1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: 25 * Pedro Roque : Fast Retransmit/Recovery. 26 * Two receive queues. 27 * Retransmit queue handled by TCP. 28 * Better retransmit timer handling. 29 * New congestion avoidance. 30 * Header prediction. 31 * Variable renaming. 32 * 33 * Eric : Fast Retransmit. 34 * Randy Scott : MSS option defines. 35 * Eric Schenk : Fixes to slow start algorithm. 36 * Eric Schenk : Yet another double ACK bug. 37 * Eric Schenk : Delayed ACK bug fixes. 38 * Eric Schenk : Floyd style fast retrans war avoidance. 39 * David S. Miller : Don't allow zero congestion window. 40 * Eric Schenk : Fix retransmitter so that it sends 41 * next packet on ack of previous packet. 42 * Andi Kleen : Moved open_request checking here 43 * and process RSTs for open_requests. 44 * Andi Kleen : Better prune_queue, and other fixes. 45 * Andrey Savochkin: Fix RTT measurements in the presence of 46 * timestamps. 47 * Andrey Savochkin: Check sequence numbers correctly when 48 * removing SACKs due to in sequence incoming 49 * data segments. 50 * Andi Kleen: Make sure we never ack data there is not 51 * enough room for. Also make this condition 52 * a fatal error if it might still happen. 53 * Andi Kleen: Add tcp_measure_rcv_mss to make 54 * connections with MSS<min(MTU,ann. MSS) 55 * work without delayed acks. 56 * Andi Kleen: Process packets with PSH set in the 57 * fast path. 58 * J Hadi Salim: ECN support 59 * Andrei Gurtov, 60 * Pasi Sarolahti, 61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 62 * engine. Lots of bugs are found. 63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 64 */ 65 66 #include <linux/config.h> 67 #include <linux/mm.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <net/tcp.h> 71 #include <net/inet_common.h> 72 #include <linux/ipsec.h> 73 #include <asm/unaligned.h> 74 75 int sysctl_tcp_timestamps = 1; 76 int sysctl_tcp_window_scaling = 1; 77 int sysctl_tcp_sack = 1; 78 int sysctl_tcp_fack = 1; 79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn; 81 int sysctl_tcp_dsack = 1; 82 int sysctl_tcp_app_win = 31; 83 int sysctl_tcp_adv_win_scale = 2; 84 85 int sysctl_tcp_stdurg; 86 int sysctl_tcp_rfc1337; 87 int sysctl_tcp_max_orphans = NR_FILE; 88 int sysctl_tcp_frto; 89 int sysctl_tcp_nometrics_save; 90 91 int sysctl_tcp_moderate_rcvbuf = 1; 92 int sysctl_tcp_abc = 1; 93 94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 100 #define FLAG_ECE 0x40 /* ECE in this ACK */ 101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 103 104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 108 109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0) 110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2) 111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4) 112 113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 114 115 /* Adapt the MSS value used to make delayed ack decision to the 116 * real world. 117 */ 118 static void tcp_measure_rcv_mss(struct sock *sk, 119 const struct sk_buff *skb) 120 { 121 struct inet_connection_sock *icsk = inet_csk(sk); 122 const unsigned int lss = icsk->icsk_ack.last_seg_size; 123 unsigned int len; 124 125 icsk->icsk_ack.last_seg_size = 0; 126 127 /* skb->len may jitter because of SACKs, even if peer 128 * sends good full-sized frames. 129 */ 130 len = skb->len; 131 if (len >= icsk->icsk_ack.rcv_mss) { 132 icsk->icsk_ack.rcv_mss = len; 133 } else { 134 /* Otherwise, we make more careful check taking into account, 135 * that SACKs block is variable. 136 * 137 * "len" is invariant segment length, including TCP header. 138 */ 139 len += skb->data - skb->h.raw; 140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 141 /* If PSH is not set, packet should be 142 * full sized, provided peer TCP is not badly broken. 143 * This observation (if it is correct 8)) allows 144 * to handle super-low mtu links fairly. 145 */ 146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) { 148 /* Subtract also invariant (if peer is RFC compliant), 149 * tcp header plus fixed timestamp option length. 150 * Resulting "len" is MSS free of SACK jitter. 151 */ 152 len -= tcp_sk(sk)->tcp_header_len; 153 icsk->icsk_ack.last_seg_size = len; 154 if (len == lss) { 155 icsk->icsk_ack.rcv_mss = len; 156 return; 157 } 158 } 159 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 160 } 161 } 162 163 static void tcp_incr_quickack(struct sock *sk) 164 { 165 struct inet_connection_sock *icsk = inet_csk(sk); 166 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 167 168 if (quickacks==0) 169 quickacks=2; 170 if (quickacks > icsk->icsk_ack.quick) 171 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 172 } 173 174 void tcp_enter_quickack_mode(struct sock *sk) 175 { 176 struct inet_connection_sock *icsk = inet_csk(sk); 177 tcp_incr_quickack(sk); 178 icsk->icsk_ack.pingpong = 0; 179 icsk->icsk_ack.ato = TCP_ATO_MIN; 180 } 181 182 /* Send ACKs quickly, if "quick" count is not exhausted 183 * and the session is not interactive. 184 */ 185 186 static inline int tcp_in_quickack_mode(const struct sock *sk) 187 { 188 const struct inet_connection_sock *icsk = inet_csk(sk); 189 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 190 } 191 192 /* Buffer size and advertised window tuning. 193 * 194 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 195 */ 196 197 static void tcp_fixup_sndbuf(struct sock *sk) 198 { 199 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 200 sizeof(struct sk_buff); 201 202 if (sk->sk_sndbuf < 3 * sndmem) 203 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 204 } 205 206 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 207 * 208 * All tcp_full_space() is split to two parts: "network" buffer, allocated 209 * forward and advertised in receiver window (tp->rcv_wnd) and 210 * "application buffer", required to isolate scheduling/application 211 * latencies from network. 212 * window_clamp is maximal advertised window. It can be less than 213 * tcp_full_space(), in this case tcp_full_space() - window_clamp 214 * is reserved for "application" buffer. The less window_clamp is 215 * the smoother our behaviour from viewpoint of network, but the lower 216 * throughput and the higher sensitivity of the connection to losses. 8) 217 * 218 * rcv_ssthresh is more strict window_clamp used at "slow start" 219 * phase to predict further behaviour of this connection. 220 * It is used for two goals: 221 * - to enforce header prediction at sender, even when application 222 * requires some significant "application buffer". It is check #1. 223 * - to prevent pruning of receive queue because of misprediction 224 * of receiver window. Check #2. 225 * 226 * The scheme does not work when sender sends good segments opening 227 * window and then starts to feed us spaghetti. But it should work 228 * in common situations. Otherwise, we have to rely on queue collapsing. 229 */ 230 231 /* Slow part of check#2. */ 232 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp, 233 const struct sk_buff *skb) 234 { 235 /* Optimize this! */ 236 int truesize = tcp_win_from_space(skb->truesize)/2; 237 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2; 238 239 while (tp->rcv_ssthresh <= window) { 240 if (truesize <= skb->len) 241 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 242 243 truesize >>= 1; 244 window >>= 1; 245 } 246 return 0; 247 } 248 249 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp, 250 struct sk_buff *skb) 251 { 252 /* Check #1 */ 253 if (tp->rcv_ssthresh < tp->window_clamp && 254 (int)tp->rcv_ssthresh < tcp_space(sk) && 255 !tcp_memory_pressure) { 256 int incr; 257 258 /* Check #2. Increase window, if skb with such overhead 259 * will fit to rcvbuf in future. 260 */ 261 if (tcp_win_from_space(skb->truesize) <= skb->len) 262 incr = 2*tp->advmss; 263 else 264 incr = __tcp_grow_window(sk, tp, skb); 265 266 if (incr) { 267 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp); 268 inet_csk(sk)->icsk_ack.quick |= 1; 269 } 270 } 271 } 272 273 /* 3. Tuning rcvbuf, when connection enters established state. */ 274 275 static void tcp_fixup_rcvbuf(struct sock *sk) 276 { 277 struct tcp_sock *tp = tcp_sk(sk); 278 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 279 280 /* Try to select rcvbuf so that 4 mss-sized segments 281 * will fit to window and corresponding skbs will fit to our rcvbuf. 282 * (was 3; 4 is minimum to allow fast retransmit to work.) 283 */ 284 while (tcp_win_from_space(rcvmem) < tp->advmss) 285 rcvmem += 128; 286 if (sk->sk_rcvbuf < 4 * rcvmem) 287 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 288 } 289 290 /* 4. Try to fixup all. It is made immediately after connection enters 291 * established state. 292 */ 293 static void tcp_init_buffer_space(struct sock *sk) 294 { 295 struct tcp_sock *tp = tcp_sk(sk); 296 int maxwin; 297 298 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 299 tcp_fixup_rcvbuf(sk); 300 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 301 tcp_fixup_sndbuf(sk); 302 303 tp->rcvq_space.space = tp->rcv_wnd; 304 305 maxwin = tcp_full_space(sk); 306 307 if (tp->window_clamp >= maxwin) { 308 tp->window_clamp = maxwin; 309 310 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 311 tp->window_clamp = max(maxwin - 312 (maxwin >> sysctl_tcp_app_win), 313 4 * tp->advmss); 314 } 315 316 /* Force reservation of one segment. */ 317 if (sysctl_tcp_app_win && 318 tp->window_clamp > 2 * tp->advmss && 319 tp->window_clamp + tp->advmss > maxwin) 320 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 321 322 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 323 tp->snd_cwnd_stamp = tcp_time_stamp; 324 } 325 326 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 327 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp) 328 { 329 struct inet_connection_sock *icsk = inet_csk(sk); 330 331 icsk->icsk_ack.quick = 0; 332 333 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 334 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 335 !tcp_memory_pressure && 336 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 337 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 338 sysctl_tcp_rmem[2]); 339 } 340 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 341 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss); 342 } 343 344 345 /* Initialize RCV_MSS value. 346 * RCV_MSS is an our guess about MSS used by the peer. 347 * We haven't any direct information about the MSS. 348 * It's better to underestimate the RCV_MSS rather than overestimate. 349 * Overestimations make us ACKing less frequently than needed. 350 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 351 */ 352 void tcp_initialize_rcv_mss(struct sock *sk) 353 { 354 struct tcp_sock *tp = tcp_sk(sk); 355 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 356 357 hint = min(hint, tp->rcv_wnd/2); 358 hint = min(hint, TCP_MIN_RCVMSS); 359 hint = max(hint, TCP_MIN_MSS); 360 361 inet_csk(sk)->icsk_ack.rcv_mss = hint; 362 } 363 364 /* Receiver "autotuning" code. 365 * 366 * The algorithm for RTT estimation w/o timestamps is based on 367 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 368 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 369 * 370 * More detail on this code can be found at 371 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 372 * though this reference is out of date. A new paper 373 * is pending. 374 */ 375 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 376 { 377 u32 new_sample = tp->rcv_rtt_est.rtt; 378 long m = sample; 379 380 if (m == 0) 381 m = 1; 382 383 if (new_sample != 0) { 384 /* If we sample in larger samples in the non-timestamp 385 * case, we could grossly overestimate the RTT especially 386 * with chatty applications or bulk transfer apps which 387 * are stalled on filesystem I/O. 388 * 389 * Also, since we are only going for a minimum in the 390 * non-timestamp case, we do not smooth things out 391 * else with timestamps disabled convergence takes too 392 * long. 393 */ 394 if (!win_dep) { 395 m -= (new_sample >> 3); 396 new_sample += m; 397 } else if (m < new_sample) 398 new_sample = m << 3; 399 } else { 400 /* No previous measure. */ 401 new_sample = m << 3; 402 } 403 404 if (tp->rcv_rtt_est.rtt != new_sample) 405 tp->rcv_rtt_est.rtt = new_sample; 406 } 407 408 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 409 { 410 if (tp->rcv_rtt_est.time == 0) 411 goto new_measure; 412 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 413 return; 414 tcp_rcv_rtt_update(tp, 415 jiffies - tp->rcv_rtt_est.time, 416 1); 417 418 new_measure: 419 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 420 tp->rcv_rtt_est.time = tcp_time_stamp; 421 } 422 423 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb) 424 { 425 struct tcp_sock *tp = tcp_sk(sk); 426 if (tp->rx_opt.rcv_tsecr && 427 (TCP_SKB_CB(skb)->end_seq - 428 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 429 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 430 } 431 432 /* 433 * This function should be called every time data is copied to user space. 434 * It calculates the appropriate TCP receive buffer space. 435 */ 436 void tcp_rcv_space_adjust(struct sock *sk) 437 { 438 struct tcp_sock *tp = tcp_sk(sk); 439 int time; 440 int space; 441 442 if (tp->rcvq_space.time == 0) 443 goto new_measure; 444 445 time = tcp_time_stamp - tp->rcvq_space.time; 446 if (time < (tp->rcv_rtt_est.rtt >> 3) || 447 tp->rcv_rtt_est.rtt == 0) 448 return; 449 450 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 451 452 space = max(tp->rcvq_space.space, space); 453 454 if (tp->rcvq_space.space != space) { 455 int rcvmem; 456 457 tp->rcvq_space.space = space; 458 459 if (sysctl_tcp_moderate_rcvbuf && 460 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 461 int new_clamp = space; 462 463 /* Receive space grows, normalize in order to 464 * take into account packet headers and sk_buff 465 * structure overhead. 466 */ 467 space /= tp->advmss; 468 if (!space) 469 space = 1; 470 rcvmem = (tp->advmss + MAX_TCP_HEADER + 471 16 + sizeof(struct sk_buff)); 472 while (tcp_win_from_space(rcvmem) < tp->advmss) 473 rcvmem += 128; 474 space *= rcvmem; 475 space = min(space, sysctl_tcp_rmem[2]); 476 if (space > sk->sk_rcvbuf) { 477 sk->sk_rcvbuf = space; 478 479 /* Make the window clamp follow along. */ 480 tp->window_clamp = new_clamp; 481 } 482 } 483 } 484 485 new_measure: 486 tp->rcvq_space.seq = tp->copied_seq; 487 tp->rcvq_space.time = tcp_time_stamp; 488 } 489 490 /* There is something which you must keep in mind when you analyze the 491 * behavior of the tp->ato delayed ack timeout interval. When a 492 * connection starts up, we want to ack as quickly as possible. The 493 * problem is that "good" TCP's do slow start at the beginning of data 494 * transmission. The means that until we send the first few ACK's the 495 * sender will sit on his end and only queue most of his data, because 496 * he can only send snd_cwnd unacked packets at any given time. For 497 * each ACK we send, he increments snd_cwnd and transmits more of his 498 * queue. -DaveM 499 */ 500 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) 501 { 502 struct inet_connection_sock *icsk = inet_csk(sk); 503 u32 now; 504 505 inet_csk_schedule_ack(sk); 506 507 tcp_measure_rcv_mss(sk, skb); 508 509 tcp_rcv_rtt_measure(tp); 510 511 now = tcp_time_stamp; 512 513 if (!icsk->icsk_ack.ato) { 514 /* The _first_ data packet received, initialize 515 * delayed ACK engine. 516 */ 517 tcp_incr_quickack(sk); 518 icsk->icsk_ack.ato = TCP_ATO_MIN; 519 } else { 520 int m = now - icsk->icsk_ack.lrcvtime; 521 522 if (m <= TCP_ATO_MIN/2) { 523 /* The fastest case is the first. */ 524 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 525 } else if (m < icsk->icsk_ack.ato) { 526 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 527 if (icsk->icsk_ack.ato > icsk->icsk_rto) 528 icsk->icsk_ack.ato = icsk->icsk_rto; 529 } else if (m > icsk->icsk_rto) { 530 /* Too long gap. Apparently sender failed to 531 * restart window, so that we send ACKs quickly. 532 */ 533 tcp_incr_quickack(sk); 534 sk_stream_mem_reclaim(sk); 535 } 536 } 537 icsk->icsk_ack.lrcvtime = now; 538 539 TCP_ECN_check_ce(tp, skb); 540 541 if (skb->len >= 128) 542 tcp_grow_window(sk, tp, skb); 543 } 544 545 /* Called to compute a smoothed rtt estimate. The data fed to this 546 * routine either comes from timestamps, or from segments that were 547 * known _not_ to have been retransmitted [see Karn/Partridge 548 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 549 * piece by Van Jacobson. 550 * NOTE: the next three routines used to be one big routine. 551 * To save cycles in the RFC 1323 implementation it was better to break 552 * it up into three procedures. -- erics 553 */ 554 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 555 { 556 struct tcp_sock *tp = tcp_sk(sk); 557 long m = mrtt; /* RTT */ 558 559 /* The following amusing code comes from Jacobson's 560 * article in SIGCOMM '88. Note that rtt and mdev 561 * are scaled versions of rtt and mean deviation. 562 * This is designed to be as fast as possible 563 * m stands for "measurement". 564 * 565 * On a 1990 paper the rto value is changed to: 566 * RTO = rtt + 4 * mdev 567 * 568 * Funny. This algorithm seems to be very broken. 569 * These formulae increase RTO, when it should be decreased, increase 570 * too slowly, when it should be increased quickly, decrease too quickly 571 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 572 * does not matter how to _calculate_ it. Seems, it was trap 573 * that VJ failed to avoid. 8) 574 */ 575 if(m == 0) 576 m = 1; 577 if (tp->srtt != 0) { 578 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 579 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 580 if (m < 0) { 581 m = -m; /* m is now abs(error) */ 582 m -= (tp->mdev >> 2); /* similar update on mdev */ 583 /* This is similar to one of Eifel findings. 584 * Eifel blocks mdev updates when rtt decreases. 585 * This solution is a bit different: we use finer gain 586 * for mdev in this case (alpha*beta). 587 * Like Eifel it also prevents growth of rto, 588 * but also it limits too fast rto decreases, 589 * happening in pure Eifel. 590 */ 591 if (m > 0) 592 m >>= 3; 593 } else { 594 m -= (tp->mdev >> 2); /* similar update on mdev */ 595 } 596 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 597 if (tp->mdev > tp->mdev_max) { 598 tp->mdev_max = tp->mdev; 599 if (tp->mdev_max > tp->rttvar) 600 tp->rttvar = tp->mdev_max; 601 } 602 if (after(tp->snd_una, tp->rtt_seq)) { 603 if (tp->mdev_max < tp->rttvar) 604 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2; 605 tp->rtt_seq = tp->snd_nxt; 606 tp->mdev_max = TCP_RTO_MIN; 607 } 608 } else { 609 /* no previous measure. */ 610 tp->srtt = m<<3; /* take the measured time to be rtt */ 611 tp->mdev = m<<1; /* make sure rto = 3*rtt */ 612 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 613 tp->rtt_seq = tp->snd_nxt; 614 } 615 } 616 617 /* Calculate rto without backoff. This is the second half of Van Jacobson's 618 * routine referred to above. 619 */ 620 static inline void tcp_set_rto(struct sock *sk) 621 { 622 const struct tcp_sock *tp = tcp_sk(sk); 623 /* Old crap is replaced with new one. 8) 624 * 625 * More seriously: 626 * 1. If rtt variance happened to be less 50msec, it is hallucination. 627 * It cannot be less due to utterly erratic ACK generation made 628 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 629 * to do with delayed acks, because at cwnd>2 true delack timeout 630 * is invisible. Actually, Linux-2.4 also generates erratic 631 * ACKs in some circumstances. 632 */ 633 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 634 635 /* 2. Fixups made earlier cannot be right. 636 * If we do not estimate RTO correctly without them, 637 * all the algo is pure shit and should be replaced 638 * with correct one. It is exactly, which we pretend to do. 639 */ 640 } 641 642 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 643 * guarantees that rto is higher. 644 */ 645 static inline void tcp_bound_rto(struct sock *sk) 646 { 647 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 648 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 649 } 650 651 /* Save metrics learned by this TCP session. 652 This function is called only, when TCP finishes successfully 653 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 654 */ 655 void tcp_update_metrics(struct sock *sk) 656 { 657 struct tcp_sock *tp = tcp_sk(sk); 658 struct dst_entry *dst = __sk_dst_get(sk); 659 660 if (sysctl_tcp_nometrics_save) 661 return; 662 663 dst_confirm(dst); 664 665 if (dst && (dst->flags&DST_HOST)) { 666 const struct inet_connection_sock *icsk = inet_csk(sk); 667 int m; 668 669 if (icsk->icsk_backoff || !tp->srtt) { 670 /* This session failed to estimate rtt. Why? 671 * Probably, no packets returned in time. 672 * Reset our results. 673 */ 674 if (!(dst_metric_locked(dst, RTAX_RTT))) 675 dst->metrics[RTAX_RTT-1] = 0; 676 return; 677 } 678 679 m = dst_metric(dst, RTAX_RTT) - tp->srtt; 680 681 /* If newly calculated rtt larger than stored one, 682 * store new one. Otherwise, use EWMA. Remember, 683 * rtt overestimation is always better than underestimation. 684 */ 685 if (!(dst_metric_locked(dst, RTAX_RTT))) { 686 if (m <= 0) 687 dst->metrics[RTAX_RTT-1] = tp->srtt; 688 else 689 dst->metrics[RTAX_RTT-1] -= (m>>3); 690 } 691 692 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 693 if (m < 0) 694 m = -m; 695 696 /* Scale deviation to rttvar fixed point */ 697 m >>= 1; 698 if (m < tp->mdev) 699 m = tp->mdev; 700 701 if (m >= dst_metric(dst, RTAX_RTTVAR)) 702 dst->metrics[RTAX_RTTVAR-1] = m; 703 else 704 dst->metrics[RTAX_RTTVAR-1] -= 705 (dst->metrics[RTAX_RTTVAR-1] - m)>>2; 706 } 707 708 if (tp->snd_ssthresh >= 0xFFFF) { 709 /* Slow start still did not finish. */ 710 if (dst_metric(dst, RTAX_SSTHRESH) && 711 !dst_metric_locked(dst, RTAX_SSTHRESH) && 712 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 713 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 714 if (!dst_metric_locked(dst, RTAX_CWND) && 715 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 716 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd; 717 } else if (tp->snd_cwnd > tp->snd_ssthresh && 718 icsk->icsk_ca_state == TCP_CA_Open) { 719 /* Cong. avoidance phase, cwnd is reliable. */ 720 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 721 dst->metrics[RTAX_SSTHRESH-1] = 722 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 723 if (!dst_metric_locked(dst, RTAX_CWND)) 724 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; 725 } else { 726 /* Else slow start did not finish, cwnd is non-sense, 727 ssthresh may be also invalid. 728 */ 729 if (!dst_metric_locked(dst, RTAX_CWND)) 730 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; 731 if (dst->metrics[RTAX_SSTHRESH-1] && 732 !dst_metric_locked(dst, RTAX_SSTHRESH) && 733 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) 734 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 735 } 736 737 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 738 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && 739 tp->reordering != sysctl_tcp_reordering) 740 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 741 } 742 } 743 } 744 745 /* Numbers are taken from RFC2414. */ 746 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 747 { 748 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 749 750 if (!cwnd) { 751 if (tp->mss_cache > 1460) 752 cwnd = 2; 753 else 754 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 755 } 756 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 757 } 758 759 /* Set slow start threshold and cwnd not falling to slow start */ 760 void tcp_enter_cwr(struct sock *sk) 761 { 762 struct tcp_sock *tp = tcp_sk(sk); 763 764 tp->prior_ssthresh = 0; 765 tp->bytes_acked = 0; 766 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 767 tp->undo_marker = 0; 768 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 769 tp->snd_cwnd = min(tp->snd_cwnd, 770 tcp_packets_in_flight(tp) + 1U); 771 tp->snd_cwnd_cnt = 0; 772 tp->high_seq = tp->snd_nxt; 773 tp->snd_cwnd_stamp = tcp_time_stamp; 774 TCP_ECN_queue_cwr(tp); 775 776 tcp_set_ca_state(sk, TCP_CA_CWR); 777 } 778 } 779 780 /* Initialize metrics on socket. */ 781 782 static void tcp_init_metrics(struct sock *sk) 783 { 784 struct tcp_sock *tp = tcp_sk(sk); 785 struct dst_entry *dst = __sk_dst_get(sk); 786 787 if (dst == NULL) 788 goto reset; 789 790 dst_confirm(dst); 791 792 if (dst_metric_locked(dst, RTAX_CWND)) 793 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 794 if (dst_metric(dst, RTAX_SSTHRESH)) { 795 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 796 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 797 tp->snd_ssthresh = tp->snd_cwnd_clamp; 798 } 799 if (dst_metric(dst, RTAX_REORDERING) && 800 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 801 tp->rx_opt.sack_ok &= ~2; 802 tp->reordering = dst_metric(dst, RTAX_REORDERING); 803 } 804 805 if (dst_metric(dst, RTAX_RTT) == 0) 806 goto reset; 807 808 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 809 goto reset; 810 811 /* Initial rtt is determined from SYN,SYN-ACK. 812 * The segment is small and rtt may appear much 813 * less than real one. Use per-dst memory 814 * to make it more realistic. 815 * 816 * A bit of theory. RTT is time passed after "normal" sized packet 817 * is sent until it is ACKed. In normal circumstances sending small 818 * packets force peer to delay ACKs and calculation is correct too. 819 * The algorithm is adaptive and, provided we follow specs, it 820 * NEVER underestimate RTT. BUT! If peer tries to make some clever 821 * tricks sort of "quick acks" for time long enough to decrease RTT 822 * to low value, and then abruptly stops to do it and starts to delay 823 * ACKs, wait for troubles. 824 */ 825 if (dst_metric(dst, RTAX_RTT) > tp->srtt) { 826 tp->srtt = dst_metric(dst, RTAX_RTT); 827 tp->rtt_seq = tp->snd_nxt; 828 } 829 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { 830 tp->mdev = dst_metric(dst, RTAX_RTTVAR); 831 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 832 } 833 tcp_set_rto(sk); 834 tcp_bound_rto(sk); 835 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 836 goto reset; 837 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 838 tp->snd_cwnd_stamp = tcp_time_stamp; 839 return; 840 841 reset: 842 /* Play conservative. If timestamps are not 843 * supported, TCP will fail to recalculate correct 844 * rtt, if initial rto is too small. FORGET ALL AND RESET! 845 */ 846 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 847 tp->srtt = 0; 848 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 849 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 850 } 851 } 852 853 static void tcp_update_reordering(struct sock *sk, const int metric, 854 const int ts) 855 { 856 struct tcp_sock *tp = tcp_sk(sk); 857 if (metric > tp->reordering) { 858 tp->reordering = min(TCP_MAX_REORDERING, metric); 859 860 /* This exciting event is worth to be remembered. 8) */ 861 if (ts) 862 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); 863 else if (IsReno(tp)) 864 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); 865 else if (IsFack(tp)) 866 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); 867 else 868 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); 869 #if FASTRETRANS_DEBUG > 1 870 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 871 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 872 tp->reordering, 873 tp->fackets_out, 874 tp->sacked_out, 875 tp->undo_marker ? tp->undo_retrans : 0); 876 #endif 877 /* Disable FACK yet. */ 878 tp->rx_opt.sack_ok &= ~2; 879 } 880 } 881 882 /* This procedure tags the retransmission queue when SACKs arrive. 883 * 884 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 885 * Packets in queue with these bits set are counted in variables 886 * sacked_out, retrans_out and lost_out, correspondingly. 887 * 888 * Valid combinations are: 889 * Tag InFlight Description 890 * 0 1 - orig segment is in flight. 891 * S 0 - nothing flies, orig reached receiver. 892 * L 0 - nothing flies, orig lost by net. 893 * R 2 - both orig and retransmit are in flight. 894 * L|R 1 - orig is lost, retransmit is in flight. 895 * S|R 1 - orig reached receiver, retrans is still in flight. 896 * (L|S|R is logically valid, it could occur when L|R is sacked, 897 * but it is equivalent to plain S and code short-curcuits it to S. 898 * L|S is logically invalid, it would mean -1 packet in flight 8)) 899 * 900 * These 6 states form finite state machine, controlled by the following events: 901 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 902 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 903 * 3. Loss detection event of one of three flavors: 904 * A. Scoreboard estimator decided the packet is lost. 905 * A'. Reno "three dupacks" marks head of queue lost. 906 * A''. Its FACK modfication, head until snd.fack is lost. 907 * B. SACK arrives sacking data transmitted after never retransmitted 908 * hole was sent out. 909 * C. SACK arrives sacking SND.NXT at the moment, when the 910 * segment was retransmitted. 911 * 4. D-SACK added new rule: D-SACK changes any tag to S. 912 * 913 * It is pleasant to note, that state diagram turns out to be commutative, 914 * so that we are allowed not to be bothered by order of our actions, 915 * when multiple events arrive simultaneously. (see the function below). 916 * 917 * Reordering detection. 918 * -------------------- 919 * Reordering metric is maximal distance, which a packet can be displaced 920 * in packet stream. With SACKs we can estimate it: 921 * 922 * 1. SACK fills old hole and the corresponding segment was not 923 * ever retransmitted -> reordering. Alas, we cannot use it 924 * when segment was retransmitted. 925 * 2. The last flaw is solved with D-SACK. D-SACK arrives 926 * for retransmitted and already SACKed segment -> reordering.. 927 * Both of these heuristics are not used in Loss state, when we cannot 928 * account for retransmits accurately. 929 */ 930 static int 931 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una) 932 { 933 const struct inet_connection_sock *icsk = inet_csk(sk); 934 struct tcp_sock *tp = tcp_sk(sk); 935 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked; 936 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2); 937 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3; 938 int reord = tp->packets_out; 939 int prior_fackets; 940 u32 lost_retrans = 0; 941 int flag = 0; 942 int dup_sack = 0; 943 int i; 944 945 if (!tp->sacked_out) 946 tp->fackets_out = 0; 947 prior_fackets = tp->fackets_out; 948 949 /* SACK fastpath: 950 * if the only SACK change is the increase of the end_seq of 951 * the first block then only apply that SACK block 952 * and use retrans queue hinting otherwise slowpath */ 953 flag = 1; 954 for (i = 0; i< num_sacks; i++) { 955 __u32 start_seq = ntohl(sp[i].start_seq); 956 __u32 end_seq = ntohl(sp[i].end_seq); 957 958 if (i == 0){ 959 if (tp->recv_sack_cache[i].start_seq != start_seq) 960 flag = 0; 961 } else { 962 if ((tp->recv_sack_cache[i].start_seq != start_seq) || 963 (tp->recv_sack_cache[i].end_seq != end_seq)) 964 flag = 0; 965 } 966 tp->recv_sack_cache[i].start_seq = start_seq; 967 tp->recv_sack_cache[i].end_seq = end_seq; 968 969 /* Check for D-SACK. */ 970 if (i == 0) { 971 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq; 972 973 if (before(start_seq, ack)) { 974 dup_sack = 1; 975 tp->rx_opt.sack_ok |= 4; 976 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); 977 } else if (num_sacks > 1 && 978 !after(end_seq, ntohl(sp[1].end_seq)) && 979 !before(start_seq, ntohl(sp[1].start_seq))) { 980 dup_sack = 1; 981 tp->rx_opt.sack_ok |= 4; 982 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); 983 } 984 985 /* D-SACK for already forgotten data... 986 * Do dumb counting. */ 987 if (dup_sack && 988 !after(end_seq, prior_snd_una) && 989 after(end_seq, tp->undo_marker)) 990 tp->undo_retrans--; 991 992 /* Eliminate too old ACKs, but take into 993 * account more or less fresh ones, they can 994 * contain valid SACK info. 995 */ 996 if (before(ack, prior_snd_una - tp->max_window)) 997 return 0; 998 } 999 } 1000 1001 if (flag) 1002 num_sacks = 1; 1003 else { 1004 int j; 1005 tp->fastpath_skb_hint = NULL; 1006 1007 /* order SACK blocks to allow in order walk of the retrans queue */ 1008 for (i = num_sacks-1; i > 0; i--) { 1009 for (j = 0; j < i; j++){ 1010 if (after(ntohl(sp[j].start_seq), 1011 ntohl(sp[j+1].start_seq))){ 1012 sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq); 1013 sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq); 1014 sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq); 1015 sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq); 1016 } 1017 1018 } 1019 } 1020 } 1021 1022 /* clear flag as used for different purpose in following code */ 1023 flag = 0; 1024 1025 for (i=0; i<num_sacks; i++, sp++) { 1026 struct sk_buff *skb; 1027 __u32 start_seq = ntohl(sp->start_seq); 1028 __u32 end_seq = ntohl(sp->end_seq); 1029 int fack_count; 1030 1031 /* Use SACK fastpath hint if valid */ 1032 if (tp->fastpath_skb_hint) { 1033 skb = tp->fastpath_skb_hint; 1034 fack_count = tp->fastpath_cnt_hint; 1035 } else { 1036 skb = sk->sk_write_queue.next; 1037 fack_count = 0; 1038 } 1039 1040 /* Event "B" in the comment above. */ 1041 if (after(end_seq, tp->high_seq)) 1042 flag |= FLAG_DATA_LOST; 1043 1044 sk_stream_for_retrans_queue_from(skb, sk) { 1045 int in_sack, pcount; 1046 u8 sacked; 1047 1048 tp->fastpath_skb_hint = skb; 1049 tp->fastpath_cnt_hint = fack_count; 1050 1051 /* The retransmission queue is always in order, so 1052 * we can short-circuit the walk early. 1053 */ 1054 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1055 break; 1056 1057 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1058 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1059 1060 pcount = tcp_skb_pcount(skb); 1061 1062 if (pcount > 1 && !in_sack && 1063 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1064 unsigned int pkt_len; 1065 1066 in_sack = !after(start_seq, 1067 TCP_SKB_CB(skb)->seq); 1068 1069 if (!in_sack) 1070 pkt_len = (start_seq - 1071 TCP_SKB_CB(skb)->seq); 1072 else 1073 pkt_len = (end_seq - 1074 TCP_SKB_CB(skb)->seq); 1075 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size)) 1076 break; 1077 pcount = tcp_skb_pcount(skb); 1078 } 1079 1080 fack_count += pcount; 1081 1082 sacked = TCP_SKB_CB(skb)->sacked; 1083 1084 /* Account D-SACK for retransmitted packet. */ 1085 if ((dup_sack && in_sack) && 1086 (sacked & TCPCB_RETRANS) && 1087 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1088 tp->undo_retrans--; 1089 1090 /* The frame is ACKed. */ 1091 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) { 1092 if (sacked&TCPCB_RETRANS) { 1093 if ((dup_sack && in_sack) && 1094 (sacked&TCPCB_SACKED_ACKED)) 1095 reord = min(fack_count, reord); 1096 } else { 1097 /* If it was in a hole, we detected reordering. */ 1098 if (fack_count < prior_fackets && 1099 !(sacked&TCPCB_SACKED_ACKED)) 1100 reord = min(fack_count, reord); 1101 } 1102 1103 /* Nothing to do; acked frame is about to be dropped. */ 1104 continue; 1105 } 1106 1107 if ((sacked&TCPCB_SACKED_RETRANS) && 1108 after(end_seq, TCP_SKB_CB(skb)->ack_seq) && 1109 (!lost_retrans || after(end_seq, lost_retrans))) 1110 lost_retrans = end_seq; 1111 1112 if (!in_sack) 1113 continue; 1114 1115 if (!(sacked&TCPCB_SACKED_ACKED)) { 1116 if (sacked & TCPCB_SACKED_RETRANS) { 1117 /* If the segment is not tagged as lost, 1118 * we do not clear RETRANS, believing 1119 * that retransmission is still in flight. 1120 */ 1121 if (sacked & TCPCB_LOST) { 1122 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1123 tp->lost_out -= tcp_skb_pcount(skb); 1124 tp->retrans_out -= tcp_skb_pcount(skb); 1125 1126 /* clear lost hint */ 1127 tp->retransmit_skb_hint = NULL; 1128 } 1129 } else { 1130 /* New sack for not retransmitted frame, 1131 * which was in hole. It is reordering. 1132 */ 1133 if (!(sacked & TCPCB_RETRANS) && 1134 fack_count < prior_fackets) 1135 reord = min(fack_count, reord); 1136 1137 if (sacked & TCPCB_LOST) { 1138 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1139 tp->lost_out -= tcp_skb_pcount(skb); 1140 1141 /* clear lost hint */ 1142 tp->retransmit_skb_hint = NULL; 1143 } 1144 } 1145 1146 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; 1147 flag |= FLAG_DATA_SACKED; 1148 tp->sacked_out += tcp_skb_pcount(skb); 1149 1150 if (fack_count > tp->fackets_out) 1151 tp->fackets_out = fack_count; 1152 } else { 1153 if (dup_sack && (sacked&TCPCB_RETRANS)) 1154 reord = min(fack_count, reord); 1155 } 1156 1157 /* D-SACK. We can detect redundant retransmission 1158 * in S|R and plain R frames and clear it. 1159 * undo_retrans is decreased above, L|R frames 1160 * are accounted above as well. 1161 */ 1162 if (dup_sack && 1163 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) { 1164 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1165 tp->retrans_out -= tcp_skb_pcount(skb); 1166 tp->retransmit_skb_hint = NULL; 1167 } 1168 } 1169 } 1170 1171 /* Check for lost retransmit. This superb idea is 1172 * borrowed from "ratehalving". Event "C". 1173 * Later note: FACK people cheated me again 8), 1174 * we have to account for reordering! Ugly, 1175 * but should help. 1176 */ 1177 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) { 1178 struct sk_buff *skb; 1179 1180 sk_stream_for_retrans_queue(skb, sk) { 1181 if (after(TCP_SKB_CB(skb)->seq, lost_retrans)) 1182 break; 1183 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1184 continue; 1185 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) && 1186 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) && 1187 (IsFack(tp) || 1188 !before(lost_retrans, 1189 TCP_SKB_CB(skb)->ack_seq + tp->reordering * 1190 tp->mss_cache))) { 1191 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1192 tp->retrans_out -= tcp_skb_pcount(skb); 1193 1194 /* clear lost hint */ 1195 tp->retransmit_skb_hint = NULL; 1196 1197 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1198 tp->lost_out += tcp_skb_pcount(skb); 1199 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1200 flag |= FLAG_DATA_SACKED; 1201 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); 1202 } 1203 } 1204 } 1205 } 1206 1207 tp->left_out = tp->sacked_out + tp->lost_out; 1208 1209 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss) 1210 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0); 1211 1212 #if FASTRETRANS_DEBUG > 0 1213 BUG_TRAP((int)tp->sacked_out >= 0); 1214 BUG_TRAP((int)tp->lost_out >= 0); 1215 BUG_TRAP((int)tp->retrans_out >= 0); 1216 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); 1217 #endif 1218 return flag; 1219 } 1220 1221 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new 1222 * segments to see from the next ACKs whether any data was really missing. 1223 * If the RTO was spurious, new ACKs should arrive. 1224 */ 1225 void tcp_enter_frto(struct sock *sk) 1226 { 1227 const struct inet_connection_sock *icsk = inet_csk(sk); 1228 struct tcp_sock *tp = tcp_sk(sk); 1229 struct sk_buff *skb; 1230 1231 tp->frto_counter = 1; 1232 1233 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1234 tp->snd_una == tp->high_seq || 1235 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1236 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1237 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1238 tcp_ca_event(sk, CA_EVENT_FRTO); 1239 } 1240 1241 /* Have to clear retransmission markers here to keep the bookkeeping 1242 * in shape, even though we are not yet in Loss state. 1243 * If something was really lost, it is eventually caught up 1244 * in tcp_enter_frto_loss. 1245 */ 1246 tp->retrans_out = 0; 1247 tp->undo_marker = tp->snd_una; 1248 tp->undo_retrans = 0; 1249 1250 sk_stream_for_retrans_queue(skb, sk) { 1251 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS; 1252 } 1253 tcp_sync_left_out(tp); 1254 1255 tcp_set_ca_state(sk, TCP_CA_Open); 1256 tp->frto_highmark = tp->snd_nxt; 1257 } 1258 1259 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1260 * which indicates that we should follow the traditional RTO recovery, 1261 * i.e. mark everything lost and do go-back-N retransmission. 1262 */ 1263 static void tcp_enter_frto_loss(struct sock *sk) 1264 { 1265 struct tcp_sock *tp = tcp_sk(sk); 1266 struct sk_buff *skb; 1267 int cnt = 0; 1268 1269 tp->sacked_out = 0; 1270 tp->lost_out = 0; 1271 tp->fackets_out = 0; 1272 1273 sk_stream_for_retrans_queue(skb, sk) { 1274 cnt += tcp_skb_pcount(skb); 1275 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1276 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1277 1278 /* Do not mark those segments lost that were 1279 * forward transmitted after RTO 1280 */ 1281 if (!after(TCP_SKB_CB(skb)->end_seq, 1282 tp->frto_highmark)) { 1283 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1284 tp->lost_out += tcp_skb_pcount(skb); 1285 } 1286 } else { 1287 tp->sacked_out += tcp_skb_pcount(skb); 1288 tp->fackets_out = cnt; 1289 } 1290 } 1291 tcp_sync_left_out(tp); 1292 1293 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1; 1294 tp->snd_cwnd_cnt = 0; 1295 tp->snd_cwnd_stamp = tcp_time_stamp; 1296 tp->undo_marker = 0; 1297 tp->frto_counter = 0; 1298 1299 tp->reordering = min_t(unsigned int, tp->reordering, 1300 sysctl_tcp_reordering); 1301 tcp_set_ca_state(sk, TCP_CA_Loss); 1302 tp->high_seq = tp->frto_highmark; 1303 TCP_ECN_queue_cwr(tp); 1304 1305 clear_all_retrans_hints(tp); 1306 } 1307 1308 void tcp_clear_retrans(struct tcp_sock *tp) 1309 { 1310 tp->left_out = 0; 1311 tp->retrans_out = 0; 1312 1313 tp->fackets_out = 0; 1314 tp->sacked_out = 0; 1315 tp->lost_out = 0; 1316 1317 tp->undo_marker = 0; 1318 tp->undo_retrans = 0; 1319 } 1320 1321 /* Enter Loss state. If "how" is not zero, forget all SACK information 1322 * and reset tags completely, otherwise preserve SACKs. If receiver 1323 * dropped its ofo queue, we will know this due to reneging detection. 1324 */ 1325 void tcp_enter_loss(struct sock *sk, int how) 1326 { 1327 const struct inet_connection_sock *icsk = inet_csk(sk); 1328 struct tcp_sock *tp = tcp_sk(sk); 1329 struct sk_buff *skb; 1330 int cnt = 0; 1331 1332 /* Reduce ssthresh if it has not yet been made inside this window. */ 1333 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 1334 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1335 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1336 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1337 tcp_ca_event(sk, CA_EVENT_LOSS); 1338 } 1339 tp->snd_cwnd = 1; 1340 tp->snd_cwnd_cnt = 0; 1341 tp->snd_cwnd_stamp = tcp_time_stamp; 1342 1343 tp->bytes_acked = 0; 1344 tcp_clear_retrans(tp); 1345 1346 /* Push undo marker, if it was plain RTO and nothing 1347 * was retransmitted. */ 1348 if (!how) 1349 tp->undo_marker = tp->snd_una; 1350 1351 sk_stream_for_retrans_queue(skb, sk) { 1352 cnt += tcp_skb_pcount(skb); 1353 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1354 tp->undo_marker = 0; 1355 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1356 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1357 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1358 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1359 tp->lost_out += tcp_skb_pcount(skb); 1360 } else { 1361 tp->sacked_out += tcp_skb_pcount(skb); 1362 tp->fackets_out = cnt; 1363 } 1364 } 1365 tcp_sync_left_out(tp); 1366 1367 tp->reordering = min_t(unsigned int, tp->reordering, 1368 sysctl_tcp_reordering); 1369 tcp_set_ca_state(sk, TCP_CA_Loss); 1370 tp->high_seq = tp->snd_nxt; 1371 TCP_ECN_queue_cwr(tp); 1372 1373 clear_all_retrans_hints(tp); 1374 } 1375 1376 static int tcp_check_sack_reneging(struct sock *sk) 1377 { 1378 struct sk_buff *skb; 1379 1380 /* If ACK arrived pointing to a remembered SACK, 1381 * it means that our remembered SACKs do not reflect 1382 * real state of receiver i.e. 1383 * receiver _host_ is heavily congested (or buggy). 1384 * Do processing similar to RTO timeout. 1385 */ 1386 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL && 1387 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 1388 struct inet_connection_sock *icsk = inet_csk(sk); 1389 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); 1390 1391 tcp_enter_loss(sk, 1); 1392 icsk->icsk_retransmits++; 1393 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue)); 1394 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1395 icsk->icsk_rto, TCP_RTO_MAX); 1396 return 1; 1397 } 1398 return 0; 1399 } 1400 1401 static inline int tcp_fackets_out(struct tcp_sock *tp) 1402 { 1403 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out; 1404 } 1405 1406 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 1407 { 1408 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 1409 } 1410 1411 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp) 1412 { 1413 return tp->packets_out && 1414 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue)); 1415 } 1416 1417 /* Linux NewReno/SACK/FACK/ECN state machine. 1418 * -------------------------------------- 1419 * 1420 * "Open" Normal state, no dubious events, fast path. 1421 * "Disorder" In all the respects it is "Open", 1422 * but requires a bit more attention. It is entered when 1423 * we see some SACKs or dupacks. It is split of "Open" 1424 * mainly to move some processing from fast path to slow one. 1425 * "CWR" CWND was reduced due to some Congestion Notification event. 1426 * It can be ECN, ICMP source quench, local device congestion. 1427 * "Recovery" CWND was reduced, we are fast-retransmitting. 1428 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 1429 * 1430 * tcp_fastretrans_alert() is entered: 1431 * - each incoming ACK, if state is not "Open" 1432 * - when arrived ACK is unusual, namely: 1433 * * SACK 1434 * * Duplicate ACK. 1435 * * ECN ECE. 1436 * 1437 * Counting packets in flight is pretty simple. 1438 * 1439 * in_flight = packets_out - left_out + retrans_out 1440 * 1441 * packets_out is SND.NXT-SND.UNA counted in packets. 1442 * 1443 * retrans_out is number of retransmitted segments. 1444 * 1445 * left_out is number of segments left network, but not ACKed yet. 1446 * 1447 * left_out = sacked_out + lost_out 1448 * 1449 * sacked_out: Packets, which arrived to receiver out of order 1450 * and hence not ACKed. With SACKs this number is simply 1451 * amount of SACKed data. Even without SACKs 1452 * it is easy to give pretty reliable estimate of this number, 1453 * counting duplicate ACKs. 1454 * 1455 * lost_out: Packets lost by network. TCP has no explicit 1456 * "loss notification" feedback from network (for now). 1457 * It means that this number can be only _guessed_. 1458 * Actually, it is the heuristics to predict lossage that 1459 * distinguishes different algorithms. 1460 * 1461 * F.e. after RTO, when all the queue is considered as lost, 1462 * lost_out = packets_out and in_flight = retrans_out. 1463 * 1464 * Essentially, we have now two algorithms counting 1465 * lost packets. 1466 * 1467 * FACK: It is the simplest heuristics. As soon as we decided 1468 * that something is lost, we decide that _all_ not SACKed 1469 * packets until the most forward SACK are lost. I.e. 1470 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 1471 * It is absolutely correct estimate, if network does not reorder 1472 * packets. And it loses any connection to reality when reordering 1473 * takes place. We use FACK by default until reordering 1474 * is suspected on the path to this destination. 1475 * 1476 * NewReno: when Recovery is entered, we assume that one segment 1477 * is lost (classic Reno). While we are in Recovery and 1478 * a partial ACK arrives, we assume that one more packet 1479 * is lost (NewReno). This heuristics are the same in NewReno 1480 * and SACK. 1481 * 1482 * Imagine, that's all! Forget about all this shamanism about CWND inflation 1483 * deflation etc. CWND is real congestion window, never inflated, changes 1484 * only according to classic VJ rules. 1485 * 1486 * Really tricky (and requiring careful tuning) part of algorithm 1487 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 1488 * The first determines the moment _when_ we should reduce CWND and, 1489 * hence, slow down forward transmission. In fact, it determines the moment 1490 * when we decide that hole is caused by loss, rather than by a reorder. 1491 * 1492 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 1493 * holes, caused by lost packets. 1494 * 1495 * And the most logically complicated part of algorithm is undo 1496 * heuristics. We detect false retransmits due to both too early 1497 * fast retransmit (reordering) and underestimated RTO, analyzing 1498 * timestamps and D-SACKs. When we detect that some segments were 1499 * retransmitted by mistake and CWND reduction was wrong, we undo 1500 * window reduction and abort recovery phase. This logic is hidden 1501 * inside several functions named tcp_try_undo_<something>. 1502 */ 1503 1504 /* This function decides, when we should leave Disordered state 1505 * and enter Recovery phase, reducing congestion window. 1506 * 1507 * Main question: may we further continue forward transmission 1508 * with the same cwnd? 1509 */ 1510 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp) 1511 { 1512 __u32 packets_out; 1513 1514 /* Trick#1: The loss is proven. */ 1515 if (tp->lost_out) 1516 return 1; 1517 1518 /* Not-A-Trick#2 : Classic rule... */ 1519 if (tcp_fackets_out(tp) > tp->reordering) 1520 return 1; 1521 1522 /* Trick#3 : when we use RFC2988 timer restart, fast 1523 * retransmit can be triggered by timeout of queue head. 1524 */ 1525 if (tcp_head_timedout(sk, tp)) 1526 return 1; 1527 1528 /* Trick#4: It is still not OK... But will it be useful to delay 1529 * recovery more? 1530 */ 1531 packets_out = tp->packets_out; 1532 if (packets_out <= tp->reordering && 1533 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 1534 !tcp_may_send_now(sk, tp)) { 1535 /* We have nothing to send. This connection is limited 1536 * either by receiver window or by application. 1537 */ 1538 return 1; 1539 } 1540 1541 return 0; 1542 } 1543 1544 /* If we receive more dupacks than we expected counting segments 1545 * in assumption of absent reordering, interpret this as reordering. 1546 * The only another reason could be bug in receiver TCP. 1547 */ 1548 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1549 { 1550 struct tcp_sock *tp = tcp_sk(sk); 1551 u32 holes; 1552 1553 holes = max(tp->lost_out, 1U); 1554 holes = min(holes, tp->packets_out); 1555 1556 if ((tp->sacked_out + holes) > tp->packets_out) { 1557 tp->sacked_out = tp->packets_out - holes; 1558 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1559 } 1560 } 1561 1562 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1563 1564 static void tcp_add_reno_sack(struct sock *sk) 1565 { 1566 struct tcp_sock *tp = tcp_sk(sk); 1567 tp->sacked_out++; 1568 tcp_check_reno_reordering(sk, 0); 1569 tcp_sync_left_out(tp); 1570 } 1571 1572 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1573 1574 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked) 1575 { 1576 if (acked > 0) { 1577 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1578 if (acked-1 >= tp->sacked_out) 1579 tp->sacked_out = 0; 1580 else 1581 tp->sacked_out -= acked-1; 1582 } 1583 tcp_check_reno_reordering(sk, acked); 1584 tcp_sync_left_out(tp); 1585 } 1586 1587 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1588 { 1589 tp->sacked_out = 0; 1590 tp->left_out = tp->lost_out; 1591 } 1592 1593 /* Mark head of queue up as lost. */ 1594 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp, 1595 int packets, u32 high_seq) 1596 { 1597 struct sk_buff *skb; 1598 int cnt; 1599 1600 BUG_TRAP(packets <= tp->packets_out); 1601 if (tp->lost_skb_hint) { 1602 skb = tp->lost_skb_hint; 1603 cnt = tp->lost_cnt_hint; 1604 } else { 1605 skb = sk->sk_write_queue.next; 1606 cnt = 0; 1607 } 1608 1609 sk_stream_for_retrans_queue_from(skb, sk) { 1610 /* TODO: do this better */ 1611 /* this is not the most efficient way to do this... */ 1612 tp->lost_skb_hint = skb; 1613 tp->lost_cnt_hint = cnt; 1614 cnt += tcp_skb_pcount(skb); 1615 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq)) 1616 break; 1617 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1618 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1619 tp->lost_out += tcp_skb_pcount(skb); 1620 1621 /* clear xmit_retransmit_queue hints 1622 * if this is beyond hint */ 1623 if(tp->retransmit_skb_hint != NULL && 1624 before(TCP_SKB_CB(skb)->seq, 1625 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) { 1626 1627 tp->retransmit_skb_hint = NULL; 1628 } 1629 } 1630 } 1631 tcp_sync_left_out(tp); 1632 } 1633 1634 /* Account newly detected lost packet(s) */ 1635 1636 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp) 1637 { 1638 if (IsFack(tp)) { 1639 int lost = tp->fackets_out - tp->reordering; 1640 if (lost <= 0) 1641 lost = 1; 1642 tcp_mark_head_lost(sk, tp, lost, tp->high_seq); 1643 } else { 1644 tcp_mark_head_lost(sk, tp, 1, tp->high_seq); 1645 } 1646 1647 /* New heuristics: it is possible only after we switched 1648 * to restart timer each time when something is ACKed. 1649 * Hence, we can detect timed out packets during fast 1650 * retransmit without falling to slow start. 1651 */ 1652 if (tcp_head_timedout(sk, tp)) { 1653 struct sk_buff *skb; 1654 1655 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint 1656 : sk->sk_write_queue.next; 1657 1658 sk_stream_for_retrans_queue_from(skb, sk) { 1659 if (!tcp_skb_timedout(sk, skb)) 1660 break; 1661 1662 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1663 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1664 tp->lost_out += tcp_skb_pcount(skb); 1665 1666 /* clear xmit_retrans hint */ 1667 if (tp->retransmit_skb_hint && 1668 before(TCP_SKB_CB(skb)->seq, 1669 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 1670 1671 tp->retransmit_skb_hint = NULL; 1672 } 1673 } 1674 1675 tp->scoreboard_skb_hint = skb; 1676 1677 tcp_sync_left_out(tp); 1678 } 1679 } 1680 1681 /* CWND moderation, preventing bursts due to too big ACKs 1682 * in dubious situations. 1683 */ 1684 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 1685 { 1686 tp->snd_cwnd = min(tp->snd_cwnd, 1687 tcp_packets_in_flight(tp)+tcp_max_burst(tp)); 1688 tp->snd_cwnd_stamp = tcp_time_stamp; 1689 } 1690 1691 /* Decrease cwnd each second ack. */ 1692 static void tcp_cwnd_down(struct sock *sk) 1693 { 1694 const struct inet_connection_sock *icsk = inet_csk(sk); 1695 struct tcp_sock *tp = tcp_sk(sk); 1696 int decr = tp->snd_cwnd_cnt + 1; 1697 1698 tp->snd_cwnd_cnt = decr&1; 1699 decr >>= 1; 1700 1701 if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk)) 1702 tp->snd_cwnd -= decr; 1703 1704 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1); 1705 tp->snd_cwnd_stamp = tcp_time_stamp; 1706 } 1707 1708 /* Nothing was retransmitted or returned timestamp is less 1709 * than timestamp of the first retransmission. 1710 */ 1711 static inline int tcp_packet_delayed(struct tcp_sock *tp) 1712 { 1713 return !tp->retrans_stamp || 1714 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 1715 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0); 1716 } 1717 1718 /* Undo procedures. */ 1719 1720 #if FASTRETRANS_DEBUG > 1 1721 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg) 1722 { 1723 struct inet_sock *inet = inet_sk(sk); 1724 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n", 1725 msg, 1726 NIPQUAD(inet->daddr), ntohs(inet->dport), 1727 tp->snd_cwnd, tp->left_out, 1728 tp->snd_ssthresh, tp->prior_ssthresh, 1729 tp->packets_out); 1730 } 1731 #else 1732 #define DBGUNDO(x...) do { } while (0) 1733 #endif 1734 1735 static void tcp_undo_cwr(struct sock *sk, const int undo) 1736 { 1737 struct tcp_sock *tp = tcp_sk(sk); 1738 1739 if (tp->prior_ssthresh) { 1740 const struct inet_connection_sock *icsk = inet_csk(sk); 1741 1742 if (icsk->icsk_ca_ops->undo_cwnd) 1743 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 1744 else 1745 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1); 1746 1747 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 1748 tp->snd_ssthresh = tp->prior_ssthresh; 1749 TCP_ECN_withdraw_cwr(tp); 1750 } 1751 } else { 1752 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 1753 } 1754 tcp_moderate_cwnd(tp); 1755 tp->snd_cwnd_stamp = tcp_time_stamp; 1756 1757 /* There is something screwy going on with the retrans hints after 1758 an undo */ 1759 clear_all_retrans_hints(tp); 1760 } 1761 1762 static inline int tcp_may_undo(struct tcp_sock *tp) 1763 { 1764 return tp->undo_marker && 1765 (!tp->undo_retrans || tcp_packet_delayed(tp)); 1766 } 1767 1768 /* People celebrate: "We love our President!" */ 1769 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp) 1770 { 1771 if (tcp_may_undo(tp)) { 1772 /* Happy end! We did not retransmit anything 1773 * or our original transmission succeeded. 1774 */ 1775 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 1776 tcp_undo_cwr(sk, 1); 1777 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 1778 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1779 else 1780 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); 1781 tp->undo_marker = 0; 1782 } 1783 if (tp->snd_una == tp->high_seq && IsReno(tp)) { 1784 /* Hold old state until something *above* high_seq 1785 * is ACKed. For Reno it is MUST to prevent false 1786 * fast retransmits (RFC2582). SACK TCP is safe. */ 1787 tcp_moderate_cwnd(tp); 1788 return 1; 1789 } 1790 tcp_set_ca_state(sk, TCP_CA_Open); 1791 return 0; 1792 } 1793 1794 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 1795 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp) 1796 { 1797 if (tp->undo_marker && !tp->undo_retrans) { 1798 DBGUNDO(sk, tp, "D-SACK"); 1799 tcp_undo_cwr(sk, 1); 1800 tp->undo_marker = 0; 1801 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); 1802 } 1803 } 1804 1805 /* Undo during fast recovery after partial ACK. */ 1806 1807 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp, 1808 int acked) 1809 { 1810 /* Partial ACK arrived. Force Hoe's retransmit. */ 1811 int failed = IsReno(tp) || tp->fackets_out>tp->reordering; 1812 1813 if (tcp_may_undo(tp)) { 1814 /* Plain luck! Hole if filled with delayed 1815 * packet, rather than with a retransmit. 1816 */ 1817 if (tp->retrans_out == 0) 1818 tp->retrans_stamp = 0; 1819 1820 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 1821 1822 DBGUNDO(sk, tp, "Hoe"); 1823 tcp_undo_cwr(sk, 0); 1824 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); 1825 1826 /* So... Do not make Hoe's retransmit yet. 1827 * If the first packet was delayed, the rest 1828 * ones are most probably delayed as well. 1829 */ 1830 failed = 0; 1831 } 1832 return failed; 1833 } 1834 1835 /* Undo during loss recovery after partial ACK. */ 1836 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp) 1837 { 1838 if (tcp_may_undo(tp)) { 1839 struct sk_buff *skb; 1840 sk_stream_for_retrans_queue(skb, sk) { 1841 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1842 } 1843 1844 clear_all_retrans_hints(tp); 1845 1846 DBGUNDO(sk, tp, "partial loss"); 1847 tp->lost_out = 0; 1848 tp->left_out = tp->sacked_out; 1849 tcp_undo_cwr(sk, 1); 1850 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1851 inet_csk(sk)->icsk_retransmits = 0; 1852 tp->undo_marker = 0; 1853 if (!IsReno(tp)) 1854 tcp_set_ca_state(sk, TCP_CA_Open); 1855 return 1; 1856 } 1857 return 0; 1858 } 1859 1860 static inline void tcp_complete_cwr(struct sock *sk) 1861 { 1862 struct tcp_sock *tp = tcp_sk(sk); 1863 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 1864 tp->snd_cwnd_stamp = tcp_time_stamp; 1865 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 1866 } 1867 1868 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag) 1869 { 1870 tp->left_out = tp->sacked_out; 1871 1872 if (tp->retrans_out == 0) 1873 tp->retrans_stamp = 0; 1874 1875 if (flag&FLAG_ECE) 1876 tcp_enter_cwr(sk); 1877 1878 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 1879 int state = TCP_CA_Open; 1880 1881 if (tp->left_out || tp->retrans_out || tp->undo_marker) 1882 state = TCP_CA_Disorder; 1883 1884 if (inet_csk(sk)->icsk_ca_state != state) { 1885 tcp_set_ca_state(sk, state); 1886 tp->high_seq = tp->snd_nxt; 1887 } 1888 tcp_moderate_cwnd(tp); 1889 } else { 1890 tcp_cwnd_down(sk); 1891 } 1892 } 1893 1894 static void tcp_mtup_probe_failed(struct sock *sk) 1895 { 1896 struct inet_connection_sock *icsk = inet_csk(sk); 1897 1898 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 1899 icsk->icsk_mtup.probe_size = 0; 1900 } 1901 1902 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb) 1903 { 1904 struct tcp_sock *tp = tcp_sk(sk); 1905 struct inet_connection_sock *icsk = inet_csk(sk); 1906 1907 /* FIXME: breaks with very large cwnd */ 1908 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1909 tp->snd_cwnd = tp->snd_cwnd * 1910 tcp_mss_to_mtu(sk, tp->mss_cache) / 1911 icsk->icsk_mtup.probe_size; 1912 tp->snd_cwnd_cnt = 0; 1913 tp->snd_cwnd_stamp = tcp_time_stamp; 1914 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 1915 1916 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 1917 icsk->icsk_mtup.probe_size = 0; 1918 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 1919 } 1920 1921 1922 /* Process an event, which can update packets-in-flight not trivially. 1923 * Main goal of this function is to calculate new estimate for left_out, 1924 * taking into account both packets sitting in receiver's buffer and 1925 * packets lost by network. 1926 * 1927 * Besides that it does CWND reduction, when packet loss is detected 1928 * and changes state of machine. 1929 * 1930 * It does _not_ decide what to send, it is made in function 1931 * tcp_xmit_retransmit_queue(). 1932 */ 1933 static void 1934 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una, 1935 int prior_packets, int flag) 1936 { 1937 struct inet_connection_sock *icsk = inet_csk(sk); 1938 struct tcp_sock *tp = tcp_sk(sk); 1939 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP)); 1940 1941 /* Some technical things: 1942 * 1. Reno does not count dupacks (sacked_out) automatically. */ 1943 if (!tp->packets_out) 1944 tp->sacked_out = 0; 1945 /* 2. SACK counts snd_fack in packets inaccurately. */ 1946 if (tp->sacked_out == 0) 1947 tp->fackets_out = 0; 1948 1949 /* Now state machine starts. 1950 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 1951 if (flag&FLAG_ECE) 1952 tp->prior_ssthresh = 0; 1953 1954 /* B. In all the states check for reneging SACKs. */ 1955 if (tp->sacked_out && tcp_check_sack_reneging(sk)) 1956 return; 1957 1958 /* C. Process data loss notification, provided it is valid. */ 1959 if ((flag&FLAG_DATA_LOST) && 1960 before(tp->snd_una, tp->high_seq) && 1961 icsk->icsk_ca_state != TCP_CA_Open && 1962 tp->fackets_out > tp->reordering) { 1963 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq); 1964 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); 1965 } 1966 1967 /* D. Synchronize left_out to current state. */ 1968 tcp_sync_left_out(tp); 1969 1970 /* E. Check state exit conditions. State can be terminated 1971 * when high_seq is ACKed. */ 1972 if (icsk->icsk_ca_state == TCP_CA_Open) { 1973 if (!sysctl_tcp_frto) 1974 BUG_TRAP(tp->retrans_out == 0); 1975 tp->retrans_stamp = 0; 1976 } else if (!before(tp->snd_una, tp->high_seq)) { 1977 switch (icsk->icsk_ca_state) { 1978 case TCP_CA_Loss: 1979 icsk->icsk_retransmits = 0; 1980 if (tcp_try_undo_recovery(sk, tp)) 1981 return; 1982 break; 1983 1984 case TCP_CA_CWR: 1985 /* CWR is to be held something *above* high_seq 1986 * is ACKed for CWR bit to reach receiver. */ 1987 if (tp->snd_una != tp->high_seq) { 1988 tcp_complete_cwr(sk); 1989 tcp_set_ca_state(sk, TCP_CA_Open); 1990 } 1991 break; 1992 1993 case TCP_CA_Disorder: 1994 tcp_try_undo_dsack(sk, tp); 1995 if (!tp->undo_marker || 1996 /* For SACK case do not Open to allow to undo 1997 * catching for all duplicate ACKs. */ 1998 IsReno(tp) || tp->snd_una != tp->high_seq) { 1999 tp->undo_marker = 0; 2000 tcp_set_ca_state(sk, TCP_CA_Open); 2001 } 2002 break; 2003 2004 case TCP_CA_Recovery: 2005 if (IsReno(tp)) 2006 tcp_reset_reno_sack(tp); 2007 if (tcp_try_undo_recovery(sk, tp)) 2008 return; 2009 tcp_complete_cwr(sk); 2010 break; 2011 } 2012 } 2013 2014 /* F. Process state. */ 2015 switch (icsk->icsk_ca_state) { 2016 case TCP_CA_Recovery: 2017 if (prior_snd_una == tp->snd_una) { 2018 if (IsReno(tp) && is_dupack) 2019 tcp_add_reno_sack(sk); 2020 } else { 2021 int acked = prior_packets - tp->packets_out; 2022 if (IsReno(tp)) 2023 tcp_remove_reno_sacks(sk, tp, acked); 2024 is_dupack = tcp_try_undo_partial(sk, tp, acked); 2025 } 2026 break; 2027 case TCP_CA_Loss: 2028 if (flag&FLAG_DATA_ACKED) 2029 icsk->icsk_retransmits = 0; 2030 if (!tcp_try_undo_loss(sk, tp)) { 2031 tcp_moderate_cwnd(tp); 2032 tcp_xmit_retransmit_queue(sk); 2033 return; 2034 } 2035 if (icsk->icsk_ca_state != TCP_CA_Open) 2036 return; 2037 /* Loss is undone; fall through to processing in Open state. */ 2038 default: 2039 if (IsReno(tp)) { 2040 if (tp->snd_una != prior_snd_una) 2041 tcp_reset_reno_sack(tp); 2042 if (is_dupack) 2043 tcp_add_reno_sack(sk); 2044 } 2045 2046 if (icsk->icsk_ca_state == TCP_CA_Disorder) 2047 tcp_try_undo_dsack(sk, tp); 2048 2049 if (!tcp_time_to_recover(sk, tp)) { 2050 tcp_try_to_open(sk, tp, flag); 2051 return; 2052 } 2053 2054 /* MTU probe failure: don't reduce cwnd */ 2055 if (icsk->icsk_ca_state < TCP_CA_CWR && 2056 icsk->icsk_mtup.probe_size && 2057 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2058 tcp_mtup_probe_failed(sk); 2059 /* Restores the reduction we did in tcp_mtup_probe() */ 2060 tp->snd_cwnd++; 2061 tcp_simple_retransmit(sk); 2062 return; 2063 } 2064 2065 /* Otherwise enter Recovery state */ 2066 2067 if (IsReno(tp)) 2068 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); 2069 else 2070 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); 2071 2072 tp->high_seq = tp->snd_nxt; 2073 tp->prior_ssthresh = 0; 2074 tp->undo_marker = tp->snd_una; 2075 tp->undo_retrans = tp->retrans_out; 2076 2077 if (icsk->icsk_ca_state < TCP_CA_CWR) { 2078 if (!(flag&FLAG_ECE)) 2079 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2080 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2081 TCP_ECN_queue_cwr(tp); 2082 } 2083 2084 tp->bytes_acked = 0; 2085 tp->snd_cwnd_cnt = 0; 2086 tcp_set_ca_state(sk, TCP_CA_Recovery); 2087 } 2088 2089 if (is_dupack || tcp_head_timedout(sk, tp)) 2090 tcp_update_scoreboard(sk, tp); 2091 tcp_cwnd_down(sk); 2092 tcp_xmit_retransmit_queue(sk); 2093 } 2094 2095 /* Read draft-ietf-tcplw-high-performance before mucking 2096 * with this code. (Supersedes RFC1323) 2097 */ 2098 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 2099 { 2100 /* RTTM Rule: A TSecr value received in a segment is used to 2101 * update the averaged RTT measurement only if the segment 2102 * acknowledges some new data, i.e., only if it advances the 2103 * left edge of the send window. 2104 * 2105 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2106 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 2107 * 2108 * Changed: reset backoff as soon as we see the first valid sample. 2109 * If we do not, we get strongly overestimated rto. With timestamps 2110 * samples are accepted even from very old segments: f.e., when rtt=1 2111 * increases to 8, we retransmit 5 times and after 8 seconds delayed 2112 * answer arrives rto becomes 120 seconds! If at least one of segments 2113 * in window is lost... Voila. --ANK (010210) 2114 */ 2115 struct tcp_sock *tp = tcp_sk(sk); 2116 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2117 tcp_rtt_estimator(sk, seq_rtt); 2118 tcp_set_rto(sk); 2119 inet_csk(sk)->icsk_backoff = 0; 2120 tcp_bound_rto(sk); 2121 } 2122 2123 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 2124 { 2125 /* We don't have a timestamp. Can only use 2126 * packets that are not retransmitted to determine 2127 * rtt estimates. Also, we must not reset the 2128 * backoff for rto until we get a non-retransmitted 2129 * packet. This allows us to deal with a situation 2130 * where the network delay has increased suddenly. 2131 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 2132 */ 2133 2134 if (flag & FLAG_RETRANS_DATA_ACKED) 2135 return; 2136 2137 tcp_rtt_estimator(sk, seq_rtt); 2138 tcp_set_rto(sk); 2139 inet_csk(sk)->icsk_backoff = 0; 2140 tcp_bound_rto(sk); 2141 } 2142 2143 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 2144 const s32 seq_rtt) 2145 { 2146 const struct tcp_sock *tp = tcp_sk(sk); 2147 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 2148 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2149 tcp_ack_saw_tstamp(sk, flag); 2150 else if (seq_rtt >= 0) 2151 tcp_ack_no_tstamp(sk, seq_rtt, flag); 2152 } 2153 2154 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt, 2155 u32 in_flight, int good) 2156 { 2157 const struct inet_connection_sock *icsk = inet_csk(sk); 2158 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good); 2159 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2160 } 2161 2162 /* Restart timer after forward progress on connection. 2163 * RFC2988 recommends to restart timer to now+rto. 2164 */ 2165 2166 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp) 2167 { 2168 if (!tp->packets_out) { 2169 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2170 } else { 2171 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2172 } 2173 } 2174 2175 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb, 2176 __u32 now, __s32 *seq_rtt) 2177 { 2178 struct tcp_sock *tp = tcp_sk(sk); 2179 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2180 __u32 seq = tp->snd_una; 2181 __u32 packets_acked; 2182 int acked = 0; 2183 2184 /* If we get here, the whole TSO packet has not been 2185 * acked. 2186 */ 2187 BUG_ON(!after(scb->end_seq, seq)); 2188 2189 packets_acked = tcp_skb_pcount(skb); 2190 if (tcp_trim_head(sk, skb, seq - scb->seq)) 2191 return 0; 2192 packets_acked -= tcp_skb_pcount(skb); 2193 2194 if (packets_acked) { 2195 __u8 sacked = scb->sacked; 2196 2197 acked |= FLAG_DATA_ACKED; 2198 if (sacked) { 2199 if (sacked & TCPCB_RETRANS) { 2200 if (sacked & TCPCB_SACKED_RETRANS) 2201 tp->retrans_out -= packets_acked; 2202 acked |= FLAG_RETRANS_DATA_ACKED; 2203 *seq_rtt = -1; 2204 } else if (*seq_rtt < 0) 2205 *seq_rtt = now - scb->when; 2206 if (sacked & TCPCB_SACKED_ACKED) 2207 tp->sacked_out -= packets_acked; 2208 if (sacked & TCPCB_LOST) 2209 tp->lost_out -= packets_acked; 2210 if (sacked & TCPCB_URG) { 2211 if (tp->urg_mode && 2212 !before(seq, tp->snd_up)) 2213 tp->urg_mode = 0; 2214 } 2215 } else if (*seq_rtt < 0) 2216 *seq_rtt = now - scb->when; 2217 2218 if (tp->fackets_out) { 2219 __u32 dval = min(tp->fackets_out, packets_acked); 2220 tp->fackets_out -= dval; 2221 } 2222 tp->packets_out -= packets_acked; 2223 2224 BUG_ON(tcp_skb_pcount(skb) == 0); 2225 BUG_ON(!before(scb->seq, scb->end_seq)); 2226 } 2227 2228 return acked; 2229 } 2230 2231 static u32 tcp_usrtt(const struct sk_buff *skb) 2232 { 2233 struct timeval tv, now; 2234 2235 do_gettimeofday(&now); 2236 skb_get_timestamp(skb, &tv); 2237 return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec); 2238 } 2239 2240 /* Remove acknowledged frames from the retransmission queue. */ 2241 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p) 2242 { 2243 struct tcp_sock *tp = tcp_sk(sk); 2244 const struct inet_connection_sock *icsk = inet_csk(sk); 2245 struct sk_buff *skb; 2246 __u32 now = tcp_time_stamp; 2247 int acked = 0; 2248 __s32 seq_rtt = -1; 2249 u32 pkts_acked = 0; 2250 void (*rtt_sample)(struct sock *sk, u32 usrtt) 2251 = icsk->icsk_ca_ops->rtt_sample; 2252 2253 while ((skb = skb_peek(&sk->sk_write_queue)) && 2254 skb != sk->sk_send_head) { 2255 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2256 __u8 sacked = scb->sacked; 2257 2258 /* If our packet is before the ack sequence we can 2259 * discard it as it's confirmed to have arrived at 2260 * the other end. 2261 */ 2262 if (after(scb->end_seq, tp->snd_una)) { 2263 if (tcp_skb_pcount(skb) > 1 && 2264 after(tp->snd_una, scb->seq)) 2265 acked |= tcp_tso_acked(sk, skb, 2266 now, &seq_rtt); 2267 break; 2268 } 2269 2270 /* Initial outgoing SYN's get put onto the write_queue 2271 * just like anything else we transmit. It is not 2272 * true data, and if we misinform our callers that 2273 * this ACK acks real data, we will erroneously exit 2274 * connection startup slow start one packet too 2275 * quickly. This is severely frowned upon behavior. 2276 */ 2277 if (!(scb->flags & TCPCB_FLAG_SYN)) { 2278 acked |= FLAG_DATA_ACKED; 2279 ++pkts_acked; 2280 } else { 2281 acked |= FLAG_SYN_ACKED; 2282 tp->retrans_stamp = 0; 2283 } 2284 2285 /* MTU probing checks */ 2286 if (icsk->icsk_mtup.probe_size) { 2287 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) { 2288 tcp_mtup_probe_success(sk, skb); 2289 } 2290 } 2291 2292 if (sacked) { 2293 if (sacked & TCPCB_RETRANS) { 2294 if(sacked & TCPCB_SACKED_RETRANS) 2295 tp->retrans_out -= tcp_skb_pcount(skb); 2296 acked |= FLAG_RETRANS_DATA_ACKED; 2297 seq_rtt = -1; 2298 } else if (seq_rtt < 0) { 2299 seq_rtt = now - scb->when; 2300 if (rtt_sample) 2301 (*rtt_sample)(sk, tcp_usrtt(skb)); 2302 } 2303 if (sacked & TCPCB_SACKED_ACKED) 2304 tp->sacked_out -= tcp_skb_pcount(skb); 2305 if (sacked & TCPCB_LOST) 2306 tp->lost_out -= tcp_skb_pcount(skb); 2307 if (sacked & TCPCB_URG) { 2308 if (tp->urg_mode && 2309 !before(scb->end_seq, tp->snd_up)) 2310 tp->urg_mode = 0; 2311 } 2312 } else if (seq_rtt < 0) { 2313 seq_rtt = now - scb->when; 2314 if (rtt_sample) 2315 (*rtt_sample)(sk, tcp_usrtt(skb)); 2316 } 2317 tcp_dec_pcount_approx(&tp->fackets_out, skb); 2318 tcp_packets_out_dec(tp, skb); 2319 __skb_unlink(skb, &sk->sk_write_queue); 2320 sk_stream_free_skb(sk, skb); 2321 clear_all_retrans_hints(tp); 2322 } 2323 2324 if (acked&FLAG_ACKED) { 2325 tcp_ack_update_rtt(sk, acked, seq_rtt); 2326 tcp_ack_packets_out(sk, tp); 2327 2328 if (icsk->icsk_ca_ops->pkts_acked) 2329 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked); 2330 } 2331 2332 #if FASTRETRANS_DEBUG > 0 2333 BUG_TRAP((int)tp->sacked_out >= 0); 2334 BUG_TRAP((int)tp->lost_out >= 0); 2335 BUG_TRAP((int)tp->retrans_out >= 0); 2336 if (!tp->packets_out && tp->rx_opt.sack_ok) { 2337 const struct inet_connection_sock *icsk = inet_csk(sk); 2338 if (tp->lost_out) { 2339 printk(KERN_DEBUG "Leak l=%u %d\n", 2340 tp->lost_out, icsk->icsk_ca_state); 2341 tp->lost_out = 0; 2342 } 2343 if (tp->sacked_out) { 2344 printk(KERN_DEBUG "Leak s=%u %d\n", 2345 tp->sacked_out, icsk->icsk_ca_state); 2346 tp->sacked_out = 0; 2347 } 2348 if (tp->retrans_out) { 2349 printk(KERN_DEBUG "Leak r=%u %d\n", 2350 tp->retrans_out, icsk->icsk_ca_state); 2351 tp->retrans_out = 0; 2352 } 2353 } 2354 #endif 2355 *seq_rtt_p = seq_rtt; 2356 return acked; 2357 } 2358 2359 static void tcp_ack_probe(struct sock *sk) 2360 { 2361 const struct tcp_sock *tp = tcp_sk(sk); 2362 struct inet_connection_sock *icsk = inet_csk(sk); 2363 2364 /* Was it a usable window open? */ 2365 2366 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq, 2367 tp->snd_una + tp->snd_wnd)) { 2368 icsk->icsk_backoff = 0; 2369 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 2370 /* Socket must be waked up by subsequent tcp_data_snd_check(). 2371 * This function is not for random using! 2372 */ 2373 } else { 2374 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2375 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2376 TCP_RTO_MAX); 2377 } 2378 } 2379 2380 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 2381 { 2382 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 2383 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 2384 } 2385 2386 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 2387 { 2388 const struct tcp_sock *tp = tcp_sk(sk); 2389 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 2390 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 2391 } 2392 2393 /* Check that window update is acceptable. 2394 * The function assumes that snd_una<=ack<=snd_next. 2395 */ 2396 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack, 2397 const u32 ack_seq, const u32 nwin) 2398 { 2399 return (after(ack, tp->snd_una) || 2400 after(ack_seq, tp->snd_wl1) || 2401 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 2402 } 2403 2404 /* Update our send window. 2405 * 2406 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 2407 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 2408 */ 2409 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp, 2410 struct sk_buff *skb, u32 ack, u32 ack_seq) 2411 { 2412 int flag = 0; 2413 u32 nwin = ntohs(skb->h.th->window); 2414 2415 if (likely(!skb->h.th->syn)) 2416 nwin <<= tp->rx_opt.snd_wscale; 2417 2418 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 2419 flag |= FLAG_WIN_UPDATE; 2420 tcp_update_wl(tp, ack, ack_seq); 2421 2422 if (tp->snd_wnd != nwin) { 2423 tp->snd_wnd = nwin; 2424 2425 /* Note, it is the only place, where 2426 * fast path is recovered for sending TCP. 2427 */ 2428 tp->pred_flags = 0; 2429 tcp_fast_path_check(sk, tp); 2430 2431 if (nwin > tp->max_window) { 2432 tp->max_window = nwin; 2433 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 2434 } 2435 } 2436 } 2437 2438 tp->snd_una = ack; 2439 2440 return flag; 2441 } 2442 2443 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una) 2444 { 2445 struct tcp_sock *tp = tcp_sk(sk); 2446 2447 tcp_sync_left_out(tp); 2448 2449 if (tp->snd_una == prior_snd_una || 2450 !before(tp->snd_una, tp->frto_highmark)) { 2451 /* RTO was caused by loss, start retransmitting in 2452 * go-back-N slow start 2453 */ 2454 tcp_enter_frto_loss(sk); 2455 return; 2456 } 2457 2458 if (tp->frto_counter == 1) { 2459 /* First ACK after RTO advances the window: allow two new 2460 * segments out. 2461 */ 2462 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 2463 } else { 2464 /* Also the second ACK after RTO advances the window. 2465 * The RTO was likely spurious. Reduce cwnd and continue 2466 * in congestion avoidance 2467 */ 2468 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2469 tcp_moderate_cwnd(tp); 2470 } 2471 2472 /* F-RTO affects on two new ACKs following RTO. 2473 * At latest on third ACK the TCP behavior is back to normal. 2474 */ 2475 tp->frto_counter = (tp->frto_counter + 1) % 3; 2476 } 2477 2478 /* This routine deals with incoming acks, but not outgoing ones. */ 2479 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 2480 { 2481 struct inet_connection_sock *icsk = inet_csk(sk); 2482 struct tcp_sock *tp = tcp_sk(sk); 2483 u32 prior_snd_una = tp->snd_una; 2484 u32 ack_seq = TCP_SKB_CB(skb)->seq; 2485 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2486 u32 prior_in_flight; 2487 s32 seq_rtt; 2488 int prior_packets; 2489 2490 /* If the ack is newer than sent or older than previous acks 2491 * then we can probably ignore it. 2492 */ 2493 if (after(ack, tp->snd_nxt)) 2494 goto uninteresting_ack; 2495 2496 if (before(ack, prior_snd_una)) 2497 goto old_ack; 2498 2499 if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR) 2500 tp->bytes_acked += ack - prior_snd_una; 2501 2502 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 2503 /* Window is constant, pure forward advance. 2504 * No more checks are required. 2505 * Note, we use the fact that SND.UNA>=SND.WL2. 2506 */ 2507 tcp_update_wl(tp, ack, ack_seq); 2508 tp->snd_una = ack; 2509 flag |= FLAG_WIN_UPDATE; 2510 2511 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 2512 2513 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); 2514 } else { 2515 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 2516 flag |= FLAG_DATA; 2517 else 2518 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); 2519 2520 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq); 2521 2522 if (TCP_SKB_CB(skb)->sacked) 2523 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2524 2525 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th)) 2526 flag |= FLAG_ECE; 2527 2528 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 2529 } 2530 2531 /* We passed data and got it acked, remove any soft error 2532 * log. Something worked... 2533 */ 2534 sk->sk_err_soft = 0; 2535 tp->rcv_tstamp = tcp_time_stamp; 2536 prior_packets = tp->packets_out; 2537 if (!prior_packets) 2538 goto no_queue; 2539 2540 prior_in_flight = tcp_packets_in_flight(tp); 2541 2542 /* See if we can take anything off of the retransmit queue. */ 2543 flag |= tcp_clean_rtx_queue(sk, &seq_rtt); 2544 2545 if (tp->frto_counter) 2546 tcp_process_frto(sk, prior_snd_una); 2547 2548 if (tcp_ack_is_dubious(sk, flag)) { 2549 /* Advance CWND, if state allows this. */ 2550 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag)) 2551 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0); 2552 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag); 2553 } else { 2554 if ((flag & FLAG_DATA_ACKED)) 2555 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1); 2556 } 2557 2558 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP)) 2559 dst_confirm(sk->sk_dst_cache); 2560 2561 return 1; 2562 2563 no_queue: 2564 icsk->icsk_probes_out = 0; 2565 2566 /* If this ack opens up a zero window, clear backoff. It was 2567 * being used to time the probes, and is probably far higher than 2568 * it needs to be for normal retransmission. 2569 */ 2570 if (sk->sk_send_head) 2571 tcp_ack_probe(sk); 2572 return 1; 2573 2574 old_ack: 2575 if (TCP_SKB_CB(skb)->sacked) 2576 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2577 2578 uninteresting_ack: 2579 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 2580 return 0; 2581 } 2582 2583 2584 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 2585 * But, this can also be called on packets in the established flow when 2586 * the fast version below fails. 2587 */ 2588 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab) 2589 { 2590 unsigned char *ptr; 2591 struct tcphdr *th = skb->h.th; 2592 int length=(th->doff*4)-sizeof(struct tcphdr); 2593 2594 ptr = (unsigned char *)(th + 1); 2595 opt_rx->saw_tstamp = 0; 2596 2597 while(length>0) { 2598 int opcode=*ptr++; 2599 int opsize; 2600 2601 switch (opcode) { 2602 case TCPOPT_EOL: 2603 return; 2604 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 2605 length--; 2606 continue; 2607 default: 2608 opsize=*ptr++; 2609 if (opsize < 2) /* "silly options" */ 2610 return; 2611 if (opsize > length) 2612 return; /* don't parse partial options */ 2613 switch(opcode) { 2614 case TCPOPT_MSS: 2615 if(opsize==TCPOLEN_MSS && th->syn && !estab) { 2616 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr)); 2617 if (in_mss) { 2618 if (opt_rx->user_mss && opt_rx->user_mss < in_mss) 2619 in_mss = opt_rx->user_mss; 2620 opt_rx->mss_clamp = in_mss; 2621 } 2622 } 2623 break; 2624 case TCPOPT_WINDOW: 2625 if(opsize==TCPOLEN_WINDOW && th->syn && !estab) 2626 if (sysctl_tcp_window_scaling) { 2627 __u8 snd_wscale = *(__u8 *) ptr; 2628 opt_rx->wscale_ok = 1; 2629 if (snd_wscale > 14) { 2630 if(net_ratelimit()) 2631 printk(KERN_INFO "tcp_parse_options: Illegal window " 2632 "scaling value %d >14 received.\n", 2633 snd_wscale); 2634 snd_wscale = 14; 2635 } 2636 opt_rx->snd_wscale = snd_wscale; 2637 } 2638 break; 2639 case TCPOPT_TIMESTAMP: 2640 if(opsize==TCPOLEN_TIMESTAMP) { 2641 if ((estab && opt_rx->tstamp_ok) || 2642 (!estab && sysctl_tcp_timestamps)) { 2643 opt_rx->saw_tstamp = 1; 2644 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr)); 2645 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4))); 2646 } 2647 } 2648 break; 2649 case TCPOPT_SACK_PERM: 2650 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) { 2651 if (sysctl_tcp_sack) { 2652 opt_rx->sack_ok = 1; 2653 tcp_sack_reset(opt_rx); 2654 } 2655 } 2656 break; 2657 2658 case TCPOPT_SACK: 2659 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 2660 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 2661 opt_rx->sack_ok) { 2662 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 2663 } 2664 }; 2665 ptr+=opsize-2; 2666 length-=opsize; 2667 }; 2668 } 2669 } 2670 2671 /* Fast parse options. This hopes to only see timestamps. 2672 * If it is wrong it falls back on tcp_parse_options(). 2673 */ 2674 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 2675 struct tcp_sock *tp) 2676 { 2677 if (th->doff == sizeof(struct tcphdr)>>2) { 2678 tp->rx_opt.saw_tstamp = 0; 2679 return 0; 2680 } else if (tp->rx_opt.tstamp_ok && 2681 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 2682 __u32 *ptr = (__u32 *)(th + 1); 2683 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 2684 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 2685 tp->rx_opt.saw_tstamp = 1; 2686 ++ptr; 2687 tp->rx_opt.rcv_tsval = ntohl(*ptr); 2688 ++ptr; 2689 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 2690 return 1; 2691 } 2692 } 2693 tcp_parse_options(skb, &tp->rx_opt, 1); 2694 return 1; 2695 } 2696 2697 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 2698 { 2699 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 2700 tp->rx_opt.ts_recent_stamp = xtime.tv_sec; 2701 } 2702 2703 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 2704 { 2705 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 2706 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 2707 * extra check below makes sure this can only happen 2708 * for pure ACK frames. -DaveM 2709 * 2710 * Not only, also it occurs for expired timestamps. 2711 */ 2712 2713 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 2714 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 2715 tcp_store_ts_recent(tp); 2716 } 2717 } 2718 2719 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 2720 * 2721 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 2722 * it can pass through stack. So, the following predicate verifies that 2723 * this segment is not used for anything but congestion avoidance or 2724 * fast retransmit. Moreover, we even are able to eliminate most of such 2725 * second order effects, if we apply some small "replay" window (~RTO) 2726 * to timestamp space. 2727 * 2728 * All these measures still do not guarantee that we reject wrapped ACKs 2729 * on networks with high bandwidth, when sequence space is recycled fastly, 2730 * but it guarantees that such events will be very rare and do not affect 2731 * connection seriously. This doesn't look nice, but alas, PAWS is really 2732 * buggy extension. 2733 * 2734 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 2735 * states that events when retransmit arrives after original data are rare. 2736 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 2737 * the biggest problem on large power networks even with minor reordering. 2738 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 2739 * up to bandwidth of 18Gigabit/sec. 8) ] 2740 */ 2741 2742 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 2743 { 2744 struct tcp_sock *tp = tcp_sk(sk); 2745 struct tcphdr *th = skb->h.th; 2746 u32 seq = TCP_SKB_CB(skb)->seq; 2747 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2748 2749 return (/* 1. Pure ACK with correct sequence number. */ 2750 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 2751 2752 /* 2. ... and duplicate ACK. */ 2753 ack == tp->snd_una && 2754 2755 /* 3. ... and does not update window. */ 2756 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 2757 2758 /* 4. ... and sits in replay window. */ 2759 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 2760 } 2761 2762 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb) 2763 { 2764 const struct tcp_sock *tp = tcp_sk(sk); 2765 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 2766 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 2767 !tcp_disordered_ack(sk, skb)); 2768 } 2769 2770 /* Check segment sequence number for validity. 2771 * 2772 * Segment controls are considered valid, if the segment 2773 * fits to the window after truncation to the window. Acceptability 2774 * of data (and SYN, FIN, of course) is checked separately. 2775 * See tcp_data_queue(), for example. 2776 * 2777 * Also, controls (RST is main one) are accepted using RCV.WUP instead 2778 * of RCV.NXT. Peer still did not advance his SND.UNA when we 2779 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 2780 * (borrowed from freebsd) 2781 */ 2782 2783 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 2784 { 2785 return !before(end_seq, tp->rcv_wup) && 2786 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 2787 } 2788 2789 /* When we get a reset we do this. */ 2790 static void tcp_reset(struct sock *sk) 2791 { 2792 /* We want the right error as BSD sees it (and indeed as we do). */ 2793 switch (sk->sk_state) { 2794 case TCP_SYN_SENT: 2795 sk->sk_err = ECONNREFUSED; 2796 break; 2797 case TCP_CLOSE_WAIT: 2798 sk->sk_err = EPIPE; 2799 break; 2800 case TCP_CLOSE: 2801 return; 2802 default: 2803 sk->sk_err = ECONNRESET; 2804 } 2805 2806 if (!sock_flag(sk, SOCK_DEAD)) 2807 sk->sk_error_report(sk); 2808 2809 tcp_done(sk); 2810 } 2811 2812 /* 2813 * Process the FIN bit. This now behaves as it is supposed to work 2814 * and the FIN takes effect when it is validly part of sequence 2815 * space. Not before when we get holes. 2816 * 2817 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 2818 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 2819 * TIME-WAIT) 2820 * 2821 * If we are in FINWAIT-1, a received FIN indicates simultaneous 2822 * close and we go into CLOSING (and later onto TIME-WAIT) 2823 * 2824 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 2825 */ 2826 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 2827 { 2828 struct tcp_sock *tp = tcp_sk(sk); 2829 2830 inet_csk_schedule_ack(sk); 2831 2832 sk->sk_shutdown |= RCV_SHUTDOWN; 2833 sock_set_flag(sk, SOCK_DONE); 2834 2835 switch (sk->sk_state) { 2836 case TCP_SYN_RECV: 2837 case TCP_ESTABLISHED: 2838 /* Move to CLOSE_WAIT */ 2839 tcp_set_state(sk, TCP_CLOSE_WAIT); 2840 inet_csk(sk)->icsk_ack.pingpong = 1; 2841 break; 2842 2843 case TCP_CLOSE_WAIT: 2844 case TCP_CLOSING: 2845 /* Received a retransmission of the FIN, do 2846 * nothing. 2847 */ 2848 break; 2849 case TCP_LAST_ACK: 2850 /* RFC793: Remain in the LAST-ACK state. */ 2851 break; 2852 2853 case TCP_FIN_WAIT1: 2854 /* This case occurs when a simultaneous close 2855 * happens, we must ack the received FIN and 2856 * enter the CLOSING state. 2857 */ 2858 tcp_send_ack(sk); 2859 tcp_set_state(sk, TCP_CLOSING); 2860 break; 2861 case TCP_FIN_WAIT2: 2862 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 2863 tcp_send_ack(sk); 2864 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 2865 break; 2866 default: 2867 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 2868 * cases we should never reach this piece of code. 2869 */ 2870 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 2871 __FUNCTION__, sk->sk_state); 2872 break; 2873 }; 2874 2875 /* It _is_ possible, that we have something out-of-order _after_ FIN. 2876 * Probably, we should reset in this case. For now drop them. 2877 */ 2878 __skb_queue_purge(&tp->out_of_order_queue); 2879 if (tp->rx_opt.sack_ok) 2880 tcp_sack_reset(&tp->rx_opt); 2881 sk_stream_mem_reclaim(sk); 2882 2883 if (!sock_flag(sk, SOCK_DEAD)) { 2884 sk->sk_state_change(sk); 2885 2886 /* Do not send POLL_HUP for half duplex close. */ 2887 if (sk->sk_shutdown == SHUTDOWN_MASK || 2888 sk->sk_state == TCP_CLOSE) 2889 sk_wake_async(sk, 1, POLL_HUP); 2890 else 2891 sk_wake_async(sk, 1, POLL_IN); 2892 } 2893 } 2894 2895 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq) 2896 { 2897 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 2898 if (before(seq, sp->start_seq)) 2899 sp->start_seq = seq; 2900 if (after(end_seq, sp->end_seq)) 2901 sp->end_seq = end_seq; 2902 return 1; 2903 } 2904 return 0; 2905 } 2906 2907 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) 2908 { 2909 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 2910 if (before(seq, tp->rcv_nxt)) 2911 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); 2912 else 2913 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); 2914 2915 tp->rx_opt.dsack = 1; 2916 tp->duplicate_sack[0].start_seq = seq; 2917 tp->duplicate_sack[0].end_seq = end_seq; 2918 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok); 2919 } 2920 } 2921 2922 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) 2923 { 2924 if (!tp->rx_opt.dsack) 2925 tcp_dsack_set(tp, seq, end_seq); 2926 else 2927 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 2928 } 2929 2930 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 2931 { 2932 struct tcp_sock *tp = tcp_sk(sk); 2933 2934 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 2935 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 2936 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 2937 tcp_enter_quickack_mode(sk); 2938 2939 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 2940 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2941 2942 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 2943 end_seq = tp->rcv_nxt; 2944 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); 2945 } 2946 } 2947 2948 tcp_send_ack(sk); 2949 } 2950 2951 /* These routines update the SACK block as out-of-order packets arrive or 2952 * in-order packets close up the sequence space. 2953 */ 2954 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 2955 { 2956 int this_sack; 2957 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2958 struct tcp_sack_block *swalk = sp+1; 2959 2960 /* See if the recent change to the first SACK eats into 2961 * or hits the sequence space of other SACK blocks, if so coalesce. 2962 */ 2963 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) { 2964 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 2965 int i; 2966 2967 /* Zap SWALK, by moving every further SACK up by one slot. 2968 * Decrease num_sacks. 2969 */ 2970 tp->rx_opt.num_sacks--; 2971 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 2972 for(i=this_sack; i < tp->rx_opt.num_sacks; i++) 2973 sp[i] = sp[i+1]; 2974 continue; 2975 } 2976 this_sack++, swalk++; 2977 } 2978 } 2979 2980 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2) 2981 { 2982 __u32 tmp; 2983 2984 tmp = sack1->start_seq; 2985 sack1->start_seq = sack2->start_seq; 2986 sack2->start_seq = tmp; 2987 2988 tmp = sack1->end_seq; 2989 sack1->end_seq = sack2->end_seq; 2990 sack2->end_seq = tmp; 2991 } 2992 2993 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 2994 { 2995 struct tcp_sock *tp = tcp_sk(sk); 2996 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2997 int cur_sacks = tp->rx_opt.num_sacks; 2998 int this_sack; 2999 3000 if (!cur_sacks) 3001 goto new_sack; 3002 3003 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) { 3004 if (tcp_sack_extend(sp, seq, end_seq)) { 3005 /* Rotate this_sack to the first one. */ 3006 for (; this_sack>0; this_sack--, sp--) 3007 tcp_sack_swap(sp, sp-1); 3008 if (cur_sacks > 1) 3009 tcp_sack_maybe_coalesce(tp); 3010 return; 3011 } 3012 } 3013 3014 /* Could not find an adjacent existing SACK, build a new one, 3015 * put it at the front, and shift everyone else down. We 3016 * always know there is at least one SACK present already here. 3017 * 3018 * If the sack array is full, forget about the last one. 3019 */ 3020 if (this_sack >= 4) { 3021 this_sack--; 3022 tp->rx_opt.num_sacks--; 3023 sp--; 3024 } 3025 for(; this_sack > 0; this_sack--, sp--) 3026 *sp = *(sp-1); 3027 3028 new_sack: 3029 /* Build the new head SACK, and we're done. */ 3030 sp->start_seq = seq; 3031 sp->end_seq = end_seq; 3032 tp->rx_opt.num_sacks++; 3033 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3034 } 3035 3036 /* RCV.NXT advances, some SACKs should be eaten. */ 3037 3038 static void tcp_sack_remove(struct tcp_sock *tp) 3039 { 3040 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3041 int num_sacks = tp->rx_opt.num_sacks; 3042 int this_sack; 3043 3044 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 3045 if (skb_queue_empty(&tp->out_of_order_queue)) { 3046 tp->rx_opt.num_sacks = 0; 3047 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 3048 return; 3049 } 3050 3051 for(this_sack = 0; this_sack < num_sacks; ) { 3052 /* Check if the start of the sack is covered by RCV.NXT. */ 3053 if (!before(tp->rcv_nxt, sp->start_seq)) { 3054 int i; 3055 3056 /* RCV.NXT must cover all the block! */ 3057 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); 3058 3059 /* Zap this SACK, by moving forward any other SACKS. */ 3060 for (i=this_sack+1; i < num_sacks; i++) 3061 tp->selective_acks[i-1] = tp->selective_acks[i]; 3062 num_sacks--; 3063 continue; 3064 } 3065 this_sack++; 3066 sp++; 3067 } 3068 if (num_sacks != tp->rx_opt.num_sacks) { 3069 tp->rx_opt.num_sacks = num_sacks; 3070 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3071 } 3072 } 3073 3074 /* This one checks to see if we can put data from the 3075 * out_of_order queue into the receive_queue. 3076 */ 3077 static void tcp_ofo_queue(struct sock *sk) 3078 { 3079 struct tcp_sock *tp = tcp_sk(sk); 3080 __u32 dsack_high = tp->rcv_nxt; 3081 struct sk_buff *skb; 3082 3083 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 3084 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 3085 break; 3086 3087 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 3088 __u32 dsack = dsack_high; 3089 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 3090 dsack_high = TCP_SKB_CB(skb)->end_seq; 3091 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); 3092 } 3093 3094 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3095 SOCK_DEBUG(sk, "ofo packet was already received \n"); 3096 __skb_unlink(skb, &tp->out_of_order_queue); 3097 __kfree_skb(skb); 3098 continue; 3099 } 3100 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 3101 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3102 TCP_SKB_CB(skb)->end_seq); 3103 3104 __skb_unlink(skb, &tp->out_of_order_queue); 3105 __skb_queue_tail(&sk->sk_receive_queue, skb); 3106 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3107 if(skb->h.th->fin) 3108 tcp_fin(skb, sk, skb->h.th); 3109 } 3110 } 3111 3112 static int tcp_prune_queue(struct sock *sk); 3113 3114 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 3115 { 3116 struct tcphdr *th = skb->h.th; 3117 struct tcp_sock *tp = tcp_sk(sk); 3118 int eaten = -1; 3119 3120 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 3121 goto drop; 3122 3123 __skb_pull(skb, th->doff*4); 3124 3125 TCP_ECN_accept_cwr(tp, skb); 3126 3127 if (tp->rx_opt.dsack) { 3128 tp->rx_opt.dsack = 0; 3129 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, 3130 4 - tp->rx_opt.tstamp_ok); 3131 } 3132 3133 /* Queue data for delivery to the user. 3134 * Packets in sequence go to the receive queue. 3135 * Out of sequence packets to the out_of_order_queue. 3136 */ 3137 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3138 if (tcp_receive_window(tp) == 0) 3139 goto out_of_window; 3140 3141 /* Ok. In sequence. In window. */ 3142 if (tp->ucopy.task == current && 3143 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 3144 sock_owned_by_user(sk) && !tp->urg_data) { 3145 int chunk = min_t(unsigned int, skb->len, 3146 tp->ucopy.len); 3147 3148 __set_current_state(TASK_RUNNING); 3149 3150 local_bh_enable(); 3151 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 3152 tp->ucopy.len -= chunk; 3153 tp->copied_seq += chunk; 3154 eaten = (chunk == skb->len && !th->fin); 3155 tcp_rcv_space_adjust(sk); 3156 } 3157 local_bh_disable(); 3158 } 3159 3160 if (eaten <= 0) { 3161 queue_and_out: 3162 if (eaten < 0 && 3163 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3164 !sk_stream_rmem_schedule(sk, skb))) { 3165 if (tcp_prune_queue(sk) < 0 || 3166 !sk_stream_rmem_schedule(sk, skb)) 3167 goto drop; 3168 } 3169 sk_stream_set_owner_r(skb, sk); 3170 __skb_queue_tail(&sk->sk_receive_queue, skb); 3171 } 3172 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3173 if(skb->len) 3174 tcp_event_data_recv(sk, tp, skb); 3175 if(th->fin) 3176 tcp_fin(skb, sk, th); 3177 3178 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3179 tcp_ofo_queue(sk); 3180 3181 /* RFC2581. 4.2. SHOULD send immediate ACK, when 3182 * gap in queue is filled. 3183 */ 3184 if (skb_queue_empty(&tp->out_of_order_queue)) 3185 inet_csk(sk)->icsk_ack.pingpong = 0; 3186 } 3187 3188 if (tp->rx_opt.num_sacks) 3189 tcp_sack_remove(tp); 3190 3191 tcp_fast_path_check(sk, tp); 3192 3193 if (eaten > 0) 3194 __kfree_skb(skb); 3195 else if (!sock_flag(sk, SOCK_DEAD)) 3196 sk->sk_data_ready(sk, 0); 3197 return; 3198 } 3199 3200 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3201 /* A retransmit, 2nd most common case. Force an immediate ack. */ 3202 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3203 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3204 3205 out_of_window: 3206 tcp_enter_quickack_mode(sk); 3207 inet_csk_schedule_ack(sk); 3208 drop: 3209 __kfree_skb(skb); 3210 return; 3211 } 3212 3213 /* Out of window. F.e. zero window probe. */ 3214 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 3215 goto out_of_window; 3216 3217 tcp_enter_quickack_mode(sk); 3218 3219 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3220 /* Partial packet, seq < rcv_next < end_seq */ 3221 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 3222 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3223 TCP_SKB_CB(skb)->end_seq); 3224 3225 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 3226 3227 /* If window is closed, drop tail of packet. But after 3228 * remembering D-SACK for its head made in previous line. 3229 */ 3230 if (!tcp_receive_window(tp)) 3231 goto out_of_window; 3232 goto queue_and_out; 3233 } 3234 3235 TCP_ECN_check_ce(tp, skb); 3236 3237 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3238 !sk_stream_rmem_schedule(sk, skb)) { 3239 if (tcp_prune_queue(sk) < 0 || 3240 !sk_stream_rmem_schedule(sk, skb)) 3241 goto drop; 3242 } 3243 3244 /* Disable header prediction. */ 3245 tp->pred_flags = 0; 3246 inet_csk_schedule_ack(sk); 3247 3248 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 3249 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3250 3251 sk_stream_set_owner_r(skb, sk); 3252 3253 if (!skb_peek(&tp->out_of_order_queue)) { 3254 /* Initial out of order segment, build 1 SACK. */ 3255 if (tp->rx_opt.sack_ok) { 3256 tp->rx_opt.num_sacks = 1; 3257 tp->rx_opt.dsack = 0; 3258 tp->rx_opt.eff_sacks = 1; 3259 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 3260 tp->selective_acks[0].end_seq = 3261 TCP_SKB_CB(skb)->end_seq; 3262 } 3263 __skb_queue_head(&tp->out_of_order_queue,skb); 3264 } else { 3265 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 3266 u32 seq = TCP_SKB_CB(skb)->seq; 3267 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3268 3269 if (seq == TCP_SKB_CB(skb1)->end_seq) { 3270 __skb_append(skb1, skb, &tp->out_of_order_queue); 3271 3272 if (!tp->rx_opt.num_sacks || 3273 tp->selective_acks[0].end_seq != seq) 3274 goto add_sack; 3275 3276 /* Common case: data arrive in order after hole. */ 3277 tp->selective_acks[0].end_seq = end_seq; 3278 return; 3279 } 3280 3281 /* Find place to insert this segment. */ 3282 do { 3283 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 3284 break; 3285 } while ((skb1 = skb1->prev) != 3286 (struct sk_buff*)&tp->out_of_order_queue); 3287 3288 /* Do skb overlap to previous one? */ 3289 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue && 3290 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 3291 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3292 /* All the bits are present. Drop. */ 3293 __kfree_skb(skb); 3294 tcp_dsack_set(tp, seq, end_seq); 3295 goto add_sack; 3296 } 3297 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 3298 /* Partial overlap. */ 3299 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq); 3300 } else { 3301 skb1 = skb1->prev; 3302 } 3303 } 3304 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); 3305 3306 /* And clean segments covered by new one as whole. */ 3307 while ((skb1 = skb->next) != 3308 (struct sk_buff*)&tp->out_of_order_queue && 3309 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 3310 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3311 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq); 3312 break; 3313 } 3314 __skb_unlink(skb1, &tp->out_of_order_queue); 3315 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq); 3316 __kfree_skb(skb1); 3317 } 3318 3319 add_sack: 3320 if (tp->rx_opt.sack_ok) 3321 tcp_sack_new_ofo_skb(sk, seq, end_seq); 3322 } 3323 } 3324 3325 /* Collapse contiguous sequence of skbs head..tail with 3326 * sequence numbers start..end. 3327 * Segments with FIN/SYN are not collapsed (only because this 3328 * simplifies code) 3329 */ 3330 static void 3331 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 3332 struct sk_buff *head, struct sk_buff *tail, 3333 u32 start, u32 end) 3334 { 3335 struct sk_buff *skb; 3336 3337 /* First, check that queue is collapsible and find 3338 * the point where collapsing can be useful. */ 3339 for (skb = head; skb != tail; ) { 3340 /* No new bits? It is possible on ofo queue. */ 3341 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3342 struct sk_buff *next = skb->next; 3343 __skb_unlink(skb, list); 3344 __kfree_skb(skb); 3345 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3346 skb = next; 3347 continue; 3348 } 3349 3350 /* The first skb to collapse is: 3351 * - not SYN/FIN and 3352 * - bloated or contains data before "start" or 3353 * overlaps to the next one. 3354 */ 3355 if (!skb->h.th->syn && !skb->h.th->fin && 3356 (tcp_win_from_space(skb->truesize) > skb->len || 3357 before(TCP_SKB_CB(skb)->seq, start) || 3358 (skb->next != tail && 3359 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 3360 break; 3361 3362 /* Decided to skip this, advance start seq. */ 3363 start = TCP_SKB_CB(skb)->end_seq; 3364 skb = skb->next; 3365 } 3366 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3367 return; 3368 3369 while (before(start, end)) { 3370 struct sk_buff *nskb; 3371 int header = skb_headroom(skb); 3372 int copy = SKB_MAX_ORDER(header, 0); 3373 3374 /* Too big header? This can happen with IPv6. */ 3375 if (copy < 0) 3376 return; 3377 if (end-start < copy) 3378 copy = end-start; 3379 nskb = alloc_skb(copy+header, GFP_ATOMIC); 3380 if (!nskb) 3381 return; 3382 skb_reserve(nskb, header); 3383 memcpy(nskb->head, skb->head, header); 3384 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head); 3385 nskb->h.raw = nskb->head + (skb->h.raw-skb->head); 3386 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head); 3387 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 3388 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 3389 __skb_insert(nskb, skb->prev, skb, list); 3390 sk_stream_set_owner_r(nskb, sk); 3391 3392 /* Copy data, releasing collapsed skbs. */ 3393 while (copy > 0) { 3394 int offset = start - TCP_SKB_CB(skb)->seq; 3395 int size = TCP_SKB_CB(skb)->end_seq - start; 3396 3397 BUG_ON(offset < 0); 3398 if (size > 0) { 3399 size = min(copy, size); 3400 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 3401 BUG(); 3402 TCP_SKB_CB(nskb)->end_seq += size; 3403 copy -= size; 3404 start += size; 3405 } 3406 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3407 struct sk_buff *next = skb->next; 3408 __skb_unlink(skb, list); 3409 __kfree_skb(skb); 3410 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3411 skb = next; 3412 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3413 return; 3414 } 3415 } 3416 } 3417 } 3418 3419 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 3420 * and tcp_collapse() them until all the queue is collapsed. 3421 */ 3422 static void tcp_collapse_ofo_queue(struct sock *sk) 3423 { 3424 struct tcp_sock *tp = tcp_sk(sk); 3425 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 3426 struct sk_buff *head; 3427 u32 start, end; 3428 3429 if (skb == NULL) 3430 return; 3431 3432 start = TCP_SKB_CB(skb)->seq; 3433 end = TCP_SKB_CB(skb)->end_seq; 3434 head = skb; 3435 3436 for (;;) { 3437 skb = skb->next; 3438 3439 /* Segment is terminated when we see gap or when 3440 * we are at the end of all the queue. */ 3441 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 3442 after(TCP_SKB_CB(skb)->seq, end) || 3443 before(TCP_SKB_CB(skb)->end_seq, start)) { 3444 tcp_collapse(sk, &tp->out_of_order_queue, 3445 head, skb, start, end); 3446 head = skb; 3447 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 3448 break; 3449 /* Start new segment */ 3450 start = TCP_SKB_CB(skb)->seq; 3451 end = TCP_SKB_CB(skb)->end_seq; 3452 } else { 3453 if (before(TCP_SKB_CB(skb)->seq, start)) 3454 start = TCP_SKB_CB(skb)->seq; 3455 if (after(TCP_SKB_CB(skb)->end_seq, end)) 3456 end = TCP_SKB_CB(skb)->end_seq; 3457 } 3458 } 3459 } 3460 3461 /* Reduce allocated memory if we can, trying to get 3462 * the socket within its memory limits again. 3463 * 3464 * Return less than zero if we should start dropping frames 3465 * until the socket owning process reads some of the data 3466 * to stabilize the situation. 3467 */ 3468 static int tcp_prune_queue(struct sock *sk) 3469 { 3470 struct tcp_sock *tp = tcp_sk(sk); 3471 3472 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 3473 3474 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); 3475 3476 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 3477 tcp_clamp_window(sk, tp); 3478 else if (tcp_memory_pressure) 3479 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 3480 3481 tcp_collapse_ofo_queue(sk); 3482 tcp_collapse(sk, &sk->sk_receive_queue, 3483 sk->sk_receive_queue.next, 3484 (struct sk_buff*)&sk->sk_receive_queue, 3485 tp->copied_seq, tp->rcv_nxt); 3486 sk_stream_mem_reclaim(sk); 3487 3488 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3489 return 0; 3490 3491 /* Collapsing did not help, destructive actions follow. 3492 * This must not ever occur. */ 3493 3494 /* First, purge the out_of_order queue. */ 3495 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3496 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED); 3497 __skb_queue_purge(&tp->out_of_order_queue); 3498 3499 /* Reset SACK state. A conforming SACK implementation will 3500 * do the same at a timeout based retransmit. When a connection 3501 * is in a sad state like this, we care only about integrity 3502 * of the connection not performance. 3503 */ 3504 if (tp->rx_opt.sack_ok) 3505 tcp_sack_reset(&tp->rx_opt); 3506 sk_stream_mem_reclaim(sk); 3507 } 3508 3509 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3510 return 0; 3511 3512 /* If we are really being abused, tell the caller to silently 3513 * drop receive data on the floor. It will get retransmitted 3514 * and hopefully then we'll have sufficient space. 3515 */ 3516 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); 3517 3518 /* Massive buffer overcommit. */ 3519 tp->pred_flags = 0; 3520 return -1; 3521 } 3522 3523 3524 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 3525 * As additional protections, we do not touch cwnd in retransmission phases, 3526 * and if application hit its sndbuf limit recently. 3527 */ 3528 void tcp_cwnd_application_limited(struct sock *sk) 3529 { 3530 struct tcp_sock *tp = tcp_sk(sk); 3531 3532 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 3533 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 3534 /* Limited by application or receiver window. */ 3535 u32 win_used = max(tp->snd_cwnd_used, 2U); 3536 if (win_used < tp->snd_cwnd) { 3537 tp->snd_ssthresh = tcp_current_ssthresh(sk); 3538 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 3539 } 3540 tp->snd_cwnd_used = 0; 3541 } 3542 tp->snd_cwnd_stamp = tcp_time_stamp; 3543 } 3544 3545 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp) 3546 { 3547 /* If the user specified a specific send buffer setting, do 3548 * not modify it. 3549 */ 3550 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 3551 return 0; 3552 3553 /* If we are under global TCP memory pressure, do not expand. */ 3554 if (tcp_memory_pressure) 3555 return 0; 3556 3557 /* If we are under soft global TCP memory pressure, do not expand. */ 3558 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 3559 return 0; 3560 3561 /* If we filled the congestion window, do not expand. */ 3562 if (tp->packets_out >= tp->snd_cwnd) 3563 return 0; 3564 3565 return 1; 3566 } 3567 3568 /* When incoming ACK allowed to free some skb from write_queue, 3569 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 3570 * on the exit from tcp input handler. 3571 * 3572 * PROBLEM: sndbuf expansion does not work well with largesend. 3573 */ 3574 static void tcp_new_space(struct sock *sk) 3575 { 3576 struct tcp_sock *tp = tcp_sk(sk); 3577 3578 if (tcp_should_expand_sndbuf(sk, tp)) { 3579 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 3580 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), 3581 demanded = max_t(unsigned int, tp->snd_cwnd, 3582 tp->reordering + 1); 3583 sndmem *= 2*demanded; 3584 if (sndmem > sk->sk_sndbuf) 3585 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 3586 tp->snd_cwnd_stamp = tcp_time_stamp; 3587 } 3588 3589 sk->sk_write_space(sk); 3590 } 3591 3592 static void tcp_check_space(struct sock *sk) 3593 { 3594 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 3595 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 3596 if (sk->sk_socket && 3597 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 3598 tcp_new_space(sk); 3599 } 3600 } 3601 3602 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp) 3603 { 3604 tcp_push_pending_frames(sk, tp); 3605 tcp_check_space(sk); 3606 } 3607 3608 /* 3609 * Check if sending an ack is needed. 3610 */ 3611 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 3612 { 3613 struct tcp_sock *tp = tcp_sk(sk); 3614 3615 /* More than one full frame received... */ 3616 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 3617 /* ... and right edge of window advances far enough. 3618 * (tcp_recvmsg() will send ACK otherwise). Or... 3619 */ 3620 && __tcp_select_window(sk) >= tp->rcv_wnd) || 3621 /* We ACK each frame or... */ 3622 tcp_in_quickack_mode(sk) || 3623 /* We have out of order data. */ 3624 (ofo_possible && 3625 skb_peek(&tp->out_of_order_queue))) { 3626 /* Then ack it now */ 3627 tcp_send_ack(sk); 3628 } else { 3629 /* Else, send delayed ack. */ 3630 tcp_send_delayed_ack(sk); 3631 } 3632 } 3633 3634 static inline void tcp_ack_snd_check(struct sock *sk) 3635 { 3636 if (!inet_csk_ack_scheduled(sk)) { 3637 /* We sent a data segment already. */ 3638 return; 3639 } 3640 __tcp_ack_snd_check(sk, 1); 3641 } 3642 3643 /* 3644 * This routine is only called when we have urgent data 3645 * signaled. Its the 'slow' part of tcp_urg. It could be 3646 * moved inline now as tcp_urg is only called from one 3647 * place. We handle URGent data wrong. We have to - as 3648 * BSD still doesn't use the correction from RFC961. 3649 * For 1003.1g we should support a new option TCP_STDURG to permit 3650 * either form (or just set the sysctl tcp_stdurg). 3651 */ 3652 3653 static void tcp_check_urg(struct sock * sk, struct tcphdr * th) 3654 { 3655 struct tcp_sock *tp = tcp_sk(sk); 3656 u32 ptr = ntohs(th->urg_ptr); 3657 3658 if (ptr && !sysctl_tcp_stdurg) 3659 ptr--; 3660 ptr += ntohl(th->seq); 3661 3662 /* Ignore urgent data that we've already seen and read. */ 3663 if (after(tp->copied_seq, ptr)) 3664 return; 3665 3666 /* Do not replay urg ptr. 3667 * 3668 * NOTE: interesting situation not covered by specs. 3669 * Misbehaving sender may send urg ptr, pointing to segment, 3670 * which we already have in ofo queue. We are not able to fetch 3671 * such data and will stay in TCP_URG_NOTYET until will be eaten 3672 * by recvmsg(). Seems, we are not obliged to handle such wicked 3673 * situations. But it is worth to think about possibility of some 3674 * DoSes using some hypothetical application level deadlock. 3675 */ 3676 if (before(ptr, tp->rcv_nxt)) 3677 return; 3678 3679 /* Do we already have a newer (or duplicate) urgent pointer? */ 3680 if (tp->urg_data && !after(ptr, tp->urg_seq)) 3681 return; 3682 3683 /* Tell the world about our new urgent pointer. */ 3684 sk_send_sigurg(sk); 3685 3686 /* We may be adding urgent data when the last byte read was 3687 * urgent. To do this requires some care. We cannot just ignore 3688 * tp->copied_seq since we would read the last urgent byte again 3689 * as data, nor can we alter copied_seq until this data arrives 3690 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 3691 * 3692 * NOTE. Double Dutch. Rendering to plain English: author of comment 3693 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 3694 * and expect that both A and B disappear from stream. This is _wrong_. 3695 * Though this happens in BSD with high probability, this is occasional. 3696 * Any application relying on this is buggy. Note also, that fix "works" 3697 * only in this artificial test. Insert some normal data between A and B and we will 3698 * decline of BSD again. Verdict: it is better to remove to trap 3699 * buggy users. 3700 */ 3701 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 3702 !sock_flag(sk, SOCK_URGINLINE) && 3703 tp->copied_seq != tp->rcv_nxt) { 3704 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 3705 tp->copied_seq++; 3706 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 3707 __skb_unlink(skb, &sk->sk_receive_queue); 3708 __kfree_skb(skb); 3709 } 3710 } 3711 3712 tp->urg_data = TCP_URG_NOTYET; 3713 tp->urg_seq = ptr; 3714 3715 /* Disable header prediction. */ 3716 tp->pred_flags = 0; 3717 } 3718 3719 /* This is the 'fast' part of urgent handling. */ 3720 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 3721 { 3722 struct tcp_sock *tp = tcp_sk(sk); 3723 3724 /* Check if we get a new urgent pointer - normally not. */ 3725 if (th->urg) 3726 tcp_check_urg(sk,th); 3727 3728 /* Do we wait for any urgent data? - normally not... */ 3729 if (tp->urg_data == TCP_URG_NOTYET) { 3730 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 3731 th->syn; 3732 3733 /* Is the urgent pointer pointing into this packet? */ 3734 if (ptr < skb->len) { 3735 u8 tmp; 3736 if (skb_copy_bits(skb, ptr, &tmp, 1)) 3737 BUG(); 3738 tp->urg_data = TCP_URG_VALID | tmp; 3739 if (!sock_flag(sk, SOCK_DEAD)) 3740 sk->sk_data_ready(sk, 0); 3741 } 3742 } 3743 } 3744 3745 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 3746 { 3747 struct tcp_sock *tp = tcp_sk(sk); 3748 int chunk = skb->len - hlen; 3749 int err; 3750 3751 local_bh_enable(); 3752 if (skb->ip_summed==CHECKSUM_UNNECESSARY) 3753 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 3754 else 3755 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 3756 tp->ucopy.iov); 3757 3758 if (!err) { 3759 tp->ucopy.len -= chunk; 3760 tp->copied_seq += chunk; 3761 tcp_rcv_space_adjust(sk); 3762 } 3763 3764 local_bh_disable(); 3765 return err; 3766 } 3767 3768 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 3769 { 3770 int result; 3771 3772 if (sock_owned_by_user(sk)) { 3773 local_bh_enable(); 3774 result = __tcp_checksum_complete(skb); 3775 local_bh_disable(); 3776 } else { 3777 result = __tcp_checksum_complete(skb); 3778 } 3779 return result; 3780 } 3781 3782 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 3783 { 3784 return skb->ip_summed != CHECKSUM_UNNECESSARY && 3785 __tcp_checksum_complete_user(sk, skb); 3786 } 3787 3788 /* 3789 * TCP receive function for the ESTABLISHED state. 3790 * 3791 * It is split into a fast path and a slow path. The fast path is 3792 * disabled when: 3793 * - A zero window was announced from us - zero window probing 3794 * is only handled properly in the slow path. 3795 * - Out of order segments arrived. 3796 * - Urgent data is expected. 3797 * - There is no buffer space left 3798 * - Unexpected TCP flags/window values/header lengths are received 3799 * (detected by checking the TCP header against pred_flags) 3800 * - Data is sent in both directions. Fast path only supports pure senders 3801 * or pure receivers (this means either the sequence number or the ack 3802 * value must stay constant) 3803 * - Unexpected TCP option. 3804 * 3805 * When these conditions are not satisfied it drops into a standard 3806 * receive procedure patterned after RFC793 to handle all cases. 3807 * The first three cases are guaranteed by proper pred_flags setting, 3808 * the rest is checked inline. Fast processing is turned on in 3809 * tcp_data_queue when everything is OK. 3810 */ 3811 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 3812 struct tcphdr *th, unsigned len) 3813 { 3814 struct tcp_sock *tp = tcp_sk(sk); 3815 3816 /* 3817 * Header prediction. 3818 * The code loosely follows the one in the famous 3819 * "30 instruction TCP receive" Van Jacobson mail. 3820 * 3821 * Van's trick is to deposit buffers into socket queue 3822 * on a device interrupt, to call tcp_recv function 3823 * on the receive process context and checksum and copy 3824 * the buffer to user space. smart... 3825 * 3826 * Our current scheme is not silly either but we take the 3827 * extra cost of the net_bh soft interrupt processing... 3828 * We do checksum and copy also but from device to kernel. 3829 */ 3830 3831 tp->rx_opt.saw_tstamp = 0; 3832 3833 /* pred_flags is 0xS?10 << 16 + snd_wnd 3834 * if header_prediction is to be made 3835 * 'S' will always be tp->tcp_header_len >> 2 3836 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 3837 * turn it off (when there are holes in the receive 3838 * space for instance) 3839 * PSH flag is ignored. 3840 */ 3841 3842 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 3843 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3844 int tcp_header_len = tp->tcp_header_len; 3845 3846 /* Timestamp header prediction: tcp_header_len 3847 * is automatically equal to th->doff*4 due to pred_flags 3848 * match. 3849 */ 3850 3851 /* Check timestamp */ 3852 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 3853 __u32 *ptr = (__u32 *)(th + 1); 3854 3855 /* No? Slow path! */ 3856 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3857 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) 3858 goto slow_path; 3859 3860 tp->rx_opt.saw_tstamp = 1; 3861 ++ptr; 3862 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3863 ++ptr; 3864 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3865 3866 /* If PAWS failed, check it more carefully in slow path */ 3867 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 3868 goto slow_path; 3869 3870 /* DO NOT update ts_recent here, if checksum fails 3871 * and timestamp was corrupted part, it will result 3872 * in a hung connection since we will drop all 3873 * future packets due to the PAWS test. 3874 */ 3875 } 3876 3877 if (len <= tcp_header_len) { 3878 /* Bulk data transfer: sender */ 3879 if (len == tcp_header_len) { 3880 /* Predicted packet is in window by definition. 3881 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3882 * Hence, check seq<=rcv_wup reduces to: 3883 */ 3884 if (tcp_header_len == 3885 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 3886 tp->rcv_nxt == tp->rcv_wup) 3887 tcp_store_ts_recent(tp); 3888 3889 tcp_rcv_rtt_measure_ts(sk, skb); 3890 3891 /* We know that such packets are checksummed 3892 * on entry. 3893 */ 3894 tcp_ack(sk, skb, 0); 3895 __kfree_skb(skb); 3896 tcp_data_snd_check(sk, tp); 3897 return 0; 3898 } else { /* Header too small */ 3899 TCP_INC_STATS_BH(TCP_MIB_INERRS); 3900 goto discard; 3901 } 3902 } else { 3903 int eaten = 0; 3904 3905 if (tp->ucopy.task == current && 3906 tp->copied_seq == tp->rcv_nxt && 3907 len - tcp_header_len <= tp->ucopy.len && 3908 sock_owned_by_user(sk)) { 3909 __set_current_state(TASK_RUNNING); 3910 3911 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 3912 /* Predicted packet is in window by definition. 3913 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3914 * Hence, check seq<=rcv_wup reduces to: 3915 */ 3916 if (tcp_header_len == 3917 (sizeof(struct tcphdr) + 3918 TCPOLEN_TSTAMP_ALIGNED) && 3919 tp->rcv_nxt == tp->rcv_wup) 3920 tcp_store_ts_recent(tp); 3921 3922 tcp_rcv_rtt_measure_ts(sk, skb); 3923 3924 __skb_pull(skb, tcp_header_len); 3925 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3926 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); 3927 eaten = 1; 3928 } 3929 } 3930 if (!eaten) { 3931 if (tcp_checksum_complete_user(sk, skb)) 3932 goto csum_error; 3933 3934 /* Predicted packet is in window by definition. 3935 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3936 * Hence, check seq<=rcv_wup reduces to: 3937 */ 3938 if (tcp_header_len == 3939 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 3940 tp->rcv_nxt == tp->rcv_wup) 3941 tcp_store_ts_recent(tp); 3942 3943 tcp_rcv_rtt_measure_ts(sk, skb); 3944 3945 if ((int)skb->truesize > sk->sk_forward_alloc) 3946 goto step5; 3947 3948 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); 3949 3950 /* Bulk data transfer: receiver */ 3951 __skb_pull(skb,tcp_header_len); 3952 __skb_queue_tail(&sk->sk_receive_queue, skb); 3953 sk_stream_set_owner_r(skb, sk); 3954 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3955 } 3956 3957 tcp_event_data_recv(sk, tp, skb); 3958 3959 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 3960 /* Well, only one small jumplet in fast path... */ 3961 tcp_ack(sk, skb, FLAG_DATA); 3962 tcp_data_snd_check(sk, tp); 3963 if (!inet_csk_ack_scheduled(sk)) 3964 goto no_ack; 3965 } 3966 3967 __tcp_ack_snd_check(sk, 0); 3968 no_ack: 3969 if (eaten) 3970 __kfree_skb(skb); 3971 else 3972 sk->sk_data_ready(sk, 0); 3973 return 0; 3974 } 3975 } 3976 3977 slow_path: 3978 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb)) 3979 goto csum_error; 3980 3981 /* 3982 * RFC1323: H1. Apply PAWS check first. 3983 */ 3984 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 3985 tcp_paws_discard(sk, skb)) { 3986 if (!th->rst) { 3987 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 3988 tcp_send_dupack(sk, skb); 3989 goto discard; 3990 } 3991 /* Resets are accepted even if PAWS failed. 3992 3993 ts_recent update must be made after we are sure 3994 that the packet is in window. 3995 */ 3996 } 3997 3998 /* 3999 * Standard slow path. 4000 */ 4001 4002 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4003 /* RFC793, page 37: "In all states except SYN-SENT, all reset 4004 * (RST) segments are validated by checking their SEQ-fields." 4005 * And page 69: "If an incoming segment is not acceptable, 4006 * an acknowledgment should be sent in reply (unless the RST bit 4007 * is set, if so drop the segment and return)". 4008 */ 4009 if (!th->rst) 4010 tcp_send_dupack(sk, skb); 4011 goto discard; 4012 } 4013 4014 if(th->rst) { 4015 tcp_reset(sk); 4016 goto discard; 4017 } 4018 4019 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4020 4021 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4022 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4023 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4024 tcp_reset(sk); 4025 return 1; 4026 } 4027 4028 step5: 4029 if(th->ack) 4030 tcp_ack(sk, skb, FLAG_SLOWPATH); 4031 4032 tcp_rcv_rtt_measure_ts(sk, skb); 4033 4034 /* Process urgent data. */ 4035 tcp_urg(sk, skb, th); 4036 4037 /* step 7: process the segment text */ 4038 tcp_data_queue(sk, skb); 4039 4040 tcp_data_snd_check(sk, tp); 4041 tcp_ack_snd_check(sk); 4042 return 0; 4043 4044 csum_error: 4045 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4046 4047 discard: 4048 __kfree_skb(skb); 4049 return 0; 4050 } 4051 4052 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 4053 struct tcphdr *th, unsigned len) 4054 { 4055 struct tcp_sock *tp = tcp_sk(sk); 4056 struct inet_connection_sock *icsk = inet_csk(sk); 4057 int saved_clamp = tp->rx_opt.mss_clamp; 4058 4059 tcp_parse_options(skb, &tp->rx_opt, 0); 4060 4061 if (th->ack) { 4062 /* rfc793: 4063 * "If the state is SYN-SENT then 4064 * first check the ACK bit 4065 * If the ACK bit is set 4066 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 4067 * a reset (unless the RST bit is set, if so drop 4068 * the segment and return)" 4069 * 4070 * We do not send data with SYN, so that RFC-correct 4071 * test reduces to: 4072 */ 4073 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 4074 goto reset_and_undo; 4075 4076 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4077 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 4078 tcp_time_stamp)) { 4079 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); 4080 goto reset_and_undo; 4081 } 4082 4083 /* Now ACK is acceptable. 4084 * 4085 * "If the RST bit is set 4086 * If the ACK was acceptable then signal the user "error: 4087 * connection reset", drop the segment, enter CLOSED state, 4088 * delete TCB, and return." 4089 */ 4090 4091 if (th->rst) { 4092 tcp_reset(sk); 4093 goto discard; 4094 } 4095 4096 /* rfc793: 4097 * "fifth, if neither of the SYN or RST bits is set then 4098 * drop the segment and return." 4099 * 4100 * See note below! 4101 * --ANK(990513) 4102 */ 4103 if (!th->syn) 4104 goto discard_and_undo; 4105 4106 /* rfc793: 4107 * "If the SYN bit is on ... 4108 * are acceptable then ... 4109 * (our SYN has been ACKed), change the connection 4110 * state to ESTABLISHED..." 4111 */ 4112 4113 TCP_ECN_rcv_synack(tp, th); 4114 if (tp->ecn_flags&TCP_ECN_OK) 4115 sock_set_flag(sk, SOCK_NO_LARGESEND); 4116 4117 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4118 tcp_ack(sk, skb, FLAG_SLOWPATH); 4119 4120 /* Ok.. it's good. Set up sequence numbers and 4121 * move to established. 4122 */ 4123 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4124 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4125 4126 /* RFC1323: The window in SYN & SYN/ACK segments is 4127 * never scaled. 4128 */ 4129 tp->snd_wnd = ntohs(th->window); 4130 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 4131 4132 if (!tp->rx_opt.wscale_ok) { 4133 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 4134 tp->window_clamp = min(tp->window_clamp, 65535U); 4135 } 4136 4137 if (tp->rx_opt.saw_tstamp) { 4138 tp->rx_opt.tstamp_ok = 1; 4139 tp->tcp_header_len = 4140 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4141 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4142 tcp_store_ts_recent(tp); 4143 } else { 4144 tp->tcp_header_len = sizeof(struct tcphdr); 4145 } 4146 4147 if (tp->rx_opt.sack_ok && sysctl_tcp_fack) 4148 tp->rx_opt.sack_ok |= 2; 4149 4150 tcp_mtup_init(sk); 4151 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4152 tcp_initialize_rcv_mss(sk); 4153 4154 /* Remember, tcp_poll() does not lock socket! 4155 * Change state from SYN-SENT only after copied_seq 4156 * is initialized. */ 4157 tp->copied_seq = tp->rcv_nxt; 4158 mb(); 4159 tcp_set_state(sk, TCP_ESTABLISHED); 4160 4161 /* Make sure socket is routed, for correct metrics. */ 4162 icsk->icsk_af_ops->rebuild_header(sk); 4163 4164 tcp_init_metrics(sk); 4165 4166 tcp_init_congestion_control(sk); 4167 4168 /* Prevent spurious tcp_cwnd_restart() on first data 4169 * packet. 4170 */ 4171 tp->lsndtime = tcp_time_stamp; 4172 4173 tcp_init_buffer_space(sk); 4174 4175 if (sock_flag(sk, SOCK_KEEPOPEN)) 4176 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 4177 4178 if (!tp->rx_opt.snd_wscale) 4179 __tcp_fast_path_on(tp, tp->snd_wnd); 4180 else 4181 tp->pred_flags = 0; 4182 4183 if (!sock_flag(sk, SOCK_DEAD)) { 4184 sk->sk_state_change(sk); 4185 sk_wake_async(sk, 0, POLL_OUT); 4186 } 4187 4188 if (sk->sk_write_pending || 4189 icsk->icsk_accept_queue.rskq_defer_accept || 4190 icsk->icsk_ack.pingpong) { 4191 /* Save one ACK. Data will be ready after 4192 * several ticks, if write_pending is set. 4193 * 4194 * It may be deleted, but with this feature tcpdumps 4195 * look so _wonderfully_ clever, that I was not able 4196 * to stand against the temptation 8) --ANK 4197 */ 4198 inet_csk_schedule_ack(sk); 4199 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 4200 icsk->icsk_ack.ato = TCP_ATO_MIN; 4201 tcp_incr_quickack(sk); 4202 tcp_enter_quickack_mode(sk); 4203 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 4204 TCP_DELACK_MAX, TCP_RTO_MAX); 4205 4206 discard: 4207 __kfree_skb(skb); 4208 return 0; 4209 } else { 4210 tcp_send_ack(sk); 4211 } 4212 return -1; 4213 } 4214 4215 /* No ACK in the segment */ 4216 4217 if (th->rst) { 4218 /* rfc793: 4219 * "If the RST bit is set 4220 * 4221 * Otherwise (no ACK) drop the segment and return." 4222 */ 4223 4224 goto discard_and_undo; 4225 } 4226 4227 /* PAWS check. */ 4228 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0)) 4229 goto discard_and_undo; 4230 4231 if (th->syn) { 4232 /* We see SYN without ACK. It is attempt of 4233 * simultaneous connect with crossed SYNs. 4234 * Particularly, it can be connect to self. 4235 */ 4236 tcp_set_state(sk, TCP_SYN_RECV); 4237 4238 if (tp->rx_opt.saw_tstamp) { 4239 tp->rx_opt.tstamp_ok = 1; 4240 tcp_store_ts_recent(tp); 4241 tp->tcp_header_len = 4242 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4243 } else { 4244 tp->tcp_header_len = sizeof(struct tcphdr); 4245 } 4246 4247 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4248 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4249 4250 /* RFC1323: The window in SYN & SYN/ACK segments is 4251 * never scaled. 4252 */ 4253 tp->snd_wnd = ntohs(th->window); 4254 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4255 tp->max_window = tp->snd_wnd; 4256 4257 TCP_ECN_rcv_syn(tp, th); 4258 if (tp->ecn_flags&TCP_ECN_OK) 4259 sock_set_flag(sk, SOCK_NO_LARGESEND); 4260 4261 tcp_mtup_init(sk); 4262 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4263 tcp_initialize_rcv_mss(sk); 4264 4265 4266 tcp_send_synack(sk); 4267 #if 0 4268 /* Note, we could accept data and URG from this segment. 4269 * There are no obstacles to make this. 4270 * 4271 * However, if we ignore data in ACKless segments sometimes, 4272 * we have no reasons to accept it sometimes. 4273 * Also, seems the code doing it in step6 of tcp_rcv_state_process 4274 * is not flawless. So, discard packet for sanity. 4275 * Uncomment this return to process the data. 4276 */ 4277 return -1; 4278 #else 4279 goto discard; 4280 #endif 4281 } 4282 /* "fifth, if neither of the SYN or RST bits is set then 4283 * drop the segment and return." 4284 */ 4285 4286 discard_and_undo: 4287 tcp_clear_options(&tp->rx_opt); 4288 tp->rx_opt.mss_clamp = saved_clamp; 4289 goto discard; 4290 4291 reset_and_undo: 4292 tcp_clear_options(&tp->rx_opt); 4293 tp->rx_opt.mss_clamp = saved_clamp; 4294 return 1; 4295 } 4296 4297 4298 /* 4299 * This function implements the receiving procedure of RFC 793 for 4300 * all states except ESTABLISHED and TIME_WAIT. 4301 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 4302 * address independent. 4303 */ 4304 4305 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 4306 struct tcphdr *th, unsigned len) 4307 { 4308 struct tcp_sock *tp = tcp_sk(sk); 4309 struct inet_connection_sock *icsk = inet_csk(sk); 4310 int queued = 0; 4311 4312 tp->rx_opt.saw_tstamp = 0; 4313 4314 switch (sk->sk_state) { 4315 case TCP_CLOSE: 4316 goto discard; 4317 4318 case TCP_LISTEN: 4319 if(th->ack) 4320 return 1; 4321 4322 if(th->rst) 4323 goto discard; 4324 4325 if(th->syn) { 4326 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 4327 return 1; 4328 4329 /* Now we have several options: In theory there is 4330 * nothing else in the frame. KA9Q has an option to 4331 * send data with the syn, BSD accepts data with the 4332 * syn up to the [to be] advertised window and 4333 * Solaris 2.1 gives you a protocol error. For now 4334 * we just ignore it, that fits the spec precisely 4335 * and avoids incompatibilities. It would be nice in 4336 * future to drop through and process the data. 4337 * 4338 * Now that TTCP is starting to be used we ought to 4339 * queue this data. 4340 * But, this leaves one open to an easy denial of 4341 * service attack, and SYN cookies can't defend 4342 * against this problem. So, we drop the data 4343 * in the interest of security over speed. 4344 */ 4345 goto discard; 4346 } 4347 goto discard; 4348 4349 case TCP_SYN_SENT: 4350 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 4351 if (queued >= 0) 4352 return queued; 4353 4354 /* Do step6 onward by hand. */ 4355 tcp_urg(sk, skb, th); 4356 __kfree_skb(skb); 4357 tcp_data_snd_check(sk, tp); 4358 return 0; 4359 } 4360 4361 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4362 tcp_paws_discard(sk, skb)) { 4363 if (!th->rst) { 4364 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4365 tcp_send_dupack(sk, skb); 4366 goto discard; 4367 } 4368 /* Reset is accepted even if it did not pass PAWS. */ 4369 } 4370 4371 /* step 1: check sequence number */ 4372 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4373 if (!th->rst) 4374 tcp_send_dupack(sk, skb); 4375 goto discard; 4376 } 4377 4378 /* step 2: check RST bit */ 4379 if(th->rst) { 4380 tcp_reset(sk); 4381 goto discard; 4382 } 4383 4384 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4385 4386 /* step 3: check security and precedence [ignored] */ 4387 4388 /* step 4: 4389 * 4390 * Check for a SYN in window. 4391 */ 4392 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4393 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4394 tcp_reset(sk); 4395 return 1; 4396 } 4397 4398 /* step 5: check the ACK field */ 4399 if (th->ack) { 4400 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 4401 4402 switch(sk->sk_state) { 4403 case TCP_SYN_RECV: 4404 if (acceptable) { 4405 tp->copied_seq = tp->rcv_nxt; 4406 mb(); 4407 tcp_set_state(sk, TCP_ESTABLISHED); 4408 sk->sk_state_change(sk); 4409 4410 /* Note, that this wakeup is only for marginal 4411 * crossed SYN case. Passively open sockets 4412 * are not waked up, because sk->sk_sleep == 4413 * NULL and sk->sk_socket == NULL. 4414 */ 4415 if (sk->sk_socket) { 4416 sk_wake_async(sk,0,POLL_OUT); 4417 } 4418 4419 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 4420 tp->snd_wnd = ntohs(th->window) << 4421 tp->rx_opt.snd_wscale; 4422 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 4423 TCP_SKB_CB(skb)->seq); 4424 4425 /* tcp_ack considers this ACK as duplicate 4426 * and does not calculate rtt. 4427 * Fix it at least with timestamps. 4428 */ 4429 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4430 !tp->srtt) 4431 tcp_ack_saw_tstamp(sk, 0); 4432 4433 if (tp->rx_opt.tstamp_ok) 4434 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4435 4436 /* Make sure socket is routed, for 4437 * correct metrics. 4438 */ 4439 icsk->icsk_af_ops->rebuild_header(sk); 4440 4441 tcp_init_metrics(sk); 4442 4443 tcp_init_congestion_control(sk); 4444 4445 /* Prevent spurious tcp_cwnd_restart() on 4446 * first data packet. 4447 */ 4448 tp->lsndtime = tcp_time_stamp; 4449 4450 tcp_mtup_init(sk); 4451 tcp_initialize_rcv_mss(sk); 4452 tcp_init_buffer_space(sk); 4453 tcp_fast_path_on(tp); 4454 } else { 4455 return 1; 4456 } 4457 break; 4458 4459 case TCP_FIN_WAIT1: 4460 if (tp->snd_una == tp->write_seq) { 4461 tcp_set_state(sk, TCP_FIN_WAIT2); 4462 sk->sk_shutdown |= SEND_SHUTDOWN; 4463 dst_confirm(sk->sk_dst_cache); 4464 4465 if (!sock_flag(sk, SOCK_DEAD)) 4466 /* Wake up lingering close() */ 4467 sk->sk_state_change(sk); 4468 else { 4469 int tmo; 4470 4471 if (tp->linger2 < 0 || 4472 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4473 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 4474 tcp_done(sk); 4475 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4476 return 1; 4477 } 4478 4479 tmo = tcp_fin_time(sk); 4480 if (tmo > TCP_TIMEWAIT_LEN) { 4481 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 4482 } else if (th->fin || sock_owned_by_user(sk)) { 4483 /* Bad case. We could lose such FIN otherwise. 4484 * It is not a big problem, but it looks confusing 4485 * and not so rare event. We still can lose it now, 4486 * if it spins in bh_lock_sock(), but it is really 4487 * marginal case. 4488 */ 4489 inet_csk_reset_keepalive_timer(sk, tmo); 4490 } else { 4491 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 4492 goto discard; 4493 } 4494 } 4495 } 4496 break; 4497 4498 case TCP_CLOSING: 4499 if (tp->snd_una == tp->write_seq) { 4500 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4501 goto discard; 4502 } 4503 break; 4504 4505 case TCP_LAST_ACK: 4506 if (tp->snd_una == tp->write_seq) { 4507 tcp_update_metrics(sk); 4508 tcp_done(sk); 4509 goto discard; 4510 } 4511 break; 4512 } 4513 } else 4514 goto discard; 4515 4516 /* step 6: check the URG bit */ 4517 tcp_urg(sk, skb, th); 4518 4519 /* step 7: process the segment text */ 4520 switch (sk->sk_state) { 4521 case TCP_CLOSE_WAIT: 4522 case TCP_CLOSING: 4523 case TCP_LAST_ACK: 4524 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4525 break; 4526 case TCP_FIN_WAIT1: 4527 case TCP_FIN_WAIT2: 4528 /* RFC 793 says to queue data in these states, 4529 * RFC 1122 says we MUST send a reset. 4530 * BSD 4.4 also does reset. 4531 */ 4532 if (sk->sk_shutdown & RCV_SHUTDOWN) { 4533 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4534 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 4535 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4536 tcp_reset(sk); 4537 return 1; 4538 } 4539 } 4540 /* Fall through */ 4541 case TCP_ESTABLISHED: 4542 tcp_data_queue(sk, skb); 4543 queued = 1; 4544 break; 4545 } 4546 4547 /* tcp_data could move socket to TIME-WAIT */ 4548 if (sk->sk_state != TCP_CLOSE) { 4549 tcp_data_snd_check(sk, tp); 4550 tcp_ack_snd_check(sk); 4551 } 4552 4553 if (!queued) { 4554 discard: 4555 __kfree_skb(skb); 4556 } 4557 return 0; 4558 } 4559 4560 EXPORT_SYMBOL(sysctl_tcp_ecn); 4561 EXPORT_SYMBOL(sysctl_tcp_reordering); 4562 EXPORT_SYMBOL(sysctl_tcp_abc); 4563 EXPORT_SYMBOL(tcp_parse_options); 4564 EXPORT_SYMBOL(tcp_rcv_established); 4565 EXPORT_SYMBOL(tcp_rcv_state_process); 4566 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 4567