1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 83 84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 90 #define FLAG_ECE 0x40 /* ECE in this ACK */ 91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 100 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 101 102 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 103 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 104 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 105 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 106 107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 109 110 #define REXMIT_NONE 0 /* no loss recovery to do */ 111 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 112 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 113 114 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 115 unsigned int len) 116 { 117 static bool __once __read_mostly; 118 119 if (!__once) { 120 struct net_device *dev; 121 122 __once = true; 123 124 rcu_read_lock(); 125 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 126 if (!dev || len >= dev->mtu) 127 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 128 dev ? dev->name : "Unknown driver"); 129 rcu_read_unlock(); 130 } 131 } 132 133 /* Adapt the MSS value used to make delayed ack decision to the 134 * real world. 135 */ 136 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 137 { 138 struct inet_connection_sock *icsk = inet_csk(sk); 139 const unsigned int lss = icsk->icsk_ack.last_seg_size; 140 unsigned int len; 141 142 icsk->icsk_ack.last_seg_size = 0; 143 144 /* skb->len may jitter because of SACKs, even if peer 145 * sends good full-sized frames. 146 */ 147 len = skb_shinfo(skb)->gso_size ? : skb->len; 148 if (len >= icsk->icsk_ack.rcv_mss) { 149 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 150 tcp_sk(sk)->advmss); 151 /* Account for possibly-removed options */ 152 if (unlikely(len > icsk->icsk_ack.rcv_mss + 153 MAX_TCP_OPTION_SPACE)) 154 tcp_gro_dev_warn(sk, skb, len); 155 } else { 156 /* Otherwise, we make more careful check taking into account, 157 * that SACKs block is variable. 158 * 159 * "len" is invariant segment length, including TCP header. 160 */ 161 len += skb->data - skb_transport_header(skb); 162 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 163 /* If PSH is not set, packet should be 164 * full sized, provided peer TCP is not badly broken. 165 * This observation (if it is correct 8)) allows 166 * to handle super-low mtu links fairly. 167 */ 168 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 169 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 170 /* Subtract also invariant (if peer is RFC compliant), 171 * tcp header plus fixed timestamp option length. 172 * Resulting "len" is MSS free of SACK jitter. 173 */ 174 len -= tcp_sk(sk)->tcp_header_len; 175 icsk->icsk_ack.last_seg_size = len; 176 if (len == lss) { 177 icsk->icsk_ack.rcv_mss = len; 178 return; 179 } 180 } 181 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 182 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 183 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 184 } 185 } 186 187 static void tcp_incr_quickack(struct sock *sk) 188 { 189 struct inet_connection_sock *icsk = inet_csk(sk); 190 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 191 192 if (quickacks == 0) 193 quickacks = 2; 194 if (quickacks > icsk->icsk_ack.quick) 195 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 196 } 197 198 static void tcp_enter_quickack_mode(struct sock *sk) 199 { 200 struct inet_connection_sock *icsk = inet_csk(sk); 201 tcp_incr_quickack(sk); 202 icsk->icsk_ack.pingpong = 0; 203 icsk->icsk_ack.ato = TCP_ATO_MIN; 204 } 205 206 /* Send ACKs quickly, if "quick" count is not exhausted 207 * and the session is not interactive. 208 */ 209 210 static bool tcp_in_quickack_mode(struct sock *sk) 211 { 212 const struct inet_connection_sock *icsk = inet_csk(sk); 213 const struct dst_entry *dst = __sk_dst_get(sk); 214 215 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 216 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 217 } 218 219 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 220 { 221 if (tp->ecn_flags & TCP_ECN_OK) 222 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 223 } 224 225 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 226 { 227 if (tcp_hdr(skb)->cwr) 228 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 229 } 230 231 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 232 { 233 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 234 } 235 236 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 237 { 238 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 239 case INET_ECN_NOT_ECT: 240 /* Funny extension: if ECT is not set on a segment, 241 * and we already seen ECT on a previous segment, 242 * it is probably a retransmit. 243 */ 244 if (tp->ecn_flags & TCP_ECN_SEEN) 245 tcp_enter_quickack_mode((struct sock *)tp); 246 break; 247 case INET_ECN_CE: 248 if (tcp_ca_needs_ecn((struct sock *)tp)) 249 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 250 251 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 252 /* Better not delay acks, sender can have a very low cwnd */ 253 tcp_enter_quickack_mode((struct sock *)tp); 254 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 255 } 256 tp->ecn_flags |= TCP_ECN_SEEN; 257 break; 258 default: 259 if (tcp_ca_needs_ecn((struct sock *)tp)) 260 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 261 tp->ecn_flags |= TCP_ECN_SEEN; 262 break; 263 } 264 } 265 266 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 267 { 268 if (tp->ecn_flags & TCP_ECN_OK) 269 __tcp_ecn_check_ce(tp, skb); 270 } 271 272 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 273 { 274 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 275 tp->ecn_flags &= ~TCP_ECN_OK; 276 } 277 278 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 279 { 280 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 281 tp->ecn_flags &= ~TCP_ECN_OK; 282 } 283 284 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 285 { 286 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 287 return true; 288 return false; 289 } 290 291 /* Buffer size and advertised window tuning. 292 * 293 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 294 */ 295 296 static void tcp_sndbuf_expand(struct sock *sk) 297 { 298 const struct tcp_sock *tp = tcp_sk(sk); 299 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 300 int sndmem, per_mss; 301 u32 nr_segs; 302 303 /* Worst case is non GSO/TSO : each frame consumes one skb 304 * and skb->head is kmalloced using power of two area of memory 305 */ 306 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 307 MAX_TCP_HEADER + 308 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 309 310 per_mss = roundup_pow_of_two(per_mss) + 311 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 312 313 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 314 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 315 316 /* Fast Recovery (RFC 5681 3.2) : 317 * Cubic needs 1.7 factor, rounded to 2 to include 318 * extra cushion (application might react slowly to EPOLLOUT) 319 */ 320 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 321 sndmem *= nr_segs * per_mss; 322 323 if (sk->sk_sndbuf < sndmem) 324 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 325 } 326 327 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 328 * 329 * All tcp_full_space() is split to two parts: "network" buffer, allocated 330 * forward and advertised in receiver window (tp->rcv_wnd) and 331 * "application buffer", required to isolate scheduling/application 332 * latencies from network. 333 * window_clamp is maximal advertised window. It can be less than 334 * tcp_full_space(), in this case tcp_full_space() - window_clamp 335 * is reserved for "application" buffer. The less window_clamp is 336 * the smoother our behaviour from viewpoint of network, but the lower 337 * throughput and the higher sensitivity of the connection to losses. 8) 338 * 339 * rcv_ssthresh is more strict window_clamp used at "slow start" 340 * phase to predict further behaviour of this connection. 341 * It is used for two goals: 342 * - to enforce header prediction at sender, even when application 343 * requires some significant "application buffer". It is check #1. 344 * - to prevent pruning of receive queue because of misprediction 345 * of receiver window. Check #2. 346 * 347 * The scheme does not work when sender sends good segments opening 348 * window and then starts to feed us spaghetti. But it should work 349 * in common situations. Otherwise, we have to rely on queue collapsing. 350 */ 351 352 /* Slow part of check#2. */ 353 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 354 { 355 struct tcp_sock *tp = tcp_sk(sk); 356 /* Optimize this! */ 357 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 358 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 359 360 while (tp->rcv_ssthresh <= window) { 361 if (truesize <= skb->len) 362 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 363 364 truesize >>= 1; 365 window >>= 1; 366 } 367 return 0; 368 } 369 370 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 371 { 372 struct tcp_sock *tp = tcp_sk(sk); 373 374 /* Check #1 */ 375 if (tp->rcv_ssthresh < tp->window_clamp && 376 (int)tp->rcv_ssthresh < tcp_space(sk) && 377 !tcp_under_memory_pressure(sk)) { 378 int incr; 379 380 /* Check #2. Increase window, if skb with such overhead 381 * will fit to rcvbuf in future. 382 */ 383 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 384 incr = 2 * tp->advmss; 385 else 386 incr = __tcp_grow_window(sk, skb); 387 388 if (incr) { 389 incr = max_t(int, incr, 2 * skb->len); 390 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 391 tp->window_clamp); 392 inet_csk(sk)->icsk_ack.quick |= 1; 393 } 394 } 395 } 396 397 /* 3. Tuning rcvbuf, when connection enters established state. */ 398 static void tcp_fixup_rcvbuf(struct sock *sk) 399 { 400 u32 mss = tcp_sk(sk)->advmss; 401 int rcvmem; 402 403 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 404 tcp_default_init_rwnd(mss); 405 406 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 407 * Allow enough cushion so that sender is not limited by our window 408 */ 409 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 410 rcvmem <<= 2; 411 412 if (sk->sk_rcvbuf < rcvmem) 413 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 414 } 415 416 /* 4. Try to fixup all. It is made immediately after connection enters 417 * established state. 418 */ 419 void tcp_init_buffer_space(struct sock *sk) 420 { 421 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 422 struct tcp_sock *tp = tcp_sk(sk); 423 int maxwin; 424 425 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 426 tcp_fixup_rcvbuf(sk); 427 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 428 tcp_sndbuf_expand(sk); 429 430 tp->rcvq_space.space = tp->rcv_wnd; 431 tcp_mstamp_refresh(tp); 432 tp->rcvq_space.time = tp->tcp_mstamp; 433 tp->rcvq_space.seq = tp->copied_seq; 434 435 maxwin = tcp_full_space(sk); 436 437 if (tp->window_clamp >= maxwin) { 438 tp->window_clamp = maxwin; 439 440 if (tcp_app_win && maxwin > 4 * tp->advmss) 441 tp->window_clamp = max(maxwin - 442 (maxwin >> tcp_app_win), 443 4 * tp->advmss); 444 } 445 446 /* Force reservation of one segment. */ 447 if (tcp_app_win && 448 tp->window_clamp > 2 * tp->advmss && 449 tp->window_clamp + tp->advmss > maxwin) 450 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 451 452 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 453 tp->snd_cwnd_stamp = tcp_jiffies32; 454 } 455 456 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 457 static void tcp_clamp_window(struct sock *sk) 458 { 459 struct tcp_sock *tp = tcp_sk(sk); 460 struct inet_connection_sock *icsk = inet_csk(sk); 461 struct net *net = sock_net(sk); 462 463 icsk->icsk_ack.quick = 0; 464 465 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 466 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 467 !tcp_under_memory_pressure(sk) && 468 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 469 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 470 net->ipv4.sysctl_tcp_rmem[2]); 471 } 472 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 473 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 474 } 475 476 /* Initialize RCV_MSS value. 477 * RCV_MSS is an our guess about MSS used by the peer. 478 * We haven't any direct information about the MSS. 479 * It's better to underestimate the RCV_MSS rather than overestimate. 480 * Overestimations make us ACKing less frequently than needed. 481 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 482 */ 483 void tcp_initialize_rcv_mss(struct sock *sk) 484 { 485 const struct tcp_sock *tp = tcp_sk(sk); 486 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 487 488 hint = min(hint, tp->rcv_wnd / 2); 489 hint = min(hint, TCP_MSS_DEFAULT); 490 hint = max(hint, TCP_MIN_MSS); 491 492 inet_csk(sk)->icsk_ack.rcv_mss = hint; 493 } 494 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 495 496 /* Receiver "autotuning" code. 497 * 498 * The algorithm for RTT estimation w/o timestamps is based on 499 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 500 * <http://public.lanl.gov/radiant/pubs.html#DRS> 501 * 502 * More detail on this code can be found at 503 * <http://staff.psc.edu/jheffner/>, 504 * though this reference is out of date. A new paper 505 * is pending. 506 */ 507 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 508 { 509 u32 new_sample = tp->rcv_rtt_est.rtt_us; 510 long m = sample; 511 512 if (new_sample != 0) { 513 /* If we sample in larger samples in the non-timestamp 514 * case, we could grossly overestimate the RTT especially 515 * with chatty applications or bulk transfer apps which 516 * are stalled on filesystem I/O. 517 * 518 * Also, since we are only going for a minimum in the 519 * non-timestamp case, we do not smooth things out 520 * else with timestamps disabled convergence takes too 521 * long. 522 */ 523 if (!win_dep) { 524 m -= (new_sample >> 3); 525 new_sample += m; 526 } else { 527 m <<= 3; 528 if (m < new_sample) 529 new_sample = m; 530 } 531 } else { 532 /* No previous measure. */ 533 new_sample = m << 3; 534 } 535 536 tp->rcv_rtt_est.rtt_us = new_sample; 537 } 538 539 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 540 { 541 u32 delta_us; 542 543 if (tp->rcv_rtt_est.time == 0) 544 goto new_measure; 545 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 546 return; 547 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 548 if (!delta_us) 549 delta_us = 1; 550 tcp_rcv_rtt_update(tp, delta_us, 1); 551 552 new_measure: 553 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 554 tp->rcv_rtt_est.time = tp->tcp_mstamp; 555 } 556 557 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 558 const struct sk_buff *skb) 559 { 560 struct tcp_sock *tp = tcp_sk(sk); 561 562 if (tp->rx_opt.rcv_tsecr && 563 (TCP_SKB_CB(skb)->end_seq - 564 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 565 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 566 u32 delta_us; 567 568 if (!delta) 569 delta = 1; 570 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 571 tcp_rcv_rtt_update(tp, delta_us, 0); 572 } 573 } 574 575 /* 576 * This function should be called every time data is copied to user space. 577 * It calculates the appropriate TCP receive buffer space. 578 */ 579 void tcp_rcv_space_adjust(struct sock *sk) 580 { 581 struct tcp_sock *tp = tcp_sk(sk); 582 u32 copied; 583 int time; 584 585 tcp_mstamp_refresh(tp); 586 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 587 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 588 return; 589 590 /* Number of bytes copied to user in last RTT */ 591 copied = tp->copied_seq - tp->rcvq_space.seq; 592 if (copied <= tp->rcvq_space.space) 593 goto new_measure; 594 595 /* A bit of theory : 596 * copied = bytes received in previous RTT, our base window 597 * To cope with packet losses, we need a 2x factor 598 * To cope with slow start, and sender growing its cwin by 100 % 599 * every RTT, we need a 4x factor, because the ACK we are sending 600 * now is for the next RTT, not the current one : 601 * <prev RTT . ><current RTT .. ><next RTT .... > 602 */ 603 604 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 606 int rcvmem, rcvbuf; 607 u64 rcvwin, grow; 608 609 /* minimal window to cope with packet losses, assuming 610 * steady state. Add some cushion because of small variations. 611 */ 612 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 613 614 /* Accommodate for sender rate increase (eg. slow start) */ 615 grow = rcvwin * (copied - tp->rcvq_space.space); 616 do_div(grow, tp->rcvq_space.space); 617 rcvwin += (grow << 1); 618 619 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 620 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 621 rcvmem += 128; 622 623 do_div(rcvwin, tp->advmss); 624 rcvbuf = min_t(u64, rcvwin * rcvmem, 625 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 626 if (rcvbuf > sk->sk_rcvbuf) { 627 sk->sk_rcvbuf = rcvbuf; 628 629 /* Make the window clamp follow along. */ 630 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 631 } 632 } 633 tp->rcvq_space.space = copied; 634 635 new_measure: 636 tp->rcvq_space.seq = tp->copied_seq; 637 tp->rcvq_space.time = tp->tcp_mstamp; 638 } 639 640 /* There is something which you must keep in mind when you analyze the 641 * behavior of the tp->ato delayed ack timeout interval. When a 642 * connection starts up, we want to ack as quickly as possible. The 643 * problem is that "good" TCP's do slow start at the beginning of data 644 * transmission. The means that until we send the first few ACK's the 645 * sender will sit on his end and only queue most of his data, because 646 * he can only send snd_cwnd unacked packets at any given time. For 647 * each ACK we send, he increments snd_cwnd and transmits more of his 648 * queue. -DaveM 649 */ 650 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 651 { 652 struct tcp_sock *tp = tcp_sk(sk); 653 struct inet_connection_sock *icsk = inet_csk(sk); 654 u32 now; 655 656 inet_csk_schedule_ack(sk); 657 658 tcp_measure_rcv_mss(sk, skb); 659 660 tcp_rcv_rtt_measure(tp); 661 662 now = tcp_jiffies32; 663 664 if (!icsk->icsk_ack.ato) { 665 /* The _first_ data packet received, initialize 666 * delayed ACK engine. 667 */ 668 tcp_incr_quickack(sk); 669 icsk->icsk_ack.ato = TCP_ATO_MIN; 670 } else { 671 int m = now - icsk->icsk_ack.lrcvtime; 672 673 if (m <= TCP_ATO_MIN / 2) { 674 /* The fastest case is the first. */ 675 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 676 } else if (m < icsk->icsk_ack.ato) { 677 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 678 if (icsk->icsk_ack.ato > icsk->icsk_rto) 679 icsk->icsk_ack.ato = icsk->icsk_rto; 680 } else if (m > icsk->icsk_rto) { 681 /* Too long gap. Apparently sender failed to 682 * restart window, so that we send ACKs quickly. 683 */ 684 tcp_incr_quickack(sk); 685 sk_mem_reclaim(sk); 686 } 687 } 688 icsk->icsk_ack.lrcvtime = now; 689 690 tcp_ecn_check_ce(tp, skb); 691 692 if (skb->len >= 128) 693 tcp_grow_window(sk, skb); 694 } 695 696 /* Called to compute a smoothed rtt estimate. The data fed to this 697 * routine either comes from timestamps, or from segments that were 698 * known _not_ to have been retransmitted [see Karn/Partridge 699 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 700 * piece by Van Jacobson. 701 * NOTE: the next three routines used to be one big routine. 702 * To save cycles in the RFC 1323 implementation it was better to break 703 * it up into three procedures. -- erics 704 */ 705 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 long m = mrtt_us; /* RTT */ 709 u32 srtt = tp->srtt_us; 710 711 /* The following amusing code comes from Jacobson's 712 * article in SIGCOMM '88. Note that rtt and mdev 713 * are scaled versions of rtt and mean deviation. 714 * This is designed to be as fast as possible 715 * m stands for "measurement". 716 * 717 * On a 1990 paper the rto value is changed to: 718 * RTO = rtt + 4 * mdev 719 * 720 * Funny. This algorithm seems to be very broken. 721 * These formulae increase RTO, when it should be decreased, increase 722 * too slowly, when it should be increased quickly, decrease too quickly 723 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 724 * does not matter how to _calculate_ it. Seems, it was trap 725 * that VJ failed to avoid. 8) 726 */ 727 if (srtt != 0) { 728 m -= (srtt >> 3); /* m is now error in rtt est */ 729 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 730 if (m < 0) { 731 m = -m; /* m is now abs(error) */ 732 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 733 /* This is similar to one of Eifel findings. 734 * Eifel blocks mdev updates when rtt decreases. 735 * This solution is a bit different: we use finer gain 736 * for mdev in this case (alpha*beta). 737 * Like Eifel it also prevents growth of rto, 738 * but also it limits too fast rto decreases, 739 * happening in pure Eifel. 740 */ 741 if (m > 0) 742 m >>= 3; 743 } else { 744 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 745 } 746 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 747 if (tp->mdev_us > tp->mdev_max_us) { 748 tp->mdev_max_us = tp->mdev_us; 749 if (tp->mdev_max_us > tp->rttvar_us) 750 tp->rttvar_us = tp->mdev_max_us; 751 } 752 if (after(tp->snd_una, tp->rtt_seq)) { 753 if (tp->mdev_max_us < tp->rttvar_us) 754 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 755 tp->rtt_seq = tp->snd_nxt; 756 tp->mdev_max_us = tcp_rto_min_us(sk); 757 } 758 } else { 759 /* no previous measure. */ 760 srtt = m << 3; /* take the measured time to be rtt */ 761 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 762 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 763 tp->mdev_max_us = tp->rttvar_us; 764 tp->rtt_seq = tp->snd_nxt; 765 } 766 tp->srtt_us = max(1U, srtt); 767 } 768 769 static void tcp_update_pacing_rate(struct sock *sk) 770 { 771 const struct tcp_sock *tp = tcp_sk(sk); 772 u64 rate; 773 774 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 775 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 776 777 /* current rate is (cwnd * mss) / srtt 778 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 779 * In Congestion Avoidance phase, set it to 120 % the current rate. 780 * 781 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 782 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 783 * end of slow start and should slow down. 784 */ 785 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 786 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 787 else 788 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 789 790 rate *= max(tp->snd_cwnd, tp->packets_out); 791 792 if (likely(tp->srtt_us)) 793 do_div(rate, tp->srtt_us); 794 795 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 796 * without any lock. We want to make sure compiler wont store 797 * intermediate values in this location. 798 */ 799 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 800 sk->sk_max_pacing_rate)); 801 } 802 803 /* Calculate rto without backoff. This is the second half of Van Jacobson's 804 * routine referred to above. 805 */ 806 static void tcp_set_rto(struct sock *sk) 807 { 808 const struct tcp_sock *tp = tcp_sk(sk); 809 /* Old crap is replaced with new one. 8) 810 * 811 * More seriously: 812 * 1. If rtt variance happened to be less 50msec, it is hallucination. 813 * It cannot be less due to utterly erratic ACK generation made 814 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 815 * to do with delayed acks, because at cwnd>2 true delack timeout 816 * is invisible. Actually, Linux-2.4 also generates erratic 817 * ACKs in some circumstances. 818 */ 819 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 820 821 /* 2. Fixups made earlier cannot be right. 822 * If we do not estimate RTO correctly without them, 823 * all the algo is pure shit and should be replaced 824 * with correct one. It is exactly, which we pretend to do. 825 */ 826 827 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 828 * guarantees that rto is higher. 829 */ 830 tcp_bound_rto(sk); 831 } 832 833 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 834 { 835 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 836 837 if (!cwnd) 838 cwnd = TCP_INIT_CWND; 839 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 840 } 841 842 /* Take a notice that peer is sending D-SACKs */ 843 static void tcp_dsack_seen(struct tcp_sock *tp) 844 { 845 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 846 tp->rack.dsack_seen = 1; 847 } 848 849 /* It's reordering when higher sequence was delivered (i.e. sacked) before 850 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 851 * distance is approximated in full-mss packet distance ("reordering"). 852 */ 853 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 854 const int ts) 855 { 856 struct tcp_sock *tp = tcp_sk(sk); 857 const u32 mss = tp->mss_cache; 858 u32 fack, metric; 859 860 fack = tcp_highest_sack_seq(tp); 861 if (!before(low_seq, fack)) 862 return; 863 864 metric = fack - low_seq; 865 if ((metric > tp->reordering * mss) && mss) { 866 #if FASTRETRANS_DEBUG > 1 867 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 868 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 869 tp->reordering, 870 0, 871 tp->sacked_out, 872 tp->undo_marker ? tp->undo_retrans : 0); 873 #endif 874 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 875 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 876 } 877 878 tp->rack.reord = 1; 879 /* This exciting event is worth to be remembered. 8) */ 880 NET_INC_STATS(sock_net(sk), 881 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 882 } 883 884 /* This must be called before lost_out is incremented */ 885 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 886 { 887 if (!tp->retransmit_skb_hint || 888 before(TCP_SKB_CB(skb)->seq, 889 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 890 tp->retransmit_skb_hint = skb; 891 } 892 893 /* Sum the number of packets on the wire we have marked as lost. 894 * There are two cases we care about here: 895 * a) Packet hasn't been marked lost (nor retransmitted), 896 * and this is the first loss. 897 * b) Packet has been marked both lost and retransmitted, 898 * and this means we think it was lost again. 899 */ 900 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 901 { 902 __u8 sacked = TCP_SKB_CB(skb)->sacked; 903 904 if (!(sacked & TCPCB_LOST) || 905 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 906 tp->lost += tcp_skb_pcount(skb); 907 } 908 909 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 910 { 911 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 912 tcp_verify_retransmit_hint(tp, skb); 913 914 tp->lost_out += tcp_skb_pcount(skb); 915 tcp_sum_lost(tp, skb); 916 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 917 } 918 } 919 920 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 921 { 922 tcp_verify_retransmit_hint(tp, skb); 923 924 tcp_sum_lost(tp, skb); 925 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 926 tp->lost_out += tcp_skb_pcount(skb); 927 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 928 } 929 } 930 931 /* This procedure tags the retransmission queue when SACKs arrive. 932 * 933 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 934 * Packets in queue with these bits set are counted in variables 935 * sacked_out, retrans_out and lost_out, correspondingly. 936 * 937 * Valid combinations are: 938 * Tag InFlight Description 939 * 0 1 - orig segment is in flight. 940 * S 0 - nothing flies, orig reached receiver. 941 * L 0 - nothing flies, orig lost by net. 942 * R 2 - both orig and retransmit are in flight. 943 * L|R 1 - orig is lost, retransmit is in flight. 944 * S|R 1 - orig reached receiver, retrans is still in flight. 945 * (L|S|R is logically valid, it could occur when L|R is sacked, 946 * but it is equivalent to plain S and code short-curcuits it to S. 947 * L|S is logically invalid, it would mean -1 packet in flight 8)) 948 * 949 * These 6 states form finite state machine, controlled by the following events: 950 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 951 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 952 * 3. Loss detection event of two flavors: 953 * A. Scoreboard estimator decided the packet is lost. 954 * A'. Reno "three dupacks" marks head of queue lost. 955 * B. SACK arrives sacking SND.NXT at the moment, when the 956 * segment was retransmitted. 957 * 4. D-SACK added new rule: D-SACK changes any tag to S. 958 * 959 * It is pleasant to note, that state diagram turns out to be commutative, 960 * so that we are allowed not to be bothered by order of our actions, 961 * when multiple events arrive simultaneously. (see the function below). 962 * 963 * Reordering detection. 964 * -------------------- 965 * Reordering metric is maximal distance, which a packet can be displaced 966 * in packet stream. With SACKs we can estimate it: 967 * 968 * 1. SACK fills old hole and the corresponding segment was not 969 * ever retransmitted -> reordering. Alas, we cannot use it 970 * when segment was retransmitted. 971 * 2. The last flaw is solved with D-SACK. D-SACK arrives 972 * for retransmitted and already SACKed segment -> reordering.. 973 * Both of these heuristics are not used in Loss state, when we cannot 974 * account for retransmits accurately. 975 * 976 * SACK block validation. 977 * ---------------------- 978 * 979 * SACK block range validation checks that the received SACK block fits to 980 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 981 * Note that SND.UNA is not included to the range though being valid because 982 * it means that the receiver is rather inconsistent with itself reporting 983 * SACK reneging when it should advance SND.UNA. Such SACK block this is 984 * perfectly valid, however, in light of RFC2018 which explicitly states 985 * that "SACK block MUST reflect the newest segment. Even if the newest 986 * segment is going to be discarded ...", not that it looks very clever 987 * in case of head skb. Due to potentional receiver driven attacks, we 988 * choose to avoid immediate execution of a walk in write queue due to 989 * reneging and defer head skb's loss recovery to standard loss recovery 990 * procedure that will eventually trigger (nothing forbids us doing this). 991 * 992 * Implements also blockage to start_seq wrap-around. Problem lies in the 993 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 994 * there's no guarantee that it will be before snd_nxt (n). The problem 995 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 996 * wrap (s_w): 997 * 998 * <- outs wnd -> <- wrapzone -> 999 * u e n u_w e_w s n_w 1000 * | | | | | | | 1001 * |<------------+------+----- TCP seqno space --------------+---------->| 1002 * ...-- <2^31 ->| |<--------... 1003 * ...---- >2^31 ------>| |<--------... 1004 * 1005 * Current code wouldn't be vulnerable but it's better still to discard such 1006 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1007 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1008 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1009 * equal to the ideal case (infinite seqno space without wrap caused issues). 1010 * 1011 * With D-SACK the lower bound is extended to cover sequence space below 1012 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1013 * again, D-SACK block must not to go across snd_una (for the same reason as 1014 * for the normal SACK blocks, explained above). But there all simplicity 1015 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1016 * fully below undo_marker they do not affect behavior in anyway and can 1017 * therefore be safely ignored. In rare cases (which are more or less 1018 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1019 * fragmentation and packet reordering past skb's retransmission. To consider 1020 * them correctly, the acceptable range must be extended even more though 1021 * the exact amount is rather hard to quantify. However, tp->max_window can 1022 * be used as an exaggerated estimate. 1023 */ 1024 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1025 u32 start_seq, u32 end_seq) 1026 { 1027 /* Too far in future, or reversed (interpretation is ambiguous) */ 1028 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1029 return false; 1030 1031 /* Nasty start_seq wrap-around check (see comments above) */ 1032 if (!before(start_seq, tp->snd_nxt)) 1033 return false; 1034 1035 /* In outstanding window? ...This is valid exit for D-SACKs too. 1036 * start_seq == snd_una is non-sensical (see comments above) 1037 */ 1038 if (after(start_seq, tp->snd_una)) 1039 return true; 1040 1041 if (!is_dsack || !tp->undo_marker) 1042 return false; 1043 1044 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1045 if (after(end_seq, tp->snd_una)) 1046 return false; 1047 1048 if (!before(start_seq, tp->undo_marker)) 1049 return true; 1050 1051 /* Too old */ 1052 if (!after(end_seq, tp->undo_marker)) 1053 return false; 1054 1055 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1056 * start_seq < undo_marker and end_seq >= undo_marker. 1057 */ 1058 return !before(start_seq, end_seq - tp->max_window); 1059 } 1060 1061 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1062 struct tcp_sack_block_wire *sp, int num_sacks, 1063 u32 prior_snd_una) 1064 { 1065 struct tcp_sock *tp = tcp_sk(sk); 1066 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1067 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1068 bool dup_sack = false; 1069 1070 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1071 dup_sack = true; 1072 tcp_dsack_seen(tp); 1073 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1074 } else if (num_sacks > 1) { 1075 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1076 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1077 1078 if (!after(end_seq_0, end_seq_1) && 1079 !before(start_seq_0, start_seq_1)) { 1080 dup_sack = true; 1081 tcp_dsack_seen(tp); 1082 NET_INC_STATS(sock_net(sk), 1083 LINUX_MIB_TCPDSACKOFORECV); 1084 } 1085 } 1086 1087 /* D-SACK for already forgotten data... Do dumb counting. */ 1088 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1089 !after(end_seq_0, prior_snd_una) && 1090 after(end_seq_0, tp->undo_marker)) 1091 tp->undo_retrans--; 1092 1093 return dup_sack; 1094 } 1095 1096 struct tcp_sacktag_state { 1097 u32 reord; 1098 /* Timestamps for earliest and latest never-retransmitted segment 1099 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1100 * but congestion control should still get an accurate delay signal. 1101 */ 1102 u64 first_sackt; 1103 u64 last_sackt; 1104 struct rate_sample *rate; 1105 int flag; 1106 unsigned int mss_now; 1107 }; 1108 1109 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1110 * the incoming SACK may not exactly match but we can find smaller MSS 1111 * aligned portion of it that matches. Therefore we might need to fragment 1112 * which may fail and creates some hassle (caller must handle error case 1113 * returns). 1114 * 1115 * FIXME: this could be merged to shift decision code 1116 */ 1117 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1118 u32 start_seq, u32 end_seq) 1119 { 1120 int err; 1121 bool in_sack; 1122 unsigned int pkt_len; 1123 unsigned int mss; 1124 1125 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1126 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1127 1128 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1129 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1130 mss = tcp_skb_mss(skb); 1131 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1132 1133 if (!in_sack) { 1134 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1135 if (pkt_len < mss) 1136 pkt_len = mss; 1137 } else { 1138 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1139 if (pkt_len < mss) 1140 return -EINVAL; 1141 } 1142 1143 /* Round if necessary so that SACKs cover only full MSSes 1144 * and/or the remaining small portion (if present) 1145 */ 1146 if (pkt_len > mss) { 1147 unsigned int new_len = (pkt_len / mss) * mss; 1148 if (!in_sack && new_len < pkt_len) 1149 new_len += mss; 1150 pkt_len = new_len; 1151 } 1152 1153 if (pkt_len >= skb->len && !in_sack) 1154 return 0; 1155 1156 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1157 pkt_len, mss, GFP_ATOMIC); 1158 if (err < 0) 1159 return err; 1160 } 1161 1162 return in_sack; 1163 } 1164 1165 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1166 static u8 tcp_sacktag_one(struct sock *sk, 1167 struct tcp_sacktag_state *state, u8 sacked, 1168 u32 start_seq, u32 end_seq, 1169 int dup_sack, int pcount, 1170 u64 xmit_time) 1171 { 1172 struct tcp_sock *tp = tcp_sk(sk); 1173 1174 /* Account D-SACK for retransmitted packet. */ 1175 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1176 if (tp->undo_marker && tp->undo_retrans > 0 && 1177 after(end_seq, tp->undo_marker)) 1178 tp->undo_retrans--; 1179 if ((sacked & TCPCB_SACKED_ACKED) && 1180 before(start_seq, state->reord)) 1181 state->reord = start_seq; 1182 } 1183 1184 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1185 if (!after(end_seq, tp->snd_una)) 1186 return sacked; 1187 1188 if (!(sacked & TCPCB_SACKED_ACKED)) { 1189 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1190 1191 if (sacked & TCPCB_SACKED_RETRANS) { 1192 /* If the segment is not tagged as lost, 1193 * we do not clear RETRANS, believing 1194 * that retransmission is still in flight. 1195 */ 1196 if (sacked & TCPCB_LOST) { 1197 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1198 tp->lost_out -= pcount; 1199 tp->retrans_out -= pcount; 1200 } 1201 } else { 1202 if (!(sacked & TCPCB_RETRANS)) { 1203 /* New sack for not retransmitted frame, 1204 * which was in hole. It is reordering. 1205 */ 1206 if (before(start_seq, 1207 tcp_highest_sack_seq(tp)) && 1208 before(start_seq, state->reord)) 1209 state->reord = start_seq; 1210 1211 if (!after(end_seq, tp->high_seq)) 1212 state->flag |= FLAG_ORIG_SACK_ACKED; 1213 if (state->first_sackt == 0) 1214 state->first_sackt = xmit_time; 1215 state->last_sackt = xmit_time; 1216 } 1217 1218 if (sacked & TCPCB_LOST) { 1219 sacked &= ~TCPCB_LOST; 1220 tp->lost_out -= pcount; 1221 } 1222 } 1223 1224 sacked |= TCPCB_SACKED_ACKED; 1225 state->flag |= FLAG_DATA_SACKED; 1226 tp->sacked_out += pcount; 1227 tp->delivered += pcount; /* Out-of-order packets delivered */ 1228 1229 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1230 if (tp->lost_skb_hint && 1231 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1232 tp->lost_cnt_hint += pcount; 1233 } 1234 1235 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1236 * frames and clear it. undo_retrans is decreased above, L|R frames 1237 * are accounted above as well. 1238 */ 1239 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1240 sacked &= ~TCPCB_SACKED_RETRANS; 1241 tp->retrans_out -= pcount; 1242 } 1243 1244 return sacked; 1245 } 1246 1247 /* Shift newly-SACKed bytes from this skb to the immediately previous 1248 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1249 */ 1250 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1251 struct sk_buff *skb, 1252 struct tcp_sacktag_state *state, 1253 unsigned int pcount, int shifted, int mss, 1254 bool dup_sack) 1255 { 1256 struct tcp_sock *tp = tcp_sk(sk); 1257 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1258 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1259 1260 BUG_ON(!pcount); 1261 1262 /* Adjust counters and hints for the newly sacked sequence 1263 * range but discard the return value since prev is already 1264 * marked. We must tag the range first because the seq 1265 * advancement below implicitly advances 1266 * tcp_highest_sack_seq() when skb is highest_sack. 1267 */ 1268 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1269 start_seq, end_seq, dup_sack, pcount, 1270 skb->skb_mstamp); 1271 tcp_rate_skb_delivered(sk, skb, state->rate); 1272 1273 if (skb == tp->lost_skb_hint) 1274 tp->lost_cnt_hint += pcount; 1275 1276 TCP_SKB_CB(prev)->end_seq += shifted; 1277 TCP_SKB_CB(skb)->seq += shifted; 1278 1279 tcp_skb_pcount_add(prev, pcount); 1280 BUG_ON(tcp_skb_pcount(skb) < pcount); 1281 tcp_skb_pcount_add(skb, -pcount); 1282 1283 /* When we're adding to gso_segs == 1, gso_size will be zero, 1284 * in theory this shouldn't be necessary but as long as DSACK 1285 * code can come after this skb later on it's better to keep 1286 * setting gso_size to something. 1287 */ 1288 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1289 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1290 1291 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1292 if (tcp_skb_pcount(skb) <= 1) 1293 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1294 1295 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1296 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1297 1298 if (skb->len > 0) { 1299 BUG_ON(!tcp_skb_pcount(skb)); 1300 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1301 return false; 1302 } 1303 1304 /* Whole SKB was eaten :-) */ 1305 1306 if (skb == tp->retransmit_skb_hint) 1307 tp->retransmit_skb_hint = prev; 1308 if (skb == tp->lost_skb_hint) { 1309 tp->lost_skb_hint = prev; 1310 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1311 } 1312 1313 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1314 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1315 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1316 TCP_SKB_CB(prev)->end_seq++; 1317 1318 if (skb == tcp_highest_sack(sk)) 1319 tcp_advance_highest_sack(sk, skb); 1320 1321 tcp_skb_collapse_tstamp(prev, skb); 1322 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1323 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1324 1325 tcp_rtx_queue_unlink_and_free(skb, sk); 1326 1327 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1328 1329 return true; 1330 } 1331 1332 /* I wish gso_size would have a bit more sane initialization than 1333 * something-or-zero which complicates things 1334 */ 1335 static int tcp_skb_seglen(const struct sk_buff *skb) 1336 { 1337 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1338 } 1339 1340 /* Shifting pages past head area doesn't work */ 1341 static int skb_can_shift(const struct sk_buff *skb) 1342 { 1343 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1344 } 1345 1346 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1347 * skb. 1348 */ 1349 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1350 struct tcp_sacktag_state *state, 1351 u32 start_seq, u32 end_seq, 1352 bool dup_sack) 1353 { 1354 struct tcp_sock *tp = tcp_sk(sk); 1355 struct sk_buff *prev; 1356 int mss; 1357 int pcount = 0; 1358 int len; 1359 int in_sack; 1360 1361 /* Normally R but no L won't result in plain S */ 1362 if (!dup_sack && 1363 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1364 goto fallback; 1365 if (!skb_can_shift(skb)) 1366 goto fallback; 1367 /* This frame is about to be dropped (was ACKed). */ 1368 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1369 goto fallback; 1370 1371 /* Can only happen with delayed DSACK + discard craziness */ 1372 prev = skb_rb_prev(skb); 1373 if (!prev) 1374 goto fallback; 1375 1376 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1377 goto fallback; 1378 1379 if (!tcp_skb_can_collapse_to(prev)) 1380 goto fallback; 1381 1382 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1383 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1384 1385 if (in_sack) { 1386 len = skb->len; 1387 pcount = tcp_skb_pcount(skb); 1388 mss = tcp_skb_seglen(skb); 1389 1390 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1391 * drop this restriction as unnecessary 1392 */ 1393 if (mss != tcp_skb_seglen(prev)) 1394 goto fallback; 1395 } else { 1396 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1397 goto noop; 1398 /* CHECKME: This is non-MSS split case only?, this will 1399 * cause skipped skbs due to advancing loop btw, original 1400 * has that feature too 1401 */ 1402 if (tcp_skb_pcount(skb) <= 1) 1403 goto noop; 1404 1405 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1406 if (!in_sack) { 1407 /* TODO: head merge to next could be attempted here 1408 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1409 * though it might not be worth of the additional hassle 1410 * 1411 * ...we can probably just fallback to what was done 1412 * previously. We could try merging non-SACKed ones 1413 * as well but it probably isn't going to buy off 1414 * because later SACKs might again split them, and 1415 * it would make skb timestamp tracking considerably 1416 * harder problem. 1417 */ 1418 goto fallback; 1419 } 1420 1421 len = end_seq - TCP_SKB_CB(skb)->seq; 1422 BUG_ON(len < 0); 1423 BUG_ON(len > skb->len); 1424 1425 /* MSS boundaries should be honoured or else pcount will 1426 * severely break even though it makes things bit trickier. 1427 * Optimize common case to avoid most of the divides 1428 */ 1429 mss = tcp_skb_mss(skb); 1430 1431 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1432 * drop this restriction as unnecessary 1433 */ 1434 if (mss != tcp_skb_seglen(prev)) 1435 goto fallback; 1436 1437 if (len == mss) { 1438 pcount = 1; 1439 } else if (len < mss) { 1440 goto noop; 1441 } else { 1442 pcount = len / mss; 1443 len = pcount * mss; 1444 } 1445 } 1446 1447 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1448 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1449 goto fallback; 1450 1451 if (!skb_shift(prev, skb, len)) 1452 goto fallback; 1453 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1454 goto out; 1455 1456 /* Hole filled allows collapsing with the next as well, this is very 1457 * useful when hole on every nth skb pattern happens 1458 */ 1459 skb = skb_rb_next(prev); 1460 if (!skb) 1461 goto out; 1462 1463 if (!skb_can_shift(skb) || 1464 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1465 (mss != tcp_skb_seglen(skb))) 1466 goto out; 1467 1468 len = skb->len; 1469 if (skb_shift(prev, skb, len)) { 1470 pcount += tcp_skb_pcount(skb); 1471 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1472 len, mss, 0); 1473 } 1474 1475 out: 1476 return prev; 1477 1478 noop: 1479 return skb; 1480 1481 fallback: 1482 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1483 return NULL; 1484 } 1485 1486 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1487 struct tcp_sack_block *next_dup, 1488 struct tcp_sacktag_state *state, 1489 u32 start_seq, u32 end_seq, 1490 bool dup_sack_in) 1491 { 1492 struct tcp_sock *tp = tcp_sk(sk); 1493 struct sk_buff *tmp; 1494 1495 skb_rbtree_walk_from(skb) { 1496 int in_sack = 0; 1497 bool dup_sack = dup_sack_in; 1498 1499 /* queue is in-order => we can short-circuit the walk early */ 1500 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1501 break; 1502 1503 if (next_dup && 1504 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1505 in_sack = tcp_match_skb_to_sack(sk, skb, 1506 next_dup->start_seq, 1507 next_dup->end_seq); 1508 if (in_sack > 0) 1509 dup_sack = true; 1510 } 1511 1512 /* skb reference here is a bit tricky to get right, since 1513 * shifting can eat and free both this skb and the next, 1514 * so not even _safe variant of the loop is enough. 1515 */ 1516 if (in_sack <= 0) { 1517 tmp = tcp_shift_skb_data(sk, skb, state, 1518 start_seq, end_seq, dup_sack); 1519 if (tmp) { 1520 if (tmp != skb) { 1521 skb = tmp; 1522 continue; 1523 } 1524 1525 in_sack = 0; 1526 } else { 1527 in_sack = tcp_match_skb_to_sack(sk, skb, 1528 start_seq, 1529 end_seq); 1530 } 1531 } 1532 1533 if (unlikely(in_sack < 0)) 1534 break; 1535 1536 if (in_sack) { 1537 TCP_SKB_CB(skb)->sacked = 1538 tcp_sacktag_one(sk, 1539 state, 1540 TCP_SKB_CB(skb)->sacked, 1541 TCP_SKB_CB(skb)->seq, 1542 TCP_SKB_CB(skb)->end_seq, 1543 dup_sack, 1544 tcp_skb_pcount(skb), 1545 skb->skb_mstamp); 1546 tcp_rate_skb_delivered(sk, skb, state->rate); 1547 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1548 list_del_init(&skb->tcp_tsorted_anchor); 1549 1550 if (!before(TCP_SKB_CB(skb)->seq, 1551 tcp_highest_sack_seq(tp))) 1552 tcp_advance_highest_sack(sk, skb); 1553 } 1554 } 1555 return skb; 1556 } 1557 1558 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1559 struct tcp_sacktag_state *state, 1560 u32 seq) 1561 { 1562 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1563 struct sk_buff *skb; 1564 1565 while (*p) { 1566 parent = *p; 1567 skb = rb_to_skb(parent); 1568 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1569 p = &parent->rb_left; 1570 continue; 1571 } 1572 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1573 p = &parent->rb_right; 1574 continue; 1575 } 1576 return skb; 1577 } 1578 return NULL; 1579 } 1580 1581 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1582 struct tcp_sacktag_state *state, 1583 u32 skip_to_seq) 1584 { 1585 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1586 return skb; 1587 1588 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1589 } 1590 1591 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1592 struct sock *sk, 1593 struct tcp_sack_block *next_dup, 1594 struct tcp_sacktag_state *state, 1595 u32 skip_to_seq) 1596 { 1597 if (!next_dup) 1598 return skb; 1599 1600 if (before(next_dup->start_seq, skip_to_seq)) { 1601 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1602 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1603 next_dup->start_seq, next_dup->end_seq, 1604 1); 1605 } 1606 1607 return skb; 1608 } 1609 1610 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1611 { 1612 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1613 } 1614 1615 static int 1616 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1617 u32 prior_snd_una, struct tcp_sacktag_state *state) 1618 { 1619 struct tcp_sock *tp = tcp_sk(sk); 1620 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1621 TCP_SKB_CB(ack_skb)->sacked); 1622 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1623 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1624 struct tcp_sack_block *cache; 1625 struct sk_buff *skb; 1626 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1627 int used_sacks; 1628 bool found_dup_sack = false; 1629 int i, j; 1630 int first_sack_index; 1631 1632 state->flag = 0; 1633 state->reord = tp->snd_nxt; 1634 1635 if (!tp->sacked_out) 1636 tcp_highest_sack_reset(sk); 1637 1638 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1639 num_sacks, prior_snd_una); 1640 if (found_dup_sack) { 1641 state->flag |= FLAG_DSACKING_ACK; 1642 tp->delivered++; /* A spurious retransmission is delivered */ 1643 } 1644 1645 /* Eliminate too old ACKs, but take into 1646 * account more or less fresh ones, they can 1647 * contain valid SACK info. 1648 */ 1649 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1650 return 0; 1651 1652 if (!tp->packets_out) 1653 goto out; 1654 1655 used_sacks = 0; 1656 first_sack_index = 0; 1657 for (i = 0; i < num_sacks; i++) { 1658 bool dup_sack = !i && found_dup_sack; 1659 1660 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1661 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1662 1663 if (!tcp_is_sackblock_valid(tp, dup_sack, 1664 sp[used_sacks].start_seq, 1665 sp[used_sacks].end_seq)) { 1666 int mib_idx; 1667 1668 if (dup_sack) { 1669 if (!tp->undo_marker) 1670 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1671 else 1672 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1673 } else { 1674 /* Don't count olds caused by ACK reordering */ 1675 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1676 !after(sp[used_sacks].end_seq, tp->snd_una)) 1677 continue; 1678 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1679 } 1680 1681 NET_INC_STATS(sock_net(sk), mib_idx); 1682 if (i == 0) 1683 first_sack_index = -1; 1684 continue; 1685 } 1686 1687 /* Ignore very old stuff early */ 1688 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1689 continue; 1690 1691 used_sacks++; 1692 } 1693 1694 /* order SACK blocks to allow in order walk of the retrans queue */ 1695 for (i = used_sacks - 1; i > 0; i--) { 1696 for (j = 0; j < i; j++) { 1697 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1698 swap(sp[j], sp[j + 1]); 1699 1700 /* Track where the first SACK block goes to */ 1701 if (j == first_sack_index) 1702 first_sack_index = j + 1; 1703 } 1704 } 1705 } 1706 1707 state->mss_now = tcp_current_mss(sk); 1708 skb = NULL; 1709 i = 0; 1710 1711 if (!tp->sacked_out) { 1712 /* It's already past, so skip checking against it */ 1713 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1714 } else { 1715 cache = tp->recv_sack_cache; 1716 /* Skip empty blocks in at head of the cache */ 1717 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1718 !cache->end_seq) 1719 cache++; 1720 } 1721 1722 while (i < used_sacks) { 1723 u32 start_seq = sp[i].start_seq; 1724 u32 end_seq = sp[i].end_seq; 1725 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1726 struct tcp_sack_block *next_dup = NULL; 1727 1728 if (found_dup_sack && ((i + 1) == first_sack_index)) 1729 next_dup = &sp[i + 1]; 1730 1731 /* Skip too early cached blocks */ 1732 while (tcp_sack_cache_ok(tp, cache) && 1733 !before(start_seq, cache->end_seq)) 1734 cache++; 1735 1736 /* Can skip some work by looking recv_sack_cache? */ 1737 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1738 after(end_seq, cache->start_seq)) { 1739 1740 /* Head todo? */ 1741 if (before(start_seq, cache->start_seq)) { 1742 skb = tcp_sacktag_skip(skb, sk, state, 1743 start_seq); 1744 skb = tcp_sacktag_walk(skb, sk, next_dup, 1745 state, 1746 start_seq, 1747 cache->start_seq, 1748 dup_sack); 1749 } 1750 1751 /* Rest of the block already fully processed? */ 1752 if (!after(end_seq, cache->end_seq)) 1753 goto advance_sp; 1754 1755 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1756 state, 1757 cache->end_seq); 1758 1759 /* ...tail remains todo... */ 1760 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1761 /* ...but better entrypoint exists! */ 1762 skb = tcp_highest_sack(sk); 1763 if (!skb) 1764 break; 1765 cache++; 1766 goto walk; 1767 } 1768 1769 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1770 /* Check overlap against next cached too (past this one already) */ 1771 cache++; 1772 continue; 1773 } 1774 1775 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1776 skb = tcp_highest_sack(sk); 1777 if (!skb) 1778 break; 1779 } 1780 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1781 1782 walk: 1783 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1784 start_seq, end_seq, dup_sack); 1785 1786 advance_sp: 1787 i++; 1788 } 1789 1790 /* Clear the head of the cache sack blocks so we can skip it next time */ 1791 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1792 tp->recv_sack_cache[i].start_seq = 0; 1793 tp->recv_sack_cache[i].end_seq = 0; 1794 } 1795 for (j = 0; j < used_sacks; j++) 1796 tp->recv_sack_cache[i++] = sp[j]; 1797 1798 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1799 tcp_check_sack_reordering(sk, state->reord, 0); 1800 1801 tcp_verify_left_out(tp); 1802 out: 1803 1804 #if FASTRETRANS_DEBUG > 0 1805 WARN_ON((int)tp->sacked_out < 0); 1806 WARN_ON((int)tp->lost_out < 0); 1807 WARN_ON((int)tp->retrans_out < 0); 1808 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1809 #endif 1810 return state->flag; 1811 } 1812 1813 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1814 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1815 */ 1816 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1817 { 1818 u32 holes; 1819 1820 holes = max(tp->lost_out, 1U); 1821 holes = min(holes, tp->packets_out); 1822 1823 if ((tp->sacked_out + holes) > tp->packets_out) { 1824 tp->sacked_out = tp->packets_out - holes; 1825 return true; 1826 } 1827 return false; 1828 } 1829 1830 /* If we receive more dupacks than we expected counting segments 1831 * in assumption of absent reordering, interpret this as reordering. 1832 * The only another reason could be bug in receiver TCP. 1833 */ 1834 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1835 { 1836 struct tcp_sock *tp = tcp_sk(sk); 1837 1838 if (!tcp_limit_reno_sacked(tp)) 1839 return; 1840 1841 tp->reordering = min_t(u32, tp->packets_out + addend, 1842 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1843 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1844 } 1845 1846 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1847 1848 static void tcp_add_reno_sack(struct sock *sk) 1849 { 1850 struct tcp_sock *tp = tcp_sk(sk); 1851 u32 prior_sacked = tp->sacked_out; 1852 1853 tp->sacked_out++; 1854 tcp_check_reno_reordering(sk, 0); 1855 if (tp->sacked_out > prior_sacked) 1856 tp->delivered++; /* Some out-of-order packet is delivered */ 1857 tcp_verify_left_out(tp); 1858 } 1859 1860 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1861 1862 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1863 { 1864 struct tcp_sock *tp = tcp_sk(sk); 1865 1866 if (acked > 0) { 1867 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1868 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1869 if (acked - 1 >= tp->sacked_out) 1870 tp->sacked_out = 0; 1871 else 1872 tp->sacked_out -= acked - 1; 1873 } 1874 tcp_check_reno_reordering(sk, acked); 1875 tcp_verify_left_out(tp); 1876 } 1877 1878 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1879 { 1880 tp->sacked_out = 0; 1881 } 1882 1883 void tcp_clear_retrans(struct tcp_sock *tp) 1884 { 1885 tp->retrans_out = 0; 1886 tp->lost_out = 0; 1887 tp->undo_marker = 0; 1888 tp->undo_retrans = -1; 1889 tp->sacked_out = 0; 1890 } 1891 1892 static inline void tcp_init_undo(struct tcp_sock *tp) 1893 { 1894 tp->undo_marker = tp->snd_una; 1895 /* Retransmission still in flight may cause DSACKs later. */ 1896 tp->undo_retrans = tp->retrans_out ? : -1; 1897 } 1898 1899 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1900 * and reset tags completely, otherwise preserve SACKs. If receiver 1901 * dropped its ofo queue, we will know this due to reneging detection. 1902 */ 1903 void tcp_enter_loss(struct sock *sk) 1904 { 1905 const struct inet_connection_sock *icsk = inet_csk(sk); 1906 struct tcp_sock *tp = tcp_sk(sk); 1907 struct net *net = sock_net(sk); 1908 struct sk_buff *skb; 1909 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1910 bool is_reneg; /* is receiver reneging on SACKs? */ 1911 bool mark_lost; 1912 1913 /* Reduce ssthresh if it has not yet been made inside this window. */ 1914 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1915 !after(tp->high_seq, tp->snd_una) || 1916 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1917 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1918 tp->prior_cwnd = tp->snd_cwnd; 1919 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1920 tcp_ca_event(sk, CA_EVENT_LOSS); 1921 tcp_init_undo(tp); 1922 } 1923 tp->snd_cwnd = 1; 1924 tp->snd_cwnd_cnt = 0; 1925 tp->snd_cwnd_stamp = tcp_jiffies32; 1926 1927 tp->retrans_out = 0; 1928 tp->lost_out = 0; 1929 1930 if (tcp_is_reno(tp)) 1931 tcp_reset_reno_sack(tp); 1932 1933 skb = tcp_rtx_queue_head(sk); 1934 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1935 if (is_reneg) { 1936 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1937 tp->sacked_out = 0; 1938 /* Mark SACK reneging until we recover from this loss event. */ 1939 tp->is_sack_reneg = 1; 1940 } 1941 tcp_clear_all_retrans_hints(tp); 1942 1943 skb_rbtree_walk_from(skb) { 1944 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1945 is_reneg); 1946 if (mark_lost) 1947 tcp_sum_lost(tp, skb); 1948 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1949 if (mark_lost) { 1950 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1951 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1952 tp->lost_out += tcp_skb_pcount(skb); 1953 } 1954 } 1955 tcp_verify_left_out(tp); 1956 1957 /* Timeout in disordered state after receiving substantial DUPACKs 1958 * suggests that the degree of reordering is over-estimated. 1959 */ 1960 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1961 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1962 tp->reordering = min_t(unsigned int, tp->reordering, 1963 net->ipv4.sysctl_tcp_reordering); 1964 tcp_set_ca_state(sk, TCP_CA_Loss); 1965 tp->high_seq = tp->snd_nxt; 1966 tcp_ecn_queue_cwr(tp); 1967 1968 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1969 * loss recovery is underway except recurring timeout(s) on 1970 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1971 * 1972 * In theory F-RTO can be used repeatedly during loss recovery. 1973 * In practice this interacts badly with broken middle-boxes that 1974 * falsely raise the receive window, which results in repeated 1975 * timeouts and stop-and-go behavior. 1976 */ 1977 tp->frto = net->ipv4.sysctl_tcp_frto && 1978 (new_recovery || icsk->icsk_retransmits) && 1979 !inet_csk(sk)->icsk_mtup.probe_size; 1980 } 1981 1982 /* If ACK arrived pointing to a remembered SACK, it means that our 1983 * remembered SACKs do not reflect real state of receiver i.e. 1984 * receiver _host_ is heavily congested (or buggy). 1985 * 1986 * To avoid big spurious retransmission bursts due to transient SACK 1987 * scoreboard oddities that look like reneging, we give the receiver a 1988 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 1989 * restore sanity to the SACK scoreboard. If the apparent reneging 1990 * persists until this RTO then we'll clear the SACK scoreboard. 1991 */ 1992 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 1993 { 1994 if (flag & FLAG_SACK_RENEGING) { 1995 struct tcp_sock *tp = tcp_sk(sk); 1996 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 1997 msecs_to_jiffies(10)); 1998 1999 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2000 delay, TCP_RTO_MAX); 2001 return true; 2002 } 2003 return false; 2004 } 2005 2006 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2007 * counter when SACK is enabled (without SACK, sacked_out is used for 2008 * that purpose). 2009 * 2010 * With reordering, holes may still be in flight, so RFC3517 recovery 2011 * uses pure sacked_out (total number of SACKed segments) even though 2012 * it violates the RFC that uses duplicate ACKs, often these are equal 2013 * but when e.g. out-of-window ACKs or packet duplication occurs, 2014 * they differ. Since neither occurs due to loss, TCP should really 2015 * ignore them. 2016 */ 2017 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2018 { 2019 return tp->sacked_out + 1; 2020 } 2021 2022 /* Linux NewReno/SACK/ECN state machine. 2023 * -------------------------------------- 2024 * 2025 * "Open" Normal state, no dubious events, fast path. 2026 * "Disorder" In all the respects it is "Open", 2027 * but requires a bit more attention. It is entered when 2028 * we see some SACKs or dupacks. It is split of "Open" 2029 * mainly to move some processing from fast path to slow one. 2030 * "CWR" CWND was reduced due to some Congestion Notification event. 2031 * It can be ECN, ICMP source quench, local device congestion. 2032 * "Recovery" CWND was reduced, we are fast-retransmitting. 2033 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2034 * 2035 * tcp_fastretrans_alert() is entered: 2036 * - each incoming ACK, if state is not "Open" 2037 * - when arrived ACK is unusual, namely: 2038 * * SACK 2039 * * Duplicate ACK. 2040 * * ECN ECE. 2041 * 2042 * Counting packets in flight is pretty simple. 2043 * 2044 * in_flight = packets_out - left_out + retrans_out 2045 * 2046 * packets_out is SND.NXT-SND.UNA counted in packets. 2047 * 2048 * retrans_out is number of retransmitted segments. 2049 * 2050 * left_out is number of segments left network, but not ACKed yet. 2051 * 2052 * left_out = sacked_out + lost_out 2053 * 2054 * sacked_out: Packets, which arrived to receiver out of order 2055 * and hence not ACKed. With SACKs this number is simply 2056 * amount of SACKed data. Even without SACKs 2057 * it is easy to give pretty reliable estimate of this number, 2058 * counting duplicate ACKs. 2059 * 2060 * lost_out: Packets lost by network. TCP has no explicit 2061 * "loss notification" feedback from network (for now). 2062 * It means that this number can be only _guessed_. 2063 * Actually, it is the heuristics to predict lossage that 2064 * distinguishes different algorithms. 2065 * 2066 * F.e. after RTO, when all the queue is considered as lost, 2067 * lost_out = packets_out and in_flight = retrans_out. 2068 * 2069 * Essentially, we have now a few algorithms detecting 2070 * lost packets. 2071 * 2072 * If the receiver supports SACK: 2073 * 2074 * RFC6675/3517: It is the conventional algorithm. A packet is 2075 * considered lost if the number of higher sequence packets 2076 * SACKed is greater than or equal the DUPACK thoreshold 2077 * (reordering). This is implemented in tcp_mark_head_lost and 2078 * tcp_update_scoreboard. 2079 * 2080 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2081 * (2017-) that checks timing instead of counting DUPACKs. 2082 * Essentially a packet is considered lost if it's not S/ACKed 2083 * after RTT + reordering_window, where both metrics are 2084 * dynamically measured and adjusted. This is implemented in 2085 * tcp_rack_mark_lost. 2086 * 2087 * If the receiver does not support SACK: 2088 * 2089 * NewReno (RFC6582): in Recovery we assume that one segment 2090 * is lost (classic Reno). While we are in Recovery and 2091 * a partial ACK arrives, we assume that one more packet 2092 * is lost (NewReno). This heuristics are the same in NewReno 2093 * and SACK. 2094 * 2095 * Really tricky (and requiring careful tuning) part of algorithm 2096 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2097 * The first determines the moment _when_ we should reduce CWND and, 2098 * hence, slow down forward transmission. In fact, it determines the moment 2099 * when we decide that hole is caused by loss, rather than by a reorder. 2100 * 2101 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2102 * holes, caused by lost packets. 2103 * 2104 * And the most logically complicated part of algorithm is undo 2105 * heuristics. We detect false retransmits due to both too early 2106 * fast retransmit (reordering) and underestimated RTO, analyzing 2107 * timestamps and D-SACKs. When we detect that some segments were 2108 * retransmitted by mistake and CWND reduction was wrong, we undo 2109 * window reduction and abort recovery phase. This logic is hidden 2110 * inside several functions named tcp_try_undo_<something>. 2111 */ 2112 2113 /* This function decides, when we should leave Disordered state 2114 * and enter Recovery phase, reducing congestion window. 2115 * 2116 * Main question: may we further continue forward transmission 2117 * with the same cwnd? 2118 */ 2119 static bool tcp_time_to_recover(struct sock *sk, int flag) 2120 { 2121 struct tcp_sock *tp = tcp_sk(sk); 2122 2123 /* Trick#1: The loss is proven. */ 2124 if (tp->lost_out) 2125 return true; 2126 2127 /* Not-A-Trick#2 : Classic rule... */ 2128 if (tcp_dupack_heuristics(tp) > tp->reordering) 2129 return true; 2130 2131 return false; 2132 } 2133 2134 /* Detect loss in event "A" above by marking head of queue up as lost. 2135 * For non-SACK(Reno) senders, the first "packets" number of segments 2136 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2137 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2138 * the maximum SACKed segments to pass before reaching this limit. 2139 */ 2140 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2141 { 2142 struct tcp_sock *tp = tcp_sk(sk); 2143 struct sk_buff *skb; 2144 int cnt, oldcnt, lost; 2145 unsigned int mss; 2146 /* Use SACK to deduce losses of new sequences sent during recovery */ 2147 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2148 2149 WARN_ON(packets > tp->packets_out); 2150 skb = tp->lost_skb_hint; 2151 if (skb) { 2152 /* Head already handled? */ 2153 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2154 return; 2155 cnt = tp->lost_cnt_hint; 2156 } else { 2157 skb = tcp_rtx_queue_head(sk); 2158 cnt = 0; 2159 } 2160 2161 skb_rbtree_walk_from(skb) { 2162 /* TODO: do this better */ 2163 /* this is not the most efficient way to do this... */ 2164 tp->lost_skb_hint = skb; 2165 tp->lost_cnt_hint = cnt; 2166 2167 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2168 break; 2169 2170 oldcnt = cnt; 2171 if (tcp_is_reno(tp) || 2172 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2173 cnt += tcp_skb_pcount(skb); 2174 2175 if (cnt > packets) { 2176 if (tcp_is_sack(tp) || 2177 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2178 (oldcnt >= packets)) 2179 break; 2180 2181 mss = tcp_skb_mss(skb); 2182 /* If needed, chop off the prefix to mark as lost. */ 2183 lost = (packets - oldcnt) * mss; 2184 if (lost < skb->len && 2185 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2186 lost, mss, GFP_ATOMIC) < 0) 2187 break; 2188 cnt = packets; 2189 } 2190 2191 tcp_skb_mark_lost(tp, skb); 2192 2193 if (mark_head) 2194 break; 2195 } 2196 tcp_verify_left_out(tp); 2197 } 2198 2199 /* Account newly detected lost packet(s) */ 2200 2201 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2202 { 2203 struct tcp_sock *tp = tcp_sk(sk); 2204 2205 if (tcp_is_reno(tp)) { 2206 tcp_mark_head_lost(sk, 1, 1); 2207 } else { 2208 int sacked_upto = tp->sacked_out - tp->reordering; 2209 if (sacked_upto >= 0) 2210 tcp_mark_head_lost(sk, sacked_upto, 0); 2211 else if (fast_rexmit) 2212 tcp_mark_head_lost(sk, 1, 1); 2213 } 2214 } 2215 2216 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2217 { 2218 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2219 before(tp->rx_opt.rcv_tsecr, when); 2220 } 2221 2222 /* skb is spurious retransmitted if the returned timestamp echo 2223 * reply is prior to the skb transmission time 2224 */ 2225 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2226 const struct sk_buff *skb) 2227 { 2228 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2229 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2230 } 2231 2232 /* Nothing was retransmitted or returned timestamp is less 2233 * than timestamp of the first retransmission. 2234 */ 2235 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2236 { 2237 return !tp->retrans_stamp || 2238 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2239 } 2240 2241 /* Undo procedures. */ 2242 2243 /* We can clear retrans_stamp when there are no retransmissions in the 2244 * window. It would seem that it is trivially available for us in 2245 * tp->retrans_out, however, that kind of assumptions doesn't consider 2246 * what will happen if errors occur when sending retransmission for the 2247 * second time. ...It could the that such segment has only 2248 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2249 * the head skb is enough except for some reneging corner cases that 2250 * are not worth the effort. 2251 * 2252 * Main reason for all this complexity is the fact that connection dying 2253 * time now depends on the validity of the retrans_stamp, in particular, 2254 * that successive retransmissions of a segment must not advance 2255 * retrans_stamp under any conditions. 2256 */ 2257 static bool tcp_any_retrans_done(const struct sock *sk) 2258 { 2259 const struct tcp_sock *tp = tcp_sk(sk); 2260 struct sk_buff *skb; 2261 2262 if (tp->retrans_out) 2263 return true; 2264 2265 skb = tcp_rtx_queue_head(sk); 2266 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2267 return true; 2268 2269 return false; 2270 } 2271 2272 static void DBGUNDO(struct sock *sk, const char *msg) 2273 { 2274 #if FASTRETRANS_DEBUG > 1 2275 struct tcp_sock *tp = tcp_sk(sk); 2276 struct inet_sock *inet = inet_sk(sk); 2277 2278 if (sk->sk_family == AF_INET) { 2279 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2280 msg, 2281 &inet->inet_daddr, ntohs(inet->inet_dport), 2282 tp->snd_cwnd, tcp_left_out(tp), 2283 tp->snd_ssthresh, tp->prior_ssthresh, 2284 tp->packets_out); 2285 } 2286 #if IS_ENABLED(CONFIG_IPV6) 2287 else if (sk->sk_family == AF_INET6) { 2288 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2289 msg, 2290 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2291 tp->snd_cwnd, tcp_left_out(tp), 2292 tp->snd_ssthresh, tp->prior_ssthresh, 2293 tp->packets_out); 2294 } 2295 #endif 2296 #endif 2297 } 2298 2299 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2300 { 2301 struct tcp_sock *tp = tcp_sk(sk); 2302 2303 if (unmark_loss) { 2304 struct sk_buff *skb; 2305 2306 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2307 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2308 } 2309 tp->lost_out = 0; 2310 tcp_clear_all_retrans_hints(tp); 2311 } 2312 2313 if (tp->prior_ssthresh) { 2314 const struct inet_connection_sock *icsk = inet_csk(sk); 2315 2316 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2317 2318 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2319 tp->snd_ssthresh = tp->prior_ssthresh; 2320 tcp_ecn_withdraw_cwr(tp); 2321 } 2322 } 2323 tp->snd_cwnd_stamp = tcp_jiffies32; 2324 tp->undo_marker = 0; 2325 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2326 } 2327 2328 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2329 { 2330 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2331 } 2332 2333 /* People celebrate: "We love our President!" */ 2334 static bool tcp_try_undo_recovery(struct sock *sk) 2335 { 2336 struct tcp_sock *tp = tcp_sk(sk); 2337 2338 if (tcp_may_undo(tp)) { 2339 int mib_idx; 2340 2341 /* Happy end! We did not retransmit anything 2342 * or our original transmission succeeded. 2343 */ 2344 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2345 tcp_undo_cwnd_reduction(sk, false); 2346 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2347 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2348 else 2349 mib_idx = LINUX_MIB_TCPFULLUNDO; 2350 2351 NET_INC_STATS(sock_net(sk), mib_idx); 2352 } else if (tp->rack.reo_wnd_persist) { 2353 tp->rack.reo_wnd_persist--; 2354 } 2355 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2356 /* Hold old state until something *above* high_seq 2357 * is ACKed. For Reno it is MUST to prevent false 2358 * fast retransmits (RFC2582). SACK TCP is safe. */ 2359 if (!tcp_any_retrans_done(sk)) 2360 tp->retrans_stamp = 0; 2361 return true; 2362 } 2363 tcp_set_ca_state(sk, TCP_CA_Open); 2364 tp->is_sack_reneg = 0; 2365 return false; 2366 } 2367 2368 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2369 static bool tcp_try_undo_dsack(struct sock *sk) 2370 { 2371 struct tcp_sock *tp = tcp_sk(sk); 2372 2373 if (tp->undo_marker && !tp->undo_retrans) { 2374 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2375 tp->rack.reo_wnd_persist + 1); 2376 DBGUNDO(sk, "D-SACK"); 2377 tcp_undo_cwnd_reduction(sk, false); 2378 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2379 return true; 2380 } 2381 return false; 2382 } 2383 2384 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2385 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2386 { 2387 struct tcp_sock *tp = tcp_sk(sk); 2388 2389 if (frto_undo || tcp_may_undo(tp)) { 2390 tcp_undo_cwnd_reduction(sk, true); 2391 2392 DBGUNDO(sk, "partial loss"); 2393 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2394 if (frto_undo) 2395 NET_INC_STATS(sock_net(sk), 2396 LINUX_MIB_TCPSPURIOUSRTOS); 2397 inet_csk(sk)->icsk_retransmits = 0; 2398 if (frto_undo || tcp_is_sack(tp)) { 2399 tcp_set_ca_state(sk, TCP_CA_Open); 2400 tp->is_sack_reneg = 0; 2401 } 2402 return true; 2403 } 2404 return false; 2405 } 2406 2407 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2408 * It computes the number of packets to send (sndcnt) based on packets newly 2409 * delivered: 2410 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2411 * cwnd reductions across a full RTT. 2412 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2413 * But when the retransmits are acked without further losses, PRR 2414 * slow starts cwnd up to ssthresh to speed up the recovery. 2415 */ 2416 static void tcp_init_cwnd_reduction(struct sock *sk) 2417 { 2418 struct tcp_sock *tp = tcp_sk(sk); 2419 2420 tp->high_seq = tp->snd_nxt; 2421 tp->tlp_high_seq = 0; 2422 tp->snd_cwnd_cnt = 0; 2423 tp->prior_cwnd = tp->snd_cwnd; 2424 tp->prr_delivered = 0; 2425 tp->prr_out = 0; 2426 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2427 tcp_ecn_queue_cwr(tp); 2428 } 2429 2430 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2431 { 2432 struct tcp_sock *tp = tcp_sk(sk); 2433 int sndcnt = 0; 2434 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2435 2436 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2437 return; 2438 2439 tp->prr_delivered += newly_acked_sacked; 2440 if (delta < 0) { 2441 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2442 tp->prior_cwnd - 1; 2443 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2444 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2445 !(flag & FLAG_LOST_RETRANS)) { 2446 sndcnt = min_t(int, delta, 2447 max_t(int, tp->prr_delivered - tp->prr_out, 2448 newly_acked_sacked) + 1); 2449 } else { 2450 sndcnt = min(delta, newly_acked_sacked); 2451 } 2452 /* Force a fast retransmit upon entering fast recovery */ 2453 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2454 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2455 } 2456 2457 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2458 { 2459 struct tcp_sock *tp = tcp_sk(sk); 2460 2461 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2462 return; 2463 2464 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2465 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2466 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2467 tp->snd_cwnd = tp->snd_ssthresh; 2468 tp->snd_cwnd_stamp = tcp_jiffies32; 2469 } 2470 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2471 } 2472 2473 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2474 void tcp_enter_cwr(struct sock *sk) 2475 { 2476 struct tcp_sock *tp = tcp_sk(sk); 2477 2478 tp->prior_ssthresh = 0; 2479 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2480 tp->undo_marker = 0; 2481 tcp_init_cwnd_reduction(sk); 2482 tcp_set_ca_state(sk, TCP_CA_CWR); 2483 } 2484 } 2485 EXPORT_SYMBOL(tcp_enter_cwr); 2486 2487 static void tcp_try_keep_open(struct sock *sk) 2488 { 2489 struct tcp_sock *tp = tcp_sk(sk); 2490 int state = TCP_CA_Open; 2491 2492 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2493 state = TCP_CA_Disorder; 2494 2495 if (inet_csk(sk)->icsk_ca_state != state) { 2496 tcp_set_ca_state(sk, state); 2497 tp->high_seq = tp->snd_nxt; 2498 } 2499 } 2500 2501 static void tcp_try_to_open(struct sock *sk, int flag) 2502 { 2503 struct tcp_sock *tp = tcp_sk(sk); 2504 2505 tcp_verify_left_out(tp); 2506 2507 if (!tcp_any_retrans_done(sk)) 2508 tp->retrans_stamp = 0; 2509 2510 if (flag & FLAG_ECE) 2511 tcp_enter_cwr(sk); 2512 2513 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2514 tcp_try_keep_open(sk); 2515 } 2516 } 2517 2518 static void tcp_mtup_probe_failed(struct sock *sk) 2519 { 2520 struct inet_connection_sock *icsk = inet_csk(sk); 2521 2522 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2523 icsk->icsk_mtup.probe_size = 0; 2524 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2525 } 2526 2527 static void tcp_mtup_probe_success(struct sock *sk) 2528 { 2529 struct tcp_sock *tp = tcp_sk(sk); 2530 struct inet_connection_sock *icsk = inet_csk(sk); 2531 2532 /* FIXME: breaks with very large cwnd */ 2533 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2534 tp->snd_cwnd = tp->snd_cwnd * 2535 tcp_mss_to_mtu(sk, tp->mss_cache) / 2536 icsk->icsk_mtup.probe_size; 2537 tp->snd_cwnd_cnt = 0; 2538 tp->snd_cwnd_stamp = tcp_jiffies32; 2539 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2540 2541 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2542 icsk->icsk_mtup.probe_size = 0; 2543 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2544 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2545 } 2546 2547 /* Do a simple retransmit without using the backoff mechanisms in 2548 * tcp_timer. This is used for path mtu discovery. 2549 * The socket is already locked here. 2550 */ 2551 void tcp_simple_retransmit(struct sock *sk) 2552 { 2553 const struct inet_connection_sock *icsk = inet_csk(sk); 2554 struct tcp_sock *tp = tcp_sk(sk); 2555 struct sk_buff *skb; 2556 unsigned int mss = tcp_current_mss(sk); 2557 2558 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2559 if (tcp_skb_seglen(skb) > mss && 2560 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2561 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2562 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2563 tp->retrans_out -= tcp_skb_pcount(skb); 2564 } 2565 tcp_skb_mark_lost_uncond_verify(tp, skb); 2566 } 2567 } 2568 2569 tcp_clear_retrans_hints_partial(tp); 2570 2571 if (!tp->lost_out) 2572 return; 2573 2574 if (tcp_is_reno(tp)) 2575 tcp_limit_reno_sacked(tp); 2576 2577 tcp_verify_left_out(tp); 2578 2579 /* Don't muck with the congestion window here. 2580 * Reason is that we do not increase amount of _data_ 2581 * in network, but units changed and effective 2582 * cwnd/ssthresh really reduced now. 2583 */ 2584 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2585 tp->high_seq = tp->snd_nxt; 2586 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2587 tp->prior_ssthresh = 0; 2588 tp->undo_marker = 0; 2589 tcp_set_ca_state(sk, TCP_CA_Loss); 2590 } 2591 tcp_xmit_retransmit_queue(sk); 2592 } 2593 EXPORT_SYMBOL(tcp_simple_retransmit); 2594 2595 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2596 { 2597 struct tcp_sock *tp = tcp_sk(sk); 2598 int mib_idx; 2599 2600 if (tcp_is_reno(tp)) 2601 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2602 else 2603 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2604 2605 NET_INC_STATS(sock_net(sk), mib_idx); 2606 2607 tp->prior_ssthresh = 0; 2608 tcp_init_undo(tp); 2609 2610 if (!tcp_in_cwnd_reduction(sk)) { 2611 if (!ece_ack) 2612 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2613 tcp_init_cwnd_reduction(sk); 2614 } 2615 tcp_set_ca_state(sk, TCP_CA_Recovery); 2616 } 2617 2618 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2619 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2620 */ 2621 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2622 int *rexmit) 2623 { 2624 struct tcp_sock *tp = tcp_sk(sk); 2625 bool recovered = !before(tp->snd_una, tp->high_seq); 2626 2627 if ((flag & FLAG_SND_UNA_ADVANCED) && 2628 tcp_try_undo_loss(sk, false)) 2629 return; 2630 2631 /* The ACK (s)acks some never-retransmitted data meaning not all 2632 * the data packets before the timeout were lost. Therefore we 2633 * undo the congestion window and state. This is essentially 2634 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2635 * a retransmitted skb is permantly marked, we can apply such an 2636 * operation even if F-RTO was not used. 2637 */ 2638 if ((flag & FLAG_ORIG_SACK_ACKED) && 2639 tcp_try_undo_loss(sk, tp->undo_marker)) 2640 return; 2641 2642 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2643 if (after(tp->snd_nxt, tp->high_seq)) { 2644 if (flag & FLAG_DATA_SACKED || is_dupack) 2645 tp->frto = 0; /* Step 3.a. loss was real */ 2646 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2647 tp->high_seq = tp->snd_nxt; 2648 /* Step 2.b. Try send new data (but deferred until cwnd 2649 * is updated in tcp_ack()). Otherwise fall back to 2650 * the conventional recovery. 2651 */ 2652 if (!tcp_write_queue_empty(sk) && 2653 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2654 *rexmit = REXMIT_NEW; 2655 return; 2656 } 2657 tp->frto = 0; 2658 } 2659 } 2660 2661 if (recovered) { 2662 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2663 tcp_try_undo_recovery(sk); 2664 return; 2665 } 2666 if (tcp_is_reno(tp)) { 2667 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2668 * delivered. Lower inflight to clock out (re)tranmissions. 2669 */ 2670 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2671 tcp_add_reno_sack(sk); 2672 else if (flag & FLAG_SND_UNA_ADVANCED) 2673 tcp_reset_reno_sack(tp); 2674 } 2675 *rexmit = REXMIT_LOST; 2676 } 2677 2678 /* Undo during fast recovery after partial ACK. */ 2679 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2680 { 2681 struct tcp_sock *tp = tcp_sk(sk); 2682 2683 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2684 /* Plain luck! Hole if filled with delayed 2685 * packet, rather than with a retransmit. Check reordering. 2686 */ 2687 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2688 2689 /* We are getting evidence that the reordering degree is higher 2690 * than we realized. If there are no retransmits out then we 2691 * can undo. Otherwise we clock out new packets but do not 2692 * mark more packets lost or retransmit more. 2693 */ 2694 if (tp->retrans_out) 2695 return true; 2696 2697 if (!tcp_any_retrans_done(sk)) 2698 tp->retrans_stamp = 0; 2699 2700 DBGUNDO(sk, "partial recovery"); 2701 tcp_undo_cwnd_reduction(sk, true); 2702 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2703 tcp_try_keep_open(sk); 2704 return true; 2705 } 2706 return false; 2707 } 2708 2709 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2710 { 2711 struct tcp_sock *tp = tcp_sk(sk); 2712 2713 /* Use RACK to detect loss */ 2714 if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2715 u32 prior_retrans = tp->retrans_out; 2716 2717 tcp_rack_mark_lost(sk); 2718 if (prior_retrans > tp->retrans_out) 2719 *ack_flag |= FLAG_LOST_RETRANS; 2720 } 2721 } 2722 2723 static bool tcp_force_fast_retransmit(struct sock *sk) 2724 { 2725 struct tcp_sock *tp = tcp_sk(sk); 2726 2727 return after(tcp_highest_sack_seq(tp), 2728 tp->snd_una + tp->reordering * tp->mss_cache); 2729 } 2730 2731 /* Process an event, which can update packets-in-flight not trivially. 2732 * Main goal of this function is to calculate new estimate for left_out, 2733 * taking into account both packets sitting in receiver's buffer and 2734 * packets lost by network. 2735 * 2736 * Besides that it updates the congestion state when packet loss or ECN 2737 * is detected. But it does not reduce the cwnd, it is done by the 2738 * congestion control later. 2739 * 2740 * It does _not_ decide what to send, it is made in function 2741 * tcp_xmit_retransmit_queue(). 2742 */ 2743 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2744 bool is_dupack, int *ack_flag, int *rexmit) 2745 { 2746 struct inet_connection_sock *icsk = inet_csk(sk); 2747 struct tcp_sock *tp = tcp_sk(sk); 2748 int fast_rexmit = 0, flag = *ack_flag; 2749 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2750 tcp_force_fast_retransmit(sk)); 2751 2752 if (!tp->packets_out && tp->sacked_out) 2753 tp->sacked_out = 0; 2754 2755 /* Now state machine starts. 2756 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2757 if (flag & FLAG_ECE) 2758 tp->prior_ssthresh = 0; 2759 2760 /* B. In all the states check for reneging SACKs. */ 2761 if (tcp_check_sack_reneging(sk, flag)) 2762 return; 2763 2764 /* C. Check consistency of the current state. */ 2765 tcp_verify_left_out(tp); 2766 2767 /* D. Check state exit conditions. State can be terminated 2768 * when high_seq is ACKed. */ 2769 if (icsk->icsk_ca_state == TCP_CA_Open) { 2770 WARN_ON(tp->retrans_out != 0); 2771 tp->retrans_stamp = 0; 2772 } else if (!before(tp->snd_una, tp->high_seq)) { 2773 switch (icsk->icsk_ca_state) { 2774 case TCP_CA_CWR: 2775 /* CWR is to be held something *above* high_seq 2776 * is ACKed for CWR bit to reach receiver. */ 2777 if (tp->snd_una != tp->high_seq) { 2778 tcp_end_cwnd_reduction(sk); 2779 tcp_set_ca_state(sk, TCP_CA_Open); 2780 } 2781 break; 2782 2783 case TCP_CA_Recovery: 2784 if (tcp_is_reno(tp)) 2785 tcp_reset_reno_sack(tp); 2786 if (tcp_try_undo_recovery(sk)) 2787 return; 2788 tcp_end_cwnd_reduction(sk); 2789 break; 2790 } 2791 } 2792 2793 /* E. Process state. */ 2794 switch (icsk->icsk_ca_state) { 2795 case TCP_CA_Recovery: 2796 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2797 if (tcp_is_reno(tp) && is_dupack) 2798 tcp_add_reno_sack(sk); 2799 } else { 2800 if (tcp_try_undo_partial(sk, prior_snd_una)) 2801 return; 2802 /* Partial ACK arrived. Force fast retransmit. */ 2803 do_lost = tcp_is_reno(tp) || 2804 tcp_force_fast_retransmit(sk); 2805 } 2806 if (tcp_try_undo_dsack(sk)) { 2807 tcp_try_keep_open(sk); 2808 return; 2809 } 2810 tcp_rack_identify_loss(sk, ack_flag); 2811 break; 2812 case TCP_CA_Loss: 2813 tcp_process_loss(sk, flag, is_dupack, rexmit); 2814 tcp_rack_identify_loss(sk, ack_flag); 2815 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2816 (*ack_flag & FLAG_LOST_RETRANS))) 2817 return; 2818 /* Change state if cwnd is undone or retransmits are lost */ 2819 /* fall through */ 2820 default: 2821 if (tcp_is_reno(tp)) { 2822 if (flag & FLAG_SND_UNA_ADVANCED) 2823 tcp_reset_reno_sack(tp); 2824 if (is_dupack) 2825 tcp_add_reno_sack(sk); 2826 } 2827 2828 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2829 tcp_try_undo_dsack(sk); 2830 2831 tcp_rack_identify_loss(sk, ack_flag); 2832 if (!tcp_time_to_recover(sk, flag)) { 2833 tcp_try_to_open(sk, flag); 2834 return; 2835 } 2836 2837 /* MTU probe failure: don't reduce cwnd */ 2838 if (icsk->icsk_ca_state < TCP_CA_CWR && 2839 icsk->icsk_mtup.probe_size && 2840 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2841 tcp_mtup_probe_failed(sk); 2842 /* Restores the reduction we did in tcp_mtup_probe() */ 2843 tp->snd_cwnd++; 2844 tcp_simple_retransmit(sk); 2845 return; 2846 } 2847 2848 /* Otherwise enter Recovery state */ 2849 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2850 fast_rexmit = 1; 2851 } 2852 2853 if (do_lost) 2854 tcp_update_scoreboard(sk, fast_rexmit); 2855 *rexmit = REXMIT_LOST; 2856 } 2857 2858 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2859 { 2860 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2861 struct tcp_sock *tp = tcp_sk(sk); 2862 2863 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2864 /* If the remote keeps returning delayed ACKs, eventually 2865 * the min filter would pick it up and overestimate the 2866 * prop. delay when it expires. Skip suspected delayed ACKs. 2867 */ 2868 return; 2869 } 2870 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2871 rtt_us ? : jiffies_to_usecs(1)); 2872 } 2873 2874 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2875 long seq_rtt_us, long sack_rtt_us, 2876 long ca_rtt_us, struct rate_sample *rs) 2877 { 2878 const struct tcp_sock *tp = tcp_sk(sk); 2879 2880 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2881 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2882 * Karn's algorithm forbids taking RTT if some retransmitted data 2883 * is acked (RFC6298). 2884 */ 2885 if (seq_rtt_us < 0) 2886 seq_rtt_us = sack_rtt_us; 2887 2888 /* RTTM Rule: A TSecr value received in a segment is used to 2889 * update the averaged RTT measurement only if the segment 2890 * acknowledges some new data, i.e., only if it advances the 2891 * left edge of the send window. 2892 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2893 */ 2894 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2895 flag & FLAG_ACKED) { 2896 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2897 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2898 2899 seq_rtt_us = ca_rtt_us = delta_us; 2900 } 2901 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2902 if (seq_rtt_us < 0) 2903 return false; 2904 2905 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2906 * always taken together with ACK, SACK, or TS-opts. Any negative 2907 * values will be skipped with the seq_rtt_us < 0 check above. 2908 */ 2909 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2910 tcp_rtt_estimator(sk, seq_rtt_us); 2911 tcp_set_rto(sk); 2912 2913 /* RFC6298: only reset backoff on valid RTT measurement. */ 2914 inet_csk(sk)->icsk_backoff = 0; 2915 return true; 2916 } 2917 2918 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2919 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2920 { 2921 struct rate_sample rs; 2922 long rtt_us = -1L; 2923 2924 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2925 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2926 2927 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2928 } 2929 2930 2931 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2932 { 2933 const struct inet_connection_sock *icsk = inet_csk(sk); 2934 2935 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2936 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2937 } 2938 2939 /* Restart timer after forward progress on connection. 2940 * RFC2988 recommends to restart timer to now+rto. 2941 */ 2942 void tcp_rearm_rto(struct sock *sk) 2943 { 2944 const struct inet_connection_sock *icsk = inet_csk(sk); 2945 struct tcp_sock *tp = tcp_sk(sk); 2946 2947 /* If the retrans timer is currently being used by Fast Open 2948 * for SYN-ACK retrans purpose, stay put. 2949 */ 2950 if (tp->fastopen_rsk) 2951 return; 2952 2953 if (!tp->packets_out) { 2954 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2955 } else { 2956 u32 rto = inet_csk(sk)->icsk_rto; 2957 /* Offset the time elapsed after installing regular RTO */ 2958 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2959 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2960 s64 delta_us = tcp_rto_delta_us(sk); 2961 /* delta_us may not be positive if the socket is locked 2962 * when the retrans timer fires and is rescheduled. 2963 */ 2964 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2965 } 2966 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2967 TCP_RTO_MAX); 2968 } 2969 } 2970 2971 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2972 static void tcp_set_xmit_timer(struct sock *sk) 2973 { 2974 if (!tcp_schedule_loss_probe(sk, true)) 2975 tcp_rearm_rto(sk); 2976 } 2977 2978 /* If we get here, the whole TSO packet has not been acked. */ 2979 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2980 { 2981 struct tcp_sock *tp = tcp_sk(sk); 2982 u32 packets_acked; 2983 2984 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 2985 2986 packets_acked = tcp_skb_pcount(skb); 2987 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2988 return 0; 2989 packets_acked -= tcp_skb_pcount(skb); 2990 2991 if (packets_acked) { 2992 BUG_ON(tcp_skb_pcount(skb) == 0); 2993 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 2994 } 2995 2996 return packets_acked; 2997 } 2998 2999 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3000 u32 prior_snd_una) 3001 { 3002 const struct skb_shared_info *shinfo; 3003 3004 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3005 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3006 return; 3007 3008 shinfo = skb_shinfo(skb); 3009 if (!before(shinfo->tskey, prior_snd_una) && 3010 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3011 tcp_skb_tsorted_save(skb) { 3012 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3013 } tcp_skb_tsorted_restore(skb); 3014 } 3015 } 3016 3017 /* Remove acknowledged frames from the retransmission queue. If our packet 3018 * is before the ack sequence we can discard it as it's confirmed to have 3019 * arrived at the other end. 3020 */ 3021 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3022 u32 prior_snd_una, 3023 struct tcp_sacktag_state *sack) 3024 { 3025 const struct inet_connection_sock *icsk = inet_csk(sk); 3026 u64 first_ackt, last_ackt; 3027 struct tcp_sock *tp = tcp_sk(sk); 3028 u32 prior_sacked = tp->sacked_out; 3029 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3030 struct sk_buff *skb, *next; 3031 bool fully_acked = true; 3032 long sack_rtt_us = -1L; 3033 long seq_rtt_us = -1L; 3034 long ca_rtt_us = -1L; 3035 u32 pkts_acked = 0; 3036 u32 last_in_flight = 0; 3037 bool rtt_update; 3038 int flag = 0; 3039 3040 first_ackt = 0; 3041 3042 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3043 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3044 const u32 start_seq = scb->seq; 3045 u8 sacked = scb->sacked; 3046 u32 acked_pcount; 3047 3048 tcp_ack_tstamp(sk, skb, prior_snd_una); 3049 3050 /* Determine how many packets and what bytes were acked, tso and else */ 3051 if (after(scb->end_seq, tp->snd_una)) { 3052 if (tcp_skb_pcount(skb) == 1 || 3053 !after(tp->snd_una, scb->seq)) 3054 break; 3055 3056 acked_pcount = tcp_tso_acked(sk, skb); 3057 if (!acked_pcount) 3058 break; 3059 fully_acked = false; 3060 } else { 3061 acked_pcount = tcp_skb_pcount(skb); 3062 } 3063 3064 if (unlikely(sacked & TCPCB_RETRANS)) { 3065 if (sacked & TCPCB_SACKED_RETRANS) 3066 tp->retrans_out -= acked_pcount; 3067 flag |= FLAG_RETRANS_DATA_ACKED; 3068 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3069 last_ackt = skb->skb_mstamp; 3070 WARN_ON_ONCE(last_ackt == 0); 3071 if (!first_ackt) 3072 first_ackt = last_ackt; 3073 3074 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3075 if (before(start_seq, reord)) 3076 reord = start_seq; 3077 if (!after(scb->end_seq, tp->high_seq)) 3078 flag |= FLAG_ORIG_SACK_ACKED; 3079 } 3080 3081 if (sacked & TCPCB_SACKED_ACKED) { 3082 tp->sacked_out -= acked_pcount; 3083 } else if (tcp_is_sack(tp)) { 3084 tp->delivered += acked_pcount; 3085 if (!tcp_skb_spurious_retrans(tp, skb)) 3086 tcp_rack_advance(tp, sacked, scb->end_seq, 3087 skb->skb_mstamp); 3088 } 3089 if (sacked & TCPCB_LOST) 3090 tp->lost_out -= acked_pcount; 3091 3092 tp->packets_out -= acked_pcount; 3093 pkts_acked += acked_pcount; 3094 tcp_rate_skb_delivered(sk, skb, sack->rate); 3095 3096 /* Initial outgoing SYN's get put onto the write_queue 3097 * just like anything else we transmit. It is not 3098 * true data, and if we misinform our callers that 3099 * this ACK acks real data, we will erroneously exit 3100 * connection startup slow start one packet too 3101 * quickly. This is severely frowned upon behavior. 3102 */ 3103 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3104 flag |= FLAG_DATA_ACKED; 3105 } else { 3106 flag |= FLAG_SYN_ACKED; 3107 tp->retrans_stamp = 0; 3108 } 3109 3110 if (!fully_acked) 3111 break; 3112 3113 next = skb_rb_next(skb); 3114 if (unlikely(skb == tp->retransmit_skb_hint)) 3115 tp->retransmit_skb_hint = NULL; 3116 if (unlikely(skb == tp->lost_skb_hint)) 3117 tp->lost_skb_hint = NULL; 3118 tcp_rtx_queue_unlink_and_free(skb, sk); 3119 } 3120 3121 if (!skb) 3122 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3123 3124 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3125 tp->snd_up = tp->snd_una; 3126 3127 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3128 flag |= FLAG_SACK_RENEGING; 3129 3130 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3131 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3132 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3133 3134 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3135 last_in_flight && !prior_sacked && fully_acked && 3136 sack->rate->prior_delivered + 1 == tp->delivered && 3137 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3138 /* Conservatively mark a delayed ACK. It's typically 3139 * from a lone runt packet over the round trip to 3140 * a receiver w/o out-of-order or CE events. 3141 */ 3142 flag |= FLAG_ACK_MAYBE_DELAYED; 3143 } 3144 } 3145 if (sack->first_sackt) { 3146 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3147 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3148 } 3149 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3150 ca_rtt_us, sack->rate); 3151 3152 if (flag & FLAG_ACKED) { 3153 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3154 if (unlikely(icsk->icsk_mtup.probe_size && 3155 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3156 tcp_mtup_probe_success(sk); 3157 } 3158 3159 if (tcp_is_reno(tp)) { 3160 tcp_remove_reno_sacks(sk, pkts_acked); 3161 } else { 3162 int delta; 3163 3164 /* Non-retransmitted hole got filled? That's reordering */ 3165 if (before(reord, prior_fack)) 3166 tcp_check_sack_reordering(sk, reord, 0); 3167 3168 delta = prior_sacked - tp->sacked_out; 3169 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3170 } 3171 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3172 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3173 /* Do not re-arm RTO if the sack RTT is measured from data sent 3174 * after when the head was last (re)transmitted. Otherwise the 3175 * timeout may continue to extend in loss recovery. 3176 */ 3177 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3178 } 3179 3180 if (icsk->icsk_ca_ops->pkts_acked) { 3181 struct ack_sample sample = { .pkts_acked = pkts_acked, 3182 .rtt_us = sack->rate->rtt_us, 3183 .in_flight = last_in_flight }; 3184 3185 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3186 } 3187 3188 #if FASTRETRANS_DEBUG > 0 3189 WARN_ON((int)tp->sacked_out < 0); 3190 WARN_ON((int)tp->lost_out < 0); 3191 WARN_ON((int)tp->retrans_out < 0); 3192 if (!tp->packets_out && tcp_is_sack(tp)) { 3193 icsk = inet_csk(sk); 3194 if (tp->lost_out) { 3195 pr_debug("Leak l=%u %d\n", 3196 tp->lost_out, icsk->icsk_ca_state); 3197 tp->lost_out = 0; 3198 } 3199 if (tp->sacked_out) { 3200 pr_debug("Leak s=%u %d\n", 3201 tp->sacked_out, icsk->icsk_ca_state); 3202 tp->sacked_out = 0; 3203 } 3204 if (tp->retrans_out) { 3205 pr_debug("Leak r=%u %d\n", 3206 tp->retrans_out, icsk->icsk_ca_state); 3207 tp->retrans_out = 0; 3208 } 3209 } 3210 #endif 3211 return flag; 3212 } 3213 3214 static void tcp_ack_probe(struct sock *sk) 3215 { 3216 struct inet_connection_sock *icsk = inet_csk(sk); 3217 struct sk_buff *head = tcp_send_head(sk); 3218 const struct tcp_sock *tp = tcp_sk(sk); 3219 3220 /* Was it a usable window open? */ 3221 if (!head) 3222 return; 3223 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3224 icsk->icsk_backoff = 0; 3225 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3226 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3227 * This function is not for random using! 3228 */ 3229 } else { 3230 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3231 3232 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3233 when, TCP_RTO_MAX); 3234 } 3235 } 3236 3237 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3238 { 3239 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3240 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3241 } 3242 3243 /* Decide wheather to run the increase function of congestion control. */ 3244 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3245 { 3246 /* If reordering is high then always grow cwnd whenever data is 3247 * delivered regardless of its ordering. Otherwise stay conservative 3248 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3249 * new SACK or ECE mark may first advance cwnd here and later reduce 3250 * cwnd in tcp_fastretrans_alert() based on more states. 3251 */ 3252 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3253 return flag & FLAG_FORWARD_PROGRESS; 3254 3255 return flag & FLAG_DATA_ACKED; 3256 } 3257 3258 /* The "ultimate" congestion control function that aims to replace the rigid 3259 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3260 * It's called toward the end of processing an ACK with precise rate 3261 * information. All transmission or retransmission are delayed afterwards. 3262 */ 3263 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3264 int flag, const struct rate_sample *rs) 3265 { 3266 const struct inet_connection_sock *icsk = inet_csk(sk); 3267 3268 if (icsk->icsk_ca_ops->cong_control) { 3269 icsk->icsk_ca_ops->cong_control(sk, rs); 3270 return; 3271 } 3272 3273 if (tcp_in_cwnd_reduction(sk)) { 3274 /* Reduce cwnd if state mandates */ 3275 tcp_cwnd_reduction(sk, acked_sacked, flag); 3276 } else if (tcp_may_raise_cwnd(sk, flag)) { 3277 /* Advance cwnd if state allows */ 3278 tcp_cong_avoid(sk, ack, acked_sacked); 3279 } 3280 tcp_update_pacing_rate(sk); 3281 } 3282 3283 /* Check that window update is acceptable. 3284 * The function assumes that snd_una<=ack<=snd_next. 3285 */ 3286 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3287 const u32 ack, const u32 ack_seq, 3288 const u32 nwin) 3289 { 3290 return after(ack, tp->snd_una) || 3291 after(ack_seq, tp->snd_wl1) || 3292 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3293 } 3294 3295 /* If we update tp->snd_una, also update tp->bytes_acked */ 3296 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3297 { 3298 u32 delta = ack - tp->snd_una; 3299 3300 sock_owned_by_me((struct sock *)tp); 3301 tp->bytes_acked += delta; 3302 tp->snd_una = ack; 3303 } 3304 3305 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3306 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3307 { 3308 u32 delta = seq - tp->rcv_nxt; 3309 3310 sock_owned_by_me((struct sock *)tp); 3311 tp->bytes_received += delta; 3312 tp->rcv_nxt = seq; 3313 } 3314 3315 /* Update our send window. 3316 * 3317 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3318 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3319 */ 3320 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3321 u32 ack_seq) 3322 { 3323 struct tcp_sock *tp = tcp_sk(sk); 3324 int flag = 0; 3325 u32 nwin = ntohs(tcp_hdr(skb)->window); 3326 3327 if (likely(!tcp_hdr(skb)->syn)) 3328 nwin <<= tp->rx_opt.snd_wscale; 3329 3330 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3331 flag |= FLAG_WIN_UPDATE; 3332 tcp_update_wl(tp, ack_seq); 3333 3334 if (tp->snd_wnd != nwin) { 3335 tp->snd_wnd = nwin; 3336 3337 /* Note, it is the only place, where 3338 * fast path is recovered for sending TCP. 3339 */ 3340 tp->pred_flags = 0; 3341 tcp_fast_path_check(sk); 3342 3343 if (!tcp_write_queue_empty(sk)) 3344 tcp_slow_start_after_idle_check(sk); 3345 3346 if (nwin > tp->max_window) { 3347 tp->max_window = nwin; 3348 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3349 } 3350 } 3351 } 3352 3353 tcp_snd_una_update(tp, ack); 3354 3355 return flag; 3356 } 3357 3358 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3359 u32 *last_oow_ack_time) 3360 { 3361 if (*last_oow_ack_time) { 3362 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3363 3364 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3365 NET_INC_STATS(net, mib_idx); 3366 return true; /* rate-limited: don't send yet! */ 3367 } 3368 } 3369 3370 *last_oow_ack_time = tcp_jiffies32; 3371 3372 return false; /* not rate-limited: go ahead, send dupack now! */ 3373 } 3374 3375 /* Return true if we're currently rate-limiting out-of-window ACKs and 3376 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3377 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3378 * attacks that send repeated SYNs or ACKs for the same connection. To 3379 * do this, we do not send a duplicate SYNACK or ACK if the remote 3380 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3381 */ 3382 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3383 int mib_idx, u32 *last_oow_ack_time) 3384 { 3385 /* Data packets without SYNs are not likely part of an ACK loop. */ 3386 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3387 !tcp_hdr(skb)->syn) 3388 return false; 3389 3390 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3391 } 3392 3393 /* RFC 5961 7 [ACK Throttling] */ 3394 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3395 { 3396 /* unprotected vars, we dont care of overwrites */ 3397 static u32 challenge_timestamp; 3398 static unsigned int challenge_count; 3399 struct tcp_sock *tp = tcp_sk(sk); 3400 struct net *net = sock_net(sk); 3401 u32 count, now; 3402 3403 /* First check our per-socket dupack rate limit. */ 3404 if (__tcp_oow_rate_limited(net, 3405 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3406 &tp->last_oow_ack_time)) 3407 return; 3408 3409 /* Then check host-wide RFC 5961 rate limit. */ 3410 now = jiffies / HZ; 3411 if (now != challenge_timestamp) { 3412 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3413 u32 half = (ack_limit + 1) >> 1; 3414 3415 challenge_timestamp = now; 3416 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3417 } 3418 count = READ_ONCE(challenge_count); 3419 if (count > 0) { 3420 WRITE_ONCE(challenge_count, count - 1); 3421 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3422 tcp_send_ack(sk); 3423 } 3424 } 3425 3426 static void tcp_store_ts_recent(struct tcp_sock *tp) 3427 { 3428 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3429 tp->rx_opt.ts_recent_stamp = get_seconds(); 3430 } 3431 3432 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3433 { 3434 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3435 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3436 * extra check below makes sure this can only happen 3437 * for pure ACK frames. -DaveM 3438 * 3439 * Not only, also it occurs for expired timestamps. 3440 */ 3441 3442 if (tcp_paws_check(&tp->rx_opt, 0)) 3443 tcp_store_ts_recent(tp); 3444 } 3445 } 3446 3447 /* This routine deals with acks during a TLP episode. 3448 * We mark the end of a TLP episode on receiving TLP dupack or when 3449 * ack is after tlp_high_seq. 3450 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3451 */ 3452 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3453 { 3454 struct tcp_sock *tp = tcp_sk(sk); 3455 3456 if (before(ack, tp->tlp_high_seq)) 3457 return; 3458 3459 if (flag & FLAG_DSACKING_ACK) { 3460 /* This DSACK means original and TLP probe arrived; no loss */ 3461 tp->tlp_high_seq = 0; 3462 } else if (after(ack, tp->tlp_high_seq)) { 3463 /* ACK advances: there was a loss, so reduce cwnd. Reset 3464 * tlp_high_seq in tcp_init_cwnd_reduction() 3465 */ 3466 tcp_init_cwnd_reduction(sk); 3467 tcp_set_ca_state(sk, TCP_CA_CWR); 3468 tcp_end_cwnd_reduction(sk); 3469 tcp_try_keep_open(sk); 3470 NET_INC_STATS(sock_net(sk), 3471 LINUX_MIB_TCPLOSSPROBERECOVERY); 3472 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3473 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3474 /* Pure dupack: original and TLP probe arrived; no loss */ 3475 tp->tlp_high_seq = 0; 3476 } 3477 } 3478 3479 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3480 { 3481 const struct inet_connection_sock *icsk = inet_csk(sk); 3482 3483 if (icsk->icsk_ca_ops->in_ack_event) 3484 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3485 } 3486 3487 /* Congestion control has updated the cwnd already. So if we're in 3488 * loss recovery then now we do any new sends (for FRTO) or 3489 * retransmits (for CA_Loss or CA_recovery) that make sense. 3490 */ 3491 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3492 { 3493 struct tcp_sock *tp = tcp_sk(sk); 3494 3495 if (rexmit == REXMIT_NONE) 3496 return; 3497 3498 if (unlikely(rexmit == 2)) { 3499 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3500 TCP_NAGLE_OFF); 3501 if (after(tp->snd_nxt, tp->high_seq)) 3502 return; 3503 tp->frto = 0; 3504 } 3505 tcp_xmit_retransmit_queue(sk); 3506 } 3507 3508 /* This routine deals with incoming acks, but not outgoing ones. */ 3509 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3510 { 3511 struct inet_connection_sock *icsk = inet_csk(sk); 3512 struct tcp_sock *tp = tcp_sk(sk); 3513 struct tcp_sacktag_state sack_state; 3514 struct rate_sample rs = { .prior_delivered = 0 }; 3515 u32 prior_snd_una = tp->snd_una; 3516 bool is_sack_reneg = tp->is_sack_reneg; 3517 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3518 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3519 bool is_dupack = false; 3520 int prior_packets = tp->packets_out; 3521 u32 delivered = tp->delivered; 3522 u32 lost = tp->lost; 3523 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3524 u32 prior_fack; 3525 3526 sack_state.first_sackt = 0; 3527 sack_state.rate = &rs; 3528 3529 /* We very likely will need to access rtx queue. */ 3530 prefetch(sk->tcp_rtx_queue.rb_node); 3531 3532 /* If the ack is older than previous acks 3533 * then we can probably ignore it. 3534 */ 3535 if (before(ack, prior_snd_una)) { 3536 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3537 if (before(ack, prior_snd_una - tp->max_window)) { 3538 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3539 tcp_send_challenge_ack(sk, skb); 3540 return -1; 3541 } 3542 goto old_ack; 3543 } 3544 3545 /* If the ack includes data we haven't sent yet, discard 3546 * this segment (RFC793 Section 3.9). 3547 */ 3548 if (after(ack, tp->snd_nxt)) 3549 goto invalid_ack; 3550 3551 if (after(ack, prior_snd_una)) { 3552 flag |= FLAG_SND_UNA_ADVANCED; 3553 icsk->icsk_retransmits = 0; 3554 } 3555 3556 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3557 rs.prior_in_flight = tcp_packets_in_flight(tp); 3558 3559 /* ts_recent update must be made after we are sure that the packet 3560 * is in window. 3561 */ 3562 if (flag & FLAG_UPDATE_TS_RECENT) 3563 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3564 3565 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3566 /* Window is constant, pure forward advance. 3567 * No more checks are required. 3568 * Note, we use the fact that SND.UNA>=SND.WL2. 3569 */ 3570 tcp_update_wl(tp, ack_seq); 3571 tcp_snd_una_update(tp, ack); 3572 flag |= FLAG_WIN_UPDATE; 3573 3574 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3575 3576 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3577 } else { 3578 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3579 3580 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3581 flag |= FLAG_DATA; 3582 else 3583 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3584 3585 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3586 3587 if (TCP_SKB_CB(skb)->sacked) 3588 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3589 &sack_state); 3590 3591 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3592 flag |= FLAG_ECE; 3593 ack_ev_flags |= CA_ACK_ECE; 3594 } 3595 3596 if (flag & FLAG_WIN_UPDATE) 3597 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3598 3599 tcp_in_ack_event(sk, ack_ev_flags); 3600 } 3601 3602 /* We passed data and got it acked, remove any soft error 3603 * log. Something worked... 3604 */ 3605 sk->sk_err_soft = 0; 3606 icsk->icsk_probes_out = 0; 3607 tp->rcv_tstamp = tcp_jiffies32; 3608 if (!prior_packets) 3609 goto no_queue; 3610 3611 /* See if we can take anything off of the retransmit queue. */ 3612 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3613 3614 tcp_rack_update_reo_wnd(sk, &rs); 3615 3616 if (tp->tlp_high_seq) 3617 tcp_process_tlp_ack(sk, ack, flag); 3618 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3619 if (flag & FLAG_SET_XMIT_TIMER) 3620 tcp_set_xmit_timer(sk); 3621 3622 if (tcp_ack_is_dubious(sk, flag)) { 3623 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3624 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3625 &rexmit); 3626 } 3627 3628 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3629 sk_dst_confirm(sk); 3630 3631 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3632 lost = tp->lost - lost; /* freshly marked lost */ 3633 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3634 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3635 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3636 tcp_xmit_recovery(sk, rexmit); 3637 return 1; 3638 3639 no_queue: 3640 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3641 if (flag & FLAG_DSACKING_ACK) 3642 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3643 &rexmit); 3644 /* If this ack opens up a zero window, clear backoff. It was 3645 * being used to time the probes, and is probably far higher than 3646 * it needs to be for normal retransmission. 3647 */ 3648 tcp_ack_probe(sk); 3649 3650 if (tp->tlp_high_seq) 3651 tcp_process_tlp_ack(sk, ack, flag); 3652 return 1; 3653 3654 invalid_ack: 3655 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3656 return -1; 3657 3658 old_ack: 3659 /* If data was SACKed, tag it and see if we should send more data. 3660 * If data was DSACKed, see if we can undo a cwnd reduction. 3661 */ 3662 if (TCP_SKB_CB(skb)->sacked) { 3663 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3664 &sack_state); 3665 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3666 &rexmit); 3667 tcp_xmit_recovery(sk, rexmit); 3668 } 3669 3670 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3671 return 0; 3672 } 3673 3674 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3675 bool syn, struct tcp_fastopen_cookie *foc, 3676 bool exp_opt) 3677 { 3678 /* Valid only in SYN or SYN-ACK with an even length. */ 3679 if (!foc || !syn || len < 0 || (len & 1)) 3680 return; 3681 3682 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3683 len <= TCP_FASTOPEN_COOKIE_MAX) 3684 memcpy(foc->val, cookie, len); 3685 else if (len != 0) 3686 len = -1; 3687 foc->len = len; 3688 foc->exp = exp_opt; 3689 } 3690 3691 static void smc_parse_options(const struct tcphdr *th, 3692 struct tcp_options_received *opt_rx, 3693 const unsigned char *ptr, 3694 int opsize) 3695 { 3696 #if IS_ENABLED(CONFIG_SMC) 3697 if (static_branch_unlikely(&tcp_have_smc)) { 3698 if (th->syn && !(opsize & 1) && 3699 opsize >= TCPOLEN_EXP_SMC_BASE && 3700 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3701 opt_rx->smc_ok = 1; 3702 } 3703 #endif 3704 } 3705 3706 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3707 * But, this can also be called on packets in the established flow when 3708 * the fast version below fails. 3709 */ 3710 void tcp_parse_options(const struct net *net, 3711 const struct sk_buff *skb, 3712 struct tcp_options_received *opt_rx, int estab, 3713 struct tcp_fastopen_cookie *foc) 3714 { 3715 const unsigned char *ptr; 3716 const struct tcphdr *th = tcp_hdr(skb); 3717 int length = (th->doff * 4) - sizeof(struct tcphdr); 3718 3719 ptr = (const unsigned char *)(th + 1); 3720 opt_rx->saw_tstamp = 0; 3721 3722 while (length > 0) { 3723 int opcode = *ptr++; 3724 int opsize; 3725 3726 switch (opcode) { 3727 case TCPOPT_EOL: 3728 return; 3729 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3730 length--; 3731 continue; 3732 default: 3733 opsize = *ptr++; 3734 if (opsize < 2) /* "silly options" */ 3735 return; 3736 if (opsize > length) 3737 return; /* don't parse partial options */ 3738 switch (opcode) { 3739 case TCPOPT_MSS: 3740 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3741 u16 in_mss = get_unaligned_be16(ptr); 3742 if (in_mss) { 3743 if (opt_rx->user_mss && 3744 opt_rx->user_mss < in_mss) 3745 in_mss = opt_rx->user_mss; 3746 opt_rx->mss_clamp = in_mss; 3747 } 3748 } 3749 break; 3750 case TCPOPT_WINDOW: 3751 if (opsize == TCPOLEN_WINDOW && th->syn && 3752 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3753 __u8 snd_wscale = *(__u8 *)ptr; 3754 opt_rx->wscale_ok = 1; 3755 if (snd_wscale > TCP_MAX_WSCALE) { 3756 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3757 __func__, 3758 snd_wscale, 3759 TCP_MAX_WSCALE); 3760 snd_wscale = TCP_MAX_WSCALE; 3761 } 3762 opt_rx->snd_wscale = snd_wscale; 3763 } 3764 break; 3765 case TCPOPT_TIMESTAMP: 3766 if ((opsize == TCPOLEN_TIMESTAMP) && 3767 ((estab && opt_rx->tstamp_ok) || 3768 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3769 opt_rx->saw_tstamp = 1; 3770 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3771 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3772 } 3773 break; 3774 case TCPOPT_SACK_PERM: 3775 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3776 !estab && net->ipv4.sysctl_tcp_sack) { 3777 opt_rx->sack_ok = TCP_SACK_SEEN; 3778 tcp_sack_reset(opt_rx); 3779 } 3780 break; 3781 3782 case TCPOPT_SACK: 3783 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3784 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3785 opt_rx->sack_ok) { 3786 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3787 } 3788 break; 3789 #ifdef CONFIG_TCP_MD5SIG 3790 case TCPOPT_MD5SIG: 3791 /* 3792 * The MD5 Hash has already been 3793 * checked (see tcp_v{4,6}_do_rcv()). 3794 */ 3795 break; 3796 #endif 3797 case TCPOPT_FASTOPEN: 3798 tcp_parse_fastopen_option( 3799 opsize - TCPOLEN_FASTOPEN_BASE, 3800 ptr, th->syn, foc, false); 3801 break; 3802 3803 case TCPOPT_EXP: 3804 /* Fast Open option shares code 254 using a 3805 * 16 bits magic number. 3806 */ 3807 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3808 get_unaligned_be16(ptr) == 3809 TCPOPT_FASTOPEN_MAGIC) 3810 tcp_parse_fastopen_option(opsize - 3811 TCPOLEN_EXP_FASTOPEN_BASE, 3812 ptr + 2, th->syn, foc, true); 3813 else 3814 smc_parse_options(th, opt_rx, ptr, 3815 opsize); 3816 break; 3817 3818 } 3819 ptr += opsize-2; 3820 length -= opsize; 3821 } 3822 } 3823 } 3824 EXPORT_SYMBOL(tcp_parse_options); 3825 3826 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3827 { 3828 const __be32 *ptr = (const __be32 *)(th + 1); 3829 3830 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3831 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3832 tp->rx_opt.saw_tstamp = 1; 3833 ++ptr; 3834 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3835 ++ptr; 3836 if (*ptr) 3837 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3838 else 3839 tp->rx_opt.rcv_tsecr = 0; 3840 return true; 3841 } 3842 return false; 3843 } 3844 3845 /* Fast parse options. This hopes to only see timestamps. 3846 * If it is wrong it falls back on tcp_parse_options(). 3847 */ 3848 static bool tcp_fast_parse_options(const struct net *net, 3849 const struct sk_buff *skb, 3850 const struct tcphdr *th, struct tcp_sock *tp) 3851 { 3852 /* In the spirit of fast parsing, compare doff directly to constant 3853 * values. Because equality is used, short doff can be ignored here. 3854 */ 3855 if (th->doff == (sizeof(*th) / 4)) { 3856 tp->rx_opt.saw_tstamp = 0; 3857 return false; 3858 } else if (tp->rx_opt.tstamp_ok && 3859 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3860 if (tcp_parse_aligned_timestamp(tp, th)) 3861 return true; 3862 } 3863 3864 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3865 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3866 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3867 3868 return true; 3869 } 3870 3871 #ifdef CONFIG_TCP_MD5SIG 3872 /* 3873 * Parse MD5 Signature option 3874 */ 3875 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3876 { 3877 int length = (th->doff << 2) - sizeof(*th); 3878 const u8 *ptr = (const u8 *)(th + 1); 3879 3880 /* If the TCP option is too short, we can short cut */ 3881 if (length < TCPOLEN_MD5SIG) 3882 return NULL; 3883 3884 while (length > 0) { 3885 int opcode = *ptr++; 3886 int opsize; 3887 3888 switch (opcode) { 3889 case TCPOPT_EOL: 3890 return NULL; 3891 case TCPOPT_NOP: 3892 length--; 3893 continue; 3894 default: 3895 opsize = *ptr++; 3896 if (opsize < 2 || opsize > length) 3897 return NULL; 3898 if (opcode == TCPOPT_MD5SIG) 3899 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3900 } 3901 ptr += opsize - 2; 3902 length -= opsize; 3903 } 3904 return NULL; 3905 } 3906 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3907 #endif 3908 3909 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3910 * 3911 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3912 * it can pass through stack. So, the following predicate verifies that 3913 * this segment is not used for anything but congestion avoidance or 3914 * fast retransmit. Moreover, we even are able to eliminate most of such 3915 * second order effects, if we apply some small "replay" window (~RTO) 3916 * to timestamp space. 3917 * 3918 * All these measures still do not guarantee that we reject wrapped ACKs 3919 * on networks with high bandwidth, when sequence space is recycled fastly, 3920 * but it guarantees that such events will be very rare and do not affect 3921 * connection seriously. This doesn't look nice, but alas, PAWS is really 3922 * buggy extension. 3923 * 3924 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3925 * states that events when retransmit arrives after original data are rare. 3926 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3927 * the biggest problem on large power networks even with minor reordering. 3928 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3929 * up to bandwidth of 18Gigabit/sec. 8) ] 3930 */ 3931 3932 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3933 { 3934 const struct tcp_sock *tp = tcp_sk(sk); 3935 const struct tcphdr *th = tcp_hdr(skb); 3936 u32 seq = TCP_SKB_CB(skb)->seq; 3937 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3938 3939 return (/* 1. Pure ACK with correct sequence number. */ 3940 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3941 3942 /* 2. ... and duplicate ACK. */ 3943 ack == tp->snd_una && 3944 3945 /* 3. ... and does not update window. */ 3946 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3947 3948 /* 4. ... and sits in replay window. */ 3949 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3950 } 3951 3952 static inline bool tcp_paws_discard(const struct sock *sk, 3953 const struct sk_buff *skb) 3954 { 3955 const struct tcp_sock *tp = tcp_sk(sk); 3956 3957 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3958 !tcp_disordered_ack(sk, skb); 3959 } 3960 3961 /* Check segment sequence number for validity. 3962 * 3963 * Segment controls are considered valid, if the segment 3964 * fits to the window after truncation to the window. Acceptability 3965 * of data (and SYN, FIN, of course) is checked separately. 3966 * See tcp_data_queue(), for example. 3967 * 3968 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3969 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3970 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3971 * (borrowed from freebsd) 3972 */ 3973 3974 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3975 { 3976 return !before(end_seq, tp->rcv_wup) && 3977 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3978 } 3979 3980 /* When we get a reset we do this. */ 3981 void tcp_reset(struct sock *sk) 3982 { 3983 trace_tcp_receive_reset(sk); 3984 3985 /* We want the right error as BSD sees it (and indeed as we do). */ 3986 switch (sk->sk_state) { 3987 case TCP_SYN_SENT: 3988 sk->sk_err = ECONNREFUSED; 3989 break; 3990 case TCP_CLOSE_WAIT: 3991 sk->sk_err = EPIPE; 3992 break; 3993 case TCP_CLOSE: 3994 return; 3995 default: 3996 sk->sk_err = ECONNRESET; 3997 } 3998 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3999 smp_wmb(); 4000 4001 tcp_done(sk); 4002 4003 if (!sock_flag(sk, SOCK_DEAD)) 4004 sk->sk_error_report(sk); 4005 } 4006 4007 /* 4008 * Process the FIN bit. This now behaves as it is supposed to work 4009 * and the FIN takes effect when it is validly part of sequence 4010 * space. Not before when we get holes. 4011 * 4012 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4013 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4014 * TIME-WAIT) 4015 * 4016 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4017 * close and we go into CLOSING (and later onto TIME-WAIT) 4018 * 4019 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4020 */ 4021 void tcp_fin(struct sock *sk) 4022 { 4023 struct tcp_sock *tp = tcp_sk(sk); 4024 4025 inet_csk_schedule_ack(sk); 4026 4027 sk->sk_shutdown |= RCV_SHUTDOWN; 4028 sock_set_flag(sk, SOCK_DONE); 4029 4030 switch (sk->sk_state) { 4031 case TCP_SYN_RECV: 4032 case TCP_ESTABLISHED: 4033 /* Move to CLOSE_WAIT */ 4034 tcp_set_state(sk, TCP_CLOSE_WAIT); 4035 inet_csk(sk)->icsk_ack.pingpong = 1; 4036 break; 4037 4038 case TCP_CLOSE_WAIT: 4039 case TCP_CLOSING: 4040 /* Received a retransmission of the FIN, do 4041 * nothing. 4042 */ 4043 break; 4044 case TCP_LAST_ACK: 4045 /* RFC793: Remain in the LAST-ACK state. */ 4046 break; 4047 4048 case TCP_FIN_WAIT1: 4049 /* This case occurs when a simultaneous close 4050 * happens, we must ack the received FIN and 4051 * enter the CLOSING state. 4052 */ 4053 tcp_send_ack(sk); 4054 tcp_set_state(sk, TCP_CLOSING); 4055 break; 4056 case TCP_FIN_WAIT2: 4057 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4058 tcp_send_ack(sk); 4059 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4060 break; 4061 default: 4062 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4063 * cases we should never reach this piece of code. 4064 */ 4065 pr_err("%s: Impossible, sk->sk_state=%d\n", 4066 __func__, sk->sk_state); 4067 break; 4068 } 4069 4070 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4071 * Probably, we should reset in this case. For now drop them. 4072 */ 4073 skb_rbtree_purge(&tp->out_of_order_queue); 4074 if (tcp_is_sack(tp)) 4075 tcp_sack_reset(&tp->rx_opt); 4076 sk_mem_reclaim(sk); 4077 4078 if (!sock_flag(sk, SOCK_DEAD)) { 4079 sk->sk_state_change(sk); 4080 4081 /* Do not send POLL_HUP for half duplex close. */ 4082 if (sk->sk_shutdown == SHUTDOWN_MASK || 4083 sk->sk_state == TCP_CLOSE) 4084 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4085 else 4086 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4087 } 4088 } 4089 4090 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4091 u32 end_seq) 4092 { 4093 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4094 if (before(seq, sp->start_seq)) 4095 sp->start_seq = seq; 4096 if (after(end_seq, sp->end_seq)) 4097 sp->end_seq = end_seq; 4098 return true; 4099 } 4100 return false; 4101 } 4102 4103 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4104 { 4105 struct tcp_sock *tp = tcp_sk(sk); 4106 4107 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4108 int mib_idx; 4109 4110 if (before(seq, tp->rcv_nxt)) 4111 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4112 else 4113 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4114 4115 NET_INC_STATS(sock_net(sk), mib_idx); 4116 4117 tp->rx_opt.dsack = 1; 4118 tp->duplicate_sack[0].start_seq = seq; 4119 tp->duplicate_sack[0].end_seq = end_seq; 4120 } 4121 } 4122 4123 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4124 { 4125 struct tcp_sock *tp = tcp_sk(sk); 4126 4127 if (!tp->rx_opt.dsack) 4128 tcp_dsack_set(sk, seq, end_seq); 4129 else 4130 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4131 } 4132 4133 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4134 { 4135 struct tcp_sock *tp = tcp_sk(sk); 4136 4137 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4138 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4139 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4140 tcp_enter_quickack_mode(sk); 4141 4142 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4143 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4144 4145 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4146 end_seq = tp->rcv_nxt; 4147 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4148 } 4149 } 4150 4151 tcp_send_ack(sk); 4152 } 4153 4154 /* These routines update the SACK block as out-of-order packets arrive or 4155 * in-order packets close up the sequence space. 4156 */ 4157 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4158 { 4159 int this_sack; 4160 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4161 struct tcp_sack_block *swalk = sp + 1; 4162 4163 /* See if the recent change to the first SACK eats into 4164 * or hits the sequence space of other SACK blocks, if so coalesce. 4165 */ 4166 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4167 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4168 int i; 4169 4170 /* Zap SWALK, by moving every further SACK up by one slot. 4171 * Decrease num_sacks. 4172 */ 4173 tp->rx_opt.num_sacks--; 4174 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4175 sp[i] = sp[i + 1]; 4176 continue; 4177 } 4178 this_sack++, swalk++; 4179 } 4180 } 4181 4182 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4183 { 4184 struct tcp_sock *tp = tcp_sk(sk); 4185 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4186 int cur_sacks = tp->rx_opt.num_sacks; 4187 int this_sack; 4188 4189 if (!cur_sacks) 4190 goto new_sack; 4191 4192 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4193 if (tcp_sack_extend(sp, seq, end_seq)) { 4194 /* Rotate this_sack to the first one. */ 4195 for (; this_sack > 0; this_sack--, sp--) 4196 swap(*sp, *(sp - 1)); 4197 if (cur_sacks > 1) 4198 tcp_sack_maybe_coalesce(tp); 4199 return; 4200 } 4201 } 4202 4203 /* Could not find an adjacent existing SACK, build a new one, 4204 * put it at the front, and shift everyone else down. We 4205 * always know there is at least one SACK present already here. 4206 * 4207 * If the sack array is full, forget about the last one. 4208 */ 4209 if (this_sack >= TCP_NUM_SACKS) { 4210 this_sack--; 4211 tp->rx_opt.num_sacks--; 4212 sp--; 4213 } 4214 for (; this_sack > 0; this_sack--, sp--) 4215 *sp = *(sp - 1); 4216 4217 new_sack: 4218 /* Build the new head SACK, and we're done. */ 4219 sp->start_seq = seq; 4220 sp->end_seq = end_seq; 4221 tp->rx_opt.num_sacks++; 4222 } 4223 4224 /* RCV.NXT advances, some SACKs should be eaten. */ 4225 4226 static void tcp_sack_remove(struct tcp_sock *tp) 4227 { 4228 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4229 int num_sacks = tp->rx_opt.num_sacks; 4230 int this_sack; 4231 4232 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4233 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4234 tp->rx_opt.num_sacks = 0; 4235 return; 4236 } 4237 4238 for (this_sack = 0; this_sack < num_sacks;) { 4239 /* Check if the start of the sack is covered by RCV.NXT. */ 4240 if (!before(tp->rcv_nxt, sp->start_seq)) { 4241 int i; 4242 4243 /* RCV.NXT must cover all the block! */ 4244 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4245 4246 /* Zap this SACK, by moving forward any other SACKS. */ 4247 for (i = this_sack+1; i < num_sacks; i++) 4248 tp->selective_acks[i-1] = tp->selective_acks[i]; 4249 num_sacks--; 4250 continue; 4251 } 4252 this_sack++; 4253 sp++; 4254 } 4255 tp->rx_opt.num_sacks = num_sacks; 4256 } 4257 4258 /** 4259 * tcp_try_coalesce - try to merge skb to prior one 4260 * @sk: socket 4261 * @dest: destination queue 4262 * @to: prior buffer 4263 * @from: buffer to add in queue 4264 * @fragstolen: pointer to boolean 4265 * 4266 * Before queueing skb @from after @to, try to merge them 4267 * to reduce overall memory use and queue lengths, if cost is small. 4268 * Packets in ofo or receive queues can stay a long time. 4269 * Better try to coalesce them right now to avoid future collapses. 4270 * Returns true if caller should free @from instead of queueing it 4271 */ 4272 static bool tcp_try_coalesce(struct sock *sk, 4273 struct sk_buff *to, 4274 struct sk_buff *from, 4275 bool *fragstolen) 4276 { 4277 int delta; 4278 4279 *fragstolen = false; 4280 4281 /* Its possible this segment overlaps with prior segment in queue */ 4282 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4283 return false; 4284 4285 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4286 return false; 4287 4288 atomic_add(delta, &sk->sk_rmem_alloc); 4289 sk_mem_charge(sk, delta); 4290 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4291 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4292 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4293 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4294 4295 if (TCP_SKB_CB(from)->has_rxtstamp) { 4296 TCP_SKB_CB(to)->has_rxtstamp = true; 4297 to->tstamp = from->tstamp; 4298 } 4299 4300 return true; 4301 } 4302 4303 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4304 { 4305 sk_drops_add(sk, skb); 4306 __kfree_skb(skb); 4307 } 4308 4309 /* This one checks to see if we can put data from the 4310 * out_of_order queue into the receive_queue. 4311 */ 4312 static void tcp_ofo_queue(struct sock *sk) 4313 { 4314 struct tcp_sock *tp = tcp_sk(sk); 4315 __u32 dsack_high = tp->rcv_nxt; 4316 bool fin, fragstolen, eaten; 4317 struct sk_buff *skb, *tail; 4318 struct rb_node *p; 4319 4320 p = rb_first(&tp->out_of_order_queue); 4321 while (p) { 4322 skb = rb_to_skb(p); 4323 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4324 break; 4325 4326 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4327 __u32 dsack = dsack_high; 4328 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4329 dsack_high = TCP_SKB_CB(skb)->end_seq; 4330 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4331 } 4332 p = rb_next(p); 4333 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4334 4335 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4336 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4337 tcp_drop(sk, skb); 4338 continue; 4339 } 4340 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4341 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4342 TCP_SKB_CB(skb)->end_seq); 4343 4344 tail = skb_peek_tail(&sk->sk_receive_queue); 4345 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4346 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4347 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4348 if (!eaten) 4349 __skb_queue_tail(&sk->sk_receive_queue, skb); 4350 else 4351 kfree_skb_partial(skb, fragstolen); 4352 4353 if (unlikely(fin)) { 4354 tcp_fin(sk); 4355 /* tcp_fin() purges tp->out_of_order_queue, 4356 * so we must end this loop right now. 4357 */ 4358 break; 4359 } 4360 } 4361 } 4362 4363 static bool tcp_prune_ofo_queue(struct sock *sk); 4364 static int tcp_prune_queue(struct sock *sk); 4365 4366 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4367 unsigned int size) 4368 { 4369 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4370 !sk_rmem_schedule(sk, skb, size)) { 4371 4372 if (tcp_prune_queue(sk) < 0) 4373 return -1; 4374 4375 while (!sk_rmem_schedule(sk, skb, size)) { 4376 if (!tcp_prune_ofo_queue(sk)) 4377 return -1; 4378 } 4379 } 4380 return 0; 4381 } 4382 4383 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4384 { 4385 struct tcp_sock *tp = tcp_sk(sk); 4386 struct rb_node **p, *parent; 4387 struct sk_buff *skb1; 4388 u32 seq, end_seq; 4389 bool fragstolen; 4390 4391 tcp_ecn_check_ce(tp, skb); 4392 4393 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4394 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4395 tcp_drop(sk, skb); 4396 return; 4397 } 4398 4399 /* Disable header prediction. */ 4400 tp->pred_flags = 0; 4401 inet_csk_schedule_ack(sk); 4402 4403 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4404 seq = TCP_SKB_CB(skb)->seq; 4405 end_seq = TCP_SKB_CB(skb)->end_seq; 4406 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4407 tp->rcv_nxt, seq, end_seq); 4408 4409 p = &tp->out_of_order_queue.rb_node; 4410 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4411 /* Initial out of order segment, build 1 SACK. */ 4412 if (tcp_is_sack(tp)) { 4413 tp->rx_opt.num_sacks = 1; 4414 tp->selective_acks[0].start_seq = seq; 4415 tp->selective_acks[0].end_seq = end_seq; 4416 } 4417 rb_link_node(&skb->rbnode, NULL, p); 4418 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4419 tp->ooo_last_skb = skb; 4420 goto end; 4421 } 4422 4423 /* In the typical case, we are adding an skb to the end of the list. 4424 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4425 */ 4426 if (tcp_try_coalesce(sk, tp->ooo_last_skb, 4427 skb, &fragstolen)) { 4428 coalesce_done: 4429 tcp_grow_window(sk, skb); 4430 kfree_skb_partial(skb, fragstolen); 4431 skb = NULL; 4432 goto add_sack; 4433 } 4434 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4435 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4436 parent = &tp->ooo_last_skb->rbnode; 4437 p = &parent->rb_right; 4438 goto insert; 4439 } 4440 4441 /* Find place to insert this segment. Handle overlaps on the way. */ 4442 parent = NULL; 4443 while (*p) { 4444 parent = *p; 4445 skb1 = rb_to_skb(parent); 4446 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4447 p = &parent->rb_left; 4448 continue; 4449 } 4450 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4451 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4452 /* All the bits are present. Drop. */ 4453 NET_INC_STATS(sock_net(sk), 4454 LINUX_MIB_TCPOFOMERGE); 4455 __kfree_skb(skb); 4456 skb = NULL; 4457 tcp_dsack_set(sk, seq, end_seq); 4458 goto add_sack; 4459 } 4460 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4461 /* Partial overlap. */ 4462 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4463 } else { 4464 /* skb's seq == skb1's seq and skb covers skb1. 4465 * Replace skb1 with skb. 4466 */ 4467 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4468 &tp->out_of_order_queue); 4469 tcp_dsack_extend(sk, 4470 TCP_SKB_CB(skb1)->seq, 4471 TCP_SKB_CB(skb1)->end_seq); 4472 NET_INC_STATS(sock_net(sk), 4473 LINUX_MIB_TCPOFOMERGE); 4474 __kfree_skb(skb1); 4475 goto merge_right; 4476 } 4477 } else if (tcp_try_coalesce(sk, skb1, 4478 skb, &fragstolen)) { 4479 goto coalesce_done; 4480 } 4481 p = &parent->rb_right; 4482 } 4483 insert: 4484 /* Insert segment into RB tree. */ 4485 rb_link_node(&skb->rbnode, parent, p); 4486 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4487 4488 merge_right: 4489 /* Remove other segments covered by skb. */ 4490 while ((skb1 = skb_rb_next(skb)) != NULL) { 4491 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4492 break; 4493 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4494 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4495 end_seq); 4496 break; 4497 } 4498 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4499 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4500 TCP_SKB_CB(skb1)->end_seq); 4501 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4502 tcp_drop(sk, skb1); 4503 } 4504 /* If there is no skb after us, we are the last_skb ! */ 4505 if (!skb1) 4506 tp->ooo_last_skb = skb; 4507 4508 add_sack: 4509 if (tcp_is_sack(tp)) 4510 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4511 end: 4512 if (skb) { 4513 tcp_grow_window(sk, skb); 4514 skb_condense(skb); 4515 skb_set_owner_r(skb, sk); 4516 } 4517 } 4518 4519 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4520 bool *fragstolen) 4521 { 4522 int eaten; 4523 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4524 4525 __skb_pull(skb, hdrlen); 4526 eaten = (tail && 4527 tcp_try_coalesce(sk, tail, 4528 skb, fragstolen)) ? 1 : 0; 4529 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4530 if (!eaten) { 4531 __skb_queue_tail(&sk->sk_receive_queue, skb); 4532 skb_set_owner_r(skb, sk); 4533 } 4534 return eaten; 4535 } 4536 4537 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4538 { 4539 struct sk_buff *skb; 4540 int err = -ENOMEM; 4541 int data_len = 0; 4542 bool fragstolen; 4543 4544 if (size == 0) 4545 return 0; 4546 4547 if (size > PAGE_SIZE) { 4548 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4549 4550 data_len = npages << PAGE_SHIFT; 4551 size = data_len + (size & ~PAGE_MASK); 4552 } 4553 skb = alloc_skb_with_frags(size - data_len, data_len, 4554 PAGE_ALLOC_COSTLY_ORDER, 4555 &err, sk->sk_allocation); 4556 if (!skb) 4557 goto err; 4558 4559 skb_put(skb, size - data_len); 4560 skb->data_len = data_len; 4561 skb->len = size; 4562 4563 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4564 goto err_free; 4565 4566 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4567 if (err) 4568 goto err_free; 4569 4570 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4571 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4572 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4573 4574 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4575 WARN_ON_ONCE(fragstolen); /* should not happen */ 4576 __kfree_skb(skb); 4577 } 4578 return size; 4579 4580 err_free: 4581 kfree_skb(skb); 4582 err: 4583 return err; 4584 4585 } 4586 4587 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4588 { 4589 struct tcp_sock *tp = tcp_sk(sk); 4590 bool fragstolen; 4591 int eaten; 4592 4593 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4594 __kfree_skb(skb); 4595 return; 4596 } 4597 skb_dst_drop(skb); 4598 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4599 4600 tcp_ecn_accept_cwr(tp, skb); 4601 4602 tp->rx_opt.dsack = 0; 4603 4604 /* Queue data for delivery to the user. 4605 * Packets in sequence go to the receive queue. 4606 * Out of sequence packets to the out_of_order_queue. 4607 */ 4608 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4609 if (tcp_receive_window(tp) == 0) 4610 goto out_of_window; 4611 4612 /* Ok. In sequence. In window. */ 4613 queue_and_out: 4614 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4615 sk_forced_mem_schedule(sk, skb->truesize); 4616 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4617 goto drop; 4618 4619 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4620 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4621 if (skb->len) 4622 tcp_event_data_recv(sk, skb); 4623 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4624 tcp_fin(sk); 4625 4626 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4627 tcp_ofo_queue(sk); 4628 4629 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4630 * gap in queue is filled. 4631 */ 4632 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4633 inet_csk(sk)->icsk_ack.pingpong = 0; 4634 } 4635 4636 if (tp->rx_opt.num_sacks) 4637 tcp_sack_remove(tp); 4638 4639 tcp_fast_path_check(sk); 4640 4641 if (eaten > 0) 4642 kfree_skb_partial(skb, fragstolen); 4643 if (!sock_flag(sk, SOCK_DEAD)) 4644 sk->sk_data_ready(sk); 4645 return; 4646 } 4647 4648 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4649 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4650 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4651 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4652 4653 out_of_window: 4654 tcp_enter_quickack_mode(sk); 4655 inet_csk_schedule_ack(sk); 4656 drop: 4657 tcp_drop(sk, skb); 4658 return; 4659 } 4660 4661 /* Out of window. F.e. zero window probe. */ 4662 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4663 goto out_of_window; 4664 4665 tcp_enter_quickack_mode(sk); 4666 4667 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4668 /* Partial packet, seq < rcv_next < end_seq */ 4669 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4670 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4671 TCP_SKB_CB(skb)->end_seq); 4672 4673 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4674 4675 /* If window is closed, drop tail of packet. But after 4676 * remembering D-SACK for its head made in previous line. 4677 */ 4678 if (!tcp_receive_window(tp)) 4679 goto out_of_window; 4680 goto queue_and_out; 4681 } 4682 4683 tcp_data_queue_ofo(sk, skb); 4684 } 4685 4686 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4687 { 4688 if (list) 4689 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4690 4691 return skb_rb_next(skb); 4692 } 4693 4694 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4695 struct sk_buff_head *list, 4696 struct rb_root *root) 4697 { 4698 struct sk_buff *next = tcp_skb_next(skb, list); 4699 4700 if (list) 4701 __skb_unlink(skb, list); 4702 else 4703 rb_erase(&skb->rbnode, root); 4704 4705 __kfree_skb(skb); 4706 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4707 4708 return next; 4709 } 4710 4711 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4712 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4713 { 4714 struct rb_node **p = &root->rb_node; 4715 struct rb_node *parent = NULL; 4716 struct sk_buff *skb1; 4717 4718 while (*p) { 4719 parent = *p; 4720 skb1 = rb_to_skb(parent); 4721 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4722 p = &parent->rb_left; 4723 else 4724 p = &parent->rb_right; 4725 } 4726 rb_link_node(&skb->rbnode, parent, p); 4727 rb_insert_color(&skb->rbnode, root); 4728 } 4729 4730 /* Collapse contiguous sequence of skbs head..tail with 4731 * sequence numbers start..end. 4732 * 4733 * If tail is NULL, this means until the end of the queue. 4734 * 4735 * Segments with FIN/SYN are not collapsed (only because this 4736 * simplifies code) 4737 */ 4738 static void 4739 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4740 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4741 { 4742 struct sk_buff *skb = head, *n; 4743 struct sk_buff_head tmp; 4744 bool end_of_skbs; 4745 4746 /* First, check that queue is collapsible and find 4747 * the point where collapsing can be useful. 4748 */ 4749 restart: 4750 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4751 n = tcp_skb_next(skb, list); 4752 4753 /* No new bits? It is possible on ofo queue. */ 4754 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4755 skb = tcp_collapse_one(sk, skb, list, root); 4756 if (!skb) 4757 break; 4758 goto restart; 4759 } 4760 4761 /* The first skb to collapse is: 4762 * - not SYN/FIN and 4763 * - bloated or contains data before "start" or 4764 * overlaps to the next one. 4765 */ 4766 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4767 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4768 before(TCP_SKB_CB(skb)->seq, start))) { 4769 end_of_skbs = false; 4770 break; 4771 } 4772 4773 if (n && n != tail && 4774 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4775 end_of_skbs = false; 4776 break; 4777 } 4778 4779 /* Decided to skip this, advance start seq. */ 4780 start = TCP_SKB_CB(skb)->end_seq; 4781 } 4782 if (end_of_skbs || 4783 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4784 return; 4785 4786 __skb_queue_head_init(&tmp); 4787 4788 while (before(start, end)) { 4789 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4790 struct sk_buff *nskb; 4791 4792 nskb = alloc_skb(copy, GFP_ATOMIC); 4793 if (!nskb) 4794 break; 4795 4796 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4797 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4798 if (list) 4799 __skb_queue_before(list, skb, nskb); 4800 else 4801 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4802 skb_set_owner_r(nskb, sk); 4803 4804 /* Copy data, releasing collapsed skbs. */ 4805 while (copy > 0) { 4806 int offset = start - TCP_SKB_CB(skb)->seq; 4807 int size = TCP_SKB_CB(skb)->end_seq - start; 4808 4809 BUG_ON(offset < 0); 4810 if (size > 0) { 4811 size = min(copy, size); 4812 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4813 BUG(); 4814 TCP_SKB_CB(nskb)->end_seq += size; 4815 copy -= size; 4816 start += size; 4817 } 4818 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4819 skb = tcp_collapse_one(sk, skb, list, root); 4820 if (!skb || 4821 skb == tail || 4822 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4823 goto end; 4824 } 4825 } 4826 } 4827 end: 4828 skb_queue_walk_safe(&tmp, skb, n) 4829 tcp_rbtree_insert(root, skb); 4830 } 4831 4832 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4833 * and tcp_collapse() them until all the queue is collapsed. 4834 */ 4835 static void tcp_collapse_ofo_queue(struct sock *sk) 4836 { 4837 struct tcp_sock *tp = tcp_sk(sk); 4838 struct sk_buff *skb, *head; 4839 u32 start, end; 4840 4841 skb = skb_rb_first(&tp->out_of_order_queue); 4842 new_range: 4843 if (!skb) { 4844 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4845 return; 4846 } 4847 start = TCP_SKB_CB(skb)->seq; 4848 end = TCP_SKB_CB(skb)->end_seq; 4849 4850 for (head = skb;;) { 4851 skb = skb_rb_next(skb); 4852 4853 /* Range is terminated when we see a gap or when 4854 * we are at the queue end. 4855 */ 4856 if (!skb || 4857 after(TCP_SKB_CB(skb)->seq, end) || 4858 before(TCP_SKB_CB(skb)->end_seq, start)) { 4859 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4860 head, skb, start, end); 4861 goto new_range; 4862 } 4863 4864 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4865 start = TCP_SKB_CB(skb)->seq; 4866 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4867 end = TCP_SKB_CB(skb)->end_seq; 4868 } 4869 } 4870 4871 /* 4872 * Clean the out-of-order queue to make room. 4873 * We drop high sequences packets to : 4874 * 1) Let a chance for holes to be filled. 4875 * 2) not add too big latencies if thousands of packets sit there. 4876 * (But if application shrinks SO_RCVBUF, we could still end up 4877 * freeing whole queue here) 4878 * 4879 * Return true if queue has shrunk. 4880 */ 4881 static bool tcp_prune_ofo_queue(struct sock *sk) 4882 { 4883 struct tcp_sock *tp = tcp_sk(sk); 4884 struct rb_node *node, *prev; 4885 4886 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4887 return false; 4888 4889 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4890 node = &tp->ooo_last_skb->rbnode; 4891 do { 4892 prev = rb_prev(node); 4893 rb_erase(node, &tp->out_of_order_queue); 4894 tcp_drop(sk, rb_to_skb(node)); 4895 sk_mem_reclaim(sk); 4896 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4897 !tcp_under_memory_pressure(sk)) 4898 break; 4899 node = prev; 4900 } while (node); 4901 tp->ooo_last_skb = rb_to_skb(prev); 4902 4903 /* Reset SACK state. A conforming SACK implementation will 4904 * do the same at a timeout based retransmit. When a connection 4905 * is in a sad state like this, we care only about integrity 4906 * of the connection not performance. 4907 */ 4908 if (tp->rx_opt.sack_ok) 4909 tcp_sack_reset(&tp->rx_opt); 4910 return true; 4911 } 4912 4913 /* Reduce allocated memory if we can, trying to get 4914 * the socket within its memory limits again. 4915 * 4916 * Return less than zero if we should start dropping frames 4917 * until the socket owning process reads some of the data 4918 * to stabilize the situation. 4919 */ 4920 static int tcp_prune_queue(struct sock *sk) 4921 { 4922 struct tcp_sock *tp = tcp_sk(sk); 4923 4924 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4925 4926 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4927 4928 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4929 tcp_clamp_window(sk); 4930 else if (tcp_under_memory_pressure(sk)) 4931 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4932 4933 tcp_collapse_ofo_queue(sk); 4934 if (!skb_queue_empty(&sk->sk_receive_queue)) 4935 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4936 skb_peek(&sk->sk_receive_queue), 4937 NULL, 4938 tp->copied_seq, tp->rcv_nxt); 4939 sk_mem_reclaim(sk); 4940 4941 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4942 return 0; 4943 4944 /* Collapsing did not help, destructive actions follow. 4945 * This must not ever occur. */ 4946 4947 tcp_prune_ofo_queue(sk); 4948 4949 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4950 return 0; 4951 4952 /* If we are really being abused, tell the caller to silently 4953 * drop receive data on the floor. It will get retransmitted 4954 * and hopefully then we'll have sufficient space. 4955 */ 4956 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4957 4958 /* Massive buffer overcommit. */ 4959 tp->pred_flags = 0; 4960 return -1; 4961 } 4962 4963 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4964 { 4965 const struct tcp_sock *tp = tcp_sk(sk); 4966 4967 /* If the user specified a specific send buffer setting, do 4968 * not modify it. 4969 */ 4970 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4971 return false; 4972 4973 /* If we are under global TCP memory pressure, do not expand. */ 4974 if (tcp_under_memory_pressure(sk)) 4975 return false; 4976 4977 /* If we are under soft global TCP memory pressure, do not expand. */ 4978 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4979 return false; 4980 4981 /* If we filled the congestion window, do not expand. */ 4982 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 4983 return false; 4984 4985 return true; 4986 } 4987 4988 /* When incoming ACK allowed to free some skb from write_queue, 4989 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4990 * on the exit from tcp input handler. 4991 * 4992 * PROBLEM: sndbuf expansion does not work well with largesend. 4993 */ 4994 static void tcp_new_space(struct sock *sk) 4995 { 4996 struct tcp_sock *tp = tcp_sk(sk); 4997 4998 if (tcp_should_expand_sndbuf(sk)) { 4999 tcp_sndbuf_expand(sk); 5000 tp->snd_cwnd_stamp = tcp_jiffies32; 5001 } 5002 5003 sk->sk_write_space(sk); 5004 } 5005 5006 static void tcp_check_space(struct sock *sk) 5007 { 5008 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5009 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5010 /* pairs with tcp_poll() */ 5011 smp_mb(); 5012 if (sk->sk_socket && 5013 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5014 tcp_new_space(sk); 5015 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5016 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5017 } 5018 } 5019 } 5020 5021 static inline void tcp_data_snd_check(struct sock *sk) 5022 { 5023 tcp_push_pending_frames(sk); 5024 tcp_check_space(sk); 5025 } 5026 5027 /* 5028 * Check if sending an ack is needed. 5029 */ 5030 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5031 { 5032 struct tcp_sock *tp = tcp_sk(sk); 5033 5034 /* More than one full frame received... */ 5035 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5036 /* ... and right edge of window advances far enough. 5037 * (tcp_recvmsg() will send ACK otherwise). Or... 5038 */ 5039 __tcp_select_window(sk) >= tp->rcv_wnd) || 5040 /* We ACK each frame or... */ 5041 tcp_in_quickack_mode(sk) || 5042 /* We have out of order data. */ 5043 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5044 /* Then ack it now */ 5045 tcp_send_ack(sk); 5046 } else { 5047 /* Else, send delayed ack. */ 5048 tcp_send_delayed_ack(sk); 5049 } 5050 } 5051 5052 static inline void tcp_ack_snd_check(struct sock *sk) 5053 { 5054 if (!inet_csk_ack_scheduled(sk)) { 5055 /* We sent a data segment already. */ 5056 return; 5057 } 5058 __tcp_ack_snd_check(sk, 1); 5059 } 5060 5061 /* 5062 * This routine is only called when we have urgent data 5063 * signaled. Its the 'slow' part of tcp_urg. It could be 5064 * moved inline now as tcp_urg is only called from one 5065 * place. We handle URGent data wrong. We have to - as 5066 * BSD still doesn't use the correction from RFC961. 5067 * For 1003.1g we should support a new option TCP_STDURG to permit 5068 * either form (or just set the sysctl tcp_stdurg). 5069 */ 5070 5071 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5072 { 5073 struct tcp_sock *tp = tcp_sk(sk); 5074 u32 ptr = ntohs(th->urg_ptr); 5075 5076 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5077 ptr--; 5078 ptr += ntohl(th->seq); 5079 5080 /* Ignore urgent data that we've already seen and read. */ 5081 if (after(tp->copied_seq, ptr)) 5082 return; 5083 5084 /* Do not replay urg ptr. 5085 * 5086 * NOTE: interesting situation not covered by specs. 5087 * Misbehaving sender may send urg ptr, pointing to segment, 5088 * which we already have in ofo queue. We are not able to fetch 5089 * such data and will stay in TCP_URG_NOTYET until will be eaten 5090 * by recvmsg(). Seems, we are not obliged to handle such wicked 5091 * situations. But it is worth to think about possibility of some 5092 * DoSes using some hypothetical application level deadlock. 5093 */ 5094 if (before(ptr, tp->rcv_nxt)) 5095 return; 5096 5097 /* Do we already have a newer (or duplicate) urgent pointer? */ 5098 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5099 return; 5100 5101 /* Tell the world about our new urgent pointer. */ 5102 sk_send_sigurg(sk); 5103 5104 /* We may be adding urgent data when the last byte read was 5105 * urgent. To do this requires some care. We cannot just ignore 5106 * tp->copied_seq since we would read the last urgent byte again 5107 * as data, nor can we alter copied_seq until this data arrives 5108 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5109 * 5110 * NOTE. Double Dutch. Rendering to plain English: author of comment 5111 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5112 * and expect that both A and B disappear from stream. This is _wrong_. 5113 * Though this happens in BSD with high probability, this is occasional. 5114 * Any application relying on this is buggy. Note also, that fix "works" 5115 * only in this artificial test. Insert some normal data between A and B and we will 5116 * decline of BSD again. Verdict: it is better to remove to trap 5117 * buggy users. 5118 */ 5119 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5120 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5121 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5122 tp->copied_seq++; 5123 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5124 __skb_unlink(skb, &sk->sk_receive_queue); 5125 __kfree_skb(skb); 5126 } 5127 } 5128 5129 tp->urg_data = TCP_URG_NOTYET; 5130 tp->urg_seq = ptr; 5131 5132 /* Disable header prediction. */ 5133 tp->pred_flags = 0; 5134 } 5135 5136 /* This is the 'fast' part of urgent handling. */ 5137 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5138 { 5139 struct tcp_sock *tp = tcp_sk(sk); 5140 5141 /* Check if we get a new urgent pointer - normally not. */ 5142 if (th->urg) 5143 tcp_check_urg(sk, th); 5144 5145 /* Do we wait for any urgent data? - normally not... */ 5146 if (tp->urg_data == TCP_URG_NOTYET) { 5147 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5148 th->syn; 5149 5150 /* Is the urgent pointer pointing into this packet? */ 5151 if (ptr < skb->len) { 5152 u8 tmp; 5153 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5154 BUG(); 5155 tp->urg_data = TCP_URG_VALID | tmp; 5156 if (!sock_flag(sk, SOCK_DEAD)) 5157 sk->sk_data_ready(sk); 5158 } 5159 } 5160 } 5161 5162 /* Accept RST for rcv_nxt - 1 after a FIN. 5163 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5164 * FIN is sent followed by a RST packet. The RST is sent with the same 5165 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5166 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5167 * ACKs on the closed socket. In addition middleboxes can drop either the 5168 * challenge ACK or a subsequent RST. 5169 */ 5170 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5171 { 5172 struct tcp_sock *tp = tcp_sk(sk); 5173 5174 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5175 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5176 TCPF_CLOSING)); 5177 } 5178 5179 /* Does PAWS and seqno based validation of an incoming segment, flags will 5180 * play significant role here. 5181 */ 5182 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5183 const struct tcphdr *th, int syn_inerr) 5184 { 5185 struct tcp_sock *tp = tcp_sk(sk); 5186 bool rst_seq_match = false; 5187 5188 /* RFC1323: H1. Apply PAWS check first. */ 5189 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5190 tp->rx_opt.saw_tstamp && 5191 tcp_paws_discard(sk, skb)) { 5192 if (!th->rst) { 5193 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5194 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5195 LINUX_MIB_TCPACKSKIPPEDPAWS, 5196 &tp->last_oow_ack_time)) 5197 tcp_send_dupack(sk, skb); 5198 goto discard; 5199 } 5200 /* Reset is accepted even if it did not pass PAWS. */ 5201 } 5202 5203 /* Step 1: check sequence number */ 5204 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5205 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5206 * (RST) segments are validated by checking their SEQ-fields." 5207 * And page 69: "If an incoming segment is not acceptable, 5208 * an acknowledgment should be sent in reply (unless the RST 5209 * bit is set, if so drop the segment and return)". 5210 */ 5211 if (!th->rst) { 5212 if (th->syn) 5213 goto syn_challenge; 5214 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5215 LINUX_MIB_TCPACKSKIPPEDSEQ, 5216 &tp->last_oow_ack_time)) 5217 tcp_send_dupack(sk, skb); 5218 } else if (tcp_reset_check(sk, skb)) { 5219 tcp_reset(sk); 5220 } 5221 goto discard; 5222 } 5223 5224 /* Step 2: check RST bit */ 5225 if (th->rst) { 5226 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5227 * FIN and SACK too if available): 5228 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5229 * the right-most SACK block, 5230 * then 5231 * RESET the connection 5232 * else 5233 * Send a challenge ACK 5234 */ 5235 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5236 tcp_reset_check(sk, skb)) { 5237 rst_seq_match = true; 5238 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5239 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5240 int max_sack = sp[0].end_seq; 5241 int this_sack; 5242 5243 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5244 ++this_sack) { 5245 max_sack = after(sp[this_sack].end_seq, 5246 max_sack) ? 5247 sp[this_sack].end_seq : max_sack; 5248 } 5249 5250 if (TCP_SKB_CB(skb)->seq == max_sack) 5251 rst_seq_match = true; 5252 } 5253 5254 if (rst_seq_match) 5255 tcp_reset(sk); 5256 else { 5257 /* Disable TFO if RST is out-of-order 5258 * and no data has been received 5259 * for current active TFO socket 5260 */ 5261 if (tp->syn_fastopen && !tp->data_segs_in && 5262 sk->sk_state == TCP_ESTABLISHED) 5263 tcp_fastopen_active_disable(sk); 5264 tcp_send_challenge_ack(sk, skb); 5265 } 5266 goto discard; 5267 } 5268 5269 /* step 3: check security and precedence [ignored] */ 5270 5271 /* step 4: Check for a SYN 5272 * RFC 5961 4.2 : Send a challenge ack 5273 */ 5274 if (th->syn) { 5275 syn_challenge: 5276 if (syn_inerr) 5277 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5278 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5279 tcp_send_challenge_ack(sk, skb); 5280 goto discard; 5281 } 5282 5283 return true; 5284 5285 discard: 5286 tcp_drop(sk, skb); 5287 return false; 5288 } 5289 5290 /* 5291 * TCP receive function for the ESTABLISHED state. 5292 * 5293 * It is split into a fast path and a slow path. The fast path is 5294 * disabled when: 5295 * - A zero window was announced from us - zero window probing 5296 * is only handled properly in the slow path. 5297 * - Out of order segments arrived. 5298 * - Urgent data is expected. 5299 * - There is no buffer space left 5300 * - Unexpected TCP flags/window values/header lengths are received 5301 * (detected by checking the TCP header against pred_flags) 5302 * - Data is sent in both directions. Fast path only supports pure senders 5303 * or pure receivers (this means either the sequence number or the ack 5304 * value must stay constant) 5305 * - Unexpected TCP option. 5306 * 5307 * When these conditions are not satisfied it drops into a standard 5308 * receive procedure patterned after RFC793 to handle all cases. 5309 * The first three cases are guaranteed by proper pred_flags setting, 5310 * the rest is checked inline. Fast processing is turned on in 5311 * tcp_data_queue when everything is OK. 5312 */ 5313 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5314 const struct tcphdr *th) 5315 { 5316 unsigned int len = skb->len; 5317 struct tcp_sock *tp = tcp_sk(sk); 5318 5319 /* TCP congestion window tracking */ 5320 trace_tcp_probe(sk, skb); 5321 5322 tcp_mstamp_refresh(tp); 5323 if (unlikely(!sk->sk_rx_dst)) 5324 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5325 /* 5326 * Header prediction. 5327 * The code loosely follows the one in the famous 5328 * "30 instruction TCP receive" Van Jacobson mail. 5329 * 5330 * Van's trick is to deposit buffers into socket queue 5331 * on a device interrupt, to call tcp_recv function 5332 * on the receive process context and checksum and copy 5333 * the buffer to user space. smart... 5334 * 5335 * Our current scheme is not silly either but we take the 5336 * extra cost of the net_bh soft interrupt processing... 5337 * We do checksum and copy also but from device to kernel. 5338 */ 5339 5340 tp->rx_opt.saw_tstamp = 0; 5341 5342 /* pred_flags is 0xS?10 << 16 + snd_wnd 5343 * if header_prediction is to be made 5344 * 'S' will always be tp->tcp_header_len >> 2 5345 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5346 * turn it off (when there are holes in the receive 5347 * space for instance) 5348 * PSH flag is ignored. 5349 */ 5350 5351 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5352 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5353 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5354 int tcp_header_len = tp->tcp_header_len; 5355 5356 /* Timestamp header prediction: tcp_header_len 5357 * is automatically equal to th->doff*4 due to pred_flags 5358 * match. 5359 */ 5360 5361 /* Check timestamp */ 5362 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5363 /* No? Slow path! */ 5364 if (!tcp_parse_aligned_timestamp(tp, th)) 5365 goto slow_path; 5366 5367 /* If PAWS failed, check it more carefully in slow path */ 5368 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5369 goto slow_path; 5370 5371 /* DO NOT update ts_recent here, if checksum fails 5372 * and timestamp was corrupted part, it will result 5373 * in a hung connection since we will drop all 5374 * future packets due to the PAWS test. 5375 */ 5376 } 5377 5378 if (len <= tcp_header_len) { 5379 /* Bulk data transfer: sender */ 5380 if (len == tcp_header_len) { 5381 /* Predicted packet is in window by definition. 5382 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5383 * Hence, check seq<=rcv_wup reduces to: 5384 */ 5385 if (tcp_header_len == 5386 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5387 tp->rcv_nxt == tp->rcv_wup) 5388 tcp_store_ts_recent(tp); 5389 5390 /* We know that such packets are checksummed 5391 * on entry. 5392 */ 5393 tcp_ack(sk, skb, 0); 5394 __kfree_skb(skb); 5395 tcp_data_snd_check(sk); 5396 return; 5397 } else { /* Header too small */ 5398 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5399 goto discard; 5400 } 5401 } else { 5402 int eaten = 0; 5403 bool fragstolen = false; 5404 5405 if (tcp_checksum_complete(skb)) 5406 goto csum_error; 5407 5408 if ((int)skb->truesize > sk->sk_forward_alloc) 5409 goto step5; 5410 5411 /* Predicted packet is in window by definition. 5412 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5413 * Hence, check seq<=rcv_wup reduces to: 5414 */ 5415 if (tcp_header_len == 5416 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5417 tp->rcv_nxt == tp->rcv_wup) 5418 tcp_store_ts_recent(tp); 5419 5420 tcp_rcv_rtt_measure_ts(sk, skb); 5421 5422 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5423 5424 /* Bulk data transfer: receiver */ 5425 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5426 &fragstolen); 5427 5428 tcp_event_data_recv(sk, skb); 5429 5430 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5431 /* Well, only one small jumplet in fast path... */ 5432 tcp_ack(sk, skb, FLAG_DATA); 5433 tcp_data_snd_check(sk); 5434 if (!inet_csk_ack_scheduled(sk)) 5435 goto no_ack; 5436 } 5437 5438 __tcp_ack_snd_check(sk, 0); 5439 no_ack: 5440 if (eaten) 5441 kfree_skb_partial(skb, fragstolen); 5442 sk->sk_data_ready(sk); 5443 return; 5444 } 5445 } 5446 5447 slow_path: 5448 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5449 goto csum_error; 5450 5451 if (!th->ack && !th->rst && !th->syn) 5452 goto discard; 5453 5454 /* 5455 * Standard slow path. 5456 */ 5457 5458 if (!tcp_validate_incoming(sk, skb, th, 1)) 5459 return; 5460 5461 step5: 5462 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5463 goto discard; 5464 5465 tcp_rcv_rtt_measure_ts(sk, skb); 5466 5467 /* Process urgent data. */ 5468 tcp_urg(sk, skb, th); 5469 5470 /* step 7: process the segment text */ 5471 tcp_data_queue(sk, skb); 5472 5473 tcp_data_snd_check(sk); 5474 tcp_ack_snd_check(sk); 5475 return; 5476 5477 csum_error: 5478 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5479 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5480 5481 discard: 5482 tcp_drop(sk, skb); 5483 } 5484 EXPORT_SYMBOL(tcp_rcv_established); 5485 5486 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5487 { 5488 struct tcp_sock *tp = tcp_sk(sk); 5489 struct inet_connection_sock *icsk = inet_csk(sk); 5490 5491 tcp_set_state(sk, TCP_ESTABLISHED); 5492 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5493 5494 if (skb) { 5495 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5496 security_inet_conn_established(sk, skb); 5497 } 5498 5499 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5500 5501 /* Prevent spurious tcp_cwnd_restart() on first data 5502 * packet. 5503 */ 5504 tp->lsndtime = tcp_jiffies32; 5505 5506 if (sock_flag(sk, SOCK_KEEPOPEN)) 5507 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5508 5509 if (!tp->rx_opt.snd_wscale) 5510 __tcp_fast_path_on(tp, tp->snd_wnd); 5511 else 5512 tp->pred_flags = 0; 5513 } 5514 5515 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5516 struct tcp_fastopen_cookie *cookie) 5517 { 5518 struct tcp_sock *tp = tcp_sk(sk); 5519 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5520 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5521 bool syn_drop = false; 5522 5523 if (mss == tp->rx_opt.user_mss) { 5524 struct tcp_options_received opt; 5525 5526 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5527 tcp_clear_options(&opt); 5528 opt.user_mss = opt.mss_clamp = 0; 5529 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5530 mss = opt.mss_clamp; 5531 } 5532 5533 if (!tp->syn_fastopen) { 5534 /* Ignore an unsolicited cookie */ 5535 cookie->len = -1; 5536 } else if (tp->total_retrans) { 5537 /* SYN timed out and the SYN-ACK neither has a cookie nor 5538 * acknowledges data. Presumably the remote received only 5539 * the retransmitted (regular) SYNs: either the original 5540 * SYN-data or the corresponding SYN-ACK was dropped. 5541 */ 5542 syn_drop = (cookie->len < 0 && data); 5543 } else if (cookie->len < 0 && !tp->syn_data) { 5544 /* We requested a cookie but didn't get it. If we did not use 5545 * the (old) exp opt format then try so next time (try_exp=1). 5546 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5547 */ 5548 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5549 } 5550 5551 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5552 5553 if (data) { /* Retransmit unacked data in SYN */ 5554 skb_rbtree_walk_from(data) { 5555 if (__tcp_retransmit_skb(sk, data, 1)) 5556 break; 5557 } 5558 tcp_rearm_rto(sk); 5559 NET_INC_STATS(sock_net(sk), 5560 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5561 return true; 5562 } 5563 tp->syn_data_acked = tp->syn_data; 5564 if (tp->syn_data_acked) 5565 NET_INC_STATS(sock_net(sk), 5566 LINUX_MIB_TCPFASTOPENACTIVE); 5567 5568 tcp_fastopen_add_skb(sk, synack); 5569 5570 return false; 5571 } 5572 5573 static void smc_check_reset_syn(struct tcp_sock *tp) 5574 { 5575 #if IS_ENABLED(CONFIG_SMC) 5576 if (static_branch_unlikely(&tcp_have_smc)) { 5577 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5578 tp->syn_smc = 0; 5579 } 5580 #endif 5581 } 5582 5583 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5584 const struct tcphdr *th) 5585 { 5586 struct inet_connection_sock *icsk = inet_csk(sk); 5587 struct tcp_sock *tp = tcp_sk(sk); 5588 struct tcp_fastopen_cookie foc = { .len = -1 }; 5589 int saved_clamp = tp->rx_opt.mss_clamp; 5590 bool fastopen_fail; 5591 5592 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5593 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5594 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5595 5596 if (th->ack) { 5597 /* rfc793: 5598 * "If the state is SYN-SENT then 5599 * first check the ACK bit 5600 * If the ACK bit is set 5601 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5602 * a reset (unless the RST bit is set, if so drop 5603 * the segment and return)" 5604 */ 5605 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5606 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5607 goto reset_and_undo; 5608 5609 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5610 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5611 tcp_time_stamp(tp))) { 5612 NET_INC_STATS(sock_net(sk), 5613 LINUX_MIB_PAWSACTIVEREJECTED); 5614 goto reset_and_undo; 5615 } 5616 5617 /* Now ACK is acceptable. 5618 * 5619 * "If the RST bit is set 5620 * If the ACK was acceptable then signal the user "error: 5621 * connection reset", drop the segment, enter CLOSED state, 5622 * delete TCB, and return." 5623 */ 5624 5625 if (th->rst) { 5626 tcp_reset(sk); 5627 goto discard; 5628 } 5629 5630 /* rfc793: 5631 * "fifth, if neither of the SYN or RST bits is set then 5632 * drop the segment and return." 5633 * 5634 * See note below! 5635 * --ANK(990513) 5636 */ 5637 if (!th->syn) 5638 goto discard_and_undo; 5639 5640 /* rfc793: 5641 * "If the SYN bit is on ... 5642 * are acceptable then ... 5643 * (our SYN has been ACKed), change the connection 5644 * state to ESTABLISHED..." 5645 */ 5646 5647 tcp_ecn_rcv_synack(tp, th); 5648 5649 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5650 tcp_ack(sk, skb, FLAG_SLOWPATH); 5651 5652 /* Ok.. it's good. Set up sequence numbers and 5653 * move to established. 5654 */ 5655 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5656 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5657 5658 /* RFC1323: The window in SYN & SYN/ACK segments is 5659 * never scaled. 5660 */ 5661 tp->snd_wnd = ntohs(th->window); 5662 5663 if (!tp->rx_opt.wscale_ok) { 5664 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5665 tp->window_clamp = min(tp->window_clamp, 65535U); 5666 } 5667 5668 if (tp->rx_opt.saw_tstamp) { 5669 tp->rx_opt.tstamp_ok = 1; 5670 tp->tcp_header_len = 5671 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5672 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5673 tcp_store_ts_recent(tp); 5674 } else { 5675 tp->tcp_header_len = sizeof(struct tcphdr); 5676 } 5677 5678 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5679 tcp_initialize_rcv_mss(sk); 5680 5681 /* Remember, tcp_poll() does not lock socket! 5682 * Change state from SYN-SENT only after copied_seq 5683 * is initialized. */ 5684 tp->copied_seq = tp->rcv_nxt; 5685 5686 smc_check_reset_syn(tp); 5687 5688 smp_mb(); 5689 5690 tcp_finish_connect(sk, skb); 5691 5692 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5693 tcp_rcv_fastopen_synack(sk, skb, &foc); 5694 5695 if (!sock_flag(sk, SOCK_DEAD)) { 5696 sk->sk_state_change(sk); 5697 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5698 } 5699 if (fastopen_fail) 5700 return -1; 5701 if (sk->sk_write_pending || 5702 icsk->icsk_accept_queue.rskq_defer_accept || 5703 icsk->icsk_ack.pingpong) { 5704 /* Save one ACK. Data will be ready after 5705 * several ticks, if write_pending is set. 5706 * 5707 * It may be deleted, but with this feature tcpdumps 5708 * look so _wonderfully_ clever, that I was not able 5709 * to stand against the temptation 8) --ANK 5710 */ 5711 inet_csk_schedule_ack(sk); 5712 tcp_enter_quickack_mode(sk); 5713 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5714 TCP_DELACK_MAX, TCP_RTO_MAX); 5715 5716 discard: 5717 tcp_drop(sk, skb); 5718 return 0; 5719 } else { 5720 tcp_send_ack(sk); 5721 } 5722 return -1; 5723 } 5724 5725 /* No ACK in the segment */ 5726 5727 if (th->rst) { 5728 /* rfc793: 5729 * "If the RST bit is set 5730 * 5731 * Otherwise (no ACK) drop the segment and return." 5732 */ 5733 5734 goto discard_and_undo; 5735 } 5736 5737 /* PAWS check. */ 5738 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5739 tcp_paws_reject(&tp->rx_opt, 0)) 5740 goto discard_and_undo; 5741 5742 if (th->syn) { 5743 /* We see SYN without ACK. It is attempt of 5744 * simultaneous connect with crossed SYNs. 5745 * Particularly, it can be connect to self. 5746 */ 5747 tcp_set_state(sk, TCP_SYN_RECV); 5748 5749 if (tp->rx_opt.saw_tstamp) { 5750 tp->rx_opt.tstamp_ok = 1; 5751 tcp_store_ts_recent(tp); 5752 tp->tcp_header_len = 5753 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5754 } else { 5755 tp->tcp_header_len = sizeof(struct tcphdr); 5756 } 5757 5758 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5759 tp->copied_seq = tp->rcv_nxt; 5760 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5761 5762 /* RFC1323: The window in SYN & SYN/ACK segments is 5763 * never scaled. 5764 */ 5765 tp->snd_wnd = ntohs(th->window); 5766 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5767 tp->max_window = tp->snd_wnd; 5768 5769 tcp_ecn_rcv_syn(tp, th); 5770 5771 tcp_mtup_init(sk); 5772 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5773 tcp_initialize_rcv_mss(sk); 5774 5775 tcp_send_synack(sk); 5776 #if 0 5777 /* Note, we could accept data and URG from this segment. 5778 * There are no obstacles to make this (except that we must 5779 * either change tcp_recvmsg() to prevent it from returning data 5780 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5781 * 5782 * However, if we ignore data in ACKless segments sometimes, 5783 * we have no reasons to accept it sometimes. 5784 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5785 * is not flawless. So, discard packet for sanity. 5786 * Uncomment this return to process the data. 5787 */ 5788 return -1; 5789 #else 5790 goto discard; 5791 #endif 5792 } 5793 /* "fifth, if neither of the SYN or RST bits is set then 5794 * drop the segment and return." 5795 */ 5796 5797 discard_and_undo: 5798 tcp_clear_options(&tp->rx_opt); 5799 tp->rx_opt.mss_clamp = saved_clamp; 5800 goto discard; 5801 5802 reset_and_undo: 5803 tcp_clear_options(&tp->rx_opt); 5804 tp->rx_opt.mss_clamp = saved_clamp; 5805 return 1; 5806 } 5807 5808 /* 5809 * This function implements the receiving procedure of RFC 793 for 5810 * all states except ESTABLISHED and TIME_WAIT. 5811 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5812 * address independent. 5813 */ 5814 5815 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5816 { 5817 struct tcp_sock *tp = tcp_sk(sk); 5818 struct inet_connection_sock *icsk = inet_csk(sk); 5819 const struct tcphdr *th = tcp_hdr(skb); 5820 struct request_sock *req; 5821 int queued = 0; 5822 bool acceptable; 5823 5824 switch (sk->sk_state) { 5825 case TCP_CLOSE: 5826 goto discard; 5827 5828 case TCP_LISTEN: 5829 if (th->ack) 5830 return 1; 5831 5832 if (th->rst) 5833 goto discard; 5834 5835 if (th->syn) { 5836 if (th->fin) 5837 goto discard; 5838 /* It is possible that we process SYN packets from backlog, 5839 * so we need to make sure to disable BH right there. 5840 */ 5841 local_bh_disable(); 5842 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5843 local_bh_enable(); 5844 5845 if (!acceptable) 5846 return 1; 5847 consume_skb(skb); 5848 return 0; 5849 } 5850 goto discard; 5851 5852 case TCP_SYN_SENT: 5853 tp->rx_opt.saw_tstamp = 0; 5854 tcp_mstamp_refresh(tp); 5855 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5856 if (queued >= 0) 5857 return queued; 5858 5859 /* Do step6 onward by hand. */ 5860 tcp_urg(sk, skb, th); 5861 __kfree_skb(skb); 5862 tcp_data_snd_check(sk); 5863 return 0; 5864 } 5865 5866 tcp_mstamp_refresh(tp); 5867 tp->rx_opt.saw_tstamp = 0; 5868 req = tp->fastopen_rsk; 5869 if (req) { 5870 bool req_stolen; 5871 5872 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5873 sk->sk_state != TCP_FIN_WAIT1); 5874 5875 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 5876 goto discard; 5877 } 5878 5879 if (!th->ack && !th->rst && !th->syn) 5880 goto discard; 5881 5882 if (!tcp_validate_incoming(sk, skb, th, 0)) 5883 return 0; 5884 5885 /* step 5: check the ACK field */ 5886 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5887 FLAG_UPDATE_TS_RECENT | 5888 FLAG_NO_CHALLENGE_ACK) > 0; 5889 5890 if (!acceptable) { 5891 if (sk->sk_state == TCP_SYN_RECV) 5892 return 1; /* send one RST */ 5893 tcp_send_challenge_ack(sk, skb); 5894 goto discard; 5895 } 5896 switch (sk->sk_state) { 5897 case TCP_SYN_RECV: 5898 if (!tp->srtt_us) 5899 tcp_synack_rtt_meas(sk, req); 5900 5901 /* Once we leave TCP_SYN_RECV, we no longer need req 5902 * so release it. 5903 */ 5904 if (req) { 5905 inet_csk(sk)->icsk_retransmits = 0; 5906 reqsk_fastopen_remove(sk, req, false); 5907 /* Re-arm the timer because data may have been sent out. 5908 * This is similar to the regular data transmission case 5909 * when new data has just been ack'ed. 5910 * 5911 * (TFO) - we could try to be more aggressive and 5912 * retransmitting any data sooner based on when they 5913 * are sent out. 5914 */ 5915 tcp_rearm_rto(sk); 5916 } else { 5917 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 5918 tp->copied_seq = tp->rcv_nxt; 5919 } 5920 smp_mb(); 5921 tcp_set_state(sk, TCP_ESTABLISHED); 5922 sk->sk_state_change(sk); 5923 5924 /* Note, that this wakeup is only for marginal crossed SYN case. 5925 * Passively open sockets are not waked up, because 5926 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5927 */ 5928 if (sk->sk_socket) 5929 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5930 5931 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5932 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5933 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5934 5935 if (tp->rx_opt.tstamp_ok) 5936 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5937 5938 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5939 tcp_update_pacing_rate(sk); 5940 5941 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5942 tp->lsndtime = tcp_jiffies32; 5943 5944 tcp_initialize_rcv_mss(sk); 5945 tcp_fast_path_on(tp); 5946 break; 5947 5948 case TCP_FIN_WAIT1: { 5949 int tmo; 5950 5951 /* If we enter the TCP_FIN_WAIT1 state and we are a 5952 * Fast Open socket and this is the first acceptable 5953 * ACK we have received, this would have acknowledged 5954 * our SYNACK so stop the SYNACK timer. 5955 */ 5956 if (req) { 5957 /* We no longer need the request sock. */ 5958 reqsk_fastopen_remove(sk, req, false); 5959 tcp_rearm_rto(sk); 5960 } 5961 if (tp->snd_una != tp->write_seq) 5962 break; 5963 5964 tcp_set_state(sk, TCP_FIN_WAIT2); 5965 sk->sk_shutdown |= SEND_SHUTDOWN; 5966 5967 sk_dst_confirm(sk); 5968 5969 if (!sock_flag(sk, SOCK_DEAD)) { 5970 /* Wake up lingering close() */ 5971 sk->sk_state_change(sk); 5972 break; 5973 } 5974 5975 if (tp->linger2 < 0) { 5976 tcp_done(sk); 5977 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5978 return 1; 5979 } 5980 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5981 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5982 /* Receive out of order FIN after close() */ 5983 if (tp->syn_fastopen && th->fin) 5984 tcp_fastopen_active_disable(sk); 5985 tcp_done(sk); 5986 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5987 return 1; 5988 } 5989 5990 tmo = tcp_fin_time(sk); 5991 if (tmo > TCP_TIMEWAIT_LEN) { 5992 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5993 } else if (th->fin || sock_owned_by_user(sk)) { 5994 /* Bad case. We could lose such FIN otherwise. 5995 * It is not a big problem, but it looks confusing 5996 * and not so rare event. We still can lose it now, 5997 * if it spins in bh_lock_sock(), but it is really 5998 * marginal case. 5999 */ 6000 inet_csk_reset_keepalive_timer(sk, tmo); 6001 } else { 6002 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6003 goto discard; 6004 } 6005 break; 6006 } 6007 6008 case TCP_CLOSING: 6009 if (tp->snd_una == tp->write_seq) { 6010 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6011 goto discard; 6012 } 6013 break; 6014 6015 case TCP_LAST_ACK: 6016 if (tp->snd_una == tp->write_seq) { 6017 tcp_update_metrics(sk); 6018 tcp_done(sk); 6019 goto discard; 6020 } 6021 break; 6022 } 6023 6024 /* step 6: check the URG bit */ 6025 tcp_urg(sk, skb, th); 6026 6027 /* step 7: process the segment text */ 6028 switch (sk->sk_state) { 6029 case TCP_CLOSE_WAIT: 6030 case TCP_CLOSING: 6031 case TCP_LAST_ACK: 6032 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6033 break; 6034 /* fall through */ 6035 case TCP_FIN_WAIT1: 6036 case TCP_FIN_WAIT2: 6037 /* RFC 793 says to queue data in these states, 6038 * RFC 1122 says we MUST send a reset. 6039 * BSD 4.4 also does reset. 6040 */ 6041 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6042 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6043 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6044 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6045 tcp_reset(sk); 6046 return 1; 6047 } 6048 } 6049 /* Fall through */ 6050 case TCP_ESTABLISHED: 6051 tcp_data_queue(sk, skb); 6052 queued = 1; 6053 break; 6054 } 6055 6056 /* tcp_data could move socket to TIME-WAIT */ 6057 if (sk->sk_state != TCP_CLOSE) { 6058 tcp_data_snd_check(sk); 6059 tcp_ack_snd_check(sk); 6060 } 6061 6062 if (!queued) { 6063 discard: 6064 tcp_drop(sk, skb); 6065 } 6066 return 0; 6067 } 6068 EXPORT_SYMBOL(tcp_rcv_state_process); 6069 6070 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6071 { 6072 struct inet_request_sock *ireq = inet_rsk(req); 6073 6074 if (family == AF_INET) 6075 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6076 &ireq->ir_rmt_addr, port); 6077 #if IS_ENABLED(CONFIG_IPV6) 6078 else if (family == AF_INET6) 6079 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6080 &ireq->ir_v6_rmt_addr, port); 6081 #endif 6082 } 6083 6084 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6085 * 6086 * If we receive a SYN packet with these bits set, it means a 6087 * network is playing bad games with TOS bits. In order to 6088 * avoid possible false congestion notifications, we disable 6089 * TCP ECN negotiation. 6090 * 6091 * Exception: tcp_ca wants ECN. This is required for DCTCP 6092 * congestion control: Linux DCTCP asserts ECT on all packets, 6093 * including SYN, which is most optimal solution; however, 6094 * others, such as FreeBSD do not. 6095 */ 6096 static void tcp_ecn_create_request(struct request_sock *req, 6097 const struct sk_buff *skb, 6098 const struct sock *listen_sk, 6099 const struct dst_entry *dst) 6100 { 6101 const struct tcphdr *th = tcp_hdr(skb); 6102 const struct net *net = sock_net(listen_sk); 6103 bool th_ecn = th->ece && th->cwr; 6104 bool ect, ecn_ok; 6105 u32 ecn_ok_dst; 6106 6107 if (!th_ecn) 6108 return; 6109 6110 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6111 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6112 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6113 6114 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6115 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6116 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6117 inet_rsk(req)->ecn_ok = 1; 6118 } 6119 6120 static void tcp_openreq_init(struct request_sock *req, 6121 const struct tcp_options_received *rx_opt, 6122 struct sk_buff *skb, const struct sock *sk) 6123 { 6124 struct inet_request_sock *ireq = inet_rsk(req); 6125 6126 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6127 req->cookie_ts = 0; 6128 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6129 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6130 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6131 tcp_rsk(req)->last_oow_ack_time = 0; 6132 req->mss = rx_opt->mss_clamp; 6133 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6134 ireq->tstamp_ok = rx_opt->tstamp_ok; 6135 ireq->sack_ok = rx_opt->sack_ok; 6136 ireq->snd_wscale = rx_opt->snd_wscale; 6137 ireq->wscale_ok = rx_opt->wscale_ok; 6138 ireq->acked = 0; 6139 ireq->ecn_ok = 0; 6140 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6141 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6142 ireq->ir_mark = inet_request_mark(sk, skb); 6143 #if IS_ENABLED(CONFIG_SMC) 6144 ireq->smc_ok = rx_opt->smc_ok; 6145 #endif 6146 } 6147 6148 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6149 struct sock *sk_listener, 6150 bool attach_listener) 6151 { 6152 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6153 attach_listener); 6154 6155 if (req) { 6156 struct inet_request_sock *ireq = inet_rsk(req); 6157 6158 ireq->ireq_opt = NULL; 6159 #if IS_ENABLED(CONFIG_IPV6) 6160 ireq->pktopts = NULL; 6161 #endif 6162 atomic64_set(&ireq->ir_cookie, 0); 6163 ireq->ireq_state = TCP_NEW_SYN_RECV; 6164 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6165 ireq->ireq_family = sk_listener->sk_family; 6166 } 6167 6168 return req; 6169 } 6170 EXPORT_SYMBOL(inet_reqsk_alloc); 6171 6172 /* 6173 * Return true if a syncookie should be sent 6174 */ 6175 static bool tcp_syn_flood_action(const struct sock *sk, 6176 const struct sk_buff *skb, 6177 const char *proto) 6178 { 6179 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6180 const char *msg = "Dropping request"; 6181 bool want_cookie = false; 6182 struct net *net = sock_net(sk); 6183 6184 #ifdef CONFIG_SYN_COOKIES 6185 if (net->ipv4.sysctl_tcp_syncookies) { 6186 msg = "Sending cookies"; 6187 want_cookie = true; 6188 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6189 } else 6190 #endif 6191 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6192 6193 if (!queue->synflood_warned && 6194 net->ipv4.sysctl_tcp_syncookies != 2 && 6195 xchg(&queue->synflood_warned, 1) == 0) 6196 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6197 proto, ntohs(tcp_hdr(skb)->dest), msg); 6198 6199 return want_cookie; 6200 } 6201 6202 static void tcp_reqsk_record_syn(const struct sock *sk, 6203 struct request_sock *req, 6204 const struct sk_buff *skb) 6205 { 6206 if (tcp_sk(sk)->save_syn) { 6207 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6208 u32 *copy; 6209 6210 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6211 if (copy) { 6212 copy[0] = len; 6213 memcpy(©[1], skb_network_header(skb), len); 6214 req->saved_syn = copy; 6215 } 6216 } 6217 } 6218 6219 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6220 const struct tcp_request_sock_ops *af_ops, 6221 struct sock *sk, struct sk_buff *skb) 6222 { 6223 struct tcp_fastopen_cookie foc = { .len = -1 }; 6224 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6225 struct tcp_options_received tmp_opt; 6226 struct tcp_sock *tp = tcp_sk(sk); 6227 struct net *net = sock_net(sk); 6228 struct sock *fastopen_sk = NULL; 6229 struct request_sock *req; 6230 bool want_cookie = false; 6231 struct dst_entry *dst; 6232 struct flowi fl; 6233 6234 /* TW buckets are converted to open requests without 6235 * limitations, they conserve resources and peer is 6236 * evidently real one. 6237 */ 6238 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6239 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6240 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6241 if (!want_cookie) 6242 goto drop; 6243 } 6244 6245 if (sk_acceptq_is_full(sk)) { 6246 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6247 goto drop; 6248 } 6249 6250 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6251 if (!req) 6252 goto drop; 6253 6254 tcp_rsk(req)->af_specific = af_ops; 6255 tcp_rsk(req)->ts_off = 0; 6256 6257 tcp_clear_options(&tmp_opt); 6258 tmp_opt.mss_clamp = af_ops->mss_clamp; 6259 tmp_opt.user_mss = tp->rx_opt.user_mss; 6260 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6261 want_cookie ? NULL : &foc); 6262 6263 if (want_cookie && !tmp_opt.saw_tstamp) 6264 tcp_clear_options(&tmp_opt); 6265 6266 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6267 tcp_openreq_init(req, &tmp_opt, skb, sk); 6268 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6269 6270 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6271 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6272 6273 af_ops->init_req(req, sk, skb); 6274 6275 if (security_inet_conn_request(sk, skb, req)) 6276 goto drop_and_free; 6277 6278 if (tmp_opt.tstamp_ok) 6279 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6280 6281 dst = af_ops->route_req(sk, &fl, req); 6282 if (!dst) 6283 goto drop_and_free; 6284 6285 if (!want_cookie && !isn) { 6286 /* Kill the following clause, if you dislike this way. */ 6287 if (!net->ipv4.sysctl_tcp_syncookies && 6288 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6289 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6290 !tcp_peer_is_proven(req, dst)) { 6291 /* Without syncookies last quarter of 6292 * backlog is filled with destinations, 6293 * proven to be alive. 6294 * It means that we continue to communicate 6295 * to destinations, already remembered 6296 * to the moment of synflood. 6297 */ 6298 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6299 rsk_ops->family); 6300 goto drop_and_release; 6301 } 6302 6303 isn = af_ops->init_seq(skb); 6304 } 6305 6306 tcp_ecn_create_request(req, skb, sk, dst); 6307 6308 if (want_cookie) { 6309 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6310 req->cookie_ts = tmp_opt.tstamp_ok; 6311 if (!tmp_opt.tstamp_ok) 6312 inet_rsk(req)->ecn_ok = 0; 6313 } 6314 6315 tcp_rsk(req)->snt_isn = isn; 6316 tcp_rsk(req)->txhash = net_tx_rndhash(); 6317 tcp_openreq_init_rwin(req, sk, dst); 6318 if (!want_cookie) { 6319 tcp_reqsk_record_syn(sk, req, skb); 6320 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6321 } 6322 if (fastopen_sk) { 6323 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6324 &foc, TCP_SYNACK_FASTOPEN); 6325 /* Add the child socket directly into the accept queue */ 6326 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6327 sk->sk_data_ready(sk); 6328 bh_unlock_sock(fastopen_sk); 6329 sock_put(fastopen_sk); 6330 } else { 6331 tcp_rsk(req)->tfo_listener = false; 6332 if (!want_cookie) 6333 inet_csk_reqsk_queue_hash_add(sk, req, 6334 tcp_timeout_init((struct sock *)req)); 6335 af_ops->send_synack(sk, dst, &fl, req, &foc, 6336 !want_cookie ? TCP_SYNACK_NORMAL : 6337 TCP_SYNACK_COOKIE); 6338 if (want_cookie) { 6339 reqsk_free(req); 6340 return 0; 6341 } 6342 } 6343 reqsk_put(req); 6344 return 0; 6345 6346 drop_and_release: 6347 dst_release(dst); 6348 drop_and_free: 6349 reqsk_free(req); 6350 drop: 6351 tcp_listendrop(sk); 6352 return 0; 6353 } 6354 EXPORT_SYMBOL(tcp_conn_request); 6355