1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly = 1; 83 int sysctl_tcp_max_reordering __read_mostly = 300; 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 /* rfc5961 challenge ack rate limiting */ 90 int sysctl_tcp_challenge_ack_limit = 1000; 91 92 int sysctl_tcp_stdurg __read_mostly; 93 int sysctl_tcp_rfc1337 __read_mostly; 94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 95 int sysctl_tcp_frto __read_mostly = 2; 96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 97 98 int sysctl_tcp_thin_dupack __read_mostly; 99 100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 101 int sysctl_tcp_early_retrans __read_mostly = 3; 102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 103 104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 110 #define FLAG_ECE 0x40 /* ECE in this ACK */ 111 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 118 119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 123 124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 126 127 #define REXMIT_NONE 0 /* no loss recovery to do */ 128 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 129 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 130 131 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb) 132 { 133 static bool __once __read_mostly; 134 135 if (!__once) { 136 struct net_device *dev; 137 138 __once = true; 139 140 rcu_read_lock(); 141 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 142 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 143 dev ? dev->name : "Unknown driver"); 144 rcu_read_unlock(); 145 } 146 } 147 148 /* Adapt the MSS value used to make delayed ack decision to the 149 * real world. 150 */ 151 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 152 { 153 struct inet_connection_sock *icsk = inet_csk(sk); 154 const unsigned int lss = icsk->icsk_ack.last_seg_size; 155 unsigned int len; 156 157 icsk->icsk_ack.last_seg_size = 0; 158 159 /* skb->len may jitter because of SACKs, even if peer 160 * sends good full-sized frames. 161 */ 162 len = skb_shinfo(skb)->gso_size ? : skb->len; 163 if (len >= icsk->icsk_ack.rcv_mss) { 164 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 165 tcp_sk(sk)->advmss); 166 if (unlikely(icsk->icsk_ack.rcv_mss != len)) 167 tcp_gro_dev_warn(sk, skb); 168 } else { 169 /* Otherwise, we make more careful check taking into account, 170 * that SACKs block is variable. 171 * 172 * "len" is invariant segment length, including TCP header. 173 */ 174 len += skb->data - skb_transport_header(skb); 175 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 176 /* If PSH is not set, packet should be 177 * full sized, provided peer TCP is not badly broken. 178 * This observation (if it is correct 8)) allows 179 * to handle super-low mtu links fairly. 180 */ 181 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 182 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 183 /* Subtract also invariant (if peer is RFC compliant), 184 * tcp header plus fixed timestamp option length. 185 * Resulting "len" is MSS free of SACK jitter. 186 */ 187 len -= tcp_sk(sk)->tcp_header_len; 188 icsk->icsk_ack.last_seg_size = len; 189 if (len == lss) { 190 icsk->icsk_ack.rcv_mss = len; 191 return; 192 } 193 } 194 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 195 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 197 } 198 } 199 200 static void tcp_incr_quickack(struct sock *sk) 201 { 202 struct inet_connection_sock *icsk = inet_csk(sk); 203 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 204 205 if (quickacks == 0) 206 quickacks = 2; 207 if (quickacks > icsk->icsk_ack.quick) 208 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 209 } 210 211 static void tcp_enter_quickack_mode(struct sock *sk) 212 { 213 struct inet_connection_sock *icsk = inet_csk(sk); 214 tcp_incr_quickack(sk); 215 icsk->icsk_ack.pingpong = 0; 216 icsk->icsk_ack.ato = TCP_ATO_MIN; 217 } 218 219 /* Send ACKs quickly, if "quick" count is not exhausted 220 * and the session is not interactive. 221 */ 222 223 static bool tcp_in_quickack_mode(struct sock *sk) 224 { 225 const struct inet_connection_sock *icsk = inet_csk(sk); 226 const struct dst_entry *dst = __sk_dst_get(sk); 227 228 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 229 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 230 } 231 232 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 233 { 234 if (tp->ecn_flags & TCP_ECN_OK) 235 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 236 } 237 238 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 239 { 240 if (tcp_hdr(skb)->cwr) 241 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 242 } 243 244 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 245 { 246 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 247 } 248 249 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 250 { 251 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 252 case INET_ECN_NOT_ECT: 253 /* Funny extension: if ECT is not set on a segment, 254 * and we already seen ECT on a previous segment, 255 * it is probably a retransmit. 256 */ 257 if (tp->ecn_flags & TCP_ECN_SEEN) 258 tcp_enter_quickack_mode((struct sock *)tp); 259 break; 260 case INET_ECN_CE: 261 if (tcp_ca_needs_ecn((struct sock *)tp)) 262 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 263 264 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 265 /* Better not delay acks, sender can have a very low cwnd */ 266 tcp_enter_quickack_mode((struct sock *)tp); 267 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 268 } 269 tp->ecn_flags |= TCP_ECN_SEEN; 270 break; 271 default: 272 if (tcp_ca_needs_ecn((struct sock *)tp)) 273 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 274 tp->ecn_flags |= TCP_ECN_SEEN; 275 break; 276 } 277 } 278 279 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 280 { 281 if (tp->ecn_flags & TCP_ECN_OK) 282 __tcp_ecn_check_ce(tp, skb); 283 } 284 285 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 286 { 287 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 288 tp->ecn_flags &= ~TCP_ECN_OK; 289 } 290 291 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 292 { 293 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 294 tp->ecn_flags &= ~TCP_ECN_OK; 295 } 296 297 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 298 { 299 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 300 return true; 301 return false; 302 } 303 304 /* Buffer size and advertised window tuning. 305 * 306 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 307 */ 308 309 static void tcp_sndbuf_expand(struct sock *sk) 310 { 311 const struct tcp_sock *tp = tcp_sk(sk); 312 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 313 int sndmem, per_mss; 314 u32 nr_segs; 315 316 /* Worst case is non GSO/TSO : each frame consumes one skb 317 * and skb->head is kmalloced using power of two area of memory 318 */ 319 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 320 MAX_TCP_HEADER + 321 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 322 323 per_mss = roundup_pow_of_two(per_mss) + 324 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 325 326 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 327 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 328 329 /* Fast Recovery (RFC 5681 3.2) : 330 * Cubic needs 1.7 factor, rounded to 2 to include 331 * extra cushion (application might react slowly to POLLOUT) 332 */ 333 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 334 sndmem *= nr_segs * per_mss; 335 336 if (sk->sk_sndbuf < sndmem) 337 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 338 } 339 340 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 341 * 342 * All tcp_full_space() is split to two parts: "network" buffer, allocated 343 * forward and advertised in receiver window (tp->rcv_wnd) and 344 * "application buffer", required to isolate scheduling/application 345 * latencies from network. 346 * window_clamp is maximal advertised window. It can be less than 347 * tcp_full_space(), in this case tcp_full_space() - window_clamp 348 * is reserved for "application" buffer. The less window_clamp is 349 * the smoother our behaviour from viewpoint of network, but the lower 350 * throughput and the higher sensitivity of the connection to losses. 8) 351 * 352 * rcv_ssthresh is more strict window_clamp used at "slow start" 353 * phase to predict further behaviour of this connection. 354 * It is used for two goals: 355 * - to enforce header prediction at sender, even when application 356 * requires some significant "application buffer". It is check #1. 357 * - to prevent pruning of receive queue because of misprediction 358 * of receiver window. Check #2. 359 * 360 * The scheme does not work when sender sends good segments opening 361 * window and then starts to feed us spaghetti. But it should work 362 * in common situations. Otherwise, we have to rely on queue collapsing. 363 */ 364 365 /* Slow part of check#2. */ 366 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 /* Optimize this! */ 370 int truesize = tcp_win_from_space(skb->truesize) >> 1; 371 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 372 373 while (tp->rcv_ssthresh <= window) { 374 if (truesize <= skb->len) 375 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 376 377 truesize >>= 1; 378 window >>= 1; 379 } 380 return 0; 381 } 382 383 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 384 { 385 struct tcp_sock *tp = tcp_sk(sk); 386 387 /* Check #1 */ 388 if (tp->rcv_ssthresh < tp->window_clamp && 389 (int)tp->rcv_ssthresh < tcp_space(sk) && 390 !tcp_under_memory_pressure(sk)) { 391 int incr; 392 393 /* Check #2. Increase window, if skb with such overhead 394 * will fit to rcvbuf in future. 395 */ 396 if (tcp_win_from_space(skb->truesize) <= skb->len) 397 incr = 2 * tp->advmss; 398 else 399 incr = __tcp_grow_window(sk, skb); 400 401 if (incr) { 402 incr = max_t(int, incr, 2 * skb->len); 403 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 404 tp->window_clamp); 405 inet_csk(sk)->icsk_ack.quick |= 1; 406 } 407 } 408 } 409 410 /* 3. Tuning rcvbuf, when connection enters established state. */ 411 static void tcp_fixup_rcvbuf(struct sock *sk) 412 { 413 u32 mss = tcp_sk(sk)->advmss; 414 int rcvmem; 415 416 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 417 tcp_default_init_rwnd(mss); 418 419 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 420 * Allow enough cushion so that sender is not limited by our window 421 */ 422 if (sysctl_tcp_moderate_rcvbuf) 423 rcvmem <<= 2; 424 425 if (sk->sk_rcvbuf < rcvmem) 426 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 427 } 428 429 /* 4. Try to fixup all. It is made immediately after connection enters 430 * established state. 431 */ 432 void tcp_init_buffer_space(struct sock *sk) 433 { 434 struct tcp_sock *tp = tcp_sk(sk); 435 int maxwin; 436 437 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 438 tcp_fixup_rcvbuf(sk); 439 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 440 tcp_sndbuf_expand(sk); 441 442 tp->rcvq_space.space = tp->rcv_wnd; 443 tp->rcvq_space.time = tcp_time_stamp; 444 tp->rcvq_space.seq = tp->copied_seq; 445 446 maxwin = tcp_full_space(sk); 447 448 if (tp->window_clamp >= maxwin) { 449 tp->window_clamp = maxwin; 450 451 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 452 tp->window_clamp = max(maxwin - 453 (maxwin >> sysctl_tcp_app_win), 454 4 * tp->advmss); 455 } 456 457 /* Force reservation of one segment. */ 458 if (sysctl_tcp_app_win && 459 tp->window_clamp > 2 * tp->advmss && 460 tp->window_clamp + tp->advmss > maxwin) 461 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 462 463 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 464 tp->snd_cwnd_stamp = tcp_time_stamp; 465 } 466 467 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 468 static void tcp_clamp_window(struct sock *sk) 469 { 470 struct tcp_sock *tp = tcp_sk(sk); 471 struct inet_connection_sock *icsk = inet_csk(sk); 472 473 icsk->icsk_ack.quick = 0; 474 475 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 476 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 477 !tcp_under_memory_pressure(sk) && 478 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 479 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 480 sysctl_tcp_rmem[2]); 481 } 482 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 483 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 484 } 485 486 /* Initialize RCV_MSS value. 487 * RCV_MSS is an our guess about MSS used by the peer. 488 * We haven't any direct information about the MSS. 489 * It's better to underestimate the RCV_MSS rather than overestimate. 490 * Overestimations make us ACKing less frequently than needed. 491 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 492 */ 493 void tcp_initialize_rcv_mss(struct sock *sk) 494 { 495 const struct tcp_sock *tp = tcp_sk(sk); 496 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 497 498 hint = min(hint, tp->rcv_wnd / 2); 499 hint = min(hint, TCP_MSS_DEFAULT); 500 hint = max(hint, TCP_MIN_MSS); 501 502 inet_csk(sk)->icsk_ack.rcv_mss = hint; 503 } 504 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 505 506 /* Receiver "autotuning" code. 507 * 508 * The algorithm for RTT estimation w/o timestamps is based on 509 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 510 * <http://public.lanl.gov/radiant/pubs.html#DRS> 511 * 512 * More detail on this code can be found at 513 * <http://staff.psc.edu/jheffner/>, 514 * though this reference is out of date. A new paper 515 * is pending. 516 */ 517 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 518 { 519 u32 new_sample = tp->rcv_rtt_est.rtt; 520 long m = sample; 521 522 if (m == 0) 523 m = 1; 524 525 if (new_sample != 0) { 526 /* If we sample in larger samples in the non-timestamp 527 * case, we could grossly overestimate the RTT especially 528 * with chatty applications or bulk transfer apps which 529 * are stalled on filesystem I/O. 530 * 531 * Also, since we are only going for a minimum in the 532 * non-timestamp case, we do not smooth things out 533 * else with timestamps disabled convergence takes too 534 * long. 535 */ 536 if (!win_dep) { 537 m -= (new_sample >> 3); 538 new_sample += m; 539 } else { 540 m <<= 3; 541 if (m < new_sample) 542 new_sample = m; 543 } 544 } else { 545 /* No previous measure. */ 546 new_sample = m << 3; 547 } 548 549 if (tp->rcv_rtt_est.rtt != new_sample) 550 tp->rcv_rtt_est.rtt = new_sample; 551 } 552 553 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 554 { 555 if (tp->rcv_rtt_est.time == 0) 556 goto new_measure; 557 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 558 return; 559 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 560 561 new_measure: 562 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 563 tp->rcv_rtt_est.time = tcp_time_stamp; 564 } 565 566 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 567 const struct sk_buff *skb) 568 { 569 struct tcp_sock *tp = tcp_sk(sk); 570 if (tp->rx_opt.rcv_tsecr && 571 (TCP_SKB_CB(skb)->end_seq - 572 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 573 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 574 } 575 576 /* 577 * This function should be called every time data is copied to user space. 578 * It calculates the appropriate TCP receive buffer space. 579 */ 580 void tcp_rcv_space_adjust(struct sock *sk) 581 { 582 struct tcp_sock *tp = tcp_sk(sk); 583 int time; 584 int copied; 585 586 time = tcp_time_stamp - tp->rcvq_space.time; 587 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 588 return; 589 590 /* Number of bytes copied to user in last RTT */ 591 copied = tp->copied_seq - tp->rcvq_space.seq; 592 if (copied <= tp->rcvq_space.space) 593 goto new_measure; 594 595 /* A bit of theory : 596 * copied = bytes received in previous RTT, our base window 597 * To cope with packet losses, we need a 2x factor 598 * To cope with slow start, and sender growing its cwin by 100 % 599 * every RTT, we need a 4x factor, because the ACK we are sending 600 * now is for the next RTT, not the current one : 601 * <prev RTT . ><current RTT .. ><next RTT .... > 602 */ 603 604 if (sysctl_tcp_moderate_rcvbuf && 605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 606 int rcvwin, rcvmem, rcvbuf; 607 608 /* minimal window to cope with packet losses, assuming 609 * steady state. Add some cushion because of small variations. 610 */ 611 rcvwin = (copied << 1) + 16 * tp->advmss; 612 613 /* If rate increased by 25%, 614 * assume slow start, rcvwin = 3 * copied 615 * If rate increased by 50%, 616 * assume sender can use 2x growth, rcvwin = 4 * copied 617 */ 618 if (copied >= 619 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 620 if (copied >= 621 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 622 rcvwin <<= 1; 623 else 624 rcvwin += (rcvwin >> 1); 625 } 626 627 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 628 while (tcp_win_from_space(rcvmem) < tp->advmss) 629 rcvmem += 128; 630 631 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 632 if (rcvbuf > sk->sk_rcvbuf) { 633 sk->sk_rcvbuf = rcvbuf; 634 635 /* Make the window clamp follow along. */ 636 tp->window_clamp = rcvwin; 637 } 638 } 639 tp->rcvq_space.space = copied; 640 641 new_measure: 642 tp->rcvq_space.seq = tp->copied_seq; 643 tp->rcvq_space.time = tcp_time_stamp; 644 } 645 646 /* There is something which you must keep in mind when you analyze the 647 * behavior of the tp->ato delayed ack timeout interval. When a 648 * connection starts up, we want to ack as quickly as possible. The 649 * problem is that "good" TCP's do slow start at the beginning of data 650 * transmission. The means that until we send the first few ACK's the 651 * sender will sit on his end and only queue most of his data, because 652 * he can only send snd_cwnd unacked packets at any given time. For 653 * each ACK we send, he increments snd_cwnd and transmits more of his 654 * queue. -DaveM 655 */ 656 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 657 { 658 struct tcp_sock *tp = tcp_sk(sk); 659 struct inet_connection_sock *icsk = inet_csk(sk); 660 u32 now; 661 662 inet_csk_schedule_ack(sk); 663 664 tcp_measure_rcv_mss(sk, skb); 665 666 tcp_rcv_rtt_measure(tp); 667 668 now = tcp_time_stamp; 669 670 if (!icsk->icsk_ack.ato) { 671 /* The _first_ data packet received, initialize 672 * delayed ACK engine. 673 */ 674 tcp_incr_quickack(sk); 675 icsk->icsk_ack.ato = TCP_ATO_MIN; 676 } else { 677 int m = now - icsk->icsk_ack.lrcvtime; 678 679 if (m <= TCP_ATO_MIN / 2) { 680 /* The fastest case is the first. */ 681 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 682 } else if (m < icsk->icsk_ack.ato) { 683 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 684 if (icsk->icsk_ack.ato > icsk->icsk_rto) 685 icsk->icsk_ack.ato = icsk->icsk_rto; 686 } else if (m > icsk->icsk_rto) { 687 /* Too long gap. Apparently sender failed to 688 * restart window, so that we send ACKs quickly. 689 */ 690 tcp_incr_quickack(sk); 691 sk_mem_reclaim(sk); 692 } 693 } 694 icsk->icsk_ack.lrcvtime = now; 695 696 tcp_ecn_check_ce(tp, skb); 697 698 if (skb->len >= 128) 699 tcp_grow_window(sk, skb); 700 } 701 702 /* Called to compute a smoothed rtt estimate. The data fed to this 703 * routine either comes from timestamps, or from segments that were 704 * known _not_ to have been retransmitted [see Karn/Partridge 705 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 706 * piece by Van Jacobson. 707 * NOTE: the next three routines used to be one big routine. 708 * To save cycles in the RFC 1323 implementation it was better to break 709 * it up into three procedures. -- erics 710 */ 711 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 712 { 713 struct tcp_sock *tp = tcp_sk(sk); 714 long m = mrtt_us; /* RTT */ 715 u32 srtt = tp->srtt_us; 716 717 /* The following amusing code comes from Jacobson's 718 * article in SIGCOMM '88. Note that rtt and mdev 719 * are scaled versions of rtt and mean deviation. 720 * This is designed to be as fast as possible 721 * m stands for "measurement". 722 * 723 * On a 1990 paper the rto value is changed to: 724 * RTO = rtt + 4 * mdev 725 * 726 * Funny. This algorithm seems to be very broken. 727 * These formulae increase RTO, when it should be decreased, increase 728 * too slowly, when it should be increased quickly, decrease too quickly 729 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 730 * does not matter how to _calculate_ it. Seems, it was trap 731 * that VJ failed to avoid. 8) 732 */ 733 if (srtt != 0) { 734 m -= (srtt >> 3); /* m is now error in rtt est */ 735 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 736 if (m < 0) { 737 m = -m; /* m is now abs(error) */ 738 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 739 /* This is similar to one of Eifel findings. 740 * Eifel blocks mdev updates when rtt decreases. 741 * This solution is a bit different: we use finer gain 742 * for mdev in this case (alpha*beta). 743 * Like Eifel it also prevents growth of rto, 744 * but also it limits too fast rto decreases, 745 * happening in pure Eifel. 746 */ 747 if (m > 0) 748 m >>= 3; 749 } else { 750 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 751 } 752 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 753 if (tp->mdev_us > tp->mdev_max_us) { 754 tp->mdev_max_us = tp->mdev_us; 755 if (tp->mdev_max_us > tp->rttvar_us) 756 tp->rttvar_us = tp->mdev_max_us; 757 } 758 if (after(tp->snd_una, tp->rtt_seq)) { 759 if (tp->mdev_max_us < tp->rttvar_us) 760 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 761 tp->rtt_seq = tp->snd_nxt; 762 tp->mdev_max_us = tcp_rto_min_us(sk); 763 } 764 } else { 765 /* no previous measure. */ 766 srtt = m << 3; /* take the measured time to be rtt */ 767 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 768 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 769 tp->mdev_max_us = tp->rttvar_us; 770 tp->rtt_seq = tp->snd_nxt; 771 } 772 tp->srtt_us = max(1U, srtt); 773 } 774 775 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 776 * Note: TCP stack does not yet implement pacing. 777 * FQ packet scheduler can be used to implement cheap but effective 778 * TCP pacing, to smooth the burst on large writes when packets 779 * in flight is significantly lower than cwnd (or rwin) 780 */ 781 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 782 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 783 784 static void tcp_update_pacing_rate(struct sock *sk) 785 { 786 const struct tcp_sock *tp = tcp_sk(sk); 787 u64 rate; 788 789 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 790 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 791 792 /* current rate is (cwnd * mss) / srtt 793 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 794 * In Congestion Avoidance phase, set it to 120 % the current rate. 795 * 796 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 797 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 798 * end of slow start and should slow down. 799 */ 800 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 801 rate *= sysctl_tcp_pacing_ss_ratio; 802 else 803 rate *= sysctl_tcp_pacing_ca_ratio; 804 805 rate *= max(tp->snd_cwnd, tp->packets_out); 806 807 if (likely(tp->srtt_us)) 808 do_div(rate, tp->srtt_us); 809 810 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 811 * without any lock. We want to make sure compiler wont store 812 * intermediate values in this location. 813 */ 814 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 815 sk->sk_max_pacing_rate); 816 } 817 818 /* Calculate rto without backoff. This is the second half of Van Jacobson's 819 * routine referred to above. 820 */ 821 static void tcp_set_rto(struct sock *sk) 822 { 823 const struct tcp_sock *tp = tcp_sk(sk); 824 /* Old crap is replaced with new one. 8) 825 * 826 * More seriously: 827 * 1. If rtt variance happened to be less 50msec, it is hallucination. 828 * It cannot be less due to utterly erratic ACK generation made 829 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 830 * to do with delayed acks, because at cwnd>2 true delack timeout 831 * is invisible. Actually, Linux-2.4 also generates erratic 832 * ACKs in some circumstances. 833 */ 834 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 835 836 /* 2. Fixups made earlier cannot be right. 837 * If we do not estimate RTO correctly without them, 838 * all the algo is pure shit and should be replaced 839 * with correct one. It is exactly, which we pretend to do. 840 */ 841 842 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 843 * guarantees that rto is higher. 844 */ 845 tcp_bound_rto(sk); 846 } 847 848 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 849 { 850 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 851 852 if (!cwnd) 853 cwnd = TCP_INIT_CWND; 854 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 855 } 856 857 /* 858 * Packet counting of FACK is based on in-order assumptions, therefore TCP 859 * disables it when reordering is detected 860 */ 861 void tcp_disable_fack(struct tcp_sock *tp) 862 { 863 /* RFC3517 uses different metric in lost marker => reset on change */ 864 if (tcp_is_fack(tp)) 865 tp->lost_skb_hint = NULL; 866 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 867 } 868 869 /* Take a notice that peer is sending D-SACKs */ 870 static void tcp_dsack_seen(struct tcp_sock *tp) 871 { 872 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 873 } 874 875 static void tcp_update_reordering(struct sock *sk, const int metric, 876 const int ts) 877 { 878 struct tcp_sock *tp = tcp_sk(sk); 879 if (metric > tp->reordering) { 880 int mib_idx; 881 882 tp->reordering = min(sysctl_tcp_max_reordering, metric); 883 884 /* This exciting event is worth to be remembered. 8) */ 885 if (ts) 886 mib_idx = LINUX_MIB_TCPTSREORDER; 887 else if (tcp_is_reno(tp)) 888 mib_idx = LINUX_MIB_TCPRENOREORDER; 889 else if (tcp_is_fack(tp)) 890 mib_idx = LINUX_MIB_TCPFACKREORDER; 891 else 892 mib_idx = LINUX_MIB_TCPSACKREORDER; 893 894 NET_INC_STATS(sock_net(sk), mib_idx); 895 #if FASTRETRANS_DEBUG > 1 896 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 897 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 898 tp->reordering, 899 tp->fackets_out, 900 tp->sacked_out, 901 tp->undo_marker ? tp->undo_retrans : 0); 902 #endif 903 tcp_disable_fack(tp); 904 } 905 906 if (metric > 0) 907 tcp_disable_early_retrans(tp); 908 tp->rack.reord = 1; 909 } 910 911 /* This must be called before lost_out is incremented */ 912 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 913 { 914 if (!tp->retransmit_skb_hint || 915 before(TCP_SKB_CB(skb)->seq, 916 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 917 tp->retransmit_skb_hint = skb; 918 919 if (!tp->lost_out || 920 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 921 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 922 } 923 924 /* Sum the number of packets on the wire we have marked as lost. 925 * There are two cases we care about here: 926 * a) Packet hasn't been marked lost (nor retransmitted), 927 * and this is the first loss. 928 * b) Packet has been marked both lost and retransmitted, 929 * and this means we think it was lost again. 930 */ 931 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 932 { 933 __u8 sacked = TCP_SKB_CB(skb)->sacked; 934 935 if (!(sacked & TCPCB_LOST) || 936 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 937 tp->lost += tcp_skb_pcount(skb); 938 } 939 940 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 941 { 942 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 943 tcp_verify_retransmit_hint(tp, skb); 944 945 tp->lost_out += tcp_skb_pcount(skb); 946 tcp_sum_lost(tp, skb); 947 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 948 } 949 } 950 951 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 952 { 953 tcp_verify_retransmit_hint(tp, skb); 954 955 tcp_sum_lost(tp, skb); 956 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 957 tp->lost_out += tcp_skb_pcount(skb); 958 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 959 } 960 } 961 962 /* This procedure tags the retransmission queue when SACKs arrive. 963 * 964 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 965 * Packets in queue with these bits set are counted in variables 966 * sacked_out, retrans_out and lost_out, correspondingly. 967 * 968 * Valid combinations are: 969 * Tag InFlight Description 970 * 0 1 - orig segment is in flight. 971 * S 0 - nothing flies, orig reached receiver. 972 * L 0 - nothing flies, orig lost by net. 973 * R 2 - both orig and retransmit are in flight. 974 * L|R 1 - orig is lost, retransmit is in flight. 975 * S|R 1 - orig reached receiver, retrans is still in flight. 976 * (L|S|R is logically valid, it could occur when L|R is sacked, 977 * but it is equivalent to plain S and code short-curcuits it to S. 978 * L|S is logically invalid, it would mean -1 packet in flight 8)) 979 * 980 * These 6 states form finite state machine, controlled by the following events: 981 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 982 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 983 * 3. Loss detection event of two flavors: 984 * A. Scoreboard estimator decided the packet is lost. 985 * A'. Reno "three dupacks" marks head of queue lost. 986 * A''. Its FACK modification, head until snd.fack is lost. 987 * B. SACK arrives sacking SND.NXT at the moment, when the 988 * segment was retransmitted. 989 * 4. D-SACK added new rule: D-SACK changes any tag to S. 990 * 991 * It is pleasant to note, that state diagram turns out to be commutative, 992 * so that we are allowed not to be bothered by order of our actions, 993 * when multiple events arrive simultaneously. (see the function below). 994 * 995 * Reordering detection. 996 * -------------------- 997 * Reordering metric is maximal distance, which a packet can be displaced 998 * in packet stream. With SACKs we can estimate it: 999 * 1000 * 1. SACK fills old hole and the corresponding segment was not 1001 * ever retransmitted -> reordering. Alas, we cannot use it 1002 * when segment was retransmitted. 1003 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1004 * for retransmitted and already SACKed segment -> reordering.. 1005 * Both of these heuristics are not used in Loss state, when we cannot 1006 * account for retransmits accurately. 1007 * 1008 * SACK block validation. 1009 * ---------------------- 1010 * 1011 * SACK block range validation checks that the received SACK block fits to 1012 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1013 * Note that SND.UNA is not included to the range though being valid because 1014 * it means that the receiver is rather inconsistent with itself reporting 1015 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1016 * perfectly valid, however, in light of RFC2018 which explicitly states 1017 * that "SACK block MUST reflect the newest segment. Even if the newest 1018 * segment is going to be discarded ...", not that it looks very clever 1019 * in case of head skb. Due to potentional receiver driven attacks, we 1020 * choose to avoid immediate execution of a walk in write queue due to 1021 * reneging and defer head skb's loss recovery to standard loss recovery 1022 * procedure that will eventually trigger (nothing forbids us doing this). 1023 * 1024 * Implements also blockage to start_seq wrap-around. Problem lies in the 1025 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1026 * there's no guarantee that it will be before snd_nxt (n). The problem 1027 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1028 * wrap (s_w): 1029 * 1030 * <- outs wnd -> <- wrapzone -> 1031 * u e n u_w e_w s n_w 1032 * | | | | | | | 1033 * |<------------+------+----- TCP seqno space --------------+---------->| 1034 * ...-- <2^31 ->| |<--------... 1035 * ...---- >2^31 ------>| |<--------... 1036 * 1037 * Current code wouldn't be vulnerable but it's better still to discard such 1038 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1039 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1040 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1041 * equal to the ideal case (infinite seqno space without wrap caused issues). 1042 * 1043 * With D-SACK the lower bound is extended to cover sequence space below 1044 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1045 * again, D-SACK block must not to go across snd_una (for the same reason as 1046 * for the normal SACK blocks, explained above). But there all simplicity 1047 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1048 * fully below undo_marker they do not affect behavior in anyway and can 1049 * therefore be safely ignored. In rare cases (which are more or less 1050 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1051 * fragmentation and packet reordering past skb's retransmission. To consider 1052 * them correctly, the acceptable range must be extended even more though 1053 * the exact amount is rather hard to quantify. However, tp->max_window can 1054 * be used as an exaggerated estimate. 1055 */ 1056 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1057 u32 start_seq, u32 end_seq) 1058 { 1059 /* Too far in future, or reversed (interpretation is ambiguous) */ 1060 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1061 return false; 1062 1063 /* Nasty start_seq wrap-around check (see comments above) */ 1064 if (!before(start_seq, tp->snd_nxt)) 1065 return false; 1066 1067 /* In outstanding window? ...This is valid exit for D-SACKs too. 1068 * start_seq == snd_una is non-sensical (see comments above) 1069 */ 1070 if (after(start_seq, tp->snd_una)) 1071 return true; 1072 1073 if (!is_dsack || !tp->undo_marker) 1074 return false; 1075 1076 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1077 if (after(end_seq, tp->snd_una)) 1078 return false; 1079 1080 if (!before(start_seq, tp->undo_marker)) 1081 return true; 1082 1083 /* Too old */ 1084 if (!after(end_seq, tp->undo_marker)) 1085 return false; 1086 1087 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1088 * start_seq < undo_marker and end_seq >= undo_marker. 1089 */ 1090 return !before(start_seq, end_seq - tp->max_window); 1091 } 1092 1093 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1094 struct tcp_sack_block_wire *sp, int num_sacks, 1095 u32 prior_snd_una) 1096 { 1097 struct tcp_sock *tp = tcp_sk(sk); 1098 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1099 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1100 bool dup_sack = false; 1101 1102 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1103 dup_sack = true; 1104 tcp_dsack_seen(tp); 1105 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1106 } else if (num_sacks > 1) { 1107 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1108 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1109 1110 if (!after(end_seq_0, end_seq_1) && 1111 !before(start_seq_0, start_seq_1)) { 1112 dup_sack = true; 1113 tcp_dsack_seen(tp); 1114 NET_INC_STATS(sock_net(sk), 1115 LINUX_MIB_TCPDSACKOFORECV); 1116 } 1117 } 1118 1119 /* D-SACK for already forgotten data... Do dumb counting. */ 1120 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1121 !after(end_seq_0, prior_snd_una) && 1122 after(end_seq_0, tp->undo_marker)) 1123 tp->undo_retrans--; 1124 1125 return dup_sack; 1126 } 1127 1128 struct tcp_sacktag_state { 1129 int reord; 1130 int fack_count; 1131 /* Timestamps for earliest and latest never-retransmitted segment 1132 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1133 * but congestion control should still get an accurate delay signal. 1134 */ 1135 struct skb_mstamp first_sackt; 1136 struct skb_mstamp last_sackt; 1137 struct rate_sample *rate; 1138 int flag; 1139 }; 1140 1141 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1142 * the incoming SACK may not exactly match but we can find smaller MSS 1143 * aligned portion of it that matches. Therefore we might need to fragment 1144 * which may fail and creates some hassle (caller must handle error case 1145 * returns). 1146 * 1147 * FIXME: this could be merged to shift decision code 1148 */ 1149 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1150 u32 start_seq, u32 end_seq) 1151 { 1152 int err; 1153 bool in_sack; 1154 unsigned int pkt_len; 1155 unsigned int mss; 1156 1157 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1158 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1159 1160 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1161 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1162 mss = tcp_skb_mss(skb); 1163 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1164 1165 if (!in_sack) { 1166 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1167 if (pkt_len < mss) 1168 pkt_len = mss; 1169 } else { 1170 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1171 if (pkt_len < mss) 1172 return -EINVAL; 1173 } 1174 1175 /* Round if necessary so that SACKs cover only full MSSes 1176 * and/or the remaining small portion (if present) 1177 */ 1178 if (pkt_len > mss) { 1179 unsigned int new_len = (pkt_len / mss) * mss; 1180 if (!in_sack && new_len < pkt_len) { 1181 new_len += mss; 1182 if (new_len >= skb->len) 1183 return 0; 1184 } 1185 pkt_len = new_len; 1186 } 1187 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1188 if (err < 0) 1189 return err; 1190 } 1191 1192 return in_sack; 1193 } 1194 1195 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1196 static u8 tcp_sacktag_one(struct sock *sk, 1197 struct tcp_sacktag_state *state, u8 sacked, 1198 u32 start_seq, u32 end_seq, 1199 int dup_sack, int pcount, 1200 const struct skb_mstamp *xmit_time) 1201 { 1202 struct tcp_sock *tp = tcp_sk(sk); 1203 int fack_count = state->fack_count; 1204 1205 /* Account D-SACK for retransmitted packet. */ 1206 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1207 if (tp->undo_marker && tp->undo_retrans > 0 && 1208 after(end_seq, tp->undo_marker)) 1209 tp->undo_retrans--; 1210 if (sacked & TCPCB_SACKED_ACKED) 1211 state->reord = min(fack_count, state->reord); 1212 } 1213 1214 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1215 if (!after(end_seq, tp->snd_una)) 1216 return sacked; 1217 1218 if (!(sacked & TCPCB_SACKED_ACKED)) { 1219 tcp_rack_advance(tp, xmit_time, sacked); 1220 1221 if (sacked & TCPCB_SACKED_RETRANS) { 1222 /* If the segment is not tagged as lost, 1223 * we do not clear RETRANS, believing 1224 * that retransmission is still in flight. 1225 */ 1226 if (sacked & TCPCB_LOST) { 1227 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1228 tp->lost_out -= pcount; 1229 tp->retrans_out -= pcount; 1230 } 1231 } else { 1232 if (!(sacked & TCPCB_RETRANS)) { 1233 /* New sack for not retransmitted frame, 1234 * which was in hole. It is reordering. 1235 */ 1236 if (before(start_seq, 1237 tcp_highest_sack_seq(tp))) 1238 state->reord = min(fack_count, 1239 state->reord); 1240 if (!after(end_seq, tp->high_seq)) 1241 state->flag |= FLAG_ORIG_SACK_ACKED; 1242 if (state->first_sackt.v64 == 0) 1243 state->first_sackt = *xmit_time; 1244 state->last_sackt = *xmit_time; 1245 } 1246 1247 if (sacked & TCPCB_LOST) { 1248 sacked &= ~TCPCB_LOST; 1249 tp->lost_out -= pcount; 1250 } 1251 } 1252 1253 sacked |= TCPCB_SACKED_ACKED; 1254 state->flag |= FLAG_DATA_SACKED; 1255 tp->sacked_out += pcount; 1256 tp->delivered += pcount; /* Out-of-order packets delivered */ 1257 1258 fack_count += pcount; 1259 1260 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1261 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1262 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1263 tp->lost_cnt_hint += pcount; 1264 1265 if (fack_count > tp->fackets_out) 1266 tp->fackets_out = fack_count; 1267 } 1268 1269 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1270 * frames and clear it. undo_retrans is decreased above, L|R frames 1271 * are accounted above as well. 1272 */ 1273 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1274 sacked &= ~TCPCB_SACKED_RETRANS; 1275 tp->retrans_out -= pcount; 1276 } 1277 1278 return sacked; 1279 } 1280 1281 /* Shift newly-SACKed bytes from this skb to the immediately previous 1282 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1283 */ 1284 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1285 struct tcp_sacktag_state *state, 1286 unsigned int pcount, int shifted, int mss, 1287 bool dup_sack) 1288 { 1289 struct tcp_sock *tp = tcp_sk(sk); 1290 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1291 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1292 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1293 1294 BUG_ON(!pcount); 1295 1296 /* Adjust counters and hints for the newly sacked sequence 1297 * range but discard the return value since prev is already 1298 * marked. We must tag the range first because the seq 1299 * advancement below implicitly advances 1300 * tcp_highest_sack_seq() when skb is highest_sack. 1301 */ 1302 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1303 start_seq, end_seq, dup_sack, pcount, 1304 &skb->skb_mstamp); 1305 tcp_rate_skb_delivered(sk, skb, state->rate); 1306 1307 if (skb == tp->lost_skb_hint) 1308 tp->lost_cnt_hint += pcount; 1309 1310 TCP_SKB_CB(prev)->end_seq += shifted; 1311 TCP_SKB_CB(skb)->seq += shifted; 1312 1313 tcp_skb_pcount_add(prev, pcount); 1314 BUG_ON(tcp_skb_pcount(skb) < pcount); 1315 tcp_skb_pcount_add(skb, -pcount); 1316 1317 /* When we're adding to gso_segs == 1, gso_size will be zero, 1318 * in theory this shouldn't be necessary but as long as DSACK 1319 * code can come after this skb later on it's better to keep 1320 * setting gso_size to something. 1321 */ 1322 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1323 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1324 1325 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1326 if (tcp_skb_pcount(skb) <= 1) 1327 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1328 1329 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1330 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1331 1332 if (skb->len > 0) { 1333 BUG_ON(!tcp_skb_pcount(skb)); 1334 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1335 return false; 1336 } 1337 1338 /* Whole SKB was eaten :-) */ 1339 1340 if (skb == tp->retransmit_skb_hint) 1341 tp->retransmit_skb_hint = prev; 1342 if (skb == tp->lost_skb_hint) { 1343 tp->lost_skb_hint = prev; 1344 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1345 } 1346 1347 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1348 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1349 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1350 TCP_SKB_CB(prev)->end_seq++; 1351 1352 if (skb == tcp_highest_sack(sk)) 1353 tcp_advance_highest_sack(sk, skb); 1354 1355 tcp_skb_collapse_tstamp(prev, skb); 1356 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64)) 1357 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0; 1358 1359 tcp_unlink_write_queue(skb, sk); 1360 sk_wmem_free_skb(sk, skb); 1361 1362 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1363 1364 return true; 1365 } 1366 1367 /* I wish gso_size would have a bit more sane initialization than 1368 * something-or-zero which complicates things 1369 */ 1370 static int tcp_skb_seglen(const struct sk_buff *skb) 1371 { 1372 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1373 } 1374 1375 /* Shifting pages past head area doesn't work */ 1376 static int skb_can_shift(const struct sk_buff *skb) 1377 { 1378 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1379 } 1380 1381 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1382 * skb. 1383 */ 1384 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1385 struct tcp_sacktag_state *state, 1386 u32 start_seq, u32 end_seq, 1387 bool dup_sack) 1388 { 1389 struct tcp_sock *tp = tcp_sk(sk); 1390 struct sk_buff *prev; 1391 int mss; 1392 int pcount = 0; 1393 int len; 1394 int in_sack; 1395 1396 if (!sk_can_gso(sk)) 1397 goto fallback; 1398 1399 /* Normally R but no L won't result in plain S */ 1400 if (!dup_sack && 1401 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1402 goto fallback; 1403 if (!skb_can_shift(skb)) 1404 goto fallback; 1405 /* This frame is about to be dropped (was ACKed). */ 1406 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1407 goto fallback; 1408 1409 /* Can only happen with delayed DSACK + discard craziness */ 1410 if (unlikely(skb == tcp_write_queue_head(sk))) 1411 goto fallback; 1412 prev = tcp_write_queue_prev(sk, skb); 1413 1414 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1415 goto fallback; 1416 1417 if (!tcp_skb_can_collapse_to(prev)) 1418 goto fallback; 1419 1420 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1421 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1422 1423 if (in_sack) { 1424 len = skb->len; 1425 pcount = tcp_skb_pcount(skb); 1426 mss = tcp_skb_seglen(skb); 1427 1428 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1429 * drop this restriction as unnecessary 1430 */ 1431 if (mss != tcp_skb_seglen(prev)) 1432 goto fallback; 1433 } else { 1434 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1435 goto noop; 1436 /* CHECKME: This is non-MSS split case only?, this will 1437 * cause skipped skbs due to advancing loop btw, original 1438 * has that feature too 1439 */ 1440 if (tcp_skb_pcount(skb) <= 1) 1441 goto noop; 1442 1443 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1444 if (!in_sack) { 1445 /* TODO: head merge to next could be attempted here 1446 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1447 * though it might not be worth of the additional hassle 1448 * 1449 * ...we can probably just fallback to what was done 1450 * previously. We could try merging non-SACKed ones 1451 * as well but it probably isn't going to buy off 1452 * because later SACKs might again split them, and 1453 * it would make skb timestamp tracking considerably 1454 * harder problem. 1455 */ 1456 goto fallback; 1457 } 1458 1459 len = end_seq - TCP_SKB_CB(skb)->seq; 1460 BUG_ON(len < 0); 1461 BUG_ON(len > skb->len); 1462 1463 /* MSS boundaries should be honoured or else pcount will 1464 * severely break even though it makes things bit trickier. 1465 * Optimize common case to avoid most of the divides 1466 */ 1467 mss = tcp_skb_mss(skb); 1468 1469 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1470 * drop this restriction as unnecessary 1471 */ 1472 if (mss != tcp_skb_seglen(prev)) 1473 goto fallback; 1474 1475 if (len == mss) { 1476 pcount = 1; 1477 } else if (len < mss) { 1478 goto noop; 1479 } else { 1480 pcount = len / mss; 1481 len = pcount * mss; 1482 } 1483 } 1484 1485 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1486 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1487 goto fallback; 1488 1489 if (!skb_shift(prev, skb, len)) 1490 goto fallback; 1491 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1492 goto out; 1493 1494 /* Hole filled allows collapsing with the next as well, this is very 1495 * useful when hole on every nth skb pattern happens 1496 */ 1497 if (prev == tcp_write_queue_tail(sk)) 1498 goto out; 1499 skb = tcp_write_queue_next(sk, prev); 1500 1501 if (!skb_can_shift(skb) || 1502 (skb == tcp_send_head(sk)) || 1503 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1504 (mss != tcp_skb_seglen(skb))) 1505 goto out; 1506 1507 len = skb->len; 1508 if (skb_shift(prev, skb, len)) { 1509 pcount += tcp_skb_pcount(skb); 1510 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1511 } 1512 1513 out: 1514 state->fack_count += pcount; 1515 return prev; 1516 1517 noop: 1518 return skb; 1519 1520 fallback: 1521 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1522 return NULL; 1523 } 1524 1525 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1526 struct tcp_sack_block *next_dup, 1527 struct tcp_sacktag_state *state, 1528 u32 start_seq, u32 end_seq, 1529 bool dup_sack_in) 1530 { 1531 struct tcp_sock *tp = tcp_sk(sk); 1532 struct sk_buff *tmp; 1533 1534 tcp_for_write_queue_from(skb, sk) { 1535 int in_sack = 0; 1536 bool dup_sack = dup_sack_in; 1537 1538 if (skb == tcp_send_head(sk)) 1539 break; 1540 1541 /* queue is in-order => we can short-circuit the walk early */ 1542 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1543 break; 1544 1545 if (next_dup && 1546 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1547 in_sack = tcp_match_skb_to_sack(sk, skb, 1548 next_dup->start_seq, 1549 next_dup->end_seq); 1550 if (in_sack > 0) 1551 dup_sack = true; 1552 } 1553 1554 /* skb reference here is a bit tricky to get right, since 1555 * shifting can eat and free both this skb and the next, 1556 * so not even _safe variant of the loop is enough. 1557 */ 1558 if (in_sack <= 0) { 1559 tmp = tcp_shift_skb_data(sk, skb, state, 1560 start_seq, end_seq, dup_sack); 1561 if (tmp) { 1562 if (tmp != skb) { 1563 skb = tmp; 1564 continue; 1565 } 1566 1567 in_sack = 0; 1568 } else { 1569 in_sack = tcp_match_skb_to_sack(sk, skb, 1570 start_seq, 1571 end_seq); 1572 } 1573 } 1574 1575 if (unlikely(in_sack < 0)) 1576 break; 1577 1578 if (in_sack) { 1579 TCP_SKB_CB(skb)->sacked = 1580 tcp_sacktag_one(sk, 1581 state, 1582 TCP_SKB_CB(skb)->sacked, 1583 TCP_SKB_CB(skb)->seq, 1584 TCP_SKB_CB(skb)->end_seq, 1585 dup_sack, 1586 tcp_skb_pcount(skb), 1587 &skb->skb_mstamp); 1588 tcp_rate_skb_delivered(sk, skb, state->rate); 1589 1590 if (!before(TCP_SKB_CB(skb)->seq, 1591 tcp_highest_sack_seq(tp))) 1592 tcp_advance_highest_sack(sk, skb); 1593 } 1594 1595 state->fack_count += tcp_skb_pcount(skb); 1596 } 1597 return skb; 1598 } 1599 1600 /* Avoid all extra work that is being done by sacktag while walking in 1601 * a normal way 1602 */ 1603 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1604 struct tcp_sacktag_state *state, 1605 u32 skip_to_seq) 1606 { 1607 tcp_for_write_queue_from(skb, sk) { 1608 if (skb == tcp_send_head(sk)) 1609 break; 1610 1611 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1612 break; 1613 1614 state->fack_count += tcp_skb_pcount(skb); 1615 } 1616 return skb; 1617 } 1618 1619 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1620 struct sock *sk, 1621 struct tcp_sack_block *next_dup, 1622 struct tcp_sacktag_state *state, 1623 u32 skip_to_seq) 1624 { 1625 if (!next_dup) 1626 return skb; 1627 1628 if (before(next_dup->start_seq, skip_to_seq)) { 1629 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1630 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1631 next_dup->start_seq, next_dup->end_seq, 1632 1); 1633 } 1634 1635 return skb; 1636 } 1637 1638 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1639 { 1640 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1641 } 1642 1643 static int 1644 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1645 u32 prior_snd_una, struct tcp_sacktag_state *state) 1646 { 1647 struct tcp_sock *tp = tcp_sk(sk); 1648 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1649 TCP_SKB_CB(ack_skb)->sacked); 1650 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1651 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1652 struct tcp_sack_block *cache; 1653 struct sk_buff *skb; 1654 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1655 int used_sacks; 1656 bool found_dup_sack = false; 1657 int i, j; 1658 int first_sack_index; 1659 1660 state->flag = 0; 1661 state->reord = tp->packets_out; 1662 1663 if (!tp->sacked_out) { 1664 if (WARN_ON(tp->fackets_out)) 1665 tp->fackets_out = 0; 1666 tcp_highest_sack_reset(sk); 1667 } 1668 1669 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1670 num_sacks, prior_snd_una); 1671 if (found_dup_sack) { 1672 state->flag |= FLAG_DSACKING_ACK; 1673 tp->delivered++; /* A spurious retransmission is delivered */ 1674 } 1675 1676 /* Eliminate too old ACKs, but take into 1677 * account more or less fresh ones, they can 1678 * contain valid SACK info. 1679 */ 1680 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1681 return 0; 1682 1683 if (!tp->packets_out) 1684 goto out; 1685 1686 used_sacks = 0; 1687 first_sack_index = 0; 1688 for (i = 0; i < num_sacks; i++) { 1689 bool dup_sack = !i && found_dup_sack; 1690 1691 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1692 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1693 1694 if (!tcp_is_sackblock_valid(tp, dup_sack, 1695 sp[used_sacks].start_seq, 1696 sp[used_sacks].end_seq)) { 1697 int mib_idx; 1698 1699 if (dup_sack) { 1700 if (!tp->undo_marker) 1701 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1702 else 1703 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1704 } else { 1705 /* Don't count olds caused by ACK reordering */ 1706 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1707 !after(sp[used_sacks].end_seq, tp->snd_una)) 1708 continue; 1709 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1710 } 1711 1712 NET_INC_STATS(sock_net(sk), mib_idx); 1713 if (i == 0) 1714 first_sack_index = -1; 1715 continue; 1716 } 1717 1718 /* Ignore very old stuff early */ 1719 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1720 continue; 1721 1722 used_sacks++; 1723 } 1724 1725 /* order SACK blocks to allow in order walk of the retrans queue */ 1726 for (i = used_sacks - 1; i > 0; i--) { 1727 for (j = 0; j < i; j++) { 1728 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1729 swap(sp[j], sp[j + 1]); 1730 1731 /* Track where the first SACK block goes to */ 1732 if (j == first_sack_index) 1733 first_sack_index = j + 1; 1734 } 1735 } 1736 } 1737 1738 skb = tcp_write_queue_head(sk); 1739 state->fack_count = 0; 1740 i = 0; 1741 1742 if (!tp->sacked_out) { 1743 /* It's already past, so skip checking against it */ 1744 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1745 } else { 1746 cache = tp->recv_sack_cache; 1747 /* Skip empty blocks in at head of the cache */ 1748 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1749 !cache->end_seq) 1750 cache++; 1751 } 1752 1753 while (i < used_sacks) { 1754 u32 start_seq = sp[i].start_seq; 1755 u32 end_seq = sp[i].end_seq; 1756 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1757 struct tcp_sack_block *next_dup = NULL; 1758 1759 if (found_dup_sack && ((i + 1) == first_sack_index)) 1760 next_dup = &sp[i + 1]; 1761 1762 /* Skip too early cached blocks */ 1763 while (tcp_sack_cache_ok(tp, cache) && 1764 !before(start_seq, cache->end_seq)) 1765 cache++; 1766 1767 /* Can skip some work by looking recv_sack_cache? */ 1768 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1769 after(end_seq, cache->start_seq)) { 1770 1771 /* Head todo? */ 1772 if (before(start_seq, cache->start_seq)) { 1773 skb = tcp_sacktag_skip(skb, sk, state, 1774 start_seq); 1775 skb = tcp_sacktag_walk(skb, sk, next_dup, 1776 state, 1777 start_seq, 1778 cache->start_seq, 1779 dup_sack); 1780 } 1781 1782 /* Rest of the block already fully processed? */ 1783 if (!after(end_seq, cache->end_seq)) 1784 goto advance_sp; 1785 1786 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1787 state, 1788 cache->end_seq); 1789 1790 /* ...tail remains todo... */ 1791 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1792 /* ...but better entrypoint exists! */ 1793 skb = tcp_highest_sack(sk); 1794 if (!skb) 1795 break; 1796 state->fack_count = tp->fackets_out; 1797 cache++; 1798 goto walk; 1799 } 1800 1801 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1802 /* Check overlap against next cached too (past this one already) */ 1803 cache++; 1804 continue; 1805 } 1806 1807 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1808 skb = tcp_highest_sack(sk); 1809 if (!skb) 1810 break; 1811 state->fack_count = tp->fackets_out; 1812 } 1813 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1814 1815 walk: 1816 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1817 start_seq, end_seq, dup_sack); 1818 1819 advance_sp: 1820 i++; 1821 } 1822 1823 /* Clear the head of the cache sack blocks so we can skip it next time */ 1824 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1825 tp->recv_sack_cache[i].start_seq = 0; 1826 tp->recv_sack_cache[i].end_seq = 0; 1827 } 1828 for (j = 0; j < used_sacks; j++) 1829 tp->recv_sack_cache[i++] = sp[j]; 1830 1831 if ((state->reord < tp->fackets_out) && 1832 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1833 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1834 1835 tcp_verify_left_out(tp); 1836 out: 1837 1838 #if FASTRETRANS_DEBUG > 0 1839 WARN_ON((int)tp->sacked_out < 0); 1840 WARN_ON((int)tp->lost_out < 0); 1841 WARN_ON((int)tp->retrans_out < 0); 1842 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1843 #endif 1844 return state->flag; 1845 } 1846 1847 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1848 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1849 */ 1850 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1851 { 1852 u32 holes; 1853 1854 holes = max(tp->lost_out, 1U); 1855 holes = min(holes, tp->packets_out); 1856 1857 if ((tp->sacked_out + holes) > tp->packets_out) { 1858 tp->sacked_out = tp->packets_out - holes; 1859 return true; 1860 } 1861 return false; 1862 } 1863 1864 /* If we receive more dupacks than we expected counting segments 1865 * in assumption of absent reordering, interpret this as reordering. 1866 * The only another reason could be bug in receiver TCP. 1867 */ 1868 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1869 { 1870 struct tcp_sock *tp = tcp_sk(sk); 1871 if (tcp_limit_reno_sacked(tp)) 1872 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1873 } 1874 1875 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1876 1877 static void tcp_add_reno_sack(struct sock *sk) 1878 { 1879 struct tcp_sock *tp = tcp_sk(sk); 1880 u32 prior_sacked = tp->sacked_out; 1881 1882 tp->sacked_out++; 1883 tcp_check_reno_reordering(sk, 0); 1884 if (tp->sacked_out > prior_sacked) 1885 tp->delivered++; /* Some out-of-order packet is delivered */ 1886 tcp_verify_left_out(tp); 1887 } 1888 1889 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1890 1891 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1892 { 1893 struct tcp_sock *tp = tcp_sk(sk); 1894 1895 if (acked > 0) { 1896 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1897 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1898 if (acked - 1 >= tp->sacked_out) 1899 tp->sacked_out = 0; 1900 else 1901 tp->sacked_out -= acked - 1; 1902 } 1903 tcp_check_reno_reordering(sk, acked); 1904 tcp_verify_left_out(tp); 1905 } 1906 1907 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1908 { 1909 tp->sacked_out = 0; 1910 } 1911 1912 void tcp_clear_retrans(struct tcp_sock *tp) 1913 { 1914 tp->retrans_out = 0; 1915 tp->lost_out = 0; 1916 tp->undo_marker = 0; 1917 tp->undo_retrans = -1; 1918 tp->fackets_out = 0; 1919 tp->sacked_out = 0; 1920 } 1921 1922 static inline void tcp_init_undo(struct tcp_sock *tp) 1923 { 1924 tp->undo_marker = tp->snd_una; 1925 /* Retransmission still in flight may cause DSACKs later. */ 1926 tp->undo_retrans = tp->retrans_out ? : -1; 1927 } 1928 1929 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1930 * and reset tags completely, otherwise preserve SACKs. If receiver 1931 * dropped its ofo queue, we will know this due to reneging detection. 1932 */ 1933 void tcp_enter_loss(struct sock *sk) 1934 { 1935 const struct inet_connection_sock *icsk = inet_csk(sk); 1936 struct tcp_sock *tp = tcp_sk(sk); 1937 struct net *net = sock_net(sk); 1938 struct sk_buff *skb; 1939 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1940 bool is_reneg; /* is receiver reneging on SACKs? */ 1941 bool mark_lost; 1942 1943 /* Reduce ssthresh if it has not yet been made inside this window. */ 1944 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1945 !after(tp->high_seq, tp->snd_una) || 1946 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1947 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1948 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1949 tcp_ca_event(sk, CA_EVENT_LOSS); 1950 tcp_init_undo(tp); 1951 } 1952 tp->snd_cwnd = 1; 1953 tp->snd_cwnd_cnt = 0; 1954 tp->snd_cwnd_stamp = tcp_time_stamp; 1955 1956 tp->retrans_out = 0; 1957 tp->lost_out = 0; 1958 1959 if (tcp_is_reno(tp)) 1960 tcp_reset_reno_sack(tp); 1961 1962 skb = tcp_write_queue_head(sk); 1963 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1964 if (is_reneg) { 1965 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1966 tp->sacked_out = 0; 1967 tp->fackets_out = 0; 1968 } 1969 tcp_clear_all_retrans_hints(tp); 1970 1971 tcp_for_write_queue(skb, sk) { 1972 if (skb == tcp_send_head(sk)) 1973 break; 1974 1975 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1976 is_reneg); 1977 if (mark_lost) 1978 tcp_sum_lost(tp, skb); 1979 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1980 if (mark_lost) { 1981 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1982 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1983 tp->lost_out += tcp_skb_pcount(skb); 1984 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1985 } 1986 } 1987 tcp_verify_left_out(tp); 1988 1989 /* Timeout in disordered state after receiving substantial DUPACKs 1990 * suggests that the degree of reordering is over-estimated. 1991 */ 1992 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1993 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1994 tp->reordering = min_t(unsigned int, tp->reordering, 1995 net->ipv4.sysctl_tcp_reordering); 1996 tcp_set_ca_state(sk, TCP_CA_Loss); 1997 tp->high_seq = tp->snd_nxt; 1998 tcp_ecn_queue_cwr(tp); 1999 2000 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2001 * loss recovery is underway except recurring timeout(s) on 2002 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2003 */ 2004 tp->frto = sysctl_tcp_frto && 2005 (new_recovery || icsk->icsk_retransmits) && 2006 !inet_csk(sk)->icsk_mtup.probe_size; 2007 } 2008 2009 /* If ACK arrived pointing to a remembered SACK, it means that our 2010 * remembered SACKs do not reflect real state of receiver i.e. 2011 * receiver _host_ is heavily congested (or buggy). 2012 * 2013 * To avoid big spurious retransmission bursts due to transient SACK 2014 * scoreboard oddities that look like reneging, we give the receiver a 2015 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2016 * restore sanity to the SACK scoreboard. If the apparent reneging 2017 * persists until this RTO then we'll clear the SACK scoreboard. 2018 */ 2019 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2020 { 2021 if (flag & FLAG_SACK_RENEGING) { 2022 struct tcp_sock *tp = tcp_sk(sk); 2023 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2024 msecs_to_jiffies(10)); 2025 2026 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2027 delay, TCP_RTO_MAX); 2028 return true; 2029 } 2030 return false; 2031 } 2032 2033 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2034 { 2035 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2036 } 2037 2038 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2039 * counter when SACK is enabled (without SACK, sacked_out is used for 2040 * that purpose). 2041 * 2042 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2043 * segments up to the highest received SACK block so far and holes in 2044 * between them. 2045 * 2046 * With reordering, holes may still be in flight, so RFC3517 recovery 2047 * uses pure sacked_out (total number of SACKed segments) even though 2048 * it violates the RFC that uses duplicate ACKs, often these are equal 2049 * but when e.g. out-of-window ACKs or packet duplication occurs, 2050 * they differ. Since neither occurs due to loss, TCP should really 2051 * ignore them. 2052 */ 2053 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2054 { 2055 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2056 } 2057 2058 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2059 { 2060 struct tcp_sock *tp = tcp_sk(sk); 2061 unsigned long delay; 2062 2063 /* Delay early retransmit and entering fast recovery for 2064 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2065 * available, or RTO is scheduled to fire first. 2066 */ 2067 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2068 (flag & FLAG_ECE) || !tp->srtt_us) 2069 return false; 2070 2071 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2072 msecs_to_jiffies(2)); 2073 2074 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2075 return false; 2076 2077 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2078 TCP_RTO_MAX); 2079 return true; 2080 } 2081 2082 /* Linux NewReno/SACK/FACK/ECN state machine. 2083 * -------------------------------------- 2084 * 2085 * "Open" Normal state, no dubious events, fast path. 2086 * "Disorder" In all the respects it is "Open", 2087 * but requires a bit more attention. It is entered when 2088 * we see some SACKs or dupacks. It is split of "Open" 2089 * mainly to move some processing from fast path to slow one. 2090 * "CWR" CWND was reduced due to some Congestion Notification event. 2091 * It can be ECN, ICMP source quench, local device congestion. 2092 * "Recovery" CWND was reduced, we are fast-retransmitting. 2093 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2094 * 2095 * tcp_fastretrans_alert() is entered: 2096 * - each incoming ACK, if state is not "Open" 2097 * - when arrived ACK is unusual, namely: 2098 * * SACK 2099 * * Duplicate ACK. 2100 * * ECN ECE. 2101 * 2102 * Counting packets in flight is pretty simple. 2103 * 2104 * in_flight = packets_out - left_out + retrans_out 2105 * 2106 * packets_out is SND.NXT-SND.UNA counted in packets. 2107 * 2108 * retrans_out is number of retransmitted segments. 2109 * 2110 * left_out is number of segments left network, but not ACKed yet. 2111 * 2112 * left_out = sacked_out + lost_out 2113 * 2114 * sacked_out: Packets, which arrived to receiver out of order 2115 * and hence not ACKed. With SACKs this number is simply 2116 * amount of SACKed data. Even without SACKs 2117 * it is easy to give pretty reliable estimate of this number, 2118 * counting duplicate ACKs. 2119 * 2120 * lost_out: Packets lost by network. TCP has no explicit 2121 * "loss notification" feedback from network (for now). 2122 * It means that this number can be only _guessed_. 2123 * Actually, it is the heuristics to predict lossage that 2124 * distinguishes different algorithms. 2125 * 2126 * F.e. after RTO, when all the queue is considered as lost, 2127 * lost_out = packets_out and in_flight = retrans_out. 2128 * 2129 * Essentially, we have now two algorithms counting 2130 * lost packets. 2131 * 2132 * FACK: It is the simplest heuristics. As soon as we decided 2133 * that something is lost, we decide that _all_ not SACKed 2134 * packets until the most forward SACK are lost. I.e. 2135 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2136 * It is absolutely correct estimate, if network does not reorder 2137 * packets. And it loses any connection to reality when reordering 2138 * takes place. We use FACK by default until reordering 2139 * is suspected on the path to this destination. 2140 * 2141 * NewReno: when Recovery is entered, we assume that one segment 2142 * is lost (classic Reno). While we are in Recovery and 2143 * a partial ACK arrives, we assume that one more packet 2144 * is lost (NewReno). This heuristics are the same in NewReno 2145 * and SACK. 2146 * 2147 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2148 * deflation etc. CWND is real congestion window, never inflated, changes 2149 * only according to classic VJ rules. 2150 * 2151 * Really tricky (and requiring careful tuning) part of algorithm 2152 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2153 * The first determines the moment _when_ we should reduce CWND and, 2154 * hence, slow down forward transmission. In fact, it determines the moment 2155 * when we decide that hole is caused by loss, rather than by a reorder. 2156 * 2157 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2158 * holes, caused by lost packets. 2159 * 2160 * And the most logically complicated part of algorithm is undo 2161 * heuristics. We detect false retransmits due to both too early 2162 * fast retransmit (reordering) and underestimated RTO, analyzing 2163 * timestamps and D-SACKs. When we detect that some segments were 2164 * retransmitted by mistake and CWND reduction was wrong, we undo 2165 * window reduction and abort recovery phase. This logic is hidden 2166 * inside several functions named tcp_try_undo_<something>. 2167 */ 2168 2169 /* This function decides, when we should leave Disordered state 2170 * and enter Recovery phase, reducing congestion window. 2171 * 2172 * Main question: may we further continue forward transmission 2173 * with the same cwnd? 2174 */ 2175 static bool tcp_time_to_recover(struct sock *sk, int flag) 2176 { 2177 struct tcp_sock *tp = tcp_sk(sk); 2178 __u32 packets_out; 2179 int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 2180 2181 /* Trick#1: The loss is proven. */ 2182 if (tp->lost_out) 2183 return true; 2184 2185 /* Not-A-Trick#2 : Classic rule... */ 2186 if (tcp_dupack_heuristics(tp) > tp->reordering) 2187 return true; 2188 2189 /* Trick#4: It is still not OK... But will it be useful to delay 2190 * recovery more? 2191 */ 2192 packets_out = tp->packets_out; 2193 if (packets_out <= tp->reordering && 2194 tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) && 2195 !tcp_may_send_now(sk)) { 2196 /* We have nothing to send. This connection is limited 2197 * either by receiver window or by application. 2198 */ 2199 return true; 2200 } 2201 2202 /* If a thin stream is detected, retransmit after first 2203 * received dupack. Employ only if SACK is supported in order 2204 * to avoid possible corner-case series of spurious retransmissions 2205 * Use only if there are no unsent data. 2206 */ 2207 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2208 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2209 tcp_is_sack(tp) && !tcp_send_head(sk)) 2210 return true; 2211 2212 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2213 * retransmissions due to small network reorderings, we implement 2214 * Mitigation A.3 in the RFC and delay the retransmission for a short 2215 * interval if appropriate. 2216 */ 2217 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2218 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2219 !tcp_may_send_now(sk)) 2220 return !tcp_pause_early_retransmit(sk, flag); 2221 2222 return false; 2223 } 2224 2225 /* Detect loss in event "A" above by marking head of queue up as lost. 2226 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2227 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2228 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2229 * the maximum SACKed segments to pass before reaching this limit. 2230 */ 2231 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2232 { 2233 struct tcp_sock *tp = tcp_sk(sk); 2234 struct sk_buff *skb; 2235 int cnt, oldcnt, lost; 2236 unsigned int mss; 2237 /* Use SACK to deduce losses of new sequences sent during recovery */ 2238 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2239 2240 WARN_ON(packets > tp->packets_out); 2241 if (tp->lost_skb_hint) { 2242 skb = tp->lost_skb_hint; 2243 cnt = tp->lost_cnt_hint; 2244 /* Head already handled? */ 2245 if (mark_head && skb != tcp_write_queue_head(sk)) 2246 return; 2247 } else { 2248 skb = tcp_write_queue_head(sk); 2249 cnt = 0; 2250 } 2251 2252 tcp_for_write_queue_from(skb, sk) { 2253 if (skb == tcp_send_head(sk)) 2254 break; 2255 /* TODO: do this better */ 2256 /* this is not the most efficient way to do this... */ 2257 tp->lost_skb_hint = skb; 2258 tp->lost_cnt_hint = cnt; 2259 2260 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2261 break; 2262 2263 oldcnt = cnt; 2264 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2265 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2266 cnt += tcp_skb_pcount(skb); 2267 2268 if (cnt > packets) { 2269 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2270 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2271 (oldcnt >= packets)) 2272 break; 2273 2274 mss = tcp_skb_mss(skb); 2275 /* If needed, chop off the prefix to mark as lost. */ 2276 lost = (packets - oldcnt) * mss; 2277 if (lost < skb->len && 2278 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2279 break; 2280 cnt = packets; 2281 } 2282 2283 tcp_skb_mark_lost(tp, skb); 2284 2285 if (mark_head) 2286 break; 2287 } 2288 tcp_verify_left_out(tp); 2289 } 2290 2291 /* Account newly detected lost packet(s) */ 2292 2293 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2294 { 2295 struct tcp_sock *tp = tcp_sk(sk); 2296 2297 if (tcp_is_reno(tp)) { 2298 tcp_mark_head_lost(sk, 1, 1); 2299 } else if (tcp_is_fack(tp)) { 2300 int lost = tp->fackets_out - tp->reordering; 2301 if (lost <= 0) 2302 lost = 1; 2303 tcp_mark_head_lost(sk, lost, 0); 2304 } else { 2305 int sacked_upto = tp->sacked_out - tp->reordering; 2306 if (sacked_upto >= 0) 2307 tcp_mark_head_lost(sk, sacked_upto, 0); 2308 else if (fast_rexmit) 2309 tcp_mark_head_lost(sk, 1, 1); 2310 } 2311 } 2312 2313 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2314 { 2315 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2316 before(tp->rx_opt.rcv_tsecr, when); 2317 } 2318 2319 /* skb is spurious retransmitted if the returned timestamp echo 2320 * reply is prior to the skb transmission time 2321 */ 2322 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2323 const struct sk_buff *skb) 2324 { 2325 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2326 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2327 } 2328 2329 /* Nothing was retransmitted or returned timestamp is less 2330 * than timestamp of the first retransmission. 2331 */ 2332 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2333 { 2334 return !tp->retrans_stamp || 2335 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2336 } 2337 2338 /* Undo procedures. */ 2339 2340 /* We can clear retrans_stamp when there are no retransmissions in the 2341 * window. It would seem that it is trivially available for us in 2342 * tp->retrans_out, however, that kind of assumptions doesn't consider 2343 * what will happen if errors occur when sending retransmission for the 2344 * second time. ...It could the that such segment has only 2345 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2346 * the head skb is enough except for some reneging corner cases that 2347 * are not worth the effort. 2348 * 2349 * Main reason for all this complexity is the fact that connection dying 2350 * time now depends on the validity of the retrans_stamp, in particular, 2351 * that successive retransmissions of a segment must not advance 2352 * retrans_stamp under any conditions. 2353 */ 2354 static bool tcp_any_retrans_done(const struct sock *sk) 2355 { 2356 const struct tcp_sock *tp = tcp_sk(sk); 2357 struct sk_buff *skb; 2358 2359 if (tp->retrans_out) 2360 return true; 2361 2362 skb = tcp_write_queue_head(sk); 2363 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2364 return true; 2365 2366 return false; 2367 } 2368 2369 #if FASTRETRANS_DEBUG > 1 2370 static void DBGUNDO(struct sock *sk, const char *msg) 2371 { 2372 struct tcp_sock *tp = tcp_sk(sk); 2373 struct inet_sock *inet = inet_sk(sk); 2374 2375 if (sk->sk_family == AF_INET) { 2376 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2377 msg, 2378 &inet->inet_daddr, ntohs(inet->inet_dport), 2379 tp->snd_cwnd, tcp_left_out(tp), 2380 tp->snd_ssthresh, tp->prior_ssthresh, 2381 tp->packets_out); 2382 } 2383 #if IS_ENABLED(CONFIG_IPV6) 2384 else if (sk->sk_family == AF_INET6) { 2385 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2386 msg, 2387 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2388 tp->snd_cwnd, tcp_left_out(tp), 2389 tp->snd_ssthresh, tp->prior_ssthresh, 2390 tp->packets_out); 2391 } 2392 #endif 2393 } 2394 #else 2395 #define DBGUNDO(x...) do { } while (0) 2396 #endif 2397 2398 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2399 { 2400 struct tcp_sock *tp = tcp_sk(sk); 2401 2402 if (unmark_loss) { 2403 struct sk_buff *skb; 2404 2405 tcp_for_write_queue(skb, sk) { 2406 if (skb == tcp_send_head(sk)) 2407 break; 2408 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2409 } 2410 tp->lost_out = 0; 2411 tcp_clear_all_retrans_hints(tp); 2412 } 2413 2414 if (tp->prior_ssthresh) { 2415 const struct inet_connection_sock *icsk = inet_csk(sk); 2416 2417 if (icsk->icsk_ca_ops->undo_cwnd) 2418 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2419 else 2420 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2421 2422 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2423 tp->snd_ssthresh = tp->prior_ssthresh; 2424 tcp_ecn_withdraw_cwr(tp); 2425 } 2426 } 2427 tp->snd_cwnd_stamp = tcp_time_stamp; 2428 tp->undo_marker = 0; 2429 } 2430 2431 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2432 { 2433 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2434 } 2435 2436 /* People celebrate: "We love our President!" */ 2437 static bool tcp_try_undo_recovery(struct sock *sk) 2438 { 2439 struct tcp_sock *tp = tcp_sk(sk); 2440 2441 if (tcp_may_undo(tp)) { 2442 int mib_idx; 2443 2444 /* Happy end! We did not retransmit anything 2445 * or our original transmission succeeded. 2446 */ 2447 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2448 tcp_undo_cwnd_reduction(sk, false); 2449 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2450 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2451 else 2452 mib_idx = LINUX_MIB_TCPFULLUNDO; 2453 2454 NET_INC_STATS(sock_net(sk), mib_idx); 2455 } 2456 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2457 /* Hold old state until something *above* high_seq 2458 * is ACKed. For Reno it is MUST to prevent false 2459 * fast retransmits (RFC2582). SACK TCP is safe. */ 2460 if (!tcp_any_retrans_done(sk)) 2461 tp->retrans_stamp = 0; 2462 return true; 2463 } 2464 tcp_set_ca_state(sk, TCP_CA_Open); 2465 return false; 2466 } 2467 2468 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2469 static bool tcp_try_undo_dsack(struct sock *sk) 2470 { 2471 struct tcp_sock *tp = tcp_sk(sk); 2472 2473 if (tp->undo_marker && !tp->undo_retrans) { 2474 DBGUNDO(sk, "D-SACK"); 2475 tcp_undo_cwnd_reduction(sk, false); 2476 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2477 return true; 2478 } 2479 return false; 2480 } 2481 2482 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2483 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2484 { 2485 struct tcp_sock *tp = tcp_sk(sk); 2486 2487 if (frto_undo || tcp_may_undo(tp)) { 2488 tcp_undo_cwnd_reduction(sk, true); 2489 2490 DBGUNDO(sk, "partial loss"); 2491 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2492 if (frto_undo) 2493 NET_INC_STATS(sock_net(sk), 2494 LINUX_MIB_TCPSPURIOUSRTOS); 2495 inet_csk(sk)->icsk_retransmits = 0; 2496 if (frto_undo || tcp_is_sack(tp)) 2497 tcp_set_ca_state(sk, TCP_CA_Open); 2498 return true; 2499 } 2500 return false; 2501 } 2502 2503 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2504 * It computes the number of packets to send (sndcnt) based on packets newly 2505 * delivered: 2506 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2507 * cwnd reductions across a full RTT. 2508 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2509 * But when the retransmits are acked without further losses, PRR 2510 * slow starts cwnd up to ssthresh to speed up the recovery. 2511 */ 2512 static void tcp_init_cwnd_reduction(struct sock *sk) 2513 { 2514 struct tcp_sock *tp = tcp_sk(sk); 2515 2516 tp->high_seq = tp->snd_nxt; 2517 tp->tlp_high_seq = 0; 2518 tp->snd_cwnd_cnt = 0; 2519 tp->prior_cwnd = tp->snd_cwnd; 2520 tp->prr_delivered = 0; 2521 tp->prr_out = 0; 2522 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2523 tcp_ecn_queue_cwr(tp); 2524 } 2525 2526 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, 2527 int flag) 2528 { 2529 struct tcp_sock *tp = tcp_sk(sk); 2530 int sndcnt = 0; 2531 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2532 2533 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2534 return; 2535 2536 tp->prr_delivered += newly_acked_sacked; 2537 if (delta < 0) { 2538 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2539 tp->prior_cwnd - 1; 2540 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2541 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2542 !(flag & FLAG_LOST_RETRANS)) { 2543 sndcnt = min_t(int, delta, 2544 max_t(int, tp->prr_delivered - tp->prr_out, 2545 newly_acked_sacked) + 1); 2546 } else { 2547 sndcnt = min(delta, newly_acked_sacked); 2548 } 2549 /* Force a fast retransmit upon entering fast recovery */ 2550 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2551 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2552 } 2553 2554 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2555 { 2556 struct tcp_sock *tp = tcp_sk(sk); 2557 2558 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2559 return; 2560 2561 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2562 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2563 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2564 tp->snd_cwnd = tp->snd_ssthresh; 2565 tp->snd_cwnd_stamp = tcp_time_stamp; 2566 } 2567 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2568 } 2569 2570 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2571 void tcp_enter_cwr(struct sock *sk) 2572 { 2573 struct tcp_sock *tp = tcp_sk(sk); 2574 2575 tp->prior_ssthresh = 0; 2576 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2577 tp->undo_marker = 0; 2578 tcp_init_cwnd_reduction(sk); 2579 tcp_set_ca_state(sk, TCP_CA_CWR); 2580 } 2581 } 2582 EXPORT_SYMBOL(tcp_enter_cwr); 2583 2584 static void tcp_try_keep_open(struct sock *sk) 2585 { 2586 struct tcp_sock *tp = tcp_sk(sk); 2587 int state = TCP_CA_Open; 2588 2589 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2590 state = TCP_CA_Disorder; 2591 2592 if (inet_csk(sk)->icsk_ca_state != state) { 2593 tcp_set_ca_state(sk, state); 2594 tp->high_seq = tp->snd_nxt; 2595 } 2596 } 2597 2598 static void tcp_try_to_open(struct sock *sk, int flag) 2599 { 2600 struct tcp_sock *tp = tcp_sk(sk); 2601 2602 tcp_verify_left_out(tp); 2603 2604 if (!tcp_any_retrans_done(sk)) 2605 tp->retrans_stamp = 0; 2606 2607 if (flag & FLAG_ECE) 2608 tcp_enter_cwr(sk); 2609 2610 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2611 tcp_try_keep_open(sk); 2612 } 2613 } 2614 2615 static void tcp_mtup_probe_failed(struct sock *sk) 2616 { 2617 struct inet_connection_sock *icsk = inet_csk(sk); 2618 2619 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2620 icsk->icsk_mtup.probe_size = 0; 2621 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2622 } 2623 2624 static void tcp_mtup_probe_success(struct sock *sk) 2625 { 2626 struct tcp_sock *tp = tcp_sk(sk); 2627 struct inet_connection_sock *icsk = inet_csk(sk); 2628 2629 /* FIXME: breaks with very large cwnd */ 2630 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2631 tp->snd_cwnd = tp->snd_cwnd * 2632 tcp_mss_to_mtu(sk, tp->mss_cache) / 2633 icsk->icsk_mtup.probe_size; 2634 tp->snd_cwnd_cnt = 0; 2635 tp->snd_cwnd_stamp = tcp_time_stamp; 2636 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2637 2638 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2639 icsk->icsk_mtup.probe_size = 0; 2640 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2641 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2642 } 2643 2644 /* Do a simple retransmit without using the backoff mechanisms in 2645 * tcp_timer. This is used for path mtu discovery. 2646 * The socket is already locked here. 2647 */ 2648 void tcp_simple_retransmit(struct sock *sk) 2649 { 2650 const struct inet_connection_sock *icsk = inet_csk(sk); 2651 struct tcp_sock *tp = tcp_sk(sk); 2652 struct sk_buff *skb; 2653 unsigned int mss = tcp_current_mss(sk); 2654 u32 prior_lost = tp->lost_out; 2655 2656 tcp_for_write_queue(skb, sk) { 2657 if (skb == tcp_send_head(sk)) 2658 break; 2659 if (tcp_skb_seglen(skb) > mss && 2660 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2661 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2662 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2663 tp->retrans_out -= tcp_skb_pcount(skb); 2664 } 2665 tcp_skb_mark_lost_uncond_verify(tp, skb); 2666 } 2667 } 2668 2669 tcp_clear_retrans_hints_partial(tp); 2670 2671 if (prior_lost == tp->lost_out) 2672 return; 2673 2674 if (tcp_is_reno(tp)) 2675 tcp_limit_reno_sacked(tp); 2676 2677 tcp_verify_left_out(tp); 2678 2679 /* Don't muck with the congestion window here. 2680 * Reason is that we do not increase amount of _data_ 2681 * in network, but units changed and effective 2682 * cwnd/ssthresh really reduced now. 2683 */ 2684 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2685 tp->high_seq = tp->snd_nxt; 2686 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2687 tp->prior_ssthresh = 0; 2688 tp->undo_marker = 0; 2689 tcp_set_ca_state(sk, TCP_CA_Loss); 2690 } 2691 tcp_xmit_retransmit_queue(sk); 2692 } 2693 EXPORT_SYMBOL(tcp_simple_retransmit); 2694 2695 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2696 { 2697 struct tcp_sock *tp = tcp_sk(sk); 2698 int mib_idx; 2699 2700 if (tcp_is_reno(tp)) 2701 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2702 else 2703 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2704 2705 NET_INC_STATS(sock_net(sk), mib_idx); 2706 2707 tp->prior_ssthresh = 0; 2708 tcp_init_undo(tp); 2709 2710 if (!tcp_in_cwnd_reduction(sk)) { 2711 if (!ece_ack) 2712 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2713 tcp_init_cwnd_reduction(sk); 2714 } 2715 tcp_set_ca_state(sk, TCP_CA_Recovery); 2716 } 2717 2718 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2719 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2720 */ 2721 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2722 int *rexmit) 2723 { 2724 struct tcp_sock *tp = tcp_sk(sk); 2725 bool recovered = !before(tp->snd_una, tp->high_seq); 2726 2727 if ((flag & FLAG_SND_UNA_ADVANCED) && 2728 tcp_try_undo_loss(sk, false)) 2729 return; 2730 2731 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2732 /* Step 3.b. A timeout is spurious if not all data are 2733 * lost, i.e., never-retransmitted data are (s)acked. 2734 */ 2735 if ((flag & FLAG_ORIG_SACK_ACKED) && 2736 tcp_try_undo_loss(sk, true)) 2737 return; 2738 2739 if (after(tp->snd_nxt, tp->high_seq)) { 2740 if (flag & FLAG_DATA_SACKED || is_dupack) 2741 tp->frto = 0; /* Step 3.a. loss was real */ 2742 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2743 tp->high_seq = tp->snd_nxt; 2744 /* Step 2.b. Try send new data (but deferred until cwnd 2745 * is updated in tcp_ack()). Otherwise fall back to 2746 * the conventional recovery. 2747 */ 2748 if (tcp_send_head(sk) && 2749 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2750 *rexmit = REXMIT_NEW; 2751 return; 2752 } 2753 tp->frto = 0; 2754 } 2755 } 2756 2757 if (recovered) { 2758 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2759 tcp_try_undo_recovery(sk); 2760 return; 2761 } 2762 if (tcp_is_reno(tp)) { 2763 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2764 * delivered. Lower inflight to clock out (re)tranmissions. 2765 */ 2766 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2767 tcp_add_reno_sack(sk); 2768 else if (flag & FLAG_SND_UNA_ADVANCED) 2769 tcp_reset_reno_sack(tp); 2770 } 2771 *rexmit = REXMIT_LOST; 2772 } 2773 2774 /* Undo during fast recovery after partial ACK. */ 2775 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2776 { 2777 struct tcp_sock *tp = tcp_sk(sk); 2778 2779 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2780 /* Plain luck! Hole if filled with delayed 2781 * packet, rather than with a retransmit. 2782 */ 2783 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2784 2785 /* We are getting evidence that the reordering degree is higher 2786 * than we realized. If there are no retransmits out then we 2787 * can undo. Otherwise we clock out new packets but do not 2788 * mark more packets lost or retransmit more. 2789 */ 2790 if (tp->retrans_out) 2791 return true; 2792 2793 if (!tcp_any_retrans_done(sk)) 2794 tp->retrans_stamp = 0; 2795 2796 DBGUNDO(sk, "partial recovery"); 2797 tcp_undo_cwnd_reduction(sk, true); 2798 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2799 tcp_try_keep_open(sk); 2800 return true; 2801 } 2802 return false; 2803 } 2804 2805 /* Process an event, which can update packets-in-flight not trivially. 2806 * Main goal of this function is to calculate new estimate for left_out, 2807 * taking into account both packets sitting in receiver's buffer and 2808 * packets lost by network. 2809 * 2810 * Besides that it updates the congestion state when packet loss or ECN 2811 * is detected. But it does not reduce the cwnd, it is done by the 2812 * congestion control later. 2813 * 2814 * It does _not_ decide what to send, it is made in function 2815 * tcp_xmit_retransmit_queue(). 2816 */ 2817 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2818 bool is_dupack, int *ack_flag, int *rexmit) 2819 { 2820 struct inet_connection_sock *icsk = inet_csk(sk); 2821 struct tcp_sock *tp = tcp_sk(sk); 2822 int fast_rexmit = 0, flag = *ack_flag; 2823 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2824 (tcp_fackets_out(tp) > tp->reordering)); 2825 2826 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2827 tp->sacked_out = 0; 2828 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2829 tp->fackets_out = 0; 2830 2831 /* Now state machine starts. 2832 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2833 if (flag & FLAG_ECE) 2834 tp->prior_ssthresh = 0; 2835 2836 /* B. In all the states check for reneging SACKs. */ 2837 if (tcp_check_sack_reneging(sk, flag)) 2838 return; 2839 2840 /* C. Check consistency of the current state. */ 2841 tcp_verify_left_out(tp); 2842 2843 /* D. Check state exit conditions. State can be terminated 2844 * when high_seq is ACKed. */ 2845 if (icsk->icsk_ca_state == TCP_CA_Open) { 2846 WARN_ON(tp->retrans_out != 0); 2847 tp->retrans_stamp = 0; 2848 } else if (!before(tp->snd_una, tp->high_seq)) { 2849 switch (icsk->icsk_ca_state) { 2850 case TCP_CA_CWR: 2851 /* CWR is to be held something *above* high_seq 2852 * is ACKed for CWR bit to reach receiver. */ 2853 if (tp->snd_una != tp->high_seq) { 2854 tcp_end_cwnd_reduction(sk); 2855 tcp_set_ca_state(sk, TCP_CA_Open); 2856 } 2857 break; 2858 2859 case TCP_CA_Recovery: 2860 if (tcp_is_reno(tp)) 2861 tcp_reset_reno_sack(tp); 2862 if (tcp_try_undo_recovery(sk)) 2863 return; 2864 tcp_end_cwnd_reduction(sk); 2865 break; 2866 } 2867 } 2868 2869 /* Use RACK to detect loss */ 2870 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS && 2871 tcp_rack_mark_lost(sk)) { 2872 flag |= FLAG_LOST_RETRANS; 2873 *ack_flag |= FLAG_LOST_RETRANS; 2874 } 2875 2876 /* E. Process state. */ 2877 switch (icsk->icsk_ca_state) { 2878 case TCP_CA_Recovery: 2879 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2880 if (tcp_is_reno(tp) && is_dupack) 2881 tcp_add_reno_sack(sk); 2882 } else { 2883 if (tcp_try_undo_partial(sk, acked)) 2884 return; 2885 /* Partial ACK arrived. Force fast retransmit. */ 2886 do_lost = tcp_is_reno(tp) || 2887 tcp_fackets_out(tp) > tp->reordering; 2888 } 2889 if (tcp_try_undo_dsack(sk)) { 2890 tcp_try_keep_open(sk); 2891 return; 2892 } 2893 break; 2894 case TCP_CA_Loss: 2895 tcp_process_loss(sk, flag, is_dupack, rexmit); 2896 if (icsk->icsk_ca_state != TCP_CA_Open && 2897 !(flag & FLAG_LOST_RETRANS)) 2898 return; 2899 /* Change state if cwnd is undone or retransmits are lost */ 2900 default: 2901 if (tcp_is_reno(tp)) { 2902 if (flag & FLAG_SND_UNA_ADVANCED) 2903 tcp_reset_reno_sack(tp); 2904 if (is_dupack) 2905 tcp_add_reno_sack(sk); 2906 } 2907 2908 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2909 tcp_try_undo_dsack(sk); 2910 2911 if (!tcp_time_to_recover(sk, flag)) { 2912 tcp_try_to_open(sk, flag); 2913 return; 2914 } 2915 2916 /* MTU probe failure: don't reduce cwnd */ 2917 if (icsk->icsk_ca_state < TCP_CA_CWR && 2918 icsk->icsk_mtup.probe_size && 2919 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2920 tcp_mtup_probe_failed(sk); 2921 /* Restores the reduction we did in tcp_mtup_probe() */ 2922 tp->snd_cwnd++; 2923 tcp_simple_retransmit(sk); 2924 return; 2925 } 2926 2927 /* Otherwise enter Recovery state */ 2928 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2929 fast_rexmit = 1; 2930 } 2931 2932 if (do_lost) 2933 tcp_update_scoreboard(sk, fast_rexmit); 2934 *rexmit = REXMIT_LOST; 2935 } 2936 2937 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2938 { 2939 struct tcp_sock *tp = tcp_sk(sk); 2940 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2941 2942 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp, 2943 rtt_us ? : jiffies_to_usecs(1)); 2944 } 2945 2946 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2947 long seq_rtt_us, long sack_rtt_us, 2948 long ca_rtt_us) 2949 { 2950 const struct tcp_sock *tp = tcp_sk(sk); 2951 2952 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2953 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2954 * Karn's algorithm forbids taking RTT if some retransmitted data 2955 * is acked (RFC6298). 2956 */ 2957 if (seq_rtt_us < 0) 2958 seq_rtt_us = sack_rtt_us; 2959 2960 /* RTTM Rule: A TSecr value received in a segment is used to 2961 * update the averaged RTT measurement only if the segment 2962 * acknowledges some new data, i.e., only if it advances the 2963 * left edge of the send window. 2964 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2965 */ 2966 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2967 flag & FLAG_ACKED) 2968 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp - 2969 tp->rx_opt.rcv_tsecr); 2970 if (seq_rtt_us < 0) 2971 return false; 2972 2973 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2974 * always taken together with ACK, SACK, or TS-opts. Any negative 2975 * values will be skipped with the seq_rtt_us < 0 check above. 2976 */ 2977 tcp_update_rtt_min(sk, ca_rtt_us); 2978 tcp_rtt_estimator(sk, seq_rtt_us); 2979 tcp_set_rto(sk); 2980 2981 /* RFC6298: only reset backoff on valid RTT measurement. */ 2982 inet_csk(sk)->icsk_backoff = 0; 2983 return true; 2984 } 2985 2986 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2987 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2988 { 2989 long rtt_us = -1L; 2990 2991 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) { 2992 struct skb_mstamp now; 2993 2994 skb_mstamp_get(&now); 2995 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack); 2996 } 2997 2998 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us); 2999 } 3000 3001 3002 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3003 { 3004 const struct inet_connection_sock *icsk = inet_csk(sk); 3005 3006 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3007 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3008 } 3009 3010 /* Restart timer after forward progress on connection. 3011 * RFC2988 recommends to restart timer to now+rto. 3012 */ 3013 void tcp_rearm_rto(struct sock *sk) 3014 { 3015 const struct inet_connection_sock *icsk = inet_csk(sk); 3016 struct tcp_sock *tp = tcp_sk(sk); 3017 3018 /* If the retrans timer is currently being used by Fast Open 3019 * for SYN-ACK retrans purpose, stay put. 3020 */ 3021 if (tp->fastopen_rsk) 3022 return; 3023 3024 if (!tp->packets_out) { 3025 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3026 } else { 3027 u32 rto = inet_csk(sk)->icsk_rto; 3028 /* Offset the time elapsed after installing regular RTO */ 3029 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3030 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3031 struct sk_buff *skb = tcp_write_queue_head(sk); 3032 const u32 rto_time_stamp = 3033 tcp_skb_timestamp(skb) + rto; 3034 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 3035 /* delta may not be positive if the socket is locked 3036 * when the retrans timer fires and is rescheduled. 3037 */ 3038 if (delta > 0) 3039 rto = delta; 3040 } 3041 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3042 TCP_RTO_MAX); 3043 } 3044 } 3045 3046 /* This function is called when the delayed ER timer fires. TCP enters 3047 * fast recovery and performs fast-retransmit. 3048 */ 3049 void tcp_resume_early_retransmit(struct sock *sk) 3050 { 3051 struct tcp_sock *tp = tcp_sk(sk); 3052 3053 tcp_rearm_rto(sk); 3054 3055 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3056 if (!tp->do_early_retrans) 3057 return; 3058 3059 tcp_enter_recovery(sk, false); 3060 tcp_update_scoreboard(sk, 1); 3061 tcp_xmit_retransmit_queue(sk); 3062 } 3063 3064 /* If we get here, the whole TSO packet has not been acked. */ 3065 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3066 { 3067 struct tcp_sock *tp = tcp_sk(sk); 3068 u32 packets_acked; 3069 3070 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3071 3072 packets_acked = tcp_skb_pcount(skb); 3073 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3074 return 0; 3075 packets_acked -= tcp_skb_pcount(skb); 3076 3077 if (packets_acked) { 3078 BUG_ON(tcp_skb_pcount(skb) == 0); 3079 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3080 } 3081 3082 return packets_acked; 3083 } 3084 3085 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3086 u32 prior_snd_una) 3087 { 3088 const struct skb_shared_info *shinfo; 3089 3090 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3091 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3092 return; 3093 3094 shinfo = skb_shinfo(skb); 3095 if (!before(shinfo->tskey, prior_snd_una) && 3096 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3097 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3098 } 3099 3100 /* Remove acknowledged frames from the retransmission queue. If our packet 3101 * is before the ack sequence we can discard it as it's confirmed to have 3102 * arrived at the other end. 3103 */ 3104 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3105 u32 prior_snd_una, int *acked, 3106 struct tcp_sacktag_state *sack, 3107 struct skb_mstamp *now) 3108 { 3109 const struct inet_connection_sock *icsk = inet_csk(sk); 3110 struct skb_mstamp first_ackt, last_ackt; 3111 struct tcp_sock *tp = tcp_sk(sk); 3112 u32 prior_sacked = tp->sacked_out; 3113 u32 reord = tp->packets_out; 3114 bool fully_acked = true; 3115 long sack_rtt_us = -1L; 3116 long seq_rtt_us = -1L; 3117 long ca_rtt_us = -1L; 3118 struct sk_buff *skb; 3119 u32 pkts_acked = 0; 3120 u32 last_in_flight = 0; 3121 bool rtt_update; 3122 int flag = 0; 3123 3124 first_ackt.v64 = 0; 3125 3126 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3127 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3128 u8 sacked = scb->sacked; 3129 u32 acked_pcount; 3130 3131 tcp_ack_tstamp(sk, skb, prior_snd_una); 3132 3133 /* Determine how many packets and what bytes were acked, tso and else */ 3134 if (after(scb->end_seq, tp->snd_una)) { 3135 if (tcp_skb_pcount(skb) == 1 || 3136 !after(tp->snd_una, scb->seq)) 3137 break; 3138 3139 acked_pcount = tcp_tso_acked(sk, skb); 3140 if (!acked_pcount) 3141 break; 3142 fully_acked = false; 3143 } else { 3144 /* Speedup tcp_unlink_write_queue() and next loop */ 3145 prefetchw(skb->next); 3146 acked_pcount = tcp_skb_pcount(skb); 3147 } 3148 3149 if (unlikely(sacked & TCPCB_RETRANS)) { 3150 if (sacked & TCPCB_SACKED_RETRANS) 3151 tp->retrans_out -= acked_pcount; 3152 flag |= FLAG_RETRANS_DATA_ACKED; 3153 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3154 last_ackt = skb->skb_mstamp; 3155 WARN_ON_ONCE(last_ackt.v64 == 0); 3156 if (!first_ackt.v64) 3157 first_ackt = last_ackt; 3158 3159 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3160 reord = min(pkts_acked, reord); 3161 if (!after(scb->end_seq, tp->high_seq)) 3162 flag |= FLAG_ORIG_SACK_ACKED; 3163 } 3164 3165 if (sacked & TCPCB_SACKED_ACKED) { 3166 tp->sacked_out -= acked_pcount; 3167 } else if (tcp_is_sack(tp)) { 3168 tp->delivered += acked_pcount; 3169 if (!tcp_skb_spurious_retrans(tp, skb)) 3170 tcp_rack_advance(tp, &skb->skb_mstamp, sacked); 3171 } 3172 if (sacked & TCPCB_LOST) 3173 tp->lost_out -= acked_pcount; 3174 3175 tp->packets_out -= acked_pcount; 3176 pkts_acked += acked_pcount; 3177 tcp_rate_skb_delivered(sk, skb, sack->rate); 3178 3179 /* Initial outgoing SYN's get put onto the write_queue 3180 * just like anything else we transmit. It is not 3181 * true data, and if we misinform our callers that 3182 * this ACK acks real data, we will erroneously exit 3183 * connection startup slow start one packet too 3184 * quickly. This is severely frowned upon behavior. 3185 */ 3186 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3187 flag |= FLAG_DATA_ACKED; 3188 } else { 3189 flag |= FLAG_SYN_ACKED; 3190 tp->retrans_stamp = 0; 3191 } 3192 3193 if (!fully_acked) 3194 break; 3195 3196 tcp_unlink_write_queue(skb, sk); 3197 sk_wmem_free_skb(sk, skb); 3198 if (unlikely(skb == tp->retransmit_skb_hint)) 3199 tp->retransmit_skb_hint = NULL; 3200 if (unlikely(skb == tp->lost_skb_hint)) 3201 tp->lost_skb_hint = NULL; 3202 } 3203 3204 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3205 tp->snd_up = tp->snd_una; 3206 3207 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3208 flag |= FLAG_SACK_RENEGING; 3209 3210 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3211 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt); 3212 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt); 3213 } 3214 if (sack->first_sackt.v64) { 3215 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt); 3216 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt); 3217 } 3218 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */ 3219 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3220 ca_rtt_us); 3221 3222 if (flag & FLAG_ACKED) { 3223 tcp_rearm_rto(sk); 3224 if (unlikely(icsk->icsk_mtup.probe_size && 3225 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3226 tcp_mtup_probe_success(sk); 3227 } 3228 3229 if (tcp_is_reno(tp)) { 3230 tcp_remove_reno_sacks(sk, pkts_acked); 3231 } else { 3232 int delta; 3233 3234 /* Non-retransmitted hole got filled? That's reordering */ 3235 if (reord < prior_fackets) 3236 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3237 3238 delta = tcp_is_fack(tp) ? pkts_acked : 3239 prior_sacked - tp->sacked_out; 3240 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3241 } 3242 3243 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3244 3245 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3246 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) { 3247 /* Do not re-arm RTO if the sack RTT is measured from data sent 3248 * after when the head was last (re)transmitted. Otherwise the 3249 * timeout may continue to extend in loss recovery. 3250 */ 3251 tcp_rearm_rto(sk); 3252 } 3253 3254 if (icsk->icsk_ca_ops->pkts_acked) { 3255 struct ack_sample sample = { .pkts_acked = pkts_acked, 3256 .rtt_us = ca_rtt_us, 3257 .in_flight = last_in_flight }; 3258 3259 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3260 } 3261 3262 #if FASTRETRANS_DEBUG > 0 3263 WARN_ON((int)tp->sacked_out < 0); 3264 WARN_ON((int)tp->lost_out < 0); 3265 WARN_ON((int)tp->retrans_out < 0); 3266 if (!tp->packets_out && tcp_is_sack(tp)) { 3267 icsk = inet_csk(sk); 3268 if (tp->lost_out) { 3269 pr_debug("Leak l=%u %d\n", 3270 tp->lost_out, icsk->icsk_ca_state); 3271 tp->lost_out = 0; 3272 } 3273 if (tp->sacked_out) { 3274 pr_debug("Leak s=%u %d\n", 3275 tp->sacked_out, icsk->icsk_ca_state); 3276 tp->sacked_out = 0; 3277 } 3278 if (tp->retrans_out) { 3279 pr_debug("Leak r=%u %d\n", 3280 tp->retrans_out, icsk->icsk_ca_state); 3281 tp->retrans_out = 0; 3282 } 3283 } 3284 #endif 3285 *acked = pkts_acked; 3286 return flag; 3287 } 3288 3289 static void tcp_ack_probe(struct sock *sk) 3290 { 3291 const struct tcp_sock *tp = tcp_sk(sk); 3292 struct inet_connection_sock *icsk = inet_csk(sk); 3293 3294 /* Was it a usable window open? */ 3295 3296 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3297 icsk->icsk_backoff = 0; 3298 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3299 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3300 * This function is not for random using! 3301 */ 3302 } else { 3303 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3304 3305 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3306 when, TCP_RTO_MAX); 3307 } 3308 } 3309 3310 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3311 { 3312 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3313 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3314 } 3315 3316 /* Decide wheather to run the increase function of congestion control. */ 3317 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3318 { 3319 /* If reordering is high then always grow cwnd whenever data is 3320 * delivered regardless of its ordering. Otherwise stay conservative 3321 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3322 * new SACK or ECE mark may first advance cwnd here and later reduce 3323 * cwnd in tcp_fastretrans_alert() based on more states. 3324 */ 3325 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3326 return flag & FLAG_FORWARD_PROGRESS; 3327 3328 return flag & FLAG_DATA_ACKED; 3329 } 3330 3331 /* The "ultimate" congestion control function that aims to replace the rigid 3332 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3333 * It's called toward the end of processing an ACK with precise rate 3334 * information. All transmission or retransmission are delayed afterwards. 3335 */ 3336 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3337 int flag, const struct rate_sample *rs) 3338 { 3339 const struct inet_connection_sock *icsk = inet_csk(sk); 3340 3341 if (icsk->icsk_ca_ops->cong_control) { 3342 icsk->icsk_ca_ops->cong_control(sk, rs); 3343 return; 3344 } 3345 3346 if (tcp_in_cwnd_reduction(sk)) { 3347 /* Reduce cwnd if state mandates */ 3348 tcp_cwnd_reduction(sk, acked_sacked, flag); 3349 } else if (tcp_may_raise_cwnd(sk, flag)) { 3350 /* Advance cwnd if state allows */ 3351 tcp_cong_avoid(sk, ack, acked_sacked); 3352 } 3353 tcp_update_pacing_rate(sk); 3354 } 3355 3356 /* Check that window update is acceptable. 3357 * The function assumes that snd_una<=ack<=snd_next. 3358 */ 3359 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3360 const u32 ack, const u32 ack_seq, 3361 const u32 nwin) 3362 { 3363 return after(ack, tp->snd_una) || 3364 after(ack_seq, tp->snd_wl1) || 3365 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3366 } 3367 3368 /* If we update tp->snd_una, also update tp->bytes_acked */ 3369 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3370 { 3371 u32 delta = ack - tp->snd_una; 3372 3373 sock_owned_by_me((struct sock *)tp); 3374 u64_stats_update_begin_raw(&tp->syncp); 3375 tp->bytes_acked += delta; 3376 u64_stats_update_end_raw(&tp->syncp); 3377 tp->snd_una = ack; 3378 } 3379 3380 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3381 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3382 { 3383 u32 delta = seq - tp->rcv_nxt; 3384 3385 sock_owned_by_me((struct sock *)tp); 3386 u64_stats_update_begin_raw(&tp->syncp); 3387 tp->bytes_received += delta; 3388 u64_stats_update_end_raw(&tp->syncp); 3389 tp->rcv_nxt = seq; 3390 } 3391 3392 /* Update our send window. 3393 * 3394 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3395 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3396 */ 3397 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3398 u32 ack_seq) 3399 { 3400 struct tcp_sock *tp = tcp_sk(sk); 3401 int flag = 0; 3402 u32 nwin = ntohs(tcp_hdr(skb)->window); 3403 3404 if (likely(!tcp_hdr(skb)->syn)) 3405 nwin <<= tp->rx_opt.snd_wscale; 3406 3407 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3408 flag |= FLAG_WIN_UPDATE; 3409 tcp_update_wl(tp, ack_seq); 3410 3411 if (tp->snd_wnd != nwin) { 3412 tp->snd_wnd = nwin; 3413 3414 /* Note, it is the only place, where 3415 * fast path is recovered for sending TCP. 3416 */ 3417 tp->pred_flags = 0; 3418 tcp_fast_path_check(sk); 3419 3420 if (tcp_send_head(sk)) 3421 tcp_slow_start_after_idle_check(sk); 3422 3423 if (nwin > tp->max_window) { 3424 tp->max_window = nwin; 3425 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3426 } 3427 } 3428 } 3429 3430 tcp_snd_una_update(tp, ack); 3431 3432 return flag; 3433 } 3434 3435 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3436 u32 *last_oow_ack_time) 3437 { 3438 if (*last_oow_ack_time) { 3439 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); 3440 3441 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3442 NET_INC_STATS(net, mib_idx); 3443 return true; /* rate-limited: don't send yet! */ 3444 } 3445 } 3446 3447 *last_oow_ack_time = tcp_time_stamp; 3448 3449 return false; /* not rate-limited: go ahead, send dupack now! */ 3450 } 3451 3452 /* Return true if we're currently rate-limiting out-of-window ACKs and 3453 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3454 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3455 * attacks that send repeated SYNs or ACKs for the same connection. To 3456 * do this, we do not send a duplicate SYNACK or ACK if the remote 3457 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3458 */ 3459 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3460 int mib_idx, u32 *last_oow_ack_time) 3461 { 3462 /* Data packets without SYNs are not likely part of an ACK loop. */ 3463 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3464 !tcp_hdr(skb)->syn) 3465 return false; 3466 3467 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3468 } 3469 3470 /* RFC 5961 7 [ACK Throttling] */ 3471 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3472 { 3473 /* unprotected vars, we dont care of overwrites */ 3474 static u32 challenge_timestamp; 3475 static unsigned int challenge_count; 3476 struct tcp_sock *tp = tcp_sk(sk); 3477 u32 count, now; 3478 3479 /* First check our per-socket dupack rate limit. */ 3480 if (__tcp_oow_rate_limited(sock_net(sk), 3481 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3482 &tp->last_oow_ack_time)) 3483 return; 3484 3485 /* Then check host-wide RFC 5961 rate limit. */ 3486 now = jiffies / HZ; 3487 if (now != challenge_timestamp) { 3488 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3489 3490 challenge_timestamp = now; 3491 WRITE_ONCE(challenge_count, half + 3492 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3493 } 3494 count = READ_ONCE(challenge_count); 3495 if (count > 0) { 3496 WRITE_ONCE(challenge_count, count - 1); 3497 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3498 tcp_send_ack(sk); 3499 } 3500 } 3501 3502 static void tcp_store_ts_recent(struct tcp_sock *tp) 3503 { 3504 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3505 tp->rx_opt.ts_recent_stamp = get_seconds(); 3506 } 3507 3508 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3509 { 3510 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3511 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3512 * extra check below makes sure this can only happen 3513 * for pure ACK frames. -DaveM 3514 * 3515 * Not only, also it occurs for expired timestamps. 3516 */ 3517 3518 if (tcp_paws_check(&tp->rx_opt, 0)) 3519 tcp_store_ts_recent(tp); 3520 } 3521 } 3522 3523 /* This routine deals with acks during a TLP episode. 3524 * We mark the end of a TLP episode on receiving TLP dupack or when 3525 * ack is after tlp_high_seq. 3526 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3527 */ 3528 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3529 { 3530 struct tcp_sock *tp = tcp_sk(sk); 3531 3532 if (before(ack, tp->tlp_high_seq)) 3533 return; 3534 3535 if (flag & FLAG_DSACKING_ACK) { 3536 /* This DSACK means original and TLP probe arrived; no loss */ 3537 tp->tlp_high_seq = 0; 3538 } else if (after(ack, tp->tlp_high_seq)) { 3539 /* ACK advances: there was a loss, so reduce cwnd. Reset 3540 * tlp_high_seq in tcp_init_cwnd_reduction() 3541 */ 3542 tcp_init_cwnd_reduction(sk); 3543 tcp_set_ca_state(sk, TCP_CA_CWR); 3544 tcp_end_cwnd_reduction(sk); 3545 tcp_try_keep_open(sk); 3546 NET_INC_STATS(sock_net(sk), 3547 LINUX_MIB_TCPLOSSPROBERECOVERY); 3548 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3549 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3550 /* Pure dupack: original and TLP probe arrived; no loss */ 3551 tp->tlp_high_seq = 0; 3552 } 3553 } 3554 3555 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3556 { 3557 const struct inet_connection_sock *icsk = inet_csk(sk); 3558 3559 if (icsk->icsk_ca_ops->in_ack_event) 3560 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3561 } 3562 3563 /* Congestion control has updated the cwnd already. So if we're in 3564 * loss recovery then now we do any new sends (for FRTO) or 3565 * retransmits (for CA_Loss or CA_recovery) that make sense. 3566 */ 3567 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3568 { 3569 struct tcp_sock *tp = tcp_sk(sk); 3570 3571 if (rexmit == REXMIT_NONE) 3572 return; 3573 3574 if (unlikely(rexmit == 2)) { 3575 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3576 TCP_NAGLE_OFF); 3577 if (after(tp->snd_nxt, tp->high_seq)) 3578 return; 3579 tp->frto = 0; 3580 } 3581 tcp_xmit_retransmit_queue(sk); 3582 } 3583 3584 /* This routine deals with incoming acks, but not outgoing ones. */ 3585 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3586 { 3587 struct inet_connection_sock *icsk = inet_csk(sk); 3588 struct tcp_sock *tp = tcp_sk(sk); 3589 struct tcp_sacktag_state sack_state; 3590 struct rate_sample rs = { .prior_delivered = 0 }; 3591 u32 prior_snd_una = tp->snd_una; 3592 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3593 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3594 bool is_dupack = false; 3595 u32 prior_fackets; 3596 int prior_packets = tp->packets_out; 3597 u32 delivered = tp->delivered; 3598 u32 lost = tp->lost; 3599 int acked = 0; /* Number of packets newly acked */ 3600 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3601 struct skb_mstamp now; 3602 3603 sack_state.first_sackt.v64 = 0; 3604 sack_state.rate = &rs; 3605 3606 /* We very likely will need to access write queue head. */ 3607 prefetchw(sk->sk_write_queue.next); 3608 3609 /* If the ack is older than previous acks 3610 * then we can probably ignore it. 3611 */ 3612 if (before(ack, prior_snd_una)) { 3613 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3614 if (before(ack, prior_snd_una - tp->max_window)) { 3615 tcp_send_challenge_ack(sk, skb); 3616 return -1; 3617 } 3618 goto old_ack; 3619 } 3620 3621 /* If the ack includes data we haven't sent yet, discard 3622 * this segment (RFC793 Section 3.9). 3623 */ 3624 if (after(ack, tp->snd_nxt)) 3625 goto invalid_ack; 3626 3627 skb_mstamp_get(&now); 3628 3629 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3630 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3631 tcp_rearm_rto(sk); 3632 3633 if (after(ack, prior_snd_una)) { 3634 flag |= FLAG_SND_UNA_ADVANCED; 3635 icsk->icsk_retransmits = 0; 3636 } 3637 3638 prior_fackets = tp->fackets_out; 3639 rs.prior_in_flight = tcp_packets_in_flight(tp); 3640 3641 /* ts_recent update must be made after we are sure that the packet 3642 * is in window. 3643 */ 3644 if (flag & FLAG_UPDATE_TS_RECENT) 3645 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3646 3647 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3648 /* Window is constant, pure forward advance. 3649 * No more checks are required. 3650 * Note, we use the fact that SND.UNA>=SND.WL2. 3651 */ 3652 tcp_update_wl(tp, ack_seq); 3653 tcp_snd_una_update(tp, ack); 3654 flag |= FLAG_WIN_UPDATE; 3655 3656 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3657 3658 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3659 } else { 3660 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3661 3662 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3663 flag |= FLAG_DATA; 3664 else 3665 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3666 3667 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3668 3669 if (TCP_SKB_CB(skb)->sacked) 3670 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3671 &sack_state); 3672 3673 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3674 flag |= FLAG_ECE; 3675 ack_ev_flags |= CA_ACK_ECE; 3676 } 3677 3678 if (flag & FLAG_WIN_UPDATE) 3679 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3680 3681 tcp_in_ack_event(sk, ack_ev_flags); 3682 } 3683 3684 /* We passed data and got it acked, remove any soft error 3685 * log. Something worked... 3686 */ 3687 sk->sk_err_soft = 0; 3688 icsk->icsk_probes_out = 0; 3689 tp->rcv_tstamp = tcp_time_stamp; 3690 if (!prior_packets) 3691 goto no_queue; 3692 3693 /* See if we can take anything off of the retransmit queue. */ 3694 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3695 &sack_state, &now); 3696 3697 if (tcp_ack_is_dubious(sk, flag)) { 3698 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3699 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3700 } 3701 if (tp->tlp_high_seq) 3702 tcp_process_tlp_ack(sk, ack, flag); 3703 3704 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3705 struct dst_entry *dst = __sk_dst_get(sk); 3706 if (dst) 3707 dst_confirm(dst); 3708 } 3709 3710 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3711 tcp_schedule_loss_probe(sk); 3712 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3713 lost = tp->lost - lost; /* freshly marked lost */ 3714 tcp_rate_gen(sk, delivered, lost, &now, &rs); 3715 tcp_cong_control(sk, ack, delivered, flag, &rs); 3716 tcp_xmit_recovery(sk, rexmit); 3717 return 1; 3718 3719 no_queue: 3720 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3721 if (flag & FLAG_DSACKING_ACK) 3722 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3723 /* If this ack opens up a zero window, clear backoff. It was 3724 * being used to time the probes, and is probably far higher than 3725 * it needs to be for normal retransmission. 3726 */ 3727 if (tcp_send_head(sk)) 3728 tcp_ack_probe(sk); 3729 3730 if (tp->tlp_high_seq) 3731 tcp_process_tlp_ack(sk, ack, flag); 3732 return 1; 3733 3734 invalid_ack: 3735 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3736 return -1; 3737 3738 old_ack: 3739 /* If data was SACKed, tag it and see if we should send more data. 3740 * If data was DSACKed, see if we can undo a cwnd reduction. 3741 */ 3742 if (TCP_SKB_CB(skb)->sacked) { 3743 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3744 &sack_state); 3745 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3746 tcp_xmit_recovery(sk, rexmit); 3747 } 3748 3749 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3750 return 0; 3751 } 3752 3753 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3754 bool syn, struct tcp_fastopen_cookie *foc, 3755 bool exp_opt) 3756 { 3757 /* Valid only in SYN or SYN-ACK with an even length. */ 3758 if (!foc || !syn || len < 0 || (len & 1)) 3759 return; 3760 3761 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3762 len <= TCP_FASTOPEN_COOKIE_MAX) 3763 memcpy(foc->val, cookie, len); 3764 else if (len != 0) 3765 len = -1; 3766 foc->len = len; 3767 foc->exp = exp_opt; 3768 } 3769 3770 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3771 * But, this can also be called on packets in the established flow when 3772 * the fast version below fails. 3773 */ 3774 void tcp_parse_options(const struct sk_buff *skb, 3775 struct tcp_options_received *opt_rx, int estab, 3776 struct tcp_fastopen_cookie *foc) 3777 { 3778 const unsigned char *ptr; 3779 const struct tcphdr *th = tcp_hdr(skb); 3780 int length = (th->doff * 4) - sizeof(struct tcphdr); 3781 3782 ptr = (const unsigned char *)(th + 1); 3783 opt_rx->saw_tstamp = 0; 3784 3785 while (length > 0) { 3786 int opcode = *ptr++; 3787 int opsize; 3788 3789 switch (opcode) { 3790 case TCPOPT_EOL: 3791 return; 3792 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3793 length--; 3794 continue; 3795 default: 3796 opsize = *ptr++; 3797 if (opsize < 2) /* "silly options" */ 3798 return; 3799 if (opsize > length) 3800 return; /* don't parse partial options */ 3801 switch (opcode) { 3802 case TCPOPT_MSS: 3803 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3804 u16 in_mss = get_unaligned_be16(ptr); 3805 if (in_mss) { 3806 if (opt_rx->user_mss && 3807 opt_rx->user_mss < in_mss) 3808 in_mss = opt_rx->user_mss; 3809 opt_rx->mss_clamp = in_mss; 3810 } 3811 } 3812 break; 3813 case TCPOPT_WINDOW: 3814 if (opsize == TCPOLEN_WINDOW && th->syn && 3815 !estab && sysctl_tcp_window_scaling) { 3816 __u8 snd_wscale = *(__u8 *)ptr; 3817 opt_rx->wscale_ok = 1; 3818 if (snd_wscale > 14) { 3819 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3820 __func__, 3821 snd_wscale); 3822 snd_wscale = 14; 3823 } 3824 opt_rx->snd_wscale = snd_wscale; 3825 } 3826 break; 3827 case TCPOPT_TIMESTAMP: 3828 if ((opsize == TCPOLEN_TIMESTAMP) && 3829 ((estab && opt_rx->tstamp_ok) || 3830 (!estab && sysctl_tcp_timestamps))) { 3831 opt_rx->saw_tstamp = 1; 3832 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3833 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3834 } 3835 break; 3836 case TCPOPT_SACK_PERM: 3837 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3838 !estab && sysctl_tcp_sack) { 3839 opt_rx->sack_ok = TCP_SACK_SEEN; 3840 tcp_sack_reset(opt_rx); 3841 } 3842 break; 3843 3844 case TCPOPT_SACK: 3845 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3846 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3847 opt_rx->sack_ok) { 3848 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3849 } 3850 break; 3851 #ifdef CONFIG_TCP_MD5SIG 3852 case TCPOPT_MD5SIG: 3853 /* 3854 * The MD5 Hash has already been 3855 * checked (see tcp_v{4,6}_do_rcv()). 3856 */ 3857 break; 3858 #endif 3859 case TCPOPT_FASTOPEN: 3860 tcp_parse_fastopen_option( 3861 opsize - TCPOLEN_FASTOPEN_BASE, 3862 ptr, th->syn, foc, false); 3863 break; 3864 3865 case TCPOPT_EXP: 3866 /* Fast Open option shares code 254 using a 3867 * 16 bits magic number. 3868 */ 3869 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3870 get_unaligned_be16(ptr) == 3871 TCPOPT_FASTOPEN_MAGIC) 3872 tcp_parse_fastopen_option(opsize - 3873 TCPOLEN_EXP_FASTOPEN_BASE, 3874 ptr + 2, th->syn, foc, true); 3875 break; 3876 3877 } 3878 ptr += opsize-2; 3879 length -= opsize; 3880 } 3881 } 3882 } 3883 EXPORT_SYMBOL(tcp_parse_options); 3884 3885 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3886 { 3887 const __be32 *ptr = (const __be32 *)(th + 1); 3888 3889 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3890 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3891 tp->rx_opt.saw_tstamp = 1; 3892 ++ptr; 3893 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3894 ++ptr; 3895 if (*ptr) 3896 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3897 else 3898 tp->rx_opt.rcv_tsecr = 0; 3899 return true; 3900 } 3901 return false; 3902 } 3903 3904 /* Fast parse options. This hopes to only see timestamps. 3905 * If it is wrong it falls back on tcp_parse_options(). 3906 */ 3907 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3908 const struct tcphdr *th, struct tcp_sock *tp) 3909 { 3910 /* In the spirit of fast parsing, compare doff directly to constant 3911 * values. Because equality is used, short doff can be ignored here. 3912 */ 3913 if (th->doff == (sizeof(*th) / 4)) { 3914 tp->rx_opt.saw_tstamp = 0; 3915 return false; 3916 } else if (tp->rx_opt.tstamp_ok && 3917 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3918 if (tcp_parse_aligned_timestamp(tp, th)) 3919 return true; 3920 } 3921 3922 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3923 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3924 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3925 3926 return true; 3927 } 3928 3929 #ifdef CONFIG_TCP_MD5SIG 3930 /* 3931 * Parse MD5 Signature option 3932 */ 3933 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3934 { 3935 int length = (th->doff << 2) - sizeof(*th); 3936 const u8 *ptr = (const u8 *)(th + 1); 3937 3938 /* If the TCP option is too short, we can short cut */ 3939 if (length < TCPOLEN_MD5SIG) 3940 return NULL; 3941 3942 while (length > 0) { 3943 int opcode = *ptr++; 3944 int opsize; 3945 3946 switch (opcode) { 3947 case TCPOPT_EOL: 3948 return NULL; 3949 case TCPOPT_NOP: 3950 length--; 3951 continue; 3952 default: 3953 opsize = *ptr++; 3954 if (opsize < 2 || opsize > length) 3955 return NULL; 3956 if (opcode == TCPOPT_MD5SIG) 3957 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3958 } 3959 ptr += opsize - 2; 3960 length -= opsize; 3961 } 3962 return NULL; 3963 } 3964 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3965 #endif 3966 3967 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3968 * 3969 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3970 * it can pass through stack. So, the following predicate verifies that 3971 * this segment is not used for anything but congestion avoidance or 3972 * fast retransmit. Moreover, we even are able to eliminate most of such 3973 * second order effects, if we apply some small "replay" window (~RTO) 3974 * to timestamp space. 3975 * 3976 * All these measures still do not guarantee that we reject wrapped ACKs 3977 * on networks with high bandwidth, when sequence space is recycled fastly, 3978 * but it guarantees that such events will be very rare and do not affect 3979 * connection seriously. This doesn't look nice, but alas, PAWS is really 3980 * buggy extension. 3981 * 3982 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3983 * states that events when retransmit arrives after original data are rare. 3984 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3985 * the biggest problem on large power networks even with minor reordering. 3986 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3987 * up to bandwidth of 18Gigabit/sec. 8) ] 3988 */ 3989 3990 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3991 { 3992 const struct tcp_sock *tp = tcp_sk(sk); 3993 const struct tcphdr *th = tcp_hdr(skb); 3994 u32 seq = TCP_SKB_CB(skb)->seq; 3995 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3996 3997 return (/* 1. Pure ACK with correct sequence number. */ 3998 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3999 4000 /* 2. ... and duplicate ACK. */ 4001 ack == tp->snd_una && 4002 4003 /* 3. ... and does not update window. */ 4004 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4005 4006 /* 4. ... and sits in replay window. */ 4007 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4008 } 4009 4010 static inline bool tcp_paws_discard(const struct sock *sk, 4011 const struct sk_buff *skb) 4012 { 4013 const struct tcp_sock *tp = tcp_sk(sk); 4014 4015 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4016 !tcp_disordered_ack(sk, skb); 4017 } 4018 4019 /* Check segment sequence number for validity. 4020 * 4021 * Segment controls are considered valid, if the segment 4022 * fits to the window after truncation to the window. Acceptability 4023 * of data (and SYN, FIN, of course) is checked separately. 4024 * See tcp_data_queue(), for example. 4025 * 4026 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4027 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4028 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4029 * (borrowed from freebsd) 4030 */ 4031 4032 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4033 { 4034 return !before(end_seq, tp->rcv_wup) && 4035 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4036 } 4037 4038 /* When we get a reset we do this. */ 4039 void tcp_reset(struct sock *sk) 4040 { 4041 /* We want the right error as BSD sees it (and indeed as we do). */ 4042 switch (sk->sk_state) { 4043 case TCP_SYN_SENT: 4044 sk->sk_err = ECONNREFUSED; 4045 break; 4046 case TCP_CLOSE_WAIT: 4047 sk->sk_err = EPIPE; 4048 break; 4049 case TCP_CLOSE: 4050 return; 4051 default: 4052 sk->sk_err = ECONNRESET; 4053 } 4054 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4055 smp_wmb(); 4056 4057 if (!sock_flag(sk, SOCK_DEAD)) 4058 sk->sk_error_report(sk); 4059 4060 tcp_done(sk); 4061 } 4062 4063 /* 4064 * Process the FIN bit. This now behaves as it is supposed to work 4065 * and the FIN takes effect when it is validly part of sequence 4066 * space. Not before when we get holes. 4067 * 4068 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4069 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4070 * TIME-WAIT) 4071 * 4072 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4073 * close and we go into CLOSING (and later onto TIME-WAIT) 4074 * 4075 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4076 */ 4077 void tcp_fin(struct sock *sk) 4078 { 4079 struct tcp_sock *tp = tcp_sk(sk); 4080 4081 inet_csk_schedule_ack(sk); 4082 4083 sk->sk_shutdown |= RCV_SHUTDOWN; 4084 sock_set_flag(sk, SOCK_DONE); 4085 4086 switch (sk->sk_state) { 4087 case TCP_SYN_RECV: 4088 case TCP_ESTABLISHED: 4089 /* Move to CLOSE_WAIT */ 4090 tcp_set_state(sk, TCP_CLOSE_WAIT); 4091 inet_csk(sk)->icsk_ack.pingpong = 1; 4092 break; 4093 4094 case TCP_CLOSE_WAIT: 4095 case TCP_CLOSING: 4096 /* Received a retransmission of the FIN, do 4097 * nothing. 4098 */ 4099 break; 4100 case TCP_LAST_ACK: 4101 /* RFC793: Remain in the LAST-ACK state. */ 4102 break; 4103 4104 case TCP_FIN_WAIT1: 4105 /* This case occurs when a simultaneous close 4106 * happens, we must ack the received FIN and 4107 * enter the CLOSING state. 4108 */ 4109 tcp_send_ack(sk); 4110 tcp_set_state(sk, TCP_CLOSING); 4111 break; 4112 case TCP_FIN_WAIT2: 4113 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4114 tcp_send_ack(sk); 4115 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4116 break; 4117 default: 4118 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4119 * cases we should never reach this piece of code. 4120 */ 4121 pr_err("%s: Impossible, sk->sk_state=%d\n", 4122 __func__, sk->sk_state); 4123 break; 4124 } 4125 4126 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4127 * Probably, we should reset in this case. For now drop them. 4128 */ 4129 skb_rbtree_purge(&tp->out_of_order_queue); 4130 if (tcp_is_sack(tp)) 4131 tcp_sack_reset(&tp->rx_opt); 4132 sk_mem_reclaim(sk); 4133 4134 if (!sock_flag(sk, SOCK_DEAD)) { 4135 sk->sk_state_change(sk); 4136 4137 /* Do not send POLL_HUP for half duplex close. */ 4138 if (sk->sk_shutdown == SHUTDOWN_MASK || 4139 sk->sk_state == TCP_CLOSE) 4140 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4141 else 4142 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4143 } 4144 } 4145 4146 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4147 u32 end_seq) 4148 { 4149 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4150 if (before(seq, sp->start_seq)) 4151 sp->start_seq = seq; 4152 if (after(end_seq, sp->end_seq)) 4153 sp->end_seq = end_seq; 4154 return true; 4155 } 4156 return false; 4157 } 4158 4159 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4160 { 4161 struct tcp_sock *tp = tcp_sk(sk); 4162 4163 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4164 int mib_idx; 4165 4166 if (before(seq, tp->rcv_nxt)) 4167 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4168 else 4169 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4170 4171 NET_INC_STATS(sock_net(sk), mib_idx); 4172 4173 tp->rx_opt.dsack = 1; 4174 tp->duplicate_sack[0].start_seq = seq; 4175 tp->duplicate_sack[0].end_seq = end_seq; 4176 } 4177 } 4178 4179 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4180 { 4181 struct tcp_sock *tp = tcp_sk(sk); 4182 4183 if (!tp->rx_opt.dsack) 4184 tcp_dsack_set(sk, seq, end_seq); 4185 else 4186 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4187 } 4188 4189 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4190 { 4191 struct tcp_sock *tp = tcp_sk(sk); 4192 4193 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4194 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4195 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4196 tcp_enter_quickack_mode(sk); 4197 4198 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4199 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4200 4201 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4202 end_seq = tp->rcv_nxt; 4203 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4204 } 4205 } 4206 4207 tcp_send_ack(sk); 4208 } 4209 4210 /* These routines update the SACK block as out-of-order packets arrive or 4211 * in-order packets close up the sequence space. 4212 */ 4213 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4214 { 4215 int this_sack; 4216 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4217 struct tcp_sack_block *swalk = sp + 1; 4218 4219 /* See if the recent change to the first SACK eats into 4220 * or hits the sequence space of other SACK blocks, if so coalesce. 4221 */ 4222 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4223 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4224 int i; 4225 4226 /* Zap SWALK, by moving every further SACK up by one slot. 4227 * Decrease num_sacks. 4228 */ 4229 tp->rx_opt.num_sacks--; 4230 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4231 sp[i] = sp[i + 1]; 4232 continue; 4233 } 4234 this_sack++, swalk++; 4235 } 4236 } 4237 4238 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4239 { 4240 struct tcp_sock *tp = tcp_sk(sk); 4241 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4242 int cur_sacks = tp->rx_opt.num_sacks; 4243 int this_sack; 4244 4245 if (!cur_sacks) 4246 goto new_sack; 4247 4248 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4249 if (tcp_sack_extend(sp, seq, end_seq)) { 4250 /* Rotate this_sack to the first one. */ 4251 for (; this_sack > 0; this_sack--, sp--) 4252 swap(*sp, *(sp - 1)); 4253 if (cur_sacks > 1) 4254 tcp_sack_maybe_coalesce(tp); 4255 return; 4256 } 4257 } 4258 4259 /* Could not find an adjacent existing SACK, build a new one, 4260 * put it at the front, and shift everyone else down. We 4261 * always know there is at least one SACK present already here. 4262 * 4263 * If the sack array is full, forget about the last one. 4264 */ 4265 if (this_sack >= TCP_NUM_SACKS) { 4266 this_sack--; 4267 tp->rx_opt.num_sacks--; 4268 sp--; 4269 } 4270 for (; this_sack > 0; this_sack--, sp--) 4271 *sp = *(sp - 1); 4272 4273 new_sack: 4274 /* Build the new head SACK, and we're done. */ 4275 sp->start_seq = seq; 4276 sp->end_seq = end_seq; 4277 tp->rx_opt.num_sacks++; 4278 } 4279 4280 /* RCV.NXT advances, some SACKs should be eaten. */ 4281 4282 static void tcp_sack_remove(struct tcp_sock *tp) 4283 { 4284 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4285 int num_sacks = tp->rx_opt.num_sacks; 4286 int this_sack; 4287 4288 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4289 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4290 tp->rx_opt.num_sacks = 0; 4291 return; 4292 } 4293 4294 for (this_sack = 0; this_sack < num_sacks;) { 4295 /* Check if the start of the sack is covered by RCV.NXT. */ 4296 if (!before(tp->rcv_nxt, sp->start_seq)) { 4297 int i; 4298 4299 /* RCV.NXT must cover all the block! */ 4300 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4301 4302 /* Zap this SACK, by moving forward any other SACKS. */ 4303 for (i = this_sack+1; i < num_sacks; i++) 4304 tp->selective_acks[i-1] = tp->selective_acks[i]; 4305 num_sacks--; 4306 continue; 4307 } 4308 this_sack++; 4309 sp++; 4310 } 4311 tp->rx_opt.num_sacks = num_sacks; 4312 } 4313 4314 /** 4315 * tcp_try_coalesce - try to merge skb to prior one 4316 * @sk: socket 4317 * @to: prior buffer 4318 * @from: buffer to add in queue 4319 * @fragstolen: pointer to boolean 4320 * 4321 * Before queueing skb @from after @to, try to merge them 4322 * to reduce overall memory use and queue lengths, if cost is small. 4323 * Packets in ofo or receive queues can stay a long time. 4324 * Better try to coalesce them right now to avoid future collapses. 4325 * Returns true if caller should free @from instead of queueing it 4326 */ 4327 static bool tcp_try_coalesce(struct sock *sk, 4328 struct sk_buff *to, 4329 struct sk_buff *from, 4330 bool *fragstolen) 4331 { 4332 int delta; 4333 4334 *fragstolen = false; 4335 4336 /* Its possible this segment overlaps with prior segment in queue */ 4337 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4338 return false; 4339 4340 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4341 return false; 4342 4343 atomic_add(delta, &sk->sk_rmem_alloc); 4344 sk_mem_charge(sk, delta); 4345 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4346 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4347 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4348 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4349 return true; 4350 } 4351 4352 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4353 { 4354 sk_drops_add(sk, skb); 4355 __kfree_skb(skb); 4356 } 4357 4358 /* This one checks to see if we can put data from the 4359 * out_of_order queue into the receive_queue. 4360 */ 4361 static void tcp_ofo_queue(struct sock *sk) 4362 { 4363 struct tcp_sock *tp = tcp_sk(sk); 4364 __u32 dsack_high = tp->rcv_nxt; 4365 bool fin, fragstolen, eaten; 4366 struct sk_buff *skb, *tail; 4367 struct rb_node *p; 4368 4369 p = rb_first(&tp->out_of_order_queue); 4370 while (p) { 4371 skb = rb_entry(p, struct sk_buff, rbnode); 4372 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4373 break; 4374 4375 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4376 __u32 dsack = dsack_high; 4377 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4378 dsack_high = TCP_SKB_CB(skb)->end_seq; 4379 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4380 } 4381 p = rb_next(p); 4382 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4383 4384 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4385 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4386 tcp_drop(sk, skb); 4387 continue; 4388 } 4389 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4390 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4391 TCP_SKB_CB(skb)->end_seq); 4392 4393 tail = skb_peek_tail(&sk->sk_receive_queue); 4394 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4395 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4396 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4397 if (!eaten) 4398 __skb_queue_tail(&sk->sk_receive_queue, skb); 4399 else 4400 kfree_skb_partial(skb, fragstolen); 4401 4402 if (unlikely(fin)) { 4403 tcp_fin(sk); 4404 /* tcp_fin() purges tp->out_of_order_queue, 4405 * so we must end this loop right now. 4406 */ 4407 break; 4408 } 4409 } 4410 } 4411 4412 static bool tcp_prune_ofo_queue(struct sock *sk); 4413 static int tcp_prune_queue(struct sock *sk); 4414 4415 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4416 unsigned int size) 4417 { 4418 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4419 !sk_rmem_schedule(sk, skb, size)) { 4420 4421 if (tcp_prune_queue(sk) < 0) 4422 return -1; 4423 4424 while (!sk_rmem_schedule(sk, skb, size)) { 4425 if (!tcp_prune_ofo_queue(sk)) 4426 return -1; 4427 } 4428 } 4429 return 0; 4430 } 4431 4432 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4433 { 4434 struct tcp_sock *tp = tcp_sk(sk); 4435 struct rb_node **p, *q, *parent; 4436 struct sk_buff *skb1; 4437 u32 seq, end_seq; 4438 bool fragstolen; 4439 4440 tcp_ecn_check_ce(tp, skb); 4441 4442 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4443 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4444 tcp_drop(sk, skb); 4445 return; 4446 } 4447 4448 /* Disable header prediction. */ 4449 tp->pred_flags = 0; 4450 inet_csk_schedule_ack(sk); 4451 4452 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4453 seq = TCP_SKB_CB(skb)->seq; 4454 end_seq = TCP_SKB_CB(skb)->end_seq; 4455 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4456 tp->rcv_nxt, seq, end_seq); 4457 4458 p = &tp->out_of_order_queue.rb_node; 4459 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4460 /* Initial out of order segment, build 1 SACK. */ 4461 if (tcp_is_sack(tp)) { 4462 tp->rx_opt.num_sacks = 1; 4463 tp->selective_acks[0].start_seq = seq; 4464 tp->selective_acks[0].end_seq = end_seq; 4465 } 4466 rb_link_node(&skb->rbnode, NULL, p); 4467 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4468 tp->ooo_last_skb = skb; 4469 goto end; 4470 } 4471 4472 /* In the typical case, we are adding an skb to the end of the list. 4473 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4474 */ 4475 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) { 4476 coalesce_done: 4477 tcp_grow_window(sk, skb); 4478 kfree_skb_partial(skb, fragstolen); 4479 skb = NULL; 4480 goto add_sack; 4481 } 4482 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4483 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4484 parent = &tp->ooo_last_skb->rbnode; 4485 p = &parent->rb_right; 4486 goto insert; 4487 } 4488 4489 /* Find place to insert this segment. Handle overlaps on the way. */ 4490 parent = NULL; 4491 while (*p) { 4492 parent = *p; 4493 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4494 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4495 p = &parent->rb_left; 4496 continue; 4497 } 4498 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4499 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4500 /* All the bits are present. Drop. */ 4501 NET_INC_STATS(sock_net(sk), 4502 LINUX_MIB_TCPOFOMERGE); 4503 __kfree_skb(skb); 4504 skb = NULL; 4505 tcp_dsack_set(sk, seq, end_seq); 4506 goto add_sack; 4507 } 4508 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4509 /* Partial overlap. */ 4510 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4511 } else { 4512 /* skb's seq == skb1's seq and skb covers skb1. 4513 * Replace skb1 with skb. 4514 */ 4515 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4516 &tp->out_of_order_queue); 4517 tcp_dsack_extend(sk, 4518 TCP_SKB_CB(skb1)->seq, 4519 TCP_SKB_CB(skb1)->end_seq); 4520 NET_INC_STATS(sock_net(sk), 4521 LINUX_MIB_TCPOFOMERGE); 4522 __kfree_skb(skb1); 4523 goto merge_right; 4524 } 4525 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4526 goto coalesce_done; 4527 } 4528 p = &parent->rb_right; 4529 } 4530 insert: 4531 /* Insert segment into RB tree. */ 4532 rb_link_node(&skb->rbnode, parent, p); 4533 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4534 4535 merge_right: 4536 /* Remove other segments covered by skb. */ 4537 while ((q = rb_next(&skb->rbnode)) != NULL) { 4538 skb1 = rb_entry(q, struct sk_buff, rbnode); 4539 4540 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4541 break; 4542 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4543 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4544 end_seq); 4545 break; 4546 } 4547 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4548 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4549 TCP_SKB_CB(skb1)->end_seq); 4550 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4551 tcp_drop(sk, skb1); 4552 } 4553 /* If there is no skb after us, we are the last_skb ! */ 4554 if (!q) 4555 tp->ooo_last_skb = skb; 4556 4557 add_sack: 4558 if (tcp_is_sack(tp)) 4559 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4560 end: 4561 if (skb) { 4562 tcp_grow_window(sk, skb); 4563 skb_set_owner_r(skb, sk); 4564 } 4565 } 4566 4567 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4568 bool *fragstolen) 4569 { 4570 int eaten; 4571 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4572 4573 __skb_pull(skb, hdrlen); 4574 eaten = (tail && 4575 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4576 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4577 if (!eaten) { 4578 __skb_queue_tail(&sk->sk_receive_queue, skb); 4579 skb_set_owner_r(skb, sk); 4580 } 4581 return eaten; 4582 } 4583 4584 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4585 { 4586 struct sk_buff *skb; 4587 int err = -ENOMEM; 4588 int data_len = 0; 4589 bool fragstolen; 4590 4591 if (size == 0) 4592 return 0; 4593 4594 if (size > PAGE_SIZE) { 4595 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4596 4597 data_len = npages << PAGE_SHIFT; 4598 size = data_len + (size & ~PAGE_MASK); 4599 } 4600 skb = alloc_skb_with_frags(size - data_len, data_len, 4601 PAGE_ALLOC_COSTLY_ORDER, 4602 &err, sk->sk_allocation); 4603 if (!skb) 4604 goto err; 4605 4606 skb_put(skb, size - data_len); 4607 skb->data_len = data_len; 4608 skb->len = size; 4609 4610 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4611 goto err_free; 4612 4613 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4614 if (err) 4615 goto err_free; 4616 4617 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4618 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4619 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4620 4621 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4622 WARN_ON_ONCE(fragstolen); /* should not happen */ 4623 __kfree_skb(skb); 4624 } 4625 return size; 4626 4627 err_free: 4628 kfree_skb(skb); 4629 err: 4630 return err; 4631 4632 } 4633 4634 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4635 { 4636 struct tcp_sock *tp = tcp_sk(sk); 4637 bool fragstolen = false; 4638 int eaten = -1; 4639 4640 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4641 __kfree_skb(skb); 4642 return; 4643 } 4644 skb_dst_drop(skb); 4645 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4646 4647 tcp_ecn_accept_cwr(tp, skb); 4648 4649 tp->rx_opt.dsack = 0; 4650 4651 /* Queue data for delivery to the user. 4652 * Packets in sequence go to the receive queue. 4653 * Out of sequence packets to the out_of_order_queue. 4654 */ 4655 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4656 if (tcp_receive_window(tp) == 0) 4657 goto out_of_window; 4658 4659 /* Ok. In sequence. In window. */ 4660 if (tp->ucopy.task == current && 4661 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4662 sock_owned_by_user(sk) && !tp->urg_data) { 4663 int chunk = min_t(unsigned int, skb->len, 4664 tp->ucopy.len); 4665 4666 __set_current_state(TASK_RUNNING); 4667 4668 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4669 tp->ucopy.len -= chunk; 4670 tp->copied_seq += chunk; 4671 eaten = (chunk == skb->len); 4672 tcp_rcv_space_adjust(sk); 4673 } 4674 } 4675 4676 if (eaten <= 0) { 4677 queue_and_out: 4678 if (eaten < 0) { 4679 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4680 sk_forced_mem_schedule(sk, skb->truesize); 4681 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4682 goto drop; 4683 } 4684 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4685 } 4686 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4687 if (skb->len) 4688 tcp_event_data_recv(sk, skb); 4689 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4690 tcp_fin(sk); 4691 4692 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4693 tcp_ofo_queue(sk); 4694 4695 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4696 * gap in queue is filled. 4697 */ 4698 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4699 inet_csk(sk)->icsk_ack.pingpong = 0; 4700 } 4701 4702 if (tp->rx_opt.num_sacks) 4703 tcp_sack_remove(tp); 4704 4705 tcp_fast_path_check(sk); 4706 4707 if (eaten > 0) 4708 kfree_skb_partial(skb, fragstolen); 4709 if (!sock_flag(sk, SOCK_DEAD)) 4710 sk->sk_data_ready(sk); 4711 return; 4712 } 4713 4714 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4715 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4716 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4717 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4718 4719 out_of_window: 4720 tcp_enter_quickack_mode(sk); 4721 inet_csk_schedule_ack(sk); 4722 drop: 4723 tcp_drop(sk, skb); 4724 return; 4725 } 4726 4727 /* Out of window. F.e. zero window probe. */ 4728 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4729 goto out_of_window; 4730 4731 tcp_enter_quickack_mode(sk); 4732 4733 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4734 /* Partial packet, seq < rcv_next < end_seq */ 4735 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4736 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4737 TCP_SKB_CB(skb)->end_seq); 4738 4739 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4740 4741 /* If window is closed, drop tail of packet. But after 4742 * remembering D-SACK for its head made in previous line. 4743 */ 4744 if (!tcp_receive_window(tp)) 4745 goto out_of_window; 4746 goto queue_and_out; 4747 } 4748 4749 tcp_data_queue_ofo(sk, skb); 4750 } 4751 4752 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4753 { 4754 if (list) 4755 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4756 4757 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode); 4758 } 4759 4760 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4761 struct sk_buff_head *list, 4762 struct rb_root *root) 4763 { 4764 struct sk_buff *next = tcp_skb_next(skb, list); 4765 4766 if (list) 4767 __skb_unlink(skb, list); 4768 else 4769 rb_erase(&skb->rbnode, root); 4770 4771 __kfree_skb(skb); 4772 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4773 4774 return next; 4775 } 4776 4777 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4778 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4779 { 4780 struct rb_node **p = &root->rb_node; 4781 struct rb_node *parent = NULL; 4782 struct sk_buff *skb1; 4783 4784 while (*p) { 4785 parent = *p; 4786 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4787 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4788 p = &parent->rb_left; 4789 else 4790 p = &parent->rb_right; 4791 } 4792 rb_link_node(&skb->rbnode, parent, p); 4793 rb_insert_color(&skb->rbnode, root); 4794 } 4795 4796 /* Collapse contiguous sequence of skbs head..tail with 4797 * sequence numbers start..end. 4798 * 4799 * If tail is NULL, this means until the end of the queue. 4800 * 4801 * Segments with FIN/SYN are not collapsed (only because this 4802 * simplifies code) 4803 */ 4804 static void 4805 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4806 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4807 { 4808 struct sk_buff *skb = head, *n; 4809 struct sk_buff_head tmp; 4810 bool end_of_skbs; 4811 4812 /* First, check that queue is collapsible and find 4813 * the point where collapsing can be useful. 4814 */ 4815 restart: 4816 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4817 n = tcp_skb_next(skb, list); 4818 4819 /* No new bits? It is possible on ofo queue. */ 4820 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4821 skb = tcp_collapse_one(sk, skb, list, root); 4822 if (!skb) 4823 break; 4824 goto restart; 4825 } 4826 4827 /* The first skb to collapse is: 4828 * - not SYN/FIN and 4829 * - bloated or contains data before "start" or 4830 * overlaps to the next one. 4831 */ 4832 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4833 (tcp_win_from_space(skb->truesize) > skb->len || 4834 before(TCP_SKB_CB(skb)->seq, start))) { 4835 end_of_skbs = false; 4836 break; 4837 } 4838 4839 if (n && n != tail && 4840 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4841 end_of_skbs = false; 4842 break; 4843 } 4844 4845 /* Decided to skip this, advance start seq. */ 4846 start = TCP_SKB_CB(skb)->end_seq; 4847 } 4848 if (end_of_skbs || 4849 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4850 return; 4851 4852 __skb_queue_head_init(&tmp); 4853 4854 while (before(start, end)) { 4855 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4856 struct sk_buff *nskb; 4857 4858 nskb = alloc_skb(copy, GFP_ATOMIC); 4859 if (!nskb) 4860 break; 4861 4862 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4863 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4864 if (list) 4865 __skb_queue_before(list, skb, nskb); 4866 else 4867 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4868 skb_set_owner_r(nskb, sk); 4869 4870 /* Copy data, releasing collapsed skbs. */ 4871 while (copy > 0) { 4872 int offset = start - TCP_SKB_CB(skb)->seq; 4873 int size = TCP_SKB_CB(skb)->end_seq - start; 4874 4875 BUG_ON(offset < 0); 4876 if (size > 0) { 4877 size = min(copy, size); 4878 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4879 BUG(); 4880 TCP_SKB_CB(nskb)->end_seq += size; 4881 copy -= size; 4882 start += size; 4883 } 4884 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4885 skb = tcp_collapse_one(sk, skb, list, root); 4886 if (!skb || 4887 skb == tail || 4888 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4889 goto end; 4890 } 4891 } 4892 } 4893 end: 4894 skb_queue_walk_safe(&tmp, skb, n) 4895 tcp_rbtree_insert(root, skb); 4896 } 4897 4898 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4899 * and tcp_collapse() them until all the queue is collapsed. 4900 */ 4901 static void tcp_collapse_ofo_queue(struct sock *sk) 4902 { 4903 struct tcp_sock *tp = tcp_sk(sk); 4904 struct sk_buff *skb, *head; 4905 struct rb_node *p; 4906 u32 start, end; 4907 4908 p = rb_first(&tp->out_of_order_queue); 4909 skb = rb_entry_safe(p, struct sk_buff, rbnode); 4910 new_range: 4911 if (!skb) { 4912 p = rb_last(&tp->out_of_order_queue); 4913 /* Note: This is possible p is NULL here. We do not 4914 * use rb_entry_safe(), as ooo_last_skb is valid only 4915 * if rbtree is not empty. 4916 */ 4917 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode); 4918 return; 4919 } 4920 start = TCP_SKB_CB(skb)->seq; 4921 end = TCP_SKB_CB(skb)->end_seq; 4922 4923 for (head = skb;;) { 4924 skb = tcp_skb_next(skb, NULL); 4925 4926 /* Range is terminated when we see a gap or when 4927 * we are at the queue end. 4928 */ 4929 if (!skb || 4930 after(TCP_SKB_CB(skb)->seq, end) || 4931 before(TCP_SKB_CB(skb)->end_seq, start)) { 4932 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4933 head, skb, start, end); 4934 goto new_range; 4935 } 4936 4937 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4938 start = TCP_SKB_CB(skb)->seq; 4939 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4940 end = TCP_SKB_CB(skb)->end_seq; 4941 } 4942 } 4943 4944 /* 4945 * Clean the out-of-order queue to make room. 4946 * We drop high sequences packets to : 4947 * 1) Let a chance for holes to be filled. 4948 * 2) not add too big latencies if thousands of packets sit there. 4949 * (But if application shrinks SO_RCVBUF, we could still end up 4950 * freeing whole queue here) 4951 * 4952 * Return true if queue has shrunk. 4953 */ 4954 static bool tcp_prune_ofo_queue(struct sock *sk) 4955 { 4956 struct tcp_sock *tp = tcp_sk(sk); 4957 struct rb_node *node, *prev; 4958 4959 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4960 return false; 4961 4962 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4963 node = &tp->ooo_last_skb->rbnode; 4964 do { 4965 prev = rb_prev(node); 4966 rb_erase(node, &tp->out_of_order_queue); 4967 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode)); 4968 sk_mem_reclaim(sk); 4969 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4970 !tcp_under_memory_pressure(sk)) 4971 break; 4972 node = prev; 4973 } while (node); 4974 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode); 4975 4976 /* Reset SACK state. A conforming SACK implementation will 4977 * do the same at a timeout based retransmit. When a connection 4978 * is in a sad state like this, we care only about integrity 4979 * of the connection not performance. 4980 */ 4981 if (tp->rx_opt.sack_ok) 4982 tcp_sack_reset(&tp->rx_opt); 4983 return true; 4984 } 4985 4986 /* Reduce allocated memory if we can, trying to get 4987 * the socket within its memory limits again. 4988 * 4989 * Return less than zero if we should start dropping frames 4990 * until the socket owning process reads some of the data 4991 * to stabilize the situation. 4992 */ 4993 static int tcp_prune_queue(struct sock *sk) 4994 { 4995 struct tcp_sock *tp = tcp_sk(sk); 4996 4997 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4998 4999 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5000 5001 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5002 tcp_clamp_window(sk); 5003 else if (tcp_under_memory_pressure(sk)) 5004 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5005 5006 tcp_collapse_ofo_queue(sk); 5007 if (!skb_queue_empty(&sk->sk_receive_queue)) 5008 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5009 skb_peek(&sk->sk_receive_queue), 5010 NULL, 5011 tp->copied_seq, tp->rcv_nxt); 5012 sk_mem_reclaim(sk); 5013 5014 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5015 return 0; 5016 5017 /* Collapsing did not help, destructive actions follow. 5018 * This must not ever occur. */ 5019 5020 tcp_prune_ofo_queue(sk); 5021 5022 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5023 return 0; 5024 5025 /* If we are really being abused, tell the caller to silently 5026 * drop receive data on the floor. It will get retransmitted 5027 * and hopefully then we'll have sufficient space. 5028 */ 5029 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5030 5031 /* Massive buffer overcommit. */ 5032 tp->pred_flags = 0; 5033 return -1; 5034 } 5035 5036 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5037 { 5038 const struct tcp_sock *tp = tcp_sk(sk); 5039 5040 /* If the user specified a specific send buffer setting, do 5041 * not modify it. 5042 */ 5043 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5044 return false; 5045 5046 /* If we are under global TCP memory pressure, do not expand. */ 5047 if (tcp_under_memory_pressure(sk)) 5048 return false; 5049 5050 /* If we are under soft global TCP memory pressure, do not expand. */ 5051 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5052 return false; 5053 5054 /* If we filled the congestion window, do not expand. */ 5055 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5056 return false; 5057 5058 return true; 5059 } 5060 5061 /* When incoming ACK allowed to free some skb from write_queue, 5062 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5063 * on the exit from tcp input handler. 5064 * 5065 * PROBLEM: sndbuf expansion does not work well with largesend. 5066 */ 5067 static void tcp_new_space(struct sock *sk) 5068 { 5069 struct tcp_sock *tp = tcp_sk(sk); 5070 5071 if (tcp_should_expand_sndbuf(sk)) { 5072 tcp_sndbuf_expand(sk); 5073 tp->snd_cwnd_stamp = tcp_time_stamp; 5074 } 5075 5076 sk->sk_write_space(sk); 5077 } 5078 5079 static void tcp_check_space(struct sock *sk) 5080 { 5081 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5082 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5083 /* pairs with tcp_poll() */ 5084 smp_mb__after_atomic(); 5085 if (sk->sk_socket && 5086 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5087 tcp_new_space(sk); 5088 } 5089 } 5090 5091 static inline void tcp_data_snd_check(struct sock *sk) 5092 { 5093 tcp_push_pending_frames(sk); 5094 tcp_check_space(sk); 5095 } 5096 5097 /* 5098 * Check if sending an ack is needed. 5099 */ 5100 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5101 { 5102 struct tcp_sock *tp = tcp_sk(sk); 5103 5104 /* More than one full frame received... */ 5105 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5106 /* ... and right edge of window advances far enough. 5107 * (tcp_recvmsg() will send ACK otherwise). Or... 5108 */ 5109 __tcp_select_window(sk) >= tp->rcv_wnd) || 5110 /* We ACK each frame or... */ 5111 tcp_in_quickack_mode(sk) || 5112 /* We have out of order data. */ 5113 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5114 /* Then ack it now */ 5115 tcp_send_ack(sk); 5116 } else { 5117 /* Else, send delayed ack. */ 5118 tcp_send_delayed_ack(sk); 5119 } 5120 } 5121 5122 static inline void tcp_ack_snd_check(struct sock *sk) 5123 { 5124 if (!inet_csk_ack_scheduled(sk)) { 5125 /* We sent a data segment already. */ 5126 return; 5127 } 5128 __tcp_ack_snd_check(sk, 1); 5129 } 5130 5131 /* 5132 * This routine is only called when we have urgent data 5133 * signaled. Its the 'slow' part of tcp_urg. It could be 5134 * moved inline now as tcp_urg is only called from one 5135 * place. We handle URGent data wrong. We have to - as 5136 * BSD still doesn't use the correction from RFC961. 5137 * For 1003.1g we should support a new option TCP_STDURG to permit 5138 * either form (or just set the sysctl tcp_stdurg). 5139 */ 5140 5141 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5142 { 5143 struct tcp_sock *tp = tcp_sk(sk); 5144 u32 ptr = ntohs(th->urg_ptr); 5145 5146 if (ptr && !sysctl_tcp_stdurg) 5147 ptr--; 5148 ptr += ntohl(th->seq); 5149 5150 /* Ignore urgent data that we've already seen and read. */ 5151 if (after(tp->copied_seq, ptr)) 5152 return; 5153 5154 /* Do not replay urg ptr. 5155 * 5156 * NOTE: interesting situation not covered by specs. 5157 * Misbehaving sender may send urg ptr, pointing to segment, 5158 * which we already have in ofo queue. We are not able to fetch 5159 * such data and will stay in TCP_URG_NOTYET until will be eaten 5160 * by recvmsg(). Seems, we are not obliged to handle such wicked 5161 * situations. But it is worth to think about possibility of some 5162 * DoSes using some hypothetical application level deadlock. 5163 */ 5164 if (before(ptr, tp->rcv_nxt)) 5165 return; 5166 5167 /* Do we already have a newer (or duplicate) urgent pointer? */ 5168 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5169 return; 5170 5171 /* Tell the world about our new urgent pointer. */ 5172 sk_send_sigurg(sk); 5173 5174 /* We may be adding urgent data when the last byte read was 5175 * urgent. To do this requires some care. We cannot just ignore 5176 * tp->copied_seq since we would read the last urgent byte again 5177 * as data, nor can we alter copied_seq until this data arrives 5178 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5179 * 5180 * NOTE. Double Dutch. Rendering to plain English: author of comment 5181 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5182 * and expect that both A and B disappear from stream. This is _wrong_. 5183 * Though this happens in BSD with high probability, this is occasional. 5184 * Any application relying on this is buggy. Note also, that fix "works" 5185 * only in this artificial test. Insert some normal data between A and B and we will 5186 * decline of BSD again. Verdict: it is better to remove to trap 5187 * buggy users. 5188 */ 5189 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5190 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5191 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5192 tp->copied_seq++; 5193 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5194 __skb_unlink(skb, &sk->sk_receive_queue); 5195 __kfree_skb(skb); 5196 } 5197 } 5198 5199 tp->urg_data = TCP_URG_NOTYET; 5200 tp->urg_seq = ptr; 5201 5202 /* Disable header prediction. */ 5203 tp->pred_flags = 0; 5204 } 5205 5206 /* This is the 'fast' part of urgent handling. */ 5207 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5208 { 5209 struct tcp_sock *tp = tcp_sk(sk); 5210 5211 /* Check if we get a new urgent pointer - normally not. */ 5212 if (th->urg) 5213 tcp_check_urg(sk, th); 5214 5215 /* Do we wait for any urgent data? - normally not... */ 5216 if (tp->urg_data == TCP_URG_NOTYET) { 5217 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5218 th->syn; 5219 5220 /* Is the urgent pointer pointing into this packet? */ 5221 if (ptr < skb->len) { 5222 u8 tmp; 5223 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5224 BUG(); 5225 tp->urg_data = TCP_URG_VALID | tmp; 5226 if (!sock_flag(sk, SOCK_DEAD)) 5227 sk->sk_data_ready(sk); 5228 } 5229 } 5230 } 5231 5232 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5233 { 5234 struct tcp_sock *tp = tcp_sk(sk); 5235 int chunk = skb->len - hlen; 5236 int err; 5237 5238 if (skb_csum_unnecessary(skb)) 5239 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5240 else 5241 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5242 5243 if (!err) { 5244 tp->ucopy.len -= chunk; 5245 tp->copied_seq += chunk; 5246 tcp_rcv_space_adjust(sk); 5247 } 5248 5249 return err; 5250 } 5251 5252 /* Does PAWS and seqno based validation of an incoming segment, flags will 5253 * play significant role here. 5254 */ 5255 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5256 const struct tcphdr *th, int syn_inerr) 5257 { 5258 struct tcp_sock *tp = tcp_sk(sk); 5259 bool rst_seq_match = false; 5260 5261 /* RFC1323: H1. Apply PAWS check first. */ 5262 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5263 tcp_paws_discard(sk, skb)) { 5264 if (!th->rst) { 5265 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5266 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5267 LINUX_MIB_TCPACKSKIPPEDPAWS, 5268 &tp->last_oow_ack_time)) 5269 tcp_send_dupack(sk, skb); 5270 goto discard; 5271 } 5272 /* Reset is accepted even if it did not pass PAWS. */ 5273 } 5274 5275 /* Step 1: check sequence number */ 5276 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5277 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5278 * (RST) segments are validated by checking their SEQ-fields." 5279 * And page 69: "If an incoming segment is not acceptable, 5280 * an acknowledgment should be sent in reply (unless the RST 5281 * bit is set, if so drop the segment and return)". 5282 */ 5283 if (!th->rst) { 5284 if (th->syn) 5285 goto syn_challenge; 5286 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5287 LINUX_MIB_TCPACKSKIPPEDSEQ, 5288 &tp->last_oow_ack_time)) 5289 tcp_send_dupack(sk, skb); 5290 } 5291 goto discard; 5292 } 5293 5294 /* Step 2: check RST bit */ 5295 if (th->rst) { 5296 /* RFC 5961 3.2 (extend to match against SACK too if available): 5297 * If seq num matches RCV.NXT or the right-most SACK block, 5298 * then 5299 * RESET the connection 5300 * else 5301 * Send a challenge ACK 5302 */ 5303 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5304 rst_seq_match = true; 5305 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5306 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5307 int max_sack = sp[0].end_seq; 5308 int this_sack; 5309 5310 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5311 ++this_sack) { 5312 max_sack = after(sp[this_sack].end_seq, 5313 max_sack) ? 5314 sp[this_sack].end_seq : max_sack; 5315 } 5316 5317 if (TCP_SKB_CB(skb)->seq == max_sack) 5318 rst_seq_match = true; 5319 } 5320 5321 if (rst_seq_match) 5322 tcp_reset(sk); 5323 else 5324 tcp_send_challenge_ack(sk, skb); 5325 goto discard; 5326 } 5327 5328 /* step 3: check security and precedence [ignored] */ 5329 5330 /* step 4: Check for a SYN 5331 * RFC 5961 4.2 : Send a challenge ack 5332 */ 5333 if (th->syn) { 5334 syn_challenge: 5335 if (syn_inerr) 5336 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5338 tcp_send_challenge_ack(sk, skb); 5339 goto discard; 5340 } 5341 5342 return true; 5343 5344 discard: 5345 tcp_drop(sk, skb); 5346 return false; 5347 } 5348 5349 /* 5350 * TCP receive function for the ESTABLISHED state. 5351 * 5352 * It is split into a fast path and a slow path. The fast path is 5353 * disabled when: 5354 * - A zero window was announced from us - zero window probing 5355 * is only handled properly in the slow path. 5356 * - Out of order segments arrived. 5357 * - Urgent data is expected. 5358 * - There is no buffer space left 5359 * - Unexpected TCP flags/window values/header lengths are received 5360 * (detected by checking the TCP header against pred_flags) 5361 * - Data is sent in both directions. Fast path only supports pure senders 5362 * or pure receivers (this means either the sequence number or the ack 5363 * value must stay constant) 5364 * - Unexpected TCP option. 5365 * 5366 * When these conditions are not satisfied it drops into a standard 5367 * receive procedure patterned after RFC793 to handle all cases. 5368 * The first three cases are guaranteed by proper pred_flags setting, 5369 * the rest is checked inline. Fast processing is turned on in 5370 * tcp_data_queue when everything is OK. 5371 */ 5372 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5373 const struct tcphdr *th, unsigned int len) 5374 { 5375 struct tcp_sock *tp = tcp_sk(sk); 5376 5377 if (unlikely(!sk->sk_rx_dst)) 5378 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5379 /* 5380 * Header prediction. 5381 * The code loosely follows the one in the famous 5382 * "30 instruction TCP receive" Van Jacobson mail. 5383 * 5384 * Van's trick is to deposit buffers into socket queue 5385 * on a device interrupt, to call tcp_recv function 5386 * on the receive process context and checksum and copy 5387 * the buffer to user space. smart... 5388 * 5389 * Our current scheme is not silly either but we take the 5390 * extra cost of the net_bh soft interrupt processing... 5391 * We do checksum and copy also but from device to kernel. 5392 */ 5393 5394 tp->rx_opt.saw_tstamp = 0; 5395 5396 /* pred_flags is 0xS?10 << 16 + snd_wnd 5397 * if header_prediction is to be made 5398 * 'S' will always be tp->tcp_header_len >> 2 5399 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5400 * turn it off (when there are holes in the receive 5401 * space for instance) 5402 * PSH flag is ignored. 5403 */ 5404 5405 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5406 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5407 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5408 int tcp_header_len = tp->tcp_header_len; 5409 5410 /* Timestamp header prediction: tcp_header_len 5411 * is automatically equal to th->doff*4 due to pred_flags 5412 * match. 5413 */ 5414 5415 /* Check timestamp */ 5416 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5417 /* No? Slow path! */ 5418 if (!tcp_parse_aligned_timestamp(tp, th)) 5419 goto slow_path; 5420 5421 /* If PAWS failed, check it more carefully in slow path */ 5422 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5423 goto slow_path; 5424 5425 /* DO NOT update ts_recent here, if checksum fails 5426 * and timestamp was corrupted part, it will result 5427 * in a hung connection since we will drop all 5428 * future packets due to the PAWS test. 5429 */ 5430 } 5431 5432 if (len <= tcp_header_len) { 5433 /* Bulk data transfer: sender */ 5434 if (len == tcp_header_len) { 5435 /* Predicted packet is in window by definition. 5436 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5437 * Hence, check seq<=rcv_wup reduces to: 5438 */ 5439 if (tcp_header_len == 5440 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5441 tp->rcv_nxt == tp->rcv_wup) 5442 tcp_store_ts_recent(tp); 5443 5444 /* We know that such packets are checksummed 5445 * on entry. 5446 */ 5447 tcp_ack(sk, skb, 0); 5448 __kfree_skb(skb); 5449 tcp_data_snd_check(sk); 5450 return; 5451 } else { /* Header too small */ 5452 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5453 goto discard; 5454 } 5455 } else { 5456 int eaten = 0; 5457 bool fragstolen = false; 5458 5459 if (tp->ucopy.task == current && 5460 tp->copied_seq == tp->rcv_nxt && 5461 len - tcp_header_len <= tp->ucopy.len && 5462 sock_owned_by_user(sk)) { 5463 __set_current_state(TASK_RUNNING); 5464 5465 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5466 /* Predicted packet is in window by definition. 5467 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5468 * Hence, check seq<=rcv_wup reduces to: 5469 */ 5470 if (tcp_header_len == 5471 (sizeof(struct tcphdr) + 5472 TCPOLEN_TSTAMP_ALIGNED) && 5473 tp->rcv_nxt == tp->rcv_wup) 5474 tcp_store_ts_recent(tp); 5475 5476 tcp_rcv_rtt_measure_ts(sk, skb); 5477 5478 __skb_pull(skb, tcp_header_len); 5479 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5480 NET_INC_STATS(sock_net(sk), 5481 LINUX_MIB_TCPHPHITSTOUSER); 5482 eaten = 1; 5483 } 5484 } 5485 if (!eaten) { 5486 if (tcp_checksum_complete(skb)) 5487 goto csum_error; 5488 5489 if ((int)skb->truesize > sk->sk_forward_alloc) 5490 goto step5; 5491 5492 /* Predicted packet is in window by definition. 5493 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5494 * Hence, check seq<=rcv_wup reduces to: 5495 */ 5496 if (tcp_header_len == 5497 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5498 tp->rcv_nxt == tp->rcv_wup) 5499 tcp_store_ts_recent(tp); 5500 5501 tcp_rcv_rtt_measure_ts(sk, skb); 5502 5503 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5504 5505 /* Bulk data transfer: receiver */ 5506 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5507 &fragstolen); 5508 } 5509 5510 tcp_event_data_recv(sk, skb); 5511 5512 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5513 /* Well, only one small jumplet in fast path... */ 5514 tcp_ack(sk, skb, FLAG_DATA); 5515 tcp_data_snd_check(sk); 5516 if (!inet_csk_ack_scheduled(sk)) 5517 goto no_ack; 5518 } 5519 5520 __tcp_ack_snd_check(sk, 0); 5521 no_ack: 5522 if (eaten) 5523 kfree_skb_partial(skb, fragstolen); 5524 sk->sk_data_ready(sk); 5525 return; 5526 } 5527 } 5528 5529 slow_path: 5530 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5531 goto csum_error; 5532 5533 if (!th->ack && !th->rst && !th->syn) 5534 goto discard; 5535 5536 /* 5537 * Standard slow path. 5538 */ 5539 5540 if (!tcp_validate_incoming(sk, skb, th, 1)) 5541 return; 5542 5543 step5: 5544 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5545 goto discard; 5546 5547 tcp_rcv_rtt_measure_ts(sk, skb); 5548 5549 /* Process urgent data. */ 5550 tcp_urg(sk, skb, th); 5551 5552 /* step 7: process the segment text */ 5553 tcp_data_queue(sk, skb); 5554 5555 tcp_data_snd_check(sk); 5556 tcp_ack_snd_check(sk); 5557 return; 5558 5559 csum_error: 5560 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5561 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5562 5563 discard: 5564 tcp_drop(sk, skb); 5565 } 5566 EXPORT_SYMBOL(tcp_rcv_established); 5567 5568 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5569 { 5570 struct tcp_sock *tp = tcp_sk(sk); 5571 struct inet_connection_sock *icsk = inet_csk(sk); 5572 5573 tcp_set_state(sk, TCP_ESTABLISHED); 5574 5575 if (skb) { 5576 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5577 security_inet_conn_established(sk, skb); 5578 } 5579 5580 /* Make sure socket is routed, for correct metrics. */ 5581 icsk->icsk_af_ops->rebuild_header(sk); 5582 5583 tcp_init_metrics(sk); 5584 5585 tcp_init_congestion_control(sk); 5586 5587 /* Prevent spurious tcp_cwnd_restart() on first data 5588 * packet. 5589 */ 5590 tp->lsndtime = tcp_time_stamp; 5591 5592 tcp_init_buffer_space(sk); 5593 5594 if (sock_flag(sk, SOCK_KEEPOPEN)) 5595 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5596 5597 if (!tp->rx_opt.snd_wscale) 5598 __tcp_fast_path_on(tp, tp->snd_wnd); 5599 else 5600 tp->pred_flags = 0; 5601 5602 if (!sock_flag(sk, SOCK_DEAD)) { 5603 sk->sk_state_change(sk); 5604 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5605 } 5606 } 5607 5608 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5609 struct tcp_fastopen_cookie *cookie) 5610 { 5611 struct tcp_sock *tp = tcp_sk(sk); 5612 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5613 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5614 bool syn_drop = false; 5615 5616 if (mss == tp->rx_opt.user_mss) { 5617 struct tcp_options_received opt; 5618 5619 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5620 tcp_clear_options(&opt); 5621 opt.user_mss = opt.mss_clamp = 0; 5622 tcp_parse_options(synack, &opt, 0, NULL); 5623 mss = opt.mss_clamp; 5624 } 5625 5626 if (!tp->syn_fastopen) { 5627 /* Ignore an unsolicited cookie */ 5628 cookie->len = -1; 5629 } else if (tp->total_retrans) { 5630 /* SYN timed out and the SYN-ACK neither has a cookie nor 5631 * acknowledges data. Presumably the remote received only 5632 * the retransmitted (regular) SYNs: either the original 5633 * SYN-data or the corresponding SYN-ACK was dropped. 5634 */ 5635 syn_drop = (cookie->len < 0 && data); 5636 } else if (cookie->len < 0 && !tp->syn_data) { 5637 /* We requested a cookie but didn't get it. If we did not use 5638 * the (old) exp opt format then try so next time (try_exp=1). 5639 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5640 */ 5641 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5642 } 5643 5644 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5645 5646 if (data) { /* Retransmit unacked data in SYN */ 5647 tcp_for_write_queue_from(data, sk) { 5648 if (data == tcp_send_head(sk) || 5649 __tcp_retransmit_skb(sk, data, 1)) 5650 break; 5651 } 5652 tcp_rearm_rto(sk); 5653 NET_INC_STATS(sock_net(sk), 5654 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5655 return true; 5656 } 5657 tp->syn_data_acked = tp->syn_data; 5658 if (tp->syn_data_acked) 5659 NET_INC_STATS(sock_net(sk), 5660 LINUX_MIB_TCPFASTOPENACTIVE); 5661 5662 tcp_fastopen_add_skb(sk, synack); 5663 5664 return false; 5665 } 5666 5667 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5668 const struct tcphdr *th) 5669 { 5670 struct inet_connection_sock *icsk = inet_csk(sk); 5671 struct tcp_sock *tp = tcp_sk(sk); 5672 struct tcp_fastopen_cookie foc = { .len = -1 }; 5673 int saved_clamp = tp->rx_opt.mss_clamp; 5674 5675 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5676 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5677 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5678 5679 if (th->ack) { 5680 /* rfc793: 5681 * "If the state is SYN-SENT then 5682 * first check the ACK bit 5683 * If the ACK bit is set 5684 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5685 * a reset (unless the RST bit is set, if so drop 5686 * the segment and return)" 5687 */ 5688 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5689 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5690 goto reset_and_undo; 5691 5692 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5693 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5694 tcp_time_stamp)) { 5695 NET_INC_STATS(sock_net(sk), 5696 LINUX_MIB_PAWSACTIVEREJECTED); 5697 goto reset_and_undo; 5698 } 5699 5700 /* Now ACK is acceptable. 5701 * 5702 * "If the RST bit is set 5703 * If the ACK was acceptable then signal the user "error: 5704 * connection reset", drop the segment, enter CLOSED state, 5705 * delete TCB, and return." 5706 */ 5707 5708 if (th->rst) { 5709 tcp_reset(sk); 5710 goto discard; 5711 } 5712 5713 /* rfc793: 5714 * "fifth, if neither of the SYN or RST bits is set then 5715 * drop the segment and return." 5716 * 5717 * See note below! 5718 * --ANK(990513) 5719 */ 5720 if (!th->syn) 5721 goto discard_and_undo; 5722 5723 /* rfc793: 5724 * "If the SYN bit is on ... 5725 * are acceptable then ... 5726 * (our SYN has been ACKed), change the connection 5727 * state to ESTABLISHED..." 5728 */ 5729 5730 tcp_ecn_rcv_synack(tp, th); 5731 5732 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5733 tcp_ack(sk, skb, FLAG_SLOWPATH); 5734 5735 /* Ok.. it's good. Set up sequence numbers and 5736 * move to established. 5737 */ 5738 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5739 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5740 5741 /* RFC1323: The window in SYN & SYN/ACK segments is 5742 * never scaled. 5743 */ 5744 tp->snd_wnd = ntohs(th->window); 5745 5746 if (!tp->rx_opt.wscale_ok) { 5747 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5748 tp->window_clamp = min(tp->window_clamp, 65535U); 5749 } 5750 5751 if (tp->rx_opt.saw_tstamp) { 5752 tp->rx_opt.tstamp_ok = 1; 5753 tp->tcp_header_len = 5754 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5755 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5756 tcp_store_ts_recent(tp); 5757 } else { 5758 tp->tcp_header_len = sizeof(struct tcphdr); 5759 } 5760 5761 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5762 tcp_enable_fack(tp); 5763 5764 tcp_mtup_init(sk); 5765 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5766 tcp_initialize_rcv_mss(sk); 5767 5768 /* Remember, tcp_poll() does not lock socket! 5769 * Change state from SYN-SENT only after copied_seq 5770 * is initialized. */ 5771 tp->copied_seq = tp->rcv_nxt; 5772 5773 smp_mb(); 5774 5775 tcp_finish_connect(sk, skb); 5776 5777 if ((tp->syn_fastopen || tp->syn_data) && 5778 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5779 return -1; 5780 5781 if (sk->sk_write_pending || 5782 icsk->icsk_accept_queue.rskq_defer_accept || 5783 icsk->icsk_ack.pingpong) { 5784 /* Save one ACK. Data will be ready after 5785 * several ticks, if write_pending is set. 5786 * 5787 * It may be deleted, but with this feature tcpdumps 5788 * look so _wonderfully_ clever, that I was not able 5789 * to stand against the temptation 8) --ANK 5790 */ 5791 inet_csk_schedule_ack(sk); 5792 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5793 tcp_enter_quickack_mode(sk); 5794 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5795 TCP_DELACK_MAX, TCP_RTO_MAX); 5796 5797 discard: 5798 tcp_drop(sk, skb); 5799 return 0; 5800 } else { 5801 tcp_send_ack(sk); 5802 } 5803 return -1; 5804 } 5805 5806 /* No ACK in the segment */ 5807 5808 if (th->rst) { 5809 /* rfc793: 5810 * "If the RST bit is set 5811 * 5812 * Otherwise (no ACK) drop the segment and return." 5813 */ 5814 5815 goto discard_and_undo; 5816 } 5817 5818 /* PAWS check. */ 5819 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5820 tcp_paws_reject(&tp->rx_opt, 0)) 5821 goto discard_and_undo; 5822 5823 if (th->syn) { 5824 /* We see SYN without ACK. It is attempt of 5825 * simultaneous connect with crossed SYNs. 5826 * Particularly, it can be connect to self. 5827 */ 5828 tcp_set_state(sk, TCP_SYN_RECV); 5829 5830 if (tp->rx_opt.saw_tstamp) { 5831 tp->rx_opt.tstamp_ok = 1; 5832 tcp_store_ts_recent(tp); 5833 tp->tcp_header_len = 5834 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5835 } else { 5836 tp->tcp_header_len = sizeof(struct tcphdr); 5837 } 5838 5839 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5840 tp->copied_seq = tp->rcv_nxt; 5841 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5842 5843 /* RFC1323: The window in SYN & SYN/ACK segments is 5844 * never scaled. 5845 */ 5846 tp->snd_wnd = ntohs(th->window); 5847 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5848 tp->max_window = tp->snd_wnd; 5849 5850 tcp_ecn_rcv_syn(tp, th); 5851 5852 tcp_mtup_init(sk); 5853 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5854 tcp_initialize_rcv_mss(sk); 5855 5856 tcp_send_synack(sk); 5857 #if 0 5858 /* Note, we could accept data and URG from this segment. 5859 * There are no obstacles to make this (except that we must 5860 * either change tcp_recvmsg() to prevent it from returning data 5861 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5862 * 5863 * However, if we ignore data in ACKless segments sometimes, 5864 * we have no reasons to accept it sometimes. 5865 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5866 * is not flawless. So, discard packet for sanity. 5867 * Uncomment this return to process the data. 5868 */ 5869 return -1; 5870 #else 5871 goto discard; 5872 #endif 5873 } 5874 /* "fifth, if neither of the SYN or RST bits is set then 5875 * drop the segment and return." 5876 */ 5877 5878 discard_and_undo: 5879 tcp_clear_options(&tp->rx_opt); 5880 tp->rx_opt.mss_clamp = saved_clamp; 5881 goto discard; 5882 5883 reset_and_undo: 5884 tcp_clear_options(&tp->rx_opt); 5885 tp->rx_opt.mss_clamp = saved_clamp; 5886 return 1; 5887 } 5888 5889 /* 5890 * This function implements the receiving procedure of RFC 793 for 5891 * all states except ESTABLISHED and TIME_WAIT. 5892 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5893 * address independent. 5894 */ 5895 5896 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5897 { 5898 struct tcp_sock *tp = tcp_sk(sk); 5899 struct inet_connection_sock *icsk = inet_csk(sk); 5900 const struct tcphdr *th = tcp_hdr(skb); 5901 struct request_sock *req; 5902 int queued = 0; 5903 bool acceptable; 5904 5905 switch (sk->sk_state) { 5906 case TCP_CLOSE: 5907 goto discard; 5908 5909 case TCP_LISTEN: 5910 if (th->ack) 5911 return 1; 5912 5913 if (th->rst) 5914 goto discard; 5915 5916 if (th->syn) { 5917 if (th->fin) 5918 goto discard; 5919 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5920 return 1; 5921 5922 consume_skb(skb); 5923 return 0; 5924 } 5925 goto discard; 5926 5927 case TCP_SYN_SENT: 5928 tp->rx_opt.saw_tstamp = 0; 5929 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5930 if (queued >= 0) 5931 return queued; 5932 5933 /* Do step6 onward by hand. */ 5934 tcp_urg(sk, skb, th); 5935 __kfree_skb(skb); 5936 tcp_data_snd_check(sk); 5937 return 0; 5938 } 5939 5940 tp->rx_opt.saw_tstamp = 0; 5941 req = tp->fastopen_rsk; 5942 if (req) { 5943 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5944 sk->sk_state != TCP_FIN_WAIT1); 5945 5946 if (!tcp_check_req(sk, skb, req, true)) 5947 goto discard; 5948 } 5949 5950 if (!th->ack && !th->rst && !th->syn) 5951 goto discard; 5952 5953 if (!tcp_validate_incoming(sk, skb, th, 0)) 5954 return 0; 5955 5956 /* step 5: check the ACK field */ 5957 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5958 FLAG_UPDATE_TS_RECENT) > 0; 5959 5960 switch (sk->sk_state) { 5961 case TCP_SYN_RECV: 5962 if (!acceptable) 5963 return 1; 5964 5965 if (!tp->srtt_us) 5966 tcp_synack_rtt_meas(sk, req); 5967 5968 /* Once we leave TCP_SYN_RECV, we no longer need req 5969 * so release it. 5970 */ 5971 if (req) { 5972 inet_csk(sk)->icsk_retransmits = 0; 5973 reqsk_fastopen_remove(sk, req, false); 5974 } else { 5975 /* Make sure socket is routed, for correct metrics. */ 5976 icsk->icsk_af_ops->rebuild_header(sk); 5977 tcp_init_congestion_control(sk); 5978 5979 tcp_mtup_init(sk); 5980 tp->copied_seq = tp->rcv_nxt; 5981 tcp_init_buffer_space(sk); 5982 } 5983 smp_mb(); 5984 tcp_set_state(sk, TCP_ESTABLISHED); 5985 sk->sk_state_change(sk); 5986 5987 /* Note, that this wakeup is only for marginal crossed SYN case. 5988 * Passively open sockets are not waked up, because 5989 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5990 */ 5991 if (sk->sk_socket) 5992 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5993 5994 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5995 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5996 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5997 5998 if (tp->rx_opt.tstamp_ok) 5999 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6000 6001 if (req) { 6002 /* Re-arm the timer because data may have been sent out. 6003 * This is similar to the regular data transmission case 6004 * when new data has just been ack'ed. 6005 * 6006 * (TFO) - we could try to be more aggressive and 6007 * retransmitting any data sooner based on when they 6008 * are sent out. 6009 */ 6010 tcp_rearm_rto(sk); 6011 } else 6012 tcp_init_metrics(sk); 6013 6014 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6015 tcp_update_pacing_rate(sk); 6016 6017 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6018 tp->lsndtime = tcp_time_stamp; 6019 6020 tcp_initialize_rcv_mss(sk); 6021 tcp_fast_path_on(tp); 6022 break; 6023 6024 case TCP_FIN_WAIT1: { 6025 struct dst_entry *dst; 6026 int tmo; 6027 6028 /* If we enter the TCP_FIN_WAIT1 state and we are a 6029 * Fast Open socket and this is the first acceptable 6030 * ACK we have received, this would have acknowledged 6031 * our SYNACK so stop the SYNACK timer. 6032 */ 6033 if (req) { 6034 /* Return RST if ack_seq is invalid. 6035 * Note that RFC793 only says to generate a 6036 * DUPACK for it but for TCP Fast Open it seems 6037 * better to treat this case like TCP_SYN_RECV 6038 * above. 6039 */ 6040 if (!acceptable) 6041 return 1; 6042 /* We no longer need the request sock. */ 6043 reqsk_fastopen_remove(sk, req, false); 6044 tcp_rearm_rto(sk); 6045 } 6046 if (tp->snd_una != tp->write_seq) 6047 break; 6048 6049 tcp_set_state(sk, TCP_FIN_WAIT2); 6050 sk->sk_shutdown |= SEND_SHUTDOWN; 6051 6052 dst = __sk_dst_get(sk); 6053 if (dst) 6054 dst_confirm(dst); 6055 6056 if (!sock_flag(sk, SOCK_DEAD)) { 6057 /* Wake up lingering close() */ 6058 sk->sk_state_change(sk); 6059 break; 6060 } 6061 6062 if (tp->linger2 < 0 || 6063 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6064 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 6065 tcp_done(sk); 6066 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6067 return 1; 6068 } 6069 6070 tmo = tcp_fin_time(sk); 6071 if (tmo > TCP_TIMEWAIT_LEN) { 6072 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6073 } else if (th->fin || sock_owned_by_user(sk)) { 6074 /* Bad case. We could lose such FIN otherwise. 6075 * It is not a big problem, but it looks confusing 6076 * and not so rare event. We still can lose it now, 6077 * if it spins in bh_lock_sock(), but it is really 6078 * marginal case. 6079 */ 6080 inet_csk_reset_keepalive_timer(sk, tmo); 6081 } else { 6082 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6083 goto discard; 6084 } 6085 break; 6086 } 6087 6088 case TCP_CLOSING: 6089 if (tp->snd_una == tp->write_seq) { 6090 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6091 goto discard; 6092 } 6093 break; 6094 6095 case TCP_LAST_ACK: 6096 if (tp->snd_una == tp->write_seq) { 6097 tcp_update_metrics(sk); 6098 tcp_done(sk); 6099 goto discard; 6100 } 6101 break; 6102 } 6103 6104 /* step 6: check the URG bit */ 6105 tcp_urg(sk, skb, th); 6106 6107 /* step 7: process the segment text */ 6108 switch (sk->sk_state) { 6109 case TCP_CLOSE_WAIT: 6110 case TCP_CLOSING: 6111 case TCP_LAST_ACK: 6112 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6113 break; 6114 case TCP_FIN_WAIT1: 6115 case TCP_FIN_WAIT2: 6116 /* RFC 793 says to queue data in these states, 6117 * RFC 1122 says we MUST send a reset. 6118 * BSD 4.4 also does reset. 6119 */ 6120 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6121 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6122 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6123 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6124 tcp_reset(sk); 6125 return 1; 6126 } 6127 } 6128 /* Fall through */ 6129 case TCP_ESTABLISHED: 6130 tcp_data_queue(sk, skb); 6131 queued = 1; 6132 break; 6133 } 6134 6135 /* tcp_data could move socket to TIME-WAIT */ 6136 if (sk->sk_state != TCP_CLOSE) { 6137 tcp_data_snd_check(sk); 6138 tcp_ack_snd_check(sk); 6139 } 6140 6141 if (!queued) { 6142 discard: 6143 tcp_drop(sk, skb); 6144 } 6145 return 0; 6146 } 6147 EXPORT_SYMBOL(tcp_rcv_state_process); 6148 6149 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6150 { 6151 struct inet_request_sock *ireq = inet_rsk(req); 6152 6153 if (family == AF_INET) 6154 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6155 &ireq->ir_rmt_addr, port); 6156 #if IS_ENABLED(CONFIG_IPV6) 6157 else if (family == AF_INET6) 6158 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6159 &ireq->ir_v6_rmt_addr, port); 6160 #endif 6161 } 6162 6163 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6164 * 6165 * If we receive a SYN packet with these bits set, it means a 6166 * network is playing bad games with TOS bits. In order to 6167 * avoid possible false congestion notifications, we disable 6168 * TCP ECN negotiation. 6169 * 6170 * Exception: tcp_ca wants ECN. This is required for DCTCP 6171 * congestion control: Linux DCTCP asserts ECT on all packets, 6172 * including SYN, which is most optimal solution; however, 6173 * others, such as FreeBSD do not. 6174 */ 6175 static void tcp_ecn_create_request(struct request_sock *req, 6176 const struct sk_buff *skb, 6177 const struct sock *listen_sk, 6178 const struct dst_entry *dst) 6179 { 6180 const struct tcphdr *th = tcp_hdr(skb); 6181 const struct net *net = sock_net(listen_sk); 6182 bool th_ecn = th->ece && th->cwr; 6183 bool ect, ecn_ok; 6184 u32 ecn_ok_dst; 6185 6186 if (!th_ecn) 6187 return; 6188 6189 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6190 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6191 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6192 6193 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6194 (ecn_ok_dst & DST_FEATURE_ECN_CA)) 6195 inet_rsk(req)->ecn_ok = 1; 6196 } 6197 6198 static void tcp_openreq_init(struct request_sock *req, 6199 const struct tcp_options_received *rx_opt, 6200 struct sk_buff *skb, const struct sock *sk) 6201 { 6202 struct inet_request_sock *ireq = inet_rsk(req); 6203 6204 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6205 req->cookie_ts = 0; 6206 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6207 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6208 skb_mstamp_get(&tcp_rsk(req)->snt_synack); 6209 tcp_rsk(req)->last_oow_ack_time = 0; 6210 req->mss = rx_opt->mss_clamp; 6211 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6212 ireq->tstamp_ok = rx_opt->tstamp_ok; 6213 ireq->sack_ok = rx_opt->sack_ok; 6214 ireq->snd_wscale = rx_opt->snd_wscale; 6215 ireq->wscale_ok = rx_opt->wscale_ok; 6216 ireq->acked = 0; 6217 ireq->ecn_ok = 0; 6218 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6219 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6220 ireq->ir_mark = inet_request_mark(sk, skb); 6221 } 6222 6223 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6224 struct sock *sk_listener, 6225 bool attach_listener) 6226 { 6227 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6228 attach_listener); 6229 6230 if (req) { 6231 struct inet_request_sock *ireq = inet_rsk(req); 6232 6233 kmemcheck_annotate_bitfield(ireq, flags); 6234 ireq->opt = NULL; 6235 #if IS_ENABLED(CONFIG_IPV6) 6236 ireq->pktopts = NULL; 6237 #endif 6238 atomic64_set(&ireq->ir_cookie, 0); 6239 ireq->ireq_state = TCP_NEW_SYN_RECV; 6240 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6241 ireq->ireq_family = sk_listener->sk_family; 6242 } 6243 6244 return req; 6245 } 6246 EXPORT_SYMBOL(inet_reqsk_alloc); 6247 6248 /* 6249 * Return true if a syncookie should be sent 6250 */ 6251 static bool tcp_syn_flood_action(const struct sock *sk, 6252 const struct sk_buff *skb, 6253 const char *proto) 6254 { 6255 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6256 const char *msg = "Dropping request"; 6257 bool want_cookie = false; 6258 struct net *net = sock_net(sk); 6259 6260 #ifdef CONFIG_SYN_COOKIES 6261 if (net->ipv4.sysctl_tcp_syncookies) { 6262 msg = "Sending cookies"; 6263 want_cookie = true; 6264 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6265 } else 6266 #endif 6267 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6268 6269 if (!queue->synflood_warned && 6270 net->ipv4.sysctl_tcp_syncookies != 2 && 6271 xchg(&queue->synflood_warned, 1) == 0) 6272 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6273 proto, ntohs(tcp_hdr(skb)->dest), msg); 6274 6275 return want_cookie; 6276 } 6277 6278 static void tcp_reqsk_record_syn(const struct sock *sk, 6279 struct request_sock *req, 6280 const struct sk_buff *skb) 6281 { 6282 if (tcp_sk(sk)->save_syn) { 6283 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6284 u32 *copy; 6285 6286 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6287 if (copy) { 6288 copy[0] = len; 6289 memcpy(©[1], skb_network_header(skb), len); 6290 req->saved_syn = copy; 6291 } 6292 } 6293 } 6294 6295 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6296 const struct tcp_request_sock_ops *af_ops, 6297 struct sock *sk, struct sk_buff *skb) 6298 { 6299 struct tcp_fastopen_cookie foc = { .len = -1 }; 6300 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6301 struct tcp_options_received tmp_opt; 6302 struct tcp_sock *tp = tcp_sk(sk); 6303 struct net *net = sock_net(sk); 6304 struct sock *fastopen_sk = NULL; 6305 struct dst_entry *dst = NULL; 6306 struct request_sock *req; 6307 bool want_cookie = false; 6308 struct flowi fl; 6309 6310 /* TW buckets are converted to open requests without 6311 * limitations, they conserve resources and peer is 6312 * evidently real one. 6313 */ 6314 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6315 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6316 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6317 if (!want_cookie) 6318 goto drop; 6319 } 6320 6321 6322 /* Accept backlog is full. If we have already queued enough 6323 * of warm entries in syn queue, drop request. It is better than 6324 * clogging syn queue with openreqs with exponentially increasing 6325 * timeout. 6326 */ 6327 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 6328 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6329 goto drop; 6330 } 6331 6332 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6333 if (!req) 6334 goto drop; 6335 6336 tcp_rsk(req)->af_specific = af_ops; 6337 6338 tcp_clear_options(&tmp_opt); 6339 tmp_opt.mss_clamp = af_ops->mss_clamp; 6340 tmp_opt.user_mss = tp->rx_opt.user_mss; 6341 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 6342 6343 if (want_cookie && !tmp_opt.saw_tstamp) 6344 tcp_clear_options(&tmp_opt); 6345 6346 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6347 tcp_openreq_init(req, &tmp_opt, skb, sk); 6348 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6349 6350 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6351 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6352 6353 af_ops->init_req(req, sk, skb); 6354 6355 if (security_inet_conn_request(sk, skb, req)) 6356 goto drop_and_free; 6357 6358 if (!want_cookie && !isn) { 6359 /* VJ's idea. We save last timestamp seen 6360 * from the destination in peer table, when entering 6361 * state TIME-WAIT, and check against it before 6362 * accepting new connection request. 6363 * 6364 * If "isn" is not zero, this request hit alive 6365 * timewait bucket, so that all the necessary checks 6366 * are made in the function processing timewait state. 6367 */ 6368 if (tcp_death_row.sysctl_tw_recycle) { 6369 bool strict; 6370 6371 dst = af_ops->route_req(sk, &fl, req, &strict); 6372 6373 if (dst && strict && 6374 !tcp_peer_is_proven(req, dst, true, 6375 tmp_opt.saw_tstamp)) { 6376 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 6377 goto drop_and_release; 6378 } 6379 } 6380 /* Kill the following clause, if you dislike this way. */ 6381 else if (!net->ipv4.sysctl_tcp_syncookies && 6382 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6383 (sysctl_max_syn_backlog >> 2)) && 6384 !tcp_peer_is_proven(req, dst, false, 6385 tmp_opt.saw_tstamp)) { 6386 /* Without syncookies last quarter of 6387 * backlog is filled with destinations, 6388 * proven to be alive. 6389 * It means that we continue to communicate 6390 * to destinations, already remembered 6391 * to the moment of synflood. 6392 */ 6393 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6394 rsk_ops->family); 6395 goto drop_and_release; 6396 } 6397 6398 isn = af_ops->init_seq(skb); 6399 } 6400 if (!dst) { 6401 dst = af_ops->route_req(sk, &fl, req, NULL); 6402 if (!dst) 6403 goto drop_and_free; 6404 } 6405 6406 tcp_ecn_create_request(req, skb, sk, dst); 6407 6408 if (want_cookie) { 6409 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6410 req->cookie_ts = tmp_opt.tstamp_ok; 6411 if (!tmp_opt.tstamp_ok) 6412 inet_rsk(req)->ecn_ok = 0; 6413 } 6414 6415 tcp_rsk(req)->snt_isn = isn; 6416 tcp_rsk(req)->txhash = net_tx_rndhash(); 6417 tcp_openreq_init_rwin(req, sk, dst); 6418 if (!want_cookie) { 6419 tcp_reqsk_record_syn(sk, req, skb); 6420 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6421 } 6422 if (fastopen_sk) { 6423 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6424 &foc, TCP_SYNACK_FASTOPEN); 6425 /* Add the child socket directly into the accept queue */ 6426 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6427 sk->sk_data_ready(sk); 6428 bh_unlock_sock(fastopen_sk); 6429 sock_put(fastopen_sk); 6430 } else { 6431 tcp_rsk(req)->tfo_listener = false; 6432 if (!want_cookie) 6433 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6434 af_ops->send_synack(sk, dst, &fl, req, &foc, 6435 !want_cookie ? TCP_SYNACK_NORMAL : 6436 TCP_SYNACK_COOKIE); 6437 if (want_cookie) { 6438 reqsk_free(req); 6439 return 0; 6440 } 6441 } 6442 reqsk_put(req); 6443 return 0; 6444 6445 drop_and_release: 6446 dst_release(dst); 6447 drop_and_free: 6448 reqsk_free(req); 6449 drop: 6450 tcp_listendrop(sk); 6451 return 0; 6452 } 6453 EXPORT_SYMBOL(tcp_conn_request); 6454