1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/proto_memory.h> 76 #include <net/inet_common.h> 77 #include <linux/ipsec.h> 78 #include <linux/unaligned.h> 79 #include <linux/errqueue.h> 80 #include <trace/events/tcp.h> 81 #include <linux/jump_label_ratelimit.h> 82 #include <net/busy_poll.h> 83 #include <net/mptcp.h> 84 85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 86 87 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 88 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 89 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 90 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 91 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 92 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 93 #define FLAG_ECE 0x40 /* ECE in this ACK */ 94 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 95 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 96 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 97 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 98 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 99 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 100 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 101 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 102 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 103 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 104 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 105 106 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 107 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 108 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 109 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 110 111 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 112 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 113 114 #define REXMIT_NONE 0 /* no loss recovery to do */ 115 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 116 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 117 118 #if IS_ENABLED(CONFIG_TLS_DEVICE) 119 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 120 121 void clean_acked_data_enable(struct inet_connection_sock *icsk, 122 void (*cad)(struct sock *sk, u32 ack_seq)) 123 { 124 icsk->icsk_clean_acked = cad; 125 static_branch_deferred_inc(&clean_acked_data_enabled); 126 } 127 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 128 129 void clean_acked_data_disable(struct inet_connection_sock *icsk) 130 { 131 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 132 icsk->icsk_clean_acked = NULL; 133 } 134 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 135 136 void clean_acked_data_flush(void) 137 { 138 static_key_deferred_flush(&clean_acked_data_enabled); 139 } 140 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 141 #endif 142 143 #ifdef CONFIG_CGROUP_BPF 144 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 145 { 146 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 147 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 148 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 149 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 150 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 151 struct bpf_sock_ops_kern sock_ops; 152 153 if (likely(!unknown_opt && !parse_all_opt)) 154 return; 155 156 /* The skb will be handled in the 157 * bpf_skops_established() or 158 * bpf_skops_write_hdr_opt(). 159 */ 160 switch (sk->sk_state) { 161 case TCP_SYN_RECV: 162 case TCP_SYN_SENT: 163 case TCP_LISTEN: 164 return; 165 } 166 167 sock_owned_by_me(sk); 168 169 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 170 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 171 sock_ops.is_fullsock = 1; 172 sock_ops.sk = sk; 173 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 174 175 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 176 } 177 178 static void bpf_skops_established(struct sock *sk, int bpf_op, 179 struct sk_buff *skb) 180 { 181 struct bpf_sock_ops_kern sock_ops; 182 183 sock_owned_by_me(sk); 184 185 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 186 sock_ops.op = bpf_op; 187 sock_ops.is_fullsock = 1; 188 sock_ops.sk = sk; 189 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 190 if (skb) 191 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 192 193 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 194 } 195 #else 196 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 197 { 198 } 199 200 static void bpf_skops_established(struct sock *sk, int bpf_op, 201 struct sk_buff *skb) 202 { 203 } 204 #endif 205 206 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb, 207 unsigned int len) 208 { 209 struct net_device *dev; 210 211 rcu_read_lock(); 212 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 213 if (!dev || len >= READ_ONCE(dev->mtu)) 214 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 215 dev ? dev->name : "Unknown driver"); 216 rcu_read_unlock(); 217 } 218 219 /* Adapt the MSS value used to make delayed ack decision to the 220 * real world. 221 */ 222 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 223 { 224 struct inet_connection_sock *icsk = inet_csk(sk); 225 const unsigned int lss = icsk->icsk_ack.last_seg_size; 226 unsigned int len; 227 228 icsk->icsk_ack.last_seg_size = 0; 229 230 /* skb->len may jitter because of SACKs, even if peer 231 * sends good full-sized frames. 232 */ 233 len = skb_shinfo(skb)->gso_size ? : skb->len; 234 if (len >= icsk->icsk_ack.rcv_mss) { 235 /* Note: divides are still a bit expensive. 236 * For the moment, only adjust scaling_ratio 237 * when we update icsk_ack.rcv_mss. 238 */ 239 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 240 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 241 u8 old_ratio = tcp_sk(sk)->scaling_ratio; 242 243 do_div(val, skb->truesize); 244 tcp_sk(sk)->scaling_ratio = val ? val : 1; 245 246 if (old_ratio != tcp_sk(sk)->scaling_ratio) 247 WRITE_ONCE(tcp_sk(sk)->window_clamp, 248 tcp_win_from_space(sk, sk->sk_rcvbuf)); 249 } 250 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 251 tcp_sk(sk)->advmss); 252 /* Account for possibly-removed options */ 253 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE, 254 tcp_gro_dev_warn, sk, skb, len); 255 /* If the skb has a len of exactly 1*MSS and has the PSH bit 256 * set then it is likely the end of an application write. So 257 * more data may not be arriving soon, and yet the data sender 258 * may be waiting for an ACK if cwnd-bound or using TX zero 259 * copy. So we set ICSK_ACK_PUSHED here so that 260 * tcp_cleanup_rbuf() will send an ACK immediately if the app 261 * reads all of the data and is not ping-pong. If len > MSS 262 * then this logic does not matter (and does not hurt) because 263 * tcp_cleanup_rbuf() will always ACK immediately if the app 264 * reads data and there is more than an MSS of unACKed data. 265 */ 266 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 267 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 268 } else { 269 /* Otherwise, we make more careful check taking into account, 270 * that SACKs block is variable. 271 * 272 * "len" is invariant segment length, including TCP header. 273 */ 274 len += skb->data - skb_transport_header(skb); 275 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 276 /* If PSH is not set, packet should be 277 * full sized, provided peer TCP is not badly broken. 278 * This observation (if it is correct 8)) allows 279 * to handle super-low mtu links fairly. 280 */ 281 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 282 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 283 /* Subtract also invariant (if peer is RFC compliant), 284 * tcp header plus fixed timestamp option length. 285 * Resulting "len" is MSS free of SACK jitter. 286 */ 287 len -= tcp_sk(sk)->tcp_header_len; 288 icsk->icsk_ack.last_seg_size = len; 289 if (len == lss) { 290 icsk->icsk_ack.rcv_mss = len; 291 return; 292 } 293 } 294 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 295 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 296 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 297 } 298 } 299 300 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 301 { 302 struct inet_connection_sock *icsk = inet_csk(sk); 303 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 304 305 if (quickacks == 0) 306 quickacks = 2; 307 quickacks = min(quickacks, max_quickacks); 308 if (quickacks > icsk->icsk_ack.quick) 309 icsk->icsk_ack.quick = quickacks; 310 } 311 312 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 313 { 314 struct inet_connection_sock *icsk = inet_csk(sk); 315 316 tcp_incr_quickack(sk, max_quickacks); 317 inet_csk_exit_pingpong_mode(sk); 318 icsk->icsk_ack.ato = TCP_ATO_MIN; 319 } 320 321 /* Send ACKs quickly, if "quick" count is not exhausted 322 * and the session is not interactive. 323 */ 324 325 static bool tcp_in_quickack_mode(struct sock *sk) 326 { 327 const struct inet_connection_sock *icsk = inet_csk(sk); 328 const struct dst_entry *dst = __sk_dst_get(sk); 329 330 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 331 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 332 } 333 334 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 335 { 336 if (tp->ecn_flags & TCP_ECN_OK) 337 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 338 } 339 340 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 341 { 342 if (tcp_hdr(skb)->cwr) { 343 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 344 345 /* If the sender is telling us it has entered CWR, then its 346 * cwnd may be very low (even just 1 packet), so we should ACK 347 * immediately. 348 */ 349 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 350 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 351 } 352 } 353 354 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 355 { 356 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 357 } 358 359 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 360 { 361 struct tcp_sock *tp = tcp_sk(sk); 362 363 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 364 case INET_ECN_NOT_ECT: 365 /* Funny extension: if ECT is not set on a segment, 366 * and we already seen ECT on a previous segment, 367 * it is probably a retransmit. 368 */ 369 if (tp->ecn_flags & TCP_ECN_SEEN) 370 tcp_enter_quickack_mode(sk, 2); 371 break; 372 case INET_ECN_CE: 373 if (tcp_ca_needs_ecn(sk)) 374 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 375 376 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 377 /* Better not delay acks, sender can have a very low cwnd */ 378 tcp_enter_quickack_mode(sk, 2); 379 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 380 } 381 tp->ecn_flags |= TCP_ECN_SEEN; 382 break; 383 default: 384 if (tcp_ca_needs_ecn(sk)) 385 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 386 tp->ecn_flags |= TCP_ECN_SEEN; 387 break; 388 } 389 } 390 391 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 392 { 393 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 394 __tcp_ecn_check_ce(sk, skb); 395 } 396 397 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 398 { 399 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 400 tp->ecn_flags &= ~TCP_ECN_OK; 401 } 402 403 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 404 { 405 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 406 tp->ecn_flags &= ~TCP_ECN_OK; 407 } 408 409 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 410 { 411 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 412 return true; 413 return false; 414 } 415 416 /* Buffer size and advertised window tuning. 417 * 418 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 419 */ 420 421 static void tcp_sndbuf_expand(struct sock *sk) 422 { 423 const struct tcp_sock *tp = tcp_sk(sk); 424 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 425 int sndmem, per_mss; 426 u32 nr_segs; 427 428 /* Worst case is non GSO/TSO : each frame consumes one skb 429 * and skb->head is kmalloced using power of two area of memory 430 */ 431 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 432 MAX_TCP_HEADER + 433 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 434 435 per_mss = roundup_pow_of_two(per_mss) + 436 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 437 438 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 439 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 440 441 /* Fast Recovery (RFC 5681 3.2) : 442 * Cubic needs 1.7 factor, rounded to 2 to include 443 * extra cushion (application might react slowly to EPOLLOUT) 444 */ 445 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 446 sndmem *= nr_segs * per_mss; 447 448 if (sk->sk_sndbuf < sndmem) 449 WRITE_ONCE(sk->sk_sndbuf, 450 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 451 } 452 453 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 454 * 455 * All tcp_full_space() is split to two parts: "network" buffer, allocated 456 * forward and advertised in receiver window (tp->rcv_wnd) and 457 * "application buffer", required to isolate scheduling/application 458 * latencies from network. 459 * window_clamp is maximal advertised window. It can be less than 460 * tcp_full_space(), in this case tcp_full_space() - window_clamp 461 * is reserved for "application" buffer. The less window_clamp is 462 * the smoother our behaviour from viewpoint of network, but the lower 463 * throughput and the higher sensitivity of the connection to losses. 8) 464 * 465 * rcv_ssthresh is more strict window_clamp used at "slow start" 466 * phase to predict further behaviour of this connection. 467 * It is used for two goals: 468 * - to enforce header prediction at sender, even when application 469 * requires some significant "application buffer". It is check #1. 470 * - to prevent pruning of receive queue because of misprediction 471 * of receiver window. Check #2. 472 * 473 * The scheme does not work when sender sends good segments opening 474 * window and then starts to feed us spaghetti. But it should work 475 * in common situations. Otherwise, we have to rely on queue collapsing. 476 */ 477 478 /* Slow part of check#2. */ 479 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 480 unsigned int skbtruesize) 481 { 482 const struct tcp_sock *tp = tcp_sk(sk); 483 /* Optimize this! */ 484 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 485 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 486 487 while (tp->rcv_ssthresh <= window) { 488 if (truesize <= skb->len) 489 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 490 491 truesize >>= 1; 492 window >>= 1; 493 } 494 return 0; 495 } 496 497 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 498 * can play nice with us, as sk_buff and skb->head might be either 499 * freed or shared with up to MAX_SKB_FRAGS segments. 500 * Only give a boost to drivers using page frag(s) to hold the frame(s), 501 * and if no payload was pulled in skb->head before reaching us. 502 */ 503 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 504 { 505 u32 truesize = skb->truesize; 506 507 if (adjust && !skb_headlen(skb)) { 508 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 509 /* paranoid check, some drivers might be buggy */ 510 if (unlikely((int)truesize < (int)skb->len)) 511 truesize = skb->truesize; 512 } 513 return truesize; 514 } 515 516 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 517 bool adjust) 518 { 519 struct tcp_sock *tp = tcp_sk(sk); 520 int room; 521 522 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 523 524 if (room <= 0) 525 return; 526 527 /* Check #1 */ 528 if (!tcp_under_memory_pressure(sk)) { 529 unsigned int truesize = truesize_adjust(adjust, skb); 530 int incr; 531 532 /* Check #2. Increase window, if skb with such overhead 533 * will fit to rcvbuf in future. 534 */ 535 if (tcp_win_from_space(sk, truesize) <= skb->len) 536 incr = 2 * tp->advmss; 537 else 538 incr = __tcp_grow_window(sk, skb, truesize); 539 540 if (incr) { 541 incr = max_t(int, incr, 2 * skb->len); 542 tp->rcv_ssthresh += min(room, incr); 543 inet_csk(sk)->icsk_ack.quick |= 1; 544 } 545 } else { 546 /* Under pressure: 547 * Adjust rcv_ssthresh according to reserved mem 548 */ 549 tcp_adjust_rcv_ssthresh(sk); 550 } 551 } 552 553 /* 3. Try to fixup all. It is made immediately after connection enters 554 * established state. 555 */ 556 static void tcp_init_buffer_space(struct sock *sk) 557 { 558 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 559 struct tcp_sock *tp = tcp_sk(sk); 560 int maxwin; 561 562 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 563 tcp_sndbuf_expand(sk); 564 565 tcp_mstamp_refresh(tp); 566 tp->rcvq_space.time = tp->tcp_mstamp; 567 tp->rcvq_space.seq = tp->copied_seq; 568 569 maxwin = tcp_full_space(sk); 570 571 if (tp->window_clamp >= maxwin) { 572 WRITE_ONCE(tp->window_clamp, maxwin); 573 574 if (tcp_app_win && maxwin > 4 * tp->advmss) 575 WRITE_ONCE(tp->window_clamp, 576 max(maxwin - (maxwin >> tcp_app_win), 577 4 * tp->advmss)); 578 } 579 580 /* Force reservation of one segment. */ 581 if (tcp_app_win && 582 tp->window_clamp > 2 * tp->advmss && 583 tp->window_clamp + tp->advmss > maxwin) 584 WRITE_ONCE(tp->window_clamp, 585 max(2 * tp->advmss, maxwin - tp->advmss)); 586 587 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 588 tp->snd_cwnd_stamp = tcp_jiffies32; 589 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 590 (u32)TCP_INIT_CWND * tp->advmss); 591 } 592 593 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 594 static void tcp_clamp_window(struct sock *sk) 595 { 596 struct tcp_sock *tp = tcp_sk(sk); 597 struct inet_connection_sock *icsk = inet_csk(sk); 598 struct net *net = sock_net(sk); 599 int rmem2; 600 601 icsk->icsk_ack.quick = 0; 602 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 603 604 if (sk->sk_rcvbuf < rmem2 && 605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 606 !tcp_under_memory_pressure(sk) && 607 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 608 WRITE_ONCE(sk->sk_rcvbuf, 609 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 610 } 611 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 612 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 613 } 614 615 /* Initialize RCV_MSS value. 616 * RCV_MSS is an our guess about MSS used by the peer. 617 * We haven't any direct information about the MSS. 618 * It's better to underestimate the RCV_MSS rather than overestimate. 619 * Overestimations make us ACKing less frequently than needed. 620 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 621 */ 622 void tcp_initialize_rcv_mss(struct sock *sk) 623 { 624 const struct tcp_sock *tp = tcp_sk(sk); 625 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 626 627 hint = min(hint, tp->rcv_wnd / 2); 628 hint = min(hint, TCP_MSS_DEFAULT); 629 hint = max(hint, TCP_MIN_MSS); 630 631 inet_csk(sk)->icsk_ack.rcv_mss = hint; 632 } 633 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss); 634 635 /* Receiver "autotuning" code. 636 * 637 * The algorithm for RTT estimation w/o timestamps is based on 638 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 639 * <https://public.lanl.gov/radiant/pubs.html#DRS> 640 * 641 * More detail on this code can be found at 642 * <http://staff.psc.edu/jheffner/>, 643 * though this reference is out of date. A new paper 644 * is pending. 645 */ 646 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 647 { 648 u32 new_sample = tp->rcv_rtt_est.rtt_us; 649 long m = sample; 650 651 if (new_sample != 0) { 652 /* If we sample in larger samples in the non-timestamp 653 * case, we could grossly overestimate the RTT especially 654 * with chatty applications or bulk transfer apps which 655 * are stalled on filesystem I/O. 656 * 657 * Also, since we are only going for a minimum in the 658 * non-timestamp case, we do not smooth things out 659 * else with timestamps disabled convergence takes too 660 * long. 661 */ 662 if (!win_dep) { 663 m -= (new_sample >> 3); 664 new_sample += m; 665 } else { 666 m <<= 3; 667 if (m < new_sample) 668 new_sample = m; 669 } 670 } else { 671 /* No previous measure. */ 672 new_sample = m << 3; 673 } 674 675 tp->rcv_rtt_est.rtt_us = new_sample; 676 } 677 678 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 679 { 680 u32 delta_us; 681 682 if (tp->rcv_rtt_est.time == 0) 683 goto new_measure; 684 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 685 return; 686 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 687 if (!delta_us) 688 delta_us = 1; 689 tcp_rcv_rtt_update(tp, delta_us, 1); 690 691 new_measure: 692 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 693 tp->rcv_rtt_est.time = tp->tcp_mstamp; 694 } 695 696 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp) 697 { 698 u32 delta, delta_us; 699 700 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; 701 if (tp->tcp_usec_ts) 702 return delta; 703 704 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 705 if (!delta) 706 delta = 1; 707 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 708 return delta_us; 709 } 710 return -1; 711 } 712 713 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 714 const struct sk_buff *skb) 715 { 716 struct tcp_sock *tp = tcp_sk(sk); 717 718 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 719 return; 720 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 721 722 if (TCP_SKB_CB(skb)->end_seq - 723 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 724 s32 delta = tcp_rtt_tsopt_us(tp); 725 726 if (delta >= 0) 727 tcp_rcv_rtt_update(tp, delta, 0); 728 } 729 } 730 731 /* 732 * This function should be called every time data is copied to user space. 733 * It calculates the appropriate TCP receive buffer space. 734 */ 735 void tcp_rcv_space_adjust(struct sock *sk) 736 { 737 struct tcp_sock *tp = tcp_sk(sk); 738 u32 copied; 739 int time; 740 741 trace_tcp_rcv_space_adjust(sk); 742 743 tcp_mstamp_refresh(tp); 744 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 745 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 746 return; 747 748 /* Number of bytes copied to user in last RTT */ 749 copied = tp->copied_seq - tp->rcvq_space.seq; 750 if (copied <= tp->rcvq_space.space) 751 goto new_measure; 752 753 /* A bit of theory : 754 * copied = bytes received in previous RTT, our base window 755 * To cope with packet losses, we need a 2x factor 756 * To cope with slow start, and sender growing its cwin by 100 % 757 * every RTT, we need a 4x factor, because the ACK we are sending 758 * now is for the next RTT, not the current one : 759 * <prev RTT . ><current RTT .. ><next RTT .... > 760 */ 761 762 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 763 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 764 u64 rcvwin, grow; 765 int rcvbuf; 766 767 /* minimal window to cope with packet losses, assuming 768 * steady state. Add some cushion because of small variations. 769 */ 770 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 771 772 /* Accommodate for sender rate increase (eg. slow start) */ 773 grow = rcvwin * (copied - tp->rcvq_space.space); 774 do_div(grow, tp->rcvq_space.space); 775 rcvwin += (grow << 1); 776 777 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 778 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 779 if (rcvbuf > sk->sk_rcvbuf) { 780 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 781 782 /* Make the window clamp follow along. */ 783 WRITE_ONCE(tp->window_clamp, 784 tcp_win_from_space(sk, rcvbuf)); 785 } 786 } 787 tp->rcvq_space.space = copied; 788 789 new_measure: 790 tp->rcvq_space.seq = tp->copied_seq; 791 tp->rcvq_space.time = tp->tcp_mstamp; 792 } 793 794 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 795 { 796 #if IS_ENABLED(CONFIG_IPV6) 797 struct inet_connection_sock *icsk = inet_csk(sk); 798 799 if (skb->protocol == htons(ETH_P_IPV6)) 800 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 801 #endif 802 } 803 804 /* There is something which you must keep in mind when you analyze the 805 * behavior of the tp->ato delayed ack timeout interval. When a 806 * connection starts up, we want to ack as quickly as possible. The 807 * problem is that "good" TCP's do slow start at the beginning of data 808 * transmission. The means that until we send the first few ACK's the 809 * sender will sit on his end and only queue most of his data, because 810 * he can only send snd_cwnd unacked packets at any given time. For 811 * each ACK we send, he increments snd_cwnd and transmits more of his 812 * queue. -DaveM 813 */ 814 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 815 { 816 struct tcp_sock *tp = tcp_sk(sk); 817 struct inet_connection_sock *icsk = inet_csk(sk); 818 u32 now; 819 820 inet_csk_schedule_ack(sk); 821 822 tcp_measure_rcv_mss(sk, skb); 823 824 tcp_rcv_rtt_measure(tp); 825 826 now = tcp_jiffies32; 827 828 if (!icsk->icsk_ack.ato) { 829 /* The _first_ data packet received, initialize 830 * delayed ACK engine. 831 */ 832 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 833 icsk->icsk_ack.ato = TCP_ATO_MIN; 834 } else { 835 int m = now - icsk->icsk_ack.lrcvtime; 836 837 if (m <= TCP_ATO_MIN / 2) { 838 /* The fastest case is the first. */ 839 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 840 } else if (m < icsk->icsk_ack.ato) { 841 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 842 if (icsk->icsk_ack.ato > icsk->icsk_rto) 843 icsk->icsk_ack.ato = icsk->icsk_rto; 844 } else if (m > icsk->icsk_rto) { 845 /* Too long gap. Apparently sender failed to 846 * restart window, so that we send ACKs quickly. 847 */ 848 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 849 } 850 } 851 icsk->icsk_ack.lrcvtime = now; 852 tcp_save_lrcv_flowlabel(sk, skb); 853 854 tcp_ecn_check_ce(sk, skb); 855 856 if (skb->len >= 128) 857 tcp_grow_window(sk, skb, true); 858 } 859 860 /* Called to compute a smoothed rtt estimate. The data fed to this 861 * routine either comes from timestamps, or from segments that were 862 * known _not_ to have been retransmitted [see Karn/Partridge 863 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 864 * piece by Van Jacobson. 865 * NOTE: the next three routines used to be one big routine. 866 * To save cycles in the RFC 1323 implementation it was better to break 867 * it up into three procedures. -- erics 868 */ 869 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 870 { 871 struct tcp_sock *tp = tcp_sk(sk); 872 long m = mrtt_us; /* RTT */ 873 u32 srtt = tp->srtt_us; 874 875 /* The following amusing code comes from Jacobson's 876 * article in SIGCOMM '88. Note that rtt and mdev 877 * are scaled versions of rtt and mean deviation. 878 * This is designed to be as fast as possible 879 * m stands for "measurement". 880 * 881 * On a 1990 paper the rto value is changed to: 882 * RTO = rtt + 4 * mdev 883 * 884 * Funny. This algorithm seems to be very broken. 885 * These formulae increase RTO, when it should be decreased, increase 886 * too slowly, when it should be increased quickly, decrease too quickly 887 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 888 * does not matter how to _calculate_ it. Seems, it was trap 889 * that VJ failed to avoid. 8) 890 */ 891 if (srtt != 0) { 892 m -= (srtt >> 3); /* m is now error in rtt est */ 893 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 894 if (m < 0) { 895 m = -m; /* m is now abs(error) */ 896 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 897 /* This is similar to one of Eifel findings. 898 * Eifel blocks mdev updates when rtt decreases. 899 * This solution is a bit different: we use finer gain 900 * for mdev in this case (alpha*beta). 901 * Like Eifel it also prevents growth of rto, 902 * but also it limits too fast rto decreases, 903 * happening in pure Eifel. 904 */ 905 if (m > 0) 906 m >>= 3; 907 } else { 908 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 909 } 910 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 911 if (tp->mdev_us > tp->mdev_max_us) { 912 tp->mdev_max_us = tp->mdev_us; 913 if (tp->mdev_max_us > tp->rttvar_us) 914 tp->rttvar_us = tp->mdev_max_us; 915 } 916 if (after(tp->snd_una, tp->rtt_seq)) { 917 if (tp->mdev_max_us < tp->rttvar_us) 918 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 919 tp->rtt_seq = tp->snd_nxt; 920 tp->mdev_max_us = tcp_rto_min_us(sk); 921 922 tcp_bpf_rtt(sk, mrtt_us, srtt); 923 } 924 } else { 925 /* no previous measure. */ 926 srtt = m << 3; /* take the measured time to be rtt */ 927 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 928 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 929 tp->mdev_max_us = tp->rttvar_us; 930 tp->rtt_seq = tp->snd_nxt; 931 932 tcp_bpf_rtt(sk, mrtt_us, srtt); 933 } 934 tp->srtt_us = max(1U, srtt); 935 } 936 937 static void tcp_update_pacing_rate(struct sock *sk) 938 { 939 const struct tcp_sock *tp = tcp_sk(sk); 940 u64 rate; 941 942 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 943 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 944 945 /* current rate is (cwnd * mss) / srtt 946 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 947 * In Congestion Avoidance phase, set it to 120 % the current rate. 948 * 949 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 950 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 951 * end of slow start and should slow down. 952 */ 953 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 954 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 955 else 956 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 957 958 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 959 960 if (likely(tp->srtt_us)) 961 do_div(rate, tp->srtt_us); 962 963 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 964 * without any lock. We want to make sure compiler wont store 965 * intermediate values in this location. 966 */ 967 WRITE_ONCE(sk->sk_pacing_rate, 968 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 969 } 970 971 /* Calculate rto without backoff. This is the second half of Van Jacobson's 972 * routine referred to above. 973 */ 974 static void tcp_set_rto(struct sock *sk) 975 { 976 const struct tcp_sock *tp = tcp_sk(sk); 977 /* Old crap is replaced with new one. 8) 978 * 979 * More seriously: 980 * 1. If rtt variance happened to be less 50msec, it is hallucination. 981 * It cannot be less due to utterly erratic ACK generation made 982 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 983 * to do with delayed acks, because at cwnd>2 true delack timeout 984 * is invisible. Actually, Linux-2.4 also generates erratic 985 * ACKs in some circumstances. 986 */ 987 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 988 989 /* 2. Fixups made earlier cannot be right. 990 * If we do not estimate RTO correctly without them, 991 * all the algo is pure shit and should be replaced 992 * with correct one. It is exactly, which we pretend to do. 993 */ 994 995 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 996 * guarantees that rto is higher. 997 */ 998 tcp_bound_rto(sk); 999 } 1000 1001 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 1002 { 1003 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 1004 1005 if (!cwnd) 1006 cwnd = TCP_INIT_CWND; 1007 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 1008 } 1009 1010 struct tcp_sacktag_state { 1011 /* Timestamps for earliest and latest never-retransmitted segment 1012 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1013 * but congestion control should still get an accurate delay signal. 1014 */ 1015 u64 first_sackt; 1016 u64 last_sackt; 1017 u32 reord; 1018 u32 sack_delivered; 1019 int flag; 1020 unsigned int mss_now; 1021 struct rate_sample *rate; 1022 }; 1023 1024 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1025 * and spurious retransmission information if this DSACK is unlikely caused by 1026 * sender's action: 1027 * - DSACKed sequence range is larger than maximum receiver's window. 1028 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1029 */ 1030 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1031 u32 end_seq, struct tcp_sacktag_state *state) 1032 { 1033 u32 seq_len, dup_segs = 1; 1034 1035 if (!before(start_seq, end_seq)) 1036 return 0; 1037 1038 seq_len = end_seq - start_seq; 1039 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1040 if (seq_len > tp->max_window) 1041 return 0; 1042 if (seq_len > tp->mss_cache) 1043 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1044 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1045 state->flag |= FLAG_DSACK_TLP; 1046 1047 tp->dsack_dups += dup_segs; 1048 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1049 if (tp->dsack_dups > tp->total_retrans) 1050 return 0; 1051 1052 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1053 /* We increase the RACK ordering window in rounds where we receive 1054 * DSACKs that may have been due to reordering causing RACK to trigger 1055 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1056 * without having seen reordering, or that match TLP probes (TLP 1057 * is timer-driven, not triggered by RACK). 1058 */ 1059 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1060 tp->rack.dsack_seen = 1; 1061 1062 state->flag |= FLAG_DSACKING_ACK; 1063 /* A spurious retransmission is delivered */ 1064 state->sack_delivered += dup_segs; 1065 1066 return dup_segs; 1067 } 1068 1069 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1070 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1071 * distance is approximated in full-mss packet distance ("reordering"). 1072 */ 1073 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1074 const int ts) 1075 { 1076 struct tcp_sock *tp = tcp_sk(sk); 1077 const u32 mss = tp->mss_cache; 1078 u32 fack, metric; 1079 1080 fack = tcp_highest_sack_seq(tp); 1081 if (!before(low_seq, fack)) 1082 return; 1083 1084 metric = fack - low_seq; 1085 if ((metric > tp->reordering * mss) && mss) { 1086 #if FASTRETRANS_DEBUG > 1 1087 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1088 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1089 tp->reordering, 1090 0, 1091 tp->sacked_out, 1092 tp->undo_marker ? tp->undo_retrans : 0); 1093 #endif 1094 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1095 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1096 } 1097 1098 /* This exciting event is worth to be remembered. 8) */ 1099 tp->reord_seen++; 1100 NET_INC_STATS(sock_net(sk), 1101 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1102 } 1103 1104 /* This must be called before lost_out or retrans_out are updated 1105 * on a new loss, because we want to know if all skbs previously 1106 * known to be lost have already been retransmitted, indicating 1107 * that this newly lost skb is our next skb to retransmit. 1108 */ 1109 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1110 { 1111 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1112 (tp->retransmit_skb_hint && 1113 before(TCP_SKB_CB(skb)->seq, 1114 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1115 tp->retransmit_skb_hint = skb; 1116 } 1117 1118 /* Sum the number of packets on the wire we have marked as lost, and 1119 * notify the congestion control module that the given skb was marked lost. 1120 */ 1121 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1122 { 1123 tp->lost += tcp_skb_pcount(skb); 1124 } 1125 1126 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1127 { 1128 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1129 struct tcp_sock *tp = tcp_sk(sk); 1130 1131 if (sacked & TCPCB_SACKED_ACKED) 1132 return; 1133 1134 tcp_verify_retransmit_hint(tp, skb); 1135 if (sacked & TCPCB_LOST) { 1136 if (sacked & TCPCB_SACKED_RETRANS) { 1137 /* Account for retransmits that are lost again */ 1138 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1139 tp->retrans_out -= tcp_skb_pcount(skb); 1140 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1141 tcp_skb_pcount(skb)); 1142 tcp_notify_skb_loss_event(tp, skb); 1143 } 1144 } else { 1145 tp->lost_out += tcp_skb_pcount(skb); 1146 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1147 tcp_notify_skb_loss_event(tp, skb); 1148 } 1149 } 1150 1151 /* Updates the delivered and delivered_ce counts */ 1152 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1153 bool ece_ack) 1154 { 1155 tp->delivered += delivered; 1156 if (ece_ack) 1157 tp->delivered_ce += delivered; 1158 } 1159 1160 /* This procedure tags the retransmission queue when SACKs arrive. 1161 * 1162 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1163 * Packets in queue with these bits set are counted in variables 1164 * sacked_out, retrans_out and lost_out, correspondingly. 1165 * 1166 * Valid combinations are: 1167 * Tag InFlight Description 1168 * 0 1 - orig segment is in flight. 1169 * S 0 - nothing flies, orig reached receiver. 1170 * L 0 - nothing flies, orig lost by net. 1171 * R 2 - both orig and retransmit are in flight. 1172 * L|R 1 - orig is lost, retransmit is in flight. 1173 * S|R 1 - orig reached receiver, retrans is still in flight. 1174 * (L|S|R is logically valid, it could occur when L|R is sacked, 1175 * but it is equivalent to plain S and code short-circuits it to S. 1176 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1177 * 1178 * These 6 states form finite state machine, controlled by the following events: 1179 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1180 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1181 * 3. Loss detection event of two flavors: 1182 * A. Scoreboard estimator decided the packet is lost. 1183 * A'. Reno "three dupacks" marks head of queue lost. 1184 * B. SACK arrives sacking SND.NXT at the moment, when the 1185 * segment was retransmitted. 1186 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1187 * 1188 * It is pleasant to note, that state diagram turns out to be commutative, 1189 * so that we are allowed not to be bothered by order of our actions, 1190 * when multiple events arrive simultaneously. (see the function below). 1191 * 1192 * Reordering detection. 1193 * -------------------- 1194 * Reordering metric is maximal distance, which a packet can be displaced 1195 * in packet stream. With SACKs we can estimate it: 1196 * 1197 * 1. SACK fills old hole and the corresponding segment was not 1198 * ever retransmitted -> reordering. Alas, we cannot use it 1199 * when segment was retransmitted. 1200 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1201 * for retransmitted and already SACKed segment -> reordering.. 1202 * Both of these heuristics are not used in Loss state, when we cannot 1203 * account for retransmits accurately. 1204 * 1205 * SACK block validation. 1206 * ---------------------- 1207 * 1208 * SACK block range validation checks that the received SACK block fits to 1209 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1210 * Note that SND.UNA is not included to the range though being valid because 1211 * it means that the receiver is rather inconsistent with itself reporting 1212 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1213 * perfectly valid, however, in light of RFC2018 which explicitly states 1214 * that "SACK block MUST reflect the newest segment. Even if the newest 1215 * segment is going to be discarded ...", not that it looks very clever 1216 * in case of head skb. Due to potentional receiver driven attacks, we 1217 * choose to avoid immediate execution of a walk in write queue due to 1218 * reneging and defer head skb's loss recovery to standard loss recovery 1219 * procedure that will eventually trigger (nothing forbids us doing this). 1220 * 1221 * Implements also blockage to start_seq wrap-around. Problem lies in the 1222 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1223 * there's no guarantee that it will be before snd_nxt (n). The problem 1224 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1225 * wrap (s_w): 1226 * 1227 * <- outs wnd -> <- wrapzone -> 1228 * u e n u_w e_w s n_w 1229 * | | | | | | | 1230 * |<------------+------+----- TCP seqno space --------------+---------->| 1231 * ...-- <2^31 ->| |<--------... 1232 * ...---- >2^31 ------>| |<--------... 1233 * 1234 * Current code wouldn't be vulnerable but it's better still to discard such 1235 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1236 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1237 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1238 * equal to the ideal case (infinite seqno space without wrap caused issues). 1239 * 1240 * With D-SACK the lower bound is extended to cover sequence space below 1241 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1242 * again, D-SACK block must not to go across snd_una (for the same reason as 1243 * for the normal SACK blocks, explained above). But there all simplicity 1244 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1245 * fully below undo_marker they do not affect behavior in anyway and can 1246 * therefore be safely ignored. In rare cases (which are more or less 1247 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1248 * fragmentation and packet reordering past skb's retransmission. To consider 1249 * them correctly, the acceptable range must be extended even more though 1250 * the exact amount is rather hard to quantify. However, tp->max_window can 1251 * be used as an exaggerated estimate. 1252 */ 1253 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1254 u32 start_seq, u32 end_seq) 1255 { 1256 /* Too far in future, or reversed (interpretation is ambiguous) */ 1257 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1258 return false; 1259 1260 /* Nasty start_seq wrap-around check (see comments above) */ 1261 if (!before(start_seq, tp->snd_nxt)) 1262 return false; 1263 1264 /* In outstanding window? ...This is valid exit for D-SACKs too. 1265 * start_seq == snd_una is non-sensical (see comments above) 1266 */ 1267 if (after(start_seq, tp->snd_una)) 1268 return true; 1269 1270 if (!is_dsack || !tp->undo_marker) 1271 return false; 1272 1273 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1274 if (after(end_seq, tp->snd_una)) 1275 return false; 1276 1277 if (!before(start_seq, tp->undo_marker)) 1278 return true; 1279 1280 /* Too old */ 1281 if (!after(end_seq, tp->undo_marker)) 1282 return false; 1283 1284 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1285 * start_seq < undo_marker and end_seq >= undo_marker. 1286 */ 1287 return !before(start_seq, end_seq - tp->max_window); 1288 } 1289 1290 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1291 struct tcp_sack_block_wire *sp, int num_sacks, 1292 u32 prior_snd_una, struct tcp_sacktag_state *state) 1293 { 1294 struct tcp_sock *tp = tcp_sk(sk); 1295 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1296 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1297 u32 dup_segs; 1298 1299 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1300 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1301 } else if (num_sacks > 1) { 1302 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1303 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1304 1305 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1306 return false; 1307 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1308 } else { 1309 return false; 1310 } 1311 1312 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1313 if (!dup_segs) { /* Skip dubious DSACK */ 1314 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1315 return false; 1316 } 1317 1318 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1319 1320 /* D-SACK for already forgotten data... Do dumb counting. */ 1321 if (tp->undo_marker && tp->undo_retrans > 0 && 1322 !after(end_seq_0, prior_snd_una) && 1323 after(end_seq_0, tp->undo_marker)) 1324 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1325 1326 return true; 1327 } 1328 1329 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1330 * the incoming SACK may not exactly match but we can find smaller MSS 1331 * aligned portion of it that matches. Therefore we might need to fragment 1332 * which may fail and creates some hassle (caller must handle error case 1333 * returns). 1334 * 1335 * FIXME: this could be merged to shift decision code 1336 */ 1337 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1338 u32 start_seq, u32 end_seq) 1339 { 1340 int err; 1341 bool in_sack; 1342 unsigned int pkt_len; 1343 unsigned int mss; 1344 1345 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1346 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1347 1348 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1349 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1350 mss = tcp_skb_mss(skb); 1351 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1352 1353 if (!in_sack) { 1354 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1355 if (pkt_len < mss) 1356 pkt_len = mss; 1357 } else { 1358 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1359 if (pkt_len < mss) 1360 return -EINVAL; 1361 } 1362 1363 /* Round if necessary so that SACKs cover only full MSSes 1364 * and/or the remaining small portion (if present) 1365 */ 1366 if (pkt_len > mss) { 1367 unsigned int new_len = (pkt_len / mss) * mss; 1368 if (!in_sack && new_len < pkt_len) 1369 new_len += mss; 1370 pkt_len = new_len; 1371 } 1372 1373 if (pkt_len >= skb->len && !in_sack) 1374 return 0; 1375 1376 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1377 pkt_len, mss, GFP_ATOMIC); 1378 if (err < 0) 1379 return err; 1380 } 1381 1382 return in_sack; 1383 } 1384 1385 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1386 static u8 tcp_sacktag_one(struct sock *sk, 1387 struct tcp_sacktag_state *state, u8 sacked, 1388 u32 start_seq, u32 end_seq, 1389 int dup_sack, int pcount, 1390 u64 xmit_time) 1391 { 1392 struct tcp_sock *tp = tcp_sk(sk); 1393 1394 /* Account D-SACK for retransmitted packet. */ 1395 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1396 if (tp->undo_marker && tp->undo_retrans > 0 && 1397 after(end_seq, tp->undo_marker)) 1398 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1399 if ((sacked & TCPCB_SACKED_ACKED) && 1400 before(start_seq, state->reord)) 1401 state->reord = start_seq; 1402 } 1403 1404 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1405 if (!after(end_seq, tp->snd_una)) 1406 return sacked; 1407 1408 if (!(sacked & TCPCB_SACKED_ACKED)) { 1409 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1410 1411 if (sacked & TCPCB_SACKED_RETRANS) { 1412 /* If the segment is not tagged as lost, 1413 * we do not clear RETRANS, believing 1414 * that retransmission is still in flight. 1415 */ 1416 if (sacked & TCPCB_LOST) { 1417 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1418 tp->lost_out -= pcount; 1419 tp->retrans_out -= pcount; 1420 } 1421 } else { 1422 if (!(sacked & TCPCB_RETRANS)) { 1423 /* New sack for not retransmitted frame, 1424 * which was in hole. It is reordering. 1425 */ 1426 if (before(start_seq, 1427 tcp_highest_sack_seq(tp)) && 1428 before(start_seq, state->reord)) 1429 state->reord = start_seq; 1430 1431 if (!after(end_seq, tp->high_seq)) 1432 state->flag |= FLAG_ORIG_SACK_ACKED; 1433 if (state->first_sackt == 0) 1434 state->first_sackt = xmit_time; 1435 state->last_sackt = xmit_time; 1436 } 1437 1438 if (sacked & TCPCB_LOST) { 1439 sacked &= ~TCPCB_LOST; 1440 tp->lost_out -= pcount; 1441 } 1442 } 1443 1444 sacked |= TCPCB_SACKED_ACKED; 1445 state->flag |= FLAG_DATA_SACKED; 1446 tp->sacked_out += pcount; 1447 /* Out-of-order packets delivered */ 1448 state->sack_delivered += pcount; 1449 1450 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1451 if (tp->lost_skb_hint && 1452 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1453 tp->lost_cnt_hint += pcount; 1454 } 1455 1456 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1457 * frames and clear it. undo_retrans is decreased above, L|R frames 1458 * are accounted above as well. 1459 */ 1460 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1461 sacked &= ~TCPCB_SACKED_RETRANS; 1462 tp->retrans_out -= pcount; 1463 } 1464 1465 return sacked; 1466 } 1467 1468 /* Shift newly-SACKed bytes from this skb to the immediately previous 1469 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1470 */ 1471 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1472 struct sk_buff *skb, 1473 struct tcp_sacktag_state *state, 1474 unsigned int pcount, int shifted, int mss, 1475 bool dup_sack) 1476 { 1477 struct tcp_sock *tp = tcp_sk(sk); 1478 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1479 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1480 1481 BUG_ON(!pcount); 1482 1483 /* Adjust counters and hints for the newly sacked sequence 1484 * range but discard the return value since prev is already 1485 * marked. We must tag the range first because the seq 1486 * advancement below implicitly advances 1487 * tcp_highest_sack_seq() when skb is highest_sack. 1488 */ 1489 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1490 start_seq, end_seq, dup_sack, pcount, 1491 tcp_skb_timestamp_us(skb)); 1492 tcp_rate_skb_delivered(sk, skb, state->rate); 1493 1494 if (skb == tp->lost_skb_hint) 1495 tp->lost_cnt_hint += pcount; 1496 1497 TCP_SKB_CB(prev)->end_seq += shifted; 1498 TCP_SKB_CB(skb)->seq += shifted; 1499 1500 tcp_skb_pcount_add(prev, pcount); 1501 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1502 tcp_skb_pcount_add(skb, -pcount); 1503 1504 /* When we're adding to gso_segs == 1, gso_size will be zero, 1505 * in theory this shouldn't be necessary but as long as DSACK 1506 * code can come after this skb later on it's better to keep 1507 * setting gso_size to something. 1508 */ 1509 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1510 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1511 1512 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1513 if (tcp_skb_pcount(skb) <= 1) 1514 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1515 1516 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1517 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1518 1519 if (skb->len > 0) { 1520 BUG_ON(!tcp_skb_pcount(skb)); 1521 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1522 return false; 1523 } 1524 1525 /* Whole SKB was eaten :-) */ 1526 1527 if (skb == tp->retransmit_skb_hint) 1528 tp->retransmit_skb_hint = prev; 1529 if (skb == tp->lost_skb_hint) { 1530 tp->lost_skb_hint = prev; 1531 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1532 } 1533 1534 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1535 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1536 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1537 TCP_SKB_CB(prev)->end_seq++; 1538 1539 if (skb == tcp_highest_sack(sk)) 1540 tcp_advance_highest_sack(sk, skb); 1541 1542 tcp_skb_collapse_tstamp(prev, skb); 1543 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1544 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1545 1546 tcp_rtx_queue_unlink_and_free(skb, sk); 1547 1548 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1549 1550 return true; 1551 } 1552 1553 /* I wish gso_size would have a bit more sane initialization than 1554 * something-or-zero which complicates things 1555 */ 1556 static int tcp_skb_seglen(const struct sk_buff *skb) 1557 { 1558 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1559 } 1560 1561 /* Shifting pages past head area doesn't work */ 1562 static int skb_can_shift(const struct sk_buff *skb) 1563 { 1564 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1565 } 1566 1567 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1568 int pcount, int shiftlen) 1569 { 1570 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1571 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1572 * to make sure not storing more than 65535 * 8 bytes per skb, 1573 * even if current MSS is bigger. 1574 */ 1575 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1576 return 0; 1577 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1578 return 0; 1579 return skb_shift(to, from, shiftlen); 1580 } 1581 1582 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1583 * skb. 1584 */ 1585 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1586 struct tcp_sacktag_state *state, 1587 u32 start_seq, u32 end_seq, 1588 bool dup_sack) 1589 { 1590 struct tcp_sock *tp = tcp_sk(sk); 1591 struct sk_buff *prev; 1592 int mss; 1593 int pcount = 0; 1594 int len; 1595 int in_sack; 1596 1597 /* Normally R but no L won't result in plain S */ 1598 if (!dup_sack && 1599 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1600 goto fallback; 1601 if (!skb_can_shift(skb)) 1602 goto fallback; 1603 /* This frame is about to be dropped (was ACKed). */ 1604 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1605 goto fallback; 1606 1607 /* Can only happen with delayed DSACK + discard craziness */ 1608 prev = skb_rb_prev(skb); 1609 if (!prev) 1610 goto fallback; 1611 1612 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1613 goto fallback; 1614 1615 if (!tcp_skb_can_collapse(prev, skb)) 1616 goto fallback; 1617 1618 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1619 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1620 1621 if (in_sack) { 1622 len = skb->len; 1623 pcount = tcp_skb_pcount(skb); 1624 mss = tcp_skb_seglen(skb); 1625 1626 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1627 * drop this restriction as unnecessary 1628 */ 1629 if (mss != tcp_skb_seglen(prev)) 1630 goto fallback; 1631 } else { 1632 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1633 goto noop; 1634 /* CHECKME: This is non-MSS split case only?, this will 1635 * cause skipped skbs due to advancing loop btw, original 1636 * has that feature too 1637 */ 1638 if (tcp_skb_pcount(skb) <= 1) 1639 goto noop; 1640 1641 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1642 if (!in_sack) { 1643 /* TODO: head merge to next could be attempted here 1644 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1645 * though it might not be worth of the additional hassle 1646 * 1647 * ...we can probably just fallback to what was done 1648 * previously. We could try merging non-SACKed ones 1649 * as well but it probably isn't going to buy off 1650 * because later SACKs might again split them, and 1651 * it would make skb timestamp tracking considerably 1652 * harder problem. 1653 */ 1654 goto fallback; 1655 } 1656 1657 len = end_seq - TCP_SKB_CB(skb)->seq; 1658 BUG_ON(len < 0); 1659 BUG_ON(len > skb->len); 1660 1661 /* MSS boundaries should be honoured or else pcount will 1662 * severely break even though it makes things bit trickier. 1663 * Optimize common case to avoid most of the divides 1664 */ 1665 mss = tcp_skb_mss(skb); 1666 1667 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1668 * drop this restriction as unnecessary 1669 */ 1670 if (mss != tcp_skb_seglen(prev)) 1671 goto fallback; 1672 1673 if (len == mss) { 1674 pcount = 1; 1675 } else if (len < mss) { 1676 goto noop; 1677 } else { 1678 pcount = len / mss; 1679 len = pcount * mss; 1680 } 1681 } 1682 1683 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1684 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1685 goto fallback; 1686 1687 if (!tcp_skb_shift(prev, skb, pcount, len)) 1688 goto fallback; 1689 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1690 goto out; 1691 1692 /* Hole filled allows collapsing with the next as well, this is very 1693 * useful when hole on every nth skb pattern happens 1694 */ 1695 skb = skb_rb_next(prev); 1696 if (!skb) 1697 goto out; 1698 1699 if (!skb_can_shift(skb) || 1700 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1701 (mss != tcp_skb_seglen(skb))) 1702 goto out; 1703 1704 if (!tcp_skb_can_collapse(prev, skb)) 1705 goto out; 1706 len = skb->len; 1707 pcount = tcp_skb_pcount(skb); 1708 if (tcp_skb_shift(prev, skb, pcount, len)) 1709 tcp_shifted_skb(sk, prev, skb, state, pcount, 1710 len, mss, 0); 1711 1712 out: 1713 return prev; 1714 1715 noop: 1716 return skb; 1717 1718 fallback: 1719 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1720 return NULL; 1721 } 1722 1723 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1724 struct tcp_sack_block *next_dup, 1725 struct tcp_sacktag_state *state, 1726 u32 start_seq, u32 end_seq, 1727 bool dup_sack_in) 1728 { 1729 struct tcp_sock *tp = tcp_sk(sk); 1730 struct sk_buff *tmp; 1731 1732 skb_rbtree_walk_from(skb) { 1733 int in_sack = 0; 1734 bool dup_sack = dup_sack_in; 1735 1736 /* queue is in-order => we can short-circuit the walk early */ 1737 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1738 break; 1739 1740 if (next_dup && 1741 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1742 in_sack = tcp_match_skb_to_sack(sk, skb, 1743 next_dup->start_seq, 1744 next_dup->end_seq); 1745 if (in_sack > 0) 1746 dup_sack = true; 1747 } 1748 1749 /* skb reference here is a bit tricky to get right, since 1750 * shifting can eat and free both this skb and the next, 1751 * so not even _safe variant of the loop is enough. 1752 */ 1753 if (in_sack <= 0) { 1754 tmp = tcp_shift_skb_data(sk, skb, state, 1755 start_seq, end_seq, dup_sack); 1756 if (tmp) { 1757 if (tmp != skb) { 1758 skb = tmp; 1759 continue; 1760 } 1761 1762 in_sack = 0; 1763 } else { 1764 in_sack = tcp_match_skb_to_sack(sk, skb, 1765 start_seq, 1766 end_seq); 1767 } 1768 } 1769 1770 if (unlikely(in_sack < 0)) 1771 break; 1772 1773 if (in_sack) { 1774 TCP_SKB_CB(skb)->sacked = 1775 tcp_sacktag_one(sk, 1776 state, 1777 TCP_SKB_CB(skb)->sacked, 1778 TCP_SKB_CB(skb)->seq, 1779 TCP_SKB_CB(skb)->end_seq, 1780 dup_sack, 1781 tcp_skb_pcount(skb), 1782 tcp_skb_timestamp_us(skb)); 1783 tcp_rate_skb_delivered(sk, skb, state->rate); 1784 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1785 list_del_init(&skb->tcp_tsorted_anchor); 1786 1787 if (!before(TCP_SKB_CB(skb)->seq, 1788 tcp_highest_sack_seq(tp))) 1789 tcp_advance_highest_sack(sk, skb); 1790 } 1791 } 1792 return skb; 1793 } 1794 1795 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1796 { 1797 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1798 struct sk_buff *skb; 1799 1800 while (*p) { 1801 parent = *p; 1802 skb = rb_to_skb(parent); 1803 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1804 p = &parent->rb_left; 1805 continue; 1806 } 1807 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1808 p = &parent->rb_right; 1809 continue; 1810 } 1811 return skb; 1812 } 1813 return NULL; 1814 } 1815 1816 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1817 u32 skip_to_seq) 1818 { 1819 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1820 return skb; 1821 1822 return tcp_sacktag_bsearch(sk, skip_to_seq); 1823 } 1824 1825 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1826 struct sock *sk, 1827 struct tcp_sack_block *next_dup, 1828 struct tcp_sacktag_state *state, 1829 u32 skip_to_seq) 1830 { 1831 if (!next_dup) 1832 return skb; 1833 1834 if (before(next_dup->start_seq, skip_to_seq)) { 1835 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1836 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1837 next_dup->start_seq, next_dup->end_seq, 1838 1); 1839 } 1840 1841 return skb; 1842 } 1843 1844 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1845 { 1846 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1847 } 1848 1849 static int 1850 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1851 u32 prior_snd_una, struct tcp_sacktag_state *state) 1852 { 1853 struct tcp_sock *tp = tcp_sk(sk); 1854 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1855 TCP_SKB_CB(ack_skb)->sacked); 1856 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1857 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1858 struct tcp_sack_block *cache; 1859 struct sk_buff *skb; 1860 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1861 int used_sacks; 1862 bool found_dup_sack = false; 1863 int i, j; 1864 int first_sack_index; 1865 1866 state->flag = 0; 1867 state->reord = tp->snd_nxt; 1868 1869 if (!tp->sacked_out) 1870 tcp_highest_sack_reset(sk); 1871 1872 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1873 num_sacks, prior_snd_una, state); 1874 1875 /* Eliminate too old ACKs, but take into 1876 * account more or less fresh ones, they can 1877 * contain valid SACK info. 1878 */ 1879 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1880 return 0; 1881 1882 if (!tp->packets_out) 1883 goto out; 1884 1885 used_sacks = 0; 1886 first_sack_index = 0; 1887 for (i = 0; i < num_sacks; i++) { 1888 bool dup_sack = !i && found_dup_sack; 1889 1890 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1891 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1892 1893 if (!tcp_is_sackblock_valid(tp, dup_sack, 1894 sp[used_sacks].start_seq, 1895 sp[used_sacks].end_seq)) { 1896 int mib_idx; 1897 1898 if (dup_sack) { 1899 if (!tp->undo_marker) 1900 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1901 else 1902 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1903 } else { 1904 /* Don't count olds caused by ACK reordering */ 1905 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1906 !after(sp[used_sacks].end_seq, tp->snd_una)) 1907 continue; 1908 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1909 } 1910 1911 NET_INC_STATS(sock_net(sk), mib_idx); 1912 if (i == 0) 1913 first_sack_index = -1; 1914 continue; 1915 } 1916 1917 /* Ignore very old stuff early */ 1918 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1919 if (i == 0) 1920 first_sack_index = -1; 1921 continue; 1922 } 1923 1924 used_sacks++; 1925 } 1926 1927 /* order SACK blocks to allow in order walk of the retrans queue */ 1928 for (i = used_sacks - 1; i > 0; i--) { 1929 for (j = 0; j < i; j++) { 1930 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1931 swap(sp[j], sp[j + 1]); 1932 1933 /* Track where the first SACK block goes to */ 1934 if (j == first_sack_index) 1935 first_sack_index = j + 1; 1936 } 1937 } 1938 } 1939 1940 state->mss_now = tcp_current_mss(sk); 1941 skb = NULL; 1942 i = 0; 1943 1944 if (!tp->sacked_out) { 1945 /* It's already past, so skip checking against it */ 1946 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1947 } else { 1948 cache = tp->recv_sack_cache; 1949 /* Skip empty blocks in at head of the cache */ 1950 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1951 !cache->end_seq) 1952 cache++; 1953 } 1954 1955 while (i < used_sacks) { 1956 u32 start_seq = sp[i].start_seq; 1957 u32 end_seq = sp[i].end_seq; 1958 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1959 struct tcp_sack_block *next_dup = NULL; 1960 1961 if (found_dup_sack && ((i + 1) == first_sack_index)) 1962 next_dup = &sp[i + 1]; 1963 1964 /* Skip too early cached blocks */ 1965 while (tcp_sack_cache_ok(tp, cache) && 1966 !before(start_seq, cache->end_seq)) 1967 cache++; 1968 1969 /* Can skip some work by looking recv_sack_cache? */ 1970 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1971 after(end_seq, cache->start_seq)) { 1972 1973 /* Head todo? */ 1974 if (before(start_seq, cache->start_seq)) { 1975 skb = tcp_sacktag_skip(skb, sk, start_seq); 1976 skb = tcp_sacktag_walk(skb, sk, next_dup, 1977 state, 1978 start_seq, 1979 cache->start_seq, 1980 dup_sack); 1981 } 1982 1983 /* Rest of the block already fully processed? */ 1984 if (!after(end_seq, cache->end_seq)) 1985 goto advance_sp; 1986 1987 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1988 state, 1989 cache->end_seq); 1990 1991 /* ...tail remains todo... */ 1992 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1993 /* ...but better entrypoint exists! */ 1994 skb = tcp_highest_sack(sk); 1995 if (!skb) 1996 break; 1997 cache++; 1998 goto walk; 1999 } 2000 2001 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 2002 /* Check overlap against next cached too (past this one already) */ 2003 cache++; 2004 continue; 2005 } 2006 2007 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 2008 skb = tcp_highest_sack(sk); 2009 if (!skb) 2010 break; 2011 } 2012 skb = tcp_sacktag_skip(skb, sk, start_seq); 2013 2014 walk: 2015 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2016 start_seq, end_seq, dup_sack); 2017 2018 advance_sp: 2019 i++; 2020 } 2021 2022 /* Clear the head of the cache sack blocks so we can skip it next time */ 2023 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2024 tp->recv_sack_cache[i].start_seq = 0; 2025 tp->recv_sack_cache[i].end_seq = 0; 2026 } 2027 for (j = 0; j < used_sacks; j++) 2028 tp->recv_sack_cache[i++] = sp[j]; 2029 2030 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2031 tcp_check_sack_reordering(sk, state->reord, 0); 2032 2033 tcp_verify_left_out(tp); 2034 out: 2035 2036 #if FASTRETRANS_DEBUG > 0 2037 WARN_ON((int)tp->sacked_out < 0); 2038 WARN_ON((int)tp->lost_out < 0); 2039 WARN_ON((int)tp->retrans_out < 0); 2040 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2041 #endif 2042 return state->flag; 2043 } 2044 2045 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2046 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2047 */ 2048 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2049 { 2050 u32 holes; 2051 2052 holes = max(tp->lost_out, 1U); 2053 holes = min(holes, tp->packets_out); 2054 2055 if ((tp->sacked_out + holes) > tp->packets_out) { 2056 tp->sacked_out = tp->packets_out - holes; 2057 return true; 2058 } 2059 return false; 2060 } 2061 2062 /* If we receive more dupacks than we expected counting segments 2063 * in assumption of absent reordering, interpret this as reordering. 2064 * The only another reason could be bug in receiver TCP. 2065 */ 2066 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2067 { 2068 struct tcp_sock *tp = tcp_sk(sk); 2069 2070 if (!tcp_limit_reno_sacked(tp)) 2071 return; 2072 2073 tp->reordering = min_t(u32, tp->packets_out + addend, 2074 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2075 tp->reord_seen++; 2076 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2077 } 2078 2079 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2080 2081 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2082 { 2083 if (num_dupack) { 2084 struct tcp_sock *tp = tcp_sk(sk); 2085 u32 prior_sacked = tp->sacked_out; 2086 s32 delivered; 2087 2088 tp->sacked_out += num_dupack; 2089 tcp_check_reno_reordering(sk, 0); 2090 delivered = tp->sacked_out - prior_sacked; 2091 if (delivered > 0) 2092 tcp_count_delivered(tp, delivered, ece_ack); 2093 tcp_verify_left_out(tp); 2094 } 2095 } 2096 2097 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2098 2099 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2100 { 2101 struct tcp_sock *tp = tcp_sk(sk); 2102 2103 if (acked > 0) { 2104 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2105 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2106 ece_ack); 2107 if (acked - 1 >= tp->sacked_out) 2108 tp->sacked_out = 0; 2109 else 2110 tp->sacked_out -= acked - 1; 2111 } 2112 tcp_check_reno_reordering(sk, acked); 2113 tcp_verify_left_out(tp); 2114 } 2115 2116 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2117 { 2118 tp->sacked_out = 0; 2119 } 2120 2121 void tcp_clear_retrans(struct tcp_sock *tp) 2122 { 2123 tp->retrans_out = 0; 2124 tp->lost_out = 0; 2125 tp->undo_marker = 0; 2126 tp->undo_retrans = -1; 2127 tp->sacked_out = 0; 2128 tp->rto_stamp = 0; 2129 tp->total_rto = 0; 2130 tp->total_rto_recoveries = 0; 2131 tp->total_rto_time = 0; 2132 } 2133 2134 static inline void tcp_init_undo(struct tcp_sock *tp) 2135 { 2136 tp->undo_marker = tp->snd_una; 2137 2138 /* Retransmission still in flight may cause DSACKs later. */ 2139 /* First, account for regular retransmits in flight: */ 2140 tp->undo_retrans = tp->retrans_out; 2141 /* Next, account for TLP retransmits in flight: */ 2142 if (tp->tlp_high_seq && tp->tlp_retrans) 2143 tp->undo_retrans++; 2144 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2145 if (!tp->undo_retrans) 2146 tp->undo_retrans = -1; 2147 } 2148 2149 static bool tcp_is_rack(const struct sock *sk) 2150 { 2151 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2152 TCP_RACK_LOSS_DETECTION; 2153 } 2154 2155 /* If we detect SACK reneging, forget all SACK information 2156 * and reset tags completely, otherwise preserve SACKs. If receiver 2157 * dropped its ofo queue, we will know this due to reneging detection. 2158 */ 2159 static void tcp_timeout_mark_lost(struct sock *sk) 2160 { 2161 struct tcp_sock *tp = tcp_sk(sk); 2162 struct sk_buff *skb, *head; 2163 bool is_reneg; /* is receiver reneging on SACKs? */ 2164 2165 head = tcp_rtx_queue_head(sk); 2166 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2167 if (is_reneg) { 2168 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2169 tp->sacked_out = 0; 2170 /* Mark SACK reneging until we recover from this loss event. */ 2171 tp->is_sack_reneg = 1; 2172 } else if (tcp_is_reno(tp)) { 2173 tcp_reset_reno_sack(tp); 2174 } 2175 2176 skb = head; 2177 skb_rbtree_walk_from(skb) { 2178 if (is_reneg) 2179 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2180 else if (tcp_is_rack(sk) && skb != head && 2181 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2182 continue; /* Don't mark recently sent ones lost yet */ 2183 tcp_mark_skb_lost(sk, skb); 2184 } 2185 tcp_verify_left_out(tp); 2186 tcp_clear_all_retrans_hints(tp); 2187 } 2188 2189 /* Enter Loss state. */ 2190 void tcp_enter_loss(struct sock *sk) 2191 { 2192 const struct inet_connection_sock *icsk = inet_csk(sk); 2193 struct tcp_sock *tp = tcp_sk(sk); 2194 struct net *net = sock_net(sk); 2195 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2196 u8 reordering; 2197 2198 tcp_timeout_mark_lost(sk); 2199 2200 /* Reduce ssthresh if it has not yet been made inside this window. */ 2201 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2202 !after(tp->high_seq, tp->snd_una) || 2203 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2204 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2205 tp->prior_cwnd = tcp_snd_cwnd(tp); 2206 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2207 tcp_ca_event(sk, CA_EVENT_LOSS); 2208 tcp_init_undo(tp); 2209 } 2210 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2211 tp->snd_cwnd_cnt = 0; 2212 tp->snd_cwnd_stamp = tcp_jiffies32; 2213 2214 /* Timeout in disordered state after receiving substantial DUPACKs 2215 * suggests that the degree of reordering is over-estimated. 2216 */ 2217 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2218 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2219 tp->sacked_out >= reordering) 2220 tp->reordering = min_t(unsigned int, tp->reordering, 2221 reordering); 2222 2223 tcp_set_ca_state(sk, TCP_CA_Loss); 2224 tp->high_seq = tp->snd_nxt; 2225 tp->tlp_high_seq = 0; 2226 tcp_ecn_queue_cwr(tp); 2227 2228 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2229 * loss recovery is underway except recurring timeout(s) on 2230 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2231 */ 2232 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2233 (new_recovery || icsk->icsk_retransmits) && 2234 !inet_csk(sk)->icsk_mtup.probe_size; 2235 } 2236 2237 /* If ACK arrived pointing to a remembered SACK, it means that our 2238 * remembered SACKs do not reflect real state of receiver i.e. 2239 * receiver _host_ is heavily congested (or buggy). 2240 * 2241 * To avoid big spurious retransmission bursts due to transient SACK 2242 * scoreboard oddities that look like reneging, we give the receiver a 2243 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2244 * restore sanity to the SACK scoreboard. If the apparent reneging 2245 * persists until this RTO then we'll clear the SACK scoreboard. 2246 */ 2247 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2248 { 2249 if (*ack_flag & FLAG_SACK_RENEGING && 2250 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2251 struct tcp_sock *tp = tcp_sk(sk); 2252 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2253 msecs_to_jiffies(10)); 2254 2255 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false); 2256 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2257 return true; 2258 } 2259 return false; 2260 } 2261 2262 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2263 * counter when SACK is enabled (without SACK, sacked_out is used for 2264 * that purpose). 2265 * 2266 * With reordering, holes may still be in flight, so RFC3517 recovery 2267 * uses pure sacked_out (total number of SACKed segments) even though 2268 * it violates the RFC that uses duplicate ACKs, often these are equal 2269 * but when e.g. out-of-window ACKs or packet duplication occurs, 2270 * they differ. Since neither occurs due to loss, TCP should really 2271 * ignore them. 2272 */ 2273 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2274 { 2275 return tp->sacked_out + 1; 2276 } 2277 2278 /* Linux NewReno/SACK/ECN state machine. 2279 * -------------------------------------- 2280 * 2281 * "Open" Normal state, no dubious events, fast path. 2282 * "Disorder" In all the respects it is "Open", 2283 * but requires a bit more attention. It is entered when 2284 * we see some SACKs or dupacks. It is split of "Open" 2285 * mainly to move some processing from fast path to slow one. 2286 * "CWR" CWND was reduced due to some Congestion Notification event. 2287 * It can be ECN, ICMP source quench, local device congestion. 2288 * "Recovery" CWND was reduced, we are fast-retransmitting. 2289 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2290 * 2291 * tcp_fastretrans_alert() is entered: 2292 * - each incoming ACK, if state is not "Open" 2293 * - when arrived ACK is unusual, namely: 2294 * * SACK 2295 * * Duplicate ACK. 2296 * * ECN ECE. 2297 * 2298 * Counting packets in flight is pretty simple. 2299 * 2300 * in_flight = packets_out - left_out + retrans_out 2301 * 2302 * packets_out is SND.NXT-SND.UNA counted in packets. 2303 * 2304 * retrans_out is number of retransmitted segments. 2305 * 2306 * left_out is number of segments left network, but not ACKed yet. 2307 * 2308 * left_out = sacked_out + lost_out 2309 * 2310 * sacked_out: Packets, which arrived to receiver out of order 2311 * and hence not ACKed. With SACKs this number is simply 2312 * amount of SACKed data. Even without SACKs 2313 * it is easy to give pretty reliable estimate of this number, 2314 * counting duplicate ACKs. 2315 * 2316 * lost_out: Packets lost by network. TCP has no explicit 2317 * "loss notification" feedback from network (for now). 2318 * It means that this number can be only _guessed_. 2319 * Actually, it is the heuristics to predict lossage that 2320 * distinguishes different algorithms. 2321 * 2322 * F.e. after RTO, when all the queue is considered as lost, 2323 * lost_out = packets_out and in_flight = retrans_out. 2324 * 2325 * Essentially, we have now a few algorithms detecting 2326 * lost packets. 2327 * 2328 * If the receiver supports SACK: 2329 * 2330 * RFC6675/3517: It is the conventional algorithm. A packet is 2331 * considered lost if the number of higher sequence packets 2332 * SACKed is greater than or equal the DUPACK thoreshold 2333 * (reordering). This is implemented in tcp_mark_head_lost and 2334 * tcp_update_scoreboard. 2335 * 2336 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2337 * (2017-) that checks timing instead of counting DUPACKs. 2338 * Essentially a packet is considered lost if it's not S/ACKed 2339 * after RTT + reordering_window, where both metrics are 2340 * dynamically measured and adjusted. This is implemented in 2341 * tcp_rack_mark_lost. 2342 * 2343 * If the receiver does not support SACK: 2344 * 2345 * NewReno (RFC6582): in Recovery we assume that one segment 2346 * is lost (classic Reno). While we are in Recovery and 2347 * a partial ACK arrives, we assume that one more packet 2348 * is lost (NewReno). This heuristics are the same in NewReno 2349 * and SACK. 2350 * 2351 * Really tricky (and requiring careful tuning) part of algorithm 2352 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2353 * The first determines the moment _when_ we should reduce CWND and, 2354 * hence, slow down forward transmission. In fact, it determines the moment 2355 * when we decide that hole is caused by loss, rather than by a reorder. 2356 * 2357 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2358 * holes, caused by lost packets. 2359 * 2360 * And the most logically complicated part of algorithm is undo 2361 * heuristics. We detect false retransmits due to both too early 2362 * fast retransmit (reordering) and underestimated RTO, analyzing 2363 * timestamps and D-SACKs. When we detect that some segments were 2364 * retransmitted by mistake and CWND reduction was wrong, we undo 2365 * window reduction and abort recovery phase. This logic is hidden 2366 * inside several functions named tcp_try_undo_<something>. 2367 */ 2368 2369 /* This function decides, when we should leave Disordered state 2370 * and enter Recovery phase, reducing congestion window. 2371 * 2372 * Main question: may we further continue forward transmission 2373 * with the same cwnd? 2374 */ 2375 static bool tcp_time_to_recover(struct sock *sk, int flag) 2376 { 2377 struct tcp_sock *tp = tcp_sk(sk); 2378 2379 /* Trick#1: The loss is proven. */ 2380 if (tp->lost_out) 2381 return true; 2382 2383 /* Not-A-Trick#2 : Classic rule... */ 2384 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2385 return true; 2386 2387 return false; 2388 } 2389 2390 /* Detect loss in event "A" above by marking head of queue up as lost. 2391 * For RFC3517 SACK, a segment is considered lost if it 2392 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2393 * the maximum SACKed segments to pass before reaching this limit. 2394 */ 2395 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2396 { 2397 struct tcp_sock *tp = tcp_sk(sk); 2398 struct sk_buff *skb; 2399 int cnt; 2400 /* Use SACK to deduce losses of new sequences sent during recovery */ 2401 const u32 loss_high = tp->snd_nxt; 2402 2403 WARN_ON(packets > tp->packets_out); 2404 skb = tp->lost_skb_hint; 2405 if (skb) { 2406 /* Head already handled? */ 2407 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2408 return; 2409 cnt = tp->lost_cnt_hint; 2410 } else { 2411 skb = tcp_rtx_queue_head(sk); 2412 cnt = 0; 2413 } 2414 2415 skb_rbtree_walk_from(skb) { 2416 /* TODO: do this better */ 2417 /* this is not the most efficient way to do this... */ 2418 tp->lost_skb_hint = skb; 2419 tp->lost_cnt_hint = cnt; 2420 2421 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2422 break; 2423 2424 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2425 cnt += tcp_skb_pcount(skb); 2426 2427 if (cnt > packets) 2428 break; 2429 2430 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2431 tcp_mark_skb_lost(sk, skb); 2432 2433 if (mark_head) 2434 break; 2435 } 2436 tcp_verify_left_out(tp); 2437 } 2438 2439 /* Account newly detected lost packet(s) */ 2440 2441 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2442 { 2443 struct tcp_sock *tp = tcp_sk(sk); 2444 2445 if (tcp_is_sack(tp)) { 2446 int sacked_upto = tp->sacked_out - tp->reordering; 2447 if (sacked_upto >= 0) 2448 tcp_mark_head_lost(sk, sacked_upto, 0); 2449 else if (fast_rexmit) 2450 tcp_mark_head_lost(sk, 1, 1); 2451 } 2452 } 2453 2454 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2455 { 2456 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2457 before(tp->rx_opt.rcv_tsecr, when); 2458 } 2459 2460 /* skb is spurious retransmitted if the returned timestamp echo 2461 * reply is prior to the skb transmission time 2462 */ 2463 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2464 const struct sk_buff *skb) 2465 { 2466 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2467 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); 2468 } 2469 2470 /* Nothing was retransmitted or returned timestamp is less 2471 * than timestamp of the first retransmission. 2472 */ 2473 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2474 { 2475 const struct sock *sk = (const struct sock *)tp; 2476 2477 if (tp->retrans_stamp && 2478 tcp_tsopt_ecr_before(tp, tp->retrans_stamp)) 2479 return true; /* got echoed TS before first retransmission */ 2480 2481 /* Check if nothing was retransmitted (retrans_stamp==0), which may 2482 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp 2483 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear 2484 * retrans_stamp even if we had retransmitted the SYN. 2485 */ 2486 if (!tp->retrans_stamp && /* no record of a retransmit/SYN? */ 2487 sk->sk_state != TCP_SYN_SENT) /* not the FLAG_SYN_ACKED case? */ 2488 return true; /* nothing was retransmitted */ 2489 2490 return false; 2491 } 2492 2493 /* Undo procedures. */ 2494 2495 /* We can clear retrans_stamp when there are no retransmissions in the 2496 * window. It would seem that it is trivially available for us in 2497 * tp->retrans_out, however, that kind of assumptions doesn't consider 2498 * what will happen if errors occur when sending retransmission for the 2499 * second time. ...It could the that such segment has only 2500 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2501 * the head skb is enough except for some reneging corner cases that 2502 * are not worth the effort. 2503 * 2504 * Main reason for all this complexity is the fact that connection dying 2505 * time now depends on the validity of the retrans_stamp, in particular, 2506 * that successive retransmissions of a segment must not advance 2507 * retrans_stamp under any conditions. 2508 */ 2509 static bool tcp_any_retrans_done(const struct sock *sk) 2510 { 2511 const struct tcp_sock *tp = tcp_sk(sk); 2512 struct sk_buff *skb; 2513 2514 if (tp->retrans_out) 2515 return true; 2516 2517 skb = tcp_rtx_queue_head(sk); 2518 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2519 return true; 2520 2521 return false; 2522 } 2523 2524 /* If loss recovery is finished and there are no retransmits out in the 2525 * network, then we clear retrans_stamp so that upon the next loss recovery 2526 * retransmits_timed_out() and timestamp-undo are using the correct value. 2527 */ 2528 static void tcp_retrans_stamp_cleanup(struct sock *sk) 2529 { 2530 if (!tcp_any_retrans_done(sk)) 2531 tcp_sk(sk)->retrans_stamp = 0; 2532 } 2533 2534 static void DBGUNDO(struct sock *sk, const char *msg) 2535 { 2536 #if FASTRETRANS_DEBUG > 1 2537 struct tcp_sock *tp = tcp_sk(sk); 2538 struct inet_sock *inet = inet_sk(sk); 2539 2540 if (sk->sk_family == AF_INET) { 2541 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2542 msg, 2543 &inet->inet_daddr, ntohs(inet->inet_dport), 2544 tcp_snd_cwnd(tp), tcp_left_out(tp), 2545 tp->snd_ssthresh, tp->prior_ssthresh, 2546 tp->packets_out); 2547 } 2548 #if IS_ENABLED(CONFIG_IPV6) 2549 else if (sk->sk_family == AF_INET6) { 2550 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2551 msg, 2552 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2553 tcp_snd_cwnd(tp), tcp_left_out(tp), 2554 tp->snd_ssthresh, tp->prior_ssthresh, 2555 tp->packets_out); 2556 } 2557 #endif 2558 #endif 2559 } 2560 2561 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2562 { 2563 struct tcp_sock *tp = tcp_sk(sk); 2564 2565 if (unmark_loss) { 2566 struct sk_buff *skb; 2567 2568 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2569 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2570 } 2571 tp->lost_out = 0; 2572 tcp_clear_all_retrans_hints(tp); 2573 } 2574 2575 if (tp->prior_ssthresh) { 2576 const struct inet_connection_sock *icsk = inet_csk(sk); 2577 2578 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2579 2580 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2581 tp->snd_ssthresh = tp->prior_ssthresh; 2582 tcp_ecn_withdraw_cwr(tp); 2583 } 2584 } 2585 tp->snd_cwnd_stamp = tcp_jiffies32; 2586 tp->undo_marker = 0; 2587 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2588 } 2589 2590 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2591 { 2592 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2593 } 2594 2595 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2596 { 2597 struct tcp_sock *tp = tcp_sk(sk); 2598 2599 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2600 /* Hold old state until something *above* high_seq 2601 * is ACKed. For Reno it is MUST to prevent false 2602 * fast retransmits (RFC2582). SACK TCP is safe. */ 2603 if (!tcp_any_retrans_done(sk)) 2604 tp->retrans_stamp = 0; 2605 return true; 2606 } 2607 return false; 2608 } 2609 2610 /* People celebrate: "We love our President!" */ 2611 static bool tcp_try_undo_recovery(struct sock *sk) 2612 { 2613 struct tcp_sock *tp = tcp_sk(sk); 2614 2615 if (tcp_may_undo(tp)) { 2616 int mib_idx; 2617 2618 /* Happy end! We did not retransmit anything 2619 * or our original transmission succeeded. 2620 */ 2621 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2622 tcp_undo_cwnd_reduction(sk, false); 2623 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2624 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2625 else 2626 mib_idx = LINUX_MIB_TCPFULLUNDO; 2627 2628 NET_INC_STATS(sock_net(sk), mib_idx); 2629 } else if (tp->rack.reo_wnd_persist) { 2630 tp->rack.reo_wnd_persist--; 2631 } 2632 if (tcp_is_non_sack_preventing_reopen(sk)) 2633 return true; 2634 tcp_set_ca_state(sk, TCP_CA_Open); 2635 tp->is_sack_reneg = 0; 2636 return false; 2637 } 2638 2639 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2640 static bool tcp_try_undo_dsack(struct sock *sk) 2641 { 2642 struct tcp_sock *tp = tcp_sk(sk); 2643 2644 if (tp->undo_marker && !tp->undo_retrans) { 2645 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2646 tp->rack.reo_wnd_persist + 1); 2647 DBGUNDO(sk, "D-SACK"); 2648 tcp_undo_cwnd_reduction(sk, false); 2649 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2650 return true; 2651 } 2652 return false; 2653 } 2654 2655 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2656 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2657 { 2658 struct tcp_sock *tp = tcp_sk(sk); 2659 2660 if (frto_undo || tcp_may_undo(tp)) { 2661 tcp_undo_cwnd_reduction(sk, true); 2662 2663 DBGUNDO(sk, "partial loss"); 2664 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2665 if (frto_undo) 2666 NET_INC_STATS(sock_net(sk), 2667 LINUX_MIB_TCPSPURIOUSRTOS); 2668 inet_csk(sk)->icsk_retransmits = 0; 2669 if (tcp_is_non_sack_preventing_reopen(sk)) 2670 return true; 2671 if (frto_undo || tcp_is_sack(tp)) { 2672 tcp_set_ca_state(sk, TCP_CA_Open); 2673 tp->is_sack_reneg = 0; 2674 } 2675 return true; 2676 } 2677 return false; 2678 } 2679 2680 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2681 * It computes the number of packets to send (sndcnt) based on packets newly 2682 * delivered: 2683 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2684 * cwnd reductions across a full RTT. 2685 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2686 * But when SND_UNA is acked without further losses, 2687 * slow starts cwnd up to ssthresh to speed up the recovery. 2688 */ 2689 static void tcp_init_cwnd_reduction(struct sock *sk) 2690 { 2691 struct tcp_sock *tp = tcp_sk(sk); 2692 2693 tp->high_seq = tp->snd_nxt; 2694 tp->tlp_high_seq = 0; 2695 tp->snd_cwnd_cnt = 0; 2696 tp->prior_cwnd = tcp_snd_cwnd(tp); 2697 tp->prr_delivered = 0; 2698 tp->prr_out = 0; 2699 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2700 tcp_ecn_queue_cwr(tp); 2701 } 2702 2703 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2704 { 2705 struct tcp_sock *tp = tcp_sk(sk); 2706 int sndcnt = 0; 2707 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2708 2709 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2710 return; 2711 2712 trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag); 2713 2714 tp->prr_delivered += newly_acked_sacked; 2715 if (delta < 0) { 2716 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2717 tp->prior_cwnd - 1; 2718 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2719 } else { 2720 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2721 newly_acked_sacked); 2722 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2723 sndcnt++; 2724 sndcnt = min(delta, sndcnt); 2725 } 2726 /* Force a fast retransmit upon entering fast recovery */ 2727 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2728 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2729 } 2730 2731 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2732 { 2733 struct tcp_sock *tp = tcp_sk(sk); 2734 2735 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2736 return; 2737 2738 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2739 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2740 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2741 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2742 tp->snd_cwnd_stamp = tcp_jiffies32; 2743 } 2744 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2745 } 2746 2747 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2748 void tcp_enter_cwr(struct sock *sk) 2749 { 2750 struct tcp_sock *tp = tcp_sk(sk); 2751 2752 tp->prior_ssthresh = 0; 2753 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2754 tp->undo_marker = 0; 2755 tcp_init_cwnd_reduction(sk); 2756 tcp_set_ca_state(sk, TCP_CA_CWR); 2757 } 2758 } 2759 EXPORT_SYMBOL(tcp_enter_cwr); 2760 2761 static void tcp_try_keep_open(struct sock *sk) 2762 { 2763 struct tcp_sock *tp = tcp_sk(sk); 2764 int state = TCP_CA_Open; 2765 2766 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2767 state = TCP_CA_Disorder; 2768 2769 if (inet_csk(sk)->icsk_ca_state != state) { 2770 tcp_set_ca_state(sk, state); 2771 tp->high_seq = tp->snd_nxt; 2772 } 2773 } 2774 2775 static void tcp_try_to_open(struct sock *sk, int flag) 2776 { 2777 struct tcp_sock *tp = tcp_sk(sk); 2778 2779 tcp_verify_left_out(tp); 2780 2781 if (!tcp_any_retrans_done(sk)) 2782 tp->retrans_stamp = 0; 2783 2784 if (flag & FLAG_ECE) 2785 tcp_enter_cwr(sk); 2786 2787 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2788 tcp_try_keep_open(sk); 2789 } 2790 } 2791 2792 static void tcp_mtup_probe_failed(struct sock *sk) 2793 { 2794 struct inet_connection_sock *icsk = inet_csk(sk); 2795 2796 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2797 icsk->icsk_mtup.probe_size = 0; 2798 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2799 } 2800 2801 static void tcp_mtup_probe_success(struct sock *sk) 2802 { 2803 struct tcp_sock *tp = tcp_sk(sk); 2804 struct inet_connection_sock *icsk = inet_csk(sk); 2805 u64 val; 2806 2807 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2808 2809 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2810 do_div(val, icsk->icsk_mtup.probe_size); 2811 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2812 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2813 2814 tp->snd_cwnd_cnt = 0; 2815 tp->snd_cwnd_stamp = tcp_jiffies32; 2816 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2817 2818 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2819 icsk->icsk_mtup.probe_size = 0; 2820 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2821 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2822 } 2823 2824 /* Sometimes we deduce that packets have been dropped due to reasons other than 2825 * congestion, like path MTU reductions or failed client TFO attempts. In these 2826 * cases we call this function to retransmit as many packets as cwnd allows, 2827 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2828 * non-zero value (and may do so in a later calling context due to TSQ), we 2829 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2830 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2831 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2832 * prematurely). 2833 */ 2834 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2835 { 2836 const struct inet_connection_sock *icsk = inet_csk(sk); 2837 struct tcp_sock *tp = tcp_sk(sk); 2838 2839 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2840 tp->high_seq = tp->snd_nxt; 2841 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2842 tp->prior_ssthresh = 0; 2843 tp->undo_marker = 0; 2844 tcp_set_ca_state(sk, TCP_CA_Loss); 2845 } 2846 tcp_xmit_retransmit_queue(sk); 2847 } 2848 2849 /* Do a simple retransmit without using the backoff mechanisms in 2850 * tcp_timer. This is used for path mtu discovery. 2851 * The socket is already locked here. 2852 */ 2853 void tcp_simple_retransmit(struct sock *sk) 2854 { 2855 struct tcp_sock *tp = tcp_sk(sk); 2856 struct sk_buff *skb; 2857 int mss; 2858 2859 /* A fastopen SYN request is stored as two separate packets within 2860 * the retransmit queue, this is done by tcp_send_syn_data(). 2861 * As a result simply checking the MSS of the frames in the queue 2862 * will not work for the SYN packet. 2863 * 2864 * Us being here is an indication of a path MTU issue so we can 2865 * assume that the fastopen SYN was lost and just mark all the 2866 * frames in the retransmit queue as lost. We will use an MSS of 2867 * -1 to mark all frames as lost, otherwise compute the current MSS. 2868 */ 2869 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2870 mss = -1; 2871 else 2872 mss = tcp_current_mss(sk); 2873 2874 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2875 if (tcp_skb_seglen(skb) > mss) 2876 tcp_mark_skb_lost(sk, skb); 2877 } 2878 2879 tcp_clear_retrans_hints_partial(tp); 2880 2881 if (!tp->lost_out) 2882 return; 2883 2884 if (tcp_is_reno(tp)) 2885 tcp_limit_reno_sacked(tp); 2886 2887 tcp_verify_left_out(tp); 2888 2889 /* Don't muck with the congestion window here. 2890 * Reason is that we do not increase amount of _data_ 2891 * in network, but units changed and effective 2892 * cwnd/ssthresh really reduced now. 2893 */ 2894 tcp_non_congestion_loss_retransmit(sk); 2895 } 2896 EXPORT_IPV6_MOD(tcp_simple_retransmit); 2897 2898 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2899 { 2900 struct tcp_sock *tp = tcp_sk(sk); 2901 int mib_idx; 2902 2903 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */ 2904 tcp_retrans_stamp_cleanup(sk); 2905 2906 if (tcp_is_reno(tp)) 2907 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2908 else 2909 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2910 2911 NET_INC_STATS(sock_net(sk), mib_idx); 2912 2913 tp->prior_ssthresh = 0; 2914 tcp_init_undo(tp); 2915 2916 if (!tcp_in_cwnd_reduction(sk)) { 2917 if (!ece_ack) 2918 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2919 tcp_init_cwnd_reduction(sk); 2920 } 2921 tcp_set_ca_state(sk, TCP_CA_Recovery); 2922 } 2923 2924 static void tcp_update_rto_time(struct tcp_sock *tp) 2925 { 2926 if (tp->rto_stamp) { 2927 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; 2928 tp->rto_stamp = 0; 2929 } 2930 } 2931 2932 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2933 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2934 */ 2935 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2936 int *rexmit) 2937 { 2938 struct tcp_sock *tp = tcp_sk(sk); 2939 bool recovered = !before(tp->snd_una, tp->high_seq); 2940 2941 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2942 tcp_try_undo_loss(sk, false)) 2943 return; 2944 2945 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2946 /* Step 3.b. A timeout is spurious if not all data are 2947 * lost, i.e., never-retransmitted data are (s)acked. 2948 */ 2949 if ((flag & FLAG_ORIG_SACK_ACKED) && 2950 tcp_try_undo_loss(sk, true)) 2951 return; 2952 2953 if (after(tp->snd_nxt, tp->high_seq)) { 2954 if (flag & FLAG_DATA_SACKED || num_dupack) 2955 tp->frto = 0; /* Step 3.a. loss was real */ 2956 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2957 tp->high_seq = tp->snd_nxt; 2958 /* Step 2.b. Try send new data (but deferred until cwnd 2959 * is updated in tcp_ack()). Otherwise fall back to 2960 * the conventional recovery. 2961 */ 2962 if (!tcp_write_queue_empty(sk) && 2963 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2964 *rexmit = REXMIT_NEW; 2965 return; 2966 } 2967 tp->frto = 0; 2968 } 2969 } 2970 2971 if (recovered) { 2972 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2973 tcp_try_undo_recovery(sk); 2974 return; 2975 } 2976 if (tcp_is_reno(tp)) { 2977 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2978 * delivered. Lower inflight to clock out (re)transmissions. 2979 */ 2980 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2981 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2982 else if (flag & FLAG_SND_UNA_ADVANCED) 2983 tcp_reset_reno_sack(tp); 2984 } 2985 *rexmit = REXMIT_LOST; 2986 } 2987 2988 static bool tcp_force_fast_retransmit(struct sock *sk) 2989 { 2990 struct tcp_sock *tp = tcp_sk(sk); 2991 2992 return after(tcp_highest_sack_seq(tp), 2993 tp->snd_una + tp->reordering * tp->mss_cache); 2994 } 2995 2996 /* Undo during fast recovery after partial ACK. */ 2997 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2998 bool *do_lost) 2999 { 3000 struct tcp_sock *tp = tcp_sk(sk); 3001 3002 if (tp->undo_marker && tcp_packet_delayed(tp)) { 3003 /* Plain luck! Hole if filled with delayed 3004 * packet, rather than with a retransmit. Check reordering. 3005 */ 3006 tcp_check_sack_reordering(sk, prior_snd_una, 1); 3007 3008 /* We are getting evidence that the reordering degree is higher 3009 * than we realized. If there are no retransmits out then we 3010 * can undo. Otherwise we clock out new packets but do not 3011 * mark more packets lost or retransmit more. 3012 */ 3013 if (tp->retrans_out) 3014 return true; 3015 3016 if (!tcp_any_retrans_done(sk)) 3017 tp->retrans_stamp = 0; 3018 3019 DBGUNDO(sk, "partial recovery"); 3020 tcp_undo_cwnd_reduction(sk, true); 3021 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 3022 tcp_try_keep_open(sk); 3023 } else { 3024 /* Partial ACK arrived. Force fast retransmit. */ 3025 *do_lost = tcp_force_fast_retransmit(sk); 3026 } 3027 return false; 3028 } 3029 3030 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 3031 { 3032 struct tcp_sock *tp = tcp_sk(sk); 3033 3034 if (tcp_rtx_queue_empty(sk)) 3035 return; 3036 3037 if (unlikely(tcp_is_reno(tp))) { 3038 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 3039 } else if (tcp_is_rack(sk)) { 3040 u32 prior_retrans = tp->retrans_out; 3041 3042 if (tcp_rack_mark_lost(sk)) 3043 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 3044 if (prior_retrans > tp->retrans_out) 3045 *ack_flag |= FLAG_LOST_RETRANS; 3046 } 3047 } 3048 3049 /* Process an event, which can update packets-in-flight not trivially. 3050 * Main goal of this function is to calculate new estimate for left_out, 3051 * taking into account both packets sitting in receiver's buffer and 3052 * packets lost by network. 3053 * 3054 * Besides that it updates the congestion state when packet loss or ECN 3055 * is detected. But it does not reduce the cwnd, it is done by the 3056 * congestion control later. 3057 * 3058 * It does _not_ decide what to send, it is made in function 3059 * tcp_xmit_retransmit_queue(). 3060 */ 3061 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3062 int num_dupack, int *ack_flag, int *rexmit) 3063 { 3064 struct inet_connection_sock *icsk = inet_csk(sk); 3065 struct tcp_sock *tp = tcp_sk(sk); 3066 int fast_rexmit = 0, flag = *ack_flag; 3067 bool ece_ack = flag & FLAG_ECE; 3068 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3069 tcp_force_fast_retransmit(sk)); 3070 3071 if (!tp->packets_out && tp->sacked_out) 3072 tp->sacked_out = 0; 3073 3074 /* Now state machine starts. 3075 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3076 if (ece_ack) 3077 tp->prior_ssthresh = 0; 3078 3079 /* B. In all the states check for reneging SACKs. */ 3080 if (tcp_check_sack_reneging(sk, ack_flag)) 3081 return; 3082 3083 /* C. Check consistency of the current state. */ 3084 tcp_verify_left_out(tp); 3085 3086 /* D. Check state exit conditions. State can be terminated 3087 * when high_seq is ACKed. */ 3088 if (icsk->icsk_ca_state == TCP_CA_Open) { 3089 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3090 tp->retrans_stamp = 0; 3091 } else if (!before(tp->snd_una, tp->high_seq)) { 3092 switch (icsk->icsk_ca_state) { 3093 case TCP_CA_CWR: 3094 /* CWR is to be held something *above* high_seq 3095 * is ACKed for CWR bit to reach receiver. */ 3096 if (tp->snd_una != tp->high_seq) { 3097 tcp_end_cwnd_reduction(sk); 3098 tcp_set_ca_state(sk, TCP_CA_Open); 3099 } 3100 break; 3101 3102 case TCP_CA_Recovery: 3103 if (tcp_is_reno(tp)) 3104 tcp_reset_reno_sack(tp); 3105 if (tcp_try_undo_recovery(sk)) 3106 return; 3107 tcp_end_cwnd_reduction(sk); 3108 break; 3109 } 3110 } 3111 3112 /* E. Process state. */ 3113 switch (icsk->icsk_ca_state) { 3114 case TCP_CA_Recovery: 3115 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3116 if (tcp_is_reno(tp)) 3117 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3118 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3119 return; 3120 3121 if (tcp_try_undo_dsack(sk)) 3122 tcp_try_to_open(sk, flag); 3123 3124 tcp_identify_packet_loss(sk, ack_flag); 3125 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3126 if (!tcp_time_to_recover(sk, flag)) 3127 return; 3128 /* Undo reverts the recovery state. If loss is evident, 3129 * starts a new recovery (e.g. reordering then loss); 3130 */ 3131 tcp_enter_recovery(sk, ece_ack); 3132 } 3133 break; 3134 case TCP_CA_Loss: 3135 tcp_process_loss(sk, flag, num_dupack, rexmit); 3136 if (icsk->icsk_ca_state != TCP_CA_Loss) 3137 tcp_update_rto_time(tp); 3138 tcp_identify_packet_loss(sk, ack_flag); 3139 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3140 (*ack_flag & FLAG_LOST_RETRANS))) 3141 return; 3142 /* Change state if cwnd is undone or retransmits are lost */ 3143 fallthrough; 3144 default: 3145 if (tcp_is_reno(tp)) { 3146 if (flag & FLAG_SND_UNA_ADVANCED) 3147 tcp_reset_reno_sack(tp); 3148 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3149 } 3150 3151 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3152 tcp_try_undo_dsack(sk); 3153 3154 tcp_identify_packet_loss(sk, ack_flag); 3155 if (!tcp_time_to_recover(sk, flag)) { 3156 tcp_try_to_open(sk, flag); 3157 return; 3158 } 3159 3160 /* MTU probe failure: don't reduce cwnd */ 3161 if (icsk->icsk_ca_state < TCP_CA_CWR && 3162 icsk->icsk_mtup.probe_size && 3163 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3164 tcp_mtup_probe_failed(sk); 3165 /* Restores the reduction we did in tcp_mtup_probe() */ 3166 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3167 tcp_simple_retransmit(sk); 3168 return; 3169 } 3170 3171 /* Otherwise enter Recovery state */ 3172 tcp_enter_recovery(sk, ece_ack); 3173 fast_rexmit = 1; 3174 } 3175 3176 if (!tcp_is_rack(sk) && do_lost) 3177 tcp_update_scoreboard(sk, fast_rexmit); 3178 *rexmit = REXMIT_LOST; 3179 } 3180 3181 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3182 { 3183 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3184 struct tcp_sock *tp = tcp_sk(sk); 3185 3186 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3187 /* If the remote keeps returning delayed ACKs, eventually 3188 * the min filter would pick it up and overestimate the 3189 * prop. delay when it expires. Skip suspected delayed ACKs. 3190 */ 3191 return; 3192 } 3193 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3194 rtt_us ? : jiffies_to_usecs(1)); 3195 } 3196 3197 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3198 long seq_rtt_us, long sack_rtt_us, 3199 long ca_rtt_us, struct rate_sample *rs) 3200 { 3201 const struct tcp_sock *tp = tcp_sk(sk); 3202 3203 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3204 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3205 * Karn's algorithm forbids taking RTT if some retransmitted data 3206 * is acked (RFC6298). 3207 */ 3208 if (seq_rtt_us < 0) 3209 seq_rtt_us = sack_rtt_us; 3210 3211 /* RTTM Rule: A TSecr value received in a segment is used to 3212 * update the averaged RTT measurement only if the segment 3213 * acknowledges some new data, i.e., only if it advances the 3214 * left edge of the send window. 3215 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3216 */ 3217 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && 3218 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) 3219 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp); 3220 3221 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3222 if (seq_rtt_us < 0) 3223 return false; 3224 3225 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3226 * always taken together with ACK, SACK, or TS-opts. Any negative 3227 * values will be skipped with the seq_rtt_us < 0 check above. 3228 */ 3229 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3230 tcp_rtt_estimator(sk, seq_rtt_us); 3231 tcp_set_rto(sk); 3232 3233 /* RFC6298: only reset backoff on valid RTT measurement. */ 3234 inet_csk(sk)->icsk_backoff = 0; 3235 return true; 3236 } 3237 3238 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3239 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3240 { 3241 struct rate_sample rs; 3242 long rtt_us = -1L; 3243 3244 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3245 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3246 3247 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3248 } 3249 3250 3251 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3252 { 3253 const struct inet_connection_sock *icsk = inet_csk(sk); 3254 3255 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3256 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3257 } 3258 3259 /* Restart timer after forward progress on connection. 3260 * RFC2988 recommends to restart timer to now+rto. 3261 */ 3262 void tcp_rearm_rto(struct sock *sk) 3263 { 3264 const struct inet_connection_sock *icsk = inet_csk(sk); 3265 struct tcp_sock *tp = tcp_sk(sk); 3266 3267 /* If the retrans timer is currently being used by Fast Open 3268 * for SYN-ACK retrans purpose, stay put. 3269 */ 3270 if (rcu_access_pointer(tp->fastopen_rsk)) 3271 return; 3272 3273 if (!tp->packets_out) { 3274 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3275 } else { 3276 u32 rto = inet_csk(sk)->icsk_rto; 3277 /* Offset the time elapsed after installing regular RTO */ 3278 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3279 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3280 s64 delta_us = tcp_rto_delta_us(sk); 3281 /* delta_us may not be positive if the socket is locked 3282 * when the retrans timer fires and is rescheduled. 3283 */ 3284 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3285 } 3286 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true); 3287 } 3288 } 3289 3290 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3291 static void tcp_set_xmit_timer(struct sock *sk) 3292 { 3293 if (!tcp_schedule_loss_probe(sk, true)) 3294 tcp_rearm_rto(sk); 3295 } 3296 3297 /* If we get here, the whole TSO packet has not been acked. */ 3298 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3299 { 3300 struct tcp_sock *tp = tcp_sk(sk); 3301 u32 packets_acked; 3302 3303 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3304 3305 packets_acked = tcp_skb_pcount(skb); 3306 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3307 return 0; 3308 packets_acked -= tcp_skb_pcount(skb); 3309 3310 if (packets_acked) { 3311 BUG_ON(tcp_skb_pcount(skb) == 0); 3312 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3313 } 3314 3315 return packets_acked; 3316 } 3317 3318 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3319 const struct sk_buff *ack_skb, u32 prior_snd_una) 3320 { 3321 const struct skb_shared_info *shinfo; 3322 3323 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3324 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3325 return; 3326 3327 shinfo = skb_shinfo(skb); 3328 if (!before(shinfo->tskey, prior_snd_una) && 3329 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3330 tcp_skb_tsorted_save(skb) { 3331 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3332 } tcp_skb_tsorted_restore(skb); 3333 } 3334 } 3335 3336 /* Remove acknowledged frames from the retransmission queue. If our packet 3337 * is before the ack sequence we can discard it as it's confirmed to have 3338 * arrived at the other end. 3339 */ 3340 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3341 u32 prior_fack, u32 prior_snd_una, 3342 struct tcp_sacktag_state *sack, bool ece_ack) 3343 { 3344 const struct inet_connection_sock *icsk = inet_csk(sk); 3345 u64 first_ackt, last_ackt; 3346 struct tcp_sock *tp = tcp_sk(sk); 3347 u32 prior_sacked = tp->sacked_out; 3348 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3349 struct sk_buff *skb, *next; 3350 bool fully_acked = true; 3351 long sack_rtt_us = -1L; 3352 long seq_rtt_us = -1L; 3353 long ca_rtt_us = -1L; 3354 u32 pkts_acked = 0; 3355 bool rtt_update; 3356 int flag = 0; 3357 3358 first_ackt = 0; 3359 3360 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3361 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3362 const u32 start_seq = scb->seq; 3363 u8 sacked = scb->sacked; 3364 u32 acked_pcount; 3365 3366 /* Determine how many packets and what bytes were acked, tso and else */ 3367 if (after(scb->end_seq, tp->snd_una)) { 3368 if (tcp_skb_pcount(skb) == 1 || 3369 !after(tp->snd_una, scb->seq)) 3370 break; 3371 3372 acked_pcount = tcp_tso_acked(sk, skb); 3373 if (!acked_pcount) 3374 break; 3375 fully_acked = false; 3376 } else { 3377 acked_pcount = tcp_skb_pcount(skb); 3378 } 3379 3380 if (unlikely(sacked & TCPCB_RETRANS)) { 3381 if (sacked & TCPCB_SACKED_RETRANS) 3382 tp->retrans_out -= acked_pcount; 3383 flag |= FLAG_RETRANS_DATA_ACKED; 3384 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3385 last_ackt = tcp_skb_timestamp_us(skb); 3386 WARN_ON_ONCE(last_ackt == 0); 3387 if (!first_ackt) 3388 first_ackt = last_ackt; 3389 3390 if (before(start_seq, reord)) 3391 reord = start_seq; 3392 if (!after(scb->end_seq, tp->high_seq)) 3393 flag |= FLAG_ORIG_SACK_ACKED; 3394 } 3395 3396 if (sacked & TCPCB_SACKED_ACKED) { 3397 tp->sacked_out -= acked_pcount; 3398 } else if (tcp_is_sack(tp)) { 3399 tcp_count_delivered(tp, acked_pcount, ece_ack); 3400 if (!tcp_skb_spurious_retrans(tp, skb)) 3401 tcp_rack_advance(tp, sacked, scb->end_seq, 3402 tcp_skb_timestamp_us(skb)); 3403 } 3404 if (sacked & TCPCB_LOST) 3405 tp->lost_out -= acked_pcount; 3406 3407 tp->packets_out -= acked_pcount; 3408 pkts_acked += acked_pcount; 3409 tcp_rate_skb_delivered(sk, skb, sack->rate); 3410 3411 /* Initial outgoing SYN's get put onto the write_queue 3412 * just like anything else we transmit. It is not 3413 * true data, and if we misinform our callers that 3414 * this ACK acks real data, we will erroneously exit 3415 * connection startup slow start one packet too 3416 * quickly. This is severely frowned upon behavior. 3417 */ 3418 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3419 flag |= FLAG_DATA_ACKED; 3420 } else { 3421 flag |= FLAG_SYN_ACKED; 3422 tp->retrans_stamp = 0; 3423 } 3424 3425 if (!fully_acked) 3426 break; 3427 3428 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3429 3430 next = skb_rb_next(skb); 3431 if (unlikely(skb == tp->retransmit_skb_hint)) 3432 tp->retransmit_skb_hint = NULL; 3433 if (unlikely(skb == tp->lost_skb_hint)) 3434 tp->lost_skb_hint = NULL; 3435 tcp_highest_sack_replace(sk, skb, next); 3436 tcp_rtx_queue_unlink_and_free(skb, sk); 3437 } 3438 3439 if (!skb) 3440 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3441 3442 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3443 tp->snd_up = tp->snd_una; 3444 3445 if (skb) { 3446 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3447 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3448 flag |= FLAG_SACK_RENEGING; 3449 } 3450 3451 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3452 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3453 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3454 3455 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3456 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3457 sack->rate->prior_delivered + 1 == tp->delivered && 3458 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3459 /* Conservatively mark a delayed ACK. It's typically 3460 * from a lone runt packet over the round trip to 3461 * a receiver w/o out-of-order or CE events. 3462 */ 3463 flag |= FLAG_ACK_MAYBE_DELAYED; 3464 } 3465 } 3466 if (sack->first_sackt) { 3467 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3468 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3469 } 3470 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3471 ca_rtt_us, sack->rate); 3472 3473 if (flag & FLAG_ACKED) { 3474 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3475 if (unlikely(icsk->icsk_mtup.probe_size && 3476 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3477 tcp_mtup_probe_success(sk); 3478 } 3479 3480 if (tcp_is_reno(tp)) { 3481 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3482 3483 /* If any of the cumulatively ACKed segments was 3484 * retransmitted, non-SACK case cannot confirm that 3485 * progress was due to original transmission due to 3486 * lack of TCPCB_SACKED_ACKED bits even if some of 3487 * the packets may have been never retransmitted. 3488 */ 3489 if (flag & FLAG_RETRANS_DATA_ACKED) 3490 flag &= ~FLAG_ORIG_SACK_ACKED; 3491 } else { 3492 int delta; 3493 3494 /* Non-retransmitted hole got filled? That's reordering */ 3495 if (before(reord, prior_fack)) 3496 tcp_check_sack_reordering(sk, reord, 0); 3497 3498 delta = prior_sacked - tp->sacked_out; 3499 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3500 } 3501 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3502 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3503 tcp_skb_timestamp_us(skb))) { 3504 /* Do not re-arm RTO if the sack RTT is measured from data sent 3505 * after when the head was last (re)transmitted. Otherwise the 3506 * timeout may continue to extend in loss recovery. 3507 */ 3508 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3509 } 3510 3511 if (icsk->icsk_ca_ops->pkts_acked) { 3512 struct ack_sample sample = { .pkts_acked = pkts_acked, 3513 .rtt_us = sack->rate->rtt_us }; 3514 3515 sample.in_flight = tp->mss_cache * 3516 (tp->delivered - sack->rate->prior_delivered); 3517 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3518 } 3519 3520 #if FASTRETRANS_DEBUG > 0 3521 WARN_ON((int)tp->sacked_out < 0); 3522 WARN_ON((int)tp->lost_out < 0); 3523 WARN_ON((int)tp->retrans_out < 0); 3524 if (!tp->packets_out && tcp_is_sack(tp)) { 3525 icsk = inet_csk(sk); 3526 if (tp->lost_out) { 3527 pr_debug("Leak l=%u %d\n", 3528 tp->lost_out, icsk->icsk_ca_state); 3529 tp->lost_out = 0; 3530 } 3531 if (tp->sacked_out) { 3532 pr_debug("Leak s=%u %d\n", 3533 tp->sacked_out, icsk->icsk_ca_state); 3534 tp->sacked_out = 0; 3535 } 3536 if (tp->retrans_out) { 3537 pr_debug("Leak r=%u %d\n", 3538 tp->retrans_out, icsk->icsk_ca_state); 3539 tp->retrans_out = 0; 3540 } 3541 } 3542 #endif 3543 return flag; 3544 } 3545 3546 static void tcp_ack_probe(struct sock *sk) 3547 { 3548 struct inet_connection_sock *icsk = inet_csk(sk); 3549 struct sk_buff *head = tcp_send_head(sk); 3550 const struct tcp_sock *tp = tcp_sk(sk); 3551 3552 /* Was it a usable window open? */ 3553 if (!head) 3554 return; 3555 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3556 icsk->icsk_backoff = 0; 3557 icsk->icsk_probes_tstamp = 0; 3558 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3559 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3560 * This function is not for random using! 3561 */ 3562 } else { 3563 unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk)); 3564 3565 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3566 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true); 3567 } 3568 } 3569 3570 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3571 { 3572 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3573 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3574 } 3575 3576 /* Decide wheather to run the increase function of congestion control. */ 3577 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3578 { 3579 /* If reordering is high then always grow cwnd whenever data is 3580 * delivered regardless of its ordering. Otherwise stay conservative 3581 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3582 * new SACK or ECE mark may first advance cwnd here and later reduce 3583 * cwnd in tcp_fastretrans_alert() based on more states. 3584 */ 3585 if (tcp_sk(sk)->reordering > 3586 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3587 return flag & FLAG_FORWARD_PROGRESS; 3588 3589 return flag & FLAG_DATA_ACKED; 3590 } 3591 3592 /* The "ultimate" congestion control function that aims to replace the rigid 3593 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3594 * It's called toward the end of processing an ACK with precise rate 3595 * information. All transmission or retransmission are delayed afterwards. 3596 */ 3597 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3598 int flag, const struct rate_sample *rs) 3599 { 3600 const struct inet_connection_sock *icsk = inet_csk(sk); 3601 3602 if (icsk->icsk_ca_ops->cong_control) { 3603 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs); 3604 return; 3605 } 3606 3607 if (tcp_in_cwnd_reduction(sk)) { 3608 /* Reduce cwnd if state mandates */ 3609 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3610 } else if (tcp_may_raise_cwnd(sk, flag)) { 3611 /* Advance cwnd if state allows */ 3612 tcp_cong_avoid(sk, ack, acked_sacked); 3613 } 3614 tcp_update_pacing_rate(sk); 3615 } 3616 3617 /* Check that window update is acceptable. 3618 * The function assumes that snd_una<=ack<=snd_next. 3619 */ 3620 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3621 const u32 ack, const u32 ack_seq, 3622 const u32 nwin) 3623 { 3624 return after(ack, tp->snd_una) || 3625 after(ack_seq, tp->snd_wl1) || 3626 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3627 } 3628 3629 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack) 3630 { 3631 #ifdef CONFIG_TCP_AO 3632 struct tcp_ao_info *ao; 3633 3634 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3635 return; 3636 3637 ao = rcu_dereference_protected(tp->ao_info, 3638 lockdep_sock_is_held((struct sock *)tp)); 3639 if (ao && ack < tp->snd_una) { 3640 ao->snd_sne++; 3641 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne); 3642 } 3643 #endif 3644 } 3645 3646 /* If we update tp->snd_una, also update tp->bytes_acked */ 3647 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3648 { 3649 u32 delta = ack - tp->snd_una; 3650 3651 sock_owned_by_me((struct sock *)tp); 3652 tp->bytes_acked += delta; 3653 tcp_snd_sne_update(tp, ack); 3654 tp->snd_una = ack; 3655 } 3656 3657 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq) 3658 { 3659 #ifdef CONFIG_TCP_AO 3660 struct tcp_ao_info *ao; 3661 3662 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3663 return; 3664 3665 ao = rcu_dereference_protected(tp->ao_info, 3666 lockdep_sock_is_held((struct sock *)tp)); 3667 if (ao && seq < tp->rcv_nxt) { 3668 ao->rcv_sne++; 3669 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne); 3670 } 3671 #endif 3672 } 3673 3674 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3675 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3676 { 3677 u32 delta = seq - tp->rcv_nxt; 3678 3679 sock_owned_by_me((struct sock *)tp); 3680 tp->bytes_received += delta; 3681 tcp_rcv_sne_update(tp, seq); 3682 WRITE_ONCE(tp->rcv_nxt, seq); 3683 } 3684 3685 /* Update our send window. 3686 * 3687 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3688 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3689 */ 3690 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3691 u32 ack_seq) 3692 { 3693 struct tcp_sock *tp = tcp_sk(sk); 3694 int flag = 0; 3695 u32 nwin = ntohs(tcp_hdr(skb)->window); 3696 3697 if (likely(!tcp_hdr(skb)->syn)) 3698 nwin <<= tp->rx_opt.snd_wscale; 3699 3700 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3701 flag |= FLAG_WIN_UPDATE; 3702 tcp_update_wl(tp, ack_seq); 3703 3704 if (tp->snd_wnd != nwin) { 3705 tp->snd_wnd = nwin; 3706 3707 /* Note, it is the only place, where 3708 * fast path is recovered for sending TCP. 3709 */ 3710 tp->pred_flags = 0; 3711 tcp_fast_path_check(sk); 3712 3713 if (!tcp_write_queue_empty(sk)) 3714 tcp_slow_start_after_idle_check(sk); 3715 3716 if (nwin > tp->max_window) { 3717 tp->max_window = nwin; 3718 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3719 } 3720 } 3721 } 3722 3723 tcp_snd_una_update(tp, ack); 3724 3725 return flag; 3726 } 3727 3728 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3729 u32 *last_oow_ack_time) 3730 { 3731 /* Paired with the WRITE_ONCE() in this function. */ 3732 u32 val = READ_ONCE(*last_oow_ack_time); 3733 3734 if (val) { 3735 s32 elapsed = (s32)(tcp_jiffies32 - val); 3736 3737 if (0 <= elapsed && 3738 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3739 NET_INC_STATS(net, mib_idx); 3740 return true; /* rate-limited: don't send yet! */ 3741 } 3742 } 3743 3744 /* Paired with the prior READ_ONCE() and with itself, 3745 * as we might be lockless. 3746 */ 3747 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3748 3749 return false; /* not rate-limited: go ahead, send dupack now! */ 3750 } 3751 3752 /* Return true if we're currently rate-limiting out-of-window ACKs and 3753 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3754 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3755 * attacks that send repeated SYNs or ACKs for the same connection. To 3756 * do this, we do not send a duplicate SYNACK or ACK if the remote 3757 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3758 */ 3759 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3760 int mib_idx, u32 *last_oow_ack_time) 3761 { 3762 /* Data packets without SYNs are not likely part of an ACK loop. */ 3763 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3764 !tcp_hdr(skb)->syn) 3765 return false; 3766 3767 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3768 } 3769 3770 /* RFC 5961 7 [ACK Throttling] */ 3771 static void tcp_send_challenge_ack(struct sock *sk) 3772 { 3773 struct tcp_sock *tp = tcp_sk(sk); 3774 struct net *net = sock_net(sk); 3775 u32 count, now, ack_limit; 3776 3777 /* First check our per-socket dupack rate limit. */ 3778 if (__tcp_oow_rate_limited(net, 3779 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3780 &tp->last_oow_ack_time)) 3781 return; 3782 3783 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3784 if (ack_limit == INT_MAX) 3785 goto send_ack; 3786 3787 /* Then check host-wide RFC 5961 rate limit. */ 3788 now = jiffies / HZ; 3789 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3790 u32 half = (ack_limit + 1) >> 1; 3791 3792 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3793 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3794 get_random_u32_inclusive(half, ack_limit + half - 1)); 3795 } 3796 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3797 if (count > 0) { 3798 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3799 send_ack: 3800 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3801 tcp_send_ack(sk); 3802 } 3803 } 3804 3805 static void tcp_store_ts_recent(struct tcp_sock *tp) 3806 { 3807 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3808 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3809 } 3810 3811 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3812 { 3813 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3814 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3815 * extra check below makes sure this can only happen 3816 * for pure ACK frames. -DaveM 3817 * 3818 * Not only, also it occurs for expired timestamps. 3819 */ 3820 3821 if (tcp_paws_check(&tp->rx_opt, 0)) 3822 tcp_store_ts_recent(tp); 3823 } 3824 } 3825 3826 /* This routine deals with acks during a TLP episode and ends an episode by 3827 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3828 */ 3829 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3830 { 3831 struct tcp_sock *tp = tcp_sk(sk); 3832 3833 if (before(ack, tp->tlp_high_seq)) 3834 return; 3835 3836 if (!tp->tlp_retrans) { 3837 /* TLP of new data has been acknowledged */ 3838 tp->tlp_high_seq = 0; 3839 } else if (flag & FLAG_DSACK_TLP) { 3840 /* This DSACK means original and TLP probe arrived; no loss */ 3841 tp->tlp_high_seq = 0; 3842 } else if (after(ack, tp->tlp_high_seq)) { 3843 /* ACK advances: there was a loss, so reduce cwnd. Reset 3844 * tlp_high_seq in tcp_init_cwnd_reduction() 3845 */ 3846 tcp_init_cwnd_reduction(sk); 3847 tcp_set_ca_state(sk, TCP_CA_CWR); 3848 tcp_end_cwnd_reduction(sk); 3849 tcp_try_keep_open(sk); 3850 NET_INC_STATS(sock_net(sk), 3851 LINUX_MIB_TCPLOSSPROBERECOVERY); 3852 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3853 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3854 /* Pure dupack: original and TLP probe arrived; no loss */ 3855 tp->tlp_high_seq = 0; 3856 } 3857 } 3858 3859 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3860 { 3861 const struct inet_connection_sock *icsk = inet_csk(sk); 3862 3863 if (icsk->icsk_ca_ops->in_ack_event) 3864 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3865 } 3866 3867 /* Congestion control has updated the cwnd already. So if we're in 3868 * loss recovery then now we do any new sends (for FRTO) or 3869 * retransmits (for CA_Loss or CA_recovery) that make sense. 3870 */ 3871 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3872 { 3873 struct tcp_sock *tp = tcp_sk(sk); 3874 3875 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3876 return; 3877 3878 if (unlikely(rexmit == REXMIT_NEW)) { 3879 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3880 TCP_NAGLE_OFF); 3881 if (after(tp->snd_nxt, tp->high_seq)) 3882 return; 3883 tp->frto = 0; 3884 } 3885 tcp_xmit_retransmit_queue(sk); 3886 } 3887 3888 /* Returns the number of packets newly acked or sacked by the current ACK */ 3889 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3890 { 3891 const struct net *net = sock_net(sk); 3892 struct tcp_sock *tp = tcp_sk(sk); 3893 u32 delivered; 3894 3895 delivered = tp->delivered - prior_delivered; 3896 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3897 if (flag & FLAG_ECE) 3898 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3899 3900 return delivered; 3901 } 3902 3903 /* This routine deals with incoming acks, but not outgoing ones. */ 3904 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3905 { 3906 struct inet_connection_sock *icsk = inet_csk(sk); 3907 struct tcp_sock *tp = tcp_sk(sk); 3908 struct tcp_sacktag_state sack_state; 3909 struct rate_sample rs = { .prior_delivered = 0 }; 3910 u32 prior_snd_una = tp->snd_una; 3911 bool is_sack_reneg = tp->is_sack_reneg; 3912 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3913 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3914 int num_dupack = 0; 3915 int prior_packets = tp->packets_out; 3916 u32 delivered = tp->delivered; 3917 u32 lost = tp->lost; 3918 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3919 u32 prior_fack; 3920 3921 sack_state.first_sackt = 0; 3922 sack_state.rate = &rs; 3923 sack_state.sack_delivered = 0; 3924 3925 /* We very likely will need to access rtx queue. */ 3926 prefetch(sk->tcp_rtx_queue.rb_node); 3927 3928 /* If the ack is older than previous acks 3929 * then we can probably ignore it. 3930 */ 3931 if (before(ack, prior_snd_una)) { 3932 u32 max_window; 3933 3934 /* do not accept ACK for bytes we never sent. */ 3935 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3936 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3937 if (before(ack, prior_snd_una - max_window)) { 3938 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3939 tcp_send_challenge_ack(sk); 3940 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3941 } 3942 goto old_ack; 3943 } 3944 3945 /* If the ack includes data we haven't sent yet, discard 3946 * this segment (RFC793 Section 3.9). 3947 */ 3948 if (after(ack, tp->snd_nxt)) 3949 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3950 3951 if (after(ack, prior_snd_una)) { 3952 flag |= FLAG_SND_UNA_ADVANCED; 3953 icsk->icsk_retransmits = 0; 3954 3955 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3956 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3957 if (icsk->icsk_clean_acked) 3958 icsk->icsk_clean_acked(sk, ack); 3959 #endif 3960 } 3961 3962 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3963 rs.prior_in_flight = tcp_packets_in_flight(tp); 3964 3965 /* ts_recent update must be made after we are sure that the packet 3966 * is in window. 3967 */ 3968 if (flag & FLAG_UPDATE_TS_RECENT) 3969 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3970 3971 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3972 FLAG_SND_UNA_ADVANCED) { 3973 /* Window is constant, pure forward advance. 3974 * No more checks are required. 3975 * Note, we use the fact that SND.UNA>=SND.WL2. 3976 */ 3977 tcp_update_wl(tp, ack_seq); 3978 tcp_snd_una_update(tp, ack); 3979 flag |= FLAG_WIN_UPDATE; 3980 3981 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3982 3983 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3984 } else { 3985 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3986 3987 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3988 flag |= FLAG_DATA; 3989 else 3990 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3991 3992 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3993 3994 if (TCP_SKB_CB(skb)->sacked) 3995 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3996 &sack_state); 3997 3998 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3999 flag |= FLAG_ECE; 4000 ack_ev_flags |= CA_ACK_ECE; 4001 } 4002 4003 if (sack_state.sack_delivered) 4004 tcp_count_delivered(tp, sack_state.sack_delivered, 4005 flag & FLAG_ECE); 4006 4007 if (flag & FLAG_WIN_UPDATE) 4008 ack_ev_flags |= CA_ACK_WIN_UPDATE; 4009 4010 tcp_in_ack_event(sk, ack_ev_flags); 4011 } 4012 4013 /* This is a deviation from RFC3168 since it states that: 4014 * "When the TCP data sender is ready to set the CWR bit after reducing 4015 * the congestion window, it SHOULD set the CWR bit only on the first 4016 * new data packet that it transmits." 4017 * We accept CWR on pure ACKs to be more robust 4018 * with widely-deployed TCP implementations that do this. 4019 */ 4020 tcp_ecn_accept_cwr(sk, skb); 4021 4022 /* We passed data and got it acked, remove any soft error 4023 * log. Something worked... 4024 */ 4025 WRITE_ONCE(sk->sk_err_soft, 0); 4026 icsk->icsk_probes_out = 0; 4027 tp->rcv_tstamp = tcp_jiffies32; 4028 if (!prior_packets) 4029 goto no_queue; 4030 4031 /* See if we can take anything off of the retransmit queue. */ 4032 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 4033 &sack_state, flag & FLAG_ECE); 4034 4035 tcp_rack_update_reo_wnd(sk, &rs); 4036 4037 if (tp->tlp_high_seq) 4038 tcp_process_tlp_ack(sk, ack, flag); 4039 4040 if (tcp_ack_is_dubious(sk, flag)) { 4041 if (!(flag & (FLAG_SND_UNA_ADVANCED | 4042 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 4043 num_dupack = 1; 4044 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 4045 if (!(flag & FLAG_DATA)) 4046 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4047 } 4048 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4049 &rexmit); 4050 } 4051 4052 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 4053 if (flag & FLAG_SET_XMIT_TIMER) 4054 tcp_set_xmit_timer(sk); 4055 4056 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 4057 sk_dst_confirm(sk); 4058 4059 delivered = tcp_newly_delivered(sk, delivered, flag); 4060 lost = tp->lost - lost; /* freshly marked lost */ 4061 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 4062 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 4063 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 4064 tcp_xmit_recovery(sk, rexmit); 4065 return 1; 4066 4067 no_queue: 4068 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 4069 if (flag & FLAG_DSACKING_ACK) { 4070 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4071 &rexmit); 4072 tcp_newly_delivered(sk, delivered, flag); 4073 } 4074 /* If this ack opens up a zero window, clear backoff. It was 4075 * being used to time the probes, and is probably far higher than 4076 * it needs to be for normal retransmission. 4077 */ 4078 tcp_ack_probe(sk); 4079 4080 if (tp->tlp_high_seq) 4081 tcp_process_tlp_ack(sk, ack, flag); 4082 return 1; 4083 4084 old_ack: 4085 /* If data was SACKed, tag it and see if we should send more data. 4086 * If data was DSACKed, see if we can undo a cwnd reduction. 4087 */ 4088 if (TCP_SKB_CB(skb)->sacked) { 4089 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4090 &sack_state); 4091 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4092 &rexmit); 4093 tcp_newly_delivered(sk, delivered, flag); 4094 tcp_xmit_recovery(sk, rexmit); 4095 } 4096 4097 return 0; 4098 } 4099 4100 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4101 bool syn, struct tcp_fastopen_cookie *foc, 4102 bool exp_opt) 4103 { 4104 /* Valid only in SYN or SYN-ACK with an even length. */ 4105 if (!foc || !syn || len < 0 || (len & 1)) 4106 return; 4107 4108 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4109 len <= TCP_FASTOPEN_COOKIE_MAX) 4110 memcpy(foc->val, cookie, len); 4111 else if (len != 0) 4112 len = -1; 4113 foc->len = len; 4114 foc->exp = exp_opt; 4115 } 4116 4117 static bool smc_parse_options(const struct tcphdr *th, 4118 struct tcp_options_received *opt_rx, 4119 const unsigned char *ptr, 4120 int opsize) 4121 { 4122 #if IS_ENABLED(CONFIG_SMC) 4123 if (static_branch_unlikely(&tcp_have_smc)) { 4124 if (th->syn && !(opsize & 1) && 4125 opsize >= TCPOLEN_EXP_SMC_BASE && 4126 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4127 opt_rx->smc_ok = 1; 4128 return true; 4129 } 4130 } 4131 #endif 4132 return false; 4133 } 4134 4135 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4136 * value on success. 4137 */ 4138 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4139 { 4140 const unsigned char *ptr = (const unsigned char *)(th + 1); 4141 int length = (th->doff * 4) - sizeof(struct tcphdr); 4142 u16 mss = 0; 4143 4144 while (length > 0) { 4145 int opcode = *ptr++; 4146 int opsize; 4147 4148 switch (opcode) { 4149 case TCPOPT_EOL: 4150 return mss; 4151 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4152 length--; 4153 continue; 4154 default: 4155 if (length < 2) 4156 return mss; 4157 opsize = *ptr++; 4158 if (opsize < 2) /* "silly options" */ 4159 return mss; 4160 if (opsize > length) 4161 return mss; /* fail on partial options */ 4162 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4163 u16 in_mss = get_unaligned_be16(ptr); 4164 4165 if (in_mss) { 4166 if (user_mss && user_mss < in_mss) 4167 in_mss = user_mss; 4168 mss = in_mss; 4169 } 4170 } 4171 ptr += opsize - 2; 4172 length -= opsize; 4173 } 4174 } 4175 return mss; 4176 } 4177 4178 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4179 * But, this can also be called on packets in the established flow when 4180 * the fast version below fails. 4181 */ 4182 void tcp_parse_options(const struct net *net, 4183 const struct sk_buff *skb, 4184 struct tcp_options_received *opt_rx, int estab, 4185 struct tcp_fastopen_cookie *foc) 4186 { 4187 const unsigned char *ptr; 4188 const struct tcphdr *th = tcp_hdr(skb); 4189 int length = (th->doff * 4) - sizeof(struct tcphdr); 4190 4191 ptr = (const unsigned char *)(th + 1); 4192 opt_rx->saw_tstamp = 0; 4193 opt_rx->saw_unknown = 0; 4194 4195 while (length > 0) { 4196 int opcode = *ptr++; 4197 int opsize; 4198 4199 switch (opcode) { 4200 case TCPOPT_EOL: 4201 return; 4202 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4203 length--; 4204 continue; 4205 default: 4206 if (length < 2) 4207 return; 4208 opsize = *ptr++; 4209 if (opsize < 2) /* "silly options" */ 4210 return; 4211 if (opsize > length) 4212 return; /* don't parse partial options */ 4213 switch (opcode) { 4214 case TCPOPT_MSS: 4215 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4216 u16 in_mss = get_unaligned_be16(ptr); 4217 if (in_mss) { 4218 if (opt_rx->user_mss && 4219 opt_rx->user_mss < in_mss) 4220 in_mss = opt_rx->user_mss; 4221 opt_rx->mss_clamp = in_mss; 4222 } 4223 } 4224 break; 4225 case TCPOPT_WINDOW: 4226 if (opsize == TCPOLEN_WINDOW && th->syn && 4227 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4228 __u8 snd_wscale = *(__u8 *)ptr; 4229 opt_rx->wscale_ok = 1; 4230 if (snd_wscale > TCP_MAX_WSCALE) { 4231 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4232 __func__, 4233 snd_wscale, 4234 TCP_MAX_WSCALE); 4235 snd_wscale = TCP_MAX_WSCALE; 4236 } 4237 opt_rx->snd_wscale = snd_wscale; 4238 } 4239 break; 4240 case TCPOPT_TIMESTAMP: 4241 if ((opsize == TCPOLEN_TIMESTAMP) && 4242 ((estab && opt_rx->tstamp_ok) || 4243 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4244 opt_rx->saw_tstamp = 1; 4245 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4246 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4247 } 4248 break; 4249 case TCPOPT_SACK_PERM: 4250 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4251 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4252 opt_rx->sack_ok = TCP_SACK_SEEN; 4253 tcp_sack_reset(opt_rx); 4254 } 4255 break; 4256 4257 case TCPOPT_SACK: 4258 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4259 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4260 opt_rx->sack_ok) { 4261 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4262 } 4263 break; 4264 #ifdef CONFIG_TCP_MD5SIG 4265 case TCPOPT_MD5SIG: 4266 /* The MD5 Hash has already been 4267 * checked (see tcp_v{4,6}_rcv()). 4268 */ 4269 break; 4270 #endif 4271 #ifdef CONFIG_TCP_AO 4272 case TCPOPT_AO: 4273 /* TCP AO has already been checked 4274 * (see tcp_inbound_ao_hash()). 4275 */ 4276 break; 4277 #endif 4278 case TCPOPT_FASTOPEN: 4279 tcp_parse_fastopen_option( 4280 opsize - TCPOLEN_FASTOPEN_BASE, 4281 ptr, th->syn, foc, false); 4282 break; 4283 4284 case TCPOPT_EXP: 4285 /* Fast Open option shares code 254 using a 4286 * 16 bits magic number. 4287 */ 4288 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4289 get_unaligned_be16(ptr) == 4290 TCPOPT_FASTOPEN_MAGIC) { 4291 tcp_parse_fastopen_option(opsize - 4292 TCPOLEN_EXP_FASTOPEN_BASE, 4293 ptr + 2, th->syn, foc, true); 4294 break; 4295 } 4296 4297 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4298 break; 4299 4300 opt_rx->saw_unknown = 1; 4301 break; 4302 4303 default: 4304 opt_rx->saw_unknown = 1; 4305 } 4306 ptr += opsize-2; 4307 length -= opsize; 4308 } 4309 } 4310 } 4311 EXPORT_SYMBOL(tcp_parse_options); 4312 4313 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4314 { 4315 const __be32 *ptr = (const __be32 *)(th + 1); 4316 4317 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4318 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4319 tp->rx_opt.saw_tstamp = 1; 4320 ++ptr; 4321 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4322 ++ptr; 4323 if (*ptr) 4324 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4325 else 4326 tp->rx_opt.rcv_tsecr = 0; 4327 return true; 4328 } 4329 return false; 4330 } 4331 4332 /* Fast parse options. This hopes to only see timestamps. 4333 * If it is wrong it falls back on tcp_parse_options(). 4334 */ 4335 static bool tcp_fast_parse_options(const struct net *net, 4336 const struct sk_buff *skb, 4337 const struct tcphdr *th, struct tcp_sock *tp) 4338 { 4339 /* In the spirit of fast parsing, compare doff directly to constant 4340 * values. Because equality is used, short doff can be ignored here. 4341 */ 4342 if (th->doff == (sizeof(*th) / 4)) { 4343 tp->rx_opt.saw_tstamp = 0; 4344 return false; 4345 } else if (tp->rx_opt.tstamp_ok && 4346 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4347 if (tcp_parse_aligned_timestamp(tp, th)) 4348 return true; 4349 } 4350 4351 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4352 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4353 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4354 4355 return true; 4356 } 4357 4358 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4359 /* 4360 * Parse Signature options 4361 */ 4362 int tcp_do_parse_auth_options(const struct tcphdr *th, 4363 const u8 **md5_hash, const u8 **ao_hash) 4364 { 4365 int length = (th->doff << 2) - sizeof(*th); 4366 const u8 *ptr = (const u8 *)(th + 1); 4367 unsigned int minlen = TCPOLEN_MD5SIG; 4368 4369 if (IS_ENABLED(CONFIG_TCP_AO)) 4370 minlen = sizeof(struct tcp_ao_hdr) + 1; 4371 4372 *md5_hash = NULL; 4373 *ao_hash = NULL; 4374 4375 /* If not enough data remaining, we can short cut */ 4376 while (length >= minlen) { 4377 int opcode = *ptr++; 4378 int opsize; 4379 4380 switch (opcode) { 4381 case TCPOPT_EOL: 4382 return 0; 4383 case TCPOPT_NOP: 4384 length--; 4385 continue; 4386 default: 4387 opsize = *ptr++; 4388 if (opsize < 2 || opsize > length) 4389 return -EINVAL; 4390 if (opcode == TCPOPT_MD5SIG) { 4391 if (opsize != TCPOLEN_MD5SIG) 4392 return -EINVAL; 4393 if (unlikely(*md5_hash || *ao_hash)) 4394 return -EEXIST; 4395 *md5_hash = ptr; 4396 } else if (opcode == TCPOPT_AO) { 4397 if (opsize <= sizeof(struct tcp_ao_hdr)) 4398 return -EINVAL; 4399 if (unlikely(*md5_hash || *ao_hash)) 4400 return -EEXIST; 4401 *ao_hash = ptr; 4402 } 4403 } 4404 ptr += opsize - 2; 4405 length -= opsize; 4406 } 4407 return 0; 4408 } 4409 EXPORT_SYMBOL(tcp_do_parse_auth_options); 4410 #endif 4411 4412 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4413 * 4414 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4415 * it can pass through stack. So, the following predicate verifies that 4416 * this segment is not used for anything but congestion avoidance or 4417 * fast retransmit. Moreover, we even are able to eliminate most of such 4418 * second order effects, if we apply some small "replay" window (~RTO) 4419 * to timestamp space. 4420 * 4421 * All these measures still do not guarantee that we reject wrapped ACKs 4422 * on networks with high bandwidth, when sequence space is recycled fastly, 4423 * but it guarantees that such events will be very rare and do not affect 4424 * connection seriously. This doesn't look nice, but alas, PAWS is really 4425 * buggy extension. 4426 * 4427 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4428 * states that events when retransmit arrives after original data are rare. 4429 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4430 * the biggest problem on large power networks even with minor reordering. 4431 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4432 * up to bandwidth of 18Gigabit/sec. 8) ] 4433 */ 4434 4435 /* Estimates max number of increments of remote peer TSval in 4436 * a replay window (based on our current RTO estimation). 4437 */ 4438 static u32 tcp_tsval_replay(const struct sock *sk) 4439 { 4440 /* If we use usec TS resolution, 4441 * then expect the remote peer to use the same resolution. 4442 */ 4443 if (tcp_sk(sk)->tcp_usec_ts) 4444 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ); 4445 4446 /* RFC 7323 recommends a TSval clock between 1ms and 1sec. 4447 * We know that some OS (including old linux) can use 1200 Hz. 4448 */ 4449 return inet_csk(sk)->icsk_rto * 1200 / HZ; 4450 } 4451 4452 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk, 4453 const struct sk_buff *skb) 4454 { 4455 const struct tcp_sock *tp = tcp_sk(sk); 4456 const struct tcphdr *th = tcp_hdr(skb); 4457 SKB_DR_INIT(reason, TCP_RFC7323_PAWS); 4458 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4459 u32 seq = TCP_SKB_CB(skb)->seq; 4460 4461 /* 1. Is this not a pure ACK ? */ 4462 if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq) 4463 return reason; 4464 4465 /* 2. Is its sequence not the expected one ? */ 4466 if (seq != tp->rcv_nxt) 4467 return before(seq, tp->rcv_nxt) ? 4468 SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK : 4469 reason; 4470 4471 /* 3. Is this not a duplicate ACK ? */ 4472 if (ack != tp->snd_una) 4473 return reason; 4474 4475 /* 4. Is this updating the window ? */ 4476 if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) << 4477 tp->rx_opt.snd_wscale)) 4478 return reason; 4479 4480 /* 5. Is this not in the replay window ? */ 4481 if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > 4482 tcp_tsval_replay(sk)) 4483 return reason; 4484 4485 return 0; 4486 } 4487 4488 /* Check segment sequence number for validity. 4489 * 4490 * Segment controls are considered valid, if the segment 4491 * fits to the window after truncation to the window. Acceptability 4492 * of data (and SYN, FIN, of course) is checked separately. 4493 * See tcp_data_queue(), for example. 4494 * 4495 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4496 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4497 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4498 * (borrowed from freebsd) 4499 */ 4500 4501 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4502 u32 seq, u32 end_seq) 4503 { 4504 if (before(end_seq, tp->rcv_wup)) 4505 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4506 4507 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4508 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4509 4510 return SKB_NOT_DROPPED_YET; 4511 } 4512 4513 4514 void tcp_done_with_error(struct sock *sk, int err) 4515 { 4516 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4517 WRITE_ONCE(sk->sk_err, err); 4518 smp_wmb(); 4519 4520 tcp_write_queue_purge(sk); 4521 tcp_done(sk); 4522 4523 if (!sock_flag(sk, SOCK_DEAD)) 4524 sk_error_report(sk); 4525 } 4526 EXPORT_IPV6_MOD(tcp_done_with_error); 4527 4528 /* When we get a reset we do this. */ 4529 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4530 { 4531 int err; 4532 4533 trace_tcp_receive_reset(sk); 4534 4535 /* mptcp can't tell us to ignore reset pkts, 4536 * so just ignore the return value of mptcp_incoming_options(). 4537 */ 4538 if (sk_is_mptcp(sk)) 4539 mptcp_incoming_options(sk, skb); 4540 4541 /* We want the right error as BSD sees it (and indeed as we do). */ 4542 switch (sk->sk_state) { 4543 case TCP_SYN_SENT: 4544 err = ECONNREFUSED; 4545 break; 4546 case TCP_CLOSE_WAIT: 4547 err = EPIPE; 4548 break; 4549 case TCP_CLOSE: 4550 return; 4551 default: 4552 err = ECONNRESET; 4553 } 4554 tcp_done_with_error(sk, err); 4555 } 4556 4557 /* 4558 * Process the FIN bit. This now behaves as it is supposed to work 4559 * and the FIN takes effect when it is validly part of sequence 4560 * space. Not before when we get holes. 4561 * 4562 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4563 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4564 * TIME-WAIT) 4565 * 4566 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4567 * close and we go into CLOSING (and later onto TIME-WAIT) 4568 * 4569 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4570 */ 4571 void tcp_fin(struct sock *sk) 4572 { 4573 struct tcp_sock *tp = tcp_sk(sk); 4574 4575 inet_csk_schedule_ack(sk); 4576 4577 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4578 sock_set_flag(sk, SOCK_DONE); 4579 4580 switch (sk->sk_state) { 4581 case TCP_SYN_RECV: 4582 case TCP_ESTABLISHED: 4583 /* Move to CLOSE_WAIT */ 4584 tcp_set_state(sk, TCP_CLOSE_WAIT); 4585 inet_csk_enter_pingpong_mode(sk); 4586 break; 4587 4588 case TCP_CLOSE_WAIT: 4589 case TCP_CLOSING: 4590 /* Received a retransmission of the FIN, do 4591 * nothing. 4592 */ 4593 break; 4594 case TCP_LAST_ACK: 4595 /* RFC793: Remain in the LAST-ACK state. */ 4596 break; 4597 4598 case TCP_FIN_WAIT1: 4599 /* This case occurs when a simultaneous close 4600 * happens, we must ack the received FIN and 4601 * enter the CLOSING state. 4602 */ 4603 tcp_send_ack(sk); 4604 tcp_set_state(sk, TCP_CLOSING); 4605 break; 4606 case TCP_FIN_WAIT2: 4607 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4608 tcp_send_ack(sk); 4609 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4610 break; 4611 default: 4612 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4613 * cases we should never reach this piece of code. 4614 */ 4615 pr_err("%s: Impossible, sk->sk_state=%d\n", 4616 __func__, sk->sk_state); 4617 break; 4618 } 4619 4620 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4621 * Probably, we should reset in this case. For now drop them. 4622 */ 4623 skb_rbtree_purge(&tp->out_of_order_queue); 4624 if (tcp_is_sack(tp)) 4625 tcp_sack_reset(&tp->rx_opt); 4626 4627 if (!sock_flag(sk, SOCK_DEAD)) { 4628 sk->sk_state_change(sk); 4629 4630 /* Do not send POLL_HUP for half duplex close. */ 4631 if (sk->sk_shutdown == SHUTDOWN_MASK || 4632 sk->sk_state == TCP_CLOSE) 4633 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4634 else 4635 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4636 } 4637 } 4638 4639 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4640 u32 end_seq) 4641 { 4642 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4643 if (before(seq, sp->start_seq)) 4644 sp->start_seq = seq; 4645 if (after(end_seq, sp->end_seq)) 4646 sp->end_seq = end_seq; 4647 return true; 4648 } 4649 return false; 4650 } 4651 4652 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4653 { 4654 struct tcp_sock *tp = tcp_sk(sk); 4655 4656 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4657 int mib_idx; 4658 4659 if (before(seq, tp->rcv_nxt)) 4660 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4661 else 4662 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4663 4664 NET_INC_STATS(sock_net(sk), mib_idx); 4665 4666 tp->rx_opt.dsack = 1; 4667 tp->duplicate_sack[0].start_seq = seq; 4668 tp->duplicate_sack[0].end_seq = end_seq; 4669 } 4670 } 4671 4672 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4673 { 4674 struct tcp_sock *tp = tcp_sk(sk); 4675 4676 if (!tp->rx_opt.dsack) 4677 tcp_dsack_set(sk, seq, end_seq); 4678 else 4679 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4680 } 4681 4682 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4683 { 4684 /* When the ACK path fails or drops most ACKs, the sender would 4685 * timeout and spuriously retransmit the same segment repeatedly. 4686 * If it seems our ACKs are not reaching the other side, 4687 * based on receiving a duplicate data segment with new flowlabel 4688 * (suggesting the sender suffered an RTO), and we are not already 4689 * repathing due to our own RTO, then rehash the socket to repath our 4690 * packets. 4691 */ 4692 #if IS_ENABLED(CONFIG_IPV6) 4693 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 4694 skb->protocol == htons(ETH_P_IPV6) && 4695 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 4696 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 4697 sk_rethink_txhash(sk)) 4698 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4699 4700 /* Save last flowlabel after a spurious retrans. */ 4701 tcp_save_lrcv_flowlabel(sk, skb); 4702 #endif 4703 } 4704 4705 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4706 { 4707 struct tcp_sock *tp = tcp_sk(sk); 4708 4709 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4710 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4711 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4712 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4713 4714 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4715 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4716 4717 tcp_rcv_spurious_retrans(sk, skb); 4718 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4719 end_seq = tp->rcv_nxt; 4720 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4721 } 4722 } 4723 4724 tcp_send_ack(sk); 4725 } 4726 4727 /* These routines update the SACK block as out-of-order packets arrive or 4728 * in-order packets close up the sequence space. 4729 */ 4730 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4731 { 4732 int this_sack; 4733 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4734 struct tcp_sack_block *swalk = sp + 1; 4735 4736 /* See if the recent change to the first SACK eats into 4737 * or hits the sequence space of other SACK blocks, if so coalesce. 4738 */ 4739 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4740 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4741 int i; 4742 4743 /* Zap SWALK, by moving every further SACK up by one slot. 4744 * Decrease num_sacks. 4745 */ 4746 tp->rx_opt.num_sacks--; 4747 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4748 sp[i] = sp[i + 1]; 4749 continue; 4750 } 4751 this_sack++; 4752 swalk++; 4753 } 4754 } 4755 4756 void tcp_sack_compress_send_ack(struct sock *sk) 4757 { 4758 struct tcp_sock *tp = tcp_sk(sk); 4759 4760 if (!tp->compressed_ack) 4761 return; 4762 4763 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4764 __sock_put(sk); 4765 4766 /* Since we have to send one ack finally, 4767 * substract one from tp->compressed_ack to keep 4768 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4769 */ 4770 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4771 tp->compressed_ack - 1); 4772 4773 tp->compressed_ack = 0; 4774 tcp_send_ack(sk); 4775 } 4776 4777 /* Reasonable amount of sack blocks included in TCP SACK option 4778 * The max is 4, but this becomes 3 if TCP timestamps are there. 4779 * Given that SACK packets might be lost, be conservative and use 2. 4780 */ 4781 #define TCP_SACK_BLOCKS_EXPECTED 2 4782 4783 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4784 { 4785 struct tcp_sock *tp = tcp_sk(sk); 4786 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4787 int cur_sacks = tp->rx_opt.num_sacks; 4788 int this_sack; 4789 4790 if (!cur_sacks) 4791 goto new_sack; 4792 4793 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4794 if (tcp_sack_extend(sp, seq, end_seq)) { 4795 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4796 tcp_sack_compress_send_ack(sk); 4797 /* Rotate this_sack to the first one. */ 4798 for (; this_sack > 0; this_sack--, sp--) 4799 swap(*sp, *(sp - 1)); 4800 if (cur_sacks > 1) 4801 tcp_sack_maybe_coalesce(tp); 4802 return; 4803 } 4804 } 4805 4806 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4807 tcp_sack_compress_send_ack(sk); 4808 4809 /* Could not find an adjacent existing SACK, build a new one, 4810 * put it at the front, and shift everyone else down. We 4811 * always know there is at least one SACK present already here. 4812 * 4813 * If the sack array is full, forget about the last one. 4814 */ 4815 if (this_sack >= TCP_NUM_SACKS) { 4816 this_sack--; 4817 tp->rx_opt.num_sacks--; 4818 sp--; 4819 } 4820 for (; this_sack > 0; this_sack--, sp--) 4821 *sp = *(sp - 1); 4822 4823 new_sack: 4824 /* Build the new head SACK, and we're done. */ 4825 sp->start_seq = seq; 4826 sp->end_seq = end_seq; 4827 tp->rx_opt.num_sacks++; 4828 } 4829 4830 /* RCV.NXT advances, some SACKs should be eaten. */ 4831 4832 static void tcp_sack_remove(struct tcp_sock *tp) 4833 { 4834 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4835 int num_sacks = tp->rx_opt.num_sacks; 4836 int this_sack; 4837 4838 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4839 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4840 tp->rx_opt.num_sacks = 0; 4841 return; 4842 } 4843 4844 for (this_sack = 0; this_sack < num_sacks;) { 4845 /* Check if the start of the sack is covered by RCV.NXT. */ 4846 if (!before(tp->rcv_nxt, sp->start_seq)) { 4847 int i; 4848 4849 /* RCV.NXT must cover all the block! */ 4850 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4851 4852 /* Zap this SACK, by moving forward any other SACKS. */ 4853 for (i = this_sack+1; i < num_sacks; i++) 4854 tp->selective_acks[i-1] = tp->selective_acks[i]; 4855 num_sacks--; 4856 continue; 4857 } 4858 this_sack++; 4859 sp++; 4860 } 4861 tp->rx_opt.num_sacks = num_sacks; 4862 } 4863 4864 /** 4865 * tcp_try_coalesce - try to merge skb to prior one 4866 * @sk: socket 4867 * @to: prior buffer 4868 * @from: buffer to add in queue 4869 * @fragstolen: pointer to boolean 4870 * 4871 * Before queueing skb @from after @to, try to merge them 4872 * to reduce overall memory use and queue lengths, if cost is small. 4873 * Packets in ofo or receive queues can stay a long time. 4874 * Better try to coalesce them right now to avoid future collapses. 4875 * Returns true if caller should free @from instead of queueing it 4876 */ 4877 static bool tcp_try_coalesce(struct sock *sk, 4878 struct sk_buff *to, 4879 struct sk_buff *from, 4880 bool *fragstolen) 4881 { 4882 int delta; 4883 4884 *fragstolen = false; 4885 4886 /* Its possible this segment overlaps with prior segment in queue */ 4887 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4888 return false; 4889 4890 if (!tcp_skb_can_collapse_rx(to, from)) 4891 return false; 4892 4893 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4894 return false; 4895 4896 atomic_add(delta, &sk->sk_rmem_alloc); 4897 sk_mem_charge(sk, delta); 4898 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4899 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4900 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4901 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4902 4903 if (TCP_SKB_CB(from)->has_rxtstamp) { 4904 TCP_SKB_CB(to)->has_rxtstamp = true; 4905 to->tstamp = from->tstamp; 4906 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4907 } 4908 4909 return true; 4910 } 4911 4912 static bool tcp_ooo_try_coalesce(struct sock *sk, 4913 struct sk_buff *to, 4914 struct sk_buff *from, 4915 bool *fragstolen) 4916 { 4917 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4918 4919 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4920 if (res) { 4921 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4922 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4923 4924 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4925 } 4926 return res; 4927 } 4928 4929 noinline_for_tracing static void 4930 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 4931 { 4932 sk_drops_add(sk, skb); 4933 sk_skb_reason_drop(sk, skb, reason); 4934 } 4935 4936 /* This one checks to see if we can put data from the 4937 * out_of_order queue into the receive_queue. 4938 */ 4939 static void tcp_ofo_queue(struct sock *sk) 4940 { 4941 struct tcp_sock *tp = tcp_sk(sk); 4942 __u32 dsack_high = tp->rcv_nxt; 4943 bool fin, fragstolen, eaten; 4944 struct sk_buff *skb, *tail; 4945 struct rb_node *p; 4946 4947 p = rb_first(&tp->out_of_order_queue); 4948 while (p) { 4949 skb = rb_to_skb(p); 4950 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4951 break; 4952 4953 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4954 __u32 dsack = dsack_high; 4955 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4956 dsack_high = TCP_SKB_CB(skb)->end_seq; 4957 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4958 } 4959 p = rb_next(p); 4960 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4961 4962 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4963 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4964 continue; 4965 } 4966 4967 tail = skb_peek_tail(&sk->sk_receive_queue); 4968 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4969 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4970 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4971 if (!eaten) 4972 __skb_queue_tail(&sk->sk_receive_queue, skb); 4973 else 4974 kfree_skb_partial(skb, fragstolen); 4975 4976 if (unlikely(fin)) { 4977 tcp_fin(sk); 4978 /* tcp_fin() purges tp->out_of_order_queue, 4979 * so we must end this loop right now. 4980 */ 4981 break; 4982 } 4983 } 4984 } 4985 4986 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4987 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4988 4989 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4990 unsigned int size) 4991 { 4992 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4993 !sk_rmem_schedule(sk, skb, size)) { 4994 4995 if (tcp_prune_queue(sk, skb) < 0) 4996 return -1; 4997 4998 while (!sk_rmem_schedule(sk, skb, size)) { 4999 if (!tcp_prune_ofo_queue(sk, skb)) 5000 return -1; 5001 } 5002 } 5003 return 0; 5004 } 5005 5006 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 5007 { 5008 struct tcp_sock *tp = tcp_sk(sk); 5009 struct rb_node **p, *parent; 5010 struct sk_buff *skb1; 5011 u32 seq, end_seq; 5012 bool fragstolen; 5013 5014 tcp_save_lrcv_flowlabel(sk, skb); 5015 tcp_ecn_check_ce(sk, skb); 5016 5017 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 5018 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 5019 sk->sk_data_ready(sk); 5020 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 5021 return; 5022 } 5023 5024 /* Disable header prediction. */ 5025 tp->pred_flags = 0; 5026 inet_csk_schedule_ack(sk); 5027 5028 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 5029 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 5030 seq = TCP_SKB_CB(skb)->seq; 5031 end_seq = TCP_SKB_CB(skb)->end_seq; 5032 5033 p = &tp->out_of_order_queue.rb_node; 5034 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5035 /* Initial out of order segment, build 1 SACK. */ 5036 if (tcp_is_sack(tp)) { 5037 tp->rx_opt.num_sacks = 1; 5038 tp->selective_acks[0].start_seq = seq; 5039 tp->selective_acks[0].end_seq = end_seq; 5040 } 5041 rb_link_node(&skb->rbnode, NULL, p); 5042 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5043 tp->ooo_last_skb = skb; 5044 goto end; 5045 } 5046 5047 /* In the typical case, we are adding an skb to the end of the list. 5048 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 5049 */ 5050 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 5051 skb, &fragstolen)) { 5052 coalesce_done: 5053 /* For non sack flows, do not grow window to force DUPACK 5054 * and trigger fast retransmit. 5055 */ 5056 if (tcp_is_sack(tp)) 5057 tcp_grow_window(sk, skb, true); 5058 kfree_skb_partial(skb, fragstolen); 5059 skb = NULL; 5060 goto add_sack; 5061 } 5062 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 5063 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 5064 parent = &tp->ooo_last_skb->rbnode; 5065 p = &parent->rb_right; 5066 goto insert; 5067 } 5068 5069 /* Find place to insert this segment. Handle overlaps on the way. */ 5070 parent = NULL; 5071 while (*p) { 5072 parent = *p; 5073 skb1 = rb_to_skb(parent); 5074 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 5075 p = &parent->rb_left; 5076 continue; 5077 } 5078 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 5079 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5080 /* All the bits are present. Drop. */ 5081 NET_INC_STATS(sock_net(sk), 5082 LINUX_MIB_TCPOFOMERGE); 5083 tcp_drop_reason(sk, skb, 5084 SKB_DROP_REASON_TCP_OFOMERGE); 5085 skb = NULL; 5086 tcp_dsack_set(sk, seq, end_seq); 5087 goto add_sack; 5088 } 5089 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 5090 /* Partial overlap. */ 5091 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 5092 } else { 5093 /* skb's seq == skb1's seq and skb covers skb1. 5094 * Replace skb1 with skb. 5095 */ 5096 rb_replace_node(&skb1->rbnode, &skb->rbnode, 5097 &tp->out_of_order_queue); 5098 tcp_dsack_extend(sk, 5099 TCP_SKB_CB(skb1)->seq, 5100 TCP_SKB_CB(skb1)->end_seq); 5101 NET_INC_STATS(sock_net(sk), 5102 LINUX_MIB_TCPOFOMERGE); 5103 tcp_drop_reason(sk, skb1, 5104 SKB_DROP_REASON_TCP_OFOMERGE); 5105 goto merge_right; 5106 } 5107 } else if (tcp_ooo_try_coalesce(sk, skb1, 5108 skb, &fragstolen)) { 5109 goto coalesce_done; 5110 } 5111 p = &parent->rb_right; 5112 } 5113 insert: 5114 /* Insert segment into RB tree. */ 5115 rb_link_node(&skb->rbnode, parent, p); 5116 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5117 5118 merge_right: 5119 /* Remove other segments covered by skb. */ 5120 while ((skb1 = skb_rb_next(skb)) != NULL) { 5121 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5122 break; 5123 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5124 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5125 end_seq); 5126 break; 5127 } 5128 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5129 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5130 TCP_SKB_CB(skb1)->end_seq); 5131 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5132 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5133 } 5134 /* If there is no skb after us, we are the last_skb ! */ 5135 if (!skb1) 5136 tp->ooo_last_skb = skb; 5137 5138 add_sack: 5139 if (tcp_is_sack(tp)) 5140 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5141 end: 5142 if (skb) { 5143 /* For non sack flows, do not grow window to force DUPACK 5144 * and trigger fast retransmit. 5145 */ 5146 if (tcp_is_sack(tp)) 5147 tcp_grow_window(sk, skb, false); 5148 skb_condense(skb); 5149 skb_set_owner_r(skb, sk); 5150 } 5151 } 5152 5153 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5154 bool *fragstolen) 5155 { 5156 int eaten; 5157 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5158 5159 eaten = (tail && 5160 tcp_try_coalesce(sk, tail, 5161 skb, fragstolen)) ? 1 : 0; 5162 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5163 if (!eaten) { 5164 __skb_queue_tail(&sk->sk_receive_queue, skb); 5165 skb_set_owner_r(skb, sk); 5166 } 5167 return eaten; 5168 } 5169 5170 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5171 { 5172 struct sk_buff *skb; 5173 int err = -ENOMEM; 5174 int data_len = 0; 5175 bool fragstolen; 5176 5177 if (size == 0) 5178 return 0; 5179 5180 if (size > PAGE_SIZE) { 5181 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5182 5183 data_len = npages << PAGE_SHIFT; 5184 size = data_len + (size & ~PAGE_MASK); 5185 } 5186 skb = alloc_skb_with_frags(size - data_len, data_len, 5187 PAGE_ALLOC_COSTLY_ORDER, 5188 &err, sk->sk_allocation); 5189 if (!skb) 5190 goto err; 5191 5192 skb_put(skb, size - data_len); 5193 skb->data_len = data_len; 5194 skb->len = size; 5195 5196 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5197 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5198 goto err_free; 5199 } 5200 5201 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5202 if (err) 5203 goto err_free; 5204 5205 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5206 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5207 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5208 5209 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5210 WARN_ON_ONCE(fragstolen); /* should not happen */ 5211 __kfree_skb(skb); 5212 } 5213 return size; 5214 5215 err_free: 5216 kfree_skb(skb); 5217 err: 5218 return err; 5219 5220 } 5221 5222 void tcp_data_ready(struct sock *sk) 5223 { 5224 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5225 sk->sk_data_ready(sk); 5226 } 5227 5228 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5229 { 5230 struct tcp_sock *tp = tcp_sk(sk); 5231 enum skb_drop_reason reason; 5232 bool fragstolen; 5233 int eaten; 5234 5235 /* If a subflow has been reset, the packet should not continue 5236 * to be processed, drop the packet. 5237 */ 5238 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5239 __kfree_skb(skb); 5240 return; 5241 } 5242 5243 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5244 __kfree_skb(skb); 5245 return; 5246 } 5247 skb_dst_drop(skb); 5248 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5249 5250 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5251 tp->rx_opt.dsack = 0; 5252 5253 /* Queue data for delivery to the user. 5254 * Packets in sequence go to the receive queue. 5255 * Out of sequence packets to the out_of_order_queue. 5256 */ 5257 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5258 if (tcp_receive_window(tp) == 0) { 5259 /* Some stacks are known to send bare FIN packets 5260 * in a loop even if we send RWIN 0 in our ACK. 5261 * Accepting this FIN does not hurt memory pressure 5262 * because the FIN flag will simply be merged to the 5263 * receive queue tail skb in most cases. 5264 */ 5265 if (!skb->len && 5266 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 5267 goto queue_and_out; 5268 5269 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5270 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5271 goto out_of_window; 5272 } 5273 5274 /* Ok. In sequence. In window. */ 5275 queue_and_out: 5276 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5277 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5278 inet_csk(sk)->icsk_ack.pending |= 5279 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5280 inet_csk_schedule_ack(sk); 5281 sk->sk_data_ready(sk); 5282 5283 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) { 5284 reason = SKB_DROP_REASON_PROTO_MEM; 5285 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5286 goto drop; 5287 } 5288 sk_forced_mem_schedule(sk, skb->truesize); 5289 } 5290 5291 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5292 if (skb->len) 5293 tcp_event_data_recv(sk, skb); 5294 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5295 tcp_fin(sk); 5296 5297 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5298 tcp_ofo_queue(sk); 5299 5300 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5301 * gap in queue is filled. 5302 */ 5303 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5304 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5305 } 5306 5307 if (tp->rx_opt.num_sacks) 5308 tcp_sack_remove(tp); 5309 5310 tcp_fast_path_check(sk); 5311 5312 if (eaten > 0) 5313 kfree_skb_partial(skb, fragstolen); 5314 if (!sock_flag(sk, SOCK_DEAD)) 5315 tcp_data_ready(sk); 5316 return; 5317 } 5318 5319 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5320 tcp_rcv_spurious_retrans(sk, skb); 5321 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5322 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5323 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5324 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5325 5326 out_of_window: 5327 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5328 inet_csk_schedule_ack(sk); 5329 drop: 5330 tcp_drop_reason(sk, skb, reason); 5331 return; 5332 } 5333 5334 /* Out of window. F.e. zero window probe. */ 5335 if (!before(TCP_SKB_CB(skb)->seq, 5336 tp->rcv_nxt + tcp_receive_window(tp))) { 5337 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5338 goto out_of_window; 5339 } 5340 5341 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5342 /* Partial packet, seq < rcv_next < end_seq */ 5343 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5344 5345 /* If window is closed, drop tail of packet. But after 5346 * remembering D-SACK for its head made in previous line. 5347 */ 5348 if (!tcp_receive_window(tp)) { 5349 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5350 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5351 goto out_of_window; 5352 } 5353 goto queue_and_out; 5354 } 5355 5356 tcp_data_queue_ofo(sk, skb); 5357 } 5358 5359 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5360 { 5361 if (list) 5362 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5363 5364 return skb_rb_next(skb); 5365 } 5366 5367 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5368 struct sk_buff_head *list, 5369 struct rb_root *root) 5370 { 5371 struct sk_buff *next = tcp_skb_next(skb, list); 5372 5373 if (list) 5374 __skb_unlink(skb, list); 5375 else 5376 rb_erase(&skb->rbnode, root); 5377 5378 __kfree_skb(skb); 5379 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5380 5381 return next; 5382 } 5383 5384 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5385 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5386 { 5387 struct rb_node **p = &root->rb_node; 5388 struct rb_node *parent = NULL; 5389 struct sk_buff *skb1; 5390 5391 while (*p) { 5392 parent = *p; 5393 skb1 = rb_to_skb(parent); 5394 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5395 p = &parent->rb_left; 5396 else 5397 p = &parent->rb_right; 5398 } 5399 rb_link_node(&skb->rbnode, parent, p); 5400 rb_insert_color(&skb->rbnode, root); 5401 } 5402 5403 /* Collapse contiguous sequence of skbs head..tail with 5404 * sequence numbers start..end. 5405 * 5406 * If tail is NULL, this means until the end of the queue. 5407 * 5408 * Segments with FIN/SYN are not collapsed (only because this 5409 * simplifies code) 5410 */ 5411 static void 5412 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5413 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5414 { 5415 struct sk_buff *skb = head, *n; 5416 struct sk_buff_head tmp; 5417 bool end_of_skbs; 5418 5419 /* First, check that queue is collapsible and find 5420 * the point where collapsing can be useful. 5421 */ 5422 restart: 5423 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5424 n = tcp_skb_next(skb, list); 5425 5426 if (!skb_frags_readable(skb)) 5427 goto skip_this; 5428 5429 /* No new bits? It is possible on ofo queue. */ 5430 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5431 skb = tcp_collapse_one(sk, skb, list, root); 5432 if (!skb) 5433 break; 5434 goto restart; 5435 } 5436 5437 /* The first skb to collapse is: 5438 * - not SYN/FIN and 5439 * - bloated or contains data before "start" or 5440 * overlaps to the next one and mptcp allow collapsing. 5441 */ 5442 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5443 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5444 before(TCP_SKB_CB(skb)->seq, start))) { 5445 end_of_skbs = false; 5446 break; 5447 } 5448 5449 if (n && n != tail && skb_frags_readable(n) && 5450 tcp_skb_can_collapse_rx(skb, n) && 5451 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5452 end_of_skbs = false; 5453 break; 5454 } 5455 5456 skip_this: 5457 /* Decided to skip this, advance start seq. */ 5458 start = TCP_SKB_CB(skb)->end_seq; 5459 } 5460 if (end_of_skbs || 5461 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5462 !skb_frags_readable(skb)) 5463 return; 5464 5465 __skb_queue_head_init(&tmp); 5466 5467 while (before(start, end)) { 5468 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5469 struct sk_buff *nskb; 5470 5471 nskb = alloc_skb(copy, GFP_ATOMIC); 5472 if (!nskb) 5473 break; 5474 5475 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5476 skb_copy_decrypted(nskb, skb); 5477 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5478 if (list) 5479 __skb_queue_before(list, skb, nskb); 5480 else 5481 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5482 skb_set_owner_r(nskb, sk); 5483 mptcp_skb_ext_move(nskb, skb); 5484 5485 /* Copy data, releasing collapsed skbs. */ 5486 while (copy > 0) { 5487 int offset = start - TCP_SKB_CB(skb)->seq; 5488 int size = TCP_SKB_CB(skb)->end_seq - start; 5489 5490 BUG_ON(offset < 0); 5491 if (size > 0) { 5492 size = min(copy, size); 5493 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5494 BUG(); 5495 TCP_SKB_CB(nskb)->end_seq += size; 5496 copy -= size; 5497 start += size; 5498 } 5499 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5500 skb = tcp_collapse_one(sk, skb, list, root); 5501 if (!skb || 5502 skb == tail || 5503 !tcp_skb_can_collapse_rx(nskb, skb) || 5504 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5505 !skb_frags_readable(skb)) 5506 goto end; 5507 } 5508 } 5509 } 5510 end: 5511 skb_queue_walk_safe(&tmp, skb, n) 5512 tcp_rbtree_insert(root, skb); 5513 } 5514 5515 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5516 * and tcp_collapse() them until all the queue is collapsed. 5517 */ 5518 static void tcp_collapse_ofo_queue(struct sock *sk) 5519 { 5520 struct tcp_sock *tp = tcp_sk(sk); 5521 u32 range_truesize, sum_tiny = 0; 5522 struct sk_buff *skb, *head; 5523 u32 start, end; 5524 5525 skb = skb_rb_first(&tp->out_of_order_queue); 5526 new_range: 5527 if (!skb) { 5528 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5529 return; 5530 } 5531 start = TCP_SKB_CB(skb)->seq; 5532 end = TCP_SKB_CB(skb)->end_seq; 5533 range_truesize = skb->truesize; 5534 5535 for (head = skb;;) { 5536 skb = skb_rb_next(skb); 5537 5538 /* Range is terminated when we see a gap or when 5539 * we are at the queue end. 5540 */ 5541 if (!skb || 5542 after(TCP_SKB_CB(skb)->seq, end) || 5543 before(TCP_SKB_CB(skb)->end_seq, start)) { 5544 /* Do not attempt collapsing tiny skbs */ 5545 if (range_truesize != head->truesize || 5546 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5547 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5548 head, skb, start, end); 5549 } else { 5550 sum_tiny += range_truesize; 5551 if (sum_tiny > sk->sk_rcvbuf >> 3) 5552 return; 5553 } 5554 goto new_range; 5555 } 5556 5557 range_truesize += skb->truesize; 5558 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5559 start = TCP_SKB_CB(skb)->seq; 5560 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5561 end = TCP_SKB_CB(skb)->end_seq; 5562 } 5563 } 5564 5565 /* 5566 * Clean the out-of-order queue to make room. 5567 * We drop high sequences packets to : 5568 * 1) Let a chance for holes to be filled. 5569 * This means we do not drop packets from ooo queue if their sequence 5570 * is before incoming packet sequence. 5571 * 2) not add too big latencies if thousands of packets sit there. 5572 * (But if application shrinks SO_RCVBUF, we could still end up 5573 * freeing whole queue here) 5574 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5575 * 5576 * Return true if queue has shrunk. 5577 */ 5578 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5579 { 5580 struct tcp_sock *tp = tcp_sk(sk); 5581 struct rb_node *node, *prev; 5582 bool pruned = false; 5583 int goal; 5584 5585 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5586 return false; 5587 5588 goal = sk->sk_rcvbuf >> 3; 5589 node = &tp->ooo_last_skb->rbnode; 5590 5591 do { 5592 struct sk_buff *skb = rb_to_skb(node); 5593 5594 /* If incoming skb would land last in ofo queue, stop pruning. */ 5595 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5596 break; 5597 pruned = true; 5598 prev = rb_prev(node); 5599 rb_erase(node, &tp->out_of_order_queue); 5600 goal -= skb->truesize; 5601 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5602 tp->ooo_last_skb = rb_to_skb(prev); 5603 if (!prev || goal <= 0) { 5604 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5605 !tcp_under_memory_pressure(sk)) 5606 break; 5607 goal = sk->sk_rcvbuf >> 3; 5608 } 5609 node = prev; 5610 } while (node); 5611 5612 if (pruned) { 5613 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5614 /* Reset SACK state. A conforming SACK implementation will 5615 * do the same at a timeout based retransmit. When a connection 5616 * is in a sad state like this, we care only about integrity 5617 * of the connection not performance. 5618 */ 5619 if (tp->rx_opt.sack_ok) 5620 tcp_sack_reset(&tp->rx_opt); 5621 } 5622 return pruned; 5623 } 5624 5625 /* Reduce allocated memory if we can, trying to get 5626 * the socket within its memory limits again. 5627 * 5628 * Return less than zero if we should start dropping frames 5629 * until the socket owning process reads some of the data 5630 * to stabilize the situation. 5631 */ 5632 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5633 { 5634 struct tcp_sock *tp = tcp_sk(sk); 5635 5636 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5637 5638 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5639 tcp_clamp_window(sk); 5640 else if (tcp_under_memory_pressure(sk)) 5641 tcp_adjust_rcv_ssthresh(sk); 5642 5643 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5644 return 0; 5645 5646 tcp_collapse_ofo_queue(sk); 5647 if (!skb_queue_empty(&sk->sk_receive_queue)) 5648 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5649 skb_peek(&sk->sk_receive_queue), 5650 NULL, 5651 tp->copied_seq, tp->rcv_nxt); 5652 5653 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5654 return 0; 5655 5656 /* Collapsing did not help, destructive actions follow. 5657 * This must not ever occur. */ 5658 5659 tcp_prune_ofo_queue(sk, in_skb); 5660 5661 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5662 return 0; 5663 5664 /* If we are really being abused, tell the caller to silently 5665 * drop receive data on the floor. It will get retransmitted 5666 * and hopefully then we'll have sufficient space. 5667 */ 5668 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5669 5670 /* Massive buffer overcommit. */ 5671 tp->pred_flags = 0; 5672 return -1; 5673 } 5674 5675 static bool tcp_should_expand_sndbuf(struct sock *sk) 5676 { 5677 const struct tcp_sock *tp = tcp_sk(sk); 5678 5679 /* If the user specified a specific send buffer setting, do 5680 * not modify it. 5681 */ 5682 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5683 return false; 5684 5685 /* If we are under global TCP memory pressure, do not expand. */ 5686 if (tcp_under_memory_pressure(sk)) { 5687 int unused_mem = sk_unused_reserved_mem(sk); 5688 5689 /* Adjust sndbuf according to reserved mem. But make sure 5690 * it never goes below SOCK_MIN_SNDBUF. 5691 * See sk_stream_moderate_sndbuf() for more details. 5692 */ 5693 if (unused_mem > SOCK_MIN_SNDBUF) 5694 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5695 5696 return false; 5697 } 5698 5699 /* If we are under soft global TCP memory pressure, do not expand. */ 5700 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5701 return false; 5702 5703 /* If we filled the congestion window, do not expand. */ 5704 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5705 return false; 5706 5707 return true; 5708 } 5709 5710 static void tcp_new_space(struct sock *sk) 5711 { 5712 struct tcp_sock *tp = tcp_sk(sk); 5713 5714 if (tcp_should_expand_sndbuf(sk)) { 5715 tcp_sndbuf_expand(sk); 5716 tp->snd_cwnd_stamp = tcp_jiffies32; 5717 } 5718 5719 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5720 } 5721 5722 /* Caller made space either from: 5723 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5724 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5725 * 5726 * We might be able to generate EPOLLOUT to the application if: 5727 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5728 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5729 * small enough that tcp_stream_memory_free() decides it 5730 * is time to generate EPOLLOUT. 5731 */ 5732 void tcp_check_space(struct sock *sk) 5733 { 5734 /* pairs with tcp_poll() */ 5735 smp_mb(); 5736 if (sk->sk_socket && 5737 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5738 tcp_new_space(sk); 5739 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5740 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5741 } 5742 } 5743 5744 static inline void tcp_data_snd_check(struct sock *sk) 5745 { 5746 tcp_push_pending_frames(sk); 5747 tcp_check_space(sk); 5748 } 5749 5750 /* 5751 * Check if sending an ack is needed. 5752 */ 5753 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5754 { 5755 struct tcp_sock *tp = tcp_sk(sk); 5756 unsigned long rtt, delay; 5757 5758 /* More than one full frame received... */ 5759 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5760 /* ... and right edge of window advances far enough. 5761 * (tcp_recvmsg() will send ACK otherwise). 5762 * If application uses SO_RCVLOWAT, we want send ack now if 5763 * we have not received enough bytes to satisfy the condition. 5764 */ 5765 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5766 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5767 /* We ACK each frame or... */ 5768 tcp_in_quickack_mode(sk) || 5769 /* Protocol state mandates a one-time immediate ACK */ 5770 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5771 /* If we are running from __release_sock() in user context, 5772 * Defer the ack until tcp_release_cb(). 5773 */ 5774 if (sock_owned_by_user_nocheck(sk) && 5775 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { 5776 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5777 return; 5778 } 5779 send_now: 5780 tcp_send_ack(sk); 5781 return; 5782 } 5783 5784 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5785 tcp_send_delayed_ack(sk); 5786 return; 5787 } 5788 5789 if (!tcp_is_sack(tp) || 5790 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5791 goto send_now; 5792 5793 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5794 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5795 tp->dup_ack_counter = 0; 5796 } 5797 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5798 tp->dup_ack_counter++; 5799 goto send_now; 5800 } 5801 tp->compressed_ack++; 5802 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5803 return; 5804 5805 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5806 5807 rtt = tp->rcv_rtt_est.rtt_us; 5808 if (tp->srtt_us && tp->srtt_us < rtt) 5809 rtt = tp->srtt_us; 5810 5811 delay = min_t(unsigned long, 5812 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5813 rtt * (NSEC_PER_USEC >> 3)/20); 5814 sock_hold(sk); 5815 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5816 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5817 HRTIMER_MODE_REL_PINNED_SOFT); 5818 } 5819 5820 static inline void tcp_ack_snd_check(struct sock *sk) 5821 { 5822 if (!inet_csk_ack_scheduled(sk)) { 5823 /* We sent a data segment already. */ 5824 return; 5825 } 5826 __tcp_ack_snd_check(sk, 1); 5827 } 5828 5829 /* 5830 * This routine is only called when we have urgent data 5831 * signaled. Its the 'slow' part of tcp_urg. It could be 5832 * moved inline now as tcp_urg is only called from one 5833 * place. We handle URGent data wrong. We have to - as 5834 * BSD still doesn't use the correction from RFC961. 5835 * For 1003.1g we should support a new option TCP_STDURG to permit 5836 * either form (or just set the sysctl tcp_stdurg). 5837 */ 5838 5839 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5840 { 5841 struct tcp_sock *tp = tcp_sk(sk); 5842 u32 ptr = ntohs(th->urg_ptr); 5843 5844 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5845 ptr--; 5846 ptr += ntohl(th->seq); 5847 5848 /* Ignore urgent data that we've already seen and read. */ 5849 if (after(tp->copied_seq, ptr)) 5850 return; 5851 5852 /* Do not replay urg ptr. 5853 * 5854 * NOTE: interesting situation not covered by specs. 5855 * Misbehaving sender may send urg ptr, pointing to segment, 5856 * which we already have in ofo queue. We are not able to fetch 5857 * such data and will stay in TCP_URG_NOTYET until will be eaten 5858 * by recvmsg(). Seems, we are not obliged to handle such wicked 5859 * situations. But it is worth to think about possibility of some 5860 * DoSes using some hypothetical application level deadlock. 5861 */ 5862 if (before(ptr, tp->rcv_nxt)) 5863 return; 5864 5865 /* Do we already have a newer (or duplicate) urgent pointer? */ 5866 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5867 return; 5868 5869 /* Tell the world about our new urgent pointer. */ 5870 sk_send_sigurg(sk); 5871 5872 /* We may be adding urgent data when the last byte read was 5873 * urgent. To do this requires some care. We cannot just ignore 5874 * tp->copied_seq since we would read the last urgent byte again 5875 * as data, nor can we alter copied_seq until this data arrives 5876 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5877 * 5878 * NOTE. Double Dutch. Rendering to plain English: author of comment 5879 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5880 * and expect that both A and B disappear from stream. This is _wrong_. 5881 * Though this happens in BSD with high probability, this is occasional. 5882 * Any application relying on this is buggy. Note also, that fix "works" 5883 * only in this artificial test. Insert some normal data between A and B and we will 5884 * decline of BSD again. Verdict: it is better to remove to trap 5885 * buggy users. 5886 */ 5887 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5888 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5889 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5890 tp->copied_seq++; 5891 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5892 __skb_unlink(skb, &sk->sk_receive_queue); 5893 __kfree_skb(skb); 5894 } 5895 } 5896 5897 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5898 WRITE_ONCE(tp->urg_seq, ptr); 5899 5900 /* Disable header prediction. */ 5901 tp->pred_flags = 0; 5902 } 5903 5904 /* This is the 'fast' part of urgent handling. */ 5905 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5906 { 5907 struct tcp_sock *tp = tcp_sk(sk); 5908 5909 /* Check if we get a new urgent pointer - normally not. */ 5910 if (unlikely(th->urg)) 5911 tcp_check_urg(sk, th); 5912 5913 /* Do we wait for any urgent data? - normally not... */ 5914 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5915 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5916 th->syn; 5917 5918 /* Is the urgent pointer pointing into this packet? */ 5919 if (ptr < skb->len) { 5920 u8 tmp; 5921 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5922 BUG(); 5923 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5924 if (!sock_flag(sk, SOCK_DEAD)) 5925 sk->sk_data_ready(sk); 5926 } 5927 } 5928 } 5929 5930 /* Accept RST for rcv_nxt - 1 after a FIN. 5931 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5932 * FIN is sent followed by a RST packet. The RST is sent with the same 5933 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5934 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5935 * ACKs on the closed socket. In addition middleboxes can drop either the 5936 * challenge ACK or a subsequent RST. 5937 */ 5938 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5939 { 5940 const struct tcp_sock *tp = tcp_sk(sk); 5941 5942 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5943 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5944 TCPF_CLOSING)); 5945 } 5946 5947 /* Does PAWS and seqno based validation of an incoming segment, flags will 5948 * play significant role here. 5949 */ 5950 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5951 const struct tcphdr *th, int syn_inerr) 5952 { 5953 struct tcp_sock *tp = tcp_sk(sk); 5954 SKB_DR(reason); 5955 5956 /* RFC1323: H1. Apply PAWS check first. */ 5957 if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) || 5958 !tp->rx_opt.saw_tstamp || 5959 tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW)) 5960 goto step1; 5961 5962 reason = tcp_disordered_ack_check(sk, skb); 5963 if (!reason) 5964 goto step1; 5965 /* Reset is accepted even if it did not pass PAWS. */ 5966 if (th->rst) 5967 goto step1; 5968 if (unlikely(th->syn)) 5969 goto syn_challenge; 5970 5971 /* Old ACK are common, increment PAWS_OLD_ACK 5972 * and do not send a dupack. 5973 */ 5974 if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) { 5975 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK); 5976 goto discard; 5977 } 5978 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5979 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5980 LINUX_MIB_TCPACKSKIPPEDPAWS, 5981 &tp->last_oow_ack_time)) 5982 tcp_send_dupack(sk, skb); 5983 goto discard; 5984 5985 step1: 5986 /* Step 1: check sequence number */ 5987 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5988 if (reason) { 5989 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5990 * (RST) segments are validated by checking their SEQ-fields." 5991 * And page 69: "If an incoming segment is not acceptable, 5992 * an acknowledgment should be sent in reply (unless the RST 5993 * bit is set, if so drop the segment and return)". 5994 */ 5995 if (!th->rst) { 5996 if (th->syn) 5997 goto syn_challenge; 5998 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5999 LINUX_MIB_TCPACKSKIPPEDSEQ, 6000 &tp->last_oow_ack_time)) 6001 tcp_send_dupack(sk, skb); 6002 } else if (tcp_reset_check(sk, skb)) { 6003 goto reset; 6004 } 6005 goto discard; 6006 } 6007 6008 /* Step 2: check RST bit */ 6009 if (th->rst) { 6010 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 6011 * FIN and SACK too if available): 6012 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 6013 * the right-most SACK block, 6014 * then 6015 * RESET the connection 6016 * else 6017 * Send a challenge ACK 6018 */ 6019 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 6020 tcp_reset_check(sk, skb)) 6021 goto reset; 6022 6023 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 6024 struct tcp_sack_block *sp = &tp->selective_acks[0]; 6025 int max_sack = sp[0].end_seq; 6026 int this_sack; 6027 6028 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 6029 ++this_sack) { 6030 max_sack = after(sp[this_sack].end_seq, 6031 max_sack) ? 6032 sp[this_sack].end_seq : max_sack; 6033 } 6034 6035 if (TCP_SKB_CB(skb)->seq == max_sack) 6036 goto reset; 6037 } 6038 6039 /* Disable TFO if RST is out-of-order 6040 * and no data has been received 6041 * for current active TFO socket 6042 */ 6043 if (tp->syn_fastopen && !tp->data_segs_in && 6044 sk->sk_state == TCP_ESTABLISHED) 6045 tcp_fastopen_active_disable(sk); 6046 tcp_send_challenge_ack(sk); 6047 SKB_DR_SET(reason, TCP_RESET); 6048 goto discard; 6049 } 6050 6051 /* step 3: check security and precedence [ignored] */ 6052 6053 /* step 4: Check for a SYN 6054 * RFC 5961 4.2 : Send a challenge ack 6055 */ 6056 if (th->syn) { 6057 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack && 6058 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq && 6059 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt && 6060 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt) 6061 goto pass; 6062 syn_challenge: 6063 if (syn_inerr) 6064 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6065 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 6066 tcp_send_challenge_ack(sk); 6067 SKB_DR_SET(reason, TCP_INVALID_SYN); 6068 goto discard; 6069 } 6070 6071 pass: 6072 bpf_skops_parse_hdr(sk, skb); 6073 6074 return true; 6075 6076 discard: 6077 tcp_drop_reason(sk, skb, reason); 6078 return false; 6079 6080 reset: 6081 tcp_reset(sk, skb); 6082 __kfree_skb(skb); 6083 return false; 6084 } 6085 6086 /* 6087 * TCP receive function for the ESTABLISHED state. 6088 * 6089 * It is split into a fast path and a slow path. The fast path is 6090 * disabled when: 6091 * - A zero window was announced from us - zero window probing 6092 * is only handled properly in the slow path. 6093 * - Out of order segments arrived. 6094 * - Urgent data is expected. 6095 * - There is no buffer space left 6096 * - Unexpected TCP flags/window values/header lengths are received 6097 * (detected by checking the TCP header against pred_flags) 6098 * - Data is sent in both directions. Fast path only supports pure senders 6099 * or pure receivers (this means either the sequence number or the ack 6100 * value must stay constant) 6101 * - Unexpected TCP option. 6102 * 6103 * When these conditions are not satisfied it drops into a standard 6104 * receive procedure patterned after RFC793 to handle all cases. 6105 * The first three cases are guaranteed by proper pred_flags setting, 6106 * the rest is checked inline. Fast processing is turned on in 6107 * tcp_data_queue when everything is OK. 6108 */ 6109 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 6110 { 6111 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 6112 const struct tcphdr *th = (const struct tcphdr *)skb->data; 6113 struct tcp_sock *tp = tcp_sk(sk); 6114 unsigned int len = skb->len; 6115 6116 /* TCP congestion window tracking */ 6117 trace_tcp_probe(sk, skb); 6118 6119 tcp_mstamp_refresh(tp); 6120 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 6121 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 6122 /* 6123 * Header prediction. 6124 * The code loosely follows the one in the famous 6125 * "30 instruction TCP receive" Van Jacobson mail. 6126 * 6127 * Van's trick is to deposit buffers into socket queue 6128 * on a device interrupt, to call tcp_recv function 6129 * on the receive process context and checksum and copy 6130 * the buffer to user space. smart... 6131 * 6132 * Our current scheme is not silly either but we take the 6133 * extra cost of the net_bh soft interrupt processing... 6134 * We do checksum and copy also but from device to kernel. 6135 */ 6136 6137 tp->rx_opt.saw_tstamp = 0; 6138 6139 /* pred_flags is 0xS?10 << 16 + snd_wnd 6140 * if header_prediction is to be made 6141 * 'S' will always be tp->tcp_header_len >> 2 6142 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6143 * turn it off (when there are holes in the receive 6144 * space for instance) 6145 * PSH flag is ignored. 6146 */ 6147 6148 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6149 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6150 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6151 int tcp_header_len = tp->tcp_header_len; 6152 6153 /* Timestamp header prediction: tcp_header_len 6154 * is automatically equal to th->doff*4 due to pred_flags 6155 * match. 6156 */ 6157 6158 /* Check timestamp */ 6159 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6160 /* No? Slow path! */ 6161 if (!tcp_parse_aligned_timestamp(tp, th)) 6162 goto slow_path; 6163 6164 /* If PAWS failed, check it more carefully in slow path */ 6165 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 6166 goto slow_path; 6167 6168 /* DO NOT update ts_recent here, if checksum fails 6169 * and timestamp was corrupted part, it will result 6170 * in a hung connection since we will drop all 6171 * future packets due to the PAWS test. 6172 */ 6173 } 6174 6175 if (len <= tcp_header_len) { 6176 /* Bulk data transfer: sender */ 6177 if (len == tcp_header_len) { 6178 /* Predicted packet is in window by definition. 6179 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6180 * Hence, check seq<=rcv_wup reduces to: 6181 */ 6182 if (tcp_header_len == 6183 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6184 tp->rcv_nxt == tp->rcv_wup) 6185 tcp_store_ts_recent(tp); 6186 6187 /* We know that such packets are checksummed 6188 * on entry. 6189 */ 6190 tcp_ack(sk, skb, 0); 6191 __kfree_skb(skb); 6192 tcp_data_snd_check(sk); 6193 /* When receiving pure ack in fast path, update 6194 * last ts ecr directly instead of calling 6195 * tcp_rcv_rtt_measure_ts() 6196 */ 6197 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6198 return; 6199 } else { /* Header too small */ 6200 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6201 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6202 goto discard; 6203 } 6204 } else { 6205 int eaten = 0; 6206 bool fragstolen = false; 6207 6208 if (tcp_checksum_complete(skb)) 6209 goto csum_error; 6210 6211 if ((int)skb->truesize > sk->sk_forward_alloc) 6212 goto step5; 6213 6214 /* Predicted packet is in window by definition. 6215 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6216 * Hence, check seq<=rcv_wup reduces to: 6217 */ 6218 if (tcp_header_len == 6219 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6220 tp->rcv_nxt == tp->rcv_wup) 6221 tcp_store_ts_recent(tp); 6222 6223 tcp_rcv_rtt_measure_ts(sk, skb); 6224 6225 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6226 6227 /* Bulk data transfer: receiver */ 6228 skb_dst_drop(skb); 6229 __skb_pull(skb, tcp_header_len); 6230 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6231 6232 tcp_event_data_recv(sk, skb); 6233 6234 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6235 /* Well, only one small jumplet in fast path... */ 6236 tcp_ack(sk, skb, FLAG_DATA); 6237 tcp_data_snd_check(sk); 6238 if (!inet_csk_ack_scheduled(sk)) 6239 goto no_ack; 6240 } else { 6241 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6242 } 6243 6244 __tcp_ack_snd_check(sk, 0); 6245 no_ack: 6246 if (eaten) 6247 kfree_skb_partial(skb, fragstolen); 6248 tcp_data_ready(sk); 6249 return; 6250 } 6251 } 6252 6253 slow_path: 6254 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6255 goto csum_error; 6256 6257 if (!th->ack && !th->rst && !th->syn) { 6258 reason = SKB_DROP_REASON_TCP_FLAGS; 6259 goto discard; 6260 } 6261 6262 /* 6263 * Standard slow path. 6264 */ 6265 6266 if (!tcp_validate_incoming(sk, skb, th, 1)) 6267 return; 6268 6269 step5: 6270 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6271 if ((int)reason < 0) { 6272 reason = -reason; 6273 goto discard; 6274 } 6275 tcp_rcv_rtt_measure_ts(sk, skb); 6276 6277 /* Process urgent data. */ 6278 tcp_urg(sk, skb, th); 6279 6280 /* step 7: process the segment text */ 6281 tcp_data_queue(sk, skb); 6282 6283 tcp_data_snd_check(sk); 6284 tcp_ack_snd_check(sk); 6285 return; 6286 6287 csum_error: 6288 reason = SKB_DROP_REASON_TCP_CSUM; 6289 trace_tcp_bad_csum(skb); 6290 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6291 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6292 6293 discard: 6294 tcp_drop_reason(sk, skb, reason); 6295 } 6296 EXPORT_IPV6_MOD(tcp_rcv_established); 6297 6298 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6299 { 6300 struct inet_connection_sock *icsk = inet_csk(sk); 6301 struct tcp_sock *tp = tcp_sk(sk); 6302 6303 tcp_mtup_init(sk); 6304 icsk->icsk_af_ops->rebuild_header(sk); 6305 tcp_init_metrics(sk); 6306 6307 /* Initialize the congestion window to start the transfer. 6308 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6309 * retransmitted. In light of RFC6298 more aggressive 1sec 6310 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6311 * retransmission has occurred. 6312 */ 6313 if (tp->total_retrans > 1 && tp->undo_marker) 6314 tcp_snd_cwnd_set(tp, 1); 6315 else 6316 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6317 tp->snd_cwnd_stamp = tcp_jiffies32; 6318 6319 bpf_skops_established(sk, bpf_op, skb); 6320 /* Initialize congestion control unless BPF initialized it already: */ 6321 if (!icsk->icsk_ca_initialized) 6322 tcp_init_congestion_control(sk); 6323 tcp_init_buffer_space(sk); 6324 } 6325 6326 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6327 { 6328 struct tcp_sock *tp = tcp_sk(sk); 6329 struct inet_connection_sock *icsk = inet_csk(sk); 6330 6331 tcp_ao_finish_connect(sk, skb); 6332 tcp_set_state(sk, TCP_ESTABLISHED); 6333 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6334 6335 if (skb) { 6336 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6337 security_inet_conn_established(sk, skb); 6338 sk_mark_napi_id(sk, skb); 6339 } 6340 6341 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6342 6343 /* Prevent spurious tcp_cwnd_restart() on first data 6344 * packet. 6345 */ 6346 tp->lsndtime = tcp_jiffies32; 6347 6348 if (sock_flag(sk, SOCK_KEEPOPEN)) 6349 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6350 6351 if (!tp->rx_opt.snd_wscale) 6352 __tcp_fast_path_on(tp, tp->snd_wnd); 6353 else 6354 tp->pred_flags = 0; 6355 } 6356 6357 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6358 struct tcp_fastopen_cookie *cookie) 6359 { 6360 struct tcp_sock *tp = tcp_sk(sk); 6361 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6362 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6363 bool syn_drop = false; 6364 6365 if (mss == tp->rx_opt.user_mss) { 6366 struct tcp_options_received opt; 6367 6368 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6369 tcp_clear_options(&opt); 6370 opt.user_mss = opt.mss_clamp = 0; 6371 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6372 mss = opt.mss_clamp; 6373 } 6374 6375 if (!tp->syn_fastopen) { 6376 /* Ignore an unsolicited cookie */ 6377 cookie->len = -1; 6378 } else if (tp->total_retrans) { 6379 /* SYN timed out and the SYN-ACK neither has a cookie nor 6380 * acknowledges data. Presumably the remote received only 6381 * the retransmitted (regular) SYNs: either the original 6382 * SYN-data or the corresponding SYN-ACK was dropped. 6383 */ 6384 syn_drop = (cookie->len < 0 && data); 6385 } else if (cookie->len < 0 && !tp->syn_data) { 6386 /* We requested a cookie but didn't get it. If we did not use 6387 * the (old) exp opt format then try so next time (try_exp=1). 6388 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6389 */ 6390 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6391 } 6392 6393 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6394 6395 if (data) { /* Retransmit unacked data in SYN */ 6396 if (tp->total_retrans) 6397 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6398 else 6399 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6400 skb_rbtree_walk_from(data) 6401 tcp_mark_skb_lost(sk, data); 6402 tcp_non_congestion_loss_retransmit(sk); 6403 NET_INC_STATS(sock_net(sk), 6404 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6405 return true; 6406 } 6407 tp->syn_data_acked = tp->syn_data; 6408 if (tp->syn_data_acked) { 6409 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6410 /* SYN-data is counted as two separate packets in tcp_ack() */ 6411 if (tp->delivered > 1) 6412 --tp->delivered; 6413 } 6414 6415 tcp_fastopen_add_skb(sk, synack); 6416 6417 return false; 6418 } 6419 6420 static void smc_check_reset_syn(struct tcp_sock *tp) 6421 { 6422 #if IS_ENABLED(CONFIG_SMC) 6423 if (static_branch_unlikely(&tcp_have_smc)) { 6424 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6425 tp->syn_smc = 0; 6426 } 6427 #endif 6428 } 6429 6430 static void tcp_try_undo_spurious_syn(struct sock *sk) 6431 { 6432 struct tcp_sock *tp = tcp_sk(sk); 6433 u32 syn_stamp; 6434 6435 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6436 * spurious if the ACK's timestamp option echo value matches the 6437 * original SYN timestamp. 6438 */ 6439 syn_stamp = tp->retrans_stamp; 6440 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6441 syn_stamp == tp->rx_opt.rcv_tsecr) 6442 tp->undo_marker = 0; 6443 } 6444 6445 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6446 const struct tcphdr *th) 6447 { 6448 struct inet_connection_sock *icsk = inet_csk(sk); 6449 struct tcp_sock *tp = tcp_sk(sk); 6450 struct tcp_fastopen_cookie foc = { .len = -1 }; 6451 int saved_clamp = tp->rx_opt.mss_clamp; 6452 bool fastopen_fail; 6453 SKB_DR(reason); 6454 6455 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6456 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6457 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6458 6459 if (th->ack) { 6460 /* rfc793: 6461 * "If the state is SYN-SENT then 6462 * first check the ACK bit 6463 * If the ACK bit is set 6464 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6465 * a reset (unless the RST bit is set, if so drop 6466 * the segment and return)" 6467 */ 6468 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6469 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6470 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6471 if (icsk->icsk_retransmits == 0) 6472 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 6473 TCP_TIMEOUT_MIN, false); 6474 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE); 6475 goto reset_and_undo; 6476 } 6477 6478 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6479 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6480 tcp_time_stamp_ts(tp))) { 6481 NET_INC_STATS(sock_net(sk), 6482 LINUX_MIB_PAWSACTIVEREJECTED); 6483 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6484 goto reset_and_undo; 6485 } 6486 6487 /* Now ACK is acceptable. 6488 * 6489 * "If the RST bit is set 6490 * If the ACK was acceptable then signal the user "error: 6491 * connection reset", drop the segment, enter CLOSED state, 6492 * delete TCB, and return." 6493 */ 6494 6495 if (th->rst) { 6496 tcp_reset(sk, skb); 6497 consume: 6498 __kfree_skb(skb); 6499 return 0; 6500 } 6501 6502 /* rfc793: 6503 * "fifth, if neither of the SYN or RST bits is set then 6504 * drop the segment and return." 6505 * 6506 * See note below! 6507 * --ANK(990513) 6508 */ 6509 if (!th->syn) { 6510 SKB_DR_SET(reason, TCP_FLAGS); 6511 goto discard_and_undo; 6512 } 6513 /* rfc793: 6514 * "If the SYN bit is on ... 6515 * are acceptable then ... 6516 * (our SYN has been ACKed), change the connection 6517 * state to ESTABLISHED..." 6518 */ 6519 6520 tcp_ecn_rcv_synack(tp, th); 6521 6522 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6523 tcp_try_undo_spurious_syn(sk); 6524 tcp_ack(sk, skb, FLAG_SLOWPATH); 6525 6526 /* Ok.. it's good. Set up sequence numbers and 6527 * move to established. 6528 */ 6529 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6530 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6531 6532 /* RFC1323: The window in SYN & SYN/ACK segments is 6533 * never scaled. 6534 */ 6535 tp->snd_wnd = ntohs(th->window); 6536 6537 if (!tp->rx_opt.wscale_ok) { 6538 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6539 WRITE_ONCE(tp->window_clamp, 6540 min(tp->window_clamp, 65535U)); 6541 } 6542 6543 if (tp->rx_opt.saw_tstamp) { 6544 tp->rx_opt.tstamp_ok = 1; 6545 tp->tcp_header_len = 6546 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6547 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6548 tcp_store_ts_recent(tp); 6549 } else { 6550 tp->tcp_header_len = sizeof(struct tcphdr); 6551 } 6552 6553 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6554 tcp_initialize_rcv_mss(sk); 6555 6556 /* Remember, tcp_poll() does not lock socket! 6557 * Change state from SYN-SENT only after copied_seq 6558 * is initialized. */ 6559 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6560 6561 smc_check_reset_syn(tp); 6562 6563 smp_mb(); 6564 6565 tcp_finish_connect(sk, skb); 6566 6567 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6568 tcp_rcv_fastopen_synack(sk, skb, &foc); 6569 6570 if (!sock_flag(sk, SOCK_DEAD)) { 6571 sk->sk_state_change(sk); 6572 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6573 } 6574 if (fastopen_fail) 6575 return -1; 6576 if (sk->sk_write_pending || 6577 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6578 inet_csk_in_pingpong_mode(sk)) { 6579 /* Save one ACK. Data will be ready after 6580 * several ticks, if write_pending is set. 6581 * 6582 * It may be deleted, but with this feature tcpdumps 6583 * look so _wonderfully_ clever, that I was not able 6584 * to stand against the temptation 8) --ANK 6585 */ 6586 inet_csk_schedule_ack(sk); 6587 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6588 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, 6589 TCP_DELACK_MAX, false); 6590 goto consume; 6591 } 6592 tcp_send_ack(sk); 6593 return -1; 6594 } 6595 6596 /* No ACK in the segment */ 6597 6598 if (th->rst) { 6599 /* rfc793: 6600 * "If the RST bit is set 6601 * 6602 * Otherwise (no ACK) drop the segment and return." 6603 */ 6604 SKB_DR_SET(reason, TCP_RESET); 6605 goto discard_and_undo; 6606 } 6607 6608 /* PAWS check. */ 6609 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6610 tcp_paws_reject(&tp->rx_opt, 0)) { 6611 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6612 goto discard_and_undo; 6613 } 6614 if (th->syn) { 6615 /* We see SYN without ACK. It is attempt of 6616 * simultaneous connect with crossed SYNs. 6617 * Particularly, it can be connect to self. 6618 */ 6619 #ifdef CONFIG_TCP_AO 6620 struct tcp_ao_info *ao; 6621 6622 ao = rcu_dereference_protected(tp->ao_info, 6623 lockdep_sock_is_held(sk)); 6624 if (ao) { 6625 WRITE_ONCE(ao->risn, th->seq); 6626 ao->rcv_sne = 0; 6627 } 6628 #endif 6629 tcp_set_state(sk, TCP_SYN_RECV); 6630 6631 if (tp->rx_opt.saw_tstamp) { 6632 tp->rx_opt.tstamp_ok = 1; 6633 tcp_store_ts_recent(tp); 6634 tp->tcp_header_len = 6635 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6636 } else { 6637 tp->tcp_header_len = sizeof(struct tcphdr); 6638 } 6639 6640 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6641 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6642 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6643 6644 /* RFC1323: The window in SYN & SYN/ACK segments is 6645 * never scaled. 6646 */ 6647 tp->snd_wnd = ntohs(th->window); 6648 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6649 tp->max_window = tp->snd_wnd; 6650 6651 tcp_ecn_rcv_syn(tp, th); 6652 6653 tcp_mtup_init(sk); 6654 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6655 tcp_initialize_rcv_mss(sk); 6656 6657 tcp_send_synack(sk); 6658 #if 0 6659 /* Note, we could accept data and URG from this segment. 6660 * There are no obstacles to make this (except that we must 6661 * either change tcp_recvmsg() to prevent it from returning data 6662 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6663 * 6664 * However, if we ignore data in ACKless segments sometimes, 6665 * we have no reasons to accept it sometimes. 6666 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6667 * is not flawless. So, discard packet for sanity. 6668 * Uncomment this return to process the data. 6669 */ 6670 return -1; 6671 #else 6672 goto consume; 6673 #endif 6674 } 6675 /* "fifth, if neither of the SYN or RST bits is set then 6676 * drop the segment and return." 6677 */ 6678 6679 discard_and_undo: 6680 tcp_clear_options(&tp->rx_opt); 6681 tp->rx_opt.mss_clamp = saved_clamp; 6682 tcp_drop_reason(sk, skb, reason); 6683 return 0; 6684 6685 reset_and_undo: 6686 tcp_clear_options(&tp->rx_opt); 6687 tp->rx_opt.mss_clamp = saved_clamp; 6688 /* we can reuse/return @reason to its caller to handle the exception */ 6689 return reason; 6690 } 6691 6692 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6693 { 6694 struct tcp_sock *tp = tcp_sk(sk); 6695 struct request_sock *req; 6696 6697 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6698 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6699 */ 6700 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6701 tcp_try_undo_recovery(sk); 6702 6703 tcp_update_rto_time(tp); 6704 inet_csk(sk)->icsk_retransmits = 0; 6705 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set 6706 * retrans_stamp but don't enter CA_Loss, so in case that happened we 6707 * need to zero retrans_stamp here to prevent spurious 6708 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us 6709 * to enter CA_Recovery then we need to leave retrans_stamp as it was 6710 * set entering CA_Recovery, for correct retransmits_timed_out() and 6711 * undo behavior. 6712 */ 6713 tcp_retrans_stamp_cleanup(sk); 6714 6715 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6716 * we no longer need req so release it. 6717 */ 6718 req = rcu_dereference_protected(tp->fastopen_rsk, 6719 lockdep_sock_is_held(sk)); 6720 reqsk_fastopen_remove(sk, req, false); 6721 6722 /* Re-arm the timer because data may have been sent out. 6723 * This is similar to the regular data transmission case 6724 * when new data has just been ack'ed. 6725 * 6726 * (TFO) - we could try to be more aggressive and 6727 * retransmitting any data sooner based on when they 6728 * are sent out. 6729 */ 6730 tcp_rearm_rto(sk); 6731 } 6732 6733 /* 6734 * This function implements the receiving procedure of RFC 793 for 6735 * all states except ESTABLISHED and TIME_WAIT. 6736 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6737 * address independent. 6738 */ 6739 6740 enum skb_drop_reason 6741 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6742 { 6743 struct tcp_sock *tp = tcp_sk(sk); 6744 struct inet_connection_sock *icsk = inet_csk(sk); 6745 const struct tcphdr *th = tcp_hdr(skb); 6746 struct request_sock *req; 6747 int queued = 0; 6748 SKB_DR(reason); 6749 6750 switch (sk->sk_state) { 6751 case TCP_CLOSE: 6752 SKB_DR_SET(reason, TCP_CLOSE); 6753 goto discard; 6754 6755 case TCP_LISTEN: 6756 if (th->ack) 6757 return SKB_DROP_REASON_TCP_FLAGS; 6758 6759 if (th->rst) { 6760 SKB_DR_SET(reason, TCP_RESET); 6761 goto discard; 6762 } 6763 if (th->syn) { 6764 if (th->fin) { 6765 SKB_DR_SET(reason, TCP_FLAGS); 6766 goto discard; 6767 } 6768 /* It is possible that we process SYN packets from backlog, 6769 * so we need to make sure to disable BH and RCU right there. 6770 */ 6771 rcu_read_lock(); 6772 local_bh_disable(); 6773 icsk->icsk_af_ops->conn_request(sk, skb); 6774 local_bh_enable(); 6775 rcu_read_unlock(); 6776 6777 consume_skb(skb); 6778 return 0; 6779 } 6780 SKB_DR_SET(reason, TCP_FLAGS); 6781 goto discard; 6782 6783 case TCP_SYN_SENT: 6784 tp->rx_opt.saw_tstamp = 0; 6785 tcp_mstamp_refresh(tp); 6786 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6787 if (queued >= 0) 6788 return queued; 6789 6790 /* Do step6 onward by hand. */ 6791 tcp_urg(sk, skb, th); 6792 __kfree_skb(skb); 6793 tcp_data_snd_check(sk); 6794 return 0; 6795 } 6796 6797 tcp_mstamp_refresh(tp); 6798 tp->rx_opt.saw_tstamp = 0; 6799 req = rcu_dereference_protected(tp->fastopen_rsk, 6800 lockdep_sock_is_held(sk)); 6801 if (req) { 6802 bool req_stolen; 6803 6804 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6805 sk->sk_state != TCP_FIN_WAIT1); 6806 6807 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6808 SKB_DR_SET(reason, TCP_FASTOPEN); 6809 goto discard; 6810 } 6811 } 6812 6813 if (!th->ack && !th->rst && !th->syn) { 6814 SKB_DR_SET(reason, TCP_FLAGS); 6815 goto discard; 6816 } 6817 if (!tcp_validate_incoming(sk, skb, th, 0)) 6818 return 0; 6819 6820 /* step 5: check the ACK field */ 6821 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | 6822 FLAG_UPDATE_TS_RECENT | 6823 FLAG_NO_CHALLENGE_ACK); 6824 6825 if ((int)reason <= 0) { 6826 if (sk->sk_state == TCP_SYN_RECV) { 6827 /* send one RST */ 6828 if (!reason) 6829 return SKB_DROP_REASON_TCP_OLD_ACK; 6830 return -reason; 6831 } 6832 /* accept old ack during closing */ 6833 if ((int)reason < 0) { 6834 tcp_send_challenge_ack(sk); 6835 reason = -reason; 6836 goto discard; 6837 } 6838 } 6839 SKB_DR_SET(reason, NOT_SPECIFIED); 6840 switch (sk->sk_state) { 6841 case TCP_SYN_RECV: 6842 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6843 if (!tp->srtt_us) 6844 tcp_synack_rtt_meas(sk, req); 6845 6846 if (req) { 6847 tcp_rcv_synrecv_state_fastopen(sk); 6848 } else { 6849 tcp_try_undo_spurious_syn(sk); 6850 tp->retrans_stamp = 0; 6851 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6852 skb); 6853 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6854 } 6855 tcp_ao_established(sk); 6856 smp_mb(); 6857 tcp_set_state(sk, TCP_ESTABLISHED); 6858 sk->sk_state_change(sk); 6859 6860 /* Note, that this wakeup is only for marginal crossed SYN case. 6861 * Passively open sockets are not waked up, because 6862 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6863 */ 6864 if (sk->sk_socket) 6865 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6866 6867 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6868 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6869 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6870 6871 if (tp->rx_opt.tstamp_ok) 6872 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6873 6874 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6875 tcp_update_pacing_rate(sk); 6876 6877 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6878 tp->lsndtime = tcp_jiffies32; 6879 6880 tcp_initialize_rcv_mss(sk); 6881 tcp_fast_path_on(tp); 6882 if (sk->sk_shutdown & SEND_SHUTDOWN) 6883 tcp_shutdown(sk, SEND_SHUTDOWN); 6884 break; 6885 6886 case TCP_FIN_WAIT1: { 6887 int tmo; 6888 6889 if (req) 6890 tcp_rcv_synrecv_state_fastopen(sk); 6891 6892 if (tp->snd_una != tp->write_seq) 6893 break; 6894 6895 tcp_set_state(sk, TCP_FIN_WAIT2); 6896 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6897 6898 sk_dst_confirm(sk); 6899 6900 if (!sock_flag(sk, SOCK_DEAD)) { 6901 /* Wake up lingering close() */ 6902 sk->sk_state_change(sk); 6903 break; 6904 } 6905 6906 if (READ_ONCE(tp->linger2) < 0) { 6907 tcp_done(sk); 6908 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6909 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6910 } 6911 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6912 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6913 /* Receive out of order FIN after close() */ 6914 if (tp->syn_fastopen && th->fin) 6915 tcp_fastopen_active_disable(sk); 6916 tcp_done(sk); 6917 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6918 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6919 } 6920 6921 tmo = tcp_fin_time(sk); 6922 if (tmo > TCP_TIMEWAIT_LEN) { 6923 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6924 } else if (th->fin || sock_owned_by_user(sk)) { 6925 /* Bad case. We could lose such FIN otherwise. 6926 * It is not a big problem, but it looks confusing 6927 * and not so rare event. We still can lose it now, 6928 * if it spins in bh_lock_sock(), but it is really 6929 * marginal case. 6930 */ 6931 tcp_reset_keepalive_timer(sk, tmo); 6932 } else { 6933 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6934 goto consume; 6935 } 6936 break; 6937 } 6938 6939 case TCP_CLOSING: 6940 if (tp->snd_una == tp->write_seq) { 6941 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6942 goto consume; 6943 } 6944 break; 6945 6946 case TCP_LAST_ACK: 6947 if (tp->snd_una == tp->write_seq) { 6948 tcp_update_metrics(sk); 6949 tcp_done(sk); 6950 goto consume; 6951 } 6952 break; 6953 } 6954 6955 /* step 6: check the URG bit */ 6956 tcp_urg(sk, skb, th); 6957 6958 /* step 7: process the segment text */ 6959 switch (sk->sk_state) { 6960 case TCP_CLOSE_WAIT: 6961 case TCP_CLOSING: 6962 case TCP_LAST_ACK: 6963 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6964 /* If a subflow has been reset, the packet should not 6965 * continue to be processed, drop the packet. 6966 */ 6967 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6968 goto discard; 6969 break; 6970 } 6971 fallthrough; 6972 case TCP_FIN_WAIT1: 6973 case TCP_FIN_WAIT2: 6974 /* RFC 793 says to queue data in these states, 6975 * RFC 1122 says we MUST send a reset. 6976 * BSD 4.4 also does reset. 6977 */ 6978 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6979 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6980 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6981 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6982 tcp_reset(sk, skb); 6983 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6984 } 6985 } 6986 fallthrough; 6987 case TCP_ESTABLISHED: 6988 tcp_data_queue(sk, skb); 6989 queued = 1; 6990 break; 6991 } 6992 6993 /* tcp_data could move socket to TIME-WAIT */ 6994 if (sk->sk_state != TCP_CLOSE) { 6995 tcp_data_snd_check(sk); 6996 tcp_ack_snd_check(sk); 6997 } 6998 6999 if (!queued) { 7000 discard: 7001 tcp_drop_reason(sk, skb, reason); 7002 } 7003 return 0; 7004 7005 consume: 7006 __kfree_skb(skb); 7007 return 0; 7008 } 7009 EXPORT_IPV6_MOD(tcp_rcv_state_process); 7010 7011 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 7012 { 7013 struct inet_request_sock *ireq = inet_rsk(req); 7014 7015 if (family == AF_INET) 7016 net_dbg_ratelimited("drop open request from %pI4/%u\n", 7017 &ireq->ir_rmt_addr, port); 7018 #if IS_ENABLED(CONFIG_IPV6) 7019 else if (family == AF_INET6) 7020 net_dbg_ratelimited("drop open request from %pI6/%u\n", 7021 &ireq->ir_v6_rmt_addr, port); 7022 #endif 7023 } 7024 7025 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 7026 * 7027 * If we receive a SYN packet with these bits set, it means a 7028 * network is playing bad games with TOS bits. In order to 7029 * avoid possible false congestion notifications, we disable 7030 * TCP ECN negotiation. 7031 * 7032 * Exception: tcp_ca wants ECN. This is required for DCTCP 7033 * congestion control: Linux DCTCP asserts ECT on all packets, 7034 * including SYN, which is most optimal solution; however, 7035 * others, such as FreeBSD do not. 7036 * 7037 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 7038 * set, indicating the use of a future TCP extension (such as AccECN). See 7039 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 7040 * extensions. 7041 */ 7042 static void tcp_ecn_create_request(struct request_sock *req, 7043 const struct sk_buff *skb, 7044 const struct sock *listen_sk, 7045 const struct dst_entry *dst) 7046 { 7047 const struct tcphdr *th = tcp_hdr(skb); 7048 const struct net *net = sock_net(listen_sk); 7049 bool th_ecn = th->ece && th->cwr; 7050 bool ect, ecn_ok; 7051 u32 ecn_ok_dst; 7052 7053 if (!th_ecn) 7054 return; 7055 7056 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 7057 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 7058 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 7059 7060 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 7061 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 7062 tcp_bpf_ca_needs_ecn((struct sock *)req)) 7063 inet_rsk(req)->ecn_ok = 1; 7064 } 7065 7066 static void tcp_openreq_init(struct request_sock *req, 7067 const struct tcp_options_received *rx_opt, 7068 struct sk_buff *skb, const struct sock *sk) 7069 { 7070 struct inet_request_sock *ireq = inet_rsk(req); 7071 7072 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 7073 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 7074 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 7075 tcp_rsk(req)->snt_synack = 0; 7076 tcp_rsk(req)->last_oow_ack_time = 0; 7077 req->mss = rx_opt->mss_clamp; 7078 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 7079 ireq->tstamp_ok = rx_opt->tstamp_ok; 7080 ireq->sack_ok = rx_opt->sack_ok; 7081 ireq->snd_wscale = rx_opt->snd_wscale; 7082 ireq->wscale_ok = rx_opt->wscale_ok; 7083 ireq->acked = 0; 7084 ireq->ecn_ok = 0; 7085 ireq->ir_rmt_port = tcp_hdr(skb)->source; 7086 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 7087 ireq->ir_mark = inet_request_mark(sk, skb); 7088 #if IS_ENABLED(CONFIG_SMC) 7089 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 7090 tcp_sk(sk)->smc_hs_congested(sk)); 7091 #endif 7092 } 7093 7094 /* 7095 * Return true if a syncookie should be sent 7096 */ 7097 static bool tcp_syn_flood_action(struct sock *sk, const char *proto) 7098 { 7099 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 7100 const char *msg = "Dropping request"; 7101 struct net *net = sock_net(sk); 7102 bool want_cookie = false; 7103 u8 syncookies; 7104 7105 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7106 7107 #ifdef CONFIG_SYN_COOKIES 7108 if (syncookies) { 7109 msg = "Sending cookies"; 7110 want_cookie = true; 7111 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 7112 } else 7113 #endif 7114 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 7115 7116 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 7117 xchg(&queue->synflood_warned, 1) == 0) { 7118 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 7119 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 7120 proto, inet6_rcv_saddr(sk), 7121 sk->sk_num, msg); 7122 } else { 7123 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7124 proto, &sk->sk_rcv_saddr, 7125 sk->sk_num, msg); 7126 } 7127 } 7128 7129 return want_cookie; 7130 } 7131 7132 static void tcp_reqsk_record_syn(const struct sock *sk, 7133 struct request_sock *req, 7134 const struct sk_buff *skb) 7135 { 7136 if (tcp_sk(sk)->save_syn) { 7137 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7138 struct saved_syn *saved_syn; 7139 u32 mac_hdrlen; 7140 void *base; 7141 7142 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7143 base = skb_mac_header(skb); 7144 mac_hdrlen = skb_mac_header_len(skb); 7145 len += mac_hdrlen; 7146 } else { 7147 base = skb_network_header(skb); 7148 mac_hdrlen = 0; 7149 } 7150 7151 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7152 GFP_ATOMIC); 7153 if (saved_syn) { 7154 saved_syn->mac_hdrlen = mac_hdrlen; 7155 saved_syn->network_hdrlen = skb_network_header_len(skb); 7156 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7157 memcpy(saved_syn->data, base, len); 7158 req->saved_syn = saved_syn; 7159 } 7160 } 7161 } 7162 7163 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7164 * used for SYN cookie generation. 7165 */ 7166 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7167 const struct tcp_request_sock_ops *af_ops, 7168 struct sock *sk, struct tcphdr *th) 7169 { 7170 struct tcp_sock *tp = tcp_sk(sk); 7171 u16 mss; 7172 7173 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7174 !inet_csk_reqsk_queue_is_full(sk)) 7175 return 0; 7176 7177 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7178 return 0; 7179 7180 if (sk_acceptq_is_full(sk)) { 7181 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7182 return 0; 7183 } 7184 7185 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7186 if (!mss) 7187 mss = af_ops->mss_clamp; 7188 7189 return mss; 7190 } 7191 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss); 7192 7193 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7194 const struct tcp_request_sock_ops *af_ops, 7195 struct sock *sk, struct sk_buff *skb) 7196 { 7197 struct tcp_fastopen_cookie foc = { .len = -1 }; 7198 struct tcp_options_received tmp_opt; 7199 struct tcp_sock *tp = tcp_sk(sk); 7200 struct net *net = sock_net(sk); 7201 struct sock *fastopen_sk = NULL; 7202 struct request_sock *req; 7203 bool want_cookie = false; 7204 struct dst_entry *dst; 7205 struct flowi fl; 7206 u8 syncookies; 7207 u32 isn; 7208 7209 #ifdef CONFIG_TCP_AO 7210 const struct tcp_ao_hdr *aoh; 7211 #endif 7212 7213 isn = __this_cpu_read(tcp_tw_isn); 7214 if (isn) { 7215 /* TW buckets are converted to open requests without 7216 * limitations, they conserve resources and peer is 7217 * evidently real one. 7218 */ 7219 __this_cpu_write(tcp_tw_isn, 0); 7220 } else { 7221 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7222 7223 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) { 7224 want_cookie = tcp_syn_flood_action(sk, 7225 rsk_ops->slab_name); 7226 if (!want_cookie) 7227 goto drop; 7228 } 7229 } 7230 7231 if (sk_acceptq_is_full(sk)) { 7232 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7233 goto drop; 7234 } 7235 7236 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7237 if (!req) 7238 goto drop; 7239 7240 req->syncookie = want_cookie; 7241 tcp_rsk(req)->af_specific = af_ops; 7242 tcp_rsk(req)->ts_off = 0; 7243 tcp_rsk(req)->req_usec_ts = false; 7244 #if IS_ENABLED(CONFIG_MPTCP) 7245 tcp_rsk(req)->is_mptcp = 0; 7246 #endif 7247 7248 tcp_clear_options(&tmp_opt); 7249 tmp_opt.mss_clamp = af_ops->mss_clamp; 7250 tmp_opt.user_mss = tp->rx_opt.user_mss; 7251 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7252 want_cookie ? NULL : &foc); 7253 7254 if (want_cookie && !tmp_opt.saw_tstamp) 7255 tcp_clear_options(&tmp_opt); 7256 7257 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7258 tmp_opt.smc_ok = 0; 7259 7260 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7261 tcp_openreq_init(req, &tmp_opt, skb, sk); 7262 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7263 7264 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7265 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7266 7267 dst = af_ops->route_req(sk, skb, &fl, req, isn); 7268 if (!dst) 7269 goto drop_and_free; 7270 7271 if (tmp_opt.tstamp_ok) { 7272 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 7273 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7274 } 7275 if (!want_cookie && !isn) { 7276 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7277 7278 /* Kill the following clause, if you dislike this way. */ 7279 if (!syncookies && 7280 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7281 (max_syn_backlog >> 2)) && 7282 !tcp_peer_is_proven(req, dst)) { 7283 /* Without syncookies last quarter of 7284 * backlog is filled with destinations, 7285 * proven to be alive. 7286 * It means that we continue to communicate 7287 * to destinations, already remembered 7288 * to the moment of synflood. 7289 */ 7290 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7291 rsk_ops->family); 7292 goto drop_and_release; 7293 } 7294 7295 isn = af_ops->init_seq(skb); 7296 } 7297 7298 tcp_ecn_create_request(req, skb, sk, dst); 7299 7300 if (want_cookie) { 7301 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7302 if (!tmp_opt.tstamp_ok) 7303 inet_rsk(req)->ecn_ok = 0; 7304 } 7305 7306 #ifdef CONFIG_TCP_AO 7307 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 7308 goto drop_and_release; /* Invalid TCP options */ 7309 if (aoh) { 7310 tcp_rsk(req)->used_tcp_ao = true; 7311 tcp_rsk(req)->ao_rcv_next = aoh->keyid; 7312 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid; 7313 7314 } else { 7315 tcp_rsk(req)->used_tcp_ao = false; 7316 } 7317 #endif 7318 tcp_rsk(req)->snt_isn = isn; 7319 tcp_rsk(req)->txhash = net_tx_rndhash(); 7320 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7321 tcp_openreq_init_rwin(req, sk, dst); 7322 sk_rx_queue_set(req_to_sk(req), skb); 7323 if (!want_cookie) { 7324 tcp_reqsk_record_syn(sk, req, skb); 7325 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7326 } 7327 if (fastopen_sk) { 7328 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7329 &foc, TCP_SYNACK_FASTOPEN, skb); 7330 /* Add the child socket directly into the accept queue */ 7331 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7332 reqsk_fastopen_remove(fastopen_sk, req, false); 7333 bh_unlock_sock(fastopen_sk); 7334 sock_put(fastopen_sk); 7335 goto drop_and_free; 7336 } 7337 sk->sk_data_ready(sk); 7338 bh_unlock_sock(fastopen_sk); 7339 sock_put(fastopen_sk); 7340 } else { 7341 tcp_rsk(req)->tfo_listener = false; 7342 if (!want_cookie) { 7343 req->timeout = tcp_timeout_init((struct sock *)req); 7344 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req, 7345 req->timeout))) { 7346 reqsk_free(req); 7347 dst_release(dst); 7348 return 0; 7349 } 7350 7351 } 7352 af_ops->send_synack(sk, dst, &fl, req, &foc, 7353 !want_cookie ? TCP_SYNACK_NORMAL : 7354 TCP_SYNACK_COOKIE, 7355 skb); 7356 if (want_cookie) { 7357 reqsk_free(req); 7358 return 0; 7359 } 7360 } 7361 reqsk_put(req); 7362 return 0; 7363 7364 drop_and_release: 7365 dst_release(dst); 7366 drop_and_free: 7367 __reqsk_free(req); 7368 drop: 7369 tcp_listendrop(sk); 7370 return 0; 7371 } 7372 EXPORT_IPV6_MOD(tcp_conn_request); 7373