xref: /linux/net/ipv4/tcp_input.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
84 
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
90 
91 int sysctl_tcp_moderate_rcvbuf = 1;
92 int sysctl_tcp_abc;
93 
94 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
95 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
96 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
97 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
98 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
99 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
100 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
101 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
102 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112 
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114 
115 /* Adapt the MSS value used to make delayed ack decision to the
116  * real world.
117  */
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 				const struct sk_buff *skb)
120 {
121 	struct inet_connection_sock *icsk = inet_csk(sk);
122 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 	unsigned int len;
124 
125 	icsk->icsk_ack.last_seg_size = 0;
126 
127 	/* skb->len may jitter because of SACKs, even if peer
128 	 * sends good full-sized frames.
129 	 */
130 	len = skb->len;
131 	if (len >= icsk->icsk_ack.rcv_mss) {
132 		icsk->icsk_ack.rcv_mss = len;
133 	} else {
134 		/* Otherwise, we make more careful check taking into account,
135 		 * that SACKs block is variable.
136 		 *
137 		 * "len" is invariant segment length, including TCP header.
138 		 */
139 		len += skb->data - skb->h.raw;
140 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 		    /* If PSH is not set, packet should be
142 		     * full sized, provided peer TCP is not badly broken.
143 		     * This observation (if it is correct 8)) allows
144 		     * to handle super-low mtu links fairly.
145 		     */
146 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 			/* Subtract also invariant (if peer is RFC compliant),
149 			 * tcp header plus fixed timestamp option length.
150 			 * Resulting "len" is MSS free of SACK jitter.
151 			 */
152 			len -= tcp_sk(sk)->tcp_header_len;
153 			icsk->icsk_ack.last_seg_size = len;
154 			if (len == lss) {
155 				icsk->icsk_ack.rcv_mss = len;
156 				return;
157 			}
158 		}
159 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
160 	}
161 }
162 
163 static void tcp_incr_quickack(struct sock *sk)
164 {
165 	struct inet_connection_sock *icsk = inet_csk(sk);
166 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
167 
168 	if (quickacks==0)
169 		quickacks=2;
170 	if (quickacks > icsk->icsk_ack.quick)
171 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
172 }
173 
174 void tcp_enter_quickack_mode(struct sock *sk)
175 {
176 	struct inet_connection_sock *icsk = inet_csk(sk);
177 	tcp_incr_quickack(sk);
178 	icsk->icsk_ack.pingpong = 0;
179 	icsk->icsk_ack.ato = TCP_ATO_MIN;
180 }
181 
182 /* Send ACKs quickly, if "quick" count is not exhausted
183  * and the session is not interactive.
184  */
185 
186 static inline int tcp_in_quickack_mode(const struct sock *sk)
187 {
188 	const struct inet_connection_sock *icsk = inet_csk(sk);
189 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
190 }
191 
192 /* Buffer size and advertised window tuning.
193  *
194  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
195  */
196 
197 static void tcp_fixup_sndbuf(struct sock *sk)
198 {
199 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
200 		     sizeof(struct sk_buff);
201 
202 	if (sk->sk_sndbuf < 3 * sndmem)
203 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
204 }
205 
206 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
207  *
208  * All tcp_full_space() is split to two parts: "network" buffer, allocated
209  * forward and advertised in receiver window (tp->rcv_wnd) and
210  * "application buffer", required to isolate scheduling/application
211  * latencies from network.
212  * window_clamp is maximal advertised window. It can be less than
213  * tcp_full_space(), in this case tcp_full_space() - window_clamp
214  * is reserved for "application" buffer. The less window_clamp is
215  * the smoother our behaviour from viewpoint of network, but the lower
216  * throughput and the higher sensitivity of the connection to losses. 8)
217  *
218  * rcv_ssthresh is more strict window_clamp used at "slow start"
219  * phase to predict further behaviour of this connection.
220  * It is used for two goals:
221  * - to enforce header prediction at sender, even when application
222  *   requires some significant "application buffer". It is check #1.
223  * - to prevent pruning of receive queue because of misprediction
224  *   of receiver window. Check #2.
225  *
226  * The scheme does not work when sender sends good segments opening
227  * window and then starts to feed us spaghetti. But it should work
228  * in common situations. Otherwise, we have to rely on queue collapsing.
229  */
230 
231 /* Slow part of check#2. */
232 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
233 			     const struct sk_buff *skb)
234 {
235 	/* Optimize this! */
236 	int truesize = tcp_win_from_space(skb->truesize)/2;
237 	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
238 
239 	while (tp->rcv_ssthresh <= window) {
240 		if (truesize <= skb->len)
241 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
242 
243 		truesize >>= 1;
244 		window >>= 1;
245 	}
246 	return 0;
247 }
248 
249 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
250 			    struct sk_buff *skb)
251 {
252 	/* Check #1 */
253 	if (tp->rcv_ssthresh < tp->window_clamp &&
254 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
255 	    !tcp_memory_pressure) {
256 		int incr;
257 
258 		/* Check #2. Increase window, if skb with such overhead
259 		 * will fit to rcvbuf in future.
260 		 */
261 		if (tcp_win_from_space(skb->truesize) <= skb->len)
262 			incr = 2*tp->advmss;
263 		else
264 			incr = __tcp_grow_window(sk, tp, skb);
265 
266 		if (incr) {
267 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
268 			inet_csk(sk)->icsk_ack.quick |= 1;
269 		}
270 	}
271 }
272 
273 /* 3. Tuning rcvbuf, when connection enters established state. */
274 
275 static void tcp_fixup_rcvbuf(struct sock *sk)
276 {
277 	struct tcp_sock *tp = tcp_sk(sk);
278 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
279 
280 	/* Try to select rcvbuf so that 4 mss-sized segments
281 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
282 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
283 	 */
284 	while (tcp_win_from_space(rcvmem) < tp->advmss)
285 		rcvmem += 128;
286 	if (sk->sk_rcvbuf < 4 * rcvmem)
287 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
288 }
289 
290 /* 4. Try to fixup all. It is made immediately after connection enters
291  *    established state.
292  */
293 static void tcp_init_buffer_space(struct sock *sk)
294 {
295 	struct tcp_sock *tp = tcp_sk(sk);
296 	int maxwin;
297 
298 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
299 		tcp_fixup_rcvbuf(sk);
300 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
301 		tcp_fixup_sndbuf(sk);
302 
303 	tp->rcvq_space.space = tp->rcv_wnd;
304 
305 	maxwin = tcp_full_space(sk);
306 
307 	if (tp->window_clamp >= maxwin) {
308 		tp->window_clamp = maxwin;
309 
310 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
311 			tp->window_clamp = max(maxwin -
312 					       (maxwin >> sysctl_tcp_app_win),
313 					       4 * tp->advmss);
314 	}
315 
316 	/* Force reservation of one segment. */
317 	if (sysctl_tcp_app_win &&
318 	    tp->window_clamp > 2 * tp->advmss &&
319 	    tp->window_clamp + tp->advmss > maxwin)
320 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
321 
322 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
323 	tp->snd_cwnd_stamp = tcp_time_stamp;
324 }
325 
326 /* 5. Recalculate window clamp after socket hit its memory bounds. */
327 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
328 {
329 	struct inet_connection_sock *icsk = inet_csk(sk);
330 
331 	icsk->icsk_ack.quick = 0;
332 
333 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
334 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
335 	    !tcp_memory_pressure &&
336 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
337 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
338 				    sysctl_tcp_rmem[2]);
339 	}
340 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
341 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
342 }
343 
344 
345 /* Initialize RCV_MSS value.
346  * RCV_MSS is an our guess about MSS used by the peer.
347  * We haven't any direct information about the MSS.
348  * It's better to underestimate the RCV_MSS rather than overestimate.
349  * Overestimations make us ACKing less frequently than needed.
350  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
351  */
352 void tcp_initialize_rcv_mss(struct sock *sk)
353 {
354 	struct tcp_sock *tp = tcp_sk(sk);
355 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
356 
357 	hint = min(hint, tp->rcv_wnd/2);
358 	hint = min(hint, TCP_MIN_RCVMSS);
359 	hint = max(hint, TCP_MIN_MSS);
360 
361 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
362 }
363 
364 /* Receiver "autotuning" code.
365  *
366  * The algorithm for RTT estimation w/o timestamps is based on
367  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
368  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
369  *
370  * More detail on this code can be found at
371  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
372  * though this reference is out of date.  A new paper
373  * is pending.
374  */
375 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
376 {
377 	u32 new_sample = tp->rcv_rtt_est.rtt;
378 	long m = sample;
379 
380 	if (m == 0)
381 		m = 1;
382 
383 	if (new_sample != 0) {
384 		/* If we sample in larger samples in the non-timestamp
385 		 * case, we could grossly overestimate the RTT especially
386 		 * with chatty applications or bulk transfer apps which
387 		 * are stalled on filesystem I/O.
388 		 *
389 		 * Also, since we are only going for a minimum in the
390 		 * non-timestamp case, we do not smooth things out
391 		 * else with timestamps disabled convergence takes too
392 		 * long.
393 		 */
394 		if (!win_dep) {
395 			m -= (new_sample >> 3);
396 			new_sample += m;
397 		} else if (m < new_sample)
398 			new_sample = m << 3;
399 	} else {
400 		/* No previous measure. */
401 		new_sample = m << 3;
402 	}
403 
404 	if (tp->rcv_rtt_est.rtt != new_sample)
405 		tp->rcv_rtt_est.rtt = new_sample;
406 }
407 
408 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
409 {
410 	if (tp->rcv_rtt_est.time == 0)
411 		goto new_measure;
412 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
413 		return;
414 	tcp_rcv_rtt_update(tp,
415 			   jiffies - tp->rcv_rtt_est.time,
416 			   1);
417 
418 new_measure:
419 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
420 	tp->rcv_rtt_est.time = tcp_time_stamp;
421 }
422 
423 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
424 {
425 	struct tcp_sock *tp = tcp_sk(sk);
426 	if (tp->rx_opt.rcv_tsecr &&
427 	    (TCP_SKB_CB(skb)->end_seq -
428 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
429 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
430 }
431 
432 /*
433  * This function should be called every time data is copied to user space.
434  * It calculates the appropriate TCP receive buffer space.
435  */
436 void tcp_rcv_space_adjust(struct sock *sk)
437 {
438 	struct tcp_sock *tp = tcp_sk(sk);
439 	int time;
440 	int space;
441 
442 	if (tp->rcvq_space.time == 0)
443 		goto new_measure;
444 
445 	time = tcp_time_stamp - tp->rcvq_space.time;
446 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
447 	    tp->rcv_rtt_est.rtt == 0)
448 		return;
449 
450 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
451 
452 	space = max(tp->rcvq_space.space, space);
453 
454 	if (tp->rcvq_space.space != space) {
455 		int rcvmem;
456 
457 		tp->rcvq_space.space = space;
458 
459 		if (sysctl_tcp_moderate_rcvbuf &&
460 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
461 			int new_clamp = space;
462 
463 			/* Receive space grows, normalize in order to
464 			 * take into account packet headers and sk_buff
465 			 * structure overhead.
466 			 */
467 			space /= tp->advmss;
468 			if (!space)
469 				space = 1;
470 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
471 				  16 + sizeof(struct sk_buff));
472 			while (tcp_win_from_space(rcvmem) < tp->advmss)
473 				rcvmem += 128;
474 			space *= rcvmem;
475 			space = min(space, sysctl_tcp_rmem[2]);
476 			if (space > sk->sk_rcvbuf) {
477 				sk->sk_rcvbuf = space;
478 
479 				/* Make the window clamp follow along.  */
480 				tp->window_clamp = new_clamp;
481 			}
482 		}
483 	}
484 
485 new_measure:
486 	tp->rcvq_space.seq = tp->copied_seq;
487 	tp->rcvq_space.time = tcp_time_stamp;
488 }
489 
490 /* There is something which you must keep in mind when you analyze the
491  * behavior of the tp->ato delayed ack timeout interval.  When a
492  * connection starts up, we want to ack as quickly as possible.  The
493  * problem is that "good" TCP's do slow start at the beginning of data
494  * transmission.  The means that until we send the first few ACK's the
495  * sender will sit on his end and only queue most of his data, because
496  * he can only send snd_cwnd unacked packets at any given time.  For
497  * each ACK we send, he increments snd_cwnd and transmits more of his
498  * queue.  -DaveM
499  */
500 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
501 {
502 	struct inet_connection_sock *icsk = inet_csk(sk);
503 	u32 now;
504 
505 	inet_csk_schedule_ack(sk);
506 
507 	tcp_measure_rcv_mss(sk, skb);
508 
509 	tcp_rcv_rtt_measure(tp);
510 
511 	now = tcp_time_stamp;
512 
513 	if (!icsk->icsk_ack.ato) {
514 		/* The _first_ data packet received, initialize
515 		 * delayed ACK engine.
516 		 */
517 		tcp_incr_quickack(sk);
518 		icsk->icsk_ack.ato = TCP_ATO_MIN;
519 	} else {
520 		int m = now - icsk->icsk_ack.lrcvtime;
521 
522 		if (m <= TCP_ATO_MIN/2) {
523 			/* The fastest case is the first. */
524 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
525 		} else if (m < icsk->icsk_ack.ato) {
526 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
527 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
528 				icsk->icsk_ack.ato = icsk->icsk_rto;
529 		} else if (m > icsk->icsk_rto) {
530 			/* Too long gap. Apparently sender failed to
531 			 * restart window, so that we send ACKs quickly.
532 			 */
533 			tcp_incr_quickack(sk);
534 			sk_stream_mem_reclaim(sk);
535 		}
536 	}
537 	icsk->icsk_ack.lrcvtime = now;
538 
539 	TCP_ECN_check_ce(tp, skb);
540 
541 	if (skb->len >= 128)
542 		tcp_grow_window(sk, tp, skb);
543 }
544 
545 /* Called to compute a smoothed rtt estimate. The data fed to this
546  * routine either comes from timestamps, or from segments that were
547  * known _not_ to have been retransmitted [see Karn/Partridge
548  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
549  * piece by Van Jacobson.
550  * NOTE: the next three routines used to be one big routine.
551  * To save cycles in the RFC 1323 implementation it was better to break
552  * it up into three procedures. -- erics
553  */
554 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
555 {
556 	struct tcp_sock *tp = tcp_sk(sk);
557 	long m = mrtt; /* RTT */
558 
559 	/*	The following amusing code comes from Jacobson's
560 	 *	article in SIGCOMM '88.  Note that rtt and mdev
561 	 *	are scaled versions of rtt and mean deviation.
562 	 *	This is designed to be as fast as possible
563 	 *	m stands for "measurement".
564 	 *
565 	 *	On a 1990 paper the rto value is changed to:
566 	 *	RTO = rtt + 4 * mdev
567 	 *
568 	 * Funny. This algorithm seems to be very broken.
569 	 * These formulae increase RTO, when it should be decreased, increase
570 	 * too slowly, when it should be increased quickly, decrease too quickly
571 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
572 	 * does not matter how to _calculate_ it. Seems, it was trap
573 	 * that VJ failed to avoid. 8)
574 	 */
575 	if(m == 0)
576 		m = 1;
577 	if (tp->srtt != 0) {
578 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
579 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
580 		if (m < 0) {
581 			m = -m;		/* m is now abs(error) */
582 			m -= (tp->mdev >> 2);   /* similar update on mdev */
583 			/* This is similar to one of Eifel findings.
584 			 * Eifel blocks mdev updates when rtt decreases.
585 			 * This solution is a bit different: we use finer gain
586 			 * for mdev in this case (alpha*beta).
587 			 * Like Eifel it also prevents growth of rto,
588 			 * but also it limits too fast rto decreases,
589 			 * happening in pure Eifel.
590 			 */
591 			if (m > 0)
592 				m >>= 3;
593 		} else {
594 			m -= (tp->mdev >> 2);   /* similar update on mdev */
595 		}
596 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
597 		if (tp->mdev > tp->mdev_max) {
598 			tp->mdev_max = tp->mdev;
599 			if (tp->mdev_max > tp->rttvar)
600 				tp->rttvar = tp->mdev_max;
601 		}
602 		if (after(tp->snd_una, tp->rtt_seq)) {
603 			if (tp->mdev_max < tp->rttvar)
604 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
605 			tp->rtt_seq = tp->snd_nxt;
606 			tp->mdev_max = TCP_RTO_MIN;
607 		}
608 	} else {
609 		/* no previous measure. */
610 		tp->srtt = m<<3;	/* take the measured time to be rtt */
611 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
612 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
613 		tp->rtt_seq = tp->snd_nxt;
614 	}
615 }
616 
617 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
618  * routine referred to above.
619  */
620 static inline void tcp_set_rto(struct sock *sk)
621 {
622 	const struct tcp_sock *tp = tcp_sk(sk);
623 	/* Old crap is replaced with new one. 8)
624 	 *
625 	 * More seriously:
626 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
627 	 *    It cannot be less due to utterly erratic ACK generation made
628 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
629 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
630 	 *    is invisible. Actually, Linux-2.4 also generates erratic
631 	 *    ACKs in some circumstances.
632 	 */
633 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
634 
635 	/* 2. Fixups made earlier cannot be right.
636 	 *    If we do not estimate RTO correctly without them,
637 	 *    all the algo is pure shit and should be replaced
638 	 *    with correct one. It is exactly, which we pretend to do.
639 	 */
640 }
641 
642 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
643  * guarantees that rto is higher.
644  */
645 static inline void tcp_bound_rto(struct sock *sk)
646 {
647 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
648 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
649 }
650 
651 /* Save metrics learned by this TCP session.
652    This function is called only, when TCP finishes successfully
653    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
654  */
655 void tcp_update_metrics(struct sock *sk)
656 {
657 	struct tcp_sock *tp = tcp_sk(sk);
658 	struct dst_entry *dst = __sk_dst_get(sk);
659 
660 	if (sysctl_tcp_nometrics_save)
661 		return;
662 
663 	dst_confirm(dst);
664 
665 	if (dst && (dst->flags&DST_HOST)) {
666 		const struct inet_connection_sock *icsk = inet_csk(sk);
667 		int m;
668 
669 		if (icsk->icsk_backoff || !tp->srtt) {
670 			/* This session failed to estimate rtt. Why?
671 			 * Probably, no packets returned in time.
672 			 * Reset our results.
673 			 */
674 			if (!(dst_metric_locked(dst, RTAX_RTT)))
675 				dst->metrics[RTAX_RTT-1] = 0;
676 			return;
677 		}
678 
679 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
680 
681 		/* If newly calculated rtt larger than stored one,
682 		 * store new one. Otherwise, use EWMA. Remember,
683 		 * rtt overestimation is always better than underestimation.
684 		 */
685 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
686 			if (m <= 0)
687 				dst->metrics[RTAX_RTT-1] = tp->srtt;
688 			else
689 				dst->metrics[RTAX_RTT-1] -= (m>>3);
690 		}
691 
692 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
693 			if (m < 0)
694 				m = -m;
695 
696 			/* Scale deviation to rttvar fixed point */
697 			m >>= 1;
698 			if (m < tp->mdev)
699 				m = tp->mdev;
700 
701 			if (m >= dst_metric(dst, RTAX_RTTVAR))
702 				dst->metrics[RTAX_RTTVAR-1] = m;
703 			else
704 				dst->metrics[RTAX_RTTVAR-1] -=
705 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
706 		}
707 
708 		if (tp->snd_ssthresh >= 0xFFFF) {
709 			/* Slow start still did not finish. */
710 			if (dst_metric(dst, RTAX_SSTHRESH) &&
711 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
712 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
713 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
714 			if (!dst_metric_locked(dst, RTAX_CWND) &&
715 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
716 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
717 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
718 			   icsk->icsk_ca_state == TCP_CA_Open) {
719 			/* Cong. avoidance phase, cwnd is reliable. */
720 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
721 				dst->metrics[RTAX_SSTHRESH-1] =
722 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
723 			if (!dst_metric_locked(dst, RTAX_CWND))
724 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
725 		} else {
726 			/* Else slow start did not finish, cwnd is non-sense,
727 			   ssthresh may be also invalid.
728 			 */
729 			if (!dst_metric_locked(dst, RTAX_CWND))
730 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
731 			if (dst->metrics[RTAX_SSTHRESH-1] &&
732 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
733 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
734 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
735 		}
736 
737 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
738 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
739 			    tp->reordering != sysctl_tcp_reordering)
740 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
741 		}
742 	}
743 }
744 
745 /* Numbers are taken from RFC2414.  */
746 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
747 {
748 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
749 
750 	if (!cwnd) {
751 		if (tp->mss_cache > 1460)
752 			cwnd = 2;
753 		else
754 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
755 	}
756 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
757 }
758 
759 /* Set slow start threshold and cwnd not falling to slow start */
760 void tcp_enter_cwr(struct sock *sk)
761 {
762 	struct tcp_sock *tp = tcp_sk(sk);
763 
764 	tp->prior_ssthresh = 0;
765 	tp->bytes_acked = 0;
766 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
767 		tp->undo_marker = 0;
768 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
769 		tp->snd_cwnd = min(tp->snd_cwnd,
770 				   tcp_packets_in_flight(tp) + 1U);
771 		tp->snd_cwnd_cnt = 0;
772 		tp->high_seq = tp->snd_nxt;
773 		tp->snd_cwnd_stamp = tcp_time_stamp;
774 		TCP_ECN_queue_cwr(tp);
775 
776 		tcp_set_ca_state(sk, TCP_CA_CWR);
777 	}
778 }
779 
780 /* Initialize metrics on socket. */
781 
782 static void tcp_init_metrics(struct sock *sk)
783 {
784 	struct tcp_sock *tp = tcp_sk(sk);
785 	struct dst_entry *dst = __sk_dst_get(sk);
786 
787 	if (dst == NULL)
788 		goto reset;
789 
790 	dst_confirm(dst);
791 
792 	if (dst_metric_locked(dst, RTAX_CWND))
793 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
794 	if (dst_metric(dst, RTAX_SSTHRESH)) {
795 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
796 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
797 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
798 	}
799 	if (dst_metric(dst, RTAX_REORDERING) &&
800 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
801 		tp->rx_opt.sack_ok &= ~2;
802 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
803 	}
804 
805 	if (dst_metric(dst, RTAX_RTT) == 0)
806 		goto reset;
807 
808 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
809 		goto reset;
810 
811 	/* Initial rtt is determined from SYN,SYN-ACK.
812 	 * The segment is small and rtt may appear much
813 	 * less than real one. Use per-dst memory
814 	 * to make it more realistic.
815 	 *
816 	 * A bit of theory. RTT is time passed after "normal" sized packet
817 	 * is sent until it is ACKed. In normal circumstances sending small
818 	 * packets force peer to delay ACKs and calculation is correct too.
819 	 * The algorithm is adaptive and, provided we follow specs, it
820 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
821 	 * tricks sort of "quick acks" for time long enough to decrease RTT
822 	 * to low value, and then abruptly stops to do it and starts to delay
823 	 * ACKs, wait for troubles.
824 	 */
825 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
826 		tp->srtt = dst_metric(dst, RTAX_RTT);
827 		tp->rtt_seq = tp->snd_nxt;
828 	}
829 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
830 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
831 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
832 	}
833 	tcp_set_rto(sk);
834 	tcp_bound_rto(sk);
835 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
836 		goto reset;
837 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
838 	tp->snd_cwnd_stamp = tcp_time_stamp;
839 	return;
840 
841 reset:
842 	/* Play conservative. If timestamps are not
843 	 * supported, TCP will fail to recalculate correct
844 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
845 	 */
846 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
847 		tp->srtt = 0;
848 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
849 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
850 	}
851 }
852 
853 static void tcp_update_reordering(struct sock *sk, const int metric,
854 				  const int ts)
855 {
856 	struct tcp_sock *tp = tcp_sk(sk);
857 	if (metric > tp->reordering) {
858 		tp->reordering = min(TCP_MAX_REORDERING, metric);
859 
860 		/* This exciting event is worth to be remembered. 8) */
861 		if (ts)
862 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
863 		else if (IsReno(tp))
864 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
865 		else if (IsFack(tp))
866 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
867 		else
868 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
869 #if FASTRETRANS_DEBUG > 1
870 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
871 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
872 		       tp->reordering,
873 		       tp->fackets_out,
874 		       tp->sacked_out,
875 		       tp->undo_marker ? tp->undo_retrans : 0);
876 #endif
877 		/* Disable FACK yet. */
878 		tp->rx_opt.sack_ok &= ~2;
879 	}
880 }
881 
882 /* This procedure tags the retransmission queue when SACKs arrive.
883  *
884  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
885  * Packets in queue with these bits set are counted in variables
886  * sacked_out, retrans_out and lost_out, correspondingly.
887  *
888  * Valid combinations are:
889  * Tag  InFlight	Description
890  * 0	1		- orig segment is in flight.
891  * S	0		- nothing flies, orig reached receiver.
892  * L	0		- nothing flies, orig lost by net.
893  * R	2		- both orig and retransmit are in flight.
894  * L|R	1		- orig is lost, retransmit is in flight.
895  * S|R  1		- orig reached receiver, retrans is still in flight.
896  * (L|S|R is logically valid, it could occur when L|R is sacked,
897  *  but it is equivalent to plain S and code short-curcuits it to S.
898  *  L|S is logically invalid, it would mean -1 packet in flight 8))
899  *
900  * These 6 states form finite state machine, controlled by the following events:
901  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
902  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
903  * 3. Loss detection event of one of three flavors:
904  *	A. Scoreboard estimator decided the packet is lost.
905  *	   A'. Reno "three dupacks" marks head of queue lost.
906  *	   A''. Its FACK modfication, head until snd.fack is lost.
907  *	B. SACK arrives sacking data transmitted after never retransmitted
908  *	   hole was sent out.
909  *	C. SACK arrives sacking SND.NXT at the moment, when the
910  *	   segment was retransmitted.
911  * 4. D-SACK added new rule: D-SACK changes any tag to S.
912  *
913  * It is pleasant to note, that state diagram turns out to be commutative,
914  * so that we are allowed not to be bothered by order of our actions,
915  * when multiple events arrive simultaneously. (see the function below).
916  *
917  * Reordering detection.
918  * --------------------
919  * Reordering metric is maximal distance, which a packet can be displaced
920  * in packet stream. With SACKs we can estimate it:
921  *
922  * 1. SACK fills old hole and the corresponding segment was not
923  *    ever retransmitted -> reordering. Alas, we cannot use it
924  *    when segment was retransmitted.
925  * 2. The last flaw is solved with D-SACK. D-SACK arrives
926  *    for retransmitted and already SACKed segment -> reordering..
927  * Both of these heuristics are not used in Loss state, when we cannot
928  * account for retransmits accurately.
929  */
930 static int
931 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
932 {
933 	const struct inet_connection_sock *icsk = inet_csk(sk);
934 	struct tcp_sock *tp = tcp_sk(sk);
935 	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
936 	struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
937 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
938 	int reord = tp->packets_out;
939 	int prior_fackets;
940 	u32 lost_retrans = 0;
941 	int flag = 0;
942 	int dup_sack = 0;
943 	int i;
944 
945 	if (!tp->sacked_out)
946 		tp->fackets_out = 0;
947 	prior_fackets = tp->fackets_out;
948 
949 	/* SACK fastpath:
950 	 * if the only SACK change is the increase of the end_seq of
951 	 * the first block then only apply that SACK block
952 	 * and use retrans queue hinting otherwise slowpath */
953 	flag = 1;
954 	for (i = 0; i< num_sacks; i++) {
955 		__u32 start_seq = ntohl(sp[i].start_seq);
956 		__u32 end_seq =	 ntohl(sp[i].end_seq);
957 
958 		if (i == 0){
959 			if (tp->recv_sack_cache[i].start_seq != start_seq)
960 				flag = 0;
961 		} else {
962 			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
963 			    (tp->recv_sack_cache[i].end_seq != end_seq))
964 				flag = 0;
965 		}
966 		tp->recv_sack_cache[i].start_seq = start_seq;
967 		tp->recv_sack_cache[i].end_seq = end_seq;
968 
969 		/* Check for D-SACK. */
970 		if (i == 0) {
971 			u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
972 
973 			if (before(start_seq, ack)) {
974 				dup_sack = 1;
975 				tp->rx_opt.sack_ok |= 4;
976 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
977 			} else if (num_sacks > 1 &&
978 				   !after(end_seq, ntohl(sp[1].end_seq)) &&
979 				   !before(start_seq, ntohl(sp[1].start_seq))) {
980 				dup_sack = 1;
981 				tp->rx_opt.sack_ok |= 4;
982 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
983 			}
984 
985 			/* D-SACK for already forgotten data...
986 			 * Do dumb counting. */
987 			if (dup_sack &&
988 			    !after(end_seq, prior_snd_una) &&
989 			    after(end_seq, tp->undo_marker))
990 				tp->undo_retrans--;
991 
992 			/* Eliminate too old ACKs, but take into
993 			 * account more or less fresh ones, they can
994 			 * contain valid SACK info.
995 			 */
996 			if (before(ack, prior_snd_una - tp->max_window))
997 				return 0;
998 		}
999 	}
1000 
1001 	if (flag)
1002 		num_sacks = 1;
1003 	else {
1004 		int j;
1005 		tp->fastpath_skb_hint = NULL;
1006 
1007 		/* order SACK blocks to allow in order walk of the retrans queue */
1008 		for (i = num_sacks-1; i > 0; i--) {
1009 			for (j = 0; j < i; j++){
1010 				if (after(ntohl(sp[j].start_seq),
1011 					  ntohl(sp[j+1].start_seq))){
1012 					sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq);
1013 					sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq);
1014 					sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq);
1015 					sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq);
1016 				}
1017 
1018 			}
1019 		}
1020 	}
1021 
1022 	/* clear flag as used for different purpose in following code */
1023 	flag = 0;
1024 
1025 	for (i=0; i<num_sacks; i++, sp++) {
1026 		struct sk_buff *skb;
1027 		__u32 start_seq = ntohl(sp->start_seq);
1028 		__u32 end_seq = ntohl(sp->end_seq);
1029 		int fack_count;
1030 
1031 		/* Use SACK fastpath hint if valid */
1032 		if (tp->fastpath_skb_hint) {
1033 			skb = tp->fastpath_skb_hint;
1034 			fack_count = tp->fastpath_cnt_hint;
1035 		} else {
1036 			skb = sk->sk_write_queue.next;
1037 			fack_count = 0;
1038 		}
1039 
1040 		/* Event "B" in the comment above. */
1041 		if (after(end_seq, tp->high_seq))
1042 			flag |= FLAG_DATA_LOST;
1043 
1044 		sk_stream_for_retrans_queue_from(skb, sk) {
1045 			int in_sack, pcount;
1046 			u8 sacked;
1047 
1048 			tp->fastpath_skb_hint = skb;
1049 			tp->fastpath_cnt_hint = fack_count;
1050 
1051 			/* The retransmission queue is always in order, so
1052 			 * we can short-circuit the walk early.
1053 			 */
1054 			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1055 				break;
1056 
1057 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1058 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1059 
1060 			pcount = tcp_skb_pcount(skb);
1061 
1062 			if (pcount > 1 && !in_sack &&
1063 			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1064 				unsigned int pkt_len;
1065 
1066 				in_sack = !after(start_seq,
1067 						 TCP_SKB_CB(skb)->seq);
1068 
1069 				if (!in_sack)
1070 					pkt_len = (start_seq -
1071 						   TCP_SKB_CB(skb)->seq);
1072 				else
1073 					pkt_len = (end_seq -
1074 						   TCP_SKB_CB(skb)->seq);
1075 				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1076 					break;
1077 				pcount = tcp_skb_pcount(skb);
1078 			}
1079 
1080 			fack_count += pcount;
1081 
1082 			sacked = TCP_SKB_CB(skb)->sacked;
1083 
1084 			/* Account D-SACK for retransmitted packet. */
1085 			if ((dup_sack && in_sack) &&
1086 			    (sacked & TCPCB_RETRANS) &&
1087 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1088 				tp->undo_retrans--;
1089 
1090 			/* The frame is ACKed. */
1091 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1092 				if (sacked&TCPCB_RETRANS) {
1093 					if ((dup_sack && in_sack) &&
1094 					    (sacked&TCPCB_SACKED_ACKED))
1095 						reord = min(fack_count, reord);
1096 				} else {
1097 					/* If it was in a hole, we detected reordering. */
1098 					if (fack_count < prior_fackets &&
1099 					    !(sacked&TCPCB_SACKED_ACKED))
1100 						reord = min(fack_count, reord);
1101 				}
1102 
1103 				/* Nothing to do; acked frame is about to be dropped. */
1104 				continue;
1105 			}
1106 
1107 			if ((sacked&TCPCB_SACKED_RETRANS) &&
1108 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1109 			    (!lost_retrans || after(end_seq, lost_retrans)))
1110 				lost_retrans = end_seq;
1111 
1112 			if (!in_sack)
1113 				continue;
1114 
1115 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1116 				if (sacked & TCPCB_SACKED_RETRANS) {
1117 					/* If the segment is not tagged as lost,
1118 					 * we do not clear RETRANS, believing
1119 					 * that retransmission is still in flight.
1120 					 */
1121 					if (sacked & TCPCB_LOST) {
1122 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1123 						tp->lost_out -= tcp_skb_pcount(skb);
1124 						tp->retrans_out -= tcp_skb_pcount(skb);
1125 
1126 						/* clear lost hint */
1127 						tp->retransmit_skb_hint = NULL;
1128 					}
1129 				} else {
1130 					/* New sack for not retransmitted frame,
1131 					 * which was in hole. It is reordering.
1132 					 */
1133 					if (!(sacked & TCPCB_RETRANS) &&
1134 					    fack_count < prior_fackets)
1135 						reord = min(fack_count, reord);
1136 
1137 					if (sacked & TCPCB_LOST) {
1138 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1139 						tp->lost_out -= tcp_skb_pcount(skb);
1140 
1141 						/* clear lost hint */
1142 						tp->retransmit_skb_hint = NULL;
1143 					}
1144 				}
1145 
1146 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1147 				flag |= FLAG_DATA_SACKED;
1148 				tp->sacked_out += tcp_skb_pcount(skb);
1149 
1150 				if (fack_count > tp->fackets_out)
1151 					tp->fackets_out = fack_count;
1152 			} else {
1153 				if (dup_sack && (sacked&TCPCB_RETRANS))
1154 					reord = min(fack_count, reord);
1155 			}
1156 
1157 			/* D-SACK. We can detect redundant retransmission
1158 			 * in S|R and plain R frames and clear it.
1159 			 * undo_retrans is decreased above, L|R frames
1160 			 * are accounted above as well.
1161 			 */
1162 			if (dup_sack &&
1163 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1164 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1165 				tp->retrans_out -= tcp_skb_pcount(skb);
1166 				tp->retransmit_skb_hint = NULL;
1167 			}
1168 		}
1169 	}
1170 
1171 	/* Check for lost retransmit. This superb idea is
1172 	 * borrowed from "ratehalving". Event "C".
1173 	 * Later note: FACK people cheated me again 8),
1174 	 * we have to account for reordering! Ugly,
1175 	 * but should help.
1176 	 */
1177 	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1178 		struct sk_buff *skb;
1179 
1180 		sk_stream_for_retrans_queue(skb, sk) {
1181 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1182 				break;
1183 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1184 				continue;
1185 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1186 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1187 			    (IsFack(tp) ||
1188 			     !before(lost_retrans,
1189 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1190 				     tp->mss_cache))) {
1191 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1192 				tp->retrans_out -= tcp_skb_pcount(skb);
1193 
1194 				/* clear lost hint */
1195 				tp->retransmit_skb_hint = NULL;
1196 
1197 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1198 					tp->lost_out += tcp_skb_pcount(skb);
1199 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1200 					flag |= FLAG_DATA_SACKED;
1201 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1202 				}
1203 			}
1204 		}
1205 	}
1206 
1207 	tp->left_out = tp->sacked_out + tp->lost_out;
1208 
1209 	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1210 		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1211 
1212 #if FASTRETRANS_DEBUG > 0
1213 	BUG_TRAP((int)tp->sacked_out >= 0);
1214 	BUG_TRAP((int)tp->lost_out >= 0);
1215 	BUG_TRAP((int)tp->retrans_out >= 0);
1216 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1217 #endif
1218 	return flag;
1219 }
1220 
1221 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1222  * segments to see from the next ACKs whether any data was really missing.
1223  * If the RTO was spurious, new ACKs should arrive.
1224  */
1225 void tcp_enter_frto(struct sock *sk)
1226 {
1227 	const struct inet_connection_sock *icsk = inet_csk(sk);
1228 	struct tcp_sock *tp = tcp_sk(sk);
1229 	struct sk_buff *skb;
1230 
1231 	tp->frto_counter = 1;
1232 
1233 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1234             tp->snd_una == tp->high_seq ||
1235             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1236 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1237 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1238 		tcp_ca_event(sk, CA_EVENT_FRTO);
1239 	}
1240 
1241 	/* Have to clear retransmission markers here to keep the bookkeeping
1242 	 * in shape, even though we are not yet in Loss state.
1243 	 * If something was really lost, it is eventually caught up
1244 	 * in tcp_enter_frto_loss.
1245 	 */
1246 	tp->retrans_out = 0;
1247 	tp->undo_marker = tp->snd_una;
1248 	tp->undo_retrans = 0;
1249 
1250 	sk_stream_for_retrans_queue(skb, sk) {
1251 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1252 	}
1253 	tcp_sync_left_out(tp);
1254 
1255 	tcp_set_ca_state(sk, TCP_CA_Open);
1256 	tp->frto_highmark = tp->snd_nxt;
1257 }
1258 
1259 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1260  * which indicates that we should follow the traditional RTO recovery,
1261  * i.e. mark everything lost and do go-back-N retransmission.
1262  */
1263 static void tcp_enter_frto_loss(struct sock *sk)
1264 {
1265 	struct tcp_sock *tp = tcp_sk(sk);
1266 	struct sk_buff *skb;
1267 	int cnt = 0;
1268 
1269 	tp->sacked_out = 0;
1270 	tp->lost_out = 0;
1271 	tp->fackets_out = 0;
1272 
1273 	sk_stream_for_retrans_queue(skb, sk) {
1274 		cnt += tcp_skb_pcount(skb);
1275 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1276 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1277 
1278 			/* Do not mark those segments lost that were
1279 			 * forward transmitted after RTO
1280 			 */
1281 			if (!after(TCP_SKB_CB(skb)->end_seq,
1282 				   tp->frto_highmark)) {
1283 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1284 				tp->lost_out += tcp_skb_pcount(skb);
1285 			}
1286 		} else {
1287 			tp->sacked_out += tcp_skb_pcount(skb);
1288 			tp->fackets_out = cnt;
1289 		}
1290 	}
1291 	tcp_sync_left_out(tp);
1292 
1293 	tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1294 	tp->snd_cwnd_cnt = 0;
1295 	tp->snd_cwnd_stamp = tcp_time_stamp;
1296 	tp->undo_marker = 0;
1297 	tp->frto_counter = 0;
1298 
1299 	tp->reordering = min_t(unsigned int, tp->reordering,
1300 					     sysctl_tcp_reordering);
1301 	tcp_set_ca_state(sk, TCP_CA_Loss);
1302 	tp->high_seq = tp->frto_highmark;
1303 	TCP_ECN_queue_cwr(tp);
1304 
1305 	clear_all_retrans_hints(tp);
1306 }
1307 
1308 void tcp_clear_retrans(struct tcp_sock *tp)
1309 {
1310 	tp->left_out = 0;
1311 	tp->retrans_out = 0;
1312 
1313 	tp->fackets_out = 0;
1314 	tp->sacked_out = 0;
1315 	tp->lost_out = 0;
1316 
1317 	tp->undo_marker = 0;
1318 	tp->undo_retrans = 0;
1319 }
1320 
1321 /* Enter Loss state. If "how" is not zero, forget all SACK information
1322  * and reset tags completely, otherwise preserve SACKs. If receiver
1323  * dropped its ofo queue, we will know this due to reneging detection.
1324  */
1325 void tcp_enter_loss(struct sock *sk, int how)
1326 {
1327 	const struct inet_connection_sock *icsk = inet_csk(sk);
1328 	struct tcp_sock *tp = tcp_sk(sk);
1329 	struct sk_buff *skb;
1330 	int cnt = 0;
1331 
1332 	/* Reduce ssthresh if it has not yet been made inside this window. */
1333 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1334 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1335 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1336 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1337 		tcp_ca_event(sk, CA_EVENT_LOSS);
1338 	}
1339 	tp->snd_cwnd	   = 1;
1340 	tp->snd_cwnd_cnt   = 0;
1341 	tp->snd_cwnd_stamp = tcp_time_stamp;
1342 
1343 	tp->bytes_acked = 0;
1344 	tcp_clear_retrans(tp);
1345 
1346 	/* Push undo marker, if it was plain RTO and nothing
1347 	 * was retransmitted. */
1348 	if (!how)
1349 		tp->undo_marker = tp->snd_una;
1350 
1351 	sk_stream_for_retrans_queue(skb, sk) {
1352 		cnt += tcp_skb_pcount(skb);
1353 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1354 			tp->undo_marker = 0;
1355 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1356 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1357 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1358 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1359 			tp->lost_out += tcp_skb_pcount(skb);
1360 		} else {
1361 			tp->sacked_out += tcp_skb_pcount(skb);
1362 			tp->fackets_out = cnt;
1363 		}
1364 	}
1365 	tcp_sync_left_out(tp);
1366 
1367 	tp->reordering = min_t(unsigned int, tp->reordering,
1368 					     sysctl_tcp_reordering);
1369 	tcp_set_ca_state(sk, TCP_CA_Loss);
1370 	tp->high_seq = tp->snd_nxt;
1371 	TCP_ECN_queue_cwr(tp);
1372 
1373 	clear_all_retrans_hints(tp);
1374 }
1375 
1376 static int tcp_check_sack_reneging(struct sock *sk)
1377 {
1378 	struct sk_buff *skb;
1379 
1380 	/* If ACK arrived pointing to a remembered SACK,
1381 	 * it means that our remembered SACKs do not reflect
1382 	 * real state of receiver i.e.
1383 	 * receiver _host_ is heavily congested (or buggy).
1384 	 * Do processing similar to RTO timeout.
1385 	 */
1386 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1387 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1388 		struct inet_connection_sock *icsk = inet_csk(sk);
1389 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1390 
1391 		tcp_enter_loss(sk, 1);
1392 		icsk->icsk_retransmits++;
1393 		tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1394 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1395 					  icsk->icsk_rto, TCP_RTO_MAX);
1396 		return 1;
1397 	}
1398 	return 0;
1399 }
1400 
1401 static inline int tcp_fackets_out(struct tcp_sock *tp)
1402 {
1403 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1404 }
1405 
1406 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1407 {
1408 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1409 }
1410 
1411 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1412 {
1413 	return tp->packets_out &&
1414 	       tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1415 }
1416 
1417 /* Linux NewReno/SACK/FACK/ECN state machine.
1418  * --------------------------------------
1419  *
1420  * "Open"	Normal state, no dubious events, fast path.
1421  * "Disorder"   In all the respects it is "Open",
1422  *		but requires a bit more attention. It is entered when
1423  *		we see some SACKs or dupacks. It is split of "Open"
1424  *		mainly to move some processing from fast path to slow one.
1425  * "CWR"	CWND was reduced due to some Congestion Notification event.
1426  *		It can be ECN, ICMP source quench, local device congestion.
1427  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1428  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1429  *
1430  * tcp_fastretrans_alert() is entered:
1431  * - each incoming ACK, if state is not "Open"
1432  * - when arrived ACK is unusual, namely:
1433  *	* SACK
1434  *	* Duplicate ACK.
1435  *	* ECN ECE.
1436  *
1437  * Counting packets in flight is pretty simple.
1438  *
1439  *	in_flight = packets_out - left_out + retrans_out
1440  *
1441  *	packets_out is SND.NXT-SND.UNA counted in packets.
1442  *
1443  *	retrans_out is number of retransmitted segments.
1444  *
1445  *	left_out is number of segments left network, but not ACKed yet.
1446  *
1447  *		left_out = sacked_out + lost_out
1448  *
1449  *     sacked_out: Packets, which arrived to receiver out of order
1450  *		   and hence not ACKed. With SACKs this number is simply
1451  *		   amount of SACKed data. Even without SACKs
1452  *		   it is easy to give pretty reliable estimate of this number,
1453  *		   counting duplicate ACKs.
1454  *
1455  *       lost_out: Packets lost by network. TCP has no explicit
1456  *		   "loss notification" feedback from network (for now).
1457  *		   It means that this number can be only _guessed_.
1458  *		   Actually, it is the heuristics to predict lossage that
1459  *		   distinguishes different algorithms.
1460  *
1461  *	F.e. after RTO, when all the queue is considered as lost,
1462  *	lost_out = packets_out and in_flight = retrans_out.
1463  *
1464  *		Essentially, we have now two algorithms counting
1465  *		lost packets.
1466  *
1467  *		FACK: It is the simplest heuristics. As soon as we decided
1468  *		that something is lost, we decide that _all_ not SACKed
1469  *		packets until the most forward SACK are lost. I.e.
1470  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1471  *		It is absolutely correct estimate, if network does not reorder
1472  *		packets. And it loses any connection to reality when reordering
1473  *		takes place. We use FACK by default until reordering
1474  *		is suspected on the path to this destination.
1475  *
1476  *		NewReno: when Recovery is entered, we assume that one segment
1477  *		is lost (classic Reno). While we are in Recovery and
1478  *		a partial ACK arrives, we assume that one more packet
1479  *		is lost (NewReno). This heuristics are the same in NewReno
1480  *		and SACK.
1481  *
1482  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1483  *  deflation etc. CWND is real congestion window, never inflated, changes
1484  *  only according to classic VJ rules.
1485  *
1486  * Really tricky (and requiring careful tuning) part of algorithm
1487  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1488  * The first determines the moment _when_ we should reduce CWND and,
1489  * hence, slow down forward transmission. In fact, it determines the moment
1490  * when we decide that hole is caused by loss, rather than by a reorder.
1491  *
1492  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1493  * holes, caused by lost packets.
1494  *
1495  * And the most logically complicated part of algorithm is undo
1496  * heuristics. We detect false retransmits due to both too early
1497  * fast retransmit (reordering) and underestimated RTO, analyzing
1498  * timestamps and D-SACKs. When we detect that some segments were
1499  * retransmitted by mistake and CWND reduction was wrong, we undo
1500  * window reduction and abort recovery phase. This logic is hidden
1501  * inside several functions named tcp_try_undo_<something>.
1502  */
1503 
1504 /* This function decides, when we should leave Disordered state
1505  * and enter Recovery phase, reducing congestion window.
1506  *
1507  * Main question: may we further continue forward transmission
1508  * with the same cwnd?
1509  */
1510 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1511 {
1512 	__u32 packets_out;
1513 
1514 	/* Trick#1: The loss is proven. */
1515 	if (tp->lost_out)
1516 		return 1;
1517 
1518 	/* Not-A-Trick#2 : Classic rule... */
1519 	if (tcp_fackets_out(tp) > tp->reordering)
1520 		return 1;
1521 
1522 	/* Trick#3 : when we use RFC2988 timer restart, fast
1523 	 * retransmit can be triggered by timeout of queue head.
1524 	 */
1525 	if (tcp_head_timedout(sk, tp))
1526 		return 1;
1527 
1528 	/* Trick#4: It is still not OK... But will it be useful to delay
1529 	 * recovery more?
1530 	 */
1531 	packets_out = tp->packets_out;
1532 	if (packets_out <= tp->reordering &&
1533 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1534 	    !tcp_may_send_now(sk, tp)) {
1535 		/* We have nothing to send. This connection is limited
1536 		 * either by receiver window or by application.
1537 		 */
1538 		return 1;
1539 	}
1540 
1541 	return 0;
1542 }
1543 
1544 /* If we receive more dupacks than we expected counting segments
1545  * in assumption of absent reordering, interpret this as reordering.
1546  * The only another reason could be bug in receiver TCP.
1547  */
1548 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1549 {
1550 	struct tcp_sock *tp = tcp_sk(sk);
1551 	u32 holes;
1552 
1553 	holes = max(tp->lost_out, 1U);
1554 	holes = min(holes, tp->packets_out);
1555 
1556 	if ((tp->sacked_out + holes) > tp->packets_out) {
1557 		tp->sacked_out = tp->packets_out - holes;
1558 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1559 	}
1560 }
1561 
1562 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1563 
1564 static void tcp_add_reno_sack(struct sock *sk)
1565 {
1566 	struct tcp_sock *tp = tcp_sk(sk);
1567 	tp->sacked_out++;
1568 	tcp_check_reno_reordering(sk, 0);
1569 	tcp_sync_left_out(tp);
1570 }
1571 
1572 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1573 
1574 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1575 {
1576 	if (acked > 0) {
1577 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1578 		if (acked-1 >= tp->sacked_out)
1579 			tp->sacked_out = 0;
1580 		else
1581 			tp->sacked_out -= acked-1;
1582 	}
1583 	tcp_check_reno_reordering(sk, acked);
1584 	tcp_sync_left_out(tp);
1585 }
1586 
1587 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1588 {
1589 	tp->sacked_out = 0;
1590 	tp->left_out = tp->lost_out;
1591 }
1592 
1593 /* Mark head of queue up as lost. */
1594 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1595 			       int packets, u32 high_seq)
1596 {
1597 	struct sk_buff *skb;
1598 	int cnt;
1599 
1600 	BUG_TRAP(packets <= tp->packets_out);
1601 	if (tp->lost_skb_hint) {
1602 		skb = tp->lost_skb_hint;
1603 		cnt = tp->lost_cnt_hint;
1604 	} else {
1605 		skb = sk->sk_write_queue.next;
1606 		cnt = 0;
1607 	}
1608 
1609 	sk_stream_for_retrans_queue_from(skb, sk) {
1610 		/* TODO: do this better */
1611 		/* this is not the most efficient way to do this... */
1612 		tp->lost_skb_hint = skb;
1613 		tp->lost_cnt_hint = cnt;
1614 		cnt += tcp_skb_pcount(skb);
1615 		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1616 			break;
1617 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1618 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1619 			tp->lost_out += tcp_skb_pcount(skb);
1620 
1621 			/* clear xmit_retransmit_queue hints
1622 			 *  if this is beyond hint */
1623 			if(tp->retransmit_skb_hint != NULL &&
1624 			   before(TCP_SKB_CB(skb)->seq,
1625 				  TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1626 
1627 				tp->retransmit_skb_hint = NULL;
1628 			}
1629 		}
1630 	}
1631 	tcp_sync_left_out(tp);
1632 }
1633 
1634 /* Account newly detected lost packet(s) */
1635 
1636 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1637 {
1638 	if (IsFack(tp)) {
1639 		int lost = tp->fackets_out - tp->reordering;
1640 		if (lost <= 0)
1641 			lost = 1;
1642 		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1643 	} else {
1644 		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1645 	}
1646 
1647 	/* New heuristics: it is possible only after we switched
1648 	 * to restart timer each time when something is ACKed.
1649 	 * Hence, we can detect timed out packets during fast
1650 	 * retransmit without falling to slow start.
1651 	 */
1652 	if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1653 		struct sk_buff *skb;
1654 
1655 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1656 			: sk->sk_write_queue.next;
1657 
1658 		sk_stream_for_retrans_queue_from(skb, sk) {
1659 			if (!tcp_skb_timedout(sk, skb))
1660 				break;
1661 
1662 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1663 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1664 				tp->lost_out += tcp_skb_pcount(skb);
1665 
1666 				/* clear xmit_retrans hint */
1667 				if (tp->retransmit_skb_hint &&
1668 				    before(TCP_SKB_CB(skb)->seq,
1669 					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1670 
1671 					tp->retransmit_skb_hint = NULL;
1672 			}
1673 		}
1674 
1675 		tp->scoreboard_skb_hint = skb;
1676 
1677 		tcp_sync_left_out(tp);
1678 	}
1679 }
1680 
1681 /* CWND moderation, preventing bursts due to too big ACKs
1682  * in dubious situations.
1683  */
1684 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1685 {
1686 	tp->snd_cwnd = min(tp->snd_cwnd,
1687 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1688 	tp->snd_cwnd_stamp = tcp_time_stamp;
1689 }
1690 
1691 /* Lower bound on congestion window is slow start threshold
1692  * unless congestion avoidance choice decides to overide it.
1693  */
1694 static inline u32 tcp_cwnd_min(const struct sock *sk)
1695 {
1696 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1697 
1698 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1699 }
1700 
1701 /* Decrease cwnd each second ack. */
1702 static void tcp_cwnd_down(struct sock *sk)
1703 {
1704 	struct tcp_sock *tp = tcp_sk(sk);
1705 	int decr = tp->snd_cwnd_cnt + 1;
1706 
1707 	tp->snd_cwnd_cnt = decr&1;
1708 	decr >>= 1;
1709 
1710 	if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1711 		tp->snd_cwnd -= decr;
1712 
1713 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1714 	tp->snd_cwnd_stamp = tcp_time_stamp;
1715 }
1716 
1717 /* Nothing was retransmitted or returned timestamp is less
1718  * than timestamp of the first retransmission.
1719  */
1720 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1721 {
1722 	return !tp->retrans_stamp ||
1723 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1724 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1725 }
1726 
1727 /* Undo procedures. */
1728 
1729 #if FASTRETRANS_DEBUG > 1
1730 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1731 {
1732 	struct inet_sock *inet = inet_sk(sk);
1733 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1734 	       msg,
1735 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1736 	       tp->snd_cwnd, tp->left_out,
1737 	       tp->snd_ssthresh, tp->prior_ssthresh,
1738 	       tp->packets_out);
1739 }
1740 #else
1741 #define DBGUNDO(x...) do { } while (0)
1742 #endif
1743 
1744 static void tcp_undo_cwr(struct sock *sk, const int undo)
1745 {
1746 	struct tcp_sock *tp = tcp_sk(sk);
1747 
1748 	if (tp->prior_ssthresh) {
1749 		const struct inet_connection_sock *icsk = inet_csk(sk);
1750 
1751 		if (icsk->icsk_ca_ops->undo_cwnd)
1752 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1753 		else
1754 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1755 
1756 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1757 			tp->snd_ssthresh = tp->prior_ssthresh;
1758 			TCP_ECN_withdraw_cwr(tp);
1759 		}
1760 	} else {
1761 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1762 	}
1763 	tcp_moderate_cwnd(tp);
1764 	tp->snd_cwnd_stamp = tcp_time_stamp;
1765 
1766 	/* There is something screwy going on with the retrans hints after
1767 	   an undo */
1768 	clear_all_retrans_hints(tp);
1769 }
1770 
1771 static inline int tcp_may_undo(struct tcp_sock *tp)
1772 {
1773 	return tp->undo_marker &&
1774 		(!tp->undo_retrans || tcp_packet_delayed(tp));
1775 }
1776 
1777 /* People celebrate: "We love our President!" */
1778 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1779 {
1780 	if (tcp_may_undo(tp)) {
1781 		/* Happy end! We did not retransmit anything
1782 		 * or our original transmission succeeded.
1783 		 */
1784 		DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1785 		tcp_undo_cwr(sk, 1);
1786 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1787 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1788 		else
1789 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1790 		tp->undo_marker = 0;
1791 	}
1792 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1793 		/* Hold old state until something *above* high_seq
1794 		 * is ACKed. For Reno it is MUST to prevent false
1795 		 * fast retransmits (RFC2582). SACK TCP is safe. */
1796 		tcp_moderate_cwnd(tp);
1797 		return 1;
1798 	}
1799 	tcp_set_ca_state(sk, TCP_CA_Open);
1800 	return 0;
1801 }
1802 
1803 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1804 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1805 {
1806 	if (tp->undo_marker && !tp->undo_retrans) {
1807 		DBGUNDO(sk, tp, "D-SACK");
1808 		tcp_undo_cwr(sk, 1);
1809 		tp->undo_marker = 0;
1810 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1811 	}
1812 }
1813 
1814 /* Undo during fast recovery after partial ACK. */
1815 
1816 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1817 				int acked)
1818 {
1819 	/* Partial ACK arrived. Force Hoe's retransmit. */
1820 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1821 
1822 	if (tcp_may_undo(tp)) {
1823 		/* Plain luck! Hole if filled with delayed
1824 		 * packet, rather than with a retransmit.
1825 		 */
1826 		if (tp->retrans_out == 0)
1827 			tp->retrans_stamp = 0;
1828 
1829 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1830 
1831 		DBGUNDO(sk, tp, "Hoe");
1832 		tcp_undo_cwr(sk, 0);
1833 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1834 
1835 		/* So... Do not make Hoe's retransmit yet.
1836 		 * If the first packet was delayed, the rest
1837 		 * ones are most probably delayed as well.
1838 		 */
1839 		failed = 0;
1840 	}
1841 	return failed;
1842 }
1843 
1844 /* Undo during loss recovery after partial ACK. */
1845 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1846 {
1847 	if (tcp_may_undo(tp)) {
1848 		struct sk_buff *skb;
1849 		sk_stream_for_retrans_queue(skb, sk) {
1850 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1851 		}
1852 
1853 		clear_all_retrans_hints(tp);
1854 
1855 		DBGUNDO(sk, tp, "partial loss");
1856 		tp->lost_out = 0;
1857 		tp->left_out = tp->sacked_out;
1858 		tcp_undo_cwr(sk, 1);
1859 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1860 		inet_csk(sk)->icsk_retransmits = 0;
1861 		tp->undo_marker = 0;
1862 		if (!IsReno(tp))
1863 			tcp_set_ca_state(sk, TCP_CA_Open);
1864 		return 1;
1865 	}
1866 	return 0;
1867 }
1868 
1869 static inline void tcp_complete_cwr(struct sock *sk)
1870 {
1871 	struct tcp_sock *tp = tcp_sk(sk);
1872 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1873 	tp->snd_cwnd_stamp = tcp_time_stamp;
1874 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1875 }
1876 
1877 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1878 {
1879 	tp->left_out = tp->sacked_out;
1880 
1881 	if (tp->retrans_out == 0)
1882 		tp->retrans_stamp = 0;
1883 
1884 	if (flag&FLAG_ECE)
1885 		tcp_enter_cwr(sk);
1886 
1887 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1888 		int state = TCP_CA_Open;
1889 
1890 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
1891 			state = TCP_CA_Disorder;
1892 
1893 		if (inet_csk(sk)->icsk_ca_state != state) {
1894 			tcp_set_ca_state(sk, state);
1895 			tp->high_seq = tp->snd_nxt;
1896 		}
1897 		tcp_moderate_cwnd(tp);
1898 	} else {
1899 		tcp_cwnd_down(sk);
1900 	}
1901 }
1902 
1903 static void tcp_mtup_probe_failed(struct sock *sk)
1904 {
1905 	struct inet_connection_sock *icsk = inet_csk(sk);
1906 
1907 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1908 	icsk->icsk_mtup.probe_size = 0;
1909 }
1910 
1911 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1912 {
1913 	struct tcp_sock *tp = tcp_sk(sk);
1914 	struct inet_connection_sock *icsk = inet_csk(sk);
1915 
1916 	/* FIXME: breaks with very large cwnd */
1917 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
1918 	tp->snd_cwnd = tp->snd_cwnd *
1919 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
1920 		       icsk->icsk_mtup.probe_size;
1921 	tp->snd_cwnd_cnt = 0;
1922 	tp->snd_cwnd_stamp = tcp_time_stamp;
1923 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1924 
1925 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1926 	icsk->icsk_mtup.probe_size = 0;
1927 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1928 }
1929 
1930 
1931 /* Process an event, which can update packets-in-flight not trivially.
1932  * Main goal of this function is to calculate new estimate for left_out,
1933  * taking into account both packets sitting in receiver's buffer and
1934  * packets lost by network.
1935  *
1936  * Besides that it does CWND reduction, when packet loss is detected
1937  * and changes state of machine.
1938  *
1939  * It does _not_ decide what to send, it is made in function
1940  * tcp_xmit_retransmit_queue().
1941  */
1942 static void
1943 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1944 		      int prior_packets, int flag)
1945 {
1946 	struct inet_connection_sock *icsk = inet_csk(sk);
1947 	struct tcp_sock *tp = tcp_sk(sk);
1948 	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1949 
1950 	/* Some technical things:
1951 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
1952 	if (!tp->packets_out)
1953 		tp->sacked_out = 0;
1954         /* 2. SACK counts snd_fack in packets inaccurately. */
1955 	if (tp->sacked_out == 0)
1956 		tp->fackets_out = 0;
1957 
1958         /* Now state machine starts.
1959 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1960 	if (flag&FLAG_ECE)
1961 		tp->prior_ssthresh = 0;
1962 
1963 	/* B. In all the states check for reneging SACKs. */
1964 	if (tp->sacked_out && tcp_check_sack_reneging(sk))
1965 		return;
1966 
1967 	/* C. Process data loss notification, provided it is valid. */
1968 	if ((flag&FLAG_DATA_LOST) &&
1969 	    before(tp->snd_una, tp->high_seq) &&
1970 	    icsk->icsk_ca_state != TCP_CA_Open &&
1971 	    tp->fackets_out > tp->reordering) {
1972 		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1973 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1974 	}
1975 
1976 	/* D. Synchronize left_out to current state. */
1977 	tcp_sync_left_out(tp);
1978 
1979 	/* E. Check state exit conditions. State can be terminated
1980 	 *    when high_seq is ACKed. */
1981 	if (icsk->icsk_ca_state == TCP_CA_Open) {
1982 		if (!sysctl_tcp_frto)
1983 			BUG_TRAP(tp->retrans_out == 0);
1984 		tp->retrans_stamp = 0;
1985 	} else if (!before(tp->snd_una, tp->high_seq)) {
1986 		switch (icsk->icsk_ca_state) {
1987 		case TCP_CA_Loss:
1988 			icsk->icsk_retransmits = 0;
1989 			if (tcp_try_undo_recovery(sk, tp))
1990 				return;
1991 			break;
1992 
1993 		case TCP_CA_CWR:
1994 			/* CWR is to be held something *above* high_seq
1995 			 * is ACKed for CWR bit to reach receiver. */
1996 			if (tp->snd_una != tp->high_seq) {
1997 				tcp_complete_cwr(sk);
1998 				tcp_set_ca_state(sk, TCP_CA_Open);
1999 			}
2000 			break;
2001 
2002 		case TCP_CA_Disorder:
2003 			tcp_try_undo_dsack(sk, tp);
2004 			if (!tp->undo_marker ||
2005 			    /* For SACK case do not Open to allow to undo
2006 			     * catching for all duplicate ACKs. */
2007 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
2008 				tp->undo_marker = 0;
2009 				tcp_set_ca_state(sk, TCP_CA_Open);
2010 			}
2011 			break;
2012 
2013 		case TCP_CA_Recovery:
2014 			if (IsReno(tp))
2015 				tcp_reset_reno_sack(tp);
2016 			if (tcp_try_undo_recovery(sk, tp))
2017 				return;
2018 			tcp_complete_cwr(sk);
2019 			break;
2020 		}
2021 	}
2022 
2023 	/* F. Process state. */
2024 	switch (icsk->icsk_ca_state) {
2025 	case TCP_CA_Recovery:
2026 		if (prior_snd_una == tp->snd_una) {
2027 			if (IsReno(tp) && is_dupack)
2028 				tcp_add_reno_sack(sk);
2029 		} else {
2030 			int acked = prior_packets - tp->packets_out;
2031 			if (IsReno(tp))
2032 				tcp_remove_reno_sacks(sk, tp, acked);
2033 			is_dupack = tcp_try_undo_partial(sk, tp, acked);
2034 		}
2035 		break;
2036 	case TCP_CA_Loss:
2037 		if (flag&FLAG_DATA_ACKED)
2038 			icsk->icsk_retransmits = 0;
2039 		if (!tcp_try_undo_loss(sk, tp)) {
2040 			tcp_moderate_cwnd(tp);
2041 			tcp_xmit_retransmit_queue(sk);
2042 			return;
2043 		}
2044 		if (icsk->icsk_ca_state != TCP_CA_Open)
2045 			return;
2046 		/* Loss is undone; fall through to processing in Open state. */
2047 	default:
2048 		if (IsReno(tp)) {
2049 			if (tp->snd_una != prior_snd_una)
2050 				tcp_reset_reno_sack(tp);
2051 			if (is_dupack)
2052 				tcp_add_reno_sack(sk);
2053 		}
2054 
2055 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2056 			tcp_try_undo_dsack(sk, tp);
2057 
2058 		if (!tcp_time_to_recover(sk, tp)) {
2059 			tcp_try_to_open(sk, tp, flag);
2060 			return;
2061 		}
2062 
2063 		/* MTU probe failure: don't reduce cwnd */
2064 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2065 		    icsk->icsk_mtup.probe_size &&
2066 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2067 			tcp_mtup_probe_failed(sk);
2068 			/* Restores the reduction we did in tcp_mtup_probe() */
2069 			tp->snd_cwnd++;
2070 			tcp_simple_retransmit(sk);
2071 			return;
2072 		}
2073 
2074 		/* Otherwise enter Recovery state */
2075 
2076 		if (IsReno(tp))
2077 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2078 		else
2079 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2080 
2081 		tp->high_seq = tp->snd_nxt;
2082 		tp->prior_ssthresh = 0;
2083 		tp->undo_marker = tp->snd_una;
2084 		tp->undo_retrans = tp->retrans_out;
2085 
2086 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2087 			if (!(flag&FLAG_ECE))
2088 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2089 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2090 			TCP_ECN_queue_cwr(tp);
2091 		}
2092 
2093 		tp->bytes_acked = 0;
2094 		tp->snd_cwnd_cnt = 0;
2095 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2096 	}
2097 
2098 	if (is_dupack || tcp_head_timedout(sk, tp))
2099 		tcp_update_scoreboard(sk, tp);
2100 	tcp_cwnd_down(sk);
2101 	tcp_xmit_retransmit_queue(sk);
2102 }
2103 
2104 /* Read draft-ietf-tcplw-high-performance before mucking
2105  * with this code. (Supersedes RFC1323)
2106  */
2107 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2108 {
2109 	/* RTTM Rule: A TSecr value received in a segment is used to
2110 	 * update the averaged RTT measurement only if the segment
2111 	 * acknowledges some new data, i.e., only if it advances the
2112 	 * left edge of the send window.
2113 	 *
2114 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2115 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2116 	 *
2117 	 * Changed: reset backoff as soon as we see the first valid sample.
2118 	 * If we do not, we get strongly overestimated rto. With timestamps
2119 	 * samples are accepted even from very old segments: f.e., when rtt=1
2120 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2121 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2122 	 * in window is lost... Voila.	 			--ANK (010210)
2123 	 */
2124 	struct tcp_sock *tp = tcp_sk(sk);
2125 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2126 	tcp_rtt_estimator(sk, seq_rtt);
2127 	tcp_set_rto(sk);
2128 	inet_csk(sk)->icsk_backoff = 0;
2129 	tcp_bound_rto(sk);
2130 }
2131 
2132 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2133 {
2134 	/* We don't have a timestamp. Can only use
2135 	 * packets that are not retransmitted to determine
2136 	 * rtt estimates. Also, we must not reset the
2137 	 * backoff for rto until we get a non-retransmitted
2138 	 * packet. This allows us to deal with a situation
2139 	 * where the network delay has increased suddenly.
2140 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2141 	 */
2142 
2143 	if (flag & FLAG_RETRANS_DATA_ACKED)
2144 		return;
2145 
2146 	tcp_rtt_estimator(sk, seq_rtt);
2147 	tcp_set_rto(sk);
2148 	inet_csk(sk)->icsk_backoff = 0;
2149 	tcp_bound_rto(sk);
2150 }
2151 
2152 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2153 				      const s32 seq_rtt)
2154 {
2155 	const struct tcp_sock *tp = tcp_sk(sk);
2156 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2157 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2158 		tcp_ack_saw_tstamp(sk, flag);
2159 	else if (seq_rtt >= 0)
2160 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2161 }
2162 
2163 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2164 			   u32 in_flight, int good)
2165 {
2166 	const struct inet_connection_sock *icsk = inet_csk(sk);
2167 	icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2168 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2169 }
2170 
2171 /* Restart timer after forward progress on connection.
2172  * RFC2988 recommends to restart timer to now+rto.
2173  */
2174 
2175 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2176 {
2177 	if (!tp->packets_out) {
2178 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2179 	} else {
2180 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2181 	}
2182 }
2183 
2184 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2185 			 __u32 now, __s32 *seq_rtt)
2186 {
2187 	struct tcp_sock *tp = tcp_sk(sk);
2188 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2189 	__u32 seq = tp->snd_una;
2190 	__u32 packets_acked;
2191 	int acked = 0;
2192 
2193 	/* If we get here, the whole TSO packet has not been
2194 	 * acked.
2195 	 */
2196 	BUG_ON(!after(scb->end_seq, seq));
2197 
2198 	packets_acked = tcp_skb_pcount(skb);
2199 	if (tcp_trim_head(sk, skb, seq - scb->seq))
2200 		return 0;
2201 	packets_acked -= tcp_skb_pcount(skb);
2202 
2203 	if (packets_acked) {
2204 		__u8 sacked = scb->sacked;
2205 
2206 		acked |= FLAG_DATA_ACKED;
2207 		if (sacked) {
2208 			if (sacked & TCPCB_RETRANS) {
2209 				if (sacked & TCPCB_SACKED_RETRANS)
2210 					tp->retrans_out -= packets_acked;
2211 				acked |= FLAG_RETRANS_DATA_ACKED;
2212 				*seq_rtt = -1;
2213 			} else if (*seq_rtt < 0)
2214 				*seq_rtt = now - scb->when;
2215 			if (sacked & TCPCB_SACKED_ACKED)
2216 				tp->sacked_out -= packets_acked;
2217 			if (sacked & TCPCB_LOST)
2218 				tp->lost_out -= packets_acked;
2219 			if (sacked & TCPCB_URG) {
2220 				if (tp->urg_mode &&
2221 				    !before(seq, tp->snd_up))
2222 					tp->urg_mode = 0;
2223 			}
2224 		} else if (*seq_rtt < 0)
2225 			*seq_rtt = now - scb->when;
2226 
2227 		if (tp->fackets_out) {
2228 			__u32 dval = min(tp->fackets_out, packets_acked);
2229 			tp->fackets_out -= dval;
2230 		}
2231 		tp->packets_out -= packets_acked;
2232 
2233 		BUG_ON(tcp_skb_pcount(skb) == 0);
2234 		BUG_ON(!before(scb->seq, scb->end_seq));
2235 	}
2236 
2237 	return acked;
2238 }
2239 
2240 static u32 tcp_usrtt(const struct sk_buff *skb)
2241 {
2242 	struct timeval tv, now;
2243 
2244 	do_gettimeofday(&now);
2245 	skb_get_timestamp(skb, &tv);
2246 	return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec);
2247 }
2248 
2249 /* Remove acknowledged frames from the retransmission queue. */
2250 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2251 {
2252 	struct tcp_sock *tp = tcp_sk(sk);
2253 	const struct inet_connection_sock *icsk = inet_csk(sk);
2254 	struct sk_buff *skb;
2255 	__u32 now = tcp_time_stamp;
2256 	int acked = 0;
2257 	__s32 seq_rtt = -1;
2258 	u32 pkts_acked = 0;
2259 	void (*rtt_sample)(struct sock *sk, u32 usrtt)
2260 		= icsk->icsk_ca_ops->rtt_sample;
2261 
2262 	while ((skb = skb_peek(&sk->sk_write_queue)) &&
2263 	       skb != sk->sk_send_head) {
2264 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2265 		__u8 sacked = scb->sacked;
2266 
2267 		/* If our packet is before the ack sequence we can
2268 		 * discard it as it's confirmed to have arrived at
2269 		 * the other end.
2270 		 */
2271 		if (after(scb->end_seq, tp->snd_una)) {
2272 			if (tcp_skb_pcount(skb) > 1 &&
2273 			    after(tp->snd_una, scb->seq))
2274 				acked |= tcp_tso_acked(sk, skb,
2275 						       now, &seq_rtt);
2276 			break;
2277 		}
2278 
2279 		/* Initial outgoing SYN's get put onto the write_queue
2280 		 * just like anything else we transmit.  It is not
2281 		 * true data, and if we misinform our callers that
2282 		 * this ACK acks real data, we will erroneously exit
2283 		 * connection startup slow start one packet too
2284 		 * quickly.  This is severely frowned upon behavior.
2285 		 */
2286 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2287 			acked |= FLAG_DATA_ACKED;
2288 			++pkts_acked;
2289 		} else {
2290 			acked |= FLAG_SYN_ACKED;
2291 			tp->retrans_stamp = 0;
2292 		}
2293 
2294 		/* MTU probing checks */
2295 		if (icsk->icsk_mtup.probe_size) {
2296 			if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2297 				tcp_mtup_probe_success(sk, skb);
2298 			}
2299 		}
2300 
2301 		if (sacked) {
2302 			if (sacked & TCPCB_RETRANS) {
2303 				if(sacked & TCPCB_SACKED_RETRANS)
2304 					tp->retrans_out -= tcp_skb_pcount(skb);
2305 				acked |= FLAG_RETRANS_DATA_ACKED;
2306 				seq_rtt = -1;
2307 			} else if (seq_rtt < 0) {
2308 				seq_rtt = now - scb->when;
2309 				if (rtt_sample)
2310 					(*rtt_sample)(sk, tcp_usrtt(skb));
2311 			}
2312 			if (sacked & TCPCB_SACKED_ACKED)
2313 				tp->sacked_out -= tcp_skb_pcount(skb);
2314 			if (sacked & TCPCB_LOST)
2315 				tp->lost_out -= tcp_skb_pcount(skb);
2316 			if (sacked & TCPCB_URG) {
2317 				if (tp->urg_mode &&
2318 				    !before(scb->end_seq, tp->snd_up))
2319 					tp->urg_mode = 0;
2320 			}
2321 		} else if (seq_rtt < 0) {
2322 			seq_rtt = now - scb->when;
2323 			if (rtt_sample)
2324 				(*rtt_sample)(sk, tcp_usrtt(skb));
2325 		}
2326 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2327 		tcp_packets_out_dec(tp, skb);
2328 		__skb_unlink(skb, &sk->sk_write_queue);
2329 		sk_stream_free_skb(sk, skb);
2330 		clear_all_retrans_hints(tp);
2331 	}
2332 
2333 	if (acked&FLAG_ACKED) {
2334 		tcp_ack_update_rtt(sk, acked, seq_rtt);
2335 		tcp_ack_packets_out(sk, tp);
2336 
2337 		if (icsk->icsk_ca_ops->pkts_acked)
2338 			icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2339 	}
2340 
2341 #if FASTRETRANS_DEBUG > 0
2342 	BUG_TRAP((int)tp->sacked_out >= 0);
2343 	BUG_TRAP((int)tp->lost_out >= 0);
2344 	BUG_TRAP((int)tp->retrans_out >= 0);
2345 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2346 		const struct inet_connection_sock *icsk = inet_csk(sk);
2347 		if (tp->lost_out) {
2348 			printk(KERN_DEBUG "Leak l=%u %d\n",
2349 			       tp->lost_out, icsk->icsk_ca_state);
2350 			tp->lost_out = 0;
2351 		}
2352 		if (tp->sacked_out) {
2353 			printk(KERN_DEBUG "Leak s=%u %d\n",
2354 			       tp->sacked_out, icsk->icsk_ca_state);
2355 			tp->sacked_out = 0;
2356 		}
2357 		if (tp->retrans_out) {
2358 			printk(KERN_DEBUG "Leak r=%u %d\n",
2359 			       tp->retrans_out, icsk->icsk_ca_state);
2360 			tp->retrans_out = 0;
2361 		}
2362 	}
2363 #endif
2364 	*seq_rtt_p = seq_rtt;
2365 	return acked;
2366 }
2367 
2368 static void tcp_ack_probe(struct sock *sk)
2369 {
2370 	const struct tcp_sock *tp = tcp_sk(sk);
2371 	struct inet_connection_sock *icsk = inet_csk(sk);
2372 
2373 	/* Was it a usable window open? */
2374 
2375 	if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2376 		   tp->snd_una + tp->snd_wnd)) {
2377 		icsk->icsk_backoff = 0;
2378 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2379 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2380 		 * This function is not for random using!
2381 		 */
2382 	} else {
2383 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2384 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2385 					  TCP_RTO_MAX);
2386 	}
2387 }
2388 
2389 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2390 {
2391 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2392 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2393 }
2394 
2395 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2396 {
2397 	const struct tcp_sock *tp = tcp_sk(sk);
2398 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2399 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2400 }
2401 
2402 /* Check that window update is acceptable.
2403  * The function assumes that snd_una<=ack<=snd_next.
2404  */
2405 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2406 					const u32 ack_seq, const u32 nwin)
2407 {
2408 	return (after(ack, tp->snd_una) ||
2409 		after(ack_seq, tp->snd_wl1) ||
2410 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2411 }
2412 
2413 /* Update our send window.
2414  *
2415  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2416  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2417  */
2418 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2419 				 struct sk_buff *skb, u32 ack, u32 ack_seq)
2420 {
2421 	int flag = 0;
2422 	u32 nwin = ntohs(skb->h.th->window);
2423 
2424 	if (likely(!skb->h.th->syn))
2425 		nwin <<= tp->rx_opt.snd_wscale;
2426 
2427 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2428 		flag |= FLAG_WIN_UPDATE;
2429 		tcp_update_wl(tp, ack, ack_seq);
2430 
2431 		if (tp->snd_wnd != nwin) {
2432 			tp->snd_wnd = nwin;
2433 
2434 			/* Note, it is the only place, where
2435 			 * fast path is recovered for sending TCP.
2436 			 */
2437 			tp->pred_flags = 0;
2438 			tcp_fast_path_check(sk, tp);
2439 
2440 			if (nwin > tp->max_window) {
2441 				tp->max_window = nwin;
2442 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2443 			}
2444 		}
2445 	}
2446 
2447 	tp->snd_una = ack;
2448 
2449 	return flag;
2450 }
2451 
2452 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2453 {
2454 	struct tcp_sock *tp = tcp_sk(sk);
2455 
2456 	tcp_sync_left_out(tp);
2457 
2458 	if (tp->snd_una == prior_snd_una ||
2459 	    !before(tp->snd_una, tp->frto_highmark)) {
2460 		/* RTO was caused by loss, start retransmitting in
2461 		 * go-back-N slow start
2462 		 */
2463 		tcp_enter_frto_loss(sk);
2464 		return;
2465 	}
2466 
2467 	if (tp->frto_counter == 1) {
2468 		/* First ACK after RTO advances the window: allow two new
2469 		 * segments out.
2470 		 */
2471 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2472 	} else {
2473 		/* Also the second ACK after RTO advances the window.
2474 		 * The RTO was likely spurious. Reduce cwnd and continue
2475 		 * in congestion avoidance
2476 		 */
2477 		tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2478 		tcp_moderate_cwnd(tp);
2479 	}
2480 
2481 	/* F-RTO affects on two new ACKs following RTO.
2482 	 * At latest on third ACK the TCP behavior is back to normal.
2483 	 */
2484 	tp->frto_counter = (tp->frto_counter + 1) % 3;
2485 }
2486 
2487 /* This routine deals with incoming acks, but not outgoing ones. */
2488 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2489 {
2490 	struct inet_connection_sock *icsk = inet_csk(sk);
2491 	struct tcp_sock *tp = tcp_sk(sk);
2492 	u32 prior_snd_una = tp->snd_una;
2493 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2494 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2495 	u32 prior_in_flight;
2496 	s32 seq_rtt;
2497 	int prior_packets;
2498 
2499 	/* If the ack is newer than sent or older than previous acks
2500 	 * then we can probably ignore it.
2501 	 */
2502 	if (after(ack, tp->snd_nxt))
2503 		goto uninteresting_ack;
2504 
2505 	if (before(ack, prior_snd_una))
2506 		goto old_ack;
2507 
2508 	if (sysctl_tcp_abc) {
2509 		if (icsk->icsk_ca_state < TCP_CA_CWR)
2510 			tp->bytes_acked += ack - prior_snd_una;
2511 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
2512 			/* we assume just one segment left network */
2513 			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2514 	}
2515 
2516 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2517 		/* Window is constant, pure forward advance.
2518 		 * No more checks are required.
2519 		 * Note, we use the fact that SND.UNA>=SND.WL2.
2520 		 */
2521 		tcp_update_wl(tp, ack, ack_seq);
2522 		tp->snd_una = ack;
2523 		flag |= FLAG_WIN_UPDATE;
2524 
2525 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2526 
2527 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2528 	} else {
2529 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2530 			flag |= FLAG_DATA;
2531 		else
2532 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2533 
2534 		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2535 
2536 		if (TCP_SKB_CB(skb)->sacked)
2537 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2538 
2539 		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2540 			flag |= FLAG_ECE;
2541 
2542 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2543 	}
2544 
2545 	/* We passed data and got it acked, remove any soft error
2546 	 * log. Something worked...
2547 	 */
2548 	sk->sk_err_soft = 0;
2549 	tp->rcv_tstamp = tcp_time_stamp;
2550 	prior_packets = tp->packets_out;
2551 	if (!prior_packets)
2552 		goto no_queue;
2553 
2554 	prior_in_flight = tcp_packets_in_flight(tp);
2555 
2556 	/* See if we can take anything off of the retransmit queue. */
2557 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2558 
2559 	if (tp->frto_counter)
2560 		tcp_process_frto(sk, prior_snd_una);
2561 
2562 	if (tcp_ack_is_dubious(sk, flag)) {
2563 		/* Advance CWND, if state allows this. */
2564 		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2565 			tcp_cong_avoid(sk, ack,  seq_rtt, prior_in_flight, 0);
2566 		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2567 	} else {
2568 		if ((flag & FLAG_DATA_ACKED))
2569 			tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2570 	}
2571 
2572 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2573 		dst_confirm(sk->sk_dst_cache);
2574 
2575 	return 1;
2576 
2577 no_queue:
2578 	icsk->icsk_probes_out = 0;
2579 
2580 	/* If this ack opens up a zero window, clear backoff.  It was
2581 	 * being used to time the probes, and is probably far higher than
2582 	 * it needs to be for normal retransmission.
2583 	 */
2584 	if (sk->sk_send_head)
2585 		tcp_ack_probe(sk);
2586 	return 1;
2587 
2588 old_ack:
2589 	if (TCP_SKB_CB(skb)->sacked)
2590 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2591 
2592 uninteresting_ack:
2593 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2594 	return 0;
2595 }
2596 
2597 
2598 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2599  * But, this can also be called on packets in the established flow when
2600  * the fast version below fails.
2601  */
2602 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2603 {
2604 	unsigned char *ptr;
2605 	struct tcphdr *th = skb->h.th;
2606 	int length=(th->doff*4)-sizeof(struct tcphdr);
2607 
2608 	ptr = (unsigned char *)(th + 1);
2609 	opt_rx->saw_tstamp = 0;
2610 
2611 	while(length>0) {
2612 	  	int opcode=*ptr++;
2613 		int opsize;
2614 
2615 		switch (opcode) {
2616 			case TCPOPT_EOL:
2617 				return;
2618 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2619 				length--;
2620 				continue;
2621 			default:
2622 				opsize=*ptr++;
2623 				if (opsize < 2) /* "silly options" */
2624 					return;
2625 				if (opsize > length)
2626 					return;	/* don't parse partial options */
2627 	  			switch(opcode) {
2628 				case TCPOPT_MSS:
2629 					if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2630 						u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2631 						if (in_mss) {
2632 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2633 								in_mss = opt_rx->user_mss;
2634 							opt_rx->mss_clamp = in_mss;
2635 						}
2636 					}
2637 					break;
2638 				case TCPOPT_WINDOW:
2639 					if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2640 						if (sysctl_tcp_window_scaling) {
2641 							__u8 snd_wscale = *(__u8 *) ptr;
2642 							opt_rx->wscale_ok = 1;
2643 							if (snd_wscale > 14) {
2644 								if(net_ratelimit())
2645 									printk(KERN_INFO "tcp_parse_options: Illegal window "
2646 									       "scaling value %d >14 received.\n",
2647 									       snd_wscale);
2648 								snd_wscale = 14;
2649 							}
2650 							opt_rx->snd_wscale = snd_wscale;
2651 						}
2652 					break;
2653 				case TCPOPT_TIMESTAMP:
2654 					if(opsize==TCPOLEN_TIMESTAMP) {
2655 						if ((estab && opt_rx->tstamp_ok) ||
2656 						    (!estab && sysctl_tcp_timestamps)) {
2657 							opt_rx->saw_tstamp = 1;
2658 							opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2659 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2660 						}
2661 					}
2662 					break;
2663 				case TCPOPT_SACK_PERM:
2664 					if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2665 						if (sysctl_tcp_sack) {
2666 							opt_rx->sack_ok = 1;
2667 							tcp_sack_reset(opt_rx);
2668 						}
2669 					}
2670 					break;
2671 
2672 				case TCPOPT_SACK:
2673 					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2674 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2675 					   opt_rx->sack_ok) {
2676 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2677 					}
2678 	  			};
2679 	  			ptr+=opsize-2;
2680 	  			length-=opsize;
2681 	  	};
2682 	}
2683 }
2684 
2685 /* Fast parse options. This hopes to only see timestamps.
2686  * If it is wrong it falls back on tcp_parse_options().
2687  */
2688 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2689 				  struct tcp_sock *tp)
2690 {
2691 	if (th->doff == sizeof(struct tcphdr)>>2) {
2692 		tp->rx_opt.saw_tstamp = 0;
2693 		return 0;
2694 	} else if (tp->rx_opt.tstamp_ok &&
2695 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2696 		__u32 *ptr = (__u32 *)(th + 1);
2697 		if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2698 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2699 			tp->rx_opt.saw_tstamp = 1;
2700 			++ptr;
2701 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2702 			++ptr;
2703 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2704 			return 1;
2705 		}
2706 	}
2707 	tcp_parse_options(skb, &tp->rx_opt, 1);
2708 	return 1;
2709 }
2710 
2711 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2712 {
2713 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2714 	tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2715 }
2716 
2717 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2718 {
2719 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2720 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2721 		 * extra check below makes sure this can only happen
2722 		 * for pure ACK frames.  -DaveM
2723 		 *
2724 		 * Not only, also it occurs for expired timestamps.
2725 		 */
2726 
2727 		if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2728 		   xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2729 			tcp_store_ts_recent(tp);
2730 	}
2731 }
2732 
2733 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2734  *
2735  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2736  * it can pass through stack. So, the following predicate verifies that
2737  * this segment is not used for anything but congestion avoidance or
2738  * fast retransmit. Moreover, we even are able to eliminate most of such
2739  * second order effects, if we apply some small "replay" window (~RTO)
2740  * to timestamp space.
2741  *
2742  * All these measures still do not guarantee that we reject wrapped ACKs
2743  * on networks with high bandwidth, when sequence space is recycled fastly,
2744  * but it guarantees that such events will be very rare and do not affect
2745  * connection seriously. This doesn't look nice, but alas, PAWS is really
2746  * buggy extension.
2747  *
2748  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2749  * states that events when retransmit arrives after original data are rare.
2750  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2751  * the biggest problem on large power networks even with minor reordering.
2752  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2753  * up to bandwidth of 18Gigabit/sec. 8) ]
2754  */
2755 
2756 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2757 {
2758 	struct tcp_sock *tp = tcp_sk(sk);
2759 	struct tcphdr *th = skb->h.th;
2760 	u32 seq = TCP_SKB_CB(skb)->seq;
2761 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2762 
2763 	return (/* 1. Pure ACK with correct sequence number. */
2764 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2765 
2766 		/* 2. ... and duplicate ACK. */
2767 		ack == tp->snd_una &&
2768 
2769 		/* 3. ... and does not update window. */
2770 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2771 
2772 		/* 4. ... and sits in replay window. */
2773 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2774 }
2775 
2776 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2777 {
2778 	const struct tcp_sock *tp = tcp_sk(sk);
2779 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2780 		xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2781 		!tcp_disordered_ack(sk, skb));
2782 }
2783 
2784 /* Check segment sequence number for validity.
2785  *
2786  * Segment controls are considered valid, if the segment
2787  * fits to the window after truncation to the window. Acceptability
2788  * of data (and SYN, FIN, of course) is checked separately.
2789  * See tcp_data_queue(), for example.
2790  *
2791  * Also, controls (RST is main one) are accepted using RCV.WUP instead
2792  * of RCV.NXT. Peer still did not advance his SND.UNA when we
2793  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2794  * (borrowed from freebsd)
2795  */
2796 
2797 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2798 {
2799 	return	!before(end_seq, tp->rcv_wup) &&
2800 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2801 }
2802 
2803 /* When we get a reset we do this. */
2804 static void tcp_reset(struct sock *sk)
2805 {
2806 	/* We want the right error as BSD sees it (and indeed as we do). */
2807 	switch (sk->sk_state) {
2808 		case TCP_SYN_SENT:
2809 			sk->sk_err = ECONNREFUSED;
2810 			break;
2811 		case TCP_CLOSE_WAIT:
2812 			sk->sk_err = EPIPE;
2813 			break;
2814 		case TCP_CLOSE:
2815 			return;
2816 		default:
2817 			sk->sk_err = ECONNRESET;
2818 	}
2819 
2820 	if (!sock_flag(sk, SOCK_DEAD))
2821 		sk->sk_error_report(sk);
2822 
2823 	tcp_done(sk);
2824 }
2825 
2826 /*
2827  * 	Process the FIN bit. This now behaves as it is supposed to work
2828  *	and the FIN takes effect when it is validly part of sequence
2829  *	space. Not before when we get holes.
2830  *
2831  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2832  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
2833  *	TIME-WAIT)
2834  *
2835  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
2836  *	close and we go into CLOSING (and later onto TIME-WAIT)
2837  *
2838  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2839  */
2840 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2841 {
2842 	struct tcp_sock *tp = tcp_sk(sk);
2843 
2844 	inet_csk_schedule_ack(sk);
2845 
2846 	sk->sk_shutdown |= RCV_SHUTDOWN;
2847 	sock_set_flag(sk, SOCK_DONE);
2848 
2849 	switch (sk->sk_state) {
2850 		case TCP_SYN_RECV:
2851 		case TCP_ESTABLISHED:
2852 			/* Move to CLOSE_WAIT */
2853 			tcp_set_state(sk, TCP_CLOSE_WAIT);
2854 			inet_csk(sk)->icsk_ack.pingpong = 1;
2855 			break;
2856 
2857 		case TCP_CLOSE_WAIT:
2858 		case TCP_CLOSING:
2859 			/* Received a retransmission of the FIN, do
2860 			 * nothing.
2861 			 */
2862 			break;
2863 		case TCP_LAST_ACK:
2864 			/* RFC793: Remain in the LAST-ACK state. */
2865 			break;
2866 
2867 		case TCP_FIN_WAIT1:
2868 			/* This case occurs when a simultaneous close
2869 			 * happens, we must ack the received FIN and
2870 			 * enter the CLOSING state.
2871 			 */
2872 			tcp_send_ack(sk);
2873 			tcp_set_state(sk, TCP_CLOSING);
2874 			break;
2875 		case TCP_FIN_WAIT2:
2876 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
2877 			tcp_send_ack(sk);
2878 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2879 			break;
2880 		default:
2881 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
2882 			 * cases we should never reach this piece of code.
2883 			 */
2884 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2885 			       __FUNCTION__, sk->sk_state);
2886 			break;
2887 	};
2888 
2889 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
2890 	 * Probably, we should reset in this case. For now drop them.
2891 	 */
2892 	__skb_queue_purge(&tp->out_of_order_queue);
2893 	if (tp->rx_opt.sack_ok)
2894 		tcp_sack_reset(&tp->rx_opt);
2895 	sk_stream_mem_reclaim(sk);
2896 
2897 	if (!sock_flag(sk, SOCK_DEAD)) {
2898 		sk->sk_state_change(sk);
2899 
2900 		/* Do not send POLL_HUP for half duplex close. */
2901 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
2902 		    sk->sk_state == TCP_CLOSE)
2903 			sk_wake_async(sk, 1, POLL_HUP);
2904 		else
2905 			sk_wake_async(sk, 1, POLL_IN);
2906 	}
2907 }
2908 
2909 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2910 {
2911 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2912 		if (before(seq, sp->start_seq))
2913 			sp->start_seq = seq;
2914 		if (after(end_seq, sp->end_seq))
2915 			sp->end_seq = end_seq;
2916 		return 1;
2917 	}
2918 	return 0;
2919 }
2920 
2921 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2922 {
2923 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2924 		if (before(seq, tp->rcv_nxt))
2925 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2926 		else
2927 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2928 
2929 		tp->rx_opt.dsack = 1;
2930 		tp->duplicate_sack[0].start_seq = seq;
2931 		tp->duplicate_sack[0].end_seq = end_seq;
2932 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2933 	}
2934 }
2935 
2936 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2937 {
2938 	if (!tp->rx_opt.dsack)
2939 		tcp_dsack_set(tp, seq, end_seq);
2940 	else
2941 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2942 }
2943 
2944 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2945 {
2946 	struct tcp_sock *tp = tcp_sk(sk);
2947 
2948 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2949 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2950 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2951 		tcp_enter_quickack_mode(sk);
2952 
2953 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2954 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2955 
2956 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2957 				end_seq = tp->rcv_nxt;
2958 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2959 		}
2960 	}
2961 
2962 	tcp_send_ack(sk);
2963 }
2964 
2965 /* These routines update the SACK block as out-of-order packets arrive or
2966  * in-order packets close up the sequence space.
2967  */
2968 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2969 {
2970 	int this_sack;
2971 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2972 	struct tcp_sack_block *swalk = sp+1;
2973 
2974 	/* See if the recent change to the first SACK eats into
2975 	 * or hits the sequence space of other SACK blocks, if so coalesce.
2976 	 */
2977 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2978 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2979 			int i;
2980 
2981 			/* Zap SWALK, by moving every further SACK up by one slot.
2982 			 * Decrease num_sacks.
2983 			 */
2984 			tp->rx_opt.num_sacks--;
2985 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2986 			for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2987 				sp[i] = sp[i+1];
2988 			continue;
2989 		}
2990 		this_sack++, swalk++;
2991 	}
2992 }
2993 
2994 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2995 {
2996 	__u32 tmp;
2997 
2998 	tmp = sack1->start_seq;
2999 	sack1->start_seq = sack2->start_seq;
3000 	sack2->start_seq = tmp;
3001 
3002 	tmp = sack1->end_seq;
3003 	sack1->end_seq = sack2->end_seq;
3004 	sack2->end_seq = tmp;
3005 }
3006 
3007 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3008 {
3009 	struct tcp_sock *tp = tcp_sk(sk);
3010 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3011 	int cur_sacks = tp->rx_opt.num_sacks;
3012 	int this_sack;
3013 
3014 	if (!cur_sacks)
3015 		goto new_sack;
3016 
3017 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3018 		if (tcp_sack_extend(sp, seq, end_seq)) {
3019 			/* Rotate this_sack to the first one. */
3020 			for (; this_sack>0; this_sack--, sp--)
3021 				tcp_sack_swap(sp, sp-1);
3022 			if (cur_sacks > 1)
3023 				tcp_sack_maybe_coalesce(tp);
3024 			return;
3025 		}
3026 	}
3027 
3028 	/* Could not find an adjacent existing SACK, build a new one,
3029 	 * put it at the front, and shift everyone else down.  We
3030 	 * always know there is at least one SACK present already here.
3031 	 *
3032 	 * If the sack array is full, forget about the last one.
3033 	 */
3034 	if (this_sack >= 4) {
3035 		this_sack--;
3036 		tp->rx_opt.num_sacks--;
3037 		sp--;
3038 	}
3039 	for(; this_sack > 0; this_sack--, sp--)
3040 		*sp = *(sp-1);
3041 
3042 new_sack:
3043 	/* Build the new head SACK, and we're done. */
3044 	sp->start_seq = seq;
3045 	sp->end_seq = end_seq;
3046 	tp->rx_opt.num_sacks++;
3047 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3048 }
3049 
3050 /* RCV.NXT advances, some SACKs should be eaten. */
3051 
3052 static void tcp_sack_remove(struct tcp_sock *tp)
3053 {
3054 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3055 	int num_sacks = tp->rx_opt.num_sacks;
3056 	int this_sack;
3057 
3058 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3059 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3060 		tp->rx_opt.num_sacks = 0;
3061 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3062 		return;
3063 	}
3064 
3065 	for(this_sack = 0; this_sack < num_sacks; ) {
3066 		/* Check if the start of the sack is covered by RCV.NXT. */
3067 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3068 			int i;
3069 
3070 			/* RCV.NXT must cover all the block! */
3071 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3072 
3073 			/* Zap this SACK, by moving forward any other SACKS. */
3074 			for (i=this_sack+1; i < num_sacks; i++)
3075 				tp->selective_acks[i-1] = tp->selective_acks[i];
3076 			num_sacks--;
3077 			continue;
3078 		}
3079 		this_sack++;
3080 		sp++;
3081 	}
3082 	if (num_sacks != tp->rx_opt.num_sacks) {
3083 		tp->rx_opt.num_sacks = num_sacks;
3084 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3085 	}
3086 }
3087 
3088 /* This one checks to see if we can put data from the
3089  * out_of_order queue into the receive_queue.
3090  */
3091 static void tcp_ofo_queue(struct sock *sk)
3092 {
3093 	struct tcp_sock *tp = tcp_sk(sk);
3094 	__u32 dsack_high = tp->rcv_nxt;
3095 	struct sk_buff *skb;
3096 
3097 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3098 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3099 			break;
3100 
3101 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3102 			__u32 dsack = dsack_high;
3103 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3104 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3105 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3106 		}
3107 
3108 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3109 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3110 			__skb_unlink(skb, &tp->out_of_order_queue);
3111 			__kfree_skb(skb);
3112 			continue;
3113 		}
3114 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3115 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3116 			   TCP_SKB_CB(skb)->end_seq);
3117 
3118 		__skb_unlink(skb, &tp->out_of_order_queue);
3119 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3120 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3121 		if(skb->h.th->fin)
3122 			tcp_fin(skb, sk, skb->h.th);
3123 	}
3124 }
3125 
3126 static int tcp_prune_queue(struct sock *sk);
3127 
3128 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3129 {
3130 	struct tcphdr *th = skb->h.th;
3131 	struct tcp_sock *tp = tcp_sk(sk);
3132 	int eaten = -1;
3133 
3134 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3135 		goto drop;
3136 
3137 	__skb_pull(skb, th->doff*4);
3138 
3139 	TCP_ECN_accept_cwr(tp, skb);
3140 
3141 	if (tp->rx_opt.dsack) {
3142 		tp->rx_opt.dsack = 0;
3143 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3144 						    4 - tp->rx_opt.tstamp_ok);
3145 	}
3146 
3147 	/*  Queue data for delivery to the user.
3148 	 *  Packets in sequence go to the receive queue.
3149 	 *  Out of sequence packets to the out_of_order_queue.
3150 	 */
3151 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3152 		if (tcp_receive_window(tp) == 0)
3153 			goto out_of_window;
3154 
3155 		/* Ok. In sequence. In window. */
3156 		if (tp->ucopy.task == current &&
3157 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3158 		    sock_owned_by_user(sk) && !tp->urg_data) {
3159 			int chunk = min_t(unsigned int, skb->len,
3160 							tp->ucopy.len);
3161 
3162 			__set_current_state(TASK_RUNNING);
3163 
3164 			local_bh_enable();
3165 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3166 				tp->ucopy.len -= chunk;
3167 				tp->copied_seq += chunk;
3168 				eaten = (chunk == skb->len && !th->fin);
3169 				tcp_rcv_space_adjust(sk);
3170 			}
3171 			local_bh_disable();
3172 		}
3173 
3174 		if (eaten <= 0) {
3175 queue_and_out:
3176 			if (eaten < 0 &&
3177 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3178 			     !sk_stream_rmem_schedule(sk, skb))) {
3179 				if (tcp_prune_queue(sk) < 0 ||
3180 				    !sk_stream_rmem_schedule(sk, skb))
3181 					goto drop;
3182 			}
3183 			sk_stream_set_owner_r(skb, sk);
3184 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3185 		}
3186 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3187 		if(skb->len)
3188 			tcp_event_data_recv(sk, tp, skb);
3189 		if(th->fin)
3190 			tcp_fin(skb, sk, th);
3191 
3192 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3193 			tcp_ofo_queue(sk);
3194 
3195 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3196 			 * gap in queue is filled.
3197 			 */
3198 			if (skb_queue_empty(&tp->out_of_order_queue))
3199 				inet_csk(sk)->icsk_ack.pingpong = 0;
3200 		}
3201 
3202 		if (tp->rx_opt.num_sacks)
3203 			tcp_sack_remove(tp);
3204 
3205 		tcp_fast_path_check(sk, tp);
3206 
3207 		if (eaten > 0)
3208 			__kfree_skb(skb);
3209 		else if (!sock_flag(sk, SOCK_DEAD))
3210 			sk->sk_data_ready(sk, 0);
3211 		return;
3212 	}
3213 
3214 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3215 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3216 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3217 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3218 
3219 out_of_window:
3220 		tcp_enter_quickack_mode(sk);
3221 		inet_csk_schedule_ack(sk);
3222 drop:
3223 		__kfree_skb(skb);
3224 		return;
3225 	}
3226 
3227 	/* Out of window. F.e. zero window probe. */
3228 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3229 		goto out_of_window;
3230 
3231 	tcp_enter_quickack_mode(sk);
3232 
3233 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3234 		/* Partial packet, seq < rcv_next < end_seq */
3235 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3236 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3237 			   TCP_SKB_CB(skb)->end_seq);
3238 
3239 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3240 
3241 		/* If window is closed, drop tail of packet. But after
3242 		 * remembering D-SACK for its head made in previous line.
3243 		 */
3244 		if (!tcp_receive_window(tp))
3245 			goto out_of_window;
3246 		goto queue_and_out;
3247 	}
3248 
3249 	TCP_ECN_check_ce(tp, skb);
3250 
3251 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3252 	    !sk_stream_rmem_schedule(sk, skb)) {
3253 		if (tcp_prune_queue(sk) < 0 ||
3254 		    !sk_stream_rmem_schedule(sk, skb))
3255 			goto drop;
3256 	}
3257 
3258 	/* Disable header prediction. */
3259 	tp->pred_flags = 0;
3260 	inet_csk_schedule_ack(sk);
3261 
3262 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3263 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3264 
3265 	sk_stream_set_owner_r(skb, sk);
3266 
3267 	if (!skb_peek(&tp->out_of_order_queue)) {
3268 		/* Initial out of order segment, build 1 SACK. */
3269 		if (tp->rx_opt.sack_ok) {
3270 			tp->rx_opt.num_sacks = 1;
3271 			tp->rx_opt.dsack     = 0;
3272 			tp->rx_opt.eff_sacks = 1;
3273 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3274 			tp->selective_acks[0].end_seq =
3275 						TCP_SKB_CB(skb)->end_seq;
3276 		}
3277 		__skb_queue_head(&tp->out_of_order_queue,skb);
3278 	} else {
3279 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3280 		u32 seq = TCP_SKB_CB(skb)->seq;
3281 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3282 
3283 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3284 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3285 
3286 			if (!tp->rx_opt.num_sacks ||
3287 			    tp->selective_acks[0].end_seq != seq)
3288 				goto add_sack;
3289 
3290 			/* Common case: data arrive in order after hole. */
3291 			tp->selective_acks[0].end_seq = end_seq;
3292 			return;
3293 		}
3294 
3295 		/* Find place to insert this segment. */
3296 		do {
3297 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3298 				break;
3299 		} while ((skb1 = skb1->prev) !=
3300 			 (struct sk_buff*)&tp->out_of_order_queue);
3301 
3302 		/* Do skb overlap to previous one? */
3303 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3304 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3305 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3306 				/* All the bits are present. Drop. */
3307 				__kfree_skb(skb);
3308 				tcp_dsack_set(tp, seq, end_seq);
3309 				goto add_sack;
3310 			}
3311 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3312 				/* Partial overlap. */
3313 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3314 			} else {
3315 				skb1 = skb1->prev;
3316 			}
3317 		}
3318 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3319 
3320 		/* And clean segments covered by new one as whole. */
3321 		while ((skb1 = skb->next) !=
3322 		       (struct sk_buff*)&tp->out_of_order_queue &&
3323 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3324 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3325 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3326 			       break;
3327 		       }
3328 		       __skb_unlink(skb1, &tp->out_of_order_queue);
3329 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3330 		       __kfree_skb(skb1);
3331 		}
3332 
3333 add_sack:
3334 		if (tp->rx_opt.sack_ok)
3335 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3336 	}
3337 }
3338 
3339 /* Collapse contiguous sequence of skbs head..tail with
3340  * sequence numbers start..end.
3341  * Segments with FIN/SYN are not collapsed (only because this
3342  * simplifies code)
3343  */
3344 static void
3345 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3346 	     struct sk_buff *head, struct sk_buff *tail,
3347 	     u32 start, u32 end)
3348 {
3349 	struct sk_buff *skb;
3350 
3351 	/* First, check that queue is collapsible and find
3352 	 * the point where collapsing can be useful. */
3353 	for (skb = head; skb != tail; ) {
3354 		/* No new bits? It is possible on ofo queue. */
3355 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3356 			struct sk_buff *next = skb->next;
3357 			__skb_unlink(skb, list);
3358 			__kfree_skb(skb);
3359 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3360 			skb = next;
3361 			continue;
3362 		}
3363 
3364 		/* The first skb to collapse is:
3365 		 * - not SYN/FIN and
3366 		 * - bloated or contains data before "start" or
3367 		 *   overlaps to the next one.
3368 		 */
3369 		if (!skb->h.th->syn && !skb->h.th->fin &&
3370 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3371 		     before(TCP_SKB_CB(skb)->seq, start) ||
3372 		     (skb->next != tail &&
3373 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3374 			break;
3375 
3376 		/* Decided to skip this, advance start seq. */
3377 		start = TCP_SKB_CB(skb)->end_seq;
3378 		skb = skb->next;
3379 	}
3380 	if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3381 		return;
3382 
3383 	while (before(start, end)) {
3384 		struct sk_buff *nskb;
3385 		int header = skb_headroom(skb);
3386 		int copy = SKB_MAX_ORDER(header, 0);
3387 
3388 		/* Too big header? This can happen with IPv6. */
3389 		if (copy < 0)
3390 			return;
3391 		if (end-start < copy)
3392 			copy = end-start;
3393 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3394 		if (!nskb)
3395 			return;
3396 		skb_reserve(nskb, header);
3397 		memcpy(nskb->head, skb->head, header);
3398 		nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3399 		nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3400 		nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3401 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3402 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3403 		__skb_insert(nskb, skb->prev, skb, list);
3404 		sk_stream_set_owner_r(nskb, sk);
3405 
3406 		/* Copy data, releasing collapsed skbs. */
3407 		while (copy > 0) {
3408 			int offset = start - TCP_SKB_CB(skb)->seq;
3409 			int size = TCP_SKB_CB(skb)->end_seq - start;
3410 
3411 			BUG_ON(offset < 0);
3412 			if (size > 0) {
3413 				size = min(copy, size);
3414 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3415 					BUG();
3416 				TCP_SKB_CB(nskb)->end_seq += size;
3417 				copy -= size;
3418 				start += size;
3419 			}
3420 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3421 				struct sk_buff *next = skb->next;
3422 				__skb_unlink(skb, list);
3423 				__kfree_skb(skb);
3424 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3425 				skb = next;
3426 				if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3427 					return;
3428 			}
3429 		}
3430 	}
3431 }
3432 
3433 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3434  * and tcp_collapse() them until all the queue is collapsed.
3435  */
3436 static void tcp_collapse_ofo_queue(struct sock *sk)
3437 {
3438 	struct tcp_sock *tp = tcp_sk(sk);
3439 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3440 	struct sk_buff *head;
3441 	u32 start, end;
3442 
3443 	if (skb == NULL)
3444 		return;
3445 
3446 	start = TCP_SKB_CB(skb)->seq;
3447 	end = TCP_SKB_CB(skb)->end_seq;
3448 	head = skb;
3449 
3450 	for (;;) {
3451 		skb = skb->next;
3452 
3453 		/* Segment is terminated when we see gap or when
3454 		 * we are at the end of all the queue. */
3455 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3456 		    after(TCP_SKB_CB(skb)->seq, end) ||
3457 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3458 			tcp_collapse(sk, &tp->out_of_order_queue,
3459 				     head, skb, start, end);
3460 			head = skb;
3461 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3462 				break;
3463 			/* Start new segment */
3464 			start = TCP_SKB_CB(skb)->seq;
3465 			end = TCP_SKB_CB(skb)->end_seq;
3466 		} else {
3467 			if (before(TCP_SKB_CB(skb)->seq, start))
3468 				start = TCP_SKB_CB(skb)->seq;
3469 			if (after(TCP_SKB_CB(skb)->end_seq, end))
3470 				end = TCP_SKB_CB(skb)->end_seq;
3471 		}
3472 	}
3473 }
3474 
3475 /* Reduce allocated memory if we can, trying to get
3476  * the socket within its memory limits again.
3477  *
3478  * Return less than zero if we should start dropping frames
3479  * until the socket owning process reads some of the data
3480  * to stabilize the situation.
3481  */
3482 static int tcp_prune_queue(struct sock *sk)
3483 {
3484 	struct tcp_sock *tp = tcp_sk(sk);
3485 
3486 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3487 
3488 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3489 
3490 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3491 		tcp_clamp_window(sk, tp);
3492 	else if (tcp_memory_pressure)
3493 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3494 
3495 	tcp_collapse_ofo_queue(sk);
3496 	tcp_collapse(sk, &sk->sk_receive_queue,
3497 		     sk->sk_receive_queue.next,
3498 		     (struct sk_buff*)&sk->sk_receive_queue,
3499 		     tp->copied_seq, tp->rcv_nxt);
3500 	sk_stream_mem_reclaim(sk);
3501 
3502 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3503 		return 0;
3504 
3505 	/* Collapsing did not help, destructive actions follow.
3506 	 * This must not ever occur. */
3507 
3508 	/* First, purge the out_of_order queue. */
3509 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3510 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3511 		__skb_queue_purge(&tp->out_of_order_queue);
3512 
3513 		/* Reset SACK state.  A conforming SACK implementation will
3514 		 * do the same at a timeout based retransmit.  When a connection
3515 		 * is in a sad state like this, we care only about integrity
3516 		 * of the connection not performance.
3517 		 */
3518 		if (tp->rx_opt.sack_ok)
3519 			tcp_sack_reset(&tp->rx_opt);
3520 		sk_stream_mem_reclaim(sk);
3521 	}
3522 
3523 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3524 		return 0;
3525 
3526 	/* If we are really being abused, tell the caller to silently
3527 	 * drop receive data on the floor.  It will get retransmitted
3528 	 * and hopefully then we'll have sufficient space.
3529 	 */
3530 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3531 
3532 	/* Massive buffer overcommit. */
3533 	tp->pred_flags = 0;
3534 	return -1;
3535 }
3536 
3537 
3538 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3539  * As additional protections, we do not touch cwnd in retransmission phases,
3540  * and if application hit its sndbuf limit recently.
3541  */
3542 void tcp_cwnd_application_limited(struct sock *sk)
3543 {
3544 	struct tcp_sock *tp = tcp_sk(sk);
3545 
3546 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3547 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3548 		/* Limited by application or receiver window. */
3549 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3550 		u32 win_used = max(tp->snd_cwnd_used, init_win);
3551 		if (win_used < tp->snd_cwnd) {
3552 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3553 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3554 		}
3555 		tp->snd_cwnd_used = 0;
3556 	}
3557 	tp->snd_cwnd_stamp = tcp_time_stamp;
3558 }
3559 
3560 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3561 {
3562 	/* If the user specified a specific send buffer setting, do
3563 	 * not modify it.
3564 	 */
3565 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3566 		return 0;
3567 
3568 	/* If we are under global TCP memory pressure, do not expand.  */
3569 	if (tcp_memory_pressure)
3570 		return 0;
3571 
3572 	/* If we are under soft global TCP memory pressure, do not expand.  */
3573 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3574 		return 0;
3575 
3576 	/* If we filled the congestion window, do not expand.  */
3577 	if (tp->packets_out >= tp->snd_cwnd)
3578 		return 0;
3579 
3580 	return 1;
3581 }
3582 
3583 /* When incoming ACK allowed to free some skb from write_queue,
3584  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3585  * on the exit from tcp input handler.
3586  *
3587  * PROBLEM: sndbuf expansion does not work well with largesend.
3588  */
3589 static void tcp_new_space(struct sock *sk)
3590 {
3591 	struct tcp_sock *tp = tcp_sk(sk);
3592 
3593 	if (tcp_should_expand_sndbuf(sk, tp)) {
3594  		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3595 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3596 		    demanded = max_t(unsigned int, tp->snd_cwnd,
3597 						   tp->reordering + 1);
3598 		sndmem *= 2*demanded;
3599 		if (sndmem > sk->sk_sndbuf)
3600 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3601 		tp->snd_cwnd_stamp = tcp_time_stamp;
3602 	}
3603 
3604 	sk->sk_write_space(sk);
3605 }
3606 
3607 static void tcp_check_space(struct sock *sk)
3608 {
3609 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3610 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3611 		if (sk->sk_socket &&
3612 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3613 			tcp_new_space(sk);
3614 	}
3615 }
3616 
3617 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3618 {
3619 	tcp_push_pending_frames(sk, tp);
3620 	tcp_check_space(sk);
3621 }
3622 
3623 /*
3624  * Check if sending an ack is needed.
3625  */
3626 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3627 {
3628 	struct tcp_sock *tp = tcp_sk(sk);
3629 
3630 	    /* More than one full frame received... */
3631 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3632 	     /* ... and right edge of window advances far enough.
3633 	      * (tcp_recvmsg() will send ACK otherwise). Or...
3634 	      */
3635 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3636 	    /* We ACK each frame or... */
3637 	    tcp_in_quickack_mode(sk) ||
3638 	    /* We have out of order data. */
3639 	    (ofo_possible &&
3640 	     skb_peek(&tp->out_of_order_queue))) {
3641 		/* Then ack it now */
3642 		tcp_send_ack(sk);
3643 	} else {
3644 		/* Else, send delayed ack. */
3645 		tcp_send_delayed_ack(sk);
3646 	}
3647 }
3648 
3649 static inline void tcp_ack_snd_check(struct sock *sk)
3650 {
3651 	if (!inet_csk_ack_scheduled(sk)) {
3652 		/* We sent a data segment already. */
3653 		return;
3654 	}
3655 	__tcp_ack_snd_check(sk, 1);
3656 }
3657 
3658 /*
3659  *	This routine is only called when we have urgent data
3660  *	signaled. Its the 'slow' part of tcp_urg. It could be
3661  *	moved inline now as tcp_urg is only called from one
3662  *	place. We handle URGent data wrong. We have to - as
3663  *	BSD still doesn't use the correction from RFC961.
3664  *	For 1003.1g we should support a new option TCP_STDURG to permit
3665  *	either form (or just set the sysctl tcp_stdurg).
3666  */
3667 
3668 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3669 {
3670 	struct tcp_sock *tp = tcp_sk(sk);
3671 	u32 ptr = ntohs(th->urg_ptr);
3672 
3673 	if (ptr && !sysctl_tcp_stdurg)
3674 		ptr--;
3675 	ptr += ntohl(th->seq);
3676 
3677 	/* Ignore urgent data that we've already seen and read. */
3678 	if (after(tp->copied_seq, ptr))
3679 		return;
3680 
3681 	/* Do not replay urg ptr.
3682 	 *
3683 	 * NOTE: interesting situation not covered by specs.
3684 	 * Misbehaving sender may send urg ptr, pointing to segment,
3685 	 * which we already have in ofo queue. We are not able to fetch
3686 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3687 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3688 	 * situations. But it is worth to think about possibility of some
3689 	 * DoSes using some hypothetical application level deadlock.
3690 	 */
3691 	if (before(ptr, tp->rcv_nxt))
3692 		return;
3693 
3694 	/* Do we already have a newer (or duplicate) urgent pointer? */
3695 	if (tp->urg_data && !after(ptr, tp->urg_seq))
3696 		return;
3697 
3698 	/* Tell the world about our new urgent pointer. */
3699 	sk_send_sigurg(sk);
3700 
3701 	/* We may be adding urgent data when the last byte read was
3702 	 * urgent. To do this requires some care. We cannot just ignore
3703 	 * tp->copied_seq since we would read the last urgent byte again
3704 	 * as data, nor can we alter copied_seq until this data arrives
3705 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3706 	 *
3707 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3708 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3709 	 * and expect that both A and B disappear from stream. This is _wrong_.
3710 	 * Though this happens in BSD with high probability, this is occasional.
3711 	 * Any application relying on this is buggy. Note also, that fix "works"
3712 	 * only in this artificial test. Insert some normal data between A and B and we will
3713 	 * decline of BSD again. Verdict: it is better to remove to trap
3714 	 * buggy users.
3715 	 */
3716 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3717 	    !sock_flag(sk, SOCK_URGINLINE) &&
3718 	    tp->copied_seq != tp->rcv_nxt) {
3719 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3720 		tp->copied_seq++;
3721 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3722 			__skb_unlink(skb, &sk->sk_receive_queue);
3723 			__kfree_skb(skb);
3724 		}
3725 	}
3726 
3727 	tp->urg_data   = TCP_URG_NOTYET;
3728 	tp->urg_seq    = ptr;
3729 
3730 	/* Disable header prediction. */
3731 	tp->pred_flags = 0;
3732 }
3733 
3734 /* This is the 'fast' part of urgent handling. */
3735 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3736 {
3737 	struct tcp_sock *tp = tcp_sk(sk);
3738 
3739 	/* Check if we get a new urgent pointer - normally not. */
3740 	if (th->urg)
3741 		tcp_check_urg(sk,th);
3742 
3743 	/* Do we wait for any urgent data? - normally not... */
3744 	if (tp->urg_data == TCP_URG_NOTYET) {
3745 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3746 			  th->syn;
3747 
3748 		/* Is the urgent pointer pointing into this packet? */
3749 		if (ptr < skb->len) {
3750 			u8 tmp;
3751 			if (skb_copy_bits(skb, ptr, &tmp, 1))
3752 				BUG();
3753 			tp->urg_data = TCP_URG_VALID | tmp;
3754 			if (!sock_flag(sk, SOCK_DEAD))
3755 				sk->sk_data_ready(sk, 0);
3756 		}
3757 	}
3758 }
3759 
3760 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3761 {
3762 	struct tcp_sock *tp = tcp_sk(sk);
3763 	int chunk = skb->len - hlen;
3764 	int err;
3765 
3766 	local_bh_enable();
3767 	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3768 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3769 	else
3770 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3771 						       tp->ucopy.iov);
3772 
3773 	if (!err) {
3774 		tp->ucopy.len -= chunk;
3775 		tp->copied_seq += chunk;
3776 		tcp_rcv_space_adjust(sk);
3777 	}
3778 
3779 	local_bh_disable();
3780 	return err;
3781 }
3782 
3783 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3784 {
3785 	int result;
3786 
3787 	if (sock_owned_by_user(sk)) {
3788 		local_bh_enable();
3789 		result = __tcp_checksum_complete(skb);
3790 		local_bh_disable();
3791 	} else {
3792 		result = __tcp_checksum_complete(skb);
3793 	}
3794 	return result;
3795 }
3796 
3797 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3798 {
3799 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3800 		__tcp_checksum_complete_user(sk, skb);
3801 }
3802 
3803 #ifdef CONFIG_NET_DMA
3804 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3805 {
3806 	struct tcp_sock *tp = tcp_sk(sk);
3807 	int chunk = skb->len - hlen;
3808 	int dma_cookie;
3809 	int copied_early = 0;
3810 
3811 	if (tp->ucopy.wakeup)
3812           	return 0;
3813 
3814 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3815 		tp->ucopy.dma_chan = get_softnet_dma();
3816 
3817 	if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3818 
3819 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3820 			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3821 
3822 		if (dma_cookie < 0)
3823 			goto out;
3824 
3825 		tp->ucopy.dma_cookie = dma_cookie;
3826 		copied_early = 1;
3827 
3828 		tp->ucopy.len -= chunk;
3829 		tp->copied_seq += chunk;
3830 		tcp_rcv_space_adjust(sk);
3831 
3832 		if ((tp->ucopy.len == 0) ||
3833 		    (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3834 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3835 			tp->ucopy.wakeup = 1;
3836 			sk->sk_data_ready(sk, 0);
3837 		}
3838 	} else if (chunk > 0) {
3839 		tp->ucopy.wakeup = 1;
3840 		sk->sk_data_ready(sk, 0);
3841 	}
3842 out:
3843 	return copied_early;
3844 }
3845 #endif /* CONFIG_NET_DMA */
3846 
3847 /*
3848  *	TCP receive function for the ESTABLISHED state.
3849  *
3850  *	It is split into a fast path and a slow path. The fast path is
3851  * 	disabled when:
3852  *	- A zero window was announced from us - zero window probing
3853  *        is only handled properly in the slow path.
3854  *	- Out of order segments arrived.
3855  *	- Urgent data is expected.
3856  *	- There is no buffer space left
3857  *	- Unexpected TCP flags/window values/header lengths are received
3858  *	  (detected by checking the TCP header against pred_flags)
3859  *	- Data is sent in both directions. Fast path only supports pure senders
3860  *	  or pure receivers (this means either the sequence number or the ack
3861  *	  value must stay constant)
3862  *	- Unexpected TCP option.
3863  *
3864  *	When these conditions are not satisfied it drops into a standard
3865  *	receive procedure patterned after RFC793 to handle all cases.
3866  *	The first three cases are guaranteed by proper pred_flags setting,
3867  *	the rest is checked inline. Fast processing is turned on in
3868  *	tcp_data_queue when everything is OK.
3869  */
3870 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3871 			struct tcphdr *th, unsigned len)
3872 {
3873 	struct tcp_sock *tp = tcp_sk(sk);
3874 
3875 	/*
3876 	 *	Header prediction.
3877 	 *	The code loosely follows the one in the famous
3878 	 *	"30 instruction TCP receive" Van Jacobson mail.
3879 	 *
3880 	 *	Van's trick is to deposit buffers into socket queue
3881 	 *	on a device interrupt, to call tcp_recv function
3882 	 *	on the receive process context and checksum and copy
3883 	 *	the buffer to user space. smart...
3884 	 *
3885 	 *	Our current scheme is not silly either but we take the
3886 	 *	extra cost of the net_bh soft interrupt processing...
3887 	 *	We do checksum and copy also but from device to kernel.
3888 	 */
3889 
3890 	tp->rx_opt.saw_tstamp = 0;
3891 
3892 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
3893 	 *	if header_prediction is to be made
3894 	 *	'S' will always be tp->tcp_header_len >> 2
3895 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
3896 	 *  turn it off	(when there are holes in the receive
3897 	 *	 space for instance)
3898 	 *	PSH flag is ignored.
3899 	 */
3900 
3901 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3902 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3903 		int tcp_header_len = tp->tcp_header_len;
3904 
3905 		/* Timestamp header prediction: tcp_header_len
3906 		 * is automatically equal to th->doff*4 due to pred_flags
3907 		 * match.
3908 		 */
3909 
3910 		/* Check timestamp */
3911 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3912 			__u32 *ptr = (__u32 *)(th + 1);
3913 
3914 			/* No? Slow path! */
3915 			if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3916 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3917 				goto slow_path;
3918 
3919 			tp->rx_opt.saw_tstamp = 1;
3920 			++ptr;
3921 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3922 			++ptr;
3923 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3924 
3925 			/* If PAWS failed, check it more carefully in slow path */
3926 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3927 				goto slow_path;
3928 
3929 			/* DO NOT update ts_recent here, if checksum fails
3930 			 * and timestamp was corrupted part, it will result
3931 			 * in a hung connection since we will drop all
3932 			 * future packets due to the PAWS test.
3933 			 */
3934 		}
3935 
3936 		if (len <= tcp_header_len) {
3937 			/* Bulk data transfer: sender */
3938 			if (len == tcp_header_len) {
3939 				/* Predicted packet is in window by definition.
3940 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3941 				 * Hence, check seq<=rcv_wup reduces to:
3942 				 */
3943 				if (tcp_header_len ==
3944 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3945 				    tp->rcv_nxt == tp->rcv_wup)
3946 					tcp_store_ts_recent(tp);
3947 
3948 				/* We know that such packets are checksummed
3949 				 * on entry.
3950 				 */
3951 				tcp_ack(sk, skb, 0);
3952 				__kfree_skb(skb);
3953 				tcp_data_snd_check(sk, tp);
3954 				return 0;
3955 			} else { /* Header too small */
3956 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
3957 				goto discard;
3958 			}
3959 		} else {
3960 			int eaten = 0;
3961 			int copied_early = 0;
3962 
3963 			if (tp->copied_seq == tp->rcv_nxt &&
3964 			    len - tcp_header_len <= tp->ucopy.len) {
3965 #ifdef CONFIG_NET_DMA
3966 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
3967 					copied_early = 1;
3968 					eaten = 1;
3969 				}
3970 #endif
3971 				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
3972 					__set_current_state(TASK_RUNNING);
3973 
3974 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
3975 						eaten = 1;
3976 				}
3977 				if (eaten) {
3978 					/* Predicted packet is in window by definition.
3979 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3980 					 * Hence, check seq<=rcv_wup reduces to:
3981 					 */
3982 					if (tcp_header_len ==
3983 					    (sizeof(struct tcphdr) +
3984 					     TCPOLEN_TSTAMP_ALIGNED) &&
3985 					    tp->rcv_nxt == tp->rcv_wup)
3986 						tcp_store_ts_recent(tp);
3987 
3988 					tcp_rcv_rtt_measure_ts(sk, skb);
3989 
3990 					__skb_pull(skb, tcp_header_len);
3991 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3992 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3993 				}
3994 				if (copied_early)
3995 					tcp_cleanup_rbuf(sk, skb->len);
3996 			}
3997 			if (!eaten) {
3998 				if (tcp_checksum_complete_user(sk, skb))
3999 					goto csum_error;
4000 
4001 				/* Predicted packet is in window by definition.
4002 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4003 				 * Hence, check seq<=rcv_wup reduces to:
4004 				 */
4005 				if (tcp_header_len ==
4006 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4007 				    tp->rcv_nxt == tp->rcv_wup)
4008 					tcp_store_ts_recent(tp);
4009 
4010 				tcp_rcv_rtt_measure_ts(sk, skb);
4011 
4012 				if ((int)skb->truesize > sk->sk_forward_alloc)
4013 					goto step5;
4014 
4015 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4016 
4017 				/* Bulk data transfer: receiver */
4018 				__skb_pull(skb,tcp_header_len);
4019 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4020 				sk_stream_set_owner_r(skb, sk);
4021 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4022 			}
4023 
4024 			tcp_event_data_recv(sk, tp, skb);
4025 
4026 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4027 				/* Well, only one small jumplet in fast path... */
4028 				tcp_ack(sk, skb, FLAG_DATA);
4029 				tcp_data_snd_check(sk, tp);
4030 				if (!inet_csk_ack_scheduled(sk))
4031 					goto no_ack;
4032 			}
4033 
4034 			__tcp_ack_snd_check(sk, 0);
4035 no_ack:
4036 #ifdef CONFIG_NET_DMA
4037 			if (copied_early)
4038 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4039 			else
4040 #endif
4041 			if (eaten)
4042 				__kfree_skb(skb);
4043 			else
4044 				sk->sk_data_ready(sk, 0);
4045 			return 0;
4046 		}
4047 	}
4048 
4049 slow_path:
4050 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4051 		goto csum_error;
4052 
4053 	/*
4054 	 * RFC1323: H1. Apply PAWS check first.
4055 	 */
4056 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4057 	    tcp_paws_discard(sk, skb)) {
4058 		if (!th->rst) {
4059 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4060 			tcp_send_dupack(sk, skb);
4061 			goto discard;
4062 		}
4063 		/* Resets are accepted even if PAWS failed.
4064 
4065 		   ts_recent update must be made after we are sure
4066 		   that the packet is in window.
4067 		 */
4068 	}
4069 
4070 	/*
4071 	 *	Standard slow path.
4072 	 */
4073 
4074 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4075 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4076 		 * (RST) segments are validated by checking their SEQ-fields."
4077 		 * And page 69: "If an incoming segment is not acceptable,
4078 		 * an acknowledgment should be sent in reply (unless the RST bit
4079 		 * is set, if so drop the segment and return)".
4080 		 */
4081 		if (!th->rst)
4082 			tcp_send_dupack(sk, skb);
4083 		goto discard;
4084 	}
4085 
4086 	if(th->rst) {
4087 		tcp_reset(sk);
4088 		goto discard;
4089 	}
4090 
4091 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4092 
4093 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4094 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4095 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4096 		tcp_reset(sk);
4097 		return 1;
4098 	}
4099 
4100 step5:
4101 	if(th->ack)
4102 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4103 
4104 	tcp_rcv_rtt_measure_ts(sk, skb);
4105 
4106 	/* Process urgent data. */
4107 	tcp_urg(sk, skb, th);
4108 
4109 	/* step 7: process the segment text */
4110 	tcp_data_queue(sk, skb);
4111 
4112 	tcp_data_snd_check(sk, tp);
4113 	tcp_ack_snd_check(sk);
4114 	return 0;
4115 
4116 csum_error:
4117 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4118 
4119 discard:
4120 	__kfree_skb(skb);
4121 	return 0;
4122 }
4123 
4124 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4125 					 struct tcphdr *th, unsigned len)
4126 {
4127 	struct tcp_sock *tp = tcp_sk(sk);
4128 	struct inet_connection_sock *icsk = inet_csk(sk);
4129 	int saved_clamp = tp->rx_opt.mss_clamp;
4130 
4131 	tcp_parse_options(skb, &tp->rx_opt, 0);
4132 
4133 	if (th->ack) {
4134 		/* rfc793:
4135 		 * "If the state is SYN-SENT then
4136 		 *    first check the ACK bit
4137 		 *      If the ACK bit is set
4138 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4139 		 *        a reset (unless the RST bit is set, if so drop
4140 		 *        the segment and return)"
4141 		 *
4142 		 *  We do not send data with SYN, so that RFC-correct
4143 		 *  test reduces to:
4144 		 */
4145 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4146 			goto reset_and_undo;
4147 
4148 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4149 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4150 			     tcp_time_stamp)) {
4151 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4152 			goto reset_and_undo;
4153 		}
4154 
4155 		/* Now ACK is acceptable.
4156 		 *
4157 		 * "If the RST bit is set
4158 		 *    If the ACK was acceptable then signal the user "error:
4159 		 *    connection reset", drop the segment, enter CLOSED state,
4160 		 *    delete TCB, and return."
4161 		 */
4162 
4163 		if (th->rst) {
4164 			tcp_reset(sk);
4165 			goto discard;
4166 		}
4167 
4168 		/* rfc793:
4169 		 *   "fifth, if neither of the SYN or RST bits is set then
4170 		 *    drop the segment and return."
4171 		 *
4172 		 *    See note below!
4173 		 *                                        --ANK(990513)
4174 		 */
4175 		if (!th->syn)
4176 			goto discard_and_undo;
4177 
4178 		/* rfc793:
4179 		 *   "If the SYN bit is on ...
4180 		 *    are acceptable then ...
4181 		 *    (our SYN has been ACKed), change the connection
4182 		 *    state to ESTABLISHED..."
4183 		 */
4184 
4185 		TCP_ECN_rcv_synack(tp, th);
4186 
4187 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4188 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4189 
4190 		/* Ok.. it's good. Set up sequence numbers and
4191 		 * move to established.
4192 		 */
4193 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4194 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4195 
4196 		/* RFC1323: The window in SYN & SYN/ACK segments is
4197 		 * never scaled.
4198 		 */
4199 		tp->snd_wnd = ntohs(th->window);
4200 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4201 
4202 		if (!tp->rx_opt.wscale_ok) {
4203 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4204 			tp->window_clamp = min(tp->window_clamp, 65535U);
4205 		}
4206 
4207 		if (tp->rx_opt.saw_tstamp) {
4208 			tp->rx_opt.tstamp_ok	   = 1;
4209 			tp->tcp_header_len =
4210 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4211 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4212 			tcp_store_ts_recent(tp);
4213 		} else {
4214 			tp->tcp_header_len = sizeof(struct tcphdr);
4215 		}
4216 
4217 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4218 			tp->rx_opt.sack_ok |= 2;
4219 
4220 		tcp_mtup_init(sk);
4221 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4222 		tcp_initialize_rcv_mss(sk);
4223 
4224 		/* Remember, tcp_poll() does not lock socket!
4225 		 * Change state from SYN-SENT only after copied_seq
4226 		 * is initialized. */
4227 		tp->copied_seq = tp->rcv_nxt;
4228 		mb();
4229 		tcp_set_state(sk, TCP_ESTABLISHED);
4230 
4231 		/* Make sure socket is routed, for correct metrics.  */
4232 		icsk->icsk_af_ops->rebuild_header(sk);
4233 
4234 		tcp_init_metrics(sk);
4235 
4236 		tcp_init_congestion_control(sk);
4237 
4238 		/* Prevent spurious tcp_cwnd_restart() on first data
4239 		 * packet.
4240 		 */
4241 		tp->lsndtime = tcp_time_stamp;
4242 
4243 		tcp_init_buffer_space(sk);
4244 
4245 		if (sock_flag(sk, SOCK_KEEPOPEN))
4246 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4247 
4248 		if (!tp->rx_opt.snd_wscale)
4249 			__tcp_fast_path_on(tp, tp->snd_wnd);
4250 		else
4251 			tp->pred_flags = 0;
4252 
4253 		if (!sock_flag(sk, SOCK_DEAD)) {
4254 			sk->sk_state_change(sk);
4255 			sk_wake_async(sk, 0, POLL_OUT);
4256 		}
4257 
4258 		if (sk->sk_write_pending ||
4259 		    icsk->icsk_accept_queue.rskq_defer_accept ||
4260 		    icsk->icsk_ack.pingpong) {
4261 			/* Save one ACK. Data will be ready after
4262 			 * several ticks, if write_pending is set.
4263 			 *
4264 			 * It may be deleted, but with this feature tcpdumps
4265 			 * look so _wonderfully_ clever, that I was not able
4266 			 * to stand against the temptation 8)     --ANK
4267 			 */
4268 			inet_csk_schedule_ack(sk);
4269 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4270 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4271 			tcp_incr_quickack(sk);
4272 			tcp_enter_quickack_mode(sk);
4273 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4274 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4275 
4276 discard:
4277 			__kfree_skb(skb);
4278 			return 0;
4279 		} else {
4280 			tcp_send_ack(sk);
4281 		}
4282 		return -1;
4283 	}
4284 
4285 	/* No ACK in the segment */
4286 
4287 	if (th->rst) {
4288 		/* rfc793:
4289 		 * "If the RST bit is set
4290 		 *
4291 		 *      Otherwise (no ACK) drop the segment and return."
4292 		 */
4293 
4294 		goto discard_and_undo;
4295 	}
4296 
4297 	/* PAWS check. */
4298 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4299 		goto discard_and_undo;
4300 
4301 	if (th->syn) {
4302 		/* We see SYN without ACK. It is attempt of
4303 		 * simultaneous connect with crossed SYNs.
4304 		 * Particularly, it can be connect to self.
4305 		 */
4306 		tcp_set_state(sk, TCP_SYN_RECV);
4307 
4308 		if (tp->rx_opt.saw_tstamp) {
4309 			tp->rx_opt.tstamp_ok = 1;
4310 			tcp_store_ts_recent(tp);
4311 			tp->tcp_header_len =
4312 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4313 		} else {
4314 			tp->tcp_header_len = sizeof(struct tcphdr);
4315 		}
4316 
4317 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4318 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4319 
4320 		/* RFC1323: The window in SYN & SYN/ACK segments is
4321 		 * never scaled.
4322 		 */
4323 		tp->snd_wnd    = ntohs(th->window);
4324 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4325 		tp->max_window = tp->snd_wnd;
4326 
4327 		TCP_ECN_rcv_syn(tp, th);
4328 
4329 		tcp_mtup_init(sk);
4330 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4331 		tcp_initialize_rcv_mss(sk);
4332 
4333 
4334 		tcp_send_synack(sk);
4335 #if 0
4336 		/* Note, we could accept data and URG from this segment.
4337 		 * There are no obstacles to make this.
4338 		 *
4339 		 * However, if we ignore data in ACKless segments sometimes,
4340 		 * we have no reasons to accept it sometimes.
4341 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4342 		 * is not flawless. So, discard packet for sanity.
4343 		 * Uncomment this return to process the data.
4344 		 */
4345 		return -1;
4346 #else
4347 		goto discard;
4348 #endif
4349 	}
4350 	/* "fifth, if neither of the SYN or RST bits is set then
4351 	 * drop the segment and return."
4352 	 */
4353 
4354 discard_and_undo:
4355 	tcp_clear_options(&tp->rx_opt);
4356 	tp->rx_opt.mss_clamp = saved_clamp;
4357 	goto discard;
4358 
4359 reset_and_undo:
4360 	tcp_clear_options(&tp->rx_opt);
4361 	tp->rx_opt.mss_clamp = saved_clamp;
4362 	return 1;
4363 }
4364 
4365 
4366 /*
4367  *	This function implements the receiving procedure of RFC 793 for
4368  *	all states except ESTABLISHED and TIME_WAIT.
4369  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4370  *	address independent.
4371  */
4372 
4373 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4374 			  struct tcphdr *th, unsigned len)
4375 {
4376 	struct tcp_sock *tp = tcp_sk(sk);
4377 	struct inet_connection_sock *icsk = inet_csk(sk);
4378 	int queued = 0;
4379 
4380 	tp->rx_opt.saw_tstamp = 0;
4381 
4382 	switch (sk->sk_state) {
4383 	case TCP_CLOSE:
4384 		goto discard;
4385 
4386 	case TCP_LISTEN:
4387 		if(th->ack)
4388 			return 1;
4389 
4390 		if(th->rst)
4391 			goto discard;
4392 
4393 		if(th->syn) {
4394 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4395 				return 1;
4396 
4397 			/* Now we have several options: In theory there is
4398 			 * nothing else in the frame. KA9Q has an option to
4399 			 * send data with the syn, BSD accepts data with the
4400 			 * syn up to the [to be] advertised window and
4401 			 * Solaris 2.1 gives you a protocol error. For now
4402 			 * we just ignore it, that fits the spec precisely
4403 			 * and avoids incompatibilities. It would be nice in
4404 			 * future to drop through and process the data.
4405 			 *
4406 			 * Now that TTCP is starting to be used we ought to
4407 			 * queue this data.
4408 			 * But, this leaves one open to an easy denial of
4409 		 	 * service attack, and SYN cookies can't defend
4410 			 * against this problem. So, we drop the data
4411 			 * in the interest of security over speed.
4412 			 */
4413 			goto discard;
4414 		}
4415 		goto discard;
4416 
4417 	case TCP_SYN_SENT:
4418 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4419 		if (queued >= 0)
4420 			return queued;
4421 
4422 		/* Do step6 onward by hand. */
4423 		tcp_urg(sk, skb, th);
4424 		__kfree_skb(skb);
4425 		tcp_data_snd_check(sk, tp);
4426 		return 0;
4427 	}
4428 
4429 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4430 	    tcp_paws_discard(sk, skb)) {
4431 		if (!th->rst) {
4432 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4433 			tcp_send_dupack(sk, skb);
4434 			goto discard;
4435 		}
4436 		/* Reset is accepted even if it did not pass PAWS. */
4437 	}
4438 
4439 	/* step 1: check sequence number */
4440 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4441 		if (!th->rst)
4442 			tcp_send_dupack(sk, skb);
4443 		goto discard;
4444 	}
4445 
4446 	/* step 2: check RST bit */
4447 	if(th->rst) {
4448 		tcp_reset(sk);
4449 		goto discard;
4450 	}
4451 
4452 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4453 
4454 	/* step 3: check security and precedence [ignored] */
4455 
4456 	/*	step 4:
4457 	 *
4458 	 *	Check for a SYN in window.
4459 	 */
4460 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4461 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4462 		tcp_reset(sk);
4463 		return 1;
4464 	}
4465 
4466 	/* step 5: check the ACK field */
4467 	if (th->ack) {
4468 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4469 
4470 		switch(sk->sk_state) {
4471 		case TCP_SYN_RECV:
4472 			if (acceptable) {
4473 				tp->copied_seq = tp->rcv_nxt;
4474 				mb();
4475 				tcp_set_state(sk, TCP_ESTABLISHED);
4476 				sk->sk_state_change(sk);
4477 
4478 				/* Note, that this wakeup is only for marginal
4479 				 * crossed SYN case. Passively open sockets
4480 				 * are not waked up, because sk->sk_sleep ==
4481 				 * NULL and sk->sk_socket == NULL.
4482 				 */
4483 				if (sk->sk_socket) {
4484 					sk_wake_async(sk,0,POLL_OUT);
4485 				}
4486 
4487 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4488 				tp->snd_wnd = ntohs(th->window) <<
4489 					      tp->rx_opt.snd_wscale;
4490 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4491 					    TCP_SKB_CB(skb)->seq);
4492 
4493 				/* tcp_ack considers this ACK as duplicate
4494 				 * and does not calculate rtt.
4495 				 * Fix it at least with timestamps.
4496 				 */
4497 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4498 				    !tp->srtt)
4499 					tcp_ack_saw_tstamp(sk, 0);
4500 
4501 				if (tp->rx_opt.tstamp_ok)
4502 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4503 
4504 				/* Make sure socket is routed, for
4505 				 * correct metrics.
4506 				 */
4507 				icsk->icsk_af_ops->rebuild_header(sk);
4508 
4509 				tcp_init_metrics(sk);
4510 
4511 				tcp_init_congestion_control(sk);
4512 
4513 				/* Prevent spurious tcp_cwnd_restart() on
4514 				 * first data packet.
4515 				 */
4516 				tp->lsndtime = tcp_time_stamp;
4517 
4518 				tcp_mtup_init(sk);
4519 				tcp_initialize_rcv_mss(sk);
4520 				tcp_init_buffer_space(sk);
4521 				tcp_fast_path_on(tp);
4522 			} else {
4523 				return 1;
4524 			}
4525 			break;
4526 
4527 		case TCP_FIN_WAIT1:
4528 			if (tp->snd_una == tp->write_seq) {
4529 				tcp_set_state(sk, TCP_FIN_WAIT2);
4530 				sk->sk_shutdown |= SEND_SHUTDOWN;
4531 				dst_confirm(sk->sk_dst_cache);
4532 
4533 				if (!sock_flag(sk, SOCK_DEAD))
4534 					/* Wake up lingering close() */
4535 					sk->sk_state_change(sk);
4536 				else {
4537 					int tmo;
4538 
4539 					if (tp->linger2 < 0 ||
4540 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4541 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4542 						tcp_done(sk);
4543 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4544 						return 1;
4545 					}
4546 
4547 					tmo = tcp_fin_time(sk);
4548 					if (tmo > TCP_TIMEWAIT_LEN) {
4549 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4550 					} else if (th->fin || sock_owned_by_user(sk)) {
4551 						/* Bad case. We could lose such FIN otherwise.
4552 						 * It is not a big problem, but it looks confusing
4553 						 * and not so rare event. We still can lose it now,
4554 						 * if it spins in bh_lock_sock(), but it is really
4555 						 * marginal case.
4556 						 */
4557 						inet_csk_reset_keepalive_timer(sk, tmo);
4558 					} else {
4559 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4560 						goto discard;
4561 					}
4562 				}
4563 			}
4564 			break;
4565 
4566 		case TCP_CLOSING:
4567 			if (tp->snd_una == tp->write_seq) {
4568 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4569 				goto discard;
4570 			}
4571 			break;
4572 
4573 		case TCP_LAST_ACK:
4574 			if (tp->snd_una == tp->write_seq) {
4575 				tcp_update_metrics(sk);
4576 				tcp_done(sk);
4577 				goto discard;
4578 			}
4579 			break;
4580 		}
4581 	} else
4582 		goto discard;
4583 
4584 	/* step 6: check the URG bit */
4585 	tcp_urg(sk, skb, th);
4586 
4587 	/* step 7: process the segment text */
4588 	switch (sk->sk_state) {
4589 	case TCP_CLOSE_WAIT:
4590 	case TCP_CLOSING:
4591 	case TCP_LAST_ACK:
4592 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4593 			break;
4594 	case TCP_FIN_WAIT1:
4595 	case TCP_FIN_WAIT2:
4596 		/* RFC 793 says to queue data in these states,
4597 		 * RFC 1122 says we MUST send a reset.
4598 		 * BSD 4.4 also does reset.
4599 		 */
4600 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4601 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4602 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4603 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4604 				tcp_reset(sk);
4605 				return 1;
4606 			}
4607 		}
4608 		/* Fall through */
4609 	case TCP_ESTABLISHED:
4610 		tcp_data_queue(sk, skb);
4611 		queued = 1;
4612 		break;
4613 	}
4614 
4615 	/* tcp_data could move socket to TIME-WAIT */
4616 	if (sk->sk_state != TCP_CLOSE) {
4617 		tcp_data_snd_check(sk, tp);
4618 		tcp_ack_snd_check(sk);
4619 	}
4620 
4621 	if (!queued) {
4622 discard:
4623 		__kfree_skb(skb);
4624 	}
4625 	return 0;
4626 }
4627 
4628 EXPORT_SYMBOL(sysctl_tcp_ecn);
4629 EXPORT_SYMBOL(sysctl_tcp_reordering);
4630 EXPORT_SYMBOL(tcp_parse_options);
4631 EXPORT_SYMBOL(tcp_rcv_established);
4632 EXPORT_SYMBOL(tcp_rcv_state_process);
4633 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
4634