1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 83 84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 90 #define FLAG_ECE 0x40 /* ECE in this ACK */ 91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 100 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 101 102 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 103 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 104 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 105 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 106 107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 109 110 #define REXMIT_NONE 0 /* no loss recovery to do */ 111 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 112 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 113 114 #if IS_ENABLED(CONFIG_TLS_DEVICE) 115 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled); 116 117 void clean_acked_data_enable(struct inet_connection_sock *icsk, 118 void (*cad)(struct sock *sk, u32 ack_seq)) 119 { 120 icsk->icsk_clean_acked = cad; 121 static_branch_inc(&clean_acked_data_enabled); 122 } 123 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 124 125 void clean_acked_data_disable(struct inet_connection_sock *icsk) 126 { 127 static_branch_dec(&clean_acked_data_enabled); 128 icsk->icsk_clean_acked = NULL; 129 } 130 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 131 #endif 132 133 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 134 unsigned int len) 135 { 136 static bool __once __read_mostly; 137 138 if (!__once) { 139 struct net_device *dev; 140 141 __once = true; 142 143 rcu_read_lock(); 144 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 145 if (!dev || len >= dev->mtu) 146 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 147 dev ? dev->name : "Unknown driver"); 148 rcu_read_unlock(); 149 } 150 } 151 152 /* Adapt the MSS value used to make delayed ack decision to the 153 * real world. 154 */ 155 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 156 { 157 struct inet_connection_sock *icsk = inet_csk(sk); 158 const unsigned int lss = icsk->icsk_ack.last_seg_size; 159 unsigned int len; 160 161 icsk->icsk_ack.last_seg_size = 0; 162 163 /* skb->len may jitter because of SACKs, even if peer 164 * sends good full-sized frames. 165 */ 166 len = skb_shinfo(skb)->gso_size ? : skb->len; 167 if (len >= icsk->icsk_ack.rcv_mss) { 168 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 169 tcp_sk(sk)->advmss); 170 /* Account for possibly-removed options */ 171 if (unlikely(len > icsk->icsk_ack.rcv_mss + 172 MAX_TCP_OPTION_SPACE)) 173 tcp_gro_dev_warn(sk, skb, len); 174 } else { 175 /* Otherwise, we make more careful check taking into account, 176 * that SACKs block is variable. 177 * 178 * "len" is invariant segment length, including TCP header. 179 */ 180 len += skb->data - skb_transport_header(skb); 181 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 182 /* If PSH is not set, packet should be 183 * full sized, provided peer TCP is not badly broken. 184 * This observation (if it is correct 8)) allows 185 * to handle super-low mtu links fairly. 186 */ 187 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 188 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 189 /* Subtract also invariant (if peer is RFC compliant), 190 * tcp header plus fixed timestamp option length. 191 * Resulting "len" is MSS free of SACK jitter. 192 */ 193 len -= tcp_sk(sk)->tcp_header_len; 194 icsk->icsk_ack.last_seg_size = len; 195 if (len == lss) { 196 icsk->icsk_ack.rcv_mss = len; 197 return; 198 } 199 } 200 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 201 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 203 } 204 } 205 206 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 207 { 208 struct inet_connection_sock *icsk = inet_csk(sk); 209 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 210 211 if (quickacks == 0) 212 quickacks = 2; 213 quickacks = min(quickacks, max_quickacks); 214 if (quickacks > icsk->icsk_ack.quick) 215 icsk->icsk_ack.quick = quickacks; 216 } 217 218 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 219 { 220 struct inet_connection_sock *icsk = inet_csk(sk); 221 222 tcp_incr_quickack(sk, max_quickacks); 223 icsk->icsk_ack.pingpong = 0; 224 icsk->icsk_ack.ato = TCP_ATO_MIN; 225 } 226 227 /* Send ACKs quickly, if "quick" count is not exhausted 228 * and the session is not interactive. 229 */ 230 231 static bool tcp_in_quickack_mode(struct sock *sk) 232 { 233 const struct inet_connection_sock *icsk = inet_csk(sk); 234 const struct dst_entry *dst = __sk_dst_get(sk); 235 236 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 237 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 238 } 239 240 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 241 { 242 if (tp->ecn_flags & TCP_ECN_OK) 243 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 244 } 245 246 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 247 { 248 if (tcp_hdr(skb)->cwr) 249 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 250 } 251 252 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 253 { 254 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 255 } 256 257 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 258 { 259 struct tcp_sock *tp = tcp_sk(sk); 260 261 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 262 case INET_ECN_NOT_ECT: 263 /* Funny extension: if ECT is not set on a segment, 264 * and we already seen ECT on a previous segment, 265 * it is probably a retransmit. 266 */ 267 if (tp->ecn_flags & TCP_ECN_SEEN) 268 tcp_enter_quickack_mode(sk, 1); 269 break; 270 case INET_ECN_CE: 271 if (tcp_ca_needs_ecn(sk)) 272 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 273 274 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 275 /* Better not delay acks, sender can have a very low cwnd */ 276 tcp_enter_quickack_mode(sk, 1); 277 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 278 } 279 tp->ecn_flags |= TCP_ECN_SEEN; 280 break; 281 default: 282 if (tcp_ca_needs_ecn(sk)) 283 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 284 tp->ecn_flags |= TCP_ECN_SEEN; 285 break; 286 } 287 } 288 289 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 290 { 291 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 292 __tcp_ecn_check_ce(sk, skb); 293 } 294 295 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 296 { 297 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 298 tp->ecn_flags &= ~TCP_ECN_OK; 299 } 300 301 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 302 { 303 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 304 tp->ecn_flags &= ~TCP_ECN_OK; 305 } 306 307 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 308 { 309 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 310 return true; 311 return false; 312 } 313 314 /* Buffer size and advertised window tuning. 315 * 316 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 317 */ 318 319 static void tcp_sndbuf_expand(struct sock *sk) 320 { 321 const struct tcp_sock *tp = tcp_sk(sk); 322 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 323 int sndmem, per_mss; 324 u32 nr_segs; 325 326 /* Worst case is non GSO/TSO : each frame consumes one skb 327 * and skb->head is kmalloced using power of two area of memory 328 */ 329 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 330 MAX_TCP_HEADER + 331 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 332 333 per_mss = roundup_pow_of_two(per_mss) + 334 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 335 336 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 337 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 338 339 /* Fast Recovery (RFC 5681 3.2) : 340 * Cubic needs 1.7 factor, rounded to 2 to include 341 * extra cushion (application might react slowly to EPOLLOUT) 342 */ 343 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 344 sndmem *= nr_segs * per_mss; 345 346 if (sk->sk_sndbuf < sndmem) 347 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 348 } 349 350 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 351 * 352 * All tcp_full_space() is split to two parts: "network" buffer, allocated 353 * forward and advertised in receiver window (tp->rcv_wnd) and 354 * "application buffer", required to isolate scheduling/application 355 * latencies from network. 356 * window_clamp is maximal advertised window. It can be less than 357 * tcp_full_space(), in this case tcp_full_space() - window_clamp 358 * is reserved for "application" buffer. The less window_clamp is 359 * the smoother our behaviour from viewpoint of network, but the lower 360 * throughput and the higher sensitivity of the connection to losses. 8) 361 * 362 * rcv_ssthresh is more strict window_clamp used at "slow start" 363 * phase to predict further behaviour of this connection. 364 * It is used for two goals: 365 * - to enforce header prediction at sender, even when application 366 * requires some significant "application buffer". It is check #1. 367 * - to prevent pruning of receive queue because of misprediction 368 * of receiver window. Check #2. 369 * 370 * The scheme does not work when sender sends good segments opening 371 * window and then starts to feed us spaghetti. But it should work 372 * in common situations. Otherwise, we have to rely on queue collapsing. 373 */ 374 375 /* Slow part of check#2. */ 376 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 377 { 378 struct tcp_sock *tp = tcp_sk(sk); 379 /* Optimize this! */ 380 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 381 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 382 383 while (tp->rcv_ssthresh <= window) { 384 if (truesize <= skb->len) 385 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 386 387 truesize >>= 1; 388 window >>= 1; 389 } 390 return 0; 391 } 392 393 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 394 { 395 struct tcp_sock *tp = tcp_sk(sk); 396 397 /* Check #1 */ 398 if (tp->rcv_ssthresh < tp->window_clamp && 399 (int)tp->rcv_ssthresh < tcp_space(sk) && 400 !tcp_under_memory_pressure(sk)) { 401 int incr; 402 403 /* Check #2. Increase window, if skb with such overhead 404 * will fit to rcvbuf in future. 405 */ 406 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 407 incr = 2 * tp->advmss; 408 else 409 incr = __tcp_grow_window(sk, skb); 410 411 if (incr) { 412 incr = max_t(int, incr, 2 * skb->len); 413 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 414 tp->window_clamp); 415 inet_csk(sk)->icsk_ack.quick |= 1; 416 } 417 } 418 } 419 420 /* 3. Tuning rcvbuf, when connection enters established state. */ 421 static void tcp_fixup_rcvbuf(struct sock *sk) 422 { 423 u32 mss = tcp_sk(sk)->advmss; 424 int rcvmem; 425 426 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 427 tcp_default_init_rwnd(mss); 428 429 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 430 * Allow enough cushion so that sender is not limited by our window 431 */ 432 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 433 rcvmem <<= 2; 434 435 if (sk->sk_rcvbuf < rcvmem) 436 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 437 } 438 439 /* 4. Try to fixup all. It is made immediately after connection enters 440 * established state. 441 */ 442 void tcp_init_buffer_space(struct sock *sk) 443 { 444 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 445 struct tcp_sock *tp = tcp_sk(sk); 446 int maxwin; 447 448 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 449 tcp_fixup_rcvbuf(sk); 450 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 451 tcp_sndbuf_expand(sk); 452 453 tp->rcvq_space.space = tp->rcv_wnd; 454 tcp_mstamp_refresh(tp); 455 tp->rcvq_space.time = tp->tcp_mstamp; 456 tp->rcvq_space.seq = tp->copied_seq; 457 458 maxwin = tcp_full_space(sk); 459 460 if (tp->window_clamp >= maxwin) { 461 tp->window_clamp = maxwin; 462 463 if (tcp_app_win && maxwin > 4 * tp->advmss) 464 tp->window_clamp = max(maxwin - 465 (maxwin >> tcp_app_win), 466 4 * tp->advmss); 467 } 468 469 /* Force reservation of one segment. */ 470 if (tcp_app_win && 471 tp->window_clamp > 2 * tp->advmss && 472 tp->window_clamp + tp->advmss > maxwin) 473 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 474 475 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 476 tp->snd_cwnd_stamp = tcp_jiffies32; 477 } 478 479 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 480 static void tcp_clamp_window(struct sock *sk) 481 { 482 struct tcp_sock *tp = tcp_sk(sk); 483 struct inet_connection_sock *icsk = inet_csk(sk); 484 struct net *net = sock_net(sk); 485 486 icsk->icsk_ack.quick = 0; 487 488 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 489 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 490 !tcp_under_memory_pressure(sk) && 491 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 492 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 493 net->ipv4.sysctl_tcp_rmem[2]); 494 } 495 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 496 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 497 } 498 499 /* Initialize RCV_MSS value. 500 * RCV_MSS is an our guess about MSS used by the peer. 501 * We haven't any direct information about the MSS. 502 * It's better to underestimate the RCV_MSS rather than overestimate. 503 * Overestimations make us ACKing less frequently than needed. 504 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 505 */ 506 void tcp_initialize_rcv_mss(struct sock *sk) 507 { 508 const struct tcp_sock *tp = tcp_sk(sk); 509 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 510 511 hint = min(hint, tp->rcv_wnd / 2); 512 hint = min(hint, TCP_MSS_DEFAULT); 513 hint = max(hint, TCP_MIN_MSS); 514 515 inet_csk(sk)->icsk_ack.rcv_mss = hint; 516 } 517 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 518 519 /* Receiver "autotuning" code. 520 * 521 * The algorithm for RTT estimation w/o timestamps is based on 522 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 523 * <http://public.lanl.gov/radiant/pubs.html#DRS> 524 * 525 * More detail on this code can be found at 526 * <http://staff.psc.edu/jheffner/>, 527 * though this reference is out of date. A new paper 528 * is pending. 529 */ 530 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 531 { 532 u32 new_sample = tp->rcv_rtt_est.rtt_us; 533 long m = sample; 534 535 if (new_sample != 0) { 536 /* If we sample in larger samples in the non-timestamp 537 * case, we could grossly overestimate the RTT especially 538 * with chatty applications or bulk transfer apps which 539 * are stalled on filesystem I/O. 540 * 541 * Also, since we are only going for a minimum in the 542 * non-timestamp case, we do not smooth things out 543 * else with timestamps disabled convergence takes too 544 * long. 545 */ 546 if (!win_dep) { 547 m -= (new_sample >> 3); 548 new_sample += m; 549 } else { 550 m <<= 3; 551 if (m < new_sample) 552 new_sample = m; 553 } 554 } else { 555 /* No previous measure. */ 556 new_sample = m << 3; 557 } 558 559 tp->rcv_rtt_est.rtt_us = new_sample; 560 } 561 562 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 563 { 564 u32 delta_us; 565 566 if (tp->rcv_rtt_est.time == 0) 567 goto new_measure; 568 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 569 return; 570 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 571 if (!delta_us) 572 delta_us = 1; 573 tcp_rcv_rtt_update(tp, delta_us, 1); 574 575 new_measure: 576 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 577 tp->rcv_rtt_est.time = tp->tcp_mstamp; 578 } 579 580 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 581 const struct sk_buff *skb) 582 { 583 struct tcp_sock *tp = tcp_sk(sk); 584 585 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 586 return; 587 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 588 589 if (TCP_SKB_CB(skb)->end_seq - 590 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 591 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 592 u32 delta_us; 593 594 if (!delta) 595 delta = 1; 596 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 597 tcp_rcv_rtt_update(tp, delta_us, 0); 598 } 599 } 600 601 /* 602 * This function should be called every time data is copied to user space. 603 * It calculates the appropriate TCP receive buffer space. 604 */ 605 void tcp_rcv_space_adjust(struct sock *sk) 606 { 607 struct tcp_sock *tp = tcp_sk(sk); 608 u32 copied; 609 int time; 610 611 trace_tcp_rcv_space_adjust(sk); 612 613 tcp_mstamp_refresh(tp); 614 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 615 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 616 return; 617 618 /* Number of bytes copied to user in last RTT */ 619 copied = tp->copied_seq - tp->rcvq_space.seq; 620 if (copied <= tp->rcvq_space.space) 621 goto new_measure; 622 623 /* A bit of theory : 624 * copied = bytes received in previous RTT, our base window 625 * To cope with packet losses, we need a 2x factor 626 * To cope with slow start, and sender growing its cwin by 100 % 627 * every RTT, we need a 4x factor, because the ACK we are sending 628 * now is for the next RTT, not the current one : 629 * <prev RTT . ><current RTT .. ><next RTT .... > 630 */ 631 632 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 633 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 634 int rcvmem, rcvbuf; 635 u64 rcvwin, grow; 636 637 /* minimal window to cope with packet losses, assuming 638 * steady state. Add some cushion because of small variations. 639 */ 640 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 641 642 /* Accommodate for sender rate increase (eg. slow start) */ 643 grow = rcvwin * (copied - tp->rcvq_space.space); 644 do_div(grow, tp->rcvq_space.space); 645 rcvwin += (grow << 1); 646 647 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 648 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 649 rcvmem += 128; 650 651 do_div(rcvwin, tp->advmss); 652 rcvbuf = min_t(u64, rcvwin * rcvmem, 653 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 654 if (rcvbuf > sk->sk_rcvbuf) { 655 sk->sk_rcvbuf = rcvbuf; 656 657 /* Make the window clamp follow along. */ 658 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 659 } 660 } 661 tp->rcvq_space.space = copied; 662 663 new_measure: 664 tp->rcvq_space.seq = tp->copied_seq; 665 tp->rcvq_space.time = tp->tcp_mstamp; 666 } 667 668 /* There is something which you must keep in mind when you analyze the 669 * behavior of the tp->ato delayed ack timeout interval. When a 670 * connection starts up, we want to ack as quickly as possible. The 671 * problem is that "good" TCP's do slow start at the beginning of data 672 * transmission. The means that until we send the first few ACK's the 673 * sender will sit on his end and only queue most of his data, because 674 * he can only send snd_cwnd unacked packets at any given time. For 675 * each ACK we send, he increments snd_cwnd and transmits more of his 676 * queue. -DaveM 677 */ 678 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 679 { 680 struct tcp_sock *tp = tcp_sk(sk); 681 struct inet_connection_sock *icsk = inet_csk(sk); 682 u32 now; 683 684 inet_csk_schedule_ack(sk); 685 686 tcp_measure_rcv_mss(sk, skb); 687 688 tcp_rcv_rtt_measure(tp); 689 690 now = tcp_jiffies32; 691 692 if (!icsk->icsk_ack.ato) { 693 /* The _first_ data packet received, initialize 694 * delayed ACK engine. 695 */ 696 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 697 icsk->icsk_ack.ato = TCP_ATO_MIN; 698 } else { 699 int m = now - icsk->icsk_ack.lrcvtime; 700 701 if (m <= TCP_ATO_MIN / 2) { 702 /* The fastest case is the first. */ 703 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 704 } else if (m < icsk->icsk_ack.ato) { 705 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 706 if (icsk->icsk_ack.ato > icsk->icsk_rto) 707 icsk->icsk_ack.ato = icsk->icsk_rto; 708 } else if (m > icsk->icsk_rto) { 709 /* Too long gap. Apparently sender failed to 710 * restart window, so that we send ACKs quickly. 711 */ 712 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 713 sk_mem_reclaim(sk); 714 } 715 } 716 icsk->icsk_ack.lrcvtime = now; 717 718 tcp_ecn_check_ce(sk, skb); 719 720 if (skb->len >= 128) 721 tcp_grow_window(sk, skb); 722 } 723 724 /* Called to compute a smoothed rtt estimate. The data fed to this 725 * routine either comes from timestamps, or from segments that were 726 * known _not_ to have been retransmitted [see Karn/Partridge 727 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 728 * piece by Van Jacobson. 729 * NOTE: the next three routines used to be one big routine. 730 * To save cycles in the RFC 1323 implementation it was better to break 731 * it up into three procedures. -- erics 732 */ 733 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 734 { 735 struct tcp_sock *tp = tcp_sk(sk); 736 long m = mrtt_us; /* RTT */ 737 u32 srtt = tp->srtt_us; 738 739 /* The following amusing code comes from Jacobson's 740 * article in SIGCOMM '88. Note that rtt and mdev 741 * are scaled versions of rtt and mean deviation. 742 * This is designed to be as fast as possible 743 * m stands for "measurement". 744 * 745 * On a 1990 paper the rto value is changed to: 746 * RTO = rtt + 4 * mdev 747 * 748 * Funny. This algorithm seems to be very broken. 749 * These formulae increase RTO, when it should be decreased, increase 750 * too slowly, when it should be increased quickly, decrease too quickly 751 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 752 * does not matter how to _calculate_ it. Seems, it was trap 753 * that VJ failed to avoid. 8) 754 */ 755 if (srtt != 0) { 756 m -= (srtt >> 3); /* m is now error in rtt est */ 757 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 758 if (m < 0) { 759 m = -m; /* m is now abs(error) */ 760 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 761 /* This is similar to one of Eifel findings. 762 * Eifel blocks mdev updates when rtt decreases. 763 * This solution is a bit different: we use finer gain 764 * for mdev in this case (alpha*beta). 765 * Like Eifel it also prevents growth of rto, 766 * but also it limits too fast rto decreases, 767 * happening in pure Eifel. 768 */ 769 if (m > 0) 770 m >>= 3; 771 } else { 772 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 773 } 774 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 775 if (tp->mdev_us > tp->mdev_max_us) { 776 tp->mdev_max_us = tp->mdev_us; 777 if (tp->mdev_max_us > tp->rttvar_us) 778 tp->rttvar_us = tp->mdev_max_us; 779 } 780 if (after(tp->snd_una, tp->rtt_seq)) { 781 if (tp->mdev_max_us < tp->rttvar_us) 782 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 783 tp->rtt_seq = tp->snd_nxt; 784 tp->mdev_max_us = tcp_rto_min_us(sk); 785 } 786 } else { 787 /* no previous measure. */ 788 srtt = m << 3; /* take the measured time to be rtt */ 789 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 790 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 791 tp->mdev_max_us = tp->rttvar_us; 792 tp->rtt_seq = tp->snd_nxt; 793 } 794 tp->srtt_us = max(1U, srtt); 795 } 796 797 static void tcp_update_pacing_rate(struct sock *sk) 798 { 799 const struct tcp_sock *tp = tcp_sk(sk); 800 u64 rate; 801 802 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 803 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 804 805 /* current rate is (cwnd * mss) / srtt 806 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 807 * In Congestion Avoidance phase, set it to 120 % the current rate. 808 * 809 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 810 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 811 * end of slow start and should slow down. 812 */ 813 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 814 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 815 else 816 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 817 818 rate *= max(tp->snd_cwnd, tp->packets_out); 819 820 if (likely(tp->srtt_us)) 821 do_div(rate, tp->srtt_us); 822 823 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 824 * without any lock. We want to make sure compiler wont store 825 * intermediate values in this location. 826 */ 827 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 828 sk->sk_max_pacing_rate)); 829 } 830 831 /* Calculate rto without backoff. This is the second half of Van Jacobson's 832 * routine referred to above. 833 */ 834 static void tcp_set_rto(struct sock *sk) 835 { 836 const struct tcp_sock *tp = tcp_sk(sk); 837 /* Old crap is replaced with new one. 8) 838 * 839 * More seriously: 840 * 1. If rtt variance happened to be less 50msec, it is hallucination. 841 * It cannot be less due to utterly erratic ACK generation made 842 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 843 * to do with delayed acks, because at cwnd>2 true delack timeout 844 * is invisible. Actually, Linux-2.4 also generates erratic 845 * ACKs in some circumstances. 846 */ 847 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 848 849 /* 2. Fixups made earlier cannot be right. 850 * If we do not estimate RTO correctly without them, 851 * all the algo is pure shit and should be replaced 852 * with correct one. It is exactly, which we pretend to do. 853 */ 854 855 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 856 * guarantees that rto is higher. 857 */ 858 tcp_bound_rto(sk); 859 } 860 861 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 862 { 863 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 864 865 if (!cwnd) 866 cwnd = TCP_INIT_CWND; 867 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 868 } 869 870 /* Take a notice that peer is sending D-SACKs */ 871 static void tcp_dsack_seen(struct tcp_sock *tp) 872 { 873 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 874 tp->rack.dsack_seen = 1; 875 } 876 877 /* It's reordering when higher sequence was delivered (i.e. sacked) before 878 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 879 * distance is approximated in full-mss packet distance ("reordering"). 880 */ 881 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 882 const int ts) 883 { 884 struct tcp_sock *tp = tcp_sk(sk); 885 const u32 mss = tp->mss_cache; 886 u32 fack, metric; 887 888 fack = tcp_highest_sack_seq(tp); 889 if (!before(low_seq, fack)) 890 return; 891 892 metric = fack - low_seq; 893 if ((metric > tp->reordering * mss) && mss) { 894 #if FASTRETRANS_DEBUG > 1 895 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 896 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 897 tp->reordering, 898 0, 899 tp->sacked_out, 900 tp->undo_marker ? tp->undo_retrans : 0); 901 #endif 902 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 903 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 904 } 905 906 tp->rack.reord = 1; 907 /* This exciting event is worth to be remembered. 8) */ 908 NET_INC_STATS(sock_net(sk), 909 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 910 } 911 912 /* This must be called before lost_out is incremented */ 913 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 914 { 915 if (!tp->retransmit_skb_hint || 916 before(TCP_SKB_CB(skb)->seq, 917 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 918 tp->retransmit_skb_hint = skb; 919 } 920 921 /* Sum the number of packets on the wire we have marked as lost. 922 * There are two cases we care about here: 923 * a) Packet hasn't been marked lost (nor retransmitted), 924 * and this is the first loss. 925 * b) Packet has been marked both lost and retransmitted, 926 * and this means we think it was lost again. 927 */ 928 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 929 { 930 __u8 sacked = TCP_SKB_CB(skb)->sacked; 931 932 if (!(sacked & TCPCB_LOST) || 933 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 934 tp->lost += tcp_skb_pcount(skb); 935 } 936 937 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 938 { 939 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 940 tcp_verify_retransmit_hint(tp, skb); 941 942 tp->lost_out += tcp_skb_pcount(skb); 943 tcp_sum_lost(tp, skb); 944 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 945 } 946 } 947 948 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 949 { 950 tcp_verify_retransmit_hint(tp, skb); 951 952 tcp_sum_lost(tp, skb); 953 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 954 tp->lost_out += tcp_skb_pcount(skb); 955 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 956 } 957 } 958 959 /* This procedure tags the retransmission queue when SACKs arrive. 960 * 961 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 962 * Packets in queue with these bits set are counted in variables 963 * sacked_out, retrans_out and lost_out, correspondingly. 964 * 965 * Valid combinations are: 966 * Tag InFlight Description 967 * 0 1 - orig segment is in flight. 968 * S 0 - nothing flies, orig reached receiver. 969 * L 0 - nothing flies, orig lost by net. 970 * R 2 - both orig and retransmit are in flight. 971 * L|R 1 - orig is lost, retransmit is in flight. 972 * S|R 1 - orig reached receiver, retrans is still in flight. 973 * (L|S|R is logically valid, it could occur when L|R is sacked, 974 * but it is equivalent to plain S and code short-curcuits it to S. 975 * L|S is logically invalid, it would mean -1 packet in flight 8)) 976 * 977 * These 6 states form finite state machine, controlled by the following events: 978 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 979 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 980 * 3. Loss detection event of two flavors: 981 * A. Scoreboard estimator decided the packet is lost. 982 * A'. Reno "three dupacks" marks head of queue lost. 983 * B. SACK arrives sacking SND.NXT at the moment, when the 984 * segment was retransmitted. 985 * 4. D-SACK added new rule: D-SACK changes any tag to S. 986 * 987 * It is pleasant to note, that state diagram turns out to be commutative, 988 * so that we are allowed not to be bothered by order of our actions, 989 * when multiple events arrive simultaneously. (see the function below). 990 * 991 * Reordering detection. 992 * -------------------- 993 * Reordering metric is maximal distance, which a packet can be displaced 994 * in packet stream. With SACKs we can estimate it: 995 * 996 * 1. SACK fills old hole and the corresponding segment was not 997 * ever retransmitted -> reordering. Alas, we cannot use it 998 * when segment was retransmitted. 999 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1000 * for retransmitted and already SACKed segment -> reordering.. 1001 * Both of these heuristics are not used in Loss state, when we cannot 1002 * account for retransmits accurately. 1003 * 1004 * SACK block validation. 1005 * ---------------------- 1006 * 1007 * SACK block range validation checks that the received SACK block fits to 1008 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1009 * Note that SND.UNA is not included to the range though being valid because 1010 * it means that the receiver is rather inconsistent with itself reporting 1011 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1012 * perfectly valid, however, in light of RFC2018 which explicitly states 1013 * that "SACK block MUST reflect the newest segment. Even if the newest 1014 * segment is going to be discarded ...", not that it looks very clever 1015 * in case of head skb. Due to potentional receiver driven attacks, we 1016 * choose to avoid immediate execution of a walk in write queue due to 1017 * reneging and defer head skb's loss recovery to standard loss recovery 1018 * procedure that will eventually trigger (nothing forbids us doing this). 1019 * 1020 * Implements also blockage to start_seq wrap-around. Problem lies in the 1021 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1022 * there's no guarantee that it will be before snd_nxt (n). The problem 1023 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1024 * wrap (s_w): 1025 * 1026 * <- outs wnd -> <- wrapzone -> 1027 * u e n u_w e_w s n_w 1028 * | | | | | | | 1029 * |<------------+------+----- TCP seqno space --------------+---------->| 1030 * ...-- <2^31 ->| |<--------... 1031 * ...---- >2^31 ------>| |<--------... 1032 * 1033 * Current code wouldn't be vulnerable but it's better still to discard such 1034 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1035 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1036 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1037 * equal to the ideal case (infinite seqno space without wrap caused issues). 1038 * 1039 * With D-SACK the lower bound is extended to cover sequence space below 1040 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1041 * again, D-SACK block must not to go across snd_una (for the same reason as 1042 * for the normal SACK blocks, explained above). But there all simplicity 1043 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1044 * fully below undo_marker they do not affect behavior in anyway and can 1045 * therefore be safely ignored. In rare cases (which are more or less 1046 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1047 * fragmentation and packet reordering past skb's retransmission. To consider 1048 * them correctly, the acceptable range must be extended even more though 1049 * the exact amount is rather hard to quantify. However, tp->max_window can 1050 * be used as an exaggerated estimate. 1051 */ 1052 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1053 u32 start_seq, u32 end_seq) 1054 { 1055 /* Too far in future, or reversed (interpretation is ambiguous) */ 1056 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1057 return false; 1058 1059 /* Nasty start_seq wrap-around check (see comments above) */ 1060 if (!before(start_seq, tp->snd_nxt)) 1061 return false; 1062 1063 /* In outstanding window? ...This is valid exit for D-SACKs too. 1064 * start_seq == snd_una is non-sensical (see comments above) 1065 */ 1066 if (after(start_seq, tp->snd_una)) 1067 return true; 1068 1069 if (!is_dsack || !tp->undo_marker) 1070 return false; 1071 1072 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1073 if (after(end_seq, tp->snd_una)) 1074 return false; 1075 1076 if (!before(start_seq, tp->undo_marker)) 1077 return true; 1078 1079 /* Too old */ 1080 if (!after(end_seq, tp->undo_marker)) 1081 return false; 1082 1083 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1084 * start_seq < undo_marker and end_seq >= undo_marker. 1085 */ 1086 return !before(start_seq, end_seq - tp->max_window); 1087 } 1088 1089 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1090 struct tcp_sack_block_wire *sp, int num_sacks, 1091 u32 prior_snd_una) 1092 { 1093 struct tcp_sock *tp = tcp_sk(sk); 1094 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1095 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1096 bool dup_sack = false; 1097 1098 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1099 dup_sack = true; 1100 tcp_dsack_seen(tp); 1101 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1102 } else if (num_sacks > 1) { 1103 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1104 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1105 1106 if (!after(end_seq_0, end_seq_1) && 1107 !before(start_seq_0, start_seq_1)) { 1108 dup_sack = true; 1109 tcp_dsack_seen(tp); 1110 NET_INC_STATS(sock_net(sk), 1111 LINUX_MIB_TCPDSACKOFORECV); 1112 } 1113 } 1114 1115 /* D-SACK for already forgotten data... Do dumb counting. */ 1116 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1117 !after(end_seq_0, prior_snd_una) && 1118 after(end_seq_0, tp->undo_marker)) 1119 tp->undo_retrans--; 1120 1121 return dup_sack; 1122 } 1123 1124 struct tcp_sacktag_state { 1125 u32 reord; 1126 /* Timestamps for earliest and latest never-retransmitted segment 1127 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1128 * but congestion control should still get an accurate delay signal. 1129 */ 1130 u64 first_sackt; 1131 u64 last_sackt; 1132 struct rate_sample *rate; 1133 int flag; 1134 unsigned int mss_now; 1135 }; 1136 1137 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1138 * the incoming SACK may not exactly match but we can find smaller MSS 1139 * aligned portion of it that matches. Therefore we might need to fragment 1140 * which may fail and creates some hassle (caller must handle error case 1141 * returns). 1142 * 1143 * FIXME: this could be merged to shift decision code 1144 */ 1145 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1146 u32 start_seq, u32 end_seq) 1147 { 1148 int err; 1149 bool in_sack; 1150 unsigned int pkt_len; 1151 unsigned int mss; 1152 1153 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1154 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1155 1156 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1157 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1158 mss = tcp_skb_mss(skb); 1159 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1160 1161 if (!in_sack) { 1162 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1163 if (pkt_len < mss) 1164 pkt_len = mss; 1165 } else { 1166 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1167 if (pkt_len < mss) 1168 return -EINVAL; 1169 } 1170 1171 /* Round if necessary so that SACKs cover only full MSSes 1172 * and/or the remaining small portion (if present) 1173 */ 1174 if (pkt_len > mss) { 1175 unsigned int new_len = (pkt_len / mss) * mss; 1176 if (!in_sack && new_len < pkt_len) 1177 new_len += mss; 1178 pkt_len = new_len; 1179 } 1180 1181 if (pkt_len >= skb->len && !in_sack) 1182 return 0; 1183 1184 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1185 pkt_len, mss, GFP_ATOMIC); 1186 if (err < 0) 1187 return err; 1188 } 1189 1190 return in_sack; 1191 } 1192 1193 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1194 static u8 tcp_sacktag_one(struct sock *sk, 1195 struct tcp_sacktag_state *state, u8 sacked, 1196 u32 start_seq, u32 end_seq, 1197 int dup_sack, int pcount, 1198 u64 xmit_time) 1199 { 1200 struct tcp_sock *tp = tcp_sk(sk); 1201 1202 /* Account D-SACK for retransmitted packet. */ 1203 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1204 if (tp->undo_marker && tp->undo_retrans > 0 && 1205 after(end_seq, tp->undo_marker)) 1206 tp->undo_retrans--; 1207 if ((sacked & TCPCB_SACKED_ACKED) && 1208 before(start_seq, state->reord)) 1209 state->reord = start_seq; 1210 } 1211 1212 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1213 if (!after(end_seq, tp->snd_una)) 1214 return sacked; 1215 1216 if (!(sacked & TCPCB_SACKED_ACKED)) { 1217 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1218 1219 if (sacked & TCPCB_SACKED_RETRANS) { 1220 /* If the segment is not tagged as lost, 1221 * we do not clear RETRANS, believing 1222 * that retransmission is still in flight. 1223 */ 1224 if (sacked & TCPCB_LOST) { 1225 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1226 tp->lost_out -= pcount; 1227 tp->retrans_out -= pcount; 1228 } 1229 } else { 1230 if (!(sacked & TCPCB_RETRANS)) { 1231 /* New sack for not retransmitted frame, 1232 * which was in hole. It is reordering. 1233 */ 1234 if (before(start_seq, 1235 tcp_highest_sack_seq(tp)) && 1236 before(start_seq, state->reord)) 1237 state->reord = start_seq; 1238 1239 if (!after(end_seq, tp->high_seq)) 1240 state->flag |= FLAG_ORIG_SACK_ACKED; 1241 if (state->first_sackt == 0) 1242 state->first_sackt = xmit_time; 1243 state->last_sackt = xmit_time; 1244 } 1245 1246 if (sacked & TCPCB_LOST) { 1247 sacked &= ~TCPCB_LOST; 1248 tp->lost_out -= pcount; 1249 } 1250 } 1251 1252 sacked |= TCPCB_SACKED_ACKED; 1253 state->flag |= FLAG_DATA_SACKED; 1254 tp->sacked_out += pcount; 1255 tp->delivered += pcount; /* Out-of-order packets delivered */ 1256 1257 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1258 if (tp->lost_skb_hint && 1259 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1260 tp->lost_cnt_hint += pcount; 1261 } 1262 1263 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1264 * frames and clear it. undo_retrans is decreased above, L|R frames 1265 * are accounted above as well. 1266 */ 1267 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1268 sacked &= ~TCPCB_SACKED_RETRANS; 1269 tp->retrans_out -= pcount; 1270 } 1271 1272 return sacked; 1273 } 1274 1275 /* Shift newly-SACKed bytes from this skb to the immediately previous 1276 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1277 */ 1278 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1279 struct sk_buff *skb, 1280 struct tcp_sacktag_state *state, 1281 unsigned int pcount, int shifted, int mss, 1282 bool dup_sack) 1283 { 1284 struct tcp_sock *tp = tcp_sk(sk); 1285 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1286 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1287 1288 BUG_ON(!pcount); 1289 1290 /* Adjust counters and hints for the newly sacked sequence 1291 * range but discard the return value since prev is already 1292 * marked. We must tag the range first because the seq 1293 * advancement below implicitly advances 1294 * tcp_highest_sack_seq() when skb is highest_sack. 1295 */ 1296 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1297 start_seq, end_seq, dup_sack, pcount, 1298 skb->skb_mstamp); 1299 tcp_rate_skb_delivered(sk, skb, state->rate); 1300 1301 if (skb == tp->lost_skb_hint) 1302 tp->lost_cnt_hint += pcount; 1303 1304 TCP_SKB_CB(prev)->end_seq += shifted; 1305 TCP_SKB_CB(skb)->seq += shifted; 1306 1307 tcp_skb_pcount_add(prev, pcount); 1308 BUG_ON(tcp_skb_pcount(skb) < pcount); 1309 tcp_skb_pcount_add(skb, -pcount); 1310 1311 /* When we're adding to gso_segs == 1, gso_size will be zero, 1312 * in theory this shouldn't be necessary but as long as DSACK 1313 * code can come after this skb later on it's better to keep 1314 * setting gso_size to something. 1315 */ 1316 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1317 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1318 1319 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1320 if (tcp_skb_pcount(skb) <= 1) 1321 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1322 1323 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1324 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1325 1326 if (skb->len > 0) { 1327 BUG_ON(!tcp_skb_pcount(skb)); 1328 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1329 return false; 1330 } 1331 1332 /* Whole SKB was eaten :-) */ 1333 1334 if (skb == tp->retransmit_skb_hint) 1335 tp->retransmit_skb_hint = prev; 1336 if (skb == tp->lost_skb_hint) { 1337 tp->lost_skb_hint = prev; 1338 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1339 } 1340 1341 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1342 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1343 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1344 TCP_SKB_CB(prev)->end_seq++; 1345 1346 if (skb == tcp_highest_sack(sk)) 1347 tcp_advance_highest_sack(sk, skb); 1348 1349 tcp_skb_collapse_tstamp(prev, skb); 1350 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1351 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1352 1353 tcp_rtx_queue_unlink_and_free(skb, sk); 1354 1355 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1356 1357 return true; 1358 } 1359 1360 /* I wish gso_size would have a bit more sane initialization than 1361 * something-or-zero which complicates things 1362 */ 1363 static int tcp_skb_seglen(const struct sk_buff *skb) 1364 { 1365 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1366 } 1367 1368 /* Shifting pages past head area doesn't work */ 1369 static int skb_can_shift(const struct sk_buff *skb) 1370 { 1371 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1372 } 1373 1374 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1375 * skb. 1376 */ 1377 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1378 struct tcp_sacktag_state *state, 1379 u32 start_seq, u32 end_seq, 1380 bool dup_sack) 1381 { 1382 struct tcp_sock *tp = tcp_sk(sk); 1383 struct sk_buff *prev; 1384 int mss; 1385 int pcount = 0; 1386 int len; 1387 int in_sack; 1388 1389 /* Normally R but no L won't result in plain S */ 1390 if (!dup_sack && 1391 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1392 goto fallback; 1393 if (!skb_can_shift(skb)) 1394 goto fallback; 1395 /* This frame is about to be dropped (was ACKed). */ 1396 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1397 goto fallback; 1398 1399 /* Can only happen with delayed DSACK + discard craziness */ 1400 prev = skb_rb_prev(skb); 1401 if (!prev) 1402 goto fallback; 1403 1404 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1405 goto fallback; 1406 1407 if (!tcp_skb_can_collapse_to(prev)) 1408 goto fallback; 1409 1410 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1411 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1412 1413 if (in_sack) { 1414 len = skb->len; 1415 pcount = tcp_skb_pcount(skb); 1416 mss = tcp_skb_seglen(skb); 1417 1418 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1419 * drop this restriction as unnecessary 1420 */ 1421 if (mss != tcp_skb_seglen(prev)) 1422 goto fallback; 1423 } else { 1424 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1425 goto noop; 1426 /* CHECKME: This is non-MSS split case only?, this will 1427 * cause skipped skbs due to advancing loop btw, original 1428 * has that feature too 1429 */ 1430 if (tcp_skb_pcount(skb) <= 1) 1431 goto noop; 1432 1433 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1434 if (!in_sack) { 1435 /* TODO: head merge to next could be attempted here 1436 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1437 * though it might not be worth of the additional hassle 1438 * 1439 * ...we can probably just fallback to what was done 1440 * previously. We could try merging non-SACKed ones 1441 * as well but it probably isn't going to buy off 1442 * because later SACKs might again split them, and 1443 * it would make skb timestamp tracking considerably 1444 * harder problem. 1445 */ 1446 goto fallback; 1447 } 1448 1449 len = end_seq - TCP_SKB_CB(skb)->seq; 1450 BUG_ON(len < 0); 1451 BUG_ON(len > skb->len); 1452 1453 /* MSS boundaries should be honoured or else pcount will 1454 * severely break even though it makes things bit trickier. 1455 * Optimize common case to avoid most of the divides 1456 */ 1457 mss = tcp_skb_mss(skb); 1458 1459 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1460 * drop this restriction as unnecessary 1461 */ 1462 if (mss != tcp_skb_seglen(prev)) 1463 goto fallback; 1464 1465 if (len == mss) { 1466 pcount = 1; 1467 } else if (len < mss) { 1468 goto noop; 1469 } else { 1470 pcount = len / mss; 1471 len = pcount * mss; 1472 } 1473 } 1474 1475 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1476 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1477 goto fallback; 1478 1479 if (!skb_shift(prev, skb, len)) 1480 goto fallback; 1481 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1482 goto out; 1483 1484 /* Hole filled allows collapsing with the next as well, this is very 1485 * useful when hole on every nth skb pattern happens 1486 */ 1487 skb = skb_rb_next(prev); 1488 if (!skb) 1489 goto out; 1490 1491 if (!skb_can_shift(skb) || 1492 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1493 (mss != tcp_skb_seglen(skb))) 1494 goto out; 1495 1496 len = skb->len; 1497 if (skb_shift(prev, skb, len)) { 1498 pcount += tcp_skb_pcount(skb); 1499 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1500 len, mss, 0); 1501 } 1502 1503 out: 1504 return prev; 1505 1506 noop: 1507 return skb; 1508 1509 fallback: 1510 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1511 return NULL; 1512 } 1513 1514 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1515 struct tcp_sack_block *next_dup, 1516 struct tcp_sacktag_state *state, 1517 u32 start_seq, u32 end_seq, 1518 bool dup_sack_in) 1519 { 1520 struct tcp_sock *tp = tcp_sk(sk); 1521 struct sk_buff *tmp; 1522 1523 skb_rbtree_walk_from(skb) { 1524 int in_sack = 0; 1525 bool dup_sack = dup_sack_in; 1526 1527 /* queue is in-order => we can short-circuit the walk early */ 1528 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1529 break; 1530 1531 if (next_dup && 1532 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1533 in_sack = tcp_match_skb_to_sack(sk, skb, 1534 next_dup->start_seq, 1535 next_dup->end_seq); 1536 if (in_sack > 0) 1537 dup_sack = true; 1538 } 1539 1540 /* skb reference here is a bit tricky to get right, since 1541 * shifting can eat and free both this skb and the next, 1542 * so not even _safe variant of the loop is enough. 1543 */ 1544 if (in_sack <= 0) { 1545 tmp = tcp_shift_skb_data(sk, skb, state, 1546 start_seq, end_seq, dup_sack); 1547 if (tmp) { 1548 if (tmp != skb) { 1549 skb = tmp; 1550 continue; 1551 } 1552 1553 in_sack = 0; 1554 } else { 1555 in_sack = tcp_match_skb_to_sack(sk, skb, 1556 start_seq, 1557 end_seq); 1558 } 1559 } 1560 1561 if (unlikely(in_sack < 0)) 1562 break; 1563 1564 if (in_sack) { 1565 TCP_SKB_CB(skb)->sacked = 1566 tcp_sacktag_one(sk, 1567 state, 1568 TCP_SKB_CB(skb)->sacked, 1569 TCP_SKB_CB(skb)->seq, 1570 TCP_SKB_CB(skb)->end_seq, 1571 dup_sack, 1572 tcp_skb_pcount(skb), 1573 skb->skb_mstamp); 1574 tcp_rate_skb_delivered(sk, skb, state->rate); 1575 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1576 list_del_init(&skb->tcp_tsorted_anchor); 1577 1578 if (!before(TCP_SKB_CB(skb)->seq, 1579 tcp_highest_sack_seq(tp))) 1580 tcp_advance_highest_sack(sk, skb); 1581 } 1582 } 1583 return skb; 1584 } 1585 1586 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1587 struct tcp_sacktag_state *state, 1588 u32 seq) 1589 { 1590 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1591 struct sk_buff *skb; 1592 1593 while (*p) { 1594 parent = *p; 1595 skb = rb_to_skb(parent); 1596 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1597 p = &parent->rb_left; 1598 continue; 1599 } 1600 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1601 p = &parent->rb_right; 1602 continue; 1603 } 1604 return skb; 1605 } 1606 return NULL; 1607 } 1608 1609 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1610 struct tcp_sacktag_state *state, 1611 u32 skip_to_seq) 1612 { 1613 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1614 return skb; 1615 1616 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1617 } 1618 1619 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1620 struct sock *sk, 1621 struct tcp_sack_block *next_dup, 1622 struct tcp_sacktag_state *state, 1623 u32 skip_to_seq) 1624 { 1625 if (!next_dup) 1626 return skb; 1627 1628 if (before(next_dup->start_seq, skip_to_seq)) { 1629 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1630 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1631 next_dup->start_seq, next_dup->end_seq, 1632 1); 1633 } 1634 1635 return skb; 1636 } 1637 1638 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1639 { 1640 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1641 } 1642 1643 static int 1644 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1645 u32 prior_snd_una, struct tcp_sacktag_state *state) 1646 { 1647 struct tcp_sock *tp = tcp_sk(sk); 1648 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1649 TCP_SKB_CB(ack_skb)->sacked); 1650 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1651 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1652 struct tcp_sack_block *cache; 1653 struct sk_buff *skb; 1654 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1655 int used_sacks; 1656 bool found_dup_sack = false; 1657 int i, j; 1658 int first_sack_index; 1659 1660 state->flag = 0; 1661 state->reord = tp->snd_nxt; 1662 1663 if (!tp->sacked_out) 1664 tcp_highest_sack_reset(sk); 1665 1666 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1667 num_sacks, prior_snd_una); 1668 if (found_dup_sack) { 1669 state->flag |= FLAG_DSACKING_ACK; 1670 tp->delivered++; /* A spurious retransmission is delivered */ 1671 } 1672 1673 /* Eliminate too old ACKs, but take into 1674 * account more or less fresh ones, they can 1675 * contain valid SACK info. 1676 */ 1677 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1678 return 0; 1679 1680 if (!tp->packets_out) 1681 goto out; 1682 1683 used_sacks = 0; 1684 first_sack_index = 0; 1685 for (i = 0; i < num_sacks; i++) { 1686 bool dup_sack = !i && found_dup_sack; 1687 1688 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1689 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1690 1691 if (!tcp_is_sackblock_valid(tp, dup_sack, 1692 sp[used_sacks].start_seq, 1693 sp[used_sacks].end_seq)) { 1694 int mib_idx; 1695 1696 if (dup_sack) { 1697 if (!tp->undo_marker) 1698 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1699 else 1700 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1701 } else { 1702 /* Don't count olds caused by ACK reordering */ 1703 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1704 !after(sp[used_sacks].end_seq, tp->snd_una)) 1705 continue; 1706 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1707 } 1708 1709 NET_INC_STATS(sock_net(sk), mib_idx); 1710 if (i == 0) 1711 first_sack_index = -1; 1712 continue; 1713 } 1714 1715 /* Ignore very old stuff early */ 1716 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1717 continue; 1718 1719 used_sacks++; 1720 } 1721 1722 /* order SACK blocks to allow in order walk of the retrans queue */ 1723 for (i = used_sacks - 1; i > 0; i--) { 1724 for (j = 0; j < i; j++) { 1725 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1726 swap(sp[j], sp[j + 1]); 1727 1728 /* Track where the first SACK block goes to */ 1729 if (j == first_sack_index) 1730 first_sack_index = j + 1; 1731 } 1732 } 1733 } 1734 1735 state->mss_now = tcp_current_mss(sk); 1736 skb = NULL; 1737 i = 0; 1738 1739 if (!tp->sacked_out) { 1740 /* It's already past, so skip checking against it */ 1741 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1742 } else { 1743 cache = tp->recv_sack_cache; 1744 /* Skip empty blocks in at head of the cache */ 1745 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1746 !cache->end_seq) 1747 cache++; 1748 } 1749 1750 while (i < used_sacks) { 1751 u32 start_seq = sp[i].start_seq; 1752 u32 end_seq = sp[i].end_seq; 1753 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1754 struct tcp_sack_block *next_dup = NULL; 1755 1756 if (found_dup_sack && ((i + 1) == first_sack_index)) 1757 next_dup = &sp[i + 1]; 1758 1759 /* Skip too early cached blocks */ 1760 while (tcp_sack_cache_ok(tp, cache) && 1761 !before(start_seq, cache->end_seq)) 1762 cache++; 1763 1764 /* Can skip some work by looking recv_sack_cache? */ 1765 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1766 after(end_seq, cache->start_seq)) { 1767 1768 /* Head todo? */ 1769 if (before(start_seq, cache->start_seq)) { 1770 skb = tcp_sacktag_skip(skb, sk, state, 1771 start_seq); 1772 skb = tcp_sacktag_walk(skb, sk, next_dup, 1773 state, 1774 start_seq, 1775 cache->start_seq, 1776 dup_sack); 1777 } 1778 1779 /* Rest of the block already fully processed? */ 1780 if (!after(end_seq, cache->end_seq)) 1781 goto advance_sp; 1782 1783 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1784 state, 1785 cache->end_seq); 1786 1787 /* ...tail remains todo... */ 1788 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1789 /* ...but better entrypoint exists! */ 1790 skb = tcp_highest_sack(sk); 1791 if (!skb) 1792 break; 1793 cache++; 1794 goto walk; 1795 } 1796 1797 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1798 /* Check overlap against next cached too (past this one already) */ 1799 cache++; 1800 continue; 1801 } 1802 1803 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1804 skb = tcp_highest_sack(sk); 1805 if (!skb) 1806 break; 1807 } 1808 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1809 1810 walk: 1811 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1812 start_seq, end_seq, dup_sack); 1813 1814 advance_sp: 1815 i++; 1816 } 1817 1818 /* Clear the head of the cache sack blocks so we can skip it next time */ 1819 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1820 tp->recv_sack_cache[i].start_seq = 0; 1821 tp->recv_sack_cache[i].end_seq = 0; 1822 } 1823 for (j = 0; j < used_sacks; j++) 1824 tp->recv_sack_cache[i++] = sp[j]; 1825 1826 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1827 tcp_check_sack_reordering(sk, state->reord, 0); 1828 1829 tcp_verify_left_out(tp); 1830 out: 1831 1832 #if FASTRETRANS_DEBUG > 0 1833 WARN_ON((int)tp->sacked_out < 0); 1834 WARN_ON((int)tp->lost_out < 0); 1835 WARN_ON((int)tp->retrans_out < 0); 1836 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1837 #endif 1838 return state->flag; 1839 } 1840 1841 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1842 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1843 */ 1844 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1845 { 1846 u32 holes; 1847 1848 holes = max(tp->lost_out, 1U); 1849 holes = min(holes, tp->packets_out); 1850 1851 if ((tp->sacked_out + holes) > tp->packets_out) { 1852 tp->sacked_out = tp->packets_out - holes; 1853 return true; 1854 } 1855 return false; 1856 } 1857 1858 /* If we receive more dupacks than we expected counting segments 1859 * in assumption of absent reordering, interpret this as reordering. 1860 * The only another reason could be bug in receiver TCP. 1861 */ 1862 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1863 { 1864 struct tcp_sock *tp = tcp_sk(sk); 1865 1866 if (!tcp_limit_reno_sacked(tp)) 1867 return; 1868 1869 tp->reordering = min_t(u32, tp->packets_out + addend, 1870 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1871 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1872 } 1873 1874 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1875 1876 static void tcp_add_reno_sack(struct sock *sk) 1877 { 1878 struct tcp_sock *tp = tcp_sk(sk); 1879 u32 prior_sacked = tp->sacked_out; 1880 1881 tp->sacked_out++; 1882 tcp_check_reno_reordering(sk, 0); 1883 if (tp->sacked_out > prior_sacked) 1884 tp->delivered++; /* Some out-of-order packet is delivered */ 1885 tcp_verify_left_out(tp); 1886 } 1887 1888 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1889 1890 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1891 { 1892 struct tcp_sock *tp = tcp_sk(sk); 1893 1894 if (acked > 0) { 1895 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1896 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1897 if (acked - 1 >= tp->sacked_out) 1898 tp->sacked_out = 0; 1899 else 1900 tp->sacked_out -= acked - 1; 1901 } 1902 tcp_check_reno_reordering(sk, acked); 1903 tcp_verify_left_out(tp); 1904 } 1905 1906 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1907 { 1908 tp->sacked_out = 0; 1909 } 1910 1911 void tcp_clear_retrans(struct tcp_sock *tp) 1912 { 1913 tp->retrans_out = 0; 1914 tp->lost_out = 0; 1915 tp->undo_marker = 0; 1916 tp->undo_retrans = -1; 1917 tp->sacked_out = 0; 1918 } 1919 1920 static inline void tcp_init_undo(struct tcp_sock *tp) 1921 { 1922 tp->undo_marker = tp->snd_una; 1923 /* Retransmission still in flight may cause DSACKs later. */ 1924 tp->undo_retrans = tp->retrans_out ? : -1; 1925 } 1926 1927 static bool tcp_is_rack(const struct sock *sk) 1928 { 1929 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1930 } 1931 1932 /* If we detect SACK reneging, forget all SACK information 1933 * and reset tags completely, otherwise preserve SACKs. If receiver 1934 * dropped its ofo queue, we will know this due to reneging detection. 1935 */ 1936 static void tcp_timeout_mark_lost(struct sock *sk) 1937 { 1938 struct tcp_sock *tp = tcp_sk(sk); 1939 struct sk_buff *skb, *head; 1940 bool is_reneg; /* is receiver reneging on SACKs? */ 1941 1942 head = tcp_rtx_queue_head(sk); 1943 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1944 if (is_reneg) { 1945 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1946 tp->sacked_out = 0; 1947 /* Mark SACK reneging until we recover from this loss event. */ 1948 tp->is_sack_reneg = 1; 1949 } else if (tcp_is_reno(tp)) { 1950 tcp_reset_reno_sack(tp); 1951 } 1952 1953 skb = head; 1954 skb_rbtree_walk_from(skb) { 1955 if (is_reneg) 1956 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1957 else if (tcp_is_rack(sk) && skb != head && 1958 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1959 continue; /* Don't mark recently sent ones lost yet */ 1960 tcp_mark_skb_lost(sk, skb); 1961 } 1962 tcp_verify_left_out(tp); 1963 tcp_clear_all_retrans_hints(tp); 1964 } 1965 1966 /* Enter Loss state. */ 1967 void tcp_enter_loss(struct sock *sk) 1968 { 1969 const struct inet_connection_sock *icsk = inet_csk(sk); 1970 struct tcp_sock *tp = tcp_sk(sk); 1971 struct net *net = sock_net(sk); 1972 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1973 1974 tcp_timeout_mark_lost(sk); 1975 1976 /* Reduce ssthresh if it has not yet been made inside this window. */ 1977 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1978 !after(tp->high_seq, tp->snd_una) || 1979 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1980 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1981 tp->prior_cwnd = tp->snd_cwnd; 1982 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1983 tcp_ca_event(sk, CA_EVENT_LOSS); 1984 tcp_init_undo(tp); 1985 } 1986 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 1987 tp->snd_cwnd_cnt = 0; 1988 tp->snd_cwnd_stamp = tcp_jiffies32; 1989 1990 /* Timeout in disordered state after receiving substantial DUPACKs 1991 * suggests that the degree of reordering is over-estimated. 1992 */ 1993 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1994 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1995 tp->reordering = min_t(unsigned int, tp->reordering, 1996 net->ipv4.sysctl_tcp_reordering); 1997 tcp_set_ca_state(sk, TCP_CA_Loss); 1998 tp->high_seq = tp->snd_nxt; 1999 tcp_ecn_queue_cwr(tp); 2000 2001 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2002 * loss recovery is underway except recurring timeout(s) on 2003 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2004 */ 2005 tp->frto = net->ipv4.sysctl_tcp_frto && 2006 (new_recovery || icsk->icsk_retransmits) && 2007 !inet_csk(sk)->icsk_mtup.probe_size; 2008 } 2009 2010 /* If ACK arrived pointing to a remembered SACK, it means that our 2011 * remembered SACKs do not reflect real state of receiver i.e. 2012 * receiver _host_ is heavily congested (or buggy). 2013 * 2014 * To avoid big spurious retransmission bursts due to transient SACK 2015 * scoreboard oddities that look like reneging, we give the receiver a 2016 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2017 * restore sanity to the SACK scoreboard. If the apparent reneging 2018 * persists until this RTO then we'll clear the SACK scoreboard. 2019 */ 2020 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2021 { 2022 if (flag & FLAG_SACK_RENEGING) { 2023 struct tcp_sock *tp = tcp_sk(sk); 2024 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2025 msecs_to_jiffies(10)); 2026 2027 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2028 delay, TCP_RTO_MAX); 2029 return true; 2030 } 2031 return false; 2032 } 2033 2034 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2035 * counter when SACK is enabled (without SACK, sacked_out is used for 2036 * that purpose). 2037 * 2038 * With reordering, holes may still be in flight, so RFC3517 recovery 2039 * uses pure sacked_out (total number of SACKed segments) even though 2040 * it violates the RFC that uses duplicate ACKs, often these are equal 2041 * but when e.g. out-of-window ACKs or packet duplication occurs, 2042 * they differ. Since neither occurs due to loss, TCP should really 2043 * ignore them. 2044 */ 2045 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2046 { 2047 return tp->sacked_out + 1; 2048 } 2049 2050 /* Linux NewReno/SACK/ECN state machine. 2051 * -------------------------------------- 2052 * 2053 * "Open" Normal state, no dubious events, fast path. 2054 * "Disorder" In all the respects it is "Open", 2055 * but requires a bit more attention. It is entered when 2056 * we see some SACKs or dupacks. It is split of "Open" 2057 * mainly to move some processing from fast path to slow one. 2058 * "CWR" CWND was reduced due to some Congestion Notification event. 2059 * It can be ECN, ICMP source quench, local device congestion. 2060 * "Recovery" CWND was reduced, we are fast-retransmitting. 2061 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2062 * 2063 * tcp_fastretrans_alert() is entered: 2064 * - each incoming ACK, if state is not "Open" 2065 * - when arrived ACK is unusual, namely: 2066 * * SACK 2067 * * Duplicate ACK. 2068 * * ECN ECE. 2069 * 2070 * Counting packets in flight is pretty simple. 2071 * 2072 * in_flight = packets_out - left_out + retrans_out 2073 * 2074 * packets_out is SND.NXT-SND.UNA counted in packets. 2075 * 2076 * retrans_out is number of retransmitted segments. 2077 * 2078 * left_out is number of segments left network, but not ACKed yet. 2079 * 2080 * left_out = sacked_out + lost_out 2081 * 2082 * sacked_out: Packets, which arrived to receiver out of order 2083 * and hence not ACKed. With SACKs this number is simply 2084 * amount of SACKed data. Even without SACKs 2085 * it is easy to give pretty reliable estimate of this number, 2086 * counting duplicate ACKs. 2087 * 2088 * lost_out: Packets lost by network. TCP has no explicit 2089 * "loss notification" feedback from network (for now). 2090 * It means that this number can be only _guessed_. 2091 * Actually, it is the heuristics to predict lossage that 2092 * distinguishes different algorithms. 2093 * 2094 * F.e. after RTO, when all the queue is considered as lost, 2095 * lost_out = packets_out and in_flight = retrans_out. 2096 * 2097 * Essentially, we have now a few algorithms detecting 2098 * lost packets. 2099 * 2100 * If the receiver supports SACK: 2101 * 2102 * RFC6675/3517: It is the conventional algorithm. A packet is 2103 * considered lost if the number of higher sequence packets 2104 * SACKed is greater than or equal the DUPACK thoreshold 2105 * (reordering). This is implemented in tcp_mark_head_lost and 2106 * tcp_update_scoreboard. 2107 * 2108 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2109 * (2017-) that checks timing instead of counting DUPACKs. 2110 * Essentially a packet is considered lost if it's not S/ACKed 2111 * after RTT + reordering_window, where both metrics are 2112 * dynamically measured and adjusted. This is implemented in 2113 * tcp_rack_mark_lost. 2114 * 2115 * If the receiver does not support SACK: 2116 * 2117 * NewReno (RFC6582): in Recovery we assume that one segment 2118 * is lost (classic Reno). While we are in Recovery and 2119 * a partial ACK arrives, we assume that one more packet 2120 * is lost (NewReno). This heuristics are the same in NewReno 2121 * and SACK. 2122 * 2123 * Really tricky (and requiring careful tuning) part of algorithm 2124 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2125 * The first determines the moment _when_ we should reduce CWND and, 2126 * hence, slow down forward transmission. In fact, it determines the moment 2127 * when we decide that hole is caused by loss, rather than by a reorder. 2128 * 2129 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2130 * holes, caused by lost packets. 2131 * 2132 * And the most logically complicated part of algorithm is undo 2133 * heuristics. We detect false retransmits due to both too early 2134 * fast retransmit (reordering) and underestimated RTO, analyzing 2135 * timestamps and D-SACKs. When we detect that some segments were 2136 * retransmitted by mistake and CWND reduction was wrong, we undo 2137 * window reduction and abort recovery phase. This logic is hidden 2138 * inside several functions named tcp_try_undo_<something>. 2139 */ 2140 2141 /* This function decides, when we should leave Disordered state 2142 * and enter Recovery phase, reducing congestion window. 2143 * 2144 * Main question: may we further continue forward transmission 2145 * with the same cwnd? 2146 */ 2147 static bool tcp_time_to_recover(struct sock *sk, int flag) 2148 { 2149 struct tcp_sock *tp = tcp_sk(sk); 2150 2151 /* Trick#1: The loss is proven. */ 2152 if (tp->lost_out) 2153 return true; 2154 2155 /* Not-A-Trick#2 : Classic rule... */ 2156 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2157 return true; 2158 2159 return false; 2160 } 2161 2162 /* Detect loss in event "A" above by marking head of queue up as lost. 2163 * For non-SACK(Reno) senders, the first "packets" number of segments 2164 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2165 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2166 * the maximum SACKed segments to pass before reaching this limit. 2167 */ 2168 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2169 { 2170 struct tcp_sock *tp = tcp_sk(sk); 2171 struct sk_buff *skb; 2172 int cnt, oldcnt, lost; 2173 unsigned int mss; 2174 /* Use SACK to deduce losses of new sequences sent during recovery */ 2175 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2176 2177 WARN_ON(packets > tp->packets_out); 2178 skb = tp->lost_skb_hint; 2179 if (skb) { 2180 /* Head already handled? */ 2181 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2182 return; 2183 cnt = tp->lost_cnt_hint; 2184 } else { 2185 skb = tcp_rtx_queue_head(sk); 2186 cnt = 0; 2187 } 2188 2189 skb_rbtree_walk_from(skb) { 2190 /* TODO: do this better */ 2191 /* this is not the most efficient way to do this... */ 2192 tp->lost_skb_hint = skb; 2193 tp->lost_cnt_hint = cnt; 2194 2195 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2196 break; 2197 2198 oldcnt = cnt; 2199 if (tcp_is_reno(tp) || 2200 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2201 cnt += tcp_skb_pcount(skb); 2202 2203 if (cnt > packets) { 2204 if (tcp_is_sack(tp) || 2205 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2206 (oldcnt >= packets)) 2207 break; 2208 2209 mss = tcp_skb_mss(skb); 2210 /* If needed, chop off the prefix to mark as lost. */ 2211 lost = (packets - oldcnt) * mss; 2212 if (lost < skb->len && 2213 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2214 lost, mss, GFP_ATOMIC) < 0) 2215 break; 2216 cnt = packets; 2217 } 2218 2219 tcp_skb_mark_lost(tp, skb); 2220 2221 if (mark_head) 2222 break; 2223 } 2224 tcp_verify_left_out(tp); 2225 } 2226 2227 /* Account newly detected lost packet(s) */ 2228 2229 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2230 { 2231 struct tcp_sock *tp = tcp_sk(sk); 2232 2233 if (tcp_is_sack(tp)) { 2234 int sacked_upto = tp->sacked_out - tp->reordering; 2235 if (sacked_upto >= 0) 2236 tcp_mark_head_lost(sk, sacked_upto, 0); 2237 else if (fast_rexmit) 2238 tcp_mark_head_lost(sk, 1, 1); 2239 } 2240 } 2241 2242 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2243 { 2244 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2245 before(tp->rx_opt.rcv_tsecr, when); 2246 } 2247 2248 /* skb is spurious retransmitted if the returned timestamp echo 2249 * reply is prior to the skb transmission time 2250 */ 2251 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2252 const struct sk_buff *skb) 2253 { 2254 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2255 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2256 } 2257 2258 /* Nothing was retransmitted or returned timestamp is less 2259 * than timestamp of the first retransmission. 2260 */ 2261 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2262 { 2263 return !tp->retrans_stamp || 2264 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2265 } 2266 2267 /* Undo procedures. */ 2268 2269 /* We can clear retrans_stamp when there are no retransmissions in the 2270 * window. It would seem that it is trivially available for us in 2271 * tp->retrans_out, however, that kind of assumptions doesn't consider 2272 * what will happen if errors occur when sending retransmission for the 2273 * second time. ...It could the that such segment has only 2274 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2275 * the head skb is enough except for some reneging corner cases that 2276 * are not worth the effort. 2277 * 2278 * Main reason for all this complexity is the fact that connection dying 2279 * time now depends on the validity of the retrans_stamp, in particular, 2280 * that successive retransmissions of a segment must not advance 2281 * retrans_stamp under any conditions. 2282 */ 2283 static bool tcp_any_retrans_done(const struct sock *sk) 2284 { 2285 const struct tcp_sock *tp = tcp_sk(sk); 2286 struct sk_buff *skb; 2287 2288 if (tp->retrans_out) 2289 return true; 2290 2291 skb = tcp_rtx_queue_head(sk); 2292 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2293 return true; 2294 2295 return false; 2296 } 2297 2298 static void DBGUNDO(struct sock *sk, const char *msg) 2299 { 2300 #if FASTRETRANS_DEBUG > 1 2301 struct tcp_sock *tp = tcp_sk(sk); 2302 struct inet_sock *inet = inet_sk(sk); 2303 2304 if (sk->sk_family == AF_INET) { 2305 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2306 msg, 2307 &inet->inet_daddr, ntohs(inet->inet_dport), 2308 tp->snd_cwnd, tcp_left_out(tp), 2309 tp->snd_ssthresh, tp->prior_ssthresh, 2310 tp->packets_out); 2311 } 2312 #if IS_ENABLED(CONFIG_IPV6) 2313 else if (sk->sk_family == AF_INET6) { 2314 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2315 msg, 2316 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2317 tp->snd_cwnd, tcp_left_out(tp), 2318 tp->snd_ssthresh, tp->prior_ssthresh, 2319 tp->packets_out); 2320 } 2321 #endif 2322 #endif 2323 } 2324 2325 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2326 { 2327 struct tcp_sock *tp = tcp_sk(sk); 2328 2329 if (unmark_loss) { 2330 struct sk_buff *skb; 2331 2332 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2333 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2334 } 2335 tp->lost_out = 0; 2336 tcp_clear_all_retrans_hints(tp); 2337 } 2338 2339 if (tp->prior_ssthresh) { 2340 const struct inet_connection_sock *icsk = inet_csk(sk); 2341 2342 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2343 2344 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2345 tp->snd_ssthresh = tp->prior_ssthresh; 2346 tcp_ecn_withdraw_cwr(tp); 2347 } 2348 } 2349 tp->snd_cwnd_stamp = tcp_jiffies32; 2350 tp->undo_marker = 0; 2351 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2352 } 2353 2354 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2355 { 2356 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2357 } 2358 2359 /* People celebrate: "We love our President!" */ 2360 static bool tcp_try_undo_recovery(struct sock *sk) 2361 { 2362 struct tcp_sock *tp = tcp_sk(sk); 2363 2364 if (tcp_may_undo(tp)) { 2365 int mib_idx; 2366 2367 /* Happy end! We did not retransmit anything 2368 * or our original transmission succeeded. 2369 */ 2370 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2371 tcp_undo_cwnd_reduction(sk, false); 2372 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2373 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2374 else 2375 mib_idx = LINUX_MIB_TCPFULLUNDO; 2376 2377 NET_INC_STATS(sock_net(sk), mib_idx); 2378 } else if (tp->rack.reo_wnd_persist) { 2379 tp->rack.reo_wnd_persist--; 2380 } 2381 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2382 /* Hold old state until something *above* high_seq 2383 * is ACKed. For Reno it is MUST to prevent false 2384 * fast retransmits (RFC2582). SACK TCP is safe. */ 2385 if (!tcp_any_retrans_done(sk)) 2386 tp->retrans_stamp = 0; 2387 return true; 2388 } 2389 tcp_set_ca_state(sk, TCP_CA_Open); 2390 tp->is_sack_reneg = 0; 2391 return false; 2392 } 2393 2394 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2395 static bool tcp_try_undo_dsack(struct sock *sk) 2396 { 2397 struct tcp_sock *tp = tcp_sk(sk); 2398 2399 if (tp->undo_marker && !tp->undo_retrans) { 2400 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2401 tp->rack.reo_wnd_persist + 1); 2402 DBGUNDO(sk, "D-SACK"); 2403 tcp_undo_cwnd_reduction(sk, false); 2404 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2405 return true; 2406 } 2407 return false; 2408 } 2409 2410 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2411 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2412 { 2413 struct tcp_sock *tp = tcp_sk(sk); 2414 2415 if (frto_undo || tcp_may_undo(tp)) { 2416 tcp_undo_cwnd_reduction(sk, true); 2417 2418 DBGUNDO(sk, "partial loss"); 2419 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2420 if (frto_undo) 2421 NET_INC_STATS(sock_net(sk), 2422 LINUX_MIB_TCPSPURIOUSRTOS); 2423 inet_csk(sk)->icsk_retransmits = 0; 2424 if (frto_undo || tcp_is_sack(tp)) { 2425 tcp_set_ca_state(sk, TCP_CA_Open); 2426 tp->is_sack_reneg = 0; 2427 } 2428 return true; 2429 } 2430 return false; 2431 } 2432 2433 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2434 * It computes the number of packets to send (sndcnt) based on packets newly 2435 * delivered: 2436 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2437 * cwnd reductions across a full RTT. 2438 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2439 * But when the retransmits are acked without further losses, PRR 2440 * slow starts cwnd up to ssthresh to speed up the recovery. 2441 */ 2442 static void tcp_init_cwnd_reduction(struct sock *sk) 2443 { 2444 struct tcp_sock *tp = tcp_sk(sk); 2445 2446 tp->high_seq = tp->snd_nxt; 2447 tp->tlp_high_seq = 0; 2448 tp->snd_cwnd_cnt = 0; 2449 tp->prior_cwnd = tp->snd_cwnd; 2450 tp->prr_delivered = 0; 2451 tp->prr_out = 0; 2452 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2453 tcp_ecn_queue_cwr(tp); 2454 } 2455 2456 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2457 { 2458 struct tcp_sock *tp = tcp_sk(sk); 2459 int sndcnt = 0; 2460 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2461 2462 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2463 return; 2464 2465 tp->prr_delivered += newly_acked_sacked; 2466 if (delta < 0) { 2467 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2468 tp->prior_cwnd - 1; 2469 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2470 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2471 !(flag & FLAG_LOST_RETRANS)) { 2472 sndcnt = min_t(int, delta, 2473 max_t(int, tp->prr_delivered - tp->prr_out, 2474 newly_acked_sacked) + 1); 2475 } else { 2476 sndcnt = min(delta, newly_acked_sacked); 2477 } 2478 /* Force a fast retransmit upon entering fast recovery */ 2479 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2480 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2481 } 2482 2483 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2484 { 2485 struct tcp_sock *tp = tcp_sk(sk); 2486 2487 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2488 return; 2489 2490 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2491 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2492 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2493 tp->snd_cwnd = tp->snd_ssthresh; 2494 tp->snd_cwnd_stamp = tcp_jiffies32; 2495 } 2496 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2497 } 2498 2499 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2500 void tcp_enter_cwr(struct sock *sk) 2501 { 2502 struct tcp_sock *tp = tcp_sk(sk); 2503 2504 tp->prior_ssthresh = 0; 2505 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2506 tp->undo_marker = 0; 2507 tcp_init_cwnd_reduction(sk); 2508 tcp_set_ca_state(sk, TCP_CA_CWR); 2509 } 2510 } 2511 EXPORT_SYMBOL(tcp_enter_cwr); 2512 2513 static void tcp_try_keep_open(struct sock *sk) 2514 { 2515 struct tcp_sock *tp = tcp_sk(sk); 2516 int state = TCP_CA_Open; 2517 2518 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2519 state = TCP_CA_Disorder; 2520 2521 if (inet_csk(sk)->icsk_ca_state != state) { 2522 tcp_set_ca_state(sk, state); 2523 tp->high_seq = tp->snd_nxt; 2524 } 2525 } 2526 2527 static void tcp_try_to_open(struct sock *sk, int flag) 2528 { 2529 struct tcp_sock *tp = tcp_sk(sk); 2530 2531 tcp_verify_left_out(tp); 2532 2533 if (!tcp_any_retrans_done(sk)) 2534 tp->retrans_stamp = 0; 2535 2536 if (flag & FLAG_ECE) 2537 tcp_enter_cwr(sk); 2538 2539 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2540 tcp_try_keep_open(sk); 2541 } 2542 } 2543 2544 static void tcp_mtup_probe_failed(struct sock *sk) 2545 { 2546 struct inet_connection_sock *icsk = inet_csk(sk); 2547 2548 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2549 icsk->icsk_mtup.probe_size = 0; 2550 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2551 } 2552 2553 static void tcp_mtup_probe_success(struct sock *sk) 2554 { 2555 struct tcp_sock *tp = tcp_sk(sk); 2556 struct inet_connection_sock *icsk = inet_csk(sk); 2557 2558 /* FIXME: breaks with very large cwnd */ 2559 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2560 tp->snd_cwnd = tp->snd_cwnd * 2561 tcp_mss_to_mtu(sk, tp->mss_cache) / 2562 icsk->icsk_mtup.probe_size; 2563 tp->snd_cwnd_cnt = 0; 2564 tp->snd_cwnd_stamp = tcp_jiffies32; 2565 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2566 2567 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2568 icsk->icsk_mtup.probe_size = 0; 2569 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2570 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2571 } 2572 2573 /* Do a simple retransmit without using the backoff mechanisms in 2574 * tcp_timer. This is used for path mtu discovery. 2575 * The socket is already locked here. 2576 */ 2577 void tcp_simple_retransmit(struct sock *sk) 2578 { 2579 const struct inet_connection_sock *icsk = inet_csk(sk); 2580 struct tcp_sock *tp = tcp_sk(sk); 2581 struct sk_buff *skb; 2582 unsigned int mss = tcp_current_mss(sk); 2583 2584 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2585 if (tcp_skb_seglen(skb) > mss && 2586 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2587 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2588 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2589 tp->retrans_out -= tcp_skb_pcount(skb); 2590 } 2591 tcp_skb_mark_lost_uncond_verify(tp, skb); 2592 } 2593 } 2594 2595 tcp_clear_retrans_hints_partial(tp); 2596 2597 if (!tp->lost_out) 2598 return; 2599 2600 if (tcp_is_reno(tp)) 2601 tcp_limit_reno_sacked(tp); 2602 2603 tcp_verify_left_out(tp); 2604 2605 /* Don't muck with the congestion window here. 2606 * Reason is that we do not increase amount of _data_ 2607 * in network, but units changed and effective 2608 * cwnd/ssthresh really reduced now. 2609 */ 2610 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2611 tp->high_seq = tp->snd_nxt; 2612 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2613 tp->prior_ssthresh = 0; 2614 tp->undo_marker = 0; 2615 tcp_set_ca_state(sk, TCP_CA_Loss); 2616 } 2617 tcp_xmit_retransmit_queue(sk); 2618 } 2619 EXPORT_SYMBOL(tcp_simple_retransmit); 2620 2621 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2622 { 2623 struct tcp_sock *tp = tcp_sk(sk); 2624 int mib_idx; 2625 2626 if (tcp_is_reno(tp)) 2627 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2628 else 2629 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2630 2631 NET_INC_STATS(sock_net(sk), mib_idx); 2632 2633 tp->prior_ssthresh = 0; 2634 tcp_init_undo(tp); 2635 2636 if (!tcp_in_cwnd_reduction(sk)) { 2637 if (!ece_ack) 2638 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2639 tcp_init_cwnd_reduction(sk); 2640 } 2641 tcp_set_ca_state(sk, TCP_CA_Recovery); 2642 } 2643 2644 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2645 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2646 */ 2647 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2648 int *rexmit) 2649 { 2650 struct tcp_sock *tp = tcp_sk(sk); 2651 bool recovered = !before(tp->snd_una, tp->high_seq); 2652 2653 if ((flag & FLAG_SND_UNA_ADVANCED) && 2654 tcp_try_undo_loss(sk, false)) 2655 return; 2656 2657 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2658 /* Step 3.b. A timeout is spurious if not all data are 2659 * lost, i.e., never-retransmitted data are (s)acked. 2660 */ 2661 if ((flag & FLAG_ORIG_SACK_ACKED) && 2662 tcp_try_undo_loss(sk, true)) 2663 return; 2664 2665 if (after(tp->snd_nxt, tp->high_seq)) { 2666 if (flag & FLAG_DATA_SACKED || is_dupack) 2667 tp->frto = 0; /* Step 3.a. loss was real */ 2668 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2669 tp->high_seq = tp->snd_nxt; 2670 /* Step 2.b. Try send new data (but deferred until cwnd 2671 * is updated in tcp_ack()). Otherwise fall back to 2672 * the conventional recovery. 2673 */ 2674 if (!tcp_write_queue_empty(sk) && 2675 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2676 *rexmit = REXMIT_NEW; 2677 return; 2678 } 2679 tp->frto = 0; 2680 } 2681 } 2682 2683 if (recovered) { 2684 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2685 tcp_try_undo_recovery(sk); 2686 return; 2687 } 2688 if (tcp_is_reno(tp)) { 2689 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2690 * delivered. Lower inflight to clock out (re)tranmissions. 2691 */ 2692 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2693 tcp_add_reno_sack(sk); 2694 else if (flag & FLAG_SND_UNA_ADVANCED) 2695 tcp_reset_reno_sack(tp); 2696 } 2697 *rexmit = REXMIT_LOST; 2698 } 2699 2700 /* Undo during fast recovery after partial ACK. */ 2701 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2702 { 2703 struct tcp_sock *tp = tcp_sk(sk); 2704 2705 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2706 /* Plain luck! Hole if filled with delayed 2707 * packet, rather than with a retransmit. Check reordering. 2708 */ 2709 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2710 2711 /* We are getting evidence that the reordering degree is higher 2712 * than we realized. If there are no retransmits out then we 2713 * can undo. Otherwise we clock out new packets but do not 2714 * mark more packets lost or retransmit more. 2715 */ 2716 if (tp->retrans_out) 2717 return true; 2718 2719 if (!tcp_any_retrans_done(sk)) 2720 tp->retrans_stamp = 0; 2721 2722 DBGUNDO(sk, "partial recovery"); 2723 tcp_undo_cwnd_reduction(sk, true); 2724 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2725 tcp_try_keep_open(sk); 2726 return true; 2727 } 2728 return false; 2729 } 2730 2731 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2732 { 2733 struct tcp_sock *tp = tcp_sk(sk); 2734 2735 if (tcp_rtx_queue_empty(sk)) 2736 return; 2737 2738 if (unlikely(tcp_is_reno(tp))) { 2739 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2740 } else if (tcp_is_rack(sk)) { 2741 u32 prior_retrans = tp->retrans_out; 2742 2743 tcp_rack_mark_lost(sk); 2744 if (prior_retrans > tp->retrans_out) 2745 *ack_flag |= FLAG_LOST_RETRANS; 2746 } 2747 } 2748 2749 static bool tcp_force_fast_retransmit(struct sock *sk) 2750 { 2751 struct tcp_sock *tp = tcp_sk(sk); 2752 2753 return after(tcp_highest_sack_seq(tp), 2754 tp->snd_una + tp->reordering * tp->mss_cache); 2755 } 2756 2757 /* Process an event, which can update packets-in-flight not trivially. 2758 * Main goal of this function is to calculate new estimate for left_out, 2759 * taking into account both packets sitting in receiver's buffer and 2760 * packets lost by network. 2761 * 2762 * Besides that it updates the congestion state when packet loss or ECN 2763 * is detected. But it does not reduce the cwnd, it is done by the 2764 * congestion control later. 2765 * 2766 * It does _not_ decide what to send, it is made in function 2767 * tcp_xmit_retransmit_queue(). 2768 */ 2769 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2770 bool is_dupack, int *ack_flag, int *rexmit) 2771 { 2772 struct inet_connection_sock *icsk = inet_csk(sk); 2773 struct tcp_sock *tp = tcp_sk(sk); 2774 int fast_rexmit = 0, flag = *ack_flag; 2775 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2776 tcp_force_fast_retransmit(sk)); 2777 2778 if (!tp->packets_out && tp->sacked_out) 2779 tp->sacked_out = 0; 2780 2781 /* Now state machine starts. 2782 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2783 if (flag & FLAG_ECE) 2784 tp->prior_ssthresh = 0; 2785 2786 /* B. In all the states check for reneging SACKs. */ 2787 if (tcp_check_sack_reneging(sk, flag)) 2788 return; 2789 2790 /* C. Check consistency of the current state. */ 2791 tcp_verify_left_out(tp); 2792 2793 /* D. Check state exit conditions. State can be terminated 2794 * when high_seq is ACKed. */ 2795 if (icsk->icsk_ca_state == TCP_CA_Open) { 2796 WARN_ON(tp->retrans_out != 0); 2797 tp->retrans_stamp = 0; 2798 } else if (!before(tp->snd_una, tp->high_seq)) { 2799 switch (icsk->icsk_ca_state) { 2800 case TCP_CA_CWR: 2801 /* CWR is to be held something *above* high_seq 2802 * is ACKed for CWR bit to reach receiver. */ 2803 if (tp->snd_una != tp->high_seq) { 2804 tcp_end_cwnd_reduction(sk); 2805 tcp_set_ca_state(sk, TCP_CA_Open); 2806 } 2807 break; 2808 2809 case TCP_CA_Recovery: 2810 if (tcp_is_reno(tp)) 2811 tcp_reset_reno_sack(tp); 2812 if (tcp_try_undo_recovery(sk)) 2813 return; 2814 tcp_end_cwnd_reduction(sk); 2815 break; 2816 } 2817 } 2818 2819 /* E. Process state. */ 2820 switch (icsk->icsk_ca_state) { 2821 case TCP_CA_Recovery: 2822 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2823 if (tcp_is_reno(tp) && is_dupack) 2824 tcp_add_reno_sack(sk); 2825 } else { 2826 if (tcp_try_undo_partial(sk, prior_snd_una)) 2827 return; 2828 /* Partial ACK arrived. Force fast retransmit. */ 2829 do_lost = tcp_is_reno(tp) || 2830 tcp_force_fast_retransmit(sk); 2831 } 2832 if (tcp_try_undo_dsack(sk)) { 2833 tcp_try_keep_open(sk); 2834 return; 2835 } 2836 tcp_identify_packet_loss(sk, ack_flag); 2837 break; 2838 case TCP_CA_Loss: 2839 tcp_process_loss(sk, flag, is_dupack, rexmit); 2840 tcp_identify_packet_loss(sk, ack_flag); 2841 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2842 (*ack_flag & FLAG_LOST_RETRANS))) 2843 return; 2844 /* Change state if cwnd is undone or retransmits are lost */ 2845 /* fall through */ 2846 default: 2847 if (tcp_is_reno(tp)) { 2848 if (flag & FLAG_SND_UNA_ADVANCED) 2849 tcp_reset_reno_sack(tp); 2850 if (is_dupack) 2851 tcp_add_reno_sack(sk); 2852 } 2853 2854 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2855 tcp_try_undo_dsack(sk); 2856 2857 tcp_identify_packet_loss(sk, ack_flag); 2858 if (!tcp_time_to_recover(sk, flag)) { 2859 tcp_try_to_open(sk, flag); 2860 return; 2861 } 2862 2863 /* MTU probe failure: don't reduce cwnd */ 2864 if (icsk->icsk_ca_state < TCP_CA_CWR && 2865 icsk->icsk_mtup.probe_size && 2866 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2867 tcp_mtup_probe_failed(sk); 2868 /* Restores the reduction we did in tcp_mtup_probe() */ 2869 tp->snd_cwnd++; 2870 tcp_simple_retransmit(sk); 2871 return; 2872 } 2873 2874 /* Otherwise enter Recovery state */ 2875 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2876 fast_rexmit = 1; 2877 } 2878 2879 if (!tcp_is_rack(sk) && do_lost) 2880 tcp_update_scoreboard(sk, fast_rexmit); 2881 *rexmit = REXMIT_LOST; 2882 } 2883 2884 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2885 { 2886 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2887 struct tcp_sock *tp = tcp_sk(sk); 2888 2889 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2890 /* If the remote keeps returning delayed ACKs, eventually 2891 * the min filter would pick it up and overestimate the 2892 * prop. delay when it expires. Skip suspected delayed ACKs. 2893 */ 2894 return; 2895 } 2896 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2897 rtt_us ? : jiffies_to_usecs(1)); 2898 } 2899 2900 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2901 long seq_rtt_us, long sack_rtt_us, 2902 long ca_rtt_us, struct rate_sample *rs) 2903 { 2904 const struct tcp_sock *tp = tcp_sk(sk); 2905 2906 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2907 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2908 * Karn's algorithm forbids taking RTT if some retransmitted data 2909 * is acked (RFC6298). 2910 */ 2911 if (seq_rtt_us < 0) 2912 seq_rtt_us = sack_rtt_us; 2913 2914 /* RTTM Rule: A TSecr value received in a segment is used to 2915 * update the averaged RTT measurement only if the segment 2916 * acknowledges some new data, i.e., only if it advances the 2917 * left edge of the send window. 2918 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2919 */ 2920 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2921 flag & FLAG_ACKED) { 2922 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2923 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2924 2925 seq_rtt_us = ca_rtt_us = delta_us; 2926 } 2927 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2928 if (seq_rtt_us < 0) 2929 return false; 2930 2931 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2932 * always taken together with ACK, SACK, or TS-opts. Any negative 2933 * values will be skipped with the seq_rtt_us < 0 check above. 2934 */ 2935 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2936 tcp_rtt_estimator(sk, seq_rtt_us); 2937 tcp_set_rto(sk); 2938 2939 /* RFC6298: only reset backoff on valid RTT measurement. */ 2940 inet_csk(sk)->icsk_backoff = 0; 2941 return true; 2942 } 2943 2944 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2945 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2946 { 2947 struct rate_sample rs; 2948 long rtt_us = -1L; 2949 2950 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2951 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2952 2953 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2954 } 2955 2956 2957 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2958 { 2959 const struct inet_connection_sock *icsk = inet_csk(sk); 2960 2961 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2962 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2963 } 2964 2965 /* Restart timer after forward progress on connection. 2966 * RFC2988 recommends to restart timer to now+rto. 2967 */ 2968 void tcp_rearm_rto(struct sock *sk) 2969 { 2970 const struct inet_connection_sock *icsk = inet_csk(sk); 2971 struct tcp_sock *tp = tcp_sk(sk); 2972 2973 /* If the retrans timer is currently being used by Fast Open 2974 * for SYN-ACK retrans purpose, stay put. 2975 */ 2976 if (tp->fastopen_rsk) 2977 return; 2978 2979 if (!tp->packets_out) { 2980 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2981 } else { 2982 u32 rto = inet_csk(sk)->icsk_rto; 2983 /* Offset the time elapsed after installing regular RTO */ 2984 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2985 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2986 s64 delta_us = tcp_rto_delta_us(sk); 2987 /* delta_us may not be positive if the socket is locked 2988 * when the retrans timer fires and is rescheduled. 2989 */ 2990 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2991 } 2992 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2993 TCP_RTO_MAX); 2994 } 2995 } 2996 2997 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2998 static void tcp_set_xmit_timer(struct sock *sk) 2999 { 3000 if (!tcp_schedule_loss_probe(sk, true)) 3001 tcp_rearm_rto(sk); 3002 } 3003 3004 /* If we get here, the whole TSO packet has not been acked. */ 3005 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3006 { 3007 struct tcp_sock *tp = tcp_sk(sk); 3008 u32 packets_acked; 3009 3010 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3011 3012 packets_acked = tcp_skb_pcount(skb); 3013 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3014 return 0; 3015 packets_acked -= tcp_skb_pcount(skb); 3016 3017 if (packets_acked) { 3018 BUG_ON(tcp_skb_pcount(skb) == 0); 3019 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3020 } 3021 3022 return packets_acked; 3023 } 3024 3025 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3026 u32 prior_snd_una) 3027 { 3028 const struct skb_shared_info *shinfo; 3029 3030 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3031 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3032 return; 3033 3034 shinfo = skb_shinfo(skb); 3035 if (!before(shinfo->tskey, prior_snd_una) && 3036 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3037 tcp_skb_tsorted_save(skb) { 3038 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3039 } tcp_skb_tsorted_restore(skb); 3040 } 3041 } 3042 3043 /* Remove acknowledged frames from the retransmission queue. If our packet 3044 * is before the ack sequence we can discard it as it's confirmed to have 3045 * arrived at the other end. 3046 */ 3047 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3048 u32 prior_snd_una, 3049 struct tcp_sacktag_state *sack) 3050 { 3051 const struct inet_connection_sock *icsk = inet_csk(sk); 3052 u64 first_ackt, last_ackt; 3053 struct tcp_sock *tp = tcp_sk(sk); 3054 u32 prior_sacked = tp->sacked_out; 3055 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3056 struct sk_buff *skb, *next; 3057 bool fully_acked = true; 3058 long sack_rtt_us = -1L; 3059 long seq_rtt_us = -1L; 3060 long ca_rtt_us = -1L; 3061 u32 pkts_acked = 0; 3062 u32 last_in_flight = 0; 3063 bool rtt_update; 3064 int flag = 0; 3065 3066 first_ackt = 0; 3067 3068 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3069 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3070 const u32 start_seq = scb->seq; 3071 u8 sacked = scb->sacked; 3072 u32 acked_pcount; 3073 3074 tcp_ack_tstamp(sk, skb, prior_snd_una); 3075 3076 /* Determine how many packets and what bytes were acked, tso and else */ 3077 if (after(scb->end_seq, tp->snd_una)) { 3078 if (tcp_skb_pcount(skb) == 1 || 3079 !after(tp->snd_una, scb->seq)) 3080 break; 3081 3082 acked_pcount = tcp_tso_acked(sk, skb); 3083 if (!acked_pcount) 3084 break; 3085 fully_acked = false; 3086 } else { 3087 acked_pcount = tcp_skb_pcount(skb); 3088 } 3089 3090 if (unlikely(sacked & TCPCB_RETRANS)) { 3091 if (sacked & TCPCB_SACKED_RETRANS) 3092 tp->retrans_out -= acked_pcount; 3093 flag |= FLAG_RETRANS_DATA_ACKED; 3094 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3095 last_ackt = skb->skb_mstamp; 3096 WARN_ON_ONCE(last_ackt == 0); 3097 if (!first_ackt) 3098 first_ackt = last_ackt; 3099 3100 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3101 if (before(start_seq, reord)) 3102 reord = start_seq; 3103 if (!after(scb->end_seq, tp->high_seq)) 3104 flag |= FLAG_ORIG_SACK_ACKED; 3105 } 3106 3107 if (sacked & TCPCB_SACKED_ACKED) { 3108 tp->sacked_out -= acked_pcount; 3109 } else if (tcp_is_sack(tp)) { 3110 tp->delivered += acked_pcount; 3111 if (!tcp_skb_spurious_retrans(tp, skb)) 3112 tcp_rack_advance(tp, sacked, scb->end_seq, 3113 skb->skb_mstamp); 3114 } 3115 if (sacked & TCPCB_LOST) 3116 tp->lost_out -= acked_pcount; 3117 3118 tp->packets_out -= acked_pcount; 3119 pkts_acked += acked_pcount; 3120 tcp_rate_skb_delivered(sk, skb, sack->rate); 3121 3122 /* Initial outgoing SYN's get put onto the write_queue 3123 * just like anything else we transmit. It is not 3124 * true data, and if we misinform our callers that 3125 * this ACK acks real data, we will erroneously exit 3126 * connection startup slow start one packet too 3127 * quickly. This is severely frowned upon behavior. 3128 */ 3129 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3130 flag |= FLAG_DATA_ACKED; 3131 } else { 3132 flag |= FLAG_SYN_ACKED; 3133 tp->retrans_stamp = 0; 3134 } 3135 3136 if (!fully_acked) 3137 break; 3138 3139 next = skb_rb_next(skb); 3140 if (unlikely(skb == tp->retransmit_skb_hint)) 3141 tp->retransmit_skb_hint = NULL; 3142 if (unlikely(skb == tp->lost_skb_hint)) 3143 tp->lost_skb_hint = NULL; 3144 tcp_rtx_queue_unlink_and_free(skb, sk); 3145 } 3146 3147 if (!skb) 3148 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3149 3150 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3151 tp->snd_up = tp->snd_una; 3152 3153 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3154 flag |= FLAG_SACK_RENEGING; 3155 3156 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3157 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3158 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3159 3160 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3161 last_in_flight && !prior_sacked && fully_acked && 3162 sack->rate->prior_delivered + 1 == tp->delivered && 3163 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3164 /* Conservatively mark a delayed ACK. It's typically 3165 * from a lone runt packet over the round trip to 3166 * a receiver w/o out-of-order or CE events. 3167 */ 3168 flag |= FLAG_ACK_MAYBE_DELAYED; 3169 } 3170 } 3171 if (sack->first_sackt) { 3172 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3173 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3174 } 3175 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3176 ca_rtt_us, sack->rate); 3177 3178 if (flag & FLAG_ACKED) { 3179 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3180 if (unlikely(icsk->icsk_mtup.probe_size && 3181 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3182 tcp_mtup_probe_success(sk); 3183 } 3184 3185 if (tcp_is_reno(tp)) { 3186 tcp_remove_reno_sacks(sk, pkts_acked); 3187 } else { 3188 int delta; 3189 3190 /* Non-retransmitted hole got filled? That's reordering */ 3191 if (before(reord, prior_fack)) 3192 tcp_check_sack_reordering(sk, reord, 0); 3193 3194 delta = prior_sacked - tp->sacked_out; 3195 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3196 } 3197 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3198 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3199 /* Do not re-arm RTO if the sack RTT is measured from data sent 3200 * after when the head was last (re)transmitted. Otherwise the 3201 * timeout may continue to extend in loss recovery. 3202 */ 3203 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3204 } 3205 3206 if (icsk->icsk_ca_ops->pkts_acked) { 3207 struct ack_sample sample = { .pkts_acked = pkts_acked, 3208 .rtt_us = sack->rate->rtt_us, 3209 .in_flight = last_in_flight }; 3210 3211 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3212 } 3213 3214 #if FASTRETRANS_DEBUG > 0 3215 WARN_ON((int)tp->sacked_out < 0); 3216 WARN_ON((int)tp->lost_out < 0); 3217 WARN_ON((int)tp->retrans_out < 0); 3218 if (!tp->packets_out && tcp_is_sack(tp)) { 3219 icsk = inet_csk(sk); 3220 if (tp->lost_out) { 3221 pr_debug("Leak l=%u %d\n", 3222 tp->lost_out, icsk->icsk_ca_state); 3223 tp->lost_out = 0; 3224 } 3225 if (tp->sacked_out) { 3226 pr_debug("Leak s=%u %d\n", 3227 tp->sacked_out, icsk->icsk_ca_state); 3228 tp->sacked_out = 0; 3229 } 3230 if (tp->retrans_out) { 3231 pr_debug("Leak r=%u %d\n", 3232 tp->retrans_out, icsk->icsk_ca_state); 3233 tp->retrans_out = 0; 3234 } 3235 } 3236 #endif 3237 return flag; 3238 } 3239 3240 static void tcp_ack_probe(struct sock *sk) 3241 { 3242 struct inet_connection_sock *icsk = inet_csk(sk); 3243 struct sk_buff *head = tcp_send_head(sk); 3244 const struct tcp_sock *tp = tcp_sk(sk); 3245 3246 /* Was it a usable window open? */ 3247 if (!head) 3248 return; 3249 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3250 icsk->icsk_backoff = 0; 3251 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3252 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3253 * This function is not for random using! 3254 */ 3255 } else { 3256 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3257 3258 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3259 when, TCP_RTO_MAX); 3260 } 3261 } 3262 3263 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3264 { 3265 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3266 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3267 } 3268 3269 /* Decide wheather to run the increase function of congestion control. */ 3270 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3271 { 3272 /* If reordering is high then always grow cwnd whenever data is 3273 * delivered regardless of its ordering. Otherwise stay conservative 3274 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3275 * new SACK or ECE mark may first advance cwnd here and later reduce 3276 * cwnd in tcp_fastretrans_alert() based on more states. 3277 */ 3278 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3279 return flag & FLAG_FORWARD_PROGRESS; 3280 3281 return flag & FLAG_DATA_ACKED; 3282 } 3283 3284 /* The "ultimate" congestion control function that aims to replace the rigid 3285 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3286 * It's called toward the end of processing an ACK with precise rate 3287 * information. All transmission or retransmission are delayed afterwards. 3288 */ 3289 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3290 int flag, const struct rate_sample *rs) 3291 { 3292 const struct inet_connection_sock *icsk = inet_csk(sk); 3293 3294 if (icsk->icsk_ca_ops->cong_control) { 3295 icsk->icsk_ca_ops->cong_control(sk, rs); 3296 return; 3297 } 3298 3299 if (tcp_in_cwnd_reduction(sk)) { 3300 /* Reduce cwnd if state mandates */ 3301 tcp_cwnd_reduction(sk, acked_sacked, flag); 3302 } else if (tcp_may_raise_cwnd(sk, flag)) { 3303 /* Advance cwnd if state allows */ 3304 tcp_cong_avoid(sk, ack, acked_sacked); 3305 } 3306 tcp_update_pacing_rate(sk); 3307 } 3308 3309 /* Check that window update is acceptable. 3310 * The function assumes that snd_una<=ack<=snd_next. 3311 */ 3312 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3313 const u32 ack, const u32 ack_seq, 3314 const u32 nwin) 3315 { 3316 return after(ack, tp->snd_una) || 3317 after(ack_seq, tp->snd_wl1) || 3318 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3319 } 3320 3321 /* If we update tp->snd_una, also update tp->bytes_acked */ 3322 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3323 { 3324 u32 delta = ack - tp->snd_una; 3325 3326 sock_owned_by_me((struct sock *)tp); 3327 tp->bytes_acked += delta; 3328 tp->snd_una = ack; 3329 } 3330 3331 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3332 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3333 { 3334 u32 delta = seq - tp->rcv_nxt; 3335 3336 sock_owned_by_me((struct sock *)tp); 3337 tp->bytes_received += delta; 3338 tp->rcv_nxt = seq; 3339 } 3340 3341 /* Update our send window. 3342 * 3343 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3344 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3345 */ 3346 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3347 u32 ack_seq) 3348 { 3349 struct tcp_sock *tp = tcp_sk(sk); 3350 int flag = 0; 3351 u32 nwin = ntohs(tcp_hdr(skb)->window); 3352 3353 if (likely(!tcp_hdr(skb)->syn)) 3354 nwin <<= tp->rx_opt.snd_wscale; 3355 3356 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3357 flag |= FLAG_WIN_UPDATE; 3358 tcp_update_wl(tp, ack_seq); 3359 3360 if (tp->snd_wnd != nwin) { 3361 tp->snd_wnd = nwin; 3362 3363 /* Note, it is the only place, where 3364 * fast path is recovered for sending TCP. 3365 */ 3366 tp->pred_flags = 0; 3367 tcp_fast_path_check(sk); 3368 3369 if (!tcp_write_queue_empty(sk)) 3370 tcp_slow_start_after_idle_check(sk); 3371 3372 if (nwin > tp->max_window) { 3373 tp->max_window = nwin; 3374 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3375 } 3376 } 3377 } 3378 3379 tcp_snd_una_update(tp, ack); 3380 3381 return flag; 3382 } 3383 3384 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3385 u32 *last_oow_ack_time) 3386 { 3387 if (*last_oow_ack_time) { 3388 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3389 3390 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3391 NET_INC_STATS(net, mib_idx); 3392 return true; /* rate-limited: don't send yet! */ 3393 } 3394 } 3395 3396 *last_oow_ack_time = tcp_jiffies32; 3397 3398 return false; /* not rate-limited: go ahead, send dupack now! */ 3399 } 3400 3401 /* Return true if we're currently rate-limiting out-of-window ACKs and 3402 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3403 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3404 * attacks that send repeated SYNs or ACKs for the same connection. To 3405 * do this, we do not send a duplicate SYNACK or ACK if the remote 3406 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3407 */ 3408 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3409 int mib_idx, u32 *last_oow_ack_time) 3410 { 3411 /* Data packets without SYNs are not likely part of an ACK loop. */ 3412 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3413 !tcp_hdr(skb)->syn) 3414 return false; 3415 3416 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3417 } 3418 3419 /* RFC 5961 7 [ACK Throttling] */ 3420 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3421 { 3422 /* unprotected vars, we dont care of overwrites */ 3423 static u32 challenge_timestamp; 3424 static unsigned int challenge_count; 3425 struct tcp_sock *tp = tcp_sk(sk); 3426 struct net *net = sock_net(sk); 3427 u32 count, now; 3428 3429 /* First check our per-socket dupack rate limit. */ 3430 if (__tcp_oow_rate_limited(net, 3431 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3432 &tp->last_oow_ack_time)) 3433 return; 3434 3435 /* Then check host-wide RFC 5961 rate limit. */ 3436 now = jiffies / HZ; 3437 if (now != challenge_timestamp) { 3438 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3439 u32 half = (ack_limit + 1) >> 1; 3440 3441 challenge_timestamp = now; 3442 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3443 } 3444 count = READ_ONCE(challenge_count); 3445 if (count > 0) { 3446 WRITE_ONCE(challenge_count, count - 1); 3447 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3448 tcp_send_ack(sk); 3449 } 3450 } 3451 3452 static void tcp_store_ts_recent(struct tcp_sock *tp) 3453 { 3454 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3455 tp->rx_opt.ts_recent_stamp = get_seconds(); 3456 } 3457 3458 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3459 { 3460 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3461 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3462 * extra check below makes sure this can only happen 3463 * for pure ACK frames. -DaveM 3464 * 3465 * Not only, also it occurs for expired timestamps. 3466 */ 3467 3468 if (tcp_paws_check(&tp->rx_opt, 0)) 3469 tcp_store_ts_recent(tp); 3470 } 3471 } 3472 3473 /* This routine deals with acks during a TLP episode. 3474 * We mark the end of a TLP episode on receiving TLP dupack or when 3475 * ack is after tlp_high_seq. 3476 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3477 */ 3478 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3479 { 3480 struct tcp_sock *tp = tcp_sk(sk); 3481 3482 if (before(ack, tp->tlp_high_seq)) 3483 return; 3484 3485 if (flag & FLAG_DSACKING_ACK) { 3486 /* This DSACK means original and TLP probe arrived; no loss */ 3487 tp->tlp_high_seq = 0; 3488 } else if (after(ack, tp->tlp_high_seq)) { 3489 /* ACK advances: there was a loss, so reduce cwnd. Reset 3490 * tlp_high_seq in tcp_init_cwnd_reduction() 3491 */ 3492 tcp_init_cwnd_reduction(sk); 3493 tcp_set_ca_state(sk, TCP_CA_CWR); 3494 tcp_end_cwnd_reduction(sk); 3495 tcp_try_keep_open(sk); 3496 NET_INC_STATS(sock_net(sk), 3497 LINUX_MIB_TCPLOSSPROBERECOVERY); 3498 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3499 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3500 /* Pure dupack: original and TLP probe arrived; no loss */ 3501 tp->tlp_high_seq = 0; 3502 } 3503 } 3504 3505 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3506 { 3507 const struct inet_connection_sock *icsk = inet_csk(sk); 3508 3509 if (icsk->icsk_ca_ops->in_ack_event) 3510 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3511 } 3512 3513 /* Congestion control has updated the cwnd already. So if we're in 3514 * loss recovery then now we do any new sends (for FRTO) or 3515 * retransmits (for CA_Loss or CA_recovery) that make sense. 3516 */ 3517 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3518 { 3519 struct tcp_sock *tp = tcp_sk(sk); 3520 3521 if (rexmit == REXMIT_NONE) 3522 return; 3523 3524 if (unlikely(rexmit == 2)) { 3525 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3526 TCP_NAGLE_OFF); 3527 if (after(tp->snd_nxt, tp->high_seq)) 3528 return; 3529 tp->frto = 0; 3530 } 3531 tcp_xmit_retransmit_queue(sk); 3532 } 3533 3534 /* Returns the number of packets newly acked or sacked by the current ACK */ 3535 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3536 { 3537 const struct net *net = sock_net(sk); 3538 struct tcp_sock *tp = tcp_sk(sk); 3539 u32 delivered; 3540 3541 delivered = tp->delivered - prior_delivered; 3542 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3543 if (flag & FLAG_ECE) { 3544 tp->delivered_ce += delivered; 3545 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3546 } 3547 return delivered; 3548 } 3549 3550 /* This routine deals with incoming acks, but not outgoing ones. */ 3551 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3552 { 3553 struct inet_connection_sock *icsk = inet_csk(sk); 3554 struct tcp_sock *tp = tcp_sk(sk); 3555 struct tcp_sacktag_state sack_state; 3556 struct rate_sample rs = { .prior_delivered = 0 }; 3557 u32 prior_snd_una = tp->snd_una; 3558 bool is_sack_reneg = tp->is_sack_reneg; 3559 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3560 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3561 bool is_dupack = false; 3562 int prior_packets = tp->packets_out; 3563 u32 delivered = tp->delivered; 3564 u32 lost = tp->lost; 3565 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3566 u32 prior_fack; 3567 3568 sack_state.first_sackt = 0; 3569 sack_state.rate = &rs; 3570 3571 /* We very likely will need to access rtx queue. */ 3572 prefetch(sk->tcp_rtx_queue.rb_node); 3573 3574 /* If the ack is older than previous acks 3575 * then we can probably ignore it. 3576 */ 3577 if (before(ack, prior_snd_una)) { 3578 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3579 if (before(ack, prior_snd_una - tp->max_window)) { 3580 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3581 tcp_send_challenge_ack(sk, skb); 3582 return -1; 3583 } 3584 goto old_ack; 3585 } 3586 3587 /* If the ack includes data we haven't sent yet, discard 3588 * this segment (RFC793 Section 3.9). 3589 */ 3590 if (after(ack, tp->snd_nxt)) 3591 goto invalid_ack; 3592 3593 if (after(ack, prior_snd_una)) { 3594 flag |= FLAG_SND_UNA_ADVANCED; 3595 icsk->icsk_retransmits = 0; 3596 3597 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3598 if (static_branch_unlikely(&clean_acked_data_enabled)) 3599 if (icsk->icsk_clean_acked) 3600 icsk->icsk_clean_acked(sk, ack); 3601 #endif 3602 } 3603 3604 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3605 rs.prior_in_flight = tcp_packets_in_flight(tp); 3606 3607 /* ts_recent update must be made after we are sure that the packet 3608 * is in window. 3609 */ 3610 if (flag & FLAG_UPDATE_TS_RECENT) 3611 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3612 3613 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3614 /* Window is constant, pure forward advance. 3615 * No more checks are required. 3616 * Note, we use the fact that SND.UNA>=SND.WL2. 3617 */ 3618 tcp_update_wl(tp, ack_seq); 3619 tcp_snd_una_update(tp, ack); 3620 flag |= FLAG_WIN_UPDATE; 3621 3622 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3623 3624 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3625 } else { 3626 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3627 3628 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3629 flag |= FLAG_DATA; 3630 else 3631 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3632 3633 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3634 3635 if (TCP_SKB_CB(skb)->sacked) 3636 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3637 &sack_state); 3638 3639 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3640 flag |= FLAG_ECE; 3641 ack_ev_flags |= CA_ACK_ECE; 3642 } 3643 3644 if (flag & FLAG_WIN_UPDATE) 3645 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3646 3647 tcp_in_ack_event(sk, ack_ev_flags); 3648 } 3649 3650 /* We passed data and got it acked, remove any soft error 3651 * log. Something worked... 3652 */ 3653 sk->sk_err_soft = 0; 3654 icsk->icsk_probes_out = 0; 3655 tp->rcv_tstamp = tcp_jiffies32; 3656 if (!prior_packets) 3657 goto no_queue; 3658 3659 /* See if we can take anything off of the retransmit queue. */ 3660 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3661 3662 tcp_rack_update_reo_wnd(sk, &rs); 3663 3664 if (tp->tlp_high_seq) 3665 tcp_process_tlp_ack(sk, ack, flag); 3666 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3667 if (flag & FLAG_SET_XMIT_TIMER) 3668 tcp_set_xmit_timer(sk); 3669 3670 if (tcp_ack_is_dubious(sk, flag)) { 3671 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3672 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3673 &rexmit); 3674 } 3675 3676 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3677 sk_dst_confirm(sk); 3678 3679 delivered = tcp_newly_delivered(sk, delivered, flag); 3680 lost = tp->lost - lost; /* freshly marked lost */ 3681 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3682 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3683 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3684 tcp_xmit_recovery(sk, rexmit); 3685 return 1; 3686 3687 no_queue: 3688 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3689 if (flag & FLAG_DSACKING_ACK) { 3690 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3691 &rexmit); 3692 tcp_newly_delivered(sk, delivered, flag); 3693 } 3694 /* If this ack opens up a zero window, clear backoff. It was 3695 * being used to time the probes, and is probably far higher than 3696 * it needs to be for normal retransmission. 3697 */ 3698 tcp_ack_probe(sk); 3699 3700 if (tp->tlp_high_seq) 3701 tcp_process_tlp_ack(sk, ack, flag); 3702 return 1; 3703 3704 invalid_ack: 3705 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3706 return -1; 3707 3708 old_ack: 3709 /* If data was SACKed, tag it and see if we should send more data. 3710 * If data was DSACKed, see if we can undo a cwnd reduction. 3711 */ 3712 if (TCP_SKB_CB(skb)->sacked) { 3713 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3714 &sack_state); 3715 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3716 &rexmit); 3717 tcp_newly_delivered(sk, delivered, flag); 3718 tcp_xmit_recovery(sk, rexmit); 3719 } 3720 3721 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3722 return 0; 3723 } 3724 3725 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3726 bool syn, struct tcp_fastopen_cookie *foc, 3727 bool exp_opt) 3728 { 3729 /* Valid only in SYN or SYN-ACK with an even length. */ 3730 if (!foc || !syn || len < 0 || (len & 1)) 3731 return; 3732 3733 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3734 len <= TCP_FASTOPEN_COOKIE_MAX) 3735 memcpy(foc->val, cookie, len); 3736 else if (len != 0) 3737 len = -1; 3738 foc->len = len; 3739 foc->exp = exp_opt; 3740 } 3741 3742 static void smc_parse_options(const struct tcphdr *th, 3743 struct tcp_options_received *opt_rx, 3744 const unsigned char *ptr, 3745 int opsize) 3746 { 3747 #if IS_ENABLED(CONFIG_SMC) 3748 if (static_branch_unlikely(&tcp_have_smc)) { 3749 if (th->syn && !(opsize & 1) && 3750 opsize >= TCPOLEN_EXP_SMC_BASE && 3751 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3752 opt_rx->smc_ok = 1; 3753 } 3754 #endif 3755 } 3756 3757 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3758 * But, this can also be called on packets in the established flow when 3759 * the fast version below fails. 3760 */ 3761 void tcp_parse_options(const struct net *net, 3762 const struct sk_buff *skb, 3763 struct tcp_options_received *opt_rx, int estab, 3764 struct tcp_fastopen_cookie *foc) 3765 { 3766 const unsigned char *ptr; 3767 const struct tcphdr *th = tcp_hdr(skb); 3768 int length = (th->doff * 4) - sizeof(struct tcphdr); 3769 3770 ptr = (const unsigned char *)(th + 1); 3771 opt_rx->saw_tstamp = 0; 3772 3773 while (length > 0) { 3774 int opcode = *ptr++; 3775 int opsize; 3776 3777 switch (opcode) { 3778 case TCPOPT_EOL: 3779 return; 3780 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3781 length--; 3782 continue; 3783 default: 3784 opsize = *ptr++; 3785 if (opsize < 2) /* "silly options" */ 3786 return; 3787 if (opsize > length) 3788 return; /* don't parse partial options */ 3789 switch (opcode) { 3790 case TCPOPT_MSS: 3791 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3792 u16 in_mss = get_unaligned_be16(ptr); 3793 if (in_mss) { 3794 if (opt_rx->user_mss && 3795 opt_rx->user_mss < in_mss) 3796 in_mss = opt_rx->user_mss; 3797 opt_rx->mss_clamp = in_mss; 3798 } 3799 } 3800 break; 3801 case TCPOPT_WINDOW: 3802 if (opsize == TCPOLEN_WINDOW && th->syn && 3803 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3804 __u8 snd_wscale = *(__u8 *)ptr; 3805 opt_rx->wscale_ok = 1; 3806 if (snd_wscale > TCP_MAX_WSCALE) { 3807 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3808 __func__, 3809 snd_wscale, 3810 TCP_MAX_WSCALE); 3811 snd_wscale = TCP_MAX_WSCALE; 3812 } 3813 opt_rx->snd_wscale = snd_wscale; 3814 } 3815 break; 3816 case TCPOPT_TIMESTAMP: 3817 if ((opsize == TCPOLEN_TIMESTAMP) && 3818 ((estab && opt_rx->tstamp_ok) || 3819 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3820 opt_rx->saw_tstamp = 1; 3821 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3822 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3823 } 3824 break; 3825 case TCPOPT_SACK_PERM: 3826 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3827 !estab && net->ipv4.sysctl_tcp_sack) { 3828 opt_rx->sack_ok = TCP_SACK_SEEN; 3829 tcp_sack_reset(opt_rx); 3830 } 3831 break; 3832 3833 case TCPOPT_SACK: 3834 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3835 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3836 opt_rx->sack_ok) { 3837 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3838 } 3839 break; 3840 #ifdef CONFIG_TCP_MD5SIG 3841 case TCPOPT_MD5SIG: 3842 /* 3843 * The MD5 Hash has already been 3844 * checked (see tcp_v{4,6}_do_rcv()). 3845 */ 3846 break; 3847 #endif 3848 case TCPOPT_FASTOPEN: 3849 tcp_parse_fastopen_option( 3850 opsize - TCPOLEN_FASTOPEN_BASE, 3851 ptr, th->syn, foc, false); 3852 break; 3853 3854 case TCPOPT_EXP: 3855 /* Fast Open option shares code 254 using a 3856 * 16 bits magic number. 3857 */ 3858 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3859 get_unaligned_be16(ptr) == 3860 TCPOPT_FASTOPEN_MAGIC) 3861 tcp_parse_fastopen_option(opsize - 3862 TCPOLEN_EXP_FASTOPEN_BASE, 3863 ptr + 2, th->syn, foc, true); 3864 else 3865 smc_parse_options(th, opt_rx, ptr, 3866 opsize); 3867 break; 3868 3869 } 3870 ptr += opsize-2; 3871 length -= opsize; 3872 } 3873 } 3874 } 3875 EXPORT_SYMBOL(tcp_parse_options); 3876 3877 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3878 { 3879 const __be32 *ptr = (const __be32 *)(th + 1); 3880 3881 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3882 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3883 tp->rx_opt.saw_tstamp = 1; 3884 ++ptr; 3885 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3886 ++ptr; 3887 if (*ptr) 3888 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3889 else 3890 tp->rx_opt.rcv_tsecr = 0; 3891 return true; 3892 } 3893 return false; 3894 } 3895 3896 /* Fast parse options. This hopes to only see timestamps. 3897 * If it is wrong it falls back on tcp_parse_options(). 3898 */ 3899 static bool tcp_fast_parse_options(const struct net *net, 3900 const struct sk_buff *skb, 3901 const struct tcphdr *th, struct tcp_sock *tp) 3902 { 3903 /* In the spirit of fast parsing, compare doff directly to constant 3904 * values. Because equality is used, short doff can be ignored here. 3905 */ 3906 if (th->doff == (sizeof(*th) / 4)) { 3907 tp->rx_opt.saw_tstamp = 0; 3908 return false; 3909 } else if (tp->rx_opt.tstamp_ok && 3910 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3911 if (tcp_parse_aligned_timestamp(tp, th)) 3912 return true; 3913 } 3914 3915 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3916 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3917 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3918 3919 return true; 3920 } 3921 3922 #ifdef CONFIG_TCP_MD5SIG 3923 /* 3924 * Parse MD5 Signature option 3925 */ 3926 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3927 { 3928 int length = (th->doff << 2) - sizeof(*th); 3929 const u8 *ptr = (const u8 *)(th + 1); 3930 3931 /* If not enough data remaining, we can short cut */ 3932 while (length >= TCPOLEN_MD5SIG) { 3933 int opcode = *ptr++; 3934 int opsize; 3935 3936 switch (opcode) { 3937 case TCPOPT_EOL: 3938 return NULL; 3939 case TCPOPT_NOP: 3940 length--; 3941 continue; 3942 default: 3943 opsize = *ptr++; 3944 if (opsize < 2 || opsize > length) 3945 return NULL; 3946 if (opcode == TCPOPT_MD5SIG) 3947 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3948 } 3949 ptr += opsize - 2; 3950 length -= opsize; 3951 } 3952 return NULL; 3953 } 3954 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3955 #endif 3956 3957 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3958 * 3959 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3960 * it can pass through stack. So, the following predicate verifies that 3961 * this segment is not used for anything but congestion avoidance or 3962 * fast retransmit. Moreover, we even are able to eliminate most of such 3963 * second order effects, if we apply some small "replay" window (~RTO) 3964 * to timestamp space. 3965 * 3966 * All these measures still do not guarantee that we reject wrapped ACKs 3967 * on networks with high bandwidth, when sequence space is recycled fastly, 3968 * but it guarantees that such events will be very rare and do not affect 3969 * connection seriously. This doesn't look nice, but alas, PAWS is really 3970 * buggy extension. 3971 * 3972 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3973 * states that events when retransmit arrives after original data are rare. 3974 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3975 * the biggest problem on large power networks even with minor reordering. 3976 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3977 * up to bandwidth of 18Gigabit/sec. 8) ] 3978 */ 3979 3980 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3981 { 3982 const struct tcp_sock *tp = tcp_sk(sk); 3983 const struct tcphdr *th = tcp_hdr(skb); 3984 u32 seq = TCP_SKB_CB(skb)->seq; 3985 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3986 3987 return (/* 1. Pure ACK with correct sequence number. */ 3988 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3989 3990 /* 2. ... and duplicate ACK. */ 3991 ack == tp->snd_una && 3992 3993 /* 3. ... and does not update window. */ 3994 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3995 3996 /* 4. ... and sits in replay window. */ 3997 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3998 } 3999 4000 static inline bool tcp_paws_discard(const struct sock *sk, 4001 const struct sk_buff *skb) 4002 { 4003 const struct tcp_sock *tp = tcp_sk(sk); 4004 4005 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4006 !tcp_disordered_ack(sk, skb); 4007 } 4008 4009 /* Check segment sequence number for validity. 4010 * 4011 * Segment controls are considered valid, if the segment 4012 * fits to the window after truncation to the window. Acceptability 4013 * of data (and SYN, FIN, of course) is checked separately. 4014 * See tcp_data_queue(), for example. 4015 * 4016 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4017 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4018 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4019 * (borrowed from freebsd) 4020 */ 4021 4022 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4023 { 4024 return !before(end_seq, tp->rcv_wup) && 4025 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4026 } 4027 4028 /* When we get a reset we do this. */ 4029 void tcp_reset(struct sock *sk) 4030 { 4031 trace_tcp_receive_reset(sk); 4032 4033 /* We want the right error as BSD sees it (and indeed as we do). */ 4034 switch (sk->sk_state) { 4035 case TCP_SYN_SENT: 4036 sk->sk_err = ECONNREFUSED; 4037 break; 4038 case TCP_CLOSE_WAIT: 4039 sk->sk_err = EPIPE; 4040 break; 4041 case TCP_CLOSE: 4042 return; 4043 default: 4044 sk->sk_err = ECONNRESET; 4045 } 4046 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4047 smp_wmb(); 4048 4049 tcp_write_queue_purge(sk); 4050 tcp_done(sk); 4051 4052 if (!sock_flag(sk, SOCK_DEAD)) 4053 sk->sk_error_report(sk); 4054 } 4055 4056 /* 4057 * Process the FIN bit. This now behaves as it is supposed to work 4058 * and the FIN takes effect when it is validly part of sequence 4059 * space. Not before when we get holes. 4060 * 4061 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4062 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4063 * TIME-WAIT) 4064 * 4065 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4066 * close and we go into CLOSING (and later onto TIME-WAIT) 4067 * 4068 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4069 */ 4070 void tcp_fin(struct sock *sk) 4071 { 4072 struct tcp_sock *tp = tcp_sk(sk); 4073 4074 inet_csk_schedule_ack(sk); 4075 4076 sk->sk_shutdown |= RCV_SHUTDOWN; 4077 sock_set_flag(sk, SOCK_DONE); 4078 4079 switch (sk->sk_state) { 4080 case TCP_SYN_RECV: 4081 case TCP_ESTABLISHED: 4082 /* Move to CLOSE_WAIT */ 4083 tcp_set_state(sk, TCP_CLOSE_WAIT); 4084 inet_csk(sk)->icsk_ack.pingpong = 1; 4085 break; 4086 4087 case TCP_CLOSE_WAIT: 4088 case TCP_CLOSING: 4089 /* Received a retransmission of the FIN, do 4090 * nothing. 4091 */ 4092 break; 4093 case TCP_LAST_ACK: 4094 /* RFC793: Remain in the LAST-ACK state. */ 4095 break; 4096 4097 case TCP_FIN_WAIT1: 4098 /* This case occurs when a simultaneous close 4099 * happens, we must ack the received FIN and 4100 * enter the CLOSING state. 4101 */ 4102 tcp_send_ack(sk); 4103 tcp_set_state(sk, TCP_CLOSING); 4104 break; 4105 case TCP_FIN_WAIT2: 4106 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4107 tcp_send_ack(sk); 4108 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4109 break; 4110 default: 4111 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4112 * cases we should never reach this piece of code. 4113 */ 4114 pr_err("%s: Impossible, sk->sk_state=%d\n", 4115 __func__, sk->sk_state); 4116 break; 4117 } 4118 4119 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4120 * Probably, we should reset in this case. For now drop them. 4121 */ 4122 skb_rbtree_purge(&tp->out_of_order_queue); 4123 if (tcp_is_sack(tp)) 4124 tcp_sack_reset(&tp->rx_opt); 4125 sk_mem_reclaim(sk); 4126 4127 if (!sock_flag(sk, SOCK_DEAD)) { 4128 sk->sk_state_change(sk); 4129 4130 /* Do not send POLL_HUP for half duplex close. */ 4131 if (sk->sk_shutdown == SHUTDOWN_MASK || 4132 sk->sk_state == TCP_CLOSE) 4133 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4134 else 4135 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4136 } 4137 } 4138 4139 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4140 u32 end_seq) 4141 { 4142 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4143 if (before(seq, sp->start_seq)) 4144 sp->start_seq = seq; 4145 if (after(end_seq, sp->end_seq)) 4146 sp->end_seq = end_seq; 4147 return true; 4148 } 4149 return false; 4150 } 4151 4152 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4153 { 4154 struct tcp_sock *tp = tcp_sk(sk); 4155 4156 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4157 int mib_idx; 4158 4159 if (before(seq, tp->rcv_nxt)) 4160 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4161 else 4162 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4163 4164 NET_INC_STATS(sock_net(sk), mib_idx); 4165 4166 tp->rx_opt.dsack = 1; 4167 tp->duplicate_sack[0].start_seq = seq; 4168 tp->duplicate_sack[0].end_seq = end_seq; 4169 } 4170 } 4171 4172 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4173 { 4174 struct tcp_sock *tp = tcp_sk(sk); 4175 4176 if (!tp->rx_opt.dsack) 4177 tcp_dsack_set(sk, seq, end_seq); 4178 else 4179 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4180 } 4181 4182 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4183 { 4184 struct tcp_sock *tp = tcp_sk(sk); 4185 4186 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4187 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4188 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4189 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4190 4191 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4192 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4193 4194 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4195 end_seq = tp->rcv_nxt; 4196 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4197 } 4198 } 4199 4200 tcp_send_ack(sk); 4201 } 4202 4203 /* These routines update the SACK block as out-of-order packets arrive or 4204 * in-order packets close up the sequence space. 4205 */ 4206 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4207 { 4208 int this_sack; 4209 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4210 struct tcp_sack_block *swalk = sp + 1; 4211 4212 /* See if the recent change to the first SACK eats into 4213 * or hits the sequence space of other SACK blocks, if so coalesce. 4214 */ 4215 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4216 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4217 int i; 4218 4219 /* Zap SWALK, by moving every further SACK up by one slot. 4220 * Decrease num_sacks. 4221 */ 4222 tp->rx_opt.num_sacks--; 4223 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4224 sp[i] = sp[i + 1]; 4225 continue; 4226 } 4227 this_sack++, swalk++; 4228 } 4229 } 4230 4231 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4232 { 4233 struct tcp_sock *tp = tcp_sk(sk); 4234 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4235 int cur_sacks = tp->rx_opt.num_sacks; 4236 int this_sack; 4237 4238 if (!cur_sacks) 4239 goto new_sack; 4240 4241 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4242 if (tcp_sack_extend(sp, seq, end_seq)) { 4243 /* Rotate this_sack to the first one. */ 4244 for (; this_sack > 0; this_sack--, sp--) 4245 swap(*sp, *(sp - 1)); 4246 if (cur_sacks > 1) 4247 tcp_sack_maybe_coalesce(tp); 4248 return; 4249 } 4250 } 4251 4252 /* Could not find an adjacent existing SACK, build a new one, 4253 * put it at the front, and shift everyone else down. We 4254 * always know there is at least one SACK present already here. 4255 * 4256 * If the sack array is full, forget about the last one. 4257 */ 4258 if (this_sack >= TCP_NUM_SACKS) { 4259 if (tp->compressed_ack) 4260 tcp_send_ack(sk); 4261 this_sack--; 4262 tp->rx_opt.num_sacks--; 4263 sp--; 4264 } 4265 for (; this_sack > 0; this_sack--, sp--) 4266 *sp = *(sp - 1); 4267 4268 new_sack: 4269 /* Build the new head SACK, and we're done. */ 4270 sp->start_seq = seq; 4271 sp->end_seq = end_seq; 4272 tp->rx_opt.num_sacks++; 4273 } 4274 4275 /* RCV.NXT advances, some SACKs should be eaten. */ 4276 4277 static void tcp_sack_remove(struct tcp_sock *tp) 4278 { 4279 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4280 int num_sacks = tp->rx_opt.num_sacks; 4281 int this_sack; 4282 4283 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4284 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4285 tp->rx_opt.num_sacks = 0; 4286 return; 4287 } 4288 4289 for (this_sack = 0; this_sack < num_sacks;) { 4290 /* Check if the start of the sack is covered by RCV.NXT. */ 4291 if (!before(tp->rcv_nxt, sp->start_seq)) { 4292 int i; 4293 4294 /* RCV.NXT must cover all the block! */ 4295 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4296 4297 /* Zap this SACK, by moving forward any other SACKS. */ 4298 for (i = this_sack+1; i < num_sacks; i++) 4299 tp->selective_acks[i-1] = tp->selective_acks[i]; 4300 num_sacks--; 4301 continue; 4302 } 4303 this_sack++; 4304 sp++; 4305 } 4306 tp->rx_opt.num_sacks = num_sacks; 4307 } 4308 4309 /** 4310 * tcp_try_coalesce - try to merge skb to prior one 4311 * @sk: socket 4312 * @dest: destination queue 4313 * @to: prior buffer 4314 * @from: buffer to add in queue 4315 * @fragstolen: pointer to boolean 4316 * 4317 * Before queueing skb @from after @to, try to merge them 4318 * to reduce overall memory use and queue lengths, if cost is small. 4319 * Packets in ofo or receive queues can stay a long time. 4320 * Better try to coalesce them right now to avoid future collapses. 4321 * Returns true if caller should free @from instead of queueing it 4322 */ 4323 static bool tcp_try_coalesce(struct sock *sk, 4324 struct sk_buff *to, 4325 struct sk_buff *from, 4326 bool *fragstolen) 4327 { 4328 int delta; 4329 4330 *fragstolen = false; 4331 4332 /* Its possible this segment overlaps with prior segment in queue */ 4333 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4334 return false; 4335 4336 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4337 return false; 4338 4339 atomic_add(delta, &sk->sk_rmem_alloc); 4340 sk_mem_charge(sk, delta); 4341 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4342 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4343 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4344 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4345 4346 if (TCP_SKB_CB(from)->has_rxtstamp) { 4347 TCP_SKB_CB(to)->has_rxtstamp = true; 4348 to->tstamp = from->tstamp; 4349 } 4350 4351 return true; 4352 } 4353 4354 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4355 { 4356 sk_drops_add(sk, skb); 4357 __kfree_skb(skb); 4358 } 4359 4360 /* This one checks to see if we can put data from the 4361 * out_of_order queue into the receive_queue. 4362 */ 4363 static void tcp_ofo_queue(struct sock *sk) 4364 { 4365 struct tcp_sock *tp = tcp_sk(sk); 4366 __u32 dsack_high = tp->rcv_nxt; 4367 bool fin, fragstolen, eaten; 4368 struct sk_buff *skb, *tail; 4369 struct rb_node *p; 4370 4371 p = rb_first(&tp->out_of_order_queue); 4372 while (p) { 4373 skb = rb_to_skb(p); 4374 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4375 break; 4376 4377 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4378 __u32 dsack = dsack_high; 4379 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4380 dsack_high = TCP_SKB_CB(skb)->end_seq; 4381 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4382 } 4383 p = rb_next(p); 4384 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4385 4386 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4387 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4388 tcp_drop(sk, skb); 4389 continue; 4390 } 4391 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4392 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4393 TCP_SKB_CB(skb)->end_seq); 4394 4395 tail = skb_peek_tail(&sk->sk_receive_queue); 4396 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4397 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4398 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4399 if (!eaten) 4400 __skb_queue_tail(&sk->sk_receive_queue, skb); 4401 else 4402 kfree_skb_partial(skb, fragstolen); 4403 4404 if (unlikely(fin)) { 4405 tcp_fin(sk); 4406 /* tcp_fin() purges tp->out_of_order_queue, 4407 * so we must end this loop right now. 4408 */ 4409 break; 4410 } 4411 } 4412 } 4413 4414 static bool tcp_prune_ofo_queue(struct sock *sk); 4415 static int tcp_prune_queue(struct sock *sk); 4416 4417 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4418 unsigned int size) 4419 { 4420 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4421 !sk_rmem_schedule(sk, skb, size)) { 4422 4423 if (tcp_prune_queue(sk) < 0) 4424 return -1; 4425 4426 while (!sk_rmem_schedule(sk, skb, size)) { 4427 if (!tcp_prune_ofo_queue(sk)) 4428 return -1; 4429 } 4430 } 4431 return 0; 4432 } 4433 4434 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4435 { 4436 struct tcp_sock *tp = tcp_sk(sk); 4437 struct rb_node **p, *parent; 4438 struct sk_buff *skb1; 4439 u32 seq, end_seq; 4440 bool fragstolen; 4441 4442 tcp_ecn_check_ce(sk, skb); 4443 4444 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4445 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4446 tcp_drop(sk, skb); 4447 return; 4448 } 4449 4450 /* Disable header prediction. */ 4451 tp->pred_flags = 0; 4452 inet_csk_schedule_ack(sk); 4453 4454 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4455 seq = TCP_SKB_CB(skb)->seq; 4456 end_seq = TCP_SKB_CB(skb)->end_seq; 4457 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4458 tp->rcv_nxt, seq, end_seq); 4459 4460 p = &tp->out_of_order_queue.rb_node; 4461 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4462 /* Initial out of order segment, build 1 SACK. */ 4463 if (tcp_is_sack(tp)) { 4464 tp->rx_opt.num_sacks = 1; 4465 tp->selective_acks[0].start_seq = seq; 4466 tp->selective_acks[0].end_seq = end_seq; 4467 } 4468 rb_link_node(&skb->rbnode, NULL, p); 4469 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4470 tp->ooo_last_skb = skb; 4471 goto end; 4472 } 4473 4474 /* In the typical case, we are adding an skb to the end of the list. 4475 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4476 */ 4477 if (tcp_try_coalesce(sk, tp->ooo_last_skb, 4478 skb, &fragstolen)) { 4479 coalesce_done: 4480 tcp_grow_window(sk, skb); 4481 kfree_skb_partial(skb, fragstolen); 4482 skb = NULL; 4483 goto add_sack; 4484 } 4485 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4486 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4487 parent = &tp->ooo_last_skb->rbnode; 4488 p = &parent->rb_right; 4489 goto insert; 4490 } 4491 4492 /* Find place to insert this segment. Handle overlaps on the way. */ 4493 parent = NULL; 4494 while (*p) { 4495 parent = *p; 4496 skb1 = rb_to_skb(parent); 4497 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4498 p = &parent->rb_left; 4499 continue; 4500 } 4501 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4502 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4503 /* All the bits are present. Drop. */ 4504 NET_INC_STATS(sock_net(sk), 4505 LINUX_MIB_TCPOFOMERGE); 4506 __kfree_skb(skb); 4507 skb = NULL; 4508 tcp_dsack_set(sk, seq, end_seq); 4509 goto add_sack; 4510 } 4511 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4512 /* Partial overlap. */ 4513 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4514 } else { 4515 /* skb's seq == skb1's seq and skb covers skb1. 4516 * Replace skb1 with skb. 4517 */ 4518 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4519 &tp->out_of_order_queue); 4520 tcp_dsack_extend(sk, 4521 TCP_SKB_CB(skb1)->seq, 4522 TCP_SKB_CB(skb1)->end_seq); 4523 NET_INC_STATS(sock_net(sk), 4524 LINUX_MIB_TCPOFOMERGE); 4525 __kfree_skb(skb1); 4526 goto merge_right; 4527 } 4528 } else if (tcp_try_coalesce(sk, skb1, 4529 skb, &fragstolen)) { 4530 goto coalesce_done; 4531 } 4532 p = &parent->rb_right; 4533 } 4534 insert: 4535 /* Insert segment into RB tree. */ 4536 rb_link_node(&skb->rbnode, parent, p); 4537 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4538 4539 merge_right: 4540 /* Remove other segments covered by skb. */ 4541 while ((skb1 = skb_rb_next(skb)) != NULL) { 4542 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4543 break; 4544 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4545 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4546 end_seq); 4547 break; 4548 } 4549 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4550 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4551 TCP_SKB_CB(skb1)->end_seq); 4552 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4553 tcp_drop(sk, skb1); 4554 } 4555 /* If there is no skb after us, we are the last_skb ! */ 4556 if (!skb1) 4557 tp->ooo_last_skb = skb; 4558 4559 add_sack: 4560 if (tcp_is_sack(tp)) 4561 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4562 end: 4563 if (skb) { 4564 tcp_grow_window(sk, skb); 4565 skb_condense(skb); 4566 skb_set_owner_r(skb, sk); 4567 } 4568 } 4569 4570 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4571 bool *fragstolen) 4572 { 4573 int eaten; 4574 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4575 4576 __skb_pull(skb, hdrlen); 4577 eaten = (tail && 4578 tcp_try_coalesce(sk, tail, 4579 skb, fragstolen)) ? 1 : 0; 4580 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4581 if (!eaten) { 4582 __skb_queue_tail(&sk->sk_receive_queue, skb); 4583 skb_set_owner_r(skb, sk); 4584 } 4585 return eaten; 4586 } 4587 4588 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4589 { 4590 struct sk_buff *skb; 4591 int err = -ENOMEM; 4592 int data_len = 0; 4593 bool fragstolen; 4594 4595 if (size == 0) 4596 return 0; 4597 4598 if (size > PAGE_SIZE) { 4599 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4600 4601 data_len = npages << PAGE_SHIFT; 4602 size = data_len + (size & ~PAGE_MASK); 4603 } 4604 skb = alloc_skb_with_frags(size - data_len, data_len, 4605 PAGE_ALLOC_COSTLY_ORDER, 4606 &err, sk->sk_allocation); 4607 if (!skb) 4608 goto err; 4609 4610 skb_put(skb, size - data_len); 4611 skb->data_len = data_len; 4612 skb->len = size; 4613 4614 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4615 goto err_free; 4616 4617 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4618 if (err) 4619 goto err_free; 4620 4621 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4622 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4623 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4624 4625 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4626 WARN_ON_ONCE(fragstolen); /* should not happen */ 4627 __kfree_skb(skb); 4628 } 4629 return size; 4630 4631 err_free: 4632 kfree_skb(skb); 4633 err: 4634 return err; 4635 4636 } 4637 4638 void tcp_data_ready(struct sock *sk) 4639 { 4640 const struct tcp_sock *tp = tcp_sk(sk); 4641 int avail = tp->rcv_nxt - tp->copied_seq; 4642 4643 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4644 return; 4645 4646 sk->sk_data_ready(sk); 4647 } 4648 4649 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4650 { 4651 struct tcp_sock *tp = tcp_sk(sk); 4652 bool fragstolen; 4653 int eaten; 4654 4655 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4656 __kfree_skb(skb); 4657 return; 4658 } 4659 skb_dst_drop(skb); 4660 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4661 4662 tcp_ecn_accept_cwr(tp, skb); 4663 4664 tp->rx_opt.dsack = 0; 4665 4666 /* Queue data for delivery to the user. 4667 * Packets in sequence go to the receive queue. 4668 * Out of sequence packets to the out_of_order_queue. 4669 */ 4670 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4671 if (tcp_receive_window(tp) == 0) { 4672 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4673 goto out_of_window; 4674 } 4675 4676 /* Ok. In sequence. In window. */ 4677 queue_and_out: 4678 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4679 sk_forced_mem_schedule(sk, skb->truesize); 4680 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4681 goto drop; 4682 4683 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4684 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4685 if (skb->len) 4686 tcp_event_data_recv(sk, skb); 4687 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4688 tcp_fin(sk); 4689 4690 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4691 tcp_ofo_queue(sk); 4692 4693 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4694 * gap in queue is filled. 4695 */ 4696 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4697 inet_csk(sk)->icsk_ack.pingpong = 0; 4698 } 4699 4700 if (tp->rx_opt.num_sacks) 4701 tcp_sack_remove(tp); 4702 4703 tcp_fast_path_check(sk); 4704 4705 if (eaten > 0) 4706 kfree_skb_partial(skb, fragstolen); 4707 if (!sock_flag(sk, SOCK_DEAD)) 4708 tcp_data_ready(sk); 4709 return; 4710 } 4711 4712 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4713 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4714 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4715 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4716 4717 out_of_window: 4718 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4719 inet_csk_schedule_ack(sk); 4720 drop: 4721 tcp_drop(sk, skb); 4722 return; 4723 } 4724 4725 /* Out of window. F.e. zero window probe. */ 4726 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4727 goto out_of_window; 4728 4729 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4730 /* Partial packet, seq < rcv_next < end_seq */ 4731 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4732 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4733 TCP_SKB_CB(skb)->end_seq); 4734 4735 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4736 4737 /* If window is closed, drop tail of packet. But after 4738 * remembering D-SACK for its head made in previous line. 4739 */ 4740 if (!tcp_receive_window(tp)) { 4741 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4742 goto out_of_window; 4743 } 4744 goto queue_and_out; 4745 } 4746 4747 tcp_data_queue_ofo(sk, skb); 4748 } 4749 4750 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4751 { 4752 if (list) 4753 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4754 4755 return skb_rb_next(skb); 4756 } 4757 4758 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4759 struct sk_buff_head *list, 4760 struct rb_root *root) 4761 { 4762 struct sk_buff *next = tcp_skb_next(skb, list); 4763 4764 if (list) 4765 __skb_unlink(skb, list); 4766 else 4767 rb_erase(&skb->rbnode, root); 4768 4769 __kfree_skb(skb); 4770 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4771 4772 return next; 4773 } 4774 4775 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4776 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4777 { 4778 struct rb_node **p = &root->rb_node; 4779 struct rb_node *parent = NULL; 4780 struct sk_buff *skb1; 4781 4782 while (*p) { 4783 parent = *p; 4784 skb1 = rb_to_skb(parent); 4785 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4786 p = &parent->rb_left; 4787 else 4788 p = &parent->rb_right; 4789 } 4790 rb_link_node(&skb->rbnode, parent, p); 4791 rb_insert_color(&skb->rbnode, root); 4792 } 4793 4794 /* Collapse contiguous sequence of skbs head..tail with 4795 * sequence numbers start..end. 4796 * 4797 * If tail is NULL, this means until the end of the queue. 4798 * 4799 * Segments with FIN/SYN are not collapsed (only because this 4800 * simplifies code) 4801 */ 4802 static void 4803 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4804 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4805 { 4806 struct sk_buff *skb = head, *n; 4807 struct sk_buff_head tmp; 4808 bool end_of_skbs; 4809 4810 /* First, check that queue is collapsible and find 4811 * the point where collapsing can be useful. 4812 */ 4813 restart: 4814 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4815 n = tcp_skb_next(skb, list); 4816 4817 /* No new bits? It is possible on ofo queue. */ 4818 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4819 skb = tcp_collapse_one(sk, skb, list, root); 4820 if (!skb) 4821 break; 4822 goto restart; 4823 } 4824 4825 /* The first skb to collapse is: 4826 * - not SYN/FIN and 4827 * - bloated or contains data before "start" or 4828 * overlaps to the next one. 4829 */ 4830 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4831 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4832 before(TCP_SKB_CB(skb)->seq, start))) { 4833 end_of_skbs = false; 4834 break; 4835 } 4836 4837 if (n && n != tail && 4838 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4839 end_of_skbs = false; 4840 break; 4841 } 4842 4843 /* Decided to skip this, advance start seq. */ 4844 start = TCP_SKB_CB(skb)->end_seq; 4845 } 4846 if (end_of_skbs || 4847 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4848 return; 4849 4850 __skb_queue_head_init(&tmp); 4851 4852 while (before(start, end)) { 4853 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4854 struct sk_buff *nskb; 4855 4856 nskb = alloc_skb(copy, GFP_ATOMIC); 4857 if (!nskb) 4858 break; 4859 4860 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4861 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4862 if (list) 4863 __skb_queue_before(list, skb, nskb); 4864 else 4865 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4866 skb_set_owner_r(nskb, sk); 4867 4868 /* Copy data, releasing collapsed skbs. */ 4869 while (copy > 0) { 4870 int offset = start - TCP_SKB_CB(skb)->seq; 4871 int size = TCP_SKB_CB(skb)->end_seq - start; 4872 4873 BUG_ON(offset < 0); 4874 if (size > 0) { 4875 size = min(copy, size); 4876 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4877 BUG(); 4878 TCP_SKB_CB(nskb)->end_seq += size; 4879 copy -= size; 4880 start += size; 4881 } 4882 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4883 skb = tcp_collapse_one(sk, skb, list, root); 4884 if (!skb || 4885 skb == tail || 4886 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4887 goto end; 4888 } 4889 } 4890 } 4891 end: 4892 skb_queue_walk_safe(&tmp, skb, n) 4893 tcp_rbtree_insert(root, skb); 4894 } 4895 4896 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4897 * and tcp_collapse() them until all the queue is collapsed. 4898 */ 4899 static void tcp_collapse_ofo_queue(struct sock *sk) 4900 { 4901 struct tcp_sock *tp = tcp_sk(sk); 4902 struct sk_buff *skb, *head; 4903 u32 start, end; 4904 4905 skb = skb_rb_first(&tp->out_of_order_queue); 4906 new_range: 4907 if (!skb) { 4908 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4909 return; 4910 } 4911 start = TCP_SKB_CB(skb)->seq; 4912 end = TCP_SKB_CB(skb)->end_seq; 4913 4914 for (head = skb;;) { 4915 skb = skb_rb_next(skb); 4916 4917 /* Range is terminated when we see a gap or when 4918 * we are at the queue end. 4919 */ 4920 if (!skb || 4921 after(TCP_SKB_CB(skb)->seq, end) || 4922 before(TCP_SKB_CB(skb)->end_seq, start)) { 4923 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4924 head, skb, start, end); 4925 goto new_range; 4926 } 4927 4928 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4929 start = TCP_SKB_CB(skb)->seq; 4930 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4931 end = TCP_SKB_CB(skb)->end_seq; 4932 } 4933 } 4934 4935 /* 4936 * Clean the out-of-order queue to make room. 4937 * We drop high sequences packets to : 4938 * 1) Let a chance for holes to be filled. 4939 * 2) not add too big latencies if thousands of packets sit there. 4940 * (But if application shrinks SO_RCVBUF, we could still end up 4941 * freeing whole queue here) 4942 * 4943 * Return true if queue has shrunk. 4944 */ 4945 static bool tcp_prune_ofo_queue(struct sock *sk) 4946 { 4947 struct tcp_sock *tp = tcp_sk(sk); 4948 struct rb_node *node, *prev; 4949 4950 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4951 return false; 4952 4953 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4954 node = &tp->ooo_last_skb->rbnode; 4955 do { 4956 prev = rb_prev(node); 4957 rb_erase(node, &tp->out_of_order_queue); 4958 tcp_drop(sk, rb_to_skb(node)); 4959 sk_mem_reclaim(sk); 4960 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4961 !tcp_under_memory_pressure(sk)) 4962 break; 4963 node = prev; 4964 } while (node); 4965 tp->ooo_last_skb = rb_to_skb(prev); 4966 4967 /* Reset SACK state. A conforming SACK implementation will 4968 * do the same at a timeout based retransmit. When a connection 4969 * is in a sad state like this, we care only about integrity 4970 * of the connection not performance. 4971 */ 4972 if (tp->rx_opt.sack_ok) 4973 tcp_sack_reset(&tp->rx_opt); 4974 return true; 4975 } 4976 4977 /* Reduce allocated memory if we can, trying to get 4978 * the socket within its memory limits again. 4979 * 4980 * Return less than zero if we should start dropping frames 4981 * until the socket owning process reads some of the data 4982 * to stabilize the situation. 4983 */ 4984 static int tcp_prune_queue(struct sock *sk) 4985 { 4986 struct tcp_sock *tp = tcp_sk(sk); 4987 4988 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4989 4990 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4991 4992 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4993 tcp_clamp_window(sk); 4994 else if (tcp_under_memory_pressure(sk)) 4995 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4996 4997 tcp_collapse_ofo_queue(sk); 4998 if (!skb_queue_empty(&sk->sk_receive_queue)) 4999 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5000 skb_peek(&sk->sk_receive_queue), 5001 NULL, 5002 tp->copied_seq, tp->rcv_nxt); 5003 sk_mem_reclaim(sk); 5004 5005 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5006 return 0; 5007 5008 /* Collapsing did not help, destructive actions follow. 5009 * This must not ever occur. */ 5010 5011 tcp_prune_ofo_queue(sk); 5012 5013 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5014 return 0; 5015 5016 /* If we are really being abused, tell the caller to silently 5017 * drop receive data on the floor. It will get retransmitted 5018 * and hopefully then we'll have sufficient space. 5019 */ 5020 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5021 5022 /* Massive buffer overcommit. */ 5023 tp->pred_flags = 0; 5024 return -1; 5025 } 5026 5027 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5028 { 5029 const struct tcp_sock *tp = tcp_sk(sk); 5030 5031 /* If the user specified a specific send buffer setting, do 5032 * not modify it. 5033 */ 5034 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5035 return false; 5036 5037 /* If we are under global TCP memory pressure, do not expand. */ 5038 if (tcp_under_memory_pressure(sk)) 5039 return false; 5040 5041 /* If we are under soft global TCP memory pressure, do not expand. */ 5042 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5043 return false; 5044 5045 /* If we filled the congestion window, do not expand. */ 5046 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5047 return false; 5048 5049 return true; 5050 } 5051 5052 /* When incoming ACK allowed to free some skb from write_queue, 5053 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5054 * on the exit from tcp input handler. 5055 * 5056 * PROBLEM: sndbuf expansion does not work well with largesend. 5057 */ 5058 static void tcp_new_space(struct sock *sk) 5059 { 5060 struct tcp_sock *tp = tcp_sk(sk); 5061 5062 if (tcp_should_expand_sndbuf(sk)) { 5063 tcp_sndbuf_expand(sk); 5064 tp->snd_cwnd_stamp = tcp_jiffies32; 5065 } 5066 5067 sk->sk_write_space(sk); 5068 } 5069 5070 static void tcp_check_space(struct sock *sk) 5071 { 5072 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5073 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5074 /* pairs with tcp_poll() */ 5075 smp_mb(); 5076 if (sk->sk_socket && 5077 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5078 tcp_new_space(sk); 5079 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5080 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5081 } 5082 } 5083 } 5084 5085 static inline void tcp_data_snd_check(struct sock *sk) 5086 { 5087 tcp_push_pending_frames(sk); 5088 tcp_check_space(sk); 5089 } 5090 5091 /* 5092 * Check if sending an ack is needed. 5093 */ 5094 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5095 { 5096 struct tcp_sock *tp = tcp_sk(sk); 5097 unsigned long rtt, delay; 5098 5099 /* More than one full frame received... */ 5100 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5101 /* ... and right edge of window advances far enough. 5102 * (tcp_recvmsg() will send ACK otherwise). 5103 * If application uses SO_RCVLOWAT, we want send ack now if 5104 * we have not received enough bytes to satisfy the condition. 5105 */ 5106 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5107 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5108 /* We ACK each frame or... */ 5109 tcp_in_quickack_mode(sk)) { 5110 send_now: 5111 tcp_send_ack(sk); 5112 return; 5113 } 5114 5115 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5116 tcp_send_delayed_ack(sk); 5117 return; 5118 } 5119 5120 if (!tcp_is_sack(tp) || 5121 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5122 goto send_now; 5123 tp->compressed_ack++; 5124 5125 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5126 return; 5127 5128 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5129 5130 rtt = tp->rcv_rtt_est.rtt_us; 5131 if (tp->srtt_us && tp->srtt_us < rtt) 5132 rtt = tp->srtt_us; 5133 5134 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5135 rtt * (NSEC_PER_USEC >> 3)/20); 5136 sock_hold(sk); 5137 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5138 HRTIMER_MODE_REL_PINNED_SOFT); 5139 } 5140 5141 static inline void tcp_ack_snd_check(struct sock *sk) 5142 { 5143 if (!inet_csk_ack_scheduled(sk)) { 5144 /* We sent a data segment already. */ 5145 return; 5146 } 5147 __tcp_ack_snd_check(sk, 1); 5148 } 5149 5150 /* 5151 * This routine is only called when we have urgent data 5152 * signaled. Its the 'slow' part of tcp_urg. It could be 5153 * moved inline now as tcp_urg is only called from one 5154 * place. We handle URGent data wrong. We have to - as 5155 * BSD still doesn't use the correction from RFC961. 5156 * For 1003.1g we should support a new option TCP_STDURG to permit 5157 * either form (or just set the sysctl tcp_stdurg). 5158 */ 5159 5160 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5161 { 5162 struct tcp_sock *tp = tcp_sk(sk); 5163 u32 ptr = ntohs(th->urg_ptr); 5164 5165 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5166 ptr--; 5167 ptr += ntohl(th->seq); 5168 5169 /* Ignore urgent data that we've already seen and read. */ 5170 if (after(tp->copied_seq, ptr)) 5171 return; 5172 5173 /* Do not replay urg ptr. 5174 * 5175 * NOTE: interesting situation not covered by specs. 5176 * Misbehaving sender may send urg ptr, pointing to segment, 5177 * which we already have in ofo queue. We are not able to fetch 5178 * such data and will stay in TCP_URG_NOTYET until will be eaten 5179 * by recvmsg(). Seems, we are not obliged to handle such wicked 5180 * situations. But it is worth to think about possibility of some 5181 * DoSes using some hypothetical application level deadlock. 5182 */ 5183 if (before(ptr, tp->rcv_nxt)) 5184 return; 5185 5186 /* Do we already have a newer (or duplicate) urgent pointer? */ 5187 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5188 return; 5189 5190 /* Tell the world about our new urgent pointer. */ 5191 sk_send_sigurg(sk); 5192 5193 /* We may be adding urgent data when the last byte read was 5194 * urgent. To do this requires some care. We cannot just ignore 5195 * tp->copied_seq since we would read the last urgent byte again 5196 * as data, nor can we alter copied_seq until this data arrives 5197 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5198 * 5199 * NOTE. Double Dutch. Rendering to plain English: author of comment 5200 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5201 * and expect that both A and B disappear from stream. This is _wrong_. 5202 * Though this happens in BSD with high probability, this is occasional. 5203 * Any application relying on this is buggy. Note also, that fix "works" 5204 * only in this artificial test. Insert some normal data between A and B and we will 5205 * decline of BSD again. Verdict: it is better to remove to trap 5206 * buggy users. 5207 */ 5208 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5209 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5210 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5211 tp->copied_seq++; 5212 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5213 __skb_unlink(skb, &sk->sk_receive_queue); 5214 __kfree_skb(skb); 5215 } 5216 } 5217 5218 tp->urg_data = TCP_URG_NOTYET; 5219 tp->urg_seq = ptr; 5220 5221 /* Disable header prediction. */ 5222 tp->pred_flags = 0; 5223 } 5224 5225 /* This is the 'fast' part of urgent handling. */ 5226 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5227 { 5228 struct tcp_sock *tp = tcp_sk(sk); 5229 5230 /* Check if we get a new urgent pointer - normally not. */ 5231 if (th->urg) 5232 tcp_check_urg(sk, th); 5233 5234 /* Do we wait for any urgent data? - normally not... */ 5235 if (tp->urg_data == TCP_URG_NOTYET) { 5236 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5237 th->syn; 5238 5239 /* Is the urgent pointer pointing into this packet? */ 5240 if (ptr < skb->len) { 5241 u8 tmp; 5242 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5243 BUG(); 5244 tp->urg_data = TCP_URG_VALID | tmp; 5245 if (!sock_flag(sk, SOCK_DEAD)) 5246 sk->sk_data_ready(sk); 5247 } 5248 } 5249 } 5250 5251 /* Accept RST for rcv_nxt - 1 after a FIN. 5252 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5253 * FIN is sent followed by a RST packet. The RST is sent with the same 5254 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5255 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5256 * ACKs on the closed socket. In addition middleboxes can drop either the 5257 * challenge ACK or a subsequent RST. 5258 */ 5259 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5260 { 5261 struct tcp_sock *tp = tcp_sk(sk); 5262 5263 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5264 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5265 TCPF_CLOSING)); 5266 } 5267 5268 /* Does PAWS and seqno based validation of an incoming segment, flags will 5269 * play significant role here. 5270 */ 5271 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5272 const struct tcphdr *th, int syn_inerr) 5273 { 5274 struct tcp_sock *tp = tcp_sk(sk); 5275 bool rst_seq_match = false; 5276 5277 /* RFC1323: H1. Apply PAWS check first. */ 5278 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5279 tp->rx_opt.saw_tstamp && 5280 tcp_paws_discard(sk, skb)) { 5281 if (!th->rst) { 5282 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5283 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5284 LINUX_MIB_TCPACKSKIPPEDPAWS, 5285 &tp->last_oow_ack_time)) 5286 tcp_send_dupack(sk, skb); 5287 goto discard; 5288 } 5289 /* Reset is accepted even if it did not pass PAWS. */ 5290 } 5291 5292 /* Step 1: check sequence number */ 5293 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5294 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5295 * (RST) segments are validated by checking their SEQ-fields." 5296 * And page 69: "If an incoming segment is not acceptable, 5297 * an acknowledgment should be sent in reply (unless the RST 5298 * bit is set, if so drop the segment and return)". 5299 */ 5300 if (!th->rst) { 5301 if (th->syn) 5302 goto syn_challenge; 5303 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5304 LINUX_MIB_TCPACKSKIPPEDSEQ, 5305 &tp->last_oow_ack_time)) 5306 tcp_send_dupack(sk, skb); 5307 } else if (tcp_reset_check(sk, skb)) { 5308 tcp_reset(sk); 5309 } 5310 goto discard; 5311 } 5312 5313 /* Step 2: check RST bit */ 5314 if (th->rst) { 5315 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5316 * FIN and SACK too if available): 5317 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5318 * the right-most SACK block, 5319 * then 5320 * RESET the connection 5321 * else 5322 * Send a challenge ACK 5323 */ 5324 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5325 tcp_reset_check(sk, skb)) { 5326 rst_seq_match = true; 5327 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5328 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5329 int max_sack = sp[0].end_seq; 5330 int this_sack; 5331 5332 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5333 ++this_sack) { 5334 max_sack = after(sp[this_sack].end_seq, 5335 max_sack) ? 5336 sp[this_sack].end_seq : max_sack; 5337 } 5338 5339 if (TCP_SKB_CB(skb)->seq == max_sack) 5340 rst_seq_match = true; 5341 } 5342 5343 if (rst_seq_match) 5344 tcp_reset(sk); 5345 else { 5346 /* Disable TFO if RST is out-of-order 5347 * and no data has been received 5348 * for current active TFO socket 5349 */ 5350 if (tp->syn_fastopen && !tp->data_segs_in && 5351 sk->sk_state == TCP_ESTABLISHED) 5352 tcp_fastopen_active_disable(sk); 5353 tcp_send_challenge_ack(sk, skb); 5354 } 5355 goto discard; 5356 } 5357 5358 /* step 3: check security and precedence [ignored] */ 5359 5360 /* step 4: Check for a SYN 5361 * RFC 5961 4.2 : Send a challenge ack 5362 */ 5363 if (th->syn) { 5364 syn_challenge: 5365 if (syn_inerr) 5366 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5367 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5368 tcp_send_challenge_ack(sk, skb); 5369 goto discard; 5370 } 5371 5372 return true; 5373 5374 discard: 5375 tcp_drop(sk, skb); 5376 return false; 5377 } 5378 5379 /* 5380 * TCP receive function for the ESTABLISHED state. 5381 * 5382 * It is split into a fast path and a slow path. The fast path is 5383 * disabled when: 5384 * - A zero window was announced from us - zero window probing 5385 * is only handled properly in the slow path. 5386 * - Out of order segments arrived. 5387 * - Urgent data is expected. 5388 * - There is no buffer space left 5389 * - Unexpected TCP flags/window values/header lengths are received 5390 * (detected by checking the TCP header against pred_flags) 5391 * - Data is sent in both directions. Fast path only supports pure senders 5392 * or pure receivers (this means either the sequence number or the ack 5393 * value must stay constant) 5394 * - Unexpected TCP option. 5395 * 5396 * When these conditions are not satisfied it drops into a standard 5397 * receive procedure patterned after RFC793 to handle all cases. 5398 * The first three cases are guaranteed by proper pred_flags setting, 5399 * the rest is checked inline. Fast processing is turned on in 5400 * tcp_data_queue when everything is OK. 5401 */ 5402 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5403 { 5404 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5405 struct tcp_sock *tp = tcp_sk(sk); 5406 unsigned int len = skb->len; 5407 5408 /* TCP congestion window tracking */ 5409 trace_tcp_probe(sk, skb); 5410 5411 tcp_mstamp_refresh(tp); 5412 if (unlikely(!sk->sk_rx_dst)) 5413 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5414 /* 5415 * Header prediction. 5416 * The code loosely follows the one in the famous 5417 * "30 instruction TCP receive" Van Jacobson mail. 5418 * 5419 * Van's trick is to deposit buffers into socket queue 5420 * on a device interrupt, to call tcp_recv function 5421 * on the receive process context and checksum and copy 5422 * the buffer to user space. smart... 5423 * 5424 * Our current scheme is not silly either but we take the 5425 * extra cost of the net_bh soft interrupt processing... 5426 * We do checksum and copy also but from device to kernel. 5427 */ 5428 5429 tp->rx_opt.saw_tstamp = 0; 5430 5431 /* pred_flags is 0xS?10 << 16 + snd_wnd 5432 * if header_prediction is to be made 5433 * 'S' will always be tp->tcp_header_len >> 2 5434 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5435 * turn it off (when there are holes in the receive 5436 * space for instance) 5437 * PSH flag is ignored. 5438 */ 5439 5440 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5441 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5442 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5443 int tcp_header_len = tp->tcp_header_len; 5444 5445 /* Timestamp header prediction: tcp_header_len 5446 * is automatically equal to th->doff*4 due to pred_flags 5447 * match. 5448 */ 5449 5450 /* Check timestamp */ 5451 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5452 /* No? Slow path! */ 5453 if (!tcp_parse_aligned_timestamp(tp, th)) 5454 goto slow_path; 5455 5456 /* If PAWS failed, check it more carefully in slow path */ 5457 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5458 goto slow_path; 5459 5460 /* DO NOT update ts_recent here, if checksum fails 5461 * and timestamp was corrupted part, it will result 5462 * in a hung connection since we will drop all 5463 * future packets due to the PAWS test. 5464 */ 5465 } 5466 5467 if (len <= tcp_header_len) { 5468 /* Bulk data transfer: sender */ 5469 if (len == tcp_header_len) { 5470 /* Predicted packet is in window by definition. 5471 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5472 * Hence, check seq<=rcv_wup reduces to: 5473 */ 5474 if (tcp_header_len == 5475 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5476 tp->rcv_nxt == tp->rcv_wup) 5477 tcp_store_ts_recent(tp); 5478 5479 /* We know that such packets are checksummed 5480 * on entry. 5481 */ 5482 tcp_ack(sk, skb, 0); 5483 __kfree_skb(skb); 5484 tcp_data_snd_check(sk); 5485 /* When receiving pure ack in fast path, update 5486 * last ts ecr directly instead of calling 5487 * tcp_rcv_rtt_measure_ts() 5488 */ 5489 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5490 return; 5491 } else { /* Header too small */ 5492 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5493 goto discard; 5494 } 5495 } else { 5496 int eaten = 0; 5497 bool fragstolen = false; 5498 5499 if (tcp_checksum_complete(skb)) 5500 goto csum_error; 5501 5502 if ((int)skb->truesize > sk->sk_forward_alloc) 5503 goto step5; 5504 5505 /* Predicted packet is in window by definition. 5506 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5507 * Hence, check seq<=rcv_wup reduces to: 5508 */ 5509 if (tcp_header_len == 5510 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5511 tp->rcv_nxt == tp->rcv_wup) 5512 tcp_store_ts_recent(tp); 5513 5514 tcp_rcv_rtt_measure_ts(sk, skb); 5515 5516 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5517 5518 /* Bulk data transfer: receiver */ 5519 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5520 &fragstolen); 5521 5522 tcp_event_data_recv(sk, skb); 5523 5524 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5525 /* Well, only one small jumplet in fast path... */ 5526 tcp_ack(sk, skb, FLAG_DATA); 5527 tcp_data_snd_check(sk); 5528 if (!inet_csk_ack_scheduled(sk)) 5529 goto no_ack; 5530 } 5531 5532 __tcp_ack_snd_check(sk, 0); 5533 no_ack: 5534 if (eaten) 5535 kfree_skb_partial(skb, fragstolen); 5536 tcp_data_ready(sk); 5537 return; 5538 } 5539 } 5540 5541 slow_path: 5542 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5543 goto csum_error; 5544 5545 if (!th->ack && !th->rst && !th->syn) 5546 goto discard; 5547 5548 /* 5549 * Standard slow path. 5550 */ 5551 5552 if (!tcp_validate_incoming(sk, skb, th, 1)) 5553 return; 5554 5555 step5: 5556 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5557 goto discard; 5558 5559 tcp_rcv_rtt_measure_ts(sk, skb); 5560 5561 /* Process urgent data. */ 5562 tcp_urg(sk, skb, th); 5563 5564 /* step 7: process the segment text */ 5565 tcp_data_queue(sk, skb); 5566 5567 tcp_data_snd_check(sk); 5568 tcp_ack_snd_check(sk); 5569 return; 5570 5571 csum_error: 5572 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5573 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5574 5575 discard: 5576 tcp_drop(sk, skb); 5577 } 5578 EXPORT_SYMBOL(tcp_rcv_established); 5579 5580 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5581 { 5582 struct tcp_sock *tp = tcp_sk(sk); 5583 struct inet_connection_sock *icsk = inet_csk(sk); 5584 5585 tcp_set_state(sk, TCP_ESTABLISHED); 5586 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5587 5588 if (skb) { 5589 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5590 security_inet_conn_established(sk, skb); 5591 } 5592 5593 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5594 5595 /* Prevent spurious tcp_cwnd_restart() on first data 5596 * packet. 5597 */ 5598 tp->lsndtime = tcp_jiffies32; 5599 5600 if (sock_flag(sk, SOCK_KEEPOPEN)) 5601 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5602 5603 if (!tp->rx_opt.snd_wscale) 5604 __tcp_fast_path_on(tp, tp->snd_wnd); 5605 else 5606 tp->pred_flags = 0; 5607 } 5608 5609 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5610 struct tcp_fastopen_cookie *cookie) 5611 { 5612 struct tcp_sock *tp = tcp_sk(sk); 5613 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5614 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5615 bool syn_drop = false; 5616 5617 if (mss == tp->rx_opt.user_mss) { 5618 struct tcp_options_received opt; 5619 5620 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5621 tcp_clear_options(&opt); 5622 opt.user_mss = opt.mss_clamp = 0; 5623 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5624 mss = opt.mss_clamp; 5625 } 5626 5627 if (!tp->syn_fastopen) { 5628 /* Ignore an unsolicited cookie */ 5629 cookie->len = -1; 5630 } else if (tp->total_retrans) { 5631 /* SYN timed out and the SYN-ACK neither has a cookie nor 5632 * acknowledges data. Presumably the remote received only 5633 * the retransmitted (regular) SYNs: either the original 5634 * SYN-data or the corresponding SYN-ACK was dropped. 5635 */ 5636 syn_drop = (cookie->len < 0 && data); 5637 } else if (cookie->len < 0 && !tp->syn_data) { 5638 /* We requested a cookie but didn't get it. If we did not use 5639 * the (old) exp opt format then try so next time (try_exp=1). 5640 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5641 */ 5642 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5643 } 5644 5645 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5646 5647 if (data) { /* Retransmit unacked data in SYN */ 5648 skb_rbtree_walk_from(data) { 5649 if (__tcp_retransmit_skb(sk, data, 1)) 5650 break; 5651 } 5652 tcp_rearm_rto(sk); 5653 NET_INC_STATS(sock_net(sk), 5654 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5655 return true; 5656 } 5657 tp->syn_data_acked = tp->syn_data; 5658 if (tp->syn_data_acked) { 5659 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5660 /* SYN-data is counted as two separate packets in tcp_ack() */ 5661 if (tp->delivered > 1) 5662 --tp->delivered; 5663 } 5664 5665 tcp_fastopen_add_skb(sk, synack); 5666 5667 return false; 5668 } 5669 5670 static void smc_check_reset_syn(struct tcp_sock *tp) 5671 { 5672 #if IS_ENABLED(CONFIG_SMC) 5673 if (static_branch_unlikely(&tcp_have_smc)) { 5674 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5675 tp->syn_smc = 0; 5676 } 5677 #endif 5678 } 5679 5680 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5681 const struct tcphdr *th) 5682 { 5683 struct inet_connection_sock *icsk = inet_csk(sk); 5684 struct tcp_sock *tp = tcp_sk(sk); 5685 struct tcp_fastopen_cookie foc = { .len = -1 }; 5686 int saved_clamp = tp->rx_opt.mss_clamp; 5687 bool fastopen_fail; 5688 5689 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5690 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5691 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5692 5693 if (th->ack) { 5694 /* rfc793: 5695 * "If the state is SYN-SENT then 5696 * first check the ACK bit 5697 * If the ACK bit is set 5698 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5699 * a reset (unless the RST bit is set, if so drop 5700 * the segment and return)" 5701 */ 5702 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5703 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5704 goto reset_and_undo; 5705 5706 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5707 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5708 tcp_time_stamp(tp))) { 5709 NET_INC_STATS(sock_net(sk), 5710 LINUX_MIB_PAWSACTIVEREJECTED); 5711 goto reset_and_undo; 5712 } 5713 5714 /* Now ACK is acceptable. 5715 * 5716 * "If the RST bit is set 5717 * If the ACK was acceptable then signal the user "error: 5718 * connection reset", drop the segment, enter CLOSED state, 5719 * delete TCB, and return." 5720 */ 5721 5722 if (th->rst) { 5723 tcp_reset(sk); 5724 goto discard; 5725 } 5726 5727 /* rfc793: 5728 * "fifth, if neither of the SYN or RST bits is set then 5729 * drop the segment and return." 5730 * 5731 * See note below! 5732 * --ANK(990513) 5733 */ 5734 if (!th->syn) 5735 goto discard_and_undo; 5736 5737 /* rfc793: 5738 * "If the SYN bit is on ... 5739 * are acceptable then ... 5740 * (our SYN has been ACKed), change the connection 5741 * state to ESTABLISHED..." 5742 */ 5743 5744 tcp_ecn_rcv_synack(tp, th); 5745 5746 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5747 tcp_ack(sk, skb, FLAG_SLOWPATH); 5748 5749 /* Ok.. it's good. Set up sequence numbers and 5750 * move to established. 5751 */ 5752 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5753 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5754 5755 /* RFC1323: The window in SYN & SYN/ACK segments is 5756 * never scaled. 5757 */ 5758 tp->snd_wnd = ntohs(th->window); 5759 5760 if (!tp->rx_opt.wscale_ok) { 5761 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5762 tp->window_clamp = min(tp->window_clamp, 65535U); 5763 } 5764 5765 if (tp->rx_opt.saw_tstamp) { 5766 tp->rx_opt.tstamp_ok = 1; 5767 tp->tcp_header_len = 5768 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5769 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5770 tcp_store_ts_recent(tp); 5771 } else { 5772 tp->tcp_header_len = sizeof(struct tcphdr); 5773 } 5774 5775 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5776 tcp_initialize_rcv_mss(sk); 5777 5778 /* Remember, tcp_poll() does not lock socket! 5779 * Change state from SYN-SENT only after copied_seq 5780 * is initialized. */ 5781 tp->copied_seq = tp->rcv_nxt; 5782 5783 smc_check_reset_syn(tp); 5784 5785 smp_mb(); 5786 5787 tcp_finish_connect(sk, skb); 5788 5789 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5790 tcp_rcv_fastopen_synack(sk, skb, &foc); 5791 5792 if (!sock_flag(sk, SOCK_DEAD)) { 5793 sk->sk_state_change(sk); 5794 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5795 } 5796 if (fastopen_fail) 5797 return -1; 5798 if (sk->sk_write_pending || 5799 icsk->icsk_accept_queue.rskq_defer_accept || 5800 icsk->icsk_ack.pingpong) { 5801 /* Save one ACK. Data will be ready after 5802 * several ticks, if write_pending is set. 5803 * 5804 * It may be deleted, but with this feature tcpdumps 5805 * look so _wonderfully_ clever, that I was not able 5806 * to stand against the temptation 8) --ANK 5807 */ 5808 inet_csk_schedule_ack(sk); 5809 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5810 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5811 TCP_DELACK_MAX, TCP_RTO_MAX); 5812 5813 discard: 5814 tcp_drop(sk, skb); 5815 return 0; 5816 } else { 5817 tcp_send_ack(sk); 5818 } 5819 return -1; 5820 } 5821 5822 /* No ACK in the segment */ 5823 5824 if (th->rst) { 5825 /* rfc793: 5826 * "If the RST bit is set 5827 * 5828 * Otherwise (no ACK) drop the segment and return." 5829 */ 5830 5831 goto discard_and_undo; 5832 } 5833 5834 /* PAWS check. */ 5835 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5836 tcp_paws_reject(&tp->rx_opt, 0)) 5837 goto discard_and_undo; 5838 5839 if (th->syn) { 5840 /* We see SYN without ACK. It is attempt of 5841 * simultaneous connect with crossed SYNs. 5842 * Particularly, it can be connect to self. 5843 */ 5844 tcp_set_state(sk, TCP_SYN_RECV); 5845 5846 if (tp->rx_opt.saw_tstamp) { 5847 tp->rx_opt.tstamp_ok = 1; 5848 tcp_store_ts_recent(tp); 5849 tp->tcp_header_len = 5850 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5851 } else { 5852 tp->tcp_header_len = sizeof(struct tcphdr); 5853 } 5854 5855 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5856 tp->copied_seq = tp->rcv_nxt; 5857 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5858 5859 /* RFC1323: The window in SYN & SYN/ACK segments is 5860 * never scaled. 5861 */ 5862 tp->snd_wnd = ntohs(th->window); 5863 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5864 tp->max_window = tp->snd_wnd; 5865 5866 tcp_ecn_rcv_syn(tp, th); 5867 5868 tcp_mtup_init(sk); 5869 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5870 tcp_initialize_rcv_mss(sk); 5871 5872 tcp_send_synack(sk); 5873 #if 0 5874 /* Note, we could accept data and URG from this segment. 5875 * There are no obstacles to make this (except that we must 5876 * either change tcp_recvmsg() to prevent it from returning data 5877 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5878 * 5879 * However, if we ignore data in ACKless segments sometimes, 5880 * we have no reasons to accept it sometimes. 5881 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5882 * is not flawless. So, discard packet for sanity. 5883 * Uncomment this return to process the data. 5884 */ 5885 return -1; 5886 #else 5887 goto discard; 5888 #endif 5889 } 5890 /* "fifth, if neither of the SYN or RST bits is set then 5891 * drop the segment and return." 5892 */ 5893 5894 discard_and_undo: 5895 tcp_clear_options(&tp->rx_opt); 5896 tp->rx_opt.mss_clamp = saved_clamp; 5897 goto discard; 5898 5899 reset_and_undo: 5900 tcp_clear_options(&tp->rx_opt); 5901 tp->rx_opt.mss_clamp = saved_clamp; 5902 return 1; 5903 } 5904 5905 /* 5906 * This function implements the receiving procedure of RFC 793 for 5907 * all states except ESTABLISHED and TIME_WAIT. 5908 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5909 * address independent. 5910 */ 5911 5912 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5913 { 5914 struct tcp_sock *tp = tcp_sk(sk); 5915 struct inet_connection_sock *icsk = inet_csk(sk); 5916 const struct tcphdr *th = tcp_hdr(skb); 5917 struct request_sock *req; 5918 int queued = 0; 5919 bool acceptable; 5920 5921 switch (sk->sk_state) { 5922 case TCP_CLOSE: 5923 goto discard; 5924 5925 case TCP_LISTEN: 5926 if (th->ack) 5927 return 1; 5928 5929 if (th->rst) 5930 goto discard; 5931 5932 if (th->syn) { 5933 if (th->fin) 5934 goto discard; 5935 /* It is possible that we process SYN packets from backlog, 5936 * so we need to make sure to disable BH right there. 5937 */ 5938 local_bh_disable(); 5939 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5940 local_bh_enable(); 5941 5942 if (!acceptable) 5943 return 1; 5944 consume_skb(skb); 5945 return 0; 5946 } 5947 goto discard; 5948 5949 case TCP_SYN_SENT: 5950 tp->rx_opt.saw_tstamp = 0; 5951 tcp_mstamp_refresh(tp); 5952 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5953 if (queued >= 0) 5954 return queued; 5955 5956 /* Do step6 onward by hand. */ 5957 tcp_urg(sk, skb, th); 5958 __kfree_skb(skb); 5959 tcp_data_snd_check(sk); 5960 return 0; 5961 } 5962 5963 tcp_mstamp_refresh(tp); 5964 tp->rx_opt.saw_tstamp = 0; 5965 req = tp->fastopen_rsk; 5966 if (req) { 5967 bool req_stolen; 5968 5969 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5970 sk->sk_state != TCP_FIN_WAIT1); 5971 5972 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 5973 goto discard; 5974 } 5975 5976 if (!th->ack && !th->rst && !th->syn) 5977 goto discard; 5978 5979 if (!tcp_validate_incoming(sk, skb, th, 0)) 5980 return 0; 5981 5982 /* step 5: check the ACK field */ 5983 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5984 FLAG_UPDATE_TS_RECENT | 5985 FLAG_NO_CHALLENGE_ACK) > 0; 5986 5987 if (!acceptable) { 5988 if (sk->sk_state == TCP_SYN_RECV) 5989 return 1; /* send one RST */ 5990 tcp_send_challenge_ack(sk, skb); 5991 goto discard; 5992 } 5993 switch (sk->sk_state) { 5994 case TCP_SYN_RECV: 5995 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 5996 if (!tp->srtt_us) 5997 tcp_synack_rtt_meas(sk, req); 5998 5999 /* Once we leave TCP_SYN_RECV, we no longer need req 6000 * so release it. 6001 */ 6002 if (req) { 6003 inet_csk(sk)->icsk_retransmits = 0; 6004 reqsk_fastopen_remove(sk, req, false); 6005 /* Re-arm the timer because data may have been sent out. 6006 * This is similar to the regular data transmission case 6007 * when new data has just been ack'ed. 6008 * 6009 * (TFO) - we could try to be more aggressive and 6010 * retransmitting any data sooner based on when they 6011 * are sent out. 6012 */ 6013 tcp_rearm_rto(sk); 6014 } else { 6015 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6016 tp->copied_seq = tp->rcv_nxt; 6017 } 6018 smp_mb(); 6019 tcp_set_state(sk, TCP_ESTABLISHED); 6020 sk->sk_state_change(sk); 6021 6022 /* Note, that this wakeup is only for marginal crossed SYN case. 6023 * Passively open sockets are not waked up, because 6024 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6025 */ 6026 if (sk->sk_socket) 6027 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6028 6029 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6030 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6031 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6032 6033 if (tp->rx_opt.tstamp_ok) 6034 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6035 6036 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6037 tcp_update_pacing_rate(sk); 6038 6039 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6040 tp->lsndtime = tcp_jiffies32; 6041 6042 tcp_initialize_rcv_mss(sk); 6043 tcp_fast_path_on(tp); 6044 break; 6045 6046 case TCP_FIN_WAIT1: { 6047 int tmo; 6048 6049 /* If we enter the TCP_FIN_WAIT1 state and we are a 6050 * Fast Open socket and this is the first acceptable 6051 * ACK we have received, this would have acknowledged 6052 * our SYNACK so stop the SYNACK timer. 6053 */ 6054 if (req) { 6055 /* We no longer need the request sock. */ 6056 reqsk_fastopen_remove(sk, req, false); 6057 tcp_rearm_rto(sk); 6058 } 6059 if (tp->snd_una != tp->write_seq) 6060 break; 6061 6062 tcp_set_state(sk, TCP_FIN_WAIT2); 6063 sk->sk_shutdown |= SEND_SHUTDOWN; 6064 6065 sk_dst_confirm(sk); 6066 6067 if (!sock_flag(sk, SOCK_DEAD)) { 6068 /* Wake up lingering close() */ 6069 sk->sk_state_change(sk); 6070 break; 6071 } 6072 6073 if (tp->linger2 < 0) { 6074 tcp_done(sk); 6075 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6076 return 1; 6077 } 6078 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6079 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6080 /* Receive out of order FIN after close() */ 6081 if (tp->syn_fastopen && th->fin) 6082 tcp_fastopen_active_disable(sk); 6083 tcp_done(sk); 6084 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6085 return 1; 6086 } 6087 6088 tmo = tcp_fin_time(sk); 6089 if (tmo > TCP_TIMEWAIT_LEN) { 6090 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6091 } else if (th->fin || sock_owned_by_user(sk)) { 6092 /* Bad case. We could lose such FIN otherwise. 6093 * It is not a big problem, but it looks confusing 6094 * and not so rare event. We still can lose it now, 6095 * if it spins in bh_lock_sock(), but it is really 6096 * marginal case. 6097 */ 6098 inet_csk_reset_keepalive_timer(sk, tmo); 6099 } else { 6100 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6101 goto discard; 6102 } 6103 break; 6104 } 6105 6106 case TCP_CLOSING: 6107 if (tp->snd_una == tp->write_seq) { 6108 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6109 goto discard; 6110 } 6111 break; 6112 6113 case TCP_LAST_ACK: 6114 if (tp->snd_una == tp->write_seq) { 6115 tcp_update_metrics(sk); 6116 tcp_done(sk); 6117 goto discard; 6118 } 6119 break; 6120 } 6121 6122 /* step 6: check the URG bit */ 6123 tcp_urg(sk, skb, th); 6124 6125 /* step 7: process the segment text */ 6126 switch (sk->sk_state) { 6127 case TCP_CLOSE_WAIT: 6128 case TCP_CLOSING: 6129 case TCP_LAST_ACK: 6130 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6131 break; 6132 /* fall through */ 6133 case TCP_FIN_WAIT1: 6134 case TCP_FIN_WAIT2: 6135 /* RFC 793 says to queue data in these states, 6136 * RFC 1122 says we MUST send a reset. 6137 * BSD 4.4 also does reset. 6138 */ 6139 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6140 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6141 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6142 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6143 tcp_reset(sk); 6144 return 1; 6145 } 6146 } 6147 /* Fall through */ 6148 case TCP_ESTABLISHED: 6149 tcp_data_queue(sk, skb); 6150 queued = 1; 6151 break; 6152 } 6153 6154 /* tcp_data could move socket to TIME-WAIT */ 6155 if (sk->sk_state != TCP_CLOSE) { 6156 tcp_data_snd_check(sk); 6157 tcp_ack_snd_check(sk); 6158 } 6159 6160 if (!queued) { 6161 discard: 6162 tcp_drop(sk, skb); 6163 } 6164 return 0; 6165 } 6166 EXPORT_SYMBOL(tcp_rcv_state_process); 6167 6168 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6169 { 6170 struct inet_request_sock *ireq = inet_rsk(req); 6171 6172 if (family == AF_INET) 6173 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6174 &ireq->ir_rmt_addr, port); 6175 #if IS_ENABLED(CONFIG_IPV6) 6176 else if (family == AF_INET6) 6177 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6178 &ireq->ir_v6_rmt_addr, port); 6179 #endif 6180 } 6181 6182 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6183 * 6184 * If we receive a SYN packet with these bits set, it means a 6185 * network is playing bad games with TOS bits. In order to 6186 * avoid possible false congestion notifications, we disable 6187 * TCP ECN negotiation. 6188 * 6189 * Exception: tcp_ca wants ECN. This is required for DCTCP 6190 * congestion control: Linux DCTCP asserts ECT on all packets, 6191 * including SYN, which is most optimal solution; however, 6192 * others, such as FreeBSD do not. 6193 */ 6194 static void tcp_ecn_create_request(struct request_sock *req, 6195 const struct sk_buff *skb, 6196 const struct sock *listen_sk, 6197 const struct dst_entry *dst) 6198 { 6199 const struct tcphdr *th = tcp_hdr(skb); 6200 const struct net *net = sock_net(listen_sk); 6201 bool th_ecn = th->ece && th->cwr; 6202 bool ect, ecn_ok; 6203 u32 ecn_ok_dst; 6204 6205 if (!th_ecn) 6206 return; 6207 6208 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6209 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6210 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6211 6212 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6213 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6214 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6215 inet_rsk(req)->ecn_ok = 1; 6216 } 6217 6218 static void tcp_openreq_init(struct request_sock *req, 6219 const struct tcp_options_received *rx_opt, 6220 struct sk_buff *skb, const struct sock *sk) 6221 { 6222 struct inet_request_sock *ireq = inet_rsk(req); 6223 6224 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6225 req->cookie_ts = 0; 6226 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6227 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6228 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6229 tcp_rsk(req)->last_oow_ack_time = 0; 6230 req->mss = rx_opt->mss_clamp; 6231 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6232 ireq->tstamp_ok = rx_opt->tstamp_ok; 6233 ireq->sack_ok = rx_opt->sack_ok; 6234 ireq->snd_wscale = rx_opt->snd_wscale; 6235 ireq->wscale_ok = rx_opt->wscale_ok; 6236 ireq->acked = 0; 6237 ireq->ecn_ok = 0; 6238 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6239 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6240 ireq->ir_mark = inet_request_mark(sk, skb); 6241 #if IS_ENABLED(CONFIG_SMC) 6242 ireq->smc_ok = rx_opt->smc_ok; 6243 #endif 6244 } 6245 6246 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6247 struct sock *sk_listener, 6248 bool attach_listener) 6249 { 6250 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6251 attach_listener); 6252 6253 if (req) { 6254 struct inet_request_sock *ireq = inet_rsk(req); 6255 6256 ireq->ireq_opt = NULL; 6257 #if IS_ENABLED(CONFIG_IPV6) 6258 ireq->pktopts = NULL; 6259 #endif 6260 atomic64_set(&ireq->ir_cookie, 0); 6261 ireq->ireq_state = TCP_NEW_SYN_RECV; 6262 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6263 ireq->ireq_family = sk_listener->sk_family; 6264 } 6265 6266 return req; 6267 } 6268 EXPORT_SYMBOL(inet_reqsk_alloc); 6269 6270 /* 6271 * Return true if a syncookie should be sent 6272 */ 6273 static bool tcp_syn_flood_action(const struct sock *sk, 6274 const struct sk_buff *skb, 6275 const char *proto) 6276 { 6277 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6278 const char *msg = "Dropping request"; 6279 bool want_cookie = false; 6280 struct net *net = sock_net(sk); 6281 6282 #ifdef CONFIG_SYN_COOKIES 6283 if (net->ipv4.sysctl_tcp_syncookies) { 6284 msg = "Sending cookies"; 6285 want_cookie = true; 6286 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6287 } else 6288 #endif 6289 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6290 6291 if (!queue->synflood_warned && 6292 net->ipv4.sysctl_tcp_syncookies != 2 && 6293 xchg(&queue->synflood_warned, 1) == 0) 6294 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6295 proto, ntohs(tcp_hdr(skb)->dest), msg); 6296 6297 return want_cookie; 6298 } 6299 6300 static void tcp_reqsk_record_syn(const struct sock *sk, 6301 struct request_sock *req, 6302 const struct sk_buff *skb) 6303 { 6304 if (tcp_sk(sk)->save_syn) { 6305 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6306 u32 *copy; 6307 6308 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6309 if (copy) { 6310 copy[0] = len; 6311 memcpy(©[1], skb_network_header(skb), len); 6312 req->saved_syn = copy; 6313 } 6314 } 6315 } 6316 6317 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6318 const struct tcp_request_sock_ops *af_ops, 6319 struct sock *sk, struct sk_buff *skb) 6320 { 6321 struct tcp_fastopen_cookie foc = { .len = -1 }; 6322 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6323 struct tcp_options_received tmp_opt; 6324 struct tcp_sock *tp = tcp_sk(sk); 6325 struct net *net = sock_net(sk); 6326 struct sock *fastopen_sk = NULL; 6327 struct request_sock *req; 6328 bool want_cookie = false; 6329 struct dst_entry *dst; 6330 struct flowi fl; 6331 6332 /* TW buckets are converted to open requests without 6333 * limitations, they conserve resources and peer is 6334 * evidently real one. 6335 */ 6336 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6337 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6338 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6339 if (!want_cookie) 6340 goto drop; 6341 } 6342 6343 if (sk_acceptq_is_full(sk)) { 6344 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6345 goto drop; 6346 } 6347 6348 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6349 if (!req) 6350 goto drop; 6351 6352 tcp_rsk(req)->af_specific = af_ops; 6353 tcp_rsk(req)->ts_off = 0; 6354 6355 tcp_clear_options(&tmp_opt); 6356 tmp_opt.mss_clamp = af_ops->mss_clamp; 6357 tmp_opt.user_mss = tp->rx_opt.user_mss; 6358 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6359 want_cookie ? NULL : &foc); 6360 6361 if (want_cookie && !tmp_opt.saw_tstamp) 6362 tcp_clear_options(&tmp_opt); 6363 6364 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6365 tmp_opt.smc_ok = 0; 6366 6367 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6368 tcp_openreq_init(req, &tmp_opt, skb, sk); 6369 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6370 6371 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6372 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6373 6374 af_ops->init_req(req, sk, skb); 6375 6376 if (security_inet_conn_request(sk, skb, req)) 6377 goto drop_and_free; 6378 6379 if (tmp_opt.tstamp_ok) 6380 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6381 6382 dst = af_ops->route_req(sk, &fl, req); 6383 if (!dst) 6384 goto drop_and_free; 6385 6386 if (!want_cookie && !isn) { 6387 /* Kill the following clause, if you dislike this way. */ 6388 if (!net->ipv4.sysctl_tcp_syncookies && 6389 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6390 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6391 !tcp_peer_is_proven(req, dst)) { 6392 /* Without syncookies last quarter of 6393 * backlog is filled with destinations, 6394 * proven to be alive. 6395 * It means that we continue to communicate 6396 * to destinations, already remembered 6397 * to the moment of synflood. 6398 */ 6399 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6400 rsk_ops->family); 6401 goto drop_and_release; 6402 } 6403 6404 isn = af_ops->init_seq(skb); 6405 } 6406 6407 tcp_ecn_create_request(req, skb, sk, dst); 6408 6409 if (want_cookie) { 6410 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6411 req->cookie_ts = tmp_opt.tstamp_ok; 6412 if (!tmp_opt.tstamp_ok) 6413 inet_rsk(req)->ecn_ok = 0; 6414 } 6415 6416 tcp_rsk(req)->snt_isn = isn; 6417 tcp_rsk(req)->txhash = net_tx_rndhash(); 6418 tcp_openreq_init_rwin(req, sk, dst); 6419 if (!want_cookie) { 6420 tcp_reqsk_record_syn(sk, req, skb); 6421 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6422 } 6423 if (fastopen_sk) { 6424 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6425 &foc, TCP_SYNACK_FASTOPEN); 6426 /* Add the child socket directly into the accept queue */ 6427 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6428 sk->sk_data_ready(sk); 6429 bh_unlock_sock(fastopen_sk); 6430 sock_put(fastopen_sk); 6431 } else { 6432 tcp_rsk(req)->tfo_listener = false; 6433 if (!want_cookie) 6434 inet_csk_reqsk_queue_hash_add(sk, req, 6435 tcp_timeout_init((struct sock *)req)); 6436 af_ops->send_synack(sk, dst, &fl, req, &foc, 6437 !want_cookie ? TCP_SYNACK_NORMAL : 6438 TCP_SYNACK_COOKIE); 6439 if (want_cookie) { 6440 reqsk_free(req); 6441 return 0; 6442 } 6443 } 6444 reqsk_put(req); 6445 return 0; 6446 6447 drop_and_release: 6448 dst_release(dst); 6449 drop_and_free: 6450 reqsk_free(req); 6451 drop: 6452 tcp_listendrop(sk); 6453 return 0; 6454 } 6455 EXPORT_SYMBOL(tcp_conn_request); 6456