1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <linux/bitops.h> 74 #include <net/dst.h> 75 #include <net/tcp.h> 76 #include <net/tcp_ecn.h> 77 #include <net/proto_memory.h> 78 #include <net/inet_common.h> 79 #include <linux/ipsec.h> 80 #include <linux/unaligned.h> 81 #include <linux/errqueue.h> 82 #include <trace/events/tcp.h> 83 #include <linux/jump_label_ratelimit.h> 84 #include <net/busy_poll.h> 85 #include <net/mptcp.h> 86 87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 88 89 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 90 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 91 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 92 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 93 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 94 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 95 #define FLAG_ECE 0x40 /* ECE in this ACK */ 96 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 97 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 98 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 99 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 100 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 101 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 102 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 103 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 104 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 105 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 106 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 107 #define FLAG_TS_PROGRESS 0x40000 /* Positive timestamp delta */ 108 109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 113 114 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 115 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 116 117 #define REXMIT_NONE 0 /* no loss recovery to do */ 118 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 119 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 120 121 #if IS_ENABLED(CONFIG_TLS_DEVICE) 122 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 123 124 void clean_acked_data_enable(struct tcp_sock *tp, 125 void (*cad)(struct sock *sk, u32 ack_seq)) 126 { 127 tp->tcp_clean_acked = cad; 128 static_branch_deferred_inc(&clean_acked_data_enabled); 129 } 130 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 131 132 void clean_acked_data_disable(struct tcp_sock *tp) 133 { 134 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 135 tp->tcp_clean_acked = NULL; 136 } 137 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 138 139 void clean_acked_data_flush(void) 140 { 141 static_key_deferred_flush(&clean_acked_data_enabled); 142 } 143 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 144 #endif 145 146 #ifdef CONFIG_CGROUP_BPF 147 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 148 { 149 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 150 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 151 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 152 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 153 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 154 struct bpf_sock_ops_kern sock_ops; 155 156 if (likely(!unknown_opt && !parse_all_opt)) 157 return; 158 159 /* The skb will be handled in the 160 * bpf_skops_established() or 161 * bpf_skops_write_hdr_opt(). 162 */ 163 switch (sk->sk_state) { 164 case TCP_SYN_RECV: 165 case TCP_SYN_SENT: 166 case TCP_LISTEN: 167 return; 168 } 169 170 sock_owned_by_me(sk); 171 172 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 173 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 174 sock_ops.is_fullsock = 1; 175 sock_ops.is_locked_tcp_sock = 1; 176 sock_ops.sk = sk; 177 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 178 179 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 180 } 181 182 static void bpf_skops_established(struct sock *sk, int bpf_op, 183 struct sk_buff *skb) 184 { 185 struct bpf_sock_ops_kern sock_ops; 186 187 sock_owned_by_me(sk); 188 189 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 190 sock_ops.op = bpf_op; 191 sock_ops.is_fullsock = 1; 192 sock_ops.is_locked_tcp_sock = 1; 193 sock_ops.sk = sk; 194 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 195 if (skb) 196 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 197 198 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 199 } 200 #else 201 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 202 { 203 } 204 205 static void bpf_skops_established(struct sock *sk, int bpf_op, 206 struct sk_buff *skb) 207 { 208 } 209 #endif 210 211 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb, 212 unsigned int len) 213 { 214 struct net_device *dev; 215 216 rcu_read_lock(); 217 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 218 if (!dev || len >= READ_ONCE(dev->mtu)) 219 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 220 dev ? dev->name : "Unknown driver"); 221 rcu_read_unlock(); 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 /* Note: divides are still a bit expensive. 241 * For the moment, only adjust scaling_ratio 242 * when we update icsk_ack.rcv_mss. 243 */ 244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 246 u8 old_ratio = tcp_sk(sk)->scaling_ratio; 247 248 do_div(val, skb->truesize); 249 tcp_sk(sk)->scaling_ratio = val ? val : 1; 250 251 if (old_ratio != tcp_sk(sk)->scaling_ratio) { 252 struct tcp_sock *tp = tcp_sk(sk); 253 254 val = tcp_win_from_space(sk, sk->sk_rcvbuf); 255 tcp_set_window_clamp(sk, val); 256 257 if (tp->window_clamp < tp->rcvq_space.space) 258 tp->rcvq_space.space = tp->window_clamp; 259 } 260 } 261 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 262 tcp_sk(sk)->advmss); 263 /* Account for possibly-removed options */ 264 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE, 265 tcp_gro_dev_warn, sk, skb, len); 266 /* If the skb has a len of exactly 1*MSS and has the PSH bit 267 * set then it is likely the end of an application write. So 268 * more data may not be arriving soon, and yet the data sender 269 * may be waiting for an ACK if cwnd-bound or using TX zero 270 * copy. So we set ICSK_ACK_PUSHED here so that 271 * tcp_cleanup_rbuf() will send an ACK immediately if the app 272 * reads all of the data and is not ping-pong. If len > MSS 273 * then this logic does not matter (and does not hurt) because 274 * tcp_cleanup_rbuf() will always ACK immediately if the app 275 * reads data and there is more than an MSS of unACKed data. 276 */ 277 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 278 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 279 } else { 280 /* Otherwise, we make more careful check taking into account, 281 * that SACKs block is variable. 282 * 283 * "len" is invariant segment length, including TCP header. 284 */ 285 len += skb->data - skb_transport_header(skb); 286 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 287 /* If PSH is not set, packet should be 288 * full sized, provided peer TCP is not badly broken. 289 * This observation (if it is correct 8)) allows 290 * to handle super-low mtu links fairly. 291 */ 292 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 293 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 294 /* Subtract also invariant (if peer is RFC compliant), 295 * tcp header plus fixed timestamp option length. 296 * Resulting "len" is MSS free of SACK jitter. 297 */ 298 len -= tcp_sk(sk)->tcp_header_len; 299 icsk->icsk_ack.last_seg_size = len; 300 if (len == lss) { 301 icsk->icsk_ack.rcv_mss = len; 302 return; 303 } 304 } 305 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 306 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 307 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 308 } 309 } 310 311 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 312 { 313 struct inet_connection_sock *icsk = inet_csk(sk); 314 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 315 316 if (quickacks == 0) 317 quickacks = 2; 318 quickacks = min(quickacks, max_quickacks); 319 if (quickacks > icsk->icsk_ack.quick) 320 icsk->icsk_ack.quick = quickacks; 321 } 322 323 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 324 { 325 struct inet_connection_sock *icsk = inet_csk(sk); 326 327 tcp_incr_quickack(sk, max_quickacks); 328 inet_csk_exit_pingpong_mode(sk); 329 icsk->icsk_ack.ato = TCP_ATO_MIN; 330 } 331 332 /* Send ACKs quickly, if "quick" count is not exhausted 333 * and the session is not interactive. 334 */ 335 336 static bool tcp_in_quickack_mode(struct sock *sk) 337 { 338 const struct inet_connection_sock *icsk = inet_csk(sk); 339 340 return icsk->icsk_ack.dst_quick_ack || 341 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 342 } 343 344 static void tcp_data_ecn_check(struct sock *sk, const struct sk_buff *skb) 345 { 346 struct tcp_sock *tp = tcp_sk(sk); 347 348 if (tcp_ecn_disabled(tp)) 349 return; 350 351 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 352 case INET_ECN_NOT_ECT: 353 /* Funny extension: if ECT is not set on a segment, 354 * and we already seen ECT on a previous segment, 355 * it is probably a retransmit. 356 */ 357 if (tp->ecn_flags & TCP_ECN_SEEN) 358 tcp_enter_quickack_mode(sk, 2); 359 break; 360 case INET_ECN_CE: 361 if (tcp_ca_needs_ecn(sk)) 362 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 363 364 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR) && 365 tcp_ecn_mode_rfc3168(tp)) { 366 /* Better not delay acks, sender can have a very low cwnd */ 367 tcp_enter_quickack_mode(sk, 2); 368 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 369 } 370 /* As for RFC3168 ECN, the TCP_ECN_SEEN flag is set by 371 * tcp_data_ecn_check() when the ECN codepoint of 372 * received TCP data contains ECT(0), ECT(1), or CE. 373 */ 374 if (!tcp_ecn_mode_rfc3168(tp)) 375 break; 376 tp->ecn_flags |= TCP_ECN_SEEN; 377 break; 378 default: 379 if (tcp_ca_needs_ecn(sk)) 380 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 381 if (!tcp_ecn_mode_rfc3168(tp)) 382 break; 383 tp->ecn_flags |= TCP_ECN_SEEN; 384 break; 385 } 386 } 387 388 /* Returns true if the byte counters can be used */ 389 static bool tcp_accecn_process_option(struct tcp_sock *tp, 390 const struct sk_buff *skb, 391 u32 delivered_bytes, int flag) 392 { 393 u8 estimate_ecnfield = tp->est_ecnfield; 394 bool ambiguous_ecn_bytes_incr = false; 395 bool first_changed = false; 396 unsigned int optlen; 397 bool order1, res; 398 unsigned int i; 399 u8 *ptr; 400 401 if (tcp_accecn_opt_fail_recv(tp)) 402 return false; 403 404 if (!(flag & FLAG_SLOWPATH) || !tp->rx_opt.accecn) { 405 if (!tp->saw_accecn_opt) { 406 /* Too late to enable after this point due to 407 * potential counter wraps 408 */ 409 if (tp->bytes_sent >= (1 << 23) - 1) { 410 u8 saw_opt = TCP_ACCECN_OPT_FAIL_SEEN; 411 412 tcp_accecn_saw_opt_fail_recv(tp, saw_opt); 413 } 414 return false; 415 } 416 417 if (estimate_ecnfield) { 418 u8 ecnfield = estimate_ecnfield - 1; 419 420 tp->delivered_ecn_bytes[ecnfield] += delivered_bytes; 421 return true; 422 } 423 return false; 424 } 425 426 ptr = skb_transport_header(skb) + tp->rx_opt.accecn; 427 optlen = ptr[1] - 2; 428 if (WARN_ON_ONCE(ptr[0] != TCPOPT_ACCECN0 && ptr[0] != TCPOPT_ACCECN1)) 429 return false; 430 order1 = (ptr[0] == TCPOPT_ACCECN1); 431 ptr += 2; 432 433 if (tp->saw_accecn_opt < TCP_ACCECN_OPT_COUNTER_SEEN) { 434 tp->saw_accecn_opt = tcp_accecn_option_init(skb, 435 tp->rx_opt.accecn); 436 if (tp->saw_accecn_opt == TCP_ACCECN_OPT_FAIL_SEEN) 437 tcp_accecn_fail_mode_set(tp, TCP_ACCECN_OPT_FAIL_RECV); 438 } 439 440 res = !!estimate_ecnfield; 441 for (i = 0; i < 3; i++) { 442 u32 init_offset; 443 u8 ecnfield; 444 s32 delta; 445 u32 *cnt; 446 447 if (optlen < TCPOLEN_ACCECN_PERFIELD) 448 break; 449 450 ecnfield = tcp_accecn_optfield_to_ecnfield(i, order1); 451 init_offset = tcp_accecn_field_init_offset(ecnfield); 452 cnt = &tp->delivered_ecn_bytes[ecnfield - 1]; 453 delta = tcp_update_ecn_bytes(cnt, ptr, init_offset); 454 if (delta && delta < 0) { 455 res = false; 456 ambiguous_ecn_bytes_incr = true; 457 } 458 if (delta && ecnfield != estimate_ecnfield) { 459 if (!first_changed) { 460 tp->est_ecnfield = ecnfield; 461 first_changed = true; 462 } else { 463 res = false; 464 ambiguous_ecn_bytes_incr = true; 465 } 466 } 467 468 optlen -= TCPOLEN_ACCECN_PERFIELD; 469 ptr += TCPOLEN_ACCECN_PERFIELD; 470 } 471 if (ambiguous_ecn_bytes_incr) 472 tp->est_ecnfield = 0; 473 474 return res; 475 } 476 477 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count) 478 { 479 tp->delivered_ce += ecn_count; 480 } 481 482 /* Updates the delivered and delivered_ce counts */ 483 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 484 bool ece_ack) 485 { 486 tp->delivered += delivered; 487 if (tcp_ecn_mode_rfc3168(tp) && ece_ack) 488 tcp_count_delivered_ce(tp, delivered); 489 } 490 491 /* Returns the ECN CE delta */ 492 static u32 __tcp_accecn_process(struct sock *sk, const struct sk_buff *skb, 493 u32 delivered_pkts, u32 delivered_bytes, 494 int flag) 495 { 496 u32 old_ceb = tcp_sk(sk)->delivered_ecn_bytes[INET_ECN_CE - 1]; 497 const struct tcphdr *th = tcp_hdr(skb); 498 struct tcp_sock *tp = tcp_sk(sk); 499 u32 delta, safe_delta, d_ceb; 500 bool opt_deltas_valid; 501 u32 corrected_ace; 502 503 /* Reordered ACK or uncertain due to lack of data to send and ts */ 504 if (!(flag & (FLAG_FORWARD_PROGRESS | FLAG_TS_PROGRESS))) 505 return 0; 506 507 opt_deltas_valid = tcp_accecn_process_option(tp, skb, 508 delivered_bytes, flag); 509 510 if (!(flag & FLAG_SLOWPATH)) { 511 /* AccECN counter might overflow on large ACKs */ 512 if (delivered_pkts <= TCP_ACCECN_CEP_ACE_MASK) 513 return 0; 514 } 515 516 /* ACE field is not available during handshake */ 517 if (flag & FLAG_SYN_ACKED) 518 return 0; 519 520 if (tp->received_ce_pending >= TCP_ACCECN_ACE_MAX_DELTA) 521 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 522 523 corrected_ace = tcp_accecn_ace(th) - TCP_ACCECN_CEP_INIT_OFFSET; 524 delta = (corrected_ace - tp->delivered_ce) & TCP_ACCECN_CEP_ACE_MASK; 525 if (delivered_pkts <= TCP_ACCECN_CEP_ACE_MASK) 526 return delta; 527 528 safe_delta = delivered_pkts - 529 ((delivered_pkts - delta) & TCP_ACCECN_CEP_ACE_MASK); 530 531 if (opt_deltas_valid) { 532 d_ceb = tp->delivered_ecn_bytes[INET_ECN_CE - 1] - old_ceb; 533 if (!d_ceb) 534 return delta; 535 536 if ((delivered_pkts >= (TCP_ACCECN_CEP_ACE_MASK + 1) * 2) && 537 (tcp_is_sack(tp) || 538 ((1 << inet_csk(sk)->icsk_ca_state) & 539 (TCPF_CA_Open | TCPF_CA_CWR)))) { 540 u32 est_d_cep; 541 542 if (delivered_bytes <= d_ceb) 543 return safe_delta; 544 545 est_d_cep = DIV_ROUND_UP_ULL((u64)d_ceb * 546 delivered_pkts, 547 delivered_bytes); 548 return min(safe_delta, 549 delta + 550 (est_d_cep & ~TCP_ACCECN_CEP_ACE_MASK)); 551 } 552 553 if (d_ceb > delta * tp->mss_cache) 554 return safe_delta; 555 if (d_ceb < 556 safe_delta * tp->mss_cache >> TCP_ACCECN_SAFETY_SHIFT) 557 return delta; 558 } 559 560 return safe_delta; 561 } 562 563 static u32 tcp_accecn_process(struct sock *sk, const struct sk_buff *skb, 564 u32 delivered_pkts, u32 delivered_bytes, 565 int *flag) 566 { 567 struct tcp_sock *tp = tcp_sk(sk); 568 u32 delta; 569 570 delta = __tcp_accecn_process(sk, skb, delivered_pkts, 571 delivered_bytes, *flag); 572 if (delta > 0) { 573 tcp_count_delivered_ce(tp, delta); 574 *flag |= FLAG_ECE; 575 /* Recalculate header predictor */ 576 if (tp->pred_flags) 577 tcp_fast_path_on(tp); 578 } 579 return delta; 580 } 581 582 /* Buffer size and advertised window tuning. 583 * 584 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 585 */ 586 587 static void tcp_sndbuf_expand(struct sock *sk) 588 { 589 const struct tcp_sock *tp = tcp_sk(sk); 590 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 591 int sndmem, per_mss; 592 u32 nr_segs; 593 594 /* Worst case is non GSO/TSO : each frame consumes one skb 595 * and skb->head is kmalloced using power of two area of memory 596 */ 597 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 598 MAX_TCP_HEADER + 599 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 600 601 per_mss = roundup_pow_of_two(per_mss) + 602 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 603 604 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 605 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 606 607 /* Fast Recovery (RFC 5681 3.2) : 608 * Cubic needs 1.7 factor, rounded to 2 to include 609 * extra cushion (application might react slowly to EPOLLOUT) 610 */ 611 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 612 sndmem *= nr_segs * per_mss; 613 614 if (sk->sk_sndbuf < sndmem) 615 WRITE_ONCE(sk->sk_sndbuf, 616 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 617 } 618 619 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 620 * 621 * All tcp_full_space() is split to two parts: "network" buffer, allocated 622 * forward and advertised in receiver window (tp->rcv_wnd) and 623 * "application buffer", required to isolate scheduling/application 624 * latencies from network. 625 * window_clamp is maximal advertised window. It can be less than 626 * tcp_full_space(), in this case tcp_full_space() - window_clamp 627 * is reserved for "application" buffer. The less window_clamp is 628 * the smoother our behaviour from viewpoint of network, but the lower 629 * throughput and the higher sensitivity of the connection to losses. 8) 630 * 631 * rcv_ssthresh is more strict window_clamp used at "slow start" 632 * phase to predict further behaviour of this connection. 633 * It is used for two goals: 634 * - to enforce header prediction at sender, even when application 635 * requires some significant "application buffer". It is check #1. 636 * - to prevent pruning of receive queue because of misprediction 637 * of receiver window. Check #2. 638 * 639 * The scheme does not work when sender sends good segments opening 640 * window and then starts to feed us spaghetti. But it should work 641 * in common situations. Otherwise, we have to rely on queue collapsing. 642 */ 643 644 /* Slow part of check#2. */ 645 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 646 unsigned int skbtruesize) 647 { 648 const struct tcp_sock *tp = tcp_sk(sk); 649 /* Optimize this! */ 650 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 651 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 652 653 while (tp->rcv_ssthresh <= window) { 654 if (truesize <= skb->len) 655 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 656 657 truesize >>= 1; 658 window >>= 1; 659 } 660 return 0; 661 } 662 663 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 664 * can play nice with us, as sk_buff and skb->head might be either 665 * freed or shared with up to MAX_SKB_FRAGS segments. 666 * Only give a boost to drivers using page frag(s) to hold the frame(s), 667 * and if no payload was pulled in skb->head before reaching us. 668 */ 669 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 670 { 671 u32 truesize = skb->truesize; 672 673 if (adjust && !skb_headlen(skb)) { 674 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 675 /* paranoid check, some drivers might be buggy */ 676 if (unlikely((int)truesize < (int)skb->len)) 677 truesize = skb->truesize; 678 } 679 return truesize; 680 } 681 682 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 683 bool adjust) 684 { 685 struct tcp_sock *tp = tcp_sk(sk); 686 int room; 687 688 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 689 690 if (room <= 0) 691 return; 692 693 /* Check #1 */ 694 if (!tcp_under_memory_pressure(sk)) { 695 unsigned int truesize = truesize_adjust(adjust, skb); 696 int incr; 697 698 /* Check #2. Increase window, if skb with such overhead 699 * will fit to rcvbuf in future. 700 */ 701 if (tcp_win_from_space(sk, truesize) <= skb->len) 702 incr = 2 * tp->advmss; 703 else 704 incr = __tcp_grow_window(sk, skb, truesize); 705 706 if (incr) { 707 incr = max_t(int, incr, 2 * skb->len); 708 tp->rcv_ssthresh += min(room, incr); 709 inet_csk(sk)->icsk_ack.quick |= 1; 710 } 711 } else { 712 /* Under pressure: 713 * Adjust rcv_ssthresh according to reserved mem 714 */ 715 tcp_adjust_rcv_ssthresh(sk); 716 } 717 } 718 719 /* 3. Try to fixup all. It is made immediately after connection enters 720 * established state. 721 */ 722 static void tcp_init_buffer_space(struct sock *sk) 723 { 724 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 725 struct tcp_sock *tp = tcp_sk(sk); 726 int maxwin; 727 728 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 729 tcp_sndbuf_expand(sk); 730 731 tcp_mstamp_refresh(tp); 732 tp->rcvq_space.time = tp->tcp_mstamp; 733 tp->rcvq_space.seq = tp->copied_seq; 734 735 maxwin = tcp_full_space(sk); 736 737 if (tp->window_clamp >= maxwin) { 738 WRITE_ONCE(tp->window_clamp, maxwin); 739 740 if (tcp_app_win && maxwin > 4 * tp->advmss) 741 WRITE_ONCE(tp->window_clamp, 742 max(maxwin - (maxwin >> tcp_app_win), 743 4 * tp->advmss)); 744 } 745 746 /* Force reservation of one segment. */ 747 if (tcp_app_win && 748 tp->window_clamp > 2 * tp->advmss && 749 tp->window_clamp + tp->advmss > maxwin) 750 WRITE_ONCE(tp->window_clamp, 751 max(2 * tp->advmss, maxwin - tp->advmss)); 752 753 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 754 tp->snd_cwnd_stamp = tcp_jiffies32; 755 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 756 (u32)TCP_INIT_CWND * tp->advmss); 757 } 758 759 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 760 static void tcp_clamp_window(struct sock *sk) 761 { 762 struct tcp_sock *tp = tcp_sk(sk); 763 struct inet_connection_sock *icsk = inet_csk(sk); 764 struct net *net = sock_net(sk); 765 int rmem2; 766 767 icsk->icsk_ack.quick = 0; 768 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 769 770 if (sk->sk_rcvbuf < rmem2 && 771 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 772 !tcp_under_memory_pressure(sk) && 773 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 774 WRITE_ONCE(sk->sk_rcvbuf, 775 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 776 } 777 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 778 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 779 } 780 781 /* Initialize RCV_MSS value. 782 * RCV_MSS is an our guess about MSS used by the peer. 783 * We haven't any direct information about the MSS. 784 * It's better to underestimate the RCV_MSS rather than overestimate. 785 * Overestimations make us ACKing less frequently than needed. 786 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 787 */ 788 void tcp_initialize_rcv_mss(struct sock *sk) 789 { 790 const struct tcp_sock *tp = tcp_sk(sk); 791 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 792 793 hint = min(hint, tp->rcv_wnd / 2); 794 hint = min(hint, TCP_MSS_DEFAULT); 795 hint = max(hint, TCP_MIN_MSS); 796 797 inet_csk(sk)->icsk_ack.rcv_mss = hint; 798 } 799 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss); 800 801 /* Receiver "autotuning" code. 802 * 803 * The algorithm for RTT estimation w/o timestamps is based on 804 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 805 * <https://public.lanl.gov/radiant/pubs.html#DRS> 806 * 807 * More detail on this code can be found at 808 * <http://staff.psc.edu/jheffner/>, 809 * though this reference is out of date. A new paper 810 * is pending. 811 */ 812 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 813 { 814 u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us; 815 long m = sample << 3; 816 817 if (old_sample == 0 || m < old_sample) { 818 new_sample = m; 819 } else { 820 /* If we sample in larger samples in the non-timestamp 821 * case, we could grossly overestimate the RTT especially 822 * with chatty applications or bulk transfer apps which 823 * are stalled on filesystem I/O. 824 * 825 * Also, since we are only going for a minimum in the 826 * non-timestamp case, we do not smooth things out 827 * else with timestamps disabled convergence takes too 828 * long. 829 */ 830 if (win_dep) 831 return; 832 /* Do not use this sample if receive queue is not empty. */ 833 if (tp->rcv_nxt != tp->copied_seq) 834 return; 835 new_sample = old_sample - (old_sample >> 3) + sample; 836 } 837 838 tp->rcv_rtt_est.rtt_us = new_sample; 839 } 840 841 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 842 { 843 u32 delta_us; 844 845 if (tp->rcv_rtt_est.time == 0) 846 goto new_measure; 847 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 848 return; 849 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 850 if (!delta_us) 851 delta_us = 1; 852 tcp_rcv_rtt_update(tp, delta_us, 1); 853 854 new_measure: 855 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 856 tp->rcv_rtt_est.time = tp->tcp_mstamp; 857 } 858 859 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp, u32 min_delta) 860 { 861 u32 delta, delta_us; 862 863 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; 864 if (tp->tcp_usec_ts) 865 return delta; 866 867 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 868 if (!delta) 869 delta = min_delta; 870 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 871 return delta_us; 872 } 873 return -1; 874 } 875 876 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 877 const struct sk_buff *skb) 878 { 879 struct tcp_sock *tp = tcp_sk(sk); 880 881 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 882 return; 883 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 884 885 if (TCP_SKB_CB(skb)->end_seq - 886 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 887 s32 delta = tcp_rtt_tsopt_us(tp, 0); 888 889 if (delta > 0) 890 tcp_rcv_rtt_update(tp, delta, 0); 891 } 892 } 893 894 void tcp_rcvbuf_grow(struct sock *sk, u32 newval) 895 { 896 const struct net *net = sock_net(sk); 897 struct tcp_sock *tp = tcp_sk(sk); 898 u32 rcvwin, rcvbuf, cap, oldval; 899 u32 rtt_threshold, rtt_us; 900 u64 grow; 901 902 oldval = tp->rcvq_space.space; 903 tp->rcvq_space.space = newval; 904 905 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 906 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 907 return; 908 909 /* DRS is always one RTT late. */ 910 rcvwin = newval << 1; 911 912 rtt_us = tp->rcv_rtt_est.rtt_us >> 3; 913 rtt_threshold = READ_ONCE(net->ipv4.sysctl_tcp_rcvbuf_low_rtt); 914 if (rtt_us < rtt_threshold) { 915 /* For small RTT, we set @grow to rcvwin * rtt_us/rtt_threshold. 916 * It might take few additional ms to reach 'line rate', 917 * but will avoid sk_rcvbuf inflation and poor cache use. 918 */ 919 grow = div_u64((u64)rcvwin * rtt_us, rtt_threshold); 920 } else { 921 /* slow start: allow the sender to double its rate. */ 922 grow = div_u64(((u64)rcvwin << 1) * (newval - oldval), oldval); 923 } 924 rcvwin += grow; 925 926 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) 927 rcvwin += TCP_SKB_CB(tp->ooo_last_skb)->end_seq - tp->rcv_nxt; 928 929 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 930 931 rcvbuf = min_t(u32, tcp_space_from_win(sk, rcvwin), cap); 932 if (rcvbuf > sk->sk_rcvbuf) { 933 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 934 /* Make the window clamp follow along. */ 935 WRITE_ONCE(tp->window_clamp, 936 tcp_win_from_space(sk, rcvbuf)); 937 } 938 } 939 /* 940 * This function should be called every time data is copied to user space. 941 * It calculates the appropriate TCP receive buffer space. 942 */ 943 void tcp_rcv_space_adjust(struct sock *sk) 944 { 945 struct tcp_sock *tp = tcp_sk(sk); 946 int time, inq, copied; 947 948 trace_tcp_rcv_space_adjust(sk); 949 950 if (unlikely(!tp->rcv_rtt_est.rtt_us)) 951 return; 952 953 /* We do not refresh tp->tcp_mstamp here. 954 * Some platforms have expensive ktime_get() implementations. 955 * Using the last cached value is enough for DRS. 956 */ 957 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 958 if (time < (tp->rcv_rtt_est.rtt_us >> 3)) 959 return; 960 961 /* Number of bytes copied to user in last RTT */ 962 copied = tp->copied_seq - tp->rcvq_space.seq; 963 /* Number of bytes in receive queue. */ 964 inq = tp->rcv_nxt - tp->copied_seq; 965 copied -= inq; 966 if (copied <= tp->rcvq_space.space) 967 goto new_measure; 968 969 trace_tcp_rcvbuf_grow(sk, time); 970 971 tcp_rcvbuf_grow(sk, copied); 972 973 new_measure: 974 tp->rcvq_space.seq = tp->copied_seq; 975 tp->rcvq_space.time = tp->tcp_mstamp; 976 } 977 978 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 979 { 980 #if IS_ENABLED(CONFIG_IPV6) 981 struct inet_connection_sock *icsk = inet_csk(sk); 982 983 if (skb->protocol == htons(ETH_P_IPV6)) 984 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 985 #endif 986 } 987 988 /* There is something which you must keep in mind when you analyze the 989 * behavior of the tp->ato delayed ack timeout interval. When a 990 * connection starts up, we want to ack as quickly as possible. The 991 * problem is that "good" TCP's do slow start at the beginning of data 992 * transmission. The means that until we send the first few ACK's the 993 * sender will sit on his end and only queue most of his data, because 994 * he can only send snd_cwnd unacked packets at any given time. For 995 * each ACK we send, he increments snd_cwnd and transmits more of his 996 * queue. -DaveM 997 */ 998 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 999 { 1000 struct tcp_sock *tp = tcp_sk(sk); 1001 struct inet_connection_sock *icsk = inet_csk(sk); 1002 u32 now; 1003 1004 inet_csk_schedule_ack(sk); 1005 1006 tcp_measure_rcv_mss(sk, skb); 1007 1008 tcp_rcv_rtt_measure(tp); 1009 1010 now = tcp_jiffies32; 1011 1012 if (!icsk->icsk_ack.ato) { 1013 /* The _first_ data packet received, initialize 1014 * delayed ACK engine. 1015 */ 1016 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 1017 icsk->icsk_ack.ato = TCP_ATO_MIN; 1018 } else { 1019 int m = now - icsk->icsk_ack.lrcvtime; 1020 1021 if (m <= TCP_ATO_MIN / 2) { 1022 /* The fastest case is the first. */ 1023 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 1024 } else if (m < icsk->icsk_ack.ato) { 1025 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 1026 if (icsk->icsk_ack.ato > icsk->icsk_rto) 1027 icsk->icsk_ack.ato = icsk->icsk_rto; 1028 } else if (m > icsk->icsk_rto) { 1029 /* Too long gap. Apparently sender failed to 1030 * restart window, so that we send ACKs quickly. 1031 */ 1032 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 1033 } 1034 } 1035 icsk->icsk_ack.lrcvtime = now; 1036 tcp_save_lrcv_flowlabel(sk, skb); 1037 1038 tcp_data_ecn_check(sk, skb); 1039 1040 if (skb->len >= 128) 1041 tcp_grow_window(sk, skb, true); 1042 } 1043 1044 /* Called to compute a smoothed rtt estimate. The data fed to this 1045 * routine either comes from timestamps, or from segments that were 1046 * known _not_ to have been retransmitted [see Karn/Partridge 1047 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 1048 * piece by Van Jacobson. 1049 * NOTE: the next three routines used to be one big routine. 1050 * To save cycles in the RFC 1323 implementation it was better to break 1051 * it up into three procedures. -- erics 1052 */ 1053 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 1054 { 1055 struct tcp_sock *tp = tcp_sk(sk); 1056 long m = mrtt_us; /* RTT */ 1057 u32 srtt = tp->srtt_us; 1058 1059 /* The following amusing code comes from Jacobson's 1060 * article in SIGCOMM '88. Note that rtt and mdev 1061 * are scaled versions of rtt and mean deviation. 1062 * This is designed to be as fast as possible 1063 * m stands for "measurement". 1064 * 1065 * On a 1990 paper the rto value is changed to: 1066 * RTO = rtt + 4 * mdev 1067 * 1068 * Funny. This algorithm seems to be very broken. 1069 * These formulae increase RTO, when it should be decreased, increase 1070 * too slowly, when it should be increased quickly, decrease too quickly 1071 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 1072 * does not matter how to _calculate_ it. Seems, it was trap 1073 * that VJ failed to avoid. 8) 1074 */ 1075 if (srtt != 0) { 1076 m -= (srtt >> 3); /* m is now error in rtt est */ 1077 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 1078 if (m < 0) { 1079 m = -m; /* m is now abs(error) */ 1080 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 1081 /* This is similar to one of Eifel findings. 1082 * Eifel blocks mdev updates when rtt decreases. 1083 * This solution is a bit different: we use finer gain 1084 * for mdev in this case (alpha*beta). 1085 * Like Eifel it also prevents growth of rto, 1086 * but also it limits too fast rto decreases, 1087 * happening in pure Eifel. 1088 */ 1089 if (m > 0) 1090 m >>= 3; 1091 } else { 1092 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 1093 } 1094 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 1095 if (tp->mdev_us > tp->mdev_max_us) { 1096 tp->mdev_max_us = tp->mdev_us; 1097 if (tp->mdev_max_us > tp->rttvar_us) 1098 tp->rttvar_us = tp->mdev_max_us; 1099 } 1100 if (after(tp->snd_una, tp->rtt_seq)) { 1101 if (tp->mdev_max_us < tp->rttvar_us) 1102 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 1103 tp->rtt_seq = tp->snd_nxt; 1104 tp->mdev_max_us = tcp_rto_min_us(sk); 1105 1106 tcp_bpf_rtt(sk, mrtt_us, srtt); 1107 } 1108 } else { 1109 /* no previous measure. */ 1110 srtt = m << 3; /* take the measured time to be rtt */ 1111 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 1112 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 1113 tp->mdev_max_us = tp->rttvar_us; 1114 tp->rtt_seq = tp->snd_nxt; 1115 1116 tcp_bpf_rtt(sk, mrtt_us, srtt); 1117 } 1118 tp->srtt_us = max(1U, srtt); 1119 } 1120 1121 void tcp_update_pacing_rate(struct sock *sk) 1122 { 1123 const struct tcp_sock *tp = tcp_sk(sk); 1124 u64 rate; 1125 1126 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 1127 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 1128 1129 /* current rate is (cwnd * mss) / srtt 1130 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 1131 * In Congestion Avoidance phase, set it to 120 % the current rate. 1132 * 1133 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 1134 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 1135 * end of slow start and should slow down. 1136 */ 1137 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 1138 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 1139 else 1140 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 1141 1142 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 1143 1144 if (likely(tp->srtt_us)) 1145 do_div(rate, tp->srtt_us); 1146 1147 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 1148 * without any lock. We want to make sure compiler wont store 1149 * intermediate values in this location. 1150 */ 1151 WRITE_ONCE(sk->sk_pacing_rate, 1152 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 1153 } 1154 1155 /* Calculate rto without backoff. This is the second half of Van Jacobson's 1156 * routine referred to above. 1157 */ 1158 void tcp_set_rto(struct sock *sk) 1159 { 1160 const struct tcp_sock *tp = tcp_sk(sk); 1161 /* Old crap is replaced with new one. 8) 1162 * 1163 * More seriously: 1164 * 1. If rtt variance happened to be less 50msec, it is hallucination. 1165 * It cannot be less due to utterly erratic ACK generation made 1166 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 1167 * to do with delayed acks, because at cwnd>2 true delack timeout 1168 * is invisible. Actually, Linux-2.4 also generates erratic 1169 * ACKs in some circumstances. 1170 */ 1171 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 1172 1173 /* 2. Fixups made earlier cannot be right. 1174 * If we do not estimate RTO correctly without them, 1175 * all the algo is pure shit and should be replaced 1176 * with correct one. It is exactly, which we pretend to do. 1177 */ 1178 1179 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 1180 * guarantees that rto is higher. 1181 */ 1182 tcp_bound_rto(sk); 1183 } 1184 1185 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 1186 { 1187 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 1188 1189 if (!cwnd) 1190 cwnd = TCP_INIT_CWND; 1191 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 1192 } 1193 1194 struct tcp_sacktag_state { 1195 /* Timestamps for earliest and latest never-retransmitted segment 1196 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1197 * but congestion control should still get an accurate delay signal. 1198 */ 1199 u64 first_sackt; 1200 u64 last_sackt; 1201 u32 reord; 1202 u32 sack_delivered; 1203 u32 delivered_bytes; 1204 int flag; 1205 unsigned int mss_now; 1206 struct rate_sample *rate; 1207 }; 1208 1209 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1210 * and spurious retransmission information if this DSACK is unlikely caused by 1211 * sender's action: 1212 * - DSACKed sequence range is larger than maximum receiver's window. 1213 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1214 */ 1215 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1216 u32 end_seq, struct tcp_sacktag_state *state) 1217 { 1218 u32 seq_len, dup_segs = 1; 1219 1220 if (!before(start_seq, end_seq)) 1221 return 0; 1222 1223 seq_len = end_seq - start_seq; 1224 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1225 if (seq_len > tp->max_window) 1226 return 0; 1227 if (seq_len > tp->mss_cache) 1228 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1229 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1230 state->flag |= FLAG_DSACK_TLP; 1231 1232 tp->dsack_dups += dup_segs; 1233 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1234 if (tp->dsack_dups > tp->total_retrans) 1235 return 0; 1236 1237 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1238 /* We increase the RACK ordering window in rounds where we receive 1239 * DSACKs that may have been due to reordering causing RACK to trigger 1240 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1241 * without having seen reordering, or that match TLP probes (TLP 1242 * is timer-driven, not triggered by RACK). 1243 */ 1244 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1245 tp->rack.dsack_seen = 1; 1246 1247 state->flag |= FLAG_DSACKING_ACK; 1248 /* A spurious retransmission is delivered */ 1249 state->sack_delivered += dup_segs; 1250 1251 return dup_segs; 1252 } 1253 1254 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1255 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1256 * distance is approximated in full-mss packet distance ("reordering"). 1257 */ 1258 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1259 const int ts) 1260 { 1261 struct tcp_sock *tp = tcp_sk(sk); 1262 const u32 mss = tp->mss_cache; 1263 u32 fack, metric; 1264 1265 fack = tcp_highest_sack_seq(tp); 1266 if (!before(low_seq, fack)) 1267 return; 1268 1269 metric = fack - low_seq; 1270 if ((metric > tp->reordering * mss) && mss) { 1271 #if FASTRETRANS_DEBUG > 1 1272 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1273 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1274 tp->reordering, 1275 0, 1276 tp->sacked_out, 1277 tp->undo_marker ? tp->undo_retrans : 0); 1278 #endif 1279 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1280 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1281 } 1282 1283 /* This exciting event is worth to be remembered. 8) */ 1284 tp->reord_seen++; 1285 NET_INC_STATS(sock_net(sk), 1286 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1287 } 1288 1289 /* This must be called before lost_out or retrans_out are updated 1290 * on a new loss, because we want to know if all skbs previously 1291 * known to be lost have already been retransmitted, indicating 1292 * that this newly lost skb is our next skb to retransmit. 1293 */ 1294 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1295 { 1296 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1297 (tp->retransmit_skb_hint && 1298 before(TCP_SKB_CB(skb)->seq, 1299 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1300 tp->retransmit_skb_hint = skb; 1301 } 1302 1303 /* Sum the number of packets on the wire we have marked as lost, and 1304 * notify the congestion control module that the given skb was marked lost. 1305 */ 1306 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1307 { 1308 tp->lost += tcp_skb_pcount(skb); 1309 } 1310 1311 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1312 { 1313 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1314 struct tcp_sock *tp = tcp_sk(sk); 1315 1316 if (sacked & TCPCB_SACKED_ACKED) 1317 return; 1318 1319 tcp_verify_retransmit_hint(tp, skb); 1320 if (sacked & TCPCB_LOST) { 1321 if (sacked & TCPCB_SACKED_RETRANS) { 1322 /* Account for retransmits that are lost again */ 1323 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1324 tp->retrans_out -= tcp_skb_pcount(skb); 1325 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1326 tcp_skb_pcount(skb)); 1327 tcp_notify_skb_loss_event(tp, skb); 1328 } 1329 } else { 1330 tp->lost_out += tcp_skb_pcount(skb); 1331 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1332 tcp_notify_skb_loss_event(tp, skb); 1333 } 1334 } 1335 1336 /* This procedure tags the retransmission queue when SACKs arrive. 1337 * 1338 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1339 * Packets in queue with these bits set are counted in variables 1340 * sacked_out, retrans_out and lost_out, correspondingly. 1341 * 1342 * Valid combinations are: 1343 * Tag InFlight Description 1344 * 0 1 - orig segment is in flight. 1345 * S 0 - nothing flies, orig reached receiver. 1346 * L 0 - nothing flies, orig lost by net. 1347 * R 2 - both orig and retransmit are in flight. 1348 * L|R 1 - orig is lost, retransmit is in flight. 1349 * S|R 1 - orig reached receiver, retrans is still in flight. 1350 * (L|S|R is logically valid, it could occur when L|R is sacked, 1351 * but it is equivalent to plain S and code short-circuits it to S. 1352 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1353 * 1354 * These 6 states form finite state machine, controlled by the following events: 1355 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1356 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1357 * 3. Loss detection event of two flavors: 1358 * A. Scoreboard estimator decided the packet is lost. 1359 * A'. Reno "three dupacks" marks head of queue lost. 1360 * B. SACK arrives sacking SND.NXT at the moment, when the 1361 * segment was retransmitted. 1362 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1363 * 1364 * It is pleasant to note, that state diagram turns out to be commutative, 1365 * so that we are allowed not to be bothered by order of our actions, 1366 * when multiple events arrive simultaneously. (see the function below). 1367 * 1368 * Reordering detection. 1369 * -------------------- 1370 * Reordering metric is maximal distance, which a packet can be displaced 1371 * in packet stream. With SACKs we can estimate it: 1372 * 1373 * 1. SACK fills old hole and the corresponding segment was not 1374 * ever retransmitted -> reordering. Alas, we cannot use it 1375 * when segment was retransmitted. 1376 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1377 * for retransmitted and already SACKed segment -> reordering.. 1378 * Both of these heuristics are not used in Loss state, when we cannot 1379 * account for retransmits accurately. 1380 * 1381 * SACK block validation. 1382 * ---------------------- 1383 * 1384 * SACK block range validation checks that the received SACK block fits to 1385 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1386 * Note that SND.UNA is not included to the range though being valid because 1387 * it means that the receiver is rather inconsistent with itself reporting 1388 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1389 * perfectly valid, however, in light of RFC2018 which explicitly states 1390 * that "SACK block MUST reflect the newest segment. Even if the newest 1391 * segment is going to be discarded ...", not that it looks very clever 1392 * in case of head skb. Due to potentional receiver driven attacks, we 1393 * choose to avoid immediate execution of a walk in write queue due to 1394 * reneging and defer head skb's loss recovery to standard loss recovery 1395 * procedure that will eventually trigger (nothing forbids us doing this). 1396 * 1397 * Implements also blockage to start_seq wrap-around. Problem lies in the 1398 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1399 * there's no guarantee that it will be before snd_nxt (n). The problem 1400 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1401 * wrap (s_w): 1402 * 1403 * <- outs wnd -> <- wrapzone -> 1404 * u e n u_w e_w s n_w 1405 * | | | | | | | 1406 * |<------------+------+----- TCP seqno space --------------+---------->| 1407 * ...-- <2^31 ->| |<--------... 1408 * ...---- >2^31 ------>| |<--------... 1409 * 1410 * Current code wouldn't be vulnerable but it's better still to discard such 1411 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1412 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1413 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1414 * equal to the ideal case (infinite seqno space without wrap caused issues). 1415 * 1416 * With D-SACK the lower bound is extended to cover sequence space below 1417 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1418 * again, D-SACK block must not to go across snd_una (for the same reason as 1419 * for the normal SACK blocks, explained above). But there all simplicity 1420 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1421 * fully below undo_marker they do not affect behavior in anyway and can 1422 * therefore be safely ignored. In rare cases (which are more or less 1423 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1424 * fragmentation and packet reordering past skb's retransmission. To consider 1425 * them correctly, the acceptable range must be extended even more though 1426 * the exact amount is rather hard to quantify. However, tp->max_window can 1427 * be used as an exaggerated estimate. 1428 */ 1429 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1430 u32 start_seq, u32 end_seq) 1431 { 1432 /* Too far in future, or reversed (interpretation is ambiguous) */ 1433 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1434 return false; 1435 1436 /* Nasty start_seq wrap-around check (see comments above) */ 1437 if (!before(start_seq, tp->snd_nxt)) 1438 return false; 1439 1440 /* In outstanding window? ...This is valid exit for D-SACKs too. 1441 * start_seq == snd_una is non-sensical (see comments above) 1442 */ 1443 if (after(start_seq, tp->snd_una)) 1444 return true; 1445 1446 if (!is_dsack || !tp->undo_marker) 1447 return false; 1448 1449 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1450 if (after(end_seq, tp->snd_una)) 1451 return false; 1452 1453 if (!before(start_seq, tp->undo_marker)) 1454 return true; 1455 1456 /* Too old */ 1457 if (!after(end_seq, tp->undo_marker)) 1458 return false; 1459 1460 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1461 * start_seq < undo_marker and end_seq >= undo_marker. 1462 */ 1463 return !before(start_seq, end_seq - tp->max_window); 1464 } 1465 1466 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1467 struct tcp_sack_block_wire *sp, int num_sacks, 1468 u32 prior_snd_una, struct tcp_sacktag_state *state) 1469 { 1470 struct tcp_sock *tp = tcp_sk(sk); 1471 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1472 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1473 u32 dup_segs; 1474 1475 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1476 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1477 } else if (num_sacks > 1) { 1478 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1479 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1480 1481 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1482 return false; 1483 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1484 } else { 1485 return false; 1486 } 1487 1488 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1489 if (!dup_segs) { /* Skip dubious DSACK */ 1490 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1491 return false; 1492 } 1493 1494 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1495 1496 /* D-SACK for already forgotten data... Do dumb counting. */ 1497 if (tp->undo_marker && tp->undo_retrans > 0 && 1498 !after(end_seq_0, prior_snd_una) && 1499 after(end_seq_0, tp->undo_marker)) 1500 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1501 1502 return true; 1503 } 1504 1505 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1506 * the incoming SACK may not exactly match but we can find smaller MSS 1507 * aligned portion of it that matches. Therefore we might need to fragment 1508 * which may fail and creates some hassle (caller must handle error case 1509 * returns). 1510 * 1511 * FIXME: this could be merged to shift decision code 1512 */ 1513 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1514 u32 start_seq, u32 end_seq) 1515 { 1516 int err; 1517 bool in_sack; 1518 unsigned int pkt_len; 1519 unsigned int mss; 1520 1521 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1522 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1523 1524 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1525 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1526 mss = tcp_skb_mss(skb); 1527 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1528 1529 if (!in_sack) { 1530 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1531 if (pkt_len < mss) 1532 pkt_len = mss; 1533 } else { 1534 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1535 if (pkt_len < mss) 1536 return -EINVAL; 1537 } 1538 1539 /* Round if necessary so that SACKs cover only full MSSes 1540 * and/or the remaining small portion (if present) 1541 */ 1542 if (pkt_len > mss) { 1543 unsigned int new_len = (pkt_len / mss) * mss; 1544 if (!in_sack && new_len < pkt_len) 1545 new_len += mss; 1546 pkt_len = new_len; 1547 } 1548 1549 if (pkt_len >= skb->len && !in_sack) 1550 return 0; 1551 1552 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1553 pkt_len, mss, GFP_ATOMIC); 1554 if (err < 0) 1555 return err; 1556 } 1557 1558 return in_sack; 1559 } 1560 1561 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1562 static u8 tcp_sacktag_one(struct sock *sk, 1563 struct tcp_sacktag_state *state, u8 sacked, 1564 u32 start_seq, u32 end_seq, 1565 int dup_sack, int pcount, u32 plen, 1566 u64 xmit_time) 1567 { 1568 struct tcp_sock *tp = tcp_sk(sk); 1569 1570 /* Account D-SACK for retransmitted packet. */ 1571 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1572 if (tp->undo_marker && tp->undo_retrans > 0 && 1573 after(end_seq, tp->undo_marker)) 1574 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1575 if ((sacked & TCPCB_SACKED_ACKED) && 1576 before(start_seq, state->reord)) 1577 state->reord = start_seq; 1578 } 1579 1580 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1581 if (!after(end_seq, tp->snd_una)) 1582 return sacked; 1583 1584 if (!(sacked & TCPCB_SACKED_ACKED)) { 1585 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1586 1587 if (sacked & TCPCB_SACKED_RETRANS) { 1588 /* If the segment is not tagged as lost, 1589 * we do not clear RETRANS, believing 1590 * that retransmission is still in flight. 1591 */ 1592 if (sacked & TCPCB_LOST) { 1593 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1594 tp->lost_out -= pcount; 1595 tp->retrans_out -= pcount; 1596 } 1597 } else { 1598 if (!(sacked & TCPCB_RETRANS)) { 1599 /* New sack for not retransmitted frame, 1600 * which was in hole. It is reordering. 1601 */ 1602 if (before(start_seq, 1603 tcp_highest_sack_seq(tp)) && 1604 before(start_seq, state->reord)) 1605 state->reord = start_seq; 1606 1607 if (!after(end_seq, tp->high_seq)) 1608 state->flag |= FLAG_ORIG_SACK_ACKED; 1609 if (state->first_sackt == 0) 1610 state->first_sackt = xmit_time; 1611 state->last_sackt = xmit_time; 1612 } 1613 1614 if (sacked & TCPCB_LOST) { 1615 sacked &= ~TCPCB_LOST; 1616 tp->lost_out -= pcount; 1617 } 1618 } 1619 1620 sacked |= TCPCB_SACKED_ACKED; 1621 state->flag |= FLAG_DATA_SACKED; 1622 tp->sacked_out += pcount; 1623 /* Out-of-order packets delivered */ 1624 state->sack_delivered += pcount; 1625 state->delivered_bytes += plen; 1626 } 1627 1628 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1629 * frames and clear it. undo_retrans is decreased above, L|R frames 1630 * are accounted above as well. 1631 */ 1632 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1633 sacked &= ~TCPCB_SACKED_RETRANS; 1634 tp->retrans_out -= pcount; 1635 } 1636 1637 return sacked; 1638 } 1639 1640 /* When an skb is sacked or acked, we fill in the rate sample with the (prior) 1641 * delivery information when the skb was last transmitted. 1642 * 1643 * If an ACK (s)acks multiple skbs (e.g., stretched-acks), this function is 1644 * called multiple times. We favor the information from the most recently 1645 * sent skb, i.e., the skb with the most recently sent time and the highest 1646 * sequence. 1647 */ 1648 static void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1649 struct rate_sample *rs) 1650 { 1651 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 1652 struct tcp_sock *tp = tcp_sk(sk); 1653 u64 tx_tstamp; 1654 1655 if (!scb->tx.delivered_mstamp) 1656 return; 1657 1658 tx_tstamp = tcp_skb_timestamp_us(skb); 1659 if (!rs->prior_delivered || 1660 tcp_skb_sent_after(tx_tstamp, tp->first_tx_mstamp, 1661 scb->end_seq, rs->last_end_seq)) { 1662 rs->prior_delivered_ce = scb->tx.delivered_ce; 1663 rs->prior_delivered = scb->tx.delivered; 1664 rs->prior_mstamp = scb->tx.delivered_mstamp; 1665 rs->is_app_limited = scb->tx.is_app_limited; 1666 rs->is_retrans = scb->sacked & TCPCB_RETRANS; 1667 rs->last_end_seq = scb->end_seq; 1668 1669 /* Record send time of most recently ACKed packet: */ 1670 tp->first_tx_mstamp = tx_tstamp; 1671 /* Find the duration of the "send phase" of this window: */ 1672 rs->interval_us = tcp_stamp_us_delta(tp->first_tx_mstamp, 1673 scb->tx.first_tx_mstamp); 1674 1675 } 1676 /* Mark off the skb delivered once it's sacked to avoid being 1677 * used again when it's cumulatively acked. For acked packets 1678 * we don't need to reset since it'll be freed soon. 1679 */ 1680 if (scb->sacked & TCPCB_SACKED_ACKED) 1681 scb->tx.delivered_mstamp = 0; 1682 } 1683 1684 /* Shift newly-SACKed bytes from this skb to the immediately previous 1685 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1686 */ 1687 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1688 struct sk_buff *skb, 1689 struct tcp_sacktag_state *state, 1690 unsigned int pcount, int shifted, int mss, 1691 bool dup_sack) 1692 { 1693 struct tcp_sock *tp = tcp_sk(sk); 1694 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1695 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1696 1697 BUG_ON(!pcount); 1698 1699 /* Adjust counters and hints for the newly sacked sequence 1700 * range but discard the return value since prev is already 1701 * marked. We must tag the range first because the seq 1702 * advancement below implicitly advances 1703 * tcp_highest_sack_seq() when skb is highest_sack. 1704 */ 1705 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1706 start_seq, end_seq, dup_sack, pcount, skb->len, 1707 tcp_skb_timestamp_us(skb)); 1708 tcp_rate_skb_delivered(sk, skb, state->rate); 1709 1710 TCP_SKB_CB(prev)->end_seq += shifted; 1711 TCP_SKB_CB(skb)->seq += shifted; 1712 1713 tcp_skb_pcount_add(prev, pcount); 1714 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1715 tcp_skb_pcount_add(skb, -pcount); 1716 1717 /* When we're adding to gso_segs == 1, gso_size will be zero, 1718 * in theory this shouldn't be necessary but as long as DSACK 1719 * code can come after this skb later on it's better to keep 1720 * setting gso_size to something. 1721 */ 1722 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1723 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1724 1725 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1726 if (tcp_skb_pcount(skb) <= 1) 1727 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1728 1729 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1730 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1731 1732 if (skb->len > 0) { 1733 BUG_ON(!tcp_skb_pcount(skb)); 1734 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1735 return false; 1736 } 1737 1738 /* Whole SKB was eaten :-) */ 1739 1740 if (skb == tp->retransmit_skb_hint) 1741 tp->retransmit_skb_hint = prev; 1742 1743 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1744 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1745 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1746 TCP_SKB_CB(prev)->end_seq++; 1747 1748 if (skb == tcp_highest_sack(sk)) 1749 tcp_advance_highest_sack(sk, skb); 1750 1751 tcp_skb_collapse_tstamp(prev, skb); 1752 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1753 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1754 1755 tcp_rtx_queue_unlink_and_free(skb, sk); 1756 1757 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1758 1759 return true; 1760 } 1761 1762 /* I wish gso_size would have a bit more sane initialization than 1763 * something-or-zero which complicates things 1764 */ 1765 static int tcp_skb_seglen(const struct sk_buff *skb) 1766 { 1767 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1768 } 1769 1770 /* Shifting pages past head area doesn't work */ 1771 static int skb_can_shift(const struct sk_buff *skb) 1772 { 1773 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1774 } 1775 1776 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1777 int pcount, int shiftlen) 1778 { 1779 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1780 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1781 * to make sure not storing more than 65535 * 8 bytes per skb, 1782 * even if current MSS is bigger. 1783 */ 1784 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1785 return 0; 1786 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1787 return 0; 1788 return skb_shift(to, from, shiftlen); 1789 } 1790 1791 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1792 * skb. 1793 */ 1794 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1795 struct tcp_sacktag_state *state, 1796 u32 start_seq, u32 end_seq, 1797 bool dup_sack) 1798 { 1799 struct tcp_sock *tp = tcp_sk(sk); 1800 struct sk_buff *prev; 1801 int mss; 1802 int pcount = 0; 1803 int len; 1804 int in_sack; 1805 1806 /* Normally R but no L won't result in plain S */ 1807 if (!dup_sack && 1808 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1809 goto fallback; 1810 if (!skb_can_shift(skb)) 1811 goto fallback; 1812 /* This frame is about to be dropped (was ACKed). */ 1813 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1814 goto fallback; 1815 1816 /* Can only happen with delayed DSACK + discard craziness */ 1817 prev = skb_rb_prev(skb); 1818 if (!prev) 1819 goto fallback; 1820 1821 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1822 goto fallback; 1823 1824 if (!tcp_skb_can_collapse(prev, skb)) 1825 goto fallback; 1826 1827 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1828 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1829 1830 if (in_sack) { 1831 len = skb->len; 1832 pcount = tcp_skb_pcount(skb); 1833 mss = tcp_skb_seglen(skb); 1834 1835 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1836 * drop this restriction as unnecessary 1837 */ 1838 if (mss != tcp_skb_seglen(prev)) 1839 goto fallback; 1840 } else { 1841 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1842 goto noop; 1843 /* CHECKME: This is non-MSS split case only?, this will 1844 * cause skipped skbs due to advancing loop btw, original 1845 * has that feature too 1846 */ 1847 if (tcp_skb_pcount(skb) <= 1) 1848 goto noop; 1849 1850 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1851 if (!in_sack) { 1852 /* TODO: head merge to next could be attempted here 1853 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1854 * though it might not be worth of the additional hassle 1855 * 1856 * ...we can probably just fallback to what was done 1857 * previously. We could try merging non-SACKed ones 1858 * as well but it probably isn't going to buy off 1859 * because later SACKs might again split them, and 1860 * it would make skb timestamp tracking considerably 1861 * harder problem. 1862 */ 1863 goto fallback; 1864 } 1865 1866 len = end_seq - TCP_SKB_CB(skb)->seq; 1867 BUG_ON(len < 0); 1868 BUG_ON(len > skb->len); 1869 1870 /* MSS boundaries should be honoured or else pcount will 1871 * severely break even though it makes things bit trickier. 1872 * Optimize common case to avoid most of the divides 1873 */ 1874 mss = tcp_skb_mss(skb); 1875 1876 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1877 * drop this restriction as unnecessary 1878 */ 1879 if (mss != tcp_skb_seglen(prev)) 1880 goto fallback; 1881 1882 if (len == mss) { 1883 pcount = 1; 1884 } else if (len < mss) { 1885 goto noop; 1886 } else { 1887 pcount = len / mss; 1888 len = pcount * mss; 1889 } 1890 } 1891 1892 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1893 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1894 goto fallback; 1895 1896 if (!tcp_skb_shift(prev, skb, pcount, len)) 1897 goto fallback; 1898 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1899 goto out; 1900 1901 /* Hole filled allows collapsing with the next as well, this is very 1902 * useful when hole on every nth skb pattern happens 1903 */ 1904 skb = skb_rb_next(prev); 1905 if (!skb) 1906 goto out; 1907 1908 if (!skb_can_shift(skb) || 1909 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1910 (mss != tcp_skb_seglen(skb))) 1911 goto out; 1912 1913 if (!tcp_skb_can_collapse(prev, skb)) 1914 goto out; 1915 len = skb->len; 1916 pcount = tcp_skb_pcount(skb); 1917 if (tcp_skb_shift(prev, skb, pcount, len)) 1918 tcp_shifted_skb(sk, prev, skb, state, pcount, 1919 len, mss, 0); 1920 1921 out: 1922 return prev; 1923 1924 noop: 1925 return skb; 1926 1927 fallback: 1928 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1929 return NULL; 1930 } 1931 1932 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1933 struct tcp_sack_block *next_dup, 1934 struct tcp_sacktag_state *state, 1935 u32 start_seq, u32 end_seq, 1936 bool dup_sack_in) 1937 { 1938 struct tcp_sock *tp = tcp_sk(sk); 1939 struct sk_buff *tmp; 1940 1941 skb_rbtree_walk_from(skb) { 1942 int in_sack = 0; 1943 bool dup_sack = dup_sack_in; 1944 1945 /* queue is in-order => we can short-circuit the walk early */ 1946 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1947 break; 1948 1949 if (next_dup && 1950 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1951 in_sack = tcp_match_skb_to_sack(sk, skb, 1952 next_dup->start_seq, 1953 next_dup->end_seq); 1954 if (in_sack > 0) 1955 dup_sack = true; 1956 } 1957 1958 /* skb reference here is a bit tricky to get right, since 1959 * shifting can eat and free both this skb and the next, 1960 * so not even _safe variant of the loop is enough. 1961 */ 1962 if (in_sack <= 0) { 1963 tmp = tcp_shift_skb_data(sk, skb, state, 1964 start_seq, end_seq, dup_sack); 1965 if (tmp) { 1966 if (tmp != skb) { 1967 skb = tmp; 1968 continue; 1969 } 1970 1971 in_sack = 0; 1972 } else { 1973 in_sack = tcp_match_skb_to_sack(sk, skb, 1974 start_seq, 1975 end_seq); 1976 } 1977 } 1978 1979 if (unlikely(in_sack < 0)) 1980 break; 1981 1982 if (in_sack) { 1983 TCP_SKB_CB(skb)->sacked = 1984 tcp_sacktag_one(sk, 1985 state, 1986 TCP_SKB_CB(skb)->sacked, 1987 TCP_SKB_CB(skb)->seq, 1988 TCP_SKB_CB(skb)->end_seq, 1989 dup_sack, 1990 tcp_skb_pcount(skb), 1991 skb->len, 1992 tcp_skb_timestamp_us(skb)); 1993 tcp_rate_skb_delivered(sk, skb, state->rate); 1994 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1995 list_del_init(&skb->tcp_tsorted_anchor); 1996 1997 if (!before(TCP_SKB_CB(skb)->seq, 1998 tcp_highest_sack_seq(tp))) 1999 tcp_advance_highest_sack(sk, skb); 2000 } 2001 } 2002 return skb; 2003 } 2004 2005 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 2006 { 2007 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 2008 struct sk_buff *skb; 2009 2010 while (*p) { 2011 parent = *p; 2012 skb = rb_to_skb(parent); 2013 if (before(seq, TCP_SKB_CB(skb)->seq)) { 2014 p = &parent->rb_left; 2015 continue; 2016 } 2017 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 2018 p = &parent->rb_right; 2019 continue; 2020 } 2021 return skb; 2022 } 2023 return NULL; 2024 } 2025 2026 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 2027 u32 skip_to_seq) 2028 { 2029 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 2030 return skb; 2031 2032 return tcp_sacktag_bsearch(sk, skip_to_seq); 2033 } 2034 2035 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 2036 struct sock *sk, 2037 struct tcp_sack_block *next_dup, 2038 struct tcp_sacktag_state *state, 2039 u32 skip_to_seq) 2040 { 2041 if (!next_dup) 2042 return skb; 2043 2044 if (before(next_dup->start_seq, skip_to_seq)) { 2045 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 2046 skb = tcp_sacktag_walk(skb, sk, NULL, state, 2047 next_dup->start_seq, next_dup->end_seq, 2048 1); 2049 } 2050 2051 return skb; 2052 } 2053 2054 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 2055 { 2056 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 2057 } 2058 2059 static int 2060 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 2061 u32 prior_snd_una, struct tcp_sacktag_state *state) 2062 { 2063 struct tcp_sock *tp = tcp_sk(sk); 2064 const unsigned char *ptr = (skb_transport_header(ack_skb) + 2065 TCP_SKB_CB(ack_skb)->sacked); 2066 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 2067 struct tcp_sack_block sp[TCP_NUM_SACKS]; 2068 struct tcp_sack_block *cache; 2069 struct sk_buff *skb; 2070 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 2071 int used_sacks; 2072 bool found_dup_sack = false; 2073 int i, j; 2074 int first_sack_index; 2075 2076 state->flag = 0; 2077 state->reord = tp->snd_nxt; 2078 2079 if (!tp->sacked_out) 2080 tcp_highest_sack_reset(sk); 2081 2082 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 2083 num_sacks, prior_snd_una, state); 2084 2085 /* Eliminate too old ACKs, but take into 2086 * account more or less fresh ones, they can 2087 * contain valid SACK info. 2088 */ 2089 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 2090 return 0; 2091 2092 if (!tp->packets_out) 2093 goto out; 2094 2095 used_sacks = 0; 2096 first_sack_index = 0; 2097 for (i = 0; i < num_sacks; i++) { 2098 bool dup_sack = !i && found_dup_sack; 2099 2100 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 2101 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 2102 2103 if (!tcp_is_sackblock_valid(tp, dup_sack, 2104 sp[used_sacks].start_seq, 2105 sp[used_sacks].end_seq)) { 2106 int mib_idx; 2107 2108 if (dup_sack) { 2109 if (!tp->undo_marker) 2110 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 2111 else 2112 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 2113 } else { 2114 /* Don't count olds caused by ACK reordering */ 2115 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 2116 !after(sp[used_sacks].end_seq, tp->snd_una)) 2117 continue; 2118 mib_idx = LINUX_MIB_TCPSACKDISCARD; 2119 } 2120 2121 NET_INC_STATS(sock_net(sk), mib_idx); 2122 if (i == 0) 2123 first_sack_index = -1; 2124 continue; 2125 } 2126 2127 /* Ignore very old stuff early */ 2128 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 2129 if (i == 0) 2130 first_sack_index = -1; 2131 continue; 2132 } 2133 2134 used_sacks++; 2135 } 2136 2137 /* order SACK blocks to allow in order walk of the retrans queue */ 2138 for (i = used_sacks - 1; i > 0; i--) { 2139 for (j = 0; j < i; j++) { 2140 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 2141 swap(sp[j], sp[j + 1]); 2142 2143 /* Track where the first SACK block goes to */ 2144 if (j == first_sack_index) 2145 first_sack_index = j + 1; 2146 } 2147 } 2148 } 2149 2150 state->mss_now = tcp_current_mss(sk); 2151 skb = NULL; 2152 i = 0; 2153 2154 if (!tp->sacked_out) { 2155 /* It's already past, so skip checking against it */ 2156 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 2157 } else { 2158 cache = tp->recv_sack_cache; 2159 /* Skip empty blocks in at head of the cache */ 2160 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 2161 !cache->end_seq) 2162 cache++; 2163 } 2164 2165 while (i < used_sacks) { 2166 u32 start_seq = sp[i].start_seq; 2167 u32 end_seq = sp[i].end_seq; 2168 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 2169 struct tcp_sack_block *next_dup = NULL; 2170 2171 if (found_dup_sack && ((i + 1) == first_sack_index)) 2172 next_dup = &sp[i + 1]; 2173 2174 /* Skip too early cached blocks */ 2175 while (tcp_sack_cache_ok(tp, cache) && 2176 !before(start_seq, cache->end_seq)) 2177 cache++; 2178 2179 /* Can skip some work by looking recv_sack_cache? */ 2180 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 2181 after(end_seq, cache->start_seq)) { 2182 2183 /* Head todo? */ 2184 if (before(start_seq, cache->start_seq)) { 2185 skb = tcp_sacktag_skip(skb, sk, start_seq); 2186 skb = tcp_sacktag_walk(skb, sk, next_dup, 2187 state, 2188 start_seq, 2189 cache->start_seq, 2190 dup_sack); 2191 } 2192 2193 /* Rest of the block already fully processed? */ 2194 if (!after(end_seq, cache->end_seq)) 2195 goto advance_sp; 2196 2197 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 2198 state, 2199 cache->end_seq); 2200 2201 /* ...tail remains todo... */ 2202 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 2203 /* ...but better entrypoint exists! */ 2204 skb = tcp_highest_sack(sk); 2205 if (!skb) 2206 break; 2207 cache++; 2208 goto walk; 2209 } 2210 2211 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 2212 /* Check overlap against next cached too (past this one already) */ 2213 cache++; 2214 continue; 2215 } 2216 2217 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 2218 skb = tcp_highest_sack(sk); 2219 if (!skb) 2220 break; 2221 } 2222 skb = tcp_sacktag_skip(skb, sk, start_seq); 2223 2224 walk: 2225 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2226 start_seq, end_seq, dup_sack); 2227 2228 advance_sp: 2229 i++; 2230 } 2231 2232 /* Clear the head of the cache sack blocks so we can skip it next time */ 2233 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2234 tp->recv_sack_cache[i].start_seq = 0; 2235 tp->recv_sack_cache[i].end_seq = 0; 2236 } 2237 for (j = 0; j < used_sacks; j++) 2238 tp->recv_sack_cache[i++] = sp[j]; 2239 2240 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2241 tcp_check_sack_reordering(sk, state->reord, 0); 2242 2243 tcp_verify_left_out(tp); 2244 out: 2245 2246 #if FASTRETRANS_DEBUG > 0 2247 WARN_ON((int)tp->sacked_out < 0); 2248 WARN_ON((int)tp->lost_out < 0); 2249 WARN_ON((int)tp->retrans_out < 0); 2250 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2251 #endif 2252 return state->flag; 2253 } 2254 2255 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2256 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2257 */ 2258 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2259 { 2260 u32 holes; 2261 2262 holes = max(tp->lost_out, 1U); 2263 holes = min(holes, tp->packets_out); 2264 2265 if ((tp->sacked_out + holes) > tp->packets_out) { 2266 tp->sacked_out = tp->packets_out - holes; 2267 return true; 2268 } 2269 return false; 2270 } 2271 2272 /* If we receive more dupacks than we expected counting segments 2273 * in assumption of absent reordering, interpret this as reordering. 2274 * The only another reason could be bug in receiver TCP. 2275 */ 2276 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2277 { 2278 struct tcp_sock *tp = tcp_sk(sk); 2279 2280 if (!tcp_limit_reno_sacked(tp)) 2281 return; 2282 2283 tp->reordering = min_t(u32, tp->packets_out + addend, 2284 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2285 tp->reord_seen++; 2286 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2287 } 2288 2289 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2290 2291 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2292 { 2293 if (num_dupack) { 2294 struct tcp_sock *tp = tcp_sk(sk); 2295 u32 prior_sacked = tp->sacked_out; 2296 s32 delivered; 2297 2298 tp->sacked_out += num_dupack; 2299 tcp_check_reno_reordering(sk, 0); 2300 delivered = tp->sacked_out - prior_sacked; 2301 if (delivered > 0) 2302 tcp_count_delivered(tp, delivered, ece_ack); 2303 tcp_verify_left_out(tp); 2304 } 2305 } 2306 2307 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2308 2309 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2310 { 2311 struct tcp_sock *tp = tcp_sk(sk); 2312 2313 if (acked > 0) { 2314 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2315 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2316 ece_ack); 2317 if (acked - 1 >= tp->sacked_out) 2318 tp->sacked_out = 0; 2319 else 2320 tp->sacked_out -= acked - 1; 2321 } 2322 tcp_check_reno_reordering(sk, acked); 2323 tcp_verify_left_out(tp); 2324 } 2325 2326 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2327 { 2328 tp->sacked_out = 0; 2329 } 2330 2331 void tcp_clear_retrans(struct tcp_sock *tp) 2332 { 2333 tp->retrans_out = 0; 2334 tp->lost_out = 0; 2335 tp->undo_marker = 0; 2336 tp->undo_retrans = -1; 2337 tp->sacked_out = 0; 2338 tp->rto_stamp = 0; 2339 tp->total_rto = 0; 2340 tp->total_rto_recoveries = 0; 2341 tp->total_rto_time = 0; 2342 } 2343 2344 static inline void tcp_init_undo(struct tcp_sock *tp) 2345 { 2346 tp->undo_marker = tp->snd_una; 2347 2348 /* Retransmission still in flight may cause DSACKs later. */ 2349 /* First, account for regular retransmits in flight: */ 2350 tp->undo_retrans = tp->retrans_out; 2351 /* Next, account for TLP retransmits in flight: */ 2352 if (tp->tlp_high_seq && tp->tlp_retrans) 2353 tp->undo_retrans++; 2354 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2355 if (!tp->undo_retrans) 2356 tp->undo_retrans = -1; 2357 } 2358 2359 /* If we detect SACK reneging, forget all SACK information 2360 * and reset tags completely, otherwise preserve SACKs. If receiver 2361 * dropped its ofo queue, we will know this due to reneging detection. 2362 */ 2363 static void tcp_timeout_mark_lost(struct sock *sk) 2364 { 2365 struct tcp_sock *tp = tcp_sk(sk); 2366 struct sk_buff *skb, *head; 2367 bool is_reneg; /* is receiver reneging on SACKs? */ 2368 2369 head = tcp_rtx_queue_head(sk); 2370 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2371 if (is_reneg) { 2372 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2373 tp->sacked_out = 0; 2374 /* Mark SACK reneging until we recover from this loss event. */ 2375 tp->is_sack_reneg = 1; 2376 } else if (tcp_is_reno(tp)) { 2377 tcp_reset_reno_sack(tp); 2378 } 2379 2380 skb = head; 2381 skb_rbtree_walk_from(skb) { 2382 if (is_reneg) 2383 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2384 else if (skb != head && tcp_rack_skb_timeout(tp, skb, 0) > 0) 2385 continue; /* Don't mark recently sent ones lost yet */ 2386 tcp_mark_skb_lost(sk, skb); 2387 } 2388 tcp_verify_left_out(tp); 2389 tcp_clear_all_retrans_hints(tp); 2390 } 2391 2392 /* Enter Loss state. */ 2393 void tcp_enter_loss(struct sock *sk) 2394 { 2395 const struct inet_connection_sock *icsk = inet_csk(sk); 2396 struct tcp_sock *tp = tcp_sk(sk); 2397 struct net *net = sock_net(sk); 2398 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2399 u8 reordering; 2400 2401 tcp_timeout_mark_lost(sk); 2402 2403 /* Reduce ssthresh if it has not yet been made inside this window. */ 2404 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2405 !after(tp->high_seq, tp->snd_una) || 2406 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2407 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2408 tp->prior_cwnd = tcp_snd_cwnd(tp); 2409 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2410 tcp_ca_event(sk, CA_EVENT_LOSS); 2411 tcp_init_undo(tp); 2412 } 2413 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2414 tp->snd_cwnd_cnt = 0; 2415 tp->snd_cwnd_stamp = tcp_jiffies32; 2416 2417 /* Timeout in disordered state after receiving substantial DUPACKs 2418 * suggests that the degree of reordering is over-estimated. 2419 */ 2420 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2421 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2422 tp->sacked_out >= reordering) 2423 tp->reordering = min_t(unsigned int, tp->reordering, 2424 reordering); 2425 2426 tcp_set_ca_state(sk, TCP_CA_Loss); 2427 tp->high_seq = tp->snd_nxt; 2428 tp->tlp_high_seq = 0; 2429 tcp_ecn_queue_cwr(tp); 2430 2431 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2432 * loss recovery is underway except recurring timeout(s) on 2433 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2434 */ 2435 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2436 (new_recovery || icsk->icsk_retransmits) && 2437 !inet_csk(sk)->icsk_mtup.probe_size; 2438 } 2439 2440 /* If ACK arrived pointing to a remembered SACK, it means that our 2441 * remembered SACKs do not reflect real state of receiver i.e. 2442 * receiver _host_ is heavily congested (or buggy). 2443 * 2444 * To avoid big spurious retransmission bursts due to transient SACK 2445 * scoreboard oddities that look like reneging, we give the receiver a 2446 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2447 * restore sanity to the SACK scoreboard. If the apparent reneging 2448 * persists until this RTO then we'll clear the SACK scoreboard. 2449 */ 2450 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2451 { 2452 if (*ack_flag & FLAG_SACK_RENEGING && 2453 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2454 struct tcp_sock *tp = tcp_sk(sk); 2455 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2456 msecs_to_jiffies(10)); 2457 2458 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false); 2459 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2460 return true; 2461 } 2462 return false; 2463 } 2464 2465 /* Linux NewReno/SACK/ECN state machine. 2466 * -------------------------------------- 2467 * 2468 * "Open" Normal state, no dubious events, fast path. 2469 * "Disorder" In all the respects it is "Open", 2470 * but requires a bit more attention. It is entered when 2471 * we see some SACKs or dupacks. It is split of "Open" 2472 * mainly to move some processing from fast path to slow one. 2473 * "CWR" CWND was reduced due to some Congestion Notification event. 2474 * It can be ECN, ICMP source quench, local device congestion. 2475 * "Recovery" CWND was reduced, we are fast-retransmitting. 2476 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2477 * 2478 * tcp_fastretrans_alert() is entered: 2479 * - each incoming ACK, if state is not "Open" 2480 * - when arrived ACK is unusual, namely: 2481 * * SACK 2482 * * Duplicate ACK. 2483 * * ECN ECE. 2484 * 2485 * Counting packets in flight is pretty simple. 2486 * 2487 * in_flight = packets_out - left_out + retrans_out 2488 * 2489 * packets_out is SND.NXT-SND.UNA counted in packets. 2490 * 2491 * retrans_out is number of retransmitted segments. 2492 * 2493 * left_out is number of segments left network, but not ACKed yet. 2494 * 2495 * left_out = sacked_out + lost_out 2496 * 2497 * sacked_out: Packets, which arrived to receiver out of order 2498 * and hence not ACKed. With SACKs this number is simply 2499 * amount of SACKed data. Even without SACKs 2500 * it is easy to give pretty reliable estimate of this number, 2501 * counting duplicate ACKs. 2502 * 2503 * lost_out: Packets lost by network. TCP has no explicit 2504 * "loss notification" feedback from network (for now). 2505 * It means that this number can be only _guessed_. 2506 * Actually, it is the heuristics to predict lossage that 2507 * distinguishes different algorithms. 2508 * 2509 * F.e. after RTO, when all the queue is considered as lost, 2510 * lost_out = packets_out and in_flight = retrans_out. 2511 * 2512 * Essentially, we have now a few algorithms detecting 2513 * lost packets. 2514 * 2515 * If the receiver supports SACK: 2516 * 2517 * RACK (RFC8985): RACK is a newer loss detection algorithm 2518 * (2017-) that checks timing instead of counting DUPACKs. 2519 * Essentially a packet is considered lost if it's not S/ACKed 2520 * after RTT + reordering_window, where both metrics are 2521 * dynamically measured and adjusted. This is implemented in 2522 * tcp_rack_mark_lost. 2523 * 2524 * If the receiver does not support SACK: 2525 * 2526 * NewReno (RFC6582): in Recovery we assume that one segment 2527 * is lost (classic Reno). While we are in Recovery and 2528 * a partial ACK arrives, we assume that one more packet 2529 * is lost (NewReno). This heuristics are the same in NewReno 2530 * and SACK. 2531 * 2532 * The really tricky (and requiring careful tuning) part of the algorithm 2533 * is hidden in the RACK code in tcp_recovery.c and tcp_xmit_retransmit_queue(). 2534 * The first determines the moment _when_ we should reduce CWND and, 2535 * hence, slow down forward transmission. In fact, it determines the moment 2536 * when we decide that hole is caused by loss, rather than by a reorder. 2537 * 2538 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2539 * holes, caused by lost packets. 2540 * 2541 * And the most logically complicated part of algorithm is undo 2542 * heuristics. We detect false retransmits due to both too early 2543 * fast retransmit (reordering) and underestimated RTO, analyzing 2544 * timestamps and D-SACKs. When we detect that some segments were 2545 * retransmitted by mistake and CWND reduction was wrong, we undo 2546 * window reduction and abort recovery phase. This logic is hidden 2547 * inside several functions named tcp_try_undo_<something>. 2548 */ 2549 2550 /* This function decides, when we should leave Disordered state 2551 * and enter Recovery phase, reducing congestion window. 2552 * 2553 * Main question: may we further continue forward transmission 2554 * with the same cwnd? 2555 */ 2556 static bool tcp_time_to_recover(const struct tcp_sock *tp) 2557 { 2558 /* Has loss detection marked at least one packet lost? */ 2559 return tp->lost_out != 0; 2560 } 2561 2562 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2563 { 2564 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2565 before(tp->rx_opt.rcv_tsecr, when); 2566 } 2567 2568 /* skb is spurious retransmitted if the returned timestamp echo 2569 * reply is prior to the skb transmission time 2570 */ 2571 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2572 const struct sk_buff *skb) 2573 { 2574 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2575 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); 2576 } 2577 2578 /* Nothing was retransmitted or returned timestamp is less 2579 * than timestamp of the first retransmission. 2580 */ 2581 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2582 { 2583 const struct sock *sk = (const struct sock *)tp; 2584 2585 /* Received an echoed timestamp before the first retransmission? */ 2586 if (tp->retrans_stamp) 2587 return tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2588 2589 /* We set tp->retrans_stamp upon the first retransmission of a loss 2590 * recovery episode, so normally if tp->retrans_stamp is 0 then no 2591 * retransmission has happened yet (likely due to TSQ, which can cause 2592 * fast retransmits to be delayed). So if snd_una advanced while 2593 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed, 2594 * not lost. But there are exceptions where we retransmit but then 2595 * clear tp->retrans_stamp, so we check for those exceptions. 2596 */ 2597 2598 /* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen() 2599 * clears tp->retrans_stamp when snd_una == high_seq. 2600 */ 2601 if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq)) 2602 return false; 2603 2604 /* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp 2605 * when setting FLAG_SYN_ACKED is set, even if the SYN was 2606 * retransmitted. 2607 */ 2608 if (sk->sk_state == TCP_SYN_SENT) 2609 return false; 2610 2611 return true; /* tp->retrans_stamp is zero; no retransmit yet */ 2612 } 2613 2614 /* Undo procedures. */ 2615 2616 /* We can clear retrans_stamp when there are no retransmissions in the 2617 * window. It would seem that it is trivially available for us in 2618 * tp->retrans_out, however, that kind of assumptions doesn't consider 2619 * what will happen if errors occur when sending retransmission for the 2620 * second time. ...It could the that such segment has only 2621 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2622 * the head skb is enough except for some reneging corner cases that 2623 * are not worth the effort. 2624 * 2625 * Main reason for all this complexity is the fact that connection dying 2626 * time now depends on the validity of the retrans_stamp, in particular, 2627 * that successive retransmissions of a segment must not advance 2628 * retrans_stamp under any conditions. 2629 */ 2630 static bool tcp_any_retrans_done(const struct sock *sk) 2631 { 2632 const struct tcp_sock *tp = tcp_sk(sk); 2633 struct sk_buff *skb; 2634 2635 if (tp->retrans_out) 2636 return true; 2637 2638 skb = tcp_rtx_queue_head(sk); 2639 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2640 return true; 2641 2642 return false; 2643 } 2644 2645 /* If loss recovery is finished and there are no retransmits out in the 2646 * network, then we clear retrans_stamp so that upon the next loss recovery 2647 * retransmits_timed_out() and timestamp-undo are using the correct value. 2648 */ 2649 static void tcp_retrans_stamp_cleanup(struct sock *sk) 2650 { 2651 if (!tcp_any_retrans_done(sk)) 2652 tcp_sk(sk)->retrans_stamp = 0; 2653 } 2654 2655 static void DBGUNDO(struct sock *sk, const char *msg) 2656 { 2657 #if FASTRETRANS_DEBUG > 1 2658 struct tcp_sock *tp = tcp_sk(sk); 2659 struct inet_sock *inet = inet_sk(sk); 2660 2661 if (sk->sk_family == AF_INET) { 2662 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2663 msg, 2664 &inet->inet_daddr, ntohs(inet->inet_dport), 2665 tcp_snd_cwnd(tp), tcp_left_out(tp), 2666 tp->snd_ssthresh, tp->prior_ssthresh, 2667 tp->packets_out); 2668 } 2669 #if IS_ENABLED(CONFIG_IPV6) 2670 else if (sk->sk_family == AF_INET6) { 2671 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2672 msg, 2673 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2674 tcp_snd_cwnd(tp), tcp_left_out(tp), 2675 tp->snd_ssthresh, tp->prior_ssthresh, 2676 tp->packets_out); 2677 } 2678 #endif 2679 #endif 2680 } 2681 2682 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2683 { 2684 struct tcp_sock *tp = tcp_sk(sk); 2685 2686 if (unmark_loss) { 2687 struct sk_buff *skb; 2688 2689 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2690 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2691 } 2692 tp->lost_out = 0; 2693 tcp_clear_all_retrans_hints(tp); 2694 } 2695 2696 if (tp->prior_ssthresh) { 2697 const struct inet_connection_sock *icsk = inet_csk(sk); 2698 2699 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2700 2701 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2702 tp->snd_ssthresh = tp->prior_ssthresh; 2703 tcp_ecn_withdraw_cwr(tp); 2704 } 2705 } 2706 tp->snd_cwnd_stamp = tcp_jiffies32; 2707 tp->undo_marker = 0; 2708 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2709 } 2710 2711 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2712 { 2713 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2714 } 2715 2716 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2717 { 2718 struct tcp_sock *tp = tcp_sk(sk); 2719 2720 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2721 /* Hold old state until something *above* high_seq 2722 * is ACKed. For Reno it is MUST to prevent false 2723 * fast retransmits (RFC2582). SACK TCP is safe. */ 2724 if (!tcp_any_retrans_done(sk)) 2725 tp->retrans_stamp = 0; 2726 return true; 2727 } 2728 return false; 2729 } 2730 2731 /* People celebrate: "We love our President!" */ 2732 static bool tcp_try_undo_recovery(struct sock *sk) 2733 { 2734 struct tcp_sock *tp = tcp_sk(sk); 2735 2736 if (tcp_may_undo(tp)) { 2737 int mib_idx; 2738 2739 /* Happy end! We did not retransmit anything 2740 * or our original transmission succeeded. 2741 */ 2742 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2743 tcp_undo_cwnd_reduction(sk, false); 2744 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2745 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2746 else 2747 mib_idx = LINUX_MIB_TCPFULLUNDO; 2748 2749 NET_INC_STATS(sock_net(sk), mib_idx); 2750 } else if (tp->rack.reo_wnd_persist) { 2751 tp->rack.reo_wnd_persist--; 2752 } 2753 if (tcp_is_non_sack_preventing_reopen(sk)) 2754 return true; 2755 tcp_set_ca_state(sk, TCP_CA_Open); 2756 tp->is_sack_reneg = 0; 2757 return false; 2758 } 2759 2760 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2761 static bool tcp_try_undo_dsack(struct sock *sk) 2762 { 2763 struct tcp_sock *tp = tcp_sk(sk); 2764 2765 if (tp->undo_marker && !tp->undo_retrans) { 2766 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2767 tp->rack.reo_wnd_persist + 1); 2768 DBGUNDO(sk, "D-SACK"); 2769 tcp_undo_cwnd_reduction(sk, false); 2770 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2771 return true; 2772 } 2773 return false; 2774 } 2775 2776 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2777 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2778 { 2779 struct tcp_sock *tp = tcp_sk(sk); 2780 2781 if (frto_undo || tcp_may_undo(tp)) { 2782 tcp_undo_cwnd_reduction(sk, true); 2783 2784 DBGUNDO(sk, "partial loss"); 2785 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2786 if (frto_undo) 2787 NET_INC_STATS(sock_net(sk), 2788 LINUX_MIB_TCPSPURIOUSRTOS); 2789 WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0); 2790 if (tcp_is_non_sack_preventing_reopen(sk)) 2791 return true; 2792 if (frto_undo || tcp_is_sack(tp)) { 2793 tcp_set_ca_state(sk, TCP_CA_Open); 2794 tp->is_sack_reneg = 0; 2795 } 2796 return true; 2797 } 2798 return false; 2799 } 2800 2801 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2802 * It computes the number of packets to send (sndcnt) based on packets newly 2803 * delivered: 2804 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2805 * cwnd reductions across a full RTT. 2806 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2807 * But when SND_UNA is acked without further losses, 2808 * slow starts cwnd up to ssthresh to speed up the recovery. 2809 */ 2810 static void tcp_init_cwnd_reduction(struct sock *sk) 2811 { 2812 struct tcp_sock *tp = tcp_sk(sk); 2813 2814 tp->high_seq = tp->snd_nxt; 2815 tp->tlp_high_seq = 0; 2816 tp->snd_cwnd_cnt = 0; 2817 tp->prior_cwnd = tcp_snd_cwnd(tp); 2818 tp->prr_delivered = 0; 2819 tp->prr_out = 0; 2820 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2821 tcp_ecn_queue_cwr(tp); 2822 } 2823 2824 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2825 { 2826 struct tcp_sock *tp = tcp_sk(sk); 2827 int sndcnt = 0; 2828 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2829 2830 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2831 return; 2832 2833 trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag); 2834 2835 tp->prr_delivered += newly_acked_sacked; 2836 if (delta < 0) { 2837 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2838 tp->prior_cwnd - 1; 2839 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2840 } else { 2841 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2842 newly_acked_sacked); 2843 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2844 sndcnt++; 2845 sndcnt = min(delta, sndcnt); 2846 } 2847 /* Force a fast retransmit upon entering fast recovery */ 2848 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2849 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2850 } 2851 2852 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2853 { 2854 struct tcp_sock *tp = tcp_sk(sk); 2855 2856 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2857 return; 2858 2859 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2860 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2861 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2862 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2863 tp->snd_cwnd_stamp = tcp_jiffies32; 2864 } 2865 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2866 } 2867 2868 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2869 void tcp_enter_cwr(struct sock *sk) 2870 { 2871 struct tcp_sock *tp = tcp_sk(sk); 2872 2873 tp->prior_ssthresh = 0; 2874 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2875 tp->undo_marker = 0; 2876 tcp_init_cwnd_reduction(sk); 2877 tcp_set_ca_state(sk, TCP_CA_CWR); 2878 } 2879 } 2880 EXPORT_SYMBOL(tcp_enter_cwr); 2881 2882 static void tcp_try_keep_open(struct sock *sk) 2883 { 2884 struct tcp_sock *tp = tcp_sk(sk); 2885 int state = TCP_CA_Open; 2886 2887 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2888 state = TCP_CA_Disorder; 2889 2890 if (inet_csk(sk)->icsk_ca_state != state) { 2891 tcp_set_ca_state(sk, state); 2892 tp->high_seq = tp->snd_nxt; 2893 } 2894 } 2895 2896 static void tcp_try_to_open(struct sock *sk, int flag) 2897 { 2898 struct tcp_sock *tp = tcp_sk(sk); 2899 2900 tcp_verify_left_out(tp); 2901 2902 if (!tcp_any_retrans_done(sk)) 2903 tp->retrans_stamp = 0; 2904 2905 if (flag & FLAG_ECE) 2906 tcp_enter_cwr(sk); 2907 2908 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2909 tcp_try_keep_open(sk); 2910 } 2911 } 2912 2913 static void tcp_mtup_probe_failed(struct sock *sk) 2914 { 2915 struct inet_connection_sock *icsk = inet_csk(sk); 2916 2917 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2918 icsk->icsk_mtup.probe_size = 0; 2919 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2920 } 2921 2922 static void tcp_mtup_probe_success(struct sock *sk) 2923 { 2924 struct tcp_sock *tp = tcp_sk(sk); 2925 struct inet_connection_sock *icsk = inet_csk(sk); 2926 u64 val; 2927 2928 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2929 2930 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2931 do_div(val, icsk->icsk_mtup.probe_size); 2932 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2933 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2934 2935 tp->snd_cwnd_cnt = 0; 2936 tp->snd_cwnd_stamp = tcp_jiffies32; 2937 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2938 2939 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2940 icsk->icsk_mtup.probe_size = 0; 2941 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2942 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2943 } 2944 2945 /* Sometimes we deduce that packets have been dropped due to reasons other than 2946 * congestion, like path MTU reductions or failed client TFO attempts. In these 2947 * cases we call this function to retransmit as many packets as cwnd allows, 2948 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2949 * non-zero value (and may do so in a later calling context due to TSQ), we 2950 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2951 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2952 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2953 * prematurely). 2954 */ 2955 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2956 { 2957 const struct inet_connection_sock *icsk = inet_csk(sk); 2958 struct tcp_sock *tp = tcp_sk(sk); 2959 2960 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2961 tp->high_seq = tp->snd_nxt; 2962 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2963 tp->prior_ssthresh = 0; 2964 tp->undo_marker = 0; 2965 tcp_set_ca_state(sk, TCP_CA_Loss); 2966 } 2967 tcp_xmit_retransmit_queue(sk); 2968 } 2969 2970 /* Do a simple retransmit without using the backoff mechanisms in 2971 * tcp_timer. This is used for path mtu discovery. 2972 * The socket is already locked here. 2973 */ 2974 void tcp_simple_retransmit(struct sock *sk) 2975 { 2976 struct tcp_sock *tp = tcp_sk(sk); 2977 struct sk_buff *skb; 2978 int mss; 2979 2980 /* A fastopen SYN request is stored as two separate packets within 2981 * the retransmit queue, this is done by tcp_send_syn_data(). 2982 * As a result simply checking the MSS of the frames in the queue 2983 * will not work for the SYN packet. 2984 * 2985 * Us being here is an indication of a path MTU issue so we can 2986 * assume that the fastopen SYN was lost and just mark all the 2987 * frames in the retransmit queue as lost. We will use an MSS of 2988 * -1 to mark all frames as lost, otherwise compute the current MSS. 2989 */ 2990 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2991 mss = -1; 2992 else 2993 mss = tcp_current_mss(sk); 2994 2995 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2996 if (tcp_skb_seglen(skb) > mss) 2997 tcp_mark_skb_lost(sk, skb); 2998 } 2999 3000 if (!tp->lost_out) 3001 return; 3002 3003 if (tcp_is_reno(tp)) 3004 tcp_limit_reno_sacked(tp); 3005 3006 tcp_verify_left_out(tp); 3007 3008 /* Don't muck with the congestion window here. 3009 * Reason is that we do not increase amount of _data_ 3010 * in network, but units changed and effective 3011 * cwnd/ssthresh really reduced now. 3012 */ 3013 tcp_non_congestion_loss_retransmit(sk); 3014 } 3015 EXPORT_IPV6_MOD(tcp_simple_retransmit); 3016 3017 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 3018 { 3019 struct tcp_sock *tp = tcp_sk(sk); 3020 int mib_idx; 3021 3022 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */ 3023 tcp_retrans_stamp_cleanup(sk); 3024 3025 if (tcp_is_reno(tp)) 3026 mib_idx = LINUX_MIB_TCPRENORECOVERY; 3027 else 3028 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 3029 3030 NET_INC_STATS(sock_net(sk), mib_idx); 3031 3032 tp->prior_ssthresh = 0; 3033 tcp_init_undo(tp); 3034 3035 if (!tcp_in_cwnd_reduction(sk)) { 3036 if (!ece_ack) 3037 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3038 tcp_init_cwnd_reduction(sk); 3039 } 3040 tcp_set_ca_state(sk, TCP_CA_Recovery); 3041 } 3042 3043 static void tcp_update_rto_time(struct tcp_sock *tp) 3044 { 3045 if (tp->rto_stamp) { 3046 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; 3047 tp->rto_stamp = 0; 3048 } 3049 } 3050 3051 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 3052 * recovered or spurious. Otherwise retransmits more on partial ACKs. 3053 */ 3054 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 3055 int *rexmit) 3056 { 3057 struct tcp_sock *tp = tcp_sk(sk); 3058 bool recovered = !before(tp->snd_una, tp->high_seq); 3059 3060 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 3061 tcp_try_undo_loss(sk, false)) 3062 return; 3063 3064 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 3065 /* Step 3.b. A timeout is spurious if not all data are 3066 * lost, i.e., never-retransmitted data are (s)acked. 3067 */ 3068 if ((flag & FLAG_ORIG_SACK_ACKED) && 3069 tcp_try_undo_loss(sk, true)) 3070 return; 3071 3072 if (after(tp->snd_nxt, tp->high_seq)) { 3073 if (flag & FLAG_DATA_SACKED || num_dupack) 3074 tp->frto = 0; /* Step 3.a. loss was real */ 3075 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 3076 tp->high_seq = tp->snd_nxt; 3077 /* Step 2.b. Try send new data (but deferred until cwnd 3078 * is updated in tcp_ack()). Otherwise fall back to 3079 * the conventional recovery. 3080 */ 3081 if (!tcp_write_queue_empty(sk) && 3082 after(tcp_wnd_end(tp), tp->snd_nxt)) { 3083 *rexmit = REXMIT_NEW; 3084 return; 3085 } 3086 tp->frto = 0; 3087 } 3088 } 3089 3090 if (recovered) { 3091 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 3092 tcp_try_undo_recovery(sk); 3093 return; 3094 } 3095 if (tcp_is_reno(tp)) { 3096 /* A Reno DUPACK means new data in F-RTO step 2.b above are 3097 * delivered. Lower inflight to clock out (re)transmissions. 3098 */ 3099 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 3100 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 3101 else if (flag & FLAG_SND_UNA_ADVANCED) 3102 tcp_reset_reno_sack(tp); 3103 } 3104 *rexmit = REXMIT_LOST; 3105 } 3106 3107 /* Undo during fast recovery after partial ACK. */ 3108 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 3109 { 3110 struct tcp_sock *tp = tcp_sk(sk); 3111 3112 if (tp->undo_marker && tcp_packet_delayed(tp)) { 3113 /* Plain luck! Hole if filled with delayed 3114 * packet, rather than with a retransmit. Check reordering. 3115 */ 3116 tcp_check_sack_reordering(sk, prior_snd_una, 1); 3117 3118 /* We are getting evidence that the reordering degree is higher 3119 * than we realized. If there are no retransmits out then we 3120 * can undo. Otherwise we clock out new packets but do not 3121 * mark more packets lost or retransmit more. 3122 */ 3123 if (tp->retrans_out) 3124 return true; 3125 3126 if (!tcp_any_retrans_done(sk)) 3127 tp->retrans_stamp = 0; 3128 3129 DBGUNDO(sk, "partial recovery"); 3130 tcp_undo_cwnd_reduction(sk, true); 3131 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 3132 tcp_try_keep_open(sk); 3133 } 3134 return false; 3135 } 3136 3137 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 3138 { 3139 struct tcp_sock *tp = tcp_sk(sk); 3140 3141 if (tcp_rtx_queue_empty(sk)) 3142 return; 3143 3144 if (unlikely(tcp_is_reno(tp))) { 3145 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 3146 } else { 3147 u32 prior_retrans = tp->retrans_out; 3148 3149 if (tcp_rack_mark_lost(sk)) 3150 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 3151 if (prior_retrans > tp->retrans_out) 3152 *ack_flag |= FLAG_LOST_RETRANS; 3153 } 3154 } 3155 3156 /* Process an event, which can update packets-in-flight not trivially. 3157 * Main goal of this function is to calculate new estimate for left_out, 3158 * taking into account both packets sitting in receiver's buffer and 3159 * packets lost by network. 3160 * 3161 * Besides that it updates the congestion state when packet loss or ECN 3162 * is detected. But it does not reduce the cwnd, it is done by the 3163 * congestion control later. 3164 * 3165 * It does _not_ decide what to send, it is made in function 3166 * tcp_xmit_retransmit_queue(). 3167 */ 3168 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3169 int num_dupack, int *ack_flag, int *rexmit) 3170 { 3171 struct inet_connection_sock *icsk = inet_csk(sk); 3172 struct tcp_sock *tp = tcp_sk(sk); 3173 int flag = *ack_flag; 3174 bool ece_ack = flag & FLAG_ECE; 3175 3176 if (!tp->packets_out && tp->sacked_out) 3177 tp->sacked_out = 0; 3178 3179 /* Now state machine starts. 3180 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3181 if (ece_ack) 3182 tp->prior_ssthresh = 0; 3183 3184 /* B. In all the states check for reneging SACKs. */ 3185 if (tcp_check_sack_reneging(sk, ack_flag)) 3186 return; 3187 3188 /* C. Check consistency of the current state. */ 3189 tcp_verify_left_out(tp); 3190 3191 /* D. Check state exit conditions. State can be terminated 3192 * when high_seq is ACKed. */ 3193 if (icsk->icsk_ca_state == TCP_CA_Open) { 3194 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3195 tp->retrans_stamp = 0; 3196 } else if (!before(tp->snd_una, tp->high_seq)) { 3197 switch (icsk->icsk_ca_state) { 3198 case TCP_CA_CWR: 3199 /* CWR is to be held something *above* high_seq 3200 * is ACKed for CWR bit to reach receiver. */ 3201 if (tp->snd_una != tp->high_seq) { 3202 tcp_end_cwnd_reduction(sk); 3203 tcp_set_ca_state(sk, TCP_CA_Open); 3204 } 3205 break; 3206 3207 case TCP_CA_Recovery: 3208 if (tcp_is_reno(tp)) 3209 tcp_reset_reno_sack(tp); 3210 if (tcp_try_undo_recovery(sk)) 3211 return; 3212 tcp_end_cwnd_reduction(sk); 3213 break; 3214 } 3215 } 3216 3217 /* E. Process state. */ 3218 switch (icsk->icsk_ca_state) { 3219 case TCP_CA_Recovery: 3220 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3221 if (tcp_is_reno(tp)) 3222 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3223 } else if (tcp_try_undo_partial(sk, prior_snd_una)) 3224 return; 3225 3226 if (tcp_try_undo_dsack(sk)) 3227 tcp_try_to_open(sk, flag); 3228 3229 tcp_identify_packet_loss(sk, ack_flag); 3230 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3231 if (!tcp_time_to_recover(tp)) 3232 return; 3233 /* Undo reverts the recovery state. If loss is evident, 3234 * starts a new recovery (e.g. reordering then loss); 3235 */ 3236 tcp_enter_recovery(sk, ece_ack); 3237 } 3238 break; 3239 case TCP_CA_Loss: 3240 tcp_process_loss(sk, flag, num_dupack, rexmit); 3241 if (icsk->icsk_ca_state != TCP_CA_Loss) 3242 tcp_update_rto_time(tp); 3243 tcp_identify_packet_loss(sk, ack_flag); 3244 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3245 (*ack_flag & FLAG_LOST_RETRANS))) 3246 return; 3247 /* Change state if cwnd is undone or retransmits are lost */ 3248 fallthrough; 3249 default: 3250 if (tcp_is_reno(tp)) { 3251 if (flag & FLAG_SND_UNA_ADVANCED) 3252 tcp_reset_reno_sack(tp); 3253 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3254 } 3255 3256 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3257 tcp_try_undo_dsack(sk); 3258 3259 tcp_identify_packet_loss(sk, ack_flag); 3260 if (!tcp_time_to_recover(tp)) { 3261 tcp_try_to_open(sk, flag); 3262 return; 3263 } 3264 3265 /* MTU probe failure: don't reduce cwnd */ 3266 if (icsk->icsk_ca_state < TCP_CA_CWR && 3267 icsk->icsk_mtup.probe_size && 3268 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3269 tcp_mtup_probe_failed(sk); 3270 /* Restores the reduction we did in tcp_mtup_probe() */ 3271 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3272 tcp_simple_retransmit(sk); 3273 return; 3274 } 3275 3276 /* Otherwise enter Recovery state */ 3277 tcp_enter_recovery(sk, ece_ack); 3278 } 3279 3280 *rexmit = REXMIT_LOST; 3281 } 3282 3283 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3284 { 3285 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3286 struct tcp_sock *tp = tcp_sk(sk); 3287 3288 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3289 /* If the remote keeps returning delayed ACKs, eventually 3290 * the min filter would pick it up and overestimate the 3291 * prop. delay when it expires. Skip suspected delayed ACKs. 3292 */ 3293 return; 3294 } 3295 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3296 rtt_us ? : jiffies_to_usecs(1)); 3297 } 3298 3299 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3300 long seq_rtt_us, long sack_rtt_us, 3301 long ca_rtt_us, struct rate_sample *rs) 3302 { 3303 const struct tcp_sock *tp = tcp_sk(sk); 3304 3305 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3306 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3307 * Karn's algorithm forbids taking RTT if some retransmitted data 3308 * is acked (RFC6298). 3309 */ 3310 if (seq_rtt_us < 0) 3311 seq_rtt_us = sack_rtt_us; 3312 3313 /* RTTM Rule: A TSecr value received in a segment is used to 3314 * update the averaged RTT measurement only if the segment 3315 * acknowledges some new data, i.e., only if it advances the 3316 * left edge of the send window. 3317 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3318 */ 3319 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && 3320 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) 3321 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp, 1); 3322 3323 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3324 if (seq_rtt_us < 0) 3325 return false; 3326 3327 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3328 * always taken together with ACK, SACK, or TS-opts. Any negative 3329 * values will be skipped with the seq_rtt_us < 0 check above. 3330 */ 3331 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3332 tcp_rtt_estimator(sk, seq_rtt_us); 3333 tcp_set_rto(sk); 3334 3335 /* RFC6298: only reset backoff on valid RTT measurement. */ 3336 inet_csk(sk)->icsk_backoff = 0; 3337 return true; 3338 } 3339 3340 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3341 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3342 { 3343 struct rate_sample rs; 3344 long rtt_us = -1L; 3345 3346 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3347 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3348 3349 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3350 } 3351 3352 3353 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3354 { 3355 const struct inet_connection_sock *icsk = inet_csk(sk); 3356 3357 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3358 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3359 } 3360 3361 /* Restart timer after forward progress on connection. 3362 * RFC2988 recommends to restart timer to now+rto. 3363 */ 3364 void tcp_rearm_rto(struct sock *sk) 3365 { 3366 const struct inet_connection_sock *icsk = inet_csk(sk); 3367 struct tcp_sock *tp = tcp_sk(sk); 3368 3369 /* If the retrans timer is currently being used by Fast Open 3370 * for SYN-ACK retrans purpose, stay put. 3371 */ 3372 if (rcu_access_pointer(tp->fastopen_rsk)) 3373 return; 3374 3375 if (!tp->packets_out) { 3376 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3377 } else { 3378 u32 rto = inet_csk(sk)->icsk_rto; 3379 /* Offset the time elapsed after installing regular RTO */ 3380 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3381 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3382 s64 delta_us = tcp_rto_delta_us(sk); 3383 /* delta_us may not be positive if the socket is locked 3384 * when the retrans timer fires and is rescheduled. 3385 */ 3386 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3387 } 3388 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true); 3389 } 3390 } 3391 3392 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3393 static void tcp_set_xmit_timer(struct sock *sk) 3394 { 3395 if (!tcp_schedule_loss_probe(sk, true)) 3396 tcp_rearm_rto(sk); 3397 } 3398 3399 /* If we get here, the whole TSO packet has not been acked. */ 3400 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3401 { 3402 struct tcp_sock *tp = tcp_sk(sk); 3403 u32 packets_acked; 3404 3405 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3406 3407 packets_acked = tcp_skb_pcount(skb); 3408 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3409 return 0; 3410 packets_acked -= tcp_skb_pcount(skb); 3411 3412 if (packets_acked) { 3413 BUG_ON(tcp_skb_pcount(skb) == 0); 3414 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3415 } 3416 3417 return packets_acked; 3418 } 3419 3420 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3421 const struct sk_buff *ack_skb, u32 prior_snd_una) 3422 { 3423 const struct skb_shared_info *shinfo; 3424 3425 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3426 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3427 return; 3428 3429 shinfo = skb_shinfo(skb); 3430 if (!before(shinfo->tskey, prior_snd_una) && 3431 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3432 tcp_skb_tsorted_save(skb) { 3433 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3434 } tcp_skb_tsorted_restore(skb); 3435 } 3436 } 3437 3438 /* Remove acknowledged frames from the retransmission queue. If our packet 3439 * is before the ack sequence we can discard it as it's confirmed to have 3440 * arrived at the other end. 3441 */ 3442 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3443 u32 prior_fack, u32 prior_snd_una, 3444 struct tcp_sacktag_state *sack, bool ece_ack) 3445 { 3446 const struct inet_connection_sock *icsk = inet_csk(sk); 3447 u64 first_ackt, last_ackt; 3448 struct tcp_sock *tp = tcp_sk(sk); 3449 u32 prior_sacked = tp->sacked_out; 3450 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3451 struct sk_buff *skb, *next; 3452 bool fully_acked = true; 3453 long sack_rtt_us = -1L; 3454 long seq_rtt_us = -1L; 3455 long ca_rtt_us = -1L; 3456 u32 pkts_acked = 0; 3457 bool rtt_update; 3458 int flag = 0; 3459 3460 first_ackt = 0; 3461 3462 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3463 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3464 const u32 start_seq = scb->seq; 3465 u8 sacked = scb->sacked; 3466 u32 acked_pcount; 3467 3468 /* Determine how many packets and what bytes were acked, tso and else */ 3469 if (after(scb->end_seq, tp->snd_una)) { 3470 if (tcp_skb_pcount(skb) == 1 || 3471 !after(tp->snd_una, scb->seq)) 3472 break; 3473 3474 acked_pcount = tcp_tso_acked(sk, skb); 3475 if (!acked_pcount) 3476 break; 3477 fully_acked = false; 3478 } else { 3479 acked_pcount = tcp_skb_pcount(skb); 3480 } 3481 3482 if (unlikely(sacked & TCPCB_RETRANS)) { 3483 if (sacked & TCPCB_SACKED_RETRANS) 3484 tp->retrans_out -= acked_pcount; 3485 flag |= FLAG_RETRANS_DATA_ACKED; 3486 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3487 last_ackt = tcp_skb_timestamp_us(skb); 3488 WARN_ON_ONCE(last_ackt == 0); 3489 if (!first_ackt) 3490 first_ackt = last_ackt; 3491 3492 if (before(start_seq, reord)) 3493 reord = start_seq; 3494 if (!after(scb->end_seq, tp->high_seq)) 3495 flag |= FLAG_ORIG_SACK_ACKED; 3496 } 3497 3498 if (sacked & TCPCB_SACKED_ACKED) { 3499 tp->sacked_out -= acked_pcount; 3500 /* snd_una delta covers these skbs */ 3501 sack->delivered_bytes -= skb->len; 3502 } else if (tcp_is_sack(tp)) { 3503 tcp_count_delivered(tp, acked_pcount, ece_ack); 3504 if (!tcp_skb_spurious_retrans(tp, skb)) 3505 tcp_rack_advance(tp, sacked, scb->end_seq, 3506 tcp_skb_timestamp_us(skb)); 3507 } 3508 if (sacked & TCPCB_LOST) 3509 tp->lost_out -= acked_pcount; 3510 3511 tp->packets_out -= acked_pcount; 3512 pkts_acked += acked_pcount; 3513 tcp_rate_skb_delivered(sk, skb, sack->rate); 3514 3515 /* Initial outgoing SYN's get put onto the write_queue 3516 * just like anything else we transmit. It is not 3517 * true data, and if we misinform our callers that 3518 * this ACK acks real data, we will erroneously exit 3519 * connection startup slow start one packet too 3520 * quickly. This is severely frowned upon behavior. 3521 */ 3522 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3523 flag |= FLAG_DATA_ACKED; 3524 } else { 3525 flag |= FLAG_SYN_ACKED; 3526 tp->retrans_stamp = 0; 3527 } 3528 3529 if (!fully_acked) 3530 break; 3531 3532 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3533 3534 next = skb_rb_next(skb); 3535 if (unlikely(skb == tp->retransmit_skb_hint)) 3536 tp->retransmit_skb_hint = NULL; 3537 tcp_highest_sack_replace(sk, skb, next); 3538 tcp_rtx_queue_unlink_and_free(skb, sk); 3539 } 3540 3541 if (!skb) 3542 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3543 3544 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3545 tp->snd_up = tp->snd_una; 3546 3547 if (skb) { 3548 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3549 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3550 flag |= FLAG_SACK_RENEGING; 3551 } 3552 3553 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3554 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3555 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3556 3557 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3558 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3559 sack->rate->prior_delivered + 1 == tp->delivered && 3560 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3561 /* Conservatively mark a delayed ACK. It's typically 3562 * from a lone runt packet over the round trip to 3563 * a receiver w/o out-of-order or CE events. 3564 */ 3565 flag |= FLAG_ACK_MAYBE_DELAYED; 3566 } 3567 } 3568 if (sack->first_sackt) { 3569 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3570 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3571 } 3572 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3573 ca_rtt_us, sack->rate); 3574 3575 if (flag & FLAG_ACKED) { 3576 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3577 if (unlikely(icsk->icsk_mtup.probe_size && 3578 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3579 tcp_mtup_probe_success(sk); 3580 } 3581 3582 if (tcp_is_reno(tp)) { 3583 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3584 3585 /* If any of the cumulatively ACKed segments was 3586 * retransmitted, non-SACK case cannot confirm that 3587 * progress was due to original transmission due to 3588 * lack of TCPCB_SACKED_ACKED bits even if some of 3589 * the packets may have been never retransmitted. 3590 */ 3591 if (flag & FLAG_RETRANS_DATA_ACKED) 3592 flag &= ~FLAG_ORIG_SACK_ACKED; 3593 } else { 3594 /* Non-retransmitted hole got filled? That's reordering */ 3595 if (before(reord, prior_fack)) 3596 tcp_check_sack_reordering(sk, reord, 0); 3597 } 3598 3599 sack->delivered_bytes = (skb ? 3600 TCP_SKB_CB(skb)->seq : tp->snd_una) - 3601 prior_snd_una; 3602 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3603 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3604 tcp_skb_timestamp_us(skb))) { 3605 /* Do not re-arm RTO if the sack RTT is measured from data sent 3606 * after when the head was last (re)transmitted. Otherwise the 3607 * timeout may continue to extend in loss recovery. 3608 */ 3609 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3610 } 3611 3612 if (icsk->icsk_ca_ops->pkts_acked) { 3613 struct ack_sample sample = { .pkts_acked = pkts_acked, 3614 .rtt_us = sack->rate->rtt_us }; 3615 3616 sample.in_flight = tp->mss_cache * 3617 (tp->delivered - sack->rate->prior_delivered); 3618 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3619 } 3620 3621 #if FASTRETRANS_DEBUG > 0 3622 WARN_ON((int)tp->sacked_out < 0); 3623 WARN_ON((int)tp->lost_out < 0); 3624 WARN_ON((int)tp->retrans_out < 0); 3625 if (!tp->packets_out && tcp_is_sack(tp)) { 3626 icsk = inet_csk(sk); 3627 if (tp->lost_out) { 3628 pr_debug("Leak l=%u %d\n", 3629 tp->lost_out, icsk->icsk_ca_state); 3630 tp->lost_out = 0; 3631 } 3632 if (tp->sacked_out) { 3633 pr_debug("Leak s=%u %d\n", 3634 tp->sacked_out, icsk->icsk_ca_state); 3635 tp->sacked_out = 0; 3636 } 3637 if (tp->retrans_out) { 3638 pr_debug("Leak r=%u %d\n", 3639 tp->retrans_out, icsk->icsk_ca_state); 3640 tp->retrans_out = 0; 3641 } 3642 } 3643 #endif 3644 return flag; 3645 } 3646 3647 static void tcp_ack_probe(struct sock *sk) 3648 { 3649 struct inet_connection_sock *icsk = inet_csk(sk); 3650 struct sk_buff *head = tcp_send_head(sk); 3651 const struct tcp_sock *tp = tcp_sk(sk); 3652 3653 /* Was it a usable window open? */ 3654 if (!head) 3655 return; 3656 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3657 icsk->icsk_backoff = 0; 3658 icsk->icsk_probes_tstamp = 0; 3659 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3660 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3661 * This function is not for random using! 3662 */ 3663 } else { 3664 unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk)); 3665 3666 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3667 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true); 3668 } 3669 } 3670 3671 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3672 { 3673 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3674 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3675 } 3676 3677 /* Decide wheather to run the increase function of congestion control. */ 3678 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3679 { 3680 /* If reordering is high then always grow cwnd whenever data is 3681 * delivered regardless of its ordering. Otherwise stay conservative 3682 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3683 * new SACK or ECE mark may first advance cwnd here and later reduce 3684 * cwnd in tcp_fastretrans_alert() based on more states. 3685 */ 3686 if (tcp_sk(sk)->reordering > 3687 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3688 return flag & FLAG_FORWARD_PROGRESS; 3689 3690 return flag & FLAG_DATA_ACKED; 3691 } 3692 3693 /* The "ultimate" congestion control function that aims to replace the rigid 3694 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3695 * It's called toward the end of processing an ACK with precise rate 3696 * information. All transmission or retransmission are delayed afterwards. 3697 */ 3698 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3699 int flag, const struct rate_sample *rs) 3700 { 3701 const struct inet_connection_sock *icsk = inet_csk(sk); 3702 3703 if (icsk->icsk_ca_ops->cong_control) { 3704 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs); 3705 return; 3706 } 3707 3708 if (tcp_in_cwnd_reduction(sk)) { 3709 /* Reduce cwnd if state mandates */ 3710 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3711 } else if (tcp_may_raise_cwnd(sk, flag)) { 3712 /* Advance cwnd if state allows */ 3713 tcp_cong_avoid(sk, ack, acked_sacked); 3714 } 3715 tcp_update_pacing_rate(sk); 3716 } 3717 3718 /* Check that window update is acceptable. 3719 * The function assumes that snd_una<=ack<=snd_next. 3720 */ 3721 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3722 const u32 ack, const u32 ack_seq, 3723 const u32 nwin) 3724 { 3725 return after(ack, tp->snd_una) || 3726 after(ack_seq, tp->snd_wl1) || 3727 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3728 } 3729 3730 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack) 3731 { 3732 #ifdef CONFIG_TCP_AO 3733 struct tcp_ao_info *ao; 3734 3735 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3736 return; 3737 3738 ao = rcu_dereference_protected(tp->ao_info, 3739 lockdep_sock_is_held((struct sock *)tp)); 3740 if (ao && ack < tp->snd_una) { 3741 ao->snd_sne++; 3742 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne); 3743 } 3744 #endif 3745 } 3746 3747 /* If we update tp->snd_una, also update tp->bytes_acked */ 3748 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3749 { 3750 u32 delta = ack - tp->snd_una; 3751 3752 sock_owned_by_me((struct sock *)tp); 3753 tp->bytes_acked += delta; 3754 tcp_snd_sne_update(tp, ack); 3755 tp->snd_una = ack; 3756 } 3757 3758 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq) 3759 { 3760 #ifdef CONFIG_TCP_AO 3761 struct tcp_ao_info *ao; 3762 3763 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3764 return; 3765 3766 ao = rcu_dereference_protected(tp->ao_info, 3767 lockdep_sock_is_held((struct sock *)tp)); 3768 if (ao && seq < tp->rcv_nxt) { 3769 ao->rcv_sne++; 3770 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne); 3771 } 3772 #endif 3773 } 3774 3775 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3776 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3777 { 3778 u32 delta = seq - tp->rcv_nxt; 3779 3780 sock_owned_by_me((struct sock *)tp); 3781 tp->bytes_received += delta; 3782 tcp_rcv_sne_update(tp, seq); 3783 WRITE_ONCE(tp->rcv_nxt, seq); 3784 } 3785 3786 /* Update our send window. 3787 * 3788 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3789 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3790 */ 3791 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3792 u32 ack_seq) 3793 { 3794 struct tcp_sock *tp = tcp_sk(sk); 3795 int flag = 0; 3796 u32 nwin = ntohs(tcp_hdr(skb)->window); 3797 3798 if (likely(!tcp_hdr(skb)->syn)) 3799 nwin <<= tp->rx_opt.snd_wscale; 3800 3801 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3802 flag |= FLAG_WIN_UPDATE; 3803 tcp_update_wl(tp, ack_seq); 3804 3805 if (tp->snd_wnd != nwin) { 3806 tp->snd_wnd = nwin; 3807 3808 /* Note, it is the only place, where 3809 * fast path is recovered for sending TCP. 3810 */ 3811 tp->pred_flags = 0; 3812 tcp_fast_path_check(sk); 3813 3814 if (!tcp_write_queue_empty(sk)) 3815 tcp_slow_start_after_idle_check(sk); 3816 3817 if (nwin > tp->max_window) { 3818 tp->max_window = nwin; 3819 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3820 } 3821 } 3822 } 3823 3824 tcp_snd_una_update(tp, ack); 3825 3826 return flag; 3827 } 3828 3829 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3830 u32 *last_oow_ack_time) 3831 { 3832 /* Paired with the WRITE_ONCE() in this function. */ 3833 u32 val = READ_ONCE(*last_oow_ack_time); 3834 3835 if (val) { 3836 s32 elapsed = (s32)(tcp_jiffies32 - val); 3837 3838 if (0 <= elapsed && 3839 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3840 NET_INC_STATS(net, mib_idx); 3841 return true; /* rate-limited: don't send yet! */ 3842 } 3843 } 3844 3845 /* Paired with the prior READ_ONCE() and with itself, 3846 * as we might be lockless. 3847 */ 3848 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3849 3850 return false; /* not rate-limited: go ahead, send dupack now! */ 3851 } 3852 3853 /* Return true if we're currently rate-limiting out-of-window ACKs and 3854 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3855 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3856 * attacks that send repeated SYNs or ACKs for the same connection. To 3857 * do this, we do not send a duplicate SYNACK or ACK if the remote 3858 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3859 */ 3860 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3861 int mib_idx, u32 *last_oow_ack_time) 3862 { 3863 /* Data packets without SYNs are not likely part of an ACK loop. */ 3864 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3865 !tcp_hdr(skb)->syn) 3866 return false; 3867 3868 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3869 } 3870 3871 static void tcp_send_ack_reflect_ect(struct sock *sk, bool accecn_reflector) 3872 { 3873 struct tcp_sock *tp = tcp_sk(sk); 3874 u16 flags = 0; 3875 3876 if (accecn_reflector) 3877 flags = tcp_accecn_reflector_flags(tp->syn_ect_rcv); 3878 __tcp_send_ack(sk, tp->rcv_nxt, flags); 3879 } 3880 3881 /* RFC 5961 7 [ACK Throttling] */ 3882 static void tcp_send_challenge_ack(struct sock *sk, bool accecn_reflector) 3883 { 3884 struct tcp_sock *tp = tcp_sk(sk); 3885 struct net *net = sock_net(sk); 3886 u32 count, now, ack_limit; 3887 3888 /* First check our per-socket dupack rate limit. */ 3889 if (__tcp_oow_rate_limited(net, 3890 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3891 &tp->last_oow_ack_time)) 3892 return; 3893 3894 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3895 if (ack_limit == INT_MAX) 3896 goto send_ack; 3897 3898 /* Then check host-wide RFC 5961 rate limit. */ 3899 now = jiffies / HZ; 3900 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3901 u32 half = (ack_limit + 1) >> 1; 3902 3903 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3904 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3905 get_random_u32_inclusive(half, ack_limit + half - 1)); 3906 } 3907 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3908 if (count > 0) { 3909 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3910 send_ack: 3911 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3912 tcp_send_ack_reflect_ect(sk, accecn_reflector); 3913 } 3914 } 3915 3916 static void tcp_store_ts_recent(struct tcp_sock *tp) 3917 { 3918 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3919 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3920 } 3921 3922 static int __tcp_replace_ts_recent(struct tcp_sock *tp, s32 tstamp_delta) 3923 { 3924 tcp_store_ts_recent(tp); 3925 return tstamp_delta > 0 ? FLAG_TS_PROGRESS : 0; 3926 } 3927 3928 static int tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3929 { 3930 s32 delta; 3931 3932 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3933 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3934 * extra check below makes sure this can only happen 3935 * for pure ACK frames. -DaveM 3936 * 3937 * Not only, also it occurs for expired timestamps. 3938 */ 3939 3940 if (tcp_paws_check(&tp->rx_opt, 0)) { 3941 delta = tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent; 3942 return __tcp_replace_ts_recent(tp, delta); 3943 } 3944 } 3945 3946 return 0; 3947 } 3948 3949 /* This routine deals with acks during a TLP episode and ends an episode by 3950 * resetting tlp_high_seq. Ref: TLP algorithm in RFC8985 3951 */ 3952 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3953 { 3954 struct tcp_sock *tp = tcp_sk(sk); 3955 3956 if (before(ack, tp->tlp_high_seq)) 3957 return; 3958 3959 if (!tp->tlp_retrans) { 3960 /* TLP of new data has been acknowledged */ 3961 tp->tlp_high_seq = 0; 3962 } else if (flag & FLAG_DSACK_TLP) { 3963 /* This DSACK means original and TLP probe arrived; no loss */ 3964 tp->tlp_high_seq = 0; 3965 } else if (after(ack, tp->tlp_high_seq)) { 3966 /* ACK advances: there was a loss, so reduce cwnd. Reset 3967 * tlp_high_seq in tcp_init_cwnd_reduction() 3968 */ 3969 tcp_init_cwnd_reduction(sk); 3970 tcp_set_ca_state(sk, TCP_CA_CWR); 3971 tcp_end_cwnd_reduction(sk); 3972 tcp_try_keep_open(sk); 3973 NET_INC_STATS(sock_net(sk), 3974 LINUX_MIB_TCPLOSSPROBERECOVERY); 3975 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3976 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3977 /* Pure dupack: original and TLP probe arrived; no loss */ 3978 tp->tlp_high_seq = 0; 3979 } 3980 } 3981 3982 static void tcp_in_ack_event(struct sock *sk, int flag) 3983 { 3984 const struct inet_connection_sock *icsk = inet_csk(sk); 3985 3986 if (icsk->icsk_ca_ops->in_ack_event) { 3987 u32 ack_ev_flags = 0; 3988 3989 if (flag & FLAG_WIN_UPDATE) 3990 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3991 if (flag & FLAG_SLOWPATH) { 3992 ack_ev_flags |= CA_ACK_SLOWPATH; 3993 if (flag & FLAG_ECE) 3994 ack_ev_flags |= CA_ACK_ECE; 3995 } 3996 3997 icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags); 3998 } 3999 } 4000 4001 /* Congestion control has updated the cwnd already. So if we're in 4002 * loss recovery then now we do any new sends (for FRTO) or 4003 * retransmits (for CA_Loss or CA_recovery) that make sense. 4004 */ 4005 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 4006 { 4007 struct tcp_sock *tp = tcp_sk(sk); 4008 4009 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 4010 return; 4011 4012 if (unlikely(rexmit == REXMIT_NEW)) { 4013 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 4014 TCP_NAGLE_OFF); 4015 if (after(tp->snd_nxt, tp->high_seq)) 4016 return; 4017 tp->frto = 0; 4018 } 4019 tcp_xmit_retransmit_queue(sk); 4020 } 4021 4022 /* Returns the number of packets newly acked or sacked by the current ACK */ 4023 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, 4024 u32 ecn_count, int flag) 4025 { 4026 const struct net *net = sock_net(sk); 4027 struct tcp_sock *tp = tcp_sk(sk); 4028 u32 delivered; 4029 4030 delivered = tp->delivered - prior_delivered; 4031 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 4032 4033 if (flag & FLAG_ECE) { 4034 if (tcp_ecn_mode_rfc3168(tp)) 4035 ecn_count = delivered; 4036 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, ecn_count); 4037 } 4038 4039 return delivered; 4040 } 4041 4042 /* This routine deals with incoming acks, but not outgoing ones. */ 4043 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 4044 { 4045 struct inet_connection_sock *icsk = inet_csk(sk); 4046 struct tcp_sock *tp = tcp_sk(sk); 4047 struct tcp_sacktag_state sack_state; 4048 struct rate_sample rs = { .prior_delivered = 0 }; 4049 u32 prior_snd_una = tp->snd_una; 4050 bool is_sack_reneg = tp->is_sack_reneg; 4051 u32 ack_seq = TCP_SKB_CB(skb)->seq; 4052 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4053 int num_dupack = 0; 4054 int prior_packets = tp->packets_out; 4055 u32 delivered = tp->delivered; 4056 u32 lost = tp->lost; 4057 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 4058 u32 ecn_count = 0; /* Did we receive ECE/an AccECN ACE update? */ 4059 u32 prior_fack; 4060 4061 sack_state.first_sackt = 0; 4062 sack_state.rate = &rs; 4063 sack_state.sack_delivered = 0; 4064 sack_state.delivered_bytes = 0; 4065 4066 /* We very likely will need to access rtx queue. */ 4067 prefetch(sk->tcp_rtx_queue.rb_node); 4068 4069 /* If the ack is older than previous acks 4070 * then we can probably ignore it. 4071 */ 4072 if (before(ack, prior_snd_una)) { 4073 u32 max_window; 4074 4075 /* do not accept ACK for bytes we never sent. */ 4076 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 4077 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 4078 if (before(ack, prior_snd_una - max_window)) { 4079 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 4080 tcp_send_challenge_ack(sk, false); 4081 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 4082 } 4083 goto old_ack; 4084 } 4085 4086 /* If the ack includes data we haven't sent yet, discard 4087 * this segment (RFC793 Section 3.9). 4088 */ 4089 if (after(ack, tp->snd_nxt)) 4090 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 4091 4092 if (after(ack, prior_snd_una)) { 4093 flag |= FLAG_SND_UNA_ADVANCED; 4094 WRITE_ONCE(icsk->icsk_retransmits, 0); 4095 4096 #if IS_ENABLED(CONFIG_TLS_DEVICE) 4097 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 4098 if (tp->tcp_clean_acked) 4099 tp->tcp_clean_acked(sk, ack); 4100 #endif 4101 } 4102 4103 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 4104 rs.prior_in_flight = tcp_packets_in_flight(tp); 4105 4106 /* ts_recent update must be made after we are sure that the packet 4107 * is in window. 4108 */ 4109 if (flag & FLAG_UPDATE_TS_RECENT) 4110 flag |= tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4111 4112 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 4113 FLAG_SND_UNA_ADVANCED) { 4114 /* Window is constant, pure forward advance. 4115 * No more checks are required. 4116 * Note, we use the fact that SND.UNA>=SND.WL2. 4117 */ 4118 tcp_update_wl(tp, ack_seq); 4119 tcp_snd_una_update(tp, ack); 4120 flag |= FLAG_WIN_UPDATE; 4121 4122 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 4123 } else { 4124 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 4125 flag |= FLAG_DATA; 4126 else 4127 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 4128 4129 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 4130 4131 if (TCP_SKB_CB(skb)->sacked) 4132 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4133 &sack_state); 4134 4135 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) 4136 flag |= FLAG_ECE; 4137 4138 if (sack_state.sack_delivered) 4139 tcp_count_delivered(tp, sack_state.sack_delivered, 4140 flag & FLAG_ECE); 4141 } 4142 4143 /* This is a deviation from RFC3168 since it states that: 4144 * "When the TCP data sender is ready to set the CWR bit after reducing 4145 * the congestion window, it SHOULD set the CWR bit only on the first 4146 * new data packet that it transmits." 4147 * We accept CWR on pure ACKs to be more robust 4148 * with widely-deployed TCP implementations that do this. 4149 */ 4150 tcp_ecn_accept_cwr(sk, skb); 4151 4152 /* We passed data and got it acked, remove any soft error 4153 * log. Something worked... 4154 */ 4155 if (READ_ONCE(sk->sk_err_soft)) 4156 WRITE_ONCE(sk->sk_err_soft, 0); 4157 WRITE_ONCE(icsk->icsk_probes_out, 0); 4158 tp->rcv_tstamp = tcp_jiffies32; 4159 if (!prior_packets) 4160 goto no_queue; 4161 4162 /* See if we can take anything off of the retransmit queue. */ 4163 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 4164 &sack_state, flag & FLAG_ECE); 4165 4166 tcp_rack_update_reo_wnd(sk, &rs); 4167 4168 if (tcp_ecn_mode_accecn(tp)) 4169 ecn_count = tcp_accecn_process(sk, skb, 4170 tp->delivered - delivered, 4171 sack_state.delivered_bytes, 4172 &flag); 4173 4174 tcp_in_ack_event(sk, flag); 4175 4176 if (tp->tlp_high_seq) 4177 tcp_process_tlp_ack(sk, ack, flag); 4178 4179 if (tcp_ack_is_dubious(sk, flag)) { 4180 if (!(flag & (FLAG_SND_UNA_ADVANCED | 4181 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 4182 num_dupack = 1; 4183 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 4184 if (!(flag & FLAG_DATA)) 4185 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4186 } 4187 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4188 &rexmit); 4189 } 4190 4191 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 4192 if (flag & FLAG_SET_XMIT_TIMER) 4193 tcp_set_xmit_timer(sk); 4194 4195 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 4196 sk_dst_confirm(sk); 4197 4198 delivered = tcp_newly_delivered(sk, delivered, ecn_count, flag); 4199 4200 lost = tp->lost - lost; /* freshly marked lost */ 4201 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 4202 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 4203 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 4204 tcp_xmit_recovery(sk, rexmit); 4205 return 1; 4206 4207 no_queue: 4208 if (tcp_ecn_mode_accecn(tp)) 4209 ecn_count = tcp_accecn_process(sk, skb, 4210 tp->delivered - delivered, 4211 sack_state.delivered_bytes, 4212 &flag); 4213 tcp_in_ack_event(sk, flag); 4214 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 4215 if (flag & FLAG_DSACKING_ACK) { 4216 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4217 &rexmit); 4218 tcp_newly_delivered(sk, delivered, ecn_count, flag); 4219 } 4220 /* If this ack opens up a zero window, clear backoff. It was 4221 * being used to time the probes, and is probably far higher than 4222 * it needs to be for normal retransmission. 4223 */ 4224 tcp_ack_probe(sk); 4225 4226 if (tp->tlp_high_seq) 4227 tcp_process_tlp_ack(sk, ack, flag); 4228 return 1; 4229 4230 old_ack: 4231 /* If data was SACKed, tag it and see if we should send more data. 4232 * If data was DSACKed, see if we can undo a cwnd reduction. 4233 */ 4234 if (TCP_SKB_CB(skb)->sacked) { 4235 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4236 &sack_state); 4237 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4238 &rexmit); 4239 tcp_newly_delivered(sk, delivered, ecn_count, flag); 4240 tcp_xmit_recovery(sk, rexmit); 4241 } 4242 4243 return 0; 4244 } 4245 4246 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4247 bool syn, struct tcp_fastopen_cookie *foc, 4248 bool exp_opt) 4249 { 4250 /* Valid only in SYN or SYN-ACK with an even length. */ 4251 if (!foc || !syn || len < 0 || (len & 1)) 4252 return; 4253 4254 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4255 len <= TCP_FASTOPEN_COOKIE_MAX) 4256 memcpy(foc->val, cookie, len); 4257 else if (len != 0) 4258 len = -1; 4259 foc->len = len; 4260 foc->exp = exp_opt; 4261 } 4262 4263 static bool smc_parse_options(const struct tcphdr *th, 4264 struct tcp_options_received *opt_rx, 4265 const unsigned char *ptr, 4266 int opsize) 4267 { 4268 #if IS_ENABLED(CONFIG_SMC) 4269 if (static_branch_unlikely(&tcp_have_smc)) { 4270 if (th->syn && !(opsize & 1) && 4271 opsize >= TCPOLEN_EXP_SMC_BASE && 4272 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4273 opt_rx->smc_ok = 1; 4274 return true; 4275 } 4276 } 4277 #endif 4278 return false; 4279 } 4280 4281 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4282 * value on success. 4283 */ 4284 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4285 { 4286 const unsigned char *ptr = (const unsigned char *)(th + 1); 4287 int length = (th->doff * 4) - sizeof(struct tcphdr); 4288 u16 mss = 0; 4289 4290 while (length > 0) { 4291 int opcode = *ptr++; 4292 int opsize; 4293 4294 switch (opcode) { 4295 case TCPOPT_EOL: 4296 return mss; 4297 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4298 length--; 4299 continue; 4300 default: 4301 if (length < 2) 4302 return mss; 4303 opsize = *ptr++; 4304 if (opsize < 2) /* "silly options" */ 4305 return mss; 4306 if (opsize > length) 4307 return mss; /* fail on partial options */ 4308 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4309 u16 in_mss = get_unaligned_be16(ptr); 4310 4311 if (in_mss) { 4312 if (user_mss && user_mss < in_mss) 4313 in_mss = user_mss; 4314 mss = in_mss; 4315 } 4316 } 4317 ptr += opsize - 2; 4318 length -= opsize; 4319 } 4320 } 4321 return mss; 4322 } 4323 4324 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4325 * But, this can also be called on packets in the established flow when 4326 * the fast version below fails. 4327 */ 4328 void tcp_parse_options(const struct net *net, 4329 const struct sk_buff *skb, 4330 struct tcp_options_received *opt_rx, int estab, 4331 struct tcp_fastopen_cookie *foc) 4332 { 4333 const unsigned char *ptr; 4334 const struct tcphdr *th = tcp_hdr(skb); 4335 int length = (th->doff * 4) - sizeof(struct tcphdr); 4336 4337 ptr = (const unsigned char *)(th + 1); 4338 opt_rx->saw_tstamp = 0; 4339 opt_rx->accecn = 0; 4340 opt_rx->saw_unknown = 0; 4341 4342 while (length > 0) { 4343 int opcode = *ptr++; 4344 int opsize; 4345 4346 switch (opcode) { 4347 case TCPOPT_EOL: 4348 return; 4349 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4350 length--; 4351 continue; 4352 default: 4353 if (length < 2) 4354 return; 4355 opsize = *ptr++; 4356 if (opsize < 2) /* "silly options" */ 4357 return; 4358 if (opsize > length) 4359 return; /* don't parse partial options */ 4360 switch (opcode) { 4361 case TCPOPT_MSS: 4362 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4363 u16 in_mss = get_unaligned_be16(ptr); 4364 if (in_mss) { 4365 if (opt_rx->user_mss && 4366 opt_rx->user_mss < in_mss) 4367 in_mss = opt_rx->user_mss; 4368 opt_rx->mss_clamp = in_mss; 4369 } 4370 } 4371 break; 4372 case TCPOPT_WINDOW: 4373 if (opsize == TCPOLEN_WINDOW && th->syn && 4374 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4375 __u8 snd_wscale = *(__u8 *)ptr; 4376 opt_rx->wscale_ok = 1; 4377 if (snd_wscale > TCP_MAX_WSCALE) { 4378 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4379 __func__, 4380 snd_wscale, 4381 TCP_MAX_WSCALE); 4382 snd_wscale = TCP_MAX_WSCALE; 4383 } 4384 opt_rx->snd_wscale = snd_wscale; 4385 } 4386 break; 4387 case TCPOPT_TIMESTAMP: 4388 if ((opsize == TCPOLEN_TIMESTAMP) && 4389 ((estab && opt_rx->tstamp_ok) || 4390 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4391 opt_rx->saw_tstamp = 1; 4392 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4393 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4394 } 4395 break; 4396 case TCPOPT_SACK_PERM: 4397 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4398 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4399 opt_rx->sack_ok = TCP_SACK_SEEN; 4400 tcp_sack_reset(opt_rx); 4401 } 4402 break; 4403 4404 case TCPOPT_SACK: 4405 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4406 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4407 opt_rx->sack_ok) { 4408 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4409 } 4410 break; 4411 #ifdef CONFIG_TCP_MD5SIG 4412 case TCPOPT_MD5SIG: 4413 /* The MD5 Hash has already been 4414 * checked (see tcp_v{4,6}_rcv()). 4415 */ 4416 break; 4417 #endif 4418 #ifdef CONFIG_TCP_AO 4419 case TCPOPT_AO: 4420 /* TCP AO has already been checked 4421 * (see tcp_inbound_ao_hash()). 4422 */ 4423 break; 4424 #endif 4425 case TCPOPT_FASTOPEN: 4426 tcp_parse_fastopen_option( 4427 opsize - TCPOLEN_FASTOPEN_BASE, 4428 ptr, th->syn, foc, false); 4429 break; 4430 4431 case TCPOPT_ACCECN0: 4432 case TCPOPT_ACCECN1: 4433 /* Save offset of AccECN option in TCP header */ 4434 opt_rx->accecn = (ptr - 2) - (__u8 *)th; 4435 break; 4436 4437 case TCPOPT_EXP: 4438 /* Fast Open option shares code 254 using a 4439 * 16 bits magic number. 4440 */ 4441 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4442 get_unaligned_be16(ptr) == 4443 TCPOPT_FASTOPEN_MAGIC) { 4444 tcp_parse_fastopen_option(opsize - 4445 TCPOLEN_EXP_FASTOPEN_BASE, 4446 ptr + 2, th->syn, foc, true); 4447 break; 4448 } 4449 4450 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4451 break; 4452 4453 opt_rx->saw_unknown = 1; 4454 break; 4455 4456 default: 4457 opt_rx->saw_unknown = 1; 4458 } 4459 ptr += opsize-2; 4460 length -= opsize; 4461 } 4462 } 4463 } 4464 EXPORT_SYMBOL(tcp_parse_options); 4465 4466 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4467 { 4468 const __be32 *ptr = (const __be32 *)(th + 1); 4469 4470 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4471 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4472 tp->rx_opt.saw_tstamp = 1; 4473 ++ptr; 4474 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4475 ++ptr; 4476 if (*ptr) 4477 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4478 else 4479 tp->rx_opt.rcv_tsecr = 0; 4480 return true; 4481 } 4482 return false; 4483 } 4484 4485 /* Fast parse options. This hopes to only see timestamps. 4486 * If it is wrong it falls back on tcp_parse_options(). 4487 */ 4488 static bool tcp_fast_parse_options(const struct net *net, 4489 const struct sk_buff *skb, 4490 const struct tcphdr *th, struct tcp_sock *tp) 4491 { 4492 /* In the spirit of fast parsing, compare doff directly to constant 4493 * values. Because equality is used, short doff can be ignored here. 4494 */ 4495 if (th->doff == (sizeof(*th) / 4)) { 4496 tp->rx_opt.saw_tstamp = 0; 4497 tp->rx_opt.accecn = 0; 4498 return false; 4499 } else if (tp->rx_opt.tstamp_ok && 4500 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4501 if (tcp_parse_aligned_timestamp(tp, th)) { 4502 tp->rx_opt.accecn = 0; 4503 return true; 4504 } 4505 } 4506 4507 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4508 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4509 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4510 4511 return true; 4512 } 4513 4514 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4515 /* 4516 * Parse Signature options 4517 */ 4518 int tcp_do_parse_auth_options(const struct tcphdr *th, 4519 const u8 **md5_hash, const u8 **ao_hash) 4520 { 4521 int length = (th->doff << 2) - sizeof(*th); 4522 const u8 *ptr = (const u8 *)(th + 1); 4523 unsigned int minlen = TCPOLEN_MD5SIG; 4524 4525 if (IS_ENABLED(CONFIG_TCP_AO)) 4526 minlen = sizeof(struct tcp_ao_hdr) + 1; 4527 4528 *md5_hash = NULL; 4529 *ao_hash = NULL; 4530 4531 /* If not enough data remaining, we can short cut */ 4532 while (length >= minlen) { 4533 int opcode = *ptr++; 4534 int opsize; 4535 4536 switch (opcode) { 4537 case TCPOPT_EOL: 4538 return 0; 4539 case TCPOPT_NOP: 4540 length--; 4541 continue; 4542 default: 4543 opsize = *ptr++; 4544 if (opsize < 2 || opsize > length) 4545 return -EINVAL; 4546 if (opcode == TCPOPT_MD5SIG) { 4547 if (opsize != TCPOLEN_MD5SIG) 4548 return -EINVAL; 4549 if (unlikely(*md5_hash || *ao_hash)) 4550 return -EEXIST; 4551 *md5_hash = ptr; 4552 } else if (opcode == TCPOPT_AO) { 4553 if (opsize <= sizeof(struct tcp_ao_hdr)) 4554 return -EINVAL; 4555 if (unlikely(*md5_hash || *ao_hash)) 4556 return -EEXIST; 4557 *ao_hash = ptr; 4558 } 4559 } 4560 ptr += opsize - 2; 4561 length -= opsize; 4562 } 4563 return 0; 4564 } 4565 EXPORT_SYMBOL(tcp_do_parse_auth_options); 4566 #endif 4567 4568 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4569 * 4570 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4571 * it can pass through stack. So, the following predicate verifies that 4572 * this segment is not used for anything but congestion avoidance or 4573 * fast retransmit. Moreover, we even are able to eliminate most of such 4574 * second order effects, if we apply some small "replay" window (~RTO) 4575 * to timestamp space. 4576 * 4577 * All these measures still do not guarantee that we reject wrapped ACKs 4578 * on networks with high bandwidth, when sequence space is recycled fastly, 4579 * but it guarantees that such events will be very rare and do not affect 4580 * connection seriously. This doesn't look nice, but alas, PAWS is really 4581 * buggy extension. 4582 * 4583 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4584 * states that events when retransmit arrives after original data are rare. 4585 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4586 * the biggest problem on large power networks even with minor reordering. 4587 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4588 * up to bandwidth of 18Gigabit/sec. 8) ] 4589 */ 4590 4591 /* Estimates max number of increments of remote peer TSval in 4592 * a replay window (based on our current RTO estimation). 4593 */ 4594 static u32 tcp_tsval_replay(const struct sock *sk) 4595 { 4596 /* If we use usec TS resolution, 4597 * then expect the remote peer to use the same resolution. 4598 */ 4599 if (tcp_sk(sk)->tcp_usec_ts) 4600 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ); 4601 4602 /* RFC 7323 recommends a TSval clock between 1ms and 1sec. 4603 * We know that some OS (including old linux) can use 1200 Hz. 4604 */ 4605 return inet_csk(sk)->icsk_rto * 1200 / HZ; 4606 } 4607 4608 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk, 4609 const struct sk_buff *skb) 4610 { 4611 const struct tcp_sock *tp = tcp_sk(sk); 4612 const struct tcphdr *th = tcp_hdr(skb); 4613 SKB_DR_INIT(reason, TCP_RFC7323_PAWS); 4614 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4615 u32 seq = TCP_SKB_CB(skb)->seq; 4616 4617 /* 1. Is this not a pure ACK ? */ 4618 if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq) 4619 return reason; 4620 4621 /* 2. Is its sequence not the expected one ? */ 4622 if (seq != tp->rcv_nxt) 4623 return before(seq, tp->rcv_nxt) ? 4624 SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK : 4625 reason; 4626 4627 /* 3. Is this not a duplicate ACK ? */ 4628 if (ack != tp->snd_una) 4629 return reason; 4630 4631 /* 4. Is this updating the window ? */ 4632 if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) << 4633 tp->rx_opt.snd_wscale)) 4634 return reason; 4635 4636 /* 5. Is this not in the replay window ? */ 4637 if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > 4638 tcp_tsval_replay(sk)) 4639 return reason; 4640 4641 return 0; 4642 } 4643 4644 /* Check segment sequence number for validity. 4645 * 4646 * Segment controls are considered valid, if the segment 4647 * fits to the window after truncation to the window. Acceptability 4648 * of data (and SYN, FIN, of course) is checked separately. 4649 * See tcp_data_queue(), for example. 4650 * 4651 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4652 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4653 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4654 * (borrowed from freebsd) 4655 */ 4656 4657 static enum skb_drop_reason tcp_sequence(const struct sock *sk, 4658 u32 seq, u32 end_seq) 4659 { 4660 const struct tcp_sock *tp = tcp_sk(sk); 4661 4662 if (before(end_seq, tp->rcv_wup)) 4663 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4664 4665 if (after(end_seq, tp->rcv_nxt + tcp_receive_window(tp))) { 4666 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4667 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4668 4669 /* Only accept this packet if receive queue is empty. */ 4670 if (skb_queue_len(&sk->sk_receive_queue)) 4671 return SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE; 4672 } 4673 4674 return SKB_NOT_DROPPED_YET; 4675 } 4676 4677 4678 void tcp_done_with_error(struct sock *sk, int err) 4679 { 4680 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4681 WRITE_ONCE(sk->sk_err, err); 4682 smp_wmb(); 4683 4684 tcp_write_queue_purge(sk); 4685 tcp_done(sk); 4686 4687 if (!sock_flag(sk, SOCK_DEAD)) 4688 sk_error_report(sk); 4689 } 4690 EXPORT_IPV6_MOD(tcp_done_with_error); 4691 4692 /* When we get a reset we do this. */ 4693 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4694 { 4695 int err; 4696 4697 trace_tcp_receive_reset(sk); 4698 4699 /* mptcp can't tell us to ignore reset pkts, 4700 * so just ignore the return value of mptcp_incoming_options(). 4701 */ 4702 if (sk_is_mptcp(sk)) 4703 mptcp_incoming_options(sk, skb); 4704 4705 /* We want the right error as BSD sees it (and indeed as we do). */ 4706 switch (sk->sk_state) { 4707 case TCP_SYN_SENT: 4708 err = ECONNREFUSED; 4709 break; 4710 case TCP_CLOSE_WAIT: 4711 err = EPIPE; 4712 break; 4713 case TCP_CLOSE: 4714 return; 4715 default: 4716 err = ECONNRESET; 4717 } 4718 tcp_done_with_error(sk, err); 4719 } 4720 4721 /* 4722 * Process the FIN bit. This now behaves as it is supposed to work 4723 * and the FIN takes effect when it is validly part of sequence 4724 * space. Not before when we get holes. 4725 * 4726 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4727 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4728 * TIME-WAIT) 4729 * 4730 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4731 * close and we go into CLOSING (and later onto TIME-WAIT) 4732 * 4733 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4734 */ 4735 void tcp_fin(struct sock *sk) 4736 { 4737 struct tcp_sock *tp = tcp_sk(sk); 4738 4739 inet_csk_schedule_ack(sk); 4740 4741 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4742 sock_set_flag(sk, SOCK_DONE); 4743 4744 switch (sk->sk_state) { 4745 case TCP_SYN_RECV: 4746 case TCP_ESTABLISHED: 4747 /* Move to CLOSE_WAIT */ 4748 tcp_set_state(sk, TCP_CLOSE_WAIT); 4749 inet_csk_enter_pingpong_mode(sk); 4750 break; 4751 4752 case TCP_CLOSE_WAIT: 4753 case TCP_CLOSING: 4754 /* Received a retransmission of the FIN, do 4755 * nothing. 4756 */ 4757 break; 4758 case TCP_LAST_ACK: 4759 /* RFC793: Remain in the LAST-ACK state. */ 4760 break; 4761 4762 case TCP_FIN_WAIT1: 4763 /* This case occurs when a simultaneous close 4764 * happens, we must ack the received FIN and 4765 * enter the CLOSING state. 4766 */ 4767 tcp_send_ack(sk); 4768 tcp_set_state(sk, TCP_CLOSING); 4769 break; 4770 case TCP_FIN_WAIT2: 4771 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4772 tcp_send_ack(sk); 4773 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4774 break; 4775 default: 4776 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4777 * cases we should never reach this piece of code. 4778 */ 4779 pr_err("%s: Impossible, sk->sk_state=%d\n", 4780 __func__, sk->sk_state); 4781 break; 4782 } 4783 4784 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4785 * Probably, we should reset in this case. For now drop them. 4786 */ 4787 skb_rbtree_purge(&tp->out_of_order_queue); 4788 if (tcp_is_sack(tp)) 4789 tcp_sack_reset(&tp->rx_opt); 4790 4791 if (!sock_flag(sk, SOCK_DEAD)) { 4792 sk->sk_state_change(sk); 4793 4794 /* Do not send POLL_HUP for half duplex close. */ 4795 if (sk->sk_shutdown == SHUTDOWN_MASK || 4796 sk->sk_state == TCP_CLOSE) 4797 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4798 else 4799 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4800 } 4801 } 4802 4803 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4804 u32 end_seq) 4805 { 4806 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4807 if (before(seq, sp->start_seq)) 4808 sp->start_seq = seq; 4809 if (after(end_seq, sp->end_seq)) 4810 sp->end_seq = end_seq; 4811 return true; 4812 } 4813 return false; 4814 } 4815 4816 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4817 { 4818 struct tcp_sock *tp = tcp_sk(sk); 4819 4820 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4821 int mib_idx; 4822 4823 if (before(seq, tp->rcv_nxt)) 4824 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4825 else 4826 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4827 4828 NET_INC_STATS(sock_net(sk), mib_idx); 4829 4830 tp->rx_opt.dsack = 1; 4831 tp->duplicate_sack[0].start_seq = seq; 4832 tp->duplicate_sack[0].end_seq = end_seq; 4833 } 4834 } 4835 4836 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4837 { 4838 struct tcp_sock *tp = tcp_sk(sk); 4839 4840 if (!tp->rx_opt.dsack) 4841 tcp_dsack_set(sk, seq, end_seq); 4842 else 4843 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4844 } 4845 4846 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4847 { 4848 /* When the ACK path fails or drops most ACKs, the sender would 4849 * timeout and spuriously retransmit the same segment repeatedly. 4850 * If it seems our ACKs are not reaching the other side, 4851 * based on receiving a duplicate data segment with new flowlabel 4852 * (suggesting the sender suffered an RTO), and we are not already 4853 * repathing due to our own RTO, then rehash the socket to repath our 4854 * packets. 4855 */ 4856 #if IS_ENABLED(CONFIG_IPV6) 4857 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 4858 skb->protocol == htons(ETH_P_IPV6) && 4859 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 4860 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 4861 sk_rethink_txhash(sk)) 4862 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4863 4864 /* Save last flowlabel after a spurious retrans. */ 4865 tcp_save_lrcv_flowlabel(sk, skb); 4866 #endif 4867 } 4868 4869 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4870 { 4871 struct tcp_sock *tp = tcp_sk(sk); 4872 4873 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4874 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4875 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4876 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4877 4878 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4879 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4880 4881 tcp_rcv_spurious_retrans(sk, skb); 4882 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4883 end_seq = tp->rcv_nxt; 4884 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4885 } 4886 } 4887 4888 tcp_send_ack(sk); 4889 } 4890 4891 /* These routines update the SACK block as out-of-order packets arrive or 4892 * in-order packets close up the sequence space. 4893 */ 4894 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4895 { 4896 int this_sack; 4897 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4898 struct tcp_sack_block *swalk = sp + 1; 4899 4900 /* See if the recent change to the first SACK eats into 4901 * or hits the sequence space of other SACK blocks, if so coalesce. 4902 */ 4903 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4904 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4905 int i; 4906 4907 /* Zap SWALK, by moving every further SACK up by one slot. 4908 * Decrease num_sacks. 4909 */ 4910 tp->rx_opt.num_sacks--; 4911 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4912 sp[i] = sp[i + 1]; 4913 continue; 4914 } 4915 this_sack++; 4916 swalk++; 4917 } 4918 } 4919 4920 void tcp_sack_compress_send_ack(struct sock *sk) 4921 { 4922 struct tcp_sock *tp = tcp_sk(sk); 4923 4924 if (!tp->compressed_ack) 4925 return; 4926 4927 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4928 __sock_put(sk); 4929 4930 /* Since we have to send one ack finally, 4931 * substract one from tp->compressed_ack to keep 4932 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4933 */ 4934 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4935 tp->compressed_ack - 1); 4936 4937 tp->compressed_ack = 0; 4938 tcp_send_ack(sk); 4939 } 4940 4941 /* Reasonable amount of sack blocks included in TCP SACK option 4942 * The max is 4, but this becomes 3 if TCP timestamps are there. 4943 * Given that SACK packets might be lost, be conservative and use 2. 4944 */ 4945 #define TCP_SACK_BLOCKS_EXPECTED 2 4946 4947 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4948 { 4949 struct tcp_sock *tp = tcp_sk(sk); 4950 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4951 int cur_sacks = tp->rx_opt.num_sacks; 4952 int this_sack; 4953 4954 if (!cur_sacks) 4955 goto new_sack; 4956 4957 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4958 if (tcp_sack_extend(sp, seq, end_seq)) { 4959 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4960 tcp_sack_compress_send_ack(sk); 4961 /* Rotate this_sack to the first one. */ 4962 for (; this_sack > 0; this_sack--, sp--) 4963 swap(*sp, *(sp - 1)); 4964 if (cur_sacks > 1) 4965 tcp_sack_maybe_coalesce(tp); 4966 return; 4967 } 4968 } 4969 4970 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4971 tcp_sack_compress_send_ack(sk); 4972 4973 /* Could not find an adjacent existing SACK, build a new one, 4974 * put it at the front, and shift everyone else down. We 4975 * always know there is at least one SACK present already here. 4976 * 4977 * If the sack array is full, forget about the last one. 4978 */ 4979 if (this_sack >= TCP_NUM_SACKS) { 4980 this_sack--; 4981 tp->rx_opt.num_sacks--; 4982 sp--; 4983 } 4984 for (; this_sack > 0; this_sack--, sp--) 4985 *sp = *(sp - 1); 4986 4987 new_sack: 4988 /* Build the new head SACK, and we're done. */ 4989 sp->start_seq = seq; 4990 sp->end_seq = end_seq; 4991 tp->rx_opt.num_sacks++; 4992 } 4993 4994 /* RCV.NXT advances, some SACKs should be eaten. */ 4995 4996 static void tcp_sack_remove(struct tcp_sock *tp) 4997 { 4998 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4999 int num_sacks = tp->rx_opt.num_sacks; 5000 int this_sack; 5001 5002 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 5003 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5004 tp->rx_opt.num_sacks = 0; 5005 return; 5006 } 5007 5008 for (this_sack = 0; this_sack < num_sacks;) { 5009 /* Check if the start of the sack is covered by RCV.NXT. */ 5010 if (!before(tp->rcv_nxt, sp->start_seq)) { 5011 int i; 5012 5013 /* RCV.NXT must cover all the block! */ 5014 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 5015 5016 /* Zap this SACK, by moving forward any other SACKS. */ 5017 for (i = this_sack+1; i < num_sacks; i++) 5018 tp->selective_acks[i-1] = tp->selective_acks[i]; 5019 num_sacks--; 5020 continue; 5021 } 5022 this_sack++; 5023 sp++; 5024 } 5025 tp->rx_opt.num_sacks = num_sacks; 5026 } 5027 5028 /** 5029 * tcp_try_coalesce - try to merge skb to prior one 5030 * @sk: socket 5031 * @to: prior buffer 5032 * @from: buffer to add in queue 5033 * @fragstolen: pointer to boolean 5034 * 5035 * Before queueing skb @from after @to, try to merge them 5036 * to reduce overall memory use and queue lengths, if cost is small. 5037 * Packets in ofo or receive queues can stay a long time. 5038 * Better try to coalesce them right now to avoid future collapses. 5039 * Returns true if caller should free @from instead of queueing it 5040 */ 5041 static bool tcp_try_coalesce(struct sock *sk, 5042 struct sk_buff *to, 5043 struct sk_buff *from, 5044 bool *fragstolen) 5045 { 5046 int delta; 5047 5048 *fragstolen = false; 5049 5050 /* Its possible this segment overlaps with prior segment in queue */ 5051 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 5052 return false; 5053 5054 if (!tcp_skb_can_collapse_rx(to, from)) 5055 return false; 5056 5057 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 5058 return false; 5059 5060 atomic_add(delta, &sk->sk_rmem_alloc); 5061 sk_mem_charge(sk, delta); 5062 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 5063 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 5064 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 5065 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 5066 5067 if (TCP_SKB_CB(from)->has_rxtstamp) { 5068 TCP_SKB_CB(to)->has_rxtstamp = true; 5069 to->tstamp = from->tstamp; 5070 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 5071 } 5072 5073 return true; 5074 } 5075 5076 static bool tcp_ooo_try_coalesce(struct sock *sk, 5077 struct sk_buff *to, 5078 struct sk_buff *from, 5079 bool *fragstolen) 5080 { 5081 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 5082 5083 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 5084 if (res) { 5085 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 5086 max_t(u16, 1, skb_shinfo(from)->gso_segs); 5087 5088 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 5089 } 5090 return res; 5091 } 5092 5093 noinline_for_tracing static void 5094 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 5095 { 5096 sk_drops_skbadd(sk, skb); 5097 sk_skb_reason_drop(sk, skb, reason); 5098 } 5099 5100 /* This one checks to see if we can put data from the 5101 * out_of_order queue into the receive_queue. 5102 */ 5103 static void tcp_ofo_queue(struct sock *sk) 5104 { 5105 struct tcp_sock *tp = tcp_sk(sk); 5106 __u32 dsack_high = tp->rcv_nxt; 5107 bool fin, fragstolen, eaten; 5108 struct sk_buff *skb, *tail; 5109 struct rb_node *p; 5110 5111 p = rb_first(&tp->out_of_order_queue); 5112 while (p) { 5113 skb = rb_to_skb(p); 5114 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5115 break; 5116 5117 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 5118 __u32 dsack = dsack_high; 5119 5120 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 5121 dsack = TCP_SKB_CB(skb)->end_seq; 5122 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 5123 } 5124 p = rb_next(p); 5125 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 5126 5127 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 5128 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 5129 continue; 5130 } 5131 5132 tail = skb_peek_tail(&sk->sk_receive_queue); 5133 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 5134 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5135 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 5136 if (!eaten) 5137 tcp_add_receive_queue(sk, skb); 5138 else 5139 kfree_skb_partial(skb, fragstolen); 5140 5141 if (unlikely(fin)) { 5142 tcp_fin(sk); 5143 /* tcp_fin() purges tp->out_of_order_queue, 5144 * so we must end this loop right now. 5145 */ 5146 break; 5147 } 5148 } 5149 } 5150 5151 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 5152 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 5153 5154 /* Check if this incoming skb can be added to socket receive queues 5155 * while satisfying sk->sk_rcvbuf limit. 5156 * 5157 * In theory we should use skb->truesize, but this can cause problems 5158 * when applications use too small SO_RCVBUF values. 5159 * When LRO / hw gro is used, the socket might have a high tp->scaling_ratio, 5160 * allowing RWIN to be close to available space. 5161 * Whenever the receive queue gets full, we can receive a small packet 5162 * filling RWIN, but with a high skb->truesize, because most NIC use 4K page 5163 * plus sk_buff metadata even when receiving less than 1500 bytes of payload. 5164 * 5165 * Note that we use skb->len to decide to accept or drop this packet, 5166 * but sk->sk_rmem_alloc is the sum of all skb->truesize. 5167 */ 5168 static bool tcp_can_ingest(const struct sock *sk, const struct sk_buff *skb) 5169 { 5170 unsigned int rmem = atomic_read(&sk->sk_rmem_alloc); 5171 5172 return rmem + skb->len <= sk->sk_rcvbuf; 5173 } 5174 5175 static int tcp_try_rmem_schedule(struct sock *sk, const struct sk_buff *skb, 5176 unsigned int size) 5177 { 5178 if (!tcp_can_ingest(sk, skb) || 5179 !sk_rmem_schedule(sk, skb, size)) { 5180 5181 if (tcp_prune_queue(sk, skb) < 0) 5182 return -1; 5183 5184 while (!sk_rmem_schedule(sk, skb, size)) { 5185 if (!tcp_prune_ofo_queue(sk, skb)) 5186 return -1; 5187 } 5188 } 5189 return 0; 5190 } 5191 5192 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 5193 { 5194 struct tcp_sock *tp = tcp_sk(sk); 5195 struct rb_node **p, *parent; 5196 struct sk_buff *skb1; 5197 u32 seq, end_seq; 5198 bool fragstolen; 5199 5200 tcp_save_lrcv_flowlabel(sk, skb); 5201 tcp_data_ecn_check(sk, skb); 5202 5203 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 5204 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 5205 sk->sk_data_ready(sk); 5206 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 5207 return; 5208 } 5209 5210 tcp_measure_rcv_mss(sk, skb); 5211 /* Disable header prediction. */ 5212 tp->pred_flags = 0; 5213 inet_csk_schedule_ack(sk); 5214 5215 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 5216 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 5217 seq = TCP_SKB_CB(skb)->seq; 5218 end_seq = TCP_SKB_CB(skb)->end_seq; 5219 5220 p = &tp->out_of_order_queue.rb_node; 5221 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5222 /* Initial out of order segment, build 1 SACK. */ 5223 if (tcp_is_sack(tp)) { 5224 tp->rx_opt.num_sacks = 1; 5225 tp->selective_acks[0].start_seq = seq; 5226 tp->selective_acks[0].end_seq = end_seq; 5227 } 5228 rb_link_node(&skb->rbnode, NULL, p); 5229 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5230 tp->ooo_last_skb = skb; 5231 goto end; 5232 } 5233 5234 /* In the typical case, we are adding an skb to the end of the list. 5235 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 5236 */ 5237 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 5238 skb, &fragstolen)) { 5239 coalesce_done: 5240 /* For non sack flows, do not grow window to force DUPACK 5241 * and trigger fast retransmit. 5242 */ 5243 if (tcp_is_sack(tp)) 5244 tcp_grow_window(sk, skb, true); 5245 kfree_skb_partial(skb, fragstolen); 5246 skb = NULL; 5247 goto add_sack; 5248 } 5249 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 5250 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 5251 parent = &tp->ooo_last_skb->rbnode; 5252 p = &parent->rb_right; 5253 goto insert; 5254 } 5255 5256 /* Find place to insert this segment. Handle overlaps on the way. */ 5257 parent = NULL; 5258 while (*p) { 5259 parent = *p; 5260 skb1 = rb_to_skb(parent); 5261 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 5262 p = &parent->rb_left; 5263 continue; 5264 } 5265 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 5266 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5267 /* All the bits are present. Drop. */ 5268 NET_INC_STATS(sock_net(sk), 5269 LINUX_MIB_TCPOFOMERGE); 5270 tcp_drop_reason(sk, skb, 5271 SKB_DROP_REASON_TCP_OFOMERGE); 5272 skb = NULL; 5273 tcp_dsack_set(sk, seq, end_seq); 5274 goto add_sack; 5275 } 5276 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 5277 /* Partial overlap. */ 5278 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 5279 } else { 5280 /* skb's seq == skb1's seq and skb covers skb1. 5281 * Replace skb1 with skb. 5282 */ 5283 rb_replace_node(&skb1->rbnode, &skb->rbnode, 5284 &tp->out_of_order_queue); 5285 tcp_dsack_extend(sk, 5286 TCP_SKB_CB(skb1)->seq, 5287 TCP_SKB_CB(skb1)->end_seq); 5288 NET_INC_STATS(sock_net(sk), 5289 LINUX_MIB_TCPOFOMERGE); 5290 tcp_drop_reason(sk, skb1, 5291 SKB_DROP_REASON_TCP_OFOMERGE); 5292 goto merge_right; 5293 } 5294 } else if (tcp_ooo_try_coalesce(sk, skb1, 5295 skb, &fragstolen)) { 5296 goto coalesce_done; 5297 } 5298 p = &parent->rb_right; 5299 } 5300 insert: 5301 /* Insert segment into RB tree. */ 5302 rb_link_node(&skb->rbnode, parent, p); 5303 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5304 5305 merge_right: 5306 /* Remove other segments covered by skb. */ 5307 while ((skb1 = skb_rb_next(skb)) != NULL) { 5308 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5309 break; 5310 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5311 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5312 end_seq); 5313 break; 5314 } 5315 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5316 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5317 TCP_SKB_CB(skb1)->end_seq); 5318 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5319 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5320 } 5321 /* If there is no skb after us, we are the last_skb ! */ 5322 if (!skb1) 5323 tp->ooo_last_skb = skb; 5324 5325 add_sack: 5326 if (tcp_is_sack(tp)) 5327 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5328 end: 5329 if (skb) { 5330 /* For non sack flows, do not grow window to force DUPACK 5331 * and trigger fast retransmit. 5332 */ 5333 if (tcp_is_sack(tp)) 5334 tcp_grow_window(sk, skb, false); 5335 skb_condense(skb); 5336 skb_set_owner_r(skb, sk); 5337 } 5338 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */ 5339 if (sk->sk_socket) 5340 tcp_rcvbuf_grow(sk, tp->rcvq_space.space); 5341 } 5342 5343 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5344 bool *fragstolen) 5345 { 5346 int eaten; 5347 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5348 5349 eaten = (tail && 5350 tcp_try_coalesce(sk, tail, 5351 skb, fragstolen)) ? 1 : 0; 5352 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5353 if (!eaten) { 5354 tcp_add_receive_queue(sk, skb); 5355 skb_set_owner_r(skb, sk); 5356 } 5357 return eaten; 5358 } 5359 5360 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5361 { 5362 struct sk_buff *skb; 5363 int err = -ENOMEM; 5364 int data_len = 0; 5365 bool fragstolen; 5366 5367 if (size == 0) 5368 return 0; 5369 5370 if (size > PAGE_SIZE) { 5371 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5372 5373 data_len = npages << PAGE_SHIFT; 5374 size = data_len + (size & ~PAGE_MASK); 5375 } 5376 skb = alloc_skb_with_frags(size - data_len, data_len, 5377 PAGE_ALLOC_COSTLY_ORDER, 5378 &err, sk->sk_allocation); 5379 if (!skb) 5380 goto err; 5381 5382 skb_put(skb, size - data_len); 5383 skb->data_len = data_len; 5384 skb->len = size; 5385 5386 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5387 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5388 goto err_free; 5389 } 5390 5391 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5392 if (err) 5393 goto err_free; 5394 5395 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5396 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5397 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5398 5399 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5400 WARN_ON_ONCE(fragstolen); /* should not happen */ 5401 __kfree_skb(skb); 5402 } 5403 return size; 5404 5405 err_free: 5406 kfree_skb(skb); 5407 err: 5408 return err; 5409 5410 } 5411 5412 void tcp_data_ready(struct sock *sk) 5413 { 5414 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5415 sk->sk_data_ready(sk); 5416 } 5417 5418 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5419 { 5420 struct tcp_sock *tp = tcp_sk(sk); 5421 enum skb_drop_reason reason; 5422 bool fragstolen; 5423 int eaten; 5424 5425 /* If a subflow has been reset, the packet should not continue 5426 * to be processed, drop the packet. 5427 */ 5428 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5429 __kfree_skb(skb); 5430 return; 5431 } 5432 5433 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5434 __kfree_skb(skb); 5435 return; 5436 } 5437 tcp_cleanup_skb(skb); 5438 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5439 5440 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5441 tp->rx_opt.dsack = 0; 5442 5443 /* Queue data for delivery to the user. 5444 * Packets in sequence go to the receive queue. 5445 * Out of sequence packets to the out_of_order_queue. 5446 */ 5447 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5448 if (tcp_receive_window(tp) == 0) { 5449 /* Some stacks are known to send bare FIN packets 5450 * in a loop even if we send RWIN 0 in our ACK. 5451 * Accepting this FIN does not hurt memory pressure 5452 * because the FIN flag will simply be merged to the 5453 * receive queue tail skb in most cases. 5454 */ 5455 if (!skb->len && 5456 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 5457 goto queue_and_out; 5458 5459 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5460 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5461 goto out_of_window; 5462 } 5463 5464 /* Ok. In sequence. In window. */ 5465 queue_and_out: 5466 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5467 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5468 inet_csk(sk)->icsk_ack.pending |= 5469 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5470 inet_csk_schedule_ack(sk); 5471 sk->sk_data_ready(sk); 5472 5473 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) { 5474 reason = SKB_DROP_REASON_PROTO_MEM; 5475 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5476 goto drop; 5477 } 5478 sk_forced_mem_schedule(sk, skb->truesize); 5479 } 5480 5481 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5482 if (skb->len) 5483 tcp_event_data_recv(sk, skb); 5484 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5485 tcp_fin(sk); 5486 5487 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5488 tcp_ofo_queue(sk); 5489 5490 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5491 * gap in queue is filled. 5492 */ 5493 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5494 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5495 } 5496 5497 if (tp->rx_opt.num_sacks) 5498 tcp_sack_remove(tp); 5499 5500 tcp_fast_path_check(sk); 5501 5502 if (eaten > 0) 5503 kfree_skb_partial(skb, fragstolen); 5504 if (!sock_flag(sk, SOCK_DEAD)) 5505 tcp_data_ready(sk); 5506 return; 5507 } 5508 5509 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5510 tcp_rcv_spurious_retrans(sk, skb); 5511 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5512 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5513 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5514 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5515 5516 out_of_window: 5517 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5518 inet_csk_schedule_ack(sk); 5519 drop: 5520 tcp_drop_reason(sk, skb, reason); 5521 return; 5522 } 5523 5524 /* Out of window. F.e. zero window probe. */ 5525 if (!before(TCP_SKB_CB(skb)->seq, 5526 tp->rcv_nxt + tcp_receive_window(tp))) { 5527 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5528 goto out_of_window; 5529 } 5530 5531 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5532 /* Partial packet, seq < rcv_next < end_seq */ 5533 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5534 5535 /* If window is closed, drop tail of packet. But after 5536 * remembering D-SACK for its head made in previous line. 5537 */ 5538 if (!tcp_receive_window(tp)) { 5539 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5540 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5541 goto out_of_window; 5542 } 5543 goto queue_and_out; 5544 } 5545 5546 tcp_data_queue_ofo(sk, skb); 5547 } 5548 5549 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5550 { 5551 if (list) 5552 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5553 5554 return skb_rb_next(skb); 5555 } 5556 5557 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5558 struct sk_buff_head *list, 5559 struct rb_root *root) 5560 { 5561 struct sk_buff *next = tcp_skb_next(skb, list); 5562 5563 if (list) 5564 __skb_unlink(skb, list); 5565 else 5566 rb_erase(&skb->rbnode, root); 5567 5568 __kfree_skb(skb); 5569 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5570 5571 return next; 5572 } 5573 5574 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5575 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5576 { 5577 struct rb_node **p = &root->rb_node; 5578 struct rb_node *parent = NULL; 5579 struct sk_buff *skb1; 5580 5581 while (*p) { 5582 parent = *p; 5583 skb1 = rb_to_skb(parent); 5584 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5585 p = &parent->rb_left; 5586 else 5587 p = &parent->rb_right; 5588 } 5589 rb_link_node(&skb->rbnode, parent, p); 5590 rb_insert_color(&skb->rbnode, root); 5591 } 5592 5593 /* Collapse contiguous sequence of skbs head..tail with 5594 * sequence numbers start..end. 5595 * 5596 * If tail is NULL, this means until the end of the queue. 5597 * 5598 * Segments with FIN/SYN are not collapsed (only because this 5599 * simplifies code) 5600 */ 5601 static void 5602 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5603 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5604 { 5605 struct sk_buff *skb = head, *n; 5606 struct sk_buff_head tmp; 5607 bool end_of_skbs; 5608 5609 /* First, check that queue is collapsible and find 5610 * the point where collapsing can be useful. 5611 */ 5612 restart: 5613 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5614 n = tcp_skb_next(skb, list); 5615 5616 if (!skb_frags_readable(skb)) 5617 goto skip_this; 5618 5619 /* No new bits? It is possible on ofo queue. */ 5620 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5621 skb = tcp_collapse_one(sk, skb, list, root); 5622 if (!skb) 5623 break; 5624 goto restart; 5625 } 5626 5627 /* The first skb to collapse is: 5628 * - not SYN/FIN and 5629 * - bloated or contains data before "start" or 5630 * overlaps to the next one and mptcp allow collapsing. 5631 */ 5632 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5633 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5634 before(TCP_SKB_CB(skb)->seq, start))) { 5635 end_of_skbs = false; 5636 break; 5637 } 5638 5639 if (n && n != tail && skb_frags_readable(n) && 5640 tcp_skb_can_collapse_rx(skb, n) && 5641 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5642 end_of_skbs = false; 5643 break; 5644 } 5645 5646 skip_this: 5647 /* Decided to skip this, advance start seq. */ 5648 start = TCP_SKB_CB(skb)->end_seq; 5649 } 5650 if (end_of_skbs || 5651 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5652 !skb_frags_readable(skb)) 5653 return; 5654 5655 __skb_queue_head_init(&tmp); 5656 5657 while (before(start, end)) { 5658 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5659 struct sk_buff *nskb; 5660 5661 nskb = alloc_skb(copy, GFP_ATOMIC); 5662 if (!nskb) 5663 break; 5664 5665 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5666 skb_copy_decrypted(nskb, skb); 5667 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5668 if (list) 5669 __skb_queue_before(list, skb, nskb); 5670 else 5671 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5672 skb_set_owner_r(nskb, sk); 5673 mptcp_skb_ext_move(nskb, skb); 5674 5675 /* Copy data, releasing collapsed skbs. */ 5676 while (copy > 0) { 5677 int offset = start - TCP_SKB_CB(skb)->seq; 5678 int size = TCP_SKB_CB(skb)->end_seq - start; 5679 5680 BUG_ON(offset < 0); 5681 if (size > 0) { 5682 size = min(copy, size); 5683 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5684 BUG(); 5685 TCP_SKB_CB(nskb)->end_seq += size; 5686 copy -= size; 5687 start += size; 5688 } 5689 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5690 skb = tcp_collapse_one(sk, skb, list, root); 5691 if (!skb || 5692 skb == tail || 5693 !tcp_skb_can_collapse_rx(nskb, skb) || 5694 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5695 !skb_frags_readable(skb)) 5696 goto end; 5697 } 5698 } 5699 } 5700 end: 5701 skb_queue_walk_safe(&tmp, skb, n) 5702 tcp_rbtree_insert(root, skb); 5703 } 5704 5705 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5706 * and tcp_collapse() them until all the queue is collapsed. 5707 */ 5708 static void tcp_collapse_ofo_queue(struct sock *sk) 5709 { 5710 struct tcp_sock *tp = tcp_sk(sk); 5711 u32 range_truesize, sum_tiny = 0; 5712 struct sk_buff *skb, *head; 5713 u32 start, end; 5714 5715 skb = skb_rb_first(&tp->out_of_order_queue); 5716 new_range: 5717 if (!skb) { 5718 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5719 return; 5720 } 5721 start = TCP_SKB_CB(skb)->seq; 5722 end = TCP_SKB_CB(skb)->end_seq; 5723 range_truesize = skb->truesize; 5724 5725 for (head = skb;;) { 5726 skb = skb_rb_next(skb); 5727 5728 /* Range is terminated when we see a gap or when 5729 * we are at the queue end. 5730 */ 5731 if (!skb || 5732 after(TCP_SKB_CB(skb)->seq, end) || 5733 before(TCP_SKB_CB(skb)->end_seq, start)) { 5734 /* Do not attempt collapsing tiny skbs */ 5735 if (range_truesize != head->truesize || 5736 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5737 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5738 head, skb, start, end); 5739 } else { 5740 sum_tiny += range_truesize; 5741 if (sum_tiny > sk->sk_rcvbuf >> 3) 5742 return; 5743 } 5744 goto new_range; 5745 } 5746 5747 range_truesize += skb->truesize; 5748 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5749 start = TCP_SKB_CB(skb)->seq; 5750 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5751 end = TCP_SKB_CB(skb)->end_seq; 5752 } 5753 } 5754 5755 /* 5756 * Clean the out-of-order queue to make room. 5757 * We drop high sequences packets to : 5758 * 1) Let a chance for holes to be filled. 5759 * This means we do not drop packets from ooo queue if their sequence 5760 * is before incoming packet sequence. 5761 * 2) not add too big latencies if thousands of packets sit there. 5762 * (But if application shrinks SO_RCVBUF, we could still end up 5763 * freeing whole queue here) 5764 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5765 * 5766 * Return true if queue has shrunk. 5767 */ 5768 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5769 { 5770 struct tcp_sock *tp = tcp_sk(sk); 5771 struct rb_node *node, *prev; 5772 bool pruned = false; 5773 int goal; 5774 5775 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5776 return false; 5777 5778 goal = sk->sk_rcvbuf >> 3; 5779 node = &tp->ooo_last_skb->rbnode; 5780 5781 do { 5782 struct sk_buff *skb = rb_to_skb(node); 5783 5784 /* If incoming skb would land last in ofo queue, stop pruning. */ 5785 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5786 break; 5787 pruned = true; 5788 prev = rb_prev(node); 5789 rb_erase(node, &tp->out_of_order_queue); 5790 goal -= skb->truesize; 5791 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5792 tp->ooo_last_skb = rb_to_skb(prev); 5793 if (!prev || goal <= 0) { 5794 if (tcp_can_ingest(sk, in_skb) && 5795 !tcp_under_memory_pressure(sk)) 5796 break; 5797 goal = sk->sk_rcvbuf >> 3; 5798 } 5799 node = prev; 5800 } while (node); 5801 5802 if (pruned) { 5803 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5804 /* Reset SACK state. A conforming SACK implementation will 5805 * do the same at a timeout based retransmit. When a connection 5806 * is in a sad state like this, we care only about integrity 5807 * of the connection not performance. 5808 */ 5809 if (tp->rx_opt.sack_ok) 5810 tcp_sack_reset(&tp->rx_opt); 5811 } 5812 return pruned; 5813 } 5814 5815 /* Reduce allocated memory if we can, trying to get 5816 * the socket within its memory limits again. 5817 * 5818 * Return less than zero if we should start dropping frames 5819 * until the socket owning process reads some of the data 5820 * to stabilize the situation. 5821 */ 5822 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5823 { 5824 struct tcp_sock *tp = tcp_sk(sk); 5825 5826 /* Do nothing if our queues are empty. */ 5827 if (!atomic_read(&sk->sk_rmem_alloc)) 5828 return -1; 5829 5830 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5831 5832 if (!tcp_can_ingest(sk, in_skb)) 5833 tcp_clamp_window(sk); 5834 else if (tcp_under_memory_pressure(sk)) 5835 tcp_adjust_rcv_ssthresh(sk); 5836 5837 if (tcp_can_ingest(sk, in_skb)) 5838 return 0; 5839 5840 tcp_collapse_ofo_queue(sk); 5841 if (!skb_queue_empty(&sk->sk_receive_queue)) 5842 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5843 skb_peek(&sk->sk_receive_queue), 5844 NULL, 5845 tp->copied_seq, tp->rcv_nxt); 5846 5847 if (tcp_can_ingest(sk, in_skb)) 5848 return 0; 5849 5850 /* Collapsing did not help, destructive actions follow. 5851 * This must not ever occur. */ 5852 5853 tcp_prune_ofo_queue(sk, in_skb); 5854 5855 if (tcp_can_ingest(sk, in_skb)) 5856 return 0; 5857 5858 /* If we are really being abused, tell the caller to silently 5859 * drop receive data on the floor. It will get retransmitted 5860 * and hopefully then we'll have sufficient space. 5861 */ 5862 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5863 5864 /* Massive buffer overcommit. */ 5865 tp->pred_flags = 0; 5866 return -1; 5867 } 5868 5869 static bool tcp_should_expand_sndbuf(struct sock *sk) 5870 { 5871 const struct tcp_sock *tp = tcp_sk(sk); 5872 5873 /* If the user specified a specific send buffer setting, do 5874 * not modify it. 5875 */ 5876 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5877 return false; 5878 5879 /* If we are under global TCP memory pressure, do not expand. */ 5880 if (tcp_under_memory_pressure(sk)) { 5881 int unused_mem = sk_unused_reserved_mem(sk); 5882 5883 /* Adjust sndbuf according to reserved mem. But make sure 5884 * it never goes below SOCK_MIN_SNDBUF. 5885 * See sk_stream_moderate_sndbuf() for more details. 5886 */ 5887 if (unused_mem > SOCK_MIN_SNDBUF) 5888 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5889 5890 return false; 5891 } 5892 5893 /* If we are under soft global TCP memory pressure, do not expand. */ 5894 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5895 return false; 5896 5897 /* If we filled the congestion window, do not expand. */ 5898 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5899 return false; 5900 5901 return true; 5902 } 5903 5904 static void tcp_new_space(struct sock *sk) 5905 { 5906 struct tcp_sock *tp = tcp_sk(sk); 5907 5908 if (tcp_should_expand_sndbuf(sk)) { 5909 tcp_sndbuf_expand(sk); 5910 tp->snd_cwnd_stamp = tcp_jiffies32; 5911 } 5912 5913 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5914 } 5915 5916 /* Caller made space either from: 5917 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5918 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5919 * 5920 * We might be able to generate EPOLLOUT to the application if: 5921 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5922 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5923 * small enough that tcp_stream_memory_free() decides it 5924 * is time to generate EPOLLOUT. 5925 */ 5926 void tcp_check_space(struct sock *sk) 5927 { 5928 /* pairs with tcp_poll() */ 5929 smp_mb(); 5930 if (sk->sk_socket && 5931 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5932 tcp_new_space(sk); 5933 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5934 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5935 } 5936 } 5937 5938 static inline void tcp_data_snd_check(struct sock *sk) 5939 { 5940 tcp_push_pending_frames(sk); 5941 tcp_check_space(sk); 5942 } 5943 5944 /* 5945 * Check if sending an ack is needed. 5946 */ 5947 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5948 { 5949 struct tcp_sock *tp = tcp_sk(sk); 5950 struct net *net = sock_net(sk); 5951 unsigned long rtt; 5952 u64 delay; 5953 5954 /* More than one full frame received... */ 5955 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5956 /* ... and right edge of window advances far enough. 5957 * (tcp_recvmsg() will send ACK otherwise). 5958 * If application uses SO_RCVLOWAT, we want send ack now if 5959 * we have not received enough bytes to satisfy the condition. 5960 */ 5961 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5962 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5963 /* We ACK each frame or... */ 5964 tcp_in_quickack_mode(sk) || 5965 /* Protocol state mandates a one-time immediate ACK */ 5966 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5967 /* If we are running from __release_sock() in user context, 5968 * Defer the ack until tcp_release_cb(). 5969 */ 5970 if (sock_owned_by_user_nocheck(sk) && 5971 READ_ONCE(net->ipv4.sysctl_tcp_backlog_ack_defer)) { 5972 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5973 return; 5974 } 5975 send_now: 5976 tcp_send_ack(sk); 5977 return; 5978 } 5979 5980 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5981 tcp_send_delayed_ack(sk); 5982 return; 5983 } 5984 5985 if (!tcp_is_sack(tp) || 5986 tp->compressed_ack >= READ_ONCE(net->ipv4.sysctl_tcp_comp_sack_nr)) 5987 goto send_now; 5988 5989 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5990 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5991 tp->dup_ack_counter = 0; 5992 } 5993 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5994 tp->dup_ack_counter++; 5995 goto send_now; 5996 } 5997 tp->compressed_ack++; 5998 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5999 return; 6000 6001 /* compress ack timer : comp_sack_rtt_percent of rtt, 6002 * but no more than tcp_comp_sack_delay_ns. 6003 */ 6004 6005 rtt = tp->rcv_rtt_est.rtt_us; 6006 if (tp->srtt_us && tp->srtt_us < rtt) 6007 rtt = tp->srtt_us; 6008 6009 /* delay = (rtt >> 3) * NSEC_PER_USEC * comp_sack_rtt_percent / 100 6010 * -> 6011 * delay = rtt * 1.25 * comp_sack_rtt_percent 6012 */ 6013 delay = (u64)(rtt + (rtt >> 2)) * 6014 READ_ONCE(net->ipv4.sysctl_tcp_comp_sack_rtt_percent); 6015 6016 delay = min(delay, READ_ONCE(net->ipv4.sysctl_tcp_comp_sack_delay_ns)); 6017 6018 sock_hold(sk); 6019 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 6020 READ_ONCE(net->ipv4.sysctl_tcp_comp_sack_slack_ns), 6021 HRTIMER_MODE_REL_PINNED_SOFT); 6022 } 6023 6024 static inline void tcp_ack_snd_check(struct sock *sk) 6025 { 6026 if (!inet_csk_ack_scheduled(sk)) { 6027 /* We sent a data segment already. */ 6028 return; 6029 } 6030 __tcp_ack_snd_check(sk, 1); 6031 } 6032 6033 /* 6034 * This routine is only called when we have urgent data 6035 * signaled. Its the 'slow' part of tcp_urg. It could be 6036 * moved inline now as tcp_urg is only called from one 6037 * place. We handle URGent data wrong. We have to - as 6038 * BSD still doesn't use the correction from RFC961. 6039 * For 1003.1g we should support a new option TCP_STDURG to permit 6040 * either form (or just set the sysctl tcp_stdurg). 6041 */ 6042 6043 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 6044 { 6045 struct tcp_sock *tp = tcp_sk(sk); 6046 u32 ptr = ntohs(th->urg_ptr); 6047 6048 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 6049 ptr--; 6050 ptr += ntohl(th->seq); 6051 6052 /* Ignore urgent data that we've already seen and read. */ 6053 if (after(tp->copied_seq, ptr)) 6054 return; 6055 6056 /* Do not replay urg ptr. 6057 * 6058 * NOTE: interesting situation not covered by specs. 6059 * Misbehaving sender may send urg ptr, pointing to segment, 6060 * which we already have in ofo queue. We are not able to fetch 6061 * such data and will stay in TCP_URG_NOTYET until will be eaten 6062 * by recvmsg(). Seems, we are not obliged to handle such wicked 6063 * situations. But it is worth to think about possibility of some 6064 * DoSes using some hypothetical application level deadlock. 6065 */ 6066 if (before(ptr, tp->rcv_nxt)) 6067 return; 6068 6069 /* Do we already have a newer (or duplicate) urgent pointer? */ 6070 if (tp->urg_data && !after(ptr, tp->urg_seq)) 6071 return; 6072 6073 /* Tell the world about our new urgent pointer. */ 6074 sk_send_sigurg(sk); 6075 6076 /* We may be adding urgent data when the last byte read was 6077 * urgent. To do this requires some care. We cannot just ignore 6078 * tp->copied_seq since we would read the last urgent byte again 6079 * as data, nor can we alter copied_seq until this data arrives 6080 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 6081 * 6082 * NOTE. Double Dutch. Rendering to plain English: author of comment 6083 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 6084 * and expect that both A and B disappear from stream. This is _wrong_. 6085 * Though this happens in BSD with high probability, this is occasional. 6086 * Any application relying on this is buggy. Note also, that fix "works" 6087 * only in this artificial test. Insert some normal data between A and B and we will 6088 * decline of BSD again. Verdict: it is better to remove to trap 6089 * buggy users. 6090 */ 6091 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 6092 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 6093 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 6094 tp->copied_seq++; 6095 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 6096 __skb_unlink(skb, &sk->sk_receive_queue); 6097 __kfree_skb(skb); 6098 } 6099 } 6100 6101 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 6102 WRITE_ONCE(tp->urg_seq, ptr); 6103 6104 /* Disable header prediction. */ 6105 tp->pred_flags = 0; 6106 } 6107 6108 /* This is the 'fast' part of urgent handling. */ 6109 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 6110 { 6111 struct tcp_sock *tp = tcp_sk(sk); 6112 6113 /* Check if we get a new urgent pointer - normally not. */ 6114 if (unlikely(th->urg)) 6115 tcp_check_urg(sk, th); 6116 6117 /* Do we wait for any urgent data? - normally not... */ 6118 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 6119 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 6120 th->syn; 6121 6122 /* Is the urgent pointer pointing into this packet? */ 6123 if (ptr < skb->len) { 6124 u8 tmp; 6125 if (skb_copy_bits(skb, ptr, &tmp, 1)) 6126 BUG(); 6127 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 6128 if (!sock_flag(sk, SOCK_DEAD)) 6129 sk->sk_data_ready(sk); 6130 } 6131 } 6132 } 6133 6134 /* Accept RST for rcv_nxt - 1 after a FIN. 6135 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 6136 * FIN is sent followed by a RST packet. The RST is sent with the same 6137 * sequence number as the FIN, and thus according to RFC 5961 a challenge 6138 * ACK should be sent. However, Mac OSX rate limits replies to challenge 6139 * ACKs on the closed socket. In addition middleboxes can drop either the 6140 * challenge ACK or a subsequent RST. 6141 */ 6142 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 6143 { 6144 const struct tcp_sock *tp = tcp_sk(sk); 6145 6146 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 6147 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 6148 TCPF_CLOSING)); 6149 } 6150 6151 /* Does PAWS and seqno based validation of an incoming segment, flags will 6152 * play significant role here. 6153 */ 6154 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 6155 const struct tcphdr *th, int syn_inerr) 6156 { 6157 struct tcp_sock *tp = tcp_sk(sk); 6158 bool accecn_reflector = false; 6159 SKB_DR(reason); 6160 6161 /* RFC1323: H1. Apply PAWS check first. */ 6162 if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) || 6163 !tp->rx_opt.saw_tstamp || 6164 tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW)) 6165 goto step1; 6166 6167 reason = tcp_disordered_ack_check(sk, skb); 6168 if (!reason) 6169 goto step1; 6170 /* Reset is accepted even if it did not pass PAWS. */ 6171 if (th->rst) 6172 goto step1; 6173 if (unlikely(th->syn)) 6174 goto syn_challenge; 6175 6176 /* Old ACK are common, increment PAWS_OLD_ACK 6177 * and do not send a dupack. 6178 */ 6179 if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) { 6180 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK); 6181 goto discard; 6182 } 6183 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 6184 if (!tcp_oow_rate_limited(sock_net(sk), skb, 6185 LINUX_MIB_TCPACKSKIPPEDPAWS, 6186 &tp->last_oow_ack_time)) 6187 tcp_send_dupack(sk, skb); 6188 goto discard; 6189 6190 step1: 6191 /* Step 1: check sequence number */ 6192 reason = tcp_sequence(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 6193 if (reason) { 6194 /* RFC793, page 37: "In all states except SYN-SENT, all reset 6195 * (RST) segments are validated by checking their SEQ-fields." 6196 * And page 69: "If an incoming segment is not acceptable, 6197 * an acknowledgment should be sent in reply (unless the RST 6198 * bit is set, if so drop the segment and return)". 6199 */ 6200 if (!th->rst) { 6201 if (th->syn) 6202 goto syn_challenge; 6203 6204 if (reason == SKB_DROP_REASON_TCP_INVALID_SEQUENCE || 6205 reason == SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE) 6206 NET_INC_STATS(sock_net(sk), 6207 LINUX_MIB_BEYOND_WINDOW); 6208 if (!tcp_oow_rate_limited(sock_net(sk), skb, 6209 LINUX_MIB_TCPACKSKIPPEDSEQ, 6210 &tp->last_oow_ack_time)) 6211 tcp_send_dupack(sk, skb); 6212 } else if (tcp_reset_check(sk, skb)) { 6213 goto reset; 6214 } 6215 goto discard; 6216 } 6217 6218 /* Step 2: check RST bit */ 6219 if (th->rst) { 6220 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 6221 * FIN and SACK too if available): 6222 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 6223 * the right-most SACK block, 6224 * then 6225 * RESET the connection 6226 * else 6227 * Send a challenge ACK 6228 */ 6229 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 6230 tcp_reset_check(sk, skb)) 6231 goto reset; 6232 6233 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 6234 struct tcp_sack_block *sp = &tp->selective_acks[0]; 6235 int max_sack = sp[0].end_seq; 6236 int this_sack; 6237 6238 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 6239 ++this_sack) { 6240 max_sack = after(sp[this_sack].end_seq, 6241 max_sack) ? 6242 sp[this_sack].end_seq : max_sack; 6243 } 6244 6245 if (TCP_SKB_CB(skb)->seq == max_sack) 6246 goto reset; 6247 } 6248 6249 /* Disable TFO if RST is out-of-order 6250 * and no data has been received 6251 * for current active TFO socket 6252 */ 6253 if (tp->syn_fastopen && !tp->data_segs_in && 6254 sk->sk_state == TCP_ESTABLISHED) 6255 tcp_fastopen_active_disable(sk); 6256 tcp_send_challenge_ack(sk, false); 6257 SKB_DR_SET(reason, TCP_RESET); 6258 goto discard; 6259 } 6260 6261 /* step 3: check security and precedence [ignored] */ 6262 6263 /* step 4: Check for a SYN 6264 * RFC 5961 4.2 : Send a challenge ack 6265 */ 6266 if (th->syn) { 6267 if (tcp_ecn_mode_accecn(tp)) { 6268 accecn_reflector = true; 6269 if (tp->rx_opt.accecn && 6270 tp->saw_accecn_opt < TCP_ACCECN_OPT_COUNTER_SEEN) { 6271 u8 saw_opt = tcp_accecn_option_init(skb, tp->rx_opt.accecn); 6272 6273 tcp_accecn_saw_opt_fail_recv(tp, saw_opt); 6274 tcp_accecn_opt_demand_min(sk, 1); 6275 } 6276 } 6277 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack && 6278 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq && 6279 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt && 6280 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt) 6281 goto pass; 6282 syn_challenge: 6283 if (syn_inerr) 6284 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6285 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 6286 tcp_send_challenge_ack(sk, accecn_reflector); 6287 SKB_DR_SET(reason, TCP_INVALID_SYN); 6288 goto discard; 6289 } 6290 6291 pass: 6292 bpf_skops_parse_hdr(sk, skb); 6293 6294 return true; 6295 6296 discard: 6297 tcp_drop_reason(sk, skb, reason); 6298 return false; 6299 6300 reset: 6301 tcp_reset(sk, skb); 6302 __kfree_skb(skb); 6303 return false; 6304 } 6305 6306 /* 6307 * TCP receive function for the ESTABLISHED state. 6308 * 6309 * It is split into a fast path and a slow path. The fast path is 6310 * disabled when: 6311 * - A zero window was announced from us - zero window probing 6312 * is only handled properly in the slow path. 6313 * - Out of order segments arrived. 6314 * - Urgent data is expected. 6315 * - There is no buffer space left 6316 * - Unexpected TCP flags/window values/header lengths are received 6317 * (detected by checking the TCP header against pred_flags) 6318 * - Data is sent in both directions. Fast path only supports pure senders 6319 * or pure receivers (this means either the sequence number or the ack 6320 * value must stay constant) 6321 * - Unexpected TCP option. 6322 * 6323 * When these conditions are not satisfied it drops into a standard 6324 * receive procedure patterned after RFC793 to handle all cases. 6325 * The first three cases are guaranteed by proper pred_flags setting, 6326 * the rest is checked inline. Fast processing is turned on in 6327 * tcp_data_queue when everything is OK. 6328 */ 6329 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 6330 { 6331 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 6332 const struct tcphdr *th = (const struct tcphdr *)skb->data; 6333 struct tcp_sock *tp = tcp_sk(sk); 6334 unsigned int len = skb->len; 6335 6336 /* TCP congestion window tracking */ 6337 trace_tcp_probe(sk, skb); 6338 6339 tcp_mstamp_refresh(tp); 6340 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 6341 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 6342 /* 6343 * Header prediction. 6344 * The code loosely follows the one in the famous 6345 * "30 instruction TCP receive" Van Jacobson mail. 6346 * 6347 * Van's trick is to deposit buffers into socket queue 6348 * on a device interrupt, to call tcp_recv function 6349 * on the receive process context and checksum and copy 6350 * the buffer to user space. smart... 6351 * 6352 * Our current scheme is not silly either but we take the 6353 * extra cost of the net_bh soft interrupt processing... 6354 * We do checksum and copy also but from device to kernel. 6355 */ 6356 6357 tp->rx_opt.saw_tstamp = 0; 6358 tp->rx_opt.accecn = 0; 6359 6360 /* pred_flags is 0xS?10 << 16 + snd_wnd 6361 * if header_prediction is to be made 6362 * 'S' will always be tp->tcp_header_len >> 2 6363 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6364 * turn it off (when there are holes in the receive 6365 * space for instance) 6366 * PSH flag is ignored. 6367 */ 6368 6369 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6370 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6371 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6372 int tcp_header_len = tp->tcp_header_len; 6373 s32 delta = 0; 6374 int flag = 0; 6375 6376 /* Timestamp header prediction: tcp_header_len 6377 * is automatically equal to th->doff*4 due to pred_flags 6378 * match. 6379 */ 6380 6381 /* Check timestamp */ 6382 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6383 /* No? Slow path! */ 6384 if (!tcp_parse_aligned_timestamp(tp, th)) 6385 goto slow_path; 6386 6387 delta = tp->rx_opt.rcv_tsval - 6388 tp->rx_opt.ts_recent; 6389 /* If PAWS failed, check it more carefully in slow path */ 6390 if (delta < 0) 6391 goto slow_path; 6392 6393 /* DO NOT update ts_recent here, if checksum fails 6394 * and timestamp was corrupted part, it will result 6395 * in a hung connection since we will drop all 6396 * future packets due to the PAWS test. 6397 */ 6398 } 6399 6400 if (len <= tcp_header_len) { 6401 /* Bulk data transfer: sender */ 6402 if (len == tcp_header_len) { 6403 /* Predicted packet is in window by definition. 6404 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6405 * Hence, check seq<=rcv_wup reduces to: 6406 */ 6407 if (tcp_header_len == 6408 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6409 tp->rcv_nxt == tp->rcv_wup) 6410 flag |= __tcp_replace_ts_recent(tp, 6411 delta); 6412 6413 tcp_ecn_received_counters(sk, skb, 0); 6414 6415 /* We know that such packets are checksummed 6416 * on entry. 6417 */ 6418 tcp_ack(sk, skb, flag); 6419 __kfree_skb(skb); 6420 tcp_data_snd_check(sk); 6421 /* When receiving pure ack in fast path, update 6422 * last ts ecr directly instead of calling 6423 * tcp_rcv_rtt_measure_ts() 6424 */ 6425 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6426 return; 6427 } else { /* Header too small */ 6428 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6429 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6430 goto discard; 6431 } 6432 } else { 6433 int eaten = 0; 6434 bool fragstolen = false; 6435 6436 if (tcp_checksum_complete(skb)) 6437 goto csum_error; 6438 6439 if (after(TCP_SKB_CB(skb)->end_seq, 6440 tp->rcv_nxt + tcp_receive_window(tp))) 6441 goto validate; 6442 6443 if ((int)skb->truesize > sk->sk_forward_alloc) 6444 goto step5; 6445 6446 /* Predicted packet is in window by definition. 6447 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6448 * Hence, check seq<=rcv_wup reduces to: 6449 */ 6450 if (tcp_header_len == 6451 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6452 tp->rcv_nxt == tp->rcv_wup) 6453 flag |= __tcp_replace_ts_recent(tp, 6454 delta); 6455 6456 tcp_rcv_rtt_measure_ts(sk, skb); 6457 6458 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6459 6460 /* Bulk data transfer: receiver */ 6461 tcp_cleanup_skb(skb); 6462 __skb_pull(skb, tcp_header_len); 6463 tcp_ecn_received_counters(sk, skb, 6464 len - tcp_header_len); 6465 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6466 6467 tcp_event_data_recv(sk, skb); 6468 6469 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6470 /* Well, only one small jumplet in fast path... */ 6471 tcp_ack(sk, skb, flag | FLAG_DATA); 6472 tcp_data_snd_check(sk); 6473 if (!inet_csk_ack_scheduled(sk)) 6474 goto no_ack; 6475 } else { 6476 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6477 } 6478 6479 __tcp_ack_snd_check(sk, 0); 6480 no_ack: 6481 if (eaten) 6482 kfree_skb_partial(skb, fragstolen); 6483 tcp_data_ready(sk); 6484 return; 6485 } 6486 } 6487 6488 slow_path: 6489 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6490 goto csum_error; 6491 6492 if (!th->ack && !th->rst && !th->syn) { 6493 reason = SKB_DROP_REASON_TCP_FLAGS; 6494 goto discard; 6495 } 6496 6497 /* 6498 * Standard slow path. 6499 */ 6500 validate: 6501 if (!tcp_validate_incoming(sk, skb, th, 1)) 6502 return; 6503 6504 step5: 6505 tcp_ecn_received_counters_payload(sk, skb); 6506 6507 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6508 if ((int)reason < 0) { 6509 reason = -reason; 6510 goto discard; 6511 } 6512 tcp_rcv_rtt_measure_ts(sk, skb); 6513 6514 /* Process urgent data. */ 6515 tcp_urg(sk, skb, th); 6516 6517 /* step 7: process the segment text */ 6518 tcp_data_queue(sk, skb); 6519 6520 tcp_data_snd_check(sk); 6521 tcp_ack_snd_check(sk); 6522 return; 6523 6524 csum_error: 6525 reason = SKB_DROP_REASON_TCP_CSUM; 6526 trace_tcp_bad_csum(skb); 6527 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6528 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6529 6530 discard: 6531 tcp_drop_reason(sk, skb, reason); 6532 } 6533 EXPORT_IPV6_MOD(tcp_rcv_established); 6534 6535 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6536 { 6537 struct inet_connection_sock *icsk = inet_csk(sk); 6538 struct tcp_sock *tp = tcp_sk(sk); 6539 6540 tcp_mtup_init(sk); 6541 icsk->icsk_af_ops->rebuild_header(sk); 6542 tcp_init_metrics(sk); 6543 6544 /* Initialize the congestion window to start the transfer. 6545 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6546 * retransmitted. In light of RFC6298 more aggressive 1sec 6547 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6548 * retransmission has occurred. 6549 */ 6550 if (tp->total_retrans > 1 && tp->undo_marker) 6551 tcp_snd_cwnd_set(tp, 1); 6552 else 6553 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6554 tp->snd_cwnd_stamp = tcp_jiffies32; 6555 6556 bpf_skops_established(sk, bpf_op, skb); 6557 /* Initialize congestion control unless BPF initialized it already: */ 6558 if (!icsk->icsk_ca_initialized) 6559 tcp_init_congestion_control(sk); 6560 tcp_init_buffer_space(sk); 6561 } 6562 6563 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6564 { 6565 struct tcp_sock *tp = tcp_sk(sk); 6566 struct inet_connection_sock *icsk = inet_csk(sk); 6567 6568 tcp_ao_finish_connect(sk, skb); 6569 tcp_set_state(sk, TCP_ESTABLISHED); 6570 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6571 6572 if (skb) { 6573 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6574 security_inet_conn_established(sk, skb); 6575 sk_mark_napi_id(sk, skb); 6576 } 6577 6578 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6579 6580 /* Prevent spurious tcp_cwnd_restart() on first data 6581 * packet. 6582 */ 6583 tp->lsndtime = tcp_jiffies32; 6584 6585 if (sock_flag(sk, SOCK_KEEPOPEN)) 6586 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6587 6588 if (!tp->rx_opt.snd_wscale) 6589 __tcp_fast_path_on(tp, tp->snd_wnd); 6590 else 6591 tp->pred_flags = 0; 6592 } 6593 6594 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6595 struct tcp_fastopen_cookie *cookie) 6596 { 6597 struct tcp_sock *tp = tcp_sk(sk); 6598 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6599 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6600 bool syn_drop = false; 6601 6602 if (mss == READ_ONCE(tp->rx_opt.user_mss)) { 6603 struct tcp_options_received opt; 6604 6605 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6606 tcp_clear_options(&opt); 6607 opt.user_mss = opt.mss_clamp = 0; 6608 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6609 mss = opt.mss_clamp; 6610 } 6611 6612 if (!tp->syn_fastopen) { 6613 /* Ignore an unsolicited cookie */ 6614 cookie->len = -1; 6615 } else if (tp->total_retrans) { 6616 /* SYN timed out and the SYN-ACK neither has a cookie nor 6617 * acknowledges data. Presumably the remote received only 6618 * the retransmitted (regular) SYNs: either the original 6619 * SYN-data or the corresponding SYN-ACK was dropped. 6620 */ 6621 syn_drop = (cookie->len < 0 && data); 6622 } else if (cookie->len < 0 && !tp->syn_data) { 6623 /* We requested a cookie but didn't get it. If we did not use 6624 * the (old) exp opt format then try so next time (try_exp=1). 6625 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6626 */ 6627 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6628 } 6629 6630 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6631 6632 if (data) { /* Retransmit unacked data in SYN */ 6633 if (tp->total_retrans) 6634 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6635 else 6636 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6637 skb_rbtree_walk_from(data) 6638 tcp_mark_skb_lost(sk, data); 6639 tcp_non_congestion_loss_retransmit(sk); 6640 NET_INC_STATS(sock_net(sk), 6641 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6642 return true; 6643 } 6644 tp->syn_data_acked = tp->syn_data; 6645 if (tp->syn_data_acked) { 6646 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6647 /* SYN-data is counted as two separate packets in tcp_ack() */ 6648 if (tp->delivered > 1) 6649 --tp->delivered; 6650 } 6651 6652 tcp_fastopen_add_skb(sk, synack); 6653 6654 return false; 6655 } 6656 6657 static void smc_check_reset_syn(struct tcp_sock *tp) 6658 { 6659 #if IS_ENABLED(CONFIG_SMC) 6660 if (static_branch_unlikely(&tcp_have_smc)) { 6661 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6662 tp->syn_smc = 0; 6663 } 6664 #endif 6665 } 6666 6667 static void tcp_try_undo_spurious_syn(struct sock *sk) 6668 { 6669 struct tcp_sock *tp = tcp_sk(sk); 6670 u32 syn_stamp; 6671 6672 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6673 * spurious if the ACK's timestamp option echo value matches the 6674 * original SYN timestamp. 6675 */ 6676 syn_stamp = tp->retrans_stamp; 6677 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6678 syn_stamp == tp->rx_opt.rcv_tsecr) 6679 tp->undo_marker = 0; 6680 } 6681 6682 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6683 const struct tcphdr *th) 6684 { 6685 struct inet_connection_sock *icsk = inet_csk(sk); 6686 struct tcp_sock *tp = tcp_sk(sk); 6687 struct tcp_fastopen_cookie foc = { .len = -1 }; 6688 int saved_clamp = tp->rx_opt.mss_clamp; 6689 bool fastopen_fail; 6690 SKB_DR(reason); 6691 6692 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6693 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6694 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6695 6696 if (th->ack) { 6697 /* rfc793: 6698 * "If the state is SYN-SENT then 6699 * first check the ACK bit 6700 * If the ACK bit is set 6701 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6702 * a reset (unless the RST bit is set, if so drop 6703 * the segment and return)" 6704 */ 6705 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6706 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6707 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6708 if (icsk->icsk_retransmits == 0) 6709 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 6710 TCP_TIMEOUT_MIN, false); 6711 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE); 6712 goto reset_and_undo; 6713 } 6714 6715 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6716 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6717 tcp_time_stamp_ts(tp))) { 6718 NET_INC_STATS(sock_net(sk), 6719 LINUX_MIB_PAWSACTIVEREJECTED); 6720 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6721 goto reset_and_undo; 6722 } 6723 6724 /* Now ACK is acceptable. 6725 * 6726 * "If the RST bit is set 6727 * If the ACK was acceptable then signal the user "error: 6728 * connection reset", drop the segment, enter CLOSED state, 6729 * delete TCB, and return." 6730 */ 6731 6732 if (th->rst) { 6733 tcp_reset(sk, skb); 6734 consume: 6735 __kfree_skb(skb); 6736 return 0; 6737 } 6738 6739 /* rfc793: 6740 * "fifth, if neither of the SYN or RST bits is set then 6741 * drop the segment and return." 6742 * 6743 * See note below! 6744 * --ANK(990513) 6745 */ 6746 if (!th->syn) { 6747 SKB_DR_SET(reason, TCP_FLAGS); 6748 goto discard_and_undo; 6749 } 6750 /* rfc793: 6751 * "If the SYN bit is on ... 6752 * are acceptable then ... 6753 * (our SYN has been ACKed), change the connection 6754 * state to ESTABLISHED..." 6755 */ 6756 6757 if (tcp_ecn_mode_any(tp)) 6758 tcp_ecn_rcv_synack(sk, skb, th, 6759 TCP_SKB_CB(skb)->ip_dsfield); 6760 6761 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6762 tcp_try_undo_spurious_syn(sk); 6763 tcp_ack(sk, skb, FLAG_SLOWPATH); 6764 6765 /* Ok.. it's good. Set up sequence numbers and 6766 * move to established. 6767 */ 6768 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6769 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6770 6771 /* RFC1323: The window in SYN & SYN/ACK segments is 6772 * never scaled. 6773 */ 6774 tp->snd_wnd = ntohs(th->window); 6775 6776 if (!tp->rx_opt.wscale_ok) { 6777 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6778 WRITE_ONCE(tp->window_clamp, 6779 min(tp->window_clamp, 65535U)); 6780 } 6781 6782 if (tp->rx_opt.saw_tstamp) { 6783 tp->rx_opt.tstamp_ok = 1; 6784 tp->tcp_header_len = 6785 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6786 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6787 tcp_store_ts_recent(tp); 6788 } else { 6789 tp->tcp_header_len = sizeof(struct tcphdr); 6790 } 6791 6792 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6793 tcp_initialize_rcv_mss(sk); 6794 6795 /* Remember, tcp_poll() does not lock socket! 6796 * Change state from SYN-SENT only after copied_seq 6797 * is initialized. */ 6798 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6799 6800 smc_check_reset_syn(tp); 6801 6802 smp_mb(); 6803 6804 tcp_finish_connect(sk, skb); 6805 6806 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6807 tcp_rcv_fastopen_synack(sk, skb, &foc); 6808 6809 if (!sock_flag(sk, SOCK_DEAD)) { 6810 sk->sk_state_change(sk); 6811 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6812 } 6813 if (fastopen_fail) 6814 return -1; 6815 if (sk->sk_write_pending || 6816 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6817 inet_csk_in_pingpong_mode(sk)) { 6818 /* Save one ACK. Data will be ready after 6819 * several ticks, if write_pending is set. 6820 * 6821 * It may be deleted, but with this feature tcpdumps 6822 * look so _wonderfully_ clever, that I was not able 6823 * to stand against the temptation 8) --ANK 6824 */ 6825 inet_csk_schedule_ack(sk); 6826 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6827 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, 6828 TCP_DELACK_MAX, false); 6829 goto consume; 6830 } 6831 tcp_send_ack_reflect_ect(sk, tcp_ecn_mode_accecn(tp)); 6832 return -1; 6833 } 6834 6835 /* No ACK in the segment */ 6836 6837 if (th->rst) { 6838 /* rfc793: 6839 * "If the RST bit is set 6840 * 6841 * Otherwise (no ACK) drop the segment and return." 6842 */ 6843 SKB_DR_SET(reason, TCP_RESET); 6844 goto discard_and_undo; 6845 } 6846 6847 /* PAWS check. */ 6848 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6849 tcp_paws_reject(&tp->rx_opt, 0)) { 6850 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6851 goto discard_and_undo; 6852 } 6853 if (th->syn) { 6854 /* We see SYN without ACK. It is attempt of 6855 * simultaneous connect with crossed SYNs. 6856 * Particularly, it can be connect to self. 6857 */ 6858 #ifdef CONFIG_TCP_AO 6859 struct tcp_ao_info *ao; 6860 6861 ao = rcu_dereference_protected(tp->ao_info, 6862 lockdep_sock_is_held(sk)); 6863 if (ao) { 6864 WRITE_ONCE(ao->risn, th->seq); 6865 ao->rcv_sne = 0; 6866 } 6867 #endif 6868 tcp_set_state(sk, TCP_SYN_RECV); 6869 6870 if (tp->rx_opt.saw_tstamp) { 6871 tp->rx_opt.tstamp_ok = 1; 6872 tcp_store_ts_recent(tp); 6873 tp->tcp_header_len = 6874 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6875 } else { 6876 tp->tcp_header_len = sizeof(struct tcphdr); 6877 } 6878 6879 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6880 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6881 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6882 6883 /* RFC1323: The window in SYN & SYN/ACK segments is 6884 * never scaled. 6885 */ 6886 tp->snd_wnd = ntohs(th->window); 6887 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6888 tp->max_window = tp->snd_wnd; 6889 6890 tcp_ecn_rcv_syn(tp, th, skb); 6891 6892 tcp_mtup_init(sk); 6893 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6894 tcp_initialize_rcv_mss(sk); 6895 6896 tcp_send_synack(sk); 6897 #if 0 6898 /* Note, we could accept data and URG from this segment. 6899 * There are no obstacles to make this (except that we must 6900 * either change tcp_recvmsg() to prevent it from returning data 6901 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6902 * 6903 * However, if we ignore data in ACKless segments sometimes, 6904 * we have no reasons to accept it sometimes. 6905 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6906 * is not flawless. So, discard packet for sanity. 6907 * Uncomment this return to process the data. 6908 */ 6909 return -1; 6910 #else 6911 goto consume; 6912 #endif 6913 } 6914 /* "fifth, if neither of the SYN or RST bits is set then 6915 * drop the segment and return." 6916 */ 6917 6918 discard_and_undo: 6919 tcp_clear_options(&tp->rx_opt); 6920 tp->rx_opt.mss_clamp = saved_clamp; 6921 tcp_drop_reason(sk, skb, reason); 6922 return 0; 6923 6924 reset_and_undo: 6925 tcp_clear_options(&tp->rx_opt); 6926 tp->rx_opt.mss_clamp = saved_clamp; 6927 /* we can reuse/return @reason to its caller to handle the exception */ 6928 return reason; 6929 } 6930 6931 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6932 { 6933 struct tcp_sock *tp = tcp_sk(sk); 6934 struct request_sock *req; 6935 6936 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6937 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6938 */ 6939 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6940 tcp_try_undo_recovery(sk); 6941 6942 tcp_update_rto_time(tp); 6943 WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0); 6944 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set 6945 * retrans_stamp but don't enter CA_Loss, so in case that happened we 6946 * need to zero retrans_stamp here to prevent spurious 6947 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us 6948 * to enter CA_Recovery then we need to leave retrans_stamp as it was 6949 * set entering CA_Recovery, for correct retransmits_timed_out() and 6950 * undo behavior. 6951 */ 6952 tcp_retrans_stamp_cleanup(sk); 6953 6954 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6955 * we no longer need req so release it. 6956 */ 6957 req = rcu_dereference_protected(tp->fastopen_rsk, 6958 lockdep_sock_is_held(sk)); 6959 reqsk_fastopen_remove(sk, req, false); 6960 6961 /* Re-arm the timer because data may have been sent out. 6962 * This is similar to the regular data transmission case 6963 * when new data has just been ack'ed. 6964 * 6965 * (TFO) - we could try to be more aggressive and 6966 * retransmitting any data sooner based on when they 6967 * are sent out. 6968 */ 6969 tcp_rearm_rto(sk); 6970 } 6971 6972 /* 6973 * This function implements the receiving procedure of RFC 793 for 6974 * all states except ESTABLISHED and TIME_WAIT. 6975 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6976 * address independent. 6977 */ 6978 6979 enum skb_drop_reason 6980 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6981 { 6982 struct tcp_sock *tp = tcp_sk(sk); 6983 struct inet_connection_sock *icsk = inet_csk(sk); 6984 const struct tcphdr *th = tcp_hdr(skb); 6985 struct request_sock *req; 6986 int queued = 0; 6987 SKB_DR(reason); 6988 6989 switch (sk->sk_state) { 6990 case TCP_CLOSE: 6991 SKB_DR_SET(reason, TCP_CLOSE); 6992 goto discard; 6993 6994 case TCP_LISTEN: 6995 if (th->ack) 6996 return SKB_DROP_REASON_TCP_FLAGS; 6997 6998 if (th->rst) { 6999 SKB_DR_SET(reason, TCP_RESET); 7000 goto discard; 7001 } 7002 if (th->syn) { 7003 if (th->fin) { 7004 SKB_DR_SET(reason, TCP_FLAGS); 7005 goto discard; 7006 } 7007 /* It is possible that we process SYN packets from backlog, 7008 * so we need to make sure to disable BH and RCU right there. 7009 */ 7010 rcu_read_lock(); 7011 local_bh_disable(); 7012 icsk->icsk_af_ops->conn_request(sk, skb); 7013 local_bh_enable(); 7014 rcu_read_unlock(); 7015 7016 consume_skb(skb); 7017 return 0; 7018 } 7019 SKB_DR_SET(reason, TCP_FLAGS); 7020 goto discard; 7021 7022 case TCP_SYN_SENT: 7023 tp->rx_opt.saw_tstamp = 0; 7024 tcp_mstamp_refresh(tp); 7025 queued = tcp_rcv_synsent_state_process(sk, skb, th); 7026 if (queued >= 0) 7027 return queued; 7028 7029 /* Do step6 onward by hand. */ 7030 tcp_urg(sk, skb, th); 7031 __kfree_skb(skb); 7032 tcp_data_snd_check(sk); 7033 return 0; 7034 } 7035 7036 tcp_mstamp_refresh(tp); 7037 tp->rx_opt.saw_tstamp = 0; 7038 req = rcu_dereference_protected(tp->fastopen_rsk, 7039 lockdep_sock_is_held(sk)); 7040 if (req) { 7041 bool req_stolen; 7042 7043 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 7044 sk->sk_state != TCP_FIN_WAIT1); 7045 7046 SKB_DR_SET(reason, TCP_FASTOPEN); 7047 if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason)) 7048 goto discard; 7049 } 7050 7051 if (!th->ack && !th->rst && !th->syn) { 7052 SKB_DR_SET(reason, TCP_FLAGS); 7053 goto discard; 7054 } 7055 if (!tcp_validate_incoming(sk, skb, th, 0)) 7056 return 0; 7057 7058 /* step 5: check the ACK field */ 7059 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | 7060 FLAG_UPDATE_TS_RECENT | 7061 FLAG_NO_CHALLENGE_ACK); 7062 7063 if ((int)reason <= 0) { 7064 if (sk->sk_state == TCP_SYN_RECV) { 7065 /* send one RST */ 7066 if (!reason) 7067 return SKB_DROP_REASON_TCP_OLD_ACK; 7068 return -reason; 7069 } 7070 /* accept old ack during closing */ 7071 if ((int)reason < 0) { 7072 tcp_send_challenge_ack(sk, false); 7073 reason = -reason; 7074 goto discard; 7075 } 7076 } 7077 SKB_DR_SET(reason, NOT_SPECIFIED); 7078 switch (sk->sk_state) { 7079 case TCP_SYN_RECV: 7080 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 7081 if (!tp->srtt_us) 7082 tcp_synack_rtt_meas(sk, req); 7083 7084 if (tp->rx_opt.tstamp_ok) 7085 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 7086 7087 if (req) { 7088 tcp_rcv_synrecv_state_fastopen(sk); 7089 } else { 7090 tcp_try_undo_spurious_syn(sk); 7091 tp->retrans_stamp = 0; 7092 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 7093 skb); 7094 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 7095 } 7096 tcp_ao_established(sk); 7097 smp_mb(); 7098 tcp_set_state(sk, TCP_ESTABLISHED); 7099 sk->sk_state_change(sk); 7100 7101 /* Note, that this wakeup is only for marginal crossed SYN case. 7102 * Passively open sockets are not waked up, because 7103 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 7104 */ 7105 if (sk->sk_socket) 7106 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 7107 7108 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 7109 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 7110 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 7111 7112 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 7113 tcp_update_pacing_rate(sk); 7114 7115 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 7116 tp->lsndtime = tcp_jiffies32; 7117 7118 tcp_initialize_rcv_mss(sk); 7119 if (tcp_ecn_mode_accecn(tp)) 7120 tcp_accecn_third_ack(sk, skb, tp->syn_ect_snt); 7121 tcp_fast_path_on(tp); 7122 if (sk->sk_shutdown & SEND_SHUTDOWN) 7123 tcp_shutdown(sk, SEND_SHUTDOWN); 7124 7125 break; 7126 7127 case TCP_FIN_WAIT1: { 7128 int tmo; 7129 7130 if (req) 7131 tcp_rcv_synrecv_state_fastopen(sk); 7132 7133 if (tp->snd_una != tp->write_seq) 7134 break; 7135 7136 tcp_set_state(sk, TCP_FIN_WAIT2); 7137 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 7138 7139 sk_dst_confirm(sk); 7140 7141 if (!sock_flag(sk, SOCK_DEAD)) { 7142 /* Wake up lingering close() */ 7143 sk->sk_state_change(sk); 7144 break; 7145 } 7146 7147 if (READ_ONCE(tp->linger2) < 0) { 7148 tcp_done(sk); 7149 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 7150 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 7151 } 7152 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 7153 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 7154 /* Receive out of order FIN after close() */ 7155 if (tp->syn_fastopen && th->fin) 7156 tcp_fastopen_active_disable(sk); 7157 tcp_done(sk); 7158 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 7159 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 7160 } 7161 7162 tmo = tcp_fin_time(sk); 7163 if (tmo > TCP_TIMEWAIT_LEN) { 7164 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 7165 } else if (th->fin || sock_owned_by_user(sk)) { 7166 /* Bad case. We could lose such FIN otherwise. 7167 * It is not a big problem, but it looks confusing 7168 * and not so rare event. We still can lose it now, 7169 * if it spins in bh_lock_sock(), but it is really 7170 * marginal case. 7171 */ 7172 tcp_reset_keepalive_timer(sk, tmo); 7173 } else { 7174 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 7175 goto consume; 7176 } 7177 break; 7178 } 7179 7180 case TCP_CLOSING: 7181 if (tp->snd_una == tp->write_seq) { 7182 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 7183 goto consume; 7184 } 7185 break; 7186 7187 case TCP_LAST_ACK: 7188 if (tp->snd_una == tp->write_seq) { 7189 tcp_update_metrics(sk); 7190 tcp_done(sk); 7191 goto consume; 7192 } 7193 break; 7194 } 7195 7196 /* step 6: check the URG bit */ 7197 tcp_urg(sk, skb, th); 7198 7199 /* step 7: process the segment text */ 7200 switch (sk->sk_state) { 7201 case TCP_CLOSE_WAIT: 7202 case TCP_CLOSING: 7203 case TCP_LAST_ACK: 7204 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 7205 /* If a subflow has been reset, the packet should not 7206 * continue to be processed, drop the packet. 7207 */ 7208 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 7209 goto discard; 7210 break; 7211 } 7212 fallthrough; 7213 case TCP_FIN_WAIT1: 7214 case TCP_FIN_WAIT2: 7215 /* RFC 793 says to queue data in these states, 7216 * RFC 1122 says we MUST send a reset. 7217 * BSD 4.4 also does reset. 7218 */ 7219 if (sk->sk_shutdown & RCV_SHUTDOWN) { 7220 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 7221 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 7222 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 7223 tcp_reset(sk, skb); 7224 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 7225 } 7226 } 7227 fallthrough; 7228 case TCP_ESTABLISHED: 7229 tcp_data_queue(sk, skb); 7230 queued = 1; 7231 break; 7232 } 7233 7234 /* tcp_data could move socket to TIME-WAIT */ 7235 if (sk->sk_state != TCP_CLOSE) { 7236 tcp_data_snd_check(sk); 7237 tcp_ack_snd_check(sk); 7238 } 7239 7240 if (!queued) { 7241 discard: 7242 tcp_drop_reason(sk, skb, reason); 7243 } 7244 return 0; 7245 7246 consume: 7247 __kfree_skb(skb); 7248 return 0; 7249 } 7250 EXPORT_IPV6_MOD(tcp_rcv_state_process); 7251 7252 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 7253 { 7254 struct inet_request_sock *ireq = inet_rsk(req); 7255 7256 if (family == AF_INET) 7257 net_dbg_ratelimited("drop open request from %pI4/%u\n", 7258 &ireq->ir_rmt_addr, port); 7259 #if IS_ENABLED(CONFIG_IPV6) 7260 else if (family == AF_INET6) 7261 net_dbg_ratelimited("drop open request from %pI6/%u\n", 7262 &ireq->ir_v6_rmt_addr, port); 7263 #endif 7264 } 7265 7266 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 7267 * 7268 * If we receive a SYN packet with these bits set, it means a 7269 * network is playing bad games with TOS bits. In order to 7270 * avoid possible false congestion notifications, we disable 7271 * TCP ECN negotiation. 7272 * 7273 * Exception: tcp_ca wants ECN. This is required for DCTCP 7274 * congestion control: Linux DCTCP asserts ECT on all packets, 7275 * including SYN, which is most optimal solution; however, 7276 * others, such as FreeBSD do not. 7277 * 7278 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 7279 * set, indicating the use of a future TCP extension (such as AccECN). See 7280 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 7281 * extensions. 7282 */ 7283 static void tcp_ecn_create_request(struct request_sock *req, 7284 const struct sk_buff *skb, 7285 const struct sock *listen_sk, 7286 const struct dst_entry *dst) 7287 { 7288 const struct tcphdr *th = tcp_hdr(skb); 7289 const struct net *net = sock_net(listen_sk); 7290 bool th_ecn = th->ece && th->cwr; 7291 bool ect, ecn_ok; 7292 u32 ecn_ok_dst; 7293 7294 if (tcp_accecn_syn_requested(th) && 7295 READ_ONCE(net->ipv4.sysctl_tcp_ecn) >= 3) { 7296 inet_rsk(req)->ecn_ok = 1; 7297 tcp_rsk(req)->accecn_ok = 1; 7298 tcp_rsk(req)->syn_ect_rcv = TCP_SKB_CB(skb)->ip_dsfield & 7299 INET_ECN_MASK; 7300 return; 7301 } 7302 7303 if (!th_ecn) 7304 return; 7305 7306 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 7307 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 7308 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 7309 7310 if (((!ect || th->res1 || th->ae) && ecn_ok) || 7311 tcp_ca_needs_ecn(listen_sk) || 7312 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 7313 tcp_bpf_ca_needs_ecn((struct sock *)req)) 7314 inet_rsk(req)->ecn_ok = 1; 7315 } 7316 7317 static void tcp_openreq_init(struct request_sock *req, 7318 const struct tcp_options_received *rx_opt, 7319 struct sk_buff *skb, const struct sock *sk) 7320 { 7321 struct inet_request_sock *ireq = inet_rsk(req); 7322 7323 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 7324 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 7325 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 7326 tcp_rsk(req)->snt_synack = 0; 7327 tcp_rsk(req)->snt_tsval_first = 0; 7328 tcp_rsk(req)->last_oow_ack_time = 0; 7329 tcp_rsk(req)->accecn_ok = 0; 7330 tcp_rsk(req)->saw_accecn_opt = TCP_ACCECN_OPT_NOT_SEEN; 7331 tcp_rsk(req)->accecn_fail_mode = 0; 7332 tcp_rsk(req)->syn_ect_rcv = 0; 7333 tcp_rsk(req)->syn_ect_snt = 0; 7334 req->mss = rx_opt->mss_clamp; 7335 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 7336 ireq->tstamp_ok = rx_opt->tstamp_ok; 7337 ireq->sack_ok = rx_opt->sack_ok; 7338 ireq->snd_wscale = rx_opt->snd_wscale; 7339 ireq->wscale_ok = rx_opt->wscale_ok; 7340 ireq->acked = 0; 7341 ireq->ecn_ok = 0; 7342 ireq->ir_rmt_port = tcp_hdr(skb)->source; 7343 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 7344 ireq->ir_mark = inet_request_mark(sk, skb); 7345 #if IS_ENABLED(CONFIG_SMC) 7346 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 7347 tcp_sk(sk)->smc_hs_congested(sk)); 7348 #endif 7349 } 7350 7351 /* 7352 * Return true if a syncookie should be sent 7353 */ 7354 static bool tcp_syn_flood_action(struct sock *sk, const char *proto) 7355 { 7356 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 7357 const char *msg = "Dropping request"; 7358 struct net *net = sock_net(sk); 7359 bool want_cookie = false; 7360 u8 syncookies; 7361 7362 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7363 7364 #ifdef CONFIG_SYN_COOKIES 7365 if (syncookies) { 7366 msg = "Sending cookies"; 7367 want_cookie = true; 7368 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 7369 } else 7370 #endif 7371 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 7372 7373 if (syncookies != 2 && !READ_ONCE(queue->synflood_warned)) { 7374 WRITE_ONCE(queue->synflood_warned, 1); 7375 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 7376 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 7377 proto, inet6_rcv_saddr(sk), 7378 sk->sk_num, msg); 7379 } else { 7380 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7381 proto, &sk->sk_rcv_saddr, 7382 sk->sk_num, msg); 7383 } 7384 } 7385 7386 return want_cookie; 7387 } 7388 7389 static void tcp_reqsk_record_syn(const struct sock *sk, 7390 struct request_sock *req, 7391 const struct sk_buff *skb) 7392 { 7393 if (tcp_sk(sk)->save_syn) { 7394 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7395 struct saved_syn *saved_syn; 7396 u32 mac_hdrlen; 7397 void *base; 7398 7399 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7400 base = skb_mac_header(skb); 7401 mac_hdrlen = skb_mac_header_len(skb); 7402 len += mac_hdrlen; 7403 } else { 7404 base = skb_network_header(skb); 7405 mac_hdrlen = 0; 7406 } 7407 7408 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7409 GFP_ATOMIC); 7410 if (saved_syn) { 7411 saved_syn->mac_hdrlen = mac_hdrlen; 7412 saved_syn->network_hdrlen = skb_network_header_len(skb); 7413 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7414 memcpy(saved_syn->data, base, len); 7415 req->saved_syn = saved_syn; 7416 } 7417 } 7418 } 7419 7420 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7421 * used for SYN cookie generation. 7422 */ 7423 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7424 const struct tcp_request_sock_ops *af_ops, 7425 struct sock *sk, struct tcphdr *th) 7426 { 7427 struct tcp_sock *tp = tcp_sk(sk); 7428 u16 mss; 7429 7430 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7431 !inet_csk_reqsk_queue_is_full(sk)) 7432 return 0; 7433 7434 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7435 return 0; 7436 7437 if (sk_acceptq_is_full(sk)) { 7438 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7439 return 0; 7440 } 7441 7442 mss = tcp_parse_mss_option(th, READ_ONCE(tp->rx_opt.user_mss)); 7443 if (!mss) 7444 mss = af_ops->mss_clamp; 7445 7446 return mss; 7447 } 7448 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss); 7449 7450 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7451 const struct tcp_request_sock_ops *af_ops, 7452 struct sock *sk, struct sk_buff *skb) 7453 { 7454 struct tcp_fastopen_cookie foc = { .len = -1 }; 7455 struct tcp_options_received tmp_opt; 7456 const struct tcp_sock *tp = tcp_sk(sk); 7457 struct net *net = sock_net(sk); 7458 struct sock *fastopen_sk = NULL; 7459 struct request_sock *req; 7460 bool want_cookie = false; 7461 struct dst_entry *dst; 7462 struct flowi fl; 7463 u8 syncookies; 7464 u32 isn; 7465 7466 #ifdef CONFIG_TCP_AO 7467 const struct tcp_ao_hdr *aoh; 7468 #endif 7469 7470 isn = __this_cpu_read(tcp_tw_isn); 7471 if (isn) { 7472 /* TW buckets are converted to open requests without 7473 * limitations, they conserve resources and peer is 7474 * evidently real one. 7475 */ 7476 __this_cpu_write(tcp_tw_isn, 0); 7477 } else { 7478 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7479 7480 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) { 7481 want_cookie = tcp_syn_flood_action(sk, 7482 rsk_ops->slab_name); 7483 if (!want_cookie) 7484 goto drop; 7485 } 7486 } 7487 7488 if (sk_acceptq_is_full(sk)) { 7489 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7490 goto drop; 7491 } 7492 7493 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7494 if (!req) 7495 goto drop; 7496 7497 req->syncookie = want_cookie; 7498 tcp_rsk(req)->af_specific = af_ops; 7499 tcp_rsk(req)->ts_off = 0; 7500 tcp_rsk(req)->req_usec_ts = false; 7501 #if IS_ENABLED(CONFIG_MPTCP) 7502 tcp_rsk(req)->is_mptcp = 0; 7503 #endif 7504 7505 tcp_clear_options(&tmp_opt); 7506 tmp_opt.mss_clamp = af_ops->mss_clamp; 7507 tmp_opt.user_mss = READ_ONCE(tp->rx_opt.user_mss); 7508 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7509 want_cookie ? NULL : &foc); 7510 7511 if (want_cookie && !tmp_opt.saw_tstamp) 7512 tcp_clear_options(&tmp_opt); 7513 7514 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7515 tmp_opt.smc_ok = 0; 7516 7517 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7518 tcp_openreq_init(req, &tmp_opt, skb, sk); 7519 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7520 7521 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7522 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7523 7524 dst = af_ops->route_req(sk, skb, &fl, req, isn); 7525 if (!dst) 7526 goto drop_and_free; 7527 7528 if (tmp_opt.tstamp_ok) { 7529 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 7530 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7531 } 7532 if (!want_cookie && !isn) { 7533 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7534 7535 /* Kill the following clause, if you dislike this way. */ 7536 if (!syncookies && 7537 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7538 (max_syn_backlog >> 2)) && 7539 !tcp_peer_is_proven(req, dst)) { 7540 /* Without syncookies last quarter of 7541 * backlog is filled with destinations, 7542 * proven to be alive. 7543 * It means that we continue to communicate 7544 * to destinations, already remembered 7545 * to the moment of synflood. 7546 */ 7547 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7548 rsk_ops->family); 7549 goto drop_and_release; 7550 } 7551 7552 isn = af_ops->init_seq(skb); 7553 } 7554 7555 tcp_ecn_create_request(req, skb, sk, dst); 7556 7557 if (want_cookie) { 7558 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7559 if (!tmp_opt.tstamp_ok) 7560 inet_rsk(req)->ecn_ok = 0; 7561 } 7562 7563 #ifdef CONFIG_TCP_AO 7564 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 7565 goto drop_and_release; /* Invalid TCP options */ 7566 if (aoh) { 7567 tcp_rsk(req)->used_tcp_ao = true; 7568 tcp_rsk(req)->ao_rcv_next = aoh->keyid; 7569 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid; 7570 7571 } else { 7572 tcp_rsk(req)->used_tcp_ao = false; 7573 } 7574 #endif 7575 tcp_rsk(req)->snt_isn = isn; 7576 tcp_rsk(req)->txhash = net_tx_rndhash(); 7577 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7578 tcp_openreq_init_rwin(req, sk, dst); 7579 sk_rx_queue_set(req_to_sk(req), skb); 7580 if (!want_cookie) { 7581 tcp_reqsk_record_syn(sk, req, skb); 7582 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7583 } 7584 if (fastopen_sk) { 7585 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7586 &foc, TCP_SYNACK_FASTOPEN, skb); 7587 /* Add the child socket directly into the accept queue */ 7588 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7589 bh_unlock_sock(fastopen_sk); 7590 sock_put(fastopen_sk); 7591 goto drop_and_free; 7592 } 7593 sk->sk_data_ready(sk); 7594 bh_unlock_sock(fastopen_sk); 7595 sock_put(fastopen_sk); 7596 } else { 7597 tcp_rsk(req)->tfo_listener = false; 7598 if (!want_cookie && 7599 unlikely(!inet_csk_reqsk_queue_hash_add(sk, req))) { 7600 reqsk_free(req); 7601 dst_release(dst); 7602 return 0; 7603 } 7604 af_ops->send_synack(sk, dst, &fl, req, &foc, 7605 !want_cookie ? TCP_SYNACK_NORMAL : 7606 TCP_SYNACK_COOKIE, 7607 skb); 7608 if (want_cookie) { 7609 reqsk_free(req); 7610 return 0; 7611 } 7612 } 7613 reqsk_put(req); 7614 return 0; 7615 7616 drop_and_release: 7617 dst_release(dst); 7618 drop_and_free: 7619 __reqsk_free(req); 7620 drop: 7621 tcp_listendrop(sk); 7622 return 0; 7623 } 7624 EXPORT_IPV6_MOD(tcp_conn_request); 7625