1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: 25 * Pedro Roque : Fast Retransmit/Recovery. 26 * Two receive queues. 27 * Retransmit queue handled by TCP. 28 * Better retransmit timer handling. 29 * New congestion avoidance. 30 * Header prediction. 31 * Variable renaming. 32 * 33 * Eric : Fast Retransmit. 34 * Randy Scott : MSS option defines. 35 * Eric Schenk : Fixes to slow start algorithm. 36 * Eric Schenk : Yet another double ACK bug. 37 * Eric Schenk : Delayed ACK bug fixes. 38 * Eric Schenk : Floyd style fast retrans war avoidance. 39 * David S. Miller : Don't allow zero congestion window. 40 * Eric Schenk : Fix retransmitter so that it sends 41 * next packet on ack of previous packet. 42 * Andi Kleen : Moved open_request checking here 43 * and process RSTs for open_requests. 44 * Andi Kleen : Better prune_queue, and other fixes. 45 * Andrey Savochkin: Fix RTT measurements in the presence of 46 * timestamps. 47 * Andrey Savochkin: Check sequence numbers correctly when 48 * removing SACKs due to in sequence incoming 49 * data segments. 50 * Andi Kleen: Make sure we never ack data there is not 51 * enough room for. Also make this condition 52 * a fatal error if it might still happen. 53 * Andi Kleen: Add tcp_measure_rcv_mss to make 54 * connections with MSS<min(MTU,ann. MSS) 55 * work without delayed acks. 56 * Andi Kleen: Process packets with PSH set in the 57 * fast path. 58 * J Hadi Salim: ECN support 59 * Andrei Gurtov, 60 * Pasi Sarolahti, 61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 62 * engine. Lots of bugs are found. 63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 64 */ 65 66 #include <linux/mm.h> 67 #include <linux/module.h> 68 #include <linux/sysctl.h> 69 #include <net/tcp.h> 70 #include <net/inet_common.h> 71 #include <linux/ipsec.h> 72 #include <asm/unaligned.h> 73 #include <net/netdma.h> 74 75 int sysctl_tcp_timestamps __read_mostly = 1; 76 int sysctl_tcp_window_scaling __read_mostly = 1; 77 int sysctl_tcp_sack __read_mostly = 1; 78 int sysctl_tcp_fack __read_mostly = 1; 79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn __read_mostly; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 2; 84 85 int sysctl_tcp_stdurg __read_mostly; 86 int sysctl_tcp_rfc1337 __read_mostly; 87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 88 int sysctl_tcp_frto __read_mostly; 89 int sysctl_tcp_frto_response __read_mostly; 90 int sysctl_tcp_nometrics_save __read_mostly; 91 92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 93 int sysctl_tcp_abc __read_mostly; 94 95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 101 #define FLAG_ECE 0x40 /* ECE in this ACK */ 102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 105 106 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 107 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 108 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 109 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 110 111 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0) 112 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2) 113 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4) 114 115 #define IsSackFrto() (sysctl_tcp_frto == 0x2) 116 117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 118 119 /* Adapt the MSS value used to make delayed ack decision to the 120 * real world. 121 */ 122 static void tcp_measure_rcv_mss(struct sock *sk, 123 const struct sk_buff *skb) 124 { 125 struct inet_connection_sock *icsk = inet_csk(sk); 126 const unsigned int lss = icsk->icsk_ack.last_seg_size; 127 unsigned int len; 128 129 icsk->icsk_ack.last_seg_size = 0; 130 131 /* skb->len may jitter because of SACKs, even if peer 132 * sends good full-sized frames. 133 */ 134 len = skb_shinfo(skb)->gso_size ?: skb->len; 135 if (len >= icsk->icsk_ack.rcv_mss) { 136 icsk->icsk_ack.rcv_mss = len; 137 } else { 138 /* Otherwise, we make more careful check taking into account, 139 * that SACKs block is variable. 140 * 141 * "len" is invariant segment length, including TCP header. 142 */ 143 len += skb->data - skb_transport_header(skb); 144 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 145 /* If PSH is not set, packet should be 146 * full sized, provided peer TCP is not badly broken. 147 * This observation (if it is correct 8)) allows 148 * to handle super-low mtu links fairly. 149 */ 150 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 151 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 152 /* Subtract also invariant (if peer is RFC compliant), 153 * tcp header plus fixed timestamp option length. 154 * Resulting "len" is MSS free of SACK jitter. 155 */ 156 len -= tcp_sk(sk)->tcp_header_len; 157 icsk->icsk_ack.last_seg_size = len; 158 if (len == lss) { 159 icsk->icsk_ack.rcv_mss = len; 160 return; 161 } 162 } 163 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 166 } 167 } 168 169 static void tcp_incr_quickack(struct sock *sk) 170 { 171 struct inet_connection_sock *icsk = inet_csk(sk); 172 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 173 174 if (quickacks==0) 175 quickacks=2; 176 if (quickacks > icsk->icsk_ack.quick) 177 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 178 } 179 180 void tcp_enter_quickack_mode(struct sock *sk) 181 { 182 struct inet_connection_sock *icsk = inet_csk(sk); 183 tcp_incr_quickack(sk); 184 icsk->icsk_ack.pingpong = 0; 185 icsk->icsk_ack.ato = TCP_ATO_MIN; 186 } 187 188 /* Send ACKs quickly, if "quick" count is not exhausted 189 * and the session is not interactive. 190 */ 191 192 static inline int tcp_in_quickack_mode(const struct sock *sk) 193 { 194 const struct inet_connection_sock *icsk = inet_csk(sk); 195 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 196 } 197 198 /* Buffer size and advertised window tuning. 199 * 200 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 201 */ 202 203 static void tcp_fixup_sndbuf(struct sock *sk) 204 { 205 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 206 sizeof(struct sk_buff); 207 208 if (sk->sk_sndbuf < 3 * sndmem) 209 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 210 } 211 212 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 213 * 214 * All tcp_full_space() is split to two parts: "network" buffer, allocated 215 * forward and advertised in receiver window (tp->rcv_wnd) and 216 * "application buffer", required to isolate scheduling/application 217 * latencies from network. 218 * window_clamp is maximal advertised window. It can be less than 219 * tcp_full_space(), in this case tcp_full_space() - window_clamp 220 * is reserved for "application" buffer. The less window_clamp is 221 * the smoother our behaviour from viewpoint of network, but the lower 222 * throughput and the higher sensitivity of the connection to losses. 8) 223 * 224 * rcv_ssthresh is more strict window_clamp used at "slow start" 225 * phase to predict further behaviour of this connection. 226 * It is used for two goals: 227 * - to enforce header prediction at sender, even when application 228 * requires some significant "application buffer". It is check #1. 229 * - to prevent pruning of receive queue because of misprediction 230 * of receiver window. Check #2. 231 * 232 * The scheme does not work when sender sends good segments opening 233 * window and then starts to feed us spaghetti. But it should work 234 * in common situations. Otherwise, we have to rely on queue collapsing. 235 */ 236 237 /* Slow part of check#2. */ 238 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 239 { 240 struct tcp_sock *tp = tcp_sk(sk); 241 /* Optimize this! */ 242 int truesize = tcp_win_from_space(skb->truesize)/2; 243 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2; 244 245 while (tp->rcv_ssthresh <= window) { 246 if (truesize <= skb->len) 247 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 248 249 truesize >>= 1; 250 window >>= 1; 251 } 252 return 0; 253 } 254 255 static void tcp_grow_window(struct sock *sk, 256 struct sk_buff *skb) 257 { 258 struct tcp_sock *tp = tcp_sk(sk); 259 260 /* Check #1 */ 261 if (tp->rcv_ssthresh < tp->window_clamp && 262 (int)tp->rcv_ssthresh < tcp_space(sk) && 263 !tcp_memory_pressure) { 264 int incr; 265 266 /* Check #2. Increase window, if skb with such overhead 267 * will fit to rcvbuf in future. 268 */ 269 if (tcp_win_from_space(skb->truesize) <= skb->len) 270 incr = 2*tp->advmss; 271 else 272 incr = __tcp_grow_window(sk, skb); 273 274 if (incr) { 275 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp); 276 inet_csk(sk)->icsk_ack.quick |= 1; 277 } 278 } 279 } 280 281 /* 3. Tuning rcvbuf, when connection enters established state. */ 282 283 static void tcp_fixup_rcvbuf(struct sock *sk) 284 { 285 struct tcp_sock *tp = tcp_sk(sk); 286 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 287 288 /* Try to select rcvbuf so that 4 mss-sized segments 289 * will fit to window and corresponding skbs will fit to our rcvbuf. 290 * (was 3; 4 is minimum to allow fast retransmit to work.) 291 */ 292 while (tcp_win_from_space(rcvmem) < tp->advmss) 293 rcvmem += 128; 294 if (sk->sk_rcvbuf < 4 * rcvmem) 295 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 296 } 297 298 /* 4. Try to fixup all. It is made immediately after connection enters 299 * established state. 300 */ 301 static void tcp_init_buffer_space(struct sock *sk) 302 { 303 struct tcp_sock *tp = tcp_sk(sk); 304 int maxwin; 305 306 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 307 tcp_fixup_rcvbuf(sk); 308 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 309 tcp_fixup_sndbuf(sk); 310 311 tp->rcvq_space.space = tp->rcv_wnd; 312 313 maxwin = tcp_full_space(sk); 314 315 if (tp->window_clamp >= maxwin) { 316 tp->window_clamp = maxwin; 317 318 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 319 tp->window_clamp = max(maxwin - 320 (maxwin >> sysctl_tcp_app_win), 321 4 * tp->advmss); 322 } 323 324 /* Force reservation of one segment. */ 325 if (sysctl_tcp_app_win && 326 tp->window_clamp > 2 * tp->advmss && 327 tp->window_clamp + tp->advmss > maxwin) 328 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 329 330 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 331 tp->snd_cwnd_stamp = tcp_time_stamp; 332 } 333 334 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 335 static void tcp_clamp_window(struct sock *sk) 336 { 337 struct tcp_sock *tp = tcp_sk(sk); 338 struct inet_connection_sock *icsk = inet_csk(sk); 339 340 icsk->icsk_ack.quick = 0; 341 342 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 343 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 344 !tcp_memory_pressure && 345 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 346 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 347 sysctl_tcp_rmem[2]); 348 } 349 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 350 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss); 351 } 352 353 354 /* Initialize RCV_MSS value. 355 * RCV_MSS is an our guess about MSS used by the peer. 356 * We haven't any direct information about the MSS. 357 * It's better to underestimate the RCV_MSS rather than overestimate. 358 * Overestimations make us ACKing less frequently than needed. 359 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 360 */ 361 void tcp_initialize_rcv_mss(struct sock *sk) 362 { 363 struct tcp_sock *tp = tcp_sk(sk); 364 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 365 366 hint = min(hint, tp->rcv_wnd/2); 367 hint = min(hint, TCP_MIN_RCVMSS); 368 hint = max(hint, TCP_MIN_MSS); 369 370 inet_csk(sk)->icsk_ack.rcv_mss = hint; 371 } 372 373 /* Receiver "autotuning" code. 374 * 375 * The algorithm for RTT estimation w/o timestamps is based on 376 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 377 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 378 * 379 * More detail on this code can be found at 380 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 381 * though this reference is out of date. A new paper 382 * is pending. 383 */ 384 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 385 { 386 u32 new_sample = tp->rcv_rtt_est.rtt; 387 long m = sample; 388 389 if (m == 0) 390 m = 1; 391 392 if (new_sample != 0) { 393 /* If we sample in larger samples in the non-timestamp 394 * case, we could grossly overestimate the RTT especially 395 * with chatty applications or bulk transfer apps which 396 * are stalled on filesystem I/O. 397 * 398 * Also, since we are only going for a minimum in the 399 * non-timestamp case, we do not smooth things out 400 * else with timestamps disabled convergence takes too 401 * long. 402 */ 403 if (!win_dep) { 404 m -= (new_sample >> 3); 405 new_sample += m; 406 } else if (m < new_sample) 407 new_sample = m << 3; 408 } else { 409 /* No previous measure. */ 410 new_sample = m << 3; 411 } 412 413 if (tp->rcv_rtt_est.rtt != new_sample) 414 tp->rcv_rtt_est.rtt = new_sample; 415 } 416 417 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 418 { 419 if (tp->rcv_rtt_est.time == 0) 420 goto new_measure; 421 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 422 return; 423 tcp_rcv_rtt_update(tp, 424 jiffies - tp->rcv_rtt_est.time, 425 1); 426 427 new_measure: 428 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 429 tp->rcv_rtt_est.time = tcp_time_stamp; 430 } 431 432 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb) 433 { 434 struct tcp_sock *tp = tcp_sk(sk); 435 if (tp->rx_opt.rcv_tsecr && 436 (TCP_SKB_CB(skb)->end_seq - 437 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 438 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 439 } 440 441 /* 442 * This function should be called every time data is copied to user space. 443 * It calculates the appropriate TCP receive buffer space. 444 */ 445 void tcp_rcv_space_adjust(struct sock *sk) 446 { 447 struct tcp_sock *tp = tcp_sk(sk); 448 int time; 449 int space; 450 451 if (tp->rcvq_space.time == 0) 452 goto new_measure; 453 454 time = tcp_time_stamp - tp->rcvq_space.time; 455 if (time < (tp->rcv_rtt_est.rtt >> 3) || 456 tp->rcv_rtt_est.rtt == 0) 457 return; 458 459 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 460 461 space = max(tp->rcvq_space.space, space); 462 463 if (tp->rcvq_space.space != space) { 464 int rcvmem; 465 466 tp->rcvq_space.space = space; 467 468 if (sysctl_tcp_moderate_rcvbuf && 469 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 470 int new_clamp = space; 471 472 /* Receive space grows, normalize in order to 473 * take into account packet headers and sk_buff 474 * structure overhead. 475 */ 476 space /= tp->advmss; 477 if (!space) 478 space = 1; 479 rcvmem = (tp->advmss + MAX_TCP_HEADER + 480 16 + sizeof(struct sk_buff)); 481 while (tcp_win_from_space(rcvmem) < tp->advmss) 482 rcvmem += 128; 483 space *= rcvmem; 484 space = min(space, sysctl_tcp_rmem[2]); 485 if (space > sk->sk_rcvbuf) { 486 sk->sk_rcvbuf = space; 487 488 /* Make the window clamp follow along. */ 489 tp->window_clamp = new_clamp; 490 } 491 } 492 } 493 494 new_measure: 495 tp->rcvq_space.seq = tp->copied_seq; 496 tp->rcvq_space.time = tcp_time_stamp; 497 } 498 499 /* There is something which you must keep in mind when you analyze the 500 * behavior of the tp->ato delayed ack timeout interval. When a 501 * connection starts up, we want to ack as quickly as possible. The 502 * problem is that "good" TCP's do slow start at the beginning of data 503 * transmission. The means that until we send the first few ACK's the 504 * sender will sit on his end and only queue most of his data, because 505 * he can only send snd_cwnd unacked packets at any given time. For 506 * each ACK we send, he increments snd_cwnd and transmits more of his 507 * queue. -DaveM 508 */ 509 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 510 { 511 struct tcp_sock *tp = tcp_sk(sk); 512 struct inet_connection_sock *icsk = inet_csk(sk); 513 u32 now; 514 515 inet_csk_schedule_ack(sk); 516 517 tcp_measure_rcv_mss(sk, skb); 518 519 tcp_rcv_rtt_measure(tp); 520 521 now = tcp_time_stamp; 522 523 if (!icsk->icsk_ack.ato) { 524 /* The _first_ data packet received, initialize 525 * delayed ACK engine. 526 */ 527 tcp_incr_quickack(sk); 528 icsk->icsk_ack.ato = TCP_ATO_MIN; 529 } else { 530 int m = now - icsk->icsk_ack.lrcvtime; 531 532 if (m <= TCP_ATO_MIN/2) { 533 /* The fastest case is the first. */ 534 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 535 } else if (m < icsk->icsk_ack.ato) { 536 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 537 if (icsk->icsk_ack.ato > icsk->icsk_rto) 538 icsk->icsk_ack.ato = icsk->icsk_rto; 539 } else if (m > icsk->icsk_rto) { 540 /* Too long gap. Apparently sender failed to 541 * restart window, so that we send ACKs quickly. 542 */ 543 tcp_incr_quickack(sk); 544 sk_stream_mem_reclaim(sk); 545 } 546 } 547 icsk->icsk_ack.lrcvtime = now; 548 549 TCP_ECN_check_ce(tp, skb); 550 551 if (skb->len >= 128) 552 tcp_grow_window(sk, skb); 553 } 554 555 /* Called to compute a smoothed rtt estimate. The data fed to this 556 * routine either comes from timestamps, or from segments that were 557 * known _not_ to have been retransmitted [see Karn/Partridge 558 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 559 * piece by Van Jacobson. 560 * NOTE: the next three routines used to be one big routine. 561 * To save cycles in the RFC 1323 implementation it was better to break 562 * it up into three procedures. -- erics 563 */ 564 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 565 { 566 struct tcp_sock *tp = tcp_sk(sk); 567 long m = mrtt; /* RTT */ 568 569 /* The following amusing code comes from Jacobson's 570 * article in SIGCOMM '88. Note that rtt and mdev 571 * are scaled versions of rtt and mean deviation. 572 * This is designed to be as fast as possible 573 * m stands for "measurement". 574 * 575 * On a 1990 paper the rto value is changed to: 576 * RTO = rtt + 4 * mdev 577 * 578 * Funny. This algorithm seems to be very broken. 579 * These formulae increase RTO, when it should be decreased, increase 580 * too slowly, when it should be increased quickly, decrease too quickly 581 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 582 * does not matter how to _calculate_ it. Seems, it was trap 583 * that VJ failed to avoid. 8) 584 */ 585 if (m == 0) 586 m = 1; 587 if (tp->srtt != 0) { 588 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 589 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 590 if (m < 0) { 591 m = -m; /* m is now abs(error) */ 592 m -= (tp->mdev >> 2); /* similar update on mdev */ 593 /* This is similar to one of Eifel findings. 594 * Eifel blocks mdev updates when rtt decreases. 595 * This solution is a bit different: we use finer gain 596 * for mdev in this case (alpha*beta). 597 * Like Eifel it also prevents growth of rto, 598 * but also it limits too fast rto decreases, 599 * happening in pure Eifel. 600 */ 601 if (m > 0) 602 m >>= 3; 603 } else { 604 m -= (tp->mdev >> 2); /* similar update on mdev */ 605 } 606 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 607 if (tp->mdev > tp->mdev_max) { 608 tp->mdev_max = tp->mdev; 609 if (tp->mdev_max > tp->rttvar) 610 tp->rttvar = tp->mdev_max; 611 } 612 if (after(tp->snd_una, tp->rtt_seq)) { 613 if (tp->mdev_max < tp->rttvar) 614 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2; 615 tp->rtt_seq = tp->snd_nxt; 616 tp->mdev_max = TCP_RTO_MIN; 617 } 618 } else { 619 /* no previous measure. */ 620 tp->srtt = m<<3; /* take the measured time to be rtt */ 621 tp->mdev = m<<1; /* make sure rto = 3*rtt */ 622 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 623 tp->rtt_seq = tp->snd_nxt; 624 } 625 } 626 627 /* Calculate rto without backoff. This is the second half of Van Jacobson's 628 * routine referred to above. 629 */ 630 static inline void tcp_set_rto(struct sock *sk) 631 { 632 const struct tcp_sock *tp = tcp_sk(sk); 633 /* Old crap is replaced with new one. 8) 634 * 635 * More seriously: 636 * 1. If rtt variance happened to be less 50msec, it is hallucination. 637 * It cannot be less due to utterly erratic ACK generation made 638 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 639 * to do with delayed acks, because at cwnd>2 true delack timeout 640 * is invisible. Actually, Linux-2.4 also generates erratic 641 * ACKs in some circumstances. 642 */ 643 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 644 645 /* 2. Fixups made earlier cannot be right. 646 * If we do not estimate RTO correctly without them, 647 * all the algo is pure shit and should be replaced 648 * with correct one. It is exactly, which we pretend to do. 649 */ 650 } 651 652 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 653 * guarantees that rto is higher. 654 */ 655 static inline void tcp_bound_rto(struct sock *sk) 656 { 657 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 658 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 659 } 660 661 /* Save metrics learned by this TCP session. 662 This function is called only, when TCP finishes successfully 663 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 664 */ 665 void tcp_update_metrics(struct sock *sk) 666 { 667 struct tcp_sock *tp = tcp_sk(sk); 668 struct dst_entry *dst = __sk_dst_get(sk); 669 670 if (sysctl_tcp_nometrics_save) 671 return; 672 673 dst_confirm(dst); 674 675 if (dst && (dst->flags&DST_HOST)) { 676 const struct inet_connection_sock *icsk = inet_csk(sk); 677 int m; 678 679 if (icsk->icsk_backoff || !tp->srtt) { 680 /* This session failed to estimate rtt. Why? 681 * Probably, no packets returned in time. 682 * Reset our results. 683 */ 684 if (!(dst_metric_locked(dst, RTAX_RTT))) 685 dst->metrics[RTAX_RTT-1] = 0; 686 return; 687 } 688 689 m = dst_metric(dst, RTAX_RTT) - tp->srtt; 690 691 /* If newly calculated rtt larger than stored one, 692 * store new one. Otherwise, use EWMA. Remember, 693 * rtt overestimation is always better than underestimation. 694 */ 695 if (!(dst_metric_locked(dst, RTAX_RTT))) { 696 if (m <= 0) 697 dst->metrics[RTAX_RTT-1] = tp->srtt; 698 else 699 dst->metrics[RTAX_RTT-1] -= (m>>3); 700 } 701 702 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 703 if (m < 0) 704 m = -m; 705 706 /* Scale deviation to rttvar fixed point */ 707 m >>= 1; 708 if (m < tp->mdev) 709 m = tp->mdev; 710 711 if (m >= dst_metric(dst, RTAX_RTTVAR)) 712 dst->metrics[RTAX_RTTVAR-1] = m; 713 else 714 dst->metrics[RTAX_RTTVAR-1] -= 715 (dst->metrics[RTAX_RTTVAR-1] - m)>>2; 716 } 717 718 if (tp->snd_ssthresh >= 0xFFFF) { 719 /* Slow start still did not finish. */ 720 if (dst_metric(dst, RTAX_SSTHRESH) && 721 !dst_metric_locked(dst, RTAX_SSTHRESH) && 722 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 723 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 724 if (!dst_metric_locked(dst, RTAX_CWND) && 725 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 726 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd; 727 } else if (tp->snd_cwnd > tp->snd_ssthresh && 728 icsk->icsk_ca_state == TCP_CA_Open) { 729 /* Cong. avoidance phase, cwnd is reliable. */ 730 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 731 dst->metrics[RTAX_SSTHRESH-1] = 732 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 733 if (!dst_metric_locked(dst, RTAX_CWND)) 734 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; 735 } else { 736 /* Else slow start did not finish, cwnd is non-sense, 737 ssthresh may be also invalid. 738 */ 739 if (!dst_metric_locked(dst, RTAX_CWND)) 740 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; 741 if (dst->metrics[RTAX_SSTHRESH-1] && 742 !dst_metric_locked(dst, RTAX_SSTHRESH) && 743 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) 744 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 745 } 746 747 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 748 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && 749 tp->reordering != sysctl_tcp_reordering) 750 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 751 } 752 } 753 } 754 755 /* Numbers are taken from RFC2414. */ 756 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 757 { 758 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 759 760 if (!cwnd) { 761 if (tp->mss_cache > 1460) 762 cwnd = 2; 763 else 764 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 765 } 766 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 767 } 768 769 /* Set slow start threshold and cwnd not falling to slow start */ 770 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 771 { 772 struct tcp_sock *tp = tcp_sk(sk); 773 const struct inet_connection_sock *icsk = inet_csk(sk); 774 775 tp->prior_ssthresh = 0; 776 tp->bytes_acked = 0; 777 if (icsk->icsk_ca_state < TCP_CA_CWR) { 778 tp->undo_marker = 0; 779 if (set_ssthresh) 780 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 781 tp->snd_cwnd = min(tp->snd_cwnd, 782 tcp_packets_in_flight(tp) + 1U); 783 tp->snd_cwnd_cnt = 0; 784 tp->high_seq = tp->snd_nxt; 785 tp->snd_cwnd_stamp = tcp_time_stamp; 786 TCP_ECN_queue_cwr(tp); 787 788 tcp_set_ca_state(sk, TCP_CA_CWR); 789 } 790 } 791 792 /* Initialize metrics on socket. */ 793 794 static void tcp_init_metrics(struct sock *sk) 795 { 796 struct tcp_sock *tp = tcp_sk(sk); 797 struct dst_entry *dst = __sk_dst_get(sk); 798 799 if (dst == NULL) 800 goto reset; 801 802 dst_confirm(dst); 803 804 if (dst_metric_locked(dst, RTAX_CWND)) 805 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 806 if (dst_metric(dst, RTAX_SSTHRESH)) { 807 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 808 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 809 tp->snd_ssthresh = tp->snd_cwnd_clamp; 810 } 811 if (dst_metric(dst, RTAX_REORDERING) && 812 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 813 tp->rx_opt.sack_ok &= ~2; 814 tp->reordering = dst_metric(dst, RTAX_REORDERING); 815 } 816 817 if (dst_metric(dst, RTAX_RTT) == 0) 818 goto reset; 819 820 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 821 goto reset; 822 823 /* Initial rtt is determined from SYN,SYN-ACK. 824 * The segment is small and rtt may appear much 825 * less than real one. Use per-dst memory 826 * to make it more realistic. 827 * 828 * A bit of theory. RTT is time passed after "normal" sized packet 829 * is sent until it is ACKed. In normal circumstances sending small 830 * packets force peer to delay ACKs and calculation is correct too. 831 * The algorithm is adaptive and, provided we follow specs, it 832 * NEVER underestimate RTT. BUT! If peer tries to make some clever 833 * tricks sort of "quick acks" for time long enough to decrease RTT 834 * to low value, and then abruptly stops to do it and starts to delay 835 * ACKs, wait for troubles. 836 */ 837 if (dst_metric(dst, RTAX_RTT) > tp->srtt) { 838 tp->srtt = dst_metric(dst, RTAX_RTT); 839 tp->rtt_seq = tp->snd_nxt; 840 } 841 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { 842 tp->mdev = dst_metric(dst, RTAX_RTTVAR); 843 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 844 } 845 tcp_set_rto(sk); 846 tcp_bound_rto(sk); 847 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 848 goto reset; 849 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 850 tp->snd_cwnd_stamp = tcp_time_stamp; 851 return; 852 853 reset: 854 /* Play conservative. If timestamps are not 855 * supported, TCP will fail to recalculate correct 856 * rtt, if initial rto is too small. FORGET ALL AND RESET! 857 */ 858 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 859 tp->srtt = 0; 860 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 861 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 862 } 863 } 864 865 static void tcp_update_reordering(struct sock *sk, const int metric, 866 const int ts) 867 { 868 struct tcp_sock *tp = tcp_sk(sk); 869 if (metric > tp->reordering) { 870 tp->reordering = min(TCP_MAX_REORDERING, metric); 871 872 /* This exciting event is worth to be remembered. 8) */ 873 if (ts) 874 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); 875 else if (IsReno(tp)) 876 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); 877 else if (IsFack(tp)) 878 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); 879 else 880 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); 881 #if FASTRETRANS_DEBUG > 1 882 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 883 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 884 tp->reordering, 885 tp->fackets_out, 886 tp->sacked_out, 887 tp->undo_marker ? tp->undo_retrans : 0); 888 #endif 889 /* Disable FACK yet. */ 890 tp->rx_opt.sack_ok &= ~2; 891 } 892 } 893 894 /* This procedure tags the retransmission queue when SACKs arrive. 895 * 896 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 897 * Packets in queue with these bits set are counted in variables 898 * sacked_out, retrans_out and lost_out, correspondingly. 899 * 900 * Valid combinations are: 901 * Tag InFlight Description 902 * 0 1 - orig segment is in flight. 903 * S 0 - nothing flies, orig reached receiver. 904 * L 0 - nothing flies, orig lost by net. 905 * R 2 - both orig and retransmit are in flight. 906 * L|R 1 - orig is lost, retransmit is in flight. 907 * S|R 1 - orig reached receiver, retrans is still in flight. 908 * (L|S|R is logically valid, it could occur when L|R is sacked, 909 * but it is equivalent to plain S and code short-curcuits it to S. 910 * L|S is logically invalid, it would mean -1 packet in flight 8)) 911 * 912 * These 6 states form finite state machine, controlled by the following events: 913 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 914 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 915 * 3. Loss detection event of one of three flavors: 916 * A. Scoreboard estimator decided the packet is lost. 917 * A'. Reno "three dupacks" marks head of queue lost. 918 * A''. Its FACK modfication, head until snd.fack is lost. 919 * B. SACK arrives sacking data transmitted after never retransmitted 920 * hole was sent out. 921 * C. SACK arrives sacking SND.NXT at the moment, when the 922 * segment was retransmitted. 923 * 4. D-SACK added new rule: D-SACK changes any tag to S. 924 * 925 * It is pleasant to note, that state diagram turns out to be commutative, 926 * so that we are allowed not to be bothered by order of our actions, 927 * when multiple events arrive simultaneously. (see the function below). 928 * 929 * Reordering detection. 930 * -------------------- 931 * Reordering metric is maximal distance, which a packet can be displaced 932 * in packet stream. With SACKs we can estimate it: 933 * 934 * 1. SACK fills old hole and the corresponding segment was not 935 * ever retransmitted -> reordering. Alas, we cannot use it 936 * when segment was retransmitted. 937 * 2. The last flaw is solved with D-SACK. D-SACK arrives 938 * for retransmitted and already SACKed segment -> reordering.. 939 * Both of these heuristics are not used in Loss state, when we cannot 940 * account for retransmits accurately. 941 */ 942 static int 943 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una) 944 { 945 const struct inet_connection_sock *icsk = inet_csk(sk); 946 struct tcp_sock *tp = tcp_sk(sk); 947 unsigned char *ptr = (skb_transport_header(ack_skb) + 948 TCP_SKB_CB(ack_skb)->sacked); 949 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2); 950 struct sk_buff *cached_skb; 951 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3; 952 int reord = tp->packets_out; 953 int prior_fackets; 954 u32 lost_retrans = 0; 955 int flag = 0; 956 int dup_sack = 0; 957 int cached_fack_count; 958 int i; 959 int first_sack_index; 960 961 if (!tp->sacked_out) 962 tp->fackets_out = 0; 963 prior_fackets = tp->fackets_out; 964 965 /* Check for D-SACK. */ 966 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) { 967 dup_sack = 1; 968 tp->rx_opt.sack_ok |= 4; 969 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); 970 } else if (num_sacks > 1 && 971 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) && 972 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) { 973 dup_sack = 1; 974 tp->rx_opt.sack_ok |= 4; 975 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); 976 } 977 978 /* D-SACK for already forgotten data... 979 * Do dumb counting. */ 980 if (dup_sack && 981 !after(ntohl(sp[0].end_seq), prior_snd_una) && 982 after(ntohl(sp[0].end_seq), tp->undo_marker)) 983 tp->undo_retrans--; 984 985 /* Eliminate too old ACKs, but take into 986 * account more or less fresh ones, they can 987 * contain valid SACK info. 988 */ 989 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 990 return 0; 991 992 /* SACK fastpath: 993 * if the only SACK change is the increase of the end_seq of 994 * the first block then only apply that SACK block 995 * and use retrans queue hinting otherwise slowpath */ 996 flag = 1; 997 for (i = 0; i < num_sacks; i++) { 998 __be32 start_seq = sp[i].start_seq; 999 __be32 end_seq = sp[i].end_seq; 1000 1001 if (i == 0) { 1002 if (tp->recv_sack_cache[i].start_seq != start_seq) 1003 flag = 0; 1004 } else { 1005 if ((tp->recv_sack_cache[i].start_seq != start_seq) || 1006 (tp->recv_sack_cache[i].end_seq != end_seq)) 1007 flag = 0; 1008 } 1009 tp->recv_sack_cache[i].start_seq = start_seq; 1010 tp->recv_sack_cache[i].end_seq = end_seq; 1011 } 1012 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */ 1013 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) { 1014 tp->recv_sack_cache[i].start_seq = 0; 1015 tp->recv_sack_cache[i].end_seq = 0; 1016 } 1017 1018 first_sack_index = 0; 1019 if (flag) 1020 num_sacks = 1; 1021 else { 1022 int j; 1023 tp->fastpath_skb_hint = NULL; 1024 1025 /* order SACK blocks to allow in order walk of the retrans queue */ 1026 for (i = num_sacks-1; i > 0; i--) { 1027 for (j = 0; j < i; j++){ 1028 if (after(ntohl(sp[j].start_seq), 1029 ntohl(sp[j+1].start_seq))){ 1030 struct tcp_sack_block_wire tmp; 1031 1032 tmp = sp[j]; 1033 sp[j] = sp[j+1]; 1034 sp[j+1] = tmp; 1035 1036 /* Track where the first SACK block goes to */ 1037 if (j == first_sack_index) 1038 first_sack_index = j+1; 1039 } 1040 1041 } 1042 } 1043 } 1044 1045 /* clear flag as used for different purpose in following code */ 1046 flag = 0; 1047 1048 /* Use SACK fastpath hint if valid */ 1049 cached_skb = tp->fastpath_skb_hint; 1050 cached_fack_count = tp->fastpath_cnt_hint; 1051 if (!cached_skb) { 1052 cached_skb = tcp_write_queue_head(sk); 1053 cached_fack_count = 0; 1054 } 1055 1056 for (i=0; i<num_sacks; i++, sp++) { 1057 struct sk_buff *skb; 1058 __u32 start_seq = ntohl(sp->start_seq); 1059 __u32 end_seq = ntohl(sp->end_seq); 1060 int fack_count; 1061 1062 skb = cached_skb; 1063 fack_count = cached_fack_count; 1064 1065 /* Event "B" in the comment above. */ 1066 if (after(end_seq, tp->high_seq)) 1067 flag |= FLAG_DATA_LOST; 1068 1069 tcp_for_write_queue_from(skb, sk) { 1070 int in_sack, pcount; 1071 u8 sacked; 1072 1073 if (skb == tcp_send_head(sk)) 1074 break; 1075 1076 cached_skb = skb; 1077 cached_fack_count = fack_count; 1078 if (i == first_sack_index) { 1079 tp->fastpath_skb_hint = skb; 1080 tp->fastpath_cnt_hint = fack_count; 1081 } 1082 1083 /* The retransmission queue is always in order, so 1084 * we can short-circuit the walk early. 1085 */ 1086 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1087 break; 1088 1089 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1090 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1091 1092 pcount = tcp_skb_pcount(skb); 1093 1094 if (pcount > 1 && !in_sack && 1095 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1096 unsigned int pkt_len; 1097 1098 in_sack = !after(start_seq, 1099 TCP_SKB_CB(skb)->seq); 1100 1101 if (!in_sack) 1102 pkt_len = (start_seq - 1103 TCP_SKB_CB(skb)->seq); 1104 else 1105 pkt_len = (end_seq - 1106 TCP_SKB_CB(skb)->seq); 1107 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size)) 1108 break; 1109 pcount = tcp_skb_pcount(skb); 1110 } 1111 1112 fack_count += pcount; 1113 1114 sacked = TCP_SKB_CB(skb)->sacked; 1115 1116 /* Account D-SACK for retransmitted packet. */ 1117 if ((dup_sack && in_sack) && 1118 (sacked & TCPCB_RETRANS) && 1119 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1120 tp->undo_retrans--; 1121 1122 /* The frame is ACKed. */ 1123 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) { 1124 if (sacked&TCPCB_RETRANS) { 1125 if ((dup_sack && in_sack) && 1126 (sacked&TCPCB_SACKED_ACKED)) 1127 reord = min(fack_count, reord); 1128 } else { 1129 /* If it was in a hole, we detected reordering. */ 1130 if (fack_count < prior_fackets && 1131 !(sacked&TCPCB_SACKED_ACKED)) 1132 reord = min(fack_count, reord); 1133 } 1134 1135 /* Nothing to do; acked frame is about to be dropped. */ 1136 continue; 1137 } 1138 1139 if ((sacked&TCPCB_SACKED_RETRANS) && 1140 after(end_seq, TCP_SKB_CB(skb)->ack_seq) && 1141 (!lost_retrans || after(end_seq, lost_retrans))) 1142 lost_retrans = end_seq; 1143 1144 if (!in_sack) 1145 continue; 1146 1147 if (!(sacked&TCPCB_SACKED_ACKED)) { 1148 if (sacked & TCPCB_SACKED_RETRANS) { 1149 /* If the segment is not tagged as lost, 1150 * we do not clear RETRANS, believing 1151 * that retransmission is still in flight. 1152 */ 1153 if (sacked & TCPCB_LOST) { 1154 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1155 tp->lost_out -= tcp_skb_pcount(skb); 1156 tp->retrans_out -= tcp_skb_pcount(skb); 1157 1158 /* clear lost hint */ 1159 tp->retransmit_skb_hint = NULL; 1160 } 1161 } else { 1162 /* New sack for not retransmitted frame, 1163 * which was in hole. It is reordering. 1164 */ 1165 if (!(sacked & TCPCB_RETRANS) && 1166 fack_count < prior_fackets) 1167 reord = min(fack_count, reord); 1168 1169 if (sacked & TCPCB_LOST) { 1170 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1171 tp->lost_out -= tcp_skb_pcount(skb); 1172 1173 /* clear lost hint */ 1174 tp->retransmit_skb_hint = NULL; 1175 } 1176 /* SACK enhanced F-RTO detection. 1177 * Set flag if and only if non-rexmitted 1178 * segments below frto_highmark are 1179 * SACKed (RFC4138; Appendix B). 1180 * Clearing correct due to in-order walk 1181 */ 1182 if (after(end_seq, tp->frto_highmark)) { 1183 flag &= ~FLAG_ONLY_ORIG_SACKED; 1184 } else { 1185 if (!(sacked & TCPCB_RETRANS)) 1186 flag |= FLAG_ONLY_ORIG_SACKED; 1187 } 1188 } 1189 1190 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; 1191 flag |= FLAG_DATA_SACKED; 1192 tp->sacked_out += tcp_skb_pcount(skb); 1193 1194 if (fack_count > tp->fackets_out) 1195 tp->fackets_out = fack_count; 1196 } else { 1197 if (dup_sack && (sacked&TCPCB_RETRANS)) 1198 reord = min(fack_count, reord); 1199 } 1200 1201 /* D-SACK. We can detect redundant retransmission 1202 * in S|R and plain R frames and clear it. 1203 * undo_retrans is decreased above, L|R frames 1204 * are accounted above as well. 1205 */ 1206 if (dup_sack && 1207 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) { 1208 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1209 tp->retrans_out -= tcp_skb_pcount(skb); 1210 tp->retransmit_skb_hint = NULL; 1211 } 1212 } 1213 } 1214 1215 /* Check for lost retransmit. This superb idea is 1216 * borrowed from "ratehalving". Event "C". 1217 * Later note: FACK people cheated me again 8), 1218 * we have to account for reordering! Ugly, 1219 * but should help. 1220 */ 1221 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) { 1222 struct sk_buff *skb; 1223 1224 tcp_for_write_queue(skb, sk) { 1225 if (skb == tcp_send_head(sk)) 1226 break; 1227 if (after(TCP_SKB_CB(skb)->seq, lost_retrans)) 1228 break; 1229 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1230 continue; 1231 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) && 1232 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) && 1233 (IsFack(tp) || 1234 !before(lost_retrans, 1235 TCP_SKB_CB(skb)->ack_seq + tp->reordering * 1236 tp->mss_cache))) { 1237 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1238 tp->retrans_out -= tcp_skb_pcount(skb); 1239 1240 /* clear lost hint */ 1241 tp->retransmit_skb_hint = NULL; 1242 1243 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1244 tp->lost_out += tcp_skb_pcount(skb); 1245 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1246 flag |= FLAG_DATA_SACKED; 1247 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); 1248 } 1249 } 1250 } 1251 } 1252 1253 tp->left_out = tp->sacked_out + tp->lost_out; 1254 1255 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss && 1256 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1257 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0); 1258 1259 #if FASTRETRANS_DEBUG > 0 1260 BUG_TRAP((int)tp->sacked_out >= 0); 1261 BUG_TRAP((int)tp->lost_out >= 0); 1262 BUG_TRAP((int)tp->retrans_out >= 0); 1263 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); 1264 #endif 1265 return flag; 1266 } 1267 1268 /* F-RTO can only be used if TCP has never retransmitted anything other than 1269 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 1270 */ 1271 int tcp_use_frto(struct sock *sk) 1272 { 1273 const struct tcp_sock *tp = tcp_sk(sk); 1274 struct sk_buff *skb; 1275 1276 if (!sysctl_tcp_frto) 1277 return 0; 1278 1279 if (IsSackFrto()) 1280 return 1; 1281 1282 /* Avoid expensive walking of rexmit queue if possible */ 1283 if (tp->retrans_out > 1) 1284 return 0; 1285 1286 skb = tcp_write_queue_head(sk); 1287 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 1288 tcp_for_write_queue_from(skb, sk) { 1289 if (skb == tcp_send_head(sk)) 1290 break; 1291 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1292 return 0; 1293 /* Short-circuit when first non-SACKed skb has been checked */ 1294 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) 1295 break; 1296 } 1297 return 1; 1298 } 1299 1300 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 1301 * recovery a bit and use heuristics in tcp_process_frto() to detect if 1302 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 1303 * keep retrans_out counting accurate (with SACK F-RTO, other than head 1304 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 1305 * bits are handled if the Loss state is really to be entered (in 1306 * tcp_enter_frto_loss). 1307 * 1308 * Do like tcp_enter_loss() would; when RTO expires the second time it 1309 * does: 1310 * "Reduce ssthresh if it has not yet been made inside this window." 1311 */ 1312 void tcp_enter_frto(struct sock *sk) 1313 { 1314 const struct inet_connection_sock *icsk = inet_csk(sk); 1315 struct tcp_sock *tp = tcp_sk(sk); 1316 struct sk_buff *skb; 1317 1318 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 1319 tp->snd_una == tp->high_seq || 1320 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 1321 !icsk->icsk_retransmits)) { 1322 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1323 /* Our state is too optimistic in ssthresh() call because cwnd 1324 * is not reduced until tcp_enter_frto_loss() when previous FRTO 1325 * recovery has not yet completed. Pattern would be this: RTO, 1326 * Cumulative ACK, RTO (2xRTO for the same segment does not end 1327 * up here twice). 1328 * RFC4138 should be more specific on what to do, even though 1329 * RTO is quite unlikely to occur after the first Cumulative ACK 1330 * due to back-off and complexity of triggering events ... 1331 */ 1332 if (tp->frto_counter) { 1333 u32 stored_cwnd; 1334 stored_cwnd = tp->snd_cwnd; 1335 tp->snd_cwnd = 2; 1336 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1337 tp->snd_cwnd = stored_cwnd; 1338 } else { 1339 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1340 } 1341 /* ... in theory, cong.control module could do "any tricks" in 1342 * ssthresh(), which means that ca_state, lost bits and lost_out 1343 * counter would have to be faked before the call occurs. We 1344 * consider that too expensive, unlikely and hacky, so modules 1345 * using these in ssthresh() must deal these incompatibility 1346 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 1347 */ 1348 tcp_ca_event(sk, CA_EVENT_FRTO); 1349 } 1350 1351 tp->undo_marker = tp->snd_una; 1352 tp->undo_retrans = 0; 1353 1354 skb = tcp_write_queue_head(sk); 1355 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 1356 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1357 tp->retrans_out -= tcp_skb_pcount(skb); 1358 } 1359 tcp_sync_left_out(tp); 1360 1361 /* Earlier loss recovery underway (see RFC4138; Appendix B). 1362 * The last condition is necessary at least in tp->frto_counter case. 1363 */ 1364 if (IsSackFrto() && (tp->frto_counter || 1365 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 1366 after(tp->high_seq, tp->snd_una)) { 1367 tp->frto_highmark = tp->high_seq; 1368 } else { 1369 tp->frto_highmark = tp->snd_nxt; 1370 } 1371 tcp_set_ca_state(sk, TCP_CA_Disorder); 1372 tp->high_seq = tp->snd_nxt; 1373 tp->frto_counter = 1; 1374 } 1375 1376 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1377 * which indicates that we should follow the traditional RTO recovery, 1378 * i.e. mark everything lost and do go-back-N retransmission. 1379 */ 1380 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 1381 { 1382 struct tcp_sock *tp = tcp_sk(sk); 1383 struct sk_buff *skb; 1384 int cnt = 0; 1385 1386 tp->sacked_out = 0; 1387 tp->lost_out = 0; 1388 tp->fackets_out = 0; 1389 tp->retrans_out = 0; 1390 1391 tcp_for_write_queue(skb, sk) { 1392 if (skb == tcp_send_head(sk)) 1393 break; 1394 cnt += tcp_skb_pcount(skb); 1395 /* 1396 * Count the retransmission made on RTO correctly (only when 1397 * waiting for the first ACK and did not get it)... 1398 */ 1399 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) { 1400 tp->retrans_out += tcp_skb_pcount(skb); 1401 /* ...enter this if branch just for the first segment */ 1402 flag |= FLAG_DATA_ACKED; 1403 } else { 1404 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1405 } 1406 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1407 1408 /* Do not mark those segments lost that were 1409 * forward transmitted after RTO 1410 */ 1411 if (!after(TCP_SKB_CB(skb)->end_seq, 1412 tp->frto_highmark)) { 1413 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1414 tp->lost_out += tcp_skb_pcount(skb); 1415 } 1416 } else { 1417 tp->sacked_out += tcp_skb_pcount(skb); 1418 tp->fackets_out = cnt; 1419 } 1420 } 1421 tcp_sync_left_out(tp); 1422 1423 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 1424 tp->snd_cwnd_cnt = 0; 1425 tp->snd_cwnd_stamp = tcp_time_stamp; 1426 tp->undo_marker = 0; 1427 tp->frto_counter = 0; 1428 1429 tp->reordering = min_t(unsigned int, tp->reordering, 1430 sysctl_tcp_reordering); 1431 tcp_set_ca_state(sk, TCP_CA_Loss); 1432 tp->high_seq = tp->frto_highmark; 1433 TCP_ECN_queue_cwr(tp); 1434 1435 clear_all_retrans_hints(tp); 1436 } 1437 1438 void tcp_clear_retrans(struct tcp_sock *tp) 1439 { 1440 tp->left_out = 0; 1441 tp->retrans_out = 0; 1442 1443 tp->fackets_out = 0; 1444 tp->sacked_out = 0; 1445 tp->lost_out = 0; 1446 1447 tp->undo_marker = 0; 1448 tp->undo_retrans = 0; 1449 } 1450 1451 /* Enter Loss state. If "how" is not zero, forget all SACK information 1452 * and reset tags completely, otherwise preserve SACKs. If receiver 1453 * dropped its ofo queue, we will know this due to reneging detection. 1454 */ 1455 void tcp_enter_loss(struct sock *sk, int how) 1456 { 1457 const struct inet_connection_sock *icsk = inet_csk(sk); 1458 struct tcp_sock *tp = tcp_sk(sk); 1459 struct sk_buff *skb; 1460 int cnt = 0; 1461 1462 /* Reduce ssthresh if it has not yet been made inside this window. */ 1463 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 1464 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1465 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1466 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1467 tcp_ca_event(sk, CA_EVENT_LOSS); 1468 } 1469 tp->snd_cwnd = 1; 1470 tp->snd_cwnd_cnt = 0; 1471 tp->snd_cwnd_stamp = tcp_time_stamp; 1472 1473 tp->bytes_acked = 0; 1474 tcp_clear_retrans(tp); 1475 1476 /* Push undo marker, if it was plain RTO and nothing 1477 * was retransmitted. */ 1478 if (!how) 1479 tp->undo_marker = tp->snd_una; 1480 1481 tcp_for_write_queue(skb, sk) { 1482 if (skb == tcp_send_head(sk)) 1483 break; 1484 cnt += tcp_skb_pcount(skb); 1485 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1486 tp->undo_marker = 0; 1487 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1488 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1489 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1490 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1491 tp->lost_out += tcp_skb_pcount(skb); 1492 } else { 1493 tp->sacked_out += tcp_skb_pcount(skb); 1494 tp->fackets_out = cnt; 1495 } 1496 } 1497 tcp_sync_left_out(tp); 1498 1499 tp->reordering = min_t(unsigned int, tp->reordering, 1500 sysctl_tcp_reordering); 1501 tcp_set_ca_state(sk, TCP_CA_Loss); 1502 tp->high_seq = tp->snd_nxt; 1503 TCP_ECN_queue_cwr(tp); 1504 1505 clear_all_retrans_hints(tp); 1506 } 1507 1508 static int tcp_check_sack_reneging(struct sock *sk) 1509 { 1510 struct sk_buff *skb; 1511 1512 /* If ACK arrived pointing to a remembered SACK, 1513 * it means that our remembered SACKs do not reflect 1514 * real state of receiver i.e. 1515 * receiver _host_ is heavily congested (or buggy). 1516 * Do processing similar to RTO timeout. 1517 */ 1518 if ((skb = tcp_write_queue_head(sk)) != NULL && 1519 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 1520 struct inet_connection_sock *icsk = inet_csk(sk); 1521 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); 1522 1523 tcp_enter_loss(sk, 1); 1524 icsk->icsk_retransmits++; 1525 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 1526 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1527 icsk->icsk_rto, TCP_RTO_MAX); 1528 return 1; 1529 } 1530 return 0; 1531 } 1532 1533 static inline int tcp_fackets_out(struct tcp_sock *tp) 1534 { 1535 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out; 1536 } 1537 1538 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 1539 { 1540 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 1541 } 1542 1543 static inline int tcp_head_timedout(struct sock *sk) 1544 { 1545 struct tcp_sock *tp = tcp_sk(sk); 1546 1547 return tp->packets_out && 1548 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 1549 } 1550 1551 /* Linux NewReno/SACK/FACK/ECN state machine. 1552 * -------------------------------------- 1553 * 1554 * "Open" Normal state, no dubious events, fast path. 1555 * "Disorder" In all the respects it is "Open", 1556 * but requires a bit more attention. It is entered when 1557 * we see some SACKs or dupacks. It is split of "Open" 1558 * mainly to move some processing from fast path to slow one. 1559 * "CWR" CWND was reduced due to some Congestion Notification event. 1560 * It can be ECN, ICMP source quench, local device congestion. 1561 * "Recovery" CWND was reduced, we are fast-retransmitting. 1562 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 1563 * 1564 * tcp_fastretrans_alert() is entered: 1565 * - each incoming ACK, if state is not "Open" 1566 * - when arrived ACK is unusual, namely: 1567 * * SACK 1568 * * Duplicate ACK. 1569 * * ECN ECE. 1570 * 1571 * Counting packets in flight is pretty simple. 1572 * 1573 * in_flight = packets_out - left_out + retrans_out 1574 * 1575 * packets_out is SND.NXT-SND.UNA counted in packets. 1576 * 1577 * retrans_out is number of retransmitted segments. 1578 * 1579 * left_out is number of segments left network, but not ACKed yet. 1580 * 1581 * left_out = sacked_out + lost_out 1582 * 1583 * sacked_out: Packets, which arrived to receiver out of order 1584 * and hence not ACKed. With SACKs this number is simply 1585 * amount of SACKed data. Even without SACKs 1586 * it is easy to give pretty reliable estimate of this number, 1587 * counting duplicate ACKs. 1588 * 1589 * lost_out: Packets lost by network. TCP has no explicit 1590 * "loss notification" feedback from network (for now). 1591 * It means that this number can be only _guessed_. 1592 * Actually, it is the heuristics to predict lossage that 1593 * distinguishes different algorithms. 1594 * 1595 * F.e. after RTO, when all the queue is considered as lost, 1596 * lost_out = packets_out and in_flight = retrans_out. 1597 * 1598 * Essentially, we have now two algorithms counting 1599 * lost packets. 1600 * 1601 * FACK: It is the simplest heuristics. As soon as we decided 1602 * that something is lost, we decide that _all_ not SACKed 1603 * packets until the most forward SACK are lost. I.e. 1604 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 1605 * It is absolutely correct estimate, if network does not reorder 1606 * packets. And it loses any connection to reality when reordering 1607 * takes place. We use FACK by default until reordering 1608 * is suspected on the path to this destination. 1609 * 1610 * NewReno: when Recovery is entered, we assume that one segment 1611 * is lost (classic Reno). While we are in Recovery and 1612 * a partial ACK arrives, we assume that one more packet 1613 * is lost (NewReno). This heuristics are the same in NewReno 1614 * and SACK. 1615 * 1616 * Imagine, that's all! Forget about all this shamanism about CWND inflation 1617 * deflation etc. CWND is real congestion window, never inflated, changes 1618 * only according to classic VJ rules. 1619 * 1620 * Really tricky (and requiring careful tuning) part of algorithm 1621 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 1622 * The first determines the moment _when_ we should reduce CWND and, 1623 * hence, slow down forward transmission. In fact, it determines the moment 1624 * when we decide that hole is caused by loss, rather than by a reorder. 1625 * 1626 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 1627 * holes, caused by lost packets. 1628 * 1629 * And the most logically complicated part of algorithm is undo 1630 * heuristics. We detect false retransmits due to both too early 1631 * fast retransmit (reordering) and underestimated RTO, analyzing 1632 * timestamps and D-SACKs. When we detect that some segments were 1633 * retransmitted by mistake and CWND reduction was wrong, we undo 1634 * window reduction and abort recovery phase. This logic is hidden 1635 * inside several functions named tcp_try_undo_<something>. 1636 */ 1637 1638 /* This function decides, when we should leave Disordered state 1639 * and enter Recovery phase, reducing congestion window. 1640 * 1641 * Main question: may we further continue forward transmission 1642 * with the same cwnd? 1643 */ 1644 static int tcp_time_to_recover(struct sock *sk) 1645 { 1646 struct tcp_sock *tp = tcp_sk(sk); 1647 __u32 packets_out; 1648 1649 /* Do not perform any recovery during FRTO algorithm */ 1650 if (tp->frto_counter) 1651 return 0; 1652 1653 /* Trick#1: The loss is proven. */ 1654 if (tp->lost_out) 1655 return 1; 1656 1657 /* Not-A-Trick#2 : Classic rule... */ 1658 if (tcp_fackets_out(tp) > tp->reordering) 1659 return 1; 1660 1661 /* Trick#3 : when we use RFC2988 timer restart, fast 1662 * retransmit can be triggered by timeout of queue head. 1663 */ 1664 if (tcp_head_timedout(sk)) 1665 return 1; 1666 1667 /* Trick#4: It is still not OK... But will it be useful to delay 1668 * recovery more? 1669 */ 1670 packets_out = tp->packets_out; 1671 if (packets_out <= tp->reordering && 1672 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 1673 !tcp_may_send_now(sk)) { 1674 /* We have nothing to send. This connection is limited 1675 * either by receiver window or by application. 1676 */ 1677 return 1; 1678 } 1679 1680 return 0; 1681 } 1682 1683 /* If we receive more dupacks than we expected counting segments 1684 * in assumption of absent reordering, interpret this as reordering. 1685 * The only another reason could be bug in receiver TCP. 1686 */ 1687 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1688 { 1689 struct tcp_sock *tp = tcp_sk(sk); 1690 u32 holes; 1691 1692 holes = max(tp->lost_out, 1U); 1693 holes = min(holes, tp->packets_out); 1694 1695 if ((tp->sacked_out + holes) > tp->packets_out) { 1696 tp->sacked_out = tp->packets_out - holes; 1697 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1698 } 1699 } 1700 1701 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1702 1703 static void tcp_add_reno_sack(struct sock *sk) 1704 { 1705 struct tcp_sock *tp = tcp_sk(sk); 1706 tp->sacked_out++; 1707 tcp_check_reno_reordering(sk, 0); 1708 tcp_sync_left_out(tp); 1709 } 1710 1711 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1712 1713 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1714 { 1715 struct tcp_sock *tp = tcp_sk(sk); 1716 1717 if (acked > 0) { 1718 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1719 if (acked-1 >= tp->sacked_out) 1720 tp->sacked_out = 0; 1721 else 1722 tp->sacked_out -= acked-1; 1723 } 1724 tcp_check_reno_reordering(sk, acked); 1725 tcp_sync_left_out(tp); 1726 } 1727 1728 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1729 { 1730 tp->sacked_out = 0; 1731 tp->left_out = tp->lost_out; 1732 } 1733 1734 /* Mark head of queue up as lost. */ 1735 static void tcp_mark_head_lost(struct sock *sk, 1736 int packets, u32 high_seq) 1737 { 1738 struct tcp_sock *tp = tcp_sk(sk); 1739 struct sk_buff *skb; 1740 int cnt; 1741 1742 BUG_TRAP(packets <= tp->packets_out); 1743 if (tp->lost_skb_hint) { 1744 skb = tp->lost_skb_hint; 1745 cnt = tp->lost_cnt_hint; 1746 } else { 1747 skb = tcp_write_queue_head(sk); 1748 cnt = 0; 1749 } 1750 1751 tcp_for_write_queue_from(skb, sk) { 1752 if (skb == tcp_send_head(sk)) 1753 break; 1754 /* TODO: do this better */ 1755 /* this is not the most efficient way to do this... */ 1756 tp->lost_skb_hint = skb; 1757 tp->lost_cnt_hint = cnt; 1758 cnt += tcp_skb_pcount(skb); 1759 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq)) 1760 break; 1761 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1762 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1763 tp->lost_out += tcp_skb_pcount(skb); 1764 1765 /* clear xmit_retransmit_queue hints 1766 * if this is beyond hint */ 1767 if (tp->retransmit_skb_hint != NULL && 1768 before(TCP_SKB_CB(skb)->seq, 1769 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 1770 tp->retransmit_skb_hint = NULL; 1771 1772 } 1773 } 1774 tcp_sync_left_out(tp); 1775 } 1776 1777 /* Account newly detected lost packet(s) */ 1778 1779 static void tcp_update_scoreboard(struct sock *sk) 1780 { 1781 struct tcp_sock *tp = tcp_sk(sk); 1782 1783 if (IsFack(tp)) { 1784 int lost = tp->fackets_out - tp->reordering; 1785 if (lost <= 0) 1786 lost = 1; 1787 tcp_mark_head_lost(sk, lost, tp->high_seq); 1788 } else { 1789 tcp_mark_head_lost(sk, 1, tp->high_seq); 1790 } 1791 1792 /* New heuristics: it is possible only after we switched 1793 * to restart timer each time when something is ACKed. 1794 * Hence, we can detect timed out packets during fast 1795 * retransmit without falling to slow start. 1796 */ 1797 if (!IsReno(tp) && tcp_head_timedout(sk)) { 1798 struct sk_buff *skb; 1799 1800 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint 1801 : tcp_write_queue_head(sk); 1802 1803 tcp_for_write_queue_from(skb, sk) { 1804 if (skb == tcp_send_head(sk)) 1805 break; 1806 if (!tcp_skb_timedout(sk, skb)) 1807 break; 1808 1809 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1810 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1811 tp->lost_out += tcp_skb_pcount(skb); 1812 1813 /* clear xmit_retrans hint */ 1814 if (tp->retransmit_skb_hint && 1815 before(TCP_SKB_CB(skb)->seq, 1816 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 1817 1818 tp->retransmit_skb_hint = NULL; 1819 } 1820 } 1821 1822 tp->scoreboard_skb_hint = skb; 1823 1824 tcp_sync_left_out(tp); 1825 } 1826 } 1827 1828 /* CWND moderation, preventing bursts due to too big ACKs 1829 * in dubious situations. 1830 */ 1831 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 1832 { 1833 tp->snd_cwnd = min(tp->snd_cwnd, 1834 tcp_packets_in_flight(tp)+tcp_max_burst(tp)); 1835 tp->snd_cwnd_stamp = tcp_time_stamp; 1836 } 1837 1838 /* Lower bound on congestion window is slow start threshold 1839 * unless congestion avoidance choice decides to overide it. 1840 */ 1841 static inline u32 tcp_cwnd_min(const struct sock *sk) 1842 { 1843 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1844 1845 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 1846 } 1847 1848 /* Decrease cwnd each second ack. */ 1849 static void tcp_cwnd_down(struct sock *sk) 1850 { 1851 struct tcp_sock *tp = tcp_sk(sk); 1852 int decr = tp->snd_cwnd_cnt + 1; 1853 1854 tp->snd_cwnd_cnt = decr&1; 1855 decr >>= 1; 1856 1857 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 1858 tp->snd_cwnd -= decr; 1859 1860 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1); 1861 tp->snd_cwnd_stamp = tcp_time_stamp; 1862 } 1863 1864 /* Nothing was retransmitted or returned timestamp is less 1865 * than timestamp of the first retransmission. 1866 */ 1867 static inline int tcp_packet_delayed(struct tcp_sock *tp) 1868 { 1869 return !tp->retrans_stamp || 1870 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 1871 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0); 1872 } 1873 1874 /* Undo procedures. */ 1875 1876 #if FASTRETRANS_DEBUG > 1 1877 static void DBGUNDO(struct sock *sk, const char *msg) 1878 { 1879 struct tcp_sock *tp = tcp_sk(sk); 1880 struct inet_sock *inet = inet_sk(sk); 1881 1882 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n", 1883 msg, 1884 NIPQUAD(inet->daddr), ntohs(inet->dport), 1885 tp->snd_cwnd, tp->left_out, 1886 tp->snd_ssthresh, tp->prior_ssthresh, 1887 tp->packets_out); 1888 } 1889 #else 1890 #define DBGUNDO(x...) do { } while (0) 1891 #endif 1892 1893 static void tcp_undo_cwr(struct sock *sk, const int undo) 1894 { 1895 struct tcp_sock *tp = tcp_sk(sk); 1896 1897 if (tp->prior_ssthresh) { 1898 const struct inet_connection_sock *icsk = inet_csk(sk); 1899 1900 if (icsk->icsk_ca_ops->undo_cwnd) 1901 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 1902 else 1903 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1); 1904 1905 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 1906 tp->snd_ssthresh = tp->prior_ssthresh; 1907 TCP_ECN_withdraw_cwr(tp); 1908 } 1909 } else { 1910 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 1911 } 1912 tcp_moderate_cwnd(tp); 1913 tp->snd_cwnd_stamp = tcp_time_stamp; 1914 1915 /* There is something screwy going on with the retrans hints after 1916 an undo */ 1917 clear_all_retrans_hints(tp); 1918 } 1919 1920 static inline int tcp_may_undo(struct tcp_sock *tp) 1921 { 1922 return tp->undo_marker && 1923 (!tp->undo_retrans || tcp_packet_delayed(tp)); 1924 } 1925 1926 /* People celebrate: "We love our President!" */ 1927 static int tcp_try_undo_recovery(struct sock *sk) 1928 { 1929 struct tcp_sock *tp = tcp_sk(sk); 1930 1931 if (tcp_may_undo(tp)) { 1932 /* Happy end! We did not retransmit anything 1933 * or our original transmission succeeded. 1934 */ 1935 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 1936 tcp_undo_cwr(sk, 1); 1937 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 1938 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1939 else 1940 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); 1941 tp->undo_marker = 0; 1942 } 1943 if (tp->snd_una == tp->high_seq && IsReno(tp)) { 1944 /* Hold old state until something *above* high_seq 1945 * is ACKed. For Reno it is MUST to prevent false 1946 * fast retransmits (RFC2582). SACK TCP is safe. */ 1947 tcp_moderate_cwnd(tp); 1948 return 1; 1949 } 1950 tcp_set_ca_state(sk, TCP_CA_Open); 1951 return 0; 1952 } 1953 1954 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 1955 static void tcp_try_undo_dsack(struct sock *sk) 1956 { 1957 struct tcp_sock *tp = tcp_sk(sk); 1958 1959 if (tp->undo_marker && !tp->undo_retrans) { 1960 DBGUNDO(sk, "D-SACK"); 1961 tcp_undo_cwr(sk, 1); 1962 tp->undo_marker = 0; 1963 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); 1964 } 1965 } 1966 1967 /* Undo during fast recovery after partial ACK. */ 1968 1969 static int tcp_try_undo_partial(struct sock *sk, int acked) 1970 { 1971 struct tcp_sock *tp = tcp_sk(sk); 1972 /* Partial ACK arrived. Force Hoe's retransmit. */ 1973 int failed = IsReno(tp) || tp->fackets_out>tp->reordering; 1974 1975 if (tcp_may_undo(tp)) { 1976 /* Plain luck! Hole if filled with delayed 1977 * packet, rather than with a retransmit. 1978 */ 1979 if (tp->retrans_out == 0) 1980 tp->retrans_stamp = 0; 1981 1982 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 1983 1984 DBGUNDO(sk, "Hoe"); 1985 tcp_undo_cwr(sk, 0); 1986 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); 1987 1988 /* So... Do not make Hoe's retransmit yet. 1989 * If the first packet was delayed, the rest 1990 * ones are most probably delayed as well. 1991 */ 1992 failed = 0; 1993 } 1994 return failed; 1995 } 1996 1997 /* Undo during loss recovery after partial ACK. */ 1998 static int tcp_try_undo_loss(struct sock *sk) 1999 { 2000 struct tcp_sock *tp = tcp_sk(sk); 2001 2002 if (tcp_may_undo(tp)) { 2003 struct sk_buff *skb; 2004 tcp_for_write_queue(skb, sk) { 2005 if (skb == tcp_send_head(sk)) 2006 break; 2007 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2008 } 2009 2010 clear_all_retrans_hints(tp); 2011 2012 DBGUNDO(sk, "partial loss"); 2013 tp->lost_out = 0; 2014 tp->left_out = tp->sacked_out; 2015 tcp_undo_cwr(sk, 1); 2016 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 2017 inet_csk(sk)->icsk_retransmits = 0; 2018 tp->undo_marker = 0; 2019 if (!IsReno(tp)) 2020 tcp_set_ca_state(sk, TCP_CA_Open); 2021 return 1; 2022 } 2023 return 0; 2024 } 2025 2026 static inline void tcp_complete_cwr(struct sock *sk) 2027 { 2028 struct tcp_sock *tp = tcp_sk(sk); 2029 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2030 tp->snd_cwnd_stamp = tcp_time_stamp; 2031 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2032 } 2033 2034 static void tcp_try_to_open(struct sock *sk, int flag) 2035 { 2036 struct tcp_sock *tp = tcp_sk(sk); 2037 2038 tp->left_out = tp->sacked_out; 2039 2040 if (tp->retrans_out == 0) 2041 tp->retrans_stamp = 0; 2042 2043 if (flag&FLAG_ECE) 2044 tcp_enter_cwr(sk, 1); 2045 2046 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2047 int state = TCP_CA_Open; 2048 2049 if (tp->left_out || tp->retrans_out || tp->undo_marker) 2050 state = TCP_CA_Disorder; 2051 2052 if (inet_csk(sk)->icsk_ca_state != state) { 2053 tcp_set_ca_state(sk, state); 2054 tp->high_seq = tp->snd_nxt; 2055 } 2056 tcp_moderate_cwnd(tp); 2057 } else { 2058 tcp_cwnd_down(sk); 2059 } 2060 } 2061 2062 static void tcp_mtup_probe_failed(struct sock *sk) 2063 { 2064 struct inet_connection_sock *icsk = inet_csk(sk); 2065 2066 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2067 icsk->icsk_mtup.probe_size = 0; 2068 } 2069 2070 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb) 2071 { 2072 struct tcp_sock *tp = tcp_sk(sk); 2073 struct inet_connection_sock *icsk = inet_csk(sk); 2074 2075 /* FIXME: breaks with very large cwnd */ 2076 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2077 tp->snd_cwnd = tp->snd_cwnd * 2078 tcp_mss_to_mtu(sk, tp->mss_cache) / 2079 icsk->icsk_mtup.probe_size; 2080 tp->snd_cwnd_cnt = 0; 2081 tp->snd_cwnd_stamp = tcp_time_stamp; 2082 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 2083 2084 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2085 icsk->icsk_mtup.probe_size = 0; 2086 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2087 } 2088 2089 2090 /* Process an event, which can update packets-in-flight not trivially. 2091 * Main goal of this function is to calculate new estimate for left_out, 2092 * taking into account both packets sitting in receiver's buffer and 2093 * packets lost by network. 2094 * 2095 * Besides that it does CWND reduction, when packet loss is detected 2096 * and changes state of machine. 2097 * 2098 * It does _not_ decide what to send, it is made in function 2099 * tcp_xmit_retransmit_queue(). 2100 */ 2101 static void 2102 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una, 2103 int prior_packets, int flag) 2104 { 2105 struct inet_connection_sock *icsk = inet_csk(sk); 2106 struct tcp_sock *tp = tcp_sk(sk); 2107 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP)); 2108 2109 /* Some technical things: 2110 * 1. Reno does not count dupacks (sacked_out) automatically. */ 2111 if (!tp->packets_out) 2112 tp->sacked_out = 0; 2113 /* 2. SACK counts snd_fack in packets inaccurately. */ 2114 if (tp->sacked_out == 0) 2115 tp->fackets_out = 0; 2116 2117 /* Now state machine starts. 2118 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2119 if (flag&FLAG_ECE) 2120 tp->prior_ssthresh = 0; 2121 2122 /* B. In all the states check for reneging SACKs. */ 2123 if (tp->sacked_out && tcp_check_sack_reneging(sk)) 2124 return; 2125 2126 /* C. Process data loss notification, provided it is valid. */ 2127 if ((flag&FLAG_DATA_LOST) && 2128 before(tp->snd_una, tp->high_seq) && 2129 icsk->icsk_ca_state != TCP_CA_Open && 2130 tp->fackets_out > tp->reordering) { 2131 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq); 2132 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); 2133 } 2134 2135 /* D. Synchronize left_out to current state. */ 2136 tcp_sync_left_out(tp); 2137 2138 /* E. Check state exit conditions. State can be terminated 2139 * when high_seq is ACKed. */ 2140 if (icsk->icsk_ca_state == TCP_CA_Open) { 2141 BUG_TRAP(tp->retrans_out == 0); 2142 tp->retrans_stamp = 0; 2143 } else if (!before(tp->snd_una, tp->high_seq)) { 2144 switch (icsk->icsk_ca_state) { 2145 case TCP_CA_Loss: 2146 icsk->icsk_retransmits = 0; 2147 if (tcp_try_undo_recovery(sk)) 2148 return; 2149 break; 2150 2151 case TCP_CA_CWR: 2152 /* CWR is to be held something *above* high_seq 2153 * is ACKed for CWR bit to reach receiver. */ 2154 if (tp->snd_una != tp->high_seq) { 2155 tcp_complete_cwr(sk); 2156 tcp_set_ca_state(sk, TCP_CA_Open); 2157 } 2158 break; 2159 2160 case TCP_CA_Disorder: 2161 tcp_try_undo_dsack(sk); 2162 if (!tp->undo_marker || 2163 /* For SACK case do not Open to allow to undo 2164 * catching for all duplicate ACKs. */ 2165 IsReno(tp) || tp->snd_una != tp->high_seq) { 2166 tp->undo_marker = 0; 2167 tcp_set_ca_state(sk, TCP_CA_Open); 2168 } 2169 break; 2170 2171 case TCP_CA_Recovery: 2172 if (IsReno(tp)) 2173 tcp_reset_reno_sack(tp); 2174 if (tcp_try_undo_recovery(sk)) 2175 return; 2176 tcp_complete_cwr(sk); 2177 break; 2178 } 2179 } 2180 2181 /* F. Process state. */ 2182 switch (icsk->icsk_ca_state) { 2183 case TCP_CA_Recovery: 2184 if (prior_snd_una == tp->snd_una) { 2185 if (IsReno(tp) && is_dupack) 2186 tcp_add_reno_sack(sk); 2187 } else { 2188 int acked = prior_packets - tp->packets_out; 2189 if (IsReno(tp)) 2190 tcp_remove_reno_sacks(sk, acked); 2191 is_dupack = tcp_try_undo_partial(sk, acked); 2192 } 2193 break; 2194 case TCP_CA_Loss: 2195 if (flag&FLAG_DATA_ACKED) 2196 icsk->icsk_retransmits = 0; 2197 if (!tcp_try_undo_loss(sk)) { 2198 tcp_moderate_cwnd(tp); 2199 tcp_xmit_retransmit_queue(sk); 2200 return; 2201 } 2202 if (icsk->icsk_ca_state != TCP_CA_Open) 2203 return; 2204 /* Loss is undone; fall through to processing in Open state. */ 2205 default: 2206 if (IsReno(tp)) { 2207 if (tp->snd_una != prior_snd_una) 2208 tcp_reset_reno_sack(tp); 2209 if (is_dupack) 2210 tcp_add_reno_sack(sk); 2211 } 2212 2213 if (icsk->icsk_ca_state == TCP_CA_Disorder) 2214 tcp_try_undo_dsack(sk); 2215 2216 if (!tcp_time_to_recover(sk)) { 2217 tcp_try_to_open(sk, flag); 2218 return; 2219 } 2220 2221 /* MTU probe failure: don't reduce cwnd */ 2222 if (icsk->icsk_ca_state < TCP_CA_CWR && 2223 icsk->icsk_mtup.probe_size && 2224 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2225 tcp_mtup_probe_failed(sk); 2226 /* Restores the reduction we did in tcp_mtup_probe() */ 2227 tp->snd_cwnd++; 2228 tcp_simple_retransmit(sk); 2229 return; 2230 } 2231 2232 /* Otherwise enter Recovery state */ 2233 2234 if (IsReno(tp)) 2235 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); 2236 else 2237 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); 2238 2239 tp->high_seq = tp->snd_nxt; 2240 tp->prior_ssthresh = 0; 2241 tp->undo_marker = tp->snd_una; 2242 tp->undo_retrans = tp->retrans_out; 2243 2244 if (icsk->icsk_ca_state < TCP_CA_CWR) { 2245 if (!(flag&FLAG_ECE)) 2246 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2247 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2248 TCP_ECN_queue_cwr(tp); 2249 } 2250 2251 tp->bytes_acked = 0; 2252 tp->snd_cwnd_cnt = 0; 2253 tcp_set_ca_state(sk, TCP_CA_Recovery); 2254 } 2255 2256 if (is_dupack || tcp_head_timedout(sk)) 2257 tcp_update_scoreboard(sk); 2258 tcp_cwnd_down(sk); 2259 tcp_xmit_retransmit_queue(sk); 2260 } 2261 2262 /* Read draft-ietf-tcplw-high-performance before mucking 2263 * with this code. (Supersedes RFC1323) 2264 */ 2265 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 2266 { 2267 /* RTTM Rule: A TSecr value received in a segment is used to 2268 * update the averaged RTT measurement only if the segment 2269 * acknowledges some new data, i.e., only if it advances the 2270 * left edge of the send window. 2271 * 2272 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2273 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 2274 * 2275 * Changed: reset backoff as soon as we see the first valid sample. 2276 * If we do not, we get strongly overestimated rto. With timestamps 2277 * samples are accepted even from very old segments: f.e., when rtt=1 2278 * increases to 8, we retransmit 5 times and after 8 seconds delayed 2279 * answer arrives rto becomes 120 seconds! If at least one of segments 2280 * in window is lost... Voila. --ANK (010210) 2281 */ 2282 struct tcp_sock *tp = tcp_sk(sk); 2283 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2284 tcp_rtt_estimator(sk, seq_rtt); 2285 tcp_set_rto(sk); 2286 inet_csk(sk)->icsk_backoff = 0; 2287 tcp_bound_rto(sk); 2288 } 2289 2290 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 2291 { 2292 /* We don't have a timestamp. Can only use 2293 * packets that are not retransmitted to determine 2294 * rtt estimates. Also, we must not reset the 2295 * backoff for rto until we get a non-retransmitted 2296 * packet. This allows us to deal with a situation 2297 * where the network delay has increased suddenly. 2298 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 2299 */ 2300 2301 if (flag & FLAG_RETRANS_DATA_ACKED) 2302 return; 2303 2304 tcp_rtt_estimator(sk, seq_rtt); 2305 tcp_set_rto(sk); 2306 inet_csk(sk)->icsk_backoff = 0; 2307 tcp_bound_rto(sk); 2308 } 2309 2310 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 2311 const s32 seq_rtt) 2312 { 2313 const struct tcp_sock *tp = tcp_sk(sk); 2314 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 2315 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2316 tcp_ack_saw_tstamp(sk, flag); 2317 else if (seq_rtt >= 0) 2318 tcp_ack_no_tstamp(sk, seq_rtt, flag); 2319 } 2320 2321 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt, 2322 u32 in_flight, int good) 2323 { 2324 const struct inet_connection_sock *icsk = inet_csk(sk); 2325 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good); 2326 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2327 } 2328 2329 /* Restart timer after forward progress on connection. 2330 * RFC2988 recommends to restart timer to now+rto. 2331 */ 2332 2333 static void tcp_ack_packets_out(struct sock *sk) 2334 { 2335 struct tcp_sock *tp = tcp_sk(sk); 2336 2337 if (!tp->packets_out) { 2338 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2339 } else { 2340 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2341 } 2342 } 2343 2344 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb, 2345 __u32 now, __s32 *seq_rtt) 2346 { 2347 struct tcp_sock *tp = tcp_sk(sk); 2348 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2349 __u32 seq = tp->snd_una; 2350 __u32 packets_acked; 2351 int acked = 0; 2352 2353 /* If we get here, the whole TSO packet has not been 2354 * acked. 2355 */ 2356 BUG_ON(!after(scb->end_seq, seq)); 2357 2358 packets_acked = tcp_skb_pcount(skb); 2359 if (tcp_trim_head(sk, skb, seq - scb->seq)) 2360 return 0; 2361 packets_acked -= tcp_skb_pcount(skb); 2362 2363 if (packets_acked) { 2364 __u8 sacked = scb->sacked; 2365 2366 acked |= FLAG_DATA_ACKED; 2367 if (sacked) { 2368 if (sacked & TCPCB_RETRANS) { 2369 if (sacked & TCPCB_SACKED_RETRANS) 2370 tp->retrans_out -= packets_acked; 2371 acked |= FLAG_RETRANS_DATA_ACKED; 2372 *seq_rtt = -1; 2373 } else if (*seq_rtt < 0) 2374 *seq_rtt = now - scb->when; 2375 if (sacked & TCPCB_SACKED_ACKED) 2376 tp->sacked_out -= packets_acked; 2377 if (sacked & TCPCB_LOST) 2378 tp->lost_out -= packets_acked; 2379 if (sacked & TCPCB_URG) { 2380 if (tp->urg_mode && 2381 !before(seq, tp->snd_up)) 2382 tp->urg_mode = 0; 2383 } 2384 } else if (*seq_rtt < 0) 2385 *seq_rtt = now - scb->when; 2386 2387 if (tp->fackets_out) { 2388 __u32 dval = min(tp->fackets_out, packets_acked); 2389 tp->fackets_out -= dval; 2390 } 2391 tp->packets_out -= packets_acked; 2392 2393 BUG_ON(tcp_skb_pcount(skb) == 0); 2394 BUG_ON(!before(scb->seq, scb->end_seq)); 2395 } 2396 2397 return acked; 2398 } 2399 2400 /* Remove acknowledged frames from the retransmission queue. */ 2401 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p) 2402 { 2403 struct tcp_sock *tp = tcp_sk(sk); 2404 const struct inet_connection_sock *icsk = inet_csk(sk); 2405 struct sk_buff *skb; 2406 __u32 now = tcp_time_stamp; 2407 int acked = 0; 2408 __s32 seq_rtt = -1; 2409 u32 pkts_acked = 0; 2410 ktime_t last_ackt = ktime_set(0,0); 2411 2412 while ((skb = tcp_write_queue_head(sk)) && 2413 skb != tcp_send_head(sk)) { 2414 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2415 __u8 sacked = scb->sacked; 2416 2417 /* If our packet is before the ack sequence we can 2418 * discard it as it's confirmed to have arrived at 2419 * the other end. 2420 */ 2421 if (after(scb->end_seq, tp->snd_una)) { 2422 if (tcp_skb_pcount(skb) > 1 && 2423 after(tp->snd_una, scb->seq)) 2424 acked |= tcp_tso_acked(sk, skb, 2425 now, &seq_rtt); 2426 break; 2427 } 2428 2429 /* Initial outgoing SYN's get put onto the write_queue 2430 * just like anything else we transmit. It is not 2431 * true data, and if we misinform our callers that 2432 * this ACK acks real data, we will erroneously exit 2433 * connection startup slow start one packet too 2434 * quickly. This is severely frowned upon behavior. 2435 */ 2436 if (!(scb->flags & TCPCB_FLAG_SYN)) { 2437 acked |= FLAG_DATA_ACKED; 2438 ++pkts_acked; 2439 } else { 2440 acked |= FLAG_SYN_ACKED; 2441 tp->retrans_stamp = 0; 2442 } 2443 2444 /* MTU probing checks */ 2445 if (icsk->icsk_mtup.probe_size) { 2446 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) { 2447 tcp_mtup_probe_success(sk, skb); 2448 } 2449 } 2450 2451 if (sacked) { 2452 if (sacked & TCPCB_RETRANS) { 2453 if (sacked & TCPCB_SACKED_RETRANS) 2454 tp->retrans_out -= tcp_skb_pcount(skb); 2455 acked |= FLAG_RETRANS_DATA_ACKED; 2456 seq_rtt = -1; 2457 } else if (seq_rtt < 0) { 2458 seq_rtt = now - scb->when; 2459 last_ackt = skb->tstamp; 2460 } 2461 if (sacked & TCPCB_SACKED_ACKED) 2462 tp->sacked_out -= tcp_skb_pcount(skb); 2463 if (sacked & TCPCB_LOST) 2464 tp->lost_out -= tcp_skb_pcount(skb); 2465 if (sacked & TCPCB_URG) { 2466 if (tp->urg_mode && 2467 !before(scb->end_seq, tp->snd_up)) 2468 tp->urg_mode = 0; 2469 } 2470 } else if (seq_rtt < 0) { 2471 seq_rtt = now - scb->when; 2472 last_ackt = skb->tstamp; 2473 } 2474 tcp_dec_pcount_approx(&tp->fackets_out, skb); 2475 tcp_packets_out_dec(tp, skb); 2476 tcp_unlink_write_queue(skb, sk); 2477 sk_stream_free_skb(sk, skb); 2478 clear_all_retrans_hints(tp); 2479 } 2480 2481 if (acked&FLAG_ACKED) { 2482 const struct tcp_congestion_ops *ca_ops 2483 = inet_csk(sk)->icsk_ca_ops; 2484 2485 tcp_ack_update_rtt(sk, acked, seq_rtt); 2486 tcp_ack_packets_out(sk); 2487 2488 if (ca_ops->pkts_acked) 2489 ca_ops->pkts_acked(sk, pkts_acked, last_ackt); 2490 } 2491 2492 #if FASTRETRANS_DEBUG > 0 2493 BUG_TRAP((int)tp->sacked_out >= 0); 2494 BUG_TRAP((int)tp->lost_out >= 0); 2495 BUG_TRAP((int)tp->retrans_out >= 0); 2496 if (!tp->packets_out && tp->rx_opt.sack_ok) { 2497 const struct inet_connection_sock *icsk = inet_csk(sk); 2498 if (tp->lost_out) { 2499 printk(KERN_DEBUG "Leak l=%u %d\n", 2500 tp->lost_out, icsk->icsk_ca_state); 2501 tp->lost_out = 0; 2502 } 2503 if (tp->sacked_out) { 2504 printk(KERN_DEBUG "Leak s=%u %d\n", 2505 tp->sacked_out, icsk->icsk_ca_state); 2506 tp->sacked_out = 0; 2507 } 2508 if (tp->retrans_out) { 2509 printk(KERN_DEBUG "Leak r=%u %d\n", 2510 tp->retrans_out, icsk->icsk_ca_state); 2511 tp->retrans_out = 0; 2512 } 2513 } 2514 #endif 2515 *seq_rtt_p = seq_rtt; 2516 return acked; 2517 } 2518 2519 static void tcp_ack_probe(struct sock *sk) 2520 { 2521 const struct tcp_sock *tp = tcp_sk(sk); 2522 struct inet_connection_sock *icsk = inet_csk(sk); 2523 2524 /* Was it a usable window open? */ 2525 2526 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, 2527 tp->snd_una + tp->snd_wnd)) { 2528 icsk->icsk_backoff = 0; 2529 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 2530 /* Socket must be waked up by subsequent tcp_data_snd_check(). 2531 * This function is not for random using! 2532 */ 2533 } else { 2534 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2535 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2536 TCP_RTO_MAX); 2537 } 2538 } 2539 2540 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 2541 { 2542 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 2543 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 2544 } 2545 2546 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 2547 { 2548 const struct tcp_sock *tp = tcp_sk(sk); 2549 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 2550 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 2551 } 2552 2553 /* Check that window update is acceptable. 2554 * The function assumes that snd_una<=ack<=snd_next. 2555 */ 2556 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack, 2557 const u32 ack_seq, const u32 nwin) 2558 { 2559 return (after(ack, tp->snd_una) || 2560 after(ack_seq, tp->snd_wl1) || 2561 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 2562 } 2563 2564 /* Update our send window. 2565 * 2566 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 2567 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 2568 */ 2569 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 2570 u32 ack_seq) 2571 { 2572 struct tcp_sock *tp = tcp_sk(sk); 2573 int flag = 0; 2574 u32 nwin = ntohs(tcp_hdr(skb)->window); 2575 2576 if (likely(!tcp_hdr(skb)->syn)) 2577 nwin <<= tp->rx_opt.snd_wscale; 2578 2579 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 2580 flag |= FLAG_WIN_UPDATE; 2581 tcp_update_wl(tp, ack, ack_seq); 2582 2583 if (tp->snd_wnd != nwin) { 2584 tp->snd_wnd = nwin; 2585 2586 /* Note, it is the only place, where 2587 * fast path is recovered for sending TCP. 2588 */ 2589 tp->pred_flags = 0; 2590 tcp_fast_path_check(sk); 2591 2592 if (nwin > tp->max_window) { 2593 tp->max_window = nwin; 2594 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 2595 } 2596 } 2597 } 2598 2599 tp->snd_una = ack; 2600 2601 return flag; 2602 } 2603 2604 /* A very conservative spurious RTO response algorithm: reduce cwnd and 2605 * continue in congestion avoidance. 2606 */ 2607 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 2608 { 2609 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2610 tp->snd_cwnd_cnt = 0; 2611 tcp_moderate_cwnd(tp); 2612 } 2613 2614 /* A conservative spurious RTO response algorithm: reduce cwnd using 2615 * rate halving and continue in congestion avoidance. 2616 */ 2617 static void tcp_ratehalving_spur_to_response(struct sock *sk) 2618 { 2619 tcp_enter_cwr(sk, 0); 2620 } 2621 2622 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 2623 { 2624 if (flag&FLAG_ECE) 2625 tcp_ratehalving_spur_to_response(sk); 2626 else 2627 tcp_undo_cwr(sk, 1); 2628 } 2629 2630 /* F-RTO spurious RTO detection algorithm (RFC4138) 2631 * 2632 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 2633 * comments). State (ACK number) is kept in frto_counter. When ACK advances 2634 * window (but not to or beyond highest sequence sent before RTO): 2635 * On First ACK, send two new segments out. 2636 * On Second ACK, RTO was likely spurious. Do spurious response (response 2637 * algorithm is not part of the F-RTO detection algorithm 2638 * given in RFC4138 but can be selected separately). 2639 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 2640 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 2641 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 2642 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 2643 * 2644 * Rationale: if the RTO was spurious, new ACKs should arrive from the 2645 * original window even after we transmit two new data segments. 2646 * 2647 * SACK version: 2648 * on first step, wait until first cumulative ACK arrives, then move to 2649 * the second step. In second step, the next ACK decides. 2650 * 2651 * F-RTO is implemented (mainly) in four functions: 2652 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 2653 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 2654 * called when tcp_use_frto() showed green light 2655 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 2656 * - tcp_enter_frto_loss() is called if there is not enough evidence 2657 * to prove that the RTO is indeed spurious. It transfers the control 2658 * from F-RTO to the conventional RTO recovery 2659 */ 2660 static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag) 2661 { 2662 struct tcp_sock *tp = tcp_sk(sk); 2663 2664 tcp_sync_left_out(tp); 2665 2666 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 2667 if (flag&FLAG_DATA_ACKED) 2668 inet_csk(sk)->icsk_retransmits = 0; 2669 2670 if (!before(tp->snd_una, tp->frto_highmark)) { 2671 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 2672 return 1; 2673 } 2674 2675 if (!IsSackFrto() || IsReno(tp)) { 2676 /* RFC4138 shortcoming in step 2; should also have case c): 2677 * ACK isn't duplicate nor advances window, e.g., opposite dir 2678 * data, winupdate 2679 */ 2680 if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) && 2681 !(flag&FLAG_FORWARD_PROGRESS)) 2682 return 1; 2683 2684 if (!(flag&FLAG_DATA_ACKED)) { 2685 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 2686 flag); 2687 return 1; 2688 } 2689 } else { 2690 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 2691 /* Prevent sending of new data. */ 2692 tp->snd_cwnd = min(tp->snd_cwnd, 2693 tcp_packets_in_flight(tp)); 2694 return 1; 2695 } 2696 2697 if ((tp->frto_counter >= 2) && 2698 (!(flag&FLAG_FORWARD_PROGRESS) || 2699 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) { 2700 /* RFC4138 shortcoming (see comment above) */ 2701 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP)) 2702 return 1; 2703 2704 tcp_enter_frto_loss(sk, 3, flag); 2705 return 1; 2706 } 2707 } 2708 2709 if (tp->frto_counter == 1) { 2710 /* Sending of the next skb must be allowed or no FRTO */ 2711 if (!tcp_send_head(sk) || 2712 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, 2713 tp->snd_una + tp->snd_wnd)) { 2714 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), 2715 flag); 2716 return 1; 2717 } 2718 2719 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 2720 tp->frto_counter = 2; 2721 return 1; 2722 } else { 2723 switch (sysctl_tcp_frto_response) { 2724 case 2: 2725 tcp_undo_spur_to_response(sk, flag); 2726 break; 2727 case 1: 2728 tcp_conservative_spur_to_response(tp); 2729 break; 2730 default: 2731 tcp_ratehalving_spur_to_response(sk); 2732 break; 2733 } 2734 tp->frto_counter = 0; 2735 } 2736 return 0; 2737 } 2738 2739 /* This routine deals with incoming acks, but not outgoing ones. */ 2740 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 2741 { 2742 struct inet_connection_sock *icsk = inet_csk(sk); 2743 struct tcp_sock *tp = tcp_sk(sk); 2744 u32 prior_snd_una = tp->snd_una; 2745 u32 ack_seq = TCP_SKB_CB(skb)->seq; 2746 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2747 u32 prior_in_flight; 2748 s32 seq_rtt; 2749 int prior_packets; 2750 int frto_cwnd = 0; 2751 2752 /* If the ack is newer than sent or older than previous acks 2753 * then we can probably ignore it. 2754 */ 2755 if (after(ack, tp->snd_nxt)) 2756 goto uninteresting_ack; 2757 2758 if (before(ack, prior_snd_una)) 2759 goto old_ack; 2760 2761 if (sysctl_tcp_abc) { 2762 if (icsk->icsk_ca_state < TCP_CA_CWR) 2763 tp->bytes_acked += ack - prior_snd_una; 2764 else if (icsk->icsk_ca_state == TCP_CA_Loss) 2765 /* we assume just one segment left network */ 2766 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache); 2767 } 2768 2769 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 2770 /* Window is constant, pure forward advance. 2771 * No more checks are required. 2772 * Note, we use the fact that SND.UNA>=SND.WL2. 2773 */ 2774 tcp_update_wl(tp, ack, ack_seq); 2775 tp->snd_una = ack; 2776 flag |= FLAG_WIN_UPDATE; 2777 2778 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 2779 2780 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); 2781 } else { 2782 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 2783 flag |= FLAG_DATA; 2784 else 2785 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); 2786 2787 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 2788 2789 if (TCP_SKB_CB(skb)->sacked) 2790 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2791 2792 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 2793 flag |= FLAG_ECE; 2794 2795 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 2796 } 2797 2798 /* We passed data and got it acked, remove any soft error 2799 * log. Something worked... 2800 */ 2801 sk->sk_err_soft = 0; 2802 tp->rcv_tstamp = tcp_time_stamp; 2803 prior_packets = tp->packets_out; 2804 if (!prior_packets) 2805 goto no_queue; 2806 2807 prior_in_flight = tcp_packets_in_flight(tp); 2808 2809 /* See if we can take anything off of the retransmit queue. */ 2810 flag |= tcp_clean_rtx_queue(sk, &seq_rtt); 2811 2812 if (tp->frto_counter) 2813 frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag); 2814 2815 if (tcp_ack_is_dubious(sk, flag)) { 2816 /* Advance CWND, if state allows this. */ 2817 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 2818 tcp_may_raise_cwnd(sk, flag)) 2819 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0); 2820 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag); 2821 } else { 2822 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 2823 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1); 2824 } 2825 2826 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP)) 2827 dst_confirm(sk->sk_dst_cache); 2828 2829 return 1; 2830 2831 no_queue: 2832 icsk->icsk_probes_out = 0; 2833 2834 /* If this ack opens up a zero window, clear backoff. It was 2835 * being used to time the probes, and is probably far higher than 2836 * it needs to be for normal retransmission. 2837 */ 2838 if (tcp_send_head(sk)) 2839 tcp_ack_probe(sk); 2840 return 1; 2841 2842 old_ack: 2843 if (TCP_SKB_CB(skb)->sacked) 2844 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2845 2846 uninteresting_ack: 2847 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 2848 return 0; 2849 } 2850 2851 2852 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 2853 * But, this can also be called on packets in the established flow when 2854 * the fast version below fails. 2855 */ 2856 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab) 2857 { 2858 unsigned char *ptr; 2859 struct tcphdr *th = tcp_hdr(skb); 2860 int length=(th->doff*4)-sizeof(struct tcphdr); 2861 2862 ptr = (unsigned char *)(th + 1); 2863 opt_rx->saw_tstamp = 0; 2864 2865 while (length > 0) { 2866 int opcode=*ptr++; 2867 int opsize; 2868 2869 switch (opcode) { 2870 case TCPOPT_EOL: 2871 return; 2872 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 2873 length--; 2874 continue; 2875 default: 2876 opsize=*ptr++; 2877 if (opsize < 2) /* "silly options" */ 2878 return; 2879 if (opsize > length) 2880 return; /* don't parse partial options */ 2881 switch (opcode) { 2882 case TCPOPT_MSS: 2883 if (opsize==TCPOLEN_MSS && th->syn && !estab) { 2884 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr)); 2885 if (in_mss) { 2886 if (opt_rx->user_mss && opt_rx->user_mss < in_mss) 2887 in_mss = opt_rx->user_mss; 2888 opt_rx->mss_clamp = in_mss; 2889 } 2890 } 2891 break; 2892 case TCPOPT_WINDOW: 2893 if (opsize==TCPOLEN_WINDOW && th->syn && !estab) 2894 if (sysctl_tcp_window_scaling) { 2895 __u8 snd_wscale = *(__u8 *) ptr; 2896 opt_rx->wscale_ok = 1; 2897 if (snd_wscale > 14) { 2898 if (net_ratelimit()) 2899 printk(KERN_INFO "tcp_parse_options: Illegal window " 2900 "scaling value %d >14 received.\n", 2901 snd_wscale); 2902 snd_wscale = 14; 2903 } 2904 opt_rx->snd_wscale = snd_wscale; 2905 } 2906 break; 2907 case TCPOPT_TIMESTAMP: 2908 if (opsize==TCPOLEN_TIMESTAMP) { 2909 if ((estab && opt_rx->tstamp_ok) || 2910 (!estab && sysctl_tcp_timestamps)) { 2911 opt_rx->saw_tstamp = 1; 2912 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr)); 2913 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4))); 2914 } 2915 } 2916 break; 2917 case TCPOPT_SACK_PERM: 2918 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) { 2919 if (sysctl_tcp_sack) { 2920 opt_rx->sack_ok = 1; 2921 tcp_sack_reset(opt_rx); 2922 } 2923 } 2924 break; 2925 2926 case TCPOPT_SACK: 2927 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 2928 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 2929 opt_rx->sack_ok) { 2930 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 2931 } 2932 #ifdef CONFIG_TCP_MD5SIG 2933 case TCPOPT_MD5SIG: 2934 /* 2935 * The MD5 Hash has already been 2936 * checked (see tcp_v{4,6}_do_rcv()). 2937 */ 2938 break; 2939 #endif 2940 } 2941 2942 ptr+=opsize-2; 2943 length-=opsize; 2944 } 2945 } 2946 } 2947 2948 /* Fast parse options. This hopes to only see timestamps. 2949 * If it is wrong it falls back on tcp_parse_options(). 2950 */ 2951 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 2952 struct tcp_sock *tp) 2953 { 2954 if (th->doff == sizeof(struct tcphdr)>>2) { 2955 tp->rx_opt.saw_tstamp = 0; 2956 return 0; 2957 } else if (tp->rx_opt.tstamp_ok && 2958 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 2959 __be32 *ptr = (__be32 *)(th + 1); 2960 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 2961 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 2962 tp->rx_opt.saw_tstamp = 1; 2963 ++ptr; 2964 tp->rx_opt.rcv_tsval = ntohl(*ptr); 2965 ++ptr; 2966 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 2967 return 1; 2968 } 2969 } 2970 tcp_parse_options(skb, &tp->rx_opt, 1); 2971 return 1; 2972 } 2973 2974 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 2975 { 2976 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 2977 tp->rx_opt.ts_recent_stamp = get_seconds(); 2978 } 2979 2980 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 2981 { 2982 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 2983 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 2984 * extra check below makes sure this can only happen 2985 * for pure ACK frames. -DaveM 2986 * 2987 * Not only, also it occurs for expired timestamps. 2988 */ 2989 2990 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 2991 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 2992 tcp_store_ts_recent(tp); 2993 } 2994 } 2995 2996 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 2997 * 2998 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 2999 * it can pass through stack. So, the following predicate verifies that 3000 * this segment is not used for anything but congestion avoidance or 3001 * fast retransmit. Moreover, we even are able to eliminate most of such 3002 * second order effects, if we apply some small "replay" window (~RTO) 3003 * to timestamp space. 3004 * 3005 * All these measures still do not guarantee that we reject wrapped ACKs 3006 * on networks with high bandwidth, when sequence space is recycled fastly, 3007 * but it guarantees that such events will be very rare and do not affect 3008 * connection seriously. This doesn't look nice, but alas, PAWS is really 3009 * buggy extension. 3010 * 3011 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3012 * states that events when retransmit arrives after original data are rare. 3013 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3014 * the biggest problem on large power networks even with minor reordering. 3015 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3016 * up to bandwidth of 18Gigabit/sec. 8) ] 3017 */ 3018 3019 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3020 { 3021 struct tcp_sock *tp = tcp_sk(sk); 3022 struct tcphdr *th = tcp_hdr(skb); 3023 u32 seq = TCP_SKB_CB(skb)->seq; 3024 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3025 3026 return (/* 1. Pure ACK with correct sequence number. */ 3027 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3028 3029 /* 2. ... and duplicate ACK. */ 3030 ack == tp->snd_una && 3031 3032 /* 3. ... and does not update window. */ 3033 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3034 3035 /* 4. ... and sits in replay window. */ 3036 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3037 } 3038 3039 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb) 3040 { 3041 const struct tcp_sock *tp = tcp_sk(sk); 3042 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 3043 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 3044 !tcp_disordered_ack(sk, skb)); 3045 } 3046 3047 /* Check segment sequence number for validity. 3048 * 3049 * Segment controls are considered valid, if the segment 3050 * fits to the window after truncation to the window. Acceptability 3051 * of data (and SYN, FIN, of course) is checked separately. 3052 * See tcp_data_queue(), for example. 3053 * 3054 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3055 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3056 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3057 * (borrowed from freebsd) 3058 */ 3059 3060 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 3061 { 3062 return !before(end_seq, tp->rcv_wup) && 3063 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3064 } 3065 3066 /* When we get a reset we do this. */ 3067 static void tcp_reset(struct sock *sk) 3068 { 3069 /* We want the right error as BSD sees it (and indeed as we do). */ 3070 switch (sk->sk_state) { 3071 case TCP_SYN_SENT: 3072 sk->sk_err = ECONNREFUSED; 3073 break; 3074 case TCP_CLOSE_WAIT: 3075 sk->sk_err = EPIPE; 3076 break; 3077 case TCP_CLOSE: 3078 return; 3079 default: 3080 sk->sk_err = ECONNRESET; 3081 } 3082 3083 if (!sock_flag(sk, SOCK_DEAD)) 3084 sk->sk_error_report(sk); 3085 3086 tcp_done(sk); 3087 } 3088 3089 /* 3090 * Process the FIN bit. This now behaves as it is supposed to work 3091 * and the FIN takes effect when it is validly part of sequence 3092 * space. Not before when we get holes. 3093 * 3094 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3095 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3096 * TIME-WAIT) 3097 * 3098 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3099 * close and we go into CLOSING (and later onto TIME-WAIT) 3100 * 3101 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3102 */ 3103 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 3104 { 3105 struct tcp_sock *tp = tcp_sk(sk); 3106 3107 inet_csk_schedule_ack(sk); 3108 3109 sk->sk_shutdown |= RCV_SHUTDOWN; 3110 sock_set_flag(sk, SOCK_DONE); 3111 3112 switch (sk->sk_state) { 3113 case TCP_SYN_RECV: 3114 case TCP_ESTABLISHED: 3115 /* Move to CLOSE_WAIT */ 3116 tcp_set_state(sk, TCP_CLOSE_WAIT); 3117 inet_csk(sk)->icsk_ack.pingpong = 1; 3118 break; 3119 3120 case TCP_CLOSE_WAIT: 3121 case TCP_CLOSING: 3122 /* Received a retransmission of the FIN, do 3123 * nothing. 3124 */ 3125 break; 3126 case TCP_LAST_ACK: 3127 /* RFC793: Remain in the LAST-ACK state. */ 3128 break; 3129 3130 case TCP_FIN_WAIT1: 3131 /* This case occurs when a simultaneous close 3132 * happens, we must ack the received FIN and 3133 * enter the CLOSING state. 3134 */ 3135 tcp_send_ack(sk); 3136 tcp_set_state(sk, TCP_CLOSING); 3137 break; 3138 case TCP_FIN_WAIT2: 3139 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3140 tcp_send_ack(sk); 3141 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3142 break; 3143 default: 3144 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3145 * cases we should never reach this piece of code. 3146 */ 3147 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 3148 __FUNCTION__, sk->sk_state); 3149 break; 3150 } 3151 3152 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3153 * Probably, we should reset in this case. For now drop them. 3154 */ 3155 __skb_queue_purge(&tp->out_of_order_queue); 3156 if (tp->rx_opt.sack_ok) 3157 tcp_sack_reset(&tp->rx_opt); 3158 sk_stream_mem_reclaim(sk); 3159 3160 if (!sock_flag(sk, SOCK_DEAD)) { 3161 sk->sk_state_change(sk); 3162 3163 /* Do not send POLL_HUP for half duplex close. */ 3164 if (sk->sk_shutdown == SHUTDOWN_MASK || 3165 sk->sk_state == TCP_CLOSE) 3166 sk_wake_async(sk, 1, POLL_HUP); 3167 else 3168 sk_wake_async(sk, 1, POLL_IN); 3169 } 3170 } 3171 3172 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq) 3173 { 3174 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3175 if (before(seq, sp->start_seq)) 3176 sp->start_seq = seq; 3177 if (after(end_seq, sp->end_seq)) 3178 sp->end_seq = end_seq; 3179 return 1; 3180 } 3181 return 0; 3182 } 3183 3184 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) 3185 { 3186 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 3187 if (before(seq, tp->rcv_nxt)) 3188 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); 3189 else 3190 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); 3191 3192 tp->rx_opt.dsack = 1; 3193 tp->duplicate_sack[0].start_seq = seq; 3194 tp->duplicate_sack[0].end_seq = end_seq; 3195 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok); 3196 } 3197 } 3198 3199 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) 3200 { 3201 if (!tp->rx_opt.dsack) 3202 tcp_dsack_set(tp, seq, end_seq); 3203 else 3204 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3205 } 3206 3207 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 3208 { 3209 struct tcp_sock *tp = tcp_sk(sk); 3210 3211 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3212 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3213 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3214 tcp_enter_quickack_mode(sk); 3215 3216 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 3217 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3218 3219 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3220 end_seq = tp->rcv_nxt; 3221 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); 3222 } 3223 } 3224 3225 tcp_send_ack(sk); 3226 } 3227 3228 /* These routines update the SACK block as out-of-order packets arrive or 3229 * in-order packets close up the sequence space. 3230 */ 3231 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 3232 { 3233 int this_sack; 3234 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3235 struct tcp_sack_block *swalk = sp+1; 3236 3237 /* See if the recent change to the first SACK eats into 3238 * or hits the sequence space of other SACK blocks, if so coalesce. 3239 */ 3240 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) { 3241 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 3242 int i; 3243 3244 /* Zap SWALK, by moving every further SACK up by one slot. 3245 * Decrease num_sacks. 3246 */ 3247 tp->rx_opt.num_sacks--; 3248 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3249 for (i=this_sack; i < tp->rx_opt.num_sacks; i++) 3250 sp[i] = sp[i+1]; 3251 continue; 3252 } 3253 this_sack++, swalk++; 3254 } 3255 } 3256 3257 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2) 3258 { 3259 __u32 tmp; 3260 3261 tmp = sack1->start_seq; 3262 sack1->start_seq = sack2->start_seq; 3263 sack2->start_seq = tmp; 3264 3265 tmp = sack1->end_seq; 3266 sack1->end_seq = sack2->end_seq; 3267 sack2->end_seq = tmp; 3268 } 3269 3270 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3271 { 3272 struct tcp_sock *tp = tcp_sk(sk); 3273 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3274 int cur_sacks = tp->rx_opt.num_sacks; 3275 int this_sack; 3276 3277 if (!cur_sacks) 3278 goto new_sack; 3279 3280 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) { 3281 if (tcp_sack_extend(sp, seq, end_seq)) { 3282 /* Rotate this_sack to the first one. */ 3283 for (; this_sack>0; this_sack--, sp--) 3284 tcp_sack_swap(sp, sp-1); 3285 if (cur_sacks > 1) 3286 tcp_sack_maybe_coalesce(tp); 3287 return; 3288 } 3289 } 3290 3291 /* Could not find an adjacent existing SACK, build a new one, 3292 * put it at the front, and shift everyone else down. We 3293 * always know there is at least one SACK present already here. 3294 * 3295 * If the sack array is full, forget about the last one. 3296 */ 3297 if (this_sack >= 4) { 3298 this_sack--; 3299 tp->rx_opt.num_sacks--; 3300 sp--; 3301 } 3302 for (; this_sack > 0; this_sack--, sp--) 3303 *sp = *(sp-1); 3304 3305 new_sack: 3306 /* Build the new head SACK, and we're done. */ 3307 sp->start_seq = seq; 3308 sp->end_seq = end_seq; 3309 tp->rx_opt.num_sacks++; 3310 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3311 } 3312 3313 /* RCV.NXT advances, some SACKs should be eaten. */ 3314 3315 static void tcp_sack_remove(struct tcp_sock *tp) 3316 { 3317 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3318 int num_sacks = tp->rx_opt.num_sacks; 3319 int this_sack; 3320 3321 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 3322 if (skb_queue_empty(&tp->out_of_order_queue)) { 3323 tp->rx_opt.num_sacks = 0; 3324 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 3325 return; 3326 } 3327 3328 for (this_sack = 0; this_sack < num_sacks; ) { 3329 /* Check if the start of the sack is covered by RCV.NXT. */ 3330 if (!before(tp->rcv_nxt, sp->start_seq)) { 3331 int i; 3332 3333 /* RCV.NXT must cover all the block! */ 3334 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); 3335 3336 /* Zap this SACK, by moving forward any other SACKS. */ 3337 for (i=this_sack+1; i < num_sacks; i++) 3338 tp->selective_acks[i-1] = tp->selective_acks[i]; 3339 num_sacks--; 3340 continue; 3341 } 3342 this_sack++; 3343 sp++; 3344 } 3345 if (num_sacks != tp->rx_opt.num_sacks) { 3346 tp->rx_opt.num_sacks = num_sacks; 3347 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3348 } 3349 } 3350 3351 /* This one checks to see if we can put data from the 3352 * out_of_order queue into the receive_queue. 3353 */ 3354 static void tcp_ofo_queue(struct sock *sk) 3355 { 3356 struct tcp_sock *tp = tcp_sk(sk); 3357 __u32 dsack_high = tp->rcv_nxt; 3358 struct sk_buff *skb; 3359 3360 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 3361 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 3362 break; 3363 3364 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 3365 __u32 dsack = dsack_high; 3366 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 3367 dsack_high = TCP_SKB_CB(skb)->end_seq; 3368 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); 3369 } 3370 3371 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3372 SOCK_DEBUG(sk, "ofo packet was already received \n"); 3373 __skb_unlink(skb, &tp->out_of_order_queue); 3374 __kfree_skb(skb); 3375 continue; 3376 } 3377 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 3378 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3379 TCP_SKB_CB(skb)->end_seq); 3380 3381 __skb_unlink(skb, &tp->out_of_order_queue); 3382 __skb_queue_tail(&sk->sk_receive_queue, skb); 3383 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3384 if (tcp_hdr(skb)->fin) 3385 tcp_fin(skb, sk, tcp_hdr(skb)); 3386 } 3387 } 3388 3389 static int tcp_prune_queue(struct sock *sk); 3390 3391 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 3392 { 3393 struct tcphdr *th = tcp_hdr(skb); 3394 struct tcp_sock *tp = tcp_sk(sk); 3395 int eaten = -1; 3396 3397 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 3398 goto drop; 3399 3400 __skb_pull(skb, th->doff*4); 3401 3402 TCP_ECN_accept_cwr(tp, skb); 3403 3404 if (tp->rx_opt.dsack) { 3405 tp->rx_opt.dsack = 0; 3406 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, 3407 4 - tp->rx_opt.tstamp_ok); 3408 } 3409 3410 /* Queue data for delivery to the user. 3411 * Packets in sequence go to the receive queue. 3412 * Out of sequence packets to the out_of_order_queue. 3413 */ 3414 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3415 if (tcp_receive_window(tp) == 0) 3416 goto out_of_window; 3417 3418 /* Ok. In sequence. In window. */ 3419 if (tp->ucopy.task == current && 3420 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 3421 sock_owned_by_user(sk) && !tp->urg_data) { 3422 int chunk = min_t(unsigned int, skb->len, 3423 tp->ucopy.len); 3424 3425 __set_current_state(TASK_RUNNING); 3426 3427 local_bh_enable(); 3428 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 3429 tp->ucopy.len -= chunk; 3430 tp->copied_seq += chunk; 3431 eaten = (chunk == skb->len && !th->fin); 3432 tcp_rcv_space_adjust(sk); 3433 } 3434 local_bh_disable(); 3435 } 3436 3437 if (eaten <= 0) { 3438 queue_and_out: 3439 if (eaten < 0 && 3440 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3441 !sk_stream_rmem_schedule(sk, skb))) { 3442 if (tcp_prune_queue(sk) < 0 || 3443 !sk_stream_rmem_schedule(sk, skb)) 3444 goto drop; 3445 } 3446 sk_stream_set_owner_r(skb, sk); 3447 __skb_queue_tail(&sk->sk_receive_queue, skb); 3448 } 3449 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3450 if (skb->len) 3451 tcp_event_data_recv(sk, skb); 3452 if (th->fin) 3453 tcp_fin(skb, sk, th); 3454 3455 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3456 tcp_ofo_queue(sk); 3457 3458 /* RFC2581. 4.2. SHOULD send immediate ACK, when 3459 * gap in queue is filled. 3460 */ 3461 if (skb_queue_empty(&tp->out_of_order_queue)) 3462 inet_csk(sk)->icsk_ack.pingpong = 0; 3463 } 3464 3465 if (tp->rx_opt.num_sacks) 3466 tcp_sack_remove(tp); 3467 3468 tcp_fast_path_check(sk); 3469 3470 if (eaten > 0) 3471 __kfree_skb(skb); 3472 else if (!sock_flag(sk, SOCK_DEAD)) 3473 sk->sk_data_ready(sk, 0); 3474 return; 3475 } 3476 3477 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3478 /* A retransmit, 2nd most common case. Force an immediate ack. */ 3479 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3480 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3481 3482 out_of_window: 3483 tcp_enter_quickack_mode(sk); 3484 inet_csk_schedule_ack(sk); 3485 drop: 3486 __kfree_skb(skb); 3487 return; 3488 } 3489 3490 /* Out of window. F.e. zero window probe. */ 3491 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 3492 goto out_of_window; 3493 3494 tcp_enter_quickack_mode(sk); 3495 3496 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3497 /* Partial packet, seq < rcv_next < end_seq */ 3498 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 3499 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3500 TCP_SKB_CB(skb)->end_seq); 3501 3502 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 3503 3504 /* If window is closed, drop tail of packet. But after 3505 * remembering D-SACK for its head made in previous line. 3506 */ 3507 if (!tcp_receive_window(tp)) 3508 goto out_of_window; 3509 goto queue_and_out; 3510 } 3511 3512 TCP_ECN_check_ce(tp, skb); 3513 3514 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3515 !sk_stream_rmem_schedule(sk, skb)) { 3516 if (tcp_prune_queue(sk) < 0 || 3517 !sk_stream_rmem_schedule(sk, skb)) 3518 goto drop; 3519 } 3520 3521 /* Disable header prediction. */ 3522 tp->pred_flags = 0; 3523 inet_csk_schedule_ack(sk); 3524 3525 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 3526 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3527 3528 sk_stream_set_owner_r(skb, sk); 3529 3530 if (!skb_peek(&tp->out_of_order_queue)) { 3531 /* Initial out of order segment, build 1 SACK. */ 3532 if (tp->rx_opt.sack_ok) { 3533 tp->rx_opt.num_sacks = 1; 3534 tp->rx_opt.dsack = 0; 3535 tp->rx_opt.eff_sacks = 1; 3536 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 3537 tp->selective_acks[0].end_seq = 3538 TCP_SKB_CB(skb)->end_seq; 3539 } 3540 __skb_queue_head(&tp->out_of_order_queue,skb); 3541 } else { 3542 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 3543 u32 seq = TCP_SKB_CB(skb)->seq; 3544 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3545 3546 if (seq == TCP_SKB_CB(skb1)->end_seq) { 3547 __skb_append(skb1, skb, &tp->out_of_order_queue); 3548 3549 if (!tp->rx_opt.num_sacks || 3550 tp->selective_acks[0].end_seq != seq) 3551 goto add_sack; 3552 3553 /* Common case: data arrive in order after hole. */ 3554 tp->selective_acks[0].end_seq = end_seq; 3555 return; 3556 } 3557 3558 /* Find place to insert this segment. */ 3559 do { 3560 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 3561 break; 3562 } while ((skb1 = skb1->prev) != 3563 (struct sk_buff*)&tp->out_of_order_queue); 3564 3565 /* Do skb overlap to previous one? */ 3566 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue && 3567 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 3568 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3569 /* All the bits are present. Drop. */ 3570 __kfree_skb(skb); 3571 tcp_dsack_set(tp, seq, end_seq); 3572 goto add_sack; 3573 } 3574 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 3575 /* Partial overlap. */ 3576 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq); 3577 } else { 3578 skb1 = skb1->prev; 3579 } 3580 } 3581 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); 3582 3583 /* And clean segments covered by new one as whole. */ 3584 while ((skb1 = skb->next) != 3585 (struct sk_buff*)&tp->out_of_order_queue && 3586 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 3587 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3588 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq); 3589 break; 3590 } 3591 __skb_unlink(skb1, &tp->out_of_order_queue); 3592 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq); 3593 __kfree_skb(skb1); 3594 } 3595 3596 add_sack: 3597 if (tp->rx_opt.sack_ok) 3598 tcp_sack_new_ofo_skb(sk, seq, end_seq); 3599 } 3600 } 3601 3602 /* Collapse contiguous sequence of skbs head..tail with 3603 * sequence numbers start..end. 3604 * Segments with FIN/SYN are not collapsed (only because this 3605 * simplifies code) 3606 */ 3607 static void 3608 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 3609 struct sk_buff *head, struct sk_buff *tail, 3610 u32 start, u32 end) 3611 { 3612 struct sk_buff *skb; 3613 3614 /* First, check that queue is collapsible and find 3615 * the point where collapsing can be useful. */ 3616 for (skb = head; skb != tail; ) { 3617 /* No new bits? It is possible on ofo queue. */ 3618 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3619 struct sk_buff *next = skb->next; 3620 __skb_unlink(skb, list); 3621 __kfree_skb(skb); 3622 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3623 skb = next; 3624 continue; 3625 } 3626 3627 /* The first skb to collapse is: 3628 * - not SYN/FIN and 3629 * - bloated or contains data before "start" or 3630 * overlaps to the next one. 3631 */ 3632 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 3633 (tcp_win_from_space(skb->truesize) > skb->len || 3634 before(TCP_SKB_CB(skb)->seq, start) || 3635 (skb->next != tail && 3636 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 3637 break; 3638 3639 /* Decided to skip this, advance start seq. */ 3640 start = TCP_SKB_CB(skb)->end_seq; 3641 skb = skb->next; 3642 } 3643 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 3644 return; 3645 3646 while (before(start, end)) { 3647 struct sk_buff *nskb; 3648 int header = skb_headroom(skb); 3649 int copy = SKB_MAX_ORDER(header, 0); 3650 3651 /* Too big header? This can happen with IPv6. */ 3652 if (copy < 0) 3653 return; 3654 if (end-start < copy) 3655 copy = end-start; 3656 nskb = alloc_skb(copy+header, GFP_ATOMIC); 3657 if (!nskb) 3658 return; 3659 3660 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 3661 skb_set_network_header(nskb, (skb_network_header(skb) - 3662 skb->head)); 3663 skb_set_transport_header(nskb, (skb_transport_header(skb) - 3664 skb->head)); 3665 skb_reserve(nskb, header); 3666 memcpy(nskb->head, skb->head, header); 3667 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 3668 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 3669 __skb_insert(nskb, skb->prev, skb, list); 3670 sk_stream_set_owner_r(nskb, sk); 3671 3672 /* Copy data, releasing collapsed skbs. */ 3673 while (copy > 0) { 3674 int offset = start - TCP_SKB_CB(skb)->seq; 3675 int size = TCP_SKB_CB(skb)->end_seq - start; 3676 3677 BUG_ON(offset < 0); 3678 if (size > 0) { 3679 size = min(copy, size); 3680 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 3681 BUG(); 3682 TCP_SKB_CB(nskb)->end_seq += size; 3683 copy -= size; 3684 start += size; 3685 } 3686 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3687 struct sk_buff *next = skb->next; 3688 __skb_unlink(skb, list); 3689 __kfree_skb(skb); 3690 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3691 skb = next; 3692 if (skb == tail || 3693 tcp_hdr(skb)->syn || 3694 tcp_hdr(skb)->fin) 3695 return; 3696 } 3697 } 3698 } 3699 } 3700 3701 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 3702 * and tcp_collapse() them until all the queue is collapsed. 3703 */ 3704 static void tcp_collapse_ofo_queue(struct sock *sk) 3705 { 3706 struct tcp_sock *tp = tcp_sk(sk); 3707 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 3708 struct sk_buff *head; 3709 u32 start, end; 3710 3711 if (skb == NULL) 3712 return; 3713 3714 start = TCP_SKB_CB(skb)->seq; 3715 end = TCP_SKB_CB(skb)->end_seq; 3716 head = skb; 3717 3718 for (;;) { 3719 skb = skb->next; 3720 3721 /* Segment is terminated when we see gap or when 3722 * we are at the end of all the queue. */ 3723 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 3724 after(TCP_SKB_CB(skb)->seq, end) || 3725 before(TCP_SKB_CB(skb)->end_seq, start)) { 3726 tcp_collapse(sk, &tp->out_of_order_queue, 3727 head, skb, start, end); 3728 head = skb; 3729 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 3730 break; 3731 /* Start new segment */ 3732 start = TCP_SKB_CB(skb)->seq; 3733 end = TCP_SKB_CB(skb)->end_seq; 3734 } else { 3735 if (before(TCP_SKB_CB(skb)->seq, start)) 3736 start = TCP_SKB_CB(skb)->seq; 3737 if (after(TCP_SKB_CB(skb)->end_seq, end)) 3738 end = TCP_SKB_CB(skb)->end_seq; 3739 } 3740 } 3741 } 3742 3743 /* Reduce allocated memory if we can, trying to get 3744 * the socket within its memory limits again. 3745 * 3746 * Return less than zero if we should start dropping frames 3747 * until the socket owning process reads some of the data 3748 * to stabilize the situation. 3749 */ 3750 static int tcp_prune_queue(struct sock *sk) 3751 { 3752 struct tcp_sock *tp = tcp_sk(sk); 3753 3754 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 3755 3756 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); 3757 3758 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 3759 tcp_clamp_window(sk); 3760 else if (tcp_memory_pressure) 3761 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 3762 3763 tcp_collapse_ofo_queue(sk); 3764 tcp_collapse(sk, &sk->sk_receive_queue, 3765 sk->sk_receive_queue.next, 3766 (struct sk_buff*)&sk->sk_receive_queue, 3767 tp->copied_seq, tp->rcv_nxt); 3768 sk_stream_mem_reclaim(sk); 3769 3770 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3771 return 0; 3772 3773 /* Collapsing did not help, destructive actions follow. 3774 * This must not ever occur. */ 3775 3776 /* First, purge the out_of_order queue. */ 3777 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3778 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED); 3779 __skb_queue_purge(&tp->out_of_order_queue); 3780 3781 /* Reset SACK state. A conforming SACK implementation will 3782 * do the same at a timeout based retransmit. When a connection 3783 * is in a sad state like this, we care only about integrity 3784 * of the connection not performance. 3785 */ 3786 if (tp->rx_opt.sack_ok) 3787 tcp_sack_reset(&tp->rx_opt); 3788 sk_stream_mem_reclaim(sk); 3789 } 3790 3791 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3792 return 0; 3793 3794 /* If we are really being abused, tell the caller to silently 3795 * drop receive data on the floor. It will get retransmitted 3796 * and hopefully then we'll have sufficient space. 3797 */ 3798 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); 3799 3800 /* Massive buffer overcommit. */ 3801 tp->pred_flags = 0; 3802 return -1; 3803 } 3804 3805 3806 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 3807 * As additional protections, we do not touch cwnd in retransmission phases, 3808 * and if application hit its sndbuf limit recently. 3809 */ 3810 void tcp_cwnd_application_limited(struct sock *sk) 3811 { 3812 struct tcp_sock *tp = tcp_sk(sk); 3813 3814 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 3815 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 3816 /* Limited by application or receiver window. */ 3817 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 3818 u32 win_used = max(tp->snd_cwnd_used, init_win); 3819 if (win_used < tp->snd_cwnd) { 3820 tp->snd_ssthresh = tcp_current_ssthresh(sk); 3821 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 3822 } 3823 tp->snd_cwnd_used = 0; 3824 } 3825 tp->snd_cwnd_stamp = tcp_time_stamp; 3826 } 3827 3828 static int tcp_should_expand_sndbuf(struct sock *sk) 3829 { 3830 struct tcp_sock *tp = tcp_sk(sk); 3831 3832 /* If the user specified a specific send buffer setting, do 3833 * not modify it. 3834 */ 3835 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 3836 return 0; 3837 3838 /* If we are under global TCP memory pressure, do not expand. */ 3839 if (tcp_memory_pressure) 3840 return 0; 3841 3842 /* If we are under soft global TCP memory pressure, do not expand. */ 3843 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 3844 return 0; 3845 3846 /* If we filled the congestion window, do not expand. */ 3847 if (tp->packets_out >= tp->snd_cwnd) 3848 return 0; 3849 3850 return 1; 3851 } 3852 3853 /* When incoming ACK allowed to free some skb from write_queue, 3854 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 3855 * on the exit from tcp input handler. 3856 * 3857 * PROBLEM: sndbuf expansion does not work well with largesend. 3858 */ 3859 static void tcp_new_space(struct sock *sk) 3860 { 3861 struct tcp_sock *tp = tcp_sk(sk); 3862 3863 if (tcp_should_expand_sndbuf(sk)) { 3864 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 3865 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), 3866 demanded = max_t(unsigned int, tp->snd_cwnd, 3867 tp->reordering + 1); 3868 sndmem *= 2*demanded; 3869 if (sndmem > sk->sk_sndbuf) 3870 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 3871 tp->snd_cwnd_stamp = tcp_time_stamp; 3872 } 3873 3874 sk->sk_write_space(sk); 3875 } 3876 3877 static void tcp_check_space(struct sock *sk) 3878 { 3879 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 3880 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 3881 if (sk->sk_socket && 3882 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 3883 tcp_new_space(sk); 3884 } 3885 } 3886 3887 static inline void tcp_data_snd_check(struct sock *sk) 3888 { 3889 tcp_push_pending_frames(sk); 3890 tcp_check_space(sk); 3891 } 3892 3893 /* 3894 * Check if sending an ack is needed. 3895 */ 3896 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 3897 { 3898 struct tcp_sock *tp = tcp_sk(sk); 3899 3900 /* More than one full frame received... */ 3901 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 3902 /* ... and right edge of window advances far enough. 3903 * (tcp_recvmsg() will send ACK otherwise). Or... 3904 */ 3905 && __tcp_select_window(sk) >= tp->rcv_wnd) || 3906 /* We ACK each frame or... */ 3907 tcp_in_quickack_mode(sk) || 3908 /* We have out of order data. */ 3909 (ofo_possible && 3910 skb_peek(&tp->out_of_order_queue))) { 3911 /* Then ack it now */ 3912 tcp_send_ack(sk); 3913 } else { 3914 /* Else, send delayed ack. */ 3915 tcp_send_delayed_ack(sk); 3916 } 3917 } 3918 3919 static inline void tcp_ack_snd_check(struct sock *sk) 3920 { 3921 if (!inet_csk_ack_scheduled(sk)) { 3922 /* We sent a data segment already. */ 3923 return; 3924 } 3925 __tcp_ack_snd_check(sk, 1); 3926 } 3927 3928 /* 3929 * This routine is only called when we have urgent data 3930 * signaled. Its the 'slow' part of tcp_urg. It could be 3931 * moved inline now as tcp_urg is only called from one 3932 * place. We handle URGent data wrong. We have to - as 3933 * BSD still doesn't use the correction from RFC961. 3934 * For 1003.1g we should support a new option TCP_STDURG to permit 3935 * either form (or just set the sysctl tcp_stdurg). 3936 */ 3937 3938 static void tcp_check_urg(struct sock * sk, struct tcphdr * th) 3939 { 3940 struct tcp_sock *tp = tcp_sk(sk); 3941 u32 ptr = ntohs(th->urg_ptr); 3942 3943 if (ptr && !sysctl_tcp_stdurg) 3944 ptr--; 3945 ptr += ntohl(th->seq); 3946 3947 /* Ignore urgent data that we've already seen and read. */ 3948 if (after(tp->copied_seq, ptr)) 3949 return; 3950 3951 /* Do not replay urg ptr. 3952 * 3953 * NOTE: interesting situation not covered by specs. 3954 * Misbehaving sender may send urg ptr, pointing to segment, 3955 * which we already have in ofo queue. We are not able to fetch 3956 * such data and will stay in TCP_URG_NOTYET until will be eaten 3957 * by recvmsg(). Seems, we are not obliged to handle such wicked 3958 * situations. But it is worth to think about possibility of some 3959 * DoSes using some hypothetical application level deadlock. 3960 */ 3961 if (before(ptr, tp->rcv_nxt)) 3962 return; 3963 3964 /* Do we already have a newer (or duplicate) urgent pointer? */ 3965 if (tp->urg_data && !after(ptr, tp->urg_seq)) 3966 return; 3967 3968 /* Tell the world about our new urgent pointer. */ 3969 sk_send_sigurg(sk); 3970 3971 /* We may be adding urgent data when the last byte read was 3972 * urgent. To do this requires some care. We cannot just ignore 3973 * tp->copied_seq since we would read the last urgent byte again 3974 * as data, nor can we alter copied_seq until this data arrives 3975 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 3976 * 3977 * NOTE. Double Dutch. Rendering to plain English: author of comment 3978 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 3979 * and expect that both A and B disappear from stream. This is _wrong_. 3980 * Though this happens in BSD with high probability, this is occasional. 3981 * Any application relying on this is buggy. Note also, that fix "works" 3982 * only in this artificial test. Insert some normal data between A and B and we will 3983 * decline of BSD again. Verdict: it is better to remove to trap 3984 * buggy users. 3985 */ 3986 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 3987 !sock_flag(sk, SOCK_URGINLINE) && 3988 tp->copied_seq != tp->rcv_nxt) { 3989 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 3990 tp->copied_seq++; 3991 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 3992 __skb_unlink(skb, &sk->sk_receive_queue); 3993 __kfree_skb(skb); 3994 } 3995 } 3996 3997 tp->urg_data = TCP_URG_NOTYET; 3998 tp->urg_seq = ptr; 3999 4000 /* Disable header prediction. */ 4001 tp->pred_flags = 0; 4002 } 4003 4004 /* This is the 'fast' part of urgent handling. */ 4005 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 4006 { 4007 struct tcp_sock *tp = tcp_sk(sk); 4008 4009 /* Check if we get a new urgent pointer - normally not. */ 4010 if (th->urg) 4011 tcp_check_urg(sk,th); 4012 4013 /* Do we wait for any urgent data? - normally not... */ 4014 if (tp->urg_data == TCP_URG_NOTYET) { 4015 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4016 th->syn; 4017 4018 /* Is the urgent pointer pointing into this packet? */ 4019 if (ptr < skb->len) { 4020 u8 tmp; 4021 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4022 BUG(); 4023 tp->urg_data = TCP_URG_VALID | tmp; 4024 if (!sock_flag(sk, SOCK_DEAD)) 4025 sk->sk_data_ready(sk, 0); 4026 } 4027 } 4028 } 4029 4030 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4031 { 4032 struct tcp_sock *tp = tcp_sk(sk); 4033 int chunk = skb->len - hlen; 4034 int err; 4035 4036 local_bh_enable(); 4037 if (skb_csum_unnecessary(skb)) 4038 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4039 else 4040 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4041 tp->ucopy.iov); 4042 4043 if (!err) { 4044 tp->ucopy.len -= chunk; 4045 tp->copied_seq += chunk; 4046 tcp_rcv_space_adjust(sk); 4047 } 4048 4049 local_bh_disable(); 4050 return err; 4051 } 4052 4053 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 4054 { 4055 __sum16 result; 4056 4057 if (sock_owned_by_user(sk)) { 4058 local_bh_enable(); 4059 result = __tcp_checksum_complete(skb); 4060 local_bh_disable(); 4061 } else { 4062 result = __tcp_checksum_complete(skb); 4063 } 4064 return result; 4065 } 4066 4067 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 4068 { 4069 return !skb_csum_unnecessary(skb) && 4070 __tcp_checksum_complete_user(sk, skb); 4071 } 4072 4073 #ifdef CONFIG_NET_DMA 4074 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen) 4075 { 4076 struct tcp_sock *tp = tcp_sk(sk); 4077 int chunk = skb->len - hlen; 4078 int dma_cookie; 4079 int copied_early = 0; 4080 4081 if (tp->ucopy.wakeup) 4082 return 0; 4083 4084 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 4085 tp->ucopy.dma_chan = get_softnet_dma(); 4086 4087 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 4088 4089 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 4090 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list); 4091 4092 if (dma_cookie < 0) 4093 goto out; 4094 4095 tp->ucopy.dma_cookie = dma_cookie; 4096 copied_early = 1; 4097 4098 tp->ucopy.len -= chunk; 4099 tp->copied_seq += chunk; 4100 tcp_rcv_space_adjust(sk); 4101 4102 if ((tp->ucopy.len == 0) || 4103 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 4104 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 4105 tp->ucopy.wakeup = 1; 4106 sk->sk_data_ready(sk, 0); 4107 } 4108 } else if (chunk > 0) { 4109 tp->ucopy.wakeup = 1; 4110 sk->sk_data_ready(sk, 0); 4111 } 4112 out: 4113 return copied_early; 4114 } 4115 #endif /* CONFIG_NET_DMA */ 4116 4117 /* 4118 * TCP receive function for the ESTABLISHED state. 4119 * 4120 * It is split into a fast path and a slow path. The fast path is 4121 * disabled when: 4122 * - A zero window was announced from us - zero window probing 4123 * is only handled properly in the slow path. 4124 * - Out of order segments arrived. 4125 * - Urgent data is expected. 4126 * - There is no buffer space left 4127 * - Unexpected TCP flags/window values/header lengths are received 4128 * (detected by checking the TCP header against pred_flags) 4129 * - Data is sent in both directions. Fast path only supports pure senders 4130 * or pure receivers (this means either the sequence number or the ack 4131 * value must stay constant) 4132 * - Unexpected TCP option. 4133 * 4134 * When these conditions are not satisfied it drops into a standard 4135 * receive procedure patterned after RFC793 to handle all cases. 4136 * The first three cases are guaranteed by proper pred_flags setting, 4137 * the rest is checked inline. Fast processing is turned on in 4138 * tcp_data_queue when everything is OK. 4139 */ 4140 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 4141 struct tcphdr *th, unsigned len) 4142 { 4143 struct tcp_sock *tp = tcp_sk(sk); 4144 4145 /* 4146 * Header prediction. 4147 * The code loosely follows the one in the famous 4148 * "30 instruction TCP receive" Van Jacobson mail. 4149 * 4150 * Van's trick is to deposit buffers into socket queue 4151 * on a device interrupt, to call tcp_recv function 4152 * on the receive process context and checksum and copy 4153 * the buffer to user space. smart... 4154 * 4155 * Our current scheme is not silly either but we take the 4156 * extra cost of the net_bh soft interrupt processing... 4157 * We do checksum and copy also but from device to kernel. 4158 */ 4159 4160 tp->rx_opt.saw_tstamp = 0; 4161 4162 /* pred_flags is 0xS?10 << 16 + snd_wnd 4163 * if header_prediction is to be made 4164 * 'S' will always be tp->tcp_header_len >> 2 4165 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 4166 * turn it off (when there are holes in the receive 4167 * space for instance) 4168 * PSH flag is ignored. 4169 */ 4170 4171 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 4172 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4173 int tcp_header_len = tp->tcp_header_len; 4174 4175 /* Timestamp header prediction: tcp_header_len 4176 * is automatically equal to th->doff*4 due to pred_flags 4177 * match. 4178 */ 4179 4180 /* Check timestamp */ 4181 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 4182 __be32 *ptr = (__be32 *)(th + 1); 4183 4184 /* No? Slow path! */ 4185 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4186 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) 4187 goto slow_path; 4188 4189 tp->rx_opt.saw_tstamp = 1; 4190 ++ptr; 4191 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4192 ++ptr; 4193 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 4194 4195 /* If PAWS failed, check it more carefully in slow path */ 4196 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 4197 goto slow_path; 4198 4199 /* DO NOT update ts_recent here, if checksum fails 4200 * and timestamp was corrupted part, it will result 4201 * in a hung connection since we will drop all 4202 * future packets due to the PAWS test. 4203 */ 4204 } 4205 4206 if (len <= tcp_header_len) { 4207 /* Bulk data transfer: sender */ 4208 if (len == tcp_header_len) { 4209 /* Predicted packet is in window by definition. 4210 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4211 * Hence, check seq<=rcv_wup reduces to: 4212 */ 4213 if (tcp_header_len == 4214 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4215 tp->rcv_nxt == tp->rcv_wup) 4216 tcp_store_ts_recent(tp); 4217 4218 /* We know that such packets are checksummed 4219 * on entry. 4220 */ 4221 tcp_ack(sk, skb, 0); 4222 __kfree_skb(skb); 4223 tcp_data_snd_check(sk); 4224 return 0; 4225 } else { /* Header too small */ 4226 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4227 goto discard; 4228 } 4229 } else { 4230 int eaten = 0; 4231 int copied_early = 0; 4232 4233 if (tp->copied_seq == tp->rcv_nxt && 4234 len - tcp_header_len <= tp->ucopy.len) { 4235 #ifdef CONFIG_NET_DMA 4236 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 4237 copied_early = 1; 4238 eaten = 1; 4239 } 4240 #endif 4241 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) { 4242 __set_current_state(TASK_RUNNING); 4243 4244 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 4245 eaten = 1; 4246 } 4247 if (eaten) { 4248 /* Predicted packet is in window by definition. 4249 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4250 * Hence, check seq<=rcv_wup reduces to: 4251 */ 4252 if (tcp_header_len == 4253 (sizeof(struct tcphdr) + 4254 TCPOLEN_TSTAMP_ALIGNED) && 4255 tp->rcv_nxt == tp->rcv_wup) 4256 tcp_store_ts_recent(tp); 4257 4258 tcp_rcv_rtt_measure_ts(sk, skb); 4259 4260 __skb_pull(skb, tcp_header_len); 4261 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4262 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); 4263 } 4264 if (copied_early) 4265 tcp_cleanup_rbuf(sk, skb->len); 4266 } 4267 if (!eaten) { 4268 if (tcp_checksum_complete_user(sk, skb)) 4269 goto csum_error; 4270 4271 /* Predicted packet is in window by definition. 4272 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4273 * Hence, check seq<=rcv_wup reduces to: 4274 */ 4275 if (tcp_header_len == 4276 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4277 tp->rcv_nxt == tp->rcv_wup) 4278 tcp_store_ts_recent(tp); 4279 4280 tcp_rcv_rtt_measure_ts(sk, skb); 4281 4282 if ((int)skb->truesize > sk->sk_forward_alloc) 4283 goto step5; 4284 4285 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); 4286 4287 /* Bulk data transfer: receiver */ 4288 __skb_pull(skb,tcp_header_len); 4289 __skb_queue_tail(&sk->sk_receive_queue, skb); 4290 sk_stream_set_owner_r(skb, sk); 4291 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4292 } 4293 4294 tcp_event_data_recv(sk, skb); 4295 4296 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 4297 /* Well, only one small jumplet in fast path... */ 4298 tcp_ack(sk, skb, FLAG_DATA); 4299 tcp_data_snd_check(sk); 4300 if (!inet_csk_ack_scheduled(sk)) 4301 goto no_ack; 4302 } 4303 4304 __tcp_ack_snd_check(sk, 0); 4305 no_ack: 4306 #ifdef CONFIG_NET_DMA 4307 if (copied_early) 4308 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 4309 else 4310 #endif 4311 if (eaten) 4312 __kfree_skb(skb); 4313 else 4314 sk->sk_data_ready(sk, 0); 4315 return 0; 4316 } 4317 } 4318 4319 slow_path: 4320 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb)) 4321 goto csum_error; 4322 4323 /* 4324 * RFC1323: H1. Apply PAWS check first. 4325 */ 4326 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4327 tcp_paws_discard(sk, skb)) { 4328 if (!th->rst) { 4329 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4330 tcp_send_dupack(sk, skb); 4331 goto discard; 4332 } 4333 /* Resets are accepted even if PAWS failed. 4334 4335 ts_recent update must be made after we are sure 4336 that the packet is in window. 4337 */ 4338 } 4339 4340 /* 4341 * Standard slow path. 4342 */ 4343 4344 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4345 /* RFC793, page 37: "In all states except SYN-SENT, all reset 4346 * (RST) segments are validated by checking their SEQ-fields." 4347 * And page 69: "If an incoming segment is not acceptable, 4348 * an acknowledgment should be sent in reply (unless the RST bit 4349 * is set, if so drop the segment and return)". 4350 */ 4351 if (!th->rst) 4352 tcp_send_dupack(sk, skb); 4353 goto discard; 4354 } 4355 4356 if (th->rst) { 4357 tcp_reset(sk); 4358 goto discard; 4359 } 4360 4361 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4362 4363 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4364 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4365 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4366 tcp_reset(sk); 4367 return 1; 4368 } 4369 4370 step5: 4371 if (th->ack) 4372 tcp_ack(sk, skb, FLAG_SLOWPATH); 4373 4374 tcp_rcv_rtt_measure_ts(sk, skb); 4375 4376 /* Process urgent data. */ 4377 tcp_urg(sk, skb, th); 4378 4379 /* step 7: process the segment text */ 4380 tcp_data_queue(sk, skb); 4381 4382 tcp_data_snd_check(sk); 4383 tcp_ack_snd_check(sk); 4384 return 0; 4385 4386 csum_error: 4387 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4388 4389 discard: 4390 __kfree_skb(skb); 4391 return 0; 4392 } 4393 4394 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 4395 struct tcphdr *th, unsigned len) 4396 { 4397 struct tcp_sock *tp = tcp_sk(sk); 4398 struct inet_connection_sock *icsk = inet_csk(sk); 4399 int saved_clamp = tp->rx_opt.mss_clamp; 4400 4401 tcp_parse_options(skb, &tp->rx_opt, 0); 4402 4403 if (th->ack) { 4404 /* rfc793: 4405 * "If the state is SYN-SENT then 4406 * first check the ACK bit 4407 * If the ACK bit is set 4408 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 4409 * a reset (unless the RST bit is set, if so drop 4410 * the segment and return)" 4411 * 4412 * We do not send data with SYN, so that RFC-correct 4413 * test reduces to: 4414 */ 4415 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 4416 goto reset_and_undo; 4417 4418 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4419 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 4420 tcp_time_stamp)) { 4421 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); 4422 goto reset_and_undo; 4423 } 4424 4425 /* Now ACK is acceptable. 4426 * 4427 * "If the RST bit is set 4428 * If the ACK was acceptable then signal the user "error: 4429 * connection reset", drop the segment, enter CLOSED state, 4430 * delete TCB, and return." 4431 */ 4432 4433 if (th->rst) { 4434 tcp_reset(sk); 4435 goto discard; 4436 } 4437 4438 /* rfc793: 4439 * "fifth, if neither of the SYN or RST bits is set then 4440 * drop the segment and return." 4441 * 4442 * See note below! 4443 * --ANK(990513) 4444 */ 4445 if (!th->syn) 4446 goto discard_and_undo; 4447 4448 /* rfc793: 4449 * "If the SYN bit is on ... 4450 * are acceptable then ... 4451 * (our SYN has been ACKed), change the connection 4452 * state to ESTABLISHED..." 4453 */ 4454 4455 TCP_ECN_rcv_synack(tp, th); 4456 4457 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4458 tcp_ack(sk, skb, FLAG_SLOWPATH); 4459 4460 /* Ok.. it's good. Set up sequence numbers and 4461 * move to established. 4462 */ 4463 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4464 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4465 4466 /* RFC1323: The window in SYN & SYN/ACK segments is 4467 * never scaled. 4468 */ 4469 tp->snd_wnd = ntohs(th->window); 4470 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 4471 4472 if (!tp->rx_opt.wscale_ok) { 4473 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 4474 tp->window_clamp = min(tp->window_clamp, 65535U); 4475 } 4476 4477 if (tp->rx_opt.saw_tstamp) { 4478 tp->rx_opt.tstamp_ok = 1; 4479 tp->tcp_header_len = 4480 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4481 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4482 tcp_store_ts_recent(tp); 4483 } else { 4484 tp->tcp_header_len = sizeof(struct tcphdr); 4485 } 4486 4487 if (tp->rx_opt.sack_ok && sysctl_tcp_fack) 4488 tp->rx_opt.sack_ok |= 2; 4489 4490 tcp_mtup_init(sk); 4491 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4492 tcp_initialize_rcv_mss(sk); 4493 4494 /* Remember, tcp_poll() does not lock socket! 4495 * Change state from SYN-SENT only after copied_seq 4496 * is initialized. */ 4497 tp->copied_seq = tp->rcv_nxt; 4498 smp_mb(); 4499 tcp_set_state(sk, TCP_ESTABLISHED); 4500 4501 security_inet_conn_established(sk, skb); 4502 4503 /* Make sure socket is routed, for correct metrics. */ 4504 icsk->icsk_af_ops->rebuild_header(sk); 4505 4506 tcp_init_metrics(sk); 4507 4508 tcp_init_congestion_control(sk); 4509 4510 /* Prevent spurious tcp_cwnd_restart() on first data 4511 * packet. 4512 */ 4513 tp->lsndtime = tcp_time_stamp; 4514 4515 tcp_init_buffer_space(sk); 4516 4517 if (sock_flag(sk, SOCK_KEEPOPEN)) 4518 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 4519 4520 if (!tp->rx_opt.snd_wscale) 4521 __tcp_fast_path_on(tp, tp->snd_wnd); 4522 else 4523 tp->pred_flags = 0; 4524 4525 if (!sock_flag(sk, SOCK_DEAD)) { 4526 sk->sk_state_change(sk); 4527 sk_wake_async(sk, 0, POLL_OUT); 4528 } 4529 4530 if (sk->sk_write_pending || 4531 icsk->icsk_accept_queue.rskq_defer_accept || 4532 icsk->icsk_ack.pingpong) { 4533 /* Save one ACK. Data will be ready after 4534 * several ticks, if write_pending is set. 4535 * 4536 * It may be deleted, but with this feature tcpdumps 4537 * look so _wonderfully_ clever, that I was not able 4538 * to stand against the temptation 8) --ANK 4539 */ 4540 inet_csk_schedule_ack(sk); 4541 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 4542 icsk->icsk_ack.ato = TCP_ATO_MIN; 4543 tcp_incr_quickack(sk); 4544 tcp_enter_quickack_mode(sk); 4545 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 4546 TCP_DELACK_MAX, TCP_RTO_MAX); 4547 4548 discard: 4549 __kfree_skb(skb); 4550 return 0; 4551 } else { 4552 tcp_send_ack(sk); 4553 } 4554 return -1; 4555 } 4556 4557 /* No ACK in the segment */ 4558 4559 if (th->rst) { 4560 /* rfc793: 4561 * "If the RST bit is set 4562 * 4563 * Otherwise (no ACK) drop the segment and return." 4564 */ 4565 4566 goto discard_and_undo; 4567 } 4568 4569 /* PAWS check. */ 4570 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0)) 4571 goto discard_and_undo; 4572 4573 if (th->syn) { 4574 /* We see SYN without ACK. It is attempt of 4575 * simultaneous connect with crossed SYNs. 4576 * Particularly, it can be connect to self. 4577 */ 4578 tcp_set_state(sk, TCP_SYN_RECV); 4579 4580 if (tp->rx_opt.saw_tstamp) { 4581 tp->rx_opt.tstamp_ok = 1; 4582 tcp_store_ts_recent(tp); 4583 tp->tcp_header_len = 4584 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4585 } else { 4586 tp->tcp_header_len = sizeof(struct tcphdr); 4587 } 4588 4589 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4590 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4591 4592 /* RFC1323: The window in SYN & SYN/ACK segments is 4593 * never scaled. 4594 */ 4595 tp->snd_wnd = ntohs(th->window); 4596 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4597 tp->max_window = tp->snd_wnd; 4598 4599 TCP_ECN_rcv_syn(tp, th); 4600 4601 tcp_mtup_init(sk); 4602 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4603 tcp_initialize_rcv_mss(sk); 4604 4605 4606 tcp_send_synack(sk); 4607 #if 0 4608 /* Note, we could accept data and URG from this segment. 4609 * There are no obstacles to make this. 4610 * 4611 * However, if we ignore data in ACKless segments sometimes, 4612 * we have no reasons to accept it sometimes. 4613 * Also, seems the code doing it in step6 of tcp_rcv_state_process 4614 * is not flawless. So, discard packet for sanity. 4615 * Uncomment this return to process the data. 4616 */ 4617 return -1; 4618 #else 4619 goto discard; 4620 #endif 4621 } 4622 /* "fifth, if neither of the SYN or RST bits is set then 4623 * drop the segment and return." 4624 */ 4625 4626 discard_and_undo: 4627 tcp_clear_options(&tp->rx_opt); 4628 tp->rx_opt.mss_clamp = saved_clamp; 4629 goto discard; 4630 4631 reset_and_undo: 4632 tcp_clear_options(&tp->rx_opt); 4633 tp->rx_opt.mss_clamp = saved_clamp; 4634 return 1; 4635 } 4636 4637 4638 /* 4639 * This function implements the receiving procedure of RFC 793 for 4640 * all states except ESTABLISHED and TIME_WAIT. 4641 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 4642 * address independent. 4643 */ 4644 4645 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 4646 struct tcphdr *th, unsigned len) 4647 { 4648 struct tcp_sock *tp = tcp_sk(sk); 4649 struct inet_connection_sock *icsk = inet_csk(sk); 4650 int queued = 0; 4651 4652 tp->rx_opt.saw_tstamp = 0; 4653 4654 switch (sk->sk_state) { 4655 case TCP_CLOSE: 4656 goto discard; 4657 4658 case TCP_LISTEN: 4659 if (th->ack) 4660 return 1; 4661 4662 if (th->rst) 4663 goto discard; 4664 4665 if (th->syn) { 4666 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 4667 return 1; 4668 4669 /* Now we have several options: In theory there is 4670 * nothing else in the frame. KA9Q has an option to 4671 * send data with the syn, BSD accepts data with the 4672 * syn up to the [to be] advertised window and 4673 * Solaris 2.1 gives you a protocol error. For now 4674 * we just ignore it, that fits the spec precisely 4675 * and avoids incompatibilities. It would be nice in 4676 * future to drop through and process the data. 4677 * 4678 * Now that TTCP is starting to be used we ought to 4679 * queue this data. 4680 * But, this leaves one open to an easy denial of 4681 * service attack, and SYN cookies can't defend 4682 * against this problem. So, we drop the data 4683 * in the interest of security over speed unless 4684 * it's still in use. 4685 */ 4686 kfree_skb(skb); 4687 return 0; 4688 } 4689 goto discard; 4690 4691 case TCP_SYN_SENT: 4692 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 4693 if (queued >= 0) 4694 return queued; 4695 4696 /* Do step6 onward by hand. */ 4697 tcp_urg(sk, skb, th); 4698 __kfree_skb(skb); 4699 tcp_data_snd_check(sk); 4700 return 0; 4701 } 4702 4703 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4704 tcp_paws_discard(sk, skb)) { 4705 if (!th->rst) { 4706 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4707 tcp_send_dupack(sk, skb); 4708 goto discard; 4709 } 4710 /* Reset is accepted even if it did not pass PAWS. */ 4711 } 4712 4713 /* step 1: check sequence number */ 4714 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4715 if (!th->rst) 4716 tcp_send_dupack(sk, skb); 4717 goto discard; 4718 } 4719 4720 /* step 2: check RST bit */ 4721 if (th->rst) { 4722 tcp_reset(sk); 4723 goto discard; 4724 } 4725 4726 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4727 4728 /* step 3: check security and precedence [ignored] */ 4729 4730 /* step 4: 4731 * 4732 * Check for a SYN in window. 4733 */ 4734 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4735 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4736 tcp_reset(sk); 4737 return 1; 4738 } 4739 4740 /* step 5: check the ACK field */ 4741 if (th->ack) { 4742 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 4743 4744 switch (sk->sk_state) { 4745 case TCP_SYN_RECV: 4746 if (acceptable) { 4747 tp->copied_seq = tp->rcv_nxt; 4748 smp_mb(); 4749 tcp_set_state(sk, TCP_ESTABLISHED); 4750 sk->sk_state_change(sk); 4751 4752 /* Note, that this wakeup is only for marginal 4753 * crossed SYN case. Passively open sockets 4754 * are not waked up, because sk->sk_sleep == 4755 * NULL and sk->sk_socket == NULL. 4756 */ 4757 if (sk->sk_socket) { 4758 sk_wake_async(sk,0,POLL_OUT); 4759 } 4760 4761 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 4762 tp->snd_wnd = ntohs(th->window) << 4763 tp->rx_opt.snd_wscale; 4764 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 4765 TCP_SKB_CB(skb)->seq); 4766 4767 /* tcp_ack considers this ACK as duplicate 4768 * and does not calculate rtt. 4769 * Fix it at least with timestamps. 4770 */ 4771 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4772 !tp->srtt) 4773 tcp_ack_saw_tstamp(sk, 0); 4774 4775 if (tp->rx_opt.tstamp_ok) 4776 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4777 4778 /* Make sure socket is routed, for 4779 * correct metrics. 4780 */ 4781 icsk->icsk_af_ops->rebuild_header(sk); 4782 4783 tcp_init_metrics(sk); 4784 4785 tcp_init_congestion_control(sk); 4786 4787 /* Prevent spurious tcp_cwnd_restart() on 4788 * first data packet. 4789 */ 4790 tp->lsndtime = tcp_time_stamp; 4791 4792 tcp_mtup_init(sk); 4793 tcp_initialize_rcv_mss(sk); 4794 tcp_init_buffer_space(sk); 4795 tcp_fast_path_on(tp); 4796 } else { 4797 return 1; 4798 } 4799 break; 4800 4801 case TCP_FIN_WAIT1: 4802 if (tp->snd_una == tp->write_seq) { 4803 tcp_set_state(sk, TCP_FIN_WAIT2); 4804 sk->sk_shutdown |= SEND_SHUTDOWN; 4805 dst_confirm(sk->sk_dst_cache); 4806 4807 if (!sock_flag(sk, SOCK_DEAD)) 4808 /* Wake up lingering close() */ 4809 sk->sk_state_change(sk); 4810 else { 4811 int tmo; 4812 4813 if (tp->linger2 < 0 || 4814 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4815 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 4816 tcp_done(sk); 4817 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4818 return 1; 4819 } 4820 4821 tmo = tcp_fin_time(sk); 4822 if (tmo > TCP_TIMEWAIT_LEN) { 4823 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 4824 } else if (th->fin || sock_owned_by_user(sk)) { 4825 /* Bad case. We could lose such FIN otherwise. 4826 * It is not a big problem, but it looks confusing 4827 * and not so rare event. We still can lose it now, 4828 * if it spins in bh_lock_sock(), but it is really 4829 * marginal case. 4830 */ 4831 inet_csk_reset_keepalive_timer(sk, tmo); 4832 } else { 4833 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 4834 goto discard; 4835 } 4836 } 4837 } 4838 break; 4839 4840 case TCP_CLOSING: 4841 if (tp->snd_una == tp->write_seq) { 4842 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4843 goto discard; 4844 } 4845 break; 4846 4847 case TCP_LAST_ACK: 4848 if (tp->snd_una == tp->write_seq) { 4849 tcp_update_metrics(sk); 4850 tcp_done(sk); 4851 goto discard; 4852 } 4853 break; 4854 } 4855 } else 4856 goto discard; 4857 4858 /* step 6: check the URG bit */ 4859 tcp_urg(sk, skb, th); 4860 4861 /* step 7: process the segment text */ 4862 switch (sk->sk_state) { 4863 case TCP_CLOSE_WAIT: 4864 case TCP_CLOSING: 4865 case TCP_LAST_ACK: 4866 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4867 break; 4868 case TCP_FIN_WAIT1: 4869 case TCP_FIN_WAIT2: 4870 /* RFC 793 says to queue data in these states, 4871 * RFC 1122 says we MUST send a reset. 4872 * BSD 4.4 also does reset. 4873 */ 4874 if (sk->sk_shutdown & RCV_SHUTDOWN) { 4875 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4876 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 4877 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4878 tcp_reset(sk); 4879 return 1; 4880 } 4881 } 4882 /* Fall through */ 4883 case TCP_ESTABLISHED: 4884 tcp_data_queue(sk, skb); 4885 queued = 1; 4886 break; 4887 } 4888 4889 /* tcp_data could move socket to TIME-WAIT */ 4890 if (sk->sk_state != TCP_CLOSE) { 4891 tcp_data_snd_check(sk); 4892 tcp_ack_snd_check(sk); 4893 } 4894 4895 if (!queued) { 4896 discard: 4897 __kfree_skb(skb); 4898 } 4899 return 0; 4900 } 4901 4902 EXPORT_SYMBOL(sysctl_tcp_ecn); 4903 EXPORT_SYMBOL(sysctl_tcp_reordering); 4904 EXPORT_SYMBOL(tcp_parse_options); 4905 EXPORT_SYMBOL(tcp_rcv_established); 4906 EXPORT_SYMBOL(tcp_rcv_state_process); 4907 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 4908