1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/proto_memory.h> 76 #include <net/inet_common.h> 77 #include <linux/ipsec.h> 78 #include <linux/unaligned.h> 79 #include <linux/errqueue.h> 80 #include <trace/events/tcp.h> 81 #include <linux/jump_label_ratelimit.h> 82 #include <net/busy_poll.h> 83 #include <net/mptcp.h> 84 85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 86 87 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 88 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 89 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 90 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 91 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 92 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 93 #define FLAG_ECE 0x40 /* ECE in this ACK */ 94 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 95 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 96 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 97 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 98 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 99 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 100 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 101 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 102 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 103 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 104 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 105 #define FLAG_TS_PROGRESS 0x40000 /* Positive timestamp delta */ 106 107 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 108 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 109 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 110 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 111 112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 113 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 114 115 #define REXMIT_NONE 0 /* no loss recovery to do */ 116 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 117 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 118 119 #if IS_ENABLED(CONFIG_TLS_DEVICE) 120 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 121 122 void clean_acked_data_enable(struct tcp_sock *tp, 123 void (*cad)(struct sock *sk, u32 ack_seq)) 124 { 125 tp->tcp_clean_acked = cad; 126 static_branch_deferred_inc(&clean_acked_data_enabled); 127 } 128 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 129 130 void clean_acked_data_disable(struct tcp_sock *tp) 131 { 132 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 133 tp->tcp_clean_acked = NULL; 134 } 135 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 136 137 void clean_acked_data_flush(void) 138 { 139 static_key_deferred_flush(&clean_acked_data_enabled); 140 } 141 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 142 #endif 143 144 #ifdef CONFIG_CGROUP_BPF 145 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 146 { 147 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 148 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 150 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 151 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 152 struct bpf_sock_ops_kern sock_ops; 153 154 if (likely(!unknown_opt && !parse_all_opt)) 155 return; 156 157 /* The skb will be handled in the 158 * bpf_skops_established() or 159 * bpf_skops_write_hdr_opt(). 160 */ 161 switch (sk->sk_state) { 162 case TCP_SYN_RECV: 163 case TCP_SYN_SENT: 164 case TCP_LISTEN: 165 return; 166 } 167 168 sock_owned_by_me(sk); 169 170 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 171 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 172 sock_ops.is_fullsock = 1; 173 sock_ops.is_locked_tcp_sock = 1; 174 sock_ops.sk = sk; 175 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 176 177 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 178 } 179 180 static void bpf_skops_established(struct sock *sk, int bpf_op, 181 struct sk_buff *skb) 182 { 183 struct bpf_sock_ops_kern sock_ops; 184 185 sock_owned_by_me(sk); 186 187 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 188 sock_ops.op = bpf_op; 189 sock_ops.is_fullsock = 1; 190 sock_ops.is_locked_tcp_sock = 1; 191 sock_ops.sk = sk; 192 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 193 if (skb) 194 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 195 196 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 197 } 198 #else 199 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 200 { 201 } 202 203 static void bpf_skops_established(struct sock *sk, int bpf_op, 204 struct sk_buff *skb) 205 { 206 } 207 #endif 208 209 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb, 210 unsigned int len) 211 { 212 struct net_device *dev; 213 214 rcu_read_lock(); 215 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 216 if (!dev || len >= READ_ONCE(dev->mtu)) 217 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 218 dev ? dev->name : "Unknown driver"); 219 rcu_read_unlock(); 220 } 221 222 /* Adapt the MSS value used to make delayed ack decision to the 223 * real world. 224 */ 225 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 226 { 227 struct inet_connection_sock *icsk = inet_csk(sk); 228 const unsigned int lss = icsk->icsk_ack.last_seg_size; 229 unsigned int len; 230 231 icsk->icsk_ack.last_seg_size = 0; 232 233 /* skb->len may jitter because of SACKs, even if peer 234 * sends good full-sized frames. 235 */ 236 len = skb_shinfo(skb)->gso_size ? : skb->len; 237 if (len >= icsk->icsk_ack.rcv_mss) { 238 /* Note: divides are still a bit expensive. 239 * For the moment, only adjust scaling_ratio 240 * when we update icsk_ack.rcv_mss. 241 */ 242 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 243 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 244 u8 old_ratio = tcp_sk(sk)->scaling_ratio; 245 246 do_div(val, skb->truesize); 247 tcp_sk(sk)->scaling_ratio = val ? val : 1; 248 249 if (old_ratio != tcp_sk(sk)->scaling_ratio) { 250 struct tcp_sock *tp = tcp_sk(sk); 251 252 val = tcp_win_from_space(sk, sk->sk_rcvbuf); 253 tcp_set_window_clamp(sk, val); 254 255 if (tp->window_clamp < tp->rcvq_space.space) 256 tp->rcvq_space.space = tp->window_clamp; 257 } 258 } 259 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 260 tcp_sk(sk)->advmss); 261 /* Account for possibly-removed options */ 262 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE, 263 tcp_gro_dev_warn, sk, skb, len); 264 /* If the skb has a len of exactly 1*MSS and has the PSH bit 265 * set then it is likely the end of an application write. So 266 * more data may not be arriving soon, and yet the data sender 267 * may be waiting for an ACK if cwnd-bound or using TX zero 268 * copy. So we set ICSK_ACK_PUSHED here so that 269 * tcp_cleanup_rbuf() will send an ACK immediately if the app 270 * reads all of the data and is not ping-pong. If len > MSS 271 * then this logic does not matter (and does not hurt) because 272 * tcp_cleanup_rbuf() will always ACK immediately if the app 273 * reads data and there is more than an MSS of unACKed data. 274 */ 275 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 276 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 277 } else { 278 /* Otherwise, we make more careful check taking into account, 279 * that SACKs block is variable. 280 * 281 * "len" is invariant segment length, including TCP header. 282 */ 283 len += skb->data - skb_transport_header(skb); 284 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 285 /* If PSH is not set, packet should be 286 * full sized, provided peer TCP is not badly broken. 287 * This observation (if it is correct 8)) allows 288 * to handle super-low mtu links fairly. 289 */ 290 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 291 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 292 /* Subtract also invariant (if peer is RFC compliant), 293 * tcp header plus fixed timestamp option length. 294 * Resulting "len" is MSS free of SACK jitter. 295 */ 296 len -= tcp_sk(sk)->tcp_header_len; 297 icsk->icsk_ack.last_seg_size = len; 298 if (len == lss) { 299 icsk->icsk_ack.rcv_mss = len; 300 return; 301 } 302 } 303 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 304 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 305 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 306 } 307 } 308 309 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 310 { 311 struct inet_connection_sock *icsk = inet_csk(sk); 312 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 313 314 if (quickacks == 0) 315 quickacks = 2; 316 quickacks = min(quickacks, max_quickacks); 317 if (quickacks > icsk->icsk_ack.quick) 318 icsk->icsk_ack.quick = quickacks; 319 } 320 321 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 322 { 323 struct inet_connection_sock *icsk = inet_csk(sk); 324 325 tcp_incr_quickack(sk, max_quickacks); 326 inet_csk_exit_pingpong_mode(sk); 327 icsk->icsk_ack.ato = TCP_ATO_MIN; 328 } 329 330 /* Send ACKs quickly, if "quick" count is not exhausted 331 * and the session is not interactive. 332 */ 333 334 static bool tcp_in_quickack_mode(struct sock *sk) 335 { 336 const struct inet_connection_sock *icsk = inet_csk(sk); 337 338 return icsk->icsk_ack.dst_quick_ack || 339 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 340 } 341 342 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 343 { 344 if (tcp_ecn_mode_rfc3168(tp)) 345 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 346 } 347 348 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 349 { 350 if (tcp_hdr(skb)->cwr) { 351 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 352 353 /* If the sender is telling us it has entered CWR, then its 354 * cwnd may be very low (even just 1 packet), so we should ACK 355 * immediately. 356 */ 357 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 358 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 359 } 360 } 361 362 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 363 { 364 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 365 } 366 367 static void tcp_data_ecn_check(struct sock *sk, const struct sk_buff *skb) 368 { 369 struct tcp_sock *tp = tcp_sk(sk); 370 371 if (tcp_ecn_disabled(tp)) 372 return; 373 374 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 375 case INET_ECN_NOT_ECT: 376 /* Funny extension: if ECT is not set on a segment, 377 * and we already seen ECT on a previous segment, 378 * it is probably a retransmit. 379 */ 380 if (tp->ecn_flags & TCP_ECN_SEEN) 381 tcp_enter_quickack_mode(sk, 2); 382 break; 383 case INET_ECN_CE: 384 if (tcp_ca_needs_ecn(sk)) 385 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 386 387 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 388 /* Better not delay acks, sender can have a very low cwnd */ 389 tcp_enter_quickack_mode(sk, 2); 390 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 391 } 392 tp->ecn_flags |= TCP_ECN_SEEN; 393 break; 394 default: 395 if (tcp_ca_needs_ecn(sk)) 396 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 397 tp->ecn_flags |= TCP_ECN_SEEN; 398 break; 399 } 400 } 401 402 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 403 { 404 if (tcp_ecn_mode_rfc3168(tp) && (!th->ece || th->cwr)) 405 tcp_ecn_mode_set(tp, TCP_ECN_DISABLED); 406 } 407 408 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 409 { 410 if (tcp_ecn_mode_rfc3168(tp) && (!th->ece || !th->cwr)) 411 tcp_ecn_mode_set(tp, TCP_ECN_DISABLED); 412 } 413 414 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 415 { 416 if (th->ece && !th->syn && tcp_ecn_mode_rfc3168(tp)) 417 return true; 418 return false; 419 } 420 421 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count) 422 { 423 tp->delivered_ce += ecn_count; 424 } 425 426 /* Updates the delivered and delivered_ce counts */ 427 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 428 bool ece_ack) 429 { 430 tp->delivered += delivered; 431 if (ece_ack) 432 tcp_count_delivered_ce(tp, delivered); 433 } 434 435 /* Buffer size and advertised window tuning. 436 * 437 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 438 */ 439 440 static void tcp_sndbuf_expand(struct sock *sk) 441 { 442 const struct tcp_sock *tp = tcp_sk(sk); 443 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 444 int sndmem, per_mss; 445 u32 nr_segs; 446 447 /* Worst case is non GSO/TSO : each frame consumes one skb 448 * and skb->head is kmalloced using power of two area of memory 449 */ 450 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 451 MAX_TCP_HEADER + 452 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 453 454 per_mss = roundup_pow_of_two(per_mss) + 455 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 456 457 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 458 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 459 460 /* Fast Recovery (RFC 5681 3.2) : 461 * Cubic needs 1.7 factor, rounded to 2 to include 462 * extra cushion (application might react slowly to EPOLLOUT) 463 */ 464 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 465 sndmem *= nr_segs * per_mss; 466 467 if (sk->sk_sndbuf < sndmem) 468 WRITE_ONCE(sk->sk_sndbuf, 469 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 470 } 471 472 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 473 * 474 * All tcp_full_space() is split to two parts: "network" buffer, allocated 475 * forward and advertised in receiver window (tp->rcv_wnd) and 476 * "application buffer", required to isolate scheduling/application 477 * latencies from network. 478 * window_clamp is maximal advertised window. It can be less than 479 * tcp_full_space(), in this case tcp_full_space() - window_clamp 480 * is reserved for "application" buffer. The less window_clamp is 481 * the smoother our behaviour from viewpoint of network, but the lower 482 * throughput and the higher sensitivity of the connection to losses. 8) 483 * 484 * rcv_ssthresh is more strict window_clamp used at "slow start" 485 * phase to predict further behaviour of this connection. 486 * It is used for two goals: 487 * - to enforce header prediction at sender, even when application 488 * requires some significant "application buffer". It is check #1. 489 * - to prevent pruning of receive queue because of misprediction 490 * of receiver window. Check #2. 491 * 492 * The scheme does not work when sender sends good segments opening 493 * window and then starts to feed us spaghetti. But it should work 494 * in common situations. Otherwise, we have to rely on queue collapsing. 495 */ 496 497 /* Slow part of check#2. */ 498 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 499 unsigned int skbtruesize) 500 { 501 const struct tcp_sock *tp = tcp_sk(sk); 502 /* Optimize this! */ 503 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 504 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 505 506 while (tp->rcv_ssthresh <= window) { 507 if (truesize <= skb->len) 508 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 509 510 truesize >>= 1; 511 window >>= 1; 512 } 513 return 0; 514 } 515 516 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 517 * can play nice with us, as sk_buff and skb->head might be either 518 * freed or shared with up to MAX_SKB_FRAGS segments. 519 * Only give a boost to drivers using page frag(s) to hold the frame(s), 520 * and if no payload was pulled in skb->head before reaching us. 521 */ 522 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 523 { 524 u32 truesize = skb->truesize; 525 526 if (adjust && !skb_headlen(skb)) { 527 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 528 /* paranoid check, some drivers might be buggy */ 529 if (unlikely((int)truesize < (int)skb->len)) 530 truesize = skb->truesize; 531 } 532 return truesize; 533 } 534 535 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 536 bool adjust) 537 { 538 struct tcp_sock *tp = tcp_sk(sk); 539 int room; 540 541 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 542 543 if (room <= 0) 544 return; 545 546 /* Check #1 */ 547 if (!tcp_under_memory_pressure(sk)) { 548 unsigned int truesize = truesize_adjust(adjust, skb); 549 int incr; 550 551 /* Check #2. Increase window, if skb with such overhead 552 * will fit to rcvbuf in future. 553 */ 554 if (tcp_win_from_space(sk, truesize) <= skb->len) 555 incr = 2 * tp->advmss; 556 else 557 incr = __tcp_grow_window(sk, skb, truesize); 558 559 if (incr) { 560 incr = max_t(int, incr, 2 * skb->len); 561 tp->rcv_ssthresh += min(room, incr); 562 inet_csk(sk)->icsk_ack.quick |= 1; 563 } 564 } else { 565 /* Under pressure: 566 * Adjust rcv_ssthresh according to reserved mem 567 */ 568 tcp_adjust_rcv_ssthresh(sk); 569 } 570 } 571 572 /* 3. Try to fixup all. It is made immediately after connection enters 573 * established state. 574 */ 575 static void tcp_init_buffer_space(struct sock *sk) 576 { 577 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 578 struct tcp_sock *tp = tcp_sk(sk); 579 int maxwin; 580 581 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 582 tcp_sndbuf_expand(sk); 583 584 tcp_mstamp_refresh(tp); 585 tp->rcvq_space.time = tp->tcp_mstamp; 586 tp->rcvq_space.seq = tp->copied_seq; 587 588 maxwin = tcp_full_space(sk); 589 590 if (tp->window_clamp >= maxwin) { 591 WRITE_ONCE(tp->window_clamp, maxwin); 592 593 if (tcp_app_win && maxwin > 4 * tp->advmss) 594 WRITE_ONCE(tp->window_clamp, 595 max(maxwin - (maxwin >> tcp_app_win), 596 4 * tp->advmss)); 597 } 598 599 /* Force reservation of one segment. */ 600 if (tcp_app_win && 601 tp->window_clamp > 2 * tp->advmss && 602 tp->window_clamp + tp->advmss > maxwin) 603 WRITE_ONCE(tp->window_clamp, 604 max(2 * tp->advmss, maxwin - tp->advmss)); 605 606 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 607 tp->snd_cwnd_stamp = tcp_jiffies32; 608 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 609 (u32)TCP_INIT_CWND * tp->advmss); 610 } 611 612 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 613 static void tcp_clamp_window(struct sock *sk) 614 { 615 struct tcp_sock *tp = tcp_sk(sk); 616 struct inet_connection_sock *icsk = inet_csk(sk); 617 struct net *net = sock_net(sk); 618 int rmem2; 619 620 icsk->icsk_ack.quick = 0; 621 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 622 623 if (sk->sk_rcvbuf < rmem2 && 624 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 625 !tcp_under_memory_pressure(sk) && 626 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 627 WRITE_ONCE(sk->sk_rcvbuf, 628 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 629 } 630 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 631 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 632 } 633 634 /* Initialize RCV_MSS value. 635 * RCV_MSS is an our guess about MSS used by the peer. 636 * We haven't any direct information about the MSS. 637 * It's better to underestimate the RCV_MSS rather than overestimate. 638 * Overestimations make us ACKing less frequently than needed. 639 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 640 */ 641 void tcp_initialize_rcv_mss(struct sock *sk) 642 { 643 const struct tcp_sock *tp = tcp_sk(sk); 644 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 645 646 hint = min(hint, tp->rcv_wnd / 2); 647 hint = min(hint, TCP_MSS_DEFAULT); 648 hint = max(hint, TCP_MIN_MSS); 649 650 inet_csk(sk)->icsk_ack.rcv_mss = hint; 651 } 652 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss); 653 654 /* Receiver "autotuning" code. 655 * 656 * The algorithm for RTT estimation w/o timestamps is based on 657 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 658 * <https://public.lanl.gov/radiant/pubs.html#DRS> 659 * 660 * More detail on this code can be found at 661 * <http://staff.psc.edu/jheffner/>, 662 * though this reference is out of date. A new paper 663 * is pending. 664 */ 665 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 666 { 667 u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us; 668 long m = sample << 3; 669 670 if (old_sample == 0 || m < old_sample) { 671 new_sample = m; 672 } else { 673 /* If we sample in larger samples in the non-timestamp 674 * case, we could grossly overestimate the RTT especially 675 * with chatty applications or bulk transfer apps which 676 * are stalled on filesystem I/O. 677 * 678 * Also, since we are only going for a minimum in the 679 * non-timestamp case, we do not smooth things out 680 * else with timestamps disabled convergence takes too 681 * long. 682 */ 683 if (win_dep) 684 return; 685 /* Do not use this sample if receive queue is not empty. */ 686 if (tp->rcv_nxt != tp->copied_seq) 687 return; 688 new_sample = old_sample - (old_sample >> 3) + sample; 689 } 690 691 tp->rcv_rtt_est.rtt_us = new_sample; 692 } 693 694 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 695 { 696 u32 delta_us; 697 698 if (tp->rcv_rtt_est.time == 0) 699 goto new_measure; 700 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 701 return; 702 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 703 if (!delta_us) 704 delta_us = 1; 705 tcp_rcv_rtt_update(tp, delta_us, 1); 706 707 new_measure: 708 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 709 tp->rcv_rtt_est.time = tp->tcp_mstamp; 710 } 711 712 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp, u32 min_delta) 713 { 714 u32 delta, delta_us; 715 716 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; 717 if (tp->tcp_usec_ts) 718 return delta; 719 720 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 721 if (!delta) 722 delta = min_delta; 723 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 724 return delta_us; 725 } 726 return -1; 727 } 728 729 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 730 const struct sk_buff *skb) 731 { 732 struct tcp_sock *tp = tcp_sk(sk); 733 734 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 735 return; 736 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 737 738 if (TCP_SKB_CB(skb)->end_seq - 739 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 740 s32 delta = tcp_rtt_tsopt_us(tp, 0); 741 742 if (delta > 0) 743 tcp_rcv_rtt_update(tp, delta, 0); 744 } 745 } 746 747 static void tcp_rcvbuf_grow(struct sock *sk) 748 { 749 const struct net *net = sock_net(sk); 750 struct tcp_sock *tp = tcp_sk(sk); 751 int rcvwin, rcvbuf, cap; 752 753 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 754 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 755 return; 756 757 /* slow start: allow the sender to double its rate. */ 758 rcvwin = tp->rcvq_space.space << 1; 759 760 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) 761 rcvwin += TCP_SKB_CB(tp->ooo_last_skb)->end_seq - tp->rcv_nxt; 762 763 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 764 765 rcvbuf = min_t(u32, tcp_space_from_win(sk, rcvwin), cap); 766 if (rcvbuf > sk->sk_rcvbuf) { 767 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 768 /* Make the window clamp follow along. */ 769 WRITE_ONCE(tp->window_clamp, 770 tcp_win_from_space(sk, rcvbuf)); 771 } 772 } 773 /* 774 * This function should be called every time data is copied to user space. 775 * It calculates the appropriate TCP receive buffer space. 776 */ 777 void tcp_rcv_space_adjust(struct sock *sk) 778 { 779 struct tcp_sock *tp = tcp_sk(sk); 780 int time, inq, copied; 781 782 trace_tcp_rcv_space_adjust(sk); 783 784 tcp_mstamp_refresh(tp); 785 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 786 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 787 return; 788 789 /* Number of bytes copied to user in last RTT */ 790 copied = tp->copied_seq - tp->rcvq_space.seq; 791 /* Number of bytes in receive queue. */ 792 inq = tp->rcv_nxt - tp->copied_seq; 793 copied -= inq; 794 if (copied <= tp->rcvq_space.space) 795 goto new_measure; 796 797 trace_tcp_rcvbuf_grow(sk, time); 798 799 tp->rcvq_space.space = copied; 800 801 tcp_rcvbuf_grow(sk); 802 803 new_measure: 804 tp->rcvq_space.seq = tp->copied_seq; 805 tp->rcvq_space.time = tp->tcp_mstamp; 806 } 807 808 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 809 { 810 #if IS_ENABLED(CONFIG_IPV6) 811 struct inet_connection_sock *icsk = inet_csk(sk); 812 813 if (skb->protocol == htons(ETH_P_IPV6)) 814 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 815 #endif 816 } 817 818 /* There is something which you must keep in mind when you analyze the 819 * behavior of the tp->ato delayed ack timeout interval. When a 820 * connection starts up, we want to ack as quickly as possible. The 821 * problem is that "good" TCP's do slow start at the beginning of data 822 * transmission. The means that until we send the first few ACK's the 823 * sender will sit on his end and only queue most of his data, because 824 * he can only send snd_cwnd unacked packets at any given time. For 825 * each ACK we send, he increments snd_cwnd and transmits more of his 826 * queue. -DaveM 827 */ 828 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 829 { 830 struct tcp_sock *tp = tcp_sk(sk); 831 struct inet_connection_sock *icsk = inet_csk(sk); 832 u32 now; 833 834 inet_csk_schedule_ack(sk); 835 836 tcp_measure_rcv_mss(sk, skb); 837 838 tcp_rcv_rtt_measure(tp); 839 840 now = tcp_jiffies32; 841 842 if (!icsk->icsk_ack.ato) { 843 /* The _first_ data packet received, initialize 844 * delayed ACK engine. 845 */ 846 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 847 icsk->icsk_ack.ato = TCP_ATO_MIN; 848 } else { 849 int m = now - icsk->icsk_ack.lrcvtime; 850 851 if (m <= TCP_ATO_MIN / 2) { 852 /* The fastest case is the first. */ 853 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 854 } else if (m < icsk->icsk_ack.ato) { 855 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 856 if (icsk->icsk_ack.ato > icsk->icsk_rto) 857 icsk->icsk_ack.ato = icsk->icsk_rto; 858 } else if (m > icsk->icsk_rto) { 859 /* Too long gap. Apparently sender failed to 860 * restart window, so that we send ACKs quickly. 861 */ 862 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 863 } 864 } 865 icsk->icsk_ack.lrcvtime = now; 866 tcp_save_lrcv_flowlabel(sk, skb); 867 868 tcp_data_ecn_check(sk, skb); 869 870 if (skb->len >= 128) 871 tcp_grow_window(sk, skb, true); 872 } 873 874 /* Called to compute a smoothed rtt estimate. The data fed to this 875 * routine either comes from timestamps, or from segments that were 876 * known _not_ to have been retransmitted [see Karn/Partridge 877 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 878 * piece by Van Jacobson. 879 * NOTE: the next three routines used to be one big routine. 880 * To save cycles in the RFC 1323 implementation it was better to break 881 * it up into three procedures. -- erics 882 */ 883 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 884 { 885 struct tcp_sock *tp = tcp_sk(sk); 886 long m = mrtt_us; /* RTT */ 887 u32 srtt = tp->srtt_us; 888 889 /* The following amusing code comes from Jacobson's 890 * article in SIGCOMM '88. Note that rtt and mdev 891 * are scaled versions of rtt and mean deviation. 892 * This is designed to be as fast as possible 893 * m stands for "measurement". 894 * 895 * On a 1990 paper the rto value is changed to: 896 * RTO = rtt + 4 * mdev 897 * 898 * Funny. This algorithm seems to be very broken. 899 * These formulae increase RTO, when it should be decreased, increase 900 * too slowly, when it should be increased quickly, decrease too quickly 901 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 902 * does not matter how to _calculate_ it. Seems, it was trap 903 * that VJ failed to avoid. 8) 904 */ 905 if (srtt != 0) { 906 m -= (srtt >> 3); /* m is now error in rtt est */ 907 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 908 if (m < 0) { 909 m = -m; /* m is now abs(error) */ 910 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 911 /* This is similar to one of Eifel findings. 912 * Eifel blocks mdev updates when rtt decreases. 913 * This solution is a bit different: we use finer gain 914 * for mdev in this case (alpha*beta). 915 * Like Eifel it also prevents growth of rto, 916 * but also it limits too fast rto decreases, 917 * happening in pure Eifel. 918 */ 919 if (m > 0) 920 m >>= 3; 921 } else { 922 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 923 } 924 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 925 if (tp->mdev_us > tp->mdev_max_us) { 926 tp->mdev_max_us = tp->mdev_us; 927 if (tp->mdev_max_us > tp->rttvar_us) 928 tp->rttvar_us = tp->mdev_max_us; 929 } 930 if (after(tp->snd_una, tp->rtt_seq)) { 931 if (tp->mdev_max_us < tp->rttvar_us) 932 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 933 tp->rtt_seq = tp->snd_nxt; 934 tp->mdev_max_us = tcp_rto_min_us(sk); 935 936 tcp_bpf_rtt(sk, mrtt_us, srtt); 937 } 938 } else { 939 /* no previous measure. */ 940 srtt = m << 3; /* take the measured time to be rtt */ 941 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 942 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 943 tp->mdev_max_us = tp->rttvar_us; 944 tp->rtt_seq = tp->snd_nxt; 945 946 tcp_bpf_rtt(sk, mrtt_us, srtt); 947 } 948 tp->srtt_us = max(1U, srtt); 949 } 950 951 static void tcp_update_pacing_rate(struct sock *sk) 952 { 953 const struct tcp_sock *tp = tcp_sk(sk); 954 u64 rate; 955 956 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 957 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 958 959 /* current rate is (cwnd * mss) / srtt 960 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 961 * In Congestion Avoidance phase, set it to 120 % the current rate. 962 * 963 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 964 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 965 * end of slow start and should slow down. 966 */ 967 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 968 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 969 else 970 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 971 972 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 973 974 if (likely(tp->srtt_us)) 975 do_div(rate, tp->srtt_us); 976 977 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 978 * without any lock. We want to make sure compiler wont store 979 * intermediate values in this location. 980 */ 981 WRITE_ONCE(sk->sk_pacing_rate, 982 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 983 } 984 985 /* Calculate rto without backoff. This is the second half of Van Jacobson's 986 * routine referred to above. 987 */ 988 static void tcp_set_rto(struct sock *sk) 989 { 990 const struct tcp_sock *tp = tcp_sk(sk); 991 /* Old crap is replaced with new one. 8) 992 * 993 * More seriously: 994 * 1. If rtt variance happened to be less 50msec, it is hallucination. 995 * It cannot be less due to utterly erratic ACK generation made 996 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 997 * to do with delayed acks, because at cwnd>2 true delack timeout 998 * is invisible. Actually, Linux-2.4 also generates erratic 999 * ACKs in some circumstances. 1000 */ 1001 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 1002 1003 /* 2. Fixups made earlier cannot be right. 1004 * If we do not estimate RTO correctly without them, 1005 * all the algo is pure shit and should be replaced 1006 * with correct one. It is exactly, which we pretend to do. 1007 */ 1008 1009 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 1010 * guarantees that rto is higher. 1011 */ 1012 tcp_bound_rto(sk); 1013 } 1014 1015 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 1016 { 1017 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 1018 1019 if (!cwnd) 1020 cwnd = TCP_INIT_CWND; 1021 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 1022 } 1023 1024 struct tcp_sacktag_state { 1025 /* Timestamps for earliest and latest never-retransmitted segment 1026 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1027 * but congestion control should still get an accurate delay signal. 1028 */ 1029 u64 first_sackt; 1030 u64 last_sackt; 1031 u32 reord; 1032 u32 sack_delivered; 1033 int flag; 1034 unsigned int mss_now; 1035 struct rate_sample *rate; 1036 }; 1037 1038 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1039 * and spurious retransmission information if this DSACK is unlikely caused by 1040 * sender's action: 1041 * - DSACKed sequence range is larger than maximum receiver's window. 1042 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1043 */ 1044 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1045 u32 end_seq, struct tcp_sacktag_state *state) 1046 { 1047 u32 seq_len, dup_segs = 1; 1048 1049 if (!before(start_seq, end_seq)) 1050 return 0; 1051 1052 seq_len = end_seq - start_seq; 1053 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1054 if (seq_len > tp->max_window) 1055 return 0; 1056 if (seq_len > tp->mss_cache) 1057 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1058 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1059 state->flag |= FLAG_DSACK_TLP; 1060 1061 tp->dsack_dups += dup_segs; 1062 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1063 if (tp->dsack_dups > tp->total_retrans) 1064 return 0; 1065 1066 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1067 /* We increase the RACK ordering window in rounds where we receive 1068 * DSACKs that may have been due to reordering causing RACK to trigger 1069 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1070 * without having seen reordering, or that match TLP probes (TLP 1071 * is timer-driven, not triggered by RACK). 1072 */ 1073 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1074 tp->rack.dsack_seen = 1; 1075 1076 state->flag |= FLAG_DSACKING_ACK; 1077 /* A spurious retransmission is delivered */ 1078 state->sack_delivered += dup_segs; 1079 1080 return dup_segs; 1081 } 1082 1083 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1084 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1085 * distance is approximated in full-mss packet distance ("reordering"). 1086 */ 1087 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1088 const int ts) 1089 { 1090 struct tcp_sock *tp = tcp_sk(sk); 1091 const u32 mss = tp->mss_cache; 1092 u32 fack, metric; 1093 1094 fack = tcp_highest_sack_seq(tp); 1095 if (!before(low_seq, fack)) 1096 return; 1097 1098 metric = fack - low_seq; 1099 if ((metric > tp->reordering * mss) && mss) { 1100 #if FASTRETRANS_DEBUG > 1 1101 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1102 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1103 tp->reordering, 1104 0, 1105 tp->sacked_out, 1106 tp->undo_marker ? tp->undo_retrans : 0); 1107 #endif 1108 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1109 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1110 } 1111 1112 /* This exciting event is worth to be remembered. 8) */ 1113 tp->reord_seen++; 1114 NET_INC_STATS(sock_net(sk), 1115 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1116 } 1117 1118 /* This must be called before lost_out or retrans_out are updated 1119 * on a new loss, because we want to know if all skbs previously 1120 * known to be lost have already been retransmitted, indicating 1121 * that this newly lost skb is our next skb to retransmit. 1122 */ 1123 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1124 { 1125 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1126 (tp->retransmit_skb_hint && 1127 before(TCP_SKB_CB(skb)->seq, 1128 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1129 tp->retransmit_skb_hint = skb; 1130 } 1131 1132 /* Sum the number of packets on the wire we have marked as lost, and 1133 * notify the congestion control module that the given skb was marked lost. 1134 */ 1135 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1136 { 1137 tp->lost += tcp_skb_pcount(skb); 1138 } 1139 1140 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1141 { 1142 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1143 struct tcp_sock *tp = tcp_sk(sk); 1144 1145 if (sacked & TCPCB_SACKED_ACKED) 1146 return; 1147 1148 tcp_verify_retransmit_hint(tp, skb); 1149 if (sacked & TCPCB_LOST) { 1150 if (sacked & TCPCB_SACKED_RETRANS) { 1151 /* Account for retransmits that are lost again */ 1152 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1153 tp->retrans_out -= tcp_skb_pcount(skb); 1154 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1155 tcp_skb_pcount(skb)); 1156 tcp_notify_skb_loss_event(tp, skb); 1157 } 1158 } else { 1159 tp->lost_out += tcp_skb_pcount(skb); 1160 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1161 tcp_notify_skb_loss_event(tp, skb); 1162 } 1163 } 1164 1165 /* This procedure tags the retransmission queue when SACKs arrive. 1166 * 1167 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1168 * Packets in queue with these bits set are counted in variables 1169 * sacked_out, retrans_out and lost_out, correspondingly. 1170 * 1171 * Valid combinations are: 1172 * Tag InFlight Description 1173 * 0 1 - orig segment is in flight. 1174 * S 0 - nothing flies, orig reached receiver. 1175 * L 0 - nothing flies, orig lost by net. 1176 * R 2 - both orig and retransmit are in flight. 1177 * L|R 1 - orig is lost, retransmit is in flight. 1178 * S|R 1 - orig reached receiver, retrans is still in flight. 1179 * (L|S|R is logically valid, it could occur when L|R is sacked, 1180 * but it is equivalent to plain S and code short-circuits it to S. 1181 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1182 * 1183 * These 6 states form finite state machine, controlled by the following events: 1184 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1185 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1186 * 3. Loss detection event of two flavors: 1187 * A. Scoreboard estimator decided the packet is lost. 1188 * A'. Reno "three dupacks" marks head of queue lost. 1189 * B. SACK arrives sacking SND.NXT at the moment, when the 1190 * segment was retransmitted. 1191 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1192 * 1193 * It is pleasant to note, that state diagram turns out to be commutative, 1194 * so that we are allowed not to be bothered by order of our actions, 1195 * when multiple events arrive simultaneously. (see the function below). 1196 * 1197 * Reordering detection. 1198 * -------------------- 1199 * Reordering metric is maximal distance, which a packet can be displaced 1200 * in packet stream. With SACKs we can estimate it: 1201 * 1202 * 1. SACK fills old hole and the corresponding segment was not 1203 * ever retransmitted -> reordering. Alas, we cannot use it 1204 * when segment was retransmitted. 1205 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1206 * for retransmitted and already SACKed segment -> reordering.. 1207 * Both of these heuristics are not used in Loss state, when we cannot 1208 * account for retransmits accurately. 1209 * 1210 * SACK block validation. 1211 * ---------------------- 1212 * 1213 * SACK block range validation checks that the received SACK block fits to 1214 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1215 * Note that SND.UNA is not included to the range though being valid because 1216 * it means that the receiver is rather inconsistent with itself reporting 1217 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1218 * perfectly valid, however, in light of RFC2018 which explicitly states 1219 * that "SACK block MUST reflect the newest segment. Even if the newest 1220 * segment is going to be discarded ...", not that it looks very clever 1221 * in case of head skb. Due to potentional receiver driven attacks, we 1222 * choose to avoid immediate execution of a walk in write queue due to 1223 * reneging and defer head skb's loss recovery to standard loss recovery 1224 * procedure that will eventually trigger (nothing forbids us doing this). 1225 * 1226 * Implements also blockage to start_seq wrap-around. Problem lies in the 1227 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1228 * there's no guarantee that it will be before snd_nxt (n). The problem 1229 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1230 * wrap (s_w): 1231 * 1232 * <- outs wnd -> <- wrapzone -> 1233 * u e n u_w e_w s n_w 1234 * | | | | | | | 1235 * |<------------+------+----- TCP seqno space --------------+---------->| 1236 * ...-- <2^31 ->| |<--------... 1237 * ...---- >2^31 ------>| |<--------... 1238 * 1239 * Current code wouldn't be vulnerable but it's better still to discard such 1240 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1241 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1242 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1243 * equal to the ideal case (infinite seqno space without wrap caused issues). 1244 * 1245 * With D-SACK the lower bound is extended to cover sequence space below 1246 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1247 * again, D-SACK block must not to go across snd_una (for the same reason as 1248 * for the normal SACK blocks, explained above). But there all simplicity 1249 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1250 * fully below undo_marker they do not affect behavior in anyway and can 1251 * therefore be safely ignored. In rare cases (which are more or less 1252 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1253 * fragmentation and packet reordering past skb's retransmission. To consider 1254 * them correctly, the acceptable range must be extended even more though 1255 * the exact amount is rather hard to quantify. However, tp->max_window can 1256 * be used as an exaggerated estimate. 1257 */ 1258 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1259 u32 start_seq, u32 end_seq) 1260 { 1261 /* Too far in future, or reversed (interpretation is ambiguous) */ 1262 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1263 return false; 1264 1265 /* Nasty start_seq wrap-around check (see comments above) */ 1266 if (!before(start_seq, tp->snd_nxt)) 1267 return false; 1268 1269 /* In outstanding window? ...This is valid exit for D-SACKs too. 1270 * start_seq == snd_una is non-sensical (see comments above) 1271 */ 1272 if (after(start_seq, tp->snd_una)) 1273 return true; 1274 1275 if (!is_dsack || !tp->undo_marker) 1276 return false; 1277 1278 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1279 if (after(end_seq, tp->snd_una)) 1280 return false; 1281 1282 if (!before(start_seq, tp->undo_marker)) 1283 return true; 1284 1285 /* Too old */ 1286 if (!after(end_seq, tp->undo_marker)) 1287 return false; 1288 1289 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1290 * start_seq < undo_marker and end_seq >= undo_marker. 1291 */ 1292 return !before(start_seq, end_seq - tp->max_window); 1293 } 1294 1295 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1296 struct tcp_sack_block_wire *sp, int num_sacks, 1297 u32 prior_snd_una, struct tcp_sacktag_state *state) 1298 { 1299 struct tcp_sock *tp = tcp_sk(sk); 1300 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1301 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1302 u32 dup_segs; 1303 1304 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1306 } else if (num_sacks > 1) { 1307 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1308 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1309 1310 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1311 return false; 1312 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1313 } else { 1314 return false; 1315 } 1316 1317 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1318 if (!dup_segs) { /* Skip dubious DSACK */ 1319 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1320 return false; 1321 } 1322 1323 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1324 1325 /* D-SACK for already forgotten data... Do dumb counting. */ 1326 if (tp->undo_marker && tp->undo_retrans > 0 && 1327 !after(end_seq_0, prior_snd_una) && 1328 after(end_seq_0, tp->undo_marker)) 1329 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1330 1331 return true; 1332 } 1333 1334 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1335 * the incoming SACK may not exactly match but we can find smaller MSS 1336 * aligned portion of it that matches. Therefore we might need to fragment 1337 * which may fail and creates some hassle (caller must handle error case 1338 * returns). 1339 * 1340 * FIXME: this could be merged to shift decision code 1341 */ 1342 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1343 u32 start_seq, u32 end_seq) 1344 { 1345 int err; 1346 bool in_sack; 1347 unsigned int pkt_len; 1348 unsigned int mss; 1349 1350 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1351 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1352 1353 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1354 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1355 mss = tcp_skb_mss(skb); 1356 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1357 1358 if (!in_sack) { 1359 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1360 if (pkt_len < mss) 1361 pkt_len = mss; 1362 } else { 1363 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1364 if (pkt_len < mss) 1365 return -EINVAL; 1366 } 1367 1368 /* Round if necessary so that SACKs cover only full MSSes 1369 * and/or the remaining small portion (if present) 1370 */ 1371 if (pkt_len > mss) { 1372 unsigned int new_len = (pkt_len / mss) * mss; 1373 if (!in_sack && new_len < pkt_len) 1374 new_len += mss; 1375 pkt_len = new_len; 1376 } 1377 1378 if (pkt_len >= skb->len && !in_sack) 1379 return 0; 1380 1381 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1382 pkt_len, mss, GFP_ATOMIC); 1383 if (err < 0) 1384 return err; 1385 } 1386 1387 return in_sack; 1388 } 1389 1390 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1391 static u8 tcp_sacktag_one(struct sock *sk, 1392 struct tcp_sacktag_state *state, u8 sacked, 1393 u32 start_seq, u32 end_seq, 1394 int dup_sack, int pcount, 1395 u64 xmit_time) 1396 { 1397 struct tcp_sock *tp = tcp_sk(sk); 1398 1399 /* Account D-SACK for retransmitted packet. */ 1400 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1401 if (tp->undo_marker && tp->undo_retrans > 0 && 1402 after(end_seq, tp->undo_marker)) 1403 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1404 if ((sacked & TCPCB_SACKED_ACKED) && 1405 before(start_seq, state->reord)) 1406 state->reord = start_seq; 1407 } 1408 1409 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1410 if (!after(end_seq, tp->snd_una)) 1411 return sacked; 1412 1413 if (!(sacked & TCPCB_SACKED_ACKED)) { 1414 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1415 1416 if (sacked & TCPCB_SACKED_RETRANS) { 1417 /* If the segment is not tagged as lost, 1418 * we do not clear RETRANS, believing 1419 * that retransmission is still in flight. 1420 */ 1421 if (sacked & TCPCB_LOST) { 1422 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1423 tp->lost_out -= pcount; 1424 tp->retrans_out -= pcount; 1425 } 1426 } else { 1427 if (!(sacked & TCPCB_RETRANS)) { 1428 /* New sack for not retransmitted frame, 1429 * which was in hole. It is reordering. 1430 */ 1431 if (before(start_seq, 1432 tcp_highest_sack_seq(tp)) && 1433 before(start_seq, state->reord)) 1434 state->reord = start_seq; 1435 1436 if (!after(end_seq, tp->high_seq)) 1437 state->flag |= FLAG_ORIG_SACK_ACKED; 1438 if (state->first_sackt == 0) 1439 state->first_sackt = xmit_time; 1440 state->last_sackt = xmit_time; 1441 } 1442 1443 if (sacked & TCPCB_LOST) { 1444 sacked &= ~TCPCB_LOST; 1445 tp->lost_out -= pcount; 1446 } 1447 } 1448 1449 sacked |= TCPCB_SACKED_ACKED; 1450 state->flag |= FLAG_DATA_SACKED; 1451 tp->sacked_out += pcount; 1452 /* Out-of-order packets delivered */ 1453 state->sack_delivered += pcount; 1454 1455 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1456 if (tp->lost_skb_hint && 1457 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1458 tp->lost_cnt_hint += pcount; 1459 } 1460 1461 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1462 * frames and clear it. undo_retrans is decreased above, L|R frames 1463 * are accounted above as well. 1464 */ 1465 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1466 sacked &= ~TCPCB_SACKED_RETRANS; 1467 tp->retrans_out -= pcount; 1468 } 1469 1470 return sacked; 1471 } 1472 1473 /* Shift newly-SACKed bytes from this skb to the immediately previous 1474 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1475 */ 1476 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1477 struct sk_buff *skb, 1478 struct tcp_sacktag_state *state, 1479 unsigned int pcount, int shifted, int mss, 1480 bool dup_sack) 1481 { 1482 struct tcp_sock *tp = tcp_sk(sk); 1483 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1484 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1485 1486 BUG_ON(!pcount); 1487 1488 /* Adjust counters and hints for the newly sacked sequence 1489 * range but discard the return value since prev is already 1490 * marked. We must tag the range first because the seq 1491 * advancement below implicitly advances 1492 * tcp_highest_sack_seq() when skb is highest_sack. 1493 */ 1494 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1495 start_seq, end_seq, dup_sack, pcount, 1496 tcp_skb_timestamp_us(skb)); 1497 tcp_rate_skb_delivered(sk, skb, state->rate); 1498 1499 if (skb == tp->lost_skb_hint) 1500 tp->lost_cnt_hint += pcount; 1501 1502 TCP_SKB_CB(prev)->end_seq += shifted; 1503 TCP_SKB_CB(skb)->seq += shifted; 1504 1505 tcp_skb_pcount_add(prev, pcount); 1506 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1507 tcp_skb_pcount_add(skb, -pcount); 1508 1509 /* When we're adding to gso_segs == 1, gso_size will be zero, 1510 * in theory this shouldn't be necessary but as long as DSACK 1511 * code can come after this skb later on it's better to keep 1512 * setting gso_size to something. 1513 */ 1514 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1515 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1516 1517 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1518 if (tcp_skb_pcount(skb) <= 1) 1519 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1520 1521 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1522 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1523 1524 if (skb->len > 0) { 1525 BUG_ON(!tcp_skb_pcount(skb)); 1526 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1527 return false; 1528 } 1529 1530 /* Whole SKB was eaten :-) */ 1531 1532 if (skb == tp->retransmit_skb_hint) 1533 tp->retransmit_skb_hint = prev; 1534 if (skb == tp->lost_skb_hint) { 1535 tp->lost_skb_hint = prev; 1536 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1537 } 1538 1539 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1540 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1541 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1542 TCP_SKB_CB(prev)->end_seq++; 1543 1544 if (skb == tcp_highest_sack(sk)) 1545 tcp_advance_highest_sack(sk, skb); 1546 1547 tcp_skb_collapse_tstamp(prev, skb); 1548 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1549 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1550 1551 tcp_rtx_queue_unlink_and_free(skb, sk); 1552 1553 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1554 1555 return true; 1556 } 1557 1558 /* I wish gso_size would have a bit more sane initialization than 1559 * something-or-zero which complicates things 1560 */ 1561 static int tcp_skb_seglen(const struct sk_buff *skb) 1562 { 1563 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1564 } 1565 1566 /* Shifting pages past head area doesn't work */ 1567 static int skb_can_shift(const struct sk_buff *skb) 1568 { 1569 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1570 } 1571 1572 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1573 int pcount, int shiftlen) 1574 { 1575 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1576 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1577 * to make sure not storing more than 65535 * 8 bytes per skb, 1578 * even if current MSS is bigger. 1579 */ 1580 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1581 return 0; 1582 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1583 return 0; 1584 return skb_shift(to, from, shiftlen); 1585 } 1586 1587 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1588 * skb. 1589 */ 1590 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1591 struct tcp_sacktag_state *state, 1592 u32 start_seq, u32 end_seq, 1593 bool dup_sack) 1594 { 1595 struct tcp_sock *tp = tcp_sk(sk); 1596 struct sk_buff *prev; 1597 int mss; 1598 int pcount = 0; 1599 int len; 1600 int in_sack; 1601 1602 /* Normally R but no L won't result in plain S */ 1603 if (!dup_sack && 1604 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1605 goto fallback; 1606 if (!skb_can_shift(skb)) 1607 goto fallback; 1608 /* This frame is about to be dropped (was ACKed). */ 1609 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1610 goto fallback; 1611 1612 /* Can only happen with delayed DSACK + discard craziness */ 1613 prev = skb_rb_prev(skb); 1614 if (!prev) 1615 goto fallback; 1616 1617 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1618 goto fallback; 1619 1620 if (!tcp_skb_can_collapse(prev, skb)) 1621 goto fallback; 1622 1623 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1624 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1625 1626 if (in_sack) { 1627 len = skb->len; 1628 pcount = tcp_skb_pcount(skb); 1629 mss = tcp_skb_seglen(skb); 1630 1631 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1632 * drop this restriction as unnecessary 1633 */ 1634 if (mss != tcp_skb_seglen(prev)) 1635 goto fallback; 1636 } else { 1637 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1638 goto noop; 1639 /* CHECKME: This is non-MSS split case only?, this will 1640 * cause skipped skbs due to advancing loop btw, original 1641 * has that feature too 1642 */ 1643 if (tcp_skb_pcount(skb) <= 1) 1644 goto noop; 1645 1646 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1647 if (!in_sack) { 1648 /* TODO: head merge to next could be attempted here 1649 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1650 * though it might not be worth of the additional hassle 1651 * 1652 * ...we can probably just fallback to what was done 1653 * previously. We could try merging non-SACKed ones 1654 * as well but it probably isn't going to buy off 1655 * because later SACKs might again split them, and 1656 * it would make skb timestamp tracking considerably 1657 * harder problem. 1658 */ 1659 goto fallback; 1660 } 1661 1662 len = end_seq - TCP_SKB_CB(skb)->seq; 1663 BUG_ON(len < 0); 1664 BUG_ON(len > skb->len); 1665 1666 /* MSS boundaries should be honoured or else pcount will 1667 * severely break even though it makes things bit trickier. 1668 * Optimize common case to avoid most of the divides 1669 */ 1670 mss = tcp_skb_mss(skb); 1671 1672 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1673 * drop this restriction as unnecessary 1674 */ 1675 if (mss != tcp_skb_seglen(prev)) 1676 goto fallback; 1677 1678 if (len == mss) { 1679 pcount = 1; 1680 } else if (len < mss) { 1681 goto noop; 1682 } else { 1683 pcount = len / mss; 1684 len = pcount * mss; 1685 } 1686 } 1687 1688 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1689 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1690 goto fallback; 1691 1692 if (!tcp_skb_shift(prev, skb, pcount, len)) 1693 goto fallback; 1694 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1695 goto out; 1696 1697 /* Hole filled allows collapsing with the next as well, this is very 1698 * useful when hole on every nth skb pattern happens 1699 */ 1700 skb = skb_rb_next(prev); 1701 if (!skb) 1702 goto out; 1703 1704 if (!skb_can_shift(skb) || 1705 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1706 (mss != tcp_skb_seglen(skb))) 1707 goto out; 1708 1709 if (!tcp_skb_can_collapse(prev, skb)) 1710 goto out; 1711 len = skb->len; 1712 pcount = tcp_skb_pcount(skb); 1713 if (tcp_skb_shift(prev, skb, pcount, len)) 1714 tcp_shifted_skb(sk, prev, skb, state, pcount, 1715 len, mss, 0); 1716 1717 out: 1718 return prev; 1719 1720 noop: 1721 return skb; 1722 1723 fallback: 1724 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1725 return NULL; 1726 } 1727 1728 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1729 struct tcp_sack_block *next_dup, 1730 struct tcp_sacktag_state *state, 1731 u32 start_seq, u32 end_seq, 1732 bool dup_sack_in) 1733 { 1734 struct tcp_sock *tp = tcp_sk(sk); 1735 struct sk_buff *tmp; 1736 1737 skb_rbtree_walk_from(skb) { 1738 int in_sack = 0; 1739 bool dup_sack = dup_sack_in; 1740 1741 /* queue is in-order => we can short-circuit the walk early */ 1742 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1743 break; 1744 1745 if (next_dup && 1746 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1747 in_sack = tcp_match_skb_to_sack(sk, skb, 1748 next_dup->start_seq, 1749 next_dup->end_seq); 1750 if (in_sack > 0) 1751 dup_sack = true; 1752 } 1753 1754 /* skb reference here is a bit tricky to get right, since 1755 * shifting can eat and free both this skb and the next, 1756 * so not even _safe variant of the loop is enough. 1757 */ 1758 if (in_sack <= 0) { 1759 tmp = tcp_shift_skb_data(sk, skb, state, 1760 start_seq, end_seq, dup_sack); 1761 if (tmp) { 1762 if (tmp != skb) { 1763 skb = tmp; 1764 continue; 1765 } 1766 1767 in_sack = 0; 1768 } else { 1769 in_sack = tcp_match_skb_to_sack(sk, skb, 1770 start_seq, 1771 end_seq); 1772 } 1773 } 1774 1775 if (unlikely(in_sack < 0)) 1776 break; 1777 1778 if (in_sack) { 1779 TCP_SKB_CB(skb)->sacked = 1780 tcp_sacktag_one(sk, 1781 state, 1782 TCP_SKB_CB(skb)->sacked, 1783 TCP_SKB_CB(skb)->seq, 1784 TCP_SKB_CB(skb)->end_seq, 1785 dup_sack, 1786 tcp_skb_pcount(skb), 1787 tcp_skb_timestamp_us(skb)); 1788 tcp_rate_skb_delivered(sk, skb, state->rate); 1789 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1790 list_del_init(&skb->tcp_tsorted_anchor); 1791 1792 if (!before(TCP_SKB_CB(skb)->seq, 1793 tcp_highest_sack_seq(tp))) 1794 tcp_advance_highest_sack(sk, skb); 1795 } 1796 } 1797 return skb; 1798 } 1799 1800 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1801 { 1802 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1803 struct sk_buff *skb; 1804 1805 while (*p) { 1806 parent = *p; 1807 skb = rb_to_skb(parent); 1808 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1809 p = &parent->rb_left; 1810 continue; 1811 } 1812 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1813 p = &parent->rb_right; 1814 continue; 1815 } 1816 return skb; 1817 } 1818 return NULL; 1819 } 1820 1821 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1822 u32 skip_to_seq) 1823 { 1824 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1825 return skb; 1826 1827 return tcp_sacktag_bsearch(sk, skip_to_seq); 1828 } 1829 1830 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1831 struct sock *sk, 1832 struct tcp_sack_block *next_dup, 1833 struct tcp_sacktag_state *state, 1834 u32 skip_to_seq) 1835 { 1836 if (!next_dup) 1837 return skb; 1838 1839 if (before(next_dup->start_seq, skip_to_seq)) { 1840 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1841 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1842 next_dup->start_seq, next_dup->end_seq, 1843 1); 1844 } 1845 1846 return skb; 1847 } 1848 1849 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1850 { 1851 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1852 } 1853 1854 static int 1855 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1856 u32 prior_snd_una, struct tcp_sacktag_state *state) 1857 { 1858 struct tcp_sock *tp = tcp_sk(sk); 1859 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1860 TCP_SKB_CB(ack_skb)->sacked); 1861 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1862 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1863 struct tcp_sack_block *cache; 1864 struct sk_buff *skb; 1865 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1866 int used_sacks; 1867 bool found_dup_sack = false; 1868 int i, j; 1869 int first_sack_index; 1870 1871 state->flag = 0; 1872 state->reord = tp->snd_nxt; 1873 1874 if (!tp->sacked_out) 1875 tcp_highest_sack_reset(sk); 1876 1877 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1878 num_sacks, prior_snd_una, state); 1879 1880 /* Eliminate too old ACKs, but take into 1881 * account more or less fresh ones, they can 1882 * contain valid SACK info. 1883 */ 1884 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1885 return 0; 1886 1887 if (!tp->packets_out) 1888 goto out; 1889 1890 used_sacks = 0; 1891 first_sack_index = 0; 1892 for (i = 0; i < num_sacks; i++) { 1893 bool dup_sack = !i && found_dup_sack; 1894 1895 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1896 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1897 1898 if (!tcp_is_sackblock_valid(tp, dup_sack, 1899 sp[used_sacks].start_seq, 1900 sp[used_sacks].end_seq)) { 1901 int mib_idx; 1902 1903 if (dup_sack) { 1904 if (!tp->undo_marker) 1905 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1906 else 1907 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1908 } else { 1909 /* Don't count olds caused by ACK reordering */ 1910 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1911 !after(sp[used_sacks].end_seq, tp->snd_una)) 1912 continue; 1913 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1914 } 1915 1916 NET_INC_STATS(sock_net(sk), mib_idx); 1917 if (i == 0) 1918 first_sack_index = -1; 1919 continue; 1920 } 1921 1922 /* Ignore very old stuff early */ 1923 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1924 if (i == 0) 1925 first_sack_index = -1; 1926 continue; 1927 } 1928 1929 used_sacks++; 1930 } 1931 1932 /* order SACK blocks to allow in order walk of the retrans queue */ 1933 for (i = used_sacks - 1; i > 0; i--) { 1934 for (j = 0; j < i; j++) { 1935 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1936 swap(sp[j], sp[j + 1]); 1937 1938 /* Track where the first SACK block goes to */ 1939 if (j == first_sack_index) 1940 first_sack_index = j + 1; 1941 } 1942 } 1943 } 1944 1945 state->mss_now = tcp_current_mss(sk); 1946 skb = NULL; 1947 i = 0; 1948 1949 if (!tp->sacked_out) { 1950 /* It's already past, so skip checking against it */ 1951 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1952 } else { 1953 cache = tp->recv_sack_cache; 1954 /* Skip empty blocks in at head of the cache */ 1955 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1956 !cache->end_seq) 1957 cache++; 1958 } 1959 1960 while (i < used_sacks) { 1961 u32 start_seq = sp[i].start_seq; 1962 u32 end_seq = sp[i].end_seq; 1963 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1964 struct tcp_sack_block *next_dup = NULL; 1965 1966 if (found_dup_sack && ((i + 1) == first_sack_index)) 1967 next_dup = &sp[i + 1]; 1968 1969 /* Skip too early cached blocks */ 1970 while (tcp_sack_cache_ok(tp, cache) && 1971 !before(start_seq, cache->end_seq)) 1972 cache++; 1973 1974 /* Can skip some work by looking recv_sack_cache? */ 1975 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1976 after(end_seq, cache->start_seq)) { 1977 1978 /* Head todo? */ 1979 if (before(start_seq, cache->start_seq)) { 1980 skb = tcp_sacktag_skip(skb, sk, start_seq); 1981 skb = tcp_sacktag_walk(skb, sk, next_dup, 1982 state, 1983 start_seq, 1984 cache->start_seq, 1985 dup_sack); 1986 } 1987 1988 /* Rest of the block already fully processed? */ 1989 if (!after(end_seq, cache->end_seq)) 1990 goto advance_sp; 1991 1992 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1993 state, 1994 cache->end_seq); 1995 1996 /* ...tail remains todo... */ 1997 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1998 /* ...but better entrypoint exists! */ 1999 skb = tcp_highest_sack(sk); 2000 if (!skb) 2001 break; 2002 cache++; 2003 goto walk; 2004 } 2005 2006 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 2007 /* Check overlap against next cached too (past this one already) */ 2008 cache++; 2009 continue; 2010 } 2011 2012 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 2013 skb = tcp_highest_sack(sk); 2014 if (!skb) 2015 break; 2016 } 2017 skb = tcp_sacktag_skip(skb, sk, start_seq); 2018 2019 walk: 2020 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2021 start_seq, end_seq, dup_sack); 2022 2023 advance_sp: 2024 i++; 2025 } 2026 2027 /* Clear the head of the cache sack blocks so we can skip it next time */ 2028 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2029 tp->recv_sack_cache[i].start_seq = 0; 2030 tp->recv_sack_cache[i].end_seq = 0; 2031 } 2032 for (j = 0; j < used_sacks; j++) 2033 tp->recv_sack_cache[i++] = sp[j]; 2034 2035 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2036 tcp_check_sack_reordering(sk, state->reord, 0); 2037 2038 tcp_verify_left_out(tp); 2039 out: 2040 2041 #if FASTRETRANS_DEBUG > 0 2042 WARN_ON((int)tp->sacked_out < 0); 2043 WARN_ON((int)tp->lost_out < 0); 2044 WARN_ON((int)tp->retrans_out < 0); 2045 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2046 #endif 2047 return state->flag; 2048 } 2049 2050 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2051 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2052 */ 2053 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2054 { 2055 u32 holes; 2056 2057 holes = max(tp->lost_out, 1U); 2058 holes = min(holes, tp->packets_out); 2059 2060 if ((tp->sacked_out + holes) > tp->packets_out) { 2061 tp->sacked_out = tp->packets_out - holes; 2062 return true; 2063 } 2064 return false; 2065 } 2066 2067 /* If we receive more dupacks than we expected counting segments 2068 * in assumption of absent reordering, interpret this as reordering. 2069 * The only another reason could be bug in receiver TCP. 2070 */ 2071 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2072 { 2073 struct tcp_sock *tp = tcp_sk(sk); 2074 2075 if (!tcp_limit_reno_sacked(tp)) 2076 return; 2077 2078 tp->reordering = min_t(u32, tp->packets_out + addend, 2079 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2080 tp->reord_seen++; 2081 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2082 } 2083 2084 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2085 2086 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2087 { 2088 if (num_dupack) { 2089 struct tcp_sock *tp = tcp_sk(sk); 2090 u32 prior_sacked = tp->sacked_out; 2091 s32 delivered; 2092 2093 tp->sacked_out += num_dupack; 2094 tcp_check_reno_reordering(sk, 0); 2095 delivered = tp->sacked_out - prior_sacked; 2096 if (delivered > 0) 2097 tcp_count_delivered(tp, delivered, ece_ack); 2098 tcp_verify_left_out(tp); 2099 } 2100 } 2101 2102 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2103 2104 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2105 { 2106 struct tcp_sock *tp = tcp_sk(sk); 2107 2108 if (acked > 0) { 2109 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2110 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2111 ece_ack); 2112 if (acked - 1 >= tp->sacked_out) 2113 tp->sacked_out = 0; 2114 else 2115 tp->sacked_out -= acked - 1; 2116 } 2117 tcp_check_reno_reordering(sk, acked); 2118 tcp_verify_left_out(tp); 2119 } 2120 2121 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2122 { 2123 tp->sacked_out = 0; 2124 } 2125 2126 void tcp_clear_retrans(struct tcp_sock *tp) 2127 { 2128 tp->retrans_out = 0; 2129 tp->lost_out = 0; 2130 tp->undo_marker = 0; 2131 tp->undo_retrans = -1; 2132 tp->sacked_out = 0; 2133 tp->rto_stamp = 0; 2134 tp->total_rto = 0; 2135 tp->total_rto_recoveries = 0; 2136 tp->total_rto_time = 0; 2137 } 2138 2139 static inline void tcp_init_undo(struct tcp_sock *tp) 2140 { 2141 tp->undo_marker = tp->snd_una; 2142 2143 /* Retransmission still in flight may cause DSACKs later. */ 2144 /* First, account for regular retransmits in flight: */ 2145 tp->undo_retrans = tp->retrans_out; 2146 /* Next, account for TLP retransmits in flight: */ 2147 if (tp->tlp_high_seq && tp->tlp_retrans) 2148 tp->undo_retrans++; 2149 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2150 if (!tp->undo_retrans) 2151 tp->undo_retrans = -1; 2152 } 2153 2154 static bool tcp_is_rack(const struct sock *sk) 2155 { 2156 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2157 TCP_RACK_LOSS_DETECTION; 2158 } 2159 2160 /* If we detect SACK reneging, forget all SACK information 2161 * and reset tags completely, otherwise preserve SACKs. If receiver 2162 * dropped its ofo queue, we will know this due to reneging detection. 2163 */ 2164 static void tcp_timeout_mark_lost(struct sock *sk) 2165 { 2166 struct tcp_sock *tp = tcp_sk(sk); 2167 struct sk_buff *skb, *head; 2168 bool is_reneg; /* is receiver reneging on SACKs? */ 2169 2170 head = tcp_rtx_queue_head(sk); 2171 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2172 if (is_reneg) { 2173 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2174 tp->sacked_out = 0; 2175 /* Mark SACK reneging until we recover from this loss event. */ 2176 tp->is_sack_reneg = 1; 2177 } else if (tcp_is_reno(tp)) { 2178 tcp_reset_reno_sack(tp); 2179 } 2180 2181 skb = head; 2182 skb_rbtree_walk_from(skb) { 2183 if (is_reneg) 2184 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2185 else if (tcp_is_rack(sk) && skb != head && 2186 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2187 continue; /* Don't mark recently sent ones lost yet */ 2188 tcp_mark_skb_lost(sk, skb); 2189 } 2190 tcp_verify_left_out(tp); 2191 tcp_clear_all_retrans_hints(tp); 2192 } 2193 2194 /* Enter Loss state. */ 2195 void tcp_enter_loss(struct sock *sk) 2196 { 2197 const struct inet_connection_sock *icsk = inet_csk(sk); 2198 struct tcp_sock *tp = tcp_sk(sk); 2199 struct net *net = sock_net(sk); 2200 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2201 u8 reordering; 2202 2203 tcp_timeout_mark_lost(sk); 2204 2205 /* Reduce ssthresh if it has not yet been made inside this window. */ 2206 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2207 !after(tp->high_seq, tp->snd_una) || 2208 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2209 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2210 tp->prior_cwnd = tcp_snd_cwnd(tp); 2211 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2212 tcp_ca_event(sk, CA_EVENT_LOSS); 2213 tcp_init_undo(tp); 2214 } 2215 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2216 tp->snd_cwnd_cnt = 0; 2217 tp->snd_cwnd_stamp = tcp_jiffies32; 2218 2219 /* Timeout in disordered state after receiving substantial DUPACKs 2220 * suggests that the degree of reordering is over-estimated. 2221 */ 2222 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2223 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2224 tp->sacked_out >= reordering) 2225 tp->reordering = min_t(unsigned int, tp->reordering, 2226 reordering); 2227 2228 tcp_set_ca_state(sk, TCP_CA_Loss); 2229 tp->high_seq = tp->snd_nxt; 2230 tp->tlp_high_seq = 0; 2231 tcp_ecn_queue_cwr(tp); 2232 2233 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2234 * loss recovery is underway except recurring timeout(s) on 2235 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2236 */ 2237 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2238 (new_recovery || icsk->icsk_retransmits) && 2239 !inet_csk(sk)->icsk_mtup.probe_size; 2240 } 2241 2242 /* If ACK arrived pointing to a remembered SACK, it means that our 2243 * remembered SACKs do not reflect real state of receiver i.e. 2244 * receiver _host_ is heavily congested (or buggy). 2245 * 2246 * To avoid big spurious retransmission bursts due to transient SACK 2247 * scoreboard oddities that look like reneging, we give the receiver a 2248 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2249 * restore sanity to the SACK scoreboard. If the apparent reneging 2250 * persists until this RTO then we'll clear the SACK scoreboard. 2251 */ 2252 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2253 { 2254 if (*ack_flag & FLAG_SACK_RENEGING && 2255 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2256 struct tcp_sock *tp = tcp_sk(sk); 2257 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2258 msecs_to_jiffies(10)); 2259 2260 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false); 2261 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2262 return true; 2263 } 2264 return false; 2265 } 2266 2267 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2268 * counter when SACK is enabled (without SACK, sacked_out is used for 2269 * that purpose). 2270 * 2271 * With reordering, holes may still be in flight, so RFC3517 recovery 2272 * uses pure sacked_out (total number of SACKed segments) even though 2273 * it violates the RFC that uses duplicate ACKs, often these are equal 2274 * but when e.g. out-of-window ACKs or packet duplication occurs, 2275 * they differ. Since neither occurs due to loss, TCP should really 2276 * ignore them. 2277 */ 2278 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2279 { 2280 return tp->sacked_out + 1; 2281 } 2282 2283 /* Linux NewReno/SACK/ECN state machine. 2284 * -------------------------------------- 2285 * 2286 * "Open" Normal state, no dubious events, fast path. 2287 * "Disorder" In all the respects it is "Open", 2288 * but requires a bit more attention. It is entered when 2289 * we see some SACKs or dupacks. It is split of "Open" 2290 * mainly to move some processing from fast path to slow one. 2291 * "CWR" CWND was reduced due to some Congestion Notification event. 2292 * It can be ECN, ICMP source quench, local device congestion. 2293 * "Recovery" CWND was reduced, we are fast-retransmitting. 2294 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2295 * 2296 * tcp_fastretrans_alert() is entered: 2297 * - each incoming ACK, if state is not "Open" 2298 * - when arrived ACK is unusual, namely: 2299 * * SACK 2300 * * Duplicate ACK. 2301 * * ECN ECE. 2302 * 2303 * Counting packets in flight is pretty simple. 2304 * 2305 * in_flight = packets_out - left_out + retrans_out 2306 * 2307 * packets_out is SND.NXT-SND.UNA counted in packets. 2308 * 2309 * retrans_out is number of retransmitted segments. 2310 * 2311 * left_out is number of segments left network, but not ACKed yet. 2312 * 2313 * left_out = sacked_out + lost_out 2314 * 2315 * sacked_out: Packets, which arrived to receiver out of order 2316 * and hence not ACKed. With SACKs this number is simply 2317 * amount of SACKed data. Even without SACKs 2318 * it is easy to give pretty reliable estimate of this number, 2319 * counting duplicate ACKs. 2320 * 2321 * lost_out: Packets lost by network. TCP has no explicit 2322 * "loss notification" feedback from network (for now). 2323 * It means that this number can be only _guessed_. 2324 * Actually, it is the heuristics to predict lossage that 2325 * distinguishes different algorithms. 2326 * 2327 * F.e. after RTO, when all the queue is considered as lost, 2328 * lost_out = packets_out and in_flight = retrans_out. 2329 * 2330 * Essentially, we have now a few algorithms detecting 2331 * lost packets. 2332 * 2333 * If the receiver supports SACK: 2334 * 2335 * RFC6675/3517: It is the conventional algorithm. A packet is 2336 * considered lost if the number of higher sequence packets 2337 * SACKed is greater than or equal the DUPACK thoreshold 2338 * (reordering). This is implemented in tcp_mark_head_lost and 2339 * tcp_update_scoreboard. 2340 * 2341 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2342 * (2017-) that checks timing instead of counting DUPACKs. 2343 * Essentially a packet is considered lost if it's not S/ACKed 2344 * after RTT + reordering_window, where both metrics are 2345 * dynamically measured and adjusted. This is implemented in 2346 * tcp_rack_mark_lost. 2347 * 2348 * If the receiver does not support SACK: 2349 * 2350 * NewReno (RFC6582): in Recovery we assume that one segment 2351 * is lost (classic Reno). While we are in Recovery and 2352 * a partial ACK arrives, we assume that one more packet 2353 * is lost (NewReno). This heuristics are the same in NewReno 2354 * and SACK. 2355 * 2356 * Really tricky (and requiring careful tuning) part of algorithm 2357 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2358 * The first determines the moment _when_ we should reduce CWND and, 2359 * hence, slow down forward transmission. In fact, it determines the moment 2360 * when we decide that hole is caused by loss, rather than by a reorder. 2361 * 2362 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2363 * holes, caused by lost packets. 2364 * 2365 * And the most logically complicated part of algorithm is undo 2366 * heuristics. We detect false retransmits due to both too early 2367 * fast retransmit (reordering) and underestimated RTO, analyzing 2368 * timestamps and D-SACKs. When we detect that some segments were 2369 * retransmitted by mistake and CWND reduction was wrong, we undo 2370 * window reduction and abort recovery phase. This logic is hidden 2371 * inside several functions named tcp_try_undo_<something>. 2372 */ 2373 2374 /* This function decides, when we should leave Disordered state 2375 * and enter Recovery phase, reducing congestion window. 2376 * 2377 * Main question: may we further continue forward transmission 2378 * with the same cwnd? 2379 */ 2380 static bool tcp_time_to_recover(struct sock *sk, int flag) 2381 { 2382 struct tcp_sock *tp = tcp_sk(sk); 2383 2384 /* Trick#1: The loss is proven. */ 2385 if (tp->lost_out) 2386 return true; 2387 2388 /* Not-A-Trick#2 : Classic rule... */ 2389 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2390 return true; 2391 2392 return false; 2393 } 2394 2395 /* Detect loss in event "A" above by marking head of queue up as lost. 2396 * For RFC3517 SACK, a segment is considered lost if it 2397 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2398 * the maximum SACKed segments to pass before reaching this limit. 2399 */ 2400 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2401 { 2402 struct tcp_sock *tp = tcp_sk(sk); 2403 struct sk_buff *skb; 2404 int cnt; 2405 /* Use SACK to deduce losses of new sequences sent during recovery */ 2406 const u32 loss_high = tp->snd_nxt; 2407 2408 WARN_ON(packets > tp->packets_out); 2409 skb = tp->lost_skb_hint; 2410 if (skb) { 2411 /* Head already handled? */ 2412 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2413 return; 2414 cnt = tp->lost_cnt_hint; 2415 } else { 2416 skb = tcp_rtx_queue_head(sk); 2417 cnt = 0; 2418 } 2419 2420 skb_rbtree_walk_from(skb) { 2421 /* TODO: do this better */ 2422 /* this is not the most efficient way to do this... */ 2423 tp->lost_skb_hint = skb; 2424 tp->lost_cnt_hint = cnt; 2425 2426 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2427 break; 2428 2429 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2430 cnt += tcp_skb_pcount(skb); 2431 2432 if (cnt > packets) 2433 break; 2434 2435 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2436 tcp_mark_skb_lost(sk, skb); 2437 2438 if (mark_head) 2439 break; 2440 } 2441 tcp_verify_left_out(tp); 2442 } 2443 2444 /* Account newly detected lost packet(s) */ 2445 2446 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2447 { 2448 struct tcp_sock *tp = tcp_sk(sk); 2449 2450 if (tcp_is_sack(tp)) { 2451 int sacked_upto = tp->sacked_out - tp->reordering; 2452 if (sacked_upto >= 0) 2453 tcp_mark_head_lost(sk, sacked_upto, 0); 2454 else if (fast_rexmit) 2455 tcp_mark_head_lost(sk, 1, 1); 2456 } 2457 } 2458 2459 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2460 { 2461 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2462 before(tp->rx_opt.rcv_tsecr, when); 2463 } 2464 2465 /* skb is spurious retransmitted if the returned timestamp echo 2466 * reply is prior to the skb transmission time 2467 */ 2468 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2469 const struct sk_buff *skb) 2470 { 2471 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2472 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); 2473 } 2474 2475 /* Nothing was retransmitted or returned timestamp is less 2476 * than timestamp of the first retransmission. 2477 */ 2478 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2479 { 2480 const struct sock *sk = (const struct sock *)tp; 2481 2482 if (tp->retrans_stamp && 2483 tcp_tsopt_ecr_before(tp, tp->retrans_stamp)) 2484 return true; /* got echoed TS before first retransmission */ 2485 2486 /* Check if nothing was retransmitted (retrans_stamp==0), which may 2487 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp 2488 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear 2489 * retrans_stamp even if we had retransmitted the SYN. 2490 */ 2491 if (!tp->retrans_stamp && /* no record of a retransmit/SYN? */ 2492 sk->sk_state != TCP_SYN_SENT) /* not the FLAG_SYN_ACKED case? */ 2493 return true; /* nothing was retransmitted */ 2494 2495 return false; 2496 } 2497 2498 /* Undo procedures. */ 2499 2500 /* We can clear retrans_stamp when there are no retransmissions in the 2501 * window. It would seem that it is trivially available for us in 2502 * tp->retrans_out, however, that kind of assumptions doesn't consider 2503 * what will happen if errors occur when sending retransmission for the 2504 * second time. ...It could the that such segment has only 2505 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2506 * the head skb is enough except for some reneging corner cases that 2507 * are not worth the effort. 2508 * 2509 * Main reason for all this complexity is the fact that connection dying 2510 * time now depends on the validity of the retrans_stamp, in particular, 2511 * that successive retransmissions of a segment must not advance 2512 * retrans_stamp under any conditions. 2513 */ 2514 static bool tcp_any_retrans_done(const struct sock *sk) 2515 { 2516 const struct tcp_sock *tp = tcp_sk(sk); 2517 struct sk_buff *skb; 2518 2519 if (tp->retrans_out) 2520 return true; 2521 2522 skb = tcp_rtx_queue_head(sk); 2523 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2524 return true; 2525 2526 return false; 2527 } 2528 2529 /* If loss recovery is finished and there are no retransmits out in the 2530 * network, then we clear retrans_stamp so that upon the next loss recovery 2531 * retransmits_timed_out() and timestamp-undo are using the correct value. 2532 */ 2533 static void tcp_retrans_stamp_cleanup(struct sock *sk) 2534 { 2535 if (!tcp_any_retrans_done(sk)) 2536 tcp_sk(sk)->retrans_stamp = 0; 2537 } 2538 2539 static void DBGUNDO(struct sock *sk, const char *msg) 2540 { 2541 #if FASTRETRANS_DEBUG > 1 2542 struct tcp_sock *tp = tcp_sk(sk); 2543 struct inet_sock *inet = inet_sk(sk); 2544 2545 if (sk->sk_family == AF_INET) { 2546 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2547 msg, 2548 &inet->inet_daddr, ntohs(inet->inet_dport), 2549 tcp_snd_cwnd(tp), tcp_left_out(tp), 2550 tp->snd_ssthresh, tp->prior_ssthresh, 2551 tp->packets_out); 2552 } 2553 #if IS_ENABLED(CONFIG_IPV6) 2554 else if (sk->sk_family == AF_INET6) { 2555 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2556 msg, 2557 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2558 tcp_snd_cwnd(tp), tcp_left_out(tp), 2559 tp->snd_ssthresh, tp->prior_ssthresh, 2560 tp->packets_out); 2561 } 2562 #endif 2563 #endif 2564 } 2565 2566 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2567 { 2568 struct tcp_sock *tp = tcp_sk(sk); 2569 2570 if (unmark_loss) { 2571 struct sk_buff *skb; 2572 2573 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2574 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2575 } 2576 tp->lost_out = 0; 2577 tcp_clear_all_retrans_hints(tp); 2578 } 2579 2580 if (tp->prior_ssthresh) { 2581 const struct inet_connection_sock *icsk = inet_csk(sk); 2582 2583 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2584 2585 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2586 tp->snd_ssthresh = tp->prior_ssthresh; 2587 tcp_ecn_withdraw_cwr(tp); 2588 } 2589 } 2590 tp->snd_cwnd_stamp = tcp_jiffies32; 2591 tp->undo_marker = 0; 2592 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2593 } 2594 2595 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2596 { 2597 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2598 } 2599 2600 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2601 { 2602 struct tcp_sock *tp = tcp_sk(sk); 2603 2604 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2605 /* Hold old state until something *above* high_seq 2606 * is ACKed. For Reno it is MUST to prevent false 2607 * fast retransmits (RFC2582). SACK TCP is safe. */ 2608 if (!tcp_any_retrans_done(sk)) 2609 tp->retrans_stamp = 0; 2610 return true; 2611 } 2612 return false; 2613 } 2614 2615 /* People celebrate: "We love our President!" */ 2616 static bool tcp_try_undo_recovery(struct sock *sk) 2617 { 2618 struct tcp_sock *tp = tcp_sk(sk); 2619 2620 if (tcp_may_undo(tp)) { 2621 int mib_idx; 2622 2623 /* Happy end! We did not retransmit anything 2624 * or our original transmission succeeded. 2625 */ 2626 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2627 tcp_undo_cwnd_reduction(sk, false); 2628 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2629 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2630 else 2631 mib_idx = LINUX_MIB_TCPFULLUNDO; 2632 2633 NET_INC_STATS(sock_net(sk), mib_idx); 2634 } else if (tp->rack.reo_wnd_persist) { 2635 tp->rack.reo_wnd_persist--; 2636 } 2637 if (tcp_is_non_sack_preventing_reopen(sk)) 2638 return true; 2639 tcp_set_ca_state(sk, TCP_CA_Open); 2640 tp->is_sack_reneg = 0; 2641 return false; 2642 } 2643 2644 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2645 static bool tcp_try_undo_dsack(struct sock *sk) 2646 { 2647 struct tcp_sock *tp = tcp_sk(sk); 2648 2649 if (tp->undo_marker && !tp->undo_retrans) { 2650 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2651 tp->rack.reo_wnd_persist + 1); 2652 DBGUNDO(sk, "D-SACK"); 2653 tcp_undo_cwnd_reduction(sk, false); 2654 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2655 return true; 2656 } 2657 return false; 2658 } 2659 2660 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2661 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2662 { 2663 struct tcp_sock *tp = tcp_sk(sk); 2664 2665 if (frto_undo || tcp_may_undo(tp)) { 2666 tcp_undo_cwnd_reduction(sk, true); 2667 2668 DBGUNDO(sk, "partial loss"); 2669 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2670 if (frto_undo) 2671 NET_INC_STATS(sock_net(sk), 2672 LINUX_MIB_TCPSPURIOUSRTOS); 2673 inet_csk(sk)->icsk_retransmits = 0; 2674 if (tcp_is_non_sack_preventing_reopen(sk)) 2675 return true; 2676 if (frto_undo || tcp_is_sack(tp)) { 2677 tcp_set_ca_state(sk, TCP_CA_Open); 2678 tp->is_sack_reneg = 0; 2679 } 2680 return true; 2681 } 2682 return false; 2683 } 2684 2685 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2686 * It computes the number of packets to send (sndcnt) based on packets newly 2687 * delivered: 2688 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2689 * cwnd reductions across a full RTT. 2690 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2691 * But when SND_UNA is acked without further losses, 2692 * slow starts cwnd up to ssthresh to speed up the recovery. 2693 */ 2694 static void tcp_init_cwnd_reduction(struct sock *sk) 2695 { 2696 struct tcp_sock *tp = tcp_sk(sk); 2697 2698 tp->high_seq = tp->snd_nxt; 2699 tp->tlp_high_seq = 0; 2700 tp->snd_cwnd_cnt = 0; 2701 tp->prior_cwnd = tcp_snd_cwnd(tp); 2702 tp->prr_delivered = 0; 2703 tp->prr_out = 0; 2704 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2705 tcp_ecn_queue_cwr(tp); 2706 } 2707 2708 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2709 { 2710 struct tcp_sock *tp = tcp_sk(sk); 2711 int sndcnt = 0; 2712 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2713 2714 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2715 return; 2716 2717 trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag); 2718 2719 tp->prr_delivered += newly_acked_sacked; 2720 if (delta < 0) { 2721 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2722 tp->prior_cwnd - 1; 2723 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2724 } else { 2725 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2726 newly_acked_sacked); 2727 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2728 sndcnt++; 2729 sndcnt = min(delta, sndcnt); 2730 } 2731 /* Force a fast retransmit upon entering fast recovery */ 2732 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2733 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2734 } 2735 2736 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2737 { 2738 struct tcp_sock *tp = tcp_sk(sk); 2739 2740 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2741 return; 2742 2743 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2744 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2745 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2746 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2747 tp->snd_cwnd_stamp = tcp_jiffies32; 2748 } 2749 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2750 } 2751 2752 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2753 void tcp_enter_cwr(struct sock *sk) 2754 { 2755 struct tcp_sock *tp = tcp_sk(sk); 2756 2757 tp->prior_ssthresh = 0; 2758 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2759 tp->undo_marker = 0; 2760 tcp_init_cwnd_reduction(sk); 2761 tcp_set_ca_state(sk, TCP_CA_CWR); 2762 } 2763 } 2764 EXPORT_SYMBOL(tcp_enter_cwr); 2765 2766 static void tcp_try_keep_open(struct sock *sk) 2767 { 2768 struct tcp_sock *tp = tcp_sk(sk); 2769 int state = TCP_CA_Open; 2770 2771 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2772 state = TCP_CA_Disorder; 2773 2774 if (inet_csk(sk)->icsk_ca_state != state) { 2775 tcp_set_ca_state(sk, state); 2776 tp->high_seq = tp->snd_nxt; 2777 } 2778 } 2779 2780 static void tcp_try_to_open(struct sock *sk, int flag) 2781 { 2782 struct tcp_sock *tp = tcp_sk(sk); 2783 2784 tcp_verify_left_out(tp); 2785 2786 if (!tcp_any_retrans_done(sk)) 2787 tp->retrans_stamp = 0; 2788 2789 if (flag & FLAG_ECE) 2790 tcp_enter_cwr(sk); 2791 2792 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2793 tcp_try_keep_open(sk); 2794 } 2795 } 2796 2797 static void tcp_mtup_probe_failed(struct sock *sk) 2798 { 2799 struct inet_connection_sock *icsk = inet_csk(sk); 2800 2801 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2802 icsk->icsk_mtup.probe_size = 0; 2803 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2804 } 2805 2806 static void tcp_mtup_probe_success(struct sock *sk) 2807 { 2808 struct tcp_sock *tp = tcp_sk(sk); 2809 struct inet_connection_sock *icsk = inet_csk(sk); 2810 u64 val; 2811 2812 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2813 2814 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2815 do_div(val, icsk->icsk_mtup.probe_size); 2816 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2817 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2818 2819 tp->snd_cwnd_cnt = 0; 2820 tp->snd_cwnd_stamp = tcp_jiffies32; 2821 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2822 2823 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2824 icsk->icsk_mtup.probe_size = 0; 2825 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2826 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2827 } 2828 2829 /* Sometimes we deduce that packets have been dropped due to reasons other than 2830 * congestion, like path MTU reductions or failed client TFO attempts. In these 2831 * cases we call this function to retransmit as many packets as cwnd allows, 2832 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2833 * non-zero value (and may do so in a later calling context due to TSQ), we 2834 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2835 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2836 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2837 * prematurely). 2838 */ 2839 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2840 { 2841 const struct inet_connection_sock *icsk = inet_csk(sk); 2842 struct tcp_sock *tp = tcp_sk(sk); 2843 2844 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2845 tp->high_seq = tp->snd_nxt; 2846 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2847 tp->prior_ssthresh = 0; 2848 tp->undo_marker = 0; 2849 tcp_set_ca_state(sk, TCP_CA_Loss); 2850 } 2851 tcp_xmit_retransmit_queue(sk); 2852 } 2853 2854 /* Do a simple retransmit without using the backoff mechanisms in 2855 * tcp_timer. This is used for path mtu discovery. 2856 * The socket is already locked here. 2857 */ 2858 void tcp_simple_retransmit(struct sock *sk) 2859 { 2860 struct tcp_sock *tp = tcp_sk(sk); 2861 struct sk_buff *skb; 2862 int mss; 2863 2864 /* A fastopen SYN request is stored as two separate packets within 2865 * the retransmit queue, this is done by tcp_send_syn_data(). 2866 * As a result simply checking the MSS of the frames in the queue 2867 * will not work for the SYN packet. 2868 * 2869 * Us being here is an indication of a path MTU issue so we can 2870 * assume that the fastopen SYN was lost and just mark all the 2871 * frames in the retransmit queue as lost. We will use an MSS of 2872 * -1 to mark all frames as lost, otherwise compute the current MSS. 2873 */ 2874 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2875 mss = -1; 2876 else 2877 mss = tcp_current_mss(sk); 2878 2879 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2880 if (tcp_skb_seglen(skb) > mss) 2881 tcp_mark_skb_lost(sk, skb); 2882 } 2883 2884 tcp_clear_retrans_hints_partial(tp); 2885 2886 if (!tp->lost_out) 2887 return; 2888 2889 if (tcp_is_reno(tp)) 2890 tcp_limit_reno_sacked(tp); 2891 2892 tcp_verify_left_out(tp); 2893 2894 /* Don't muck with the congestion window here. 2895 * Reason is that we do not increase amount of _data_ 2896 * in network, but units changed and effective 2897 * cwnd/ssthresh really reduced now. 2898 */ 2899 tcp_non_congestion_loss_retransmit(sk); 2900 } 2901 EXPORT_IPV6_MOD(tcp_simple_retransmit); 2902 2903 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2904 { 2905 struct tcp_sock *tp = tcp_sk(sk); 2906 int mib_idx; 2907 2908 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */ 2909 tcp_retrans_stamp_cleanup(sk); 2910 2911 if (tcp_is_reno(tp)) 2912 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2913 else 2914 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2915 2916 NET_INC_STATS(sock_net(sk), mib_idx); 2917 2918 tp->prior_ssthresh = 0; 2919 tcp_init_undo(tp); 2920 2921 if (!tcp_in_cwnd_reduction(sk)) { 2922 if (!ece_ack) 2923 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2924 tcp_init_cwnd_reduction(sk); 2925 } 2926 tcp_set_ca_state(sk, TCP_CA_Recovery); 2927 } 2928 2929 static void tcp_update_rto_time(struct tcp_sock *tp) 2930 { 2931 if (tp->rto_stamp) { 2932 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; 2933 tp->rto_stamp = 0; 2934 } 2935 } 2936 2937 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2938 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2939 */ 2940 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2941 int *rexmit) 2942 { 2943 struct tcp_sock *tp = tcp_sk(sk); 2944 bool recovered = !before(tp->snd_una, tp->high_seq); 2945 2946 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2947 tcp_try_undo_loss(sk, false)) 2948 return; 2949 2950 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2951 /* Step 3.b. A timeout is spurious if not all data are 2952 * lost, i.e., never-retransmitted data are (s)acked. 2953 */ 2954 if ((flag & FLAG_ORIG_SACK_ACKED) && 2955 tcp_try_undo_loss(sk, true)) 2956 return; 2957 2958 if (after(tp->snd_nxt, tp->high_seq)) { 2959 if (flag & FLAG_DATA_SACKED || num_dupack) 2960 tp->frto = 0; /* Step 3.a. loss was real */ 2961 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2962 tp->high_seq = tp->snd_nxt; 2963 /* Step 2.b. Try send new data (but deferred until cwnd 2964 * is updated in tcp_ack()). Otherwise fall back to 2965 * the conventional recovery. 2966 */ 2967 if (!tcp_write_queue_empty(sk) && 2968 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2969 *rexmit = REXMIT_NEW; 2970 return; 2971 } 2972 tp->frto = 0; 2973 } 2974 } 2975 2976 if (recovered) { 2977 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2978 tcp_try_undo_recovery(sk); 2979 return; 2980 } 2981 if (tcp_is_reno(tp)) { 2982 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2983 * delivered. Lower inflight to clock out (re)transmissions. 2984 */ 2985 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2986 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2987 else if (flag & FLAG_SND_UNA_ADVANCED) 2988 tcp_reset_reno_sack(tp); 2989 } 2990 *rexmit = REXMIT_LOST; 2991 } 2992 2993 static bool tcp_force_fast_retransmit(struct sock *sk) 2994 { 2995 struct tcp_sock *tp = tcp_sk(sk); 2996 2997 return after(tcp_highest_sack_seq(tp), 2998 tp->snd_una + tp->reordering * tp->mss_cache); 2999 } 3000 3001 /* Undo during fast recovery after partial ACK. */ 3002 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 3003 bool *do_lost) 3004 { 3005 struct tcp_sock *tp = tcp_sk(sk); 3006 3007 if (tp->undo_marker && tcp_packet_delayed(tp)) { 3008 /* Plain luck! Hole if filled with delayed 3009 * packet, rather than with a retransmit. Check reordering. 3010 */ 3011 tcp_check_sack_reordering(sk, prior_snd_una, 1); 3012 3013 /* We are getting evidence that the reordering degree is higher 3014 * than we realized. If there are no retransmits out then we 3015 * can undo. Otherwise we clock out new packets but do not 3016 * mark more packets lost or retransmit more. 3017 */ 3018 if (tp->retrans_out) 3019 return true; 3020 3021 if (!tcp_any_retrans_done(sk)) 3022 tp->retrans_stamp = 0; 3023 3024 DBGUNDO(sk, "partial recovery"); 3025 tcp_undo_cwnd_reduction(sk, true); 3026 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 3027 tcp_try_keep_open(sk); 3028 } else { 3029 /* Partial ACK arrived. Force fast retransmit. */ 3030 *do_lost = tcp_force_fast_retransmit(sk); 3031 } 3032 return false; 3033 } 3034 3035 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 3036 { 3037 struct tcp_sock *tp = tcp_sk(sk); 3038 3039 if (tcp_rtx_queue_empty(sk)) 3040 return; 3041 3042 if (unlikely(tcp_is_reno(tp))) { 3043 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 3044 } else if (tcp_is_rack(sk)) { 3045 u32 prior_retrans = tp->retrans_out; 3046 3047 if (tcp_rack_mark_lost(sk)) 3048 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 3049 if (prior_retrans > tp->retrans_out) 3050 *ack_flag |= FLAG_LOST_RETRANS; 3051 } 3052 } 3053 3054 /* Process an event, which can update packets-in-flight not trivially. 3055 * Main goal of this function is to calculate new estimate for left_out, 3056 * taking into account both packets sitting in receiver's buffer and 3057 * packets lost by network. 3058 * 3059 * Besides that it updates the congestion state when packet loss or ECN 3060 * is detected. But it does not reduce the cwnd, it is done by the 3061 * congestion control later. 3062 * 3063 * It does _not_ decide what to send, it is made in function 3064 * tcp_xmit_retransmit_queue(). 3065 */ 3066 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3067 int num_dupack, int *ack_flag, int *rexmit) 3068 { 3069 struct inet_connection_sock *icsk = inet_csk(sk); 3070 struct tcp_sock *tp = tcp_sk(sk); 3071 int fast_rexmit = 0, flag = *ack_flag; 3072 bool ece_ack = flag & FLAG_ECE; 3073 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3074 tcp_force_fast_retransmit(sk)); 3075 3076 if (!tp->packets_out && tp->sacked_out) 3077 tp->sacked_out = 0; 3078 3079 /* Now state machine starts. 3080 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3081 if (ece_ack) 3082 tp->prior_ssthresh = 0; 3083 3084 /* B. In all the states check for reneging SACKs. */ 3085 if (tcp_check_sack_reneging(sk, ack_flag)) 3086 return; 3087 3088 /* C. Check consistency of the current state. */ 3089 tcp_verify_left_out(tp); 3090 3091 /* D. Check state exit conditions. State can be terminated 3092 * when high_seq is ACKed. */ 3093 if (icsk->icsk_ca_state == TCP_CA_Open) { 3094 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3095 tp->retrans_stamp = 0; 3096 } else if (!before(tp->snd_una, tp->high_seq)) { 3097 switch (icsk->icsk_ca_state) { 3098 case TCP_CA_CWR: 3099 /* CWR is to be held something *above* high_seq 3100 * is ACKed for CWR bit to reach receiver. */ 3101 if (tp->snd_una != tp->high_seq) { 3102 tcp_end_cwnd_reduction(sk); 3103 tcp_set_ca_state(sk, TCP_CA_Open); 3104 } 3105 break; 3106 3107 case TCP_CA_Recovery: 3108 if (tcp_is_reno(tp)) 3109 tcp_reset_reno_sack(tp); 3110 if (tcp_try_undo_recovery(sk)) 3111 return; 3112 tcp_end_cwnd_reduction(sk); 3113 break; 3114 } 3115 } 3116 3117 /* E. Process state. */ 3118 switch (icsk->icsk_ca_state) { 3119 case TCP_CA_Recovery: 3120 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3121 if (tcp_is_reno(tp)) 3122 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3123 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3124 return; 3125 3126 if (tcp_try_undo_dsack(sk)) 3127 tcp_try_to_open(sk, flag); 3128 3129 tcp_identify_packet_loss(sk, ack_flag); 3130 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3131 if (!tcp_time_to_recover(sk, flag)) 3132 return; 3133 /* Undo reverts the recovery state. If loss is evident, 3134 * starts a new recovery (e.g. reordering then loss); 3135 */ 3136 tcp_enter_recovery(sk, ece_ack); 3137 } 3138 break; 3139 case TCP_CA_Loss: 3140 tcp_process_loss(sk, flag, num_dupack, rexmit); 3141 if (icsk->icsk_ca_state != TCP_CA_Loss) 3142 tcp_update_rto_time(tp); 3143 tcp_identify_packet_loss(sk, ack_flag); 3144 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3145 (*ack_flag & FLAG_LOST_RETRANS))) 3146 return; 3147 /* Change state if cwnd is undone or retransmits are lost */ 3148 fallthrough; 3149 default: 3150 if (tcp_is_reno(tp)) { 3151 if (flag & FLAG_SND_UNA_ADVANCED) 3152 tcp_reset_reno_sack(tp); 3153 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3154 } 3155 3156 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3157 tcp_try_undo_dsack(sk); 3158 3159 tcp_identify_packet_loss(sk, ack_flag); 3160 if (!tcp_time_to_recover(sk, flag)) { 3161 tcp_try_to_open(sk, flag); 3162 return; 3163 } 3164 3165 /* MTU probe failure: don't reduce cwnd */ 3166 if (icsk->icsk_ca_state < TCP_CA_CWR && 3167 icsk->icsk_mtup.probe_size && 3168 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3169 tcp_mtup_probe_failed(sk); 3170 /* Restores the reduction we did in tcp_mtup_probe() */ 3171 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3172 tcp_simple_retransmit(sk); 3173 return; 3174 } 3175 3176 /* Otherwise enter Recovery state */ 3177 tcp_enter_recovery(sk, ece_ack); 3178 fast_rexmit = 1; 3179 } 3180 3181 if (!tcp_is_rack(sk) && do_lost) 3182 tcp_update_scoreboard(sk, fast_rexmit); 3183 *rexmit = REXMIT_LOST; 3184 } 3185 3186 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3187 { 3188 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3189 struct tcp_sock *tp = tcp_sk(sk); 3190 3191 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3192 /* If the remote keeps returning delayed ACKs, eventually 3193 * the min filter would pick it up and overestimate the 3194 * prop. delay when it expires. Skip suspected delayed ACKs. 3195 */ 3196 return; 3197 } 3198 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3199 rtt_us ? : jiffies_to_usecs(1)); 3200 } 3201 3202 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3203 long seq_rtt_us, long sack_rtt_us, 3204 long ca_rtt_us, struct rate_sample *rs) 3205 { 3206 const struct tcp_sock *tp = tcp_sk(sk); 3207 3208 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3209 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3210 * Karn's algorithm forbids taking RTT if some retransmitted data 3211 * is acked (RFC6298). 3212 */ 3213 if (seq_rtt_us < 0) 3214 seq_rtt_us = sack_rtt_us; 3215 3216 /* RTTM Rule: A TSecr value received in a segment is used to 3217 * update the averaged RTT measurement only if the segment 3218 * acknowledges some new data, i.e., only if it advances the 3219 * left edge of the send window. 3220 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3221 */ 3222 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && 3223 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) 3224 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp, 1); 3225 3226 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3227 if (seq_rtt_us < 0) 3228 return false; 3229 3230 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3231 * always taken together with ACK, SACK, or TS-opts. Any negative 3232 * values will be skipped with the seq_rtt_us < 0 check above. 3233 */ 3234 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3235 tcp_rtt_estimator(sk, seq_rtt_us); 3236 tcp_set_rto(sk); 3237 3238 /* RFC6298: only reset backoff on valid RTT measurement. */ 3239 inet_csk(sk)->icsk_backoff = 0; 3240 return true; 3241 } 3242 3243 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3244 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3245 { 3246 struct rate_sample rs; 3247 long rtt_us = -1L; 3248 3249 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3250 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3251 3252 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3253 } 3254 3255 3256 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3257 { 3258 const struct inet_connection_sock *icsk = inet_csk(sk); 3259 3260 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3261 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3262 } 3263 3264 /* Restart timer after forward progress on connection. 3265 * RFC2988 recommends to restart timer to now+rto. 3266 */ 3267 void tcp_rearm_rto(struct sock *sk) 3268 { 3269 const struct inet_connection_sock *icsk = inet_csk(sk); 3270 struct tcp_sock *tp = tcp_sk(sk); 3271 3272 /* If the retrans timer is currently being used by Fast Open 3273 * for SYN-ACK retrans purpose, stay put. 3274 */ 3275 if (rcu_access_pointer(tp->fastopen_rsk)) 3276 return; 3277 3278 if (!tp->packets_out) { 3279 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3280 } else { 3281 u32 rto = inet_csk(sk)->icsk_rto; 3282 /* Offset the time elapsed after installing regular RTO */ 3283 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3284 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3285 s64 delta_us = tcp_rto_delta_us(sk); 3286 /* delta_us may not be positive if the socket is locked 3287 * when the retrans timer fires and is rescheduled. 3288 */ 3289 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3290 } 3291 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true); 3292 } 3293 } 3294 3295 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3296 static void tcp_set_xmit_timer(struct sock *sk) 3297 { 3298 if (!tcp_schedule_loss_probe(sk, true)) 3299 tcp_rearm_rto(sk); 3300 } 3301 3302 /* If we get here, the whole TSO packet has not been acked. */ 3303 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3304 { 3305 struct tcp_sock *tp = tcp_sk(sk); 3306 u32 packets_acked; 3307 3308 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3309 3310 packets_acked = tcp_skb_pcount(skb); 3311 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3312 return 0; 3313 packets_acked -= tcp_skb_pcount(skb); 3314 3315 if (packets_acked) { 3316 BUG_ON(tcp_skb_pcount(skb) == 0); 3317 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3318 } 3319 3320 return packets_acked; 3321 } 3322 3323 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3324 const struct sk_buff *ack_skb, u32 prior_snd_una) 3325 { 3326 const struct skb_shared_info *shinfo; 3327 3328 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3329 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3330 return; 3331 3332 shinfo = skb_shinfo(skb); 3333 if (!before(shinfo->tskey, prior_snd_una) && 3334 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3335 tcp_skb_tsorted_save(skb) { 3336 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3337 } tcp_skb_tsorted_restore(skb); 3338 } 3339 } 3340 3341 /* Remove acknowledged frames from the retransmission queue. If our packet 3342 * is before the ack sequence we can discard it as it's confirmed to have 3343 * arrived at the other end. 3344 */ 3345 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3346 u32 prior_fack, u32 prior_snd_una, 3347 struct tcp_sacktag_state *sack, bool ece_ack) 3348 { 3349 const struct inet_connection_sock *icsk = inet_csk(sk); 3350 u64 first_ackt, last_ackt; 3351 struct tcp_sock *tp = tcp_sk(sk); 3352 u32 prior_sacked = tp->sacked_out; 3353 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3354 struct sk_buff *skb, *next; 3355 bool fully_acked = true; 3356 long sack_rtt_us = -1L; 3357 long seq_rtt_us = -1L; 3358 long ca_rtt_us = -1L; 3359 u32 pkts_acked = 0; 3360 bool rtt_update; 3361 int flag = 0; 3362 3363 first_ackt = 0; 3364 3365 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3366 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3367 const u32 start_seq = scb->seq; 3368 u8 sacked = scb->sacked; 3369 u32 acked_pcount; 3370 3371 /* Determine how many packets and what bytes were acked, tso and else */ 3372 if (after(scb->end_seq, tp->snd_una)) { 3373 if (tcp_skb_pcount(skb) == 1 || 3374 !after(tp->snd_una, scb->seq)) 3375 break; 3376 3377 acked_pcount = tcp_tso_acked(sk, skb); 3378 if (!acked_pcount) 3379 break; 3380 fully_acked = false; 3381 } else { 3382 acked_pcount = tcp_skb_pcount(skb); 3383 } 3384 3385 if (unlikely(sacked & TCPCB_RETRANS)) { 3386 if (sacked & TCPCB_SACKED_RETRANS) 3387 tp->retrans_out -= acked_pcount; 3388 flag |= FLAG_RETRANS_DATA_ACKED; 3389 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3390 last_ackt = tcp_skb_timestamp_us(skb); 3391 WARN_ON_ONCE(last_ackt == 0); 3392 if (!first_ackt) 3393 first_ackt = last_ackt; 3394 3395 if (before(start_seq, reord)) 3396 reord = start_seq; 3397 if (!after(scb->end_seq, tp->high_seq)) 3398 flag |= FLAG_ORIG_SACK_ACKED; 3399 } 3400 3401 if (sacked & TCPCB_SACKED_ACKED) { 3402 tp->sacked_out -= acked_pcount; 3403 } else if (tcp_is_sack(tp)) { 3404 tcp_count_delivered(tp, acked_pcount, ece_ack); 3405 if (!tcp_skb_spurious_retrans(tp, skb)) 3406 tcp_rack_advance(tp, sacked, scb->end_seq, 3407 tcp_skb_timestamp_us(skb)); 3408 } 3409 if (sacked & TCPCB_LOST) 3410 tp->lost_out -= acked_pcount; 3411 3412 tp->packets_out -= acked_pcount; 3413 pkts_acked += acked_pcount; 3414 tcp_rate_skb_delivered(sk, skb, sack->rate); 3415 3416 /* Initial outgoing SYN's get put onto the write_queue 3417 * just like anything else we transmit. It is not 3418 * true data, and if we misinform our callers that 3419 * this ACK acks real data, we will erroneously exit 3420 * connection startup slow start one packet too 3421 * quickly. This is severely frowned upon behavior. 3422 */ 3423 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3424 flag |= FLAG_DATA_ACKED; 3425 } else { 3426 flag |= FLAG_SYN_ACKED; 3427 tp->retrans_stamp = 0; 3428 } 3429 3430 if (!fully_acked) 3431 break; 3432 3433 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3434 3435 next = skb_rb_next(skb); 3436 if (unlikely(skb == tp->retransmit_skb_hint)) 3437 tp->retransmit_skb_hint = NULL; 3438 if (unlikely(skb == tp->lost_skb_hint)) 3439 tp->lost_skb_hint = NULL; 3440 tcp_highest_sack_replace(sk, skb, next); 3441 tcp_rtx_queue_unlink_and_free(skb, sk); 3442 } 3443 3444 if (!skb) 3445 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3446 3447 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3448 tp->snd_up = tp->snd_una; 3449 3450 if (skb) { 3451 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3452 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3453 flag |= FLAG_SACK_RENEGING; 3454 } 3455 3456 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3457 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3458 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3459 3460 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3461 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3462 sack->rate->prior_delivered + 1 == tp->delivered && 3463 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3464 /* Conservatively mark a delayed ACK. It's typically 3465 * from a lone runt packet over the round trip to 3466 * a receiver w/o out-of-order or CE events. 3467 */ 3468 flag |= FLAG_ACK_MAYBE_DELAYED; 3469 } 3470 } 3471 if (sack->first_sackt) { 3472 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3473 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3474 } 3475 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3476 ca_rtt_us, sack->rate); 3477 3478 if (flag & FLAG_ACKED) { 3479 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3480 if (unlikely(icsk->icsk_mtup.probe_size && 3481 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3482 tcp_mtup_probe_success(sk); 3483 } 3484 3485 if (tcp_is_reno(tp)) { 3486 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3487 3488 /* If any of the cumulatively ACKed segments was 3489 * retransmitted, non-SACK case cannot confirm that 3490 * progress was due to original transmission due to 3491 * lack of TCPCB_SACKED_ACKED bits even if some of 3492 * the packets may have been never retransmitted. 3493 */ 3494 if (flag & FLAG_RETRANS_DATA_ACKED) 3495 flag &= ~FLAG_ORIG_SACK_ACKED; 3496 } else { 3497 int delta; 3498 3499 /* Non-retransmitted hole got filled? That's reordering */ 3500 if (before(reord, prior_fack)) 3501 tcp_check_sack_reordering(sk, reord, 0); 3502 3503 delta = prior_sacked - tp->sacked_out; 3504 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3505 } 3506 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3507 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3508 tcp_skb_timestamp_us(skb))) { 3509 /* Do not re-arm RTO if the sack RTT is measured from data sent 3510 * after when the head was last (re)transmitted. Otherwise the 3511 * timeout may continue to extend in loss recovery. 3512 */ 3513 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3514 } 3515 3516 if (icsk->icsk_ca_ops->pkts_acked) { 3517 struct ack_sample sample = { .pkts_acked = pkts_acked, 3518 .rtt_us = sack->rate->rtt_us }; 3519 3520 sample.in_flight = tp->mss_cache * 3521 (tp->delivered - sack->rate->prior_delivered); 3522 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3523 } 3524 3525 #if FASTRETRANS_DEBUG > 0 3526 WARN_ON((int)tp->sacked_out < 0); 3527 WARN_ON((int)tp->lost_out < 0); 3528 WARN_ON((int)tp->retrans_out < 0); 3529 if (!tp->packets_out && tcp_is_sack(tp)) { 3530 icsk = inet_csk(sk); 3531 if (tp->lost_out) { 3532 pr_debug("Leak l=%u %d\n", 3533 tp->lost_out, icsk->icsk_ca_state); 3534 tp->lost_out = 0; 3535 } 3536 if (tp->sacked_out) { 3537 pr_debug("Leak s=%u %d\n", 3538 tp->sacked_out, icsk->icsk_ca_state); 3539 tp->sacked_out = 0; 3540 } 3541 if (tp->retrans_out) { 3542 pr_debug("Leak r=%u %d\n", 3543 tp->retrans_out, icsk->icsk_ca_state); 3544 tp->retrans_out = 0; 3545 } 3546 } 3547 #endif 3548 return flag; 3549 } 3550 3551 static void tcp_ack_probe(struct sock *sk) 3552 { 3553 struct inet_connection_sock *icsk = inet_csk(sk); 3554 struct sk_buff *head = tcp_send_head(sk); 3555 const struct tcp_sock *tp = tcp_sk(sk); 3556 3557 /* Was it a usable window open? */ 3558 if (!head) 3559 return; 3560 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3561 icsk->icsk_backoff = 0; 3562 icsk->icsk_probes_tstamp = 0; 3563 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3564 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3565 * This function is not for random using! 3566 */ 3567 } else { 3568 unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk)); 3569 3570 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3571 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true); 3572 } 3573 } 3574 3575 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3576 { 3577 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3578 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3579 } 3580 3581 /* Decide wheather to run the increase function of congestion control. */ 3582 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3583 { 3584 /* If reordering is high then always grow cwnd whenever data is 3585 * delivered regardless of its ordering. Otherwise stay conservative 3586 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3587 * new SACK or ECE mark may first advance cwnd here and later reduce 3588 * cwnd in tcp_fastretrans_alert() based on more states. 3589 */ 3590 if (tcp_sk(sk)->reordering > 3591 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3592 return flag & FLAG_FORWARD_PROGRESS; 3593 3594 return flag & FLAG_DATA_ACKED; 3595 } 3596 3597 /* The "ultimate" congestion control function that aims to replace the rigid 3598 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3599 * It's called toward the end of processing an ACK with precise rate 3600 * information. All transmission or retransmission are delayed afterwards. 3601 */ 3602 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3603 int flag, const struct rate_sample *rs) 3604 { 3605 const struct inet_connection_sock *icsk = inet_csk(sk); 3606 3607 if (icsk->icsk_ca_ops->cong_control) { 3608 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs); 3609 return; 3610 } 3611 3612 if (tcp_in_cwnd_reduction(sk)) { 3613 /* Reduce cwnd if state mandates */ 3614 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3615 } else if (tcp_may_raise_cwnd(sk, flag)) { 3616 /* Advance cwnd if state allows */ 3617 tcp_cong_avoid(sk, ack, acked_sacked); 3618 } 3619 tcp_update_pacing_rate(sk); 3620 } 3621 3622 /* Check that window update is acceptable. 3623 * The function assumes that snd_una<=ack<=snd_next. 3624 */ 3625 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3626 const u32 ack, const u32 ack_seq, 3627 const u32 nwin) 3628 { 3629 return after(ack, tp->snd_una) || 3630 after(ack_seq, tp->snd_wl1) || 3631 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3632 } 3633 3634 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack) 3635 { 3636 #ifdef CONFIG_TCP_AO 3637 struct tcp_ao_info *ao; 3638 3639 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3640 return; 3641 3642 ao = rcu_dereference_protected(tp->ao_info, 3643 lockdep_sock_is_held((struct sock *)tp)); 3644 if (ao && ack < tp->snd_una) { 3645 ao->snd_sne++; 3646 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne); 3647 } 3648 #endif 3649 } 3650 3651 /* If we update tp->snd_una, also update tp->bytes_acked */ 3652 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3653 { 3654 u32 delta = ack - tp->snd_una; 3655 3656 sock_owned_by_me((struct sock *)tp); 3657 tp->bytes_acked += delta; 3658 tcp_snd_sne_update(tp, ack); 3659 tp->snd_una = ack; 3660 } 3661 3662 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq) 3663 { 3664 #ifdef CONFIG_TCP_AO 3665 struct tcp_ao_info *ao; 3666 3667 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3668 return; 3669 3670 ao = rcu_dereference_protected(tp->ao_info, 3671 lockdep_sock_is_held((struct sock *)tp)); 3672 if (ao && seq < tp->rcv_nxt) { 3673 ao->rcv_sne++; 3674 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne); 3675 } 3676 #endif 3677 } 3678 3679 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3680 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3681 { 3682 u32 delta = seq - tp->rcv_nxt; 3683 3684 sock_owned_by_me((struct sock *)tp); 3685 tp->bytes_received += delta; 3686 tcp_rcv_sne_update(tp, seq); 3687 WRITE_ONCE(tp->rcv_nxt, seq); 3688 } 3689 3690 /* Update our send window. 3691 * 3692 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3693 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3694 */ 3695 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3696 u32 ack_seq) 3697 { 3698 struct tcp_sock *tp = tcp_sk(sk); 3699 int flag = 0; 3700 u32 nwin = ntohs(tcp_hdr(skb)->window); 3701 3702 if (likely(!tcp_hdr(skb)->syn)) 3703 nwin <<= tp->rx_opt.snd_wscale; 3704 3705 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3706 flag |= FLAG_WIN_UPDATE; 3707 tcp_update_wl(tp, ack_seq); 3708 3709 if (tp->snd_wnd != nwin) { 3710 tp->snd_wnd = nwin; 3711 3712 /* Note, it is the only place, where 3713 * fast path is recovered for sending TCP. 3714 */ 3715 tp->pred_flags = 0; 3716 tcp_fast_path_check(sk); 3717 3718 if (!tcp_write_queue_empty(sk)) 3719 tcp_slow_start_after_idle_check(sk); 3720 3721 if (nwin > tp->max_window) { 3722 tp->max_window = nwin; 3723 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3724 } 3725 } 3726 } 3727 3728 tcp_snd_una_update(tp, ack); 3729 3730 return flag; 3731 } 3732 3733 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3734 u32 *last_oow_ack_time) 3735 { 3736 /* Paired with the WRITE_ONCE() in this function. */ 3737 u32 val = READ_ONCE(*last_oow_ack_time); 3738 3739 if (val) { 3740 s32 elapsed = (s32)(tcp_jiffies32 - val); 3741 3742 if (0 <= elapsed && 3743 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3744 NET_INC_STATS(net, mib_idx); 3745 return true; /* rate-limited: don't send yet! */ 3746 } 3747 } 3748 3749 /* Paired with the prior READ_ONCE() and with itself, 3750 * as we might be lockless. 3751 */ 3752 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3753 3754 return false; /* not rate-limited: go ahead, send dupack now! */ 3755 } 3756 3757 /* Return true if we're currently rate-limiting out-of-window ACKs and 3758 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3759 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3760 * attacks that send repeated SYNs or ACKs for the same connection. To 3761 * do this, we do not send a duplicate SYNACK or ACK if the remote 3762 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3763 */ 3764 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3765 int mib_idx, u32 *last_oow_ack_time) 3766 { 3767 /* Data packets without SYNs are not likely part of an ACK loop. */ 3768 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3769 !tcp_hdr(skb)->syn) 3770 return false; 3771 3772 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3773 } 3774 3775 /* RFC 5961 7 [ACK Throttling] */ 3776 static void tcp_send_challenge_ack(struct sock *sk) 3777 { 3778 struct tcp_sock *tp = tcp_sk(sk); 3779 struct net *net = sock_net(sk); 3780 u32 count, now, ack_limit; 3781 3782 /* First check our per-socket dupack rate limit. */ 3783 if (__tcp_oow_rate_limited(net, 3784 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3785 &tp->last_oow_ack_time)) 3786 return; 3787 3788 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3789 if (ack_limit == INT_MAX) 3790 goto send_ack; 3791 3792 /* Then check host-wide RFC 5961 rate limit. */ 3793 now = jiffies / HZ; 3794 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3795 u32 half = (ack_limit + 1) >> 1; 3796 3797 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3798 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3799 get_random_u32_inclusive(half, ack_limit + half - 1)); 3800 } 3801 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3802 if (count > 0) { 3803 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3804 send_ack: 3805 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3806 tcp_send_ack(sk); 3807 } 3808 } 3809 3810 static void tcp_store_ts_recent(struct tcp_sock *tp) 3811 { 3812 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3813 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3814 } 3815 3816 static int __tcp_replace_ts_recent(struct tcp_sock *tp, s32 tstamp_delta) 3817 { 3818 tcp_store_ts_recent(tp); 3819 return tstamp_delta > 0 ? FLAG_TS_PROGRESS : 0; 3820 } 3821 3822 static int tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3823 { 3824 s32 delta; 3825 3826 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3827 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3828 * extra check below makes sure this can only happen 3829 * for pure ACK frames. -DaveM 3830 * 3831 * Not only, also it occurs for expired timestamps. 3832 */ 3833 3834 if (tcp_paws_check(&tp->rx_opt, 0)) { 3835 delta = tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent; 3836 return __tcp_replace_ts_recent(tp, delta); 3837 } 3838 } 3839 3840 return 0; 3841 } 3842 3843 /* This routine deals with acks during a TLP episode and ends an episode by 3844 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3845 */ 3846 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3847 { 3848 struct tcp_sock *tp = tcp_sk(sk); 3849 3850 if (before(ack, tp->tlp_high_seq)) 3851 return; 3852 3853 if (!tp->tlp_retrans) { 3854 /* TLP of new data has been acknowledged */ 3855 tp->tlp_high_seq = 0; 3856 } else if (flag & FLAG_DSACK_TLP) { 3857 /* This DSACK means original and TLP probe arrived; no loss */ 3858 tp->tlp_high_seq = 0; 3859 } else if (after(ack, tp->tlp_high_seq)) { 3860 /* ACK advances: there was a loss, so reduce cwnd. Reset 3861 * tlp_high_seq in tcp_init_cwnd_reduction() 3862 */ 3863 tcp_init_cwnd_reduction(sk); 3864 tcp_set_ca_state(sk, TCP_CA_CWR); 3865 tcp_end_cwnd_reduction(sk); 3866 tcp_try_keep_open(sk); 3867 NET_INC_STATS(sock_net(sk), 3868 LINUX_MIB_TCPLOSSPROBERECOVERY); 3869 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3870 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3871 /* Pure dupack: original and TLP probe arrived; no loss */ 3872 tp->tlp_high_seq = 0; 3873 } 3874 } 3875 3876 static void tcp_in_ack_event(struct sock *sk, int flag) 3877 { 3878 const struct inet_connection_sock *icsk = inet_csk(sk); 3879 3880 if (icsk->icsk_ca_ops->in_ack_event) { 3881 u32 ack_ev_flags = 0; 3882 3883 if (flag & FLAG_WIN_UPDATE) 3884 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3885 if (flag & FLAG_SLOWPATH) { 3886 ack_ev_flags |= CA_ACK_SLOWPATH; 3887 if (flag & FLAG_ECE) 3888 ack_ev_flags |= CA_ACK_ECE; 3889 } 3890 3891 icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags); 3892 } 3893 } 3894 3895 /* Congestion control has updated the cwnd already. So if we're in 3896 * loss recovery then now we do any new sends (for FRTO) or 3897 * retransmits (for CA_Loss or CA_recovery) that make sense. 3898 */ 3899 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3900 { 3901 struct tcp_sock *tp = tcp_sk(sk); 3902 3903 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3904 return; 3905 3906 if (unlikely(rexmit == REXMIT_NEW)) { 3907 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3908 TCP_NAGLE_OFF); 3909 if (after(tp->snd_nxt, tp->high_seq)) 3910 return; 3911 tp->frto = 0; 3912 } 3913 tcp_xmit_retransmit_queue(sk); 3914 } 3915 3916 /* Returns the number of packets newly acked or sacked by the current ACK */ 3917 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3918 { 3919 const struct net *net = sock_net(sk); 3920 struct tcp_sock *tp = tcp_sk(sk); 3921 u32 delivered; 3922 3923 delivered = tp->delivered - prior_delivered; 3924 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3925 if (flag & FLAG_ECE) 3926 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3927 3928 return delivered; 3929 } 3930 3931 /* This routine deals with incoming acks, but not outgoing ones. */ 3932 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3933 { 3934 struct inet_connection_sock *icsk = inet_csk(sk); 3935 struct tcp_sock *tp = tcp_sk(sk); 3936 struct tcp_sacktag_state sack_state; 3937 struct rate_sample rs = { .prior_delivered = 0 }; 3938 u32 prior_snd_una = tp->snd_una; 3939 bool is_sack_reneg = tp->is_sack_reneg; 3940 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3941 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3942 int num_dupack = 0; 3943 int prior_packets = tp->packets_out; 3944 u32 delivered = tp->delivered; 3945 u32 lost = tp->lost; 3946 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3947 u32 prior_fack; 3948 3949 sack_state.first_sackt = 0; 3950 sack_state.rate = &rs; 3951 sack_state.sack_delivered = 0; 3952 3953 /* We very likely will need to access rtx queue. */ 3954 prefetch(sk->tcp_rtx_queue.rb_node); 3955 3956 /* If the ack is older than previous acks 3957 * then we can probably ignore it. 3958 */ 3959 if (before(ack, prior_snd_una)) { 3960 u32 max_window; 3961 3962 /* do not accept ACK for bytes we never sent. */ 3963 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3964 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3965 if (before(ack, prior_snd_una - max_window)) { 3966 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3967 tcp_send_challenge_ack(sk); 3968 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3969 } 3970 goto old_ack; 3971 } 3972 3973 /* If the ack includes data we haven't sent yet, discard 3974 * this segment (RFC793 Section 3.9). 3975 */ 3976 if (after(ack, tp->snd_nxt)) 3977 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3978 3979 if (after(ack, prior_snd_una)) { 3980 flag |= FLAG_SND_UNA_ADVANCED; 3981 icsk->icsk_retransmits = 0; 3982 3983 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3984 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3985 if (tp->tcp_clean_acked) 3986 tp->tcp_clean_acked(sk, ack); 3987 #endif 3988 } 3989 3990 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3991 rs.prior_in_flight = tcp_packets_in_flight(tp); 3992 3993 /* ts_recent update must be made after we are sure that the packet 3994 * is in window. 3995 */ 3996 if (flag & FLAG_UPDATE_TS_RECENT) 3997 flag |= tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3998 3999 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 4000 FLAG_SND_UNA_ADVANCED) { 4001 /* Window is constant, pure forward advance. 4002 * No more checks are required. 4003 * Note, we use the fact that SND.UNA>=SND.WL2. 4004 */ 4005 tcp_update_wl(tp, ack_seq); 4006 tcp_snd_una_update(tp, ack); 4007 flag |= FLAG_WIN_UPDATE; 4008 4009 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 4010 } else { 4011 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 4012 flag |= FLAG_DATA; 4013 else 4014 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 4015 4016 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 4017 4018 if (TCP_SKB_CB(skb)->sacked) 4019 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4020 &sack_state); 4021 4022 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) 4023 flag |= FLAG_ECE; 4024 4025 if (sack_state.sack_delivered) 4026 tcp_count_delivered(tp, sack_state.sack_delivered, 4027 flag & FLAG_ECE); 4028 } 4029 4030 /* This is a deviation from RFC3168 since it states that: 4031 * "When the TCP data sender is ready to set the CWR bit after reducing 4032 * the congestion window, it SHOULD set the CWR bit only on the first 4033 * new data packet that it transmits." 4034 * We accept CWR on pure ACKs to be more robust 4035 * with widely-deployed TCP implementations that do this. 4036 */ 4037 tcp_ecn_accept_cwr(sk, skb); 4038 4039 /* We passed data and got it acked, remove any soft error 4040 * log. Something worked... 4041 */ 4042 WRITE_ONCE(sk->sk_err_soft, 0); 4043 icsk->icsk_probes_out = 0; 4044 tp->rcv_tstamp = tcp_jiffies32; 4045 if (!prior_packets) 4046 goto no_queue; 4047 4048 /* See if we can take anything off of the retransmit queue. */ 4049 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 4050 &sack_state, flag & FLAG_ECE); 4051 4052 tcp_rack_update_reo_wnd(sk, &rs); 4053 4054 tcp_in_ack_event(sk, flag); 4055 4056 if (tp->tlp_high_seq) 4057 tcp_process_tlp_ack(sk, ack, flag); 4058 4059 if (tcp_ack_is_dubious(sk, flag)) { 4060 if (!(flag & (FLAG_SND_UNA_ADVANCED | 4061 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 4062 num_dupack = 1; 4063 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 4064 if (!(flag & FLAG_DATA)) 4065 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4066 } 4067 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4068 &rexmit); 4069 } 4070 4071 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 4072 if (flag & FLAG_SET_XMIT_TIMER) 4073 tcp_set_xmit_timer(sk); 4074 4075 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 4076 sk_dst_confirm(sk); 4077 4078 delivered = tcp_newly_delivered(sk, delivered, flag); 4079 lost = tp->lost - lost; /* freshly marked lost */ 4080 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 4081 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 4082 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 4083 tcp_xmit_recovery(sk, rexmit); 4084 return 1; 4085 4086 no_queue: 4087 tcp_in_ack_event(sk, flag); 4088 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 4089 if (flag & FLAG_DSACKING_ACK) { 4090 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4091 &rexmit); 4092 tcp_newly_delivered(sk, delivered, flag); 4093 } 4094 /* If this ack opens up a zero window, clear backoff. It was 4095 * being used to time the probes, and is probably far higher than 4096 * it needs to be for normal retransmission. 4097 */ 4098 tcp_ack_probe(sk); 4099 4100 if (tp->tlp_high_seq) 4101 tcp_process_tlp_ack(sk, ack, flag); 4102 return 1; 4103 4104 old_ack: 4105 /* If data was SACKed, tag it and see if we should send more data. 4106 * If data was DSACKed, see if we can undo a cwnd reduction. 4107 */ 4108 if (TCP_SKB_CB(skb)->sacked) { 4109 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4110 &sack_state); 4111 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4112 &rexmit); 4113 tcp_newly_delivered(sk, delivered, flag); 4114 tcp_xmit_recovery(sk, rexmit); 4115 } 4116 4117 return 0; 4118 } 4119 4120 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4121 bool syn, struct tcp_fastopen_cookie *foc, 4122 bool exp_opt) 4123 { 4124 /* Valid only in SYN or SYN-ACK with an even length. */ 4125 if (!foc || !syn || len < 0 || (len & 1)) 4126 return; 4127 4128 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4129 len <= TCP_FASTOPEN_COOKIE_MAX) 4130 memcpy(foc->val, cookie, len); 4131 else if (len != 0) 4132 len = -1; 4133 foc->len = len; 4134 foc->exp = exp_opt; 4135 } 4136 4137 static bool smc_parse_options(const struct tcphdr *th, 4138 struct tcp_options_received *opt_rx, 4139 const unsigned char *ptr, 4140 int opsize) 4141 { 4142 #if IS_ENABLED(CONFIG_SMC) 4143 if (static_branch_unlikely(&tcp_have_smc)) { 4144 if (th->syn && !(opsize & 1) && 4145 opsize >= TCPOLEN_EXP_SMC_BASE && 4146 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4147 opt_rx->smc_ok = 1; 4148 return true; 4149 } 4150 } 4151 #endif 4152 return false; 4153 } 4154 4155 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4156 * value on success. 4157 */ 4158 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4159 { 4160 const unsigned char *ptr = (const unsigned char *)(th + 1); 4161 int length = (th->doff * 4) - sizeof(struct tcphdr); 4162 u16 mss = 0; 4163 4164 while (length > 0) { 4165 int opcode = *ptr++; 4166 int opsize; 4167 4168 switch (opcode) { 4169 case TCPOPT_EOL: 4170 return mss; 4171 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4172 length--; 4173 continue; 4174 default: 4175 if (length < 2) 4176 return mss; 4177 opsize = *ptr++; 4178 if (opsize < 2) /* "silly options" */ 4179 return mss; 4180 if (opsize > length) 4181 return mss; /* fail on partial options */ 4182 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4183 u16 in_mss = get_unaligned_be16(ptr); 4184 4185 if (in_mss) { 4186 if (user_mss && user_mss < in_mss) 4187 in_mss = user_mss; 4188 mss = in_mss; 4189 } 4190 } 4191 ptr += opsize - 2; 4192 length -= opsize; 4193 } 4194 } 4195 return mss; 4196 } 4197 4198 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4199 * But, this can also be called on packets in the established flow when 4200 * the fast version below fails. 4201 */ 4202 void tcp_parse_options(const struct net *net, 4203 const struct sk_buff *skb, 4204 struct tcp_options_received *opt_rx, int estab, 4205 struct tcp_fastopen_cookie *foc) 4206 { 4207 const unsigned char *ptr; 4208 const struct tcphdr *th = tcp_hdr(skb); 4209 int length = (th->doff * 4) - sizeof(struct tcphdr); 4210 4211 ptr = (const unsigned char *)(th + 1); 4212 opt_rx->saw_tstamp = 0; 4213 opt_rx->saw_unknown = 0; 4214 4215 while (length > 0) { 4216 int opcode = *ptr++; 4217 int opsize; 4218 4219 switch (opcode) { 4220 case TCPOPT_EOL: 4221 return; 4222 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4223 length--; 4224 continue; 4225 default: 4226 if (length < 2) 4227 return; 4228 opsize = *ptr++; 4229 if (opsize < 2) /* "silly options" */ 4230 return; 4231 if (opsize > length) 4232 return; /* don't parse partial options */ 4233 switch (opcode) { 4234 case TCPOPT_MSS: 4235 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4236 u16 in_mss = get_unaligned_be16(ptr); 4237 if (in_mss) { 4238 if (opt_rx->user_mss && 4239 opt_rx->user_mss < in_mss) 4240 in_mss = opt_rx->user_mss; 4241 opt_rx->mss_clamp = in_mss; 4242 } 4243 } 4244 break; 4245 case TCPOPT_WINDOW: 4246 if (opsize == TCPOLEN_WINDOW && th->syn && 4247 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4248 __u8 snd_wscale = *(__u8 *)ptr; 4249 opt_rx->wscale_ok = 1; 4250 if (snd_wscale > TCP_MAX_WSCALE) { 4251 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4252 __func__, 4253 snd_wscale, 4254 TCP_MAX_WSCALE); 4255 snd_wscale = TCP_MAX_WSCALE; 4256 } 4257 opt_rx->snd_wscale = snd_wscale; 4258 } 4259 break; 4260 case TCPOPT_TIMESTAMP: 4261 if ((opsize == TCPOLEN_TIMESTAMP) && 4262 ((estab && opt_rx->tstamp_ok) || 4263 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4264 opt_rx->saw_tstamp = 1; 4265 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4266 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4267 } 4268 break; 4269 case TCPOPT_SACK_PERM: 4270 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4271 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4272 opt_rx->sack_ok = TCP_SACK_SEEN; 4273 tcp_sack_reset(opt_rx); 4274 } 4275 break; 4276 4277 case TCPOPT_SACK: 4278 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4279 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4280 opt_rx->sack_ok) { 4281 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4282 } 4283 break; 4284 #ifdef CONFIG_TCP_MD5SIG 4285 case TCPOPT_MD5SIG: 4286 /* The MD5 Hash has already been 4287 * checked (see tcp_v{4,6}_rcv()). 4288 */ 4289 break; 4290 #endif 4291 #ifdef CONFIG_TCP_AO 4292 case TCPOPT_AO: 4293 /* TCP AO has already been checked 4294 * (see tcp_inbound_ao_hash()). 4295 */ 4296 break; 4297 #endif 4298 case TCPOPT_FASTOPEN: 4299 tcp_parse_fastopen_option( 4300 opsize - TCPOLEN_FASTOPEN_BASE, 4301 ptr, th->syn, foc, false); 4302 break; 4303 4304 case TCPOPT_EXP: 4305 /* Fast Open option shares code 254 using a 4306 * 16 bits magic number. 4307 */ 4308 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4309 get_unaligned_be16(ptr) == 4310 TCPOPT_FASTOPEN_MAGIC) { 4311 tcp_parse_fastopen_option(opsize - 4312 TCPOLEN_EXP_FASTOPEN_BASE, 4313 ptr + 2, th->syn, foc, true); 4314 break; 4315 } 4316 4317 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4318 break; 4319 4320 opt_rx->saw_unknown = 1; 4321 break; 4322 4323 default: 4324 opt_rx->saw_unknown = 1; 4325 } 4326 ptr += opsize-2; 4327 length -= opsize; 4328 } 4329 } 4330 } 4331 EXPORT_SYMBOL(tcp_parse_options); 4332 4333 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4334 { 4335 const __be32 *ptr = (const __be32 *)(th + 1); 4336 4337 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4338 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4339 tp->rx_opt.saw_tstamp = 1; 4340 ++ptr; 4341 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4342 ++ptr; 4343 if (*ptr) 4344 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4345 else 4346 tp->rx_opt.rcv_tsecr = 0; 4347 return true; 4348 } 4349 return false; 4350 } 4351 4352 /* Fast parse options. This hopes to only see timestamps. 4353 * If it is wrong it falls back on tcp_parse_options(). 4354 */ 4355 static bool tcp_fast_parse_options(const struct net *net, 4356 const struct sk_buff *skb, 4357 const struct tcphdr *th, struct tcp_sock *tp) 4358 { 4359 /* In the spirit of fast parsing, compare doff directly to constant 4360 * values. Because equality is used, short doff can be ignored here. 4361 */ 4362 if (th->doff == (sizeof(*th) / 4)) { 4363 tp->rx_opt.saw_tstamp = 0; 4364 return false; 4365 } else if (tp->rx_opt.tstamp_ok && 4366 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4367 if (tcp_parse_aligned_timestamp(tp, th)) 4368 return true; 4369 } 4370 4371 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4372 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4373 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4374 4375 return true; 4376 } 4377 4378 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4379 /* 4380 * Parse Signature options 4381 */ 4382 int tcp_do_parse_auth_options(const struct tcphdr *th, 4383 const u8 **md5_hash, const u8 **ao_hash) 4384 { 4385 int length = (th->doff << 2) - sizeof(*th); 4386 const u8 *ptr = (const u8 *)(th + 1); 4387 unsigned int minlen = TCPOLEN_MD5SIG; 4388 4389 if (IS_ENABLED(CONFIG_TCP_AO)) 4390 minlen = sizeof(struct tcp_ao_hdr) + 1; 4391 4392 *md5_hash = NULL; 4393 *ao_hash = NULL; 4394 4395 /* If not enough data remaining, we can short cut */ 4396 while (length >= minlen) { 4397 int opcode = *ptr++; 4398 int opsize; 4399 4400 switch (opcode) { 4401 case TCPOPT_EOL: 4402 return 0; 4403 case TCPOPT_NOP: 4404 length--; 4405 continue; 4406 default: 4407 opsize = *ptr++; 4408 if (opsize < 2 || opsize > length) 4409 return -EINVAL; 4410 if (opcode == TCPOPT_MD5SIG) { 4411 if (opsize != TCPOLEN_MD5SIG) 4412 return -EINVAL; 4413 if (unlikely(*md5_hash || *ao_hash)) 4414 return -EEXIST; 4415 *md5_hash = ptr; 4416 } else if (opcode == TCPOPT_AO) { 4417 if (opsize <= sizeof(struct tcp_ao_hdr)) 4418 return -EINVAL; 4419 if (unlikely(*md5_hash || *ao_hash)) 4420 return -EEXIST; 4421 *ao_hash = ptr; 4422 } 4423 } 4424 ptr += opsize - 2; 4425 length -= opsize; 4426 } 4427 return 0; 4428 } 4429 EXPORT_SYMBOL(tcp_do_parse_auth_options); 4430 #endif 4431 4432 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4433 * 4434 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4435 * it can pass through stack. So, the following predicate verifies that 4436 * this segment is not used for anything but congestion avoidance or 4437 * fast retransmit. Moreover, we even are able to eliminate most of such 4438 * second order effects, if we apply some small "replay" window (~RTO) 4439 * to timestamp space. 4440 * 4441 * All these measures still do not guarantee that we reject wrapped ACKs 4442 * on networks with high bandwidth, when sequence space is recycled fastly, 4443 * but it guarantees that such events will be very rare and do not affect 4444 * connection seriously. This doesn't look nice, but alas, PAWS is really 4445 * buggy extension. 4446 * 4447 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4448 * states that events when retransmit arrives after original data are rare. 4449 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4450 * the biggest problem on large power networks even with minor reordering. 4451 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4452 * up to bandwidth of 18Gigabit/sec. 8) ] 4453 */ 4454 4455 /* Estimates max number of increments of remote peer TSval in 4456 * a replay window (based on our current RTO estimation). 4457 */ 4458 static u32 tcp_tsval_replay(const struct sock *sk) 4459 { 4460 /* If we use usec TS resolution, 4461 * then expect the remote peer to use the same resolution. 4462 */ 4463 if (tcp_sk(sk)->tcp_usec_ts) 4464 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ); 4465 4466 /* RFC 7323 recommends a TSval clock between 1ms and 1sec. 4467 * We know that some OS (including old linux) can use 1200 Hz. 4468 */ 4469 return inet_csk(sk)->icsk_rto * 1200 / HZ; 4470 } 4471 4472 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk, 4473 const struct sk_buff *skb) 4474 { 4475 const struct tcp_sock *tp = tcp_sk(sk); 4476 const struct tcphdr *th = tcp_hdr(skb); 4477 SKB_DR_INIT(reason, TCP_RFC7323_PAWS); 4478 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4479 u32 seq = TCP_SKB_CB(skb)->seq; 4480 4481 /* 1. Is this not a pure ACK ? */ 4482 if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq) 4483 return reason; 4484 4485 /* 2. Is its sequence not the expected one ? */ 4486 if (seq != tp->rcv_nxt) 4487 return before(seq, tp->rcv_nxt) ? 4488 SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK : 4489 reason; 4490 4491 /* 3. Is this not a duplicate ACK ? */ 4492 if (ack != tp->snd_una) 4493 return reason; 4494 4495 /* 4. Is this updating the window ? */ 4496 if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) << 4497 tp->rx_opt.snd_wscale)) 4498 return reason; 4499 4500 /* 5. Is this not in the replay window ? */ 4501 if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > 4502 tcp_tsval_replay(sk)) 4503 return reason; 4504 4505 return 0; 4506 } 4507 4508 /* Check segment sequence number for validity. 4509 * 4510 * Segment controls are considered valid, if the segment 4511 * fits to the window after truncation to the window. Acceptability 4512 * of data (and SYN, FIN, of course) is checked separately. 4513 * See tcp_data_queue(), for example. 4514 * 4515 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4516 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4517 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4518 * (borrowed from freebsd) 4519 */ 4520 4521 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4522 u32 seq, u32 end_seq) 4523 { 4524 if (before(end_seq, tp->rcv_wup)) 4525 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4526 4527 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4528 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4529 4530 return SKB_NOT_DROPPED_YET; 4531 } 4532 4533 4534 void tcp_done_with_error(struct sock *sk, int err) 4535 { 4536 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4537 WRITE_ONCE(sk->sk_err, err); 4538 smp_wmb(); 4539 4540 tcp_write_queue_purge(sk); 4541 tcp_done(sk); 4542 4543 if (!sock_flag(sk, SOCK_DEAD)) 4544 sk_error_report(sk); 4545 } 4546 EXPORT_IPV6_MOD(tcp_done_with_error); 4547 4548 /* When we get a reset we do this. */ 4549 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4550 { 4551 int err; 4552 4553 trace_tcp_receive_reset(sk); 4554 4555 /* mptcp can't tell us to ignore reset pkts, 4556 * so just ignore the return value of mptcp_incoming_options(). 4557 */ 4558 if (sk_is_mptcp(sk)) 4559 mptcp_incoming_options(sk, skb); 4560 4561 /* We want the right error as BSD sees it (and indeed as we do). */ 4562 switch (sk->sk_state) { 4563 case TCP_SYN_SENT: 4564 err = ECONNREFUSED; 4565 break; 4566 case TCP_CLOSE_WAIT: 4567 err = EPIPE; 4568 break; 4569 case TCP_CLOSE: 4570 return; 4571 default: 4572 err = ECONNRESET; 4573 } 4574 tcp_done_with_error(sk, err); 4575 } 4576 4577 /* 4578 * Process the FIN bit. This now behaves as it is supposed to work 4579 * and the FIN takes effect when it is validly part of sequence 4580 * space. Not before when we get holes. 4581 * 4582 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4583 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4584 * TIME-WAIT) 4585 * 4586 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4587 * close and we go into CLOSING (and later onto TIME-WAIT) 4588 * 4589 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4590 */ 4591 void tcp_fin(struct sock *sk) 4592 { 4593 struct tcp_sock *tp = tcp_sk(sk); 4594 4595 inet_csk_schedule_ack(sk); 4596 4597 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4598 sock_set_flag(sk, SOCK_DONE); 4599 4600 switch (sk->sk_state) { 4601 case TCP_SYN_RECV: 4602 case TCP_ESTABLISHED: 4603 /* Move to CLOSE_WAIT */ 4604 tcp_set_state(sk, TCP_CLOSE_WAIT); 4605 inet_csk_enter_pingpong_mode(sk); 4606 break; 4607 4608 case TCP_CLOSE_WAIT: 4609 case TCP_CLOSING: 4610 /* Received a retransmission of the FIN, do 4611 * nothing. 4612 */ 4613 break; 4614 case TCP_LAST_ACK: 4615 /* RFC793: Remain in the LAST-ACK state. */ 4616 break; 4617 4618 case TCP_FIN_WAIT1: 4619 /* This case occurs when a simultaneous close 4620 * happens, we must ack the received FIN and 4621 * enter the CLOSING state. 4622 */ 4623 tcp_send_ack(sk); 4624 tcp_set_state(sk, TCP_CLOSING); 4625 break; 4626 case TCP_FIN_WAIT2: 4627 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4628 tcp_send_ack(sk); 4629 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4630 break; 4631 default: 4632 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4633 * cases we should never reach this piece of code. 4634 */ 4635 pr_err("%s: Impossible, sk->sk_state=%d\n", 4636 __func__, sk->sk_state); 4637 break; 4638 } 4639 4640 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4641 * Probably, we should reset in this case. For now drop them. 4642 */ 4643 skb_rbtree_purge(&tp->out_of_order_queue); 4644 if (tcp_is_sack(tp)) 4645 tcp_sack_reset(&tp->rx_opt); 4646 4647 if (!sock_flag(sk, SOCK_DEAD)) { 4648 sk->sk_state_change(sk); 4649 4650 /* Do not send POLL_HUP for half duplex close. */ 4651 if (sk->sk_shutdown == SHUTDOWN_MASK || 4652 sk->sk_state == TCP_CLOSE) 4653 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4654 else 4655 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4656 } 4657 } 4658 4659 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4660 u32 end_seq) 4661 { 4662 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4663 if (before(seq, sp->start_seq)) 4664 sp->start_seq = seq; 4665 if (after(end_seq, sp->end_seq)) 4666 sp->end_seq = end_seq; 4667 return true; 4668 } 4669 return false; 4670 } 4671 4672 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4673 { 4674 struct tcp_sock *tp = tcp_sk(sk); 4675 4676 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4677 int mib_idx; 4678 4679 if (before(seq, tp->rcv_nxt)) 4680 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4681 else 4682 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4683 4684 NET_INC_STATS(sock_net(sk), mib_idx); 4685 4686 tp->rx_opt.dsack = 1; 4687 tp->duplicate_sack[0].start_seq = seq; 4688 tp->duplicate_sack[0].end_seq = end_seq; 4689 } 4690 } 4691 4692 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4693 { 4694 struct tcp_sock *tp = tcp_sk(sk); 4695 4696 if (!tp->rx_opt.dsack) 4697 tcp_dsack_set(sk, seq, end_seq); 4698 else 4699 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4700 } 4701 4702 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4703 { 4704 /* When the ACK path fails or drops most ACKs, the sender would 4705 * timeout and spuriously retransmit the same segment repeatedly. 4706 * If it seems our ACKs are not reaching the other side, 4707 * based on receiving a duplicate data segment with new flowlabel 4708 * (suggesting the sender suffered an RTO), and we are not already 4709 * repathing due to our own RTO, then rehash the socket to repath our 4710 * packets. 4711 */ 4712 #if IS_ENABLED(CONFIG_IPV6) 4713 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 4714 skb->protocol == htons(ETH_P_IPV6) && 4715 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 4716 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 4717 sk_rethink_txhash(sk)) 4718 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4719 4720 /* Save last flowlabel after a spurious retrans. */ 4721 tcp_save_lrcv_flowlabel(sk, skb); 4722 #endif 4723 } 4724 4725 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4726 { 4727 struct tcp_sock *tp = tcp_sk(sk); 4728 4729 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4730 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4731 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4732 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4733 4734 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4735 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4736 4737 tcp_rcv_spurious_retrans(sk, skb); 4738 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4739 end_seq = tp->rcv_nxt; 4740 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4741 } 4742 } 4743 4744 tcp_send_ack(sk); 4745 } 4746 4747 /* These routines update the SACK block as out-of-order packets arrive or 4748 * in-order packets close up the sequence space. 4749 */ 4750 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4751 { 4752 int this_sack; 4753 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4754 struct tcp_sack_block *swalk = sp + 1; 4755 4756 /* See if the recent change to the first SACK eats into 4757 * or hits the sequence space of other SACK blocks, if so coalesce. 4758 */ 4759 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4760 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4761 int i; 4762 4763 /* Zap SWALK, by moving every further SACK up by one slot. 4764 * Decrease num_sacks. 4765 */ 4766 tp->rx_opt.num_sacks--; 4767 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4768 sp[i] = sp[i + 1]; 4769 continue; 4770 } 4771 this_sack++; 4772 swalk++; 4773 } 4774 } 4775 4776 void tcp_sack_compress_send_ack(struct sock *sk) 4777 { 4778 struct tcp_sock *tp = tcp_sk(sk); 4779 4780 if (!tp->compressed_ack) 4781 return; 4782 4783 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4784 __sock_put(sk); 4785 4786 /* Since we have to send one ack finally, 4787 * substract one from tp->compressed_ack to keep 4788 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4789 */ 4790 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4791 tp->compressed_ack - 1); 4792 4793 tp->compressed_ack = 0; 4794 tcp_send_ack(sk); 4795 } 4796 4797 /* Reasonable amount of sack blocks included in TCP SACK option 4798 * The max is 4, but this becomes 3 if TCP timestamps are there. 4799 * Given that SACK packets might be lost, be conservative and use 2. 4800 */ 4801 #define TCP_SACK_BLOCKS_EXPECTED 2 4802 4803 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4804 { 4805 struct tcp_sock *tp = tcp_sk(sk); 4806 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4807 int cur_sacks = tp->rx_opt.num_sacks; 4808 int this_sack; 4809 4810 if (!cur_sacks) 4811 goto new_sack; 4812 4813 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4814 if (tcp_sack_extend(sp, seq, end_seq)) { 4815 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4816 tcp_sack_compress_send_ack(sk); 4817 /* Rotate this_sack to the first one. */ 4818 for (; this_sack > 0; this_sack--, sp--) 4819 swap(*sp, *(sp - 1)); 4820 if (cur_sacks > 1) 4821 tcp_sack_maybe_coalesce(tp); 4822 return; 4823 } 4824 } 4825 4826 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4827 tcp_sack_compress_send_ack(sk); 4828 4829 /* Could not find an adjacent existing SACK, build a new one, 4830 * put it at the front, and shift everyone else down. We 4831 * always know there is at least one SACK present already here. 4832 * 4833 * If the sack array is full, forget about the last one. 4834 */ 4835 if (this_sack >= TCP_NUM_SACKS) { 4836 this_sack--; 4837 tp->rx_opt.num_sacks--; 4838 sp--; 4839 } 4840 for (; this_sack > 0; this_sack--, sp--) 4841 *sp = *(sp - 1); 4842 4843 new_sack: 4844 /* Build the new head SACK, and we're done. */ 4845 sp->start_seq = seq; 4846 sp->end_seq = end_seq; 4847 tp->rx_opt.num_sacks++; 4848 } 4849 4850 /* RCV.NXT advances, some SACKs should be eaten. */ 4851 4852 static void tcp_sack_remove(struct tcp_sock *tp) 4853 { 4854 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4855 int num_sacks = tp->rx_opt.num_sacks; 4856 int this_sack; 4857 4858 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4859 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4860 tp->rx_opt.num_sacks = 0; 4861 return; 4862 } 4863 4864 for (this_sack = 0; this_sack < num_sacks;) { 4865 /* Check if the start of the sack is covered by RCV.NXT. */ 4866 if (!before(tp->rcv_nxt, sp->start_seq)) { 4867 int i; 4868 4869 /* RCV.NXT must cover all the block! */ 4870 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4871 4872 /* Zap this SACK, by moving forward any other SACKS. */ 4873 for (i = this_sack+1; i < num_sacks; i++) 4874 tp->selective_acks[i-1] = tp->selective_acks[i]; 4875 num_sacks--; 4876 continue; 4877 } 4878 this_sack++; 4879 sp++; 4880 } 4881 tp->rx_opt.num_sacks = num_sacks; 4882 } 4883 4884 /** 4885 * tcp_try_coalesce - try to merge skb to prior one 4886 * @sk: socket 4887 * @to: prior buffer 4888 * @from: buffer to add in queue 4889 * @fragstolen: pointer to boolean 4890 * 4891 * Before queueing skb @from after @to, try to merge them 4892 * to reduce overall memory use and queue lengths, if cost is small. 4893 * Packets in ofo or receive queues can stay a long time. 4894 * Better try to coalesce them right now to avoid future collapses. 4895 * Returns true if caller should free @from instead of queueing it 4896 */ 4897 static bool tcp_try_coalesce(struct sock *sk, 4898 struct sk_buff *to, 4899 struct sk_buff *from, 4900 bool *fragstolen) 4901 { 4902 int delta; 4903 4904 *fragstolen = false; 4905 4906 /* Its possible this segment overlaps with prior segment in queue */ 4907 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4908 return false; 4909 4910 if (!tcp_skb_can_collapse_rx(to, from)) 4911 return false; 4912 4913 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4914 return false; 4915 4916 atomic_add(delta, &sk->sk_rmem_alloc); 4917 sk_mem_charge(sk, delta); 4918 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4919 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4920 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4921 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4922 4923 if (TCP_SKB_CB(from)->has_rxtstamp) { 4924 TCP_SKB_CB(to)->has_rxtstamp = true; 4925 to->tstamp = from->tstamp; 4926 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4927 } 4928 4929 return true; 4930 } 4931 4932 static bool tcp_ooo_try_coalesce(struct sock *sk, 4933 struct sk_buff *to, 4934 struct sk_buff *from, 4935 bool *fragstolen) 4936 { 4937 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4938 4939 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4940 if (res) { 4941 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4942 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4943 4944 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4945 } 4946 return res; 4947 } 4948 4949 noinline_for_tracing static void 4950 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 4951 { 4952 sk_drops_add(sk, skb); 4953 sk_skb_reason_drop(sk, skb, reason); 4954 } 4955 4956 /* This one checks to see if we can put data from the 4957 * out_of_order queue into the receive_queue. 4958 */ 4959 static void tcp_ofo_queue(struct sock *sk) 4960 { 4961 struct tcp_sock *tp = tcp_sk(sk); 4962 __u32 dsack_high = tp->rcv_nxt; 4963 bool fin, fragstolen, eaten; 4964 struct sk_buff *skb, *tail; 4965 struct rb_node *p; 4966 4967 p = rb_first(&tp->out_of_order_queue); 4968 while (p) { 4969 skb = rb_to_skb(p); 4970 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4971 break; 4972 4973 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4974 __u32 dsack = dsack_high; 4975 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4976 dsack_high = TCP_SKB_CB(skb)->end_seq; 4977 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4978 } 4979 p = rb_next(p); 4980 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4981 4982 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4983 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4984 continue; 4985 } 4986 4987 tail = skb_peek_tail(&sk->sk_receive_queue); 4988 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4989 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4990 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4991 if (!eaten) 4992 tcp_add_receive_queue(sk, skb); 4993 else 4994 kfree_skb_partial(skb, fragstolen); 4995 4996 if (unlikely(fin)) { 4997 tcp_fin(sk); 4998 /* tcp_fin() purges tp->out_of_order_queue, 4999 * so we must end this loop right now. 5000 */ 5001 break; 5002 } 5003 } 5004 } 5005 5006 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 5007 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 5008 5009 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 5010 unsigned int size) 5011 { 5012 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 5013 !sk_rmem_schedule(sk, skb, size)) { 5014 5015 if (tcp_prune_queue(sk, skb) < 0) 5016 return -1; 5017 5018 while (!sk_rmem_schedule(sk, skb, size)) { 5019 if (!tcp_prune_ofo_queue(sk, skb)) 5020 return -1; 5021 } 5022 } 5023 return 0; 5024 } 5025 5026 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 5027 { 5028 struct tcp_sock *tp = tcp_sk(sk); 5029 struct rb_node **p, *parent; 5030 struct sk_buff *skb1; 5031 u32 seq, end_seq; 5032 bool fragstolen; 5033 5034 tcp_save_lrcv_flowlabel(sk, skb); 5035 tcp_data_ecn_check(sk, skb); 5036 5037 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 5038 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 5039 sk->sk_data_ready(sk); 5040 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 5041 return; 5042 } 5043 5044 /* Disable header prediction. */ 5045 tp->pred_flags = 0; 5046 inet_csk_schedule_ack(sk); 5047 5048 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 5049 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 5050 seq = TCP_SKB_CB(skb)->seq; 5051 end_seq = TCP_SKB_CB(skb)->end_seq; 5052 5053 p = &tp->out_of_order_queue.rb_node; 5054 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5055 /* Initial out of order segment, build 1 SACK. */ 5056 if (tcp_is_sack(tp)) { 5057 tp->rx_opt.num_sacks = 1; 5058 tp->selective_acks[0].start_seq = seq; 5059 tp->selective_acks[0].end_seq = end_seq; 5060 } 5061 rb_link_node(&skb->rbnode, NULL, p); 5062 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5063 tp->ooo_last_skb = skb; 5064 goto end; 5065 } 5066 5067 /* In the typical case, we are adding an skb to the end of the list. 5068 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 5069 */ 5070 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 5071 skb, &fragstolen)) { 5072 coalesce_done: 5073 /* For non sack flows, do not grow window to force DUPACK 5074 * and trigger fast retransmit. 5075 */ 5076 if (tcp_is_sack(tp)) 5077 tcp_grow_window(sk, skb, true); 5078 kfree_skb_partial(skb, fragstolen); 5079 skb = NULL; 5080 goto add_sack; 5081 } 5082 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 5083 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 5084 parent = &tp->ooo_last_skb->rbnode; 5085 p = &parent->rb_right; 5086 goto insert; 5087 } 5088 5089 /* Find place to insert this segment. Handle overlaps on the way. */ 5090 parent = NULL; 5091 while (*p) { 5092 parent = *p; 5093 skb1 = rb_to_skb(parent); 5094 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 5095 p = &parent->rb_left; 5096 continue; 5097 } 5098 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 5099 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5100 /* All the bits are present. Drop. */ 5101 NET_INC_STATS(sock_net(sk), 5102 LINUX_MIB_TCPOFOMERGE); 5103 tcp_drop_reason(sk, skb, 5104 SKB_DROP_REASON_TCP_OFOMERGE); 5105 skb = NULL; 5106 tcp_dsack_set(sk, seq, end_seq); 5107 goto add_sack; 5108 } 5109 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 5110 /* Partial overlap. */ 5111 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 5112 } else { 5113 /* skb's seq == skb1's seq and skb covers skb1. 5114 * Replace skb1 with skb. 5115 */ 5116 rb_replace_node(&skb1->rbnode, &skb->rbnode, 5117 &tp->out_of_order_queue); 5118 tcp_dsack_extend(sk, 5119 TCP_SKB_CB(skb1)->seq, 5120 TCP_SKB_CB(skb1)->end_seq); 5121 NET_INC_STATS(sock_net(sk), 5122 LINUX_MIB_TCPOFOMERGE); 5123 tcp_drop_reason(sk, skb1, 5124 SKB_DROP_REASON_TCP_OFOMERGE); 5125 goto merge_right; 5126 } 5127 } else if (tcp_ooo_try_coalesce(sk, skb1, 5128 skb, &fragstolen)) { 5129 goto coalesce_done; 5130 } 5131 p = &parent->rb_right; 5132 } 5133 insert: 5134 /* Insert segment into RB tree. */ 5135 rb_link_node(&skb->rbnode, parent, p); 5136 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5137 5138 merge_right: 5139 /* Remove other segments covered by skb. */ 5140 while ((skb1 = skb_rb_next(skb)) != NULL) { 5141 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5142 break; 5143 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5144 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5145 end_seq); 5146 break; 5147 } 5148 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5149 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5150 TCP_SKB_CB(skb1)->end_seq); 5151 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5152 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5153 } 5154 /* If there is no skb after us, we are the last_skb ! */ 5155 if (!skb1) 5156 tp->ooo_last_skb = skb; 5157 5158 add_sack: 5159 if (tcp_is_sack(tp)) 5160 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5161 end: 5162 if (skb) { 5163 /* For non sack flows, do not grow window to force DUPACK 5164 * and trigger fast retransmit. 5165 */ 5166 if (tcp_is_sack(tp)) 5167 tcp_grow_window(sk, skb, false); 5168 skb_condense(skb); 5169 skb_set_owner_r(skb, sk); 5170 } 5171 tcp_rcvbuf_grow(sk); 5172 } 5173 5174 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5175 bool *fragstolen) 5176 { 5177 int eaten; 5178 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5179 5180 eaten = (tail && 5181 tcp_try_coalesce(sk, tail, 5182 skb, fragstolen)) ? 1 : 0; 5183 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5184 if (!eaten) { 5185 tcp_add_receive_queue(sk, skb); 5186 skb_set_owner_r(skb, sk); 5187 } 5188 return eaten; 5189 } 5190 5191 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5192 { 5193 struct sk_buff *skb; 5194 int err = -ENOMEM; 5195 int data_len = 0; 5196 bool fragstolen; 5197 5198 if (size == 0) 5199 return 0; 5200 5201 if (size > PAGE_SIZE) { 5202 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5203 5204 data_len = npages << PAGE_SHIFT; 5205 size = data_len + (size & ~PAGE_MASK); 5206 } 5207 skb = alloc_skb_with_frags(size - data_len, data_len, 5208 PAGE_ALLOC_COSTLY_ORDER, 5209 &err, sk->sk_allocation); 5210 if (!skb) 5211 goto err; 5212 5213 skb_put(skb, size - data_len); 5214 skb->data_len = data_len; 5215 skb->len = size; 5216 5217 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5218 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5219 goto err_free; 5220 } 5221 5222 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5223 if (err) 5224 goto err_free; 5225 5226 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5227 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5228 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5229 5230 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5231 WARN_ON_ONCE(fragstolen); /* should not happen */ 5232 __kfree_skb(skb); 5233 } 5234 return size; 5235 5236 err_free: 5237 kfree_skb(skb); 5238 err: 5239 return err; 5240 5241 } 5242 5243 void tcp_data_ready(struct sock *sk) 5244 { 5245 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5246 sk->sk_data_ready(sk); 5247 } 5248 5249 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5250 { 5251 struct tcp_sock *tp = tcp_sk(sk); 5252 enum skb_drop_reason reason; 5253 bool fragstolen; 5254 int eaten; 5255 5256 /* If a subflow has been reset, the packet should not continue 5257 * to be processed, drop the packet. 5258 */ 5259 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5260 __kfree_skb(skb); 5261 return; 5262 } 5263 5264 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5265 __kfree_skb(skb); 5266 return; 5267 } 5268 tcp_cleanup_skb(skb); 5269 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5270 5271 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5272 tp->rx_opt.dsack = 0; 5273 5274 /* Queue data for delivery to the user. 5275 * Packets in sequence go to the receive queue. 5276 * Out of sequence packets to the out_of_order_queue. 5277 */ 5278 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5279 if (tcp_receive_window(tp) == 0) { 5280 /* Some stacks are known to send bare FIN packets 5281 * in a loop even if we send RWIN 0 in our ACK. 5282 * Accepting this FIN does not hurt memory pressure 5283 * because the FIN flag will simply be merged to the 5284 * receive queue tail skb in most cases. 5285 */ 5286 if (!skb->len && 5287 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 5288 goto queue_and_out; 5289 5290 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5291 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5292 goto out_of_window; 5293 } 5294 5295 /* Ok. In sequence. In window. */ 5296 queue_and_out: 5297 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5298 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5299 inet_csk(sk)->icsk_ack.pending |= 5300 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5301 inet_csk_schedule_ack(sk); 5302 sk->sk_data_ready(sk); 5303 5304 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) { 5305 reason = SKB_DROP_REASON_PROTO_MEM; 5306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5307 goto drop; 5308 } 5309 sk_forced_mem_schedule(sk, skb->truesize); 5310 } 5311 5312 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5313 if (skb->len) 5314 tcp_event_data_recv(sk, skb); 5315 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5316 tcp_fin(sk); 5317 5318 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5319 tcp_ofo_queue(sk); 5320 5321 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5322 * gap in queue is filled. 5323 */ 5324 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5325 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5326 } 5327 5328 if (tp->rx_opt.num_sacks) 5329 tcp_sack_remove(tp); 5330 5331 tcp_fast_path_check(sk); 5332 5333 if (eaten > 0) 5334 kfree_skb_partial(skb, fragstolen); 5335 if (!sock_flag(sk, SOCK_DEAD)) 5336 tcp_data_ready(sk); 5337 return; 5338 } 5339 5340 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5341 tcp_rcv_spurious_retrans(sk, skb); 5342 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5343 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5344 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5345 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5346 5347 out_of_window: 5348 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5349 inet_csk_schedule_ack(sk); 5350 drop: 5351 tcp_drop_reason(sk, skb, reason); 5352 return; 5353 } 5354 5355 /* Out of window. F.e. zero window probe. */ 5356 if (!before(TCP_SKB_CB(skb)->seq, 5357 tp->rcv_nxt + tcp_receive_window(tp))) { 5358 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5359 goto out_of_window; 5360 } 5361 5362 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5363 /* Partial packet, seq < rcv_next < end_seq */ 5364 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5365 5366 /* If window is closed, drop tail of packet. But after 5367 * remembering D-SACK for its head made in previous line. 5368 */ 5369 if (!tcp_receive_window(tp)) { 5370 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5371 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5372 goto out_of_window; 5373 } 5374 goto queue_and_out; 5375 } 5376 5377 tcp_data_queue_ofo(sk, skb); 5378 } 5379 5380 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5381 { 5382 if (list) 5383 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5384 5385 return skb_rb_next(skb); 5386 } 5387 5388 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5389 struct sk_buff_head *list, 5390 struct rb_root *root) 5391 { 5392 struct sk_buff *next = tcp_skb_next(skb, list); 5393 5394 if (list) 5395 __skb_unlink(skb, list); 5396 else 5397 rb_erase(&skb->rbnode, root); 5398 5399 __kfree_skb(skb); 5400 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5401 5402 return next; 5403 } 5404 5405 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5406 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5407 { 5408 struct rb_node **p = &root->rb_node; 5409 struct rb_node *parent = NULL; 5410 struct sk_buff *skb1; 5411 5412 while (*p) { 5413 parent = *p; 5414 skb1 = rb_to_skb(parent); 5415 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5416 p = &parent->rb_left; 5417 else 5418 p = &parent->rb_right; 5419 } 5420 rb_link_node(&skb->rbnode, parent, p); 5421 rb_insert_color(&skb->rbnode, root); 5422 } 5423 5424 /* Collapse contiguous sequence of skbs head..tail with 5425 * sequence numbers start..end. 5426 * 5427 * If tail is NULL, this means until the end of the queue. 5428 * 5429 * Segments with FIN/SYN are not collapsed (only because this 5430 * simplifies code) 5431 */ 5432 static void 5433 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5434 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5435 { 5436 struct sk_buff *skb = head, *n; 5437 struct sk_buff_head tmp; 5438 bool end_of_skbs; 5439 5440 /* First, check that queue is collapsible and find 5441 * the point where collapsing can be useful. 5442 */ 5443 restart: 5444 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5445 n = tcp_skb_next(skb, list); 5446 5447 if (!skb_frags_readable(skb)) 5448 goto skip_this; 5449 5450 /* No new bits? It is possible on ofo queue. */ 5451 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5452 skb = tcp_collapse_one(sk, skb, list, root); 5453 if (!skb) 5454 break; 5455 goto restart; 5456 } 5457 5458 /* The first skb to collapse is: 5459 * - not SYN/FIN and 5460 * - bloated or contains data before "start" or 5461 * overlaps to the next one and mptcp allow collapsing. 5462 */ 5463 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5464 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5465 before(TCP_SKB_CB(skb)->seq, start))) { 5466 end_of_skbs = false; 5467 break; 5468 } 5469 5470 if (n && n != tail && skb_frags_readable(n) && 5471 tcp_skb_can_collapse_rx(skb, n) && 5472 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5473 end_of_skbs = false; 5474 break; 5475 } 5476 5477 skip_this: 5478 /* Decided to skip this, advance start seq. */ 5479 start = TCP_SKB_CB(skb)->end_seq; 5480 } 5481 if (end_of_skbs || 5482 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5483 !skb_frags_readable(skb)) 5484 return; 5485 5486 __skb_queue_head_init(&tmp); 5487 5488 while (before(start, end)) { 5489 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5490 struct sk_buff *nskb; 5491 5492 nskb = alloc_skb(copy, GFP_ATOMIC); 5493 if (!nskb) 5494 break; 5495 5496 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5497 skb_copy_decrypted(nskb, skb); 5498 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5499 if (list) 5500 __skb_queue_before(list, skb, nskb); 5501 else 5502 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5503 skb_set_owner_r(nskb, sk); 5504 mptcp_skb_ext_move(nskb, skb); 5505 5506 /* Copy data, releasing collapsed skbs. */ 5507 while (copy > 0) { 5508 int offset = start - TCP_SKB_CB(skb)->seq; 5509 int size = TCP_SKB_CB(skb)->end_seq - start; 5510 5511 BUG_ON(offset < 0); 5512 if (size > 0) { 5513 size = min(copy, size); 5514 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5515 BUG(); 5516 TCP_SKB_CB(nskb)->end_seq += size; 5517 copy -= size; 5518 start += size; 5519 } 5520 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5521 skb = tcp_collapse_one(sk, skb, list, root); 5522 if (!skb || 5523 skb == tail || 5524 !tcp_skb_can_collapse_rx(nskb, skb) || 5525 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5526 !skb_frags_readable(skb)) 5527 goto end; 5528 } 5529 } 5530 } 5531 end: 5532 skb_queue_walk_safe(&tmp, skb, n) 5533 tcp_rbtree_insert(root, skb); 5534 } 5535 5536 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5537 * and tcp_collapse() them until all the queue is collapsed. 5538 */ 5539 static void tcp_collapse_ofo_queue(struct sock *sk) 5540 { 5541 struct tcp_sock *tp = tcp_sk(sk); 5542 u32 range_truesize, sum_tiny = 0; 5543 struct sk_buff *skb, *head; 5544 u32 start, end; 5545 5546 skb = skb_rb_first(&tp->out_of_order_queue); 5547 new_range: 5548 if (!skb) { 5549 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5550 return; 5551 } 5552 start = TCP_SKB_CB(skb)->seq; 5553 end = TCP_SKB_CB(skb)->end_seq; 5554 range_truesize = skb->truesize; 5555 5556 for (head = skb;;) { 5557 skb = skb_rb_next(skb); 5558 5559 /* Range is terminated when we see a gap or when 5560 * we are at the queue end. 5561 */ 5562 if (!skb || 5563 after(TCP_SKB_CB(skb)->seq, end) || 5564 before(TCP_SKB_CB(skb)->end_seq, start)) { 5565 /* Do not attempt collapsing tiny skbs */ 5566 if (range_truesize != head->truesize || 5567 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5568 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5569 head, skb, start, end); 5570 } else { 5571 sum_tiny += range_truesize; 5572 if (sum_tiny > sk->sk_rcvbuf >> 3) 5573 return; 5574 } 5575 goto new_range; 5576 } 5577 5578 range_truesize += skb->truesize; 5579 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5580 start = TCP_SKB_CB(skb)->seq; 5581 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5582 end = TCP_SKB_CB(skb)->end_seq; 5583 } 5584 } 5585 5586 /* 5587 * Clean the out-of-order queue to make room. 5588 * We drop high sequences packets to : 5589 * 1) Let a chance for holes to be filled. 5590 * This means we do not drop packets from ooo queue if their sequence 5591 * is before incoming packet sequence. 5592 * 2) not add too big latencies if thousands of packets sit there. 5593 * (But if application shrinks SO_RCVBUF, we could still end up 5594 * freeing whole queue here) 5595 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5596 * 5597 * Return true if queue has shrunk. 5598 */ 5599 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5600 { 5601 struct tcp_sock *tp = tcp_sk(sk); 5602 struct rb_node *node, *prev; 5603 bool pruned = false; 5604 int goal; 5605 5606 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5607 return false; 5608 5609 goal = sk->sk_rcvbuf >> 3; 5610 node = &tp->ooo_last_skb->rbnode; 5611 5612 do { 5613 struct sk_buff *skb = rb_to_skb(node); 5614 5615 /* If incoming skb would land last in ofo queue, stop pruning. */ 5616 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5617 break; 5618 pruned = true; 5619 prev = rb_prev(node); 5620 rb_erase(node, &tp->out_of_order_queue); 5621 goal -= skb->truesize; 5622 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5623 tp->ooo_last_skb = rb_to_skb(prev); 5624 if (!prev || goal <= 0) { 5625 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5626 !tcp_under_memory_pressure(sk)) 5627 break; 5628 goal = sk->sk_rcvbuf >> 3; 5629 } 5630 node = prev; 5631 } while (node); 5632 5633 if (pruned) { 5634 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5635 /* Reset SACK state. A conforming SACK implementation will 5636 * do the same at a timeout based retransmit. When a connection 5637 * is in a sad state like this, we care only about integrity 5638 * of the connection not performance. 5639 */ 5640 if (tp->rx_opt.sack_ok) 5641 tcp_sack_reset(&tp->rx_opt); 5642 } 5643 return pruned; 5644 } 5645 5646 /* Reduce allocated memory if we can, trying to get 5647 * the socket within its memory limits again. 5648 * 5649 * Return less than zero if we should start dropping frames 5650 * until the socket owning process reads some of the data 5651 * to stabilize the situation. 5652 */ 5653 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5654 { 5655 struct tcp_sock *tp = tcp_sk(sk); 5656 5657 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5658 5659 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5660 tcp_clamp_window(sk); 5661 else if (tcp_under_memory_pressure(sk)) 5662 tcp_adjust_rcv_ssthresh(sk); 5663 5664 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5665 return 0; 5666 5667 tcp_collapse_ofo_queue(sk); 5668 if (!skb_queue_empty(&sk->sk_receive_queue)) 5669 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5670 skb_peek(&sk->sk_receive_queue), 5671 NULL, 5672 tp->copied_seq, tp->rcv_nxt); 5673 5674 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5675 return 0; 5676 5677 /* Collapsing did not help, destructive actions follow. 5678 * This must not ever occur. */ 5679 5680 tcp_prune_ofo_queue(sk, in_skb); 5681 5682 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5683 return 0; 5684 5685 /* If we are really being abused, tell the caller to silently 5686 * drop receive data on the floor. It will get retransmitted 5687 * and hopefully then we'll have sufficient space. 5688 */ 5689 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5690 5691 /* Massive buffer overcommit. */ 5692 tp->pred_flags = 0; 5693 return -1; 5694 } 5695 5696 static bool tcp_should_expand_sndbuf(struct sock *sk) 5697 { 5698 const struct tcp_sock *tp = tcp_sk(sk); 5699 5700 /* If the user specified a specific send buffer setting, do 5701 * not modify it. 5702 */ 5703 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5704 return false; 5705 5706 /* If we are under global TCP memory pressure, do not expand. */ 5707 if (tcp_under_memory_pressure(sk)) { 5708 int unused_mem = sk_unused_reserved_mem(sk); 5709 5710 /* Adjust sndbuf according to reserved mem. But make sure 5711 * it never goes below SOCK_MIN_SNDBUF. 5712 * See sk_stream_moderate_sndbuf() for more details. 5713 */ 5714 if (unused_mem > SOCK_MIN_SNDBUF) 5715 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5716 5717 return false; 5718 } 5719 5720 /* If we are under soft global TCP memory pressure, do not expand. */ 5721 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5722 return false; 5723 5724 /* If we filled the congestion window, do not expand. */ 5725 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5726 return false; 5727 5728 return true; 5729 } 5730 5731 static void tcp_new_space(struct sock *sk) 5732 { 5733 struct tcp_sock *tp = tcp_sk(sk); 5734 5735 if (tcp_should_expand_sndbuf(sk)) { 5736 tcp_sndbuf_expand(sk); 5737 tp->snd_cwnd_stamp = tcp_jiffies32; 5738 } 5739 5740 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5741 } 5742 5743 /* Caller made space either from: 5744 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5745 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5746 * 5747 * We might be able to generate EPOLLOUT to the application if: 5748 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5749 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5750 * small enough that tcp_stream_memory_free() decides it 5751 * is time to generate EPOLLOUT. 5752 */ 5753 void tcp_check_space(struct sock *sk) 5754 { 5755 /* pairs with tcp_poll() */ 5756 smp_mb(); 5757 if (sk->sk_socket && 5758 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5759 tcp_new_space(sk); 5760 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5761 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5762 } 5763 } 5764 5765 static inline void tcp_data_snd_check(struct sock *sk) 5766 { 5767 tcp_push_pending_frames(sk); 5768 tcp_check_space(sk); 5769 } 5770 5771 /* 5772 * Check if sending an ack is needed. 5773 */ 5774 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5775 { 5776 struct tcp_sock *tp = tcp_sk(sk); 5777 unsigned long rtt, delay; 5778 5779 /* More than one full frame received... */ 5780 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5781 /* ... and right edge of window advances far enough. 5782 * (tcp_recvmsg() will send ACK otherwise). 5783 * If application uses SO_RCVLOWAT, we want send ack now if 5784 * we have not received enough bytes to satisfy the condition. 5785 */ 5786 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5787 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5788 /* We ACK each frame or... */ 5789 tcp_in_quickack_mode(sk) || 5790 /* Protocol state mandates a one-time immediate ACK */ 5791 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5792 /* If we are running from __release_sock() in user context, 5793 * Defer the ack until tcp_release_cb(). 5794 */ 5795 if (sock_owned_by_user_nocheck(sk) && 5796 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { 5797 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5798 return; 5799 } 5800 send_now: 5801 tcp_send_ack(sk); 5802 return; 5803 } 5804 5805 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5806 tcp_send_delayed_ack(sk); 5807 return; 5808 } 5809 5810 if (!tcp_is_sack(tp) || 5811 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5812 goto send_now; 5813 5814 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5815 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5816 tp->dup_ack_counter = 0; 5817 } 5818 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5819 tp->dup_ack_counter++; 5820 goto send_now; 5821 } 5822 tp->compressed_ack++; 5823 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5824 return; 5825 5826 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5827 5828 rtt = tp->rcv_rtt_est.rtt_us; 5829 if (tp->srtt_us && tp->srtt_us < rtt) 5830 rtt = tp->srtt_us; 5831 5832 delay = min_t(unsigned long, 5833 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5834 rtt * (NSEC_PER_USEC >> 3)/20); 5835 sock_hold(sk); 5836 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5837 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5838 HRTIMER_MODE_REL_PINNED_SOFT); 5839 } 5840 5841 static inline void tcp_ack_snd_check(struct sock *sk) 5842 { 5843 if (!inet_csk_ack_scheduled(sk)) { 5844 /* We sent a data segment already. */ 5845 return; 5846 } 5847 __tcp_ack_snd_check(sk, 1); 5848 } 5849 5850 /* 5851 * This routine is only called when we have urgent data 5852 * signaled. Its the 'slow' part of tcp_urg. It could be 5853 * moved inline now as tcp_urg is only called from one 5854 * place. We handle URGent data wrong. We have to - as 5855 * BSD still doesn't use the correction from RFC961. 5856 * For 1003.1g we should support a new option TCP_STDURG to permit 5857 * either form (or just set the sysctl tcp_stdurg). 5858 */ 5859 5860 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5861 { 5862 struct tcp_sock *tp = tcp_sk(sk); 5863 u32 ptr = ntohs(th->urg_ptr); 5864 5865 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5866 ptr--; 5867 ptr += ntohl(th->seq); 5868 5869 /* Ignore urgent data that we've already seen and read. */ 5870 if (after(tp->copied_seq, ptr)) 5871 return; 5872 5873 /* Do not replay urg ptr. 5874 * 5875 * NOTE: interesting situation not covered by specs. 5876 * Misbehaving sender may send urg ptr, pointing to segment, 5877 * which we already have in ofo queue. We are not able to fetch 5878 * such data and will stay in TCP_URG_NOTYET until will be eaten 5879 * by recvmsg(). Seems, we are not obliged to handle such wicked 5880 * situations. But it is worth to think about possibility of some 5881 * DoSes using some hypothetical application level deadlock. 5882 */ 5883 if (before(ptr, tp->rcv_nxt)) 5884 return; 5885 5886 /* Do we already have a newer (or duplicate) urgent pointer? */ 5887 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5888 return; 5889 5890 /* Tell the world about our new urgent pointer. */ 5891 sk_send_sigurg(sk); 5892 5893 /* We may be adding urgent data when the last byte read was 5894 * urgent. To do this requires some care. We cannot just ignore 5895 * tp->copied_seq since we would read the last urgent byte again 5896 * as data, nor can we alter copied_seq until this data arrives 5897 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5898 * 5899 * NOTE. Double Dutch. Rendering to plain English: author of comment 5900 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5901 * and expect that both A and B disappear from stream. This is _wrong_. 5902 * Though this happens in BSD with high probability, this is occasional. 5903 * Any application relying on this is buggy. Note also, that fix "works" 5904 * only in this artificial test. Insert some normal data between A and B and we will 5905 * decline of BSD again. Verdict: it is better to remove to trap 5906 * buggy users. 5907 */ 5908 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5909 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5910 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5911 tp->copied_seq++; 5912 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5913 __skb_unlink(skb, &sk->sk_receive_queue); 5914 __kfree_skb(skb); 5915 } 5916 } 5917 5918 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5919 WRITE_ONCE(tp->urg_seq, ptr); 5920 5921 /* Disable header prediction. */ 5922 tp->pred_flags = 0; 5923 } 5924 5925 /* This is the 'fast' part of urgent handling. */ 5926 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5927 { 5928 struct tcp_sock *tp = tcp_sk(sk); 5929 5930 /* Check if we get a new urgent pointer - normally not. */ 5931 if (unlikely(th->urg)) 5932 tcp_check_urg(sk, th); 5933 5934 /* Do we wait for any urgent data? - normally not... */ 5935 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5936 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5937 th->syn; 5938 5939 /* Is the urgent pointer pointing into this packet? */ 5940 if (ptr < skb->len) { 5941 u8 tmp; 5942 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5943 BUG(); 5944 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5945 if (!sock_flag(sk, SOCK_DEAD)) 5946 sk->sk_data_ready(sk); 5947 } 5948 } 5949 } 5950 5951 /* Accept RST for rcv_nxt - 1 after a FIN. 5952 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5953 * FIN is sent followed by a RST packet. The RST is sent with the same 5954 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5955 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5956 * ACKs on the closed socket. In addition middleboxes can drop either the 5957 * challenge ACK or a subsequent RST. 5958 */ 5959 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5960 { 5961 const struct tcp_sock *tp = tcp_sk(sk); 5962 5963 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5964 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5965 TCPF_CLOSING)); 5966 } 5967 5968 /* Does PAWS and seqno based validation of an incoming segment, flags will 5969 * play significant role here. 5970 */ 5971 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5972 const struct tcphdr *th, int syn_inerr) 5973 { 5974 struct tcp_sock *tp = tcp_sk(sk); 5975 SKB_DR(reason); 5976 5977 /* RFC1323: H1. Apply PAWS check first. */ 5978 if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) || 5979 !tp->rx_opt.saw_tstamp || 5980 tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW)) 5981 goto step1; 5982 5983 reason = tcp_disordered_ack_check(sk, skb); 5984 if (!reason) 5985 goto step1; 5986 /* Reset is accepted even if it did not pass PAWS. */ 5987 if (th->rst) 5988 goto step1; 5989 if (unlikely(th->syn)) 5990 goto syn_challenge; 5991 5992 /* Old ACK are common, increment PAWS_OLD_ACK 5993 * and do not send a dupack. 5994 */ 5995 if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) { 5996 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK); 5997 goto discard; 5998 } 5999 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 6000 if (!tcp_oow_rate_limited(sock_net(sk), skb, 6001 LINUX_MIB_TCPACKSKIPPEDPAWS, 6002 &tp->last_oow_ack_time)) 6003 tcp_send_dupack(sk, skb); 6004 goto discard; 6005 6006 step1: 6007 /* Step 1: check sequence number */ 6008 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 6009 if (reason) { 6010 /* RFC793, page 37: "In all states except SYN-SENT, all reset 6011 * (RST) segments are validated by checking their SEQ-fields." 6012 * And page 69: "If an incoming segment is not acceptable, 6013 * an acknowledgment should be sent in reply (unless the RST 6014 * bit is set, if so drop the segment and return)". 6015 */ 6016 if (!th->rst) { 6017 if (th->syn) 6018 goto syn_challenge; 6019 if (!tcp_oow_rate_limited(sock_net(sk), skb, 6020 LINUX_MIB_TCPACKSKIPPEDSEQ, 6021 &tp->last_oow_ack_time)) 6022 tcp_send_dupack(sk, skb); 6023 } else if (tcp_reset_check(sk, skb)) { 6024 goto reset; 6025 } 6026 goto discard; 6027 } 6028 6029 /* Step 2: check RST bit */ 6030 if (th->rst) { 6031 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 6032 * FIN and SACK too if available): 6033 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 6034 * the right-most SACK block, 6035 * then 6036 * RESET the connection 6037 * else 6038 * Send a challenge ACK 6039 */ 6040 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 6041 tcp_reset_check(sk, skb)) 6042 goto reset; 6043 6044 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 6045 struct tcp_sack_block *sp = &tp->selective_acks[0]; 6046 int max_sack = sp[0].end_seq; 6047 int this_sack; 6048 6049 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 6050 ++this_sack) { 6051 max_sack = after(sp[this_sack].end_seq, 6052 max_sack) ? 6053 sp[this_sack].end_seq : max_sack; 6054 } 6055 6056 if (TCP_SKB_CB(skb)->seq == max_sack) 6057 goto reset; 6058 } 6059 6060 /* Disable TFO if RST is out-of-order 6061 * and no data has been received 6062 * for current active TFO socket 6063 */ 6064 if (tp->syn_fastopen && !tp->data_segs_in && 6065 sk->sk_state == TCP_ESTABLISHED) 6066 tcp_fastopen_active_disable(sk); 6067 tcp_send_challenge_ack(sk); 6068 SKB_DR_SET(reason, TCP_RESET); 6069 goto discard; 6070 } 6071 6072 /* step 3: check security and precedence [ignored] */ 6073 6074 /* step 4: Check for a SYN 6075 * RFC 5961 4.2 : Send a challenge ack 6076 */ 6077 if (th->syn) { 6078 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack && 6079 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq && 6080 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt && 6081 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt) 6082 goto pass; 6083 syn_challenge: 6084 if (syn_inerr) 6085 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6086 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 6087 tcp_send_challenge_ack(sk); 6088 SKB_DR_SET(reason, TCP_INVALID_SYN); 6089 goto discard; 6090 } 6091 6092 pass: 6093 bpf_skops_parse_hdr(sk, skb); 6094 6095 return true; 6096 6097 discard: 6098 tcp_drop_reason(sk, skb, reason); 6099 return false; 6100 6101 reset: 6102 tcp_reset(sk, skb); 6103 __kfree_skb(skb); 6104 return false; 6105 } 6106 6107 /* 6108 * TCP receive function for the ESTABLISHED state. 6109 * 6110 * It is split into a fast path and a slow path. The fast path is 6111 * disabled when: 6112 * - A zero window was announced from us - zero window probing 6113 * is only handled properly in the slow path. 6114 * - Out of order segments arrived. 6115 * - Urgent data is expected. 6116 * - There is no buffer space left 6117 * - Unexpected TCP flags/window values/header lengths are received 6118 * (detected by checking the TCP header against pred_flags) 6119 * - Data is sent in both directions. Fast path only supports pure senders 6120 * or pure receivers (this means either the sequence number or the ack 6121 * value must stay constant) 6122 * - Unexpected TCP option. 6123 * 6124 * When these conditions are not satisfied it drops into a standard 6125 * receive procedure patterned after RFC793 to handle all cases. 6126 * The first three cases are guaranteed by proper pred_flags setting, 6127 * the rest is checked inline. Fast processing is turned on in 6128 * tcp_data_queue when everything is OK. 6129 */ 6130 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 6131 { 6132 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 6133 const struct tcphdr *th = (const struct tcphdr *)skb->data; 6134 struct tcp_sock *tp = tcp_sk(sk); 6135 unsigned int len = skb->len; 6136 6137 /* TCP congestion window tracking */ 6138 trace_tcp_probe(sk, skb); 6139 6140 tcp_mstamp_refresh(tp); 6141 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 6142 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 6143 /* 6144 * Header prediction. 6145 * The code loosely follows the one in the famous 6146 * "30 instruction TCP receive" Van Jacobson mail. 6147 * 6148 * Van's trick is to deposit buffers into socket queue 6149 * on a device interrupt, to call tcp_recv function 6150 * on the receive process context and checksum and copy 6151 * the buffer to user space. smart... 6152 * 6153 * Our current scheme is not silly either but we take the 6154 * extra cost of the net_bh soft interrupt processing... 6155 * We do checksum and copy also but from device to kernel. 6156 */ 6157 6158 tp->rx_opt.saw_tstamp = 0; 6159 6160 /* pred_flags is 0xS?10 << 16 + snd_wnd 6161 * if header_prediction is to be made 6162 * 'S' will always be tp->tcp_header_len >> 2 6163 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6164 * turn it off (when there are holes in the receive 6165 * space for instance) 6166 * PSH flag is ignored. 6167 */ 6168 6169 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6170 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6171 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6172 int tcp_header_len = tp->tcp_header_len; 6173 s32 delta = 0; 6174 int flag = 0; 6175 6176 /* Timestamp header prediction: tcp_header_len 6177 * is automatically equal to th->doff*4 due to pred_flags 6178 * match. 6179 */ 6180 6181 /* Check timestamp */ 6182 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6183 /* No? Slow path! */ 6184 if (!tcp_parse_aligned_timestamp(tp, th)) 6185 goto slow_path; 6186 6187 delta = tp->rx_opt.rcv_tsval - 6188 tp->rx_opt.ts_recent; 6189 /* If PAWS failed, check it more carefully in slow path */ 6190 if (delta < 0) 6191 goto slow_path; 6192 6193 /* DO NOT update ts_recent here, if checksum fails 6194 * and timestamp was corrupted part, it will result 6195 * in a hung connection since we will drop all 6196 * future packets due to the PAWS test. 6197 */ 6198 } 6199 6200 if (len <= tcp_header_len) { 6201 /* Bulk data transfer: sender */ 6202 if (len == tcp_header_len) { 6203 /* Predicted packet is in window by definition. 6204 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6205 * Hence, check seq<=rcv_wup reduces to: 6206 */ 6207 if (tcp_header_len == 6208 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6209 tp->rcv_nxt == tp->rcv_wup) 6210 flag |= __tcp_replace_ts_recent(tp, 6211 delta); 6212 6213 /* We know that such packets are checksummed 6214 * on entry. 6215 */ 6216 tcp_ack(sk, skb, flag); 6217 __kfree_skb(skb); 6218 tcp_data_snd_check(sk); 6219 /* When receiving pure ack in fast path, update 6220 * last ts ecr directly instead of calling 6221 * tcp_rcv_rtt_measure_ts() 6222 */ 6223 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6224 return; 6225 } else { /* Header too small */ 6226 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6227 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6228 goto discard; 6229 } 6230 } else { 6231 int eaten = 0; 6232 bool fragstolen = false; 6233 6234 if (tcp_checksum_complete(skb)) 6235 goto csum_error; 6236 6237 if ((int)skb->truesize > sk->sk_forward_alloc) 6238 goto step5; 6239 6240 /* Predicted packet is in window by definition. 6241 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6242 * Hence, check seq<=rcv_wup reduces to: 6243 */ 6244 if (tcp_header_len == 6245 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6246 tp->rcv_nxt == tp->rcv_wup) 6247 flag |= __tcp_replace_ts_recent(tp, 6248 delta); 6249 6250 tcp_rcv_rtt_measure_ts(sk, skb); 6251 6252 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6253 6254 /* Bulk data transfer: receiver */ 6255 tcp_cleanup_skb(skb); 6256 __skb_pull(skb, tcp_header_len); 6257 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6258 6259 tcp_event_data_recv(sk, skb); 6260 6261 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6262 /* Well, only one small jumplet in fast path... */ 6263 tcp_ack(sk, skb, flag | FLAG_DATA); 6264 tcp_data_snd_check(sk); 6265 if (!inet_csk_ack_scheduled(sk)) 6266 goto no_ack; 6267 } else { 6268 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6269 } 6270 6271 __tcp_ack_snd_check(sk, 0); 6272 no_ack: 6273 if (eaten) 6274 kfree_skb_partial(skb, fragstolen); 6275 tcp_data_ready(sk); 6276 return; 6277 } 6278 } 6279 6280 slow_path: 6281 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6282 goto csum_error; 6283 6284 if (!th->ack && !th->rst && !th->syn) { 6285 reason = SKB_DROP_REASON_TCP_FLAGS; 6286 goto discard; 6287 } 6288 6289 /* 6290 * Standard slow path. 6291 */ 6292 6293 if (!tcp_validate_incoming(sk, skb, th, 1)) 6294 return; 6295 6296 step5: 6297 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6298 if ((int)reason < 0) { 6299 reason = -reason; 6300 goto discard; 6301 } 6302 tcp_rcv_rtt_measure_ts(sk, skb); 6303 6304 /* Process urgent data. */ 6305 tcp_urg(sk, skb, th); 6306 6307 /* step 7: process the segment text */ 6308 tcp_data_queue(sk, skb); 6309 6310 tcp_data_snd_check(sk); 6311 tcp_ack_snd_check(sk); 6312 return; 6313 6314 csum_error: 6315 reason = SKB_DROP_REASON_TCP_CSUM; 6316 trace_tcp_bad_csum(skb); 6317 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6318 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6319 6320 discard: 6321 tcp_drop_reason(sk, skb, reason); 6322 } 6323 EXPORT_IPV6_MOD(tcp_rcv_established); 6324 6325 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6326 { 6327 struct inet_connection_sock *icsk = inet_csk(sk); 6328 struct tcp_sock *tp = tcp_sk(sk); 6329 6330 tcp_mtup_init(sk); 6331 icsk->icsk_af_ops->rebuild_header(sk); 6332 tcp_init_metrics(sk); 6333 6334 /* Initialize the congestion window to start the transfer. 6335 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6336 * retransmitted. In light of RFC6298 more aggressive 1sec 6337 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6338 * retransmission has occurred. 6339 */ 6340 if (tp->total_retrans > 1 && tp->undo_marker) 6341 tcp_snd_cwnd_set(tp, 1); 6342 else 6343 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6344 tp->snd_cwnd_stamp = tcp_jiffies32; 6345 6346 bpf_skops_established(sk, bpf_op, skb); 6347 /* Initialize congestion control unless BPF initialized it already: */ 6348 if (!icsk->icsk_ca_initialized) 6349 tcp_init_congestion_control(sk); 6350 tcp_init_buffer_space(sk); 6351 } 6352 6353 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6354 { 6355 struct tcp_sock *tp = tcp_sk(sk); 6356 struct inet_connection_sock *icsk = inet_csk(sk); 6357 6358 tcp_ao_finish_connect(sk, skb); 6359 tcp_set_state(sk, TCP_ESTABLISHED); 6360 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6361 6362 if (skb) { 6363 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6364 security_inet_conn_established(sk, skb); 6365 sk_mark_napi_id(sk, skb); 6366 } 6367 6368 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6369 6370 /* Prevent spurious tcp_cwnd_restart() on first data 6371 * packet. 6372 */ 6373 tp->lsndtime = tcp_jiffies32; 6374 6375 if (sock_flag(sk, SOCK_KEEPOPEN)) 6376 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6377 6378 if (!tp->rx_opt.snd_wscale) 6379 __tcp_fast_path_on(tp, tp->snd_wnd); 6380 else 6381 tp->pred_flags = 0; 6382 } 6383 6384 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6385 struct tcp_fastopen_cookie *cookie) 6386 { 6387 struct tcp_sock *tp = tcp_sk(sk); 6388 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6389 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6390 bool syn_drop = false; 6391 6392 if (mss == tp->rx_opt.user_mss) { 6393 struct tcp_options_received opt; 6394 6395 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6396 tcp_clear_options(&opt); 6397 opt.user_mss = opt.mss_clamp = 0; 6398 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6399 mss = opt.mss_clamp; 6400 } 6401 6402 if (!tp->syn_fastopen) { 6403 /* Ignore an unsolicited cookie */ 6404 cookie->len = -1; 6405 } else if (tp->total_retrans) { 6406 /* SYN timed out and the SYN-ACK neither has a cookie nor 6407 * acknowledges data. Presumably the remote received only 6408 * the retransmitted (regular) SYNs: either the original 6409 * SYN-data or the corresponding SYN-ACK was dropped. 6410 */ 6411 syn_drop = (cookie->len < 0 && data); 6412 } else if (cookie->len < 0 && !tp->syn_data) { 6413 /* We requested a cookie but didn't get it. If we did not use 6414 * the (old) exp opt format then try so next time (try_exp=1). 6415 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6416 */ 6417 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6418 } 6419 6420 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6421 6422 if (data) { /* Retransmit unacked data in SYN */ 6423 if (tp->total_retrans) 6424 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6425 else 6426 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6427 skb_rbtree_walk_from(data) 6428 tcp_mark_skb_lost(sk, data); 6429 tcp_non_congestion_loss_retransmit(sk); 6430 NET_INC_STATS(sock_net(sk), 6431 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6432 return true; 6433 } 6434 tp->syn_data_acked = tp->syn_data; 6435 if (tp->syn_data_acked) { 6436 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6437 /* SYN-data is counted as two separate packets in tcp_ack() */ 6438 if (tp->delivered > 1) 6439 --tp->delivered; 6440 } 6441 6442 tcp_fastopen_add_skb(sk, synack); 6443 6444 return false; 6445 } 6446 6447 static void smc_check_reset_syn(struct tcp_sock *tp) 6448 { 6449 #if IS_ENABLED(CONFIG_SMC) 6450 if (static_branch_unlikely(&tcp_have_smc)) { 6451 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6452 tp->syn_smc = 0; 6453 } 6454 #endif 6455 } 6456 6457 static void tcp_try_undo_spurious_syn(struct sock *sk) 6458 { 6459 struct tcp_sock *tp = tcp_sk(sk); 6460 u32 syn_stamp; 6461 6462 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6463 * spurious if the ACK's timestamp option echo value matches the 6464 * original SYN timestamp. 6465 */ 6466 syn_stamp = tp->retrans_stamp; 6467 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6468 syn_stamp == tp->rx_opt.rcv_tsecr) 6469 tp->undo_marker = 0; 6470 } 6471 6472 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6473 const struct tcphdr *th) 6474 { 6475 struct inet_connection_sock *icsk = inet_csk(sk); 6476 struct tcp_sock *tp = tcp_sk(sk); 6477 struct tcp_fastopen_cookie foc = { .len = -1 }; 6478 int saved_clamp = tp->rx_opt.mss_clamp; 6479 bool fastopen_fail; 6480 SKB_DR(reason); 6481 6482 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6483 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6484 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6485 6486 if (th->ack) { 6487 /* rfc793: 6488 * "If the state is SYN-SENT then 6489 * first check the ACK bit 6490 * If the ACK bit is set 6491 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6492 * a reset (unless the RST bit is set, if so drop 6493 * the segment and return)" 6494 */ 6495 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6496 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6497 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6498 if (icsk->icsk_retransmits == 0) 6499 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 6500 TCP_TIMEOUT_MIN, false); 6501 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE); 6502 goto reset_and_undo; 6503 } 6504 6505 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6506 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6507 tcp_time_stamp_ts(tp))) { 6508 NET_INC_STATS(sock_net(sk), 6509 LINUX_MIB_PAWSACTIVEREJECTED); 6510 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6511 goto reset_and_undo; 6512 } 6513 6514 /* Now ACK is acceptable. 6515 * 6516 * "If the RST bit is set 6517 * If the ACK was acceptable then signal the user "error: 6518 * connection reset", drop the segment, enter CLOSED state, 6519 * delete TCB, and return." 6520 */ 6521 6522 if (th->rst) { 6523 tcp_reset(sk, skb); 6524 consume: 6525 __kfree_skb(skb); 6526 return 0; 6527 } 6528 6529 /* rfc793: 6530 * "fifth, if neither of the SYN or RST bits is set then 6531 * drop the segment and return." 6532 * 6533 * See note below! 6534 * --ANK(990513) 6535 */ 6536 if (!th->syn) { 6537 SKB_DR_SET(reason, TCP_FLAGS); 6538 goto discard_and_undo; 6539 } 6540 /* rfc793: 6541 * "If the SYN bit is on ... 6542 * are acceptable then ... 6543 * (our SYN has been ACKed), change the connection 6544 * state to ESTABLISHED..." 6545 */ 6546 6547 tcp_ecn_rcv_synack(tp, th); 6548 6549 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6550 tcp_try_undo_spurious_syn(sk); 6551 tcp_ack(sk, skb, FLAG_SLOWPATH); 6552 6553 /* Ok.. it's good. Set up sequence numbers and 6554 * move to established. 6555 */ 6556 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6557 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6558 6559 /* RFC1323: The window in SYN & SYN/ACK segments is 6560 * never scaled. 6561 */ 6562 tp->snd_wnd = ntohs(th->window); 6563 6564 if (!tp->rx_opt.wscale_ok) { 6565 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6566 WRITE_ONCE(tp->window_clamp, 6567 min(tp->window_clamp, 65535U)); 6568 } 6569 6570 if (tp->rx_opt.saw_tstamp) { 6571 tp->rx_opt.tstamp_ok = 1; 6572 tp->tcp_header_len = 6573 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6574 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6575 tcp_store_ts_recent(tp); 6576 } else { 6577 tp->tcp_header_len = sizeof(struct tcphdr); 6578 } 6579 6580 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6581 tcp_initialize_rcv_mss(sk); 6582 6583 /* Remember, tcp_poll() does not lock socket! 6584 * Change state from SYN-SENT only after copied_seq 6585 * is initialized. */ 6586 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6587 6588 smc_check_reset_syn(tp); 6589 6590 smp_mb(); 6591 6592 tcp_finish_connect(sk, skb); 6593 6594 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6595 tcp_rcv_fastopen_synack(sk, skb, &foc); 6596 6597 if (!sock_flag(sk, SOCK_DEAD)) { 6598 sk->sk_state_change(sk); 6599 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6600 } 6601 if (fastopen_fail) 6602 return -1; 6603 if (sk->sk_write_pending || 6604 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6605 inet_csk_in_pingpong_mode(sk)) { 6606 /* Save one ACK. Data will be ready after 6607 * several ticks, if write_pending is set. 6608 * 6609 * It may be deleted, but with this feature tcpdumps 6610 * look so _wonderfully_ clever, that I was not able 6611 * to stand against the temptation 8) --ANK 6612 */ 6613 inet_csk_schedule_ack(sk); 6614 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6615 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, 6616 TCP_DELACK_MAX, false); 6617 goto consume; 6618 } 6619 tcp_send_ack(sk); 6620 return -1; 6621 } 6622 6623 /* No ACK in the segment */ 6624 6625 if (th->rst) { 6626 /* rfc793: 6627 * "If the RST bit is set 6628 * 6629 * Otherwise (no ACK) drop the segment and return." 6630 */ 6631 SKB_DR_SET(reason, TCP_RESET); 6632 goto discard_and_undo; 6633 } 6634 6635 /* PAWS check. */ 6636 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6637 tcp_paws_reject(&tp->rx_opt, 0)) { 6638 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6639 goto discard_and_undo; 6640 } 6641 if (th->syn) { 6642 /* We see SYN without ACK. It is attempt of 6643 * simultaneous connect with crossed SYNs. 6644 * Particularly, it can be connect to self. 6645 */ 6646 #ifdef CONFIG_TCP_AO 6647 struct tcp_ao_info *ao; 6648 6649 ao = rcu_dereference_protected(tp->ao_info, 6650 lockdep_sock_is_held(sk)); 6651 if (ao) { 6652 WRITE_ONCE(ao->risn, th->seq); 6653 ao->rcv_sne = 0; 6654 } 6655 #endif 6656 tcp_set_state(sk, TCP_SYN_RECV); 6657 6658 if (tp->rx_opt.saw_tstamp) { 6659 tp->rx_opt.tstamp_ok = 1; 6660 tcp_store_ts_recent(tp); 6661 tp->tcp_header_len = 6662 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6663 } else { 6664 tp->tcp_header_len = sizeof(struct tcphdr); 6665 } 6666 6667 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6668 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6669 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6670 6671 /* RFC1323: The window in SYN & SYN/ACK segments is 6672 * never scaled. 6673 */ 6674 tp->snd_wnd = ntohs(th->window); 6675 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6676 tp->max_window = tp->snd_wnd; 6677 6678 tcp_ecn_rcv_syn(tp, th); 6679 6680 tcp_mtup_init(sk); 6681 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6682 tcp_initialize_rcv_mss(sk); 6683 6684 tcp_send_synack(sk); 6685 #if 0 6686 /* Note, we could accept data and URG from this segment. 6687 * There are no obstacles to make this (except that we must 6688 * either change tcp_recvmsg() to prevent it from returning data 6689 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6690 * 6691 * However, if we ignore data in ACKless segments sometimes, 6692 * we have no reasons to accept it sometimes. 6693 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6694 * is not flawless. So, discard packet for sanity. 6695 * Uncomment this return to process the data. 6696 */ 6697 return -1; 6698 #else 6699 goto consume; 6700 #endif 6701 } 6702 /* "fifth, if neither of the SYN or RST bits is set then 6703 * drop the segment and return." 6704 */ 6705 6706 discard_and_undo: 6707 tcp_clear_options(&tp->rx_opt); 6708 tp->rx_opt.mss_clamp = saved_clamp; 6709 tcp_drop_reason(sk, skb, reason); 6710 return 0; 6711 6712 reset_and_undo: 6713 tcp_clear_options(&tp->rx_opt); 6714 tp->rx_opt.mss_clamp = saved_clamp; 6715 /* we can reuse/return @reason to its caller to handle the exception */ 6716 return reason; 6717 } 6718 6719 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6720 { 6721 struct tcp_sock *tp = tcp_sk(sk); 6722 struct request_sock *req; 6723 6724 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6725 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6726 */ 6727 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6728 tcp_try_undo_recovery(sk); 6729 6730 tcp_update_rto_time(tp); 6731 inet_csk(sk)->icsk_retransmits = 0; 6732 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set 6733 * retrans_stamp but don't enter CA_Loss, so in case that happened we 6734 * need to zero retrans_stamp here to prevent spurious 6735 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us 6736 * to enter CA_Recovery then we need to leave retrans_stamp as it was 6737 * set entering CA_Recovery, for correct retransmits_timed_out() and 6738 * undo behavior. 6739 */ 6740 tcp_retrans_stamp_cleanup(sk); 6741 6742 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6743 * we no longer need req so release it. 6744 */ 6745 req = rcu_dereference_protected(tp->fastopen_rsk, 6746 lockdep_sock_is_held(sk)); 6747 reqsk_fastopen_remove(sk, req, false); 6748 6749 /* Re-arm the timer because data may have been sent out. 6750 * This is similar to the regular data transmission case 6751 * when new data has just been ack'ed. 6752 * 6753 * (TFO) - we could try to be more aggressive and 6754 * retransmitting any data sooner based on when they 6755 * are sent out. 6756 */ 6757 tcp_rearm_rto(sk); 6758 } 6759 6760 /* 6761 * This function implements the receiving procedure of RFC 793 for 6762 * all states except ESTABLISHED and TIME_WAIT. 6763 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6764 * address independent. 6765 */ 6766 6767 enum skb_drop_reason 6768 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6769 { 6770 struct tcp_sock *tp = tcp_sk(sk); 6771 struct inet_connection_sock *icsk = inet_csk(sk); 6772 const struct tcphdr *th = tcp_hdr(skb); 6773 struct request_sock *req; 6774 int queued = 0; 6775 SKB_DR(reason); 6776 6777 switch (sk->sk_state) { 6778 case TCP_CLOSE: 6779 SKB_DR_SET(reason, TCP_CLOSE); 6780 goto discard; 6781 6782 case TCP_LISTEN: 6783 if (th->ack) 6784 return SKB_DROP_REASON_TCP_FLAGS; 6785 6786 if (th->rst) { 6787 SKB_DR_SET(reason, TCP_RESET); 6788 goto discard; 6789 } 6790 if (th->syn) { 6791 if (th->fin) { 6792 SKB_DR_SET(reason, TCP_FLAGS); 6793 goto discard; 6794 } 6795 /* It is possible that we process SYN packets from backlog, 6796 * so we need to make sure to disable BH and RCU right there. 6797 */ 6798 rcu_read_lock(); 6799 local_bh_disable(); 6800 icsk->icsk_af_ops->conn_request(sk, skb); 6801 local_bh_enable(); 6802 rcu_read_unlock(); 6803 6804 consume_skb(skb); 6805 return 0; 6806 } 6807 SKB_DR_SET(reason, TCP_FLAGS); 6808 goto discard; 6809 6810 case TCP_SYN_SENT: 6811 tp->rx_opt.saw_tstamp = 0; 6812 tcp_mstamp_refresh(tp); 6813 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6814 if (queued >= 0) 6815 return queued; 6816 6817 /* Do step6 onward by hand. */ 6818 tcp_urg(sk, skb, th); 6819 __kfree_skb(skb); 6820 tcp_data_snd_check(sk); 6821 return 0; 6822 } 6823 6824 tcp_mstamp_refresh(tp); 6825 tp->rx_opt.saw_tstamp = 0; 6826 req = rcu_dereference_protected(tp->fastopen_rsk, 6827 lockdep_sock_is_held(sk)); 6828 if (req) { 6829 bool req_stolen; 6830 6831 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6832 sk->sk_state != TCP_FIN_WAIT1); 6833 6834 SKB_DR_SET(reason, TCP_FASTOPEN); 6835 if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason)) 6836 goto discard; 6837 } 6838 6839 if (!th->ack && !th->rst && !th->syn) { 6840 SKB_DR_SET(reason, TCP_FLAGS); 6841 goto discard; 6842 } 6843 if (!tcp_validate_incoming(sk, skb, th, 0)) 6844 return 0; 6845 6846 /* step 5: check the ACK field */ 6847 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | 6848 FLAG_UPDATE_TS_RECENT | 6849 FLAG_NO_CHALLENGE_ACK); 6850 6851 if ((int)reason <= 0) { 6852 if (sk->sk_state == TCP_SYN_RECV) { 6853 /* send one RST */ 6854 if (!reason) 6855 return SKB_DROP_REASON_TCP_OLD_ACK; 6856 return -reason; 6857 } 6858 /* accept old ack during closing */ 6859 if ((int)reason < 0) { 6860 tcp_send_challenge_ack(sk); 6861 reason = -reason; 6862 goto discard; 6863 } 6864 } 6865 SKB_DR_SET(reason, NOT_SPECIFIED); 6866 switch (sk->sk_state) { 6867 case TCP_SYN_RECV: 6868 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6869 if (!tp->srtt_us) 6870 tcp_synack_rtt_meas(sk, req); 6871 6872 if (tp->rx_opt.tstamp_ok) 6873 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6874 6875 if (req) { 6876 tcp_rcv_synrecv_state_fastopen(sk); 6877 } else { 6878 tcp_try_undo_spurious_syn(sk); 6879 tp->retrans_stamp = 0; 6880 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6881 skb); 6882 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6883 } 6884 tcp_ao_established(sk); 6885 smp_mb(); 6886 tcp_set_state(sk, TCP_ESTABLISHED); 6887 sk->sk_state_change(sk); 6888 6889 /* Note, that this wakeup is only for marginal crossed SYN case. 6890 * Passively open sockets are not waked up, because 6891 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6892 */ 6893 if (sk->sk_socket) 6894 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6895 6896 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6897 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6898 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6899 6900 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6901 tcp_update_pacing_rate(sk); 6902 6903 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6904 tp->lsndtime = tcp_jiffies32; 6905 6906 tcp_initialize_rcv_mss(sk); 6907 tcp_fast_path_on(tp); 6908 if (sk->sk_shutdown & SEND_SHUTDOWN) 6909 tcp_shutdown(sk, SEND_SHUTDOWN); 6910 break; 6911 6912 case TCP_FIN_WAIT1: { 6913 int tmo; 6914 6915 if (req) 6916 tcp_rcv_synrecv_state_fastopen(sk); 6917 6918 if (tp->snd_una != tp->write_seq) 6919 break; 6920 6921 tcp_set_state(sk, TCP_FIN_WAIT2); 6922 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6923 6924 sk_dst_confirm(sk); 6925 6926 if (!sock_flag(sk, SOCK_DEAD)) { 6927 /* Wake up lingering close() */ 6928 sk->sk_state_change(sk); 6929 break; 6930 } 6931 6932 if (READ_ONCE(tp->linger2) < 0) { 6933 tcp_done(sk); 6934 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6935 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6936 } 6937 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6938 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6939 /* Receive out of order FIN after close() */ 6940 if (tp->syn_fastopen && th->fin) 6941 tcp_fastopen_active_disable(sk); 6942 tcp_done(sk); 6943 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6944 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6945 } 6946 6947 tmo = tcp_fin_time(sk); 6948 if (tmo > TCP_TIMEWAIT_LEN) { 6949 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6950 } else if (th->fin || sock_owned_by_user(sk)) { 6951 /* Bad case. We could lose such FIN otherwise. 6952 * It is not a big problem, but it looks confusing 6953 * and not so rare event. We still can lose it now, 6954 * if it spins in bh_lock_sock(), but it is really 6955 * marginal case. 6956 */ 6957 tcp_reset_keepalive_timer(sk, tmo); 6958 } else { 6959 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6960 goto consume; 6961 } 6962 break; 6963 } 6964 6965 case TCP_CLOSING: 6966 if (tp->snd_una == tp->write_seq) { 6967 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6968 goto consume; 6969 } 6970 break; 6971 6972 case TCP_LAST_ACK: 6973 if (tp->snd_una == tp->write_seq) { 6974 tcp_update_metrics(sk); 6975 tcp_done(sk); 6976 goto consume; 6977 } 6978 break; 6979 } 6980 6981 /* step 6: check the URG bit */ 6982 tcp_urg(sk, skb, th); 6983 6984 /* step 7: process the segment text */ 6985 switch (sk->sk_state) { 6986 case TCP_CLOSE_WAIT: 6987 case TCP_CLOSING: 6988 case TCP_LAST_ACK: 6989 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6990 /* If a subflow has been reset, the packet should not 6991 * continue to be processed, drop the packet. 6992 */ 6993 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6994 goto discard; 6995 break; 6996 } 6997 fallthrough; 6998 case TCP_FIN_WAIT1: 6999 case TCP_FIN_WAIT2: 7000 /* RFC 793 says to queue data in these states, 7001 * RFC 1122 says we MUST send a reset. 7002 * BSD 4.4 also does reset. 7003 */ 7004 if (sk->sk_shutdown & RCV_SHUTDOWN) { 7005 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 7006 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 7007 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 7008 tcp_reset(sk, skb); 7009 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 7010 } 7011 } 7012 fallthrough; 7013 case TCP_ESTABLISHED: 7014 tcp_data_queue(sk, skb); 7015 queued = 1; 7016 break; 7017 } 7018 7019 /* tcp_data could move socket to TIME-WAIT */ 7020 if (sk->sk_state != TCP_CLOSE) { 7021 tcp_data_snd_check(sk); 7022 tcp_ack_snd_check(sk); 7023 } 7024 7025 if (!queued) { 7026 discard: 7027 tcp_drop_reason(sk, skb, reason); 7028 } 7029 return 0; 7030 7031 consume: 7032 __kfree_skb(skb); 7033 return 0; 7034 } 7035 EXPORT_IPV6_MOD(tcp_rcv_state_process); 7036 7037 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 7038 { 7039 struct inet_request_sock *ireq = inet_rsk(req); 7040 7041 if (family == AF_INET) 7042 net_dbg_ratelimited("drop open request from %pI4/%u\n", 7043 &ireq->ir_rmt_addr, port); 7044 #if IS_ENABLED(CONFIG_IPV6) 7045 else if (family == AF_INET6) 7046 net_dbg_ratelimited("drop open request from %pI6/%u\n", 7047 &ireq->ir_v6_rmt_addr, port); 7048 #endif 7049 } 7050 7051 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 7052 * 7053 * If we receive a SYN packet with these bits set, it means a 7054 * network is playing bad games with TOS bits. In order to 7055 * avoid possible false congestion notifications, we disable 7056 * TCP ECN negotiation. 7057 * 7058 * Exception: tcp_ca wants ECN. This is required for DCTCP 7059 * congestion control: Linux DCTCP asserts ECT on all packets, 7060 * including SYN, which is most optimal solution; however, 7061 * others, such as FreeBSD do not. 7062 * 7063 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 7064 * set, indicating the use of a future TCP extension (such as AccECN). See 7065 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 7066 * extensions. 7067 */ 7068 static void tcp_ecn_create_request(struct request_sock *req, 7069 const struct sk_buff *skb, 7070 const struct sock *listen_sk, 7071 const struct dst_entry *dst) 7072 { 7073 const struct tcphdr *th = tcp_hdr(skb); 7074 const struct net *net = sock_net(listen_sk); 7075 bool th_ecn = th->ece && th->cwr; 7076 bool ect, ecn_ok; 7077 u32 ecn_ok_dst; 7078 7079 if (!th_ecn) 7080 return; 7081 7082 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 7083 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 7084 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 7085 7086 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 7087 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 7088 tcp_bpf_ca_needs_ecn((struct sock *)req)) 7089 inet_rsk(req)->ecn_ok = 1; 7090 } 7091 7092 static void tcp_openreq_init(struct request_sock *req, 7093 const struct tcp_options_received *rx_opt, 7094 struct sk_buff *skb, const struct sock *sk) 7095 { 7096 struct inet_request_sock *ireq = inet_rsk(req); 7097 7098 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 7099 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 7100 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 7101 tcp_rsk(req)->snt_synack = 0; 7102 tcp_rsk(req)->snt_tsval_first = 0; 7103 tcp_rsk(req)->last_oow_ack_time = 0; 7104 req->mss = rx_opt->mss_clamp; 7105 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 7106 ireq->tstamp_ok = rx_opt->tstamp_ok; 7107 ireq->sack_ok = rx_opt->sack_ok; 7108 ireq->snd_wscale = rx_opt->snd_wscale; 7109 ireq->wscale_ok = rx_opt->wscale_ok; 7110 ireq->acked = 0; 7111 ireq->ecn_ok = 0; 7112 ireq->ir_rmt_port = tcp_hdr(skb)->source; 7113 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 7114 ireq->ir_mark = inet_request_mark(sk, skb); 7115 #if IS_ENABLED(CONFIG_SMC) 7116 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 7117 tcp_sk(sk)->smc_hs_congested(sk)); 7118 #endif 7119 } 7120 7121 /* 7122 * Return true if a syncookie should be sent 7123 */ 7124 static bool tcp_syn_flood_action(struct sock *sk, const char *proto) 7125 { 7126 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 7127 const char *msg = "Dropping request"; 7128 struct net *net = sock_net(sk); 7129 bool want_cookie = false; 7130 u8 syncookies; 7131 7132 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7133 7134 #ifdef CONFIG_SYN_COOKIES 7135 if (syncookies) { 7136 msg = "Sending cookies"; 7137 want_cookie = true; 7138 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 7139 } else 7140 #endif 7141 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 7142 7143 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 7144 xchg(&queue->synflood_warned, 1) == 0) { 7145 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 7146 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 7147 proto, inet6_rcv_saddr(sk), 7148 sk->sk_num, msg); 7149 } else { 7150 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7151 proto, &sk->sk_rcv_saddr, 7152 sk->sk_num, msg); 7153 } 7154 } 7155 7156 return want_cookie; 7157 } 7158 7159 static void tcp_reqsk_record_syn(const struct sock *sk, 7160 struct request_sock *req, 7161 const struct sk_buff *skb) 7162 { 7163 if (tcp_sk(sk)->save_syn) { 7164 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7165 struct saved_syn *saved_syn; 7166 u32 mac_hdrlen; 7167 void *base; 7168 7169 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7170 base = skb_mac_header(skb); 7171 mac_hdrlen = skb_mac_header_len(skb); 7172 len += mac_hdrlen; 7173 } else { 7174 base = skb_network_header(skb); 7175 mac_hdrlen = 0; 7176 } 7177 7178 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7179 GFP_ATOMIC); 7180 if (saved_syn) { 7181 saved_syn->mac_hdrlen = mac_hdrlen; 7182 saved_syn->network_hdrlen = skb_network_header_len(skb); 7183 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7184 memcpy(saved_syn->data, base, len); 7185 req->saved_syn = saved_syn; 7186 } 7187 } 7188 } 7189 7190 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7191 * used for SYN cookie generation. 7192 */ 7193 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7194 const struct tcp_request_sock_ops *af_ops, 7195 struct sock *sk, struct tcphdr *th) 7196 { 7197 struct tcp_sock *tp = tcp_sk(sk); 7198 u16 mss; 7199 7200 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7201 !inet_csk_reqsk_queue_is_full(sk)) 7202 return 0; 7203 7204 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7205 return 0; 7206 7207 if (sk_acceptq_is_full(sk)) { 7208 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7209 return 0; 7210 } 7211 7212 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7213 if (!mss) 7214 mss = af_ops->mss_clamp; 7215 7216 return mss; 7217 } 7218 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss); 7219 7220 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7221 const struct tcp_request_sock_ops *af_ops, 7222 struct sock *sk, struct sk_buff *skb) 7223 { 7224 struct tcp_fastopen_cookie foc = { .len = -1 }; 7225 struct tcp_options_received tmp_opt; 7226 struct tcp_sock *tp = tcp_sk(sk); 7227 struct net *net = sock_net(sk); 7228 struct sock *fastopen_sk = NULL; 7229 struct request_sock *req; 7230 bool want_cookie = false; 7231 struct dst_entry *dst; 7232 struct flowi fl; 7233 u8 syncookies; 7234 u32 isn; 7235 7236 #ifdef CONFIG_TCP_AO 7237 const struct tcp_ao_hdr *aoh; 7238 #endif 7239 7240 isn = __this_cpu_read(tcp_tw_isn); 7241 if (isn) { 7242 /* TW buckets are converted to open requests without 7243 * limitations, they conserve resources and peer is 7244 * evidently real one. 7245 */ 7246 __this_cpu_write(tcp_tw_isn, 0); 7247 } else { 7248 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7249 7250 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) { 7251 want_cookie = tcp_syn_flood_action(sk, 7252 rsk_ops->slab_name); 7253 if (!want_cookie) 7254 goto drop; 7255 } 7256 } 7257 7258 if (sk_acceptq_is_full(sk)) { 7259 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7260 goto drop; 7261 } 7262 7263 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7264 if (!req) 7265 goto drop; 7266 7267 req->syncookie = want_cookie; 7268 tcp_rsk(req)->af_specific = af_ops; 7269 tcp_rsk(req)->ts_off = 0; 7270 tcp_rsk(req)->req_usec_ts = false; 7271 #if IS_ENABLED(CONFIG_MPTCP) 7272 tcp_rsk(req)->is_mptcp = 0; 7273 #endif 7274 7275 tcp_clear_options(&tmp_opt); 7276 tmp_opt.mss_clamp = af_ops->mss_clamp; 7277 tmp_opt.user_mss = tp->rx_opt.user_mss; 7278 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7279 want_cookie ? NULL : &foc); 7280 7281 if (want_cookie && !tmp_opt.saw_tstamp) 7282 tcp_clear_options(&tmp_opt); 7283 7284 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7285 tmp_opt.smc_ok = 0; 7286 7287 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7288 tcp_openreq_init(req, &tmp_opt, skb, sk); 7289 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7290 7291 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7292 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7293 7294 dst = af_ops->route_req(sk, skb, &fl, req, isn); 7295 if (!dst) 7296 goto drop_and_free; 7297 7298 if (tmp_opt.tstamp_ok) { 7299 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 7300 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7301 } 7302 if (!want_cookie && !isn) { 7303 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7304 7305 /* Kill the following clause, if you dislike this way. */ 7306 if (!syncookies && 7307 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7308 (max_syn_backlog >> 2)) && 7309 !tcp_peer_is_proven(req, dst)) { 7310 /* Without syncookies last quarter of 7311 * backlog is filled with destinations, 7312 * proven to be alive. 7313 * It means that we continue to communicate 7314 * to destinations, already remembered 7315 * to the moment of synflood. 7316 */ 7317 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7318 rsk_ops->family); 7319 goto drop_and_release; 7320 } 7321 7322 isn = af_ops->init_seq(skb); 7323 } 7324 7325 tcp_ecn_create_request(req, skb, sk, dst); 7326 7327 if (want_cookie) { 7328 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7329 if (!tmp_opt.tstamp_ok) 7330 inet_rsk(req)->ecn_ok = 0; 7331 } 7332 7333 #ifdef CONFIG_TCP_AO 7334 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 7335 goto drop_and_release; /* Invalid TCP options */ 7336 if (aoh) { 7337 tcp_rsk(req)->used_tcp_ao = true; 7338 tcp_rsk(req)->ao_rcv_next = aoh->keyid; 7339 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid; 7340 7341 } else { 7342 tcp_rsk(req)->used_tcp_ao = false; 7343 } 7344 #endif 7345 tcp_rsk(req)->snt_isn = isn; 7346 tcp_rsk(req)->txhash = net_tx_rndhash(); 7347 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7348 tcp_openreq_init_rwin(req, sk, dst); 7349 sk_rx_queue_set(req_to_sk(req), skb); 7350 if (!want_cookie) { 7351 tcp_reqsk_record_syn(sk, req, skb); 7352 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7353 } 7354 if (fastopen_sk) { 7355 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7356 &foc, TCP_SYNACK_FASTOPEN, skb); 7357 /* Add the child socket directly into the accept queue */ 7358 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7359 reqsk_fastopen_remove(fastopen_sk, req, false); 7360 bh_unlock_sock(fastopen_sk); 7361 sock_put(fastopen_sk); 7362 goto drop_and_free; 7363 } 7364 sk->sk_data_ready(sk); 7365 bh_unlock_sock(fastopen_sk); 7366 sock_put(fastopen_sk); 7367 } else { 7368 tcp_rsk(req)->tfo_listener = false; 7369 if (!want_cookie) { 7370 req->timeout = tcp_timeout_init((struct sock *)req); 7371 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req, 7372 req->timeout))) { 7373 reqsk_free(req); 7374 dst_release(dst); 7375 return 0; 7376 } 7377 7378 } 7379 af_ops->send_synack(sk, dst, &fl, req, &foc, 7380 !want_cookie ? TCP_SYNACK_NORMAL : 7381 TCP_SYNACK_COOKIE, 7382 skb); 7383 if (want_cookie) { 7384 reqsk_free(req); 7385 return 0; 7386 } 7387 } 7388 reqsk_put(req); 7389 return 0; 7390 7391 drop_and_release: 7392 dst_release(dst); 7393 drop_and_free: 7394 __reqsk_free(req); 7395 drop: 7396 tcp_listendrop(sk); 7397 return 0; 7398 } 7399 EXPORT_IPV6_MOD(tcp_conn_request); 7400