xref: /linux/net/ipv4/tcp_input.c (revision f412eed9dfdeeb6becd7de2ffe8b5d0a8b3f81ca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 
82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
83 
84 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
85 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
86 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
87 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
88 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
89 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
90 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
91 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
94 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
100 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
101 
102 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
103 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
104 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
105 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
106 
107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
109 
110 #define REXMIT_NONE	0 /* no loss recovery to do */
111 #define REXMIT_LOST	1 /* retransmit packets marked lost */
112 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
113 
114 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
115 			     unsigned int len)
116 {
117 	static bool __once __read_mostly;
118 
119 	if (!__once) {
120 		struct net_device *dev;
121 
122 		__once = true;
123 
124 		rcu_read_lock();
125 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
126 		if (!dev || len >= dev->mtu)
127 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
128 				dev ? dev->name : "Unknown driver");
129 		rcu_read_unlock();
130 	}
131 }
132 
133 /* Adapt the MSS value used to make delayed ack decision to the
134  * real world.
135  */
136 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
137 {
138 	struct inet_connection_sock *icsk = inet_csk(sk);
139 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
140 	unsigned int len;
141 
142 	icsk->icsk_ack.last_seg_size = 0;
143 
144 	/* skb->len may jitter because of SACKs, even if peer
145 	 * sends good full-sized frames.
146 	 */
147 	len = skb_shinfo(skb)->gso_size ? : skb->len;
148 	if (len >= icsk->icsk_ack.rcv_mss) {
149 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
150 					       tcp_sk(sk)->advmss);
151 		/* Account for possibly-removed options */
152 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
153 				   MAX_TCP_OPTION_SPACE))
154 			tcp_gro_dev_warn(sk, skb, len);
155 	} else {
156 		/* Otherwise, we make more careful check taking into account,
157 		 * that SACKs block is variable.
158 		 *
159 		 * "len" is invariant segment length, including TCP header.
160 		 */
161 		len += skb->data - skb_transport_header(skb);
162 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
163 		    /* If PSH is not set, packet should be
164 		     * full sized, provided peer TCP is not badly broken.
165 		     * This observation (if it is correct 8)) allows
166 		     * to handle super-low mtu links fairly.
167 		     */
168 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
169 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
170 			/* Subtract also invariant (if peer is RFC compliant),
171 			 * tcp header plus fixed timestamp option length.
172 			 * Resulting "len" is MSS free of SACK jitter.
173 			 */
174 			len -= tcp_sk(sk)->tcp_header_len;
175 			icsk->icsk_ack.last_seg_size = len;
176 			if (len == lss) {
177 				icsk->icsk_ack.rcv_mss = len;
178 				return;
179 			}
180 		}
181 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
182 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
183 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
184 	}
185 }
186 
187 static void tcp_incr_quickack(struct sock *sk)
188 {
189 	struct inet_connection_sock *icsk = inet_csk(sk);
190 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
191 
192 	if (quickacks == 0)
193 		quickacks = 2;
194 	if (quickacks > icsk->icsk_ack.quick)
195 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
196 }
197 
198 static void tcp_enter_quickack_mode(struct sock *sk)
199 {
200 	struct inet_connection_sock *icsk = inet_csk(sk);
201 	tcp_incr_quickack(sk);
202 	icsk->icsk_ack.pingpong = 0;
203 	icsk->icsk_ack.ato = TCP_ATO_MIN;
204 }
205 
206 /* Send ACKs quickly, if "quick" count is not exhausted
207  * and the session is not interactive.
208  */
209 
210 static bool tcp_in_quickack_mode(struct sock *sk)
211 {
212 	const struct inet_connection_sock *icsk = inet_csk(sk);
213 	const struct dst_entry *dst = __sk_dst_get(sk);
214 
215 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
216 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
217 }
218 
219 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
220 {
221 	if (tp->ecn_flags & TCP_ECN_OK)
222 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
223 }
224 
225 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
226 {
227 	if (tcp_hdr(skb)->cwr)
228 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
229 }
230 
231 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
232 {
233 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
234 }
235 
236 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
237 {
238 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
239 	case INET_ECN_NOT_ECT:
240 		/* Funny extension: if ECT is not set on a segment,
241 		 * and we already seen ECT on a previous segment,
242 		 * it is probably a retransmit.
243 		 */
244 		if (tp->ecn_flags & TCP_ECN_SEEN)
245 			tcp_enter_quickack_mode((struct sock *)tp);
246 		break;
247 	case INET_ECN_CE:
248 		if (tcp_ca_needs_ecn((struct sock *)tp))
249 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
250 
251 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
252 			/* Better not delay acks, sender can have a very low cwnd */
253 			tcp_enter_quickack_mode((struct sock *)tp);
254 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
255 		}
256 		tp->ecn_flags |= TCP_ECN_SEEN;
257 		break;
258 	default:
259 		if (tcp_ca_needs_ecn((struct sock *)tp))
260 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
261 		tp->ecn_flags |= TCP_ECN_SEEN;
262 		break;
263 	}
264 }
265 
266 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
267 {
268 	if (tp->ecn_flags & TCP_ECN_OK)
269 		__tcp_ecn_check_ce(tp, skb);
270 }
271 
272 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
273 {
274 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
275 		tp->ecn_flags &= ~TCP_ECN_OK;
276 }
277 
278 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
279 {
280 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
281 		tp->ecn_flags &= ~TCP_ECN_OK;
282 }
283 
284 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
285 {
286 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
287 		return true;
288 	return false;
289 }
290 
291 /* Buffer size and advertised window tuning.
292  *
293  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
294  */
295 
296 static void tcp_sndbuf_expand(struct sock *sk)
297 {
298 	const struct tcp_sock *tp = tcp_sk(sk);
299 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
300 	int sndmem, per_mss;
301 	u32 nr_segs;
302 
303 	/* Worst case is non GSO/TSO : each frame consumes one skb
304 	 * and skb->head is kmalloced using power of two area of memory
305 	 */
306 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
307 		  MAX_TCP_HEADER +
308 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
309 
310 	per_mss = roundup_pow_of_two(per_mss) +
311 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
312 
313 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
314 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
315 
316 	/* Fast Recovery (RFC 5681 3.2) :
317 	 * Cubic needs 1.7 factor, rounded to 2 to include
318 	 * extra cushion (application might react slowly to EPOLLOUT)
319 	 */
320 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
321 	sndmem *= nr_segs * per_mss;
322 
323 	if (sk->sk_sndbuf < sndmem)
324 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
325 }
326 
327 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
328  *
329  * All tcp_full_space() is split to two parts: "network" buffer, allocated
330  * forward and advertised in receiver window (tp->rcv_wnd) and
331  * "application buffer", required to isolate scheduling/application
332  * latencies from network.
333  * window_clamp is maximal advertised window. It can be less than
334  * tcp_full_space(), in this case tcp_full_space() - window_clamp
335  * is reserved for "application" buffer. The less window_clamp is
336  * the smoother our behaviour from viewpoint of network, but the lower
337  * throughput and the higher sensitivity of the connection to losses. 8)
338  *
339  * rcv_ssthresh is more strict window_clamp used at "slow start"
340  * phase to predict further behaviour of this connection.
341  * It is used for two goals:
342  * - to enforce header prediction at sender, even when application
343  *   requires some significant "application buffer". It is check #1.
344  * - to prevent pruning of receive queue because of misprediction
345  *   of receiver window. Check #2.
346  *
347  * The scheme does not work when sender sends good segments opening
348  * window and then starts to feed us spaghetti. But it should work
349  * in common situations. Otherwise, we have to rely on queue collapsing.
350  */
351 
352 /* Slow part of check#2. */
353 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
354 {
355 	struct tcp_sock *tp = tcp_sk(sk);
356 	/* Optimize this! */
357 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
358 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
359 
360 	while (tp->rcv_ssthresh <= window) {
361 		if (truesize <= skb->len)
362 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
363 
364 		truesize >>= 1;
365 		window >>= 1;
366 	}
367 	return 0;
368 }
369 
370 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
371 {
372 	struct tcp_sock *tp = tcp_sk(sk);
373 
374 	/* Check #1 */
375 	if (tp->rcv_ssthresh < tp->window_clamp &&
376 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
377 	    !tcp_under_memory_pressure(sk)) {
378 		int incr;
379 
380 		/* Check #2. Increase window, if skb with such overhead
381 		 * will fit to rcvbuf in future.
382 		 */
383 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
384 			incr = 2 * tp->advmss;
385 		else
386 			incr = __tcp_grow_window(sk, skb);
387 
388 		if (incr) {
389 			incr = max_t(int, incr, 2 * skb->len);
390 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
391 					       tp->window_clamp);
392 			inet_csk(sk)->icsk_ack.quick |= 1;
393 		}
394 	}
395 }
396 
397 /* 3. Tuning rcvbuf, when connection enters established state. */
398 static void tcp_fixup_rcvbuf(struct sock *sk)
399 {
400 	u32 mss = tcp_sk(sk)->advmss;
401 	int rcvmem;
402 
403 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
404 		 tcp_default_init_rwnd(mss);
405 
406 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
407 	 * Allow enough cushion so that sender is not limited by our window
408 	 */
409 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
410 		rcvmem <<= 2;
411 
412 	if (sk->sk_rcvbuf < rcvmem)
413 		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
414 }
415 
416 /* 4. Try to fixup all. It is made immediately after connection enters
417  *    established state.
418  */
419 void tcp_init_buffer_space(struct sock *sk)
420 {
421 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
422 	struct tcp_sock *tp = tcp_sk(sk);
423 	int maxwin;
424 
425 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
426 		tcp_fixup_rcvbuf(sk);
427 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
428 		tcp_sndbuf_expand(sk);
429 
430 	tp->rcvq_space.space = tp->rcv_wnd;
431 	tcp_mstamp_refresh(tp);
432 	tp->rcvq_space.time = tp->tcp_mstamp;
433 	tp->rcvq_space.seq = tp->copied_seq;
434 
435 	maxwin = tcp_full_space(sk);
436 
437 	if (tp->window_clamp >= maxwin) {
438 		tp->window_clamp = maxwin;
439 
440 		if (tcp_app_win && maxwin > 4 * tp->advmss)
441 			tp->window_clamp = max(maxwin -
442 					       (maxwin >> tcp_app_win),
443 					       4 * tp->advmss);
444 	}
445 
446 	/* Force reservation of one segment. */
447 	if (tcp_app_win &&
448 	    tp->window_clamp > 2 * tp->advmss &&
449 	    tp->window_clamp + tp->advmss > maxwin)
450 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
451 
452 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
453 	tp->snd_cwnd_stamp = tcp_jiffies32;
454 }
455 
456 /* 5. Recalculate window clamp after socket hit its memory bounds. */
457 static void tcp_clamp_window(struct sock *sk)
458 {
459 	struct tcp_sock *tp = tcp_sk(sk);
460 	struct inet_connection_sock *icsk = inet_csk(sk);
461 	struct net *net = sock_net(sk);
462 
463 	icsk->icsk_ack.quick = 0;
464 
465 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
466 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
467 	    !tcp_under_memory_pressure(sk) &&
468 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
469 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
470 				    net->ipv4.sysctl_tcp_rmem[2]);
471 	}
472 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
473 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
474 }
475 
476 /* Initialize RCV_MSS value.
477  * RCV_MSS is an our guess about MSS used by the peer.
478  * We haven't any direct information about the MSS.
479  * It's better to underestimate the RCV_MSS rather than overestimate.
480  * Overestimations make us ACKing less frequently than needed.
481  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
482  */
483 void tcp_initialize_rcv_mss(struct sock *sk)
484 {
485 	const struct tcp_sock *tp = tcp_sk(sk);
486 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
487 
488 	hint = min(hint, tp->rcv_wnd / 2);
489 	hint = min(hint, TCP_MSS_DEFAULT);
490 	hint = max(hint, TCP_MIN_MSS);
491 
492 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
493 }
494 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
495 
496 /* Receiver "autotuning" code.
497  *
498  * The algorithm for RTT estimation w/o timestamps is based on
499  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
500  * <http://public.lanl.gov/radiant/pubs.html#DRS>
501  *
502  * More detail on this code can be found at
503  * <http://staff.psc.edu/jheffner/>,
504  * though this reference is out of date.  A new paper
505  * is pending.
506  */
507 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
508 {
509 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
510 	long m = sample;
511 
512 	if (new_sample != 0) {
513 		/* If we sample in larger samples in the non-timestamp
514 		 * case, we could grossly overestimate the RTT especially
515 		 * with chatty applications or bulk transfer apps which
516 		 * are stalled on filesystem I/O.
517 		 *
518 		 * Also, since we are only going for a minimum in the
519 		 * non-timestamp case, we do not smooth things out
520 		 * else with timestamps disabled convergence takes too
521 		 * long.
522 		 */
523 		if (!win_dep) {
524 			m -= (new_sample >> 3);
525 			new_sample += m;
526 		} else {
527 			m <<= 3;
528 			if (m < new_sample)
529 				new_sample = m;
530 		}
531 	} else {
532 		/* No previous measure. */
533 		new_sample = m << 3;
534 	}
535 
536 	tp->rcv_rtt_est.rtt_us = new_sample;
537 }
538 
539 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
540 {
541 	u32 delta_us;
542 
543 	if (tp->rcv_rtt_est.time == 0)
544 		goto new_measure;
545 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
546 		return;
547 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
548 	if (!delta_us)
549 		delta_us = 1;
550 	tcp_rcv_rtt_update(tp, delta_us, 1);
551 
552 new_measure:
553 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
554 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
555 }
556 
557 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
558 					  const struct sk_buff *skb)
559 {
560 	struct tcp_sock *tp = tcp_sk(sk);
561 
562 	if (tp->rx_opt.rcv_tsecr &&
563 	    (TCP_SKB_CB(skb)->end_seq -
564 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
565 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
566 		u32 delta_us;
567 
568 		if (!delta)
569 			delta = 1;
570 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
571 		tcp_rcv_rtt_update(tp, delta_us, 0);
572 	}
573 }
574 
575 /*
576  * This function should be called every time data is copied to user space.
577  * It calculates the appropriate TCP receive buffer space.
578  */
579 void tcp_rcv_space_adjust(struct sock *sk)
580 {
581 	struct tcp_sock *tp = tcp_sk(sk);
582 	u32 copied;
583 	int time;
584 
585 	trace_tcp_rcv_space_adjust(sk);
586 
587 	tcp_mstamp_refresh(tp);
588 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
589 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
590 		return;
591 
592 	/* Number of bytes copied to user in last RTT */
593 	copied = tp->copied_seq - tp->rcvq_space.seq;
594 	if (copied <= tp->rcvq_space.space)
595 		goto new_measure;
596 
597 	/* A bit of theory :
598 	 * copied = bytes received in previous RTT, our base window
599 	 * To cope with packet losses, we need a 2x factor
600 	 * To cope with slow start, and sender growing its cwin by 100 %
601 	 * every RTT, we need a 4x factor, because the ACK we are sending
602 	 * now is for the next RTT, not the current one :
603 	 * <prev RTT . ><current RTT .. ><next RTT .... >
604 	 */
605 
606 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
607 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
608 		int rcvmem, rcvbuf;
609 		u64 rcvwin, grow;
610 
611 		/* minimal window to cope with packet losses, assuming
612 		 * steady state. Add some cushion because of small variations.
613 		 */
614 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
615 
616 		/* Accommodate for sender rate increase (eg. slow start) */
617 		grow = rcvwin * (copied - tp->rcvq_space.space);
618 		do_div(grow, tp->rcvq_space.space);
619 		rcvwin += (grow << 1);
620 
621 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
622 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
623 			rcvmem += 128;
624 
625 		do_div(rcvwin, tp->advmss);
626 		rcvbuf = min_t(u64, rcvwin * rcvmem,
627 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
628 		if (rcvbuf > sk->sk_rcvbuf) {
629 			sk->sk_rcvbuf = rcvbuf;
630 
631 			/* Make the window clamp follow along.  */
632 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
633 		}
634 	}
635 	tp->rcvq_space.space = copied;
636 
637 new_measure:
638 	tp->rcvq_space.seq = tp->copied_seq;
639 	tp->rcvq_space.time = tp->tcp_mstamp;
640 }
641 
642 /* There is something which you must keep in mind when you analyze the
643  * behavior of the tp->ato delayed ack timeout interval.  When a
644  * connection starts up, we want to ack as quickly as possible.  The
645  * problem is that "good" TCP's do slow start at the beginning of data
646  * transmission.  The means that until we send the first few ACK's the
647  * sender will sit on his end and only queue most of his data, because
648  * he can only send snd_cwnd unacked packets at any given time.  For
649  * each ACK we send, he increments snd_cwnd and transmits more of his
650  * queue.  -DaveM
651  */
652 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
653 {
654 	struct tcp_sock *tp = tcp_sk(sk);
655 	struct inet_connection_sock *icsk = inet_csk(sk);
656 	u32 now;
657 
658 	inet_csk_schedule_ack(sk);
659 
660 	tcp_measure_rcv_mss(sk, skb);
661 
662 	tcp_rcv_rtt_measure(tp);
663 
664 	now = tcp_jiffies32;
665 
666 	if (!icsk->icsk_ack.ato) {
667 		/* The _first_ data packet received, initialize
668 		 * delayed ACK engine.
669 		 */
670 		tcp_incr_quickack(sk);
671 		icsk->icsk_ack.ato = TCP_ATO_MIN;
672 	} else {
673 		int m = now - icsk->icsk_ack.lrcvtime;
674 
675 		if (m <= TCP_ATO_MIN / 2) {
676 			/* The fastest case is the first. */
677 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
678 		} else if (m < icsk->icsk_ack.ato) {
679 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
680 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
681 				icsk->icsk_ack.ato = icsk->icsk_rto;
682 		} else if (m > icsk->icsk_rto) {
683 			/* Too long gap. Apparently sender failed to
684 			 * restart window, so that we send ACKs quickly.
685 			 */
686 			tcp_incr_quickack(sk);
687 			sk_mem_reclaim(sk);
688 		}
689 	}
690 	icsk->icsk_ack.lrcvtime = now;
691 
692 	tcp_ecn_check_ce(tp, skb);
693 
694 	if (skb->len >= 128)
695 		tcp_grow_window(sk, skb);
696 }
697 
698 /* Called to compute a smoothed rtt estimate. The data fed to this
699  * routine either comes from timestamps, or from segments that were
700  * known _not_ to have been retransmitted [see Karn/Partridge
701  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
702  * piece by Van Jacobson.
703  * NOTE: the next three routines used to be one big routine.
704  * To save cycles in the RFC 1323 implementation it was better to break
705  * it up into three procedures. -- erics
706  */
707 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
708 {
709 	struct tcp_sock *tp = tcp_sk(sk);
710 	long m = mrtt_us; /* RTT */
711 	u32 srtt = tp->srtt_us;
712 
713 	/*	The following amusing code comes from Jacobson's
714 	 *	article in SIGCOMM '88.  Note that rtt and mdev
715 	 *	are scaled versions of rtt and mean deviation.
716 	 *	This is designed to be as fast as possible
717 	 *	m stands for "measurement".
718 	 *
719 	 *	On a 1990 paper the rto value is changed to:
720 	 *	RTO = rtt + 4 * mdev
721 	 *
722 	 * Funny. This algorithm seems to be very broken.
723 	 * These formulae increase RTO, when it should be decreased, increase
724 	 * too slowly, when it should be increased quickly, decrease too quickly
725 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
726 	 * does not matter how to _calculate_ it. Seems, it was trap
727 	 * that VJ failed to avoid. 8)
728 	 */
729 	if (srtt != 0) {
730 		m -= (srtt >> 3);	/* m is now error in rtt est */
731 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
732 		if (m < 0) {
733 			m = -m;		/* m is now abs(error) */
734 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
735 			/* This is similar to one of Eifel findings.
736 			 * Eifel blocks mdev updates when rtt decreases.
737 			 * This solution is a bit different: we use finer gain
738 			 * for mdev in this case (alpha*beta).
739 			 * Like Eifel it also prevents growth of rto,
740 			 * but also it limits too fast rto decreases,
741 			 * happening in pure Eifel.
742 			 */
743 			if (m > 0)
744 				m >>= 3;
745 		} else {
746 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
747 		}
748 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
749 		if (tp->mdev_us > tp->mdev_max_us) {
750 			tp->mdev_max_us = tp->mdev_us;
751 			if (tp->mdev_max_us > tp->rttvar_us)
752 				tp->rttvar_us = tp->mdev_max_us;
753 		}
754 		if (after(tp->snd_una, tp->rtt_seq)) {
755 			if (tp->mdev_max_us < tp->rttvar_us)
756 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
757 			tp->rtt_seq = tp->snd_nxt;
758 			tp->mdev_max_us = tcp_rto_min_us(sk);
759 		}
760 	} else {
761 		/* no previous measure. */
762 		srtt = m << 3;		/* take the measured time to be rtt */
763 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
764 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
765 		tp->mdev_max_us = tp->rttvar_us;
766 		tp->rtt_seq = tp->snd_nxt;
767 	}
768 	tp->srtt_us = max(1U, srtt);
769 }
770 
771 static void tcp_update_pacing_rate(struct sock *sk)
772 {
773 	const struct tcp_sock *tp = tcp_sk(sk);
774 	u64 rate;
775 
776 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
777 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
778 
779 	/* current rate is (cwnd * mss) / srtt
780 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
781 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
782 	 *
783 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
784 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
785 	 *	 end of slow start and should slow down.
786 	 */
787 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
788 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
789 	else
790 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
791 
792 	rate *= max(tp->snd_cwnd, tp->packets_out);
793 
794 	if (likely(tp->srtt_us))
795 		do_div(rate, tp->srtt_us);
796 
797 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
798 	 * without any lock. We want to make sure compiler wont store
799 	 * intermediate values in this location.
800 	 */
801 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
802 					     sk->sk_max_pacing_rate));
803 }
804 
805 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
806  * routine referred to above.
807  */
808 static void tcp_set_rto(struct sock *sk)
809 {
810 	const struct tcp_sock *tp = tcp_sk(sk);
811 	/* Old crap is replaced with new one. 8)
812 	 *
813 	 * More seriously:
814 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
815 	 *    It cannot be less due to utterly erratic ACK generation made
816 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
817 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
818 	 *    is invisible. Actually, Linux-2.4 also generates erratic
819 	 *    ACKs in some circumstances.
820 	 */
821 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
822 
823 	/* 2. Fixups made earlier cannot be right.
824 	 *    If we do not estimate RTO correctly without them,
825 	 *    all the algo is pure shit and should be replaced
826 	 *    with correct one. It is exactly, which we pretend to do.
827 	 */
828 
829 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
830 	 * guarantees that rto is higher.
831 	 */
832 	tcp_bound_rto(sk);
833 }
834 
835 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
836 {
837 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
838 
839 	if (!cwnd)
840 		cwnd = TCP_INIT_CWND;
841 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
842 }
843 
844 /* Take a notice that peer is sending D-SACKs */
845 static void tcp_dsack_seen(struct tcp_sock *tp)
846 {
847 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
848 	tp->rack.dsack_seen = 1;
849 }
850 
851 /* It's reordering when higher sequence was delivered (i.e. sacked) before
852  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
853  * distance is approximated in full-mss packet distance ("reordering").
854  */
855 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
856 				      const int ts)
857 {
858 	struct tcp_sock *tp = tcp_sk(sk);
859 	const u32 mss = tp->mss_cache;
860 	u32 fack, metric;
861 
862 	fack = tcp_highest_sack_seq(tp);
863 	if (!before(low_seq, fack))
864 		return;
865 
866 	metric = fack - low_seq;
867 	if ((metric > tp->reordering * mss) && mss) {
868 #if FASTRETRANS_DEBUG > 1
869 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
870 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
871 			 tp->reordering,
872 			 0,
873 			 tp->sacked_out,
874 			 tp->undo_marker ? tp->undo_retrans : 0);
875 #endif
876 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
877 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
878 	}
879 
880 	tp->rack.reord = 1;
881 	/* This exciting event is worth to be remembered. 8) */
882 	NET_INC_STATS(sock_net(sk),
883 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
884 }
885 
886 /* This must be called before lost_out is incremented */
887 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
888 {
889 	if (!tp->retransmit_skb_hint ||
890 	    before(TCP_SKB_CB(skb)->seq,
891 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
892 		tp->retransmit_skb_hint = skb;
893 }
894 
895 /* Sum the number of packets on the wire we have marked as lost.
896  * There are two cases we care about here:
897  * a) Packet hasn't been marked lost (nor retransmitted),
898  *    and this is the first loss.
899  * b) Packet has been marked both lost and retransmitted,
900  *    and this means we think it was lost again.
901  */
902 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
903 {
904 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
905 
906 	if (!(sacked & TCPCB_LOST) ||
907 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
908 		tp->lost += tcp_skb_pcount(skb);
909 }
910 
911 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
912 {
913 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
914 		tcp_verify_retransmit_hint(tp, skb);
915 
916 		tp->lost_out += tcp_skb_pcount(skb);
917 		tcp_sum_lost(tp, skb);
918 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
919 	}
920 }
921 
922 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
923 {
924 	tcp_verify_retransmit_hint(tp, skb);
925 
926 	tcp_sum_lost(tp, skb);
927 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
928 		tp->lost_out += tcp_skb_pcount(skb);
929 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
930 	}
931 }
932 
933 /* This procedure tags the retransmission queue when SACKs arrive.
934  *
935  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
936  * Packets in queue with these bits set are counted in variables
937  * sacked_out, retrans_out and lost_out, correspondingly.
938  *
939  * Valid combinations are:
940  * Tag  InFlight	Description
941  * 0	1		- orig segment is in flight.
942  * S	0		- nothing flies, orig reached receiver.
943  * L	0		- nothing flies, orig lost by net.
944  * R	2		- both orig and retransmit are in flight.
945  * L|R	1		- orig is lost, retransmit is in flight.
946  * S|R  1		- orig reached receiver, retrans is still in flight.
947  * (L|S|R is logically valid, it could occur when L|R is sacked,
948  *  but it is equivalent to plain S and code short-curcuits it to S.
949  *  L|S is logically invalid, it would mean -1 packet in flight 8))
950  *
951  * These 6 states form finite state machine, controlled by the following events:
952  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
953  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
954  * 3. Loss detection event of two flavors:
955  *	A. Scoreboard estimator decided the packet is lost.
956  *	   A'. Reno "three dupacks" marks head of queue lost.
957  *	B. SACK arrives sacking SND.NXT at the moment, when the
958  *	   segment was retransmitted.
959  * 4. D-SACK added new rule: D-SACK changes any tag to S.
960  *
961  * It is pleasant to note, that state diagram turns out to be commutative,
962  * so that we are allowed not to be bothered by order of our actions,
963  * when multiple events arrive simultaneously. (see the function below).
964  *
965  * Reordering detection.
966  * --------------------
967  * Reordering metric is maximal distance, which a packet can be displaced
968  * in packet stream. With SACKs we can estimate it:
969  *
970  * 1. SACK fills old hole and the corresponding segment was not
971  *    ever retransmitted -> reordering. Alas, we cannot use it
972  *    when segment was retransmitted.
973  * 2. The last flaw is solved with D-SACK. D-SACK arrives
974  *    for retransmitted and already SACKed segment -> reordering..
975  * Both of these heuristics are not used in Loss state, when we cannot
976  * account for retransmits accurately.
977  *
978  * SACK block validation.
979  * ----------------------
980  *
981  * SACK block range validation checks that the received SACK block fits to
982  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
983  * Note that SND.UNA is not included to the range though being valid because
984  * it means that the receiver is rather inconsistent with itself reporting
985  * SACK reneging when it should advance SND.UNA. Such SACK block this is
986  * perfectly valid, however, in light of RFC2018 which explicitly states
987  * that "SACK block MUST reflect the newest segment.  Even if the newest
988  * segment is going to be discarded ...", not that it looks very clever
989  * in case of head skb. Due to potentional receiver driven attacks, we
990  * choose to avoid immediate execution of a walk in write queue due to
991  * reneging and defer head skb's loss recovery to standard loss recovery
992  * procedure that will eventually trigger (nothing forbids us doing this).
993  *
994  * Implements also blockage to start_seq wrap-around. Problem lies in the
995  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
996  * there's no guarantee that it will be before snd_nxt (n). The problem
997  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
998  * wrap (s_w):
999  *
1000  *         <- outs wnd ->                          <- wrapzone ->
1001  *         u     e      n                         u_w   e_w  s n_w
1002  *         |     |      |                          |     |   |  |
1003  * |<------------+------+----- TCP seqno space --------------+---------->|
1004  * ...-- <2^31 ->|                                           |<--------...
1005  * ...---- >2^31 ------>|                                    |<--------...
1006  *
1007  * Current code wouldn't be vulnerable but it's better still to discard such
1008  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1009  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1010  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1011  * equal to the ideal case (infinite seqno space without wrap caused issues).
1012  *
1013  * With D-SACK the lower bound is extended to cover sequence space below
1014  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1015  * again, D-SACK block must not to go across snd_una (for the same reason as
1016  * for the normal SACK blocks, explained above). But there all simplicity
1017  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1018  * fully below undo_marker they do not affect behavior in anyway and can
1019  * therefore be safely ignored. In rare cases (which are more or less
1020  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1021  * fragmentation and packet reordering past skb's retransmission. To consider
1022  * them correctly, the acceptable range must be extended even more though
1023  * the exact amount is rather hard to quantify. However, tp->max_window can
1024  * be used as an exaggerated estimate.
1025  */
1026 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1027 				   u32 start_seq, u32 end_seq)
1028 {
1029 	/* Too far in future, or reversed (interpretation is ambiguous) */
1030 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1031 		return false;
1032 
1033 	/* Nasty start_seq wrap-around check (see comments above) */
1034 	if (!before(start_seq, tp->snd_nxt))
1035 		return false;
1036 
1037 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1038 	 * start_seq == snd_una is non-sensical (see comments above)
1039 	 */
1040 	if (after(start_seq, tp->snd_una))
1041 		return true;
1042 
1043 	if (!is_dsack || !tp->undo_marker)
1044 		return false;
1045 
1046 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1047 	if (after(end_seq, tp->snd_una))
1048 		return false;
1049 
1050 	if (!before(start_seq, tp->undo_marker))
1051 		return true;
1052 
1053 	/* Too old */
1054 	if (!after(end_seq, tp->undo_marker))
1055 		return false;
1056 
1057 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1058 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1059 	 */
1060 	return !before(start_seq, end_seq - tp->max_window);
1061 }
1062 
1063 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1064 			    struct tcp_sack_block_wire *sp, int num_sacks,
1065 			    u32 prior_snd_una)
1066 {
1067 	struct tcp_sock *tp = tcp_sk(sk);
1068 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1069 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1070 	bool dup_sack = false;
1071 
1072 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1073 		dup_sack = true;
1074 		tcp_dsack_seen(tp);
1075 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1076 	} else if (num_sacks > 1) {
1077 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1078 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1079 
1080 		if (!after(end_seq_0, end_seq_1) &&
1081 		    !before(start_seq_0, start_seq_1)) {
1082 			dup_sack = true;
1083 			tcp_dsack_seen(tp);
1084 			NET_INC_STATS(sock_net(sk),
1085 					LINUX_MIB_TCPDSACKOFORECV);
1086 		}
1087 	}
1088 
1089 	/* D-SACK for already forgotten data... Do dumb counting. */
1090 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1091 	    !after(end_seq_0, prior_snd_una) &&
1092 	    after(end_seq_0, tp->undo_marker))
1093 		tp->undo_retrans--;
1094 
1095 	return dup_sack;
1096 }
1097 
1098 struct tcp_sacktag_state {
1099 	u32	reord;
1100 	/* Timestamps for earliest and latest never-retransmitted segment
1101 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1102 	 * but congestion control should still get an accurate delay signal.
1103 	 */
1104 	u64	first_sackt;
1105 	u64	last_sackt;
1106 	struct rate_sample *rate;
1107 	int	flag;
1108 	unsigned int mss_now;
1109 };
1110 
1111 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1112  * the incoming SACK may not exactly match but we can find smaller MSS
1113  * aligned portion of it that matches. Therefore we might need to fragment
1114  * which may fail and creates some hassle (caller must handle error case
1115  * returns).
1116  *
1117  * FIXME: this could be merged to shift decision code
1118  */
1119 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1120 				  u32 start_seq, u32 end_seq)
1121 {
1122 	int err;
1123 	bool in_sack;
1124 	unsigned int pkt_len;
1125 	unsigned int mss;
1126 
1127 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1128 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1129 
1130 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1131 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1132 		mss = tcp_skb_mss(skb);
1133 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1134 
1135 		if (!in_sack) {
1136 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1137 			if (pkt_len < mss)
1138 				pkt_len = mss;
1139 		} else {
1140 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1141 			if (pkt_len < mss)
1142 				return -EINVAL;
1143 		}
1144 
1145 		/* Round if necessary so that SACKs cover only full MSSes
1146 		 * and/or the remaining small portion (if present)
1147 		 */
1148 		if (pkt_len > mss) {
1149 			unsigned int new_len = (pkt_len / mss) * mss;
1150 			if (!in_sack && new_len < pkt_len)
1151 				new_len += mss;
1152 			pkt_len = new_len;
1153 		}
1154 
1155 		if (pkt_len >= skb->len && !in_sack)
1156 			return 0;
1157 
1158 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1159 				   pkt_len, mss, GFP_ATOMIC);
1160 		if (err < 0)
1161 			return err;
1162 	}
1163 
1164 	return in_sack;
1165 }
1166 
1167 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1168 static u8 tcp_sacktag_one(struct sock *sk,
1169 			  struct tcp_sacktag_state *state, u8 sacked,
1170 			  u32 start_seq, u32 end_seq,
1171 			  int dup_sack, int pcount,
1172 			  u64 xmit_time)
1173 {
1174 	struct tcp_sock *tp = tcp_sk(sk);
1175 
1176 	/* Account D-SACK for retransmitted packet. */
1177 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1178 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1179 		    after(end_seq, tp->undo_marker))
1180 			tp->undo_retrans--;
1181 		if ((sacked & TCPCB_SACKED_ACKED) &&
1182 		    before(start_seq, state->reord))
1183 				state->reord = start_seq;
1184 	}
1185 
1186 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1187 	if (!after(end_seq, tp->snd_una))
1188 		return sacked;
1189 
1190 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1191 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1192 
1193 		if (sacked & TCPCB_SACKED_RETRANS) {
1194 			/* If the segment is not tagged as lost,
1195 			 * we do not clear RETRANS, believing
1196 			 * that retransmission is still in flight.
1197 			 */
1198 			if (sacked & TCPCB_LOST) {
1199 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1200 				tp->lost_out -= pcount;
1201 				tp->retrans_out -= pcount;
1202 			}
1203 		} else {
1204 			if (!(sacked & TCPCB_RETRANS)) {
1205 				/* New sack for not retransmitted frame,
1206 				 * which was in hole. It is reordering.
1207 				 */
1208 				if (before(start_seq,
1209 					   tcp_highest_sack_seq(tp)) &&
1210 				    before(start_seq, state->reord))
1211 					state->reord = start_seq;
1212 
1213 				if (!after(end_seq, tp->high_seq))
1214 					state->flag |= FLAG_ORIG_SACK_ACKED;
1215 				if (state->first_sackt == 0)
1216 					state->first_sackt = xmit_time;
1217 				state->last_sackt = xmit_time;
1218 			}
1219 
1220 			if (sacked & TCPCB_LOST) {
1221 				sacked &= ~TCPCB_LOST;
1222 				tp->lost_out -= pcount;
1223 			}
1224 		}
1225 
1226 		sacked |= TCPCB_SACKED_ACKED;
1227 		state->flag |= FLAG_DATA_SACKED;
1228 		tp->sacked_out += pcount;
1229 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1230 
1231 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1232 		if (tp->lost_skb_hint &&
1233 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1234 			tp->lost_cnt_hint += pcount;
1235 	}
1236 
1237 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1238 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1239 	 * are accounted above as well.
1240 	 */
1241 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1242 		sacked &= ~TCPCB_SACKED_RETRANS;
1243 		tp->retrans_out -= pcount;
1244 	}
1245 
1246 	return sacked;
1247 }
1248 
1249 /* Shift newly-SACKed bytes from this skb to the immediately previous
1250  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1251  */
1252 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1253 			    struct sk_buff *skb,
1254 			    struct tcp_sacktag_state *state,
1255 			    unsigned int pcount, int shifted, int mss,
1256 			    bool dup_sack)
1257 {
1258 	struct tcp_sock *tp = tcp_sk(sk);
1259 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1260 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1261 
1262 	BUG_ON(!pcount);
1263 
1264 	/* Adjust counters and hints for the newly sacked sequence
1265 	 * range but discard the return value since prev is already
1266 	 * marked. We must tag the range first because the seq
1267 	 * advancement below implicitly advances
1268 	 * tcp_highest_sack_seq() when skb is highest_sack.
1269 	 */
1270 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1271 			start_seq, end_seq, dup_sack, pcount,
1272 			skb->skb_mstamp);
1273 	tcp_rate_skb_delivered(sk, skb, state->rate);
1274 
1275 	if (skb == tp->lost_skb_hint)
1276 		tp->lost_cnt_hint += pcount;
1277 
1278 	TCP_SKB_CB(prev)->end_seq += shifted;
1279 	TCP_SKB_CB(skb)->seq += shifted;
1280 
1281 	tcp_skb_pcount_add(prev, pcount);
1282 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1283 	tcp_skb_pcount_add(skb, -pcount);
1284 
1285 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1286 	 * in theory this shouldn't be necessary but as long as DSACK
1287 	 * code can come after this skb later on it's better to keep
1288 	 * setting gso_size to something.
1289 	 */
1290 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1291 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1292 
1293 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1294 	if (tcp_skb_pcount(skb) <= 1)
1295 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1296 
1297 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1298 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1299 
1300 	if (skb->len > 0) {
1301 		BUG_ON(!tcp_skb_pcount(skb));
1302 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1303 		return false;
1304 	}
1305 
1306 	/* Whole SKB was eaten :-) */
1307 
1308 	if (skb == tp->retransmit_skb_hint)
1309 		tp->retransmit_skb_hint = prev;
1310 	if (skb == tp->lost_skb_hint) {
1311 		tp->lost_skb_hint = prev;
1312 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1313 	}
1314 
1315 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1316 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1317 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1318 		TCP_SKB_CB(prev)->end_seq++;
1319 
1320 	if (skb == tcp_highest_sack(sk))
1321 		tcp_advance_highest_sack(sk, skb);
1322 
1323 	tcp_skb_collapse_tstamp(prev, skb);
1324 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1325 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1326 
1327 	tcp_rtx_queue_unlink_and_free(skb, sk);
1328 
1329 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1330 
1331 	return true;
1332 }
1333 
1334 /* I wish gso_size would have a bit more sane initialization than
1335  * something-or-zero which complicates things
1336  */
1337 static int tcp_skb_seglen(const struct sk_buff *skb)
1338 {
1339 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1340 }
1341 
1342 /* Shifting pages past head area doesn't work */
1343 static int skb_can_shift(const struct sk_buff *skb)
1344 {
1345 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1346 }
1347 
1348 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1349  * skb.
1350  */
1351 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1352 					  struct tcp_sacktag_state *state,
1353 					  u32 start_seq, u32 end_seq,
1354 					  bool dup_sack)
1355 {
1356 	struct tcp_sock *tp = tcp_sk(sk);
1357 	struct sk_buff *prev;
1358 	int mss;
1359 	int pcount = 0;
1360 	int len;
1361 	int in_sack;
1362 
1363 	/* Normally R but no L won't result in plain S */
1364 	if (!dup_sack &&
1365 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1366 		goto fallback;
1367 	if (!skb_can_shift(skb))
1368 		goto fallback;
1369 	/* This frame is about to be dropped (was ACKed). */
1370 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1371 		goto fallback;
1372 
1373 	/* Can only happen with delayed DSACK + discard craziness */
1374 	prev = skb_rb_prev(skb);
1375 	if (!prev)
1376 		goto fallback;
1377 
1378 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1379 		goto fallback;
1380 
1381 	if (!tcp_skb_can_collapse_to(prev))
1382 		goto fallback;
1383 
1384 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1385 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1386 
1387 	if (in_sack) {
1388 		len = skb->len;
1389 		pcount = tcp_skb_pcount(skb);
1390 		mss = tcp_skb_seglen(skb);
1391 
1392 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1393 		 * drop this restriction as unnecessary
1394 		 */
1395 		if (mss != tcp_skb_seglen(prev))
1396 			goto fallback;
1397 	} else {
1398 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1399 			goto noop;
1400 		/* CHECKME: This is non-MSS split case only?, this will
1401 		 * cause skipped skbs due to advancing loop btw, original
1402 		 * has that feature too
1403 		 */
1404 		if (tcp_skb_pcount(skb) <= 1)
1405 			goto noop;
1406 
1407 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1408 		if (!in_sack) {
1409 			/* TODO: head merge to next could be attempted here
1410 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1411 			 * though it might not be worth of the additional hassle
1412 			 *
1413 			 * ...we can probably just fallback to what was done
1414 			 * previously. We could try merging non-SACKed ones
1415 			 * as well but it probably isn't going to buy off
1416 			 * because later SACKs might again split them, and
1417 			 * it would make skb timestamp tracking considerably
1418 			 * harder problem.
1419 			 */
1420 			goto fallback;
1421 		}
1422 
1423 		len = end_seq - TCP_SKB_CB(skb)->seq;
1424 		BUG_ON(len < 0);
1425 		BUG_ON(len > skb->len);
1426 
1427 		/* MSS boundaries should be honoured or else pcount will
1428 		 * severely break even though it makes things bit trickier.
1429 		 * Optimize common case to avoid most of the divides
1430 		 */
1431 		mss = tcp_skb_mss(skb);
1432 
1433 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1434 		 * drop this restriction as unnecessary
1435 		 */
1436 		if (mss != tcp_skb_seglen(prev))
1437 			goto fallback;
1438 
1439 		if (len == mss) {
1440 			pcount = 1;
1441 		} else if (len < mss) {
1442 			goto noop;
1443 		} else {
1444 			pcount = len / mss;
1445 			len = pcount * mss;
1446 		}
1447 	}
1448 
1449 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1450 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1451 		goto fallback;
1452 
1453 	if (!skb_shift(prev, skb, len))
1454 		goto fallback;
1455 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1456 		goto out;
1457 
1458 	/* Hole filled allows collapsing with the next as well, this is very
1459 	 * useful when hole on every nth skb pattern happens
1460 	 */
1461 	skb = skb_rb_next(prev);
1462 	if (!skb)
1463 		goto out;
1464 
1465 	if (!skb_can_shift(skb) ||
1466 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1467 	    (mss != tcp_skb_seglen(skb)))
1468 		goto out;
1469 
1470 	len = skb->len;
1471 	if (skb_shift(prev, skb, len)) {
1472 		pcount += tcp_skb_pcount(skb);
1473 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1474 				len, mss, 0);
1475 	}
1476 
1477 out:
1478 	return prev;
1479 
1480 noop:
1481 	return skb;
1482 
1483 fallback:
1484 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1485 	return NULL;
1486 }
1487 
1488 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1489 					struct tcp_sack_block *next_dup,
1490 					struct tcp_sacktag_state *state,
1491 					u32 start_seq, u32 end_seq,
1492 					bool dup_sack_in)
1493 {
1494 	struct tcp_sock *tp = tcp_sk(sk);
1495 	struct sk_buff *tmp;
1496 
1497 	skb_rbtree_walk_from(skb) {
1498 		int in_sack = 0;
1499 		bool dup_sack = dup_sack_in;
1500 
1501 		/* queue is in-order => we can short-circuit the walk early */
1502 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1503 			break;
1504 
1505 		if (next_dup  &&
1506 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1507 			in_sack = tcp_match_skb_to_sack(sk, skb,
1508 							next_dup->start_seq,
1509 							next_dup->end_seq);
1510 			if (in_sack > 0)
1511 				dup_sack = true;
1512 		}
1513 
1514 		/* skb reference here is a bit tricky to get right, since
1515 		 * shifting can eat and free both this skb and the next,
1516 		 * so not even _safe variant of the loop is enough.
1517 		 */
1518 		if (in_sack <= 0) {
1519 			tmp = tcp_shift_skb_data(sk, skb, state,
1520 						 start_seq, end_seq, dup_sack);
1521 			if (tmp) {
1522 				if (tmp != skb) {
1523 					skb = tmp;
1524 					continue;
1525 				}
1526 
1527 				in_sack = 0;
1528 			} else {
1529 				in_sack = tcp_match_skb_to_sack(sk, skb,
1530 								start_seq,
1531 								end_seq);
1532 			}
1533 		}
1534 
1535 		if (unlikely(in_sack < 0))
1536 			break;
1537 
1538 		if (in_sack) {
1539 			TCP_SKB_CB(skb)->sacked =
1540 				tcp_sacktag_one(sk,
1541 						state,
1542 						TCP_SKB_CB(skb)->sacked,
1543 						TCP_SKB_CB(skb)->seq,
1544 						TCP_SKB_CB(skb)->end_seq,
1545 						dup_sack,
1546 						tcp_skb_pcount(skb),
1547 						skb->skb_mstamp);
1548 			tcp_rate_skb_delivered(sk, skb, state->rate);
1549 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1550 				list_del_init(&skb->tcp_tsorted_anchor);
1551 
1552 			if (!before(TCP_SKB_CB(skb)->seq,
1553 				    tcp_highest_sack_seq(tp)))
1554 				tcp_advance_highest_sack(sk, skb);
1555 		}
1556 	}
1557 	return skb;
1558 }
1559 
1560 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1561 					   struct tcp_sacktag_state *state,
1562 					   u32 seq)
1563 {
1564 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1565 	struct sk_buff *skb;
1566 
1567 	while (*p) {
1568 		parent = *p;
1569 		skb = rb_to_skb(parent);
1570 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1571 			p = &parent->rb_left;
1572 			continue;
1573 		}
1574 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1575 			p = &parent->rb_right;
1576 			continue;
1577 		}
1578 		return skb;
1579 	}
1580 	return NULL;
1581 }
1582 
1583 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1584 					struct tcp_sacktag_state *state,
1585 					u32 skip_to_seq)
1586 {
1587 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1588 		return skb;
1589 
1590 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1591 }
1592 
1593 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1594 						struct sock *sk,
1595 						struct tcp_sack_block *next_dup,
1596 						struct tcp_sacktag_state *state,
1597 						u32 skip_to_seq)
1598 {
1599 	if (!next_dup)
1600 		return skb;
1601 
1602 	if (before(next_dup->start_seq, skip_to_seq)) {
1603 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1604 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1605 				       next_dup->start_seq, next_dup->end_seq,
1606 				       1);
1607 	}
1608 
1609 	return skb;
1610 }
1611 
1612 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1613 {
1614 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1615 }
1616 
1617 static int
1618 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1619 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1620 {
1621 	struct tcp_sock *tp = tcp_sk(sk);
1622 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1623 				    TCP_SKB_CB(ack_skb)->sacked);
1624 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1625 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1626 	struct tcp_sack_block *cache;
1627 	struct sk_buff *skb;
1628 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1629 	int used_sacks;
1630 	bool found_dup_sack = false;
1631 	int i, j;
1632 	int first_sack_index;
1633 
1634 	state->flag = 0;
1635 	state->reord = tp->snd_nxt;
1636 
1637 	if (!tp->sacked_out)
1638 		tcp_highest_sack_reset(sk);
1639 
1640 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1641 					 num_sacks, prior_snd_una);
1642 	if (found_dup_sack) {
1643 		state->flag |= FLAG_DSACKING_ACK;
1644 		tp->delivered++; /* A spurious retransmission is delivered */
1645 	}
1646 
1647 	/* Eliminate too old ACKs, but take into
1648 	 * account more or less fresh ones, they can
1649 	 * contain valid SACK info.
1650 	 */
1651 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1652 		return 0;
1653 
1654 	if (!tp->packets_out)
1655 		goto out;
1656 
1657 	used_sacks = 0;
1658 	first_sack_index = 0;
1659 	for (i = 0; i < num_sacks; i++) {
1660 		bool dup_sack = !i && found_dup_sack;
1661 
1662 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1663 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1664 
1665 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1666 					    sp[used_sacks].start_seq,
1667 					    sp[used_sacks].end_seq)) {
1668 			int mib_idx;
1669 
1670 			if (dup_sack) {
1671 				if (!tp->undo_marker)
1672 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1673 				else
1674 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1675 			} else {
1676 				/* Don't count olds caused by ACK reordering */
1677 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1678 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1679 					continue;
1680 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1681 			}
1682 
1683 			NET_INC_STATS(sock_net(sk), mib_idx);
1684 			if (i == 0)
1685 				first_sack_index = -1;
1686 			continue;
1687 		}
1688 
1689 		/* Ignore very old stuff early */
1690 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1691 			continue;
1692 
1693 		used_sacks++;
1694 	}
1695 
1696 	/* order SACK blocks to allow in order walk of the retrans queue */
1697 	for (i = used_sacks - 1; i > 0; i--) {
1698 		for (j = 0; j < i; j++) {
1699 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1700 				swap(sp[j], sp[j + 1]);
1701 
1702 				/* Track where the first SACK block goes to */
1703 				if (j == first_sack_index)
1704 					first_sack_index = j + 1;
1705 			}
1706 		}
1707 	}
1708 
1709 	state->mss_now = tcp_current_mss(sk);
1710 	skb = NULL;
1711 	i = 0;
1712 
1713 	if (!tp->sacked_out) {
1714 		/* It's already past, so skip checking against it */
1715 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1716 	} else {
1717 		cache = tp->recv_sack_cache;
1718 		/* Skip empty blocks in at head of the cache */
1719 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1720 		       !cache->end_seq)
1721 			cache++;
1722 	}
1723 
1724 	while (i < used_sacks) {
1725 		u32 start_seq = sp[i].start_seq;
1726 		u32 end_seq = sp[i].end_seq;
1727 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1728 		struct tcp_sack_block *next_dup = NULL;
1729 
1730 		if (found_dup_sack && ((i + 1) == first_sack_index))
1731 			next_dup = &sp[i + 1];
1732 
1733 		/* Skip too early cached blocks */
1734 		while (tcp_sack_cache_ok(tp, cache) &&
1735 		       !before(start_seq, cache->end_seq))
1736 			cache++;
1737 
1738 		/* Can skip some work by looking recv_sack_cache? */
1739 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1740 		    after(end_seq, cache->start_seq)) {
1741 
1742 			/* Head todo? */
1743 			if (before(start_seq, cache->start_seq)) {
1744 				skb = tcp_sacktag_skip(skb, sk, state,
1745 						       start_seq);
1746 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1747 						       state,
1748 						       start_seq,
1749 						       cache->start_seq,
1750 						       dup_sack);
1751 			}
1752 
1753 			/* Rest of the block already fully processed? */
1754 			if (!after(end_seq, cache->end_seq))
1755 				goto advance_sp;
1756 
1757 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1758 						       state,
1759 						       cache->end_seq);
1760 
1761 			/* ...tail remains todo... */
1762 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1763 				/* ...but better entrypoint exists! */
1764 				skb = tcp_highest_sack(sk);
1765 				if (!skb)
1766 					break;
1767 				cache++;
1768 				goto walk;
1769 			}
1770 
1771 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1772 			/* Check overlap against next cached too (past this one already) */
1773 			cache++;
1774 			continue;
1775 		}
1776 
1777 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1778 			skb = tcp_highest_sack(sk);
1779 			if (!skb)
1780 				break;
1781 		}
1782 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1783 
1784 walk:
1785 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1786 				       start_seq, end_seq, dup_sack);
1787 
1788 advance_sp:
1789 		i++;
1790 	}
1791 
1792 	/* Clear the head of the cache sack blocks so we can skip it next time */
1793 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1794 		tp->recv_sack_cache[i].start_seq = 0;
1795 		tp->recv_sack_cache[i].end_seq = 0;
1796 	}
1797 	for (j = 0; j < used_sacks; j++)
1798 		tp->recv_sack_cache[i++] = sp[j];
1799 
1800 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1801 		tcp_check_sack_reordering(sk, state->reord, 0);
1802 
1803 	tcp_verify_left_out(tp);
1804 out:
1805 
1806 #if FASTRETRANS_DEBUG > 0
1807 	WARN_ON((int)tp->sacked_out < 0);
1808 	WARN_ON((int)tp->lost_out < 0);
1809 	WARN_ON((int)tp->retrans_out < 0);
1810 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1811 #endif
1812 	return state->flag;
1813 }
1814 
1815 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1816  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1817  */
1818 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1819 {
1820 	u32 holes;
1821 
1822 	holes = max(tp->lost_out, 1U);
1823 	holes = min(holes, tp->packets_out);
1824 
1825 	if ((tp->sacked_out + holes) > tp->packets_out) {
1826 		tp->sacked_out = tp->packets_out - holes;
1827 		return true;
1828 	}
1829 	return false;
1830 }
1831 
1832 /* If we receive more dupacks than we expected counting segments
1833  * in assumption of absent reordering, interpret this as reordering.
1834  * The only another reason could be bug in receiver TCP.
1835  */
1836 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1837 {
1838 	struct tcp_sock *tp = tcp_sk(sk);
1839 
1840 	if (!tcp_limit_reno_sacked(tp))
1841 		return;
1842 
1843 	tp->reordering = min_t(u32, tp->packets_out + addend,
1844 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1845 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1846 }
1847 
1848 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1849 
1850 static void tcp_add_reno_sack(struct sock *sk)
1851 {
1852 	struct tcp_sock *tp = tcp_sk(sk);
1853 	u32 prior_sacked = tp->sacked_out;
1854 
1855 	tp->sacked_out++;
1856 	tcp_check_reno_reordering(sk, 0);
1857 	if (tp->sacked_out > prior_sacked)
1858 		tp->delivered++; /* Some out-of-order packet is delivered */
1859 	tcp_verify_left_out(tp);
1860 }
1861 
1862 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1863 
1864 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1865 {
1866 	struct tcp_sock *tp = tcp_sk(sk);
1867 
1868 	if (acked > 0) {
1869 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1870 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1871 		if (acked - 1 >= tp->sacked_out)
1872 			tp->sacked_out = 0;
1873 		else
1874 			tp->sacked_out -= acked - 1;
1875 	}
1876 	tcp_check_reno_reordering(sk, acked);
1877 	tcp_verify_left_out(tp);
1878 }
1879 
1880 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1881 {
1882 	tp->sacked_out = 0;
1883 }
1884 
1885 void tcp_clear_retrans(struct tcp_sock *tp)
1886 {
1887 	tp->retrans_out = 0;
1888 	tp->lost_out = 0;
1889 	tp->undo_marker = 0;
1890 	tp->undo_retrans = -1;
1891 	tp->sacked_out = 0;
1892 }
1893 
1894 static inline void tcp_init_undo(struct tcp_sock *tp)
1895 {
1896 	tp->undo_marker = tp->snd_una;
1897 	/* Retransmission still in flight may cause DSACKs later. */
1898 	tp->undo_retrans = tp->retrans_out ? : -1;
1899 }
1900 
1901 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1902  * and reset tags completely, otherwise preserve SACKs. If receiver
1903  * dropped its ofo queue, we will know this due to reneging detection.
1904  */
1905 void tcp_enter_loss(struct sock *sk)
1906 {
1907 	const struct inet_connection_sock *icsk = inet_csk(sk);
1908 	struct tcp_sock *tp = tcp_sk(sk);
1909 	struct net *net = sock_net(sk);
1910 	struct sk_buff *skb;
1911 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1912 	bool is_reneg;			/* is receiver reneging on SACKs? */
1913 	bool mark_lost;
1914 
1915 	/* Reduce ssthresh if it has not yet been made inside this window. */
1916 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1917 	    !after(tp->high_seq, tp->snd_una) ||
1918 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1919 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1920 		tp->prior_cwnd = tp->snd_cwnd;
1921 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1922 		tcp_ca_event(sk, CA_EVENT_LOSS);
1923 		tcp_init_undo(tp);
1924 	}
1925 	tp->snd_cwnd	   = 1;
1926 	tp->snd_cwnd_cnt   = 0;
1927 	tp->snd_cwnd_stamp = tcp_jiffies32;
1928 
1929 	tp->retrans_out = 0;
1930 	tp->lost_out = 0;
1931 
1932 	if (tcp_is_reno(tp))
1933 		tcp_reset_reno_sack(tp);
1934 
1935 	skb = tcp_rtx_queue_head(sk);
1936 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1937 	if (is_reneg) {
1938 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1939 		tp->sacked_out = 0;
1940 		/* Mark SACK reneging until we recover from this loss event. */
1941 		tp->is_sack_reneg = 1;
1942 	}
1943 	tcp_clear_all_retrans_hints(tp);
1944 
1945 	skb_rbtree_walk_from(skb) {
1946 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1947 			     is_reneg);
1948 		if (mark_lost)
1949 			tcp_sum_lost(tp, skb);
1950 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1951 		if (mark_lost) {
1952 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1953 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1954 			tp->lost_out += tcp_skb_pcount(skb);
1955 		}
1956 	}
1957 	tcp_verify_left_out(tp);
1958 
1959 	/* Timeout in disordered state after receiving substantial DUPACKs
1960 	 * suggests that the degree of reordering is over-estimated.
1961 	 */
1962 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1963 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1964 		tp->reordering = min_t(unsigned int, tp->reordering,
1965 				       net->ipv4.sysctl_tcp_reordering);
1966 	tcp_set_ca_state(sk, TCP_CA_Loss);
1967 	tp->high_seq = tp->snd_nxt;
1968 	tcp_ecn_queue_cwr(tp);
1969 
1970 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1971 	 * loss recovery is underway except recurring timeout(s) on
1972 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1973 	 */
1974 	tp->frto = net->ipv4.sysctl_tcp_frto &&
1975 		   (new_recovery || icsk->icsk_retransmits) &&
1976 		   !inet_csk(sk)->icsk_mtup.probe_size;
1977 }
1978 
1979 /* If ACK arrived pointing to a remembered SACK, it means that our
1980  * remembered SACKs do not reflect real state of receiver i.e.
1981  * receiver _host_ is heavily congested (or buggy).
1982  *
1983  * To avoid big spurious retransmission bursts due to transient SACK
1984  * scoreboard oddities that look like reneging, we give the receiver a
1985  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1986  * restore sanity to the SACK scoreboard. If the apparent reneging
1987  * persists until this RTO then we'll clear the SACK scoreboard.
1988  */
1989 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1990 {
1991 	if (flag & FLAG_SACK_RENEGING) {
1992 		struct tcp_sock *tp = tcp_sk(sk);
1993 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1994 					  msecs_to_jiffies(10));
1995 
1996 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1997 					  delay, TCP_RTO_MAX);
1998 		return true;
1999 	}
2000 	return false;
2001 }
2002 
2003 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2004  * counter when SACK is enabled (without SACK, sacked_out is used for
2005  * that purpose).
2006  *
2007  * With reordering, holes may still be in flight, so RFC3517 recovery
2008  * uses pure sacked_out (total number of SACKed segments) even though
2009  * it violates the RFC that uses duplicate ACKs, often these are equal
2010  * but when e.g. out-of-window ACKs or packet duplication occurs,
2011  * they differ. Since neither occurs due to loss, TCP should really
2012  * ignore them.
2013  */
2014 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2015 {
2016 	return tp->sacked_out + 1;
2017 }
2018 
2019 /* Linux NewReno/SACK/ECN state machine.
2020  * --------------------------------------
2021  *
2022  * "Open"	Normal state, no dubious events, fast path.
2023  * "Disorder"   In all the respects it is "Open",
2024  *		but requires a bit more attention. It is entered when
2025  *		we see some SACKs or dupacks. It is split of "Open"
2026  *		mainly to move some processing from fast path to slow one.
2027  * "CWR"	CWND was reduced due to some Congestion Notification event.
2028  *		It can be ECN, ICMP source quench, local device congestion.
2029  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2030  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2031  *
2032  * tcp_fastretrans_alert() is entered:
2033  * - each incoming ACK, if state is not "Open"
2034  * - when arrived ACK is unusual, namely:
2035  *	* SACK
2036  *	* Duplicate ACK.
2037  *	* ECN ECE.
2038  *
2039  * Counting packets in flight is pretty simple.
2040  *
2041  *	in_flight = packets_out - left_out + retrans_out
2042  *
2043  *	packets_out is SND.NXT-SND.UNA counted in packets.
2044  *
2045  *	retrans_out is number of retransmitted segments.
2046  *
2047  *	left_out is number of segments left network, but not ACKed yet.
2048  *
2049  *		left_out = sacked_out + lost_out
2050  *
2051  *     sacked_out: Packets, which arrived to receiver out of order
2052  *		   and hence not ACKed. With SACKs this number is simply
2053  *		   amount of SACKed data. Even without SACKs
2054  *		   it is easy to give pretty reliable estimate of this number,
2055  *		   counting duplicate ACKs.
2056  *
2057  *       lost_out: Packets lost by network. TCP has no explicit
2058  *		   "loss notification" feedback from network (for now).
2059  *		   It means that this number can be only _guessed_.
2060  *		   Actually, it is the heuristics to predict lossage that
2061  *		   distinguishes different algorithms.
2062  *
2063  *	F.e. after RTO, when all the queue is considered as lost,
2064  *	lost_out = packets_out and in_flight = retrans_out.
2065  *
2066  *		Essentially, we have now a few algorithms detecting
2067  *		lost packets.
2068  *
2069  *		If the receiver supports SACK:
2070  *
2071  *		RFC6675/3517: It is the conventional algorithm. A packet is
2072  *		considered lost if the number of higher sequence packets
2073  *		SACKed is greater than or equal the DUPACK thoreshold
2074  *		(reordering). This is implemented in tcp_mark_head_lost and
2075  *		tcp_update_scoreboard.
2076  *
2077  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2078  *		(2017-) that checks timing instead of counting DUPACKs.
2079  *		Essentially a packet is considered lost if it's not S/ACKed
2080  *		after RTT + reordering_window, where both metrics are
2081  *		dynamically measured and adjusted. This is implemented in
2082  *		tcp_rack_mark_lost.
2083  *
2084  *		If the receiver does not support SACK:
2085  *
2086  *		NewReno (RFC6582): in Recovery we assume that one segment
2087  *		is lost (classic Reno). While we are in Recovery and
2088  *		a partial ACK arrives, we assume that one more packet
2089  *		is lost (NewReno). This heuristics are the same in NewReno
2090  *		and SACK.
2091  *
2092  * Really tricky (and requiring careful tuning) part of algorithm
2093  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2094  * The first determines the moment _when_ we should reduce CWND and,
2095  * hence, slow down forward transmission. In fact, it determines the moment
2096  * when we decide that hole is caused by loss, rather than by a reorder.
2097  *
2098  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2099  * holes, caused by lost packets.
2100  *
2101  * And the most logically complicated part of algorithm is undo
2102  * heuristics. We detect false retransmits due to both too early
2103  * fast retransmit (reordering) and underestimated RTO, analyzing
2104  * timestamps and D-SACKs. When we detect that some segments were
2105  * retransmitted by mistake and CWND reduction was wrong, we undo
2106  * window reduction and abort recovery phase. This logic is hidden
2107  * inside several functions named tcp_try_undo_<something>.
2108  */
2109 
2110 /* This function decides, when we should leave Disordered state
2111  * and enter Recovery phase, reducing congestion window.
2112  *
2113  * Main question: may we further continue forward transmission
2114  * with the same cwnd?
2115  */
2116 static bool tcp_time_to_recover(struct sock *sk, int flag)
2117 {
2118 	struct tcp_sock *tp = tcp_sk(sk);
2119 
2120 	/* Trick#1: The loss is proven. */
2121 	if (tp->lost_out)
2122 		return true;
2123 
2124 	/* Not-A-Trick#2 : Classic rule... */
2125 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2126 		return true;
2127 
2128 	return false;
2129 }
2130 
2131 /* Detect loss in event "A" above by marking head of queue up as lost.
2132  * For non-SACK(Reno) senders, the first "packets" number of segments
2133  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2134  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2135  * the maximum SACKed segments to pass before reaching this limit.
2136  */
2137 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2138 {
2139 	struct tcp_sock *tp = tcp_sk(sk);
2140 	struct sk_buff *skb;
2141 	int cnt, oldcnt, lost;
2142 	unsigned int mss;
2143 	/* Use SACK to deduce losses of new sequences sent during recovery */
2144 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2145 
2146 	WARN_ON(packets > tp->packets_out);
2147 	skb = tp->lost_skb_hint;
2148 	if (skb) {
2149 		/* Head already handled? */
2150 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2151 			return;
2152 		cnt = tp->lost_cnt_hint;
2153 	} else {
2154 		skb = tcp_rtx_queue_head(sk);
2155 		cnt = 0;
2156 	}
2157 
2158 	skb_rbtree_walk_from(skb) {
2159 		/* TODO: do this better */
2160 		/* this is not the most efficient way to do this... */
2161 		tp->lost_skb_hint = skb;
2162 		tp->lost_cnt_hint = cnt;
2163 
2164 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2165 			break;
2166 
2167 		oldcnt = cnt;
2168 		if (tcp_is_reno(tp) ||
2169 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2170 			cnt += tcp_skb_pcount(skb);
2171 
2172 		if (cnt > packets) {
2173 			if (tcp_is_sack(tp) ||
2174 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2175 			    (oldcnt >= packets))
2176 				break;
2177 
2178 			mss = tcp_skb_mss(skb);
2179 			/* If needed, chop off the prefix to mark as lost. */
2180 			lost = (packets - oldcnt) * mss;
2181 			if (lost < skb->len &&
2182 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2183 					 lost, mss, GFP_ATOMIC) < 0)
2184 				break;
2185 			cnt = packets;
2186 		}
2187 
2188 		tcp_skb_mark_lost(tp, skb);
2189 
2190 		if (mark_head)
2191 			break;
2192 	}
2193 	tcp_verify_left_out(tp);
2194 }
2195 
2196 /* Account newly detected lost packet(s) */
2197 
2198 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2199 {
2200 	struct tcp_sock *tp = tcp_sk(sk);
2201 
2202 	if (tcp_is_reno(tp)) {
2203 		tcp_mark_head_lost(sk, 1, 1);
2204 	} else {
2205 		int sacked_upto = tp->sacked_out - tp->reordering;
2206 		if (sacked_upto >= 0)
2207 			tcp_mark_head_lost(sk, sacked_upto, 0);
2208 		else if (fast_rexmit)
2209 			tcp_mark_head_lost(sk, 1, 1);
2210 	}
2211 }
2212 
2213 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2214 {
2215 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2216 	       before(tp->rx_opt.rcv_tsecr, when);
2217 }
2218 
2219 /* skb is spurious retransmitted if the returned timestamp echo
2220  * reply is prior to the skb transmission time
2221  */
2222 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2223 				     const struct sk_buff *skb)
2224 {
2225 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2226 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2227 }
2228 
2229 /* Nothing was retransmitted or returned timestamp is less
2230  * than timestamp of the first retransmission.
2231  */
2232 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2233 {
2234 	return !tp->retrans_stamp ||
2235 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2236 }
2237 
2238 /* Undo procedures. */
2239 
2240 /* We can clear retrans_stamp when there are no retransmissions in the
2241  * window. It would seem that it is trivially available for us in
2242  * tp->retrans_out, however, that kind of assumptions doesn't consider
2243  * what will happen if errors occur when sending retransmission for the
2244  * second time. ...It could the that such segment has only
2245  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2246  * the head skb is enough except for some reneging corner cases that
2247  * are not worth the effort.
2248  *
2249  * Main reason for all this complexity is the fact that connection dying
2250  * time now depends on the validity of the retrans_stamp, in particular,
2251  * that successive retransmissions of a segment must not advance
2252  * retrans_stamp under any conditions.
2253  */
2254 static bool tcp_any_retrans_done(const struct sock *sk)
2255 {
2256 	const struct tcp_sock *tp = tcp_sk(sk);
2257 	struct sk_buff *skb;
2258 
2259 	if (tp->retrans_out)
2260 		return true;
2261 
2262 	skb = tcp_rtx_queue_head(sk);
2263 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2264 		return true;
2265 
2266 	return false;
2267 }
2268 
2269 static void DBGUNDO(struct sock *sk, const char *msg)
2270 {
2271 #if FASTRETRANS_DEBUG > 1
2272 	struct tcp_sock *tp = tcp_sk(sk);
2273 	struct inet_sock *inet = inet_sk(sk);
2274 
2275 	if (sk->sk_family == AF_INET) {
2276 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2277 			 msg,
2278 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2279 			 tp->snd_cwnd, tcp_left_out(tp),
2280 			 tp->snd_ssthresh, tp->prior_ssthresh,
2281 			 tp->packets_out);
2282 	}
2283 #if IS_ENABLED(CONFIG_IPV6)
2284 	else if (sk->sk_family == AF_INET6) {
2285 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2286 			 msg,
2287 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2288 			 tp->snd_cwnd, tcp_left_out(tp),
2289 			 tp->snd_ssthresh, tp->prior_ssthresh,
2290 			 tp->packets_out);
2291 	}
2292 #endif
2293 #endif
2294 }
2295 
2296 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2297 {
2298 	struct tcp_sock *tp = tcp_sk(sk);
2299 
2300 	if (unmark_loss) {
2301 		struct sk_buff *skb;
2302 
2303 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2304 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2305 		}
2306 		tp->lost_out = 0;
2307 		tcp_clear_all_retrans_hints(tp);
2308 	}
2309 
2310 	if (tp->prior_ssthresh) {
2311 		const struct inet_connection_sock *icsk = inet_csk(sk);
2312 
2313 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2314 
2315 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2316 			tp->snd_ssthresh = tp->prior_ssthresh;
2317 			tcp_ecn_withdraw_cwr(tp);
2318 		}
2319 	}
2320 	tp->snd_cwnd_stamp = tcp_jiffies32;
2321 	tp->undo_marker = 0;
2322 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2323 }
2324 
2325 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2326 {
2327 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2328 }
2329 
2330 /* People celebrate: "We love our President!" */
2331 static bool tcp_try_undo_recovery(struct sock *sk)
2332 {
2333 	struct tcp_sock *tp = tcp_sk(sk);
2334 
2335 	if (tcp_may_undo(tp)) {
2336 		int mib_idx;
2337 
2338 		/* Happy end! We did not retransmit anything
2339 		 * or our original transmission succeeded.
2340 		 */
2341 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2342 		tcp_undo_cwnd_reduction(sk, false);
2343 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2344 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2345 		else
2346 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2347 
2348 		NET_INC_STATS(sock_net(sk), mib_idx);
2349 	} else if (tp->rack.reo_wnd_persist) {
2350 		tp->rack.reo_wnd_persist--;
2351 	}
2352 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2353 		/* Hold old state until something *above* high_seq
2354 		 * is ACKed. For Reno it is MUST to prevent false
2355 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2356 		if (!tcp_any_retrans_done(sk))
2357 			tp->retrans_stamp = 0;
2358 		return true;
2359 	}
2360 	tcp_set_ca_state(sk, TCP_CA_Open);
2361 	tp->is_sack_reneg = 0;
2362 	return false;
2363 }
2364 
2365 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2366 static bool tcp_try_undo_dsack(struct sock *sk)
2367 {
2368 	struct tcp_sock *tp = tcp_sk(sk);
2369 
2370 	if (tp->undo_marker && !tp->undo_retrans) {
2371 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2372 					       tp->rack.reo_wnd_persist + 1);
2373 		DBGUNDO(sk, "D-SACK");
2374 		tcp_undo_cwnd_reduction(sk, false);
2375 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2376 		return true;
2377 	}
2378 	return false;
2379 }
2380 
2381 /* Undo during loss recovery after partial ACK or using F-RTO. */
2382 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2383 {
2384 	struct tcp_sock *tp = tcp_sk(sk);
2385 
2386 	if (frto_undo || tcp_may_undo(tp)) {
2387 		tcp_undo_cwnd_reduction(sk, true);
2388 
2389 		DBGUNDO(sk, "partial loss");
2390 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2391 		if (frto_undo)
2392 			NET_INC_STATS(sock_net(sk),
2393 					LINUX_MIB_TCPSPURIOUSRTOS);
2394 		inet_csk(sk)->icsk_retransmits = 0;
2395 		if (frto_undo || tcp_is_sack(tp)) {
2396 			tcp_set_ca_state(sk, TCP_CA_Open);
2397 			tp->is_sack_reneg = 0;
2398 		}
2399 		return true;
2400 	}
2401 	return false;
2402 }
2403 
2404 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2405  * It computes the number of packets to send (sndcnt) based on packets newly
2406  * delivered:
2407  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2408  *	cwnd reductions across a full RTT.
2409  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2410  *      But when the retransmits are acked without further losses, PRR
2411  *      slow starts cwnd up to ssthresh to speed up the recovery.
2412  */
2413 static void tcp_init_cwnd_reduction(struct sock *sk)
2414 {
2415 	struct tcp_sock *tp = tcp_sk(sk);
2416 
2417 	tp->high_seq = tp->snd_nxt;
2418 	tp->tlp_high_seq = 0;
2419 	tp->snd_cwnd_cnt = 0;
2420 	tp->prior_cwnd = tp->snd_cwnd;
2421 	tp->prr_delivered = 0;
2422 	tp->prr_out = 0;
2423 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2424 	tcp_ecn_queue_cwr(tp);
2425 }
2426 
2427 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2428 {
2429 	struct tcp_sock *tp = tcp_sk(sk);
2430 	int sndcnt = 0;
2431 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2432 
2433 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2434 		return;
2435 
2436 	tp->prr_delivered += newly_acked_sacked;
2437 	if (delta < 0) {
2438 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2439 			       tp->prior_cwnd - 1;
2440 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2441 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2442 		   !(flag & FLAG_LOST_RETRANS)) {
2443 		sndcnt = min_t(int, delta,
2444 			       max_t(int, tp->prr_delivered - tp->prr_out,
2445 				     newly_acked_sacked) + 1);
2446 	} else {
2447 		sndcnt = min(delta, newly_acked_sacked);
2448 	}
2449 	/* Force a fast retransmit upon entering fast recovery */
2450 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2451 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2452 }
2453 
2454 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2455 {
2456 	struct tcp_sock *tp = tcp_sk(sk);
2457 
2458 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2459 		return;
2460 
2461 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2462 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2463 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2464 		tp->snd_cwnd = tp->snd_ssthresh;
2465 		tp->snd_cwnd_stamp = tcp_jiffies32;
2466 	}
2467 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2468 }
2469 
2470 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2471 void tcp_enter_cwr(struct sock *sk)
2472 {
2473 	struct tcp_sock *tp = tcp_sk(sk);
2474 
2475 	tp->prior_ssthresh = 0;
2476 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2477 		tp->undo_marker = 0;
2478 		tcp_init_cwnd_reduction(sk);
2479 		tcp_set_ca_state(sk, TCP_CA_CWR);
2480 	}
2481 }
2482 EXPORT_SYMBOL(tcp_enter_cwr);
2483 
2484 static void tcp_try_keep_open(struct sock *sk)
2485 {
2486 	struct tcp_sock *tp = tcp_sk(sk);
2487 	int state = TCP_CA_Open;
2488 
2489 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2490 		state = TCP_CA_Disorder;
2491 
2492 	if (inet_csk(sk)->icsk_ca_state != state) {
2493 		tcp_set_ca_state(sk, state);
2494 		tp->high_seq = tp->snd_nxt;
2495 	}
2496 }
2497 
2498 static void tcp_try_to_open(struct sock *sk, int flag)
2499 {
2500 	struct tcp_sock *tp = tcp_sk(sk);
2501 
2502 	tcp_verify_left_out(tp);
2503 
2504 	if (!tcp_any_retrans_done(sk))
2505 		tp->retrans_stamp = 0;
2506 
2507 	if (flag & FLAG_ECE)
2508 		tcp_enter_cwr(sk);
2509 
2510 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2511 		tcp_try_keep_open(sk);
2512 	}
2513 }
2514 
2515 static void tcp_mtup_probe_failed(struct sock *sk)
2516 {
2517 	struct inet_connection_sock *icsk = inet_csk(sk);
2518 
2519 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2520 	icsk->icsk_mtup.probe_size = 0;
2521 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2522 }
2523 
2524 static void tcp_mtup_probe_success(struct sock *sk)
2525 {
2526 	struct tcp_sock *tp = tcp_sk(sk);
2527 	struct inet_connection_sock *icsk = inet_csk(sk);
2528 
2529 	/* FIXME: breaks with very large cwnd */
2530 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2531 	tp->snd_cwnd = tp->snd_cwnd *
2532 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2533 		       icsk->icsk_mtup.probe_size;
2534 	tp->snd_cwnd_cnt = 0;
2535 	tp->snd_cwnd_stamp = tcp_jiffies32;
2536 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2537 
2538 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2539 	icsk->icsk_mtup.probe_size = 0;
2540 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2541 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2542 }
2543 
2544 /* Do a simple retransmit without using the backoff mechanisms in
2545  * tcp_timer. This is used for path mtu discovery.
2546  * The socket is already locked here.
2547  */
2548 void tcp_simple_retransmit(struct sock *sk)
2549 {
2550 	const struct inet_connection_sock *icsk = inet_csk(sk);
2551 	struct tcp_sock *tp = tcp_sk(sk);
2552 	struct sk_buff *skb;
2553 	unsigned int mss = tcp_current_mss(sk);
2554 
2555 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2556 		if (tcp_skb_seglen(skb) > mss &&
2557 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2558 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2559 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2560 				tp->retrans_out -= tcp_skb_pcount(skb);
2561 			}
2562 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2563 		}
2564 	}
2565 
2566 	tcp_clear_retrans_hints_partial(tp);
2567 
2568 	if (!tp->lost_out)
2569 		return;
2570 
2571 	if (tcp_is_reno(tp))
2572 		tcp_limit_reno_sacked(tp);
2573 
2574 	tcp_verify_left_out(tp);
2575 
2576 	/* Don't muck with the congestion window here.
2577 	 * Reason is that we do not increase amount of _data_
2578 	 * in network, but units changed and effective
2579 	 * cwnd/ssthresh really reduced now.
2580 	 */
2581 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2582 		tp->high_seq = tp->snd_nxt;
2583 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2584 		tp->prior_ssthresh = 0;
2585 		tp->undo_marker = 0;
2586 		tcp_set_ca_state(sk, TCP_CA_Loss);
2587 	}
2588 	tcp_xmit_retransmit_queue(sk);
2589 }
2590 EXPORT_SYMBOL(tcp_simple_retransmit);
2591 
2592 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2593 {
2594 	struct tcp_sock *tp = tcp_sk(sk);
2595 	int mib_idx;
2596 
2597 	if (tcp_is_reno(tp))
2598 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2599 	else
2600 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2601 
2602 	NET_INC_STATS(sock_net(sk), mib_idx);
2603 
2604 	tp->prior_ssthresh = 0;
2605 	tcp_init_undo(tp);
2606 
2607 	if (!tcp_in_cwnd_reduction(sk)) {
2608 		if (!ece_ack)
2609 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2610 		tcp_init_cwnd_reduction(sk);
2611 	}
2612 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2613 }
2614 
2615 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2616  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2617  */
2618 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2619 			     int *rexmit)
2620 {
2621 	struct tcp_sock *tp = tcp_sk(sk);
2622 	bool recovered = !before(tp->snd_una, tp->high_seq);
2623 
2624 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2625 	    tcp_try_undo_loss(sk, false))
2626 		return;
2627 
2628 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2629 		/* Step 3.b. A timeout is spurious if not all data are
2630 		 * lost, i.e., never-retransmitted data are (s)acked.
2631 		 */
2632 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2633 		    tcp_try_undo_loss(sk, true))
2634 			return;
2635 
2636 		if (after(tp->snd_nxt, tp->high_seq)) {
2637 			if (flag & FLAG_DATA_SACKED || is_dupack)
2638 				tp->frto = 0; /* Step 3.a. loss was real */
2639 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2640 			tp->high_seq = tp->snd_nxt;
2641 			/* Step 2.b. Try send new data (but deferred until cwnd
2642 			 * is updated in tcp_ack()). Otherwise fall back to
2643 			 * the conventional recovery.
2644 			 */
2645 			if (!tcp_write_queue_empty(sk) &&
2646 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2647 				*rexmit = REXMIT_NEW;
2648 				return;
2649 			}
2650 			tp->frto = 0;
2651 		}
2652 	}
2653 
2654 	if (recovered) {
2655 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2656 		tcp_try_undo_recovery(sk);
2657 		return;
2658 	}
2659 	if (tcp_is_reno(tp)) {
2660 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2661 		 * delivered. Lower inflight to clock out (re)tranmissions.
2662 		 */
2663 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2664 			tcp_add_reno_sack(sk);
2665 		else if (flag & FLAG_SND_UNA_ADVANCED)
2666 			tcp_reset_reno_sack(tp);
2667 	}
2668 	*rexmit = REXMIT_LOST;
2669 }
2670 
2671 /* Undo during fast recovery after partial ACK. */
2672 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2673 {
2674 	struct tcp_sock *tp = tcp_sk(sk);
2675 
2676 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2677 		/* Plain luck! Hole if filled with delayed
2678 		 * packet, rather than with a retransmit. Check reordering.
2679 		 */
2680 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2681 
2682 		/* We are getting evidence that the reordering degree is higher
2683 		 * than we realized. If there are no retransmits out then we
2684 		 * can undo. Otherwise we clock out new packets but do not
2685 		 * mark more packets lost or retransmit more.
2686 		 */
2687 		if (tp->retrans_out)
2688 			return true;
2689 
2690 		if (!tcp_any_retrans_done(sk))
2691 			tp->retrans_stamp = 0;
2692 
2693 		DBGUNDO(sk, "partial recovery");
2694 		tcp_undo_cwnd_reduction(sk, true);
2695 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2696 		tcp_try_keep_open(sk);
2697 		return true;
2698 	}
2699 	return false;
2700 }
2701 
2702 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2703 {
2704 	struct tcp_sock *tp = tcp_sk(sk);
2705 
2706 	/* Use RACK to detect loss */
2707 	if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2708 		u32 prior_retrans = tp->retrans_out;
2709 
2710 		tcp_rack_mark_lost(sk);
2711 		if (prior_retrans > tp->retrans_out)
2712 			*ack_flag |= FLAG_LOST_RETRANS;
2713 	}
2714 }
2715 
2716 static bool tcp_force_fast_retransmit(struct sock *sk)
2717 {
2718 	struct tcp_sock *tp = tcp_sk(sk);
2719 
2720 	return after(tcp_highest_sack_seq(tp),
2721 		     tp->snd_una + tp->reordering * tp->mss_cache);
2722 }
2723 
2724 /* Process an event, which can update packets-in-flight not trivially.
2725  * Main goal of this function is to calculate new estimate for left_out,
2726  * taking into account both packets sitting in receiver's buffer and
2727  * packets lost by network.
2728  *
2729  * Besides that it updates the congestion state when packet loss or ECN
2730  * is detected. But it does not reduce the cwnd, it is done by the
2731  * congestion control later.
2732  *
2733  * It does _not_ decide what to send, it is made in function
2734  * tcp_xmit_retransmit_queue().
2735  */
2736 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2737 				  bool is_dupack, int *ack_flag, int *rexmit)
2738 {
2739 	struct inet_connection_sock *icsk = inet_csk(sk);
2740 	struct tcp_sock *tp = tcp_sk(sk);
2741 	int fast_rexmit = 0, flag = *ack_flag;
2742 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2743 				     tcp_force_fast_retransmit(sk));
2744 
2745 	if (!tp->packets_out && tp->sacked_out)
2746 		tp->sacked_out = 0;
2747 
2748 	/* Now state machine starts.
2749 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2750 	if (flag & FLAG_ECE)
2751 		tp->prior_ssthresh = 0;
2752 
2753 	/* B. In all the states check for reneging SACKs. */
2754 	if (tcp_check_sack_reneging(sk, flag))
2755 		return;
2756 
2757 	/* C. Check consistency of the current state. */
2758 	tcp_verify_left_out(tp);
2759 
2760 	/* D. Check state exit conditions. State can be terminated
2761 	 *    when high_seq is ACKed. */
2762 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2763 		WARN_ON(tp->retrans_out != 0);
2764 		tp->retrans_stamp = 0;
2765 	} else if (!before(tp->snd_una, tp->high_seq)) {
2766 		switch (icsk->icsk_ca_state) {
2767 		case TCP_CA_CWR:
2768 			/* CWR is to be held something *above* high_seq
2769 			 * is ACKed for CWR bit to reach receiver. */
2770 			if (tp->snd_una != tp->high_seq) {
2771 				tcp_end_cwnd_reduction(sk);
2772 				tcp_set_ca_state(sk, TCP_CA_Open);
2773 			}
2774 			break;
2775 
2776 		case TCP_CA_Recovery:
2777 			if (tcp_is_reno(tp))
2778 				tcp_reset_reno_sack(tp);
2779 			if (tcp_try_undo_recovery(sk))
2780 				return;
2781 			tcp_end_cwnd_reduction(sk);
2782 			break;
2783 		}
2784 	}
2785 
2786 	/* E. Process state. */
2787 	switch (icsk->icsk_ca_state) {
2788 	case TCP_CA_Recovery:
2789 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2790 			if (tcp_is_reno(tp) && is_dupack)
2791 				tcp_add_reno_sack(sk);
2792 		} else {
2793 			if (tcp_try_undo_partial(sk, prior_snd_una))
2794 				return;
2795 			/* Partial ACK arrived. Force fast retransmit. */
2796 			do_lost = tcp_is_reno(tp) ||
2797 				  tcp_force_fast_retransmit(sk);
2798 		}
2799 		if (tcp_try_undo_dsack(sk)) {
2800 			tcp_try_keep_open(sk);
2801 			return;
2802 		}
2803 		tcp_rack_identify_loss(sk, ack_flag);
2804 		break;
2805 	case TCP_CA_Loss:
2806 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2807 		tcp_rack_identify_loss(sk, ack_flag);
2808 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2809 		      (*ack_flag & FLAG_LOST_RETRANS)))
2810 			return;
2811 		/* Change state if cwnd is undone or retransmits are lost */
2812 		/* fall through */
2813 	default:
2814 		if (tcp_is_reno(tp)) {
2815 			if (flag & FLAG_SND_UNA_ADVANCED)
2816 				tcp_reset_reno_sack(tp);
2817 			if (is_dupack)
2818 				tcp_add_reno_sack(sk);
2819 		}
2820 
2821 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2822 			tcp_try_undo_dsack(sk);
2823 
2824 		tcp_rack_identify_loss(sk, ack_flag);
2825 		if (!tcp_time_to_recover(sk, flag)) {
2826 			tcp_try_to_open(sk, flag);
2827 			return;
2828 		}
2829 
2830 		/* MTU probe failure: don't reduce cwnd */
2831 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2832 		    icsk->icsk_mtup.probe_size &&
2833 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2834 			tcp_mtup_probe_failed(sk);
2835 			/* Restores the reduction we did in tcp_mtup_probe() */
2836 			tp->snd_cwnd++;
2837 			tcp_simple_retransmit(sk);
2838 			return;
2839 		}
2840 
2841 		/* Otherwise enter Recovery state */
2842 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2843 		fast_rexmit = 1;
2844 	}
2845 
2846 	if (do_lost)
2847 		tcp_update_scoreboard(sk, fast_rexmit);
2848 	*rexmit = REXMIT_LOST;
2849 }
2850 
2851 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2852 {
2853 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2854 	struct tcp_sock *tp = tcp_sk(sk);
2855 
2856 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2857 		/* If the remote keeps returning delayed ACKs, eventually
2858 		 * the min filter would pick it up and overestimate the
2859 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2860 		 */
2861 		return;
2862 	}
2863 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2864 			   rtt_us ? : jiffies_to_usecs(1));
2865 }
2866 
2867 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2868 			       long seq_rtt_us, long sack_rtt_us,
2869 			       long ca_rtt_us, struct rate_sample *rs)
2870 {
2871 	const struct tcp_sock *tp = tcp_sk(sk);
2872 
2873 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2874 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2875 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2876 	 * is acked (RFC6298).
2877 	 */
2878 	if (seq_rtt_us < 0)
2879 		seq_rtt_us = sack_rtt_us;
2880 
2881 	/* RTTM Rule: A TSecr value received in a segment is used to
2882 	 * update the averaged RTT measurement only if the segment
2883 	 * acknowledges some new data, i.e., only if it advances the
2884 	 * left edge of the send window.
2885 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2886 	 */
2887 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2888 	    flag & FLAG_ACKED) {
2889 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2890 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2891 
2892 		seq_rtt_us = ca_rtt_us = delta_us;
2893 	}
2894 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2895 	if (seq_rtt_us < 0)
2896 		return false;
2897 
2898 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2899 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2900 	 * values will be skipped with the seq_rtt_us < 0 check above.
2901 	 */
2902 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2903 	tcp_rtt_estimator(sk, seq_rtt_us);
2904 	tcp_set_rto(sk);
2905 
2906 	/* RFC6298: only reset backoff on valid RTT measurement. */
2907 	inet_csk(sk)->icsk_backoff = 0;
2908 	return true;
2909 }
2910 
2911 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2912 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2913 {
2914 	struct rate_sample rs;
2915 	long rtt_us = -1L;
2916 
2917 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2918 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2919 
2920 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2921 }
2922 
2923 
2924 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2925 {
2926 	const struct inet_connection_sock *icsk = inet_csk(sk);
2927 
2928 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2929 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2930 }
2931 
2932 /* Restart timer after forward progress on connection.
2933  * RFC2988 recommends to restart timer to now+rto.
2934  */
2935 void tcp_rearm_rto(struct sock *sk)
2936 {
2937 	const struct inet_connection_sock *icsk = inet_csk(sk);
2938 	struct tcp_sock *tp = tcp_sk(sk);
2939 
2940 	/* If the retrans timer is currently being used by Fast Open
2941 	 * for SYN-ACK retrans purpose, stay put.
2942 	 */
2943 	if (tp->fastopen_rsk)
2944 		return;
2945 
2946 	if (!tp->packets_out) {
2947 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2948 	} else {
2949 		u32 rto = inet_csk(sk)->icsk_rto;
2950 		/* Offset the time elapsed after installing regular RTO */
2951 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2952 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2953 			s64 delta_us = tcp_rto_delta_us(sk);
2954 			/* delta_us may not be positive if the socket is locked
2955 			 * when the retrans timer fires and is rescheduled.
2956 			 */
2957 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2958 		}
2959 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2960 					  TCP_RTO_MAX);
2961 	}
2962 }
2963 
2964 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2965 static void tcp_set_xmit_timer(struct sock *sk)
2966 {
2967 	if (!tcp_schedule_loss_probe(sk, true))
2968 		tcp_rearm_rto(sk);
2969 }
2970 
2971 /* If we get here, the whole TSO packet has not been acked. */
2972 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2973 {
2974 	struct tcp_sock *tp = tcp_sk(sk);
2975 	u32 packets_acked;
2976 
2977 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2978 
2979 	packets_acked = tcp_skb_pcount(skb);
2980 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2981 		return 0;
2982 	packets_acked -= tcp_skb_pcount(skb);
2983 
2984 	if (packets_acked) {
2985 		BUG_ON(tcp_skb_pcount(skb) == 0);
2986 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2987 	}
2988 
2989 	return packets_acked;
2990 }
2991 
2992 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
2993 			   u32 prior_snd_una)
2994 {
2995 	const struct skb_shared_info *shinfo;
2996 
2997 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
2998 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
2999 		return;
3000 
3001 	shinfo = skb_shinfo(skb);
3002 	if (!before(shinfo->tskey, prior_snd_una) &&
3003 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3004 		tcp_skb_tsorted_save(skb) {
3005 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3006 		} tcp_skb_tsorted_restore(skb);
3007 	}
3008 }
3009 
3010 /* Remove acknowledged frames from the retransmission queue. If our packet
3011  * is before the ack sequence we can discard it as it's confirmed to have
3012  * arrived at the other end.
3013  */
3014 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3015 			       u32 prior_snd_una,
3016 			       struct tcp_sacktag_state *sack)
3017 {
3018 	const struct inet_connection_sock *icsk = inet_csk(sk);
3019 	u64 first_ackt, last_ackt;
3020 	struct tcp_sock *tp = tcp_sk(sk);
3021 	u32 prior_sacked = tp->sacked_out;
3022 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3023 	struct sk_buff *skb, *next;
3024 	bool fully_acked = true;
3025 	long sack_rtt_us = -1L;
3026 	long seq_rtt_us = -1L;
3027 	long ca_rtt_us = -1L;
3028 	u32 pkts_acked = 0;
3029 	u32 last_in_flight = 0;
3030 	bool rtt_update;
3031 	int flag = 0;
3032 
3033 	first_ackt = 0;
3034 
3035 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3036 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3037 		const u32 start_seq = scb->seq;
3038 		u8 sacked = scb->sacked;
3039 		u32 acked_pcount;
3040 
3041 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3042 
3043 		/* Determine how many packets and what bytes were acked, tso and else */
3044 		if (after(scb->end_seq, tp->snd_una)) {
3045 			if (tcp_skb_pcount(skb) == 1 ||
3046 			    !after(tp->snd_una, scb->seq))
3047 				break;
3048 
3049 			acked_pcount = tcp_tso_acked(sk, skb);
3050 			if (!acked_pcount)
3051 				break;
3052 			fully_acked = false;
3053 		} else {
3054 			acked_pcount = tcp_skb_pcount(skb);
3055 		}
3056 
3057 		if (unlikely(sacked & TCPCB_RETRANS)) {
3058 			if (sacked & TCPCB_SACKED_RETRANS)
3059 				tp->retrans_out -= acked_pcount;
3060 			flag |= FLAG_RETRANS_DATA_ACKED;
3061 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3062 			last_ackt = skb->skb_mstamp;
3063 			WARN_ON_ONCE(last_ackt == 0);
3064 			if (!first_ackt)
3065 				first_ackt = last_ackt;
3066 
3067 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3068 			if (before(start_seq, reord))
3069 				reord = start_seq;
3070 			if (!after(scb->end_seq, tp->high_seq))
3071 				flag |= FLAG_ORIG_SACK_ACKED;
3072 		}
3073 
3074 		if (sacked & TCPCB_SACKED_ACKED) {
3075 			tp->sacked_out -= acked_pcount;
3076 		} else if (tcp_is_sack(tp)) {
3077 			tp->delivered += acked_pcount;
3078 			if (!tcp_skb_spurious_retrans(tp, skb))
3079 				tcp_rack_advance(tp, sacked, scb->end_seq,
3080 						 skb->skb_mstamp);
3081 		}
3082 		if (sacked & TCPCB_LOST)
3083 			tp->lost_out -= acked_pcount;
3084 
3085 		tp->packets_out -= acked_pcount;
3086 		pkts_acked += acked_pcount;
3087 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3088 
3089 		/* Initial outgoing SYN's get put onto the write_queue
3090 		 * just like anything else we transmit.  It is not
3091 		 * true data, and if we misinform our callers that
3092 		 * this ACK acks real data, we will erroneously exit
3093 		 * connection startup slow start one packet too
3094 		 * quickly.  This is severely frowned upon behavior.
3095 		 */
3096 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3097 			flag |= FLAG_DATA_ACKED;
3098 		} else {
3099 			flag |= FLAG_SYN_ACKED;
3100 			tp->retrans_stamp = 0;
3101 		}
3102 
3103 		if (!fully_acked)
3104 			break;
3105 
3106 		next = skb_rb_next(skb);
3107 		if (unlikely(skb == tp->retransmit_skb_hint))
3108 			tp->retransmit_skb_hint = NULL;
3109 		if (unlikely(skb == tp->lost_skb_hint))
3110 			tp->lost_skb_hint = NULL;
3111 		tcp_rtx_queue_unlink_and_free(skb, sk);
3112 	}
3113 
3114 	if (!skb)
3115 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3116 
3117 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3118 		tp->snd_up = tp->snd_una;
3119 
3120 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3121 		flag |= FLAG_SACK_RENEGING;
3122 
3123 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3124 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3125 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3126 
3127 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3128 		    last_in_flight && !prior_sacked && fully_acked &&
3129 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3130 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3131 			/* Conservatively mark a delayed ACK. It's typically
3132 			 * from a lone runt packet over the round trip to
3133 			 * a receiver w/o out-of-order or CE events.
3134 			 */
3135 			flag |= FLAG_ACK_MAYBE_DELAYED;
3136 		}
3137 	}
3138 	if (sack->first_sackt) {
3139 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3140 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3141 	}
3142 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3143 					ca_rtt_us, sack->rate);
3144 
3145 	if (flag & FLAG_ACKED) {
3146 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3147 		if (unlikely(icsk->icsk_mtup.probe_size &&
3148 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3149 			tcp_mtup_probe_success(sk);
3150 		}
3151 
3152 		if (tcp_is_reno(tp)) {
3153 			tcp_remove_reno_sacks(sk, pkts_acked);
3154 		} else {
3155 			int delta;
3156 
3157 			/* Non-retransmitted hole got filled? That's reordering */
3158 			if (before(reord, prior_fack))
3159 				tcp_check_sack_reordering(sk, reord, 0);
3160 
3161 			delta = prior_sacked - tp->sacked_out;
3162 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3163 		}
3164 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3165 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3166 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3167 		 * after when the head was last (re)transmitted. Otherwise the
3168 		 * timeout may continue to extend in loss recovery.
3169 		 */
3170 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3171 	}
3172 
3173 	if (icsk->icsk_ca_ops->pkts_acked) {
3174 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3175 					     .rtt_us = sack->rate->rtt_us,
3176 					     .in_flight = last_in_flight };
3177 
3178 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3179 	}
3180 
3181 #if FASTRETRANS_DEBUG > 0
3182 	WARN_ON((int)tp->sacked_out < 0);
3183 	WARN_ON((int)tp->lost_out < 0);
3184 	WARN_ON((int)tp->retrans_out < 0);
3185 	if (!tp->packets_out && tcp_is_sack(tp)) {
3186 		icsk = inet_csk(sk);
3187 		if (tp->lost_out) {
3188 			pr_debug("Leak l=%u %d\n",
3189 				 tp->lost_out, icsk->icsk_ca_state);
3190 			tp->lost_out = 0;
3191 		}
3192 		if (tp->sacked_out) {
3193 			pr_debug("Leak s=%u %d\n",
3194 				 tp->sacked_out, icsk->icsk_ca_state);
3195 			tp->sacked_out = 0;
3196 		}
3197 		if (tp->retrans_out) {
3198 			pr_debug("Leak r=%u %d\n",
3199 				 tp->retrans_out, icsk->icsk_ca_state);
3200 			tp->retrans_out = 0;
3201 		}
3202 	}
3203 #endif
3204 	return flag;
3205 }
3206 
3207 static void tcp_ack_probe(struct sock *sk)
3208 {
3209 	struct inet_connection_sock *icsk = inet_csk(sk);
3210 	struct sk_buff *head = tcp_send_head(sk);
3211 	const struct tcp_sock *tp = tcp_sk(sk);
3212 
3213 	/* Was it a usable window open? */
3214 	if (!head)
3215 		return;
3216 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3217 		icsk->icsk_backoff = 0;
3218 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3219 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3220 		 * This function is not for random using!
3221 		 */
3222 	} else {
3223 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3224 
3225 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3226 					  when, TCP_RTO_MAX);
3227 	}
3228 }
3229 
3230 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3231 {
3232 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3233 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3234 }
3235 
3236 /* Decide wheather to run the increase function of congestion control. */
3237 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3238 {
3239 	/* If reordering is high then always grow cwnd whenever data is
3240 	 * delivered regardless of its ordering. Otherwise stay conservative
3241 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3242 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3243 	 * cwnd in tcp_fastretrans_alert() based on more states.
3244 	 */
3245 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3246 		return flag & FLAG_FORWARD_PROGRESS;
3247 
3248 	return flag & FLAG_DATA_ACKED;
3249 }
3250 
3251 /* The "ultimate" congestion control function that aims to replace the rigid
3252  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3253  * It's called toward the end of processing an ACK with precise rate
3254  * information. All transmission or retransmission are delayed afterwards.
3255  */
3256 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3257 			     int flag, const struct rate_sample *rs)
3258 {
3259 	const struct inet_connection_sock *icsk = inet_csk(sk);
3260 
3261 	if (icsk->icsk_ca_ops->cong_control) {
3262 		icsk->icsk_ca_ops->cong_control(sk, rs);
3263 		return;
3264 	}
3265 
3266 	if (tcp_in_cwnd_reduction(sk)) {
3267 		/* Reduce cwnd if state mandates */
3268 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3269 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3270 		/* Advance cwnd if state allows */
3271 		tcp_cong_avoid(sk, ack, acked_sacked);
3272 	}
3273 	tcp_update_pacing_rate(sk);
3274 }
3275 
3276 /* Check that window update is acceptable.
3277  * The function assumes that snd_una<=ack<=snd_next.
3278  */
3279 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3280 					const u32 ack, const u32 ack_seq,
3281 					const u32 nwin)
3282 {
3283 	return	after(ack, tp->snd_una) ||
3284 		after(ack_seq, tp->snd_wl1) ||
3285 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3286 }
3287 
3288 /* If we update tp->snd_una, also update tp->bytes_acked */
3289 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3290 {
3291 	u32 delta = ack - tp->snd_una;
3292 
3293 	sock_owned_by_me((struct sock *)tp);
3294 	tp->bytes_acked += delta;
3295 	tp->snd_una = ack;
3296 }
3297 
3298 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3299 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3300 {
3301 	u32 delta = seq - tp->rcv_nxt;
3302 
3303 	sock_owned_by_me((struct sock *)tp);
3304 	tp->bytes_received += delta;
3305 	tp->rcv_nxt = seq;
3306 }
3307 
3308 /* Update our send window.
3309  *
3310  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3311  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3312  */
3313 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3314 				 u32 ack_seq)
3315 {
3316 	struct tcp_sock *tp = tcp_sk(sk);
3317 	int flag = 0;
3318 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3319 
3320 	if (likely(!tcp_hdr(skb)->syn))
3321 		nwin <<= tp->rx_opt.snd_wscale;
3322 
3323 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3324 		flag |= FLAG_WIN_UPDATE;
3325 		tcp_update_wl(tp, ack_seq);
3326 
3327 		if (tp->snd_wnd != nwin) {
3328 			tp->snd_wnd = nwin;
3329 
3330 			/* Note, it is the only place, where
3331 			 * fast path is recovered for sending TCP.
3332 			 */
3333 			tp->pred_flags = 0;
3334 			tcp_fast_path_check(sk);
3335 
3336 			if (!tcp_write_queue_empty(sk))
3337 				tcp_slow_start_after_idle_check(sk);
3338 
3339 			if (nwin > tp->max_window) {
3340 				tp->max_window = nwin;
3341 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3342 			}
3343 		}
3344 	}
3345 
3346 	tcp_snd_una_update(tp, ack);
3347 
3348 	return flag;
3349 }
3350 
3351 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3352 				   u32 *last_oow_ack_time)
3353 {
3354 	if (*last_oow_ack_time) {
3355 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3356 
3357 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3358 			NET_INC_STATS(net, mib_idx);
3359 			return true;	/* rate-limited: don't send yet! */
3360 		}
3361 	}
3362 
3363 	*last_oow_ack_time = tcp_jiffies32;
3364 
3365 	return false;	/* not rate-limited: go ahead, send dupack now! */
3366 }
3367 
3368 /* Return true if we're currently rate-limiting out-of-window ACKs and
3369  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3370  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3371  * attacks that send repeated SYNs or ACKs for the same connection. To
3372  * do this, we do not send a duplicate SYNACK or ACK if the remote
3373  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3374  */
3375 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3376 			  int mib_idx, u32 *last_oow_ack_time)
3377 {
3378 	/* Data packets without SYNs are not likely part of an ACK loop. */
3379 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3380 	    !tcp_hdr(skb)->syn)
3381 		return false;
3382 
3383 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3384 }
3385 
3386 /* RFC 5961 7 [ACK Throttling] */
3387 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3388 {
3389 	/* unprotected vars, we dont care of overwrites */
3390 	static u32 challenge_timestamp;
3391 	static unsigned int challenge_count;
3392 	struct tcp_sock *tp = tcp_sk(sk);
3393 	struct net *net = sock_net(sk);
3394 	u32 count, now;
3395 
3396 	/* First check our per-socket dupack rate limit. */
3397 	if (__tcp_oow_rate_limited(net,
3398 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3399 				   &tp->last_oow_ack_time))
3400 		return;
3401 
3402 	/* Then check host-wide RFC 5961 rate limit. */
3403 	now = jiffies / HZ;
3404 	if (now != challenge_timestamp) {
3405 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3406 		u32 half = (ack_limit + 1) >> 1;
3407 
3408 		challenge_timestamp = now;
3409 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3410 	}
3411 	count = READ_ONCE(challenge_count);
3412 	if (count > 0) {
3413 		WRITE_ONCE(challenge_count, count - 1);
3414 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3415 		tcp_send_ack(sk);
3416 	}
3417 }
3418 
3419 static void tcp_store_ts_recent(struct tcp_sock *tp)
3420 {
3421 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3422 	tp->rx_opt.ts_recent_stamp = get_seconds();
3423 }
3424 
3425 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3426 {
3427 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3428 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3429 		 * extra check below makes sure this can only happen
3430 		 * for pure ACK frames.  -DaveM
3431 		 *
3432 		 * Not only, also it occurs for expired timestamps.
3433 		 */
3434 
3435 		if (tcp_paws_check(&tp->rx_opt, 0))
3436 			tcp_store_ts_recent(tp);
3437 	}
3438 }
3439 
3440 /* This routine deals with acks during a TLP episode.
3441  * We mark the end of a TLP episode on receiving TLP dupack or when
3442  * ack is after tlp_high_seq.
3443  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3444  */
3445 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3446 {
3447 	struct tcp_sock *tp = tcp_sk(sk);
3448 
3449 	if (before(ack, tp->tlp_high_seq))
3450 		return;
3451 
3452 	if (flag & FLAG_DSACKING_ACK) {
3453 		/* This DSACK means original and TLP probe arrived; no loss */
3454 		tp->tlp_high_seq = 0;
3455 	} else if (after(ack, tp->tlp_high_seq)) {
3456 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3457 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3458 		 */
3459 		tcp_init_cwnd_reduction(sk);
3460 		tcp_set_ca_state(sk, TCP_CA_CWR);
3461 		tcp_end_cwnd_reduction(sk);
3462 		tcp_try_keep_open(sk);
3463 		NET_INC_STATS(sock_net(sk),
3464 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3465 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3466 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3467 		/* Pure dupack: original and TLP probe arrived; no loss */
3468 		tp->tlp_high_seq = 0;
3469 	}
3470 }
3471 
3472 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3473 {
3474 	const struct inet_connection_sock *icsk = inet_csk(sk);
3475 
3476 	if (icsk->icsk_ca_ops->in_ack_event)
3477 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3478 }
3479 
3480 /* Congestion control has updated the cwnd already. So if we're in
3481  * loss recovery then now we do any new sends (for FRTO) or
3482  * retransmits (for CA_Loss or CA_recovery) that make sense.
3483  */
3484 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3485 {
3486 	struct tcp_sock *tp = tcp_sk(sk);
3487 
3488 	if (rexmit == REXMIT_NONE)
3489 		return;
3490 
3491 	if (unlikely(rexmit == 2)) {
3492 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3493 					  TCP_NAGLE_OFF);
3494 		if (after(tp->snd_nxt, tp->high_seq))
3495 			return;
3496 		tp->frto = 0;
3497 	}
3498 	tcp_xmit_retransmit_queue(sk);
3499 }
3500 
3501 /* Returns the number of packets newly acked or sacked by the current ACK */
3502 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3503 {
3504 	const struct net *net = sock_net(sk);
3505 	struct tcp_sock *tp = tcp_sk(sk);
3506 	u32 delivered;
3507 
3508 	delivered = tp->delivered - prior_delivered;
3509 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3510 	if (flag & FLAG_ECE) {
3511 		tp->delivered_ce += delivered;
3512 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3513 	}
3514 	return delivered;
3515 }
3516 
3517 /* This routine deals with incoming acks, but not outgoing ones. */
3518 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3519 {
3520 	struct inet_connection_sock *icsk = inet_csk(sk);
3521 	struct tcp_sock *tp = tcp_sk(sk);
3522 	struct tcp_sacktag_state sack_state;
3523 	struct rate_sample rs = { .prior_delivered = 0 };
3524 	u32 prior_snd_una = tp->snd_una;
3525 	bool is_sack_reneg = tp->is_sack_reneg;
3526 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3527 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3528 	bool is_dupack = false;
3529 	int prior_packets = tp->packets_out;
3530 	u32 delivered = tp->delivered;
3531 	u32 lost = tp->lost;
3532 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3533 	u32 prior_fack;
3534 
3535 	sack_state.first_sackt = 0;
3536 	sack_state.rate = &rs;
3537 
3538 	/* We very likely will need to access rtx queue. */
3539 	prefetch(sk->tcp_rtx_queue.rb_node);
3540 
3541 	/* If the ack is older than previous acks
3542 	 * then we can probably ignore it.
3543 	 */
3544 	if (before(ack, prior_snd_una)) {
3545 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3546 		if (before(ack, prior_snd_una - tp->max_window)) {
3547 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3548 				tcp_send_challenge_ack(sk, skb);
3549 			return -1;
3550 		}
3551 		goto old_ack;
3552 	}
3553 
3554 	/* If the ack includes data we haven't sent yet, discard
3555 	 * this segment (RFC793 Section 3.9).
3556 	 */
3557 	if (after(ack, tp->snd_nxt))
3558 		goto invalid_ack;
3559 
3560 	if (after(ack, prior_snd_una)) {
3561 		flag |= FLAG_SND_UNA_ADVANCED;
3562 		icsk->icsk_retransmits = 0;
3563 	}
3564 
3565 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3566 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3567 
3568 	/* ts_recent update must be made after we are sure that the packet
3569 	 * is in window.
3570 	 */
3571 	if (flag & FLAG_UPDATE_TS_RECENT)
3572 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3573 
3574 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3575 		/* Window is constant, pure forward advance.
3576 		 * No more checks are required.
3577 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3578 		 */
3579 		tcp_update_wl(tp, ack_seq);
3580 		tcp_snd_una_update(tp, ack);
3581 		flag |= FLAG_WIN_UPDATE;
3582 
3583 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3584 
3585 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3586 	} else {
3587 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3588 
3589 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3590 			flag |= FLAG_DATA;
3591 		else
3592 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3593 
3594 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3595 
3596 		if (TCP_SKB_CB(skb)->sacked)
3597 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3598 							&sack_state);
3599 
3600 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3601 			flag |= FLAG_ECE;
3602 			ack_ev_flags |= CA_ACK_ECE;
3603 		}
3604 
3605 		if (flag & FLAG_WIN_UPDATE)
3606 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3607 
3608 		tcp_in_ack_event(sk, ack_ev_flags);
3609 	}
3610 
3611 	/* We passed data and got it acked, remove any soft error
3612 	 * log. Something worked...
3613 	 */
3614 	sk->sk_err_soft = 0;
3615 	icsk->icsk_probes_out = 0;
3616 	tp->rcv_tstamp = tcp_jiffies32;
3617 	if (!prior_packets)
3618 		goto no_queue;
3619 
3620 	/* See if we can take anything off of the retransmit queue. */
3621 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3622 
3623 	tcp_rack_update_reo_wnd(sk, &rs);
3624 
3625 	if (tp->tlp_high_seq)
3626 		tcp_process_tlp_ack(sk, ack, flag);
3627 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3628 	if (flag & FLAG_SET_XMIT_TIMER)
3629 		tcp_set_xmit_timer(sk);
3630 
3631 	if (tcp_ack_is_dubious(sk, flag)) {
3632 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3633 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3634 				      &rexmit);
3635 	}
3636 
3637 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3638 		sk_dst_confirm(sk);
3639 
3640 	delivered = tcp_newly_delivered(sk, delivered, flag);
3641 	lost = tp->lost - lost;			/* freshly marked lost */
3642 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3643 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3644 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3645 	tcp_xmit_recovery(sk, rexmit);
3646 	return 1;
3647 
3648 no_queue:
3649 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3650 	if (flag & FLAG_DSACKING_ACK) {
3651 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3652 				      &rexmit);
3653 		tcp_newly_delivered(sk, delivered, flag);
3654 	}
3655 	/* If this ack opens up a zero window, clear backoff.  It was
3656 	 * being used to time the probes, and is probably far higher than
3657 	 * it needs to be for normal retransmission.
3658 	 */
3659 	tcp_ack_probe(sk);
3660 
3661 	if (tp->tlp_high_seq)
3662 		tcp_process_tlp_ack(sk, ack, flag);
3663 	return 1;
3664 
3665 invalid_ack:
3666 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3667 	return -1;
3668 
3669 old_ack:
3670 	/* If data was SACKed, tag it and see if we should send more data.
3671 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3672 	 */
3673 	if (TCP_SKB_CB(skb)->sacked) {
3674 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3675 						&sack_state);
3676 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3677 				      &rexmit);
3678 		tcp_newly_delivered(sk, delivered, flag);
3679 		tcp_xmit_recovery(sk, rexmit);
3680 	}
3681 
3682 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3683 	return 0;
3684 }
3685 
3686 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3687 				      bool syn, struct tcp_fastopen_cookie *foc,
3688 				      bool exp_opt)
3689 {
3690 	/* Valid only in SYN or SYN-ACK with an even length.  */
3691 	if (!foc || !syn || len < 0 || (len & 1))
3692 		return;
3693 
3694 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3695 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3696 		memcpy(foc->val, cookie, len);
3697 	else if (len != 0)
3698 		len = -1;
3699 	foc->len = len;
3700 	foc->exp = exp_opt;
3701 }
3702 
3703 static void smc_parse_options(const struct tcphdr *th,
3704 			      struct tcp_options_received *opt_rx,
3705 			      const unsigned char *ptr,
3706 			      int opsize)
3707 {
3708 #if IS_ENABLED(CONFIG_SMC)
3709 	if (static_branch_unlikely(&tcp_have_smc)) {
3710 		if (th->syn && !(opsize & 1) &&
3711 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3712 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3713 			opt_rx->smc_ok = 1;
3714 	}
3715 #endif
3716 }
3717 
3718 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3719  * But, this can also be called on packets in the established flow when
3720  * the fast version below fails.
3721  */
3722 void tcp_parse_options(const struct net *net,
3723 		       const struct sk_buff *skb,
3724 		       struct tcp_options_received *opt_rx, int estab,
3725 		       struct tcp_fastopen_cookie *foc)
3726 {
3727 	const unsigned char *ptr;
3728 	const struct tcphdr *th = tcp_hdr(skb);
3729 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3730 
3731 	ptr = (const unsigned char *)(th + 1);
3732 	opt_rx->saw_tstamp = 0;
3733 
3734 	while (length > 0) {
3735 		int opcode = *ptr++;
3736 		int opsize;
3737 
3738 		switch (opcode) {
3739 		case TCPOPT_EOL:
3740 			return;
3741 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3742 			length--;
3743 			continue;
3744 		default:
3745 			opsize = *ptr++;
3746 			if (opsize < 2) /* "silly options" */
3747 				return;
3748 			if (opsize > length)
3749 				return;	/* don't parse partial options */
3750 			switch (opcode) {
3751 			case TCPOPT_MSS:
3752 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3753 					u16 in_mss = get_unaligned_be16(ptr);
3754 					if (in_mss) {
3755 						if (opt_rx->user_mss &&
3756 						    opt_rx->user_mss < in_mss)
3757 							in_mss = opt_rx->user_mss;
3758 						opt_rx->mss_clamp = in_mss;
3759 					}
3760 				}
3761 				break;
3762 			case TCPOPT_WINDOW:
3763 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3764 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3765 					__u8 snd_wscale = *(__u8 *)ptr;
3766 					opt_rx->wscale_ok = 1;
3767 					if (snd_wscale > TCP_MAX_WSCALE) {
3768 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3769 								     __func__,
3770 								     snd_wscale,
3771 								     TCP_MAX_WSCALE);
3772 						snd_wscale = TCP_MAX_WSCALE;
3773 					}
3774 					opt_rx->snd_wscale = snd_wscale;
3775 				}
3776 				break;
3777 			case TCPOPT_TIMESTAMP:
3778 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3779 				    ((estab && opt_rx->tstamp_ok) ||
3780 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3781 					opt_rx->saw_tstamp = 1;
3782 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3783 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3784 				}
3785 				break;
3786 			case TCPOPT_SACK_PERM:
3787 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3788 				    !estab && net->ipv4.sysctl_tcp_sack) {
3789 					opt_rx->sack_ok = TCP_SACK_SEEN;
3790 					tcp_sack_reset(opt_rx);
3791 				}
3792 				break;
3793 
3794 			case TCPOPT_SACK:
3795 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3796 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3797 				   opt_rx->sack_ok) {
3798 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3799 				}
3800 				break;
3801 #ifdef CONFIG_TCP_MD5SIG
3802 			case TCPOPT_MD5SIG:
3803 				/*
3804 				 * The MD5 Hash has already been
3805 				 * checked (see tcp_v{4,6}_do_rcv()).
3806 				 */
3807 				break;
3808 #endif
3809 			case TCPOPT_FASTOPEN:
3810 				tcp_parse_fastopen_option(
3811 					opsize - TCPOLEN_FASTOPEN_BASE,
3812 					ptr, th->syn, foc, false);
3813 				break;
3814 
3815 			case TCPOPT_EXP:
3816 				/* Fast Open option shares code 254 using a
3817 				 * 16 bits magic number.
3818 				 */
3819 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3820 				    get_unaligned_be16(ptr) ==
3821 				    TCPOPT_FASTOPEN_MAGIC)
3822 					tcp_parse_fastopen_option(opsize -
3823 						TCPOLEN_EXP_FASTOPEN_BASE,
3824 						ptr + 2, th->syn, foc, true);
3825 				else
3826 					smc_parse_options(th, opt_rx, ptr,
3827 							  opsize);
3828 				break;
3829 
3830 			}
3831 			ptr += opsize-2;
3832 			length -= opsize;
3833 		}
3834 	}
3835 }
3836 EXPORT_SYMBOL(tcp_parse_options);
3837 
3838 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3839 {
3840 	const __be32 *ptr = (const __be32 *)(th + 1);
3841 
3842 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3843 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3844 		tp->rx_opt.saw_tstamp = 1;
3845 		++ptr;
3846 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3847 		++ptr;
3848 		if (*ptr)
3849 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3850 		else
3851 			tp->rx_opt.rcv_tsecr = 0;
3852 		return true;
3853 	}
3854 	return false;
3855 }
3856 
3857 /* Fast parse options. This hopes to only see timestamps.
3858  * If it is wrong it falls back on tcp_parse_options().
3859  */
3860 static bool tcp_fast_parse_options(const struct net *net,
3861 				   const struct sk_buff *skb,
3862 				   const struct tcphdr *th, struct tcp_sock *tp)
3863 {
3864 	/* In the spirit of fast parsing, compare doff directly to constant
3865 	 * values.  Because equality is used, short doff can be ignored here.
3866 	 */
3867 	if (th->doff == (sizeof(*th) / 4)) {
3868 		tp->rx_opt.saw_tstamp = 0;
3869 		return false;
3870 	} else if (tp->rx_opt.tstamp_ok &&
3871 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3872 		if (tcp_parse_aligned_timestamp(tp, th))
3873 			return true;
3874 	}
3875 
3876 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3877 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3878 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3879 
3880 	return true;
3881 }
3882 
3883 #ifdef CONFIG_TCP_MD5SIG
3884 /*
3885  * Parse MD5 Signature option
3886  */
3887 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3888 {
3889 	int length = (th->doff << 2) - sizeof(*th);
3890 	const u8 *ptr = (const u8 *)(th + 1);
3891 
3892 	/* If not enough data remaining, we can short cut */
3893 	while (length >= TCPOLEN_MD5SIG) {
3894 		int opcode = *ptr++;
3895 		int opsize;
3896 
3897 		switch (opcode) {
3898 		case TCPOPT_EOL:
3899 			return NULL;
3900 		case TCPOPT_NOP:
3901 			length--;
3902 			continue;
3903 		default:
3904 			opsize = *ptr++;
3905 			if (opsize < 2 || opsize > length)
3906 				return NULL;
3907 			if (opcode == TCPOPT_MD5SIG)
3908 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3909 		}
3910 		ptr += opsize - 2;
3911 		length -= opsize;
3912 	}
3913 	return NULL;
3914 }
3915 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3916 #endif
3917 
3918 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3919  *
3920  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3921  * it can pass through stack. So, the following predicate verifies that
3922  * this segment is not used for anything but congestion avoidance or
3923  * fast retransmit. Moreover, we even are able to eliminate most of such
3924  * second order effects, if we apply some small "replay" window (~RTO)
3925  * to timestamp space.
3926  *
3927  * All these measures still do not guarantee that we reject wrapped ACKs
3928  * on networks with high bandwidth, when sequence space is recycled fastly,
3929  * but it guarantees that such events will be very rare and do not affect
3930  * connection seriously. This doesn't look nice, but alas, PAWS is really
3931  * buggy extension.
3932  *
3933  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3934  * states that events when retransmit arrives after original data are rare.
3935  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3936  * the biggest problem on large power networks even with minor reordering.
3937  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3938  * up to bandwidth of 18Gigabit/sec. 8) ]
3939  */
3940 
3941 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3942 {
3943 	const struct tcp_sock *tp = tcp_sk(sk);
3944 	const struct tcphdr *th = tcp_hdr(skb);
3945 	u32 seq = TCP_SKB_CB(skb)->seq;
3946 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3947 
3948 	return (/* 1. Pure ACK with correct sequence number. */
3949 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3950 
3951 		/* 2. ... and duplicate ACK. */
3952 		ack == tp->snd_una &&
3953 
3954 		/* 3. ... and does not update window. */
3955 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3956 
3957 		/* 4. ... and sits in replay window. */
3958 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3959 }
3960 
3961 static inline bool tcp_paws_discard(const struct sock *sk,
3962 				   const struct sk_buff *skb)
3963 {
3964 	const struct tcp_sock *tp = tcp_sk(sk);
3965 
3966 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3967 	       !tcp_disordered_ack(sk, skb);
3968 }
3969 
3970 /* Check segment sequence number for validity.
3971  *
3972  * Segment controls are considered valid, if the segment
3973  * fits to the window after truncation to the window. Acceptability
3974  * of data (and SYN, FIN, of course) is checked separately.
3975  * See tcp_data_queue(), for example.
3976  *
3977  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3978  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3979  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3980  * (borrowed from freebsd)
3981  */
3982 
3983 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3984 {
3985 	return	!before(end_seq, tp->rcv_wup) &&
3986 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3987 }
3988 
3989 /* When we get a reset we do this. */
3990 void tcp_reset(struct sock *sk)
3991 {
3992 	trace_tcp_receive_reset(sk);
3993 
3994 	/* We want the right error as BSD sees it (and indeed as we do). */
3995 	switch (sk->sk_state) {
3996 	case TCP_SYN_SENT:
3997 		sk->sk_err = ECONNREFUSED;
3998 		break;
3999 	case TCP_CLOSE_WAIT:
4000 		sk->sk_err = EPIPE;
4001 		break;
4002 	case TCP_CLOSE:
4003 		return;
4004 	default:
4005 		sk->sk_err = ECONNRESET;
4006 	}
4007 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4008 	smp_wmb();
4009 
4010 	tcp_write_queue_purge(sk);
4011 	tcp_done(sk);
4012 
4013 	if (!sock_flag(sk, SOCK_DEAD))
4014 		sk->sk_error_report(sk);
4015 }
4016 
4017 /*
4018  * 	Process the FIN bit. This now behaves as it is supposed to work
4019  *	and the FIN takes effect when it is validly part of sequence
4020  *	space. Not before when we get holes.
4021  *
4022  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4023  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4024  *	TIME-WAIT)
4025  *
4026  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4027  *	close and we go into CLOSING (and later onto TIME-WAIT)
4028  *
4029  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4030  */
4031 void tcp_fin(struct sock *sk)
4032 {
4033 	struct tcp_sock *tp = tcp_sk(sk);
4034 
4035 	inet_csk_schedule_ack(sk);
4036 
4037 	sk->sk_shutdown |= RCV_SHUTDOWN;
4038 	sock_set_flag(sk, SOCK_DONE);
4039 
4040 	switch (sk->sk_state) {
4041 	case TCP_SYN_RECV:
4042 	case TCP_ESTABLISHED:
4043 		/* Move to CLOSE_WAIT */
4044 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4045 		inet_csk(sk)->icsk_ack.pingpong = 1;
4046 		break;
4047 
4048 	case TCP_CLOSE_WAIT:
4049 	case TCP_CLOSING:
4050 		/* Received a retransmission of the FIN, do
4051 		 * nothing.
4052 		 */
4053 		break;
4054 	case TCP_LAST_ACK:
4055 		/* RFC793: Remain in the LAST-ACK state. */
4056 		break;
4057 
4058 	case TCP_FIN_WAIT1:
4059 		/* This case occurs when a simultaneous close
4060 		 * happens, we must ack the received FIN and
4061 		 * enter the CLOSING state.
4062 		 */
4063 		tcp_send_ack(sk);
4064 		tcp_set_state(sk, TCP_CLOSING);
4065 		break;
4066 	case TCP_FIN_WAIT2:
4067 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4068 		tcp_send_ack(sk);
4069 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4070 		break;
4071 	default:
4072 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4073 		 * cases we should never reach this piece of code.
4074 		 */
4075 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4076 		       __func__, sk->sk_state);
4077 		break;
4078 	}
4079 
4080 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4081 	 * Probably, we should reset in this case. For now drop them.
4082 	 */
4083 	skb_rbtree_purge(&tp->out_of_order_queue);
4084 	if (tcp_is_sack(tp))
4085 		tcp_sack_reset(&tp->rx_opt);
4086 	sk_mem_reclaim(sk);
4087 
4088 	if (!sock_flag(sk, SOCK_DEAD)) {
4089 		sk->sk_state_change(sk);
4090 
4091 		/* Do not send POLL_HUP for half duplex close. */
4092 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4093 		    sk->sk_state == TCP_CLOSE)
4094 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4095 		else
4096 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4097 	}
4098 }
4099 
4100 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4101 				  u32 end_seq)
4102 {
4103 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4104 		if (before(seq, sp->start_seq))
4105 			sp->start_seq = seq;
4106 		if (after(end_seq, sp->end_seq))
4107 			sp->end_seq = end_seq;
4108 		return true;
4109 	}
4110 	return false;
4111 }
4112 
4113 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4114 {
4115 	struct tcp_sock *tp = tcp_sk(sk);
4116 
4117 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4118 		int mib_idx;
4119 
4120 		if (before(seq, tp->rcv_nxt))
4121 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4122 		else
4123 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4124 
4125 		NET_INC_STATS(sock_net(sk), mib_idx);
4126 
4127 		tp->rx_opt.dsack = 1;
4128 		tp->duplicate_sack[0].start_seq = seq;
4129 		tp->duplicate_sack[0].end_seq = end_seq;
4130 	}
4131 }
4132 
4133 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4134 {
4135 	struct tcp_sock *tp = tcp_sk(sk);
4136 
4137 	if (!tp->rx_opt.dsack)
4138 		tcp_dsack_set(sk, seq, end_seq);
4139 	else
4140 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4141 }
4142 
4143 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4144 {
4145 	struct tcp_sock *tp = tcp_sk(sk);
4146 
4147 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4148 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4149 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4150 		tcp_enter_quickack_mode(sk);
4151 
4152 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4153 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4154 
4155 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4156 				end_seq = tp->rcv_nxt;
4157 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4158 		}
4159 	}
4160 
4161 	tcp_send_ack(sk);
4162 }
4163 
4164 /* These routines update the SACK block as out-of-order packets arrive or
4165  * in-order packets close up the sequence space.
4166  */
4167 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4168 {
4169 	int this_sack;
4170 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4171 	struct tcp_sack_block *swalk = sp + 1;
4172 
4173 	/* See if the recent change to the first SACK eats into
4174 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4175 	 */
4176 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4177 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4178 			int i;
4179 
4180 			/* Zap SWALK, by moving every further SACK up by one slot.
4181 			 * Decrease num_sacks.
4182 			 */
4183 			tp->rx_opt.num_sacks--;
4184 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4185 				sp[i] = sp[i + 1];
4186 			continue;
4187 		}
4188 		this_sack++, swalk++;
4189 	}
4190 }
4191 
4192 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4193 {
4194 	struct tcp_sock *tp = tcp_sk(sk);
4195 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4196 	int cur_sacks = tp->rx_opt.num_sacks;
4197 	int this_sack;
4198 
4199 	if (!cur_sacks)
4200 		goto new_sack;
4201 
4202 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4203 		if (tcp_sack_extend(sp, seq, end_seq)) {
4204 			/* Rotate this_sack to the first one. */
4205 			for (; this_sack > 0; this_sack--, sp--)
4206 				swap(*sp, *(sp - 1));
4207 			if (cur_sacks > 1)
4208 				tcp_sack_maybe_coalesce(tp);
4209 			return;
4210 		}
4211 	}
4212 
4213 	/* Could not find an adjacent existing SACK, build a new one,
4214 	 * put it at the front, and shift everyone else down.  We
4215 	 * always know there is at least one SACK present already here.
4216 	 *
4217 	 * If the sack array is full, forget about the last one.
4218 	 */
4219 	if (this_sack >= TCP_NUM_SACKS) {
4220 		this_sack--;
4221 		tp->rx_opt.num_sacks--;
4222 		sp--;
4223 	}
4224 	for (; this_sack > 0; this_sack--, sp--)
4225 		*sp = *(sp - 1);
4226 
4227 new_sack:
4228 	/* Build the new head SACK, and we're done. */
4229 	sp->start_seq = seq;
4230 	sp->end_seq = end_seq;
4231 	tp->rx_opt.num_sacks++;
4232 }
4233 
4234 /* RCV.NXT advances, some SACKs should be eaten. */
4235 
4236 static void tcp_sack_remove(struct tcp_sock *tp)
4237 {
4238 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4239 	int num_sacks = tp->rx_opt.num_sacks;
4240 	int this_sack;
4241 
4242 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4243 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4244 		tp->rx_opt.num_sacks = 0;
4245 		return;
4246 	}
4247 
4248 	for (this_sack = 0; this_sack < num_sacks;) {
4249 		/* Check if the start of the sack is covered by RCV.NXT. */
4250 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4251 			int i;
4252 
4253 			/* RCV.NXT must cover all the block! */
4254 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4255 
4256 			/* Zap this SACK, by moving forward any other SACKS. */
4257 			for (i = this_sack+1; i < num_sacks; i++)
4258 				tp->selective_acks[i-1] = tp->selective_acks[i];
4259 			num_sacks--;
4260 			continue;
4261 		}
4262 		this_sack++;
4263 		sp++;
4264 	}
4265 	tp->rx_opt.num_sacks = num_sacks;
4266 }
4267 
4268 /**
4269  * tcp_try_coalesce - try to merge skb to prior one
4270  * @sk: socket
4271  * @dest: destination queue
4272  * @to: prior buffer
4273  * @from: buffer to add in queue
4274  * @fragstolen: pointer to boolean
4275  *
4276  * Before queueing skb @from after @to, try to merge them
4277  * to reduce overall memory use and queue lengths, if cost is small.
4278  * Packets in ofo or receive queues can stay a long time.
4279  * Better try to coalesce them right now to avoid future collapses.
4280  * Returns true if caller should free @from instead of queueing it
4281  */
4282 static bool tcp_try_coalesce(struct sock *sk,
4283 			     struct sk_buff *to,
4284 			     struct sk_buff *from,
4285 			     bool *fragstolen)
4286 {
4287 	int delta;
4288 
4289 	*fragstolen = false;
4290 
4291 	/* Its possible this segment overlaps with prior segment in queue */
4292 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4293 		return false;
4294 
4295 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4296 		return false;
4297 
4298 	atomic_add(delta, &sk->sk_rmem_alloc);
4299 	sk_mem_charge(sk, delta);
4300 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4301 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4302 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4303 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4304 
4305 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4306 		TCP_SKB_CB(to)->has_rxtstamp = true;
4307 		to->tstamp = from->tstamp;
4308 	}
4309 
4310 	return true;
4311 }
4312 
4313 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4314 {
4315 	sk_drops_add(sk, skb);
4316 	__kfree_skb(skb);
4317 }
4318 
4319 /* This one checks to see if we can put data from the
4320  * out_of_order queue into the receive_queue.
4321  */
4322 static void tcp_ofo_queue(struct sock *sk)
4323 {
4324 	struct tcp_sock *tp = tcp_sk(sk);
4325 	__u32 dsack_high = tp->rcv_nxt;
4326 	bool fin, fragstolen, eaten;
4327 	struct sk_buff *skb, *tail;
4328 	struct rb_node *p;
4329 
4330 	p = rb_first(&tp->out_of_order_queue);
4331 	while (p) {
4332 		skb = rb_to_skb(p);
4333 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4334 			break;
4335 
4336 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4337 			__u32 dsack = dsack_high;
4338 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4339 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4340 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4341 		}
4342 		p = rb_next(p);
4343 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4344 
4345 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4346 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4347 			tcp_drop(sk, skb);
4348 			continue;
4349 		}
4350 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4351 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4352 			   TCP_SKB_CB(skb)->end_seq);
4353 
4354 		tail = skb_peek_tail(&sk->sk_receive_queue);
4355 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4356 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4357 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4358 		if (!eaten)
4359 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4360 		else
4361 			kfree_skb_partial(skb, fragstolen);
4362 
4363 		if (unlikely(fin)) {
4364 			tcp_fin(sk);
4365 			/* tcp_fin() purges tp->out_of_order_queue,
4366 			 * so we must end this loop right now.
4367 			 */
4368 			break;
4369 		}
4370 	}
4371 }
4372 
4373 static bool tcp_prune_ofo_queue(struct sock *sk);
4374 static int tcp_prune_queue(struct sock *sk);
4375 
4376 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4377 				 unsigned int size)
4378 {
4379 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4380 	    !sk_rmem_schedule(sk, skb, size)) {
4381 
4382 		if (tcp_prune_queue(sk) < 0)
4383 			return -1;
4384 
4385 		while (!sk_rmem_schedule(sk, skb, size)) {
4386 			if (!tcp_prune_ofo_queue(sk))
4387 				return -1;
4388 		}
4389 	}
4390 	return 0;
4391 }
4392 
4393 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4394 {
4395 	struct tcp_sock *tp = tcp_sk(sk);
4396 	struct rb_node **p, *parent;
4397 	struct sk_buff *skb1;
4398 	u32 seq, end_seq;
4399 	bool fragstolen;
4400 
4401 	tcp_ecn_check_ce(tp, skb);
4402 
4403 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4404 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4405 		tcp_drop(sk, skb);
4406 		return;
4407 	}
4408 
4409 	/* Disable header prediction. */
4410 	tp->pred_flags = 0;
4411 	inet_csk_schedule_ack(sk);
4412 
4413 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4414 	seq = TCP_SKB_CB(skb)->seq;
4415 	end_seq = TCP_SKB_CB(skb)->end_seq;
4416 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4417 		   tp->rcv_nxt, seq, end_seq);
4418 
4419 	p = &tp->out_of_order_queue.rb_node;
4420 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4421 		/* Initial out of order segment, build 1 SACK. */
4422 		if (tcp_is_sack(tp)) {
4423 			tp->rx_opt.num_sacks = 1;
4424 			tp->selective_acks[0].start_seq = seq;
4425 			tp->selective_acks[0].end_seq = end_seq;
4426 		}
4427 		rb_link_node(&skb->rbnode, NULL, p);
4428 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4429 		tp->ooo_last_skb = skb;
4430 		goto end;
4431 	}
4432 
4433 	/* In the typical case, we are adding an skb to the end of the list.
4434 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4435 	 */
4436 	if (tcp_try_coalesce(sk, tp->ooo_last_skb,
4437 			     skb, &fragstolen)) {
4438 coalesce_done:
4439 		tcp_grow_window(sk, skb);
4440 		kfree_skb_partial(skb, fragstolen);
4441 		skb = NULL;
4442 		goto add_sack;
4443 	}
4444 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4445 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4446 		parent = &tp->ooo_last_skb->rbnode;
4447 		p = &parent->rb_right;
4448 		goto insert;
4449 	}
4450 
4451 	/* Find place to insert this segment. Handle overlaps on the way. */
4452 	parent = NULL;
4453 	while (*p) {
4454 		parent = *p;
4455 		skb1 = rb_to_skb(parent);
4456 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4457 			p = &parent->rb_left;
4458 			continue;
4459 		}
4460 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4461 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4462 				/* All the bits are present. Drop. */
4463 				NET_INC_STATS(sock_net(sk),
4464 					      LINUX_MIB_TCPOFOMERGE);
4465 				__kfree_skb(skb);
4466 				skb = NULL;
4467 				tcp_dsack_set(sk, seq, end_seq);
4468 				goto add_sack;
4469 			}
4470 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4471 				/* Partial overlap. */
4472 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4473 			} else {
4474 				/* skb's seq == skb1's seq and skb covers skb1.
4475 				 * Replace skb1 with skb.
4476 				 */
4477 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4478 						&tp->out_of_order_queue);
4479 				tcp_dsack_extend(sk,
4480 						 TCP_SKB_CB(skb1)->seq,
4481 						 TCP_SKB_CB(skb1)->end_seq);
4482 				NET_INC_STATS(sock_net(sk),
4483 					      LINUX_MIB_TCPOFOMERGE);
4484 				__kfree_skb(skb1);
4485 				goto merge_right;
4486 			}
4487 		} else if (tcp_try_coalesce(sk, skb1,
4488 					    skb, &fragstolen)) {
4489 			goto coalesce_done;
4490 		}
4491 		p = &parent->rb_right;
4492 	}
4493 insert:
4494 	/* Insert segment into RB tree. */
4495 	rb_link_node(&skb->rbnode, parent, p);
4496 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4497 
4498 merge_right:
4499 	/* Remove other segments covered by skb. */
4500 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4501 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4502 			break;
4503 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4504 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4505 					 end_seq);
4506 			break;
4507 		}
4508 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4509 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4510 				 TCP_SKB_CB(skb1)->end_seq);
4511 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4512 		tcp_drop(sk, skb1);
4513 	}
4514 	/* If there is no skb after us, we are the last_skb ! */
4515 	if (!skb1)
4516 		tp->ooo_last_skb = skb;
4517 
4518 add_sack:
4519 	if (tcp_is_sack(tp))
4520 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4521 end:
4522 	if (skb) {
4523 		tcp_grow_window(sk, skb);
4524 		skb_condense(skb);
4525 		skb_set_owner_r(skb, sk);
4526 	}
4527 }
4528 
4529 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4530 		  bool *fragstolen)
4531 {
4532 	int eaten;
4533 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4534 
4535 	__skb_pull(skb, hdrlen);
4536 	eaten = (tail &&
4537 		 tcp_try_coalesce(sk, tail,
4538 				  skb, fragstolen)) ? 1 : 0;
4539 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4540 	if (!eaten) {
4541 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4542 		skb_set_owner_r(skb, sk);
4543 	}
4544 	return eaten;
4545 }
4546 
4547 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4548 {
4549 	struct sk_buff *skb;
4550 	int err = -ENOMEM;
4551 	int data_len = 0;
4552 	bool fragstolen;
4553 
4554 	if (size == 0)
4555 		return 0;
4556 
4557 	if (size > PAGE_SIZE) {
4558 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4559 
4560 		data_len = npages << PAGE_SHIFT;
4561 		size = data_len + (size & ~PAGE_MASK);
4562 	}
4563 	skb = alloc_skb_with_frags(size - data_len, data_len,
4564 				   PAGE_ALLOC_COSTLY_ORDER,
4565 				   &err, sk->sk_allocation);
4566 	if (!skb)
4567 		goto err;
4568 
4569 	skb_put(skb, size - data_len);
4570 	skb->data_len = data_len;
4571 	skb->len = size;
4572 
4573 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4574 		goto err_free;
4575 
4576 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4577 	if (err)
4578 		goto err_free;
4579 
4580 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4581 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4582 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4583 
4584 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4585 		WARN_ON_ONCE(fragstolen); /* should not happen */
4586 		__kfree_skb(skb);
4587 	}
4588 	return size;
4589 
4590 err_free:
4591 	kfree_skb(skb);
4592 err:
4593 	return err;
4594 
4595 }
4596 
4597 void tcp_data_ready(struct sock *sk)
4598 {
4599 	const struct tcp_sock *tp = tcp_sk(sk);
4600 	int avail = tp->rcv_nxt - tp->copied_seq;
4601 
4602 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4603 		return;
4604 
4605 	sk->sk_data_ready(sk);
4606 }
4607 
4608 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4609 {
4610 	struct tcp_sock *tp = tcp_sk(sk);
4611 	bool fragstolen;
4612 	int eaten;
4613 
4614 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4615 		__kfree_skb(skb);
4616 		return;
4617 	}
4618 	skb_dst_drop(skb);
4619 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4620 
4621 	tcp_ecn_accept_cwr(tp, skb);
4622 
4623 	tp->rx_opt.dsack = 0;
4624 
4625 	/*  Queue data for delivery to the user.
4626 	 *  Packets in sequence go to the receive queue.
4627 	 *  Out of sequence packets to the out_of_order_queue.
4628 	 */
4629 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4630 		if (tcp_receive_window(tp) == 0)
4631 			goto out_of_window;
4632 
4633 		/* Ok. In sequence. In window. */
4634 queue_and_out:
4635 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4636 			sk_forced_mem_schedule(sk, skb->truesize);
4637 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4638 			goto drop;
4639 
4640 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4641 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4642 		if (skb->len)
4643 			tcp_event_data_recv(sk, skb);
4644 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4645 			tcp_fin(sk);
4646 
4647 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4648 			tcp_ofo_queue(sk);
4649 
4650 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4651 			 * gap in queue is filled.
4652 			 */
4653 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4654 				inet_csk(sk)->icsk_ack.pingpong = 0;
4655 		}
4656 
4657 		if (tp->rx_opt.num_sacks)
4658 			tcp_sack_remove(tp);
4659 
4660 		tcp_fast_path_check(sk);
4661 
4662 		if (eaten > 0)
4663 			kfree_skb_partial(skb, fragstolen);
4664 		if (!sock_flag(sk, SOCK_DEAD))
4665 			tcp_data_ready(sk);
4666 		return;
4667 	}
4668 
4669 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4670 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4671 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4672 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4673 
4674 out_of_window:
4675 		tcp_enter_quickack_mode(sk);
4676 		inet_csk_schedule_ack(sk);
4677 drop:
4678 		tcp_drop(sk, skb);
4679 		return;
4680 	}
4681 
4682 	/* Out of window. F.e. zero window probe. */
4683 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4684 		goto out_of_window;
4685 
4686 	tcp_enter_quickack_mode(sk);
4687 
4688 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4689 		/* Partial packet, seq < rcv_next < end_seq */
4690 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4691 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4692 			   TCP_SKB_CB(skb)->end_seq);
4693 
4694 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4695 
4696 		/* If window is closed, drop tail of packet. But after
4697 		 * remembering D-SACK for its head made in previous line.
4698 		 */
4699 		if (!tcp_receive_window(tp))
4700 			goto out_of_window;
4701 		goto queue_and_out;
4702 	}
4703 
4704 	tcp_data_queue_ofo(sk, skb);
4705 }
4706 
4707 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4708 {
4709 	if (list)
4710 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4711 
4712 	return skb_rb_next(skb);
4713 }
4714 
4715 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4716 					struct sk_buff_head *list,
4717 					struct rb_root *root)
4718 {
4719 	struct sk_buff *next = tcp_skb_next(skb, list);
4720 
4721 	if (list)
4722 		__skb_unlink(skb, list);
4723 	else
4724 		rb_erase(&skb->rbnode, root);
4725 
4726 	__kfree_skb(skb);
4727 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4728 
4729 	return next;
4730 }
4731 
4732 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4733 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4734 {
4735 	struct rb_node **p = &root->rb_node;
4736 	struct rb_node *parent = NULL;
4737 	struct sk_buff *skb1;
4738 
4739 	while (*p) {
4740 		parent = *p;
4741 		skb1 = rb_to_skb(parent);
4742 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4743 			p = &parent->rb_left;
4744 		else
4745 			p = &parent->rb_right;
4746 	}
4747 	rb_link_node(&skb->rbnode, parent, p);
4748 	rb_insert_color(&skb->rbnode, root);
4749 }
4750 
4751 /* Collapse contiguous sequence of skbs head..tail with
4752  * sequence numbers start..end.
4753  *
4754  * If tail is NULL, this means until the end of the queue.
4755  *
4756  * Segments with FIN/SYN are not collapsed (only because this
4757  * simplifies code)
4758  */
4759 static void
4760 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4761 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4762 {
4763 	struct sk_buff *skb = head, *n;
4764 	struct sk_buff_head tmp;
4765 	bool end_of_skbs;
4766 
4767 	/* First, check that queue is collapsible and find
4768 	 * the point where collapsing can be useful.
4769 	 */
4770 restart:
4771 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4772 		n = tcp_skb_next(skb, list);
4773 
4774 		/* No new bits? It is possible on ofo queue. */
4775 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4776 			skb = tcp_collapse_one(sk, skb, list, root);
4777 			if (!skb)
4778 				break;
4779 			goto restart;
4780 		}
4781 
4782 		/* The first skb to collapse is:
4783 		 * - not SYN/FIN and
4784 		 * - bloated or contains data before "start" or
4785 		 *   overlaps to the next one.
4786 		 */
4787 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4788 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4789 		     before(TCP_SKB_CB(skb)->seq, start))) {
4790 			end_of_skbs = false;
4791 			break;
4792 		}
4793 
4794 		if (n && n != tail &&
4795 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4796 			end_of_skbs = false;
4797 			break;
4798 		}
4799 
4800 		/* Decided to skip this, advance start seq. */
4801 		start = TCP_SKB_CB(skb)->end_seq;
4802 	}
4803 	if (end_of_skbs ||
4804 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4805 		return;
4806 
4807 	__skb_queue_head_init(&tmp);
4808 
4809 	while (before(start, end)) {
4810 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4811 		struct sk_buff *nskb;
4812 
4813 		nskb = alloc_skb(copy, GFP_ATOMIC);
4814 		if (!nskb)
4815 			break;
4816 
4817 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4818 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4819 		if (list)
4820 			__skb_queue_before(list, skb, nskb);
4821 		else
4822 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4823 		skb_set_owner_r(nskb, sk);
4824 
4825 		/* Copy data, releasing collapsed skbs. */
4826 		while (copy > 0) {
4827 			int offset = start - TCP_SKB_CB(skb)->seq;
4828 			int size = TCP_SKB_CB(skb)->end_seq - start;
4829 
4830 			BUG_ON(offset < 0);
4831 			if (size > 0) {
4832 				size = min(copy, size);
4833 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4834 					BUG();
4835 				TCP_SKB_CB(nskb)->end_seq += size;
4836 				copy -= size;
4837 				start += size;
4838 			}
4839 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4840 				skb = tcp_collapse_one(sk, skb, list, root);
4841 				if (!skb ||
4842 				    skb == tail ||
4843 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4844 					goto end;
4845 			}
4846 		}
4847 	}
4848 end:
4849 	skb_queue_walk_safe(&tmp, skb, n)
4850 		tcp_rbtree_insert(root, skb);
4851 }
4852 
4853 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4854  * and tcp_collapse() them until all the queue is collapsed.
4855  */
4856 static void tcp_collapse_ofo_queue(struct sock *sk)
4857 {
4858 	struct tcp_sock *tp = tcp_sk(sk);
4859 	struct sk_buff *skb, *head;
4860 	u32 start, end;
4861 
4862 	skb = skb_rb_first(&tp->out_of_order_queue);
4863 new_range:
4864 	if (!skb) {
4865 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4866 		return;
4867 	}
4868 	start = TCP_SKB_CB(skb)->seq;
4869 	end = TCP_SKB_CB(skb)->end_seq;
4870 
4871 	for (head = skb;;) {
4872 		skb = skb_rb_next(skb);
4873 
4874 		/* Range is terminated when we see a gap or when
4875 		 * we are at the queue end.
4876 		 */
4877 		if (!skb ||
4878 		    after(TCP_SKB_CB(skb)->seq, end) ||
4879 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4880 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4881 				     head, skb, start, end);
4882 			goto new_range;
4883 		}
4884 
4885 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4886 			start = TCP_SKB_CB(skb)->seq;
4887 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4888 			end = TCP_SKB_CB(skb)->end_seq;
4889 	}
4890 }
4891 
4892 /*
4893  * Clean the out-of-order queue to make room.
4894  * We drop high sequences packets to :
4895  * 1) Let a chance for holes to be filled.
4896  * 2) not add too big latencies if thousands of packets sit there.
4897  *    (But if application shrinks SO_RCVBUF, we could still end up
4898  *     freeing whole queue here)
4899  *
4900  * Return true if queue has shrunk.
4901  */
4902 static bool tcp_prune_ofo_queue(struct sock *sk)
4903 {
4904 	struct tcp_sock *tp = tcp_sk(sk);
4905 	struct rb_node *node, *prev;
4906 
4907 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4908 		return false;
4909 
4910 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4911 	node = &tp->ooo_last_skb->rbnode;
4912 	do {
4913 		prev = rb_prev(node);
4914 		rb_erase(node, &tp->out_of_order_queue);
4915 		tcp_drop(sk, rb_to_skb(node));
4916 		sk_mem_reclaim(sk);
4917 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4918 		    !tcp_under_memory_pressure(sk))
4919 			break;
4920 		node = prev;
4921 	} while (node);
4922 	tp->ooo_last_skb = rb_to_skb(prev);
4923 
4924 	/* Reset SACK state.  A conforming SACK implementation will
4925 	 * do the same at a timeout based retransmit.  When a connection
4926 	 * is in a sad state like this, we care only about integrity
4927 	 * of the connection not performance.
4928 	 */
4929 	if (tp->rx_opt.sack_ok)
4930 		tcp_sack_reset(&tp->rx_opt);
4931 	return true;
4932 }
4933 
4934 /* Reduce allocated memory if we can, trying to get
4935  * the socket within its memory limits again.
4936  *
4937  * Return less than zero if we should start dropping frames
4938  * until the socket owning process reads some of the data
4939  * to stabilize the situation.
4940  */
4941 static int tcp_prune_queue(struct sock *sk)
4942 {
4943 	struct tcp_sock *tp = tcp_sk(sk);
4944 
4945 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4946 
4947 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4948 
4949 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4950 		tcp_clamp_window(sk);
4951 	else if (tcp_under_memory_pressure(sk))
4952 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4953 
4954 	tcp_collapse_ofo_queue(sk);
4955 	if (!skb_queue_empty(&sk->sk_receive_queue))
4956 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4957 			     skb_peek(&sk->sk_receive_queue),
4958 			     NULL,
4959 			     tp->copied_seq, tp->rcv_nxt);
4960 	sk_mem_reclaim(sk);
4961 
4962 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4963 		return 0;
4964 
4965 	/* Collapsing did not help, destructive actions follow.
4966 	 * This must not ever occur. */
4967 
4968 	tcp_prune_ofo_queue(sk);
4969 
4970 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4971 		return 0;
4972 
4973 	/* If we are really being abused, tell the caller to silently
4974 	 * drop receive data on the floor.  It will get retransmitted
4975 	 * and hopefully then we'll have sufficient space.
4976 	 */
4977 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4978 
4979 	/* Massive buffer overcommit. */
4980 	tp->pred_flags = 0;
4981 	return -1;
4982 }
4983 
4984 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4985 {
4986 	const struct tcp_sock *tp = tcp_sk(sk);
4987 
4988 	/* If the user specified a specific send buffer setting, do
4989 	 * not modify it.
4990 	 */
4991 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4992 		return false;
4993 
4994 	/* If we are under global TCP memory pressure, do not expand.  */
4995 	if (tcp_under_memory_pressure(sk))
4996 		return false;
4997 
4998 	/* If we are under soft global TCP memory pressure, do not expand.  */
4999 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5000 		return false;
5001 
5002 	/* If we filled the congestion window, do not expand.  */
5003 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5004 		return false;
5005 
5006 	return true;
5007 }
5008 
5009 /* When incoming ACK allowed to free some skb from write_queue,
5010  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5011  * on the exit from tcp input handler.
5012  *
5013  * PROBLEM: sndbuf expansion does not work well with largesend.
5014  */
5015 static void tcp_new_space(struct sock *sk)
5016 {
5017 	struct tcp_sock *tp = tcp_sk(sk);
5018 
5019 	if (tcp_should_expand_sndbuf(sk)) {
5020 		tcp_sndbuf_expand(sk);
5021 		tp->snd_cwnd_stamp = tcp_jiffies32;
5022 	}
5023 
5024 	sk->sk_write_space(sk);
5025 }
5026 
5027 static void tcp_check_space(struct sock *sk)
5028 {
5029 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5030 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5031 		/* pairs with tcp_poll() */
5032 		smp_mb();
5033 		if (sk->sk_socket &&
5034 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5035 			tcp_new_space(sk);
5036 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5037 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5038 		}
5039 	}
5040 }
5041 
5042 static inline void tcp_data_snd_check(struct sock *sk)
5043 {
5044 	tcp_push_pending_frames(sk);
5045 	tcp_check_space(sk);
5046 }
5047 
5048 /*
5049  * Check if sending an ack is needed.
5050  */
5051 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5052 {
5053 	struct tcp_sock *tp = tcp_sk(sk);
5054 
5055 	    /* More than one full frame received... */
5056 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5057 	     /* ... and right edge of window advances far enough.
5058 	      * (tcp_recvmsg() will send ACK otherwise).
5059 	      * If application uses SO_RCVLOWAT, we want send ack now if
5060 	      * we have not received enough bytes to satisfy the condition.
5061 	      */
5062 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5063 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5064 	    /* We ACK each frame or... */
5065 	    tcp_in_quickack_mode(sk) ||
5066 	    /* We have out of order data. */
5067 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5068 		/* Then ack it now */
5069 		tcp_send_ack(sk);
5070 	} else {
5071 		/* Else, send delayed ack. */
5072 		tcp_send_delayed_ack(sk);
5073 	}
5074 }
5075 
5076 static inline void tcp_ack_snd_check(struct sock *sk)
5077 {
5078 	if (!inet_csk_ack_scheduled(sk)) {
5079 		/* We sent a data segment already. */
5080 		return;
5081 	}
5082 	__tcp_ack_snd_check(sk, 1);
5083 }
5084 
5085 /*
5086  *	This routine is only called when we have urgent data
5087  *	signaled. Its the 'slow' part of tcp_urg. It could be
5088  *	moved inline now as tcp_urg is only called from one
5089  *	place. We handle URGent data wrong. We have to - as
5090  *	BSD still doesn't use the correction from RFC961.
5091  *	For 1003.1g we should support a new option TCP_STDURG to permit
5092  *	either form (or just set the sysctl tcp_stdurg).
5093  */
5094 
5095 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5096 {
5097 	struct tcp_sock *tp = tcp_sk(sk);
5098 	u32 ptr = ntohs(th->urg_ptr);
5099 
5100 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5101 		ptr--;
5102 	ptr += ntohl(th->seq);
5103 
5104 	/* Ignore urgent data that we've already seen and read. */
5105 	if (after(tp->copied_seq, ptr))
5106 		return;
5107 
5108 	/* Do not replay urg ptr.
5109 	 *
5110 	 * NOTE: interesting situation not covered by specs.
5111 	 * Misbehaving sender may send urg ptr, pointing to segment,
5112 	 * which we already have in ofo queue. We are not able to fetch
5113 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5114 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5115 	 * situations. But it is worth to think about possibility of some
5116 	 * DoSes using some hypothetical application level deadlock.
5117 	 */
5118 	if (before(ptr, tp->rcv_nxt))
5119 		return;
5120 
5121 	/* Do we already have a newer (or duplicate) urgent pointer? */
5122 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5123 		return;
5124 
5125 	/* Tell the world about our new urgent pointer. */
5126 	sk_send_sigurg(sk);
5127 
5128 	/* We may be adding urgent data when the last byte read was
5129 	 * urgent. To do this requires some care. We cannot just ignore
5130 	 * tp->copied_seq since we would read the last urgent byte again
5131 	 * as data, nor can we alter copied_seq until this data arrives
5132 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5133 	 *
5134 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5135 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5136 	 * and expect that both A and B disappear from stream. This is _wrong_.
5137 	 * Though this happens in BSD with high probability, this is occasional.
5138 	 * Any application relying on this is buggy. Note also, that fix "works"
5139 	 * only in this artificial test. Insert some normal data between A and B and we will
5140 	 * decline of BSD again. Verdict: it is better to remove to trap
5141 	 * buggy users.
5142 	 */
5143 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5144 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5145 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5146 		tp->copied_seq++;
5147 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5148 			__skb_unlink(skb, &sk->sk_receive_queue);
5149 			__kfree_skb(skb);
5150 		}
5151 	}
5152 
5153 	tp->urg_data = TCP_URG_NOTYET;
5154 	tp->urg_seq = ptr;
5155 
5156 	/* Disable header prediction. */
5157 	tp->pred_flags = 0;
5158 }
5159 
5160 /* This is the 'fast' part of urgent handling. */
5161 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5162 {
5163 	struct tcp_sock *tp = tcp_sk(sk);
5164 
5165 	/* Check if we get a new urgent pointer - normally not. */
5166 	if (th->urg)
5167 		tcp_check_urg(sk, th);
5168 
5169 	/* Do we wait for any urgent data? - normally not... */
5170 	if (tp->urg_data == TCP_URG_NOTYET) {
5171 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5172 			  th->syn;
5173 
5174 		/* Is the urgent pointer pointing into this packet? */
5175 		if (ptr < skb->len) {
5176 			u8 tmp;
5177 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5178 				BUG();
5179 			tp->urg_data = TCP_URG_VALID | tmp;
5180 			if (!sock_flag(sk, SOCK_DEAD))
5181 				sk->sk_data_ready(sk);
5182 		}
5183 	}
5184 }
5185 
5186 /* Accept RST for rcv_nxt - 1 after a FIN.
5187  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5188  * FIN is sent followed by a RST packet. The RST is sent with the same
5189  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5190  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5191  * ACKs on the closed socket. In addition middleboxes can drop either the
5192  * challenge ACK or a subsequent RST.
5193  */
5194 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5195 {
5196 	struct tcp_sock *tp = tcp_sk(sk);
5197 
5198 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5199 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5200 					       TCPF_CLOSING));
5201 }
5202 
5203 /* Does PAWS and seqno based validation of an incoming segment, flags will
5204  * play significant role here.
5205  */
5206 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5207 				  const struct tcphdr *th, int syn_inerr)
5208 {
5209 	struct tcp_sock *tp = tcp_sk(sk);
5210 	bool rst_seq_match = false;
5211 
5212 	/* RFC1323: H1. Apply PAWS check first. */
5213 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5214 	    tp->rx_opt.saw_tstamp &&
5215 	    tcp_paws_discard(sk, skb)) {
5216 		if (!th->rst) {
5217 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5218 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5219 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5220 						  &tp->last_oow_ack_time))
5221 				tcp_send_dupack(sk, skb);
5222 			goto discard;
5223 		}
5224 		/* Reset is accepted even if it did not pass PAWS. */
5225 	}
5226 
5227 	/* Step 1: check sequence number */
5228 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5229 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5230 		 * (RST) segments are validated by checking their SEQ-fields."
5231 		 * And page 69: "If an incoming segment is not acceptable,
5232 		 * an acknowledgment should be sent in reply (unless the RST
5233 		 * bit is set, if so drop the segment and return)".
5234 		 */
5235 		if (!th->rst) {
5236 			if (th->syn)
5237 				goto syn_challenge;
5238 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5239 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5240 						  &tp->last_oow_ack_time))
5241 				tcp_send_dupack(sk, skb);
5242 		} else if (tcp_reset_check(sk, skb)) {
5243 			tcp_reset(sk);
5244 		}
5245 		goto discard;
5246 	}
5247 
5248 	/* Step 2: check RST bit */
5249 	if (th->rst) {
5250 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5251 		 * FIN and SACK too if available):
5252 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5253 		 * the right-most SACK block,
5254 		 * then
5255 		 *     RESET the connection
5256 		 * else
5257 		 *     Send a challenge ACK
5258 		 */
5259 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5260 		    tcp_reset_check(sk, skb)) {
5261 			rst_seq_match = true;
5262 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5263 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5264 			int max_sack = sp[0].end_seq;
5265 			int this_sack;
5266 
5267 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5268 			     ++this_sack) {
5269 				max_sack = after(sp[this_sack].end_seq,
5270 						 max_sack) ?
5271 					sp[this_sack].end_seq : max_sack;
5272 			}
5273 
5274 			if (TCP_SKB_CB(skb)->seq == max_sack)
5275 				rst_seq_match = true;
5276 		}
5277 
5278 		if (rst_seq_match)
5279 			tcp_reset(sk);
5280 		else {
5281 			/* Disable TFO if RST is out-of-order
5282 			 * and no data has been received
5283 			 * for current active TFO socket
5284 			 */
5285 			if (tp->syn_fastopen && !tp->data_segs_in &&
5286 			    sk->sk_state == TCP_ESTABLISHED)
5287 				tcp_fastopen_active_disable(sk);
5288 			tcp_send_challenge_ack(sk, skb);
5289 		}
5290 		goto discard;
5291 	}
5292 
5293 	/* step 3: check security and precedence [ignored] */
5294 
5295 	/* step 4: Check for a SYN
5296 	 * RFC 5961 4.2 : Send a challenge ack
5297 	 */
5298 	if (th->syn) {
5299 syn_challenge:
5300 		if (syn_inerr)
5301 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5302 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5303 		tcp_send_challenge_ack(sk, skb);
5304 		goto discard;
5305 	}
5306 
5307 	return true;
5308 
5309 discard:
5310 	tcp_drop(sk, skb);
5311 	return false;
5312 }
5313 
5314 /*
5315  *	TCP receive function for the ESTABLISHED state.
5316  *
5317  *	It is split into a fast path and a slow path. The fast path is
5318  * 	disabled when:
5319  *	- A zero window was announced from us - zero window probing
5320  *        is only handled properly in the slow path.
5321  *	- Out of order segments arrived.
5322  *	- Urgent data is expected.
5323  *	- There is no buffer space left
5324  *	- Unexpected TCP flags/window values/header lengths are received
5325  *	  (detected by checking the TCP header against pred_flags)
5326  *	- Data is sent in both directions. Fast path only supports pure senders
5327  *	  or pure receivers (this means either the sequence number or the ack
5328  *	  value must stay constant)
5329  *	- Unexpected TCP option.
5330  *
5331  *	When these conditions are not satisfied it drops into a standard
5332  *	receive procedure patterned after RFC793 to handle all cases.
5333  *	The first three cases are guaranteed by proper pred_flags setting,
5334  *	the rest is checked inline. Fast processing is turned on in
5335  *	tcp_data_queue when everything is OK.
5336  */
5337 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5338 			 const struct tcphdr *th)
5339 {
5340 	unsigned int len = skb->len;
5341 	struct tcp_sock *tp = tcp_sk(sk);
5342 
5343 	/* TCP congestion window tracking */
5344 	trace_tcp_probe(sk, skb);
5345 
5346 	tcp_mstamp_refresh(tp);
5347 	if (unlikely(!sk->sk_rx_dst))
5348 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5349 	/*
5350 	 *	Header prediction.
5351 	 *	The code loosely follows the one in the famous
5352 	 *	"30 instruction TCP receive" Van Jacobson mail.
5353 	 *
5354 	 *	Van's trick is to deposit buffers into socket queue
5355 	 *	on a device interrupt, to call tcp_recv function
5356 	 *	on the receive process context and checksum and copy
5357 	 *	the buffer to user space. smart...
5358 	 *
5359 	 *	Our current scheme is not silly either but we take the
5360 	 *	extra cost of the net_bh soft interrupt processing...
5361 	 *	We do checksum and copy also but from device to kernel.
5362 	 */
5363 
5364 	tp->rx_opt.saw_tstamp = 0;
5365 
5366 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5367 	 *	if header_prediction is to be made
5368 	 *	'S' will always be tp->tcp_header_len >> 2
5369 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5370 	 *  turn it off	(when there are holes in the receive
5371 	 *	 space for instance)
5372 	 *	PSH flag is ignored.
5373 	 */
5374 
5375 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5376 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5377 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5378 		int tcp_header_len = tp->tcp_header_len;
5379 
5380 		/* Timestamp header prediction: tcp_header_len
5381 		 * is automatically equal to th->doff*4 due to pred_flags
5382 		 * match.
5383 		 */
5384 
5385 		/* Check timestamp */
5386 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5387 			/* No? Slow path! */
5388 			if (!tcp_parse_aligned_timestamp(tp, th))
5389 				goto slow_path;
5390 
5391 			/* If PAWS failed, check it more carefully in slow path */
5392 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5393 				goto slow_path;
5394 
5395 			/* DO NOT update ts_recent here, if checksum fails
5396 			 * and timestamp was corrupted part, it will result
5397 			 * in a hung connection since we will drop all
5398 			 * future packets due to the PAWS test.
5399 			 */
5400 		}
5401 
5402 		if (len <= tcp_header_len) {
5403 			/* Bulk data transfer: sender */
5404 			if (len == tcp_header_len) {
5405 				/* Predicted packet is in window by definition.
5406 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5407 				 * Hence, check seq<=rcv_wup reduces to:
5408 				 */
5409 				if (tcp_header_len ==
5410 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5411 				    tp->rcv_nxt == tp->rcv_wup)
5412 					tcp_store_ts_recent(tp);
5413 
5414 				/* We know that such packets are checksummed
5415 				 * on entry.
5416 				 */
5417 				tcp_ack(sk, skb, 0);
5418 				__kfree_skb(skb);
5419 				tcp_data_snd_check(sk);
5420 				return;
5421 			} else { /* Header too small */
5422 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5423 				goto discard;
5424 			}
5425 		} else {
5426 			int eaten = 0;
5427 			bool fragstolen = false;
5428 
5429 			if (tcp_checksum_complete(skb))
5430 				goto csum_error;
5431 
5432 			if ((int)skb->truesize > sk->sk_forward_alloc)
5433 				goto step5;
5434 
5435 			/* Predicted packet is in window by definition.
5436 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5437 			 * Hence, check seq<=rcv_wup reduces to:
5438 			 */
5439 			if (tcp_header_len ==
5440 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5441 			    tp->rcv_nxt == tp->rcv_wup)
5442 				tcp_store_ts_recent(tp);
5443 
5444 			tcp_rcv_rtt_measure_ts(sk, skb);
5445 
5446 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5447 
5448 			/* Bulk data transfer: receiver */
5449 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5450 					      &fragstolen);
5451 
5452 			tcp_event_data_recv(sk, skb);
5453 
5454 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5455 				/* Well, only one small jumplet in fast path... */
5456 				tcp_ack(sk, skb, FLAG_DATA);
5457 				tcp_data_snd_check(sk);
5458 				if (!inet_csk_ack_scheduled(sk))
5459 					goto no_ack;
5460 			}
5461 
5462 			__tcp_ack_snd_check(sk, 0);
5463 no_ack:
5464 			if (eaten)
5465 				kfree_skb_partial(skb, fragstolen);
5466 			tcp_data_ready(sk);
5467 			return;
5468 		}
5469 	}
5470 
5471 slow_path:
5472 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5473 		goto csum_error;
5474 
5475 	if (!th->ack && !th->rst && !th->syn)
5476 		goto discard;
5477 
5478 	/*
5479 	 *	Standard slow path.
5480 	 */
5481 
5482 	if (!tcp_validate_incoming(sk, skb, th, 1))
5483 		return;
5484 
5485 step5:
5486 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5487 		goto discard;
5488 
5489 	tcp_rcv_rtt_measure_ts(sk, skb);
5490 
5491 	/* Process urgent data. */
5492 	tcp_urg(sk, skb, th);
5493 
5494 	/* step 7: process the segment text */
5495 	tcp_data_queue(sk, skb);
5496 
5497 	tcp_data_snd_check(sk);
5498 	tcp_ack_snd_check(sk);
5499 	return;
5500 
5501 csum_error:
5502 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5503 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5504 
5505 discard:
5506 	tcp_drop(sk, skb);
5507 }
5508 EXPORT_SYMBOL(tcp_rcv_established);
5509 
5510 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5511 {
5512 	struct tcp_sock *tp = tcp_sk(sk);
5513 	struct inet_connection_sock *icsk = inet_csk(sk);
5514 
5515 	tcp_set_state(sk, TCP_ESTABLISHED);
5516 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5517 
5518 	if (skb) {
5519 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5520 		security_inet_conn_established(sk, skb);
5521 	}
5522 
5523 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5524 
5525 	/* Prevent spurious tcp_cwnd_restart() on first data
5526 	 * packet.
5527 	 */
5528 	tp->lsndtime = tcp_jiffies32;
5529 
5530 	if (sock_flag(sk, SOCK_KEEPOPEN))
5531 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5532 
5533 	if (!tp->rx_opt.snd_wscale)
5534 		__tcp_fast_path_on(tp, tp->snd_wnd);
5535 	else
5536 		tp->pred_flags = 0;
5537 }
5538 
5539 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5540 				    struct tcp_fastopen_cookie *cookie)
5541 {
5542 	struct tcp_sock *tp = tcp_sk(sk);
5543 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5544 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5545 	bool syn_drop = false;
5546 
5547 	if (mss == tp->rx_opt.user_mss) {
5548 		struct tcp_options_received opt;
5549 
5550 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5551 		tcp_clear_options(&opt);
5552 		opt.user_mss = opt.mss_clamp = 0;
5553 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5554 		mss = opt.mss_clamp;
5555 	}
5556 
5557 	if (!tp->syn_fastopen) {
5558 		/* Ignore an unsolicited cookie */
5559 		cookie->len = -1;
5560 	} else if (tp->total_retrans) {
5561 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5562 		 * acknowledges data. Presumably the remote received only
5563 		 * the retransmitted (regular) SYNs: either the original
5564 		 * SYN-data or the corresponding SYN-ACK was dropped.
5565 		 */
5566 		syn_drop = (cookie->len < 0 && data);
5567 	} else if (cookie->len < 0 && !tp->syn_data) {
5568 		/* We requested a cookie but didn't get it. If we did not use
5569 		 * the (old) exp opt format then try so next time (try_exp=1).
5570 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5571 		 */
5572 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5573 	}
5574 
5575 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5576 
5577 	if (data) { /* Retransmit unacked data in SYN */
5578 		skb_rbtree_walk_from(data) {
5579 			if (__tcp_retransmit_skb(sk, data, 1))
5580 				break;
5581 		}
5582 		tcp_rearm_rto(sk);
5583 		NET_INC_STATS(sock_net(sk),
5584 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5585 		return true;
5586 	}
5587 	tp->syn_data_acked = tp->syn_data;
5588 	if (tp->syn_data_acked) {
5589 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5590 		/* SYN-data is counted as two separate packets in tcp_ack() */
5591 		if (tp->delivered > 1)
5592 			--tp->delivered;
5593 	}
5594 
5595 	tcp_fastopen_add_skb(sk, synack);
5596 
5597 	return false;
5598 }
5599 
5600 static void smc_check_reset_syn(struct tcp_sock *tp)
5601 {
5602 #if IS_ENABLED(CONFIG_SMC)
5603 	if (static_branch_unlikely(&tcp_have_smc)) {
5604 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5605 			tp->syn_smc = 0;
5606 	}
5607 #endif
5608 }
5609 
5610 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5611 					 const struct tcphdr *th)
5612 {
5613 	struct inet_connection_sock *icsk = inet_csk(sk);
5614 	struct tcp_sock *tp = tcp_sk(sk);
5615 	struct tcp_fastopen_cookie foc = { .len = -1 };
5616 	int saved_clamp = tp->rx_opt.mss_clamp;
5617 	bool fastopen_fail;
5618 
5619 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5620 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5621 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5622 
5623 	if (th->ack) {
5624 		/* rfc793:
5625 		 * "If the state is SYN-SENT then
5626 		 *    first check the ACK bit
5627 		 *      If the ACK bit is set
5628 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5629 		 *        a reset (unless the RST bit is set, if so drop
5630 		 *        the segment and return)"
5631 		 */
5632 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5633 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5634 			goto reset_and_undo;
5635 
5636 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5637 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5638 			     tcp_time_stamp(tp))) {
5639 			NET_INC_STATS(sock_net(sk),
5640 					LINUX_MIB_PAWSACTIVEREJECTED);
5641 			goto reset_and_undo;
5642 		}
5643 
5644 		/* Now ACK is acceptable.
5645 		 *
5646 		 * "If the RST bit is set
5647 		 *    If the ACK was acceptable then signal the user "error:
5648 		 *    connection reset", drop the segment, enter CLOSED state,
5649 		 *    delete TCB, and return."
5650 		 */
5651 
5652 		if (th->rst) {
5653 			tcp_reset(sk);
5654 			goto discard;
5655 		}
5656 
5657 		/* rfc793:
5658 		 *   "fifth, if neither of the SYN or RST bits is set then
5659 		 *    drop the segment and return."
5660 		 *
5661 		 *    See note below!
5662 		 *                                        --ANK(990513)
5663 		 */
5664 		if (!th->syn)
5665 			goto discard_and_undo;
5666 
5667 		/* rfc793:
5668 		 *   "If the SYN bit is on ...
5669 		 *    are acceptable then ...
5670 		 *    (our SYN has been ACKed), change the connection
5671 		 *    state to ESTABLISHED..."
5672 		 */
5673 
5674 		tcp_ecn_rcv_synack(tp, th);
5675 
5676 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5677 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5678 
5679 		/* Ok.. it's good. Set up sequence numbers and
5680 		 * move to established.
5681 		 */
5682 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5683 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5684 
5685 		/* RFC1323: The window in SYN & SYN/ACK segments is
5686 		 * never scaled.
5687 		 */
5688 		tp->snd_wnd = ntohs(th->window);
5689 
5690 		if (!tp->rx_opt.wscale_ok) {
5691 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5692 			tp->window_clamp = min(tp->window_clamp, 65535U);
5693 		}
5694 
5695 		if (tp->rx_opt.saw_tstamp) {
5696 			tp->rx_opt.tstamp_ok	   = 1;
5697 			tp->tcp_header_len =
5698 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5699 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5700 			tcp_store_ts_recent(tp);
5701 		} else {
5702 			tp->tcp_header_len = sizeof(struct tcphdr);
5703 		}
5704 
5705 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5706 		tcp_initialize_rcv_mss(sk);
5707 
5708 		/* Remember, tcp_poll() does not lock socket!
5709 		 * Change state from SYN-SENT only after copied_seq
5710 		 * is initialized. */
5711 		tp->copied_seq = tp->rcv_nxt;
5712 
5713 		smc_check_reset_syn(tp);
5714 
5715 		smp_mb();
5716 
5717 		tcp_finish_connect(sk, skb);
5718 
5719 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5720 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5721 
5722 		if (!sock_flag(sk, SOCK_DEAD)) {
5723 			sk->sk_state_change(sk);
5724 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5725 		}
5726 		if (fastopen_fail)
5727 			return -1;
5728 		if (sk->sk_write_pending ||
5729 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5730 		    icsk->icsk_ack.pingpong) {
5731 			/* Save one ACK. Data will be ready after
5732 			 * several ticks, if write_pending is set.
5733 			 *
5734 			 * It may be deleted, but with this feature tcpdumps
5735 			 * look so _wonderfully_ clever, that I was not able
5736 			 * to stand against the temptation 8)     --ANK
5737 			 */
5738 			inet_csk_schedule_ack(sk);
5739 			tcp_enter_quickack_mode(sk);
5740 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5741 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5742 
5743 discard:
5744 			tcp_drop(sk, skb);
5745 			return 0;
5746 		} else {
5747 			tcp_send_ack(sk);
5748 		}
5749 		return -1;
5750 	}
5751 
5752 	/* No ACK in the segment */
5753 
5754 	if (th->rst) {
5755 		/* rfc793:
5756 		 * "If the RST bit is set
5757 		 *
5758 		 *      Otherwise (no ACK) drop the segment and return."
5759 		 */
5760 
5761 		goto discard_and_undo;
5762 	}
5763 
5764 	/* PAWS check. */
5765 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5766 	    tcp_paws_reject(&tp->rx_opt, 0))
5767 		goto discard_and_undo;
5768 
5769 	if (th->syn) {
5770 		/* We see SYN without ACK. It is attempt of
5771 		 * simultaneous connect with crossed SYNs.
5772 		 * Particularly, it can be connect to self.
5773 		 */
5774 		tcp_set_state(sk, TCP_SYN_RECV);
5775 
5776 		if (tp->rx_opt.saw_tstamp) {
5777 			tp->rx_opt.tstamp_ok = 1;
5778 			tcp_store_ts_recent(tp);
5779 			tp->tcp_header_len =
5780 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5781 		} else {
5782 			tp->tcp_header_len = sizeof(struct tcphdr);
5783 		}
5784 
5785 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5786 		tp->copied_seq = tp->rcv_nxt;
5787 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5788 
5789 		/* RFC1323: The window in SYN & SYN/ACK segments is
5790 		 * never scaled.
5791 		 */
5792 		tp->snd_wnd    = ntohs(th->window);
5793 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5794 		tp->max_window = tp->snd_wnd;
5795 
5796 		tcp_ecn_rcv_syn(tp, th);
5797 
5798 		tcp_mtup_init(sk);
5799 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5800 		tcp_initialize_rcv_mss(sk);
5801 
5802 		tcp_send_synack(sk);
5803 #if 0
5804 		/* Note, we could accept data and URG from this segment.
5805 		 * There are no obstacles to make this (except that we must
5806 		 * either change tcp_recvmsg() to prevent it from returning data
5807 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5808 		 *
5809 		 * However, if we ignore data in ACKless segments sometimes,
5810 		 * we have no reasons to accept it sometimes.
5811 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5812 		 * is not flawless. So, discard packet for sanity.
5813 		 * Uncomment this return to process the data.
5814 		 */
5815 		return -1;
5816 #else
5817 		goto discard;
5818 #endif
5819 	}
5820 	/* "fifth, if neither of the SYN or RST bits is set then
5821 	 * drop the segment and return."
5822 	 */
5823 
5824 discard_and_undo:
5825 	tcp_clear_options(&tp->rx_opt);
5826 	tp->rx_opt.mss_clamp = saved_clamp;
5827 	goto discard;
5828 
5829 reset_and_undo:
5830 	tcp_clear_options(&tp->rx_opt);
5831 	tp->rx_opt.mss_clamp = saved_clamp;
5832 	return 1;
5833 }
5834 
5835 /*
5836  *	This function implements the receiving procedure of RFC 793 for
5837  *	all states except ESTABLISHED and TIME_WAIT.
5838  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5839  *	address independent.
5840  */
5841 
5842 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5843 {
5844 	struct tcp_sock *tp = tcp_sk(sk);
5845 	struct inet_connection_sock *icsk = inet_csk(sk);
5846 	const struct tcphdr *th = tcp_hdr(skb);
5847 	struct request_sock *req;
5848 	int queued = 0;
5849 	bool acceptable;
5850 
5851 	switch (sk->sk_state) {
5852 	case TCP_CLOSE:
5853 		goto discard;
5854 
5855 	case TCP_LISTEN:
5856 		if (th->ack)
5857 			return 1;
5858 
5859 		if (th->rst)
5860 			goto discard;
5861 
5862 		if (th->syn) {
5863 			if (th->fin)
5864 				goto discard;
5865 			/* It is possible that we process SYN packets from backlog,
5866 			 * so we need to make sure to disable BH right there.
5867 			 */
5868 			local_bh_disable();
5869 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5870 			local_bh_enable();
5871 
5872 			if (!acceptable)
5873 				return 1;
5874 			consume_skb(skb);
5875 			return 0;
5876 		}
5877 		goto discard;
5878 
5879 	case TCP_SYN_SENT:
5880 		tp->rx_opt.saw_tstamp = 0;
5881 		tcp_mstamp_refresh(tp);
5882 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5883 		if (queued >= 0)
5884 			return queued;
5885 
5886 		/* Do step6 onward by hand. */
5887 		tcp_urg(sk, skb, th);
5888 		__kfree_skb(skb);
5889 		tcp_data_snd_check(sk);
5890 		return 0;
5891 	}
5892 
5893 	tcp_mstamp_refresh(tp);
5894 	tp->rx_opt.saw_tstamp = 0;
5895 	req = tp->fastopen_rsk;
5896 	if (req) {
5897 		bool req_stolen;
5898 
5899 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5900 		    sk->sk_state != TCP_FIN_WAIT1);
5901 
5902 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
5903 			goto discard;
5904 	}
5905 
5906 	if (!th->ack && !th->rst && !th->syn)
5907 		goto discard;
5908 
5909 	if (!tcp_validate_incoming(sk, skb, th, 0))
5910 		return 0;
5911 
5912 	/* step 5: check the ACK field */
5913 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5914 				      FLAG_UPDATE_TS_RECENT |
5915 				      FLAG_NO_CHALLENGE_ACK) > 0;
5916 
5917 	if (!acceptable) {
5918 		if (sk->sk_state == TCP_SYN_RECV)
5919 			return 1;	/* send one RST */
5920 		tcp_send_challenge_ack(sk, skb);
5921 		goto discard;
5922 	}
5923 	switch (sk->sk_state) {
5924 	case TCP_SYN_RECV:
5925 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
5926 		if (!tp->srtt_us)
5927 			tcp_synack_rtt_meas(sk, req);
5928 
5929 		/* Once we leave TCP_SYN_RECV, we no longer need req
5930 		 * so release it.
5931 		 */
5932 		if (req) {
5933 			inet_csk(sk)->icsk_retransmits = 0;
5934 			reqsk_fastopen_remove(sk, req, false);
5935 			/* Re-arm the timer because data may have been sent out.
5936 			 * This is similar to the regular data transmission case
5937 			 * when new data has just been ack'ed.
5938 			 *
5939 			 * (TFO) - we could try to be more aggressive and
5940 			 * retransmitting any data sooner based on when they
5941 			 * are sent out.
5942 			 */
5943 			tcp_rearm_rto(sk);
5944 		} else {
5945 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5946 			tp->copied_seq = tp->rcv_nxt;
5947 		}
5948 		smp_mb();
5949 		tcp_set_state(sk, TCP_ESTABLISHED);
5950 		sk->sk_state_change(sk);
5951 
5952 		/* Note, that this wakeup is only for marginal crossed SYN case.
5953 		 * Passively open sockets are not waked up, because
5954 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5955 		 */
5956 		if (sk->sk_socket)
5957 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5958 
5959 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5960 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5961 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5962 
5963 		if (tp->rx_opt.tstamp_ok)
5964 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5965 
5966 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5967 			tcp_update_pacing_rate(sk);
5968 
5969 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5970 		tp->lsndtime = tcp_jiffies32;
5971 
5972 		tcp_initialize_rcv_mss(sk);
5973 		tcp_fast_path_on(tp);
5974 		break;
5975 
5976 	case TCP_FIN_WAIT1: {
5977 		int tmo;
5978 
5979 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5980 		 * Fast Open socket and this is the first acceptable
5981 		 * ACK we have received, this would have acknowledged
5982 		 * our SYNACK so stop the SYNACK timer.
5983 		 */
5984 		if (req) {
5985 			/* We no longer need the request sock. */
5986 			reqsk_fastopen_remove(sk, req, false);
5987 			tcp_rearm_rto(sk);
5988 		}
5989 		if (tp->snd_una != tp->write_seq)
5990 			break;
5991 
5992 		tcp_set_state(sk, TCP_FIN_WAIT2);
5993 		sk->sk_shutdown |= SEND_SHUTDOWN;
5994 
5995 		sk_dst_confirm(sk);
5996 
5997 		if (!sock_flag(sk, SOCK_DEAD)) {
5998 			/* Wake up lingering close() */
5999 			sk->sk_state_change(sk);
6000 			break;
6001 		}
6002 
6003 		if (tp->linger2 < 0) {
6004 			tcp_done(sk);
6005 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6006 			return 1;
6007 		}
6008 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6009 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6010 			/* Receive out of order FIN after close() */
6011 			if (tp->syn_fastopen && th->fin)
6012 				tcp_fastopen_active_disable(sk);
6013 			tcp_done(sk);
6014 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6015 			return 1;
6016 		}
6017 
6018 		tmo = tcp_fin_time(sk);
6019 		if (tmo > TCP_TIMEWAIT_LEN) {
6020 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6021 		} else if (th->fin || sock_owned_by_user(sk)) {
6022 			/* Bad case. We could lose such FIN otherwise.
6023 			 * It is not a big problem, but it looks confusing
6024 			 * and not so rare event. We still can lose it now,
6025 			 * if it spins in bh_lock_sock(), but it is really
6026 			 * marginal case.
6027 			 */
6028 			inet_csk_reset_keepalive_timer(sk, tmo);
6029 		} else {
6030 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6031 			goto discard;
6032 		}
6033 		break;
6034 	}
6035 
6036 	case TCP_CLOSING:
6037 		if (tp->snd_una == tp->write_seq) {
6038 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6039 			goto discard;
6040 		}
6041 		break;
6042 
6043 	case TCP_LAST_ACK:
6044 		if (tp->snd_una == tp->write_seq) {
6045 			tcp_update_metrics(sk);
6046 			tcp_done(sk);
6047 			goto discard;
6048 		}
6049 		break;
6050 	}
6051 
6052 	/* step 6: check the URG bit */
6053 	tcp_urg(sk, skb, th);
6054 
6055 	/* step 7: process the segment text */
6056 	switch (sk->sk_state) {
6057 	case TCP_CLOSE_WAIT:
6058 	case TCP_CLOSING:
6059 	case TCP_LAST_ACK:
6060 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6061 			break;
6062 		/* fall through */
6063 	case TCP_FIN_WAIT1:
6064 	case TCP_FIN_WAIT2:
6065 		/* RFC 793 says to queue data in these states,
6066 		 * RFC 1122 says we MUST send a reset.
6067 		 * BSD 4.4 also does reset.
6068 		 */
6069 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6070 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6071 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6072 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6073 				tcp_reset(sk);
6074 				return 1;
6075 			}
6076 		}
6077 		/* Fall through */
6078 	case TCP_ESTABLISHED:
6079 		tcp_data_queue(sk, skb);
6080 		queued = 1;
6081 		break;
6082 	}
6083 
6084 	/* tcp_data could move socket to TIME-WAIT */
6085 	if (sk->sk_state != TCP_CLOSE) {
6086 		tcp_data_snd_check(sk);
6087 		tcp_ack_snd_check(sk);
6088 	}
6089 
6090 	if (!queued) {
6091 discard:
6092 		tcp_drop(sk, skb);
6093 	}
6094 	return 0;
6095 }
6096 EXPORT_SYMBOL(tcp_rcv_state_process);
6097 
6098 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6099 {
6100 	struct inet_request_sock *ireq = inet_rsk(req);
6101 
6102 	if (family == AF_INET)
6103 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6104 				    &ireq->ir_rmt_addr, port);
6105 #if IS_ENABLED(CONFIG_IPV6)
6106 	else if (family == AF_INET6)
6107 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6108 				    &ireq->ir_v6_rmt_addr, port);
6109 #endif
6110 }
6111 
6112 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6113  *
6114  * If we receive a SYN packet with these bits set, it means a
6115  * network is playing bad games with TOS bits. In order to
6116  * avoid possible false congestion notifications, we disable
6117  * TCP ECN negotiation.
6118  *
6119  * Exception: tcp_ca wants ECN. This is required for DCTCP
6120  * congestion control: Linux DCTCP asserts ECT on all packets,
6121  * including SYN, which is most optimal solution; however,
6122  * others, such as FreeBSD do not.
6123  */
6124 static void tcp_ecn_create_request(struct request_sock *req,
6125 				   const struct sk_buff *skb,
6126 				   const struct sock *listen_sk,
6127 				   const struct dst_entry *dst)
6128 {
6129 	const struct tcphdr *th = tcp_hdr(skb);
6130 	const struct net *net = sock_net(listen_sk);
6131 	bool th_ecn = th->ece && th->cwr;
6132 	bool ect, ecn_ok;
6133 	u32 ecn_ok_dst;
6134 
6135 	if (!th_ecn)
6136 		return;
6137 
6138 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6139 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6140 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6141 
6142 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6143 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6144 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6145 		inet_rsk(req)->ecn_ok = 1;
6146 }
6147 
6148 static void tcp_openreq_init(struct request_sock *req,
6149 			     const struct tcp_options_received *rx_opt,
6150 			     struct sk_buff *skb, const struct sock *sk)
6151 {
6152 	struct inet_request_sock *ireq = inet_rsk(req);
6153 
6154 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6155 	req->cookie_ts = 0;
6156 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6157 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6158 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6159 	tcp_rsk(req)->last_oow_ack_time = 0;
6160 	req->mss = rx_opt->mss_clamp;
6161 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6162 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6163 	ireq->sack_ok = rx_opt->sack_ok;
6164 	ireq->snd_wscale = rx_opt->snd_wscale;
6165 	ireq->wscale_ok = rx_opt->wscale_ok;
6166 	ireq->acked = 0;
6167 	ireq->ecn_ok = 0;
6168 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6169 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6170 	ireq->ir_mark = inet_request_mark(sk, skb);
6171 #if IS_ENABLED(CONFIG_SMC)
6172 	ireq->smc_ok = rx_opt->smc_ok;
6173 #endif
6174 }
6175 
6176 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6177 				      struct sock *sk_listener,
6178 				      bool attach_listener)
6179 {
6180 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6181 					       attach_listener);
6182 
6183 	if (req) {
6184 		struct inet_request_sock *ireq = inet_rsk(req);
6185 
6186 		ireq->ireq_opt = NULL;
6187 #if IS_ENABLED(CONFIG_IPV6)
6188 		ireq->pktopts = NULL;
6189 #endif
6190 		atomic64_set(&ireq->ir_cookie, 0);
6191 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6192 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6193 		ireq->ireq_family = sk_listener->sk_family;
6194 	}
6195 
6196 	return req;
6197 }
6198 EXPORT_SYMBOL(inet_reqsk_alloc);
6199 
6200 /*
6201  * Return true if a syncookie should be sent
6202  */
6203 static bool tcp_syn_flood_action(const struct sock *sk,
6204 				 const struct sk_buff *skb,
6205 				 const char *proto)
6206 {
6207 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6208 	const char *msg = "Dropping request";
6209 	bool want_cookie = false;
6210 	struct net *net = sock_net(sk);
6211 
6212 #ifdef CONFIG_SYN_COOKIES
6213 	if (net->ipv4.sysctl_tcp_syncookies) {
6214 		msg = "Sending cookies";
6215 		want_cookie = true;
6216 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6217 	} else
6218 #endif
6219 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6220 
6221 	if (!queue->synflood_warned &&
6222 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6223 	    xchg(&queue->synflood_warned, 1) == 0)
6224 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6225 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6226 
6227 	return want_cookie;
6228 }
6229 
6230 static void tcp_reqsk_record_syn(const struct sock *sk,
6231 				 struct request_sock *req,
6232 				 const struct sk_buff *skb)
6233 {
6234 	if (tcp_sk(sk)->save_syn) {
6235 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6236 		u32 *copy;
6237 
6238 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6239 		if (copy) {
6240 			copy[0] = len;
6241 			memcpy(&copy[1], skb_network_header(skb), len);
6242 			req->saved_syn = copy;
6243 		}
6244 	}
6245 }
6246 
6247 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6248 		     const struct tcp_request_sock_ops *af_ops,
6249 		     struct sock *sk, struct sk_buff *skb)
6250 {
6251 	struct tcp_fastopen_cookie foc = { .len = -1 };
6252 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6253 	struct tcp_options_received tmp_opt;
6254 	struct tcp_sock *tp = tcp_sk(sk);
6255 	struct net *net = sock_net(sk);
6256 	struct sock *fastopen_sk = NULL;
6257 	struct request_sock *req;
6258 	bool want_cookie = false;
6259 	struct dst_entry *dst;
6260 	struct flowi fl;
6261 
6262 	/* TW buckets are converted to open requests without
6263 	 * limitations, they conserve resources and peer is
6264 	 * evidently real one.
6265 	 */
6266 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6267 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6268 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6269 		if (!want_cookie)
6270 			goto drop;
6271 	}
6272 
6273 	if (sk_acceptq_is_full(sk)) {
6274 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6275 		goto drop;
6276 	}
6277 
6278 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6279 	if (!req)
6280 		goto drop;
6281 
6282 	tcp_rsk(req)->af_specific = af_ops;
6283 	tcp_rsk(req)->ts_off = 0;
6284 
6285 	tcp_clear_options(&tmp_opt);
6286 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6287 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6288 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6289 			  want_cookie ? NULL : &foc);
6290 
6291 	if (want_cookie && !tmp_opt.saw_tstamp)
6292 		tcp_clear_options(&tmp_opt);
6293 
6294 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6295 		tmp_opt.smc_ok = 0;
6296 
6297 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6298 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6299 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6300 
6301 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6302 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6303 
6304 	af_ops->init_req(req, sk, skb);
6305 
6306 	if (security_inet_conn_request(sk, skb, req))
6307 		goto drop_and_free;
6308 
6309 	if (tmp_opt.tstamp_ok)
6310 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6311 
6312 	dst = af_ops->route_req(sk, &fl, req);
6313 	if (!dst)
6314 		goto drop_and_free;
6315 
6316 	if (!want_cookie && !isn) {
6317 		/* Kill the following clause, if you dislike this way. */
6318 		if (!net->ipv4.sysctl_tcp_syncookies &&
6319 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6320 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6321 		    !tcp_peer_is_proven(req, dst)) {
6322 			/* Without syncookies last quarter of
6323 			 * backlog is filled with destinations,
6324 			 * proven to be alive.
6325 			 * It means that we continue to communicate
6326 			 * to destinations, already remembered
6327 			 * to the moment of synflood.
6328 			 */
6329 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6330 				    rsk_ops->family);
6331 			goto drop_and_release;
6332 		}
6333 
6334 		isn = af_ops->init_seq(skb);
6335 	}
6336 
6337 	tcp_ecn_create_request(req, skb, sk, dst);
6338 
6339 	if (want_cookie) {
6340 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6341 		req->cookie_ts = tmp_opt.tstamp_ok;
6342 		if (!tmp_opt.tstamp_ok)
6343 			inet_rsk(req)->ecn_ok = 0;
6344 	}
6345 
6346 	tcp_rsk(req)->snt_isn = isn;
6347 	tcp_rsk(req)->txhash = net_tx_rndhash();
6348 	tcp_openreq_init_rwin(req, sk, dst);
6349 	if (!want_cookie) {
6350 		tcp_reqsk_record_syn(sk, req, skb);
6351 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6352 	}
6353 	if (fastopen_sk) {
6354 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6355 				    &foc, TCP_SYNACK_FASTOPEN);
6356 		/* Add the child socket directly into the accept queue */
6357 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6358 		sk->sk_data_ready(sk);
6359 		bh_unlock_sock(fastopen_sk);
6360 		sock_put(fastopen_sk);
6361 	} else {
6362 		tcp_rsk(req)->tfo_listener = false;
6363 		if (!want_cookie)
6364 			inet_csk_reqsk_queue_hash_add(sk, req,
6365 				tcp_timeout_init((struct sock *)req));
6366 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6367 				    !want_cookie ? TCP_SYNACK_NORMAL :
6368 						   TCP_SYNACK_COOKIE);
6369 		if (want_cookie) {
6370 			reqsk_free(req);
6371 			return 0;
6372 		}
6373 	}
6374 	reqsk_put(req);
6375 	return 0;
6376 
6377 drop_and_release:
6378 	dst_release(dst);
6379 drop_and_free:
6380 	reqsk_free(req);
6381 drop:
6382 	tcp_listendrop(sk);
6383 	return 0;
6384 }
6385 EXPORT_SYMBOL(tcp_conn_request);
6386