1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: 25 * Pedro Roque : Fast Retransmit/Recovery. 26 * Two receive queues. 27 * Retransmit queue handled by TCP. 28 * Better retransmit timer handling. 29 * New congestion avoidance. 30 * Header prediction. 31 * Variable renaming. 32 * 33 * Eric : Fast Retransmit. 34 * Randy Scott : MSS option defines. 35 * Eric Schenk : Fixes to slow start algorithm. 36 * Eric Schenk : Yet another double ACK bug. 37 * Eric Schenk : Delayed ACK bug fixes. 38 * Eric Schenk : Floyd style fast retrans war avoidance. 39 * David S. Miller : Don't allow zero congestion window. 40 * Eric Schenk : Fix retransmitter so that it sends 41 * next packet on ack of previous packet. 42 * Andi Kleen : Moved open_request checking here 43 * and process RSTs for open_requests. 44 * Andi Kleen : Better prune_queue, and other fixes. 45 * Andrey Savochkin: Fix RTT measurements in the presence of 46 * timestamps. 47 * Andrey Savochkin: Check sequence numbers correctly when 48 * removing SACKs due to in sequence incoming 49 * data segments. 50 * Andi Kleen: Make sure we never ack data there is not 51 * enough room for. Also make this condition 52 * a fatal error if it might still happen. 53 * Andi Kleen: Add tcp_measure_rcv_mss to make 54 * connections with MSS<min(MTU,ann. MSS) 55 * work without delayed acks. 56 * Andi Kleen: Process packets with PSH set in the 57 * fast path. 58 * J Hadi Salim: ECN support 59 * Andrei Gurtov, 60 * Pasi Sarolahti, 61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 62 * engine. Lots of bugs are found. 63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 64 */ 65 66 #include <linux/config.h> 67 #include <linux/mm.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <net/tcp.h> 71 #include <net/inet_common.h> 72 #include <linux/ipsec.h> 73 #include <asm/unaligned.h> 74 #include <net/netdma.h> 75 76 int sysctl_tcp_timestamps = 1; 77 int sysctl_tcp_window_scaling = 1; 78 int sysctl_tcp_sack = 1; 79 int sysctl_tcp_fack = 1; 80 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 81 int sysctl_tcp_ecn; 82 int sysctl_tcp_dsack = 1; 83 int sysctl_tcp_app_win = 31; 84 int sysctl_tcp_adv_win_scale = 2; 85 86 int sysctl_tcp_stdurg; 87 int sysctl_tcp_rfc1337; 88 int sysctl_tcp_max_orphans = NR_FILE; 89 int sysctl_tcp_frto; 90 int sysctl_tcp_nometrics_save; 91 92 int sysctl_tcp_moderate_rcvbuf = 1; 93 int sysctl_tcp_abc = 1; 94 95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 101 #define FLAG_ECE 0x40 /* ECE in this ACK */ 102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0) 111 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2) 112 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4) 113 114 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 115 116 /* Adapt the MSS value used to make delayed ack decision to the 117 * real world. 118 */ 119 static void tcp_measure_rcv_mss(struct sock *sk, 120 const struct sk_buff *skb) 121 { 122 struct inet_connection_sock *icsk = inet_csk(sk); 123 const unsigned int lss = icsk->icsk_ack.last_seg_size; 124 unsigned int len; 125 126 icsk->icsk_ack.last_seg_size = 0; 127 128 /* skb->len may jitter because of SACKs, even if peer 129 * sends good full-sized frames. 130 */ 131 len = skb->len; 132 if (len >= icsk->icsk_ack.rcv_mss) { 133 icsk->icsk_ack.rcv_mss = len; 134 } else { 135 /* Otherwise, we make more careful check taking into account, 136 * that SACKs block is variable. 137 * 138 * "len" is invariant segment length, including TCP header. 139 */ 140 len += skb->data - skb->h.raw; 141 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 142 /* If PSH is not set, packet should be 143 * full sized, provided peer TCP is not badly broken. 144 * This observation (if it is correct 8)) allows 145 * to handle super-low mtu links fairly. 146 */ 147 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 148 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) { 149 /* Subtract also invariant (if peer is RFC compliant), 150 * tcp header plus fixed timestamp option length. 151 * Resulting "len" is MSS free of SACK jitter. 152 */ 153 len -= tcp_sk(sk)->tcp_header_len; 154 icsk->icsk_ack.last_seg_size = len; 155 if (len == lss) { 156 icsk->icsk_ack.rcv_mss = len; 157 return; 158 } 159 } 160 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 161 } 162 } 163 164 static void tcp_incr_quickack(struct sock *sk) 165 { 166 struct inet_connection_sock *icsk = inet_csk(sk); 167 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 168 169 if (quickacks==0) 170 quickacks=2; 171 if (quickacks > icsk->icsk_ack.quick) 172 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 173 } 174 175 void tcp_enter_quickack_mode(struct sock *sk) 176 { 177 struct inet_connection_sock *icsk = inet_csk(sk); 178 tcp_incr_quickack(sk); 179 icsk->icsk_ack.pingpong = 0; 180 icsk->icsk_ack.ato = TCP_ATO_MIN; 181 } 182 183 /* Send ACKs quickly, if "quick" count is not exhausted 184 * and the session is not interactive. 185 */ 186 187 static inline int tcp_in_quickack_mode(const struct sock *sk) 188 { 189 const struct inet_connection_sock *icsk = inet_csk(sk); 190 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 191 } 192 193 /* Buffer size and advertised window tuning. 194 * 195 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 196 */ 197 198 static void tcp_fixup_sndbuf(struct sock *sk) 199 { 200 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 201 sizeof(struct sk_buff); 202 203 if (sk->sk_sndbuf < 3 * sndmem) 204 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 205 } 206 207 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 208 * 209 * All tcp_full_space() is split to two parts: "network" buffer, allocated 210 * forward and advertised in receiver window (tp->rcv_wnd) and 211 * "application buffer", required to isolate scheduling/application 212 * latencies from network. 213 * window_clamp is maximal advertised window. It can be less than 214 * tcp_full_space(), in this case tcp_full_space() - window_clamp 215 * is reserved for "application" buffer. The less window_clamp is 216 * the smoother our behaviour from viewpoint of network, but the lower 217 * throughput and the higher sensitivity of the connection to losses. 8) 218 * 219 * rcv_ssthresh is more strict window_clamp used at "slow start" 220 * phase to predict further behaviour of this connection. 221 * It is used for two goals: 222 * - to enforce header prediction at sender, even when application 223 * requires some significant "application buffer". It is check #1. 224 * - to prevent pruning of receive queue because of misprediction 225 * of receiver window. Check #2. 226 * 227 * The scheme does not work when sender sends good segments opening 228 * window and then starts to feed us spaghetti. But it should work 229 * in common situations. Otherwise, we have to rely on queue collapsing. 230 */ 231 232 /* Slow part of check#2. */ 233 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp, 234 const struct sk_buff *skb) 235 { 236 /* Optimize this! */ 237 int truesize = tcp_win_from_space(skb->truesize)/2; 238 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2; 239 240 while (tp->rcv_ssthresh <= window) { 241 if (truesize <= skb->len) 242 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 243 244 truesize >>= 1; 245 window >>= 1; 246 } 247 return 0; 248 } 249 250 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp, 251 struct sk_buff *skb) 252 { 253 /* Check #1 */ 254 if (tp->rcv_ssthresh < tp->window_clamp && 255 (int)tp->rcv_ssthresh < tcp_space(sk) && 256 !tcp_memory_pressure) { 257 int incr; 258 259 /* Check #2. Increase window, if skb with such overhead 260 * will fit to rcvbuf in future. 261 */ 262 if (tcp_win_from_space(skb->truesize) <= skb->len) 263 incr = 2*tp->advmss; 264 else 265 incr = __tcp_grow_window(sk, tp, skb); 266 267 if (incr) { 268 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp); 269 inet_csk(sk)->icsk_ack.quick |= 1; 270 } 271 } 272 } 273 274 /* 3. Tuning rcvbuf, when connection enters established state. */ 275 276 static void tcp_fixup_rcvbuf(struct sock *sk) 277 { 278 struct tcp_sock *tp = tcp_sk(sk); 279 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 280 281 /* Try to select rcvbuf so that 4 mss-sized segments 282 * will fit to window and corresponding skbs will fit to our rcvbuf. 283 * (was 3; 4 is minimum to allow fast retransmit to work.) 284 */ 285 while (tcp_win_from_space(rcvmem) < tp->advmss) 286 rcvmem += 128; 287 if (sk->sk_rcvbuf < 4 * rcvmem) 288 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 289 } 290 291 /* 4. Try to fixup all. It is made immediately after connection enters 292 * established state. 293 */ 294 static void tcp_init_buffer_space(struct sock *sk) 295 { 296 struct tcp_sock *tp = tcp_sk(sk); 297 int maxwin; 298 299 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 300 tcp_fixup_rcvbuf(sk); 301 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 302 tcp_fixup_sndbuf(sk); 303 304 tp->rcvq_space.space = tp->rcv_wnd; 305 306 maxwin = tcp_full_space(sk); 307 308 if (tp->window_clamp >= maxwin) { 309 tp->window_clamp = maxwin; 310 311 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 312 tp->window_clamp = max(maxwin - 313 (maxwin >> sysctl_tcp_app_win), 314 4 * tp->advmss); 315 } 316 317 /* Force reservation of one segment. */ 318 if (sysctl_tcp_app_win && 319 tp->window_clamp > 2 * tp->advmss && 320 tp->window_clamp + tp->advmss > maxwin) 321 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 322 323 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 324 tp->snd_cwnd_stamp = tcp_time_stamp; 325 } 326 327 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 328 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp) 329 { 330 struct inet_connection_sock *icsk = inet_csk(sk); 331 332 icsk->icsk_ack.quick = 0; 333 334 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 335 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 336 !tcp_memory_pressure && 337 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 338 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 339 sysctl_tcp_rmem[2]); 340 } 341 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 342 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss); 343 } 344 345 346 /* Initialize RCV_MSS value. 347 * RCV_MSS is an our guess about MSS used by the peer. 348 * We haven't any direct information about the MSS. 349 * It's better to underestimate the RCV_MSS rather than overestimate. 350 * Overestimations make us ACKing less frequently than needed. 351 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 352 */ 353 void tcp_initialize_rcv_mss(struct sock *sk) 354 { 355 struct tcp_sock *tp = tcp_sk(sk); 356 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 357 358 hint = min(hint, tp->rcv_wnd/2); 359 hint = min(hint, TCP_MIN_RCVMSS); 360 hint = max(hint, TCP_MIN_MSS); 361 362 inet_csk(sk)->icsk_ack.rcv_mss = hint; 363 } 364 365 /* Receiver "autotuning" code. 366 * 367 * The algorithm for RTT estimation w/o timestamps is based on 368 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 369 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 370 * 371 * More detail on this code can be found at 372 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 373 * though this reference is out of date. A new paper 374 * is pending. 375 */ 376 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 377 { 378 u32 new_sample = tp->rcv_rtt_est.rtt; 379 long m = sample; 380 381 if (m == 0) 382 m = 1; 383 384 if (new_sample != 0) { 385 /* If we sample in larger samples in the non-timestamp 386 * case, we could grossly overestimate the RTT especially 387 * with chatty applications or bulk transfer apps which 388 * are stalled on filesystem I/O. 389 * 390 * Also, since we are only going for a minimum in the 391 * non-timestamp case, we do not smooth things out 392 * else with timestamps disabled convergence takes too 393 * long. 394 */ 395 if (!win_dep) { 396 m -= (new_sample >> 3); 397 new_sample += m; 398 } else if (m < new_sample) 399 new_sample = m << 3; 400 } else { 401 /* No previous measure. */ 402 new_sample = m << 3; 403 } 404 405 if (tp->rcv_rtt_est.rtt != new_sample) 406 tp->rcv_rtt_est.rtt = new_sample; 407 } 408 409 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 410 { 411 if (tp->rcv_rtt_est.time == 0) 412 goto new_measure; 413 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 414 return; 415 tcp_rcv_rtt_update(tp, 416 jiffies - tp->rcv_rtt_est.time, 417 1); 418 419 new_measure: 420 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 421 tp->rcv_rtt_est.time = tcp_time_stamp; 422 } 423 424 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb) 425 { 426 struct tcp_sock *tp = tcp_sk(sk); 427 if (tp->rx_opt.rcv_tsecr && 428 (TCP_SKB_CB(skb)->end_seq - 429 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 430 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 431 } 432 433 /* 434 * This function should be called every time data is copied to user space. 435 * It calculates the appropriate TCP receive buffer space. 436 */ 437 void tcp_rcv_space_adjust(struct sock *sk) 438 { 439 struct tcp_sock *tp = tcp_sk(sk); 440 int time; 441 int space; 442 443 if (tp->rcvq_space.time == 0) 444 goto new_measure; 445 446 time = tcp_time_stamp - tp->rcvq_space.time; 447 if (time < (tp->rcv_rtt_est.rtt >> 3) || 448 tp->rcv_rtt_est.rtt == 0) 449 return; 450 451 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 452 453 space = max(tp->rcvq_space.space, space); 454 455 if (tp->rcvq_space.space != space) { 456 int rcvmem; 457 458 tp->rcvq_space.space = space; 459 460 if (sysctl_tcp_moderate_rcvbuf && 461 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 462 int new_clamp = space; 463 464 /* Receive space grows, normalize in order to 465 * take into account packet headers and sk_buff 466 * structure overhead. 467 */ 468 space /= tp->advmss; 469 if (!space) 470 space = 1; 471 rcvmem = (tp->advmss + MAX_TCP_HEADER + 472 16 + sizeof(struct sk_buff)); 473 while (tcp_win_from_space(rcvmem) < tp->advmss) 474 rcvmem += 128; 475 space *= rcvmem; 476 space = min(space, sysctl_tcp_rmem[2]); 477 if (space > sk->sk_rcvbuf) { 478 sk->sk_rcvbuf = space; 479 480 /* Make the window clamp follow along. */ 481 tp->window_clamp = new_clamp; 482 } 483 } 484 } 485 486 new_measure: 487 tp->rcvq_space.seq = tp->copied_seq; 488 tp->rcvq_space.time = tcp_time_stamp; 489 } 490 491 /* There is something which you must keep in mind when you analyze the 492 * behavior of the tp->ato delayed ack timeout interval. When a 493 * connection starts up, we want to ack as quickly as possible. The 494 * problem is that "good" TCP's do slow start at the beginning of data 495 * transmission. The means that until we send the first few ACK's the 496 * sender will sit on his end and only queue most of his data, because 497 * he can only send snd_cwnd unacked packets at any given time. For 498 * each ACK we send, he increments snd_cwnd and transmits more of his 499 * queue. -DaveM 500 */ 501 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) 502 { 503 struct inet_connection_sock *icsk = inet_csk(sk); 504 u32 now; 505 506 inet_csk_schedule_ack(sk); 507 508 tcp_measure_rcv_mss(sk, skb); 509 510 tcp_rcv_rtt_measure(tp); 511 512 now = tcp_time_stamp; 513 514 if (!icsk->icsk_ack.ato) { 515 /* The _first_ data packet received, initialize 516 * delayed ACK engine. 517 */ 518 tcp_incr_quickack(sk); 519 icsk->icsk_ack.ato = TCP_ATO_MIN; 520 } else { 521 int m = now - icsk->icsk_ack.lrcvtime; 522 523 if (m <= TCP_ATO_MIN/2) { 524 /* The fastest case is the first. */ 525 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 526 } else if (m < icsk->icsk_ack.ato) { 527 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 528 if (icsk->icsk_ack.ato > icsk->icsk_rto) 529 icsk->icsk_ack.ato = icsk->icsk_rto; 530 } else if (m > icsk->icsk_rto) { 531 /* Too long gap. Apparently sender failed to 532 * restart window, so that we send ACKs quickly. 533 */ 534 tcp_incr_quickack(sk); 535 sk_stream_mem_reclaim(sk); 536 } 537 } 538 icsk->icsk_ack.lrcvtime = now; 539 540 TCP_ECN_check_ce(tp, skb); 541 542 if (skb->len >= 128) 543 tcp_grow_window(sk, tp, skb); 544 } 545 546 /* Called to compute a smoothed rtt estimate. The data fed to this 547 * routine either comes from timestamps, or from segments that were 548 * known _not_ to have been retransmitted [see Karn/Partridge 549 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 550 * piece by Van Jacobson. 551 * NOTE: the next three routines used to be one big routine. 552 * To save cycles in the RFC 1323 implementation it was better to break 553 * it up into three procedures. -- erics 554 */ 555 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 556 { 557 struct tcp_sock *tp = tcp_sk(sk); 558 long m = mrtt; /* RTT */ 559 560 /* The following amusing code comes from Jacobson's 561 * article in SIGCOMM '88. Note that rtt and mdev 562 * are scaled versions of rtt and mean deviation. 563 * This is designed to be as fast as possible 564 * m stands for "measurement". 565 * 566 * On a 1990 paper the rto value is changed to: 567 * RTO = rtt + 4 * mdev 568 * 569 * Funny. This algorithm seems to be very broken. 570 * These formulae increase RTO, when it should be decreased, increase 571 * too slowly, when it should be increased quickly, decrease too quickly 572 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 573 * does not matter how to _calculate_ it. Seems, it was trap 574 * that VJ failed to avoid. 8) 575 */ 576 if(m == 0) 577 m = 1; 578 if (tp->srtt != 0) { 579 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 580 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 581 if (m < 0) { 582 m = -m; /* m is now abs(error) */ 583 m -= (tp->mdev >> 2); /* similar update on mdev */ 584 /* This is similar to one of Eifel findings. 585 * Eifel blocks mdev updates when rtt decreases. 586 * This solution is a bit different: we use finer gain 587 * for mdev in this case (alpha*beta). 588 * Like Eifel it also prevents growth of rto, 589 * but also it limits too fast rto decreases, 590 * happening in pure Eifel. 591 */ 592 if (m > 0) 593 m >>= 3; 594 } else { 595 m -= (tp->mdev >> 2); /* similar update on mdev */ 596 } 597 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 598 if (tp->mdev > tp->mdev_max) { 599 tp->mdev_max = tp->mdev; 600 if (tp->mdev_max > tp->rttvar) 601 tp->rttvar = tp->mdev_max; 602 } 603 if (after(tp->snd_una, tp->rtt_seq)) { 604 if (tp->mdev_max < tp->rttvar) 605 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2; 606 tp->rtt_seq = tp->snd_nxt; 607 tp->mdev_max = TCP_RTO_MIN; 608 } 609 } else { 610 /* no previous measure. */ 611 tp->srtt = m<<3; /* take the measured time to be rtt */ 612 tp->mdev = m<<1; /* make sure rto = 3*rtt */ 613 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 614 tp->rtt_seq = tp->snd_nxt; 615 } 616 } 617 618 /* Calculate rto without backoff. This is the second half of Van Jacobson's 619 * routine referred to above. 620 */ 621 static inline void tcp_set_rto(struct sock *sk) 622 { 623 const struct tcp_sock *tp = tcp_sk(sk); 624 /* Old crap is replaced with new one. 8) 625 * 626 * More seriously: 627 * 1. If rtt variance happened to be less 50msec, it is hallucination. 628 * It cannot be less due to utterly erratic ACK generation made 629 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 630 * to do with delayed acks, because at cwnd>2 true delack timeout 631 * is invisible. Actually, Linux-2.4 also generates erratic 632 * ACKs in some circumstances. 633 */ 634 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 635 636 /* 2. Fixups made earlier cannot be right. 637 * If we do not estimate RTO correctly without them, 638 * all the algo is pure shit and should be replaced 639 * with correct one. It is exactly, which we pretend to do. 640 */ 641 } 642 643 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 644 * guarantees that rto is higher. 645 */ 646 static inline void tcp_bound_rto(struct sock *sk) 647 { 648 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 649 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 650 } 651 652 /* Save metrics learned by this TCP session. 653 This function is called only, when TCP finishes successfully 654 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 655 */ 656 void tcp_update_metrics(struct sock *sk) 657 { 658 struct tcp_sock *tp = tcp_sk(sk); 659 struct dst_entry *dst = __sk_dst_get(sk); 660 661 if (sysctl_tcp_nometrics_save) 662 return; 663 664 dst_confirm(dst); 665 666 if (dst && (dst->flags&DST_HOST)) { 667 const struct inet_connection_sock *icsk = inet_csk(sk); 668 int m; 669 670 if (icsk->icsk_backoff || !tp->srtt) { 671 /* This session failed to estimate rtt. Why? 672 * Probably, no packets returned in time. 673 * Reset our results. 674 */ 675 if (!(dst_metric_locked(dst, RTAX_RTT))) 676 dst->metrics[RTAX_RTT-1] = 0; 677 return; 678 } 679 680 m = dst_metric(dst, RTAX_RTT) - tp->srtt; 681 682 /* If newly calculated rtt larger than stored one, 683 * store new one. Otherwise, use EWMA. Remember, 684 * rtt overestimation is always better than underestimation. 685 */ 686 if (!(dst_metric_locked(dst, RTAX_RTT))) { 687 if (m <= 0) 688 dst->metrics[RTAX_RTT-1] = tp->srtt; 689 else 690 dst->metrics[RTAX_RTT-1] -= (m>>3); 691 } 692 693 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 694 if (m < 0) 695 m = -m; 696 697 /* Scale deviation to rttvar fixed point */ 698 m >>= 1; 699 if (m < tp->mdev) 700 m = tp->mdev; 701 702 if (m >= dst_metric(dst, RTAX_RTTVAR)) 703 dst->metrics[RTAX_RTTVAR-1] = m; 704 else 705 dst->metrics[RTAX_RTTVAR-1] -= 706 (dst->metrics[RTAX_RTTVAR-1] - m)>>2; 707 } 708 709 if (tp->snd_ssthresh >= 0xFFFF) { 710 /* Slow start still did not finish. */ 711 if (dst_metric(dst, RTAX_SSTHRESH) && 712 !dst_metric_locked(dst, RTAX_SSTHRESH) && 713 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 714 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 715 if (!dst_metric_locked(dst, RTAX_CWND) && 716 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 717 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd; 718 } else if (tp->snd_cwnd > tp->snd_ssthresh && 719 icsk->icsk_ca_state == TCP_CA_Open) { 720 /* Cong. avoidance phase, cwnd is reliable. */ 721 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 722 dst->metrics[RTAX_SSTHRESH-1] = 723 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 724 if (!dst_metric_locked(dst, RTAX_CWND)) 725 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; 726 } else { 727 /* Else slow start did not finish, cwnd is non-sense, 728 ssthresh may be also invalid. 729 */ 730 if (!dst_metric_locked(dst, RTAX_CWND)) 731 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; 732 if (dst->metrics[RTAX_SSTHRESH-1] && 733 !dst_metric_locked(dst, RTAX_SSTHRESH) && 734 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) 735 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 736 } 737 738 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 739 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && 740 tp->reordering != sysctl_tcp_reordering) 741 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 742 } 743 } 744 } 745 746 /* Numbers are taken from RFC2414. */ 747 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 748 { 749 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 750 751 if (!cwnd) { 752 if (tp->mss_cache > 1460) 753 cwnd = 2; 754 else 755 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 756 } 757 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 758 } 759 760 /* Set slow start threshold and cwnd not falling to slow start */ 761 void tcp_enter_cwr(struct sock *sk) 762 { 763 struct tcp_sock *tp = tcp_sk(sk); 764 765 tp->prior_ssthresh = 0; 766 tp->bytes_acked = 0; 767 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 768 tp->undo_marker = 0; 769 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 770 tp->snd_cwnd = min(tp->snd_cwnd, 771 tcp_packets_in_flight(tp) + 1U); 772 tp->snd_cwnd_cnt = 0; 773 tp->high_seq = tp->snd_nxt; 774 tp->snd_cwnd_stamp = tcp_time_stamp; 775 TCP_ECN_queue_cwr(tp); 776 777 tcp_set_ca_state(sk, TCP_CA_CWR); 778 } 779 } 780 781 /* Initialize metrics on socket. */ 782 783 static void tcp_init_metrics(struct sock *sk) 784 { 785 struct tcp_sock *tp = tcp_sk(sk); 786 struct dst_entry *dst = __sk_dst_get(sk); 787 788 if (dst == NULL) 789 goto reset; 790 791 dst_confirm(dst); 792 793 if (dst_metric_locked(dst, RTAX_CWND)) 794 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 795 if (dst_metric(dst, RTAX_SSTHRESH)) { 796 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 797 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 798 tp->snd_ssthresh = tp->snd_cwnd_clamp; 799 } 800 if (dst_metric(dst, RTAX_REORDERING) && 801 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 802 tp->rx_opt.sack_ok &= ~2; 803 tp->reordering = dst_metric(dst, RTAX_REORDERING); 804 } 805 806 if (dst_metric(dst, RTAX_RTT) == 0) 807 goto reset; 808 809 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 810 goto reset; 811 812 /* Initial rtt is determined from SYN,SYN-ACK. 813 * The segment is small and rtt may appear much 814 * less than real one. Use per-dst memory 815 * to make it more realistic. 816 * 817 * A bit of theory. RTT is time passed after "normal" sized packet 818 * is sent until it is ACKed. In normal circumstances sending small 819 * packets force peer to delay ACKs and calculation is correct too. 820 * The algorithm is adaptive and, provided we follow specs, it 821 * NEVER underestimate RTT. BUT! If peer tries to make some clever 822 * tricks sort of "quick acks" for time long enough to decrease RTT 823 * to low value, and then abruptly stops to do it and starts to delay 824 * ACKs, wait for troubles. 825 */ 826 if (dst_metric(dst, RTAX_RTT) > tp->srtt) { 827 tp->srtt = dst_metric(dst, RTAX_RTT); 828 tp->rtt_seq = tp->snd_nxt; 829 } 830 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { 831 tp->mdev = dst_metric(dst, RTAX_RTTVAR); 832 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 833 } 834 tcp_set_rto(sk); 835 tcp_bound_rto(sk); 836 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 837 goto reset; 838 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 839 tp->snd_cwnd_stamp = tcp_time_stamp; 840 return; 841 842 reset: 843 /* Play conservative. If timestamps are not 844 * supported, TCP will fail to recalculate correct 845 * rtt, if initial rto is too small. FORGET ALL AND RESET! 846 */ 847 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 848 tp->srtt = 0; 849 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 850 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 851 } 852 } 853 854 static void tcp_update_reordering(struct sock *sk, const int metric, 855 const int ts) 856 { 857 struct tcp_sock *tp = tcp_sk(sk); 858 if (metric > tp->reordering) { 859 tp->reordering = min(TCP_MAX_REORDERING, metric); 860 861 /* This exciting event is worth to be remembered. 8) */ 862 if (ts) 863 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); 864 else if (IsReno(tp)) 865 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); 866 else if (IsFack(tp)) 867 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); 868 else 869 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); 870 #if FASTRETRANS_DEBUG > 1 871 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 872 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 873 tp->reordering, 874 tp->fackets_out, 875 tp->sacked_out, 876 tp->undo_marker ? tp->undo_retrans : 0); 877 #endif 878 /* Disable FACK yet. */ 879 tp->rx_opt.sack_ok &= ~2; 880 } 881 } 882 883 /* This procedure tags the retransmission queue when SACKs arrive. 884 * 885 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 886 * Packets in queue with these bits set are counted in variables 887 * sacked_out, retrans_out and lost_out, correspondingly. 888 * 889 * Valid combinations are: 890 * Tag InFlight Description 891 * 0 1 - orig segment is in flight. 892 * S 0 - nothing flies, orig reached receiver. 893 * L 0 - nothing flies, orig lost by net. 894 * R 2 - both orig and retransmit are in flight. 895 * L|R 1 - orig is lost, retransmit is in flight. 896 * S|R 1 - orig reached receiver, retrans is still in flight. 897 * (L|S|R is logically valid, it could occur when L|R is sacked, 898 * but it is equivalent to plain S and code short-curcuits it to S. 899 * L|S is logically invalid, it would mean -1 packet in flight 8)) 900 * 901 * These 6 states form finite state machine, controlled by the following events: 902 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 903 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 904 * 3. Loss detection event of one of three flavors: 905 * A. Scoreboard estimator decided the packet is lost. 906 * A'. Reno "three dupacks" marks head of queue lost. 907 * A''. Its FACK modfication, head until snd.fack is lost. 908 * B. SACK arrives sacking data transmitted after never retransmitted 909 * hole was sent out. 910 * C. SACK arrives sacking SND.NXT at the moment, when the 911 * segment was retransmitted. 912 * 4. D-SACK added new rule: D-SACK changes any tag to S. 913 * 914 * It is pleasant to note, that state diagram turns out to be commutative, 915 * so that we are allowed not to be bothered by order of our actions, 916 * when multiple events arrive simultaneously. (see the function below). 917 * 918 * Reordering detection. 919 * -------------------- 920 * Reordering metric is maximal distance, which a packet can be displaced 921 * in packet stream. With SACKs we can estimate it: 922 * 923 * 1. SACK fills old hole and the corresponding segment was not 924 * ever retransmitted -> reordering. Alas, we cannot use it 925 * when segment was retransmitted. 926 * 2. The last flaw is solved with D-SACK. D-SACK arrives 927 * for retransmitted and already SACKed segment -> reordering.. 928 * Both of these heuristics are not used in Loss state, when we cannot 929 * account for retransmits accurately. 930 */ 931 static int 932 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una) 933 { 934 const struct inet_connection_sock *icsk = inet_csk(sk); 935 struct tcp_sock *tp = tcp_sk(sk); 936 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked; 937 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2); 938 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3; 939 int reord = tp->packets_out; 940 int prior_fackets; 941 u32 lost_retrans = 0; 942 int flag = 0; 943 int dup_sack = 0; 944 int i; 945 946 if (!tp->sacked_out) 947 tp->fackets_out = 0; 948 prior_fackets = tp->fackets_out; 949 950 /* SACK fastpath: 951 * if the only SACK change is the increase of the end_seq of 952 * the first block then only apply that SACK block 953 * and use retrans queue hinting otherwise slowpath */ 954 flag = 1; 955 for (i = 0; i< num_sacks; i++) { 956 __u32 start_seq = ntohl(sp[i].start_seq); 957 __u32 end_seq = ntohl(sp[i].end_seq); 958 959 if (i == 0){ 960 if (tp->recv_sack_cache[i].start_seq != start_seq) 961 flag = 0; 962 } else { 963 if ((tp->recv_sack_cache[i].start_seq != start_seq) || 964 (tp->recv_sack_cache[i].end_seq != end_seq)) 965 flag = 0; 966 } 967 tp->recv_sack_cache[i].start_seq = start_seq; 968 tp->recv_sack_cache[i].end_seq = end_seq; 969 970 /* Check for D-SACK. */ 971 if (i == 0) { 972 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq; 973 974 if (before(start_seq, ack)) { 975 dup_sack = 1; 976 tp->rx_opt.sack_ok |= 4; 977 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); 978 } else if (num_sacks > 1 && 979 !after(end_seq, ntohl(sp[1].end_seq)) && 980 !before(start_seq, ntohl(sp[1].start_seq))) { 981 dup_sack = 1; 982 tp->rx_opt.sack_ok |= 4; 983 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); 984 } 985 986 /* D-SACK for already forgotten data... 987 * Do dumb counting. */ 988 if (dup_sack && 989 !after(end_seq, prior_snd_una) && 990 after(end_seq, tp->undo_marker)) 991 tp->undo_retrans--; 992 993 /* Eliminate too old ACKs, but take into 994 * account more or less fresh ones, they can 995 * contain valid SACK info. 996 */ 997 if (before(ack, prior_snd_una - tp->max_window)) 998 return 0; 999 } 1000 } 1001 1002 if (flag) 1003 num_sacks = 1; 1004 else { 1005 int j; 1006 tp->fastpath_skb_hint = NULL; 1007 1008 /* order SACK blocks to allow in order walk of the retrans queue */ 1009 for (i = num_sacks-1; i > 0; i--) { 1010 for (j = 0; j < i; j++){ 1011 if (after(ntohl(sp[j].start_seq), 1012 ntohl(sp[j+1].start_seq))){ 1013 sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq); 1014 sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq); 1015 sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq); 1016 sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq); 1017 } 1018 1019 } 1020 } 1021 } 1022 1023 /* clear flag as used for different purpose in following code */ 1024 flag = 0; 1025 1026 for (i=0; i<num_sacks; i++, sp++) { 1027 struct sk_buff *skb; 1028 __u32 start_seq = ntohl(sp->start_seq); 1029 __u32 end_seq = ntohl(sp->end_seq); 1030 int fack_count; 1031 1032 /* Use SACK fastpath hint if valid */ 1033 if (tp->fastpath_skb_hint) { 1034 skb = tp->fastpath_skb_hint; 1035 fack_count = tp->fastpath_cnt_hint; 1036 } else { 1037 skb = sk->sk_write_queue.next; 1038 fack_count = 0; 1039 } 1040 1041 /* Event "B" in the comment above. */ 1042 if (after(end_seq, tp->high_seq)) 1043 flag |= FLAG_DATA_LOST; 1044 1045 sk_stream_for_retrans_queue_from(skb, sk) { 1046 int in_sack, pcount; 1047 u8 sacked; 1048 1049 tp->fastpath_skb_hint = skb; 1050 tp->fastpath_cnt_hint = fack_count; 1051 1052 /* The retransmission queue is always in order, so 1053 * we can short-circuit the walk early. 1054 */ 1055 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1056 break; 1057 1058 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1059 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1060 1061 pcount = tcp_skb_pcount(skb); 1062 1063 if (pcount > 1 && !in_sack && 1064 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1065 unsigned int pkt_len; 1066 1067 in_sack = !after(start_seq, 1068 TCP_SKB_CB(skb)->seq); 1069 1070 if (!in_sack) 1071 pkt_len = (start_seq - 1072 TCP_SKB_CB(skb)->seq); 1073 else 1074 pkt_len = (end_seq - 1075 TCP_SKB_CB(skb)->seq); 1076 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size)) 1077 break; 1078 pcount = tcp_skb_pcount(skb); 1079 } 1080 1081 fack_count += pcount; 1082 1083 sacked = TCP_SKB_CB(skb)->sacked; 1084 1085 /* Account D-SACK for retransmitted packet. */ 1086 if ((dup_sack && in_sack) && 1087 (sacked & TCPCB_RETRANS) && 1088 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1089 tp->undo_retrans--; 1090 1091 /* The frame is ACKed. */ 1092 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) { 1093 if (sacked&TCPCB_RETRANS) { 1094 if ((dup_sack && in_sack) && 1095 (sacked&TCPCB_SACKED_ACKED)) 1096 reord = min(fack_count, reord); 1097 } else { 1098 /* If it was in a hole, we detected reordering. */ 1099 if (fack_count < prior_fackets && 1100 !(sacked&TCPCB_SACKED_ACKED)) 1101 reord = min(fack_count, reord); 1102 } 1103 1104 /* Nothing to do; acked frame is about to be dropped. */ 1105 continue; 1106 } 1107 1108 if ((sacked&TCPCB_SACKED_RETRANS) && 1109 after(end_seq, TCP_SKB_CB(skb)->ack_seq) && 1110 (!lost_retrans || after(end_seq, lost_retrans))) 1111 lost_retrans = end_seq; 1112 1113 if (!in_sack) 1114 continue; 1115 1116 if (!(sacked&TCPCB_SACKED_ACKED)) { 1117 if (sacked & TCPCB_SACKED_RETRANS) { 1118 /* If the segment is not tagged as lost, 1119 * we do not clear RETRANS, believing 1120 * that retransmission is still in flight. 1121 */ 1122 if (sacked & TCPCB_LOST) { 1123 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1124 tp->lost_out -= tcp_skb_pcount(skb); 1125 tp->retrans_out -= tcp_skb_pcount(skb); 1126 1127 /* clear lost hint */ 1128 tp->retransmit_skb_hint = NULL; 1129 } 1130 } else { 1131 /* New sack for not retransmitted frame, 1132 * which was in hole. It is reordering. 1133 */ 1134 if (!(sacked & TCPCB_RETRANS) && 1135 fack_count < prior_fackets) 1136 reord = min(fack_count, reord); 1137 1138 if (sacked & TCPCB_LOST) { 1139 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1140 tp->lost_out -= tcp_skb_pcount(skb); 1141 1142 /* clear lost hint */ 1143 tp->retransmit_skb_hint = NULL; 1144 } 1145 } 1146 1147 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; 1148 flag |= FLAG_DATA_SACKED; 1149 tp->sacked_out += tcp_skb_pcount(skb); 1150 1151 if (fack_count > tp->fackets_out) 1152 tp->fackets_out = fack_count; 1153 } else { 1154 if (dup_sack && (sacked&TCPCB_RETRANS)) 1155 reord = min(fack_count, reord); 1156 } 1157 1158 /* D-SACK. We can detect redundant retransmission 1159 * in S|R and plain R frames and clear it. 1160 * undo_retrans is decreased above, L|R frames 1161 * are accounted above as well. 1162 */ 1163 if (dup_sack && 1164 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) { 1165 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1166 tp->retrans_out -= tcp_skb_pcount(skb); 1167 tp->retransmit_skb_hint = NULL; 1168 } 1169 } 1170 } 1171 1172 /* Check for lost retransmit. This superb idea is 1173 * borrowed from "ratehalving". Event "C". 1174 * Later note: FACK people cheated me again 8), 1175 * we have to account for reordering! Ugly, 1176 * but should help. 1177 */ 1178 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) { 1179 struct sk_buff *skb; 1180 1181 sk_stream_for_retrans_queue(skb, sk) { 1182 if (after(TCP_SKB_CB(skb)->seq, lost_retrans)) 1183 break; 1184 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1185 continue; 1186 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) && 1187 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) && 1188 (IsFack(tp) || 1189 !before(lost_retrans, 1190 TCP_SKB_CB(skb)->ack_seq + tp->reordering * 1191 tp->mss_cache))) { 1192 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1193 tp->retrans_out -= tcp_skb_pcount(skb); 1194 1195 /* clear lost hint */ 1196 tp->retransmit_skb_hint = NULL; 1197 1198 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1199 tp->lost_out += tcp_skb_pcount(skb); 1200 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1201 flag |= FLAG_DATA_SACKED; 1202 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); 1203 } 1204 } 1205 } 1206 } 1207 1208 tp->left_out = tp->sacked_out + tp->lost_out; 1209 1210 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss) 1211 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0); 1212 1213 #if FASTRETRANS_DEBUG > 0 1214 BUG_TRAP((int)tp->sacked_out >= 0); 1215 BUG_TRAP((int)tp->lost_out >= 0); 1216 BUG_TRAP((int)tp->retrans_out >= 0); 1217 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); 1218 #endif 1219 return flag; 1220 } 1221 1222 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new 1223 * segments to see from the next ACKs whether any data was really missing. 1224 * If the RTO was spurious, new ACKs should arrive. 1225 */ 1226 void tcp_enter_frto(struct sock *sk) 1227 { 1228 const struct inet_connection_sock *icsk = inet_csk(sk); 1229 struct tcp_sock *tp = tcp_sk(sk); 1230 struct sk_buff *skb; 1231 1232 tp->frto_counter = 1; 1233 1234 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1235 tp->snd_una == tp->high_seq || 1236 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1237 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1238 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1239 tcp_ca_event(sk, CA_EVENT_FRTO); 1240 } 1241 1242 /* Have to clear retransmission markers here to keep the bookkeeping 1243 * in shape, even though we are not yet in Loss state. 1244 * If something was really lost, it is eventually caught up 1245 * in tcp_enter_frto_loss. 1246 */ 1247 tp->retrans_out = 0; 1248 tp->undo_marker = tp->snd_una; 1249 tp->undo_retrans = 0; 1250 1251 sk_stream_for_retrans_queue(skb, sk) { 1252 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS; 1253 } 1254 tcp_sync_left_out(tp); 1255 1256 tcp_set_ca_state(sk, TCP_CA_Open); 1257 tp->frto_highmark = tp->snd_nxt; 1258 } 1259 1260 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1261 * which indicates that we should follow the traditional RTO recovery, 1262 * i.e. mark everything lost and do go-back-N retransmission. 1263 */ 1264 static void tcp_enter_frto_loss(struct sock *sk) 1265 { 1266 struct tcp_sock *tp = tcp_sk(sk); 1267 struct sk_buff *skb; 1268 int cnt = 0; 1269 1270 tp->sacked_out = 0; 1271 tp->lost_out = 0; 1272 tp->fackets_out = 0; 1273 1274 sk_stream_for_retrans_queue(skb, sk) { 1275 cnt += tcp_skb_pcount(skb); 1276 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1277 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1278 1279 /* Do not mark those segments lost that were 1280 * forward transmitted after RTO 1281 */ 1282 if (!after(TCP_SKB_CB(skb)->end_seq, 1283 tp->frto_highmark)) { 1284 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1285 tp->lost_out += tcp_skb_pcount(skb); 1286 } 1287 } else { 1288 tp->sacked_out += tcp_skb_pcount(skb); 1289 tp->fackets_out = cnt; 1290 } 1291 } 1292 tcp_sync_left_out(tp); 1293 1294 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1; 1295 tp->snd_cwnd_cnt = 0; 1296 tp->snd_cwnd_stamp = tcp_time_stamp; 1297 tp->undo_marker = 0; 1298 tp->frto_counter = 0; 1299 1300 tp->reordering = min_t(unsigned int, tp->reordering, 1301 sysctl_tcp_reordering); 1302 tcp_set_ca_state(sk, TCP_CA_Loss); 1303 tp->high_seq = tp->frto_highmark; 1304 TCP_ECN_queue_cwr(tp); 1305 1306 clear_all_retrans_hints(tp); 1307 } 1308 1309 void tcp_clear_retrans(struct tcp_sock *tp) 1310 { 1311 tp->left_out = 0; 1312 tp->retrans_out = 0; 1313 1314 tp->fackets_out = 0; 1315 tp->sacked_out = 0; 1316 tp->lost_out = 0; 1317 1318 tp->undo_marker = 0; 1319 tp->undo_retrans = 0; 1320 } 1321 1322 /* Enter Loss state. If "how" is not zero, forget all SACK information 1323 * and reset tags completely, otherwise preserve SACKs. If receiver 1324 * dropped its ofo queue, we will know this due to reneging detection. 1325 */ 1326 void tcp_enter_loss(struct sock *sk, int how) 1327 { 1328 const struct inet_connection_sock *icsk = inet_csk(sk); 1329 struct tcp_sock *tp = tcp_sk(sk); 1330 struct sk_buff *skb; 1331 int cnt = 0; 1332 1333 /* Reduce ssthresh if it has not yet been made inside this window. */ 1334 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 1335 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1336 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1337 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1338 tcp_ca_event(sk, CA_EVENT_LOSS); 1339 } 1340 tp->snd_cwnd = 1; 1341 tp->snd_cwnd_cnt = 0; 1342 tp->snd_cwnd_stamp = tcp_time_stamp; 1343 1344 tp->bytes_acked = 0; 1345 tcp_clear_retrans(tp); 1346 1347 /* Push undo marker, if it was plain RTO and nothing 1348 * was retransmitted. */ 1349 if (!how) 1350 tp->undo_marker = tp->snd_una; 1351 1352 sk_stream_for_retrans_queue(skb, sk) { 1353 cnt += tcp_skb_pcount(skb); 1354 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1355 tp->undo_marker = 0; 1356 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1357 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1358 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1359 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1360 tp->lost_out += tcp_skb_pcount(skb); 1361 } else { 1362 tp->sacked_out += tcp_skb_pcount(skb); 1363 tp->fackets_out = cnt; 1364 } 1365 } 1366 tcp_sync_left_out(tp); 1367 1368 tp->reordering = min_t(unsigned int, tp->reordering, 1369 sysctl_tcp_reordering); 1370 tcp_set_ca_state(sk, TCP_CA_Loss); 1371 tp->high_seq = tp->snd_nxt; 1372 TCP_ECN_queue_cwr(tp); 1373 1374 clear_all_retrans_hints(tp); 1375 } 1376 1377 static int tcp_check_sack_reneging(struct sock *sk) 1378 { 1379 struct sk_buff *skb; 1380 1381 /* If ACK arrived pointing to a remembered SACK, 1382 * it means that our remembered SACKs do not reflect 1383 * real state of receiver i.e. 1384 * receiver _host_ is heavily congested (or buggy). 1385 * Do processing similar to RTO timeout. 1386 */ 1387 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL && 1388 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 1389 struct inet_connection_sock *icsk = inet_csk(sk); 1390 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); 1391 1392 tcp_enter_loss(sk, 1); 1393 icsk->icsk_retransmits++; 1394 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue)); 1395 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1396 icsk->icsk_rto, TCP_RTO_MAX); 1397 return 1; 1398 } 1399 return 0; 1400 } 1401 1402 static inline int tcp_fackets_out(struct tcp_sock *tp) 1403 { 1404 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out; 1405 } 1406 1407 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 1408 { 1409 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 1410 } 1411 1412 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp) 1413 { 1414 return tp->packets_out && 1415 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue)); 1416 } 1417 1418 /* Linux NewReno/SACK/FACK/ECN state machine. 1419 * -------------------------------------- 1420 * 1421 * "Open" Normal state, no dubious events, fast path. 1422 * "Disorder" In all the respects it is "Open", 1423 * but requires a bit more attention. It is entered when 1424 * we see some SACKs or dupacks. It is split of "Open" 1425 * mainly to move some processing from fast path to slow one. 1426 * "CWR" CWND was reduced due to some Congestion Notification event. 1427 * It can be ECN, ICMP source quench, local device congestion. 1428 * "Recovery" CWND was reduced, we are fast-retransmitting. 1429 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 1430 * 1431 * tcp_fastretrans_alert() is entered: 1432 * - each incoming ACK, if state is not "Open" 1433 * - when arrived ACK is unusual, namely: 1434 * * SACK 1435 * * Duplicate ACK. 1436 * * ECN ECE. 1437 * 1438 * Counting packets in flight is pretty simple. 1439 * 1440 * in_flight = packets_out - left_out + retrans_out 1441 * 1442 * packets_out is SND.NXT-SND.UNA counted in packets. 1443 * 1444 * retrans_out is number of retransmitted segments. 1445 * 1446 * left_out is number of segments left network, but not ACKed yet. 1447 * 1448 * left_out = sacked_out + lost_out 1449 * 1450 * sacked_out: Packets, which arrived to receiver out of order 1451 * and hence not ACKed. With SACKs this number is simply 1452 * amount of SACKed data. Even without SACKs 1453 * it is easy to give pretty reliable estimate of this number, 1454 * counting duplicate ACKs. 1455 * 1456 * lost_out: Packets lost by network. TCP has no explicit 1457 * "loss notification" feedback from network (for now). 1458 * It means that this number can be only _guessed_. 1459 * Actually, it is the heuristics to predict lossage that 1460 * distinguishes different algorithms. 1461 * 1462 * F.e. after RTO, when all the queue is considered as lost, 1463 * lost_out = packets_out and in_flight = retrans_out. 1464 * 1465 * Essentially, we have now two algorithms counting 1466 * lost packets. 1467 * 1468 * FACK: It is the simplest heuristics. As soon as we decided 1469 * that something is lost, we decide that _all_ not SACKed 1470 * packets until the most forward SACK are lost. I.e. 1471 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 1472 * It is absolutely correct estimate, if network does not reorder 1473 * packets. And it loses any connection to reality when reordering 1474 * takes place. We use FACK by default until reordering 1475 * is suspected on the path to this destination. 1476 * 1477 * NewReno: when Recovery is entered, we assume that one segment 1478 * is lost (classic Reno). While we are in Recovery and 1479 * a partial ACK arrives, we assume that one more packet 1480 * is lost (NewReno). This heuristics are the same in NewReno 1481 * and SACK. 1482 * 1483 * Imagine, that's all! Forget about all this shamanism about CWND inflation 1484 * deflation etc. CWND is real congestion window, never inflated, changes 1485 * only according to classic VJ rules. 1486 * 1487 * Really tricky (and requiring careful tuning) part of algorithm 1488 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 1489 * The first determines the moment _when_ we should reduce CWND and, 1490 * hence, slow down forward transmission. In fact, it determines the moment 1491 * when we decide that hole is caused by loss, rather than by a reorder. 1492 * 1493 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 1494 * holes, caused by lost packets. 1495 * 1496 * And the most logically complicated part of algorithm is undo 1497 * heuristics. We detect false retransmits due to both too early 1498 * fast retransmit (reordering) and underestimated RTO, analyzing 1499 * timestamps and D-SACKs. When we detect that some segments were 1500 * retransmitted by mistake and CWND reduction was wrong, we undo 1501 * window reduction and abort recovery phase. This logic is hidden 1502 * inside several functions named tcp_try_undo_<something>. 1503 */ 1504 1505 /* This function decides, when we should leave Disordered state 1506 * and enter Recovery phase, reducing congestion window. 1507 * 1508 * Main question: may we further continue forward transmission 1509 * with the same cwnd? 1510 */ 1511 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp) 1512 { 1513 __u32 packets_out; 1514 1515 /* Trick#1: The loss is proven. */ 1516 if (tp->lost_out) 1517 return 1; 1518 1519 /* Not-A-Trick#2 : Classic rule... */ 1520 if (tcp_fackets_out(tp) > tp->reordering) 1521 return 1; 1522 1523 /* Trick#3 : when we use RFC2988 timer restart, fast 1524 * retransmit can be triggered by timeout of queue head. 1525 */ 1526 if (tcp_head_timedout(sk, tp)) 1527 return 1; 1528 1529 /* Trick#4: It is still not OK... But will it be useful to delay 1530 * recovery more? 1531 */ 1532 packets_out = tp->packets_out; 1533 if (packets_out <= tp->reordering && 1534 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 1535 !tcp_may_send_now(sk, tp)) { 1536 /* We have nothing to send. This connection is limited 1537 * either by receiver window or by application. 1538 */ 1539 return 1; 1540 } 1541 1542 return 0; 1543 } 1544 1545 /* If we receive more dupacks than we expected counting segments 1546 * in assumption of absent reordering, interpret this as reordering. 1547 * The only another reason could be bug in receiver TCP. 1548 */ 1549 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1550 { 1551 struct tcp_sock *tp = tcp_sk(sk); 1552 u32 holes; 1553 1554 holes = max(tp->lost_out, 1U); 1555 holes = min(holes, tp->packets_out); 1556 1557 if ((tp->sacked_out + holes) > tp->packets_out) { 1558 tp->sacked_out = tp->packets_out - holes; 1559 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1560 } 1561 } 1562 1563 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1564 1565 static void tcp_add_reno_sack(struct sock *sk) 1566 { 1567 struct tcp_sock *tp = tcp_sk(sk); 1568 tp->sacked_out++; 1569 tcp_check_reno_reordering(sk, 0); 1570 tcp_sync_left_out(tp); 1571 } 1572 1573 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1574 1575 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked) 1576 { 1577 if (acked > 0) { 1578 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1579 if (acked-1 >= tp->sacked_out) 1580 tp->sacked_out = 0; 1581 else 1582 tp->sacked_out -= acked-1; 1583 } 1584 tcp_check_reno_reordering(sk, acked); 1585 tcp_sync_left_out(tp); 1586 } 1587 1588 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1589 { 1590 tp->sacked_out = 0; 1591 tp->left_out = tp->lost_out; 1592 } 1593 1594 /* Mark head of queue up as lost. */ 1595 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp, 1596 int packets, u32 high_seq) 1597 { 1598 struct sk_buff *skb; 1599 int cnt; 1600 1601 BUG_TRAP(packets <= tp->packets_out); 1602 if (tp->lost_skb_hint) { 1603 skb = tp->lost_skb_hint; 1604 cnt = tp->lost_cnt_hint; 1605 } else { 1606 skb = sk->sk_write_queue.next; 1607 cnt = 0; 1608 } 1609 1610 sk_stream_for_retrans_queue_from(skb, sk) { 1611 /* TODO: do this better */ 1612 /* this is not the most efficient way to do this... */ 1613 tp->lost_skb_hint = skb; 1614 tp->lost_cnt_hint = cnt; 1615 cnt += tcp_skb_pcount(skb); 1616 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq)) 1617 break; 1618 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1619 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1620 tp->lost_out += tcp_skb_pcount(skb); 1621 1622 /* clear xmit_retransmit_queue hints 1623 * if this is beyond hint */ 1624 if(tp->retransmit_skb_hint != NULL && 1625 before(TCP_SKB_CB(skb)->seq, 1626 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) { 1627 1628 tp->retransmit_skb_hint = NULL; 1629 } 1630 } 1631 } 1632 tcp_sync_left_out(tp); 1633 } 1634 1635 /* Account newly detected lost packet(s) */ 1636 1637 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp) 1638 { 1639 if (IsFack(tp)) { 1640 int lost = tp->fackets_out - tp->reordering; 1641 if (lost <= 0) 1642 lost = 1; 1643 tcp_mark_head_lost(sk, tp, lost, tp->high_seq); 1644 } else { 1645 tcp_mark_head_lost(sk, tp, 1, tp->high_seq); 1646 } 1647 1648 /* New heuristics: it is possible only after we switched 1649 * to restart timer each time when something is ACKed. 1650 * Hence, we can detect timed out packets during fast 1651 * retransmit without falling to slow start. 1652 */ 1653 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) { 1654 struct sk_buff *skb; 1655 1656 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint 1657 : sk->sk_write_queue.next; 1658 1659 sk_stream_for_retrans_queue_from(skb, sk) { 1660 if (!tcp_skb_timedout(sk, skb)) 1661 break; 1662 1663 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1664 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1665 tp->lost_out += tcp_skb_pcount(skb); 1666 1667 /* clear xmit_retrans hint */ 1668 if (tp->retransmit_skb_hint && 1669 before(TCP_SKB_CB(skb)->seq, 1670 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 1671 1672 tp->retransmit_skb_hint = NULL; 1673 } 1674 } 1675 1676 tp->scoreboard_skb_hint = skb; 1677 1678 tcp_sync_left_out(tp); 1679 } 1680 } 1681 1682 /* CWND moderation, preventing bursts due to too big ACKs 1683 * in dubious situations. 1684 */ 1685 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 1686 { 1687 tp->snd_cwnd = min(tp->snd_cwnd, 1688 tcp_packets_in_flight(tp)+tcp_max_burst(tp)); 1689 tp->snd_cwnd_stamp = tcp_time_stamp; 1690 } 1691 1692 /* Lower bound on congestion window is slow start threshold 1693 * unless congestion avoidance choice decides to overide it. 1694 */ 1695 static inline u32 tcp_cwnd_min(const struct sock *sk) 1696 { 1697 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1698 1699 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 1700 } 1701 1702 /* Decrease cwnd each second ack. */ 1703 static void tcp_cwnd_down(struct sock *sk) 1704 { 1705 struct tcp_sock *tp = tcp_sk(sk); 1706 int decr = tp->snd_cwnd_cnt + 1; 1707 1708 tp->snd_cwnd_cnt = decr&1; 1709 decr >>= 1; 1710 1711 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 1712 tp->snd_cwnd -= decr; 1713 1714 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1); 1715 tp->snd_cwnd_stamp = tcp_time_stamp; 1716 } 1717 1718 /* Nothing was retransmitted or returned timestamp is less 1719 * than timestamp of the first retransmission. 1720 */ 1721 static inline int tcp_packet_delayed(struct tcp_sock *tp) 1722 { 1723 return !tp->retrans_stamp || 1724 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 1725 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0); 1726 } 1727 1728 /* Undo procedures. */ 1729 1730 #if FASTRETRANS_DEBUG > 1 1731 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg) 1732 { 1733 struct inet_sock *inet = inet_sk(sk); 1734 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n", 1735 msg, 1736 NIPQUAD(inet->daddr), ntohs(inet->dport), 1737 tp->snd_cwnd, tp->left_out, 1738 tp->snd_ssthresh, tp->prior_ssthresh, 1739 tp->packets_out); 1740 } 1741 #else 1742 #define DBGUNDO(x...) do { } while (0) 1743 #endif 1744 1745 static void tcp_undo_cwr(struct sock *sk, const int undo) 1746 { 1747 struct tcp_sock *tp = tcp_sk(sk); 1748 1749 if (tp->prior_ssthresh) { 1750 const struct inet_connection_sock *icsk = inet_csk(sk); 1751 1752 if (icsk->icsk_ca_ops->undo_cwnd) 1753 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 1754 else 1755 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1); 1756 1757 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 1758 tp->snd_ssthresh = tp->prior_ssthresh; 1759 TCP_ECN_withdraw_cwr(tp); 1760 } 1761 } else { 1762 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 1763 } 1764 tcp_moderate_cwnd(tp); 1765 tp->snd_cwnd_stamp = tcp_time_stamp; 1766 1767 /* There is something screwy going on with the retrans hints after 1768 an undo */ 1769 clear_all_retrans_hints(tp); 1770 } 1771 1772 static inline int tcp_may_undo(struct tcp_sock *tp) 1773 { 1774 return tp->undo_marker && 1775 (!tp->undo_retrans || tcp_packet_delayed(tp)); 1776 } 1777 1778 /* People celebrate: "We love our President!" */ 1779 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp) 1780 { 1781 if (tcp_may_undo(tp)) { 1782 /* Happy end! We did not retransmit anything 1783 * or our original transmission succeeded. 1784 */ 1785 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 1786 tcp_undo_cwr(sk, 1); 1787 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 1788 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1789 else 1790 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); 1791 tp->undo_marker = 0; 1792 } 1793 if (tp->snd_una == tp->high_seq && IsReno(tp)) { 1794 /* Hold old state until something *above* high_seq 1795 * is ACKed. For Reno it is MUST to prevent false 1796 * fast retransmits (RFC2582). SACK TCP is safe. */ 1797 tcp_moderate_cwnd(tp); 1798 return 1; 1799 } 1800 tcp_set_ca_state(sk, TCP_CA_Open); 1801 return 0; 1802 } 1803 1804 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 1805 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp) 1806 { 1807 if (tp->undo_marker && !tp->undo_retrans) { 1808 DBGUNDO(sk, tp, "D-SACK"); 1809 tcp_undo_cwr(sk, 1); 1810 tp->undo_marker = 0; 1811 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); 1812 } 1813 } 1814 1815 /* Undo during fast recovery after partial ACK. */ 1816 1817 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp, 1818 int acked) 1819 { 1820 /* Partial ACK arrived. Force Hoe's retransmit. */ 1821 int failed = IsReno(tp) || tp->fackets_out>tp->reordering; 1822 1823 if (tcp_may_undo(tp)) { 1824 /* Plain luck! Hole if filled with delayed 1825 * packet, rather than with a retransmit. 1826 */ 1827 if (tp->retrans_out == 0) 1828 tp->retrans_stamp = 0; 1829 1830 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 1831 1832 DBGUNDO(sk, tp, "Hoe"); 1833 tcp_undo_cwr(sk, 0); 1834 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); 1835 1836 /* So... Do not make Hoe's retransmit yet. 1837 * If the first packet was delayed, the rest 1838 * ones are most probably delayed as well. 1839 */ 1840 failed = 0; 1841 } 1842 return failed; 1843 } 1844 1845 /* Undo during loss recovery after partial ACK. */ 1846 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp) 1847 { 1848 if (tcp_may_undo(tp)) { 1849 struct sk_buff *skb; 1850 sk_stream_for_retrans_queue(skb, sk) { 1851 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1852 } 1853 1854 clear_all_retrans_hints(tp); 1855 1856 DBGUNDO(sk, tp, "partial loss"); 1857 tp->lost_out = 0; 1858 tp->left_out = tp->sacked_out; 1859 tcp_undo_cwr(sk, 1); 1860 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1861 inet_csk(sk)->icsk_retransmits = 0; 1862 tp->undo_marker = 0; 1863 if (!IsReno(tp)) 1864 tcp_set_ca_state(sk, TCP_CA_Open); 1865 return 1; 1866 } 1867 return 0; 1868 } 1869 1870 static inline void tcp_complete_cwr(struct sock *sk) 1871 { 1872 struct tcp_sock *tp = tcp_sk(sk); 1873 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 1874 tp->snd_cwnd_stamp = tcp_time_stamp; 1875 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 1876 } 1877 1878 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag) 1879 { 1880 tp->left_out = tp->sacked_out; 1881 1882 if (tp->retrans_out == 0) 1883 tp->retrans_stamp = 0; 1884 1885 if (flag&FLAG_ECE) 1886 tcp_enter_cwr(sk); 1887 1888 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 1889 int state = TCP_CA_Open; 1890 1891 if (tp->left_out || tp->retrans_out || tp->undo_marker) 1892 state = TCP_CA_Disorder; 1893 1894 if (inet_csk(sk)->icsk_ca_state != state) { 1895 tcp_set_ca_state(sk, state); 1896 tp->high_seq = tp->snd_nxt; 1897 } 1898 tcp_moderate_cwnd(tp); 1899 } else { 1900 tcp_cwnd_down(sk); 1901 } 1902 } 1903 1904 static void tcp_mtup_probe_failed(struct sock *sk) 1905 { 1906 struct inet_connection_sock *icsk = inet_csk(sk); 1907 1908 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 1909 icsk->icsk_mtup.probe_size = 0; 1910 } 1911 1912 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb) 1913 { 1914 struct tcp_sock *tp = tcp_sk(sk); 1915 struct inet_connection_sock *icsk = inet_csk(sk); 1916 1917 /* FIXME: breaks with very large cwnd */ 1918 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1919 tp->snd_cwnd = tp->snd_cwnd * 1920 tcp_mss_to_mtu(sk, tp->mss_cache) / 1921 icsk->icsk_mtup.probe_size; 1922 tp->snd_cwnd_cnt = 0; 1923 tp->snd_cwnd_stamp = tcp_time_stamp; 1924 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 1925 1926 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 1927 icsk->icsk_mtup.probe_size = 0; 1928 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 1929 } 1930 1931 1932 /* Process an event, which can update packets-in-flight not trivially. 1933 * Main goal of this function is to calculate new estimate for left_out, 1934 * taking into account both packets sitting in receiver's buffer and 1935 * packets lost by network. 1936 * 1937 * Besides that it does CWND reduction, when packet loss is detected 1938 * and changes state of machine. 1939 * 1940 * It does _not_ decide what to send, it is made in function 1941 * tcp_xmit_retransmit_queue(). 1942 */ 1943 static void 1944 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una, 1945 int prior_packets, int flag) 1946 { 1947 struct inet_connection_sock *icsk = inet_csk(sk); 1948 struct tcp_sock *tp = tcp_sk(sk); 1949 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP)); 1950 1951 /* Some technical things: 1952 * 1. Reno does not count dupacks (sacked_out) automatically. */ 1953 if (!tp->packets_out) 1954 tp->sacked_out = 0; 1955 /* 2. SACK counts snd_fack in packets inaccurately. */ 1956 if (tp->sacked_out == 0) 1957 tp->fackets_out = 0; 1958 1959 /* Now state machine starts. 1960 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 1961 if (flag&FLAG_ECE) 1962 tp->prior_ssthresh = 0; 1963 1964 /* B. In all the states check for reneging SACKs. */ 1965 if (tp->sacked_out && tcp_check_sack_reneging(sk)) 1966 return; 1967 1968 /* C. Process data loss notification, provided it is valid. */ 1969 if ((flag&FLAG_DATA_LOST) && 1970 before(tp->snd_una, tp->high_seq) && 1971 icsk->icsk_ca_state != TCP_CA_Open && 1972 tp->fackets_out > tp->reordering) { 1973 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq); 1974 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); 1975 } 1976 1977 /* D. Synchronize left_out to current state. */ 1978 tcp_sync_left_out(tp); 1979 1980 /* E. Check state exit conditions. State can be terminated 1981 * when high_seq is ACKed. */ 1982 if (icsk->icsk_ca_state == TCP_CA_Open) { 1983 if (!sysctl_tcp_frto) 1984 BUG_TRAP(tp->retrans_out == 0); 1985 tp->retrans_stamp = 0; 1986 } else if (!before(tp->snd_una, tp->high_seq)) { 1987 switch (icsk->icsk_ca_state) { 1988 case TCP_CA_Loss: 1989 icsk->icsk_retransmits = 0; 1990 if (tcp_try_undo_recovery(sk, tp)) 1991 return; 1992 break; 1993 1994 case TCP_CA_CWR: 1995 /* CWR is to be held something *above* high_seq 1996 * is ACKed for CWR bit to reach receiver. */ 1997 if (tp->snd_una != tp->high_seq) { 1998 tcp_complete_cwr(sk); 1999 tcp_set_ca_state(sk, TCP_CA_Open); 2000 } 2001 break; 2002 2003 case TCP_CA_Disorder: 2004 tcp_try_undo_dsack(sk, tp); 2005 if (!tp->undo_marker || 2006 /* For SACK case do not Open to allow to undo 2007 * catching for all duplicate ACKs. */ 2008 IsReno(tp) || tp->snd_una != tp->high_seq) { 2009 tp->undo_marker = 0; 2010 tcp_set_ca_state(sk, TCP_CA_Open); 2011 } 2012 break; 2013 2014 case TCP_CA_Recovery: 2015 if (IsReno(tp)) 2016 tcp_reset_reno_sack(tp); 2017 if (tcp_try_undo_recovery(sk, tp)) 2018 return; 2019 tcp_complete_cwr(sk); 2020 break; 2021 } 2022 } 2023 2024 /* F. Process state. */ 2025 switch (icsk->icsk_ca_state) { 2026 case TCP_CA_Recovery: 2027 if (prior_snd_una == tp->snd_una) { 2028 if (IsReno(tp) && is_dupack) 2029 tcp_add_reno_sack(sk); 2030 } else { 2031 int acked = prior_packets - tp->packets_out; 2032 if (IsReno(tp)) 2033 tcp_remove_reno_sacks(sk, tp, acked); 2034 is_dupack = tcp_try_undo_partial(sk, tp, acked); 2035 } 2036 break; 2037 case TCP_CA_Loss: 2038 if (flag&FLAG_DATA_ACKED) 2039 icsk->icsk_retransmits = 0; 2040 if (!tcp_try_undo_loss(sk, tp)) { 2041 tcp_moderate_cwnd(tp); 2042 tcp_xmit_retransmit_queue(sk); 2043 return; 2044 } 2045 if (icsk->icsk_ca_state != TCP_CA_Open) 2046 return; 2047 /* Loss is undone; fall through to processing in Open state. */ 2048 default: 2049 if (IsReno(tp)) { 2050 if (tp->snd_una != prior_snd_una) 2051 tcp_reset_reno_sack(tp); 2052 if (is_dupack) 2053 tcp_add_reno_sack(sk); 2054 } 2055 2056 if (icsk->icsk_ca_state == TCP_CA_Disorder) 2057 tcp_try_undo_dsack(sk, tp); 2058 2059 if (!tcp_time_to_recover(sk, tp)) { 2060 tcp_try_to_open(sk, tp, flag); 2061 return; 2062 } 2063 2064 /* MTU probe failure: don't reduce cwnd */ 2065 if (icsk->icsk_ca_state < TCP_CA_CWR && 2066 icsk->icsk_mtup.probe_size && 2067 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2068 tcp_mtup_probe_failed(sk); 2069 /* Restores the reduction we did in tcp_mtup_probe() */ 2070 tp->snd_cwnd++; 2071 tcp_simple_retransmit(sk); 2072 return; 2073 } 2074 2075 /* Otherwise enter Recovery state */ 2076 2077 if (IsReno(tp)) 2078 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); 2079 else 2080 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); 2081 2082 tp->high_seq = tp->snd_nxt; 2083 tp->prior_ssthresh = 0; 2084 tp->undo_marker = tp->snd_una; 2085 tp->undo_retrans = tp->retrans_out; 2086 2087 if (icsk->icsk_ca_state < TCP_CA_CWR) { 2088 if (!(flag&FLAG_ECE)) 2089 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2090 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2091 TCP_ECN_queue_cwr(tp); 2092 } 2093 2094 tp->bytes_acked = 0; 2095 tp->snd_cwnd_cnt = 0; 2096 tcp_set_ca_state(sk, TCP_CA_Recovery); 2097 } 2098 2099 if (is_dupack || tcp_head_timedout(sk, tp)) 2100 tcp_update_scoreboard(sk, tp); 2101 tcp_cwnd_down(sk); 2102 tcp_xmit_retransmit_queue(sk); 2103 } 2104 2105 /* Read draft-ietf-tcplw-high-performance before mucking 2106 * with this code. (Supersedes RFC1323) 2107 */ 2108 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 2109 { 2110 /* RTTM Rule: A TSecr value received in a segment is used to 2111 * update the averaged RTT measurement only if the segment 2112 * acknowledges some new data, i.e., only if it advances the 2113 * left edge of the send window. 2114 * 2115 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2116 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 2117 * 2118 * Changed: reset backoff as soon as we see the first valid sample. 2119 * If we do not, we get strongly overestimated rto. With timestamps 2120 * samples are accepted even from very old segments: f.e., when rtt=1 2121 * increases to 8, we retransmit 5 times and after 8 seconds delayed 2122 * answer arrives rto becomes 120 seconds! If at least one of segments 2123 * in window is lost... Voila. --ANK (010210) 2124 */ 2125 struct tcp_sock *tp = tcp_sk(sk); 2126 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2127 tcp_rtt_estimator(sk, seq_rtt); 2128 tcp_set_rto(sk); 2129 inet_csk(sk)->icsk_backoff = 0; 2130 tcp_bound_rto(sk); 2131 } 2132 2133 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 2134 { 2135 /* We don't have a timestamp. Can only use 2136 * packets that are not retransmitted to determine 2137 * rtt estimates. Also, we must not reset the 2138 * backoff for rto until we get a non-retransmitted 2139 * packet. This allows us to deal with a situation 2140 * where the network delay has increased suddenly. 2141 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 2142 */ 2143 2144 if (flag & FLAG_RETRANS_DATA_ACKED) 2145 return; 2146 2147 tcp_rtt_estimator(sk, seq_rtt); 2148 tcp_set_rto(sk); 2149 inet_csk(sk)->icsk_backoff = 0; 2150 tcp_bound_rto(sk); 2151 } 2152 2153 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 2154 const s32 seq_rtt) 2155 { 2156 const struct tcp_sock *tp = tcp_sk(sk); 2157 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 2158 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2159 tcp_ack_saw_tstamp(sk, flag); 2160 else if (seq_rtt >= 0) 2161 tcp_ack_no_tstamp(sk, seq_rtt, flag); 2162 } 2163 2164 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt, 2165 u32 in_flight, int good) 2166 { 2167 const struct inet_connection_sock *icsk = inet_csk(sk); 2168 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good); 2169 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2170 } 2171 2172 /* Restart timer after forward progress on connection. 2173 * RFC2988 recommends to restart timer to now+rto. 2174 */ 2175 2176 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp) 2177 { 2178 if (!tp->packets_out) { 2179 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2180 } else { 2181 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2182 } 2183 } 2184 2185 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb, 2186 __u32 now, __s32 *seq_rtt) 2187 { 2188 struct tcp_sock *tp = tcp_sk(sk); 2189 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2190 __u32 seq = tp->snd_una; 2191 __u32 packets_acked; 2192 int acked = 0; 2193 2194 /* If we get here, the whole TSO packet has not been 2195 * acked. 2196 */ 2197 BUG_ON(!after(scb->end_seq, seq)); 2198 2199 packets_acked = tcp_skb_pcount(skb); 2200 if (tcp_trim_head(sk, skb, seq - scb->seq)) 2201 return 0; 2202 packets_acked -= tcp_skb_pcount(skb); 2203 2204 if (packets_acked) { 2205 __u8 sacked = scb->sacked; 2206 2207 acked |= FLAG_DATA_ACKED; 2208 if (sacked) { 2209 if (sacked & TCPCB_RETRANS) { 2210 if (sacked & TCPCB_SACKED_RETRANS) 2211 tp->retrans_out -= packets_acked; 2212 acked |= FLAG_RETRANS_DATA_ACKED; 2213 *seq_rtt = -1; 2214 } else if (*seq_rtt < 0) 2215 *seq_rtt = now - scb->when; 2216 if (sacked & TCPCB_SACKED_ACKED) 2217 tp->sacked_out -= packets_acked; 2218 if (sacked & TCPCB_LOST) 2219 tp->lost_out -= packets_acked; 2220 if (sacked & TCPCB_URG) { 2221 if (tp->urg_mode && 2222 !before(seq, tp->snd_up)) 2223 tp->urg_mode = 0; 2224 } 2225 } else if (*seq_rtt < 0) 2226 *seq_rtt = now - scb->when; 2227 2228 if (tp->fackets_out) { 2229 __u32 dval = min(tp->fackets_out, packets_acked); 2230 tp->fackets_out -= dval; 2231 } 2232 tp->packets_out -= packets_acked; 2233 2234 BUG_ON(tcp_skb_pcount(skb) == 0); 2235 BUG_ON(!before(scb->seq, scb->end_seq)); 2236 } 2237 2238 return acked; 2239 } 2240 2241 static u32 tcp_usrtt(const struct sk_buff *skb) 2242 { 2243 struct timeval tv, now; 2244 2245 do_gettimeofday(&now); 2246 skb_get_timestamp(skb, &tv); 2247 return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec); 2248 } 2249 2250 /* Remove acknowledged frames from the retransmission queue. */ 2251 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p) 2252 { 2253 struct tcp_sock *tp = tcp_sk(sk); 2254 const struct inet_connection_sock *icsk = inet_csk(sk); 2255 struct sk_buff *skb; 2256 __u32 now = tcp_time_stamp; 2257 int acked = 0; 2258 __s32 seq_rtt = -1; 2259 u32 pkts_acked = 0; 2260 void (*rtt_sample)(struct sock *sk, u32 usrtt) 2261 = icsk->icsk_ca_ops->rtt_sample; 2262 2263 while ((skb = skb_peek(&sk->sk_write_queue)) && 2264 skb != sk->sk_send_head) { 2265 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2266 __u8 sacked = scb->sacked; 2267 2268 /* If our packet is before the ack sequence we can 2269 * discard it as it's confirmed to have arrived at 2270 * the other end. 2271 */ 2272 if (after(scb->end_seq, tp->snd_una)) { 2273 if (tcp_skb_pcount(skb) > 1 && 2274 after(tp->snd_una, scb->seq)) 2275 acked |= tcp_tso_acked(sk, skb, 2276 now, &seq_rtt); 2277 break; 2278 } 2279 2280 /* Initial outgoing SYN's get put onto the write_queue 2281 * just like anything else we transmit. It is not 2282 * true data, and if we misinform our callers that 2283 * this ACK acks real data, we will erroneously exit 2284 * connection startup slow start one packet too 2285 * quickly. This is severely frowned upon behavior. 2286 */ 2287 if (!(scb->flags & TCPCB_FLAG_SYN)) { 2288 acked |= FLAG_DATA_ACKED; 2289 ++pkts_acked; 2290 } else { 2291 acked |= FLAG_SYN_ACKED; 2292 tp->retrans_stamp = 0; 2293 } 2294 2295 /* MTU probing checks */ 2296 if (icsk->icsk_mtup.probe_size) { 2297 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) { 2298 tcp_mtup_probe_success(sk, skb); 2299 } 2300 } 2301 2302 if (sacked) { 2303 if (sacked & TCPCB_RETRANS) { 2304 if(sacked & TCPCB_SACKED_RETRANS) 2305 tp->retrans_out -= tcp_skb_pcount(skb); 2306 acked |= FLAG_RETRANS_DATA_ACKED; 2307 seq_rtt = -1; 2308 } else if (seq_rtt < 0) { 2309 seq_rtt = now - scb->when; 2310 if (rtt_sample) 2311 (*rtt_sample)(sk, tcp_usrtt(skb)); 2312 } 2313 if (sacked & TCPCB_SACKED_ACKED) 2314 tp->sacked_out -= tcp_skb_pcount(skb); 2315 if (sacked & TCPCB_LOST) 2316 tp->lost_out -= tcp_skb_pcount(skb); 2317 if (sacked & TCPCB_URG) { 2318 if (tp->urg_mode && 2319 !before(scb->end_seq, tp->snd_up)) 2320 tp->urg_mode = 0; 2321 } 2322 } else if (seq_rtt < 0) { 2323 seq_rtt = now - scb->when; 2324 if (rtt_sample) 2325 (*rtt_sample)(sk, tcp_usrtt(skb)); 2326 } 2327 tcp_dec_pcount_approx(&tp->fackets_out, skb); 2328 tcp_packets_out_dec(tp, skb); 2329 __skb_unlink(skb, &sk->sk_write_queue); 2330 sk_stream_free_skb(sk, skb); 2331 clear_all_retrans_hints(tp); 2332 } 2333 2334 if (acked&FLAG_ACKED) { 2335 tcp_ack_update_rtt(sk, acked, seq_rtt); 2336 tcp_ack_packets_out(sk, tp); 2337 2338 if (icsk->icsk_ca_ops->pkts_acked) 2339 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked); 2340 } 2341 2342 #if FASTRETRANS_DEBUG > 0 2343 BUG_TRAP((int)tp->sacked_out >= 0); 2344 BUG_TRAP((int)tp->lost_out >= 0); 2345 BUG_TRAP((int)tp->retrans_out >= 0); 2346 if (!tp->packets_out && tp->rx_opt.sack_ok) { 2347 const struct inet_connection_sock *icsk = inet_csk(sk); 2348 if (tp->lost_out) { 2349 printk(KERN_DEBUG "Leak l=%u %d\n", 2350 tp->lost_out, icsk->icsk_ca_state); 2351 tp->lost_out = 0; 2352 } 2353 if (tp->sacked_out) { 2354 printk(KERN_DEBUG "Leak s=%u %d\n", 2355 tp->sacked_out, icsk->icsk_ca_state); 2356 tp->sacked_out = 0; 2357 } 2358 if (tp->retrans_out) { 2359 printk(KERN_DEBUG "Leak r=%u %d\n", 2360 tp->retrans_out, icsk->icsk_ca_state); 2361 tp->retrans_out = 0; 2362 } 2363 } 2364 #endif 2365 *seq_rtt_p = seq_rtt; 2366 return acked; 2367 } 2368 2369 static void tcp_ack_probe(struct sock *sk) 2370 { 2371 const struct tcp_sock *tp = tcp_sk(sk); 2372 struct inet_connection_sock *icsk = inet_csk(sk); 2373 2374 /* Was it a usable window open? */ 2375 2376 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq, 2377 tp->snd_una + tp->snd_wnd)) { 2378 icsk->icsk_backoff = 0; 2379 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 2380 /* Socket must be waked up by subsequent tcp_data_snd_check(). 2381 * This function is not for random using! 2382 */ 2383 } else { 2384 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2385 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2386 TCP_RTO_MAX); 2387 } 2388 } 2389 2390 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 2391 { 2392 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 2393 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 2394 } 2395 2396 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 2397 { 2398 const struct tcp_sock *tp = tcp_sk(sk); 2399 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 2400 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 2401 } 2402 2403 /* Check that window update is acceptable. 2404 * The function assumes that snd_una<=ack<=snd_next. 2405 */ 2406 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack, 2407 const u32 ack_seq, const u32 nwin) 2408 { 2409 return (after(ack, tp->snd_una) || 2410 after(ack_seq, tp->snd_wl1) || 2411 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 2412 } 2413 2414 /* Update our send window. 2415 * 2416 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 2417 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 2418 */ 2419 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp, 2420 struct sk_buff *skb, u32 ack, u32 ack_seq) 2421 { 2422 int flag = 0; 2423 u32 nwin = ntohs(skb->h.th->window); 2424 2425 if (likely(!skb->h.th->syn)) 2426 nwin <<= tp->rx_opt.snd_wscale; 2427 2428 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 2429 flag |= FLAG_WIN_UPDATE; 2430 tcp_update_wl(tp, ack, ack_seq); 2431 2432 if (tp->snd_wnd != nwin) { 2433 tp->snd_wnd = nwin; 2434 2435 /* Note, it is the only place, where 2436 * fast path is recovered for sending TCP. 2437 */ 2438 tp->pred_flags = 0; 2439 tcp_fast_path_check(sk, tp); 2440 2441 if (nwin > tp->max_window) { 2442 tp->max_window = nwin; 2443 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 2444 } 2445 } 2446 } 2447 2448 tp->snd_una = ack; 2449 2450 return flag; 2451 } 2452 2453 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una) 2454 { 2455 struct tcp_sock *tp = tcp_sk(sk); 2456 2457 tcp_sync_left_out(tp); 2458 2459 if (tp->snd_una == prior_snd_una || 2460 !before(tp->snd_una, tp->frto_highmark)) { 2461 /* RTO was caused by loss, start retransmitting in 2462 * go-back-N slow start 2463 */ 2464 tcp_enter_frto_loss(sk); 2465 return; 2466 } 2467 2468 if (tp->frto_counter == 1) { 2469 /* First ACK after RTO advances the window: allow two new 2470 * segments out. 2471 */ 2472 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 2473 } else { 2474 /* Also the second ACK after RTO advances the window. 2475 * The RTO was likely spurious. Reduce cwnd and continue 2476 * in congestion avoidance 2477 */ 2478 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2479 tcp_moderate_cwnd(tp); 2480 } 2481 2482 /* F-RTO affects on two new ACKs following RTO. 2483 * At latest on third ACK the TCP behavior is back to normal. 2484 */ 2485 tp->frto_counter = (tp->frto_counter + 1) % 3; 2486 } 2487 2488 /* This routine deals with incoming acks, but not outgoing ones. */ 2489 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 2490 { 2491 struct inet_connection_sock *icsk = inet_csk(sk); 2492 struct tcp_sock *tp = tcp_sk(sk); 2493 u32 prior_snd_una = tp->snd_una; 2494 u32 ack_seq = TCP_SKB_CB(skb)->seq; 2495 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2496 u32 prior_in_flight; 2497 s32 seq_rtt; 2498 int prior_packets; 2499 2500 /* If the ack is newer than sent or older than previous acks 2501 * then we can probably ignore it. 2502 */ 2503 if (after(ack, tp->snd_nxt)) 2504 goto uninteresting_ack; 2505 2506 if (before(ack, prior_snd_una)) 2507 goto old_ack; 2508 2509 if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR) 2510 tp->bytes_acked += ack - prior_snd_una; 2511 2512 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 2513 /* Window is constant, pure forward advance. 2514 * No more checks are required. 2515 * Note, we use the fact that SND.UNA>=SND.WL2. 2516 */ 2517 tcp_update_wl(tp, ack, ack_seq); 2518 tp->snd_una = ack; 2519 flag |= FLAG_WIN_UPDATE; 2520 2521 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 2522 2523 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); 2524 } else { 2525 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 2526 flag |= FLAG_DATA; 2527 else 2528 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); 2529 2530 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq); 2531 2532 if (TCP_SKB_CB(skb)->sacked) 2533 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2534 2535 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th)) 2536 flag |= FLAG_ECE; 2537 2538 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 2539 } 2540 2541 /* We passed data and got it acked, remove any soft error 2542 * log. Something worked... 2543 */ 2544 sk->sk_err_soft = 0; 2545 tp->rcv_tstamp = tcp_time_stamp; 2546 prior_packets = tp->packets_out; 2547 if (!prior_packets) 2548 goto no_queue; 2549 2550 prior_in_flight = tcp_packets_in_flight(tp); 2551 2552 /* See if we can take anything off of the retransmit queue. */ 2553 flag |= tcp_clean_rtx_queue(sk, &seq_rtt); 2554 2555 if (tp->frto_counter) 2556 tcp_process_frto(sk, prior_snd_una); 2557 2558 if (tcp_ack_is_dubious(sk, flag)) { 2559 /* Advance CWND, if state allows this. */ 2560 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag)) 2561 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0); 2562 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag); 2563 } else { 2564 if ((flag & FLAG_DATA_ACKED)) 2565 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1); 2566 } 2567 2568 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP)) 2569 dst_confirm(sk->sk_dst_cache); 2570 2571 return 1; 2572 2573 no_queue: 2574 icsk->icsk_probes_out = 0; 2575 2576 /* If this ack opens up a zero window, clear backoff. It was 2577 * being used to time the probes, and is probably far higher than 2578 * it needs to be for normal retransmission. 2579 */ 2580 if (sk->sk_send_head) 2581 tcp_ack_probe(sk); 2582 return 1; 2583 2584 old_ack: 2585 if (TCP_SKB_CB(skb)->sacked) 2586 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2587 2588 uninteresting_ack: 2589 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 2590 return 0; 2591 } 2592 2593 2594 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 2595 * But, this can also be called on packets in the established flow when 2596 * the fast version below fails. 2597 */ 2598 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab) 2599 { 2600 unsigned char *ptr; 2601 struct tcphdr *th = skb->h.th; 2602 int length=(th->doff*4)-sizeof(struct tcphdr); 2603 2604 ptr = (unsigned char *)(th + 1); 2605 opt_rx->saw_tstamp = 0; 2606 2607 while(length>0) { 2608 int opcode=*ptr++; 2609 int opsize; 2610 2611 switch (opcode) { 2612 case TCPOPT_EOL: 2613 return; 2614 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 2615 length--; 2616 continue; 2617 default: 2618 opsize=*ptr++; 2619 if (opsize < 2) /* "silly options" */ 2620 return; 2621 if (opsize > length) 2622 return; /* don't parse partial options */ 2623 switch(opcode) { 2624 case TCPOPT_MSS: 2625 if(opsize==TCPOLEN_MSS && th->syn && !estab) { 2626 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr)); 2627 if (in_mss) { 2628 if (opt_rx->user_mss && opt_rx->user_mss < in_mss) 2629 in_mss = opt_rx->user_mss; 2630 opt_rx->mss_clamp = in_mss; 2631 } 2632 } 2633 break; 2634 case TCPOPT_WINDOW: 2635 if(opsize==TCPOLEN_WINDOW && th->syn && !estab) 2636 if (sysctl_tcp_window_scaling) { 2637 __u8 snd_wscale = *(__u8 *) ptr; 2638 opt_rx->wscale_ok = 1; 2639 if (snd_wscale > 14) { 2640 if(net_ratelimit()) 2641 printk(KERN_INFO "tcp_parse_options: Illegal window " 2642 "scaling value %d >14 received.\n", 2643 snd_wscale); 2644 snd_wscale = 14; 2645 } 2646 opt_rx->snd_wscale = snd_wscale; 2647 } 2648 break; 2649 case TCPOPT_TIMESTAMP: 2650 if(opsize==TCPOLEN_TIMESTAMP) { 2651 if ((estab && opt_rx->tstamp_ok) || 2652 (!estab && sysctl_tcp_timestamps)) { 2653 opt_rx->saw_tstamp = 1; 2654 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr)); 2655 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4))); 2656 } 2657 } 2658 break; 2659 case TCPOPT_SACK_PERM: 2660 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) { 2661 if (sysctl_tcp_sack) { 2662 opt_rx->sack_ok = 1; 2663 tcp_sack_reset(opt_rx); 2664 } 2665 } 2666 break; 2667 2668 case TCPOPT_SACK: 2669 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 2670 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 2671 opt_rx->sack_ok) { 2672 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 2673 } 2674 }; 2675 ptr+=opsize-2; 2676 length-=opsize; 2677 }; 2678 } 2679 } 2680 2681 /* Fast parse options. This hopes to only see timestamps. 2682 * If it is wrong it falls back on tcp_parse_options(). 2683 */ 2684 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 2685 struct tcp_sock *tp) 2686 { 2687 if (th->doff == sizeof(struct tcphdr)>>2) { 2688 tp->rx_opt.saw_tstamp = 0; 2689 return 0; 2690 } else if (tp->rx_opt.tstamp_ok && 2691 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 2692 __u32 *ptr = (__u32 *)(th + 1); 2693 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 2694 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 2695 tp->rx_opt.saw_tstamp = 1; 2696 ++ptr; 2697 tp->rx_opt.rcv_tsval = ntohl(*ptr); 2698 ++ptr; 2699 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 2700 return 1; 2701 } 2702 } 2703 tcp_parse_options(skb, &tp->rx_opt, 1); 2704 return 1; 2705 } 2706 2707 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 2708 { 2709 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 2710 tp->rx_opt.ts_recent_stamp = xtime.tv_sec; 2711 } 2712 2713 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 2714 { 2715 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 2716 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 2717 * extra check below makes sure this can only happen 2718 * for pure ACK frames. -DaveM 2719 * 2720 * Not only, also it occurs for expired timestamps. 2721 */ 2722 2723 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 2724 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 2725 tcp_store_ts_recent(tp); 2726 } 2727 } 2728 2729 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 2730 * 2731 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 2732 * it can pass through stack. So, the following predicate verifies that 2733 * this segment is not used for anything but congestion avoidance or 2734 * fast retransmit. Moreover, we even are able to eliminate most of such 2735 * second order effects, if we apply some small "replay" window (~RTO) 2736 * to timestamp space. 2737 * 2738 * All these measures still do not guarantee that we reject wrapped ACKs 2739 * on networks with high bandwidth, when sequence space is recycled fastly, 2740 * but it guarantees that such events will be very rare and do not affect 2741 * connection seriously. This doesn't look nice, but alas, PAWS is really 2742 * buggy extension. 2743 * 2744 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 2745 * states that events when retransmit arrives after original data are rare. 2746 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 2747 * the biggest problem on large power networks even with minor reordering. 2748 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 2749 * up to bandwidth of 18Gigabit/sec. 8) ] 2750 */ 2751 2752 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 2753 { 2754 struct tcp_sock *tp = tcp_sk(sk); 2755 struct tcphdr *th = skb->h.th; 2756 u32 seq = TCP_SKB_CB(skb)->seq; 2757 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2758 2759 return (/* 1. Pure ACK with correct sequence number. */ 2760 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 2761 2762 /* 2. ... and duplicate ACK. */ 2763 ack == tp->snd_una && 2764 2765 /* 3. ... and does not update window. */ 2766 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 2767 2768 /* 4. ... and sits in replay window. */ 2769 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 2770 } 2771 2772 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb) 2773 { 2774 const struct tcp_sock *tp = tcp_sk(sk); 2775 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 2776 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 2777 !tcp_disordered_ack(sk, skb)); 2778 } 2779 2780 /* Check segment sequence number for validity. 2781 * 2782 * Segment controls are considered valid, if the segment 2783 * fits to the window after truncation to the window. Acceptability 2784 * of data (and SYN, FIN, of course) is checked separately. 2785 * See tcp_data_queue(), for example. 2786 * 2787 * Also, controls (RST is main one) are accepted using RCV.WUP instead 2788 * of RCV.NXT. Peer still did not advance his SND.UNA when we 2789 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 2790 * (borrowed from freebsd) 2791 */ 2792 2793 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 2794 { 2795 return !before(end_seq, tp->rcv_wup) && 2796 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 2797 } 2798 2799 /* When we get a reset we do this. */ 2800 static void tcp_reset(struct sock *sk) 2801 { 2802 /* We want the right error as BSD sees it (and indeed as we do). */ 2803 switch (sk->sk_state) { 2804 case TCP_SYN_SENT: 2805 sk->sk_err = ECONNREFUSED; 2806 break; 2807 case TCP_CLOSE_WAIT: 2808 sk->sk_err = EPIPE; 2809 break; 2810 case TCP_CLOSE: 2811 return; 2812 default: 2813 sk->sk_err = ECONNRESET; 2814 } 2815 2816 if (!sock_flag(sk, SOCK_DEAD)) 2817 sk->sk_error_report(sk); 2818 2819 tcp_done(sk); 2820 } 2821 2822 /* 2823 * Process the FIN bit. This now behaves as it is supposed to work 2824 * and the FIN takes effect when it is validly part of sequence 2825 * space. Not before when we get holes. 2826 * 2827 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 2828 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 2829 * TIME-WAIT) 2830 * 2831 * If we are in FINWAIT-1, a received FIN indicates simultaneous 2832 * close and we go into CLOSING (and later onto TIME-WAIT) 2833 * 2834 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 2835 */ 2836 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 2837 { 2838 struct tcp_sock *tp = tcp_sk(sk); 2839 2840 inet_csk_schedule_ack(sk); 2841 2842 sk->sk_shutdown |= RCV_SHUTDOWN; 2843 sock_set_flag(sk, SOCK_DONE); 2844 2845 switch (sk->sk_state) { 2846 case TCP_SYN_RECV: 2847 case TCP_ESTABLISHED: 2848 /* Move to CLOSE_WAIT */ 2849 tcp_set_state(sk, TCP_CLOSE_WAIT); 2850 inet_csk(sk)->icsk_ack.pingpong = 1; 2851 break; 2852 2853 case TCP_CLOSE_WAIT: 2854 case TCP_CLOSING: 2855 /* Received a retransmission of the FIN, do 2856 * nothing. 2857 */ 2858 break; 2859 case TCP_LAST_ACK: 2860 /* RFC793: Remain in the LAST-ACK state. */ 2861 break; 2862 2863 case TCP_FIN_WAIT1: 2864 /* This case occurs when a simultaneous close 2865 * happens, we must ack the received FIN and 2866 * enter the CLOSING state. 2867 */ 2868 tcp_send_ack(sk); 2869 tcp_set_state(sk, TCP_CLOSING); 2870 break; 2871 case TCP_FIN_WAIT2: 2872 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 2873 tcp_send_ack(sk); 2874 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 2875 break; 2876 default: 2877 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 2878 * cases we should never reach this piece of code. 2879 */ 2880 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 2881 __FUNCTION__, sk->sk_state); 2882 break; 2883 }; 2884 2885 /* It _is_ possible, that we have something out-of-order _after_ FIN. 2886 * Probably, we should reset in this case. For now drop them. 2887 */ 2888 __skb_queue_purge(&tp->out_of_order_queue); 2889 if (tp->rx_opt.sack_ok) 2890 tcp_sack_reset(&tp->rx_opt); 2891 sk_stream_mem_reclaim(sk); 2892 2893 if (!sock_flag(sk, SOCK_DEAD)) { 2894 sk->sk_state_change(sk); 2895 2896 /* Do not send POLL_HUP for half duplex close. */ 2897 if (sk->sk_shutdown == SHUTDOWN_MASK || 2898 sk->sk_state == TCP_CLOSE) 2899 sk_wake_async(sk, 1, POLL_HUP); 2900 else 2901 sk_wake_async(sk, 1, POLL_IN); 2902 } 2903 } 2904 2905 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq) 2906 { 2907 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 2908 if (before(seq, sp->start_seq)) 2909 sp->start_seq = seq; 2910 if (after(end_seq, sp->end_seq)) 2911 sp->end_seq = end_seq; 2912 return 1; 2913 } 2914 return 0; 2915 } 2916 2917 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) 2918 { 2919 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 2920 if (before(seq, tp->rcv_nxt)) 2921 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); 2922 else 2923 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); 2924 2925 tp->rx_opt.dsack = 1; 2926 tp->duplicate_sack[0].start_seq = seq; 2927 tp->duplicate_sack[0].end_seq = end_seq; 2928 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok); 2929 } 2930 } 2931 2932 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) 2933 { 2934 if (!tp->rx_opt.dsack) 2935 tcp_dsack_set(tp, seq, end_seq); 2936 else 2937 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 2938 } 2939 2940 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 2941 { 2942 struct tcp_sock *tp = tcp_sk(sk); 2943 2944 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 2945 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 2946 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 2947 tcp_enter_quickack_mode(sk); 2948 2949 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 2950 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2951 2952 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 2953 end_seq = tp->rcv_nxt; 2954 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); 2955 } 2956 } 2957 2958 tcp_send_ack(sk); 2959 } 2960 2961 /* These routines update the SACK block as out-of-order packets arrive or 2962 * in-order packets close up the sequence space. 2963 */ 2964 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 2965 { 2966 int this_sack; 2967 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2968 struct tcp_sack_block *swalk = sp+1; 2969 2970 /* See if the recent change to the first SACK eats into 2971 * or hits the sequence space of other SACK blocks, if so coalesce. 2972 */ 2973 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) { 2974 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 2975 int i; 2976 2977 /* Zap SWALK, by moving every further SACK up by one slot. 2978 * Decrease num_sacks. 2979 */ 2980 tp->rx_opt.num_sacks--; 2981 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 2982 for(i=this_sack; i < tp->rx_opt.num_sacks; i++) 2983 sp[i] = sp[i+1]; 2984 continue; 2985 } 2986 this_sack++, swalk++; 2987 } 2988 } 2989 2990 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2) 2991 { 2992 __u32 tmp; 2993 2994 tmp = sack1->start_seq; 2995 sack1->start_seq = sack2->start_seq; 2996 sack2->start_seq = tmp; 2997 2998 tmp = sack1->end_seq; 2999 sack1->end_seq = sack2->end_seq; 3000 sack2->end_seq = tmp; 3001 } 3002 3003 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3004 { 3005 struct tcp_sock *tp = tcp_sk(sk); 3006 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3007 int cur_sacks = tp->rx_opt.num_sacks; 3008 int this_sack; 3009 3010 if (!cur_sacks) 3011 goto new_sack; 3012 3013 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) { 3014 if (tcp_sack_extend(sp, seq, end_seq)) { 3015 /* Rotate this_sack to the first one. */ 3016 for (; this_sack>0; this_sack--, sp--) 3017 tcp_sack_swap(sp, sp-1); 3018 if (cur_sacks > 1) 3019 tcp_sack_maybe_coalesce(tp); 3020 return; 3021 } 3022 } 3023 3024 /* Could not find an adjacent existing SACK, build a new one, 3025 * put it at the front, and shift everyone else down. We 3026 * always know there is at least one SACK present already here. 3027 * 3028 * If the sack array is full, forget about the last one. 3029 */ 3030 if (this_sack >= 4) { 3031 this_sack--; 3032 tp->rx_opt.num_sacks--; 3033 sp--; 3034 } 3035 for(; this_sack > 0; this_sack--, sp--) 3036 *sp = *(sp-1); 3037 3038 new_sack: 3039 /* Build the new head SACK, and we're done. */ 3040 sp->start_seq = seq; 3041 sp->end_seq = end_seq; 3042 tp->rx_opt.num_sacks++; 3043 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3044 } 3045 3046 /* RCV.NXT advances, some SACKs should be eaten. */ 3047 3048 static void tcp_sack_remove(struct tcp_sock *tp) 3049 { 3050 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3051 int num_sacks = tp->rx_opt.num_sacks; 3052 int this_sack; 3053 3054 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 3055 if (skb_queue_empty(&tp->out_of_order_queue)) { 3056 tp->rx_opt.num_sacks = 0; 3057 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 3058 return; 3059 } 3060 3061 for(this_sack = 0; this_sack < num_sacks; ) { 3062 /* Check if the start of the sack is covered by RCV.NXT. */ 3063 if (!before(tp->rcv_nxt, sp->start_seq)) { 3064 int i; 3065 3066 /* RCV.NXT must cover all the block! */ 3067 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); 3068 3069 /* Zap this SACK, by moving forward any other SACKS. */ 3070 for (i=this_sack+1; i < num_sacks; i++) 3071 tp->selective_acks[i-1] = tp->selective_acks[i]; 3072 num_sacks--; 3073 continue; 3074 } 3075 this_sack++; 3076 sp++; 3077 } 3078 if (num_sacks != tp->rx_opt.num_sacks) { 3079 tp->rx_opt.num_sacks = num_sacks; 3080 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3081 } 3082 } 3083 3084 /* This one checks to see if we can put data from the 3085 * out_of_order queue into the receive_queue. 3086 */ 3087 static void tcp_ofo_queue(struct sock *sk) 3088 { 3089 struct tcp_sock *tp = tcp_sk(sk); 3090 __u32 dsack_high = tp->rcv_nxt; 3091 struct sk_buff *skb; 3092 3093 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 3094 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 3095 break; 3096 3097 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 3098 __u32 dsack = dsack_high; 3099 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 3100 dsack_high = TCP_SKB_CB(skb)->end_seq; 3101 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); 3102 } 3103 3104 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3105 SOCK_DEBUG(sk, "ofo packet was already received \n"); 3106 __skb_unlink(skb, &tp->out_of_order_queue); 3107 __kfree_skb(skb); 3108 continue; 3109 } 3110 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 3111 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3112 TCP_SKB_CB(skb)->end_seq); 3113 3114 __skb_unlink(skb, &tp->out_of_order_queue); 3115 __skb_queue_tail(&sk->sk_receive_queue, skb); 3116 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3117 if(skb->h.th->fin) 3118 tcp_fin(skb, sk, skb->h.th); 3119 } 3120 } 3121 3122 static int tcp_prune_queue(struct sock *sk); 3123 3124 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 3125 { 3126 struct tcphdr *th = skb->h.th; 3127 struct tcp_sock *tp = tcp_sk(sk); 3128 int eaten = -1; 3129 3130 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 3131 goto drop; 3132 3133 __skb_pull(skb, th->doff*4); 3134 3135 TCP_ECN_accept_cwr(tp, skb); 3136 3137 if (tp->rx_opt.dsack) { 3138 tp->rx_opt.dsack = 0; 3139 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, 3140 4 - tp->rx_opt.tstamp_ok); 3141 } 3142 3143 /* Queue data for delivery to the user. 3144 * Packets in sequence go to the receive queue. 3145 * Out of sequence packets to the out_of_order_queue. 3146 */ 3147 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3148 if (tcp_receive_window(tp) == 0) 3149 goto out_of_window; 3150 3151 /* Ok. In sequence. In window. */ 3152 if (tp->ucopy.task == current && 3153 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 3154 sock_owned_by_user(sk) && !tp->urg_data) { 3155 int chunk = min_t(unsigned int, skb->len, 3156 tp->ucopy.len); 3157 3158 __set_current_state(TASK_RUNNING); 3159 3160 local_bh_enable(); 3161 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 3162 tp->ucopy.len -= chunk; 3163 tp->copied_seq += chunk; 3164 eaten = (chunk == skb->len && !th->fin); 3165 tcp_rcv_space_adjust(sk); 3166 } 3167 local_bh_disable(); 3168 } 3169 3170 if (eaten <= 0) { 3171 queue_and_out: 3172 if (eaten < 0 && 3173 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3174 !sk_stream_rmem_schedule(sk, skb))) { 3175 if (tcp_prune_queue(sk) < 0 || 3176 !sk_stream_rmem_schedule(sk, skb)) 3177 goto drop; 3178 } 3179 sk_stream_set_owner_r(skb, sk); 3180 __skb_queue_tail(&sk->sk_receive_queue, skb); 3181 } 3182 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3183 if(skb->len) 3184 tcp_event_data_recv(sk, tp, skb); 3185 if(th->fin) 3186 tcp_fin(skb, sk, th); 3187 3188 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3189 tcp_ofo_queue(sk); 3190 3191 /* RFC2581. 4.2. SHOULD send immediate ACK, when 3192 * gap in queue is filled. 3193 */ 3194 if (skb_queue_empty(&tp->out_of_order_queue)) 3195 inet_csk(sk)->icsk_ack.pingpong = 0; 3196 } 3197 3198 if (tp->rx_opt.num_sacks) 3199 tcp_sack_remove(tp); 3200 3201 tcp_fast_path_check(sk, tp); 3202 3203 if (eaten > 0) 3204 __kfree_skb(skb); 3205 else if (!sock_flag(sk, SOCK_DEAD)) 3206 sk->sk_data_ready(sk, 0); 3207 return; 3208 } 3209 3210 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3211 /* A retransmit, 2nd most common case. Force an immediate ack. */ 3212 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3213 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3214 3215 out_of_window: 3216 tcp_enter_quickack_mode(sk); 3217 inet_csk_schedule_ack(sk); 3218 drop: 3219 __kfree_skb(skb); 3220 return; 3221 } 3222 3223 /* Out of window. F.e. zero window probe. */ 3224 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 3225 goto out_of_window; 3226 3227 tcp_enter_quickack_mode(sk); 3228 3229 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3230 /* Partial packet, seq < rcv_next < end_seq */ 3231 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 3232 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3233 TCP_SKB_CB(skb)->end_seq); 3234 3235 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 3236 3237 /* If window is closed, drop tail of packet. But after 3238 * remembering D-SACK for its head made in previous line. 3239 */ 3240 if (!tcp_receive_window(tp)) 3241 goto out_of_window; 3242 goto queue_and_out; 3243 } 3244 3245 TCP_ECN_check_ce(tp, skb); 3246 3247 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3248 !sk_stream_rmem_schedule(sk, skb)) { 3249 if (tcp_prune_queue(sk) < 0 || 3250 !sk_stream_rmem_schedule(sk, skb)) 3251 goto drop; 3252 } 3253 3254 /* Disable header prediction. */ 3255 tp->pred_flags = 0; 3256 inet_csk_schedule_ack(sk); 3257 3258 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 3259 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3260 3261 sk_stream_set_owner_r(skb, sk); 3262 3263 if (!skb_peek(&tp->out_of_order_queue)) { 3264 /* Initial out of order segment, build 1 SACK. */ 3265 if (tp->rx_opt.sack_ok) { 3266 tp->rx_opt.num_sacks = 1; 3267 tp->rx_opt.dsack = 0; 3268 tp->rx_opt.eff_sacks = 1; 3269 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 3270 tp->selective_acks[0].end_seq = 3271 TCP_SKB_CB(skb)->end_seq; 3272 } 3273 __skb_queue_head(&tp->out_of_order_queue,skb); 3274 } else { 3275 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 3276 u32 seq = TCP_SKB_CB(skb)->seq; 3277 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3278 3279 if (seq == TCP_SKB_CB(skb1)->end_seq) { 3280 __skb_append(skb1, skb, &tp->out_of_order_queue); 3281 3282 if (!tp->rx_opt.num_sacks || 3283 tp->selective_acks[0].end_seq != seq) 3284 goto add_sack; 3285 3286 /* Common case: data arrive in order after hole. */ 3287 tp->selective_acks[0].end_seq = end_seq; 3288 return; 3289 } 3290 3291 /* Find place to insert this segment. */ 3292 do { 3293 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 3294 break; 3295 } while ((skb1 = skb1->prev) != 3296 (struct sk_buff*)&tp->out_of_order_queue); 3297 3298 /* Do skb overlap to previous one? */ 3299 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue && 3300 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 3301 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3302 /* All the bits are present. Drop. */ 3303 __kfree_skb(skb); 3304 tcp_dsack_set(tp, seq, end_seq); 3305 goto add_sack; 3306 } 3307 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 3308 /* Partial overlap. */ 3309 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq); 3310 } else { 3311 skb1 = skb1->prev; 3312 } 3313 } 3314 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); 3315 3316 /* And clean segments covered by new one as whole. */ 3317 while ((skb1 = skb->next) != 3318 (struct sk_buff*)&tp->out_of_order_queue && 3319 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 3320 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3321 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq); 3322 break; 3323 } 3324 __skb_unlink(skb1, &tp->out_of_order_queue); 3325 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq); 3326 __kfree_skb(skb1); 3327 } 3328 3329 add_sack: 3330 if (tp->rx_opt.sack_ok) 3331 tcp_sack_new_ofo_skb(sk, seq, end_seq); 3332 } 3333 } 3334 3335 /* Collapse contiguous sequence of skbs head..tail with 3336 * sequence numbers start..end. 3337 * Segments with FIN/SYN are not collapsed (only because this 3338 * simplifies code) 3339 */ 3340 static void 3341 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 3342 struct sk_buff *head, struct sk_buff *tail, 3343 u32 start, u32 end) 3344 { 3345 struct sk_buff *skb; 3346 3347 /* First, check that queue is collapsible and find 3348 * the point where collapsing can be useful. */ 3349 for (skb = head; skb != tail; ) { 3350 /* No new bits? It is possible on ofo queue. */ 3351 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3352 struct sk_buff *next = skb->next; 3353 __skb_unlink(skb, list); 3354 __kfree_skb(skb); 3355 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3356 skb = next; 3357 continue; 3358 } 3359 3360 /* The first skb to collapse is: 3361 * - not SYN/FIN and 3362 * - bloated or contains data before "start" or 3363 * overlaps to the next one. 3364 */ 3365 if (!skb->h.th->syn && !skb->h.th->fin && 3366 (tcp_win_from_space(skb->truesize) > skb->len || 3367 before(TCP_SKB_CB(skb)->seq, start) || 3368 (skb->next != tail && 3369 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 3370 break; 3371 3372 /* Decided to skip this, advance start seq. */ 3373 start = TCP_SKB_CB(skb)->end_seq; 3374 skb = skb->next; 3375 } 3376 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3377 return; 3378 3379 while (before(start, end)) { 3380 struct sk_buff *nskb; 3381 int header = skb_headroom(skb); 3382 int copy = SKB_MAX_ORDER(header, 0); 3383 3384 /* Too big header? This can happen with IPv6. */ 3385 if (copy < 0) 3386 return; 3387 if (end-start < copy) 3388 copy = end-start; 3389 nskb = alloc_skb(copy+header, GFP_ATOMIC); 3390 if (!nskb) 3391 return; 3392 skb_reserve(nskb, header); 3393 memcpy(nskb->head, skb->head, header); 3394 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head); 3395 nskb->h.raw = nskb->head + (skb->h.raw-skb->head); 3396 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head); 3397 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 3398 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 3399 __skb_insert(nskb, skb->prev, skb, list); 3400 sk_stream_set_owner_r(nskb, sk); 3401 3402 /* Copy data, releasing collapsed skbs. */ 3403 while (copy > 0) { 3404 int offset = start - TCP_SKB_CB(skb)->seq; 3405 int size = TCP_SKB_CB(skb)->end_seq - start; 3406 3407 BUG_ON(offset < 0); 3408 if (size > 0) { 3409 size = min(copy, size); 3410 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 3411 BUG(); 3412 TCP_SKB_CB(nskb)->end_seq += size; 3413 copy -= size; 3414 start += size; 3415 } 3416 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3417 struct sk_buff *next = skb->next; 3418 __skb_unlink(skb, list); 3419 __kfree_skb(skb); 3420 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3421 skb = next; 3422 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3423 return; 3424 } 3425 } 3426 } 3427 } 3428 3429 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 3430 * and tcp_collapse() them until all the queue is collapsed. 3431 */ 3432 static void tcp_collapse_ofo_queue(struct sock *sk) 3433 { 3434 struct tcp_sock *tp = tcp_sk(sk); 3435 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 3436 struct sk_buff *head; 3437 u32 start, end; 3438 3439 if (skb == NULL) 3440 return; 3441 3442 start = TCP_SKB_CB(skb)->seq; 3443 end = TCP_SKB_CB(skb)->end_seq; 3444 head = skb; 3445 3446 for (;;) { 3447 skb = skb->next; 3448 3449 /* Segment is terminated when we see gap or when 3450 * we are at the end of all the queue. */ 3451 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 3452 after(TCP_SKB_CB(skb)->seq, end) || 3453 before(TCP_SKB_CB(skb)->end_seq, start)) { 3454 tcp_collapse(sk, &tp->out_of_order_queue, 3455 head, skb, start, end); 3456 head = skb; 3457 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 3458 break; 3459 /* Start new segment */ 3460 start = TCP_SKB_CB(skb)->seq; 3461 end = TCP_SKB_CB(skb)->end_seq; 3462 } else { 3463 if (before(TCP_SKB_CB(skb)->seq, start)) 3464 start = TCP_SKB_CB(skb)->seq; 3465 if (after(TCP_SKB_CB(skb)->end_seq, end)) 3466 end = TCP_SKB_CB(skb)->end_seq; 3467 } 3468 } 3469 } 3470 3471 /* Reduce allocated memory if we can, trying to get 3472 * the socket within its memory limits again. 3473 * 3474 * Return less than zero if we should start dropping frames 3475 * until the socket owning process reads some of the data 3476 * to stabilize the situation. 3477 */ 3478 static int tcp_prune_queue(struct sock *sk) 3479 { 3480 struct tcp_sock *tp = tcp_sk(sk); 3481 3482 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 3483 3484 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); 3485 3486 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 3487 tcp_clamp_window(sk, tp); 3488 else if (tcp_memory_pressure) 3489 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 3490 3491 tcp_collapse_ofo_queue(sk); 3492 tcp_collapse(sk, &sk->sk_receive_queue, 3493 sk->sk_receive_queue.next, 3494 (struct sk_buff*)&sk->sk_receive_queue, 3495 tp->copied_seq, tp->rcv_nxt); 3496 sk_stream_mem_reclaim(sk); 3497 3498 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3499 return 0; 3500 3501 /* Collapsing did not help, destructive actions follow. 3502 * This must not ever occur. */ 3503 3504 /* First, purge the out_of_order queue. */ 3505 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3506 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED); 3507 __skb_queue_purge(&tp->out_of_order_queue); 3508 3509 /* Reset SACK state. A conforming SACK implementation will 3510 * do the same at a timeout based retransmit. When a connection 3511 * is in a sad state like this, we care only about integrity 3512 * of the connection not performance. 3513 */ 3514 if (tp->rx_opt.sack_ok) 3515 tcp_sack_reset(&tp->rx_opt); 3516 sk_stream_mem_reclaim(sk); 3517 } 3518 3519 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3520 return 0; 3521 3522 /* If we are really being abused, tell the caller to silently 3523 * drop receive data on the floor. It will get retransmitted 3524 * and hopefully then we'll have sufficient space. 3525 */ 3526 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); 3527 3528 /* Massive buffer overcommit. */ 3529 tp->pred_flags = 0; 3530 return -1; 3531 } 3532 3533 3534 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 3535 * As additional protections, we do not touch cwnd in retransmission phases, 3536 * and if application hit its sndbuf limit recently. 3537 */ 3538 void tcp_cwnd_application_limited(struct sock *sk) 3539 { 3540 struct tcp_sock *tp = tcp_sk(sk); 3541 3542 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 3543 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 3544 /* Limited by application or receiver window. */ 3545 u32 win_used = max(tp->snd_cwnd_used, 2U); 3546 if (win_used < tp->snd_cwnd) { 3547 tp->snd_ssthresh = tcp_current_ssthresh(sk); 3548 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 3549 } 3550 tp->snd_cwnd_used = 0; 3551 } 3552 tp->snd_cwnd_stamp = tcp_time_stamp; 3553 } 3554 3555 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp) 3556 { 3557 /* If the user specified a specific send buffer setting, do 3558 * not modify it. 3559 */ 3560 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 3561 return 0; 3562 3563 /* If we are under global TCP memory pressure, do not expand. */ 3564 if (tcp_memory_pressure) 3565 return 0; 3566 3567 /* If we are under soft global TCP memory pressure, do not expand. */ 3568 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 3569 return 0; 3570 3571 /* If we filled the congestion window, do not expand. */ 3572 if (tp->packets_out >= tp->snd_cwnd) 3573 return 0; 3574 3575 return 1; 3576 } 3577 3578 /* When incoming ACK allowed to free some skb from write_queue, 3579 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 3580 * on the exit from tcp input handler. 3581 * 3582 * PROBLEM: sndbuf expansion does not work well with largesend. 3583 */ 3584 static void tcp_new_space(struct sock *sk) 3585 { 3586 struct tcp_sock *tp = tcp_sk(sk); 3587 3588 if (tcp_should_expand_sndbuf(sk, tp)) { 3589 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 3590 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), 3591 demanded = max_t(unsigned int, tp->snd_cwnd, 3592 tp->reordering + 1); 3593 sndmem *= 2*demanded; 3594 if (sndmem > sk->sk_sndbuf) 3595 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 3596 tp->snd_cwnd_stamp = tcp_time_stamp; 3597 } 3598 3599 sk->sk_write_space(sk); 3600 } 3601 3602 static void tcp_check_space(struct sock *sk) 3603 { 3604 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 3605 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 3606 if (sk->sk_socket && 3607 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 3608 tcp_new_space(sk); 3609 } 3610 } 3611 3612 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp) 3613 { 3614 tcp_push_pending_frames(sk, tp); 3615 tcp_check_space(sk); 3616 } 3617 3618 /* 3619 * Check if sending an ack is needed. 3620 */ 3621 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 3622 { 3623 struct tcp_sock *tp = tcp_sk(sk); 3624 3625 /* More than one full frame received... */ 3626 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 3627 /* ... and right edge of window advances far enough. 3628 * (tcp_recvmsg() will send ACK otherwise). Or... 3629 */ 3630 && __tcp_select_window(sk) >= tp->rcv_wnd) || 3631 /* We ACK each frame or... */ 3632 tcp_in_quickack_mode(sk) || 3633 /* We have out of order data. */ 3634 (ofo_possible && 3635 skb_peek(&tp->out_of_order_queue))) { 3636 /* Then ack it now */ 3637 tcp_send_ack(sk); 3638 } else { 3639 /* Else, send delayed ack. */ 3640 tcp_send_delayed_ack(sk); 3641 } 3642 } 3643 3644 static inline void tcp_ack_snd_check(struct sock *sk) 3645 { 3646 if (!inet_csk_ack_scheduled(sk)) { 3647 /* We sent a data segment already. */ 3648 return; 3649 } 3650 __tcp_ack_snd_check(sk, 1); 3651 } 3652 3653 /* 3654 * This routine is only called when we have urgent data 3655 * signaled. Its the 'slow' part of tcp_urg. It could be 3656 * moved inline now as tcp_urg is only called from one 3657 * place. We handle URGent data wrong. We have to - as 3658 * BSD still doesn't use the correction from RFC961. 3659 * For 1003.1g we should support a new option TCP_STDURG to permit 3660 * either form (or just set the sysctl tcp_stdurg). 3661 */ 3662 3663 static void tcp_check_urg(struct sock * sk, struct tcphdr * th) 3664 { 3665 struct tcp_sock *tp = tcp_sk(sk); 3666 u32 ptr = ntohs(th->urg_ptr); 3667 3668 if (ptr && !sysctl_tcp_stdurg) 3669 ptr--; 3670 ptr += ntohl(th->seq); 3671 3672 /* Ignore urgent data that we've already seen and read. */ 3673 if (after(tp->copied_seq, ptr)) 3674 return; 3675 3676 /* Do not replay urg ptr. 3677 * 3678 * NOTE: interesting situation not covered by specs. 3679 * Misbehaving sender may send urg ptr, pointing to segment, 3680 * which we already have in ofo queue. We are not able to fetch 3681 * such data and will stay in TCP_URG_NOTYET until will be eaten 3682 * by recvmsg(). Seems, we are not obliged to handle such wicked 3683 * situations. But it is worth to think about possibility of some 3684 * DoSes using some hypothetical application level deadlock. 3685 */ 3686 if (before(ptr, tp->rcv_nxt)) 3687 return; 3688 3689 /* Do we already have a newer (or duplicate) urgent pointer? */ 3690 if (tp->urg_data && !after(ptr, tp->urg_seq)) 3691 return; 3692 3693 /* Tell the world about our new urgent pointer. */ 3694 sk_send_sigurg(sk); 3695 3696 /* We may be adding urgent data when the last byte read was 3697 * urgent. To do this requires some care. We cannot just ignore 3698 * tp->copied_seq since we would read the last urgent byte again 3699 * as data, nor can we alter copied_seq until this data arrives 3700 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 3701 * 3702 * NOTE. Double Dutch. Rendering to plain English: author of comment 3703 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 3704 * and expect that both A and B disappear from stream. This is _wrong_. 3705 * Though this happens in BSD with high probability, this is occasional. 3706 * Any application relying on this is buggy. Note also, that fix "works" 3707 * only in this artificial test. Insert some normal data between A and B and we will 3708 * decline of BSD again. Verdict: it is better to remove to trap 3709 * buggy users. 3710 */ 3711 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 3712 !sock_flag(sk, SOCK_URGINLINE) && 3713 tp->copied_seq != tp->rcv_nxt) { 3714 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 3715 tp->copied_seq++; 3716 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 3717 __skb_unlink(skb, &sk->sk_receive_queue); 3718 __kfree_skb(skb); 3719 } 3720 } 3721 3722 tp->urg_data = TCP_URG_NOTYET; 3723 tp->urg_seq = ptr; 3724 3725 /* Disable header prediction. */ 3726 tp->pred_flags = 0; 3727 } 3728 3729 /* This is the 'fast' part of urgent handling. */ 3730 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 3731 { 3732 struct tcp_sock *tp = tcp_sk(sk); 3733 3734 /* Check if we get a new urgent pointer - normally not. */ 3735 if (th->urg) 3736 tcp_check_urg(sk,th); 3737 3738 /* Do we wait for any urgent data? - normally not... */ 3739 if (tp->urg_data == TCP_URG_NOTYET) { 3740 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 3741 th->syn; 3742 3743 /* Is the urgent pointer pointing into this packet? */ 3744 if (ptr < skb->len) { 3745 u8 tmp; 3746 if (skb_copy_bits(skb, ptr, &tmp, 1)) 3747 BUG(); 3748 tp->urg_data = TCP_URG_VALID | tmp; 3749 if (!sock_flag(sk, SOCK_DEAD)) 3750 sk->sk_data_ready(sk, 0); 3751 } 3752 } 3753 } 3754 3755 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 3756 { 3757 struct tcp_sock *tp = tcp_sk(sk); 3758 int chunk = skb->len - hlen; 3759 int err; 3760 3761 local_bh_enable(); 3762 if (skb->ip_summed==CHECKSUM_UNNECESSARY) 3763 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 3764 else 3765 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 3766 tp->ucopy.iov); 3767 3768 if (!err) { 3769 tp->ucopy.len -= chunk; 3770 tp->copied_seq += chunk; 3771 tcp_rcv_space_adjust(sk); 3772 } 3773 3774 local_bh_disable(); 3775 return err; 3776 } 3777 3778 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 3779 { 3780 int result; 3781 3782 if (sock_owned_by_user(sk)) { 3783 local_bh_enable(); 3784 result = __tcp_checksum_complete(skb); 3785 local_bh_disable(); 3786 } else { 3787 result = __tcp_checksum_complete(skb); 3788 } 3789 return result; 3790 } 3791 3792 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 3793 { 3794 return skb->ip_summed != CHECKSUM_UNNECESSARY && 3795 __tcp_checksum_complete_user(sk, skb); 3796 } 3797 3798 #ifdef CONFIG_NET_DMA 3799 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen) 3800 { 3801 struct tcp_sock *tp = tcp_sk(sk); 3802 int chunk = skb->len - hlen; 3803 int dma_cookie; 3804 int copied_early = 0; 3805 3806 if (tp->ucopy.wakeup) 3807 return 0; 3808 3809 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 3810 tp->ucopy.dma_chan = get_softnet_dma(); 3811 3812 if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) { 3813 3814 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 3815 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list); 3816 3817 if (dma_cookie < 0) 3818 goto out; 3819 3820 tp->ucopy.dma_cookie = dma_cookie; 3821 copied_early = 1; 3822 3823 tp->ucopy.len -= chunk; 3824 tp->copied_seq += chunk; 3825 tcp_rcv_space_adjust(sk); 3826 3827 if ((tp->ucopy.len == 0) || 3828 (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) || 3829 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 3830 tp->ucopy.wakeup = 1; 3831 sk->sk_data_ready(sk, 0); 3832 } 3833 } else if (chunk > 0) { 3834 tp->ucopy.wakeup = 1; 3835 sk->sk_data_ready(sk, 0); 3836 } 3837 out: 3838 return copied_early; 3839 } 3840 #endif /* CONFIG_NET_DMA */ 3841 3842 /* 3843 * TCP receive function for the ESTABLISHED state. 3844 * 3845 * It is split into a fast path and a slow path. The fast path is 3846 * disabled when: 3847 * - A zero window was announced from us - zero window probing 3848 * is only handled properly in the slow path. 3849 * - Out of order segments arrived. 3850 * - Urgent data is expected. 3851 * - There is no buffer space left 3852 * - Unexpected TCP flags/window values/header lengths are received 3853 * (detected by checking the TCP header against pred_flags) 3854 * - Data is sent in both directions. Fast path only supports pure senders 3855 * or pure receivers (this means either the sequence number or the ack 3856 * value must stay constant) 3857 * - Unexpected TCP option. 3858 * 3859 * When these conditions are not satisfied it drops into a standard 3860 * receive procedure patterned after RFC793 to handle all cases. 3861 * The first three cases are guaranteed by proper pred_flags setting, 3862 * the rest is checked inline. Fast processing is turned on in 3863 * tcp_data_queue when everything is OK. 3864 */ 3865 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 3866 struct tcphdr *th, unsigned len) 3867 { 3868 struct tcp_sock *tp = tcp_sk(sk); 3869 3870 /* 3871 * Header prediction. 3872 * The code loosely follows the one in the famous 3873 * "30 instruction TCP receive" Van Jacobson mail. 3874 * 3875 * Van's trick is to deposit buffers into socket queue 3876 * on a device interrupt, to call tcp_recv function 3877 * on the receive process context and checksum and copy 3878 * the buffer to user space. smart... 3879 * 3880 * Our current scheme is not silly either but we take the 3881 * extra cost of the net_bh soft interrupt processing... 3882 * We do checksum and copy also but from device to kernel. 3883 */ 3884 3885 tp->rx_opt.saw_tstamp = 0; 3886 3887 /* pred_flags is 0xS?10 << 16 + snd_wnd 3888 * if header_prediction is to be made 3889 * 'S' will always be tp->tcp_header_len >> 2 3890 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 3891 * turn it off (when there are holes in the receive 3892 * space for instance) 3893 * PSH flag is ignored. 3894 */ 3895 3896 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 3897 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3898 int tcp_header_len = tp->tcp_header_len; 3899 3900 /* Timestamp header prediction: tcp_header_len 3901 * is automatically equal to th->doff*4 due to pred_flags 3902 * match. 3903 */ 3904 3905 /* Check timestamp */ 3906 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 3907 __u32 *ptr = (__u32 *)(th + 1); 3908 3909 /* No? Slow path! */ 3910 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3911 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) 3912 goto slow_path; 3913 3914 tp->rx_opt.saw_tstamp = 1; 3915 ++ptr; 3916 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3917 ++ptr; 3918 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3919 3920 /* If PAWS failed, check it more carefully in slow path */ 3921 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 3922 goto slow_path; 3923 3924 /* DO NOT update ts_recent here, if checksum fails 3925 * and timestamp was corrupted part, it will result 3926 * in a hung connection since we will drop all 3927 * future packets due to the PAWS test. 3928 */ 3929 } 3930 3931 if (len <= tcp_header_len) { 3932 /* Bulk data transfer: sender */ 3933 if (len == tcp_header_len) { 3934 /* Predicted packet is in window by definition. 3935 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3936 * Hence, check seq<=rcv_wup reduces to: 3937 */ 3938 if (tcp_header_len == 3939 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 3940 tp->rcv_nxt == tp->rcv_wup) 3941 tcp_store_ts_recent(tp); 3942 3943 /* We know that such packets are checksummed 3944 * on entry. 3945 */ 3946 tcp_ack(sk, skb, 0); 3947 __kfree_skb(skb); 3948 tcp_data_snd_check(sk, tp); 3949 return 0; 3950 } else { /* Header too small */ 3951 TCP_INC_STATS_BH(TCP_MIB_INERRS); 3952 goto discard; 3953 } 3954 } else { 3955 int eaten = 0; 3956 int copied_early = 0; 3957 3958 if (tp->copied_seq == tp->rcv_nxt && 3959 len - tcp_header_len <= tp->ucopy.len) { 3960 #ifdef CONFIG_NET_DMA 3961 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 3962 copied_early = 1; 3963 eaten = 1; 3964 } 3965 #endif 3966 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) { 3967 __set_current_state(TASK_RUNNING); 3968 3969 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 3970 eaten = 1; 3971 } 3972 if (eaten) { 3973 /* Predicted packet is in window by definition. 3974 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3975 * Hence, check seq<=rcv_wup reduces to: 3976 */ 3977 if (tcp_header_len == 3978 (sizeof(struct tcphdr) + 3979 TCPOLEN_TSTAMP_ALIGNED) && 3980 tp->rcv_nxt == tp->rcv_wup) 3981 tcp_store_ts_recent(tp); 3982 3983 tcp_rcv_rtt_measure_ts(sk, skb); 3984 3985 __skb_pull(skb, tcp_header_len); 3986 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3987 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); 3988 } 3989 if (copied_early) 3990 tcp_cleanup_rbuf(sk, skb->len); 3991 } 3992 if (!eaten) { 3993 if (tcp_checksum_complete_user(sk, skb)) 3994 goto csum_error; 3995 3996 /* Predicted packet is in window by definition. 3997 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3998 * Hence, check seq<=rcv_wup reduces to: 3999 */ 4000 if (tcp_header_len == 4001 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4002 tp->rcv_nxt == tp->rcv_wup) 4003 tcp_store_ts_recent(tp); 4004 4005 tcp_rcv_rtt_measure_ts(sk, skb); 4006 4007 if ((int)skb->truesize > sk->sk_forward_alloc) 4008 goto step5; 4009 4010 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); 4011 4012 /* Bulk data transfer: receiver */ 4013 __skb_pull(skb,tcp_header_len); 4014 __skb_queue_tail(&sk->sk_receive_queue, skb); 4015 sk_stream_set_owner_r(skb, sk); 4016 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4017 } 4018 4019 tcp_event_data_recv(sk, tp, skb); 4020 4021 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 4022 /* Well, only one small jumplet in fast path... */ 4023 tcp_ack(sk, skb, FLAG_DATA); 4024 tcp_data_snd_check(sk, tp); 4025 if (!inet_csk_ack_scheduled(sk)) 4026 goto no_ack; 4027 } 4028 4029 __tcp_ack_snd_check(sk, 0); 4030 no_ack: 4031 #ifdef CONFIG_NET_DMA 4032 if (copied_early) 4033 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 4034 else 4035 #endif 4036 if (eaten) 4037 __kfree_skb(skb); 4038 else 4039 sk->sk_data_ready(sk, 0); 4040 return 0; 4041 } 4042 } 4043 4044 slow_path: 4045 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb)) 4046 goto csum_error; 4047 4048 /* 4049 * RFC1323: H1. Apply PAWS check first. 4050 */ 4051 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4052 tcp_paws_discard(sk, skb)) { 4053 if (!th->rst) { 4054 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4055 tcp_send_dupack(sk, skb); 4056 goto discard; 4057 } 4058 /* Resets are accepted even if PAWS failed. 4059 4060 ts_recent update must be made after we are sure 4061 that the packet is in window. 4062 */ 4063 } 4064 4065 /* 4066 * Standard slow path. 4067 */ 4068 4069 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4070 /* RFC793, page 37: "In all states except SYN-SENT, all reset 4071 * (RST) segments are validated by checking their SEQ-fields." 4072 * And page 69: "If an incoming segment is not acceptable, 4073 * an acknowledgment should be sent in reply (unless the RST bit 4074 * is set, if so drop the segment and return)". 4075 */ 4076 if (!th->rst) 4077 tcp_send_dupack(sk, skb); 4078 goto discard; 4079 } 4080 4081 if(th->rst) { 4082 tcp_reset(sk); 4083 goto discard; 4084 } 4085 4086 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4087 4088 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4089 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4090 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4091 tcp_reset(sk); 4092 return 1; 4093 } 4094 4095 step5: 4096 if(th->ack) 4097 tcp_ack(sk, skb, FLAG_SLOWPATH); 4098 4099 tcp_rcv_rtt_measure_ts(sk, skb); 4100 4101 /* Process urgent data. */ 4102 tcp_urg(sk, skb, th); 4103 4104 /* step 7: process the segment text */ 4105 tcp_data_queue(sk, skb); 4106 4107 tcp_data_snd_check(sk, tp); 4108 tcp_ack_snd_check(sk); 4109 return 0; 4110 4111 csum_error: 4112 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4113 4114 discard: 4115 __kfree_skb(skb); 4116 return 0; 4117 } 4118 4119 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 4120 struct tcphdr *th, unsigned len) 4121 { 4122 struct tcp_sock *tp = tcp_sk(sk); 4123 struct inet_connection_sock *icsk = inet_csk(sk); 4124 int saved_clamp = tp->rx_opt.mss_clamp; 4125 4126 tcp_parse_options(skb, &tp->rx_opt, 0); 4127 4128 if (th->ack) { 4129 /* rfc793: 4130 * "If the state is SYN-SENT then 4131 * first check the ACK bit 4132 * If the ACK bit is set 4133 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 4134 * a reset (unless the RST bit is set, if so drop 4135 * the segment and return)" 4136 * 4137 * We do not send data with SYN, so that RFC-correct 4138 * test reduces to: 4139 */ 4140 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 4141 goto reset_and_undo; 4142 4143 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4144 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 4145 tcp_time_stamp)) { 4146 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); 4147 goto reset_and_undo; 4148 } 4149 4150 /* Now ACK is acceptable. 4151 * 4152 * "If the RST bit is set 4153 * If the ACK was acceptable then signal the user "error: 4154 * connection reset", drop the segment, enter CLOSED state, 4155 * delete TCB, and return." 4156 */ 4157 4158 if (th->rst) { 4159 tcp_reset(sk); 4160 goto discard; 4161 } 4162 4163 /* rfc793: 4164 * "fifth, if neither of the SYN or RST bits is set then 4165 * drop the segment and return." 4166 * 4167 * See note below! 4168 * --ANK(990513) 4169 */ 4170 if (!th->syn) 4171 goto discard_and_undo; 4172 4173 /* rfc793: 4174 * "If the SYN bit is on ... 4175 * are acceptable then ... 4176 * (our SYN has been ACKed), change the connection 4177 * state to ESTABLISHED..." 4178 */ 4179 4180 TCP_ECN_rcv_synack(tp, th); 4181 if (tp->ecn_flags&TCP_ECN_OK) 4182 sock_set_flag(sk, SOCK_NO_LARGESEND); 4183 4184 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4185 tcp_ack(sk, skb, FLAG_SLOWPATH); 4186 4187 /* Ok.. it's good. Set up sequence numbers and 4188 * move to established. 4189 */ 4190 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4191 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4192 4193 /* RFC1323: The window in SYN & SYN/ACK segments is 4194 * never scaled. 4195 */ 4196 tp->snd_wnd = ntohs(th->window); 4197 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 4198 4199 if (!tp->rx_opt.wscale_ok) { 4200 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 4201 tp->window_clamp = min(tp->window_clamp, 65535U); 4202 } 4203 4204 if (tp->rx_opt.saw_tstamp) { 4205 tp->rx_opt.tstamp_ok = 1; 4206 tp->tcp_header_len = 4207 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4208 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4209 tcp_store_ts_recent(tp); 4210 } else { 4211 tp->tcp_header_len = sizeof(struct tcphdr); 4212 } 4213 4214 if (tp->rx_opt.sack_ok && sysctl_tcp_fack) 4215 tp->rx_opt.sack_ok |= 2; 4216 4217 tcp_mtup_init(sk); 4218 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4219 tcp_initialize_rcv_mss(sk); 4220 4221 /* Remember, tcp_poll() does not lock socket! 4222 * Change state from SYN-SENT only after copied_seq 4223 * is initialized. */ 4224 tp->copied_seq = tp->rcv_nxt; 4225 mb(); 4226 tcp_set_state(sk, TCP_ESTABLISHED); 4227 4228 /* Make sure socket is routed, for correct metrics. */ 4229 icsk->icsk_af_ops->rebuild_header(sk); 4230 4231 tcp_init_metrics(sk); 4232 4233 tcp_init_congestion_control(sk); 4234 4235 /* Prevent spurious tcp_cwnd_restart() on first data 4236 * packet. 4237 */ 4238 tp->lsndtime = tcp_time_stamp; 4239 4240 tcp_init_buffer_space(sk); 4241 4242 if (sock_flag(sk, SOCK_KEEPOPEN)) 4243 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 4244 4245 if (!tp->rx_opt.snd_wscale) 4246 __tcp_fast_path_on(tp, tp->snd_wnd); 4247 else 4248 tp->pred_flags = 0; 4249 4250 if (!sock_flag(sk, SOCK_DEAD)) { 4251 sk->sk_state_change(sk); 4252 sk_wake_async(sk, 0, POLL_OUT); 4253 } 4254 4255 if (sk->sk_write_pending || 4256 icsk->icsk_accept_queue.rskq_defer_accept || 4257 icsk->icsk_ack.pingpong) { 4258 /* Save one ACK. Data will be ready after 4259 * several ticks, if write_pending is set. 4260 * 4261 * It may be deleted, but with this feature tcpdumps 4262 * look so _wonderfully_ clever, that I was not able 4263 * to stand against the temptation 8) --ANK 4264 */ 4265 inet_csk_schedule_ack(sk); 4266 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 4267 icsk->icsk_ack.ato = TCP_ATO_MIN; 4268 tcp_incr_quickack(sk); 4269 tcp_enter_quickack_mode(sk); 4270 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 4271 TCP_DELACK_MAX, TCP_RTO_MAX); 4272 4273 discard: 4274 __kfree_skb(skb); 4275 return 0; 4276 } else { 4277 tcp_send_ack(sk); 4278 } 4279 return -1; 4280 } 4281 4282 /* No ACK in the segment */ 4283 4284 if (th->rst) { 4285 /* rfc793: 4286 * "If the RST bit is set 4287 * 4288 * Otherwise (no ACK) drop the segment and return." 4289 */ 4290 4291 goto discard_and_undo; 4292 } 4293 4294 /* PAWS check. */ 4295 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0)) 4296 goto discard_and_undo; 4297 4298 if (th->syn) { 4299 /* We see SYN without ACK. It is attempt of 4300 * simultaneous connect with crossed SYNs. 4301 * Particularly, it can be connect to self. 4302 */ 4303 tcp_set_state(sk, TCP_SYN_RECV); 4304 4305 if (tp->rx_opt.saw_tstamp) { 4306 tp->rx_opt.tstamp_ok = 1; 4307 tcp_store_ts_recent(tp); 4308 tp->tcp_header_len = 4309 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4310 } else { 4311 tp->tcp_header_len = sizeof(struct tcphdr); 4312 } 4313 4314 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4315 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4316 4317 /* RFC1323: The window in SYN & SYN/ACK segments is 4318 * never scaled. 4319 */ 4320 tp->snd_wnd = ntohs(th->window); 4321 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4322 tp->max_window = tp->snd_wnd; 4323 4324 TCP_ECN_rcv_syn(tp, th); 4325 if (tp->ecn_flags&TCP_ECN_OK) 4326 sock_set_flag(sk, SOCK_NO_LARGESEND); 4327 4328 tcp_mtup_init(sk); 4329 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4330 tcp_initialize_rcv_mss(sk); 4331 4332 4333 tcp_send_synack(sk); 4334 #if 0 4335 /* Note, we could accept data and URG from this segment. 4336 * There are no obstacles to make this. 4337 * 4338 * However, if we ignore data in ACKless segments sometimes, 4339 * we have no reasons to accept it sometimes. 4340 * Also, seems the code doing it in step6 of tcp_rcv_state_process 4341 * is not flawless. So, discard packet for sanity. 4342 * Uncomment this return to process the data. 4343 */ 4344 return -1; 4345 #else 4346 goto discard; 4347 #endif 4348 } 4349 /* "fifth, if neither of the SYN or RST bits is set then 4350 * drop the segment and return." 4351 */ 4352 4353 discard_and_undo: 4354 tcp_clear_options(&tp->rx_opt); 4355 tp->rx_opt.mss_clamp = saved_clamp; 4356 goto discard; 4357 4358 reset_and_undo: 4359 tcp_clear_options(&tp->rx_opt); 4360 tp->rx_opt.mss_clamp = saved_clamp; 4361 return 1; 4362 } 4363 4364 4365 /* 4366 * This function implements the receiving procedure of RFC 793 for 4367 * all states except ESTABLISHED and TIME_WAIT. 4368 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 4369 * address independent. 4370 */ 4371 4372 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 4373 struct tcphdr *th, unsigned len) 4374 { 4375 struct tcp_sock *tp = tcp_sk(sk); 4376 struct inet_connection_sock *icsk = inet_csk(sk); 4377 int queued = 0; 4378 4379 tp->rx_opt.saw_tstamp = 0; 4380 4381 switch (sk->sk_state) { 4382 case TCP_CLOSE: 4383 goto discard; 4384 4385 case TCP_LISTEN: 4386 if(th->ack) 4387 return 1; 4388 4389 if(th->rst) 4390 goto discard; 4391 4392 if(th->syn) { 4393 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 4394 return 1; 4395 4396 /* Now we have several options: In theory there is 4397 * nothing else in the frame. KA9Q has an option to 4398 * send data with the syn, BSD accepts data with the 4399 * syn up to the [to be] advertised window and 4400 * Solaris 2.1 gives you a protocol error. For now 4401 * we just ignore it, that fits the spec precisely 4402 * and avoids incompatibilities. It would be nice in 4403 * future to drop through and process the data. 4404 * 4405 * Now that TTCP is starting to be used we ought to 4406 * queue this data. 4407 * But, this leaves one open to an easy denial of 4408 * service attack, and SYN cookies can't defend 4409 * against this problem. So, we drop the data 4410 * in the interest of security over speed. 4411 */ 4412 goto discard; 4413 } 4414 goto discard; 4415 4416 case TCP_SYN_SENT: 4417 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 4418 if (queued >= 0) 4419 return queued; 4420 4421 /* Do step6 onward by hand. */ 4422 tcp_urg(sk, skb, th); 4423 __kfree_skb(skb); 4424 tcp_data_snd_check(sk, tp); 4425 return 0; 4426 } 4427 4428 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4429 tcp_paws_discard(sk, skb)) { 4430 if (!th->rst) { 4431 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4432 tcp_send_dupack(sk, skb); 4433 goto discard; 4434 } 4435 /* Reset is accepted even if it did not pass PAWS. */ 4436 } 4437 4438 /* step 1: check sequence number */ 4439 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4440 if (!th->rst) 4441 tcp_send_dupack(sk, skb); 4442 goto discard; 4443 } 4444 4445 /* step 2: check RST bit */ 4446 if(th->rst) { 4447 tcp_reset(sk); 4448 goto discard; 4449 } 4450 4451 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4452 4453 /* step 3: check security and precedence [ignored] */ 4454 4455 /* step 4: 4456 * 4457 * Check for a SYN in window. 4458 */ 4459 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4460 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4461 tcp_reset(sk); 4462 return 1; 4463 } 4464 4465 /* step 5: check the ACK field */ 4466 if (th->ack) { 4467 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 4468 4469 switch(sk->sk_state) { 4470 case TCP_SYN_RECV: 4471 if (acceptable) { 4472 tp->copied_seq = tp->rcv_nxt; 4473 mb(); 4474 tcp_set_state(sk, TCP_ESTABLISHED); 4475 sk->sk_state_change(sk); 4476 4477 /* Note, that this wakeup is only for marginal 4478 * crossed SYN case. Passively open sockets 4479 * are not waked up, because sk->sk_sleep == 4480 * NULL and sk->sk_socket == NULL. 4481 */ 4482 if (sk->sk_socket) { 4483 sk_wake_async(sk,0,POLL_OUT); 4484 } 4485 4486 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 4487 tp->snd_wnd = ntohs(th->window) << 4488 tp->rx_opt.snd_wscale; 4489 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 4490 TCP_SKB_CB(skb)->seq); 4491 4492 /* tcp_ack considers this ACK as duplicate 4493 * and does not calculate rtt. 4494 * Fix it at least with timestamps. 4495 */ 4496 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4497 !tp->srtt) 4498 tcp_ack_saw_tstamp(sk, 0); 4499 4500 if (tp->rx_opt.tstamp_ok) 4501 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4502 4503 /* Make sure socket is routed, for 4504 * correct metrics. 4505 */ 4506 icsk->icsk_af_ops->rebuild_header(sk); 4507 4508 tcp_init_metrics(sk); 4509 4510 tcp_init_congestion_control(sk); 4511 4512 /* Prevent spurious tcp_cwnd_restart() on 4513 * first data packet. 4514 */ 4515 tp->lsndtime = tcp_time_stamp; 4516 4517 tcp_mtup_init(sk); 4518 tcp_initialize_rcv_mss(sk); 4519 tcp_init_buffer_space(sk); 4520 tcp_fast_path_on(tp); 4521 } else { 4522 return 1; 4523 } 4524 break; 4525 4526 case TCP_FIN_WAIT1: 4527 if (tp->snd_una == tp->write_seq) { 4528 tcp_set_state(sk, TCP_FIN_WAIT2); 4529 sk->sk_shutdown |= SEND_SHUTDOWN; 4530 dst_confirm(sk->sk_dst_cache); 4531 4532 if (!sock_flag(sk, SOCK_DEAD)) 4533 /* Wake up lingering close() */ 4534 sk->sk_state_change(sk); 4535 else { 4536 int tmo; 4537 4538 if (tp->linger2 < 0 || 4539 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4540 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 4541 tcp_done(sk); 4542 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4543 return 1; 4544 } 4545 4546 tmo = tcp_fin_time(sk); 4547 if (tmo > TCP_TIMEWAIT_LEN) { 4548 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 4549 } else if (th->fin || sock_owned_by_user(sk)) { 4550 /* Bad case. We could lose such FIN otherwise. 4551 * It is not a big problem, but it looks confusing 4552 * and not so rare event. We still can lose it now, 4553 * if it spins in bh_lock_sock(), but it is really 4554 * marginal case. 4555 */ 4556 inet_csk_reset_keepalive_timer(sk, tmo); 4557 } else { 4558 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 4559 goto discard; 4560 } 4561 } 4562 } 4563 break; 4564 4565 case TCP_CLOSING: 4566 if (tp->snd_una == tp->write_seq) { 4567 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4568 goto discard; 4569 } 4570 break; 4571 4572 case TCP_LAST_ACK: 4573 if (tp->snd_una == tp->write_seq) { 4574 tcp_update_metrics(sk); 4575 tcp_done(sk); 4576 goto discard; 4577 } 4578 break; 4579 } 4580 } else 4581 goto discard; 4582 4583 /* step 6: check the URG bit */ 4584 tcp_urg(sk, skb, th); 4585 4586 /* step 7: process the segment text */ 4587 switch (sk->sk_state) { 4588 case TCP_CLOSE_WAIT: 4589 case TCP_CLOSING: 4590 case TCP_LAST_ACK: 4591 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4592 break; 4593 case TCP_FIN_WAIT1: 4594 case TCP_FIN_WAIT2: 4595 /* RFC 793 says to queue data in these states, 4596 * RFC 1122 says we MUST send a reset. 4597 * BSD 4.4 also does reset. 4598 */ 4599 if (sk->sk_shutdown & RCV_SHUTDOWN) { 4600 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4601 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 4602 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4603 tcp_reset(sk); 4604 return 1; 4605 } 4606 } 4607 /* Fall through */ 4608 case TCP_ESTABLISHED: 4609 tcp_data_queue(sk, skb); 4610 queued = 1; 4611 break; 4612 } 4613 4614 /* tcp_data could move socket to TIME-WAIT */ 4615 if (sk->sk_state != TCP_CLOSE) { 4616 tcp_data_snd_check(sk, tp); 4617 tcp_ack_snd_check(sk); 4618 } 4619 4620 if (!queued) { 4621 discard: 4622 __kfree_skb(skb); 4623 } 4624 return 0; 4625 } 4626 4627 EXPORT_SYMBOL(sysctl_tcp_ecn); 4628 EXPORT_SYMBOL(sysctl_tcp_reordering); 4629 EXPORT_SYMBOL(tcp_parse_options); 4630 EXPORT_SYMBOL(tcp_rcv_established); 4631 EXPORT_SYMBOL(tcp_rcv_state_process); 4632 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 4633