1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #include <linux/mm.h> 65 #include <linux/module.h> 66 #include <linux/sysctl.h> 67 #include <linux/kernel.h> 68 #include <net/dst.h> 69 #include <net/tcp.h> 70 #include <net/inet_common.h> 71 #include <linux/ipsec.h> 72 #include <asm/unaligned.h> 73 #include <net/netdma.h> 74 75 int sysctl_tcp_timestamps __read_mostly = 1; 76 int sysctl_tcp_window_scaling __read_mostly = 1; 77 int sysctl_tcp_sack __read_mostly = 1; 78 int sysctl_tcp_fack __read_mostly = 1; 79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn __read_mostly; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 2; 84 85 int sysctl_tcp_stdurg __read_mostly; 86 int sysctl_tcp_rfc1337 __read_mostly; 87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 88 int sysctl_tcp_frto __read_mostly = 2; 89 int sysctl_tcp_frto_response __read_mostly; 90 int sysctl_tcp_nometrics_save __read_mostly; 91 92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 93 int sysctl_tcp_abc __read_mostly; 94 95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 101 #define FLAG_ECE 0x40 /* ECE in this ACK */ 102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 108 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 109 110 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 111 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 112 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 113 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 114 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 115 116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 118 119 /* Adapt the MSS value used to make delayed ack decision to the 120 * real world. 121 */ 122 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 123 { 124 struct inet_connection_sock *icsk = inet_csk(sk); 125 const unsigned int lss = icsk->icsk_ack.last_seg_size; 126 unsigned int len; 127 128 icsk->icsk_ack.last_seg_size = 0; 129 130 /* skb->len may jitter because of SACKs, even if peer 131 * sends good full-sized frames. 132 */ 133 len = skb_shinfo(skb)->gso_size ? : skb->len; 134 if (len >= icsk->icsk_ack.rcv_mss) { 135 icsk->icsk_ack.rcv_mss = len; 136 } else { 137 /* Otherwise, we make more careful check taking into account, 138 * that SACKs block is variable. 139 * 140 * "len" is invariant segment length, including TCP header. 141 */ 142 len += skb->data - skb_transport_header(skb); 143 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 144 /* If PSH is not set, packet should be 145 * full sized, provided peer TCP is not badly broken. 146 * This observation (if it is correct 8)) allows 147 * to handle super-low mtu links fairly. 148 */ 149 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 150 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 151 /* Subtract also invariant (if peer is RFC compliant), 152 * tcp header plus fixed timestamp option length. 153 * Resulting "len" is MSS free of SACK jitter. 154 */ 155 len -= tcp_sk(sk)->tcp_header_len; 156 icsk->icsk_ack.last_seg_size = len; 157 if (len == lss) { 158 icsk->icsk_ack.rcv_mss = len; 159 return; 160 } 161 } 162 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 165 } 166 } 167 168 static void tcp_incr_quickack(struct sock *sk) 169 { 170 struct inet_connection_sock *icsk = inet_csk(sk); 171 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 172 173 if (quickacks == 0) 174 quickacks = 2; 175 if (quickacks > icsk->icsk_ack.quick) 176 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 177 } 178 179 void tcp_enter_quickack_mode(struct sock *sk) 180 { 181 struct inet_connection_sock *icsk = inet_csk(sk); 182 tcp_incr_quickack(sk); 183 icsk->icsk_ack.pingpong = 0; 184 icsk->icsk_ack.ato = TCP_ATO_MIN; 185 } 186 187 /* Send ACKs quickly, if "quick" count is not exhausted 188 * and the session is not interactive. 189 */ 190 191 static inline int tcp_in_quickack_mode(const struct sock *sk) 192 { 193 const struct inet_connection_sock *icsk = inet_csk(sk); 194 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 195 } 196 197 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 198 { 199 if (tp->ecn_flags & TCP_ECN_OK) 200 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 201 } 202 203 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb) 204 { 205 if (tcp_hdr(skb)->cwr) 206 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 207 } 208 209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 210 { 211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 212 } 213 214 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb) 215 { 216 if (tp->ecn_flags & TCP_ECN_OK) { 217 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags)) 218 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 219 /* Funny extension: if ECT is not set on a segment, 220 * it is surely retransmit. It is not in ECN RFC, 221 * but Linux follows this rule. */ 222 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags))) 223 tcp_enter_quickack_mode((struct sock *)tp); 224 } 225 } 226 227 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th) 228 { 229 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 230 tp->ecn_flags &= ~TCP_ECN_OK; 231 } 232 233 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th) 234 { 235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 236 tp->ecn_flags &= ~TCP_ECN_OK; 237 } 238 239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th) 240 { 241 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 242 return 1; 243 return 0; 244 } 245 246 /* Buffer size and advertised window tuning. 247 * 248 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 249 */ 250 251 static void tcp_fixup_sndbuf(struct sock *sk) 252 { 253 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 254 sizeof(struct sk_buff); 255 256 if (sk->sk_sndbuf < 3 * sndmem) 257 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 258 } 259 260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 261 * 262 * All tcp_full_space() is split to two parts: "network" buffer, allocated 263 * forward and advertised in receiver window (tp->rcv_wnd) and 264 * "application buffer", required to isolate scheduling/application 265 * latencies from network. 266 * window_clamp is maximal advertised window. It can be less than 267 * tcp_full_space(), in this case tcp_full_space() - window_clamp 268 * is reserved for "application" buffer. The less window_clamp is 269 * the smoother our behaviour from viewpoint of network, but the lower 270 * throughput and the higher sensitivity of the connection to losses. 8) 271 * 272 * rcv_ssthresh is more strict window_clamp used at "slow start" 273 * phase to predict further behaviour of this connection. 274 * It is used for two goals: 275 * - to enforce header prediction at sender, even when application 276 * requires some significant "application buffer". It is check #1. 277 * - to prevent pruning of receive queue because of misprediction 278 * of receiver window. Check #2. 279 * 280 * The scheme does not work when sender sends good segments opening 281 * window and then starts to feed us spaghetti. But it should work 282 * in common situations. Otherwise, we have to rely on queue collapsing. 283 */ 284 285 /* Slow part of check#2. */ 286 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 287 { 288 struct tcp_sock *tp = tcp_sk(sk); 289 /* Optimize this! */ 290 int truesize = tcp_win_from_space(skb->truesize) >> 1; 291 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 292 293 while (tp->rcv_ssthresh <= window) { 294 if (truesize <= skb->len) 295 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 296 297 truesize >>= 1; 298 window >>= 1; 299 } 300 return 0; 301 } 302 303 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb) 304 { 305 struct tcp_sock *tp = tcp_sk(sk); 306 307 /* Check #1 */ 308 if (tp->rcv_ssthresh < tp->window_clamp && 309 (int)tp->rcv_ssthresh < tcp_space(sk) && 310 !tcp_memory_pressure) { 311 int incr; 312 313 /* Check #2. Increase window, if skb with such overhead 314 * will fit to rcvbuf in future. 315 */ 316 if (tcp_win_from_space(skb->truesize) <= skb->len) 317 incr = 2 * tp->advmss; 318 else 319 incr = __tcp_grow_window(sk, skb); 320 321 if (incr) { 322 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 323 tp->window_clamp); 324 inet_csk(sk)->icsk_ack.quick |= 1; 325 } 326 } 327 } 328 329 /* 3. Tuning rcvbuf, when connection enters established state. */ 330 331 static void tcp_fixup_rcvbuf(struct sock *sk) 332 { 333 struct tcp_sock *tp = tcp_sk(sk); 334 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 335 336 /* Try to select rcvbuf so that 4 mss-sized segments 337 * will fit to window and corresponding skbs will fit to our rcvbuf. 338 * (was 3; 4 is minimum to allow fast retransmit to work.) 339 */ 340 while (tcp_win_from_space(rcvmem) < tp->advmss) 341 rcvmem += 128; 342 if (sk->sk_rcvbuf < 4 * rcvmem) 343 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 344 } 345 346 /* 4. Try to fixup all. It is made immediately after connection enters 347 * established state. 348 */ 349 static void tcp_init_buffer_space(struct sock *sk) 350 { 351 struct tcp_sock *tp = tcp_sk(sk); 352 int maxwin; 353 354 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 355 tcp_fixup_rcvbuf(sk); 356 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 357 tcp_fixup_sndbuf(sk); 358 359 tp->rcvq_space.space = tp->rcv_wnd; 360 361 maxwin = tcp_full_space(sk); 362 363 if (tp->window_clamp >= maxwin) { 364 tp->window_clamp = maxwin; 365 366 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 367 tp->window_clamp = max(maxwin - 368 (maxwin >> sysctl_tcp_app_win), 369 4 * tp->advmss); 370 } 371 372 /* Force reservation of one segment. */ 373 if (sysctl_tcp_app_win && 374 tp->window_clamp > 2 * tp->advmss && 375 tp->window_clamp + tp->advmss > maxwin) 376 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 377 378 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 379 tp->snd_cwnd_stamp = tcp_time_stamp; 380 } 381 382 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 383 static void tcp_clamp_window(struct sock *sk) 384 { 385 struct tcp_sock *tp = tcp_sk(sk); 386 struct inet_connection_sock *icsk = inet_csk(sk); 387 388 icsk->icsk_ack.quick = 0; 389 390 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 391 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 392 !tcp_memory_pressure && 393 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 394 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 395 sysctl_tcp_rmem[2]); 396 } 397 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 398 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 399 } 400 401 /* Initialize RCV_MSS value. 402 * RCV_MSS is an our guess about MSS used by the peer. 403 * We haven't any direct information about the MSS. 404 * It's better to underestimate the RCV_MSS rather than overestimate. 405 * Overestimations make us ACKing less frequently than needed. 406 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 407 */ 408 void tcp_initialize_rcv_mss(struct sock *sk) 409 { 410 struct tcp_sock *tp = tcp_sk(sk); 411 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 412 413 hint = min(hint, tp->rcv_wnd / 2); 414 hint = min(hint, TCP_MIN_RCVMSS); 415 hint = max(hint, TCP_MIN_MSS); 416 417 inet_csk(sk)->icsk_ack.rcv_mss = hint; 418 } 419 420 /* Receiver "autotuning" code. 421 * 422 * The algorithm for RTT estimation w/o timestamps is based on 423 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 424 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 425 * 426 * More detail on this code can be found at 427 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 428 * though this reference is out of date. A new paper 429 * is pending. 430 */ 431 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 432 { 433 u32 new_sample = tp->rcv_rtt_est.rtt; 434 long m = sample; 435 436 if (m == 0) 437 m = 1; 438 439 if (new_sample != 0) { 440 /* If we sample in larger samples in the non-timestamp 441 * case, we could grossly overestimate the RTT especially 442 * with chatty applications or bulk transfer apps which 443 * are stalled on filesystem I/O. 444 * 445 * Also, since we are only going for a minimum in the 446 * non-timestamp case, we do not smooth things out 447 * else with timestamps disabled convergence takes too 448 * long. 449 */ 450 if (!win_dep) { 451 m -= (new_sample >> 3); 452 new_sample += m; 453 } else if (m < new_sample) 454 new_sample = m << 3; 455 } else { 456 /* No previous measure. */ 457 new_sample = m << 3; 458 } 459 460 if (tp->rcv_rtt_est.rtt != new_sample) 461 tp->rcv_rtt_est.rtt = new_sample; 462 } 463 464 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 465 { 466 if (tp->rcv_rtt_est.time == 0) 467 goto new_measure; 468 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 469 return; 470 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1); 471 472 new_measure: 473 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 474 tp->rcv_rtt_est.time = tcp_time_stamp; 475 } 476 477 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 478 const struct sk_buff *skb) 479 { 480 struct tcp_sock *tp = tcp_sk(sk); 481 if (tp->rx_opt.rcv_tsecr && 482 (TCP_SKB_CB(skb)->end_seq - 483 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 484 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 485 } 486 487 /* 488 * This function should be called every time data is copied to user space. 489 * It calculates the appropriate TCP receive buffer space. 490 */ 491 void tcp_rcv_space_adjust(struct sock *sk) 492 { 493 struct tcp_sock *tp = tcp_sk(sk); 494 int time; 495 int space; 496 497 if (tp->rcvq_space.time == 0) 498 goto new_measure; 499 500 time = tcp_time_stamp - tp->rcvq_space.time; 501 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 502 return; 503 504 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 505 506 space = max(tp->rcvq_space.space, space); 507 508 if (tp->rcvq_space.space != space) { 509 int rcvmem; 510 511 tp->rcvq_space.space = space; 512 513 if (sysctl_tcp_moderate_rcvbuf && 514 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 515 int new_clamp = space; 516 517 /* Receive space grows, normalize in order to 518 * take into account packet headers and sk_buff 519 * structure overhead. 520 */ 521 space /= tp->advmss; 522 if (!space) 523 space = 1; 524 rcvmem = (tp->advmss + MAX_TCP_HEADER + 525 16 + sizeof(struct sk_buff)); 526 while (tcp_win_from_space(rcvmem) < tp->advmss) 527 rcvmem += 128; 528 space *= rcvmem; 529 space = min(space, sysctl_tcp_rmem[2]); 530 if (space > sk->sk_rcvbuf) { 531 sk->sk_rcvbuf = space; 532 533 /* Make the window clamp follow along. */ 534 tp->window_clamp = new_clamp; 535 } 536 } 537 } 538 539 new_measure: 540 tp->rcvq_space.seq = tp->copied_seq; 541 tp->rcvq_space.time = tcp_time_stamp; 542 } 543 544 /* There is something which you must keep in mind when you analyze the 545 * behavior of the tp->ato delayed ack timeout interval. When a 546 * connection starts up, we want to ack as quickly as possible. The 547 * problem is that "good" TCP's do slow start at the beginning of data 548 * transmission. The means that until we send the first few ACK's the 549 * sender will sit on his end and only queue most of his data, because 550 * he can only send snd_cwnd unacked packets at any given time. For 551 * each ACK we send, he increments snd_cwnd and transmits more of his 552 * queue. -DaveM 553 */ 554 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 555 { 556 struct tcp_sock *tp = tcp_sk(sk); 557 struct inet_connection_sock *icsk = inet_csk(sk); 558 u32 now; 559 560 inet_csk_schedule_ack(sk); 561 562 tcp_measure_rcv_mss(sk, skb); 563 564 tcp_rcv_rtt_measure(tp); 565 566 now = tcp_time_stamp; 567 568 if (!icsk->icsk_ack.ato) { 569 /* The _first_ data packet received, initialize 570 * delayed ACK engine. 571 */ 572 tcp_incr_quickack(sk); 573 icsk->icsk_ack.ato = TCP_ATO_MIN; 574 } else { 575 int m = now - icsk->icsk_ack.lrcvtime; 576 577 if (m <= TCP_ATO_MIN / 2) { 578 /* The fastest case is the first. */ 579 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 580 } else if (m < icsk->icsk_ack.ato) { 581 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 582 if (icsk->icsk_ack.ato > icsk->icsk_rto) 583 icsk->icsk_ack.ato = icsk->icsk_rto; 584 } else if (m > icsk->icsk_rto) { 585 /* Too long gap. Apparently sender failed to 586 * restart window, so that we send ACKs quickly. 587 */ 588 tcp_incr_quickack(sk); 589 sk_mem_reclaim(sk); 590 } 591 } 592 icsk->icsk_ack.lrcvtime = now; 593 594 TCP_ECN_check_ce(tp, skb); 595 596 if (skb->len >= 128) 597 tcp_grow_window(sk, skb); 598 } 599 600 static u32 tcp_rto_min(struct sock *sk) 601 { 602 struct dst_entry *dst = __sk_dst_get(sk); 603 u32 rto_min = TCP_RTO_MIN; 604 605 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 606 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 607 return rto_min; 608 } 609 610 /* Called to compute a smoothed rtt estimate. The data fed to this 611 * routine either comes from timestamps, or from segments that were 612 * known _not_ to have been retransmitted [see Karn/Partridge 613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 614 * piece by Van Jacobson. 615 * NOTE: the next three routines used to be one big routine. 616 * To save cycles in the RFC 1323 implementation it was better to break 617 * it up into three procedures. -- erics 618 */ 619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 620 { 621 struct tcp_sock *tp = tcp_sk(sk); 622 long m = mrtt; /* RTT */ 623 624 /* The following amusing code comes from Jacobson's 625 * article in SIGCOMM '88. Note that rtt and mdev 626 * are scaled versions of rtt and mean deviation. 627 * This is designed to be as fast as possible 628 * m stands for "measurement". 629 * 630 * On a 1990 paper the rto value is changed to: 631 * RTO = rtt + 4 * mdev 632 * 633 * Funny. This algorithm seems to be very broken. 634 * These formulae increase RTO, when it should be decreased, increase 635 * too slowly, when it should be increased quickly, decrease too quickly 636 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 637 * does not matter how to _calculate_ it. Seems, it was trap 638 * that VJ failed to avoid. 8) 639 */ 640 if (m == 0) 641 m = 1; 642 if (tp->srtt != 0) { 643 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 644 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 645 if (m < 0) { 646 m = -m; /* m is now abs(error) */ 647 m -= (tp->mdev >> 2); /* similar update on mdev */ 648 /* This is similar to one of Eifel findings. 649 * Eifel blocks mdev updates when rtt decreases. 650 * This solution is a bit different: we use finer gain 651 * for mdev in this case (alpha*beta). 652 * Like Eifel it also prevents growth of rto, 653 * but also it limits too fast rto decreases, 654 * happening in pure Eifel. 655 */ 656 if (m > 0) 657 m >>= 3; 658 } else { 659 m -= (tp->mdev >> 2); /* similar update on mdev */ 660 } 661 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 662 if (tp->mdev > tp->mdev_max) { 663 tp->mdev_max = tp->mdev; 664 if (tp->mdev_max > tp->rttvar) 665 tp->rttvar = tp->mdev_max; 666 } 667 if (after(tp->snd_una, tp->rtt_seq)) { 668 if (tp->mdev_max < tp->rttvar) 669 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 670 tp->rtt_seq = tp->snd_nxt; 671 tp->mdev_max = tcp_rto_min(sk); 672 } 673 } else { 674 /* no previous measure. */ 675 tp->srtt = m << 3; /* take the measured time to be rtt */ 676 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 677 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 678 tp->rtt_seq = tp->snd_nxt; 679 } 680 } 681 682 /* Calculate rto without backoff. This is the second half of Van Jacobson's 683 * routine referred to above. 684 */ 685 static inline void tcp_set_rto(struct sock *sk) 686 { 687 const struct tcp_sock *tp = tcp_sk(sk); 688 /* Old crap is replaced with new one. 8) 689 * 690 * More seriously: 691 * 1. If rtt variance happened to be less 50msec, it is hallucination. 692 * It cannot be less due to utterly erratic ACK generation made 693 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 694 * to do with delayed acks, because at cwnd>2 true delack timeout 695 * is invisible. Actually, Linux-2.4 also generates erratic 696 * ACKs in some circumstances. 697 */ 698 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 699 700 /* 2. Fixups made earlier cannot be right. 701 * If we do not estimate RTO correctly without them, 702 * all the algo is pure shit and should be replaced 703 * with correct one. It is exactly, which we pretend to do. 704 */ 705 706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 707 * guarantees that rto is higher. 708 */ 709 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 710 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 711 } 712 713 /* Save metrics learned by this TCP session. 714 This function is called only, when TCP finishes successfully 715 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 716 */ 717 void tcp_update_metrics(struct sock *sk) 718 { 719 struct tcp_sock *tp = tcp_sk(sk); 720 struct dst_entry *dst = __sk_dst_get(sk); 721 722 if (sysctl_tcp_nometrics_save) 723 return; 724 725 dst_confirm(dst); 726 727 if (dst && (dst->flags & DST_HOST)) { 728 const struct inet_connection_sock *icsk = inet_csk(sk); 729 int m; 730 unsigned long rtt; 731 732 if (icsk->icsk_backoff || !tp->srtt) { 733 /* This session failed to estimate rtt. Why? 734 * Probably, no packets returned in time. 735 * Reset our results. 736 */ 737 if (!(dst_metric_locked(dst, RTAX_RTT))) 738 dst->metrics[RTAX_RTT - 1] = 0; 739 return; 740 } 741 742 rtt = dst_metric_rtt(dst, RTAX_RTT); 743 m = rtt - tp->srtt; 744 745 /* If newly calculated rtt larger than stored one, 746 * store new one. Otherwise, use EWMA. Remember, 747 * rtt overestimation is always better than underestimation. 748 */ 749 if (!(dst_metric_locked(dst, RTAX_RTT))) { 750 if (m <= 0) 751 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt); 752 else 753 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3)); 754 } 755 756 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 757 unsigned long var; 758 if (m < 0) 759 m = -m; 760 761 /* Scale deviation to rttvar fixed point */ 762 m >>= 1; 763 if (m < tp->mdev) 764 m = tp->mdev; 765 766 var = dst_metric_rtt(dst, RTAX_RTTVAR); 767 if (m >= var) 768 var = m; 769 else 770 var -= (var - m) >> 2; 771 772 set_dst_metric_rtt(dst, RTAX_RTTVAR, var); 773 } 774 775 if (tp->snd_ssthresh >= 0xFFFF) { 776 /* Slow start still did not finish. */ 777 if (dst_metric(dst, RTAX_SSTHRESH) && 778 !dst_metric_locked(dst, RTAX_SSTHRESH) && 779 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 780 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 781 if (!dst_metric_locked(dst, RTAX_CWND) && 782 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 783 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd; 784 } else if (tp->snd_cwnd > tp->snd_ssthresh && 785 icsk->icsk_ca_state == TCP_CA_Open) { 786 /* Cong. avoidance phase, cwnd is reliable. */ 787 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 788 dst->metrics[RTAX_SSTHRESH-1] = 789 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 790 if (!dst_metric_locked(dst, RTAX_CWND)) 791 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1; 792 } else { 793 /* Else slow start did not finish, cwnd is non-sense, 794 ssthresh may be also invalid. 795 */ 796 if (!dst_metric_locked(dst, RTAX_CWND)) 797 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1; 798 if (dst_metric(dst, RTAX_SSTHRESH) && 799 !dst_metric_locked(dst, RTAX_SSTHRESH) && 800 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH)) 801 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 802 } 803 804 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 805 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering && 806 tp->reordering != sysctl_tcp_reordering) 807 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 808 } 809 } 810 } 811 812 /* Numbers are taken from RFC3390. 813 * 814 * John Heffner states: 815 * 816 * The RFC specifies a window of no more than 4380 bytes 817 * unless 2*MSS > 4380. Reading the pseudocode in the RFC 818 * is a bit misleading because they use a clamp at 4380 bytes 819 * rather than use a multiplier in the relevant range. 820 */ 821 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 822 { 823 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 824 825 if (!cwnd) { 826 if (tp->mss_cache > 1460) 827 cwnd = 2; 828 else 829 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 830 } 831 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 832 } 833 834 /* Set slow start threshold and cwnd not falling to slow start */ 835 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 836 { 837 struct tcp_sock *tp = tcp_sk(sk); 838 const struct inet_connection_sock *icsk = inet_csk(sk); 839 840 tp->prior_ssthresh = 0; 841 tp->bytes_acked = 0; 842 if (icsk->icsk_ca_state < TCP_CA_CWR) { 843 tp->undo_marker = 0; 844 if (set_ssthresh) 845 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 846 tp->snd_cwnd = min(tp->snd_cwnd, 847 tcp_packets_in_flight(tp) + 1U); 848 tp->snd_cwnd_cnt = 0; 849 tp->high_seq = tp->snd_nxt; 850 tp->snd_cwnd_stamp = tcp_time_stamp; 851 TCP_ECN_queue_cwr(tp); 852 853 tcp_set_ca_state(sk, TCP_CA_CWR); 854 } 855 } 856 857 /* 858 * Packet counting of FACK is based on in-order assumptions, therefore TCP 859 * disables it when reordering is detected 860 */ 861 static void tcp_disable_fack(struct tcp_sock *tp) 862 { 863 /* RFC3517 uses different metric in lost marker => reset on change */ 864 if (tcp_is_fack(tp)) 865 tp->lost_skb_hint = NULL; 866 tp->rx_opt.sack_ok &= ~2; 867 } 868 869 /* Take a notice that peer is sending D-SACKs */ 870 static void tcp_dsack_seen(struct tcp_sock *tp) 871 { 872 tp->rx_opt.sack_ok |= 4; 873 } 874 875 /* Initialize metrics on socket. */ 876 877 static void tcp_init_metrics(struct sock *sk) 878 { 879 struct tcp_sock *tp = tcp_sk(sk); 880 struct dst_entry *dst = __sk_dst_get(sk); 881 882 if (dst == NULL) 883 goto reset; 884 885 dst_confirm(dst); 886 887 if (dst_metric_locked(dst, RTAX_CWND)) 888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 889 if (dst_metric(dst, RTAX_SSTHRESH)) { 890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 892 tp->snd_ssthresh = tp->snd_cwnd_clamp; 893 } 894 if (dst_metric(dst, RTAX_REORDERING) && 895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 896 tcp_disable_fack(tp); 897 tp->reordering = dst_metric(dst, RTAX_REORDERING); 898 } 899 900 if (dst_metric(dst, RTAX_RTT) == 0) 901 goto reset; 902 903 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 904 goto reset; 905 906 /* Initial rtt is determined from SYN,SYN-ACK. 907 * The segment is small and rtt may appear much 908 * less than real one. Use per-dst memory 909 * to make it more realistic. 910 * 911 * A bit of theory. RTT is time passed after "normal" sized packet 912 * is sent until it is ACKed. In normal circumstances sending small 913 * packets force peer to delay ACKs and calculation is correct too. 914 * The algorithm is adaptive and, provided we follow specs, it 915 * NEVER underestimate RTT. BUT! If peer tries to make some clever 916 * tricks sort of "quick acks" for time long enough to decrease RTT 917 * to low value, and then abruptly stops to do it and starts to delay 918 * ACKs, wait for troubles. 919 */ 920 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) { 921 tp->srtt = dst_metric_rtt(dst, RTAX_RTT); 922 tp->rtt_seq = tp->snd_nxt; 923 } 924 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) { 925 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR); 926 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 927 } 928 tcp_set_rto(sk); 929 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 930 goto reset; 931 932 cwnd: 933 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 934 tp->snd_cwnd_stamp = tcp_time_stamp; 935 return; 936 937 reset: 938 /* Play conservative. If timestamps are not 939 * supported, TCP will fail to recalculate correct 940 * rtt, if initial rto is too small. FORGET ALL AND RESET! 941 */ 942 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 943 tp->srtt = 0; 944 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 945 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 946 } 947 goto cwnd; 948 } 949 950 static void tcp_update_reordering(struct sock *sk, const int metric, 951 const int ts) 952 { 953 struct tcp_sock *tp = tcp_sk(sk); 954 if (metric > tp->reordering) { 955 int mib_idx; 956 957 tp->reordering = min(TCP_MAX_REORDERING, metric); 958 959 /* This exciting event is worth to be remembered. 8) */ 960 if (ts) 961 mib_idx = LINUX_MIB_TCPTSREORDER; 962 else if (tcp_is_reno(tp)) 963 mib_idx = LINUX_MIB_TCPRENOREORDER; 964 else if (tcp_is_fack(tp)) 965 mib_idx = LINUX_MIB_TCPFACKREORDER; 966 else 967 mib_idx = LINUX_MIB_TCPSACKREORDER; 968 969 NET_INC_STATS_BH(sock_net(sk), mib_idx); 970 #if FASTRETRANS_DEBUG > 1 971 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 972 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 973 tp->reordering, 974 tp->fackets_out, 975 tp->sacked_out, 976 tp->undo_marker ? tp->undo_retrans : 0); 977 #endif 978 tcp_disable_fack(tp); 979 } 980 } 981 982 /* This must be called before lost_out is incremented */ 983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 984 { 985 if ((tp->retransmit_skb_hint == NULL) || 986 before(TCP_SKB_CB(skb)->seq, 987 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 988 tp->retransmit_skb_hint = skb; 989 990 if (!tp->lost_out || 991 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 992 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 993 } 994 995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 996 { 997 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 998 tcp_verify_retransmit_hint(tp, skb); 999 1000 tp->lost_out += tcp_skb_pcount(skb); 1001 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1002 } 1003 } 1004 1005 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 1006 struct sk_buff *skb) 1007 { 1008 tcp_verify_retransmit_hint(tp, skb); 1009 1010 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1011 tp->lost_out += tcp_skb_pcount(skb); 1012 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1013 } 1014 } 1015 1016 /* This procedure tags the retransmission queue when SACKs arrive. 1017 * 1018 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1019 * Packets in queue with these bits set are counted in variables 1020 * sacked_out, retrans_out and lost_out, correspondingly. 1021 * 1022 * Valid combinations are: 1023 * Tag InFlight Description 1024 * 0 1 - orig segment is in flight. 1025 * S 0 - nothing flies, orig reached receiver. 1026 * L 0 - nothing flies, orig lost by net. 1027 * R 2 - both orig and retransmit are in flight. 1028 * L|R 1 - orig is lost, retransmit is in flight. 1029 * S|R 1 - orig reached receiver, retrans is still in flight. 1030 * (L|S|R is logically valid, it could occur when L|R is sacked, 1031 * but it is equivalent to plain S and code short-curcuits it to S. 1032 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1033 * 1034 * These 6 states form finite state machine, controlled by the following events: 1035 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1036 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1037 * 3. Loss detection event of one of three flavors: 1038 * A. Scoreboard estimator decided the packet is lost. 1039 * A'. Reno "three dupacks" marks head of queue lost. 1040 * A''. Its FACK modfication, head until snd.fack is lost. 1041 * B. SACK arrives sacking data transmitted after never retransmitted 1042 * hole was sent out. 1043 * C. SACK arrives sacking SND.NXT at the moment, when the 1044 * segment was retransmitted. 1045 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1046 * 1047 * It is pleasant to note, that state diagram turns out to be commutative, 1048 * so that we are allowed not to be bothered by order of our actions, 1049 * when multiple events arrive simultaneously. (see the function below). 1050 * 1051 * Reordering detection. 1052 * -------------------- 1053 * Reordering metric is maximal distance, which a packet can be displaced 1054 * in packet stream. With SACKs we can estimate it: 1055 * 1056 * 1. SACK fills old hole and the corresponding segment was not 1057 * ever retransmitted -> reordering. Alas, we cannot use it 1058 * when segment was retransmitted. 1059 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1060 * for retransmitted and already SACKed segment -> reordering.. 1061 * Both of these heuristics are not used in Loss state, when we cannot 1062 * account for retransmits accurately. 1063 * 1064 * SACK block validation. 1065 * ---------------------- 1066 * 1067 * SACK block range validation checks that the received SACK block fits to 1068 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1069 * Note that SND.UNA is not included to the range though being valid because 1070 * it means that the receiver is rather inconsistent with itself reporting 1071 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1072 * perfectly valid, however, in light of RFC2018 which explicitly states 1073 * that "SACK block MUST reflect the newest segment. Even if the newest 1074 * segment is going to be discarded ...", not that it looks very clever 1075 * in case of head skb. Due to potentional receiver driven attacks, we 1076 * choose to avoid immediate execution of a walk in write queue due to 1077 * reneging and defer head skb's loss recovery to standard loss recovery 1078 * procedure that will eventually trigger (nothing forbids us doing this). 1079 * 1080 * Implements also blockage to start_seq wrap-around. Problem lies in the 1081 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1082 * there's no guarantee that it will be before snd_nxt (n). The problem 1083 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1084 * wrap (s_w): 1085 * 1086 * <- outs wnd -> <- wrapzone -> 1087 * u e n u_w e_w s n_w 1088 * | | | | | | | 1089 * |<------------+------+----- TCP seqno space --------------+---------->| 1090 * ...-- <2^31 ->| |<--------... 1091 * ...---- >2^31 ------>| |<--------... 1092 * 1093 * Current code wouldn't be vulnerable but it's better still to discard such 1094 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1095 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1096 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1097 * equal to the ideal case (infinite seqno space without wrap caused issues). 1098 * 1099 * With D-SACK the lower bound is extended to cover sequence space below 1100 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1101 * again, D-SACK block must not to go across snd_una (for the same reason as 1102 * for the normal SACK blocks, explained above). But there all simplicity 1103 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1104 * fully below undo_marker they do not affect behavior in anyway and can 1105 * therefore be safely ignored. In rare cases (which are more or less 1106 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1107 * fragmentation and packet reordering past skb's retransmission. To consider 1108 * them correctly, the acceptable range must be extended even more though 1109 * the exact amount is rather hard to quantify. However, tp->max_window can 1110 * be used as an exaggerated estimate. 1111 */ 1112 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1113 u32 start_seq, u32 end_seq) 1114 { 1115 /* Too far in future, or reversed (interpretation is ambiguous) */ 1116 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1117 return 0; 1118 1119 /* Nasty start_seq wrap-around check (see comments above) */ 1120 if (!before(start_seq, tp->snd_nxt)) 1121 return 0; 1122 1123 /* In outstanding window? ...This is valid exit for D-SACKs too. 1124 * start_seq == snd_una is non-sensical (see comments above) 1125 */ 1126 if (after(start_seq, tp->snd_una)) 1127 return 1; 1128 1129 if (!is_dsack || !tp->undo_marker) 1130 return 0; 1131 1132 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1133 if (!after(end_seq, tp->snd_una)) 1134 return 0; 1135 1136 if (!before(start_seq, tp->undo_marker)) 1137 return 1; 1138 1139 /* Too old */ 1140 if (!after(end_seq, tp->undo_marker)) 1141 return 0; 1142 1143 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1144 * start_seq < undo_marker and end_seq >= undo_marker. 1145 */ 1146 return !before(start_seq, end_seq - tp->max_window); 1147 } 1148 1149 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1150 * Event "C". Later note: FACK people cheated me again 8), we have to account 1151 * for reordering! Ugly, but should help. 1152 * 1153 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1154 * less than what is now known to be received by the other end (derived from 1155 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1156 * retransmitted skbs to avoid some costly processing per ACKs. 1157 */ 1158 static void tcp_mark_lost_retrans(struct sock *sk) 1159 { 1160 const struct inet_connection_sock *icsk = inet_csk(sk); 1161 struct tcp_sock *tp = tcp_sk(sk); 1162 struct sk_buff *skb; 1163 int cnt = 0; 1164 u32 new_low_seq = tp->snd_nxt; 1165 u32 received_upto = tcp_highest_sack_seq(tp); 1166 1167 if (!tcp_is_fack(tp) || !tp->retrans_out || 1168 !after(received_upto, tp->lost_retrans_low) || 1169 icsk->icsk_ca_state != TCP_CA_Recovery) 1170 return; 1171 1172 tcp_for_write_queue(skb, sk) { 1173 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1174 1175 if (skb == tcp_send_head(sk)) 1176 break; 1177 if (cnt == tp->retrans_out) 1178 break; 1179 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1180 continue; 1181 1182 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1183 continue; 1184 1185 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1186 * constraint here (see above) but figuring out that at 1187 * least tp->reordering SACK blocks reside between ack_seq 1188 * and received_upto is not easy task to do cheaply with 1189 * the available datastructures. 1190 * 1191 * Whether FACK should check here for tp->reordering segs 1192 * in-between one could argue for either way (it would be 1193 * rather simple to implement as we could count fack_count 1194 * during the walk and do tp->fackets_out - fack_count). 1195 */ 1196 if (after(received_upto, ack_seq)) { 1197 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1198 tp->retrans_out -= tcp_skb_pcount(skb); 1199 1200 tcp_skb_mark_lost_uncond_verify(tp, skb); 1201 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1202 } else { 1203 if (before(ack_seq, new_low_seq)) 1204 new_low_seq = ack_seq; 1205 cnt += tcp_skb_pcount(skb); 1206 } 1207 } 1208 1209 if (tp->retrans_out) 1210 tp->lost_retrans_low = new_low_seq; 1211 } 1212 1213 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb, 1214 struct tcp_sack_block_wire *sp, int num_sacks, 1215 u32 prior_snd_una) 1216 { 1217 struct tcp_sock *tp = tcp_sk(sk); 1218 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1219 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1220 int dup_sack = 0; 1221 1222 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1223 dup_sack = 1; 1224 tcp_dsack_seen(tp); 1225 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1226 } else if (num_sacks > 1) { 1227 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1228 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1229 1230 if (!after(end_seq_0, end_seq_1) && 1231 !before(start_seq_0, start_seq_1)) { 1232 dup_sack = 1; 1233 tcp_dsack_seen(tp); 1234 NET_INC_STATS_BH(sock_net(sk), 1235 LINUX_MIB_TCPDSACKOFORECV); 1236 } 1237 } 1238 1239 /* D-SACK for already forgotten data... Do dumb counting. */ 1240 if (dup_sack && 1241 !after(end_seq_0, prior_snd_una) && 1242 after(end_seq_0, tp->undo_marker)) 1243 tp->undo_retrans--; 1244 1245 return dup_sack; 1246 } 1247 1248 struct tcp_sacktag_state { 1249 int reord; 1250 int fack_count; 1251 int flag; 1252 }; 1253 1254 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1255 * the incoming SACK may not exactly match but we can find smaller MSS 1256 * aligned portion of it that matches. Therefore we might need to fragment 1257 * which may fail and creates some hassle (caller must handle error case 1258 * returns). 1259 * 1260 * FIXME: this could be merged to shift decision code 1261 */ 1262 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1263 u32 start_seq, u32 end_seq) 1264 { 1265 int in_sack, err; 1266 unsigned int pkt_len; 1267 unsigned int mss; 1268 1269 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1270 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1271 1272 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1273 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1274 mss = tcp_skb_mss(skb); 1275 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1276 1277 if (!in_sack) { 1278 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1279 if (pkt_len < mss) 1280 pkt_len = mss; 1281 } else { 1282 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1283 if (pkt_len < mss) 1284 return -EINVAL; 1285 } 1286 1287 /* Round if necessary so that SACKs cover only full MSSes 1288 * and/or the remaining small portion (if present) 1289 */ 1290 if (pkt_len > mss) { 1291 unsigned int new_len = (pkt_len / mss) * mss; 1292 if (!in_sack && new_len < pkt_len) { 1293 new_len += mss; 1294 if (new_len > skb->len) 1295 return 0; 1296 } 1297 pkt_len = new_len; 1298 } 1299 err = tcp_fragment(sk, skb, pkt_len, mss); 1300 if (err < 0) 1301 return err; 1302 } 1303 1304 return in_sack; 1305 } 1306 1307 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk, 1308 struct tcp_sacktag_state *state, 1309 int dup_sack, int pcount) 1310 { 1311 struct tcp_sock *tp = tcp_sk(sk); 1312 u8 sacked = TCP_SKB_CB(skb)->sacked; 1313 int fack_count = state->fack_count; 1314 1315 /* Account D-SACK for retransmitted packet. */ 1316 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1317 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1318 tp->undo_retrans--; 1319 if (sacked & TCPCB_SACKED_ACKED) 1320 state->reord = min(fack_count, state->reord); 1321 } 1322 1323 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1324 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1325 return sacked; 1326 1327 if (!(sacked & TCPCB_SACKED_ACKED)) { 1328 if (sacked & TCPCB_SACKED_RETRANS) { 1329 /* If the segment is not tagged as lost, 1330 * we do not clear RETRANS, believing 1331 * that retransmission is still in flight. 1332 */ 1333 if (sacked & TCPCB_LOST) { 1334 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1335 tp->lost_out -= pcount; 1336 tp->retrans_out -= pcount; 1337 } 1338 } else { 1339 if (!(sacked & TCPCB_RETRANS)) { 1340 /* New sack for not retransmitted frame, 1341 * which was in hole. It is reordering. 1342 */ 1343 if (before(TCP_SKB_CB(skb)->seq, 1344 tcp_highest_sack_seq(tp))) 1345 state->reord = min(fack_count, 1346 state->reord); 1347 1348 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1349 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) 1350 state->flag |= FLAG_ONLY_ORIG_SACKED; 1351 } 1352 1353 if (sacked & TCPCB_LOST) { 1354 sacked &= ~TCPCB_LOST; 1355 tp->lost_out -= pcount; 1356 } 1357 } 1358 1359 sacked |= TCPCB_SACKED_ACKED; 1360 state->flag |= FLAG_DATA_SACKED; 1361 tp->sacked_out += pcount; 1362 1363 fack_count += pcount; 1364 1365 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1366 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1367 before(TCP_SKB_CB(skb)->seq, 1368 TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1369 tp->lost_cnt_hint += pcount; 1370 1371 if (fack_count > tp->fackets_out) 1372 tp->fackets_out = fack_count; 1373 } 1374 1375 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1376 * frames and clear it. undo_retrans is decreased above, L|R frames 1377 * are accounted above as well. 1378 */ 1379 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1380 sacked &= ~TCPCB_SACKED_RETRANS; 1381 tp->retrans_out -= pcount; 1382 } 1383 1384 return sacked; 1385 } 1386 1387 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1388 struct tcp_sacktag_state *state, 1389 unsigned int pcount, int shifted, int mss, 1390 int dup_sack) 1391 { 1392 struct tcp_sock *tp = tcp_sk(sk); 1393 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1394 1395 BUG_ON(!pcount); 1396 1397 /* Tweak before seqno plays */ 1398 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint && 1399 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq)) 1400 tp->lost_cnt_hint += pcount; 1401 1402 TCP_SKB_CB(prev)->end_seq += shifted; 1403 TCP_SKB_CB(skb)->seq += shifted; 1404 1405 skb_shinfo(prev)->gso_segs += pcount; 1406 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1407 skb_shinfo(skb)->gso_segs -= pcount; 1408 1409 /* When we're adding to gso_segs == 1, gso_size will be zero, 1410 * in theory this shouldn't be necessary but as long as DSACK 1411 * code can come after this skb later on it's better to keep 1412 * setting gso_size to something. 1413 */ 1414 if (!skb_shinfo(prev)->gso_size) { 1415 skb_shinfo(prev)->gso_size = mss; 1416 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1417 } 1418 1419 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1420 if (skb_shinfo(skb)->gso_segs <= 1) { 1421 skb_shinfo(skb)->gso_size = 0; 1422 skb_shinfo(skb)->gso_type = 0; 1423 } 1424 1425 /* We discard results */ 1426 tcp_sacktag_one(skb, sk, state, dup_sack, pcount); 1427 1428 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1429 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1430 1431 if (skb->len > 0) { 1432 BUG_ON(!tcp_skb_pcount(skb)); 1433 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1434 return 0; 1435 } 1436 1437 /* Whole SKB was eaten :-) */ 1438 1439 if (skb == tp->retransmit_skb_hint) 1440 tp->retransmit_skb_hint = prev; 1441 if (skb == tp->scoreboard_skb_hint) 1442 tp->scoreboard_skb_hint = prev; 1443 if (skb == tp->lost_skb_hint) { 1444 tp->lost_skb_hint = prev; 1445 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1446 } 1447 1448 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags; 1449 if (skb == tcp_highest_sack(sk)) 1450 tcp_advance_highest_sack(sk, skb); 1451 1452 tcp_unlink_write_queue(skb, sk); 1453 sk_wmem_free_skb(sk, skb); 1454 1455 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1456 1457 return 1; 1458 } 1459 1460 /* I wish gso_size would have a bit more sane initialization than 1461 * something-or-zero which complicates things 1462 */ 1463 static int tcp_skb_seglen(struct sk_buff *skb) 1464 { 1465 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1466 } 1467 1468 /* Shifting pages past head area doesn't work */ 1469 static int skb_can_shift(struct sk_buff *skb) 1470 { 1471 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1472 } 1473 1474 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1475 * skb. 1476 */ 1477 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1478 struct tcp_sacktag_state *state, 1479 u32 start_seq, u32 end_seq, 1480 int dup_sack) 1481 { 1482 struct tcp_sock *tp = tcp_sk(sk); 1483 struct sk_buff *prev; 1484 int mss; 1485 int pcount = 0; 1486 int len; 1487 int in_sack; 1488 1489 if (!sk_can_gso(sk)) 1490 goto fallback; 1491 1492 /* Normally R but no L won't result in plain S */ 1493 if (!dup_sack && 1494 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1495 goto fallback; 1496 if (!skb_can_shift(skb)) 1497 goto fallback; 1498 /* This frame is about to be dropped (was ACKed). */ 1499 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1500 goto fallback; 1501 1502 /* Can only happen with delayed DSACK + discard craziness */ 1503 if (unlikely(skb == tcp_write_queue_head(sk))) 1504 goto fallback; 1505 prev = tcp_write_queue_prev(sk, skb); 1506 1507 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1508 goto fallback; 1509 1510 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1511 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1512 1513 if (in_sack) { 1514 len = skb->len; 1515 pcount = tcp_skb_pcount(skb); 1516 mss = tcp_skb_seglen(skb); 1517 1518 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1519 * drop this restriction as unnecessary 1520 */ 1521 if (mss != tcp_skb_seglen(prev)) 1522 goto fallback; 1523 } else { 1524 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1525 goto noop; 1526 /* CHECKME: This is non-MSS split case only?, this will 1527 * cause skipped skbs due to advancing loop btw, original 1528 * has that feature too 1529 */ 1530 if (tcp_skb_pcount(skb) <= 1) 1531 goto noop; 1532 1533 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1534 if (!in_sack) { 1535 /* TODO: head merge to next could be attempted here 1536 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1537 * though it might not be worth of the additional hassle 1538 * 1539 * ...we can probably just fallback to what was done 1540 * previously. We could try merging non-SACKed ones 1541 * as well but it probably isn't going to buy off 1542 * because later SACKs might again split them, and 1543 * it would make skb timestamp tracking considerably 1544 * harder problem. 1545 */ 1546 goto fallback; 1547 } 1548 1549 len = end_seq - TCP_SKB_CB(skb)->seq; 1550 BUG_ON(len < 0); 1551 BUG_ON(len > skb->len); 1552 1553 /* MSS boundaries should be honoured or else pcount will 1554 * severely break even though it makes things bit trickier. 1555 * Optimize common case to avoid most of the divides 1556 */ 1557 mss = tcp_skb_mss(skb); 1558 1559 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1560 * drop this restriction as unnecessary 1561 */ 1562 if (mss != tcp_skb_seglen(prev)) 1563 goto fallback; 1564 1565 if (len == mss) { 1566 pcount = 1; 1567 } else if (len < mss) { 1568 goto noop; 1569 } else { 1570 pcount = len / mss; 1571 len = pcount * mss; 1572 } 1573 } 1574 1575 if (!skb_shift(prev, skb, len)) 1576 goto fallback; 1577 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1578 goto out; 1579 1580 /* Hole filled allows collapsing with the next as well, this is very 1581 * useful when hole on every nth skb pattern happens 1582 */ 1583 if (prev == tcp_write_queue_tail(sk)) 1584 goto out; 1585 skb = tcp_write_queue_next(sk, prev); 1586 1587 if (!skb_can_shift(skb) || 1588 (skb == tcp_send_head(sk)) || 1589 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1590 (mss != tcp_skb_seglen(skb))) 1591 goto out; 1592 1593 len = skb->len; 1594 if (skb_shift(prev, skb, len)) { 1595 pcount += tcp_skb_pcount(skb); 1596 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1597 } 1598 1599 out: 1600 state->fack_count += pcount; 1601 return prev; 1602 1603 noop: 1604 return skb; 1605 1606 fallback: 1607 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1608 return NULL; 1609 } 1610 1611 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1612 struct tcp_sack_block *next_dup, 1613 struct tcp_sacktag_state *state, 1614 u32 start_seq, u32 end_seq, 1615 int dup_sack_in) 1616 { 1617 struct tcp_sock *tp = tcp_sk(sk); 1618 struct sk_buff *tmp; 1619 1620 tcp_for_write_queue_from(skb, sk) { 1621 int in_sack = 0; 1622 int dup_sack = dup_sack_in; 1623 1624 if (skb == tcp_send_head(sk)) 1625 break; 1626 1627 /* queue is in-order => we can short-circuit the walk early */ 1628 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1629 break; 1630 1631 if ((next_dup != NULL) && 1632 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1633 in_sack = tcp_match_skb_to_sack(sk, skb, 1634 next_dup->start_seq, 1635 next_dup->end_seq); 1636 if (in_sack > 0) 1637 dup_sack = 1; 1638 } 1639 1640 /* skb reference here is a bit tricky to get right, since 1641 * shifting can eat and free both this skb and the next, 1642 * so not even _safe variant of the loop is enough. 1643 */ 1644 if (in_sack <= 0) { 1645 tmp = tcp_shift_skb_data(sk, skb, state, 1646 start_seq, end_seq, dup_sack); 1647 if (tmp != NULL) { 1648 if (tmp != skb) { 1649 skb = tmp; 1650 continue; 1651 } 1652 1653 in_sack = 0; 1654 } else { 1655 in_sack = tcp_match_skb_to_sack(sk, skb, 1656 start_seq, 1657 end_seq); 1658 } 1659 } 1660 1661 if (unlikely(in_sack < 0)) 1662 break; 1663 1664 if (in_sack) { 1665 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk, 1666 state, 1667 dup_sack, 1668 tcp_skb_pcount(skb)); 1669 1670 if (!before(TCP_SKB_CB(skb)->seq, 1671 tcp_highest_sack_seq(tp))) 1672 tcp_advance_highest_sack(sk, skb); 1673 } 1674 1675 state->fack_count += tcp_skb_pcount(skb); 1676 } 1677 return skb; 1678 } 1679 1680 /* Avoid all extra work that is being done by sacktag while walking in 1681 * a normal way 1682 */ 1683 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1684 struct tcp_sacktag_state *state, 1685 u32 skip_to_seq) 1686 { 1687 tcp_for_write_queue_from(skb, sk) { 1688 if (skb == tcp_send_head(sk)) 1689 break; 1690 1691 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1692 break; 1693 1694 state->fack_count += tcp_skb_pcount(skb); 1695 } 1696 return skb; 1697 } 1698 1699 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1700 struct sock *sk, 1701 struct tcp_sack_block *next_dup, 1702 struct tcp_sacktag_state *state, 1703 u32 skip_to_seq) 1704 { 1705 if (next_dup == NULL) 1706 return skb; 1707 1708 if (before(next_dup->start_seq, skip_to_seq)) { 1709 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1710 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1711 next_dup->start_seq, next_dup->end_seq, 1712 1); 1713 } 1714 1715 return skb; 1716 } 1717 1718 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache) 1719 { 1720 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1721 } 1722 1723 static int 1724 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, 1725 u32 prior_snd_una) 1726 { 1727 const struct inet_connection_sock *icsk = inet_csk(sk); 1728 struct tcp_sock *tp = tcp_sk(sk); 1729 unsigned char *ptr = (skb_transport_header(ack_skb) + 1730 TCP_SKB_CB(ack_skb)->sacked); 1731 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1732 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1733 struct tcp_sack_block *cache; 1734 struct tcp_sacktag_state state; 1735 struct sk_buff *skb; 1736 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1737 int used_sacks; 1738 int found_dup_sack = 0; 1739 int i, j; 1740 int first_sack_index; 1741 1742 state.flag = 0; 1743 state.reord = tp->packets_out; 1744 1745 if (!tp->sacked_out) { 1746 if (WARN_ON(tp->fackets_out)) 1747 tp->fackets_out = 0; 1748 tcp_highest_sack_reset(sk); 1749 } 1750 1751 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1752 num_sacks, prior_snd_una); 1753 if (found_dup_sack) 1754 state.flag |= FLAG_DSACKING_ACK; 1755 1756 /* Eliminate too old ACKs, but take into 1757 * account more or less fresh ones, they can 1758 * contain valid SACK info. 1759 */ 1760 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1761 return 0; 1762 1763 if (!tp->packets_out) 1764 goto out; 1765 1766 used_sacks = 0; 1767 first_sack_index = 0; 1768 for (i = 0; i < num_sacks; i++) { 1769 int dup_sack = !i && found_dup_sack; 1770 1771 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1772 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1773 1774 if (!tcp_is_sackblock_valid(tp, dup_sack, 1775 sp[used_sacks].start_seq, 1776 sp[used_sacks].end_seq)) { 1777 int mib_idx; 1778 1779 if (dup_sack) { 1780 if (!tp->undo_marker) 1781 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1782 else 1783 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1784 } else { 1785 /* Don't count olds caused by ACK reordering */ 1786 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1787 !after(sp[used_sacks].end_seq, tp->snd_una)) 1788 continue; 1789 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1790 } 1791 1792 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1793 if (i == 0) 1794 first_sack_index = -1; 1795 continue; 1796 } 1797 1798 /* Ignore very old stuff early */ 1799 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1800 continue; 1801 1802 used_sacks++; 1803 } 1804 1805 /* order SACK blocks to allow in order walk of the retrans queue */ 1806 for (i = used_sacks - 1; i > 0; i--) { 1807 for (j = 0; j < i; j++) { 1808 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1809 swap(sp[j], sp[j + 1]); 1810 1811 /* Track where the first SACK block goes to */ 1812 if (j == first_sack_index) 1813 first_sack_index = j + 1; 1814 } 1815 } 1816 } 1817 1818 skb = tcp_write_queue_head(sk); 1819 state.fack_count = 0; 1820 i = 0; 1821 1822 if (!tp->sacked_out) { 1823 /* It's already past, so skip checking against it */ 1824 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1825 } else { 1826 cache = tp->recv_sack_cache; 1827 /* Skip empty blocks in at head of the cache */ 1828 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1829 !cache->end_seq) 1830 cache++; 1831 } 1832 1833 while (i < used_sacks) { 1834 u32 start_seq = sp[i].start_seq; 1835 u32 end_seq = sp[i].end_seq; 1836 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1837 struct tcp_sack_block *next_dup = NULL; 1838 1839 if (found_dup_sack && ((i + 1) == first_sack_index)) 1840 next_dup = &sp[i + 1]; 1841 1842 /* Event "B" in the comment above. */ 1843 if (after(end_seq, tp->high_seq)) 1844 state.flag |= FLAG_DATA_LOST; 1845 1846 /* Skip too early cached blocks */ 1847 while (tcp_sack_cache_ok(tp, cache) && 1848 !before(start_seq, cache->end_seq)) 1849 cache++; 1850 1851 /* Can skip some work by looking recv_sack_cache? */ 1852 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1853 after(end_seq, cache->start_seq)) { 1854 1855 /* Head todo? */ 1856 if (before(start_seq, cache->start_seq)) { 1857 skb = tcp_sacktag_skip(skb, sk, &state, 1858 start_seq); 1859 skb = tcp_sacktag_walk(skb, sk, next_dup, 1860 &state, 1861 start_seq, 1862 cache->start_seq, 1863 dup_sack); 1864 } 1865 1866 /* Rest of the block already fully processed? */ 1867 if (!after(end_seq, cache->end_seq)) 1868 goto advance_sp; 1869 1870 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1871 &state, 1872 cache->end_seq); 1873 1874 /* ...tail remains todo... */ 1875 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1876 /* ...but better entrypoint exists! */ 1877 skb = tcp_highest_sack(sk); 1878 if (skb == NULL) 1879 break; 1880 state.fack_count = tp->fackets_out; 1881 cache++; 1882 goto walk; 1883 } 1884 1885 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1886 /* Check overlap against next cached too (past this one already) */ 1887 cache++; 1888 continue; 1889 } 1890 1891 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1892 skb = tcp_highest_sack(sk); 1893 if (skb == NULL) 1894 break; 1895 state.fack_count = tp->fackets_out; 1896 } 1897 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1898 1899 walk: 1900 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1901 start_seq, end_seq, dup_sack); 1902 1903 advance_sp: 1904 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1905 * due to in-order walk 1906 */ 1907 if (after(end_seq, tp->frto_highmark)) 1908 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1909 1910 i++; 1911 } 1912 1913 /* Clear the head of the cache sack blocks so we can skip it next time */ 1914 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1915 tp->recv_sack_cache[i].start_seq = 0; 1916 tp->recv_sack_cache[i].end_seq = 0; 1917 } 1918 for (j = 0; j < used_sacks; j++) 1919 tp->recv_sack_cache[i++] = sp[j]; 1920 1921 tcp_mark_lost_retrans(sk); 1922 1923 tcp_verify_left_out(tp); 1924 1925 if ((state.reord < tp->fackets_out) && 1926 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1927 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1928 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1929 1930 out: 1931 1932 #if FASTRETRANS_DEBUG > 0 1933 WARN_ON((int)tp->sacked_out < 0); 1934 WARN_ON((int)tp->lost_out < 0); 1935 WARN_ON((int)tp->retrans_out < 0); 1936 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1937 #endif 1938 return state.flag; 1939 } 1940 1941 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1942 * packets_out. Returns zero if sacked_out adjustement wasn't necessary. 1943 */ 1944 static int tcp_limit_reno_sacked(struct tcp_sock *tp) 1945 { 1946 u32 holes; 1947 1948 holes = max(tp->lost_out, 1U); 1949 holes = min(holes, tp->packets_out); 1950 1951 if ((tp->sacked_out + holes) > tp->packets_out) { 1952 tp->sacked_out = tp->packets_out - holes; 1953 return 1; 1954 } 1955 return 0; 1956 } 1957 1958 /* If we receive more dupacks than we expected counting segments 1959 * in assumption of absent reordering, interpret this as reordering. 1960 * The only another reason could be bug in receiver TCP. 1961 */ 1962 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1963 { 1964 struct tcp_sock *tp = tcp_sk(sk); 1965 if (tcp_limit_reno_sacked(tp)) 1966 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1967 } 1968 1969 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1970 1971 static void tcp_add_reno_sack(struct sock *sk) 1972 { 1973 struct tcp_sock *tp = tcp_sk(sk); 1974 tp->sacked_out++; 1975 tcp_check_reno_reordering(sk, 0); 1976 tcp_verify_left_out(tp); 1977 } 1978 1979 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1980 1981 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1982 { 1983 struct tcp_sock *tp = tcp_sk(sk); 1984 1985 if (acked > 0) { 1986 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1987 if (acked - 1 >= tp->sacked_out) 1988 tp->sacked_out = 0; 1989 else 1990 tp->sacked_out -= acked - 1; 1991 } 1992 tcp_check_reno_reordering(sk, acked); 1993 tcp_verify_left_out(tp); 1994 } 1995 1996 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1997 { 1998 tp->sacked_out = 0; 1999 } 2000 2001 static int tcp_is_sackfrto(const struct tcp_sock *tp) 2002 { 2003 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 2004 } 2005 2006 /* F-RTO can only be used if TCP has never retransmitted anything other than 2007 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 2008 */ 2009 int tcp_use_frto(struct sock *sk) 2010 { 2011 const struct tcp_sock *tp = tcp_sk(sk); 2012 const struct inet_connection_sock *icsk = inet_csk(sk); 2013 struct sk_buff *skb; 2014 2015 if (!sysctl_tcp_frto) 2016 return 0; 2017 2018 /* MTU probe and F-RTO won't really play nicely along currently */ 2019 if (icsk->icsk_mtup.probe_size) 2020 return 0; 2021 2022 if (tcp_is_sackfrto(tp)) 2023 return 1; 2024 2025 /* Avoid expensive walking of rexmit queue if possible */ 2026 if (tp->retrans_out > 1) 2027 return 0; 2028 2029 skb = tcp_write_queue_head(sk); 2030 if (tcp_skb_is_last(sk, skb)) 2031 return 1; 2032 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 2033 tcp_for_write_queue_from(skb, sk) { 2034 if (skb == tcp_send_head(sk)) 2035 break; 2036 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2037 return 0; 2038 /* Short-circuit when first non-SACKed skb has been checked */ 2039 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2040 break; 2041 } 2042 return 1; 2043 } 2044 2045 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 2046 * recovery a bit and use heuristics in tcp_process_frto() to detect if 2047 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 2048 * keep retrans_out counting accurate (with SACK F-RTO, other than head 2049 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 2050 * bits are handled if the Loss state is really to be entered (in 2051 * tcp_enter_frto_loss). 2052 * 2053 * Do like tcp_enter_loss() would; when RTO expires the second time it 2054 * does: 2055 * "Reduce ssthresh if it has not yet been made inside this window." 2056 */ 2057 void tcp_enter_frto(struct sock *sk) 2058 { 2059 const struct inet_connection_sock *icsk = inet_csk(sk); 2060 struct tcp_sock *tp = tcp_sk(sk); 2061 struct sk_buff *skb; 2062 2063 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 2064 tp->snd_una == tp->high_seq || 2065 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 2066 !icsk->icsk_retransmits)) { 2067 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2068 /* Our state is too optimistic in ssthresh() call because cwnd 2069 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 2070 * recovery has not yet completed. Pattern would be this: RTO, 2071 * Cumulative ACK, RTO (2xRTO for the same segment does not end 2072 * up here twice). 2073 * RFC4138 should be more specific on what to do, even though 2074 * RTO is quite unlikely to occur after the first Cumulative ACK 2075 * due to back-off and complexity of triggering events ... 2076 */ 2077 if (tp->frto_counter) { 2078 u32 stored_cwnd; 2079 stored_cwnd = tp->snd_cwnd; 2080 tp->snd_cwnd = 2; 2081 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2082 tp->snd_cwnd = stored_cwnd; 2083 } else { 2084 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2085 } 2086 /* ... in theory, cong.control module could do "any tricks" in 2087 * ssthresh(), which means that ca_state, lost bits and lost_out 2088 * counter would have to be faked before the call occurs. We 2089 * consider that too expensive, unlikely and hacky, so modules 2090 * using these in ssthresh() must deal these incompatibility 2091 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 2092 */ 2093 tcp_ca_event(sk, CA_EVENT_FRTO); 2094 } 2095 2096 tp->undo_marker = tp->snd_una; 2097 tp->undo_retrans = 0; 2098 2099 skb = tcp_write_queue_head(sk); 2100 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2101 tp->undo_marker = 0; 2102 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2103 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2104 tp->retrans_out -= tcp_skb_pcount(skb); 2105 } 2106 tcp_verify_left_out(tp); 2107 2108 /* Too bad if TCP was application limited */ 2109 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2110 2111 /* Earlier loss recovery underway (see RFC4138; Appendix B). 2112 * The last condition is necessary at least in tp->frto_counter case. 2113 */ 2114 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 2115 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 2116 after(tp->high_seq, tp->snd_una)) { 2117 tp->frto_highmark = tp->high_seq; 2118 } else { 2119 tp->frto_highmark = tp->snd_nxt; 2120 } 2121 tcp_set_ca_state(sk, TCP_CA_Disorder); 2122 tp->high_seq = tp->snd_nxt; 2123 tp->frto_counter = 1; 2124 } 2125 2126 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 2127 * which indicates that we should follow the traditional RTO recovery, 2128 * i.e. mark everything lost and do go-back-N retransmission. 2129 */ 2130 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 2131 { 2132 struct tcp_sock *tp = tcp_sk(sk); 2133 struct sk_buff *skb; 2134 2135 tp->lost_out = 0; 2136 tp->retrans_out = 0; 2137 if (tcp_is_reno(tp)) 2138 tcp_reset_reno_sack(tp); 2139 2140 tcp_for_write_queue(skb, sk) { 2141 if (skb == tcp_send_head(sk)) 2142 break; 2143 2144 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2145 /* 2146 * Count the retransmission made on RTO correctly (only when 2147 * waiting for the first ACK and did not get it)... 2148 */ 2149 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 2150 /* For some reason this R-bit might get cleared? */ 2151 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 2152 tp->retrans_out += tcp_skb_pcount(skb); 2153 /* ...enter this if branch just for the first segment */ 2154 flag |= FLAG_DATA_ACKED; 2155 } else { 2156 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2157 tp->undo_marker = 0; 2158 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2159 } 2160 2161 /* Marking forward transmissions that were made after RTO lost 2162 * can cause unnecessary retransmissions in some scenarios, 2163 * SACK blocks will mitigate that in some but not in all cases. 2164 * We used to not mark them but it was causing break-ups with 2165 * receivers that do only in-order receival. 2166 * 2167 * TODO: we could detect presence of such receiver and select 2168 * different behavior per flow. 2169 */ 2170 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2171 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2172 tp->lost_out += tcp_skb_pcount(skb); 2173 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2174 } 2175 } 2176 tcp_verify_left_out(tp); 2177 2178 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2179 tp->snd_cwnd_cnt = 0; 2180 tp->snd_cwnd_stamp = tcp_time_stamp; 2181 tp->frto_counter = 0; 2182 tp->bytes_acked = 0; 2183 2184 tp->reordering = min_t(unsigned int, tp->reordering, 2185 sysctl_tcp_reordering); 2186 tcp_set_ca_state(sk, TCP_CA_Loss); 2187 tp->high_seq = tp->snd_nxt; 2188 TCP_ECN_queue_cwr(tp); 2189 2190 tcp_clear_all_retrans_hints(tp); 2191 } 2192 2193 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2194 { 2195 tp->retrans_out = 0; 2196 tp->lost_out = 0; 2197 2198 tp->undo_marker = 0; 2199 tp->undo_retrans = 0; 2200 } 2201 2202 void tcp_clear_retrans(struct tcp_sock *tp) 2203 { 2204 tcp_clear_retrans_partial(tp); 2205 2206 tp->fackets_out = 0; 2207 tp->sacked_out = 0; 2208 } 2209 2210 /* Enter Loss state. If "how" is not zero, forget all SACK information 2211 * and reset tags completely, otherwise preserve SACKs. If receiver 2212 * dropped its ofo queue, we will know this due to reneging detection. 2213 */ 2214 void tcp_enter_loss(struct sock *sk, int how) 2215 { 2216 const struct inet_connection_sock *icsk = inet_csk(sk); 2217 struct tcp_sock *tp = tcp_sk(sk); 2218 struct sk_buff *skb; 2219 2220 /* Reduce ssthresh if it has not yet been made inside this window. */ 2221 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2222 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2223 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2224 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2225 tcp_ca_event(sk, CA_EVENT_LOSS); 2226 } 2227 tp->snd_cwnd = 1; 2228 tp->snd_cwnd_cnt = 0; 2229 tp->snd_cwnd_stamp = tcp_time_stamp; 2230 2231 tp->bytes_acked = 0; 2232 tcp_clear_retrans_partial(tp); 2233 2234 if (tcp_is_reno(tp)) 2235 tcp_reset_reno_sack(tp); 2236 2237 if (!how) { 2238 /* Push undo marker, if it was plain RTO and nothing 2239 * was retransmitted. */ 2240 tp->undo_marker = tp->snd_una; 2241 } else { 2242 tp->sacked_out = 0; 2243 tp->fackets_out = 0; 2244 } 2245 tcp_clear_all_retrans_hints(tp); 2246 2247 tcp_for_write_queue(skb, sk) { 2248 if (skb == tcp_send_head(sk)) 2249 break; 2250 2251 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2252 tp->undo_marker = 0; 2253 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2254 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2255 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2256 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2257 tp->lost_out += tcp_skb_pcount(skb); 2258 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2259 } 2260 } 2261 tcp_verify_left_out(tp); 2262 2263 tp->reordering = min_t(unsigned int, tp->reordering, 2264 sysctl_tcp_reordering); 2265 tcp_set_ca_state(sk, TCP_CA_Loss); 2266 tp->high_seq = tp->snd_nxt; 2267 TCP_ECN_queue_cwr(tp); 2268 /* Abort F-RTO algorithm if one is in progress */ 2269 tp->frto_counter = 0; 2270 } 2271 2272 /* If ACK arrived pointing to a remembered SACK, it means that our 2273 * remembered SACKs do not reflect real state of receiver i.e. 2274 * receiver _host_ is heavily congested (or buggy). 2275 * 2276 * Do processing similar to RTO timeout. 2277 */ 2278 static int tcp_check_sack_reneging(struct sock *sk, int flag) 2279 { 2280 if (flag & FLAG_SACK_RENEGING) { 2281 struct inet_connection_sock *icsk = inet_csk(sk); 2282 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2283 2284 tcp_enter_loss(sk, 1); 2285 icsk->icsk_retransmits++; 2286 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2287 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2288 icsk->icsk_rto, TCP_RTO_MAX); 2289 return 1; 2290 } 2291 return 0; 2292 } 2293 2294 static inline int tcp_fackets_out(struct tcp_sock *tp) 2295 { 2296 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2297 } 2298 2299 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2300 * counter when SACK is enabled (without SACK, sacked_out is used for 2301 * that purpose). 2302 * 2303 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2304 * segments up to the highest received SACK block so far and holes in 2305 * between them. 2306 * 2307 * With reordering, holes may still be in flight, so RFC3517 recovery 2308 * uses pure sacked_out (total number of SACKed segments) even though 2309 * it violates the RFC that uses duplicate ACKs, often these are equal 2310 * but when e.g. out-of-window ACKs or packet duplication occurs, 2311 * they differ. Since neither occurs due to loss, TCP should really 2312 * ignore them. 2313 */ 2314 static inline int tcp_dupack_heurestics(struct tcp_sock *tp) 2315 { 2316 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2317 } 2318 2319 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 2320 { 2321 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 2322 } 2323 2324 static inline int tcp_head_timedout(struct sock *sk) 2325 { 2326 struct tcp_sock *tp = tcp_sk(sk); 2327 2328 return tp->packets_out && 2329 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2330 } 2331 2332 /* Linux NewReno/SACK/FACK/ECN state machine. 2333 * -------------------------------------- 2334 * 2335 * "Open" Normal state, no dubious events, fast path. 2336 * "Disorder" In all the respects it is "Open", 2337 * but requires a bit more attention. It is entered when 2338 * we see some SACKs or dupacks. It is split of "Open" 2339 * mainly to move some processing from fast path to slow one. 2340 * "CWR" CWND was reduced due to some Congestion Notification event. 2341 * It can be ECN, ICMP source quench, local device congestion. 2342 * "Recovery" CWND was reduced, we are fast-retransmitting. 2343 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2344 * 2345 * tcp_fastretrans_alert() is entered: 2346 * - each incoming ACK, if state is not "Open" 2347 * - when arrived ACK is unusual, namely: 2348 * * SACK 2349 * * Duplicate ACK. 2350 * * ECN ECE. 2351 * 2352 * Counting packets in flight is pretty simple. 2353 * 2354 * in_flight = packets_out - left_out + retrans_out 2355 * 2356 * packets_out is SND.NXT-SND.UNA counted in packets. 2357 * 2358 * retrans_out is number of retransmitted segments. 2359 * 2360 * left_out is number of segments left network, but not ACKed yet. 2361 * 2362 * left_out = sacked_out + lost_out 2363 * 2364 * sacked_out: Packets, which arrived to receiver out of order 2365 * and hence not ACKed. With SACKs this number is simply 2366 * amount of SACKed data. Even without SACKs 2367 * it is easy to give pretty reliable estimate of this number, 2368 * counting duplicate ACKs. 2369 * 2370 * lost_out: Packets lost by network. TCP has no explicit 2371 * "loss notification" feedback from network (for now). 2372 * It means that this number can be only _guessed_. 2373 * Actually, it is the heuristics to predict lossage that 2374 * distinguishes different algorithms. 2375 * 2376 * F.e. after RTO, when all the queue is considered as lost, 2377 * lost_out = packets_out and in_flight = retrans_out. 2378 * 2379 * Essentially, we have now two algorithms counting 2380 * lost packets. 2381 * 2382 * FACK: It is the simplest heuristics. As soon as we decided 2383 * that something is lost, we decide that _all_ not SACKed 2384 * packets until the most forward SACK are lost. I.e. 2385 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2386 * It is absolutely correct estimate, if network does not reorder 2387 * packets. And it loses any connection to reality when reordering 2388 * takes place. We use FACK by default until reordering 2389 * is suspected on the path to this destination. 2390 * 2391 * NewReno: when Recovery is entered, we assume that one segment 2392 * is lost (classic Reno). While we are in Recovery and 2393 * a partial ACK arrives, we assume that one more packet 2394 * is lost (NewReno). This heuristics are the same in NewReno 2395 * and SACK. 2396 * 2397 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2398 * deflation etc. CWND is real congestion window, never inflated, changes 2399 * only according to classic VJ rules. 2400 * 2401 * Really tricky (and requiring careful tuning) part of algorithm 2402 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2403 * The first determines the moment _when_ we should reduce CWND and, 2404 * hence, slow down forward transmission. In fact, it determines the moment 2405 * when we decide that hole is caused by loss, rather than by a reorder. 2406 * 2407 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2408 * holes, caused by lost packets. 2409 * 2410 * And the most logically complicated part of algorithm is undo 2411 * heuristics. We detect false retransmits due to both too early 2412 * fast retransmit (reordering) and underestimated RTO, analyzing 2413 * timestamps and D-SACKs. When we detect that some segments were 2414 * retransmitted by mistake and CWND reduction was wrong, we undo 2415 * window reduction and abort recovery phase. This logic is hidden 2416 * inside several functions named tcp_try_undo_<something>. 2417 */ 2418 2419 /* This function decides, when we should leave Disordered state 2420 * and enter Recovery phase, reducing congestion window. 2421 * 2422 * Main question: may we further continue forward transmission 2423 * with the same cwnd? 2424 */ 2425 static int tcp_time_to_recover(struct sock *sk) 2426 { 2427 struct tcp_sock *tp = tcp_sk(sk); 2428 __u32 packets_out; 2429 2430 /* Do not perform any recovery during F-RTO algorithm */ 2431 if (tp->frto_counter) 2432 return 0; 2433 2434 /* Trick#1: The loss is proven. */ 2435 if (tp->lost_out) 2436 return 1; 2437 2438 /* Not-A-Trick#2 : Classic rule... */ 2439 if (tcp_dupack_heurestics(tp) > tp->reordering) 2440 return 1; 2441 2442 /* Trick#3 : when we use RFC2988 timer restart, fast 2443 * retransmit can be triggered by timeout of queue head. 2444 */ 2445 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2446 return 1; 2447 2448 /* Trick#4: It is still not OK... But will it be useful to delay 2449 * recovery more? 2450 */ 2451 packets_out = tp->packets_out; 2452 if (packets_out <= tp->reordering && 2453 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2454 !tcp_may_send_now(sk)) { 2455 /* We have nothing to send. This connection is limited 2456 * either by receiver window or by application. 2457 */ 2458 return 1; 2459 } 2460 2461 return 0; 2462 } 2463 2464 /* New heuristics: it is possible only after we switched to restart timer 2465 * each time when something is ACKed. Hence, we can detect timed out packets 2466 * during fast retransmit without falling to slow start. 2467 * 2468 * Usefulness of this as is very questionable, since we should know which of 2469 * the segments is the next to timeout which is relatively expensive to find 2470 * in general case unless we add some data structure just for that. The 2471 * current approach certainly won't find the right one too often and when it 2472 * finally does find _something_ it usually marks large part of the window 2473 * right away (because a retransmission with a larger timestamp blocks the 2474 * loop from advancing). -ij 2475 */ 2476 static void tcp_timeout_skbs(struct sock *sk) 2477 { 2478 struct tcp_sock *tp = tcp_sk(sk); 2479 struct sk_buff *skb; 2480 2481 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk)) 2482 return; 2483 2484 skb = tp->scoreboard_skb_hint; 2485 if (tp->scoreboard_skb_hint == NULL) 2486 skb = tcp_write_queue_head(sk); 2487 2488 tcp_for_write_queue_from(skb, sk) { 2489 if (skb == tcp_send_head(sk)) 2490 break; 2491 if (!tcp_skb_timedout(sk, skb)) 2492 break; 2493 2494 tcp_skb_mark_lost(tp, skb); 2495 } 2496 2497 tp->scoreboard_skb_hint = skb; 2498 2499 tcp_verify_left_out(tp); 2500 } 2501 2502 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is 2503 * is against sacked "cnt", otherwise it's against facked "cnt" 2504 */ 2505 static void tcp_mark_head_lost(struct sock *sk, int packets) 2506 { 2507 struct tcp_sock *tp = tcp_sk(sk); 2508 struct sk_buff *skb; 2509 int cnt, oldcnt; 2510 int err; 2511 unsigned int mss; 2512 2513 WARN_ON(packets > tp->packets_out); 2514 if (tp->lost_skb_hint) { 2515 skb = tp->lost_skb_hint; 2516 cnt = tp->lost_cnt_hint; 2517 } else { 2518 skb = tcp_write_queue_head(sk); 2519 cnt = 0; 2520 } 2521 2522 tcp_for_write_queue_from(skb, sk) { 2523 if (skb == tcp_send_head(sk)) 2524 break; 2525 /* TODO: do this better */ 2526 /* this is not the most efficient way to do this... */ 2527 tp->lost_skb_hint = skb; 2528 tp->lost_cnt_hint = cnt; 2529 2530 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq)) 2531 break; 2532 2533 oldcnt = cnt; 2534 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2535 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2536 cnt += tcp_skb_pcount(skb); 2537 2538 if (cnt > packets) { 2539 if (tcp_is_sack(tp) || (oldcnt >= packets)) 2540 break; 2541 2542 mss = skb_shinfo(skb)->gso_size; 2543 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2544 if (err < 0) 2545 break; 2546 cnt = packets; 2547 } 2548 2549 tcp_skb_mark_lost(tp, skb); 2550 } 2551 tcp_verify_left_out(tp); 2552 } 2553 2554 /* Account newly detected lost packet(s) */ 2555 2556 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2557 { 2558 struct tcp_sock *tp = tcp_sk(sk); 2559 2560 if (tcp_is_reno(tp)) { 2561 tcp_mark_head_lost(sk, 1); 2562 } else if (tcp_is_fack(tp)) { 2563 int lost = tp->fackets_out - tp->reordering; 2564 if (lost <= 0) 2565 lost = 1; 2566 tcp_mark_head_lost(sk, lost); 2567 } else { 2568 int sacked_upto = tp->sacked_out - tp->reordering; 2569 if (sacked_upto < fast_rexmit) 2570 sacked_upto = fast_rexmit; 2571 tcp_mark_head_lost(sk, sacked_upto); 2572 } 2573 2574 tcp_timeout_skbs(sk); 2575 } 2576 2577 /* CWND moderation, preventing bursts due to too big ACKs 2578 * in dubious situations. 2579 */ 2580 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2581 { 2582 tp->snd_cwnd = min(tp->snd_cwnd, 2583 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2584 tp->snd_cwnd_stamp = tcp_time_stamp; 2585 } 2586 2587 /* Lower bound on congestion window is slow start threshold 2588 * unless congestion avoidance choice decides to overide it. 2589 */ 2590 static inline u32 tcp_cwnd_min(const struct sock *sk) 2591 { 2592 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2593 2594 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2595 } 2596 2597 /* Decrease cwnd each second ack. */ 2598 static void tcp_cwnd_down(struct sock *sk, int flag) 2599 { 2600 struct tcp_sock *tp = tcp_sk(sk); 2601 int decr = tp->snd_cwnd_cnt + 1; 2602 2603 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2604 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2605 tp->snd_cwnd_cnt = decr & 1; 2606 decr >>= 1; 2607 2608 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2609 tp->snd_cwnd -= decr; 2610 2611 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2612 tp->snd_cwnd_stamp = tcp_time_stamp; 2613 } 2614 } 2615 2616 /* Nothing was retransmitted or returned timestamp is less 2617 * than timestamp of the first retransmission. 2618 */ 2619 static inline int tcp_packet_delayed(struct tcp_sock *tp) 2620 { 2621 return !tp->retrans_stamp || 2622 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2623 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2624 } 2625 2626 /* Undo procedures. */ 2627 2628 #if FASTRETRANS_DEBUG > 1 2629 static void DBGUNDO(struct sock *sk, const char *msg) 2630 { 2631 struct tcp_sock *tp = tcp_sk(sk); 2632 struct inet_sock *inet = inet_sk(sk); 2633 2634 if (sk->sk_family == AF_INET) { 2635 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2636 msg, 2637 &inet->daddr, ntohs(inet->dport), 2638 tp->snd_cwnd, tcp_left_out(tp), 2639 tp->snd_ssthresh, tp->prior_ssthresh, 2640 tp->packets_out); 2641 } 2642 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2643 else if (sk->sk_family == AF_INET6) { 2644 struct ipv6_pinfo *np = inet6_sk(sk); 2645 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2646 msg, 2647 &np->daddr, ntohs(inet->dport), 2648 tp->snd_cwnd, tcp_left_out(tp), 2649 tp->snd_ssthresh, tp->prior_ssthresh, 2650 tp->packets_out); 2651 } 2652 #endif 2653 } 2654 #else 2655 #define DBGUNDO(x...) do { } while (0) 2656 #endif 2657 2658 static void tcp_undo_cwr(struct sock *sk, const int undo) 2659 { 2660 struct tcp_sock *tp = tcp_sk(sk); 2661 2662 if (tp->prior_ssthresh) { 2663 const struct inet_connection_sock *icsk = inet_csk(sk); 2664 2665 if (icsk->icsk_ca_ops->undo_cwnd) 2666 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2667 else 2668 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2669 2670 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 2671 tp->snd_ssthresh = tp->prior_ssthresh; 2672 TCP_ECN_withdraw_cwr(tp); 2673 } 2674 } else { 2675 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2676 } 2677 tcp_moderate_cwnd(tp); 2678 tp->snd_cwnd_stamp = tcp_time_stamp; 2679 } 2680 2681 static inline int tcp_may_undo(struct tcp_sock *tp) 2682 { 2683 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2684 } 2685 2686 /* People celebrate: "We love our President!" */ 2687 static int tcp_try_undo_recovery(struct sock *sk) 2688 { 2689 struct tcp_sock *tp = tcp_sk(sk); 2690 2691 if (tcp_may_undo(tp)) { 2692 int mib_idx; 2693 2694 /* Happy end! We did not retransmit anything 2695 * or our original transmission succeeded. 2696 */ 2697 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2698 tcp_undo_cwr(sk, 1); 2699 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2700 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2701 else 2702 mib_idx = LINUX_MIB_TCPFULLUNDO; 2703 2704 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2705 tp->undo_marker = 0; 2706 } 2707 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2708 /* Hold old state until something *above* high_seq 2709 * is ACKed. For Reno it is MUST to prevent false 2710 * fast retransmits (RFC2582). SACK TCP is safe. */ 2711 tcp_moderate_cwnd(tp); 2712 return 1; 2713 } 2714 tcp_set_ca_state(sk, TCP_CA_Open); 2715 return 0; 2716 } 2717 2718 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2719 static void tcp_try_undo_dsack(struct sock *sk) 2720 { 2721 struct tcp_sock *tp = tcp_sk(sk); 2722 2723 if (tp->undo_marker && !tp->undo_retrans) { 2724 DBGUNDO(sk, "D-SACK"); 2725 tcp_undo_cwr(sk, 1); 2726 tp->undo_marker = 0; 2727 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2728 } 2729 } 2730 2731 /* Undo during fast recovery after partial ACK. */ 2732 2733 static int tcp_try_undo_partial(struct sock *sk, int acked) 2734 { 2735 struct tcp_sock *tp = tcp_sk(sk); 2736 /* Partial ACK arrived. Force Hoe's retransmit. */ 2737 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2738 2739 if (tcp_may_undo(tp)) { 2740 /* Plain luck! Hole if filled with delayed 2741 * packet, rather than with a retransmit. 2742 */ 2743 if (tp->retrans_out == 0) 2744 tp->retrans_stamp = 0; 2745 2746 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2747 2748 DBGUNDO(sk, "Hoe"); 2749 tcp_undo_cwr(sk, 0); 2750 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2751 2752 /* So... Do not make Hoe's retransmit yet. 2753 * If the first packet was delayed, the rest 2754 * ones are most probably delayed as well. 2755 */ 2756 failed = 0; 2757 } 2758 return failed; 2759 } 2760 2761 /* Undo during loss recovery after partial ACK. */ 2762 static int tcp_try_undo_loss(struct sock *sk) 2763 { 2764 struct tcp_sock *tp = tcp_sk(sk); 2765 2766 if (tcp_may_undo(tp)) { 2767 struct sk_buff *skb; 2768 tcp_for_write_queue(skb, sk) { 2769 if (skb == tcp_send_head(sk)) 2770 break; 2771 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2772 } 2773 2774 tcp_clear_all_retrans_hints(tp); 2775 2776 DBGUNDO(sk, "partial loss"); 2777 tp->lost_out = 0; 2778 tcp_undo_cwr(sk, 1); 2779 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2780 inet_csk(sk)->icsk_retransmits = 0; 2781 tp->undo_marker = 0; 2782 if (tcp_is_sack(tp)) 2783 tcp_set_ca_state(sk, TCP_CA_Open); 2784 return 1; 2785 } 2786 return 0; 2787 } 2788 2789 static inline void tcp_complete_cwr(struct sock *sk) 2790 { 2791 struct tcp_sock *tp = tcp_sk(sk); 2792 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2793 tp->snd_cwnd_stamp = tcp_time_stamp; 2794 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2795 } 2796 2797 static void tcp_try_keep_open(struct sock *sk) 2798 { 2799 struct tcp_sock *tp = tcp_sk(sk); 2800 int state = TCP_CA_Open; 2801 2802 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker) 2803 state = TCP_CA_Disorder; 2804 2805 if (inet_csk(sk)->icsk_ca_state != state) { 2806 tcp_set_ca_state(sk, state); 2807 tp->high_seq = tp->snd_nxt; 2808 } 2809 } 2810 2811 static void tcp_try_to_open(struct sock *sk, int flag) 2812 { 2813 struct tcp_sock *tp = tcp_sk(sk); 2814 2815 tcp_verify_left_out(tp); 2816 2817 if (!tp->frto_counter && tp->retrans_out == 0) 2818 tp->retrans_stamp = 0; 2819 2820 if (flag & FLAG_ECE) 2821 tcp_enter_cwr(sk, 1); 2822 2823 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2824 tcp_try_keep_open(sk); 2825 tcp_moderate_cwnd(tp); 2826 } else { 2827 tcp_cwnd_down(sk, flag); 2828 } 2829 } 2830 2831 static void tcp_mtup_probe_failed(struct sock *sk) 2832 { 2833 struct inet_connection_sock *icsk = inet_csk(sk); 2834 2835 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2836 icsk->icsk_mtup.probe_size = 0; 2837 } 2838 2839 static void tcp_mtup_probe_success(struct sock *sk) 2840 { 2841 struct tcp_sock *tp = tcp_sk(sk); 2842 struct inet_connection_sock *icsk = inet_csk(sk); 2843 2844 /* FIXME: breaks with very large cwnd */ 2845 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2846 tp->snd_cwnd = tp->snd_cwnd * 2847 tcp_mss_to_mtu(sk, tp->mss_cache) / 2848 icsk->icsk_mtup.probe_size; 2849 tp->snd_cwnd_cnt = 0; 2850 tp->snd_cwnd_stamp = tcp_time_stamp; 2851 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 2852 2853 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2854 icsk->icsk_mtup.probe_size = 0; 2855 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2856 } 2857 2858 /* Do a simple retransmit without using the backoff mechanisms in 2859 * tcp_timer. This is used for path mtu discovery. 2860 * The socket is already locked here. 2861 */ 2862 void tcp_simple_retransmit(struct sock *sk) 2863 { 2864 const struct inet_connection_sock *icsk = inet_csk(sk); 2865 struct tcp_sock *tp = tcp_sk(sk); 2866 struct sk_buff *skb; 2867 unsigned int mss = tcp_current_mss(sk); 2868 u32 prior_lost = tp->lost_out; 2869 2870 tcp_for_write_queue(skb, sk) { 2871 if (skb == tcp_send_head(sk)) 2872 break; 2873 if (tcp_skb_seglen(skb) > mss && 2874 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2875 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2876 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2877 tp->retrans_out -= tcp_skb_pcount(skb); 2878 } 2879 tcp_skb_mark_lost_uncond_verify(tp, skb); 2880 } 2881 } 2882 2883 tcp_clear_retrans_hints_partial(tp); 2884 2885 if (prior_lost == tp->lost_out) 2886 return; 2887 2888 if (tcp_is_reno(tp)) 2889 tcp_limit_reno_sacked(tp); 2890 2891 tcp_verify_left_out(tp); 2892 2893 /* Don't muck with the congestion window here. 2894 * Reason is that we do not increase amount of _data_ 2895 * in network, but units changed and effective 2896 * cwnd/ssthresh really reduced now. 2897 */ 2898 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2899 tp->high_seq = tp->snd_nxt; 2900 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2901 tp->prior_ssthresh = 0; 2902 tp->undo_marker = 0; 2903 tcp_set_ca_state(sk, TCP_CA_Loss); 2904 } 2905 tcp_xmit_retransmit_queue(sk); 2906 } 2907 2908 /* Process an event, which can update packets-in-flight not trivially. 2909 * Main goal of this function is to calculate new estimate for left_out, 2910 * taking into account both packets sitting in receiver's buffer and 2911 * packets lost by network. 2912 * 2913 * Besides that it does CWND reduction, when packet loss is detected 2914 * and changes state of machine. 2915 * 2916 * It does _not_ decide what to send, it is made in function 2917 * tcp_xmit_retransmit_queue(). 2918 */ 2919 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag) 2920 { 2921 struct inet_connection_sock *icsk = inet_csk(sk); 2922 struct tcp_sock *tp = tcp_sk(sk); 2923 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 2924 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2925 (tcp_fackets_out(tp) > tp->reordering)); 2926 int fast_rexmit = 0, mib_idx; 2927 2928 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2929 tp->sacked_out = 0; 2930 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2931 tp->fackets_out = 0; 2932 2933 /* Now state machine starts. 2934 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2935 if (flag & FLAG_ECE) 2936 tp->prior_ssthresh = 0; 2937 2938 /* B. In all the states check for reneging SACKs. */ 2939 if (tcp_check_sack_reneging(sk, flag)) 2940 return; 2941 2942 /* C. Process data loss notification, provided it is valid. */ 2943 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) && 2944 before(tp->snd_una, tp->high_seq) && 2945 icsk->icsk_ca_state != TCP_CA_Open && 2946 tp->fackets_out > tp->reordering) { 2947 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering); 2948 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS); 2949 } 2950 2951 /* D. Check consistency of the current state. */ 2952 tcp_verify_left_out(tp); 2953 2954 /* E. Check state exit conditions. State can be terminated 2955 * when high_seq is ACKed. */ 2956 if (icsk->icsk_ca_state == TCP_CA_Open) { 2957 WARN_ON(tp->retrans_out != 0); 2958 tp->retrans_stamp = 0; 2959 } else if (!before(tp->snd_una, tp->high_seq)) { 2960 switch (icsk->icsk_ca_state) { 2961 case TCP_CA_Loss: 2962 icsk->icsk_retransmits = 0; 2963 if (tcp_try_undo_recovery(sk)) 2964 return; 2965 break; 2966 2967 case TCP_CA_CWR: 2968 /* CWR is to be held something *above* high_seq 2969 * is ACKed for CWR bit to reach receiver. */ 2970 if (tp->snd_una != tp->high_seq) { 2971 tcp_complete_cwr(sk); 2972 tcp_set_ca_state(sk, TCP_CA_Open); 2973 } 2974 break; 2975 2976 case TCP_CA_Disorder: 2977 tcp_try_undo_dsack(sk); 2978 if (!tp->undo_marker || 2979 /* For SACK case do not Open to allow to undo 2980 * catching for all duplicate ACKs. */ 2981 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) { 2982 tp->undo_marker = 0; 2983 tcp_set_ca_state(sk, TCP_CA_Open); 2984 } 2985 break; 2986 2987 case TCP_CA_Recovery: 2988 if (tcp_is_reno(tp)) 2989 tcp_reset_reno_sack(tp); 2990 if (tcp_try_undo_recovery(sk)) 2991 return; 2992 tcp_complete_cwr(sk); 2993 break; 2994 } 2995 } 2996 2997 /* F. Process state. */ 2998 switch (icsk->icsk_ca_state) { 2999 case TCP_CA_Recovery: 3000 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3001 if (tcp_is_reno(tp) && is_dupack) 3002 tcp_add_reno_sack(sk); 3003 } else 3004 do_lost = tcp_try_undo_partial(sk, pkts_acked); 3005 break; 3006 case TCP_CA_Loss: 3007 if (flag & FLAG_DATA_ACKED) 3008 icsk->icsk_retransmits = 0; 3009 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 3010 tcp_reset_reno_sack(tp); 3011 if (!tcp_try_undo_loss(sk)) { 3012 tcp_moderate_cwnd(tp); 3013 tcp_xmit_retransmit_queue(sk); 3014 return; 3015 } 3016 if (icsk->icsk_ca_state != TCP_CA_Open) 3017 return; 3018 /* Loss is undone; fall through to processing in Open state. */ 3019 default: 3020 if (tcp_is_reno(tp)) { 3021 if (flag & FLAG_SND_UNA_ADVANCED) 3022 tcp_reset_reno_sack(tp); 3023 if (is_dupack) 3024 tcp_add_reno_sack(sk); 3025 } 3026 3027 if (icsk->icsk_ca_state == TCP_CA_Disorder) 3028 tcp_try_undo_dsack(sk); 3029 3030 if (!tcp_time_to_recover(sk)) { 3031 tcp_try_to_open(sk, flag); 3032 return; 3033 } 3034 3035 /* MTU probe failure: don't reduce cwnd */ 3036 if (icsk->icsk_ca_state < TCP_CA_CWR && 3037 icsk->icsk_mtup.probe_size && 3038 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3039 tcp_mtup_probe_failed(sk); 3040 /* Restores the reduction we did in tcp_mtup_probe() */ 3041 tp->snd_cwnd++; 3042 tcp_simple_retransmit(sk); 3043 return; 3044 } 3045 3046 /* Otherwise enter Recovery state */ 3047 3048 if (tcp_is_reno(tp)) 3049 mib_idx = LINUX_MIB_TCPRENORECOVERY; 3050 else 3051 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 3052 3053 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3054 3055 tp->high_seq = tp->snd_nxt; 3056 tp->prior_ssthresh = 0; 3057 tp->undo_marker = tp->snd_una; 3058 tp->undo_retrans = tp->retrans_out; 3059 3060 if (icsk->icsk_ca_state < TCP_CA_CWR) { 3061 if (!(flag & FLAG_ECE)) 3062 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3063 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 3064 TCP_ECN_queue_cwr(tp); 3065 } 3066 3067 tp->bytes_acked = 0; 3068 tp->snd_cwnd_cnt = 0; 3069 tcp_set_ca_state(sk, TCP_CA_Recovery); 3070 fast_rexmit = 1; 3071 } 3072 3073 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3074 tcp_update_scoreboard(sk, fast_rexmit); 3075 tcp_cwnd_down(sk, flag); 3076 tcp_xmit_retransmit_queue(sk); 3077 } 3078 3079 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3080 { 3081 tcp_rtt_estimator(sk, seq_rtt); 3082 tcp_set_rto(sk); 3083 inet_csk(sk)->icsk_backoff = 0; 3084 } 3085 3086 /* Read draft-ietf-tcplw-high-performance before mucking 3087 * with this code. (Supersedes RFC1323) 3088 */ 3089 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3090 { 3091 /* RTTM Rule: A TSecr value received in a segment is used to 3092 * update the averaged RTT measurement only if the segment 3093 * acknowledges some new data, i.e., only if it advances the 3094 * left edge of the send window. 3095 * 3096 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3097 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3098 * 3099 * Changed: reset backoff as soon as we see the first valid sample. 3100 * If we do not, we get strongly overestimated rto. With timestamps 3101 * samples are accepted even from very old segments: f.e., when rtt=1 3102 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3103 * answer arrives rto becomes 120 seconds! If at least one of segments 3104 * in window is lost... Voila. --ANK (010210) 3105 */ 3106 struct tcp_sock *tp = tcp_sk(sk); 3107 3108 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3109 } 3110 3111 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3112 { 3113 /* We don't have a timestamp. Can only use 3114 * packets that are not retransmitted to determine 3115 * rtt estimates. Also, we must not reset the 3116 * backoff for rto until we get a non-retransmitted 3117 * packet. This allows us to deal with a situation 3118 * where the network delay has increased suddenly. 3119 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3120 */ 3121 3122 if (flag & FLAG_RETRANS_DATA_ACKED) 3123 return; 3124 3125 tcp_valid_rtt_meas(sk, seq_rtt); 3126 } 3127 3128 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3129 const s32 seq_rtt) 3130 { 3131 const struct tcp_sock *tp = tcp_sk(sk); 3132 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3133 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3134 tcp_ack_saw_tstamp(sk, flag); 3135 else if (seq_rtt >= 0) 3136 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3137 } 3138 3139 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3140 { 3141 const struct inet_connection_sock *icsk = inet_csk(sk); 3142 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3143 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3144 } 3145 3146 /* Restart timer after forward progress on connection. 3147 * RFC2988 recommends to restart timer to now+rto. 3148 */ 3149 static void tcp_rearm_rto(struct sock *sk) 3150 { 3151 struct tcp_sock *tp = tcp_sk(sk); 3152 3153 if (!tp->packets_out) { 3154 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3155 } else { 3156 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3157 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3158 } 3159 } 3160 3161 /* If we get here, the whole TSO packet has not been acked. */ 3162 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3163 { 3164 struct tcp_sock *tp = tcp_sk(sk); 3165 u32 packets_acked; 3166 3167 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3168 3169 packets_acked = tcp_skb_pcount(skb); 3170 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3171 return 0; 3172 packets_acked -= tcp_skb_pcount(skb); 3173 3174 if (packets_acked) { 3175 BUG_ON(tcp_skb_pcount(skb) == 0); 3176 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3177 } 3178 3179 return packets_acked; 3180 } 3181 3182 /* Remove acknowledged frames from the retransmission queue. If our packet 3183 * is before the ack sequence we can discard it as it's confirmed to have 3184 * arrived at the other end. 3185 */ 3186 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3187 u32 prior_snd_una) 3188 { 3189 struct tcp_sock *tp = tcp_sk(sk); 3190 const struct inet_connection_sock *icsk = inet_csk(sk); 3191 struct sk_buff *skb; 3192 u32 now = tcp_time_stamp; 3193 int fully_acked = 1; 3194 int flag = 0; 3195 u32 pkts_acked = 0; 3196 u32 reord = tp->packets_out; 3197 u32 prior_sacked = tp->sacked_out; 3198 s32 seq_rtt = -1; 3199 s32 ca_seq_rtt = -1; 3200 ktime_t last_ackt = net_invalid_timestamp(); 3201 3202 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3203 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3204 u32 acked_pcount; 3205 u8 sacked = scb->sacked; 3206 3207 /* Determine how many packets and what bytes were acked, tso and else */ 3208 if (after(scb->end_seq, tp->snd_una)) { 3209 if (tcp_skb_pcount(skb) == 1 || 3210 !after(tp->snd_una, scb->seq)) 3211 break; 3212 3213 acked_pcount = tcp_tso_acked(sk, skb); 3214 if (!acked_pcount) 3215 break; 3216 3217 fully_acked = 0; 3218 } else { 3219 acked_pcount = tcp_skb_pcount(skb); 3220 } 3221 3222 if (sacked & TCPCB_RETRANS) { 3223 if (sacked & TCPCB_SACKED_RETRANS) 3224 tp->retrans_out -= acked_pcount; 3225 flag |= FLAG_RETRANS_DATA_ACKED; 3226 ca_seq_rtt = -1; 3227 seq_rtt = -1; 3228 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3229 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3230 } else { 3231 ca_seq_rtt = now - scb->when; 3232 last_ackt = skb->tstamp; 3233 if (seq_rtt < 0) { 3234 seq_rtt = ca_seq_rtt; 3235 } 3236 if (!(sacked & TCPCB_SACKED_ACKED)) 3237 reord = min(pkts_acked, reord); 3238 } 3239 3240 if (sacked & TCPCB_SACKED_ACKED) 3241 tp->sacked_out -= acked_pcount; 3242 if (sacked & TCPCB_LOST) 3243 tp->lost_out -= acked_pcount; 3244 3245 tp->packets_out -= acked_pcount; 3246 pkts_acked += acked_pcount; 3247 3248 /* Initial outgoing SYN's get put onto the write_queue 3249 * just like anything else we transmit. It is not 3250 * true data, and if we misinform our callers that 3251 * this ACK acks real data, we will erroneously exit 3252 * connection startup slow start one packet too 3253 * quickly. This is severely frowned upon behavior. 3254 */ 3255 if (!(scb->flags & TCPCB_FLAG_SYN)) { 3256 flag |= FLAG_DATA_ACKED; 3257 } else { 3258 flag |= FLAG_SYN_ACKED; 3259 tp->retrans_stamp = 0; 3260 } 3261 3262 if (!fully_acked) 3263 break; 3264 3265 tcp_unlink_write_queue(skb, sk); 3266 sk_wmem_free_skb(sk, skb); 3267 tp->scoreboard_skb_hint = NULL; 3268 if (skb == tp->retransmit_skb_hint) 3269 tp->retransmit_skb_hint = NULL; 3270 if (skb == tp->lost_skb_hint) 3271 tp->lost_skb_hint = NULL; 3272 } 3273 3274 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3275 tp->snd_up = tp->snd_una; 3276 3277 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3278 flag |= FLAG_SACK_RENEGING; 3279 3280 if (flag & FLAG_ACKED) { 3281 const struct tcp_congestion_ops *ca_ops 3282 = inet_csk(sk)->icsk_ca_ops; 3283 3284 if (unlikely(icsk->icsk_mtup.probe_size && 3285 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3286 tcp_mtup_probe_success(sk); 3287 } 3288 3289 tcp_ack_update_rtt(sk, flag, seq_rtt); 3290 tcp_rearm_rto(sk); 3291 3292 if (tcp_is_reno(tp)) { 3293 tcp_remove_reno_sacks(sk, pkts_acked); 3294 } else { 3295 int delta; 3296 3297 /* Non-retransmitted hole got filled? That's reordering */ 3298 if (reord < prior_fackets) 3299 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3300 3301 delta = tcp_is_fack(tp) ? pkts_acked : 3302 prior_sacked - tp->sacked_out; 3303 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3304 } 3305 3306 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3307 3308 if (ca_ops->pkts_acked) { 3309 s32 rtt_us = -1; 3310 3311 /* Is the ACK triggering packet unambiguous? */ 3312 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3313 /* High resolution needed and available? */ 3314 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3315 !ktime_equal(last_ackt, 3316 net_invalid_timestamp())) 3317 rtt_us = ktime_us_delta(ktime_get_real(), 3318 last_ackt); 3319 else if (ca_seq_rtt > 0) 3320 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3321 } 3322 3323 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3324 } 3325 } 3326 3327 #if FASTRETRANS_DEBUG > 0 3328 WARN_ON((int)tp->sacked_out < 0); 3329 WARN_ON((int)tp->lost_out < 0); 3330 WARN_ON((int)tp->retrans_out < 0); 3331 if (!tp->packets_out && tcp_is_sack(tp)) { 3332 icsk = inet_csk(sk); 3333 if (tp->lost_out) { 3334 printk(KERN_DEBUG "Leak l=%u %d\n", 3335 tp->lost_out, icsk->icsk_ca_state); 3336 tp->lost_out = 0; 3337 } 3338 if (tp->sacked_out) { 3339 printk(KERN_DEBUG "Leak s=%u %d\n", 3340 tp->sacked_out, icsk->icsk_ca_state); 3341 tp->sacked_out = 0; 3342 } 3343 if (tp->retrans_out) { 3344 printk(KERN_DEBUG "Leak r=%u %d\n", 3345 tp->retrans_out, icsk->icsk_ca_state); 3346 tp->retrans_out = 0; 3347 } 3348 } 3349 #endif 3350 return flag; 3351 } 3352 3353 static void tcp_ack_probe(struct sock *sk) 3354 { 3355 const struct tcp_sock *tp = tcp_sk(sk); 3356 struct inet_connection_sock *icsk = inet_csk(sk); 3357 3358 /* Was it a usable window open? */ 3359 3360 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3361 icsk->icsk_backoff = 0; 3362 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3363 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3364 * This function is not for random using! 3365 */ 3366 } else { 3367 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3368 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3369 TCP_RTO_MAX); 3370 } 3371 } 3372 3373 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 3374 { 3375 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3376 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 3377 } 3378 3379 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3380 { 3381 const struct tcp_sock *tp = tcp_sk(sk); 3382 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3383 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 3384 } 3385 3386 /* Check that window update is acceptable. 3387 * The function assumes that snd_una<=ack<=snd_next. 3388 */ 3389 static inline int tcp_may_update_window(const struct tcp_sock *tp, 3390 const u32 ack, const u32 ack_seq, 3391 const u32 nwin) 3392 { 3393 return (after(ack, tp->snd_una) || 3394 after(ack_seq, tp->snd_wl1) || 3395 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 3396 } 3397 3398 /* Update our send window. 3399 * 3400 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3401 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3402 */ 3403 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 3404 u32 ack_seq) 3405 { 3406 struct tcp_sock *tp = tcp_sk(sk); 3407 int flag = 0; 3408 u32 nwin = ntohs(tcp_hdr(skb)->window); 3409 3410 if (likely(!tcp_hdr(skb)->syn)) 3411 nwin <<= tp->rx_opt.snd_wscale; 3412 3413 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3414 flag |= FLAG_WIN_UPDATE; 3415 tcp_update_wl(tp, ack_seq); 3416 3417 if (tp->snd_wnd != nwin) { 3418 tp->snd_wnd = nwin; 3419 3420 /* Note, it is the only place, where 3421 * fast path is recovered for sending TCP. 3422 */ 3423 tp->pred_flags = 0; 3424 tcp_fast_path_check(sk); 3425 3426 if (nwin > tp->max_window) { 3427 tp->max_window = nwin; 3428 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3429 } 3430 } 3431 } 3432 3433 tp->snd_una = ack; 3434 3435 return flag; 3436 } 3437 3438 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3439 * continue in congestion avoidance. 3440 */ 3441 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3442 { 3443 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3444 tp->snd_cwnd_cnt = 0; 3445 tp->bytes_acked = 0; 3446 TCP_ECN_queue_cwr(tp); 3447 tcp_moderate_cwnd(tp); 3448 } 3449 3450 /* A conservative spurious RTO response algorithm: reduce cwnd using 3451 * rate halving and continue in congestion avoidance. 3452 */ 3453 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3454 { 3455 tcp_enter_cwr(sk, 0); 3456 } 3457 3458 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3459 { 3460 if (flag & FLAG_ECE) 3461 tcp_ratehalving_spur_to_response(sk); 3462 else 3463 tcp_undo_cwr(sk, 1); 3464 } 3465 3466 /* F-RTO spurious RTO detection algorithm (RFC4138) 3467 * 3468 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3469 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3470 * window (but not to or beyond highest sequence sent before RTO): 3471 * On First ACK, send two new segments out. 3472 * On Second ACK, RTO was likely spurious. Do spurious response (response 3473 * algorithm is not part of the F-RTO detection algorithm 3474 * given in RFC4138 but can be selected separately). 3475 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3476 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3477 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3478 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3479 * 3480 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3481 * original window even after we transmit two new data segments. 3482 * 3483 * SACK version: 3484 * on first step, wait until first cumulative ACK arrives, then move to 3485 * the second step. In second step, the next ACK decides. 3486 * 3487 * F-RTO is implemented (mainly) in four functions: 3488 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3489 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3490 * called when tcp_use_frto() showed green light 3491 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3492 * - tcp_enter_frto_loss() is called if there is not enough evidence 3493 * to prove that the RTO is indeed spurious. It transfers the control 3494 * from F-RTO to the conventional RTO recovery 3495 */ 3496 static int tcp_process_frto(struct sock *sk, int flag) 3497 { 3498 struct tcp_sock *tp = tcp_sk(sk); 3499 3500 tcp_verify_left_out(tp); 3501 3502 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3503 if (flag & FLAG_DATA_ACKED) 3504 inet_csk(sk)->icsk_retransmits = 0; 3505 3506 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3507 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3508 tp->undo_marker = 0; 3509 3510 if (!before(tp->snd_una, tp->frto_highmark)) { 3511 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3512 return 1; 3513 } 3514 3515 if (!tcp_is_sackfrto(tp)) { 3516 /* RFC4138 shortcoming in step 2; should also have case c): 3517 * ACK isn't duplicate nor advances window, e.g., opposite dir 3518 * data, winupdate 3519 */ 3520 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3521 return 1; 3522 3523 if (!(flag & FLAG_DATA_ACKED)) { 3524 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3525 flag); 3526 return 1; 3527 } 3528 } else { 3529 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3530 /* Prevent sending of new data. */ 3531 tp->snd_cwnd = min(tp->snd_cwnd, 3532 tcp_packets_in_flight(tp)); 3533 return 1; 3534 } 3535 3536 if ((tp->frto_counter >= 2) && 3537 (!(flag & FLAG_FORWARD_PROGRESS) || 3538 ((flag & FLAG_DATA_SACKED) && 3539 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3540 /* RFC4138 shortcoming (see comment above) */ 3541 if (!(flag & FLAG_FORWARD_PROGRESS) && 3542 (flag & FLAG_NOT_DUP)) 3543 return 1; 3544 3545 tcp_enter_frto_loss(sk, 3, flag); 3546 return 1; 3547 } 3548 } 3549 3550 if (tp->frto_counter == 1) { 3551 /* tcp_may_send_now needs to see updated state */ 3552 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3553 tp->frto_counter = 2; 3554 3555 if (!tcp_may_send_now(sk)) 3556 tcp_enter_frto_loss(sk, 2, flag); 3557 3558 return 1; 3559 } else { 3560 switch (sysctl_tcp_frto_response) { 3561 case 2: 3562 tcp_undo_spur_to_response(sk, flag); 3563 break; 3564 case 1: 3565 tcp_conservative_spur_to_response(tp); 3566 break; 3567 default: 3568 tcp_ratehalving_spur_to_response(sk); 3569 break; 3570 } 3571 tp->frto_counter = 0; 3572 tp->undo_marker = 0; 3573 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3574 } 3575 return 0; 3576 } 3577 3578 /* This routine deals with incoming acks, but not outgoing ones. */ 3579 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 3580 { 3581 struct inet_connection_sock *icsk = inet_csk(sk); 3582 struct tcp_sock *tp = tcp_sk(sk); 3583 u32 prior_snd_una = tp->snd_una; 3584 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3585 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3586 u32 prior_in_flight; 3587 u32 prior_fackets; 3588 int prior_packets; 3589 int frto_cwnd = 0; 3590 3591 /* If the ack is older than previous acks 3592 * then we can probably ignore it. 3593 */ 3594 if (before(ack, prior_snd_una)) 3595 goto old_ack; 3596 3597 /* If the ack includes data we haven't sent yet, discard 3598 * this segment (RFC793 Section 3.9). 3599 */ 3600 if (after(ack, tp->snd_nxt)) 3601 goto invalid_ack; 3602 3603 if (after(ack, prior_snd_una)) 3604 flag |= FLAG_SND_UNA_ADVANCED; 3605 3606 if (sysctl_tcp_abc) { 3607 if (icsk->icsk_ca_state < TCP_CA_CWR) 3608 tp->bytes_acked += ack - prior_snd_una; 3609 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3610 /* we assume just one segment left network */ 3611 tp->bytes_acked += min(ack - prior_snd_una, 3612 tp->mss_cache); 3613 } 3614 3615 prior_fackets = tp->fackets_out; 3616 prior_in_flight = tcp_packets_in_flight(tp); 3617 3618 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3619 /* Window is constant, pure forward advance. 3620 * No more checks are required. 3621 * Note, we use the fact that SND.UNA>=SND.WL2. 3622 */ 3623 tcp_update_wl(tp, ack_seq); 3624 tp->snd_una = ack; 3625 flag |= FLAG_WIN_UPDATE; 3626 3627 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3628 3629 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3630 } else { 3631 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3632 flag |= FLAG_DATA; 3633 else 3634 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3635 3636 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3637 3638 if (TCP_SKB_CB(skb)->sacked) 3639 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3640 3641 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3642 flag |= FLAG_ECE; 3643 3644 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3645 } 3646 3647 /* We passed data and got it acked, remove any soft error 3648 * log. Something worked... 3649 */ 3650 sk->sk_err_soft = 0; 3651 icsk->icsk_probes_out = 0; 3652 tp->rcv_tstamp = tcp_time_stamp; 3653 prior_packets = tp->packets_out; 3654 if (!prior_packets) 3655 goto no_queue; 3656 3657 /* See if we can take anything off of the retransmit queue. */ 3658 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3659 3660 if (tp->frto_counter) 3661 frto_cwnd = tcp_process_frto(sk, flag); 3662 /* Guarantee sacktag reordering detection against wrap-arounds */ 3663 if (before(tp->frto_highmark, tp->snd_una)) 3664 tp->frto_highmark = 0; 3665 3666 if (tcp_ack_is_dubious(sk, flag)) { 3667 /* Advance CWND, if state allows this. */ 3668 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3669 tcp_may_raise_cwnd(sk, flag)) 3670 tcp_cong_avoid(sk, ack, prior_in_flight); 3671 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, 3672 flag); 3673 } else { 3674 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3675 tcp_cong_avoid(sk, ack, prior_in_flight); 3676 } 3677 3678 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3679 dst_confirm(sk->sk_dst_cache); 3680 3681 return 1; 3682 3683 no_queue: 3684 /* If this ack opens up a zero window, clear backoff. It was 3685 * being used to time the probes, and is probably far higher than 3686 * it needs to be for normal retransmission. 3687 */ 3688 if (tcp_send_head(sk)) 3689 tcp_ack_probe(sk); 3690 return 1; 3691 3692 invalid_ack: 3693 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3694 return -1; 3695 3696 old_ack: 3697 if (TCP_SKB_CB(skb)->sacked) { 3698 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3699 if (icsk->icsk_ca_state == TCP_CA_Open) 3700 tcp_try_keep_open(sk); 3701 } 3702 3703 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3704 return 0; 3705 } 3706 3707 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3708 * But, this can also be called on packets in the established flow when 3709 * the fast version below fails. 3710 */ 3711 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, 3712 int estab) 3713 { 3714 unsigned char *ptr; 3715 struct tcphdr *th = tcp_hdr(skb); 3716 int length = (th->doff * 4) - sizeof(struct tcphdr); 3717 3718 ptr = (unsigned char *)(th + 1); 3719 opt_rx->saw_tstamp = 0; 3720 3721 while (length > 0) { 3722 int opcode = *ptr++; 3723 int opsize; 3724 3725 switch (opcode) { 3726 case TCPOPT_EOL: 3727 return; 3728 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3729 length--; 3730 continue; 3731 default: 3732 opsize = *ptr++; 3733 if (opsize < 2) /* "silly options" */ 3734 return; 3735 if (opsize > length) 3736 return; /* don't parse partial options */ 3737 switch (opcode) { 3738 case TCPOPT_MSS: 3739 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3740 u16 in_mss = get_unaligned_be16(ptr); 3741 if (in_mss) { 3742 if (opt_rx->user_mss && 3743 opt_rx->user_mss < in_mss) 3744 in_mss = opt_rx->user_mss; 3745 opt_rx->mss_clamp = in_mss; 3746 } 3747 } 3748 break; 3749 case TCPOPT_WINDOW: 3750 if (opsize == TCPOLEN_WINDOW && th->syn && 3751 !estab && sysctl_tcp_window_scaling) { 3752 __u8 snd_wscale = *(__u8 *)ptr; 3753 opt_rx->wscale_ok = 1; 3754 if (snd_wscale > 14) { 3755 if (net_ratelimit()) 3756 printk(KERN_INFO "tcp_parse_options: Illegal window " 3757 "scaling value %d >14 received.\n", 3758 snd_wscale); 3759 snd_wscale = 14; 3760 } 3761 opt_rx->snd_wscale = snd_wscale; 3762 } 3763 break; 3764 case TCPOPT_TIMESTAMP: 3765 if ((opsize == TCPOLEN_TIMESTAMP) && 3766 ((estab && opt_rx->tstamp_ok) || 3767 (!estab && sysctl_tcp_timestamps))) { 3768 opt_rx->saw_tstamp = 1; 3769 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3770 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3771 } 3772 break; 3773 case TCPOPT_SACK_PERM: 3774 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3775 !estab && sysctl_tcp_sack) { 3776 opt_rx->sack_ok = 1; 3777 tcp_sack_reset(opt_rx); 3778 } 3779 break; 3780 3781 case TCPOPT_SACK: 3782 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3783 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3784 opt_rx->sack_ok) { 3785 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3786 } 3787 break; 3788 #ifdef CONFIG_TCP_MD5SIG 3789 case TCPOPT_MD5SIG: 3790 /* 3791 * The MD5 Hash has already been 3792 * checked (see tcp_v{4,6}_do_rcv()). 3793 */ 3794 break; 3795 #endif 3796 } 3797 3798 ptr += opsize-2; 3799 length -= opsize; 3800 } 3801 } 3802 } 3803 3804 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th) 3805 { 3806 __be32 *ptr = (__be32 *)(th + 1); 3807 3808 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3809 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3810 tp->rx_opt.saw_tstamp = 1; 3811 ++ptr; 3812 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3813 ++ptr; 3814 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3815 return 1; 3816 } 3817 return 0; 3818 } 3819 3820 /* Fast parse options. This hopes to only see timestamps. 3821 * If it is wrong it falls back on tcp_parse_options(). 3822 */ 3823 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 3824 struct tcp_sock *tp) 3825 { 3826 if (th->doff == sizeof(struct tcphdr) >> 2) { 3827 tp->rx_opt.saw_tstamp = 0; 3828 return 0; 3829 } else if (tp->rx_opt.tstamp_ok && 3830 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 3831 if (tcp_parse_aligned_timestamp(tp, th)) 3832 return 1; 3833 } 3834 tcp_parse_options(skb, &tp->rx_opt, 1); 3835 return 1; 3836 } 3837 3838 #ifdef CONFIG_TCP_MD5SIG 3839 /* 3840 * Parse MD5 Signature option 3841 */ 3842 u8 *tcp_parse_md5sig_option(struct tcphdr *th) 3843 { 3844 int length = (th->doff << 2) - sizeof (*th); 3845 u8 *ptr = (u8*)(th + 1); 3846 3847 /* If the TCP option is too short, we can short cut */ 3848 if (length < TCPOLEN_MD5SIG) 3849 return NULL; 3850 3851 while (length > 0) { 3852 int opcode = *ptr++; 3853 int opsize; 3854 3855 switch(opcode) { 3856 case TCPOPT_EOL: 3857 return NULL; 3858 case TCPOPT_NOP: 3859 length--; 3860 continue; 3861 default: 3862 opsize = *ptr++; 3863 if (opsize < 2 || opsize > length) 3864 return NULL; 3865 if (opcode == TCPOPT_MD5SIG) 3866 return ptr; 3867 } 3868 ptr += opsize - 2; 3869 length -= opsize; 3870 } 3871 return NULL; 3872 } 3873 #endif 3874 3875 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3876 { 3877 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3878 tp->rx_opt.ts_recent_stamp = get_seconds(); 3879 } 3880 3881 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3882 { 3883 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3884 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3885 * extra check below makes sure this can only happen 3886 * for pure ACK frames. -DaveM 3887 * 3888 * Not only, also it occurs for expired timestamps. 3889 */ 3890 3891 if (tcp_paws_check(&tp->rx_opt, 0)) 3892 tcp_store_ts_recent(tp); 3893 } 3894 } 3895 3896 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3897 * 3898 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3899 * it can pass through stack. So, the following predicate verifies that 3900 * this segment is not used for anything but congestion avoidance or 3901 * fast retransmit. Moreover, we even are able to eliminate most of such 3902 * second order effects, if we apply some small "replay" window (~RTO) 3903 * to timestamp space. 3904 * 3905 * All these measures still do not guarantee that we reject wrapped ACKs 3906 * on networks with high bandwidth, when sequence space is recycled fastly, 3907 * but it guarantees that such events will be very rare and do not affect 3908 * connection seriously. This doesn't look nice, but alas, PAWS is really 3909 * buggy extension. 3910 * 3911 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3912 * states that events when retransmit arrives after original data are rare. 3913 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3914 * the biggest problem on large power networks even with minor reordering. 3915 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3916 * up to bandwidth of 18Gigabit/sec. 8) ] 3917 */ 3918 3919 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3920 { 3921 struct tcp_sock *tp = tcp_sk(sk); 3922 struct tcphdr *th = tcp_hdr(skb); 3923 u32 seq = TCP_SKB_CB(skb)->seq; 3924 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3925 3926 return (/* 1. Pure ACK with correct sequence number. */ 3927 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3928 3929 /* 2. ... and duplicate ACK. */ 3930 ack == tp->snd_una && 3931 3932 /* 3. ... and does not update window. */ 3933 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3934 3935 /* 4. ... and sits in replay window. */ 3936 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3937 } 3938 3939 static inline int tcp_paws_discard(const struct sock *sk, 3940 const struct sk_buff *skb) 3941 { 3942 const struct tcp_sock *tp = tcp_sk(sk); 3943 3944 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3945 !tcp_disordered_ack(sk, skb); 3946 } 3947 3948 /* Check segment sequence number for validity. 3949 * 3950 * Segment controls are considered valid, if the segment 3951 * fits to the window after truncation to the window. Acceptability 3952 * of data (and SYN, FIN, of course) is checked separately. 3953 * See tcp_data_queue(), for example. 3954 * 3955 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3956 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3957 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3958 * (borrowed from freebsd) 3959 */ 3960 3961 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 3962 { 3963 return !before(end_seq, tp->rcv_wup) && 3964 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3965 } 3966 3967 /* When we get a reset we do this. */ 3968 static void tcp_reset(struct sock *sk) 3969 { 3970 /* We want the right error as BSD sees it (and indeed as we do). */ 3971 switch (sk->sk_state) { 3972 case TCP_SYN_SENT: 3973 sk->sk_err = ECONNREFUSED; 3974 break; 3975 case TCP_CLOSE_WAIT: 3976 sk->sk_err = EPIPE; 3977 break; 3978 case TCP_CLOSE: 3979 return; 3980 default: 3981 sk->sk_err = ECONNRESET; 3982 } 3983 3984 if (!sock_flag(sk, SOCK_DEAD)) 3985 sk->sk_error_report(sk); 3986 3987 tcp_done(sk); 3988 } 3989 3990 /* 3991 * Process the FIN bit. This now behaves as it is supposed to work 3992 * and the FIN takes effect when it is validly part of sequence 3993 * space. Not before when we get holes. 3994 * 3995 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3996 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3997 * TIME-WAIT) 3998 * 3999 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4000 * close and we go into CLOSING (and later onto TIME-WAIT) 4001 * 4002 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4003 */ 4004 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 4005 { 4006 struct tcp_sock *tp = tcp_sk(sk); 4007 4008 inet_csk_schedule_ack(sk); 4009 4010 sk->sk_shutdown |= RCV_SHUTDOWN; 4011 sock_set_flag(sk, SOCK_DONE); 4012 4013 switch (sk->sk_state) { 4014 case TCP_SYN_RECV: 4015 case TCP_ESTABLISHED: 4016 /* Move to CLOSE_WAIT */ 4017 tcp_set_state(sk, TCP_CLOSE_WAIT); 4018 inet_csk(sk)->icsk_ack.pingpong = 1; 4019 break; 4020 4021 case TCP_CLOSE_WAIT: 4022 case TCP_CLOSING: 4023 /* Received a retransmission of the FIN, do 4024 * nothing. 4025 */ 4026 break; 4027 case TCP_LAST_ACK: 4028 /* RFC793: Remain in the LAST-ACK state. */ 4029 break; 4030 4031 case TCP_FIN_WAIT1: 4032 /* This case occurs when a simultaneous close 4033 * happens, we must ack the received FIN and 4034 * enter the CLOSING state. 4035 */ 4036 tcp_send_ack(sk); 4037 tcp_set_state(sk, TCP_CLOSING); 4038 break; 4039 case TCP_FIN_WAIT2: 4040 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4041 tcp_send_ack(sk); 4042 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4043 break; 4044 default: 4045 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4046 * cases we should never reach this piece of code. 4047 */ 4048 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 4049 __func__, sk->sk_state); 4050 break; 4051 } 4052 4053 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4054 * Probably, we should reset in this case. For now drop them. 4055 */ 4056 __skb_queue_purge(&tp->out_of_order_queue); 4057 if (tcp_is_sack(tp)) 4058 tcp_sack_reset(&tp->rx_opt); 4059 sk_mem_reclaim(sk); 4060 4061 if (!sock_flag(sk, SOCK_DEAD)) { 4062 sk->sk_state_change(sk); 4063 4064 /* Do not send POLL_HUP for half duplex close. */ 4065 if (sk->sk_shutdown == SHUTDOWN_MASK || 4066 sk->sk_state == TCP_CLOSE) 4067 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4068 else 4069 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4070 } 4071 } 4072 4073 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4074 u32 end_seq) 4075 { 4076 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4077 if (before(seq, sp->start_seq)) 4078 sp->start_seq = seq; 4079 if (after(end_seq, sp->end_seq)) 4080 sp->end_seq = end_seq; 4081 return 1; 4082 } 4083 return 0; 4084 } 4085 4086 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4087 { 4088 struct tcp_sock *tp = tcp_sk(sk); 4089 4090 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4091 int mib_idx; 4092 4093 if (before(seq, tp->rcv_nxt)) 4094 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4095 else 4096 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4097 4098 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4099 4100 tp->rx_opt.dsack = 1; 4101 tp->duplicate_sack[0].start_seq = seq; 4102 tp->duplicate_sack[0].end_seq = end_seq; 4103 } 4104 } 4105 4106 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4107 { 4108 struct tcp_sock *tp = tcp_sk(sk); 4109 4110 if (!tp->rx_opt.dsack) 4111 tcp_dsack_set(sk, seq, end_seq); 4112 else 4113 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4114 } 4115 4116 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 4117 { 4118 struct tcp_sock *tp = tcp_sk(sk); 4119 4120 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4121 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4122 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4123 tcp_enter_quickack_mode(sk); 4124 4125 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4126 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4127 4128 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4129 end_seq = tp->rcv_nxt; 4130 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4131 } 4132 } 4133 4134 tcp_send_ack(sk); 4135 } 4136 4137 /* These routines update the SACK block as out-of-order packets arrive or 4138 * in-order packets close up the sequence space. 4139 */ 4140 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4141 { 4142 int this_sack; 4143 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4144 struct tcp_sack_block *swalk = sp + 1; 4145 4146 /* See if the recent change to the first SACK eats into 4147 * or hits the sequence space of other SACK blocks, if so coalesce. 4148 */ 4149 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4150 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4151 int i; 4152 4153 /* Zap SWALK, by moving every further SACK up by one slot. 4154 * Decrease num_sacks. 4155 */ 4156 tp->rx_opt.num_sacks--; 4157 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4158 sp[i] = sp[i + 1]; 4159 continue; 4160 } 4161 this_sack++, swalk++; 4162 } 4163 } 4164 4165 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4166 { 4167 struct tcp_sock *tp = tcp_sk(sk); 4168 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4169 int cur_sacks = tp->rx_opt.num_sacks; 4170 int this_sack; 4171 4172 if (!cur_sacks) 4173 goto new_sack; 4174 4175 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4176 if (tcp_sack_extend(sp, seq, end_seq)) { 4177 /* Rotate this_sack to the first one. */ 4178 for (; this_sack > 0; this_sack--, sp--) 4179 swap(*sp, *(sp - 1)); 4180 if (cur_sacks > 1) 4181 tcp_sack_maybe_coalesce(tp); 4182 return; 4183 } 4184 } 4185 4186 /* Could not find an adjacent existing SACK, build a new one, 4187 * put it at the front, and shift everyone else down. We 4188 * always know there is at least one SACK present already here. 4189 * 4190 * If the sack array is full, forget about the last one. 4191 */ 4192 if (this_sack >= TCP_NUM_SACKS) { 4193 this_sack--; 4194 tp->rx_opt.num_sacks--; 4195 sp--; 4196 } 4197 for (; this_sack > 0; this_sack--, sp--) 4198 *sp = *(sp - 1); 4199 4200 new_sack: 4201 /* Build the new head SACK, and we're done. */ 4202 sp->start_seq = seq; 4203 sp->end_seq = end_seq; 4204 tp->rx_opt.num_sacks++; 4205 } 4206 4207 /* RCV.NXT advances, some SACKs should be eaten. */ 4208 4209 static void tcp_sack_remove(struct tcp_sock *tp) 4210 { 4211 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4212 int num_sacks = tp->rx_opt.num_sacks; 4213 int this_sack; 4214 4215 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4216 if (skb_queue_empty(&tp->out_of_order_queue)) { 4217 tp->rx_opt.num_sacks = 0; 4218 return; 4219 } 4220 4221 for (this_sack = 0; this_sack < num_sacks;) { 4222 /* Check if the start of the sack is covered by RCV.NXT. */ 4223 if (!before(tp->rcv_nxt, sp->start_seq)) { 4224 int i; 4225 4226 /* RCV.NXT must cover all the block! */ 4227 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4228 4229 /* Zap this SACK, by moving forward any other SACKS. */ 4230 for (i=this_sack+1; i < num_sacks; i++) 4231 tp->selective_acks[i-1] = tp->selective_acks[i]; 4232 num_sacks--; 4233 continue; 4234 } 4235 this_sack++; 4236 sp++; 4237 } 4238 tp->rx_opt.num_sacks = num_sacks; 4239 } 4240 4241 /* This one checks to see if we can put data from the 4242 * out_of_order queue into the receive_queue. 4243 */ 4244 static void tcp_ofo_queue(struct sock *sk) 4245 { 4246 struct tcp_sock *tp = tcp_sk(sk); 4247 __u32 dsack_high = tp->rcv_nxt; 4248 struct sk_buff *skb; 4249 4250 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4251 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4252 break; 4253 4254 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4255 __u32 dsack = dsack_high; 4256 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4257 dsack_high = TCP_SKB_CB(skb)->end_seq; 4258 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4259 } 4260 4261 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4262 SOCK_DEBUG(sk, "ofo packet was already received \n"); 4263 __skb_unlink(skb, &tp->out_of_order_queue); 4264 __kfree_skb(skb); 4265 continue; 4266 } 4267 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4268 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4269 TCP_SKB_CB(skb)->end_seq); 4270 4271 __skb_unlink(skb, &tp->out_of_order_queue); 4272 __skb_queue_tail(&sk->sk_receive_queue, skb); 4273 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4274 if (tcp_hdr(skb)->fin) 4275 tcp_fin(skb, sk, tcp_hdr(skb)); 4276 } 4277 } 4278 4279 static int tcp_prune_ofo_queue(struct sock *sk); 4280 static int tcp_prune_queue(struct sock *sk); 4281 4282 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size) 4283 { 4284 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4285 !sk_rmem_schedule(sk, size)) { 4286 4287 if (tcp_prune_queue(sk) < 0) 4288 return -1; 4289 4290 if (!sk_rmem_schedule(sk, size)) { 4291 if (!tcp_prune_ofo_queue(sk)) 4292 return -1; 4293 4294 if (!sk_rmem_schedule(sk, size)) 4295 return -1; 4296 } 4297 } 4298 return 0; 4299 } 4300 4301 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4302 { 4303 struct tcphdr *th = tcp_hdr(skb); 4304 struct tcp_sock *tp = tcp_sk(sk); 4305 int eaten = -1; 4306 4307 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4308 goto drop; 4309 4310 __skb_pull(skb, th->doff * 4); 4311 4312 TCP_ECN_accept_cwr(tp, skb); 4313 4314 tp->rx_opt.dsack = 0; 4315 4316 /* Queue data for delivery to the user. 4317 * Packets in sequence go to the receive queue. 4318 * Out of sequence packets to the out_of_order_queue. 4319 */ 4320 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4321 if (tcp_receive_window(tp) == 0) 4322 goto out_of_window; 4323 4324 /* Ok. In sequence. In window. */ 4325 if (tp->ucopy.task == current && 4326 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4327 sock_owned_by_user(sk) && !tp->urg_data) { 4328 int chunk = min_t(unsigned int, skb->len, 4329 tp->ucopy.len); 4330 4331 __set_current_state(TASK_RUNNING); 4332 4333 local_bh_enable(); 4334 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4335 tp->ucopy.len -= chunk; 4336 tp->copied_seq += chunk; 4337 eaten = (chunk == skb->len && !th->fin); 4338 tcp_rcv_space_adjust(sk); 4339 } 4340 local_bh_disable(); 4341 } 4342 4343 if (eaten <= 0) { 4344 queue_and_out: 4345 if (eaten < 0 && 4346 tcp_try_rmem_schedule(sk, skb->truesize)) 4347 goto drop; 4348 4349 skb_set_owner_r(skb, sk); 4350 __skb_queue_tail(&sk->sk_receive_queue, skb); 4351 } 4352 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4353 if (skb->len) 4354 tcp_event_data_recv(sk, skb); 4355 if (th->fin) 4356 tcp_fin(skb, sk, th); 4357 4358 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4359 tcp_ofo_queue(sk); 4360 4361 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4362 * gap in queue is filled. 4363 */ 4364 if (skb_queue_empty(&tp->out_of_order_queue)) 4365 inet_csk(sk)->icsk_ack.pingpong = 0; 4366 } 4367 4368 if (tp->rx_opt.num_sacks) 4369 tcp_sack_remove(tp); 4370 4371 tcp_fast_path_check(sk); 4372 4373 if (eaten > 0) 4374 __kfree_skb(skb); 4375 else if (!sock_flag(sk, SOCK_DEAD)) 4376 sk->sk_data_ready(sk, 0); 4377 return; 4378 } 4379 4380 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4381 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4382 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4383 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4384 4385 out_of_window: 4386 tcp_enter_quickack_mode(sk); 4387 inet_csk_schedule_ack(sk); 4388 drop: 4389 __kfree_skb(skb); 4390 return; 4391 } 4392 4393 /* Out of window. F.e. zero window probe. */ 4394 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4395 goto out_of_window; 4396 4397 tcp_enter_quickack_mode(sk); 4398 4399 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4400 /* Partial packet, seq < rcv_next < end_seq */ 4401 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4402 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4403 TCP_SKB_CB(skb)->end_seq); 4404 4405 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4406 4407 /* If window is closed, drop tail of packet. But after 4408 * remembering D-SACK for its head made in previous line. 4409 */ 4410 if (!tcp_receive_window(tp)) 4411 goto out_of_window; 4412 goto queue_and_out; 4413 } 4414 4415 TCP_ECN_check_ce(tp, skb); 4416 4417 if (tcp_try_rmem_schedule(sk, skb->truesize)) 4418 goto drop; 4419 4420 /* Disable header prediction. */ 4421 tp->pred_flags = 0; 4422 inet_csk_schedule_ack(sk); 4423 4424 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4425 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4426 4427 skb_set_owner_r(skb, sk); 4428 4429 if (!skb_peek(&tp->out_of_order_queue)) { 4430 /* Initial out of order segment, build 1 SACK. */ 4431 if (tcp_is_sack(tp)) { 4432 tp->rx_opt.num_sacks = 1; 4433 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4434 tp->selective_acks[0].end_seq = 4435 TCP_SKB_CB(skb)->end_seq; 4436 } 4437 __skb_queue_head(&tp->out_of_order_queue, skb); 4438 } else { 4439 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 4440 u32 seq = TCP_SKB_CB(skb)->seq; 4441 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4442 4443 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4444 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4445 4446 if (!tp->rx_opt.num_sacks || 4447 tp->selective_acks[0].end_seq != seq) 4448 goto add_sack; 4449 4450 /* Common case: data arrive in order after hole. */ 4451 tp->selective_acks[0].end_seq = end_seq; 4452 return; 4453 } 4454 4455 /* Find place to insert this segment. */ 4456 do { 4457 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4458 break; 4459 } while ((skb1 = skb1->prev) != 4460 (struct sk_buff *)&tp->out_of_order_queue); 4461 4462 /* Do skb overlap to previous one? */ 4463 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue && 4464 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4465 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4466 /* All the bits are present. Drop. */ 4467 __kfree_skb(skb); 4468 tcp_dsack_set(sk, seq, end_seq); 4469 goto add_sack; 4470 } 4471 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4472 /* Partial overlap. */ 4473 tcp_dsack_set(sk, seq, 4474 TCP_SKB_CB(skb1)->end_seq); 4475 } else { 4476 skb1 = skb1->prev; 4477 } 4478 } 4479 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4480 4481 /* And clean segments covered by new one as whole. */ 4482 while ((skb1 = skb->next) != 4483 (struct sk_buff *)&tp->out_of_order_queue && 4484 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 4485 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4486 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4487 end_seq); 4488 break; 4489 } 4490 __skb_unlink(skb1, &tp->out_of_order_queue); 4491 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4492 TCP_SKB_CB(skb1)->end_seq); 4493 __kfree_skb(skb1); 4494 } 4495 4496 add_sack: 4497 if (tcp_is_sack(tp)) 4498 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4499 } 4500 } 4501 4502 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4503 struct sk_buff_head *list) 4504 { 4505 struct sk_buff *next = skb->next; 4506 4507 __skb_unlink(skb, list); 4508 __kfree_skb(skb); 4509 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4510 4511 return next; 4512 } 4513 4514 /* Collapse contiguous sequence of skbs head..tail with 4515 * sequence numbers start..end. 4516 * Segments with FIN/SYN are not collapsed (only because this 4517 * simplifies code) 4518 */ 4519 static void 4520 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4521 struct sk_buff *head, struct sk_buff *tail, 4522 u32 start, u32 end) 4523 { 4524 struct sk_buff *skb; 4525 4526 /* First, check that queue is collapsible and find 4527 * the point where collapsing can be useful. */ 4528 for (skb = head; skb != tail;) { 4529 /* No new bits? It is possible on ofo queue. */ 4530 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4531 skb = tcp_collapse_one(sk, skb, list); 4532 continue; 4533 } 4534 4535 /* The first skb to collapse is: 4536 * - not SYN/FIN and 4537 * - bloated or contains data before "start" or 4538 * overlaps to the next one. 4539 */ 4540 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4541 (tcp_win_from_space(skb->truesize) > skb->len || 4542 before(TCP_SKB_CB(skb)->seq, start) || 4543 (skb->next != tail && 4544 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 4545 break; 4546 4547 /* Decided to skip this, advance start seq. */ 4548 start = TCP_SKB_CB(skb)->end_seq; 4549 skb = skb->next; 4550 } 4551 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4552 return; 4553 4554 while (before(start, end)) { 4555 struct sk_buff *nskb; 4556 unsigned int header = skb_headroom(skb); 4557 int copy = SKB_MAX_ORDER(header, 0); 4558 4559 /* Too big header? This can happen with IPv6. */ 4560 if (copy < 0) 4561 return; 4562 if (end - start < copy) 4563 copy = end - start; 4564 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4565 if (!nskb) 4566 return; 4567 4568 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4569 skb_set_network_header(nskb, (skb_network_header(skb) - 4570 skb->head)); 4571 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4572 skb->head)); 4573 skb_reserve(nskb, header); 4574 memcpy(nskb->head, skb->head, header); 4575 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4576 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4577 __skb_queue_before(list, skb, nskb); 4578 skb_set_owner_r(nskb, sk); 4579 4580 /* Copy data, releasing collapsed skbs. */ 4581 while (copy > 0) { 4582 int offset = start - TCP_SKB_CB(skb)->seq; 4583 int size = TCP_SKB_CB(skb)->end_seq - start; 4584 4585 BUG_ON(offset < 0); 4586 if (size > 0) { 4587 size = min(copy, size); 4588 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4589 BUG(); 4590 TCP_SKB_CB(nskb)->end_seq += size; 4591 copy -= size; 4592 start += size; 4593 } 4594 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4595 skb = tcp_collapse_one(sk, skb, list); 4596 if (skb == tail || 4597 tcp_hdr(skb)->syn || 4598 tcp_hdr(skb)->fin) 4599 return; 4600 } 4601 } 4602 } 4603 } 4604 4605 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4606 * and tcp_collapse() them until all the queue is collapsed. 4607 */ 4608 static void tcp_collapse_ofo_queue(struct sock *sk) 4609 { 4610 struct tcp_sock *tp = tcp_sk(sk); 4611 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4612 struct sk_buff *head; 4613 u32 start, end; 4614 4615 if (skb == NULL) 4616 return; 4617 4618 start = TCP_SKB_CB(skb)->seq; 4619 end = TCP_SKB_CB(skb)->end_seq; 4620 head = skb; 4621 4622 for (;;) { 4623 skb = skb->next; 4624 4625 /* Segment is terminated when we see gap or when 4626 * we are at the end of all the queue. */ 4627 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 4628 after(TCP_SKB_CB(skb)->seq, end) || 4629 before(TCP_SKB_CB(skb)->end_seq, start)) { 4630 tcp_collapse(sk, &tp->out_of_order_queue, 4631 head, skb, start, end); 4632 head = skb; 4633 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 4634 break; 4635 /* Start new segment */ 4636 start = TCP_SKB_CB(skb)->seq; 4637 end = TCP_SKB_CB(skb)->end_seq; 4638 } else { 4639 if (before(TCP_SKB_CB(skb)->seq, start)) 4640 start = TCP_SKB_CB(skb)->seq; 4641 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4642 end = TCP_SKB_CB(skb)->end_seq; 4643 } 4644 } 4645 } 4646 4647 /* 4648 * Purge the out-of-order queue. 4649 * Return true if queue was pruned. 4650 */ 4651 static int tcp_prune_ofo_queue(struct sock *sk) 4652 { 4653 struct tcp_sock *tp = tcp_sk(sk); 4654 int res = 0; 4655 4656 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4657 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4658 __skb_queue_purge(&tp->out_of_order_queue); 4659 4660 /* Reset SACK state. A conforming SACK implementation will 4661 * do the same at a timeout based retransmit. When a connection 4662 * is in a sad state like this, we care only about integrity 4663 * of the connection not performance. 4664 */ 4665 if (tp->rx_opt.sack_ok) 4666 tcp_sack_reset(&tp->rx_opt); 4667 sk_mem_reclaim(sk); 4668 res = 1; 4669 } 4670 return res; 4671 } 4672 4673 /* Reduce allocated memory if we can, trying to get 4674 * the socket within its memory limits again. 4675 * 4676 * Return less than zero if we should start dropping frames 4677 * until the socket owning process reads some of the data 4678 * to stabilize the situation. 4679 */ 4680 static int tcp_prune_queue(struct sock *sk) 4681 { 4682 struct tcp_sock *tp = tcp_sk(sk); 4683 4684 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4685 4686 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4687 4688 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4689 tcp_clamp_window(sk); 4690 else if (tcp_memory_pressure) 4691 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4692 4693 tcp_collapse_ofo_queue(sk); 4694 tcp_collapse(sk, &sk->sk_receive_queue, 4695 sk->sk_receive_queue.next, 4696 (struct sk_buff *)&sk->sk_receive_queue, 4697 tp->copied_seq, tp->rcv_nxt); 4698 sk_mem_reclaim(sk); 4699 4700 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4701 return 0; 4702 4703 /* Collapsing did not help, destructive actions follow. 4704 * This must not ever occur. */ 4705 4706 tcp_prune_ofo_queue(sk); 4707 4708 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4709 return 0; 4710 4711 /* If we are really being abused, tell the caller to silently 4712 * drop receive data on the floor. It will get retransmitted 4713 * and hopefully then we'll have sufficient space. 4714 */ 4715 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4716 4717 /* Massive buffer overcommit. */ 4718 tp->pred_flags = 0; 4719 return -1; 4720 } 4721 4722 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4723 * As additional protections, we do not touch cwnd in retransmission phases, 4724 * and if application hit its sndbuf limit recently. 4725 */ 4726 void tcp_cwnd_application_limited(struct sock *sk) 4727 { 4728 struct tcp_sock *tp = tcp_sk(sk); 4729 4730 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4731 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4732 /* Limited by application or receiver window. */ 4733 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4734 u32 win_used = max(tp->snd_cwnd_used, init_win); 4735 if (win_used < tp->snd_cwnd) { 4736 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4737 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4738 } 4739 tp->snd_cwnd_used = 0; 4740 } 4741 tp->snd_cwnd_stamp = tcp_time_stamp; 4742 } 4743 4744 static int tcp_should_expand_sndbuf(struct sock *sk) 4745 { 4746 struct tcp_sock *tp = tcp_sk(sk); 4747 4748 /* If the user specified a specific send buffer setting, do 4749 * not modify it. 4750 */ 4751 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4752 return 0; 4753 4754 /* If we are under global TCP memory pressure, do not expand. */ 4755 if (tcp_memory_pressure) 4756 return 0; 4757 4758 /* If we are under soft global TCP memory pressure, do not expand. */ 4759 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 4760 return 0; 4761 4762 /* If we filled the congestion window, do not expand. */ 4763 if (tp->packets_out >= tp->snd_cwnd) 4764 return 0; 4765 4766 return 1; 4767 } 4768 4769 /* When incoming ACK allowed to free some skb from write_queue, 4770 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4771 * on the exit from tcp input handler. 4772 * 4773 * PROBLEM: sndbuf expansion does not work well with largesend. 4774 */ 4775 static void tcp_new_space(struct sock *sk) 4776 { 4777 struct tcp_sock *tp = tcp_sk(sk); 4778 4779 if (tcp_should_expand_sndbuf(sk)) { 4780 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 4781 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 4782 int demanded = max_t(unsigned int, tp->snd_cwnd, 4783 tp->reordering + 1); 4784 sndmem *= 2 * demanded; 4785 if (sndmem > sk->sk_sndbuf) 4786 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4787 tp->snd_cwnd_stamp = tcp_time_stamp; 4788 } 4789 4790 sk->sk_write_space(sk); 4791 } 4792 4793 static void tcp_check_space(struct sock *sk) 4794 { 4795 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4796 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4797 if (sk->sk_socket && 4798 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4799 tcp_new_space(sk); 4800 } 4801 } 4802 4803 static inline void tcp_data_snd_check(struct sock *sk) 4804 { 4805 tcp_push_pending_frames(sk); 4806 tcp_check_space(sk); 4807 } 4808 4809 /* 4810 * Check if sending an ack is needed. 4811 */ 4812 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4813 { 4814 struct tcp_sock *tp = tcp_sk(sk); 4815 4816 /* More than one full frame received... */ 4817 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 4818 /* ... and right edge of window advances far enough. 4819 * (tcp_recvmsg() will send ACK otherwise). Or... 4820 */ 4821 && __tcp_select_window(sk) >= tp->rcv_wnd) || 4822 /* We ACK each frame or... */ 4823 tcp_in_quickack_mode(sk) || 4824 /* We have out of order data. */ 4825 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4826 /* Then ack it now */ 4827 tcp_send_ack(sk); 4828 } else { 4829 /* Else, send delayed ack. */ 4830 tcp_send_delayed_ack(sk); 4831 } 4832 } 4833 4834 static inline void tcp_ack_snd_check(struct sock *sk) 4835 { 4836 if (!inet_csk_ack_scheduled(sk)) { 4837 /* We sent a data segment already. */ 4838 return; 4839 } 4840 __tcp_ack_snd_check(sk, 1); 4841 } 4842 4843 /* 4844 * This routine is only called when we have urgent data 4845 * signaled. Its the 'slow' part of tcp_urg. It could be 4846 * moved inline now as tcp_urg is only called from one 4847 * place. We handle URGent data wrong. We have to - as 4848 * BSD still doesn't use the correction from RFC961. 4849 * For 1003.1g we should support a new option TCP_STDURG to permit 4850 * either form (or just set the sysctl tcp_stdurg). 4851 */ 4852 4853 static void tcp_check_urg(struct sock *sk, struct tcphdr *th) 4854 { 4855 struct tcp_sock *tp = tcp_sk(sk); 4856 u32 ptr = ntohs(th->urg_ptr); 4857 4858 if (ptr && !sysctl_tcp_stdurg) 4859 ptr--; 4860 ptr += ntohl(th->seq); 4861 4862 /* Ignore urgent data that we've already seen and read. */ 4863 if (after(tp->copied_seq, ptr)) 4864 return; 4865 4866 /* Do not replay urg ptr. 4867 * 4868 * NOTE: interesting situation not covered by specs. 4869 * Misbehaving sender may send urg ptr, pointing to segment, 4870 * which we already have in ofo queue. We are not able to fetch 4871 * such data and will stay in TCP_URG_NOTYET until will be eaten 4872 * by recvmsg(). Seems, we are not obliged to handle such wicked 4873 * situations. But it is worth to think about possibility of some 4874 * DoSes using some hypothetical application level deadlock. 4875 */ 4876 if (before(ptr, tp->rcv_nxt)) 4877 return; 4878 4879 /* Do we already have a newer (or duplicate) urgent pointer? */ 4880 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4881 return; 4882 4883 /* Tell the world about our new urgent pointer. */ 4884 sk_send_sigurg(sk); 4885 4886 /* We may be adding urgent data when the last byte read was 4887 * urgent. To do this requires some care. We cannot just ignore 4888 * tp->copied_seq since we would read the last urgent byte again 4889 * as data, nor can we alter copied_seq until this data arrives 4890 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4891 * 4892 * NOTE. Double Dutch. Rendering to plain English: author of comment 4893 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4894 * and expect that both A and B disappear from stream. This is _wrong_. 4895 * Though this happens in BSD with high probability, this is occasional. 4896 * Any application relying on this is buggy. Note also, that fix "works" 4897 * only in this artificial test. Insert some normal data between A and B and we will 4898 * decline of BSD again. Verdict: it is better to remove to trap 4899 * buggy users. 4900 */ 4901 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4902 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4903 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4904 tp->copied_seq++; 4905 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4906 __skb_unlink(skb, &sk->sk_receive_queue); 4907 __kfree_skb(skb); 4908 } 4909 } 4910 4911 tp->urg_data = TCP_URG_NOTYET; 4912 tp->urg_seq = ptr; 4913 4914 /* Disable header prediction. */ 4915 tp->pred_flags = 0; 4916 } 4917 4918 /* This is the 'fast' part of urgent handling. */ 4919 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 4920 { 4921 struct tcp_sock *tp = tcp_sk(sk); 4922 4923 /* Check if we get a new urgent pointer - normally not. */ 4924 if (th->urg) 4925 tcp_check_urg(sk, th); 4926 4927 /* Do we wait for any urgent data? - normally not... */ 4928 if (tp->urg_data == TCP_URG_NOTYET) { 4929 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4930 th->syn; 4931 4932 /* Is the urgent pointer pointing into this packet? */ 4933 if (ptr < skb->len) { 4934 u8 tmp; 4935 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4936 BUG(); 4937 tp->urg_data = TCP_URG_VALID | tmp; 4938 if (!sock_flag(sk, SOCK_DEAD)) 4939 sk->sk_data_ready(sk, 0); 4940 } 4941 } 4942 } 4943 4944 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4945 { 4946 struct tcp_sock *tp = tcp_sk(sk); 4947 int chunk = skb->len - hlen; 4948 int err; 4949 4950 local_bh_enable(); 4951 if (skb_csum_unnecessary(skb)) 4952 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4953 else 4954 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4955 tp->ucopy.iov); 4956 4957 if (!err) { 4958 tp->ucopy.len -= chunk; 4959 tp->copied_seq += chunk; 4960 tcp_rcv_space_adjust(sk); 4961 } 4962 4963 local_bh_disable(); 4964 return err; 4965 } 4966 4967 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4968 struct sk_buff *skb) 4969 { 4970 __sum16 result; 4971 4972 if (sock_owned_by_user(sk)) { 4973 local_bh_enable(); 4974 result = __tcp_checksum_complete(skb); 4975 local_bh_disable(); 4976 } else { 4977 result = __tcp_checksum_complete(skb); 4978 } 4979 return result; 4980 } 4981 4982 static inline int tcp_checksum_complete_user(struct sock *sk, 4983 struct sk_buff *skb) 4984 { 4985 return !skb_csum_unnecessary(skb) && 4986 __tcp_checksum_complete_user(sk, skb); 4987 } 4988 4989 #ifdef CONFIG_NET_DMA 4990 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 4991 int hlen) 4992 { 4993 struct tcp_sock *tp = tcp_sk(sk); 4994 int chunk = skb->len - hlen; 4995 int dma_cookie; 4996 int copied_early = 0; 4997 4998 if (tp->ucopy.wakeup) 4999 return 0; 5000 5001 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 5002 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 5003 5004 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 5005 5006 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 5007 skb, hlen, 5008 tp->ucopy.iov, chunk, 5009 tp->ucopy.pinned_list); 5010 5011 if (dma_cookie < 0) 5012 goto out; 5013 5014 tp->ucopy.dma_cookie = dma_cookie; 5015 copied_early = 1; 5016 5017 tp->ucopy.len -= chunk; 5018 tp->copied_seq += chunk; 5019 tcp_rcv_space_adjust(sk); 5020 5021 if ((tp->ucopy.len == 0) || 5022 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5023 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5024 tp->ucopy.wakeup = 1; 5025 sk->sk_data_ready(sk, 0); 5026 } 5027 } else if (chunk > 0) { 5028 tp->ucopy.wakeup = 1; 5029 sk->sk_data_ready(sk, 0); 5030 } 5031 out: 5032 return copied_early; 5033 } 5034 #endif /* CONFIG_NET_DMA */ 5035 5036 /* Does PAWS and seqno based validation of an incoming segment, flags will 5037 * play significant role here. 5038 */ 5039 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5040 struct tcphdr *th, int syn_inerr) 5041 { 5042 struct tcp_sock *tp = tcp_sk(sk); 5043 5044 /* RFC1323: H1. Apply PAWS check first. */ 5045 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5046 tcp_paws_discard(sk, skb)) { 5047 if (!th->rst) { 5048 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5049 tcp_send_dupack(sk, skb); 5050 goto discard; 5051 } 5052 /* Reset is accepted even if it did not pass PAWS. */ 5053 } 5054 5055 /* Step 1: check sequence number */ 5056 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5057 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5058 * (RST) segments are validated by checking their SEQ-fields." 5059 * And page 69: "If an incoming segment is not acceptable, 5060 * an acknowledgment should be sent in reply (unless the RST 5061 * bit is set, if so drop the segment and return)". 5062 */ 5063 if (!th->rst) 5064 tcp_send_dupack(sk, skb); 5065 goto discard; 5066 } 5067 5068 /* Step 2: check RST bit */ 5069 if (th->rst) { 5070 tcp_reset(sk); 5071 goto discard; 5072 } 5073 5074 /* ts_recent update must be made after we are sure that the packet 5075 * is in window. 5076 */ 5077 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5078 5079 /* step 3: check security and precedence [ignored] */ 5080 5081 /* step 4: Check for a SYN in window. */ 5082 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5083 if (syn_inerr) 5084 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5085 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN); 5086 tcp_reset(sk); 5087 return -1; 5088 } 5089 5090 return 1; 5091 5092 discard: 5093 __kfree_skb(skb); 5094 return 0; 5095 } 5096 5097 /* 5098 * TCP receive function for the ESTABLISHED state. 5099 * 5100 * It is split into a fast path and a slow path. The fast path is 5101 * disabled when: 5102 * - A zero window was announced from us - zero window probing 5103 * is only handled properly in the slow path. 5104 * - Out of order segments arrived. 5105 * - Urgent data is expected. 5106 * - There is no buffer space left 5107 * - Unexpected TCP flags/window values/header lengths are received 5108 * (detected by checking the TCP header against pred_flags) 5109 * - Data is sent in both directions. Fast path only supports pure senders 5110 * or pure receivers (this means either the sequence number or the ack 5111 * value must stay constant) 5112 * - Unexpected TCP option. 5113 * 5114 * When these conditions are not satisfied it drops into a standard 5115 * receive procedure patterned after RFC793 to handle all cases. 5116 * The first three cases are guaranteed by proper pred_flags setting, 5117 * the rest is checked inline. Fast processing is turned on in 5118 * tcp_data_queue when everything is OK. 5119 */ 5120 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5121 struct tcphdr *th, unsigned len) 5122 { 5123 struct tcp_sock *tp = tcp_sk(sk); 5124 int res; 5125 5126 /* 5127 * Header prediction. 5128 * The code loosely follows the one in the famous 5129 * "30 instruction TCP receive" Van Jacobson mail. 5130 * 5131 * Van's trick is to deposit buffers into socket queue 5132 * on a device interrupt, to call tcp_recv function 5133 * on the receive process context and checksum and copy 5134 * the buffer to user space. smart... 5135 * 5136 * Our current scheme is not silly either but we take the 5137 * extra cost of the net_bh soft interrupt processing... 5138 * We do checksum and copy also but from device to kernel. 5139 */ 5140 5141 tp->rx_opt.saw_tstamp = 0; 5142 5143 /* pred_flags is 0xS?10 << 16 + snd_wnd 5144 * if header_prediction is to be made 5145 * 'S' will always be tp->tcp_header_len >> 2 5146 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5147 * turn it off (when there are holes in the receive 5148 * space for instance) 5149 * PSH flag is ignored. 5150 */ 5151 5152 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5153 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5154 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5155 int tcp_header_len = tp->tcp_header_len; 5156 5157 /* Timestamp header prediction: tcp_header_len 5158 * is automatically equal to th->doff*4 due to pred_flags 5159 * match. 5160 */ 5161 5162 /* Check timestamp */ 5163 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5164 /* No? Slow path! */ 5165 if (!tcp_parse_aligned_timestamp(tp, th)) 5166 goto slow_path; 5167 5168 /* If PAWS failed, check it more carefully in slow path */ 5169 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5170 goto slow_path; 5171 5172 /* DO NOT update ts_recent here, if checksum fails 5173 * and timestamp was corrupted part, it will result 5174 * in a hung connection since we will drop all 5175 * future packets due to the PAWS test. 5176 */ 5177 } 5178 5179 if (len <= tcp_header_len) { 5180 /* Bulk data transfer: sender */ 5181 if (len == tcp_header_len) { 5182 /* Predicted packet is in window by definition. 5183 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5184 * Hence, check seq<=rcv_wup reduces to: 5185 */ 5186 if (tcp_header_len == 5187 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5188 tp->rcv_nxt == tp->rcv_wup) 5189 tcp_store_ts_recent(tp); 5190 5191 /* We know that such packets are checksummed 5192 * on entry. 5193 */ 5194 tcp_ack(sk, skb, 0); 5195 __kfree_skb(skb); 5196 tcp_data_snd_check(sk); 5197 return 0; 5198 } else { /* Header too small */ 5199 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5200 goto discard; 5201 } 5202 } else { 5203 int eaten = 0; 5204 int copied_early = 0; 5205 5206 if (tp->copied_seq == tp->rcv_nxt && 5207 len - tcp_header_len <= tp->ucopy.len) { 5208 #ifdef CONFIG_NET_DMA 5209 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5210 copied_early = 1; 5211 eaten = 1; 5212 } 5213 #endif 5214 if (tp->ucopy.task == current && 5215 sock_owned_by_user(sk) && !copied_early) { 5216 __set_current_state(TASK_RUNNING); 5217 5218 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5219 eaten = 1; 5220 } 5221 if (eaten) { 5222 /* Predicted packet is in window by definition. 5223 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5224 * Hence, check seq<=rcv_wup reduces to: 5225 */ 5226 if (tcp_header_len == 5227 (sizeof(struct tcphdr) + 5228 TCPOLEN_TSTAMP_ALIGNED) && 5229 tp->rcv_nxt == tp->rcv_wup) 5230 tcp_store_ts_recent(tp); 5231 5232 tcp_rcv_rtt_measure_ts(sk, skb); 5233 5234 __skb_pull(skb, tcp_header_len); 5235 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5236 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5237 } 5238 if (copied_early) 5239 tcp_cleanup_rbuf(sk, skb->len); 5240 } 5241 if (!eaten) { 5242 if (tcp_checksum_complete_user(sk, skb)) 5243 goto csum_error; 5244 5245 /* Predicted packet is in window by definition. 5246 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5247 * Hence, check seq<=rcv_wup reduces to: 5248 */ 5249 if (tcp_header_len == 5250 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5251 tp->rcv_nxt == tp->rcv_wup) 5252 tcp_store_ts_recent(tp); 5253 5254 tcp_rcv_rtt_measure_ts(sk, skb); 5255 5256 if ((int)skb->truesize > sk->sk_forward_alloc) 5257 goto step5; 5258 5259 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5260 5261 /* Bulk data transfer: receiver */ 5262 __skb_pull(skb, tcp_header_len); 5263 __skb_queue_tail(&sk->sk_receive_queue, skb); 5264 skb_set_owner_r(skb, sk); 5265 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5266 } 5267 5268 tcp_event_data_recv(sk, skb); 5269 5270 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5271 /* Well, only one small jumplet in fast path... */ 5272 tcp_ack(sk, skb, FLAG_DATA); 5273 tcp_data_snd_check(sk); 5274 if (!inet_csk_ack_scheduled(sk)) 5275 goto no_ack; 5276 } 5277 5278 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5279 __tcp_ack_snd_check(sk, 0); 5280 no_ack: 5281 #ifdef CONFIG_NET_DMA 5282 if (copied_early) 5283 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5284 else 5285 #endif 5286 if (eaten) 5287 __kfree_skb(skb); 5288 else 5289 sk->sk_data_ready(sk, 0); 5290 return 0; 5291 } 5292 } 5293 5294 slow_path: 5295 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5296 goto csum_error; 5297 5298 /* 5299 * Standard slow path. 5300 */ 5301 5302 res = tcp_validate_incoming(sk, skb, th, 1); 5303 if (res <= 0) 5304 return -res; 5305 5306 step5: 5307 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0) 5308 goto discard; 5309 5310 tcp_rcv_rtt_measure_ts(sk, skb); 5311 5312 /* Process urgent data. */ 5313 tcp_urg(sk, skb, th); 5314 5315 /* step 7: process the segment text */ 5316 tcp_data_queue(sk, skb); 5317 5318 tcp_data_snd_check(sk); 5319 tcp_ack_snd_check(sk); 5320 return 0; 5321 5322 csum_error: 5323 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5324 5325 discard: 5326 __kfree_skb(skb); 5327 return 0; 5328 } 5329 5330 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5331 struct tcphdr *th, unsigned len) 5332 { 5333 struct tcp_sock *tp = tcp_sk(sk); 5334 struct inet_connection_sock *icsk = inet_csk(sk); 5335 int saved_clamp = tp->rx_opt.mss_clamp; 5336 5337 tcp_parse_options(skb, &tp->rx_opt, 0); 5338 5339 if (th->ack) { 5340 /* rfc793: 5341 * "If the state is SYN-SENT then 5342 * first check the ACK bit 5343 * If the ACK bit is set 5344 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5345 * a reset (unless the RST bit is set, if so drop 5346 * the segment and return)" 5347 * 5348 * We do not send data with SYN, so that RFC-correct 5349 * test reduces to: 5350 */ 5351 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 5352 goto reset_and_undo; 5353 5354 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5355 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5356 tcp_time_stamp)) { 5357 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5358 goto reset_and_undo; 5359 } 5360 5361 /* Now ACK is acceptable. 5362 * 5363 * "If the RST bit is set 5364 * If the ACK was acceptable then signal the user "error: 5365 * connection reset", drop the segment, enter CLOSED state, 5366 * delete TCB, and return." 5367 */ 5368 5369 if (th->rst) { 5370 tcp_reset(sk); 5371 goto discard; 5372 } 5373 5374 /* rfc793: 5375 * "fifth, if neither of the SYN or RST bits is set then 5376 * drop the segment and return." 5377 * 5378 * See note below! 5379 * --ANK(990513) 5380 */ 5381 if (!th->syn) 5382 goto discard_and_undo; 5383 5384 /* rfc793: 5385 * "If the SYN bit is on ... 5386 * are acceptable then ... 5387 * (our SYN has been ACKed), change the connection 5388 * state to ESTABLISHED..." 5389 */ 5390 5391 TCP_ECN_rcv_synack(tp, th); 5392 5393 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5394 tcp_ack(sk, skb, FLAG_SLOWPATH); 5395 5396 /* Ok.. it's good. Set up sequence numbers and 5397 * move to established. 5398 */ 5399 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5400 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5401 5402 /* RFC1323: The window in SYN & SYN/ACK segments is 5403 * never scaled. 5404 */ 5405 tp->snd_wnd = ntohs(th->window); 5406 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5407 5408 if (!tp->rx_opt.wscale_ok) { 5409 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5410 tp->window_clamp = min(tp->window_clamp, 65535U); 5411 } 5412 5413 if (tp->rx_opt.saw_tstamp) { 5414 tp->rx_opt.tstamp_ok = 1; 5415 tp->tcp_header_len = 5416 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5417 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5418 tcp_store_ts_recent(tp); 5419 } else { 5420 tp->tcp_header_len = sizeof(struct tcphdr); 5421 } 5422 5423 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5424 tcp_enable_fack(tp); 5425 5426 tcp_mtup_init(sk); 5427 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5428 tcp_initialize_rcv_mss(sk); 5429 5430 /* Remember, tcp_poll() does not lock socket! 5431 * Change state from SYN-SENT only after copied_seq 5432 * is initialized. */ 5433 tp->copied_seq = tp->rcv_nxt; 5434 smp_mb(); 5435 tcp_set_state(sk, TCP_ESTABLISHED); 5436 5437 security_inet_conn_established(sk, skb); 5438 5439 /* Make sure socket is routed, for correct metrics. */ 5440 icsk->icsk_af_ops->rebuild_header(sk); 5441 5442 tcp_init_metrics(sk); 5443 5444 tcp_init_congestion_control(sk); 5445 5446 /* Prevent spurious tcp_cwnd_restart() on first data 5447 * packet. 5448 */ 5449 tp->lsndtime = tcp_time_stamp; 5450 5451 tcp_init_buffer_space(sk); 5452 5453 if (sock_flag(sk, SOCK_KEEPOPEN)) 5454 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5455 5456 if (!tp->rx_opt.snd_wscale) 5457 __tcp_fast_path_on(tp, tp->snd_wnd); 5458 else 5459 tp->pred_flags = 0; 5460 5461 if (!sock_flag(sk, SOCK_DEAD)) { 5462 sk->sk_state_change(sk); 5463 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5464 } 5465 5466 if (sk->sk_write_pending || 5467 icsk->icsk_accept_queue.rskq_defer_accept || 5468 icsk->icsk_ack.pingpong) { 5469 /* Save one ACK. Data will be ready after 5470 * several ticks, if write_pending is set. 5471 * 5472 * It may be deleted, but with this feature tcpdumps 5473 * look so _wonderfully_ clever, that I was not able 5474 * to stand against the temptation 8) --ANK 5475 */ 5476 inet_csk_schedule_ack(sk); 5477 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5478 icsk->icsk_ack.ato = TCP_ATO_MIN; 5479 tcp_incr_quickack(sk); 5480 tcp_enter_quickack_mode(sk); 5481 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5482 TCP_DELACK_MAX, TCP_RTO_MAX); 5483 5484 discard: 5485 __kfree_skb(skb); 5486 return 0; 5487 } else { 5488 tcp_send_ack(sk); 5489 } 5490 return -1; 5491 } 5492 5493 /* No ACK in the segment */ 5494 5495 if (th->rst) { 5496 /* rfc793: 5497 * "If the RST bit is set 5498 * 5499 * Otherwise (no ACK) drop the segment and return." 5500 */ 5501 5502 goto discard_and_undo; 5503 } 5504 5505 /* PAWS check. */ 5506 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5507 tcp_paws_reject(&tp->rx_opt, 0)) 5508 goto discard_and_undo; 5509 5510 if (th->syn) { 5511 /* We see SYN without ACK. It is attempt of 5512 * simultaneous connect with crossed SYNs. 5513 * Particularly, it can be connect to self. 5514 */ 5515 tcp_set_state(sk, TCP_SYN_RECV); 5516 5517 if (tp->rx_opt.saw_tstamp) { 5518 tp->rx_opt.tstamp_ok = 1; 5519 tcp_store_ts_recent(tp); 5520 tp->tcp_header_len = 5521 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5522 } else { 5523 tp->tcp_header_len = sizeof(struct tcphdr); 5524 } 5525 5526 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5527 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5528 5529 /* RFC1323: The window in SYN & SYN/ACK segments is 5530 * never scaled. 5531 */ 5532 tp->snd_wnd = ntohs(th->window); 5533 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5534 tp->max_window = tp->snd_wnd; 5535 5536 TCP_ECN_rcv_syn(tp, th); 5537 5538 tcp_mtup_init(sk); 5539 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5540 tcp_initialize_rcv_mss(sk); 5541 5542 tcp_send_synack(sk); 5543 #if 0 5544 /* Note, we could accept data and URG from this segment. 5545 * There are no obstacles to make this. 5546 * 5547 * However, if we ignore data in ACKless segments sometimes, 5548 * we have no reasons to accept it sometimes. 5549 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5550 * is not flawless. So, discard packet for sanity. 5551 * Uncomment this return to process the data. 5552 */ 5553 return -1; 5554 #else 5555 goto discard; 5556 #endif 5557 } 5558 /* "fifth, if neither of the SYN or RST bits is set then 5559 * drop the segment and return." 5560 */ 5561 5562 discard_and_undo: 5563 tcp_clear_options(&tp->rx_opt); 5564 tp->rx_opt.mss_clamp = saved_clamp; 5565 goto discard; 5566 5567 reset_and_undo: 5568 tcp_clear_options(&tp->rx_opt); 5569 tp->rx_opt.mss_clamp = saved_clamp; 5570 return 1; 5571 } 5572 5573 /* 5574 * This function implements the receiving procedure of RFC 793 for 5575 * all states except ESTABLISHED and TIME_WAIT. 5576 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5577 * address independent. 5578 */ 5579 5580 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5581 struct tcphdr *th, unsigned len) 5582 { 5583 struct tcp_sock *tp = tcp_sk(sk); 5584 struct inet_connection_sock *icsk = inet_csk(sk); 5585 int queued = 0; 5586 int res; 5587 5588 tp->rx_opt.saw_tstamp = 0; 5589 5590 switch (sk->sk_state) { 5591 case TCP_CLOSE: 5592 goto discard; 5593 5594 case TCP_LISTEN: 5595 if (th->ack) 5596 return 1; 5597 5598 if (th->rst) 5599 goto discard; 5600 5601 if (th->syn) { 5602 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5603 return 1; 5604 5605 /* Now we have several options: In theory there is 5606 * nothing else in the frame. KA9Q has an option to 5607 * send data with the syn, BSD accepts data with the 5608 * syn up to the [to be] advertised window and 5609 * Solaris 2.1 gives you a protocol error. For now 5610 * we just ignore it, that fits the spec precisely 5611 * and avoids incompatibilities. It would be nice in 5612 * future to drop through and process the data. 5613 * 5614 * Now that TTCP is starting to be used we ought to 5615 * queue this data. 5616 * But, this leaves one open to an easy denial of 5617 * service attack, and SYN cookies can't defend 5618 * against this problem. So, we drop the data 5619 * in the interest of security over speed unless 5620 * it's still in use. 5621 */ 5622 kfree_skb(skb); 5623 return 0; 5624 } 5625 goto discard; 5626 5627 case TCP_SYN_SENT: 5628 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5629 if (queued >= 0) 5630 return queued; 5631 5632 /* Do step6 onward by hand. */ 5633 tcp_urg(sk, skb, th); 5634 __kfree_skb(skb); 5635 tcp_data_snd_check(sk); 5636 return 0; 5637 } 5638 5639 res = tcp_validate_incoming(sk, skb, th, 0); 5640 if (res <= 0) 5641 return -res; 5642 5643 /* step 5: check the ACK field */ 5644 if (th->ack) { 5645 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; 5646 5647 switch (sk->sk_state) { 5648 case TCP_SYN_RECV: 5649 if (acceptable) { 5650 tp->copied_seq = tp->rcv_nxt; 5651 smp_mb(); 5652 tcp_set_state(sk, TCP_ESTABLISHED); 5653 sk->sk_state_change(sk); 5654 5655 /* Note, that this wakeup is only for marginal 5656 * crossed SYN case. Passively open sockets 5657 * are not waked up, because sk->sk_sleep == 5658 * NULL and sk->sk_socket == NULL. 5659 */ 5660 if (sk->sk_socket) 5661 sk_wake_async(sk, 5662 SOCK_WAKE_IO, POLL_OUT); 5663 5664 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5665 tp->snd_wnd = ntohs(th->window) << 5666 tp->rx_opt.snd_wscale; 5667 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5668 5669 /* tcp_ack considers this ACK as duplicate 5670 * and does not calculate rtt. 5671 * Fix it at least with timestamps. 5672 */ 5673 if (tp->rx_opt.saw_tstamp && 5674 tp->rx_opt.rcv_tsecr && !tp->srtt) 5675 tcp_ack_saw_tstamp(sk, 0); 5676 5677 if (tp->rx_opt.tstamp_ok) 5678 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5679 5680 /* Make sure socket is routed, for 5681 * correct metrics. 5682 */ 5683 icsk->icsk_af_ops->rebuild_header(sk); 5684 5685 tcp_init_metrics(sk); 5686 5687 tcp_init_congestion_control(sk); 5688 5689 /* Prevent spurious tcp_cwnd_restart() on 5690 * first data packet. 5691 */ 5692 tp->lsndtime = tcp_time_stamp; 5693 5694 tcp_mtup_init(sk); 5695 tcp_initialize_rcv_mss(sk); 5696 tcp_init_buffer_space(sk); 5697 tcp_fast_path_on(tp); 5698 } else { 5699 return 1; 5700 } 5701 break; 5702 5703 case TCP_FIN_WAIT1: 5704 if (tp->snd_una == tp->write_seq) { 5705 tcp_set_state(sk, TCP_FIN_WAIT2); 5706 sk->sk_shutdown |= SEND_SHUTDOWN; 5707 dst_confirm(sk->sk_dst_cache); 5708 5709 if (!sock_flag(sk, SOCK_DEAD)) 5710 /* Wake up lingering close() */ 5711 sk->sk_state_change(sk); 5712 else { 5713 int tmo; 5714 5715 if (tp->linger2 < 0 || 5716 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5717 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5718 tcp_done(sk); 5719 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5720 return 1; 5721 } 5722 5723 tmo = tcp_fin_time(sk); 5724 if (tmo > TCP_TIMEWAIT_LEN) { 5725 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5726 } else if (th->fin || sock_owned_by_user(sk)) { 5727 /* Bad case. We could lose such FIN otherwise. 5728 * It is not a big problem, but it looks confusing 5729 * and not so rare event. We still can lose it now, 5730 * if it spins in bh_lock_sock(), but it is really 5731 * marginal case. 5732 */ 5733 inet_csk_reset_keepalive_timer(sk, tmo); 5734 } else { 5735 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5736 goto discard; 5737 } 5738 } 5739 } 5740 break; 5741 5742 case TCP_CLOSING: 5743 if (tp->snd_una == tp->write_seq) { 5744 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5745 goto discard; 5746 } 5747 break; 5748 5749 case TCP_LAST_ACK: 5750 if (tp->snd_una == tp->write_seq) { 5751 tcp_update_metrics(sk); 5752 tcp_done(sk); 5753 goto discard; 5754 } 5755 break; 5756 } 5757 } else 5758 goto discard; 5759 5760 /* step 6: check the URG bit */ 5761 tcp_urg(sk, skb, th); 5762 5763 /* step 7: process the segment text */ 5764 switch (sk->sk_state) { 5765 case TCP_CLOSE_WAIT: 5766 case TCP_CLOSING: 5767 case TCP_LAST_ACK: 5768 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5769 break; 5770 case TCP_FIN_WAIT1: 5771 case TCP_FIN_WAIT2: 5772 /* RFC 793 says to queue data in these states, 5773 * RFC 1122 says we MUST send a reset. 5774 * BSD 4.4 also does reset. 5775 */ 5776 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5777 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5778 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5779 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5780 tcp_reset(sk); 5781 return 1; 5782 } 5783 } 5784 /* Fall through */ 5785 case TCP_ESTABLISHED: 5786 tcp_data_queue(sk, skb); 5787 queued = 1; 5788 break; 5789 } 5790 5791 /* tcp_data could move socket to TIME-WAIT */ 5792 if (sk->sk_state != TCP_CLOSE) { 5793 tcp_data_snd_check(sk); 5794 tcp_ack_snd_check(sk); 5795 } 5796 5797 if (!queued) { 5798 discard: 5799 __kfree_skb(skb); 5800 } 5801 return 0; 5802 } 5803 5804 EXPORT_SYMBOL(sysctl_tcp_ecn); 5805 EXPORT_SYMBOL(sysctl_tcp_reordering); 5806 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 5807 EXPORT_SYMBOL(tcp_parse_options); 5808 #ifdef CONFIG_TCP_MD5SIG 5809 EXPORT_SYMBOL(tcp_parse_md5sig_option); 5810 #endif 5811 EXPORT_SYMBOL(tcp_rcv_established); 5812 EXPORT_SYMBOL(tcp_rcv_state_process); 5813 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 5814