1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 83 84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 90 #define FLAG_ECE 0x40 /* ECE in this ACK */ 91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 100 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 101 102 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 103 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 104 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 105 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 106 107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 109 110 #define REXMIT_NONE 0 /* no loss recovery to do */ 111 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 112 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 113 114 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 115 unsigned int len) 116 { 117 static bool __once __read_mostly; 118 119 if (!__once) { 120 struct net_device *dev; 121 122 __once = true; 123 124 rcu_read_lock(); 125 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 126 if (!dev || len >= dev->mtu) 127 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 128 dev ? dev->name : "Unknown driver"); 129 rcu_read_unlock(); 130 } 131 } 132 133 /* Adapt the MSS value used to make delayed ack decision to the 134 * real world. 135 */ 136 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 137 { 138 struct inet_connection_sock *icsk = inet_csk(sk); 139 const unsigned int lss = icsk->icsk_ack.last_seg_size; 140 unsigned int len; 141 142 icsk->icsk_ack.last_seg_size = 0; 143 144 /* skb->len may jitter because of SACKs, even if peer 145 * sends good full-sized frames. 146 */ 147 len = skb_shinfo(skb)->gso_size ? : skb->len; 148 if (len >= icsk->icsk_ack.rcv_mss) { 149 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 150 tcp_sk(sk)->advmss); 151 /* Account for possibly-removed options */ 152 if (unlikely(len > icsk->icsk_ack.rcv_mss + 153 MAX_TCP_OPTION_SPACE)) 154 tcp_gro_dev_warn(sk, skb, len); 155 } else { 156 /* Otherwise, we make more careful check taking into account, 157 * that SACKs block is variable. 158 * 159 * "len" is invariant segment length, including TCP header. 160 */ 161 len += skb->data - skb_transport_header(skb); 162 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 163 /* If PSH is not set, packet should be 164 * full sized, provided peer TCP is not badly broken. 165 * This observation (if it is correct 8)) allows 166 * to handle super-low mtu links fairly. 167 */ 168 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 169 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 170 /* Subtract also invariant (if peer is RFC compliant), 171 * tcp header plus fixed timestamp option length. 172 * Resulting "len" is MSS free of SACK jitter. 173 */ 174 len -= tcp_sk(sk)->tcp_header_len; 175 icsk->icsk_ack.last_seg_size = len; 176 if (len == lss) { 177 icsk->icsk_ack.rcv_mss = len; 178 return; 179 } 180 } 181 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 182 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 183 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 184 } 185 } 186 187 static void tcp_incr_quickack(struct sock *sk) 188 { 189 struct inet_connection_sock *icsk = inet_csk(sk); 190 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 191 192 if (quickacks == 0) 193 quickacks = 2; 194 if (quickacks > icsk->icsk_ack.quick) 195 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 196 } 197 198 static void tcp_enter_quickack_mode(struct sock *sk) 199 { 200 struct inet_connection_sock *icsk = inet_csk(sk); 201 tcp_incr_quickack(sk); 202 icsk->icsk_ack.pingpong = 0; 203 icsk->icsk_ack.ato = TCP_ATO_MIN; 204 } 205 206 /* Send ACKs quickly, if "quick" count is not exhausted 207 * and the session is not interactive. 208 */ 209 210 static bool tcp_in_quickack_mode(struct sock *sk) 211 { 212 const struct inet_connection_sock *icsk = inet_csk(sk); 213 const struct dst_entry *dst = __sk_dst_get(sk); 214 215 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 216 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 217 } 218 219 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 220 { 221 if (tp->ecn_flags & TCP_ECN_OK) 222 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 223 } 224 225 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 226 { 227 if (tcp_hdr(skb)->cwr) 228 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 229 } 230 231 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 232 { 233 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 234 } 235 236 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 237 { 238 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 239 case INET_ECN_NOT_ECT: 240 /* Funny extension: if ECT is not set on a segment, 241 * and we already seen ECT on a previous segment, 242 * it is probably a retransmit. 243 */ 244 if (tp->ecn_flags & TCP_ECN_SEEN) 245 tcp_enter_quickack_mode((struct sock *)tp); 246 break; 247 case INET_ECN_CE: 248 if (tcp_ca_needs_ecn((struct sock *)tp)) 249 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 250 251 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 252 /* Better not delay acks, sender can have a very low cwnd */ 253 tcp_enter_quickack_mode((struct sock *)tp); 254 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 255 } 256 tp->ecn_flags |= TCP_ECN_SEEN; 257 break; 258 default: 259 if (tcp_ca_needs_ecn((struct sock *)tp)) 260 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 261 tp->ecn_flags |= TCP_ECN_SEEN; 262 break; 263 } 264 } 265 266 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 267 { 268 if (tp->ecn_flags & TCP_ECN_OK) 269 __tcp_ecn_check_ce(tp, skb); 270 } 271 272 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 273 { 274 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 275 tp->ecn_flags &= ~TCP_ECN_OK; 276 } 277 278 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 279 { 280 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 281 tp->ecn_flags &= ~TCP_ECN_OK; 282 } 283 284 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 285 { 286 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 287 return true; 288 return false; 289 } 290 291 /* Buffer size and advertised window tuning. 292 * 293 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 294 */ 295 296 static void tcp_sndbuf_expand(struct sock *sk) 297 { 298 const struct tcp_sock *tp = tcp_sk(sk); 299 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 300 int sndmem, per_mss; 301 u32 nr_segs; 302 303 /* Worst case is non GSO/TSO : each frame consumes one skb 304 * and skb->head is kmalloced using power of two area of memory 305 */ 306 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 307 MAX_TCP_HEADER + 308 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 309 310 per_mss = roundup_pow_of_two(per_mss) + 311 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 312 313 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 314 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 315 316 /* Fast Recovery (RFC 5681 3.2) : 317 * Cubic needs 1.7 factor, rounded to 2 to include 318 * extra cushion (application might react slowly to EPOLLOUT) 319 */ 320 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 321 sndmem *= nr_segs * per_mss; 322 323 if (sk->sk_sndbuf < sndmem) 324 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 325 } 326 327 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 328 * 329 * All tcp_full_space() is split to two parts: "network" buffer, allocated 330 * forward and advertised in receiver window (tp->rcv_wnd) and 331 * "application buffer", required to isolate scheduling/application 332 * latencies from network. 333 * window_clamp is maximal advertised window. It can be less than 334 * tcp_full_space(), in this case tcp_full_space() - window_clamp 335 * is reserved for "application" buffer. The less window_clamp is 336 * the smoother our behaviour from viewpoint of network, but the lower 337 * throughput and the higher sensitivity of the connection to losses. 8) 338 * 339 * rcv_ssthresh is more strict window_clamp used at "slow start" 340 * phase to predict further behaviour of this connection. 341 * It is used for two goals: 342 * - to enforce header prediction at sender, even when application 343 * requires some significant "application buffer". It is check #1. 344 * - to prevent pruning of receive queue because of misprediction 345 * of receiver window. Check #2. 346 * 347 * The scheme does not work when sender sends good segments opening 348 * window and then starts to feed us spaghetti. But it should work 349 * in common situations. Otherwise, we have to rely on queue collapsing. 350 */ 351 352 /* Slow part of check#2. */ 353 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 354 { 355 struct tcp_sock *tp = tcp_sk(sk); 356 /* Optimize this! */ 357 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 358 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 359 360 while (tp->rcv_ssthresh <= window) { 361 if (truesize <= skb->len) 362 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 363 364 truesize >>= 1; 365 window >>= 1; 366 } 367 return 0; 368 } 369 370 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 371 { 372 struct tcp_sock *tp = tcp_sk(sk); 373 374 /* Check #1 */ 375 if (tp->rcv_ssthresh < tp->window_clamp && 376 (int)tp->rcv_ssthresh < tcp_space(sk) && 377 !tcp_under_memory_pressure(sk)) { 378 int incr; 379 380 /* Check #2. Increase window, if skb with such overhead 381 * will fit to rcvbuf in future. 382 */ 383 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 384 incr = 2 * tp->advmss; 385 else 386 incr = __tcp_grow_window(sk, skb); 387 388 if (incr) { 389 incr = max_t(int, incr, 2 * skb->len); 390 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 391 tp->window_clamp); 392 inet_csk(sk)->icsk_ack.quick |= 1; 393 } 394 } 395 } 396 397 /* 3. Tuning rcvbuf, when connection enters established state. */ 398 static void tcp_fixup_rcvbuf(struct sock *sk) 399 { 400 u32 mss = tcp_sk(sk)->advmss; 401 int rcvmem; 402 403 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 404 tcp_default_init_rwnd(mss); 405 406 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 407 * Allow enough cushion so that sender is not limited by our window 408 */ 409 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 410 rcvmem <<= 2; 411 412 if (sk->sk_rcvbuf < rcvmem) 413 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 414 } 415 416 /* 4. Try to fixup all. It is made immediately after connection enters 417 * established state. 418 */ 419 void tcp_init_buffer_space(struct sock *sk) 420 { 421 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 422 struct tcp_sock *tp = tcp_sk(sk); 423 int maxwin; 424 425 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 426 tcp_fixup_rcvbuf(sk); 427 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 428 tcp_sndbuf_expand(sk); 429 430 tp->rcvq_space.space = tp->rcv_wnd; 431 tcp_mstamp_refresh(tp); 432 tp->rcvq_space.time = tp->tcp_mstamp; 433 tp->rcvq_space.seq = tp->copied_seq; 434 435 maxwin = tcp_full_space(sk); 436 437 if (tp->window_clamp >= maxwin) { 438 tp->window_clamp = maxwin; 439 440 if (tcp_app_win && maxwin > 4 * tp->advmss) 441 tp->window_clamp = max(maxwin - 442 (maxwin >> tcp_app_win), 443 4 * tp->advmss); 444 } 445 446 /* Force reservation of one segment. */ 447 if (tcp_app_win && 448 tp->window_clamp > 2 * tp->advmss && 449 tp->window_clamp + tp->advmss > maxwin) 450 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 451 452 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 453 tp->snd_cwnd_stamp = tcp_jiffies32; 454 } 455 456 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 457 static void tcp_clamp_window(struct sock *sk) 458 { 459 struct tcp_sock *tp = tcp_sk(sk); 460 struct inet_connection_sock *icsk = inet_csk(sk); 461 struct net *net = sock_net(sk); 462 463 icsk->icsk_ack.quick = 0; 464 465 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 466 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 467 !tcp_under_memory_pressure(sk) && 468 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 469 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 470 net->ipv4.sysctl_tcp_rmem[2]); 471 } 472 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 473 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 474 } 475 476 /* Initialize RCV_MSS value. 477 * RCV_MSS is an our guess about MSS used by the peer. 478 * We haven't any direct information about the MSS. 479 * It's better to underestimate the RCV_MSS rather than overestimate. 480 * Overestimations make us ACKing less frequently than needed. 481 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 482 */ 483 void tcp_initialize_rcv_mss(struct sock *sk) 484 { 485 const struct tcp_sock *tp = tcp_sk(sk); 486 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 487 488 hint = min(hint, tp->rcv_wnd / 2); 489 hint = min(hint, TCP_MSS_DEFAULT); 490 hint = max(hint, TCP_MIN_MSS); 491 492 inet_csk(sk)->icsk_ack.rcv_mss = hint; 493 } 494 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 495 496 /* Receiver "autotuning" code. 497 * 498 * The algorithm for RTT estimation w/o timestamps is based on 499 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 500 * <http://public.lanl.gov/radiant/pubs.html#DRS> 501 * 502 * More detail on this code can be found at 503 * <http://staff.psc.edu/jheffner/>, 504 * though this reference is out of date. A new paper 505 * is pending. 506 */ 507 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 508 { 509 u32 new_sample = tp->rcv_rtt_est.rtt_us; 510 long m = sample; 511 512 if (new_sample != 0) { 513 /* If we sample in larger samples in the non-timestamp 514 * case, we could grossly overestimate the RTT especially 515 * with chatty applications or bulk transfer apps which 516 * are stalled on filesystem I/O. 517 * 518 * Also, since we are only going for a minimum in the 519 * non-timestamp case, we do not smooth things out 520 * else with timestamps disabled convergence takes too 521 * long. 522 */ 523 if (!win_dep) { 524 m -= (new_sample >> 3); 525 new_sample += m; 526 } else { 527 m <<= 3; 528 if (m < new_sample) 529 new_sample = m; 530 } 531 } else { 532 /* No previous measure. */ 533 new_sample = m << 3; 534 } 535 536 tp->rcv_rtt_est.rtt_us = new_sample; 537 } 538 539 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 540 { 541 u32 delta_us; 542 543 if (tp->rcv_rtt_est.time == 0) 544 goto new_measure; 545 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 546 return; 547 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 548 if (!delta_us) 549 delta_us = 1; 550 tcp_rcv_rtt_update(tp, delta_us, 1); 551 552 new_measure: 553 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 554 tp->rcv_rtt_est.time = tp->tcp_mstamp; 555 } 556 557 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 558 const struct sk_buff *skb) 559 { 560 struct tcp_sock *tp = tcp_sk(sk); 561 562 if (tp->rx_opt.rcv_tsecr && 563 (TCP_SKB_CB(skb)->end_seq - 564 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 565 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 566 u32 delta_us; 567 568 if (!delta) 569 delta = 1; 570 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 571 tcp_rcv_rtt_update(tp, delta_us, 0); 572 } 573 } 574 575 /* 576 * This function should be called every time data is copied to user space. 577 * It calculates the appropriate TCP receive buffer space. 578 */ 579 void tcp_rcv_space_adjust(struct sock *sk) 580 { 581 struct tcp_sock *tp = tcp_sk(sk); 582 u32 copied; 583 int time; 584 585 trace_tcp_rcv_space_adjust(sk); 586 587 tcp_mstamp_refresh(tp); 588 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 589 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 590 return; 591 592 /* Number of bytes copied to user in last RTT */ 593 copied = tp->copied_seq - tp->rcvq_space.seq; 594 if (copied <= tp->rcvq_space.space) 595 goto new_measure; 596 597 /* A bit of theory : 598 * copied = bytes received in previous RTT, our base window 599 * To cope with packet losses, we need a 2x factor 600 * To cope with slow start, and sender growing its cwin by 100 % 601 * every RTT, we need a 4x factor, because the ACK we are sending 602 * now is for the next RTT, not the current one : 603 * <prev RTT . ><current RTT .. ><next RTT .... > 604 */ 605 606 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 607 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 608 int rcvmem, rcvbuf; 609 u64 rcvwin, grow; 610 611 /* minimal window to cope with packet losses, assuming 612 * steady state. Add some cushion because of small variations. 613 */ 614 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 615 616 /* Accommodate for sender rate increase (eg. slow start) */ 617 grow = rcvwin * (copied - tp->rcvq_space.space); 618 do_div(grow, tp->rcvq_space.space); 619 rcvwin += (grow << 1); 620 621 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 622 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 623 rcvmem += 128; 624 625 do_div(rcvwin, tp->advmss); 626 rcvbuf = min_t(u64, rcvwin * rcvmem, 627 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 628 if (rcvbuf > sk->sk_rcvbuf) { 629 sk->sk_rcvbuf = rcvbuf; 630 631 /* Make the window clamp follow along. */ 632 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 633 } 634 } 635 tp->rcvq_space.space = copied; 636 637 new_measure: 638 tp->rcvq_space.seq = tp->copied_seq; 639 tp->rcvq_space.time = tp->tcp_mstamp; 640 } 641 642 /* There is something which you must keep in mind when you analyze the 643 * behavior of the tp->ato delayed ack timeout interval. When a 644 * connection starts up, we want to ack as quickly as possible. The 645 * problem is that "good" TCP's do slow start at the beginning of data 646 * transmission. The means that until we send the first few ACK's the 647 * sender will sit on his end and only queue most of his data, because 648 * he can only send snd_cwnd unacked packets at any given time. For 649 * each ACK we send, he increments snd_cwnd and transmits more of his 650 * queue. -DaveM 651 */ 652 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 653 { 654 struct tcp_sock *tp = tcp_sk(sk); 655 struct inet_connection_sock *icsk = inet_csk(sk); 656 u32 now; 657 658 inet_csk_schedule_ack(sk); 659 660 tcp_measure_rcv_mss(sk, skb); 661 662 tcp_rcv_rtt_measure(tp); 663 664 now = tcp_jiffies32; 665 666 if (!icsk->icsk_ack.ato) { 667 /* The _first_ data packet received, initialize 668 * delayed ACK engine. 669 */ 670 tcp_incr_quickack(sk); 671 icsk->icsk_ack.ato = TCP_ATO_MIN; 672 } else { 673 int m = now - icsk->icsk_ack.lrcvtime; 674 675 if (m <= TCP_ATO_MIN / 2) { 676 /* The fastest case is the first. */ 677 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 678 } else if (m < icsk->icsk_ack.ato) { 679 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 680 if (icsk->icsk_ack.ato > icsk->icsk_rto) 681 icsk->icsk_ack.ato = icsk->icsk_rto; 682 } else if (m > icsk->icsk_rto) { 683 /* Too long gap. Apparently sender failed to 684 * restart window, so that we send ACKs quickly. 685 */ 686 tcp_incr_quickack(sk); 687 sk_mem_reclaim(sk); 688 } 689 } 690 icsk->icsk_ack.lrcvtime = now; 691 692 tcp_ecn_check_ce(tp, skb); 693 694 if (skb->len >= 128) 695 tcp_grow_window(sk, skb); 696 } 697 698 /* Called to compute a smoothed rtt estimate. The data fed to this 699 * routine either comes from timestamps, or from segments that were 700 * known _not_ to have been retransmitted [see Karn/Partridge 701 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 702 * piece by Van Jacobson. 703 * NOTE: the next three routines used to be one big routine. 704 * To save cycles in the RFC 1323 implementation it was better to break 705 * it up into three procedures. -- erics 706 */ 707 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 708 { 709 struct tcp_sock *tp = tcp_sk(sk); 710 long m = mrtt_us; /* RTT */ 711 u32 srtt = tp->srtt_us; 712 713 /* The following amusing code comes from Jacobson's 714 * article in SIGCOMM '88. Note that rtt and mdev 715 * are scaled versions of rtt and mean deviation. 716 * This is designed to be as fast as possible 717 * m stands for "measurement". 718 * 719 * On a 1990 paper the rto value is changed to: 720 * RTO = rtt + 4 * mdev 721 * 722 * Funny. This algorithm seems to be very broken. 723 * These formulae increase RTO, when it should be decreased, increase 724 * too slowly, when it should be increased quickly, decrease too quickly 725 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 726 * does not matter how to _calculate_ it. Seems, it was trap 727 * that VJ failed to avoid. 8) 728 */ 729 if (srtt != 0) { 730 m -= (srtt >> 3); /* m is now error in rtt est */ 731 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 732 if (m < 0) { 733 m = -m; /* m is now abs(error) */ 734 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 735 /* This is similar to one of Eifel findings. 736 * Eifel blocks mdev updates when rtt decreases. 737 * This solution is a bit different: we use finer gain 738 * for mdev in this case (alpha*beta). 739 * Like Eifel it also prevents growth of rto, 740 * but also it limits too fast rto decreases, 741 * happening in pure Eifel. 742 */ 743 if (m > 0) 744 m >>= 3; 745 } else { 746 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 747 } 748 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 749 if (tp->mdev_us > tp->mdev_max_us) { 750 tp->mdev_max_us = tp->mdev_us; 751 if (tp->mdev_max_us > tp->rttvar_us) 752 tp->rttvar_us = tp->mdev_max_us; 753 } 754 if (after(tp->snd_una, tp->rtt_seq)) { 755 if (tp->mdev_max_us < tp->rttvar_us) 756 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 757 tp->rtt_seq = tp->snd_nxt; 758 tp->mdev_max_us = tcp_rto_min_us(sk); 759 } 760 } else { 761 /* no previous measure. */ 762 srtt = m << 3; /* take the measured time to be rtt */ 763 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 764 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 765 tp->mdev_max_us = tp->rttvar_us; 766 tp->rtt_seq = tp->snd_nxt; 767 } 768 tp->srtt_us = max(1U, srtt); 769 } 770 771 static void tcp_update_pacing_rate(struct sock *sk) 772 { 773 const struct tcp_sock *tp = tcp_sk(sk); 774 u64 rate; 775 776 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 777 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 778 779 /* current rate is (cwnd * mss) / srtt 780 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 781 * In Congestion Avoidance phase, set it to 120 % the current rate. 782 * 783 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 784 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 785 * end of slow start and should slow down. 786 */ 787 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 788 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 789 else 790 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 791 792 rate *= max(tp->snd_cwnd, tp->packets_out); 793 794 if (likely(tp->srtt_us)) 795 do_div(rate, tp->srtt_us); 796 797 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 798 * without any lock. We want to make sure compiler wont store 799 * intermediate values in this location. 800 */ 801 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 802 sk->sk_max_pacing_rate)); 803 } 804 805 /* Calculate rto without backoff. This is the second half of Van Jacobson's 806 * routine referred to above. 807 */ 808 static void tcp_set_rto(struct sock *sk) 809 { 810 const struct tcp_sock *tp = tcp_sk(sk); 811 /* Old crap is replaced with new one. 8) 812 * 813 * More seriously: 814 * 1. If rtt variance happened to be less 50msec, it is hallucination. 815 * It cannot be less due to utterly erratic ACK generation made 816 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 817 * to do with delayed acks, because at cwnd>2 true delack timeout 818 * is invisible. Actually, Linux-2.4 also generates erratic 819 * ACKs in some circumstances. 820 */ 821 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 822 823 /* 2. Fixups made earlier cannot be right. 824 * If we do not estimate RTO correctly without them, 825 * all the algo is pure shit and should be replaced 826 * with correct one. It is exactly, which we pretend to do. 827 */ 828 829 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 830 * guarantees that rto is higher. 831 */ 832 tcp_bound_rto(sk); 833 } 834 835 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 836 { 837 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 838 839 if (!cwnd) 840 cwnd = TCP_INIT_CWND; 841 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 842 } 843 844 /* Take a notice that peer is sending D-SACKs */ 845 static void tcp_dsack_seen(struct tcp_sock *tp) 846 { 847 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 848 tp->rack.dsack_seen = 1; 849 } 850 851 /* It's reordering when higher sequence was delivered (i.e. sacked) before 852 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 853 * distance is approximated in full-mss packet distance ("reordering"). 854 */ 855 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 856 const int ts) 857 { 858 struct tcp_sock *tp = tcp_sk(sk); 859 const u32 mss = tp->mss_cache; 860 u32 fack, metric; 861 862 fack = tcp_highest_sack_seq(tp); 863 if (!before(low_seq, fack)) 864 return; 865 866 metric = fack - low_seq; 867 if ((metric > tp->reordering * mss) && mss) { 868 #if FASTRETRANS_DEBUG > 1 869 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 870 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 871 tp->reordering, 872 0, 873 tp->sacked_out, 874 tp->undo_marker ? tp->undo_retrans : 0); 875 #endif 876 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 877 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 878 } 879 880 tp->rack.reord = 1; 881 /* This exciting event is worth to be remembered. 8) */ 882 NET_INC_STATS(sock_net(sk), 883 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 884 } 885 886 /* This must be called before lost_out is incremented */ 887 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 888 { 889 if (!tp->retransmit_skb_hint || 890 before(TCP_SKB_CB(skb)->seq, 891 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 892 tp->retransmit_skb_hint = skb; 893 } 894 895 /* Sum the number of packets on the wire we have marked as lost. 896 * There are two cases we care about here: 897 * a) Packet hasn't been marked lost (nor retransmitted), 898 * and this is the first loss. 899 * b) Packet has been marked both lost and retransmitted, 900 * and this means we think it was lost again. 901 */ 902 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 903 { 904 __u8 sacked = TCP_SKB_CB(skb)->sacked; 905 906 if (!(sacked & TCPCB_LOST) || 907 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 908 tp->lost += tcp_skb_pcount(skb); 909 } 910 911 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 912 { 913 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 914 tcp_verify_retransmit_hint(tp, skb); 915 916 tp->lost_out += tcp_skb_pcount(skb); 917 tcp_sum_lost(tp, skb); 918 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 919 } 920 } 921 922 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 923 { 924 tcp_verify_retransmit_hint(tp, skb); 925 926 tcp_sum_lost(tp, skb); 927 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 928 tp->lost_out += tcp_skb_pcount(skb); 929 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 930 } 931 } 932 933 /* This procedure tags the retransmission queue when SACKs arrive. 934 * 935 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 936 * Packets in queue with these bits set are counted in variables 937 * sacked_out, retrans_out and lost_out, correspondingly. 938 * 939 * Valid combinations are: 940 * Tag InFlight Description 941 * 0 1 - orig segment is in flight. 942 * S 0 - nothing flies, orig reached receiver. 943 * L 0 - nothing flies, orig lost by net. 944 * R 2 - both orig and retransmit are in flight. 945 * L|R 1 - orig is lost, retransmit is in flight. 946 * S|R 1 - orig reached receiver, retrans is still in flight. 947 * (L|S|R is logically valid, it could occur when L|R is sacked, 948 * but it is equivalent to plain S and code short-curcuits it to S. 949 * L|S is logically invalid, it would mean -1 packet in flight 8)) 950 * 951 * These 6 states form finite state machine, controlled by the following events: 952 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 953 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 954 * 3. Loss detection event of two flavors: 955 * A. Scoreboard estimator decided the packet is lost. 956 * A'. Reno "three dupacks" marks head of queue lost. 957 * B. SACK arrives sacking SND.NXT at the moment, when the 958 * segment was retransmitted. 959 * 4. D-SACK added new rule: D-SACK changes any tag to S. 960 * 961 * It is pleasant to note, that state diagram turns out to be commutative, 962 * so that we are allowed not to be bothered by order of our actions, 963 * when multiple events arrive simultaneously. (see the function below). 964 * 965 * Reordering detection. 966 * -------------------- 967 * Reordering metric is maximal distance, which a packet can be displaced 968 * in packet stream. With SACKs we can estimate it: 969 * 970 * 1. SACK fills old hole and the corresponding segment was not 971 * ever retransmitted -> reordering. Alas, we cannot use it 972 * when segment was retransmitted. 973 * 2. The last flaw is solved with D-SACK. D-SACK arrives 974 * for retransmitted and already SACKed segment -> reordering.. 975 * Both of these heuristics are not used in Loss state, when we cannot 976 * account for retransmits accurately. 977 * 978 * SACK block validation. 979 * ---------------------- 980 * 981 * SACK block range validation checks that the received SACK block fits to 982 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 983 * Note that SND.UNA is not included to the range though being valid because 984 * it means that the receiver is rather inconsistent with itself reporting 985 * SACK reneging when it should advance SND.UNA. Such SACK block this is 986 * perfectly valid, however, in light of RFC2018 which explicitly states 987 * that "SACK block MUST reflect the newest segment. Even if the newest 988 * segment is going to be discarded ...", not that it looks very clever 989 * in case of head skb. Due to potentional receiver driven attacks, we 990 * choose to avoid immediate execution of a walk in write queue due to 991 * reneging and defer head skb's loss recovery to standard loss recovery 992 * procedure that will eventually trigger (nothing forbids us doing this). 993 * 994 * Implements also blockage to start_seq wrap-around. Problem lies in the 995 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 996 * there's no guarantee that it will be before snd_nxt (n). The problem 997 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 998 * wrap (s_w): 999 * 1000 * <- outs wnd -> <- wrapzone -> 1001 * u e n u_w e_w s n_w 1002 * | | | | | | | 1003 * |<------------+------+----- TCP seqno space --------------+---------->| 1004 * ...-- <2^31 ->| |<--------... 1005 * ...---- >2^31 ------>| |<--------... 1006 * 1007 * Current code wouldn't be vulnerable but it's better still to discard such 1008 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1009 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1010 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1011 * equal to the ideal case (infinite seqno space without wrap caused issues). 1012 * 1013 * With D-SACK the lower bound is extended to cover sequence space below 1014 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1015 * again, D-SACK block must not to go across snd_una (for the same reason as 1016 * for the normal SACK blocks, explained above). But there all simplicity 1017 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1018 * fully below undo_marker they do not affect behavior in anyway and can 1019 * therefore be safely ignored. In rare cases (which are more or less 1020 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1021 * fragmentation and packet reordering past skb's retransmission. To consider 1022 * them correctly, the acceptable range must be extended even more though 1023 * the exact amount is rather hard to quantify. However, tp->max_window can 1024 * be used as an exaggerated estimate. 1025 */ 1026 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1027 u32 start_seq, u32 end_seq) 1028 { 1029 /* Too far in future, or reversed (interpretation is ambiguous) */ 1030 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1031 return false; 1032 1033 /* Nasty start_seq wrap-around check (see comments above) */ 1034 if (!before(start_seq, tp->snd_nxt)) 1035 return false; 1036 1037 /* In outstanding window? ...This is valid exit for D-SACKs too. 1038 * start_seq == snd_una is non-sensical (see comments above) 1039 */ 1040 if (after(start_seq, tp->snd_una)) 1041 return true; 1042 1043 if (!is_dsack || !tp->undo_marker) 1044 return false; 1045 1046 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1047 if (after(end_seq, tp->snd_una)) 1048 return false; 1049 1050 if (!before(start_seq, tp->undo_marker)) 1051 return true; 1052 1053 /* Too old */ 1054 if (!after(end_seq, tp->undo_marker)) 1055 return false; 1056 1057 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1058 * start_seq < undo_marker and end_seq >= undo_marker. 1059 */ 1060 return !before(start_seq, end_seq - tp->max_window); 1061 } 1062 1063 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1064 struct tcp_sack_block_wire *sp, int num_sacks, 1065 u32 prior_snd_una) 1066 { 1067 struct tcp_sock *tp = tcp_sk(sk); 1068 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1069 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1070 bool dup_sack = false; 1071 1072 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1073 dup_sack = true; 1074 tcp_dsack_seen(tp); 1075 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1076 } else if (num_sacks > 1) { 1077 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1078 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1079 1080 if (!after(end_seq_0, end_seq_1) && 1081 !before(start_seq_0, start_seq_1)) { 1082 dup_sack = true; 1083 tcp_dsack_seen(tp); 1084 NET_INC_STATS(sock_net(sk), 1085 LINUX_MIB_TCPDSACKOFORECV); 1086 } 1087 } 1088 1089 /* D-SACK for already forgotten data... Do dumb counting. */ 1090 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1091 !after(end_seq_0, prior_snd_una) && 1092 after(end_seq_0, tp->undo_marker)) 1093 tp->undo_retrans--; 1094 1095 return dup_sack; 1096 } 1097 1098 struct tcp_sacktag_state { 1099 u32 reord; 1100 /* Timestamps for earliest and latest never-retransmitted segment 1101 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1102 * but congestion control should still get an accurate delay signal. 1103 */ 1104 u64 first_sackt; 1105 u64 last_sackt; 1106 struct rate_sample *rate; 1107 int flag; 1108 unsigned int mss_now; 1109 }; 1110 1111 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1112 * the incoming SACK may not exactly match but we can find smaller MSS 1113 * aligned portion of it that matches. Therefore we might need to fragment 1114 * which may fail and creates some hassle (caller must handle error case 1115 * returns). 1116 * 1117 * FIXME: this could be merged to shift decision code 1118 */ 1119 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1120 u32 start_seq, u32 end_seq) 1121 { 1122 int err; 1123 bool in_sack; 1124 unsigned int pkt_len; 1125 unsigned int mss; 1126 1127 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1128 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1129 1130 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1131 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1132 mss = tcp_skb_mss(skb); 1133 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1134 1135 if (!in_sack) { 1136 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1137 if (pkt_len < mss) 1138 pkt_len = mss; 1139 } else { 1140 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1141 if (pkt_len < mss) 1142 return -EINVAL; 1143 } 1144 1145 /* Round if necessary so that SACKs cover only full MSSes 1146 * and/or the remaining small portion (if present) 1147 */ 1148 if (pkt_len > mss) { 1149 unsigned int new_len = (pkt_len / mss) * mss; 1150 if (!in_sack && new_len < pkt_len) 1151 new_len += mss; 1152 pkt_len = new_len; 1153 } 1154 1155 if (pkt_len >= skb->len && !in_sack) 1156 return 0; 1157 1158 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1159 pkt_len, mss, GFP_ATOMIC); 1160 if (err < 0) 1161 return err; 1162 } 1163 1164 return in_sack; 1165 } 1166 1167 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1168 static u8 tcp_sacktag_one(struct sock *sk, 1169 struct tcp_sacktag_state *state, u8 sacked, 1170 u32 start_seq, u32 end_seq, 1171 int dup_sack, int pcount, 1172 u64 xmit_time) 1173 { 1174 struct tcp_sock *tp = tcp_sk(sk); 1175 1176 /* Account D-SACK for retransmitted packet. */ 1177 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1178 if (tp->undo_marker && tp->undo_retrans > 0 && 1179 after(end_seq, tp->undo_marker)) 1180 tp->undo_retrans--; 1181 if ((sacked & TCPCB_SACKED_ACKED) && 1182 before(start_seq, state->reord)) 1183 state->reord = start_seq; 1184 } 1185 1186 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1187 if (!after(end_seq, tp->snd_una)) 1188 return sacked; 1189 1190 if (!(sacked & TCPCB_SACKED_ACKED)) { 1191 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1192 1193 if (sacked & TCPCB_SACKED_RETRANS) { 1194 /* If the segment is not tagged as lost, 1195 * we do not clear RETRANS, believing 1196 * that retransmission is still in flight. 1197 */ 1198 if (sacked & TCPCB_LOST) { 1199 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1200 tp->lost_out -= pcount; 1201 tp->retrans_out -= pcount; 1202 } 1203 } else { 1204 if (!(sacked & TCPCB_RETRANS)) { 1205 /* New sack for not retransmitted frame, 1206 * which was in hole. It is reordering. 1207 */ 1208 if (before(start_seq, 1209 tcp_highest_sack_seq(tp)) && 1210 before(start_seq, state->reord)) 1211 state->reord = start_seq; 1212 1213 if (!after(end_seq, tp->high_seq)) 1214 state->flag |= FLAG_ORIG_SACK_ACKED; 1215 if (state->first_sackt == 0) 1216 state->first_sackt = xmit_time; 1217 state->last_sackt = xmit_time; 1218 } 1219 1220 if (sacked & TCPCB_LOST) { 1221 sacked &= ~TCPCB_LOST; 1222 tp->lost_out -= pcount; 1223 } 1224 } 1225 1226 sacked |= TCPCB_SACKED_ACKED; 1227 state->flag |= FLAG_DATA_SACKED; 1228 tp->sacked_out += pcount; 1229 tp->delivered += pcount; /* Out-of-order packets delivered */ 1230 1231 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1232 if (tp->lost_skb_hint && 1233 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1234 tp->lost_cnt_hint += pcount; 1235 } 1236 1237 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1238 * frames and clear it. undo_retrans is decreased above, L|R frames 1239 * are accounted above as well. 1240 */ 1241 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1242 sacked &= ~TCPCB_SACKED_RETRANS; 1243 tp->retrans_out -= pcount; 1244 } 1245 1246 return sacked; 1247 } 1248 1249 /* Shift newly-SACKed bytes from this skb to the immediately previous 1250 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1251 */ 1252 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1253 struct sk_buff *skb, 1254 struct tcp_sacktag_state *state, 1255 unsigned int pcount, int shifted, int mss, 1256 bool dup_sack) 1257 { 1258 struct tcp_sock *tp = tcp_sk(sk); 1259 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1260 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1261 1262 BUG_ON(!pcount); 1263 1264 /* Adjust counters and hints for the newly sacked sequence 1265 * range but discard the return value since prev is already 1266 * marked. We must tag the range first because the seq 1267 * advancement below implicitly advances 1268 * tcp_highest_sack_seq() when skb is highest_sack. 1269 */ 1270 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1271 start_seq, end_seq, dup_sack, pcount, 1272 skb->skb_mstamp); 1273 tcp_rate_skb_delivered(sk, skb, state->rate); 1274 1275 if (skb == tp->lost_skb_hint) 1276 tp->lost_cnt_hint += pcount; 1277 1278 TCP_SKB_CB(prev)->end_seq += shifted; 1279 TCP_SKB_CB(skb)->seq += shifted; 1280 1281 tcp_skb_pcount_add(prev, pcount); 1282 BUG_ON(tcp_skb_pcount(skb) < pcount); 1283 tcp_skb_pcount_add(skb, -pcount); 1284 1285 /* When we're adding to gso_segs == 1, gso_size will be zero, 1286 * in theory this shouldn't be necessary but as long as DSACK 1287 * code can come after this skb later on it's better to keep 1288 * setting gso_size to something. 1289 */ 1290 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1291 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1292 1293 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1294 if (tcp_skb_pcount(skb) <= 1) 1295 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1296 1297 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1298 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1299 1300 if (skb->len > 0) { 1301 BUG_ON(!tcp_skb_pcount(skb)); 1302 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1303 return false; 1304 } 1305 1306 /* Whole SKB was eaten :-) */ 1307 1308 if (skb == tp->retransmit_skb_hint) 1309 tp->retransmit_skb_hint = prev; 1310 if (skb == tp->lost_skb_hint) { 1311 tp->lost_skb_hint = prev; 1312 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1313 } 1314 1315 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1316 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1317 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1318 TCP_SKB_CB(prev)->end_seq++; 1319 1320 if (skb == tcp_highest_sack(sk)) 1321 tcp_advance_highest_sack(sk, skb); 1322 1323 tcp_skb_collapse_tstamp(prev, skb); 1324 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1325 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1326 1327 tcp_rtx_queue_unlink_and_free(skb, sk); 1328 1329 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1330 1331 return true; 1332 } 1333 1334 /* I wish gso_size would have a bit more sane initialization than 1335 * something-or-zero which complicates things 1336 */ 1337 static int tcp_skb_seglen(const struct sk_buff *skb) 1338 { 1339 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1340 } 1341 1342 /* Shifting pages past head area doesn't work */ 1343 static int skb_can_shift(const struct sk_buff *skb) 1344 { 1345 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1346 } 1347 1348 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1349 * skb. 1350 */ 1351 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1352 struct tcp_sacktag_state *state, 1353 u32 start_seq, u32 end_seq, 1354 bool dup_sack) 1355 { 1356 struct tcp_sock *tp = tcp_sk(sk); 1357 struct sk_buff *prev; 1358 int mss; 1359 int pcount = 0; 1360 int len; 1361 int in_sack; 1362 1363 /* Normally R but no L won't result in plain S */ 1364 if (!dup_sack && 1365 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1366 goto fallback; 1367 if (!skb_can_shift(skb)) 1368 goto fallback; 1369 /* This frame is about to be dropped (was ACKed). */ 1370 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1371 goto fallback; 1372 1373 /* Can only happen with delayed DSACK + discard craziness */ 1374 prev = skb_rb_prev(skb); 1375 if (!prev) 1376 goto fallback; 1377 1378 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1379 goto fallback; 1380 1381 if (!tcp_skb_can_collapse_to(prev)) 1382 goto fallback; 1383 1384 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1385 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1386 1387 if (in_sack) { 1388 len = skb->len; 1389 pcount = tcp_skb_pcount(skb); 1390 mss = tcp_skb_seglen(skb); 1391 1392 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1393 * drop this restriction as unnecessary 1394 */ 1395 if (mss != tcp_skb_seglen(prev)) 1396 goto fallback; 1397 } else { 1398 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1399 goto noop; 1400 /* CHECKME: This is non-MSS split case only?, this will 1401 * cause skipped skbs due to advancing loop btw, original 1402 * has that feature too 1403 */ 1404 if (tcp_skb_pcount(skb) <= 1) 1405 goto noop; 1406 1407 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1408 if (!in_sack) { 1409 /* TODO: head merge to next could be attempted here 1410 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1411 * though it might not be worth of the additional hassle 1412 * 1413 * ...we can probably just fallback to what was done 1414 * previously. We could try merging non-SACKed ones 1415 * as well but it probably isn't going to buy off 1416 * because later SACKs might again split them, and 1417 * it would make skb timestamp tracking considerably 1418 * harder problem. 1419 */ 1420 goto fallback; 1421 } 1422 1423 len = end_seq - TCP_SKB_CB(skb)->seq; 1424 BUG_ON(len < 0); 1425 BUG_ON(len > skb->len); 1426 1427 /* MSS boundaries should be honoured or else pcount will 1428 * severely break even though it makes things bit trickier. 1429 * Optimize common case to avoid most of the divides 1430 */ 1431 mss = tcp_skb_mss(skb); 1432 1433 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1434 * drop this restriction as unnecessary 1435 */ 1436 if (mss != tcp_skb_seglen(prev)) 1437 goto fallback; 1438 1439 if (len == mss) { 1440 pcount = 1; 1441 } else if (len < mss) { 1442 goto noop; 1443 } else { 1444 pcount = len / mss; 1445 len = pcount * mss; 1446 } 1447 } 1448 1449 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1450 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1451 goto fallback; 1452 1453 if (!skb_shift(prev, skb, len)) 1454 goto fallback; 1455 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1456 goto out; 1457 1458 /* Hole filled allows collapsing with the next as well, this is very 1459 * useful when hole on every nth skb pattern happens 1460 */ 1461 skb = skb_rb_next(prev); 1462 if (!skb) 1463 goto out; 1464 1465 if (!skb_can_shift(skb) || 1466 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1467 (mss != tcp_skb_seglen(skb))) 1468 goto out; 1469 1470 len = skb->len; 1471 if (skb_shift(prev, skb, len)) { 1472 pcount += tcp_skb_pcount(skb); 1473 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1474 len, mss, 0); 1475 } 1476 1477 out: 1478 return prev; 1479 1480 noop: 1481 return skb; 1482 1483 fallback: 1484 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1485 return NULL; 1486 } 1487 1488 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1489 struct tcp_sack_block *next_dup, 1490 struct tcp_sacktag_state *state, 1491 u32 start_seq, u32 end_seq, 1492 bool dup_sack_in) 1493 { 1494 struct tcp_sock *tp = tcp_sk(sk); 1495 struct sk_buff *tmp; 1496 1497 skb_rbtree_walk_from(skb) { 1498 int in_sack = 0; 1499 bool dup_sack = dup_sack_in; 1500 1501 /* queue is in-order => we can short-circuit the walk early */ 1502 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1503 break; 1504 1505 if (next_dup && 1506 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1507 in_sack = tcp_match_skb_to_sack(sk, skb, 1508 next_dup->start_seq, 1509 next_dup->end_seq); 1510 if (in_sack > 0) 1511 dup_sack = true; 1512 } 1513 1514 /* skb reference here is a bit tricky to get right, since 1515 * shifting can eat and free both this skb and the next, 1516 * so not even _safe variant of the loop is enough. 1517 */ 1518 if (in_sack <= 0) { 1519 tmp = tcp_shift_skb_data(sk, skb, state, 1520 start_seq, end_seq, dup_sack); 1521 if (tmp) { 1522 if (tmp != skb) { 1523 skb = tmp; 1524 continue; 1525 } 1526 1527 in_sack = 0; 1528 } else { 1529 in_sack = tcp_match_skb_to_sack(sk, skb, 1530 start_seq, 1531 end_seq); 1532 } 1533 } 1534 1535 if (unlikely(in_sack < 0)) 1536 break; 1537 1538 if (in_sack) { 1539 TCP_SKB_CB(skb)->sacked = 1540 tcp_sacktag_one(sk, 1541 state, 1542 TCP_SKB_CB(skb)->sacked, 1543 TCP_SKB_CB(skb)->seq, 1544 TCP_SKB_CB(skb)->end_seq, 1545 dup_sack, 1546 tcp_skb_pcount(skb), 1547 skb->skb_mstamp); 1548 tcp_rate_skb_delivered(sk, skb, state->rate); 1549 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1550 list_del_init(&skb->tcp_tsorted_anchor); 1551 1552 if (!before(TCP_SKB_CB(skb)->seq, 1553 tcp_highest_sack_seq(tp))) 1554 tcp_advance_highest_sack(sk, skb); 1555 } 1556 } 1557 return skb; 1558 } 1559 1560 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1561 struct tcp_sacktag_state *state, 1562 u32 seq) 1563 { 1564 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1565 struct sk_buff *skb; 1566 1567 while (*p) { 1568 parent = *p; 1569 skb = rb_to_skb(parent); 1570 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1571 p = &parent->rb_left; 1572 continue; 1573 } 1574 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1575 p = &parent->rb_right; 1576 continue; 1577 } 1578 return skb; 1579 } 1580 return NULL; 1581 } 1582 1583 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1584 struct tcp_sacktag_state *state, 1585 u32 skip_to_seq) 1586 { 1587 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1588 return skb; 1589 1590 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1591 } 1592 1593 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1594 struct sock *sk, 1595 struct tcp_sack_block *next_dup, 1596 struct tcp_sacktag_state *state, 1597 u32 skip_to_seq) 1598 { 1599 if (!next_dup) 1600 return skb; 1601 1602 if (before(next_dup->start_seq, skip_to_seq)) { 1603 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1604 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1605 next_dup->start_seq, next_dup->end_seq, 1606 1); 1607 } 1608 1609 return skb; 1610 } 1611 1612 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1613 { 1614 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1615 } 1616 1617 static int 1618 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1619 u32 prior_snd_una, struct tcp_sacktag_state *state) 1620 { 1621 struct tcp_sock *tp = tcp_sk(sk); 1622 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1623 TCP_SKB_CB(ack_skb)->sacked); 1624 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1625 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1626 struct tcp_sack_block *cache; 1627 struct sk_buff *skb; 1628 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1629 int used_sacks; 1630 bool found_dup_sack = false; 1631 int i, j; 1632 int first_sack_index; 1633 1634 state->flag = 0; 1635 state->reord = tp->snd_nxt; 1636 1637 if (!tp->sacked_out) 1638 tcp_highest_sack_reset(sk); 1639 1640 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1641 num_sacks, prior_snd_una); 1642 if (found_dup_sack) { 1643 state->flag |= FLAG_DSACKING_ACK; 1644 tp->delivered++; /* A spurious retransmission is delivered */ 1645 } 1646 1647 /* Eliminate too old ACKs, but take into 1648 * account more or less fresh ones, they can 1649 * contain valid SACK info. 1650 */ 1651 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1652 return 0; 1653 1654 if (!tp->packets_out) 1655 goto out; 1656 1657 used_sacks = 0; 1658 first_sack_index = 0; 1659 for (i = 0; i < num_sacks; i++) { 1660 bool dup_sack = !i && found_dup_sack; 1661 1662 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1663 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1664 1665 if (!tcp_is_sackblock_valid(tp, dup_sack, 1666 sp[used_sacks].start_seq, 1667 sp[used_sacks].end_seq)) { 1668 int mib_idx; 1669 1670 if (dup_sack) { 1671 if (!tp->undo_marker) 1672 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1673 else 1674 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1675 } else { 1676 /* Don't count olds caused by ACK reordering */ 1677 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1678 !after(sp[used_sacks].end_seq, tp->snd_una)) 1679 continue; 1680 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1681 } 1682 1683 NET_INC_STATS(sock_net(sk), mib_idx); 1684 if (i == 0) 1685 first_sack_index = -1; 1686 continue; 1687 } 1688 1689 /* Ignore very old stuff early */ 1690 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1691 continue; 1692 1693 used_sacks++; 1694 } 1695 1696 /* order SACK blocks to allow in order walk of the retrans queue */ 1697 for (i = used_sacks - 1; i > 0; i--) { 1698 for (j = 0; j < i; j++) { 1699 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1700 swap(sp[j], sp[j + 1]); 1701 1702 /* Track where the first SACK block goes to */ 1703 if (j == first_sack_index) 1704 first_sack_index = j + 1; 1705 } 1706 } 1707 } 1708 1709 state->mss_now = tcp_current_mss(sk); 1710 skb = NULL; 1711 i = 0; 1712 1713 if (!tp->sacked_out) { 1714 /* It's already past, so skip checking against it */ 1715 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1716 } else { 1717 cache = tp->recv_sack_cache; 1718 /* Skip empty blocks in at head of the cache */ 1719 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1720 !cache->end_seq) 1721 cache++; 1722 } 1723 1724 while (i < used_sacks) { 1725 u32 start_seq = sp[i].start_seq; 1726 u32 end_seq = sp[i].end_seq; 1727 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1728 struct tcp_sack_block *next_dup = NULL; 1729 1730 if (found_dup_sack && ((i + 1) == first_sack_index)) 1731 next_dup = &sp[i + 1]; 1732 1733 /* Skip too early cached blocks */ 1734 while (tcp_sack_cache_ok(tp, cache) && 1735 !before(start_seq, cache->end_seq)) 1736 cache++; 1737 1738 /* Can skip some work by looking recv_sack_cache? */ 1739 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1740 after(end_seq, cache->start_seq)) { 1741 1742 /* Head todo? */ 1743 if (before(start_seq, cache->start_seq)) { 1744 skb = tcp_sacktag_skip(skb, sk, state, 1745 start_seq); 1746 skb = tcp_sacktag_walk(skb, sk, next_dup, 1747 state, 1748 start_seq, 1749 cache->start_seq, 1750 dup_sack); 1751 } 1752 1753 /* Rest of the block already fully processed? */ 1754 if (!after(end_seq, cache->end_seq)) 1755 goto advance_sp; 1756 1757 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1758 state, 1759 cache->end_seq); 1760 1761 /* ...tail remains todo... */ 1762 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1763 /* ...but better entrypoint exists! */ 1764 skb = tcp_highest_sack(sk); 1765 if (!skb) 1766 break; 1767 cache++; 1768 goto walk; 1769 } 1770 1771 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1772 /* Check overlap against next cached too (past this one already) */ 1773 cache++; 1774 continue; 1775 } 1776 1777 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1778 skb = tcp_highest_sack(sk); 1779 if (!skb) 1780 break; 1781 } 1782 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1783 1784 walk: 1785 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1786 start_seq, end_seq, dup_sack); 1787 1788 advance_sp: 1789 i++; 1790 } 1791 1792 /* Clear the head of the cache sack blocks so we can skip it next time */ 1793 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1794 tp->recv_sack_cache[i].start_seq = 0; 1795 tp->recv_sack_cache[i].end_seq = 0; 1796 } 1797 for (j = 0; j < used_sacks; j++) 1798 tp->recv_sack_cache[i++] = sp[j]; 1799 1800 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1801 tcp_check_sack_reordering(sk, state->reord, 0); 1802 1803 tcp_verify_left_out(tp); 1804 out: 1805 1806 #if FASTRETRANS_DEBUG > 0 1807 WARN_ON((int)tp->sacked_out < 0); 1808 WARN_ON((int)tp->lost_out < 0); 1809 WARN_ON((int)tp->retrans_out < 0); 1810 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1811 #endif 1812 return state->flag; 1813 } 1814 1815 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1816 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1817 */ 1818 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1819 { 1820 u32 holes; 1821 1822 holes = max(tp->lost_out, 1U); 1823 holes = min(holes, tp->packets_out); 1824 1825 if ((tp->sacked_out + holes) > tp->packets_out) { 1826 tp->sacked_out = tp->packets_out - holes; 1827 return true; 1828 } 1829 return false; 1830 } 1831 1832 /* If we receive more dupacks than we expected counting segments 1833 * in assumption of absent reordering, interpret this as reordering. 1834 * The only another reason could be bug in receiver TCP. 1835 */ 1836 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1837 { 1838 struct tcp_sock *tp = tcp_sk(sk); 1839 1840 if (!tcp_limit_reno_sacked(tp)) 1841 return; 1842 1843 tp->reordering = min_t(u32, tp->packets_out + addend, 1844 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1845 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1846 } 1847 1848 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1849 1850 static void tcp_add_reno_sack(struct sock *sk) 1851 { 1852 struct tcp_sock *tp = tcp_sk(sk); 1853 u32 prior_sacked = tp->sacked_out; 1854 1855 tp->sacked_out++; 1856 tcp_check_reno_reordering(sk, 0); 1857 if (tp->sacked_out > prior_sacked) 1858 tp->delivered++; /* Some out-of-order packet is delivered */ 1859 tcp_verify_left_out(tp); 1860 } 1861 1862 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1863 1864 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1865 { 1866 struct tcp_sock *tp = tcp_sk(sk); 1867 1868 if (acked > 0) { 1869 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1870 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1871 if (acked - 1 >= tp->sacked_out) 1872 tp->sacked_out = 0; 1873 else 1874 tp->sacked_out -= acked - 1; 1875 } 1876 tcp_check_reno_reordering(sk, acked); 1877 tcp_verify_left_out(tp); 1878 } 1879 1880 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1881 { 1882 tp->sacked_out = 0; 1883 } 1884 1885 void tcp_clear_retrans(struct tcp_sock *tp) 1886 { 1887 tp->retrans_out = 0; 1888 tp->lost_out = 0; 1889 tp->undo_marker = 0; 1890 tp->undo_retrans = -1; 1891 tp->sacked_out = 0; 1892 } 1893 1894 static inline void tcp_init_undo(struct tcp_sock *tp) 1895 { 1896 tp->undo_marker = tp->snd_una; 1897 /* Retransmission still in flight may cause DSACKs later. */ 1898 tp->undo_retrans = tp->retrans_out ? : -1; 1899 } 1900 1901 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1902 * and reset tags completely, otherwise preserve SACKs. If receiver 1903 * dropped its ofo queue, we will know this due to reneging detection. 1904 */ 1905 void tcp_enter_loss(struct sock *sk) 1906 { 1907 const struct inet_connection_sock *icsk = inet_csk(sk); 1908 struct tcp_sock *tp = tcp_sk(sk); 1909 struct net *net = sock_net(sk); 1910 struct sk_buff *skb; 1911 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1912 bool is_reneg; /* is receiver reneging on SACKs? */ 1913 bool mark_lost; 1914 1915 /* Reduce ssthresh if it has not yet been made inside this window. */ 1916 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1917 !after(tp->high_seq, tp->snd_una) || 1918 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1919 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1920 tp->prior_cwnd = tp->snd_cwnd; 1921 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1922 tcp_ca_event(sk, CA_EVENT_LOSS); 1923 tcp_init_undo(tp); 1924 } 1925 tp->snd_cwnd = 1; 1926 tp->snd_cwnd_cnt = 0; 1927 tp->snd_cwnd_stamp = tcp_jiffies32; 1928 1929 tp->retrans_out = 0; 1930 tp->lost_out = 0; 1931 1932 if (tcp_is_reno(tp)) 1933 tcp_reset_reno_sack(tp); 1934 1935 skb = tcp_rtx_queue_head(sk); 1936 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1937 if (is_reneg) { 1938 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1939 tp->sacked_out = 0; 1940 /* Mark SACK reneging until we recover from this loss event. */ 1941 tp->is_sack_reneg = 1; 1942 } 1943 tcp_clear_all_retrans_hints(tp); 1944 1945 skb_rbtree_walk_from(skb) { 1946 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1947 is_reneg); 1948 if (mark_lost) 1949 tcp_sum_lost(tp, skb); 1950 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1951 if (mark_lost) { 1952 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1954 tp->lost_out += tcp_skb_pcount(skb); 1955 } 1956 } 1957 tcp_verify_left_out(tp); 1958 1959 /* Timeout in disordered state after receiving substantial DUPACKs 1960 * suggests that the degree of reordering is over-estimated. 1961 */ 1962 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1963 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1964 tp->reordering = min_t(unsigned int, tp->reordering, 1965 net->ipv4.sysctl_tcp_reordering); 1966 tcp_set_ca_state(sk, TCP_CA_Loss); 1967 tp->high_seq = tp->snd_nxt; 1968 tcp_ecn_queue_cwr(tp); 1969 1970 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1971 * loss recovery is underway except recurring timeout(s) on 1972 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1973 */ 1974 tp->frto = net->ipv4.sysctl_tcp_frto && 1975 (new_recovery || icsk->icsk_retransmits) && 1976 !inet_csk(sk)->icsk_mtup.probe_size; 1977 } 1978 1979 /* If ACK arrived pointing to a remembered SACK, it means that our 1980 * remembered SACKs do not reflect real state of receiver i.e. 1981 * receiver _host_ is heavily congested (or buggy). 1982 * 1983 * To avoid big spurious retransmission bursts due to transient SACK 1984 * scoreboard oddities that look like reneging, we give the receiver a 1985 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 1986 * restore sanity to the SACK scoreboard. If the apparent reneging 1987 * persists until this RTO then we'll clear the SACK scoreboard. 1988 */ 1989 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 1990 { 1991 if (flag & FLAG_SACK_RENEGING) { 1992 struct tcp_sock *tp = tcp_sk(sk); 1993 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 1994 msecs_to_jiffies(10)); 1995 1996 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1997 delay, TCP_RTO_MAX); 1998 return true; 1999 } 2000 return false; 2001 } 2002 2003 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2004 * counter when SACK is enabled (without SACK, sacked_out is used for 2005 * that purpose). 2006 * 2007 * With reordering, holes may still be in flight, so RFC3517 recovery 2008 * uses pure sacked_out (total number of SACKed segments) even though 2009 * it violates the RFC that uses duplicate ACKs, often these are equal 2010 * but when e.g. out-of-window ACKs or packet duplication occurs, 2011 * they differ. Since neither occurs due to loss, TCP should really 2012 * ignore them. 2013 */ 2014 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2015 { 2016 return tp->sacked_out + 1; 2017 } 2018 2019 /* Linux NewReno/SACK/ECN state machine. 2020 * -------------------------------------- 2021 * 2022 * "Open" Normal state, no dubious events, fast path. 2023 * "Disorder" In all the respects it is "Open", 2024 * but requires a bit more attention. It is entered when 2025 * we see some SACKs or dupacks. It is split of "Open" 2026 * mainly to move some processing from fast path to slow one. 2027 * "CWR" CWND was reduced due to some Congestion Notification event. 2028 * It can be ECN, ICMP source quench, local device congestion. 2029 * "Recovery" CWND was reduced, we are fast-retransmitting. 2030 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2031 * 2032 * tcp_fastretrans_alert() is entered: 2033 * - each incoming ACK, if state is not "Open" 2034 * - when arrived ACK is unusual, namely: 2035 * * SACK 2036 * * Duplicate ACK. 2037 * * ECN ECE. 2038 * 2039 * Counting packets in flight is pretty simple. 2040 * 2041 * in_flight = packets_out - left_out + retrans_out 2042 * 2043 * packets_out is SND.NXT-SND.UNA counted in packets. 2044 * 2045 * retrans_out is number of retransmitted segments. 2046 * 2047 * left_out is number of segments left network, but not ACKed yet. 2048 * 2049 * left_out = sacked_out + lost_out 2050 * 2051 * sacked_out: Packets, which arrived to receiver out of order 2052 * and hence not ACKed. With SACKs this number is simply 2053 * amount of SACKed data. Even without SACKs 2054 * it is easy to give pretty reliable estimate of this number, 2055 * counting duplicate ACKs. 2056 * 2057 * lost_out: Packets lost by network. TCP has no explicit 2058 * "loss notification" feedback from network (for now). 2059 * It means that this number can be only _guessed_. 2060 * Actually, it is the heuristics to predict lossage that 2061 * distinguishes different algorithms. 2062 * 2063 * F.e. after RTO, when all the queue is considered as lost, 2064 * lost_out = packets_out and in_flight = retrans_out. 2065 * 2066 * Essentially, we have now a few algorithms detecting 2067 * lost packets. 2068 * 2069 * If the receiver supports SACK: 2070 * 2071 * RFC6675/3517: It is the conventional algorithm. A packet is 2072 * considered lost if the number of higher sequence packets 2073 * SACKed is greater than or equal the DUPACK thoreshold 2074 * (reordering). This is implemented in tcp_mark_head_lost and 2075 * tcp_update_scoreboard. 2076 * 2077 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2078 * (2017-) that checks timing instead of counting DUPACKs. 2079 * Essentially a packet is considered lost if it's not S/ACKed 2080 * after RTT + reordering_window, where both metrics are 2081 * dynamically measured and adjusted. This is implemented in 2082 * tcp_rack_mark_lost. 2083 * 2084 * If the receiver does not support SACK: 2085 * 2086 * NewReno (RFC6582): in Recovery we assume that one segment 2087 * is lost (classic Reno). While we are in Recovery and 2088 * a partial ACK arrives, we assume that one more packet 2089 * is lost (NewReno). This heuristics are the same in NewReno 2090 * and SACK. 2091 * 2092 * Really tricky (and requiring careful tuning) part of algorithm 2093 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2094 * The first determines the moment _when_ we should reduce CWND and, 2095 * hence, slow down forward transmission. In fact, it determines the moment 2096 * when we decide that hole is caused by loss, rather than by a reorder. 2097 * 2098 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2099 * holes, caused by lost packets. 2100 * 2101 * And the most logically complicated part of algorithm is undo 2102 * heuristics. We detect false retransmits due to both too early 2103 * fast retransmit (reordering) and underestimated RTO, analyzing 2104 * timestamps and D-SACKs. When we detect that some segments were 2105 * retransmitted by mistake and CWND reduction was wrong, we undo 2106 * window reduction and abort recovery phase. This logic is hidden 2107 * inside several functions named tcp_try_undo_<something>. 2108 */ 2109 2110 /* This function decides, when we should leave Disordered state 2111 * and enter Recovery phase, reducing congestion window. 2112 * 2113 * Main question: may we further continue forward transmission 2114 * with the same cwnd? 2115 */ 2116 static bool tcp_time_to_recover(struct sock *sk, int flag) 2117 { 2118 struct tcp_sock *tp = tcp_sk(sk); 2119 2120 /* Trick#1: The loss is proven. */ 2121 if (tp->lost_out) 2122 return true; 2123 2124 /* Not-A-Trick#2 : Classic rule... */ 2125 if (tcp_dupack_heuristics(tp) > tp->reordering) 2126 return true; 2127 2128 return false; 2129 } 2130 2131 /* Detect loss in event "A" above by marking head of queue up as lost. 2132 * For non-SACK(Reno) senders, the first "packets" number of segments 2133 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2134 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2135 * the maximum SACKed segments to pass before reaching this limit. 2136 */ 2137 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2138 { 2139 struct tcp_sock *tp = tcp_sk(sk); 2140 struct sk_buff *skb; 2141 int cnt, oldcnt, lost; 2142 unsigned int mss; 2143 /* Use SACK to deduce losses of new sequences sent during recovery */ 2144 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2145 2146 WARN_ON(packets > tp->packets_out); 2147 skb = tp->lost_skb_hint; 2148 if (skb) { 2149 /* Head already handled? */ 2150 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2151 return; 2152 cnt = tp->lost_cnt_hint; 2153 } else { 2154 skb = tcp_rtx_queue_head(sk); 2155 cnt = 0; 2156 } 2157 2158 skb_rbtree_walk_from(skb) { 2159 /* TODO: do this better */ 2160 /* this is not the most efficient way to do this... */ 2161 tp->lost_skb_hint = skb; 2162 tp->lost_cnt_hint = cnt; 2163 2164 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2165 break; 2166 2167 oldcnt = cnt; 2168 if (tcp_is_reno(tp) || 2169 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2170 cnt += tcp_skb_pcount(skb); 2171 2172 if (cnt > packets) { 2173 if (tcp_is_sack(tp) || 2174 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2175 (oldcnt >= packets)) 2176 break; 2177 2178 mss = tcp_skb_mss(skb); 2179 /* If needed, chop off the prefix to mark as lost. */ 2180 lost = (packets - oldcnt) * mss; 2181 if (lost < skb->len && 2182 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2183 lost, mss, GFP_ATOMIC) < 0) 2184 break; 2185 cnt = packets; 2186 } 2187 2188 tcp_skb_mark_lost(tp, skb); 2189 2190 if (mark_head) 2191 break; 2192 } 2193 tcp_verify_left_out(tp); 2194 } 2195 2196 /* Account newly detected lost packet(s) */ 2197 2198 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2199 { 2200 struct tcp_sock *tp = tcp_sk(sk); 2201 2202 if (tcp_is_reno(tp)) { 2203 tcp_mark_head_lost(sk, 1, 1); 2204 } else { 2205 int sacked_upto = tp->sacked_out - tp->reordering; 2206 if (sacked_upto >= 0) 2207 tcp_mark_head_lost(sk, sacked_upto, 0); 2208 else if (fast_rexmit) 2209 tcp_mark_head_lost(sk, 1, 1); 2210 } 2211 } 2212 2213 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2214 { 2215 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2216 before(tp->rx_opt.rcv_tsecr, when); 2217 } 2218 2219 /* skb is spurious retransmitted if the returned timestamp echo 2220 * reply is prior to the skb transmission time 2221 */ 2222 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2223 const struct sk_buff *skb) 2224 { 2225 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2226 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2227 } 2228 2229 /* Nothing was retransmitted or returned timestamp is less 2230 * than timestamp of the first retransmission. 2231 */ 2232 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2233 { 2234 return !tp->retrans_stamp || 2235 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2236 } 2237 2238 /* Undo procedures. */ 2239 2240 /* We can clear retrans_stamp when there are no retransmissions in the 2241 * window. It would seem that it is trivially available for us in 2242 * tp->retrans_out, however, that kind of assumptions doesn't consider 2243 * what will happen if errors occur when sending retransmission for the 2244 * second time. ...It could the that such segment has only 2245 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2246 * the head skb is enough except for some reneging corner cases that 2247 * are not worth the effort. 2248 * 2249 * Main reason for all this complexity is the fact that connection dying 2250 * time now depends on the validity of the retrans_stamp, in particular, 2251 * that successive retransmissions of a segment must not advance 2252 * retrans_stamp under any conditions. 2253 */ 2254 static bool tcp_any_retrans_done(const struct sock *sk) 2255 { 2256 const struct tcp_sock *tp = tcp_sk(sk); 2257 struct sk_buff *skb; 2258 2259 if (tp->retrans_out) 2260 return true; 2261 2262 skb = tcp_rtx_queue_head(sk); 2263 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2264 return true; 2265 2266 return false; 2267 } 2268 2269 static void DBGUNDO(struct sock *sk, const char *msg) 2270 { 2271 #if FASTRETRANS_DEBUG > 1 2272 struct tcp_sock *tp = tcp_sk(sk); 2273 struct inet_sock *inet = inet_sk(sk); 2274 2275 if (sk->sk_family == AF_INET) { 2276 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2277 msg, 2278 &inet->inet_daddr, ntohs(inet->inet_dport), 2279 tp->snd_cwnd, tcp_left_out(tp), 2280 tp->snd_ssthresh, tp->prior_ssthresh, 2281 tp->packets_out); 2282 } 2283 #if IS_ENABLED(CONFIG_IPV6) 2284 else if (sk->sk_family == AF_INET6) { 2285 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2286 msg, 2287 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2288 tp->snd_cwnd, tcp_left_out(tp), 2289 tp->snd_ssthresh, tp->prior_ssthresh, 2290 tp->packets_out); 2291 } 2292 #endif 2293 #endif 2294 } 2295 2296 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2297 { 2298 struct tcp_sock *tp = tcp_sk(sk); 2299 2300 if (unmark_loss) { 2301 struct sk_buff *skb; 2302 2303 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2304 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2305 } 2306 tp->lost_out = 0; 2307 tcp_clear_all_retrans_hints(tp); 2308 } 2309 2310 if (tp->prior_ssthresh) { 2311 const struct inet_connection_sock *icsk = inet_csk(sk); 2312 2313 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2314 2315 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2316 tp->snd_ssthresh = tp->prior_ssthresh; 2317 tcp_ecn_withdraw_cwr(tp); 2318 } 2319 } 2320 tp->snd_cwnd_stamp = tcp_jiffies32; 2321 tp->undo_marker = 0; 2322 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2323 } 2324 2325 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2326 { 2327 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2328 } 2329 2330 /* People celebrate: "We love our President!" */ 2331 static bool tcp_try_undo_recovery(struct sock *sk) 2332 { 2333 struct tcp_sock *tp = tcp_sk(sk); 2334 2335 if (tcp_may_undo(tp)) { 2336 int mib_idx; 2337 2338 /* Happy end! We did not retransmit anything 2339 * or our original transmission succeeded. 2340 */ 2341 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2342 tcp_undo_cwnd_reduction(sk, false); 2343 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2344 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2345 else 2346 mib_idx = LINUX_MIB_TCPFULLUNDO; 2347 2348 NET_INC_STATS(sock_net(sk), mib_idx); 2349 } else if (tp->rack.reo_wnd_persist) { 2350 tp->rack.reo_wnd_persist--; 2351 } 2352 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2353 /* Hold old state until something *above* high_seq 2354 * is ACKed. For Reno it is MUST to prevent false 2355 * fast retransmits (RFC2582). SACK TCP is safe. */ 2356 if (!tcp_any_retrans_done(sk)) 2357 tp->retrans_stamp = 0; 2358 return true; 2359 } 2360 tcp_set_ca_state(sk, TCP_CA_Open); 2361 tp->is_sack_reneg = 0; 2362 return false; 2363 } 2364 2365 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2366 static bool tcp_try_undo_dsack(struct sock *sk) 2367 { 2368 struct tcp_sock *tp = tcp_sk(sk); 2369 2370 if (tp->undo_marker && !tp->undo_retrans) { 2371 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2372 tp->rack.reo_wnd_persist + 1); 2373 DBGUNDO(sk, "D-SACK"); 2374 tcp_undo_cwnd_reduction(sk, false); 2375 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2376 return true; 2377 } 2378 return false; 2379 } 2380 2381 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2382 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2383 { 2384 struct tcp_sock *tp = tcp_sk(sk); 2385 2386 if (frto_undo || tcp_may_undo(tp)) { 2387 tcp_undo_cwnd_reduction(sk, true); 2388 2389 DBGUNDO(sk, "partial loss"); 2390 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2391 if (frto_undo) 2392 NET_INC_STATS(sock_net(sk), 2393 LINUX_MIB_TCPSPURIOUSRTOS); 2394 inet_csk(sk)->icsk_retransmits = 0; 2395 if (frto_undo || tcp_is_sack(tp)) { 2396 tcp_set_ca_state(sk, TCP_CA_Open); 2397 tp->is_sack_reneg = 0; 2398 } 2399 return true; 2400 } 2401 return false; 2402 } 2403 2404 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2405 * It computes the number of packets to send (sndcnt) based on packets newly 2406 * delivered: 2407 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2408 * cwnd reductions across a full RTT. 2409 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2410 * But when the retransmits are acked without further losses, PRR 2411 * slow starts cwnd up to ssthresh to speed up the recovery. 2412 */ 2413 static void tcp_init_cwnd_reduction(struct sock *sk) 2414 { 2415 struct tcp_sock *tp = tcp_sk(sk); 2416 2417 tp->high_seq = tp->snd_nxt; 2418 tp->tlp_high_seq = 0; 2419 tp->snd_cwnd_cnt = 0; 2420 tp->prior_cwnd = tp->snd_cwnd; 2421 tp->prr_delivered = 0; 2422 tp->prr_out = 0; 2423 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2424 tcp_ecn_queue_cwr(tp); 2425 } 2426 2427 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2428 { 2429 struct tcp_sock *tp = tcp_sk(sk); 2430 int sndcnt = 0; 2431 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2432 2433 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2434 return; 2435 2436 tp->prr_delivered += newly_acked_sacked; 2437 if (delta < 0) { 2438 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2439 tp->prior_cwnd - 1; 2440 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2441 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2442 !(flag & FLAG_LOST_RETRANS)) { 2443 sndcnt = min_t(int, delta, 2444 max_t(int, tp->prr_delivered - tp->prr_out, 2445 newly_acked_sacked) + 1); 2446 } else { 2447 sndcnt = min(delta, newly_acked_sacked); 2448 } 2449 /* Force a fast retransmit upon entering fast recovery */ 2450 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2451 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2452 } 2453 2454 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2455 { 2456 struct tcp_sock *tp = tcp_sk(sk); 2457 2458 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2459 return; 2460 2461 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2462 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2463 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2464 tp->snd_cwnd = tp->snd_ssthresh; 2465 tp->snd_cwnd_stamp = tcp_jiffies32; 2466 } 2467 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2468 } 2469 2470 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2471 void tcp_enter_cwr(struct sock *sk) 2472 { 2473 struct tcp_sock *tp = tcp_sk(sk); 2474 2475 tp->prior_ssthresh = 0; 2476 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2477 tp->undo_marker = 0; 2478 tcp_init_cwnd_reduction(sk); 2479 tcp_set_ca_state(sk, TCP_CA_CWR); 2480 } 2481 } 2482 EXPORT_SYMBOL(tcp_enter_cwr); 2483 2484 static void tcp_try_keep_open(struct sock *sk) 2485 { 2486 struct tcp_sock *tp = tcp_sk(sk); 2487 int state = TCP_CA_Open; 2488 2489 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2490 state = TCP_CA_Disorder; 2491 2492 if (inet_csk(sk)->icsk_ca_state != state) { 2493 tcp_set_ca_state(sk, state); 2494 tp->high_seq = tp->snd_nxt; 2495 } 2496 } 2497 2498 static void tcp_try_to_open(struct sock *sk, int flag) 2499 { 2500 struct tcp_sock *tp = tcp_sk(sk); 2501 2502 tcp_verify_left_out(tp); 2503 2504 if (!tcp_any_retrans_done(sk)) 2505 tp->retrans_stamp = 0; 2506 2507 if (flag & FLAG_ECE) 2508 tcp_enter_cwr(sk); 2509 2510 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2511 tcp_try_keep_open(sk); 2512 } 2513 } 2514 2515 static void tcp_mtup_probe_failed(struct sock *sk) 2516 { 2517 struct inet_connection_sock *icsk = inet_csk(sk); 2518 2519 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2520 icsk->icsk_mtup.probe_size = 0; 2521 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2522 } 2523 2524 static void tcp_mtup_probe_success(struct sock *sk) 2525 { 2526 struct tcp_sock *tp = tcp_sk(sk); 2527 struct inet_connection_sock *icsk = inet_csk(sk); 2528 2529 /* FIXME: breaks with very large cwnd */ 2530 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2531 tp->snd_cwnd = tp->snd_cwnd * 2532 tcp_mss_to_mtu(sk, tp->mss_cache) / 2533 icsk->icsk_mtup.probe_size; 2534 tp->snd_cwnd_cnt = 0; 2535 tp->snd_cwnd_stamp = tcp_jiffies32; 2536 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2537 2538 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2539 icsk->icsk_mtup.probe_size = 0; 2540 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2541 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2542 } 2543 2544 /* Do a simple retransmit without using the backoff mechanisms in 2545 * tcp_timer. This is used for path mtu discovery. 2546 * The socket is already locked here. 2547 */ 2548 void tcp_simple_retransmit(struct sock *sk) 2549 { 2550 const struct inet_connection_sock *icsk = inet_csk(sk); 2551 struct tcp_sock *tp = tcp_sk(sk); 2552 struct sk_buff *skb; 2553 unsigned int mss = tcp_current_mss(sk); 2554 2555 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2556 if (tcp_skb_seglen(skb) > mss && 2557 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2558 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2559 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2560 tp->retrans_out -= tcp_skb_pcount(skb); 2561 } 2562 tcp_skb_mark_lost_uncond_verify(tp, skb); 2563 } 2564 } 2565 2566 tcp_clear_retrans_hints_partial(tp); 2567 2568 if (!tp->lost_out) 2569 return; 2570 2571 if (tcp_is_reno(tp)) 2572 tcp_limit_reno_sacked(tp); 2573 2574 tcp_verify_left_out(tp); 2575 2576 /* Don't muck with the congestion window here. 2577 * Reason is that we do not increase amount of _data_ 2578 * in network, but units changed and effective 2579 * cwnd/ssthresh really reduced now. 2580 */ 2581 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2582 tp->high_seq = tp->snd_nxt; 2583 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2584 tp->prior_ssthresh = 0; 2585 tp->undo_marker = 0; 2586 tcp_set_ca_state(sk, TCP_CA_Loss); 2587 } 2588 tcp_xmit_retransmit_queue(sk); 2589 } 2590 EXPORT_SYMBOL(tcp_simple_retransmit); 2591 2592 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2593 { 2594 struct tcp_sock *tp = tcp_sk(sk); 2595 int mib_idx; 2596 2597 if (tcp_is_reno(tp)) 2598 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2599 else 2600 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2601 2602 NET_INC_STATS(sock_net(sk), mib_idx); 2603 2604 tp->prior_ssthresh = 0; 2605 tcp_init_undo(tp); 2606 2607 if (!tcp_in_cwnd_reduction(sk)) { 2608 if (!ece_ack) 2609 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2610 tcp_init_cwnd_reduction(sk); 2611 } 2612 tcp_set_ca_state(sk, TCP_CA_Recovery); 2613 } 2614 2615 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2616 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2617 */ 2618 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2619 int *rexmit) 2620 { 2621 struct tcp_sock *tp = tcp_sk(sk); 2622 bool recovered = !before(tp->snd_una, tp->high_seq); 2623 2624 if ((flag & FLAG_SND_UNA_ADVANCED) && 2625 tcp_try_undo_loss(sk, false)) 2626 return; 2627 2628 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2629 /* Step 3.b. A timeout is spurious if not all data are 2630 * lost, i.e., never-retransmitted data are (s)acked. 2631 */ 2632 if ((flag & FLAG_ORIG_SACK_ACKED) && 2633 tcp_try_undo_loss(sk, true)) 2634 return; 2635 2636 if (after(tp->snd_nxt, tp->high_seq)) { 2637 if (flag & FLAG_DATA_SACKED || is_dupack) 2638 tp->frto = 0; /* Step 3.a. loss was real */ 2639 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2640 tp->high_seq = tp->snd_nxt; 2641 /* Step 2.b. Try send new data (but deferred until cwnd 2642 * is updated in tcp_ack()). Otherwise fall back to 2643 * the conventional recovery. 2644 */ 2645 if (!tcp_write_queue_empty(sk) && 2646 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2647 *rexmit = REXMIT_NEW; 2648 return; 2649 } 2650 tp->frto = 0; 2651 } 2652 } 2653 2654 if (recovered) { 2655 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2656 tcp_try_undo_recovery(sk); 2657 return; 2658 } 2659 if (tcp_is_reno(tp)) { 2660 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2661 * delivered. Lower inflight to clock out (re)tranmissions. 2662 */ 2663 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2664 tcp_add_reno_sack(sk); 2665 else if (flag & FLAG_SND_UNA_ADVANCED) 2666 tcp_reset_reno_sack(tp); 2667 } 2668 *rexmit = REXMIT_LOST; 2669 } 2670 2671 /* Undo during fast recovery after partial ACK. */ 2672 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2673 { 2674 struct tcp_sock *tp = tcp_sk(sk); 2675 2676 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2677 /* Plain luck! Hole if filled with delayed 2678 * packet, rather than with a retransmit. Check reordering. 2679 */ 2680 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2681 2682 /* We are getting evidence that the reordering degree is higher 2683 * than we realized. If there are no retransmits out then we 2684 * can undo. Otherwise we clock out new packets but do not 2685 * mark more packets lost or retransmit more. 2686 */ 2687 if (tp->retrans_out) 2688 return true; 2689 2690 if (!tcp_any_retrans_done(sk)) 2691 tp->retrans_stamp = 0; 2692 2693 DBGUNDO(sk, "partial recovery"); 2694 tcp_undo_cwnd_reduction(sk, true); 2695 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2696 tcp_try_keep_open(sk); 2697 return true; 2698 } 2699 return false; 2700 } 2701 2702 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2703 { 2704 struct tcp_sock *tp = tcp_sk(sk); 2705 2706 /* Use RACK to detect loss */ 2707 if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2708 u32 prior_retrans = tp->retrans_out; 2709 2710 tcp_rack_mark_lost(sk); 2711 if (prior_retrans > tp->retrans_out) 2712 *ack_flag |= FLAG_LOST_RETRANS; 2713 } 2714 } 2715 2716 static bool tcp_force_fast_retransmit(struct sock *sk) 2717 { 2718 struct tcp_sock *tp = tcp_sk(sk); 2719 2720 return after(tcp_highest_sack_seq(tp), 2721 tp->snd_una + tp->reordering * tp->mss_cache); 2722 } 2723 2724 /* Process an event, which can update packets-in-flight not trivially. 2725 * Main goal of this function is to calculate new estimate for left_out, 2726 * taking into account both packets sitting in receiver's buffer and 2727 * packets lost by network. 2728 * 2729 * Besides that it updates the congestion state when packet loss or ECN 2730 * is detected. But it does not reduce the cwnd, it is done by the 2731 * congestion control later. 2732 * 2733 * It does _not_ decide what to send, it is made in function 2734 * tcp_xmit_retransmit_queue(). 2735 */ 2736 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2737 bool is_dupack, int *ack_flag, int *rexmit) 2738 { 2739 struct inet_connection_sock *icsk = inet_csk(sk); 2740 struct tcp_sock *tp = tcp_sk(sk); 2741 int fast_rexmit = 0, flag = *ack_flag; 2742 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2743 tcp_force_fast_retransmit(sk)); 2744 2745 if (!tp->packets_out && tp->sacked_out) 2746 tp->sacked_out = 0; 2747 2748 /* Now state machine starts. 2749 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2750 if (flag & FLAG_ECE) 2751 tp->prior_ssthresh = 0; 2752 2753 /* B. In all the states check for reneging SACKs. */ 2754 if (tcp_check_sack_reneging(sk, flag)) 2755 return; 2756 2757 /* C. Check consistency of the current state. */ 2758 tcp_verify_left_out(tp); 2759 2760 /* D. Check state exit conditions. State can be terminated 2761 * when high_seq is ACKed. */ 2762 if (icsk->icsk_ca_state == TCP_CA_Open) { 2763 WARN_ON(tp->retrans_out != 0); 2764 tp->retrans_stamp = 0; 2765 } else if (!before(tp->snd_una, tp->high_seq)) { 2766 switch (icsk->icsk_ca_state) { 2767 case TCP_CA_CWR: 2768 /* CWR is to be held something *above* high_seq 2769 * is ACKed for CWR bit to reach receiver. */ 2770 if (tp->snd_una != tp->high_seq) { 2771 tcp_end_cwnd_reduction(sk); 2772 tcp_set_ca_state(sk, TCP_CA_Open); 2773 } 2774 break; 2775 2776 case TCP_CA_Recovery: 2777 if (tcp_is_reno(tp)) 2778 tcp_reset_reno_sack(tp); 2779 if (tcp_try_undo_recovery(sk)) 2780 return; 2781 tcp_end_cwnd_reduction(sk); 2782 break; 2783 } 2784 } 2785 2786 /* E. Process state. */ 2787 switch (icsk->icsk_ca_state) { 2788 case TCP_CA_Recovery: 2789 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2790 if (tcp_is_reno(tp) && is_dupack) 2791 tcp_add_reno_sack(sk); 2792 } else { 2793 if (tcp_try_undo_partial(sk, prior_snd_una)) 2794 return; 2795 /* Partial ACK arrived. Force fast retransmit. */ 2796 do_lost = tcp_is_reno(tp) || 2797 tcp_force_fast_retransmit(sk); 2798 } 2799 if (tcp_try_undo_dsack(sk)) { 2800 tcp_try_keep_open(sk); 2801 return; 2802 } 2803 tcp_rack_identify_loss(sk, ack_flag); 2804 break; 2805 case TCP_CA_Loss: 2806 tcp_process_loss(sk, flag, is_dupack, rexmit); 2807 tcp_rack_identify_loss(sk, ack_flag); 2808 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2809 (*ack_flag & FLAG_LOST_RETRANS))) 2810 return; 2811 /* Change state if cwnd is undone or retransmits are lost */ 2812 /* fall through */ 2813 default: 2814 if (tcp_is_reno(tp)) { 2815 if (flag & FLAG_SND_UNA_ADVANCED) 2816 tcp_reset_reno_sack(tp); 2817 if (is_dupack) 2818 tcp_add_reno_sack(sk); 2819 } 2820 2821 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2822 tcp_try_undo_dsack(sk); 2823 2824 tcp_rack_identify_loss(sk, ack_flag); 2825 if (!tcp_time_to_recover(sk, flag)) { 2826 tcp_try_to_open(sk, flag); 2827 return; 2828 } 2829 2830 /* MTU probe failure: don't reduce cwnd */ 2831 if (icsk->icsk_ca_state < TCP_CA_CWR && 2832 icsk->icsk_mtup.probe_size && 2833 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2834 tcp_mtup_probe_failed(sk); 2835 /* Restores the reduction we did in tcp_mtup_probe() */ 2836 tp->snd_cwnd++; 2837 tcp_simple_retransmit(sk); 2838 return; 2839 } 2840 2841 /* Otherwise enter Recovery state */ 2842 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2843 fast_rexmit = 1; 2844 } 2845 2846 if (do_lost) 2847 tcp_update_scoreboard(sk, fast_rexmit); 2848 *rexmit = REXMIT_LOST; 2849 } 2850 2851 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2852 { 2853 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2854 struct tcp_sock *tp = tcp_sk(sk); 2855 2856 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2857 /* If the remote keeps returning delayed ACKs, eventually 2858 * the min filter would pick it up and overestimate the 2859 * prop. delay when it expires. Skip suspected delayed ACKs. 2860 */ 2861 return; 2862 } 2863 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2864 rtt_us ? : jiffies_to_usecs(1)); 2865 } 2866 2867 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2868 long seq_rtt_us, long sack_rtt_us, 2869 long ca_rtt_us, struct rate_sample *rs) 2870 { 2871 const struct tcp_sock *tp = tcp_sk(sk); 2872 2873 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2874 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2875 * Karn's algorithm forbids taking RTT if some retransmitted data 2876 * is acked (RFC6298). 2877 */ 2878 if (seq_rtt_us < 0) 2879 seq_rtt_us = sack_rtt_us; 2880 2881 /* RTTM Rule: A TSecr value received in a segment is used to 2882 * update the averaged RTT measurement only if the segment 2883 * acknowledges some new data, i.e., only if it advances the 2884 * left edge of the send window. 2885 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2886 */ 2887 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2888 flag & FLAG_ACKED) { 2889 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2890 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2891 2892 seq_rtt_us = ca_rtt_us = delta_us; 2893 } 2894 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2895 if (seq_rtt_us < 0) 2896 return false; 2897 2898 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2899 * always taken together with ACK, SACK, or TS-opts. Any negative 2900 * values will be skipped with the seq_rtt_us < 0 check above. 2901 */ 2902 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2903 tcp_rtt_estimator(sk, seq_rtt_us); 2904 tcp_set_rto(sk); 2905 2906 /* RFC6298: only reset backoff on valid RTT measurement. */ 2907 inet_csk(sk)->icsk_backoff = 0; 2908 return true; 2909 } 2910 2911 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2912 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2913 { 2914 struct rate_sample rs; 2915 long rtt_us = -1L; 2916 2917 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2918 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2919 2920 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2921 } 2922 2923 2924 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2925 { 2926 const struct inet_connection_sock *icsk = inet_csk(sk); 2927 2928 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2929 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2930 } 2931 2932 /* Restart timer after forward progress on connection. 2933 * RFC2988 recommends to restart timer to now+rto. 2934 */ 2935 void tcp_rearm_rto(struct sock *sk) 2936 { 2937 const struct inet_connection_sock *icsk = inet_csk(sk); 2938 struct tcp_sock *tp = tcp_sk(sk); 2939 2940 /* If the retrans timer is currently being used by Fast Open 2941 * for SYN-ACK retrans purpose, stay put. 2942 */ 2943 if (tp->fastopen_rsk) 2944 return; 2945 2946 if (!tp->packets_out) { 2947 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2948 } else { 2949 u32 rto = inet_csk(sk)->icsk_rto; 2950 /* Offset the time elapsed after installing regular RTO */ 2951 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2952 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2953 s64 delta_us = tcp_rto_delta_us(sk); 2954 /* delta_us may not be positive if the socket is locked 2955 * when the retrans timer fires and is rescheduled. 2956 */ 2957 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2958 } 2959 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2960 TCP_RTO_MAX); 2961 } 2962 } 2963 2964 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2965 static void tcp_set_xmit_timer(struct sock *sk) 2966 { 2967 if (!tcp_schedule_loss_probe(sk, true)) 2968 tcp_rearm_rto(sk); 2969 } 2970 2971 /* If we get here, the whole TSO packet has not been acked. */ 2972 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2973 { 2974 struct tcp_sock *tp = tcp_sk(sk); 2975 u32 packets_acked; 2976 2977 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 2978 2979 packets_acked = tcp_skb_pcount(skb); 2980 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2981 return 0; 2982 packets_acked -= tcp_skb_pcount(skb); 2983 2984 if (packets_acked) { 2985 BUG_ON(tcp_skb_pcount(skb) == 0); 2986 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 2987 } 2988 2989 return packets_acked; 2990 } 2991 2992 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 2993 u32 prior_snd_una) 2994 { 2995 const struct skb_shared_info *shinfo; 2996 2997 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 2998 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 2999 return; 3000 3001 shinfo = skb_shinfo(skb); 3002 if (!before(shinfo->tskey, prior_snd_una) && 3003 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3004 tcp_skb_tsorted_save(skb) { 3005 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3006 } tcp_skb_tsorted_restore(skb); 3007 } 3008 } 3009 3010 /* Remove acknowledged frames from the retransmission queue. If our packet 3011 * is before the ack sequence we can discard it as it's confirmed to have 3012 * arrived at the other end. 3013 */ 3014 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3015 u32 prior_snd_una, 3016 struct tcp_sacktag_state *sack) 3017 { 3018 const struct inet_connection_sock *icsk = inet_csk(sk); 3019 u64 first_ackt, last_ackt; 3020 struct tcp_sock *tp = tcp_sk(sk); 3021 u32 prior_sacked = tp->sacked_out; 3022 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3023 struct sk_buff *skb, *next; 3024 bool fully_acked = true; 3025 long sack_rtt_us = -1L; 3026 long seq_rtt_us = -1L; 3027 long ca_rtt_us = -1L; 3028 u32 pkts_acked = 0; 3029 u32 last_in_flight = 0; 3030 bool rtt_update; 3031 int flag = 0; 3032 3033 first_ackt = 0; 3034 3035 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3036 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3037 const u32 start_seq = scb->seq; 3038 u8 sacked = scb->sacked; 3039 u32 acked_pcount; 3040 3041 tcp_ack_tstamp(sk, skb, prior_snd_una); 3042 3043 /* Determine how many packets and what bytes were acked, tso and else */ 3044 if (after(scb->end_seq, tp->snd_una)) { 3045 if (tcp_skb_pcount(skb) == 1 || 3046 !after(tp->snd_una, scb->seq)) 3047 break; 3048 3049 acked_pcount = tcp_tso_acked(sk, skb); 3050 if (!acked_pcount) 3051 break; 3052 fully_acked = false; 3053 } else { 3054 acked_pcount = tcp_skb_pcount(skb); 3055 } 3056 3057 if (unlikely(sacked & TCPCB_RETRANS)) { 3058 if (sacked & TCPCB_SACKED_RETRANS) 3059 tp->retrans_out -= acked_pcount; 3060 flag |= FLAG_RETRANS_DATA_ACKED; 3061 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3062 last_ackt = skb->skb_mstamp; 3063 WARN_ON_ONCE(last_ackt == 0); 3064 if (!first_ackt) 3065 first_ackt = last_ackt; 3066 3067 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3068 if (before(start_seq, reord)) 3069 reord = start_seq; 3070 if (!after(scb->end_seq, tp->high_seq)) 3071 flag |= FLAG_ORIG_SACK_ACKED; 3072 } 3073 3074 if (sacked & TCPCB_SACKED_ACKED) { 3075 tp->sacked_out -= acked_pcount; 3076 } else if (tcp_is_sack(tp)) { 3077 tp->delivered += acked_pcount; 3078 if (!tcp_skb_spurious_retrans(tp, skb)) 3079 tcp_rack_advance(tp, sacked, scb->end_seq, 3080 skb->skb_mstamp); 3081 } 3082 if (sacked & TCPCB_LOST) 3083 tp->lost_out -= acked_pcount; 3084 3085 tp->packets_out -= acked_pcount; 3086 pkts_acked += acked_pcount; 3087 tcp_rate_skb_delivered(sk, skb, sack->rate); 3088 3089 /* Initial outgoing SYN's get put onto the write_queue 3090 * just like anything else we transmit. It is not 3091 * true data, and if we misinform our callers that 3092 * this ACK acks real data, we will erroneously exit 3093 * connection startup slow start one packet too 3094 * quickly. This is severely frowned upon behavior. 3095 */ 3096 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3097 flag |= FLAG_DATA_ACKED; 3098 } else { 3099 flag |= FLAG_SYN_ACKED; 3100 tp->retrans_stamp = 0; 3101 } 3102 3103 if (!fully_acked) 3104 break; 3105 3106 next = skb_rb_next(skb); 3107 if (unlikely(skb == tp->retransmit_skb_hint)) 3108 tp->retransmit_skb_hint = NULL; 3109 if (unlikely(skb == tp->lost_skb_hint)) 3110 tp->lost_skb_hint = NULL; 3111 tcp_rtx_queue_unlink_and_free(skb, sk); 3112 } 3113 3114 if (!skb) 3115 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3116 3117 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3118 tp->snd_up = tp->snd_una; 3119 3120 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3121 flag |= FLAG_SACK_RENEGING; 3122 3123 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3124 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3125 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3126 3127 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3128 last_in_flight && !prior_sacked && fully_acked && 3129 sack->rate->prior_delivered + 1 == tp->delivered && 3130 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3131 /* Conservatively mark a delayed ACK. It's typically 3132 * from a lone runt packet over the round trip to 3133 * a receiver w/o out-of-order or CE events. 3134 */ 3135 flag |= FLAG_ACK_MAYBE_DELAYED; 3136 } 3137 } 3138 if (sack->first_sackt) { 3139 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3140 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3141 } 3142 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3143 ca_rtt_us, sack->rate); 3144 3145 if (flag & FLAG_ACKED) { 3146 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3147 if (unlikely(icsk->icsk_mtup.probe_size && 3148 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3149 tcp_mtup_probe_success(sk); 3150 } 3151 3152 if (tcp_is_reno(tp)) { 3153 tcp_remove_reno_sacks(sk, pkts_acked); 3154 } else { 3155 int delta; 3156 3157 /* Non-retransmitted hole got filled? That's reordering */ 3158 if (before(reord, prior_fack)) 3159 tcp_check_sack_reordering(sk, reord, 0); 3160 3161 delta = prior_sacked - tp->sacked_out; 3162 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3163 } 3164 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3165 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3166 /* Do not re-arm RTO if the sack RTT is measured from data sent 3167 * after when the head was last (re)transmitted. Otherwise the 3168 * timeout may continue to extend in loss recovery. 3169 */ 3170 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3171 } 3172 3173 if (icsk->icsk_ca_ops->pkts_acked) { 3174 struct ack_sample sample = { .pkts_acked = pkts_acked, 3175 .rtt_us = sack->rate->rtt_us, 3176 .in_flight = last_in_flight }; 3177 3178 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3179 } 3180 3181 #if FASTRETRANS_DEBUG > 0 3182 WARN_ON((int)tp->sacked_out < 0); 3183 WARN_ON((int)tp->lost_out < 0); 3184 WARN_ON((int)tp->retrans_out < 0); 3185 if (!tp->packets_out && tcp_is_sack(tp)) { 3186 icsk = inet_csk(sk); 3187 if (tp->lost_out) { 3188 pr_debug("Leak l=%u %d\n", 3189 tp->lost_out, icsk->icsk_ca_state); 3190 tp->lost_out = 0; 3191 } 3192 if (tp->sacked_out) { 3193 pr_debug("Leak s=%u %d\n", 3194 tp->sacked_out, icsk->icsk_ca_state); 3195 tp->sacked_out = 0; 3196 } 3197 if (tp->retrans_out) { 3198 pr_debug("Leak r=%u %d\n", 3199 tp->retrans_out, icsk->icsk_ca_state); 3200 tp->retrans_out = 0; 3201 } 3202 } 3203 #endif 3204 return flag; 3205 } 3206 3207 static void tcp_ack_probe(struct sock *sk) 3208 { 3209 struct inet_connection_sock *icsk = inet_csk(sk); 3210 struct sk_buff *head = tcp_send_head(sk); 3211 const struct tcp_sock *tp = tcp_sk(sk); 3212 3213 /* Was it a usable window open? */ 3214 if (!head) 3215 return; 3216 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3217 icsk->icsk_backoff = 0; 3218 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3219 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3220 * This function is not for random using! 3221 */ 3222 } else { 3223 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3224 3225 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3226 when, TCP_RTO_MAX); 3227 } 3228 } 3229 3230 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3231 { 3232 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3233 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3234 } 3235 3236 /* Decide wheather to run the increase function of congestion control. */ 3237 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3238 { 3239 /* If reordering is high then always grow cwnd whenever data is 3240 * delivered regardless of its ordering. Otherwise stay conservative 3241 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3242 * new SACK or ECE mark may first advance cwnd here and later reduce 3243 * cwnd in tcp_fastretrans_alert() based on more states. 3244 */ 3245 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3246 return flag & FLAG_FORWARD_PROGRESS; 3247 3248 return flag & FLAG_DATA_ACKED; 3249 } 3250 3251 /* The "ultimate" congestion control function that aims to replace the rigid 3252 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3253 * It's called toward the end of processing an ACK with precise rate 3254 * information. All transmission or retransmission are delayed afterwards. 3255 */ 3256 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3257 int flag, const struct rate_sample *rs) 3258 { 3259 const struct inet_connection_sock *icsk = inet_csk(sk); 3260 3261 if (icsk->icsk_ca_ops->cong_control) { 3262 icsk->icsk_ca_ops->cong_control(sk, rs); 3263 return; 3264 } 3265 3266 if (tcp_in_cwnd_reduction(sk)) { 3267 /* Reduce cwnd if state mandates */ 3268 tcp_cwnd_reduction(sk, acked_sacked, flag); 3269 } else if (tcp_may_raise_cwnd(sk, flag)) { 3270 /* Advance cwnd if state allows */ 3271 tcp_cong_avoid(sk, ack, acked_sacked); 3272 } 3273 tcp_update_pacing_rate(sk); 3274 } 3275 3276 /* Check that window update is acceptable. 3277 * The function assumes that snd_una<=ack<=snd_next. 3278 */ 3279 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3280 const u32 ack, const u32 ack_seq, 3281 const u32 nwin) 3282 { 3283 return after(ack, tp->snd_una) || 3284 after(ack_seq, tp->snd_wl1) || 3285 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3286 } 3287 3288 /* If we update tp->snd_una, also update tp->bytes_acked */ 3289 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3290 { 3291 u32 delta = ack - tp->snd_una; 3292 3293 sock_owned_by_me((struct sock *)tp); 3294 tp->bytes_acked += delta; 3295 tp->snd_una = ack; 3296 } 3297 3298 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3299 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3300 { 3301 u32 delta = seq - tp->rcv_nxt; 3302 3303 sock_owned_by_me((struct sock *)tp); 3304 tp->bytes_received += delta; 3305 tp->rcv_nxt = seq; 3306 } 3307 3308 /* Update our send window. 3309 * 3310 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3311 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3312 */ 3313 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3314 u32 ack_seq) 3315 { 3316 struct tcp_sock *tp = tcp_sk(sk); 3317 int flag = 0; 3318 u32 nwin = ntohs(tcp_hdr(skb)->window); 3319 3320 if (likely(!tcp_hdr(skb)->syn)) 3321 nwin <<= tp->rx_opt.snd_wscale; 3322 3323 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3324 flag |= FLAG_WIN_UPDATE; 3325 tcp_update_wl(tp, ack_seq); 3326 3327 if (tp->snd_wnd != nwin) { 3328 tp->snd_wnd = nwin; 3329 3330 /* Note, it is the only place, where 3331 * fast path is recovered for sending TCP. 3332 */ 3333 tp->pred_flags = 0; 3334 tcp_fast_path_check(sk); 3335 3336 if (!tcp_write_queue_empty(sk)) 3337 tcp_slow_start_after_idle_check(sk); 3338 3339 if (nwin > tp->max_window) { 3340 tp->max_window = nwin; 3341 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3342 } 3343 } 3344 } 3345 3346 tcp_snd_una_update(tp, ack); 3347 3348 return flag; 3349 } 3350 3351 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3352 u32 *last_oow_ack_time) 3353 { 3354 if (*last_oow_ack_time) { 3355 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3356 3357 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3358 NET_INC_STATS(net, mib_idx); 3359 return true; /* rate-limited: don't send yet! */ 3360 } 3361 } 3362 3363 *last_oow_ack_time = tcp_jiffies32; 3364 3365 return false; /* not rate-limited: go ahead, send dupack now! */ 3366 } 3367 3368 /* Return true if we're currently rate-limiting out-of-window ACKs and 3369 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3370 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3371 * attacks that send repeated SYNs or ACKs for the same connection. To 3372 * do this, we do not send a duplicate SYNACK or ACK if the remote 3373 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3374 */ 3375 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3376 int mib_idx, u32 *last_oow_ack_time) 3377 { 3378 /* Data packets without SYNs are not likely part of an ACK loop. */ 3379 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3380 !tcp_hdr(skb)->syn) 3381 return false; 3382 3383 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3384 } 3385 3386 /* RFC 5961 7 [ACK Throttling] */ 3387 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3388 { 3389 /* unprotected vars, we dont care of overwrites */ 3390 static u32 challenge_timestamp; 3391 static unsigned int challenge_count; 3392 struct tcp_sock *tp = tcp_sk(sk); 3393 struct net *net = sock_net(sk); 3394 u32 count, now; 3395 3396 /* First check our per-socket dupack rate limit. */ 3397 if (__tcp_oow_rate_limited(net, 3398 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3399 &tp->last_oow_ack_time)) 3400 return; 3401 3402 /* Then check host-wide RFC 5961 rate limit. */ 3403 now = jiffies / HZ; 3404 if (now != challenge_timestamp) { 3405 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3406 u32 half = (ack_limit + 1) >> 1; 3407 3408 challenge_timestamp = now; 3409 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3410 } 3411 count = READ_ONCE(challenge_count); 3412 if (count > 0) { 3413 WRITE_ONCE(challenge_count, count - 1); 3414 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3415 tcp_send_ack(sk); 3416 } 3417 } 3418 3419 static void tcp_store_ts_recent(struct tcp_sock *tp) 3420 { 3421 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3422 tp->rx_opt.ts_recent_stamp = get_seconds(); 3423 } 3424 3425 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3426 { 3427 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3428 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3429 * extra check below makes sure this can only happen 3430 * for pure ACK frames. -DaveM 3431 * 3432 * Not only, also it occurs for expired timestamps. 3433 */ 3434 3435 if (tcp_paws_check(&tp->rx_opt, 0)) 3436 tcp_store_ts_recent(tp); 3437 } 3438 } 3439 3440 /* This routine deals with acks during a TLP episode. 3441 * We mark the end of a TLP episode on receiving TLP dupack or when 3442 * ack is after tlp_high_seq. 3443 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3444 */ 3445 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3446 { 3447 struct tcp_sock *tp = tcp_sk(sk); 3448 3449 if (before(ack, tp->tlp_high_seq)) 3450 return; 3451 3452 if (flag & FLAG_DSACKING_ACK) { 3453 /* This DSACK means original and TLP probe arrived; no loss */ 3454 tp->tlp_high_seq = 0; 3455 } else if (after(ack, tp->tlp_high_seq)) { 3456 /* ACK advances: there was a loss, so reduce cwnd. Reset 3457 * tlp_high_seq in tcp_init_cwnd_reduction() 3458 */ 3459 tcp_init_cwnd_reduction(sk); 3460 tcp_set_ca_state(sk, TCP_CA_CWR); 3461 tcp_end_cwnd_reduction(sk); 3462 tcp_try_keep_open(sk); 3463 NET_INC_STATS(sock_net(sk), 3464 LINUX_MIB_TCPLOSSPROBERECOVERY); 3465 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3466 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3467 /* Pure dupack: original and TLP probe arrived; no loss */ 3468 tp->tlp_high_seq = 0; 3469 } 3470 } 3471 3472 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3473 { 3474 const struct inet_connection_sock *icsk = inet_csk(sk); 3475 3476 if (icsk->icsk_ca_ops->in_ack_event) 3477 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3478 } 3479 3480 /* Congestion control has updated the cwnd already. So if we're in 3481 * loss recovery then now we do any new sends (for FRTO) or 3482 * retransmits (for CA_Loss or CA_recovery) that make sense. 3483 */ 3484 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3485 { 3486 struct tcp_sock *tp = tcp_sk(sk); 3487 3488 if (rexmit == REXMIT_NONE) 3489 return; 3490 3491 if (unlikely(rexmit == 2)) { 3492 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3493 TCP_NAGLE_OFF); 3494 if (after(tp->snd_nxt, tp->high_seq)) 3495 return; 3496 tp->frto = 0; 3497 } 3498 tcp_xmit_retransmit_queue(sk); 3499 } 3500 3501 /* Returns the number of packets newly acked or sacked by the current ACK */ 3502 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3503 { 3504 const struct net *net = sock_net(sk); 3505 struct tcp_sock *tp = tcp_sk(sk); 3506 u32 delivered; 3507 3508 delivered = tp->delivered - prior_delivered; 3509 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3510 if (flag & FLAG_ECE) { 3511 tp->delivered_ce += delivered; 3512 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3513 } 3514 return delivered; 3515 } 3516 3517 /* This routine deals with incoming acks, but not outgoing ones. */ 3518 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3519 { 3520 struct inet_connection_sock *icsk = inet_csk(sk); 3521 struct tcp_sock *tp = tcp_sk(sk); 3522 struct tcp_sacktag_state sack_state; 3523 struct rate_sample rs = { .prior_delivered = 0 }; 3524 u32 prior_snd_una = tp->snd_una; 3525 bool is_sack_reneg = tp->is_sack_reneg; 3526 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3527 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3528 bool is_dupack = false; 3529 int prior_packets = tp->packets_out; 3530 u32 delivered = tp->delivered; 3531 u32 lost = tp->lost; 3532 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3533 u32 prior_fack; 3534 3535 sack_state.first_sackt = 0; 3536 sack_state.rate = &rs; 3537 3538 /* We very likely will need to access rtx queue. */ 3539 prefetch(sk->tcp_rtx_queue.rb_node); 3540 3541 /* If the ack is older than previous acks 3542 * then we can probably ignore it. 3543 */ 3544 if (before(ack, prior_snd_una)) { 3545 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3546 if (before(ack, prior_snd_una - tp->max_window)) { 3547 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3548 tcp_send_challenge_ack(sk, skb); 3549 return -1; 3550 } 3551 goto old_ack; 3552 } 3553 3554 /* If the ack includes data we haven't sent yet, discard 3555 * this segment (RFC793 Section 3.9). 3556 */ 3557 if (after(ack, tp->snd_nxt)) 3558 goto invalid_ack; 3559 3560 if (after(ack, prior_snd_una)) { 3561 flag |= FLAG_SND_UNA_ADVANCED; 3562 icsk->icsk_retransmits = 0; 3563 } 3564 3565 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3566 rs.prior_in_flight = tcp_packets_in_flight(tp); 3567 3568 /* ts_recent update must be made after we are sure that the packet 3569 * is in window. 3570 */ 3571 if (flag & FLAG_UPDATE_TS_RECENT) 3572 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3573 3574 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3575 /* Window is constant, pure forward advance. 3576 * No more checks are required. 3577 * Note, we use the fact that SND.UNA>=SND.WL2. 3578 */ 3579 tcp_update_wl(tp, ack_seq); 3580 tcp_snd_una_update(tp, ack); 3581 flag |= FLAG_WIN_UPDATE; 3582 3583 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3584 3585 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3586 } else { 3587 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3588 3589 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3590 flag |= FLAG_DATA; 3591 else 3592 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3593 3594 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3595 3596 if (TCP_SKB_CB(skb)->sacked) 3597 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3598 &sack_state); 3599 3600 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3601 flag |= FLAG_ECE; 3602 ack_ev_flags |= CA_ACK_ECE; 3603 } 3604 3605 if (flag & FLAG_WIN_UPDATE) 3606 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3607 3608 tcp_in_ack_event(sk, ack_ev_flags); 3609 } 3610 3611 /* We passed data and got it acked, remove any soft error 3612 * log. Something worked... 3613 */ 3614 sk->sk_err_soft = 0; 3615 icsk->icsk_probes_out = 0; 3616 tp->rcv_tstamp = tcp_jiffies32; 3617 if (!prior_packets) 3618 goto no_queue; 3619 3620 /* See if we can take anything off of the retransmit queue. */ 3621 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3622 3623 tcp_rack_update_reo_wnd(sk, &rs); 3624 3625 if (tp->tlp_high_seq) 3626 tcp_process_tlp_ack(sk, ack, flag); 3627 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3628 if (flag & FLAG_SET_XMIT_TIMER) 3629 tcp_set_xmit_timer(sk); 3630 3631 if (tcp_ack_is_dubious(sk, flag)) { 3632 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3633 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3634 &rexmit); 3635 } 3636 3637 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3638 sk_dst_confirm(sk); 3639 3640 delivered = tcp_newly_delivered(sk, delivered, flag); 3641 lost = tp->lost - lost; /* freshly marked lost */ 3642 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3643 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3644 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3645 tcp_xmit_recovery(sk, rexmit); 3646 return 1; 3647 3648 no_queue: 3649 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3650 if (flag & FLAG_DSACKING_ACK) { 3651 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3652 &rexmit); 3653 tcp_newly_delivered(sk, delivered, flag); 3654 } 3655 /* If this ack opens up a zero window, clear backoff. It was 3656 * being used to time the probes, and is probably far higher than 3657 * it needs to be for normal retransmission. 3658 */ 3659 tcp_ack_probe(sk); 3660 3661 if (tp->tlp_high_seq) 3662 tcp_process_tlp_ack(sk, ack, flag); 3663 return 1; 3664 3665 invalid_ack: 3666 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3667 return -1; 3668 3669 old_ack: 3670 /* If data was SACKed, tag it and see if we should send more data. 3671 * If data was DSACKed, see if we can undo a cwnd reduction. 3672 */ 3673 if (TCP_SKB_CB(skb)->sacked) { 3674 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3675 &sack_state); 3676 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3677 &rexmit); 3678 tcp_newly_delivered(sk, delivered, flag); 3679 tcp_xmit_recovery(sk, rexmit); 3680 } 3681 3682 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3683 return 0; 3684 } 3685 3686 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3687 bool syn, struct tcp_fastopen_cookie *foc, 3688 bool exp_opt) 3689 { 3690 /* Valid only in SYN or SYN-ACK with an even length. */ 3691 if (!foc || !syn || len < 0 || (len & 1)) 3692 return; 3693 3694 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3695 len <= TCP_FASTOPEN_COOKIE_MAX) 3696 memcpy(foc->val, cookie, len); 3697 else if (len != 0) 3698 len = -1; 3699 foc->len = len; 3700 foc->exp = exp_opt; 3701 } 3702 3703 static void smc_parse_options(const struct tcphdr *th, 3704 struct tcp_options_received *opt_rx, 3705 const unsigned char *ptr, 3706 int opsize) 3707 { 3708 #if IS_ENABLED(CONFIG_SMC) 3709 if (static_branch_unlikely(&tcp_have_smc)) { 3710 if (th->syn && !(opsize & 1) && 3711 opsize >= TCPOLEN_EXP_SMC_BASE && 3712 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3713 opt_rx->smc_ok = 1; 3714 } 3715 #endif 3716 } 3717 3718 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3719 * But, this can also be called on packets in the established flow when 3720 * the fast version below fails. 3721 */ 3722 void tcp_parse_options(const struct net *net, 3723 const struct sk_buff *skb, 3724 struct tcp_options_received *opt_rx, int estab, 3725 struct tcp_fastopen_cookie *foc) 3726 { 3727 const unsigned char *ptr; 3728 const struct tcphdr *th = tcp_hdr(skb); 3729 int length = (th->doff * 4) - sizeof(struct tcphdr); 3730 3731 ptr = (const unsigned char *)(th + 1); 3732 opt_rx->saw_tstamp = 0; 3733 3734 while (length > 0) { 3735 int opcode = *ptr++; 3736 int opsize; 3737 3738 switch (opcode) { 3739 case TCPOPT_EOL: 3740 return; 3741 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3742 length--; 3743 continue; 3744 default: 3745 opsize = *ptr++; 3746 if (opsize < 2) /* "silly options" */ 3747 return; 3748 if (opsize > length) 3749 return; /* don't parse partial options */ 3750 switch (opcode) { 3751 case TCPOPT_MSS: 3752 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3753 u16 in_mss = get_unaligned_be16(ptr); 3754 if (in_mss) { 3755 if (opt_rx->user_mss && 3756 opt_rx->user_mss < in_mss) 3757 in_mss = opt_rx->user_mss; 3758 opt_rx->mss_clamp = in_mss; 3759 } 3760 } 3761 break; 3762 case TCPOPT_WINDOW: 3763 if (opsize == TCPOLEN_WINDOW && th->syn && 3764 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3765 __u8 snd_wscale = *(__u8 *)ptr; 3766 opt_rx->wscale_ok = 1; 3767 if (snd_wscale > TCP_MAX_WSCALE) { 3768 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3769 __func__, 3770 snd_wscale, 3771 TCP_MAX_WSCALE); 3772 snd_wscale = TCP_MAX_WSCALE; 3773 } 3774 opt_rx->snd_wscale = snd_wscale; 3775 } 3776 break; 3777 case TCPOPT_TIMESTAMP: 3778 if ((opsize == TCPOLEN_TIMESTAMP) && 3779 ((estab && opt_rx->tstamp_ok) || 3780 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3781 opt_rx->saw_tstamp = 1; 3782 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3783 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3784 } 3785 break; 3786 case TCPOPT_SACK_PERM: 3787 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3788 !estab && net->ipv4.sysctl_tcp_sack) { 3789 opt_rx->sack_ok = TCP_SACK_SEEN; 3790 tcp_sack_reset(opt_rx); 3791 } 3792 break; 3793 3794 case TCPOPT_SACK: 3795 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3796 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3797 opt_rx->sack_ok) { 3798 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3799 } 3800 break; 3801 #ifdef CONFIG_TCP_MD5SIG 3802 case TCPOPT_MD5SIG: 3803 /* 3804 * The MD5 Hash has already been 3805 * checked (see tcp_v{4,6}_do_rcv()). 3806 */ 3807 break; 3808 #endif 3809 case TCPOPT_FASTOPEN: 3810 tcp_parse_fastopen_option( 3811 opsize - TCPOLEN_FASTOPEN_BASE, 3812 ptr, th->syn, foc, false); 3813 break; 3814 3815 case TCPOPT_EXP: 3816 /* Fast Open option shares code 254 using a 3817 * 16 bits magic number. 3818 */ 3819 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3820 get_unaligned_be16(ptr) == 3821 TCPOPT_FASTOPEN_MAGIC) 3822 tcp_parse_fastopen_option(opsize - 3823 TCPOLEN_EXP_FASTOPEN_BASE, 3824 ptr + 2, th->syn, foc, true); 3825 else 3826 smc_parse_options(th, opt_rx, ptr, 3827 opsize); 3828 break; 3829 3830 } 3831 ptr += opsize-2; 3832 length -= opsize; 3833 } 3834 } 3835 } 3836 EXPORT_SYMBOL(tcp_parse_options); 3837 3838 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3839 { 3840 const __be32 *ptr = (const __be32 *)(th + 1); 3841 3842 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3843 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3844 tp->rx_opt.saw_tstamp = 1; 3845 ++ptr; 3846 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3847 ++ptr; 3848 if (*ptr) 3849 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3850 else 3851 tp->rx_opt.rcv_tsecr = 0; 3852 return true; 3853 } 3854 return false; 3855 } 3856 3857 /* Fast parse options. This hopes to only see timestamps. 3858 * If it is wrong it falls back on tcp_parse_options(). 3859 */ 3860 static bool tcp_fast_parse_options(const struct net *net, 3861 const struct sk_buff *skb, 3862 const struct tcphdr *th, struct tcp_sock *tp) 3863 { 3864 /* In the spirit of fast parsing, compare doff directly to constant 3865 * values. Because equality is used, short doff can be ignored here. 3866 */ 3867 if (th->doff == (sizeof(*th) / 4)) { 3868 tp->rx_opt.saw_tstamp = 0; 3869 return false; 3870 } else if (tp->rx_opt.tstamp_ok && 3871 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3872 if (tcp_parse_aligned_timestamp(tp, th)) 3873 return true; 3874 } 3875 3876 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3877 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3878 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3879 3880 return true; 3881 } 3882 3883 #ifdef CONFIG_TCP_MD5SIG 3884 /* 3885 * Parse MD5 Signature option 3886 */ 3887 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3888 { 3889 int length = (th->doff << 2) - sizeof(*th); 3890 const u8 *ptr = (const u8 *)(th + 1); 3891 3892 /* If not enough data remaining, we can short cut */ 3893 while (length >= TCPOLEN_MD5SIG) { 3894 int opcode = *ptr++; 3895 int opsize; 3896 3897 switch (opcode) { 3898 case TCPOPT_EOL: 3899 return NULL; 3900 case TCPOPT_NOP: 3901 length--; 3902 continue; 3903 default: 3904 opsize = *ptr++; 3905 if (opsize < 2 || opsize > length) 3906 return NULL; 3907 if (opcode == TCPOPT_MD5SIG) 3908 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3909 } 3910 ptr += opsize - 2; 3911 length -= opsize; 3912 } 3913 return NULL; 3914 } 3915 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3916 #endif 3917 3918 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3919 * 3920 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3921 * it can pass through stack. So, the following predicate verifies that 3922 * this segment is not used for anything but congestion avoidance or 3923 * fast retransmit. Moreover, we even are able to eliminate most of such 3924 * second order effects, if we apply some small "replay" window (~RTO) 3925 * to timestamp space. 3926 * 3927 * All these measures still do not guarantee that we reject wrapped ACKs 3928 * on networks with high bandwidth, when sequence space is recycled fastly, 3929 * but it guarantees that such events will be very rare and do not affect 3930 * connection seriously. This doesn't look nice, but alas, PAWS is really 3931 * buggy extension. 3932 * 3933 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3934 * states that events when retransmit arrives after original data are rare. 3935 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3936 * the biggest problem on large power networks even with minor reordering. 3937 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3938 * up to bandwidth of 18Gigabit/sec. 8) ] 3939 */ 3940 3941 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3942 { 3943 const struct tcp_sock *tp = tcp_sk(sk); 3944 const struct tcphdr *th = tcp_hdr(skb); 3945 u32 seq = TCP_SKB_CB(skb)->seq; 3946 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3947 3948 return (/* 1. Pure ACK with correct sequence number. */ 3949 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3950 3951 /* 2. ... and duplicate ACK. */ 3952 ack == tp->snd_una && 3953 3954 /* 3. ... and does not update window. */ 3955 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3956 3957 /* 4. ... and sits in replay window. */ 3958 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3959 } 3960 3961 static inline bool tcp_paws_discard(const struct sock *sk, 3962 const struct sk_buff *skb) 3963 { 3964 const struct tcp_sock *tp = tcp_sk(sk); 3965 3966 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3967 !tcp_disordered_ack(sk, skb); 3968 } 3969 3970 /* Check segment sequence number for validity. 3971 * 3972 * Segment controls are considered valid, if the segment 3973 * fits to the window after truncation to the window. Acceptability 3974 * of data (and SYN, FIN, of course) is checked separately. 3975 * See tcp_data_queue(), for example. 3976 * 3977 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3978 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3979 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3980 * (borrowed from freebsd) 3981 */ 3982 3983 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3984 { 3985 return !before(end_seq, tp->rcv_wup) && 3986 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3987 } 3988 3989 /* When we get a reset we do this. */ 3990 void tcp_reset(struct sock *sk) 3991 { 3992 trace_tcp_receive_reset(sk); 3993 3994 /* We want the right error as BSD sees it (and indeed as we do). */ 3995 switch (sk->sk_state) { 3996 case TCP_SYN_SENT: 3997 sk->sk_err = ECONNREFUSED; 3998 break; 3999 case TCP_CLOSE_WAIT: 4000 sk->sk_err = EPIPE; 4001 break; 4002 case TCP_CLOSE: 4003 return; 4004 default: 4005 sk->sk_err = ECONNRESET; 4006 } 4007 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4008 smp_wmb(); 4009 4010 tcp_write_queue_purge(sk); 4011 tcp_done(sk); 4012 4013 if (!sock_flag(sk, SOCK_DEAD)) 4014 sk->sk_error_report(sk); 4015 } 4016 4017 /* 4018 * Process the FIN bit. This now behaves as it is supposed to work 4019 * and the FIN takes effect when it is validly part of sequence 4020 * space. Not before when we get holes. 4021 * 4022 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4023 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4024 * TIME-WAIT) 4025 * 4026 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4027 * close and we go into CLOSING (and later onto TIME-WAIT) 4028 * 4029 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4030 */ 4031 void tcp_fin(struct sock *sk) 4032 { 4033 struct tcp_sock *tp = tcp_sk(sk); 4034 4035 inet_csk_schedule_ack(sk); 4036 4037 sk->sk_shutdown |= RCV_SHUTDOWN; 4038 sock_set_flag(sk, SOCK_DONE); 4039 4040 switch (sk->sk_state) { 4041 case TCP_SYN_RECV: 4042 case TCP_ESTABLISHED: 4043 /* Move to CLOSE_WAIT */ 4044 tcp_set_state(sk, TCP_CLOSE_WAIT); 4045 inet_csk(sk)->icsk_ack.pingpong = 1; 4046 break; 4047 4048 case TCP_CLOSE_WAIT: 4049 case TCP_CLOSING: 4050 /* Received a retransmission of the FIN, do 4051 * nothing. 4052 */ 4053 break; 4054 case TCP_LAST_ACK: 4055 /* RFC793: Remain in the LAST-ACK state. */ 4056 break; 4057 4058 case TCP_FIN_WAIT1: 4059 /* This case occurs when a simultaneous close 4060 * happens, we must ack the received FIN and 4061 * enter the CLOSING state. 4062 */ 4063 tcp_send_ack(sk); 4064 tcp_set_state(sk, TCP_CLOSING); 4065 break; 4066 case TCP_FIN_WAIT2: 4067 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4068 tcp_send_ack(sk); 4069 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4070 break; 4071 default: 4072 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4073 * cases we should never reach this piece of code. 4074 */ 4075 pr_err("%s: Impossible, sk->sk_state=%d\n", 4076 __func__, sk->sk_state); 4077 break; 4078 } 4079 4080 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4081 * Probably, we should reset in this case. For now drop them. 4082 */ 4083 skb_rbtree_purge(&tp->out_of_order_queue); 4084 if (tcp_is_sack(tp)) 4085 tcp_sack_reset(&tp->rx_opt); 4086 sk_mem_reclaim(sk); 4087 4088 if (!sock_flag(sk, SOCK_DEAD)) { 4089 sk->sk_state_change(sk); 4090 4091 /* Do not send POLL_HUP for half duplex close. */ 4092 if (sk->sk_shutdown == SHUTDOWN_MASK || 4093 sk->sk_state == TCP_CLOSE) 4094 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4095 else 4096 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4097 } 4098 } 4099 4100 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4101 u32 end_seq) 4102 { 4103 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4104 if (before(seq, sp->start_seq)) 4105 sp->start_seq = seq; 4106 if (after(end_seq, sp->end_seq)) 4107 sp->end_seq = end_seq; 4108 return true; 4109 } 4110 return false; 4111 } 4112 4113 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4114 { 4115 struct tcp_sock *tp = tcp_sk(sk); 4116 4117 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4118 int mib_idx; 4119 4120 if (before(seq, tp->rcv_nxt)) 4121 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4122 else 4123 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4124 4125 NET_INC_STATS(sock_net(sk), mib_idx); 4126 4127 tp->rx_opt.dsack = 1; 4128 tp->duplicate_sack[0].start_seq = seq; 4129 tp->duplicate_sack[0].end_seq = end_seq; 4130 } 4131 } 4132 4133 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4134 { 4135 struct tcp_sock *tp = tcp_sk(sk); 4136 4137 if (!tp->rx_opt.dsack) 4138 tcp_dsack_set(sk, seq, end_seq); 4139 else 4140 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4141 } 4142 4143 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4144 { 4145 struct tcp_sock *tp = tcp_sk(sk); 4146 4147 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4148 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4149 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4150 tcp_enter_quickack_mode(sk); 4151 4152 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4153 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4154 4155 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4156 end_seq = tp->rcv_nxt; 4157 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4158 } 4159 } 4160 4161 tcp_send_ack(sk); 4162 } 4163 4164 /* These routines update the SACK block as out-of-order packets arrive or 4165 * in-order packets close up the sequence space. 4166 */ 4167 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4168 { 4169 int this_sack; 4170 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4171 struct tcp_sack_block *swalk = sp + 1; 4172 4173 /* See if the recent change to the first SACK eats into 4174 * or hits the sequence space of other SACK blocks, if so coalesce. 4175 */ 4176 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4177 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4178 int i; 4179 4180 /* Zap SWALK, by moving every further SACK up by one slot. 4181 * Decrease num_sacks. 4182 */ 4183 tp->rx_opt.num_sacks--; 4184 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4185 sp[i] = sp[i + 1]; 4186 continue; 4187 } 4188 this_sack++, swalk++; 4189 } 4190 } 4191 4192 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4193 { 4194 struct tcp_sock *tp = tcp_sk(sk); 4195 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4196 int cur_sacks = tp->rx_opt.num_sacks; 4197 int this_sack; 4198 4199 if (!cur_sacks) 4200 goto new_sack; 4201 4202 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4203 if (tcp_sack_extend(sp, seq, end_seq)) { 4204 /* Rotate this_sack to the first one. */ 4205 for (; this_sack > 0; this_sack--, sp--) 4206 swap(*sp, *(sp - 1)); 4207 if (cur_sacks > 1) 4208 tcp_sack_maybe_coalesce(tp); 4209 return; 4210 } 4211 } 4212 4213 /* Could not find an adjacent existing SACK, build a new one, 4214 * put it at the front, and shift everyone else down. We 4215 * always know there is at least one SACK present already here. 4216 * 4217 * If the sack array is full, forget about the last one. 4218 */ 4219 if (this_sack >= TCP_NUM_SACKS) { 4220 this_sack--; 4221 tp->rx_opt.num_sacks--; 4222 sp--; 4223 } 4224 for (; this_sack > 0; this_sack--, sp--) 4225 *sp = *(sp - 1); 4226 4227 new_sack: 4228 /* Build the new head SACK, and we're done. */ 4229 sp->start_seq = seq; 4230 sp->end_seq = end_seq; 4231 tp->rx_opt.num_sacks++; 4232 } 4233 4234 /* RCV.NXT advances, some SACKs should be eaten. */ 4235 4236 static void tcp_sack_remove(struct tcp_sock *tp) 4237 { 4238 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4239 int num_sacks = tp->rx_opt.num_sacks; 4240 int this_sack; 4241 4242 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4243 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4244 tp->rx_opt.num_sacks = 0; 4245 return; 4246 } 4247 4248 for (this_sack = 0; this_sack < num_sacks;) { 4249 /* Check if the start of the sack is covered by RCV.NXT. */ 4250 if (!before(tp->rcv_nxt, sp->start_seq)) { 4251 int i; 4252 4253 /* RCV.NXT must cover all the block! */ 4254 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4255 4256 /* Zap this SACK, by moving forward any other SACKS. */ 4257 for (i = this_sack+1; i < num_sacks; i++) 4258 tp->selective_acks[i-1] = tp->selective_acks[i]; 4259 num_sacks--; 4260 continue; 4261 } 4262 this_sack++; 4263 sp++; 4264 } 4265 tp->rx_opt.num_sacks = num_sacks; 4266 } 4267 4268 /** 4269 * tcp_try_coalesce - try to merge skb to prior one 4270 * @sk: socket 4271 * @dest: destination queue 4272 * @to: prior buffer 4273 * @from: buffer to add in queue 4274 * @fragstolen: pointer to boolean 4275 * 4276 * Before queueing skb @from after @to, try to merge them 4277 * to reduce overall memory use and queue lengths, if cost is small. 4278 * Packets in ofo or receive queues can stay a long time. 4279 * Better try to coalesce them right now to avoid future collapses. 4280 * Returns true if caller should free @from instead of queueing it 4281 */ 4282 static bool tcp_try_coalesce(struct sock *sk, 4283 struct sk_buff *to, 4284 struct sk_buff *from, 4285 bool *fragstolen) 4286 { 4287 int delta; 4288 4289 *fragstolen = false; 4290 4291 /* Its possible this segment overlaps with prior segment in queue */ 4292 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4293 return false; 4294 4295 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4296 return false; 4297 4298 atomic_add(delta, &sk->sk_rmem_alloc); 4299 sk_mem_charge(sk, delta); 4300 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4301 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4302 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4303 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4304 4305 if (TCP_SKB_CB(from)->has_rxtstamp) { 4306 TCP_SKB_CB(to)->has_rxtstamp = true; 4307 to->tstamp = from->tstamp; 4308 } 4309 4310 return true; 4311 } 4312 4313 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4314 { 4315 sk_drops_add(sk, skb); 4316 __kfree_skb(skb); 4317 } 4318 4319 /* This one checks to see if we can put data from the 4320 * out_of_order queue into the receive_queue. 4321 */ 4322 static void tcp_ofo_queue(struct sock *sk) 4323 { 4324 struct tcp_sock *tp = tcp_sk(sk); 4325 __u32 dsack_high = tp->rcv_nxt; 4326 bool fin, fragstolen, eaten; 4327 struct sk_buff *skb, *tail; 4328 struct rb_node *p; 4329 4330 p = rb_first(&tp->out_of_order_queue); 4331 while (p) { 4332 skb = rb_to_skb(p); 4333 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4334 break; 4335 4336 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4337 __u32 dsack = dsack_high; 4338 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4339 dsack_high = TCP_SKB_CB(skb)->end_seq; 4340 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4341 } 4342 p = rb_next(p); 4343 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4344 4345 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4346 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4347 tcp_drop(sk, skb); 4348 continue; 4349 } 4350 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4351 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4352 TCP_SKB_CB(skb)->end_seq); 4353 4354 tail = skb_peek_tail(&sk->sk_receive_queue); 4355 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4356 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4357 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4358 if (!eaten) 4359 __skb_queue_tail(&sk->sk_receive_queue, skb); 4360 else 4361 kfree_skb_partial(skb, fragstolen); 4362 4363 if (unlikely(fin)) { 4364 tcp_fin(sk); 4365 /* tcp_fin() purges tp->out_of_order_queue, 4366 * so we must end this loop right now. 4367 */ 4368 break; 4369 } 4370 } 4371 } 4372 4373 static bool tcp_prune_ofo_queue(struct sock *sk); 4374 static int tcp_prune_queue(struct sock *sk); 4375 4376 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4377 unsigned int size) 4378 { 4379 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4380 !sk_rmem_schedule(sk, skb, size)) { 4381 4382 if (tcp_prune_queue(sk) < 0) 4383 return -1; 4384 4385 while (!sk_rmem_schedule(sk, skb, size)) { 4386 if (!tcp_prune_ofo_queue(sk)) 4387 return -1; 4388 } 4389 } 4390 return 0; 4391 } 4392 4393 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4394 { 4395 struct tcp_sock *tp = tcp_sk(sk); 4396 struct rb_node **p, *parent; 4397 struct sk_buff *skb1; 4398 u32 seq, end_seq; 4399 bool fragstolen; 4400 4401 tcp_ecn_check_ce(tp, skb); 4402 4403 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4404 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4405 tcp_drop(sk, skb); 4406 return; 4407 } 4408 4409 /* Disable header prediction. */ 4410 tp->pred_flags = 0; 4411 inet_csk_schedule_ack(sk); 4412 4413 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4414 seq = TCP_SKB_CB(skb)->seq; 4415 end_seq = TCP_SKB_CB(skb)->end_seq; 4416 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4417 tp->rcv_nxt, seq, end_seq); 4418 4419 p = &tp->out_of_order_queue.rb_node; 4420 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4421 /* Initial out of order segment, build 1 SACK. */ 4422 if (tcp_is_sack(tp)) { 4423 tp->rx_opt.num_sacks = 1; 4424 tp->selective_acks[0].start_seq = seq; 4425 tp->selective_acks[0].end_seq = end_seq; 4426 } 4427 rb_link_node(&skb->rbnode, NULL, p); 4428 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4429 tp->ooo_last_skb = skb; 4430 goto end; 4431 } 4432 4433 /* In the typical case, we are adding an skb to the end of the list. 4434 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4435 */ 4436 if (tcp_try_coalesce(sk, tp->ooo_last_skb, 4437 skb, &fragstolen)) { 4438 coalesce_done: 4439 tcp_grow_window(sk, skb); 4440 kfree_skb_partial(skb, fragstolen); 4441 skb = NULL; 4442 goto add_sack; 4443 } 4444 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4445 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4446 parent = &tp->ooo_last_skb->rbnode; 4447 p = &parent->rb_right; 4448 goto insert; 4449 } 4450 4451 /* Find place to insert this segment. Handle overlaps on the way. */ 4452 parent = NULL; 4453 while (*p) { 4454 parent = *p; 4455 skb1 = rb_to_skb(parent); 4456 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4457 p = &parent->rb_left; 4458 continue; 4459 } 4460 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4461 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4462 /* All the bits are present. Drop. */ 4463 NET_INC_STATS(sock_net(sk), 4464 LINUX_MIB_TCPOFOMERGE); 4465 __kfree_skb(skb); 4466 skb = NULL; 4467 tcp_dsack_set(sk, seq, end_seq); 4468 goto add_sack; 4469 } 4470 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4471 /* Partial overlap. */ 4472 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4473 } else { 4474 /* skb's seq == skb1's seq and skb covers skb1. 4475 * Replace skb1 with skb. 4476 */ 4477 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4478 &tp->out_of_order_queue); 4479 tcp_dsack_extend(sk, 4480 TCP_SKB_CB(skb1)->seq, 4481 TCP_SKB_CB(skb1)->end_seq); 4482 NET_INC_STATS(sock_net(sk), 4483 LINUX_MIB_TCPOFOMERGE); 4484 __kfree_skb(skb1); 4485 goto merge_right; 4486 } 4487 } else if (tcp_try_coalesce(sk, skb1, 4488 skb, &fragstolen)) { 4489 goto coalesce_done; 4490 } 4491 p = &parent->rb_right; 4492 } 4493 insert: 4494 /* Insert segment into RB tree. */ 4495 rb_link_node(&skb->rbnode, parent, p); 4496 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4497 4498 merge_right: 4499 /* Remove other segments covered by skb. */ 4500 while ((skb1 = skb_rb_next(skb)) != NULL) { 4501 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4502 break; 4503 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4504 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4505 end_seq); 4506 break; 4507 } 4508 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4509 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4510 TCP_SKB_CB(skb1)->end_seq); 4511 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4512 tcp_drop(sk, skb1); 4513 } 4514 /* If there is no skb after us, we are the last_skb ! */ 4515 if (!skb1) 4516 tp->ooo_last_skb = skb; 4517 4518 add_sack: 4519 if (tcp_is_sack(tp)) 4520 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4521 end: 4522 if (skb) { 4523 tcp_grow_window(sk, skb); 4524 skb_condense(skb); 4525 skb_set_owner_r(skb, sk); 4526 } 4527 } 4528 4529 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4530 bool *fragstolen) 4531 { 4532 int eaten; 4533 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4534 4535 __skb_pull(skb, hdrlen); 4536 eaten = (tail && 4537 tcp_try_coalesce(sk, tail, 4538 skb, fragstolen)) ? 1 : 0; 4539 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4540 if (!eaten) { 4541 __skb_queue_tail(&sk->sk_receive_queue, skb); 4542 skb_set_owner_r(skb, sk); 4543 } 4544 return eaten; 4545 } 4546 4547 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4548 { 4549 struct sk_buff *skb; 4550 int err = -ENOMEM; 4551 int data_len = 0; 4552 bool fragstolen; 4553 4554 if (size == 0) 4555 return 0; 4556 4557 if (size > PAGE_SIZE) { 4558 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4559 4560 data_len = npages << PAGE_SHIFT; 4561 size = data_len + (size & ~PAGE_MASK); 4562 } 4563 skb = alloc_skb_with_frags(size - data_len, data_len, 4564 PAGE_ALLOC_COSTLY_ORDER, 4565 &err, sk->sk_allocation); 4566 if (!skb) 4567 goto err; 4568 4569 skb_put(skb, size - data_len); 4570 skb->data_len = data_len; 4571 skb->len = size; 4572 4573 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4574 goto err_free; 4575 4576 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4577 if (err) 4578 goto err_free; 4579 4580 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4581 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4582 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4583 4584 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4585 WARN_ON_ONCE(fragstolen); /* should not happen */ 4586 __kfree_skb(skb); 4587 } 4588 return size; 4589 4590 err_free: 4591 kfree_skb(skb); 4592 err: 4593 return err; 4594 4595 } 4596 4597 void tcp_data_ready(struct sock *sk) 4598 { 4599 const struct tcp_sock *tp = tcp_sk(sk); 4600 int avail = tp->rcv_nxt - tp->copied_seq; 4601 4602 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4603 return; 4604 4605 sk->sk_data_ready(sk); 4606 } 4607 4608 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4609 { 4610 struct tcp_sock *tp = tcp_sk(sk); 4611 bool fragstolen; 4612 int eaten; 4613 4614 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4615 __kfree_skb(skb); 4616 return; 4617 } 4618 skb_dst_drop(skb); 4619 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4620 4621 tcp_ecn_accept_cwr(tp, skb); 4622 4623 tp->rx_opt.dsack = 0; 4624 4625 /* Queue data for delivery to the user. 4626 * Packets in sequence go to the receive queue. 4627 * Out of sequence packets to the out_of_order_queue. 4628 */ 4629 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4630 if (tcp_receive_window(tp) == 0) 4631 goto out_of_window; 4632 4633 /* Ok. In sequence. In window. */ 4634 queue_and_out: 4635 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4636 sk_forced_mem_schedule(sk, skb->truesize); 4637 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4638 goto drop; 4639 4640 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4641 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4642 if (skb->len) 4643 tcp_event_data_recv(sk, skb); 4644 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4645 tcp_fin(sk); 4646 4647 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4648 tcp_ofo_queue(sk); 4649 4650 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4651 * gap in queue is filled. 4652 */ 4653 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4654 inet_csk(sk)->icsk_ack.pingpong = 0; 4655 } 4656 4657 if (tp->rx_opt.num_sacks) 4658 tcp_sack_remove(tp); 4659 4660 tcp_fast_path_check(sk); 4661 4662 if (eaten > 0) 4663 kfree_skb_partial(skb, fragstolen); 4664 if (!sock_flag(sk, SOCK_DEAD)) 4665 tcp_data_ready(sk); 4666 return; 4667 } 4668 4669 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4670 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4671 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4672 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4673 4674 out_of_window: 4675 tcp_enter_quickack_mode(sk); 4676 inet_csk_schedule_ack(sk); 4677 drop: 4678 tcp_drop(sk, skb); 4679 return; 4680 } 4681 4682 /* Out of window. F.e. zero window probe. */ 4683 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4684 goto out_of_window; 4685 4686 tcp_enter_quickack_mode(sk); 4687 4688 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4689 /* Partial packet, seq < rcv_next < end_seq */ 4690 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4691 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4692 TCP_SKB_CB(skb)->end_seq); 4693 4694 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4695 4696 /* If window is closed, drop tail of packet. But after 4697 * remembering D-SACK for its head made in previous line. 4698 */ 4699 if (!tcp_receive_window(tp)) 4700 goto out_of_window; 4701 goto queue_and_out; 4702 } 4703 4704 tcp_data_queue_ofo(sk, skb); 4705 } 4706 4707 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4708 { 4709 if (list) 4710 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4711 4712 return skb_rb_next(skb); 4713 } 4714 4715 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4716 struct sk_buff_head *list, 4717 struct rb_root *root) 4718 { 4719 struct sk_buff *next = tcp_skb_next(skb, list); 4720 4721 if (list) 4722 __skb_unlink(skb, list); 4723 else 4724 rb_erase(&skb->rbnode, root); 4725 4726 __kfree_skb(skb); 4727 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4728 4729 return next; 4730 } 4731 4732 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4733 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4734 { 4735 struct rb_node **p = &root->rb_node; 4736 struct rb_node *parent = NULL; 4737 struct sk_buff *skb1; 4738 4739 while (*p) { 4740 parent = *p; 4741 skb1 = rb_to_skb(parent); 4742 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4743 p = &parent->rb_left; 4744 else 4745 p = &parent->rb_right; 4746 } 4747 rb_link_node(&skb->rbnode, parent, p); 4748 rb_insert_color(&skb->rbnode, root); 4749 } 4750 4751 /* Collapse contiguous sequence of skbs head..tail with 4752 * sequence numbers start..end. 4753 * 4754 * If tail is NULL, this means until the end of the queue. 4755 * 4756 * Segments with FIN/SYN are not collapsed (only because this 4757 * simplifies code) 4758 */ 4759 static void 4760 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4761 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4762 { 4763 struct sk_buff *skb = head, *n; 4764 struct sk_buff_head tmp; 4765 bool end_of_skbs; 4766 4767 /* First, check that queue is collapsible and find 4768 * the point where collapsing can be useful. 4769 */ 4770 restart: 4771 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4772 n = tcp_skb_next(skb, list); 4773 4774 /* No new bits? It is possible on ofo queue. */ 4775 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4776 skb = tcp_collapse_one(sk, skb, list, root); 4777 if (!skb) 4778 break; 4779 goto restart; 4780 } 4781 4782 /* The first skb to collapse is: 4783 * - not SYN/FIN and 4784 * - bloated or contains data before "start" or 4785 * overlaps to the next one. 4786 */ 4787 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4788 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4789 before(TCP_SKB_CB(skb)->seq, start))) { 4790 end_of_skbs = false; 4791 break; 4792 } 4793 4794 if (n && n != tail && 4795 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4796 end_of_skbs = false; 4797 break; 4798 } 4799 4800 /* Decided to skip this, advance start seq. */ 4801 start = TCP_SKB_CB(skb)->end_seq; 4802 } 4803 if (end_of_skbs || 4804 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4805 return; 4806 4807 __skb_queue_head_init(&tmp); 4808 4809 while (before(start, end)) { 4810 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4811 struct sk_buff *nskb; 4812 4813 nskb = alloc_skb(copy, GFP_ATOMIC); 4814 if (!nskb) 4815 break; 4816 4817 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4818 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4819 if (list) 4820 __skb_queue_before(list, skb, nskb); 4821 else 4822 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4823 skb_set_owner_r(nskb, sk); 4824 4825 /* Copy data, releasing collapsed skbs. */ 4826 while (copy > 0) { 4827 int offset = start - TCP_SKB_CB(skb)->seq; 4828 int size = TCP_SKB_CB(skb)->end_seq - start; 4829 4830 BUG_ON(offset < 0); 4831 if (size > 0) { 4832 size = min(copy, size); 4833 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4834 BUG(); 4835 TCP_SKB_CB(nskb)->end_seq += size; 4836 copy -= size; 4837 start += size; 4838 } 4839 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4840 skb = tcp_collapse_one(sk, skb, list, root); 4841 if (!skb || 4842 skb == tail || 4843 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4844 goto end; 4845 } 4846 } 4847 } 4848 end: 4849 skb_queue_walk_safe(&tmp, skb, n) 4850 tcp_rbtree_insert(root, skb); 4851 } 4852 4853 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4854 * and tcp_collapse() them until all the queue is collapsed. 4855 */ 4856 static void tcp_collapse_ofo_queue(struct sock *sk) 4857 { 4858 struct tcp_sock *tp = tcp_sk(sk); 4859 struct sk_buff *skb, *head; 4860 u32 start, end; 4861 4862 skb = skb_rb_first(&tp->out_of_order_queue); 4863 new_range: 4864 if (!skb) { 4865 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4866 return; 4867 } 4868 start = TCP_SKB_CB(skb)->seq; 4869 end = TCP_SKB_CB(skb)->end_seq; 4870 4871 for (head = skb;;) { 4872 skb = skb_rb_next(skb); 4873 4874 /* Range is terminated when we see a gap or when 4875 * we are at the queue end. 4876 */ 4877 if (!skb || 4878 after(TCP_SKB_CB(skb)->seq, end) || 4879 before(TCP_SKB_CB(skb)->end_seq, start)) { 4880 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4881 head, skb, start, end); 4882 goto new_range; 4883 } 4884 4885 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4886 start = TCP_SKB_CB(skb)->seq; 4887 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4888 end = TCP_SKB_CB(skb)->end_seq; 4889 } 4890 } 4891 4892 /* 4893 * Clean the out-of-order queue to make room. 4894 * We drop high sequences packets to : 4895 * 1) Let a chance for holes to be filled. 4896 * 2) not add too big latencies if thousands of packets sit there. 4897 * (But if application shrinks SO_RCVBUF, we could still end up 4898 * freeing whole queue here) 4899 * 4900 * Return true if queue has shrunk. 4901 */ 4902 static bool tcp_prune_ofo_queue(struct sock *sk) 4903 { 4904 struct tcp_sock *tp = tcp_sk(sk); 4905 struct rb_node *node, *prev; 4906 4907 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4908 return false; 4909 4910 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4911 node = &tp->ooo_last_skb->rbnode; 4912 do { 4913 prev = rb_prev(node); 4914 rb_erase(node, &tp->out_of_order_queue); 4915 tcp_drop(sk, rb_to_skb(node)); 4916 sk_mem_reclaim(sk); 4917 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4918 !tcp_under_memory_pressure(sk)) 4919 break; 4920 node = prev; 4921 } while (node); 4922 tp->ooo_last_skb = rb_to_skb(prev); 4923 4924 /* Reset SACK state. A conforming SACK implementation will 4925 * do the same at a timeout based retransmit. When a connection 4926 * is in a sad state like this, we care only about integrity 4927 * of the connection not performance. 4928 */ 4929 if (tp->rx_opt.sack_ok) 4930 tcp_sack_reset(&tp->rx_opt); 4931 return true; 4932 } 4933 4934 /* Reduce allocated memory if we can, trying to get 4935 * the socket within its memory limits again. 4936 * 4937 * Return less than zero if we should start dropping frames 4938 * until the socket owning process reads some of the data 4939 * to stabilize the situation. 4940 */ 4941 static int tcp_prune_queue(struct sock *sk) 4942 { 4943 struct tcp_sock *tp = tcp_sk(sk); 4944 4945 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4946 4947 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4948 4949 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4950 tcp_clamp_window(sk); 4951 else if (tcp_under_memory_pressure(sk)) 4952 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4953 4954 tcp_collapse_ofo_queue(sk); 4955 if (!skb_queue_empty(&sk->sk_receive_queue)) 4956 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4957 skb_peek(&sk->sk_receive_queue), 4958 NULL, 4959 tp->copied_seq, tp->rcv_nxt); 4960 sk_mem_reclaim(sk); 4961 4962 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4963 return 0; 4964 4965 /* Collapsing did not help, destructive actions follow. 4966 * This must not ever occur. */ 4967 4968 tcp_prune_ofo_queue(sk); 4969 4970 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4971 return 0; 4972 4973 /* If we are really being abused, tell the caller to silently 4974 * drop receive data on the floor. It will get retransmitted 4975 * and hopefully then we'll have sufficient space. 4976 */ 4977 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4978 4979 /* Massive buffer overcommit. */ 4980 tp->pred_flags = 0; 4981 return -1; 4982 } 4983 4984 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4985 { 4986 const struct tcp_sock *tp = tcp_sk(sk); 4987 4988 /* If the user specified a specific send buffer setting, do 4989 * not modify it. 4990 */ 4991 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4992 return false; 4993 4994 /* If we are under global TCP memory pressure, do not expand. */ 4995 if (tcp_under_memory_pressure(sk)) 4996 return false; 4997 4998 /* If we are under soft global TCP memory pressure, do not expand. */ 4999 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5000 return false; 5001 5002 /* If we filled the congestion window, do not expand. */ 5003 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5004 return false; 5005 5006 return true; 5007 } 5008 5009 /* When incoming ACK allowed to free some skb from write_queue, 5010 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5011 * on the exit from tcp input handler. 5012 * 5013 * PROBLEM: sndbuf expansion does not work well with largesend. 5014 */ 5015 static void tcp_new_space(struct sock *sk) 5016 { 5017 struct tcp_sock *tp = tcp_sk(sk); 5018 5019 if (tcp_should_expand_sndbuf(sk)) { 5020 tcp_sndbuf_expand(sk); 5021 tp->snd_cwnd_stamp = tcp_jiffies32; 5022 } 5023 5024 sk->sk_write_space(sk); 5025 } 5026 5027 static void tcp_check_space(struct sock *sk) 5028 { 5029 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5030 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5031 /* pairs with tcp_poll() */ 5032 smp_mb(); 5033 if (sk->sk_socket && 5034 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5035 tcp_new_space(sk); 5036 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5037 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5038 } 5039 } 5040 } 5041 5042 static inline void tcp_data_snd_check(struct sock *sk) 5043 { 5044 tcp_push_pending_frames(sk); 5045 tcp_check_space(sk); 5046 } 5047 5048 /* 5049 * Check if sending an ack is needed. 5050 */ 5051 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5052 { 5053 struct tcp_sock *tp = tcp_sk(sk); 5054 5055 /* More than one full frame received... */ 5056 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5057 /* ... and right edge of window advances far enough. 5058 * (tcp_recvmsg() will send ACK otherwise). 5059 * If application uses SO_RCVLOWAT, we want send ack now if 5060 * we have not received enough bytes to satisfy the condition. 5061 */ 5062 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5063 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5064 /* We ACK each frame or... */ 5065 tcp_in_quickack_mode(sk) || 5066 /* We have out of order data. */ 5067 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5068 /* Then ack it now */ 5069 tcp_send_ack(sk); 5070 } else { 5071 /* Else, send delayed ack. */ 5072 tcp_send_delayed_ack(sk); 5073 } 5074 } 5075 5076 static inline void tcp_ack_snd_check(struct sock *sk) 5077 { 5078 if (!inet_csk_ack_scheduled(sk)) { 5079 /* We sent a data segment already. */ 5080 return; 5081 } 5082 __tcp_ack_snd_check(sk, 1); 5083 } 5084 5085 /* 5086 * This routine is only called when we have urgent data 5087 * signaled. Its the 'slow' part of tcp_urg. It could be 5088 * moved inline now as tcp_urg is only called from one 5089 * place. We handle URGent data wrong. We have to - as 5090 * BSD still doesn't use the correction from RFC961. 5091 * For 1003.1g we should support a new option TCP_STDURG to permit 5092 * either form (or just set the sysctl tcp_stdurg). 5093 */ 5094 5095 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5096 { 5097 struct tcp_sock *tp = tcp_sk(sk); 5098 u32 ptr = ntohs(th->urg_ptr); 5099 5100 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5101 ptr--; 5102 ptr += ntohl(th->seq); 5103 5104 /* Ignore urgent data that we've already seen and read. */ 5105 if (after(tp->copied_seq, ptr)) 5106 return; 5107 5108 /* Do not replay urg ptr. 5109 * 5110 * NOTE: interesting situation not covered by specs. 5111 * Misbehaving sender may send urg ptr, pointing to segment, 5112 * which we already have in ofo queue. We are not able to fetch 5113 * such data and will stay in TCP_URG_NOTYET until will be eaten 5114 * by recvmsg(). Seems, we are not obliged to handle such wicked 5115 * situations. But it is worth to think about possibility of some 5116 * DoSes using some hypothetical application level deadlock. 5117 */ 5118 if (before(ptr, tp->rcv_nxt)) 5119 return; 5120 5121 /* Do we already have a newer (or duplicate) urgent pointer? */ 5122 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5123 return; 5124 5125 /* Tell the world about our new urgent pointer. */ 5126 sk_send_sigurg(sk); 5127 5128 /* We may be adding urgent data when the last byte read was 5129 * urgent. To do this requires some care. We cannot just ignore 5130 * tp->copied_seq since we would read the last urgent byte again 5131 * as data, nor can we alter copied_seq until this data arrives 5132 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5133 * 5134 * NOTE. Double Dutch. Rendering to plain English: author of comment 5135 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5136 * and expect that both A and B disappear from stream. This is _wrong_. 5137 * Though this happens in BSD with high probability, this is occasional. 5138 * Any application relying on this is buggy. Note also, that fix "works" 5139 * only in this artificial test. Insert some normal data between A and B and we will 5140 * decline of BSD again. Verdict: it is better to remove to trap 5141 * buggy users. 5142 */ 5143 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5144 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5145 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5146 tp->copied_seq++; 5147 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5148 __skb_unlink(skb, &sk->sk_receive_queue); 5149 __kfree_skb(skb); 5150 } 5151 } 5152 5153 tp->urg_data = TCP_URG_NOTYET; 5154 tp->urg_seq = ptr; 5155 5156 /* Disable header prediction. */ 5157 tp->pred_flags = 0; 5158 } 5159 5160 /* This is the 'fast' part of urgent handling. */ 5161 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5162 { 5163 struct tcp_sock *tp = tcp_sk(sk); 5164 5165 /* Check if we get a new urgent pointer - normally not. */ 5166 if (th->urg) 5167 tcp_check_urg(sk, th); 5168 5169 /* Do we wait for any urgent data? - normally not... */ 5170 if (tp->urg_data == TCP_URG_NOTYET) { 5171 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5172 th->syn; 5173 5174 /* Is the urgent pointer pointing into this packet? */ 5175 if (ptr < skb->len) { 5176 u8 tmp; 5177 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5178 BUG(); 5179 tp->urg_data = TCP_URG_VALID | tmp; 5180 if (!sock_flag(sk, SOCK_DEAD)) 5181 sk->sk_data_ready(sk); 5182 } 5183 } 5184 } 5185 5186 /* Accept RST for rcv_nxt - 1 after a FIN. 5187 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5188 * FIN is sent followed by a RST packet. The RST is sent with the same 5189 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5190 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5191 * ACKs on the closed socket. In addition middleboxes can drop either the 5192 * challenge ACK or a subsequent RST. 5193 */ 5194 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5195 { 5196 struct tcp_sock *tp = tcp_sk(sk); 5197 5198 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5199 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5200 TCPF_CLOSING)); 5201 } 5202 5203 /* Does PAWS and seqno based validation of an incoming segment, flags will 5204 * play significant role here. 5205 */ 5206 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5207 const struct tcphdr *th, int syn_inerr) 5208 { 5209 struct tcp_sock *tp = tcp_sk(sk); 5210 bool rst_seq_match = false; 5211 5212 /* RFC1323: H1. Apply PAWS check first. */ 5213 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5214 tp->rx_opt.saw_tstamp && 5215 tcp_paws_discard(sk, skb)) { 5216 if (!th->rst) { 5217 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5218 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5219 LINUX_MIB_TCPACKSKIPPEDPAWS, 5220 &tp->last_oow_ack_time)) 5221 tcp_send_dupack(sk, skb); 5222 goto discard; 5223 } 5224 /* Reset is accepted even if it did not pass PAWS. */ 5225 } 5226 5227 /* Step 1: check sequence number */ 5228 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5229 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5230 * (RST) segments are validated by checking their SEQ-fields." 5231 * And page 69: "If an incoming segment is not acceptable, 5232 * an acknowledgment should be sent in reply (unless the RST 5233 * bit is set, if so drop the segment and return)". 5234 */ 5235 if (!th->rst) { 5236 if (th->syn) 5237 goto syn_challenge; 5238 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5239 LINUX_MIB_TCPACKSKIPPEDSEQ, 5240 &tp->last_oow_ack_time)) 5241 tcp_send_dupack(sk, skb); 5242 } else if (tcp_reset_check(sk, skb)) { 5243 tcp_reset(sk); 5244 } 5245 goto discard; 5246 } 5247 5248 /* Step 2: check RST bit */ 5249 if (th->rst) { 5250 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5251 * FIN and SACK too if available): 5252 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5253 * the right-most SACK block, 5254 * then 5255 * RESET the connection 5256 * else 5257 * Send a challenge ACK 5258 */ 5259 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5260 tcp_reset_check(sk, skb)) { 5261 rst_seq_match = true; 5262 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5263 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5264 int max_sack = sp[0].end_seq; 5265 int this_sack; 5266 5267 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5268 ++this_sack) { 5269 max_sack = after(sp[this_sack].end_seq, 5270 max_sack) ? 5271 sp[this_sack].end_seq : max_sack; 5272 } 5273 5274 if (TCP_SKB_CB(skb)->seq == max_sack) 5275 rst_seq_match = true; 5276 } 5277 5278 if (rst_seq_match) 5279 tcp_reset(sk); 5280 else { 5281 /* Disable TFO if RST is out-of-order 5282 * and no data has been received 5283 * for current active TFO socket 5284 */ 5285 if (tp->syn_fastopen && !tp->data_segs_in && 5286 sk->sk_state == TCP_ESTABLISHED) 5287 tcp_fastopen_active_disable(sk); 5288 tcp_send_challenge_ack(sk, skb); 5289 } 5290 goto discard; 5291 } 5292 5293 /* step 3: check security and precedence [ignored] */ 5294 5295 /* step 4: Check for a SYN 5296 * RFC 5961 4.2 : Send a challenge ack 5297 */ 5298 if (th->syn) { 5299 syn_challenge: 5300 if (syn_inerr) 5301 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5303 tcp_send_challenge_ack(sk, skb); 5304 goto discard; 5305 } 5306 5307 return true; 5308 5309 discard: 5310 tcp_drop(sk, skb); 5311 return false; 5312 } 5313 5314 /* 5315 * TCP receive function for the ESTABLISHED state. 5316 * 5317 * It is split into a fast path and a slow path. The fast path is 5318 * disabled when: 5319 * - A zero window was announced from us - zero window probing 5320 * is only handled properly in the slow path. 5321 * - Out of order segments arrived. 5322 * - Urgent data is expected. 5323 * - There is no buffer space left 5324 * - Unexpected TCP flags/window values/header lengths are received 5325 * (detected by checking the TCP header against pred_flags) 5326 * - Data is sent in both directions. Fast path only supports pure senders 5327 * or pure receivers (this means either the sequence number or the ack 5328 * value must stay constant) 5329 * - Unexpected TCP option. 5330 * 5331 * When these conditions are not satisfied it drops into a standard 5332 * receive procedure patterned after RFC793 to handle all cases. 5333 * The first three cases are guaranteed by proper pred_flags setting, 5334 * the rest is checked inline. Fast processing is turned on in 5335 * tcp_data_queue when everything is OK. 5336 */ 5337 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5338 const struct tcphdr *th) 5339 { 5340 unsigned int len = skb->len; 5341 struct tcp_sock *tp = tcp_sk(sk); 5342 5343 /* TCP congestion window tracking */ 5344 trace_tcp_probe(sk, skb); 5345 5346 tcp_mstamp_refresh(tp); 5347 if (unlikely(!sk->sk_rx_dst)) 5348 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5349 /* 5350 * Header prediction. 5351 * The code loosely follows the one in the famous 5352 * "30 instruction TCP receive" Van Jacobson mail. 5353 * 5354 * Van's trick is to deposit buffers into socket queue 5355 * on a device interrupt, to call tcp_recv function 5356 * on the receive process context and checksum and copy 5357 * the buffer to user space. smart... 5358 * 5359 * Our current scheme is not silly either but we take the 5360 * extra cost of the net_bh soft interrupt processing... 5361 * We do checksum and copy also but from device to kernel. 5362 */ 5363 5364 tp->rx_opt.saw_tstamp = 0; 5365 5366 /* pred_flags is 0xS?10 << 16 + snd_wnd 5367 * if header_prediction is to be made 5368 * 'S' will always be tp->tcp_header_len >> 2 5369 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5370 * turn it off (when there are holes in the receive 5371 * space for instance) 5372 * PSH flag is ignored. 5373 */ 5374 5375 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5376 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5377 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5378 int tcp_header_len = tp->tcp_header_len; 5379 5380 /* Timestamp header prediction: tcp_header_len 5381 * is automatically equal to th->doff*4 due to pred_flags 5382 * match. 5383 */ 5384 5385 /* Check timestamp */ 5386 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5387 /* No? Slow path! */ 5388 if (!tcp_parse_aligned_timestamp(tp, th)) 5389 goto slow_path; 5390 5391 /* If PAWS failed, check it more carefully in slow path */ 5392 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5393 goto slow_path; 5394 5395 /* DO NOT update ts_recent here, if checksum fails 5396 * and timestamp was corrupted part, it will result 5397 * in a hung connection since we will drop all 5398 * future packets due to the PAWS test. 5399 */ 5400 } 5401 5402 if (len <= tcp_header_len) { 5403 /* Bulk data transfer: sender */ 5404 if (len == tcp_header_len) { 5405 /* Predicted packet is in window by definition. 5406 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5407 * Hence, check seq<=rcv_wup reduces to: 5408 */ 5409 if (tcp_header_len == 5410 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5411 tp->rcv_nxt == tp->rcv_wup) 5412 tcp_store_ts_recent(tp); 5413 5414 /* We know that such packets are checksummed 5415 * on entry. 5416 */ 5417 tcp_ack(sk, skb, 0); 5418 __kfree_skb(skb); 5419 tcp_data_snd_check(sk); 5420 return; 5421 } else { /* Header too small */ 5422 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5423 goto discard; 5424 } 5425 } else { 5426 int eaten = 0; 5427 bool fragstolen = false; 5428 5429 if (tcp_checksum_complete(skb)) 5430 goto csum_error; 5431 5432 if ((int)skb->truesize > sk->sk_forward_alloc) 5433 goto step5; 5434 5435 /* Predicted packet is in window by definition. 5436 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5437 * Hence, check seq<=rcv_wup reduces to: 5438 */ 5439 if (tcp_header_len == 5440 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5441 tp->rcv_nxt == tp->rcv_wup) 5442 tcp_store_ts_recent(tp); 5443 5444 tcp_rcv_rtt_measure_ts(sk, skb); 5445 5446 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5447 5448 /* Bulk data transfer: receiver */ 5449 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5450 &fragstolen); 5451 5452 tcp_event_data_recv(sk, skb); 5453 5454 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5455 /* Well, only one small jumplet in fast path... */ 5456 tcp_ack(sk, skb, FLAG_DATA); 5457 tcp_data_snd_check(sk); 5458 if (!inet_csk_ack_scheduled(sk)) 5459 goto no_ack; 5460 } 5461 5462 __tcp_ack_snd_check(sk, 0); 5463 no_ack: 5464 if (eaten) 5465 kfree_skb_partial(skb, fragstolen); 5466 tcp_data_ready(sk); 5467 return; 5468 } 5469 } 5470 5471 slow_path: 5472 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5473 goto csum_error; 5474 5475 if (!th->ack && !th->rst && !th->syn) 5476 goto discard; 5477 5478 /* 5479 * Standard slow path. 5480 */ 5481 5482 if (!tcp_validate_incoming(sk, skb, th, 1)) 5483 return; 5484 5485 step5: 5486 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5487 goto discard; 5488 5489 tcp_rcv_rtt_measure_ts(sk, skb); 5490 5491 /* Process urgent data. */ 5492 tcp_urg(sk, skb, th); 5493 5494 /* step 7: process the segment text */ 5495 tcp_data_queue(sk, skb); 5496 5497 tcp_data_snd_check(sk); 5498 tcp_ack_snd_check(sk); 5499 return; 5500 5501 csum_error: 5502 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5503 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5504 5505 discard: 5506 tcp_drop(sk, skb); 5507 } 5508 EXPORT_SYMBOL(tcp_rcv_established); 5509 5510 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5511 { 5512 struct tcp_sock *tp = tcp_sk(sk); 5513 struct inet_connection_sock *icsk = inet_csk(sk); 5514 5515 tcp_set_state(sk, TCP_ESTABLISHED); 5516 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5517 5518 if (skb) { 5519 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5520 security_inet_conn_established(sk, skb); 5521 } 5522 5523 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5524 5525 /* Prevent spurious tcp_cwnd_restart() on first data 5526 * packet. 5527 */ 5528 tp->lsndtime = tcp_jiffies32; 5529 5530 if (sock_flag(sk, SOCK_KEEPOPEN)) 5531 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5532 5533 if (!tp->rx_opt.snd_wscale) 5534 __tcp_fast_path_on(tp, tp->snd_wnd); 5535 else 5536 tp->pred_flags = 0; 5537 } 5538 5539 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5540 struct tcp_fastopen_cookie *cookie) 5541 { 5542 struct tcp_sock *tp = tcp_sk(sk); 5543 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5544 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5545 bool syn_drop = false; 5546 5547 if (mss == tp->rx_opt.user_mss) { 5548 struct tcp_options_received opt; 5549 5550 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5551 tcp_clear_options(&opt); 5552 opt.user_mss = opt.mss_clamp = 0; 5553 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5554 mss = opt.mss_clamp; 5555 } 5556 5557 if (!tp->syn_fastopen) { 5558 /* Ignore an unsolicited cookie */ 5559 cookie->len = -1; 5560 } else if (tp->total_retrans) { 5561 /* SYN timed out and the SYN-ACK neither has a cookie nor 5562 * acknowledges data. Presumably the remote received only 5563 * the retransmitted (regular) SYNs: either the original 5564 * SYN-data or the corresponding SYN-ACK was dropped. 5565 */ 5566 syn_drop = (cookie->len < 0 && data); 5567 } else if (cookie->len < 0 && !tp->syn_data) { 5568 /* We requested a cookie but didn't get it. If we did not use 5569 * the (old) exp opt format then try so next time (try_exp=1). 5570 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5571 */ 5572 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5573 } 5574 5575 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5576 5577 if (data) { /* Retransmit unacked data in SYN */ 5578 skb_rbtree_walk_from(data) { 5579 if (__tcp_retransmit_skb(sk, data, 1)) 5580 break; 5581 } 5582 tcp_rearm_rto(sk); 5583 NET_INC_STATS(sock_net(sk), 5584 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5585 return true; 5586 } 5587 tp->syn_data_acked = tp->syn_data; 5588 if (tp->syn_data_acked) { 5589 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5590 /* SYN-data is counted as two separate packets in tcp_ack() */ 5591 if (tp->delivered > 1) 5592 --tp->delivered; 5593 } 5594 5595 tcp_fastopen_add_skb(sk, synack); 5596 5597 return false; 5598 } 5599 5600 static void smc_check_reset_syn(struct tcp_sock *tp) 5601 { 5602 #if IS_ENABLED(CONFIG_SMC) 5603 if (static_branch_unlikely(&tcp_have_smc)) { 5604 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5605 tp->syn_smc = 0; 5606 } 5607 #endif 5608 } 5609 5610 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5611 const struct tcphdr *th) 5612 { 5613 struct inet_connection_sock *icsk = inet_csk(sk); 5614 struct tcp_sock *tp = tcp_sk(sk); 5615 struct tcp_fastopen_cookie foc = { .len = -1 }; 5616 int saved_clamp = tp->rx_opt.mss_clamp; 5617 bool fastopen_fail; 5618 5619 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5620 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5621 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5622 5623 if (th->ack) { 5624 /* rfc793: 5625 * "If the state is SYN-SENT then 5626 * first check the ACK bit 5627 * If the ACK bit is set 5628 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5629 * a reset (unless the RST bit is set, if so drop 5630 * the segment and return)" 5631 */ 5632 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5633 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5634 goto reset_and_undo; 5635 5636 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5637 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5638 tcp_time_stamp(tp))) { 5639 NET_INC_STATS(sock_net(sk), 5640 LINUX_MIB_PAWSACTIVEREJECTED); 5641 goto reset_and_undo; 5642 } 5643 5644 /* Now ACK is acceptable. 5645 * 5646 * "If the RST bit is set 5647 * If the ACK was acceptable then signal the user "error: 5648 * connection reset", drop the segment, enter CLOSED state, 5649 * delete TCB, and return." 5650 */ 5651 5652 if (th->rst) { 5653 tcp_reset(sk); 5654 goto discard; 5655 } 5656 5657 /* rfc793: 5658 * "fifth, if neither of the SYN or RST bits is set then 5659 * drop the segment and return." 5660 * 5661 * See note below! 5662 * --ANK(990513) 5663 */ 5664 if (!th->syn) 5665 goto discard_and_undo; 5666 5667 /* rfc793: 5668 * "If the SYN bit is on ... 5669 * are acceptable then ... 5670 * (our SYN has been ACKed), change the connection 5671 * state to ESTABLISHED..." 5672 */ 5673 5674 tcp_ecn_rcv_synack(tp, th); 5675 5676 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5677 tcp_ack(sk, skb, FLAG_SLOWPATH); 5678 5679 /* Ok.. it's good. Set up sequence numbers and 5680 * move to established. 5681 */ 5682 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5683 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5684 5685 /* RFC1323: The window in SYN & SYN/ACK segments is 5686 * never scaled. 5687 */ 5688 tp->snd_wnd = ntohs(th->window); 5689 5690 if (!tp->rx_opt.wscale_ok) { 5691 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5692 tp->window_clamp = min(tp->window_clamp, 65535U); 5693 } 5694 5695 if (tp->rx_opt.saw_tstamp) { 5696 tp->rx_opt.tstamp_ok = 1; 5697 tp->tcp_header_len = 5698 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5699 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5700 tcp_store_ts_recent(tp); 5701 } else { 5702 tp->tcp_header_len = sizeof(struct tcphdr); 5703 } 5704 5705 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5706 tcp_initialize_rcv_mss(sk); 5707 5708 /* Remember, tcp_poll() does not lock socket! 5709 * Change state from SYN-SENT only after copied_seq 5710 * is initialized. */ 5711 tp->copied_seq = tp->rcv_nxt; 5712 5713 smc_check_reset_syn(tp); 5714 5715 smp_mb(); 5716 5717 tcp_finish_connect(sk, skb); 5718 5719 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5720 tcp_rcv_fastopen_synack(sk, skb, &foc); 5721 5722 if (!sock_flag(sk, SOCK_DEAD)) { 5723 sk->sk_state_change(sk); 5724 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5725 } 5726 if (fastopen_fail) 5727 return -1; 5728 if (sk->sk_write_pending || 5729 icsk->icsk_accept_queue.rskq_defer_accept || 5730 icsk->icsk_ack.pingpong) { 5731 /* Save one ACK. Data will be ready after 5732 * several ticks, if write_pending is set. 5733 * 5734 * It may be deleted, but with this feature tcpdumps 5735 * look so _wonderfully_ clever, that I was not able 5736 * to stand against the temptation 8) --ANK 5737 */ 5738 inet_csk_schedule_ack(sk); 5739 tcp_enter_quickack_mode(sk); 5740 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5741 TCP_DELACK_MAX, TCP_RTO_MAX); 5742 5743 discard: 5744 tcp_drop(sk, skb); 5745 return 0; 5746 } else { 5747 tcp_send_ack(sk); 5748 } 5749 return -1; 5750 } 5751 5752 /* No ACK in the segment */ 5753 5754 if (th->rst) { 5755 /* rfc793: 5756 * "If the RST bit is set 5757 * 5758 * Otherwise (no ACK) drop the segment and return." 5759 */ 5760 5761 goto discard_and_undo; 5762 } 5763 5764 /* PAWS check. */ 5765 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5766 tcp_paws_reject(&tp->rx_opt, 0)) 5767 goto discard_and_undo; 5768 5769 if (th->syn) { 5770 /* We see SYN without ACK. It is attempt of 5771 * simultaneous connect with crossed SYNs. 5772 * Particularly, it can be connect to self. 5773 */ 5774 tcp_set_state(sk, TCP_SYN_RECV); 5775 5776 if (tp->rx_opt.saw_tstamp) { 5777 tp->rx_opt.tstamp_ok = 1; 5778 tcp_store_ts_recent(tp); 5779 tp->tcp_header_len = 5780 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5781 } else { 5782 tp->tcp_header_len = sizeof(struct tcphdr); 5783 } 5784 5785 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5786 tp->copied_seq = tp->rcv_nxt; 5787 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5788 5789 /* RFC1323: The window in SYN & SYN/ACK segments is 5790 * never scaled. 5791 */ 5792 tp->snd_wnd = ntohs(th->window); 5793 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5794 tp->max_window = tp->snd_wnd; 5795 5796 tcp_ecn_rcv_syn(tp, th); 5797 5798 tcp_mtup_init(sk); 5799 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5800 tcp_initialize_rcv_mss(sk); 5801 5802 tcp_send_synack(sk); 5803 #if 0 5804 /* Note, we could accept data and URG from this segment. 5805 * There are no obstacles to make this (except that we must 5806 * either change tcp_recvmsg() to prevent it from returning data 5807 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5808 * 5809 * However, if we ignore data in ACKless segments sometimes, 5810 * we have no reasons to accept it sometimes. 5811 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5812 * is not flawless. So, discard packet for sanity. 5813 * Uncomment this return to process the data. 5814 */ 5815 return -1; 5816 #else 5817 goto discard; 5818 #endif 5819 } 5820 /* "fifth, if neither of the SYN or RST bits is set then 5821 * drop the segment and return." 5822 */ 5823 5824 discard_and_undo: 5825 tcp_clear_options(&tp->rx_opt); 5826 tp->rx_opt.mss_clamp = saved_clamp; 5827 goto discard; 5828 5829 reset_and_undo: 5830 tcp_clear_options(&tp->rx_opt); 5831 tp->rx_opt.mss_clamp = saved_clamp; 5832 return 1; 5833 } 5834 5835 /* 5836 * This function implements the receiving procedure of RFC 793 for 5837 * all states except ESTABLISHED and TIME_WAIT. 5838 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5839 * address independent. 5840 */ 5841 5842 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5843 { 5844 struct tcp_sock *tp = tcp_sk(sk); 5845 struct inet_connection_sock *icsk = inet_csk(sk); 5846 const struct tcphdr *th = tcp_hdr(skb); 5847 struct request_sock *req; 5848 int queued = 0; 5849 bool acceptable; 5850 5851 switch (sk->sk_state) { 5852 case TCP_CLOSE: 5853 goto discard; 5854 5855 case TCP_LISTEN: 5856 if (th->ack) 5857 return 1; 5858 5859 if (th->rst) 5860 goto discard; 5861 5862 if (th->syn) { 5863 if (th->fin) 5864 goto discard; 5865 /* It is possible that we process SYN packets from backlog, 5866 * so we need to make sure to disable BH right there. 5867 */ 5868 local_bh_disable(); 5869 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5870 local_bh_enable(); 5871 5872 if (!acceptable) 5873 return 1; 5874 consume_skb(skb); 5875 return 0; 5876 } 5877 goto discard; 5878 5879 case TCP_SYN_SENT: 5880 tp->rx_opt.saw_tstamp = 0; 5881 tcp_mstamp_refresh(tp); 5882 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5883 if (queued >= 0) 5884 return queued; 5885 5886 /* Do step6 onward by hand. */ 5887 tcp_urg(sk, skb, th); 5888 __kfree_skb(skb); 5889 tcp_data_snd_check(sk); 5890 return 0; 5891 } 5892 5893 tcp_mstamp_refresh(tp); 5894 tp->rx_opt.saw_tstamp = 0; 5895 req = tp->fastopen_rsk; 5896 if (req) { 5897 bool req_stolen; 5898 5899 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5900 sk->sk_state != TCP_FIN_WAIT1); 5901 5902 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 5903 goto discard; 5904 } 5905 5906 if (!th->ack && !th->rst && !th->syn) 5907 goto discard; 5908 5909 if (!tcp_validate_incoming(sk, skb, th, 0)) 5910 return 0; 5911 5912 /* step 5: check the ACK field */ 5913 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5914 FLAG_UPDATE_TS_RECENT | 5915 FLAG_NO_CHALLENGE_ACK) > 0; 5916 5917 if (!acceptable) { 5918 if (sk->sk_state == TCP_SYN_RECV) 5919 return 1; /* send one RST */ 5920 tcp_send_challenge_ack(sk, skb); 5921 goto discard; 5922 } 5923 switch (sk->sk_state) { 5924 case TCP_SYN_RECV: 5925 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 5926 if (!tp->srtt_us) 5927 tcp_synack_rtt_meas(sk, req); 5928 5929 /* Once we leave TCP_SYN_RECV, we no longer need req 5930 * so release it. 5931 */ 5932 if (req) { 5933 inet_csk(sk)->icsk_retransmits = 0; 5934 reqsk_fastopen_remove(sk, req, false); 5935 /* Re-arm the timer because data may have been sent out. 5936 * This is similar to the regular data transmission case 5937 * when new data has just been ack'ed. 5938 * 5939 * (TFO) - we could try to be more aggressive and 5940 * retransmitting any data sooner based on when they 5941 * are sent out. 5942 */ 5943 tcp_rearm_rto(sk); 5944 } else { 5945 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 5946 tp->copied_seq = tp->rcv_nxt; 5947 } 5948 smp_mb(); 5949 tcp_set_state(sk, TCP_ESTABLISHED); 5950 sk->sk_state_change(sk); 5951 5952 /* Note, that this wakeup is only for marginal crossed SYN case. 5953 * Passively open sockets are not waked up, because 5954 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5955 */ 5956 if (sk->sk_socket) 5957 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5958 5959 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5960 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5961 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5962 5963 if (tp->rx_opt.tstamp_ok) 5964 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5965 5966 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5967 tcp_update_pacing_rate(sk); 5968 5969 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5970 tp->lsndtime = tcp_jiffies32; 5971 5972 tcp_initialize_rcv_mss(sk); 5973 tcp_fast_path_on(tp); 5974 break; 5975 5976 case TCP_FIN_WAIT1: { 5977 int tmo; 5978 5979 /* If we enter the TCP_FIN_WAIT1 state and we are a 5980 * Fast Open socket and this is the first acceptable 5981 * ACK we have received, this would have acknowledged 5982 * our SYNACK so stop the SYNACK timer. 5983 */ 5984 if (req) { 5985 /* We no longer need the request sock. */ 5986 reqsk_fastopen_remove(sk, req, false); 5987 tcp_rearm_rto(sk); 5988 } 5989 if (tp->snd_una != tp->write_seq) 5990 break; 5991 5992 tcp_set_state(sk, TCP_FIN_WAIT2); 5993 sk->sk_shutdown |= SEND_SHUTDOWN; 5994 5995 sk_dst_confirm(sk); 5996 5997 if (!sock_flag(sk, SOCK_DEAD)) { 5998 /* Wake up lingering close() */ 5999 sk->sk_state_change(sk); 6000 break; 6001 } 6002 6003 if (tp->linger2 < 0) { 6004 tcp_done(sk); 6005 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6006 return 1; 6007 } 6008 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6009 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6010 /* Receive out of order FIN after close() */ 6011 if (tp->syn_fastopen && th->fin) 6012 tcp_fastopen_active_disable(sk); 6013 tcp_done(sk); 6014 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6015 return 1; 6016 } 6017 6018 tmo = tcp_fin_time(sk); 6019 if (tmo > TCP_TIMEWAIT_LEN) { 6020 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6021 } else if (th->fin || sock_owned_by_user(sk)) { 6022 /* Bad case. We could lose such FIN otherwise. 6023 * It is not a big problem, but it looks confusing 6024 * and not so rare event. We still can lose it now, 6025 * if it spins in bh_lock_sock(), but it is really 6026 * marginal case. 6027 */ 6028 inet_csk_reset_keepalive_timer(sk, tmo); 6029 } else { 6030 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6031 goto discard; 6032 } 6033 break; 6034 } 6035 6036 case TCP_CLOSING: 6037 if (tp->snd_una == tp->write_seq) { 6038 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6039 goto discard; 6040 } 6041 break; 6042 6043 case TCP_LAST_ACK: 6044 if (tp->snd_una == tp->write_seq) { 6045 tcp_update_metrics(sk); 6046 tcp_done(sk); 6047 goto discard; 6048 } 6049 break; 6050 } 6051 6052 /* step 6: check the URG bit */ 6053 tcp_urg(sk, skb, th); 6054 6055 /* step 7: process the segment text */ 6056 switch (sk->sk_state) { 6057 case TCP_CLOSE_WAIT: 6058 case TCP_CLOSING: 6059 case TCP_LAST_ACK: 6060 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6061 break; 6062 /* fall through */ 6063 case TCP_FIN_WAIT1: 6064 case TCP_FIN_WAIT2: 6065 /* RFC 793 says to queue data in these states, 6066 * RFC 1122 says we MUST send a reset. 6067 * BSD 4.4 also does reset. 6068 */ 6069 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6070 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6071 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6072 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6073 tcp_reset(sk); 6074 return 1; 6075 } 6076 } 6077 /* Fall through */ 6078 case TCP_ESTABLISHED: 6079 tcp_data_queue(sk, skb); 6080 queued = 1; 6081 break; 6082 } 6083 6084 /* tcp_data could move socket to TIME-WAIT */ 6085 if (sk->sk_state != TCP_CLOSE) { 6086 tcp_data_snd_check(sk); 6087 tcp_ack_snd_check(sk); 6088 } 6089 6090 if (!queued) { 6091 discard: 6092 tcp_drop(sk, skb); 6093 } 6094 return 0; 6095 } 6096 EXPORT_SYMBOL(tcp_rcv_state_process); 6097 6098 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6099 { 6100 struct inet_request_sock *ireq = inet_rsk(req); 6101 6102 if (family == AF_INET) 6103 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6104 &ireq->ir_rmt_addr, port); 6105 #if IS_ENABLED(CONFIG_IPV6) 6106 else if (family == AF_INET6) 6107 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6108 &ireq->ir_v6_rmt_addr, port); 6109 #endif 6110 } 6111 6112 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6113 * 6114 * If we receive a SYN packet with these bits set, it means a 6115 * network is playing bad games with TOS bits. In order to 6116 * avoid possible false congestion notifications, we disable 6117 * TCP ECN negotiation. 6118 * 6119 * Exception: tcp_ca wants ECN. This is required for DCTCP 6120 * congestion control: Linux DCTCP asserts ECT on all packets, 6121 * including SYN, which is most optimal solution; however, 6122 * others, such as FreeBSD do not. 6123 */ 6124 static void tcp_ecn_create_request(struct request_sock *req, 6125 const struct sk_buff *skb, 6126 const struct sock *listen_sk, 6127 const struct dst_entry *dst) 6128 { 6129 const struct tcphdr *th = tcp_hdr(skb); 6130 const struct net *net = sock_net(listen_sk); 6131 bool th_ecn = th->ece && th->cwr; 6132 bool ect, ecn_ok; 6133 u32 ecn_ok_dst; 6134 6135 if (!th_ecn) 6136 return; 6137 6138 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6139 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6140 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6141 6142 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6143 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6144 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6145 inet_rsk(req)->ecn_ok = 1; 6146 } 6147 6148 static void tcp_openreq_init(struct request_sock *req, 6149 const struct tcp_options_received *rx_opt, 6150 struct sk_buff *skb, const struct sock *sk) 6151 { 6152 struct inet_request_sock *ireq = inet_rsk(req); 6153 6154 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6155 req->cookie_ts = 0; 6156 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6157 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6158 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6159 tcp_rsk(req)->last_oow_ack_time = 0; 6160 req->mss = rx_opt->mss_clamp; 6161 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6162 ireq->tstamp_ok = rx_opt->tstamp_ok; 6163 ireq->sack_ok = rx_opt->sack_ok; 6164 ireq->snd_wscale = rx_opt->snd_wscale; 6165 ireq->wscale_ok = rx_opt->wscale_ok; 6166 ireq->acked = 0; 6167 ireq->ecn_ok = 0; 6168 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6169 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6170 ireq->ir_mark = inet_request_mark(sk, skb); 6171 #if IS_ENABLED(CONFIG_SMC) 6172 ireq->smc_ok = rx_opt->smc_ok; 6173 #endif 6174 } 6175 6176 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6177 struct sock *sk_listener, 6178 bool attach_listener) 6179 { 6180 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6181 attach_listener); 6182 6183 if (req) { 6184 struct inet_request_sock *ireq = inet_rsk(req); 6185 6186 ireq->ireq_opt = NULL; 6187 #if IS_ENABLED(CONFIG_IPV6) 6188 ireq->pktopts = NULL; 6189 #endif 6190 atomic64_set(&ireq->ir_cookie, 0); 6191 ireq->ireq_state = TCP_NEW_SYN_RECV; 6192 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6193 ireq->ireq_family = sk_listener->sk_family; 6194 } 6195 6196 return req; 6197 } 6198 EXPORT_SYMBOL(inet_reqsk_alloc); 6199 6200 /* 6201 * Return true if a syncookie should be sent 6202 */ 6203 static bool tcp_syn_flood_action(const struct sock *sk, 6204 const struct sk_buff *skb, 6205 const char *proto) 6206 { 6207 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6208 const char *msg = "Dropping request"; 6209 bool want_cookie = false; 6210 struct net *net = sock_net(sk); 6211 6212 #ifdef CONFIG_SYN_COOKIES 6213 if (net->ipv4.sysctl_tcp_syncookies) { 6214 msg = "Sending cookies"; 6215 want_cookie = true; 6216 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6217 } else 6218 #endif 6219 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6220 6221 if (!queue->synflood_warned && 6222 net->ipv4.sysctl_tcp_syncookies != 2 && 6223 xchg(&queue->synflood_warned, 1) == 0) 6224 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6225 proto, ntohs(tcp_hdr(skb)->dest), msg); 6226 6227 return want_cookie; 6228 } 6229 6230 static void tcp_reqsk_record_syn(const struct sock *sk, 6231 struct request_sock *req, 6232 const struct sk_buff *skb) 6233 { 6234 if (tcp_sk(sk)->save_syn) { 6235 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6236 u32 *copy; 6237 6238 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6239 if (copy) { 6240 copy[0] = len; 6241 memcpy(©[1], skb_network_header(skb), len); 6242 req->saved_syn = copy; 6243 } 6244 } 6245 } 6246 6247 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6248 const struct tcp_request_sock_ops *af_ops, 6249 struct sock *sk, struct sk_buff *skb) 6250 { 6251 struct tcp_fastopen_cookie foc = { .len = -1 }; 6252 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6253 struct tcp_options_received tmp_opt; 6254 struct tcp_sock *tp = tcp_sk(sk); 6255 struct net *net = sock_net(sk); 6256 struct sock *fastopen_sk = NULL; 6257 struct request_sock *req; 6258 bool want_cookie = false; 6259 struct dst_entry *dst; 6260 struct flowi fl; 6261 6262 /* TW buckets are converted to open requests without 6263 * limitations, they conserve resources and peer is 6264 * evidently real one. 6265 */ 6266 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6267 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6268 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6269 if (!want_cookie) 6270 goto drop; 6271 } 6272 6273 if (sk_acceptq_is_full(sk)) { 6274 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6275 goto drop; 6276 } 6277 6278 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6279 if (!req) 6280 goto drop; 6281 6282 tcp_rsk(req)->af_specific = af_ops; 6283 tcp_rsk(req)->ts_off = 0; 6284 6285 tcp_clear_options(&tmp_opt); 6286 tmp_opt.mss_clamp = af_ops->mss_clamp; 6287 tmp_opt.user_mss = tp->rx_opt.user_mss; 6288 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6289 want_cookie ? NULL : &foc); 6290 6291 if (want_cookie && !tmp_opt.saw_tstamp) 6292 tcp_clear_options(&tmp_opt); 6293 6294 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6295 tmp_opt.smc_ok = 0; 6296 6297 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6298 tcp_openreq_init(req, &tmp_opt, skb, sk); 6299 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6300 6301 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6302 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6303 6304 af_ops->init_req(req, sk, skb); 6305 6306 if (security_inet_conn_request(sk, skb, req)) 6307 goto drop_and_free; 6308 6309 if (tmp_opt.tstamp_ok) 6310 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6311 6312 dst = af_ops->route_req(sk, &fl, req); 6313 if (!dst) 6314 goto drop_and_free; 6315 6316 if (!want_cookie && !isn) { 6317 /* Kill the following clause, if you dislike this way. */ 6318 if (!net->ipv4.sysctl_tcp_syncookies && 6319 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6320 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6321 !tcp_peer_is_proven(req, dst)) { 6322 /* Without syncookies last quarter of 6323 * backlog is filled with destinations, 6324 * proven to be alive. 6325 * It means that we continue to communicate 6326 * to destinations, already remembered 6327 * to the moment of synflood. 6328 */ 6329 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6330 rsk_ops->family); 6331 goto drop_and_release; 6332 } 6333 6334 isn = af_ops->init_seq(skb); 6335 } 6336 6337 tcp_ecn_create_request(req, skb, sk, dst); 6338 6339 if (want_cookie) { 6340 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6341 req->cookie_ts = tmp_opt.tstamp_ok; 6342 if (!tmp_opt.tstamp_ok) 6343 inet_rsk(req)->ecn_ok = 0; 6344 } 6345 6346 tcp_rsk(req)->snt_isn = isn; 6347 tcp_rsk(req)->txhash = net_tx_rndhash(); 6348 tcp_openreq_init_rwin(req, sk, dst); 6349 if (!want_cookie) { 6350 tcp_reqsk_record_syn(sk, req, skb); 6351 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6352 } 6353 if (fastopen_sk) { 6354 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6355 &foc, TCP_SYNACK_FASTOPEN); 6356 /* Add the child socket directly into the accept queue */ 6357 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6358 sk->sk_data_ready(sk); 6359 bh_unlock_sock(fastopen_sk); 6360 sock_put(fastopen_sk); 6361 } else { 6362 tcp_rsk(req)->tfo_listener = false; 6363 if (!want_cookie) 6364 inet_csk_reqsk_queue_hash_add(sk, req, 6365 tcp_timeout_init((struct sock *)req)); 6366 af_ops->send_synack(sk, dst, &fl, req, &foc, 6367 !want_cookie ? TCP_SYNACK_NORMAL : 6368 TCP_SYNACK_COOKIE); 6369 if (want_cookie) { 6370 reqsk_free(req); 6371 return 0; 6372 } 6373 } 6374 reqsk_put(req); 6375 return 0; 6376 6377 drop_and_release: 6378 dst_release(dst); 6379 drop_and_free: 6380 reqsk_free(req); 6381 drop: 6382 tcp_listendrop(sk); 6383 return 0; 6384 } 6385 EXPORT_SYMBOL(tcp_conn_request); 6386