xref: /linux/net/ipv4/tcp_input.c (revision ee61c10cd4820e8844dba4315f2d1e522f1f3b98)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <linux/bitops.h>
74 #include <net/dst.h>
75 #include <net/tcp.h>
76 #include <net/tcp_ecn.h>
77 #include <net/proto_memory.h>
78 #include <net/inet_common.h>
79 #include <linux/ipsec.h>
80 #include <linux/unaligned.h>
81 #include <linux/errqueue.h>
82 #include <trace/events/tcp.h>
83 #include <linux/jump_label_ratelimit.h>
84 #include <net/busy_poll.h>
85 #include <net/mptcp.h>
86 
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 
89 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
90 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
91 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
92 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
93 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
94 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
95 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
96 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
97 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
98 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
99 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
100 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
101 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
102 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
103 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
104 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
105 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
106 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
107 #define FLAG_TS_PROGRESS	0x40000 /* Positive timestamp delta */
108 
109 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
112 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
113 
114 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
115 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
116 
117 #define REXMIT_NONE	0 /* no loss recovery to do */
118 #define REXMIT_LOST	1 /* retransmit packets marked lost */
119 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
120 
121 #if IS_ENABLED(CONFIG_TLS_DEVICE)
122 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
123 
124 void clean_acked_data_enable(struct tcp_sock *tp,
125 			     void (*cad)(struct sock *sk, u32 ack_seq))
126 {
127 	tp->tcp_clean_acked = cad;
128 	static_branch_deferred_inc(&clean_acked_data_enabled);
129 }
130 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
131 
132 void clean_acked_data_disable(struct tcp_sock *tp)
133 {
134 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
135 	tp->tcp_clean_acked = NULL;
136 }
137 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
138 
139 void clean_acked_data_flush(void)
140 {
141 	static_key_deferred_flush(&clean_acked_data_enabled);
142 }
143 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
144 #endif
145 
146 #ifdef CONFIG_CGROUP_BPF
147 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
148 {
149 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
150 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
151 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
152 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
153 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
154 	struct bpf_sock_ops_kern sock_ops;
155 
156 	if (likely(!unknown_opt && !parse_all_opt))
157 		return;
158 
159 	/* The skb will be handled in the
160 	 * bpf_skops_established() or
161 	 * bpf_skops_write_hdr_opt().
162 	 */
163 	switch (sk->sk_state) {
164 	case TCP_SYN_RECV:
165 	case TCP_SYN_SENT:
166 	case TCP_LISTEN:
167 		return;
168 	}
169 
170 	sock_owned_by_me(sk);
171 
172 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
173 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
174 	sock_ops.is_fullsock = 1;
175 	sock_ops.is_locked_tcp_sock = 1;
176 	sock_ops.sk = sk;
177 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
178 
179 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
180 }
181 
182 static void bpf_skops_established(struct sock *sk, int bpf_op,
183 				  struct sk_buff *skb)
184 {
185 	struct bpf_sock_ops_kern sock_ops;
186 
187 	sock_owned_by_me(sk);
188 
189 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
190 	sock_ops.op = bpf_op;
191 	sock_ops.is_fullsock = 1;
192 	sock_ops.is_locked_tcp_sock = 1;
193 	sock_ops.sk = sk;
194 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
195 	if (skb)
196 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
197 
198 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
199 }
200 #else
201 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
202 {
203 }
204 
205 static void bpf_skops_established(struct sock *sk, int bpf_op,
206 				  struct sk_buff *skb)
207 {
208 }
209 #endif
210 
211 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
212 				    unsigned int len)
213 {
214 	struct net_device *dev;
215 
216 	rcu_read_lock();
217 	dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
218 	if (!dev || len >= READ_ONCE(dev->mtu))
219 		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
220 			dev ? dev->name : "Unknown driver");
221 	rcu_read_unlock();
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		/* Note: divides are still a bit expensive.
241 		 * For the moment, only adjust scaling_ratio
242 		 * when we update icsk_ack.rcv_mss.
243 		 */
244 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246 			u8 old_ratio = tcp_sk(sk)->scaling_ratio;
247 
248 			do_div(val, skb->truesize);
249 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
250 
251 			if (old_ratio != tcp_sk(sk)->scaling_ratio) {
252 				struct tcp_sock *tp = tcp_sk(sk);
253 
254 				val = tcp_win_from_space(sk, sk->sk_rcvbuf);
255 				tcp_set_window_clamp(sk, val);
256 
257 				if (tp->window_clamp < tp->rcvq_space.space)
258 					tp->rcvq_space.space = tp->window_clamp;
259 			}
260 		}
261 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
262 					       tcp_sk(sk)->advmss);
263 		/* Account for possibly-removed options */
264 		DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
265 				tcp_gro_dev_warn, sk, skb, len);
266 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
267 		 * set then it is likely the end of an application write. So
268 		 * more data may not be arriving soon, and yet the data sender
269 		 * may be waiting for an ACK if cwnd-bound or using TX zero
270 		 * copy. So we set ICSK_ACK_PUSHED here so that
271 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
272 		 * reads all of the data and is not ping-pong. If len > MSS
273 		 * then this logic does not matter (and does not hurt) because
274 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
275 		 * reads data and there is more than an MSS of unACKed data.
276 		 */
277 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
278 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
279 	} else {
280 		/* Otherwise, we make more careful check taking into account,
281 		 * that SACKs block is variable.
282 		 *
283 		 * "len" is invariant segment length, including TCP header.
284 		 */
285 		len += skb->data - skb_transport_header(skb);
286 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
287 		    /* If PSH is not set, packet should be
288 		     * full sized, provided peer TCP is not badly broken.
289 		     * This observation (if it is correct 8)) allows
290 		     * to handle super-low mtu links fairly.
291 		     */
292 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
293 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
294 			/* Subtract also invariant (if peer is RFC compliant),
295 			 * tcp header plus fixed timestamp option length.
296 			 * Resulting "len" is MSS free of SACK jitter.
297 			 */
298 			len -= tcp_sk(sk)->tcp_header_len;
299 			icsk->icsk_ack.last_seg_size = len;
300 			if (len == lss) {
301 				icsk->icsk_ack.rcv_mss = len;
302 				return;
303 			}
304 		}
305 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
306 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
307 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
308 	}
309 }
310 
311 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
312 {
313 	struct inet_connection_sock *icsk = inet_csk(sk);
314 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
315 
316 	if (quickacks == 0)
317 		quickacks = 2;
318 	quickacks = min(quickacks, max_quickacks);
319 	if (quickacks > icsk->icsk_ack.quick)
320 		icsk->icsk_ack.quick = quickacks;
321 }
322 
323 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
324 {
325 	struct inet_connection_sock *icsk = inet_csk(sk);
326 
327 	tcp_incr_quickack(sk, max_quickacks);
328 	inet_csk_exit_pingpong_mode(sk);
329 	icsk->icsk_ack.ato = TCP_ATO_MIN;
330 }
331 
332 /* Send ACKs quickly, if "quick" count is not exhausted
333  * and the session is not interactive.
334  */
335 
336 static bool tcp_in_quickack_mode(struct sock *sk)
337 {
338 	const struct inet_connection_sock *icsk = inet_csk(sk);
339 
340 	return icsk->icsk_ack.dst_quick_ack ||
341 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
342 }
343 
344 static void tcp_data_ecn_check(struct sock *sk, const struct sk_buff *skb)
345 {
346 	struct tcp_sock *tp = tcp_sk(sk);
347 
348 	if (tcp_ecn_disabled(tp))
349 		return;
350 
351 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
352 	case INET_ECN_NOT_ECT:
353 		/* Funny extension: if ECT is not set on a segment,
354 		 * and we already seen ECT on a previous segment,
355 		 * it is probably a retransmit.
356 		 */
357 		if (tp->ecn_flags & TCP_ECN_SEEN)
358 			tcp_enter_quickack_mode(sk, 2);
359 		break;
360 	case INET_ECN_CE:
361 		if (tcp_ca_needs_ecn(sk))
362 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
363 
364 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR) &&
365 		    tcp_ecn_mode_rfc3168(tp)) {
366 			/* Better not delay acks, sender can have a very low cwnd */
367 			tcp_enter_quickack_mode(sk, 2);
368 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
369 		}
370 		/* As for RFC3168 ECN, the TCP_ECN_SEEN flag is set by
371 		 * tcp_data_ecn_check() when the ECN codepoint of
372 		 * received TCP data contains ECT(0), ECT(1), or CE.
373 		 */
374 		if (!tcp_ecn_mode_rfc3168(tp))
375 			break;
376 		tp->ecn_flags |= TCP_ECN_SEEN;
377 		break;
378 	default:
379 		if (tcp_ca_needs_ecn(sk))
380 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
381 		if (!tcp_ecn_mode_rfc3168(tp))
382 			break;
383 		tp->ecn_flags |= TCP_ECN_SEEN;
384 		break;
385 	}
386 }
387 
388 /* Returns true if the byte counters can be used */
389 static bool tcp_accecn_process_option(struct tcp_sock *tp,
390 				      const struct sk_buff *skb,
391 				      u32 delivered_bytes, int flag)
392 {
393 	u8 estimate_ecnfield = tp->est_ecnfield;
394 	bool ambiguous_ecn_bytes_incr = false;
395 	bool first_changed = false;
396 	unsigned int optlen;
397 	bool order1, res;
398 	unsigned int i;
399 	u8 *ptr;
400 
401 	if (tcp_accecn_opt_fail_recv(tp))
402 		return false;
403 
404 	if (!(flag & FLAG_SLOWPATH) || !tp->rx_opt.accecn) {
405 		if (!tp->saw_accecn_opt) {
406 			/* Too late to enable after this point due to
407 			 * potential counter wraps
408 			 */
409 			if (tp->bytes_sent >= (1 << 23) - 1) {
410 				u8 saw_opt = TCP_ACCECN_OPT_FAIL_SEEN;
411 
412 				tcp_accecn_saw_opt_fail_recv(tp, saw_opt);
413 			}
414 			return false;
415 		}
416 
417 		if (estimate_ecnfield) {
418 			u8 ecnfield = estimate_ecnfield - 1;
419 
420 			tp->delivered_ecn_bytes[ecnfield] += delivered_bytes;
421 			return true;
422 		}
423 		return false;
424 	}
425 
426 	ptr = skb_transport_header(skb) + tp->rx_opt.accecn;
427 	optlen = ptr[1] - 2;
428 	if (WARN_ON_ONCE(ptr[0] != TCPOPT_ACCECN0 && ptr[0] != TCPOPT_ACCECN1))
429 		return false;
430 	order1 = (ptr[0] == TCPOPT_ACCECN1);
431 	ptr += 2;
432 
433 	if (tp->saw_accecn_opt < TCP_ACCECN_OPT_COUNTER_SEEN) {
434 		tp->saw_accecn_opt = tcp_accecn_option_init(skb,
435 							    tp->rx_opt.accecn);
436 		if (tp->saw_accecn_opt == TCP_ACCECN_OPT_FAIL_SEEN)
437 			tcp_accecn_fail_mode_set(tp, TCP_ACCECN_OPT_FAIL_RECV);
438 	}
439 
440 	res = !!estimate_ecnfield;
441 	for (i = 0; i < 3; i++) {
442 		u32 init_offset;
443 		u8 ecnfield;
444 		s32 delta;
445 		u32 *cnt;
446 
447 		if (optlen < TCPOLEN_ACCECN_PERFIELD)
448 			break;
449 
450 		ecnfield = tcp_accecn_optfield_to_ecnfield(i, order1);
451 		init_offset = tcp_accecn_field_init_offset(ecnfield);
452 		cnt = &tp->delivered_ecn_bytes[ecnfield - 1];
453 		delta = tcp_update_ecn_bytes(cnt, ptr, init_offset);
454 		if (delta && delta < 0) {
455 			res = false;
456 			ambiguous_ecn_bytes_incr = true;
457 		}
458 		if (delta && ecnfield != estimate_ecnfield) {
459 			if (!first_changed) {
460 				tp->est_ecnfield = ecnfield;
461 				first_changed = true;
462 			} else {
463 				res = false;
464 				ambiguous_ecn_bytes_incr = true;
465 			}
466 		}
467 
468 		optlen -= TCPOLEN_ACCECN_PERFIELD;
469 		ptr += TCPOLEN_ACCECN_PERFIELD;
470 	}
471 	if (ambiguous_ecn_bytes_incr)
472 		tp->est_ecnfield = 0;
473 
474 	return res;
475 }
476 
477 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count)
478 {
479 	tp->delivered_ce += ecn_count;
480 }
481 
482 /* Updates the delivered and delivered_ce counts */
483 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
484 				bool ece_ack)
485 {
486 	tp->delivered += delivered;
487 	if (tcp_ecn_mode_rfc3168(tp) && ece_ack)
488 		tcp_count_delivered_ce(tp, delivered);
489 }
490 
491 /* Returns the ECN CE delta */
492 static u32 __tcp_accecn_process(struct sock *sk, const struct sk_buff *skb,
493 				u32 delivered_pkts, u32 delivered_bytes,
494 				int flag)
495 {
496 	u32 old_ceb = tcp_sk(sk)->delivered_ecn_bytes[INET_ECN_CE - 1];
497 	const struct tcphdr *th = tcp_hdr(skb);
498 	struct tcp_sock *tp = tcp_sk(sk);
499 	u32 delta, safe_delta, d_ceb;
500 	bool opt_deltas_valid;
501 	u32 corrected_ace;
502 
503 	/* Reordered ACK or uncertain due to lack of data to send and ts */
504 	if (!(flag & (FLAG_FORWARD_PROGRESS | FLAG_TS_PROGRESS)))
505 		return 0;
506 
507 	opt_deltas_valid = tcp_accecn_process_option(tp, skb,
508 						     delivered_bytes, flag);
509 
510 	if (!(flag & FLAG_SLOWPATH)) {
511 		/* AccECN counter might overflow on large ACKs */
512 		if (delivered_pkts <= TCP_ACCECN_CEP_ACE_MASK)
513 			return 0;
514 	}
515 
516 	/* ACE field is not available during handshake */
517 	if (flag & FLAG_SYN_ACKED)
518 		return 0;
519 
520 	if (tp->received_ce_pending >= TCP_ACCECN_ACE_MAX_DELTA)
521 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
522 
523 	corrected_ace = tcp_accecn_ace(th) - TCP_ACCECN_CEP_INIT_OFFSET;
524 	delta = (corrected_ace - tp->delivered_ce) & TCP_ACCECN_CEP_ACE_MASK;
525 	if (delivered_pkts <= TCP_ACCECN_CEP_ACE_MASK)
526 		return delta;
527 
528 	safe_delta = delivered_pkts -
529 		     ((delivered_pkts - delta) & TCP_ACCECN_CEP_ACE_MASK);
530 
531 	if (opt_deltas_valid) {
532 		d_ceb = tp->delivered_ecn_bytes[INET_ECN_CE - 1] - old_ceb;
533 		if (!d_ceb)
534 			return delta;
535 
536 		if ((delivered_pkts >= (TCP_ACCECN_CEP_ACE_MASK + 1) * 2) &&
537 		    (tcp_is_sack(tp) ||
538 		     ((1 << inet_csk(sk)->icsk_ca_state) &
539 		      (TCPF_CA_Open | TCPF_CA_CWR)))) {
540 			u32 est_d_cep;
541 
542 			if (delivered_bytes <= d_ceb)
543 				return safe_delta;
544 
545 			est_d_cep = DIV_ROUND_UP_ULL((u64)d_ceb *
546 						     delivered_pkts,
547 						     delivered_bytes);
548 			return min(safe_delta,
549 				   delta +
550 				   (est_d_cep & ~TCP_ACCECN_CEP_ACE_MASK));
551 		}
552 
553 		if (d_ceb > delta * tp->mss_cache)
554 			return safe_delta;
555 		if (d_ceb <
556 		    safe_delta * tp->mss_cache >> TCP_ACCECN_SAFETY_SHIFT)
557 			return delta;
558 	}
559 
560 	return safe_delta;
561 }
562 
563 static u32 tcp_accecn_process(struct sock *sk, const struct sk_buff *skb,
564 			      u32 delivered_pkts, u32 delivered_bytes,
565 			      int *flag)
566 {
567 	struct tcp_sock *tp = tcp_sk(sk);
568 	u32 delta;
569 
570 	delta = __tcp_accecn_process(sk, skb, delivered_pkts,
571 				     delivered_bytes, *flag);
572 	if (delta > 0) {
573 		tcp_count_delivered_ce(tp, delta);
574 		*flag |= FLAG_ECE;
575 		/* Recalculate header predictor */
576 		if (tp->pred_flags)
577 			tcp_fast_path_on(tp);
578 	}
579 	return delta;
580 }
581 
582 /* Buffer size and advertised window tuning.
583  *
584  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
585  */
586 
587 static void tcp_sndbuf_expand(struct sock *sk)
588 {
589 	const struct tcp_sock *tp = tcp_sk(sk);
590 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
591 	int sndmem, per_mss;
592 	u32 nr_segs;
593 
594 	/* Worst case is non GSO/TSO : each frame consumes one skb
595 	 * and skb->head is kmalloced using power of two area of memory
596 	 */
597 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
598 		  MAX_TCP_HEADER +
599 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
600 
601 	per_mss = roundup_pow_of_two(per_mss) +
602 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
603 
604 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
605 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
606 
607 	/* Fast Recovery (RFC 5681 3.2) :
608 	 * Cubic needs 1.7 factor, rounded to 2 to include
609 	 * extra cushion (application might react slowly to EPOLLOUT)
610 	 */
611 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
612 	sndmem *= nr_segs * per_mss;
613 
614 	if (sk->sk_sndbuf < sndmem)
615 		WRITE_ONCE(sk->sk_sndbuf,
616 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
617 }
618 
619 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
620  *
621  * All tcp_full_space() is split to two parts: "network" buffer, allocated
622  * forward and advertised in receiver window (tp->rcv_wnd) and
623  * "application buffer", required to isolate scheduling/application
624  * latencies from network.
625  * window_clamp is maximal advertised window. It can be less than
626  * tcp_full_space(), in this case tcp_full_space() - window_clamp
627  * is reserved for "application" buffer. The less window_clamp is
628  * the smoother our behaviour from viewpoint of network, but the lower
629  * throughput and the higher sensitivity of the connection to losses. 8)
630  *
631  * rcv_ssthresh is more strict window_clamp used at "slow start"
632  * phase to predict further behaviour of this connection.
633  * It is used for two goals:
634  * - to enforce header prediction at sender, even when application
635  *   requires some significant "application buffer". It is check #1.
636  * - to prevent pruning of receive queue because of misprediction
637  *   of receiver window. Check #2.
638  *
639  * The scheme does not work when sender sends good segments opening
640  * window and then starts to feed us spaghetti. But it should work
641  * in common situations. Otherwise, we have to rely on queue collapsing.
642  */
643 
644 /* Slow part of check#2. */
645 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
646 			     unsigned int skbtruesize)
647 {
648 	const struct tcp_sock *tp = tcp_sk(sk);
649 	/* Optimize this! */
650 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
651 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
652 
653 	while (tp->rcv_ssthresh <= window) {
654 		if (truesize <= skb->len)
655 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
656 
657 		truesize >>= 1;
658 		window >>= 1;
659 	}
660 	return 0;
661 }
662 
663 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
664  * can play nice with us, as sk_buff and skb->head might be either
665  * freed or shared with up to MAX_SKB_FRAGS segments.
666  * Only give a boost to drivers using page frag(s) to hold the frame(s),
667  * and if no payload was pulled in skb->head before reaching us.
668  */
669 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
670 {
671 	u32 truesize = skb->truesize;
672 
673 	if (adjust && !skb_headlen(skb)) {
674 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
675 		/* paranoid check, some drivers might be buggy */
676 		if (unlikely((int)truesize < (int)skb->len))
677 			truesize = skb->truesize;
678 	}
679 	return truesize;
680 }
681 
682 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
683 			    bool adjust)
684 {
685 	struct tcp_sock *tp = tcp_sk(sk);
686 	int room;
687 
688 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
689 
690 	if (room <= 0)
691 		return;
692 
693 	/* Check #1 */
694 	if (!tcp_under_memory_pressure(sk)) {
695 		unsigned int truesize = truesize_adjust(adjust, skb);
696 		int incr;
697 
698 		/* Check #2. Increase window, if skb with such overhead
699 		 * will fit to rcvbuf in future.
700 		 */
701 		if (tcp_win_from_space(sk, truesize) <= skb->len)
702 			incr = 2 * tp->advmss;
703 		else
704 			incr = __tcp_grow_window(sk, skb, truesize);
705 
706 		if (incr) {
707 			incr = max_t(int, incr, 2 * skb->len);
708 			tp->rcv_ssthresh += min(room, incr);
709 			inet_csk(sk)->icsk_ack.quick |= 1;
710 		}
711 	} else {
712 		/* Under pressure:
713 		 * Adjust rcv_ssthresh according to reserved mem
714 		 */
715 		tcp_adjust_rcv_ssthresh(sk);
716 	}
717 }
718 
719 /* 3. Try to fixup all. It is made immediately after connection enters
720  *    established state.
721  */
722 static void tcp_init_buffer_space(struct sock *sk)
723 {
724 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
725 	struct tcp_sock *tp = tcp_sk(sk);
726 	int maxwin;
727 
728 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
729 		tcp_sndbuf_expand(sk);
730 
731 	tcp_mstamp_refresh(tp);
732 	tp->rcvq_space.time = tp->tcp_mstamp;
733 	tp->rcvq_space.seq = tp->copied_seq;
734 
735 	maxwin = tcp_full_space(sk);
736 
737 	if (tp->window_clamp >= maxwin) {
738 		WRITE_ONCE(tp->window_clamp, maxwin);
739 
740 		if (tcp_app_win && maxwin > 4 * tp->advmss)
741 			WRITE_ONCE(tp->window_clamp,
742 				   max(maxwin - (maxwin >> tcp_app_win),
743 				       4 * tp->advmss));
744 	}
745 
746 	/* Force reservation of one segment. */
747 	if (tcp_app_win &&
748 	    tp->window_clamp > 2 * tp->advmss &&
749 	    tp->window_clamp + tp->advmss > maxwin)
750 		WRITE_ONCE(tp->window_clamp,
751 			   max(2 * tp->advmss, maxwin - tp->advmss));
752 
753 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
754 	tp->snd_cwnd_stamp = tcp_jiffies32;
755 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
756 				    (u32)TCP_INIT_CWND * tp->advmss);
757 }
758 
759 /* 4. Recalculate window clamp after socket hit its memory bounds. */
760 static void tcp_clamp_window(struct sock *sk)
761 {
762 	struct tcp_sock *tp = tcp_sk(sk);
763 	struct inet_connection_sock *icsk = inet_csk(sk);
764 	struct net *net = sock_net(sk);
765 	int rmem2;
766 
767 	icsk->icsk_ack.quick = 0;
768 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
769 
770 	if (sk->sk_rcvbuf < rmem2 &&
771 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
772 	    !tcp_under_memory_pressure(sk) &&
773 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
774 		WRITE_ONCE(sk->sk_rcvbuf,
775 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
776 	}
777 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
778 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
779 }
780 
781 /* Initialize RCV_MSS value.
782  * RCV_MSS is an our guess about MSS used by the peer.
783  * We haven't any direct information about the MSS.
784  * It's better to underestimate the RCV_MSS rather than overestimate.
785  * Overestimations make us ACKing less frequently than needed.
786  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
787  */
788 void tcp_initialize_rcv_mss(struct sock *sk)
789 {
790 	const struct tcp_sock *tp = tcp_sk(sk);
791 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
792 
793 	hint = min(hint, tp->rcv_wnd / 2);
794 	hint = min(hint, TCP_MSS_DEFAULT);
795 	hint = max(hint, TCP_MIN_MSS);
796 
797 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
798 }
799 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss);
800 
801 /* Receiver "autotuning" code.
802  *
803  * The algorithm for RTT estimation w/o timestamps is based on
804  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
805  * <https://public.lanl.gov/radiant/pubs.html#DRS>
806  *
807  * More detail on this code can be found at
808  * <http://staff.psc.edu/jheffner/>,
809  * though this reference is out of date.  A new paper
810  * is pending.
811  */
812 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
813 {
814 	u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us;
815 	long m = sample << 3;
816 
817 	if (old_sample == 0 || m < old_sample) {
818 		new_sample = m;
819 	} else {
820 		/* If we sample in larger samples in the non-timestamp
821 		 * case, we could grossly overestimate the RTT especially
822 		 * with chatty applications or bulk transfer apps which
823 		 * are stalled on filesystem I/O.
824 		 *
825 		 * Also, since we are only going for a minimum in the
826 		 * non-timestamp case, we do not smooth things out
827 		 * else with timestamps disabled convergence takes too
828 		 * long.
829 		 */
830 		if (win_dep)
831 			return;
832 		/* Do not use this sample if receive queue is not empty. */
833 		if (tp->rcv_nxt != tp->copied_seq)
834 			return;
835 		new_sample = old_sample - (old_sample >> 3) + sample;
836 	}
837 
838 	tp->rcv_rtt_est.rtt_us = new_sample;
839 }
840 
841 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
842 {
843 	u32 delta_us;
844 
845 	if (tp->rcv_rtt_est.time == 0)
846 		goto new_measure;
847 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
848 		return;
849 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
850 	if (!delta_us)
851 		delta_us = 1;
852 	tcp_rcv_rtt_update(tp, delta_us, 1);
853 
854 new_measure:
855 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
856 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
857 }
858 
859 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp, u32 min_delta)
860 {
861 	u32 delta, delta_us;
862 
863 	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
864 	if (tp->tcp_usec_ts)
865 		return delta;
866 
867 	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
868 		if (!delta)
869 			delta = min_delta;
870 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
871 		return delta_us;
872 	}
873 	return -1;
874 }
875 
876 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
877 					  const struct sk_buff *skb)
878 {
879 	struct tcp_sock *tp = tcp_sk(sk);
880 
881 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
882 		return;
883 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
884 
885 	if (TCP_SKB_CB(skb)->end_seq -
886 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
887 		s32 delta = tcp_rtt_tsopt_us(tp, 0);
888 
889 		if (delta > 0)
890 			tcp_rcv_rtt_update(tp, delta, 0);
891 	}
892 }
893 
894 void tcp_rcvbuf_grow(struct sock *sk, u32 newval)
895 {
896 	const struct net *net = sock_net(sk);
897 	struct tcp_sock *tp = tcp_sk(sk);
898 	u32 rcvwin, rcvbuf, cap, oldval;
899 	u64 grow;
900 
901 	oldval = tp->rcvq_space.space;
902 	tp->rcvq_space.space = newval;
903 
904 	if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
905 	    (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
906 		return;
907 
908 	/* DRS is always one RTT late. */
909 	rcvwin = newval << 1;
910 
911 	/* slow start: allow the sender to double its rate. */
912 	grow = (u64)rcvwin * (newval - oldval);
913 	do_div(grow, oldval);
914 	rcvwin += grow << 1;
915 
916 	if (!RB_EMPTY_ROOT(&tp->out_of_order_queue))
917 		rcvwin += TCP_SKB_CB(tp->ooo_last_skb)->end_seq - tp->rcv_nxt;
918 
919 	cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
920 
921 	rcvbuf = min_t(u32, tcp_space_from_win(sk, rcvwin), cap);
922 	if (rcvbuf > sk->sk_rcvbuf) {
923 		WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
924 		/* Make the window clamp follow along.  */
925 		WRITE_ONCE(tp->window_clamp,
926 			   tcp_win_from_space(sk, rcvbuf));
927 	}
928 }
929 /*
930  * This function should be called every time data is copied to user space.
931  * It calculates the appropriate TCP receive buffer space.
932  */
933 void tcp_rcv_space_adjust(struct sock *sk)
934 {
935 	struct tcp_sock *tp = tcp_sk(sk);
936 	int time, inq, copied;
937 
938 	trace_tcp_rcv_space_adjust(sk);
939 
940 	if (unlikely(!tp->rcv_rtt_est.rtt_us))
941 		return;
942 
943 	/* We do not refresh tp->tcp_mstamp here.
944 	 * Some platforms have expensive ktime_get() implementations.
945 	 * Using the last cached value is enough for DRS.
946 	 */
947 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
948 	if (time < (tp->rcv_rtt_est.rtt_us >> 3))
949 		return;
950 
951 	/* Number of bytes copied to user in last RTT */
952 	copied = tp->copied_seq - tp->rcvq_space.seq;
953 	/* Number of bytes in receive queue. */
954 	inq = tp->rcv_nxt - tp->copied_seq;
955 	copied -= inq;
956 	if (copied <= tp->rcvq_space.space)
957 		goto new_measure;
958 
959 	trace_tcp_rcvbuf_grow(sk, time);
960 
961 	tcp_rcvbuf_grow(sk, copied);
962 
963 new_measure:
964 	tp->rcvq_space.seq = tp->copied_seq;
965 	tp->rcvq_space.time = tp->tcp_mstamp;
966 }
967 
968 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
969 {
970 #if IS_ENABLED(CONFIG_IPV6)
971 	struct inet_connection_sock *icsk = inet_csk(sk);
972 
973 	if (skb->protocol == htons(ETH_P_IPV6))
974 		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
975 #endif
976 }
977 
978 /* There is something which you must keep in mind when you analyze the
979  * behavior of the tp->ato delayed ack timeout interval.  When a
980  * connection starts up, we want to ack as quickly as possible.  The
981  * problem is that "good" TCP's do slow start at the beginning of data
982  * transmission.  The means that until we send the first few ACK's the
983  * sender will sit on his end and only queue most of his data, because
984  * he can only send snd_cwnd unacked packets at any given time.  For
985  * each ACK we send, he increments snd_cwnd and transmits more of his
986  * queue.  -DaveM
987  */
988 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
989 {
990 	struct tcp_sock *tp = tcp_sk(sk);
991 	struct inet_connection_sock *icsk = inet_csk(sk);
992 	u32 now;
993 
994 	inet_csk_schedule_ack(sk);
995 
996 	tcp_measure_rcv_mss(sk, skb);
997 
998 	tcp_rcv_rtt_measure(tp);
999 
1000 	now = tcp_jiffies32;
1001 
1002 	if (!icsk->icsk_ack.ato) {
1003 		/* The _first_ data packet received, initialize
1004 		 * delayed ACK engine.
1005 		 */
1006 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
1007 		icsk->icsk_ack.ato = TCP_ATO_MIN;
1008 	} else {
1009 		int m = now - icsk->icsk_ack.lrcvtime;
1010 
1011 		if (m <= TCP_ATO_MIN / 2) {
1012 			/* The fastest case is the first. */
1013 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
1014 		} else if (m < icsk->icsk_ack.ato) {
1015 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
1016 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
1017 				icsk->icsk_ack.ato = icsk->icsk_rto;
1018 		} else if (m > icsk->icsk_rto) {
1019 			/* Too long gap. Apparently sender failed to
1020 			 * restart window, so that we send ACKs quickly.
1021 			 */
1022 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
1023 		}
1024 	}
1025 	icsk->icsk_ack.lrcvtime = now;
1026 	tcp_save_lrcv_flowlabel(sk, skb);
1027 
1028 	tcp_data_ecn_check(sk, skb);
1029 
1030 	if (skb->len >= 128)
1031 		tcp_grow_window(sk, skb, true);
1032 }
1033 
1034 /* Called to compute a smoothed rtt estimate. The data fed to this
1035  * routine either comes from timestamps, or from segments that were
1036  * known _not_ to have been retransmitted [see Karn/Partridge
1037  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
1038  * piece by Van Jacobson.
1039  * NOTE: the next three routines used to be one big routine.
1040  * To save cycles in the RFC 1323 implementation it was better to break
1041  * it up into three procedures. -- erics
1042  */
1043 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1044 {
1045 	struct tcp_sock *tp = tcp_sk(sk);
1046 	long m = mrtt_us; /* RTT */
1047 	u32 srtt = tp->srtt_us;
1048 
1049 	/*	The following amusing code comes from Jacobson's
1050 	 *	article in SIGCOMM '88.  Note that rtt and mdev
1051 	 *	are scaled versions of rtt and mean deviation.
1052 	 *	This is designed to be as fast as possible
1053 	 *	m stands for "measurement".
1054 	 *
1055 	 *	On a 1990 paper the rto value is changed to:
1056 	 *	RTO = rtt + 4 * mdev
1057 	 *
1058 	 * Funny. This algorithm seems to be very broken.
1059 	 * These formulae increase RTO, when it should be decreased, increase
1060 	 * too slowly, when it should be increased quickly, decrease too quickly
1061 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
1062 	 * does not matter how to _calculate_ it. Seems, it was trap
1063 	 * that VJ failed to avoid. 8)
1064 	 */
1065 	if (srtt != 0) {
1066 		m -= (srtt >> 3);	/* m is now error in rtt est */
1067 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
1068 		if (m < 0) {
1069 			m = -m;		/* m is now abs(error) */
1070 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
1071 			/* This is similar to one of Eifel findings.
1072 			 * Eifel blocks mdev updates when rtt decreases.
1073 			 * This solution is a bit different: we use finer gain
1074 			 * for mdev in this case (alpha*beta).
1075 			 * Like Eifel it also prevents growth of rto,
1076 			 * but also it limits too fast rto decreases,
1077 			 * happening in pure Eifel.
1078 			 */
1079 			if (m > 0)
1080 				m >>= 3;
1081 		} else {
1082 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
1083 		}
1084 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
1085 		if (tp->mdev_us > tp->mdev_max_us) {
1086 			tp->mdev_max_us = tp->mdev_us;
1087 			if (tp->mdev_max_us > tp->rttvar_us)
1088 				tp->rttvar_us = tp->mdev_max_us;
1089 		}
1090 		if (after(tp->snd_una, tp->rtt_seq)) {
1091 			if (tp->mdev_max_us < tp->rttvar_us)
1092 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1093 			tp->rtt_seq = tp->snd_nxt;
1094 			tp->mdev_max_us = tcp_rto_min_us(sk);
1095 
1096 			tcp_bpf_rtt(sk, mrtt_us, srtt);
1097 		}
1098 	} else {
1099 		/* no previous measure. */
1100 		srtt = m << 3;		/* take the measured time to be rtt */
1101 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
1102 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
1103 		tp->mdev_max_us = tp->rttvar_us;
1104 		tp->rtt_seq = tp->snd_nxt;
1105 
1106 		tcp_bpf_rtt(sk, mrtt_us, srtt);
1107 	}
1108 	tp->srtt_us = max(1U, srtt);
1109 }
1110 
1111 void tcp_update_pacing_rate(struct sock *sk)
1112 {
1113 	const struct tcp_sock *tp = tcp_sk(sk);
1114 	u64 rate;
1115 
1116 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
1117 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
1118 
1119 	/* current rate is (cwnd * mss) / srtt
1120 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
1121 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
1122 	 *
1123 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
1124 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
1125 	 *	 end of slow start and should slow down.
1126 	 */
1127 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
1128 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
1129 	else
1130 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
1131 
1132 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
1133 
1134 	if (likely(tp->srtt_us))
1135 		do_div(rate, tp->srtt_us);
1136 
1137 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
1138 	 * without any lock. We want to make sure compiler wont store
1139 	 * intermediate values in this location.
1140 	 */
1141 	WRITE_ONCE(sk->sk_pacing_rate,
1142 		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
1143 }
1144 
1145 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
1146  * routine referred to above.
1147  */
1148 void tcp_set_rto(struct sock *sk)
1149 {
1150 	const struct tcp_sock *tp = tcp_sk(sk);
1151 	/* Old crap is replaced with new one. 8)
1152 	 *
1153 	 * More seriously:
1154 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
1155 	 *    It cannot be less due to utterly erratic ACK generation made
1156 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
1157 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
1158 	 *    is invisible. Actually, Linux-2.4 also generates erratic
1159 	 *    ACKs in some circumstances.
1160 	 */
1161 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1162 
1163 	/* 2. Fixups made earlier cannot be right.
1164 	 *    If we do not estimate RTO correctly without them,
1165 	 *    all the algo is pure shit and should be replaced
1166 	 *    with correct one. It is exactly, which we pretend to do.
1167 	 */
1168 
1169 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
1170 	 * guarantees that rto is higher.
1171 	 */
1172 	tcp_bound_rto(sk);
1173 }
1174 
1175 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1176 {
1177 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1178 
1179 	if (!cwnd)
1180 		cwnd = TCP_INIT_CWND;
1181 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1182 }
1183 
1184 struct tcp_sacktag_state {
1185 	/* Timestamps for earliest and latest never-retransmitted segment
1186 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1187 	 * but congestion control should still get an accurate delay signal.
1188 	 */
1189 	u64	first_sackt;
1190 	u64	last_sackt;
1191 	u32	reord;
1192 	u32	sack_delivered;
1193 	u32	delivered_bytes;
1194 	int	flag;
1195 	unsigned int mss_now;
1196 	struct rate_sample *rate;
1197 };
1198 
1199 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1200  * and spurious retransmission information if this DSACK is unlikely caused by
1201  * sender's action:
1202  * - DSACKed sequence range is larger than maximum receiver's window.
1203  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1204  */
1205 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1206 			  u32 end_seq, struct tcp_sacktag_state *state)
1207 {
1208 	u32 seq_len, dup_segs = 1;
1209 
1210 	if (!before(start_seq, end_seq))
1211 		return 0;
1212 
1213 	seq_len = end_seq - start_seq;
1214 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1215 	if (seq_len > tp->max_window)
1216 		return 0;
1217 	if (seq_len > tp->mss_cache)
1218 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1219 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1220 		state->flag |= FLAG_DSACK_TLP;
1221 
1222 	tp->dsack_dups += dup_segs;
1223 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1224 	if (tp->dsack_dups > tp->total_retrans)
1225 		return 0;
1226 
1227 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1228 	/* We increase the RACK ordering window in rounds where we receive
1229 	 * DSACKs that may have been due to reordering causing RACK to trigger
1230 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1231 	 * without having seen reordering, or that match TLP probes (TLP
1232 	 * is timer-driven, not triggered by RACK).
1233 	 */
1234 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1235 		tp->rack.dsack_seen = 1;
1236 
1237 	state->flag |= FLAG_DSACKING_ACK;
1238 	/* A spurious retransmission is delivered */
1239 	state->sack_delivered += dup_segs;
1240 
1241 	return dup_segs;
1242 }
1243 
1244 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1245  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1246  * distance is approximated in full-mss packet distance ("reordering").
1247  */
1248 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1249 				      const int ts)
1250 {
1251 	struct tcp_sock *tp = tcp_sk(sk);
1252 	const u32 mss = tp->mss_cache;
1253 	u32 fack, metric;
1254 
1255 	fack = tcp_highest_sack_seq(tp);
1256 	if (!before(low_seq, fack))
1257 		return;
1258 
1259 	metric = fack - low_seq;
1260 	if ((metric > tp->reordering * mss) && mss) {
1261 #if FASTRETRANS_DEBUG > 1
1262 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1263 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1264 			 tp->reordering,
1265 			 0,
1266 			 tp->sacked_out,
1267 			 tp->undo_marker ? tp->undo_retrans : 0);
1268 #endif
1269 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1270 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1271 	}
1272 
1273 	/* This exciting event is worth to be remembered. 8) */
1274 	tp->reord_seen++;
1275 	NET_INC_STATS(sock_net(sk),
1276 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1277 }
1278 
1279  /* This must be called before lost_out or retrans_out are updated
1280   * on a new loss, because we want to know if all skbs previously
1281   * known to be lost have already been retransmitted, indicating
1282   * that this newly lost skb is our next skb to retransmit.
1283   */
1284 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1285 {
1286 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1287 	    (tp->retransmit_skb_hint &&
1288 	     before(TCP_SKB_CB(skb)->seq,
1289 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1290 		tp->retransmit_skb_hint = skb;
1291 }
1292 
1293 /* Sum the number of packets on the wire we have marked as lost, and
1294  * notify the congestion control module that the given skb was marked lost.
1295  */
1296 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1297 {
1298 	tp->lost += tcp_skb_pcount(skb);
1299 }
1300 
1301 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1302 {
1303 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1304 	struct tcp_sock *tp = tcp_sk(sk);
1305 
1306 	if (sacked & TCPCB_SACKED_ACKED)
1307 		return;
1308 
1309 	tcp_verify_retransmit_hint(tp, skb);
1310 	if (sacked & TCPCB_LOST) {
1311 		if (sacked & TCPCB_SACKED_RETRANS) {
1312 			/* Account for retransmits that are lost again */
1313 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1314 			tp->retrans_out -= tcp_skb_pcount(skb);
1315 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1316 				      tcp_skb_pcount(skb));
1317 			tcp_notify_skb_loss_event(tp, skb);
1318 		}
1319 	} else {
1320 		tp->lost_out += tcp_skb_pcount(skb);
1321 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1322 		tcp_notify_skb_loss_event(tp, skb);
1323 	}
1324 }
1325 
1326 /* This procedure tags the retransmission queue when SACKs arrive.
1327  *
1328  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1329  * Packets in queue with these bits set are counted in variables
1330  * sacked_out, retrans_out and lost_out, correspondingly.
1331  *
1332  * Valid combinations are:
1333  * Tag  InFlight	Description
1334  * 0	1		- orig segment is in flight.
1335  * S	0		- nothing flies, orig reached receiver.
1336  * L	0		- nothing flies, orig lost by net.
1337  * R	2		- both orig and retransmit are in flight.
1338  * L|R	1		- orig is lost, retransmit is in flight.
1339  * S|R  1		- orig reached receiver, retrans is still in flight.
1340  * (L|S|R is logically valid, it could occur when L|R is sacked,
1341  *  but it is equivalent to plain S and code short-circuits it to S.
1342  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1343  *
1344  * These 6 states form finite state machine, controlled by the following events:
1345  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1346  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1347  * 3. Loss detection event of two flavors:
1348  *	A. Scoreboard estimator decided the packet is lost.
1349  *	   A'. Reno "three dupacks" marks head of queue lost.
1350  *	B. SACK arrives sacking SND.NXT at the moment, when the
1351  *	   segment was retransmitted.
1352  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1353  *
1354  * It is pleasant to note, that state diagram turns out to be commutative,
1355  * so that we are allowed not to be bothered by order of our actions,
1356  * when multiple events arrive simultaneously. (see the function below).
1357  *
1358  * Reordering detection.
1359  * --------------------
1360  * Reordering metric is maximal distance, which a packet can be displaced
1361  * in packet stream. With SACKs we can estimate it:
1362  *
1363  * 1. SACK fills old hole and the corresponding segment was not
1364  *    ever retransmitted -> reordering. Alas, we cannot use it
1365  *    when segment was retransmitted.
1366  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1367  *    for retransmitted and already SACKed segment -> reordering..
1368  * Both of these heuristics are not used in Loss state, when we cannot
1369  * account for retransmits accurately.
1370  *
1371  * SACK block validation.
1372  * ----------------------
1373  *
1374  * SACK block range validation checks that the received SACK block fits to
1375  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1376  * Note that SND.UNA is not included to the range though being valid because
1377  * it means that the receiver is rather inconsistent with itself reporting
1378  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1379  * perfectly valid, however, in light of RFC2018 which explicitly states
1380  * that "SACK block MUST reflect the newest segment.  Even if the newest
1381  * segment is going to be discarded ...", not that it looks very clever
1382  * in case of head skb. Due to potentional receiver driven attacks, we
1383  * choose to avoid immediate execution of a walk in write queue due to
1384  * reneging and defer head skb's loss recovery to standard loss recovery
1385  * procedure that will eventually trigger (nothing forbids us doing this).
1386  *
1387  * Implements also blockage to start_seq wrap-around. Problem lies in the
1388  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1389  * there's no guarantee that it will be before snd_nxt (n). The problem
1390  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1391  * wrap (s_w):
1392  *
1393  *         <- outs wnd ->                          <- wrapzone ->
1394  *         u     e      n                         u_w   e_w  s n_w
1395  *         |     |      |                          |     |   |  |
1396  * |<------------+------+----- TCP seqno space --------------+---------->|
1397  * ...-- <2^31 ->|                                           |<--------...
1398  * ...---- >2^31 ------>|                                    |<--------...
1399  *
1400  * Current code wouldn't be vulnerable but it's better still to discard such
1401  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1402  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1403  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1404  * equal to the ideal case (infinite seqno space without wrap caused issues).
1405  *
1406  * With D-SACK the lower bound is extended to cover sequence space below
1407  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1408  * again, D-SACK block must not to go across snd_una (for the same reason as
1409  * for the normal SACK blocks, explained above). But there all simplicity
1410  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1411  * fully below undo_marker they do not affect behavior in anyway and can
1412  * therefore be safely ignored. In rare cases (which are more or less
1413  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1414  * fragmentation and packet reordering past skb's retransmission. To consider
1415  * them correctly, the acceptable range must be extended even more though
1416  * the exact amount is rather hard to quantify. However, tp->max_window can
1417  * be used as an exaggerated estimate.
1418  */
1419 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1420 				   u32 start_seq, u32 end_seq)
1421 {
1422 	/* Too far in future, or reversed (interpretation is ambiguous) */
1423 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1424 		return false;
1425 
1426 	/* Nasty start_seq wrap-around check (see comments above) */
1427 	if (!before(start_seq, tp->snd_nxt))
1428 		return false;
1429 
1430 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1431 	 * start_seq == snd_una is non-sensical (see comments above)
1432 	 */
1433 	if (after(start_seq, tp->snd_una))
1434 		return true;
1435 
1436 	if (!is_dsack || !tp->undo_marker)
1437 		return false;
1438 
1439 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1440 	if (after(end_seq, tp->snd_una))
1441 		return false;
1442 
1443 	if (!before(start_seq, tp->undo_marker))
1444 		return true;
1445 
1446 	/* Too old */
1447 	if (!after(end_seq, tp->undo_marker))
1448 		return false;
1449 
1450 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1451 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1452 	 */
1453 	return !before(start_seq, end_seq - tp->max_window);
1454 }
1455 
1456 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1457 			    struct tcp_sack_block_wire *sp, int num_sacks,
1458 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1459 {
1460 	struct tcp_sock *tp = tcp_sk(sk);
1461 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1462 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1463 	u32 dup_segs;
1464 
1465 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1466 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1467 	} else if (num_sacks > 1) {
1468 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1469 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1470 
1471 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1472 			return false;
1473 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1474 	} else {
1475 		return false;
1476 	}
1477 
1478 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1479 	if (!dup_segs) {	/* Skip dubious DSACK */
1480 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1481 		return false;
1482 	}
1483 
1484 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1485 
1486 	/* D-SACK for already forgotten data... Do dumb counting. */
1487 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1488 	    !after(end_seq_0, prior_snd_una) &&
1489 	    after(end_seq_0, tp->undo_marker))
1490 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1491 
1492 	return true;
1493 }
1494 
1495 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1496  * the incoming SACK may not exactly match but we can find smaller MSS
1497  * aligned portion of it that matches. Therefore we might need to fragment
1498  * which may fail and creates some hassle (caller must handle error case
1499  * returns).
1500  *
1501  * FIXME: this could be merged to shift decision code
1502  */
1503 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1504 				  u32 start_seq, u32 end_seq)
1505 {
1506 	int err;
1507 	bool in_sack;
1508 	unsigned int pkt_len;
1509 	unsigned int mss;
1510 
1511 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1512 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1513 
1514 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1515 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1516 		mss = tcp_skb_mss(skb);
1517 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1518 
1519 		if (!in_sack) {
1520 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1521 			if (pkt_len < mss)
1522 				pkt_len = mss;
1523 		} else {
1524 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1525 			if (pkt_len < mss)
1526 				return -EINVAL;
1527 		}
1528 
1529 		/* Round if necessary so that SACKs cover only full MSSes
1530 		 * and/or the remaining small portion (if present)
1531 		 */
1532 		if (pkt_len > mss) {
1533 			unsigned int new_len = (pkt_len / mss) * mss;
1534 			if (!in_sack && new_len < pkt_len)
1535 				new_len += mss;
1536 			pkt_len = new_len;
1537 		}
1538 
1539 		if (pkt_len >= skb->len && !in_sack)
1540 			return 0;
1541 
1542 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1543 				   pkt_len, mss, GFP_ATOMIC);
1544 		if (err < 0)
1545 			return err;
1546 	}
1547 
1548 	return in_sack;
1549 }
1550 
1551 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1552 static u8 tcp_sacktag_one(struct sock *sk,
1553 			  struct tcp_sacktag_state *state, u8 sacked,
1554 			  u32 start_seq, u32 end_seq,
1555 			  int dup_sack, int pcount, u32 plen,
1556 			  u64 xmit_time)
1557 {
1558 	struct tcp_sock *tp = tcp_sk(sk);
1559 
1560 	/* Account D-SACK for retransmitted packet. */
1561 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1562 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1563 		    after(end_seq, tp->undo_marker))
1564 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1565 		if ((sacked & TCPCB_SACKED_ACKED) &&
1566 		    before(start_seq, state->reord))
1567 				state->reord = start_seq;
1568 	}
1569 
1570 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1571 	if (!after(end_seq, tp->snd_una))
1572 		return sacked;
1573 
1574 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1575 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1576 
1577 		if (sacked & TCPCB_SACKED_RETRANS) {
1578 			/* If the segment is not tagged as lost,
1579 			 * we do not clear RETRANS, believing
1580 			 * that retransmission is still in flight.
1581 			 */
1582 			if (sacked & TCPCB_LOST) {
1583 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1584 				tp->lost_out -= pcount;
1585 				tp->retrans_out -= pcount;
1586 			}
1587 		} else {
1588 			if (!(sacked & TCPCB_RETRANS)) {
1589 				/* New sack for not retransmitted frame,
1590 				 * which was in hole. It is reordering.
1591 				 */
1592 				if (before(start_seq,
1593 					   tcp_highest_sack_seq(tp)) &&
1594 				    before(start_seq, state->reord))
1595 					state->reord = start_seq;
1596 
1597 				if (!after(end_seq, tp->high_seq))
1598 					state->flag |= FLAG_ORIG_SACK_ACKED;
1599 				if (state->first_sackt == 0)
1600 					state->first_sackt = xmit_time;
1601 				state->last_sackt = xmit_time;
1602 			}
1603 
1604 			if (sacked & TCPCB_LOST) {
1605 				sacked &= ~TCPCB_LOST;
1606 				tp->lost_out -= pcount;
1607 			}
1608 		}
1609 
1610 		sacked |= TCPCB_SACKED_ACKED;
1611 		state->flag |= FLAG_DATA_SACKED;
1612 		tp->sacked_out += pcount;
1613 		/* Out-of-order packets delivered */
1614 		state->sack_delivered += pcount;
1615 		state->delivered_bytes += plen;
1616 	}
1617 
1618 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1619 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1620 	 * are accounted above as well.
1621 	 */
1622 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1623 		sacked &= ~TCPCB_SACKED_RETRANS;
1624 		tp->retrans_out -= pcount;
1625 	}
1626 
1627 	return sacked;
1628 }
1629 
1630 /* Shift newly-SACKed bytes from this skb to the immediately previous
1631  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1632  */
1633 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1634 			    struct sk_buff *skb,
1635 			    struct tcp_sacktag_state *state,
1636 			    unsigned int pcount, int shifted, int mss,
1637 			    bool dup_sack)
1638 {
1639 	struct tcp_sock *tp = tcp_sk(sk);
1640 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1641 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1642 
1643 	BUG_ON(!pcount);
1644 
1645 	/* Adjust counters and hints for the newly sacked sequence
1646 	 * range but discard the return value since prev is already
1647 	 * marked. We must tag the range first because the seq
1648 	 * advancement below implicitly advances
1649 	 * tcp_highest_sack_seq() when skb is highest_sack.
1650 	 */
1651 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1652 			start_seq, end_seq, dup_sack, pcount, skb->len,
1653 			tcp_skb_timestamp_us(skb));
1654 	tcp_rate_skb_delivered(sk, skb, state->rate);
1655 
1656 	TCP_SKB_CB(prev)->end_seq += shifted;
1657 	TCP_SKB_CB(skb)->seq += shifted;
1658 
1659 	tcp_skb_pcount_add(prev, pcount);
1660 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1661 	tcp_skb_pcount_add(skb, -pcount);
1662 
1663 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1664 	 * in theory this shouldn't be necessary but as long as DSACK
1665 	 * code can come after this skb later on it's better to keep
1666 	 * setting gso_size to something.
1667 	 */
1668 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1669 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1670 
1671 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1672 	if (tcp_skb_pcount(skb) <= 1)
1673 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1674 
1675 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1676 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1677 
1678 	if (skb->len > 0) {
1679 		BUG_ON(!tcp_skb_pcount(skb));
1680 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1681 		return false;
1682 	}
1683 
1684 	/* Whole SKB was eaten :-) */
1685 
1686 	if (skb == tp->retransmit_skb_hint)
1687 		tp->retransmit_skb_hint = prev;
1688 
1689 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1690 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1691 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1692 		TCP_SKB_CB(prev)->end_seq++;
1693 
1694 	if (skb == tcp_highest_sack(sk))
1695 		tcp_advance_highest_sack(sk, skb);
1696 
1697 	tcp_skb_collapse_tstamp(prev, skb);
1698 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1699 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1700 
1701 	tcp_rtx_queue_unlink_and_free(skb, sk);
1702 
1703 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1704 
1705 	return true;
1706 }
1707 
1708 /* I wish gso_size would have a bit more sane initialization than
1709  * something-or-zero which complicates things
1710  */
1711 static int tcp_skb_seglen(const struct sk_buff *skb)
1712 {
1713 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1714 }
1715 
1716 /* Shifting pages past head area doesn't work */
1717 static int skb_can_shift(const struct sk_buff *skb)
1718 {
1719 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1720 }
1721 
1722 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1723 		  int pcount, int shiftlen)
1724 {
1725 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1726 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1727 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1728 	 * even if current MSS is bigger.
1729 	 */
1730 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1731 		return 0;
1732 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1733 		return 0;
1734 	return skb_shift(to, from, shiftlen);
1735 }
1736 
1737 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1738  * skb.
1739  */
1740 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1741 					  struct tcp_sacktag_state *state,
1742 					  u32 start_seq, u32 end_seq,
1743 					  bool dup_sack)
1744 {
1745 	struct tcp_sock *tp = tcp_sk(sk);
1746 	struct sk_buff *prev;
1747 	int mss;
1748 	int pcount = 0;
1749 	int len;
1750 	int in_sack;
1751 
1752 	/* Normally R but no L won't result in plain S */
1753 	if (!dup_sack &&
1754 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1755 		goto fallback;
1756 	if (!skb_can_shift(skb))
1757 		goto fallback;
1758 	/* This frame is about to be dropped (was ACKed). */
1759 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1760 		goto fallback;
1761 
1762 	/* Can only happen with delayed DSACK + discard craziness */
1763 	prev = skb_rb_prev(skb);
1764 	if (!prev)
1765 		goto fallback;
1766 
1767 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1768 		goto fallback;
1769 
1770 	if (!tcp_skb_can_collapse(prev, skb))
1771 		goto fallback;
1772 
1773 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1774 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1775 
1776 	if (in_sack) {
1777 		len = skb->len;
1778 		pcount = tcp_skb_pcount(skb);
1779 		mss = tcp_skb_seglen(skb);
1780 
1781 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1782 		 * drop this restriction as unnecessary
1783 		 */
1784 		if (mss != tcp_skb_seglen(prev))
1785 			goto fallback;
1786 	} else {
1787 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1788 			goto noop;
1789 		/* CHECKME: This is non-MSS split case only?, this will
1790 		 * cause skipped skbs due to advancing loop btw, original
1791 		 * has that feature too
1792 		 */
1793 		if (tcp_skb_pcount(skb) <= 1)
1794 			goto noop;
1795 
1796 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1797 		if (!in_sack) {
1798 			/* TODO: head merge to next could be attempted here
1799 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1800 			 * though it might not be worth of the additional hassle
1801 			 *
1802 			 * ...we can probably just fallback to what was done
1803 			 * previously. We could try merging non-SACKed ones
1804 			 * as well but it probably isn't going to buy off
1805 			 * because later SACKs might again split them, and
1806 			 * it would make skb timestamp tracking considerably
1807 			 * harder problem.
1808 			 */
1809 			goto fallback;
1810 		}
1811 
1812 		len = end_seq - TCP_SKB_CB(skb)->seq;
1813 		BUG_ON(len < 0);
1814 		BUG_ON(len > skb->len);
1815 
1816 		/* MSS boundaries should be honoured or else pcount will
1817 		 * severely break even though it makes things bit trickier.
1818 		 * Optimize common case to avoid most of the divides
1819 		 */
1820 		mss = tcp_skb_mss(skb);
1821 
1822 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1823 		 * drop this restriction as unnecessary
1824 		 */
1825 		if (mss != tcp_skb_seglen(prev))
1826 			goto fallback;
1827 
1828 		if (len == mss) {
1829 			pcount = 1;
1830 		} else if (len < mss) {
1831 			goto noop;
1832 		} else {
1833 			pcount = len / mss;
1834 			len = pcount * mss;
1835 		}
1836 	}
1837 
1838 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1839 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1840 		goto fallback;
1841 
1842 	if (!tcp_skb_shift(prev, skb, pcount, len))
1843 		goto fallback;
1844 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1845 		goto out;
1846 
1847 	/* Hole filled allows collapsing with the next as well, this is very
1848 	 * useful when hole on every nth skb pattern happens
1849 	 */
1850 	skb = skb_rb_next(prev);
1851 	if (!skb)
1852 		goto out;
1853 
1854 	if (!skb_can_shift(skb) ||
1855 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1856 	    (mss != tcp_skb_seglen(skb)))
1857 		goto out;
1858 
1859 	if (!tcp_skb_can_collapse(prev, skb))
1860 		goto out;
1861 	len = skb->len;
1862 	pcount = tcp_skb_pcount(skb);
1863 	if (tcp_skb_shift(prev, skb, pcount, len))
1864 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1865 				len, mss, 0);
1866 
1867 out:
1868 	return prev;
1869 
1870 noop:
1871 	return skb;
1872 
1873 fallback:
1874 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1875 	return NULL;
1876 }
1877 
1878 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1879 					struct tcp_sack_block *next_dup,
1880 					struct tcp_sacktag_state *state,
1881 					u32 start_seq, u32 end_seq,
1882 					bool dup_sack_in)
1883 {
1884 	struct tcp_sock *tp = tcp_sk(sk);
1885 	struct sk_buff *tmp;
1886 
1887 	skb_rbtree_walk_from(skb) {
1888 		int in_sack = 0;
1889 		bool dup_sack = dup_sack_in;
1890 
1891 		/* queue is in-order => we can short-circuit the walk early */
1892 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1893 			break;
1894 
1895 		if (next_dup  &&
1896 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1897 			in_sack = tcp_match_skb_to_sack(sk, skb,
1898 							next_dup->start_seq,
1899 							next_dup->end_seq);
1900 			if (in_sack > 0)
1901 				dup_sack = true;
1902 		}
1903 
1904 		/* skb reference here is a bit tricky to get right, since
1905 		 * shifting can eat and free both this skb and the next,
1906 		 * so not even _safe variant of the loop is enough.
1907 		 */
1908 		if (in_sack <= 0) {
1909 			tmp = tcp_shift_skb_data(sk, skb, state,
1910 						 start_seq, end_seq, dup_sack);
1911 			if (tmp) {
1912 				if (tmp != skb) {
1913 					skb = tmp;
1914 					continue;
1915 				}
1916 
1917 				in_sack = 0;
1918 			} else {
1919 				in_sack = tcp_match_skb_to_sack(sk, skb,
1920 								start_seq,
1921 								end_seq);
1922 			}
1923 		}
1924 
1925 		if (unlikely(in_sack < 0))
1926 			break;
1927 
1928 		if (in_sack) {
1929 			TCP_SKB_CB(skb)->sacked =
1930 				tcp_sacktag_one(sk,
1931 						state,
1932 						TCP_SKB_CB(skb)->sacked,
1933 						TCP_SKB_CB(skb)->seq,
1934 						TCP_SKB_CB(skb)->end_seq,
1935 						dup_sack,
1936 						tcp_skb_pcount(skb),
1937 						skb->len,
1938 						tcp_skb_timestamp_us(skb));
1939 			tcp_rate_skb_delivered(sk, skb, state->rate);
1940 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1941 				list_del_init(&skb->tcp_tsorted_anchor);
1942 
1943 			if (!before(TCP_SKB_CB(skb)->seq,
1944 				    tcp_highest_sack_seq(tp)))
1945 				tcp_advance_highest_sack(sk, skb);
1946 		}
1947 	}
1948 	return skb;
1949 }
1950 
1951 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1952 {
1953 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1954 	struct sk_buff *skb;
1955 
1956 	while (*p) {
1957 		parent = *p;
1958 		skb = rb_to_skb(parent);
1959 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1960 			p = &parent->rb_left;
1961 			continue;
1962 		}
1963 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1964 			p = &parent->rb_right;
1965 			continue;
1966 		}
1967 		return skb;
1968 	}
1969 	return NULL;
1970 }
1971 
1972 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1973 					u32 skip_to_seq)
1974 {
1975 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1976 		return skb;
1977 
1978 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1979 }
1980 
1981 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1982 						struct sock *sk,
1983 						struct tcp_sack_block *next_dup,
1984 						struct tcp_sacktag_state *state,
1985 						u32 skip_to_seq)
1986 {
1987 	if (!next_dup)
1988 		return skb;
1989 
1990 	if (before(next_dup->start_seq, skip_to_seq)) {
1991 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1992 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1993 				       next_dup->start_seq, next_dup->end_seq,
1994 				       1);
1995 	}
1996 
1997 	return skb;
1998 }
1999 
2000 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
2001 {
2002 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
2003 }
2004 
2005 static int
2006 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
2007 			u32 prior_snd_una, struct tcp_sacktag_state *state)
2008 {
2009 	struct tcp_sock *tp = tcp_sk(sk);
2010 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
2011 				    TCP_SKB_CB(ack_skb)->sacked);
2012 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
2013 	struct tcp_sack_block sp[TCP_NUM_SACKS];
2014 	struct tcp_sack_block *cache;
2015 	struct sk_buff *skb;
2016 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
2017 	int used_sacks;
2018 	bool found_dup_sack = false;
2019 	int i, j;
2020 	int first_sack_index;
2021 
2022 	state->flag = 0;
2023 	state->reord = tp->snd_nxt;
2024 
2025 	if (!tp->sacked_out)
2026 		tcp_highest_sack_reset(sk);
2027 
2028 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
2029 					 num_sacks, prior_snd_una, state);
2030 
2031 	/* Eliminate too old ACKs, but take into
2032 	 * account more or less fresh ones, they can
2033 	 * contain valid SACK info.
2034 	 */
2035 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
2036 		return 0;
2037 
2038 	if (!tp->packets_out)
2039 		goto out;
2040 
2041 	used_sacks = 0;
2042 	first_sack_index = 0;
2043 	for (i = 0; i < num_sacks; i++) {
2044 		bool dup_sack = !i && found_dup_sack;
2045 
2046 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
2047 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
2048 
2049 		if (!tcp_is_sackblock_valid(tp, dup_sack,
2050 					    sp[used_sacks].start_seq,
2051 					    sp[used_sacks].end_seq)) {
2052 			int mib_idx;
2053 
2054 			if (dup_sack) {
2055 				if (!tp->undo_marker)
2056 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
2057 				else
2058 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
2059 			} else {
2060 				/* Don't count olds caused by ACK reordering */
2061 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
2062 				    !after(sp[used_sacks].end_seq, tp->snd_una))
2063 					continue;
2064 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
2065 			}
2066 
2067 			NET_INC_STATS(sock_net(sk), mib_idx);
2068 			if (i == 0)
2069 				first_sack_index = -1;
2070 			continue;
2071 		}
2072 
2073 		/* Ignore very old stuff early */
2074 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
2075 			if (i == 0)
2076 				first_sack_index = -1;
2077 			continue;
2078 		}
2079 
2080 		used_sacks++;
2081 	}
2082 
2083 	/* order SACK blocks to allow in order walk of the retrans queue */
2084 	for (i = used_sacks - 1; i > 0; i--) {
2085 		for (j = 0; j < i; j++) {
2086 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
2087 				swap(sp[j], sp[j + 1]);
2088 
2089 				/* Track where the first SACK block goes to */
2090 				if (j == first_sack_index)
2091 					first_sack_index = j + 1;
2092 			}
2093 		}
2094 	}
2095 
2096 	state->mss_now = tcp_current_mss(sk);
2097 	skb = NULL;
2098 	i = 0;
2099 
2100 	if (!tp->sacked_out) {
2101 		/* It's already past, so skip checking against it */
2102 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
2103 	} else {
2104 		cache = tp->recv_sack_cache;
2105 		/* Skip empty blocks in at head of the cache */
2106 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
2107 		       !cache->end_seq)
2108 			cache++;
2109 	}
2110 
2111 	while (i < used_sacks) {
2112 		u32 start_seq = sp[i].start_seq;
2113 		u32 end_seq = sp[i].end_seq;
2114 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
2115 		struct tcp_sack_block *next_dup = NULL;
2116 
2117 		if (found_dup_sack && ((i + 1) == first_sack_index))
2118 			next_dup = &sp[i + 1];
2119 
2120 		/* Skip too early cached blocks */
2121 		while (tcp_sack_cache_ok(tp, cache) &&
2122 		       !before(start_seq, cache->end_seq))
2123 			cache++;
2124 
2125 		/* Can skip some work by looking recv_sack_cache? */
2126 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
2127 		    after(end_seq, cache->start_seq)) {
2128 
2129 			/* Head todo? */
2130 			if (before(start_seq, cache->start_seq)) {
2131 				skb = tcp_sacktag_skip(skb, sk, start_seq);
2132 				skb = tcp_sacktag_walk(skb, sk, next_dup,
2133 						       state,
2134 						       start_seq,
2135 						       cache->start_seq,
2136 						       dup_sack);
2137 			}
2138 
2139 			/* Rest of the block already fully processed? */
2140 			if (!after(end_seq, cache->end_seq))
2141 				goto advance_sp;
2142 
2143 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
2144 						       state,
2145 						       cache->end_seq);
2146 
2147 			/* ...tail remains todo... */
2148 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
2149 				/* ...but better entrypoint exists! */
2150 				skb = tcp_highest_sack(sk);
2151 				if (!skb)
2152 					break;
2153 				cache++;
2154 				goto walk;
2155 			}
2156 
2157 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
2158 			/* Check overlap against next cached too (past this one already) */
2159 			cache++;
2160 			continue;
2161 		}
2162 
2163 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2164 			skb = tcp_highest_sack(sk);
2165 			if (!skb)
2166 				break;
2167 		}
2168 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2169 
2170 walk:
2171 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2172 				       start_seq, end_seq, dup_sack);
2173 
2174 advance_sp:
2175 		i++;
2176 	}
2177 
2178 	/* Clear the head of the cache sack blocks so we can skip it next time */
2179 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2180 		tp->recv_sack_cache[i].start_seq = 0;
2181 		tp->recv_sack_cache[i].end_seq = 0;
2182 	}
2183 	for (j = 0; j < used_sacks; j++)
2184 		tp->recv_sack_cache[i++] = sp[j];
2185 
2186 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2187 		tcp_check_sack_reordering(sk, state->reord, 0);
2188 
2189 	tcp_verify_left_out(tp);
2190 out:
2191 
2192 #if FASTRETRANS_DEBUG > 0
2193 	WARN_ON((int)tp->sacked_out < 0);
2194 	WARN_ON((int)tp->lost_out < 0);
2195 	WARN_ON((int)tp->retrans_out < 0);
2196 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2197 #endif
2198 	return state->flag;
2199 }
2200 
2201 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2202  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2203  */
2204 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2205 {
2206 	u32 holes;
2207 
2208 	holes = max(tp->lost_out, 1U);
2209 	holes = min(holes, tp->packets_out);
2210 
2211 	if ((tp->sacked_out + holes) > tp->packets_out) {
2212 		tp->sacked_out = tp->packets_out - holes;
2213 		return true;
2214 	}
2215 	return false;
2216 }
2217 
2218 /* If we receive more dupacks than we expected counting segments
2219  * in assumption of absent reordering, interpret this as reordering.
2220  * The only another reason could be bug in receiver TCP.
2221  */
2222 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2223 {
2224 	struct tcp_sock *tp = tcp_sk(sk);
2225 
2226 	if (!tcp_limit_reno_sacked(tp))
2227 		return;
2228 
2229 	tp->reordering = min_t(u32, tp->packets_out + addend,
2230 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2231 	tp->reord_seen++;
2232 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2233 }
2234 
2235 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2236 
2237 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2238 {
2239 	if (num_dupack) {
2240 		struct tcp_sock *tp = tcp_sk(sk);
2241 		u32 prior_sacked = tp->sacked_out;
2242 		s32 delivered;
2243 
2244 		tp->sacked_out += num_dupack;
2245 		tcp_check_reno_reordering(sk, 0);
2246 		delivered = tp->sacked_out - prior_sacked;
2247 		if (delivered > 0)
2248 			tcp_count_delivered(tp, delivered, ece_ack);
2249 		tcp_verify_left_out(tp);
2250 	}
2251 }
2252 
2253 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2254 
2255 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2256 {
2257 	struct tcp_sock *tp = tcp_sk(sk);
2258 
2259 	if (acked > 0) {
2260 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2261 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2262 				    ece_ack);
2263 		if (acked - 1 >= tp->sacked_out)
2264 			tp->sacked_out = 0;
2265 		else
2266 			tp->sacked_out -= acked - 1;
2267 	}
2268 	tcp_check_reno_reordering(sk, acked);
2269 	tcp_verify_left_out(tp);
2270 }
2271 
2272 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2273 {
2274 	tp->sacked_out = 0;
2275 }
2276 
2277 void tcp_clear_retrans(struct tcp_sock *tp)
2278 {
2279 	tp->retrans_out = 0;
2280 	tp->lost_out = 0;
2281 	tp->undo_marker = 0;
2282 	tp->undo_retrans = -1;
2283 	tp->sacked_out = 0;
2284 	tp->rto_stamp = 0;
2285 	tp->total_rto = 0;
2286 	tp->total_rto_recoveries = 0;
2287 	tp->total_rto_time = 0;
2288 }
2289 
2290 static inline void tcp_init_undo(struct tcp_sock *tp)
2291 {
2292 	tp->undo_marker = tp->snd_una;
2293 
2294 	/* Retransmission still in flight may cause DSACKs later. */
2295 	/* First, account for regular retransmits in flight: */
2296 	tp->undo_retrans = tp->retrans_out;
2297 	/* Next, account for TLP retransmits in flight: */
2298 	if (tp->tlp_high_seq && tp->tlp_retrans)
2299 		tp->undo_retrans++;
2300 	/* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2301 	if (!tp->undo_retrans)
2302 		tp->undo_retrans = -1;
2303 }
2304 
2305 /* If we detect SACK reneging, forget all SACK information
2306  * and reset tags completely, otherwise preserve SACKs. If receiver
2307  * dropped its ofo queue, we will know this due to reneging detection.
2308  */
2309 static void tcp_timeout_mark_lost(struct sock *sk)
2310 {
2311 	struct tcp_sock *tp = tcp_sk(sk);
2312 	struct sk_buff *skb, *head;
2313 	bool is_reneg;			/* is receiver reneging on SACKs? */
2314 
2315 	head = tcp_rtx_queue_head(sk);
2316 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2317 	if (is_reneg) {
2318 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2319 		tp->sacked_out = 0;
2320 		/* Mark SACK reneging until we recover from this loss event. */
2321 		tp->is_sack_reneg = 1;
2322 	} else if (tcp_is_reno(tp)) {
2323 		tcp_reset_reno_sack(tp);
2324 	}
2325 
2326 	skb = head;
2327 	skb_rbtree_walk_from(skb) {
2328 		if (is_reneg)
2329 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2330 		else if (skb != head && tcp_rack_skb_timeout(tp, skb, 0) > 0)
2331 			continue; /* Don't mark recently sent ones lost yet */
2332 		tcp_mark_skb_lost(sk, skb);
2333 	}
2334 	tcp_verify_left_out(tp);
2335 	tcp_clear_all_retrans_hints(tp);
2336 }
2337 
2338 /* Enter Loss state. */
2339 void tcp_enter_loss(struct sock *sk)
2340 {
2341 	const struct inet_connection_sock *icsk = inet_csk(sk);
2342 	struct tcp_sock *tp = tcp_sk(sk);
2343 	struct net *net = sock_net(sk);
2344 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2345 	u8 reordering;
2346 
2347 	tcp_timeout_mark_lost(sk);
2348 
2349 	/* Reduce ssthresh if it has not yet been made inside this window. */
2350 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2351 	    !after(tp->high_seq, tp->snd_una) ||
2352 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2353 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2354 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2355 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2356 		tcp_ca_event(sk, CA_EVENT_LOSS);
2357 		tcp_init_undo(tp);
2358 	}
2359 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2360 	tp->snd_cwnd_cnt   = 0;
2361 	tp->snd_cwnd_stamp = tcp_jiffies32;
2362 
2363 	/* Timeout in disordered state after receiving substantial DUPACKs
2364 	 * suggests that the degree of reordering is over-estimated.
2365 	 */
2366 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2367 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2368 	    tp->sacked_out >= reordering)
2369 		tp->reordering = min_t(unsigned int, tp->reordering,
2370 				       reordering);
2371 
2372 	tcp_set_ca_state(sk, TCP_CA_Loss);
2373 	tp->high_seq = tp->snd_nxt;
2374 	tp->tlp_high_seq = 0;
2375 	tcp_ecn_queue_cwr(tp);
2376 
2377 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2378 	 * loss recovery is underway except recurring timeout(s) on
2379 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2380 	 */
2381 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2382 		   (new_recovery || icsk->icsk_retransmits) &&
2383 		   !inet_csk(sk)->icsk_mtup.probe_size;
2384 }
2385 
2386 /* If ACK arrived pointing to a remembered SACK, it means that our
2387  * remembered SACKs do not reflect real state of receiver i.e.
2388  * receiver _host_ is heavily congested (or buggy).
2389  *
2390  * To avoid big spurious retransmission bursts due to transient SACK
2391  * scoreboard oddities that look like reneging, we give the receiver a
2392  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2393  * restore sanity to the SACK scoreboard. If the apparent reneging
2394  * persists until this RTO then we'll clear the SACK scoreboard.
2395  */
2396 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2397 {
2398 	if (*ack_flag & FLAG_SACK_RENEGING &&
2399 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2400 		struct tcp_sock *tp = tcp_sk(sk);
2401 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2402 					  msecs_to_jiffies(10));
2403 
2404 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false);
2405 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2406 		return true;
2407 	}
2408 	return false;
2409 }
2410 
2411 /* Linux NewReno/SACK/ECN state machine.
2412  * --------------------------------------
2413  *
2414  * "Open"	Normal state, no dubious events, fast path.
2415  * "Disorder"   In all the respects it is "Open",
2416  *		but requires a bit more attention. It is entered when
2417  *		we see some SACKs or dupacks. It is split of "Open"
2418  *		mainly to move some processing from fast path to slow one.
2419  * "CWR"	CWND was reduced due to some Congestion Notification event.
2420  *		It can be ECN, ICMP source quench, local device congestion.
2421  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2422  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2423  *
2424  * tcp_fastretrans_alert() is entered:
2425  * - each incoming ACK, if state is not "Open"
2426  * - when arrived ACK is unusual, namely:
2427  *	* SACK
2428  *	* Duplicate ACK.
2429  *	* ECN ECE.
2430  *
2431  * Counting packets in flight is pretty simple.
2432  *
2433  *	in_flight = packets_out - left_out + retrans_out
2434  *
2435  *	packets_out is SND.NXT-SND.UNA counted in packets.
2436  *
2437  *	retrans_out is number of retransmitted segments.
2438  *
2439  *	left_out is number of segments left network, but not ACKed yet.
2440  *
2441  *		left_out = sacked_out + lost_out
2442  *
2443  *     sacked_out: Packets, which arrived to receiver out of order
2444  *		   and hence not ACKed. With SACKs this number is simply
2445  *		   amount of SACKed data. Even without SACKs
2446  *		   it is easy to give pretty reliable estimate of this number,
2447  *		   counting duplicate ACKs.
2448  *
2449  *       lost_out: Packets lost by network. TCP has no explicit
2450  *		   "loss notification" feedback from network (for now).
2451  *		   It means that this number can be only _guessed_.
2452  *		   Actually, it is the heuristics to predict lossage that
2453  *		   distinguishes different algorithms.
2454  *
2455  *	F.e. after RTO, when all the queue is considered as lost,
2456  *	lost_out = packets_out and in_flight = retrans_out.
2457  *
2458  *		Essentially, we have now a few algorithms detecting
2459  *		lost packets.
2460  *
2461  *		If the receiver supports SACK:
2462  *
2463  *		RACK (RFC8985): RACK is a newer loss detection algorithm
2464  *		(2017-) that checks timing instead of counting DUPACKs.
2465  *		Essentially a packet is considered lost if it's not S/ACKed
2466  *		after RTT + reordering_window, where both metrics are
2467  *		dynamically measured and adjusted. This is implemented in
2468  *		tcp_rack_mark_lost.
2469  *
2470  *		If the receiver does not support SACK:
2471  *
2472  *		NewReno (RFC6582): in Recovery we assume that one segment
2473  *		is lost (classic Reno). While we are in Recovery and
2474  *		a partial ACK arrives, we assume that one more packet
2475  *		is lost (NewReno). This heuristics are the same in NewReno
2476  *		and SACK.
2477  *
2478  * The really tricky (and requiring careful tuning) part of the algorithm
2479  * is hidden in the RACK code in tcp_recovery.c and tcp_xmit_retransmit_queue().
2480  * The first determines the moment _when_ we should reduce CWND and,
2481  * hence, slow down forward transmission. In fact, it determines the moment
2482  * when we decide that hole is caused by loss, rather than by a reorder.
2483  *
2484  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2485  * holes, caused by lost packets.
2486  *
2487  * And the most logically complicated part of algorithm is undo
2488  * heuristics. We detect false retransmits due to both too early
2489  * fast retransmit (reordering) and underestimated RTO, analyzing
2490  * timestamps and D-SACKs. When we detect that some segments were
2491  * retransmitted by mistake and CWND reduction was wrong, we undo
2492  * window reduction and abort recovery phase. This logic is hidden
2493  * inside several functions named tcp_try_undo_<something>.
2494  */
2495 
2496 /* This function decides, when we should leave Disordered state
2497  * and enter Recovery phase, reducing congestion window.
2498  *
2499  * Main question: may we further continue forward transmission
2500  * with the same cwnd?
2501  */
2502 static bool tcp_time_to_recover(const struct tcp_sock *tp)
2503 {
2504 	/* Has loss detection marked at least one packet lost? */
2505 	return tp->lost_out != 0;
2506 }
2507 
2508 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2509 {
2510 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2511 	       before(tp->rx_opt.rcv_tsecr, when);
2512 }
2513 
2514 /* skb is spurious retransmitted if the returned timestamp echo
2515  * reply is prior to the skb transmission time
2516  */
2517 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2518 				     const struct sk_buff *skb)
2519 {
2520 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2521 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2522 }
2523 
2524 /* Nothing was retransmitted or returned timestamp is less
2525  * than timestamp of the first retransmission.
2526  */
2527 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2528 {
2529 	const struct sock *sk = (const struct sock *)tp;
2530 
2531 	/* Received an echoed timestamp before the first retransmission? */
2532 	if (tp->retrans_stamp)
2533 		return tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2534 
2535 	/* We set tp->retrans_stamp upon the first retransmission of a loss
2536 	 * recovery episode, so normally if tp->retrans_stamp is 0 then no
2537 	 * retransmission has happened yet (likely due to TSQ, which can cause
2538 	 * fast retransmits to be delayed). So if snd_una advanced while
2539 	 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed,
2540 	 * not lost. But there are exceptions where we retransmit but then
2541 	 * clear tp->retrans_stamp, so we check for those exceptions.
2542 	 */
2543 
2544 	/* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen()
2545 	 * clears tp->retrans_stamp when snd_una == high_seq.
2546 	 */
2547 	if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq))
2548 		return false;
2549 
2550 	/* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp
2551 	 * when setting FLAG_SYN_ACKED is set, even if the SYN was
2552 	 * retransmitted.
2553 	 */
2554 	if (sk->sk_state == TCP_SYN_SENT)
2555 		return false;
2556 
2557 	return true;	/* tp->retrans_stamp is zero; no retransmit yet */
2558 }
2559 
2560 /* Undo procedures. */
2561 
2562 /* We can clear retrans_stamp when there are no retransmissions in the
2563  * window. It would seem that it is trivially available for us in
2564  * tp->retrans_out, however, that kind of assumptions doesn't consider
2565  * what will happen if errors occur when sending retransmission for the
2566  * second time. ...It could the that such segment has only
2567  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2568  * the head skb is enough except for some reneging corner cases that
2569  * are not worth the effort.
2570  *
2571  * Main reason for all this complexity is the fact that connection dying
2572  * time now depends on the validity of the retrans_stamp, in particular,
2573  * that successive retransmissions of a segment must not advance
2574  * retrans_stamp under any conditions.
2575  */
2576 static bool tcp_any_retrans_done(const struct sock *sk)
2577 {
2578 	const struct tcp_sock *tp = tcp_sk(sk);
2579 	struct sk_buff *skb;
2580 
2581 	if (tp->retrans_out)
2582 		return true;
2583 
2584 	skb = tcp_rtx_queue_head(sk);
2585 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2586 		return true;
2587 
2588 	return false;
2589 }
2590 
2591 /* If loss recovery is finished and there are no retransmits out in the
2592  * network, then we clear retrans_stamp so that upon the next loss recovery
2593  * retransmits_timed_out() and timestamp-undo are using the correct value.
2594  */
2595 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2596 {
2597 	if (!tcp_any_retrans_done(sk))
2598 		tcp_sk(sk)->retrans_stamp = 0;
2599 }
2600 
2601 static void DBGUNDO(struct sock *sk, const char *msg)
2602 {
2603 #if FASTRETRANS_DEBUG > 1
2604 	struct tcp_sock *tp = tcp_sk(sk);
2605 	struct inet_sock *inet = inet_sk(sk);
2606 
2607 	if (sk->sk_family == AF_INET) {
2608 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2609 			 msg,
2610 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2611 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2612 			 tp->snd_ssthresh, tp->prior_ssthresh,
2613 			 tp->packets_out);
2614 	}
2615 #if IS_ENABLED(CONFIG_IPV6)
2616 	else if (sk->sk_family == AF_INET6) {
2617 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2618 			 msg,
2619 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2620 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2621 			 tp->snd_ssthresh, tp->prior_ssthresh,
2622 			 tp->packets_out);
2623 	}
2624 #endif
2625 #endif
2626 }
2627 
2628 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2629 {
2630 	struct tcp_sock *tp = tcp_sk(sk);
2631 
2632 	if (unmark_loss) {
2633 		struct sk_buff *skb;
2634 
2635 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2636 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2637 		}
2638 		tp->lost_out = 0;
2639 		tcp_clear_all_retrans_hints(tp);
2640 	}
2641 
2642 	if (tp->prior_ssthresh) {
2643 		const struct inet_connection_sock *icsk = inet_csk(sk);
2644 
2645 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2646 
2647 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2648 			tp->snd_ssthresh = tp->prior_ssthresh;
2649 			tcp_ecn_withdraw_cwr(tp);
2650 		}
2651 	}
2652 	tp->snd_cwnd_stamp = tcp_jiffies32;
2653 	tp->undo_marker = 0;
2654 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2655 }
2656 
2657 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2658 {
2659 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2660 }
2661 
2662 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2663 {
2664 	struct tcp_sock *tp = tcp_sk(sk);
2665 
2666 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2667 		/* Hold old state until something *above* high_seq
2668 		 * is ACKed. For Reno it is MUST to prevent false
2669 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2670 		if (!tcp_any_retrans_done(sk))
2671 			tp->retrans_stamp = 0;
2672 		return true;
2673 	}
2674 	return false;
2675 }
2676 
2677 /* People celebrate: "We love our President!" */
2678 static bool tcp_try_undo_recovery(struct sock *sk)
2679 {
2680 	struct tcp_sock *tp = tcp_sk(sk);
2681 
2682 	if (tcp_may_undo(tp)) {
2683 		int mib_idx;
2684 
2685 		/* Happy end! We did not retransmit anything
2686 		 * or our original transmission succeeded.
2687 		 */
2688 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2689 		tcp_undo_cwnd_reduction(sk, false);
2690 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2691 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2692 		else
2693 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2694 
2695 		NET_INC_STATS(sock_net(sk), mib_idx);
2696 	} else if (tp->rack.reo_wnd_persist) {
2697 		tp->rack.reo_wnd_persist--;
2698 	}
2699 	if (tcp_is_non_sack_preventing_reopen(sk))
2700 		return true;
2701 	tcp_set_ca_state(sk, TCP_CA_Open);
2702 	tp->is_sack_reneg = 0;
2703 	return false;
2704 }
2705 
2706 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2707 static bool tcp_try_undo_dsack(struct sock *sk)
2708 {
2709 	struct tcp_sock *tp = tcp_sk(sk);
2710 
2711 	if (tp->undo_marker && !tp->undo_retrans) {
2712 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2713 					       tp->rack.reo_wnd_persist + 1);
2714 		DBGUNDO(sk, "D-SACK");
2715 		tcp_undo_cwnd_reduction(sk, false);
2716 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2717 		return true;
2718 	}
2719 	return false;
2720 }
2721 
2722 /* Undo during loss recovery after partial ACK or using F-RTO. */
2723 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2724 {
2725 	struct tcp_sock *tp = tcp_sk(sk);
2726 
2727 	if (frto_undo || tcp_may_undo(tp)) {
2728 		tcp_undo_cwnd_reduction(sk, true);
2729 
2730 		DBGUNDO(sk, "partial loss");
2731 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2732 		if (frto_undo)
2733 			NET_INC_STATS(sock_net(sk),
2734 					LINUX_MIB_TCPSPURIOUSRTOS);
2735 		WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0);
2736 		if (tcp_is_non_sack_preventing_reopen(sk))
2737 			return true;
2738 		if (frto_undo || tcp_is_sack(tp)) {
2739 			tcp_set_ca_state(sk, TCP_CA_Open);
2740 			tp->is_sack_reneg = 0;
2741 		}
2742 		return true;
2743 	}
2744 	return false;
2745 }
2746 
2747 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2748  * It computes the number of packets to send (sndcnt) based on packets newly
2749  * delivered:
2750  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2751  *	cwnd reductions across a full RTT.
2752  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2753  *      But when SND_UNA is acked without further losses,
2754  *      slow starts cwnd up to ssthresh to speed up the recovery.
2755  */
2756 static void tcp_init_cwnd_reduction(struct sock *sk)
2757 {
2758 	struct tcp_sock *tp = tcp_sk(sk);
2759 
2760 	tp->high_seq = tp->snd_nxt;
2761 	tp->tlp_high_seq = 0;
2762 	tp->snd_cwnd_cnt = 0;
2763 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2764 	tp->prr_delivered = 0;
2765 	tp->prr_out = 0;
2766 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2767 	tcp_ecn_queue_cwr(tp);
2768 }
2769 
2770 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2771 {
2772 	struct tcp_sock *tp = tcp_sk(sk);
2773 	int sndcnt = 0;
2774 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2775 
2776 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2777 		return;
2778 
2779 	trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag);
2780 
2781 	tp->prr_delivered += newly_acked_sacked;
2782 	if (delta < 0) {
2783 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2784 			       tp->prior_cwnd - 1;
2785 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2786 	} else {
2787 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2788 			       newly_acked_sacked);
2789 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2790 			sndcnt++;
2791 		sndcnt = min(delta, sndcnt);
2792 	}
2793 	/* Force a fast retransmit upon entering fast recovery */
2794 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2795 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2796 }
2797 
2798 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2799 {
2800 	struct tcp_sock *tp = tcp_sk(sk);
2801 
2802 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2803 		return;
2804 
2805 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2806 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2807 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2808 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2809 		tp->snd_cwnd_stamp = tcp_jiffies32;
2810 	}
2811 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2812 }
2813 
2814 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2815 void tcp_enter_cwr(struct sock *sk)
2816 {
2817 	struct tcp_sock *tp = tcp_sk(sk);
2818 
2819 	tp->prior_ssthresh = 0;
2820 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2821 		tp->undo_marker = 0;
2822 		tcp_init_cwnd_reduction(sk);
2823 		tcp_set_ca_state(sk, TCP_CA_CWR);
2824 	}
2825 }
2826 EXPORT_SYMBOL(tcp_enter_cwr);
2827 
2828 static void tcp_try_keep_open(struct sock *sk)
2829 {
2830 	struct tcp_sock *tp = tcp_sk(sk);
2831 	int state = TCP_CA_Open;
2832 
2833 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2834 		state = TCP_CA_Disorder;
2835 
2836 	if (inet_csk(sk)->icsk_ca_state != state) {
2837 		tcp_set_ca_state(sk, state);
2838 		tp->high_seq = tp->snd_nxt;
2839 	}
2840 }
2841 
2842 static void tcp_try_to_open(struct sock *sk, int flag)
2843 {
2844 	struct tcp_sock *tp = tcp_sk(sk);
2845 
2846 	tcp_verify_left_out(tp);
2847 
2848 	if (!tcp_any_retrans_done(sk))
2849 		tp->retrans_stamp = 0;
2850 
2851 	if (flag & FLAG_ECE)
2852 		tcp_enter_cwr(sk);
2853 
2854 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2855 		tcp_try_keep_open(sk);
2856 	}
2857 }
2858 
2859 static void tcp_mtup_probe_failed(struct sock *sk)
2860 {
2861 	struct inet_connection_sock *icsk = inet_csk(sk);
2862 
2863 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2864 	icsk->icsk_mtup.probe_size = 0;
2865 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2866 }
2867 
2868 static void tcp_mtup_probe_success(struct sock *sk)
2869 {
2870 	struct tcp_sock *tp = tcp_sk(sk);
2871 	struct inet_connection_sock *icsk = inet_csk(sk);
2872 	u64 val;
2873 
2874 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2875 
2876 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2877 	do_div(val, icsk->icsk_mtup.probe_size);
2878 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2879 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2880 
2881 	tp->snd_cwnd_cnt = 0;
2882 	tp->snd_cwnd_stamp = tcp_jiffies32;
2883 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2884 
2885 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2886 	icsk->icsk_mtup.probe_size = 0;
2887 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2888 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2889 }
2890 
2891 /* Sometimes we deduce that packets have been dropped due to reasons other than
2892  * congestion, like path MTU reductions or failed client TFO attempts. In these
2893  * cases we call this function to retransmit as many packets as cwnd allows,
2894  * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2895  * non-zero value (and may do so in a later calling context due to TSQ), we
2896  * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2897  * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2898  * are using the correct retrans_stamp and don't declare ETIMEDOUT
2899  * prematurely).
2900  */
2901 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2902 {
2903 	const struct inet_connection_sock *icsk = inet_csk(sk);
2904 	struct tcp_sock *tp = tcp_sk(sk);
2905 
2906 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2907 		tp->high_seq = tp->snd_nxt;
2908 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2909 		tp->prior_ssthresh = 0;
2910 		tp->undo_marker = 0;
2911 		tcp_set_ca_state(sk, TCP_CA_Loss);
2912 	}
2913 	tcp_xmit_retransmit_queue(sk);
2914 }
2915 
2916 /* Do a simple retransmit without using the backoff mechanisms in
2917  * tcp_timer. This is used for path mtu discovery.
2918  * The socket is already locked here.
2919  */
2920 void tcp_simple_retransmit(struct sock *sk)
2921 {
2922 	struct tcp_sock *tp = tcp_sk(sk);
2923 	struct sk_buff *skb;
2924 	int mss;
2925 
2926 	/* A fastopen SYN request is stored as two separate packets within
2927 	 * the retransmit queue, this is done by tcp_send_syn_data().
2928 	 * As a result simply checking the MSS of the frames in the queue
2929 	 * will not work for the SYN packet.
2930 	 *
2931 	 * Us being here is an indication of a path MTU issue so we can
2932 	 * assume that the fastopen SYN was lost and just mark all the
2933 	 * frames in the retransmit queue as lost. We will use an MSS of
2934 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2935 	 */
2936 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2937 		mss = -1;
2938 	else
2939 		mss = tcp_current_mss(sk);
2940 
2941 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2942 		if (tcp_skb_seglen(skb) > mss)
2943 			tcp_mark_skb_lost(sk, skb);
2944 	}
2945 
2946 	if (!tp->lost_out)
2947 		return;
2948 
2949 	if (tcp_is_reno(tp))
2950 		tcp_limit_reno_sacked(tp);
2951 
2952 	tcp_verify_left_out(tp);
2953 
2954 	/* Don't muck with the congestion window here.
2955 	 * Reason is that we do not increase amount of _data_
2956 	 * in network, but units changed and effective
2957 	 * cwnd/ssthresh really reduced now.
2958 	 */
2959 	tcp_non_congestion_loss_retransmit(sk);
2960 }
2961 EXPORT_IPV6_MOD(tcp_simple_retransmit);
2962 
2963 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2964 {
2965 	struct tcp_sock *tp = tcp_sk(sk);
2966 	int mib_idx;
2967 
2968 	/* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2969 	tcp_retrans_stamp_cleanup(sk);
2970 
2971 	if (tcp_is_reno(tp))
2972 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2973 	else
2974 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2975 
2976 	NET_INC_STATS(sock_net(sk), mib_idx);
2977 
2978 	tp->prior_ssthresh = 0;
2979 	tcp_init_undo(tp);
2980 
2981 	if (!tcp_in_cwnd_reduction(sk)) {
2982 		if (!ece_ack)
2983 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2984 		tcp_init_cwnd_reduction(sk);
2985 	}
2986 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2987 }
2988 
2989 static void tcp_update_rto_time(struct tcp_sock *tp)
2990 {
2991 	if (tp->rto_stamp) {
2992 		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2993 		tp->rto_stamp = 0;
2994 	}
2995 }
2996 
2997 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2998  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2999  */
3000 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
3001 			     int *rexmit)
3002 {
3003 	struct tcp_sock *tp = tcp_sk(sk);
3004 	bool recovered = !before(tp->snd_una, tp->high_seq);
3005 
3006 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
3007 	    tcp_try_undo_loss(sk, false))
3008 		return;
3009 
3010 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
3011 		/* Step 3.b. A timeout is spurious if not all data are
3012 		 * lost, i.e., never-retransmitted data are (s)acked.
3013 		 */
3014 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
3015 		    tcp_try_undo_loss(sk, true))
3016 			return;
3017 
3018 		if (after(tp->snd_nxt, tp->high_seq)) {
3019 			if (flag & FLAG_DATA_SACKED || num_dupack)
3020 				tp->frto = 0; /* Step 3.a. loss was real */
3021 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
3022 			tp->high_seq = tp->snd_nxt;
3023 			/* Step 2.b. Try send new data (but deferred until cwnd
3024 			 * is updated in tcp_ack()). Otherwise fall back to
3025 			 * the conventional recovery.
3026 			 */
3027 			if (!tcp_write_queue_empty(sk) &&
3028 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
3029 				*rexmit = REXMIT_NEW;
3030 				return;
3031 			}
3032 			tp->frto = 0;
3033 		}
3034 	}
3035 
3036 	if (recovered) {
3037 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
3038 		tcp_try_undo_recovery(sk);
3039 		return;
3040 	}
3041 	if (tcp_is_reno(tp)) {
3042 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
3043 		 * delivered. Lower inflight to clock out (re)transmissions.
3044 		 */
3045 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
3046 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
3047 		else if (flag & FLAG_SND_UNA_ADVANCED)
3048 			tcp_reset_reno_sack(tp);
3049 	}
3050 	*rexmit = REXMIT_LOST;
3051 }
3052 
3053 /* Undo during fast recovery after partial ACK. */
3054 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
3055 {
3056 	struct tcp_sock *tp = tcp_sk(sk);
3057 
3058 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
3059 		/* Plain luck! Hole if filled with delayed
3060 		 * packet, rather than with a retransmit. Check reordering.
3061 		 */
3062 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
3063 
3064 		/* We are getting evidence that the reordering degree is higher
3065 		 * than we realized. If there are no retransmits out then we
3066 		 * can undo. Otherwise we clock out new packets but do not
3067 		 * mark more packets lost or retransmit more.
3068 		 */
3069 		if (tp->retrans_out)
3070 			return true;
3071 
3072 		if (!tcp_any_retrans_done(sk))
3073 			tp->retrans_stamp = 0;
3074 
3075 		DBGUNDO(sk, "partial recovery");
3076 		tcp_undo_cwnd_reduction(sk, true);
3077 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3078 		tcp_try_keep_open(sk);
3079 	}
3080 	return false;
3081 }
3082 
3083 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3084 {
3085 	struct tcp_sock *tp = tcp_sk(sk);
3086 
3087 	if (tcp_rtx_queue_empty(sk))
3088 		return;
3089 
3090 	if (unlikely(tcp_is_reno(tp))) {
3091 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3092 	} else {
3093 		u32 prior_retrans = tp->retrans_out;
3094 
3095 		if (tcp_rack_mark_lost(sk))
3096 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
3097 		if (prior_retrans > tp->retrans_out)
3098 			*ack_flag |= FLAG_LOST_RETRANS;
3099 	}
3100 }
3101 
3102 /* Process an event, which can update packets-in-flight not trivially.
3103  * Main goal of this function is to calculate new estimate for left_out,
3104  * taking into account both packets sitting in receiver's buffer and
3105  * packets lost by network.
3106  *
3107  * Besides that it updates the congestion state when packet loss or ECN
3108  * is detected. But it does not reduce the cwnd, it is done by the
3109  * congestion control later.
3110  *
3111  * It does _not_ decide what to send, it is made in function
3112  * tcp_xmit_retransmit_queue().
3113  */
3114 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3115 				  int num_dupack, int *ack_flag, int *rexmit)
3116 {
3117 	struct inet_connection_sock *icsk = inet_csk(sk);
3118 	struct tcp_sock *tp = tcp_sk(sk);
3119 	int flag = *ack_flag;
3120 	bool ece_ack = flag & FLAG_ECE;
3121 
3122 	if (!tp->packets_out && tp->sacked_out)
3123 		tp->sacked_out = 0;
3124 
3125 	/* Now state machine starts.
3126 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3127 	if (ece_ack)
3128 		tp->prior_ssthresh = 0;
3129 
3130 	/* B. In all the states check for reneging SACKs. */
3131 	if (tcp_check_sack_reneging(sk, ack_flag))
3132 		return;
3133 
3134 	/* C. Check consistency of the current state. */
3135 	tcp_verify_left_out(tp);
3136 
3137 	/* D. Check state exit conditions. State can be terminated
3138 	 *    when high_seq is ACKed. */
3139 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3140 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3141 		tp->retrans_stamp = 0;
3142 	} else if (!before(tp->snd_una, tp->high_seq)) {
3143 		switch (icsk->icsk_ca_state) {
3144 		case TCP_CA_CWR:
3145 			/* CWR is to be held something *above* high_seq
3146 			 * is ACKed for CWR bit to reach receiver. */
3147 			if (tp->snd_una != tp->high_seq) {
3148 				tcp_end_cwnd_reduction(sk);
3149 				tcp_set_ca_state(sk, TCP_CA_Open);
3150 			}
3151 			break;
3152 
3153 		case TCP_CA_Recovery:
3154 			if (tcp_is_reno(tp))
3155 				tcp_reset_reno_sack(tp);
3156 			if (tcp_try_undo_recovery(sk))
3157 				return;
3158 			tcp_end_cwnd_reduction(sk);
3159 			break;
3160 		}
3161 	}
3162 
3163 	/* E. Process state. */
3164 	switch (icsk->icsk_ca_state) {
3165 	case TCP_CA_Recovery:
3166 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3167 			if (tcp_is_reno(tp))
3168 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3169 		} else if (tcp_try_undo_partial(sk, prior_snd_una))
3170 			return;
3171 
3172 		if (tcp_try_undo_dsack(sk))
3173 			tcp_try_to_open(sk, flag);
3174 
3175 		tcp_identify_packet_loss(sk, ack_flag);
3176 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3177 			if (!tcp_time_to_recover(tp))
3178 				return;
3179 			/* Undo reverts the recovery state. If loss is evident,
3180 			 * starts a new recovery (e.g. reordering then loss);
3181 			 */
3182 			tcp_enter_recovery(sk, ece_ack);
3183 		}
3184 		break;
3185 	case TCP_CA_Loss:
3186 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3187 		if (icsk->icsk_ca_state != TCP_CA_Loss)
3188 			tcp_update_rto_time(tp);
3189 		tcp_identify_packet_loss(sk, ack_flag);
3190 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3191 		      (*ack_flag & FLAG_LOST_RETRANS)))
3192 			return;
3193 		/* Change state if cwnd is undone or retransmits are lost */
3194 		fallthrough;
3195 	default:
3196 		if (tcp_is_reno(tp)) {
3197 			if (flag & FLAG_SND_UNA_ADVANCED)
3198 				tcp_reset_reno_sack(tp);
3199 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3200 		}
3201 
3202 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3203 			tcp_try_undo_dsack(sk);
3204 
3205 		tcp_identify_packet_loss(sk, ack_flag);
3206 		if (!tcp_time_to_recover(tp)) {
3207 			tcp_try_to_open(sk, flag);
3208 			return;
3209 		}
3210 
3211 		/* MTU probe failure: don't reduce cwnd */
3212 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3213 		    icsk->icsk_mtup.probe_size &&
3214 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3215 			tcp_mtup_probe_failed(sk);
3216 			/* Restores the reduction we did in tcp_mtup_probe() */
3217 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3218 			tcp_simple_retransmit(sk);
3219 			return;
3220 		}
3221 
3222 		/* Otherwise enter Recovery state */
3223 		tcp_enter_recovery(sk, ece_ack);
3224 	}
3225 
3226 	*rexmit = REXMIT_LOST;
3227 }
3228 
3229 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3230 {
3231 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3232 	struct tcp_sock *tp = tcp_sk(sk);
3233 
3234 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3235 		/* If the remote keeps returning delayed ACKs, eventually
3236 		 * the min filter would pick it up and overestimate the
3237 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3238 		 */
3239 		return;
3240 	}
3241 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3242 			   rtt_us ? : jiffies_to_usecs(1));
3243 }
3244 
3245 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3246 			       long seq_rtt_us, long sack_rtt_us,
3247 			       long ca_rtt_us, struct rate_sample *rs)
3248 {
3249 	const struct tcp_sock *tp = tcp_sk(sk);
3250 
3251 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3252 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3253 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3254 	 * is acked (RFC6298).
3255 	 */
3256 	if (seq_rtt_us < 0)
3257 		seq_rtt_us = sack_rtt_us;
3258 
3259 	/* RTTM Rule: A TSecr value received in a segment is used to
3260 	 * update the averaged RTT measurement only if the segment
3261 	 * acknowledges some new data, i.e., only if it advances the
3262 	 * left edge of the send window.
3263 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3264 	 */
3265 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3266 	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3267 		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp, 1);
3268 
3269 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3270 	if (seq_rtt_us < 0)
3271 		return false;
3272 
3273 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3274 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3275 	 * values will be skipped with the seq_rtt_us < 0 check above.
3276 	 */
3277 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3278 	tcp_rtt_estimator(sk, seq_rtt_us);
3279 	tcp_set_rto(sk);
3280 
3281 	/* RFC6298: only reset backoff on valid RTT measurement. */
3282 	inet_csk(sk)->icsk_backoff = 0;
3283 	return true;
3284 }
3285 
3286 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3287 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3288 {
3289 	struct rate_sample rs;
3290 	long rtt_us = -1L;
3291 
3292 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3293 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3294 
3295 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3296 }
3297 
3298 
3299 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3300 {
3301 	const struct inet_connection_sock *icsk = inet_csk(sk);
3302 
3303 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3304 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3305 }
3306 
3307 /* Restart timer after forward progress on connection.
3308  * RFC2988 recommends to restart timer to now+rto.
3309  */
3310 void tcp_rearm_rto(struct sock *sk)
3311 {
3312 	const struct inet_connection_sock *icsk = inet_csk(sk);
3313 	struct tcp_sock *tp = tcp_sk(sk);
3314 
3315 	/* If the retrans timer is currently being used by Fast Open
3316 	 * for SYN-ACK retrans purpose, stay put.
3317 	 */
3318 	if (rcu_access_pointer(tp->fastopen_rsk))
3319 		return;
3320 
3321 	if (!tp->packets_out) {
3322 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3323 	} else {
3324 		u32 rto = inet_csk(sk)->icsk_rto;
3325 		/* Offset the time elapsed after installing regular RTO */
3326 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3327 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3328 			s64 delta_us = tcp_rto_delta_us(sk);
3329 			/* delta_us may not be positive if the socket is locked
3330 			 * when the retrans timer fires and is rescheduled.
3331 			 */
3332 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3333 		}
3334 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true);
3335 	}
3336 }
3337 
3338 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3339 static void tcp_set_xmit_timer(struct sock *sk)
3340 {
3341 	if (!tcp_schedule_loss_probe(sk, true))
3342 		tcp_rearm_rto(sk);
3343 }
3344 
3345 /* If we get here, the whole TSO packet has not been acked. */
3346 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3347 {
3348 	struct tcp_sock *tp = tcp_sk(sk);
3349 	u32 packets_acked;
3350 
3351 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3352 
3353 	packets_acked = tcp_skb_pcount(skb);
3354 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3355 		return 0;
3356 	packets_acked -= tcp_skb_pcount(skb);
3357 
3358 	if (packets_acked) {
3359 		BUG_ON(tcp_skb_pcount(skb) == 0);
3360 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3361 	}
3362 
3363 	return packets_acked;
3364 }
3365 
3366 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3367 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3368 {
3369 	const struct skb_shared_info *shinfo;
3370 
3371 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3372 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3373 		return;
3374 
3375 	shinfo = skb_shinfo(skb);
3376 	if (!before(shinfo->tskey, prior_snd_una) &&
3377 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3378 		tcp_skb_tsorted_save(skb) {
3379 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3380 		} tcp_skb_tsorted_restore(skb);
3381 	}
3382 }
3383 
3384 /* Remove acknowledged frames from the retransmission queue. If our packet
3385  * is before the ack sequence we can discard it as it's confirmed to have
3386  * arrived at the other end.
3387  */
3388 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3389 			       u32 prior_fack, u32 prior_snd_una,
3390 			       struct tcp_sacktag_state *sack, bool ece_ack)
3391 {
3392 	const struct inet_connection_sock *icsk = inet_csk(sk);
3393 	u64 first_ackt, last_ackt;
3394 	struct tcp_sock *tp = tcp_sk(sk);
3395 	u32 prior_sacked = tp->sacked_out;
3396 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3397 	struct sk_buff *skb, *next;
3398 	bool fully_acked = true;
3399 	long sack_rtt_us = -1L;
3400 	long seq_rtt_us = -1L;
3401 	long ca_rtt_us = -1L;
3402 	u32 pkts_acked = 0;
3403 	bool rtt_update;
3404 	int flag = 0;
3405 
3406 	first_ackt = 0;
3407 
3408 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3409 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3410 		const u32 start_seq = scb->seq;
3411 		u8 sacked = scb->sacked;
3412 		u32 acked_pcount;
3413 
3414 		/* Determine how many packets and what bytes were acked, tso and else */
3415 		if (after(scb->end_seq, tp->snd_una)) {
3416 			if (tcp_skb_pcount(skb) == 1 ||
3417 			    !after(tp->snd_una, scb->seq))
3418 				break;
3419 
3420 			acked_pcount = tcp_tso_acked(sk, skb);
3421 			if (!acked_pcount)
3422 				break;
3423 			fully_acked = false;
3424 		} else {
3425 			acked_pcount = tcp_skb_pcount(skb);
3426 		}
3427 
3428 		if (unlikely(sacked & TCPCB_RETRANS)) {
3429 			if (sacked & TCPCB_SACKED_RETRANS)
3430 				tp->retrans_out -= acked_pcount;
3431 			flag |= FLAG_RETRANS_DATA_ACKED;
3432 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3433 			last_ackt = tcp_skb_timestamp_us(skb);
3434 			WARN_ON_ONCE(last_ackt == 0);
3435 			if (!first_ackt)
3436 				first_ackt = last_ackt;
3437 
3438 			if (before(start_seq, reord))
3439 				reord = start_seq;
3440 			if (!after(scb->end_seq, tp->high_seq))
3441 				flag |= FLAG_ORIG_SACK_ACKED;
3442 		}
3443 
3444 		if (sacked & TCPCB_SACKED_ACKED) {
3445 			tp->sacked_out -= acked_pcount;
3446 			/* snd_una delta covers these skbs */
3447 			sack->delivered_bytes -= skb->len;
3448 		} else if (tcp_is_sack(tp)) {
3449 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3450 			if (!tcp_skb_spurious_retrans(tp, skb))
3451 				tcp_rack_advance(tp, sacked, scb->end_seq,
3452 						 tcp_skb_timestamp_us(skb));
3453 		}
3454 		if (sacked & TCPCB_LOST)
3455 			tp->lost_out -= acked_pcount;
3456 
3457 		tp->packets_out -= acked_pcount;
3458 		pkts_acked += acked_pcount;
3459 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3460 
3461 		/* Initial outgoing SYN's get put onto the write_queue
3462 		 * just like anything else we transmit.  It is not
3463 		 * true data, and if we misinform our callers that
3464 		 * this ACK acks real data, we will erroneously exit
3465 		 * connection startup slow start one packet too
3466 		 * quickly.  This is severely frowned upon behavior.
3467 		 */
3468 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3469 			flag |= FLAG_DATA_ACKED;
3470 		} else {
3471 			flag |= FLAG_SYN_ACKED;
3472 			tp->retrans_stamp = 0;
3473 		}
3474 
3475 		if (!fully_acked)
3476 			break;
3477 
3478 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3479 
3480 		next = skb_rb_next(skb);
3481 		if (unlikely(skb == tp->retransmit_skb_hint))
3482 			tp->retransmit_skb_hint = NULL;
3483 		tcp_highest_sack_replace(sk, skb, next);
3484 		tcp_rtx_queue_unlink_and_free(skb, sk);
3485 	}
3486 
3487 	if (!skb)
3488 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3489 
3490 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3491 		tp->snd_up = tp->snd_una;
3492 
3493 	if (skb) {
3494 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3495 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3496 			flag |= FLAG_SACK_RENEGING;
3497 	}
3498 
3499 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3500 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3501 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3502 
3503 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3504 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3505 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3506 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3507 			/* Conservatively mark a delayed ACK. It's typically
3508 			 * from a lone runt packet over the round trip to
3509 			 * a receiver w/o out-of-order or CE events.
3510 			 */
3511 			flag |= FLAG_ACK_MAYBE_DELAYED;
3512 		}
3513 	}
3514 	if (sack->first_sackt) {
3515 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3516 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3517 	}
3518 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3519 					ca_rtt_us, sack->rate);
3520 
3521 	if (flag & FLAG_ACKED) {
3522 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3523 		if (unlikely(icsk->icsk_mtup.probe_size &&
3524 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3525 			tcp_mtup_probe_success(sk);
3526 		}
3527 
3528 		if (tcp_is_reno(tp)) {
3529 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3530 
3531 			/* If any of the cumulatively ACKed segments was
3532 			 * retransmitted, non-SACK case cannot confirm that
3533 			 * progress was due to original transmission due to
3534 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3535 			 * the packets may have been never retransmitted.
3536 			 */
3537 			if (flag & FLAG_RETRANS_DATA_ACKED)
3538 				flag &= ~FLAG_ORIG_SACK_ACKED;
3539 		} else {
3540 			/* Non-retransmitted hole got filled? That's reordering */
3541 			if (before(reord, prior_fack))
3542 				tcp_check_sack_reordering(sk, reord, 0);
3543 		}
3544 
3545 		sack->delivered_bytes = (skb ?
3546 					 TCP_SKB_CB(skb)->seq : tp->snd_una) -
3547 					 prior_snd_una;
3548 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3549 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3550 						    tcp_skb_timestamp_us(skb))) {
3551 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3552 		 * after when the head was last (re)transmitted. Otherwise the
3553 		 * timeout may continue to extend in loss recovery.
3554 		 */
3555 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3556 	}
3557 
3558 	if (icsk->icsk_ca_ops->pkts_acked) {
3559 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3560 					     .rtt_us = sack->rate->rtt_us };
3561 
3562 		sample.in_flight = tp->mss_cache *
3563 			(tp->delivered - sack->rate->prior_delivered);
3564 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3565 	}
3566 
3567 #if FASTRETRANS_DEBUG > 0
3568 	WARN_ON((int)tp->sacked_out < 0);
3569 	WARN_ON((int)tp->lost_out < 0);
3570 	WARN_ON((int)tp->retrans_out < 0);
3571 	if (!tp->packets_out && tcp_is_sack(tp)) {
3572 		icsk = inet_csk(sk);
3573 		if (tp->lost_out) {
3574 			pr_debug("Leak l=%u %d\n",
3575 				 tp->lost_out, icsk->icsk_ca_state);
3576 			tp->lost_out = 0;
3577 		}
3578 		if (tp->sacked_out) {
3579 			pr_debug("Leak s=%u %d\n",
3580 				 tp->sacked_out, icsk->icsk_ca_state);
3581 			tp->sacked_out = 0;
3582 		}
3583 		if (tp->retrans_out) {
3584 			pr_debug("Leak r=%u %d\n",
3585 				 tp->retrans_out, icsk->icsk_ca_state);
3586 			tp->retrans_out = 0;
3587 		}
3588 	}
3589 #endif
3590 	return flag;
3591 }
3592 
3593 static void tcp_ack_probe(struct sock *sk)
3594 {
3595 	struct inet_connection_sock *icsk = inet_csk(sk);
3596 	struct sk_buff *head = tcp_send_head(sk);
3597 	const struct tcp_sock *tp = tcp_sk(sk);
3598 
3599 	/* Was it a usable window open? */
3600 	if (!head)
3601 		return;
3602 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3603 		icsk->icsk_backoff = 0;
3604 		icsk->icsk_probes_tstamp = 0;
3605 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3606 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3607 		 * This function is not for random using!
3608 		 */
3609 	} else {
3610 		unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk));
3611 
3612 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3613 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true);
3614 	}
3615 }
3616 
3617 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3618 {
3619 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3620 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3621 }
3622 
3623 /* Decide wheather to run the increase function of congestion control. */
3624 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3625 {
3626 	/* If reordering is high then always grow cwnd whenever data is
3627 	 * delivered regardless of its ordering. Otherwise stay conservative
3628 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3629 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3630 	 * cwnd in tcp_fastretrans_alert() based on more states.
3631 	 */
3632 	if (tcp_sk(sk)->reordering >
3633 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3634 		return flag & FLAG_FORWARD_PROGRESS;
3635 
3636 	return flag & FLAG_DATA_ACKED;
3637 }
3638 
3639 /* The "ultimate" congestion control function that aims to replace the rigid
3640  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3641  * It's called toward the end of processing an ACK with precise rate
3642  * information. All transmission or retransmission are delayed afterwards.
3643  */
3644 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3645 			     int flag, const struct rate_sample *rs)
3646 {
3647 	const struct inet_connection_sock *icsk = inet_csk(sk);
3648 
3649 	if (icsk->icsk_ca_ops->cong_control) {
3650 		icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3651 		return;
3652 	}
3653 
3654 	if (tcp_in_cwnd_reduction(sk)) {
3655 		/* Reduce cwnd if state mandates */
3656 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3657 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3658 		/* Advance cwnd if state allows */
3659 		tcp_cong_avoid(sk, ack, acked_sacked);
3660 	}
3661 	tcp_update_pacing_rate(sk);
3662 }
3663 
3664 /* Check that window update is acceptable.
3665  * The function assumes that snd_una<=ack<=snd_next.
3666  */
3667 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3668 					const u32 ack, const u32 ack_seq,
3669 					const u32 nwin)
3670 {
3671 	return	after(ack, tp->snd_una) ||
3672 		after(ack_seq, tp->snd_wl1) ||
3673 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3674 }
3675 
3676 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3677 {
3678 #ifdef CONFIG_TCP_AO
3679 	struct tcp_ao_info *ao;
3680 
3681 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3682 		return;
3683 
3684 	ao = rcu_dereference_protected(tp->ao_info,
3685 				       lockdep_sock_is_held((struct sock *)tp));
3686 	if (ao && ack < tp->snd_una) {
3687 		ao->snd_sne++;
3688 		trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3689 	}
3690 #endif
3691 }
3692 
3693 /* If we update tp->snd_una, also update tp->bytes_acked */
3694 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3695 {
3696 	u32 delta = ack - tp->snd_una;
3697 
3698 	sock_owned_by_me((struct sock *)tp);
3699 	tp->bytes_acked += delta;
3700 	tcp_snd_sne_update(tp, ack);
3701 	tp->snd_una = ack;
3702 }
3703 
3704 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3705 {
3706 #ifdef CONFIG_TCP_AO
3707 	struct tcp_ao_info *ao;
3708 
3709 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3710 		return;
3711 
3712 	ao = rcu_dereference_protected(tp->ao_info,
3713 				       lockdep_sock_is_held((struct sock *)tp));
3714 	if (ao && seq < tp->rcv_nxt) {
3715 		ao->rcv_sne++;
3716 		trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3717 	}
3718 #endif
3719 }
3720 
3721 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3722 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3723 {
3724 	u32 delta = seq - tp->rcv_nxt;
3725 
3726 	sock_owned_by_me((struct sock *)tp);
3727 	tp->bytes_received += delta;
3728 	tcp_rcv_sne_update(tp, seq);
3729 	WRITE_ONCE(tp->rcv_nxt, seq);
3730 }
3731 
3732 /* Update our send window.
3733  *
3734  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3735  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3736  */
3737 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3738 				 u32 ack_seq)
3739 {
3740 	struct tcp_sock *tp = tcp_sk(sk);
3741 	int flag = 0;
3742 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3743 
3744 	if (likely(!tcp_hdr(skb)->syn))
3745 		nwin <<= tp->rx_opt.snd_wscale;
3746 
3747 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3748 		flag |= FLAG_WIN_UPDATE;
3749 		tcp_update_wl(tp, ack_seq);
3750 
3751 		if (tp->snd_wnd != nwin) {
3752 			tp->snd_wnd = nwin;
3753 
3754 			/* Note, it is the only place, where
3755 			 * fast path is recovered for sending TCP.
3756 			 */
3757 			tp->pred_flags = 0;
3758 			tcp_fast_path_check(sk);
3759 
3760 			if (!tcp_write_queue_empty(sk))
3761 				tcp_slow_start_after_idle_check(sk);
3762 
3763 			if (nwin > tp->max_window) {
3764 				tp->max_window = nwin;
3765 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3766 			}
3767 		}
3768 	}
3769 
3770 	tcp_snd_una_update(tp, ack);
3771 
3772 	return flag;
3773 }
3774 
3775 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3776 				   u32 *last_oow_ack_time)
3777 {
3778 	/* Paired with the WRITE_ONCE() in this function. */
3779 	u32 val = READ_ONCE(*last_oow_ack_time);
3780 
3781 	if (val) {
3782 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3783 
3784 		if (0 <= elapsed &&
3785 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3786 			NET_INC_STATS(net, mib_idx);
3787 			return true;	/* rate-limited: don't send yet! */
3788 		}
3789 	}
3790 
3791 	/* Paired with the prior READ_ONCE() and with itself,
3792 	 * as we might be lockless.
3793 	 */
3794 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3795 
3796 	return false;	/* not rate-limited: go ahead, send dupack now! */
3797 }
3798 
3799 /* Return true if we're currently rate-limiting out-of-window ACKs and
3800  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3801  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3802  * attacks that send repeated SYNs or ACKs for the same connection. To
3803  * do this, we do not send a duplicate SYNACK or ACK if the remote
3804  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3805  */
3806 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3807 			  int mib_idx, u32 *last_oow_ack_time)
3808 {
3809 	/* Data packets without SYNs are not likely part of an ACK loop. */
3810 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3811 	    !tcp_hdr(skb)->syn)
3812 		return false;
3813 
3814 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3815 }
3816 
3817 static void tcp_send_ack_reflect_ect(struct sock *sk, bool accecn_reflector)
3818 {
3819 	struct tcp_sock *tp = tcp_sk(sk);
3820 	u16 flags = 0;
3821 
3822 	if (accecn_reflector)
3823 		flags = tcp_accecn_reflector_flags(tp->syn_ect_rcv);
3824 	__tcp_send_ack(sk, tp->rcv_nxt, flags);
3825 }
3826 
3827 /* RFC 5961 7 [ACK Throttling] */
3828 static void tcp_send_challenge_ack(struct sock *sk, bool accecn_reflector)
3829 {
3830 	struct tcp_sock *tp = tcp_sk(sk);
3831 	struct net *net = sock_net(sk);
3832 	u32 count, now, ack_limit;
3833 
3834 	/* First check our per-socket dupack rate limit. */
3835 	if (__tcp_oow_rate_limited(net,
3836 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3837 				   &tp->last_oow_ack_time))
3838 		return;
3839 
3840 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3841 	if (ack_limit == INT_MAX)
3842 		goto send_ack;
3843 
3844 	/* Then check host-wide RFC 5961 rate limit. */
3845 	now = jiffies / HZ;
3846 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3847 		u32 half = (ack_limit + 1) >> 1;
3848 
3849 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3850 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3851 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3852 	}
3853 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3854 	if (count > 0) {
3855 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3856 send_ack:
3857 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3858 		tcp_send_ack_reflect_ect(sk, accecn_reflector);
3859 	}
3860 }
3861 
3862 static void tcp_store_ts_recent(struct tcp_sock *tp)
3863 {
3864 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3865 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3866 }
3867 
3868 static int __tcp_replace_ts_recent(struct tcp_sock *tp, s32 tstamp_delta)
3869 {
3870 	tcp_store_ts_recent(tp);
3871 	return tstamp_delta > 0 ? FLAG_TS_PROGRESS : 0;
3872 }
3873 
3874 static int tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3875 {
3876 	s32 delta;
3877 
3878 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3879 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3880 		 * extra check below makes sure this can only happen
3881 		 * for pure ACK frames.  -DaveM
3882 		 *
3883 		 * Not only, also it occurs for expired timestamps.
3884 		 */
3885 
3886 		if (tcp_paws_check(&tp->rx_opt, 0)) {
3887 			delta = tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent;
3888 			return __tcp_replace_ts_recent(tp, delta);
3889 		}
3890 	}
3891 
3892 	return 0;
3893 }
3894 
3895 /* This routine deals with acks during a TLP episode and ends an episode by
3896  * resetting tlp_high_seq. Ref: TLP algorithm in RFC8985
3897  */
3898 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3899 {
3900 	struct tcp_sock *tp = tcp_sk(sk);
3901 
3902 	if (before(ack, tp->tlp_high_seq))
3903 		return;
3904 
3905 	if (!tp->tlp_retrans) {
3906 		/* TLP of new data has been acknowledged */
3907 		tp->tlp_high_seq = 0;
3908 	} else if (flag & FLAG_DSACK_TLP) {
3909 		/* This DSACK means original and TLP probe arrived; no loss */
3910 		tp->tlp_high_seq = 0;
3911 	} else if (after(ack, tp->tlp_high_seq)) {
3912 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3913 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3914 		 */
3915 		tcp_init_cwnd_reduction(sk);
3916 		tcp_set_ca_state(sk, TCP_CA_CWR);
3917 		tcp_end_cwnd_reduction(sk);
3918 		tcp_try_keep_open(sk);
3919 		NET_INC_STATS(sock_net(sk),
3920 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3921 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3922 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3923 		/* Pure dupack: original and TLP probe arrived; no loss */
3924 		tp->tlp_high_seq = 0;
3925 	}
3926 }
3927 
3928 static void tcp_in_ack_event(struct sock *sk, int flag)
3929 {
3930 	const struct inet_connection_sock *icsk = inet_csk(sk);
3931 
3932 	if (icsk->icsk_ca_ops->in_ack_event) {
3933 		u32 ack_ev_flags = 0;
3934 
3935 		if (flag & FLAG_WIN_UPDATE)
3936 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3937 		if (flag & FLAG_SLOWPATH) {
3938 			ack_ev_flags |= CA_ACK_SLOWPATH;
3939 			if (flag & FLAG_ECE)
3940 				ack_ev_flags |= CA_ACK_ECE;
3941 		}
3942 
3943 		icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags);
3944 	}
3945 }
3946 
3947 /* Congestion control has updated the cwnd already. So if we're in
3948  * loss recovery then now we do any new sends (for FRTO) or
3949  * retransmits (for CA_Loss or CA_recovery) that make sense.
3950  */
3951 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3952 {
3953 	struct tcp_sock *tp = tcp_sk(sk);
3954 
3955 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3956 		return;
3957 
3958 	if (unlikely(rexmit == REXMIT_NEW)) {
3959 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3960 					  TCP_NAGLE_OFF);
3961 		if (after(tp->snd_nxt, tp->high_seq))
3962 			return;
3963 		tp->frto = 0;
3964 	}
3965 	tcp_xmit_retransmit_queue(sk);
3966 }
3967 
3968 /* Returns the number of packets newly acked or sacked by the current ACK */
3969 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered,
3970 			       u32 ecn_count, int flag)
3971 {
3972 	const struct net *net = sock_net(sk);
3973 	struct tcp_sock *tp = tcp_sk(sk);
3974 	u32 delivered;
3975 
3976 	delivered = tp->delivered - prior_delivered;
3977 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3978 
3979 	if (flag & FLAG_ECE) {
3980 		if (tcp_ecn_mode_rfc3168(tp))
3981 			ecn_count = delivered;
3982 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, ecn_count);
3983 	}
3984 
3985 	return delivered;
3986 }
3987 
3988 /* This routine deals with incoming acks, but not outgoing ones. */
3989 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3990 {
3991 	struct inet_connection_sock *icsk = inet_csk(sk);
3992 	struct tcp_sock *tp = tcp_sk(sk);
3993 	struct tcp_sacktag_state sack_state;
3994 	struct rate_sample rs = { .prior_delivered = 0 };
3995 	u32 prior_snd_una = tp->snd_una;
3996 	bool is_sack_reneg = tp->is_sack_reneg;
3997 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3998 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3999 	int num_dupack = 0;
4000 	int prior_packets = tp->packets_out;
4001 	u32 delivered = tp->delivered;
4002 	u32 lost = tp->lost;
4003 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
4004 	u32 ecn_count = 0;	  /* Did we receive ECE/an AccECN ACE update? */
4005 	u32 prior_fack;
4006 
4007 	sack_state.first_sackt = 0;
4008 	sack_state.rate = &rs;
4009 	sack_state.sack_delivered = 0;
4010 	sack_state.delivered_bytes = 0;
4011 
4012 	/* We very likely will need to access rtx queue. */
4013 	prefetch(sk->tcp_rtx_queue.rb_node);
4014 
4015 	/* If the ack is older than previous acks
4016 	 * then we can probably ignore it.
4017 	 */
4018 	if (before(ack, prior_snd_una)) {
4019 		u32 max_window;
4020 
4021 		/* do not accept ACK for bytes we never sent. */
4022 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
4023 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
4024 		if (before(ack, prior_snd_una - max_window)) {
4025 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
4026 				tcp_send_challenge_ack(sk, false);
4027 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
4028 		}
4029 		goto old_ack;
4030 	}
4031 
4032 	/* If the ack includes data we haven't sent yet, discard
4033 	 * this segment (RFC793 Section 3.9).
4034 	 */
4035 	if (after(ack, tp->snd_nxt))
4036 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
4037 
4038 	if (after(ack, prior_snd_una)) {
4039 		flag |= FLAG_SND_UNA_ADVANCED;
4040 		WRITE_ONCE(icsk->icsk_retransmits, 0);
4041 
4042 #if IS_ENABLED(CONFIG_TLS_DEVICE)
4043 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
4044 			if (tp->tcp_clean_acked)
4045 				tp->tcp_clean_acked(sk, ack);
4046 #endif
4047 	}
4048 
4049 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
4050 	rs.prior_in_flight = tcp_packets_in_flight(tp);
4051 
4052 	/* ts_recent update must be made after we are sure that the packet
4053 	 * is in window.
4054 	 */
4055 	if (flag & FLAG_UPDATE_TS_RECENT)
4056 		flag |= tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4057 
4058 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
4059 	    FLAG_SND_UNA_ADVANCED) {
4060 		/* Window is constant, pure forward advance.
4061 		 * No more checks are required.
4062 		 * Note, we use the fact that SND.UNA>=SND.WL2.
4063 		 */
4064 		tcp_update_wl(tp, ack_seq);
4065 		tcp_snd_una_update(tp, ack);
4066 		flag |= FLAG_WIN_UPDATE;
4067 
4068 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
4069 	} else {
4070 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
4071 			flag |= FLAG_DATA;
4072 		else
4073 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
4074 
4075 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
4076 
4077 		if (TCP_SKB_CB(skb)->sacked)
4078 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4079 							&sack_state);
4080 
4081 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb)))
4082 			flag |= FLAG_ECE;
4083 
4084 		if (sack_state.sack_delivered)
4085 			tcp_count_delivered(tp, sack_state.sack_delivered,
4086 					    flag & FLAG_ECE);
4087 	}
4088 
4089 	/* This is a deviation from RFC3168 since it states that:
4090 	 * "When the TCP data sender is ready to set the CWR bit after reducing
4091 	 * the congestion window, it SHOULD set the CWR bit only on the first
4092 	 * new data packet that it transmits."
4093 	 * We accept CWR on pure ACKs to be more robust
4094 	 * with widely-deployed TCP implementations that do this.
4095 	 */
4096 	tcp_ecn_accept_cwr(sk, skb);
4097 
4098 	/* We passed data and got it acked, remove any soft error
4099 	 * log. Something worked...
4100 	 */
4101 	if (READ_ONCE(sk->sk_err_soft))
4102 		WRITE_ONCE(sk->sk_err_soft, 0);
4103 	WRITE_ONCE(icsk->icsk_probes_out, 0);
4104 	tp->rcv_tstamp = tcp_jiffies32;
4105 	if (!prior_packets)
4106 		goto no_queue;
4107 
4108 	/* See if we can take anything off of the retransmit queue. */
4109 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
4110 				    &sack_state, flag & FLAG_ECE);
4111 
4112 	tcp_rack_update_reo_wnd(sk, &rs);
4113 
4114 	if (tcp_ecn_mode_accecn(tp))
4115 		ecn_count = tcp_accecn_process(sk, skb,
4116 					       tp->delivered - delivered,
4117 					       sack_state.delivered_bytes,
4118 					       &flag);
4119 
4120 	tcp_in_ack_event(sk, flag);
4121 
4122 	if (tp->tlp_high_seq)
4123 		tcp_process_tlp_ack(sk, ack, flag);
4124 
4125 	if (tcp_ack_is_dubious(sk, flag)) {
4126 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
4127 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4128 			num_dupack = 1;
4129 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
4130 			if (!(flag & FLAG_DATA))
4131 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4132 		}
4133 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4134 				      &rexmit);
4135 	}
4136 
4137 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
4138 	if (flag & FLAG_SET_XMIT_TIMER)
4139 		tcp_set_xmit_timer(sk);
4140 
4141 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4142 		sk_dst_confirm(sk);
4143 
4144 	delivered = tcp_newly_delivered(sk, delivered, ecn_count, flag);
4145 
4146 	lost = tp->lost - lost;			/* freshly marked lost */
4147 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4148 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4149 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4150 	tcp_xmit_recovery(sk, rexmit);
4151 	return 1;
4152 
4153 no_queue:
4154 	if (tcp_ecn_mode_accecn(tp))
4155 		ecn_count = tcp_accecn_process(sk, skb,
4156 					       tp->delivered - delivered,
4157 					       sack_state.delivered_bytes,
4158 					       &flag);
4159 	tcp_in_ack_event(sk, flag);
4160 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4161 	if (flag & FLAG_DSACKING_ACK) {
4162 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4163 				      &rexmit);
4164 		tcp_newly_delivered(sk, delivered, ecn_count, flag);
4165 	}
4166 	/* If this ack opens up a zero window, clear backoff.  It was
4167 	 * being used to time the probes, and is probably far higher than
4168 	 * it needs to be for normal retransmission.
4169 	 */
4170 	tcp_ack_probe(sk);
4171 
4172 	if (tp->tlp_high_seq)
4173 		tcp_process_tlp_ack(sk, ack, flag);
4174 	return 1;
4175 
4176 old_ack:
4177 	/* If data was SACKed, tag it and see if we should send more data.
4178 	 * If data was DSACKed, see if we can undo a cwnd reduction.
4179 	 */
4180 	if (TCP_SKB_CB(skb)->sacked) {
4181 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4182 						&sack_state);
4183 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4184 				      &rexmit);
4185 		tcp_newly_delivered(sk, delivered, ecn_count, flag);
4186 		tcp_xmit_recovery(sk, rexmit);
4187 	}
4188 
4189 	return 0;
4190 }
4191 
4192 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4193 				      bool syn, struct tcp_fastopen_cookie *foc,
4194 				      bool exp_opt)
4195 {
4196 	/* Valid only in SYN or SYN-ACK with an even length.  */
4197 	if (!foc || !syn || len < 0 || (len & 1))
4198 		return;
4199 
4200 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4201 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4202 		memcpy(foc->val, cookie, len);
4203 	else if (len != 0)
4204 		len = -1;
4205 	foc->len = len;
4206 	foc->exp = exp_opt;
4207 }
4208 
4209 static bool smc_parse_options(const struct tcphdr *th,
4210 			      struct tcp_options_received *opt_rx,
4211 			      const unsigned char *ptr,
4212 			      int opsize)
4213 {
4214 #if IS_ENABLED(CONFIG_SMC)
4215 	if (static_branch_unlikely(&tcp_have_smc)) {
4216 		if (th->syn && !(opsize & 1) &&
4217 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4218 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4219 			opt_rx->smc_ok = 1;
4220 			return true;
4221 		}
4222 	}
4223 #endif
4224 	return false;
4225 }
4226 
4227 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4228  * value on success.
4229  */
4230 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4231 {
4232 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4233 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4234 	u16 mss = 0;
4235 
4236 	while (length > 0) {
4237 		int opcode = *ptr++;
4238 		int opsize;
4239 
4240 		switch (opcode) {
4241 		case TCPOPT_EOL:
4242 			return mss;
4243 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4244 			length--;
4245 			continue;
4246 		default:
4247 			if (length < 2)
4248 				return mss;
4249 			opsize = *ptr++;
4250 			if (opsize < 2) /* "silly options" */
4251 				return mss;
4252 			if (opsize > length)
4253 				return mss;	/* fail on partial options */
4254 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4255 				u16 in_mss = get_unaligned_be16(ptr);
4256 
4257 				if (in_mss) {
4258 					if (user_mss && user_mss < in_mss)
4259 						in_mss = user_mss;
4260 					mss = in_mss;
4261 				}
4262 			}
4263 			ptr += opsize - 2;
4264 			length -= opsize;
4265 		}
4266 	}
4267 	return mss;
4268 }
4269 
4270 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4271  * But, this can also be called on packets in the established flow when
4272  * the fast version below fails.
4273  */
4274 void tcp_parse_options(const struct net *net,
4275 		       const struct sk_buff *skb,
4276 		       struct tcp_options_received *opt_rx, int estab,
4277 		       struct tcp_fastopen_cookie *foc)
4278 {
4279 	const unsigned char *ptr;
4280 	const struct tcphdr *th = tcp_hdr(skb);
4281 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4282 
4283 	ptr = (const unsigned char *)(th + 1);
4284 	opt_rx->saw_tstamp = 0;
4285 	opt_rx->accecn = 0;
4286 	opt_rx->saw_unknown = 0;
4287 
4288 	while (length > 0) {
4289 		int opcode = *ptr++;
4290 		int opsize;
4291 
4292 		switch (opcode) {
4293 		case TCPOPT_EOL:
4294 			return;
4295 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4296 			length--;
4297 			continue;
4298 		default:
4299 			if (length < 2)
4300 				return;
4301 			opsize = *ptr++;
4302 			if (opsize < 2) /* "silly options" */
4303 				return;
4304 			if (opsize > length)
4305 				return;	/* don't parse partial options */
4306 			switch (opcode) {
4307 			case TCPOPT_MSS:
4308 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4309 					u16 in_mss = get_unaligned_be16(ptr);
4310 					if (in_mss) {
4311 						if (opt_rx->user_mss &&
4312 						    opt_rx->user_mss < in_mss)
4313 							in_mss = opt_rx->user_mss;
4314 						opt_rx->mss_clamp = in_mss;
4315 					}
4316 				}
4317 				break;
4318 			case TCPOPT_WINDOW:
4319 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4320 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4321 					__u8 snd_wscale = *(__u8 *)ptr;
4322 					opt_rx->wscale_ok = 1;
4323 					if (snd_wscale > TCP_MAX_WSCALE) {
4324 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4325 								     __func__,
4326 								     snd_wscale,
4327 								     TCP_MAX_WSCALE);
4328 						snd_wscale = TCP_MAX_WSCALE;
4329 					}
4330 					opt_rx->snd_wscale = snd_wscale;
4331 				}
4332 				break;
4333 			case TCPOPT_TIMESTAMP:
4334 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4335 				    ((estab && opt_rx->tstamp_ok) ||
4336 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4337 					opt_rx->saw_tstamp = 1;
4338 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4339 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4340 				}
4341 				break;
4342 			case TCPOPT_SACK_PERM:
4343 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4344 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4345 					opt_rx->sack_ok = TCP_SACK_SEEN;
4346 					tcp_sack_reset(opt_rx);
4347 				}
4348 				break;
4349 
4350 			case TCPOPT_SACK:
4351 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4352 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4353 				   opt_rx->sack_ok) {
4354 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4355 				}
4356 				break;
4357 #ifdef CONFIG_TCP_MD5SIG
4358 			case TCPOPT_MD5SIG:
4359 				/* The MD5 Hash has already been
4360 				 * checked (see tcp_v{4,6}_rcv()).
4361 				 */
4362 				break;
4363 #endif
4364 #ifdef CONFIG_TCP_AO
4365 			case TCPOPT_AO:
4366 				/* TCP AO has already been checked
4367 				 * (see tcp_inbound_ao_hash()).
4368 				 */
4369 				break;
4370 #endif
4371 			case TCPOPT_FASTOPEN:
4372 				tcp_parse_fastopen_option(
4373 					opsize - TCPOLEN_FASTOPEN_BASE,
4374 					ptr, th->syn, foc, false);
4375 				break;
4376 
4377 			case TCPOPT_ACCECN0:
4378 			case TCPOPT_ACCECN1:
4379 				/* Save offset of AccECN option in TCP header */
4380 				opt_rx->accecn = (ptr - 2) - (__u8 *)th;
4381 				break;
4382 
4383 			case TCPOPT_EXP:
4384 				/* Fast Open option shares code 254 using a
4385 				 * 16 bits magic number.
4386 				 */
4387 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4388 				    get_unaligned_be16(ptr) ==
4389 				    TCPOPT_FASTOPEN_MAGIC) {
4390 					tcp_parse_fastopen_option(opsize -
4391 						TCPOLEN_EXP_FASTOPEN_BASE,
4392 						ptr + 2, th->syn, foc, true);
4393 					break;
4394 				}
4395 
4396 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4397 					break;
4398 
4399 				opt_rx->saw_unknown = 1;
4400 				break;
4401 
4402 			default:
4403 				opt_rx->saw_unknown = 1;
4404 			}
4405 			ptr += opsize-2;
4406 			length -= opsize;
4407 		}
4408 	}
4409 }
4410 EXPORT_SYMBOL(tcp_parse_options);
4411 
4412 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4413 {
4414 	const __be32 *ptr = (const __be32 *)(th + 1);
4415 
4416 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4417 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4418 		tp->rx_opt.saw_tstamp = 1;
4419 		++ptr;
4420 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4421 		++ptr;
4422 		if (*ptr)
4423 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4424 		else
4425 			tp->rx_opt.rcv_tsecr = 0;
4426 		return true;
4427 	}
4428 	return false;
4429 }
4430 
4431 /* Fast parse options. This hopes to only see timestamps.
4432  * If it is wrong it falls back on tcp_parse_options().
4433  */
4434 static bool tcp_fast_parse_options(const struct net *net,
4435 				   const struct sk_buff *skb,
4436 				   const struct tcphdr *th, struct tcp_sock *tp)
4437 {
4438 	/* In the spirit of fast parsing, compare doff directly to constant
4439 	 * values.  Because equality is used, short doff can be ignored here.
4440 	 */
4441 	if (th->doff == (sizeof(*th) / 4)) {
4442 		tp->rx_opt.saw_tstamp = 0;
4443 		tp->rx_opt.accecn = 0;
4444 		return false;
4445 	} else if (tp->rx_opt.tstamp_ok &&
4446 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4447 		if (tcp_parse_aligned_timestamp(tp, th)) {
4448 			tp->rx_opt.accecn = 0;
4449 			return true;
4450 		}
4451 	}
4452 
4453 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4454 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4455 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4456 
4457 	return true;
4458 }
4459 
4460 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4461 /*
4462  * Parse Signature options
4463  */
4464 int tcp_do_parse_auth_options(const struct tcphdr *th,
4465 			      const u8 **md5_hash, const u8 **ao_hash)
4466 {
4467 	int length = (th->doff << 2) - sizeof(*th);
4468 	const u8 *ptr = (const u8 *)(th + 1);
4469 	unsigned int minlen = TCPOLEN_MD5SIG;
4470 
4471 	if (IS_ENABLED(CONFIG_TCP_AO))
4472 		minlen = sizeof(struct tcp_ao_hdr) + 1;
4473 
4474 	*md5_hash = NULL;
4475 	*ao_hash = NULL;
4476 
4477 	/* If not enough data remaining, we can short cut */
4478 	while (length >= minlen) {
4479 		int opcode = *ptr++;
4480 		int opsize;
4481 
4482 		switch (opcode) {
4483 		case TCPOPT_EOL:
4484 			return 0;
4485 		case TCPOPT_NOP:
4486 			length--;
4487 			continue;
4488 		default:
4489 			opsize = *ptr++;
4490 			if (opsize < 2 || opsize > length)
4491 				return -EINVAL;
4492 			if (opcode == TCPOPT_MD5SIG) {
4493 				if (opsize != TCPOLEN_MD5SIG)
4494 					return -EINVAL;
4495 				if (unlikely(*md5_hash || *ao_hash))
4496 					return -EEXIST;
4497 				*md5_hash = ptr;
4498 			} else if (opcode == TCPOPT_AO) {
4499 				if (opsize <= sizeof(struct tcp_ao_hdr))
4500 					return -EINVAL;
4501 				if (unlikely(*md5_hash || *ao_hash))
4502 					return -EEXIST;
4503 				*ao_hash = ptr;
4504 			}
4505 		}
4506 		ptr += opsize - 2;
4507 		length -= opsize;
4508 	}
4509 	return 0;
4510 }
4511 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4512 #endif
4513 
4514 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4515  *
4516  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4517  * it can pass through stack. So, the following predicate verifies that
4518  * this segment is not used for anything but congestion avoidance or
4519  * fast retransmit. Moreover, we even are able to eliminate most of such
4520  * second order effects, if we apply some small "replay" window (~RTO)
4521  * to timestamp space.
4522  *
4523  * All these measures still do not guarantee that we reject wrapped ACKs
4524  * on networks with high bandwidth, when sequence space is recycled fastly,
4525  * but it guarantees that such events will be very rare and do not affect
4526  * connection seriously. This doesn't look nice, but alas, PAWS is really
4527  * buggy extension.
4528  *
4529  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4530  * states that events when retransmit arrives after original data are rare.
4531  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4532  * the biggest problem on large power networks even with minor reordering.
4533  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4534  * up to bandwidth of 18Gigabit/sec. 8) ]
4535  */
4536 
4537 /* Estimates max number of increments of remote peer TSval in
4538  * a replay window (based on our current RTO estimation).
4539  */
4540 static u32 tcp_tsval_replay(const struct sock *sk)
4541 {
4542 	/* If we use usec TS resolution,
4543 	 * then expect the remote peer to use the same resolution.
4544 	 */
4545 	if (tcp_sk(sk)->tcp_usec_ts)
4546 		return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4547 
4548 	/* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4549 	 * We know that some OS (including old linux) can use 1200 Hz.
4550 	 */
4551 	return inet_csk(sk)->icsk_rto * 1200 / HZ;
4552 }
4553 
4554 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk,
4555 						     const struct sk_buff *skb)
4556 {
4557 	const struct tcp_sock *tp = tcp_sk(sk);
4558 	const struct tcphdr *th = tcp_hdr(skb);
4559 	SKB_DR_INIT(reason, TCP_RFC7323_PAWS);
4560 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4561 	u32 seq = TCP_SKB_CB(skb)->seq;
4562 
4563 	/* 1. Is this not a pure ACK ? */
4564 	if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq)
4565 		return reason;
4566 
4567 	/* 2. Is its sequence not the expected one ? */
4568 	if (seq != tp->rcv_nxt)
4569 		return before(seq, tp->rcv_nxt) ?
4570 			SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK :
4571 			reason;
4572 
4573 	/* 3. Is this not a duplicate ACK ? */
4574 	if (ack != tp->snd_una)
4575 		return reason;
4576 
4577 	/* 4. Is this updating the window ? */
4578 	if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) <<
4579 						tp->rx_opt.snd_wscale))
4580 		return reason;
4581 
4582 	/* 5. Is this not in the replay window ? */
4583 	if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) >
4584 	    tcp_tsval_replay(sk))
4585 		return reason;
4586 
4587 	return 0;
4588 }
4589 
4590 /* Check segment sequence number for validity.
4591  *
4592  * Segment controls are considered valid, if the segment
4593  * fits to the window after truncation to the window. Acceptability
4594  * of data (and SYN, FIN, of course) is checked separately.
4595  * See tcp_data_queue(), for example.
4596  *
4597  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4598  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4599  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4600  * (borrowed from freebsd)
4601  */
4602 
4603 static enum skb_drop_reason tcp_sequence(const struct sock *sk,
4604 					 u32 seq, u32 end_seq)
4605 {
4606 	const struct tcp_sock *tp = tcp_sk(sk);
4607 
4608 	if (before(end_seq, tp->rcv_wup))
4609 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4610 
4611 	if (after(end_seq, tp->rcv_nxt + tcp_receive_window(tp))) {
4612 		if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4613 			return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4614 
4615 		/* Only accept this packet if receive queue is empty. */
4616 		if (skb_queue_len(&sk->sk_receive_queue))
4617 			return SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE;
4618 	}
4619 
4620 	return SKB_NOT_DROPPED_YET;
4621 }
4622 
4623 
4624 void tcp_done_with_error(struct sock *sk, int err)
4625 {
4626 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4627 	WRITE_ONCE(sk->sk_err, err);
4628 	smp_wmb();
4629 
4630 	tcp_write_queue_purge(sk);
4631 	tcp_done(sk);
4632 
4633 	if (!sock_flag(sk, SOCK_DEAD))
4634 		sk_error_report(sk);
4635 }
4636 EXPORT_IPV6_MOD(tcp_done_with_error);
4637 
4638 /* When we get a reset we do this. */
4639 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4640 {
4641 	int err;
4642 
4643 	trace_tcp_receive_reset(sk);
4644 
4645 	/* mptcp can't tell us to ignore reset pkts,
4646 	 * so just ignore the return value of mptcp_incoming_options().
4647 	 */
4648 	if (sk_is_mptcp(sk))
4649 		mptcp_incoming_options(sk, skb);
4650 
4651 	/* We want the right error as BSD sees it (and indeed as we do). */
4652 	switch (sk->sk_state) {
4653 	case TCP_SYN_SENT:
4654 		err = ECONNREFUSED;
4655 		break;
4656 	case TCP_CLOSE_WAIT:
4657 		err = EPIPE;
4658 		break;
4659 	case TCP_CLOSE:
4660 		return;
4661 	default:
4662 		err = ECONNRESET;
4663 	}
4664 	tcp_done_with_error(sk, err);
4665 }
4666 
4667 /*
4668  * 	Process the FIN bit. This now behaves as it is supposed to work
4669  *	and the FIN takes effect when it is validly part of sequence
4670  *	space. Not before when we get holes.
4671  *
4672  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4673  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4674  *	TIME-WAIT)
4675  *
4676  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4677  *	close and we go into CLOSING (and later onto TIME-WAIT)
4678  *
4679  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4680  */
4681 void tcp_fin(struct sock *sk)
4682 {
4683 	struct tcp_sock *tp = tcp_sk(sk);
4684 
4685 	inet_csk_schedule_ack(sk);
4686 
4687 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4688 	sock_set_flag(sk, SOCK_DONE);
4689 
4690 	switch (sk->sk_state) {
4691 	case TCP_SYN_RECV:
4692 	case TCP_ESTABLISHED:
4693 		/* Move to CLOSE_WAIT */
4694 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4695 		inet_csk_enter_pingpong_mode(sk);
4696 		break;
4697 
4698 	case TCP_CLOSE_WAIT:
4699 	case TCP_CLOSING:
4700 		/* Received a retransmission of the FIN, do
4701 		 * nothing.
4702 		 */
4703 		break;
4704 	case TCP_LAST_ACK:
4705 		/* RFC793: Remain in the LAST-ACK state. */
4706 		break;
4707 
4708 	case TCP_FIN_WAIT1:
4709 		/* This case occurs when a simultaneous close
4710 		 * happens, we must ack the received FIN and
4711 		 * enter the CLOSING state.
4712 		 */
4713 		tcp_send_ack(sk);
4714 		tcp_set_state(sk, TCP_CLOSING);
4715 		break;
4716 	case TCP_FIN_WAIT2:
4717 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4718 		tcp_send_ack(sk);
4719 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4720 		break;
4721 	default:
4722 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4723 		 * cases we should never reach this piece of code.
4724 		 */
4725 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4726 		       __func__, sk->sk_state);
4727 		break;
4728 	}
4729 
4730 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4731 	 * Probably, we should reset in this case. For now drop them.
4732 	 */
4733 	skb_rbtree_purge(&tp->out_of_order_queue);
4734 	if (tcp_is_sack(tp))
4735 		tcp_sack_reset(&tp->rx_opt);
4736 
4737 	if (!sock_flag(sk, SOCK_DEAD)) {
4738 		sk->sk_state_change(sk);
4739 
4740 		/* Do not send POLL_HUP for half duplex close. */
4741 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4742 		    sk->sk_state == TCP_CLOSE)
4743 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4744 		else
4745 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4746 	}
4747 }
4748 
4749 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4750 				  u32 end_seq)
4751 {
4752 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4753 		if (before(seq, sp->start_seq))
4754 			sp->start_seq = seq;
4755 		if (after(end_seq, sp->end_seq))
4756 			sp->end_seq = end_seq;
4757 		return true;
4758 	}
4759 	return false;
4760 }
4761 
4762 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4763 {
4764 	struct tcp_sock *tp = tcp_sk(sk);
4765 
4766 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4767 		int mib_idx;
4768 
4769 		if (before(seq, tp->rcv_nxt))
4770 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4771 		else
4772 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4773 
4774 		NET_INC_STATS(sock_net(sk), mib_idx);
4775 
4776 		tp->rx_opt.dsack = 1;
4777 		tp->duplicate_sack[0].start_seq = seq;
4778 		tp->duplicate_sack[0].end_seq = end_seq;
4779 	}
4780 }
4781 
4782 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4783 {
4784 	struct tcp_sock *tp = tcp_sk(sk);
4785 
4786 	if (!tp->rx_opt.dsack)
4787 		tcp_dsack_set(sk, seq, end_seq);
4788 	else
4789 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4790 }
4791 
4792 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4793 {
4794 	/* When the ACK path fails or drops most ACKs, the sender would
4795 	 * timeout and spuriously retransmit the same segment repeatedly.
4796 	 * If it seems our ACKs are not reaching the other side,
4797 	 * based on receiving a duplicate data segment with new flowlabel
4798 	 * (suggesting the sender suffered an RTO), and we are not already
4799 	 * repathing due to our own RTO, then rehash the socket to repath our
4800 	 * packets.
4801 	 */
4802 #if IS_ENABLED(CONFIG_IPV6)
4803 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4804 	    skb->protocol == htons(ETH_P_IPV6) &&
4805 	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4806 	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4807 	    sk_rethink_txhash(sk))
4808 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4809 
4810 	/* Save last flowlabel after a spurious retrans. */
4811 	tcp_save_lrcv_flowlabel(sk, skb);
4812 #endif
4813 }
4814 
4815 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4816 {
4817 	struct tcp_sock *tp = tcp_sk(sk);
4818 
4819 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4820 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4821 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4822 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4823 
4824 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4825 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4826 
4827 			tcp_rcv_spurious_retrans(sk, skb);
4828 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4829 				end_seq = tp->rcv_nxt;
4830 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4831 		}
4832 	}
4833 
4834 	tcp_send_ack(sk);
4835 }
4836 
4837 /* These routines update the SACK block as out-of-order packets arrive or
4838  * in-order packets close up the sequence space.
4839  */
4840 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4841 {
4842 	int this_sack;
4843 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4844 	struct tcp_sack_block *swalk = sp + 1;
4845 
4846 	/* See if the recent change to the first SACK eats into
4847 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4848 	 */
4849 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4850 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4851 			int i;
4852 
4853 			/* Zap SWALK, by moving every further SACK up by one slot.
4854 			 * Decrease num_sacks.
4855 			 */
4856 			tp->rx_opt.num_sacks--;
4857 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4858 				sp[i] = sp[i + 1];
4859 			continue;
4860 		}
4861 		this_sack++;
4862 		swalk++;
4863 	}
4864 }
4865 
4866 void tcp_sack_compress_send_ack(struct sock *sk)
4867 {
4868 	struct tcp_sock *tp = tcp_sk(sk);
4869 
4870 	if (!tp->compressed_ack)
4871 		return;
4872 
4873 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4874 		__sock_put(sk);
4875 
4876 	/* Since we have to send one ack finally,
4877 	 * substract one from tp->compressed_ack to keep
4878 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4879 	 */
4880 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4881 		      tp->compressed_ack - 1);
4882 
4883 	tp->compressed_ack = 0;
4884 	tcp_send_ack(sk);
4885 }
4886 
4887 /* Reasonable amount of sack blocks included in TCP SACK option
4888  * The max is 4, but this becomes 3 if TCP timestamps are there.
4889  * Given that SACK packets might be lost, be conservative and use 2.
4890  */
4891 #define TCP_SACK_BLOCKS_EXPECTED 2
4892 
4893 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4894 {
4895 	struct tcp_sock *tp = tcp_sk(sk);
4896 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4897 	int cur_sacks = tp->rx_opt.num_sacks;
4898 	int this_sack;
4899 
4900 	if (!cur_sacks)
4901 		goto new_sack;
4902 
4903 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4904 		if (tcp_sack_extend(sp, seq, end_seq)) {
4905 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4906 				tcp_sack_compress_send_ack(sk);
4907 			/* Rotate this_sack to the first one. */
4908 			for (; this_sack > 0; this_sack--, sp--)
4909 				swap(*sp, *(sp - 1));
4910 			if (cur_sacks > 1)
4911 				tcp_sack_maybe_coalesce(tp);
4912 			return;
4913 		}
4914 	}
4915 
4916 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4917 		tcp_sack_compress_send_ack(sk);
4918 
4919 	/* Could not find an adjacent existing SACK, build a new one,
4920 	 * put it at the front, and shift everyone else down.  We
4921 	 * always know there is at least one SACK present already here.
4922 	 *
4923 	 * If the sack array is full, forget about the last one.
4924 	 */
4925 	if (this_sack >= TCP_NUM_SACKS) {
4926 		this_sack--;
4927 		tp->rx_opt.num_sacks--;
4928 		sp--;
4929 	}
4930 	for (; this_sack > 0; this_sack--, sp--)
4931 		*sp = *(sp - 1);
4932 
4933 new_sack:
4934 	/* Build the new head SACK, and we're done. */
4935 	sp->start_seq = seq;
4936 	sp->end_seq = end_seq;
4937 	tp->rx_opt.num_sacks++;
4938 }
4939 
4940 /* RCV.NXT advances, some SACKs should be eaten. */
4941 
4942 static void tcp_sack_remove(struct tcp_sock *tp)
4943 {
4944 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4945 	int num_sacks = tp->rx_opt.num_sacks;
4946 	int this_sack;
4947 
4948 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4949 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4950 		tp->rx_opt.num_sacks = 0;
4951 		return;
4952 	}
4953 
4954 	for (this_sack = 0; this_sack < num_sacks;) {
4955 		/* Check if the start of the sack is covered by RCV.NXT. */
4956 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4957 			int i;
4958 
4959 			/* RCV.NXT must cover all the block! */
4960 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4961 
4962 			/* Zap this SACK, by moving forward any other SACKS. */
4963 			for (i = this_sack+1; i < num_sacks; i++)
4964 				tp->selective_acks[i-1] = tp->selective_acks[i];
4965 			num_sacks--;
4966 			continue;
4967 		}
4968 		this_sack++;
4969 		sp++;
4970 	}
4971 	tp->rx_opt.num_sacks = num_sacks;
4972 }
4973 
4974 /**
4975  * tcp_try_coalesce - try to merge skb to prior one
4976  * @sk: socket
4977  * @to: prior buffer
4978  * @from: buffer to add in queue
4979  * @fragstolen: pointer to boolean
4980  *
4981  * Before queueing skb @from after @to, try to merge them
4982  * to reduce overall memory use and queue lengths, if cost is small.
4983  * Packets in ofo or receive queues can stay a long time.
4984  * Better try to coalesce them right now to avoid future collapses.
4985  * Returns true if caller should free @from instead of queueing it
4986  */
4987 static bool tcp_try_coalesce(struct sock *sk,
4988 			     struct sk_buff *to,
4989 			     struct sk_buff *from,
4990 			     bool *fragstolen)
4991 {
4992 	int delta;
4993 
4994 	*fragstolen = false;
4995 
4996 	/* Its possible this segment overlaps with prior segment in queue */
4997 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4998 		return false;
4999 
5000 	if (!tcp_skb_can_collapse_rx(to, from))
5001 		return false;
5002 
5003 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
5004 		return false;
5005 
5006 	atomic_add(delta, &sk->sk_rmem_alloc);
5007 	sk_mem_charge(sk, delta);
5008 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
5009 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
5010 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
5011 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
5012 
5013 	if (TCP_SKB_CB(from)->has_rxtstamp) {
5014 		TCP_SKB_CB(to)->has_rxtstamp = true;
5015 		to->tstamp = from->tstamp;
5016 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
5017 	}
5018 
5019 	return true;
5020 }
5021 
5022 static bool tcp_ooo_try_coalesce(struct sock *sk,
5023 			     struct sk_buff *to,
5024 			     struct sk_buff *from,
5025 			     bool *fragstolen)
5026 {
5027 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
5028 
5029 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
5030 	if (res) {
5031 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
5032 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
5033 
5034 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
5035 	}
5036 	return res;
5037 }
5038 
5039 noinline_for_tracing static void
5040 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
5041 {
5042 	sk_drops_skbadd(sk, skb);
5043 	sk_skb_reason_drop(sk, skb, reason);
5044 }
5045 
5046 /* This one checks to see if we can put data from the
5047  * out_of_order queue into the receive_queue.
5048  */
5049 static void tcp_ofo_queue(struct sock *sk)
5050 {
5051 	struct tcp_sock *tp = tcp_sk(sk);
5052 	__u32 dsack_high = tp->rcv_nxt;
5053 	bool fin, fragstolen, eaten;
5054 	struct sk_buff *skb, *tail;
5055 	struct rb_node *p;
5056 
5057 	p = rb_first(&tp->out_of_order_queue);
5058 	while (p) {
5059 		skb = rb_to_skb(p);
5060 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5061 			break;
5062 
5063 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
5064 			__u32 dsack = dsack_high;
5065 
5066 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
5067 				dsack = TCP_SKB_CB(skb)->end_seq;
5068 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
5069 		}
5070 		p = rb_next(p);
5071 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
5072 
5073 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
5074 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
5075 			continue;
5076 		}
5077 
5078 		tail = skb_peek_tail(&sk->sk_receive_queue);
5079 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
5080 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5081 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
5082 		if (!eaten)
5083 			tcp_add_receive_queue(sk, skb);
5084 		else
5085 			kfree_skb_partial(skb, fragstolen);
5086 
5087 		if (unlikely(fin)) {
5088 			tcp_fin(sk);
5089 			/* tcp_fin() purges tp->out_of_order_queue,
5090 			 * so we must end this loop right now.
5091 			 */
5092 			break;
5093 		}
5094 	}
5095 }
5096 
5097 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
5098 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
5099 
5100 /* Check if this incoming skb can be added to socket receive queues
5101  * while satisfying sk->sk_rcvbuf limit.
5102  *
5103  * In theory we should use skb->truesize, but this can cause problems
5104  * when applications use too small SO_RCVBUF values.
5105  * When LRO / hw gro is used, the socket might have a high tp->scaling_ratio,
5106  * allowing RWIN to be close to available space.
5107  * Whenever the receive queue gets full, we can receive a small packet
5108  * filling RWIN, but with a high skb->truesize, because most NIC use 4K page
5109  * plus sk_buff metadata even when receiving less than 1500 bytes of payload.
5110  *
5111  * Note that we use skb->len to decide to accept or drop this packet,
5112  * but sk->sk_rmem_alloc is the sum of all skb->truesize.
5113  */
5114 static bool tcp_can_ingest(const struct sock *sk, const struct sk_buff *skb)
5115 {
5116 	unsigned int rmem = atomic_read(&sk->sk_rmem_alloc);
5117 
5118 	return rmem + skb->len <= sk->sk_rcvbuf;
5119 }
5120 
5121 static int tcp_try_rmem_schedule(struct sock *sk, const struct sk_buff *skb,
5122 				 unsigned int size)
5123 {
5124 	if (!tcp_can_ingest(sk, skb) ||
5125 	    !sk_rmem_schedule(sk, skb, size)) {
5126 
5127 		if (tcp_prune_queue(sk, skb) < 0)
5128 			return -1;
5129 
5130 		while (!sk_rmem_schedule(sk, skb, size)) {
5131 			if (!tcp_prune_ofo_queue(sk, skb))
5132 				return -1;
5133 		}
5134 	}
5135 	return 0;
5136 }
5137 
5138 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
5139 {
5140 	struct tcp_sock *tp = tcp_sk(sk);
5141 	struct rb_node **p, *parent;
5142 	struct sk_buff *skb1;
5143 	u32 seq, end_seq;
5144 	bool fragstolen;
5145 
5146 	tcp_save_lrcv_flowlabel(sk, skb);
5147 	tcp_data_ecn_check(sk, skb);
5148 
5149 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
5150 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
5151 		sk->sk_data_ready(sk);
5152 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
5153 		return;
5154 	}
5155 
5156 	tcp_measure_rcv_mss(sk, skb);
5157 	/* Disable header prediction. */
5158 	tp->pred_flags = 0;
5159 	inet_csk_schedule_ack(sk);
5160 
5161 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
5162 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
5163 	seq = TCP_SKB_CB(skb)->seq;
5164 	end_seq = TCP_SKB_CB(skb)->end_seq;
5165 
5166 	p = &tp->out_of_order_queue.rb_node;
5167 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5168 		/* Initial out of order segment, build 1 SACK. */
5169 		if (tcp_is_sack(tp)) {
5170 			tp->rx_opt.num_sacks = 1;
5171 			tp->selective_acks[0].start_seq = seq;
5172 			tp->selective_acks[0].end_seq = end_seq;
5173 		}
5174 		rb_link_node(&skb->rbnode, NULL, p);
5175 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5176 		tp->ooo_last_skb = skb;
5177 		goto end;
5178 	}
5179 
5180 	/* In the typical case, we are adding an skb to the end of the list.
5181 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
5182 	 */
5183 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
5184 				 skb, &fragstolen)) {
5185 coalesce_done:
5186 		/* For non sack flows, do not grow window to force DUPACK
5187 		 * and trigger fast retransmit.
5188 		 */
5189 		if (tcp_is_sack(tp))
5190 			tcp_grow_window(sk, skb, true);
5191 		kfree_skb_partial(skb, fragstolen);
5192 		skb = NULL;
5193 		goto add_sack;
5194 	}
5195 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
5196 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
5197 		parent = &tp->ooo_last_skb->rbnode;
5198 		p = &parent->rb_right;
5199 		goto insert;
5200 	}
5201 
5202 	/* Find place to insert this segment. Handle overlaps on the way. */
5203 	parent = NULL;
5204 	while (*p) {
5205 		parent = *p;
5206 		skb1 = rb_to_skb(parent);
5207 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
5208 			p = &parent->rb_left;
5209 			continue;
5210 		}
5211 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
5212 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5213 				/* All the bits are present. Drop. */
5214 				NET_INC_STATS(sock_net(sk),
5215 					      LINUX_MIB_TCPOFOMERGE);
5216 				tcp_drop_reason(sk, skb,
5217 						SKB_DROP_REASON_TCP_OFOMERGE);
5218 				skb = NULL;
5219 				tcp_dsack_set(sk, seq, end_seq);
5220 				goto add_sack;
5221 			}
5222 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5223 				/* Partial overlap. */
5224 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5225 			} else {
5226 				/* skb's seq == skb1's seq and skb covers skb1.
5227 				 * Replace skb1 with skb.
5228 				 */
5229 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5230 						&tp->out_of_order_queue);
5231 				tcp_dsack_extend(sk,
5232 						 TCP_SKB_CB(skb1)->seq,
5233 						 TCP_SKB_CB(skb1)->end_seq);
5234 				NET_INC_STATS(sock_net(sk),
5235 					      LINUX_MIB_TCPOFOMERGE);
5236 				tcp_drop_reason(sk, skb1,
5237 						SKB_DROP_REASON_TCP_OFOMERGE);
5238 				goto merge_right;
5239 			}
5240 		} else if (tcp_ooo_try_coalesce(sk, skb1,
5241 						skb, &fragstolen)) {
5242 			goto coalesce_done;
5243 		}
5244 		p = &parent->rb_right;
5245 	}
5246 insert:
5247 	/* Insert segment into RB tree. */
5248 	rb_link_node(&skb->rbnode, parent, p);
5249 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5250 
5251 merge_right:
5252 	/* Remove other segments covered by skb. */
5253 	while ((skb1 = skb_rb_next(skb)) != NULL) {
5254 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5255 			break;
5256 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5257 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5258 					 end_seq);
5259 			break;
5260 		}
5261 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5262 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5263 				 TCP_SKB_CB(skb1)->end_seq);
5264 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5265 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5266 	}
5267 	/* If there is no skb after us, we are the last_skb ! */
5268 	if (!skb1)
5269 		tp->ooo_last_skb = skb;
5270 
5271 add_sack:
5272 	if (tcp_is_sack(tp))
5273 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5274 end:
5275 	if (skb) {
5276 		/* For non sack flows, do not grow window to force DUPACK
5277 		 * and trigger fast retransmit.
5278 		 */
5279 		if (tcp_is_sack(tp))
5280 			tcp_grow_window(sk, skb, false);
5281 		skb_condense(skb);
5282 		skb_set_owner_r(skb, sk);
5283 	}
5284 	/* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
5285 	if (sk->sk_socket)
5286 		tcp_rcvbuf_grow(sk, tp->rcvq_space.space);
5287 }
5288 
5289 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5290 				      bool *fragstolen)
5291 {
5292 	int eaten;
5293 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5294 
5295 	eaten = (tail &&
5296 		 tcp_try_coalesce(sk, tail,
5297 				  skb, fragstolen)) ? 1 : 0;
5298 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5299 	if (!eaten) {
5300 		tcp_add_receive_queue(sk, skb);
5301 		skb_set_owner_r(skb, sk);
5302 	}
5303 	return eaten;
5304 }
5305 
5306 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5307 {
5308 	struct sk_buff *skb;
5309 	int err = -ENOMEM;
5310 	int data_len = 0;
5311 	bool fragstolen;
5312 
5313 	if (size == 0)
5314 		return 0;
5315 
5316 	if (size > PAGE_SIZE) {
5317 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5318 
5319 		data_len = npages << PAGE_SHIFT;
5320 		size = data_len + (size & ~PAGE_MASK);
5321 	}
5322 	skb = alloc_skb_with_frags(size - data_len, data_len,
5323 				   PAGE_ALLOC_COSTLY_ORDER,
5324 				   &err, sk->sk_allocation);
5325 	if (!skb)
5326 		goto err;
5327 
5328 	skb_put(skb, size - data_len);
5329 	skb->data_len = data_len;
5330 	skb->len = size;
5331 
5332 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5333 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5334 		goto err_free;
5335 	}
5336 
5337 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5338 	if (err)
5339 		goto err_free;
5340 
5341 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5342 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5343 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5344 
5345 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5346 		WARN_ON_ONCE(fragstolen); /* should not happen */
5347 		__kfree_skb(skb);
5348 	}
5349 	return size;
5350 
5351 err_free:
5352 	kfree_skb(skb);
5353 err:
5354 	return err;
5355 
5356 }
5357 
5358 void tcp_data_ready(struct sock *sk)
5359 {
5360 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5361 		sk->sk_data_ready(sk);
5362 }
5363 
5364 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5365 {
5366 	struct tcp_sock *tp = tcp_sk(sk);
5367 	enum skb_drop_reason reason;
5368 	bool fragstolen;
5369 	int eaten;
5370 
5371 	/* If a subflow has been reset, the packet should not continue
5372 	 * to be processed, drop the packet.
5373 	 */
5374 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5375 		__kfree_skb(skb);
5376 		return;
5377 	}
5378 
5379 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5380 		__kfree_skb(skb);
5381 		return;
5382 	}
5383 	tcp_cleanup_skb(skb);
5384 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5385 
5386 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5387 	tp->rx_opt.dsack = 0;
5388 
5389 	/*  Queue data for delivery to the user.
5390 	 *  Packets in sequence go to the receive queue.
5391 	 *  Out of sequence packets to the out_of_order_queue.
5392 	 */
5393 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5394 		if (tcp_receive_window(tp) == 0) {
5395 			/* Some stacks are known to send bare FIN packets
5396 			 * in a loop even if we send RWIN 0 in our ACK.
5397 			 * Accepting this FIN does not hurt memory pressure
5398 			 * because the FIN flag will simply be merged to the
5399 			 * receive queue tail skb in most cases.
5400 			 */
5401 			if (!skb->len &&
5402 			    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5403 				goto queue_and_out;
5404 
5405 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5406 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5407 			goto out_of_window;
5408 		}
5409 
5410 		/* Ok. In sequence. In window. */
5411 queue_and_out:
5412 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5413 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5414 			inet_csk(sk)->icsk_ack.pending |=
5415 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5416 			inet_csk_schedule_ack(sk);
5417 			sk->sk_data_ready(sk);
5418 
5419 			if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5420 				reason = SKB_DROP_REASON_PROTO_MEM;
5421 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5422 				goto drop;
5423 			}
5424 			sk_forced_mem_schedule(sk, skb->truesize);
5425 		}
5426 
5427 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5428 		if (skb->len)
5429 			tcp_event_data_recv(sk, skb);
5430 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5431 			tcp_fin(sk);
5432 
5433 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5434 			tcp_ofo_queue(sk);
5435 
5436 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5437 			 * gap in queue is filled.
5438 			 */
5439 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5440 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5441 		}
5442 
5443 		if (tp->rx_opt.num_sacks)
5444 			tcp_sack_remove(tp);
5445 
5446 		tcp_fast_path_check(sk);
5447 
5448 		if (eaten > 0)
5449 			kfree_skb_partial(skb, fragstolen);
5450 		if (!sock_flag(sk, SOCK_DEAD))
5451 			tcp_data_ready(sk);
5452 		return;
5453 	}
5454 
5455 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5456 		tcp_rcv_spurious_retrans(sk, skb);
5457 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5458 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5459 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5460 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5461 
5462 out_of_window:
5463 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5464 		inet_csk_schedule_ack(sk);
5465 drop:
5466 		tcp_drop_reason(sk, skb, reason);
5467 		return;
5468 	}
5469 
5470 	/* Out of window. F.e. zero window probe. */
5471 	if (!before(TCP_SKB_CB(skb)->seq,
5472 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5473 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5474 		goto out_of_window;
5475 	}
5476 
5477 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5478 		/* Partial packet, seq < rcv_next < end_seq */
5479 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5480 
5481 		/* If window is closed, drop tail of packet. But after
5482 		 * remembering D-SACK for its head made in previous line.
5483 		 */
5484 		if (!tcp_receive_window(tp)) {
5485 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5486 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5487 			goto out_of_window;
5488 		}
5489 		goto queue_and_out;
5490 	}
5491 
5492 	tcp_data_queue_ofo(sk, skb);
5493 }
5494 
5495 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5496 {
5497 	if (list)
5498 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5499 
5500 	return skb_rb_next(skb);
5501 }
5502 
5503 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5504 					struct sk_buff_head *list,
5505 					struct rb_root *root)
5506 {
5507 	struct sk_buff *next = tcp_skb_next(skb, list);
5508 
5509 	if (list)
5510 		__skb_unlink(skb, list);
5511 	else
5512 		rb_erase(&skb->rbnode, root);
5513 
5514 	__kfree_skb(skb);
5515 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5516 
5517 	return next;
5518 }
5519 
5520 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5521 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5522 {
5523 	struct rb_node **p = &root->rb_node;
5524 	struct rb_node *parent = NULL;
5525 	struct sk_buff *skb1;
5526 
5527 	while (*p) {
5528 		parent = *p;
5529 		skb1 = rb_to_skb(parent);
5530 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5531 			p = &parent->rb_left;
5532 		else
5533 			p = &parent->rb_right;
5534 	}
5535 	rb_link_node(&skb->rbnode, parent, p);
5536 	rb_insert_color(&skb->rbnode, root);
5537 }
5538 
5539 /* Collapse contiguous sequence of skbs head..tail with
5540  * sequence numbers start..end.
5541  *
5542  * If tail is NULL, this means until the end of the queue.
5543  *
5544  * Segments with FIN/SYN are not collapsed (only because this
5545  * simplifies code)
5546  */
5547 static void
5548 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5549 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5550 {
5551 	struct sk_buff *skb = head, *n;
5552 	struct sk_buff_head tmp;
5553 	bool end_of_skbs;
5554 
5555 	/* First, check that queue is collapsible and find
5556 	 * the point where collapsing can be useful.
5557 	 */
5558 restart:
5559 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5560 		n = tcp_skb_next(skb, list);
5561 
5562 		if (!skb_frags_readable(skb))
5563 			goto skip_this;
5564 
5565 		/* No new bits? It is possible on ofo queue. */
5566 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5567 			skb = tcp_collapse_one(sk, skb, list, root);
5568 			if (!skb)
5569 				break;
5570 			goto restart;
5571 		}
5572 
5573 		/* The first skb to collapse is:
5574 		 * - not SYN/FIN and
5575 		 * - bloated or contains data before "start" or
5576 		 *   overlaps to the next one and mptcp allow collapsing.
5577 		 */
5578 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5579 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5580 		     before(TCP_SKB_CB(skb)->seq, start))) {
5581 			end_of_skbs = false;
5582 			break;
5583 		}
5584 
5585 		if (n && n != tail && skb_frags_readable(n) &&
5586 		    tcp_skb_can_collapse_rx(skb, n) &&
5587 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5588 			end_of_skbs = false;
5589 			break;
5590 		}
5591 
5592 skip_this:
5593 		/* Decided to skip this, advance start seq. */
5594 		start = TCP_SKB_CB(skb)->end_seq;
5595 	}
5596 	if (end_of_skbs ||
5597 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5598 	    !skb_frags_readable(skb))
5599 		return;
5600 
5601 	__skb_queue_head_init(&tmp);
5602 
5603 	while (before(start, end)) {
5604 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5605 		struct sk_buff *nskb;
5606 
5607 		nskb = alloc_skb(copy, GFP_ATOMIC);
5608 		if (!nskb)
5609 			break;
5610 
5611 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5612 		skb_copy_decrypted(nskb, skb);
5613 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5614 		if (list)
5615 			__skb_queue_before(list, skb, nskb);
5616 		else
5617 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5618 		skb_set_owner_r(nskb, sk);
5619 		mptcp_skb_ext_move(nskb, skb);
5620 
5621 		/* Copy data, releasing collapsed skbs. */
5622 		while (copy > 0) {
5623 			int offset = start - TCP_SKB_CB(skb)->seq;
5624 			int size = TCP_SKB_CB(skb)->end_seq - start;
5625 
5626 			BUG_ON(offset < 0);
5627 			if (size > 0) {
5628 				size = min(copy, size);
5629 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5630 					BUG();
5631 				TCP_SKB_CB(nskb)->end_seq += size;
5632 				copy -= size;
5633 				start += size;
5634 			}
5635 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5636 				skb = tcp_collapse_one(sk, skb, list, root);
5637 				if (!skb ||
5638 				    skb == tail ||
5639 				    !tcp_skb_can_collapse_rx(nskb, skb) ||
5640 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5641 				    !skb_frags_readable(skb))
5642 					goto end;
5643 			}
5644 		}
5645 	}
5646 end:
5647 	skb_queue_walk_safe(&tmp, skb, n)
5648 		tcp_rbtree_insert(root, skb);
5649 }
5650 
5651 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5652  * and tcp_collapse() them until all the queue is collapsed.
5653  */
5654 static void tcp_collapse_ofo_queue(struct sock *sk)
5655 {
5656 	struct tcp_sock *tp = tcp_sk(sk);
5657 	u32 range_truesize, sum_tiny = 0;
5658 	struct sk_buff *skb, *head;
5659 	u32 start, end;
5660 
5661 	skb = skb_rb_first(&tp->out_of_order_queue);
5662 new_range:
5663 	if (!skb) {
5664 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5665 		return;
5666 	}
5667 	start = TCP_SKB_CB(skb)->seq;
5668 	end = TCP_SKB_CB(skb)->end_seq;
5669 	range_truesize = skb->truesize;
5670 
5671 	for (head = skb;;) {
5672 		skb = skb_rb_next(skb);
5673 
5674 		/* Range is terminated when we see a gap or when
5675 		 * we are at the queue end.
5676 		 */
5677 		if (!skb ||
5678 		    after(TCP_SKB_CB(skb)->seq, end) ||
5679 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5680 			/* Do not attempt collapsing tiny skbs */
5681 			if (range_truesize != head->truesize ||
5682 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5683 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5684 					     head, skb, start, end);
5685 			} else {
5686 				sum_tiny += range_truesize;
5687 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5688 					return;
5689 			}
5690 			goto new_range;
5691 		}
5692 
5693 		range_truesize += skb->truesize;
5694 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5695 			start = TCP_SKB_CB(skb)->seq;
5696 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5697 			end = TCP_SKB_CB(skb)->end_seq;
5698 	}
5699 }
5700 
5701 /*
5702  * Clean the out-of-order queue to make room.
5703  * We drop high sequences packets to :
5704  * 1) Let a chance for holes to be filled.
5705  *    This means we do not drop packets from ooo queue if their sequence
5706  *    is before incoming packet sequence.
5707  * 2) not add too big latencies if thousands of packets sit there.
5708  *    (But if application shrinks SO_RCVBUF, we could still end up
5709  *     freeing whole queue here)
5710  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5711  *
5712  * Return true if queue has shrunk.
5713  */
5714 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5715 {
5716 	struct tcp_sock *tp = tcp_sk(sk);
5717 	struct rb_node *node, *prev;
5718 	bool pruned = false;
5719 	int goal;
5720 
5721 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5722 		return false;
5723 
5724 	goal = sk->sk_rcvbuf >> 3;
5725 	node = &tp->ooo_last_skb->rbnode;
5726 
5727 	do {
5728 		struct sk_buff *skb = rb_to_skb(node);
5729 
5730 		/* If incoming skb would land last in ofo queue, stop pruning. */
5731 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5732 			break;
5733 		pruned = true;
5734 		prev = rb_prev(node);
5735 		rb_erase(node, &tp->out_of_order_queue);
5736 		goal -= skb->truesize;
5737 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5738 		tp->ooo_last_skb = rb_to_skb(prev);
5739 		if (!prev || goal <= 0) {
5740 			if (tcp_can_ingest(sk, in_skb) &&
5741 			    !tcp_under_memory_pressure(sk))
5742 				break;
5743 			goal = sk->sk_rcvbuf >> 3;
5744 		}
5745 		node = prev;
5746 	} while (node);
5747 
5748 	if (pruned) {
5749 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5750 		/* Reset SACK state.  A conforming SACK implementation will
5751 		 * do the same at a timeout based retransmit.  When a connection
5752 		 * is in a sad state like this, we care only about integrity
5753 		 * of the connection not performance.
5754 		 */
5755 		if (tp->rx_opt.sack_ok)
5756 			tcp_sack_reset(&tp->rx_opt);
5757 	}
5758 	return pruned;
5759 }
5760 
5761 /* Reduce allocated memory if we can, trying to get
5762  * the socket within its memory limits again.
5763  *
5764  * Return less than zero if we should start dropping frames
5765  * until the socket owning process reads some of the data
5766  * to stabilize the situation.
5767  */
5768 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5769 {
5770 	struct tcp_sock *tp = tcp_sk(sk);
5771 
5772 	/* Do nothing if our queues are empty. */
5773 	if (!atomic_read(&sk->sk_rmem_alloc))
5774 		return -1;
5775 
5776 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5777 
5778 	if (!tcp_can_ingest(sk, in_skb))
5779 		tcp_clamp_window(sk);
5780 	else if (tcp_under_memory_pressure(sk))
5781 		tcp_adjust_rcv_ssthresh(sk);
5782 
5783 	if (tcp_can_ingest(sk, in_skb))
5784 		return 0;
5785 
5786 	tcp_collapse_ofo_queue(sk);
5787 	if (!skb_queue_empty(&sk->sk_receive_queue))
5788 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5789 			     skb_peek(&sk->sk_receive_queue),
5790 			     NULL,
5791 			     tp->copied_seq, tp->rcv_nxt);
5792 
5793 	if (tcp_can_ingest(sk, in_skb))
5794 		return 0;
5795 
5796 	/* Collapsing did not help, destructive actions follow.
5797 	 * This must not ever occur. */
5798 
5799 	tcp_prune_ofo_queue(sk, in_skb);
5800 
5801 	if (tcp_can_ingest(sk, in_skb))
5802 		return 0;
5803 
5804 	/* If we are really being abused, tell the caller to silently
5805 	 * drop receive data on the floor.  It will get retransmitted
5806 	 * and hopefully then we'll have sufficient space.
5807 	 */
5808 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5809 
5810 	/* Massive buffer overcommit. */
5811 	tp->pred_flags = 0;
5812 	return -1;
5813 }
5814 
5815 static bool tcp_should_expand_sndbuf(struct sock *sk)
5816 {
5817 	const struct tcp_sock *tp = tcp_sk(sk);
5818 
5819 	/* If the user specified a specific send buffer setting, do
5820 	 * not modify it.
5821 	 */
5822 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5823 		return false;
5824 
5825 	/* If we are under global TCP memory pressure, do not expand.  */
5826 	if (tcp_under_memory_pressure(sk)) {
5827 		int unused_mem = sk_unused_reserved_mem(sk);
5828 
5829 		/* Adjust sndbuf according to reserved mem. But make sure
5830 		 * it never goes below SOCK_MIN_SNDBUF.
5831 		 * See sk_stream_moderate_sndbuf() for more details.
5832 		 */
5833 		if (unused_mem > SOCK_MIN_SNDBUF)
5834 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5835 
5836 		return false;
5837 	}
5838 
5839 	/* If we are under soft global TCP memory pressure, do not expand.  */
5840 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5841 		return false;
5842 
5843 	/* If we filled the congestion window, do not expand.  */
5844 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5845 		return false;
5846 
5847 	return true;
5848 }
5849 
5850 static void tcp_new_space(struct sock *sk)
5851 {
5852 	struct tcp_sock *tp = tcp_sk(sk);
5853 
5854 	if (tcp_should_expand_sndbuf(sk)) {
5855 		tcp_sndbuf_expand(sk);
5856 		tp->snd_cwnd_stamp = tcp_jiffies32;
5857 	}
5858 
5859 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5860 }
5861 
5862 /* Caller made space either from:
5863  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5864  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5865  *
5866  * We might be able to generate EPOLLOUT to the application if:
5867  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5868  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5869  *    small enough that tcp_stream_memory_free() decides it
5870  *    is time to generate EPOLLOUT.
5871  */
5872 void tcp_check_space(struct sock *sk)
5873 {
5874 	/* pairs with tcp_poll() */
5875 	smp_mb();
5876 	if (sk->sk_socket &&
5877 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5878 		tcp_new_space(sk);
5879 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5880 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5881 	}
5882 }
5883 
5884 static inline void tcp_data_snd_check(struct sock *sk)
5885 {
5886 	tcp_push_pending_frames(sk);
5887 	tcp_check_space(sk);
5888 }
5889 
5890 /*
5891  * Check if sending an ack is needed.
5892  */
5893 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5894 {
5895 	struct tcp_sock *tp = tcp_sk(sk);
5896 	unsigned long rtt, delay;
5897 
5898 	    /* More than one full frame received... */
5899 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5900 	     /* ... and right edge of window advances far enough.
5901 	      * (tcp_recvmsg() will send ACK otherwise).
5902 	      * If application uses SO_RCVLOWAT, we want send ack now if
5903 	      * we have not received enough bytes to satisfy the condition.
5904 	      */
5905 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5906 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5907 	    /* We ACK each frame or... */
5908 	    tcp_in_quickack_mode(sk) ||
5909 	    /* Protocol state mandates a one-time immediate ACK */
5910 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5911 		/* If we are running from __release_sock() in user context,
5912 		 * Defer the ack until tcp_release_cb().
5913 		 */
5914 		if (sock_owned_by_user_nocheck(sk) &&
5915 		    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5916 			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5917 			return;
5918 		}
5919 send_now:
5920 		tcp_send_ack(sk);
5921 		return;
5922 	}
5923 
5924 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5925 		tcp_send_delayed_ack(sk);
5926 		return;
5927 	}
5928 
5929 	if (!tcp_is_sack(tp) ||
5930 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5931 		goto send_now;
5932 
5933 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5934 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5935 		tp->dup_ack_counter = 0;
5936 	}
5937 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5938 		tp->dup_ack_counter++;
5939 		goto send_now;
5940 	}
5941 	tp->compressed_ack++;
5942 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5943 		return;
5944 
5945 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5946 
5947 	rtt = tp->rcv_rtt_est.rtt_us;
5948 	if (tp->srtt_us && tp->srtt_us < rtt)
5949 		rtt = tp->srtt_us;
5950 
5951 	delay = min_t(unsigned long,
5952 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5953 		      rtt * (NSEC_PER_USEC >> 3)/20);
5954 	sock_hold(sk);
5955 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5956 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5957 			       HRTIMER_MODE_REL_PINNED_SOFT);
5958 }
5959 
5960 static inline void tcp_ack_snd_check(struct sock *sk)
5961 {
5962 	if (!inet_csk_ack_scheduled(sk)) {
5963 		/* We sent a data segment already. */
5964 		return;
5965 	}
5966 	__tcp_ack_snd_check(sk, 1);
5967 }
5968 
5969 /*
5970  *	This routine is only called when we have urgent data
5971  *	signaled. Its the 'slow' part of tcp_urg. It could be
5972  *	moved inline now as tcp_urg is only called from one
5973  *	place. We handle URGent data wrong. We have to - as
5974  *	BSD still doesn't use the correction from RFC961.
5975  *	For 1003.1g we should support a new option TCP_STDURG to permit
5976  *	either form (or just set the sysctl tcp_stdurg).
5977  */
5978 
5979 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5980 {
5981 	struct tcp_sock *tp = tcp_sk(sk);
5982 	u32 ptr = ntohs(th->urg_ptr);
5983 
5984 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5985 		ptr--;
5986 	ptr += ntohl(th->seq);
5987 
5988 	/* Ignore urgent data that we've already seen and read. */
5989 	if (after(tp->copied_seq, ptr))
5990 		return;
5991 
5992 	/* Do not replay urg ptr.
5993 	 *
5994 	 * NOTE: interesting situation not covered by specs.
5995 	 * Misbehaving sender may send urg ptr, pointing to segment,
5996 	 * which we already have in ofo queue. We are not able to fetch
5997 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5998 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5999 	 * situations. But it is worth to think about possibility of some
6000 	 * DoSes using some hypothetical application level deadlock.
6001 	 */
6002 	if (before(ptr, tp->rcv_nxt))
6003 		return;
6004 
6005 	/* Do we already have a newer (or duplicate) urgent pointer? */
6006 	if (tp->urg_data && !after(ptr, tp->urg_seq))
6007 		return;
6008 
6009 	/* Tell the world about our new urgent pointer. */
6010 	sk_send_sigurg(sk);
6011 
6012 	/* We may be adding urgent data when the last byte read was
6013 	 * urgent. To do this requires some care. We cannot just ignore
6014 	 * tp->copied_seq since we would read the last urgent byte again
6015 	 * as data, nor can we alter copied_seq until this data arrives
6016 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
6017 	 *
6018 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
6019 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
6020 	 * and expect that both A and B disappear from stream. This is _wrong_.
6021 	 * Though this happens in BSD with high probability, this is occasional.
6022 	 * Any application relying on this is buggy. Note also, that fix "works"
6023 	 * only in this artificial test. Insert some normal data between A and B and we will
6024 	 * decline of BSD again. Verdict: it is better to remove to trap
6025 	 * buggy users.
6026 	 */
6027 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
6028 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
6029 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
6030 		tp->copied_seq++;
6031 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
6032 			__skb_unlink(skb, &sk->sk_receive_queue);
6033 			__kfree_skb(skb);
6034 		}
6035 	}
6036 
6037 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
6038 	WRITE_ONCE(tp->urg_seq, ptr);
6039 
6040 	/* Disable header prediction. */
6041 	tp->pred_flags = 0;
6042 }
6043 
6044 /* This is the 'fast' part of urgent handling. */
6045 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
6046 {
6047 	struct tcp_sock *tp = tcp_sk(sk);
6048 
6049 	/* Check if we get a new urgent pointer - normally not. */
6050 	if (unlikely(th->urg))
6051 		tcp_check_urg(sk, th);
6052 
6053 	/* Do we wait for any urgent data? - normally not... */
6054 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
6055 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
6056 			  th->syn;
6057 
6058 		/* Is the urgent pointer pointing into this packet? */
6059 		if (ptr < skb->len) {
6060 			u8 tmp;
6061 			if (skb_copy_bits(skb, ptr, &tmp, 1))
6062 				BUG();
6063 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
6064 			if (!sock_flag(sk, SOCK_DEAD))
6065 				sk->sk_data_ready(sk);
6066 		}
6067 	}
6068 }
6069 
6070 /* Accept RST for rcv_nxt - 1 after a FIN.
6071  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
6072  * FIN is sent followed by a RST packet. The RST is sent with the same
6073  * sequence number as the FIN, and thus according to RFC 5961 a challenge
6074  * ACK should be sent. However, Mac OSX rate limits replies to challenge
6075  * ACKs on the closed socket. In addition middleboxes can drop either the
6076  * challenge ACK or a subsequent RST.
6077  */
6078 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
6079 {
6080 	const struct tcp_sock *tp = tcp_sk(sk);
6081 
6082 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
6083 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
6084 					       TCPF_CLOSING));
6085 }
6086 
6087 /* Does PAWS and seqno based validation of an incoming segment, flags will
6088  * play significant role here.
6089  */
6090 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
6091 				  const struct tcphdr *th, int syn_inerr)
6092 {
6093 	struct tcp_sock *tp = tcp_sk(sk);
6094 	bool accecn_reflector = false;
6095 	SKB_DR(reason);
6096 
6097 	/* RFC1323: H1. Apply PAWS check first. */
6098 	if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) ||
6099 	    !tp->rx_opt.saw_tstamp ||
6100 	    tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW))
6101 		goto step1;
6102 
6103 	reason = tcp_disordered_ack_check(sk, skb);
6104 	if (!reason)
6105 		goto step1;
6106 	/* Reset is accepted even if it did not pass PAWS. */
6107 	if (th->rst)
6108 		goto step1;
6109 	if (unlikely(th->syn))
6110 		goto syn_challenge;
6111 
6112 	/* Old ACK are common, increment PAWS_OLD_ACK
6113 	 * and do not send a dupack.
6114 	 */
6115 	if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) {
6116 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK);
6117 		goto discard;
6118 	}
6119 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
6120 	if (!tcp_oow_rate_limited(sock_net(sk), skb,
6121 				  LINUX_MIB_TCPACKSKIPPEDPAWS,
6122 				  &tp->last_oow_ack_time))
6123 		tcp_send_dupack(sk, skb);
6124 	goto discard;
6125 
6126 step1:
6127 	/* Step 1: check sequence number */
6128 	reason = tcp_sequence(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
6129 	if (reason) {
6130 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
6131 		 * (RST) segments are validated by checking their SEQ-fields."
6132 		 * And page 69: "If an incoming segment is not acceptable,
6133 		 * an acknowledgment should be sent in reply (unless the RST
6134 		 * bit is set, if so drop the segment and return)".
6135 		 */
6136 		if (!th->rst) {
6137 			if (th->syn)
6138 				goto syn_challenge;
6139 
6140 			if (reason == SKB_DROP_REASON_TCP_INVALID_SEQUENCE ||
6141 			    reason == SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE)
6142 				NET_INC_STATS(sock_net(sk),
6143 					      LINUX_MIB_BEYOND_WINDOW);
6144 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
6145 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
6146 						  &tp->last_oow_ack_time))
6147 				tcp_send_dupack(sk, skb);
6148 		} else if (tcp_reset_check(sk, skb)) {
6149 			goto reset;
6150 		}
6151 		goto discard;
6152 	}
6153 
6154 	/* Step 2: check RST bit */
6155 	if (th->rst) {
6156 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
6157 		 * FIN and SACK too if available):
6158 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
6159 		 * the right-most SACK block,
6160 		 * then
6161 		 *     RESET the connection
6162 		 * else
6163 		 *     Send a challenge ACK
6164 		 */
6165 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
6166 		    tcp_reset_check(sk, skb))
6167 			goto reset;
6168 
6169 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
6170 			struct tcp_sack_block *sp = &tp->selective_acks[0];
6171 			int max_sack = sp[0].end_seq;
6172 			int this_sack;
6173 
6174 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
6175 			     ++this_sack) {
6176 				max_sack = after(sp[this_sack].end_seq,
6177 						 max_sack) ?
6178 					sp[this_sack].end_seq : max_sack;
6179 			}
6180 
6181 			if (TCP_SKB_CB(skb)->seq == max_sack)
6182 				goto reset;
6183 		}
6184 
6185 		/* Disable TFO if RST is out-of-order
6186 		 * and no data has been received
6187 		 * for current active TFO socket
6188 		 */
6189 		if (tp->syn_fastopen && !tp->data_segs_in &&
6190 		    sk->sk_state == TCP_ESTABLISHED)
6191 			tcp_fastopen_active_disable(sk);
6192 		tcp_send_challenge_ack(sk, false);
6193 		SKB_DR_SET(reason, TCP_RESET);
6194 		goto discard;
6195 	}
6196 
6197 	/* step 3: check security and precedence [ignored] */
6198 
6199 	/* step 4: Check for a SYN
6200 	 * RFC 5961 4.2 : Send a challenge ack
6201 	 */
6202 	if (th->syn) {
6203 		if (tcp_ecn_mode_accecn(tp)) {
6204 			accecn_reflector = true;
6205 			if (tp->rx_opt.accecn &&
6206 			    tp->saw_accecn_opt < TCP_ACCECN_OPT_COUNTER_SEEN) {
6207 				u8 saw_opt = tcp_accecn_option_init(skb, tp->rx_opt.accecn);
6208 
6209 				tcp_accecn_saw_opt_fail_recv(tp, saw_opt);
6210 				tcp_accecn_opt_demand_min(sk, 1);
6211 			}
6212 		}
6213 		if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
6214 		    TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
6215 		    TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
6216 		    TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
6217 			goto pass;
6218 syn_challenge:
6219 		if (syn_inerr)
6220 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6221 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
6222 		tcp_send_challenge_ack(sk, accecn_reflector);
6223 		SKB_DR_SET(reason, TCP_INVALID_SYN);
6224 		goto discard;
6225 	}
6226 
6227 pass:
6228 	bpf_skops_parse_hdr(sk, skb);
6229 
6230 	return true;
6231 
6232 discard:
6233 	tcp_drop_reason(sk, skb, reason);
6234 	return false;
6235 
6236 reset:
6237 	tcp_reset(sk, skb);
6238 	__kfree_skb(skb);
6239 	return false;
6240 }
6241 
6242 /*
6243  *	TCP receive function for the ESTABLISHED state.
6244  *
6245  *	It is split into a fast path and a slow path. The fast path is
6246  * 	disabled when:
6247  *	- A zero window was announced from us - zero window probing
6248  *        is only handled properly in the slow path.
6249  *	- Out of order segments arrived.
6250  *	- Urgent data is expected.
6251  *	- There is no buffer space left
6252  *	- Unexpected TCP flags/window values/header lengths are received
6253  *	  (detected by checking the TCP header against pred_flags)
6254  *	- Data is sent in both directions. Fast path only supports pure senders
6255  *	  or pure receivers (this means either the sequence number or the ack
6256  *	  value must stay constant)
6257  *	- Unexpected TCP option.
6258  *
6259  *	When these conditions are not satisfied it drops into a standard
6260  *	receive procedure patterned after RFC793 to handle all cases.
6261  *	The first three cases are guaranteed by proper pred_flags setting,
6262  *	the rest is checked inline. Fast processing is turned on in
6263  *	tcp_data_queue when everything is OK.
6264  */
6265 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6266 {
6267 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6268 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
6269 	struct tcp_sock *tp = tcp_sk(sk);
6270 	unsigned int len = skb->len;
6271 
6272 	/* TCP congestion window tracking */
6273 	trace_tcp_probe(sk, skb);
6274 
6275 	tcp_mstamp_refresh(tp);
6276 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6277 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6278 	/*
6279 	 *	Header prediction.
6280 	 *	The code loosely follows the one in the famous
6281 	 *	"30 instruction TCP receive" Van Jacobson mail.
6282 	 *
6283 	 *	Van's trick is to deposit buffers into socket queue
6284 	 *	on a device interrupt, to call tcp_recv function
6285 	 *	on the receive process context and checksum and copy
6286 	 *	the buffer to user space. smart...
6287 	 *
6288 	 *	Our current scheme is not silly either but we take the
6289 	 *	extra cost of the net_bh soft interrupt processing...
6290 	 *	We do checksum and copy also but from device to kernel.
6291 	 */
6292 
6293 	tp->rx_opt.saw_tstamp = 0;
6294 	tp->rx_opt.accecn = 0;
6295 
6296 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6297 	 *	if header_prediction is to be made
6298 	 *	'S' will always be tp->tcp_header_len >> 2
6299 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6300 	 *  turn it off	(when there are holes in the receive
6301 	 *	 space for instance)
6302 	 *	PSH flag is ignored.
6303 	 */
6304 
6305 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6306 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6307 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6308 		int tcp_header_len = tp->tcp_header_len;
6309 		s32 delta = 0;
6310 		int flag = 0;
6311 
6312 		/* Timestamp header prediction: tcp_header_len
6313 		 * is automatically equal to th->doff*4 due to pred_flags
6314 		 * match.
6315 		 */
6316 
6317 		/* Check timestamp */
6318 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6319 			/* No? Slow path! */
6320 			if (!tcp_parse_aligned_timestamp(tp, th))
6321 				goto slow_path;
6322 
6323 			delta = tp->rx_opt.rcv_tsval -
6324 				tp->rx_opt.ts_recent;
6325 			/* If PAWS failed, check it more carefully in slow path */
6326 			if (delta < 0)
6327 				goto slow_path;
6328 
6329 			/* DO NOT update ts_recent here, if checksum fails
6330 			 * and timestamp was corrupted part, it will result
6331 			 * in a hung connection since we will drop all
6332 			 * future packets due to the PAWS test.
6333 			 */
6334 		}
6335 
6336 		if (len <= tcp_header_len) {
6337 			/* Bulk data transfer: sender */
6338 			if (len == tcp_header_len) {
6339 				/* Predicted packet is in window by definition.
6340 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6341 				 * Hence, check seq<=rcv_wup reduces to:
6342 				 */
6343 				if (tcp_header_len ==
6344 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6345 				    tp->rcv_nxt == tp->rcv_wup)
6346 					flag |= __tcp_replace_ts_recent(tp,
6347 									delta);
6348 
6349 				tcp_ecn_received_counters(sk, skb, 0);
6350 
6351 				/* We know that such packets are checksummed
6352 				 * on entry.
6353 				 */
6354 				tcp_ack(sk, skb, flag);
6355 				__kfree_skb(skb);
6356 				tcp_data_snd_check(sk);
6357 				/* When receiving pure ack in fast path, update
6358 				 * last ts ecr directly instead of calling
6359 				 * tcp_rcv_rtt_measure_ts()
6360 				 */
6361 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6362 				return;
6363 			} else { /* Header too small */
6364 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6365 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6366 				goto discard;
6367 			}
6368 		} else {
6369 			int eaten = 0;
6370 			bool fragstolen = false;
6371 
6372 			if (tcp_checksum_complete(skb))
6373 				goto csum_error;
6374 
6375 			if (after(TCP_SKB_CB(skb)->end_seq,
6376 				  tp->rcv_nxt + tcp_receive_window(tp)))
6377 				goto validate;
6378 
6379 			if ((int)skb->truesize > sk->sk_forward_alloc)
6380 				goto step5;
6381 
6382 			/* Predicted packet is in window by definition.
6383 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6384 			 * Hence, check seq<=rcv_wup reduces to:
6385 			 */
6386 			if (tcp_header_len ==
6387 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6388 			    tp->rcv_nxt == tp->rcv_wup)
6389 				flag |= __tcp_replace_ts_recent(tp,
6390 								delta);
6391 
6392 			tcp_rcv_rtt_measure_ts(sk, skb);
6393 
6394 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6395 
6396 			/* Bulk data transfer: receiver */
6397 			tcp_cleanup_skb(skb);
6398 			__skb_pull(skb, tcp_header_len);
6399 			tcp_ecn_received_counters(sk, skb,
6400 						  len - tcp_header_len);
6401 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6402 
6403 			tcp_event_data_recv(sk, skb);
6404 
6405 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6406 				/* Well, only one small jumplet in fast path... */
6407 				tcp_ack(sk, skb, flag | FLAG_DATA);
6408 				tcp_data_snd_check(sk);
6409 				if (!inet_csk_ack_scheduled(sk))
6410 					goto no_ack;
6411 			} else {
6412 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6413 			}
6414 
6415 			__tcp_ack_snd_check(sk, 0);
6416 no_ack:
6417 			if (eaten)
6418 				kfree_skb_partial(skb, fragstolen);
6419 			tcp_data_ready(sk);
6420 			return;
6421 		}
6422 	}
6423 
6424 slow_path:
6425 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6426 		goto csum_error;
6427 
6428 	if (!th->ack && !th->rst && !th->syn) {
6429 		reason = SKB_DROP_REASON_TCP_FLAGS;
6430 		goto discard;
6431 	}
6432 
6433 	/*
6434 	 *	Standard slow path.
6435 	 */
6436 validate:
6437 	if (!tcp_validate_incoming(sk, skb, th, 1))
6438 		return;
6439 
6440 step5:
6441 	tcp_ecn_received_counters_payload(sk, skb);
6442 
6443 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6444 	if ((int)reason < 0) {
6445 		reason = -reason;
6446 		goto discard;
6447 	}
6448 	tcp_rcv_rtt_measure_ts(sk, skb);
6449 
6450 	/* Process urgent data. */
6451 	tcp_urg(sk, skb, th);
6452 
6453 	/* step 7: process the segment text */
6454 	tcp_data_queue(sk, skb);
6455 
6456 	tcp_data_snd_check(sk);
6457 	tcp_ack_snd_check(sk);
6458 	return;
6459 
6460 csum_error:
6461 	reason = SKB_DROP_REASON_TCP_CSUM;
6462 	trace_tcp_bad_csum(skb);
6463 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6464 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6465 
6466 discard:
6467 	tcp_drop_reason(sk, skb, reason);
6468 }
6469 EXPORT_IPV6_MOD(tcp_rcv_established);
6470 
6471 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6472 {
6473 	struct inet_connection_sock *icsk = inet_csk(sk);
6474 	struct tcp_sock *tp = tcp_sk(sk);
6475 
6476 	tcp_mtup_init(sk);
6477 	icsk->icsk_af_ops->rebuild_header(sk);
6478 	tcp_init_metrics(sk);
6479 
6480 	/* Initialize the congestion window to start the transfer.
6481 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6482 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6483 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6484 	 * retransmission has occurred.
6485 	 */
6486 	if (tp->total_retrans > 1 && tp->undo_marker)
6487 		tcp_snd_cwnd_set(tp, 1);
6488 	else
6489 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6490 	tp->snd_cwnd_stamp = tcp_jiffies32;
6491 
6492 	bpf_skops_established(sk, bpf_op, skb);
6493 	/* Initialize congestion control unless BPF initialized it already: */
6494 	if (!icsk->icsk_ca_initialized)
6495 		tcp_init_congestion_control(sk);
6496 	tcp_init_buffer_space(sk);
6497 }
6498 
6499 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6500 {
6501 	struct tcp_sock *tp = tcp_sk(sk);
6502 	struct inet_connection_sock *icsk = inet_csk(sk);
6503 
6504 	tcp_ao_finish_connect(sk, skb);
6505 	tcp_set_state(sk, TCP_ESTABLISHED);
6506 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6507 
6508 	if (skb) {
6509 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6510 		security_inet_conn_established(sk, skb);
6511 		sk_mark_napi_id(sk, skb);
6512 	}
6513 
6514 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6515 
6516 	/* Prevent spurious tcp_cwnd_restart() on first data
6517 	 * packet.
6518 	 */
6519 	tp->lsndtime = tcp_jiffies32;
6520 
6521 	if (sock_flag(sk, SOCK_KEEPOPEN))
6522 		tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
6523 
6524 	if (!tp->rx_opt.snd_wscale)
6525 		__tcp_fast_path_on(tp, tp->snd_wnd);
6526 	else
6527 		tp->pred_flags = 0;
6528 }
6529 
6530 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6531 				    struct tcp_fastopen_cookie *cookie)
6532 {
6533 	struct tcp_sock *tp = tcp_sk(sk);
6534 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6535 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6536 	bool syn_drop = false;
6537 
6538 	if (mss == READ_ONCE(tp->rx_opt.user_mss)) {
6539 		struct tcp_options_received opt;
6540 
6541 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6542 		tcp_clear_options(&opt);
6543 		opt.user_mss = opt.mss_clamp = 0;
6544 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6545 		mss = opt.mss_clamp;
6546 	}
6547 
6548 	if (!tp->syn_fastopen) {
6549 		/* Ignore an unsolicited cookie */
6550 		cookie->len = -1;
6551 	} else if (tp->total_retrans) {
6552 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6553 		 * acknowledges data. Presumably the remote received only
6554 		 * the retransmitted (regular) SYNs: either the original
6555 		 * SYN-data or the corresponding SYN-ACK was dropped.
6556 		 */
6557 		syn_drop = (cookie->len < 0 && data);
6558 	} else if (cookie->len < 0 && !tp->syn_data) {
6559 		/* We requested a cookie but didn't get it. If we did not use
6560 		 * the (old) exp opt format then try so next time (try_exp=1).
6561 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6562 		 */
6563 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6564 	}
6565 
6566 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6567 
6568 	if (data) { /* Retransmit unacked data in SYN */
6569 		if (tp->total_retrans)
6570 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6571 		else
6572 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6573 		skb_rbtree_walk_from(data)
6574 			 tcp_mark_skb_lost(sk, data);
6575 		tcp_non_congestion_loss_retransmit(sk);
6576 		NET_INC_STATS(sock_net(sk),
6577 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6578 		return true;
6579 	}
6580 	tp->syn_data_acked = tp->syn_data;
6581 	if (tp->syn_data_acked) {
6582 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6583 		/* SYN-data is counted as two separate packets in tcp_ack() */
6584 		if (tp->delivered > 1)
6585 			--tp->delivered;
6586 	}
6587 
6588 	tcp_fastopen_add_skb(sk, synack);
6589 
6590 	return false;
6591 }
6592 
6593 static void smc_check_reset_syn(struct tcp_sock *tp)
6594 {
6595 #if IS_ENABLED(CONFIG_SMC)
6596 	if (static_branch_unlikely(&tcp_have_smc)) {
6597 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6598 			tp->syn_smc = 0;
6599 	}
6600 #endif
6601 }
6602 
6603 static void tcp_try_undo_spurious_syn(struct sock *sk)
6604 {
6605 	struct tcp_sock *tp = tcp_sk(sk);
6606 	u32 syn_stamp;
6607 
6608 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6609 	 * spurious if the ACK's timestamp option echo value matches the
6610 	 * original SYN timestamp.
6611 	 */
6612 	syn_stamp = tp->retrans_stamp;
6613 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6614 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6615 		tp->undo_marker = 0;
6616 }
6617 
6618 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6619 					 const struct tcphdr *th)
6620 {
6621 	struct inet_connection_sock *icsk = inet_csk(sk);
6622 	struct tcp_sock *tp = tcp_sk(sk);
6623 	struct tcp_fastopen_cookie foc = { .len = -1 };
6624 	int saved_clamp = tp->rx_opt.mss_clamp;
6625 	bool fastopen_fail;
6626 	SKB_DR(reason);
6627 
6628 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6629 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6630 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6631 
6632 	if (th->ack) {
6633 		/* rfc793:
6634 		 * "If the state is SYN-SENT then
6635 		 *    first check the ACK bit
6636 		 *      If the ACK bit is set
6637 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6638 		 *        a reset (unless the RST bit is set, if so drop
6639 		 *        the segment and return)"
6640 		 */
6641 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6642 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6643 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6644 			if (icsk->icsk_retransmits == 0)
6645 				tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6646 						     TCP_TIMEOUT_MIN, false);
6647 			SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6648 			goto reset_and_undo;
6649 		}
6650 
6651 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6652 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6653 			     tcp_time_stamp_ts(tp))) {
6654 			NET_INC_STATS(sock_net(sk),
6655 					LINUX_MIB_PAWSACTIVEREJECTED);
6656 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6657 			goto reset_and_undo;
6658 		}
6659 
6660 		/* Now ACK is acceptable.
6661 		 *
6662 		 * "If the RST bit is set
6663 		 *    If the ACK was acceptable then signal the user "error:
6664 		 *    connection reset", drop the segment, enter CLOSED state,
6665 		 *    delete TCB, and return."
6666 		 */
6667 
6668 		if (th->rst) {
6669 			tcp_reset(sk, skb);
6670 consume:
6671 			__kfree_skb(skb);
6672 			return 0;
6673 		}
6674 
6675 		/* rfc793:
6676 		 *   "fifth, if neither of the SYN or RST bits is set then
6677 		 *    drop the segment and return."
6678 		 *
6679 		 *    See note below!
6680 		 *                                        --ANK(990513)
6681 		 */
6682 		if (!th->syn) {
6683 			SKB_DR_SET(reason, TCP_FLAGS);
6684 			goto discard_and_undo;
6685 		}
6686 		/* rfc793:
6687 		 *   "If the SYN bit is on ...
6688 		 *    are acceptable then ...
6689 		 *    (our SYN has been ACKed), change the connection
6690 		 *    state to ESTABLISHED..."
6691 		 */
6692 
6693 		if (tcp_ecn_mode_any(tp))
6694 			tcp_ecn_rcv_synack(sk, skb, th,
6695 					   TCP_SKB_CB(skb)->ip_dsfield);
6696 
6697 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6698 		tcp_try_undo_spurious_syn(sk);
6699 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6700 
6701 		/* Ok.. it's good. Set up sequence numbers and
6702 		 * move to established.
6703 		 */
6704 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6705 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6706 
6707 		/* RFC1323: The window in SYN & SYN/ACK segments is
6708 		 * never scaled.
6709 		 */
6710 		tp->snd_wnd = ntohs(th->window);
6711 
6712 		if (!tp->rx_opt.wscale_ok) {
6713 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6714 			WRITE_ONCE(tp->window_clamp,
6715 				   min(tp->window_clamp, 65535U));
6716 		}
6717 
6718 		if (tp->rx_opt.saw_tstamp) {
6719 			tp->rx_opt.tstamp_ok	   = 1;
6720 			tp->tcp_header_len =
6721 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6722 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6723 			tcp_store_ts_recent(tp);
6724 		} else {
6725 			tp->tcp_header_len = sizeof(struct tcphdr);
6726 		}
6727 
6728 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6729 		tcp_initialize_rcv_mss(sk);
6730 
6731 		/* Remember, tcp_poll() does not lock socket!
6732 		 * Change state from SYN-SENT only after copied_seq
6733 		 * is initialized. */
6734 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6735 
6736 		smc_check_reset_syn(tp);
6737 
6738 		smp_mb();
6739 
6740 		tcp_finish_connect(sk, skb);
6741 
6742 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6743 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6744 
6745 		if (!sock_flag(sk, SOCK_DEAD)) {
6746 			sk->sk_state_change(sk);
6747 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6748 		}
6749 		if (fastopen_fail)
6750 			return -1;
6751 		if (sk->sk_write_pending ||
6752 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6753 		    inet_csk_in_pingpong_mode(sk)) {
6754 			/* Save one ACK. Data will be ready after
6755 			 * several ticks, if write_pending is set.
6756 			 *
6757 			 * It may be deleted, but with this feature tcpdumps
6758 			 * look so _wonderfully_ clever, that I was not able
6759 			 * to stand against the temptation 8)     --ANK
6760 			 */
6761 			inet_csk_schedule_ack(sk);
6762 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6763 			tcp_reset_xmit_timer(sk, ICSK_TIME_DACK,
6764 					     TCP_DELACK_MAX, false);
6765 			goto consume;
6766 		}
6767 		tcp_send_ack_reflect_ect(sk, tcp_ecn_mode_accecn(tp));
6768 		return -1;
6769 	}
6770 
6771 	/* No ACK in the segment */
6772 
6773 	if (th->rst) {
6774 		/* rfc793:
6775 		 * "If the RST bit is set
6776 		 *
6777 		 *      Otherwise (no ACK) drop the segment and return."
6778 		 */
6779 		SKB_DR_SET(reason, TCP_RESET);
6780 		goto discard_and_undo;
6781 	}
6782 
6783 	/* PAWS check. */
6784 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6785 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6786 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6787 		goto discard_and_undo;
6788 	}
6789 	if (th->syn) {
6790 		/* We see SYN without ACK. It is attempt of
6791 		 * simultaneous connect with crossed SYNs.
6792 		 * Particularly, it can be connect to self.
6793 		 */
6794 #ifdef CONFIG_TCP_AO
6795 		struct tcp_ao_info *ao;
6796 
6797 		ao = rcu_dereference_protected(tp->ao_info,
6798 					       lockdep_sock_is_held(sk));
6799 		if (ao) {
6800 			WRITE_ONCE(ao->risn, th->seq);
6801 			ao->rcv_sne = 0;
6802 		}
6803 #endif
6804 		tcp_set_state(sk, TCP_SYN_RECV);
6805 
6806 		if (tp->rx_opt.saw_tstamp) {
6807 			tp->rx_opt.tstamp_ok = 1;
6808 			tcp_store_ts_recent(tp);
6809 			tp->tcp_header_len =
6810 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6811 		} else {
6812 			tp->tcp_header_len = sizeof(struct tcphdr);
6813 		}
6814 
6815 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6816 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6817 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6818 
6819 		/* RFC1323: The window in SYN & SYN/ACK segments is
6820 		 * never scaled.
6821 		 */
6822 		tp->snd_wnd    = ntohs(th->window);
6823 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6824 		tp->max_window = tp->snd_wnd;
6825 
6826 		tcp_ecn_rcv_syn(tp, th, skb);
6827 
6828 		tcp_mtup_init(sk);
6829 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6830 		tcp_initialize_rcv_mss(sk);
6831 
6832 		tcp_send_synack(sk);
6833 #if 0
6834 		/* Note, we could accept data and URG from this segment.
6835 		 * There are no obstacles to make this (except that we must
6836 		 * either change tcp_recvmsg() to prevent it from returning data
6837 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6838 		 *
6839 		 * However, if we ignore data in ACKless segments sometimes,
6840 		 * we have no reasons to accept it sometimes.
6841 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6842 		 * is not flawless. So, discard packet for sanity.
6843 		 * Uncomment this return to process the data.
6844 		 */
6845 		return -1;
6846 #else
6847 		goto consume;
6848 #endif
6849 	}
6850 	/* "fifth, if neither of the SYN or RST bits is set then
6851 	 * drop the segment and return."
6852 	 */
6853 
6854 discard_and_undo:
6855 	tcp_clear_options(&tp->rx_opt);
6856 	tp->rx_opt.mss_clamp = saved_clamp;
6857 	tcp_drop_reason(sk, skb, reason);
6858 	return 0;
6859 
6860 reset_and_undo:
6861 	tcp_clear_options(&tp->rx_opt);
6862 	tp->rx_opt.mss_clamp = saved_clamp;
6863 	/* we can reuse/return @reason to its caller to handle the exception */
6864 	return reason;
6865 }
6866 
6867 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6868 {
6869 	struct tcp_sock *tp = tcp_sk(sk);
6870 	struct request_sock *req;
6871 
6872 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6873 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6874 	 */
6875 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6876 		tcp_try_undo_recovery(sk);
6877 
6878 	tcp_update_rto_time(tp);
6879 	WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0);
6880 	/* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6881 	 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6882 	 * need to zero retrans_stamp here to prevent spurious
6883 	 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6884 	 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6885 	 * set entering CA_Recovery, for correct retransmits_timed_out() and
6886 	 * undo behavior.
6887 	 */
6888 	tcp_retrans_stamp_cleanup(sk);
6889 
6890 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6891 	 * we no longer need req so release it.
6892 	 */
6893 	req = rcu_dereference_protected(tp->fastopen_rsk,
6894 					lockdep_sock_is_held(sk));
6895 	reqsk_fastopen_remove(sk, req, false);
6896 
6897 	/* Re-arm the timer because data may have been sent out.
6898 	 * This is similar to the regular data transmission case
6899 	 * when new data has just been ack'ed.
6900 	 *
6901 	 * (TFO) - we could try to be more aggressive and
6902 	 * retransmitting any data sooner based on when they
6903 	 * are sent out.
6904 	 */
6905 	tcp_rearm_rto(sk);
6906 }
6907 
6908 /*
6909  *	This function implements the receiving procedure of RFC 793 for
6910  *	all states except ESTABLISHED and TIME_WAIT.
6911  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6912  *	address independent.
6913  */
6914 
6915 enum skb_drop_reason
6916 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6917 {
6918 	struct tcp_sock *tp = tcp_sk(sk);
6919 	struct inet_connection_sock *icsk = inet_csk(sk);
6920 	const struct tcphdr *th = tcp_hdr(skb);
6921 	struct request_sock *req;
6922 	int queued = 0;
6923 	SKB_DR(reason);
6924 
6925 	switch (sk->sk_state) {
6926 	case TCP_CLOSE:
6927 		SKB_DR_SET(reason, TCP_CLOSE);
6928 		goto discard;
6929 
6930 	case TCP_LISTEN:
6931 		if (th->ack)
6932 			return SKB_DROP_REASON_TCP_FLAGS;
6933 
6934 		if (th->rst) {
6935 			SKB_DR_SET(reason, TCP_RESET);
6936 			goto discard;
6937 		}
6938 		if (th->syn) {
6939 			if (th->fin) {
6940 				SKB_DR_SET(reason, TCP_FLAGS);
6941 				goto discard;
6942 			}
6943 			/* It is possible that we process SYN packets from backlog,
6944 			 * so we need to make sure to disable BH and RCU right there.
6945 			 */
6946 			rcu_read_lock();
6947 			local_bh_disable();
6948 			icsk->icsk_af_ops->conn_request(sk, skb);
6949 			local_bh_enable();
6950 			rcu_read_unlock();
6951 
6952 			consume_skb(skb);
6953 			return 0;
6954 		}
6955 		SKB_DR_SET(reason, TCP_FLAGS);
6956 		goto discard;
6957 
6958 	case TCP_SYN_SENT:
6959 		tp->rx_opt.saw_tstamp = 0;
6960 		tcp_mstamp_refresh(tp);
6961 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6962 		if (queued >= 0)
6963 			return queued;
6964 
6965 		/* Do step6 onward by hand. */
6966 		tcp_urg(sk, skb, th);
6967 		__kfree_skb(skb);
6968 		tcp_data_snd_check(sk);
6969 		return 0;
6970 	}
6971 
6972 	tcp_mstamp_refresh(tp);
6973 	tp->rx_opt.saw_tstamp = 0;
6974 	req = rcu_dereference_protected(tp->fastopen_rsk,
6975 					lockdep_sock_is_held(sk));
6976 	if (req) {
6977 		bool req_stolen;
6978 
6979 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6980 		    sk->sk_state != TCP_FIN_WAIT1);
6981 
6982 		SKB_DR_SET(reason, TCP_FASTOPEN);
6983 		if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason))
6984 			goto discard;
6985 	}
6986 
6987 	if (!th->ack && !th->rst && !th->syn) {
6988 		SKB_DR_SET(reason, TCP_FLAGS);
6989 		goto discard;
6990 	}
6991 	if (!tcp_validate_incoming(sk, skb, th, 0))
6992 		return 0;
6993 
6994 	/* step 5: check the ACK field */
6995 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6996 				  FLAG_UPDATE_TS_RECENT |
6997 				  FLAG_NO_CHALLENGE_ACK);
6998 
6999 	if ((int)reason <= 0) {
7000 		if (sk->sk_state == TCP_SYN_RECV) {
7001 			/* send one RST */
7002 			if (!reason)
7003 				return SKB_DROP_REASON_TCP_OLD_ACK;
7004 			return -reason;
7005 		}
7006 		/* accept old ack during closing */
7007 		if ((int)reason < 0) {
7008 			tcp_send_challenge_ack(sk, false);
7009 			reason = -reason;
7010 			goto discard;
7011 		}
7012 	}
7013 	SKB_DR_SET(reason, NOT_SPECIFIED);
7014 	switch (sk->sk_state) {
7015 	case TCP_SYN_RECV:
7016 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
7017 		if (!tp->srtt_us)
7018 			tcp_synack_rtt_meas(sk, req);
7019 
7020 		if (tp->rx_opt.tstamp_ok)
7021 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
7022 
7023 		if (req) {
7024 			tcp_rcv_synrecv_state_fastopen(sk);
7025 		} else {
7026 			tcp_try_undo_spurious_syn(sk);
7027 			tp->retrans_stamp = 0;
7028 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
7029 					  skb);
7030 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
7031 		}
7032 		tcp_ao_established(sk);
7033 		smp_mb();
7034 		tcp_set_state(sk, TCP_ESTABLISHED);
7035 		sk->sk_state_change(sk);
7036 
7037 		/* Note, that this wakeup is only for marginal crossed SYN case.
7038 		 * Passively open sockets are not waked up, because
7039 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
7040 		 */
7041 		if (sk->sk_socket)
7042 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
7043 
7044 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
7045 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
7046 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
7047 
7048 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
7049 			tcp_update_pacing_rate(sk);
7050 
7051 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
7052 		tp->lsndtime = tcp_jiffies32;
7053 
7054 		tcp_initialize_rcv_mss(sk);
7055 		if (tcp_ecn_mode_accecn(tp))
7056 			tcp_accecn_third_ack(sk, skb, tp->syn_ect_snt);
7057 		tcp_fast_path_on(tp);
7058 		if (sk->sk_shutdown & SEND_SHUTDOWN)
7059 			tcp_shutdown(sk, SEND_SHUTDOWN);
7060 
7061 		break;
7062 
7063 	case TCP_FIN_WAIT1: {
7064 		int tmo;
7065 
7066 		if (req)
7067 			tcp_rcv_synrecv_state_fastopen(sk);
7068 
7069 		if (tp->snd_una != tp->write_seq)
7070 			break;
7071 
7072 		tcp_set_state(sk, TCP_FIN_WAIT2);
7073 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
7074 
7075 		sk_dst_confirm(sk);
7076 
7077 		if (!sock_flag(sk, SOCK_DEAD)) {
7078 			/* Wake up lingering close() */
7079 			sk->sk_state_change(sk);
7080 			break;
7081 		}
7082 
7083 		if (READ_ONCE(tp->linger2) < 0) {
7084 			tcp_done(sk);
7085 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
7086 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
7087 		}
7088 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
7089 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
7090 			/* Receive out of order FIN after close() */
7091 			if (tp->syn_fastopen && th->fin)
7092 				tcp_fastopen_active_disable(sk);
7093 			tcp_done(sk);
7094 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
7095 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
7096 		}
7097 
7098 		tmo = tcp_fin_time(sk);
7099 		if (tmo > TCP_TIMEWAIT_LEN) {
7100 			tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
7101 		} else if (th->fin || sock_owned_by_user(sk)) {
7102 			/* Bad case. We could lose such FIN otherwise.
7103 			 * It is not a big problem, but it looks confusing
7104 			 * and not so rare event. We still can lose it now,
7105 			 * if it spins in bh_lock_sock(), but it is really
7106 			 * marginal case.
7107 			 */
7108 			tcp_reset_keepalive_timer(sk, tmo);
7109 		} else {
7110 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
7111 			goto consume;
7112 		}
7113 		break;
7114 	}
7115 
7116 	case TCP_CLOSING:
7117 		if (tp->snd_una == tp->write_seq) {
7118 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
7119 			goto consume;
7120 		}
7121 		break;
7122 
7123 	case TCP_LAST_ACK:
7124 		if (tp->snd_una == tp->write_seq) {
7125 			tcp_update_metrics(sk);
7126 			tcp_done(sk);
7127 			goto consume;
7128 		}
7129 		break;
7130 	}
7131 
7132 	/* step 6: check the URG bit */
7133 	tcp_urg(sk, skb, th);
7134 
7135 	/* step 7: process the segment text */
7136 	switch (sk->sk_state) {
7137 	case TCP_CLOSE_WAIT:
7138 	case TCP_CLOSING:
7139 	case TCP_LAST_ACK:
7140 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
7141 			/* If a subflow has been reset, the packet should not
7142 			 * continue to be processed, drop the packet.
7143 			 */
7144 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
7145 				goto discard;
7146 			break;
7147 		}
7148 		fallthrough;
7149 	case TCP_FIN_WAIT1:
7150 	case TCP_FIN_WAIT2:
7151 		/* RFC 793 says to queue data in these states,
7152 		 * RFC 1122 says we MUST send a reset.
7153 		 * BSD 4.4 also does reset.
7154 		 */
7155 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
7156 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
7157 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
7158 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
7159 				tcp_reset(sk, skb);
7160 				return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
7161 			}
7162 		}
7163 		fallthrough;
7164 	case TCP_ESTABLISHED:
7165 		tcp_data_queue(sk, skb);
7166 		queued = 1;
7167 		break;
7168 	}
7169 
7170 	/* tcp_data could move socket to TIME-WAIT */
7171 	if (sk->sk_state != TCP_CLOSE) {
7172 		tcp_data_snd_check(sk);
7173 		tcp_ack_snd_check(sk);
7174 	}
7175 
7176 	if (!queued) {
7177 discard:
7178 		tcp_drop_reason(sk, skb, reason);
7179 	}
7180 	return 0;
7181 
7182 consume:
7183 	__kfree_skb(skb);
7184 	return 0;
7185 }
7186 EXPORT_IPV6_MOD(tcp_rcv_state_process);
7187 
7188 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
7189 {
7190 	struct inet_request_sock *ireq = inet_rsk(req);
7191 
7192 	if (family == AF_INET)
7193 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
7194 				    &ireq->ir_rmt_addr, port);
7195 #if IS_ENABLED(CONFIG_IPV6)
7196 	else if (family == AF_INET6)
7197 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
7198 				    &ireq->ir_v6_rmt_addr, port);
7199 #endif
7200 }
7201 
7202 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
7203  *
7204  * If we receive a SYN packet with these bits set, it means a
7205  * network is playing bad games with TOS bits. In order to
7206  * avoid possible false congestion notifications, we disable
7207  * TCP ECN negotiation.
7208  *
7209  * Exception: tcp_ca wants ECN. This is required for DCTCP
7210  * congestion control: Linux DCTCP asserts ECT on all packets,
7211  * including SYN, which is most optimal solution; however,
7212  * others, such as FreeBSD do not.
7213  *
7214  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
7215  * set, indicating the use of a future TCP extension (such as AccECN). See
7216  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
7217  * extensions.
7218  */
7219 static void tcp_ecn_create_request(struct request_sock *req,
7220 				   const struct sk_buff *skb,
7221 				   const struct sock *listen_sk,
7222 				   const struct dst_entry *dst)
7223 {
7224 	const struct tcphdr *th = tcp_hdr(skb);
7225 	const struct net *net = sock_net(listen_sk);
7226 	bool th_ecn = th->ece && th->cwr;
7227 	bool ect, ecn_ok;
7228 	u32 ecn_ok_dst;
7229 
7230 	if (tcp_accecn_syn_requested(th) &&
7231 	    READ_ONCE(net->ipv4.sysctl_tcp_ecn) >= 3) {
7232 		inet_rsk(req)->ecn_ok = 1;
7233 		tcp_rsk(req)->accecn_ok = 1;
7234 		tcp_rsk(req)->syn_ect_rcv = TCP_SKB_CB(skb)->ip_dsfield &
7235 					    INET_ECN_MASK;
7236 		return;
7237 	}
7238 
7239 	if (!th_ecn)
7240 		return;
7241 
7242 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
7243 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
7244 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
7245 
7246 	if (((!ect || th->res1 || th->ae) && ecn_ok) ||
7247 	    tcp_ca_needs_ecn(listen_sk) ||
7248 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
7249 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
7250 		inet_rsk(req)->ecn_ok = 1;
7251 }
7252 
7253 static void tcp_openreq_init(struct request_sock *req,
7254 			     const struct tcp_options_received *rx_opt,
7255 			     struct sk_buff *skb, const struct sock *sk)
7256 {
7257 	struct inet_request_sock *ireq = inet_rsk(req);
7258 
7259 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
7260 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
7261 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
7262 	tcp_rsk(req)->snt_synack = 0;
7263 	tcp_rsk(req)->snt_tsval_first = 0;
7264 	tcp_rsk(req)->last_oow_ack_time = 0;
7265 	tcp_rsk(req)->accecn_ok = 0;
7266 	tcp_rsk(req)->saw_accecn_opt = TCP_ACCECN_OPT_NOT_SEEN;
7267 	tcp_rsk(req)->accecn_fail_mode = 0;
7268 	tcp_rsk(req)->syn_ect_rcv = 0;
7269 	tcp_rsk(req)->syn_ect_snt = 0;
7270 	req->mss = rx_opt->mss_clamp;
7271 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
7272 	ireq->tstamp_ok = rx_opt->tstamp_ok;
7273 	ireq->sack_ok = rx_opt->sack_ok;
7274 	ireq->snd_wscale = rx_opt->snd_wscale;
7275 	ireq->wscale_ok = rx_opt->wscale_ok;
7276 	ireq->acked = 0;
7277 	ireq->ecn_ok = 0;
7278 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
7279 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
7280 	ireq->ir_mark = inet_request_mark(sk, skb);
7281 #if IS_ENABLED(CONFIG_SMC)
7282 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
7283 			tcp_sk(sk)->smc_hs_congested(sk));
7284 #endif
7285 }
7286 
7287 /*
7288  * Return true if a syncookie should be sent
7289  */
7290 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7291 {
7292 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7293 	const char *msg = "Dropping request";
7294 	struct net *net = sock_net(sk);
7295 	bool want_cookie = false;
7296 	u8 syncookies;
7297 
7298 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7299 
7300 #ifdef CONFIG_SYN_COOKIES
7301 	if (syncookies) {
7302 		msg = "Sending cookies";
7303 		want_cookie = true;
7304 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7305 	} else
7306 #endif
7307 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7308 
7309 	if (syncookies != 2 && !READ_ONCE(queue->synflood_warned)) {
7310 		WRITE_ONCE(queue->synflood_warned, 1);
7311 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7312 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7313 					proto, inet6_rcv_saddr(sk),
7314 					sk->sk_num, msg);
7315 		} else {
7316 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7317 					proto, &sk->sk_rcv_saddr,
7318 					sk->sk_num, msg);
7319 		}
7320 	}
7321 
7322 	return want_cookie;
7323 }
7324 
7325 static void tcp_reqsk_record_syn(const struct sock *sk,
7326 				 struct request_sock *req,
7327 				 const struct sk_buff *skb)
7328 {
7329 	if (tcp_sk(sk)->save_syn) {
7330 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7331 		struct saved_syn *saved_syn;
7332 		u32 mac_hdrlen;
7333 		void *base;
7334 
7335 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7336 			base = skb_mac_header(skb);
7337 			mac_hdrlen = skb_mac_header_len(skb);
7338 			len += mac_hdrlen;
7339 		} else {
7340 			base = skb_network_header(skb);
7341 			mac_hdrlen = 0;
7342 		}
7343 
7344 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7345 				    GFP_ATOMIC);
7346 		if (saved_syn) {
7347 			saved_syn->mac_hdrlen = mac_hdrlen;
7348 			saved_syn->network_hdrlen = skb_network_header_len(skb);
7349 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7350 			memcpy(saved_syn->data, base, len);
7351 			req->saved_syn = saved_syn;
7352 		}
7353 	}
7354 }
7355 
7356 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7357  * used for SYN cookie generation.
7358  */
7359 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7360 			  const struct tcp_request_sock_ops *af_ops,
7361 			  struct sock *sk, struct tcphdr *th)
7362 {
7363 	struct tcp_sock *tp = tcp_sk(sk);
7364 	u16 mss;
7365 
7366 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7367 	    !inet_csk_reqsk_queue_is_full(sk))
7368 		return 0;
7369 
7370 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7371 		return 0;
7372 
7373 	if (sk_acceptq_is_full(sk)) {
7374 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7375 		return 0;
7376 	}
7377 
7378 	mss = tcp_parse_mss_option(th, READ_ONCE(tp->rx_opt.user_mss));
7379 	if (!mss)
7380 		mss = af_ops->mss_clamp;
7381 
7382 	return mss;
7383 }
7384 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss);
7385 
7386 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7387 		     const struct tcp_request_sock_ops *af_ops,
7388 		     struct sock *sk, struct sk_buff *skb)
7389 {
7390 	struct tcp_fastopen_cookie foc = { .len = -1 };
7391 	struct tcp_options_received tmp_opt;
7392 	const struct tcp_sock *tp = tcp_sk(sk);
7393 	struct net *net = sock_net(sk);
7394 	struct sock *fastopen_sk = NULL;
7395 	struct request_sock *req;
7396 	bool want_cookie = false;
7397 	struct dst_entry *dst;
7398 	struct flowi fl;
7399 	u8 syncookies;
7400 	u32 isn;
7401 
7402 #ifdef CONFIG_TCP_AO
7403 	const struct tcp_ao_hdr *aoh;
7404 #endif
7405 
7406 	isn = __this_cpu_read(tcp_tw_isn);
7407 	if (isn) {
7408 		/* TW buckets are converted to open requests without
7409 		 * limitations, they conserve resources and peer is
7410 		 * evidently real one.
7411 		 */
7412 		__this_cpu_write(tcp_tw_isn, 0);
7413 	} else {
7414 		syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7415 
7416 		if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7417 			want_cookie = tcp_syn_flood_action(sk,
7418 							   rsk_ops->slab_name);
7419 			if (!want_cookie)
7420 				goto drop;
7421 		}
7422 	}
7423 
7424 	if (sk_acceptq_is_full(sk)) {
7425 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7426 		goto drop;
7427 	}
7428 
7429 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7430 	if (!req)
7431 		goto drop;
7432 
7433 	req->syncookie = want_cookie;
7434 	tcp_rsk(req)->af_specific = af_ops;
7435 	tcp_rsk(req)->ts_off = 0;
7436 	tcp_rsk(req)->req_usec_ts = false;
7437 #if IS_ENABLED(CONFIG_MPTCP)
7438 	tcp_rsk(req)->is_mptcp = 0;
7439 #endif
7440 
7441 	tcp_clear_options(&tmp_opt);
7442 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7443 	tmp_opt.user_mss  = READ_ONCE(tp->rx_opt.user_mss);
7444 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7445 			  want_cookie ? NULL : &foc);
7446 
7447 	if (want_cookie && !tmp_opt.saw_tstamp)
7448 		tcp_clear_options(&tmp_opt);
7449 
7450 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7451 		tmp_opt.smc_ok = 0;
7452 
7453 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7454 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7455 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7456 
7457 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7458 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7459 
7460 	dst = af_ops->route_req(sk, skb, &fl, req, isn);
7461 	if (!dst)
7462 		goto drop_and_free;
7463 
7464 	if (tmp_opt.tstamp_ok) {
7465 		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7466 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7467 	}
7468 	if (!want_cookie && !isn) {
7469 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7470 
7471 		/* Kill the following clause, if you dislike this way. */
7472 		if (!syncookies &&
7473 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7474 		     (max_syn_backlog >> 2)) &&
7475 		    !tcp_peer_is_proven(req, dst)) {
7476 			/* Without syncookies last quarter of
7477 			 * backlog is filled with destinations,
7478 			 * proven to be alive.
7479 			 * It means that we continue to communicate
7480 			 * to destinations, already remembered
7481 			 * to the moment of synflood.
7482 			 */
7483 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7484 				    rsk_ops->family);
7485 			goto drop_and_release;
7486 		}
7487 
7488 		isn = af_ops->init_seq(skb);
7489 	}
7490 
7491 	tcp_ecn_create_request(req, skb, sk, dst);
7492 
7493 	if (want_cookie) {
7494 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7495 		if (!tmp_opt.tstamp_ok)
7496 			inet_rsk(req)->ecn_ok = 0;
7497 	}
7498 
7499 #ifdef CONFIG_TCP_AO
7500 	if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7501 		goto drop_and_release; /* Invalid TCP options */
7502 	if (aoh) {
7503 		tcp_rsk(req)->used_tcp_ao = true;
7504 		tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7505 		tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7506 
7507 	} else {
7508 		tcp_rsk(req)->used_tcp_ao = false;
7509 	}
7510 #endif
7511 	tcp_rsk(req)->snt_isn = isn;
7512 	tcp_rsk(req)->txhash = net_tx_rndhash();
7513 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7514 	tcp_openreq_init_rwin(req, sk, dst);
7515 	sk_rx_queue_set(req_to_sk(req), skb);
7516 	if (!want_cookie) {
7517 		tcp_reqsk_record_syn(sk, req, skb);
7518 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7519 	}
7520 	if (fastopen_sk) {
7521 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7522 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7523 		/* Add the child socket directly into the accept queue */
7524 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7525 			bh_unlock_sock(fastopen_sk);
7526 			sock_put(fastopen_sk);
7527 			goto drop_and_free;
7528 		}
7529 		sk->sk_data_ready(sk);
7530 		bh_unlock_sock(fastopen_sk);
7531 		sock_put(fastopen_sk);
7532 	} else {
7533 		tcp_rsk(req)->tfo_listener = false;
7534 		if (!want_cookie) {
7535 			req->timeout = tcp_timeout_init((struct sock *)req);
7536 			if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7537 								    req->timeout))) {
7538 				reqsk_free(req);
7539 				dst_release(dst);
7540 				return 0;
7541 			}
7542 
7543 		}
7544 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7545 				    !want_cookie ? TCP_SYNACK_NORMAL :
7546 						   TCP_SYNACK_COOKIE,
7547 				    skb);
7548 		if (want_cookie) {
7549 			reqsk_free(req);
7550 			return 0;
7551 		}
7552 	}
7553 	reqsk_put(req);
7554 	return 0;
7555 
7556 drop_and_release:
7557 	dst_release(dst);
7558 drop_and_free:
7559 	__reqsk_free(req);
7560 drop:
7561 	tcp_listendrop(sk);
7562 	return 0;
7563 }
7564 EXPORT_IPV6_MOD(tcp_conn_request);
7565