xref: /linux/net/ipv4/tcp_input.c (revision eb2bce7f5e7ac1ca6da434461217fadf3c688d2c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91 
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94 
95 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
102 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105 
106 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
109 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
110 
111 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
112 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
113 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
114 
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116 
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 
119 /* Adapt the MSS value used to make delayed ack decision to the
120  * real world.
121  */
122 static void tcp_measure_rcv_mss(struct sock *sk,
123 				const struct sk_buff *skb)
124 {
125 	struct inet_connection_sock *icsk = inet_csk(sk);
126 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
127 	unsigned int len;
128 
129 	icsk->icsk_ack.last_seg_size = 0;
130 
131 	/* skb->len may jitter because of SACKs, even if peer
132 	 * sends good full-sized frames.
133 	 */
134 	len = skb_shinfo(skb)->gso_size ?: skb->len;
135 	if (len >= icsk->icsk_ack.rcv_mss) {
136 		icsk->icsk_ack.rcv_mss = len;
137 	} else {
138 		/* Otherwise, we make more careful check taking into account,
139 		 * that SACKs block is variable.
140 		 *
141 		 * "len" is invariant segment length, including TCP header.
142 		 */
143 		len += skb->data - skb_transport_header(skb);
144 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145 		    /* If PSH is not set, packet should be
146 		     * full sized, provided peer TCP is not badly broken.
147 		     * This observation (if it is correct 8)) allows
148 		     * to handle super-low mtu links fairly.
149 		     */
150 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
152 			/* Subtract also invariant (if peer is RFC compliant),
153 			 * tcp header plus fixed timestamp option length.
154 			 * Resulting "len" is MSS free of SACK jitter.
155 			 */
156 			len -= tcp_sk(sk)->tcp_header_len;
157 			icsk->icsk_ack.last_seg_size = len;
158 			if (len == lss) {
159 				icsk->icsk_ack.rcv_mss = len;
160 				return;
161 			}
162 		}
163 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
166 	}
167 }
168 
169 static void tcp_incr_quickack(struct sock *sk)
170 {
171 	struct inet_connection_sock *icsk = inet_csk(sk);
172 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173 
174 	if (quickacks==0)
175 		quickacks=2;
176 	if (quickacks > icsk->icsk_ack.quick)
177 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 }
179 
180 void tcp_enter_quickack_mode(struct sock *sk)
181 {
182 	struct inet_connection_sock *icsk = inet_csk(sk);
183 	tcp_incr_quickack(sk);
184 	icsk->icsk_ack.pingpong = 0;
185 	icsk->icsk_ack.ato = TCP_ATO_MIN;
186 }
187 
188 /* Send ACKs quickly, if "quick" count is not exhausted
189  * and the session is not interactive.
190  */
191 
192 static inline int tcp_in_quickack_mode(const struct sock *sk)
193 {
194 	const struct inet_connection_sock *icsk = inet_csk(sk);
195 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 }
197 
198 /* Buffer size and advertised window tuning.
199  *
200  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
201  */
202 
203 static void tcp_fixup_sndbuf(struct sock *sk)
204 {
205 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
206 		     sizeof(struct sk_buff);
207 
208 	if (sk->sk_sndbuf < 3 * sndmem)
209 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
210 }
211 
212 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
213  *
214  * All tcp_full_space() is split to two parts: "network" buffer, allocated
215  * forward and advertised in receiver window (tp->rcv_wnd) and
216  * "application buffer", required to isolate scheduling/application
217  * latencies from network.
218  * window_clamp is maximal advertised window. It can be less than
219  * tcp_full_space(), in this case tcp_full_space() - window_clamp
220  * is reserved for "application" buffer. The less window_clamp is
221  * the smoother our behaviour from viewpoint of network, but the lower
222  * throughput and the higher sensitivity of the connection to losses. 8)
223  *
224  * rcv_ssthresh is more strict window_clamp used at "slow start"
225  * phase to predict further behaviour of this connection.
226  * It is used for two goals:
227  * - to enforce header prediction at sender, even when application
228  *   requires some significant "application buffer". It is check #1.
229  * - to prevent pruning of receive queue because of misprediction
230  *   of receiver window. Check #2.
231  *
232  * The scheme does not work when sender sends good segments opening
233  * window and then starts to feed us spaghetti. But it should work
234  * in common situations. Otherwise, we have to rely on queue collapsing.
235  */
236 
237 /* Slow part of check#2. */
238 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
239 {
240 	struct tcp_sock *tp = tcp_sk(sk);
241 	/* Optimize this! */
242 	int truesize = tcp_win_from_space(skb->truesize)/2;
243 	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
244 
245 	while (tp->rcv_ssthresh <= window) {
246 		if (truesize <= skb->len)
247 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
248 
249 		truesize >>= 1;
250 		window >>= 1;
251 	}
252 	return 0;
253 }
254 
255 static void tcp_grow_window(struct sock *sk,
256 			    struct sk_buff *skb)
257 {
258 	struct tcp_sock *tp = tcp_sk(sk);
259 
260 	/* Check #1 */
261 	if (tp->rcv_ssthresh < tp->window_clamp &&
262 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
263 	    !tcp_memory_pressure) {
264 		int incr;
265 
266 		/* Check #2. Increase window, if skb with such overhead
267 		 * will fit to rcvbuf in future.
268 		 */
269 		if (tcp_win_from_space(skb->truesize) <= skb->len)
270 			incr = 2*tp->advmss;
271 		else
272 			incr = __tcp_grow_window(sk, skb);
273 
274 		if (incr) {
275 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
276 			inet_csk(sk)->icsk_ack.quick |= 1;
277 		}
278 	}
279 }
280 
281 /* 3. Tuning rcvbuf, when connection enters established state. */
282 
283 static void tcp_fixup_rcvbuf(struct sock *sk)
284 {
285 	struct tcp_sock *tp = tcp_sk(sk);
286 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
287 
288 	/* Try to select rcvbuf so that 4 mss-sized segments
289 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
290 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
291 	 */
292 	while (tcp_win_from_space(rcvmem) < tp->advmss)
293 		rcvmem += 128;
294 	if (sk->sk_rcvbuf < 4 * rcvmem)
295 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
296 }
297 
298 /* 4. Try to fixup all. It is made immediately after connection enters
299  *    established state.
300  */
301 static void tcp_init_buffer_space(struct sock *sk)
302 {
303 	struct tcp_sock *tp = tcp_sk(sk);
304 	int maxwin;
305 
306 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
307 		tcp_fixup_rcvbuf(sk);
308 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
309 		tcp_fixup_sndbuf(sk);
310 
311 	tp->rcvq_space.space = tp->rcv_wnd;
312 
313 	maxwin = tcp_full_space(sk);
314 
315 	if (tp->window_clamp >= maxwin) {
316 		tp->window_clamp = maxwin;
317 
318 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
319 			tp->window_clamp = max(maxwin -
320 					       (maxwin >> sysctl_tcp_app_win),
321 					       4 * tp->advmss);
322 	}
323 
324 	/* Force reservation of one segment. */
325 	if (sysctl_tcp_app_win &&
326 	    tp->window_clamp > 2 * tp->advmss &&
327 	    tp->window_clamp + tp->advmss > maxwin)
328 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
329 
330 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
331 	tp->snd_cwnd_stamp = tcp_time_stamp;
332 }
333 
334 /* 5. Recalculate window clamp after socket hit its memory bounds. */
335 static void tcp_clamp_window(struct sock *sk)
336 {
337 	struct tcp_sock *tp = tcp_sk(sk);
338 	struct inet_connection_sock *icsk = inet_csk(sk);
339 
340 	icsk->icsk_ack.quick = 0;
341 
342 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
343 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
344 	    !tcp_memory_pressure &&
345 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
346 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
347 				    sysctl_tcp_rmem[2]);
348 	}
349 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
350 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
351 }
352 
353 
354 /* Initialize RCV_MSS value.
355  * RCV_MSS is an our guess about MSS used by the peer.
356  * We haven't any direct information about the MSS.
357  * It's better to underestimate the RCV_MSS rather than overestimate.
358  * Overestimations make us ACKing less frequently than needed.
359  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
360  */
361 void tcp_initialize_rcv_mss(struct sock *sk)
362 {
363 	struct tcp_sock *tp = tcp_sk(sk);
364 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
365 
366 	hint = min(hint, tp->rcv_wnd/2);
367 	hint = min(hint, TCP_MIN_RCVMSS);
368 	hint = max(hint, TCP_MIN_MSS);
369 
370 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
371 }
372 
373 /* Receiver "autotuning" code.
374  *
375  * The algorithm for RTT estimation w/o timestamps is based on
376  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
377  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
378  *
379  * More detail on this code can be found at
380  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
381  * though this reference is out of date.  A new paper
382  * is pending.
383  */
384 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
385 {
386 	u32 new_sample = tp->rcv_rtt_est.rtt;
387 	long m = sample;
388 
389 	if (m == 0)
390 		m = 1;
391 
392 	if (new_sample != 0) {
393 		/* If we sample in larger samples in the non-timestamp
394 		 * case, we could grossly overestimate the RTT especially
395 		 * with chatty applications or bulk transfer apps which
396 		 * are stalled on filesystem I/O.
397 		 *
398 		 * Also, since we are only going for a minimum in the
399 		 * non-timestamp case, we do not smooth things out
400 		 * else with timestamps disabled convergence takes too
401 		 * long.
402 		 */
403 		if (!win_dep) {
404 			m -= (new_sample >> 3);
405 			new_sample += m;
406 		} else if (m < new_sample)
407 			new_sample = m << 3;
408 	} else {
409 		/* No previous measure. */
410 		new_sample = m << 3;
411 	}
412 
413 	if (tp->rcv_rtt_est.rtt != new_sample)
414 		tp->rcv_rtt_est.rtt = new_sample;
415 }
416 
417 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
418 {
419 	if (tp->rcv_rtt_est.time == 0)
420 		goto new_measure;
421 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
422 		return;
423 	tcp_rcv_rtt_update(tp,
424 			   jiffies - tp->rcv_rtt_est.time,
425 			   1);
426 
427 new_measure:
428 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
429 	tp->rcv_rtt_est.time = tcp_time_stamp;
430 }
431 
432 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
433 {
434 	struct tcp_sock *tp = tcp_sk(sk);
435 	if (tp->rx_opt.rcv_tsecr &&
436 	    (TCP_SKB_CB(skb)->end_seq -
437 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
438 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
439 }
440 
441 /*
442  * This function should be called every time data is copied to user space.
443  * It calculates the appropriate TCP receive buffer space.
444  */
445 void tcp_rcv_space_adjust(struct sock *sk)
446 {
447 	struct tcp_sock *tp = tcp_sk(sk);
448 	int time;
449 	int space;
450 
451 	if (tp->rcvq_space.time == 0)
452 		goto new_measure;
453 
454 	time = tcp_time_stamp - tp->rcvq_space.time;
455 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
456 	    tp->rcv_rtt_est.rtt == 0)
457 		return;
458 
459 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
460 
461 	space = max(tp->rcvq_space.space, space);
462 
463 	if (tp->rcvq_space.space != space) {
464 		int rcvmem;
465 
466 		tp->rcvq_space.space = space;
467 
468 		if (sysctl_tcp_moderate_rcvbuf &&
469 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
470 			int new_clamp = space;
471 
472 			/* Receive space grows, normalize in order to
473 			 * take into account packet headers and sk_buff
474 			 * structure overhead.
475 			 */
476 			space /= tp->advmss;
477 			if (!space)
478 				space = 1;
479 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
480 				  16 + sizeof(struct sk_buff));
481 			while (tcp_win_from_space(rcvmem) < tp->advmss)
482 				rcvmem += 128;
483 			space *= rcvmem;
484 			space = min(space, sysctl_tcp_rmem[2]);
485 			if (space > sk->sk_rcvbuf) {
486 				sk->sk_rcvbuf = space;
487 
488 				/* Make the window clamp follow along.  */
489 				tp->window_clamp = new_clamp;
490 			}
491 		}
492 	}
493 
494 new_measure:
495 	tp->rcvq_space.seq = tp->copied_seq;
496 	tp->rcvq_space.time = tcp_time_stamp;
497 }
498 
499 /* There is something which you must keep in mind when you analyze the
500  * behavior of the tp->ato delayed ack timeout interval.  When a
501  * connection starts up, we want to ack as quickly as possible.  The
502  * problem is that "good" TCP's do slow start at the beginning of data
503  * transmission.  The means that until we send the first few ACK's the
504  * sender will sit on his end and only queue most of his data, because
505  * he can only send snd_cwnd unacked packets at any given time.  For
506  * each ACK we send, he increments snd_cwnd and transmits more of his
507  * queue.  -DaveM
508  */
509 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
510 {
511 	struct tcp_sock *tp = tcp_sk(sk);
512 	struct inet_connection_sock *icsk = inet_csk(sk);
513 	u32 now;
514 
515 	inet_csk_schedule_ack(sk);
516 
517 	tcp_measure_rcv_mss(sk, skb);
518 
519 	tcp_rcv_rtt_measure(tp);
520 
521 	now = tcp_time_stamp;
522 
523 	if (!icsk->icsk_ack.ato) {
524 		/* The _first_ data packet received, initialize
525 		 * delayed ACK engine.
526 		 */
527 		tcp_incr_quickack(sk);
528 		icsk->icsk_ack.ato = TCP_ATO_MIN;
529 	} else {
530 		int m = now - icsk->icsk_ack.lrcvtime;
531 
532 		if (m <= TCP_ATO_MIN/2) {
533 			/* The fastest case is the first. */
534 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
535 		} else if (m < icsk->icsk_ack.ato) {
536 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
537 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
538 				icsk->icsk_ack.ato = icsk->icsk_rto;
539 		} else if (m > icsk->icsk_rto) {
540 			/* Too long gap. Apparently sender failed to
541 			 * restart window, so that we send ACKs quickly.
542 			 */
543 			tcp_incr_quickack(sk);
544 			sk_stream_mem_reclaim(sk);
545 		}
546 	}
547 	icsk->icsk_ack.lrcvtime = now;
548 
549 	TCP_ECN_check_ce(tp, skb);
550 
551 	if (skb->len >= 128)
552 		tcp_grow_window(sk, skb);
553 }
554 
555 /* Called to compute a smoothed rtt estimate. The data fed to this
556  * routine either comes from timestamps, or from segments that were
557  * known _not_ to have been retransmitted [see Karn/Partridge
558  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
559  * piece by Van Jacobson.
560  * NOTE: the next three routines used to be one big routine.
561  * To save cycles in the RFC 1323 implementation it was better to break
562  * it up into three procedures. -- erics
563  */
564 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
565 {
566 	struct tcp_sock *tp = tcp_sk(sk);
567 	long m = mrtt; /* RTT */
568 
569 	/*	The following amusing code comes from Jacobson's
570 	 *	article in SIGCOMM '88.  Note that rtt and mdev
571 	 *	are scaled versions of rtt and mean deviation.
572 	 *	This is designed to be as fast as possible
573 	 *	m stands for "measurement".
574 	 *
575 	 *	On a 1990 paper the rto value is changed to:
576 	 *	RTO = rtt + 4 * mdev
577 	 *
578 	 * Funny. This algorithm seems to be very broken.
579 	 * These formulae increase RTO, when it should be decreased, increase
580 	 * too slowly, when it should be increased quickly, decrease too quickly
581 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
582 	 * does not matter how to _calculate_ it. Seems, it was trap
583 	 * that VJ failed to avoid. 8)
584 	 */
585 	if (m == 0)
586 		m = 1;
587 	if (tp->srtt != 0) {
588 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
589 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
590 		if (m < 0) {
591 			m = -m;		/* m is now abs(error) */
592 			m -= (tp->mdev >> 2);   /* similar update on mdev */
593 			/* This is similar to one of Eifel findings.
594 			 * Eifel blocks mdev updates when rtt decreases.
595 			 * This solution is a bit different: we use finer gain
596 			 * for mdev in this case (alpha*beta).
597 			 * Like Eifel it also prevents growth of rto,
598 			 * but also it limits too fast rto decreases,
599 			 * happening in pure Eifel.
600 			 */
601 			if (m > 0)
602 				m >>= 3;
603 		} else {
604 			m -= (tp->mdev >> 2);   /* similar update on mdev */
605 		}
606 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
607 		if (tp->mdev > tp->mdev_max) {
608 			tp->mdev_max = tp->mdev;
609 			if (tp->mdev_max > tp->rttvar)
610 				tp->rttvar = tp->mdev_max;
611 		}
612 		if (after(tp->snd_una, tp->rtt_seq)) {
613 			if (tp->mdev_max < tp->rttvar)
614 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
615 			tp->rtt_seq = tp->snd_nxt;
616 			tp->mdev_max = TCP_RTO_MIN;
617 		}
618 	} else {
619 		/* no previous measure. */
620 		tp->srtt = m<<3;	/* take the measured time to be rtt */
621 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
622 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
623 		tp->rtt_seq = tp->snd_nxt;
624 	}
625 }
626 
627 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
628  * routine referred to above.
629  */
630 static inline void tcp_set_rto(struct sock *sk)
631 {
632 	const struct tcp_sock *tp = tcp_sk(sk);
633 	/* Old crap is replaced with new one. 8)
634 	 *
635 	 * More seriously:
636 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
637 	 *    It cannot be less due to utterly erratic ACK generation made
638 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
639 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
640 	 *    is invisible. Actually, Linux-2.4 also generates erratic
641 	 *    ACKs in some circumstances.
642 	 */
643 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
644 
645 	/* 2. Fixups made earlier cannot be right.
646 	 *    If we do not estimate RTO correctly without them,
647 	 *    all the algo is pure shit and should be replaced
648 	 *    with correct one. It is exactly, which we pretend to do.
649 	 */
650 }
651 
652 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
653  * guarantees that rto is higher.
654  */
655 static inline void tcp_bound_rto(struct sock *sk)
656 {
657 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
658 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
659 }
660 
661 /* Save metrics learned by this TCP session.
662    This function is called only, when TCP finishes successfully
663    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
664  */
665 void tcp_update_metrics(struct sock *sk)
666 {
667 	struct tcp_sock *tp = tcp_sk(sk);
668 	struct dst_entry *dst = __sk_dst_get(sk);
669 
670 	if (sysctl_tcp_nometrics_save)
671 		return;
672 
673 	dst_confirm(dst);
674 
675 	if (dst && (dst->flags&DST_HOST)) {
676 		const struct inet_connection_sock *icsk = inet_csk(sk);
677 		int m;
678 
679 		if (icsk->icsk_backoff || !tp->srtt) {
680 			/* This session failed to estimate rtt. Why?
681 			 * Probably, no packets returned in time.
682 			 * Reset our results.
683 			 */
684 			if (!(dst_metric_locked(dst, RTAX_RTT)))
685 				dst->metrics[RTAX_RTT-1] = 0;
686 			return;
687 		}
688 
689 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
690 
691 		/* If newly calculated rtt larger than stored one,
692 		 * store new one. Otherwise, use EWMA. Remember,
693 		 * rtt overestimation is always better than underestimation.
694 		 */
695 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
696 			if (m <= 0)
697 				dst->metrics[RTAX_RTT-1] = tp->srtt;
698 			else
699 				dst->metrics[RTAX_RTT-1] -= (m>>3);
700 		}
701 
702 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
703 			if (m < 0)
704 				m = -m;
705 
706 			/* Scale deviation to rttvar fixed point */
707 			m >>= 1;
708 			if (m < tp->mdev)
709 				m = tp->mdev;
710 
711 			if (m >= dst_metric(dst, RTAX_RTTVAR))
712 				dst->metrics[RTAX_RTTVAR-1] = m;
713 			else
714 				dst->metrics[RTAX_RTTVAR-1] -=
715 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
716 		}
717 
718 		if (tp->snd_ssthresh >= 0xFFFF) {
719 			/* Slow start still did not finish. */
720 			if (dst_metric(dst, RTAX_SSTHRESH) &&
721 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
722 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
723 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
724 			if (!dst_metric_locked(dst, RTAX_CWND) &&
725 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
726 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
727 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
728 			   icsk->icsk_ca_state == TCP_CA_Open) {
729 			/* Cong. avoidance phase, cwnd is reliable. */
730 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
731 				dst->metrics[RTAX_SSTHRESH-1] =
732 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
733 			if (!dst_metric_locked(dst, RTAX_CWND))
734 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
735 		} else {
736 			/* Else slow start did not finish, cwnd is non-sense,
737 			   ssthresh may be also invalid.
738 			 */
739 			if (!dst_metric_locked(dst, RTAX_CWND))
740 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
741 			if (dst->metrics[RTAX_SSTHRESH-1] &&
742 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
743 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
744 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
745 		}
746 
747 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
748 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
749 			    tp->reordering != sysctl_tcp_reordering)
750 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
751 		}
752 	}
753 }
754 
755 /* Numbers are taken from RFC2414.  */
756 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
757 {
758 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
759 
760 	if (!cwnd) {
761 		if (tp->mss_cache > 1460)
762 			cwnd = 2;
763 		else
764 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
765 	}
766 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
767 }
768 
769 /* Set slow start threshold and cwnd not falling to slow start */
770 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
771 {
772 	struct tcp_sock *tp = tcp_sk(sk);
773 	const struct inet_connection_sock *icsk = inet_csk(sk);
774 
775 	tp->prior_ssthresh = 0;
776 	tp->bytes_acked = 0;
777 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
778 		tp->undo_marker = 0;
779 		if (set_ssthresh)
780 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
781 		tp->snd_cwnd = min(tp->snd_cwnd,
782 				   tcp_packets_in_flight(tp) + 1U);
783 		tp->snd_cwnd_cnt = 0;
784 		tp->high_seq = tp->snd_nxt;
785 		tp->snd_cwnd_stamp = tcp_time_stamp;
786 		TCP_ECN_queue_cwr(tp);
787 
788 		tcp_set_ca_state(sk, TCP_CA_CWR);
789 	}
790 }
791 
792 /* Initialize metrics on socket. */
793 
794 static void tcp_init_metrics(struct sock *sk)
795 {
796 	struct tcp_sock *tp = tcp_sk(sk);
797 	struct dst_entry *dst = __sk_dst_get(sk);
798 
799 	if (dst == NULL)
800 		goto reset;
801 
802 	dst_confirm(dst);
803 
804 	if (dst_metric_locked(dst, RTAX_CWND))
805 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
806 	if (dst_metric(dst, RTAX_SSTHRESH)) {
807 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
808 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
809 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
810 	}
811 	if (dst_metric(dst, RTAX_REORDERING) &&
812 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
813 		tp->rx_opt.sack_ok &= ~2;
814 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
815 	}
816 
817 	if (dst_metric(dst, RTAX_RTT) == 0)
818 		goto reset;
819 
820 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
821 		goto reset;
822 
823 	/* Initial rtt is determined from SYN,SYN-ACK.
824 	 * The segment is small and rtt may appear much
825 	 * less than real one. Use per-dst memory
826 	 * to make it more realistic.
827 	 *
828 	 * A bit of theory. RTT is time passed after "normal" sized packet
829 	 * is sent until it is ACKed. In normal circumstances sending small
830 	 * packets force peer to delay ACKs and calculation is correct too.
831 	 * The algorithm is adaptive and, provided we follow specs, it
832 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
833 	 * tricks sort of "quick acks" for time long enough to decrease RTT
834 	 * to low value, and then abruptly stops to do it and starts to delay
835 	 * ACKs, wait for troubles.
836 	 */
837 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
838 		tp->srtt = dst_metric(dst, RTAX_RTT);
839 		tp->rtt_seq = tp->snd_nxt;
840 	}
841 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
842 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
843 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
844 	}
845 	tcp_set_rto(sk);
846 	tcp_bound_rto(sk);
847 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
848 		goto reset;
849 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
850 	tp->snd_cwnd_stamp = tcp_time_stamp;
851 	return;
852 
853 reset:
854 	/* Play conservative. If timestamps are not
855 	 * supported, TCP will fail to recalculate correct
856 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
857 	 */
858 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
859 		tp->srtt = 0;
860 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
861 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
862 	}
863 }
864 
865 static void tcp_update_reordering(struct sock *sk, const int metric,
866 				  const int ts)
867 {
868 	struct tcp_sock *tp = tcp_sk(sk);
869 	if (metric > tp->reordering) {
870 		tp->reordering = min(TCP_MAX_REORDERING, metric);
871 
872 		/* This exciting event is worth to be remembered. 8) */
873 		if (ts)
874 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
875 		else if (IsReno(tp))
876 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
877 		else if (IsFack(tp))
878 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
879 		else
880 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
881 #if FASTRETRANS_DEBUG > 1
882 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
883 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
884 		       tp->reordering,
885 		       tp->fackets_out,
886 		       tp->sacked_out,
887 		       tp->undo_marker ? tp->undo_retrans : 0);
888 #endif
889 		/* Disable FACK yet. */
890 		tp->rx_opt.sack_ok &= ~2;
891 	}
892 }
893 
894 /* This procedure tags the retransmission queue when SACKs arrive.
895  *
896  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
897  * Packets in queue with these bits set are counted in variables
898  * sacked_out, retrans_out and lost_out, correspondingly.
899  *
900  * Valid combinations are:
901  * Tag  InFlight	Description
902  * 0	1		- orig segment is in flight.
903  * S	0		- nothing flies, orig reached receiver.
904  * L	0		- nothing flies, orig lost by net.
905  * R	2		- both orig and retransmit are in flight.
906  * L|R	1		- orig is lost, retransmit is in flight.
907  * S|R  1		- orig reached receiver, retrans is still in flight.
908  * (L|S|R is logically valid, it could occur when L|R is sacked,
909  *  but it is equivalent to plain S and code short-curcuits it to S.
910  *  L|S is logically invalid, it would mean -1 packet in flight 8))
911  *
912  * These 6 states form finite state machine, controlled by the following events:
913  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
914  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
915  * 3. Loss detection event of one of three flavors:
916  *	A. Scoreboard estimator decided the packet is lost.
917  *	   A'. Reno "three dupacks" marks head of queue lost.
918  *	   A''. Its FACK modfication, head until snd.fack is lost.
919  *	B. SACK arrives sacking data transmitted after never retransmitted
920  *	   hole was sent out.
921  *	C. SACK arrives sacking SND.NXT at the moment, when the
922  *	   segment was retransmitted.
923  * 4. D-SACK added new rule: D-SACK changes any tag to S.
924  *
925  * It is pleasant to note, that state diagram turns out to be commutative,
926  * so that we are allowed not to be bothered by order of our actions,
927  * when multiple events arrive simultaneously. (see the function below).
928  *
929  * Reordering detection.
930  * --------------------
931  * Reordering metric is maximal distance, which a packet can be displaced
932  * in packet stream. With SACKs we can estimate it:
933  *
934  * 1. SACK fills old hole and the corresponding segment was not
935  *    ever retransmitted -> reordering. Alas, we cannot use it
936  *    when segment was retransmitted.
937  * 2. The last flaw is solved with D-SACK. D-SACK arrives
938  *    for retransmitted and already SACKed segment -> reordering..
939  * Both of these heuristics are not used in Loss state, when we cannot
940  * account for retransmits accurately.
941  */
942 static int
943 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
944 {
945 	const struct inet_connection_sock *icsk = inet_csk(sk);
946 	struct tcp_sock *tp = tcp_sk(sk);
947 	unsigned char *ptr = (skb_transport_header(ack_skb) +
948 			      TCP_SKB_CB(ack_skb)->sacked);
949 	struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
950 	struct sk_buff *cached_skb;
951 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
952 	int reord = tp->packets_out;
953 	int prior_fackets;
954 	u32 lost_retrans = 0;
955 	int flag = 0;
956 	int dup_sack = 0;
957 	int cached_fack_count;
958 	int i;
959 	int first_sack_index;
960 
961 	if (!tp->sacked_out)
962 		tp->fackets_out = 0;
963 	prior_fackets = tp->fackets_out;
964 
965 	/* Check for D-SACK. */
966 	if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
967 		dup_sack = 1;
968 		tp->rx_opt.sack_ok |= 4;
969 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
970 	} else if (num_sacks > 1 &&
971 			!after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
972 			!before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
973 		dup_sack = 1;
974 		tp->rx_opt.sack_ok |= 4;
975 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
976 	}
977 
978 	/* D-SACK for already forgotten data...
979 	 * Do dumb counting. */
980 	if (dup_sack &&
981 			!after(ntohl(sp[0].end_seq), prior_snd_una) &&
982 			after(ntohl(sp[0].end_seq), tp->undo_marker))
983 		tp->undo_retrans--;
984 
985 	/* Eliminate too old ACKs, but take into
986 	 * account more or less fresh ones, they can
987 	 * contain valid SACK info.
988 	 */
989 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
990 		return 0;
991 
992 	/* SACK fastpath:
993 	 * if the only SACK change is the increase of the end_seq of
994 	 * the first block then only apply that SACK block
995 	 * and use retrans queue hinting otherwise slowpath */
996 	flag = 1;
997 	for (i = 0; i < num_sacks; i++) {
998 		__be32 start_seq = sp[i].start_seq;
999 		__be32 end_seq = sp[i].end_seq;
1000 
1001 		if (i == 0) {
1002 			if (tp->recv_sack_cache[i].start_seq != start_seq)
1003 				flag = 0;
1004 		} else {
1005 			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1006 			    (tp->recv_sack_cache[i].end_seq != end_seq))
1007 				flag = 0;
1008 		}
1009 		tp->recv_sack_cache[i].start_seq = start_seq;
1010 		tp->recv_sack_cache[i].end_seq = end_seq;
1011 	}
1012 	/* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1013 	for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1014 		tp->recv_sack_cache[i].start_seq = 0;
1015 		tp->recv_sack_cache[i].end_seq = 0;
1016 	}
1017 
1018 	first_sack_index = 0;
1019 	if (flag)
1020 		num_sacks = 1;
1021 	else {
1022 		int j;
1023 		tp->fastpath_skb_hint = NULL;
1024 
1025 		/* order SACK blocks to allow in order walk of the retrans queue */
1026 		for (i = num_sacks-1; i > 0; i--) {
1027 			for (j = 0; j < i; j++){
1028 				if (after(ntohl(sp[j].start_seq),
1029 					  ntohl(sp[j+1].start_seq))){
1030 					struct tcp_sack_block_wire tmp;
1031 
1032 					tmp = sp[j];
1033 					sp[j] = sp[j+1];
1034 					sp[j+1] = tmp;
1035 
1036 					/* Track where the first SACK block goes to */
1037 					if (j == first_sack_index)
1038 						first_sack_index = j+1;
1039 				}
1040 
1041 			}
1042 		}
1043 	}
1044 
1045 	/* clear flag as used for different purpose in following code */
1046 	flag = 0;
1047 
1048 	/* Use SACK fastpath hint if valid */
1049 	cached_skb = tp->fastpath_skb_hint;
1050 	cached_fack_count = tp->fastpath_cnt_hint;
1051 	if (!cached_skb) {
1052 		cached_skb = tcp_write_queue_head(sk);
1053 		cached_fack_count = 0;
1054 	}
1055 
1056 	for (i=0; i<num_sacks; i++, sp++) {
1057 		struct sk_buff *skb;
1058 		__u32 start_seq = ntohl(sp->start_seq);
1059 		__u32 end_seq = ntohl(sp->end_seq);
1060 		int fack_count;
1061 
1062 		skb = cached_skb;
1063 		fack_count = cached_fack_count;
1064 
1065 		/* Event "B" in the comment above. */
1066 		if (after(end_seq, tp->high_seq))
1067 			flag |= FLAG_DATA_LOST;
1068 
1069 		tcp_for_write_queue_from(skb, sk) {
1070 			int in_sack, pcount;
1071 			u8 sacked;
1072 
1073 			if (skb == tcp_send_head(sk))
1074 				break;
1075 
1076 			cached_skb = skb;
1077 			cached_fack_count = fack_count;
1078 			if (i == first_sack_index) {
1079 				tp->fastpath_skb_hint = skb;
1080 				tp->fastpath_cnt_hint = fack_count;
1081 			}
1082 
1083 			/* The retransmission queue is always in order, so
1084 			 * we can short-circuit the walk early.
1085 			 */
1086 			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1087 				break;
1088 
1089 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1090 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1091 
1092 			pcount = tcp_skb_pcount(skb);
1093 
1094 			if (pcount > 1 && !in_sack &&
1095 			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1096 				unsigned int pkt_len;
1097 
1098 				in_sack = !after(start_seq,
1099 						 TCP_SKB_CB(skb)->seq);
1100 
1101 				if (!in_sack)
1102 					pkt_len = (start_seq -
1103 						   TCP_SKB_CB(skb)->seq);
1104 				else
1105 					pkt_len = (end_seq -
1106 						   TCP_SKB_CB(skb)->seq);
1107 				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1108 					break;
1109 				pcount = tcp_skb_pcount(skb);
1110 			}
1111 
1112 			fack_count += pcount;
1113 
1114 			sacked = TCP_SKB_CB(skb)->sacked;
1115 
1116 			/* Account D-SACK for retransmitted packet. */
1117 			if ((dup_sack && in_sack) &&
1118 			    (sacked & TCPCB_RETRANS) &&
1119 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1120 				tp->undo_retrans--;
1121 
1122 			/* The frame is ACKed. */
1123 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1124 				if (sacked&TCPCB_RETRANS) {
1125 					if ((dup_sack && in_sack) &&
1126 					    (sacked&TCPCB_SACKED_ACKED))
1127 						reord = min(fack_count, reord);
1128 				} else {
1129 					/* If it was in a hole, we detected reordering. */
1130 					if (fack_count < prior_fackets &&
1131 					    !(sacked&TCPCB_SACKED_ACKED))
1132 						reord = min(fack_count, reord);
1133 				}
1134 
1135 				/* Nothing to do; acked frame is about to be dropped. */
1136 				continue;
1137 			}
1138 
1139 			if ((sacked&TCPCB_SACKED_RETRANS) &&
1140 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1141 			    (!lost_retrans || after(end_seq, lost_retrans)))
1142 				lost_retrans = end_seq;
1143 
1144 			if (!in_sack)
1145 				continue;
1146 
1147 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1148 				if (sacked & TCPCB_SACKED_RETRANS) {
1149 					/* If the segment is not tagged as lost,
1150 					 * we do not clear RETRANS, believing
1151 					 * that retransmission is still in flight.
1152 					 */
1153 					if (sacked & TCPCB_LOST) {
1154 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1155 						tp->lost_out -= tcp_skb_pcount(skb);
1156 						tp->retrans_out -= tcp_skb_pcount(skb);
1157 
1158 						/* clear lost hint */
1159 						tp->retransmit_skb_hint = NULL;
1160 					}
1161 				} else {
1162 					/* New sack for not retransmitted frame,
1163 					 * which was in hole. It is reordering.
1164 					 */
1165 					if (!(sacked & TCPCB_RETRANS) &&
1166 					    fack_count < prior_fackets)
1167 						reord = min(fack_count, reord);
1168 
1169 					if (sacked & TCPCB_LOST) {
1170 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1171 						tp->lost_out -= tcp_skb_pcount(skb);
1172 
1173 						/* clear lost hint */
1174 						tp->retransmit_skb_hint = NULL;
1175 					}
1176 					/* SACK enhanced F-RTO detection.
1177 					 * Set flag if and only if non-rexmitted
1178 					 * segments below frto_highmark are
1179 					 * SACKed (RFC4138; Appendix B).
1180 					 * Clearing correct due to in-order walk
1181 					 */
1182 					if (after(end_seq, tp->frto_highmark)) {
1183 						flag &= ~FLAG_ONLY_ORIG_SACKED;
1184 					} else {
1185 						if (!(sacked & TCPCB_RETRANS))
1186 							flag |= FLAG_ONLY_ORIG_SACKED;
1187 					}
1188 				}
1189 
1190 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1191 				flag |= FLAG_DATA_SACKED;
1192 				tp->sacked_out += tcp_skb_pcount(skb);
1193 
1194 				if (fack_count > tp->fackets_out)
1195 					tp->fackets_out = fack_count;
1196 			} else {
1197 				if (dup_sack && (sacked&TCPCB_RETRANS))
1198 					reord = min(fack_count, reord);
1199 			}
1200 
1201 			/* D-SACK. We can detect redundant retransmission
1202 			 * in S|R and plain R frames and clear it.
1203 			 * undo_retrans is decreased above, L|R frames
1204 			 * are accounted above as well.
1205 			 */
1206 			if (dup_sack &&
1207 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1208 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1209 				tp->retrans_out -= tcp_skb_pcount(skb);
1210 				tp->retransmit_skb_hint = NULL;
1211 			}
1212 		}
1213 	}
1214 
1215 	/* Check for lost retransmit. This superb idea is
1216 	 * borrowed from "ratehalving". Event "C".
1217 	 * Later note: FACK people cheated me again 8),
1218 	 * we have to account for reordering! Ugly,
1219 	 * but should help.
1220 	 */
1221 	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1222 		struct sk_buff *skb;
1223 
1224 		tcp_for_write_queue(skb, sk) {
1225 			if (skb == tcp_send_head(sk))
1226 				break;
1227 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1228 				break;
1229 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1230 				continue;
1231 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1232 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1233 			    (IsFack(tp) ||
1234 			     !before(lost_retrans,
1235 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1236 				     tp->mss_cache))) {
1237 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1238 				tp->retrans_out -= tcp_skb_pcount(skb);
1239 
1240 				/* clear lost hint */
1241 				tp->retransmit_skb_hint = NULL;
1242 
1243 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1244 					tp->lost_out += tcp_skb_pcount(skb);
1245 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1246 					flag |= FLAG_DATA_SACKED;
1247 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1248 				}
1249 			}
1250 		}
1251 	}
1252 
1253 	tp->left_out = tp->sacked_out + tp->lost_out;
1254 
1255 	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1256 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1257 		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1258 
1259 #if FASTRETRANS_DEBUG > 0
1260 	BUG_TRAP((int)tp->sacked_out >= 0);
1261 	BUG_TRAP((int)tp->lost_out >= 0);
1262 	BUG_TRAP((int)tp->retrans_out >= 0);
1263 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1264 #endif
1265 	return flag;
1266 }
1267 
1268 /* F-RTO can only be used if TCP has never retransmitted anything other than
1269  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1270  */
1271 int tcp_use_frto(struct sock *sk)
1272 {
1273 	const struct tcp_sock *tp = tcp_sk(sk);
1274 	struct sk_buff *skb;
1275 
1276 	if (!sysctl_tcp_frto)
1277 		return 0;
1278 
1279 	if (IsSackFrto())
1280 		return 1;
1281 
1282 	/* Avoid expensive walking of rexmit queue if possible */
1283 	if (tp->retrans_out > 1)
1284 		return 0;
1285 
1286 	skb = tcp_write_queue_head(sk);
1287 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1288 	tcp_for_write_queue_from(skb, sk) {
1289 		if (skb == tcp_send_head(sk))
1290 			break;
1291 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1292 			return 0;
1293 		/* Short-circuit when first non-SACKed skb has been checked */
1294 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1295 			break;
1296 	}
1297 	return 1;
1298 }
1299 
1300 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1301  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1302  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1303  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1304  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1305  * bits are handled if the Loss state is really to be entered (in
1306  * tcp_enter_frto_loss).
1307  *
1308  * Do like tcp_enter_loss() would; when RTO expires the second time it
1309  * does:
1310  *  "Reduce ssthresh if it has not yet been made inside this window."
1311  */
1312 void tcp_enter_frto(struct sock *sk)
1313 {
1314 	const struct inet_connection_sock *icsk = inet_csk(sk);
1315 	struct tcp_sock *tp = tcp_sk(sk);
1316 	struct sk_buff *skb;
1317 
1318 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1319 	    tp->snd_una == tp->high_seq ||
1320 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1321 	     !icsk->icsk_retransmits)) {
1322 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1323 		/* Our state is too optimistic in ssthresh() call because cwnd
1324 		 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1325 		 * recovery has not yet completed. Pattern would be this: RTO,
1326 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1327 		 * up here twice).
1328 		 * RFC4138 should be more specific on what to do, even though
1329 		 * RTO is quite unlikely to occur after the first Cumulative ACK
1330 		 * due to back-off and complexity of triggering events ...
1331 		 */
1332 		if (tp->frto_counter) {
1333 			u32 stored_cwnd;
1334 			stored_cwnd = tp->snd_cwnd;
1335 			tp->snd_cwnd = 2;
1336 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1337 			tp->snd_cwnd = stored_cwnd;
1338 		} else {
1339 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1340 		}
1341 		/* ... in theory, cong.control module could do "any tricks" in
1342 		 * ssthresh(), which means that ca_state, lost bits and lost_out
1343 		 * counter would have to be faked before the call occurs. We
1344 		 * consider that too expensive, unlikely and hacky, so modules
1345 		 * using these in ssthresh() must deal these incompatibility
1346 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1347 		 */
1348 		tcp_ca_event(sk, CA_EVENT_FRTO);
1349 	}
1350 
1351 	tp->undo_marker = tp->snd_una;
1352 	tp->undo_retrans = 0;
1353 
1354 	skb = tcp_write_queue_head(sk);
1355 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1356 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1357 		tp->retrans_out -= tcp_skb_pcount(skb);
1358 	}
1359 	tcp_sync_left_out(tp);
1360 
1361 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1362 	 * The last condition is necessary at least in tp->frto_counter case.
1363 	 */
1364 	if (IsSackFrto() && (tp->frto_counter ||
1365 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1366 	    after(tp->high_seq, tp->snd_una)) {
1367 		tp->frto_highmark = tp->high_seq;
1368 	} else {
1369 		tp->frto_highmark = tp->snd_nxt;
1370 	}
1371 	tcp_set_ca_state(sk, TCP_CA_Disorder);
1372 	tp->high_seq = tp->snd_nxt;
1373 	tp->frto_counter = 1;
1374 }
1375 
1376 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1377  * which indicates that we should follow the traditional RTO recovery,
1378  * i.e. mark everything lost and do go-back-N retransmission.
1379  */
1380 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1381 {
1382 	struct tcp_sock *tp = tcp_sk(sk);
1383 	struct sk_buff *skb;
1384 	int cnt = 0;
1385 
1386 	tp->sacked_out = 0;
1387 	tp->lost_out = 0;
1388 	tp->fackets_out = 0;
1389 	tp->retrans_out = 0;
1390 
1391 	tcp_for_write_queue(skb, sk) {
1392 		if (skb == tcp_send_head(sk))
1393 			break;
1394 		cnt += tcp_skb_pcount(skb);
1395 		/*
1396 		 * Count the retransmission made on RTO correctly (only when
1397 		 * waiting for the first ACK and did not get it)...
1398 		 */
1399 		if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1400 			tp->retrans_out += tcp_skb_pcount(skb);
1401 			/* ...enter this if branch just for the first segment */
1402 			flag |= FLAG_DATA_ACKED;
1403 		} else {
1404 			TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1405 		}
1406 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1407 
1408 			/* Do not mark those segments lost that were
1409 			 * forward transmitted after RTO
1410 			 */
1411 			if (!after(TCP_SKB_CB(skb)->end_seq,
1412 				   tp->frto_highmark)) {
1413 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1414 				tp->lost_out += tcp_skb_pcount(skb);
1415 			}
1416 		} else {
1417 			tp->sacked_out += tcp_skb_pcount(skb);
1418 			tp->fackets_out = cnt;
1419 		}
1420 	}
1421 	tcp_sync_left_out(tp);
1422 
1423 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1424 	tp->snd_cwnd_cnt = 0;
1425 	tp->snd_cwnd_stamp = tcp_time_stamp;
1426 	tp->undo_marker = 0;
1427 	tp->frto_counter = 0;
1428 
1429 	tp->reordering = min_t(unsigned int, tp->reordering,
1430 					     sysctl_tcp_reordering);
1431 	tcp_set_ca_state(sk, TCP_CA_Loss);
1432 	tp->high_seq = tp->frto_highmark;
1433 	TCP_ECN_queue_cwr(tp);
1434 
1435 	clear_all_retrans_hints(tp);
1436 }
1437 
1438 void tcp_clear_retrans(struct tcp_sock *tp)
1439 {
1440 	tp->left_out = 0;
1441 	tp->retrans_out = 0;
1442 
1443 	tp->fackets_out = 0;
1444 	tp->sacked_out = 0;
1445 	tp->lost_out = 0;
1446 
1447 	tp->undo_marker = 0;
1448 	tp->undo_retrans = 0;
1449 }
1450 
1451 /* Enter Loss state. If "how" is not zero, forget all SACK information
1452  * and reset tags completely, otherwise preserve SACKs. If receiver
1453  * dropped its ofo queue, we will know this due to reneging detection.
1454  */
1455 void tcp_enter_loss(struct sock *sk, int how)
1456 {
1457 	const struct inet_connection_sock *icsk = inet_csk(sk);
1458 	struct tcp_sock *tp = tcp_sk(sk);
1459 	struct sk_buff *skb;
1460 	int cnt = 0;
1461 
1462 	/* Reduce ssthresh if it has not yet been made inside this window. */
1463 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1464 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1465 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1466 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1467 		tcp_ca_event(sk, CA_EVENT_LOSS);
1468 	}
1469 	tp->snd_cwnd	   = 1;
1470 	tp->snd_cwnd_cnt   = 0;
1471 	tp->snd_cwnd_stamp = tcp_time_stamp;
1472 
1473 	tp->bytes_acked = 0;
1474 	tcp_clear_retrans(tp);
1475 
1476 	/* Push undo marker, if it was plain RTO and nothing
1477 	 * was retransmitted. */
1478 	if (!how)
1479 		tp->undo_marker = tp->snd_una;
1480 
1481 	tcp_for_write_queue(skb, sk) {
1482 		if (skb == tcp_send_head(sk))
1483 			break;
1484 		cnt += tcp_skb_pcount(skb);
1485 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1486 			tp->undo_marker = 0;
1487 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1488 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1489 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1490 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1491 			tp->lost_out += tcp_skb_pcount(skb);
1492 		} else {
1493 			tp->sacked_out += tcp_skb_pcount(skb);
1494 			tp->fackets_out = cnt;
1495 		}
1496 	}
1497 	tcp_sync_left_out(tp);
1498 
1499 	tp->reordering = min_t(unsigned int, tp->reordering,
1500 					     sysctl_tcp_reordering);
1501 	tcp_set_ca_state(sk, TCP_CA_Loss);
1502 	tp->high_seq = tp->snd_nxt;
1503 	TCP_ECN_queue_cwr(tp);
1504 
1505 	clear_all_retrans_hints(tp);
1506 }
1507 
1508 static int tcp_check_sack_reneging(struct sock *sk)
1509 {
1510 	struct sk_buff *skb;
1511 
1512 	/* If ACK arrived pointing to a remembered SACK,
1513 	 * it means that our remembered SACKs do not reflect
1514 	 * real state of receiver i.e.
1515 	 * receiver _host_ is heavily congested (or buggy).
1516 	 * Do processing similar to RTO timeout.
1517 	 */
1518 	if ((skb = tcp_write_queue_head(sk)) != NULL &&
1519 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1520 		struct inet_connection_sock *icsk = inet_csk(sk);
1521 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1522 
1523 		tcp_enter_loss(sk, 1);
1524 		icsk->icsk_retransmits++;
1525 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1526 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1527 					  icsk->icsk_rto, TCP_RTO_MAX);
1528 		return 1;
1529 	}
1530 	return 0;
1531 }
1532 
1533 static inline int tcp_fackets_out(struct tcp_sock *tp)
1534 {
1535 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1536 }
1537 
1538 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1539 {
1540 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1541 }
1542 
1543 static inline int tcp_head_timedout(struct sock *sk)
1544 {
1545 	struct tcp_sock *tp = tcp_sk(sk);
1546 
1547 	return tp->packets_out &&
1548 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1549 }
1550 
1551 /* Linux NewReno/SACK/FACK/ECN state machine.
1552  * --------------------------------------
1553  *
1554  * "Open"	Normal state, no dubious events, fast path.
1555  * "Disorder"   In all the respects it is "Open",
1556  *		but requires a bit more attention. It is entered when
1557  *		we see some SACKs or dupacks. It is split of "Open"
1558  *		mainly to move some processing from fast path to slow one.
1559  * "CWR"	CWND was reduced due to some Congestion Notification event.
1560  *		It can be ECN, ICMP source quench, local device congestion.
1561  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1562  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1563  *
1564  * tcp_fastretrans_alert() is entered:
1565  * - each incoming ACK, if state is not "Open"
1566  * - when arrived ACK is unusual, namely:
1567  *	* SACK
1568  *	* Duplicate ACK.
1569  *	* ECN ECE.
1570  *
1571  * Counting packets in flight is pretty simple.
1572  *
1573  *	in_flight = packets_out - left_out + retrans_out
1574  *
1575  *	packets_out is SND.NXT-SND.UNA counted in packets.
1576  *
1577  *	retrans_out is number of retransmitted segments.
1578  *
1579  *	left_out is number of segments left network, but not ACKed yet.
1580  *
1581  *		left_out = sacked_out + lost_out
1582  *
1583  *     sacked_out: Packets, which arrived to receiver out of order
1584  *		   and hence not ACKed. With SACKs this number is simply
1585  *		   amount of SACKed data. Even without SACKs
1586  *		   it is easy to give pretty reliable estimate of this number,
1587  *		   counting duplicate ACKs.
1588  *
1589  *       lost_out: Packets lost by network. TCP has no explicit
1590  *		   "loss notification" feedback from network (for now).
1591  *		   It means that this number can be only _guessed_.
1592  *		   Actually, it is the heuristics to predict lossage that
1593  *		   distinguishes different algorithms.
1594  *
1595  *	F.e. after RTO, when all the queue is considered as lost,
1596  *	lost_out = packets_out and in_flight = retrans_out.
1597  *
1598  *		Essentially, we have now two algorithms counting
1599  *		lost packets.
1600  *
1601  *		FACK: It is the simplest heuristics. As soon as we decided
1602  *		that something is lost, we decide that _all_ not SACKed
1603  *		packets until the most forward SACK are lost. I.e.
1604  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1605  *		It is absolutely correct estimate, if network does not reorder
1606  *		packets. And it loses any connection to reality when reordering
1607  *		takes place. We use FACK by default until reordering
1608  *		is suspected on the path to this destination.
1609  *
1610  *		NewReno: when Recovery is entered, we assume that one segment
1611  *		is lost (classic Reno). While we are in Recovery and
1612  *		a partial ACK arrives, we assume that one more packet
1613  *		is lost (NewReno). This heuristics are the same in NewReno
1614  *		and SACK.
1615  *
1616  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1617  *  deflation etc. CWND is real congestion window, never inflated, changes
1618  *  only according to classic VJ rules.
1619  *
1620  * Really tricky (and requiring careful tuning) part of algorithm
1621  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1622  * The first determines the moment _when_ we should reduce CWND and,
1623  * hence, slow down forward transmission. In fact, it determines the moment
1624  * when we decide that hole is caused by loss, rather than by a reorder.
1625  *
1626  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1627  * holes, caused by lost packets.
1628  *
1629  * And the most logically complicated part of algorithm is undo
1630  * heuristics. We detect false retransmits due to both too early
1631  * fast retransmit (reordering) and underestimated RTO, analyzing
1632  * timestamps and D-SACKs. When we detect that some segments were
1633  * retransmitted by mistake and CWND reduction was wrong, we undo
1634  * window reduction and abort recovery phase. This logic is hidden
1635  * inside several functions named tcp_try_undo_<something>.
1636  */
1637 
1638 /* This function decides, when we should leave Disordered state
1639  * and enter Recovery phase, reducing congestion window.
1640  *
1641  * Main question: may we further continue forward transmission
1642  * with the same cwnd?
1643  */
1644 static int tcp_time_to_recover(struct sock *sk)
1645 {
1646 	struct tcp_sock *tp = tcp_sk(sk);
1647 	__u32 packets_out;
1648 
1649 	/* Do not perform any recovery during FRTO algorithm */
1650 	if (tp->frto_counter)
1651 		return 0;
1652 
1653 	/* Trick#1: The loss is proven. */
1654 	if (tp->lost_out)
1655 		return 1;
1656 
1657 	/* Not-A-Trick#2 : Classic rule... */
1658 	if (tcp_fackets_out(tp) > tp->reordering)
1659 		return 1;
1660 
1661 	/* Trick#3 : when we use RFC2988 timer restart, fast
1662 	 * retransmit can be triggered by timeout of queue head.
1663 	 */
1664 	if (tcp_head_timedout(sk))
1665 		return 1;
1666 
1667 	/* Trick#4: It is still not OK... But will it be useful to delay
1668 	 * recovery more?
1669 	 */
1670 	packets_out = tp->packets_out;
1671 	if (packets_out <= tp->reordering &&
1672 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1673 	    !tcp_may_send_now(sk)) {
1674 		/* We have nothing to send. This connection is limited
1675 		 * either by receiver window or by application.
1676 		 */
1677 		return 1;
1678 	}
1679 
1680 	return 0;
1681 }
1682 
1683 /* If we receive more dupacks than we expected counting segments
1684  * in assumption of absent reordering, interpret this as reordering.
1685  * The only another reason could be bug in receiver TCP.
1686  */
1687 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1688 {
1689 	struct tcp_sock *tp = tcp_sk(sk);
1690 	u32 holes;
1691 
1692 	holes = max(tp->lost_out, 1U);
1693 	holes = min(holes, tp->packets_out);
1694 
1695 	if ((tp->sacked_out + holes) > tp->packets_out) {
1696 		tp->sacked_out = tp->packets_out - holes;
1697 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1698 	}
1699 }
1700 
1701 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1702 
1703 static void tcp_add_reno_sack(struct sock *sk)
1704 {
1705 	struct tcp_sock *tp = tcp_sk(sk);
1706 	tp->sacked_out++;
1707 	tcp_check_reno_reordering(sk, 0);
1708 	tcp_sync_left_out(tp);
1709 }
1710 
1711 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1712 
1713 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1714 {
1715 	struct tcp_sock *tp = tcp_sk(sk);
1716 
1717 	if (acked > 0) {
1718 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1719 		if (acked-1 >= tp->sacked_out)
1720 			tp->sacked_out = 0;
1721 		else
1722 			tp->sacked_out -= acked-1;
1723 	}
1724 	tcp_check_reno_reordering(sk, acked);
1725 	tcp_sync_left_out(tp);
1726 }
1727 
1728 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1729 {
1730 	tp->sacked_out = 0;
1731 	tp->left_out = tp->lost_out;
1732 }
1733 
1734 /* Mark head of queue up as lost. */
1735 static void tcp_mark_head_lost(struct sock *sk,
1736 			       int packets, u32 high_seq)
1737 {
1738 	struct tcp_sock *tp = tcp_sk(sk);
1739 	struct sk_buff *skb;
1740 	int cnt;
1741 
1742 	BUG_TRAP(packets <= tp->packets_out);
1743 	if (tp->lost_skb_hint) {
1744 		skb = tp->lost_skb_hint;
1745 		cnt = tp->lost_cnt_hint;
1746 	} else {
1747 		skb = tcp_write_queue_head(sk);
1748 		cnt = 0;
1749 	}
1750 
1751 	tcp_for_write_queue_from(skb, sk) {
1752 		if (skb == tcp_send_head(sk))
1753 			break;
1754 		/* TODO: do this better */
1755 		/* this is not the most efficient way to do this... */
1756 		tp->lost_skb_hint = skb;
1757 		tp->lost_cnt_hint = cnt;
1758 		cnt += tcp_skb_pcount(skb);
1759 		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1760 			break;
1761 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1762 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1763 			tp->lost_out += tcp_skb_pcount(skb);
1764 
1765 			/* clear xmit_retransmit_queue hints
1766 			 *  if this is beyond hint */
1767 			if (tp->retransmit_skb_hint != NULL &&
1768 			    before(TCP_SKB_CB(skb)->seq,
1769 				   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1770 				tp->retransmit_skb_hint = NULL;
1771 
1772 		}
1773 	}
1774 	tcp_sync_left_out(tp);
1775 }
1776 
1777 /* Account newly detected lost packet(s) */
1778 
1779 static void tcp_update_scoreboard(struct sock *sk)
1780 {
1781 	struct tcp_sock *tp = tcp_sk(sk);
1782 
1783 	if (IsFack(tp)) {
1784 		int lost = tp->fackets_out - tp->reordering;
1785 		if (lost <= 0)
1786 			lost = 1;
1787 		tcp_mark_head_lost(sk, lost, tp->high_seq);
1788 	} else {
1789 		tcp_mark_head_lost(sk, 1, tp->high_seq);
1790 	}
1791 
1792 	/* New heuristics: it is possible only after we switched
1793 	 * to restart timer each time when something is ACKed.
1794 	 * Hence, we can detect timed out packets during fast
1795 	 * retransmit without falling to slow start.
1796 	 */
1797 	if (!IsReno(tp) && tcp_head_timedout(sk)) {
1798 		struct sk_buff *skb;
1799 
1800 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1801 			: tcp_write_queue_head(sk);
1802 
1803 		tcp_for_write_queue_from(skb, sk) {
1804 			if (skb == tcp_send_head(sk))
1805 				break;
1806 			if (!tcp_skb_timedout(sk, skb))
1807 				break;
1808 
1809 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1810 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1811 				tp->lost_out += tcp_skb_pcount(skb);
1812 
1813 				/* clear xmit_retrans hint */
1814 				if (tp->retransmit_skb_hint &&
1815 				    before(TCP_SKB_CB(skb)->seq,
1816 					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1817 
1818 					tp->retransmit_skb_hint = NULL;
1819 			}
1820 		}
1821 
1822 		tp->scoreboard_skb_hint = skb;
1823 
1824 		tcp_sync_left_out(tp);
1825 	}
1826 }
1827 
1828 /* CWND moderation, preventing bursts due to too big ACKs
1829  * in dubious situations.
1830  */
1831 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1832 {
1833 	tp->snd_cwnd = min(tp->snd_cwnd,
1834 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1835 	tp->snd_cwnd_stamp = tcp_time_stamp;
1836 }
1837 
1838 /* Lower bound on congestion window is slow start threshold
1839  * unless congestion avoidance choice decides to overide it.
1840  */
1841 static inline u32 tcp_cwnd_min(const struct sock *sk)
1842 {
1843 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1844 
1845 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1846 }
1847 
1848 /* Decrease cwnd each second ack. */
1849 static void tcp_cwnd_down(struct sock *sk)
1850 {
1851 	struct tcp_sock *tp = tcp_sk(sk);
1852 	int decr = tp->snd_cwnd_cnt + 1;
1853 
1854 	tp->snd_cwnd_cnt = decr&1;
1855 	decr >>= 1;
1856 
1857 	if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1858 		tp->snd_cwnd -= decr;
1859 
1860 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1861 	tp->snd_cwnd_stamp = tcp_time_stamp;
1862 }
1863 
1864 /* Nothing was retransmitted or returned timestamp is less
1865  * than timestamp of the first retransmission.
1866  */
1867 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1868 {
1869 	return !tp->retrans_stamp ||
1870 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1871 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1872 }
1873 
1874 /* Undo procedures. */
1875 
1876 #if FASTRETRANS_DEBUG > 1
1877 static void DBGUNDO(struct sock *sk, const char *msg)
1878 {
1879 	struct tcp_sock *tp = tcp_sk(sk);
1880 	struct inet_sock *inet = inet_sk(sk);
1881 
1882 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1883 	       msg,
1884 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1885 	       tp->snd_cwnd, tp->left_out,
1886 	       tp->snd_ssthresh, tp->prior_ssthresh,
1887 	       tp->packets_out);
1888 }
1889 #else
1890 #define DBGUNDO(x...) do { } while (0)
1891 #endif
1892 
1893 static void tcp_undo_cwr(struct sock *sk, const int undo)
1894 {
1895 	struct tcp_sock *tp = tcp_sk(sk);
1896 
1897 	if (tp->prior_ssthresh) {
1898 		const struct inet_connection_sock *icsk = inet_csk(sk);
1899 
1900 		if (icsk->icsk_ca_ops->undo_cwnd)
1901 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1902 		else
1903 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1904 
1905 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1906 			tp->snd_ssthresh = tp->prior_ssthresh;
1907 			TCP_ECN_withdraw_cwr(tp);
1908 		}
1909 	} else {
1910 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1911 	}
1912 	tcp_moderate_cwnd(tp);
1913 	tp->snd_cwnd_stamp = tcp_time_stamp;
1914 
1915 	/* There is something screwy going on with the retrans hints after
1916 	   an undo */
1917 	clear_all_retrans_hints(tp);
1918 }
1919 
1920 static inline int tcp_may_undo(struct tcp_sock *tp)
1921 {
1922 	return tp->undo_marker &&
1923 		(!tp->undo_retrans || tcp_packet_delayed(tp));
1924 }
1925 
1926 /* People celebrate: "We love our President!" */
1927 static int tcp_try_undo_recovery(struct sock *sk)
1928 {
1929 	struct tcp_sock *tp = tcp_sk(sk);
1930 
1931 	if (tcp_may_undo(tp)) {
1932 		/* Happy end! We did not retransmit anything
1933 		 * or our original transmission succeeded.
1934 		 */
1935 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1936 		tcp_undo_cwr(sk, 1);
1937 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1938 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1939 		else
1940 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1941 		tp->undo_marker = 0;
1942 	}
1943 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1944 		/* Hold old state until something *above* high_seq
1945 		 * is ACKed. For Reno it is MUST to prevent false
1946 		 * fast retransmits (RFC2582). SACK TCP is safe. */
1947 		tcp_moderate_cwnd(tp);
1948 		return 1;
1949 	}
1950 	tcp_set_ca_state(sk, TCP_CA_Open);
1951 	return 0;
1952 }
1953 
1954 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1955 static void tcp_try_undo_dsack(struct sock *sk)
1956 {
1957 	struct tcp_sock *tp = tcp_sk(sk);
1958 
1959 	if (tp->undo_marker && !tp->undo_retrans) {
1960 		DBGUNDO(sk, "D-SACK");
1961 		tcp_undo_cwr(sk, 1);
1962 		tp->undo_marker = 0;
1963 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1964 	}
1965 }
1966 
1967 /* Undo during fast recovery after partial ACK. */
1968 
1969 static int tcp_try_undo_partial(struct sock *sk, int acked)
1970 {
1971 	struct tcp_sock *tp = tcp_sk(sk);
1972 	/* Partial ACK arrived. Force Hoe's retransmit. */
1973 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1974 
1975 	if (tcp_may_undo(tp)) {
1976 		/* Plain luck! Hole if filled with delayed
1977 		 * packet, rather than with a retransmit.
1978 		 */
1979 		if (tp->retrans_out == 0)
1980 			tp->retrans_stamp = 0;
1981 
1982 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1983 
1984 		DBGUNDO(sk, "Hoe");
1985 		tcp_undo_cwr(sk, 0);
1986 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1987 
1988 		/* So... Do not make Hoe's retransmit yet.
1989 		 * If the first packet was delayed, the rest
1990 		 * ones are most probably delayed as well.
1991 		 */
1992 		failed = 0;
1993 	}
1994 	return failed;
1995 }
1996 
1997 /* Undo during loss recovery after partial ACK. */
1998 static int tcp_try_undo_loss(struct sock *sk)
1999 {
2000 	struct tcp_sock *tp = tcp_sk(sk);
2001 
2002 	if (tcp_may_undo(tp)) {
2003 		struct sk_buff *skb;
2004 		tcp_for_write_queue(skb, sk) {
2005 			if (skb == tcp_send_head(sk))
2006 				break;
2007 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2008 		}
2009 
2010 		clear_all_retrans_hints(tp);
2011 
2012 		DBGUNDO(sk, "partial loss");
2013 		tp->lost_out = 0;
2014 		tp->left_out = tp->sacked_out;
2015 		tcp_undo_cwr(sk, 1);
2016 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2017 		inet_csk(sk)->icsk_retransmits = 0;
2018 		tp->undo_marker = 0;
2019 		if (!IsReno(tp))
2020 			tcp_set_ca_state(sk, TCP_CA_Open);
2021 		return 1;
2022 	}
2023 	return 0;
2024 }
2025 
2026 static inline void tcp_complete_cwr(struct sock *sk)
2027 {
2028 	struct tcp_sock *tp = tcp_sk(sk);
2029 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2030 	tp->snd_cwnd_stamp = tcp_time_stamp;
2031 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2032 }
2033 
2034 static void tcp_try_to_open(struct sock *sk, int flag)
2035 {
2036 	struct tcp_sock *tp = tcp_sk(sk);
2037 
2038 	tp->left_out = tp->sacked_out;
2039 
2040 	if (tp->retrans_out == 0)
2041 		tp->retrans_stamp = 0;
2042 
2043 	if (flag&FLAG_ECE)
2044 		tcp_enter_cwr(sk, 1);
2045 
2046 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2047 		int state = TCP_CA_Open;
2048 
2049 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
2050 			state = TCP_CA_Disorder;
2051 
2052 		if (inet_csk(sk)->icsk_ca_state != state) {
2053 			tcp_set_ca_state(sk, state);
2054 			tp->high_seq = tp->snd_nxt;
2055 		}
2056 		tcp_moderate_cwnd(tp);
2057 	} else {
2058 		tcp_cwnd_down(sk);
2059 	}
2060 }
2061 
2062 static void tcp_mtup_probe_failed(struct sock *sk)
2063 {
2064 	struct inet_connection_sock *icsk = inet_csk(sk);
2065 
2066 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2067 	icsk->icsk_mtup.probe_size = 0;
2068 }
2069 
2070 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2071 {
2072 	struct tcp_sock *tp = tcp_sk(sk);
2073 	struct inet_connection_sock *icsk = inet_csk(sk);
2074 
2075 	/* FIXME: breaks with very large cwnd */
2076 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2077 	tp->snd_cwnd = tp->snd_cwnd *
2078 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2079 		       icsk->icsk_mtup.probe_size;
2080 	tp->snd_cwnd_cnt = 0;
2081 	tp->snd_cwnd_stamp = tcp_time_stamp;
2082 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2083 
2084 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2085 	icsk->icsk_mtup.probe_size = 0;
2086 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2087 }
2088 
2089 
2090 /* Process an event, which can update packets-in-flight not trivially.
2091  * Main goal of this function is to calculate new estimate for left_out,
2092  * taking into account both packets sitting in receiver's buffer and
2093  * packets lost by network.
2094  *
2095  * Besides that it does CWND reduction, when packet loss is detected
2096  * and changes state of machine.
2097  *
2098  * It does _not_ decide what to send, it is made in function
2099  * tcp_xmit_retransmit_queue().
2100  */
2101 static void
2102 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2103 		      int prior_packets, int flag)
2104 {
2105 	struct inet_connection_sock *icsk = inet_csk(sk);
2106 	struct tcp_sock *tp = tcp_sk(sk);
2107 	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
2108 
2109 	/* Some technical things:
2110 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
2111 	if (!tp->packets_out)
2112 		tp->sacked_out = 0;
2113 	/* 2. SACK counts snd_fack in packets inaccurately. */
2114 	if (tp->sacked_out == 0)
2115 		tp->fackets_out = 0;
2116 
2117 	/* Now state machine starts.
2118 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2119 	if (flag&FLAG_ECE)
2120 		tp->prior_ssthresh = 0;
2121 
2122 	/* B. In all the states check for reneging SACKs. */
2123 	if (tp->sacked_out && tcp_check_sack_reneging(sk))
2124 		return;
2125 
2126 	/* C. Process data loss notification, provided it is valid. */
2127 	if ((flag&FLAG_DATA_LOST) &&
2128 	    before(tp->snd_una, tp->high_seq) &&
2129 	    icsk->icsk_ca_state != TCP_CA_Open &&
2130 	    tp->fackets_out > tp->reordering) {
2131 		tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2132 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2133 	}
2134 
2135 	/* D. Synchronize left_out to current state. */
2136 	tcp_sync_left_out(tp);
2137 
2138 	/* E. Check state exit conditions. State can be terminated
2139 	 *    when high_seq is ACKed. */
2140 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2141 		BUG_TRAP(tp->retrans_out == 0);
2142 		tp->retrans_stamp = 0;
2143 	} else if (!before(tp->snd_una, tp->high_seq)) {
2144 		switch (icsk->icsk_ca_state) {
2145 		case TCP_CA_Loss:
2146 			icsk->icsk_retransmits = 0;
2147 			if (tcp_try_undo_recovery(sk))
2148 				return;
2149 			break;
2150 
2151 		case TCP_CA_CWR:
2152 			/* CWR is to be held something *above* high_seq
2153 			 * is ACKed for CWR bit to reach receiver. */
2154 			if (tp->snd_una != tp->high_seq) {
2155 				tcp_complete_cwr(sk);
2156 				tcp_set_ca_state(sk, TCP_CA_Open);
2157 			}
2158 			break;
2159 
2160 		case TCP_CA_Disorder:
2161 			tcp_try_undo_dsack(sk);
2162 			if (!tp->undo_marker ||
2163 			    /* For SACK case do not Open to allow to undo
2164 			     * catching for all duplicate ACKs. */
2165 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
2166 				tp->undo_marker = 0;
2167 				tcp_set_ca_state(sk, TCP_CA_Open);
2168 			}
2169 			break;
2170 
2171 		case TCP_CA_Recovery:
2172 			if (IsReno(tp))
2173 				tcp_reset_reno_sack(tp);
2174 			if (tcp_try_undo_recovery(sk))
2175 				return;
2176 			tcp_complete_cwr(sk);
2177 			break;
2178 		}
2179 	}
2180 
2181 	/* F. Process state. */
2182 	switch (icsk->icsk_ca_state) {
2183 	case TCP_CA_Recovery:
2184 		if (prior_snd_una == tp->snd_una) {
2185 			if (IsReno(tp) && is_dupack)
2186 				tcp_add_reno_sack(sk);
2187 		} else {
2188 			int acked = prior_packets - tp->packets_out;
2189 			if (IsReno(tp))
2190 				tcp_remove_reno_sacks(sk, acked);
2191 			is_dupack = tcp_try_undo_partial(sk, acked);
2192 		}
2193 		break;
2194 	case TCP_CA_Loss:
2195 		if (flag&FLAG_DATA_ACKED)
2196 			icsk->icsk_retransmits = 0;
2197 		if (!tcp_try_undo_loss(sk)) {
2198 			tcp_moderate_cwnd(tp);
2199 			tcp_xmit_retransmit_queue(sk);
2200 			return;
2201 		}
2202 		if (icsk->icsk_ca_state != TCP_CA_Open)
2203 			return;
2204 		/* Loss is undone; fall through to processing in Open state. */
2205 	default:
2206 		if (IsReno(tp)) {
2207 			if (tp->snd_una != prior_snd_una)
2208 				tcp_reset_reno_sack(tp);
2209 			if (is_dupack)
2210 				tcp_add_reno_sack(sk);
2211 		}
2212 
2213 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2214 			tcp_try_undo_dsack(sk);
2215 
2216 		if (!tcp_time_to_recover(sk)) {
2217 			tcp_try_to_open(sk, flag);
2218 			return;
2219 		}
2220 
2221 		/* MTU probe failure: don't reduce cwnd */
2222 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2223 		    icsk->icsk_mtup.probe_size &&
2224 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2225 			tcp_mtup_probe_failed(sk);
2226 			/* Restores the reduction we did in tcp_mtup_probe() */
2227 			tp->snd_cwnd++;
2228 			tcp_simple_retransmit(sk);
2229 			return;
2230 		}
2231 
2232 		/* Otherwise enter Recovery state */
2233 
2234 		if (IsReno(tp))
2235 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2236 		else
2237 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2238 
2239 		tp->high_seq = tp->snd_nxt;
2240 		tp->prior_ssthresh = 0;
2241 		tp->undo_marker = tp->snd_una;
2242 		tp->undo_retrans = tp->retrans_out;
2243 
2244 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2245 			if (!(flag&FLAG_ECE))
2246 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2247 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2248 			TCP_ECN_queue_cwr(tp);
2249 		}
2250 
2251 		tp->bytes_acked = 0;
2252 		tp->snd_cwnd_cnt = 0;
2253 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2254 	}
2255 
2256 	if (is_dupack || tcp_head_timedout(sk))
2257 		tcp_update_scoreboard(sk);
2258 	tcp_cwnd_down(sk);
2259 	tcp_xmit_retransmit_queue(sk);
2260 }
2261 
2262 /* Read draft-ietf-tcplw-high-performance before mucking
2263  * with this code. (Supersedes RFC1323)
2264  */
2265 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2266 {
2267 	/* RTTM Rule: A TSecr value received in a segment is used to
2268 	 * update the averaged RTT measurement only if the segment
2269 	 * acknowledges some new data, i.e., only if it advances the
2270 	 * left edge of the send window.
2271 	 *
2272 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2273 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2274 	 *
2275 	 * Changed: reset backoff as soon as we see the first valid sample.
2276 	 * If we do not, we get strongly overestimated rto. With timestamps
2277 	 * samples are accepted even from very old segments: f.e., when rtt=1
2278 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2279 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2280 	 * in window is lost... Voila.	 			--ANK (010210)
2281 	 */
2282 	struct tcp_sock *tp = tcp_sk(sk);
2283 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2284 	tcp_rtt_estimator(sk, seq_rtt);
2285 	tcp_set_rto(sk);
2286 	inet_csk(sk)->icsk_backoff = 0;
2287 	tcp_bound_rto(sk);
2288 }
2289 
2290 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2291 {
2292 	/* We don't have a timestamp. Can only use
2293 	 * packets that are not retransmitted to determine
2294 	 * rtt estimates. Also, we must not reset the
2295 	 * backoff for rto until we get a non-retransmitted
2296 	 * packet. This allows us to deal with a situation
2297 	 * where the network delay has increased suddenly.
2298 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2299 	 */
2300 
2301 	if (flag & FLAG_RETRANS_DATA_ACKED)
2302 		return;
2303 
2304 	tcp_rtt_estimator(sk, seq_rtt);
2305 	tcp_set_rto(sk);
2306 	inet_csk(sk)->icsk_backoff = 0;
2307 	tcp_bound_rto(sk);
2308 }
2309 
2310 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2311 				      const s32 seq_rtt)
2312 {
2313 	const struct tcp_sock *tp = tcp_sk(sk);
2314 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2315 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2316 		tcp_ack_saw_tstamp(sk, flag);
2317 	else if (seq_rtt >= 0)
2318 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2319 }
2320 
2321 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2322 			   u32 in_flight, int good)
2323 {
2324 	const struct inet_connection_sock *icsk = inet_csk(sk);
2325 	icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2326 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2327 }
2328 
2329 /* Restart timer after forward progress on connection.
2330  * RFC2988 recommends to restart timer to now+rto.
2331  */
2332 
2333 static void tcp_ack_packets_out(struct sock *sk)
2334 {
2335 	struct tcp_sock *tp = tcp_sk(sk);
2336 
2337 	if (!tp->packets_out) {
2338 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2339 	} else {
2340 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2341 	}
2342 }
2343 
2344 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2345 			 __u32 now, __s32 *seq_rtt)
2346 {
2347 	struct tcp_sock *tp = tcp_sk(sk);
2348 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2349 	__u32 seq = tp->snd_una;
2350 	__u32 packets_acked;
2351 	int acked = 0;
2352 
2353 	/* If we get here, the whole TSO packet has not been
2354 	 * acked.
2355 	 */
2356 	BUG_ON(!after(scb->end_seq, seq));
2357 
2358 	packets_acked = tcp_skb_pcount(skb);
2359 	if (tcp_trim_head(sk, skb, seq - scb->seq))
2360 		return 0;
2361 	packets_acked -= tcp_skb_pcount(skb);
2362 
2363 	if (packets_acked) {
2364 		__u8 sacked = scb->sacked;
2365 
2366 		acked |= FLAG_DATA_ACKED;
2367 		if (sacked) {
2368 			if (sacked & TCPCB_RETRANS) {
2369 				if (sacked & TCPCB_SACKED_RETRANS)
2370 					tp->retrans_out -= packets_acked;
2371 				acked |= FLAG_RETRANS_DATA_ACKED;
2372 				*seq_rtt = -1;
2373 			} else if (*seq_rtt < 0)
2374 				*seq_rtt = now - scb->when;
2375 			if (sacked & TCPCB_SACKED_ACKED)
2376 				tp->sacked_out -= packets_acked;
2377 			if (sacked & TCPCB_LOST)
2378 				tp->lost_out -= packets_acked;
2379 			if (sacked & TCPCB_URG) {
2380 				if (tp->urg_mode &&
2381 				    !before(seq, tp->snd_up))
2382 					tp->urg_mode = 0;
2383 			}
2384 		} else if (*seq_rtt < 0)
2385 			*seq_rtt = now - scb->when;
2386 
2387 		if (tp->fackets_out) {
2388 			__u32 dval = min(tp->fackets_out, packets_acked);
2389 			tp->fackets_out -= dval;
2390 		}
2391 		tp->packets_out -= packets_acked;
2392 
2393 		BUG_ON(tcp_skb_pcount(skb) == 0);
2394 		BUG_ON(!before(scb->seq, scb->end_seq));
2395 	}
2396 
2397 	return acked;
2398 }
2399 
2400 /* Remove acknowledged frames from the retransmission queue. */
2401 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2402 {
2403 	struct tcp_sock *tp = tcp_sk(sk);
2404 	const struct inet_connection_sock *icsk = inet_csk(sk);
2405 	struct sk_buff *skb;
2406 	__u32 now = tcp_time_stamp;
2407 	int acked = 0;
2408 	__s32 seq_rtt = -1;
2409 	u32 pkts_acked = 0;
2410 	ktime_t last_ackt = ktime_set(0,0);
2411 
2412 	while ((skb = tcp_write_queue_head(sk)) &&
2413 	       skb != tcp_send_head(sk)) {
2414 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2415 		__u8 sacked = scb->sacked;
2416 
2417 		/* If our packet is before the ack sequence we can
2418 		 * discard it as it's confirmed to have arrived at
2419 		 * the other end.
2420 		 */
2421 		if (after(scb->end_seq, tp->snd_una)) {
2422 			if (tcp_skb_pcount(skb) > 1 &&
2423 			    after(tp->snd_una, scb->seq))
2424 				acked |= tcp_tso_acked(sk, skb,
2425 						       now, &seq_rtt);
2426 			break;
2427 		}
2428 
2429 		/* Initial outgoing SYN's get put onto the write_queue
2430 		 * just like anything else we transmit.  It is not
2431 		 * true data, and if we misinform our callers that
2432 		 * this ACK acks real data, we will erroneously exit
2433 		 * connection startup slow start one packet too
2434 		 * quickly.  This is severely frowned upon behavior.
2435 		 */
2436 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2437 			acked |= FLAG_DATA_ACKED;
2438 			++pkts_acked;
2439 		} else {
2440 			acked |= FLAG_SYN_ACKED;
2441 			tp->retrans_stamp = 0;
2442 		}
2443 
2444 		/* MTU probing checks */
2445 		if (icsk->icsk_mtup.probe_size) {
2446 			if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2447 				tcp_mtup_probe_success(sk, skb);
2448 			}
2449 		}
2450 
2451 		if (sacked) {
2452 			if (sacked & TCPCB_RETRANS) {
2453 				if (sacked & TCPCB_SACKED_RETRANS)
2454 					tp->retrans_out -= tcp_skb_pcount(skb);
2455 				acked |= FLAG_RETRANS_DATA_ACKED;
2456 				seq_rtt = -1;
2457 			} else if (seq_rtt < 0) {
2458 				seq_rtt = now - scb->when;
2459 				last_ackt = skb->tstamp;
2460 			}
2461 			if (sacked & TCPCB_SACKED_ACKED)
2462 				tp->sacked_out -= tcp_skb_pcount(skb);
2463 			if (sacked & TCPCB_LOST)
2464 				tp->lost_out -= tcp_skb_pcount(skb);
2465 			if (sacked & TCPCB_URG) {
2466 				if (tp->urg_mode &&
2467 				    !before(scb->end_seq, tp->snd_up))
2468 					tp->urg_mode = 0;
2469 			}
2470 		} else if (seq_rtt < 0) {
2471 			seq_rtt = now - scb->when;
2472 			last_ackt = skb->tstamp;
2473 		}
2474 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2475 		tcp_packets_out_dec(tp, skb);
2476 		tcp_unlink_write_queue(skb, sk);
2477 		sk_stream_free_skb(sk, skb);
2478 		clear_all_retrans_hints(tp);
2479 	}
2480 
2481 	if (acked&FLAG_ACKED) {
2482 		const struct tcp_congestion_ops *ca_ops
2483 			= inet_csk(sk)->icsk_ca_ops;
2484 
2485 		tcp_ack_update_rtt(sk, acked, seq_rtt);
2486 		tcp_ack_packets_out(sk);
2487 
2488 		if (ca_ops->pkts_acked)
2489 			ca_ops->pkts_acked(sk, pkts_acked, last_ackt);
2490 	}
2491 
2492 #if FASTRETRANS_DEBUG > 0
2493 	BUG_TRAP((int)tp->sacked_out >= 0);
2494 	BUG_TRAP((int)tp->lost_out >= 0);
2495 	BUG_TRAP((int)tp->retrans_out >= 0);
2496 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2497 		const struct inet_connection_sock *icsk = inet_csk(sk);
2498 		if (tp->lost_out) {
2499 			printk(KERN_DEBUG "Leak l=%u %d\n",
2500 			       tp->lost_out, icsk->icsk_ca_state);
2501 			tp->lost_out = 0;
2502 		}
2503 		if (tp->sacked_out) {
2504 			printk(KERN_DEBUG "Leak s=%u %d\n",
2505 			       tp->sacked_out, icsk->icsk_ca_state);
2506 			tp->sacked_out = 0;
2507 		}
2508 		if (tp->retrans_out) {
2509 			printk(KERN_DEBUG "Leak r=%u %d\n",
2510 			       tp->retrans_out, icsk->icsk_ca_state);
2511 			tp->retrans_out = 0;
2512 		}
2513 	}
2514 #endif
2515 	*seq_rtt_p = seq_rtt;
2516 	return acked;
2517 }
2518 
2519 static void tcp_ack_probe(struct sock *sk)
2520 {
2521 	const struct tcp_sock *tp = tcp_sk(sk);
2522 	struct inet_connection_sock *icsk = inet_csk(sk);
2523 
2524 	/* Was it a usable window open? */
2525 
2526 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2527 		   tp->snd_una + tp->snd_wnd)) {
2528 		icsk->icsk_backoff = 0;
2529 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2530 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2531 		 * This function is not for random using!
2532 		 */
2533 	} else {
2534 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2535 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2536 					  TCP_RTO_MAX);
2537 	}
2538 }
2539 
2540 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2541 {
2542 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2543 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2544 }
2545 
2546 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2547 {
2548 	const struct tcp_sock *tp = tcp_sk(sk);
2549 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2550 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2551 }
2552 
2553 /* Check that window update is acceptable.
2554  * The function assumes that snd_una<=ack<=snd_next.
2555  */
2556 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2557 					const u32 ack_seq, const u32 nwin)
2558 {
2559 	return (after(ack, tp->snd_una) ||
2560 		after(ack_seq, tp->snd_wl1) ||
2561 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2562 }
2563 
2564 /* Update our send window.
2565  *
2566  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2567  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2568  */
2569 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2570 				 u32 ack_seq)
2571 {
2572 	struct tcp_sock *tp = tcp_sk(sk);
2573 	int flag = 0;
2574 	u32 nwin = ntohs(tcp_hdr(skb)->window);
2575 
2576 	if (likely(!tcp_hdr(skb)->syn))
2577 		nwin <<= tp->rx_opt.snd_wscale;
2578 
2579 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2580 		flag |= FLAG_WIN_UPDATE;
2581 		tcp_update_wl(tp, ack, ack_seq);
2582 
2583 		if (tp->snd_wnd != nwin) {
2584 			tp->snd_wnd = nwin;
2585 
2586 			/* Note, it is the only place, where
2587 			 * fast path is recovered for sending TCP.
2588 			 */
2589 			tp->pred_flags = 0;
2590 			tcp_fast_path_check(sk);
2591 
2592 			if (nwin > tp->max_window) {
2593 				tp->max_window = nwin;
2594 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2595 			}
2596 		}
2597 	}
2598 
2599 	tp->snd_una = ack;
2600 
2601 	return flag;
2602 }
2603 
2604 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2605  * continue in congestion avoidance.
2606  */
2607 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2608 {
2609 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2610 	tp->snd_cwnd_cnt = 0;
2611 	tcp_moderate_cwnd(tp);
2612 }
2613 
2614 /* A conservative spurious RTO response algorithm: reduce cwnd using
2615  * rate halving and continue in congestion avoidance.
2616  */
2617 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2618 {
2619 	tcp_enter_cwr(sk, 0);
2620 }
2621 
2622 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2623 {
2624 	if (flag&FLAG_ECE)
2625 		tcp_ratehalving_spur_to_response(sk);
2626 	else
2627 		tcp_undo_cwr(sk, 1);
2628 }
2629 
2630 /* F-RTO spurious RTO detection algorithm (RFC4138)
2631  *
2632  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2633  * comments). State (ACK number) is kept in frto_counter. When ACK advances
2634  * window (but not to or beyond highest sequence sent before RTO):
2635  *   On First ACK,  send two new segments out.
2636  *   On Second ACK, RTO was likely spurious. Do spurious response (response
2637  *                  algorithm is not part of the F-RTO detection algorithm
2638  *                  given in RFC4138 but can be selected separately).
2639  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2640  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2641  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2642  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2643  *
2644  * Rationale: if the RTO was spurious, new ACKs should arrive from the
2645  * original window even after we transmit two new data segments.
2646  *
2647  * SACK version:
2648  *   on first step, wait until first cumulative ACK arrives, then move to
2649  *   the second step. In second step, the next ACK decides.
2650  *
2651  * F-RTO is implemented (mainly) in four functions:
2652  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
2653  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2654  *     called when tcp_use_frto() showed green light
2655  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2656  *   - tcp_enter_frto_loss() is called if there is not enough evidence
2657  *     to prove that the RTO is indeed spurious. It transfers the control
2658  *     from F-RTO to the conventional RTO recovery
2659  */
2660 static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
2661 {
2662 	struct tcp_sock *tp = tcp_sk(sk);
2663 
2664 	tcp_sync_left_out(tp);
2665 
2666 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
2667 	if (flag&FLAG_DATA_ACKED)
2668 		inet_csk(sk)->icsk_retransmits = 0;
2669 
2670 	if (!before(tp->snd_una, tp->frto_highmark)) {
2671 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2672 		return 1;
2673 	}
2674 
2675 	if (!IsSackFrto() || IsReno(tp)) {
2676 		/* RFC4138 shortcoming in step 2; should also have case c):
2677 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
2678 		 * data, winupdate
2679 		 */
2680 		if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2681 		    !(flag&FLAG_FORWARD_PROGRESS))
2682 			return 1;
2683 
2684 		if (!(flag&FLAG_DATA_ACKED)) {
2685 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2686 					    flag);
2687 			return 1;
2688 		}
2689 	} else {
2690 		if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2691 			/* Prevent sending of new data. */
2692 			tp->snd_cwnd = min(tp->snd_cwnd,
2693 					   tcp_packets_in_flight(tp));
2694 			return 1;
2695 		}
2696 
2697 		if ((tp->frto_counter >= 2) &&
2698 		    (!(flag&FLAG_FORWARD_PROGRESS) ||
2699 		     ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2700 			/* RFC4138 shortcoming (see comment above) */
2701 			if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2702 				return 1;
2703 
2704 			tcp_enter_frto_loss(sk, 3, flag);
2705 			return 1;
2706 		}
2707 	}
2708 
2709 	if (tp->frto_counter == 1) {
2710 		/* Sending of the next skb must be allowed or no FRTO */
2711 		if (!tcp_send_head(sk) ||
2712 		    after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2713 				     tp->snd_una + tp->snd_wnd)) {
2714 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2715 					    flag);
2716 			return 1;
2717 		}
2718 
2719 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2720 		tp->frto_counter = 2;
2721 		return 1;
2722 	} else {
2723 		switch (sysctl_tcp_frto_response) {
2724 		case 2:
2725 			tcp_undo_spur_to_response(sk, flag);
2726 			break;
2727 		case 1:
2728 			tcp_conservative_spur_to_response(tp);
2729 			break;
2730 		default:
2731 			tcp_ratehalving_spur_to_response(sk);
2732 			break;
2733 		}
2734 		tp->frto_counter = 0;
2735 	}
2736 	return 0;
2737 }
2738 
2739 /* This routine deals with incoming acks, but not outgoing ones. */
2740 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2741 {
2742 	struct inet_connection_sock *icsk = inet_csk(sk);
2743 	struct tcp_sock *tp = tcp_sk(sk);
2744 	u32 prior_snd_una = tp->snd_una;
2745 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2746 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2747 	u32 prior_in_flight;
2748 	s32 seq_rtt;
2749 	int prior_packets;
2750 	int frto_cwnd = 0;
2751 
2752 	/* If the ack is newer than sent or older than previous acks
2753 	 * then we can probably ignore it.
2754 	 */
2755 	if (after(ack, tp->snd_nxt))
2756 		goto uninteresting_ack;
2757 
2758 	if (before(ack, prior_snd_una))
2759 		goto old_ack;
2760 
2761 	if (sysctl_tcp_abc) {
2762 		if (icsk->icsk_ca_state < TCP_CA_CWR)
2763 			tp->bytes_acked += ack - prior_snd_una;
2764 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
2765 			/* we assume just one segment left network */
2766 			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2767 	}
2768 
2769 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2770 		/* Window is constant, pure forward advance.
2771 		 * No more checks are required.
2772 		 * Note, we use the fact that SND.UNA>=SND.WL2.
2773 		 */
2774 		tcp_update_wl(tp, ack, ack_seq);
2775 		tp->snd_una = ack;
2776 		flag |= FLAG_WIN_UPDATE;
2777 
2778 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2779 
2780 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2781 	} else {
2782 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2783 			flag |= FLAG_DATA;
2784 		else
2785 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2786 
2787 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
2788 
2789 		if (TCP_SKB_CB(skb)->sacked)
2790 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2791 
2792 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
2793 			flag |= FLAG_ECE;
2794 
2795 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2796 	}
2797 
2798 	/* We passed data and got it acked, remove any soft error
2799 	 * log. Something worked...
2800 	 */
2801 	sk->sk_err_soft = 0;
2802 	tp->rcv_tstamp = tcp_time_stamp;
2803 	prior_packets = tp->packets_out;
2804 	if (!prior_packets)
2805 		goto no_queue;
2806 
2807 	prior_in_flight = tcp_packets_in_flight(tp);
2808 
2809 	/* See if we can take anything off of the retransmit queue. */
2810 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2811 
2812 	if (tp->frto_counter)
2813 		frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
2814 
2815 	if (tcp_ack_is_dubious(sk, flag)) {
2816 		/* Advance CWND, if state allows this. */
2817 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2818 		    tcp_may_raise_cwnd(sk, flag))
2819 			tcp_cong_avoid(sk, ack,  seq_rtt, prior_in_flight, 0);
2820 		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2821 	} else {
2822 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2823 			tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2824 	}
2825 
2826 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2827 		dst_confirm(sk->sk_dst_cache);
2828 
2829 	return 1;
2830 
2831 no_queue:
2832 	icsk->icsk_probes_out = 0;
2833 
2834 	/* If this ack opens up a zero window, clear backoff.  It was
2835 	 * being used to time the probes, and is probably far higher than
2836 	 * it needs to be for normal retransmission.
2837 	 */
2838 	if (tcp_send_head(sk))
2839 		tcp_ack_probe(sk);
2840 	return 1;
2841 
2842 old_ack:
2843 	if (TCP_SKB_CB(skb)->sacked)
2844 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2845 
2846 uninteresting_ack:
2847 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2848 	return 0;
2849 }
2850 
2851 
2852 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2853  * But, this can also be called on packets in the established flow when
2854  * the fast version below fails.
2855  */
2856 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2857 {
2858 	unsigned char *ptr;
2859 	struct tcphdr *th = tcp_hdr(skb);
2860 	int length=(th->doff*4)-sizeof(struct tcphdr);
2861 
2862 	ptr = (unsigned char *)(th + 1);
2863 	opt_rx->saw_tstamp = 0;
2864 
2865 	while (length > 0) {
2866 		int opcode=*ptr++;
2867 		int opsize;
2868 
2869 		switch (opcode) {
2870 			case TCPOPT_EOL:
2871 				return;
2872 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2873 				length--;
2874 				continue;
2875 			default:
2876 				opsize=*ptr++;
2877 				if (opsize < 2) /* "silly options" */
2878 					return;
2879 				if (opsize > length)
2880 					return;	/* don't parse partial options */
2881 				switch (opcode) {
2882 				case TCPOPT_MSS:
2883 					if (opsize==TCPOLEN_MSS && th->syn && !estab) {
2884 						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2885 						if (in_mss) {
2886 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2887 								in_mss = opt_rx->user_mss;
2888 							opt_rx->mss_clamp = in_mss;
2889 						}
2890 					}
2891 					break;
2892 				case TCPOPT_WINDOW:
2893 					if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
2894 						if (sysctl_tcp_window_scaling) {
2895 							__u8 snd_wscale = *(__u8 *) ptr;
2896 							opt_rx->wscale_ok = 1;
2897 							if (snd_wscale > 14) {
2898 								if (net_ratelimit())
2899 									printk(KERN_INFO "tcp_parse_options: Illegal window "
2900 									       "scaling value %d >14 received.\n",
2901 									       snd_wscale);
2902 								snd_wscale = 14;
2903 							}
2904 							opt_rx->snd_wscale = snd_wscale;
2905 						}
2906 					break;
2907 				case TCPOPT_TIMESTAMP:
2908 					if (opsize==TCPOLEN_TIMESTAMP) {
2909 						if ((estab && opt_rx->tstamp_ok) ||
2910 						    (!estab && sysctl_tcp_timestamps)) {
2911 							opt_rx->saw_tstamp = 1;
2912 							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2913 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2914 						}
2915 					}
2916 					break;
2917 				case TCPOPT_SACK_PERM:
2918 					if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2919 						if (sysctl_tcp_sack) {
2920 							opt_rx->sack_ok = 1;
2921 							tcp_sack_reset(opt_rx);
2922 						}
2923 					}
2924 					break;
2925 
2926 				case TCPOPT_SACK:
2927 					if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2928 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2929 					   opt_rx->sack_ok) {
2930 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2931 					}
2932 #ifdef CONFIG_TCP_MD5SIG
2933 				case TCPOPT_MD5SIG:
2934 					/*
2935 					 * The MD5 Hash has already been
2936 					 * checked (see tcp_v{4,6}_do_rcv()).
2937 					 */
2938 					break;
2939 #endif
2940 				}
2941 
2942 				ptr+=opsize-2;
2943 				length-=opsize;
2944 		}
2945 	}
2946 }
2947 
2948 /* Fast parse options. This hopes to only see timestamps.
2949  * If it is wrong it falls back on tcp_parse_options().
2950  */
2951 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2952 				  struct tcp_sock *tp)
2953 {
2954 	if (th->doff == sizeof(struct tcphdr)>>2) {
2955 		tp->rx_opt.saw_tstamp = 0;
2956 		return 0;
2957 	} else if (tp->rx_opt.tstamp_ok &&
2958 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2959 		__be32 *ptr = (__be32 *)(th + 1);
2960 		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2961 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2962 			tp->rx_opt.saw_tstamp = 1;
2963 			++ptr;
2964 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2965 			++ptr;
2966 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2967 			return 1;
2968 		}
2969 	}
2970 	tcp_parse_options(skb, &tp->rx_opt, 1);
2971 	return 1;
2972 }
2973 
2974 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2975 {
2976 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2977 	tp->rx_opt.ts_recent_stamp = get_seconds();
2978 }
2979 
2980 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2981 {
2982 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2983 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2984 		 * extra check below makes sure this can only happen
2985 		 * for pure ACK frames.  -DaveM
2986 		 *
2987 		 * Not only, also it occurs for expired timestamps.
2988 		 */
2989 
2990 		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2991 		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2992 			tcp_store_ts_recent(tp);
2993 	}
2994 }
2995 
2996 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2997  *
2998  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2999  * it can pass through stack. So, the following predicate verifies that
3000  * this segment is not used for anything but congestion avoidance or
3001  * fast retransmit. Moreover, we even are able to eliminate most of such
3002  * second order effects, if we apply some small "replay" window (~RTO)
3003  * to timestamp space.
3004  *
3005  * All these measures still do not guarantee that we reject wrapped ACKs
3006  * on networks with high bandwidth, when sequence space is recycled fastly,
3007  * but it guarantees that such events will be very rare and do not affect
3008  * connection seriously. This doesn't look nice, but alas, PAWS is really
3009  * buggy extension.
3010  *
3011  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3012  * states that events when retransmit arrives after original data are rare.
3013  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3014  * the biggest problem on large power networks even with minor reordering.
3015  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3016  * up to bandwidth of 18Gigabit/sec. 8) ]
3017  */
3018 
3019 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3020 {
3021 	struct tcp_sock *tp = tcp_sk(sk);
3022 	struct tcphdr *th = tcp_hdr(skb);
3023 	u32 seq = TCP_SKB_CB(skb)->seq;
3024 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3025 
3026 	return (/* 1. Pure ACK with correct sequence number. */
3027 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3028 
3029 		/* 2. ... and duplicate ACK. */
3030 		ack == tp->snd_una &&
3031 
3032 		/* 3. ... and does not update window. */
3033 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3034 
3035 		/* 4. ... and sits in replay window. */
3036 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3037 }
3038 
3039 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3040 {
3041 	const struct tcp_sock *tp = tcp_sk(sk);
3042 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3043 		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3044 		!tcp_disordered_ack(sk, skb));
3045 }
3046 
3047 /* Check segment sequence number for validity.
3048  *
3049  * Segment controls are considered valid, if the segment
3050  * fits to the window after truncation to the window. Acceptability
3051  * of data (and SYN, FIN, of course) is checked separately.
3052  * See tcp_data_queue(), for example.
3053  *
3054  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3055  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3056  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3057  * (borrowed from freebsd)
3058  */
3059 
3060 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3061 {
3062 	return	!before(end_seq, tp->rcv_wup) &&
3063 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3064 }
3065 
3066 /* When we get a reset we do this. */
3067 static void tcp_reset(struct sock *sk)
3068 {
3069 	/* We want the right error as BSD sees it (and indeed as we do). */
3070 	switch (sk->sk_state) {
3071 		case TCP_SYN_SENT:
3072 			sk->sk_err = ECONNREFUSED;
3073 			break;
3074 		case TCP_CLOSE_WAIT:
3075 			sk->sk_err = EPIPE;
3076 			break;
3077 		case TCP_CLOSE:
3078 			return;
3079 		default:
3080 			sk->sk_err = ECONNRESET;
3081 	}
3082 
3083 	if (!sock_flag(sk, SOCK_DEAD))
3084 		sk->sk_error_report(sk);
3085 
3086 	tcp_done(sk);
3087 }
3088 
3089 /*
3090  * 	Process the FIN bit. This now behaves as it is supposed to work
3091  *	and the FIN takes effect when it is validly part of sequence
3092  *	space. Not before when we get holes.
3093  *
3094  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3095  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3096  *	TIME-WAIT)
3097  *
3098  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3099  *	close and we go into CLOSING (and later onto TIME-WAIT)
3100  *
3101  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3102  */
3103 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3104 {
3105 	struct tcp_sock *tp = tcp_sk(sk);
3106 
3107 	inet_csk_schedule_ack(sk);
3108 
3109 	sk->sk_shutdown |= RCV_SHUTDOWN;
3110 	sock_set_flag(sk, SOCK_DONE);
3111 
3112 	switch (sk->sk_state) {
3113 		case TCP_SYN_RECV:
3114 		case TCP_ESTABLISHED:
3115 			/* Move to CLOSE_WAIT */
3116 			tcp_set_state(sk, TCP_CLOSE_WAIT);
3117 			inet_csk(sk)->icsk_ack.pingpong = 1;
3118 			break;
3119 
3120 		case TCP_CLOSE_WAIT:
3121 		case TCP_CLOSING:
3122 			/* Received a retransmission of the FIN, do
3123 			 * nothing.
3124 			 */
3125 			break;
3126 		case TCP_LAST_ACK:
3127 			/* RFC793: Remain in the LAST-ACK state. */
3128 			break;
3129 
3130 		case TCP_FIN_WAIT1:
3131 			/* This case occurs when a simultaneous close
3132 			 * happens, we must ack the received FIN and
3133 			 * enter the CLOSING state.
3134 			 */
3135 			tcp_send_ack(sk);
3136 			tcp_set_state(sk, TCP_CLOSING);
3137 			break;
3138 		case TCP_FIN_WAIT2:
3139 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
3140 			tcp_send_ack(sk);
3141 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3142 			break;
3143 		default:
3144 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3145 			 * cases we should never reach this piece of code.
3146 			 */
3147 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3148 			       __FUNCTION__, sk->sk_state);
3149 			break;
3150 	}
3151 
3152 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3153 	 * Probably, we should reset in this case. For now drop them.
3154 	 */
3155 	__skb_queue_purge(&tp->out_of_order_queue);
3156 	if (tp->rx_opt.sack_ok)
3157 		tcp_sack_reset(&tp->rx_opt);
3158 	sk_stream_mem_reclaim(sk);
3159 
3160 	if (!sock_flag(sk, SOCK_DEAD)) {
3161 		sk->sk_state_change(sk);
3162 
3163 		/* Do not send POLL_HUP for half duplex close. */
3164 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3165 		    sk->sk_state == TCP_CLOSE)
3166 			sk_wake_async(sk, 1, POLL_HUP);
3167 		else
3168 			sk_wake_async(sk, 1, POLL_IN);
3169 	}
3170 }
3171 
3172 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3173 {
3174 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3175 		if (before(seq, sp->start_seq))
3176 			sp->start_seq = seq;
3177 		if (after(end_seq, sp->end_seq))
3178 			sp->end_seq = end_seq;
3179 		return 1;
3180 	}
3181 	return 0;
3182 }
3183 
3184 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3185 {
3186 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3187 		if (before(seq, tp->rcv_nxt))
3188 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3189 		else
3190 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3191 
3192 		tp->rx_opt.dsack = 1;
3193 		tp->duplicate_sack[0].start_seq = seq;
3194 		tp->duplicate_sack[0].end_seq = end_seq;
3195 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3196 	}
3197 }
3198 
3199 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3200 {
3201 	if (!tp->rx_opt.dsack)
3202 		tcp_dsack_set(tp, seq, end_seq);
3203 	else
3204 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3205 }
3206 
3207 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3208 {
3209 	struct tcp_sock *tp = tcp_sk(sk);
3210 
3211 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3212 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3213 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3214 		tcp_enter_quickack_mode(sk);
3215 
3216 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3217 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3218 
3219 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3220 				end_seq = tp->rcv_nxt;
3221 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3222 		}
3223 	}
3224 
3225 	tcp_send_ack(sk);
3226 }
3227 
3228 /* These routines update the SACK block as out-of-order packets arrive or
3229  * in-order packets close up the sequence space.
3230  */
3231 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3232 {
3233 	int this_sack;
3234 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3235 	struct tcp_sack_block *swalk = sp+1;
3236 
3237 	/* See if the recent change to the first SACK eats into
3238 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3239 	 */
3240 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3241 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3242 			int i;
3243 
3244 			/* Zap SWALK, by moving every further SACK up by one slot.
3245 			 * Decrease num_sacks.
3246 			 */
3247 			tp->rx_opt.num_sacks--;
3248 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3249 			for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3250 				sp[i] = sp[i+1];
3251 			continue;
3252 		}
3253 		this_sack++, swalk++;
3254 	}
3255 }
3256 
3257 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3258 {
3259 	__u32 tmp;
3260 
3261 	tmp = sack1->start_seq;
3262 	sack1->start_seq = sack2->start_seq;
3263 	sack2->start_seq = tmp;
3264 
3265 	tmp = sack1->end_seq;
3266 	sack1->end_seq = sack2->end_seq;
3267 	sack2->end_seq = tmp;
3268 }
3269 
3270 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3271 {
3272 	struct tcp_sock *tp = tcp_sk(sk);
3273 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3274 	int cur_sacks = tp->rx_opt.num_sacks;
3275 	int this_sack;
3276 
3277 	if (!cur_sacks)
3278 		goto new_sack;
3279 
3280 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3281 		if (tcp_sack_extend(sp, seq, end_seq)) {
3282 			/* Rotate this_sack to the first one. */
3283 			for (; this_sack>0; this_sack--, sp--)
3284 				tcp_sack_swap(sp, sp-1);
3285 			if (cur_sacks > 1)
3286 				tcp_sack_maybe_coalesce(tp);
3287 			return;
3288 		}
3289 	}
3290 
3291 	/* Could not find an adjacent existing SACK, build a new one,
3292 	 * put it at the front, and shift everyone else down.  We
3293 	 * always know there is at least one SACK present already here.
3294 	 *
3295 	 * If the sack array is full, forget about the last one.
3296 	 */
3297 	if (this_sack >= 4) {
3298 		this_sack--;
3299 		tp->rx_opt.num_sacks--;
3300 		sp--;
3301 	}
3302 	for (; this_sack > 0; this_sack--, sp--)
3303 		*sp = *(sp-1);
3304 
3305 new_sack:
3306 	/* Build the new head SACK, and we're done. */
3307 	sp->start_seq = seq;
3308 	sp->end_seq = end_seq;
3309 	tp->rx_opt.num_sacks++;
3310 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3311 }
3312 
3313 /* RCV.NXT advances, some SACKs should be eaten. */
3314 
3315 static void tcp_sack_remove(struct tcp_sock *tp)
3316 {
3317 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3318 	int num_sacks = tp->rx_opt.num_sacks;
3319 	int this_sack;
3320 
3321 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3322 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3323 		tp->rx_opt.num_sacks = 0;
3324 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3325 		return;
3326 	}
3327 
3328 	for (this_sack = 0; this_sack < num_sacks; ) {
3329 		/* Check if the start of the sack is covered by RCV.NXT. */
3330 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3331 			int i;
3332 
3333 			/* RCV.NXT must cover all the block! */
3334 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3335 
3336 			/* Zap this SACK, by moving forward any other SACKS. */
3337 			for (i=this_sack+1; i < num_sacks; i++)
3338 				tp->selective_acks[i-1] = tp->selective_acks[i];
3339 			num_sacks--;
3340 			continue;
3341 		}
3342 		this_sack++;
3343 		sp++;
3344 	}
3345 	if (num_sacks != tp->rx_opt.num_sacks) {
3346 		tp->rx_opt.num_sacks = num_sacks;
3347 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3348 	}
3349 }
3350 
3351 /* This one checks to see if we can put data from the
3352  * out_of_order queue into the receive_queue.
3353  */
3354 static void tcp_ofo_queue(struct sock *sk)
3355 {
3356 	struct tcp_sock *tp = tcp_sk(sk);
3357 	__u32 dsack_high = tp->rcv_nxt;
3358 	struct sk_buff *skb;
3359 
3360 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3361 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3362 			break;
3363 
3364 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3365 			__u32 dsack = dsack_high;
3366 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3367 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3368 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3369 		}
3370 
3371 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3372 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3373 			__skb_unlink(skb, &tp->out_of_order_queue);
3374 			__kfree_skb(skb);
3375 			continue;
3376 		}
3377 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3378 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3379 			   TCP_SKB_CB(skb)->end_seq);
3380 
3381 		__skb_unlink(skb, &tp->out_of_order_queue);
3382 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3383 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3384 		if (tcp_hdr(skb)->fin)
3385 			tcp_fin(skb, sk, tcp_hdr(skb));
3386 	}
3387 }
3388 
3389 static int tcp_prune_queue(struct sock *sk);
3390 
3391 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3392 {
3393 	struct tcphdr *th = tcp_hdr(skb);
3394 	struct tcp_sock *tp = tcp_sk(sk);
3395 	int eaten = -1;
3396 
3397 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3398 		goto drop;
3399 
3400 	__skb_pull(skb, th->doff*4);
3401 
3402 	TCP_ECN_accept_cwr(tp, skb);
3403 
3404 	if (tp->rx_opt.dsack) {
3405 		tp->rx_opt.dsack = 0;
3406 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3407 						    4 - tp->rx_opt.tstamp_ok);
3408 	}
3409 
3410 	/*  Queue data for delivery to the user.
3411 	 *  Packets in sequence go to the receive queue.
3412 	 *  Out of sequence packets to the out_of_order_queue.
3413 	 */
3414 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3415 		if (tcp_receive_window(tp) == 0)
3416 			goto out_of_window;
3417 
3418 		/* Ok. In sequence. In window. */
3419 		if (tp->ucopy.task == current &&
3420 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3421 		    sock_owned_by_user(sk) && !tp->urg_data) {
3422 			int chunk = min_t(unsigned int, skb->len,
3423 							tp->ucopy.len);
3424 
3425 			__set_current_state(TASK_RUNNING);
3426 
3427 			local_bh_enable();
3428 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3429 				tp->ucopy.len -= chunk;
3430 				tp->copied_seq += chunk;
3431 				eaten = (chunk == skb->len && !th->fin);
3432 				tcp_rcv_space_adjust(sk);
3433 			}
3434 			local_bh_disable();
3435 		}
3436 
3437 		if (eaten <= 0) {
3438 queue_and_out:
3439 			if (eaten < 0 &&
3440 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3441 			     !sk_stream_rmem_schedule(sk, skb))) {
3442 				if (tcp_prune_queue(sk) < 0 ||
3443 				    !sk_stream_rmem_schedule(sk, skb))
3444 					goto drop;
3445 			}
3446 			sk_stream_set_owner_r(skb, sk);
3447 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3448 		}
3449 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3450 		if (skb->len)
3451 			tcp_event_data_recv(sk, skb);
3452 		if (th->fin)
3453 			tcp_fin(skb, sk, th);
3454 
3455 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3456 			tcp_ofo_queue(sk);
3457 
3458 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3459 			 * gap in queue is filled.
3460 			 */
3461 			if (skb_queue_empty(&tp->out_of_order_queue))
3462 				inet_csk(sk)->icsk_ack.pingpong = 0;
3463 		}
3464 
3465 		if (tp->rx_opt.num_sacks)
3466 			tcp_sack_remove(tp);
3467 
3468 		tcp_fast_path_check(sk);
3469 
3470 		if (eaten > 0)
3471 			__kfree_skb(skb);
3472 		else if (!sock_flag(sk, SOCK_DEAD))
3473 			sk->sk_data_ready(sk, 0);
3474 		return;
3475 	}
3476 
3477 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3478 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3479 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3480 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3481 
3482 out_of_window:
3483 		tcp_enter_quickack_mode(sk);
3484 		inet_csk_schedule_ack(sk);
3485 drop:
3486 		__kfree_skb(skb);
3487 		return;
3488 	}
3489 
3490 	/* Out of window. F.e. zero window probe. */
3491 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3492 		goto out_of_window;
3493 
3494 	tcp_enter_quickack_mode(sk);
3495 
3496 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3497 		/* Partial packet, seq < rcv_next < end_seq */
3498 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3499 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3500 			   TCP_SKB_CB(skb)->end_seq);
3501 
3502 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3503 
3504 		/* If window is closed, drop tail of packet. But after
3505 		 * remembering D-SACK for its head made in previous line.
3506 		 */
3507 		if (!tcp_receive_window(tp))
3508 			goto out_of_window;
3509 		goto queue_and_out;
3510 	}
3511 
3512 	TCP_ECN_check_ce(tp, skb);
3513 
3514 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3515 	    !sk_stream_rmem_schedule(sk, skb)) {
3516 		if (tcp_prune_queue(sk) < 0 ||
3517 		    !sk_stream_rmem_schedule(sk, skb))
3518 			goto drop;
3519 	}
3520 
3521 	/* Disable header prediction. */
3522 	tp->pred_flags = 0;
3523 	inet_csk_schedule_ack(sk);
3524 
3525 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3526 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3527 
3528 	sk_stream_set_owner_r(skb, sk);
3529 
3530 	if (!skb_peek(&tp->out_of_order_queue)) {
3531 		/* Initial out of order segment, build 1 SACK. */
3532 		if (tp->rx_opt.sack_ok) {
3533 			tp->rx_opt.num_sacks = 1;
3534 			tp->rx_opt.dsack     = 0;
3535 			tp->rx_opt.eff_sacks = 1;
3536 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3537 			tp->selective_acks[0].end_seq =
3538 						TCP_SKB_CB(skb)->end_seq;
3539 		}
3540 		__skb_queue_head(&tp->out_of_order_queue,skb);
3541 	} else {
3542 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3543 		u32 seq = TCP_SKB_CB(skb)->seq;
3544 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3545 
3546 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3547 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3548 
3549 			if (!tp->rx_opt.num_sacks ||
3550 			    tp->selective_acks[0].end_seq != seq)
3551 				goto add_sack;
3552 
3553 			/* Common case: data arrive in order after hole. */
3554 			tp->selective_acks[0].end_seq = end_seq;
3555 			return;
3556 		}
3557 
3558 		/* Find place to insert this segment. */
3559 		do {
3560 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3561 				break;
3562 		} while ((skb1 = skb1->prev) !=
3563 			 (struct sk_buff*)&tp->out_of_order_queue);
3564 
3565 		/* Do skb overlap to previous one? */
3566 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3567 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3568 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3569 				/* All the bits are present. Drop. */
3570 				__kfree_skb(skb);
3571 				tcp_dsack_set(tp, seq, end_seq);
3572 				goto add_sack;
3573 			}
3574 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3575 				/* Partial overlap. */
3576 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3577 			} else {
3578 				skb1 = skb1->prev;
3579 			}
3580 		}
3581 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3582 
3583 		/* And clean segments covered by new one as whole. */
3584 		while ((skb1 = skb->next) !=
3585 		       (struct sk_buff*)&tp->out_of_order_queue &&
3586 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3587 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3588 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3589 			       break;
3590 		       }
3591 		       __skb_unlink(skb1, &tp->out_of_order_queue);
3592 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3593 		       __kfree_skb(skb1);
3594 		}
3595 
3596 add_sack:
3597 		if (tp->rx_opt.sack_ok)
3598 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3599 	}
3600 }
3601 
3602 /* Collapse contiguous sequence of skbs head..tail with
3603  * sequence numbers start..end.
3604  * Segments with FIN/SYN are not collapsed (only because this
3605  * simplifies code)
3606  */
3607 static void
3608 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3609 	     struct sk_buff *head, struct sk_buff *tail,
3610 	     u32 start, u32 end)
3611 {
3612 	struct sk_buff *skb;
3613 
3614 	/* First, check that queue is collapsible and find
3615 	 * the point where collapsing can be useful. */
3616 	for (skb = head; skb != tail; ) {
3617 		/* No new bits? It is possible on ofo queue. */
3618 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3619 			struct sk_buff *next = skb->next;
3620 			__skb_unlink(skb, list);
3621 			__kfree_skb(skb);
3622 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3623 			skb = next;
3624 			continue;
3625 		}
3626 
3627 		/* The first skb to collapse is:
3628 		 * - not SYN/FIN and
3629 		 * - bloated or contains data before "start" or
3630 		 *   overlaps to the next one.
3631 		 */
3632 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3633 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3634 		     before(TCP_SKB_CB(skb)->seq, start) ||
3635 		     (skb->next != tail &&
3636 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3637 			break;
3638 
3639 		/* Decided to skip this, advance start seq. */
3640 		start = TCP_SKB_CB(skb)->end_seq;
3641 		skb = skb->next;
3642 	}
3643 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3644 		return;
3645 
3646 	while (before(start, end)) {
3647 		struct sk_buff *nskb;
3648 		int header = skb_headroom(skb);
3649 		int copy = SKB_MAX_ORDER(header, 0);
3650 
3651 		/* Too big header? This can happen with IPv6. */
3652 		if (copy < 0)
3653 			return;
3654 		if (end-start < copy)
3655 			copy = end-start;
3656 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3657 		if (!nskb)
3658 			return;
3659 
3660 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3661 		skb_set_network_header(nskb, (skb_network_header(skb) -
3662 					      skb->head));
3663 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
3664 						skb->head));
3665 		skb_reserve(nskb, header);
3666 		memcpy(nskb->head, skb->head, header);
3667 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3668 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3669 		__skb_insert(nskb, skb->prev, skb, list);
3670 		sk_stream_set_owner_r(nskb, sk);
3671 
3672 		/* Copy data, releasing collapsed skbs. */
3673 		while (copy > 0) {
3674 			int offset = start - TCP_SKB_CB(skb)->seq;
3675 			int size = TCP_SKB_CB(skb)->end_seq - start;
3676 
3677 			BUG_ON(offset < 0);
3678 			if (size > 0) {
3679 				size = min(copy, size);
3680 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3681 					BUG();
3682 				TCP_SKB_CB(nskb)->end_seq += size;
3683 				copy -= size;
3684 				start += size;
3685 			}
3686 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3687 				struct sk_buff *next = skb->next;
3688 				__skb_unlink(skb, list);
3689 				__kfree_skb(skb);
3690 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3691 				skb = next;
3692 				if (skb == tail ||
3693 				    tcp_hdr(skb)->syn ||
3694 				    tcp_hdr(skb)->fin)
3695 					return;
3696 			}
3697 		}
3698 	}
3699 }
3700 
3701 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3702  * and tcp_collapse() them until all the queue is collapsed.
3703  */
3704 static void tcp_collapse_ofo_queue(struct sock *sk)
3705 {
3706 	struct tcp_sock *tp = tcp_sk(sk);
3707 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3708 	struct sk_buff *head;
3709 	u32 start, end;
3710 
3711 	if (skb == NULL)
3712 		return;
3713 
3714 	start = TCP_SKB_CB(skb)->seq;
3715 	end = TCP_SKB_CB(skb)->end_seq;
3716 	head = skb;
3717 
3718 	for (;;) {
3719 		skb = skb->next;
3720 
3721 		/* Segment is terminated when we see gap or when
3722 		 * we are at the end of all the queue. */
3723 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3724 		    after(TCP_SKB_CB(skb)->seq, end) ||
3725 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3726 			tcp_collapse(sk, &tp->out_of_order_queue,
3727 				     head, skb, start, end);
3728 			head = skb;
3729 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3730 				break;
3731 			/* Start new segment */
3732 			start = TCP_SKB_CB(skb)->seq;
3733 			end = TCP_SKB_CB(skb)->end_seq;
3734 		} else {
3735 			if (before(TCP_SKB_CB(skb)->seq, start))
3736 				start = TCP_SKB_CB(skb)->seq;
3737 			if (after(TCP_SKB_CB(skb)->end_seq, end))
3738 				end = TCP_SKB_CB(skb)->end_seq;
3739 		}
3740 	}
3741 }
3742 
3743 /* Reduce allocated memory if we can, trying to get
3744  * the socket within its memory limits again.
3745  *
3746  * Return less than zero if we should start dropping frames
3747  * until the socket owning process reads some of the data
3748  * to stabilize the situation.
3749  */
3750 static int tcp_prune_queue(struct sock *sk)
3751 {
3752 	struct tcp_sock *tp = tcp_sk(sk);
3753 
3754 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3755 
3756 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3757 
3758 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3759 		tcp_clamp_window(sk);
3760 	else if (tcp_memory_pressure)
3761 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3762 
3763 	tcp_collapse_ofo_queue(sk);
3764 	tcp_collapse(sk, &sk->sk_receive_queue,
3765 		     sk->sk_receive_queue.next,
3766 		     (struct sk_buff*)&sk->sk_receive_queue,
3767 		     tp->copied_seq, tp->rcv_nxt);
3768 	sk_stream_mem_reclaim(sk);
3769 
3770 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3771 		return 0;
3772 
3773 	/* Collapsing did not help, destructive actions follow.
3774 	 * This must not ever occur. */
3775 
3776 	/* First, purge the out_of_order queue. */
3777 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3778 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3779 		__skb_queue_purge(&tp->out_of_order_queue);
3780 
3781 		/* Reset SACK state.  A conforming SACK implementation will
3782 		 * do the same at a timeout based retransmit.  When a connection
3783 		 * is in a sad state like this, we care only about integrity
3784 		 * of the connection not performance.
3785 		 */
3786 		if (tp->rx_opt.sack_ok)
3787 			tcp_sack_reset(&tp->rx_opt);
3788 		sk_stream_mem_reclaim(sk);
3789 	}
3790 
3791 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3792 		return 0;
3793 
3794 	/* If we are really being abused, tell the caller to silently
3795 	 * drop receive data on the floor.  It will get retransmitted
3796 	 * and hopefully then we'll have sufficient space.
3797 	 */
3798 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3799 
3800 	/* Massive buffer overcommit. */
3801 	tp->pred_flags = 0;
3802 	return -1;
3803 }
3804 
3805 
3806 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3807  * As additional protections, we do not touch cwnd in retransmission phases,
3808  * and if application hit its sndbuf limit recently.
3809  */
3810 void tcp_cwnd_application_limited(struct sock *sk)
3811 {
3812 	struct tcp_sock *tp = tcp_sk(sk);
3813 
3814 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3815 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3816 		/* Limited by application or receiver window. */
3817 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3818 		u32 win_used = max(tp->snd_cwnd_used, init_win);
3819 		if (win_used < tp->snd_cwnd) {
3820 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3821 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3822 		}
3823 		tp->snd_cwnd_used = 0;
3824 	}
3825 	tp->snd_cwnd_stamp = tcp_time_stamp;
3826 }
3827 
3828 static int tcp_should_expand_sndbuf(struct sock *sk)
3829 {
3830 	struct tcp_sock *tp = tcp_sk(sk);
3831 
3832 	/* If the user specified a specific send buffer setting, do
3833 	 * not modify it.
3834 	 */
3835 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3836 		return 0;
3837 
3838 	/* If we are under global TCP memory pressure, do not expand.  */
3839 	if (tcp_memory_pressure)
3840 		return 0;
3841 
3842 	/* If we are under soft global TCP memory pressure, do not expand.  */
3843 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3844 		return 0;
3845 
3846 	/* If we filled the congestion window, do not expand.  */
3847 	if (tp->packets_out >= tp->snd_cwnd)
3848 		return 0;
3849 
3850 	return 1;
3851 }
3852 
3853 /* When incoming ACK allowed to free some skb from write_queue,
3854  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3855  * on the exit from tcp input handler.
3856  *
3857  * PROBLEM: sndbuf expansion does not work well with largesend.
3858  */
3859 static void tcp_new_space(struct sock *sk)
3860 {
3861 	struct tcp_sock *tp = tcp_sk(sk);
3862 
3863 	if (tcp_should_expand_sndbuf(sk)) {
3864 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3865 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3866 		    demanded = max_t(unsigned int, tp->snd_cwnd,
3867 						   tp->reordering + 1);
3868 		sndmem *= 2*demanded;
3869 		if (sndmem > sk->sk_sndbuf)
3870 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3871 		tp->snd_cwnd_stamp = tcp_time_stamp;
3872 	}
3873 
3874 	sk->sk_write_space(sk);
3875 }
3876 
3877 static void tcp_check_space(struct sock *sk)
3878 {
3879 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3880 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3881 		if (sk->sk_socket &&
3882 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3883 			tcp_new_space(sk);
3884 	}
3885 }
3886 
3887 static inline void tcp_data_snd_check(struct sock *sk)
3888 {
3889 	tcp_push_pending_frames(sk);
3890 	tcp_check_space(sk);
3891 }
3892 
3893 /*
3894  * Check if sending an ack is needed.
3895  */
3896 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3897 {
3898 	struct tcp_sock *tp = tcp_sk(sk);
3899 
3900 	    /* More than one full frame received... */
3901 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3902 	     /* ... and right edge of window advances far enough.
3903 	      * (tcp_recvmsg() will send ACK otherwise). Or...
3904 	      */
3905 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3906 	    /* We ACK each frame or... */
3907 	    tcp_in_quickack_mode(sk) ||
3908 	    /* We have out of order data. */
3909 	    (ofo_possible &&
3910 	     skb_peek(&tp->out_of_order_queue))) {
3911 		/* Then ack it now */
3912 		tcp_send_ack(sk);
3913 	} else {
3914 		/* Else, send delayed ack. */
3915 		tcp_send_delayed_ack(sk);
3916 	}
3917 }
3918 
3919 static inline void tcp_ack_snd_check(struct sock *sk)
3920 {
3921 	if (!inet_csk_ack_scheduled(sk)) {
3922 		/* We sent a data segment already. */
3923 		return;
3924 	}
3925 	__tcp_ack_snd_check(sk, 1);
3926 }
3927 
3928 /*
3929  *	This routine is only called when we have urgent data
3930  *	signaled. Its the 'slow' part of tcp_urg. It could be
3931  *	moved inline now as tcp_urg is only called from one
3932  *	place. We handle URGent data wrong. We have to - as
3933  *	BSD still doesn't use the correction from RFC961.
3934  *	For 1003.1g we should support a new option TCP_STDURG to permit
3935  *	either form (or just set the sysctl tcp_stdurg).
3936  */
3937 
3938 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3939 {
3940 	struct tcp_sock *tp = tcp_sk(sk);
3941 	u32 ptr = ntohs(th->urg_ptr);
3942 
3943 	if (ptr && !sysctl_tcp_stdurg)
3944 		ptr--;
3945 	ptr += ntohl(th->seq);
3946 
3947 	/* Ignore urgent data that we've already seen and read. */
3948 	if (after(tp->copied_seq, ptr))
3949 		return;
3950 
3951 	/* Do not replay urg ptr.
3952 	 *
3953 	 * NOTE: interesting situation not covered by specs.
3954 	 * Misbehaving sender may send urg ptr, pointing to segment,
3955 	 * which we already have in ofo queue. We are not able to fetch
3956 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3957 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3958 	 * situations. But it is worth to think about possibility of some
3959 	 * DoSes using some hypothetical application level deadlock.
3960 	 */
3961 	if (before(ptr, tp->rcv_nxt))
3962 		return;
3963 
3964 	/* Do we already have a newer (or duplicate) urgent pointer? */
3965 	if (tp->urg_data && !after(ptr, tp->urg_seq))
3966 		return;
3967 
3968 	/* Tell the world about our new urgent pointer. */
3969 	sk_send_sigurg(sk);
3970 
3971 	/* We may be adding urgent data when the last byte read was
3972 	 * urgent. To do this requires some care. We cannot just ignore
3973 	 * tp->copied_seq since we would read the last urgent byte again
3974 	 * as data, nor can we alter copied_seq until this data arrives
3975 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3976 	 *
3977 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3978 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3979 	 * and expect that both A and B disappear from stream. This is _wrong_.
3980 	 * Though this happens in BSD with high probability, this is occasional.
3981 	 * Any application relying on this is buggy. Note also, that fix "works"
3982 	 * only in this artificial test. Insert some normal data between A and B and we will
3983 	 * decline of BSD again. Verdict: it is better to remove to trap
3984 	 * buggy users.
3985 	 */
3986 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3987 	    !sock_flag(sk, SOCK_URGINLINE) &&
3988 	    tp->copied_seq != tp->rcv_nxt) {
3989 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3990 		tp->copied_seq++;
3991 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3992 			__skb_unlink(skb, &sk->sk_receive_queue);
3993 			__kfree_skb(skb);
3994 		}
3995 	}
3996 
3997 	tp->urg_data   = TCP_URG_NOTYET;
3998 	tp->urg_seq    = ptr;
3999 
4000 	/* Disable header prediction. */
4001 	tp->pred_flags = 0;
4002 }
4003 
4004 /* This is the 'fast' part of urgent handling. */
4005 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4006 {
4007 	struct tcp_sock *tp = tcp_sk(sk);
4008 
4009 	/* Check if we get a new urgent pointer - normally not. */
4010 	if (th->urg)
4011 		tcp_check_urg(sk,th);
4012 
4013 	/* Do we wait for any urgent data? - normally not... */
4014 	if (tp->urg_data == TCP_URG_NOTYET) {
4015 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4016 			  th->syn;
4017 
4018 		/* Is the urgent pointer pointing into this packet? */
4019 		if (ptr < skb->len) {
4020 			u8 tmp;
4021 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4022 				BUG();
4023 			tp->urg_data = TCP_URG_VALID | tmp;
4024 			if (!sock_flag(sk, SOCK_DEAD))
4025 				sk->sk_data_ready(sk, 0);
4026 		}
4027 	}
4028 }
4029 
4030 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4031 {
4032 	struct tcp_sock *tp = tcp_sk(sk);
4033 	int chunk = skb->len - hlen;
4034 	int err;
4035 
4036 	local_bh_enable();
4037 	if (skb_csum_unnecessary(skb))
4038 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4039 	else
4040 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4041 						       tp->ucopy.iov);
4042 
4043 	if (!err) {
4044 		tp->ucopy.len -= chunk;
4045 		tp->copied_seq += chunk;
4046 		tcp_rcv_space_adjust(sk);
4047 	}
4048 
4049 	local_bh_disable();
4050 	return err;
4051 }
4052 
4053 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4054 {
4055 	__sum16 result;
4056 
4057 	if (sock_owned_by_user(sk)) {
4058 		local_bh_enable();
4059 		result = __tcp_checksum_complete(skb);
4060 		local_bh_disable();
4061 	} else {
4062 		result = __tcp_checksum_complete(skb);
4063 	}
4064 	return result;
4065 }
4066 
4067 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4068 {
4069 	return !skb_csum_unnecessary(skb) &&
4070 		__tcp_checksum_complete_user(sk, skb);
4071 }
4072 
4073 #ifdef CONFIG_NET_DMA
4074 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4075 {
4076 	struct tcp_sock *tp = tcp_sk(sk);
4077 	int chunk = skb->len - hlen;
4078 	int dma_cookie;
4079 	int copied_early = 0;
4080 
4081 	if (tp->ucopy.wakeup)
4082 		return 0;
4083 
4084 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4085 		tp->ucopy.dma_chan = get_softnet_dma();
4086 
4087 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4088 
4089 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4090 			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4091 
4092 		if (dma_cookie < 0)
4093 			goto out;
4094 
4095 		tp->ucopy.dma_cookie = dma_cookie;
4096 		copied_early = 1;
4097 
4098 		tp->ucopy.len -= chunk;
4099 		tp->copied_seq += chunk;
4100 		tcp_rcv_space_adjust(sk);
4101 
4102 		if ((tp->ucopy.len == 0) ||
4103 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4104 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4105 			tp->ucopy.wakeup = 1;
4106 			sk->sk_data_ready(sk, 0);
4107 		}
4108 	} else if (chunk > 0) {
4109 		tp->ucopy.wakeup = 1;
4110 		sk->sk_data_ready(sk, 0);
4111 	}
4112 out:
4113 	return copied_early;
4114 }
4115 #endif /* CONFIG_NET_DMA */
4116 
4117 /*
4118  *	TCP receive function for the ESTABLISHED state.
4119  *
4120  *	It is split into a fast path and a slow path. The fast path is
4121  * 	disabled when:
4122  *	- A zero window was announced from us - zero window probing
4123  *        is only handled properly in the slow path.
4124  *	- Out of order segments arrived.
4125  *	- Urgent data is expected.
4126  *	- There is no buffer space left
4127  *	- Unexpected TCP flags/window values/header lengths are received
4128  *	  (detected by checking the TCP header against pred_flags)
4129  *	- Data is sent in both directions. Fast path only supports pure senders
4130  *	  or pure receivers (this means either the sequence number or the ack
4131  *	  value must stay constant)
4132  *	- Unexpected TCP option.
4133  *
4134  *	When these conditions are not satisfied it drops into a standard
4135  *	receive procedure patterned after RFC793 to handle all cases.
4136  *	The first three cases are guaranteed by proper pred_flags setting,
4137  *	the rest is checked inline. Fast processing is turned on in
4138  *	tcp_data_queue when everything is OK.
4139  */
4140 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4141 			struct tcphdr *th, unsigned len)
4142 {
4143 	struct tcp_sock *tp = tcp_sk(sk);
4144 
4145 	/*
4146 	 *	Header prediction.
4147 	 *	The code loosely follows the one in the famous
4148 	 *	"30 instruction TCP receive" Van Jacobson mail.
4149 	 *
4150 	 *	Van's trick is to deposit buffers into socket queue
4151 	 *	on a device interrupt, to call tcp_recv function
4152 	 *	on the receive process context and checksum and copy
4153 	 *	the buffer to user space. smart...
4154 	 *
4155 	 *	Our current scheme is not silly either but we take the
4156 	 *	extra cost of the net_bh soft interrupt processing...
4157 	 *	We do checksum and copy also but from device to kernel.
4158 	 */
4159 
4160 	tp->rx_opt.saw_tstamp = 0;
4161 
4162 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4163 	 *	if header_prediction is to be made
4164 	 *	'S' will always be tp->tcp_header_len >> 2
4165 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4166 	 *  turn it off	(when there are holes in the receive
4167 	 *	 space for instance)
4168 	 *	PSH flag is ignored.
4169 	 */
4170 
4171 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4172 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4173 		int tcp_header_len = tp->tcp_header_len;
4174 
4175 		/* Timestamp header prediction: tcp_header_len
4176 		 * is automatically equal to th->doff*4 due to pred_flags
4177 		 * match.
4178 		 */
4179 
4180 		/* Check timestamp */
4181 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4182 			__be32 *ptr = (__be32 *)(th + 1);
4183 
4184 			/* No? Slow path! */
4185 			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4186 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4187 				goto slow_path;
4188 
4189 			tp->rx_opt.saw_tstamp = 1;
4190 			++ptr;
4191 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4192 			++ptr;
4193 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4194 
4195 			/* If PAWS failed, check it more carefully in slow path */
4196 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4197 				goto slow_path;
4198 
4199 			/* DO NOT update ts_recent here, if checksum fails
4200 			 * and timestamp was corrupted part, it will result
4201 			 * in a hung connection since we will drop all
4202 			 * future packets due to the PAWS test.
4203 			 */
4204 		}
4205 
4206 		if (len <= tcp_header_len) {
4207 			/* Bulk data transfer: sender */
4208 			if (len == tcp_header_len) {
4209 				/* Predicted packet is in window by definition.
4210 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4211 				 * Hence, check seq<=rcv_wup reduces to:
4212 				 */
4213 				if (tcp_header_len ==
4214 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4215 				    tp->rcv_nxt == tp->rcv_wup)
4216 					tcp_store_ts_recent(tp);
4217 
4218 				/* We know that such packets are checksummed
4219 				 * on entry.
4220 				 */
4221 				tcp_ack(sk, skb, 0);
4222 				__kfree_skb(skb);
4223 				tcp_data_snd_check(sk);
4224 				return 0;
4225 			} else { /* Header too small */
4226 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4227 				goto discard;
4228 			}
4229 		} else {
4230 			int eaten = 0;
4231 			int copied_early = 0;
4232 
4233 			if (tp->copied_seq == tp->rcv_nxt &&
4234 			    len - tcp_header_len <= tp->ucopy.len) {
4235 #ifdef CONFIG_NET_DMA
4236 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4237 					copied_early = 1;
4238 					eaten = 1;
4239 				}
4240 #endif
4241 				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4242 					__set_current_state(TASK_RUNNING);
4243 
4244 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4245 						eaten = 1;
4246 				}
4247 				if (eaten) {
4248 					/* Predicted packet is in window by definition.
4249 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4250 					 * Hence, check seq<=rcv_wup reduces to:
4251 					 */
4252 					if (tcp_header_len ==
4253 					    (sizeof(struct tcphdr) +
4254 					     TCPOLEN_TSTAMP_ALIGNED) &&
4255 					    tp->rcv_nxt == tp->rcv_wup)
4256 						tcp_store_ts_recent(tp);
4257 
4258 					tcp_rcv_rtt_measure_ts(sk, skb);
4259 
4260 					__skb_pull(skb, tcp_header_len);
4261 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4262 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4263 				}
4264 				if (copied_early)
4265 					tcp_cleanup_rbuf(sk, skb->len);
4266 			}
4267 			if (!eaten) {
4268 				if (tcp_checksum_complete_user(sk, skb))
4269 					goto csum_error;
4270 
4271 				/* Predicted packet is in window by definition.
4272 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4273 				 * Hence, check seq<=rcv_wup reduces to:
4274 				 */
4275 				if (tcp_header_len ==
4276 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4277 				    tp->rcv_nxt == tp->rcv_wup)
4278 					tcp_store_ts_recent(tp);
4279 
4280 				tcp_rcv_rtt_measure_ts(sk, skb);
4281 
4282 				if ((int)skb->truesize > sk->sk_forward_alloc)
4283 					goto step5;
4284 
4285 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4286 
4287 				/* Bulk data transfer: receiver */
4288 				__skb_pull(skb,tcp_header_len);
4289 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4290 				sk_stream_set_owner_r(skb, sk);
4291 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4292 			}
4293 
4294 			tcp_event_data_recv(sk, skb);
4295 
4296 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4297 				/* Well, only one small jumplet in fast path... */
4298 				tcp_ack(sk, skb, FLAG_DATA);
4299 				tcp_data_snd_check(sk);
4300 				if (!inet_csk_ack_scheduled(sk))
4301 					goto no_ack;
4302 			}
4303 
4304 			__tcp_ack_snd_check(sk, 0);
4305 no_ack:
4306 #ifdef CONFIG_NET_DMA
4307 			if (copied_early)
4308 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4309 			else
4310 #endif
4311 			if (eaten)
4312 				__kfree_skb(skb);
4313 			else
4314 				sk->sk_data_ready(sk, 0);
4315 			return 0;
4316 		}
4317 	}
4318 
4319 slow_path:
4320 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4321 		goto csum_error;
4322 
4323 	/*
4324 	 * RFC1323: H1. Apply PAWS check first.
4325 	 */
4326 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4327 	    tcp_paws_discard(sk, skb)) {
4328 		if (!th->rst) {
4329 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4330 			tcp_send_dupack(sk, skb);
4331 			goto discard;
4332 		}
4333 		/* Resets are accepted even if PAWS failed.
4334 
4335 		   ts_recent update must be made after we are sure
4336 		   that the packet is in window.
4337 		 */
4338 	}
4339 
4340 	/*
4341 	 *	Standard slow path.
4342 	 */
4343 
4344 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4345 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4346 		 * (RST) segments are validated by checking their SEQ-fields."
4347 		 * And page 69: "If an incoming segment is not acceptable,
4348 		 * an acknowledgment should be sent in reply (unless the RST bit
4349 		 * is set, if so drop the segment and return)".
4350 		 */
4351 		if (!th->rst)
4352 			tcp_send_dupack(sk, skb);
4353 		goto discard;
4354 	}
4355 
4356 	if (th->rst) {
4357 		tcp_reset(sk);
4358 		goto discard;
4359 	}
4360 
4361 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4362 
4363 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4364 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4365 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4366 		tcp_reset(sk);
4367 		return 1;
4368 	}
4369 
4370 step5:
4371 	if (th->ack)
4372 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4373 
4374 	tcp_rcv_rtt_measure_ts(sk, skb);
4375 
4376 	/* Process urgent data. */
4377 	tcp_urg(sk, skb, th);
4378 
4379 	/* step 7: process the segment text */
4380 	tcp_data_queue(sk, skb);
4381 
4382 	tcp_data_snd_check(sk);
4383 	tcp_ack_snd_check(sk);
4384 	return 0;
4385 
4386 csum_error:
4387 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4388 
4389 discard:
4390 	__kfree_skb(skb);
4391 	return 0;
4392 }
4393 
4394 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4395 					 struct tcphdr *th, unsigned len)
4396 {
4397 	struct tcp_sock *tp = tcp_sk(sk);
4398 	struct inet_connection_sock *icsk = inet_csk(sk);
4399 	int saved_clamp = tp->rx_opt.mss_clamp;
4400 
4401 	tcp_parse_options(skb, &tp->rx_opt, 0);
4402 
4403 	if (th->ack) {
4404 		/* rfc793:
4405 		 * "If the state is SYN-SENT then
4406 		 *    first check the ACK bit
4407 		 *      If the ACK bit is set
4408 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4409 		 *        a reset (unless the RST bit is set, if so drop
4410 		 *        the segment and return)"
4411 		 *
4412 		 *  We do not send data with SYN, so that RFC-correct
4413 		 *  test reduces to:
4414 		 */
4415 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4416 			goto reset_and_undo;
4417 
4418 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4419 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4420 			     tcp_time_stamp)) {
4421 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4422 			goto reset_and_undo;
4423 		}
4424 
4425 		/* Now ACK is acceptable.
4426 		 *
4427 		 * "If the RST bit is set
4428 		 *    If the ACK was acceptable then signal the user "error:
4429 		 *    connection reset", drop the segment, enter CLOSED state,
4430 		 *    delete TCB, and return."
4431 		 */
4432 
4433 		if (th->rst) {
4434 			tcp_reset(sk);
4435 			goto discard;
4436 		}
4437 
4438 		/* rfc793:
4439 		 *   "fifth, if neither of the SYN or RST bits is set then
4440 		 *    drop the segment and return."
4441 		 *
4442 		 *    See note below!
4443 		 *                                        --ANK(990513)
4444 		 */
4445 		if (!th->syn)
4446 			goto discard_and_undo;
4447 
4448 		/* rfc793:
4449 		 *   "If the SYN bit is on ...
4450 		 *    are acceptable then ...
4451 		 *    (our SYN has been ACKed), change the connection
4452 		 *    state to ESTABLISHED..."
4453 		 */
4454 
4455 		TCP_ECN_rcv_synack(tp, th);
4456 
4457 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4458 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4459 
4460 		/* Ok.. it's good. Set up sequence numbers and
4461 		 * move to established.
4462 		 */
4463 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4464 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4465 
4466 		/* RFC1323: The window in SYN & SYN/ACK segments is
4467 		 * never scaled.
4468 		 */
4469 		tp->snd_wnd = ntohs(th->window);
4470 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4471 
4472 		if (!tp->rx_opt.wscale_ok) {
4473 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4474 			tp->window_clamp = min(tp->window_clamp, 65535U);
4475 		}
4476 
4477 		if (tp->rx_opt.saw_tstamp) {
4478 			tp->rx_opt.tstamp_ok	   = 1;
4479 			tp->tcp_header_len =
4480 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4481 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4482 			tcp_store_ts_recent(tp);
4483 		} else {
4484 			tp->tcp_header_len = sizeof(struct tcphdr);
4485 		}
4486 
4487 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4488 			tp->rx_opt.sack_ok |= 2;
4489 
4490 		tcp_mtup_init(sk);
4491 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4492 		tcp_initialize_rcv_mss(sk);
4493 
4494 		/* Remember, tcp_poll() does not lock socket!
4495 		 * Change state from SYN-SENT only after copied_seq
4496 		 * is initialized. */
4497 		tp->copied_seq = tp->rcv_nxt;
4498 		smp_mb();
4499 		tcp_set_state(sk, TCP_ESTABLISHED);
4500 
4501 		security_inet_conn_established(sk, skb);
4502 
4503 		/* Make sure socket is routed, for correct metrics.  */
4504 		icsk->icsk_af_ops->rebuild_header(sk);
4505 
4506 		tcp_init_metrics(sk);
4507 
4508 		tcp_init_congestion_control(sk);
4509 
4510 		/* Prevent spurious tcp_cwnd_restart() on first data
4511 		 * packet.
4512 		 */
4513 		tp->lsndtime = tcp_time_stamp;
4514 
4515 		tcp_init_buffer_space(sk);
4516 
4517 		if (sock_flag(sk, SOCK_KEEPOPEN))
4518 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4519 
4520 		if (!tp->rx_opt.snd_wscale)
4521 			__tcp_fast_path_on(tp, tp->snd_wnd);
4522 		else
4523 			tp->pred_flags = 0;
4524 
4525 		if (!sock_flag(sk, SOCK_DEAD)) {
4526 			sk->sk_state_change(sk);
4527 			sk_wake_async(sk, 0, POLL_OUT);
4528 		}
4529 
4530 		if (sk->sk_write_pending ||
4531 		    icsk->icsk_accept_queue.rskq_defer_accept ||
4532 		    icsk->icsk_ack.pingpong) {
4533 			/* Save one ACK. Data will be ready after
4534 			 * several ticks, if write_pending is set.
4535 			 *
4536 			 * It may be deleted, but with this feature tcpdumps
4537 			 * look so _wonderfully_ clever, that I was not able
4538 			 * to stand against the temptation 8)     --ANK
4539 			 */
4540 			inet_csk_schedule_ack(sk);
4541 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4542 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4543 			tcp_incr_quickack(sk);
4544 			tcp_enter_quickack_mode(sk);
4545 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4546 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4547 
4548 discard:
4549 			__kfree_skb(skb);
4550 			return 0;
4551 		} else {
4552 			tcp_send_ack(sk);
4553 		}
4554 		return -1;
4555 	}
4556 
4557 	/* No ACK in the segment */
4558 
4559 	if (th->rst) {
4560 		/* rfc793:
4561 		 * "If the RST bit is set
4562 		 *
4563 		 *      Otherwise (no ACK) drop the segment and return."
4564 		 */
4565 
4566 		goto discard_and_undo;
4567 	}
4568 
4569 	/* PAWS check. */
4570 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4571 		goto discard_and_undo;
4572 
4573 	if (th->syn) {
4574 		/* We see SYN without ACK. It is attempt of
4575 		 * simultaneous connect with crossed SYNs.
4576 		 * Particularly, it can be connect to self.
4577 		 */
4578 		tcp_set_state(sk, TCP_SYN_RECV);
4579 
4580 		if (tp->rx_opt.saw_tstamp) {
4581 			tp->rx_opt.tstamp_ok = 1;
4582 			tcp_store_ts_recent(tp);
4583 			tp->tcp_header_len =
4584 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4585 		} else {
4586 			tp->tcp_header_len = sizeof(struct tcphdr);
4587 		}
4588 
4589 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4590 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4591 
4592 		/* RFC1323: The window in SYN & SYN/ACK segments is
4593 		 * never scaled.
4594 		 */
4595 		tp->snd_wnd    = ntohs(th->window);
4596 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4597 		tp->max_window = tp->snd_wnd;
4598 
4599 		TCP_ECN_rcv_syn(tp, th);
4600 
4601 		tcp_mtup_init(sk);
4602 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4603 		tcp_initialize_rcv_mss(sk);
4604 
4605 
4606 		tcp_send_synack(sk);
4607 #if 0
4608 		/* Note, we could accept data and URG from this segment.
4609 		 * There are no obstacles to make this.
4610 		 *
4611 		 * However, if we ignore data in ACKless segments sometimes,
4612 		 * we have no reasons to accept it sometimes.
4613 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4614 		 * is not flawless. So, discard packet for sanity.
4615 		 * Uncomment this return to process the data.
4616 		 */
4617 		return -1;
4618 #else
4619 		goto discard;
4620 #endif
4621 	}
4622 	/* "fifth, if neither of the SYN or RST bits is set then
4623 	 * drop the segment and return."
4624 	 */
4625 
4626 discard_and_undo:
4627 	tcp_clear_options(&tp->rx_opt);
4628 	tp->rx_opt.mss_clamp = saved_clamp;
4629 	goto discard;
4630 
4631 reset_and_undo:
4632 	tcp_clear_options(&tp->rx_opt);
4633 	tp->rx_opt.mss_clamp = saved_clamp;
4634 	return 1;
4635 }
4636 
4637 
4638 /*
4639  *	This function implements the receiving procedure of RFC 793 for
4640  *	all states except ESTABLISHED and TIME_WAIT.
4641  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4642  *	address independent.
4643  */
4644 
4645 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4646 			  struct tcphdr *th, unsigned len)
4647 {
4648 	struct tcp_sock *tp = tcp_sk(sk);
4649 	struct inet_connection_sock *icsk = inet_csk(sk);
4650 	int queued = 0;
4651 
4652 	tp->rx_opt.saw_tstamp = 0;
4653 
4654 	switch (sk->sk_state) {
4655 	case TCP_CLOSE:
4656 		goto discard;
4657 
4658 	case TCP_LISTEN:
4659 		if (th->ack)
4660 			return 1;
4661 
4662 		if (th->rst)
4663 			goto discard;
4664 
4665 		if (th->syn) {
4666 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4667 				return 1;
4668 
4669 			/* Now we have several options: In theory there is
4670 			 * nothing else in the frame. KA9Q has an option to
4671 			 * send data with the syn, BSD accepts data with the
4672 			 * syn up to the [to be] advertised window and
4673 			 * Solaris 2.1 gives you a protocol error. For now
4674 			 * we just ignore it, that fits the spec precisely
4675 			 * and avoids incompatibilities. It would be nice in
4676 			 * future to drop through and process the data.
4677 			 *
4678 			 * Now that TTCP is starting to be used we ought to
4679 			 * queue this data.
4680 			 * But, this leaves one open to an easy denial of
4681 			 * service attack, and SYN cookies can't defend
4682 			 * against this problem. So, we drop the data
4683 			 * in the interest of security over speed unless
4684 			 * it's still in use.
4685 			 */
4686 			kfree_skb(skb);
4687 			return 0;
4688 		}
4689 		goto discard;
4690 
4691 	case TCP_SYN_SENT:
4692 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4693 		if (queued >= 0)
4694 			return queued;
4695 
4696 		/* Do step6 onward by hand. */
4697 		tcp_urg(sk, skb, th);
4698 		__kfree_skb(skb);
4699 		tcp_data_snd_check(sk);
4700 		return 0;
4701 	}
4702 
4703 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4704 	    tcp_paws_discard(sk, skb)) {
4705 		if (!th->rst) {
4706 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4707 			tcp_send_dupack(sk, skb);
4708 			goto discard;
4709 		}
4710 		/* Reset is accepted even if it did not pass PAWS. */
4711 	}
4712 
4713 	/* step 1: check sequence number */
4714 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4715 		if (!th->rst)
4716 			tcp_send_dupack(sk, skb);
4717 		goto discard;
4718 	}
4719 
4720 	/* step 2: check RST bit */
4721 	if (th->rst) {
4722 		tcp_reset(sk);
4723 		goto discard;
4724 	}
4725 
4726 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4727 
4728 	/* step 3: check security and precedence [ignored] */
4729 
4730 	/*	step 4:
4731 	 *
4732 	 *	Check for a SYN in window.
4733 	 */
4734 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4735 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4736 		tcp_reset(sk);
4737 		return 1;
4738 	}
4739 
4740 	/* step 5: check the ACK field */
4741 	if (th->ack) {
4742 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4743 
4744 		switch (sk->sk_state) {
4745 		case TCP_SYN_RECV:
4746 			if (acceptable) {
4747 				tp->copied_seq = tp->rcv_nxt;
4748 				smp_mb();
4749 				tcp_set_state(sk, TCP_ESTABLISHED);
4750 				sk->sk_state_change(sk);
4751 
4752 				/* Note, that this wakeup is only for marginal
4753 				 * crossed SYN case. Passively open sockets
4754 				 * are not waked up, because sk->sk_sleep ==
4755 				 * NULL and sk->sk_socket == NULL.
4756 				 */
4757 				if (sk->sk_socket) {
4758 					sk_wake_async(sk,0,POLL_OUT);
4759 				}
4760 
4761 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4762 				tp->snd_wnd = ntohs(th->window) <<
4763 					      tp->rx_opt.snd_wscale;
4764 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4765 					    TCP_SKB_CB(skb)->seq);
4766 
4767 				/* tcp_ack considers this ACK as duplicate
4768 				 * and does not calculate rtt.
4769 				 * Fix it at least with timestamps.
4770 				 */
4771 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4772 				    !tp->srtt)
4773 					tcp_ack_saw_tstamp(sk, 0);
4774 
4775 				if (tp->rx_opt.tstamp_ok)
4776 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4777 
4778 				/* Make sure socket is routed, for
4779 				 * correct metrics.
4780 				 */
4781 				icsk->icsk_af_ops->rebuild_header(sk);
4782 
4783 				tcp_init_metrics(sk);
4784 
4785 				tcp_init_congestion_control(sk);
4786 
4787 				/* Prevent spurious tcp_cwnd_restart() on
4788 				 * first data packet.
4789 				 */
4790 				tp->lsndtime = tcp_time_stamp;
4791 
4792 				tcp_mtup_init(sk);
4793 				tcp_initialize_rcv_mss(sk);
4794 				tcp_init_buffer_space(sk);
4795 				tcp_fast_path_on(tp);
4796 			} else {
4797 				return 1;
4798 			}
4799 			break;
4800 
4801 		case TCP_FIN_WAIT1:
4802 			if (tp->snd_una == tp->write_seq) {
4803 				tcp_set_state(sk, TCP_FIN_WAIT2);
4804 				sk->sk_shutdown |= SEND_SHUTDOWN;
4805 				dst_confirm(sk->sk_dst_cache);
4806 
4807 				if (!sock_flag(sk, SOCK_DEAD))
4808 					/* Wake up lingering close() */
4809 					sk->sk_state_change(sk);
4810 				else {
4811 					int tmo;
4812 
4813 					if (tp->linger2 < 0 ||
4814 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4815 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4816 						tcp_done(sk);
4817 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4818 						return 1;
4819 					}
4820 
4821 					tmo = tcp_fin_time(sk);
4822 					if (tmo > TCP_TIMEWAIT_LEN) {
4823 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4824 					} else if (th->fin || sock_owned_by_user(sk)) {
4825 						/* Bad case. We could lose such FIN otherwise.
4826 						 * It is not a big problem, but it looks confusing
4827 						 * and not so rare event. We still can lose it now,
4828 						 * if it spins in bh_lock_sock(), but it is really
4829 						 * marginal case.
4830 						 */
4831 						inet_csk_reset_keepalive_timer(sk, tmo);
4832 					} else {
4833 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4834 						goto discard;
4835 					}
4836 				}
4837 			}
4838 			break;
4839 
4840 		case TCP_CLOSING:
4841 			if (tp->snd_una == tp->write_seq) {
4842 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4843 				goto discard;
4844 			}
4845 			break;
4846 
4847 		case TCP_LAST_ACK:
4848 			if (tp->snd_una == tp->write_seq) {
4849 				tcp_update_metrics(sk);
4850 				tcp_done(sk);
4851 				goto discard;
4852 			}
4853 			break;
4854 		}
4855 	} else
4856 		goto discard;
4857 
4858 	/* step 6: check the URG bit */
4859 	tcp_urg(sk, skb, th);
4860 
4861 	/* step 7: process the segment text */
4862 	switch (sk->sk_state) {
4863 	case TCP_CLOSE_WAIT:
4864 	case TCP_CLOSING:
4865 	case TCP_LAST_ACK:
4866 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4867 			break;
4868 	case TCP_FIN_WAIT1:
4869 	case TCP_FIN_WAIT2:
4870 		/* RFC 793 says to queue data in these states,
4871 		 * RFC 1122 says we MUST send a reset.
4872 		 * BSD 4.4 also does reset.
4873 		 */
4874 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4875 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4876 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4877 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4878 				tcp_reset(sk);
4879 				return 1;
4880 			}
4881 		}
4882 		/* Fall through */
4883 	case TCP_ESTABLISHED:
4884 		tcp_data_queue(sk, skb);
4885 		queued = 1;
4886 		break;
4887 	}
4888 
4889 	/* tcp_data could move socket to TIME-WAIT */
4890 	if (sk->sk_state != TCP_CLOSE) {
4891 		tcp_data_snd_check(sk);
4892 		tcp_ack_snd_check(sk);
4893 	}
4894 
4895 	if (!queued) {
4896 discard:
4897 		__kfree_skb(skb);
4898 	}
4899 	return 0;
4900 }
4901 
4902 EXPORT_SYMBOL(sysctl_tcp_ecn);
4903 EXPORT_SYMBOL(sysctl_tcp_reordering);
4904 EXPORT_SYMBOL(tcp_parse_options);
4905 EXPORT_SYMBOL(tcp_rcv_established);
4906 EXPORT_SYMBOL(tcp_rcv_state_process);
4907 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
4908