xref: /linux/net/ipv4/tcp_input.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 
82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
83 
84 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
85 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
86 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
87 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
88 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
89 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
90 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
91 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
94 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
100 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
101 
102 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
103 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
104 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
105 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
106 
107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
109 
110 #define REXMIT_NONE	0 /* no loss recovery to do */
111 #define REXMIT_LOST	1 /* retransmit packets marked lost */
112 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
113 
114 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
115 			     unsigned int len)
116 {
117 	static bool __once __read_mostly;
118 
119 	if (!__once) {
120 		struct net_device *dev;
121 
122 		__once = true;
123 
124 		rcu_read_lock();
125 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
126 		if (!dev || len >= dev->mtu)
127 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
128 				dev ? dev->name : "Unknown driver");
129 		rcu_read_unlock();
130 	}
131 }
132 
133 /* Adapt the MSS value used to make delayed ack decision to the
134  * real world.
135  */
136 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
137 {
138 	struct inet_connection_sock *icsk = inet_csk(sk);
139 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
140 	unsigned int len;
141 
142 	icsk->icsk_ack.last_seg_size = 0;
143 
144 	/* skb->len may jitter because of SACKs, even if peer
145 	 * sends good full-sized frames.
146 	 */
147 	len = skb_shinfo(skb)->gso_size ? : skb->len;
148 	if (len >= icsk->icsk_ack.rcv_mss) {
149 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
150 					       tcp_sk(sk)->advmss);
151 		/* Account for possibly-removed options */
152 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
153 				   MAX_TCP_OPTION_SPACE))
154 			tcp_gro_dev_warn(sk, skb, len);
155 	} else {
156 		/* Otherwise, we make more careful check taking into account,
157 		 * that SACKs block is variable.
158 		 *
159 		 * "len" is invariant segment length, including TCP header.
160 		 */
161 		len += skb->data - skb_transport_header(skb);
162 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
163 		    /* If PSH is not set, packet should be
164 		     * full sized, provided peer TCP is not badly broken.
165 		     * This observation (if it is correct 8)) allows
166 		     * to handle super-low mtu links fairly.
167 		     */
168 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
169 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
170 			/* Subtract also invariant (if peer is RFC compliant),
171 			 * tcp header plus fixed timestamp option length.
172 			 * Resulting "len" is MSS free of SACK jitter.
173 			 */
174 			len -= tcp_sk(sk)->tcp_header_len;
175 			icsk->icsk_ack.last_seg_size = len;
176 			if (len == lss) {
177 				icsk->icsk_ack.rcv_mss = len;
178 				return;
179 			}
180 		}
181 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
182 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
183 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
184 	}
185 }
186 
187 static void tcp_incr_quickack(struct sock *sk)
188 {
189 	struct inet_connection_sock *icsk = inet_csk(sk);
190 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
191 
192 	if (quickacks == 0)
193 		quickacks = 2;
194 	if (quickacks > icsk->icsk_ack.quick)
195 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
196 }
197 
198 static void tcp_enter_quickack_mode(struct sock *sk)
199 {
200 	struct inet_connection_sock *icsk = inet_csk(sk);
201 	tcp_incr_quickack(sk);
202 	icsk->icsk_ack.pingpong = 0;
203 	icsk->icsk_ack.ato = TCP_ATO_MIN;
204 }
205 
206 /* Send ACKs quickly, if "quick" count is not exhausted
207  * and the session is not interactive.
208  */
209 
210 static bool tcp_in_quickack_mode(struct sock *sk)
211 {
212 	const struct inet_connection_sock *icsk = inet_csk(sk);
213 	const struct dst_entry *dst = __sk_dst_get(sk);
214 
215 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
216 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
217 }
218 
219 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
220 {
221 	if (tp->ecn_flags & TCP_ECN_OK)
222 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
223 }
224 
225 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
226 {
227 	if (tcp_hdr(skb)->cwr)
228 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
229 }
230 
231 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
232 {
233 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
234 }
235 
236 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
237 {
238 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
239 	case INET_ECN_NOT_ECT:
240 		/* Funny extension: if ECT is not set on a segment,
241 		 * and we already seen ECT on a previous segment,
242 		 * it is probably a retransmit.
243 		 */
244 		if (tp->ecn_flags & TCP_ECN_SEEN)
245 			tcp_enter_quickack_mode((struct sock *)tp);
246 		break;
247 	case INET_ECN_CE:
248 		if (tcp_ca_needs_ecn((struct sock *)tp))
249 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
250 
251 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
252 			/* Better not delay acks, sender can have a very low cwnd */
253 			tcp_enter_quickack_mode((struct sock *)tp);
254 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
255 		}
256 		tp->ecn_flags |= TCP_ECN_SEEN;
257 		break;
258 	default:
259 		if (tcp_ca_needs_ecn((struct sock *)tp))
260 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
261 		tp->ecn_flags |= TCP_ECN_SEEN;
262 		break;
263 	}
264 }
265 
266 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
267 {
268 	if (tp->ecn_flags & TCP_ECN_OK)
269 		__tcp_ecn_check_ce(tp, skb);
270 }
271 
272 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
273 {
274 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
275 		tp->ecn_flags &= ~TCP_ECN_OK;
276 }
277 
278 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
279 {
280 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
281 		tp->ecn_flags &= ~TCP_ECN_OK;
282 }
283 
284 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
285 {
286 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
287 		return true;
288 	return false;
289 }
290 
291 /* Buffer size and advertised window tuning.
292  *
293  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
294  */
295 
296 static void tcp_sndbuf_expand(struct sock *sk)
297 {
298 	const struct tcp_sock *tp = tcp_sk(sk);
299 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
300 	int sndmem, per_mss;
301 	u32 nr_segs;
302 
303 	/* Worst case is non GSO/TSO : each frame consumes one skb
304 	 * and skb->head is kmalloced using power of two area of memory
305 	 */
306 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
307 		  MAX_TCP_HEADER +
308 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
309 
310 	per_mss = roundup_pow_of_two(per_mss) +
311 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
312 
313 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
314 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
315 
316 	/* Fast Recovery (RFC 5681 3.2) :
317 	 * Cubic needs 1.7 factor, rounded to 2 to include
318 	 * extra cushion (application might react slowly to EPOLLOUT)
319 	 */
320 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
321 	sndmem *= nr_segs * per_mss;
322 
323 	if (sk->sk_sndbuf < sndmem)
324 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
325 }
326 
327 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
328  *
329  * All tcp_full_space() is split to two parts: "network" buffer, allocated
330  * forward and advertised in receiver window (tp->rcv_wnd) and
331  * "application buffer", required to isolate scheduling/application
332  * latencies from network.
333  * window_clamp is maximal advertised window. It can be less than
334  * tcp_full_space(), in this case tcp_full_space() - window_clamp
335  * is reserved for "application" buffer. The less window_clamp is
336  * the smoother our behaviour from viewpoint of network, but the lower
337  * throughput and the higher sensitivity of the connection to losses. 8)
338  *
339  * rcv_ssthresh is more strict window_clamp used at "slow start"
340  * phase to predict further behaviour of this connection.
341  * It is used for two goals:
342  * - to enforce header prediction at sender, even when application
343  *   requires some significant "application buffer". It is check #1.
344  * - to prevent pruning of receive queue because of misprediction
345  *   of receiver window. Check #2.
346  *
347  * The scheme does not work when sender sends good segments opening
348  * window and then starts to feed us spaghetti. But it should work
349  * in common situations. Otherwise, we have to rely on queue collapsing.
350  */
351 
352 /* Slow part of check#2. */
353 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
354 {
355 	struct tcp_sock *tp = tcp_sk(sk);
356 	/* Optimize this! */
357 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
358 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
359 
360 	while (tp->rcv_ssthresh <= window) {
361 		if (truesize <= skb->len)
362 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
363 
364 		truesize >>= 1;
365 		window >>= 1;
366 	}
367 	return 0;
368 }
369 
370 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
371 {
372 	struct tcp_sock *tp = tcp_sk(sk);
373 
374 	/* Check #1 */
375 	if (tp->rcv_ssthresh < tp->window_clamp &&
376 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
377 	    !tcp_under_memory_pressure(sk)) {
378 		int incr;
379 
380 		/* Check #2. Increase window, if skb with such overhead
381 		 * will fit to rcvbuf in future.
382 		 */
383 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
384 			incr = 2 * tp->advmss;
385 		else
386 			incr = __tcp_grow_window(sk, skb);
387 
388 		if (incr) {
389 			incr = max_t(int, incr, 2 * skb->len);
390 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
391 					       tp->window_clamp);
392 			inet_csk(sk)->icsk_ack.quick |= 1;
393 		}
394 	}
395 }
396 
397 /* 3. Tuning rcvbuf, when connection enters established state. */
398 static void tcp_fixup_rcvbuf(struct sock *sk)
399 {
400 	u32 mss = tcp_sk(sk)->advmss;
401 	int rcvmem;
402 
403 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
404 		 tcp_default_init_rwnd(mss);
405 
406 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
407 	 * Allow enough cushion so that sender is not limited by our window
408 	 */
409 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
410 		rcvmem <<= 2;
411 
412 	if (sk->sk_rcvbuf < rcvmem)
413 		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
414 }
415 
416 /* 4. Try to fixup all. It is made immediately after connection enters
417  *    established state.
418  */
419 void tcp_init_buffer_space(struct sock *sk)
420 {
421 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
422 	struct tcp_sock *tp = tcp_sk(sk);
423 	int maxwin;
424 
425 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
426 		tcp_fixup_rcvbuf(sk);
427 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
428 		tcp_sndbuf_expand(sk);
429 
430 	tp->rcvq_space.space = tp->rcv_wnd;
431 	tcp_mstamp_refresh(tp);
432 	tp->rcvq_space.time = tp->tcp_mstamp;
433 	tp->rcvq_space.seq = tp->copied_seq;
434 
435 	maxwin = tcp_full_space(sk);
436 
437 	if (tp->window_clamp >= maxwin) {
438 		tp->window_clamp = maxwin;
439 
440 		if (tcp_app_win && maxwin > 4 * tp->advmss)
441 			tp->window_clamp = max(maxwin -
442 					       (maxwin >> tcp_app_win),
443 					       4 * tp->advmss);
444 	}
445 
446 	/* Force reservation of one segment. */
447 	if (tcp_app_win &&
448 	    tp->window_clamp > 2 * tp->advmss &&
449 	    tp->window_clamp + tp->advmss > maxwin)
450 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
451 
452 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
453 	tp->snd_cwnd_stamp = tcp_jiffies32;
454 }
455 
456 /* 5. Recalculate window clamp after socket hit its memory bounds. */
457 static void tcp_clamp_window(struct sock *sk)
458 {
459 	struct tcp_sock *tp = tcp_sk(sk);
460 	struct inet_connection_sock *icsk = inet_csk(sk);
461 	struct net *net = sock_net(sk);
462 
463 	icsk->icsk_ack.quick = 0;
464 
465 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
466 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
467 	    !tcp_under_memory_pressure(sk) &&
468 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
469 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
470 				    net->ipv4.sysctl_tcp_rmem[2]);
471 	}
472 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
473 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
474 }
475 
476 /* Initialize RCV_MSS value.
477  * RCV_MSS is an our guess about MSS used by the peer.
478  * We haven't any direct information about the MSS.
479  * It's better to underestimate the RCV_MSS rather than overestimate.
480  * Overestimations make us ACKing less frequently than needed.
481  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
482  */
483 void tcp_initialize_rcv_mss(struct sock *sk)
484 {
485 	const struct tcp_sock *tp = tcp_sk(sk);
486 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
487 
488 	hint = min(hint, tp->rcv_wnd / 2);
489 	hint = min(hint, TCP_MSS_DEFAULT);
490 	hint = max(hint, TCP_MIN_MSS);
491 
492 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
493 }
494 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
495 
496 /* Receiver "autotuning" code.
497  *
498  * The algorithm for RTT estimation w/o timestamps is based on
499  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
500  * <http://public.lanl.gov/radiant/pubs.html#DRS>
501  *
502  * More detail on this code can be found at
503  * <http://staff.psc.edu/jheffner/>,
504  * though this reference is out of date.  A new paper
505  * is pending.
506  */
507 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
508 {
509 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
510 	long m = sample;
511 
512 	if (new_sample != 0) {
513 		/* If we sample in larger samples in the non-timestamp
514 		 * case, we could grossly overestimate the RTT especially
515 		 * with chatty applications or bulk transfer apps which
516 		 * are stalled on filesystem I/O.
517 		 *
518 		 * Also, since we are only going for a minimum in the
519 		 * non-timestamp case, we do not smooth things out
520 		 * else with timestamps disabled convergence takes too
521 		 * long.
522 		 */
523 		if (!win_dep) {
524 			m -= (new_sample >> 3);
525 			new_sample += m;
526 		} else {
527 			m <<= 3;
528 			if (m < new_sample)
529 				new_sample = m;
530 		}
531 	} else {
532 		/* No previous measure. */
533 		new_sample = m << 3;
534 	}
535 
536 	tp->rcv_rtt_est.rtt_us = new_sample;
537 }
538 
539 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
540 {
541 	u32 delta_us;
542 
543 	if (tp->rcv_rtt_est.time == 0)
544 		goto new_measure;
545 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
546 		return;
547 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
548 	if (!delta_us)
549 		delta_us = 1;
550 	tcp_rcv_rtt_update(tp, delta_us, 1);
551 
552 new_measure:
553 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
554 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
555 }
556 
557 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
558 					  const struct sk_buff *skb)
559 {
560 	struct tcp_sock *tp = tcp_sk(sk);
561 
562 	if (tp->rx_opt.rcv_tsecr &&
563 	    (TCP_SKB_CB(skb)->end_seq -
564 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
565 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
566 		u32 delta_us;
567 
568 		if (!delta)
569 			delta = 1;
570 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
571 		tcp_rcv_rtt_update(tp, delta_us, 0);
572 	}
573 }
574 
575 /*
576  * This function should be called every time data is copied to user space.
577  * It calculates the appropriate TCP receive buffer space.
578  */
579 void tcp_rcv_space_adjust(struct sock *sk)
580 {
581 	struct tcp_sock *tp = tcp_sk(sk);
582 	u32 copied;
583 	int time;
584 
585 	tcp_mstamp_refresh(tp);
586 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
587 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
588 		return;
589 
590 	/* Number of bytes copied to user in last RTT */
591 	copied = tp->copied_seq - tp->rcvq_space.seq;
592 	if (copied <= tp->rcvq_space.space)
593 		goto new_measure;
594 
595 	/* A bit of theory :
596 	 * copied = bytes received in previous RTT, our base window
597 	 * To cope with packet losses, we need a 2x factor
598 	 * To cope with slow start, and sender growing its cwin by 100 %
599 	 * every RTT, we need a 4x factor, because the ACK we are sending
600 	 * now is for the next RTT, not the current one :
601 	 * <prev RTT . ><current RTT .. ><next RTT .... >
602 	 */
603 
604 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
605 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
606 		int rcvmem, rcvbuf;
607 		u64 rcvwin, grow;
608 
609 		/* minimal window to cope with packet losses, assuming
610 		 * steady state. Add some cushion because of small variations.
611 		 */
612 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
613 
614 		/* Accommodate for sender rate increase (eg. slow start) */
615 		grow = rcvwin * (copied - tp->rcvq_space.space);
616 		do_div(grow, tp->rcvq_space.space);
617 		rcvwin += (grow << 1);
618 
619 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
620 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
621 			rcvmem += 128;
622 
623 		do_div(rcvwin, tp->advmss);
624 		rcvbuf = min_t(u64, rcvwin * rcvmem,
625 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
626 		if (rcvbuf > sk->sk_rcvbuf) {
627 			sk->sk_rcvbuf = rcvbuf;
628 
629 			/* Make the window clamp follow along.  */
630 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
631 		}
632 	}
633 	tp->rcvq_space.space = copied;
634 
635 new_measure:
636 	tp->rcvq_space.seq = tp->copied_seq;
637 	tp->rcvq_space.time = tp->tcp_mstamp;
638 }
639 
640 /* There is something which you must keep in mind when you analyze the
641  * behavior of the tp->ato delayed ack timeout interval.  When a
642  * connection starts up, we want to ack as quickly as possible.  The
643  * problem is that "good" TCP's do slow start at the beginning of data
644  * transmission.  The means that until we send the first few ACK's the
645  * sender will sit on his end and only queue most of his data, because
646  * he can only send snd_cwnd unacked packets at any given time.  For
647  * each ACK we send, he increments snd_cwnd and transmits more of his
648  * queue.  -DaveM
649  */
650 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
651 {
652 	struct tcp_sock *tp = tcp_sk(sk);
653 	struct inet_connection_sock *icsk = inet_csk(sk);
654 	u32 now;
655 
656 	inet_csk_schedule_ack(sk);
657 
658 	tcp_measure_rcv_mss(sk, skb);
659 
660 	tcp_rcv_rtt_measure(tp);
661 
662 	now = tcp_jiffies32;
663 
664 	if (!icsk->icsk_ack.ato) {
665 		/* The _first_ data packet received, initialize
666 		 * delayed ACK engine.
667 		 */
668 		tcp_incr_quickack(sk);
669 		icsk->icsk_ack.ato = TCP_ATO_MIN;
670 	} else {
671 		int m = now - icsk->icsk_ack.lrcvtime;
672 
673 		if (m <= TCP_ATO_MIN / 2) {
674 			/* The fastest case is the first. */
675 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
676 		} else if (m < icsk->icsk_ack.ato) {
677 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
678 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
679 				icsk->icsk_ack.ato = icsk->icsk_rto;
680 		} else if (m > icsk->icsk_rto) {
681 			/* Too long gap. Apparently sender failed to
682 			 * restart window, so that we send ACKs quickly.
683 			 */
684 			tcp_incr_quickack(sk);
685 			sk_mem_reclaim(sk);
686 		}
687 	}
688 	icsk->icsk_ack.lrcvtime = now;
689 
690 	tcp_ecn_check_ce(tp, skb);
691 
692 	if (skb->len >= 128)
693 		tcp_grow_window(sk, skb);
694 }
695 
696 /* Called to compute a smoothed rtt estimate. The data fed to this
697  * routine either comes from timestamps, or from segments that were
698  * known _not_ to have been retransmitted [see Karn/Partridge
699  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
700  * piece by Van Jacobson.
701  * NOTE: the next three routines used to be one big routine.
702  * To save cycles in the RFC 1323 implementation it was better to break
703  * it up into three procedures. -- erics
704  */
705 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
706 {
707 	struct tcp_sock *tp = tcp_sk(sk);
708 	long m = mrtt_us; /* RTT */
709 	u32 srtt = tp->srtt_us;
710 
711 	/*	The following amusing code comes from Jacobson's
712 	 *	article in SIGCOMM '88.  Note that rtt and mdev
713 	 *	are scaled versions of rtt and mean deviation.
714 	 *	This is designed to be as fast as possible
715 	 *	m stands for "measurement".
716 	 *
717 	 *	On a 1990 paper the rto value is changed to:
718 	 *	RTO = rtt + 4 * mdev
719 	 *
720 	 * Funny. This algorithm seems to be very broken.
721 	 * These formulae increase RTO, when it should be decreased, increase
722 	 * too slowly, when it should be increased quickly, decrease too quickly
723 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
724 	 * does not matter how to _calculate_ it. Seems, it was trap
725 	 * that VJ failed to avoid. 8)
726 	 */
727 	if (srtt != 0) {
728 		m -= (srtt >> 3);	/* m is now error in rtt est */
729 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
730 		if (m < 0) {
731 			m = -m;		/* m is now abs(error) */
732 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
733 			/* This is similar to one of Eifel findings.
734 			 * Eifel blocks mdev updates when rtt decreases.
735 			 * This solution is a bit different: we use finer gain
736 			 * for mdev in this case (alpha*beta).
737 			 * Like Eifel it also prevents growth of rto,
738 			 * but also it limits too fast rto decreases,
739 			 * happening in pure Eifel.
740 			 */
741 			if (m > 0)
742 				m >>= 3;
743 		} else {
744 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
745 		}
746 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
747 		if (tp->mdev_us > tp->mdev_max_us) {
748 			tp->mdev_max_us = tp->mdev_us;
749 			if (tp->mdev_max_us > tp->rttvar_us)
750 				tp->rttvar_us = tp->mdev_max_us;
751 		}
752 		if (after(tp->snd_una, tp->rtt_seq)) {
753 			if (tp->mdev_max_us < tp->rttvar_us)
754 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
755 			tp->rtt_seq = tp->snd_nxt;
756 			tp->mdev_max_us = tcp_rto_min_us(sk);
757 		}
758 	} else {
759 		/* no previous measure. */
760 		srtt = m << 3;		/* take the measured time to be rtt */
761 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
762 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
763 		tp->mdev_max_us = tp->rttvar_us;
764 		tp->rtt_seq = tp->snd_nxt;
765 	}
766 	tp->srtt_us = max(1U, srtt);
767 }
768 
769 static void tcp_update_pacing_rate(struct sock *sk)
770 {
771 	const struct tcp_sock *tp = tcp_sk(sk);
772 	u64 rate;
773 
774 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
775 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
776 
777 	/* current rate is (cwnd * mss) / srtt
778 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
779 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
780 	 *
781 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
782 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
783 	 *	 end of slow start and should slow down.
784 	 */
785 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
786 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
787 	else
788 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
789 
790 	rate *= max(tp->snd_cwnd, tp->packets_out);
791 
792 	if (likely(tp->srtt_us))
793 		do_div(rate, tp->srtt_us);
794 
795 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
796 	 * without any lock. We want to make sure compiler wont store
797 	 * intermediate values in this location.
798 	 */
799 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
800 					     sk->sk_max_pacing_rate));
801 }
802 
803 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
804  * routine referred to above.
805  */
806 static void tcp_set_rto(struct sock *sk)
807 {
808 	const struct tcp_sock *tp = tcp_sk(sk);
809 	/* Old crap is replaced with new one. 8)
810 	 *
811 	 * More seriously:
812 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
813 	 *    It cannot be less due to utterly erratic ACK generation made
814 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
815 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
816 	 *    is invisible. Actually, Linux-2.4 also generates erratic
817 	 *    ACKs in some circumstances.
818 	 */
819 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
820 
821 	/* 2. Fixups made earlier cannot be right.
822 	 *    If we do not estimate RTO correctly without them,
823 	 *    all the algo is pure shit and should be replaced
824 	 *    with correct one. It is exactly, which we pretend to do.
825 	 */
826 
827 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
828 	 * guarantees that rto is higher.
829 	 */
830 	tcp_bound_rto(sk);
831 }
832 
833 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
834 {
835 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
836 
837 	if (!cwnd)
838 		cwnd = TCP_INIT_CWND;
839 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
840 }
841 
842 /* Take a notice that peer is sending D-SACKs */
843 static void tcp_dsack_seen(struct tcp_sock *tp)
844 {
845 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
846 	tp->rack.dsack_seen = 1;
847 }
848 
849 /* It's reordering when higher sequence was delivered (i.e. sacked) before
850  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
851  * distance is approximated in full-mss packet distance ("reordering").
852  */
853 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
854 				      const int ts)
855 {
856 	struct tcp_sock *tp = tcp_sk(sk);
857 	const u32 mss = tp->mss_cache;
858 	u32 fack, metric;
859 
860 	fack = tcp_highest_sack_seq(tp);
861 	if (!before(low_seq, fack))
862 		return;
863 
864 	metric = fack - low_seq;
865 	if ((metric > tp->reordering * mss) && mss) {
866 #if FASTRETRANS_DEBUG > 1
867 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
868 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
869 			 tp->reordering,
870 			 0,
871 			 tp->sacked_out,
872 			 tp->undo_marker ? tp->undo_retrans : 0);
873 #endif
874 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
875 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
876 	}
877 
878 	tp->rack.reord = 1;
879 	/* This exciting event is worth to be remembered. 8) */
880 	NET_INC_STATS(sock_net(sk),
881 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
882 }
883 
884 /* This must be called before lost_out is incremented */
885 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
886 {
887 	if (!tp->retransmit_skb_hint ||
888 	    before(TCP_SKB_CB(skb)->seq,
889 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
890 		tp->retransmit_skb_hint = skb;
891 }
892 
893 /* Sum the number of packets on the wire we have marked as lost.
894  * There are two cases we care about here:
895  * a) Packet hasn't been marked lost (nor retransmitted),
896  *    and this is the first loss.
897  * b) Packet has been marked both lost and retransmitted,
898  *    and this means we think it was lost again.
899  */
900 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
901 {
902 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
903 
904 	if (!(sacked & TCPCB_LOST) ||
905 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
906 		tp->lost += tcp_skb_pcount(skb);
907 }
908 
909 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
910 {
911 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
912 		tcp_verify_retransmit_hint(tp, skb);
913 
914 		tp->lost_out += tcp_skb_pcount(skb);
915 		tcp_sum_lost(tp, skb);
916 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
917 	}
918 }
919 
920 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
921 {
922 	tcp_verify_retransmit_hint(tp, skb);
923 
924 	tcp_sum_lost(tp, skb);
925 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
926 		tp->lost_out += tcp_skb_pcount(skb);
927 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
928 	}
929 }
930 
931 /* This procedure tags the retransmission queue when SACKs arrive.
932  *
933  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
934  * Packets in queue with these bits set are counted in variables
935  * sacked_out, retrans_out and lost_out, correspondingly.
936  *
937  * Valid combinations are:
938  * Tag  InFlight	Description
939  * 0	1		- orig segment is in flight.
940  * S	0		- nothing flies, orig reached receiver.
941  * L	0		- nothing flies, orig lost by net.
942  * R	2		- both orig and retransmit are in flight.
943  * L|R	1		- orig is lost, retransmit is in flight.
944  * S|R  1		- orig reached receiver, retrans is still in flight.
945  * (L|S|R is logically valid, it could occur when L|R is sacked,
946  *  but it is equivalent to plain S and code short-curcuits it to S.
947  *  L|S is logically invalid, it would mean -1 packet in flight 8))
948  *
949  * These 6 states form finite state machine, controlled by the following events:
950  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
951  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
952  * 3. Loss detection event of two flavors:
953  *	A. Scoreboard estimator decided the packet is lost.
954  *	   A'. Reno "three dupacks" marks head of queue lost.
955  *	B. SACK arrives sacking SND.NXT at the moment, when the
956  *	   segment was retransmitted.
957  * 4. D-SACK added new rule: D-SACK changes any tag to S.
958  *
959  * It is pleasant to note, that state diagram turns out to be commutative,
960  * so that we are allowed not to be bothered by order of our actions,
961  * when multiple events arrive simultaneously. (see the function below).
962  *
963  * Reordering detection.
964  * --------------------
965  * Reordering metric is maximal distance, which a packet can be displaced
966  * in packet stream. With SACKs we can estimate it:
967  *
968  * 1. SACK fills old hole and the corresponding segment was not
969  *    ever retransmitted -> reordering. Alas, we cannot use it
970  *    when segment was retransmitted.
971  * 2. The last flaw is solved with D-SACK. D-SACK arrives
972  *    for retransmitted and already SACKed segment -> reordering..
973  * Both of these heuristics are not used in Loss state, when we cannot
974  * account for retransmits accurately.
975  *
976  * SACK block validation.
977  * ----------------------
978  *
979  * SACK block range validation checks that the received SACK block fits to
980  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
981  * Note that SND.UNA is not included to the range though being valid because
982  * it means that the receiver is rather inconsistent with itself reporting
983  * SACK reneging when it should advance SND.UNA. Such SACK block this is
984  * perfectly valid, however, in light of RFC2018 which explicitly states
985  * that "SACK block MUST reflect the newest segment.  Even if the newest
986  * segment is going to be discarded ...", not that it looks very clever
987  * in case of head skb. Due to potentional receiver driven attacks, we
988  * choose to avoid immediate execution of a walk in write queue due to
989  * reneging and defer head skb's loss recovery to standard loss recovery
990  * procedure that will eventually trigger (nothing forbids us doing this).
991  *
992  * Implements also blockage to start_seq wrap-around. Problem lies in the
993  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
994  * there's no guarantee that it will be before snd_nxt (n). The problem
995  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
996  * wrap (s_w):
997  *
998  *         <- outs wnd ->                          <- wrapzone ->
999  *         u     e      n                         u_w   e_w  s n_w
1000  *         |     |      |                          |     |   |  |
1001  * |<------------+------+----- TCP seqno space --------------+---------->|
1002  * ...-- <2^31 ->|                                           |<--------...
1003  * ...---- >2^31 ------>|                                    |<--------...
1004  *
1005  * Current code wouldn't be vulnerable but it's better still to discard such
1006  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1007  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1008  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1009  * equal to the ideal case (infinite seqno space without wrap caused issues).
1010  *
1011  * With D-SACK the lower bound is extended to cover sequence space below
1012  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1013  * again, D-SACK block must not to go across snd_una (for the same reason as
1014  * for the normal SACK blocks, explained above). But there all simplicity
1015  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1016  * fully below undo_marker they do not affect behavior in anyway and can
1017  * therefore be safely ignored. In rare cases (which are more or less
1018  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1019  * fragmentation and packet reordering past skb's retransmission. To consider
1020  * them correctly, the acceptable range must be extended even more though
1021  * the exact amount is rather hard to quantify. However, tp->max_window can
1022  * be used as an exaggerated estimate.
1023  */
1024 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1025 				   u32 start_seq, u32 end_seq)
1026 {
1027 	/* Too far in future, or reversed (interpretation is ambiguous) */
1028 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1029 		return false;
1030 
1031 	/* Nasty start_seq wrap-around check (see comments above) */
1032 	if (!before(start_seq, tp->snd_nxt))
1033 		return false;
1034 
1035 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1036 	 * start_seq == snd_una is non-sensical (see comments above)
1037 	 */
1038 	if (after(start_seq, tp->snd_una))
1039 		return true;
1040 
1041 	if (!is_dsack || !tp->undo_marker)
1042 		return false;
1043 
1044 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1045 	if (after(end_seq, tp->snd_una))
1046 		return false;
1047 
1048 	if (!before(start_seq, tp->undo_marker))
1049 		return true;
1050 
1051 	/* Too old */
1052 	if (!after(end_seq, tp->undo_marker))
1053 		return false;
1054 
1055 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1056 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1057 	 */
1058 	return !before(start_seq, end_seq - tp->max_window);
1059 }
1060 
1061 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1062 			    struct tcp_sack_block_wire *sp, int num_sacks,
1063 			    u32 prior_snd_una)
1064 {
1065 	struct tcp_sock *tp = tcp_sk(sk);
1066 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1067 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1068 	bool dup_sack = false;
1069 
1070 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1071 		dup_sack = true;
1072 		tcp_dsack_seen(tp);
1073 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1074 	} else if (num_sacks > 1) {
1075 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1076 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1077 
1078 		if (!after(end_seq_0, end_seq_1) &&
1079 		    !before(start_seq_0, start_seq_1)) {
1080 			dup_sack = true;
1081 			tcp_dsack_seen(tp);
1082 			NET_INC_STATS(sock_net(sk),
1083 					LINUX_MIB_TCPDSACKOFORECV);
1084 		}
1085 	}
1086 
1087 	/* D-SACK for already forgotten data... Do dumb counting. */
1088 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1089 	    !after(end_seq_0, prior_snd_una) &&
1090 	    after(end_seq_0, tp->undo_marker))
1091 		tp->undo_retrans--;
1092 
1093 	return dup_sack;
1094 }
1095 
1096 struct tcp_sacktag_state {
1097 	u32	reord;
1098 	/* Timestamps for earliest and latest never-retransmitted segment
1099 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1100 	 * but congestion control should still get an accurate delay signal.
1101 	 */
1102 	u64	first_sackt;
1103 	u64	last_sackt;
1104 	struct rate_sample *rate;
1105 	int	flag;
1106 	unsigned int mss_now;
1107 };
1108 
1109 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1110  * the incoming SACK may not exactly match but we can find smaller MSS
1111  * aligned portion of it that matches. Therefore we might need to fragment
1112  * which may fail and creates some hassle (caller must handle error case
1113  * returns).
1114  *
1115  * FIXME: this could be merged to shift decision code
1116  */
1117 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1118 				  u32 start_seq, u32 end_seq)
1119 {
1120 	int err;
1121 	bool in_sack;
1122 	unsigned int pkt_len;
1123 	unsigned int mss;
1124 
1125 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1126 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1127 
1128 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1129 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1130 		mss = tcp_skb_mss(skb);
1131 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1132 
1133 		if (!in_sack) {
1134 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1135 			if (pkt_len < mss)
1136 				pkt_len = mss;
1137 		} else {
1138 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1139 			if (pkt_len < mss)
1140 				return -EINVAL;
1141 		}
1142 
1143 		/* Round if necessary so that SACKs cover only full MSSes
1144 		 * and/or the remaining small portion (if present)
1145 		 */
1146 		if (pkt_len > mss) {
1147 			unsigned int new_len = (pkt_len / mss) * mss;
1148 			if (!in_sack && new_len < pkt_len)
1149 				new_len += mss;
1150 			pkt_len = new_len;
1151 		}
1152 
1153 		if (pkt_len >= skb->len && !in_sack)
1154 			return 0;
1155 
1156 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1157 				   pkt_len, mss, GFP_ATOMIC);
1158 		if (err < 0)
1159 			return err;
1160 	}
1161 
1162 	return in_sack;
1163 }
1164 
1165 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1166 static u8 tcp_sacktag_one(struct sock *sk,
1167 			  struct tcp_sacktag_state *state, u8 sacked,
1168 			  u32 start_seq, u32 end_seq,
1169 			  int dup_sack, int pcount,
1170 			  u64 xmit_time)
1171 {
1172 	struct tcp_sock *tp = tcp_sk(sk);
1173 
1174 	/* Account D-SACK for retransmitted packet. */
1175 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1176 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1177 		    after(end_seq, tp->undo_marker))
1178 			tp->undo_retrans--;
1179 		if ((sacked & TCPCB_SACKED_ACKED) &&
1180 		    before(start_seq, state->reord))
1181 				state->reord = start_seq;
1182 	}
1183 
1184 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1185 	if (!after(end_seq, tp->snd_una))
1186 		return sacked;
1187 
1188 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1189 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1190 
1191 		if (sacked & TCPCB_SACKED_RETRANS) {
1192 			/* If the segment is not tagged as lost,
1193 			 * we do not clear RETRANS, believing
1194 			 * that retransmission is still in flight.
1195 			 */
1196 			if (sacked & TCPCB_LOST) {
1197 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1198 				tp->lost_out -= pcount;
1199 				tp->retrans_out -= pcount;
1200 			}
1201 		} else {
1202 			if (!(sacked & TCPCB_RETRANS)) {
1203 				/* New sack for not retransmitted frame,
1204 				 * which was in hole. It is reordering.
1205 				 */
1206 				if (before(start_seq,
1207 					   tcp_highest_sack_seq(tp)) &&
1208 				    before(start_seq, state->reord))
1209 					state->reord = start_seq;
1210 
1211 				if (!after(end_seq, tp->high_seq))
1212 					state->flag |= FLAG_ORIG_SACK_ACKED;
1213 				if (state->first_sackt == 0)
1214 					state->first_sackt = xmit_time;
1215 				state->last_sackt = xmit_time;
1216 			}
1217 
1218 			if (sacked & TCPCB_LOST) {
1219 				sacked &= ~TCPCB_LOST;
1220 				tp->lost_out -= pcount;
1221 			}
1222 		}
1223 
1224 		sacked |= TCPCB_SACKED_ACKED;
1225 		state->flag |= FLAG_DATA_SACKED;
1226 		tp->sacked_out += pcount;
1227 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1228 
1229 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1230 		if (tp->lost_skb_hint &&
1231 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1232 			tp->lost_cnt_hint += pcount;
1233 	}
1234 
1235 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1236 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1237 	 * are accounted above as well.
1238 	 */
1239 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1240 		sacked &= ~TCPCB_SACKED_RETRANS;
1241 		tp->retrans_out -= pcount;
1242 	}
1243 
1244 	return sacked;
1245 }
1246 
1247 /* Shift newly-SACKed bytes from this skb to the immediately previous
1248  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1249  */
1250 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1251 			    struct sk_buff *skb,
1252 			    struct tcp_sacktag_state *state,
1253 			    unsigned int pcount, int shifted, int mss,
1254 			    bool dup_sack)
1255 {
1256 	struct tcp_sock *tp = tcp_sk(sk);
1257 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1258 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1259 
1260 	BUG_ON(!pcount);
1261 
1262 	/* Adjust counters and hints for the newly sacked sequence
1263 	 * range but discard the return value since prev is already
1264 	 * marked. We must tag the range first because the seq
1265 	 * advancement below implicitly advances
1266 	 * tcp_highest_sack_seq() when skb is highest_sack.
1267 	 */
1268 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1269 			start_seq, end_seq, dup_sack, pcount,
1270 			skb->skb_mstamp);
1271 	tcp_rate_skb_delivered(sk, skb, state->rate);
1272 
1273 	if (skb == tp->lost_skb_hint)
1274 		tp->lost_cnt_hint += pcount;
1275 
1276 	TCP_SKB_CB(prev)->end_seq += shifted;
1277 	TCP_SKB_CB(skb)->seq += shifted;
1278 
1279 	tcp_skb_pcount_add(prev, pcount);
1280 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1281 	tcp_skb_pcount_add(skb, -pcount);
1282 
1283 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1284 	 * in theory this shouldn't be necessary but as long as DSACK
1285 	 * code can come after this skb later on it's better to keep
1286 	 * setting gso_size to something.
1287 	 */
1288 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1289 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1290 
1291 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1292 	if (tcp_skb_pcount(skb) <= 1)
1293 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1294 
1295 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1296 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1297 
1298 	if (skb->len > 0) {
1299 		BUG_ON(!tcp_skb_pcount(skb));
1300 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1301 		return false;
1302 	}
1303 
1304 	/* Whole SKB was eaten :-) */
1305 
1306 	if (skb == tp->retransmit_skb_hint)
1307 		tp->retransmit_skb_hint = prev;
1308 	if (skb == tp->lost_skb_hint) {
1309 		tp->lost_skb_hint = prev;
1310 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1311 	}
1312 
1313 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1314 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1315 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1316 		TCP_SKB_CB(prev)->end_seq++;
1317 
1318 	if (skb == tcp_highest_sack(sk))
1319 		tcp_advance_highest_sack(sk, skb);
1320 
1321 	tcp_skb_collapse_tstamp(prev, skb);
1322 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1323 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1324 
1325 	tcp_rtx_queue_unlink_and_free(skb, sk);
1326 
1327 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1328 
1329 	return true;
1330 }
1331 
1332 /* I wish gso_size would have a bit more sane initialization than
1333  * something-or-zero which complicates things
1334  */
1335 static int tcp_skb_seglen(const struct sk_buff *skb)
1336 {
1337 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1338 }
1339 
1340 /* Shifting pages past head area doesn't work */
1341 static int skb_can_shift(const struct sk_buff *skb)
1342 {
1343 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1344 }
1345 
1346 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1347  * skb.
1348  */
1349 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1350 					  struct tcp_sacktag_state *state,
1351 					  u32 start_seq, u32 end_seq,
1352 					  bool dup_sack)
1353 {
1354 	struct tcp_sock *tp = tcp_sk(sk);
1355 	struct sk_buff *prev;
1356 	int mss;
1357 	int pcount = 0;
1358 	int len;
1359 	int in_sack;
1360 
1361 	if (!sk_can_gso(sk))
1362 		goto fallback;
1363 
1364 	/* Normally R but no L won't result in plain S */
1365 	if (!dup_sack &&
1366 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1367 		goto fallback;
1368 	if (!skb_can_shift(skb))
1369 		goto fallback;
1370 	/* This frame is about to be dropped (was ACKed). */
1371 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1372 		goto fallback;
1373 
1374 	/* Can only happen with delayed DSACK + discard craziness */
1375 	prev = skb_rb_prev(skb);
1376 	if (!prev)
1377 		goto fallback;
1378 
1379 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1380 		goto fallback;
1381 
1382 	if (!tcp_skb_can_collapse_to(prev))
1383 		goto fallback;
1384 
1385 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1386 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1387 
1388 	if (in_sack) {
1389 		len = skb->len;
1390 		pcount = tcp_skb_pcount(skb);
1391 		mss = tcp_skb_seglen(skb);
1392 
1393 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1394 		 * drop this restriction as unnecessary
1395 		 */
1396 		if (mss != tcp_skb_seglen(prev))
1397 			goto fallback;
1398 	} else {
1399 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1400 			goto noop;
1401 		/* CHECKME: This is non-MSS split case only?, this will
1402 		 * cause skipped skbs due to advancing loop btw, original
1403 		 * has that feature too
1404 		 */
1405 		if (tcp_skb_pcount(skb) <= 1)
1406 			goto noop;
1407 
1408 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1409 		if (!in_sack) {
1410 			/* TODO: head merge to next could be attempted here
1411 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1412 			 * though it might not be worth of the additional hassle
1413 			 *
1414 			 * ...we can probably just fallback to what was done
1415 			 * previously. We could try merging non-SACKed ones
1416 			 * as well but it probably isn't going to buy off
1417 			 * because later SACKs might again split them, and
1418 			 * it would make skb timestamp tracking considerably
1419 			 * harder problem.
1420 			 */
1421 			goto fallback;
1422 		}
1423 
1424 		len = end_seq - TCP_SKB_CB(skb)->seq;
1425 		BUG_ON(len < 0);
1426 		BUG_ON(len > skb->len);
1427 
1428 		/* MSS boundaries should be honoured or else pcount will
1429 		 * severely break even though it makes things bit trickier.
1430 		 * Optimize common case to avoid most of the divides
1431 		 */
1432 		mss = tcp_skb_mss(skb);
1433 
1434 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1435 		 * drop this restriction as unnecessary
1436 		 */
1437 		if (mss != tcp_skb_seglen(prev))
1438 			goto fallback;
1439 
1440 		if (len == mss) {
1441 			pcount = 1;
1442 		} else if (len < mss) {
1443 			goto noop;
1444 		} else {
1445 			pcount = len / mss;
1446 			len = pcount * mss;
1447 		}
1448 	}
1449 
1450 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1451 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1452 		goto fallback;
1453 
1454 	if (!skb_shift(prev, skb, len))
1455 		goto fallback;
1456 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1457 		goto out;
1458 
1459 	/* Hole filled allows collapsing with the next as well, this is very
1460 	 * useful when hole on every nth skb pattern happens
1461 	 */
1462 	skb = skb_rb_next(prev);
1463 	if (!skb)
1464 		goto out;
1465 
1466 	if (!skb_can_shift(skb) ||
1467 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1468 	    (mss != tcp_skb_seglen(skb)))
1469 		goto out;
1470 
1471 	len = skb->len;
1472 	if (skb_shift(prev, skb, len)) {
1473 		pcount += tcp_skb_pcount(skb);
1474 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1475 				len, mss, 0);
1476 	}
1477 
1478 out:
1479 	return prev;
1480 
1481 noop:
1482 	return skb;
1483 
1484 fallback:
1485 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1486 	return NULL;
1487 }
1488 
1489 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1490 					struct tcp_sack_block *next_dup,
1491 					struct tcp_sacktag_state *state,
1492 					u32 start_seq, u32 end_seq,
1493 					bool dup_sack_in)
1494 {
1495 	struct tcp_sock *tp = tcp_sk(sk);
1496 	struct sk_buff *tmp;
1497 
1498 	skb_rbtree_walk_from(skb) {
1499 		int in_sack = 0;
1500 		bool dup_sack = dup_sack_in;
1501 
1502 		/* queue is in-order => we can short-circuit the walk early */
1503 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1504 			break;
1505 
1506 		if (next_dup  &&
1507 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1508 			in_sack = tcp_match_skb_to_sack(sk, skb,
1509 							next_dup->start_seq,
1510 							next_dup->end_seq);
1511 			if (in_sack > 0)
1512 				dup_sack = true;
1513 		}
1514 
1515 		/* skb reference here is a bit tricky to get right, since
1516 		 * shifting can eat and free both this skb and the next,
1517 		 * so not even _safe variant of the loop is enough.
1518 		 */
1519 		if (in_sack <= 0) {
1520 			tmp = tcp_shift_skb_data(sk, skb, state,
1521 						 start_seq, end_seq, dup_sack);
1522 			if (tmp) {
1523 				if (tmp != skb) {
1524 					skb = tmp;
1525 					continue;
1526 				}
1527 
1528 				in_sack = 0;
1529 			} else {
1530 				in_sack = tcp_match_skb_to_sack(sk, skb,
1531 								start_seq,
1532 								end_seq);
1533 			}
1534 		}
1535 
1536 		if (unlikely(in_sack < 0))
1537 			break;
1538 
1539 		if (in_sack) {
1540 			TCP_SKB_CB(skb)->sacked =
1541 				tcp_sacktag_one(sk,
1542 						state,
1543 						TCP_SKB_CB(skb)->sacked,
1544 						TCP_SKB_CB(skb)->seq,
1545 						TCP_SKB_CB(skb)->end_seq,
1546 						dup_sack,
1547 						tcp_skb_pcount(skb),
1548 						skb->skb_mstamp);
1549 			tcp_rate_skb_delivered(sk, skb, state->rate);
1550 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1551 				list_del_init(&skb->tcp_tsorted_anchor);
1552 
1553 			if (!before(TCP_SKB_CB(skb)->seq,
1554 				    tcp_highest_sack_seq(tp)))
1555 				tcp_advance_highest_sack(sk, skb);
1556 		}
1557 	}
1558 	return skb;
1559 }
1560 
1561 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1562 					   struct tcp_sacktag_state *state,
1563 					   u32 seq)
1564 {
1565 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1566 	struct sk_buff *skb;
1567 
1568 	while (*p) {
1569 		parent = *p;
1570 		skb = rb_to_skb(parent);
1571 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1572 			p = &parent->rb_left;
1573 			continue;
1574 		}
1575 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1576 			p = &parent->rb_right;
1577 			continue;
1578 		}
1579 		return skb;
1580 	}
1581 	return NULL;
1582 }
1583 
1584 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1585 					struct tcp_sacktag_state *state,
1586 					u32 skip_to_seq)
1587 {
1588 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1589 		return skb;
1590 
1591 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1592 }
1593 
1594 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1595 						struct sock *sk,
1596 						struct tcp_sack_block *next_dup,
1597 						struct tcp_sacktag_state *state,
1598 						u32 skip_to_seq)
1599 {
1600 	if (!next_dup)
1601 		return skb;
1602 
1603 	if (before(next_dup->start_seq, skip_to_seq)) {
1604 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1605 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1606 				       next_dup->start_seq, next_dup->end_seq,
1607 				       1);
1608 	}
1609 
1610 	return skb;
1611 }
1612 
1613 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1614 {
1615 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1616 }
1617 
1618 static int
1619 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1620 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1621 {
1622 	struct tcp_sock *tp = tcp_sk(sk);
1623 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1624 				    TCP_SKB_CB(ack_skb)->sacked);
1625 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1626 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1627 	struct tcp_sack_block *cache;
1628 	struct sk_buff *skb;
1629 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1630 	int used_sacks;
1631 	bool found_dup_sack = false;
1632 	int i, j;
1633 	int first_sack_index;
1634 
1635 	state->flag = 0;
1636 	state->reord = tp->snd_nxt;
1637 
1638 	if (!tp->sacked_out)
1639 		tcp_highest_sack_reset(sk);
1640 
1641 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1642 					 num_sacks, prior_snd_una);
1643 	if (found_dup_sack) {
1644 		state->flag |= FLAG_DSACKING_ACK;
1645 		tp->delivered++; /* A spurious retransmission is delivered */
1646 	}
1647 
1648 	/* Eliminate too old ACKs, but take into
1649 	 * account more or less fresh ones, they can
1650 	 * contain valid SACK info.
1651 	 */
1652 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1653 		return 0;
1654 
1655 	if (!tp->packets_out)
1656 		goto out;
1657 
1658 	used_sacks = 0;
1659 	first_sack_index = 0;
1660 	for (i = 0; i < num_sacks; i++) {
1661 		bool dup_sack = !i && found_dup_sack;
1662 
1663 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1664 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1665 
1666 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1667 					    sp[used_sacks].start_seq,
1668 					    sp[used_sacks].end_seq)) {
1669 			int mib_idx;
1670 
1671 			if (dup_sack) {
1672 				if (!tp->undo_marker)
1673 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1674 				else
1675 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1676 			} else {
1677 				/* Don't count olds caused by ACK reordering */
1678 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1679 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1680 					continue;
1681 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1682 			}
1683 
1684 			NET_INC_STATS(sock_net(sk), mib_idx);
1685 			if (i == 0)
1686 				first_sack_index = -1;
1687 			continue;
1688 		}
1689 
1690 		/* Ignore very old stuff early */
1691 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1692 			continue;
1693 
1694 		used_sacks++;
1695 	}
1696 
1697 	/* order SACK blocks to allow in order walk of the retrans queue */
1698 	for (i = used_sacks - 1; i > 0; i--) {
1699 		for (j = 0; j < i; j++) {
1700 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1701 				swap(sp[j], sp[j + 1]);
1702 
1703 				/* Track where the first SACK block goes to */
1704 				if (j == first_sack_index)
1705 					first_sack_index = j + 1;
1706 			}
1707 		}
1708 	}
1709 
1710 	state->mss_now = tcp_current_mss(sk);
1711 	skb = NULL;
1712 	i = 0;
1713 
1714 	if (!tp->sacked_out) {
1715 		/* It's already past, so skip checking against it */
1716 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1717 	} else {
1718 		cache = tp->recv_sack_cache;
1719 		/* Skip empty blocks in at head of the cache */
1720 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1721 		       !cache->end_seq)
1722 			cache++;
1723 	}
1724 
1725 	while (i < used_sacks) {
1726 		u32 start_seq = sp[i].start_seq;
1727 		u32 end_seq = sp[i].end_seq;
1728 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1729 		struct tcp_sack_block *next_dup = NULL;
1730 
1731 		if (found_dup_sack && ((i + 1) == first_sack_index))
1732 			next_dup = &sp[i + 1];
1733 
1734 		/* Skip too early cached blocks */
1735 		while (tcp_sack_cache_ok(tp, cache) &&
1736 		       !before(start_seq, cache->end_seq))
1737 			cache++;
1738 
1739 		/* Can skip some work by looking recv_sack_cache? */
1740 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1741 		    after(end_seq, cache->start_seq)) {
1742 
1743 			/* Head todo? */
1744 			if (before(start_seq, cache->start_seq)) {
1745 				skb = tcp_sacktag_skip(skb, sk, state,
1746 						       start_seq);
1747 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1748 						       state,
1749 						       start_seq,
1750 						       cache->start_seq,
1751 						       dup_sack);
1752 			}
1753 
1754 			/* Rest of the block already fully processed? */
1755 			if (!after(end_seq, cache->end_seq))
1756 				goto advance_sp;
1757 
1758 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1759 						       state,
1760 						       cache->end_seq);
1761 
1762 			/* ...tail remains todo... */
1763 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1764 				/* ...but better entrypoint exists! */
1765 				skb = tcp_highest_sack(sk);
1766 				if (!skb)
1767 					break;
1768 				cache++;
1769 				goto walk;
1770 			}
1771 
1772 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1773 			/* Check overlap against next cached too (past this one already) */
1774 			cache++;
1775 			continue;
1776 		}
1777 
1778 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1779 			skb = tcp_highest_sack(sk);
1780 			if (!skb)
1781 				break;
1782 		}
1783 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1784 
1785 walk:
1786 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1787 				       start_seq, end_seq, dup_sack);
1788 
1789 advance_sp:
1790 		i++;
1791 	}
1792 
1793 	/* Clear the head of the cache sack blocks so we can skip it next time */
1794 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1795 		tp->recv_sack_cache[i].start_seq = 0;
1796 		tp->recv_sack_cache[i].end_seq = 0;
1797 	}
1798 	for (j = 0; j < used_sacks; j++)
1799 		tp->recv_sack_cache[i++] = sp[j];
1800 
1801 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1802 		tcp_check_sack_reordering(sk, state->reord, 0);
1803 
1804 	tcp_verify_left_out(tp);
1805 out:
1806 
1807 #if FASTRETRANS_DEBUG > 0
1808 	WARN_ON((int)tp->sacked_out < 0);
1809 	WARN_ON((int)tp->lost_out < 0);
1810 	WARN_ON((int)tp->retrans_out < 0);
1811 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1812 #endif
1813 	return state->flag;
1814 }
1815 
1816 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1817  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1818  */
1819 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1820 {
1821 	u32 holes;
1822 
1823 	holes = max(tp->lost_out, 1U);
1824 	holes = min(holes, tp->packets_out);
1825 
1826 	if ((tp->sacked_out + holes) > tp->packets_out) {
1827 		tp->sacked_out = tp->packets_out - holes;
1828 		return true;
1829 	}
1830 	return false;
1831 }
1832 
1833 /* If we receive more dupacks than we expected counting segments
1834  * in assumption of absent reordering, interpret this as reordering.
1835  * The only another reason could be bug in receiver TCP.
1836  */
1837 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1838 {
1839 	struct tcp_sock *tp = tcp_sk(sk);
1840 
1841 	if (!tcp_limit_reno_sacked(tp))
1842 		return;
1843 
1844 	tp->reordering = min_t(u32, tp->packets_out + addend,
1845 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1846 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1847 }
1848 
1849 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1850 
1851 static void tcp_add_reno_sack(struct sock *sk)
1852 {
1853 	struct tcp_sock *tp = tcp_sk(sk);
1854 	u32 prior_sacked = tp->sacked_out;
1855 
1856 	tp->sacked_out++;
1857 	tcp_check_reno_reordering(sk, 0);
1858 	if (tp->sacked_out > prior_sacked)
1859 		tp->delivered++; /* Some out-of-order packet is delivered */
1860 	tcp_verify_left_out(tp);
1861 }
1862 
1863 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1864 
1865 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1866 {
1867 	struct tcp_sock *tp = tcp_sk(sk);
1868 
1869 	if (acked > 0) {
1870 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1871 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1872 		if (acked - 1 >= tp->sacked_out)
1873 			tp->sacked_out = 0;
1874 		else
1875 			tp->sacked_out -= acked - 1;
1876 	}
1877 	tcp_check_reno_reordering(sk, acked);
1878 	tcp_verify_left_out(tp);
1879 }
1880 
1881 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1882 {
1883 	tp->sacked_out = 0;
1884 }
1885 
1886 void tcp_clear_retrans(struct tcp_sock *tp)
1887 {
1888 	tp->retrans_out = 0;
1889 	tp->lost_out = 0;
1890 	tp->undo_marker = 0;
1891 	tp->undo_retrans = -1;
1892 	tp->sacked_out = 0;
1893 }
1894 
1895 static inline void tcp_init_undo(struct tcp_sock *tp)
1896 {
1897 	tp->undo_marker = tp->snd_una;
1898 	/* Retransmission still in flight may cause DSACKs later. */
1899 	tp->undo_retrans = tp->retrans_out ? : -1;
1900 }
1901 
1902 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1903  * and reset tags completely, otherwise preserve SACKs. If receiver
1904  * dropped its ofo queue, we will know this due to reneging detection.
1905  */
1906 void tcp_enter_loss(struct sock *sk)
1907 {
1908 	const struct inet_connection_sock *icsk = inet_csk(sk);
1909 	struct tcp_sock *tp = tcp_sk(sk);
1910 	struct net *net = sock_net(sk);
1911 	struct sk_buff *skb;
1912 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1913 	bool is_reneg;			/* is receiver reneging on SACKs? */
1914 	bool mark_lost;
1915 
1916 	/* Reduce ssthresh if it has not yet been made inside this window. */
1917 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1918 	    !after(tp->high_seq, tp->snd_una) ||
1919 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1920 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1921 		tp->prior_cwnd = tp->snd_cwnd;
1922 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1923 		tcp_ca_event(sk, CA_EVENT_LOSS);
1924 		tcp_init_undo(tp);
1925 	}
1926 	tp->snd_cwnd	   = 1;
1927 	tp->snd_cwnd_cnt   = 0;
1928 	tp->snd_cwnd_stamp = tcp_jiffies32;
1929 
1930 	tp->retrans_out = 0;
1931 	tp->lost_out = 0;
1932 
1933 	if (tcp_is_reno(tp))
1934 		tcp_reset_reno_sack(tp);
1935 
1936 	skb = tcp_rtx_queue_head(sk);
1937 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1938 	if (is_reneg) {
1939 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1940 		tp->sacked_out = 0;
1941 		/* Mark SACK reneging until we recover from this loss event. */
1942 		tp->is_sack_reneg = 1;
1943 	}
1944 	tcp_clear_all_retrans_hints(tp);
1945 
1946 	skb_rbtree_walk_from(skb) {
1947 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1948 			     is_reneg);
1949 		if (mark_lost)
1950 			tcp_sum_lost(tp, skb);
1951 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1952 		if (mark_lost) {
1953 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1954 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1955 			tp->lost_out += tcp_skb_pcount(skb);
1956 		}
1957 	}
1958 	tcp_verify_left_out(tp);
1959 
1960 	/* Timeout in disordered state after receiving substantial DUPACKs
1961 	 * suggests that the degree of reordering is over-estimated.
1962 	 */
1963 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1964 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1965 		tp->reordering = min_t(unsigned int, tp->reordering,
1966 				       net->ipv4.sysctl_tcp_reordering);
1967 	tcp_set_ca_state(sk, TCP_CA_Loss);
1968 	tp->high_seq = tp->snd_nxt;
1969 	tcp_ecn_queue_cwr(tp);
1970 
1971 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1972 	 * loss recovery is underway except recurring timeout(s) on
1973 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1974 	 *
1975 	 * In theory F-RTO can be used repeatedly during loss recovery.
1976 	 * In practice this interacts badly with broken middle-boxes that
1977 	 * falsely raise the receive window, which results in repeated
1978 	 * timeouts and stop-and-go behavior.
1979 	 */
1980 	tp->frto = net->ipv4.sysctl_tcp_frto &&
1981 		   (new_recovery || icsk->icsk_retransmits) &&
1982 		   !inet_csk(sk)->icsk_mtup.probe_size;
1983 }
1984 
1985 /* If ACK arrived pointing to a remembered SACK, it means that our
1986  * remembered SACKs do not reflect real state of receiver i.e.
1987  * receiver _host_ is heavily congested (or buggy).
1988  *
1989  * To avoid big spurious retransmission bursts due to transient SACK
1990  * scoreboard oddities that look like reneging, we give the receiver a
1991  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1992  * restore sanity to the SACK scoreboard. If the apparent reneging
1993  * persists until this RTO then we'll clear the SACK scoreboard.
1994  */
1995 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1996 {
1997 	if (flag & FLAG_SACK_RENEGING) {
1998 		struct tcp_sock *tp = tcp_sk(sk);
1999 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2000 					  msecs_to_jiffies(10));
2001 
2002 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2003 					  delay, TCP_RTO_MAX);
2004 		return true;
2005 	}
2006 	return false;
2007 }
2008 
2009 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2010  * counter when SACK is enabled (without SACK, sacked_out is used for
2011  * that purpose).
2012  *
2013  * With reordering, holes may still be in flight, so RFC3517 recovery
2014  * uses pure sacked_out (total number of SACKed segments) even though
2015  * it violates the RFC that uses duplicate ACKs, often these are equal
2016  * but when e.g. out-of-window ACKs or packet duplication occurs,
2017  * they differ. Since neither occurs due to loss, TCP should really
2018  * ignore them.
2019  */
2020 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2021 {
2022 	return tp->sacked_out + 1;
2023 }
2024 
2025 /* Linux NewReno/SACK/ECN state machine.
2026  * --------------------------------------
2027  *
2028  * "Open"	Normal state, no dubious events, fast path.
2029  * "Disorder"   In all the respects it is "Open",
2030  *		but requires a bit more attention. It is entered when
2031  *		we see some SACKs or dupacks. It is split of "Open"
2032  *		mainly to move some processing from fast path to slow one.
2033  * "CWR"	CWND was reduced due to some Congestion Notification event.
2034  *		It can be ECN, ICMP source quench, local device congestion.
2035  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2036  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2037  *
2038  * tcp_fastretrans_alert() is entered:
2039  * - each incoming ACK, if state is not "Open"
2040  * - when arrived ACK is unusual, namely:
2041  *	* SACK
2042  *	* Duplicate ACK.
2043  *	* ECN ECE.
2044  *
2045  * Counting packets in flight is pretty simple.
2046  *
2047  *	in_flight = packets_out - left_out + retrans_out
2048  *
2049  *	packets_out is SND.NXT-SND.UNA counted in packets.
2050  *
2051  *	retrans_out is number of retransmitted segments.
2052  *
2053  *	left_out is number of segments left network, but not ACKed yet.
2054  *
2055  *		left_out = sacked_out + lost_out
2056  *
2057  *     sacked_out: Packets, which arrived to receiver out of order
2058  *		   and hence not ACKed. With SACKs this number is simply
2059  *		   amount of SACKed data. Even without SACKs
2060  *		   it is easy to give pretty reliable estimate of this number,
2061  *		   counting duplicate ACKs.
2062  *
2063  *       lost_out: Packets lost by network. TCP has no explicit
2064  *		   "loss notification" feedback from network (for now).
2065  *		   It means that this number can be only _guessed_.
2066  *		   Actually, it is the heuristics to predict lossage that
2067  *		   distinguishes different algorithms.
2068  *
2069  *	F.e. after RTO, when all the queue is considered as lost,
2070  *	lost_out = packets_out and in_flight = retrans_out.
2071  *
2072  *		Essentially, we have now a few algorithms detecting
2073  *		lost packets.
2074  *
2075  *		If the receiver supports SACK:
2076  *
2077  *		RFC6675/3517: It is the conventional algorithm. A packet is
2078  *		considered lost if the number of higher sequence packets
2079  *		SACKed is greater than or equal the DUPACK thoreshold
2080  *		(reordering). This is implemented in tcp_mark_head_lost and
2081  *		tcp_update_scoreboard.
2082  *
2083  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2084  *		(2017-) that checks timing instead of counting DUPACKs.
2085  *		Essentially a packet is considered lost if it's not S/ACKed
2086  *		after RTT + reordering_window, where both metrics are
2087  *		dynamically measured and adjusted. This is implemented in
2088  *		tcp_rack_mark_lost.
2089  *
2090  *		If the receiver does not support SACK:
2091  *
2092  *		NewReno (RFC6582): in Recovery we assume that one segment
2093  *		is lost (classic Reno). While we are in Recovery and
2094  *		a partial ACK arrives, we assume that one more packet
2095  *		is lost (NewReno). This heuristics are the same in NewReno
2096  *		and SACK.
2097  *
2098  * Really tricky (and requiring careful tuning) part of algorithm
2099  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2100  * The first determines the moment _when_ we should reduce CWND and,
2101  * hence, slow down forward transmission. In fact, it determines the moment
2102  * when we decide that hole is caused by loss, rather than by a reorder.
2103  *
2104  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2105  * holes, caused by lost packets.
2106  *
2107  * And the most logically complicated part of algorithm is undo
2108  * heuristics. We detect false retransmits due to both too early
2109  * fast retransmit (reordering) and underestimated RTO, analyzing
2110  * timestamps and D-SACKs. When we detect that some segments were
2111  * retransmitted by mistake and CWND reduction was wrong, we undo
2112  * window reduction and abort recovery phase. This logic is hidden
2113  * inside several functions named tcp_try_undo_<something>.
2114  */
2115 
2116 /* This function decides, when we should leave Disordered state
2117  * and enter Recovery phase, reducing congestion window.
2118  *
2119  * Main question: may we further continue forward transmission
2120  * with the same cwnd?
2121  */
2122 static bool tcp_time_to_recover(struct sock *sk, int flag)
2123 {
2124 	struct tcp_sock *tp = tcp_sk(sk);
2125 
2126 	/* Trick#1: The loss is proven. */
2127 	if (tp->lost_out)
2128 		return true;
2129 
2130 	/* Not-A-Trick#2 : Classic rule... */
2131 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2132 		return true;
2133 
2134 	return false;
2135 }
2136 
2137 /* Detect loss in event "A" above by marking head of queue up as lost.
2138  * For non-SACK(Reno) senders, the first "packets" number of segments
2139  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2140  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2141  * the maximum SACKed segments to pass before reaching this limit.
2142  */
2143 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2144 {
2145 	struct tcp_sock *tp = tcp_sk(sk);
2146 	struct sk_buff *skb;
2147 	int cnt, oldcnt, lost;
2148 	unsigned int mss;
2149 	/* Use SACK to deduce losses of new sequences sent during recovery */
2150 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2151 
2152 	WARN_ON(packets > tp->packets_out);
2153 	skb = tp->lost_skb_hint;
2154 	if (skb) {
2155 		/* Head already handled? */
2156 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2157 			return;
2158 		cnt = tp->lost_cnt_hint;
2159 	} else {
2160 		skb = tcp_rtx_queue_head(sk);
2161 		cnt = 0;
2162 	}
2163 
2164 	skb_rbtree_walk_from(skb) {
2165 		/* TODO: do this better */
2166 		/* this is not the most efficient way to do this... */
2167 		tp->lost_skb_hint = skb;
2168 		tp->lost_cnt_hint = cnt;
2169 
2170 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2171 			break;
2172 
2173 		oldcnt = cnt;
2174 		if (tcp_is_reno(tp) ||
2175 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2176 			cnt += tcp_skb_pcount(skb);
2177 
2178 		if (cnt > packets) {
2179 			if (tcp_is_sack(tp) ||
2180 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2181 			    (oldcnt >= packets))
2182 				break;
2183 
2184 			mss = tcp_skb_mss(skb);
2185 			/* If needed, chop off the prefix to mark as lost. */
2186 			lost = (packets - oldcnt) * mss;
2187 			if (lost < skb->len &&
2188 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2189 					 lost, mss, GFP_ATOMIC) < 0)
2190 				break;
2191 			cnt = packets;
2192 		}
2193 
2194 		tcp_skb_mark_lost(tp, skb);
2195 
2196 		if (mark_head)
2197 			break;
2198 	}
2199 	tcp_verify_left_out(tp);
2200 }
2201 
2202 /* Account newly detected lost packet(s) */
2203 
2204 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2205 {
2206 	struct tcp_sock *tp = tcp_sk(sk);
2207 
2208 	if (tcp_is_reno(tp)) {
2209 		tcp_mark_head_lost(sk, 1, 1);
2210 	} else {
2211 		int sacked_upto = tp->sacked_out - tp->reordering;
2212 		if (sacked_upto >= 0)
2213 			tcp_mark_head_lost(sk, sacked_upto, 0);
2214 		else if (fast_rexmit)
2215 			tcp_mark_head_lost(sk, 1, 1);
2216 	}
2217 }
2218 
2219 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2220 {
2221 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2222 	       before(tp->rx_opt.rcv_tsecr, when);
2223 }
2224 
2225 /* skb is spurious retransmitted if the returned timestamp echo
2226  * reply is prior to the skb transmission time
2227  */
2228 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2229 				     const struct sk_buff *skb)
2230 {
2231 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2232 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2233 }
2234 
2235 /* Nothing was retransmitted or returned timestamp is less
2236  * than timestamp of the first retransmission.
2237  */
2238 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2239 {
2240 	return !tp->retrans_stamp ||
2241 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2242 }
2243 
2244 /* Undo procedures. */
2245 
2246 /* We can clear retrans_stamp when there are no retransmissions in the
2247  * window. It would seem that it is trivially available for us in
2248  * tp->retrans_out, however, that kind of assumptions doesn't consider
2249  * what will happen if errors occur when sending retransmission for the
2250  * second time. ...It could the that such segment has only
2251  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2252  * the head skb is enough except for some reneging corner cases that
2253  * are not worth the effort.
2254  *
2255  * Main reason for all this complexity is the fact that connection dying
2256  * time now depends on the validity of the retrans_stamp, in particular,
2257  * that successive retransmissions of a segment must not advance
2258  * retrans_stamp under any conditions.
2259  */
2260 static bool tcp_any_retrans_done(const struct sock *sk)
2261 {
2262 	const struct tcp_sock *tp = tcp_sk(sk);
2263 	struct sk_buff *skb;
2264 
2265 	if (tp->retrans_out)
2266 		return true;
2267 
2268 	skb = tcp_rtx_queue_head(sk);
2269 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2270 		return true;
2271 
2272 	return false;
2273 }
2274 
2275 static void DBGUNDO(struct sock *sk, const char *msg)
2276 {
2277 #if FASTRETRANS_DEBUG > 1
2278 	struct tcp_sock *tp = tcp_sk(sk);
2279 	struct inet_sock *inet = inet_sk(sk);
2280 
2281 	if (sk->sk_family == AF_INET) {
2282 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2283 			 msg,
2284 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2285 			 tp->snd_cwnd, tcp_left_out(tp),
2286 			 tp->snd_ssthresh, tp->prior_ssthresh,
2287 			 tp->packets_out);
2288 	}
2289 #if IS_ENABLED(CONFIG_IPV6)
2290 	else if (sk->sk_family == AF_INET6) {
2291 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2292 			 msg,
2293 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2294 			 tp->snd_cwnd, tcp_left_out(tp),
2295 			 tp->snd_ssthresh, tp->prior_ssthresh,
2296 			 tp->packets_out);
2297 	}
2298 #endif
2299 #endif
2300 }
2301 
2302 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2303 {
2304 	struct tcp_sock *tp = tcp_sk(sk);
2305 
2306 	if (unmark_loss) {
2307 		struct sk_buff *skb;
2308 
2309 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2310 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2311 		}
2312 		tp->lost_out = 0;
2313 		tcp_clear_all_retrans_hints(tp);
2314 	}
2315 
2316 	if (tp->prior_ssthresh) {
2317 		const struct inet_connection_sock *icsk = inet_csk(sk);
2318 
2319 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2320 
2321 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2322 			tp->snd_ssthresh = tp->prior_ssthresh;
2323 			tcp_ecn_withdraw_cwr(tp);
2324 		}
2325 	}
2326 	tp->snd_cwnd_stamp = tcp_jiffies32;
2327 	tp->undo_marker = 0;
2328 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2329 }
2330 
2331 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2332 {
2333 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2334 }
2335 
2336 /* People celebrate: "We love our President!" */
2337 static bool tcp_try_undo_recovery(struct sock *sk)
2338 {
2339 	struct tcp_sock *tp = tcp_sk(sk);
2340 
2341 	if (tcp_may_undo(tp)) {
2342 		int mib_idx;
2343 
2344 		/* Happy end! We did not retransmit anything
2345 		 * or our original transmission succeeded.
2346 		 */
2347 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2348 		tcp_undo_cwnd_reduction(sk, false);
2349 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2350 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2351 		else
2352 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2353 
2354 		NET_INC_STATS(sock_net(sk), mib_idx);
2355 	} else if (tp->rack.reo_wnd_persist) {
2356 		tp->rack.reo_wnd_persist--;
2357 	}
2358 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2359 		/* Hold old state until something *above* high_seq
2360 		 * is ACKed. For Reno it is MUST to prevent false
2361 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2362 		if (!tcp_any_retrans_done(sk))
2363 			tp->retrans_stamp = 0;
2364 		return true;
2365 	}
2366 	tcp_set_ca_state(sk, TCP_CA_Open);
2367 	tp->is_sack_reneg = 0;
2368 	return false;
2369 }
2370 
2371 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2372 static bool tcp_try_undo_dsack(struct sock *sk)
2373 {
2374 	struct tcp_sock *tp = tcp_sk(sk);
2375 
2376 	if (tp->undo_marker && !tp->undo_retrans) {
2377 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2378 					       tp->rack.reo_wnd_persist + 1);
2379 		DBGUNDO(sk, "D-SACK");
2380 		tcp_undo_cwnd_reduction(sk, false);
2381 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2382 		return true;
2383 	}
2384 	return false;
2385 }
2386 
2387 /* Undo during loss recovery after partial ACK or using F-RTO. */
2388 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2389 {
2390 	struct tcp_sock *tp = tcp_sk(sk);
2391 
2392 	if (frto_undo || tcp_may_undo(tp)) {
2393 		tcp_undo_cwnd_reduction(sk, true);
2394 
2395 		DBGUNDO(sk, "partial loss");
2396 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2397 		if (frto_undo)
2398 			NET_INC_STATS(sock_net(sk),
2399 					LINUX_MIB_TCPSPURIOUSRTOS);
2400 		inet_csk(sk)->icsk_retransmits = 0;
2401 		if (frto_undo || tcp_is_sack(tp)) {
2402 			tcp_set_ca_state(sk, TCP_CA_Open);
2403 			tp->is_sack_reneg = 0;
2404 		}
2405 		return true;
2406 	}
2407 	return false;
2408 }
2409 
2410 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2411  * It computes the number of packets to send (sndcnt) based on packets newly
2412  * delivered:
2413  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2414  *	cwnd reductions across a full RTT.
2415  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2416  *      But when the retransmits are acked without further losses, PRR
2417  *      slow starts cwnd up to ssthresh to speed up the recovery.
2418  */
2419 static void tcp_init_cwnd_reduction(struct sock *sk)
2420 {
2421 	struct tcp_sock *tp = tcp_sk(sk);
2422 
2423 	tp->high_seq = tp->snd_nxt;
2424 	tp->tlp_high_seq = 0;
2425 	tp->snd_cwnd_cnt = 0;
2426 	tp->prior_cwnd = tp->snd_cwnd;
2427 	tp->prr_delivered = 0;
2428 	tp->prr_out = 0;
2429 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2430 	tcp_ecn_queue_cwr(tp);
2431 }
2432 
2433 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2434 {
2435 	struct tcp_sock *tp = tcp_sk(sk);
2436 	int sndcnt = 0;
2437 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2438 
2439 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2440 		return;
2441 
2442 	tp->prr_delivered += newly_acked_sacked;
2443 	if (delta < 0) {
2444 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2445 			       tp->prior_cwnd - 1;
2446 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2447 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2448 		   !(flag & FLAG_LOST_RETRANS)) {
2449 		sndcnt = min_t(int, delta,
2450 			       max_t(int, tp->prr_delivered - tp->prr_out,
2451 				     newly_acked_sacked) + 1);
2452 	} else {
2453 		sndcnt = min(delta, newly_acked_sacked);
2454 	}
2455 	/* Force a fast retransmit upon entering fast recovery */
2456 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2457 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2458 }
2459 
2460 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2461 {
2462 	struct tcp_sock *tp = tcp_sk(sk);
2463 
2464 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2465 		return;
2466 
2467 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2468 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2469 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2470 		tp->snd_cwnd = tp->snd_ssthresh;
2471 		tp->snd_cwnd_stamp = tcp_jiffies32;
2472 	}
2473 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2474 }
2475 
2476 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2477 void tcp_enter_cwr(struct sock *sk)
2478 {
2479 	struct tcp_sock *tp = tcp_sk(sk);
2480 
2481 	tp->prior_ssthresh = 0;
2482 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2483 		tp->undo_marker = 0;
2484 		tcp_init_cwnd_reduction(sk);
2485 		tcp_set_ca_state(sk, TCP_CA_CWR);
2486 	}
2487 }
2488 EXPORT_SYMBOL(tcp_enter_cwr);
2489 
2490 static void tcp_try_keep_open(struct sock *sk)
2491 {
2492 	struct tcp_sock *tp = tcp_sk(sk);
2493 	int state = TCP_CA_Open;
2494 
2495 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2496 		state = TCP_CA_Disorder;
2497 
2498 	if (inet_csk(sk)->icsk_ca_state != state) {
2499 		tcp_set_ca_state(sk, state);
2500 		tp->high_seq = tp->snd_nxt;
2501 	}
2502 }
2503 
2504 static void tcp_try_to_open(struct sock *sk, int flag)
2505 {
2506 	struct tcp_sock *tp = tcp_sk(sk);
2507 
2508 	tcp_verify_left_out(tp);
2509 
2510 	if (!tcp_any_retrans_done(sk))
2511 		tp->retrans_stamp = 0;
2512 
2513 	if (flag & FLAG_ECE)
2514 		tcp_enter_cwr(sk);
2515 
2516 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2517 		tcp_try_keep_open(sk);
2518 	}
2519 }
2520 
2521 static void tcp_mtup_probe_failed(struct sock *sk)
2522 {
2523 	struct inet_connection_sock *icsk = inet_csk(sk);
2524 
2525 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2526 	icsk->icsk_mtup.probe_size = 0;
2527 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2528 }
2529 
2530 static void tcp_mtup_probe_success(struct sock *sk)
2531 {
2532 	struct tcp_sock *tp = tcp_sk(sk);
2533 	struct inet_connection_sock *icsk = inet_csk(sk);
2534 
2535 	/* FIXME: breaks with very large cwnd */
2536 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2537 	tp->snd_cwnd = tp->snd_cwnd *
2538 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2539 		       icsk->icsk_mtup.probe_size;
2540 	tp->snd_cwnd_cnt = 0;
2541 	tp->snd_cwnd_stamp = tcp_jiffies32;
2542 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2543 
2544 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2545 	icsk->icsk_mtup.probe_size = 0;
2546 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2547 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2548 }
2549 
2550 /* Do a simple retransmit without using the backoff mechanisms in
2551  * tcp_timer. This is used for path mtu discovery.
2552  * The socket is already locked here.
2553  */
2554 void tcp_simple_retransmit(struct sock *sk)
2555 {
2556 	const struct inet_connection_sock *icsk = inet_csk(sk);
2557 	struct tcp_sock *tp = tcp_sk(sk);
2558 	struct sk_buff *skb;
2559 	unsigned int mss = tcp_current_mss(sk);
2560 
2561 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2562 		if (tcp_skb_seglen(skb) > mss &&
2563 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2564 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2565 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2566 				tp->retrans_out -= tcp_skb_pcount(skb);
2567 			}
2568 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2569 		}
2570 	}
2571 
2572 	tcp_clear_retrans_hints_partial(tp);
2573 
2574 	if (!tp->lost_out)
2575 		return;
2576 
2577 	if (tcp_is_reno(tp))
2578 		tcp_limit_reno_sacked(tp);
2579 
2580 	tcp_verify_left_out(tp);
2581 
2582 	/* Don't muck with the congestion window here.
2583 	 * Reason is that we do not increase amount of _data_
2584 	 * in network, but units changed and effective
2585 	 * cwnd/ssthresh really reduced now.
2586 	 */
2587 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2588 		tp->high_seq = tp->snd_nxt;
2589 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2590 		tp->prior_ssthresh = 0;
2591 		tp->undo_marker = 0;
2592 		tcp_set_ca_state(sk, TCP_CA_Loss);
2593 	}
2594 	tcp_xmit_retransmit_queue(sk);
2595 }
2596 EXPORT_SYMBOL(tcp_simple_retransmit);
2597 
2598 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2599 {
2600 	struct tcp_sock *tp = tcp_sk(sk);
2601 	int mib_idx;
2602 
2603 	if (tcp_is_reno(tp))
2604 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2605 	else
2606 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2607 
2608 	NET_INC_STATS(sock_net(sk), mib_idx);
2609 
2610 	tp->prior_ssthresh = 0;
2611 	tcp_init_undo(tp);
2612 
2613 	if (!tcp_in_cwnd_reduction(sk)) {
2614 		if (!ece_ack)
2615 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2616 		tcp_init_cwnd_reduction(sk);
2617 	}
2618 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2619 }
2620 
2621 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2622  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2623  */
2624 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2625 			     int *rexmit)
2626 {
2627 	struct tcp_sock *tp = tcp_sk(sk);
2628 	bool recovered = !before(tp->snd_una, tp->high_seq);
2629 
2630 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2631 	    tcp_try_undo_loss(sk, false))
2632 		return;
2633 
2634 	/* The ACK (s)acks some never-retransmitted data meaning not all
2635 	 * the data packets before the timeout were lost. Therefore we
2636 	 * undo the congestion window and state. This is essentially
2637 	 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2638 	 * a retransmitted skb is permantly marked, we can apply such an
2639 	 * operation even if F-RTO was not used.
2640 	 */
2641 	if ((flag & FLAG_ORIG_SACK_ACKED) &&
2642 	    tcp_try_undo_loss(sk, tp->undo_marker))
2643 		return;
2644 
2645 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2646 		if (after(tp->snd_nxt, tp->high_seq)) {
2647 			if (flag & FLAG_DATA_SACKED || is_dupack)
2648 				tp->frto = 0; /* Step 3.a. loss was real */
2649 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2650 			tp->high_seq = tp->snd_nxt;
2651 			/* Step 2.b. Try send new data (but deferred until cwnd
2652 			 * is updated in tcp_ack()). Otherwise fall back to
2653 			 * the conventional recovery.
2654 			 */
2655 			if (!tcp_write_queue_empty(sk) &&
2656 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2657 				*rexmit = REXMIT_NEW;
2658 				return;
2659 			}
2660 			tp->frto = 0;
2661 		}
2662 	}
2663 
2664 	if (recovered) {
2665 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2666 		tcp_try_undo_recovery(sk);
2667 		return;
2668 	}
2669 	if (tcp_is_reno(tp)) {
2670 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2671 		 * delivered. Lower inflight to clock out (re)tranmissions.
2672 		 */
2673 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2674 			tcp_add_reno_sack(sk);
2675 		else if (flag & FLAG_SND_UNA_ADVANCED)
2676 			tcp_reset_reno_sack(tp);
2677 	}
2678 	*rexmit = REXMIT_LOST;
2679 }
2680 
2681 /* Undo during fast recovery after partial ACK. */
2682 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2683 {
2684 	struct tcp_sock *tp = tcp_sk(sk);
2685 
2686 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2687 		/* Plain luck! Hole if filled with delayed
2688 		 * packet, rather than with a retransmit. Check reordering.
2689 		 */
2690 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2691 
2692 		/* We are getting evidence that the reordering degree is higher
2693 		 * than we realized. If there are no retransmits out then we
2694 		 * can undo. Otherwise we clock out new packets but do not
2695 		 * mark more packets lost or retransmit more.
2696 		 */
2697 		if (tp->retrans_out)
2698 			return true;
2699 
2700 		if (!tcp_any_retrans_done(sk))
2701 			tp->retrans_stamp = 0;
2702 
2703 		DBGUNDO(sk, "partial recovery");
2704 		tcp_undo_cwnd_reduction(sk, true);
2705 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2706 		tcp_try_keep_open(sk);
2707 		return true;
2708 	}
2709 	return false;
2710 }
2711 
2712 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2713 {
2714 	struct tcp_sock *tp = tcp_sk(sk);
2715 
2716 	/* Use RACK to detect loss */
2717 	if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2718 		u32 prior_retrans = tp->retrans_out;
2719 
2720 		tcp_rack_mark_lost(sk);
2721 		if (prior_retrans > tp->retrans_out)
2722 			*ack_flag |= FLAG_LOST_RETRANS;
2723 	}
2724 }
2725 
2726 static bool tcp_force_fast_retransmit(struct sock *sk)
2727 {
2728 	struct tcp_sock *tp = tcp_sk(sk);
2729 
2730 	return after(tcp_highest_sack_seq(tp),
2731 		     tp->snd_una + tp->reordering * tp->mss_cache);
2732 }
2733 
2734 /* Process an event, which can update packets-in-flight not trivially.
2735  * Main goal of this function is to calculate new estimate for left_out,
2736  * taking into account both packets sitting in receiver's buffer and
2737  * packets lost by network.
2738  *
2739  * Besides that it updates the congestion state when packet loss or ECN
2740  * is detected. But it does not reduce the cwnd, it is done by the
2741  * congestion control later.
2742  *
2743  * It does _not_ decide what to send, it is made in function
2744  * tcp_xmit_retransmit_queue().
2745  */
2746 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2747 				  bool is_dupack, int *ack_flag, int *rexmit)
2748 {
2749 	struct inet_connection_sock *icsk = inet_csk(sk);
2750 	struct tcp_sock *tp = tcp_sk(sk);
2751 	int fast_rexmit = 0, flag = *ack_flag;
2752 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2753 				     tcp_force_fast_retransmit(sk));
2754 
2755 	if (!tp->packets_out && tp->sacked_out)
2756 		tp->sacked_out = 0;
2757 
2758 	/* Now state machine starts.
2759 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2760 	if (flag & FLAG_ECE)
2761 		tp->prior_ssthresh = 0;
2762 
2763 	/* B. In all the states check for reneging SACKs. */
2764 	if (tcp_check_sack_reneging(sk, flag))
2765 		return;
2766 
2767 	/* C. Check consistency of the current state. */
2768 	tcp_verify_left_out(tp);
2769 
2770 	/* D. Check state exit conditions. State can be terminated
2771 	 *    when high_seq is ACKed. */
2772 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2773 		WARN_ON(tp->retrans_out != 0);
2774 		tp->retrans_stamp = 0;
2775 	} else if (!before(tp->snd_una, tp->high_seq)) {
2776 		switch (icsk->icsk_ca_state) {
2777 		case TCP_CA_CWR:
2778 			/* CWR is to be held something *above* high_seq
2779 			 * is ACKed for CWR bit to reach receiver. */
2780 			if (tp->snd_una != tp->high_seq) {
2781 				tcp_end_cwnd_reduction(sk);
2782 				tcp_set_ca_state(sk, TCP_CA_Open);
2783 			}
2784 			break;
2785 
2786 		case TCP_CA_Recovery:
2787 			if (tcp_is_reno(tp))
2788 				tcp_reset_reno_sack(tp);
2789 			if (tcp_try_undo_recovery(sk))
2790 				return;
2791 			tcp_end_cwnd_reduction(sk);
2792 			break;
2793 		}
2794 	}
2795 
2796 	/* E. Process state. */
2797 	switch (icsk->icsk_ca_state) {
2798 	case TCP_CA_Recovery:
2799 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2800 			if (tcp_is_reno(tp) && is_dupack)
2801 				tcp_add_reno_sack(sk);
2802 		} else {
2803 			if (tcp_try_undo_partial(sk, prior_snd_una))
2804 				return;
2805 			/* Partial ACK arrived. Force fast retransmit. */
2806 			do_lost = tcp_is_reno(tp) ||
2807 				  tcp_force_fast_retransmit(sk);
2808 		}
2809 		if (tcp_try_undo_dsack(sk)) {
2810 			tcp_try_keep_open(sk);
2811 			return;
2812 		}
2813 		tcp_rack_identify_loss(sk, ack_flag);
2814 		break;
2815 	case TCP_CA_Loss:
2816 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2817 		tcp_rack_identify_loss(sk, ack_flag);
2818 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2819 		      (*ack_flag & FLAG_LOST_RETRANS)))
2820 			return;
2821 		/* Change state if cwnd is undone or retransmits are lost */
2822 		/* fall through */
2823 	default:
2824 		if (tcp_is_reno(tp)) {
2825 			if (flag & FLAG_SND_UNA_ADVANCED)
2826 				tcp_reset_reno_sack(tp);
2827 			if (is_dupack)
2828 				tcp_add_reno_sack(sk);
2829 		}
2830 
2831 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2832 			tcp_try_undo_dsack(sk);
2833 
2834 		tcp_rack_identify_loss(sk, ack_flag);
2835 		if (!tcp_time_to_recover(sk, flag)) {
2836 			tcp_try_to_open(sk, flag);
2837 			return;
2838 		}
2839 
2840 		/* MTU probe failure: don't reduce cwnd */
2841 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2842 		    icsk->icsk_mtup.probe_size &&
2843 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2844 			tcp_mtup_probe_failed(sk);
2845 			/* Restores the reduction we did in tcp_mtup_probe() */
2846 			tp->snd_cwnd++;
2847 			tcp_simple_retransmit(sk);
2848 			return;
2849 		}
2850 
2851 		/* Otherwise enter Recovery state */
2852 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2853 		fast_rexmit = 1;
2854 	}
2855 
2856 	if (do_lost)
2857 		tcp_update_scoreboard(sk, fast_rexmit);
2858 	*rexmit = REXMIT_LOST;
2859 }
2860 
2861 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2862 {
2863 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2864 	struct tcp_sock *tp = tcp_sk(sk);
2865 
2866 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2867 		/* If the remote keeps returning delayed ACKs, eventually
2868 		 * the min filter would pick it up and overestimate the
2869 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2870 		 */
2871 		return;
2872 	}
2873 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2874 			   rtt_us ? : jiffies_to_usecs(1));
2875 }
2876 
2877 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2878 			       long seq_rtt_us, long sack_rtt_us,
2879 			       long ca_rtt_us, struct rate_sample *rs)
2880 {
2881 	const struct tcp_sock *tp = tcp_sk(sk);
2882 
2883 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2884 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2885 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2886 	 * is acked (RFC6298).
2887 	 */
2888 	if (seq_rtt_us < 0)
2889 		seq_rtt_us = sack_rtt_us;
2890 
2891 	/* RTTM Rule: A TSecr value received in a segment is used to
2892 	 * update the averaged RTT measurement only if the segment
2893 	 * acknowledges some new data, i.e., only if it advances the
2894 	 * left edge of the send window.
2895 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2896 	 */
2897 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2898 	    flag & FLAG_ACKED) {
2899 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2900 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2901 
2902 		seq_rtt_us = ca_rtt_us = delta_us;
2903 	}
2904 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2905 	if (seq_rtt_us < 0)
2906 		return false;
2907 
2908 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2909 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2910 	 * values will be skipped with the seq_rtt_us < 0 check above.
2911 	 */
2912 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2913 	tcp_rtt_estimator(sk, seq_rtt_us);
2914 	tcp_set_rto(sk);
2915 
2916 	/* RFC6298: only reset backoff on valid RTT measurement. */
2917 	inet_csk(sk)->icsk_backoff = 0;
2918 	return true;
2919 }
2920 
2921 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2922 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2923 {
2924 	struct rate_sample rs;
2925 	long rtt_us = -1L;
2926 
2927 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2928 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2929 
2930 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2931 }
2932 
2933 
2934 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2935 {
2936 	const struct inet_connection_sock *icsk = inet_csk(sk);
2937 
2938 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2939 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2940 }
2941 
2942 /* Restart timer after forward progress on connection.
2943  * RFC2988 recommends to restart timer to now+rto.
2944  */
2945 void tcp_rearm_rto(struct sock *sk)
2946 {
2947 	const struct inet_connection_sock *icsk = inet_csk(sk);
2948 	struct tcp_sock *tp = tcp_sk(sk);
2949 
2950 	/* If the retrans timer is currently being used by Fast Open
2951 	 * for SYN-ACK retrans purpose, stay put.
2952 	 */
2953 	if (tp->fastopen_rsk)
2954 		return;
2955 
2956 	if (!tp->packets_out) {
2957 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2958 	} else {
2959 		u32 rto = inet_csk(sk)->icsk_rto;
2960 		/* Offset the time elapsed after installing regular RTO */
2961 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2962 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2963 			s64 delta_us = tcp_rto_delta_us(sk);
2964 			/* delta_us may not be positive if the socket is locked
2965 			 * when the retrans timer fires and is rescheduled.
2966 			 */
2967 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2968 		}
2969 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2970 					  TCP_RTO_MAX);
2971 	}
2972 }
2973 
2974 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2975 static void tcp_set_xmit_timer(struct sock *sk)
2976 {
2977 	if (!tcp_schedule_loss_probe(sk, true))
2978 		tcp_rearm_rto(sk);
2979 }
2980 
2981 /* If we get here, the whole TSO packet has not been acked. */
2982 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2983 {
2984 	struct tcp_sock *tp = tcp_sk(sk);
2985 	u32 packets_acked;
2986 
2987 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2988 
2989 	packets_acked = tcp_skb_pcount(skb);
2990 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2991 		return 0;
2992 	packets_acked -= tcp_skb_pcount(skb);
2993 
2994 	if (packets_acked) {
2995 		BUG_ON(tcp_skb_pcount(skb) == 0);
2996 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2997 	}
2998 
2999 	return packets_acked;
3000 }
3001 
3002 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3003 			   u32 prior_snd_una)
3004 {
3005 	const struct skb_shared_info *shinfo;
3006 
3007 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3008 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3009 		return;
3010 
3011 	shinfo = skb_shinfo(skb);
3012 	if (!before(shinfo->tskey, prior_snd_una) &&
3013 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3014 		tcp_skb_tsorted_save(skb) {
3015 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3016 		} tcp_skb_tsorted_restore(skb);
3017 	}
3018 }
3019 
3020 /* Remove acknowledged frames from the retransmission queue. If our packet
3021  * is before the ack sequence we can discard it as it's confirmed to have
3022  * arrived at the other end.
3023  */
3024 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3025 			       u32 prior_snd_una,
3026 			       struct tcp_sacktag_state *sack)
3027 {
3028 	const struct inet_connection_sock *icsk = inet_csk(sk);
3029 	u64 first_ackt, last_ackt;
3030 	struct tcp_sock *tp = tcp_sk(sk);
3031 	u32 prior_sacked = tp->sacked_out;
3032 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3033 	struct sk_buff *skb, *next;
3034 	bool fully_acked = true;
3035 	long sack_rtt_us = -1L;
3036 	long seq_rtt_us = -1L;
3037 	long ca_rtt_us = -1L;
3038 	u32 pkts_acked = 0;
3039 	u32 last_in_flight = 0;
3040 	bool rtt_update;
3041 	int flag = 0;
3042 
3043 	first_ackt = 0;
3044 
3045 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3046 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3047 		const u32 start_seq = scb->seq;
3048 		u8 sacked = scb->sacked;
3049 		u32 acked_pcount;
3050 
3051 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3052 
3053 		/* Determine how many packets and what bytes were acked, tso and else */
3054 		if (after(scb->end_seq, tp->snd_una)) {
3055 			if (tcp_skb_pcount(skb) == 1 ||
3056 			    !after(tp->snd_una, scb->seq))
3057 				break;
3058 
3059 			acked_pcount = tcp_tso_acked(sk, skb);
3060 			if (!acked_pcount)
3061 				break;
3062 			fully_acked = false;
3063 		} else {
3064 			acked_pcount = tcp_skb_pcount(skb);
3065 		}
3066 
3067 		if (unlikely(sacked & TCPCB_RETRANS)) {
3068 			if (sacked & TCPCB_SACKED_RETRANS)
3069 				tp->retrans_out -= acked_pcount;
3070 			flag |= FLAG_RETRANS_DATA_ACKED;
3071 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3072 			last_ackt = skb->skb_mstamp;
3073 			WARN_ON_ONCE(last_ackt == 0);
3074 			if (!first_ackt)
3075 				first_ackt = last_ackt;
3076 
3077 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3078 			if (before(start_seq, reord))
3079 				reord = start_seq;
3080 			if (!after(scb->end_seq, tp->high_seq))
3081 				flag |= FLAG_ORIG_SACK_ACKED;
3082 		}
3083 
3084 		if (sacked & TCPCB_SACKED_ACKED) {
3085 			tp->sacked_out -= acked_pcount;
3086 		} else if (tcp_is_sack(tp)) {
3087 			tp->delivered += acked_pcount;
3088 			if (!tcp_skb_spurious_retrans(tp, skb))
3089 				tcp_rack_advance(tp, sacked, scb->end_seq,
3090 						 skb->skb_mstamp);
3091 		}
3092 		if (sacked & TCPCB_LOST)
3093 			tp->lost_out -= acked_pcount;
3094 
3095 		tp->packets_out -= acked_pcount;
3096 		pkts_acked += acked_pcount;
3097 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3098 
3099 		/* Initial outgoing SYN's get put onto the write_queue
3100 		 * just like anything else we transmit.  It is not
3101 		 * true data, and if we misinform our callers that
3102 		 * this ACK acks real data, we will erroneously exit
3103 		 * connection startup slow start one packet too
3104 		 * quickly.  This is severely frowned upon behavior.
3105 		 */
3106 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3107 			flag |= FLAG_DATA_ACKED;
3108 		} else {
3109 			flag |= FLAG_SYN_ACKED;
3110 			tp->retrans_stamp = 0;
3111 		}
3112 
3113 		if (!fully_acked)
3114 			break;
3115 
3116 		next = skb_rb_next(skb);
3117 		if (unlikely(skb == tp->retransmit_skb_hint))
3118 			tp->retransmit_skb_hint = NULL;
3119 		if (unlikely(skb == tp->lost_skb_hint))
3120 			tp->lost_skb_hint = NULL;
3121 		tcp_rtx_queue_unlink_and_free(skb, sk);
3122 	}
3123 
3124 	if (!skb)
3125 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3126 
3127 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3128 		tp->snd_up = tp->snd_una;
3129 
3130 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3131 		flag |= FLAG_SACK_RENEGING;
3132 
3133 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3134 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3135 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3136 
3137 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3138 		    last_in_flight && !prior_sacked && fully_acked &&
3139 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3140 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3141 			/* Conservatively mark a delayed ACK. It's typically
3142 			 * from a lone runt packet over the round trip to
3143 			 * a receiver w/o out-of-order or CE events.
3144 			 */
3145 			flag |= FLAG_ACK_MAYBE_DELAYED;
3146 		}
3147 	}
3148 	if (sack->first_sackt) {
3149 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3150 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3151 	}
3152 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3153 					ca_rtt_us, sack->rate);
3154 
3155 	if (flag & FLAG_ACKED) {
3156 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3157 		if (unlikely(icsk->icsk_mtup.probe_size &&
3158 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3159 			tcp_mtup_probe_success(sk);
3160 		}
3161 
3162 		if (tcp_is_reno(tp)) {
3163 			tcp_remove_reno_sacks(sk, pkts_acked);
3164 		} else {
3165 			int delta;
3166 
3167 			/* Non-retransmitted hole got filled? That's reordering */
3168 			if (before(reord, prior_fack))
3169 				tcp_check_sack_reordering(sk, reord, 0);
3170 
3171 			delta = prior_sacked - tp->sacked_out;
3172 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3173 		}
3174 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3175 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3176 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3177 		 * after when the head was last (re)transmitted. Otherwise the
3178 		 * timeout may continue to extend in loss recovery.
3179 		 */
3180 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3181 	}
3182 
3183 	if (icsk->icsk_ca_ops->pkts_acked) {
3184 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3185 					     .rtt_us = sack->rate->rtt_us,
3186 					     .in_flight = last_in_flight };
3187 
3188 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3189 	}
3190 
3191 #if FASTRETRANS_DEBUG > 0
3192 	WARN_ON((int)tp->sacked_out < 0);
3193 	WARN_ON((int)tp->lost_out < 0);
3194 	WARN_ON((int)tp->retrans_out < 0);
3195 	if (!tp->packets_out && tcp_is_sack(tp)) {
3196 		icsk = inet_csk(sk);
3197 		if (tp->lost_out) {
3198 			pr_debug("Leak l=%u %d\n",
3199 				 tp->lost_out, icsk->icsk_ca_state);
3200 			tp->lost_out = 0;
3201 		}
3202 		if (tp->sacked_out) {
3203 			pr_debug("Leak s=%u %d\n",
3204 				 tp->sacked_out, icsk->icsk_ca_state);
3205 			tp->sacked_out = 0;
3206 		}
3207 		if (tp->retrans_out) {
3208 			pr_debug("Leak r=%u %d\n",
3209 				 tp->retrans_out, icsk->icsk_ca_state);
3210 			tp->retrans_out = 0;
3211 		}
3212 	}
3213 #endif
3214 	return flag;
3215 }
3216 
3217 static void tcp_ack_probe(struct sock *sk)
3218 {
3219 	struct inet_connection_sock *icsk = inet_csk(sk);
3220 	struct sk_buff *head = tcp_send_head(sk);
3221 	const struct tcp_sock *tp = tcp_sk(sk);
3222 
3223 	/* Was it a usable window open? */
3224 	if (!head)
3225 		return;
3226 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3227 		icsk->icsk_backoff = 0;
3228 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3229 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3230 		 * This function is not for random using!
3231 		 */
3232 	} else {
3233 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3234 
3235 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3236 					  when, TCP_RTO_MAX);
3237 	}
3238 }
3239 
3240 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3241 {
3242 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3243 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3244 }
3245 
3246 /* Decide wheather to run the increase function of congestion control. */
3247 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3248 {
3249 	/* If reordering is high then always grow cwnd whenever data is
3250 	 * delivered regardless of its ordering. Otherwise stay conservative
3251 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3252 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3253 	 * cwnd in tcp_fastretrans_alert() based on more states.
3254 	 */
3255 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3256 		return flag & FLAG_FORWARD_PROGRESS;
3257 
3258 	return flag & FLAG_DATA_ACKED;
3259 }
3260 
3261 /* The "ultimate" congestion control function that aims to replace the rigid
3262  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3263  * It's called toward the end of processing an ACK with precise rate
3264  * information. All transmission or retransmission are delayed afterwards.
3265  */
3266 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3267 			     int flag, const struct rate_sample *rs)
3268 {
3269 	const struct inet_connection_sock *icsk = inet_csk(sk);
3270 
3271 	if (icsk->icsk_ca_ops->cong_control) {
3272 		icsk->icsk_ca_ops->cong_control(sk, rs);
3273 		return;
3274 	}
3275 
3276 	if (tcp_in_cwnd_reduction(sk)) {
3277 		/* Reduce cwnd if state mandates */
3278 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3279 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3280 		/* Advance cwnd if state allows */
3281 		tcp_cong_avoid(sk, ack, acked_sacked);
3282 	}
3283 	tcp_update_pacing_rate(sk);
3284 }
3285 
3286 /* Check that window update is acceptable.
3287  * The function assumes that snd_una<=ack<=snd_next.
3288  */
3289 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3290 					const u32 ack, const u32 ack_seq,
3291 					const u32 nwin)
3292 {
3293 	return	after(ack, tp->snd_una) ||
3294 		after(ack_seq, tp->snd_wl1) ||
3295 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3296 }
3297 
3298 /* If we update tp->snd_una, also update tp->bytes_acked */
3299 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3300 {
3301 	u32 delta = ack - tp->snd_una;
3302 
3303 	sock_owned_by_me((struct sock *)tp);
3304 	tp->bytes_acked += delta;
3305 	tp->snd_una = ack;
3306 }
3307 
3308 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3309 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3310 {
3311 	u32 delta = seq - tp->rcv_nxt;
3312 
3313 	sock_owned_by_me((struct sock *)tp);
3314 	tp->bytes_received += delta;
3315 	tp->rcv_nxt = seq;
3316 }
3317 
3318 /* Update our send window.
3319  *
3320  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3321  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3322  */
3323 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3324 				 u32 ack_seq)
3325 {
3326 	struct tcp_sock *tp = tcp_sk(sk);
3327 	int flag = 0;
3328 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3329 
3330 	if (likely(!tcp_hdr(skb)->syn))
3331 		nwin <<= tp->rx_opt.snd_wscale;
3332 
3333 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3334 		flag |= FLAG_WIN_UPDATE;
3335 		tcp_update_wl(tp, ack_seq);
3336 
3337 		if (tp->snd_wnd != nwin) {
3338 			tp->snd_wnd = nwin;
3339 
3340 			/* Note, it is the only place, where
3341 			 * fast path is recovered for sending TCP.
3342 			 */
3343 			tp->pred_flags = 0;
3344 			tcp_fast_path_check(sk);
3345 
3346 			if (!tcp_write_queue_empty(sk))
3347 				tcp_slow_start_after_idle_check(sk);
3348 
3349 			if (nwin > tp->max_window) {
3350 				tp->max_window = nwin;
3351 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3352 			}
3353 		}
3354 	}
3355 
3356 	tcp_snd_una_update(tp, ack);
3357 
3358 	return flag;
3359 }
3360 
3361 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3362 				   u32 *last_oow_ack_time)
3363 {
3364 	if (*last_oow_ack_time) {
3365 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3366 
3367 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3368 			NET_INC_STATS(net, mib_idx);
3369 			return true;	/* rate-limited: don't send yet! */
3370 		}
3371 	}
3372 
3373 	*last_oow_ack_time = tcp_jiffies32;
3374 
3375 	return false;	/* not rate-limited: go ahead, send dupack now! */
3376 }
3377 
3378 /* Return true if we're currently rate-limiting out-of-window ACKs and
3379  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3380  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3381  * attacks that send repeated SYNs or ACKs for the same connection. To
3382  * do this, we do not send a duplicate SYNACK or ACK if the remote
3383  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3384  */
3385 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3386 			  int mib_idx, u32 *last_oow_ack_time)
3387 {
3388 	/* Data packets without SYNs are not likely part of an ACK loop. */
3389 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3390 	    !tcp_hdr(skb)->syn)
3391 		return false;
3392 
3393 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3394 }
3395 
3396 /* RFC 5961 7 [ACK Throttling] */
3397 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3398 {
3399 	/* unprotected vars, we dont care of overwrites */
3400 	static u32 challenge_timestamp;
3401 	static unsigned int challenge_count;
3402 	struct tcp_sock *tp = tcp_sk(sk);
3403 	struct net *net = sock_net(sk);
3404 	u32 count, now;
3405 
3406 	/* First check our per-socket dupack rate limit. */
3407 	if (__tcp_oow_rate_limited(net,
3408 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3409 				   &tp->last_oow_ack_time))
3410 		return;
3411 
3412 	/* Then check host-wide RFC 5961 rate limit. */
3413 	now = jiffies / HZ;
3414 	if (now != challenge_timestamp) {
3415 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3416 		u32 half = (ack_limit + 1) >> 1;
3417 
3418 		challenge_timestamp = now;
3419 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3420 	}
3421 	count = READ_ONCE(challenge_count);
3422 	if (count > 0) {
3423 		WRITE_ONCE(challenge_count, count - 1);
3424 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3425 		tcp_send_ack(sk);
3426 	}
3427 }
3428 
3429 static void tcp_store_ts_recent(struct tcp_sock *tp)
3430 {
3431 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3432 	tp->rx_opt.ts_recent_stamp = get_seconds();
3433 }
3434 
3435 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3436 {
3437 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3438 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3439 		 * extra check below makes sure this can only happen
3440 		 * for pure ACK frames.  -DaveM
3441 		 *
3442 		 * Not only, also it occurs for expired timestamps.
3443 		 */
3444 
3445 		if (tcp_paws_check(&tp->rx_opt, 0))
3446 			tcp_store_ts_recent(tp);
3447 	}
3448 }
3449 
3450 /* This routine deals with acks during a TLP episode.
3451  * We mark the end of a TLP episode on receiving TLP dupack or when
3452  * ack is after tlp_high_seq.
3453  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3454  */
3455 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3456 {
3457 	struct tcp_sock *tp = tcp_sk(sk);
3458 
3459 	if (before(ack, tp->tlp_high_seq))
3460 		return;
3461 
3462 	if (flag & FLAG_DSACKING_ACK) {
3463 		/* This DSACK means original and TLP probe arrived; no loss */
3464 		tp->tlp_high_seq = 0;
3465 	} else if (after(ack, tp->tlp_high_seq)) {
3466 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3467 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3468 		 */
3469 		tcp_init_cwnd_reduction(sk);
3470 		tcp_set_ca_state(sk, TCP_CA_CWR);
3471 		tcp_end_cwnd_reduction(sk);
3472 		tcp_try_keep_open(sk);
3473 		NET_INC_STATS(sock_net(sk),
3474 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3475 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3476 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3477 		/* Pure dupack: original and TLP probe arrived; no loss */
3478 		tp->tlp_high_seq = 0;
3479 	}
3480 }
3481 
3482 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3483 {
3484 	const struct inet_connection_sock *icsk = inet_csk(sk);
3485 
3486 	if (icsk->icsk_ca_ops->in_ack_event)
3487 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3488 }
3489 
3490 /* Congestion control has updated the cwnd already. So if we're in
3491  * loss recovery then now we do any new sends (for FRTO) or
3492  * retransmits (for CA_Loss or CA_recovery) that make sense.
3493  */
3494 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3495 {
3496 	struct tcp_sock *tp = tcp_sk(sk);
3497 
3498 	if (rexmit == REXMIT_NONE)
3499 		return;
3500 
3501 	if (unlikely(rexmit == 2)) {
3502 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3503 					  TCP_NAGLE_OFF);
3504 		if (after(tp->snd_nxt, tp->high_seq))
3505 			return;
3506 		tp->frto = 0;
3507 	}
3508 	tcp_xmit_retransmit_queue(sk);
3509 }
3510 
3511 /* This routine deals with incoming acks, but not outgoing ones. */
3512 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3513 {
3514 	struct inet_connection_sock *icsk = inet_csk(sk);
3515 	struct tcp_sock *tp = tcp_sk(sk);
3516 	struct tcp_sacktag_state sack_state;
3517 	struct rate_sample rs = { .prior_delivered = 0 };
3518 	u32 prior_snd_una = tp->snd_una;
3519 	bool is_sack_reneg = tp->is_sack_reneg;
3520 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3521 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3522 	bool is_dupack = false;
3523 	int prior_packets = tp->packets_out;
3524 	u32 delivered = tp->delivered;
3525 	u32 lost = tp->lost;
3526 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3527 	u32 prior_fack;
3528 
3529 	sack_state.first_sackt = 0;
3530 	sack_state.rate = &rs;
3531 
3532 	/* We very likely will need to access rtx queue. */
3533 	prefetch(sk->tcp_rtx_queue.rb_node);
3534 
3535 	/* If the ack is older than previous acks
3536 	 * then we can probably ignore it.
3537 	 */
3538 	if (before(ack, prior_snd_una)) {
3539 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3540 		if (before(ack, prior_snd_una - tp->max_window)) {
3541 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3542 				tcp_send_challenge_ack(sk, skb);
3543 			return -1;
3544 		}
3545 		goto old_ack;
3546 	}
3547 
3548 	/* If the ack includes data we haven't sent yet, discard
3549 	 * this segment (RFC793 Section 3.9).
3550 	 */
3551 	if (after(ack, tp->snd_nxt))
3552 		goto invalid_ack;
3553 
3554 	if (after(ack, prior_snd_una)) {
3555 		flag |= FLAG_SND_UNA_ADVANCED;
3556 		icsk->icsk_retransmits = 0;
3557 	}
3558 
3559 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3560 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3561 
3562 	/* ts_recent update must be made after we are sure that the packet
3563 	 * is in window.
3564 	 */
3565 	if (flag & FLAG_UPDATE_TS_RECENT)
3566 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3567 
3568 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3569 		/* Window is constant, pure forward advance.
3570 		 * No more checks are required.
3571 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3572 		 */
3573 		tcp_update_wl(tp, ack_seq);
3574 		tcp_snd_una_update(tp, ack);
3575 		flag |= FLAG_WIN_UPDATE;
3576 
3577 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3578 
3579 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3580 	} else {
3581 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3582 
3583 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3584 			flag |= FLAG_DATA;
3585 		else
3586 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3587 
3588 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3589 
3590 		if (TCP_SKB_CB(skb)->sacked)
3591 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3592 							&sack_state);
3593 
3594 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3595 			flag |= FLAG_ECE;
3596 			ack_ev_flags |= CA_ACK_ECE;
3597 		}
3598 
3599 		if (flag & FLAG_WIN_UPDATE)
3600 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3601 
3602 		tcp_in_ack_event(sk, ack_ev_flags);
3603 	}
3604 
3605 	/* We passed data and got it acked, remove any soft error
3606 	 * log. Something worked...
3607 	 */
3608 	sk->sk_err_soft = 0;
3609 	icsk->icsk_probes_out = 0;
3610 	tp->rcv_tstamp = tcp_jiffies32;
3611 	if (!prior_packets)
3612 		goto no_queue;
3613 
3614 	/* See if we can take anything off of the retransmit queue. */
3615 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3616 
3617 	tcp_rack_update_reo_wnd(sk, &rs);
3618 
3619 	if (tp->tlp_high_seq)
3620 		tcp_process_tlp_ack(sk, ack, flag);
3621 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3622 	if (flag & FLAG_SET_XMIT_TIMER)
3623 		tcp_set_xmit_timer(sk);
3624 
3625 	if (tcp_ack_is_dubious(sk, flag)) {
3626 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3627 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3628 				      &rexmit);
3629 	}
3630 
3631 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3632 		sk_dst_confirm(sk);
3633 
3634 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3635 	lost = tp->lost - lost;			/* freshly marked lost */
3636 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3637 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3638 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3639 	tcp_xmit_recovery(sk, rexmit);
3640 	return 1;
3641 
3642 no_queue:
3643 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3644 	if (flag & FLAG_DSACKING_ACK)
3645 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3646 				      &rexmit);
3647 	/* If this ack opens up a zero window, clear backoff.  It was
3648 	 * being used to time the probes, and is probably far higher than
3649 	 * it needs to be for normal retransmission.
3650 	 */
3651 	tcp_ack_probe(sk);
3652 
3653 	if (tp->tlp_high_seq)
3654 		tcp_process_tlp_ack(sk, ack, flag);
3655 	return 1;
3656 
3657 invalid_ack:
3658 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3659 	return -1;
3660 
3661 old_ack:
3662 	/* If data was SACKed, tag it and see if we should send more data.
3663 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3664 	 */
3665 	if (TCP_SKB_CB(skb)->sacked) {
3666 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3667 						&sack_state);
3668 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3669 				      &rexmit);
3670 		tcp_xmit_recovery(sk, rexmit);
3671 	}
3672 
3673 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3674 	return 0;
3675 }
3676 
3677 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3678 				      bool syn, struct tcp_fastopen_cookie *foc,
3679 				      bool exp_opt)
3680 {
3681 	/* Valid only in SYN or SYN-ACK with an even length.  */
3682 	if (!foc || !syn || len < 0 || (len & 1))
3683 		return;
3684 
3685 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3686 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3687 		memcpy(foc->val, cookie, len);
3688 	else if (len != 0)
3689 		len = -1;
3690 	foc->len = len;
3691 	foc->exp = exp_opt;
3692 }
3693 
3694 static void smc_parse_options(const struct tcphdr *th,
3695 			      struct tcp_options_received *opt_rx,
3696 			      const unsigned char *ptr,
3697 			      int opsize)
3698 {
3699 #if IS_ENABLED(CONFIG_SMC)
3700 	if (static_branch_unlikely(&tcp_have_smc)) {
3701 		if (th->syn && !(opsize & 1) &&
3702 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3703 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3704 			opt_rx->smc_ok = 1;
3705 	}
3706 #endif
3707 }
3708 
3709 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3710  * But, this can also be called on packets in the established flow when
3711  * the fast version below fails.
3712  */
3713 void tcp_parse_options(const struct net *net,
3714 		       const struct sk_buff *skb,
3715 		       struct tcp_options_received *opt_rx, int estab,
3716 		       struct tcp_fastopen_cookie *foc)
3717 {
3718 	const unsigned char *ptr;
3719 	const struct tcphdr *th = tcp_hdr(skb);
3720 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3721 
3722 	ptr = (const unsigned char *)(th + 1);
3723 	opt_rx->saw_tstamp = 0;
3724 
3725 	while (length > 0) {
3726 		int opcode = *ptr++;
3727 		int opsize;
3728 
3729 		switch (opcode) {
3730 		case TCPOPT_EOL:
3731 			return;
3732 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3733 			length--;
3734 			continue;
3735 		default:
3736 			opsize = *ptr++;
3737 			if (opsize < 2) /* "silly options" */
3738 				return;
3739 			if (opsize > length)
3740 				return;	/* don't parse partial options */
3741 			switch (opcode) {
3742 			case TCPOPT_MSS:
3743 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3744 					u16 in_mss = get_unaligned_be16(ptr);
3745 					if (in_mss) {
3746 						if (opt_rx->user_mss &&
3747 						    opt_rx->user_mss < in_mss)
3748 							in_mss = opt_rx->user_mss;
3749 						opt_rx->mss_clamp = in_mss;
3750 					}
3751 				}
3752 				break;
3753 			case TCPOPT_WINDOW:
3754 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3755 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3756 					__u8 snd_wscale = *(__u8 *)ptr;
3757 					opt_rx->wscale_ok = 1;
3758 					if (snd_wscale > TCP_MAX_WSCALE) {
3759 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3760 								     __func__,
3761 								     snd_wscale,
3762 								     TCP_MAX_WSCALE);
3763 						snd_wscale = TCP_MAX_WSCALE;
3764 					}
3765 					opt_rx->snd_wscale = snd_wscale;
3766 				}
3767 				break;
3768 			case TCPOPT_TIMESTAMP:
3769 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3770 				    ((estab && opt_rx->tstamp_ok) ||
3771 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3772 					opt_rx->saw_tstamp = 1;
3773 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3774 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3775 				}
3776 				break;
3777 			case TCPOPT_SACK_PERM:
3778 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3779 				    !estab && net->ipv4.sysctl_tcp_sack) {
3780 					opt_rx->sack_ok = TCP_SACK_SEEN;
3781 					tcp_sack_reset(opt_rx);
3782 				}
3783 				break;
3784 
3785 			case TCPOPT_SACK:
3786 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3787 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3788 				   opt_rx->sack_ok) {
3789 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3790 				}
3791 				break;
3792 #ifdef CONFIG_TCP_MD5SIG
3793 			case TCPOPT_MD5SIG:
3794 				/*
3795 				 * The MD5 Hash has already been
3796 				 * checked (see tcp_v{4,6}_do_rcv()).
3797 				 */
3798 				break;
3799 #endif
3800 			case TCPOPT_FASTOPEN:
3801 				tcp_parse_fastopen_option(
3802 					opsize - TCPOLEN_FASTOPEN_BASE,
3803 					ptr, th->syn, foc, false);
3804 				break;
3805 
3806 			case TCPOPT_EXP:
3807 				/* Fast Open option shares code 254 using a
3808 				 * 16 bits magic number.
3809 				 */
3810 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3811 				    get_unaligned_be16(ptr) ==
3812 				    TCPOPT_FASTOPEN_MAGIC)
3813 					tcp_parse_fastopen_option(opsize -
3814 						TCPOLEN_EXP_FASTOPEN_BASE,
3815 						ptr + 2, th->syn, foc, true);
3816 				else
3817 					smc_parse_options(th, opt_rx, ptr,
3818 							  opsize);
3819 				break;
3820 
3821 			}
3822 			ptr += opsize-2;
3823 			length -= opsize;
3824 		}
3825 	}
3826 }
3827 EXPORT_SYMBOL(tcp_parse_options);
3828 
3829 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3830 {
3831 	const __be32 *ptr = (const __be32 *)(th + 1);
3832 
3833 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3834 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3835 		tp->rx_opt.saw_tstamp = 1;
3836 		++ptr;
3837 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3838 		++ptr;
3839 		if (*ptr)
3840 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3841 		else
3842 			tp->rx_opt.rcv_tsecr = 0;
3843 		return true;
3844 	}
3845 	return false;
3846 }
3847 
3848 /* Fast parse options. This hopes to only see timestamps.
3849  * If it is wrong it falls back on tcp_parse_options().
3850  */
3851 static bool tcp_fast_parse_options(const struct net *net,
3852 				   const struct sk_buff *skb,
3853 				   const struct tcphdr *th, struct tcp_sock *tp)
3854 {
3855 	/* In the spirit of fast parsing, compare doff directly to constant
3856 	 * values.  Because equality is used, short doff can be ignored here.
3857 	 */
3858 	if (th->doff == (sizeof(*th) / 4)) {
3859 		tp->rx_opt.saw_tstamp = 0;
3860 		return false;
3861 	} else if (tp->rx_opt.tstamp_ok &&
3862 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3863 		if (tcp_parse_aligned_timestamp(tp, th))
3864 			return true;
3865 	}
3866 
3867 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3868 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3869 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3870 
3871 	return true;
3872 }
3873 
3874 #ifdef CONFIG_TCP_MD5SIG
3875 /*
3876  * Parse MD5 Signature option
3877  */
3878 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3879 {
3880 	int length = (th->doff << 2) - sizeof(*th);
3881 	const u8 *ptr = (const u8 *)(th + 1);
3882 
3883 	/* If the TCP option is too short, we can short cut */
3884 	if (length < TCPOLEN_MD5SIG)
3885 		return NULL;
3886 
3887 	while (length > 0) {
3888 		int opcode = *ptr++;
3889 		int opsize;
3890 
3891 		switch (opcode) {
3892 		case TCPOPT_EOL:
3893 			return NULL;
3894 		case TCPOPT_NOP:
3895 			length--;
3896 			continue;
3897 		default:
3898 			opsize = *ptr++;
3899 			if (opsize < 2 || opsize > length)
3900 				return NULL;
3901 			if (opcode == TCPOPT_MD5SIG)
3902 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3903 		}
3904 		ptr += opsize - 2;
3905 		length -= opsize;
3906 	}
3907 	return NULL;
3908 }
3909 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3910 #endif
3911 
3912 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3913  *
3914  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3915  * it can pass through stack. So, the following predicate verifies that
3916  * this segment is not used for anything but congestion avoidance or
3917  * fast retransmit. Moreover, we even are able to eliminate most of such
3918  * second order effects, if we apply some small "replay" window (~RTO)
3919  * to timestamp space.
3920  *
3921  * All these measures still do not guarantee that we reject wrapped ACKs
3922  * on networks with high bandwidth, when sequence space is recycled fastly,
3923  * but it guarantees that such events will be very rare and do not affect
3924  * connection seriously. This doesn't look nice, but alas, PAWS is really
3925  * buggy extension.
3926  *
3927  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3928  * states that events when retransmit arrives after original data are rare.
3929  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3930  * the biggest problem on large power networks even with minor reordering.
3931  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3932  * up to bandwidth of 18Gigabit/sec. 8) ]
3933  */
3934 
3935 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3936 {
3937 	const struct tcp_sock *tp = tcp_sk(sk);
3938 	const struct tcphdr *th = tcp_hdr(skb);
3939 	u32 seq = TCP_SKB_CB(skb)->seq;
3940 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3941 
3942 	return (/* 1. Pure ACK with correct sequence number. */
3943 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3944 
3945 		/* 2. ... and duplicate ACK. */
3946 		ack == tp->snd_una &&
3947 
3948 		/* 3. ... and does not update window. */
3949 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3950 
3951 		/* 4. ... and sits in replay window. */
3952 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3953 }
3954 
3955 static inline bool tcp_paws_discard(const struct sock *sk,
3956 				   const struct sk_buff *skb)
3957 {
3958 	const struct tcp_sock *tp = tcp_sk(sk);
3959 
3960 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3961 	       !tcp_disordered_ack(sk, skb);
3962 }
3963 
3964 /* Check segment sequence number for validity.
3965  *
3966  * Segment controls are considered valid, if the segment
3967  * fits to the window after truncation to the window. Acceptability
3968  * of data (and SYN, FIN, of course) is checked separately.
3969  * See tcp_data_queue(), for example.
3970  *
3971  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3972  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3973  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3974  * (borrowed from freebsd)
3975  */
3976 
3977 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3978 {
3979 	return	!before(end_seq, tp->rcv_wup) &&
3980 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3981 }
3982 
3983 /* When we get a reset we do this. */
3984 void tcp_reset(struct sock *sk)
3985 {
3986 	trace_tcp_receive_reset(sk);
3987 
3988 	/* We want the right error as BSD sees it (and indeed as we do). */
3989 	switch (sk->sk_state) {
3990 	case TCP_SYN_SENT:
3991 		sk->sk_err = ECONNREFUSED;
3992 		break;
3993 	case TCP_CLOSE_WAIT:
3994 		sk->sk_err = EPIPE;
3995 		break;
3996 	case TCP_CLOSE:
3997 		return;
3998 	default:
3999 		sk->sk_err = ECONNRESET;
4000 	}
4001 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4002 	smp_wmb();
4003 
4004 	tcp_done(sk);
4005 
4006 	if (!sock_flag(sk, SOCK_DEAD))
4007 		sk->sk_error_report(sk);
4008 }
4009 
4010 /*
4011  * 	Process the FIN bit. This now behaves as it is supposed to work
4012  *	and the FIN takes effect when it is validly part of sequence
4013  *	space. Not before when we get holes.
4014  *
4015  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4016  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4017  *	TIME-WAIT)
4018  *
4019  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4020  *	close and we go into CLOSING (and later onto TIME-WAIT)
4021  *
4022  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4023  */
4024 void tcp_fin(struct sock *sk)
4025 {
4026 	struct tcp_sock *tp = tcp_sk(sk);
4027 
4028 	inet_csk_schedule_ack(sk);
4029 
4030 	sk->sk_shutdown |= RCV_SHUTDOWN;
4031 	sock_set_flag(sk, SOCK_DONE);
4032 
4033 	switch (sk->sk_state) {
4034 	case TCP_SYN_RECV:
4035 	case TCP_ESTABLISHED:
4036 		/* Move to CLOSE_WAIT */
4037 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4038 		inet_csk(sk)->icsk_ack.pingpong = 1;
4039 		break;
4040 
4041 	case TCP_CLOSE_WAIT:
4042 	case TCP_CLOSING:
4043 		/* Received a retransmission of the FIN, do
4044 		 * nothing.
4045 		 */
4046 		break;
4047 	case TCP_LAST_ACK:
4048 		/* RFC793: Remain in the LAST-ACK state. */
4049 		break;
4050 
4051 	case TCP_FIN_WAIT1:
4052 		/* This case occurs when a simultaneous close
4053 		 * happens, we must ack the received FIN and
4054 		 * enter the CLOSING state.
4055 		 */
4056 		tcp_send_ack(sk);
4057 		tcp_set_state(sk, TCP_CLOSING);
4058 		break;
4059 	case TCP_FIN_WAIT2:
4060 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4061 		tcp_send_ack(sk);
4062 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4063 		break;
4064 	default:
4065 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4066 		 * cases we should never reach this piece of code.
4067 		 */
4068 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4069 		       __func__, sk->sk_state);
4070 		break;
4071 	}
4072 
4073 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4074 	 * Probably, we should reset in this case. For now drop them.
4075 	 */
4076 	skb_rbtree_purge(&tp->out_of_order_queue);
4077 	if (tcp_is_sack(tp))
4078 		tcp_sack_reset(&tp->rx_opt);
4079 	sk_mem_reclaim(sk);
4080 
4081 	if (!sock_flag(sk, SOCK_DEAD)) {
4082 		sk->sk_state_change(sk);
4083 
4084 		/* Do not send POLL_HUP for half duplex close. */
4085 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4086 		    sk->sk_state == TCP_CLOSE)
4087 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4088 		else
4089 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4090 	}
4091 }
4092 
4093 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4094 				  u32 end_seq)
4095 {
4096 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4097 		if (before(seq, sp->start_seq))
4098 			sp->start_seq = seq;
4099 		if (after(end_seq, sp->end_seq))
4100 			sp->end_seq = end_seq;
4101 		return true;
4102 	}
4103 	return false;
4104 }
4105 
4106 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4107 {
4108 	struct tcp_sock *tp = tcp_sk(sk);
4109 
4110 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4111 		int mib_idx;
4112 
4113 		if (before(seq, tp->rcv_nxt))
4114 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4115 		else
4116 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4117 
4118 		NET_INC_STATS(sock_net(sk), mib_idx);
4119 
4120 		tp->rx_opt.dsack = 1;
4121 		tp->duplicate_sack[0].start_seq = seq;
4122 		tp->duplicate_sack[0].end_seq = end_seq;
4123 	}
4124 }
4125 
4126 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4127 {
4128 	struct tcp_sock *tp = tcp_sk(sk);
4129 
4130 	if (!tp->rx_opt.dsack)
4131 		tcp_dsack_set(sk, seq, end_seq);
4132 	else
4133 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4134 }
4135 
4136 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4137 {
4138 	struct tcp_sock *tp = tcp_sk(sk);
4139 
4140 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4141 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4142 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4143 		tcp_enter_quickack_mode(sk);
4144 
4145 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4146 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4147 
4148 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4149 				end_seq = tp->rcv_nxt;
4150 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4151 		}
4152 	}
4153 
4154 	tcp_send_ack(sk);
4155 }
4156 
4157 /* These routines update the SACK block as out-of-order packets arrive or
4158  * in-order packets close up the sequence space.
4159  */
4160 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4161 {
4162 	int this_sack;
4163 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4164 	struct tcp_sack_block *swalk = sp + 1;
4165 
4166 	/* See if the recent change to the first SACK eats into
4167 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4168 	 */
4169 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4170 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4171 			int i;
4172 
4173 			/* Zap SWALK, by moving every further SACK up by one slot.
4174 			 * Decrease num_sacks.
4175 			 */
4176 			tp->rx_opt.num_sacks--;
4177 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4178 				sp[i] = sp[i + 1];
4179 			continue;
4180 		}
4181 		this_sack++, swalk++;
4182 	}
4183 }
4184 
4185 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4186 {
4187 	struct tcp_sock *tp = tcp_sk(sk);
4188 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4189 	int cur_sacks = tp->rx_opt.num_sacks;
4190 	int this_sack;
4191 
4192 	if (!cur_sacks)
4193 		goto new_sack;
4194 
4195 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4196 		if (tcp_sack_extend(sp, seq, end_seq)) {
4197 			/* Rotate this_sack to the first one. */
4198 			for (; this_sack > 0; this_sack--, sp--)
4199 				swap(*sp, *(sp - 1));
4200 			if (cur_sacks > 1)
4201 				tcp_sack_maybe_coalesce(tp);
4202 			return;
4203 		}
4204 	}
4205 
4206 	/* Could not find an adjacent existing SACK, build a new one,
4207 	 * put it at the front, and shift everyone else down.  We
4208 	 * always know there is at least one SACK present already here.
4209 	 *
4210 	 * If the sack array is full, forget about the last one.
4211 	 */
4212 	if (this_sack >= TCP_NUM_SACKS) {
4213 		this_sack--;
4214 		tp->rx_opt.num_sacks--;
4215 		sp--;
4216 	}
4217 	for (; this_sack > 0; this_sack--, sp--)
4218 		*sp = *(sp - 1);
4219 
4220 new_sack:
4221 	/* Build the new head SACK, and we're done. */
4222 	sp->start_seq = seq;
4223 	sp->end_seq = end_seq;
4224 	tp->rx_opt.num_sacks++;
4225 }
4226 
4227 /* RCV.NXT advances, some SACKs should be eaten. */
4228 
4229 static void tcp_sack_remove(struct tcp_sock *tp)
4230 {
4231 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4232 	int num_sacks = tp->rx_opt.num_sacks;
4233 	int this_sack;
4234 
4235 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4236 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4237 		tp->rx_opt.num_sacks = 0;
4238 		return;
4239 	}
4240 
4241 	for (this_sack = 0; this_sack < num_sacks;) {
4242 		/* Check if the start of the sack is covered by RCV.NXT. */
4243 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4244 			int i;
4245 
4246 			/* RCV.NXT must cover all the block! */
4247 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4248 
4249 			/* Zap this SACK, by moving forward any other SACKS. */
4250 			for (i = this_sack+1; i < num_sacks; i++)
4251 				tp->selective_acks[i-1] = tp->selective_acks[i];
4252 			num_sacks--;
4253 			continue;
4254 		}
4255 		this_sack++;
4256 		sp++;
4257 	}
4258 	tp->rx_opt.num_sacks = num_sacks;
4259 }
4260 
4261 /**
4262  * tcp_try_coalesce - try to merge skb to prior one
4263  * @sk: socket
4264  * @dest: destination queue
4265  * @to: prior buffer
4266  * @from: buffer to add in queue
4267  * @fragstolen: pointer to boolean
4268  *
4269  * Before queueing skb @from after @to, try to merge them
4270  * to reduce overall memory use and queue lengths, if cost is small.
4271  * Packets in ofo or receive queues can stay a long time.
4272  * Better try to coalesce them right now to avoid future collapses.
4273  * Returns true if caller should free @from instead of queueing it
4274  */
4275 static bool tcp_try_coalesce(struct sock *sk,
4276 			     struct sk_buff *to,
4277 			     struct sk_buff *from,
4278 			     bool *fragstolen)
4279 {
4280 	int delta;
4281 
4282 	*fragstolen = false;
4283 
4284 	/* Its possible this segment overlaps with prior segment in queue */
4285 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4286 		return false;
4287 
4288 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4289 		return false;
4290 
4291 	atomic_add(delta, &sk->sk_rmem_alloc);
4292 	sk_mem_charge(sk, delta);
4293 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4294 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4295 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4296 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4297 
4298 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4299 		TCP_SKB_CB(to)->has_rxtstamp = true;
4300 		to->tstamp = from->tstamp;
4301 	}
4302 
4303 	return true;
4304 }
4305 
4306 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4307 {
4308 	sk_drops_add(sk, skb);
4309 	__kfree_skb(skb);
4310 }
4311 
4312 /* This one checks to see if we can put data from the
4313  * out_of_order queue into the receive_queue.
4314  */
4315 static void tcp_ofo_queue(struct sock *sk)
4316 {
4317 	struct tcp_sock *tp = tcp_sk(sk);
4318 	__u32 dsack_high = tp->rcv_nxt;
4319 	bool fin, fragstolen, eaten;
4320 	struct sk_buff *skb, *tail;
4321 	struct rb_node *p;
4322 
4323 	p = rb_first(&tp->out_of_order_queue);
4324 	while (p) {
4325 		skb = rb_to_skb(p);
4326 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4327 			break;
4328 
4329 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4330 			__u32 dsack = dsack_high;
4331 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4332 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4333 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4334 		}
4335 		p = rb_next(p);
4336 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4337 
4338 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4339 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4340 			tcp_drop(sk, skb);
4341 			continue;
4342 		}
4343 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4344 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4345 			   TCP_SKB_CB(skb)->end_seq);
4346 
4347 		tail = skb_peek_tail(&sk->sk_receive_queue);
4348 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4349 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4350 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4351 		if (!eaten)
4352 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4353 		else
4354 			kfree_skb_partial(skb, fragstolen);
4355 
4356 		if (unlikely(fin)) {
4357 			tcp_fin(sk);
4358 			/* tcp_fin() purges tp->out_of_order_queue,
4359 			 * so we must end this loop right now.
4360 			 */
4361 			break;
4362 		}
4363 	}
4364 }
4365 
4366 static bool tcp_prune_ofo_queue(struct sock *sk);
4367 static int tcp_prune_queue(struct sock *sk);
4368 
4369 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4370 				 unsigned int size)
4371 {
4372 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4373 	    !sk_rmem_schedule(sk, skb, size)) {
4374 
4375 		if (tcp_prune_queue(sk) < 0)
4376 			return -1;
4377 
4378 		while (!sk_rmem_schedule(sk, skb, size)) {
4379 			if (!tcp_prune_ofo_queue(sk))
4380 				return -1;
4381 		}
4382 	}
4383 	return 0;
4384 }
4385 
4386 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4387 {
4388 	struct tcp_sock *tp = tcp_sk(sk);
4389 	struct rb_node **p, *parent;
4390 	struct sk_buff *skb1;
4391 	u32 seq, end_seq;
4392 	bool fragstolen;
4393 
4394 	tcp_ecn_check_ce(tp, skb);
4395 
4396 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4397 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4398 		tcp_drop(sk, skb);
4399 		return;
4400 	}
4401 
4402 	/* Disable header prediction. */
4403 	tp->pred_flags = 0;
4404 	inet_csk_schedule_ack(sk);
4405 
4406 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4407 	seq = TCP_SKB_CB(skb)->seq;
4408 	end_seq = TCP_SKB_CB(skb)->end_seq;
4409 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4410 		   tp->rcv_nxt, seq, end_seq);
4411 
4412 	p = &tp->out_of_order_queue.rb_node;
4413 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4414 		/* Initial out of order segment, build 1 SACK. */
4415 		if (tcp_is_sack(tp)) {
4416 			tp->rx_opt.num_sacks = 1;
4417 			tp->selective_acks[0].start_seq = seq;
4418 			tp->selective_acks[0].end_seq = end_seq;
4419 		}
4420 		rb_link_node(&skb->rbnode, NULL, p);
4421 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4422 		tp->ooo_last_skb = skb;
4423 		goto end;
4424 	}
4425 
4426 	/* In the typical case, we are adding an skb to the end of the list.
4427 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4428 	 */
4429 	if (tcp_try_coalesce(sk, tp->ooo_last_skb,
4430 			     skb, &fragstolen)) {
4431 coalesce_done:
4432 		tcp_grow_window(sk, skb);
4433 		kfree_skb_partial(skb, fragstolen);
4434 		skb = NULL;
4435 		goto add_sack;
4436 	}
4437 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4438 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4439 		parent = &tp->ooo_last_skb->rbnode;
4440 		p = &parent->rb_right;
4441 		goto insert;
4442 	}
4443 
4444 	/* Find place to insert this segment. Handle overlaps on the way. */
4445 	parent = NULL;
4446 	while (*p) {
4447 		parent = *p;
4448 		skb1 = rb_to_skb(parent);
4449 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4450 			p = &parent->rb_left;
4451 			continue;
4452 		}
4453 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4454 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4455 				/* All the bits are present. Drop. */
4456 				NET_INC_STATS(sock_net(sk),
4457 					      LINUX_MIB_TCPOFOMERGE);
4458 				__kfree_skb(skb);
4459 				skb = NULL;
4460 				tcp_dsack_set(sk, seq, end_seq);
4461 				goto add_sack;
4462 			}
4463 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4464 				/* Partial overlap. */
4465 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4466 			} else {
4467 				/* skb's seq == skb1's seq and skb covers skb1.
4468 				 * Replace skb1 with skb.
4469 				 */
4470 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4471 						&tp->out_of_order_queue);
4472 				tcp_dsack_extend(sk,
4473 						 TCP_SKB_CB(skb1)->seq,
4474 						 TCP_SKB_CB(skb1)->end_seq);
4475 				NET_INC_STATS(sock_net(sk),
4476 					      LINUX_MIB_TCPOFOMERGE);
4477 				__kfree_skb(skb1);
4478 				goto merge_right;
4479 			}
4480 		} else if (tcp_try_coalesce(sk, skb1,
4481 					    skb, &fragstolen)) {
4482 			goto coalesce_done;
4483 		}
4484 		p = &parent->rb_right;
4485 	}
4486 insert:
4487 	/* Insert segment into RB tree. */
4488 	rb_link_node(&skb->rbnode, parent, p);
4489 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4490 
4491 merge_right:
4492 	/* Remove other segments covered by skb. */
4493 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4494 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4495 			break;
4496 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4497 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4498 					 end_seq);
4499 			break;
4500 		}
4501 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4502 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4503 				 TCP_SKB_CB(skb1)->end_seq);
4504 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4505 		tcp_drop(sk, skb1);
4506 	}
4507 	/* If there is no skb after us, we are the last_skb ! */
4508 	if (!skb1)
4509 		tp->ooo_last_skb = skb;
4510 
4511 add_sack:
4512 	if (tcp_is_sack(tp))
4513 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4514 end:
4515 	if (skb) {
4516 		tcp_grow_window(sk, skb);
4517 		skb_condense(skb);
4518 		skb_set_owner_r(skb, sk);
4519 	}
4520 }
4521 
4522 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4523 		  bool *fragstolen)
4524 {
4525 	int eaten;
4526 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4527 
4528 	__skb_pull(skb, hdrlen);
4529 	eaten = (tail &&
4530 		 tcp_try_coalesce(sk, tail,
4531 				  skb, fragstolen)) ? 1 : 0;
4532 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4533 	if (!eaten) {
4534 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4535 		skb_set_owner_r(skb, sk);
4536 	}
4537 	return eaten;
4538 }
4539 
4540 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4541 {
4542 	struct sk_buff *skb;
4543 	int err = -ENOMEM;
4544 	int data_len = 0;
4545 	bool fragstolen;
4546 
4547 	if (size == 0)
4548 		return 0;
4549 
4550 	if (size > PAGE_SIZE) {
4551 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4552 
4553 		data_len = npages << PAGE_SHIFT;
4554 		size = data_len + (size & ~PAGE_MASK);
4555 	}
4556 	skb = alloc_skb_with_frags(size - data_len, data_len,
4557 				   PAGE_ALLOC_COSTLY_ORDER,
4558 				   &err, sk->sk_allocation);
4559 	if (!skb)
4560 		goto err;
4561 
4562 	skb_put(skb, size - data_len);
4563 	skb->data_len = data_len;
4564 	skb->len = size;
4565 
4566 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4567 		goto err_free;
4568 
4569 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4570 	if (err)
4571 		goto err_free;
4572 
4573 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4574 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4575 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4576 
4577 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4578 		WARN_ON_ONCE(fragstolen); /* should not happen */
4579 		__kfree_skb(skb);
4580 	}
4581 	return size;
4582 
4583 err_free:
4584 	kfree_skb(skb);
4585 err:
4586 	return err;
4587 
4588 }
4589 
4590 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4591 {
4592 	struct tcp_sock *tp = tcp_sk(sk);
4593 	bool fragstolen;
4594 	int eaten;
4595 
4596 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4597 		__kfree_skb(skb);
4598 		return;
4599 	}
4600 	skb_dst_drop(skb);
4601 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4602 
4603 	tcp_ecn_accept_cwr(tp, skb);
4604 
4605 	tp->rx_opt.dsack = 0;
4606 
4607 	/*  Queue data for delivery to the user.
4608 	 *  Packets in sequence go to the receive queue.
4609 	 *  Out of sequence packets to the out_of_order_queue.
4610 	 */
4611 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4612 		if (tcp_receive_window(tp) == 0)
4613 			goto out_of_window;
4614 
4615 		/* Ok. In sequence. In window. */
4616 queue_and_out:
4617 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4618 			sk_forced_mem_schedule(sk, skb->truesize);
4619 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4620 			goto drop;
4621 
4622 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4623 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4624 		if (skb->len)
4625 			tcp_event_data_recv(sk, skb);
4626 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4627 			tcp_fin(sk);
4628 
4629 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4630 			tcp_ofo_queue(sk);
4631 
4632 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4633 			 * gap in queue is filled.
4634 			 */
4635 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4636 				inet_csk(sk)->icsk_ack.pingpong = 0;
4637 		}
4638 
4639 		if (tp->rx_opt.num_sacks)
4640 			tcp_sack_remove(tp);
4641 
4642 		tcp_fast_path_check(sk);
4643 
4644 		if (eaten > 0)
4645 			kfree_skb_partial(skb, fragstolen);
4646 		if (!sock_flag(sk, SOCK_DEAD))
4647 			sk->sk_data_ready(sk);
4648 		return;
4649 	}
4650 
4651 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4652 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4653 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4654 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4655 
4656 out_of_window:
4657 		tcp_enter_quickack_mode(sk);
4658 		inet_csk_schedule_ack(sk);
4659 drop:
4660 		tcp_drop(sk, skb);
4661 		return;
4662 	}
4663 
4664 	/* Out of window. F.e. zero window probe. */
4665 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4666 		goto out_of_window;
4667 
4668 	tcp_enter_quickack_mode(sk);
4669 
4670 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4671 		/* Partial packet, seq < rcv_next < end_seq */
4672 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4673 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4674 			   TCP_SKB_CB(skb)->end_seq);
4675 
4676 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4677 
4678 		/* If window is closed, drop tail of packet. But after
4679 		 * remembering D-SACK for its head made in previous line.
4680 		 */
4681 		if (!tcp_receive_window(tp))
4682 			goto out_of_window;
4683 		goto queue_and_out;
4684 	}
4685 
4686 	tcp_data_queue_ofo(sk, skb);
4687 }
4688 
4689 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4690 {
4691 	if (list)
4692 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4693 
4694 	return skb_rb_next(skb);
4695 }
4696 
4697 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4698 					struct sk_buff_head *list,
4699 					struct rb_root *root)
4700 {
4701 	struct sk_buff *next = tcp_skb_next(skb, list);
4702 
4703 	if (list)
4704 		__skb_unlink(skb, list);
4705 	else
4706 		rb_erase(&skb->rbnode, root);
4707 
4708 	__kfree_skb(skb);
4709 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4710 
4711 	return next;
4712 }
4713 
4714 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4715 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4716 {
4717 	struct rb_node **p = &root->rb_node;
4718 	struct rb_node *parent = NULL;
4719 	struct sk_buff *skb1;
4720 
4721 	while (*p) {
4722 		parent = *p;
4723 		skb1 = rb_to_skb(parent);
4724 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4725 			p = &parent->rb_left;
4726 		else
4727 			p = &parent->rb_right;
4728 	}
4729 	rb_link_node(&skb->rbnode, parent, p);
4730 	rb_insert_color(&skb->rbnode, root);
4731 }
4732 
4733 /* Collapse contiguous sequence of skbs head..tail with
4734  * sequence numbers start..end.
4735  *
4736  * If tail is NULL, this means until the end of the queue.
4737  *
4738  * Segments with FIN/SYN are not collapsed (only because this
4739  * simplifies code)
4740  */
4741 static void
4742 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4743 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4744 {
4745 	struct sk_buff *skb = head, *n;
4746 	struct sk_buff_head tmp;
4747 	bool end_of_skbs;
4748 
4749 	/* First, check that queue is collapsible and find
4750 	 * the point where collapsing can be useful.
4751 	 */
4752 restart:
4753 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4754 		n = tcp_skb_next(skb, list);
4755 
4756 		/* No new bits? It is possible on ofo queue. */
4757 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4758 			skb = tcp_collapse_one(sk, skb, list, root);
4759 			if (!skb)
4760 				break;
4761 			goto restart;
4762 		}
4763 
4764 		/* The first skb to collapse is:
4765 		 * - not SYN/FIN and
4766 		 * - bloated or contains data before "start" or
4767 		 *   overlaps to the next one.
4768 		 */
4769 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4770 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4771 		     before(TCP_SKB_CB(skb)->seq, start))) {
4772 			end_of_skbs = false;
4773 			break;
4774 		}
4775 
4776 		if (n && n != tail &&
4777 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4778 			end_of_skbs = false;
4779 			break;
4780 		}
4781 
4782 		/* Decided to skip this, advance start seq. */
4783 		start = TCP_SKB_CB(skb)->end_seq;
4784 	}
4785 	if (end_of_skbs ||
4786 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4787 		return;
4788 
4789 	__skb_queue_head_init(&tmp);
4790 
4791 	while (before(start, end)) {
4792 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4793 		struct sk_buff *nskb;
4794 
4795 		nskb = alloc_skb(copy, GFP_ATOMIC);
4796 		if (!nskb)
4797 			break;
4798 
4799 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4800 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4801 		if (list)
4802 			__skb_queue_before(list, skb, nskb);
4803 		else
4804 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4805 		skb_set_owner_r(nskb, sk);
4806 
4807 		/* Copy data, releasing collapsed skbs. */
4808 		while (copy > 0) {
4809 			int offset = start - TCP_SKB_CB(skb)->seq;
4810 			int size = TCP_SKB_CB(skb)->end_seq - start;
4811 
4812 			BUG_ON(offset < 0);
4813 			if (size > 0) {
4814 				size = min(copy, size);
4815 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4816 					BUG();
4817 				TCP_SKB_CB(nskb)->end_seq += size;
4818 				copy -= size;
4819 				start += size;
4820 			}
4821 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4822 				skb = tcp_collapse_one(sk, skb, list, root);
4823 				if (!skb ||
4824 				    skb == tail ||
4825 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4826 					goto end;
4827 			}
4828 		}
4829 	}
4830 end:
4831 	skb_queue_walk_safe(&tmp, skb, n)
4832 		tcp_rbtree_insert(root, skb);
4833 }
4834 
4835 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4836  * and tcp_collapse() them until all the queue is collapsed.
4837  */
4838 static void tcp_collapse_ofo_queue(struct sock *sk)
4839 {
4840 	struct tcp_sock *tp = tcp_sk(sk);
4841 	struct sk_buff *skb, *head;
4842 	u32 start, end;
4843 
4844 	skb = skb_rb_first(&tp->out_of_order_queue);
4845 new_range:
4846 	if (!skb) {
4847 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4848 		return;
4849 	}
4850 	start = TCP_SKB_CB(skb)->seq;
4851 	end = TCP_SKB_CB(skb)->end_seq;
4852 
4853 	for (head = skb;;) {
4854 		skb = skb_rb_next(skb);
4855 
4856 		/* Range is terminated when we see a gap or when
4857 		 * we are at the queue end.
4858 		 */
4859 		if (!skb ||
4860 		    after(TCP_SKB_CB(skb)->seq, end) ||
4861 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4862 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4863 				     head, skb, start, end);
4864 			goto new_range;
4865 		}
4866 
4867 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4868 			start = TCP_SKB_CB(skb)->seq;
4869 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4870 			end = TCP_SKB_CB(skb)->end_seq;
4871 	}
4872 }
4873 
4874 /*
4875  * Clean the out-of-order queue to make room.
4876  * We drop high sequences packets to :
4877  * 1) Let a chance for holes to be filled.
4878  * 2) not add too big latencies if thousands of packets sit there.
4879  *    (But if application shrinks SO_RCVBUF, we could still end up
4880  *     freeing whole queue here)
4881  *
4882  * Return true if queue has shrunk.
4883  */
4884 static bool tcp_prune_ofo_queue(struct sock *sk)
4885 {
4886 	struct tcp_sock *tp = tcp_sk(sk);
4887 	struct rb_node *node, *prev;
4888 
4889 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4890 		return false;
4891 
4892 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4893 	node = &tp->ooo_last_skb->rbnode;
4894 	do {
4895 		prev = rb_prev(node);
4896 		rb_erase(node, &tp->out_of_order_queue);
4897 		tcp_drop(sk, rb_to_skb(node));
4898 		sk_mem_reclaim(sk);
4899 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4900 		    !tcp_under_memory_pressure(sk))
4901 			break;
4902 		node = prev;
4903 	} while (node);
4904 	tp->ooo_last_skb = rb_to_skb(prev);
4905 
4906 	/* Reset SACK state.  A conforming SACK implementation will
4907 	 * do the same at a timeout based retransmit.  When a connection
4908 	 * is in a sad state like this, we care only about integrity
4909 	 * of the connection not performance.
4910 	 */
4911 	if (tp->rx_opt.sack_ok)
4912 		tcp_sack_reset(&tp->rx_opt);
4913 	return true;
4914 }
4915 
4916 /* Reduce allocated memory if we can, trying to get
4917  * the socket within its memory limits again.
4918  *
4919  * Return less than zero if we should start dropping frames
4920  * until the socket owning process reads some of the data
4921  * to stabilize the situation.
4922  */
4923 static int tcp_prune_queue(struct sock *sk)
4924 {
4925 	struct tcp_sock *tp = tcp_sk(sk);
4926 
4927 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4928 
4929 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4930 
4931 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4932 		tcp_clamp_window(sk);
4933 	else if (tcp_under_memory_pressure(sk))
4934 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4935 
4936 	tcp_collapse_ofo_queue(sk);
4937 	if (!skb_queue_empty(&sk->sk_receive_queue))
4938 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4939 			     skb_peek(&sk->sk_receive_queue),
4940 			     NULL,
4941 			     tp->copied_seq, tp->rcv_nxt);
4942 	sk_mem_reclaim(sk);
4943 
4944 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4945 		return 0;
4946 
4947 	/* Collapsing did not help, destructive actions follow.
4948 	 * This must not ever occur. */
4949 
4950 	tcp_prune_ofo_queue(sk);
4951 
4952 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4953 		return 0;
4954 
4955 	/* If we are really being abused, tell the caller to silently
4956 	 * drop receive data on the floor.  It will get retransmitted
4957 	 * and hopefully then we'll have sufficient space.
4958 	 */
4959 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4960 
4961 	/* Massive buffer overcommit. */
4962 	tp->pred_flags = 0;
4963 	return -1;
4964 }
4965 
4966 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4967 {
4968 	const struct tcp_sock *tp = tcp_sk(sk);
4969 
4970 	/* If the user specified a specific send buffer setting, do
4971 	 * not modify it.
4972 	 */
4973 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4974 		return false;
4975 
4976 	/* If we are under global TCP memory pressure, do not expand.  */
4977 	if (tcp_under_memory_pressure(sk))
4978 		return false;
4979 
4980 	/* If we are under soft global TCP memory pressure, do not expand.  */
4981 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4982 		return false;
4983 
4984 	/* If we filled the congestion window, do not expand.  */
4985 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4986 		return false;
4987 
4988 	return true;
4989 }
4990 
4991 /* When incoming ACK allowed to free some skb from write_queue,
4992  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4993  * on the exit from tcp input handler.
4994  *
4995  * PROBLEM: sndbuf expansion does not work well with largesend.
4996  */
4997 static void tcp_new_space(struct sock *sk)
4998 {
4999 	struct tcp_sock *tp = tcp_sk(sk);
5000 
5001 	if (tcp_should_expand_sndbuf(sk)) {
5002 		tcp_sndbuf_expand(sk);
5003 		tp->snd_cwnd_stamp = tcp_jiffies32;
5004 	}
5005 
5006 	sk->sk_write_space(sk);
5007 }
5008 
5009 static void tcp_check_space(struct sock *sk)
5010 {
5011 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5012 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5013 		/* pairs with tcp_poll() */
5014 		smp_mb();
5015 		if (sk->sk_socket &&
5016 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5017 			tcp_new_space(sk);
5018 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5019 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5020 		}
5021 	}
5022 }
5023 
5024 static inline void tcp_data_snd_check(struct sock *sk)
5025 {
5026 	tcp_push_pending_frames(sk);
5027 	tcp_check_space(sk);
5028 }
5029 
5030 /*
5031  * Check if sending an ack is needed.
5032  */
5033 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5034 {
5035 	struct tcp_sock *tp = tcp_sk(sk);
5036 
5037 	    /* More than one full frame received... */
5038 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5039 	     /* ... and right edge of window advances far enough.
5040 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5041 	      */
5042 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5043 	    /* We ACK each frame or... */
5044 	    tcp_in_quickack_mode(sk) ||
5045 	    /* We have out of order data. */
5046 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5047 		/* Then ack it now */
5048 		tcp_send_ack(sk);
5049 	} else {
5050 		/* Else, send delayed ack. */
5051 		tcp_send_delayed_ack(sk);
5052 	}
5053 }
5054 
5055 static inline void tcp_ack_snd_check(struct sock *sk)
5056 {
5057 	if (!inet_csk_ack_scheduled(sk)) {
5058 		/* We sent a data segment already. */
5059 		return;
5060 	}
5061 	__tcp_ack_snd_check(sk, 1);
5062 }
5063 
5064 /*
5065  *	This routine is only called when we have urgent data
5066  *	signaled. Its the 'slow' part of tcp_urg. It could be
5067  *	moved inline now as tcp_urg is only called from one
5068  *	place. We handle URGent data wrong. We have to - as
5069  *	BSD still doesn't use the correction from RFC961.
5070  *	For 1003.1g we should support a new option TCP_STDURG to permit
5071  *	either form (or just set the sysctl tcp_stdurg).
5072  */
5073 
5074 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5075 {
5076 	struct tcp_sock *tp = tcp_sk(sk);
5077 	u32 ptr = ntohs(th->urg_ptr);
5078 
5079 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5080 		ptr--;
5081 	ptr += ntohl(th->seq);
5082 
5083 	/* Ignore urgent data that we've already seen and read. */
5084 	if (after(tp->copied_seq, ptr))
5085 		return;
5086 
5087 	/* Do not replay urg ptr.
5088 	 *
5089 	 * NOTE: interesting situation not covered by specs.
5090 	 * Misbehaving sender may send urg ptr, pointing to segment,
5091 	 * which we already have in ofo queue. We are not able to fetch
5092 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5093 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5094 	 * situations. But it is worth to think about possibility of some
5095 	 * DoSes using some hypothetical application level deadlock.
5096 	 */
5097 	if (before(ptr, tp->rcv_nxt))
5098 		return;
5099 
5100 	/* Do we already have a newer (or duplicate) urgent pointer? */
5101 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5102 		return;
5103 
5104 	/* Tell the world about our new urgent pointer. */
5105 	sk_send_sigurg(sk);
5106 
5107 	/* We may be adding urgent data when the last byte read was
5108 	 * urgent. To do this requires some care. We cannot just ignore
5109 	 * tp->copied_seq since we would read the last urgent byte again
5110 	 * as data, nor can we alter copied_seq until this data arrives
5111 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5112 	 *
5113 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5114 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5115 	 * and expect that both A and B disappear from stream. This is _wrong_.
5116 	 * Though this happens in BSD with high probability, this is occasional.
5117 	 * Any application relying on this is buggy. Note also, that fix "works"
5118 	 * only in this artificial test. Insert some normal data between A and B and we will
5119 	 * decline of BSD again. Verdict: it is better to remove to trap
5120 	 * buggy users.
5121 	 */
5122 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5123 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5124 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5125 		tp->copied_seq++;
5126 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5127 			__skb_unlink(skb, &sk->sk_receive_queue);
5128 			__kfree_skb(skb);
5129 		}
5130 	}
5131 
5132 	tp->urg_data = TCP_URG_NOTYET;
5133 	tp->urg_seq = ptr;
5134 
5135 	/* Disable header prediction. */
5136 	tp->pred_flags = 0;
5137 }
5138 
5139 /* This is the 'fast' part of urgent handling. */
5140 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5141 {
5142 	struct tcp_sock *tp = tcp_sk(sk);
5143 
5144 	/* Check if we get a new urgent pointer - normally not. */
5145 	if (th->urg)
5146 		tcp_check_urg(sk, th);
5147 
5148 	/* Do we wait for any urgent data? - normally not... */
5149 	if (tp->urg_data == TCP_URG_NOTYET) {
5150 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5151 			  th->syn;
5152 
5153 		/* Is the urgent pointer pointing into this packet? */
5154 		if (ptr < skb->len) {
5155 			u8 tmp;
5156 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5157 				BUG();
5158 			tp->urg_data = TCP_URG_VALID | tmp;
5159 			if (!sock_flag(sk, SOCK_DEAD))
5160 				sk->sk_data_ready(sk);
5161 		}
5162 	}
5163 }
5164 
5165 /* Accept RST for rcv_nxt - 1 after a FIN.
5166  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5167  * FIN is sent followed by a RST packet. The RST is sent with the same
5168  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5169  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5170  * ACKs on the closed socket. In addition middleboxes can drop either the
5171  * challenge ACK or a subsequent RST.
5172  */
5173 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5174 {
5175 	struct tcp_sock *tp = tcp_sk(sk);
5176 
5177 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5178 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5179 					       TCPF_CLOSING));
5180 }
5181 
5182 /* Does PAWS and seqno based validation of an incoming segment, flags will
5183  * play significant role here.
5184  */
5185 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5186 				  const struct tcphdr *th, int syn_inerr)
5187 {
5188 	struct tcp_sock *tp = tcp_sk(sk);
5189 	bool rst_seq_match = false;
5190 
5191 	/* RFC1323: H1. Apply PAWS check first. */
5192 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5193 	    tp->rx_opt.saw_tstamp &&
5194 	    tcp_paws_discard(sk, skb)) {
5195 		if (!th->rst) {
5196 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5197 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5198 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5199 						  &tp->last_oow_ack_time))
5200 				tcp_send_dupack(sk, skb);
5201 			goto discard;
5202 		}
5203 		/* Reset is accepted even if it did not pass PAWS. */
5204 	}
5205 
5206 	/* Step 1: check sequence number */
5207 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5208 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5209 		 * (RST) segments are validated by checking their SEQ-fields."
5210 		 * And page 69: "If an incoming segment is not acceptable,
5211 		 * an acknowledgment should be sent in reply (unless the RST
5212 		 * bit is set, if so drop the segment and return)".
5213 		 */
5214 		if (!th->rst) {
5215 			if (th->syn)
5216 				goto syn_challenge;
5217 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5218 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5219 						  &tp->last_oow_ack_time))
5220 				tcp_send_dupack(sk, skb);
5221 		} else if (tcp_reset_check(sk, skb)) {
5222 			tcp_reset(sk);
5223 		}
5224 		goto discard;
5225 	}
5226 
5227 	/* Step 2: check RST bit */
5228 	if (th->rst) {
5229 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5230 		 * FIN and SACK too if available):
5231 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5232 		 * the right-most SACK block,
5233 		 * then
5234 		 *     RESET the connection
5235 		 * else
5236 		 *     Send a challenge ACK
5237 		 */
5238 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5239 		    tcp_reset_check(sk, skb)) {
5240 			rst_seq_match = true;
5241 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5242 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5243 			int max_sack = sp[0].end_seq;
5244 			int this_sack;
5245 
5246 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5247 			     ++this_sack) {
5248 				max_sack = after(sp[this_sack].end_seq,
5249 						 max_sack) ?
5250 					sp[this_sack].end_seq : max_sack;
5251 			}
5252 
5253 			if (TCP_SKB_CB(skb)->seq == max_sack)
5254 				rst_seq_match = true;
5255 		}
5256 
5257 		if (rst_seq_match)
5258 			tcp_reset(sk);
5259 		else {
5260 			/* Disable TFO if RST is out-of-order
5261 			 * and no data has been received
5262 			 * for current active TFO socket
5263 			 */
5264 			if (tp->syn_fastopen && !tp->data_segs_in &&
5265 			    sk->sk_state == TCP_ESTABLISHED)
5266 				tcp_fastopen_active_disable(sk);
5267 			tcp_send_challenge_ack(sk, skb);
5268 		}
5269 		goto discard;
5270 	}
5271 
5272 	/* step 3: check security and precedence [ignored] */
5273 
5274 	/* step 4: Check for a SYN
5275 	 * RFC 5961 4.2 : Send a challenge ack
5276 	 */
5277 	if (th->syn) {
5278 syn_challenge:
5279 		if (syn_inerr)
5280 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5281 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5282 		tcp_send_challenge_ack(sk, skb);
5283 		goto discard;
5284 	}
5285 
5286 	return true;
5287 
5288 discard:
5289 	tcp_drop(sk, skb);
5290 	return false;
5291 }
5292 
5293 /*
5294  *	TCP receive function for the ESTABLISHED state.
5295  *
5296  *	It is split into a fast path and a slow path. The fast path is
5297  * 	disabled when:
5298  *	- A zero window was announced from us - zero window probing
5299  *        is only handled properly in the slow path.
5300  *	- Out of order segments arrived.
5301  *	- Urgent data is expected.
5302  *	- There is no buffer space left
5303  *	- Unexpected TCP flags/window values/header lengths are received
5304  *	  (detected by checking the TCP header against pred_flags)
5305  *	- Data is sent in both directions. Fast path only supports pure senders
5306  *	  or pure receivers (this means either the sequence number or the ack
5307  *	  value must stay constant)
5308  *	- Unexpected TCP option.
5309  *
5310  *	When these conditions are not satisfied it drops into a standard
5311  *	receive procedure patterned after RFC793 to handle all cases.
5312  *	The first three cases are guaranteed by proper pred_flags setting,
5313  *	the rest is checked inline. Fast processing is turned on in
5314  *	tcp_data_queue when everything is OK.
5315  */
5316 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5317 			 const struct tcphdr *th)
5318 {
5319 	unsigned int len = skb->len;
5320 	struct tcp_sock *tp = tcp_sk(sk);
5321 
5322 	/* TCP congestion window tracking */
5323 	trace_tcp_probe(sk, skb);
5324 
5325 	tcp_mstamp_refresh(tp);
5326 	if (unlikely(!sk->sk_rx_dst))
5327 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5328 	/*
5329 	 *	Header prediction.
5330 	 *	The code loosely follows the one in the famous
5331 	 *	"30 instruction TCP receive" Van Jacobson mail.
5332 	 *
5333 	 *	Van's trick is to deposit buffers into socket queue
5334 	 *	on a device interrupt, to call tcp_recv function
5335 	 *	on the receive process context and checksum and copy
5336 	 *	the buffer to user space. smart...
5337 	 *
5338 	 *	Our current scheme is not silly either but we take the
5339 	 *	extra cost of the net_bh soft interrupt processing...
5340 	 *	We do checksum and copy also but from device to kernel.
5341 	 */
5342 
5343 	tp->rx_opt.saw_tstamp = 0;
5344 
5345 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5346 	 *	if header_prediction is to be made
5347 	 *	'S' will always be tp->tcp_header_len >> 2
5348 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5349 	 *  turn it off	(when there are holes in the receive
5350 	 *	 space for instance)
5351 	 *	PSH flag is ignored.
5352 	 */
5353 
5354 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5355 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5356 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5357 		int tcp_header_len = tp->tcp_header_len;
5358 
5359 		/* Timestamp header prediction: tcp_header_len
5360 		 * is automatically equal to th->doff*4 due to pred_flags
5361 		 * match.
5362 		 */
5363 
5364 		/* Check timestamp */
5365 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5366 			/* No? Slow path! */
5367 			if (!tcp_parse_aligned_timestamp(tp, th))
5368 				goto slow_path;
5369 
5370 			/* If PAWS failed, check it more carefully in slow path */
5371 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5372 				goto slow_path;
5373 
5374 			/* DO NOT update ts_recent here, if checksum fails
5375 			 * and timestamp was corrupted part, it will result
5376 			 * in a hung connection since we will drop all
5377 			 * future packets due to the PAWS test.
5378 			 */
5379 		}
5380 
5381 		if (len <= tcp_header_len) {
5382 			/* Bulk data transfer: sender */
5383 			if (len == tcp_header_len) {
5384 				/* Predicted packet is in window by definition.
5385 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5386 				 * Hence, check seq<=rcv_wup reduces to:
5387 				 */
5388 				if (tcp_header_len ==
5389 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5390 				    tp->rcv_nxt == tp->rcv_wup)
5391 					tcp_store_ts_recent(tp);
5392 
5393 				/* We know that such packets are checksummed
5394 				 * on entry.
5395 				 */
5396 				tcp_ack(sk, skb, 0);
5397 				__kfree_skb(skb);
5398 				tcp_data_snd_check(sk);
5399 				return;
5400 			} else { /* Header too small */
5401 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5402 				goto discard;
5403 			}
5404 		} else {
5405 			int eaten = 0;
5406 			bool fragstolen = false;
5407 
5408 			if (tcp_checksum_complete(skb))
5409 				goto csum_error;
5410 
5411 			if ((int)skb->truesize > sk->sk_forward_alloc)
5412 				goto step5;
5413 
5414 			/* Predicted packet is in window by definition.
5415 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5416 			 * Hence, check seq<=rcv_wup reduces to:
5417 			 */
5418 			if (tcp_header_len ==
5419 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5420 			    tp->rcv_nxt == tp->rcv_wup)
5421 				tcp_store_ts_recent(tp);
5422 
5423 			tcp_rcv_rtt_measure_ts(sk, skb);
5424 
5425 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5426 
5427 			/* Bulk data transfer: receiver */
5428 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5429 					      &fragstolen);
5430 
5431 			tcp_event_data_recv(sk, skb);
5432 
5433 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5434 				/* Well, only one small jumplet in fast path... */
5435 				tcp_ack(sk, skb, FLAG_DATA);
5436 				tcp_data_snd_check(sk);
5437 				if (!inet_csk_ack_scheduled(sk))
5438 					goto no_ack;
5439 			}
5440 
5441 			__tcp_ack_snd_check(sk, 0);
5442 no_ack:
5443 			if (eaten)
5444 				kfree_skb_partial(skb, fragstolen);
5445 			sk->sk_data_ready(sk);
5446 			return;
5447 		}
5448 	}
5449 
5450 slow_path:
5451 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5452 		goto csum_error;
5453 
5454 	if (!th->ack && !th->rst && !th->syn)
5455 		goto discard;
5456 
5457 	/*
5458 	 *	Standard slow path.
5459 	 */
5460 
5461 	if (!tcp_validate_incoming(sk, skb, th, 1))
5462 		return;
5463 
5464 step5:
5465 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5466 		goto discard;
5467 
5468 	tcp_rcv_rtt_measure_ts(sk, skb);
5469 
5470 	/* Process urgent data. */
5471 	tcp_urg(sk, skb, th);
5472 
5473 	/* step 7: process the segment text */
5474 	tcp_data_queue(sk, skb);
5475 
5476 	tcp_data_snd_check(sk);
5477 	tcp_ack_snd_check(sk);
5478 	return;
5479 
5480 csum_error:
5481 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5482 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5483 
5484 discard:
5485 	tcp_drop(sk, skb);
5486 }
5487 EXPORT_SYMBOL(tcp_rcv_established);
5488 
5489 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5490 {
5491 	struct tcp_sock *tp = tcp_sk(sk);
5492 	struct inet_connection_sock *icsk = inet_csk(sk);
5493 
5494 	tcp_set_state(sk, TCP_ESTABLISHED);
5495 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5496 
5497 	if (skb) {
5498 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5499 		security_inet_conn_established(sk, skb);
5500 	}
5501 
5502 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5503 
5504 	/* Prevent spurious tcp_cwnd_restart() on first data
5505 	 * packet.
5506 	 */
5507 	tp->lsndtime = tcp_jiffies32;
5508 
5509 	if (sock_flag(sk, SOCK_KEEPOPEN))
5510 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5511 
5512 	if (!tp->rx_opt.snd_wscale)
5513 		__tcp_fast_path_on(tp, tp->snd_wnd);
5514 	else
5515 		tp->pred_flags = 0;
5516 }
5517 
5518 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5519 				    struct tcp_fastopen_cookie *cookie)
5520 {
5521 	struct tcp_sock *tp = tcp_sk(sk);
5522 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5523 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5524 	bool syn_drop = false;
5525 
5526 	if (mss == tp->rx_opt.user_mss) {
5527 		struct tcp_options_received opt;
5528 
5529 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5530 		tcp_clear_options(&opt);
5531 		opt.user_mss = opt.mss_clamp = 0;
5532 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5533 		mss = opt.mss_clamp;
5534 	}
5535 
5536 	if (!tp->syn_fastopen) {
5537 		/* Ignore an unsolicited cookie */
5538 		cookie->len = -1;
5539 	} else if (tp->total_retrans) {
5540 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5541 		 * acknowledges data. Presumably the remote received only
5542 		 * the retransmitted (regular) SYNs: either the original
5543 		 * SYN-data or the corresponding SYN-ACK was dropped.
5544 		 */
5545 		syn_drop = (cookie->len < 0 && data);
5546 	} else if (cookie->len < 0 && !tp->syn_data) {
5547 		/* We requested a cookie but didn't get it. If we did not use
5548 		 * the (old) exp opt format then try so next time (try_exp=1).
5549 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5550 		 */
5551 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5552 	}
5553 
5554 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5555 
5556 	if (data) { /* Retransmit unacked data in SYN */
5557 		skb_rbtree_walk_from(data) {
5558 			if (__tcp_retransmit_skb(sk, data, 1))
5559 				break;
5560 		}
5561 		tcp_rearm_rto(sk);
5562 		NET_INC_STATS(sock_net(sk),
5563 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5564 		return true;
5565 	}
5566 	tp->syn_data_acked = tp->syn_data;
5567 	if (tp->syn_data_acked)
5568 		NET_INC_STATS(sock_net(sk),
5569 				LINUX_MIB_TCPFASTOPENACTIVE);
5570 
5571 	tcp_fastopen_add_skb(sk, synack);
5572 
5573 	return false;
5574 }
5575 
5576 static void smc_check_reset_syn(struct tcp_sock *tp)
5577 {
5578 #if IS_ENABLED(CONFIG_SMC)
5579 	if (static_branch_unlikely(&tcp_have_smc)) {
5580 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5581 			tp->syn_smc = 0;
5582 	}
5583 #endif
5584 }
5585 
5586 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5587 					 const struct tcphdr *th)
5588 {
5589 	struct inet_connection_sock *icsk = inet_csk(sk);
5590 	struct tcp_sock *tp = tcp_sk(sk);
5591 	struct tcp_fastopen_cookie foc = { .len = -1 };
5592 	int saved_clamp = tp->rx_opt.mss_clamp;
5593 	bool fastopen_fail;
5594 
5595 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5596 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5597 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5598 
5599 	if (th->ack) {
5600 		/* rfc793:
5601 		 * "If the state is SYN-SENT then
5602 		 *    first check the ACK bit
5603 		 *      If the ACK bit is set
5604 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5605 		 *        a reset (unless the RST bit is set, if so drop
5606 		 *        the segment and return)"
5607 		 */
5608 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5609 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5610 			goto reset_and_undo;
5611 
5612 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5613 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5614 			     tcp_time_stamp(tp))) {
5615 			NET_INC_STATS(sock_net(sk),
5616 					LINUX_MIB_PAWSACTIVEREJECTED);
5617 			goto reset_and_undo;
5618 		}
5619 
5620 		/* Now ACK is acceptable.
5621 		 *
5622 		 * "If the RST bit is set
5623 		 *    If the ACK was acceptable then signal the user "error:
5624 		 *    connection reset", drop the segment, enter CLOSED state,
5625 		 *    delete TCB, and return."
5626 		 */
5627 
5628 		if (th->rst) {
5629 			tcp_reset(sk);
5630 			goto discard;
5631 		}
5632 
5633 		/* rfc793:
5634 		 *   "fifth, if neither of the SYN or RST bits is set then
5635 		 *    drop the segment and return."
5636 		 *
5637 		 *    See note below!
5638 		 *                                        --ANK(990513)
5639 		 */
5640 		if (!th->syn)
5641 			goto discard_and_undo;
5642 
5643 		/* rfc793:
5644 		 *   "If the SYN bit is on ...
5645 		 *    are acceptable then ...
5646 		 *    (our SYN has been ACKed), change the connection
5647 		 *    state to ESTABLISHED..."
5648 		 */
5649 
5650 		tcp_ecn_rcv_synack(tp, th);
5651 
5652 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5653 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5654 
5655 		/* Ok.. it's good. Set up sequence numbers and
5656 		 * move to established.
5657 		 */
5658 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5659 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5660 
5661 		/* RFC1323: The window in SYN & SYN/ACK segments is
5662 		 * never scaled.
5663 		 */
5664 		tp->snd_wnd = ntohs(th->window);
5665 
5666 		if (!tp->rx_opt.wscale_ok) {
5667 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5668 			tp->window_clamp = min(tp->window_clamp, 65535U);
5669 		}
5670 
5671 		if (tp->rx_opt.saw_tstamp) {
5672 			tp->rx_opt.tstamp_ok	   = 1;
5673 			tp->tcp_header_len =
5674 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5675 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5676 			tcp_store_ts_recent(tp);
5677 		} else {
5678 			tp->tcp_header_len = sizeof(struct tcphdr);
5679 		}
5680 
5681 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5682 		tcp_initialize_rcv_mss(sk);
5683 
5684 		/* Remember, tcp_poll() does not lock socket!
5685 		 * Change state from SYN-SENT only after copied_seq
5686 		 * is initialized. */
5687 		tp->copied_seq = tp->rcv_nxt;
5688 
5689 		smc_check_reset_syn(tp);
5690 
5691 		smp_mb();
5692 
5693 		tcp_finish_connect(sk, skb);
5694 
5695 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5696 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5697 
5698 		if (!sock_flag(sk, SOCK_DEAD)) {
5699 			sk->sk_state_change(sk);
5700 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5701 		}
5702 		if (fastopen_fail)
5703 			return -1;
5704 		if (sk->sk_write_pending ||
5705 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5706 		    icsk->icsk_ack.pingpong) {
5707 			/* Save one ACK. Data will be ready after
5708 			 * several ticks, if write_pending is set.
5709 			 *
5710 			 * It may be deleted, but with this feature tcpdumps
5711 			 * look so _wonderfully_ clever, that I was not able
5712 			 * to stand against the temptation 8)     --ANK
5713 			 */
5714 			inet_csk_schedule_ack(sk);
5715 			tcp_enter_quickack_mode(sk);
5716 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5717 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5718 
5719 discard:
5720 			tcp_drop(sk, skb);
5721 			return 0;
5722 		} else {
5723 			tcp_send_ack(sk);
5724 		}
5725 		return -1;
5726 	}
5727 
5728 	/* No ACK in the segment */
5729 
5730 	if (th->rst) {
5731 		/* rfc793:
5732 		 * "If the RST bit is set
5733 		 *
5734 		 *      Otherwise (no ACK) drop the segment and return."
5735 		 */
5736 
5737 		goto discard_and_undo;
5738 	}
5739 
5740 	/* PAWS check. */
5741 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5742 	    tcp_paws_reject(&tp->rx_opt, 0))
5743 		goto discard_and_undo;
5744 
5745 	if (th->syn) {
5746 		/* We see SYN without ACK. It is attempt of
5747 		 * simultaneous connect with crossed SYNs.
5748 		 * Particularly, it can be connect to self.
5749 		 */
5750 		tcp_set_state(sk, TCP_SYN_RECV);
5751 
5752 		if (tp->rx_opt.saw_tstamp) {
5753 			tp->rx_opt.tstamp_ok = 1;
5754 			tcp_store_ts_recent(tp);
5755 			tp->tcp_header_len =
5756 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5757 		} else {
5758 			tp->tcp_header_len = sizeof(struct tcphdr);
5759 		}
5760 
5761 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5762 		tp->copied_seq = tp->rcv_nxt;
5763 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5764 
5765 		/* RFC1323: The window in SYN & SYN/ACK segments is
5766 		 * never scaled.
5767 		 */
5768 		tp->snd_wnd    = ntohs(th->window);
5769 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5770 		tp->max_window = tp->snd_wnd;
5771 
5772 		tcp_ecn_rcv_syn(tp, th);
5773 
5774 		tcp_mtup_init(sk);
5775 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5776 		tcp_initialize_rcv_mss(sk);
5777 
5778 		tcp_send_synack(sk);
5779 #if 0
5780 		/* Note, we could accept data and URG from this segment.
5781 		 * There are no obstacles to make this (except that we must
5782 		 * either change tcp_recvmsg() to prevent it from returning data
5783 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5784 		 *
5785 		 * However, if we ignore data in ACKless segments sometimes,
5786 		 * we have no reasons to accept it sometimes.
5787 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5788 		 * is not flawless. So, discard packet for sanity.
5789 		 * Uncomment this return to process the data.
5790 		 */
5791 		return -1;
5792 #else
5793 		goto discard;
5794 #endif
5795 	}
5796 	/* "fifth, if neither of the SYN or RST bits is set then
5797 	 * drop the segment and return."
5798 	 */
5799 
5800 discard_and_undo:
5801 	tcp_clear_options(&tp->rx_opt);
5802 	tp->rx_opt.mss_clamp = saved_clamp;
5803 	goto discard;
5804 
5805 reset_and_undo:
5806 	tcp_clear_options(&tp->rx_opt);
5807 	tp->rx_opt.mss_clamp = saved_clamp;
5808 	return 1;
5809 }
5810 
5811 /*
5812  *	This function implements the receiving procedure of RFC 793 for
5813  *	all states except ESTABLISHED and TIME_WAIT.
5814  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5815  *	address independent.
5816  */
5817 
5818 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5819 {
5820 	struct tcp_sock *tp = tcp_sk(sk);
5821 	struct inet_connection_sock *icsk = inet_csk(sk);
5822 	const struct tcphdr *th = tcp_hdr(skb);
5823 	struct request_sock *req;
5824 	int queued = 0;
5825 	bool acceptable;
5826 
5827 	switch (sk->sk_state) {
5828 	case TCP_CLOSE:
5829 		goto discard;
5830 
5831 	case TCP_LISTEN:
5832 		if (th->ack)
5833 			return 1;
5834 
5835 		if (th->rst)
5836 			goto discard;
5837 
5838 		if (th->syn) {
5839 			if (th->fin)
5840 				goto discard;
5841 			/* It is possible that we process SYN packets from backlog,
5842 			 * so we need to make sure to disable BH right there.
5843 			 */
5844 			local_bh_disable();
5845 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5846 			local_bh_enable();
5847 
5848 			if (!acceptable)
5849 				return 1;
5850 			consume_skb(skb);
5851 			return 0;
5852 		}
5853 		goto discard;
5854 
5855 	case TCP_SYN_SENT:
5856 		tp->rx_opt.saw_tstamp = 0;
5857 		tcp_mstamp_refresh(tp);
5858 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5859 		if (queued >= 0)
5860 			return queued;
5861 
5862 		/* Do step6 onward by hand. */
5863 		tcp_urg(sk, skb, th);
5864 		__kfree_skb(skb);
5865 		tcp_data_snd_check(sk);
5866 		return 0;
5867 	}
5868 
5869 	tcp_mstamp_refresh(tp);
5870 	tp->rx_opt.saw_tstamp = 0;
5871 	req = tp->fastopen_rsk;
5872 	if (req) {
5873 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5874 		    sk->sk_state != TCP_FIN_WAIT1);
5875 
5876 		if (!tcp_check_req(sk, skb, req, true))
5877 			goto discard;
5878 	}
5879 
5880 	if (!th->ack && !th->rst && !th->syn)
5881 		goto discard;
5882 
5883 	if (!tcp_validate_incoming(sk, skb, th, 0))
5884 		return 0;
5885 
5886 	/* step 5: check the ACK field */
5887 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5888 				      FLAG_UPDATE_TS_RECENT |
5889 				      FLAG_NO_CHALLENGE_ACK) > 0;
5890 
5891 	if (!acceptable) {
5892 		if (sk->sk_state == TCP_SYN_RECV)
5893 			return 1;	/* send one RST */
5894 		tcp_send_challenge_ack(sk, skb);
5895 		goto discard;
5896 	}
5897 	switch (sk->sk_state) {
5898 	case TCP_SYN_RECV:
5899 		if (!tp->srtt_us)
5900 			tcp_synack_rtt_meas(sk, req);
5901 
5902 		/* Once we leave TCP_SYN_RECV, we no longer need req
5903 		 * so release it.
5904 		 */
5905 		if (req) {
5906 			inet_csk(sk)->icsk_retransmits = 0;
5907 			reqsk_fastopen_remove(sk, req, false);
5908 			/* Re-arm the timer because data may have been sent out.
5909 			 * This is similar to the regular data transmission case
5910 			 * when new data has just been ack'ed.
5911 			 *
5912 			 * (TFO) - we could try to be more aggressive and
5913 			 * retransmitting any data sooner based on when they
5914 			 * are sent out.
5915 			 */
5916 			tcp_rearm_rto(sk);
5917 		} else {
5918 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5919 			tp->copied_seq = tp->rcv_nxt;
5920 		}
5921 		smp_mb();
5922 		tcp_set_state(sk, TCP_ESTABLISHED);
5923 		sk->sk_state_change(sk);
5924 
5925 		/* Note, that this wakeup is only for marginal crossed SYN case.
5926 		 * Passively open sockets are not waked up, because
5927 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5928 		 */
5929 		if (sk->sk_socket)
5930 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5931 
5932 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5933 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5934 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5935 
5936 		if (tp->rx_opt.tstamp_ok)
5937 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5938 
5939 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5940 			tcp_update_pacing_rate(sk);
5941 
5942 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5943 		tp->lsndtime = tcp_jiffies32;
5944 
5945 		tcp_initialize_rcv_mss(sk);
5946 		tcp_fast_path_on(tp);
5947 		break;
5948 
5949 	case TCP_FIN_WAIT1: {
5950 		int tmo;
5951 
5952 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5953 		 * Fast Open socket and this is the first acceptable
5954 		 * ACK we have received, this would have acknowledged
5955 		 * our SYNACK so stop the SYNACK timer.
5956 		 */
5957 		if (req) {
5958 			/* We no longer need the request sock. */
5959 			reqsk_fastopen_remove(sk, req, false);
5960 			tcp_rearm_rto(sk);
5961 		}
5962 		if (tp->snd_una != tp->write_seq)
5963 			break;
5964 
5965 		tcp_set_state(sk, TCP_FIN_WAIT2);
5966 		sk->sk_shutdown |= SEND_SHUTDOWN;
5967 
5968 		sk_dst_confirm(sk);
5969 
5970 		if (!sock_flag(sk, SOCK_DEAD)) {
5971 			/* Wake up lingering close() */
5972 			sk->sk_state_change(sk);
5973 			break;
5974 		}
5975 
5976 		if (tp->linger2 < 0) {
5977 			tcp_done(sk);
5978 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5979 			return 1;
5980 		}
5981 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5982 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5983 			/* Receive out of order FIN after close() */
5984 			if (tp->syn_fastopen && th->fin)
5985 				tcp_fastopen_active_disable(sk);
5986 			tcp_done(sk);
5987 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5988 			return 1;
5989 		}
5990 
5991 		tmo = tcp_fin_time(sk);
5992 		if (tmo > TCP_TIMEWAIT_LEN) {
5993 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5994 		} else if (th->fin || sock_owned_by_user(sk)) {
5995 			/* Bad case. We could lose such FIN otherwise.
5996 			 * It is not a big problem, but it looks confusing
5997 			 * and not so rare event. We still can lose it now,
5998 			 * if it spins in bh_lock_sock(), but it is really
5999 			 * marginal case.
6000 			 */
6001 			inet_csk_reset_keepalive_timer(sk, tmo);
6002 		} else {
6003 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6004 			goto discard;
6005 		}
6006 		break;
6007 	}
6008 
6009 	case TCP_CLOSING:
6010 		if (tp->snd_una == tp->write_seq) {
6011 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6012 			goto discard;
6013 		}
6014 		break;
6015 
6016 	case TCP_LAST_ACK:
6017 		if (tp->snd_una == tp->write_seq) {
6018 			tcp_update_metrics(sk);
6019 			tcp_done(sk);
6020 			goto discard;
6021 		}
6022 		break;
6023 	}
6024 
6025 	/* step 6: check the URG bit */
6026 	tcp_urg(sk, skb, th);
6027 
6028 	/* step 7: process the segment text */
6029 	switch (sk->sk_state) {
6030 	case TCP_CLOSE_WAIT:
6031 	case TCP_CLOSING:
6032 	case TCP_LAST_ACK:
6033 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6034 			break;
6035 		/* fall through */
6036 	case TCP_FIN_WAIT1:
6037 	case TCP_FIN_WAIT2:
6038 		/* RFC 793 says to queue data in these states,
6039 		 * RFC 1122 says we MUST send a reset.
6040 		 * BSD 4.4 also does reset.
6041 		 */
6042 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6043 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6044 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6045 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6046 				tcp_reset(sk);
6047 				return 1;
6048 			}
6049 		}
6050 		/* Fall through */
6051 	case TCP_ESTABLISHED:
6052 		tcp_data_queue(sk, skb);
6053 		queued = 1;
6054 		break;
6055 	}
6056 
6057 	/* tcp_data could move socket to TIME-WAIT */
6058 	if (sk->sk_state != TCP_CLOSE) {
6059 		tcp_data_snd_check(sk);
6060 		tcp_ack_snd_check(sk);
6061 	}
6062 
6063 	if (!queued) {
6064 discard:
6065 		tcp_drop(sk, skb);
6066 	}
6067 	return 0;
6068 }
6069 EXPORT_SYMBOL(tcp_rcv_state_process);
6070 
6071 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6072 {
6073 	struct inet_request_sock *ireq = inet_rsk(req);
6074 
6075 	if (family == AF_INET)
6076 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6077 				    &ireq->ir_rmt_addr, port);
6078 #if IS_ENABLED(CONFIG_IPV6)
6079 	else if (family == AF_INET6)
6080 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6081 				    &ireq->ir_v6_rmt_addr, port);
6082 #endif
6083 }
6084 
6085 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6086  *
6087  * If we receive a SYN packet with these bits set, it means a
6088  * network is playing bad games with TOS bits. In order to
6089  * avoid possible false congestion notifications, we disable
6090  * TCP ECN negotiation.
6091  *
6092  * Exception: tcp_ca wants ECN. This is required for DCTCP
6093  * congestion control: Linux DCTCP asserts ECT on all packets,
6094  * including SYN, which is most optimal solution; however,
6095  * others, such as FreeBSD do not.
6096  */
6097 static void tcp_ecn_create_request(struct request_sock *req,
6098 				   const struct sk_buff *skb,
6099 				   const struct sock *listen_sk,
6100 				   const struct dst_entry *dst)
6101 {
6102 	const struct tcphdr *th = tcp_hdr(skb);
6103 	const struct net *net = sock_net(listen_sk);
6104 	bool th_ecn = th->ece && th->cwr;
6105 	bool ect, ecn_ok;
6106 	u32 ecn_ok_dst;
6107 
6108 	if (!th_ecn)
6109 		return;
6110 
6111 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6112 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6113 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6114 
6115 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6116 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6117 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6118 		inet_rsk(req)->ecn_ok = 1;
6119 }
6120 
6121 static void tcp_openreq_init(struct request_sock *req,
6122 			     const struct tcp_options_received *rx_opt,
6123 			     struct sk_buff *skb, const struct sock *sk)
6124 {
6125 	struct inet_request_sock *ireq = inet_rsk(req);
6126 
6127 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6128 	req->cookie_ts = 0;
6129 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6130 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6131 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6132 	tcp_rsk(req)->last_oow_ack_time = 0;
6133 	req->mss = rx_opt->mss_clamp;
6134 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6135 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6136 	ireq->sack_ok = rx_opt->sack_ok;
6137 	ireq->snd_wscale = rx_opt->snd_wscale;
6138 	ireq->wscale_ok = rx_opt->wscale_ok;
6139 	ireq->acked = 0;
6140 	ireq->ecn_ok = 0;
6141 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6142 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6143 	ireq->ir_mark = inet_request_mark(sk, skb);
6144 #if IS_ENABLED(CONFIG_SMC)
6145 	ireq->smc_ok = rx_opt->smc_ok;
6146 #endif
6147 }
6148 
6149 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6150 				      struct sock *sk_listener,
6151 				      bool attach_listener)
6152 {
6153 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6154 					       attach_listener);
6155 
6156 	if (req) {
6157 		struct inet_request_sock *ireq = inet_rsk(req);
6158 
6159 		ireq->ireq_opt = NULL;
6160 #if IS_ENABLED(CONFIG_IPV6)
6161 		ireq->pktopts = NULL;
6162 #endif
6163 		atomic64_set(&ireq->ir_cookie, 0);
6164 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6165 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6166 		ireq->ireq_family = sk_listener->sk_family;
6167 	}
6168 
6169 	return req;
6170 }
6171 EXPORT_SYMBOL(inet_reqsk_alloc);
6172 
6173 /*
6174  * Return true if a syncookie should be sent
6175  */
6176 static bool tcp_syn_flood_action(const struct sock *sk,
6177 				 const struct sk_buff *skb,
6178 				 const char *proto)
6179 {
6180 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6181 	const char *msg = "Dropping request";
6182 	bool want_cookie = false;
6183 	struct net *net = sock_net(sk);
6184 
6185 #ifdef CONFIG_SYN_COOKIES
6186 	if (net->ipv4.sysctl_tcp_syncookies) {
6187 		msg = "Sending cookies";
6188 		want_cookie = true;
6189 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6190 	} else
6191 #endif
6192 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6193 
6194 	if (!queue->synflood_warned &&
6195 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6196 	    xchg(&queue->synflood_warned, 1) == 0)
6197 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6198 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6199 
6200 	return want_cookie;
6201 }
6202 
6203 static void tcp_reqsk_record_syn(const struct sock *sk,
6204 				 struct request_sock *req,
6205 				 const struct sk_buff *skb)
6206 {
6207 	if (tcp_sk(sk)->save_syn) {
6208 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6209 		u32 *copy;
6210 
6211 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6212 		if (copy) {
6213 			copy[0] = len;
6214 			memcpy(&copy[1], skb_network_header(skb), len);
6215 			req->saved_syn = copy;
6216 		}
6217 	}
6218 }
6219 
6220 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6221 		     const struct tcp_request_sock_ops *af_ops,
6222 		     struct sock *sk, struct sk_buff *skb)
6223 {
6224 	struct tcp_fastopen_cookie foc = { .len = -1 };
6225 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6226 	struct tcp_options_received tmp_opt;
6227 	struct tcp_sock *tp = tcp_sk(sk);
6228 	struct net *net = sock_net(sk);
6229 	struct sock *fastopen_sk = NULL;
6230 	struct request_sock *req;
6231 	bool want_cookie = false;
6232 	struct dst_entry *dst;
6233 	struct flowi fl;
6234 
6235 	/* TW buckets are converted to open requests without
6236 	 * limitations, they conserve resources and peer is
6237 	 * evidently real one.
6238 	 */
6239 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6240 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6241 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6242 		if (!want_cookie)
6243 			goto drop;
6244 	}
6245 
6246 	if (sk_acceptq_is_full(sk)) {
6247 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6248 		goto drop;
6249 	}
6250 
6251 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6252 	if (!req)
6253 		goto drop;
6254 
6255 	tcp_rsk(req)->af_specific = af_ops;
6256 	tcp_rsk(req)->ts_off = 0;
6257 
6258 	tcp_clear_options(&tmp_opt);
6259 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6260 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6261 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6262 			  want_cookie ? NULL : &foc);
6263 
6264 	if (want_cookie && !tmp_opt.saw_tstamp)
6265 		tcp_clear_options(&tmp_opt);
6266 
6267 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6268 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6269 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6270 
6271 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6272 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6273 
6274 	af_ops->init_req(req, sk, skb);
6275 
6276 	if (security_inet_conn_request(sk, skb, req))
6277 		goto drop_and_free;
6278 
6279 	if (tmp_opt.tstamp_ok)
6280 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6281 
6282 	dst = af_ops->route_req(sk, &fl, req);
6283 	if (!dst)
6284 		goto drop_and_free;
6285 
6286 	if (!want_cookie && !isn) {
6287 		/* Kill the following clause, if you dislike this way. */
6288 		if (!net->ipv4.sysctl_tcp_syncookies &&
6289 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6290 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6291 		    !tcp_peer_is_proven(req, dst)) {
6292 			/* Without syncookies last quarter of
6293 			 * backlog is filled with destinations,
6294 			 * proven to be alive.
6295 			 * It means that we continue to communicate
6296 			 * to destinations, already remembered
6297 			 * to the moment of synflood.
6298 			 */
6299 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6300 				    rsk_ops->family);
6301 			goto drop_and_release;
6302 		}
6303 
6304 		isn = af_ops->init_seq(skb);
6305 	}
6306 
6307 	tcp_ecn_create_request(req, skb, sk, dst);
6308 
6309 	if (want_cookie) {
6310 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6311 		req->cookie_ts = tmp_opt.tstamp_ok;
6312 		if (!tmp_opt.tstamp_ok)
6313 			inet_rsk(req)->ecn_ok = 0;
6314 	}
6315 
6316 	tcp_rsk(req)->snt_isn = isn;
6317 	tcp_rsk(req)->txhash = net_tx_rndhash();
6318 	tcp_openreq_init_rwin(req, sk, dst);
6319 	if (!want_cookie) {
6320 		tcp_reqsk_record_syn(sk, req, skb);
6321 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6322 	}
6323 	if (fastopen_sk) {
6324 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6325 				    &foc, TCP_SYNACK_FASTOPEN);
6326 		/* Add the child socket directly into the accept queue */
6327 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6328 		sk->sk_data_ready(sk);
6329 		bh_unlock_sock(fastopen_sk);
6330 		sock_put(fastopen_sk);
6331 	} else {
6332 		tcp_rsk(req)->tfo_listener = false;
6333 		if (!want_cookie)
6334 			inet_csk_reqsk_queue_hash_add(sk, req,
6335 				tcp_timeout_init((struct sock *)req));
6336 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6337 				    !want_cookie ? TCP_SYNACK_NORMAL :
6338 						   TCP_SYNACK_COOKIE);
6339 		if (want_cookie) {
6340 			reqsk_free(req);
6341 			return 0;
6342 		}
6343 	}
6344 	reqsk_put(req);
6345 	return 0;
6346 
6347 drop_and_release:
6348 	dst_release(dst);
6349 drop_and_free:
6350 	reqsk_free(req);
6351 drop:
6352 	tcp_listendrop(sk);
6353 	return 0;
6354 }
6355 EXPORT_SYMBOL(tcp_conn_request);
6356