xref: /linux/net/ipv4/tcp_input.c (revision dd220a00e8bd5ad7f98ecdc3eed699a7cfabdc27)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75 
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95 
96 int sysctl_tcp_thin_dupack __read_mostly;
97 
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100 
101 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
102 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
103 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
104 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
105 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
106 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
107 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
108 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
109 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
110 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
111 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
112 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
113 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
114 
115 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
116 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
117 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
118 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
119 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
120 
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123 
124 /* Adapt the MSS value used to make delayed ack decision to the
125  * real world.
126  */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 	struct inet_connection_sock *icsk = inet_csk(sk);
130 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 	unsigned int len;
132 
133 	icsk->icsk_ack.last_seg_size = 0;
134 
135 	/* skb->len may jitter because of SACKs, even if peer
136 	 * sends good full-sized frames.
137 	 */
138 	len = skb_shinfo(skb)->gso_size ? : skb->len;
139 	if (len >= icsk->icsk_ack.rcv_mss) {
140 		icsk->icsk_ack.rcv_mss = len;
141 	} else {
142 		/* Otherwise, we make more careful check taking into account,
143 		 * that SACKs block is variable.
144 		 *
145 		 * "len" is invariant segment length, including TCP header.
146 		 */
147 		len += skb->data - skb_transport_header(skb);
148 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 		    /* If PSH is not set, packet should be
150 		     * full sized, provided peer TCP is not badly broken.
151 		     * This observation (if it is correct 8)) allows
152 		     * to handle super-low mtu links fairly.
153 		     */
154 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 			/* Subtract also invariant (if peer is RFC compliant),
157 			 * tcp header plus fixed timestamp option length.
158 			 * Resulting "len" is MSS free of SACK jitter.
159 			 */
160 			len -= tcp_sk(sk)->tcp_header_len;
161 			icsk->icsk_ack.last_seg_size = len;
162 			if (len == lss) {
163 				icsk->icsk_ack.rcv_mss = len;
164 				return;
165 			}
166 		}
167 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 	}
171 }
172 
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 	struct inet_connection_sock *icsk = inet_csk(sk);
176 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177 
178 	if (quickacks == 0)
179 		quickacks = 2;
180 	if (quickacks > icsk->icsk_ack.quick)
181 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183 
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 	struct inet_connection_sock *icsk = inet_csk(sk);
187 	tcp_incr_quickack(sk);
188 	icsk->icsk_ack.pingpong = 0;
189 	icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191 
192 /* Send ACKs quickly, if "quick" count is not exhausted
193  * and the session is not interactive.
194  */
195 
196 static inline int tcp_in_quickack_mode(const struct sock *sk)
197 {
198 	const struct inet_connection_sock *icsk = inet_csk(sk);
199 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
200 }
201 
202 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
203 {
204 	if (tp->ecn_flags & TCP_ECN_OK)
205 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
206 }
207 
208 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
209 {
210 	if (tcp_hdr(skb)->cwr)
211 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212 }
213 
214 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
215 {
216 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
217 }
218 
219 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
220 {
221 	if (!(tp->ecn_flags & TCP_ECN_OK))
222 		return;
223 
224 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
225 	case INET_ECN_NOT_ECT:
226 		/* Funny extension: if ECT is not set on a segment,
227 		 * and we already seen ECT on a previous segment,
228 		 * it is probably a retransmit.
229 		 */
230 		if (tp->ecn_flags & TCP_ECN_SEEN)
231 			tcp_enter_quickack_mode((struct sock *)tp);
232 		break;
233 	case INET_ECN_CE:
234 		tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
235 		/* fallinto */
236 	default:
237 		tp->ecn_flags |= TCP_ECN_SEEN;
238 	}
239 }
240 
241 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
242 {
243 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
244 		tp->ecn_flags &= ~TCP_ECN_OK;
245 }
246 
247 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
248 {
249 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
250 		tp->ecn_flags &= ~TCP_ECN_OK;
251 }
252 
253 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
254 {
255 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
256 		return 1;
257 	return 0;
258 }
259 
260 /* Buffer size and advertised window tuning.
261  *
262  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
263  */
264 
265 static void tcp_fixup_sndbuf(struct sock *sk)
266 {
267 	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
268 
269 	sndmem *= TCP_INIT_CWND;
270 	if (sk->sk_sndbuf < sndmem)
271 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
272 }
273 
274 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
275  *
276  * All tcp_full_space() is split to two parts: "network" buffer, allocated
277  * forward and advertised in receiver window (tp->rcv_wnd) and
278  * "application buffer", required to isolate scheduling/application
279  * latencies from network.
280  * window_clamp is maximal advertised window. It can be less than
281  * tcp_full_space(), in this case tcp_full_space() - window_clamp
282  * is reserved for "application" buffer. The less window_clamp is
283  * the smoother our behaviour from viewpoint of network, but the lower
284  * throughput and the higher sensitivity of the connection to losses. 8)
285  *
286  * rcv_ssthresh is more strict window_clamp used at "slow start"
287  * phase to predict further behaviour of this connection.
288  * It is used for two goals:
289  * - to enforce header prediction at sender, even when application
290  *   requires some significant "application buffer". It is check #1.
291  * - to prevent pruning of receive queue because of misprediction
292  *   of receiver window. Check #2.
293  *
294  * The scheme does not work when sender sends good segments opening
295  * window and then starts to feed us spaghetti. But it should work
296  * in common situations. Otherwise, we have to rely on queue collapsing.
297  */
298 
299 /* Slow part of check#2. */
300 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
301 {
302 	struct tcp_sock *tp = tcp_sk(sk);
303 	/* Optimize this! */
304 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
305 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
306 
307 	while (tp->rcv_ssthresh <= window) {
308 		if (truesize <= skb->len)
309 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
310 
311 		truesize >>= 1;
312 		window >>= 1;
313 	}
314 	return 0;
315 }
316 
317 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
318 {
319 	struct tcp_sock *tp = tcp_sk(sk);
320 
321 	/* Check #1 */
322 	if (tp->rcv_ssthresh < tp->window_clamp &&
323 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
324 	    !sk_under_memory_pressure(sk)) {
325 		int incr;
326 
327 		/* Check #2. Increase window, if skb with such overhead
328 		 * will fit to rcvbuf in future.
329 		 */
330 		if (tcp_win_from_space(skb->truesize) <= skb->len)
331 			incr = 2 * tp->advmss;
332 		else
333 			incr = __tcp_grow_window(sk, skb);
334 
335 		if (incr) {
336 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
337 					       tp->window_clamp);
338 			inet_csk(sk)->icsk_ack.quick |= 1;
339 		}
340 	}
341 }
342 
343 /* 3. Tuning rcvbuf, when connection enters established state. */
344 
345 static void tcp_fixup_rcvbuf(struct sock *sk)
346 {
347 	u32 mss = tcp_sk(sk)->advmss;
348 	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
349 	int rcvmem;
350 
351 	/* Limit to 10 segments if mss <= 1460,
352 	 * or 14600/mss segments, with a minimum of two segments.
353 	 */
354 	if (mss > 1460)
355 		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
356 
357 	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
358 	while (tcp_win_from_space(rcvmem) < mss)
359 		rcvmem += 128;
360 
361 	rcvmem *= icwnd;
362 
363 	if (sk->sk_rcvbuf < rcvmem)
364 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
365 }
366 
367 /* 4. Try to fixup all. It is made immediately after connection enters
368  *    established state.
369  */
370 static void tcp_init_buffer_space(struct sock *sk)
371 {
372 	struct tcp_sock *tp = tcp_sk(sk);
373 	int maxwin;
374 
375 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
376 		tcp_fixup_rcvbuf(sk);
377 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
378 		tcp_fixup_sndbuf(sk);
379 
380 	tp->rcvq_space.space = tp->rcv_wnd;
381 
382 	maxwin = tcp_full_space(sk);
383 
384 	if (tp->window_clamp >= maxwin) {
385 		tp->window_clamp = maxwin;
386 
387 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
388 			tp->window_clamp = max(maxwin -
389 					       (maxwin >> sysctl_tcp_app_win),
390 					       4 * tp->advmss);
391 	}
392 
393 	/* Force reservation of one segment. */
394 	if (sysctl_tcp_app_win &&
395 	    tp->window_clamp > 2 * tp->advmss &&
396 	    tp->window_clamp + tp->advmss > maxwin)
397 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
398 
399 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
400 	tp->snd_cwnd_stamp = tcp_time_stamp;
401 }
402 
403 /* 5. Recalculate window clamp after socket hit its memory bounds. */
404 static void tcp_clamp_window(struct sock *sk)
405 {
406 	struct tcp_sock *tp = tcp_sk(sk);
407 	struct inet_connection_sock *icsk = inet_csk(sk);
408 
409 	icsk->icsk_ack.quick = 0;
410 
411 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
412 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
413 	    !sk_under_memory_pressure(sk) &&
414 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
415 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
416 				    sysctl_tcp_rmem[2]);
417 	}
418 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
419 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
420 }
421 
422 /* Initialize RCV_MSS value.
423  * RCV_MSS is an our guess about MSS used by the peer.
424  * We haven't any direct information about the MSS.
425  * It's better to underestimate the RCV_MSS rather than overestimate.
426  * Overestimations make us ACKing less frequently than needed.
427  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
428  */
429 void tcp_initialize_rcv_mss(struct sock *sk)
430 {
431 	const struct tcp_sock *tp = tcp_sk(sk);
432 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
433 
434 	hint = min(hint, tp->rcv_wnd / 2);
435 	hint = min(hint, TCP_MSS_DEFAULT);
436 	hint = max(hint, TCP_MIN_MSS);
437 
438 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
439 }
440 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
441 
442 /* Receiver "autotuning" code.
443  *
444  * The algorithm for RTT estimation w/o timestamps is based on
445  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
446  * <http://public.lanl.gov/radiant/pubs.html#DRS>
447  *
448  * More detail on this code can be found at
449  * <http://staff.psc.edu/jheffner/>,
450  * though this reference is out of date.  A new paper
451  * is pending.
452  */
453 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
454 {
455 	u32 new_sample = tp->rcv_rtt_est.rtt;
456 	long m = sample;
457 
458 	if (m == 0)
459 		m = 1;
460 
461 	if (new_sample != 0) {
462 		/* If we sample in larger samples in the non-timestamp
463 		 * case, we could grossly overestimate the RTT especially
464 		 * with chatty applications or bulk transfer apps which
465 		 * are stalled on filesystem I/O.
466 		 *
467 		 * Also, since we are only going for a minimum in the
468 		 * non-timestamp case, we do not smooth things out
469 		 * else with timestamps disabled convergence takes too
470 		 * long.
471 		 */
472 		if (!win_dep) {
473 			m -= (new_sample >> 3);
474 			new_sample += m;
475 		} else if (m < new_sample)
476 			new_sample = m << 3;
477 	} else {
478 		/* No previous measure. */
479 		new_sample = m << 3;
480 	}
481 
482 	if (tp->rcv_rtt_est.rtt != new_sample)
483 		tp->rcv_rtt_est.rtt = new_sample;
484 }
485 
486 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
487 {
488 	if (tp->rcv_rtt_est.time == 0)
489 		goto new_measure;
490 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
491 		return;
492 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
493 
494 new_measure:
495 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
496 	tp->rcv_rtt_est.time = tcp_time_stamp;
497 }
498 
499 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
500 					  const struct sk_buff *skb)
501 {
502 	struct tcp_sock *tp = tcp_sk(sk);
503 	if (tp->rx_opt.rcv_tsecr &&
504 	    (TCP_SKB_CB(skb)->end_seq -
505 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
506 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
507 }
508 
509 /*
510  * This function should be called every time data is copied to user space.
511  * It calculates the appropriate TCP receive buffer space.
512  */
513 void tcp_rcv_space_adjust(struct sock *sk)
514 {
515 	struct tcp_sock *tp = tcp_sk(sk);
516 	int time;
517 	int space;
518 
519 	if (tp->rcvq_space.time == 0)
520 		goto new_measure;
521 
522 	time = tcp_time_stamp - tp->rcvq_space.time;
523 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
524 		return;
525 
526 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
527 
528 	space = max(tp->rcvq_space.space, space);
529 
530 	if (tp->rcvq_space.space != space) {
531 		int rcvmem;
532 
533 		tp->rcvq_space.space = space;
534 
535 		if (sysctl_tcp_moderate_rcvbuf &&
536 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
537 			int new_clamp = space;
538 
539 			/* Receive space grows, normalize in order to
540 			 * take into account packet headers and sk_buff
541 			 * structure overhead.
542 			 */
543 			space /= tp->advmss;
544 			if (!space)
545 				space = 1;
546 			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
547 			while (tcp_win_from_space(rcvmem) < tp->advmss)
548 				rcvmem += 128;
549 			space *= rcvmem;
550 			space = min(space, sysctl_tcp_rmem[2]);
551 			if (space > sk->sk_rcvbuf) {
552 				sk->sk_rcvbuf = space;
553 
554 				/* Make the window clamp follow along.  */
555 				tp->window_clamp = new_clamp;
556 			}
557 		}
558 	}
559 
560 new_measure:
561 	tp->rcvq_space.seq = tp->copied_seq;
562 	tp->rcvq_space.time = tcp_time_stamp;
563 }
564 
565 /* There is something which you must keep in mind when you analyze the
566  * behavior of the tp->ato delayed ack timeout interval.  When a
567  * connection starts up, we want to ack as quickly as possible.  The
568  * problem is that "good" TCP's do slow start at the beginning of data
569  * transmission.  The means that until we send the first few ACK's the
570  * sender will sit on his end and only queue most of his data, because
571  * he can only send snd_cwnd unacked packets at any given time.  For
572  * each ACK we send, he increments snd_cwnd and transmits more of his
573  * queue.  -DaveM
574  */
575 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
576 {
577 	struct tcp_sock *tp = tcp_sk(sk);
578 	struct inet_connection_sock *icsk = inet_csk(sk);
579 	u32 now;
580 
581 	inet_csk_schedule_ack(sk);
582 
583 	tcp_measure_rcv_mss(sk, skb);
584 
585 	tcp_rcv_rtt_measure(tp);
586 
587 	now = tcp_time_stamp;
588 
589 	if (!icsk->icsk_ack.ato) {
590 		/* The _first_ data packet received, initialize
591 		 * delayed ACK engine.
592 		 */
593 		tcp_incr_quickack(sk);
594 		icsk->icsk_ack.ato = TCP_ATO_MIN;
595 	} else {
596 		int m = now - icsk->icsk_ack.lrcvtime;
597 
598 		if (m <= TCP_ATO_MIN / 2) {
599 			/* The fastest case is the first. */
600 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
601 		} else if (m < icsk->icsk_ack.ato) {
602 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
603 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
604 				icsk->icsk_ack.ato = icsk->icsk_rto;
605 		} else if (m > icsk->icsk_rto) {
606 			/* Too long gap. Apparently sender failed to
607 			 * restart window, so that we send ACKs quickly.
608 			 */
609 			tcp_incr_quickack(sk);
610 			sk_mem_reclaim(sk);
611 		}
612 	}
613 	icsk->icsk_ack.lrcvtime = now;
614 
615 	TCP_ECN_check_ce(tp, skb);
616 
617 	if (skb->len >= 128)
618 		tcp_grow_window(sk, skb);
619 }
620 
621 /* Called to compute a smoothed rtt estimate. The data fed to this
622  * routine either comes from timestamps, or from segments that were
623  * known _not_ to have been retransmitted [see Karn/Partridge
624  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
625  * piece by Van Jacobson.
626  * NOTE: the next three routines used to be one big routine.
627  * To save cycles in the RFC 1323 implementation it was better to break
628  * it up into three procedures. -- erics
629  */
630 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
631 {
632 	struct tcp_sock *tp = tcp_sk(sk);
633 	long m = mrtt; /* RTT */
634 
635 	/*	The following amusing code comes from Jacobson's
636 	 *	article in SIGCOMM '88.  Note that rtt and mdev
637 	 *	are scaled versions of rtt and mean deviation.
638 	 *	This is designed to be as fast as possible
639 	 *	m stands for "measurement".
640 	 *
641 	 *	On a 1990 paper the rto value is changed to:
642 	 *	RTO = rtt + 4 * mdev
643 	 *
644 	 * Funny. This algorithm seems to be very broken.
645 	 * These formulae increase RTO, when it should be decreased, increase
646 	 * too slowly, when it should be increased quickly, decrease too quickly
647 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
648 	 * does not matter how to _calculate_ it. Seems, it was trap
649 	 * that VJ failed to avoid. 8)
650 	 */
651 	if (m == 0)
652 		m = 1;
653 	if (tp->srtt != 0) {
654 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
655 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
656 		if (m < 0) {
657 			m = -m;		/* m is now abs(error) */
658 			m -= (tp->mdev >> 2);   /* similar update on mdev */
659 			/* This is similar to one of Eifel findings.
660 			 * Eifel blocks mdev updates when rtt decreases.
661 			 * This solution is a bit different: we use finer gain
662 			 * for mdev in this case (alpha*beta).
663 			 * Like Eifel it also prevents growth of rto,
664 			 * but also it limits too fast rto decreases,
665 			 * happening in pure Eifel.
666 			 */
667 			if (m > 0)
668 				m >>= 3;
669 		} else {
670 			m -= (tp->mdev >> 2);   /* similar update on mdev */
671 		}
672 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
673 		if (tp->mdev > tp->mdev_max) {
674 			tp->mdev_max = tp->mdev;
675 			if (tp->mdev_max > tp->rttvar)
676 				tp->rttvar = tp->mdev_max;
677 		}
678 		if (after(tp->snd_una, tp->rtt_seq)) {
679 			if (tp->mdev_max < tp->rttvar)
680 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
681 			tp->rtt_seq = tp->snd_nxt;
682 			tp->mdev_max = tcp_rto_min(sk);
683 		}
684 	} else {
685 		/* no previous measure. */
686 		tp->srtt = m << 3;	/* take the measured time to be rtt */
687 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
688 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
689 		tp->rtt_seq = tp->snd_nxt;
690 	}
691 }
692 
693 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
694  * routine referred to above.
695  */
696 static inline void tcp_set_rto(struct sock *sk)
697 {
698 	const struct tcp_sock *tp = tcp_sk(sk);
699 	/* Old crap is replaced with new one. 8)
700 	 *
701 	 * More seriously:
702 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
703 	 *    It cannot be less due to utterly erratic ACK generation made
704 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
705 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
706 	 *    is invisible. Actually, Linux-2.4 also generates erratic
707 	 *    ACKs in some circumstances.
708 	 */
709 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
710 
711 	/* 2. Fixups made earlier cannot be right.
712 	 *    If we do not estimate RTO correctly without them,
713 	 *    all the algo is pure shit and should be replaced
714 	 *    with correct one. It is exactly, which we pretend to do.
715 	 */
716 
717 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
718 	 * guarantees that rto is higher.
719 	 */
720 	tcp_bound_rto(sk);
721 }
722 
723 /* Save metrics learned by this TCP session.
724    This function is called only, when TCP finishes successfully
725    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
726  */
727 void tcp_update_metrics(struct sock *sk)
728 {
729 	struct tcp_sock *tp = tcp_sk(sk);
730 	struct dst_entry *dst = __sk_dst_get(sk);
731 
732 	if (sysctl_tcp_nometrics_save)
733 		return;
734 
735 	dst_confirm(dst);
736 
737 	if (dst && (dst->flags & DST_HOST)) {
738 		const struct inet_connection_sock *icsk = inet_csk(sk);
739 		int m;
740 		unsigned long rtt;
741 
742 		if (icsk->icsk_backoff || !tp->srtt) {
743 			/* This session failed to estimate rtt. Why?
744 			 * Probably, no packets returned in time.
745 			 * Reset our results.
746 			 */
747 			if (!(dst_metric_locked(dst, RTAX_RTT)))
748 				dst_metric_set(dst, RTAX_RTT, 0);
749 			return;
750 		}
751 
752 		rtt = dst_metric_rtt(dst, RTAX_RTT);
753 		m = rtt - tp->srtt;
754 
755 		/* If newly calculated rtt larger than stored one,
756 		 * store new one. Otherwise, use EWMA. Remember,
757 		 * rtt overestimation is always better than underestimation.
758 		 */
759 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
760 			if (m <= 0)
761 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
762 			else
763 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
764 		}
765 
766 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
767 			unsigned long var;
768 			if (m < 0)
769 				m = -m;
770 
771 			/* Scale deviation to rttvar fixed point */
772 			m >>= 1;
773 			if (m < tp->mdev)
774 				m = tp->mdev;
775 
776 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
777 			if (m >= var)
778 				var = m;
779 			else
780 				var -= (var - m) >> 2;
781 
782 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
783 		}
784 
785 		if (tcp_in_initial_slowstart(tp)) {
786 			/* Slow start still did not finish. */
787 			if (dst_metric(dst, RTAX_SSTHRESH) &&
788 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
789 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
790 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
791 			if (!dst_metric_locked(dst, RTAX_CWND) &&
792 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
793 				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
794 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
795 			   icsk->icsk_ca_state == TCP_CA_Open) {
796 			/* Cong. avoidance phase, cwnd is reliable. */
797 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
798 				dst_metric_set(dst, RTAX_SSTHRESH,
799 					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
800 			if (!dst_metric_locked(dst, RTAX_CWND))
801 				dst_metric_set(dst, RTAX_CWND,
802 					       (dst_metric(dst, RTAX_CWND) +
803 						tp->snd_cwnd) >> 1);
804 		} else {
805 			/* Else slow start did not finish, cwnd is non-sense,
806 			   ssthresh may be also invalid.
807 			 */
808 			if (!dst_metric_locked(dst, RTAX_CWND))
809 				dst_metric_set(dst, RTAX_CWND,
810 					       (dst_metric(dst, RTAX_CWND) +
811 						tp->snd_ssthresh) >> 1);
812 			if (dst_metric(dst, RTAX_SSTHRESH) &&
813 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
814 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
815 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
816 		}
817 
818 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
819 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
820 			    tp->reordering != sysctl_tcp_reordering)
821 				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
822 		}
823 	}
824 }
825 
826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
827 {
828 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829 
830 	if (!cwnd)
831 		cwnd = TCP_INIT_CWND;
832 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833 }
834 
835 /* Set slow start threshold and cwnd not falling to slow start */
836 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
837 {
838 	struct tcp_sock *tp = tcp_sk(sk);
839 	const struct inet_connection_sock *icsk = inet_csk(sk);
840 
841 	tp->prior_ssthresh = 0;
842 	tp->bytes_acked = 0;
843 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
844 		tp->undo_marker = 0;
845 		if (set_ssthresh)
846 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
847 		tp->snd_cwnd = min(tp->snd_cwnd,
848 				   tcp_packets_in_flight(tp) + 1U);
849 		tp->snd_cwnd_cnt = 0;
850 		tp->high_seq = tp->snd_nxt;
851 		tp->snd_cwnd_stamp = tcp_time_stamp;
852 		TCP_ECN_queue_cwr(tp);
853 
854 		tcp_set_ca_state(sk, TCP_CA_CWR);
855 	}
856 }
857 
858 /*
859  * Packet counting of FACK is based on in-order assumptions, therefore TCP
860  * disables it when reordering is detected
861  */
862 static void tcp_disable_fack(struct tcp_sock *tp)
863 {
864 	/* RFC3517 uses different metric in lost marker => reset on change */
865 	if (tcp_is_fack(tp))
866 		tp->lost_skb_hint = NULL;
867 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
868 }
869 
870 /* Take a notice that peer is sending D-SACKs */
871 static void tcp_dsack_seen(struct tcp_sock *tp)
872 {
873 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
874 }
875 
876 /* Initialize metrics on socket. */
877 
878 static void tcp_init_metrics(struct sock *sk)
879 {
880 	struct tcp_sock *tp = tcp_sk(sk);
881 	struct dst_entry *dst = __sk_dst_get(sk);
882 
883 	if (dst == NULL)
884 		goto reset;
885 
886 	dst_confirm(dst);
887 
888 	if (dst_metric_locked(dst, RTAX_CWND))
889 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
890 	if (dst_metric(dst, RTAX_SSTHRESH)) {
891 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
892 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
893 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
894 	} else {
895 		/* ssthresh may have been reduced unnecessarily during.
896 		 * 3WHS. Restore it back to its initial default.
897 		 */
898 		tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
899 	}
900 	if (dst_metric(dst, RTAX_REORDERING) &&
901 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
902 		tcp_disable_fack(tp);
903 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
904 	}
905 
906 	if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
907 		goto reset;
908 
909 	/* Initial rtt is determined from SYN,SYN-ACK.
910 	 * The segment is small and rtt may appear much
911 	 * less than real one. Use per-dst memory
912 	 * to make it more realistic.
913 	 *
914 	 * A bit of theory. RTT is time passed after "normal" sized packet
915 	 * is sent until it is ACKed. In normal circumstances sending small
916 	 * packets force peer to delay ACKs and calculation is correct too.
917 	 * The algorithm is adaptive and, provided we follow specs, it
918 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
919 	 * tricks sort of "quick acks" for time long enough to decrease RTT
920 	 * to low value, and then abruptly stops to do it and starts to delay
921 	 * ACKs, wait for troubles.
922 	 */
923 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
924 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
925 		tp->rtt_seq = tp->snd_nxt;
926 	}
927 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
928 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
929 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930 	}
931 	tcp_set_rto(sk);
932 reset:
933 	if (tp->srtt == 0) {
934 		/* RFC2988bis: We've failed to get a valid RTT sample from
935 		 * 3WHS. This is most likely due to retransmission,
936 		 * including spurious one. Reset the RTO back to 3secs
937 		 * from the more aggressive 1sec to avoid more spurious
938 		 * retransmission.
939 		 */
940 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
941 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
942 	}
943 	/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
944 	 * retransmitted. In light of RFC2988bis' more aggressive 1sec
945 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
946 	 * retransmission has occurred.
947 	 */
948 	if (tp->total_retrans > 1)
949 		tp->snd_cwnd = 1;
950 	else
951 		tp->snd_cwnd = tcp_init_cwnd(tp, dst);
952 	tp->snd_cwnd_stamp = tcp_time_stamp;
953 }
954 
955 static void tcp_update_reordering(struct sock *sk, const int metric,
956 				  const int ts)
957 {
958 	struct tcp_sock *tp = tcp_sk(sk);
959 	if (metric > tp->reordering) {
960 		int mib_idx;
961 
962 		tp->reordering = min(TCP_MAX_REORDERING, metric);
963 
964 		/* This exciting event is worth to be remembered. 8) */
965 		if (ts)
966 			mib_idx = LINUX_MIB_TCPTSREORDER;
967 		else if (tcp_is_reno(tp))
968 			mib_idx = LINUX_MIB_TCPRENOREORDER;
969 		else if (tcp_is_fack(tp))
970 			mib_idx = LINUX_MIB_TCPFACKREORDER;
971 		else
972 			mib_idx = LINUX_MIB_TCPSACKREORDER;
973 
974 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
975 #if FASTRETRANS_DEBUG > 1
976 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
977 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
978 		       tp->reordering,
979 		       tp->fackets_out,
980 		       tp->sacked_out,
981 		       tp->undo_marker ? tp->undo_retrans : 0);
982 #endif
983 		tcp_disable_fack(tp);
984 	}
985 }
986 
987 /* This must be called before lost_out is incremented */
988 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
989 {
990 	if ((tp->retransmit_skb_hint == NULL) ||
991 	    before(TCP_SKB_CB(skb)->seq,
992 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
993 		tp->retransmit_skb_hint = skb;
994 
995 	if (!tp->lost_out ||
996 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
997 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
998 }
999 
1000 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1001 {
1002 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1003 		tcp_verify_retransmit_hint(tp, skb);
1004 
1005 		tp->lost_out += tcp_skb_pcount(skb);
1006 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1007 	}
1008 }
1009 
1010 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1011 					    struct sk_buff *skb)
1012 {
1013 	tcp_verify_retransmit_hint(tp, skb);
1014 
1015 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1016 		tp->lost_out += tcp_skb_pcount(skb);
1017 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1018 	}
1019 }
1020 
1021 /* This procedure tags the retransmission queue when SACKs arrive.
1022  *
1023  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1024  * Packets in queue with these bits set are counted in variables
1025  * sacked_out, retrans_out and lost_out, correspondingly.
1026  *
1027  * Valid combinations are:
1028  * Tag  InFlight	Description
1029  * 0	1		- orig segment is in flight.
1030  * S	0		- nothing flies, orig reached receiver.
1031  * L	0		- nothing flies, orig lost by net.
1032  * R	2		- both orig and retransmit are in flight.
1033  * L|R	1		- orig is lost, retransmit is in flight.
1034  * S|R  1		- orig reached receiver, retrans is still in flight.
1035  * (L|S|R is logically valid, it could occur when L|R is sacked,
1036  *  but it is equivalent to plain S and code short-curcuits it to S.
1037  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1038  *
1039  * These 6 states form finite state machine, controlled by the following events:
1040  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1041  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1042  * 3. Loss detection event of two flavors:
1043  *	A. Scoreboard estimator decided the packet is lost.
1044  *	   A'. Reno "three dupacks" marks head of queue lost.
1045  *	   A''. Its FACK modification, head until snd.fack is lost.
1046  *	B. SACK arrives sacking SND.NXT at the moment, when the
1047  *	   segment was retransmitted.
1048  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1049  *
1050  * It is pleasant to note, that state diagram turns out to be commutative,
1051  * so that we are allowed not to be bothered by order of our actions,
1052  * when multiple events arrive simultaneously. (see the function below).
1053  *
1054  * Reordering detection.
1055  * --------------------
1056  * Reordering metric is maximal distance, which a packet can be displaced
1057  * in packet stream. With SACKs we can estimate it:
1058  *
1059  * 1. SACK fills old hole and the corresponding segment was not
1060  *    ever retransmitted -> reordering. Alas, we cannot use it
1061  *    when segment was retransmitted.
1062  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1063  *    for retransmitted and already SACKed segment -> reordering..
1064  * Both of these heuristics are not used in Loss state, when we cannot
1065  * account for retransmits accurately.
1066  *
1067  * SACK block validation.
1068  * ----------------------
1069  *
1070  * SACK block range validation checks that the received SACK block fits to
1071  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1072  * Note that SND.UNA is not included to the range though being valid because
1073  * it means that the receiver is rather inconsistent with itself reporting
1074  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1075  * perfectly valid, however, in light of RFC2018 which explicitly states
1076  * that "SACK block MUST reflect the newest segment.  Even if the newest
1077  * segment is going to be discarded ...", not that it looks very clever
1078  * in case of head skb. Due to potentional receiver driven attacks, we
1079  * choose to avoid immediate execution of a walk in write queue due to
1080  * reneging and defer head skb's loss recovery to standard loss recovery
1081  * procedure that will eventually trigger (nothing forbids us doing this).
1082  *
1083  * Implements also blockage to start_seq wrap-around. Problem lies in the
1084  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1085  * there's no guarantee that it will be before snd_nxt (n). The problem
1086  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1087  * wrap (s_w):
1088  *
1089  *         <- outs wnd ->                          <- wrapzone ->
1090  *         u     e      n                         u_w   e_w  s n_w
1091  *         |     |      |                          |     |   |  |
1092  * |<------------+------+----- TCP seqno space --------------+---------->|
1093  * ...-- <2^31 ->|                                           |<--------...
1094  * ...---- >2^31 ------>|                                    |<--------...
1095  *
1096  * Current code wouldn't be vulnerable but it's better still to discard such
1097  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1098  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1099  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1100  * equal to the ideal case (infinite seqno space without wrap caused issues).
1101  *
1102  * With D-SACK the lower bound is extended to cover sequence space below
1103  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1104  * again, D-SACK block must not to go across snd_una (for the same reason as
1105  * for the normal SACK blocks, explained above). But there all simplicity
1106  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1107  * fully below undo_marker they do not affect behavior in anyway and can
1108  * therefore be safely ignored. In rare cases (which are more or less
1109  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1110  * fragmentation and packet reordering past skb's retransmission. To consider
1111  * them correctly, the acceptable range must be extended even more though
1112  * the exact amount is rather hard to quantify. However, tp->max_window can
1113  * be used as an exaggerated estimate.
1114  */
1115 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1116 				  u32 start_seq, u32 end_seq)
1117 {
1118 	/* Too far in future, or reversed (interpretation is ambiguous) */
1119 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1120 		return 0;
1121 
1122 	/* Nasty start_seq wrap-around check (see comments above) */
1123 	if (!before(start_seq, tp->snd_nxt))
1124 		return 0;
1125 
1126 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1127 	 * start_seq == snd_una is non-sensical (see comments above)
1128 	 */
1129 	if (after(start_seq, tp->snd_una))
1130 		return 1;
1131 
1132 	if (!is_dsack || !tp->undo_marker)
1133 		return 0;
1134 
1135 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1136 	if (after(end_seq, tp->snd_una))
1137 		return 0;
1138 
1139 	if (!before(start_seq, tp->undo_marker))
1140 		return 1;
1141 
1142 	/* Too old */
1143 	if (!after(end_seq, tp->undo_marker))
1144 		return 0;
1145 
1146 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1147 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1148 	 */
1149 	return !before(start_seq, end_seq - tp->max_window);
1150 }
1151 
1152 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1153  * Event "B". Later note: FACK people cheated me again 8), we have to account
1154  * for reordering! Ugly, but should help.
1155  *
1156  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1157  * less than what is now known to be received by the other end (derived from
1158  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1159  * retransmitted skbs to avoid some costly processing per ACKs.
1160  */
1161 static void tcp_mark_lost_retrans(struct sock *sk)
1162 {
1163 	const struct inet_connection_sock *icsk = inet_csk(sk);
1164 	struct tcp_sock *tp = tcp_sk(sk);
1165 	struct sk_buff *skb;
1166 	int cnt = 0;
1167 	u32 new_low_seq = tp->snd_nxt;
1168 	u32 received_upto = tcp_highest_sack_seq(tp);
1169 
1170 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1171 	    !after(received_upto, tp->lost_retrans_low) ||
1172 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1173 		return;
1174 
1175 	tcp_for_write_queue(skb, sk) {
1176 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1177 
1178 		if (skb == tcp_send_head(sk))
1179 			break;
1180 		if (cnt == tp->retrans_out)
1181 			break;
1182 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1183 			continue;
1184 
1185 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1186 			continue;
1187 
1188 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1189 		 * constraint here (see above) but figuring out that at
1190 		 * least tp->reordering SACK blocks reside between ack_seq
1191 		 * and received_upto is not easy task to do cheaply with
1192 		 * the available datastructures.
1193 		 *
1194 		 * Whether FACK should check here for tp->reordering segs
1195 		 * in-between one could argue for either way (it would be
1196 		 * rather simple to implement as we could count fack_count
1197 		 * during the walk and do tp->fackets_out - fack_count).
1198 		 */
1199 		if (after(received_upto, ack_seq)) {
1200 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1201 			tp->retrans_out -= tcp_skb_pcount(skb);
1202 
1203 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1204 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1205 		} else {
1206 			if (before(ack_seq, new_low_seq))
1207 				new_low_seq = ack_seq;
1208 			cnt += tcp_skb_pcount(skb);
1209 		}
1210 	}
1211 
1212 	if (tp->retrans_out)
1213 		tp->lost_retrans_low = new_low_seq;
1214 }
1215 
1216 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1217 			   struct tcp_sack_block_wire *sp, int num_sacks,
1218 			   u32 prior_snd_una)
1219 {
1220 	struct tcp_sock *tp = tcp_sk(sk);
1221 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1222 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1223 	int dup_sack = 0;
1224 
1225 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1226 		dup_sack = 1;
1227 		tcp_dsack_seen(tp);
1228 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1229 	} else if (num_sacks > 1) {
1230 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1231 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1232 
1233 		if (!after(end_seq_0, end_seq_1) &&
1234 		    !before(start_seq_0, start_seq_1)) {
1235 			dup_sack = 1;
1236 			tcp_dsack_seen(tp);
1237 			NET_INC_STATS_BH(sock_net(sk),
1238 					LINUX_MIB_TCPDSACKOFORECV);
1239 		}
1240 	}
1241 
1242 	/* D-SACK for already forgotten data... Do dumb counting. */
1243 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1244 	    !after(end_seq_0, prior_snd_una) &&
1245 	    after(end_seq_0, tp->undo_marker))
1246 		tp->undo_retrans--;
1247 
1248 	return dup_sack;
1249 }
1250 
1251 struct tcp_sacktag_state {
1252 	int reord;
1253 	int fack_count;
1254 	int flag;
1255 };
1256 
1257 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1258  * the incoming SACK may not exactly match but we can find smaller MSS
1259  * aligned portion of it that matches. Therefore we might need to fragment
1260  * which may fail and creates some hassle (caller must handle error case
1261  * returns).
1262  *
1263  * FIXME: this could be merged to shift decision code
1264  */
1265 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1266 				 u32 start_seq, u32 end_seq)
1267 {
1268 	int in_sack, err;
1269 	unsigned int pkt_len;
1270 	unsigned int mss;
1271 
1272 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1273 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1274 
1275 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1276 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1277 		mss = tcp_skb_mss(skb);
1278 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1279 
1280 		if (!in_sack) {
1281 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1282 			if (pkt_len < mss)
1283 				pkt_len = mss;
1284 		} else {
1285 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1286 			if (pkt_len < mss)
1287 				return -EINVAL;
1288 		}
1289 
1290 		/* Round if necessary so that SACKs cover only full MSSes
1291 		 * and/or the remaining small portion (if present)
1292 		 */
1293 		if (pkt_len > mss) {
1294 			unsigned int new_len = (pkt_len / mss) * mss;
1295 			if (!in_sack && new_len < pkt_len) {
1296 				new_len += mss;
1297 				if (new_len > skb->len)
1298 					return 0;
1299 			}
1300 			pkt_len = new_len;
1301 		}
1302 		err = tcp_fragment(sk, skb, pkt_len, mss);
1303 		if (err < 0)
1304 			return err;
1305 	}
1306 
1307 	return in_sack;
1308 }
1309 
1310 static u8 tcp_sacktag_one(const struct sk_buff *skb, struct sock *sk,
1311 			  struct tcp_sacktag_state *state,
1312 			  int dup_sack, int pcount)
1313 {
1314 	struct tcp_sock *tp = tcp_sk(sk);
1315 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1316 	int fack_count = state->fack_count;
1317 
1318 	/* Account D-SACK for retransmitted packet. */
1319 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1320 		if (tp->undo_marker && tp->undo_retrans &&
1321 		    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1322 			tp->undo_retrans--;
1323 		if (sacked & TCPCB_SACKED_ACKED)
1324 			state->reord = min(fack_count, state->reord);
1325 	}
1326 
1327 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1328 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1329 		return sacked;
1330 
1331 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1332 		if (sacked & TCPCB_SACKED_RETRANS) {
1333 			/* If the segment is not tagged as lost,
1334 			 * we do not clear RETRANS, believing
1335 			 * that retransmission is still in flight.
1336 			 */
1337 			if (sacked & TCPCB_LOST) {
1338 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1339 				tp->lost_out -= pcount;
1340 				tp->retrans_out -= pcount;
1341 			}
1342 		} else {
1343 			if (!(sacked & TCPCB_RETRANS)) {
1344 				/* New sack for not retransmitted frame,
1345 				 * which was in hole. It is reordering.
1346 				 */
1347 				if (before(TCP_SKB_CB(skb)->seq,
1348 					   tcp_highest_sack_seq(tp)))
1349 					state->reord = min(fack_count,
1350 							   state->reord);
1351 
1352 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1353 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1354 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1355 			}
1356 
1357 			if (sacked & TCPCB_LOST) {
1358 				sacked &= ~TCPCB_LOST;
1359 				tp->lost_out -= pcount;
1360 			}
1361 		}
1362 
1363 		sacked |= TCPCB_SACKED_ACKED;
1364 		state->flag |= FLAG_DATA_SACKED;
1365 		tp->sacked_out += pcount;
1366 
1367 		fack_count += pcount;
1368 
1369 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1370 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1371 		    before(TCP_SKB_CB(skb)->seq,
1372 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1373 			tp->lost_cnt_hint += pcount;
1374 
1375 		if (fack_count > tp->fackets_out)
1376 			tp->fackets_out = fack_count;
1377 	}
1378 
1379 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1380 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1381 	 * are accounted above as well.
1382 	 */
1383 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1384 		sacked &= ~TCPCB_SACKED_RETRANS;
1385 		tp->retrans_out -= pcount;
1386 	}
1387 
1388 	return sacked;
1389 }
1390 
1391 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1392 			   struct tcp_sacktag_state *state,
1393 			   unsigned int pcount, int shifted, int mss,
1394 			   int dup_sack)
1395 {
1396 	struct tcp_sock *tp = tcp_sk(sk);
1397 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1398 
1399 	BUG_ON(!pcount);
1400 
1401 	if (skb == tp->lost_skb_hint)
1402 		tp->lost_cnt_hint += pcount;
1403 
1404 	TCP_SKB_CB(prev)->end_seq += shifted;
1405 	TCP_SKB_CB(skb)->seq += shifted;
1406 
1407 	skb_shinfo(prev)->gso_segs += pcount;
1408 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1409 	skb_shinfo(skb)->gso_segs -= pcount;
1410 
1411 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1412 	 * in theory this shouldn't be necessary but as long as DSACK
1413 	 * code can come after this skb later on it's better to keep
1414 	 * setting gso_size to something.
1415 	 */
1416 	if (!skb_shinfo(prev)->gso_size) {
1417 		skb_shinfo(prev)->gso_size = mss;
1418 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1419 	}
1420 
1421 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1422 	if (skb_shinfo(skb)->gso_segs <= 1) {
1423 		skb_shinfo(skb)->gso_size = 0;
1424 		skb_shinfo(skb)->gso_type = 0;
1425 	}
1426 
1427 	/* We discard results */
1428 	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1429 
1430 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1431 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1432 
1433 	if (skb->len > 0) {
1434 		BUG_ON(!tcp_skb_pcount(skb));
1435 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1436 		return 0;
1437 	}
1438 
1439 	/* Whole SKB was eaten :-) */
1440 
1441 	if (skb == tp->retransmit_skb_hint)
1442 		tp->retransmit_skb_hint = prev;
1443 	if (skb == tp->scoreboard_skb_hint)
1444 		tp->scoreboard_skb_hint = prev;
1445 	if (skb == tp->lost_skb_hint) {
1446 		tp->lost_skb_hint = prev;
1447 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1448 	}
1449 
1450 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1451 	if (skb == tcp_highest_sack(sk))
1452 		tcp_advance_highest_sack(sk, skb);
1453 
1454 	tcp_unlink_write_queue(skb, sk);
1455 	sk_wmem_free_skb(sk, skb);
1456 
1457 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1458 
1459 	return 1;
1460 }
1461 
1462 /* I wish gso_size would have a bit more sane initialization than
1463  * something-or-zero which complicates things
1464  */
1465 static int tcp_skb_seglen(const struct sk_buff *skb)
1466 {
1467 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1468 }
1469 
1470 /* Shifting pages past head area doesn't work */
1471 static int skb_can_shift(const struct sk_buff *skb)
1472 {
1473 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1474 }
1475 
1476 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1477  * skb.
1478  */
1479 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1480 					  struct tcp_sacktag_state *state,
1481 					  u32 start_seq, u32 end_seq,
1482 					  int dup_sack)
1483 {
1484 	struct tcp_sock *tp = tcp_sk(sk);
1485 	struct sk_buff *prev;
1486 	int mss;
1487 	int pcount = 0;
1488 	int len;
1489 	int in_sack;
1490 
1491 	if (!sk_can_gso(sk))
1492 		goto fallback;
1493 
1494 	/* Normally R but no L won't result in plain S */
1495 	if (!dup_sack &&
1496 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1497 		goto fallback;
1498 	if (!skb_can_shift(skb))
1499 		goto fallback;
1500 	/* This frame is about to be dropped (was ACKed). */
1501 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1502 		goto fallback;
1503 
1504 	/* Can only happen with delayed DSACK + discard craziness */
1505 	if (unlikely(skb == tcp_write_queue_head(sk)))
1506 		goto fallback;
1507 	prev = tcp_write_queue_prev(sk, skb);
1508 
1509 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1510 		goto fallback;
1511 
1512 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1513 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1514 
1515 	if (in_sack) {
1516 		len = skb->len;
1517 		pcount = tcp_skb_pcount(skb);
1518 		mss = tcp_skb_seglen(skb);
1519 
1520 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1521 		 * drop this restriction as unnecessary
1522 		 */
1523 		if (mss != tcp_skb_seglen(prev))
1524 			goto fallback;
1525 	} else {
1526 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1527 			goto noop;
1528 		/* CHECKME: This is non-MSS split case only?, this will
1529 		 * cause skipped skbs due to advancing loop btw, original
1530 		 * has that feature too
1531 		 */
1532 		if (tcp_skb_pcount(skb) <= 1)
1533 			goto noop;
1534 
1535 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1536 		if (!in_sack) {
1537 			/* TODO: head merge to next could be attempted here
1538 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1539 			 * though it might not be worth of the additional hassle
1540 			 *
1541 			 * ...we can probably just fallback to what was done
1542 			 * previously. We could try merging non-SACKed ones
1543 			 * as well but it probably isn't going to buy off
1544 			 * because later SACKs might again split them, and
1545 			 * it would make skb timestamp tracking considerably
1546 			 * harder problem.
1547 			 */
1548 			goto fallback;
1549 		}
1550 
1551 		len = end_seq - TCP_SKB_CB(skb)->seq;
1552 		BUG_ON(len < 0);
1553 		BUG_ON(len > skb->len);
1554 
1555 		/* MSS boundaries should be honoured or else pcount will
1556 		 * severely break even though it makes things bit trickier.
1557 		 * Optimize common case to avoid most of the divides
1558 		 */
1559 		mss = tcp_skb_mss(skb);
1560 
1561 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1562 		 * drop this restriction as unnecessary
1563 		 */
1564 		if (mss != tcp_skb_seglen(prev))
1565 			goto fallback;
1566 
1567 		if (len == mss) {
1568 			pcount = 1;
1569 		} else if (len < mss) {
1570 			goto noop;
1571 		} else {
1572 			pcount = len / mss;
1573 			len = pcount * mss;
1574 		}
1575 	}
1576 
1577 	if (!skb_shift(prev, skb, len))
1578 		goto fallback;
1579 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1580 		goto out;
1581 
1582 	/* Hole filled allows collapsing with the next as well, this is very
1583 	 * useful when hole on every nth skb pattern happens
1584 	 */
1585 	if (prev == tcp_write_queue_tail(sk))
1586 		goto out;
1587 	skb = tcp_write_queue_next(sk, prev);
1588 
1589 	if (!skb_can_shift(skb) ||
1590 	    (skb == tcp_send_head(sk)) ||
1591 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1592 	    (mss != tcp_skb_seglen(skb)))
1593 		goto out;
1594 
1595 	len = skb->len;
1596 	if (skb_shift(prev, skb, len)) {
1597 		pcount += tcp_skb_pcount(skb);
1598 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1599 	}
1600 
1601 out:
1602 	state->fack_count += pcount;
1603 	return prev;
1604 
1605 noop:
1606 	return skb;
1607 
1608 fallback:
1609 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1610 	return NULL;
1611 }
1612 
1613 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1614 					struct tcp_sack_block *next_dup,
1615 					struct tcp_sacktag_state *state,
1616 					u32 start_seq, u32 end_seq,
1617 					int dup_sack_in)
1618 {
1619 	struct tcp_sock *tp = tcp_sk(sk);
1620 	struct sk_buff *tmp;
1621 
1622 	tcp_for_write_queue_from(skb, sk) {
1623 		int in_sack = 0;
1624 		int dup_sack = dup_sack_in;
1625 
1626 		if (skb == tcp_send_head(sk))
1627 			break;
1628 
1629 		/* queue is in-order => we can short-circuit the walk early */
1630 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1631 			break;
1632 
1633 		if ((next_dup != NULL) &&
1634 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1635 			in_sack = tcp_match_skb_to_sack(sk, skb,
1636 							next_dup->start_seq,
1637 							next_dup->end_seq);
1638 			if (in_sack > 0)
1639 				dup_sack = 1;
1640 		}
1641 
1642 		/* skb reference here is a bit tricky to get right, since
1643 		 * shifting can eat and free both this skb and the next,
1644 		 * so not even _safe variant of the loop is enough.
1645 		 */
1646 		if (in_sack <= 0) {
1647 			tmp = tcp_shift_skb_data(sk, skb, state,
1648 						 start_seq, end_seq, dup_sack);
1649 			if (tmp != NULL) {
1650 				if (tmp != skb) {
1651 					skb = tmp;
1652 					continue;
1653 				}
1654 
1655 				in_sack = 0;
1656 			} else {
1657 				in_sack = tcp_match_skb_to_sack(sk, skb,
1658 								start_seq,
1659 								end_seq);
1660 			}
1661 		}
1662 
1663 		if (unlikely(in_sack < 0))
1664 			break;
1665 
1666 		if (in_sack) {
1667 			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1668 								  state,
1669 								  dup_sack,
1670 								  tcp_skb_pcount(skb));
1671 
1672 			if (!before(TCP_SKB_CB(skb)->seq,
1673 				    tcp_highest_sack_seq(tp)))
1674 				tcp_advance_highest_sack(sk, skb);
1675 		}
1676 
1677 		state->fack_count += tcp_skb_pcount(skb);
1678 	}
1679 	return skb;
1680 }
1681 
1682 /* Avoid all extra work that is being done by sacktag while walking in
1683  * a normal way
1684  */
1685 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1686 					struct tcp_sacktag_state *state,
1687 					u32 skip_to_seq)
1688 {
1689 	tcp_for_write_queue_from(skb, sk) {
1690 		if (skb == tcp_send_head(sk))
1691 			break;
1692 
1693 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1694 			break;
1695 
1696 		state->fack_count += tcp_skb_pcount(skb);
1697 	}
1698 	return skb;
1699 }
1700 
1701 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1702 						struct sock *sk,
1703 						struct tcp_sack_block *next_dup,
1704 						struct tcp_sacktag_state *state,
1705 						u32 skip_to_seq)
1706 {
1707 	if (next_dup == NULL)
1708 		return skb;
1709 
1710 	if (before(next_dup->start_seq, skip_to_seq)) {
1711 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1712 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1713 				       next_dup->start_seq, next_dup->end_seq,
1714 				       1);
1715 	}
1716 
1717 	return skb;
1718 }
1719 
1720 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1721 {
1722 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1723 }
1724 
1725 static int
1726 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1727 			u32 prior_snd_una)
1728 {
1729 	const struct inet_connection_sock *icsk = inet_csk(sk);
1730 	struct tcp_sock *tp = tcp_sk(sk);
1731 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1732 				    TCP_SKB_CB(ack_skb)->sacked);
1733 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1734 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1735 	struct tcp_sack_block *cache;
1736 	struct tcp_sacktag_state state;
1737 	struct sk_buff *skb;
1738 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1739 	int used_sacks;
1740 	int found_dup_sack = 0;
1741 	int i, j;
1742 	int first_sack_index;
1743 
1744 	state.flag = 0;
1745 	state.reord = tp->packets_out;
1746 
1747 	if (!tp->sacked_out) {
1748 		if (WARN_ON(tp->fackets_out))
1749 			tp->fackets_out = 0;
1750 		tcp_highest_sack_reset(sk);
1751 	}
1752 
1753 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1754 					 num_sacks, prior_snd_una);
1755 	if (found_dup_sack)
1756 		state.flag |= FLAG_DSACKING_ACK;
1757 
1758 	/* Eliminate too old ACKs, but take into
1759 	 * account more or less fresh ones, they can
1760 	 * contain valid SACK info.
1761 	 */
1762 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1763 		return 0;
1764 
1765 	if (!tp->packets_out)
1766 		goto out;
1767 
1768 	used_sacks = 0;
1769 	first_sack_index = 0;
1770 	for (i = 0; i < num_sacks; i++) {
1771 		int dup_sack = !i && found_dup_sack;
1772 
1773 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1774 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1775 
1776 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1777 					    sp[used_sacks].start_seq,
1778 					    sp[used_sacks].end_seq)) {
1779 			int mib_idx;
1780 
1781 			if (dup_sack) {
1782 				if (!tp->undo_marker)
1783 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1784 				else
1785 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1786 			} else {
1787 				/* Don't count olds caused by ACK reordering */
1788 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1789 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1790 					continue;
1791 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1792 			}
1793 
1794 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1795 			if (i == 0)
1796 				first_sack_index = -1;
1797 			continue;
1798 		}
1799 
1800 		/* Ignore very old stuff early */
1801 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1802 			continue;
1803 
1804 		used_sacks++;
1805 	}
1806 
1807 	/* order SACK blocks to allow in order walk of the retrans queue */
1808 	for (i = used_sacks - 1; i > 0; i--) {
1809 		for (j = 0; j < i; j++) {
1810 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1811 				swap(sp[j], sp[j + 1]);
1812 
1813 				/* Track where the first SACK block goes to */
1814 				if (j == first_sack_index)
1815 					first_sack_index = j + 1;
1816 			}
1817 		}
1818 	}
1819 
1820 	skb = tcp_write_queue_head(sk);
1821 	state.fack_count = 0;
1822 	i = 0;
1823 
1824 	if (!tp->sacked_out) {
1825 		/* It's already past, so skip checking against it */
1826 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1827 	} else {
1828 		cache = tp->recv_sack_cache;
1829 		/* Skip empty blocks in at head of the cache */
1830 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1831 		       !cache->end_seq)
1832 			cache++;
1833 	}
1834 
1835 	while (i < used_sacks) {
1836 		u32 start_seq = sp[i].start_seq;
1837 		u32 end_seq = sp[i].end_seq;
1838 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1839 		struct tcp_sack_block *next_dup = NULL;
1840 
1841 		if (found_dup_sack && ((i + 1) == first_sack_index))
1842 			next_dup = &sp[i + 1];
1843 
1844 		/* Skip too early cached blocks */
1845 		while (tcp_sack_cache_ok(tp, cache) &&
1846 		       !before(start_seq, cache->end_seq))
1847 			cache++;
1848 
1849 		/* Can skip some work by looking recv_sack_cache? */
1850 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1851 		    after(end_seq, cache->start_seq)) {
1852 
1853 			/* Head todo? */
1854 			if (before(start_seq, cache->start_seq)) {
1855 				skb = tcp_sacktag_skip(skb, sk, &state,
1856 						       start_seq);
1857 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1858 						       &state,
1859 						       start_seq,
1860 						       cache->start_seq,
1861 						       dup_sack);
1862 			}
1863 
1864 			/* Rest of the block already fully processed? */
1865 			if (!after(end_seq, cache->end_seq))
1866 				goto advance_sp;
1867 
1868 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1869 						       &state,
1870 						       cache->end_seq);
1871 
1872 			/* ...tail remains todo... */
1873 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1874 				/* ...but better entrypoint exists! */
1875 				skb = tcp_highest_sack(sk);
1876 				if (skb == NULL)
1877 					break;
1878 				state.fack_count = tp->fackets_out;
1879 				cache++;
1880 				goto walk;
1881 			}
1882 
1883 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1884 			/* Check overlap against next cached too (past this one already) */
1885 			cache++;
1886 			continue;
1887 		}
1888 
1889 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1890 			skb = tcp_highest_sack(sk);
1891 			if (skb == NULL)
1892 				break;
1893 			state.fack_count = tp->fackets_out;
1894 		}
1895 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1896 
1897 walk:
1898 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1899 				       start_seq, end_seq, dup_sack);
1900 
1901 advance_sp:
1902 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1903 		 * due to in-order walk
1904 		 */
1905 		if (after(end_seq, tp->frto_highmark))
1906 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1907 
1908 		i++;
1909 	}
1910 
1911 	/* Clear the head of the cache sack blocks so we can skip it next time */
1912 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1913 		tp->recv_sack_cache[i].start_seq = 0;
1914 		tp->recv_sack_cache[i].end_seq = 0;
1915 	}
1916 	for (j = 0; j < used_sacks; j++)
1917 		tp->recv_sack_cache[i++] = sp[j];
1918 
1919 	tcp_mark_lost_retrans(sk);
1920 
1921 	tcp_verify_left_out(tp);
1922 
1923 	if ((state.reord < tp->fackets_out) &&
1924 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1925 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1926 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1927 
1928 out:
1929 
1930 #if FASTRETRANS_DEBUG > 0
1931 	WARN_ON((int)tp->sacked_out < 0);
1932 	WARN_ON((int)tp->lost_out < 0);
1933 	WARN_ON((int)tp->retrans_out < 0);
1934 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1935 #endif
1936 	return state.flag;
1937 }
1938 
1939 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1940  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1941  */
1942 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1943 {
1944 	u32 holes;
1945 
1946 	holes = max(tp->lost_out, 1U);
1947 	holes = min(holes, tp->packets_out);
1948 
1949 	if ((tp->sacked_out + holes) > tp->packets_out) {
1950 		tp->sacked_out = tp->packets_out - holes;
1951 		return 1;
1952 	}
1953 	return 0;
1954 }
1955 
1956 /* If we receive more dupacks than we expected counting segments
1957  * in assumption of absent reordering, interpret this as reordering.
1958  * The only another reason could be bug in receiver TCP.
1959  */
1960 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1961 {
1962 	struct tcp_sock *tp = tcp_sk(sk);
1963 	if (tcp_limit_reno_sacked(tp))
1964 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1965 }
1966 
1967 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1968 
1969 static void tcp_add_reno_sack(struct sock *sk)
1970 {
1971 	struct tcp_sock *tp = tcp_sk(sk);
1972 	tp->sacked_out++;
1973 	tcp_check_reno_reordering(sk, 0);
1974 	tcp_verify_left_out(tp);
1975 }
1976 
1977 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1978 
1979 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1980 {
1981 	struct tcp_sock *tp = tcp_sk(sk);
1982 
1983 	if (acked > 0) {
1984 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1985 		if (acked - 1 >= tp->sacked_out)
1986 			tp->sacked_out = 0;
1987 		else
1988 			tp->sacked_out -= acked - 1;
1989 	}
1990 	tcp_check_reno_reordering(sk, acked);
1991 	tcp_verify_left_out(tp);
1992 }
1993 
1994 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1995 {
1996 	tp->sacked_out = 0;
1997 }
1998 
1999 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2000 {
2001 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2002 }
2003 
2004 /* F-RTO can only be used if TCP has never retransmitted anything other than
2005  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2006  */
2007 int tcp_use_frto(struct sock *sk)
2008 {
2009 	const struct tcp_sock *tp = tcp_sk(sk);
2010 	const struct inet_connection_sock *icsk = inet_csk(sk);
2011 	struct sk_buff *skb;
2012 
2013 	if (!sysctl_tcp_frto)
2014 		return 0;
2015 
2016 	/* MTU probe and F-RTO won't really play nicely along currently */
2017 	if (icsk->icsk_mtup.probe_size)
2018 		return 0;
2019 
2020 	if (tcp_is_sackfrto(tp))
2021 		return 1;
2022 
2023 	/* Avoid expensive walking of rexmit queue if possible */
2024 	if (tp->retrans_out > 1)
2025 		return 0;
2026 
2027 	skb = tcp_write_queue_head(sk);
2028 	if (tcp_skb_is_last(sk, skb))
2029 		return 1;
2030 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2031 	tcp_for_write_queue_from(skb, sk) {
2032 		if (skb == tcp_send_head(sk))
2033 			break;
2034 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2035 			return 0;
2036 		/* Short-circuit when first non-SACKed skb has been checked */
2037 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2038 			break;
2039 	}
2040 	return 1;
2041 }
2042 
2043 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2044  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2045  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2046  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2047  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2048  * bits are handled if the Loss state is really to be entered (in
2049  * tcp_enter_frto_loss).
2050  *
2051  * Do like tcp_enter_loss() would; when RTO expires the second time it
2052  * does:
2053  *  "Reduce ssthresh if it has not yet been made inside this window."
2054  */
2055 void tcp_enter_frto(struct sock *sk)
2056 {
2057 	const struct inet_connection_sock *icsk = inet_csk(sk);
2058 	struct tcp_sock *tp = tcp_sk(sk);
2059 	struct sk_buff *skb;
2060 
2061 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2062 	    tp->snd_una == tp->high_seq ||
2063 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2064 	     !icsk->icsk_retransmits)) {
2065 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2066 		/* Our state is too optimistic in ssthresh() call because cwnd
2067 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2068 		 * recovery has not yet completed. Pattern would be this: RTO,
2069 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2070 		 * up here twice).
2071 		 * RFC4138 should be more specific on what to do, even though
2072 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2073 		 * due to back-off and complexity of triggering events ...
2074 		 */
2075 		if (tp->frto_counter) {
2076 			u32 stored_cwnd;
2077 			stored_cwnd = tp->snd_cwnd;
2078 			tp->snd_cwnd = 2;
2079 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2080 			tp->snd_cwnd = stored_cwnd;
2081 		} else {
2082 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2083 		}
2084 		/* ... in theory, cong.control module could do "any tricks" in
2085 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2086 		 * counter would have to be faked before the call occurs. We
2087 		 * consider that too expensive, unlikely and hacky, so modules
2088 		 * using these in ssthresh() must deal these incompatibility
2089 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2090 		 */
2091 		tcp_ca_event(sk, CA_EVENT_FRTO);
2092 	}
2093 
2094 	tp->undo_marker = tp->snd_una;
2095 	tp->undo_retrans = 0;
2096 
2097 	skb = tcp_write_queue_head(sk);
2098 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2099 		tp->undo_marker = 0;
2100 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2101 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2102 		tp->retrans_out -= tcp_skb_pcount(skb);
2103 	}
2104 	tcp_verify_left_out(tp);
2105 
2106 	/* Too bad if TCP was application limited */
2107 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2108 
2109 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2110 	 * The last condition is necessary at least in tp->frto_counter case.
2111 	 */
2112 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2113 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2114 	    after(tp->high_seq, tp->snd_una)) {
2115 		tp->frto_highmark = tp->high_seq;
2116 	} else {
2117 		tp->frto_highmark = tp->snd_nxt;
2118 	}
2119 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2120 	tp->high_seq = tp->snd_nxt;
2121 	tp->frto_counter = 1;
2122 }
2123 
2124 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2125  * which indicates that we should follow the traditional RTO recovery,
2126  * i.e. mark everything lost and do go-back-N retransmission.
2127  */
2128 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2129 {
2130 	struct tcp_sock *tp = tcp_sk(sk);
2131 	struct sk_buff *skb;
2132 
2133 	tp->lost_out = 0;
2134 	tp->retrans_out = 0;
2135 	if (tcp_is_reno(tp))
2136 		tcp_reset_reno_sack(tp);
2137 
2138 	tcp_for_write_queue(skb, sk) {
2139 		if (skb == tcp_send_head(sk))
2140 			break;
2141 
2142 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2143 		/*
2144 		 * Count the retransmission made on RTO correctly (only when
2145 		 * waiting for the first ACK and did not get it)...
2146 		 */
2147 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2148 			/* For some reason this R-bit might get cleared? */
2149 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2150 				tp->retrans_out += tcp_skb_pcount(skb);
2151 			/* ...enter this if branch just for the first segment */
2152 			flag |= FLAG_DATA_ACKED;
2153 		} else {
2154 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2155 				tp->undo_marker = 0;
2156 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2157 		}
2158 
2159 		/* Marking forward transmissions that were made after RTO lost
2160 		 * can cause unnecessary retransmissions in some scenarios,
2161 		 * SACK blocks will mitigate that in some but not in all cases.
2162 		 * We used to not mark them but it was causing break-ups with
2163 		 * receivers that do only in-order receival.
2164 		 *
2165 		 * TODO: we could detect presence of such receiver and select
2166 		 * different behavior per flow.
2167 		 */
2168 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2169 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2170 			tp->lost_out += tcp_skb_pcount(skb);
2171 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2172 		}
2173 	}
2174 	tcp_verify_left_out(tp);
2175 
2176 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2177 	tp->snd_cwnd_cnt = 0;
2178 	tp->snd_cwnd_stamp = tcp_time_stamp;
2179 	tp->frto_counter = 0;
2180 	tp->bytes_acked = 0;
2181 
2182 	tp->reordering = min_t(unsigned int, tp->reordering,
2183 			       sysctl_tcp_reordering);
2184 	tcp_set_ca_state(sk, TCP_CA_Loss);
2185 	tp->high_seq = tp->snd_nxt;
2186 	TCP_ECN_queue_cwr(tp);
2187 
2188 	tcp_clear_all_retrans_hints(tp);
2189 }
2190 
2191 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2192 {
2193 	tp->retrans_out = 0;
2194 	tp->lost_out = 0;
2195 
2196 	tp->undo_marker = 0;
2197 	tp->undo_retrans = 0;
2198 }
2199 
2200 void tcp_clear_retrans(struct tcp_sock *tp)
2201 {
2202 	tcp_clear_retrans_partial(tp);
2203 
2204 	tp->fackets_out = 0;
2205 	tp->sacked_out = 0;
2206 }
2207 
2208 /* Enter Loss state. If "how" is not zero, forget all SACK information
2209  * and reset tags completely, otherwise preserve SACKs. If receiver
2210  * dropped its ofo queue, we will know this due to reneging detection.
2211  */
2212 void tcp_enter_loss(struct sock *sk, int how)
2213 {
2214 	const struct inet_connection_sock *icsk = inet_csk(sk);
2215 	struct tcp_sock *tp = tcp_sk(sk);
2216 	struct sk_buff *skb;
2217 
2218 	/* Reduce ssthresh if it has not yet been made inside this window. */
2219 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2220 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2221 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2222 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2223 		tcp_ca_event(sk, CA_EVENT_LOSS);
2224 	}
2225 	tp->snd_cwnd	   = 1;
2226 	tp->snd_cwnd_cnt   = 0;
2227 	tp->snd_cwnd_stamp = tcp_time_stamp;
2228 
2229 	tp->bytes_acked = 0;
2230 	tcp_clear_retrans_partial(tp);
2231 
2232 	if (tcp_is_reno(tp))
2233 		tcp_reset_reno_sack(tp);
2234 
2235 	if (!how) {
2236 		/* Push undo marker, if it was plain RTO and nothing
2237 		 * was retransmitted. */
2238 		tp->undo_marker = tp->snd_una;
2239 	} else {
2240 		tp->sacked_out = 0;
2241 		tp->fackets_out = 0;
2242 	}
2243 	tcp_clear_all_retrans_hints(tp);
2244 
2245 	tcp_for_write_queue(skb, sk) {
2246 		if (skb == tcp_send_head(sk))
2247 			break;
2248 
2249 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2250 			tp->undo_marker = 0;
2251 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2252 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2253 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2254 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2255 			tp->lost_out += tcp_skb_pcount(skb);
2256 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2257 		}
2258 	}
2259 	tcp_verify_left_out(tp);
2260 
2261 	tp->reordering = min_t(unsigned int, tp->reordering,
2262 			       sysctl_tcp_reordering);
2263 	tcp_set_ca_state(sk, TCP_CA_Loss);
2264 	tp->high_seq = tp->snd_nxt;
2265 	TCP_ECN_queue_cwr(tp);
2266 	/* Abort F-RTO algorithm if one is in progress */
2267 	tp->frto_counter = 0;
2268 }
2269 
2270 /* If ACK arrived pointing to a remembered SACK, it means that our
2271  * remembered SACKs do not reflect real state of receiver i.e.
2272  * receiver _host_ is heavily congested (or buggy).
2273  *
2274  * Do processing similar to RTO timeout.
2275  */
2276 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2277 {
2278 	if (flag & FLAG_SACK_RENEGING) {
2279 		struct inet_connection_sock *icsk = inet_csk(sk);
2280 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2281 
2282 		tcp_enter_loss(sk, 1);
2283 		icsk->icsk_retransmits++;
2284 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2285 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2286 					  icsk->icsk_rto, TCP_RTO_MAX);
2287 		return 1;
2288 	}
2289 	return 0;
2290 }
2291 
2292 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2293 {
2294 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2295 }
2296 
2297 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2298  * counter when SACK is enabled (without SACK, sacked_out is used for
2299  * that purpose).
2300  *
2301  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2302  * segments up to the highest received SACK block so far and holes in
2303  * between them.
2304  *
2305  * With reordering, holes may still be in flight, so RFC3517 recovery
2306  * uses pure sacked_out (total number of SACKed segments) even though
2307  * it violates the RFC that uses duplicate ACKs, often these are equal
2308  * but when e.g. out-of-window ACKs or packet duplication occurs,
2309  * they differ. Since neither occurs due to loss, TCP should really
2310  * ignore them.
2311  */
2312 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2313 {
2314 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2315 }
2316 
2317 static inline int tcp_skb_timedout(const struct sock *sk,
2318 				   const struct sk_buff *skb)
2319 {
2320 	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2321 }
2322 
2323 static inline int tcp_head_timedout(const struct sock *sk)
2324 {
2325 	const struct tcp_sock *tp = tcp_sk(sk);
2326 
2327 	return tp->packets_out &&
2328 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2329 }
2330 
2331 /* Linux NewReno/SACK/FACK/ECN state machine.
2332  * --------------------------------------
2333  *
2334  * "Open"	Normal state, no dubious events, fast path.
2335  * "Disorder"   In all the respects it is "Open",
2336  *		but requires a bit more attention. It is entered when
2337  *		we see some SACKs or dupacks. It is split of "Open"
2338  *		mainly to move some processing from fast path to slow one.
2339  * "CWR"	CWND was reduced due to some Congestion Notification event.
2340  *		It can be ECN, ICMP source quench, local device congestion.
2341  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2342  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2343  *
2344  * tcp_fastretrans_alert() is entered:
2345  * - each incoming ACK, if state is not "Open"
2346  * - when arrived ACK is unusual, namely:
2347  *	* SACK
2348  *	* Duplicate ACK.
2349  *	* ECN ECE.
2350  *
2351  * Counting packets in flight is pretty simple.
2352  *
2353  *	in_flight = packets_out - left_out + retrans_out
2354  *
2355  *	packets_out is SND.NXT-SND.UNA counted in packets.
2356  *
2357  *	retrans_out is number of retransmitted segments.
2358  *
2359  *	left_out is number of segments left network, but not ACKed yet.
2360  *
2361  *		left_out = sacked_out + lost_out
2362  *
2363  *     sacked_out: Packets, which arrived to receiver out of order
2364  *		   and hence not ACKed. With SACKs this number is simply
2365  *		   amount of SACKed data. Even without SACKs
2366  *		   it is easy to give pretty reliable estimate of this number,
2367  *		   counting duplicate ACKs.
2368  *
2369  *       lost_out: Packets lost by network. TCP has no explicit
2370  *		   "loss notification" feedback from network (for now).
2371  *		   It means that this number can be only _guessed_.
2372  *		   Actually, it is the heuristics to predict lossage that
2373  *		   distinguishes different algorithms.
2374  *
2375  *	F.e. after RTO, when all the queue is considered as lost,
2376  *	lost_out = packets_out and in_flight = retrans_out.
2377  *
2378  *		Essentially, we have now two algorithms counting
2379  *		lost packets.
2380  *
2381  *		FACK: It is the simplest heuristics. As soon as we decided
2382  *		that something is lost, we decide that _all_ not SACKed
2383  *		packets until the most forward SACK are lost. I.e.
2384  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2385  *		It is absolutely correct estimate, if network does not reorder
2386  *		packets. And it loses any connection to reality when reordering
2387  *		takes place. We use FACK by default until reordering
2388  *		is suspected on the path to this destination.
2389  *
2390  *		NewReno: when Recovery is entered, we assume that one segment
2391  *		is lost (classic Reno). While we are in Recovery and
2392  *		a partial ACK arrives, we assume that one more packet
2393  *		is lost (NewReno). This heuristics are the same in NewReno
2394  *		and SACK.
2395  *
2396  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2397  *  deflation etc. CWND is real congestion window, never inflated, changes
2398  *  only according to classic VJ rules.
2399  *
2400  * Really tricky (and requiring careful tuning) part of algorithm
2401  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2402  * The first determines the moment _when_ we should reduce CWND and,
2403  * hence, slow down forward transmission. In fact, it determines the moment
2404  * when we decide that hole is caused by loss, rather than by a reorder.
2405  *
2406  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2407  * holes, caused by lost packets.
2408  *
2409  * And the most logically complicated part of algorithm is undo
2410  * heuristics. We detect false retransmits due to both too early
2411  * fast retransmit (reordering) and underestimated RTO, analyzing
2412  * timestamps and D-SACKs. When we detect that some segments were
2413  * retransmitted by mistake and CWND reduction was wrong, we undo
2414  * window reduction and abort recovery phase. This logic is hidden
2415  * inside several functions named tcp_try_undo_<something>.
2416  */
2417 
2418 /* This function decides, when we should leave Disordered state
2419  * and enter Recovery phase, reducing congestion window.
2420  *
2421  * Main question: may we further continue forward transmission
2422  * with the same cwnd?
2423  */
2424 static int tcp_time_to_recover(struct sock *sk)
2425 {
2426 	struct tcp_sock *tp = tcp_sk(sk);
2427 	__u32 packets_out;
2428 
2429 	/* Do not perform any recovery during F-RTO algorithm */
2430 	if (tp->frto_counter)
2431 		return 0;
2432 
2433 	/* Trick#1: The loss is proven. */
2434 	if (tp->lost_out)
2435 		return 1;
2436 
2437 	/* Not-A-Trick#2 : Classic rule... */
2438 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2439 		return 1;
2440 
2441 	/* Trick#3 : when we use RFC2988 timer restart, fast
2442 	 * retransmit can be triggered by timeout of queue head.
2443 	 */
2444 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2445 		return 1;
2446 
2447 	/* Trick#4: It is still not OK... But will it be useful to delay
2448 	 * recovery more?
2449 	 */
2450 	packets_out = tp->packets_out;
2451 	if (packets_out <= tp->reordering &&
2452 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2453 	    !tcp_may_send_now(sk)) {
2454 		/* We have nothing to send. This connection is limited
2455 		 * either by receiver window or by application.
2456 		 */
2457 		return 1;
2458 	}
2459 
2460 	/* If a thin stream is detected, retransmit after first
2461 	 * received dupack. Employ only if SACK is supported in order
2462 	 * to avoid possible corner-case series of spurious retransmissions
2463 	 * Use only if there are no unsent data.
2464 	 */
2465 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2466 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2467 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2468 		return 1;
2469 
2470 	return 0;
2471 }
2472 
2473 /* New heuristics: it is possible only after we switched to restart timer
2474  * each time when something is ACKed. Hence, we can detect timed out packets
2475  * during fast retransmit without falling to slow start.
2476  *
2477  * Usefulness of this as is very questionable, since we should know which of
2478  * the segments is the next to timeout which is relatively expensive to find
2479  * in general case unless we add some data structure just for that. The
2480  * current approach certainly won't find the right one too often and when it
2481  * finally does find _something_ it usually marks large part of the window
2482  * right away (because a retransmission with a larger timestamp blocks the
2483  * loop from advancing). -ij
2484  */
2485 static void tcp_timeout_skbs(struct sock *sk)
2486 {
2487 	struct tcp_sock *tp = tcp_sk(sk);
2488 	struct sk_buff *skb;
2489 
2490 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2491 		return;
2492 
2493 	skb = tp->scoreboard_skb_hint;
2494 	if (tp->scoreboard_skb_hint == NULL)
2495 		skb = tcp_write_queue_head(sk);
2496 
2497 	tcp_for_write_queue_from(skb, sk) {
2498 		if (skb == tcp_send_head(sk))
2499 			break;
2500 		if (!tcp_skb_timedout(sk, skb))
2501 			break;
2502 
2503 		tcp_skb_mark_lost(tp, skb);
2504 	}
2505 
2506 	tp->scoreboard_skb_hint = skb;
2507 
2508 	tcp_verify_left_out(tp);
2509 }
2510 
2511 /* Detect loss in event "A" above by marking head of queue up as lost.
2512  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2513  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2514  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2515  * the maximum SACKed segments to pass before reaching this limit.
2516  */
2517 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2518 {
2519 	struct tcp_sock *tp = tcp_sk(sk);
2520 	struct sk_buff *skb;
2521 	int cnt, oldcnt;
2522 	int err;
2523 	unsigned int mss;
2524 	/* Use SACK to deduce losses of new sequences sent during recovery */
2525 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2526 
2527 	WARN_ON(packets > tp->packets_out);
2528 	if (tp->lost_skb_hint) {
2529 		skb = tp->lost_skb_hint;
2530 		cnt = tp->lost_cnt_hint;
2531 		/* Head already handled? */
2532 		if (mark_head && skb != tcp_write_queue_head(sk))
2533 			return;
2534 	} else {
2535 		skb = tcp_write_queue_head(sk);
2536 		cnt = 0;
2537 	}
2538 
2539 	tcp_for_write_queue_from(skb, sk) {
2540 		if (skb == tcp_send_head(sk))
2541 			break;
2542 		/* TODO: do this better */
2543 		/* this is not the most efficient way to do this... */
2544 		tp->lost_skb_hint = skb;
2545 		tp->lost_cnt_hint = cnt;
2546 
2547 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2548 			break;
2549 
2550 		oldcnt = cnt;
2551 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2552 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2553 			cnt += tcp_skb_pcount(skb);
2554 
2555 		if (cnt > packets) {
2556 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2557 			    (oldcnt >= packets))
2558 				break;
2559 
2560 			mss = skb_shinfo(skb)->gso_size;
2561 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2562 			if (err < 0)
2563 				break;
2564 			cnt = packets;
2565 		}
2566 
2567 		tcp_skb_mark_lost(tp, skb);
2568 
2569 		if (mark_head)
2570 			break;
2571 	}
2572 	tcp_verify_left_out(tp);
2573 }
2574 
2575 /* Account newly detected lost packet(s) */
2576 
2577 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2578 {
2579 	struct tcp_sock *tp = tcp_sk(sk);
2580 
2581 	if (tcp_is_reno(tp)) {
2582 		tcp_mark_head_lost(sk, 1, 1);
2583 	} else if (tcp_is_fack(tp)) {
2584 		int lost = tp->fackets_out - tp->reordering;
2585 		if (lost <= 0)
2586 			lost = 1;
2587 		tcp_mark_head_lost(sk, lost, 0);
2588 	} else {
2589 		int sacked_upto = tp->sacked_out - tp->reordering;
2590 		if (sacked_upto >= 0)
2591 			tcp_mark_head_lost(sk, sacked_upto, 0);
2592 		else if (fast_rexmit)
2593 			tcp_mark_head_lost(sk, 1, 1);
2594 	}
2595 
2596 	tcp_timeout_skbs(sk);
2597 }
2598 
2599 /* CWND moderation, preventing bursts due to too big ACKs
2600  * in dubious situations.
2601  */
2602 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2603 {
2604 	tp->snd_cwnd = min(tp->snd_cwnd,
2605 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2606 	tp->snd_cwnd_stamp = tcp_time_stamp;
2607 }
2608 
2609 /* Lower bound on congestion window is slow start threshold
2610  * unless congestion avoidance choice decides to overide it.
2611  */
2612 static inline u32 tcp_cwnd_min(const struct sock *sk)
2613 {
2614 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2615 
2616 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2617 }
2618 
2619 /* Decrease cwnd each second ack. */
2620 static void tcp_cwnd_down(struct sock *sk, int flag)
2621 {
2622 	struct tcp_sock *tp = tcp_sk(sk);
2623 	int decr = tp->snd_cwnd_cnt + 1;
2624 
2625 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2626 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2627 		tp->snd_cwnd_cnt = decr & 1;
2628 		decr >>= 1;
2629 
2630 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2631 			tp->snd_cwnd -= decr;
2632 
2633 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2634 		tp->snd_cwnd_stamp = tcp_time_stamp;
2635 	}
2636 }
2637 
2638 /* Nothing was retransmitted or returned timestamp is less
2639  * than timestamp of the first retransmission.
2640  */
2641 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2642 {
2643 	return !tp->retrans_stamp ||
2644 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2645 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2646 }
2647 
2648 /* Undo procedures. */
2649 
2650 #if FASTRETRANS_DEBUG > 1
2651 static void DBGUNDO(struct sock *sk, const char *msg)
2652 {
2653 	struct tcp_sock *tp = tcp_sk(sk);
2654 	struct inet_sock *inet = inet_sk(sk);
2655 
2656 	if (sk->sk_family == AF_INET) {
2657 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2658 		       msg,
2659 		       &inet->inet_daddr, ntohs(inet->inet_dport),
2660 		       tp->snd_cwnd, tcp_left_out(tp),
2661 		       tp->snd_ssthresh, tp->prior_ssthresh,
2662 		       tp->packets_out);
2663 	}
2664 #if IS_ENABLED(CONFIG_IPV6)
2665 	else if (sk->sk_family == AF_INET6) {
2666 		struct ipv6_pinfo *np = inet6_sk(sk);
2667 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2668 		       msg,
2669 		       &np->daddr, ntohs(inet->inet_dport),
2670 		       tp->snd_cwnd, tcp_left_out(tp),
2671 		       tp->snd_ssthresh, tp->prior_ssthresh,
2672 		       tp->packets_out);
2673 	}
2674 #endif
2675 }
2676 #else
2677 #define DBGUNDO(x...) do { } while (0)
2678 #endif
2679 
2680 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2681 {
2682 	struct tcp_sock *tp = tcp_sk(sk);
2683 
2684 	if (tp->prior_ssthresh) {
2685 		const struct inet_connection_sock *icsk = inet_csk(sk);
2686 
2687 		if (icsk->icsk_ca_ops->undo_cwnd)
2688 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2689 		else
2690 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2691 
2692 		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2693 			tp->snd_ssthresh = tp->prior_ssthresh;
2694 			TCP_ECN_withdraw_cwr(tp);
2695 		}
2696 	} else {
2697 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2698 	}
2699 	tp->snd_cwnd_stamp = tcp_time_stamp;
2700 }
2701 
2702 static inline int tcp_may_undo(const struct tcp_sock *tp)
2703 {
2704 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2705 }
2706 
2707 /* People celebrate: "We love our President!" */
2708 static int tcp_try_undo_recovery(struct sock *sk)
2709 {
2710 	struct tcp_sock *tp = tcp_sk(sk);
2711 
2712 	if (tcp_may_undo(tp)) {
2713 		int mib_idx;
2714 
2715 		/* Happy end! We did not retransmit anything
2716 		 * or our original transmission succeeded.
2717 		 */
2718 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2719 		tcp_undo_cwr(sk, true);
2720 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2721 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2722 		else
2723 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2724 
2725 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2726 		tp->undo_marker = 0;
2727 	}
2728 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2729 		/* Hold old state until something *above* high_seq
2730 		 * is ACKed. For Reno it is MUST to prevent false
2731 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2732 		tcp_moderate_cwnd(tp);
2733 		return 1;
2734 	}
2735 	tcp_set_ca_state(sk, TCP_CA_Open);
2736 	return 0;
2737 }
2738 
2739 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2740 static void tcp_try_undo_dsack(struct sock *sk)
2741 {
2742 	struct tcp_sock *tp = tcp_sk(sk);
2743 
2744 	if (tp->undo_marker && !tp->undo_retrans) {
2745 		DBGUNDO(sk, "D-SACK");
2746 		tcp_undo_cwr(sk, true);
2747 		tp->undo_marker = 0;
2748 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2749 	}
2750 }
2751 
2752 /* We can clear retrans_stamp when there are no retransmissions in the
2753  * window. It would seem that it is trivially available for us in
2754  * tp->retrans_out, however, that kind of assumptions doesn't consider
2755  * what will happen if errors occur when sending retransmission for the
2756  * second time. ...It could the that such segment has only
2757  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2758  * the head skb is enough except for some reneging corner cases that
2759  * are not worth the effort.
2760  *
2761  * Main reason for all this complexity is the fact that connection dying
2762  * time now depends on the validity of the retrans_stamp, in particular,
2763  * that successive retransmissions of a segment must not advance
2764  * retrans_stamp under any conditions.
2765  */
2766 static int tcp_any_retrans_done(const struct sock *sk)
2767 {
2768 	const struct tcp_sock *tp = tcp_sk(sk);
2769 	struct sk_buff *skb;
2770 
2771 	if (tp->retrans_out)
2772 		return 1;
2773 
2774 	skb = tcp_write_queue_head(sk);
2775 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2776 		return 1;
2777 
2778 	return 0;
2779 }
2780 
2781 /* Undo during fast recovery after partial ACK. */
2782 
2783 static int tcp_try_undo_partial(struct sock *sk, int acked)
2784 {
2785 	struct tcp_sock *tp = tcp_sk(sk);
2786 	/* Partial ACK arrived. Force Hoe's retransmit. */
2787 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2788 
2789 	if (tcp_may_undo(tp)) {
2790 		/* Plain luck! Hole if filled with delayed
2791 		 * packet, rather than with a retransmit.
2792 		 */
2793 		if (!tcp_any_retrans_done(sk))
2794 			tp->retrans_stamp = 0;
2795 
2796 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2797 
2798 		DBGUNDO(sk, "Hoe");
2799 		tcp_undo_cwr(sk, false);
2800 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2801 
2802 		/* So... Do not make Hoe's retransmit yet.
2803 		 * If the first packet was delayed, the rest
2804 		 * ones are most probably delayed as well.
2805 		 */
2806 		failed = 0;
2807 	}
2808 	return failed;
2809 }
2810 
2811 /* Undo during loss recovery after partial ACK. */
2812 static int tcp_try_undo_loss(struct sock *sk)
2813 {
2814 	struct tcp_sock *tp = tcp_sk(sk);
2815 
2816 	if (tcp_may_undo(tp)) {
2817 		struct sk_buff *skb;
2818 		tcp_for_write_queue(skb, sk) {
2819 			if (skb == tcp_send_head(sk))
2820 				break;
2821 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2822 		}
2823 
2824 		tcp_clear_all_retrans_hints(tp);
2825 
2826 		DBGUNDO(sk, "partial loss");
2827 		tp->lost_out = 0;
2828 		tcp_undo_cwr(sk, true);
2829 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2830 		inet_csk(sk)->icsk_retransmits = 0;
2831 		tp->undo_marker = 0;
2832 		if (tcp_is_sack(tp))
2833 			tcp_set_ca_state(sk, TCP_CA_Open);
2834 		return 1;
2835 	}
2836 	return 0;
2837 }
2838 
2839 static inline void tcp_complete_cwr(struct sock *sk)
2840 {
2841 	struct tcp_sock *tp = tcp_sk(sk);
2842 
2843 	/* Do not moderate cwnd if it's already undone in cwr or recovery. */
2844 	if (tp->undo_marker) {
2845 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2846 			tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2847 		else /* PRR */
2848 			tp->snd_cwnd = tp->snd_ssthresh;
2849 		tp->snd_cwnd_stamp = tcp_time_stamp;
2850 	}
2851 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2852 }
2853 
2854 static void tcp_try_keep_open(struct sock *sk)
2855 {
2856 	struct tcp_sock *tp = tcp_sk(sk);
2857 	int state = TCP_CA_Open;
2858 
2859 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2860 		state = TCP_CA_Disorder;
2861 
2862 	if (inet_csk(sk)->icsk_ca_state != state) {
2863 		tcp_set_ca_state(sk, state);
2864 		tp->high_seq = tp->snd_nxt;
2865 	}
2866 }
2867 
2868 static void tcp_try_to_open(struct sock *sk, int flag)
2869 {
2870 	struct tcp_sock *tp = tcp_sk(sk);
2871 
2872 	tcp_verify_left_out(tp);
2873 
2874 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2875 		tp->retrans_stamp = 0;
2876 
2877 	if (flag & FLAG_ECE)
2878 		tcp_enter_cwr(sk, 1);
2879 
2880 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2881 		tcp_try_keep_open(sk);
2882 		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2883 			tcp_moderate_cwnd(tp);
2884 	} else {
2885 		tcp_cwnd_down(sk, flag);
2886 	}
2887 }
2888 
2889 static void tcp_mtup_probe_failed(struct sock *sk)
2890 {
2891 	struct inet_connection_sock *icsk = inet_csk(sk);
2892 
2893 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2894 	icsk->icsk_mtup.probe_size = 0;
2895 }
2896 
2897 static void tcp_mtup_probe_success(struct sock *sk)
2898 {
2899 	struct tcp_sock *tp = tcp_sk(sk);
2900 	struct inet_connection_sock *icsk = inet_csk(sk);
2901 
2902 	/* FIXME: breaks with very large cwnd */
2903 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2904 	tp->snd_cwnd = tp->snd_cwnd *
2905 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2906 		       icsk->icsk_mtup.probe_size;
2907 	tp->snd_cwnd_cnt = 0;
2908 	tp->snd_cwnd_stamp = tcp_time_stamp;
2909 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2910 
2911 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2912 	icsk->icsk_mtup.probe_size = 0;
2913 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2914 }
2915 
2916 /* Do a simple retransmit without using the backoff mechanisms in
2917  * tcp_timer. This is used for path mtu discovery.
2918  * The socket is already locked here.
2919  */
2920 void tcp_simple_retransmit(struct sock *sk)
2921 {
2922 	const struct inet_connection_sock *icsk = inet_csk(sk);
2923 	struct tcp_sock *tp = tcp_sk(sk);
2924 	struct sk_buff *skb;
2925 	unsigned int mss = tcp_current_mss(sk);
2926 	u32 prior_lost = tp->lost_out;
2927 
2928 	tcp_for_write_queue(skb, sk) {
2929 		if (skb == tcp_send_head(sk))
2930 			break;
2931 		if (tcp_skb_seglen(skb) > mss &&
2932 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2933 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2934 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2935 				tp->retrans_out -= tcp_skb_pcount(skb);
2936 			}
2937 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2938 		}
2939 	}
2940 
2941 	tcp_clear_retrans_hints_partial(tp);
2942 
2943 	if (prior_lost == tp->lost_out)
2944 		return;
2945 
2946 	if (tcp_is_reno(tp))
2947 		tcp_limit_reno_sacked(tp);
2948 
2949 	tcp_verify_left_out(tp);
2950 
2951 	/* Don't muck with the congestion window here.
2952 	 * Reason is that we do not increase amount of _data_
2953 	 * in network, but units changed and effective
2954 	 * cwnd/ssthresh really reduced now.
2955 	 */
2956 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2957 		tp->high_seq = tp->snd_nxt;
2958 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2959 		tp->prior_ssthresh = 0;
2960 		tp->undo_marker = 0;
2961 		tcp_set_ca_state(sk, TCP_CA_Loss);
2962 	}
2963 	tcp_xmit_retransmit_queue(sk);
2964 }
2965 EXPORT_SYMBOL(tcp_simple_retransmit);
2966 
2967 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2968  * (proportional rate reduction with slow start reduction bound) as described in
2969  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2970  * It computes the number of packets to send (sndcnt) based on packets newly
2971  * delivered:
2972  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2973  *	cwnd reductions across a full RTT.
2974  *   2) If packets in flight is lower than ssthresh (such as due to excess
2975  *	losses and/or application stalls), do not perform any further cwnd
2976  *	reductions, but instead slow start up to ssthresh.
2977  */
2978 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2979 					int fast_rexmit, int flag)
2980 {
2981 	struct tcp_sock *tp = tcp_sk(sk);
2982 	int sndcnt = 0;
2983 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2984 
2985 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2986 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2987 			       tp->prior_cwnd - 1;
2988 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2989 	} else {
2990 		sndcnt = min_t(int, delta,
2991 			       max_t(int, tp->prr_delivered - tp->prr_out,
2992 				     newly_acked_sacked) + 1);
2993 	}
2994 
2995 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2996 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2997 }
2998 
2999 /* Process an event, which can update packets-in-flight not trivially.
3000  * Main goal of this function is to calculate new estimate for left_out,
3001  * taking into account both packets sitting in receiver's buffer and
3002  * packets lost by network.
3003  *
3004  * Besides that it does CWND reduction, when packet loss is detected
3005  * and changes state of machine.
3006  *
3007  * It does _not_ decide what to send, it is made in function
3008  * tcp_xmit_retransmit_queue().
3009  */
3010 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3011 				  int newly_acked_sacked, bool is_dupack,
3012 				  int flag)
3013 {
3014 	struct inet_connection_sock *icsk = inet_csk(sk);
3015 	struct tcp_sock *tp = tcp_sk(sk);
3016 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3017 				    (tcp_fackets_out(tp) > tp->reordering));
3018 	int fast_rexmit = 0, mib_idx;
3019 
3020 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
3021 		tp->sacked_out = 0;
3022 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3023 		tp->fackets_out = 0;
3024 
3025 	/* Now state machine starts.
3026 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3027 	if (flag & FLAG_ECE)
3028 		tp->prior_ssthresh = 0;
3029 
3030 	/* B. In all the states check for reneging SACKs. */
3031 	if (tcp_check_sack_reneging(sk, flag))
3032 		return;
3033 
3034 	/* C. Check consistency of the current state. */
3035 	tcp_verify_left_out(tp);
3036 
3037 	/* D. Check state exit conditions. State can be terminated
3038 	 *    when high_seq is ACKed. */
3039 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3040 		WARN_ON(tp->retrans_out != 0);
3041 		tp->retrans_stamp = 0;
3042 	} else if (!before(tp->snd_una, tp->high_seq)) {
3043 		switch (icsk->icsk_ca_state) {
3044 		case TCP_CA_Loss:
3045 			icsk->icsk_retransmits = 0;
3046 			if (tcp_try_undo_recovery(sk))
3047 				return;
3048 			break;
3049 
3050 		case TCP_CA_CWR:
3051 			/* CWR is to be held something *above* high_seq
3052 			 * is ACKed for CWR bit to reach receiver. */
3053 			if (tp->snd_una != tp->high_seq) {
3054 				tcp_complete_cwr(sk);
3055 				tcp_set_ca_state(sk, TCP_CA_Open);
3056 			}
3057 			break;
3058 
3059 		case TCP_CA_Recovery:
3060 			if (tcp_is_reno(tp))
3061 				tcp_reset_reno_sack(tp);
3062 			if (tcp_try_undo_recovery(sk))
3063 				return;
3064 			tcp_complete_cwr(sk);
3065 			break;
3066 		}
3067 	}
3068 
3069 	/* E. Process state. */
3070 	switch (icsk->icsk_ca_state) {
3071 	case TCP_CA_Recovery:
3072 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3073 			if (tcp_is_reno(tp) && is_dupack)
3074 				tcp_add_reno_sack(sk);
3075 		} else
3076 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3077 		break;
3078 	case TCP_CA_Loss:
3079 		if (flag & FLAG_DATA_ACKED)
3080 			icsk->icsk_retransmits = 0;
3081 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3082 			tcp_reset_reno_sack(tp);
3083 		if (!tcp_try_undo_loss(sk)) {
3084 			tcp_moderate_cwnd(tp);
3085 			tcp_xmit_retransmit_queue(sk);
3086 			return;
3087 		}
3088 		if (icsk->icsk_ca_state != TCP_CA_Open)
3089 			return;
3090 		/* Loss is undone; fall through to processing in Open state. */
3091 	default:
3092 		if (tcp_is_reno(tp)) {
3093 			if (flag & FLAG_SND_UNA_ADVANCED)
3094 				tcp_reset_reno_sack(tp);
3095 			if (is_dupack)
3096 				tcp_add_reno_sack(sk);
3097 		}
3098 
3099 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3100 			tcp_try_undo_dsack(sk);
3101 
3102 		if (!tcp_time_to_recover(sk)) {
3103 			tcp_try_to_open(sk, flag);
3104 			return;
3105 		}
3106 
3107 		/* MTU probe failure: don't reduce cwnd */
3108 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3109 		    icsk->icsk_mtup.probe_size &&
3110 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3111 			tcp_mtup_probe_failed(sk);
3112 			/* Restores the reduction we did in tcp_mtup_probe() */
3113 			tp->snd_cwnd++;
3114 			tcp_simple_retransmit(sk);
3115 			return;
3116 		}
3117 
3118 		/* Otherwise enter Recovery state */
3119 
3120 		if (tcp_is_reno(tp))
3121 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3122 		else
3123 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3124 
3125 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3126 
3127 		tp->high_seq = tp->snd_nxt;
3128 		tp->prior_ssthresh = 0;
3129 		tp->undo_marker = tp->snd_una;
3130 		tp->undo_retrans = tp->retrans_out;
3131 
3132 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3133 			if (!(flag & FLAG_ECE))
3134 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3135 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3136 			TCP_ECN_queue_cwr(tp);
3137 		}
3138 
3139 		tp->bytes_acked = 0;
3140 		tp->snd_cwnd_cnt = 0;
3141 		tp->prior_cwnd = tp->snd_cwnd;
3142 		tp->prr_delivered = 0;
3143 		tp->prr_out = 0;
3144 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3145 		fast_rexmit = 1;
3146 	}
3147 
3148 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3149 		tcp_update_scoreboard(sk, fast_rexmit);
3150 	tp->prr_delivered += newly_acked_sacked;
3151 	tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3152 	tcp_xmit_retransmit_queue(sk);
3153 }
3154 
3155 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3156 {
3157 	tcp_rtt_estimator(sk, seq_rtt);
3158 	tcp_set_rto(sk);
3159 	inet_csk(sk)->icsk_backoff = 0;
3160 }
3161 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3162 
3163 /* Read draft-ietf-tcplw-high-performance before mucking
3164  * with this code. (Supersedes RFC1323)
3165  */
3166 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3167 {
3168 	/* RTTM Rule: A TSecr value received in a segment is used to
3169 	 * update the averaged RTT measurement only if the segment
3170 	 * acknowledges some new data, i.e., only if it advances the
3171 	 * left edge of the send window.
3172 	 *
3173 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3174 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3175 	 *
3176 	 * Changed: reset backoff as soon as we see the first valid sample.
3177 	 * If we do not, we get strongly overestimated rto. With timestamps
3178 	 * samples are accepted even from very old segments: f.e., when rtt=1
3179 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3180 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3181 	 * in window is lost... Voila.	 			--ANK (010210)
3182 	 */
3183 	struct tcp_sock *tp = tcp_sk(sk);
3184 
3185 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3186 }
3187 
3188 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3189 {
3190 	/* We don't have a timestamp. Can only use
3191 	 * packets that are not retransmitted to determine
3192 	 * rtt estimates. Also, we must not reset the
3193 	 * backoff for rto until we get a non-retransmitted
3194 	 * packet. This allows us to deal with a situation
3195 	 * where the network delay has increased suddenly.
3196 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3197 	 */
3198 
3199 	if (flag & FLAG_RETRANS_DATA_ACKED)
3200 		return;
3201 
3202 	tcp_valid_rtt_meas(sk, seq_rtt);
3203 }
3204 
3205 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3206 				      const s32 seq_rtt)
3207 {
3208 	const struct tcp_sock *tp = tcp_sk(sk);
3209 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3210 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3211 		tcp_ack_saw_tstamp(sk, flag);
3212 	else if (seq_rtt >= 0)
3213 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3214 }
3215 
3216 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3217 {
3218 	const struct inet_connection_sock *icsk = inet_csk(sk);
3219 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3220 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3221 }
3222 
3223 /* Restart timer after forward progress on connection.
3224  * RFC2988 recommends to restart timer to now+rto.
3225  */
3226 static void tcp_rearm_rto(struct sock *sk)
3227 {
3228 	const struct tcp_sock *tp = tcp_sk(sk);
3229 
3230 	if (!tp->packets_out) {
3231 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3232 	} else {
3233 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3234 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3235 	}
3236 }
3237 
3238 /* If we get here, the whole TSO packet has not been acked. */
3239 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3240 {
3241 	struct tcp_sock *tp = tcp_sk(sk);
3242 	u32 packets_acked;
3243 
3244 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3245 
3246 	packets_acked = tcp_skb_pcount(skb);
3247 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3248 		return 0;
3249 	packets_acked -= tcp_skb_pcount(skb);
3250 
3251 	if (packets_acked) {
3252 		BUG_ON(tcp_skb_pcount(skb) == 0);
3253 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3254 	}
3255 
3256 	return packets_acked;
3257 }
3258 
3259 /* Remove acknowledged frames from the retransmission queue. If our packet
3260  * is before the ack sequence we can discard it as it's confirmed to have
3261  * arrived at the other end.
3262  */
3263 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3264 			       u32 prior_snd_una)
3265 {
3266 	struct tcp_sock *tp = tcp_sk(sk);
3267 	const struct inet_connection_sock *icsk = inet_csk(sk);
3268 	struct sk_buff *skb;
3269 	u32 now = tcp_time_stamp;
3270 	int fully_acked = 1;
3271 	int flag = 0;
3272 	u32 pkts_acked = 0;
3273 	u32 reord = tp->packets_out;
3274 	u32 prior_sacked = tp->sacked_out;
3275 	s32 seq_rtt = -1;
3276 	s32 ca_seq_rtt = -1;
3277 	ktime_t last_ackt = net_invalid_timestamp();
3278 
3279 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3280 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3281 		u32 acked_pcount;
3282 		u8 sacked = scb->sacked;
3283 
3284 		/* Determine how many packets and what bytes were acked, tso and else */
3285 		if (after(scb->end_seq, tp->snd_una)) {
3286 			if (tcp_skb_pcount(skb) == 1 ||
3287 			    !after(tp->snd_una, scb->seq))
3288 				break;
3289 
3290 			acked_pcount = tcp_tso_acked(sk, skb);
3291 			if (!acked_pcount)
3292 				break;
3293 
3294 			fully_acked = 0;
3295 		} else {
3296 			acked_pcount = tcp_skb_pcount(skb);
3297 		}
3298 
3299 		if (sacked & TCPCB_RETRANS) {
3300 			if (sacked & TCPCB_SACKED_RETRANS)
3301 				tp->retrans_out -= acked_pcount;
3302 			flag |= FLAG_RETRANS_DATA_ACKED;
3303 			ca_seq_rtt = -1;
3304 			seq_rtt = -1;
3305 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3306 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3307 		} else {
3308 			ca_seq_rtt = now - scb->when;
3309 			last_ackt = skb->tstamp;
3310 			if (seq_rtt < 0) {
3311 				seq_rtt = ca_seq_rtt;
3312 			}
3313 			if (!(sacked & TCPCB_SACKED_ACKED))
3314 				reord = min(pkts_acked, reord);
3315 		}
3316 
3317 		if (sacked & TCPCB_SACKED_ACKED)
3318 			tp->sacked_out -= acked_pcount;
3319 		if (sacked & TCPCB_LOST)
3320 			tp->lost_out -= acked_pcount;
3321 
3322 		tp->packets_out -= acked_pcount;
3323 		pkts_acked += acked_pcount;
3324 
3325 		/* Initial outgoing SYN's get put onto the write_queue
3326 		 * just like anything else we transmit.  It is not
3327 		 * true data, and if we misinform our callers that
3328 		 * this ACK acks real data, we will erroneously exit
3329 		 * connection startup slow start one packet too
3330 		 * quickly.  This is severely frowned upon behavior.
3331 		 */
3332 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3333 			flag |= FLAG_DATA_ACKED;
3334 		} else {
3335 			flag |= FLAG_SYN_ACKED;
3336 			tp->retrans_stamp = 0;
3337 		}
3338 
3339 		if (!fully_acked)
3340 			break;
3341 
3342 		tcp_unlink_write_queue(skb, sk);
3343 		sk_wmem_free_skb(sk, skb);
3344 		tp->scoreboard_skb_hint = NULL;
3345 		if (skb == tp->retransmit_skb_hint)
3346 			tp->retransmit_skb_hint = NULL;
3347 		if (skb == tp->lost_skb_hint)
3348 			tp->lost_skb_hint = NULL;
3349 	}
3350 
3351 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3352 		tp->snd_up = tp->snd_una;
3353 
3354 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3355 		flag |= FLAG_SACK_RENEGING;
3356 
3357 	if (flag & FLAG_ACKED) {
3358 		const struct tcp_congestion_ops *ca_ops
3359 			= inet_csk(sk)->icsk_ca_ops;
3360 
3361 		if (unlikely(icsk->icsk_mtup.probe_size &&
3362 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3363 			tcp_mtup_probe_success(sk);
3364 		}
3365 
3366 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3367 		tcp_rearm_rto(sk);
3368 
3369 		if (tcp_is_reno(tp)) {
3370 			tcp_remove_reno_sacks(sk, pkts_acked);
3371 		} else {
3372 			int delta;
3373 
3374 			/* Non-retransmitted hole got filled? That's reordering */
3375 			if (reord < prior_fackets)
3376 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3377 
3378 			delta = tcp_is_fack(tp) ? pkts_acked :
3379 						  prior_sacked - tp->sacked_out;
3380 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3381 		}
3382 
3383 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3384 
3385 		if (ca_ops->pkts_acked) {
3386 			s32 rtt_us = -1;
3387 
3388 			/* Is the ACK triggering packet unambiguous? */
3389 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3390 				/* High resolution needed and available? */
3391 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3392 				    !ktime_equal(last_ackt,
3393 						 net_invalid_timestamp()))
3394 					rtt_us = ktime_us_delta(ktime_get_real(),
3395 								last_ackt);
3396 				else if (ca_seq_rtt >= 0)
3397 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3398 			}
3399 
3400 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3401 		}
3402 	}
3403 
3404 #if FASTRETRANS_DEBUG > 0
3405 	WARN_ON((int)tp->sacked_out < 0);
3406 	WARN_ON((int)tp->lost_out < 0);
3407 	WARN_ON((int)tp->retrans_out < 0);
3408 	if (!tp->packets_out && tcp_is_sack(tp)) {
3409 		icsk = inet_csk(sk);
3410 		if (tp->lost_out) {
3411 			printk(KERN_DEBUG "Leak l=%u %d\n",
3412 			       tp->lost_out, icsk->icsk_ca_state);
3413 			tp->lost_out = 0;
3414 		}
3415 		if (tp->sacked_out) {
3416 			printk(KERN_DEBUG "Leak s=%u %d\n",
3417 			       tp->sacked_out, icsk->icsk_ca_state);
3418 			tp->sacked_out = 0;
3419 		}
3420 		if (tp->retrans_out) {
3421 			printk(KERN_DEBUG "Leak r=%u %d\n",
3422 			       tp->retrans_out, icsk->icsk_ca_state);
3423 			tp->retrans_out = 0;
3424 		}
3425 	}
3426 #endif
3427 	return flag;
3428 }
3429 
3430 static void tcp_ack_probe(struct sock *sk)
3431 {
3432 	const struct tcp_sock *tp = tcp_sk(sk);
3433 	struct inet_connection_sock *icsk = inet_csk(sk);
3434 
3435 	/* Was it a usable window open? */
3436 
3437 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3438 		icsk->icsk_backoff = 0;
3439 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3440 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3441 		 * This function is not for random using!
3442 		 */
3443 	} else {
3444 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3445 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3446 					  TCP_RTO_MAX);
3447 	}
3448 }
3449 
3450 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3451 {
3452 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3453 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3454 }
3455 
3456 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3457 {
3458 	const struct tcp_sock *tp = tcp_sk(sk);
3459 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3460 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3461 }
3462 
3463 /* Check that window update is acceptable.
3464  * The function assumes that snd_una<=ack<=snd_next.
3465  */
3466 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3467 					const u32 ack, const u32 ack_seq,
3468 					const u32 nwin)
3469 {
3470 	return	after(ack, tp->snd_una) ||
3471 		after(ack_seq, tp->snd_wl1) ||
3472 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3473 }
3474 
3475 /* Update our send window.
3476  *
3477  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3478  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3479  */
3480 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3481 				 u32 ack_seq)
3482 {
3483 	struct tcp_sock *tp = tcp_sk(sk);
3484 	int flag = 0;
3485 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3486 
3487 	if (likely(!tcp_hdr(skb)->syn))
3488 		nwin <<= tp->rx_opt.snd_wscale;
3489 
3490 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3491 		flag |= FLAG_WIN_UPDATE;
3492 		tcp_update_wl(tp, ack_seq);
3493 
3494 		if (tp->snd_wnd != nwin) {
3495 			tp->snd_wnd = nwin;
3496 
3497 			/* Note, it is the only place, where
3498 			 * fast path is recovered for sending TCP.
3499 			 */
3500 			tp->pred_flags = 0;
3501 			tcp_fast_path_check(sk);
3502 
3503 			if (nwin > tp->max_window) {
3504 				tp->max_window = nwin;
3505 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3506 			}
3507 		}
3508 	}
3509 
3510 	tp->snd_una = ack;
3511 
3512 	return flag;
3513 }
3514 
3515 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3516  * continue in congestion avoidance.
3517  */
3518 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3519 {
3520 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3521 	tp->snd_cwnd_cnt = 0;
3522 	tp->bytes_acked = 0;
3523 	TCP_ECN_queue_cwr(tp);
3524 	tcp_moderate_cwnd(tp);
3525 }
3526 
3527 /* A conservative spurious RTO response algorithm: reduce cwnd using
3528  * rate halving and continue in congestion avoidance.
3529  */
3530 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3531 {
3532 	tcp_enter_cwr(sk, 0);
3533 }
3534 
3535 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3536 {
3537 	if (flag & FLAG_ECE)
3538 		tcp_ratehalving_spur_to_response(sk);
3539 	else
3540 		tcp_undo_cwr(sk, true);
3541 }
3542 
3543 /* F-RTO spurious RTO detection algorithm (RFC4138)
3544  *
3545  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3546  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3547  * window (but not to or beyond highest sequence sent before RTO):
3548  *   On First ACK,  send two new segments out.
3549  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3550  *                  algorithm is not part of the F-RTO detection algorithm
3551  *                  given in RFC4138 but can be selected separately).
3552  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3553  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3554  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3555  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3556  *
3557  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3558  * original window even after we transmit two new data segments.
3559  *
3560  * SACK version:
3561  *   on first step, wait until first cumulative ACK arrives, then move to
3562  *   the second step. In second step, the next ACK decides.
3563  *
3564  * F-RTO is implemented (mainly) in four functions:
3565  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3566  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3567  *     called when tcp_use_frto() showed green light
3568  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3569  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3570  *     to prove that the RTO is indeed spurious. It transfers the control
3571  *     from F-RTO to the conventional RTO recovery
3572  */
3573 static int tcp_process_frto(struct sock *sk, int flag)
3574 {
3575 	struct tcp_sock *tp = tcp_sk(sk);
3576 
3577 	tcp_verify_left_out(tp);
3578 
3579 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3580 	if (flag & FLAG_DATA_ACKED)
3581 		inet_csk(sk)->icsk_retransmits = 0;
3582 
3583 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3584 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3585 		tp->undo_marker = 0;
3586 
3587 	if (!before(tp->snd_una, tp->frto_highmark)) {
3588 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3589 		return 1;
3590 	}
3591 
3592 	if (!tcp_is_sackfrto(tp)) {
3593 		/* RFC4138 shortcoming in step 2; should also have case c):
3594 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3595 		 * data, winupdate
3596 		 */
3597 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3598 			return 1;
3599 
3600 		if (!(flag & FLAG_DATA_ACKED)) {
3601 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3602 					    flag);
3603 			return 1;
3604 		}
3605 	} else {
3606 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3607 			/* Prevent sending of new data. */
3608 			tp->snd_cwnd = min(tp->snd_cwnd,
3609 					   tcp_packets_in_flight(tp));
3610 			return 1;
3611 		}
3612 
3613 		if ((tp->frto_counter >= 2) &&
3614 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3615 		     ((flag & FLAG_DATA_SACKED) &&
3616 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3617 			/* RFC4138 shortcoming (see comment above) */
3618 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3619 			    (flag & FLAG_NOT_DUP))
3620 				return 1;
3621 
3622 			tcp_enter_frto_loss(sk, 3, flag);
3623 			return 1;
3624 		}
3625 	}
3626 
3627 	if (tp->frto_counter == 1) {
3628 		/* tcp_may_send_now needs to see updated state */
3629 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3630 		tp->frto_counter = 2;
3631 
3632 		if (!tcp_may_send_now(sk))
3633 			tcp_enter_frto_loss(sk, 2, flag);
3634 
3635 		return 1;
3636 	} else {
3637 		switch (sysctl_tcp_frto_response) {
3638 		case 2:
3639 			tcp_undo_spur_to_response(sk, flag);
3640 			break;
3641 		case 1:
3642 			tcp_conservative_spur_to_response(tp);
3643 			break;
3644 		default:
3645 			tcp_ratehalving_spur_to_response(sk);
3646 			break;
3647 		}
3648 		tp->frto_counter = 0;
3649 		tp->undo_marker = 0;
3650 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3651 	}
3652 	return 0;
3653 }
3654 
3655 /* This routine deals with incoming acks, but not outgoing ones. */
3656 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3657 {
3658 	struct inet_connection_sock *icsk = inet_csk(sk);
3659 	struct tcp_sock *tp = tcp_sk(sk);
3660 	u32 prior_snd_una = tp->snd_una;
3661 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3662 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3663 	bool is_dupack = false;
3664 	u32 prior_in_flight;
3665 	u32 prior_fackets;
3666 	int prior_packets;
3667 	int prior_sacked = tp->sacked_out;
3668 	int pkts_acked = 0;
3669 	int newly_acked_sacked = 0;
3670 	int frto_cwnd = 0;
3671 
3672 	/* If the ack is older than previous acks
3673 	 * then we can probably ignore it.
3674 	 */
3675 	if (before(ack, prior_snd_una))
3676 		goto old_ack;
3677 
3678 	/* If the ack includes data we haven't sent yet, discard
3679 	 * this segment (RFC793 Section 3.9).
3680 	 */
3681 	if (after(ack, tp->snd_nxt))
3682 		goto invalid_ack;
3683 
3684 	if (after(ack, prior_snd_una))
3685 		flag |= FLAG_SND_UNA_ADVANCED;
3686 
3687 	if (sysctl_tcp_abc) {
3688 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3689 			tp->bytes_acked += ack - prior_snd_una;
3690 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3691 			/* we assume just one segment left network */
3692 			tp->bytes_acked += min(ack - prior_snd_una,
3693 					       tp->mss_cache);
3694 	}
3695 
3696 	prior_fackets = tp->fackets_out;
3697 	prior_in_flight = tcp_packets_in_flight(tp);
3698 
3699 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3700 		/* Window is constant, pure forward advance.
3701 		 * No more checks are required.
3702 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3703 		 */
3704 		tcp_update_wl(tp, ack_seq);
3705 		tp->snd_una = ack;
3706 		flag |= FLAG_WIN_UPDATE;
3707 
3708 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3709 
3710 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3711 	} else {
3712 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3713 			flag |= FLAG_DATA;
3714 		else
3715 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3716 
3717 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3718 
3719 		if (TCP_SKB_CB(skb)->sacked)
3720 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3721 
3722 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3723 			flag |= FLAG_ECE;
3724 
3725 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3726 	}
3727 
3728 	/* We passed data and got it acked, remove any soft error
3729 	 * log. Something worked...
3730 	 */
3731 	sk->sk_err_soft = 0;
3732 	icsk->icsk_probes_out = 0;
3733 	tp->rcv_tstamp = tcp_time_stamp;
3734 	prior_packets = tp->packets_out;
3735 	if (!prior_packets)
3736 		goto no_queue;
3737 
3738 	/* See if we can take anything off of the retransmit queue. */
3739 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3740 
3741 	pkts_acked = prior_packets - tp->packets_out;
3742 	newly_acked_sacked = (prior_packets - prior_sacked) -
3743 			     (tp->packets_out - tp->sacked_out);
3744 
3745 	if (tp->frto_counter)
3746 		frto_cwnd = tcp_process_frto(sk, flag);
3747 	/* Guarantee sacktag reordering detection against wrap-arounds */
3748 	if (before(tp->frto_highmark, tp->snd_una))
3749 		tp->frto_highmark = 0;
3750 
3751 	if (tcp_ack_is_dubious(sk, flag)) {
3752 		/* Advance CWND, if state allows this. */
3753 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3754 		    tcp_may_raise_cwnd(sk, flag))
3755 			tcp_cong_avoid(sk, ack, prior_in_flight);
3756 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3757 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3758 				      is_dupack, flag);
3759 	} else {
3760 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3761 			tcp_cong_avoid(sk, ack, prior_in_flight);
3762 	}
3763 
3764 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3765 		dst_confirm(__sk_dst_get(sk));
3766 
3767 	return 1;
3768 
3769 no_queue:
3770 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3771 	if (flag & FLAG_DSACKING_ACK)
3772 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3773 				      is_dupack, flag);
3774 	/* If this ack opens up a zero window, clear backoff.  It was
3775 	 * being used to time the probes, and is probably far higher than
3776 	 * it needs to be for normal retransmission.
3777 	 */
3778 	if (tcp_send_head(sk))
3779 		tcp_ack_probe(sk);
3780 	return 1;
3781 
3782 invalid_ack:
3783 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3784 	return -1;
3785 
3786 old_ack:
3787 	/* If data was SACKed, tag it and see if we should send more data.
3788 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3789 	 */
3790 	if (TCP_SKB_CB(skb)->sacked) {
3791 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3792 		newly_acked_sacked = tp->sacked_out - prior_sacked;
3793 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3794 				      is_dupack, flag);
3795 	}
3796 
3797 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3798 	return 0;
3799 }
3800 
3801 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3802  * But, this can also be called on packets in the established flow when
3803  * the fast version below fails.
3804  */
3805 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3806 		       const u8 **hvpp, int estab)
3807 {
3808 	const unsigned char *ptr;
3809 	const struct tcphdr *th = tcp_hdr(skb);
3810 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3811 
3812 	ptr = (const unsigned char *)(th + 1);
3813 	opt_rx->saw_tstamp = 0;
3814 
3815 	while (length > 0) {
3816 		int opcode = *ptr++;
3817 		int opsize;
3818 
3819 		switch (opcode) {
3820 		case TCPOPT_EOL:
3821 			return;
3822 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3823 			length--;
3824 			continue;
3825 		default:
3826 			opsize = *ptr++;
3827 			if (opsize < 2) /* "silly options" */
3828 				return;
3829 			if (opsize > length)
3830 				return;	/* don't parse partial options */
3831 			switch (opcode) {
3832 			case TCPOPT_MSS:
3833 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3834 					u16 in_mss = get_unaligned_be16(ptr);
3835 					if (in_mss) {
3836 						if (opt_rx->user_mss &&
3837 						    opt_rx->user_mss < in_mss)
3838 							in_mss = opt_rx->user_mss;
3839 						opt_rx->mss_clamp = in_mss;
3840 					}
3841 				}
3842 				break;
3843 			case TCPOPT_WINDOW:
3844 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3845 				    !estab && sysctl_tcp_window_scaling) {
3846 					__u8 snd_wscale = *(__u8 *)ptr;
3847 					opt_rx->wscale_ok = 1;
3848 					if (snd_wscale > 14) {
3849 						if (net_ratelimit())
3850 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3851 							       "scaling value %d >14 received.\n",
3852 							       snd_wscale);
3853 						snd_wscale = 14;
3854 					}
3855 					opt_rx->snd_wscale = snd_wscale;
3856 				}
3857 				break;
3858 			case TCPOPT_TIMESTAMP:
3859 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3860 				    ((estab && opt_rx->tstamp_ok) ||
3861 				     (!estab && sysctl_tcp_timestamps))) {
3862 					opt_rx->saw_tstamp = 1;
3863 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3864 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3865 				}
3866 				break;
3867 			case TCPOPT_SACK_PERM:
3868 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3869 				    !estab && sysctl_tcp_sack) {
3870 					opt_rx->sack_ok = TCP_SACK_SEEN;
3871 					tcp_sack_reset(opt_rx);
3872 				}
3873 				break;
3874 
3875 			case TCPOPT_SACK:
3876 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3877 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3878 				   opt_rx->sack_ok) {
3879 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3880 				}
3881 				break;
3882 #ifdef CONFIG_TCP_MD5SIG
3883 			case TCPOPT_MD5SIG:
3884 				/*
3885 				 * The MD5 Hash has already been
3886 				 * checked (see tcp_v{4,6}_do_rcv()).
3887 				 */
3888 				break;
3889 #endif
3890 			case TCPOPT_COOKIE:
3891 				/* This option is variable length.
3892 				 */
3893 				switch (opsize) {
3894 				case TCPOLEN_COOKIE_BASE:
3895 					/* not yet implemented */
3896 					break;
3897 				case TCPOLEN_COOKIE_PAIR:
3898 					/* not yet implemented */
3899 					break;
3900 				case TCPOLEN_COOKIE_MIN+0:
3901 				case TCPOLEN_COOKIE_MIN+2:
3902 				case TCPOLEN_COOKIE_MIN+4:
3903 				case TCPOLEN_COOKIE_MIN+6:
3904 				case TCPOLEN_COOKIE_MAX:
3905 					/* 16-bit multiple */
3906 					opt_rx->cookie_plus = opsize;
3907 					*hvpp = ptr;
3908 					break;
3909 				default:
3910 					/* ignore option */
3911 					break;
3912 				}
3913 				break;
3914 			}
3915 
3916 			ptr += opsize-2;
3917 			length -= opsize;
3918 		}
3919 	}
3920 }
3921 EXPORT_SYMBOL(tcp_parse_options);
3922 
3923 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3924 {
3925 	const __be32 *ptr = (const __be32 *)(th + 1);
3926 
3927 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3928 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3929 		tp->rx_opt.saw_tstamp = 1;
3930 		++ptr;
3931 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3932 		++ptr;
3933 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3934 		return 1;
3935 	}
3936 	return 0;
3937 }
3938 
3939 /* Fast parse options. This hopes to only see timestamps.
3940  * If it is wrong it falls back on tcp_parse_options().
3941  */
3942 static int tcp_fast_parse_options(const struct sk_buff *skb,
3943 				  const struct tcphdr *th,
3944 				  struct tcp_sock *tp, const u8 **hvpp)
3945 {
3946 	/* In the spirit of fast parsing, compare doff directly to constant
3947 	 * values.  Because equality is used, short doff can be ignored here.
3948 	 */
3949 	if (th->doff == (sizeof(*th) / 4)) {
3950 		tp->rx_opt.saw_tstamp = 0;
3951 		return 0;
3952 	} else if (tp->rx_opt.tstamp_ok &&
3953 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3954 		if (tcp_parse_aligned_timestamp(tp, th))
3955 			return 1;
3956 	}
3957 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3958 	return 1;
3959 }
3960 
3961 #ifdef CONFIG_TCP_MD5SIG
3962 /*
3963  * Parse MD5 Signature option
3964  */
3965 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3966 {
3967 	int length = (th->doff << 2) - sizeof(*th);
3968 	const u8 *ptr = (const u8 *)(th + 1);
3969 
3970 	/* If the TCP option is too short, we can short cut */
3971 	if (length < TCPOLEN_MD5SIG)
3972 		return NULL;
3973 
3974 	while (length > 0) {
3975 		int opcode = *ptr++;
3976 		int opsize;
3977 
3978 		switch(opcode) {
3979 		case TCPOPT_EOL:
3980 			return NULL;
3981 		case TCPOPT_NOP:
3982 			length--;
3983 			continue;
3984 		default:
3985 			opsize = *ptr++;
3986 			if (opsize < 2 || opsize > length)
3987 				return NULL;
3988 			if (opcode == TCPOPT_MD5SIG)
3989 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3990 		}
3991 		ptr += opsize - 2;
3992 		length -= opsize;
3993 	}
3994 	return NULL;
3995 }
3996 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3997 #endif
3998 
3999 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4000 {
4001 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4002 	tp->rx_opt.ts_recent_stamp = get_seconds();
4003 }
4004 
4005 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4006 {
4007 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4008 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
4009 		 * extra check below makes sure this can only happen
4010 		 * for pure ACK frames.  -DaveM
4011 		 *
4012 		 * Not only, also it occurs for expired timestamps.
4013 		 */
4014 
4015 		if (tcp_paws_check(&tp->rx_opt, 0))
4016 			tcp_store_ts_recent(tp);
4017 	}
4018 }
4019 
4020 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4021  *
4022  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4023  * it can pass through stack. So, the following predicate verifies that
4024  * this segment is not used for anything but congestion avoidance or
4025  * fast retransmit. Moreover, we even are able to eliminate most of such
4026  * second order effects, if we apply some small "replay" window (~RTO)
4027  * to timestamp space.
4028  *
4029  * All these measures still do not guarantee that we reject wrapped ACKs
4030  * on networks with high bandwidth, when sequence space is recycled fastly,
4031  * but it guarantees that such events will be very rare and do not affect
4032  * connection seriously. This doesn't look nice, but alas, PAWS is really
4033  * buggy extension.
4034  *
4035  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4036  * states that events when retransmit arrives after original data are rare.
4037  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4038  * the biggest problem on large power networks even with minor reordering.
4039  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4040  * up to bandwidth of 18Gigabit/sec. 8) ]
4041  */
4042 
4043 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4044 {
4045 	const struct tcp_sock *tp = tcp_sk(sk);
4046 	const struct tcphdr *th = tcp_hdr(skb);
4047 	u32 seq = TCP_SKB_CB(skb)->seq;
4048 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4049 
4050 	return (/* 1. Pure ACK with correct sequence number. */
4051 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4052 
4053 		/* 2. ... and duplicate ACK. */
4054 		ack == tp->snd_una &&
4055 
4056 		/* 3. ... and does not update window. */
4057 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4058 
4059 		/* 4. ... and sits in replay window. */
4060 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4061 }
4062 
4063 static inline int tcp_paws_discard(const struct sock *sk,
4064 				   const struct sk_buff *skb)
4065 {
4066 	const struct tcp_sock *tp = tcp_sk(sk);
4067 
4068 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4069 	       !tcp_disordered_ack(sk, skb);
4070 }
4071 
4072 /* Check segment sequence number for validity.
4073  *
4074  * Segment controls are considered valid, if the segment
4075  * fits to the window after truncation to the window. Acceptability
4076  * of data (and SYN, FIN, of course) is checked separately.
4077  * See tcp_data_queue(), for example.
4078  *
4079  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4080  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4081  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4082  * (borrowed from freebsd)
4083  */
4084 
4085 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4086 {
4087 	return	!before(end_seq, tp->rcv_wup) &&
4088 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4089 }
4090 
4091 /* When we get a reset we do this. */
4092 static void tcp_reset(struct sock *sk)
4093 {
4094 	/* We want the right error as BSD sees it (and indeed as we do). */
4095 	switch (sk->sk_state) {
4096 	case TCP_SYN_SENT:
4097 		sk->sk_err = ECONNREFUSED;
4098 		break;
4099 	case TCP_CLOSE_WAIT:
4100 		sk->sk_err = EPIPE;
4101 		break;
4102 	case TCP_CLOSE:
4103 		return;
4104 	default:
4105 		sk->sk_err = ECONNRESET;
4106 	}
4107 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4108 	smp_wmb();
4109 
4110 	if (!sock_flag(sk, SOCK_DEAD))
4111 		sk->sk_error_report(sk);
4112 
4113 	tcp_done(sk);
4114 }
4115 
4116 /*
4117  * 	Process the FIN bit. This now behaves as it is supposed to work
4118  *	and the FIN takes effect when it is validly part of sequence
4119  *	space. Not before when we get holes.
4120  *
4121  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4122  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4123  *	TIME-WAIT)
4124  *
4125  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4126  *	close and we go into CLOSING (and later onto TIME-WAIT)
4127  *
4128  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4129  */
4130 static void tcp_fin(struct sock *sk)
4131 {
4132 	struct tcp_sock *tp = tcp_sk(sk);
4133 
4134 	inet_csk_schedule_ack(sk);
4135 
4136 	sk->sk_shutdown |= RCV_SHUTDOWN;
4137 	sock_set_flag(sk, SOCK_DONE);
4138 
4139 	switch (sk->sk_state) {
4140 	case TCP_SYN_RECV:
4141 	case TCP_ESTABLISHED:
4142 		/* Move to CLOSE_WAIT */
4143 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4144 		inet_csk(sk)->icsk_ack.pingpong = 1;
4145 		break;
4146 
4147 	case TCP_CLOSE_WAIT:
4148 	case TCP_CLOSING:
4149 		/* Received a retransmission of the FIN, do
4150 		 * nothing.
4151 		 */
4152 		break;
4153 	case TCP_LAST_ACK:
4154 		/* RFC793: Remain in the LAST-ACK state. */
4155 		break;
4156 
4157 	case TCP_FIN_WAIT1:
4158 		/* This case occurs when a simultaneous close
4159 		 * happens, we must ack the received FIN and
4160 		 * enter the CLOSING state.
4161 		 */
4162 		tcp_send_ack(sk);
4163 		tcp_set_state(sk, TCP_CLOSING);
4164 		break;
4165 	case TCP_FIN_WAIT2:
4166 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4167 		tcp_send_ack(sk);
4168 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4169 		break;
4170 	default:
4171 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4172 		 * cases we should never reach this piece of code.
4173 		 */
4174 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4175 		       __func__, sk->sk_state);
4176 		break;
4177 	}
4178 
4179 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4180 	 * Probably, we should reset in this case. For now drop them.
4181 	 */
4182 	__skb_queue_purge(&tp->out_of_order_queue);
4183 	if (tcp_is_sack(tp))
4184 		tcp_sack_reset(&tp->rx_opt);
4185 	sk_mem_reclaim(sk);
4186 
4187 	if (!sock_flag(sk, SOCK_DEAD)) {
4188 		sk->sk_state_change(sk);
4189 
4190 		/* Do not send POLL_HUP for half duplex close. */
4191 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4192 		    sk->sk_state == TCP_CLOSE)
4193 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4194 		else
4195 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4196 	}
4197 }
4198 
4199 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4200 				  u32 end_seq)
4201 {
4202 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4203 		if (before(seq, sp->start_seq))
4204 			sp->start_seq = seq;
4205 		if (after(end_seq, sp->end_seq))
4206 			sp->end_seq = end_seq;
4207 		return 1;
4208 	}
4209 	return 0;
4210 }
4211 
4212 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4213 {
4214 	struct tcp_sock *tp = tcp_sk(sk);
4215 
4216 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4217 		int mib_idx;
4218 
4219 		if (before(seq, tp->rcv_nxt))
4220 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4221 		else
4222 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4223 
4224 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4225 
4226 		tp->rx_opt.dsack = 1;
4227 		tp->duplicate_sack[0].start_seq = seq;
4228 		tp->duplicate_sack[0].end_seq = end_seq;
4229 	}
4230 }
4231 
4232 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4233 {
4234 	struct tcp_sock *tp = tcp_sk(sk);
4235 
4236 	if (!tp->rx_opt.dsack)
4237 		tcp_dsack_set(sk, seq, end_seq);
4238 	else
4239 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4240 }
4241 
4242 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4243 {
4244 	struct tcp_sock *tp = tcp_sk(sk);
4245 
4246 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4247 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4248 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4249 		tcp_enter_quickack_mode(sk);
4250 
4251 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4252 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4253 
4254 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4255 				end_seq = tp->rcv_nxt;
4256 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4257 		}
4258 	}
4259 
4260 	tcp_send_ack(sk);
4261 }
4262 
4263 /* These routines update the SACK block as out-of-order packets arrive or
4264  * in-order packets close up the sequence space.
4265  */
4266 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4267 {
4268 	int this_sack;
4269 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4270 	struct tcp_sack_block *swalk = sp + 1;
4271 
4272 	/* See if the recent change to the first SACK eats into
4273 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4274 	 */
4275 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4276 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4277 			int i;
4278 
4279 			/* Zap SWALK, by moving every further SACK up by one slot.
4280 			 * Decrease num_sacks.
4281 			 */
4282 			tp->rx_opt.num_sacks--;
4283 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4284 				sp[i] = sp[i + 1];
4285 			continue;
4286 		}
4287 		this_sack++, swalk++;
4288 	}
4289 }
4290 
4291 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4292 {
4293 	struct tcp_sock *tp = tcp_sk(sk);
4294 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4295 	int cur_sacks = tp->rx_opt.num_sacks;
4296 	int this_sack;
4297 
4298 	if (!cur_sacks)
4299 		goto new_sack;
4300 
4301 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4302 		if (tcp_sack_extend(sp, seq, end_seq)) {
4303 			/* Rotate this_sack to the first one. */
4304 			for (; this_sack > 0; this_sack--, sp--)
4305 				swap(*sp, *(sp - 1));
4306 			if (cur_sacks > 1)
4307 				tcp_sack_maybe_coalesce(tp);
4308 			return;
4309 		}
4310 	}
4311 
4312 	/* Could not find an adjacent existing SACK, build a new one,
4313 	 * put it at the front, and shift everyone else down.  We
4314 	 * always know there is at least one SACK present already here.
4315 	 *
4316 	 * If the sack array is full, forget about the last one.
4317 	 */
4318 	if (this_sack >= TCP_NUM_SACKS) {
4319 		this_sack--;
4320 		tp->rx_opt.num_sacks--;
4321 		sp--;
4322 	}
4323 	for (; this_sack > 0; this_sack--, sp--)
4324 		*sp = *(sp - 1);
4325 
4326 new_sack:
4327 	/* Build the new head SACK, and we're done. */
4328 	sp->start_seq = seq;
4329 	sp->end_seq = end_seq;
4330 	tp->rx_opt.num_sacks++;
4331 }
4332 
4333 /* RCV.NXT advances, some SACKs should be eaten. */
4334 
4335 static void tcp_sack_remove(struct tcp_sock *tp)
4336 {
4337 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4338 	int num_sacks = tp->rx_opt.num_sacks;
4339 	int this_sack;
4340 
4341 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4342 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4343 		tp->rx_opt.num_sacks = 0;
4344 		return;
4345 	}
4346 
4347 	for (this_sack = 0; this_sack < num_sacks;) {
4348 		/* Check if the start of the sack is covered by RCV.NXT. */
4349 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4350 			int i;
4351 
4352 			/* RCV.NXT must cover all the block! */
4353 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4354 
4355 			/* Zap this SACK, by moving forward any other SACKS. */
4356 			for (i=this_sack+1; i < num_sacks; i++)
4357 				tp->selective_acks[i-1] = tp->selective_acks[i];
4358 			num_sacks--;
4359 			continue;
4360 		}
4361 		this_sack++;
4362 		sp++;
4363 	}
4364 	tp->rx_opt.num_sacks = num_sacks;
4365 }
4366 
4367 /* This one checks to see if we can put data from the
4368  * out_of_order queue into the receive_queue.
4369  */
4370 static void tcp_ofo_queue(struct sock *sk)
4371 {
4372 	struct tcp_sock *tp = tcp_sk(sk);
4373 	__u32 dsack_high = tp->rcv_nxt;
4374 	struct sk_buff *skb;
4375 
4376 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4377 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4378 			break;
4379 
4380 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4381 			__u32 dsack = dsack_high;
4382 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4383 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4384 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4385 		}
4386 
4387 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4388 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4389 			__skb_unlink(skb, &tp->out_of_order_queue);
4390 			__kfree_skb(skb);
4391 			continue;
4392 		}
4393 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4394 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4395 			   TCP_SKB_CB(skb)->end_seq);
4396 
4397 		__skb_unlink(skb, &tp->out_of_order_queue);
4398 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4399 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4400 		if (tcp_hdr(skb)->fin)
4401 			tcp_fin(sk);
4402 	}
4403 }
4404 
4405 static int tcp_prune_ofo_queue(struct sock *sk);
4406 static int tcp_prune_queue(struct sock *sk);
4407 
4408 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4409 {
4410 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4411 	    !sk_rmem_schedule(sk, size)) {
4412 
4413 		if (tcp_prune_queue(sk) < 0)
4414 			return -1;
4415 
4416 		if (!sk_rmem_schedule(sk, size)) {
4417 			if (!tcp_prune_ofo_queue(sk))
4418 				return -1;
4419 
4420 			if (!sk_rmem_schedule(sk, size))
4421 				return -1;
4422 		}
4423 	}
4424 	return 0;
4425 }
4426 
4427 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4428 {
4429 	const struct tcphdr *th = tcp_hdr(skb);
4430 	struct tcp_sock *tp = tcp_sk(sk);
4431 	int eaten = -1;
4432 
4433 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4434 		goto drop;
4435 
4436 	skb_dst_drop(skb);
4437 	__skb_pull(skb, th->doff * 4);
4438 
4439 	TCP_ECN_accept_cwr(tp, skb);
4440 
4441 	tp->rx_opt.dsack = 0;
4442 
4443 	/*  Queue data for delivery to the user.
4444 	 *  Packets in sequence go to the receive queue.
4445 	 *  Out of sequence packets to the out_of_order_queue.
4446 	 */
4447 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4448 		if (tcp_receive_window(tp) == 0)
4449 			goto out_of_window;
4450 
4451 		/* Ok. In sequence. In window. */
4452 		if (tp->ucopy.task == current &&
4453 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4454 		    sock_owned_by_user(sk) && !tp->urg_data) {
4455 			int chunk = min_t(unsigned int, skb->len,
4456 					  tp->ucopy.len);
4457 
4458 			__set_current_state(TASK_RUNNING);
4459 
4460 			local_bh_enable();
4461 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4462 				tp->ucopy.len -= chunk;
4463 				tp->copied_seq += chunk;
4464 				eaten = (chunk == skb->len);
4465 				tcp_rcv_space_adjust(sk);
4466 			}
4467 			local_bh_disable();
4468 		}
4469 
4470 		if (eaten <= 0) {
4471 queue_and_out:
4472 			if (eaten < 0 &&
4473 			    tcp_try_rmem_schedule(sk, skb->truesize))
4474 				goto drop;
4475 
4476 			skb_set_owner_r(skb, sk);
4477 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4478 		}
4479 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4480 		if (skb->len)
4481 			tcp_event_data_recv(sk, skb);
4482 		if (th->fin)
4483 			tcp_fin(sk);
4484 
4485 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4486 			tcp_ofo_queue(sk);
4487 
4488 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4489 			 * gap in queue is filled.
4490 			 */
4491 			if (skb_queue_empty(&tp->out_of_order_queue))
4492 				inet_csk(sk)->icsk_ack.pingpong = 0;
4493 		}
4494 
4495 		if (tp->rx_opt.num_sacks)
4496 			tcp_sack_remove(tp);
4497 
4498 		tcp_fast_path_check(sk);
4499 
4500 		if (eaten > 0)
4501 			__kfree_skb(skb);
4502 		else if (!sock_flag(sk, SOCK_DEAD))
4503 			sk->sk_data_ready(sk, 0);
4504 		return;
4505 	}
4506 
4507 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4508 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4509 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4510 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4511 
4512 out_of_window:
4513 		tcp_enter_quickack_mode(sk);
4514 		inet_csk_schedule_ack(sk);
4515 drop:
4516 		__kfree_skb(skb);
4517 		return;
4518 	}
4519 
4520 	/* Out of window. F.e. zero window probe. */
4521 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4522 		goto out_of_window;
4523 
4524 	tcp_enter_quickack_mode(sk);
4525 
4526 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4527 		/* Partial packet, seq < rcv_next < end_seq */
4528 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4529 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4530 			   TCP_SKB_CB(skb)->end_seq);
4531 
4532 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4533 
4534 		/* If window is closed, drop tail of packet. But after
4535 		 * remembering D-SACK for its head made in previous line.
4536 		 */
4537 		if (!tcp_receive_window(tp))
4538 			goto out_of_window;
4539 		goto queue_and_out;
4540 	}
4541 
4542 	TCP_ECN_check_ce(tp, skb);
4543 
4544 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4545 		goto drop;
4546 
4547 	/* Disable header prediction. */
4548 	tp->pred_flags = 0;
4549 	inet_csk_schedule_ack(sk);
4550 
4551 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4552 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4553 
4554 	skb_set_owner_r(skb, sk);
4555 
4556 	if (!skb_peek(&tp->out_of_order_queue)) {
4557 		/* Initial out of order segment, build 1 SACK. */
4558 		if (tcp_is_sack(tp)) {
4559 			tp->rx_opt.num_sacks = 1;
4560 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4561 			tp->selective_acks[0].end_seq =
4562 						TCP_SKB_CB(skb)->end_seq;
4563 		}
4564 		__skb_queue_head(&tp->out_of_order_queue, skb);
4565 	} else {
4566 		struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4567 		u32 seq = TCP_SKB_CB(skb)->seq;
4568 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4569 
4570 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4571 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4572 
4573 			if (!tp->rx_opt.num_sacks ||
4574 			    tp->selective_acks[0].end_seq != seq)
4575 				goto add_sack;
4576 
4577 			/* Common case: data arrive in order after hole. */
4578 			tp->selective_acks[0].end_seq = end_seq;
4579 			return;
4580 		}
4581 
4582 		/* Find place to insert this segment. */
4583 		while (1) {
4584 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4585 				break;
4586 			if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4587 				skb1 = NULL;
4588 				break;
4589 			}
4590 			skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4591 		}
4592 
4593 		/* Do skb overlap to previous one? */
4594 		if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4595 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4596 				/* All the bits are present. Drop. */
4597 				__kfree_skb(skb);
4598 				tcp_dsack_set(sk, seq, end_seq);
4599 				goto add_sack;
4600 			}
4601 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4602 				/* Partial overlap. */
4603 				tcp_dsack_set(sk, seq,
4604 					      TCP_SKB_CB(skb1)->end_seq);
4605 			} else {
4606 				if (skb_queue_is_first(&tp->out_of_order_queue,
4607 						       skb1))
4608 					skb1 = NULL;
4609 				else
4610 					skb1 = skb_queue_prev(
4611 						&tp->out_of_order_queue,
4612 						skb1);
4613 			}
4614 		}
4615 		if (!skb1)
4616 			__skb_queue_head(&tp->out_of_order_queue, skb);
4617 		else
4618 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4619 
4620 		/* And clean segments covered by new one as whole. */
4621 		while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4622 			skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4623 
4624 			if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4625 				break;
4626 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4627 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4628 						 end_seq);
4629 				break;
4630 			}
4631 			__skb_unlink(skb1, &tp->out_of_order_queue);
4632 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4633 					 TCP_SKB_CB(skb1)->end_seq);
4634 			__kfree_skb(skb1);
4635 		}
4636 
4637 add_sack:
4638 		if (tcp_is_sack(tp))
4639 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4640 	}
4641 }
4642 
4643 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4644 					struct sk_buff_head *list)
4645 {
4646 	struct sk_buff *next = NULL;
4647 
4648 	if (!skb_queue_is_last(list, skb))
4649 		next = skb_queue_next(list, skb);
4650 
4651 	__skb_unlink(skb, list);
4652 	__kfree_skb(skb);
4653 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4654 
4655 	return next;
4656 }
4657 
4658 /* Collapse contiguous sequence of skbs head..tail with
4659  * sequence numbers start..end.
4660  *
4661  * If tail is NULL, this means until the end of the list.
4662  *
4663  * Segments with FIN/SYN are not collapsed (only because this
4664  * simplifies code)
4665  */
4666 static void
4667 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4668 	     struct sk_buff *head, struct sk_buff *tail,
4669 	     u32 start, u32 end)
4670 {
4671 	struct sk_buff *skb, *n;
4672 	bool end_of_skbs;
4673 
4674 	/* First, check that queue is collapsible and find
4675 	 * the point where collapsing can be useful. */
4676 	skb = head;
4677 restart:
4678 	end_of_skbs = true;
4679 	skb_queue_walk_from_safe(list, skb, n) {
4680 		if (skb == tail)
4681 			break;
4682 		/* No new bits? It is possible on ofo queue. */
4683 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4684 			skb = tcp_collapse_one(sk, skb, list);
4685 			if (!skb)
4686 				break;
4687 			goto restart;
4688 		}
4689 
4690 		/* The first skb to collapse is:
4691 		 * - not SYN/FIN and
4692 		 * - bloated or contains data before "start" or
4693 		 *   overlaps to the next one.
4694 		 */
4695 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4696 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4697 		     before(TCP_SKB_CB(skb)->seq, start))) {
4698 			end_of_skbs = false;
4699 			break;
4700 		}
4701 
4702 		if (!skb_queue_is_last(list, skb)) {
4703 			struct sk_buff *next = skb_queue_next(list, skb);
4704 			if (next != tail &&
4705 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4706 				end_of_skbs = false;
4707 				break;
4708 			}
4709 		}
4710 
4711 		/* Decided to skip this, advance start seq. */
4712 		start = TCP_SKB_CB(skb)->end_seq;
4713 	}
4714 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4715 		return;
4716 
4717 	while (before(start, end)) {
4718 		struct sk_buff *nskb;
4719 		unsigned int header = skb_headroom(skb);
4720 		int copy = SKB_MAX_ORDER(header, 0);
4721 
4722 		/* Too big header? This can happen with IPv6. */
4723 		if (copy < 0)
4724 			return;
4725 		if (end - start < copy)
4726 			copy = end - start;
4727 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4728 		if (!nskb)
4729 			return;
4730 
4731 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4732 		skb_set_network_header(nskb, (skb_network_header(skb) -
4733 					      skb->head));
4734 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4735 						skb->head));
4736 		skb_reserve(nskb, header);
4737 		memcpy(nskb->head, skb->head, header);
4738 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4739 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4740 		__skb_queue_before(list, skb, nskb);
4741 		skb_set_owner_r(nskb, sk);
4742 
4743 		/* Copy data, releasing collapsed skbs. */
4744 		while (copy > 0) {
4745 			int offset = start - TCP_SKB_CB(skb)->seq;
4746 			int size = TCP_SKB_CB(skb)->end_seq - start;
4747 
4748 			BUG_ON(offset < 0);
4749 			if (size > 0) {
4750 				size = min(copy, size);
4751 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4752 					BUG();
4753 				TCP_SKB_CB(nskb)->end_seq += size;
4754 				copy -= size;
4755 				start += size;
4756 			}
4757 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4758 				skb = tcp_collapse_one(sk, skb, list);
4759 				if (!skb ||
4760 				    skb == tail ||
4761 				    tcp_hdr(skb)->syn ||
4762 				    tcp_hdr(skb)->fin)
4763 					return;
4764 			}
4765 		}
4766 	}
4767 }
4768 
4769 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4770  * and tcp_collapse() them until all the queue is collapsed.
4771  */
4772 static void tcp_collapse_ofo_queue(struct sock *sk)
4773 {
4774 	struct tcp_sock *tp = tcp_sk(sk);
4775 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4776 	struct sk_buff *head;
4777 	u32 start, end;
4778 
4779 	if (skb == NULL)
4780 		return;
4781 
4782 	start = TCP_SKB_CB(skb)->seq;
4783 	end = TCP_SKB_CB(skb)->end_seq;
4784 	head = skb;
4785 
4786 	for (;;) {
4787 		struct sk_buff *next = NULL;
4788 
4789 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4790 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4791 		skb = next;
4792 
4793 		/* Segment is terminated when we see gap or when
4794 		 * we are at the end of all the queue. */
4795 		if (!skb ||
4796 		    after(TCP_SKB_CB(skb)->seq, end) ||
4797 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4798 			tcp_collapse(sk, &tp->out_of_order_queue,
4799 				     head, skb, start, end);
4800 			head = skb;
4801 			if (!skb)
4802 				break;
4803 			/* Start new segment */
4804 			start = TCP_SKB_CB(skb)->seq;
4805 			end = TCP_SKB_CB(skb)->end_seq;
4806 		} else {
4807 			if (before(TCP_SKB_CB(skb)->seq, start))
4808 				start = TCP_SKB_CB(skb)->seq;
4809 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4810 				end = TCP_SKB_CB(skb)->end_seq;
4811 		}
4812 	}
4813 }
4814 
4815 /*
4816  * Purge the out-of-order queue.
4817  * Return true if queue was pruned.
4818  */
4819 static int tcp_prune_ofo_queue(struct sock *sk)
4820 {
4821 	struct tcp_sock *tp = tcp_sk(sk);
4822 	int res = 0;
4823 
4824 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4825 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4826 		__skb_queue_purge(&tp->out_of_order_queue);
4827 
4828 		/* Reset SACK state.  A conforming SACK implementation will
4829 		 * do the same at a timeout based retransmit.  When a connection
4830 		 * is in a sad state like this, we care only about integrity
4831 		 * of the connection not performance.
4832 		 */
4833 		if (tp->rx_opt.sack_ok)
4834 			tcp_sack_reset(&tp->rx_opt);
4835 		sk_mem_reclaim(sk);
4836 		res = 1;
4837 	}
4838 	return res;
4839 }
4840 
4841 /* Reduce allocated memory if we can, trying to get
4842  * the socket within its memory limits again.
4843  *
4844  * Return less than zero if we should start dropping frames
4845  * until the socket owning process reads some of the data
4846  * to stabilize the situation.
4847  */
4848 static int tcp_prune_queue(struct sock *sk)
4849 {
4850 	struct tcp_sock *tp = tcp_sk(sk);
4851 
4852 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4853 
4854 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4855 
4856 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4857 		tcp_clamp_window(sk);
4858 	else if (sk_under_memory_pressure(sk))
4859 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4860 
4861 	tcp_collapse_ofo_queue(sk);
4862 	if (!skb_queue_empty(&sk->sk_receive_queue))
4863 		tcp_collapse(sk, &sk->sk_receive_queue,
4864 			     skb_peek(&sk->sk_receive_queue),
4865 			     NULL,
4866 			     tp->copied_seq, tp->rcv_nxt);
4867 	sk_mem_reclaim(sk);
4868 
4869 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4870 		return 0;
4871 
4872 	/* Collapsing did not help, destructive actions follow.
4873 	 * This must not ever occur. */
4874 
4875 	tcp_prune_ofo_queue(sk);
4876 
4877 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4878 		return 0;
4879 
4880 	/* If we are really being abused, tell the caller to silently
4881 	 * drop receive data on the floor.  It will get retransmitted
4882 	 * and hopefully then we'll have sufficient space.
4883 	 */
4884 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4885 
4886 	/* Massive buffer overcommit. */
4887 	tp->pred_flags = 0;
4888 	return -1;
4889 }
4890 
4891 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4892  * As additional protections, we do not touch cwnd in retransmission phases,
4893  * and if application hit its sndbuf limit recently.
4894  */
4895 void tcp_cwnd_application_limited(struct sock *sk)
4896 {
4897 	struct tcp_sock *tp = tcp_sk(sk);
4898 
4899 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4900 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4901 		/* Limited by application or receiver window. */
4902 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4903 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4904 		if (win_used < tp->snd_cwnd) {
4905 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4906 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4907 		}
4908 		tp->snd_cwnd_used = 0;
4909 	}
4910 	tp->snd_cwnd_stamp = tcp_time_stamp;
4911 }
4912 
4913 static int tcp_should_expand_sndbuf(const struct sock *sk)
4914 {
4915 	const struct tcp_sock *tp = tcp_sk(sk);
4916 
4917 	/* If the user specified a specific send buffer setting, do
4918 	 * not modify it.
4919 	 */
4920 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4921 		return 0;
4922 
4923 	/* If we are under global TCP memory pressure, do not expand.  */
4924 	if (sk_under_memory_pressure(sk))
4925 		return 0;
4926 
4927 	/* If we are under soft global TCP memory pressure, do not expand.  */
4928 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4929 		return 0;
4930 
4931 	/* If we filled the congestion window, do not expand.  */
4932 	if (tp->packets_out >= tp->snd_cwnd)
4933 		return 0;
4934 
4935 	return 1;
4936 }
4937 
4938 /* When incoming ACK allowed to free some skb from write_queue,
4939  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4940  * on the exit from tcp input handler.
4941  *
4942  * PROBLEM: sndbuf expansion does not work well with largesend.
4943  */
4944 static void tcp_new_space(struct sock *sk)
4945 {
4946 	struct tcp_sock *tp = tcp_sk(sk);
4947 
4948 	if (tcp_should_expand_sndbuf(sk)) {
4949 		int sndmem = SKB_TRUESIZE(max_t(u32,
4950 						tp->rx_opt.mss_clamp,
4951 						tp->mss_cache) +
4952 					  MAX_TCP_HEADER);
4953 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4954 				     tp->reordering + 1);
4955 		sndmem *= 2 * demanded;
4956 		if (sndmem > sk->sk_sndbuf)
4957 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4958 		tp->snd_cwnd_stamp = tcp_time_stamp;
4959 	}
4960 
4961 	sk->sk_write_space(sk);
4962 }
4963 
4964 static void tcp_check_space(struct sock *sk)
4965 {
4966 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4967 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4968 		if (sk->sk_socket &&
4969 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4970 			tcp_new_space(sk);
4971 	}
4972 }
4973 
4974 static inline void tcp_data_snd_check(struct sock *sk)
4975 {
4976 	tcp_push_pending_frames(sk);
4977 	tcp_check_space(sk);
4978 }
4979 
4980 /*
4981  * Check if sending an ack is needed.
4982  */
4983 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4984 {
4985 	struct tcp_sock *tp = tcp_sk(sk);
4986 
4987 	    /* More than one full frame received... */
4988 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4989 	     /* ... and right edge of window advances far enough.
4990 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4991 	      */
4992 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4993 	    /* We ACK each frame or... */
4994 	    tcp_in_quickack_mode(sk) ||
4995 	    /* We have out of order data. */
4996 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4997 		/* Then ack it now */
4998 		tcp_send_ack(sk);
4999 	} else {
5000 		/* Else, send delayed ack. */
5001 		tcp_send_delayed_ack(sk);
5002 	}
5003 }
5004 
5005 static inline void tcp_ack_snd_check(struct sock *sk)
5006 {
5007 	if (!inet_csk_ack_scheduled(sk)) {
5008 		/* We sent a data segment already. */
5009 		return;
5010 	}
5011 	__tcp_ack_snd_check(sk, 1);
5012 }
5013 
5014 /*
5015  *	This routine is only called when we have urgent data
5016  *	signaled. Its the 'slow' part of tcp_urg. It could be
5017  *	moved inline now as tcp_urg is only called from one
5018  *	place. We handle URGent data wrong. We have to - as
5019  *	BSD still doesn't use the correction from RFC961.
5020  *	For 1003.1g we should support a new option TCP_STDURG to permit
5021  *	either form (or just set the sysctl tcp_stdurg).
5022  */
5023 
5024 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5025 {
5026 	struct tcp_sock *tp = tcp_sk(sk);
5027 	u32 ptr = ntohs(th->urg_ptr);
5028 
5029 	if (ptr && !sysctl_tcp_stdurg)
5030 		ptr--;
5031 	ptr += ntohl(th->seq);
5032 
5033 	/* Ignore urgent data that we've already seen and read. */
5034 	if (after(tp->copied_seq, ptr))
5035 		return;
5036 
5037 	/* Do not replay urg ptr.
5038 	 *
5039 	 * NOTE: interesting situation not covered by specs.
5040 	 * Misbehaving sender may send urg ptr, pointing to segment,
5041 	 * which we already have in ofo queue. We are not able to fetch
5042 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5043 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5044 	 * situations. But it is worth to think about possibility of some
5045 	 * DoSes using some hypothetical application level deadlock.
5046 	 */
5047 	if (before(ptr, tp->rcv_nxt))
5048 		return;
5049 
5050 	/* Do we already have a newer (or duplicate) urgent pointer? */
5051 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5052 		return;
5053 
5054 	/* Tell the world about our new urgent pointer. */
5055 	sk_send_sigurg(sk);
5056 
5057 	/* We may be adding urgent data when the last byte read was
5058 	 * urgent. To do this requires some care. We cannot just ignore
5059 	 * tp->copied_seq since we would read the last urgent byte again
5060 	 * as data, nor can we alter copied_seq until this data arrives
5061 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5062 	 *
5063 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5064 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5065 	 * and expect that both A and B disappear from stream. This is _wrong_.
5066 	 * Though this happens in BSD with high probability, this is occasional.
5067 	 * Any application relying on this is buggy. Note also, that fix "works"
5068 	 * only in this artificial test. Insert some normal data between A and B and we will
5069 	 * decline of BSD again. Verdict: it is better to remove to trap
5070 	 * buggy users.
5071 	 */
5072 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5073 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5074 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5075 		tp->copied_seq++;
5076 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5077 			__skb_unlink(skb, &sk->sk_receive_queue);
5078 			__kfree_skb(skb);
5079 		}
5080 	}
5081 
5082 	tp->urg_data = TCP_URG_NOTYET;
5083 	tp->urg_seq = ptr;
5084 
5085 	/* Disable header prediction. */
5086 	tp->pred_flags = 0;
5087 }
5088 
5089 /* This is the 'fast' part of urgent handling. */
5090 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5091 {
5092 	struct tcp_sock *tp = tcp_sk(sk);
5093 
5094 	/* Check if we get a new urgent pointer - normally not. */
5095 	if (th->urg)
5096 		tcp_check_urg(sk, th);
5097 
5098 	/* Do we wait for any urgent data? - normally not... */
5099 	if (tp->urg_data == TCP_URG_NOTYET) {
5100 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5101 			  th->syn;
5102 
5103 		/* Is the urgent pointer pointing into this packet? */
5104 		if (ptr < skb->len) {
5105 			u8 tmp;
5106 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5107 				BUG();
5108 			tp->urg_data = TCP_URG_VALID | tmp;
5109 			if (!sock_flag(sk, SOCK_DEAD))
5110 				sk->sk_data_ready(sk, 0);
5111 		}
5112 	}
5113 }
5114 
5115 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5116 {
5117 	struct tcp_sock *tp = tcp_sk(sk);
5118 	int chunk = skb->len - hlen;
5119 	int err;
5120 
5121 	local_bh_enable();
5122 	if (skb_csum_unnecessary(skb))
5123 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5124 	else
5125 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5126 						       tp->ucopy.iov);
5127 
5128 	if (!err) {
5129 		tp->ucopy.len -= chunk;
5130 		tp->copied_seq += chunk;
5131 		tcp_rcv_space_adjust(sk);
5132 	}
5133 
5134 	local_bh_disable();
5135 	return err;
5136 }
5137 
5138 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5139 					    struct sk_buff *skb)
5140 {
5141 	__sum16 result;
5142 
5143 	if (sock_owned_by_user(sk)) {
5144 		local_bh_enable();
5145 		result = __tcp_checksum_complete(skb);
5146 		local_bh_disable();
5147 	} else {
5148 		result = __tcp_checksum_complete(skb);
5149 	}
5150 	return result;
5151 }
5152 
5153 static inline int tcp_checksum_complete_user(struct sock *sk,
5154 					     struct sk_buff *skb)
5155 {
5156 	return !skb_csum_unnecessary(skb) &&
5157 	       __tcp_checksum_complete_user(sk, skb);
5158 }
5159 
5160 #ifdef CONFIG_NET_DMA
5161 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5162 				  int hlen)
5163 {
5164 	struct tcp_sock *tp = tcp_sk(sk);
5165 	int chunk = skb->len - hlen;
5166 	int dma_cookie;
5167 	int copied_early = 0;
5168 
5169 	if (tp->ucopy.wakeup)
5170 		return 0;
5171 
5172 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5173 		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5174 
5175 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5176 
5177 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5178 							 skb, hlen,
5179 							 tp->ucopy.iov, chunk,
5180 							 tp->ucopy.pinned_list);
5181 
5182 		if (dma_cookie < 0)
5183 			goto out;
5184 
5185 		tp->ucopy.dma_cookie = dma_cookie;
5186 		copied_early = 1;
5187 
5188 		tp->ucopy.len -= chunk;
5189 		tp->copied_seq += chunk;
5190 		tcp_rcv_space_adjust(sk);
5191 
5192 		if ((tp->ucopy.len == 0) ||
5193 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5194 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5195 			tp->ucopy.wakeup = 1;
5196 			sk->sk_data_ready(sk, 0);
5197 		}
5198 	} else if (chunk > 0) {
5199 		tp->ucopy.wakeup = 1;
5200 		sk->sk_data_ready(sk, 0);
5201 	}
5202 out:
5203 	return copied_early;
5204 }
5205 #endif /* CONFIG_NET_DMA */
5206 
5207 /* Does PAWS and seqno based validation of an incoming segment, flags will
5208  * play significant role here.
5209  */
5210 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5211 			      const struct tcphdr *th, int syn_inerr)
5212 {
5213 	const u8 *hash_location;
5214 	struct tcp_sock *tp = tcp_sk(sk);
5215 
5216 	/* RFC1323: H1. Apply PAWS check first. */
5217 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5218 	    tp->rx_opt.saw_tstamp &&
5219 	    tcp_paws_discard(sk, skb)) {
5220 		if (!th->rst) {
5221 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5222 			tcp_send_dupack(sk, skb);
5223 			goto discard;
5224 		}
5225 		/* Reset is accepted even if it did not pass PAWS. */
5226 	}
5227 
5228 	/* Step 1: check sequence number */
5229 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5230 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5231 		 * (RST) segments are validated by checking their SEQ-fields."
5232 		 * And page 69: "If an incoming segment is not acceptable,
5233 		 * an acknowledgment should be sent in reply (unless the RST
5234 		 * bit is set, if so drop the segment and return)".
5235 		 */
5236 		if (!th->rst)
5237 			tcp_send_dupack(sk, skb);
5238 		goto discard;
5239 	}
5240 
5241 	/* Step 2: check RST bit */
5242 	if (th->rst) {
5243 		tcp_reset(sk);
5244 		goto discard;
5245 	}
5246 
5247 	/* ts_recent update must be made after we are sure that the packet
5248 	 * is in window.
5249 	 */
5250 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5251 
5252 	/* step 3: check security and precedence [ignored] */
5253 
5254 	/* step 4: Check for a SYN in window. */
5255 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5256 		if (syn_inerr)
5257 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5258 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5259 		tcp_reset(sk);
5260 		return -1;
5261 	}
5262 
5263 	return 1;
5264 
5265 discard:
5266 	__kfree_skb(skb);
5267 	return 0;
5268 }
5269 
5270 /*
5271  *	TCP receive function for the ESTABLISHED state.
5272  *
5273  *	It is split into a fast path and a slow path. The fast path is
5274  * 	disabled when:
5275  *	- A zero window was announced from us - zero window probing
5276  *        is only handled properly in the slow path.
5277  *	- Out of order segments arrived.
5278  *	- Urgent data is expected.
5279  *	- There is no buffer space left
5280  *	- Unexpected TCP flags/window values/header lengths are received
5281  *	  (detected by checking the TCP header against pred_flags)
5282  *	- Data is sent in both directions. Fast path only supports pure senders
5283  *	  or pure receivers (this means either the sequence number or the ack
5284  *	  value must stay constant)
5285  *	- Unexpected TCP option.
5286  *
5287  *	When these conditions are not satisfied it drops into a standard
5288  *	receive procedure patterned after RFC793 to handle all cases.
5289  *	The first three cases are guaranteed by proper pred_flags setting,
5290  *	the rest is checked inline. Fast processing is turned on in
5291  *	tcp_data_queue when everything is OK.
5292  */
5293 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5294 			const struct tcphdr *th, unsigned int len)
5295 {
5296 	struct tcp_sock *tp = tcp_sk(sk);
5297 	int res;
5298 
5299 	/*
5300 	 *	Header prediction.
5301 	 *	The code loosely follows the one in the famous
5302 	 *	"30 instruction TCP receive" Van Jacobson mail.
5303 	 *
5304 	 *	Van's trick is to deposit buffers into socket queue
5305 	 *	on a device interrupt, to call tcp_recv function
5306 	 *	on the receive process context and checksum and copy
5307 	 *	the buffer to user space. smart...
5308 	 *
5309 	 *	Our current scheme is not silly either but we take the
5310 	 *	extra cost of the net_bh soft interrupt processing...
5311 	 *	We do checksum and copy also but from device to kernel.
5312 	 */
5313 
5314 	tp->rx_opt.saw_tstamp = 0;
5315 
5316 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5317 	 *	if header_prediction is to be made
5318 	 *	'S' will always be tp->tcp_header_len >> 2
5319 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5320 	 *  turn it off	(when there are holes in the receive
5321 	 *	 space for instance)
5322 	 *	PSH flag is ignored.
5323 	 */
5324 
5325 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5326 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5327 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5328 		int tcp_header_len = tp->tcp_header_len;
5329 
5330 		/* Timestamp header prediction: tcp_header_len
5331 		 * is automatically equal to th->doff*4 due to pred_flags
5332 		 * match.
5333 		 */
5334 
5335 		/* Check timestamp */
5336 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5337 			/* No? Slow path! */
5338 			if (!tcp_parse_aligned_timestamp(tp, th))
5339 				goto slow_path;
5340 
5341 			/* If PAWS failed, check it more carefully in slow path */
5342 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5343 				goto slow_path;
5344 
5345 			/* DO NOT update ts_recent here, if checksum fails
5346 			 * and timestamp was corrupted part, it will result
5347 			 * in a hung connection since we will drop all
5348 			 * future packets due to the PAWS test.
5349 			 */
5350 		}
5351 
5352 		if (len <= tcp_header_len) {
5353 			/* Bulk data transfer: sender */
5354 			if (len == tcp_header_len) {
5355 				/* Predicted packet is in window by definition.
5356 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5357 				 * Hence, check seq<=rcv_wup reduces to:
5358 				 */
5359 				if (tcp_header_len ==
5360 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5361 				    tp->rcv_nxt == tp->rcv_wup)
5362 					tcp_store_ts_recent(tp);
5363 
5364 				/* We know that such packets are checksummed
5365 				 * on entry.
5366 				 */
5367 				tcp_ack(sk, skb, 0);
5368 				__kfree_skb(skb);
5369 				tcp_data_snd_check(sk);
5370 				return 0;
5371 			} else { /* Header too small */
5372 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5373 				goto discard;
5374 			}
5375 		} else {
5376 			int eaten = 0;
5377 			int copied_early = 0;
5378 
5379 			if (tp->copied_seq == tp->rcv_nxt &&
5380 			    len - tcp_header_len <= tp->ucopy.len) {
5381 #ifdef CONFIG_NET_DMA
5382 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5383 					copied_early = 1;
5384 					eaten = 1;
5385 				}
5386 #endif
5387 				if (tp->ucopy.task == current &&
5388 				    sock_owned_by_user(sk) && !copied_early) {
5389 					__set_current_state(TASK_RUNNING);
5390 
5391 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5392 						eaten = 1;
5393 				}
5394 				if (eaten) {
5395 					/* Predicted packet is in window by definition.
5396 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5397 					 * Hence, check seq<=rcv_wup reduces to:
5398 					 */
5399 					if (tcp_header_len ==
5400 					    (sizeof(struct tcphdr) +
5401 					     TCPOLEN_TSTAMP_ALIGNED) &&
5402 					    tp->rcv_nxt == tp->rcv_wup)
5403 						tcp_store_ts_recent(tp);
5404 
5405 					tcp_rcv_rtt_measure_ts(sk, skb);
5406 
5407 					__skb_pull(skb, tcp_header_len);
5408 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5409 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5410 				}
5411 				if (copied_early)
5412 					tcp_cleanup_rbuf(sk, skb->len);
5413 			}
5414 			if (!eaten) {
5415 				if (tcp_checksum_complete_user(sk, skb))
5416 					goto csum_error;
5417 
5418 				/* Predicted packet is in window by definition.
5419 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5420 				 * Hence, check seq<=rcv_wup reduces to:
5421 				 */
5422 				if (tcp_header_len ==
5423 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5424 				    tp->rcv_nxt == tp->rcv_wup)
5425 					tcp_store_ts_recent(tp);
5426 
5427 				tcp_rcv_rtt_measure_ts(sk, skb);
5428 
5429 				if ((int)skb->truesize > sk->sk_forward_alloc)
5430 					goto step5;
5431 
5432 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5433 
5434 				/* Bulk data transfer: receiver */
5435 				__skb_pull(skb, tcp_header_len);
5436 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5437 				skb_set_owner_r(skb, sk);
5438 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5439 			}
5440 
5441 			tcp_event_data_recv(sk, skb);
5442 
5443 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5444 				/* Well, only one small jumplet in fast path... */
5445 				tcp_ack(sk, skb, FLAG_DATA);
5446 				tcp_data_snd_check(sk);
5447 				if (!inet_csk_ack_scheduled(sk))
5448 					goto no_ack;
5449 			}
5450 
5451 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5452 				__tcp_ack_snd_check(sk, 0);
5453 no_ack:
5454 #ifdef CONFIG_NET_DMA
5455 			if (copied_early)
5456 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5457 			else
5458 #endif
5459 			if (eaten)
5460 				__kfree_skb(skb);
5461 			else
5462 				sk->sk_data_ready(sk, 0);
5463 			return 0;
5464 		}
5465 	}
5466 
5467 slow_path:
5468 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5469 		goto csum_error;
5470 
5471 	/*
5472 	 *	Standard slow path.
5473 	 */
5474 
5475 	res = tcp_validate_incoming(sk, skb, th, 1);
5476 	if (res <= 0)
5477 		return -res;
5478 
5479 step5:
5480 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5481 		goto discard;
5482 
5483 	tcp_rcv_rtt_measure_ts(sk, skb);
5484 
5485 	/* Process urgent data. */
5486 	tcp_urg(sk, skb, th);
5487 
5488 	/* step 7: process the segment text */
5489 	tcp_data_queue(sk, skb);
5490 
5491 	tcp_data_snd_check(sk);
5492 	tcp_ack_snd_check(sk);
5493 	return 0;
5494 
5495 csum_error:
5496 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5497 
5498 discard:
5499 	__kfree_skb(skb);
5500 	return 0;
5501 }
5502 EXPORT_SYMBOL(tcp_rcv_established);
5503 
5504 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5505 					 const struct tcphdr *th, unsigned int len)
5506 {
5507 	const u8 *hash_location;
5508 	struct inet_connection_sock *icsk = inet_csk(sk);
5509 	struct tcp_sock *tp = tcp_sk(sk);
5510 	struct tcp_cookie_values *cvp = tp->cookie_values;
5511 	int saved_clamp = tp->rx_opt.mss_clamp;
5512 
5513 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5514 
5515 	if (th->ack) {
5516 		/* rfc793:
5517 		 * "If the state is SYN-SENT then
5518 		 *    first check the ACK bit
5519 		 *      If the ACK bit is set
5520 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5521 		 *        a reset (unless the RST bit is set, if so drop
5522 		 *        the segment and return)"
5523 		 *
5524 		 *  We do not send data with SYN, so that RFC-correct
5525 		 *  test reduces to:
5526 		 */
5527 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5528 			goto reset_and_undo;
5529 
5530 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5531 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5532 			     tcp_time_stamp)) {
5533 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5534 			goto reset_and_undo;
5535 		}
5536 
5537 		/* Now ACK is acceptable.
5538 		 *
5539 		 * "If the RST bit is set
5540 		 *    If the ACK was acceptable then signal the user "error:
5541 		 *    connection reset", drop the segment, enter CLOSED state,
5542 		 *    delete TCB, and return."
5543 		 */
5544 
5545 		if (th->rst) {
5546 			tcp_reset(sk);
5547 			goto discard;
5548 		}
5549 
5550 		/* rfc793:
5551 		 *   "fifth, if neither of the SYN or RST bits is set then
5552 		 *    drop the segment and return."
5553 		 *
5554 		 *    See note below!
5555 		 *                                        --ANK(990513)
5556 		 */
5557 		if (!th->syn)
5558 			goto discard_and_undo;
5559 
5560 		/* rfc793:
5561 		 *   "If the SYN bit is on ...
5562 		 *    are acceptable then ...
5563 		 *    (our SYN has been ACKed), change the connection
5564 		 *    state to ESTABLISHED..."
5565 		 */
5566 
5567 		TCP_ECN_rcv_synack(tp, th);
5568 
5569 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5570 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5571 
5572 		/* Ok.. it's good. Set up sequence numbers and
5573 		 * move to established.
5574 		 */
5575 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5576 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5577 
5578 		/* RFC1323: The window in SYN & SYN/ACK segments is
5579 		 * never scaled.
5580 		 */
5581 		tp->snd_wnd = ntohs(th->window);
5582 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5583 
5584 		if (!tp->rx_opt.wscale_ok) {
5585 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5586 			tp->window_clamp = min(tp->window_clamp, 65535U);
5587 		}
5588 
5589 		if (tp->rx_opt.saw_tstamp) {
5590 			tp->rx_opt.tstamp_ok	   = 1;
5591 			tp->tcp_header_len =
5592 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5593 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5594 			tcp_store_ts_recent(tp);
5595 		} else {
5596 			tp->tcp_header_len = sizeof(struct tcphdr);
5597 		}
5598 
5599 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5600 			tcp_enable_fack(tp);
5601 
5602 		tcp_mtup_init(sk);
5603 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5604 		tcp_initialize_rcv_mss(sk);
5605 
5606 		/* Remember, tcp_poll() does not lock socket!
5607 		 * Change state from SYN-SENT only after copied_seq
5608 		 * is initialized. */
5609 		tp->copied_seq = tp->rcv_nxt;
5610 
5611 		if (cvp != NULL &&
5612 		    cvp->cookie_pair_size > 0 &&
5613 		    tp->rx_opt.cookie_plus > 0) {
5614 			int cookie_size = tp->rx_opt.cookie_plus
5615 					- TCPOLEN_COOKIE_BASE;
5616 			int cookie_pair_size = cookie_size
5617 					     + cvp->cookie_desired;
5618 
5619 			/* A cookie extension option was sent and returned.
5620 			 * Note that each incoming SYNACK replaces the
5621 			 * Responder cookie.  The initial exchange is most
5622 			 * fragile, as protection against spoofing relies
5623 			 * entirely upon the sequence and timestamp (above).
5624 			 * This replacement strategy allows the correct pair to
5625 			 * pass through, while any others will be filtered via
5626 			 * Responder verification later.
5627 			 */
5628 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5629 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5630 				       hash_location, cookie_size);
5631 				cvp->cookie_pair_size = cookie_pair_size;
5632 			}
5633 		}
5634 
5635 		smp_mb();
5636 		tcp_set_state(sk, TCP_ESTABLISHED);
5637 
5638 		security_inet_conn_established(sk, skb);
5639 
5640 		/* Make sure socket is routed, for correct metrics.  */
5641 		icsk->icsk_af_ops->rebuild_header(sk);
5642 
5643 		tcp_init_metrics(sk);
5644 
5645 		tcp_init_congestion_control(sk);
5646 
5647 		/* Prevent spurious tcp_cwnd_restart() on first data
5648 		 * packet.
5649 		 */
5650 		tp->lsndtime = tcp_time_stamp;
5651 
5652 		tcp_init_buffer_space(sk);
5653 
5654 		if (sock_flag(sk, SOCK_KEEPOPEN))
5655 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5656 
5657 		if (!tp->rx_opt.snd_wscale)
5658 			__tcp_fast_path_on(tp, tp->snd_wnd);
5659 		else
5660 			tp->pred_flags = 0;
5661 
5662 		if (!sock_flag(sk, SOCK_DEAD)) {
5663 			sk->sk_state_change(sk);
5664 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5665 		}
5666 
5667 		if (sk->sk_write_pending ||
5668 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5669 		    icsk->icsk_ack.pingpong) {
5670 			/* Save one ACK. Data will be ready after
5671 			 * several ticks, if write_pending is set.
5672 			 *
5673 			 * It may be deleted, but with this feature tcpdumps
5674 			 * look so _wonderfully_ clever, that I was not able
5675 			 * to stand against the temptation 8)     --ANK
5676 			 */
5677 			inet_csk_schedule_ack(sk);
5678 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5679 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5680 			tcp_incr_quickack(sk);
5681 			tcp_enter_quickack_mode(sk);
5682 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5683 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5684 
5685 discard:
5686 			__kfree_skb(skb);
5687 			return 0;
5688 		} else {
5689 			tcp_send_ack(sk);
5690 		}
5691 		return -1;
5692 	}
5693 
5694 	/* No ACK in the segment */
5695 
5696 	if (th->rst) {
5697 		/* rfc793:
5698 		 * "If the RST bit is set
5699 		 *
5700 		 *      Otherwise (no ACK) drop the segment and return."
5701 		 */
5702 
5703 		goto discard_and_undo;
5704 	}
5705 
5706 	/* PAWS check. */
5707 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5708 	    tcp_paws_reject(&tp->rx_opt, 0))
5709 		goto discard_and_undo;
5710 
5711 	if (th->syn) {
5712 		/* We see SYN without ACK. It is attempt of
5713 		 * simultaneous connect with crossed SYNs.
5714 		 * Particularly, it can be connect to self.
5715 		 */
5716 		tcp_set_state(sk, TCP_SYN_RECV);
5717 
5718 		if (tp->rx_opt.saw_tstamp) {
5719 			tp->rx_opt.tstamp_ok = 1;
5720 			tcp_store_ts_recent(tp);
5721 			tp->tcp_header_len =
5722 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5723 		} else {
5724 			tp->tcp_header_len = sizeof(struct tcphdr);
5725 		}
5726 
5727 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5728 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5729 
5730 		/* RFC1323: The window in SYN & SYN/ACK segments is
5731 		 * never scaled.
5732 		 */
5733 		tp->snd_wnd    = ntohs(th->window);
5734 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5735 		tp->max_window = tp->snd_wnd;
5736 
5737 		TCP_ECN_rcv_syn(tp, th);
5738 
5739 		tcp_mtup_init(sk);
5740 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5741 		tcp_initialize_rcv_mss(sk);
5742 
5743 		tcp_send_synack(sk);
5744 #if 0
5745 		/* Note, we could accept data and URG from this segment.
5746 		 * There are no obstacles to make this.
5747 		 *
5748 		 * However, if we ignore data in ACKless segments sometimes,
5749 		 * we have no reasons to accept it sometimes.
5750 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5751 		 * is not flawless. So, discard packet for sanity.
5752 		 * Uncomment this return to process the data.
5753 		 */
5754 		return -1;
5755 #else
5756 		goto discard;
5757 #endif
5758 	}
5759 	/* "fifth, if neither of the SYN or RST bits is set then
5760 	 * drop the segment and return."
5761 	 */
5762 
5763 discard_and_undo:
5764 	tcp_clear_options(&tp->rx_opt);
5765 	tp->rx_opt.mss_clamp = saved_clamp;
5766 	goto discard;
5767 
5768 reset_and_undo:
5769 	tcp_clear_options(&tp->rx_opt);
5770 	tp->rx_opt.mss_clamp = saved_clamp;
5771 	return 1;
5772 }
5773 
5774 /*
5775  *	This function implements the receiving procedure of RFC 793 for
5776  *	all states except ESTABLISHED and TIME_WAIT.
5777  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5778  *	address independent.
5779  */
5780 
5781 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5782 			  const struct tcphdr *th, unsigned int len)
5783 {
5784 	struct tcp_sock *tp = tcp_sk(sk);
5785 	struct inet_connection_sock *icsk = inet_csk(sk);
5786 	int queued = 0;
5787 	int res;
5788 
5789 	tp->rx_opt.saw_tstamp = 0;
5790 
5791 	switch (sk->sk_state) {
5792 	case TCP_CLOSE:
5793 		goto discard;
5794 
5795 	case TCP_LISTEN:
5796 		if (th->ack)
5797 			return 1;
5798 
5799 		if (th->rst)
5800 			goto discard;
5801 
5802 		if (th->syn) {
5803 			if (th->fin)
5804 				goto discard;
5805 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5806 				return 1;
5807 
5808 			/* Now we have several options: In theory there is
5809 			 * nothing else in the frame. KA9Q has an option to
5810 			 * send data with the syn, BSD accepts data with the
5811 			 * syn up to the [to be] advertised window and
5812 			 * Solaris 2.1 gives you a protocol error. For now
5813 			 * we just ignore it, that fits the spec precisely
5814 			 * and avoids incompatibilities. It would be nice in
5815 			 * future to drop through and process the data.
5816 			 *
5817 			 * Now that TTCP is starting to be used we ought to
5818 			 * queue this data.
5819 			 * But, this leaves one open to an easy denial of
5820 			 * service attack, and SYN cookies can't defend
5821 			 * against this problem. So, we drop the data
5822 			 * in the interest of security over speed unless
5823 			 * it's still in use.
5824 			 */
5825 			kfree_skb(skb);
5826 			return 0;
5827 		}
5828 		goto discard;
5829 
5830 	case TCP_SYN_SENT:
5831 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5832 		if (queued >= 0)
5833 			return queued;
5834 
5835 		/* Do step6 onward by hand. */
5836 		tcp_urg(sk, skb, th);
5837 		__kfree_skb(skb);
5838 		tcp_data_snd_check(sk);
5839 		return 0;
5840 	}
5841 
5842 	res = tcp_validate_incoming(sk, skb, th, 0);
5843 	if (res <= 0)
5844 		return -res;
5845 
5846 	/* step 5: check the ACK field */
5847 	if (th->ack) {
5848 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5849 
5850 		switch (sk->sk_state) {
5851 		case TCP_SYN_RECV:
5852 			if (acceptable) {
5853 				tp->copied_seq = tp->rcv_nxt;
5854 				smp_mb();
5855 				tcp_set_state(sk, TCP_ESTABLISHED);
5856 				sk->sk_state_change(sk);
5857 
5858 				/* Note, that this wakeup is only for marginal
5859 				 * crossed SYN case. Passively open sockets
5860 				 * are not waked up, because sk->sk_sleep ==
5861 				 * NULL and sk->sk_socket == NULL.
5862 				 */
5863 				if (sk->sk_socket)
5864 					sk_wake_async(sk,
5865 						      SOCK_WAKE_IO, POLL_OUT);
5866 
5867 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5868 				tp->snd_wnd = ntohs(th->window) <<
5869 					      tp->rx_opt.snd_wscale;
5870 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5871 
5872 				if (tp->rx_opt.tstamp_ok)
5873 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5874 
5875 				/* Make sure socket is routed, for
5876 				 * correct metrics.
5877 				 */
5878 				icsk->icsk_af_ops->rebuild_header(sk);
5879 
5880 				tcp_init_metrics(sk);
5881 
5882 				tcp_init_congestion_control(sk);
5883 
5884 				/* Prevent spurious tcp_cwnd_restart() on
5885 				 * first data packet.
5886 				 */
5887 				tp->lsndtime = tcp_time_stamp;
5888 
5889 				tcp_mtup_init(sk);
5890 				tcp_initialize_rcv_mss(sk);
5891 				tcp_init_buffer_space(sk);
5892 				tcp_fast_path_on(tp);
5893 			} else {
5894 				return 1;
5895 			}
5896 			break;
5897 
5898 		case TCP_FIN_WAIT1:
5899 			if (tp->snd_una == tp->write_seq) {
5900 				tcp_set_state(sk, TCP_FIN_WAIT2);
5901 				sk->sk_shutdown |= SEND_SHUTDOWN;
5902 				dst_confirm(__sk_dst_get(sk));
5903 
5904 				if (!sock_flag(sk, SOCK_DEAD))
5905 					/* Wake up lingering close() */
5906 					sk->sk_state_change(sk);
5907 				else {
5908 					int tmo;
5909 
5910 					if (tp->linger2 < 0 ||
5911 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5912 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5913 						tcp_done(sk);
5914 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5915 						return 1;
5916 					}
5917 
5918 					tmo = tcp_fin_time(sk);
5919 					if (tmo > TCP_TIMEWAIT_LEN) {
5920 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5921 					} else if (th->fin || sock_owned_by_user(sk)) {
5922 						/* Bad case. We could lose such FIN otherwise.
5923 						 * It is not a big problem, but it looks confusing
5924 						 * and not so rare event. We still can lose it now,
5925 						 * if it spins in bh_lock_sock(), but it is really
5926 						 * marginal case.
5927 						 */
5928 						inet_csk_reset_keepalive_timer(sk, tmo);
5929 					} else {
5930 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5931 						goto discard;
5932 					}
5933 				}
5934 			}
5935 			break;
5936 
5937 		case TCP_CLOSING:
5938 			if (tp->snd_una == tp->write_seq) {
5939 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5940 				goto discard;
5941 			}
5942 			break;
5943 
5944 		case TCP_LAST_ACK:
5945 			if (tp->snd_una == tp->write_seq) {
5946 				tcp_update_metrics(sk);
5947 				tcp_done(sk);
5948 				goto discard;
5949 			}
5950 			break;
5951 		}
5952 	} else
5953 		goto discard;
5954 
5955 	/* step 6: check the URG bit */
5956 	tcp_urg(sk, skb, th);
5957 
5958 	/* step 7: process the segment text */
5959 	switch (sk->sk_state) {
5960 	case TCP_CLOSE_WAIT:
5961 	case TCP_CLOSING:
5962 	case TCP_LAST_ACK:
5963 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5964 			break;
5965 	case TCP_FIN_WAIT1:
5966 	case TCP_FIN_WAIT2:
5967 		/* RFC 793 says to queue data in these states,
5968 		 * RFC 1122 says we MUST send a reset.
5969 		 * BSD 4.4 also does reset.
5970 		 */
5971 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5972 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5973 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5974 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5975 				tcp_reset(sk);
5976 				return 1;
5977 			}
5978 		}
5979 		/* Fall through */
5980 	case TCP_ESTABLISHED:
5981 		tcp_data_queue(sk, skb);
5982 		queued = 1;
5983 		break;
5984 	}
5985 
5986 	/* tcp_data could move socket to TIME-WAIT */
5987 	if (sk->sk_state != TCP_CLOSE) {
5988 		tcp_data_snd_check(sk);
5989 		tcp_ack_snd_check(sk);
5990 	}
5991 
5992 	if (!queued) {
5993 discard:
5994 		__kfree_skb(skb);
5995 	}
5996 	return 0;
5997 }
5998 EXPORT_SYMBOL(tcp_rcv_state_process);
5999