xref: /linux/net/ipv4/tcp_input.c (revision ef347a340b1a8507c22ee3cf981cd5cd64188431)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 
82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
83 
84 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
85 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
86 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
87 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
88 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
89 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
90 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
91 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
94 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
100 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
101 
102 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
103 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
104 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
105 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
106 
107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
109 
110 #define REXMIT_NONE	0 /* no loss recovery to do */
111 #define REXMIT_LOST	1 /* retransmit packets marked lost */
112 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
113 
114 #if IS_ENABLED(CONFIG_TLS_DEVICE)
115 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
116 
117 void clean_acked_data_enable(struct inet_connection_sock *icsk,
118 			     void (*cad)(struct sock *sk, u32 ack_seq))
119 {
120 	icsk->icsk_clean_acked = cad;
121 	static_branch_inc(&clean_acked_data_enabled);
122 }
123 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
124 
125 void clean_acked_data_disable(struct inet_connection_sock *icsk)
126 {
127 	static_branch_dec(&clean_acked_data_enabled);
128 	icsk->icsk_clean_acked = NULL;
129 }
130 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
131 #endif
132 
133 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
134 			     unsigned int len)
135 {
136 	static bool __once __read_mostly;
137 
138 	if (!__once) {
139 		struct net_device *dev;
140 
141 		__once = true;
142 
143 		rcu_read_lock();
144 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
145 		if (!dev || len >= dev->mtu)
146 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
147 				dev ? dev->name : "Unknown driver");
148 		rcu_read_unlock();
149 	}
150 }
151 
152 /* Adapt the MSS value used to make delayed ack decision to the
153  * real world.
154  */
155 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
156 {
157 	struct inet_connection_sock *icsk = inet_csk(sk);
158 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
159 	unsigned int len;
160 
161 	icsk->icsk_ack.last_seg_size = 0;
162 
163 	/* skb->len may jitter because of SACKs, even if peer
164 	 * sends good full-sized frames.
165 	 */
166 	len = skb_shinfo(skb)->gso_size ? : skb->len;
167 	if (len >= icsk->icsk_ack.rcv_mss) {
168 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
169 					       tcp_sk(sk)->advmss);
170 		/* Account for possibly-removed options */
171 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
172 				   MAX_TCP_OPTION_SPACE))
173 			tcp_gro_dev_warn(sk, skb, len);
174 	} else {
175 		/* Otherwise, we make more careful check taking into account,
176 		 * that SACKs block is variable.
177 		 *
178 		 * "len" is invariant segment length, including TCP header.
179 		 */
180 		len += skb->data - skb_transport_header(skb);
181 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
182 		    /* If PSH is not set, packet should be
183 		     * full sized, provided peer TCP is not badly broken.
184 		     * This observation (if it is correct 8)) allows
185 		     * to handle super-low mtu links fairly.
186 		     */
187 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
188 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
189 			/* Subtract also invariant (if peer is RFC compliant),
190 			 * tcp header plus fixed timestamp option length.
191 			 * Resulting "len" is MSS free of SACK jitter.
192 			 */
193 			len -= tcp_sk(sk)->tcp_header_len;
194 			icsk->icsk_ack.last_seg_size = len;
195 			if (len == lss) {
196 				icsk->icsk_ack.rcv_mss = len;
197 				return;
198 			}
199 		}
200 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
201 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
202 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
203 	}
204 }
205 
206 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
207 {
208 	struct inet_connection_sock *icsk = inet_csk(sk);
209 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
210 
211 	if (quickacks == 0)
212 		quickacks = 2;
213 	quickacks = min(quickacks, max_quickacks);
214 	if (quickacks > icsk->icsk_ack.quick)
215 		icsk->icsk_ack.quick = quickacks;
216 }
217 
218 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
219 {
220 	struct inet_connection_sock *icsk = inet_csk(sk);
221 
222 	tcp_incr_quickack(sk, max_quickacks);
223 	icsk->icsk_ack.pingpong = 0;
224 	icsk->icsk_ack.ato = TCP_ATO_MIN;
225 }
226 
227 /* Send ACKs quickly, if "quick" count is not exhausted
228  * and the session is not interactive.
229  */
230 
231 static bool tcp_in_quickack_mode(struct sock *sk)
232 {
233 	const struct inet_connection_sock *icsk = inet_csk(sk);
234 	const struct dst_entry *dst = __sk_dst_get(sk);
235 
236 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
237 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
238 }
239 
240 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
241 {
242 	if (tp->ecn_flags & TCP_ECN_OK)
243 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
244 }
245 
246 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
247 {
248 	if (tcp_hdr(skb)->cwr)
249 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
250 }
251 
252 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
253 {
254 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
255 }
256 
257 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
258 {
259 	struct tcp_sock *tp = tcp_sk(sk);
260 
261 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
262 	case INET_ECN_NOT_ECT:
263 		/* Funny extension: if ECT is not set on a segment,
264 		 * and we already seen ECT on a previous segment,
265 		 * it is probably a retransmit.
266 		 */
267 		if (tp->ecn_flags & TCP_ECN_SEEN)
268 			tcp_enter_quickack_mode(sk, 1);
269 		break;
270 	case INET_ECN_CE:
271 		if (tcp_ca_needs_ecn(sk))
272 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
273 
274 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
275 			/* Better not delay acks, sender can have a very low cwnd */
276 			tcp_enter_quickack_mode(sk, 1);
277 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
278 		}
279 		tp->ecn_flags |= TCP_ECN_SEEN;
280 		break;
281 	default:
282 		if (tcp_ca_needs_ecn(sk))
283 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
284 		tp->ecn_flags |= TCP_ECN_SEEN;
285 		break;
286 	}
287 }
288 
289 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
290 {
291 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
292 		__tcp_ecn_check_ce(sk, skb);
293 }
294 
295 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
296 {
297 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
298 		tp->ecn_flags &= ~TCP_ECN_OK;
299 }
300 
301 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
302 {
303 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
304 		tp->ecn_flags &= ~TCP_ECN_OK;
305 }
306 
307 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
308 {
309 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
310 		return true;
311 	return false;
312 }
313 
314 /* Buffer size and advertised window tuning.
315  *
316  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
317  */
318 
319 static void tcp_sndbuf_expand(struct sock *sk)
320 {
321 	const struct tcp_sock *tp = tcp_sk(sk);
322 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
323 	int sndmem, per_mss;
324 	u32 nr_segs;
325 
326 	/* Worst case is non GSO/TSO : each frame consumes one skb
327 	 * and skb->head is kmalloced using power of two area of memory
328 	 */
329 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
330 		  MAX_TCP_HEADER +
331 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
332 
333 	per_mss = roundup_pow_of_two(per_mss) +
334 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
335 
336 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
337 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
338 
339 	/* Fast Recovery (RFC 5681 3.2) :
340 	 * Cubic needs 1.7 factor, rounded to 2 to include
341 	 * extra cushion (application might react slowly to EPOLLOUT)
342 	 */
343 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
344 	sndmem *= nr_segs * per_mss;
345 
346 	if (sk->sk_sndbuf < sndmem)
347 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
348 }
349 
350 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
351  *
352  * All tcp_full_space() is split to two parts: "network" buffer, allocated
353  * forward and advertised in receiver window (tp->rcv_wnd) and
354  * "application buffer", required to isolate scheduling/application
355  * latencies from network.
356  * window_clamp is maximal advertised window. It can be less than
357  * tcp_full_space(), in this case tcp_full_space() - window_clamp
358  * is reserved for "application" buffer. The less window_clamp is
359  * the smoother our behaviour from viewpoint of network, but the lower
360  * throughput and the higher sensitivity of the connection to losses. 8)
361  *
362  * rcv_ssthresh is more strict window_clamp used at "slow start"
363  * phase to predict further behaviour of this connection.
364  * It is used for two goals:
365  * - to enforce header prediction at sender, even when application
366  *   requires some significant "application buffer". It is check #1.
367  * - to prevent pruning of receive queue because of misprediction
368  *   of receiver window. Check #2.
369  *
370  * The scheme does not work when sender sends good segments opening
371  * window and then starts to feed us spaghetti. But it should work
372  * in common situations. Otherwise, we have to rely on queue collapsing.
373  */
374 
375 /* Slow part of check#2. */
376 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
377 {
378 	struct tcp_sock *tp = tcp_sk(sk);
379 	/* Optimize this! */
380 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
381 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
382 
383 	while (tp->rcv_ssthresh <= window) {
384 		if (truesize <= skb->len)
385 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
386 
387 		truesize >>= 1;
388 		window >>= 1;
389 	}
390 	return 0;
391 }
392 
393 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
394 {
395 	struct tcp_sock *tp = tcp_sk(sk);
396 
397 	/* Check #1 */
398 	if (tp->rcv_ssthresh < tp->window_clamp &&
399 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
400 	    !tcp_under_memory_pressure(sk)) {
401 		int incr;
402 
403 		/* Check #2. Increase window, if skb with such overhead
404 		 * will fit to rcvbuf in future.
405 		 */
406 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
407 			incr = 2 * tp->advmss;
408 		else
409 			incr = __tcp_grow_window(sk, skb);
410 
411 		if (incr) {
412 			incr = max_t(int, incr, 2 * skb->len);
413 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
414 					       tp->window_clamp);
415 			inet_csk(sk)->icsk_ack.quick |= 1;
416 		}
417 	}
418 }
419 
420 /* 3. Tuning rcvbuf, when connection enters established state. */
421 static void tcp_fixup_rcvbuf(struct sock *sk)
422 {
423 	u32 mss = tcp_sk(sk)->advmss;
424 	int rcvmem;
425 
426 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
427 		 tcp_default_init_rwnd(mss);
428 
429 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
430 	 * Allow enough cushion so that sender is not limited by our window
431 	 */
432 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
433 		rcvmem <<= 2;
434 
435 	if (sk->sk_rcvbuf < rcvmem)
436 		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
437 }
438 
439 /* 4. Try to fixup all. It is made immediately after connection enters
440  *    established state.
441  */
442 void tcp_init_buffer_space(struct sock *sk)
443 {
444 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
445 	struct tcp_sock *tp = tcp_sk(sk);
446 	int maxwin;
447 
448 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
449 		tcp_fixup_rcvbuf(sk);
450 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
451 		tcp_sndbuf_expand(sk);
452 
453 	tp->rcvq_space.space = tp->rcv_wnd;
454 	tcp_mstamp_refresh(tp);
455 	tp->rcvq_space.time = tp->tcp_mstamp;
456 	tp->rcvq_space.seq = tp->copied_seq;
457 
458 	maxwin = tcp_full_space(sk);
459 
460 	if (tp->window_clamp >= maxwin) {
461 		tp->window_clamp = maxwin;
462 
463 		if (tcp_app_win && maxwin > 4 * tp->advmss)
464 			tp->window_clamp = max(maxwin -
465 					       (maxwin >> tcp_app_win),
466 					       4 * tp->advmss);
467 	}
468 
469 	/* Force reservation of one segment. */
470 	if (tcp_app_win &&
471 	    tp->window_clamp > 2 * tp->advmss &&
472 	    tp->window_clamp + tp->advmss > maxwin)
473 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
474 
475 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
476 	tp->snd_cwnd_stamp = tcp_jiffies32;
477 }
478 
479 /* 5. Recalculate window clamp after socket hit its memory bounds. */
480 static void tcp_clamp_window(struct sock *sk)
481 {
482 	struct tcp_sock *tp = tcp_sk(sk);
483 	struct inet_connection_sock *icsk = inet_csk(sk);
484 	struct net *net = sock_net(sk);
485 
486 	icsk->icsk_ack.quick = 0;
487 
488 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
489 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
490 	    !tcp_under_memory_pressure(sk) &&
491 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
492 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
493 				    net->ipv4.sysctl_tcp_rmem[2]);
494 	}
495 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
496 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
497 }
498 
499 /* Initialize RCV_MSS value.
500  * RCV_MSS is an our guess about MSS used by the peer.
501  * We haven't any direct information about the MSS.
502  * It's better to underestimate the RCV_MSS rather than overestimate.
503  * Overestimations make us ACKing less frequently than needed.
504  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
505  */
506 void tcp_initialize_rcv_mss(struct sock *sk)
507 {
508 	const struct tcp_sock *tp = tcp_sk(sk);
509 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
510 
511 	hint = min(hint, tp->rcv_wnd / 2);
512 	hint = min(hint, TCP_MSS_DEFAULT);
513 	hint = max(hint, TCP_MIN_MSS);
514 
515 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
516 }
517 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
518 
519 /* Receiver "autotuning" code.
520  *
521  * The algorithm for RTT estimation w/o timestamps is based on
522  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
523  * <http://public.lanl.gov/radiant/pubs.html#DRS>
524  *
525  * More detail on this code can be found at
526  * <http://staff.psc.edu/jheffner/>,
527  * though this reference is out of date.  A new paper
528  * is pending.
529  */
530 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
531 {
532 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
533 	long m = sample;
534 
535 	if (new_sample != 0) {
536 		/* If we sample in larger samples in the non-timestamp
537 		 * case, we could grossly overestimate the RTT especially
538 		 * with chatty applications or bulk transfer apps which
539 		 * are stalled on filesystem I/O.
540 		 *
541 		 * Also, since we are only going for a minimum in the
542 		 * non-timestamp case, we do not smooth things out
543 		 * else with timestamps disabled convergence takes too
544 		 * long.
545 		 */
546 		if (!win_dep) {
547 			m -= (new_sample >> 3);
548 			new_sample += m;
549 		} else {
550 			m <<= 3;
551 			if (m < new_sample)
552 				new_sample = m;
553 		}
554 	} else {
555 		/* No previous measure. */
556 		new_sample = m << 3;
557 	}
558 
559 	tp->rcv_rtt_est.rtt_us = new_sample;
560 }
561 
562 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
563 {
564 	u32 delta_us;
565 
566 	if (tp->rcv_rtt_est.time == 0)
567 		goto new_measure;
568 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
569 		return;
570 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
571 	if (!delta_us)
572 		delta_us = 1;
573 	tcp_rcv_rtt_update(tp, delta_us, 1);
574 
575 new_measure:
576 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
577 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
578 }
579 
580 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
581 					  const struct sk_buff *skb)
582 {
583 	struct tcp_sock *tp = tcp_sk(sk);
584 
585 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
586 		return;
587 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
588 
589 	if (TCP_SKB_CB(skb)->end_seq -
590 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
591 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
592 		u32 delta_us;
593 
594 		if (!delta)
595 			delta = 1;
596 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
597 		tcp_rcv_rtt_update(tp, delta_us, 0);
598 	}
599 }
600 
601 /*
602  * This function should be called every time data is copied to user space.
603  * It calculates the appropriate TCP receive buffer space.
604  */
605 void tcp_rcv_space_adjust(struct sock *sk)
606 {
607 	struct tcp_sock *tp = tcp_sk(sk);
608 	u32 copied;
609 	int time;
610 
611 	trace_tcp_rcv_space_adjust(sk);
612 
613 	tcp_mstamp_refresh(tp);
614 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
615 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
616 		return;
617 
618 	/* Number of bytes copied to user in last RTT */
619 	copied = tp->copied_seq - tp->rcvq_space.seq;
620 	if (copied <= tp->rcvq_space.space)
621 		goto new_measure;
622 
623 	/* A bit of theory :
624 	 * copied = bytes received in previous RTT, our base window
625 	 * To cope with packet losses, we need a 2x factor
626 	 * To cope with slow start, and sender growing its cwin by 100 %
627 	 * every RTT, we need a 4x factor, because the ACK we are sending
628 	 * now is for the next RTT, not the current one :
629 	 * <prev RTT . ><current RTT .. ><next RTT .... >
630 	 */
631 
632 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
633 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
634 		int rcvmem, rcvbuf;
635 		u64 rcvwin, grow;
636 
637 		/* minimal window to cope with packet losses, assuming
638 		 * steady state. Add some cushion because of small variations.
639 		 */
640 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
641 
642 		/* Accommodate for sender rate increase (eg. slow start) */
643 		grow = rcvwin * (copied - tp->rcvq_space.space);
644 		do_div(grow, tp->rcvq_space.space);
645 		rcvwin += (grow << 1);
646 
647 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
648 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
649 			rcvmem += 128;
650 
651 		do_div(rcvwin, tp->advmss);
652 		rcvbuf = min_t(u64, rcvwin * rcvmem,
653 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
654 		if (rcvbuf > sk->sk_rcvbuf) {
655 			sk->sk_rcvbuf = rcvbuf;
656 
657 			/* Make the window clamp follow along.  */
658 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
659 		}
660 	}
661 	tp->rcvq_space.space = copied;
662 
663 new_measure:
664 	tp->rcvq_space.seq = tp->copied_seq;
665 	tp->rcvq_space.time = tp->tcp_mstamp;
666 }
667 
668 /* There is something which you must keep in mind when you analyze the
669  * behavior of the tp->ato delayed ack timeout interval.  When a
670  * connection starts up, we want to ack as quickly as possible.  The
671  * problem is that "good" TCP's do slow start at the beginning of data
672  * transmission.  The means that until we send the first few ACK's the
673  * sender will sit on his end and only queue most of his data, because
674  * he can only send snd_cwnd unacked packets at any given time.  For
675  * each ACK we send, he increments snd_cwnd and transmits more of his
676  * queue.  -DaveM
677  */
678 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
679 {
680 	struct tcp_sock *tp = tcp_sk(sk);
681 	struct inet_connection_sock *icsk = inet_csk(sk);
682 	u32 now;
683 
684 	inet_csk_schedule_ack(sk);
685 
686 	tcp_measure_rcv_mss(sk, skb);
687 
688 	tcp_rcv_rtt_measure(tp);
689 
690 	now = tcp_jiffies32;
691 
692 	if (!icsk->icsk_ack.ato) {
693 		/* The _first_ data packet received, initialize
694 		 * delayed ACK engine.
695 		 */
696 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
697 		icsk->icsk_ack.ato = TCP_ATO_MIN;
698 	} else {
699 		int m = now - icsk->icsk_ack.lrcvtime;
700 
701 		if (m <= TCP_ATO_MIN / 2) {
702 			/* The fastest case is the first. */
703 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
704 		} else if (m < icsk->icsk_ack.ato) {
705 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
706 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
707 				icsk->icsk_ack.ato = icsk->icsk_rto;
708 		} else if (m > icsk->icsk_rto) {
709 			/* Too long gap. Apparently sender failed to
710 			 * restart window, so that we send ACKs quickly.
711 			 */
712 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
713 			sk_mem_reclaim(sk);
714 		}
715 	}
716 	icsk->icsk_ack.lrcvtime = now;
717 
718 	tcp_ecn_check_ce(sk, skb);
719 
720 	if (skb->len >= 128)
721 		tcp_grow_window(sk, skb);
722 }
723 
724 /* Called to compute a smoothed rtt estimate. The data fed to this
725  * routine either comes from timestamps, or from segments that were
726  * known _not_ to have been retransmitted [see Karn/Partridge
727  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
728  * piece by Van Jacobson.
729  * NOTE: the next three routines used to be one big routine.
730  * To save cycles in the RFC 1323 implementation it was better to break
731  * it up into three procedures. -- erics
732  */
733 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
734 {
735 	struct tcp_sock *tp = tcp_sk(sk);
736 	long m = mrtt_us; /* RTT */
737 	u32 srtt = tp->srtt_us;
738 
739 	/*	The following amusing code comes from Jacobson's
740 	 *	article in SIGCOMM '88.  Note that rtt and mdev
741 	 *	are scaled versions of rtt and mean deviation.
742 	 *	This is designed to be as fast as possible
743 	 *	m stands for "measurement".
744 	 *
745 	 *	On a 1990 paper the rto value is changed to:
746 	 *	RTO = rtt + 4 * mdev
747 	 *
748 	 * Funny. This algorithm seems to be very broken.
749 	 * These formulae increase RTO, when it should be decreased, increase
750 	 * too slowly, when it should be increased quickly, decrease too quickly
751 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
752 	 * does not matter how to _calculate_ it. Seems, it was trap
753 	 * that VJ failed to avoid. 8)
754 	 */
755 	if (srtt != 0) {
756 		m -= (srtt >> 3);	/* m is now error in rtt est */
757 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
758 		if (m < 0) {
759 			m = -m;		/* m is now abs(error) */
760 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
761 			/* This is similar to one of Eifel findings.
762 			 * Eifel blocks mdev updates when rtt decreases.
763 			 * This solution is a bit different: we use finer gain
764 			 * for mdev in this case (alpha*beta).
765 			 * Like Eifel it also prevents growth of rto,
766 			 * but also it limits too fast rto decreases,
767 			 * happening in pure Eifel.
768 			 */
769 			if (m > 0)
770 				m >>= 3;
771 		} else {
772 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
773 		}
774 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
775 		if (tp->mdev_us > tp->mdev_max_us) {
776 			tp->mdev_max_us = tp->mdev_us;
777 			if (tp->mdev_max_us > tp->rttvar_us)
778 				tp->rttvar_us = tp->mdev_max_us;
779 		}
780 		if (after(tp->snd_una, tp->rtt_seq)) {
781 			if (tp->mdev_max_us < tp->rttvar_us)
782 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
783 			tp->rtt_seq = tp->snd_nxt;
784 			tp->mdev_max_us = tcp_rto_min_us(sk);
785 		}
786 	} else {
787 		/* no previous measure. */
788 		srtt = m << 3;		/* take the measured time to be rtt */
789 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
790 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
791 		tp->mdev_max_us = tp->rttvar_us;
792 		tp->rtt_seq = tp->snd_nxt;
793 	}
794 	tp->srtt_us = max(1U, srtt);
795 }
796 
797 static void tcp_update_pacing_rate(struct sock *sk)
798 {
799 	const struct tcp_sock *tp = tcp_sk(sk);
800 	u64 rate;
801 
802 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
803 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
804 
805 	/* current rate is (cwnd * mss) / srtt
806 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
807 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
808 	 *
809 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
810 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
811 	 *	 end of slow start and should slow down.
812 	 */
813 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
814 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
815 	else
816 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
817 
818 	rate *= max(tp->snd_cwnd, tp->packets_out);
819 
820 	if (likely(tp->srtt_us))
821 		do_div(rate, tp->srtt_us);
822 
823 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
824 	 * without any lock. We want to make sure compiler wont store
825 	 * intermediate values in this location.
826 	 */
827 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
828 					     sk->sk_max_pacing_rate));
829 }
830 
831 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
832  * routine referred to above.
833  */
834 static void tcp_set_rto(struct sock *sk)
835 {
836 	const struct tcp_sock *tp = tcp_sk(sk);
837 	/* Old crap is replaced with new one. 8)
838 	 *
839 	 * More seriously:
840 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
841 	 *    It cannot be less due to utterly erratic ACK generation made
842 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
843 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
844 	 *    is invisible. Actually, Linux-2.4 also generates erratic
845 	 *    ACKs in some circumstances.
846 	 */
847 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
848 
849 	/* 2. Fixups made earlier cannot be right.
850 	 *    If we do not estimate RTO correctly without them,
851 	 *    all the algo is pure shit and should be replaced
852 	 *    with correct one. It is exactly, which we pretend to do.
853 	 */
854 
855 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
856 	 * guarantees that rto is higher.
857 	 */
858 	tcp_bound_rto(sk);
859 }
860 
861 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
862 {
863 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
864 
865 	if (!cwnd)
866 		cwnd = TCP_INIT_CWND;
867 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
868 }
869 
870 /* Take a notice that peer is sending D-SACKs */
871 static void tcp_dsack_seen(struct tcp_sock *tp)
872 {
873 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
874 	tp->rack.dsack_seen = 1;
875 }
876 
877 /* It's reordering when higher sequence was delivered (i.e. sacked) before
878  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
879  * distance is approximated in full-mss packet distance ("reordering").
880  */
881 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
882 				      const int ts)
883 {
884 	struct tcp_sock *tp = tcp_sk(sk);
885 	const u32 mss = tp->mss_cache;
886 	u32 fack, metric;
887 
888 	fack = tcp_highest_sack_seq(tp);
889 	if (!before(low_seq, fack))
890 		return;
891 
892 	metric = fack - low_seq;
893 	if ((metric > tp->reordering * mss) && mss) {
894 #if FASTRETRANS_DEBUG > 1
895 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
896 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
897 			 tp->reordering,
898 			 0,
899 			 tp->sacked_out,
900 			 tp->undo_marker ? tp->undo_retrans : 0);
901 #endif
902 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
903 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
904 	}
905 
906 	tp->rack.reord = 1;
907 	/* This exciting event is worth to be remembered. 8) */
908 	NET_INC_STATS(sock_net(sk),
909 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
910 }
911 
912 /* This must be called before lost_out is incremented */
913 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
914 {
915 	if (!tp->retransmit_skb_hint ||
916 	    before(TCP_SKB_CB(skb)->seq,
917 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
918 		tp->retransmit_skb_hint = skb;
919 }
920 
921 /* Sum the number of packets on the wire we have marked as lost.
922  * There are two cases we care about here:
923  * a) Packet hasn't been marked lost (nor retransmitted),
924  *    and this is the first loss.
925  * b) Packet has been marked both lost and retransmitted,
926  *    and this means we think it was lost again.
927  */
928 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
929 {
930 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
931 
932 	if (!(sacked & TCPCB_LOST) ||
933 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
934 		tp->lost += tcp_skb_pcount(skb);
935 }
936 
937 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
938 {
939 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
940 		tcp_verify_retransmit_hint(tp, skb);
941 
942 		tp->lost_out += tcp_skb_pcount(skb);
943 		tcp_sum_lost(tp, skb);
944 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
945 	}
946 }
947 
948 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
949 {
950 	tcp_verify_retransmit_hint(tp, skb);
951 
952 	tcp_sum_lost(tp, skb);
953 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
954 		tp->lost_out += tcp_skb_pcount(skb);
955 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
956 	}
957 }
958 
959 /* This procedure tags the retransmission queue when SACKs arrive.
960  *
961  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
962  * Packets in queue with these bits set are counted in variables
963  * sacked_out, retrans_out and lost_out, correspondingly.
964  *
965  * Valid combinations are:
966  * Tag  InFlight	Description
967  * 0	1		- orig segment is in flight.
968  * S	0		- nothing flies, orig reached receiver.
969  * L	0		- nothing flies, orig lost by net.
970  * R	2		- both orig and retransmit are in flight.
971  * L|R	1		- orig is lost, retransmit is in flight.
972  * S|R  1		- orig reached receiver, retrans is still in flight.
973  * (L|S|R is logically valid, it could occur when L|R is sacked,
974  *  but it is equivalent to plain S and code short-curcuits it to S.
975  *  L|S is logically invalid, it would mean -1 packet in flight 8))
976  *
977  * These 6 states form finite state machine, controlled by the following events:
978  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
979  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
980  * 3. Loss detection event of two flavors:
981  *	A. Scoreboard estimator decided the packet is lost.
982  *	   A'. Reno "three dupacks" marks head of queue lost.
983  *	B. SACK arrives sacking SND.NXT at the moment, when the
984  *	   segment was retransmitted.
985  * 4. D-SACK added new rule: D-SACK changes any tag to S.
986  *
987  * It is pleasant to note, that state diagram turns out to be commutative,
988  * so that we are allowed not to be bothered by order of our actions,
989  * when multiple events arrive simultaneously. (see the function below).
990  *
991  * Reordering detection.
992  * --------------------
993  * Reordering metric is maximal distance, which a packet can be displaced
994  * in packet stream. With SACKs we can estimate it:
995  *
996  * 1. SACK fills old hole and the corresponding segment was not
997  *    ever retransmitted -> reordering. Alas, we cannot use it
998  *    when segment was retransmitted.
999  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1000  *    for retransmitted and already SACKed segment -> reordering..
1001  * Both of these heuristics are not used in Loss state, when we cannot
1002  * account for retransmits accurately.
1003  *
1004  * SACK block validation.
1005  * ----------------------
1006  *
1007  * SACK block range validation checks that the received SACK block fits to
1008  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1009  * Note that SND.UNA is not included to the range though being valid because
1010  * it means that the receiver is rather inconsistent with itself reporting
1011  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1012  * perfectly valid, however, in light of RFC2018 which explicitly states
1013  * that "SACK block MUST reflect the newest segment.  Even if the newest
1014  * segment is going to be discarded ...", not that it looks very clever
1015  * in case of head skb. Due to potentional receiver driven attacks, we
1016  * choose to avoid immediate execution of a walk in write queue due to
1017  * reneging and defer head skb's loss recovery to standard loss recovery
1018  * procedure that will eventually trigger (nothing forbids us doing this).
1019  *
1020  * Implements also blockage to start_seq wrap-around. Problem lies in the
1021  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1022  * there's no guarantee that it will be before snd_nxt (n). The problem
1023  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1024  * wrap (s_w):
1025  *
1026  *         <- outs wnd ->                          <- wrapzone ->
1027  *         u     e      n                         u_w   e_w  s n_w
1028  *         |     |      |                          |     |   |  |
1029  * |<------------+------+----- TCP seqno space --------------+---------->|
1030  * ...-- <2^31 ->|                                           |<--------...
1031  * ...---- >2^31 ------>|                                    |<--------...
1032  *
1033  * Current code wouldn't be vulnerable but it's better still to discard such
1034  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1035  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1036  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1037  * equal to the ideal case (infinite seqno space without wrap caused issues).
1038  *
1039  * With D-SACK the lower bound is extended to cover sequence space below
1040  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1041  * again, D-SACK block must not to go across snd_una (for the same reason as
1042  * for the normal SACK blocks, explained above). But there all simplicity
1043  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1044  * fully below undo_marker they do not affect behavior in anyway and can
1045  * therefore be safely ignored. In rare cases (which are more or less
1046  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1047  * fragmentation and packet reordering past skb's retransmission. To consider
1048  * them correctly, the acceptable range must be extended even more though
1049  * the exact amount is rather hard to quantify. However, tp->max_window can
1050  * be used as an exaggerated estimate.
1051  */
1052 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1053 				   u32 start_seq, u32 end_seq)
1054 {
1055 	/* Too far in future, or reversed (interpretation is ambiguous) */
1056 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1057 		return false;
1058 
1059 	/* Nasty start_seq wrap-around check (see comments above) */
1060 	if (!before(start_seq, tp->snd_nxt))
1061 		return false;
1062 
1063 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1064 	 * start_seq == snd_una is non-sensical (see comments above)
1065 	 */
1066 	if (after(start_seq, tp->snd_una))
1067 		return true;
1068 
1069 	if (!is_dsack || !tp->undo_marker)
1070 		return false;
1071 
1072 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1073 	if (after(end_seq, tp->snd_una))
1074 		return false;
1075 
1076 	if (!before(start_seq, tp->undo_marker))
1077 		return true;
1078 
1079 	/* Too old */
1080 	if (!after(end_seq, tp->undo_marker))
1081 		return false;
1082 
1083 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1084 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1085 	 */
1086 	return !before(start_seq, end_seq - tp->max_window);
1087 }
1088 
1089 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1090 			    struct tcp_sack_block_wire *sp, int num_sacks,
1091 			    u32 prior_snd_una)
1092 {
1093 	struct tcp_sock *tp = tcp_sk(sk);
1094 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1095 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1096 	bool dup_sack = false;
1097 
1098 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1099 		dup_sack = true;
1100 		tcp_dsack_seen(tp);
1101 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1102 	} else if (num_sacks > 1) {
1103 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1104 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1105 
1106 		if (!after(end_seq_0, end_seq_1) &&
1107 		    !before(start_seq_0, start_seq_1)) {
1108 			dup_sack = true;
1109 			tcp_dsack_seen(tp);
1110 			NET_INC_STATS(sock_net(sk),
1111 					LINUX_MIB_TCPDSACKOFORECV);
1112 		}
1113 	}
1114 
1115 	/* D-SACK for already forgotten data... Do dumb counting. */
1116 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1117 	    !after(end_seq_0, prior_snd_una) &&
1118 	    after(end_seq_0, tp->undo_marker))
1119 		tp->undo_retrans--;
1120 
1121 	return dup_sack;
1122 }
1123 
1124 struct tcp_sacktag_state {
1125 	u32	reord;
1126 	/* Timestamps for earliest and latest never-retransmitted segment
1127 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1128 	 * but congestion control should still get an accurate delay signal.
1129 	 */
1130 	u64	first_sackt;
1131 	u64	last_sackt;
1132 	struct rate_sample *rate;
1133 	int	flag;
1134 	unsigned int mss_now;
1135 };
1136 
1137 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1138  * the incoming SACK may not exactly match but we can find smaller MSS
1139  * aligned portion of it that matches. Therefore we might need to fragment
1140  * which may fail and creates some hassle (caller must handle error case
1141  * returns).
1142  *
1143  * FIXME: this could be merged to shift decision code
1144  */
1145 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1146 				  u32 start_seq, u32 end_seq)
1147 {
1148 	int err;
1149 	bool in_sack;
1150 	unsigned int pkt_len;
1151 	unsigned int mss;
1152 
1153 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1154 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1155 
1156 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1157 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1158 		mss = tcp_skb_mss(skb);
1159 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1160 
1161 		if (!in_sack) {
1162 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1163 			if (pkt_len < mss)
1164 				pkt_len = mss;
1165 		} else {
1166 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1167 			if (pkt_len < mss)
1168 				return -EINVAL;
1169 		}
1170 
1171 		/* Round if necessary so that SACKs cover only full MSSes
1172 		 * and/or the remaining small portion (if present)
1173 		 */
1174 		if (pkt_len > mss) {
1175 			unsigned int new_len = (pkt_len / mss) * mss;
1176 			if (!in_sack && new_len < pkt_len)
1177 				new_len += mss;
1178 			pkt_len = new_len;
1179 		}
1180 
1181 		if (pkt_len >= skb->len && !in_sack)
1182 			return 0;
1183 
1184 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1185 				   pkt_len, mss, GFP_ATOMIC);
1186 		if (err < 0)
1187 			return err;
1188 	}
1189 
1190 	return in_sack;
1191 }
1192 
1193 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1194 static u8 tcp_sacktag_one(struct sock *sk,
1195 			  struct tcp_sacktag_state *state, u8 sacked,
1196 			  u32 start_seq, u32 end_seq,
1197 			  int dup_sack, int pcount,
1198 			  u64 xmit_time)
1199 {
1200 	struct tcp_sock *tp = tcp_sk(sk);
1201 
1202 	/* Account D-SACK for retransmitted packet. */
1203 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1204 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1205 		    after(end_seq, tp->undo_marker))
1206 			tp->undo_retrans--;
1207 		if ((sacked & TCPCB_SACKED_ACKED) &&
1208 		    before(start_seq, state->reord))
1209 				state->reord = start_seq;
1210 	}
1211 
1212 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1213 	if (!after(end_seq, tp->snd_una))
1214 		return sacked;
1215 
1216 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1217 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1218 
1219 		if (sacked & TCPCB_SACKED_RETRANS) {
1220 			/* If the segment is not tagged as lost,
1221 			 * we do not clear RETRANS, believing
1222 			 * that retransmission is still in flight.
1223 			 */
1224 			if (sacked & TCPCB_LOST) {
1225 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1226 				tp->lost_out -= pcount;
1227 				tp->retrans_out -= pcount;
1228 			}
1229 		} else {
1230 			if (!(sacked & TCPCB_RETRANS)) {
1231 				/* New sack for not retransmitted frame,
1232 				 * which was in hole. It is reordering.
1233 				 */
1234 				if (before(start_seq,
1235 					   tcp_highest_sack_seq(tp)) &&
1236 				    before(start_seq, state->reord))
1237 					state->reord = start_seq;
1238 
1239 				if (!after(end_seq, tp->high_seq))
1240 					state->flag |= FLAG_ORIG_SACK_ACKED;
1241 				if (state->first_sackt == 0)
1242 					state->first_sackt = xmit_time;
1243 				state->last_sackt = xmit_time;
1244 			}
1245 
1246 			if (sacked & TCPCB_LOST) {
1247 				sacked &= ~TCPCB_LOST;
1248 				tp->lost_out -= pcount;
1249 			}
1250 		}
1251 
1252 		sacked |= TCPCB_SACKED_ACKED;
1253 		state->flag |= FLAG_DATA_SACKED;
1254 		tp->sacked_out += pcount;
1255 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1256 
1257 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1258 		if (tp->lost_skb_hint &&
1259 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1260 			tp->lost_cnt_hint += pcount;
1261 	}
1262 
1263 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1264 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1265 	 * are accounted above as well.
1266 	 */
1267 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1268 		sacked &= ~TCPCB_SACKED_RETRANS;
1269 		tp->retrans_out -= pcount;
1270 	}
1271 
1272 	return sacked;
1273 }
1274 
1275 /* Shift newly-SACKed bytes from this skb to the immediately previous
1276  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1277  */
1278 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1279 			    struct sk_buff *skb,
1280 			    struct tcp_sacktag_state *state,
1281 			    unsigned int pcount, int shifted, int mss,
1282 			    bool dup_sack)
1283 {
1284 	struct tcp_sock *tp = tcp_sk(sk);
1285 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1286 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1287 
1288 	BUG_ON(!pcount);
1289 
1290 	/* Adjust counters and hints for the newly sacked sequence
1291 	 * range but discard the return value since prev is already
1292 	 * marked. We must tag the range first because the seq
1293 	 * advancement below implicitly advances
1294 	 * tcp_highest_sack_seq() when skb is highest_sack.
1295 	 */
1296 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1297 			start_seq, end_seq, dup_sack, pcount,
1298 			skb->skb_mstamp);
1299 	tcp_rate_skb_delivered(sk, skb, state->rate);
1300 
1301 	if (skb == tp->lost_skb_hint)
1302 		tp->lost_cnt_hint += pcount;
1303 
1304 	TCP_SKB_CB(prev)->end_seq += shifted;
1305 	TCP_SKB_CB(skb)->seq += shifted;
1306 
1307 	tcp_skb_pcount_add(prev, pcount);
1308 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1309 	tcp_skb_pcount_add(skb, -pcount);
1310 
1311 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1312 	 * in theory this shouldn't be necessary but as long as DSACK
1313 	 * code can come after this skb later on it's better to keep
1314 	 * setting gso_size to something.
1315 	 */
1316 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1317 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1318 
1319 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1320 	if (tcp_skb_pcount(skb) <= 1)
1321 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1322 
1323 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1324 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1325 
1326 	if (skb->len > 0) {
1327 		BUG_ON(!tcp_skb_pcount(skb));
1328 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1329 		return false;
1330 	}
1331 
1332 	/* Whole SKB was eaten :-) */
1333 
1334 	if (skb == tp->retransmit_skb_hint)
1335 		tp->retransmit_skb_hint = prev;
1336 	if (skb == tp->lost_skb_hint) {
1337 		tp->lost_skb_hint = prev;
1338 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1339 	}
1340 
1341 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1342 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1343 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1344 		TCP_SKB_CB(prev)->end_seq++;
1345 
1346 	if (skb == tcp_highest_sack(sk))
1347 		tcp_advance_highest_sack(sk, skb);
1348 
1349 	tcp_skb_collapse_tstamp(prev, skb);
1350 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1351 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1352 
1353 	tcp_rtx_queue_unlink_and_free(skb, sk);
1354 
1355 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1356 
1357 	return true;
1358 }
1359 
1360 /* I wish gso_size would have a bit more sane initialization than
1361  * something-or-zero which complicates things
1362  */
1363 static int tcp_skb_seglen(const struct sk_buff *skb)
1364 {
1365 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1366 }
1367 
1368 /* Shifting pages past head area doesn't work */
1369 static int skb_can_shift(const struct sk_buff *skb)
1370 {
1371 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1372 }
1373 
1374 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1375  * skb.
1376  */
1377 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1378 					  struct tcp_sacktag_state *state,
1379 					  u32 start_seq, u32 end_seq,
1380 					  bool dup_sack)
1381 {
1382 	struct tcp_sock *tp = tcp_sk(sk);
1383 	struct sk_buff *prev;
1384 	int mss;
1385 	int pcount = 0;
1386 	int len;
1387 	int in_sack;
1388 
1389 	/* Normally R but no L won't result in plain S */
1390 	if (!dup_sack &&
1391 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1392 		goto fallback;
1393 	if (!skb_can_shift(skb))
1394 		goto fallback;
1395 	/* This frame is about to be dropped (was ACKed). */
1396 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1397 		goto fallback;
1398 
1399 	/* Can only happen with delayed DSACK + discard craziness */
1400 	prev = skb_rb_prev(skb);
1401 	if (!prev)
1402 		goto fallback;
1403 
1404 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1405 		goto fallback;
1406 
1407 	if (!tcp_skb_can_collapse_to(prev))
1408 		goto fallback;
1409 
1410 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1411 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1412 
1413 	if (in_sack) {
1414 		len = skb->len;
1415 		pcount = tcp_skb_pcount(skb);
1416 		mss = tcp_skb_seglen(skb);
1417 
1418 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1419 		 * drop this restriction as unnecessary
1420 		 */
1421 		if (mss != tcp_skb_seglen(prev))
1422 			goto fallback;
1423 	} else {
1424 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1425 			goto noop;
1426 		/* CHECKME: This is non-MSS split case only?, this will
1427 		 * cause skipped skbs due to advancing loop btw, original
1428 		 * has that feature too
1429 		 */
1430 		if (tcp_skb_pcount(skb) <= 1)
1431 			goto noop;
1432 
1433 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1434 		if (!in_sack) {
1435 			/* TODO: head merge to next could be attempted here
1436 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1437 			 * though it might not be worth of the additional hassle
1438 			 *
1439 			 * ...we can probably just fallback to what was done
1440 			 * previously. We could try merging non-SACKed ones
1441 			 * as well but it probably isn't going to buy off
1442 			 * because later SACKs might again split them, and
1443 			 * it would make skb timestamp tracking considerably
1444 			 * harder problem.
1445 			 */
1446 			goto fallback;
1447 		}
1448 
1449 		len = end_seq - TCP_SKB_CB(skb)->seq;
1450 		BUG_ON(len < 0);
1451 		BUG_ON(len > skb->len);
1452 
1453 		/* MSS boundaries should be honoured or else pcount will
1454 		 * severely break even though it makes things bit trickier.
1455 		 * Optimize common case to avoid most of the divides
1456 		 */
1457 		mss = tcp_skb_mss(skb);
1458 
1459 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1460 		 * drop this restriction as unnecessary
1461 		 */
1462 		if (mss != tcp_skb_seglen(prev))
1463 			goto fallback;
1464 
1465 		if (len == mss) {
1466 			pcount = 1;
1467 		} else if (len < mss) {
1468 			goto noop;
1469 		} else {
1470 			pcount = len / mss;
1471 			len = pcount * mss;
1472 		}
1473 	}
1474 
1475 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1476 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1477 		goto fallback;
1478 
1479 	if (!skb_shift(prev, skb, len))
1480 		goto fallback;
1481 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1482 		goto out;
1483 
1484 	/* Hole filled allows collapsing with the next as well, this is very
1485 	 * useful when hole on every nth skb pattern happens
1486 	 */
1487 	skb = skb_rb_next(prev);
1488 	if (!skb)
1489 		goto out;
1490 
1491 	if (!skb_can_shift(skb) ||
1492 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1493 	    (mss != tcp_skb_seglen(skb)))
1494 		goto out;
1495 
1496 	len = skb->len;
1497 	if (skb_shift(prev, skb, len)) {
1498 		pcount += tcp_skb_pcount(skb);
1499 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1500 				len, mss, 0);
1501 	}
1502 
1503 out:
1504 	return prev;
1505 
1506 noop:
1507 	return skb;
1508 
1509 fallback:
1510 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1511 	return NULL;
1512 }
1513 
1514 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1515 					struct tcp_sack_block *next_dup,
1516 					struct tcp_sacktag_state *state,
1517 					u32 start_seq, u32 end_seq,
1518 					bool dup_sack_in)
1519 {
1520 	struct tcp_sock *tp = tcp_sk(sk);
1521 	struct sk_buff *tmp;
1522 
1523 	skb_rbtree_walk_from(skb) {
1524 		int in_sack = 0;
1525 		bool dup_sack = dup_sack_in;
1526 
1527 		/* queue is in-order => we can short-circuit the walk early */
1528 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1529 			break;
1530 
1531 		if (next_dup  &&
1532 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1533 			in_sack = tcp_match_skb_to_sack(sk, skb,
1534 							next_dup->start_seq,
1535 							next_dup->end_seq);
1536 			if (in_sack > 0)
1537 				dup_sack = true;
1538 		}
1539 
1540 		/* skb reference here is a bit tricky to get right, since
1541 		 * shifting can eat and free both this skb and the next,
1542 		 * so not even _safe variant of the loop is enough.
1543 		 */
1544 		if (in_sack <= 0) {
1545 			tmp = tcp_shift_skb_data(sk, skb, state,
1546 						 start_seq, end_seq, dup_sack);
1547 			if (tmp) {
1548 				if (tmp != skb) {
1549 					skb = tmp;
1550 					continue;
1551 				}
1552 
1553 				in_sack = 0;
1554 			} else {
1555 				in_sack = tcp_match_skb_to_sack(sk, skb,
1556 								start_seq,
1557 								end_seq);
1558 			}
1559 		}
1560 
1561 		if (unlikely(in_sack < 0))
1562 			break;
1563 
1564 		if (in_sack) {
1565 			TCP_SKB_CB(skb)->sacked =
1566 				tcp_sacktag_one(sk,
1567 						state,
1568 						TCP_SKB_CB(skb)->sacked,
1569 						TCP_SKB_CB(skb)->seq,
1570 						TCP_SKB_CB(skb)->end_seq,
1571 						dup_sack,
1572 						tcp_skb_pcount(skb),
1573 						skb->skb_mstamp);
1574 			tcp_rate_skb_delivered(sk, skb, state->rate);
1575 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1576 				list_del_init(&skb->tcp_tsorted_anchor);
1577 
1578 			if (!before(TCP_SKB_CB(skb)->seq,
1579 				    tcp_highest_sack_seq(tp)))
1580 				tcp_advance_highest_sack(sk, skb);
1581 		}
1582 	}
1583 	return skb;
1584 }
1585 
1586 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1587 					   struct tcp_sacktag_state *state,
1588 					   u32 seq)
1589 {
1590 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1591 	struct sk_buff *skb;
1592 
1593 	while (*p) {
1594 		parent = *p;
1595 		skb = rb_to_skb(parent);
1596 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1597 			p = &parent->rb_left;
1598 			continue;
1599 		}
1600 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1601 			p = &parent->rb_right;
1602 			continue;
1603 		}
1604 		return skb;
1605 	}
1606 	return NULL;
1607 }
1608 
1609 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1610 					struct tcp_sacktag_state *state,
1611 					u32 skip_to_seq)
1612 {
1613 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1614 		return skb;
1615 
1616 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1617 }
1618 
1619 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1620 						struct sock *sk,
1621 						struct tcp_sack_block *next_dup,
1622 						struct tcp_sacktag_state *state,
1623 						u32 skip_to_seq)
1624 {
1625 	if (!next_dup)
1626 		return skb;
1627 
1628 	if (before(next_dup->start_seq, skip_to_seq)) {
1629 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1630 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1631 				       next_dup->start_seq, next_dup->end_seq,
1632 				       1);
1633 	}
1634 
1635 	return skb;
1636 }
1637 
1638 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1639 {
1640 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1641 }
1642 
1643 static int
1644 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1645 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1646 {
1647 	struct tcp_sock *tp = tcp_sk(sk);
1648 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1649 				    TCP_SKB_CB(ack_skb)->sacked);
1650 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1651 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1652 	struct tcp_sack_block *cache;
1653 	struct sk_buff *skb;
1654 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1655 	int used_sacks;
1656 	bool found_dup_sack = false;
1657 	int i, j;
1658 	int first_sack_index;
1659 
1660 	state->flag = 0;
1661 	state->reord = tp->snd_nxt;
1662 
1663 	if (!tp->sacked_out)
1664 		tcp_highest_sack_reset(sk);
1665 
1666 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1667 					 num_sacks, prior_snd_una);
1668 	if (found_dup_sack) {
1669 		state->flag |= FLAG_DSACKING_ACK;
1670 		tp->delivered++; /* A spurious retransmission is delivered */
1671 	}
1672 
1673 	/* Eliminate too old ACKs, but take into
1674 	 * account more or less fresh ones, they can
1675 	 * contain valid SACK info.
1676 	 */
1677 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1678 		return 0;
1679 
1680 	if (!tp->packets_out)
1681 		goto out;
1682 
1683 	used_sacks = 0;
1684 	first_sack_index = 0;
1685 	for (i = 0; i < num_sacks; i++) {
1686 		bool dup_sack = !i && found_dup_sack;
1687 
1688 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1689 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1690 
1691 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1692 					    sp[used_sacks].start_seq,
1693 					    sp[used_sacks].end_seq)) {
1694 			int mib_idx;
1695 
1696 			if (dup_sack) {
1697 				if (!tp->undo_marker)
1698 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1699 				else
1700 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1701 			} else {
1702 				/* Don't count olds caused by ACK reordering */
1703 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1704 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1705 					continue;
1706 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1707 			}
1708 
1709 			NET_INC_STATS(sock_net(sk), mib_idx);
1710 			if (i == 0)
1711 				first_sack_index = -1;
1712 			continue;
1713 		}
1714 
1715 		/* Ignore very old stuff early */
1716 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1717 			continue;
1718 
1719 		used_sacks++;
1720 	}
1721 
1722 	/* order SACK blocks to allow in order walk of the retrans queue */
1723 	for (i = used_sacks - 1; i > 0; i--) {
1724 		for (j = 0; j < i; j++) {
1725 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1726 				swap(sp[j], sp[j + 1]);
1727 
1728 				/* Track where the first SACK block goes to */
1729 				if (j == first_sack_index)
1730 					first_sack_index = j + 1;
1731 			}
1732 		}
1733 	}
1734 
1735 	state->mss_now = tcp_current_mss(sk);
1736 	skb = NULL;
1737 	i = 0;
1738 
1739 	if (!tp->sacked_out) {
1740 		/* It's already past, so skip checking against it */
1741 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1742 	} else {
1743 		cache = tp->recv_sack_cache;
1744 		/* Skip empty blocks in at head of the cache */
1745 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1746 		       !cache->end_seq)
1747 			cache++;
1748 	}
1749 
1750 	while (i < used_sacks) {
1751 		u32 start_seq = sp[i].start_seq;
1752 		u32 end_seq = sp[i].end_seq;
1753 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1754 		struct tcp_sack_block *next_dup = NULL;
1755 
1756 		if (found_dup_sack && ((i + 1) == first_sack_index))
1757 			next_dup = &sp[i + 1];
1758 
1759 		/* Skip too early cached blocks */
1760 		while (tcp_sack_cache_ok(tp, cache) &&
1761 		       !before(start_seq, cache->end_seq))
1762 			cache++;
1763 
1764 		/* Can skip some work by looking recv_sack_cache? */
1765 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1766 		    after(end_seq, cache->start_seq)) {
1767 
1768 			/* Head todo? */
1769 			if (before(start_seq, cache->start_seq)) {
1770 				skb = tcp_sacktag_skip(skb, sk, state,
1771 						       start_seq);
1772 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1773 						       state,
1774 						       start_seq,
1775 						       cache->start_seq,
1776 						       dup_sack);
1777 			}
1778 
1779 			/* Rest of the block already fully processed? */
1780 			if (!after(end_seq, cache->end_seq))
1781 				goto advance_sp;
1782 
1783 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1784 						       state,
1785 						       cache->end_seq);
1786 
1787 			/* ...tail remains todo... */
1788 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1789 				/* ...but better entrypoint exists! */
1790 				skb = tcp_highest_sack(sk);
1791 				if (!skb)
1792 					break;
1793 				cache++;
1794 				goto walk;
1795 			}
1796 
1797 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1798 			/* Check overlap against next cached too (past this one already) */
1799 			cache++;
1800 			continue;
1801 		}
1802 
1803 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1804 			skb = tcp_highest_sack(sk);
1805 			if (!skb)
1806 				break;
1807 		}
1808 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1809 
1810 walk:
1811 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1812 				       start_seq, end_seq, dup_sack);
1813 
1814 advance_sp:
1815 		i++;
1816 	}
1817 
1818 	/* Clear the head of the cache sack blocks so we can skip it next time */
1819 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1820 		tp->recv_sack_cache[i].start_seq = 0;
1821 		tp->recv_sack_cache[i].end_seq = 0;
1822 	}
1823 	for (j = 0; j < used_sacks; j++)
1824 		tp->recv_sack_cache[i++] = sp[j];
1825 
1826 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1827 		tcp_check_sack_reordering(sk, state->reord, 0);
1828 
1829 	tcp_verify_left_out(tp);
1830 out:
1831 
1832 #if FASTRETRANS_DEBUG > 0
1833 	WARN_ON((int)tp->sacked_out < 0);
1834 	WARN_ON((int)tp->lost_out < 0);
1835 	WARN_ON((int)tp->retrans_out < 0);
1836 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1837 #endif
1838 	return state->flag;
1839 }
1840 
1841 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1842  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1843  */
1844 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1845 {
1846 	u32 holes;
1847 
1848 	holes = max(tp->lost_out, 1U);
1849 	holes = min(holes, tp->packets_out);
1850 
1851 	if ((tp->sacked_out + holes) > tp->packets_out) {
1852 		tp->sacked_out = tp->packets_out - holes;
1853 		return true;
1854 	}
1855 	return false;
1856 }
1857 
1858 /* If we receive more dupacks than we expected counting segments
1859  * in assumption of absent reordering, interpret this as reordering.
1860  * The only another reason could be bug in receiver TCP.
1861  */
1862 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1863 {
1864 	struct tcp_sock *tp = tcp_sk(sk);
1865 
1866 	if (!tcp_limit_reno_sacked(tp))
1867 		return;
1868 
1869 	tp->reordering = min_t(u32, tp->packets_out + addend,
1870 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1871 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1872 }
1873 
1874 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1875 
1876 static void tcp_add_reno_sack(struct sock *sk)
1877 {
1878 	struct tcp_sock *tp = tcp_sk(sk);
1879 	u32 prior_sacked = tp->sacked_out;
1880 
1881 	tp->sacked_out++;
1882 	tcp_check_reno_reordering(sk, 0);
1883 	if (tp->sacked_out > prior_sacked)
1884 		tp->delivered++; /* Some out-of-order packet is delivered */
1885 	tcp_verify_left_out(tp);
1886 }
1887 
1888 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1889 
1890 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1891 {
1892 	struct tcp_sock *tp = tcp_sk(sk);
1893 
1894 	if (acked > 0) {
1895 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1896 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1897 		if (acked - 1 >= tp->sacked_out)
1898 			tp->sacked_out = 0;
1899 		else
1900 			tp->sacked_out -= acked - 1;
1901 	}
1902 	tcp_check_reno_reordering(sk, acked);
1903 	tcp_verify_left_out(tp);
1904 }
1905 
1906 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1907 {
1908 	tp->sacked_out = 0;
1909 }
1910 
1911 void tcp_clear_retrans(struct tcp_sock *tp)
1912 {
1913 	tp->retrans_out = 0;
1914 	tp->lost_out = 0;
1915 	tp->undo_marker = 0;
1916 	tp->undo_retrans = -1;
1917 	tp->sacked_out = 0;
1918 }
1919 
1920 static inline void tcp_init_undo(struct tcp_sock *tp)
1921 {
1922 	tp->undo_marker = tp->snd_una;
1923 	/* Retransmission still in flight may cause DSACKs later. */
1924 	tp->undo_retrans = tp->retrans_out ? : -1;
1925 }
1926 
1927 static bool tcp_is_rack(const struct sock *sk)
1928 {
1929 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1930 }
1931 
1932 /* If we detect SACK reneging, forget all SACK information
1933  * and reset tags completely, otherwise preserve SACKs. If receiver
1934  * dropped its ofo queue, we will know this due to reneging detection.
1935  */
1936 static void tcp_timeout_mark_lost(struct sock *sk)
1937 {
1938 	struct tcp_sock *tp = tcp_sk(sk);
1939 	struct sk_buff *skb, *head;
1940 	bool is_reneg;			/* is receiver reneging on SACKs? */
1941 
1942 	head = tcp_rtx_queue_head(sk);
1943 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1944 	if (is_reneg) {
1945 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1946 		tp->sacked_out = 0;
1947 		/* Mark SACK reneging until we recover from this loss event. */
1948 		tp->is_sack_reneg = 1;
1949 	} else if (tcp_is_reno(tp)) {
1950 		tcp_reset_reno_sack(tp);
1951 	}
1952 
1953 	skb = head;
1954 	skb_rbtree_walk_from(skb) {
1955 		if (is_reneg)
1956 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1957 		else if (tcp_is_rack(sk) && skb != head &&
1958 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1959 			continue; /* Don't mark recently sent ones lost yet */
1960 		tcp_mark_skb_lost(sk, skb);
1961 	}
1962 	tcp_verify_left_out(tp);
1963 	tcp_clear_all_retrans_hints(tp);
1964 }
1965 
1966 /* Enter Loss state. */
1967 void tcp_enter_loss(struct sock *sk)
1968 {
1969 	const struct inet_connection_sock *icsk = inet_csk(sk);
1970 	struct tcp_sock *tp = tcp_sk(sk);
1971 	struct net *net = sock_net(sk);
1972 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1973 
1974 	tcp_timeout_mark_lost(sk);
1975 
1976 	/* Reduce ssthresh if it has not yet been made inside this window. */
1977 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1978 	    !after(tp->high_seq, tp->snd_una) ||
1979 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1980 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1981 		tp->prior_cwnd = tp->snd_cwnd;
1982 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1983 		tcp_ca_event(sk, CA_EVENT_LOSS);
1984 		tcp_init_undo(tp);
1985 	}
1986 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
1987 	tp->snd_cwnd_cnt   = 0;
1988 	tp->snd_cwnd_stamp = tcp_jiffies32;
1989 
1990 	/* Timeout in disordered state after receiving substantial DUPACKs
1991 	 * suggests that the degree of reordering is over-estimated.
1992 	 */
1993 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1994 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1995 		tp->reordering = min_t(unsigned int, tp->reordering,
1996 				       net->ipv4.sysctl_tcp_reordering);
1997 	tcp_set_ca_state(sk, TCP_CA_Loss);
1998 	tp->high_seq = tp->snd_nxt;
1999 	tcp_ecn_queue_cwr(tp);
2000 
2001 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2002 	 * loss recovery is underway except recurring timeout(s) on
2003 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2004 	 */
2005 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2006 		   (new_recovery || icsk->icsk_retransmits) &&
2007 		   !inet_csk(sk)->icsk_mtup.probe_size;
2008 }
2009 
2010 /* If ACK arrived pointing to a remembered SACK, it means that our
2011  * remembered SACKs do not reflect real state of receiver i.e.
2012  * receiver _host_ is heavily congested (or buggy).
2013  *
2014  * To avoid big spurious retransmission bursts due to transient SACK
2015  * scoreboard oddities that look like reneging, we give the receiver a
2016  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2017  * restore sanity to the SACK scoreboard. If the apparent reneging
2018  * persists until this RTO then we'll clear the SACK scoreboard.
2019  */
2020 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2021 {
2022 	if (flag & FLAG_SACK_RENEGING) {
2023 		struct tcp_sock *tp = tcp_sk(sk);
2024 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2025 					  msecs_to_jiffies(10));
2026 
2027 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2028 					  delay, TCP_RTO_MAX);
2029 		return true;
2030 	}
2031 	return false;
2032 }
2033 
2034 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2035  * counter when SACK is enabled (without SACK, sacked_out is used for
2036  * that purpose).
2037  *
2038  * With reordering, holes may still be in flight, so RFC3517 recovery
2039  * uses pure sacked_out (total number of SACKed segments) even though
2040  * it violates the RFC that uses duplicate ACKs, often these are equal
2041  * but when e.g. out-of-window ACKs or packet duplication occurs,
2042  * they differ. Since neither occurs due to loss, TCP should really
2043  * ignore them.
2044  */
2045 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2046 {
2047 	return tp->sacked_out + 1;
2048 }
2049 
2050 /* Linux NewReno/SACK/ECN state machine.
2051  * --------------------------------------
2052  *
2053  * "Open"	Normal state, no dubious events, fast path.
2054  * "Disorder"   In all the respects it is "Open",
2055  *		but requires a bit more attention. It is entered when
2056  *		we see some SACKs or dupacks. It is split of "Open"
2057  *		mainly to move some processing from fast path to slow one.
2058  * "CWR"	CWND was reduced due to some Congestion Notification event.
2059  *		It can be ECN, ICMP source quench, local device congestion.
2060  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2061  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2062  *
2063  * tcp_fastretrans_alert() is entered:
2064  * - each incoming ACK, if state is not "Open"
2065  * - when arrived ACK is unusual, namely:
2066  *	* SACK
2067  *	* Duplicate ACK.
2068  *	* ECN ECE.
2069  *
2070  * Counting packets in flight is pretty simple.
2071  *
2072  *	in_flight = packets_out - left_out + retrans_out
2073  *
2074  *	packets_out is SND.NXT-SND.UNA counted in packets.
2075  *
2076  *	retrans_out is number of retransmitted segments.
2077  *
2078  *	left_out is number of segments left network, but not ACKed yet.
2079  *
2080  *		left_out = sacked_out + lost_out
2081  *
2082  *     sacked_out: Packets, which arrived to receiver out of order
2083  *		   and hence not ACKed. With SACKs this number is simply
2084  *		   amount of SACKed data. Even without SACKs
2085  *		   it is easy to give pretty reliable estimate of this number,
2086  *		   counting duplicate ACKs.
2087  *
2088  *       lost_out: Packets lost by network. TCP has no explicit
2089  *		   "loss notification" feedback from network (for now).
2090  *		   It means that this number can be only _guessed_.
2091  *		   Actually, it is the heuristics to predict lossage that
2092  *		   distinguishes different algorithms.
2093  *
2094  *	F.e. after RTO, when all the queue is considered as lost,
2095  *	lost_out = packets_out and in_flight = retrans_out.
2096  *
2097  *		Essentially, we have now a few algorithms detecting
2098  *		lost packets.
2099  *
2100  *		If the receiver supports SACK:
2101  *
2102  *		RFC6675/3517: It is the conventional algorithm. A packet is
2103  *		considered lost if the number of higher sequence packets
2104  *		SACKed is greater than or equal the DUPACK thoreshold
2105  *		(reordering). This is implemented in tcp_mark_head_lost and
2106  *		tcp_update_scoreboard.
2107  *
2108  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2109  *		(2017-) that checks timing instead of counting DUPACKs.
2110  *		Essentially a packet is considered lost if it's not S/ACKed
2111  *		after RTT + reordering_window, where both metrics are
2112  *		dynamically measured and adjusted. This is implemented in
2113  *		tcp_rack_mark_lost.
2114  *
2115  *		If the receiver does not support SACK:
2116  *
2117  *		NewReno (RFC6582): in Recovery we assume that one segment
2118  *		is lost (classic Reno). While we are in Recovery and
2119  *		a partial ACK arrives, we assume that one more packet
2120  *		is lost (NewReno). This heuristics are the same in NewReno
2121  *		and SACK.
2122  *
2123  * Really tricky (and requiring careful tuning) part of algorithm
2124  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2125  * The first determines the moment _when_ we should reduce CWND and,
2126  * hence, slow down forward transmission. In fact, it determines the moment
2127  * when we decide that hole is caused by loss, rather than by a reorder.
2128  *
2129  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2130  * holes, caused by lost packets.
2131  *
2132  * And the most logically complicated part of algorithm is undo
2133  * heuristics. We detect false retransmits due to both too early
2134  * fast retransmit (reordering) and underestimated RTO, analyzing
2135  * timestamps and D-SACKs. When we detect that some segments were
2136  * retransmitted by mistake and CWND reduction was wrong, we undo
2137  * window reduction and abort recovery phase. This logic is hidden
2138  * inside several functions named tcp_try_undo_<something>.
2139  */
2140 
2141 /* This function decides, when we should leave Disordered state
2142  * and enter Recovery phase, reducing congestion window.
2143  *
2144  * Main question: may we further continue forward transmission
2145  * with the same cwnd?
2146  */
2147 static bool tcp_time_to_recover(struct sock *sk, int flag)
2148 {
2149 	struct tcp_sock *tp = tcp_sk(sk);
2150 
2151 	/* Trick#1: The loss is proven. */
2152 	if (tp->lost_out)
2153 		return true;
2154 
2155 	/* Not-A-Trick#2 : Classic rule... */
2156 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2157 		return true;
2158 
2159 	return false;
2160 }
2161 
2162 /* Detect loss in event "A" above by marking head of queue up as lost.
2163  * For non-SACK(Reno) senders, the first "packets" number of segments
2164  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2165  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2166  * the maximum SACKed segments to pass before reaching this limit.
2167  */
2168 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2169 {
2170 	struct tcp_sock *tp = tcp_sk(sk);
2171 	struct sk_buff *skb;
2172 	int cnt, oldcnt, lost;
2173 	unsigned int mss;
2174 	/* Use SACK to deduce losses of new sequences sent during recovery */
2175 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2176 
2177 	WARN_ON(packets > tp->packets_out);
2178 	skb = tp->lost_skb_hint;
2179 	if (skb) {
2180 		/* Head already handled? */
2181 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2182 			return;
2183 		cnt = tp->lost_cnt_hint;
2184 	} else {
2185 		skb = tcp_rtx_queue_head(sk);
2186 		cnt = 0;
2187 	}
2188 
2189 	skb_rbtree_walk_from(skb) {
2190 		/* TODO: do this better */
2191 		/* this is not the most efficient way to do this... */
2192 		tp->lost_skb_hint = skb;
2193 		tp->lost_cnt_hint = cnt;
2194 
2195 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2196 			break;
2197 
2198 		oldcnt = cnt;
2199 		if (tcp_is_reno(tp) ||
2200 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2201 			cnt += tcp_skb_pcount(skb);
2202 
2203 		if (cnt > packets) {
2204 			if (tcp_is_sack(tp) ||
2205 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2206 			    (oldcnt >= packets))
2207 				break;
2208 
2209 			mss = tcp_skb_mss(skb);
2210 			/* If needed, chop off the prefix to mark as lost. */
2211 			lost = (packets - oldcnt) * mss;
2212 			if (lost < skb->len &&
2213 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2214 					 lost, mss, GFP_ATOMIC) < 0)
2215 				break;
2216 			cnt = packets;
2217 		}
2218 
2219 		tcp_skb_mark_lost(tp, skb);
2220 
2221 		if (mark_head)
2222 			break;
2223 	}
2224 	tcp_verify_left_out(tp);
2225 }
2226 
2227 /* Account newly detected lost packet(s) */
2228 
2229 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2230 {
2231 	struct tcp_sock *tp = tcp_sk(sk);
2232 
2233 	if (tcp_is_sack(tp)) {
2234 		int sacked_upto = tp->sacked_out - tp->reordering;
2235 		if (sacked_upto >= 0)
2236 			tcp_mark_head_lost(sk, sacked_upto, 0);
2237 		else if (fast_rexmit)
2238 			tcp_mark_head_lost(sk, 1, 1);
2239 	}
2240 }
2241 
2242 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2243 {
2244 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2245 	       before(tp->rx_opt.rcv_tsecr, when);
2246 }
2247 
2248 /* skb is spurious retransmitted if the returned timestamp echo
2249  * reply is prior to the skb transmission time
2250  */
2251 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2252 				     const struct sk_buff *skb)
2253 {
2254 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2255 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2256 }
2257 
2258 /* Nothing was retransmitted or returned timestamp is less
2259  * than timestamp of the first retransmission.
2260  */
2261 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2262 {
2263 	return !tp->retrans_stamp ||
2264 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2265 }
2266 
2267 /* Undo procedures. */
2268 
2269 /* We can clear retrans_stamp when there are no retransmissions in the
2270  * window. It would seem that it is trivially available for us in
2271  * tp->retrans_out, however, that kind of assumptions doesn't consider
2272  * what will happen if errors occur when sending retransmission for the
2273  * second time. ...It could the that such segment has only
2274  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2275  * the head skb is enough except for some reneging corner cases that
2276  * are not worth the effort.
2277  *
2278  * Main reason for all this complexity is the fact that connection dying
2279  * time now depends on the validity of the retrans_stamp, in particular,
2280  * that successive retransmissions of a segment must not advance
2281  * retrans_stamp under any conditions.
2282  */
2283 static bool tcp_any_retrans_done(const struct sock *sk)
2284 {
2285 	const struct tcp_sock *tp = tcp_sk(sk);
2286 	struct sk_buff *skb;
2287 
2288 	if (tp->retrans_out)
2289 		return true;
2290 
2291 	skb = tcp_rtx_queue_head(sk);
2292 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2293 		return true;
2294 
2295 	return false;
2296 }
2297 
2298 static void DBGUNDO(struct sock *sk, const char *msg)
2299 {
2300 #if FASTRETRANS_DEBUG > 1
2301 	struct tcp_sock *tp = tcp_sk(sk);
2302 	struct inet_sock *inet = inet_sk(sk);
2303 
2304 	if (sk->sk_family == AF_INET) {
2305 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2306 			 msg,
2307 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2308 			 tp->snd_cwnd, tcp_left_out(tp),
2309 			 tp->snd_ssthresh, tp->prior_ssthresh,
2310 			 tp->packets_out);
2311 	}
2312 #if IS_ENABLED(CONFIG_IPV6)
2313 	else if (sk->sk_family == AF_INET6) {
2314 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2315 			 msg,
2316 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2317 			 tp->snd_cwnd, tcp_left_out(tp),
2318 			 tp->snd_ssthresh, tp->prior_ssthresh,
2319 			 tp->packets_out);
2320 	}
2321 #endif
2322 #endif
2323 }
2324 
2325 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2326 {
2327 	struct tcp_sock *tp = tcp_sk(sk);
2328 
2329 	if (unmark_loss) {
2330 		struct sk_buff *skb;
2331 
2332 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2333 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2334 		}
2335 		tp->lost_out = 0;
2336 		tcp_clear_all_retrans_hints(tp);
2337 	}
2338 
2339 	if (tp->prior_ssthresh) {
2340 		const struct inet_connection_sock *icsk = inet_csk(sk);
2341 
2342 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2343 
2344 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2345 			tp->snd_ssthresh = tp->prior_ssthresh;
2346 			tcp_ecn_withdraw_cwr(tp);
2347 		}
2348 	}
2349 	tp->snd_cwnd_stamp = tcp_jiffies32;
2350 	tp->undo_marker = 0;
2351 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2352 }
2353 
2354 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2355 {
2356 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2357 }
2358 
2359 /* People celebrate: "We love our President!" */
2360 static bool tcp_try_undo_recovery(struct sock *sk)
2361 {
2362 	struct tcp_sock *tp = tcp_sk(sk);
2363 
2364 	if (tcp_may_undo(tp)) {
2365 		int mib_idx;
2366 
2367 		/* Happy end! We did not retransmit anything
2368 		 * or our original transmission succeeded.
2369 		 */
2370 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2371 		tcp_undo_cwnd_reduction(sk, false);
2372 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2373 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2374 		else
2375 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2376 
2377 		NET_INC_STATS(sock_net(sk), mib_idx);
2378 	} else if (tp->rack.reo_wnd_persist) {
2379 		tp->rack.reo_wnd_persist--;
2380 	}
2381 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2382 		/* Hold old state until something *above* high_seq
2383 		 * is ACKed. For Reno it is MUST to prevent false
2384 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2385 		if (!tcp_any_retrans_done(sk))
2386 			tp->retrans_stamp = 0;
2387 		return true;
2388 	}
2389 	tcp_set_ca_state(sk, TCP_CA_Open);
2390 	tp->is_sack_reneg = 0;
2391 	return false;
2392 }
2393 
2394 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2395 static bool tcp_try_undo_dsack(struct sock *sk)
2396 {
2397 	struct tcp_sock *tp = tcp_sk(sk);
2398 
2399 	if (tp->undo_marker && !tp->undo_retrans) {
2400 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2401 					       tp->rack.reo_wnd_persist + 1);
2402 		DBGUNDO(sk, "D-SACK");
2403 		tcp_undo_cwnd_reduction(sk, false);
2404 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2405 		return true;
2406 	}
2407 	return false;
2408 }
2409 
2410 /* Undo during loss recovery after partial ACK or using F-RTO. */
2411 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2412 {
2413 	struct tcp_sock *tp = tcp_sk(sk);
2414 
2415 	if (frto_undo || tcp_may_undo(tp)) {
2416 		tcp_undo_cwnd_reduction(sk, true);
2417 
2418 		DBGUNDO(sk, "partial loss");
2419 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2420 		if (frto_undo)
2421 			NET_INC_STATS(sock_net(sk),
2422 					LINUX_MIB_TCPSPURIOUSRTOS);
2423 		inet_csk(sk)->icsk_retransmits = 0;
2424 		if (frto_undo || tcp_is_sack(tp)) {
2425 			tcp_set_ca_state(sk, TCP_CA_Open);
2426 			tp->is_sack_reneg = 0;
2427 		}
2428 		return true;
2429 	}
2430 	return false;
2431 }
2432 
2433 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2434  * It computes the number of packets to send (sndcnt) based on packets newly
2435  * delivered:
2436  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2437  *	cwnd reductions across a full RTT.
2438  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2439  *      But when the retransmits are acked without further losses, PRR
2440  *      slow starts cwnd up to ssthresh to speed up the recovery.
2441  */
2442 static void tcp_init_cwnd_reduction(struct sock *sk)
2443 {
2444 	struct tcp_sock *tp = tcp_sk(sk);
2445 
2446 	tp->high_seq = tp->snd_nxt;
2447 	tp->tlp_high_seq = 0;
2448 	tp->snd_cwnd_cnt = 0;
2449 	tp->prior_cwnd = tp->snd_cwnd;
2450 	tp->prr_delivered = 0;
2451 	tp->prr_out = 0;
2452 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2453 	tcp_ecn_queue_cwr(tp);
2454 }
2455 
2456 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2457 {
2458 	struct tcp_sock *tp = tcp_sk(sk);
2459 	int sndcnt = 0;
2460 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2461 
2462 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2463 		return;
2464 
2465 	tp->prr_delivered += newly_acked_sacked;
2466 	if (delta < 0) {
2467 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2468 			       tp->prior_cwnd - 1;
2469 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2470 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2471 		   !(flag & FLAG_LOST_RETRANS)) {
2472 		sndcnt = min_t(int, delta,
2473 			       max_t(int, tp->prr_delivered - tp->prr_out,
2474 				     newly_acked_sacked) + 1);
2475 	} else {
2476 		sndcnt = min(delta, newly_acked_sacked);
2477 	}
2478 	/* Force a fast retransmit upon entering fast recovery */
2479 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2480 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2481 }
2482 
2483 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2484 {
2485 	struct tcp_sock *tp = tcp_sk(sk);
2486 
2487 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2488 		return;
2489 
2490 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2491 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2492 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2493 		tp->snd_cwnd = tp->snd_ssthresh;
2494 		tp->snd_cwnd_stamp = tcp_jiffies32;
2495 	}
2496 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2497 }
2498 
2499 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2500 void tcp_enter_cwr(struct sock *sk)
2501 {
2502 	struct tcp_sock *tp = tcp_sk(sk);
2503 
2504 	tp->prior_ssthresh = 0;
2505 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2506 		tp->undo_marker = 0;
2507 		tcp_init_cwnd_reduction(sk);
2508 		tcp_set_ca_state(sk, TCP_CA_CWR);
2509 	}
2510 }
2511 EXPORT_SYMBOL(tcp_enter_cwr);
2512 
2513 static void tcp_try_keep_open(struct sock *sk)
2514 {
2515 	struct tcp_sock *tp = tcp_sk(sk);
2516 	int state = TCP_CA_Open;
2517 
2518 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2519 		state = TCP_CA_Disorder;
2520 
2521 	if (inet_csk(sk)->icsk_ca_state != state) {
2522 		tcp_set_ca_state(sk, state);
2523 		tp->high_seq = tp->snd_nxt;
2524 	}
2525 }
2526 
2527 static void tcp_try_to_open(struct sock *sk, int flag)
2528 {
2529 	struct tcp_sock *tp = tcp_sk(sk);
2530 
2531 	tcp_verify_left_out(tp);
2532 
2533 	if (!tcp_any_retrans_done(sk))
2534 		tp->retrans_stamp = 0;
2535 
2536 	if (flag & FLAG_ECE)
2537 		tcp_enter_cwr(sk);
2538 
2539 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2540 		tcp_try_keep_open(sk);
2541 	}
2542 }
2543 
2544 static void tcp_mtup_probe_failed(struct sock *sk)
2545 {
2546 	struct inet_connection_sock *icsk = inet_csk(sk);
2547 
2548 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2549 	icsk->icsk_mtup.probe_size = 0;
2550 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2551 }
2552 
2553 static void tcp_mtup_probe_success(struct sock *sk)
2554 {
2555 	struct tcp_sock *tp = tcp_sk(sk);
2556 	struct inet_connection_sock *icsk = inet_csk(sk);
2557 
2558 	/* FIXME: breaks with very large cwnd */
2559 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2560 	tp->snd_cwnd = tp->snd_cwnd *
2561 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2562 		       icsk->icsk_mtup.probe_size;
2563 	tp->snd_cwnd_cnt = 0;
2564 	tp->snd_cwnd_stamp = tcp_jiffies32;
2565 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2566 
2567 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2568 	icsk->icsk_mtup.probe_size = 0;
2569 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2570 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2571 }
2572 
2573 /* Do a simple retransmit without using the backoff mechanisms in
2574  * tcp_timer. This is used for path mtu discovery.
2575  * The socket is already locked here.
2576  */
2577 void tcp_simple_retransmit(struct sock *sk)
2578 {
2579 	const struct inet_connection_sock *icsk = inet_csk(sk);
2580 	struct tcp_sock *tp = tcp_sk(sk);
2581 	struct sk_buff *skb;
2582 	unsigned int mss = tcp_current_mss(sk);
2583 
2584 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2585 		if (tcp_skb_seglen(skb) > mss &&
2586 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2587 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2588 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2589 				tp->retrans_out -= tcp_skb_pcount(skb);
2590 			}
2591 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2592 		}
2593 	}
2594 
2595 	tcp_clear_retrans_hints_partial(tp);
2596 
2597 	if (!tp->lost_out)
2598 		return;
2599 
2600 	if (tcp_is_reno(tp))
2601 		tcp_limit_reno_sacked(tp);
2602 
2603 	tcp_verify_left_out(tp);
2604 
2605 	/* Don't muck with the congestion window here.
2606 	 * Reason is that we do not increase amount of _data_
2607 	 * in network, but units changed and effective
2608 	 * cwnd/ssthresh really reduced now.
2609 	 */
2610 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2611 		tp->high_seq = tp->snd_nxt;
2612 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2613 		tp->prior_ssthresh = 0;
2614 		tp->undo_marker = 0;
2615 		tcp_set_ca_state(sk, TCP_CA_Loss);
2616 	}
2617 	tcp_xmit_retransmit_queue(sk);
2618 }
2619 EXPORT_SYMBOL(tcp_simple_retransmit);
2620 
2621 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2622 {
2623 	struct tcp_sock *tp = tcp_sk(sk);
2624 	int mib_idx;
2625 
2626 	if (tcp_is_reno(tp))
2627 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2628 	else
2629 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2630 
2631 	NET_INC_STATS(sock_net(sk), mib_idx);
2632 
2633 	tp->prior_ssthresh = 0;
2634 	tcp_init_undo(tp);
2635 
2636 	if (!tcp_in_cwnd_reduction(sk)) {
2637 		if (!ece_ack)
2638 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2639 		tcp_init_cwnd_reduction(sk);
2640 	}
2641 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2642 }
2643 
2644 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2645  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2646  */
2647 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2648 			     int *rexmit)
2649 {
2650 	struct tcp_sock *tp = tcp_sk(sk);
2651 	bool recovered = !before(tp->snd_una, tp->high_seq);
2652 
2653 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2654 	    tcp_try_undo_loss(sk, false))
2655 		return;
2656 
2657 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2658 		/* Step 3.b. A timeout is spurious if not all data are
2659 		 * lost, i.e., never-retransmitted data are (s)acked.
2660 		 */
2661 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2662 		    tcp_try_undo_loss(sk, true))
2663 			return;
2664 
2665 		if (after(tp->snd_nxt, tp->high_seq)) {
2666 			if (flag & FLAG_DATA_SACKED || is_dupack)
2667 				tp->frto = 0; /* Step 3.a. loss was real */
2668 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2669 			tp->high_seq = tp->snd_nxt;
2670 			/* Step 2.b. Try send new data (but deferred until cwnd
2671 			 * is updated in tcp_ack()). Otherwise fall back to
2672 			 * the conventional recovery.
2673 			 */
2674 			if (!tcp_write_queue_empty(sk) &&
2675 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2676 				*rexmit = REXMIT_NEW;
2677 				return;
2678 			}
2679 			tp->frto = 0;
2680 		}
2681 	}
2682 
2683 	if (recovered) {
2684 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2685 		tcp_try_undo_recovery(sk);
2686 		return;
2687 	}
2688 	if (tcp_is_reno(tp)) {
2689 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2690 		 * delivered. Lower inflight to clock out (re)tranmissions.
2691 		 */
2692 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2693 			tcp_add_reno_sack(sk);
2694 		else if (flag & FLAG_SND_UNA_ADVANCED)
2695 			tcp_reset_reno_sack(tp);
2696 	}
2697 	*rexmit = REXMIT_LOST;
2698 }
2699 
2700 /* Undo during fast recovery after partial ACK. */
2701 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2702 {
2703 	struct tcp_sock *tp = tcp_sk(sk);
2704 
2705 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2706 		/* Plain luck! Hole if filled with delayed
2707 		 * packet, rather than with a retransmit. Check reordering.
2708 		 */
2709 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2710 
2711 		/* We are getting evidence that the reordering degree is higher
2712 		 * than we realized. If there are no retransmits out then we
2713 		 * can undo. Otherwise we clock out new packets but do not
2714 		 * mark more packets lost or retransmit more.
2715 		 */
2716 		if (tp->retrans_out)
2717 			return true;
2718 
2719 		if (!tcp_any_retrans_done(sk))
2720 			tp->retrans_stamp = 0;
2721 
2722 		DBGUNDO(sk, "partial recovery");
2723 		tcp_undo_cwnd_reduction(sk, true);
2724 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2725 		tcp_try_keep_open(sk);
2726 		return true;
2727 	}
2728 	return false;
2729 }
2730 
2731 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2732 {
2733 	struct tcp_sock *tp = tcp_sk(sk);
2734 
2735 	if (tcp_rtx_queue_empty(sk))
2736 		return;
2737 
2738 	if (unlikely(tcp_is_reno(tp))) {
2739 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2740 	} else if (tcp_is_rack(sk)) {
2741 		u32 prior_retrans = tp->retrans_out;
2742 
2743 		tcp_rack_mark_lost(sk);
2744 		if (prior_retrans > tp->retrans_out)
2745 			*ack_flag |= FLAG_LOST_RETRANS;
2746 	}
2747 }
2748 
2749 static bool tcp_force_fast_retransmit(struct sock *sk)
2750 {
2751 	struct tcp_sock *tp = tcp_sk(sk);
2752 
2753 	return after(tcp_highest_sack_seq(tp),
2754 		     tp->snd_una + tp->reordering * tp->mss_cache);
2755 }
2756 
2757 /* Process an event, which can update packets-in-flight not trivially.
2758  * Main goal of this function is to calculate new estimate for left_out,
2759  * taking into account both packets sitting in receiver's buffer and
2760  * packets lost by network.
2761  *
2762  * Besides that it updates the congestion state when packet loss or ECN
2763  * is detected. But it does not reduce the cwnd, it is done by the
2764  * congestion control later.
2765  *
2766  * It does _not_ decide what to send, it is made in function
2767  * tcp_xmit_retransmit_queue().
2768  */
2769 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2770 				  bool is_dupack, int *ack_flag, int *rexmit)
2771 {
2772 	struct inet_connection_sock *icsk = inet_csk(sk);
2773 	struct tcp_sock *tp = tcp_sk(sk);
2774 	int fast_rexmit = 0, flag = *ack_flag;
2775 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2776 				     tcp_force_fast_retransmit(sk));
2777 
2778 	if (!tp->packets_out && tp->sacked_out)
2779 		tp->sacked_out = 0;
2780 
2781 	/* Now state machine starts.
2782 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2783 	if (flag & FLAG_ECE)
2784 		tp->prior_ssthresh = 0;
2785 
2786 	/* B. In all the states check for reneging SACKs. */
2787 	if (tcp_check_sack_reneging(sk, flag))
2788 		return;
2789 
2790 	/* C. Check consistency of the current state. */
2791 	tcp_verify_left_out(tp);
2792 
2793 	/* D. Check state exit conditions. State can be terminated
2794 	 *    when high_seq is ACKed. */
2795 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2796 		WARN_ON(tp->retrans_out != 0);
2797 		tp->retrans_stamp = 0;
2798 	} else if (!before(tp->snd_una, tp->high_seq)) {
2799 		switch (icsk->icsk_ca_state) {
2800 		case TCP_CA_CWR:
2801 			/* CWR is to be held something *above* high_seq
2802 			 * is ACKed for CWR bit to reach receiver. */
2803 			if (tp->snd_una != tp->high_seq) {
2804 				tcp_end_cwnd_reduction(sk);
2805 				tcp_set_ca_state(sk, TCP_CA_Open);
2806 			}
2807 			break;
2808 
2809 		case TCP_CA_Recovery:
2810 			if (tcp_is_reno(tp))
2811 				tcp_reset_reno_sack(tp);
2812 			if (tcp_try_undo_recovery(sk))
2813 				return;
2814 			tcp_end_cwnd_reduction(sk);
2815 			break;
2816 		}
2817 	}
2818 
2819 	/* E. Process state. */
2820 	switch (icsk->icsk_ca_state) {
2821 	case TCP_CA_Recovery:
2822 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2823 			if (tcp_is_reno(tp) && is_dupack)
2824 				tcp_add_reno_sack(sk);
2825 		} else {
2826 			if (tcp_try_undo_partial(sk, prior_snd_una))
2827 				return;
2828 			/* Partial ACK arrived. Force fast retransmit. */
2829 			do_lost = tcp_is_reno(tp) ||
2830 				  tcp_force_fast_retransmit(sk);
2831 		}
2832 		if (tcp_try_undo_dsack(sk)) {
2833 			tcp_try_keep_open(sk);
2834 			return;
2835 		}
2836 		tcp_identify_packet_loss(sk, ack_flag);
2837 		break;
2838 	case TCP_CA_Loss:
2839 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2840 		tcp_identify_packet_loss(sk, ack_flag);
2841 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2842 		      (*ack_flag & FLAG_LOST_RETRANS)))
2843 			return;
2844 		/* Change state if cwnd is undone or retransmits are lost */
2845 		/* fall through */
2846 	default:
2847 		if (tcp_is_reno(tp)) {
2848 			if (flag & FLAG_SND_UNA_ADVANCED)
2849 				tcp_reset_reno_sack(tp);
2850 			if (is_dupack)
2851 				tcp_add_reno_sack(sk);
2852 		}
2853 
2854 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2855 			tcp_try_undo_dsack(sk);
2856 
2857 		tcp_identify_packet_loss(sk, ack_flag);
2858 		if (!tcp_time_to_recover(sk, flag)) {
2859 			tcp_try_to_open(sk, flag);
2860 			return;
2861 		}
2862 
2863 		/* MTU probe failure: don't reduce cwnd */
2864 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2865 		    icsk->icsk_mtup.probe_size &&
2866 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2867 			tcp_mtup_probe_failed(sk);
2868 			/* Restores the reduction we did in tcp_mtup_probe() */
2869 			tp->snd_cwnd++;
2870 			tcp_simple_retransmit(sk);
2871 			return;
2872 		}
2873 
2874 		/* Otherwise enter Recovery state */
2875 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2876 		fast_rexmit = 1;
2877 	}
2878 
2879 	if (!tcp_is_rack(sk) && do_lost)
2880 		tcp_update_scoreboard(sk, fast_rexmit);
2881 	*rexmit = REXMIT_LOST;
2882 }
2883 
2884 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2885 {
2886 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2887 	struct tcp_sock *tp = tcp_sk(sk);
2888 
2889 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2890 		/* If the remote keeps returning delayed ACKs, eventually
2891 		 * the min filter would pick it up and overestimate the
2892 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2893 		 */
2894 		return;
2895 	}
2896 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2897 			   rtt_us ? : jiffies_to_usecs(1));
2898 }
2899 
2900 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2901 			       long seq_rtt_us, long sack_rtt_us,
2902 			       long ca_rtt_us, struct rate_sample *rs)
2903 {
2904 	const struct tcp_sock *tp = tcp_sk(sk);
2905 
2906 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2907 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2908 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2909 	 * is acked (RFC6298).
2910 	 */
2911 	if (seq_rtt_us < 0)
2912 		seq_rtt_us = sack_rtt_us;
2913 
2914 	/* RTTM Rule: A TSecr value received in a segment is used to
2915 	 * update the averaged RTT measurement only if the segment
2916 	 * acknowledges some new data, i.e., only if it advances the
2917 	 * left edge of the send window.
2918 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2919 	 */
2920 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2921 	    flag & FLAG_ACKED) {
2922 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2923 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2924 
2925 		seq_rtt_us = ca_rtt_us = delta_us;
2926 	}
2927 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2928 	if (seq_rtt_us < 0)
2929 		return false;
2930 
2931 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2932 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2933 	 * values will be skipped with the seq_rtt_us < 0 check above.
2934 	 */
2935 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2936 	tcp_rtt_estimator(sk, seq_rtt_us);
2937 	tcp_set_rto(sk);
2938 
2939 	/* RFC6298: only reset backoff on valid RTT measurement. */
2940 	inet_csk(sk)->icsk_backoff = 0;
2941 	return true;
2942 }
2943 
2944 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2945 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2946 {
2947 	struct rate_sample rs;
2948 	long rtt_us = -1L;
2949 
2950 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2951 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2952 
2953 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2954 }
2955 
2956 
2957 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2958 {
2959 	const struct inet_connection_sock *icsk = inet_csk(sk);
2960 
2961 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2962 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2963 }
2964 
2965 /* Restart timer after forward progress on connection.
2966  * RFC2988 recommends to restart timer to now+rto.
2967  */
2968 void tcp_rearm_rto(struct sock *sk)
2969 {
2970 	const struct inet_connection_sock *icsk = inet_csk(sk);
2971 	struct tcp_sock *tp = tcp_sk(sk);
2972 
2973 	/* If the retrans timer is currently being used by Fast Open
2974 	 * for SYN-ACK retrans purpose, stay put.
2975 	 */
2976 	if (tp->fastopen_rsk)
2977 		return;
2978 
2979 	if (!tp->packets_out) {
2980 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2981 	} else {
2982 		u32 rto = inet_csk(sk)->icsk_rto;
2983 		/* Offset the time elapsed after installing regular RTO */
2984 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2985 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2986 			s64 delta_us = tcp_rto_delta_us(sk);
2987 			/* delta_us may not be positive if the socket is locked
2988 			 * when the retrans timer fires and is rescheduled.
2989 			 */
2990 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2991 		}
2992 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2993 					  TCP_RTO_MAX);
2994 	}
2995 }
2996 
2997 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2998 static void tcp_set_xmit_timer(struct sock *sk)
2999 {
3000 	if (!tcp_schedule_loss_probe(sk, true))
3001 		tcp_rearm_rto(sk);
3002 }
3003 
3004 /* If we get here, the whole TSO packet has not been acked. */
3005 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3006 {
3007 	struct tcp_sock *tp = tcp_sk(sk);
3008 	u32 packets_acked;
3009 
3010 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3011 
3012 	packets_acked = tcp_skb_pcount(skb);
3013 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3014 		return 0;
3015 	packets_acked -= tcp_skb_pcount(skb);
3016 
3017 	if (packets_acked) {
3018 		BUG_ON(tcp_skb_pcount(skb) == 0);
3019 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3020 	}
3021 
3022 	return packets_acked;
3023 }
3024 
3025 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3026 			   u32 prior_snd_una)
3027 {
3028 	const struct skb_shared_info *shinfo;
3029 
3030 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3031 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3032 		return;
3033 
3034 	shinfo = skb_shinfo(skb);
3035 	if (!before(shinfo->tskey, prior_snd_una) &&
3036 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3037 		tcp_skb_tsorted_save(skb) {
3038 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3039 		} tcp_skb_tsorted_restore(skb);
3040 	}
3041 }
3042 
3043 /* Remove acknowledged frames from the retransmission queue. If our packet
3044  * is before the ack sequence we can discard it as it's confirmed to have
3045  * arrived at the other end.
3046  */
3047 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3048 			       u32 prior_snd_una,
3049 			       struct tcp_sacktag_state *sack)
3050 {
3051 	const struct inet_connection_sock *icsk = inet_csk(sk);
3052 	u64 first_ackt, last_ackt;
3053 	struct tcp_sock *tp = tcp_sk(sk);
3054 	u32 prior_sacked = tp->sacked_out;
3055 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3056 	struct sk_buff *skb, *next;
3057 	bool fully_acked = true;
3058 	long sack_rtt_us = -1L;
3059 	long seq_rtt_us = -1L;
3060 	long ca_rtt_us = -1L;
3061 	u32 pkts_acked = 0;
3062 	u32 last_in_flight = 0;
3063 	bool rtt_update;
3064 	int flag = 0;
3065 
3066 	first_ackt = 0;
3067 
3068 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3069 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3070 		const u32 start_seq = scb->seq;
3071 		u8 sacked = scb->sacked;
3072 		u32 acked_pcount;
3073 
3074 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3075 
3076 		/* Determine how many packets and what bytes were acked, tso and else */
3077 		if (after(scb->end_seq, tp->snd_una)) {
3078 			if (tcp_skb_pcount(skb) == 1 ||
3079 			    !after(tp->snd_una, scb->seq))
3080 				break;
3081 
3082 			acked_pcount = tcp_tso_acked(sk, skb);
3083 			if (!acked_pcount)
3084 				break;
3085 			fully_acked = false;
3086 		} else {
3087 			acked_pcount = tcp_skb_pcount(skb);
3088 		}
3089 
3090 		if (unlikely(sacked & TCPCB_RETRANS)) {
3091 			if (sacked & TCPCB_SACKED_RETRANS)
3092 				tp->retrans_out -= acked_pcount;
3093 			flag |= FLAG_RETRANS_DATA_ACKED;
3094 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3095 			last_ackt = skb->skb_mstamp;
3096 			WARN_ON_ONCE(last_ackt == 0);
3097 			if (!first_ackt)
3098 				first_ackt = last_ackt;
3099 
3100 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3101 			if (before(start_seq, reord))
3102 				reord = start_seq;
3103 			if (!after(scb->end_seq, tp->high_seq))
3104 				flag |= FLAG_ORIG_SACK_ACKED;
3105 		}
3106 
3107 		if (sacked & TCPCB_SACKED_ACKED) {
3108 			tp->sacked_out -= acked_pcount;
3109 		} else if (tcp_is_sack(tp)) {
3110 			tp->delivered += acked_pcount;
3111 			if (!tcp_skb_spurious_retrans(tp, skb))
3112 				tcp_rack_advance(tp, sacked, scb->end_seq,
3113 						 skb->skb_mstamp);
3114 		}
3115 		if (sacked & TCPCB_LOST)
3116 			tp->lost_out -= acked_pcount;
3117 
3118 		tp->packets_out -= acked_pcount;
3119 		pkts_acked += acked_pcount;
3120 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3121 
3122 		/* Initial outgoing SYN's get put onto the write_queue
3123 		 * just like anything else we transmit.  It is not
3124 		 * true data, and if we misinform our callers that
3125 		 * this ACK acks real data, we will erroneously exit
3126 		 * connection startup slow start one packet too
3127 		 * quickly.  This is severely frowned upon behavior.
3128 		 */
3129 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3130 			flag |= FLAG_DATA_ACKED;
3131 		} else {
3132 			flag |= FLAG_SYN_ACKED;
3133 			tp->retrans_stamp = 0;
3134 		}
3135 
3136 		if (!fully_acked)
3137 			break;
3138 
3139 		next = skb_rb_next(skb);
3140 		if (unlikely(skb == tp->retransmit_skb_hint))
3141 			tp->retransmit_skb_hint = NULL;
3142 		if (unlikely(skb == tp->lost_skb_hint))
3143 			tp->lost_skb_hint = NULL;
3144 		tcp_rtx_queue_unlink_and_free(skb, sk);
3145 	}
3146 
3147 	if (!skb)
3148 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3149 
3150 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3151 		tp->snd_up = tp->snd_una;
3152 
3153 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3154 		flag |= FLAG_SACK_RENEGING;
3155 
3156 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3157 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3158 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3159 
3160 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3161 		    last_in_flight && !prior_sacked && fully_acked &&
3162 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3163 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3164 			/* Conservatively mark a delayed ACK. It's typically
3165 			 * from a lone runt packet over the round trip to
3166 			 * a receiver w/o out-of-order or CE events.
3167 			 */
3168 			flag |= FLAG_ACK_MAYBE_DELAYED;
3169 		}
3170 	}
3171 	if (sack->first_sackt) {
3172 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3173 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3174 	}
3175 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3176 					ca_rtt_us, sack->rate);
3177 
3178 	if (flag & FLAG_ACKED) {
3179 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3180 		if (unlikely(icsk->icsk_mtup.probe_size &&
3181 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3182 			tcp_mtup_probe_success(sk);
3183 		}
3184 
3185 		if (tcp_is_reno(tp)) {
3186 			tcp_remove_reno_sacks(sk, pkts_acked);
3187 		} else {
3188 			int delta;
3189 
3190 			/* Non-retransmitted hole got filled? That's reordering */
3191 			if (before(reord, prior_fack))
3192 				tcp_check_sack_reordering(sk, reord, 0);
3193 
3194 			delta = prior_sacked - tp->sacked_out;
3195 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3196 		}
3197 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3198 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3199 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3200 		 * after when the head was last (re)transmitted. Otherwise the
3201 		 * timeout may continue to extend in loss recovery.
3202 		 */
3203 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3204 	}
3205 
3206 	if (icsk->icsk_ca_ops->pkts_acked) {
3207 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3208 					     .rtt_us = sack->rate->rtt_us,
3209 					     .in_flight = last_in_flight };
3210 
3211 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3212 	}
3213 
3214 #if FASTRETRANS_DEBUG > 0
3215 	WARN_ON((int)tp->sacked_out < 0);
3216 	WARN_ON((int)tp->lost_out < 0);
3217 	WARN_ON((int)tp->retrans_out < 0);
3218 	if (!tp->packets_out && tcp_is_sack(tp)) {
3219 		icsk = inet_csk(sk);
3220 		if (tp->lost_out) {
3221 			pr_debug("Leak l=%u %d\n",
3222 				 tp->lost_out, icsk->icsk_ca_state);
3223 			tp->lost_out = 0;
3224 		}
3225 		if (tp->sacked_out) {
3226 			pr_debug("Leak s=%u %d\n",
3227 				 tp->sacked_out, icsk->icsk_ca_state);
3228 			tp->sacked_out = 0;
3229 		}
3230 		if (tp->retrans_out) {
3231 			pr_debug("Leak r=%u %d\n",
3232 				 tp->retrans_out, icsk->icsk_ca_state);
3233 			tp->retrans_out = 0;
3234 		}
3235 	}
3236 #endif
3237 	return flag;
3238 }
3239 
3240 static void tcp_ack_probe(struct sock *sk)
3241 {
3242 	struct inet_connection_sock *icsk = inet_csk(sk);
3243 	struct sk_buff *head = tcp_send_head(sk);
3244 	const struct tcp_sock *tp = tcp_sk(sk);
3245 
3246 	/* Was it a usable window open? */
3247 	if (!head)
3248 		return;
3249 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3250 		icsk->icsk_backoff = 0;
3251 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3252 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3253 		 * This function is not for random using!
3254 		 */
3255 	} else {
3256 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3257 
3258 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3259 					  when, TCP_RTO_MAX);
3260 	}
3261 }
3262 
3263 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3264 {
3265 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3266 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3267 }
3268 
3269 /* Decide wheather to run the increase function of congestion control. */
3270 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3271 {
3272 	/* If reordering is high then always grow cwnd whenever data is
3273 	 * delivered regardless of its ordering. Otherwise stay conservative
3274 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3275 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3276 	 * cwnd in tcp_fastretrans_alert() based on more states.
3277 	 */
3278 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3279 		return flag & FLAG_FORWARD_PROGRESS;
3280 
3281 	return flag & FLAG_DATA_ACKED;
3282 }
3283 
3284 /* The "ultimate" congestion control function that aims to replace the rigid
3285  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3286  * It's called toward the end of processing an ACK with precise rate
3287  * information. All transmission or retransmission are delayed afterwards.
3288  */
3289 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3290 			     int flag, const struct rate_sample *rs)
3291 {
3292 	const struct inet_connection_sock *icsk = inet_csk(sk);
3293 
3294 	if (icsk->icsk_ca_ops->cong_control) {
3295 		icsk->icsk_ca_ops->cong_control(sk, rs);
3296 		return;
3297 	}
3298 
3299 	if (tcp_in_cwnd_reduction(sk)) {
3300 		/* Reduce cwnd if state mandates */
3301 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3302 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3303 		/* Advance cwnd if state allows */
3304 		tcp_cong_avoid(sk, ack, acked_sacked);
3305 	}
3306 	tcp_update_pacing_rate(sk);
3307 }
3308 
3309 /* Check that window update is acceptable.
3310  * The function assumes that snd_una<=ack<=snd_next.
3311  */
3312 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3313 					const u32 ack, const u32 ack_seq,
3314 					const u32 nwin)
3315 {
3316 	return	after(ack, tp->snd_una) ||
3317 		after(ack_seq, tp->snd_wl1) ||
3318 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3319 }
3320 
3321 /* If we update tp->snd_una, also update tp->bytes_acked */
3322 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3323 {
3324 	u32 delta = ack - tp->snd_una;
3325 
3326 	sock_owned_by_me((struct sock *)tp);
3327 	tp->bytes_acked += delta;
3328 	tp->snd_una = ack;
3329 }
3330 
3331 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3332 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3333 {
3334 	u32 delta = seq - tp->rcv_nxt;
3335 
3336 	sock_owned_by_me((struct sock *)tp);
3337 	tp->bytes_received += delta;
3338 	tp->rcv_nxt = seq;
3339 }
3340 
3341 /* Update our send window.
3342  *
3343  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3344  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3345  */
3346 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3347 				 u32 ack_seq)
3348 {
3349 	struct tcp_sock *tp = tcp_sk(sk);
3350 	int flag = 0;
3351 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3352 
3353 	if (likely(!tcp_hdr(skb)->syn))
3354 		nwin <<= tp->rx_opt.snd_wscale;
3355 
3356 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3357 		flag |= FLAG_WIN_UPDATE;
3358 		tcp_update_wl(tp, ack_seq);
3359 
3360 		if (tp->snd_wnd != nwin) {
3361 			tp->snd_wnd = nwin;
3362 
3363 			/* Note, it is the only place, where
3364 			 * fast path is recovered for sending TCP.
3365 			 */
3366 			tp->pred_flags = 0;
3367 			tcp_fast_path_check(sk);
3368 
3369 			if (!tcp_write_queue_empty(sk))
3370 				tcp_slow_start_after_idle_check(sk);
3371 
3372 			if (nwin > tp->max_window) {
3373 				tp->max_window = nwin;
3374 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3375 			}
3376 		}
3377 	}
3378 
3379 	tcp_snd_una_update(tp, ack);
3380 
3381 	return flag;
3382 }
3383 
3384 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3385 				   u32 *last_oow_ack_time)
3386 {
3387 	if (*last_oow_ack_time) {
3388 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3389 
3390 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3391 			NET_INC_STATS(net, mib_idx);
3392 			return true;	/* rate-limited: don't send yet! */
3393 		}
3394 	}
3395 
3396 	*last_oow_ack_time = tcp_jiffies32;
3397 
3398 	return false;	/* not rate-limited: go ahead, send dupack now! */
3399 }
3400 
3401 /* Return true if we're currently rate-limiting out-of-window ACKs and
3402  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3403  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3404  * attacks that send repeated SYNs or ACKs for the same connection. To
3405  * do this, we do not send a duplicate SYNACK or ACK if the remote
3406  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3407  */
3408 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3409 			  int mib_idx, u32 *last_oow_ack_time)
3410 {
3411 	/* Data packets without SYNs are not likely part of an ACK loop. */
3412 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3413 	    !tcp_hdr(skb)->syn)
3414 		return false;
3415 
3416 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3417 }
3418 
3419 /* RFC 5961 7 [ACK Throttling] */
3420 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3421 {
3422 	/* unprotected vars, we dont care of overwrites */
3423 	static u32 challenge_timestamp;
3424 	static unsigned int challenge_count;
3425 	struct tcp_sock *tp = tcp_sk(sk);
3426 	struct net *net = sock_net(sk);
3427 	u32 count, now;
3428 
3429 	/* First check our per-socket dupack rate limit. */
3430 	if (__tcp_oow_rate_limited(net,
3431 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3432 				   &tp->last_oow_ack_time))
3433 		return;
3434 
3435 	/* Then check host-wide RFC 5961 rate limit. */
3436 	now = jiffies / HZ;
3437 	if (now != challenge_timestamp) {
3438 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3439 		u32 half = (ack_limit + 1) >> 1;
3440 
3441 		challenge_timestamp = now;
3442 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3443 	}
3444 	count = READ_ONCE(challenge_count);
3445 	if (count > 0) {
3446 		WRITE_ONCE(challenge_count, count - 1);
3447 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3448 		tcp_send_ack(sk);
3449 	}
3450 }
3451 
3452 static void tcp_store_ts_recent(struct tcp_sock *tp)
3453 {
3454 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3455 	tp->rx_opt.ts_recent_stamp = get_seconds();
3456 }
3457 
3458 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3459 {
3460 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3461 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3462 		 * extra check below makes sure this can only happen
3463 		 * for pure ACK frames.  -DaveM
3464 		 *
3465 		 * Not only, also it occurs for expired timestamps.
3466 		 */
3467 
3468 		if (tcp_paws_check(&tp->rx_opt, 0))
3469 			tcp_store_ts_recent(tp);
3470 	}
3471 }
3472 
3473 /* This routine deals with acks during a TLP episode.
3474  * We mark the end of a TLP episode on receiving TLP dupack or when
3475  * ack is after tlp_high_seq.
3476  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3477  */
3478 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3479 {
3480 	struct tcp_sock *tp = tcp_sk(sk);
3481 
3482 	if (before(ack, tp->tlp_high_seq))
3483 		return;
3484 
3485 	if (flag & FLAG_DSACKING_ACK) {
3486 		/* This DSACK means original and TLP probe arrived; no loss */
3487 		tp->tlp_high_seq = 0;
3488 	} else if (after(ack, tp->tlp_high_seq)) {
3489 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3490 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3491 		 */
3492 		tcp_init_cwnd_reduction(sk);
3493 		tcp_set_ca_state(sk, TCP_CA_CWR);
3494 		tcp_end_cwnd_reduction(sk);
3495 		tcp_try_keep_open(sk);
3496 		NET_INC_STATS(sock_net(sk),
3497 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3498 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3499 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3500 		/* Pure dupack: original and TLP probe arrived; no loss */
3501 		tp->tlp_high_seq = 0;
3502 	}
3503 }
3504 
3505 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3506 {
3507 	const struct inet_connection_sock *icsk = inet_csk(sk);
3508 
3509 	if (icsk->icsk_ca_ops->in_ack_event)
3510 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3511 }
3512 
3513 /* Congestion control has updated the cwnd already. So if we're in
3514  * loss recovery then now we do any new sends (for FRTO) or
3515  * retransmits (for CA_Loss or CA_recovery) that make sense.
3516  */
3517 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3518 {
3519 	struct tcp_sock *tp = tcp_sk(sk);
3520 
3521 	if (rexmit == REXMIT_NONE)
3522 		return;
3523 
3524 	if (unlikely(rexmit == 2)) {
3525 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3526 					  TCP_NAGLE_OFF);
3527 		if (after(tp->snd_nxt, tp->high_seq))
3528 			return;
3529 		tp->frto = 0;
3530 	}
3531 	tcp_xmit_retransmit_queue(sk);
3532 }
3533 
3534 /* Returns the number of packets newly acked or sacked by the current ACK */
3535 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3536 {
3537 	const struct net *net = sock_net(sk);
3538 	struct tcp_sock *tp = tcp_sk(sk);
3539 	u32 delivered;
3540 
3541 	delivered = tp->delivered - prior_delivered;
3542 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3543 	if (flag & FLAG_ECE) {
3544 		tp->delivered_ce += delivered;
3545 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3546 	}
3547 	return delivered;
3548 }
3549 
3550 /* This routine deals with incoming acks, but not outgoing ones. */
3551 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3552 {
3553 	struct inet_connection_sock *icsk = inet_csk(sk);
3554 	struct tcp_sock *tp = tcp_sk(sk);
3555 	struct tcp_sacktag_state sack_state;
3556 	struct rate_sample rs = { .prior_delivered = 0 };
3557 	u32 prior_snd_una = tp->snd_una;
3558 	bool is_sack_reneg = tp->is_sack_reneg;
3559 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3560 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3561 	bool is_dupack = false;
3562 	int prior_packets = tp->packets_out;
3563 	u32 delivered = tp->delivered;
3564 	u32 lost = tp->lost;
3565 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3566 	u32 prior_fack;
3567 
3568 	sack_state.first_sackt = 0;
3569 	sack_state.rate = &rs;
3570 
3571 	/* We very likely will need to access rtx queue. */
3572 	prefetch(sk->tcp_rtx_queue.rb_node);
3573 
3574 	/* If the ack is older than previous acks
3575 	 * then we can probably ignore it.
3576 	 */
3577 	if (before(ack, prior_snd_una)) {
3578 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3579 		if (before(ack, prior_snd_una - tp->max_window)) {
3580 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3581 				tcp_send_challenge_ack(sk, skb);
3582 			return -1;
3583 		}
3584 		goto old_ack;
3585 	}
3586 
3587 	/* If the ack includes data we haven't sent yet, discard
3588 	 * this segment (RFC793 Section 3.9).
3589 	 */
3590 	if (after(ack, tp->snd_nxt))
3591 		goto invalid_ack;
3592 
3593 	if (after(ack, prior_snd_una)) {
3594 		flag |= FLAG_SND_UNA_ADVANCED;
3595 		icsk->icsk_retransmits = 0;
3596 
3597 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3598 		if (static_branch_unlikely(&clean_acked_data_enabled))
3599 			if (icsk->icsk_clean_acked)
3600 				icsk->icsk_clean_acked(sk, ack);
3601 #endif
3602 	}
3603 
3604 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3605 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3606 
3607 	/* ts_recent update must be made after we are sure that the packet
3608 	 * is in window.
3609 	 */
3610 	if (flag & FLAG_UPDATE_TS_RECENT)
3611 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3612 
3613 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3614 		/* Window is constant, pure forward advance.
3615 		 * No more checks are required.
3616 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3617 		 */
3618 		tcp_update_wl(tp, ack_seq);
3619 		tcp_snd_una_update(tp, ack);
3620 		flag |= FLAG_WIN_UPDATE;
3621 
3622 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3623 
3624 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3625 	} else {
3626 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3627 
3628 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3629 			flag |= FLAG_DATA;
3630 		else
3631 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3632 
3633 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3634 
3635 		if (TCP_SKB_CB(skb)->sacked)
3636 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3637 							&sack_state);
3638 
3639 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3640 			flag |= FLAG_ECE;
3641 			ack_ev_flags |= CA_ACK_ECE;
3642 		}
3643 
3644 		if (flag & FLAG_WIN_UPDATE)
3645 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3646 
3647 		tcp_in_ack_event(sk, ack_ev_flags);
3648 	}
3649 
3650 	/* We passed data and got it acked, remove any soft error
3651 	 * log. Something worked...
3652 	 */
3653 	sk->sk_err_soft = 0;
3654 	icsk->icsk_probes_out = 0;
3655 	tp->rcv_tstamp = tcp_jiffies32;
3656 	if (!prior_packets)
3657 		goto no_queue;
3658 
3659 	/* See if we can take anything off of the retransmit queue. */
3660 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3661 
3662 	tcp_rack_update_reo_wnd(sk, &rs);
3663 
3664 	if (tp->tlp_high_seq)
3665 		tcp_process_tlp_ack(sk, ack, flag);
3666 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3667 	if (flag & FLAG_SET_XMIT_TIMER)
3668 		tcp_set_xmit_timer(sk);
3669 
3670 	if (tcp_ack_is_dubious(sk, flag)) {
3671 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3672 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3673 				      &rexmit);
3674 	}
3675 
3676 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3677 		sk_dst_confirm(sk);
3678 
3679 	delivered = tcp_newly_delivered(sk, delivered, flag);
3680 	lost = tp->lost - lost;			/* freshly marked lost */
3681 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3682 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3683 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3684 	tcp_xmit_recovery(sk, rexmit);
3685 	return 1;
3686 
3687 no_queue:
3688 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3689 	if (flag & FLAG_DSACKING_ACK) {
3690 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3691 				      &rexmit);
3692 		tcp_newly_delivered(sk, delivered, flag);
3693 	}
3694 	/* If this ack opens up a zero window, clear backoff.  It was
3695 	 * being used to time the probes, and is probably far higher than
3696 	 * it needs to be for normal retransmission.
3697 	 */
3698 	tcp_ack_probe(sk);
3699 
3700 	if (tp->tlp_high_seq)
3701 		tcp_process_tlp_ack(sk, ack, flag);
3702 	return 1;
3703 
3704 invalid_ack:
3705 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3706 	return -1;
3707 
3708 old_ack:
3709 	/* If data was SACKed, tag it and see if we should send more data.
3710 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3711 	 */
3712 	if (TCP_SKB_CB(skb)->sacked) {
3713 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3714 						&sack_state);
3715 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3716 				      &rexmit);
3717 		tcp_newly_delivered(sk, delivered, flag);
3718 		tcp_xmit_recovery(sk, rexmit);
3719 	}
3720 
3721 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3722 	return 0;
3723 }
3724 
3725 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3726 				      bool syn, struct tcp_fastopen_cookie *foc,
3727 				      bool exp_opt)
3728 {
3729 	/* Valid only in SYN or SYN-ACK with an even length.  */
3730 	if (!foc || !syn || len < 0 || (len & 1))
3731 		return;
3732 
3733 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3734 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3735 		memcpy(foc->val, cookie, len);
3736 	else if (len != 0)
3737 		len = -1;
3738 	foc->len = len;
3739 	foc->exp = exp_opt;
3740 }
3741 
3742 static void smc_parse_options(const struct tcphdr *th,
3743 			      struct tcp_options_received *opt_rx,
3744 			      const unsigned char *ptr,
3745 			      int opsize)
3746 {
3747 #if IS_ENABLED(CONFIG_SMC)
3748 	if (static_branch_unlikely(&tcp_have_smc)) {
3749 		if (th->syn && !(opsize & 1) &&
3750 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3751 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3752 			opt_rx->smc_ok = 1;
3753 	}
3754 #endif
3755 }
3756 
3757 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3758  * But, this can also be called on packets in the established flow when
3759  * the fast version below fails.
3760  */
3761 void tcp_parse_options(const struct net *net,
3762 		       const struct sk_buff *skb,
3763 		       struct tcp_options_received *opt_rx, int estab,
3764 		       struct tcp_fastopen_cookie *foc)
3765 {
3766 	const unsigned char *ptr;
3767 	const struct tcphdr *th = tcp_hdr(skb);
3768 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3769 
3770 	ptr = (const unsigned char *)(th + 1);
3771 	opt_rx->saw_tstamp = 0;
3772 
3773 	while (length > 0) {
3774 		int opcode = *ptr++;
3775 		int opsize;
3776 
3777 		switch (opcode) {
3778 		case TCPOPT_EOL:
3779 			return;
3780 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3781 			length--;
3782 			continue;
3783 		default:
3784 			opsize = *ptr++;
3785 			if (opsize < 2) /* "silly options" */
3786 				return;
3787 			if (opsize > length)
3788 				return;	/* don't parse partial options */
3789 			switch (opcode) {
3790 			case TCPOPT_MSS:
3791 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3792 					u16 in_mss = get_unaligned_be16(ptr);
3793 					if (in_mss) {
3794 						if (opt_rx->user_mss &&
3795 						    opt_rx->user_mss < in_mss)
3796 							in_mss = opt_rx->user_mss;
3797 						opt_rx->mss_clamp = in_mss;
3798 					}
3799 				}
3800 				break;
3801 			case TCPOPT_WINDOW:
3802 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3803 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3804 					__u8 snd_wscale = *(__u8 *)ptr;
3805 					opt_rx->wscale_ok = 1;
3806 					if (snd_wscale > TCP_MAX_WSCALE) {
3807 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3808 								     __func__,
3809 								     snd_wscale,
3810 								     TCP_MAX_WSCALE);
3811 						snd_wscale = TCP_MAX_WSCALE;
3812 					}
3813 					opt_rx->snd_wscale = snd_wscale;
3814 				}
3815 				break;
3816 			case TCPOPT_TIMESTAMP:
3817 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3818 				    ((estab && opt_rx->tstamp_ok) ||
3819 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3820 					opt_rx->saw_tstamp = 1;
3821 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3822 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3823 				}
3824 				break;
3825 			case TCPOPT_SACK_PERM:
3826 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3827 				    !estab && net->ipv4.sysctl_tcp_sack) {
3828 					opt_rx->sack_ok = TCP_SACK_SEEN;
3829 					tcp_sack_reset(opt_rx);
3830 				}
3831 				break;
3832 
3833 			case TCPOPT_SACK:
3834 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3835 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3836 				   opt_rx->sack_ok) {
3837 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3838 				}
3839 				break;
3840 #ifdef CONFIG_TCP_MD5SIG
3841 			case TCPOPT_MD5SIG:
3842 				/*
3843 				 * The MD5 Hash has already been
3844 				 * checked (see tcp_v{4,6}_do_rcv()).
3845 				 */
3846 				break;
3847 #endif
3848 			case TCPOPT_FASTOPEN:
3849 				tcp_parse_fastopen_option(
3850 					opsize - TCPOLEN_FASTOPEN_BASE,
3851 					ptr, th->syn, foc, false);
3852 				break;
3853 
3854 			case TCPOPT_EXP:
3855 				/* Fast Open option shares code 254 using a
3856 				 * 16 bits magic number.
3857 				 */
3858 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3859 				    get_unaligned_be16(ptr) ==
3860 				    TCPOPT_FASTOPEN_MAGIC)
3861 					tcp_parse_fastopen_option(opsize -
3862 						TCPOLEN_EXP_FASTOPEN_BASE,
3863 						ptr + 2, th->syn, foc, true);
3864 				else
3865 					smc_parse_options(th, opt_rx, ptr,
3866 							  opsize);
3867 				break;
3868 
3869 			}
3870 			ptr += opsize-2;
3871 			length -= opsize;
3872 		}
3873 	}
3874 }
3875 EXPORT_SYMBOL(tcp_parse_options);
3876 
3877 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3878 {
3879 	const __be32 *ptr = (const __be32 *)(th + 1);
3880 
3881 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3882 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3883 		tp->rx_opt.saw_tstamp = 1;
3884 		++ptr;
3885 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3886 		++ptr;
3887 		if (*ptr)
3888 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3889 		else
3890 			tp->rx_opt.rcv_tsecr = 0;
3891 		return true;
3892 	}
3893 	return false;
3894 }
3895 
3896 /* Fast parse options. This hopes to only see timestamps.
3897  * If it is wrong it falls back on tcp_parse_options().
3898  */
3899 static bool tcp_fast_parse_options(const struct net *net,
3900 				   const struct sk_buff *skb,
3901 				   const struct tcphdr *th, struct tcp_sock *tp)
3902 {
3903 	/* In the spirit of fast parsing, compare doff directly to constant
3904 	 * values.  Because equality is used, short doff can be ignored here.
3905 	 */
3906 	if (th->doff == (sizeof(*th) / 4)) {
3907 		tp->rx_opt.saw_tstamp = 0;
3908 		return false;
3909 	} else if (tp->rx_opt.tstamp_ok &&
3910 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3911 		if (tcp_parse_aligned_timestamp(tp, th))
3912 			return true;
3913 	}
3914 
3915 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3916 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3917 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3918 
3919 	return true;
3920 }
3921 
3922 #ifdef CONFIG_TCP_MD5SIG
3923 /*
3924  * Parse MD5 Signature option
3925  */
3926 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3927 {
3928 	int length = (th->doff << 2) - sizeof(*th);
3929 	const u8 *ptr = (const u8 *)(th + 1);
3930 
3931 	/* If not enough data remaining, we can short cut */
3932 	while (length >= TCPOLEN_MD5SIG) {
3933 		int opcode = *ptr++;
3934 		int opsize;
3935 
3936 		switch (opcode) {
3937 		case TCPOPT_EOL:
3938 			return NULL;
3939 		case TCPOPT_NOP:
3940 			length--;
3941 			continue;
3942 		default:
3943 			opsize = *ptr++;
3944 			if (opsize < 2 || opsize > length)
3945 				return NULL;
3946 			if (opcode == TCPOPT_MD5SIG)
3947 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3948 		}
3949 		ptr += opsize - 2;
3950 		length -= opsize;
3951 	}
3952 	return NULL;
3953 }
3954 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3955 #endif
3956 
3957 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3958  *
3959  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3960  * it can pass through stack. So, the following predicate verifies that
3961  * this segment is not used for anything but congestion avoidance or
3962  * fast retransmit. Moreover, we even are able to eliminate most of such
3963  * second order effects, if we apply some small "replay" window (~RTO)
3964  * to timestamp space.
3965  *
3966  * All these measures still do not guarantee that we reject wrapped ACKs
3967  * on networks with high bandwidth, when sequence space is recycled fastly,
3968  * but it guarantees that such events will be very rare and do not affect
3969  * connection seriously. This doesn't look nice, but alas, PAWS is really
3970  * buggy extension.
3971  *
3972  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3973  * states that events when retransmit arrives after original data are rare.
3974  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3975  * the biggest problem on large power networks even with minor reordering.
3976  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3977  * up to bandwidth of 18Gigabit/sec. 8) ]
3978  */
3979 
3980 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3981 {
3982 	const struct tcp_sock *tp = tcp_sk(sk);
3983 	const struct tcphdr *th = tcp_hdr(skb);
3984 	u32 seq = TCP_SKB_CB(skb)->seq;
3985 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3986 
3987 	return (/* 1. Pure ACK with correct sequence number. */
3988 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3989 
3990 		/* 2. ... and duplicate ACK. */
3991 		ack == tp->snd_una &&
3992 
3993 		/* 3. ... and does not update window. */
3994 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3995 
3996 		/* 4. ... and sits in replay window. */
3997 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3998 }
3999 
4000 static inline bool tcp_paws_discard(const struct sock *sk,
4001 				   const struct sk_buff *skb)
4002 {
4003 	const struct tcp_sock *tp = tcp_sk(sk);
4004 
4005 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4006 	       !tcp_disordered_ack(sk, skb);
4007 }
4008 
4009 /* Check segment sequence number for validity.
4010  *
4011  * Segment controls are considered valid, if the segment
4012  * fits to the window after truncation to the window. Acceptability
4013  * of data (and SYN, FIN, of course) is checked separately.
4014  * See tcp_data_queue(), for example.
4015  *
4016  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4017  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4018  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4019  * (borrowed from freebsd)
4020  */
4021 
4022 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4023 {
4024 	return	!before(end_seq, tp->rcv_wup) &&
4025 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4026 }
4027 
4028 /* When we get a reset we do this. */
4029 void tcp_reset(struct sock *sk)
4030 {
4031 	trace_tcp_receive_reset(sk);
4032 
4033 	/* We want the right error as BSD sees it (and indeed as we do). */
4034 	switch (sk->sk_state) {
4035 	case TCP_SYN_SENT:
4036 		sk->sk_err = ECONNREFUSED;
4037 		break;
4038 	case TCP_CLOSE_WAIT:
4039 		sk->sk_err = EPIPE;
4040 		break;
4041 	case TCP_CLOSE:
4042 		return;
4043 	default:
4044 		sk->sk_err = ECONNRESET;
4045 	}
4046 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4047 	smp_wmb();
4048 
4049 	tcp_write_queue_purge(sk);
4050 	tcp_done(sk);
4051 
4052 	if (!sock_flag(sk, SOCK_DEAD))
4053 		sk->sk_error_report(sk);
4054 }
4055 
4056 /*
4057  * 	Process the FIN bit. This now behaves as it is supposed to work
4058  *	and the FIN takes effect when it is validly part of sequence
4059  *	space. Not before when we get holes.
4060  *
4061  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4062  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4063  *	TIME-WAIT)
4064  *
4065  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4066  *	close and we go into CLOSING (and later onto TIME-WAIT)
4067  *
4068  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4069  */
4070 void tcp_fin(struct sock *sk)
4071 {
4072 	struct tcp_sock *tp = tcp_sk(sk);
4073 
4074 	inet_csk_schedule_ack(sk);
4075 
4076 	sk->sk_shutdown |= RCV_SHUTDOWN;
4077 	sock_set_flag(sk, SOCK_DONE);
4078 
4079 	switch (sk->sk_state) {
4080 	case TCP_SYN_RECV:
4081 	case TCP_ESTABLISHED:
4082 		/* Move to CLOSE_WAIT */
4083 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4084 		inet_csk(sk)->icsk_ack.pingpong = 1;
4085 		break;
4086 
4087 	case TCP_CLOSE_WAIT:
4088 	case TCP_CLOSING:
4089 		/* Received a retransmission of the FIN, do
4090 		 * nothing.
4091 		 */
4092 		break;
4093 	case TCP_LAST_ACK:
4094 		/* RFC793: Remain in the LAST-ACK state. */
4095 		break;
4096 
4097 	case TCP_FIN_WAIT1:
4098 		/* This case occurs when a simultaneous close
4099 		 * happens, we must ack the received FIN and
4100 		 * enter the CLOSING state.
4101 		 */
4102 		tcp_send_ack(sk);
4103 		tcp_set_state(sk, TCP_CLOSING);
4104 		break;
4105 	case TCP_FIN_WAIT2:
4106 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4107 		tcp_send_ack(sk);
4108 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4109 		break;
4110 	default:
4111 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4112 		 * cases we should never reach this piece of code.
4113 		 */
4114 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4115 		       __func__, sk->sk_state);
4116 		break;
4117 	}
4118 
4119 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4120 	 * Probably, we should reset in this case. For now drop them.
4121 	 */
4122 	skb_rbtree_purge(&tp->out_of_order_queue);
4123 	if (tcp_is_sack(tp))
4124 		tcp_sack_reset(&tp->rx_opt);
4125 	sk_mem_reclaim(sk);
4126 
4127 	if (!sock_flag(sk, SOCK_DEAD)) {
4128 		sk->sk_state_change(sk);
4129 
4130 		/* Do not send POLL_HUP for half duplex close. */
4131 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4132 		    sk->sk_state == TCP_CLOSE)
4133 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4134 		else
4135 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4136 	}
4137 }
4138 
4139 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4140 				  u32 end_seq)
4141 {
4142 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4143 		if (before(seq, sp->start_seq))
4144 			sp->start_seq = seq;
4145 		if (after(end_seq, sp->end_seq))
4146 			sp->end_seq = end_seq;
4147 		return true;
4148 	}
4149 	return false;
4150 }
4151 
4152 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4153 {
4154 	struct tcp_sock *tp = tcp_sk(sk);
4155 
4156 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4157 		int mib_idx;
4158 
4159 		if (before(seq, tp->rcv_nxt))
4160 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4161 		else
4162 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4163 
4164 		NET_INC_STATS(sock_net(sk), mib_idx);
4165 
4166 		tp->rx_opt.dsack = 1;
4167 		tp->duplicate_sack[0].start_seq = seq;
4168 		tp->duplicate_sack[0].end_seq = end_seq;
4169 	}
4170 }
4171 
4172 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4173 {
4174 	struct tcp_sock *tp = tcp_sk(sk);
4175 
4176 	if (!tp->rx_opt.dsack)
4177 		tcp_dsack_set(sk, seq, end_seq);
4178 	else
4179 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4180 }
4181 
4182 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4183 {
4184 	struct tcp_sock *tp = tcp_sk(sk);
4185 
4186 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4187 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4188 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4189 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4190 
4191 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4192 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4193 
4194 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4195 				end_seq = tp->rcv_nxt;
4196 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4197 		}
4198 	}
4199 
4200 	tcp_send_ack(sk);
4201 }
4202 
4203 /* These routines update the SACK block as out-of-order packets arrive or
4204  * in-order packets close up the sequence space.
4205  */
4206 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4207 {
4208 	int this_sack;
4209 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4210 	struct tcp_sack_block *swalk = sp + 1;
4211 
4212 	/* See if the recent change to the first SACK eats into
4213 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4214 	 */
4215 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4216 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4217 			int i;
4218 
4219 			/* Zap SWALK, by moving every further SACK up by one slot.
4220 			 * Decrease num_sacks.
4221 			 */
4222 			tp->rx_opt.num_sacks--;
4223 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4224 				sp[i] = sp[i + 1];
4225 			continue;
4226 		}
4227 		this_sack++, swalk++;
4228 	}
4229 }
4230 
4231 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4232 {
4233 	struct tcp_sock *tp = tcp_sk(sk);
4234 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4235 	int cur_sacks = tp->rx_opt.num_sacks;
4236 	int this_sack;
4237 
4238 	if (!cur_sacks)
4239 		goto new_sack;
4240 
4241 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4242 		if (tcp_sack_extend(sp, seq, end_seq)) {
4243 			/* Rotate this_sack to the first one. */
4244 			for (; this_sack > 0; this_sack--, sp--)
4245 				swap(*sp, *(sp - 1));
4246 			if (cur_sacks > 1)
4247 				tcp_sack_maybe_coalesce(tp);
4248 			return;
4249 		}
4250 	}
4251 
4252 	/* Could not find an adjacent existing SACK, build a new one,
4253 	 * put it at the front, and shift everyone else down.  We
4254 	 * always know there is at least one SACK present already here.
4255 	 *
4256 	 * If the sack array is full, forget about the last one.
4257 	 */
4258 	if (this_sack >= TCP_NUM_SACKS) {
4259 		if (tp->compressed_ack)
4260 			tcp_send_ack(sk);
4261 		this_sack--;
4262 		tp->rx_opt.num_sacks--;
4263 		sp--;
4264 	}
4265 	for (; this_sack > 0; this_sack--, sp--)
4266 		*sp = *(sp - 1);
4267 
4268 new_sack:
4269 	/* Build the new head SACK, and we're done. */
4270 	sp->start_seq = seq;
4271 	sp->end_seq = end_seq;
4272 	tp->rx_opt.num_sacks++;
4273 }
4274 
4275 /* RCV.NXT advances, some SACKs should be eaten. */
4276 
4277 static void tcp_sack_remove(struct tcp_sock *tp)
4278 {
4279 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4280 	int num_sacks = tp->rx_opt.num_sacks;
4281 	int this_sack;
4282 
4283 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4284 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4285 		tp->rx_opt.num_sacks = 0;
4286 		return;
4287 	}
4288 
4289 	for (this_sack = 0; this_sack < num_sacks;) {
4290 		/* Check if the start of the sack is covered by RCV.NXT. */
4291 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4292 			int i;
4293 
4294 			/* RCV.NXT must cover all the block! */
4295 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4296 
4297 			/* Zap this SACK, by moving forward any other SACKS. */
4298 			for (i = this_sack+1; i < num_sacks; i++)
4299 				tp->selective_acks[i-1] = tp->selective_acks[i];
4300 			num_sacks--;
4301 			continue;
4302 		}
4303 		this_sack++;
4304 		sp++;
4305 	}
4306 	tp->rx_opt.num_sacks = num_sacks;
4307 }
4308 
4309 /**
4310  * tcp_try_coalesce - try to merge skb to prior one
4311  * @sk: socket
4312  * @dest: destination queue
4313  * @to: prior buffer
4314  * @from: buffer to add in queue
4315  * @fragstolen: pointer to boolean
4316  *
4317  * Before queueing skb @from after @to, try to merge them
4318  * to reduce overall memory use and queue lengths, if cost is small.
4319  * Packets in ofo or receive queues can stay a long time.
4320  * Better try to coalesce them right now to avoid future collapses.
4321  * Returns true if caller should free @from instead of queueing it
4322  */
4323 static bool tcp_try_coalesce(struct sock *sk,
4324 			     struct sk_buff *to,
4325 			     struct sk_buff *from,
4326 			     bool *fragstolen)
4327 {
4328 	int delta;
4329 
4330 	*fragstolen = false;
4331 
4332 	/* Its possible this segment overlaps with prior segment in queue */
4333 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4334 		return false;
4335 
4336 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4337 		return false;
4338 
4339 	atomic_add(delta, &sk->sk_rmem_alloc);
4340 	sk_mem_charge(sk, delta);
4341 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4342 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4343 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4344 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4345 
4346 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4347 		TCP_SKB_CB(to)->has_rxtstamp = true;
4348 		to->tstamp = from->tstamp;
4349 	}
4350 
4351 	return true;
4352 }
4353 
4354 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4355 {
4356 	sk_drops_add(sk, skb);
4357 	__kfree_skb(skb);
4358 }
4359 
4360 /* This one checks to see if we can put data from the
4361  * out_of_order queue into the receive_queue.
4362  */
4363 static void tcp_ofo_queue(struct sock *sk)
4364 {
4365 	struct tcp_sock *tp = tcp_sk(sk);
4366 	__u32 dsack_high = tp->rcv_nxt;
4367 	bool fin, fragstolen, eaten;
4368 	struct sk_buff *skb, *tail;
4369 	struct rb_node *p;
4370 
4371 	p = rb_first(&tp->out_of_order_queue);
4372 	while (p) {
4373 		skb = rb_to_skb(p);
4374 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4375 			break;
4376 
4377 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4378 			__u32 dsack = dsack_high;
4379 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4380 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4381 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4382 		}
4383 		p = rb_next(p);
4384 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4385 
4386 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4387 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4388 			tcp_drop(sk, skb);
4389 			continue;
4390 		}
4391 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4392 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4393 			   TCP_SKB_CB(skb)->end_seq);
4394 
4395 		tail = skb_peek_tail(&sk->sk_receive_queue);
4396 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4397 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4398 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4399 		if (!eaten)
4400 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4401 		else
4402 			kfree_skb_partial(skb, fragstolen);
4403 
4404 		if (unlikely(fin)) {
4405 			tcp_fin(sk);
4406 			/* tcp_fin() purges tp->out_of_order_queue,
4407 			 * so we must end this loop right now.
4408 			 */
4409 			break;
4410 		}
4411 	}
4412 }
4413 
4414 static bool tcp_prune_ofo_queue(struct sock *sk);
4415 static int tcp_prune_queue(struct sock *sk);
4416 
4417 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4418 				 unsigned int size)
4419 {
4420 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4421 	    !sk_rmem_schedule(sk, skb, size)) {
4422 
4423 		if (tcp_prune_queue(sk) < 0)
4424 			return -1;
4425 
4426 		while (!sk_rmem_schedule(sk, skb, size)) {
4427 			if (!tcp_prune_ofo_queue(sk))
4428 				return -1;
4429 		}
4430 	}
4431 	return 0;
4432 }
4433 
4434 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4435 {
4436 	struct tcp_sock *tp = tcp_sk(sk);
4437 	struct rb_node **p, *parent;
4438 	struct sk_buff *skb1;
4439 	u32 seq, end_seq;
4440 	bool fragstolen;
4441 
4442 	tcp_ecn_check_ce(sk, skb);
4443 
4444 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4445 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4446 		tcp_drop(sk, skb);
4447 		return;
4448 	}
4449 
4450 	/* Disable header prediction. */
4451 	tp->pred_flags = 0;
4452 	inet_csk_schedule_ack(sk);
4453 
4454 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4455 	seq = TCP_SKB_CB(skb)->seq;
4456 	end_seq = TCP_SKB_CB(skb)->end_seq;
4457 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4458 		   tp->rcv_nxt, seq, end_seq);
4459 
4460 	p = &tp->out_of_order_queue.rb_node;
4461 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4462 		/* Initial out of order segment, build 1 SACK. */
4463 		if (tcp_is_sack(tp)) {
4464 			tp->rx_opt.num_sacks = 1;
4465 			tp->selective_acks[0].start_seq = seq;
4466 			tp->selective_acks[0].end_seq = end_seq;
4467 		}
4468 		rb_link_node(&skb->rbnode, NULL, p);
4469 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4470 		tp->ooo_last_skb = skb;
4471 		goto end;
4472 	}
4473 
4474 	/* In the typical case, we are adding an skb to the end of the list.
4475 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4476 	 */
4477 	if (tcp_try_coalesce(sk, tp->ooo_last_skb,
4478 			     skb, &fragstolen)) {
4479 coalesce_done:
4480 		tcp_grow_window(sk, skb);
4481 		kfree_skb_partial(skb, fragstolen);
4482 		skb = NULL;
4483 		goto add_sack;
4484 	}
4485 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4486 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4487 		parent = &tp->ooo_last_skb->rbnode;
4488 		p = &parent->rb_right;
4489 		goto insert;
4490 	}
4491 
4492 	/* Find place to insert this segment. Handle overlaps on the way. */
4493 	parent = NULL;
4494 	while (*p) {
4495 		parent = *p;
4496 		skb1 = rb_to_skb(parent);
4497 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4498 			p = &parent->rb_left;
4499 			continue;
4500 		}
4501 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4502 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4503 				/* All the bits are present. Drop. */
4504 				NET_INC_STATS(sock_net(sk),
4505 					      LINUX_MIB_TCPOFOMERGE);
4506 				__kfree_skb(skb);
4507 				skb = NULL;
4508 				tcp_dsack_set(sk, seq, end_seq);
4509 				goto add_sack;
4510 			}
4511 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4512 				/* Partial overlap. */
4513 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4514 			} else {
4515 				/* skb's seq == skb1's seq and skb covers skb1.
4516 				 * Replace skb1 with skb.
4517 				 */
4518 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4519 						&tp->out_of_order_queue);
4520 				tcp_dsack_extend(sk,
4521 						 TCP_SKB_CB(skb1)->seq,
4522 						 TCP_SKB_CB(skb1)->end_seq);
4523 				NET_INC_STATS(sock_net(sk),
4524 					      LINUX_MIB_TCPOFOMERGE);
4525 				__kfree_skb(skb1);
4526 				goto merge_right;
4527 			}
4528 		} else if (tcp_try_coalesce(sk, skb1,
4529 					    skb, &fragstolen)) {
4530 			goto coalesce_done;
4531 		}
4532 		p = &parent->rb_right;
4533 	}
4534 insert:
4535 	/* Insert segment into RB tree. */
4536 	rb_link_node(&skb->rbnode, parent, p);
4537 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4538 
4539 merge_right:
4540 	/* Remove other segments covered by skb. */
4541 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4542 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4543 			break;
4544 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4545 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4546 					 end_seq);
4547 			break;
4548 		}
4549 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4550 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4551 				 TCP_SKB_CB(skb1)->end_seq);
4552 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4553 		tcp_drop(sk, skb1);
4554 	}
4555 	/* If there is no skb after us, we are the last_skb ! */
4556 	if (!skb1)
4557 		tp->ooo_last_skb = skb;
4558 
4559 add_sack:
4560 	if (tcp_is_sack(tp))
4561 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4562 end:
4563 	if (skb) {
4564 		tcp_grow_window(sk, skb);
4565 		skb_condense(skb);
4566 		skb_set_owner_r(skb, sk);
4567 	}
4568 }
4569 
4570 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4571 		  bool *fragstolen)
4572 {
4573 	int eaten;
4574 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4575 
4576 	__skb_pull(skb, hdrlen);
4577 	eaten = (tail &&
4578 		 tcp_try_coalesce(sk, tail,
4579 				  skb, fragstolen)) ? 1 : 0;
4580 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4581 	if (!eaten) {
4582 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4583 		skb_set_owner_r(skb, sk);
4584 	}
4585 	return eaten;
4586 }
4587 
4588 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4589 {
4590 	struct sk_buff *skb;
4591 	int err = -ENOMEM;
4592 	int data_len = 0;
4593 	bool fragstolen;
4594 
4595 	if (size == 0)
4596 		return 0;
4597 
4598 	if (size > PAGE_SIZE) {
4599 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4600 
4601 		data_len = npages << PAGE_SHIFT;
4602 		size = data_len + (size & ~PAGE_MASK);
4603 	}
4604 	skb = alloc_skb_with_frags(size - data_len, data_len,
4605 				   PAGE_ALLOC_COSTLY_ORDER,
4606 				   &err, sk->sk_allocation);
4607 	if (!skb)
4608 		goto err;
4609 
4610 	skb_put(skb, size - data_len);
4611 	skb->data_len = data_len;
4612 	skb->len = size;
4613 
4614 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4615 		goto err_free;
4616 
4617 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4618 	if (err)
4619 		goto err_free;
4620 
4621 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4622 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4623 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4624 
4625 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4626 		WARN_ON_ONCE(fragstolen); /* should not happen */
4627 		__kfree_skb(skb);
4628 	}
4629 	return size;
4630 
4631 err_free:
4632 	kfree_skb(skb);
4633 err:
4634 	return err;
4635 
4636 }
4637 
4638 void tcp_data_ready(struct sock *sk)
4639 {
4640 	const struct tcp_sock *tp = tcp_sk(sk);
4641 	int avail = tp->rcv_nxt - tp->copied_seq;
4642 
4643 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4644 		return;
4645 
4646 	sk->sk_data_ready(sk);
4647 }
4648 
4649 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4650 {
4651 	struct tcp_sock *tp = tcp_sk(sk);
4652 	bool fragstolen;
4653 	int eaten;
4654 
4655 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4656 		__kfree_skb(skb);
4657 		return;
4658 	}
4659 	skb_dst_drop(skb);
4660 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4661 
4662 	tcp_ecn_accept_cwr(tp, skb);
4663 
4664 	tp->rx_opt.dsack = 0;
4665 
4666 	/*  Queue data for delivery to the user.
4667 	 *  Packets in sequence go to the receive queue.
4668 	 *  Out of sequence packets to the out_of_order_queue.
4669 	 */
4670 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4671 		if (tcp_receive_window(tp) == 0) {
4672 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4673 			goto out_of_window;
4674 		}
4675 
4676 		/* Ok. In sequence. In window. */
4677 queue_and_out:
4678 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4679 			sk_forced_mem_schedule(sk, skb->truesize);
4680 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4681 			goto drop;
4682 
4683 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4684 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4685 		if (skb->len)
4686 			tcp_event_data_recv(sk, skb);
4687 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4688 			tcp_fin(sk);
4689 
4690 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4691 			tcp_ofo_queue(sk);
4692 
4693 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4694 			 * gap in queue is filled.
4695 			 */
4696 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4697 				inet_csk(sk)->icsk_ack.pingpong = 0;
4698 		}
4699 
4700 		if (tp->rx_opt.num_sacks)
4701 			tcp_sack_remove(tp);
4702 
4703 		tcp_fast_path_check(sk);
4704 
4705 		if (eaten > 0)
4706 			kfree_skb_partial(skb, fragstolen);
4707 		if (!sock_flag(sk, SOCK_DEAD))
4708 			tcp_data_ready(sk);
4709 		return;
4710 	}
4711 
4712 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4713 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4714 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4715 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4716 
4717 out_of_window:
4718 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4719 		inet_csk_schedule_ack(sk);
4720 drop:
4721 		tcp_drop(sk, skb);
4722 		return;
4723 	}
4724 
4725 	/* Out of window. F.e. zero window probe. */
4726 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4727 		goto out_of_window;
4728 
4729 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4730 		/* Partial packet, seq < rcv_next < end_seq */
4731 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4732 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4733 			   TCP_SKB_CB(skb)->end_seq);
4734 
4735 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4736 
4737 		/* If window is closed, drop tail of packet. But after
4738 		 * remembering D-SACK for its head made in previous line.
4739 		 */
4740 		if (!tcp_receive_window(tp)) {
4741 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4742 			goto out_of_window;
4743 		}
4744 		goto queue_and_out;
4745 	}
4746 
4747 	tcp_data_queue_ofo(sk, skb);
4748 }
4749 
4750 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4751 {
4752 	if (list)
4753 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4754 
4755 	return skb_rb_next(skb);
4756 }
4757 
4758 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4759 					struct sk_buff_head *list,
4760 					struct rb_root *root)
4761 {
4762 	struct sk_buff *next = tcp_skb_next(skb, list);
4763 
4764 	if (list)
4765 		__skb_unlink(skb, list);
4766 	else
4767 		rb_erase(&skb->rbnode, root);
4768 
4769 	__kfree_skb(skb);
4770 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4771 
4772 	return next;
4773 }
4774 
4775 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4776 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4777 {
4778 	struct rb_node **p = &root->rb_node;
4779 	struct rb_node *parent = NULL;
4780 	struct sk_buff *skb1;
4781 
4782 	while (*p) {
4783 		parent = *p;
4784 		skb1 = rb_to_skb(parent);
4785 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4786 			p = &parent->rb_left;
4787 		else
4788 			p = &parent->rb_right;
4789 	}
4790 	rb_link_node(&skb->rbnode, parent, p);
4791 	rb_insert_color(&skb->rbnode, root);
4792 }
4793 
4794 /* Collapse contiguous sequence of skbs head..tail with
4795  * sequence numbers start..end.
4796  *
4797  * If tail is NULL, this means until the end of the queue.
4798  *
4799  * Segments with FIN/SYN are not collapsed (only because this
4800  * simplifies code)
4801  */
4802 static void
4803 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4804 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4805 {
4806 	struct sk_buff *skb = head, *n;
4807 	struct sk_buff_head tmp;
4808 	bool end_of_skbs;
4809 
4810 	/* First, check that queue is collapsible and find
4811 	 * the point where collapsing can be useful.
4812 	 */
4813 restart:
4814 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4815 		n = tcp_skb_next(skb, list);
4816 
4817 		/* No new bits? It is possible on ofo queue. */
4818 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4819 			skb = tcp_collapse_one(sk, skb, list, root);
4820 			if (!skb)
4821 				break;
4822 			goto restart;
4823 		}
4824 
4825 		/* The first skb to collapse is:
4826 		 * - not SYN/FIN and
4827 		 * - bloated or contains data before "start" or
4828 		 *   overlaps to the next one.
4829 		 */
4830 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4831 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4832 		     before(TCP_SKB_CB(skb)->seq, start))) {
4833 			end_of_skbs = false;
4834 			break;
4835 		}
4836 
4837 		if (n && n != tail &&
4838 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4839 			end_of_skbs = false;
4840 			break;
4841 		}
4842 
4843 		/* Decided to skip this, advance start seq. */
4844 		start = TCP_SKB_CB(skb)->end_seq;
4845 	}
4846 	if (end_of_skbs ||
4847 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4848 		return;
4849 
4850 	__skb_queue_head_init(&tmp);
4851 
4852 	while (before(start, end)) {
4853 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4854 		struct sk_buff *nskb;
4855 
4856 		nskb = alloc_skb(copy, GFP_ATOMIC);
4857 		if (!nskb)
4858 			break;
4859 
4860 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4861 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4862 		if (list)
4863 			__skb_queue_before(list, skb, nskb);
4864 		else
4865 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4866 		skb_set_owner_r(nskb, sk);
4867 
4868 		/* Copy data, releasing collapsed skbs. */
4869 		while (copy > 0) {
4870 			int offset = start - TCP_SKB_CB(skb)->seq;
4871 			int size = TCP_SKB_CB(skb)->end_seq - start;
4872 
4873 			BUG_ON(offset < 0);
4874 			if (size > 0) {
4875 				size = min(copy, size);
4876 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4877 					BUG();
4878 				TCP_SKB_CB(nskb)->end_seq += size;
4879 				copy -= size;
4880 				start += size;
4881 			}
4882 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4883 				skb = tcp_collapse_one(sk, skb, list, root);
4884 				if (!skb ||
4885 				    skb == tail ||
4886 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4887 					goto end;
4888 			}
4889 		}
4890 	}
4891 end:
4892 	skb_queue_walk_safe(&tmp, skb, n)
4893 		tcp_rbtree_insert(root, skb);
4894 }
4895 
4896 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4897  * and tcp_collapse() them until all the queue is collapsed.
4898  */
4899 static void tcp_collapse_ofo_queue(struct sock *sk)
4900 {
4901 	struct tcp_sock *tp = tcp_sk(sk);
4902 	struct sk_buff *skb, *head;
4903 	u32 start, end;
4904 
4905 	skb = skb_rb_first(&tp->out_of_order_queue);
4906 new_range:
4907 	if (!skb) {
4908 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4909 		return;
4910 	}
4911 	start = TCP_SKB_CB(skb)->seq;
4912 	end = TCP_SKB_CB(skb)->end_seq;
4913 
4914 	for (head = skb;;) {
4915 		skb = skb_rb_next(skb);
4916 
4917 		/* Range is terminated when we see a gap or when
4918 		 * we are at the queue end.
4919 		 */
4920 		if (!skb ||
4921 		    after(TCP_SKB_CB(skb)->seq, end) ||
4922 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4923 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4924 				     head, skb, start, end);
4925 			goto new_range;
4926 		}
4927 
4928 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4929 			start = TCP_SKB_CB(skb)->seq;
4930 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4931 			end = TCP_SKB_CB(skb)->end_seq;
4932 	}
4933 }
4934 
4935 /*
4936  * Clean the out-of-order queue to make room.
4937  * We drop high sequences packets to :
4938  * 1) Let a chance for holes to be filled.
4939  * 2) not add too big latencies if thousands of packets sit there.
4940  *    (But if application shrinks SO_RCVBUF, we could still end up
4941  *     freeing whole queue here)
4942  *
4943  * Return true if queue has shrunk.
4944  */
4945 static bool tcp_prune_ofo_queue(struct sock *sk)
4946 {
4947 	struct tcp_sock *tp = tcp_sk(sk);
4948 	struct rb_node *node, *prev;
4949 
4950 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4951 		return false;
4952 
4953 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4954 	node = &tp->ooo_last_skb->rbnode;
4955 	do {
4956 		prev = rb_prev(node);
4957 		rb_erase(node, &tp->out_of_order_queue);
4958 		tcp_drop(sk, rb_to_skb(node));
4959 		sk_mem_reclaim(sk);
4960 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4961 		    !tcp_under_memory_pressure(sk))
4962 			break;
4963 		node = prev;
4964 	} while (node);
4965 	tp->ooo_last_skb = rb_to_skb(prev);
4966 
4967 	/* Reset SACK state.  A conforming SACK implementation will
4968 	 * do the same at a timeout based retransmit.  When a connection
4969 	 * is in a sad state like this, we care only about integrity
4970 	 * of the connection not performance.
4971 	 */
4972 	if (tp->rx_opt.sack_ok)
4973 		tcp_sack_reset(&tp->rx_opt);
4974 	return true;
4975 }
4976 
4977 /* Reduce allocated memory if we can, trying to get
4978  * the socket within its memory limits again.
4979  *
4980  * Return less than zero if we should start dropping frames
4981  * until the socket owning process reads some of the data
4982  * to stabilize the situation.
4983  */
4984 static int tcp_prune_queue(struct sock *sk)
4985 {
4986 	struct tcp_sock *tp = tcp_sk(sk);
4987 
4988 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4989 
4990 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4991 
4992 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4993 		tcp_clamp_window(sk);
4994 	else if (tcp_under_memory_pressure(sk))
4995 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4996 
4997 	tcp_collapse_ofo_queue(sk);
4998 	if (!skb_queue_empty(&sk->sk_receive_queue))
4999 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5000 			     skb_peek(&sk->sk_receive_queue),
5001 			     NULL,
5002 			     tp->copied_seq, tp->rcv_nxt);
5003 	sk_mem_reclaim(sk);
5004 
5005 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5006 		return 0;
5007 
5008 	/* Collapsing did not help, destructive actions follow.
5009 	 * This must not ever occur. */
5010 
5011 	tcp_prune_ofo_queue(sk);
5012 
5013 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5014 		return 0;
5015 
5016 	/* If we are really being abused, tell the caller to silently
5017 	 * drop receive data on the floor.  It will get retransmitted
5018 	 * and hopefully then we'll have sufficient space.
5019 	 */
5020 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5021 
5022 	/* Massive buffer overcommit. */
5023 	tp->pred_flags = 0;
5024 	return -1;
5025 }
5026 
5027 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5028 {
5029 	const struct tcp_sock *tp = tcp_sk(sk);
5030 
5031 	/* If the user specified a specific send buffer setting, do
5032 	 * not modify it.
5033 	 */
5034 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5035 		return false;
5036 
5037 	/* If we are under global TCP memory pressure, do not expand.  */
5038 	if (tcp_under_memory_pressure(sk))
5039 		return false;
5040 
5041 	/* If we are under soft global TCP memory pressure, do not expand.  */
5042 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5043 		return false;
5044 
5045 	/* If we filled the congestion window, do not expand.  */
5046 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5047 		return false;
5048 
5049 	return true;
5050 }
5051 
5052 /* When incoming ACK allowed to free some skb from write_queue,
5053  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5054  * on the exit from tcp input handler.
5055  *
5056  * PROBLEM: sndbuf expansion does not work well with largesend.
5057  */
5058 static void tcp_new_space(struct sock *sk)
5059 {
5060 	struct tcp_sock *tp = tcp_sk(sk);
5061 
5062 	if (tcp_should_expand_sndbuf(sk)) {
5063 		tcp_sndbuf_expand(sk);
5064 		tp->snd_cwnd_stamp = tcp_jiffies32;
5065 	}
5066 
5067 	sk->sk_write_space(sk);
5068 }
5069 
5070 static void tcp_check_space(struct sock *sk)
5071 {
5072 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5073 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5074 		/* pairs with tcp_poll() */
5075 		smp_mb();
5076 		if (sk->sk_socket &&
5077 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5078 			tcp_new_space(sk);
5079 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5080 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5081 		}
5082 	}
5083 }
5084 
5085 static inline void tcp_data_snd_check(struct sock *sk)
5086 {
5087 	tcp_push_pending_frames(sk);
5088 	tcp_check_space(sk);
5089 }
5090 
5091 /*
5092  * Check if sending an ack is needed.
5093  */
5094 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5095 {
5096 	struct tcp_sock *tp = tcp_sk(sk);
5097 	unsigned long rtt, delay;
5098 
5099 	    /* More than one full frame received... */
5100 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5101 	     /* ... and right edge of window advances far enough.
5102 	      * (tcp_recvmsg() will send ACK otherwise).
5103 	      * If application uses SO_RCVLOWAT, we want send ack now if
5104 	      * we have not received enough bytes to satisfy the condition.
5105 	      */
5106 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5107 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5108 	    /* We ACK each frame or... */
5109 	    tcp_in_quickack_mode(sk)) {
5110 send_now:
5111 		tcp_send_ack(sk);
5112 		return;
5113 	}
5114 
5115 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5116 		tcp_send_delayed_ack(sk);
5117 		return;
5118 	}
5119 
5120 	if (!tcp_is_sack(tp) ||
5121 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5122 		goto send_now;
5123 	tp->compressed_ack++;
5124 
5125 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5126 		return;
5127 
5128 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5129 
5130 	rtt = tp->rcv_rtt_est.rtt_us;
5131 	if (tp->srtt_us && tp->srtt_us < rtt)
5132 		rtt = tp->srtt_us;
5133 
5134 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5135 		      rtt * (NSEC_PER_USEC >> 3)/20);
5136 	sock_hold(sk);
5137 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5138 		      HRTIMER_MODE_REL_PINNED_SOFT);
5139 }
5140 
5141 static inline void tcp_ack_snd_check(struct sock *sk)
5142 {
5143 	if (!inet_csk_ack_scheduled(sk)) {
5144 		/* We sent a data segment already. */
5145 		return;
5146 	}
5147 	__tcp_ack_snd_check(sk, 1);
5148 }
5149 
5150 /*
5151  *	This routine is only called when we have urgent data
5152  *	signaled. Its the 'slow' part of tcp_urg. It could be
5153  *	moved inline now as tcp_urg is only called from one
5154  *	place. We handle URGent data wrong. We have to - as
5155  *	BSD still doesn't use the correction from RFC961.
5156  *	For 1003.1g we should support a new option TCP_STDURG to permit
5157  *	either form (or just set the sysctl tcp_stdurg).
5158  */
5159 
5160 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5161 {
5162 	struct tcp_sock *tp = tcp_sk(sk);
5163 	u32 ptr = ntohs(th->urg_ptr);
5164 
5165 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5166 		ptr--;
5167 	ptr += ntohl(th->seq);
5168 
5169 	/* Ignore urgent data that we've already seen and read. */
5170 	if (after(tp->copied_seq, ptr))
5171 		return;
5172 
5173 	/* Do not replay urg ptr.
5174 	 *
5175 	 * NOTE: interesting situation not covered by specs.
5176 	 * Misbehaving sender may send urg ptr, pointing to segment,
5177 	 * which we already have in ofo queue. We are not able to fetch
5178 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5179 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5180 	 * situations. But it is worth to think about possibility of some
5181 	 * DoSes using some hypothetical application level deadlock.
5182 	 */
5183 	if (before(ptr, tp->rcv_nxt))
5184 		return;
5185 
5186 	/* Do we already have a newer (or duplicate) urgent pointer? */
5187 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5188 		return;
5189 
5190 	/* Tell the world about our new urgent pointer. */
5191 	sk_send_sigurg(sk);
5192 
5193 	/* We may be adding urgent data when the last byte read was
5194 	 * urgent. To do this requires some care. We cannot just ignore
5195 	 * tp->copied_seq since we would read the last urgent byte again
5196 	 * as data, nor can we alter copied_seq until this data arrives
5197 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5198 	 *
5199 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5200 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5201 	 * and expect that both A and B disappear from stream. This is _wrong_.
5202 	 * Though this happens in BSD with high probability, this is occasional.
5203 	 * Any application relying on this is buggy. Note also, that fix "works"
5204 	 * only in this artificial test. Insert some normal data between A and B and we will
5205 	 * decline of BSD again. Verdict: it is better to remove to trap
5206 	 * buggy users.
5207 	 */
5208 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5209 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5210 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5211 		tp->copied_seq++;
5212 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5213 			__skb_unlink(skb, &sk->sk_receive_queue);
5214 			__kfree_skb(skb);
5215 		}
5216 	}
5217 
5218 	tp->urg_data = TCP_URG_NOTYET;
5219 	tp->urg_seq = ptr;
5220 
5221 	/* Disable header prediction. */
5222 	tp->pred_flags = 0;
5223 }
5224 
5225 /* This is the 'fast' part of urgent handling. */
5226 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5227 {
5228 	struct tcp_sock *tp = tcp_sk(sk);
5229 
5230 	/* Check if we get a new urgent pointer - normally not. */
5231 	if (th->urg)
5232 		tcp_check_urg(sk, th);
5233 
5234 	/* Do we wait for any urgent data? - normally not... */
5235 	if (tp->urg_data == TCP_URG_NOTYET) {
5236 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5237 			  th->syn;
5238 
5239 		/* Is the urgent pointer pointing into this packet? */
5240 		if (ptr < skb->len) {
5241 			u8 tmp;
5242 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5243 				BUG();
5244 			tp->urg_data = TCP_URG_VALID | tmp;
5245 			if (!sock_flag(sk, SOCK_DEAD))
5246 				sk->sk_data_ready(sk);
5247 		}
5248 	}
5249 }
5250 
5251 /* Accept RST for rcv_nxt - 1 after a FIN.
5252  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5253  * FIN is sent followed by a RST packet. The RST is sent with the same
5254  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5255  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5256  * ACKs on the closed socket. In addition middleboxes can drop either the
5257  * challenge ACK or a subsequent RST.
5258  */
5259 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5260 {
5261 	struct tcp_sock *tp = tcp_sk(sk);
5262 
5263 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5264 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5265 					       TCPF_CLOSING));
5266 }
5267 
5268 /* Does PAWS and seqno based validation of an incoming segment, flags will
5269  * play significant role here.
5270  */
5271 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5272 				  const struct tcphdr *th, int syn_inerr)
5273 {
5274 	struct tcp_sock *tp = tcp_sk(sk);
5275 	bool rst_seq_match = false;
5276 
5277 	/* RFC1323: H1. Apply PAWS check first. */
5278 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5279 	    tp->rx_opt.saw_tstamp &&
5280 	    tcp_paws_discard(sk, skb)) {
5281 		if (!th->rst) {
5282 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5283 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5284 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5285 						  &tp->last_oow_ack_time))
5286 				tcp_send_dupack(sk, skb);
5287 			goto discard;
5288 		}
5289 		/* Reset is accepted even if it did not pass PAWS. */
5290 	}
5291 
5292 	/* Step 1: check sequence number */
5293 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5294 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5295 		 * (RST) segments are validated by checking their SEQ-fields."
5296 		 * And page 69: "If an incoming segment is not acceptable,
5297 		 * an acknowledgment should be sent in reply (unless the RST
5298 		 * bit is set, if so drop the segment and return)".
5299 		 */
5300 		if (!th->rst) {
5301 			if (th->syn)
5302 				goto syn_challenge;
5303 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5304 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5305 						  &tp->last_oow_ack_time))
5306 				tcp_send_dupack(sk, skb);
5307 		} else if (tcp_reset_check(sk, skb)) {
5308 			tcp_reset(sk);
5309 		}
5310 		goto discard;
5311 	}
5312 
5313 	/* Step 2: check RST bit */
5314 	if (th->rst) {
5315 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5316 		 * FIN and SACK too if available):
5317 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5318 		 * the right-most SACK block,
5319 		 * then
5320 		 *     RESET the connection
5321 		 * else
5322 		 *     Send a challenge ACK
5323 		 */
5324 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5325 		    tcp_reset_check(sk, skb)) {
5326 			rst_seq_match = true;
5327 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5328 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5329 			int max_sack = sp[0].end_seq;
5330 			int this_sack;
5331 
5332 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5333 			     ++this_sack) {
5334 				max_sack = after(sp[this_sack].end_seq,
5335 						 max_sack) ?
5336 					sp[this_sack].end_seq : max_sack;
5337 			}
5338 
5339 			if (TCP_SKB_CB(skb)->seq == max_sack)
5340 				rst_seq_match = true;
5341 		}
5342 
5343 		if (rst_seq_match)
5344 			tcp_reset(sk);
5345 		else {
5346 			/* Disable TFO if RST is out-of-order
5347 			 * and no data has been received
5348 			 * for current active TFO socket
5349 			 */
5350 			if (tp->syn_fastopen && !tp->data_segs_in &&
5351 			    sk->sk_state == TCP_ESTABLISHED)
5352 				tcp_fastopen_active_disable(sk);
5353 			tcp_send_challenge_ack(sk, skb);
5354 		}
5355 		goto discard;
5356 	}
5357 
5358 	/* step 3: check security and precedence [ignored] */
5359 
5360 	/* step 4: Check for a SYN
5361 	 * RFC 5961 4.2 : Send a challenge ack
5362 	 */
5363 	if (th->syn) {
5364 syn_challenge:
5365 		if (syn_inerr)
5366 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5367 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5368 		tcp_send_challenge_ack(sk, skb);
5369 		goto discard;
5370 	}
5371 
5372 	return true;
5373 
5374 discard:
5375 	tcp_drop(sk, skb);
5376 	return false;
5377 }
5378 
5379 /*
5380  *	TCP receive function for the ESTABLISHED state.
5381  *
5382  *	It is split into a fast path and a slow path. The fast path is
5383  * 	disabled when:
5384  *	- A zero window was announced from us - zero window probing
5385  *        is only handled properly in the slow path.
5386  *	- Out of order segments arrived.
5387  *	- Urgent data is expected.
5388  *	- There is no buffer space left
5389  *	- Unexpected TCP flags/window values/header lengths are received
5390  *	  (detected by checking the TCP header against pred_flags)
5391  *	- Data is sent in both directions. Fast path only supports pure senders
5392  *	  or pure receivers (this means either the sequence number or the ack
5393  *	  value must stay constant)
5394  *	- Unexpected TCP option.
5395  *
5396  *	When these conditions are not satisfied it drops into a standard
5397  *	receive procedure patterned after RFC793 to handle all cases.
5398  *	The first three cases are guaranteed by proper pred_flags setting,
5399  *	the rest is checked inline. Fast processing is turned on in
5400  *	tcp_data_queue when everything is OK.
5401  */
5402 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5403 {
5404 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5405 	struct tcp_sock *tp = tcp_sk(sk);
5406 	unsigned int len = skb->len;
5407 
5408 	/* TCP congestion window tracking */
5409 	trace_tcp_probe(sk, skb);
5410 
5411 	tcp_mstamp_refresh(tp);
5412 	if (unlikely(!sk->sk_rx_dst))
5413 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5414 	/*
5415 	 *	Header prediction.
5416 	 *	The code loosely follows the one in the famous
5417 	 *	"30 instruction TCP receive" Van Jacobson mail.
5418 	 *
5419 	 *	Van's trick is to deposit buffers into socket queue
5420 	 *	on a device interrupt, to call tcp_recv function
5421 	 *	on the receive process context and checksum and copy
5422 	 *	the buffer to user space. smart...
5423 	 *
5424 	 *	Our current scheme is not silly either but we take the
5425 	 *	extra cost of the net_bh soft interrupt processing...
5426 	 *	We do checksum and copy also but from device to kernel.
5427 	 */
5428 
5429 	tp->rx_opt.saw_tstamp = 0;
5430 
5431 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5432 	 *	if header_prediction is to be made
5433 	 *	'S' will always be tp->tcp_header_len >> 2
5434 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5435 	 *  turn it off	(when there are holes in the receive
5436 	 *	 space for instance)
5437 	 *	PSH flag is ignored.
5438 	 */
5439 
5440 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5441 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5442 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5443 		int tcp_header_len = tp->tcp_header_len;
5444 
5445 		/* Timestamp header prediction: tcp_header_len
5446 		 * is automatically equal to th->doff*4 due to pred_flags
5447 		 * match.
5448 		 */
5449 
5450 		/* Check timestamp */
5451 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5452 			/* No? Slow path! */
5453 			if (!tcp_parse_aligned_timestamp(tp, th))
5454 				goto slow_path;
5455 
5456 			/* If PAWS failed, check it more carefully in slow path */
5457 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5458 				goto slow_path;
5459 
5460 			/* DO NOT update ts_recent here, if checksum fails
5461 			 * and timestamp was corrupted part, it will result
5462 			 * in a hung connection since we will drop all
5463 			 * future packets due to the PAWS test.
5464 			 */
5465 		}
5466 
5467 		if (len <= tcp_header_len) {
5468 			/* Bulk data transfer: sender */
5469 			if (len == tcp_header_len) {
5470 				/* Predicted packet is in window by definition.
5471 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5472 				 * Hence, check seq<=rcv_wup reduces to:
5473 				 */
5474 				if (tcp_header_len ==
5475 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5476 				    tp->rcv_nxt == tp->rcv_wup)
5477 					tcp_store_ts_recent(tp);
5478 
5479 				/* We know that such packets are checksummed
5480 				 * on entry.
5481 				 */
5482 				tcp_ack(sk, skb, 0);
5483 				__kfree_skb(skb);
5484 				tcp_data_snd_check(sk);
5485 				/* When receiving pure ack in fast path, update
5486 				 * last ts ecr directly instead of calling
5487 				 * tcp_rcv_rtt_measure_ts()
5488 				 */
5489 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5490 				return;
5491 			} else { /* Header too small */
5492 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5493 				goto discard;
5494 			}
5495 		} else {
5496 			int eaten = 0;
5497 			bool fragstolen = false;
5498 
5499 			if (tcp_checksum_complete(skb))
5500 				goto csum_error;
5501 
5502 			if ((int)skb->truesize > sk->sk_forward_alloc)
5503 				goto step5;
5504 
5505 			/* Predicted packet is in window by definition.
5506 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5507 			 * Hence, check seq<=rcv_wup reduces to:
5508 			 */
5509 			if (tcp_header_len ==
5510 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5511 			    tp->rcv_nxt == tp->rcv_wup)
5512 				tcp_store_ts_recent(tp);
5513 
5514 			tcp_rcv_rtt_measure_ts(sk, skb);
5515 
5516 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5517 
5518 			/* Bulk data transfer: receiver */
5519 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5520 					      &fragstolen);
5521 
5522 			tcp_event_data_recv(sk, skb);
5523 
5524 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5525 				/* Well, only one small jumplet in fast path... */
5526 				tcp_ack(sk, skb, FLAG_DATA);
5527 				tcp_data_snd_check(sk);
5528 				if (!inet_csk_ack_scheduled(sk))
5529 					goto no_ack;
5530 			}
5531 
5532 			__tcp_ack_snd_check(sk, 0);
5533 no_ack:
5534 			if (eaten)
5535 				kfree_skb_partial(skb, fragstolen);
5536 			tcp_data_ready(sk);
5537 			return;
5538 		}
5539 	}
5540 
5541 slow_path:
5542 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5543 		goto csum_error;
5544 
5545 	if (!th->ack && !th->rst && !th->syn)
5546 		goto discard;
5547 
5548 	/*
5549 	 *	Standard slow path.
5550 	 */
5551 
5552 	if (!tcp_validate_incoming(sk, skb, th, 1))
5553 		return;
5554 
5555 step5:
5556 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5557 		goto discard;
5558 
5559 	tcp_rcv_rtt_measure_ts(sk, skb);
5560 
5561 	/* Process urgent data. */
5562 	tcp_urg(sk, skb, th);
5563 
5564 	/* step 7: process the segment text */
5565 	tcp_data_queue(sk, skb);
5566 
5567 	tcp_data_snd_check(sk);
5568 	tcp_ack_snd_check(sk);
5569 	return;
5570 
5571 csum_error:
5572 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5573 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5574 
5575 discard:
5576 	tcp_drop(sk, skb);
5577 }
5578 EXPORT_SYMBOL(tcp_rcv_established);
5579 
5580 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5581 {
5582 	struct tcp_sock *tp = tcp_sk(sk);
5583 	struct inet_connection_sock *icsk = inet_csk(sk);
5584 
5585 	tcp_set_state(sk, TCP_ESTABLISHED);
5586 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5587 
5588 	if (skb) {
5589 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5590 		security_inet_conn_established(sk, skb);
5591 	}
5592 
5593 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5594 
5595 	/* Prevent spurious tcp_cwnd_restart() on first data
5596 	 * packet.
5597 	 */
5598 	tp->lsndtime = tcp_jiffies32;
5599 
5600 	if (sock_flag(sk, SOCK_KEEPOPEN))
5601 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5602 
5603 	if (!tp->rx_opt.snd_wscale)
5604 		__tcp_fast_path_on(tp, tp->snd_wnd);
5605 	else
5606 		tp->pred_flags = 0;
5607 }
5608 
5609 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5610 				    struct tcp_fastopen_cookie *cookie)
5611 {
5612 	struct tcp_sock *tp = tcp_sk(sk);
5613 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5614 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5615 	bool syn_drop = false;
5616 
5617 	if (mss == tp->rx_opt.user_mss) {
5618 		struct tcp_options_received opt;
5619 
5620 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5621 		tcp_clear_options(&opt);
5622 		opt.user_mss = opt.mss_clamp = 0;
5623 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5624 		mss = opt.mss_clamp;
5625 	}
5626 
5627 	if (!tp->syn_fastopen) {
5628 		/* Ignore an unsolicited cookie */
5629 		cookie->len = -1;
5630 	} else if (tp->total_retrans) {
5631 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5632 		 * acknowledges data. Presumably the remote received only
5633 		 * the retransmitted (regular) SYNs: either the original
5634 		 * SYN-data or the corresponding SYN-ACK was dropped.
5635 		 */
5636 		syn_drop = (cookie->len < 0 && data);
5637 	} else if (cookie->len < 0 && !tp->syn_data) {
5638 		/* We requested a cookie but didn't get it. If we did not use
5639 		 * the (old) exp opt format then try so next time (try_exp=1).
5640 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5641 		 */
5642 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5643 	}
5644 
5645 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5646 
5647 	if (data) { /* Retransmit unacked data in SYN */
5648 		skb_rbtree_walk_from(data) {
5649 			if (__tcp_retransmit_skb(sk, data, 1))
5650 				break;
5651 		}
5652 		tcp_rearm_rto(sk);
5653 		NET_INC_STATS(sock_net(sk),
5654 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5655 		return true;
5656 	}
5657 	tp->syn_data_acked = tp->syn_data;
5658 	if (tp->syn_data_acked) {
5659 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5660 		/* SYN-data is counted as two separate packets in tcp_ack() */
5661 		if (tp->delivered > 1)
5662 			--tp->delivered;
5663 	}
5664 
5665 	tcp_fastopen_add_skb(sk, synack);
5666 
5667 	return false;
5668 }
5669 
5670 static void smc_check_reset_syn(struct tcp_sock *tp)
5671 {
5672 #if IS_ENABLED(CONFIG_SMC)
5673 	if (static_branch_unlikely(&tcp_have_smc)) {
5674 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5675 			tp->syn_smc = 0;
5676 	}
5677 #endif
5678 }
5679 
5680 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5681 					 const struct tcphdr *th)
5682 {
5683 	struct inet_connection_sock *icsk = inet_csk(sk);
5684 	struct tcp_sock *tp = tcp_sk(sk);
5685 	struct tcp_fastopen_cookie foc = { .len = -1 };
5686 	int saved_clamp = tp->rx_opt.mss_clamp;
5687 	bool fastopen_fail;
5688 
5689 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5690 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5691 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5692 
5693 	if (th->ack) {
5694 		/* rfc793:
5695 		 * "If the state is SYN-SENT then
5696 		 *    first check the ACK bit
5697 		 *      If the ACK bit is set
5698 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5699 		 *        a reset (unless the RST bit is set, if so drop
5700 		 *        the segment and return)"
5701 		 */
5702 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5703 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5704 			goto reset_and_undo;
5705 
5706 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5707 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5708 			     tcp_time_stamp(tp))) {
5709 			NET_INC_STATS(sock_net(sk),
5710 					LINUX_MIB_PAWSACTIVEREJECTED);
5711 			goto reset_and_undo;
5712 		}
5713 
5714 		/* Now ACK is acceptable.
5715 		 *
5716 		 * "If the RST bit is set
5717 		 *    If the ACK was acceptable then signal the user "error:
5718 		 *    connection reset", drop the segment, enter CLOSED state,
5719 		 *    delete TCB, and return."
5720 		 */
5721 
5722 		if (th->rst) {
5723 			tcp_reset(sk);
5724 			goto discard;
5725 		}
5726 
5727 		/* rfc793:
5728 		 *   "fifth, if neither of the SYN or RST bits is set then
5729 		 *    drop the segment and return."
5730 		 *
5731 		 *    See note below!
5732 		 *                                        --ANK(990513)
5733 		 */
5734 		if (!th->syn)
5735 			goto discard_and_undo;
5736 
5737 		/* rfc793:
5738 		 *   "If the SYN bit is on ...
5739 		 *    are acceptable then ...
5740 		 *    (our SYN has been ACKed), change the connection
5741 		 *    state to ESTABLISHED..."
5742 		 */
5743 
5744 		tcp_ecn_rcv_synack(tp, th);
5745 
5746 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5747 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5748 
5749 		/* Ok.. it's good. Set up sequence numbers and
5750 		 * move to established.
5751 		 */
5752 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5753 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5754 
5755 		/* RFC1323: The window in SYN & SYN/ACK segments is
5756 		 * never scaled.
5757 		 */
5758 		tp->snd_wnd = ntohs(th->window);
5759 
5760 		if (!tp->rx_opt.wscale_ok) {
5761 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5762 			tp->window_clamp = min(tp->window_clamp, 65535U);
5763 		}
5764 
5765 		if (tp->rx_opt.saw_tstamp) {
5766 			tp->rx_opt.tstamp_ok	   = 1;
5767 			tp->tcp_header_len =
5768 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5769 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5770 			tcp_store_ts_recent(tp);
5771 		} else {
5772 			tp->tcp_header_len = sizeof(struct tcphdr);
5773 		}
5774 
5775 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5776 		tcp_initialize_rcv_mss(sk);
5777 
5778 		/* Remember, tcp_poll() does not lock socket!
5779 		 * Change state from SYN-SENT only after copied_seq
5780 		 * is initialized. */
5781 		tp->copied_seq = tp->rcv_nxt;
5782 
5783 		smc_check_reset_syn(tp);
5784 
5785 		smp_mb();
5786 
5787 		tcp_finish_connect(sk, skb);
5788 
5789 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5790 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5791 
5792 		if (!sock_flag(sk, SOCK_DEAD)) {
5793 			sk->sk_state_change(sk);
5794 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5795 		}
5796 		if (fastopen_fail)
5797 			return -1;
5798 		if (sk->sk_write_pending ||
5799 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5800 		    icsk->icsk_ack.pingpong) {
5801 			/* Save one ACK. Data will be ready after
5802 			 * several ticks, if write_pending is set.
5803 			 *
5804 			 * It may be deleted, but with this feature tcpdumps
5805 			 * look so _wonderfully_ clever, that I was not able
5806 			 * to stand against the temptation 8)     --ANK
5807 			 */
5808 			inet_csk_schedule_ack(sk);
5809 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5810 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5811 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5812 
5813 discard:
5814 			tcp_drop(sk, skb);
5815 			return 0;
5816 		} else {
5817 			tcp_send_ack(sk);
5818 		}
5819 		return -1;
5820 	}
5821 
5822 	/* No ACK in the segment */
5823 
5824 	if (th->rst) {
5825 		/* rfc793:
5826 		 * "If the RST bit is set
5827 		 *
5828 		 *      Otherwise (no ACK) drop the segment and return."
5829 		 */
5830 
5831 		goto discard_and_undo;
5832 	}
5833 
5834 	/* PAWS check. */
5835 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5836 	    tcp_paws_reject(&tp->rx_opt, 0))
5837 		goto discard_and_undo;
5838 
5839 	if (th->syn) {
5840 		/* We see SYN without ACK. It is attempt of
5841 		 * simultaneous connect with crossed SYNs.
5842 		 * Particularly, it can be connect to self.
5843 		 */
5844 		tcp_set_state(sk, TCP_SYN_RECV);
5845 
5846 		if (tp->rx_opt.saw_tstamp) {
5847 			tp->rx_opt.tstamp_ok = 1;
5848 			tcp_store_ts_recent(tp);
5849 			tp->tcp_header_len =
5850 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5851 		} else {
5852 			tp->tcp_header_len = sizeof(struct tcphdr);
5853 		}
5854 
5855 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5856 		tp->copied_seq = tp->rcv_nxt;
5857 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5858 
5859 		/* RFC1323: The window in SYN & SYN/ACK segments is
5860 		 * never scaled.
5861 		 */
5862 		tp->snd_wnd    = ntohs(th->window);
5863 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5864 		tp->max_window = tp->snd_wnd;
5865 
5866 		tcp_ecn_rcv_syn(tp, th);
5867 
5868 		tcp_mtup_init(sk);
5869 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5870 		tcp_initialize_rcv_mss(sk);
5871 
5872 		tcp_send_synack(sk);
5873 #if 0
5874 		/* Note, we could accept data and URG from this segment.
5875 		 * There are no obstacles to make this (except that we must
5876 		 * either change tcp_recvmsg() to prevent it from returning data
5877 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5878 		 *
5879 		 * However, if we ignore data in ACKless segments sometimes,
5880 		 * we have no reasons to accept it sometimes.
5881 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5882 		 * is not flawless. So, discard packet for sanity.
5883 		 * Uncomment this return to process the data.
5884 		 */
5885 		return -1;
5886 #else
5887 		goto discard;
5888 #endif
5889 	}
5890 	/* "fifth, if neither of the SYN or RST bits is set then
5891 	 * drop the segment and return."
5892 	 */
5893 
5894 discard_and_undo:
5895 	tcp_clear_options(&tp->rx_opt);
5896 	tp->rx_opt.mss_clamp = saved_clamp;
5897 	goto discard;
5898 
5899 reset_and_undo:
5900 	tcp_clear_options(&tp->rx_opt);
5901 	tp->rx_opt.mss_clamp = saved_clamp;
5902 	return 1;
5903 }
5904 
5905 /*
5906  *	This function implements the receiving procedure of RFC 793 for
5907  *	all states except ESTABLISHED and TIME_WAIT.
5908  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5909  *	address independent.
5910  */
5911 
5912 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5913 {
5914 	struct tcp_sock *tp = tcp_sk(sk);
5915 	struct inet_connection_sock *icsk = inet_csk(sk);
5916 	const struct tcphdr *th = tcp_hdr(skb);
5917 	struct request_sock *req;
5918 	int queued = 0;
5919 	bool acceptable;
5920 
5921 	switch (sk->sk_state) {
5922 	case TCP_CLOSE:
5923 		goto discard;
5924 
5925 	case TCP_LISTEN:
5926 		if (th->ack)
5927 			return 1;
5928 
5929 		if (th->rst)
5930 			goto discard;
5931 
5932 		if (th->syn) {
5933 			if (th->fin)
5934 				goto discard;
5935 			/* It is possible that we process SYN packets from backlog,
5936 			 * so we need to make sure to disable BH right there.
5937 			 */
5938 			local_bh_disable();
5939 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5940 			local_bh_enable();
5941 
5942 			if (!acceptable)
5943 				return 1;
5944 			consume_skb(skb);
5945 			return 0;
5946 		}
5947 		goto discard;
5948 
5949 	case TCP_SYN_SENT:
5950 		tp->rx_opt.saw_tstamp = 0;
5951 		tcp_mstamp_refresh(tp);
5952 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5953 		if (queued >= 0)
5954 			return queued;
5955 
5956 		/* Do step6 onward by hand. */
5957 		tcp_urg(sk, skb, th);
5958 		__kfree_skb(skb);
5959 		tcp_data_snd_check(sk);
5960 		return 0;
5961 	}
5962 
5963 	tcp_mstamp_refresh(tp);
5964 	tp->rx_opt.saw_tstamp = 0;
5965 	req = tp->fastopen_rsk;
5966 	if (req) {
5967 		bool req_stolen;
5968 
5969 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5970 		    sk->sk_state != TCP_FIN_WAIT1);
5971 
5972 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
5973 			goto discard;
5974 	}
5975 
5976 	if (!th->ack && !th->rst && !th->syn)
5977 		goto discard;
5978 
5979 	if (!tcp_validate_incoming(sk, skb, th, 0))
5980 		return 0;
5981 
5982 	/* step 5: check the ACK field */
5983 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5984 				      FLAG_UPDATE_TS_RECENT |
5985 				      FLAG_NO_CHALLENGE_ACK) > 0;
5986 
5987 	if (!acceptable) {
5988 		if (sk->sk_state == TCP_SYN_RECV)
5989 			return 1;	/* send one RST */
5990 		tcp_send_challenge_ack(sk, skb);
5991 		goto discard;
5992 	}
5993 	switch (sk->sk_state) {
5994 	case TCP_SYN_RECV:
5995 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
5996 		if (!tp->srtt_us)
5997 			tcp_synack_rtt_meas(sk, req);
5998 
5999 		/* Once we leave TCP_SYN_RECV, we no longer need req
6000 		 * so release it.
6001 		 */
6002 		if (req) {
6003 			inet_csk(sk)->icsk_retransmits = 0;
6004 			reqsk_fastopen_remove(sk, req, false);
6005 			/* Re-arm the timer because data may have been sent out.
6006 			 * This is similar to the regular data transmission case
6007 			 * when new data has just been ack'ed.
6008 			 *
6009 			 * (TFO) - we could try to be more aggressive and
6010 			 * retransmitting any data sooner based on when they
6011 			 * are sent out.
6012 			 */
6013 			tcp_rearm_rto(sk);
6014 		} else {
6015 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6016 			tp->copied_seq = tp->rcv_nxt;
6017 		}
6018 		smp_mb();
6019 		tcp_set_state(sk, TCP_ESTABLISHED);
6020 		sk->sk_state_change(sk);
6021 
6022 		/* Note, that this wakeup is only for marginal crossed SYN case.
6023 		 * Passively open sockets are not waked up, because
6024 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6025 		 */
6026 		if (sk->sk_socket)
6027 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6028 
6029 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6030 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6031 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6032 
6033 		if (tp->rx_opt.tstamp_ok)
6034 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6035 
6036 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6037 			tcp_update_pacing_rate(sk);
6038 
6039 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6040 		tp->lsndtime = tcp_jiffies32;
6041 
6042 		tcp_initialize_rcv_mss(sk);
6043 		tcp_fast_path_on(tp);
6044 		break;
6045 
6046 	case TCP_FIN_WAIT1: {
6047 		int tmo;
6048 
6049 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6050 		 * Fast Open socket and this is the first acceptable
6051 		 * ACK we have received, this would have acknowledged
6052 		 * our SYNACK so stop the SYNACK timer.
6053 		 */
6054 		if (req) {
6055 			/* We no longer need the request sock. */
6056 			reqsk_fastopen_remove(sk, req, false);
6057 			tcp_rearm_rto(sk);
6058 		}
6059 		if (tp->snd_una != tp->write_seq)
6060 			break;
6061 
6062 		tcp_set_state(sk, TCP_FIN_WAIT2);
6063 		sk->sk_shutdown |= SEND_SHUTDOWN;
6064 
6065 		sk_dst_confirm(sk);
6066 
6067 		if (!sock_flag(sk, SOCK_DEAD)) {
6068 			/* Wake up lingering close() */
6069 			sk->sk_state_change(sk);
6070 			break;
6071 		}
6072 
6073 		if (tp->linger2 < 0) {
6074 			tcp_done(sk);
6075 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6076 			return 1;
6077 		}
6078 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6079 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6080 			/* Receive out of order FIN after close() */
6081 			if (tp->syn_fastopen && th->fin)
6082 				tcp_fastopen_active_disable(sk);
6083 			tcp_done(sk);
6084 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6085 			return 1;
6086 		}
6087 
6088 		tmo = tcp_fin_time(sk);
6089 		if (tmo > TCP_TIMEWAIT_LEN) {
6090 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6091 		} else if (th->fin || sock_owned_by_user(sk)) {
6092 			/* Bad case. We could lose such FIN otherwise.
6093 			 * It is not a big problem, but it looks confusing
6094 			 * and not so rare event. We still can lose it now,
6095 			 * if it spins in bh_lock_sock(), but it is really
6096 			 * marginal case.
6097 			 */
6098 			inet_csk_reset_keepalive_timer(sk, tmo);
6099 		} else {
6100 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6101 			goto discard;
6102 		}
6103 		break;
6104 	}
6105 
6106 	case TCP_CLOSING:
6107 		if (tp->snd_una == tp->write_seq) {
6108 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6109 			goto discard;
6110 		}
6111 		break;
6112 
6113 	case TCP_LAST_ACK:
6114 		if (tp->snd_una == tp->write_seq) {
6115 			tcp_update_metrics(sk);
6116 			tcp_done(sk);
6117 			goto discard;
6118 		}
6119 		break;
6120 	}
6121 
6122 	/* step 6: check the URG bit */
6123 	tcp_urg(sk, skb, th);
6124 
6125 	/* step 7: process the segment text */
6126 	switch (sk->sk_state) {
6127 	case TCP_CLOSE_WAIT:
6128 	case TCP_CLOSING:
6129 	case TCP_LAST_ACK:
6130 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6131 			break;
6132 		/* fall through */
6133 	case TCP_FIN_WAIT1:
6134 	case TCP_FIN_WAIT2:
6135 		/* RFC 793 says to queue data in these states,
6136 		 * RFC 1122 says we MUST send a reset.
6137 		 * BSD 4.4 also does reset.
6138 		 */
6139 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6140 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6141 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6142 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6143 				tcp_reset(sk);
6144 				return 1;
6145 			}
6146 		}
6147 		/* Fall through */
6148 	case TCP_ESTABLISHED:
6149 		tcp_data_queue(sk, skb);
6150 		queued = 1;
6151 		break;
6152 	}
6153 
6154 	/* tcp_data could move socket to TIME-WAIT */
6155 	if (sk->sk_state != TCP_CLOSE) {
6156 		tcp_data_snd_check(sk);
6157 		tcp_ack_snd_check(sk);
6158 	}
6159 
6160 	if (!queued) {
6161 discard:
6162 		tcp_drop(sk, skb);
6163 	}
6164 	return 0;
6165 }
6166 EXPORT_SYMBOL(tcp_rcv_state_process);
6167 
6168 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6169 {
6170 	struct inet_request_sock *ireq = inet_rsk(req);
6171 
6172 	if (family == AF_INET)
6173 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6174 				    &ireq->ir_rmt_addr, port);
6175 #if IS_ENABLED(CONFIG_IPV6)
6176 	else if (family == AF_INET6)
6177 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6178 				    &ireq->ir_v6_rmt_addr, port);
6179 #endif
6180 }
6181 
6182 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6183  *
6184  * If we receive a SYN packet with these bits set, it means a
6185  * network is playing bad games with TOS bits. In order to
6186  * avoid possible false congestion notifications, we disable
6187  * TCP ECN negotiation.
6188  *
6189  * Exception: tcp_ca wants ECN. This is required for DCTCP
6190  * congestion control: Linux DCTCP asserts ECT on all packets,
6191  * including SYN, which is most optimal solution; however,
6192  * others, such as FreeBSD do not.
6193  */
6194 static void tcp_ecn_create_request(struct request_sock *req,
6195 				   const struct sk_buff *skb,
6196 				   const struct sock *listen_sk,
6197 				   const struct dst_entry *dst)
6198 {
6199 	const struct tcphdr *th = tcp_hdr(skb);
6200 	const struct net *net = sock_net(listen_sk);
6201 	bool th_ecn = th->ece && th->cwr;
6202 	bool ect, ecn_ok;
6203 	u32 ecn_ok_dst;
6204 
6205 	if (!th_ecn)
6206 		return;
6207 
6208 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6209 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6210 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6211 
6212 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6213 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6214 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6215 		inet_rsk(req)->ecn_ok = 1;
6216 }
6217 
6218 static void tcp_openreq_init(struct request_sock *req,
6219 			     const struct tcp_options_received *rx_opt,
6220 			     struct sk_buff *skb, const struct sock *sk)
6221 {
6222 	struct inet_request_sock *ireq = inet_rsk(req);
6223 
6224 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6225 	req->cookie_ts = 0;
6226 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6227 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6228 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6229 	tcp_rsk(req)->last_oow_ack_time = 0;
6230 	req->mss = rx_opt->mss_clamp;
6231 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6232 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6233 	ireq->sack_ok = rx_opt->sack_ok;
6234 	ireq->snd_wscale = rx_opt->snd_wscale;
6235 	ireq->wscale_ok = rx_opt->wscale_ok;
6236 	ireq->acked = 0;
6237 	ireq->ecn_ok = 0;
6238 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6239 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6240 	ireq->ir_mark = inet_request_mark(sk, skb);
6241 #if IS_ENABLED(CONFIG_SMC)
6242 	ireq->smc_ok = rx_opt->smc_ok;
6243 #endif
6244 }
6245 
6246 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6247 				      struct sock *sk_listener,
6248 				      bool attach_listener)
6249 {
6250 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6251 					       attach_listener);
6252 
6253 	if (req) {
6254 		struct inet_request_sock *ireq = inet_rsk(req);
6255 
6256 		ireq->ireq_opt = NULL;
6257 #if IS_ENABLED(CONFIG_IPV6)
6258 		ireq->pktopts = NULL;
6259 #endif
6260 		atomic64_set(&ireq->ir_cookie, 0);
6261 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6262 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6263 		ireq->ireq_family = sk_listener->sk_family;
6264 	}
6265 
6266 	return req;
6267 }
6268 EXPORT_SYMBOL(inet_reqsk_alloc);
6269 
6270 /*
6271  * Return true if a syncookie should be sent
6272  */
6273 static bool tcp_syn_flood_action(const struct sock *sk,
6274 				 const struct sk_buff *skb,
6275 				 const char *proto)
6276 {
6277 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6278 	const char *msg = "Dropping request";
6279 	bool want_cookie = false;
6280 	struct net *net = sock_net(sk);
6281 
6282 #ifdef CONFIG_SYN_COOKIES
6283 	if (net->ipv4.sysctl_tcp_syncookies) {
6284 		msg = "Sending cookies";
6285 		want_cookie = true;
6286 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6287 	} else
6288 #endif
6289 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6290 
6291 	if (!queue->synflood_warned &&
6292 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6293 	    xchg(&queue->synflood_warned, 1) == 0)
6294 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6295 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6296 
6297 	return want_cookie;
6298 }
6299 
6300 static void tcp_reqsk_record_syn(const struct sock *sk,
6301 				 struct request_sock *req,
6302 				 const struct sk_buff *skb)
6303 {
6304 	if (tcp_sk(sk)->save_syn) {
6305 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6306 		u32 *copy;
6307 
6308 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6309 		if (copy) {
6310 			copy[0] = len;
6311 			memcpy(&copy[1], skb_network_header(skb), len);
6312 			req->saved_syn = copy;
6313 		}
6314 	}
6315 }
6316 
6317 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6318 		     const struct tcp_request_sock_ops *af_ops,
6319 		     struct sock *sk, struct sk_buff *skb)
6320 {
6321 	struct tcp_fastopen_cookie foc = { .len = -1 };
6322 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6323 	struct tcp_options_received tmp_opt;
6324 	struct tcp_sock *tp = tcp_sk(sk);
6325 	struct net *net = sock_net(sk);
6326 	struct sock *fastopen_sk = NULL;
6327 	struct request_sock *req;
6328 	bool want_cookie = false;
6329 	struct dst_entry *dst;
6330 	struct flowi fl;
6331 
6332 	/* TW buckets are converted to open requests without
6333 	 * limitations, they conserve resources and peer is
6334 	 * evidently real one.
6335 	 */
6336 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6337 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6338 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6339 		if (!want_cookie)
6340 			goto drop;
6341 	}
6342 
6343 	if (sk_acceptq_is_full(sk)) {
6344 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6345 		goto drop;
6346 	}
6347 
6348 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6349 	if (!req)
6350 		goto drop;
6351 
6352 	tcp_rsk(req)->af_specific = af_ops;
6353 	tcp_rsk(req)->ts_off = 0;
6354 
6355 	tcp_clear_options(&tmp_opt);
6356 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6357 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6358 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6359 			  want_cookie ? NULL : &foc);
6360 
6361 	if (want_cookie && !tmp_opt.saw_tstamp)
6362 		tcp_clear_options(&tmp_opt);
6363 
6364 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6365 		tmp_opt.smc_ok = 0;
6366 
6367 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6368 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6369 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6370 
6371 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6372 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6373 
6374 	af_ops->init_req(req, sk, skb);
6375 
6376 	if (security_inet_conn_request(sk, skb, req))
6377 		goto drop_and_free;
6378 
6379 	if (tmp_opt.tstamp_ok)
6380 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6381 
6382 	dst = af_ops->route_req(sk, &fl, req);
6383 	if (!dst)
6384 		goto drop_and_free;
6385 
6386 	if (!want_cookie && !isn) {
6387 		/* Kill the following clause, if you dislike this way. */
6388 		if (!net->ipv4.sysctl_tcp_syncookies &&
6389 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6390 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6391 		    !tcp_peer_is_proven(req, dst)) {
6392 			/* Without syncookies last quarter of
6393 			 * backlog is filled with destinations,
6394 			 * proven to be alive.
6395 			 * It means that we continue to communicate
6396 			 * to destinations, already remembered
6397 			 * to the moment of synflood.
6398 			 */
6399 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6400 				    rsk_ops->family);
6401 			goto drop_and_release;
6402 		}
6403 
6404 		isn = af_ops->init_seq(skb);
6405 	}
6406 
6407 	tcp_ecn_create_request(req, skb, sk, dst);
6408 
6409 	if (want_cookie) {
6410 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6411 		req->cookie_ts = tmp_opt.tstamp_ok;
6412 		if (!tmp_opt.tstamp_ok)
6413 			inet_rsk(req)->ecn_ok = 0;
6414 	}
6415 
6416 	tcp_rsk(req)->snt_isn = isn;
6417 	tcp_rsk(req)->txhash = net_tx_rndhash();
6418 	tcp_openreq_init_rwin(req, sk, dst);
6419 	if (!want_cookie) {
6420 		tcp_reqsk_record_syn(sk, req, skb);
6421 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6422 	}
6423 	if (fastopen_sk) {
6424 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6425 				    &foc, TCP_SYNACK_FASTOPEN);
6426 		/* Add the child socket directly into the accept queue */
6427 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6428 		sk->sk_data_ready(sk);
6429 		bh_unlock_sock(fastopen_sk);
6430 		sock_put(fastopen_sk);
6431 	} else {
6432 		tcp_rsk(req)->tfo_listener = false;
6433 		if (!want_cookie)
6434 			inet_csk_reqsk_queue_hash_add(sk, req,
6435 				tcp_timeout_init((struct sock *)req));
6436 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6437 				    !want_cookie ? TCP_SYNACK_NORMAL :
6438 						   TCP_SYNACK_COOKIE);
6439 		if (want_cookie) {
6440 			reqsk_free(req);
6441 			return 0;
6442 		}
6443 	}
6444 	reqsk_put(req);
6445 	return 0;
6446 
6447 drop_and_release:
6448 	dst_release(dst);
6449 drop_and_free:
6450 	reqsk_free(req);
6451 drop:
6452 	tcp_listendrop(sk);
6453 	return 0;
6454 }
6455 EXPORT_SYMBOL(tcp_conn_request);
6456