049 __kfree_skb(skb); 5050 return; 5051 } 5052 5053 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5054 __kfree_skb(skb); 5055 return; 5056 } 5057 skb_dst_drop(skb); 5058 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5059 5060 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5061 tp->rx_opt.dsack = 0; 5062 5063 /* Queue data for delivery to the user. 5064 * Packets in sequence go to the receive queue. 5065 * Out of sequence packets to the out_of_order_queue. 5066 */ 5067 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5068 if (tcp_receive_window(tp) == 0) { 5069 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5070 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5071 goto out_of_window; 5072 } 5073 5074 /* Ok. In sequence. In window. */ 5075 queue_and_out: 5076 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5077 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5078 inet_csk(sk)->icsk_ack.pending |= 5079 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5080 inet_csk_schedule_ack(sk); 5081 sk->sk_data_ready(sk); 5082 5083 if (skb_queue_len(&sk->sk_receive_queue)) { 5084 reason = SKB_DROP_REASON_PROTO_MEM; 5085 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5086 goto drop; 5087 } 5088 sk_forced_mem_schedule(sk, skb->truesize); 5089 } 5090 5091 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5092 if (skb->len) 5093 tcp_event_data_recv(sk, skb); 5094 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5095 tcp_fin(sk); 5096 5097 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5098 tcp_ofo_queue(sk); 5099 5100 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5101 * gap in queue is filled. 5102 */ 5103 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5104 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5105 } 5106 5107 if (tp->rx_opt.num_sacks) 5108 tcp_sack_remove(tp); 5109 5110 tcp_fast_path_check(sk); 5111 5112 if (eaten > 0) 5113 kfree_skb_partial(skb, fragstolen); 5114 if (!sock_flag(sk, SOCK_DEAD)) 5115 tcp_data_ready(sk); 5116 return; 5117 } 5118 5119 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5120 tcp_rcv_spurious_retrans(sk, skb); 5121 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5122 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5123 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5124 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5125 5126 out_of_window: 5127 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5128 inet_csk_schedule_ack(sk); 5129 drop: 5130 tcp_drop_reason(sk, skb, reason); 5131 return; 5132 } 5133 5134 /* Out of window. F.e. zero window probe. */ 5135 if (!before(TCP_SKB_CB(skb)->seq, 5136 tp->rcv_nxt + tcp_receive_window(tp))) { 5137 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5138 goto out_of_window; 5139 } 5140 5141 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5142 /* Partial packet, seq < rcv_next < end_seq */ 5143 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5144 5145 /* If window is closed, drop tail of packet. But after 5146 * remembering D-SACK for its head made in previous line. 5147 */ 5148 if (!tcp_receive_window(tp)) { 5149 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5150 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5151 goto out_of_window; 5152 } 5153 goto queue_and_out; 5154 } 5155 5156 tcp_data_queue_ofo(sk, skb); 5157 } 5158 5159 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5160 { 5161 if (list) 5162 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5163 5164 return skb_rb_next(skb); 5165 } 5166 5167 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5168 struct sk_buff_head *list, 5169 struct rb_root *root) 5170 { 5171 struct sk_buff *next = tcp_skb_next(skb, list); 5172 5173 if (list) 5174 __skb_unlink(skb, list); 5175 else 5176 rb_erase(&skb->rbnode, root); 5177 5178 __kfree_skb(skb); 5179 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5180 5181 return next; 5182 } 5183 5184 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5185 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5186 { 5187 struct rb_node **p = &root->rb_node; 5188 struct rb_node *parent = NULL; 5189 struct sk_buff *skb1; 5190 5191 while (*p) { 5192 parent = *p; 5193 skb1 = rb_to_skb(parent); 5194 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5195 p = &parent->rb_left; 5196 else 5197 p = &parent->rb_right; 5198 } 5199 rb_link_node(&skb->rbnode, parent, p); 5200 rb_insert_color(&skb->rbnode, root); 5201 } 5202 5203 /* Collapse contiguous sequence of skbs head..tail with 5204 * sequence numbers start..end. 5205 * 5206 * If tail is NULL, this means until the end of the queue. 5207 * 5208 * Segments with FIN/SYN are not collapsed (only because this 5209 * simplifies code) 5210 */ 5211 static void 5212 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5213 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5214 { 5215 struct sk_buff *skb = head, *n; 5216 struct sk_buff_head tmp; 5217 bool end_of_skbs; 5218 5219 /* First, check that queue is collapsible and find 5220 * the point where collapsing can be useful. 5221 */ 5222 restart: 5223 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5224 n = tcp_skb_next(skb, list); 5225 5226 /* No new bits? It is possible on ofo queue. */ 5227 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5228 skb = tcp_collapse_one(sk, skb, list, root); 5229 if (!skb) 5230 break; 5231 goto restart; 5232 } 5233 5234 /* The first skb to collapse is: 5235 * - not SYN/FIN and 5236 * - bloated or contains data before "start" or 5237 * overlaps to the next one and mptcp allow collapsing. 5238 */ 5239 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5240 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5241 before(TCP_SKB_CB(skb)->seq, start))) { 5242 end_of_skbs = false; 5243 break; 5244 } 5245 5246 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5247 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5248 end_of_skbs = false; 5249 break; 5250 } 5251 5252 /* Decided to skip this, advance start seq. */ 5253 start = TCP_SKB_CB(skb)->end_seq; 5254 } 5255 if (end_of_skbs || 5256 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5257 return; 5258 5259 __skb_queue_head_init(&tmp); 5260 5261 while (before(start, end)) { 5262 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5263 struct sk_buff *nskb; 5264 5265 nskb = alloc_skb(copy, GFP_ATOMIC); 5266 if (!nskb) 5267 break; 5268 5269 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5270 #ifdef CONFIG_TLS_DEVICE 5271 nskb->decrypted = skb->decrypted; 5272 #endif 5273 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5274 if (list) 5275 __skb_queue_before(list, skb, nskb); 5276 else 5277 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5278 skb_set_owner_r(nskb, sk); 5279 mptcp_skb_ext_move(nskb, skb); 5280 5281 /* Copy data, releasing collapsed skbs. */ 5282 while (copy > 0) { 5283 int offset = start - TCP_SKB_CB(skb)->seq; 5284 int size = TCP_SKB_CB(skb)->end_seq - start; 5285 5286 BUG_ON(offset < 0); 5287 if (size > 0) { 5288 size = min(copy, size); 5289 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5290 BUG(); 5291 TCP_SKB_CB(nskb)->end_seq += size; 5292 copy -= size; 5293 start += size; 5294 } 5295 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5296 skb = tcp_collapse_one(sk, skb, list, root); 5297 if (!skb || 5298 skb == tail || 5299 !mptcp_skb_can_collapse(nskb, skb) || 5300 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5301 goto end; 5302 #ifdef CONFIG_TLS_DEVICE 5303 if (skb->decrypted != nskb->decrypted) 5304 goto end; 5305 #endif 5306 } 5307 } 5308 } 5309 end: 5310 skb_queue_walk_safe(&tmp, skb, n) 5311 tcp_rbtree_insert(root, skb); 5312 } 5313 5314 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5315 * and tcp_collapse() them until all the queue is collapsed. 5316 */ 5317 static void tcp_collapse_ofo_queue(struct sock *sk) 5318 { 5319 struct tcp_sock *tp = tcp_sk(sk); 5320 u32 range_truesize, sum_tiny = 0; 5321 struct sk_buff *skb, *head; 5322 u32 start, end; 5323 5324 skb = skb_rb_first(&tp->out_of_order_queue); 5325 new_range: 5326 if (!skb) { 5327 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5328 return; 5329 } 5330 start = TCP_SKB_CB(skb)->seq; 5331 end = TCP_SKB_CB(skb)->end_seq; 5332 range_truesize = skb->truesize; 5333 5334 for (head = skb;;) { 5335 skb = skb_rb_next(skb); 5336 5337 /* Range is terminated when we see a gap or when 5338 * we are at the queue end. 5339 */ 5340 if (!skb || 5341 after(TCP_SKB_CB(skb)->seq, end) || 5342 before(TCP_SKB_CB(skb)->end_seq, start)) { 5343 /* Do not attempt collapsing tiny skbs */ 5344 if (range_truesize != head->truesize || 5345 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5346 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5347 head, skb, start, end); 5348 } else { 5349 sum_tiny += range_truesize; 5350 if (sum_tiny > sk->sk_rcvbuf >> 3) 5351 return; 5352 } 5353 goto new_range; 5354 } 5355 5356 range_truesize += skb->truesize; 5357 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5358 start = TCP_SKB_CB(skb)->seq; 5359 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5360 end = TCP_SKB_CB(skb)->end_seq; 5361 } 5362 } 5363 5364 /* 5365 * Clean the out-of-order queue to make room. 5366 * We drop high sequences packets to : 5367 * 1) Let a chance for holes to be filled. 5368 * This means we do not drop packets from ooo queue if their sequence 5369 * is before incoming packet sequence. 5370 * 2) not add too big latencies if thousands of packets sit there. 5371 * (But if application shrinks SO_RCVBUF, we could still end up 5372 * freeing whole queue here) 5373 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5374 * 5375 * Return true if queue has shrunk. 5376 */ 5377 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5378 { 5379 struct tcp_sock *tp = tcp_sk(sk); 5380 struct rb_node *node, *prev; 5381 bool pruned = false; 5382 int goal; 5383 5384 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5385 return false; 5386 5387 goal = sk->sk_rcvbuf >> 3; 5388 node = &tp->ooo_last_skb->rbnode; 5389 5390 do { 5391 struct sk_buff *skb = rb_to_skb(node); 5392 5393 /* If incoming skb would land last in ofo queue, stop pruning. */ 5394 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5395 break; 5396 pruned = true; 5397 prev = rb_prev(node); 5398 rb_erase(node, &tp->out_of_order_queue); 5399 goal -= skb->truesize; 5400 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5401 tp->ooo_last_skb = rb_to_skb(prev); 5402 if (!prev || goal <= 0) { 5403 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5404 !tcp_under_memory_pressure(sk)) 5405 break; 5406 goal = sk->sk_rcvbuf >> 3; 5407 } 5408 node = prev; 5409 } while (node); 5410 5411 if (pruned) { 5412 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5413 /* Reset SACK state. A conforming SACK implementation will 5414 * do the same at a timeout based retransmit. When a connection 5415 * is in a sad state like this, we care only about integrity 5416 * of the connection not performance. 5417 */ 5418 if (tp->rx_opt.sack_ok) 5419 tcp_sack_reset(&tp->rx_opt); 5420 } 5421 return pruned; 5422 } 5423 5424 /* Reduce allocated memory if we can, trying to get 5425 * the socket within its memory limits again. 5426 * 5427 * Return less than zero if we should start dropping frames 5428 * until the socket owning process reads some of the data 5429 * to stabilize the situation. 5430 */ 5431 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5432 { 5433 struct tcp_sock *tp = tcp_sk(sk); 5434 5435 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5436 5437 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5438 tcp_clamp_window(sk); 5439 else if (tcp_under_memory_pressure(sk)) 5440 tcp_adjust_rcv_ssthresh(sk); 5441 5442 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5443 return 0; 5444 5445 tcp_collapse_ofo_queue(sk); 5446 if (!skb_queue_empty(&sk->sk_receive_queue)) 5447 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5448 skb_peek(&sk->sk_receive_queue), 5449 NULL, 5450 tp->copied_seq, tp->rcv_nxt); 5451 5452 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5453 return 0; 5454 5455 /* Collapsing did not help, destructive actions follow. 5456 * This must not ever occur. */ 5457 5458 tcp_prune_ofo_queue(sk, in_skb); 5459 5460 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5461 return 0; 5462 5463 /* If we are really being abused, tell the caller to silently 5464 * drop receive data on the floor. It will get retransmitted 5465 * and hopefully then we'll have sufficient space. 5466 */ 5467 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5468 5469 /* Massive buffer overcommit. */ 5470 tp->pred_flags = 0; 5471 return -1; 5472 } 5473 5474 static bool tcp_should_expand_sndbuf(struct sock *sk) 5475 { 5476 const struct tcp_sock *tp = tcp_sk(sk); 5477 5478 /* If the user specified a specific send buffer setting, do 5479 * not modify it. 5480 */ 5481 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5482 return false; 5483 5484 /* If we are under global TCP memory pressure, do not expand. */ 5485 if (tcp_under_memory_pressure(sk)) { 5486 int unused_mem = sk_unused_reserved_mem(sk); 5487 5488 /* Adjust sndbuf according to reserved mem. But make sure 5489 * it never goes below SOCK_MIN_SNDBUF. 5490 * See sk_stream_moderate_sndbuf() for more details. 5491 */ 5492 if (unused_mem > SOCK_MIN_SNDBUF) 5493 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5494 5495 return false; 5496 } 5497 5498 /* If we are under soft global TCP memory pressure, do not expand. */ 5499 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5500 return false; 5501 5502 /* If we filled the congestion window, do not expand. */ 5503 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5504 return false; 5505 5506 return true; 5507 } 5508 5509 static void tcp_new_space(struct sock *sk) 5510 { 5511 struct tcp_sock *tp = tcp_sk(sk); 5512 5513 if (tcp_should_expand_sndbuf(sk)) { 5514 tcp_sndbuf_expand(sk); 5515 tp->snd_cwnd_stamp = tcp_jiffies32; 5516 } 5517 5518 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5519 } 5520 5521 /* Caller made space either from: 5522 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5523 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5524 * 5525 * We might be able to generate EPOLLOUT to the application if: 5526 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5527 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5528 * small enough that tcp_stream_memory_free() decides it 5529 * is time to generate EPOLLOUT. 5530 */ 5531 void tcp_check_space(struct sock *sk) 5532 { 5533 /* pairs with tcp_poll() */ 5534 smp_mb(); 5535 if (sk->sk_socket && 5536 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5537 tcp_new_space(sk); 5538 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5539 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5540 } 5541 } 5542 5543 static inline void tcp_data_snd_check(struct sock *sk) 5544 { 5545 tcp_push_pending_frames(sk); 5546 tcp_check_space(sk); 5547 } 5548 5549 /* 5550 * Check if sending an ack is needed. 5551 */ 5552 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5553 { 5554 struct tcp_sock *tp = tcp_sk(sk); 5555 unsigned long rtt, delay; 5556 5557 /* More than one full frame received... */ 5558 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5559 /* ... and right edge of window advances far enough. 5560 * (tcp_recvmsg() will send ACK otherwise). 5561 * If application uses SO_RCVLOWAT, we want send ack now if 5562 * we have not received enough bytes to satisfy the condition. 5563 */ 5564 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5565 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5566 /* We ACK each frame or... */ 5567 tcp_in_quickack_mode(sk) || 5568 /* Protocol state mandates a one-time immediate ACK */ 5569 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5570 /* If we are running from __release_sock() in user context, 5571 * Defer the ack until tcp_release_cb(). 5572 */ 5573 if (sock_owned_by_user_nocheck(sk) && 5574 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { 5575 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5576 return; 5577 } 5578 send_now: 5579 tcp_send_ack(sk); 5580 return; 5581 } 5582 5583 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5584 tcp_send_delayed_ack(sk); 5585 return; 5586 } 5587 5588 if (!tcp_is_sack(tp) || 5589 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5590 goto send_now; 5591 5592 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5593 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5594 tp->dup_ack_counter = 0; 5595 } 5596 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5597 tp->dup_ack_counter++; 5598 goto send_now; 5599 } 5600 tp->compressed_ack++; 5601 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5602 return; 5603 5604 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5605 5606 rtt = tp->rcv_rtt_est.rtt_us; 5607 if (tp->srtt_us && tp->srtt_us < rtt) 5608 rtt = tp->srtt_us; 5609 5610 delay = min_t(unsigned long, 5611 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5612 rtt * (NSEC_PER_USEC >> 3)/20); 5613 sock_hold(sk); 5614 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5615 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5616 HRTIMER_MODE_REL_PINNED_SOFT); 5617 } 5618 5619 static inline void tcp_ack_snd_check(struct sock *sk) 5620 { 5621 if (!inet_csk_ack_scheduled(sk)) { 5622 /* We sent a data segment already. */ 5623 return; 5624 } 5625 __tcp_ack_snd_check(sk, 1); 5626 } 5627 5628 /* 5629 * This routine is only called when we have urgent data 5630 * signaled. Its the 'slow' part of tcp_urg. It could be 5631 * moved inline now as tcp_urg is only called from one 5632 * place. We handle URGent data wrong. We have to - as 5633 * BSD still doesn't use the correction from RFC961. 5634 * For 1003.1g we should support a new option TCP_STDURG to permit 5635 * either form (or just set the sysctl tcp_stdurg). 5636 */ 5637 5638 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5639 { 5640 struct tcp_sock *tp = tcp_sk(sk); 5641 u32 ptr = ntohs(th->urg_ptr); 5642 5643 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5644 ptr--; 5645 ptr += ntohl(th->seq); 5646 5647 /* Ignore urgent data that we've already seen and read. */ 5648 if (after(tp->copied_seq, ptr)) 5649 return; 5650 5651 /* Do not replay urg ptr. 5652 * 5653 * NOTE: interesting situation not covered by specs. 5654 * Misbehaving sender may send urg ptr, pointing to segment, 5655 * which we already have in ofo queue. We are not able to fetch 5656 * such data and will stay in TCP_URG_NOTYET until will be eaten 5657 * by recvmsg(). Seems, we are not obliged to handle such wicked 5658 * situations. But it is worth to think about possibility of some 5659 * DoSes using some hypothetical application level deadlock. 5660 */ 5661 if (before(ptr, tp->rcv_nxt)) 5662 return; 5663 5664 /* Do we already have a newer (or duplicate) urgent pointer? */ 5665 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5666 return; 5667 5668 /* Tell the world about our new urgent pointer. */ 5669 sk_send_sigurg(sk); 5670 5671 /* We may be adding urgent data when the last byte read was 5672 * urgent. To do this requires some care. We cannot just ignore 5673 * tp->copied_seq since we would read the last urgent byte again 5674 * as data, nor can we alter copied_seq until this data arrives 5675 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5676 * 5677 * NOTE. Double Dutch. Rendering to plain English: author of comment 5678 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5679 * and expect that both A and B disappear from stream. This is _wrong_. 5680 * Though this happens in BSD with high probability, this is occasional. 5681 * Any application relying on this is buggy. Note also, that fix "works" 5682 * only in this artificial test. Insert some normal data between A and B and we will 5683 * decline of BSD again. Verdict: it is better to remove to trap 5684 * buggy users. 5685 */ 5686 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5687 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5688 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5689 tp->copied_seq++; 5690 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5691 __skb_unlink(skb, &sk->sk_receive_queue); 5692 __kfree_skb(skb); 5693 } 5694 } 5695 5696 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5697 WRITE_ONCE(tp->urg_seq, ptr); 5698 5699 /* Disable header prediction. */ 5700 tp->pred_flags = 0; 5701 } 5702 5703 /* This is the 'fast' part of urgent handling. */ 5704 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5705 { 5706 struct tcp_sock *tp = tcp_sk(sk); 5707 5708 /* Check if we get a new urgent pointer - normally not. */ 5709 if (unlikely(th->urg)) 5710 tcp_check_urg(sk, th); 5711 5712 /* Do we wait for any urgent data? - normally not... */ 5713 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5714 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5715 th->syn; 5716 5717 /* Is the urgent pointer pointing into this packet? */ 5718 if (ptr < skb->len) { 5719 u8 tmp; 5720 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5721 BUG(); 5722 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5723 if (!sock_flag(sk, SOCK_DEAD)) 5724 sk->sk_data_ready(sk); 5725 } 5726 } 5727 } 5728 5729 /* Accept RST for rcv_nxt - 1 after a FIN. 5730 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5731 * FIN is sent followed by a RST packet. The RST is sent with the same 5732 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5733 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5734 * ACKs on the closed socket. In addition middleboxes can drop either the 5735 * challenge ACK or a subsequent RST. 5736 */ 5737 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5738 { 5739 const struct tcp_sock *tp = tcp_sk(sk); 5740 5741 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5742 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5743 TCPF_CLOSING)); 5744 } 5745 5746 /* Does PAWS and seqno based validation of an incoming segment, flags will 5747 * play significant role here. 5748 */ 5749 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5750 const struct tcphdr *th, int syn_inerr) 5751 { 5752 struct tcp_sock *tp = tcp_sk(sk); 5753 SKB_DR(reason); 5754 5755 /* RFC1323: H1. Apply PAWS check first. */ 5756 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5757 tp->rx_opt.saw_tstamp && 5758 tcp_paws_discard(sk, skb)) { 5759 if (!th->rst) { 5760 if (unlikely(th->syn)) 5761 goto syn_challenge; 5762 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5763 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5764 LINUX_MIB_TCPACKSKIPPEDPAWS, 5765 &tp->last_oow_ack_time)) 5766 tcp_send_dupack(sk, skb); 5767 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5768 goto discard; 5769 } 5770 /* Reset is accepted even if it did not pass PAWS. */ 5771 } 5772 5773 /* Step 1: check sequence number */ 5774 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5775 if (reason) { 5776 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5777 * (RST) segments are validated by checking their SEQ-fields." 5778 * And page 69: "If an incoming segment is not acceptable, 5779 * an acknowledgment should be sent in reply (unless the RST 5780 * bit is set, if so drop the segment and return)". 5781 */ 5782 if (!th->rst) { 5783 if (th->syn) 5784 goto syn_challenge; 5785 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5786 LINUX_MIB_TCPACKSKIPPEDSEQ, 5787 &tp->last_oow_ack_time)) 5788 tcp_send_dupack(sk, skb); 5789 } else if (tcp_reset_check(sk, skb)) { 5790 goto reset; 5791 } 5792 goto discard; 5793 } 5794 5795 /* Step 2: check RST bit */ 5796 if (th->rst) { 5797 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5798 * FIN and SACK too if available): 5799 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5800 * the right-most SACK block, 5801 * then 5802 * RESET the connection 5803 * else 5804 * Send a challenge ACK 5805 */ 5806 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5807 tcp_reset_check(sk, skb)) 5808 goto reset; 5809 5810 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5811 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5812 int max_sack = sp[0].end_seq; 5813 int this_sack; 5814 5815 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5816 ++this_sack) { 5817 max_sack = after(sp[this_sack].end_seq, 5818 max_sack) ? 5819 sp[this_sack].end_seq : max_sack; 5820 } 5821 5822 if (TCP_SKB_CB(skb)->seq == max_sack) 5823 goto reset; 5824 } 5825 5826 /* Disable TFO if RST is out-of-order 5827 * and no data has been received 5828 * for current active TFO socket 5829 */ 5830 if (tp->syn_fastopen && !tp->data_segs_in && 5831 sk->sk_state == TCP_ESTABLISHED) 5832 tcp_fastopen_active_disable(sk); 5833 tcp_send_challenge_ack(sk); 5834 SKB_DR_SET(reason, TCP_RESET); 5835 goto discard; 5836 } 5837 5838 /* step 3: check security and precedence [ignored] */ 5839 5840 /* step 4: Check for a SYN 5841 * RFC 5961 4.2 : Send a challenge ack 5842 */ 5843 if (th->syn) { 5844 syn_challenge: 5845 if (syn_inerr) 5846 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5847 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5848 tcp_send_challenge_ack(sk); 5849 SKB_DR_SET(reason, TCP_INVALID_SYN); 5850 goto discard; 5851 } 5852 5853 bpf_skops_parse_hdr(sk, skb); 5854 5855 return true; 5856 5857 discard: 5858 tcp_drop_reason(sk, skb, reason); 5859 return false; 5860 5861 reset: 5862 tcp_reset(sk, skb); 5863 __kfree_skb(skb); 5864 return false; 5865 } 5866 5867 /* 5868 * TCP receive function for the ESTABLISHED state. 5869 * 5870 * It is split into a fast path and a slow path. The fast path is 5871 * disabled when: 5872 * - A zero window was announced from us - zero window probing 5873 * is only handled properly in the slow path. 5874 * - Out of order segments arrived. 5875 * - Urgent data is expected. 5876 * - There is no buffer space left 5877 * - Unexpected TCP flags/window values/header lengths are received 5878 * (detected by checking the TCP header against pred_flags) 5879 * - Data is sent in both directions. Fast path only supports pure senders 5880 * or pure receivers (this means either the sequence number or the ack 5881 * value must stay constant) 5882 * - Unexpected TCP option. 5883 * 5884 * When these conditions are not satisfied it drops into a standard 5885 * receive procedure patterned after RFC793 to handle all cases. 5886 * The first three cases are guaranteed by proper pred_flags setting, 5887 * the rest is checked inline. Fast processing is turned on in 5888 * tcp_data_queue when everything is OK. 5889 */ 5890 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5891 { 5892 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 5893 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5894 struct tcp_sock *tp = tcp_sk(sk); 5895 unsigned int len = skb->len; 5896 5897 /* TCP congestion window tracking */ 5898 trace_tcp_probe(sk, skb); 5899 5900 tcp_mstamp_refresh(tp); 5901 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 5902 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5903 /* 5904 * Header prediction. 5905 * The code loosely follows the one in the famous 5906 * "30 instruction TCP receive" Van Jacobson mail. 5907 * 5908 * Van's trick is to deposit buffers into socket queue 5909 * on a device interrupt, to call tcp_recv function 5910 * on the receive process context and checksum and copy 5911 * the buffer to user space. smart... 5912 * 5913 * Our current scheme is not silly either but we take the 5914 * extra cost of the net_bh soft interrupt processing... 5915 * We do checksum and copy also but from device to kernel. 5916 */ 5917 5918 tp->rx_opt.saw_tstamp = 0; 5919 5920 /* pred_flags is 0xS?10 << 16 + snd_wnd 5921 * if header_prediction is to be made 5922 * 'S' will always be tp->tcp_header_len >> 2 5923 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5924 * turn it off (when there are holes in the receive 5925 * space for instance) 5926 * PSH flag is ignored. 5927 */ 5928 5929 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5930 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5931 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5932 int tcp_header_len = tp->tcp_header_len; 5933 5934 /* Timestamp header prediction: tcp_header_len 5935 * is automatically equal to th->doff*4 due to pred_flags 5936 * match. 5937 */ 5938 5939 /* Check timestamp */ 5940 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5941 /* No? Slow path! */ 5942 if (!tcp_parse_aligned_timestamp(tp, th)) 5943 goto slow_path; 5944 5945 /* If PAWS failed, check it more carefully in slow path */ 5946 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5947 goto slow_path; 5948 5949 /* DO NOT update ts_recent here, if checksum fails 5950 * and timestamp was corrupted part, it will result 5951 * in a hung connection since we will drop all 5952 * future packets due to the PAWS test. 5953 */ 5954 } 5955 5956 if (len <= tcp_header_len) { 5957 /* Bulk data transfer: sender */ 5958 if (len == tcp_header_len) { 5959 /* Predicted packet is in window by definition. 5960 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5961 * Hence, check seq<=rcv_wup reduces to: 5962 */ 5963 if (tcp_header_len == 5964 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5965 tp->rcv_nxt == tp->rcv_wup) 5966 tcp_store_ts_recent(tp); 5967 5968 /* We know that such packets are checksummed 5969 * on entry. 5970 */ 5971 tcp_ack(sk, skb, 0); 5972 __kfree_skb(skb); 5973 tcp_data_snd_check(sk); 5974 /* When receiving pure ack in fast path, update 5975 * last ts ecr directly instead of calling 5976 * tcp_rcv_rtt_measure_ts() 5977 */ 5978 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5979 return; 5980 } else { /* Header too small */ 5981 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 5982 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5983 goto discard; 5984 } 5985 } else { 5986 int eaten = 0; 5987 bool fragstolen = false; 5988 5989 if (tcp_checksum_complete(skb)) 5990 goto csum_error; 5991 5992 if ((int)skb->truesize > sk->sk_forward_alloc) 5993 goto step5; 5994 5995 /* Predicted packet is in window by definition. 5996 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5997 * Hence, check seq<=rcv_wup reduces to: 5998 */ 5999 if (tcp_header_len == 6000 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6001 tp->rcv_nxt == tp->rcv_wup) 6002 tcp_store_ts_recent(tp); 6003 6004 tcp_rcv_rtt_measure_ts(sk, skb); 6005 6006 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6007 6008 /* Bulk data transfer: receiver */ 6009 skb_dst_drop(skb); 6010 __skb_pull(skb, tcp_header_len); 6011 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6012 6013 tcp_event_data_recv(sk, skb); 6014 6015 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6016 /* Well, only one small jumplet in fast path... */ 6017 tcp_ack(sk, skb, FLAG_DATA); 6018 tcp_data_snd_check(sk); 6019 if (!inet_csk_ack_scheduled(sk)) 6020 goto no_ack; 6021 } else { 6022 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6023 } 6024 6025 __tcp_ack_snd_check(sk, 0); 6026 no_ack: 6027 if (eaten) 6028 kfree_skb_partial(skb, fragstolen); 6029 tcp_data_ready(sk); 6030 return; 6031 } 6032 } 6033 6034 slow_path: 6035 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6036 goto csum_error; 6037 6038 if (!th->ack && !th->rst && !th->syn) { 6039 reason = SKB_DROP_REASON_TCP_FLAGS; 6040 goto discard; 6041 } 6042 6043 /* 6044 * Standard slow path. 6045 */ 6046 6047 if (!tcp_validate_incoming(sk, skb, th, 1)) 6048 return; 6049 6050 step5: 6051 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6052 if ((int)reason < 0) { 6053 reason = -reason; 6054 goto discard; 6055 } 6056 tcp_rcv_rtt_measure_ts(sk, skb); 6057 6058 /* Process urgent data. */ 6059 tcp_urg(sk, skb, th); 6060 6061 /* step 7: process the segment text */ 6062 tcp_data_queue(sk, skb); 6063 6064 tcp_data_snd_check(sk); 6065 tcp_ack_snd_check(sk); 6066 return; 6067 6068 csum_error: 6069 reason = SKB_DROP_REASON_TCP_CSUM; 6070 trace_tcp_bad_csum(skb); 6071 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6072 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6073 6074 discard: 6075 tcp_drop_reason(sk, skb, reason); 6076 } 6077 EXPORT_SYMBOL(tcp_rcv_established); 6078 6079 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6080 { 6081 struct inet_connection_sock *icsk = inet_csk(sk); 6082 struct tcp_sock *tp = tcp_sk(sk); 6083 6084 tcp_mtup_init(sk); 6085 icsk->icsk_af_ops->rebuild_header(sk); 6086 tcp_init_metrics(sk); 6087 6088 /* Initialize the congestion window to start the transfer. 6089 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6090 * retransmitted. In light of RFC6298 more aggressive 1sec 6091 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6092 * retransmission has occurred. 6093 */ 6094 if (tp->total_retrans > 1 && tp->undo_marker) 6095 tcp_snd_cwnd_set(tp, 1); 6096 else 6097 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6098 tp->snd_cwnd_stamp = tcp_jiffies32; 6099 6100 bpf_skops_established(sk, bpf_op, skb); 6101 /* Initialize congestion control unless BPF initialized it already: */ 6102 if (!icsk->icsk_ca_initialized) 6103 tcp_init_congestion_control(sk); 6104 tcp_init_buffer_space(sk); 6105 } 6106 6107 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6108 { 6109 struct tcp_sock *tp = tcp_sk(sk); 6110 struct inet_connection_sock *icsk = inet_csk(sk); 6111 6112 tcp_set_state(sk, TCP_ESTABLISHED); 6113 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6114 6115 if (skb) { 6116 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6117 security_inet_conn_established(sk, skb); 6118 sk_mark_napi_id(sk, skb); 6119 } 6120 6121 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6122 6123 /* Prevent spurious tcp_cwnd_restart() on first data 6124 * packet. 6125 */ 6126 tp->lsndtime = tcp_jiffies32; 6127 6128 if (sock_flag(sk, SOCK_KEEPOPEN)) 6129 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6130 6131 if (!tp->rx_opt.snd_wscale) 6132 __tcp_fast_path_on(tp, tp->snd_wnd); 6133 else 6134 tp->pred_flags = 0; 6135 } 6136 6137 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6138 struct tcp_fastopen_cookie *cookie) 6139 { 6140 struct tcp_sock *tp = tcp_sk(sk); 6141 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6142 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6143 bool syn_drop = false; 6144 6145 if (mss == tp->rx_opt.user_mss) { 6146 struct tcp_options_received opt; 6147 6148 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6149 tcp_clear_options(&opt); 6150 opt.user_mss = opt.mss_clamp = 0; 6151 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6152 mss = opt.mss_clamp; 6153 } 6154 6155 if (!tp->syn_fastopen) { 6156 /* Ignore an unsolicited cookie */ 6157 cookie->len = -1; 6158 } else if (tp->total_retrans) { 6159 /* SYN timed out and the SYN-ACK neither has a cookie nor 6160 * acknowledges data. Presumably the remote received only 6161 * the retransmitted (regular) SYNs: either the original 6162 * SYN-data or the corresponding SYN-ACK was dropped. 6163 */ 6164 syn_drop = (cookie->len < 0 && data); 6165 } else if (cookie->len < 0 && !tp->syn_data) { 6166 /* We requested a cookie but didn't get it. If we did not use 6167 * the (old) exp opt format then try so next time (try_exp=1). 6168 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6169 */ 6170 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6171 } 6172 6173 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6174 6175 if (data) { /* Retransmit unacked data in SYN */ 6176 if (tp->total_retrans) 6177 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6178 else 6179 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6180 skb_rbtree_walk_from(data) 6181 tcp_mark_skb_lost(sk, data); 6182 tcp_xmit_retransmit_queue(sk); 6183 NET_INC_STATS(sock_net(sk), 6184 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6185 return true; 6186 } 6187 tp->syn_data_acked = tp->syn_data; 6188 if (tp->syn_data_acked) { 6189 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6190 /* SYN-data is counted as two separate packets in tcp_ack() */ 6191 if (tp->delivered > 1) 6192 --tp->delivered; 6193 } 6194 6195 tcp_fastopen_add_skb(sk, synack); 6196 6197 return false; 6198 } 6199 6200 static void smc_check_reset_syn(struct tcp_sock *tp) 6201 { 6202 #if IS_ENABLED(CONFIG_SMC) 6203 if (static_branch_unlikely(&tcp_have_smc)) { 6204 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6205 tp->syn_smc = 0; 6206 } 6207 #endif 6208 } 6209 6210 static void tcp_try_undo_spurious_syn(struct sock *sk) 6211 { 6212 struct tcp_sock *tp = tcp_sk(sk); 6213 u32 syn_stamp; 6214 6215 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6216 * spurious if the ACK's timestamp option echo value matches the 6217 * original SYN timestamp. 6218 */ 6219 syn_stamp = tp->retrans_stamp; 6220 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6221 syn_stamp == tp->rx_opt.rcv_tsecr) 6222 tp->undo_marker = 0; 6223 } 6224 6225 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6226 const struct tcphdr *th) 6227 { 6228 struct inet_connection_sock *icsk = inet_csk(sk); 6229 struct tcp_sock *tp = tcp_sk(sk); 6230 struct tcp_fastopen_cookie foc = { .len = -1 }; 6231 int saved_clamp = tp->rx_opt.mss_clamp; 6232 bool fastopen_fail; 6233 SKB_DR(reason); 6234 6235 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6236 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6237 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6238 6239 if (th->ack) { 6240 /* rfc793: 6241 * "If the state is SYN-SENT then 6242 * first check the ACK bit 6243 * If the ACK bit is set 6244 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6245 * a reset (unless the RST bit is set, if so drop 6246 * the segment and return)" 6247 */ 6248 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6249 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6250 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6251 if (icsk->icsk_retransmits == 0) 6252 inet_csk_reset_xmit_timer(sk, 6253 ICSK_TIME_RETRANS, 6254 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6255 goto reset_and_undo; 6256 } 6257 6258 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6259 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6260 tcp_time_stamp(tp))) { 6261 NET_INC_STATS(sock_net(sk), 6262 LINUX_MIB_PAWSACTIVEREJECTED); 6263 goto reset_and_undo; 6264 } 6265 6266 /* Now ACK is acceptable. 6267 * 6268 * "If the RST bit is set 6269 * If the ACK was acceptable then signal the user "error: 6270 * connection reset", drop the segment, enter CLOSED state, 6271 * delete TCB, and return." 6272 */ 6273 6274 if (th->rst) { 6275 tcp_reset(sk, skb); 6276 consume: 6277 __kfree_skb(skb); 6278 return 0; 6279 } 6280 6281 /* rfc793: 6282 * "fifth, if neither of the SYN or RST bits is set then 6283 * drop the segment and return." 6284 * 6285 * See note below! 6286 * --ANK(990513) 6287 */ 6288 if (!th->syn) { 6289 SKB_DR_SET(reason, TCP_FLAGS); 6290 goto discard_and_undo; 6291 } 6292 /* rfc793: 6293 * "If the SYN bit is on ... 6294 * are acceptable then ... 6295 * (our SYN has been ACKed), change the connection 6296 * state to ESTABLISHED..." 6297 */ 6298 6299 tcp_ecn_rcv_synack(tp, th); 6300 6301 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6302 tcp_try_undo_spurious_syn(sk); 6303 tcp_ack(sk, skb, FLAG_SLOWPATH); 6304 6305 /* Ok.. it's good. Set up sequence numbers and 6306 * move to established. 6307 */ 6308 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6309 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6310 6311 /* RFC1323: The window in SYN & SYN/ACK segments is 6312 * never scaled. 6313 */ 6314 tp->snd_wnd = ntohs(th->window); 6315 6316 if (!tp->rx_opt.wscale_ok) { 6317 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6318 tp->window_clamp = min(tp->window_clamp, 65535U); 6319 } 6320 6321 if (tp->rx_opt.saw_tstamp) { 6322 tp->rx_opt.tstamp_ok = 1; 6323 tp->tcp_header_len = 6324 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6325 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6326 tcp_store_ts_recent(tp); 6327 } else { 6328 tp->tcp_header_len = sizeof(struct tcphdr); 6329 } 6330 6331 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6332 tcp_initialize_rcv_mss(sk); 6333 6334 /* Remember, tcp_poll() does not lock socket! 6335 * Change state from SYN-SENT only after copied_seq 6336 * is initialized. */ 6337 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6338 6339 smc_check_reset_syn(tp); 6340 6341 smp_mb(); 6342 6343 tcp_finish_connect(sk, skb); 6344 6345 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6346 tcp_rcv_fastopen_synack(sk, skb, &foc); 6347 6348 if (!sock_flag(sk, SOCK_DEAD)) { 6349 sk->sk_state_change(sk); 6350 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6351 } 6352 if (fastopen_fail) 6353 return -1; 6354 if (sk->sk_write_pending || 6355 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6356 inet_csk_in_pingpong_mode(sk)) { 6357 /* Save one ACK. Data will be ready after 6358 * several ticks, if write_pending is set. 6359 * 6360 * It may be deleted, but with this feature tcpdumps 6361 * look so _wonderfully_ clever, that I was not able 6362 * to stand against the temptation 8) --ANK 6363 */ 6364 inet_csk_schedule_ack(sk); 6365 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6366 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6367 TCP_DELACK_MAX, TCP_RTO_MAX); 6368 goto consume; 6369 } 6370 tcp_send_ack(sk); 6371 return -1; 6372 } 6373 6374 /* No ACK in the segment */ 6375 6376 if (th->rst) { 6377 /* rfc793: 6378 * "If the RST bit is set 6379 * 6380 * Otherwise (no ACK) drop the segment and return." 6381 */ 6382 SKB_DR_SET(reason, TCP_RESET); 6383 goto discard_and_undo; 6384 } 6385 6386 /* PAWS check. */ 6387 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6388 tcp_paws_reject(&tp->rx_opt, 0)) { 6389 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6390 goto discard_and_undo; 6391 } 6392 if (th->syn) { 6393 /* We see SYN without ACK. It is attempt of 6394 * simultaneous connect with crossed SYNs. 6395 * Particularly, it can be connect to self. 6396 */ 6397 tcp_set_state(sk, TCP_SYN_RECV); 6398 6399 if (tp->rx_opt.saw_tstamp) { 6400 tp->rx_opt.tstamp_ok = 1; 6401 tcp_store_ts_recent(tp); 6402 tp->tcp_header_len = 6403 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6404 } else { 6405 tp->tcp_header_len = sizeof(struct tcphdr); 6406 } 6407 6408 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6409 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6410 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6411 6412 /* RFC1323: The window in SYN & SYN/ACK segments is 6413 * never scaled. 6414 */ 6415 tp->snd_wnd = ntohs(th->window); 6416 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6417 tp->max_window = tp->snd_wnd; 6418 6419 tcp_ecn_rcv_syn(tp, th); 6420 6421 tcp_mtup_init(sk); 6422 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6423 tcp_initialize_rcv_mss(sk); 6424 6425 tcp_send_synack(sk); 6426 #if 0 6427 /* Note, we could accept data and URG from this segment. 6428 * There are no obstacles to make this (except that we must 6429 * either change tcp_recvmsg() to prevent it from returning data 6430 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6431 * 6432 * However, if we ignore data in ACKless segments sometimes, 6433 * we have no reasons to accept it sometimes. 6434 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6435 * is not flawless. So, discard packet for sanity. 6436 * Uncomment this return to process the data. 6437 */ 6438 return -1; 6439 #else 6440 goto consume; 6441 #endif 6442 } 6443 /* "fifth, if neither of the SYN or RST bits is set then 6444 * drop the segment and return." 6445 */ 6446 6447 discard_and_undo: 6448 tcp_clear_options(&tp->rx_opt); 6449 tp->rx_opt.mss_clamp = saved_clamp; 6450 tcp_drop_reason(sk, skb, reason); 6451 return 0; 6452 6453 reset_and_undo: 6454 tcp_clear_options(&tp->rx_opt); 6455 tp->rx_opt.mss_clamp = saved_clamp; 6456 return 1; 6457 } 6458 6459 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6460 { 6461 struct tcp_sock *tp = tcp_sk(sk); 6462 struct request_sock *req; 6463 6464 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6465 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6466 */ 6467 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6468 tcp_try_undo_recovery(sk); 6469 6470 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6471 tcp_update_rto_time(tp); 6472 tp->retrans_stamp = 0; 6473 inet_csk(sk)->icsk_retransmits = 0; 6474 6475 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6476 * we no longer need req so release it. 6477 */ 6478 req = rcu_dereference_protected(tp->fastopen_rsk, 6479 lockdep_sock_is_held(sk)); 6480 reqsk_fastopen_remove(sk, req, false); 6481 6482 /* Re-arm the timer because data may have been sent out. 6483 * This is similar to the regular data transmission case 6484 * when new data has just been ack'ed. 6485 * 6486 * (TFO) - we could try to be more aggressive and 6487 * retransmitting any data sooner based on when they 6488 * are sent out. 6489 */ 6490 tcp_rearm_rto(sk); 6491 } 6492 6493 /* 6494 * This function implements the receiving procedure of RFC 793 for 6495 * all states except ESTABLISHED and TIME_WAIT. 6496 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6497 * address independent. 6498 */ 6499 6500 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6501 { 6502 struct tcp_sock *tp = tcp_sk(sk); 6503 struct inet_connection_sock *icsk = inet_csk(sk); 6504 const struct tcphdr *th = tcp_hdr(skb); 6505 struct request_sock *req; 6506 int queued = 0; 6507 bool acceptable; 6508 SKB_DR(reason); 6509 6510 switch (sk->sk_state) { 6511 case TCP_CLOSE: 6512 SKB_DR_SET(reason, TCP_CLOSE); 6513 goto discard; 6514 6515 case TCP_LISTEN: 6516 if (th->ack) 6517 return 1; 6518 6519 if (th->rst) { 6520 SKB_DR_SET(reason, TCP_RESET); 6521 goto discard; 6522 } 6523 if (th->syn) { 6524 if (th->fin) { 6525 SKB_DR_SET(reason, TCP_FLAGS); 6526 goto discard; 6527 } 6528 /* It is possible that we process SYN packets from backlog, 6529 * so we need to make sure to disable BH and RCU right there. 6530 */ 6531 rcu_read_lock(); 6532 local_bh_disable(); 6533 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6534 local_bh_enable(); 6535 rcu_read_unlock(); 6536 6537 if (!acceptable) 6538 return 1; 6539 consume_skb(skb); 6540 return 0; 6541 } 6542 SKB_DR_SET(reason, TCP_FLAGS); 6543 goto discard; 6544 6545 case TCP_SYN_SENT: 6546 tp->rx_opt.saw_tstamp = 0; 6547 tcp_mstamp_refresh(tp); 6548 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6549 if (queued >= 0) 6550 return queued; 6551 6552 /* Do step6 onward by hand. */ 6553 tcp_urg(sk, skb, th); 6554 __kfree_skb(skb); 6555 tcp_data_snd_check(sk); 6556 return 0; 6557 } 6558 6559 tcp_mstamp_refresh(tp); 6560 tp->rx_opt.saw_tstamp = 0; 6561 req = rcu_dereference_protected(tp->fastopen_rsk, 6562 lockdep_sock_is_held(sk)); 6563 if (req) { 6564 bool req_stolen; 6565 6566 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6567 sk->sk_state != TCP_FIN_WAIT1); 6568 6569 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6570 SKB_DR_SET(reason, TCP_FASTOPEN); 6571 goto discard; 6572 } 6573 } 6574 6575 if (!th->ack && !th->rst && !th->syn) { 6576 SKB_DR_SET(reason, TCP_FLAGS); 6577 goto discard; 6578 } 6579 if (!tcp_validate_incoming(sk, skb, th, 0)) 6580 return 0; 6581 6582 /* step 5: check the ACK field */ 6583 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6584 FLAG_UPDATE_TS_RECENT | 6585 FLAG_NO_CHALLENGE_ACK) > 0; 6586 6587 if (!acceptable) { 6588 if (sk->sk_state == TCP_SYN_RECV) 6589 return 1; /* send one RST */ 6590 tcp_send_challenge_ack(sk); 6591 SKB_DR_SET(reason, TCP_OLD_ACK); 6592 goto discard; 6593 } 6594 switch (sk->sk_state) { 6595 case TCP_SYN_RECV: 6596 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6597 if (!tp->srtt_us) 6598 tcp_synack_rtt_meas(sk, req); 6599 6600 if (req) { 6601 tcp_rcv_synrecv_state_fastopen(sk); 6602 } else { 6603 tcp_try_undo_spurious_syn(sk); 6604 tp->retrans_stamp = 0; 6605 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6606 skb); 6607 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6608 } 6609 smp_mb(); 6610 tcp_set_state(sk, TCP_ESTABLISHED); 6611 sk->sk_state_change(sk); 6612 6613 /* Note, that this wakeup is only for marginal crossed SYN case. 6614 * Passively open sockets are not waked up, because 6615 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6616 */ 6617 if (sk->sk_socket) 6618 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6619 6620 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6621 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6622 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6623 6624 if (tp->rx_opt.tstamp_ok) 6625 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6626 6627 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6628 tcp_update_pacing_rate(sk); 6629 6630 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6631 tp->lsndtime = tcp_jiffies32; 6632 6633 tcp_initialize_rcv_mss(sk); 6634 tcp_fast_path_on(tp); 6635 break; 6636 6637 case TCP_FIN_WAIT1: { 6638 int tmo; 6639 6640 if (req) 6641 tcp_rcv_synrecv_state_fastopen(sk); 6642 6643 if (tp->snd_una != tp->write_seq) 6644 break; 6645 6646 tcp_set_state(sk, TCP_FIN_WAIT2); 6647 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6648 6649 sk_dst_confirm(sk); 6650 6651 if (!sock_flag(sk, SOCK_DEAD)) { 6652 /* Wake up lingering close() */ 6653 sk->sk_state_change(sk); 6654 break; 6655 } 6656 6657 if (READ_ONCE(tp->linger2) < 0) { 6658 tcp_done(sk); 6659 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6660 return 1; 6661 } 6662 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6663 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6664 /* Receive out of order FIN after close() */ 6665 if (tp->syn_fastopen && th->fin) 6666 tcp_fastopen_active_disable(sk); 6667 tcp_done(sk); 6668 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6669 return 1; 6670 } 6671 6672 tmo = tcp_fin_time(sk); 6673 if (tmo > TCP_TIMEWAIT_LEN) { 6674 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6675 } else if (th->fin || sock_owned_by_user(sk)) { 6676 /* Bad case. We could lose such FIN otherwise. 6677 * It is not a big problem, but it looks confusing 6678 * and not so rare event. We still can lose it now, 6679 * if it spins in bh_lock_sock(), but it is really 6680 * marginal case. 6681 */ 6682 inet_csk_reset_keepalive_timer(sk, tmo); 6683 } else { 6684 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6685 goto consume; 6686 } 6687 break; 6688 } 6689 6690 case TCP_CLOSING: 6691 if (tp->snd_una == tp->write_seq) { 6692 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6693 goto consume; 6694 } 6695 break; 6696 6697 case TCP_LAST_ACK: 6698 if (tp->snd_una == tp->write_seq) { 6699 tcp_update_metrics(sk); 6700 tcp_done(sk); 6701 goto consume; 6702 } 6703 break; 6704 } 6705 6706 /* step 6: check the URG bit */ 6707 tcp_urg(sk, skb, th); 6708 6709 /* step 7: process the segment text */ 6710 switch (sk->sk_state) { 6711 case TCP_CLOSE_WAIT: 6712 case TCP_CLOSING: 6713 case TCP_LAST_ACK: 6714 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6715 /* If a subflow has been reset, the packet should not 6716 * continue to be processed, drop the packet. 6717 */ 6718 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6719 goto discard; 6720 break; 6721 } 6722 fallthrough; 6723 case TCP_FIN_WAIT1: 6724 case TCP_FIN_WAIT2: 6725 /* RFC 793 says to queue data in these states, 6726 * RFC 1122 says we MUST send a reset. 6727 * BSD 4.4 also does reset. 6728 */ 6729 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6730 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6731 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6732 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6733 tcp_reset(sk, skb); 6734 return 1; 6735 } 6736 } 6737 fallthrough; 6738 case TCP_ESTABLISHED: 6739 tcp_data_queue(sk, skb); 6740 queued = 1; 6741 break; 6742 } 6743 6744 /* tcp_data could move socket to TIME-WAIT */ 6745 if (sk->sk_state != TCP_CLOSE) { 6746 tcp_data_snd_check(sk); 6747 tcp_ack_snd_check(sk); 6748 } 6749 6750 if (!queued) { 6751 discard: 6752 tcp_drop_reason(sk, skb, reason); 6753 } 6754 return 0; 6755 6756 consume: 6757 __kfree_skb(skb); 6758 return 0; 6759 } 6760 EXPORT_SYMBOL(tcp_rcv_state_process); 6761 6762 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6763 { 6764 struct inet_request_sock *ireq = inet_rsk(req); 6765 6766 if (family == AF_INET) 6767 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6768 &ireq->ir_rmt_addr, port); 6769 #if IS_ENABLED(CONFIG_IPV6) 6770 else if (family == AF_INET6) 6771 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6772 &ireq->ir_v6_rmt_addr, port); 6773 #endif 6774 } 6775 6776 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6777 * 6778 * If we receive a SYN packet with these bits set, it means a 6779 * network is playing bad games with TOS bits. In order to 6780 * avoid possible false congestion notifications, we disable 6781 * TCP ECN negotiation. 6782 * 6783 * Exception: tcp_ca wants ECN. This is required for DCTCP 6784 * congestion control: Linux DCTCP asserts ECT on all packets, 6785 * including SYN, which is most optimal solution; however, 6786 * others, such as FreeBSD do not. 6787 * 6788 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6789 * set, indicating the use of a future TCP extension (such as AccECN). See 6790 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6791 * extensions. 6792 */ 6793 static void tcp_ecn_create_request(struct request_sock *req, 6794 const struct sk_buff *skb, 6795 const struct sock *listen_sk, 6796 const struct dst_entry *dst) 6797 { 6798 const struct tcphdr *th = tcp_hdr(skb); 6799 const struct net *net = sock_net(listen_sk); 6800 bool th_ecn = th->ece && th->cwr; 6801 bool ect, ecn_ok; 6802 u32 ecn_ok_dst; 6803 6804 if (!th_ecn) 6805 return; 6806 6807 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6808 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6809 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6810 6811 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6812 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6813 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6814 inet_rsk(req)->ecn_ok = 1; 6815 } 6816 6817 static void tcp_openreq_init(struct request_sock *req, 6818 const struct tcp_options_received *rx_opt, 6819 struct sk_buff *skb, const struct sock *sk) 6820 { 6821 struct inet_request_sock *ireq = inet_rsk(req); 6822 6823 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6824 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6825 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6826 tcp_rsk(req)->snt_synack = 0; 6827 tcp_rsk(req)->last_oow_ack_time = 0; 6828 req->mss = rx_opt->mss_clamp; 6829 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6830 ireq->tstamp_ok = rx_opt->tstamp_ok; 6831 ireq->sack_ok = rx_opt->sack_ok; 6832 ireq->snd_wscale = rx_opt->snd_wscale; 6833 ireq->wscale_ok = rx_opt->wscale_ok; 6834 ireq->acked = 0; 6835 ireq->ecn_ok = 0; 6836 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6837 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6838 ireq->ir_mark = inet_request_mark(sk, skb); 6839 #if IS_ENABLED(CONFIG_SMC) 6840 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6841 tcp_sk(sk)->smc_hs_congested(sk)); 6842 #endif 6843 } 6844 6845 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6846 struct sock *sk_listener, 6847 bool attach_listener) 6848 { 6849 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6850 attach_listener); 6851 6852 if (req) { 6853 struct inet_request_sock *ireq = inet_rsk(req); 6854 6855 ireq->ireq_opt = NULL; 6856 #if IS_ENABLED(CONFIG_IPV6) 6857 ireq->pktopts = NULL; 6858 #endif 6859 atomic64_set(&ireq->ir_cookie, 0); 6860 ireq->ireq_state = TCP_NEW_SYN_RECV; 6861 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6862 ireq->ireq_family = sk_listener->sk_family; 6863 req->timeout = TCP_TIMEOUT_INIT; 6864 } 6865 6866 return req; 6867 } 6868 EXPORT_SYMBOL(inet_reqsk_alloc); 6869 6870 /* 6871 * Return true if a syncookie should be sent 6872 */ 6873 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6874 { 6875 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6876 const char *msg = "Dropping request"; 6877 struct net *net = sock_net(sk); 6878 bool want_cookie = false; 6879 u8 syncookies; 6880 6881 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6882 6883 #ifdef CONFIG_SYN_COOKIES 6884 if (syncookies) { 6885 msg = "Sending cookies"; 6886 want_cookie = true; 6887 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6888 } else 6889 #endif 6890 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6891 6892 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 6893 xchg(&queue->synflood_warned, 1) == 0) { 6894 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 6895 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 6896 proto, inet6_rcv_saddr(sk), 6897 sk->sk_num, msg); 6898 } else { 6899 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 6900 proto, &sk->sk_rcv_saddr, 6901 sk->sk_num, msg); 6902 } 6903 } 6904 6905 return want_cookie; 6906 } 6907 6908 static void tcp_reqsk_record_syn(const struct sock *sk, 6909 struct request_sock *req, 6910 const struct sk_buff *skb) 6911 { 6912 if (tcp_sk(sk)->save_syn) { 6913 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6914 struct saved_syn *saved_syn; 6915 u32 mac_hdrlen; 6916 void *base; 6917 6918 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6919 base = skb_mac_header(skb); 6920 mac_hdrlen = skb_mac_header_len(skb); 6921 len += mac_hdrlen; 6922 } else { 6923 base = skb_network_header(skb); 6924 mac_hdrlen = 0; 6925 } 6926 6927 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6928 GFP_ATOMIC); 6929 if (saved_syn) { 6930 saved_syn->mac_hdrlen = mac_hdrlen; 6931 saved_syn->network_hdrlen = skb_network_header_len(skb); 6932 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6933 memcpy(saved_syn->data, base, len); 6934 req->saved_syn = saved_syn; 6935 } 6936 } 6937 } 6938 6939 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6940 * used for SYN cookie generation. 6941 */ 6942 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6943 const struct tcp_request_sock_ops *af_ops, 6944 struct sock *sk, struct tcphdr *th) 6945 { 6946 struct tcp_sock *tp = tcp_sk(sk); 6947 u16 mss; 6948 6949 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 6950 !inet_csk_reqsk_queue_is_full(sk)) 6951 return 0; 6952 6953 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6954 return 0; 6955 6956 if (sk_acceptq_is_full(sk)) { 6957 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6958 return 0; 6959 } 6960 6961 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6962 if (!mss) 6963 mss = af_ops->mss_clamp; 6964 6965 return mss; 6966 } 6967 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6968 6969 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6970 const struct tcp_request_sock_ops *af_ops, 6971 struct sock *sk, struct sk_buff *skb) 6972 { 6973 struct tcp_fastopen_cookie foc = { .len = -1 }; 6974 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6975 struct tcp_options_received tmp_opt; 6976 struct tcp_sock *tp = tcp_sk(sk); 6977 struct net *net = sock_net(sk); 6978 struct sock *fastopen_sk = NULL; 6979 struct request_sock *req; 6980 bool want_cookie = false; 6981 struct dst_entry *dst; 6982 struct flowi fl; 6983 u8 syncookies; 6984 6985 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6986 6987 /* TW buckets are converted to open requests without 6988 * limitations, they conserve resources and peer is 6989 * evidently real one. 6990 */ 6991 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6992 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6993 if (!want_cookie) 6994 goto drop; 6995 } 6996 6997 if (sk_acceptq_is_full(sk)) { 6998 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6999 goto drop; 7000 } 7001 7002 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7003 if (!req) 7004 goto drop; 7005 7006 req->syncookie = want_cookie; 7007 tcp_rsk(req)->af_specific = af_ops; 7008 tcp_rsk(req)->ts_off = 0; 7009 #if IS_ENABLED(CONFIG_MPTCP) 7010 tcp_rsk(req)->is_mptcp = 0; 7011 #endif 7012 7013 tcp_clear_options(&tmp_opt); 7014 tmp_opt.mss_clamp = af_ops->mss_clamp; 7015 tmp_opt.user_mss = tp->rx_opt.user_mss; 7016 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7017 want_cookie ? NULL : &foc); 7018 7019 if (want_cookie && !tmp_opt.saw_tstamp) 7020 tcp_clear_options(&tmp_opt); 7021 7022 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7023 tmp_opt.smc_ok = 0; 7024 7025 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7026 tcp_openreq_init(req, &tmp_opt, skb, sk); 7027 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7028 7029 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7030 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7031 7032 dst = af_ops->route_req(sk, skb, &fl, req); 7033 if (!dst) 7034 goto drop_and_free; 7035 7036 if (tmp_opt.tstamp_ok) 7037 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7038 7039 if (!want_cookie && !isn) { 7040 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7041 7042 /* Kill the following clause, if you dislike this way. */ 7043 if (!syncookies && 7044 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7045 (max_syn_backlog >> 2)) && 7046 !tcp_peer_is_proven(req, dst)) { 7047 /* Without syncookies last quarter of 7048 * backlog is filled with destinations, 7049 * proven to be alive. 7050 * It means that we continue to communicate 7051 * to destinations, already remembered 7052 * to the moment of synflood. 7053 */ 7054 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7055 rsk_ops->family); 7056 goto drop_and_release; 7057 } 7058 7059 isn = af_ops->init_seq(skb); 7060 } 7061 7062 tcp_ecn_create_request(req, skb, sk, dst); 7063 7064 if (want_cookie) { 7065 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7066 if (!tmp_opt.tstamp_ok) 7067 inet_rsk(req)->ecn_ok = 0; 7068 } 7069 7070 tcp_rsk(req)->snt_isn = isn; 7071 tcp_rsk(req)->txhash = net_tx_rndhash(); 7072 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7073 tcp_openreq_init_rwin(req, sk, dst); 7074 sk_rx_queue_set(req_to_sk(req), skb); 7075 if (!want_cookie) { 7076 tcp_reqsk_record_syn(sk, req, skb); 7077 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7078 } 7079 if (fastopen_sk) { 7080 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7081 &foc, TCP_SYNACK_FASTOPEN, skb); 7082 /* Add the child socket directly into the accept queue */ 7083 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7084 reqsk_fastopen_remove(fastopen_sk, req, false); 7085 bh_unlock_sock(fastopen_sk); 7086 sock_put(fastopen_sk); 7087 goto drop_and_free; 7088 } 7089 sk->sk_data_ready(sk); 7090 bh_unlock_sock(fastopen_sk); 7091 sock_put(fastopen_sk); 7092 } else { 7093 tcp_rsk(req)->tfo_listener = false; 7094 if (!want_cookie) { 7095 req->timeout = tcp_timeout_init((struct sock *)req); 7096 inet_csk_reqsk_queue_hash_add(sk, req, req->timeout); 7097 } 7098 af_ops->send_synack(sk, dst, &fl, req, &foc, 7099 !want_cookie ? TCP_SYNACK_NORMAL : 7100 TCP_SYNACK_COOKIE, 7101 skb); 7102 if (want_cookie) { 7103 reqsk_free(req); 7104 return 0; 7105 } 7106 } 7107 reqsk_put(req); 7108 return 0; 7109 7110 drop_and_release: 7111 dst_release(dst); 7112 drop_and_free: 7113 __reqsk_free(req); 7114 drop: 7115 tcp_listendrop(sk); 7116 return 0; 7117 } 7118 EXPORT_SYMBOL(tcp_conn_request); 7119