xref: /linux/net/ipv4/tcp_input.c (revision f99cb7a43c5cca1813a97312487acf7a0f88ee2a)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91 
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94 
95 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
102 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
109 
110 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 
116 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
117 
118 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
119 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120 
121 /* Adapt the MSS value used to make delayed ack decision to the
122  * real world.
123  */
124 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
125 {
126 	struct inet_connection_sock *icsk = inet_csk(sk);
127 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 	unsigned int len;
129 
130 	icsk->icsk_ack.last_seg_size = 0;
131 
132 	/* skb->len may jitter because of SACKs, even if peer
133 	 * sends good full-sized frames.
134 	 */
135 	len = skb_shinfo(skb)->gso_size ? : skb->len;
136 	if (len >= icsk->icsk_ack.rcv_mss) {
137 		icsk->icsk_ack.rcv_mss = len;
138 	} else {
139 		/* Otherwise, we make more careful check taking into account,
140 		 * that SACKs block is variable.
141 		 *
142 		 * "len" is invariant segment length, including TCP header.
143 		 */
144 		len += skb->data - skb_transport_header(skb);
145 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 		    /* If PSH is not set, packet should be
147 		     * full sized, provided peer TCP is not badly broken.
148 		     * This observation (if it is correct 8)) allows
149 		     * to handle super-low mtu links fairly.
150 		     */
151 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 			/* Subtract also invariant (if peer is RFC compliant),
154 			 * tcp header plus fixed timestamp option length.
155 			 * Resulting "len" is MSS free of SACK jitter.
156 			 */
157 			len -= tcp_sk(sk)->tcp_header_len;
158 			icsk->icsk_ack.last_seg_size = len;
159 			if (len == lss) {
160 				icsk->icsk_ack.rcv_mss = len;
161 				return;
162 			}
163 		}
164 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 	}
168 }
169 
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172 	struct inet_connection_sock *icsk = inet_csk(sk);
173 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174 
175 	if (quickacks == 0)
176 		quickacks = 2;
177 	if (quickacks > icsk->icsk_ack.quick)
178 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180 
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183 	struct inet_connection_sock *icsk = inet_csk(sk);
184 	tcp_incr_quickack(sk);
185 	icsk->icsk_ack.pingpong = 0;
186 	icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188 
189 /* Send ACKs quickly, if "quick" count is not exhausted
190  * and the session is not interactive.
191  */
192 
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195 	const struct inet_connection_sock *icsk = inet_csk(sk);
196 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198 
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201 	if (tp->ecn_flags & TCP_ECN_OK)
202 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204 
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207 	if (tcp_hdr(skb)->cwr)
208 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210 
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215 
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218 	if (tp->ecn_flags & TCP_ECN_OK) {
219 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 		/* Funny extension: if ECT is not set on a segment,
222 		 * it is surely retransmit. It is not in ECN RFC,
223 		 * but Linux follows this rule. */
224 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 			tcp_enter_quickack_mode((struct sock *)tp);
226 	}
227 }
228 
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
232 		tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234 
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
238 		tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240 
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
244 		return 1;
245 	return 0;
246 }
247 
248 /* Buffer size and advertised window tuning.
249  *
250  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251  */
252 
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 		     sizeof(struct sk_buff);
257 
258 	if (sk->sk_sndbuf < 3 * sndmem)
259 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261 
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263  *
264  * All tcp_full_space() is split to two parts: "network" buffer, allocated
265  * forward and advertised in receiver window (tp->rcv_wnd) and
266  * "application buffer", required to isolate scheduling/application
267  * latencies from network.
268  * window_clamp is maximal advertised window. It can be less than
269  * tcp_full_space(), in this case tcp_full_space() - window_clamp
270  * is reserved for "application" buffer. The less window_clamp is
271  * the smoother our behaviour from viewpoint of network, but the lower
272  * throughput and the higher sensitivity of the connection to losses. 8)
273  *
274  * rcv_ssthresh is more strict window_clamp used at "slow start"
275  * phase to predict further behaviour of this connection.
276  * It is used for two goals:
277  * - to enforce header prediction at sender, even when application
278  *   requires some significant "application buffer". It is check #1.
279  * - to prevent pruning of receive queue because of misprediction
280  *   of receiver window. Check #2.
281  *
282  * The scheme does not work when sender sends good segments opening
283  * window and then starts to feed us spaghetti. But it should work
284  * in common situations. Otherwise, we have to rely on queue collapsing.
285  */
286 
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290 	struct tcp_sock *tp = tcp_sk(sk);
291 	/* Optimize this! */
292 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
293 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
294 
295 	while (tp->rcv_ssthresh <= window) {
296 		if (truesize <= skb->len)
297 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298 
299 		truesize >>= 1;
300 		window >>= 1;
301 	}
302 	return 0;
303 }
304 
305 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
306 {
307 	struct tcp_sock *tp = tcp_sk(sk);
308 
309 	/* Check #1 */
310 	if (tp->rcv_ssthresh < tp->window_clamp &&
311 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
312 	    !tcp_memory_pressure) {
313 		int incr;
314 
315 		/* Check #2. Increase window, if skb with such overhead
316 		 * will fit to rcvbuf in future.
317 		 */
318 		if (tcp_win_from_space(skb->truesize) <= skb->len)
319 			incr = 2 * tp->advmss;
320 		else
321 			incr = __tcp_grow_window(sk, skb);
322 
323 		if (incr) {
324 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
325 					       tp->window_clamp);
326 			inet_csk(sk)->icsk_ack.quick |= 1;
327 		}
328 	}
329 }
330 
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332 
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335 	struct tcp_sock *tp = tcp_sk(sk);
336 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337 
338 	/* Try to select rcvbuf so that 4 mss-sized segments
339 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 	 */
342 	while (tcp_win_from_space(rcvmem) < tp->advmss)
343 		rcvmem += 128;
344 	if (sk->sk_rcvbuf < 4 * rcvmem)
345 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347 
348 /* 4. Try to fixup all. It is made immediately after connection enters
349  *    established state.
350  */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353 	struct tcp_sock *tp = tcp_sk(sk);
354 	int maxwin;
355 
356 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 		tcp_fixup_rcvbuf(sk);
358 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 		tcp_fixup_sndbuf(sk);
360 
361 	tp->rcvq_space.space = tp->rcv_wnd;
362 
363 	maxwin = tcp_full_space(sk);
364 
365 	if (tp->window_clamp >= maxwin) {
366 		tp->window_clamp = maxwin;
367 
368 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 			tp->window_clamp = max(maxwin -
370 					       (maxwin >> sysctl_tcp_app_win),
371 					       4 * tp->advmss);
372 	}
373 
374 	/* Force reservation of one segment. */
375 	if (sysctl_tcp_app_win &&
376 	    tp->window_clamp > 2 * tp->advmss &&
377 	    tp->window_clamp + tp->advmss > maxwin)
378 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379 
380 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 	tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383 
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387 	struct tcp_sock *tp = tcp_sk(sk);
388 	struct inet_connection_sock *icsk = inet_csk(sk);
389 
390 	icsk->icsk_ack.quick = 0;
391 
392 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 	    !tcp_memory_pressure &&
395 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 				    sysctl_tcp_rmem[2]);
398 	}
399 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
401 }
402 
403 /* Initialize RCV_MSS value.
404  * RCV_MSS is an our guess about MSS used by the peer.
405  * We haven't any direct information about the MSS.
406  * It's better to underestimate the RCV_MSS rather than overestimate.
407  * Overestimations make us ACKing less frequently than needed.
408  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
409  */
410 void tcp_initialize_rcv_mss(struct sock *sk)
411 {
412 	struct tcp_sock *tp = tcp_sk(sk);
413 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
414 
415 	hint = min(hint, tp->rcv_wnd / 2);
416 	hint = min(hint, TCP_MIN_RCVMSS);
417 	hint = max(hint, TCP_MIN_MSS);
418 
419 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
420 }
421 
422 /* Receiver "autotuning" code.
423  *
424  * The algorithm for RTT estimation w/o timestamps is based on
425  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
426  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
427  *
428  * More detail on this code can be found at
429  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
430  * though this reference is out of date.  A new paper
431  * is pending.
432  */
433 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
434 {
435 	u32 new_sample = tp->rcv_rtt_est.rtt;
436 	long m = sample;
437 
438 	if (m == 0)
439 		m = 1;
440 
441 	if (new_sample != 0) {
442 		/* If we sample in larger samples in the non-timestamp
443 		 * case, we could grossly overestimate the RTT especially
444 		 * with chatty applications or bulk transfer apps which
445 		 * are stalled on filesystem I/O.
446 		 *
447 		 * Also, since we are only going for a minimum in the
448 		 * non-timestamp case, we do not smooth things out
449 		 * else with timestamps disabled convergence takes too
450 		 * long.
451 		 */
452 		if (!win_dep) {
453 			m -= (new_sample >> 3);
454 			new_sample += m;
455 		} else if (m < new_sample)
456 			new_sample = m << 3;
457 	} else {
458 		/* No previous measure. */
459 		new_sample = m << 3;
460 	}
461 
462 	if (tp->rcv_rtt_est.rtt != new_sample)
463 		tp->rcv_rtt_est.rtt = new_sample;
464 }
465 
466 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
467 {
468 	if (tp->rcv_rtt_est.time == 0)
469 		goto new_measure;
470 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
471 		return;
472 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
473 
474 new_measure:
475 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
476 	tp->rcv_rtt_est.time = tcp_time_stamp;
477 }
478 
479 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
480 					  const struct sk_buff *skb)
481 {
482 	struct tcp_sock *tp = tcp_sk(sk);
483 	if (tp->rx_opt.rcv_tsecr &&
484 	    (TCP_SKB_CB(skb)->end_seq -
485 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
486 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487 }
488 
489 /*
490  * This function should be called every time data is copied to user space.
491  * It calculates the appropriate TCP receive buffer space.
492  */
493 void tcp_rcv_space_adjust(struct sock *sk)
494 {
495 	struct tcp_sock *tp = tcp_sk(sk);
496 	int time;
497 	int space;
498 
499 	if (tp->rcvq_space.time == 0)
500 		goto new_measure;
501 
502 	time = tcp_time_stamp - tp->rcvq_space.time;
503 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
504 		return;
505 
506 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
507 
508 	space = max(tp->rcvq_space.space, space);
509 
510 	if (tp->rcvq_space.space != space) {
511 		int rcvmem;
512 
513 		tp->rcvq_space.space = space;
514 
515 		if (sysctl_tcp_moderate_rcvbuf &&
516 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
517 			int new_clamp = space;
518 
519 			/* Receive space grows, normalize in order to
520 			 * take into account packet headers and sk_buff
521 			 * structure overhead.
522 			 */
523 			space /= tp->advmss;
524 			if (!space)
525 				space = 1;
526 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
527 				  16 + sizeof(struct sk_buff));
528 			while (tcp_win_from_space(rcvmem) < tp->advmss)
529 				rcvmem += 128;
530 			space *= rcvmem;
531 			space = min(space, sysctl_tcp_rmem[2]);
532 			if (space > sk->sk_rcvbuf) {
533 				sk->sk_rcvbuf = space;
534 
535 				/* Make the window clamp follow along.  */
536 				tp->window_clamp = new_clamp;
537 			}
538 		}
539 	}
540 
541 new_measure:
542 	tp->rcvq_space.seq = tp->copied_seq;
543 	tp->rcvq_space.time = tcp_time_stamp;
544 }
545 
546 /* There is something which you must keep in mind when you analyze the
547  * behavior of the tp->ato delayed ack timeout interval.  When a
548  * connection starts up, we want to ack as quickly as possible.  The
549  * problem is that "good" TCP's do slow start at the beginning of data
550  * transmission.  The means that until we send the first few ACK's the
551  * sender will sit on his end and only queue most of his data, because
552  * he can only send snd_cwnd unacked packets at any given time.  For
553  * each ACK we send, he increments snd_cwnd and transmits more of his
554  * queue.  -DaveM
555  */
556 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
557 {
558 	struct tcp_sock *tp = tcp_sk(sk);
559 	struct inet_connection_sock *icsk = inet_csk(sk);
560 	u32 now;
561 
562 	inet_csk_schedule_ack(sk);
563 
564 	tcp_measure_rcv_mss(sk, skb);
565 
566 	tcp_rcv_rtt_measure(tp);
567 
568 	now = tcp_time_stamp;
569 
570 	if (!icsk->icsk_ack.ato) {
571 		/* The _first_ data packet received, initialize
572 		 * delayed ACK engine.
573 		 */
574 		tcp_incr_quickack(sk);
575 		icsk->icsk_ack.ato = TCP_ATO_MIN;
576 	} else {
577 		int m = now - icsk->icsk_ack.lrcvtime;
578 
579 		if (m <= TCP_ATO_MIN / 2) {
580 			/* The fastest case is the first. */
581 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
582 		} else if (m < icsk->icsk_ack.ato) {
583 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
584 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
585 				icsk->icsk_ack.ato = icsk->icsk_rto;
586 		} else if (m > icsk->icsk_rto) {
587 			/* Too long gap. Apparently sender failed to
588 			 * restart window, so that we send ACKs quickly.
589 			 */
590 			tcp_incr_quickack(sk);
591 			sk_mem_reclaim(sk);
592 		}
593 	}
594 	icsk->icsk_ack.lrcvtime = now;
595 
596 	TCP_ECN_check_ce(tp, skb);
597 
598 	if (skb->len >= 128)
599 		tcp_grow_window(sk, skb);
600 }
601 
602 static u32 tcp_rto_min(struct sock *sk)
603 {
604 	struct dst_entry *dst = __sk_dst_get(sk);
605 	u32 rto_min = TCP_RTO_MIN;
606 
607 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
608 		rto_min = dst->metrics[RTAX_RTO_MIN - 1];
609 	return rto_min;
610 }
611 
612 /* Called to compute a smoothed rtt estimate. The data fed to this
613  * routine either comes from timestamps, or from segments that were
614  * known _not_ to have been retransmitted [see Karn/Partridge
615  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
616  * piece by Van Jacobson.
617  * NOTE: the next three routines used to be one big routine.
618  * To save cycles in the RFC 1323 implementation it was better to break
619  * it up into three procedures. -- erics
620  */
621 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
622 {
623 	struct tcp_sock *tp = tcp_sk(sk);
624 	long m = mrtt; /* RTT */
625 
626 	/*	The following amusing code comes from Jacobson's
627 	 *	article in SIGCOMM '88.  Note that rtt and mdev
628 	 *	are scaled versions of rtt and mean deviation.
629 	 *	This is designed to be as fast as possible
630 	 *	m stands for "measurement".
631 	 *
632 	 *	On a 1990 paper the rto value is changed to:
633 	 *	RTO = rtt + 4 * mdev
634 	 *
635 	 * Funny. This algorithm seems to be very broken.
636 	 * These formulae increase RTO, when it should be decreased, increase
637 	 * too slowly, when it should be increased quickly, decrease too quickly
638 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
639 	 * does not matter how to _calculate_ it. Seems, it was trap
640 	 * that VJ failed to avoid. 8)
641 	 */
642 	if (m == 0)
643 		m = 1;
644 	if (tp->srtt != 0) {
645 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
646 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
647 		if (m < 0) {
648 			m = -m;		/* m is now abs(error) */
649 			m -= (tp->mdev >> 2);   /* similar update on mdev */
650 			/* This is similar to one of Eifel findings.
651 			 * Eifel blocks mdev updates when rtt decreases.
652 			 * This solution is a bit different: we use finer gain
653 			 * for mdev in this case (alpha*beta).
654 			 * Like Eifel it also prevents growth of rto,
655 			 * but also it limits too fast rto decreases,
656 			 * happening in pure Eifel.
657 			 */
658 			if (m > 0)
659 				m >>= 3;
660 		} else {
661 			m -= (tp->mdev >> 2);   /* similar update on mdev */
662 		}
663 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
664 		if (tp->mdev > tp->mdev_max) {
665 			tp->mdev_max = tp->mdev;
666 			if (tp->mdev_max > tp->rttvar)
667 				tp->rttvar = tp->mdev_max;
668 		}
669 		if (after(tp->snd_una, tp->rtt_seq)) {
670 			if (tp->mdev_max < tp->rttvar)
671 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
672 			tp->rtt_seq = tp->snd_nxt;
673 			tp->mdev_max = tcp_rto_min(sk);
674 		}
675 	} else {
676 		/* no previous measure. */
677 		tp->srtt = m << 3;	/* take the measured time to be rtt */
678 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
679 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
680 		tp->rtt_seq = tp->snd_nxt;
681 	}
682 }
683 
684 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
685  * routine referred to above.
686  */
687 static inline void tcp_set_rto(struct sock *sk)
688 {
689 	const struct tcp_sock *tp = tcp_sk(sk);
690 	/* Old crap is replaced with new one. 8)
691 	 *
692 	 * More seriously:
693 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
694 	 *    It cannot be less due to utterly erratic ACK generation made
695 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
696 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
697 	 *    is invisible. Actually, Linux-2.4 also generates erratic
698 	 *    ACKs in some circumstances.
699 	 */
700 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
701 
702 	/* 2. Fixups made earlier cannot be right.
703 	 *    If we do not estimate RTO correctly without them,
704 	 *    all the algo is pure shit and should be replaced
705 	 *    with correct one. It is exactly, which we pretend to do.
706 	 */
707 }
708 
709 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
710  * guarantees that rto is higher.
711  */
712 static inline void tcp_bound_rto(struct sock *sk)
713 {
714 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
715 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
716 }
717 
718 /* Save metrics learned by this TCP session.
719    This function is called only, when TCP finishes successfully
720    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
721  */
722 void tcp_update_metrics(struct sock *sk)
723 {
724 	struct tcp_sock *tp = tcp_sk(sk);
725 	struct dst_entry *dst = __sk_dst_get(sk);
726 
727 	if (sysctl_tcp_nometrics_save)
728 		return;
729 
730 	dst_confirm(dst);
731 
732 	if (dst && (dst->flags & DST_HOST)) {
733 		const struct inet_connection_sock *icsk = inet_csk(sk);
734 		int m;
735 
736 		if (icsk->icsk_backoff || !tp->srtt) {
737 			/* This session failed to estimate rtt. Why?
738 			 * Probably, no packets returned in time.
739 			 * Reset our results.
740 			 */
741 			if (!(dst_metric_locked(dst, RTAX_RTT)))
742 				dst->metrics[RTAX_RTT - 1] = 0;
743 			return;
744 		}
745 
746 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
747 
748 		/* If newly calculated rtt larger than stored one,
749 		 * store new one. Otherwise, use EWMA. Remember,
750 		 * rtt overestimation is always better than underestimation.
751 		 */
752 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
753 			if (m <= 0)
754 				dst->metrics[RTAX_RTT - 1] = tp->srtt;
755 			else
756 				dst->metrics[RTAX_RTT - 1] -= (m >> 3);
757 		}
758 
759 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
760 			if (m < 0)
761 				m = -m;
762 
763 			/* Scale deviation to rttvar fixed point */
764 			m >>= 1;
765 			if (m < tp->mdev)
766 				m = tp->mdev;
767 
768 			if (m >= dst_metric(dst, RTAX_RTTVAR))
769 				dst->metrics[RTAX_RTTVAR - 1] = m;
770 			else
771 				dst->metrics[RTAX_RTTVAR-1] -=
772 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
773 		}
774 
775 		if (tp->snd_ssthresh >= 0xFFFF) {
776 			/* Slow start still did not finish. */
777 			if (dst_metric(dst, RTAX_SSTHRESH) &&
778 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
779 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
780 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
781 			if (!dst_metric_locked(dst, RTAX_CWND) &&
782 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
783 				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
784 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
785 			   icsk->icsk_ca_state == TCP_CA_Open) {
786 			/* Cong. avoidance phase, cwnd is reliable. */
787 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
788 				dst->metrics[RTAX_SSTHRESH-1] =
789 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
790 			if (!dst_metric_locked(dst, RTAX_CWND))
791 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
792 		} else {
793 			/* Else slow start did not finish, cwnd is non-sense,
794 			   ssthresh may be also invalid.
795 			 */
796 			if (!dst_metric_locked(dst, RTAX_CWND))
797 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
798 			if (dst->metrics[RTAX_SSTHRESH-1] &&
799 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
800 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
801 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
802 		}
803 
804 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
805 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
806 			    tp->reordering != sysctl_tcp_reordering)
807 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
808 		}
809 	}
810 }
811 
812 /* Numbers are taken from RFC3390.
813  *
814  * John Heffner states:
815  *
816  *	The RFC specifies a window of no more than 4380 bytes
817  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
818  *	is a bit misleading because they use a clamp at 4380 bytes
819  *	rather than use a multiplier in the relevant range.
820  */
821 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
822 {
823 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
824 
825 	if (!cwnd) {
826 		if (tp->mss_cache > 1460)
827 			cwnd = 2;
828 		else
829 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
830 	}
831 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
832 }
833 
834 /* Set slow start threshold and cwnd not falling to slow start */
835 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
836 {
837 	struct tcp_sock *tp = tcp_sk(sk);
838 	const struct inet_connection_sock *icsk = inet_csk(sk);
839 
840 	tp->prior_ssthresh = 0;
841 	tp->bytes_acked = 0;
842 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
843 		tp->undo_marker = 0;
844 		if (set_ssthresh)
845 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
846 		tp->snd_cwnd = min(tp->snd_cwnd,
847 				   tcp_packets_in_flight(tp) + 1U);
848 		tp->snd_cwnd_cnt = 0;
849 		tp->high_seq = tp->snd_nxt;
850 		tp->snd_cwnd_stamp = tcp_time_stamp;
851 		TCP_ECN_queue_cwr(tp);
852 
853 		tcp_set_ca_state(sk, TCP_CA_CWR);
854 	}
855 }
856 
857 /*
858  * Packet counting of FACK is based on in-order assumptions, therefore TCP
859  * disables it when reordering is detected
860  */
861 static void tcp_disable_fack(struct tcp_sock *tp)
862 {
863 	/* RFC3517 uses different metric in lost marker => reset on change */
864 	if (tcp_is_fack(tp))
865 		tp->lost_skb_hint = NULL;
866 	tp->rx_opt.sack_ok &= ~2;
867 }
868 
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872 	tp->rx_opt.sack_ok |= 4;
873 }
874 
875 /* Initialize metrics on socket. */
876 
877 static void tcp_init_metrics(struct sock *sk)
878 {
879 	struct tcp_sock *tp = tcp_sk(sk);
880 	struct dst_entry *dst = __sk_dst_get(sk);
881 
882 	if (dst == NULL)
883 		goto reset;
884 
885 	dst_confirm(dst);
886 
887 	if (dst_metric_locked(dst, RTAX_CWND))
888 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 	if (dst_metric(dst, RTAX_SSTHRESH)) {
890 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 	}
894 	if (dst_metric(dst, RTAX_REORDERING) &&
895 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 		tcp_disable_fack(tp);
897 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 	}
899 
900 	if (dst_metric(dst, RTAX_RTT) == 0)
901 		goto reset;
902 
903 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 		goto reset;
905 
906 	/* Initial rtt is determined from SYN,SYN-ACK.
907 	 * The segment is small and rtt may appear much
908 	 * less than real one. Use per-dst memory
909 	 * to make it more realistic.
910 	 *
911 	 * A bit of theory. RTT is time passed after "normal" sized packet
912 	 * is sent until it is ACKed. In normal circumstances sending small
913 	 * packets force peer to delay ACKs and calculation is correct too.
914 	 * The algorithm is adaptive and, provided we follow specs, it
915 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 	 * tricks sort of "quick acks" for time long enough to decrease RTT
917 	 * to low value, and then abruptly stops to do it and starts to delay
918 	 * ACKs, wait for troubles.
919 	 */
920 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 		tp->srtt = dst_metric(dst, RTAX_RTT);
922 		tp->rtt_seq = tp->snd_nxt;
923 	}
924 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
927 	}
928 	tcp_set_rto(sk);
929 	tcp_bound_rto(sk);
930 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931 		goto reset;
932 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 	tp->snd_cwnd_stamp = tcp_time_stamp;
934 	return;
935 
936 reset:
937 	/* Play conservative. If timestamps are not
938 	 * supported, TCP will fail to recalculate correct
939 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 	 */
941 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 		tp->srtt = 0;
943 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945 	}
946 }
947 
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949 				  const int ts)
950 {
951 	struct tcp_sock *tp = tcp_sk(sk);
952 	if (metric > tp->reordering) {
953 		tp->reordering = min(TCP_MAX_REORDERING, metric);
954 
955 		/* This exciting event is worth to be remembered. 8) */
956 		if (ts)
957 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958 		else if (tcp_is_reno(tp))
959 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960 		else if (tcp_is_fack(tp))
961 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 		else
963 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967 		       tp->reordering,
968 		       tp->fackets_out,
969 		       tp->sacked_out,
970 		       tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972 		tcp_disable_fack(tp);
973 	}
974 }
975 
976 /* This procedure tags the retransmission queue when SACKs arrive.
977  *
978  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979  * Packets in queue with these bits set are counted in variables
980  * sacked_out, retrans_out and lost_out, correspondingly.
981  *
982  * Valid combinations are:
983  * Tag  InFlight	Description
984  * 0	1		- orig segment is in flight.
985  * S	0		- nothing flies, orig reached receiver.
986  * L	0		- nothing flies, orig lost by net.
987  * R	2		- both orig and retransmit are in flight.
988  * L|R	1		- orig is lost, retransmit is in flight.
989  * S|R  1		- orig reached receiver, retrans is still in flight.
990  * (L|S|R is logically valid, it could occur when L|R is sacked,
991  *  but it is equivalent to plain S and code short-curcuits it to S.
992  *  L|S is logically invalid, it would mean -1 packet in flight 8))
993  *
994  * These 6 states form finite state machine, controlled by the following events:
995  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997  * 3. Loss detection event of one of three flavors:
998  *	A. Scoreboard estimator decided the packet is lost.
999  *	   A'. Reno "three dupacks" marks head of queue lost.
1000  *	   A''. Its FACK modfication, head until snd.fack is lost.
1001  *	B. SACK arrives sacking data transmitted after never retransmitted
1002  *	   hole was sent out.
1003  *	C. SACK arrives sacking SND.NXT at the moment, when the
1004  *	   segment was retransmitted.
1005  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006  *
1007  * It is pleasant to note, that state diagram turns out to be commutative,
1008  * so that we are allowed not to be bothered by order of our actions,
1009  * when multiple events arrive simultaneously. (see the function below).
1010  *
1011  * Reordering detection.
1012  * --------------------
1013  * Reordering metric is maximal distance, which a packet can be displaced
1014  * in packet stream. With SACKs we can estimate it:
1015  *
1016  * 1. SACK fills old hole and the corresponding segment was not
1017  *    ever retransmitted -> reordering. Alas, we cannot use it
1018  *    when segment was retransmitted.
1019  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020  *    for retransmitted and already SACKed segment -> reordering..
1021  * Both of these heuristics are not used in Loss state, when we cannot
1022  * account for retransmits accurately.
1023  *
1024  * SACK block validation.
1025  * ----------------------
1026  *
1027  * SACK block range validation checks that the received SACK block fits to
1028  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029  * Note that SND.UNA is not included to the range though being valid because
1030  * it means that the receiver is rather inconsistent with itself reporting
1031  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032  * perfectly valid, however, in light of RFC2018 which explicitly states
1033  * that "SACK block MUST reflect the newest segment.  Even if the newest
1034  * segment is going to be discarded ...", not that it looks very clever
1035  * in case of head skb. Due to potentional receiver driven attacks, we
1036  * choose to avoid immediate execution of a walk in write queue due to
1037  * reneging and defer head skb's loss recovery to standard loss recovery
1038  * procedure that will eventually trigger (nothing forbids us doing this).
1039  *
1040  * Implements also blockage to start_seq wrap-around. Problem lies in the
1041  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042  * there's no guarantee that it will be before snd_nxt (n). The problem
1043  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044  * wrap (s_w):
1045  *
1046  *         <- outs wnd ->                          <- wrapzone ->
1047  *         u     e      n                         u_w   e_w  s n_w
1048  *         |     |      |                          |     |   |  |
1049  * |<------------+------+----- TCP seqno space --------------+---------->|
1050  * ...-- <2^31 ->|                                           |<--------...
1051  * ...---- >2^31 ------>|                                    |<--------...
1052  *
1053  * Current code wouldn't be vulnerable but it's better still to discard such
1054  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057  * equal to the ideal case (infinite seqno space without wrap caused issues).
1058  *
1059  * With D-SACK the lower bound is extended to cover sequence space below
1060  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061  * again, D-SACK block must not to go across snd_una (for the same reason as
1062  * for the normal SACK blocks, explained above). But there all simplicity
1063  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064  * fully below undo_marker they do not affect behavior in anyway and can
1065  * therefore be safely ignored. In rare cases (which are more or less
1066  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067  * fragmentation and packet reordering past skb's retransmission. To consider
1068  * them correctly, the acceptable range must be extended even more though
1069  * the exact amount is rather hard to quantify. However, tp->max_window can
1070  * be used as an exaggerated estimate.
1071  */
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 				  u32 start_seq, u32 end_seq)
1074 {
1075 	/* Too far in future, or reversed (interpretation is ambiguous) */
1076 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 		return 0;
1078 
1079 	/* Nasty start_seq wrap-around check (see comments above) */
1080 	if (!before(start_seq, tp->snd_nxt))
1081 		return 0;
1082 
1083 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1084 	 * start_seq == snd_una is non-sensical (see comments above)
1085 	 */
1086 	if (after(start_seq, tp->snd_una))
1087 		return 1;
1088 
1089 	if (!is_dsack || !tp->undo_marker)
1090 		return 0;
1091 
1092 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1093 	if (!after(end_seq, tp->snd_una))
1094 		return 0;
1095 
1096 	if (!before(start_seq, tp->undo_marker))
1097 		return 1;
1098 
1099 	/* Too old */
1100 	if (!after(end_seq, tp->undo_marker))
1101 		return 0;
1102 
1103 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1105 	 */
1106 	return !before(start_seq, end_seq - tp->max_window);
1107 }
1108 
1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110  * Event "C". Later note: FACK people cheated me again 8), we have to account
1111  * for reordering! Ugly, but should help.
1112  *
1113  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114  * less than what is now known to be received by the other end (derived from
1115  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1116  * retransmitted skbs to avoid some costly processing per ACKs.
1117  */
1118 static void tcp_mark_lost_retrans(struct sock *sk)
1119 {
1120 	const struct inet_connection_sock *icsk = inet_csk(sk);
1121 	struct tcp_sock *tp = tcp_sk(sk);
1122 	struct sk_buff *skb;
1123 	int cnt = 0;
1124 	u32 new_low_seq = tp->snd_nxt;
1125 	u32 received_upto = tcp_highest_sack_seq(tp);
1126 
1127 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1128 	    !after(received_upto, tp->lost_retrans_low) ||
1129 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1130 		return;
1131 
1132 	tcp_for_write_queue(skb, sk) {
1133 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1134 
1135 		if (skb == tcp_send_head(sk))
1136 			break;
1137 		if (cnt == tp->retrans_out)
1138 			break;
1139 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1140 			continue;
1141 
1142 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1143 			continue;
1144 
1145 		if (after(received_upto, ack_seq) &&
1146 		    (tcp_is_fack(tp) ||
1147 		     !before(received_upto,
1148 			     ack_seq + tp->reordering * tp->mss_cache))) {
1149 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1150 			tp->retrans_out -= tcp_skb_pcount(skb);
1151 
1152 			/* clear lost hint */
1153 			tp->retransmit_skb_hint = NULL;
1154 
1155 			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1156 				tp->lost_out += tcp_skb_pcount(skb);
1157 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1158 			}
1159 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1160 		} else {
1161 			if (before(ack_seq, new_low_seq))
1162 				new_low_seq = ack_seq;
1163 			cnt += tcp_skb_pcount(skb);
1164 		}
1165 	}
1166 
1167 	if (tp->retrans_out)
1168 		tp->lost_retrans_low = new_low_seq;
1169 }
1170 
1171 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1172 			   struct tcp_sack_block_wire *sp, int num_sacks,
1173 			   u32 prior_snd_una)
1174 {
1175 	u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1176 	u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1177 	int dup_sack = 0;
1178 
1179 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1180 		dup_sack = 1;
1181 		tcp_dsack_seen(tp);
1182 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1183 	} else if (num_sacks > 1) {
1184 		u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1185 		u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1186 
1187 		if (!after(end_seq_0, end_seq_1) &&
1188 		    !before(start_seq_0, start_seq_1)) {
1189 			dup_sack = 1;
1190 			tcp_dsack_seen(tp);
1191 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1192 		}
1193 	}
1194 
1195 	/* D-SACK for already forgotten data... Do dumb counting. */
1196 	if (dup_sack &&
1197 	    !after(end_seq_0, prior_snd_una) &&
1198 	    after(end_seq_0, tp->undo_marker))
1199 		tp->undo_retrans--;
1200 
1201 	return dup_sack;
1202 }
1203 
1204 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1205  * the incoming SACK may not exactly match but we can find smaller MSS
1206  * aligned portion of it that matches. Therefore we might need to fragment
1207  * which may fail and creates some hassle (caller must handle error case
1208  * returns).
1209  */
1210 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1211 				 u32 start_seq, u32 end_seq)
1212 {
1213 	int in_sack, err;
1214 	unsigned int pkt_len;
1215 
1216 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1217 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1218 
1219 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1220 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1221 
1222 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1223 
1224 		if (!in_sack)
1225 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1226 		else
1227 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1228 		err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1229 		if (err < 0)
1230 			return err;
1231 	}
1232 
1233 	return in_sack;
1234 }
1235 
1236 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1237 			   int *reord, int dup_sack, int fack_count)
1238 {
1239 	struct tcp_sock *tp = tcp_sk(sk);
1240 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1241 	int flag = 0;
1242 
1243 	/* Account D-SACK for retransmitted packet. */
1244 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1245 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1246 			tp->undo_retrans--;
1247 		if (sacked & TCPCB_SACKED_ACKED)
1248 			*reord = min(fack_count, *reord);
1249 	}
1250 
1251 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1252 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1253 		return flag;
1254 
1255 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1256 		if (sacked & TCPCB_SACKED_RETRANS) {
1257 			/* If the segment is not tagged as lost,
1258 			 * we do not clear RETRANS, believing
1259 			 * that retransmission is still in flight.
1260 			 */
1261 			if (sacked & TCPCB_LOST) {
1262 				TCP_SKB_CB(skb)->sacked &=
1263 					~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1264 				tp->lost_out -= tcp_skb_pcount(skb);
1265 				tp->retrans_out -= tcp_skb_pcount(skb);
1266 
1267 				/* clear lost hint */
1268 				tp->retransmit_skb_hint = NULL;
1269 			}
1270 		} else {
1271 			if (!(sacked & TCPCB_RETRANS)) {
1272 				/* New sack for not retransmitted frame,
1273 				 * which was in hole. It is reordering.
1274 				 */
1275 				if (before(TCP_SKB_CB(skb)->seq,
1276 					   tcp_highest_sack_seq(tp)))
1277 					*reord = min(fack_count, *reord);
1278 
1279 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1280 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1281 					flag |= FLAG_ONLY_ORIG_SACKED;
1282 			}
1283 
1284 			if (sacked & TCPCB_LOST) {
1285 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1286 				tp->lost_out -= tcp_skb_pcount(skb);
1287 
1288 				/* clear lost hint */
1289 				tp->retransmit_skb_hint = NULL;
1290 			}
1291 		}
1292 
1293 		TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1294 		flag |= FLAG_DATA_SACKED;
1295 		tp->sacked_out += tcp_skb_pcount(skb);
1296 
1297 		fack_count += tcp_skb_pcount(skb);
1298 
1299 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1300 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1301 		    before(TCP_SKB_CB(skb)->seq,
1302 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1303 			tp->lost_cnt_hint += tcp_skb_pcount(skb);
1304 
1305 		if (fack_count > tp->fackets_out)
1306 			tp->fackets_out = fack_count;
1307 
1308 		if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1309 			tcp_advance_highest_sack(sk, skb);
1310 	}
1311 
1312 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1313 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1314 	 * are accounted above as well.
1315 	 */
1316 	if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1317 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1318 		tp->retrans_out -= tcp_skb_pcount(skb);
1319 		tp->retransmit_skb_hint = NULL;
1320 	}
1321 
1322 	return flag;
1323 }
1324 
1325 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1326 					struct tcp_sack_block *next_dup,
1327 					u32 start_seq, u32 end_seq,
1328 					int dup_sack_in, int *fack_count,
1329 					int *reord, int *flag)
1330 {
1331 	tcp_for_write_queue_from(skb, sk) {
1332 		int in_sack = 0;
1333 		int dup_sack = dup_sack_in;
1334 
1335 		if (skb == tcp_send_head(sk))
1336 			break;
1337 
1338 		/* queue is in-order => we can short-circuit the walk early */
1339 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1340 			break;
1341 
1342 		if ((next_dup != NULL) &&
1343 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1344 			in_sack = tcp_match_skb_to_sack(sk, skb,
1345 							next_dup->start_seq,
1346 							next_dup->end_seq);
1347 			if (in_sack > 0)
1348 				dup_sack = 1;
1349 		}
1350 
1351 		if (in_sack <= 0)
1352 			in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1353 							end_seq);
1354 		if (unlikely(in_sack < 0))
1355 			break;
1356 
1357 		if (in_sack)
1358 			*flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1359 						 *fack_count);
1360 
1361 		*fack_count += tcp_skb_pcount(skb);
1362 	}
1363 	return skb;
1364 }
1365 
1366 /* Avoid all extra work that is being done by sacktag while walking in
1367  * a normal way
1368  */
1369 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1370 					u32 skip_to_seq)
1371 {
1372 	tcp_for_write_queue_from(skb, sk) {
1373 		if (skb == tcp_send_head(sk))
1374 			break;
1375 
1376 		if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1377 			break;
1378 	}
1379 	return skb;
1380 }
1381 
1382 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1383 						struct sock *sk,
1384 						struct tcp_sack_block *next_dup,
1385 						u32 skip_to_seq,
1386 						int *fack_count, int *reord,
1387 						int *flag)
1388 {
1389 	if (next_dup == NULL)
1390 		return skb;
1391 
1392 	if (before(next_dup->start_seq, skip_to_seq)) {
1393 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1394 		tcp_sacktag_walk(skb, sk, NULL,
1395 				 next_dup->start_seq, next_dup->end_seq,
1396 				 1, fack_count, reord, flag);
1397 	}
1398 
1399 	return skb;
1400 }
1401 
1402 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1403 {
1404 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1405 }
1406 
1407 static int
1408 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1409 			u32 prior_snd_una)
1410 {
1411 	const struct inet_connection_sock *icsk = inet_csk(sk);
1412 	struct tcp_sock *tp = tcp_sk(sk);
1413 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1414 			      TCP_SKB_CB(ack_skb)->sacked);
1415 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1416 	struct tcp_sack_block sp[4];
1417 	struct tcp_sack_block *cache;
1418 	struct sk_buff *skb;
1419 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1420 	int used_sacks;
1421 	int reord = tp->packets_out;
1422 	int flag = 0;
1423 	int found_dup_sack = 0;
1424 	int fack_count;
1425 	int i, j;
1426 	int first_sack_index;
1427 
1428 	if (!tp->sacked_out) {
1429 		if (WARN_ON(tp->fackets_out))
1430 			tp->fackets_out = 0;
1431 		tcp_highest_sack_reset(sk);
1432 	}
1433 
1434 	found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1435 					 num_sacks, prior_snd_una);
1436 	if (found_dup_sack)
1437 		flag |= FLAG_DSACKING_ACK;
1438 
1439 	/* Eliminate too old ACKs, but take into
1440 	 * account more or less fresh ones, they can
1441 	 * contain valid SACK info.
1442 	 */
1443 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1444 		return 0;
1445 
1446 	if (!tp->packets_out)
1447 		goto out;
1448 
1449 	used_sacks = 0;
1450 	first_sack_index = 0;
1451 	for (i = 0; i < num_sacks; i++) {
1452 		int dup_sack = !i && found_dup_sack;
1453 
1454 		sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1455 		sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1456 
1457 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1458 					    sp[used_sacks].start_seq,
1459 					    sp[used_sacks].end_seq)) {
1460 			if (dup_sack) {
1461 				if (!tp->undo_marker)
1462 					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1463 				else
1464 					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1465 			} else {
1466 				/* Don't count olds caused by ACK reordering */
1467 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1468 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1469 					continue;
1470 				NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1471 			}
1472 			if (i == 0)
1473 				first_sack_index = -1;
1474 			continue;
1475 		}
1476 
1477 		/* Ignore very old stuff early */
1478 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1479 			continue;
1480 
1481 		used_sacks++;
1482 	}
1483 
1484 	/* order SACK blocks to allow in order walk of the retrans queue */
1485 	for (i = used_sacks - 1; i > 0; i--) {
1486 		for (j = 0; j < i; j++) {
1487 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1488 				struct tcp_sack_block tmp;
1489 
1490 				tmp = sp[j];
1491 				sp[j] = sp[j + 1];
1492 				sp[j + 1] = tmp;
1493 
1494 				/* Track where the first SACK block goes to */
1495 				if (j == first_sack_index)
1496 					first_sack_index = j + 1;
1497 			}
1498 		}
1499 	}
1500 
1501 	skb = tcp_write_queue_head(sk);
1502 	fack_count = 0;
1503 	i = 0;
1504 
1505 	if (!tp->sacked_out) {
1506 		/* It's already past, so skip checking against it */
1507 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1508 	} else {
1509 		cache = tp->recv_sack_cache;
1510 		/* Skip empty blocks in at head of the cache */
1511 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1512 		       !cache->end_seq)
1513 			cache++;
1514 	}
1515 
1516 	while (i < used_sacks) {
1517 		u32 start_seq = sp[i].start_seq;
1518 		u32 end_seq = sp[i].end_seq;
1519 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1520 		struct tcp_sack_block *next_dup = NULL;
1521 
1522 		if (found_dup_sack && ((i + 1) == first_sack_index))
1523 			next_dup = &sp[i + 1];
1524 
1525 		/* Event "B" in the comment above. */
1526 		if (after(end_seq, tp->high_seq))
1527 			flag |= FLAG_DATA_LOST;
1528 
1529 		/* Skip too early cached blocks */
1530 		while (tcp_sack_cache_ok(tp, cache) &&
1531 		       !before(start_seq, cache->end_seq))
1532 			cache++;
1533 
1534 		/* Can skip some work by looking recv_sack_cache? */
1535 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1536 		    after(end_seq, cache->start_seq)) {
1537 
1538 			/* Head todo? */
1539 			if (before(start_seq, cache->start_seq)) {
1540 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1541 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1542 						       start_seq,
1543 						       cache->start_seq,
1544 						       dup_sack, &fack_count,
1545 						       &reord, &flag);
1546 			}
1547 
1548 			/* Rest of the block already fully processed? */
1549 			if (!after(end_seq, cache->end_seq))
1550 				goto advance_sp;
1551 
1552 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1553 						       cache->end_seq,
1554 						       &fack_count, &reord,
1555 						       &flag);
1556 
1557 			/* ...tail remains todo... */
1558 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1559 				/* ...but better entrypoint exists! */
1560 				skb = tcp_highest_sack(sk);
1561 				if (skb == NULL)
1562 					break;
1563 				fack_count = tp->fackets_out;
1564 				cache++;
1565 				goto walk;
1566 			}
1567 
1568 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1569 			/* Check overlap against next cached too (past this one already) */
1570 			cache++;
1571 			continue;
1572 		}
1573 
1574 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1575 			skb = tcp_highest_sack(sk);
1576 			if (skb == NULL)
1577 				break;
1578 			fack_count = tp->fackets_out;
1579 		}
1580 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1581 
1582 walk:
1583 		skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1584 				       dup_sack, &fack_count, &reord, &flag);
1585 
1586 advance_sp:
1587 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1588 		 * due to in-order walk
1589 		 */
1590 		if (after(end_seq, tp->frto_highmark))
1591 			flag &= ~FLAG_ONLY_ORIG_SACKED;
1592 
1593 		i++;
1594 	}
1595 
1596 	/* Clear the head of the cache sack blocks so we can skip it next time */
1597 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1598 		tp->recv_sack_cache[i].start_seq = 0;
1599 		tp->recv_sack_cache[i].end_seq = 0;
1600 	}
1601 	for (j = 0; j < used_sacks; j++)
1602 		tp->recv_sack_cache[i++] = sp[j];
1603 
1604 	tcp_mark_lost_retrans(sk);
1605 
1606 	tcp_verify_left_out(tp);
1607 
1608 	if ((reord < tp->fackets_out) &&
1609 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1610 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1611 		tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1612 
1613 out:
1614 
1615 #if FASTRETRANS_DEBUG > 0
1616 	BUG_TRAP((int)tp->sacked_out >= 0);
1617 	BUG_TRAP((int)tp->lost_out >= 0);
1618 	BUG_TRAP((int)tp->retrans_out >= 0);
1619 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1620 #endif
1621 	return flag;
1622 }
1623 
1624 /* If we receive more dupacks than we expected counting segments
1625  * in assumption of absent reordering, interpret this as reordering.
1626  * The only another reason could be bug in receiver TCP.
1627  */
1628 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1629 {
1630 	struct tcp_sock *tp = tcp_sk(sk);
1631 	u32 holes;
1632 
1633 	holes = max(tp->lost_out, 1U);
1634 	holes = min(holes, tp->packets_out);
1635 
1636 	if ((tp->sacked_out + holes) > tp->packets_out) {
1637 		tp->sacked_out = tp->packets_out - holes;
1638 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1639 	}
1640 }
1641 
1642 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1643 
1644 static void tcp_add_reno_sack(struct sock *sk)
1645 {
1646 	struct tcp_sock *tp = tcp_sk(sk);
1647 	tp->sacked_out++;
1648 	tcp_check_reno_reordering(sk, 0);
1649 	tcp_verify_left_out(tp);
1650 }
1651 
1652 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1653 
1654 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1655 {
1656 	struct tcp_sock *tp = tcp_sk(sk);
1657 
1658 	if (acked > 0) {
1659 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1660 		if (acked - 1 >= tp->sacked_out)
1661 			tp->sacked_out = 0;
1662 		else
1663 			tp->sacked_out -= acked - 1;
1664 	}
1665 	tcp_check_reno_reordering(sk, acked);
1666 	tcp_verify_left_out(tp);
1667 }
1668 
1669 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1670 {
1671 	tp->sacked_out = 0;
1672 }
1673 
1674 /* F-RTO can only be used if TCP has never retransmitted anything other than
1675  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1676  */
1677 int tcp_use_frto(struct sock *sk)
1678 {
1679 	const struct tcp_sock *tp = tcp_sk(sk);
1680 	struct sk_buff *skb;
1681 
1682 	if (!sysctl_tcp_frto)
1683 		return 0;
1684 
1685 	if (IsSackFrto())
1686 		return 1;
1687 
1688 	/* Avoid expensive walking of rexmit queue if possible */
1689 	if (tp->retrans_out > 1)
1690 		return 0;
1691 
1692 	skb = tcp_write_queue_head(sk);
1693 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1694 	tcp_for_write_queue_from(skb, sk) {
1695 		if (skb == tcp_send_head(sk))
1696 			break;
1697 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1698 			return 0;
1699 		/* Short-circuit when first non-SACKed skb has been checked */
1700 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1701 			break;
1702 	}
1703 	return 1;
1704 }
1705 
1706 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1707  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1708  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1709  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1710  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1711  * bits are handled if the Loss state is really to be entered (in
1712  * tcp_enter_frto_loss).
1713  *
1714  * Do like tcp_enter_loss() would; when RTO expires the second time it
1715  * does:
1716  *  "Reduce ssthresh if it has not yet been made inside this window."
1717  */
1718 void tcp_enter_frto(struct sock *sk)
1719 {
1720 	const struct inet_connection_sock *icsk = inet_csk(sk);
1721 	struct tcp_sock *tp = tcp_sk(sk);
1722 	struct sk_buff *skb;
1723 
1724 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1725 	    tp->snd_una == tp->high_seq ||
1726 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1727 	     !icsk->icsk_retransmits)) {
1728 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1729 		/* Our state is too optimistic in ssthresh() call because cwnd
1730 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1731 		 * recovery has not yet completed. Pattern would be this: RTO,
1732 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1733 		 * up here twice).
1734 		 * RFC4138 should be more specific on what to do, even though
1735 		 * RTO is quite unlikely to occur after the first Cumulative ACK
1736 		 * due to back-off and complexity of triggering events ...
1737 		 */
1738 		if (tp->frto_counter) {
1739 			u32 stored_cwnd;
1740 			stored_cwnd = tp->snd_cwnd;
1741 			tp->snd_cwnd = 2;
1742 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1743 			tp->snd_cwnd = stored_cwnd;
1744 		} else {
1745 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1746 		}
1747 		/* ... in theory, cong.control module could do "any tricks" in
1748 		 * ssthresh(), which means that ca_state, lost bits and lost_out
1749 		 * counter would have to be faked before the call occurs. We
1750 		 * consider that too expensive, unlikely and hacky, so modules
1751 		 * using these in ssthresh() must deal these incompatibility
1752 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1753 		 */
1754 		tcp_ca_event(sk, CA_EVENT_FRTO);
1755 	}
1756 
1757 	tp->undo_marker = tp->snd_una;
1758 	tp->undo_retrans = 0;
1759 
1760 	skb = tcp_write_queue_head(sk);
1761 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1762 		tp->undo_marker = 0;
1763 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1764 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1765 		tp->retrans_out -= tcp_skb_pcount(skb);
1766 	}
1767 	tcp_verify_left_out(tp);
1768 
1769 	/* Too bad if TCP was application limited */
1770 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1771 
1772 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1773 	 * The last condition is necessary at least in tp->frto_counter case.
1774 	 */
1775 	if (IsSackFrto() && (tp->frto_counter ||
1776 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1777 	    after(tp->high_seq, tp->snd_una)) {
1778 		tp->frto_highmark = tp->high_seq;
1779 	} else {
1780 		tp->frto_highmark = tp->snd_nxt;
1781 	}
1782 	tcp_set_ca_state(sk, TCP_CA_Disorder);
1783 	tp->high_seq = tp->snd_nxt;
1784 	tp->frto_counter = 1;
1785 }
1786 
1787 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1788  * which indicates that we should follow the traditional RTO recovery,
1789  * i.e. mark everything lost and do go-back-N retransmission.
1790  */
1791 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1792 {
1793 	struct tcp_sock *tp = tcp_sk(sk);
1794 	struct sk_buff *skb;
1795 
1796 	tp->lost_out = 0;
1797 	tp->retrans_out = 0;
1798 	if (tcp_is_reno(tp))
1799 		tcp_reset_reno_sack(tp);
1800 
1801 	tcp_for_write_queue(skb, sk) {
1802 		if (skb == tcp_send_head(sk))
1803 			break;
1804 
1805 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1806 		/*
1807 		 * Count the retransmission made on RTO correctly (only when
1808 		 * waiting for the first ACK and did not get it)...
1809 		 */
1810 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1811 			/* For some reason this R-bit might get cleared? */
1812 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1813 				tp->retrans_out += tcp_skb_pcount(skb);
1814 			/* ...enter this if branch just for the first segment */
1815 			flag |= FLAG_DATA_ACKED;
1816 		} else {
1817 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1818 				tp->undo_marker = 0;
1819 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1820 		}
1821 
1822 		/* Don't lost mark skbs that were fwd transmitted after RTO */
1823 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) &&
1824 		    !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1825 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1826 			tp->lost_out += tcp_skb_pcount(skb);
1827 		}
1828 	}
1829 	tcp_verify_left_out(tp);
1830 
1831 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1832 	tp->snd_cwnd_cnt = 0;
1833 	tp->snd_cwnd_stamp = tcp_time_stamp;
1834 	tp->frto_counter = 0;
1835 	tp->bytes_acked = 0;
1836 
1837 	tp->reordering = min_t(unsigned int, tp->reordering,
1838 			       sysctl_tcp_reordering);
1839 	tcp_set_ca_state(sk, TCP_CA_Loss);
1840 	tp->high_seq = tp->frto_highmark;
1841 	TCP_ECN_queue_cwr(tp);
1842 
1843 	tcp_clear_retrans_hints_partial(tp);
1844 }
1845 
1846 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1847 {
1848 	tp->retrans_out = 0;
1849 	tp->lost_out = 0;
1850 
1851 	tp->undo_marker = 0;
1852 	tp->undo_retrans = 0;
1853 }
1854 
1855 void tcp_clear_retrans(struct tcp_sock *tp)
1856 {
1857 	tcp_clear_retrans_partial(tp);
1858 
1859 	tp->fackets_out = 0;
1860 	tp->sacked_out = 0;
1861 }
1862 
1863 /* Enter Loss state. If "how" is not zero, forget all SACK information
1864  * and reset tags completely, otherwise preserve SACKs. If receiver
1865  * dropped its ofo queue, we will know this due to reneging detection.
1866  */
1867 void tcp_enter_loss(struct sock *sk, int how)
1868 {
1869 	const struct inet_connection_sock *icsk = inet_csk(sk);
1870 	struct tcp_sock *tp = tcp_sk(sk);
1871 	struct sk_buff *skb;
1872 
1873 	/* Reduce ssthresh if it has not yet been made inside this window. */
1874 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1875 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1876 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1877 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1878 		tcp_ca_event(sk, CA_EVENT_LOSS);
1879 	}
1880 	tp->snd_cwnd	   = 1;
1881 	tp->snd_cwnd_cnt   = 0;
1882 	tp->snd_cwnd_stamp = tcp_time_stamp;
1883 
1884 	tp->bytes_acked = 0;
1885 	tcp_clear_retrans_partial(tp);
1886 
1887 	if (tcp_is_reno(tp))
1888 		tcp_reset_reno_sack(tp);
1889 
1890 	if (!how) {
1891 		/* Push undo marker, if it was plain RTO and nothing
1892 		 * was retransmitted. */
1893 		tp->undo_marker = tp->snd_una;
1894 		tcp_clear_retrans_hints_partial(tp);
1895 	} else {
1896 		tp->sacked_out = 0;
1897 		tp->fackets_out = 0;
1898 		tcp_clear_all_retrans_hints(tp);
1899 	}
1900 
1901 	tcp_for_write_queue(skb, sk) {
1902 		if (skb == tcp_send_head(sk))
1903 			break;
1904 
1905 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1906 			tp->undo_marker = 0;
1907 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1908 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1909 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1910 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1911 			tp->lost_out += tcp_skb_pcount(skb);
1912 		}
1913 	}
1914 	tcp_verify_left_out(tp);
1915 
1916 	tp->reordering = min_t(unsigned int, tp->reordering,
1917 			       sysctl_tcp_reordering);
1918 	tcp_set_ca_state(sk, TCP_CA_Loss);
1919 	tp->high_seq = tp->snd_nxt;
1920 	TCP_ECN_queue_cwr(tp);
1921 	/* Abort F-RTO algorithm if one is in progress */
1922 	tp->frto_counter = 0;
1923 }
1924 
1925 /* If ACK arrived pointing to a remembered SACK, it means that our
1926  * remembered SACKs do not reflect real state of receiver i.e.
1927  * receiver _host_ is heavily congested (or buggy).
1928  *
1929  * Do processing similar to RTO timeout.
1930  */
1931 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1932 {
1933 	if (flag & FLAG_SACK_RENEGING) {
1934 		struct inet_connection_sock *icsk = inet_csk(sk);
1935 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1936 
1937 		tcp_enter_loss(sk, 1);
1938 		icsk->icsk_retransmits++;
1939 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1940 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1941 					  icsk->icsk_rto, TCP_RTO_MAX);
1942 		return 1;
1943 	}
1944 	return 0;
1945 }
1946 
1947 static inline int tcp_fackets_out(struct tcp_sock *tp)
1948 {
1949 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1950 }
1951 
1952 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1953  * counter when SACK is enabled (without SACK, sacked_out is used for
1954  * that purpose).
1955  *
1956  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1957  * segments up to the highest received SACK block so far and holes in
1958  * between them.
1959  *
1960  * With reordering, holes may still be in flight, so RFC3517 recovery
1961  * uses pure sacked_out (total number of SACKed segments) even though
1962  * it violates the RFC that uses duplicate ACKs, often these are equal
1963  * but when e.g. out-of-window ACKs or packet duplication occurs,
1964  * they differ. Since neither occurs due to loss, TCP should really
1965  * ignore them.
1966  */
1967 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1968 {
1969 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1970 }
1971 
1972 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1973 {
1974 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1975 }
1976 
1977 static inline int tcp_head_timedout(struct sock *sk)
1978 {
1979 	struct tcp_sock *tp = tcp_sk(sk);
1980 
1981 	return tp->packets_out &&
1982 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1983 }
1984 
1985 /* Linux NewReno/SACK/FACK/ECN state machine.
1986  * --------------------------------------
1987  *
1988  * "Open"	Normal state, no dubious events, fast path.
1989  * "Disorder"   In all the respects it is "Open",
1990  *		but requires a bit more attention. It is entered when
1991  *		we see some SACKs or dupacks. It is split of "Open"
1992  *		mainly to move some processing from fast path to slow one.
1993  * "CWR"	CWND was reduced due to some Congestion Notification event.
1994  *		It can be ECN, ICMP source quench, local device congestion.
1995  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1996  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1997  *
1998  * tcp_fastretrans_alert() is entered:
1999  * - each incoming ACK, if state is not "Open"
2000  * - when arrived ACK is unusual, namely:
2001  *	* SACK
2002  *	* Duplicate ACK.
2003  *	* ECN ECE.
2004  *
2005  * Counting packets in flight is pretty simple.
2006  *
2007  *	in_flight = packets_out - left_out + retrans_out
2008  *
2009  *	packets_out is SND.NXT-SND.UNA counted in packets.
2010  *
2011  *	retrans_out is number of retransmitted segments.
2012  *
2013  *	left_out is number of segments left network, but not ACKed yet.
2014  *
2015  *		left_out = sacked_out + lost_out
2016  *
2017  *     sacked_out: Packets, which arrived to receiver out of order
2018  *		   and hence not ACKed. With SACKs this number is simply
2019  *		   amount of SACKed data. Even without SACKs
2020  *		   it is easy to give pretty reliable estimate of this number,
2021  *		   counting duplicate ACKs.
2022  *
2023  *       lost_out: Packets lost by network. TCP has no explicit
2024  *		   "loss notification" feedback from network (for now).
2025  *		   It means that this number can be only _guessed_.
2026  *		   Actually, it is the heuristics to predict lossage that
2027  *		   distinguishes different algorithms.
2028  *
2029  *	F.e. after RTO, when all the queue is considered as lost,
2030  *	lost_out = packets_out and in_flight = retrans_out.
2031  *
2032  *		Essentially, we have now two algorithms counting
2033  *		lost packets.
2034  *
2035  *		FACK: It is the simplest heuristics. As soon as we decided
2036  *		that something is lost, we decide that _all_ not SACKed
2037  *		packets until the most forward SACK are lost. I.e.
2038  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2039  *		It is absolutely correct estimate, if network does not reorder
2040  *		packets. And it loses any connection to reality when reordering
2041  *		takes place. We use FACK by default until reordering
2042  *		is suspected on the path to this destination.
2043  *
2044  *		NewReno: when Recovery is entered, we assume that one segment
2045  *		is lost (classic Reno). While we are in Recovery and
2046  *		a partial ACK arrives, we assume that one more packet
2047  *		is lost (NewReno). This heuristics are the same in NewReno
2048  *		and SACK.
2049  *
2050  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2051  *  deflation etc. CWND is real congestion window, never inflated, changes
2052  *  only according to classic VJ rules.
2053  *
2054  * Really tricky (and requiring careful tuning) part of algorithm
2055  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2056  * The first determines the moment _when_ we should reduce CWND and,
2057  * hence, slow down forward transmission. In fact, it determines the moment
2058  * when we decide that hole is caused by loss, rather than by a reorder.
2059  *
2060  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2061  * holes, caused by lost packets.
2062  *
2063  * And the most logically complicated part of algorithm is undo
2064  * heuristics. We detect false retransmits due to both too early
2065  * fast retransmit (reordering) and underestimated RTO, analyzing
2066  * timestamps and D-SACKs. When we detect that some segments were
2067  * retransmitted by mistake and CWND reduction was wrong, we undo
2068  * window reduction and abort recovery phase. This logic is hidden
2069  * inside several functions named tcp_try_undo_<something>.
2070  */
2071 
2072 /* This function decides, when we should leave Disordered state
2073  * and enter Recovery phase, reducing congestion window.
2074  *
2075  * Main question: may we further continue forward transmission
2076  * with the same cwnd?
2077  */
2078 static int tcp_time_to_recover(struct sock *sk)
2079 {
2080 	struct tcp_sock *tp = tcp_sk(sk);
2081 	__u32 packets_out;
2082 
2083 	/* Do not perform any recovery during F-RTO algorithm */
2084 	if (tp->frto_counter)
2085 		return 0;
2086 
2087 	/* Trick#1: The loss is proven. */
2088 	if (tp->lost_out)
2089 		return 1;
2090 
2091 	/* Not-A-Trick#2 : Classic rule... */
2092 	if (tcp_dupack_heurestics(tp) > tp->reordering)
2093 		return 1;
2094 
2095 	/* Trick#3 : when we use RFC2988 timer restart, fast
2096 	 * retransmit can be triggered by timeout of queue head.
2097 	 */
2098 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2099 		return 1;
2100 
2101 	/* Trick#4: It is still not OK... But will it be useful to delay
2102 	 * recovery more?
2103 	 */
2104 	packets_out = tp->packets_out;
2105 	if (packets_out <= tp->reordering &&
2106 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2107 	    !tcp_may_send_now(sk)) {
2108 		/* We have nothing to send. This connection is limited
2109 		 * either by receiver window or by application.
2110 		 */
2111 		return 1;
2112 	}
2113 
2114 	return 0;
2115 }
2116 
2117 /* RFC: This is from the original, I doubt that this is necessary at all:
2118  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2119  * retransmitted past LOST markings in the first place? I'm not fully sure
2120  * about undo and end of connection cases, which can cause R without L?
2121  */
2122 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2123 {
2124 	if ((tp->retransmit_skb_hint != NULL) &&
2125 	    before(TCP_SKB_CB(skb)->seq,
2126 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2127 		tp->retransmit_skb_hint = NULL;
2128 }
2129 
2130 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2131  * is against sacked "cnt", otherwise it's against facked "cnt"
2132  */
2133 static void tcp_mark_head_lost(struct sock *sk, int packets, int fast_rexmit)
2134 {
2135 	struct tcp_sock *tp = tcp_sk(sk);
2136 	struct sk_buff *skb;
2137 	int cnt;
2138 
2139 	BUG_TRAP(packets <= tp->packets_out);
2140 	if (tp->lost_skb_hint) {
2141 		skb = tp->lost_skb_hint;
2142 		cnt = tp->lost_cnt_hint;
2143 	} else {
2144 		skb = tcp_write_queue_head(sk);
2145 		cnt = 0;
2146 	}
2147 
2148 	tcp_for_write_queue_from(skb, sk) {
2149 		if (skb == tcp_send_head(sk))
2150 			break;
2151 		/* TODO: do this better */
2152 		/* this is not the most efficient way to do this... */
2153 		tp->lost_skb_hint = skb;
2154 		tp->lost_cnt_hint = cnt;
2155 
2156 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2157 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2158 			cnt += tcp_skb_pcount(skb);
2159 
2160 		if (((!fast_rexmit || (tp->lost_out > 0)) && (cnt > packets)) ||
2161 		    after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2162 			break;
2163 		if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2164 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2165 			tp->lost_out += tcp_skb_pcount(skb);
2166 			tcp_verify_retransmit_hint(tp, skb);
2167 		}
2168 	}
2169 	tcp_verify_left_out(tp);
2170 }
2171 
2172 /* Account newly detected lost packet(s) */
2173 
2174 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2175 {
2176 	struct tcp_sock *tp = tcp_sk(sk);
2177 
2178 	if (tcp_is_reno(tp)) {
2179 		tcp_mark_head_lost(sk, 1, fast_rexmit);
2180 	} else if (tcp_is_fack(tp)) {
2181 		int lost = tp->fackets_out - tp->reordering;
2182 		if (lost <= 0)
2183 			lost = 1;
2184 		tcp_mark_head_lost(sk, lost, fast_rexmit);
2185 	} else {
2186 		int sacked_upto = tp->sacked_out - tp->reordering;
2187 		if (sacked_upto < 0)
2188 			sacked_upto = 0;
2189 		tcp_mark_head_lost(sk, sacked_upto, fast_rexmit);
2190 	}
2191 
2192 	/* New heuristics: it is possible only after we switched
2193 	 * to restart timer each time when something is ACKed.
2194 	 * Hence, we can detect timed out packets during fast
2195 	 * retransmit without falling to slow start.
2196 	 */
2197 	if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2198 		struct sk_buff *skb;
2199 
2200 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2201 			: tcp_write_queue_head(sk);
2202 
2203 		tcp_for_write_queue_from(skb, sk) {
2204 			if (skb == tcp_send_head(sk))
2205 				break;
2206 			if (!tcp_skb_timedout(sk, skb))
2207 				break;
2208 
2209 			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2210 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2211 				tp->lost_out += tcp_skb_pcount(skb);
2212 				tcp_verify_retransmit_hint(tp, skb);
2213 			}
2214 		}
2215 
2216 		tp->scoreboard_skb_hint = skb;
2217 
2218 		tcp_verify_left_out(tp);
2219 	}
2220 }
2221 
2222 /* CWND moderation, preventing bursts due to too big ACKs
2223  * in dubious situations.
2224  */
2225 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2226 {
2227 	tp->snd_cwnd = min(tp->snd_cwnd,
2228 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2229 	tp->snd_cwnd_stamp = tcp_time_stamp;
2230 }
2231 
2232 /* Lower bound on congestion window is slow start threshold
2233  * unless congestion avoidance choice decides to overide it.
2234  */
2235 static inline u32 tcp_cwnd_min(const struct sock *sk)
2236 {
2237 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2238 
2239 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2240 }
2241 
2242 /* Decrease cwnd each second ack. */
2243 static void tcp_cwnd_down(struct sock *sk, int flag)
2244 {
2245 	struct tcp_sock *tp = tcp_sk(sk);
2246 	int decr = tp->snd_cwnd_cnt + 1;
2247 
2248 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2249 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2250 		tp->snd_cwnd_cnt = decr & 1;
2251 		decr >>= 1;
2252 
2253 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2254 			tp->snd_cwnd -= decr;
2255 
2256 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2257 		tp->snd_cwnd_stamp = tcp_time_stamp;
2258 	}
2259 }
2260 
2261 /* Nothing was retransmitted or returned timestamp is less
2262  * than timestamp of the first retransmission.
2263  */
2264 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2265 {
2266 	return !tp->retrans_stamp ||
2267 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2268 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2269 }
2270 
2271 /* Undo procedures. */
2272 
2273 #if FASTRETRANS_DEBUG > 1
2274 static void DBGUNDO(struct sock *sk, const char *msg)
2275 {
2276 	struct tcp_sock *tp = tcp_sk(sk);
2277 	struct inet_sock *inet = inet_sk(sk);
2278 
2279 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2280 	       msg,
2281 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
2282 	       tp->snd_cwnd, tcp_left_out(tp),
2283 	       tp->snd_ssthresh, tp->prior_ssthresh,
2284 	       tp->packets_out);
2285 }
2286 #else
2287 #define DBGUNDO(x...) do { } while (0)
2288 #endif
2289 
2290 static void tcp_undo_cwr(struct sock *sk, const int undo)
2291 {
2292 	struct tcp_sock *tp = tcp_sk(sk);
2293 
2294 	if (tp->prior_ssthresh) {
2295 		const struct inet_connection_sock *icsk = inet_csk(sk);
2296 
2297 		if (icsk->icsk_ca_ops->undo_cwnd)
2298 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2299 		else
2300 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2301 
2302 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2303 			tp->snd_ssthresh = tp->prior_ssthresh;
2304 			TCP_ECN_withdraw_cwr(tp);
2305 		}
2306 	} else {
2307 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2308 	}
2309 	tcp_moderate_cwnd(tp);
2310 	tp->snd_cwnd_stamp = tcp_time_stamp;
2311 
2312 	/* There is something screwy going on with the retrans hints after
2313 	   an undo */
2314 	tcp_clear_all_retrans_hints(tp);
2315 }
2316 
2317 static inline int tcp_may_undo(struct tcp_sock *tp)
2318 {
2319 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2320 }
2321 
2322 /* People celebrate: "We love our President!" */
2323 static int tcp_try_undo_recovery(struct sock *sk)
2324 {
2325 	struct tcp_sock *tp = tcp_sk(sk);
2326 
2327 	if (tcp_may_undo(tp)) {
2328 		/* Happy end! We did not retransmit anything
2329 		 * or our original transmission succeeded.
2330 		 */
2331 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2332 		tcp_undo_cwr(sk, 1);
2333 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2334 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2335 		else
2336 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2337 		tp->undo_marker = 0;
2338 	}
2339 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2340 		/* Hold old state until something *above* high_seq
2341 		 * is ACKed. For Reno it is MUST to prevent false
2342 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2343 		tcp_moderate_cwnd(tp);
2344 		return 1;
2345 	}
2346 	tcp_set_ca_state(sk, TCP_CA_Open);
2347 	return 0;
2348 }
2349 
2350 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2351 static void tcp_try_undo_dsack(struct sock *sk)
2352 {
2353 	struct tcp_sock *tp = tcp_sk(sk);
2354 
2355 	if (tp->undo_marker && !tp->undo_retrans) {
2356 		DBGUNDO(sk, "D-SACK");
2357 		tcp_undo_cwr(sk, 1);
2358 		tp->undo_marker = 0;
2359 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2360 	}
2361 }
2362 
2363 /* Undo during fast recovery after partial ACK. */
2364 
2365 static int tcp_try_undo_partial(struct sock *sk, int acked)
2366 {
2367 	struct tcp_sock *tp = tcp_sk(sk);
2368 	/* Partial ACK arrived. Force Hoe's retransmit. */
2369 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2370 
2371 	if (tcp_may_undo(tp)) {
2372 		/* Plain luck! Hole if filled with delayed
2373 		 * packet, rather than with a retransmit.
2374 		 */
2375 		if (tp->retrans_out == 0)
2376 			tp->retrans_stamp = 0;
2377 
2378 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2379 
2380 		DBGUNDO(sk, "Hoe");
2381 		tcp_undo_cwr(sk, 0);
2382 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2383 
2384 		/* So... Do not make Hoe's retransmit yet.
2385 		 * If the first packet was delayed, the rest
2386 		 * ones are most probably delayed as well.
2387 		 */
2388 		failed = 0;
2389 	}
2390 	return failed;
2391 }
2392 
2393 /* Undo during loss recovery after partial ACK. */
2394 static int tcp_try_undo_loss(struct sock *sk)
2395 {
2396 	struct tcp_sock *tp = tcp_sk(sk);
2397 
2398 	if (tcp_may_undo(tp)) {
2399 		struct sk_buff *skb;
2400 		tcp_for_write_queue(skb, sk) {
2401 			if (skb == tcp_send_head(sk))
2402 				break;
2403 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2404 		}
2405 
2406 		tcp_clear_all_retrans_hints(tp);
2407 
2408 		DBGUNDO(sk, "partial loss");
2409 		tp->lost_out = 0;
2410 		tcp_undo_cwr(sk, 1);
2411 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2412 		inet_csk(sk)->icsk_retransmits = 0;
2413 		tp->undo_marker = 0;
2414 		if (tcp_is_sack(tp))
2415 			tcp_set_ca_state(sk, TCP_CA_Open);
2416 		return 1;
2417 	}
2418 	return 0;
2419 }
2420 
2421 static inline void tcp_complete_cwr(struct sock *sk)
2422 {
2423 	struct tcp_sock *tp = tcp_sk(sk);
2424 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2425 	tp->snd_cwnd_stamp = tcp_time_stamp;
2426 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2427 }
2428 
2429 static void tcp_try_to_open(struct sock *sk, int flag)
2430 {
2431 	struct tcp_sock *tp = tcp_sk(sk);
2432 
2433 	tcp_verify_left_out(tp);
2434 
2435 	if (tp->retrans_out == 0)
2436 		tp->retrans_stamp = 0;
2437 
2438 	if (flag & FLAG_ECE)
2439 		tcp_enter_cwr(sk, 1);
2440 
2441 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2442 		int state = TCP_CA_Open;
2443 
2444 		if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2445 			state = TCP_CA_Disorder;
2446 
2447 		if (inet_csk(sk)->icsk_ca_state != state) {
2448 			tcp_set_ca_state(sk, state);
2449 			tp->high_seq = tp->snd_nxt;
2450 		}
2451 		tcp_moderate_cwnd(tp);
2452 	} else {
2453 		tcp_cwnd_down(sk, flag);
2454 	}
2455 }
2456 
2457 static void tcp_mtup_probe_failed(struct sock *sk)
2458 {
2459 	struct inet_connection_sock *icsk = inet_csk(sk);
2460 
2461 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2462 	icsk->icsk_mtup.probe_size = 0;
2463 }
2464 
2465 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2466 {
2467 	struct tcp_sock *tp = tcp_sk(sk);
2468 	struct inet_connection_sock *icsk = inet_csk(sk);
2469 
2470 	/* FIXME: breaks with very large cwnd */
2471 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2472 	tp->snd_cwnd = tp->snd_cwnd *
2473 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2474 		       icsk->icsk_mtup.probe_size;
2475 	tp->snd_cwnd_cnt = 0;
2476 	tp->snd_cwnd_stamp = tcp_time_stamp;
2477 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2478 
2479 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2480 	icsk->icsk_mtup.probe_size = 0;
2481 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2482 }
2483 
2484 /* Process an event, which can update packets-in-flight not trivially.
2485  * Main goal of this function is to calculate new estimate for left_out,
2486  * taking into account both packets sitting in receiver's buffer and
2487  * packets lost by network.
2488  *
2489  * Besides that it does CWND reduction, when packet loss is detected
2490  * and changes state of machine.
2491  *
2492  * It does _not_ decide what to send, it is made in function
2493  * tcp_xmit_retransmit_queue().
2494  */
2495 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2496 {
2497 	struct inet_connection_sock *icsk = inet_csk(sk);
2498 	struct tcp_sock *tp = tcp_sk(sk);
2499 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2500 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2501 				    (tcp_fackets_out(tp) > tp->reordering));
2502 	int fast_rexmit = 0;
2503 
2504 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2505 		tp->sacked_out = 0;
2506 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2507 		tp->fackets_out = 0;
2508 
2509 	/* Now state machine starts.
2510 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2511 	if (flag & FLAG_ECE)
2512 		tp->prior_ssthresh = 0;
2513 
2514 	/* B. In all the states check for reneging SACKs. */
2515 	if (tcp_check_sack_reneging(sk, flag))
2516 		return;
2517 
2518 	/* C. Process data loss notification, provided it is valid. */
2519 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2520 	    before(tp->snd_una, tp->high_seq) &&
2521 	    icsk->icsk_ca_state != TCP_CA_Open &&
2522 	    tp->fackets_out > tp->reordering) {
2523 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
2524 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2525 	}
2526 
2527 	/* D. Check consistency of the current state. */
2528 	tcp_verify_left_out(tp);
2529 
2530 	/* E. Check state exit conditions. State can be terminated
2531 	 *    when high_seq is ACKed. */
2532 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2533 		BUG_TRAP(tp->retrans_out == 0);
2534 		tp->retrans_stamp = 0;
2535 	} else if (!before(tp->snd_una, tp->high_seq)) {
2536 		switch (icsk->icsk_ca_state) {
2537 		case TCP_CA_Loss:
2538 			icsk->icsk_retransmits = 0;
2539 			if (tcp_try_undo_recovery(sk))
2540 				return;
2541 			break;
2542 
2543 		case TCP_CA_CWR:
2544 			/* CWR is to be held something *above* high_seq
2545 			 * is ACKed for CWR bit to reach receiver. */
2546 			if (tp->snd_una != tp->high_seq) {
2547 				tcp_complete_cwr(sk);
2548 				tcp_set_ca_state(sk, TCP_CA_Open);
2549 			}
2550 			break;
2551 
2552 		case TCP_CA_Disorder:
2553 			tcp_try_undo_dsack(sk);
2554 			if (!tp->undo_marker ||
2555 			    /* For SACK case do not Open to allow to undo
2556 			     * catching for all duplicate ACKs. */
2557 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2558 				tp->undo_marker = 0;
2559 				tcp_set_ca_state(sk, TCP_CA_Open);
2560 			}
2561 			break;
2562 
2563 		case TCP_CA_Recovery:
2564 			if (tcp_is_reno(tp))
2565 				tcp_reset_reno_sack(tp);
2566 			if (tcp_try_undo_recovery(sk))
2567 				return;
2568 			tcp_complete_cwr(sk);
2569 			break;
2570 		}
2571 	}
2572 
2573 	/* F. Process state. */
2574 	switch (icsk->icsk_ca_state) {
2575 	case TCP_CA_Recovery:
2576 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2577 			if (tcp_is_reno(tp) && is_dupack)
2578 				tcp_add_reno_sack(sk);
2579 		} else
2580 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2581 		break;
2582 	case TCP_CA_Loss:
2583 		if (flag & FLAG_DATA_ACKED)
2584 			icsk->icsk_retransmits = 0;
2585 		if (!tcp_try_undo_loss(sk)) {
2586 			tcp_moderate_cwnd(tp);
2587 			tcp_xmit_retransmit_queue(sk);
2588 			return;
2589 		}
2590 		if (icsk->icsk_ca_state != TCP_CA_Open)
2591 			return;
2592 		/* Loss is undone; fall through to processing in Open state. */
2593 	default:
2594 		if (tcp_is_reno(tp)) {
2595 			if (flag & FLAG_SND_UNA_ADVANCED)
2596 				tcp_reset_reno_sack(tp);
2597 			if (is_dupack)
2598 				tcp_add_reno_sack(sk);
2599 		}
2600 
2601 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2602 			tcp_try_undo_dsack(sk);
2603 
2604 		if (!tcp_time_to_recover(sk)) {
2605 			tcp_try_to_open(sk, flag);
2606 			return;
2607 		}
2608 
2609 		/* MTU probe failure: don't reduce cwnd */
2610 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2611 		    icsk->icsk_mtup.probe_size &&
2612 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2613 			tcp_mtup_probe_failed(sk);
2614 			/* Restores the reduction we did in tcp_mtup_probe() */
2615 			tp->snd_cwnd++;
2616 			tcp_simple_retransmit(sk);
2617 			return;
2618 		}
2619 
2620 		/* Otherwise enter Recovery state */
2621 
2622 		if (tcp_is_reno(tp))
2623 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2624 		else
2625 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2626 
2627 		tp->high_seq = tp->snd_nxt;
2628 		tp->prior_ssthresh = 0;
2629 		tp->undo_marker = tp->snd_una;
2630 		tp->undo_retrans = tp->retrans_out;
2631 
2632 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2633 			if (!(flag & FLAG_ECE))
2634 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2635 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2636 			TCP_ECN_queue_cwr(tp);
2637 		}
2638 
2639 		tp->bytes_acked = 0;
2640 		tp->snd_cwnd_cnt = 0;
2641 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2642 		fast_rexmit = 1;
2643 	}
2644 
2645 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2646 		tcp_update_scoreboard(sk, fast_rexmit);
2647 	tcp_cwnd_down(sk, flag);
2648 	tcp_xmit_retransmit_queue(sk);
2649 }
2650 
2651 /* Read draft-ietf-tcplw-high-performance before mucking
2652  * with this code. (Supersedes RFC1323)
2653  */
2654 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2655 {
2656 	/* RTTM Rule: A TSecr value received in a segment is used to
2657 	 * update the averaged RTT measurement only if the segment
2658 	 * acknowledges some new data, i.e., only if it advances the
2659 	 * left edge of the send window.
2660 	 *
2661 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2662 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2663 	 *
2664 	 * Changed: reset backoff as soon as we see the first valid sample.
2665 	 * If we do not, we get strongly overestimated rto. With timestamps
2666 	 * samples are accepted even from very old segments: f.e., when rtt=1
2667 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2668 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2669 	 * in window is lost... Voila.	 			--ANK (010210)
2670 	 */
2671 	struct tcp_sock *tp = tcp_sk(sk);
2672 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2673 	tcp_rtt_estimator(sk, seq_rtt);
2674 	tcp_set_rto(sk);
2675 	inet_csk(sk)->icsk_backoff = 0;
2676 	tcp_bound_rto(sk);
2677 }
2678 
2679 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2680 {
2681 	/* We don't have a timestamp. Can only use
2682 	 * packets that are not retransmitted to determine
2683 	 * rtt estimates. Also, we must not reset the
2684 	 * backoff for rto until we get a non-retransmitted
2685 	 * packet. This allows us to deal with a situation
2686 	 * where the network delay has increased suddenly.
2687 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2688 	 */
2689 
2690 	if (flag & FLAG_RETRANS_DATA_ACKED)
2691 		return;
2692 
2693 	tcp_rtt_estimator(sk, seq_rtt);
2694 	tcp_set_rto(sk);
2695 	inet_csk(sk)->icsk_backoff = 0;
2696 	tcp_bound_rto(sk);
2697 }
2698 
2699 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2700 				      const s32 seq_rtt)
2701 {
2702 	const struct tcp_sock *tp = tcp_sk(sk);
2703 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2704 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2705 		tcp_ack_saw_tstamp(sk, flag);
2706 	else if (seq_rtt >= 0)
2707 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2708 }
2709 
2710 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2711 {
2712 	const struct inet_connection_sock *icsk = inet_csk(sk);
2713 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2714 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2715 }
2716 
2717 /* Restart timer after forward progress on connection.
2718  * RFC2988 recommends to restart timer to now+rto.
2719  */
2720 static void tcp_rearm_rto(struct sock *sk)
2721 {
2722 	struct tcp_sock *tp = tcp_sk(sk);
2723 
2724 	if (!tp->packets_out) {
2725 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2726 	} else {
2727 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2728 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2729 	}
2730 }
2731 
2732 /* If we get here, the whole TSO packet has not been acked. */
2733 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2734 {
2735 	struct tcp_sock *tp = tcp_sk(sk);
2736 	u32 packets_acked;
2737 
2738 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2739 
2740 	packets_acked = tcp_skb_pcount(skb);
2741 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2742 		return 0;
2743 	packets_acked -= tcp_skb_pcount(skb);
2744 
2745 	if (packets_acked) {
2746 		BUG_ON(tcp_skb_pcount(skb) == 0);
2747 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2748 	}
2749 
2750 	return packets_acked;
2751 }
2752 
2753 /* Remove acknowledged frames from the retransmission queue. If our packet
2754  * is before the ack sequence we can discard it as it's confirmed to have
2755  * arrived at the other end.
2756  */
2757 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2758 {
2759 	struct tcp_sock *tp = tcp_sk(sk);
2760 	const struct inet_connection_sock *icsk = inet_csk(sk);
2761 	struct sk_buff *skb;
2762 	u32 now = tcp_time_stamp;
2763 	int fully_acked = 1;
2764 	int flag = 0;
2765 	u32 pkts_acked = 0;
2766 	u32 reord = tp->packets_out;
2767 	s32 seq_rtt = -1;
2768 	s32 ca_seq_rtt = -1;
2769 	ktime_t last_ackt = net_invalid_timestamp();
2770 
2771 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2772 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2773 		u32 end_seq;
2774 		u32 acked_pcount;
2775 		u8 sacked = scb->sacked;
2776 
2777 		/* Determine how many packets and what bytes were acked, tso and else */
2778 		if (after(scb->end_seq, tp->snd_una)) {
2779 			if (tcp_skb_pcount(skb) == 1 ||
2780 			    !after(tp->snd_una, scb->seq))
2781 				break;
2782 
2783 			acked_pcount = tcp_tso_acked(sk, skb);
2784 			if (!acked_pcount)
2785 				break;
2786 
2787 			fully_acked = 0;
2788 			end_seq = tp->snd_una;
2789 		} else {
2790 			acked_pcount = tcp_skb_pcount(skb);
2791 			end_seq = scb->end_seq;
2792 		}
2793 
2794 		/* MTU probing checks */
2795 		if (fully_acked && icsk->icsk_mtup.probe_size &&
2796 		    !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2797 			tcp_mtup_probe_success(sk, skb);
2798 		}
2799 
2800 		if (sacked & TCPCB_RETRANS) {
2801 			if (sacked & TCPCB_SACKED_RETRANS)
2802 				tp->retrans_out -= acked_pcount;
2803 			flag |= FLAG_RETRANS_DATA_ACKED;
2804 			ca_seq_rtt = -1;
2805 			seq_rtt = -1;
2806 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2807 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
2808 		} else {
2809 			ca_seq_rtt = now - scb->when;
2810 			last_ackt = skb->tstamp;
2811 			if (seq_rtt < 0) {
2812 				seq_rtt = ca_seq_rtt;
2813 			}
2814 			if (!(sacked & TCPCB_SACKED_ACKED))
2815 				reord = min(pkts_acked, reord);
2816 		}
2817 
2818 		if (sacked & TCPCB_SACKED_ACKED)
2819 			tp->sacked_out -= acked_pcount;
2820 		if (sacked & TCPCB_LOST)
2821 			tp->lost_out -= acked_pcount;
2822 
2823 		if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2824 			tp->urg_mode = 0;
2825 
2826 		tp->packets_out -= acked_pcount;
2827 		pkts_acked += acked_pcount;
2828 
2829 		/* Initial outgoing SYN's get put onto the write_queue
2830 		 * just like anything else we transmit.  It is not
2831 		 * true data, and if we misinform our callers that
2832 		 * this ACK acks real data, we will erroneously exit
2833 		 * connection startup slow start one packet too
2834 		 * quickly.  This is severely frowned upon behavior.
2835 		 */
2836 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2837 			flag |= FLAG_DATA_ACKED;
2838 		} else {
2839 			flag |= FLAG_SYN_ACKED;
2840 			tp->retrans_stamp = 0;
2841 		}
2842 
2843 		if (!fully_acked)
2844 			break;
2845 
2846 		tcp_unlink_write_queue(skb, sk);
2847 		sk_wmem_free_skb(sk, skb);
2848 		tcp_clear_all_retrans_hints(tp);
2849 	}
2850 
2851 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2852 		flag |= FLAG_SACK_RENEGING;
2853 
2854 	if (flag & FLAG_ACKED) {
2855 		const struct tcp_congestion_ops *ca_ops
2856 			= inet_csk(sk)->icsk_ca_ops;
2857 
2858 		tcp_ack_update_rtt(sk, flag, seq_rtt);
2859 		tcp_rearm_rto(sk);
2860 
2861 		if (tcp_is_reno(tp)) {
2862 			tcp_remove_reno_sacks(sk, pkts_acked);
2863 		} else {
2864 			/* Non-retransmitted hole got filled? That's reordering */
2865 			if (reord < prior_fackets)
2866 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2867 		}
2868 
2869 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2870 
2871 		if (ca_ops->pkts_acked) {
2872 			s32 rtt_us = -1;
2873 
2874 			/* Is the ACK triggering packet unambiguous? */
2875 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2876 				/* High resolution needed and available? */
2877 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2878 				    !ktime_equal(last_ackt,
2879 						 net_invalid_timestamp()))
2880 					rtt_us = ktime_us_delta(ktime_get_real(),
2881 								last_ackt);
2882 				else if (ca_seq_rtt > 0)
2883 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
2884 			}
2885 
2886 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2887 		}
2888 	}
2889 
2890 #if FASTRETRANS_DEBUG > 0
2891 	BUG_TRAP((int)tp->sacked_out >= 0);
2892 	BUG_TRAP((int)tp->lost_out >= 0);
2893 	BUG_TRAP((int)tp->retrans_out >= 0);
2894 	if (!tp->packets_out && tcp_is_sack(tp)) {
2895 		icsk = inet_csk(sk);
2896 		if (tp->lost_out) {
2897 			printk(KERN_DEBUG "Leak l=%u %d\n",
2898 			       tp->lost_out, icsk->icsk_ca_state);
2899 			tp->lost_out = 0;
2900 		}
2901 		if (tp->sacked_out) {
2902 			printk(KERN_DEBUG "Leak s=%u %d\n",
2903 			       tp->sacked_out, icsk->icsk_ca_state);
2904 			tp->sacked_out = 0;
2905 		}
2906 		if (tp->retrans_out) {
2907 			printk(KERN_DEBUG "Leak r=%u %d\n",
2908 			       tp->retrans_out, icsk->icsk_ca_state);
2909 			tp->retrans_out = 0;
2910 		}
2911 	}
2912 #endif
2913 	return flag;
2914 }
2915 
2916 static void tcp_ack_probe(struct sock *sk)
2917 {
2918 	const struct tcp_sock *tp = tcp_sk(sk);
2919 	struct inet_connection_sock *icsk = inet_csk(sk);
2920 
2921 	/* Was it a usable window open? */
2922 
2923 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2924 		icsk->icsk_backoff = 0;
2925 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2926 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2927 		 * This function is not for random using!
2928 		 */
2929 	} else {
2930 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2931 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2932 					  TCP_RTO_MAX);
2933 	}
2934 }
2935 
2936 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2937 {
2938 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2939 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2940 }
2941 
2942 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2943 {
2944 	const struct tcp_sock *tp = tcp_sk(sk);
2945 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2946 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2947 }
2948 
2949 /* Check that window update is acceptable.
2950  * The function assumes that snd_una<=ack<=snd_next.
2951  */
2952 static inline int tcp_may_update_window(const struct tcp_sock *tp,
2953 					const u32 ack, const u32 ack_seq,
2954 					const u32 nwin)
2955 {
2956 	return (after(ack, tp->snd_una) ||
2957 		after(ack_seq, tp->snd_wl1) ||
2958 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2959 }
2960 
2961 /* Update our send window.
2962  *
2963  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2964  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2965  */
2966 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2967 				 u32 ack_seq)
2968 {
2969 	struct tcp_sock *tp = tcp_sk(sk);
2970 	int flag = 0;
2971 	u32 nwin = ntohs(tcp_hdr(skb)->window);
2972 
2973 	if (likely(!tcp_hdr(skb)->syn))
2974 		nwin <<= tp->rx_opt.snd_wscale;
2975 
2976 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2977 		flag |= FLAG_WIN_UPDATE;
2978 		tcp_update_wl(tp, ack, ack_seq);
2979 
2980 		if (tp->snd_wnd != nwin) {
2981 			tp->snd_wnd = nwin;
2982 
2983 			/* Note, it is the only place, where
2984 			 * fast path is recovered for sending TCP.
2985 			 */
2986 			tp->pred_flags = 0;
2987 			tcp_fast_path_check(sk);
2988 
2989 			if (nwin > tp->max_window) {
2990 				tp->max_window = nwin;
2991 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2992 			}
2993 		}
2994 	}
2995 
2996 	tp->snd_una = ack;
2997 
2998 	return flag;
2999 }
3000 
3001 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3002  * continue in congestion avoidance.
3003  */
3004 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3005 {
3006 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3007 	tp->snd_cwnd_cnt = 0;
3008 	tp->bytes_acked = 0;
3009 	TCP_ECN_queue_cwr(tp);
3010 	tcp_moderate_cwnd(tp);
3011 }
3012 
3013 /* A conservative spurious RTO response algorithm: reduce cwnd using
3014  * rate halving and continue in congestion avoidance.
3015  */
3016 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3017 {
3018 	tcp_enter_cwr(sk, 0);
3019 }
3020 
3021 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3022 {
3023 	if (flag & FLAG_ECE)
3024 		tcp_ratehalving_spur_to_response(sk);
3025 	else
3026 		tcp_undo_cwr(sk, 1);
3027 }
3028 
3029 /* F-RTO spurious RTO detection algorithm (RFC4138)
3030  *
3031  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3032  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3033  * window (but not to or beyond highest sequence sent before RTO):
3034  *   On First ACK,  send two new segments out.
3035  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3036  *                  algorithm is not part of the F-RTO detection algorithm
3037  *                  given in RFC4138 but can be selected separately).
3038  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3039  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3040  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3041  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3042  *
3043  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3044  * original window even after we transmit two new data segments.
3045  *
3046  * SACK version:
3047  *   on first step, wait until first cumulative ACK arrives, then move to
3048  *   the second step. In second step, the next ACK decides.
3049  *
3050  * F-RTO is implemented (mainly) in four functions:
3051  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3052  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3053  *     called when tcp_use_frto() showed green light
3054  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3055  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3056  *     to prove that the RTO is indeed spurious. It transfers the control
3057  *     from F-RTO to the conventional RTO recovery
3058  */
3059 static int tcp_process_frto(struct sock *sk, int flag)
3060 {
3061 	struct tcp_sock *tp = tcp_sk(sk);
3062 
3063 	tcp_verify_left_out(tp);
3064 
3065 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3066 	if (flag & FLAG_DATA_ACKED)
3067 		inet_csk(sk)->icsk_retransmits = 0;
3068 
3069 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3070 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3071 		tp->undo_marker = 0;
3072 
3073 	if (!before(tp->snd_una, tp->frto_highmark)) {
3074 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3075 		return 1;
3076 	}
3077 
3078 	if (!IsSackFrto() || tcp_is_reno(tp)) {
3079 		/* RFC4138 shortcoming in step 2; should also have case c):
3080 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3081 		 * data, winupdate
3082 		 */
3083 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3084 			return 1;
3085 
3086 		if (!(flag & FLAG_DATA_ACKED)) {
3087 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3088 					    flag);
3089 			return 1;
3090 		}
3091 	} else {
3092 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3093 			/* Prevent sending of new data. */
3094 			tp->snd_cwnd = min(tp->snd_cwnd,
3095 					   tcp_packets_in_flight(tp));
3096 			return 1;
3097 		}
3098 
3099 		if ((tp->frto_counter >= 2) &&
3100 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3101 		     ((flag & FLAG_DATA_SACKED) &&
3102 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3103 			/* RFC4138 shortcoming (see comment above) */
3104 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3105 			    (flag & FLAG_NOT_DUP))
3106 				return 1;
3107 
3108 			tcp_enter_frto_loss(sk, 3, flag);
3109 			return 1;
3110 		}
3111 	}
3112 
3113 	if (tp->frto_counter == 1) {
3114 		/* tcp_may_send_now needs to see updated state */
3115 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3116 		tp->frto_counter = 2;
3117 
3118 		if (!tcp_may_send_now(sk))
3119 			tcp_enter_frto_loss(sk, 2, flag);
3120 
3121 		return 1;
3122 	} else {
3123 		switch (sysctl_tcp_frto_response) {
3124 		case 2:
3125 			tcp_undo_spur_to_response(sk, flag);
3126 			break;
3127 		case 1:
3128 			tcp_conservative_spur_to_response(tp);
3129 			break;
3130 		default:
3131 			tcp_ratehalving_spur_to_response(sk);
3132 			break;
3133 		}
3134 		tp->frto_counter = 0;
3135 		tp->undo_marker = 0;
3136 		NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3137 	}
3138 	return 0;
3139 }
3140 
3141 /* This routine deals with incoming acks, but not outgoing ones. */
3142 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3143 {
3144 	struct inet_connection_sock *icsk = inet_csk(sk);
3145 	struct tcp_sock *tp = tcp_sk(sk);
3146 	u32 prior_snd_una = tp->snd_una;
3147 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3148 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3149 	u32 prior_in_flight;
3150 	u32 prior_fackets;
3151 	int prior_packets;
3152 	int frto_cwnd = 0;
3153 
3154 	/* If the ack is newer than sent or older than previous acks
3155 	 * then we can probably ignore it.
3156 	 */
3157 	if (after(ack, tp->snd_nxt))
3158 		goto uninteresting_ack;
3159 
3160 	if (before(ack, prior_snd_una))
3161 		goto old_ack;
3162 
3163 	if (after(ack, prior_snd_una))
3164 		flag |= FLAG_SND_UNA_ADVANCED;
3165 
3166 	if (sysctl_tcp_abc) {
3167 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3168 			tp->bytes_acked += ack - prior_snd_una;
3169 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3170 			/* we assume just one segment left network */
3171 			tp->bytes_acked += min(ack - prior_snd_una,
3172 					       tp->mss_cache);
3173 	}
3174 
3175 	prior_fackets = tp->fackets_out;
3176 	prior_in_flight = tcp_packets_in_flight(tp);
3177 
3178 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3179 		/* Window is constant, pure forward advance.
3180 		 * No more checks are required.
3181 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3182 		 */
3183 		tcp_update_wl(tp, ack, ack_seq);
3184 		tp->snd_una = ack;
3185 		flag |= FLAG_WIN_UPDATE;
3186 
3187 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3188 
3189 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3190 	} else {
3191 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3192 			flag |= FLAG_DATA;
3193 		else
3194 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3195 
3196 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3197 
3198 		if (TCP_SKB_CB(skb)->sacked)
3199 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3200 
3201 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3202 			flag |= FLAG_ECE;
3203 
3204 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3205 	}
3206 
3207 	/* We passed data and got it acked, remove any soft error
3208 	 * log. Something worked...
3209 	 */
3210 	sk->sk_err_soft = 0;
3211 	tp->rcv_tstamp = tcp_time_stamp;
3212 	prior_packets = tp->packets_out;
3213 	if (!prior_packets)
3214 		goto no_queue;
3215 
3216 	/* See if we can take anything off of the retransmit queue. */
3217 	flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3218 
3219 	if (tp->frto_counter)
3220 		frto_cwnd = tcp_process_frto(sk, flag);
3221 	/* Guarantee sacktag reordering detection against wrap-arounds */
3222 	if (before(tp->frto_highmark, tp->snd_una))
3223 		tp->frto_highmark = 0;
3224 
3225 	if (tcp_ack_is_dubious(sk, flag)) {
3226 		/* Advance CWND, if state allows this. */
3227 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3228 		    tcp_may_raise_cwnd(sk, flag))
3229 			tcp_cong_avoid(sk, ack, prior_in_flight);
3230 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3231 				      flag);
3232 	} else {
3233 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3234 			tcp_cong_avoid(sk, ack, prior_in_flight);
3235 	}
3236 
3237 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3238 		dst_confirm(sk->sk_dst_cache);
3239 
3240 	return 1;
3241 
3242 no_queue:
3243 	icsk->icsk_probes_out = 0;
3244 
3245 	/* If this ack opens up a zero window, clear backoff.  It was
3246 	 * being used to time the probes, and is probably far higher than
3247 	 * it needs to be for normal retransmission.
3248 	 */
3249 	if (tcp_send_head(sk))
3250 		tcp_ack_probe(sk);
3251 	return 1;
3252 
3253 old_ack:
3254 	if (TCP_SKB_CB(skb)->sacked)
3255 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3256 
3257 uninteresting_ack:
3258 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3259 	return 0;
3260 }
3261 
3262 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3263  * But, this can also be called on packets in the established flow when
3264  * the fast version below fails.
3265  */
3266 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3267 		       int estab)
3268 {
3269 	unsigned char *ptr;
3270 	struct tcphdr *th = tcp_hdr(skb);
3271 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3272 
3273 	ptr = (unsigned char *)(th + 1);
3274 	opt_rx->saw_tstamp = 0;
3275 
3276 	while (length > 0) {
3277 		int opcode = *ptr++;
3278 		int opsize;
3279 
3280 		switch (opcode) {
3281 		case TCPOPT_EOL:
3282 			return;
3283 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3284 			length--;
3285 			continue;
3286 		default:
3287 			opsize = *ptr++;
3288 			if (opsize < 2) /* "silly options" */
3289 				return;
3290 			if (opsize > length)
3291 				return;	/* don't parse partial options */
3292 			switch (opcode) {
3293 			case TCPOPT_MSS:
3294 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3295 					u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3296 					if (in_mss) {
3297 						if (opt_rx->user_mss &&
3298 						    opt_rx->user_mss < in_mss)
3299 							in_mss = opt_rx->user_mss;
3300 						opt_rx->mss_clamp = in_mss;
3301 					}
3302 				}
3303 				break;
3304 			case TCPOPT_WINDOW:
3305 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3306 				    !estab && sysctl_tcp_window_scaling) {
3307 					__u8 snd_wscale = *(__u8 *)ptr;
3308 					opt_rx->wscale_ok = 1;
3309 					if (snd_wscale > 14) {
3310 						if (net_ratelimit())
3311 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3312 							       "scaling value %d >14 received.\n",
3313 							       snd_wscale);
3314 						snd_wscale = 14;
3315 					}
3316 					opt_rx->snd_wscale = snd_wscale;
3317 				}
3318 				break;
3319 			case TCPOPT_TIMESTAMP:
3320 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3321 				    ((estab && opt_rx->tstamp_ok) ||
3322 				     (!estab && sysctl_tcp_timestamps))) {
3323 					opt_rx->saw_tstamp = 1;
3324 					opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3325 					opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3326 				}
3327 				break;
3328 			case TCPOPT_SACK_PERM:
3329 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3330 				    !estab && sysctl_tcp_sack) {
3331 					opt_rx->sack_ok = 1;
3332 					tcp_sack_reset(opt_rx);
3333 				}
3334 				break;
3335 
3336 			case TCPOPT_SACK:
3337 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3338 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3339 				   opt_rx->sack_ok) {
3340 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3341 				}
3342 				break;
3343 #ifdef CONFIG_TCP_MD5SIG
3344 			case TCPOPT_MD5SIG:
3345 				/*
3346 				 * The MD5 Hash has already been
3347 				 * checked (see tcp_v{4,6}_do_rcv()).
3348 				 */
3349 				break;
3350 #endif
3351 			}
3352 
3353 			ptr += opsize-2;
3354 			length -= opsize;
3355 		}
3356 	}
3357 }
3358 
3359 /* Fast parse options. This hopes to only see timestamps.
3360  * If it is wrong it falls back on tcp_parse_options().
3361  */
3362 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3363 				  struct tcp_sock *tp)
3364 {
3365 	if (th->doff == sizeof(struct tcphdr) >> 2) {
3366 		tp->rx_opt.saw_tstamp = 0;
3367 		return 0;
3368 	} else if (tp->rx_opt.tstamp_ok &&
3369 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3370 		__be32 *ptr = (__be32 *)(th + 1);
3371 		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3372 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3373 			tp->rx_opt.saw_tstamp = 1;
3374 			++ptr;
3375 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3376 			++ptr;
3377 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3378 			return 1;
3379 		}
3380 	}
3381 	tcp_parse_options(skb, &tp->rx_opt, 1);
3382 	return 1;
3383 }
3384 
3385 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3386 {
3387 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3388 	tp->rx_opt.ts_recent_stamp = get_seconds();
3389 }
3390 
3391 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3392 {
3393 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3394 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3395 		 * extra check below makes sure this can only happen
3396 		 * for pure ACK frames.  -DaveM
3397 		 *
3398 		 * Not only, also it occurs for expired timestamps.
3399 		 */
3400 
3401 		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3402 		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3403 			tcp_store_ts_recent(tp);
3404 	}
3405 }
3406 
3407 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3408  *
3409  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3410  * it can pass through stack. So, the following predicate verifies that
3411  * this segment is not used for anything but congestion avoidance or
3412  * fast retransmit. Moreover, we even are able to eliminate most of such
3413  * second order effects, if we apply some small "replay" window (~RTO)
3414  * to timestamp space.
3415  *
3416  * All these measures still do not guarantee that we reject wrapped ACKs
3417  * on networks with high bandwidth, when sequence space is recycled fastly,
3418  * but it guarantees that such events will be very rare and do not affect
3419  * connection seriously. This doesn't look nice, but alas, PAWS is really
3420  * buggy extension.
3421  *
3422  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3423  * states that events when retransmit arrives after original data are rare.
3424  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3425  * the biggest problem on large power networks even with minor reordering.
3426  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3427  * up to bandwidth of 18Gigabit/sec. 8) ]
3428  */
3429 
3430 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3431 {
3432 	struct tcp_sock *tp = tcp_sk(sk);
3433 	struct tcphdr *th = tcp_hdr(skb);
3434 	u32 seq = TCP_SKB_CB(skb)->seq;
3435 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3436 
3437 	return (/* 1. Pure ACK with correct sequence number. */
3438 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3439 
3440 		/* 2. ... and duplicate ACK. */
3441 		ack == tp->snd_una &&
3442 
3443 		/* 3. ... and does not update window. */
3444 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3445 
3446 		/* 4. ... and sits in replay window. */
3447 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3448 }
3449 
3450 static inline int tcp_paws_discard(const struct sock *sk,
3451 				   const struct sk_buff *skb)
3452 {
3453 	const struct tcp_sock *tp = tcp_sk(sk);
3454 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3455 		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3456 		!tcp_disordered_ack(sk, skb));
3457 }
3458 
3459 /* Check segment sequence number for validity.
3460  *
3461  * Segment controls are considered valid, if the segment
3462  * fits to the window after truncation to the window. Acceptability
3463  * of data (and SYN, FIN, of course) is checked separately.
3464  * See tcp_data_queue(), for example.
3465  *
3466  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3467  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3468  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3469  * (borrowed from freebsd)
3470  */
3471 
3472 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3473 {
3474 	return	!before(end_seq, tp->rcv_wup) &&
3475 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3476 }
3477 
3478 /* When we get a reset we do this. */
3479 static void tcp_reset(struct sock *sk)
3480 {
3481 	/* We want the right error as BSD sees it (and indeed as we do). */
3482 	switch (sk->sk_state) {
3483 	case TCP_SYN_SENT:
3484 		sk->sk_err = ECONNREFUSED;
3485 		break;
3486 	case TCP_CLOSE_WAIT:
3487 		sk->sk_err = EPIPE;
3488 		break;
3489 	case TCP_CLOSE:
3490 		return;
3491 	default:
3492 		sk->sk_err = ECONNRESET;
3493 	}
3494 
3495 	if (!sock_flag(sk, SOCK_DEAD))
3496 		sk->sk_error_report(sk);
3497 
3498 	tcp_done(sk);
3499 }
3500 
3501 /*
3502  * 	Process the FIN bit. This now behaves as it is supposed to work
3503  *	and the FIN takes effect when it is validly part of sequence
3504  *	space. Not before when we get holes.
3505  *
3506  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3507  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3508  *	TIME-WAIT)
3509  *
3510  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3511  *	close and we go into CLOSING (and later onto TIME-WAIT)
3512  *
3513  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3514  */
3515 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3516 {
3517 	struct tcp_sock *tp = tcp_sk(sk);
3518 
3519 	inet_csk_schedule_ack(sk);
3520 
3521 	sk->sk_shutdown |= RCV_SHUTDOWN;
3522 	sock_set_flag(sk, SOCK_DONE);
3523 
3524 	switch (sk->sk_state) {
3525 	case TCP_SYN_RECV:
3526 	case TCP_ESTABLISHED:
3527 		/* Move to CLOSE_WAIT */
3528 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3529 		inet_csk(sk)->icsk_ack.pingpong = 1;
3530 		break;
3531 
3532 	case TCP_CLOSE_WAIT:
3533 	case TCP_CLOSING:
3534 		/* Received a retransmission of the FIN, do
3535 		 * nothing.
3536 		 */
3537 		break;
3538 	case TCP_LAST_ACK:
3539 		/* RFC793: Remain in the LAST-ACK state. */
3540 		break;
3541 
3542 	case TCP_FIN_WAIT1:
3543 		/* This case occurs when a simultaneous close
3544 		 * happens, we must ack the received FIN and
3545 		 * enter the CLOSING state.
3546 		 */
3547 		tcp_send_ack(sk);
3548 		tcp_set_state(sk, TCP_CLOSING);
3549 		break;
3550 	case TCP_FIN_WAIT2:
3551 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3552 		tcp_send_ack(sk);
3553 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3554 		break;
3555 	default:
3556 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3557 		 * cases we should never reach this piece of code.
3558 		 */
3559 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3560 		       __FUNCTION__, sk->sk_state);
3561 		break;
3562 	}
3563 
3564 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3565 	 * Probably, we should reset in this case. For now drop them.
3566 	 */
3567 	__skb_queue_purge(&tp->out_of_order_queue);
3568 	if (tcp_is_sack(tp))
3569 		tcp_sack_reset(&tp->rx_opt);
3570 	sk_mem_reclaim(sk);
3571 
3572 	if (!sock_flag(sk, SOCK_DEAD)) {
3573 		sk->sk_state_change(sk);
3574 
3575 		/* Do not send POLL_HUP for half duplex close. */
3576 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3577 		    sk->sk_state == TCP_CLOSE)
3578 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3579 		else
3580 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3581 	}
3582 }
3583 
3584 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3585 				  u32 end_seq)
3586 {
3587 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3588 		if (before(seq, sp->start_seq))
3589 			sp->start_seq = seq;
3590 		if (after(end_seq, sp->end_seq))
3591 			sp->end_seq = end_seq;
3592 		return 1;
3593 	}
3594 	return 0;
3595 }
3596 
3597 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3598 {
3599 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3600 		if (before(seq, tp->rcv_nxt))
3601 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3602 		else
3603 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3604 
3605 		tp->rx_opt.dsack = 1;
3606 		tp->duplicate_sack[0].start_seq = seq;
3607 		tp->duplicate_sack[0].end_seq = end_seq;
3608 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3609 					   4 - tp->rx_opt.tstamp_ok);
3610 	}
3611 }
3612 
3613 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3614 {
3615 	if (!tp->rx_opt.dsack)
3616 		tcp_dsack_set(tp, seq, end_seq);
3617 	else
3618 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3619 }
3620 
3621 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3622 {
3623 	struct tcp_sock *tp = tcp_sk(sk);
3624 
3625 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3626 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3627 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3628 		tcp_enter_quickack_mode(sk);
3629 
3630 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3631 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3632 
3633 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3634 				end_seq = tp->rcv_nxt;
3635 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3636 		}
3637 	}
3638 
3639 	tcp_send_ack(sk);
3640 }
3641 
3642 /* These routines update the SACK block as out-of-order packets arrive or
3643  * in-order packets close up the sequence space.
3644  */
3645 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3646 {
3647 	int this_sack;
3648 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3649 	struct tcp_sack_block *swalk = sp + 1;
3650 
3651 	/* See if the recent change to the first SACK eats into
3652 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3653 	 */
3654 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3655 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3656 			int i;
3657 
3658 			/* Zap SWALK, by moving every further SACK up by one slot.
3659 			 * Decrease num_sacks.
3660 			 */
3661 			tp->rx_opt.num_sacks--;
3662 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3663 						   tp->rx_opt.dsack,
3664 						   4 - tp->rx_opt.tstamp_ok);
3665 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3666 				sp[i] = sp[i + 1];
3667 			continue;
3668 		}
3669 		this_sack++, swalk++;
3670 	}
3671 }
3672 
3673 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3674 				 struct tcp_sack_block *sack2)
3675 {
3676 	__u32 tmp;
3677 
3678 	tmp = sack1->start_seq;
3679 	sack1->start_seq = sack2->start_seq;
3680 	sack2->start_seq = tmp;
3681 
3682 	tmp = sack1->end_seq;
3683 	sack1->end_seq = sack2->end_seq;
3684 	sack2->end_seq = tmp;
3685 }
3686 
3687 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3688 {
3689 	struct tcp_sock *tp = tcp_sk(sk);
3690 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3691 	int cur_sacks = tp->rx_opt.num_sacks;
3692 	int this_sack;
3693 
3694 	if (!cur_sacks)
3695 		goto new_sack;
3696 
3697 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3698 		if (tcp_sack_extend(sp, seq, end_seq)) {
3699 			/* Rotate this_sack to the first one. */
3700 			for (; this_sack > 0; this_sack--, sp--)
3701 				tcp_sack_swap(sp, sp - 1);
3702 			if (cur_sacks > 1)
3703 				tcp_sack_maybe_coalesce(tp);
3704 			return;
3705 		}
3706 	}
3707 
3708 	/* Could not find an adjacent existing SACK, build a new one,
3709 	 * put it at the front, and shift everyone else down.  We
3710 	 * always know there is at least one SACK present already here.
3711 	 *
3712 	 * If the sack array is full, forget about the last one.
3713 	 */
3714 	if (this_sack >= 4) {
3715 		this_sack--;
3716 		tp->rx_opt.num_sacks--;
3717 		sp--;
3718 	}
3719 	for (; this_sack > 0; this_sack--, sp--)
3720 		*sp = *(sp - 1);
3721 
3722 new_sack:
3723 	/* Build the new head SACK, and we're done. */
3724 	sp->start_seq = seq;
3725 	sp->end_seq = end_seq;
3726 	tp->rx_opt.num_sacks++;
3727 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3728 				   4 - tp->rx_opt.tstamp_ok);
3729 }
3730 
3731 /* RCV.NXT advances, some SACKs should be eaten. */
3732 
3733 static void tcp_sack_remove(struct tcp_sock *tp)
3734 {
3735 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3736 	int num_sacks = tp->rx_opt.num_sacks;
3737 	int this_sack;
3738 
3739 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3740 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3741 		tp->rx_opt.num_sacks = 0;
3742 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3743 		return;
3744 	}
3745 
3746 	for (this_sack = 0; this_sack < num_sacks;) {
3747 		/* Check if the start of the sack is covered by RCV.NXT. */
3748 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3749 			int i;
3750 
3751 			/* RCV.NXT must cover all the block! */
3752 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3753 
3754 			/* Zap this SACK, by moving forward any other SACKS. */
3755 			for (i=this_sack+1; i < num_sacks; i++)
3756 				tp->selective_acks[i-1] = tp->selective_acks[i];
3757 			num_sacks--;
3758 			continue;
3759 		}
3760 		this_sack++;
3761 		sp++;
3762 	}
3763 	if (num_sacks != tp->rx_opt.num_sacks) {
3764 		tp->rx_opt.num_sacks = num_sacks;
3765 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3766 					   tp->rx_opt.dsack,
3767 					   4 - tp->rx_opt.tstamp_ok);
3768 	}
3769 }
3770 
3771 /* This one checks to see if we can put data from the
3772  * out_of_order queue into the receive_queue.
3773  */
3774 static void tcp_ofo_queue(struct sock *sk)
3775 {
3776 	struct tcp_sock *tp = tcp_sk(sk);
3777 	__u32 dsack_high = tp->rcv_nxt;
3778 	struct sk_buff *skb;
3779 
3780 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3781 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3782 			break;
3783 
3784 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3785 			__u32 dsack = dsack_high;
3786 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3787 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3788 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3789 		}
3790 
3791 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3792 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3793 			__skb_unlink(skb, &tp->out_of_order_queue);
3794 			__kfree_skb(skb);
3795 			continue;
3796 		}
3797 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3798 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3799 			   TCP_SKB_CB(skb)->end_seq);
3800 
3801 		__skb_unlink(skb, &tp->out_of_order_queue);
3802 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3803 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3804 		if (tcp_hdr(skb)->fin)
3805 			tcp_fin(skb, sk, tcp_hdr(skb));
3806 	}
3807 }
3808 
3809 static int tcp_prune_queue(struct sock *sk);
3810 
3811 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3812 {
3813 	struct tcphdr *th = tcp_hdr(skb);
3814 	struct tcp_sock *tp = tcp_sk(sk);
3815 	int eaten = -1;
3816 
3817 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3818 		goto drop;
3819 
3820 	__skb_pull(skb, th->doff * 4);
3821 
3822 	TCP_ECN_accept_cwr(tp, skb);
3823 
3824 	if (tp->rx_opt.dsack) {
3825 		tp->rx_opt.dsack = 0;
3826 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3827 					     4 - tp->rx_opt.tstamp_ok);
3828 	}
3829 
3830 	/*  Queue data for delivery to the user.
3831 	 *  Packets in sequence go to the receive queue.
3832 	 *  Out of sequence packets to the out_of_order_queue.
3833 	 */
3834 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3835 		if (tcp_receive_window(tp) == 0)
3836 			goto out_of_window;
3837 
3838 		/* Ok. In sequence. In window. */
3839 		if (tp->ucopy.task == current &&
3840 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3841 		    sock_owned_by_user(sk) && !tp->urg_data) {
3842 			int chunk = min_t(unsigned int, skb->len,
3843 					  tp->ucopy.len);
3844 
3845 			__set_current_state(TASK_RUNNING);
3846 
3847 			local_bh_enable();
3848 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3849 				tp->ucopy.len -= chunk;
3850 				tp->copied_seq += chunk;
3851 				eaten = (chunk == skb->len && !th->fin);
3852 				tcp_rcv_space_adjust(sk);
3853 			}
3854 			local_bh_disable();
3855 		}
3856 
3857 		if (eaten <= 0) {
3858 queue_and_out:
3859 			if (eaten < 0 &&
3860 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3861 			     !sk_rmem_schedule(sk, skb->truesize))) {
3862 				if (tcp_prune_queue(sk) < 0 ||
3863 				    !sk_rmem_schedule(sk, skb->truesize))
3864 					goto drop;
3865 			}
3866 			skb_set_owner_r(skb, sk);
3867 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3868 		}
3869 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3870 		if (skb->len)
3871 			tcp_event_data_recv(sk, skb);
3872 		if (th->fin)
3873 			tcp_fin(skb, sk, th);
3874 
3875 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3876 			tcp_ofo_queue(sk);
3877 
3878 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3879 			 * gap in queue is filled.
3880 			 */
3881 			if (skb_queue_empty(&tp->out_of_order_queue))
3882 				inet_csk(sk)->icsk_ack.pingpong = 0;
3883 		}
3884 
3885 		if (tp->rx_opt.num_sacks)
3886 			tcp_sack_remove(tp);
3887 
3888 		tcp_fast_path_check(sk);
3889 
3890 		if (eaten > 0)
3891 			__kfree_skb(skb);
3892 		else if (!sock_flag(sk, SOCK_DEAD))
3893 			sk->sk_data_ready(sk, 0);
3894 		return;
3895 	}
3896 
3897 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3898 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3899 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3900 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3901 
3902 out_of_window:
3903 		tcp_enter_quickack_mode(sk);
3904 		inet_csk_schedule_ack(sk);
3905 drop:
3906 		__kfree_skb(skb);
3907 		return;
3908 	}
3909 
3910 	/* Out of window. F.e. zero window probe. */
3911 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3912 		goto out_of_window;
3913 
3914 	tcp_enter_quickack_mode(sk);
3915 
3916 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3917 		/* Partial packet, seq < rcv_next < end_seq */
3918 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3919 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3920 			   TCP_SKB_CB(skb)->end_seq);
3921 
3922 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3923 
3924 		/* If window is closed, drop tail of packet. But after
3925 		 * remembering D-SACK for its head made in previous line.
3926 		 */
3927 		if (!tcp_receive_window(tp))
3928 			goto out_of_window;
3929 		goto queue_and_out;
3930 	}
3931 
3932 	TCP_ECN_check_ce(tp, skb);
3933 
3934 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3935 	    !sk_rmem_schedule(sk, skb->truesize)) {
3936 		if (tcp_prune_queue(sk) < 0 ||
3937 		    !sk_rmem_schedule(sk, skb->truesize))
3938 			goto drop;
3939 	}
3940 
3941 	/* Disable header prediction. */
3942 	tp->pred_flags = 0;
3943 	inet_csk_schedule_ack(sk);
3944 
3945 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3946 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3947 
3948 	skb_set_owner_r(skb, sk);
3949 
3950 	if (!skb_peek(&tp->out_of_order_queue)) {
3951 		/* Initial out of order segment, build 1 SACK. */
3952 		if (tcp_is_sack(tp)) {
3953 			tp->rx_opt.num_sacks = 1;
3954 			tp->rx_opt.dsack     = 0;
3955 			tp->rx_opt.eff_sacks = 1;
3956 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3957 			tp->selective_acks[0].end_seq =
3958 						TCP_SKB_CB(skb)->end_seq;
3959 		}
3960 		__skb_queue_head(&tp->out_of_order_queue, skb);
3961 	} else {
3962 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3963 		u32 seq = TCP_SKB_CB(skb)->seq;
3964 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3965 
3966 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3967 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3968 
3969 			if (!tp->rx_opt.num_sacks ||
3970 			    tp->selective_acks[0].end_seq != seq)
3971 				goto add_sack;
3972 
3973 			/* Common case: data arrive in order after hole. */
3974 			tp->selective_acks[0].end_seq = end_seq;
3975 			return;
3976 		}
3977 
3978 		/* Find place to insert this segment. */
3979 		do {
3980 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3981 				break;
3982 		} while ((skb1 = skb1->prev) !=
3983 			 (struct sk_buff *)&tp->out_of_order_queue);
3984 
3985 		/* Do skb overlap to previous one? */
3986 		if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
3987 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3988 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3989 				/* All the bits are present. Drop. */
3990 				__kfree_skb(skb);
3991 				tcp_dsack_set(tp, seq, end_seq);
3992 				goto add_sack;
3993 			}
3994 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3995 				/* Partial overlap. */
3996 				tcp_dsack_set(tp, seq,
3997 					      TCP_SKB_CB(skb1)->end_seq);
3998 			} else {
3999 				skb1 = skb1->prev;
4000 			}
4001 		}
4002 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4003 
4004 		/* And clean segments covered by new one as whole. */
4005 		while ((skb1 = skb->next) !=
4006 		       (struct sk_buff *)&tp->out_of_order_queue &&
4007 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4008 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4009 				tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4010 						 end_seq);
4011 				break;
4012 			}
4013 			__skb_unlink(skb1, &tp->out_of_order_queue);
4014 			tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4015 					 TCP_SKB_CB(skb1)->end_seq);
4016 			__kfree_skb(skb1);
4017 		}
4018 
4019 add_sack:
4020 		if (tcp_is_sack(tp))
4021 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4022 	}
4023 }
4024 
4025 /* Collapse contiguous sequence of skbs head..tail with
4026  * sequence numbers start..end.
4027  * Segments with FIN/SYN are not collapsed (only because this
4028  * simplifies code)
4029  */
4030 static void
4031 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4032 	     struct sk_buff *head, struct sk_buff *tail,
4033 	     u32 start, u32 end)
4034 {
4035 	struct sk_buff *skb;
4036 
4037 	/* First, check that queue is collapsible and find
4038 	 * the point where collapsing can be useful. */
4039 	for (skb = head; skb != tail;) {
4040 		/* No new bits? It is possible on ofo queue. */
4041 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4042 			struct sk_buff *next = skb->next;
4043 			__skb_unlink(skb, list);
4044 			__kfree_skb(skb);
4045 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4046 			skb = next;
4047 			continue;
4048 		}
4049 
4050 		/* The first skb to collapse is:
4051 		 * - not SYN/FIN and
4052 		 * - bloated or contains data before "start" or
4053 		 *   overlaps to the next one.
4054 		 */
4055 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4056 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4057 		     before(TCP_SKB_CB(skb)->seq, start) ||
4058 		     (skb->next != tail &&
4059 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4060 			break;
4061 
4062 		/* Decided to skip this, advance start seq. */
4063 		start = TCP_SKB_CB(skb)->end_seq;
4064 		skb = skb->next;
4065 	}
4066 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4067 		return;
4068 
4069 	while (before(start, end)) {
4070 		struct sk_buff *nskb;
4071 		unsigned int header = skb_headroom(skb);
4072 		int copy = SKB_MAX_ORDER(header, 0);
4073 
4074 		/* Too big header? This can happen with IPv6. */
4075 		if (copy < 0)
4076 			return;
4077 		if (end - start < copy)
4078 			copy = end - start;
4079 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4080 		if (!nskb)
4081 			return;
4082 
4083 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4084 		skb_set_network_header(nskb, (skb_network_header(skb) -
4085 					      skb->head));
4086 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4087 						skb->head));
4088 		skb_reserve(nskb, header);
4089 		memcpy(nskb->head, skb->head, header);
4090 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4091 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4092 		__skb_insert(nskb, skb->prev, skb, list);
4093 		skb_set_owner_r(nskb, sk);
4094 
4095 		/* Copy data, releasing collapsed skbs. */
4096 		while (copy > 0) {
4097 			int offset = start - TCP_SKB_CB(skb)->seq;
4098 			int size = TCP_SKB_CB(skb)->end_seq - start;
4099 
4100 			BUG_ON(offset < 0);
4101 			if (size > 0) {
4102 				size = min(copy, size);
4103 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4104 					BUG();
4105 				TCP_SKB_CB(nskb)->end_seq += size;
4106 				copy -= size;
4107 				start += size;
4108 			}
4109 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4110 				struct sk_buff *next = skb->next;
4111 				__skb_unlink(skb, list);
4112 				__kfree_skb(skb);
4113 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4114 				skb = next;
4115 				if (skb == tail ||
4116 				    tcp_hdr(skb)->syn ||
4117 				    tcp_hdr(skb)->fin)
4118 					return;
4119 			}
4120 		}
4121 	}
4122 }
4123 
4124 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4125  * and tcp_collapse() them until all the queue is collapsed.
4126  */
4127 static void tcp_collapse_ofo_queue(struct sock *sk)
4128 {
4129 	struct tcp_sock *tp = tcp_sk(sk);
4130 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4131 	struct sk_buff *head;
4132 	u32 start, end;
4133 
4134 	if (skb == NULL)
4135 		return;
4136 
4137 	start = TCP_SKB_CB(skb)->seq;
4138 	end = TCP_SKB_CB(skb)->end_seq;
4139 	head = skb;
4140 
4141 	for (;;) {
4142 		skb = skb->next;
4143 
4144 		/* Segment is terminated when we see gap or when
4145 		 * we are at the end of all the queue. */
4146 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4147 		    after(TCP_SKB_CB(skb)->seq, end) ||
4148 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4149 			tcp_collapse(sk, &tp->out_of_order_queue,
4150 				     head, skb, start, end);
4151 			head = skb;
4152 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4153 				break;
4154 			/* Start new segment */
4155 			start = TCP_SKB_CB(skb)->seq;
4156 			end = TCP_SKB_CB(skb)->end_seq;
4157 		} else {
4158 			if (before(TCP_SKB_CB(skb)->seq, start))
4159 				start = TCP_SKB_CB(skb)->seq;
4160 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4161 				end = TCP_SKB_CB(skb)->end_seq;
4162 		}
4163 	}
4164 }
4165 
4166 /* Reduce allocated memory if we can, trying to get
4167  * the socket within its memory limits again.
4168  *
4169  * Return less than zero if we should start dropping frames
4170  * until the socket owning process reads some of the data
4171  * to stabilize the situation.
4172  */
4173 static int tcp_prune_queue(struct sock *sk)
4174 {
4175 	struct tcp_sock *tp = tcp_sk(sk);
4176 
4177 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4178 
4179 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4180 
4181 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4182 		tcp_clamp_window(sk);
4183 	else if (tcp_memory_pressure)
4184 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4185 
4186 	tcp_collapse_ofo_queue(sk);
4187 	tcp_collapse(sk, &sk->sk_receive_queue,
4188 		     sk->sk_receive_queue.next,
4189 		     (struct sk_buff *)&sk->sk_receive_queue,
4190 		     tp->copied_seq, tp->rcv_nxt);
4191 	sk_mem_reclaim(sk);
4192 
4193 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4194 		return 0;
4195 
4196 	/* Collapsing did not help, destructive actions follow.
4197 	 * This must not ever occur. */
4198 
4199 	/* First, purge the out_of_order queue. */
4200 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4201 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4202 		__skb_queue_purge(&tp->out_of_order_queue);
4203 
4204 		/* Reset SACK state.  A conforming SACK implementation will
4205 		 * do the same at a timeout based retransmit.  When a connection
4206 		 * is in a sad state like this, we care only about integrity
4207 		 * of the connection not performance.
4208 		 */
4209 		if (tcp_is_sack(tp))
4210 			tcp_sack_reset(&tp->rx_opt);
4211 		sk_mem_reclaim(sk);
4212 	}
4213 
4214 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4215 		return 0;
4216 
4217 	/* If we are really being abused, tell the caller to silently
4218 	 * drop receive data on the floor.  It will get retransmitted
4219 	 * and hopefully then we'll have sufficient space.
4220 	 */
4221 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4222 
4223 	/* Massive buffer overcommit. */
4224 	tp->pred_flags = 0;
4225 	return -1;
4226 }
4227 
4228 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4229  * As additional protections, we do not touch cwnd in retransmission phases,
4230  * and if application hit its sndbuf limit recently.
4231  */
4232 void tcp_cwnd_application_limited(struct sock *sk)
4233 {
4234 	struct tcp_sock *tp = tcp_sk(sk);
4235 
4236 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4237 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4238 		/* Limited by application or receiver window. */
4239 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4240 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4241 		if (win_used < tp->snd_cwnd) {
4242 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4243 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4244 		}
4245 		tp->snd_cwnd_used = 0;
4246 	}
4247 	tp->snd_cwnd_stamp = tcp_time_stamp;
4248 }
4249 
4250 static int tcp_should_expand_sndbuf(struct sock *sk)
4251 {
4252 	struct tcp_sock *tp = tcp_sk(sk);
4253 
4254 	/* If the user specified a specific send buffer setting, do
4255 	 * not modify it.
4256 	 */
4257 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4258 		return 0;
4259 
4260 	/* If we are under global TCP memory pressure, do not expand.  */
4261 	if (tcp_memory_pressure)
4262 		return 0;
4263 
4264 	/* If we are under soft global TCP memory pressure, do not expand.  */
4265 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4266 		return 0;
4267 
4268 	/* If we filled the congestion window, do not expand.  */
4269 	if (tp->packets_out >= tp->snd_cwnd)
4270 		return 0;
4271 
4272 	return 1;
4273 }
4274 
4275 /* When incoming ACK allowed to free some skb from write_queue,
4276  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4277  * on the exit from tcp input handler.
4278  *
4279  * PROBLEM: sndbuf expansion does not work well with largesend.
4280  */
4281 static void tcp_new_space(struct sock *sk)
4282 {
4283 	struct tcp_sock *tp = tcp_sk(sk);
4284 
4285 	if (tcp_should_expand_sndbuf(sk)) {
4286 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4287 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4288 		    demanded = max_t(unsigned int, tp->snd_cwnd,
4289 				     tp->reordering + 1);
4290 		sndmem *= 2 * demanded;
4291 		if (sndmem > sk->sk_sndbuf)
4292 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4293 		tp->snd_cwnd_stamp = tcp_time_stamp;
4294 	}
4295 
4296 	sk->sk_write_space(sk);
4297 }
4298 
4299 static void tcp_check_space(struct sock *sk)
4300 {
4301 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4302 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4303 		if (sk->sk_socket &&
4304 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4305 			tcp_new_space(sk);
4306 	}
4307 }
4308 
4309 static inline void tcp_data_snd_check(struct sock *sk)
4310 {
4311 	tcp_push_pending_frames(sk);
4312 	tcp_check_space(sk);
4313 }
4314 
4315 /*
4316  * Check if sending an ack is needed.
4317  */
4318 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4319 {
4320 	struct tcp_sock *tp = tcp_sk(sk);
4321 
4322 	    /* More than one full frame received... */
4323 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4324 	     /* ... and right edge of window advances far enough.
4325 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4326 	      */
4327 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4328 	    /* We ACK each frame or... */
4329 	    tcp_in_quickack_mode(sk) ||
4330 	    /* We have out of order data. */
4331 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4332 		/* Then ack it now */
4333 		tcp_send_ack(sk);
4334 	} else {
4335 		/* Else, send delayed ack. */
4336 		tcp_send_delayed_ack(sk);
4337 	}
4338 }
4339 
4340 static inline void tcp_ack_snd_check(struct sock *sk)
4341 {
4342 	if (!inet_csk_ack_scheduled(sk)) {
4343 		/* We sent a data segment already. */
4344 		return;
4345 	}
4346 	__tcp_ack_snd_check(sk, 1);
4347 }
4348 
4349 /*
4350  *	This routine is only called when we have urgent data
4351  *	signaled. Its the 'slow' part of tcp_urg. It could be
4352  *	moved inline now as tcp_urg is only called from one
4353  *	place. We handle URGent data wrong. We have to - as
4354  *	BSD still doesn't use the correction from RFC961.
4355  *	For 1003.1g we should support a new option TCP_STDURG to permit
4356  *	either form (or just set the sysctl tcp_stdurg).
4357  */
4358 
4359 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4360 {
4361 	struct tcp_sock *tp = tcp_sk(sk);
4362 	u32 ptr = ntohs(th->urg_ptr);
4363 
4364 	if (ptr && !sysctl_tcp_stdurg)
4365 		ptr--;
4366 	ptr += ntohl(th->seq);
4367 
4368 	/* Ignore urgent data that we've already seen and read. */
4369 	if (after(tp->copied_seq, ptr))
4370 		return;
4371 
4372 	/* Do not replay urg ptr.
4373 	 *
4374 	 * NOTE: interesting situation not covered by specs.
4375 	 * Misbehaving sender may send urg ptr, pointing to segment,
4376 	 * which we already have in ofo queue. We are not able to fetch
4377 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4378 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4379 	 * situations. But it is worth to think about possibility of some
4380 	 * DoSes using some hypothetical application level deadlock.
4381 	 */
4382 	if (before(ptr, tp->rcv_nxt))
4383 		return;
4384 
4385 	/* Do we already have a newer (or duplicate) urgent pointer? */
4386 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4387 		return;
4388 
4389 	/* Tell the world about our new urgent pointer. */
4390 	sk_send_sigurg(sk);
4391 
4392 	/* We may be adding urgent data when the last byte read was
4393 	 * urgent. To do this requires some care. We cannot just ignore
4394 	 * tp->copied_seq since we would read the last urgent byte again
4395 	 * as data, nor can we alter copied_seq until this data arrives
4396 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4397 	 *
4398 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4399 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4400 	 * and expect that both A and B disappear from stream. This is _wrong_.
4401 	 * Though this happens in BSD with high probability, this is occasional.
4402 	 * Any application relying on this is buggy. Note also, that fix "works"
4403 	 * only in this artificial test. Insert some normal data between A and B and we will
4404 	 * decline of BSD again. Verdict: it is better to remove to trap
4405 	 * buggy users.
4406 	 */
4407 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4408 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4409 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4410 		tp->copied_seq++;
4411 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4412 			__skb_unlink(skb, &sk->sk_receive_queue);
4413 			__kfree_skb(skb);
4414 		}
4415 	}
4416 
4417 	tp->urg_data = TCP_URG_NOTYET;
4418 	tp->urg_seq = ptr;
4419 
4420 	/* Disable header prediction. */
4421 	tp->pred_flags = 0;
4422 }
4423 
4424 /* This is the 'fast' part of urgent handling. */
4425 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4426 {
4427 	struct tcp_sock *tp = tcp_sk(sk);
4428 
4429 	/* Check if we get a new urgent pointer - normally not. */
4430 	if (th->urg)
4431 		tcp_check_urg(sk, th);
4432 
4433 	/* Do we wait for any urgent data? - normally not... */
4434 	if (tp->urg_data == TCP_URG_NOTYET) {
4435 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4436 			  th->syn;
4437 
4438 		/* Is the urgent pointer pointing into this packet? */
4439 		if (ptr < skb->len) {
4440 			u8 tmp;
4441 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4442 				BUG();
4443 			tp->urg_data = TCP_URG_VALID | tmp;
4444 			if (!sock_flag(sk, SOCK_DEAD))
4445 				sk->sk_data_ready(sk, 0);
4446 		}
4447 	}
4448 }
4449 
4450 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4451 {
4452 	struct tcp_sock *tp = tcp_sk(sk);
4453 	int chunk = skb->len - hlen;
4454 	int err;
4455 
4456 	local_bh_enable();
4457 	if (skb_csum_unnecessary(skb))
4458 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4459 	else
4460 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4461 						       tp->ucopy.iov);
4462 
4463 	if (!err) {
4464 		tp->ucopy.len -= chunk;
4465 		tp->copied_seq += chunk;
4466 		tcp_rcv_space_adjust(sk);
4467 	}
4468 
4469 	local_bh_disable();
4470 	return err;
4471 }
4472 
4473 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4474 					    struct sk_buff *skb)
4475 {
4476 	__sum16 result;
4477 
4478 	if (sock_owned_by_user(sk)) {
4479 		local_bh_enable();
4480 		result = __tcp_checksum_complete(skb);
4481 		local_bh_disable();
4482 	} else {
4483 		result = __tcp_checksum_complete(skb);
4484 	}
4485 	return result;
4486 }
4487 
4488 static inline int tcp_checksum_complete_user(struct sock *sk,
4489 					     struct sk_buff *skb)
4490 {
4491 	return !skb_csum_unnecessary(skb) &&
4492 	       __tcp_checksum_complete_user(sk, skb);
4493 }
4494 
4495 #ifdef CONFIG_NET_DMA
4496 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4497 				  int hlen)
4498 {
4499 	struct tcp_sock *tp = tcp_sk(sk);
4500 	int chunk = skb->len - hlen;
4501 	int dma_cookie;
4502 	int copied_early = 0;
4503 
4504 	if (tp->ucopy.wakeup)
4505 		return 0;
4506 
4507 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4508 		tp->ucopy.dma_chan = get_softnet_dma();
4509 
4510 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4511 
4512 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4513 							 skb, hlen,
4514 							 tp->ucopy.iov, chunk,
4515 							 tp->ucopy.pinned_list);
4516 
4517 		if (dma_cookie < 0)
4518 			goto out;
4519 
4520 		tp->ucopy.dma_cookie = dma_cookie;
4521 		copied_early = 1;
4522 
4523 		tp->ucopy.len -= chunk;
4524 		tp->copied_seq += chunk;
4525 		tcp_rcv_space_adjust(sk);
4526 
4527 		if ((tp->ucopy.len == 0) ||
4528 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4529 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4530 			tp->ucopy.wakeup = 1;
4531 			sk->sk_data_ready(sk, 0);
4532 		}
4533 	} else if (chunk > 0) {
4534 		tp->ucopy.wakeup = 1;
4535 		sk->sk_data_ready(sk, 0);
4536 	}
4537 out:
4538 	return copied_early;
4539 }
4540 #endif /* CONFIG_NET_DMA */
4541 
4542 /*
4543  *	TCP receive function for the ESTABLISHED state.
4544  *
4545  *	It is split into a fast path and a slow path. The fast path is
4546  * 	disabled when:
4547  *	- A zero window was announced from us - zero window probing
4548  *        is only handled properly in the slow path.
4549  *	- Out of order segments arrived.
4550  *	- Urgent data is expected.
4551  *	- There is no buffer space left
4552  *	- Unexpected TCP flags/window values/header lengths are received
4553  *	  (detected by checking the TCP header against pred_flags)
4554  *	- Data is sent in both directions. Fast path only supports pure senders
4555  *	  or pure receivers (this means either the sequence number or the ack
4556  *	  value must stay constant)
4557  *	- Unexpected TCP option.
4558  *
4559  *	When these conditions are not satisfied it drops into a standard
4560  *	receive procedure patterned after RFC793 to handle all cases.
4561  *	The first three cases are guaranteed by proper pred_flags setting,
4562  *	the rest is checked inline. Fast processing is turned on in
4563  *	tcp_data_queue when everything is OK.
4564  */
4565 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4566 			struct tcphdr *th, unsigned len)
4567 {
4568 	struct tcp_sock *tp = tcp_sk(sk);
4569 
4570 	/*
4571 	 *	Header prediction.
4572 	 *	The code loosely follows the one in the famous
4573 	 *	"30 instruction TCP receive" Van Jacobson mail.
4574 	 *
4575 	 *	Van's trick is to deposit buffers into socket queue
4576 	 *	on a device interrupt, to call tcp_recv function
4577 	 *	on the receive process context and checksum and copy
4578 	 *	the buffer to user space. smart...
4579 	 *
4580 	 *	Our current scheme is not silly either but we take the
4581 	 *	extra cost of the net_bh soft interrupt processing...
4582 	 *	We do checksum and copy also but from device to kernel.
4583 	 */
4584 
4585 	tp->rx_opt.saw_tstamp = 0;
4586 
4587 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4588 	 *	if header_prediction is to be made
4589 	 *	'S' will always be tp->tcp_header_len >> 2
4590 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4591 	 *  turn it off	(when there are holes in the receive
4592 	 *	 space for instance)
4593 	 *	PSH flag is ignored.
4594 	 */
4595 
4596 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4597 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4598 		int tcp_header_len = tp->tcp_header_len;
4599 
4600 		/* Timestamp header prediction: tcp_header_len
4601 		 * is automatically equal to th->doff*4 due to pred_flags
4602 		 * match.
4603 		 */
4604 
4605 		/* Check timestamp */
4606 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4607 			__be32 *ptr = (__be32 *)(th + 1);
4608 
4609 			/* No? Slow path! */
4610 			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4611 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4612 				goto slow_path;
4613 
4614 			tp->rx_opt.saw_tstamp = 1;
4615 			++ptr;
4616 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4617 			++ptr;
4618 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4619 
4620 			/* If PAWS failed, check it more carefully in slow path */
4621 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4622 				goto slow_path;
4623 
4624 			/* DO NOT update ts_recent here, if checksum fails
4625 			 * and timestamp was corrupted part, it will result
4626 			 * in a hung connection since we will drop all
4627 			 * future packets due to the PAWS test.
4628 			 */
4629 		}
4630 
4631 		if (len <= tcp_header_len) {
4632 			/* Bulk data transfer: sender */
4633 			if (len == tcp_header_len) {
4634 				/* Predicted packet is in window by definition.
4635 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4636 				 * Hence, check seq<=rcv_wup reduces to:
4637 				 */
4638 				if (tcp_header_len ==
4639 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4640 				    tp->rcv_nxt == tp->rcv_wup)
4641 					tcp_store_ts_recent(tp);
4642 
4643 				/* We know that such packets are checksummed
4644 				 * on entry.
4645 				 */
4646 				tcp_ack(sk, skb, 0);
4647 				__kfree_skb(skb);
4648 				tcp_data_snd_check(sk);
4649 				return 0;
4650 			} else { /* Header too small */
4651 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4652 				goto discard;
4653 			}
4654 		} else {
4655 			int eaten = 0;
4656 			int copied_early = 0;
4657 
4658 			if (tp->copied_seq == tp->rcv_nxt &&
4659 			    len - tcp_header_len <= tp->ucopy.len) {
4660 #ifdef CONFIG_NET_DMA
4661 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4662 					copied_early = 1;
4663 					eaten = 1;
4664 				}
4665 #endif
4666 				if (tp->ucopy.task == current &&
4667 				    sock_owned_by_user(sk) && !copied_early) {
4668 					__set_current_state(TASK_RUNNING);
4669 
4670 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4671 						eaten = 1;
4672 				}
4673 				if (eaten) {
4674 					/* Predicted packet is in window by definition.
4675 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4676 					 * Hence, check seq<=rcv_wup reduces to:
4677 					 */
4678 					if (tcp_header_len ==
4679 					    (sizeof(struct tcphdr) +
4680 					     TCPOLEN_TSTAMP_ALIGNED) &&
4681 					    tp->rcv_nxt == tp->rcv_wup)
4682 						tcp_store_ts_recent(tp);
4683 
4684 					tcp_rcv_rtt_measure_ts(sk, skb);
4685 
4686 					__skb_pull(skb, tcp_header_len);
4687 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4688 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4689 				}
4690 				if (copied_early)
4691 					tcp_cleanup_rbuf(sk, skb->len);
4692 			}
4693 			if (!eaten) {
4694 				if (tcp_checksum_complete_user(sk, skb))
4695 					goto csum_error;
4696 
4697 				/* Predicted packet is in window by definition.
4698 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4699 				 * Hence, check seq<=rcv_wup reduces to:
4700 				 */
4701 				if (tcp_header_len ==
4702 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4703 				    tp->rcv_nxt == tp->rcv_wup)
4704 					tcp_store_ts_recent(tp);
4705 
4706 				tcp_rcv_rtt_measure_ts(sk, skb);
4707 
4708 				if ((int)skb->truesize > sk->sk_forward_alloc)
4709 					goto step5;
4710 
4711 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4712 
4713 				/* Bulk data transfer: receiver */
4714 				__skb_pull(skb, tcp_header_len);
4715 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4716 				skb_set_owner_r(skb, sk);
4717 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4718 			}
4719 
4720 			tcp_event_data_recv(sk, skb);
4721 
4722 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4723 				/* Well, only one small jumplet in fast path... */
4724 				tcp_ack(sk, skb, FLAG_DATA);
4725 				tcp_data_snd_check(sk);
4726 				if (!inet_csk_ack_scheduled(sk))
4727 					goto no_ack;
4728 			}
4729 
4730 			__tcp_ack_snd_check(sk, 0);
4731 no_ack:
4732 #ifdef CONFIG_NET_DMA
4733 			if (copied_early)
4734 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4735 			else
4736 #endif
4737 			if (eaten)
4738 				__kfree_skb(skb);
4739 			else
4740 				sk->sk_data_ready(sk, 0);
4741 			return 0;
4742 		}
4743 	}
4744 
4745 slow_path:
4746 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4747 		goto csum_error;
4748 
4749 	/*
4750 	 * RFC1323: H1. Apply PAWS check first.
4751 	 */
4752 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4753 	    tcp_paws_discard(sk, skb)) {
4754 		if (!th->rst) {
4755 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4756 			tcp_send_dupack(sk, skb);
4757 			goto discard;
4758 		}
4759 		/* Resets are accepted even if PAWS failed.
4760 
4761 		   ts_recent update must be made after we are sure
4762 		   that the packet is in window.
4763 		 */
4764 	}
4765 
4766 	/*
4767 	 *	Standard slow path.
4768 	 */
4769 
4770 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4771 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4772 		 * (RST) segments are validated by checking their SEQ-fields."
4773 		 * And page 69: "If an incoming segment is not acceptable,
4774 		 * an acknowledgment should be sent in reply (unless the RST bit
4775 		 * is set, if so drop the segment and return)".
4776 		 */
4777 		if (!th->rst)
4778 			tcp_send_dupack(sk, skb);
4779 		goto discard;
4780 	}
4781 
4782 	if (th->rst) {
4783 		tcp_reset(sk);
4784 		goto discard;
4785 	}
4786 
4787 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4788 
4789 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4790 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4791 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4792 		tcp_reset(sk);
4793 		return 1;
4794 	}
4795 
4796 step5:
4797 	if (th->ack)
4798 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4799 
4800 	tcp_rcv_rtt_measure_ts(sk, skb);
4801 
4802 	/* Process urgent data. */
4803 	tcp_urg(sk, skb, th);
4804 
4805 	/* step 7: process the segment text */
4806 	tcp_data_queue(sk, skb);
4807 
4808 	tcp_data_snd_check(sk);
4809 	tcp_ack_snd_check(sk);
4810 	return 0;
4811 
4812 csum_error:
4813 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4814 
4815 discard:
4816 	__kfree_skb(skb);
4817 	return 0;
4818 }
4819 
4820 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4821 					 struct tcphdr *th, unsigned len)
4822 {
4823 	struct tcp_sock *tp = tcp_sk(sk);
4824 	struct inet_connection_sock *icsk = inet_csk(sk);
4825 	int saved_clamp = tp->rx_opt.mss_clamp;
4826 
4827 	tcp_parse_options(skb, &tp->rx_opt, 0);
4828 
4829 	if (th->ack) {
4830 		/* rfc793:
4831 		 * "If the state is SYN-SENT then
4832 		 *    first check the ACK bit
4833 		 *      If the ACK bit is set
4834 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4835 		 *        a reset (unless the RST bit is set, if so drop
4836 		 *        the segment and return)"
4837 		 *
4838 		 *  We do not send data with SYN, so that RFC-correct
4839 		 *  test reduces to:
4840 		 */
4841 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4842 			goto reset_and_undo;
4843 
4844 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4845 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4846 			     tcp_time_stamp)) {
4847 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4848 			goto reset_and_undo;
4849 		}
4850 
4851 		/* Now ACK is acceptable.
4852 		 *
4853 		 * "If the RST bit is set
4854 		 *    If the ACK was acceptable then signal the user "error:
4855 		 *    connection reset", drop the segment, enter CLOSED state,
4856 		 *    delete TCB, and return."
4857 		 */
4858 
4859 		if (th->rst) {
4860 			tcp_reset(sk);
4861 			goto discard;
4862 		}
4863 
4864 		/* rfc793:
4865 		 *   "fifth, if neither of the SYN or RST bits is set then
4866 		 *    drop the segment and return."
4867 		 *
4868 		 *    See note below!
4869 		 *                                        --ANK(990513)
4870 		 */
4871 		if (!th->syn)
4872 			goto discard_and_undo;
4873 
4874 		/* rfc793:
4875 		 *   "If the SYN bit is on ...
4876 		 *    are acceptable then ...
4877 		 *    (our SYN has been ACKed), change the connection
4878 		 *    state to ESTABLISHED..."
4879 		 */
4880 
4881 		TCP_ECN_rcv_synack(tp, th);
4882 
4883 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4884 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4885 
4886 		/* Ok.. it's good. Set up sequence numbers and
4887 		 * move to established.
4888 		 */
4889 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4890 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4891 
4892 		/* RFC1323: The window in SYN & SYN/ACK segments is
4893 		 * never scaled.
4894 		 */
4895 		tp->snd_wnd = ntohs(th->window);
4896 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4897 
4898 		if (!tp->rx_opt.wscale_ok) {
4899 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4900 			tp->window_clamp = min(tp->window_clamp, 65535U);
4901 		}
4902 
4903 		if (tp->rx_opt.saw_tstamp) {
4904 			tp->rx_opt.tstamp_ok	   = 1;
4905 			tp->tcp_header_len =
4906 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4907 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4908 			tcp_store_ts_recent(tp);
4909 		} else {
4910 			tp->tcp_header_len = sizeof(struct tcphdr);
4911 		}
4912 
4913 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
4914 			tcp_enable_fack(tp);
4915 
4916 		tcp_mtup_init(sk);
4917 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4918 		tcp_initialize_rcv_mss(sk);
4919 
4920 		/* Remember, tcp_poll() does not lock socket!
4921 		 * Change state from SYN-SENT only after copied_seq
4922 		 * is initialized. */
4923 		tp->copied_seq = tp->rcv_nxt;
4924 		smp_mb();
4925 		tcp_set_state(sk, TCP_ESTABLISHED);
4926 
4927 		security_inet_conn_established(sk, skb);
4928 
4929 		/* Make sure socket is routed, for correct metrics.  */
4930 		icsk->icsk_af_ops->rebuild_header(sk);
4931 
4932 		tcp_init_metrics(sk);
4933 
4934 		tcp_init_congestion_control(sk);
4935 
4936 		/* Prevent spurious tcp_cwnd_restart() on first data
4937 		 * packet.
4938 		 */
4939 		tp->lsndtime = tcp_time_stamp;
4940 
4941 		tcp_init_buffer_space(sk);
4942 
4943 		if (sock_flag(sk, SOCK_KEEPOPEN))
4944 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4945 
4946 		if (!tp->rx_opt.snd_wscale)
4947 			__tcp_fast_path_on(tp, tp->snd_wnd);
4948 		else
4949 			tp->pred_flags = 0;
4950 
4951 		if (!sock_flag(sk, SOCK_DEAD)) {
4952 			sk->sk_state_change(sk);
4953 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
4954 		}
4955 
4956 		if (sk->sk_write_pending ||
4957 		    icsk->icsk_accept_queue.rskq_defer_accept ||
4958 		    icsk->icsk_ack.pingpong) {
4959 			/* Save one ACK. Data will be ready after
4960 			 * several ticks, if write_pending is set.
4961 			 *
4962 			 * It may be deleted, but with this feature tcpdumps
4963 			 * look so _wonderfully_ clever, that I was not able
4964 			 * to stand against the temptation 8)     --ANK
4965 			 */
4966 			inet_csk_schedule_ack(sk);
4967 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4968 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4969 			tcp_incr_quickack(sk);
4970 			tcp_enter_quickack_mode(sk);
4971 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4972 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4973 
4974 discard:
4975 			__kfree_skb(skb);
4976 			return 0;
4977 		} else {
4978 			tcp_send_ack(sk);
4979 		}
4980 		return -1;
4981 	}
4982 
4983 	/* No ACK in the segment */
4984 
4985 	if (th->rst) {
4986 		/* rfc793:
4987 		 * "If the RST bit is set
4988 		 *
4989 		 *      Otherwise (no ACK) drop the segment and return."
4990 		 */
4991 
4992 		goto discard_and_undo;
4993 	}
4994 
4995 	/* PAWS check. */
4996 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
4997 	    tcp_paws_check(&tp->rx_opt, 0))
4998 		goto discard_and_undo;
4999 
5000 	if (th->syn) {
5001 		/* We see SYN without ACK. It is attempt of
5002 		 * simultaneous connect with crossed SYNs.
5003 		 * Particularly, it can be connect to self.
5004 		 */
5005 		tcp_set_state(sk, TCP_SYN_RECV);
5006 
5007 		if (tp->rx_opt.saw_tstamp) {
5008 			tp->rx_opt.tstamp_ok = 1;
5009 			tcp_store_ts_recent(tp);
5010 			tp->tcp_header_len =
5011 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5012 		} else {
5013 			tp->tcp_header_len = sizeof(struct tcphdr);
5014 		}
5015 
5016 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5017 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5018 
5019 		/* RFC1323: The window in SYN & SYN/ACK segments is
5020 		 * never scaled.
5021 		 */
5022 		tp->snd_wnd    = ntohs(th->window);
5023 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5024 		tp->max_window = tp->snd_wnd;
5025 
5026 		TCP_ECN_rcv_syn(tp, th);
5027 
5028 		tcp_mtup_init(sk);
5029 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5030 		tcp_initialize_rcv_mss(sk);
5031 
5032 		tcp_send_synack(sk);
5033 #if 0
5034 		/* Note, we could accept data and URG from this segment.
5035 		 * There are no obstacles to make this.
5036 		 *
5037 		 * However, if we ignore data in ACKless segments sometimes,
5038 		 * we have no reasons to accept it sometimes.
5039 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5040 		 * is not flawless. So, discard packet for sanity.
5041 		 * Uncomment this return to process the data.
5042 		 */
5043 		return -1;
5044 #else
5045 		goto discard;
5046 #endif
5047 	}
5048 	/* "fifth, if neither of the SYN or RST bits is set then
5049 	 * drop the segment and return."
5050 	 */
5051 
5052 discard_and_undo:
5053 	tcp_clear_options(&tp->rx_opt);
5054 	tp->rx_opt.mss_clamp = saved_clamp;
5055 	goto discard;
5056 
5057 reset_and_undo:
5058 	tcp_clear_options(&tp->rx_opt);
5059 	tp->rx_opt.mss_clamp = saved_clamp;
5060 	return 1;
5061 }
5062 
5063 /*
5064  *	This function implements the receiving procedure of RFC 793 for
5065  *	all states except ESTABLISHED and TIME_WAIT.
5066  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5067  *	address independent.
5068  */
5069 
5070 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5071 			  struct tcphdr *th, unsigned len)
5072 {
5073 	struct tcp_sock *tp = tcp_sk(sk);
5074 	struct inet_connection_sock *icsk = inet_csk(sk);
5075 	int queued = 0;
5076 
5077 	tp->rx_opt.saw_tstamp = 0;
5078 
5079 	switch (sk->sk_state) {
5080 	case TCP_CLOSE:
5081 		goto discard;
5082 
5083 	case TCP_LISTEN:
5084 		if (th->ack)
5085 			return 1;
5086 
5087 		if (th->rst)
5088 			goto discard;
5089 
5090 		if (th->syn) {
5091 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5092 				return 1;
5093 
5094 			/* Now we have several options: In theory there is
5095 			 * nothing else in the frame. KA9Q has an option to
5096 			 * send data with the syn, BSD accepts data with the
5097 			 * syn up to the [to be] advertised window and
5098 			 * Solaris 2.1 gives you a protocol error. For now
5099 			 * we just ignore it, that fits the spec precisely
5100 			 * and avoids incompatibilities. It would be nice in
5101 			 * future to drop through and process the data.
5102 			 *
5103 			 * Now that TTCP is starting to be used we ought to
5104 			 * queue this data.
5105 			 * But, this leaves one open to an easy denial of
5106 			 * service attack, and SYN cookies can't defend
5107 			 * against this problem. So, we drop the data
5108 			 * in the interest of security over speed unless
5109 			 * it's still in use.
5110 			 */
5111 			kfree_skb(skb);
5112 			return 0;
5113 		}
5114 		goto discard;
5115 
5116 	case TCP_SYN_SENT:
5117 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5118 		if (queued >= 0)
5119 			return queued;
5120 
5121 		/* Do step6 onward by hand. */
5122 		tcp_urg(sk, skb, th);
5123 		__kfree_skb(skb);
5124 		tcp_data_snd_check(sk);
5125 		return 0;
5126 	}
5127 
5128 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5129 	    tcp_paws_discard(sk, skb)) {
5130 		if (!th->rst) {
5131 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5132 			tcp_send_dupack(sk, skb);
5133 			goto discard;
5134 		}
5135 		/* Reset is accepted even if it did not pass PAWS. */
5136 	}
5137 
5138 	/* step 1: check sequence number */
5139 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5140 		if (!th->rst)
5141 			tcp_send_dupack(sk, skb);
5142 		goto discard;
5143 	}
5144 
5145 	/* step 2: check RST bit */
5146 	if (th->rst) {
5147 		tcp_reset(sk);
5148 		goto discard;
5149 	}
5150 
5151 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5152 
5153 	/* step 3: check security and precedence [ignored] */
5154 
5155 	/*	step 4:
5156 	 *
5157 	 *	Check for a SYN in window.
5158 	 */
5159 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5160 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5161 		tcp_reset(sk);
5162 		return 1;
5163 	}
5164 
5165 	/* step 5: check the ACK field */
5166 	if (th->ack) {
5167 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5168 
5169 		switch (sk->sk_state) {
5170 		case TCP_SYN_RECV:
5171 			if (acceptable) {
5172 				tp->copied_seq = tp->rcv_nxt;
5173 				smp_mb();
5174 				tcp_set_state(sk, TCP_ESTABLISHED);
5175 				sk->sk_state_change(sk);
5176 
5177 				/* Note, that this wakeup is only for marginal
5178 				 * crossed SYN case. Passively open sockets
5179 				 * are not waked up, because sk->sk_sleep ==
5180 				 * NULL and sk->sk_socket == NULL.
5181 				 */
5182 				if (sk->sk_socket)
5183 					sk_wake_async(sk,
5184 						      SOCK_WAKE_IO, POLL_OUT);
5185 
5186 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5187 				tp->snd_wnd = ntohs(th->window) <<
5188 					      tp->rx_opt.snd_wscale;
5189 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5190 					    TCP_SKB_CB(skb)->seq);
5191 
5192 				/* tcp_ack considers this ACK as duplicate
5193 				 * and does not calculate rtt.
5194 				 * Fix it at least with timestamps.
5195 				 */
5196 				if (tp->rx_opt.saw_tstamp &&
5197 				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5198 					tcp_ack_saw_tstamp(sk, 0);
5199 
5200 				if (tp->rx_opt.tstamp_ok)
5201 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5202 
5203 				/* Make sure socket is routed, for
5204 				 * correct metrics.
5205 				 */
5206 				icsk->icsk_af_ops->rebuild_header(sk);
5207 
5208 				tcp_init_metrics(sk);
5209 
5210 				tcp_init_congestion_control(sk);
5211 
5212 				/* Prevent spurious tcp_cwnd_restart() on
5213 				 * first data packet.
5214 				 */
5215 				tp->lsndtime = tcp_time_stamp;
5216 
5217 				tcp_mtup_init(sk);
5218 				tcp_initialize_rcv_mss(sk);
5219 				tcp_init_buffer_space(sk);
5220 				tcp_fast_path_on(tp);
5221 			} else {
5222 				return 1;
5223 			}
5224 			break;
5225 
5226 		case TCP_FIN_WAIT1:
5227 			if (tp->snd_una == tp->write_seq) {
5228 				tcp_set_state(sk, TCP_FIN_WAIT2);
5229 				sk->sk_shutdown |= SEND_SHUTDOWN;
5230 				dst_confirm(sk->sk_dst_cache);
5231 
5232 				if (!sock_flag(sk, SOCK_DEAD))
5233 					/* Wake up lingering close() */
5234 					sk->sk_state_change(sk);
5235 				else {
5236 					int tmo;
5237 
5238 					if (tp->linger2 < 0 ||
5239 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5240 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5241 						tcp_done(sk);
5242 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5243 						return 1;
5244 					}
5245 
5246 					tmo = tcp_fin_time(sk);
5247 					if (tmo > TCP_TIMEWAIT_LEN) {
5248 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5249 					} else if (th->fin || sock_owned_by_user(sk)) {
5250 						/* Bad case. We could lose such FIN otherwise.
5251 						 * It is not a big problem, but it looks confusing
5252 						 * and not so rare event. We still can lose it now,
5253 						 * if it spins in bh_lock_sock(), but it is really
5254 						 * marginal case.
5255 						 */
5256 						inet_csk_reset_keepalive_timer(sk, tmo);
5257 					} else {
5258 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5259 						goto discard;
5260 					}
5261 				}
5262 			}
5263 			break;
5264 
5265 		case TCP_CLOSING:
5266 			if (tp->snd_una == tp->write_seq) {
5267 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5268 				goto discard;
5269 			}
5270 			break;
5271 
5272 		case TCP_LAST_ACK:
5273 			if (tp->snd_una == tp->write_seq) {
5274 				tcp_update_metrics(sk);
5275 				tcp_done(sk);
5276 				goto discard;
5277 			}
5278 			break;
5279 		}
5280 	} else
5281 		goto discard;
5282 
5283 	/* step 6: check the URG bit */
5284 	tcp_urg(sk, skb, th);
5285 
5286 	/* step 7: process the segment text */
5287 	switch (sk->sk_state) {
5288 	case TCP_CLOSE_WAIT:
5289 	case TCP_CLOSING:
5290 	case TCP_LAST_ACK:
5291 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5292 			break;
5293 	case TCP_FIN_WAIT1:
5294 	case TCP_FIN_WAIT2:
5295 		/* RFC 793 says to queue data in these states,
5296 		 * RFC 1122 says we MUST send a reset.
5297 		 * BSD 4.4 also does reset.
5298 		 */
5299 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5300 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5301 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5302 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5303 				tcp_reset(sk);
5304 				return 1;
5305 			}
5306 		}
5307 		/* Fall through */
5308 	case TCP_ESTABLISHED:
5309 		tcp_data_queue(sk, skb);
5310 		queued = 1;
5311 		break;
5312 	}
5313 
5314 	/* tcp_data could move socket to TIME-WAIT */
5315 	if (sk->sk_state != TCP_CLOSE) {
5316 		tcp_data_snd_check(sk);
5317 		tcp_ack_snd_check(sk);
5318 	}
5319 
5320 	if (!queued) {
5321 discard:
5322 		__kfree_skb(skb);
5323 	}
5324 	return 0;
5325 }
5326 
5327 EXPORT_SYMBOL(sysctl_tcp_ecn);
5328 EXPORT_SYMBOL(sysctl_tcp_reordering);
5329 EXPORT_SYMBOL(tcp_parse_options);
5330 EXPORT_SYMBOL(tcp_rcv_established);
5331 EXPORT_SYMBOL(tcp_rcv_state_process);
5332 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5333