1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: 25 * Pedro Roque : Fast Retransmit/Recovery. 26 * Two receive queues. 27 * Retransmit queue handled by TCP. 28 * Better retransmit timer handling. 29 * New congestion avoidance. 30 * Header prediction. 31 * Variable renaming. 32 * 33 * Eric : Fast Retransmit. 34 * Randy Scott : MSS option defines. 35 * Eric Schenk : Fixes to slow start algorithm. 36 * Eric Schenk : Yet another double ACK bug. 37 * Eric Schenk : Delayed ACK bug fixes. 38 * Eric Schenk : Floyd style fast retrans war avoidance. 39 * David S. Miller : Don't allow zero congestion window. 40 * Eric Schenk : Fix retransmitter so that it sends 41 * next packet on ack of previous packet. 42 * Andi Kleen : Moved open_request checking here 43 * and process RSTs for open_requests. 44 * Andi Kleen : Better prune_queue, and other fixes. 45 * Andrey Savochkin: Fix RTT measurements in the presence of 46 * timestamps. 47 * Andrey Savochkin: Check sequence numbers correctly when 48 * removing SACKs due to in sequence incoming 49 * data segments. 50 * Andi Kleen: Make sure we never ack data there is not 51 * enough room for. Also make this condition 52 * a fatal error if it might still happen. 53 * Andi Kleen: Add tcp_measure_rcv_mss to make 54 * connections with MSS<min(MTU,ann. MSS) 55 * work without delayed acks. 56 * Andi Kleen: Process packets with PSH set in the 57 * fast path. 58 * J Hadi Salim: ECN support 59 * Andrei Gurtov, 60 * Pasi Sarolahti, 61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 62 * engine. Lots of bugs are found. 63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 64 */ 65 66 #include <linux/config.h> 67 #include <linux/mm.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <net/tcp.h> 71 #include <net/inet_common.h> 72 #include <linux/ipsec.h> 73 #include <asm/unaligned.h> 74 75 int sysctl_tcp_timestamps = 1; 76 int sysctl_tcp_window_scaling = 1; 77 int sysctl_tcp_sack = 1; 78 int sysctl_tcp_fack = 1; 79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn; 81 int sysctl_tcp_dsack = 1; 82 int sysctl_tcp_app_win = 31; 83 int sysctl_tcp_adv_win_scale = 2; 84 85 int sysctl_tcp_stdurg; 86 int sysctl_tcp_rfc1337; 87 int sysctl_tcp_max_orphans = NR_FILE; 88 int sysctl_tcp_frto; 89 int sysctl_tcp_nometrics_save; 90 91 int sysctl_tcp_moderate_rcvbuf = 1; 92 int sysctl_tcp_abc = 1; 93 94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 100 #define FLAG_ECE 0x40 /* ECE in this ACK */ 101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 103 104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 108 109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0) 110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2) 111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4) 112 113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 114 115 /* Adapt the MSS value used to make delayed ack decision to the 116 * real world. 117 */ 118 static void tcp_measure_rcv_mss(struct sock *sk, 119 const struct sk_buff *skb) 120 { 121 struct inet_connection_sock *icsk = inet_csk(sk); 122 const unsigned int lss = icsk->icsk_ack.last_seg_size; 123 unsigned int len; 124 125 icsk->icsk_ack.last_seg_size = 0; 126 127 /* skb->len may jitter because of SACKs, even if peer 128 * sends good full-sized frames. 129 */ 130 len = skb->len; 131 if (len >= icsk->icsk_ack.rcv_mss) { 132 icsk->icsk_ack.rcv_mss = len; 133 } else { 134 /* Otherwise, we make more careful check taking into account, 135 * that SACKs block is variable. 136 * 137 * "len" is invariant segment length, including TCP header. 138 */ 139 len += skb->data - skb->h.raw; 140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 141 /* If PSH is not set, packet should be 142 * full sized, provided peer TCP is not badly broken. 143 * This observation (if it is correct 8)) allows 144 * to handle super-low mtu links fairly. 145 */ 146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) { 148 /* Subtract also invariant (if peer is RFC compliant), 149 * tcp header plus fixed timestamp option length. 150 * Resulting "len" is MSS free of SACK jitter. 151 */ 152 len -= tcp_sk(sk)->tcp_header_len; 153 icsk->icsk_ack.last_seg_size = len; 154 if (len == lss) { 155 icsk->icsk_ack.rcv_mss = len; 156 return; 157 } 158 } 159 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 160 } 161 } 162 163 static void tcp_incr_quickack(struct sock *sk) 164 { 165 struct inet_connection_sock *icsk = inet_csk(sk); 166 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 167 168 if (quickacks==0) 169 quickacks=2; 170 if (quickacks > icsk->icsk_ack.quick) 171 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 172 } 173 174 void tcp_enter_quickack_mode(struct sock *sk) 175 { 176 struct inet_connection_sock *icsk = inet_csk(sk); 177 tcp_incr_quickack(sk); 178 icsk->icsk_ack.pingpong = 0; 179 icsk->icsk_ack.ato = TCP_ATO_MIN; 180 } 181 182 /* Send ACKs quickly, if "quick" count is not exhausted 183 * and the session is not interactive. 184 */ 185 186 static inline int tcp_in_quickack_mode(const struct sock *sk) 187 { 188 const struct inet_connection_sock *icsk = inet_csk(sk); 189 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 190 } 191 192 /* Buffer size and advertised window tuning. 193 * 194 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 195 */ 196 197 static void tcp_fixup_sndbuf(struct sock *sk) 198 { 199 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 200 sizeof(struct sk_buff); 201 202 if (sk->sk_sndbuf < 3 * sndmem) 203 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 204 } 205 206 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 207 * 208 * All tcp_full_space() is split to two parts: "network" buffer, allocated 209 * forward and advertised in receiver window (tp->rcv_wnd) and 210 * "application buffer", required to isolate scheduling/application 211 * latencies from network. 212 * window_clamp is maximal advertised window. It can be less than 213 * tcp_full_space(), in this case tcp_full_space() - window_clamp 214 * is reserved for "application" buffer. The less window_clamp is 215 * the smoother our behaviour from viewpoint of network, but the lower 216 * throughput and the higher sensitivity of the connection to losses. 8) 217 * 218 * rcv_ssthresh is more strict window_clamp used at "slow start" 219 * phase to predict further behaviour of this connection. 220 * It is used for two goals: 221 * - to enforce header prediction at sender, even when application 222 * requires some significant "application buffer". It is check #1. 223 * - to prevent pruning of receive queue because of misprediction 224 * of receiver window. Check #2. 225 * 226 * The scheme does not work when sender sends good segments opening 227 * window and then starts to feed us spaghetti. But it should work 228 * in common situations. Otherwise, we have to rely on queue collapsing. 229 */ 230 231 /* Slow part of check#2. */ 232 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp, 233 const struct sk_buff *skb) 234 { 235 /* Optimize this! */ 236 int truesize = tcp_win_from_space(skb->truesize)/2; 237 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2; 238 239 while (tp->rcv_ssthresh <= window) { 240 if (truesize <= skb->len) 241 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 242 243 truesize >>= 1; 244 window >>= 1; 245 } 246 return 0; 247 } 248 249 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp, 250 struct sk_buff *skb) 251 { 252 /* Check #1 */ 253 if (tp->rcv_ssthresh < tp->window_clamp && 254 (int)tp->rcv_ssthresh < tcp_space(sk) && 255 !tcp_memory_pressure) { 256 int incr; 257 258 /* Check #2. Increase window, if skb with such overhead 259 * will fit to rcvbuf in future. 260 */ 261 if (tcp_win_from_space(skb->truesize) <= skb->len) 262 incr = 2*tp->advmss; 263 else 264 incr = __tcp_grow_window(sk, tp, skb); 265 266 if (incr) { 267 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp); 268 inet_csk(sk)->icsk_ack.quick |= 1; 269 } 270 } 271 } 272 273 /* 3. Tuning rcvbuf, when connection enters established state. */ 274 275 static void tcp_fixup_rcvbuf(struct sock *sk) 276 { 277 struct tcp_sock *tp = tcp_sk(sk); 278 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 279 280 /* Try to select rcvbuf so that 4 mss-sized segments 281 * will fit to window and corresponding skbs will fit to our rcvbuf. 282 * (was 3; 4 is minimum to allow fast retransmit to work.) 283 */ 284 while (tcp_win_from_space(rcvmem) < tp->advmss) 285 rcvmem += 128; 286 if (sk->sk_rcvbuf < 4 * rcvmem) 287 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 288 } 289 290 /* 4. Try to fixup all. It is made immediately after connection enters 291 * established state. 292 */ 293 static void tcp_init_buffer_space(struct sock *sk) 294 { 295 struct tcp_sock *tp = tcp_sk(sk); 296 int maxwin; 297 298 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 299 tcp_fixup_rcvbuf(sk); 300 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 301 tcp_fixup_sndbuf(sk); 302 303 tp->rcvq_space.space = tp->rcv_wnd; 304 305 maxwin = tcp_full_space(sk); 306 307 if (tp->window_clamp >= maxwin) { 308 tp->window_clamp = maxwin; 309 310 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 311 tp->window_clamp = max(maxwin - 312 (maxwin >> sysctl_tcp_app_win), 313 4 * tp->advmss); 314 } 315 316 /* Force reservation of one segment. */ 317 if (sysctl_tcp_app_win && 318 tp->window_clamp > 2 * tp->advmss && 319 tp->window_clamp + tp->advmss > maxwin) 320 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 321 322 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 323 tp->snd_cwnd_stamp = tcp_time_stamp; 324 } 325 326 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 327 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp) 328 { 329 struct inet_connection_sock *icsk = inet_csk(sk); 330 331 icsk->icsk_ack.quick = 0; 332 333 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 334 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 335 !tcp_memory_pressure && 336 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 337 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 338 sysctl_tcp_rmem[2]); 339 } 340 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 341 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss); 342 } 343 344 345 /* Initialize RCV_MSS value. 346 * RCV_MSS is an our guess about MSS used by the peer. 347 * We haven't any direct information about the MSS. 348 * It's better to underestimate the RCV_MSS rather than overestimate. 349 * Overestimations make us ACKing less frequently than needed. 350 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 351 */ 352 void tcp_initialize_rcv_mss(struct sock *sk) 353 { 354 struct tcp_sock *tp = tcp_sk(sk); 355 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 356 357 hint = min(hint, tp->rcv_wnd/2); 358 hint = min(hint, TCP_MIN_RCVMSS); 359 hint = max(hint, TCP_MIN_MSS); 360 361 inet_csk(sk)->icsk_ack.rcv_mss = hint; 362 } 363 364 /* Receiver "autotuning" code. 365 * 366 * The algorithm for RTT estimation w/o timestamps is based on 367 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 368 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 369 * 370 * More detail on this code can be found at 371 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 372 * though this reference is out of date. A new paper 373 * is pending. 374 */ 375 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 376 { 377 u32 new_sample = tp->rcv_rtt_est.rtt; 378 long m = sample; 379 380 if (m == 0) 381 m = 1; 382 383 if (new_sample != 0) { 384 /* If we sample in larger samples in the non-timestamp 385 * case, we could grossly overestimate the RTT especially 386 * with chatty applications or bulk transfer apps which 387 * are stalled on filesystem I/O. 388 * 389 * Also, since we are only going for a minimum in the 390 * non-timestamp case, we do not smooth things out 391 * else with timestamps disabled convergence takes too 392 * long. 393 */ 394 if (!win_dep) { 395 m -= (new_sample >> 3); 396 new_sample += m; 397 } else if (m < new_sample) 398 new_sample = m << 3; 399 } else { 400 /* No previous measure. */ 401 new_sample = m << 3; 402 } 403 404 if (tp->rcv_rtt_est.rtt != new_sample) 405 tp->rcv_rtt_est.rtt = new_sample; 406 } 407 408 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 409 { 410 if (tp->rcv_rtt_est.time == 0) 411 goto new_measure; 412 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 413 return; 414 tcp_rcv_rtt_update(tp, 415 jiffies - tp->rcv_rtt_est.time, 416 1); 417 418 new_measure: 419 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 420 tp->rcv_rtt_est.time = tcp_time_stamp; 421 } 422 423 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb) 424 { 425 struct tcp_sock *tp = tcp_sk(sk); 426 if (tp->rx_opt.rcv_tsecr && 427 (TCP_SKB_CB(skb)->end_seq - 428 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 429 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 430 } 431 432 /* 433 * This function should be called every time data is copied to user space. 434 * It calculates the appropriate TCP receive buffer space. 435 */ 436 void tcp_rcv_space_adjust(struct sock *sk) 437 { 438 struct tcp_sock *tp = tcp_sk(sk); 439 int time; 440 int space; 441 442 if (tp->rcvq_space.time == 0) 443 goto new_measure; 444 445 time = tcp_time_stamp - tp->rcvq_space.time; 446 if (time < (tp->rcv_rtt_est.rtt >> 3) || 447 tp->rcv_rtt_est.rtt == 0) 448 return; 449 450 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 451 452 space = max(tp->rcvq_space.space, space); 453 454 if (tp->rcvq_space.space != space) { 455 int rcvmem; 456 457 tp->rcvq_space.space = space; 458 459 if (sysctl_tcp_moderate_rcvbuf && 460 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 461 int new_clamp = space; 462 463 /* Receive space grows, normalize in order to 464 * take into account packet headers and sk_buff 465 * structure overhead. 466 */ 467 space /= tp->advmss; 468 if (!space) 469 space = 1; 470 rcvmem = (tp->advmss + MAX_TCP_HEADER + 471 16 + sizeof(struct sk_buff)); 472 while (tcp_win_from_space(rcvmem) < tp->advmss) 473 rcvmem += 128; 474 space *= rcvmem; 475 space = min(space, sysctl_tcp_rmem[2]); 476 if (space > sk->sk_rcvbuf) { 477 sk->sk_rcvbuf = space; 478 479 /* Make the window clamp follow along. */ 480 tp->window_clamp = new_clamp; 481 } 482 } 483 } 484 485 new_measure: 486 tp->rcvq_space.seq = tp->copied_seq; 487 tp->rcvq_space.time = tcp_time_stamp; 488 } 489 490 /* There is something which you must keep in mind when you analyze the 491 * behavior of the tp->ato delayed ack timeout interval. When a 492 * connection starts up, we want to ack as quickly as possible. The 493 * problem is that "good" TCP's do slow start at the beginning of data 494 * transmission. The means that until we send the first few ACK's the 495 * sender will sit on his end and only queue most of his data, because 496 * he can only send snd_cwnd unacked packets at any given time. For 497 * each ACK we send, he increments snd_cwnd and transmits more of his 498 * queue. -DaveM 499 */ 500 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) 501 { 502 struct inet_connection_sock *icsk = inet_csk(sk); 503 u32 now; 504 505 inet_csk_schedule_ack(sk); 506 507 tcp_measure_rcv_mss(sk, skb); 508 509 tcp_rcv_rtt_measure(tp); 510 511 now = tcp_time_stamp; 512 513 if (!icsk->icsk_ack.ato) { 514 /* The _first_ data packet received, initialize 515 * delayed ACK engine. 516 */ 517 tcp_incr_quickack(sk); 518 icsk->icsk_ack.ato = TCP_ATO_MIN; 519 } else { 520 int m = now - icsk->icsk_ack.lrcvtime; 521 522 if (m <= TCP_ATO_MIN/2) { 523 /* The fastest case is the first. */ 524 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 525 } else if (m < icsk->icsk_ack.ato) { 526 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 527 if (icsk->icsk_ack.ato > icsk->icsk_rto) 528 icsk->icsk_ack.ato = icsk->icsk_rto; 529 } else if (m > icsk->icsk_rto) { 530 /* Too long gap. Apparently sender failed to 531 * restart window, so that we send ACKs quickly. 532 */ 533 tcp_incr_quickack(sk); 534 sk_stream_mem_reclaim(sk); 535 } 536 } 537 icsk->icsk_ack.lrcvtime = now; 538 539 TCP_ECN_check_ce(tp, skb); 540 541 if (skb->len >= 128) 542 tcp_grow_window(sk, tp, skb); 543 } 544 545 /* Called to compute a smoothed rtt estimate. The data fed to this 546 * routine either comes from timestamps, or from segments that were 547 * known _not_ to have been retransmitted [see Karn/Partridge 548 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 549 * piece by Van Jacobson. 550 * NOTE: the next three routines used to be one big routine. 551 * To save cycles in the RFC 1323 implementation it was better to break 552 * it up into three procedures. -- erics 553 */ 554 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 555 { 556 struct tcp_sock *tp = tcp_sk(sk); 557 long m = mrtt; /* RTT */ 558 559 /* The following amusing code comes from Jacobson's 560 * article in SIGCOMM '88. Note that rtt and mdev 561 * are scaled versions of rtt and mean deviation. 562 * This is designed to be as fast as possible 563 * m stands for "measurement". 564 * 565 * On a 1990 paper the rto value is changed to: 566 * RTO = rtt + 4 * mdev 567 * 568 * Funny. This algorithm seems to be very broken. 569 * These formulae increase RTO, when it should be decreased, increase 570 * too slowly, when it should be increased quickly, decrease too quickly 571 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 572 * does not matter how to _calculate_ it. Seems, it was trap 573 * that VJ failed to avoid. 8) 574 */ 575 if(m == 0) 576 m = 1; 577 if (tp->srtt != 0) { 578 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 579 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 580 if (m < 0) { 581 m = -m; /* m is now abs(error) */ 582 m -= (tp->mdev >> 2); /* similar update on mdev */ 583 /* This is similar to one of Eifel findings. 584 * Eifel blocks mdev updates when rtt decreases. 585 * This solution is a bit different: we use finer gain 586 * for mdev in this case (alpha*beta). 587 * Like Eifel it also prevents growth of rto, 588 * but also it limits too fast rto decreases, 589 * happening in pure Eifel. 590 */ 591 if (m > 0) 592 m >>= 3; 593 } else { 594 m -= (tp->mdev >> 2); /* similar update on mdev */ 595 } 596 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 597 if (tp->mdev > tp->mdev_max) { 598 tp->mdev_max = tp->mdev; 599 if (tp->mdev_max > tp->rttvar) 600 tp->rttvar = tp->mdev_max; 601 } 602 if (after(tp->snd_una, tp->rtt_seq)) { 603 if (tp->mdev_max < tp->rttvar) 604 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2; 605 tp->rtt_seq = tp->snd_nxt; 606 tp->mdev_max = TCP_RTO_MIN; 607 } 608 } else { 609 /* no previous measure. */ 610 tp->srtt = m<<3; /* take the measured time to be rtt */ 611 tp->mdev = m<<1; /* make sure rto = 3*rtt */ 612 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 613 tp->rtt_seq = tp->snd_nxt; 614 } 615 } 616 617 /* Calculate rto without backoff. This is the second half of Van Jacobson's 618 * routine referred to above. 619 */ 620 static inline void tcp_set_rto(struct sock *sk) 621 { 622 const struct tcp_sock *tp = tcp_sk(sk); 623 /* Old crap is replaced with new one. 8) 624 * 625 * More seriously: 626 * 1. If rtt variance happened to be less 50msec, it is hallucination. 627 * It cannot be less due to utterly erratic ACK generation made 628 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 629 * to do with delayed acks, because at cwnd>2 true delack timeout 630 * is invisible. Actually, Linux-2.4 also generates erratic 631 * ACKs in some circumstances. 632 */ 633 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 634 635 /* 2. Fixups made earlier cannot be right. 636 * If we do not estimate RTO correctly without them, 637 * all the algo is pure shit and should be replaced 638 * with correct one. It is exactly, which we pretend to do. 639 */ 640 } 641 642 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 643 * guarantees that rto is higher. 644 */ 645 static inline void tcp_bound_rto(struct sock *sk) 646 { 647 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 648 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 649 } 650 651 /* Save metrics learned by this TCP session. 652 This function is called only, when TCP finishes successfully 653 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 654 */ 655 void tcp_update_metrics(struct sock *sk) 656 { 657 struct tcp_sock *tp = tcp_sk(sk); 658 struct dst_entry *dst = __sk_dst_get(sk); 659 660 if (sysctl_tcp_nometrics_save) 661 return; 662 663 dst_confirm(dst); 664 665 if (dst && (dst->flags&DST_HOST)) { 666 const struct inet_connection_sock *icsk = inet_csk(sk); 667 int m; 668 669 if (icsk->icsk_backoff || !tp->srtt) { 670 /* This session failed to estimate rtt. Why? 671 * Probably, no packets returned in time. 672 * Reset our results. 673 */ 674 if (!(dst_metric_locked(dst, RTAX_RTT))) 675 dst->metrics[RTAX_RTT-1] = 0; 676 return; 677 } 678 679 m = dst_metric(dst, RTAX_RTT) - tp->srtt; 680 681 /* If newly calculated rtt larger than stored one, 682 * store new one. Otherwise, use EWMA. Remember, 683 * rtt overestimation is always better than underestimation. 684 */ 685 if (!(dst_metric_locked(dst, RTAX_RTT))) { 686 if (m <= 0) 687 dst->metrics[RTAX_RTT-1] = tp->srtt; 688 else 689 dst->metrics[RTAX_RTT-1] -= (m>>3); 690 } 691 692 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 693 if (m < 0) 694 m = -m; 695 696 /* Scale deviation to rttvar fixed point */ 697 m >>= 1; 698 if (m < tp->mdev) 699 m = tp->mdev; 700 701 if (m >= dst_metric(dst, RTAX_RTTVAR)) 702 dst->metrics[RTAX_RTTVAR-1] = m; 703 else 704 dst->metrics[RTAX_RTTVAR-1] -= 705 (dst->metrics[RTAX_RTTVAR-1] - m)>>2; 706 } 707 708 if (tp->snd_ssthresh >= 0xFFFF) { 709 /* Slow start still did not finish. */ 710 if (dst_metric(dst, RTAX_SSTHRESH) && 711 !dst_metric_locked(dst, RTAX_SSTHRESH) && 712 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 713 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 714 if (!dst_metric_locked(dst, RTAX_CWND) && 715 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 716 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd; 717 } else if (tp->snd_cwnd > tp->snd_ssthresh && 718 icsk->icsk_ca_state == TCP_CA_Open) { 719 /* Cong. avoidance phase, cwnd is reliable. */ 720 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 721 dst->metrics[RTAX_SSTHRESH-1] = 722 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 723 if (!dst_metric_locked(dst, RTAX_CWND)) 724 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; 725 } else { 726 /* Else slow start did not finish, cwnd is non-sense, 727 ssthresh may be also invalid. 728 */ 729 if (!dst_metric_locked(dst, RTAX_CWND)) 730 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; 731 if (dst->metrics[RTAX_SSTHRESH-1] && 732 !dst_metric_locked(dst, RTAX_SSTHRESH) && 733 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) 734 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 735 } 736 737 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 738 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && 739 tp->reordering != sysctl_tcp_reordering) 740 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 741 } 742 } 743 } 744 745 /* Numbers are taken from RFC2414. */ 746 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 747 { 748 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 749 750 if (!cwnd) { 751 if (tp->mss_cache > 1460) 752 cwnd = 2; 753 else 754 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 755 } 756 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 757 } 758 759 /* Set slow start threshold and cwnd not falling to slow start */ 760 void tcp_enter_cwr(struct sock *sk) 761 { 762 struct tcp_sock *tp = tcp_sk(sk); 763 764 tp->prior_ssthresh = 0; 765 tp->bytes_acked = 0; 766 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 767 tp->undo_marker = 0; 768 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 769 tp->snd_cwnd = min(tp->snd_cwnd, 770 tcp_packets_in_flight(tp) + 1U); 771 tp->snd_cwnd_cnt = 0; 772 tp->high_seq = tp->snd_nxt; 773 tp->snd_cwnd_stamp = tcp_time_stamp; 774 TCP_ECN_queue_cwr(tp); 775 776 tcp_set_ca_state(sk, TCP_CA_CWR); 777 } 778 } 779 780 /* Initialize metrics on socket. */ 781 782 static void tcp_init_metrics(struct sock *sk) 783 { 784 struct tcp_sock *tp = tcp_sk(sk); 785 struct dst_entry *dst = __sk_dst_get(sk); 786 787 if (dst == NULL) 788 goto reset; 789 790 dst_confirm(dst); 791 792 if (dst_metric_locked(dst, RTAX_CWND)) 793 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 794 if (dst_metric(dst, RTAX_SSTHRESH)) { 795 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 796 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 797 tp->snd_ssthresh = tp->snd_cwnd_clamp; 798 } 799 if (dst_metric(dst, RTAX_REORDERING) && 800 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 801 tp->rx_opt.sack_ok &= ~2; 802 tp->reordering = dst_metric(dst, RTAX_REORDERING); 803 } 804 805 if (dst_metric(dst, RTAX_RTT) == 0) 806 goto reset; 807 808 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 809 goto reset; 810 811 /* Initial rtt is determined from SYN,SYN-ACK. 812 * The segment is small and rtt may appear much 813 * less than real one. Use per-dst memory 814 * to make it more realistic. 815 * 816 * A bit of theory. RTT is time passed after "normal" sized packet 817 * is sent until it is ACKed. In normal circumstances sending small 818 * packets force peer to delay ACKs and calculation is correct too. 819 * The algorithm is adaptive and, provided we follow specs, it 820 * NEVER underestimate RTT. BUT! If peer tries to make some clever 821 * tricks sort of "quick acks" for time long enough to decrease RTT 822 * to low value, and then abruptly stops to do it and starts to delay 823 * ACKs, wait for troubles. 824 */ 825 if (dst_metric(dst, RTAX_RTT) > tp->srtt) { 826 tp->srtt = dst_metric(dst, RTAX_RTT); 827 tp->rtt_seq = tp->snd_nxt; 828 } 829 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { 830 tp->mdev = dst_metric(dst, RTAX_RTTVAR); 831 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 832 } 833 tcp_set_rto(sk); 834 tcp_bound_rto(sk); 835 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 836 goto reset; 837 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 838 tp->snd_cwnd_stamp = tcp_time_stamp; 839 return; 840 841 reset: 842 /* Play conservative. If timestamps are not 843 * supported, TCP will fail to recalculate correct 844 * rtt, if initial rto is too small. FORGET ALL AND RESET! 845 */ 846 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 847 tp->srtt = 0; 848 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 849 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 850 } 851 } 852 853 static void tcp_update_reordering(struct sock *sk, const int metric, 854 const int ts) 855 { 856 struct tcp_sock *tp = tcp_sk(sk); 857 if (metric > tp->reordering) { 858 tp->reordering = min(TCP_MAX_REORDERING, metric); 859 860 /* This exciting event is worth to be remembered. 8) */ 861 if (ts) 862 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); 863 else if (IsReno(tp)) 864 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); 865 else if (IsFack(tp)) 866 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); 867 else 868 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); 869 #if FASTRETRANS_DEBUG > 1 870 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 871 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 872 tp->reordering, 873 tp->fackets_out, 874 tp->sacked_out, 875 tp->undo_marker ? tp->undo_retrans : 0); 876 #endif 877 /* Disable FACK yet. */ 878 tp->rx_opt.sack_ok &= ~2; 879 } 880 } 881 882 /* This procedure tags the retransmission queue when SACKs arrive. 883 * 884 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 885 * Packets in queue with these bits set are counted in variables 886 * sacked_out, retrans_out and lost_out, correspondingly. 887 * 888 * Valid combinations are: 889 * Tag InFlight Description 890 * 0 1 - orig segment is in flight. 891 * S 0 - nothing flies, orig reached receiver. 892 * L 0 - nothing flies, orig lost by net. 893 * R 2 - both orig and retransmit are in flight. 894 * L|R 1 - orig is lost, retransmit is in flight. 895 * S|R 1 - orig reached receiver, retrans is still in flight. 896 * (L|S|R is logically valid, it could occur when L|R is sacked, 897 * but it is equivalent to plain S and code short-curcuits it to S. 898 * L|S is logically invalid, it would mean -1 packet in flight 8)) 899 * 900 * These 6 states form finite state machine, controlled by the following events: 901 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 902 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 903 * 3. Loss detection event of one of three flavors: 904 * A. Scoreboard estimator decided the packet is lost. 905 * A'. Reno "three dupacks" marks head of queue lost. 906 * A''. Its FACK modfication, head until snd.fack is lost. 907 * B. SACK arrives sacking data transmitted after never retransmitted 908 * hole was sent out. 909 * C. SACK arrives sacking SND.NXT at the moment, when the 910 * segment was retransmitted. 911 * 4. D-SACK added new rule: D-SACK changes any tag to S. 912 * 913 * It is pleasant to note, that state diagram turns out to be commutative, 914 * so that we are allowed not to be bothered by order of our actions, 915 * when multiple events arrive simultaneously. (see the function below). 916 * 917 * Reordering detection. 918 * -------------------- 919 * Reordering metric is maximal distance, which a packet can be displaced 920 * in packet stream. With SACKs we can estimate it: 921 * 922 * 1. SACK fills old hole and the corresponding segment was not 923 * ever retransmitted -> reordering. Alas, we cannot use it 924 * when segment was retransmitted. 925 * 2. The last flaw is solved with D-SACK. D-SACK arrives 926 * for retransmitted and already SACKed segment -> reordering.. 927 * Both of these heuristics are not used in Loss state, when we cannot 928 * account for retransmits accurately. 929 */ 930 static int 931 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una) 932 { 933 const struct inet_connection_sock *icsk = inet_csk(sk); 934 struct tcp_sock *tp = tcp_sk(sk); 935 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked; 936 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2); 937 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3; 938 int reord = tp->packets_out; 939 int prior_fackets; 940 u32 lost_retrans = 0; 941 int flag = 0; 942 int dup_sack = 0; 943 int i; 944 945 if (!tp->sacked_out) 946 tp->fackets_out = 0; 947 prior_fackets = tp->fackets_out; 948 949 /* SACK fastpath: 950 * if the only SACK change is the increase of the end_seq of 951 * the first block then only apply that SACK block 952 * and use retrans queue hinting otherwise slowpath */ 953 flag = 1; 954 for (i = 0; i< num_sacks; i++) { 955 __u32 start_seq = ntohl(sp[i].start_seq); 956 __u32 end_seq = ntohl(sp[i].end_seq); 957 958 if (i == 0){ 959 if (tp->recv_sack_cache[i].start_seq != start_seq) 960 flag = 0; 961 } else { 962 if ((tp->recv_sack_cache[i].start_seq != start_seq) || 963 (tp->recv_sack_cache[i].end_seq != end_seq)) 964 flag = 0; 965 } 966 tp->recv_sack_cache[i].start_seq = start_seq; 967 tp->recv_sack_cache[i].end_seq = end_seq; 968 969 /* Check for D-SACK. */ 970 if (i == 0) { 971 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq; 972 973 if (before(start_seq, ack)) { 974 dup_sack = 1; 975 tp->rx_opt.sack_ok |= 4; 976 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); 977 } else if (num_sacks > 1 && 978 !after(end_seq, ntohl(sp[1].end_seq)) && 979 !before(start_seq, ntohl(sp[1].start_seq))) { 980 dup_sack = 1; 981 tp->rx_opt.sack_ok |= 4; 982 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); 983 } 984 985 /* D-SACK for already forgotten data... 986 * Do dumb counting. */ 987 if (dup_sack && 988 !after(end_seq, prior_snd_una) && 989 after(end_seq, tp->undo_marker)) 990 tp->undo_retrans--; 991 992 /* Eliminate too old ACKs, but take into 993 * account more or less fresh ones, they can 994 * contain valid SACK info. 995 */ 996 if (before(ack, prior_snd_una - tp->max_window)) 997 return 0; 998 } 999 } 1000 1001 if (flag) 1002 num_sacks = 1; 1003 else { 1004 int j; 1005 tp->fastpath_skb_hint = NULL; 1006 1007 /* order SACK blocks to allow in order walk of the retrans queue */ 1008 for (i = num_sacks-1; i > 0; i--) { 1009 for (j = 0; j < i; j++){ 1010 if (after(ntohl(sp[j].start_seq), 1011 ntohl(sp[j+1].start_seq))){ 1012 sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq); 1013 sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq); 1014 sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq); 1015 sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq); 1016 } 1017 1018 } 1019 } 1020 } 1021 1022 /* clear flag as used for different purpose in following code */ 1023 flag = 0; 1024 1025 for (i=0; i<num_sacks; i++, sp++) { 1026 struct sk_buff *skb; 1027 __u32 start_seq = ntohl(sp->start_seq); 1028 __u32 end_seq = ntohl(sp->end_seq); 1029 int fack_count; 1030 1031 /* Use SACK fastpath hint if valid */ 1032 if (tp->fastpath_skb_hint) { 1033 skb = tp->fastpath_skb_hint; 1034 fack_count = tp->fastpath_cnt_hint; 1035 } else { 1036 skb = sk->sk_write_queue.next; 1037 fack_count = 0; 1038 } 1039 1040 /* Event "B" in the comment above. */ 1041 if (after(end_seq, tp->high_seq)) 1042 flag |= FLAG_DATA_LOST; 1043 1044 sk_stream_for_retrans_queue_from(skb, sk) { 1045 int in_sack, pcount; 1046 u8 sacked; 1047 1048 tp->fastpath_skb_hint = skb; 1049 tp->fastpath_cnt_hint = fack_count; 1050 1051 /* The retransmission queue is always in order, so 1052 * we can short-circuit the walk early. 1053 */ 1054 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1055 break; 1056 1057 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1058 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1059 1060 pcount = tcp_skb_pcount(skb); 1061 1062 if (pcount > 1 && !in_sack && 1063 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1064 unsigned int pkt_len; 1065 1066 in_sack = !after(start_seq, 1067 TCP_SKB_CB(skb)->seq); 1068 1069 if (!in_sack) 1070 pkt_len = (start_seq - 1071 TCP_SKB_CB(skb)->seq); 1072 else 1073 pkt_len = (end_seq - 1074 TCP_SKB_CB(skb)->seq); 1075 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size)) 1076 break; 1077 pcount = tcp_skb_pcount(skb); 1078 } 1079 1080 fack_count += pcount; 1081 1082 sacked = TCP_SKB_CB(skb)->sacked; 1083 1084 /* Account D-SACK for retransmitted packet. */ 1085 if ((dup_sack && in_sack) && 1086 (sacked & TCPCB_RETRANS) && 1087 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1088 tp->undo_retrans--; 1089 1090 /* The frame is ACKed. */ 1091 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) { 1092 if (sacked&TCPCB_RETRANS) { 1093 if ((dup_sack && in_sack) && 1094 (sacked&TCPCB_SACKED_ACKED)) 1095 reord = min(fack_count, reord); 1096 } else { 1097 /* If it was in a hole, we detected reordering. */ 1098 if (fack_count < prior_fackets && 1099 !(sacked&TCPCB_SACKED_ACKED)) 1100 reord = min(fack_count, reord); 1101 } 1102 1103 /* Nothing to do; acked frame is about to be dropped. */ 1104 continue; 1105 } 1106 1107 if ((sacked&TCPCB_SACKED_RETRANS) && 1108 after(end_seq, TCP_SKB_CB(skb)->ack_seq) && 1109 (!lost_retrans || after(end_seq, lost_retrans))) 1110 lost_retrans = end_seq; 1111 1112 if (!in_sack) 1113 continue; 1114 1115 if (!(sacked&TCPCB_SACKED_ACKED)) { 1116 if (sacked & TCPCB_SACKED_RETRANS) { 1117 /* If the segment is not tagged as lost, 1118 * we do not clear RETRANS, believing 1119 * that retransmission is still in flight. 1120 */ 1121 if (sacked & TCPCB_LOST) { 1122 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1123 tp->lost_out -= tcp_skb_pcount(skb); 1124 tp->retrans_out -= tcp_skb_pcount(skb); 1125 1126 /* clear lost hint */ 1127 tp->retransmit_skb_hint = NULL; 1128 } 1129 } else { 1130 /* New sack for not retransmitted frame, 1131 * which was in hole. It is reordering. 1132 */ 1133 if (!(sacked & TCPCB_RETRANS) && 1134 fack_count < prior_fackets) 1135 reord = min(fack_count, reord); 1136 1137 if (sacked & TCPCB_LOST) { 1138 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1139 tp->lost_out -= tcp_skb_pcount(skb); 1140 1141 /* clear lost hint */ 1142 tp->retransmit_skb_hint = NULL; 1143 } 1144 } 1145 1146 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; 1147 flag |= FLAG_DATA_SACKED; 1148 tp->sacked_out += tcp_skb_pcount(skb); 1149 1150 if (fack_count > tp->fackets_out) 1151 tp->fackets_out = fack_count; 1152 } else { 1153 if (dup_sack && (sacked&TCPCB_RETRANS)) 1154 reord = min(fack_count, reord); 1155 } 1156 1157 /* D-SACK. We can detect redundant retransmission 1158 * in S|R and plain R frames and clear it. 1159 * undo_retrans is decreased above, L|R frames 1160 * are accounted above as well. 1161 */ 1162 if (dup_sack && 1163 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) { 1164 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1165 tp->retrans_out -= tcp_skb_pcount(skb); 1166 tp->retransmit_skb_hint = NULL; 1167 } 1168 } 1169 } 1170 1171 /* Check for lost retransmit. This superb idea is 1172 * borrowed from "ratehalving". Event "C". 1173 * Later note: FACK people cheated me again 8), 1174 * we have to account for reordering! Ugly, 1175 * but should help. 1176 */ 1177 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) { 1178 struct sk_buff *skb; 1179 1180 sk_stream_for_retrans_queue(skb, sk) { 1181 if (after(TCP_SKB_CB(skb)->seq, lost_retrans)) 1182 break; 1183 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1184 continue; 1185 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) && 1186 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) && 1187 (IsFack(tp) || 1188 !before(lost_retrans, 1189 TCP_SKB_CB(skb)->ack_seq + tp->reordering * 1190 tp->mss_cache))) { 1191 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1192 tp->retrans_out -= tcp_skb_pcount(skb); 1193 1194 /* clear lost hint */ 1195 tp->retransmit_skb_hint = NULL; 1196 1197 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1198 tp->lost_out += tcp_skb_pcount(skb); 1199 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1200 flag |= FLAG_DATA_SACKED; 1201 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); 1202 } 1203 } 1204 } 1205 } 1206 1207 tp->left_out = tp->sacked_out + tp->lost_out; 1208 1209 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss) 1210 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0); 1211 1212 #if FASTRETRANS_DEBUG > 0 1213 BUG_TRAP((int)tp->sacked_out >= 0); 1214 BUG_TRAP((int)tp->lost_out >= 0); 1215 BUG_TRAP((int)tp->retrans_out >= 0); 1216 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); 1217 #endif 1218 return flag; 1219 } 1220 1221 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new 1222 * segments to see from the next ACKs whether any data was really missing. 1223 * If the RTO was spurious, new ACKs should arrive. 1224 */ 1225 void tcp_enter_frto(struct sock *sk) 1226 { 1227 const struct inet_connection_sock *icsk = inet_csk(sk); 1228 struct tcp_sock *tp = tcp_sk(sk); 1229 struct sk_buff *skb; 1230 1231 tp->frto_counter = 1; 1232 1233 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1234 tp->snd_una == tp->high_seq || 1235 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1236 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1237 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1238 tcp_ca_event(sk, CA_EVENT_FRTO); 1239 } 1240 1241 /* Have to clear retransmission markers here to keep the bookkeeping 1242 * in shape, even though we are not yet in Loss state. 1243 * If something was really lost, it is eventually caught up 1244 * in tcp_enter_frto_loss. 1245 */ 1246 tp->retrans_out = 0; 1247 tp->undo_marker = tp->snd_una; 1248 tp->undo_retrans = 0; 1249 1250 sk_stream_for_retrans_queue(skb, sk) { 1251 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS; 1252 } 1253 tcp_sync_left_out(tp); 1254 1255 tcp_set_ca_state(sk, TCP_CA_Open); 1256 tp->frto_highmark = tp->snd_nxt; 1257 } 1258 1259 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1260 * which indicates that we should follow the traditional RTO recovery, 1261 * i.e. mark everything lost and do go-back-N retransmission. 1262 */ 1263 static void tcp_enter_frto_loss(struct sock *sk) 1264 { 1265 struct tcp_sock *tp = tcp_sk(sk); 1266 struct sk_buff *skb; 1267 int cnt = 0; 1268 1269 tp->sacked_out = 0; 1270 tp->lost_out = 0; 1271 tp->fackets_out = 0; 1272 1273 sk_stream_for_retrans_queue(skb, sk) { 1274 cnt += tcp_skb_pcount(skb); 1275 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1276 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1277 1278 /* Do not mark those segments lost that were 1279 * forward transmitted after RTO 1280 */ 1281 if (!after(TCP_SKB_CB(skb)->end_seq, 1282 tp->frto_highmark)) { 1283 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1284 tp->lost_out += tcp_skb_pcount(skb); 1285 } 1286 } else { 1287 tp->sacked_out += tcp_skb_pcount(skb); 1288 tp->fackets_out = cnt; 1289 } 1290 } 1291 tcp_sync_left_out(tp); 1292 1293 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1; 1294 tp->snd_cwnd_cnt = 0; 1295 tp->snd_cwnd_stamp = tcp_time_stamp; 1296 tp->undo_marker = 0; 1297 tp->frto_counter = 0; 1298 1299 tp->reordering = min_t(unsigned int, tp->reordering, 1300 sysctl_tcp_reordering); 1301 tcp_set_ca_state(sk, TCP_CA_Loss); 1302 tp->high_seq = tp->frto_highmark; 1303 TCP_ECN_queue_cwr(tp); 1304 1305 clear_all_retrans_hints(tp); 1306 } 1307 1308 void tcp_clear_retrans(struct tcp_sock *tp) 1309 { 1310 tp->left_out = 0; 1311 tp->retrans_out = 0; 1312 1313 tp->fackets_out = 0; 1314 tp->sacked_out = 0; 1315 tp->lost_out = 0; 1316 1317 tp->undo_marker = 0; 1318 tp->undo_retrans = 0; 1319 } 1320 1321 /* Enter Loss state. If "how" is not zero, forget all SACK information 1322 * and reset tags completely, otherwise preserve SACKs. If receiver 1323 * dropped its ofo queue, we will know this due to reneging detection. 1324 */ 1325 void tcp_enter_loss(struct sock *sk, int how) 1326 { 1327 const struct inet_connection_sock *icsk = inet_csk(sk); 1328 struct tcp_sock *tp = tcp_sk(sk); 1329 struct sk_buff *skb; 1330 int cnt = 0; 1331 1332 /* Reduce ssthresh if it has not yet been made inside this window. */ 1333 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 1334 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1335 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1336 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1337 tcp_ca_event(sk, CA_EVENT_LOSS); 1338 } 1339 tp->snd_cwnd = 1; 1340 tp->snd_cwnd_cnt = 0; 1341 tp->snd_cwnd_stamp = tcp_time_stamp; 1342 1343 tp->bytes_acked = 0; 1344 tcp_clear_retrans(tp); 1345 1346 /* Push undo marker, if it was plain RTO and nothing 1347 * was retransmitted. */ 1348 if (!how) 1349 tp->undo_marker = tp->snd_una; 1350 1351 sk_stream_for_retrans_queue(skb, sk) { 1352 cnt += tcp_skb_pcount(skb); 1353 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1354 tp->undo_marker = 0; 1355 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1356 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1357 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1358 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1359 tp->lost_out += tcp_skb_pcount(skb); 1360 } else { 1361 tp->sacked_out += tcp_skb_pcount(skb); 1362 tp->fackets_out = cnt; 1363 } 1364 } 1365 tcp_sync_left_out(tp); 1366 1367 tp->reordering = min_t(unsigned int, tp->reordering, 1368 sysctl_tcp_reordering); 1369 tcp_set_ca_state(sk, TCP_CA_Loss); 1370 tp->high_seq = tp->snd_nxt; 1371 TCP_ECN_queue_cwr(tp); 1372 1373 clear_all_retrans_hints(tp); 1374 } 1375 1376 static int tcp_check_sack_reneging(struct sock *sk) 1377 { 1378 struct sk_buff *skb; 1379 1380 /* If ACK arrived pointing to a remembered SACK, 1381 * it means that our remembered SACKs do not reflect 1382 * real state of receiver i.e. 1383 * receiver _host_ is heavily congested (or buggy). 1384 * Do processing similar to RTO timeout. 1385 */ 1386 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL && 1387 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 1388 struct inet_connection_sock *icsk = inet_csk(sk); 1389 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); 1390 1391 tcp_enter_loss(sk, 1); 1392 icsk->icsk_retransmits++; 1393 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue)); 1394 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1395 icsk->icsk_rto, TCP_RTO_MAX); 1396 return 1; 1397 } 1398 return 0; 1399 } 1400 1401 static inline int tcp_fackets_out(struct tcp_sock *tp) 1402 { 1403 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out; 1404 } 1405 1406 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 1407 { 1408 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 1409 } 1410 1411 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp) 1412 { 1413 return tp->packets_out && 1414 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue)); 1415 } 1416 1417 /* Linux NewReno/SACK/FACK/ECN state machine. 1418 * -------------------------------------- 1419 * 1420 * "Open" Normal state, no dubious events, fast path. 1421 * "Disorder" In all the respects it is "Open", 1422 * but requires a bit more attention. It is entered when 1423 * we see some SACKs or dupacks. It is split of "Open" 1424 * mainly to move some processing from fast path to slow one. 1425 * "CWR" CWND was reduced due to some Congestion Notification event. 1426 * It can be ECN, ICMP source quench, local device congestion. 1427 * "Recovery" CWND was reduced, we are fast-retransmitting. 1428 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 1429 * 1430 * tcp_fastretrans_alert() is entered: 1431 * - each incoming ACK, if state is not "Open" 1432 * - when arrived ACK is unusual, namely: 1433 * * SACK 1434 * * Duplicate ACK. 1435 * * ECN ECE. 1436 * 1437 * Counting packets in flight is pretty simple. 1438 * 1439 * in_flight = packets_out - left_out + retrans_out 1440 * 1441 * packets_out is SND.NXT-SND.UNA counted in packets. 1442 * 1443 * retrans_out is number of retransmitted segments. 1444 * 1445 * left_out is number of segments left network, but not ACKed yet. 1446 * 1447 * left_out = sacked_out + lost_out 1448 * 1449 * sacked_out: Packets, which arrived to receiver out of order 1450 * and hence not ACKed. With SACKs this number is simply 1451 * amount of SACKed data. Even without SACKs 1452 * it is easy to give pretty reliable estimate of this number, 1453 * counting duplicate ACKs. 1454 * 1455 * lost_out: Packets lost by network. TCP has no explicit 1456 * "loss notification" feedback from network (for now). 1457 * It means that this number can be only _guessed_. 1458 * Actually, it is the heuristics to predict lossage that 1459 * distinguishes different algorithms. 1460 * 1461 * F.e. after RTO, when all the queue is considered as lost, 1462 * lost_out = packets_out and in_flight = retrans_out. 1463 * 1464 * Essentially, we have now two algorithms counting 1465 * lost packets. 1466 * 1467 * FACK: It is the simplest heuristics. As soon as we decided 1468 * that something is lost, we decide that _all_ not SACKed 1469 * packets until the most forward SACK are lost. I.e. 1470 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 1471 * It is absolutely correct estimate, if network does not reorder 1472 * packets. And it loses any connection to reality when reordering 1473 * takes place. We use FACK by default until reordering 1474 * is suspected on the path to this destination. 1475 * 1476 * NewReno: when Recovery is entered, we assume that one segment 1477 * is lost (classic Reno). While we are in Recovery and 1478 * a partial ACK arrives, we assume that one more packet 1479 * is lost (NewReno). This heuristics are the same in NewReno 1480 * and SACK. 1481 * 1482 * Imagine, that's all! Forget about all this shamanism about CWND inflation 1483 * deflation etc. CWND is real congestion window, never inflated, changes 1484 * only according to classic VJ rules. 1485 * 1486 * Really tricky (and requiring careful tuning) part of algorithm 1487 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 1488 * The first determines the moment _when_ we should reduce CWND and, 1489 * hence, slow down forward transmission. In fact, it determines the moment 1490 * when we decide that hole is caused by loss, rather than by a reorder. 1491 * 1492 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 1493 * holes, caused by lost packets. 1494 * 1495 * And the most logically complicated part of algorithm is undo 1496 * heuristics. We detect false retransmits due to both too early 1497 * fast retransmit (reordering) and underestimated RTO, analyzing 1498 * timestamps and D-SACKs. When we detect that some segments were 1499 * retransmitted by mistake and CWND reduction was wrong, we undo 1500 * window reduction and abort recovery phase. This logic is hidden 1501 * inside several functions named tcp_try_undo_<something>. 1502 */ 1503 1504 /* This function decides, when we should leave Disordered state 1505 * and enter Recovery phase, reducing congestion window. 1506 * 1507 * Main question: may we further continue forward transmission 1508 * with the same cwnd? 1509 */ 1510 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp) 1511 { 1512 __u32 packets_out; 1513 1514 /* Trick#1: The loss is proven. */ 1515 if (tp->lost_out) 1516 return 1; 1517 1518 /* Not-A-Trick#2 : Classic rule... */ 1519 if (tcp_fackets_out(tp) > tp->reordering) 1520 return 1; 1521 1522 /* Trick#3 : when we use RFC2988 timer restart, fast 1523 * retransmit can be triggered by timeout of queue head. 1524 */ 1525 if (tcp_head_timedout(sk, tp)) 1526 return 1; 1527 1528 /* Trick#4: It is still not OK... But will it be useful to delay 1529 * recovery more? 1530 */ 1531 packets_out = tp->packets_out; 1532 if (packets_out <= tp->reordering && 1533 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 1534 !tcp_may_send_now(sk, tp)) { 1535 /* We have nothing to send. This connection is limited 1536 * either by receiver window or by application. 1537 */ 1538 return 1; 1539 } 1540 1541 return 0; 1542 } 1543 1544 /* If we receive more dupacks than we expected counting segments 1545 * in assumption of absent reordering, interpret this as reordering. 1546 * The only another reason could be bug in receiver TCP. 1547 */ 1548 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1549 { 1550 struct tcp_sock *tp = tcp_sk(sk); 1551 u32 holes; 1552 1553 holes = max(tp->lost_out, 1U); 1554 holes = min(holes, tp->packets_out); 1555 1556 if ((tp->sacked_out + holes) > tp->packets_out) { 1557 tp->sacked_out = tp->packets_out - holes; 1558 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1559 } 1560 } 1561 1562 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1563 1564 static void tcp_add_reno_sack(struct sock *sk) 1565 { 1566 struct tcp_sock *tp = tcp_sk(sk); 1567 tp->sacked_out++; 1568 tcp_check_reno_reordering(sk, 0); 1569 tcp_sync_left_out(tp); 1570 } 1571 1572 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1573 1574 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked) 1575 { 1576 if (acked > 0) { 1577 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1578 if (acked-1 >= tp->sacked_out) 1579 tp->sacked_out = 0; 1580 else 1581 tp->sacked_out -= acked-1; 1582 } 1583 tcp_check_reno_reordering(sk, acked); 1584 tcp_sync_left_out(tp); 1585 } 1586 1587 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1588 { 1589 tp->sacked_out = 0; 1590 tp->left_out = tp->lost_out; 1591 } 1592 1593 /* Mark head of queue up as lost. */ 1594 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp, 1595 int packets, u32 high_seq) 1596 { 1597 struct sk_buff *skb; 1598 int cnt; 1599 1600 BUG_TRAP(packets <= tp->packets_out); 1601 if (tp->lost_skb_hint) { 1602 skb = tp->lost_skb_hint; 1603 cnt = tp->lost_cnt_hint; 1604 } else { 1605 skb = sk->sk_write_queue.next; 1606 cnt = 0; 1607 } 1608 1609 sk_stream_for_retrans_queue_from(skb, sk) { 1610 /* TODO: do this better */ 1611 /* this is not the most efficient way to do this... */ 1612 tp->lost_skb_hint = skb; 1613 tp->lost_cnt_hint = cnt; 1614 cnt += tcp_skb_pcount(skb); 1615 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq)) 1616 break; 1617 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1618 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1619 tp->lost_out += tcp_skb_pcount(skb); 1620 1621 /* clear xmit_retransmit_queue hints 1622 * if this is beyond hint */ 1623 if(tp->retransmit_skb_hint != NULL && 1624 before(TCP_SKB_CB(skb)->seq, 1625 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) { 1626 1627 tp->retransmit_skb_hint = NULL; 1628 } 1629 } 1630 } 1631 tcp_sync_left_out(tp); 1632 } 1633 1634 /* Account newly detected lost packet(s) */ 1635 1636 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp) 1637 { 1638 if (IsFack(tp)) { 1639 int lost = tp->fackets_out - tp->reordering; 1640 if (lost <= 0) 1641 lost = 1; 1642 tcp_mark_head_lost(sk, tp, lost, tp->high_seq); 1643 } else { 1644 tcp_mark_head_lost(sk, tp, 1, tp->high_seq); 1645 } 1646 1647 /* New heuristics: it is possible only after we switched 1648 * to restart timer each time when something is ACKed. 1649 * Hence, we can detect timed out packets during fast 1650 * retransmit without falling to slow start. 1651 */ 1652 if (tcp_head_timedout(sk, tp)) { 1653 struct sk_buff *skb; 1654 1655 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint 1656 : sk->sk_write_queue.next; 1657 1658 sk_stream_for_retrans_queue_from(skb, sk) { 1659 if (!tcp_skb_timedout(sk, skb)) 1660 break; 1661 1662 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1663 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1664 tp->lost_out += tcp_skb_pcount(skb); 1665 1666 /* clear xmit_retrans hint */ 1667 if (tp->retransmit_skb_hint && 1668 before(TCP_SKB_CB(skb)->seq, 1669 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 1670 1671 tp->retransmit_skb_hint = NULL; 1672 } 1673 } 1674 1675 tp->scoreboard_skb_hint = skb; 1676 1677 tcp_sync_left_out(tp); 1678 } 1679 } 1680 1681 /* CWND moderation, preventing bursts due to too big ACKs 1682 * in dubious situations. 1683 */ 1684 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 1685 { 1686 tp->snd_cwnd = min(tp->snd_cwnd, 1687 tcp_packets_in_flight(tp)+tcp_max_burst(tp)); 1688 tp->snd_cwnd_stamp = tcp_time_stamp; 1689 } 1690 1691 /* Decrease cwnd each second ack. */ 1692 static void tcp_cwnd_down(struct sock *sk) 1693 { 1694 const struct inet_connection_sock *icsk = inet_csk(sk); 1695 struct tcp_sock *tp = tcp_sk(sk); 1696 int decr = tp->snd_cwnd_cnt + 1; 1697 1698 tp->snd_cwnd_cnt = decr&1; 1699 decr >>= 1; 1700 1701 if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk)) 1702 tp->snd_cwnd -= decr; 1703 1704 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1); 1705 tp->snd_cwnd_stamp = tcp_time_stamp; 1706 } 1707 1708 /* Nothing was retransmitted or returned timestamp is less 1709 * than timestamp of the first retransmission. 1710 */ 1711 static inline int tcp_packet_delayed(struct tcp_sock *tp) 1712 { 1713 return !tp->retrans_stamp || 1714 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 1715 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0); 1716 } 1717 1718 /* Undo procedures. */ 1719 1720 #if FASTRETRANS_DEBUG > 1 1721 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg) 1722 { 1723 struct inet_sock *inet = inet_sk(sk); 1724 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n", 1725 msg, 1726 NIPQUAD(inet->daddr), ntohs(inet->dport), 1727 tp->snd_cwnd, tp->left_out, 1728 tp->snd_ssthresh, tp->prior_ssthresh, 1729 tp->packets_out); 1730 } 1731 #else 1732 #define DBGUNDO(x...) do { } while (0) 1733 #endif 1734 1735 static void tcp_undo_cwr(struct sock *sk, const int undo) 1736 { 1737 struct tcp_sock *tp = tcp_sk(sk); 1738 1739 if (tp->prior_ssthresh) { 1740 const struct inet_connection_sock *icsk = inet_csk(sk); 1741 1742 if (icsk->icsk_ca_ops->undo_cwnd) 1743 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 1744 else 1745 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1); 1746 1747 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 1748 tp->snd_ssthresh = tp->prior_ssthresh; 1749 TCP_ECN_withdraw_cwr(tp); 1750 } 1751 } else { 1752 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 1753 } 1754 tcp_moderate_cwnd(tp); 1755 tp->snd_cwnd_stamp = tcp_time_stamp; 1756 1757 /* There is something screwy going on with the retrans hints after 1758 an undo */ 1759 clear_all_retrans_hints(tp); 1760 } 1761 1762 static inline int tcp_may_undo(struct tcp_sock *tp) 1763 { 1764 return tp->undo_marker && 1765 (!tp->undo_retrans || tcp_packet_delayed(tp)); 1766 } 1767 1768 /* People celebrate: "We love our President!" */ 1769 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp) 1770 { 1771 if (tcp_may_undo(tp)) { 1772 /* Happy end! We did not retransmit anything 1773 * or our original transmission succeeded. 1774 */ 1775 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 1776 tcp_undo_cwr(sk, 1); 1777 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 1778 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1779 else 1780 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); 1781 tp->undo_marker = 0; 1782 } 1783 if (tp->snd_una == tp->high_seq && IsReno(tp)) { 1784 /* Hold old state until something *above* high_seq 1785 * is ACKed. For Reno it is MUST to prevent false 1786 * fast retransmits (RFC2582). SACK TCP is safe. */ 1787 tcp_moderate_cwnd(tp); 1788 return 1; 1789 } 1790 tcp_set_ca_state(sk, TCP_CA_Open); 1791 return 0; 1792 } 1793 1794 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 1795 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp) 1796 { 1797 if (tp->undo_marker && !tp->undo_retrans) { 1798 DBGUNDO(sk, tp, "D-SACK"); 1799 tcp_undo_cwr(sk, 1); 1800 tp->undo_marker = 0; 1801 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); 1802 } 1803 } 1804 1805 /* Undo during fast recovery after partial ACK. */ 1806 1807 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp, 1808 int acked) 1809 { 1810 /* Partial ACK arrived. Force Hoe's retransmit. */ 1811 int failed = IsReno(tp) || tp->fackets_out>tp->reordering; 1812 1813 if (tcp_may_undo(tp)) { 1814 /* Plain luck! Hole if filled with delayed 1815 * packet, rather than with a retransmit. 1816 */ 1817 if (tp->retrans_out == 0) 1818 tp->retrans_stamp = 0; 1819 1820 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 1821 1822 DBGUNDO(sk, tp, "Hoe"); 1823 tcp_undo_cwr(sk, 0); 1824 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); 1825 1826 /* So... Do not make Hoe's retransmit yet. 1827 * If the first packet was delayed, the rest 1828 * ones are most probably delayed as well. 1829 */ 1830 failed = 0; 1831 } 1832 return failed; 1833 } 1834 1835 /* Undo during loss recovery after partial ACK. */ 1836 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp) 1837 { 1838 if (tcp_may_undo(tp)) { 1839 struct sk_buff *skb; 1840 sk_stream_for_retrans_queue(skb, sk) { 1841 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1842 } 1843 1844 clear_all_retrans_hints(tp); 1845 1846 DBGUNDO(sk, tp, "partial loss"); 1847 tp->lost_out = 0; 1848 tp->left_out = tp->sacked_out; 1849 tcp_undo_cwr(sk, 1); 1850 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1851 inet_csk(sk)->icsk_retransmits = 0; 1852 tp->undo_marker = 0; 1853 if (!IsReno(tp)) 1854 tcp_set_ca_state(sk, TCP_CA_Open); 1855 return 1; 1856 } 1857 return 0; 1858 } 1859 1860 static inline void tcp_complete_cwr(struct sock *sk) 1861 { 1862 struct tcp_sock *tp = tcp_sk(sk); 1863 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 1864 tp->snd_cwnd_stamp = tcp_time_stamp; 1865 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 1866 } 1867 1868 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag) 1869 { 1870 tp->left_out = tp->sacked_out; 1871 1872 if (tp->retrans_out == 0) 1873 tp->retrans_stamp = 0; 1874 1875 if (flag&FLAG_ECE) 1876 tcp_enter_cwr(sk); 1877 1878 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 1879 int state = TCP_CA_Open; 1880 1881 if (tp->left_out || tp->retrans_out || tp->undo_marker) 1882 state = TCP_CA_Disorder; 1883 1884 if (inet_csk(sk)->icsk_ca_state != state) { 1885 tcp_set_ca_state(sk, state); 1886 tp->high_seq = tp->snd_nxt; 1887 } 1888 tcp_moderate_cwnd(tp); 1889 } else { 1890 tcp_cwnd_down(sk); 1891 } 1892 } 1893 1894 /* Process an event, which can update packets-in-flight not trivially. 1895 * Main goal of this function is to calculate new estimate for left_out, 1896 * taking into account both packets sitting in receiver's buffer and 1897 * packets lost by network. 1898 * 1899 * Besides that it does CWND reduction, when packet loss is detected 1900 * and changes state of machine. 1901 * 1902 * It does _not_ decide what to send, it is made in function 1903 * tcp_xmit_retransmit_queue(). 1904 */ 1905 static void 1906 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una, 1907 int prior_packets, int flag) 1908 { 1909 struct inet_connection_sock *icsk = inet_csk(sk); 1910 struct tcp_sock *tp = tcp_sk(sk); 1911 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP)); 1912 1913 /* Some technical things: 1914 * 1. Reno does not count dupacks (sacked_out) automatically. */ 1915 if (!tp->packets_out) 1916 tp->sacked_out = 0; 1917 /* 2. SACK counts snd_fack in packets inaccurately. */ 1918 if (tp->sacked_out == 0) 1919 tp->fackets_out = 0; 1920 1921 /* Now state machine starts. 1922 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 1923 if (flag&FLAG_ECE) 1924 tp->prior_ssthresh = 0; 1925 1926 /* B. In all the states check for reneging SACKs. */ 1927 if (tp->sacked_out && tcp_check_sack_reneging(sk)) 1928 return; 1929 1930 /* C. Process data loss notification, provided it is valid. */ 1931 if ((flag&FLAG_DATA_LOST) && 1932 before(tp->snd_una, tp->high_seq) && 1933 icsk->icsk_ca_state != TCP_CA_Open && 1934 tp->fackets_out > tp->reordering) { 1935 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq); 1936 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); 1937 } 1938 1939 /* D. Synchronize left_out to current state. */ 1940 tcp_sync_left_out(tp); 1941 1942 /* E. Check state exit conditions. State can be terminated 1943 * when high_seq is ACKed. */ 1944 if (icsk->icsk_ca_state == TCP_CA_Open) { 1945 if (!sysctl_tcp_frto) 1946 BUG_TRAP(tp->retrans_out == 0); 1947 tp->retrans_stamp = 0; 1948 } else if (!before(tp->snd_una, tp->high_seq)) { 1949 switch (icsk->icsk_ca_state) { 1950 case TCP_CA_Loss: 1951 icsk->icsk_retransmits = 0; 1952 if (tcp_try_undo_recovery(sk, tp)) 1953 return; 1954 break; 1955 1956 case TCP_CA_CWR: 1957 /* CWR is to be held something *above* high_seq 1958 * is ACKed for CWR bit to reach receiver. */ 1959 if (tp->snd_una != tp->high_seq) { 1960 tcp_complete_cwr(sk); 1961 tcp_set_ca_state(sk, TCP_CA_Open); 1962 } 1963 break; 1964 1965 case TCP_CA_Disorder: 1966 tcp_try_undo_dsack(sk, tp); 1967 if (!tp->undo_marker || 1968 /* For SACK case do not Open to allow to undo 1969 * catching for all duplicate ACKs. */ 1970 IsReno(tp) || tp->snd_una != tp->high_seq) { 1971 tp->undo_marker = 0; 1972 tcp_set_ca_state(sk, TCP_CA_Open); 1973 } 1974 break; 1975 1976 case TCP_CA_Recovery: 1977 if (IsReno(tp)) 1978 tcp_reset_reno_sack(tp); 1979 if (tcp_try_undo_recovery(sk, tp)) 1980 return; 1981 tcp_complete_cwr(sk); 1982 break; 1983 } 1984 } 1985 1986 /* F. Process state. */ 1987 switch (icsk->icsk_ca_state) { 1988 case TCP_CA_Recovery: 1989 if (prior_snd_una == tp->snd_una) { 1990 if (IsReno(tp) && is_dupack) 1991 tcp_add_reno_sack(sk); 1992 } else { 1993 int acked = prior_packets - tp->packets_out; 1994 if (IsReno(tp)) 1995 tcp_remove_reno_sacks(sk, tp, acked); 1996 is_dupack = tcp_try_undo_partial(sk, tp, acked); 1997 } 1998 break; 1999 case TCP_CA_Loss: 2000 if (flag&FLAG_DATA_ACKED) 2001 icsk->icsk_retransmits = 0; 2002 if (!tcp_try_undo_loss(sk, tp)) { 2003 tcp_moderate_cwnd(tp); 2004 tcp_xmit_retransmit_queue(sk); 2005 return; 2006 } 2007 if (icsk->icsk_ca_state != TCP_CA_Open) 2008 return; 2009 /* Loss is undone; fall through to processing in Open state. */ 2010 default: 2011 if (IsReno(tp)) { 2012 if (tp->snd_una != prior_snd_una) 2013 tcp_reset_reno_sack(tp); 2014 if (is_dupack) 2015 tcp_add_reno_sack(sk); 2016 } 2017 2018 if (icsk->icsk_ca_state == TCP_CA_Disorder) 2019 tcp_try_undo_dsack(sk, tp); 2020 2021 if (!tcp_time_to_recover(sk, tp)) { 2022 tcp_try_to_open(sk, tp, flag); 2023 return; 2024 } 2025 2026 /* Otherwise enter Recovery state */ 2027 2028 if (IsReno(tp)) 2029 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); 2030 else 2031 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); 2032 2033 tp->high_seq = tp->snd_nxt; 2034 tp->prior_ssthresh = 0; 2035 tp->undo_marker = tp->snd_una; 2036 tp->undo_retrans = tp->retrans_out; 2037 2038 if (icsk->icsk_ca_state < TCP_CA_CWR) { 2039 if (!(flag&FLAG_ECE)) 2040 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2041 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2042 TCP_ECN_queue_cwr(tp); 2043 } 2044 2045 tp->bytes_acked = 0; 2046 tp->snd_cwnd_cnt = 0; 2047 tcp_set_ca_state(sk, TCP_CA_Recovery); 2048 } 2049 2050 if (is_dupack || tcp_head_timedout(sk, tp)) 2051 tcp_update_scoreboard(sk, tp); 2052 tcp_cwnd_down(sk); 2053 tcp_xmit_retransmit_queue(sk); 2054 } 2055 2056 /* Read draft-ietf-tcplw-high-performance before mucking 2057 * with this code. (Supersedes RFC1323) 2058 */ 2059 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 2060 { 2061 /* RTTM Rule: A TSecr value received in a segment is used to 2062 * update the averaged RTT measurement only if the segment 2063 * acknowledges some new data, i.e., only if it advances the 2064 * left edge of the send window. 2065 * 2066 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2067 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 2068 * 2069 * Changed: reset backoff as soon as we see the first valid sample. 2070 * If we do not, we get strongly overestimated rto. With timestamps 2071 * samples are accepted even from very old segments: f.e., when rtt=1 2072 * increases to 8, we retransmit 5 times and after 8 seconds delayed 2073 * answer arrives rto becomes 120 seconds! If at least one of segments 2074 * in window is lost... Voila. --ANK (010210) 2075 */ 2076 struct tcp_sock *tp = tcp_sk(sk); 2077 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2078 tcp_rtt_estimator(sk, seq_rtt); 2079 tcp_set_rto(sk); 2080 inet_csk(sk)->icsk_backoff = 0; 2081 tcp_bound_rto(sk); 2082 } 2083 2084 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 2085 { 2086 /* We don't have a timestamp. Can only use 2087 * packets that are not retransmitted to determine 2088 * rtt estimates. Also, we must not reset the 2089 * backoff for rto until we get a non-retransmitted 2090 * packet. This allows us to deal with a situation 2091 * where the network delay has increased suddenly. 2092 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 2093 */ 2094 2095 if (flag & FLAG_RETRANS_DATA_ACKED) 2096 return; 2097 2098 tcp_rtt_estimator(sk, seq_rtt); 2099 tcp_set_rto(sk); 2100 inet_csk(sk)->icsk_backoff = 0; 2101 tcp_bound_rto(sk); 2102 } 2103 2104 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 2105 const s32 seq_rtt) 2106 { 2107 const struct tcp_sock *tp = tcp_sk(sk); 2108 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 2109 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2110 tcp_ack_saw_tstamp(sk, flag); 2111 else if (seq_rtt >= 0) 2112 tcp_ack_no_tstamp(sk, seq_rtt, flag); 2113 } 2114 2115 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt, 2116 u32 in_flight, int good) 2117 { 2118 const struct inet_connection_sock *icsk = inet_csk(sk); 2119 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good); 2120 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2121 } 2122 2123 /* Restart timer after forward progress on connection. 2124 * RFC2988 recommends to restart timer to now+rto. 2125 */ 2126 2127 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp) 2128 { 2129 if (!tp->packets_out) { 2130 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2131 } else { 2132 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2133 } 2134 } 2135 2136 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb, 2137 __u32 now, __s32 *seq_rtt) 2138 { 2139 struct tcp_sock *tp = tcp_sk(sk); 2140 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2141 __u32 seq = tp->snd_una; 2142 __u32 packets_acked; 2143 int acked = 0; 2144 2145 /* If we get here, the whole TSO packet has not been 2146 * acked. 2147 */ 2148 BUG_ON(!after(scb->end_seq, seq)); 2149 2150 packets_acked = tcp_skb_pcount(skb); 2151 if (tcp_trim_head(sk, skb, seq - scb->seq)) 2152 return 0; 2153 packets_acked -= tcp_skb_pcount(skb); 2154 2155 if (packets_acked) { 2156 __u8 sacked = scb->sacked; 2157 2158 acked |= FLAG_DATA_ACKED; 2159 if (sacked) { 2160 if (sacked & TCPCB_RETRANS) { 2161 if (sacked & TCPCB_SACKED_RETRANS) 2162 tp->retrans_out -= packets_acked; 2163 acked |= FLAG_RETRANS_DATA_ACKED; 2164 *seq_rtt = -1; 2165 } else if (*seq_rtt < 0) 2166 *seq_rtt = now - scb->when; 2167 if (sacked & TCPCB_SACKED_ACKED) 2168 tp->sacked_out -= packets_acked; 2169 if (sacked & TCPCB_LOST) 2170 tp->lost_out -= packets_acked; 2171 if (sacked & TCPCB_URG) { 2172 if (tp->urg_mode && 2173 !before(seq, tp->snd_up)) 2174 tp->urg_mode = 0; 2175 } 2176 } else if (*seq_rtt < 0) 2177 *seq_rtt = now - scb->when; 2178 2179 if (tp->fackets_out) { 2180 __u32 dval = min(tp->fackets_out, packets_acked); 2181 tp->fackets_out -= dval; 2182 } 2183 tp->packets_out -= packets_acked; 2184 2185 BUG_ON(tcp_skb_pcount(skb) == 0); 2186 BUG_ON(!before(scb->seq, scb->end_seq)); 2187 } 2188 2189 return acked; 2190 } 2191 2192 static u32 tcp_usrtt(const struct sk_buff *skb) 2193 { 2194 struct timeval tv, now; 2195 2196 do_gettimeofday(&now); 2197 skb_get_timestamp(skb, &tv); 2198 return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec); 2199 } 2200 2201 /* Remove acknowledged frames from the retransmission queue. */ 2202 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p) 2203 { 2204 struct tcp_sock *tp = tcp_sk(sk); 2205 const struct inet_connection_sock *icsk = inet_csk(sk); 2206 struct sk_buff *skb; 2207 __u32 now = tcp_time_stamp; 2208 int acked = 0; 2209 __s32 seq_rtt = -1; 2210 u32 pkts_acked = 0; 2211 void (*rtt_sample)(struct sock *sk, u32 usrtt) 2212 = icsk->icsk_ca_ops->rtt_sample; 2213 2214 while ((skb = skb_peek(&sk->sk_write_queue)) && 2215 skb != sk->sk_send_head) { 2216 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2217 __u8 sacked = scb->sacked; 2218 2219 /* If our packet is before the ack sequence we can 2220 * discard it as it's confirmed to have arrived at 2221 * the other end. 2222 */ 2223 if (after(scb->end_seq, tp->snd_una)) { 2224 if (tcp_skb_pcount(skb) > 1 && 2225 after(tp->snd_una, scb->seq)) 2226 acked |= tcp_tso_acked(sk, skb, 2227 now, &seq_rtt); 2228 break; 2229 } 2230 2231 /* Initial outgoing SYN's get put onto the write_queue 2232 * just like anything else we transmit. It is not 2233 * true data, and if we misinform our callers that 2234 * this ACK acks real data, we will erroneously exit 2235 * connection startup slow start one packet too 2236 * quickly. This is severely frowned upon behavior. 2237 */ 2238 if (!(scb->flags & TCPCB_FLAG_SYN)) { 2239 acked |= FLAG_DATA_ACKED; 2240 ++pkts_acked; 2241 } else { 2242 acked |= FLAG_SYN_ACKED; 2243 tp->retrans_stamp = 0; 2244 } 2245 2246 if (sacked) { 2247 if (sacked & TCPCB_RETRANS) { 2248 if(sacked & TCPCB_SACKED_RETRANS) 2249 tp->retrans_out -= tcp_skb_pcount(skb); 2250 acked |= FLAG_RETRANS_DATA_ACKED; 2251 seq_rtt = -1; 2252 } else if (seq_rtt < 0) { 2253 seq_rtt = now - scb->when; 2254 if (rtt_sample) 2255 (*rtt_sample)(sk, tcp_usrtt(skb)); 2256 } 2257 if (sacked & TCPCB_SACKED_ACKED) 2258 tp->sacked_out -= tcp_skb_pcount(skb); 2259 if (sacked & TCPCB_LOST) 2260 tp->lost_out -= tcp_skb_pcount(skb); 2261 if (sacked & TCPCB_URG) { 2262 if (tp->urg_mode && 2263 !before(scb->end_seq, tp->snd_up)) 2264 tp->urg_mode = 0; 2265 } 2266 } else if (seq_rtt < 0) { 2267 seq_rtt = now - scb->when; 2268 if (rtt_sample) 2269 (*rtt_sample)(sk, tcp_usrtt(skb)); 2270 } 2271 tcp_dec_pcount_approx(&tp->fackets_out, skb); 2272 tcp_packets_out_dec(tp, skb); 2273 __skb_unlink(skb, &sk->sk_write_queue); 2274 sk_stream_free_skb(sk, skb); 2275 clear_all_retrans_hints(tp); 2276 } 2277 2278 if (acked&FLAG_ACKED) { 2279 tcp_ack_update_rtt(sk, acked, seq_rtt); 2280 tcp_ack_packets_out(sk, tp); 2281 2282 if (icsk->icsk_ca_ops->pkts_acked) 2283 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked); 2284 } 2285 2286 #if FASTRETRANS_DEBUG > 0 2287 BUG_TRAP((int)tp->sacked_out >= 0); 2288 BUG_TRAP((int)tp->lost_out >= 0); 2289 BUG_TRAP((int)tp->retrans_out >= 0); 2290 if (!tp->packets_out && tp->rx_opt.sack_ok) { 2291 const struct inet_connection_sock *icsk = inet_csk(sk); 2292 if (tp->lost_out) { 2293 printk(KERN_DEBUG "Leak l=%u %d\n", 2294 tp->lost_out, icsk->icsk_ca_state); 2295 tp->lost_out = 0; 2296 } 2297 if (tp->sacked_out) { 2298 printk(KERN_DEBUG "Leak s=%u %d\n", 2299 tp->sacked_out, icsk->icsk_ca_state); 2300 tp->sacked_out = 0; 2301 } 2302 if (tp->retrans_out) { 2303 printk(KERN_DEBUG "Leak r=%u %d\n", 2304 tp->retrans_out, icsk->icsk_ca_state); 2305 tp->retrans_out = 0; 2306 } 2307 } 2308 #endif 2309 *seq_rtt_p = seq_rtt; 2310 return acked; 2311 } 2312 2313 static void tcp_ack_probe(struct sock *sk) 2314 { 2315 const struct tcp_sock *tp = tcp_sk(sk); 2316 struct inet_connection_sock *icsk = inet_csk(sk); 2317 2318 /* Was it a usable window open? */ 2319 2320 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq, 2321 tp->snd_una + tp->snd_wnd)) { 2322 icsk->icsk_backoff = 0; 2323 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 2324 /* Socket must be waked up by subsequent tcp_data_snd_check(). 2325 * This function is not for random using! 2326 */ 2327 } else { 2328 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2329 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2330 TCP_RTO_MAX); 2331 } 2332 } 2333 2334 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 2335 { 2336 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 2337 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 2338 } 2339 2340 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 2341 { 2342 const struct tcp_sock *tp = tcp_sk(sk); 2343 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 2344 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 2345 } 2346 2347 /* Check that window update is acceptable. 2348 * The function assumes that snd_una<=ack<=snd_next. 2349 */ 2350 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack, 2351 const u32 ack_seq, const u32 nwin) 2352 { 2353 return (after(ack, tp->snd_una) || 2354 after(ack_seq, tp->snd_wl1) || 2355 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 2356 } 2357 2358 /* Update our send window. 2359 * 2360 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 2361 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 2362 */ 2363 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp, 2364 struct sk_buff *skb, u32 ack, u32 ack_seq) 2365 { 2366 int flag = 0; 2367 u32 nwin = ntohs(skb->h.th->window); 2368 2369 if (likely(!skb->h.th->syn)) 2370 nwin <<= tp->rx_opt.snd_wscale; 2371 2372 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 2373 flag |= FLAG_WIN_UPDATE; 2374 tcp_update_wl(tp, ack, ack_seq); 2375 2376 if (tp->snd_wnd != nwin) { 2377 tp->snd_wnd = nwin; 2378 2379 /* Note, it is the only place, where 2380 * fast path is recovered for sending TCP. 2381 */ 2382 tp->pred_flags = 0; 2383 tcp_fast_path_check(sk, tp); 2384 2385 if (nwin > tp->max_window) { 2386 tp->max_window = nwin; 2387 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 2388 } 2389 } 2390 } 2391 2392 tp->snd_una = ack; 2393 2394 return flag; 2395 } 2396 2397 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una) 2398 { 2399 struct tcp_sock *tp = tcp_sk(sk); 2400 2401 tcp_sync_left_out(tp); 2402 2403 if (tp->snd_una == prior_snd_una || 2404 !before(tp->snd_una, tp->frto_highmark)) { 2405 /* RTO was caused by loss, start retransmitting in 2406 * go-back-N slow start 2407 */ 2408 tcp_enter_frto_loss(sk); 2409 return; 2410 } 2411 2412 if (tp->frto_counter == 1) { 2413 /* First ACK after RTO advances the window: allow two new 2414 * segments out. 2415 */ 2416 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 2417 } else { 2418 /* Also the second ACK after RTO advances the window. 2419 * The RTO was likely spurious. Reduce cwnd and continue 2420 * in congestion avoidance 2421 */ 2422 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2423 tcp_moderate_cwnd(tp); 2424 } 2425 2426 /* F-RTO affects on two new ACKs following RTO. 2427 * At latest on third ACK the TCP behavior is back to normal. 2428 */ 2429 tp->frto_counter = (tp->frto_counter + 1) % 3; 2430 } 2431 2432 /* This routine deals with incoming acks, but not outgoing ones. */ 2433 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 2434 { 2435 struct inet_connection_sock *icsk = inet_csk(sk); 2436 struct tcp_sock *tp = tcp_sk(sk); 2437 u32 prior_snd_una = tp->snd_una; 2438 u32 ack_seq = TCP_SKB_CB(skb)->seq; 2439 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2440 u32 prior_in_flight; 2441 s32 seq_rtt; 2442 int prior_packets; 2443 2444 /* If the ack is newer than sent or older than previous acks 2445 * then we can probably ignore it. 2446 */ 2447 if (after(ack, tp->snd_nxt)) 2448 goto uninteresting_ack; 2449 2450 if (before(ack, prior_snd_una)) 2451 goto old_ack; 2452 2453 if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR) 2454 tp->bytes_acked += ack - prior_snd_una; 2455 2456 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 2457 /* Window is constant, pure forward advance. 2458 * No more checks are required. 2459 * Note, we use the fact that SND.UNA>=SND.WL2. 2460 */ 2461 tcp_update_wl(tp, ack, ack_seq); 2462 tp->snd_una = ack; 2463 flag |= FLAG_WIN_UPDATE; 2464 2465 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 2466 2467 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); 2468 } else { 2469 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 2470 flag |= FLAG_DATA; 2471 else 2472 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); 2473 2474 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq); 2475 2476 if (TCP_SKB_CB(skb)->sacked) 2477 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2478 2479 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th)) 2480 flag |= FLAG_ECE; 2481 2482 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 2483 } 2484 2485 /* We passed data and got it acked, remove any soft error 2486 * log. Something worked... 2487 */ 2488 sk->sk_err_soft = 0; 2489 tp->rcv_tstamp = tcp_time_stamp; 2490 prior_packets = tp->packets_out; 2491 if (!prior_packets) 2492 goto no_queue; 2493 2494 prior_in_flight = tcp_packets_in_flight(tp); 2495 2496 /* See if we can take anything off of the retransmit queue. */ 2497 flag |= tcp_clean_rtx_queue(sk, &seq_rtt); 2498 2499 if (tp->frto_counter) 2500 tcp_process_frto(sk, prior_snd_una); 2501 2502 if (tcp_ack_is_dubious(sk, flag)) { 2503 /* Advance CWND, if state allows this. */ 2504 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag)) 2505 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0); 2506 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag); 2507 } else { 2508 if ((flag & FLAG_DATA_ACKED)) 2509 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1); 2510 } 2511 2512 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP)) 2513 dst_confirm(sk->sk_dst_cache); 2514 2515 return 1; 2516 2517 no_queue: 2518 icsk->icsk_probes_out = 0; 2519 2520 /* If this ack opens up a zero window, clear backoff. It was 2521 * being used to time the probes, and is probably far higher than 2522 * it needs to be for normal retransmission. 2523 */ 2524 if (sk->sk_send_head) 2525 tcp_ack_probe(sk); 2526 return 1; 2527 2528 old_ack: 2529 if (TCP_SKB_CB(skb)->sacked) 2530 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2531 2532 uninteresting_ack: 2533 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 2534 return 0; 2535 } 2536 2537 2538 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 2539 * But, this can also be called on packets in the established flow when 2540 * the fast version below fails. 2541 */ 2542 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab) 2543 { 2544 unsigned char *ptr; 2545 struct tcphdr *th = skb->h.th; 2546 int length=(th->doff*4)-sizeof(struct tcphdr); 2547 2548 ptr = (unsigned char *)(th + 1); 2549 opt_rx->saw_tstamp = 0; 2550 2551 while(length>0) { 2552 int opcode=*ptr++; 2553 int opsize; 2554 2555 switch (opcode) { 2556 case TCPOPT_EOL: 2557 return; 2558 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 2559 length--; 2560 continue; 2561 default: 2562 opsize=*ptr++; 2563 if (opsize < 2) /* "silly options" */ 2564 return; 2565 if (opsize > length) 2566 return; /* don't parse partial options */ 2567 switch(opcode) { 2568 case TCPOPT_MSS: 2569 if(opsize==TCPOLEN_MSS && th->syn && !estab) { 2570 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr)); 2571 if (in_mss) { 2572 if (opt_rx->user_mss && opt_rx->user_mss < in_mss) 2573 in_mss = opt_rx->user_mss; 2574 opt_rx->mss_clamp = in_mss; 2575 } 2576 } 2577 break; 2578 case TCPOPT_WINDOW: 2579 if(opsize==TCPOLEN_WINDOW && th->syn && !estab) 2580 if (sysctl_tcp_window_scaling) { 2581 __u8 snd_wscale = *(__u8 *) ptr; 2582 opt_rx->wscale_ok = 1; 2583 if (snd_wscale > 14) { 2584 if(net_ratelimit()) 2585 printk(KERN_INFO "tcp_parse_options: Illegal window " 2586 "scaling value %d >14 received.\n", 2587 snd_wscale); 2588 snd_wscale = 14; 2589 } 2590 opt_rx->snd_wscale = snd_wscale; 2591 } 2592 break; 2593 case TCPOPT_TIMESTAMP: 2594 if(opsize==TCPOLEN_TIMESTAMP) { 2595 if ((estab && opt_rx->tstamp_ok) || 2596 (!estab && sysctl_tcp_timestamps)) { 2597 opt_rx->saw_tstamp = 1; 2598 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr)); 2599 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4))); 2600 } 2601 } 2602 break; 2603 case TCPOPT_SACK_PERM: 2604 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) { 2605 if (sysctl_tcp_sack) { 2606 opt_rx->sack_ok = 1; 2607 tcp_sack_reset(opt_rx); 2608 } 2609 } 2610 break; 2611 2612 case TCPOPT_SACK: 2613 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 2614 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 2615 opt_rx->sack_ok) { 2616 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 2617 } 2618 }; 2619 ptr+=opsize-2; 2620 length-=opsize; 2621 }; 2622 } 2623 } 2624 2625 /* Fast parse options. This hopes to only see timestamps. 2626 * If it is wrong it falls back on tcp_parse_options(). 2627 */ 2628 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 2629 struct tcp_sock *tp) 2630 { 2631 if (th->doff == sizeof(struct tcphdr)>>2) { 2632 tp->rx_opt.saw_tstamp = 0; 2633 return 0; 2634 } else if (tp->rx_opt.tstamp_ok && 2635 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 2636 __u32 *ptr = (__u32 *)(th + 1); 2637 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 2638 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 2639 tp->rx_opt.saw_tstamp = 1; 2640 ++ptr; 2641 tp->rx_opt.rcv_tsval = ntohl(*ptr); 2642 ++ptr; 2643 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 2644 return 1; 2645 } 2646 } 2647 tcp_parse_options(skb, &tp->rx_opt, 1); 2648 return 1; 2649 } 2650 2651 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 2652 { 2653 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 2654 tp->rx_opt.ts_recent_stamp = xtime.tv_sec; 2655 } 2656 2657 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 2658 { 2659 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 2660 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 2661 * extra check below makes sure this can only happen 2662 * for pure ACK frames. -DaveM 2663 * 2664 * Not only, also it occurs for expired timestamps. 2665 */ 2666 2667 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 2668 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 2669 tcp_store_ts_recent(tp); 2670 } 2671 } 2672 2673 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 2674 * 2675 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 2676 * it can pass through stack. So, the following predicate verifies that 2677 * this segment is not used for anything but congestion avoidance or 2678 * fast retransmit. Moreover, we even are able to eliminate most of such 2679 * second order effects, if we apply some small "replay" window (~RTO) 2680 * to timestamp space. 2681 * 2682 * All these measures still do not guarantee that we reject wrapped ACKs 2683 * on networks with high bandwidth, when sequence space is recycled fastly, 2684 * but it guarantees that such events will be very rare and do not affect 2685 * connection seriously. This doesn't look nice, but alas, PAWS is really 2686 * buggy extension. 2687 * 2688 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 2689 * states that events when retransmit arrives after original data are rare. 2690 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 2691 * the biggest problem on large power networks even with minor reordering. 2692 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 2693 * up to bandwidth of 18Gigabit/sec. 8) ] 2694 */ 2695 2696 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 2697 { 2698 struct tcp_sock *tp = tcp_sk(sk); 2699 struct tcphdr *th = skb->h.th; 2700 u32 seq = TCP_SKB_CB(skb)->seq; 2701 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2702 2703 return (/* 1. Pure ACK with correct sequence number. */ 2704 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 2705 2706 /* 2. ... and duplicate ACK. */ 2707 ack == tp->snd_una && 2708 2709 /* 3. ... and does not update window. */ 2710 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 2711 2712 /* 4. ... and sits in replay window. */ 2713 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 2714 } 2715 2716 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb) 2717 { 2718 const struct tcp_sock *tp = tcp_sk(sk); 2719 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 2720 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 2721 !tcp_disordered_ack(sk, skb)); 2722 } 2723 2724 /* Check segment sequence number for validity. 2725 * 2726 * Segment controls are considered valid, if the segment 2727 * fits to the window after truncation to the window. Acceptability 2728 * of data (and SYN, FIN, of course) is checked separately. 2729 * See tcp_data_queue(), for example. 2730 * 2731 * Also, controls (RST is main one) are accepted using RCV.WUP instead 2732 * of RCV.NXT. Peer still did not advance his SND.UNA when we 2733 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 2734 * (borrowed from freebsd) 2735 */ 2736 2737 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 2738 { 2739 return !before(end_seq, tp->rcv_wup) && 2740 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 2741 } 2742 2743 /* When we get a reset we do this. */ 2744 static void tcp_reset(struct sock *sk) 2745 { 2746 /* We want the right error as BSD sees it (and indeed as we do). */ 2747 switch (sk->sk_state) { 2748 case TCP_SYN_SENT: 2749 sk->sk_err = ECONNREFUSED; 2750 break; 2751 case TCP_CLOSE_WAIT: 2752 sk->sk_err = EPIPE; 2753 break; 2754 case TCP_CLOSE: 2755 return; 2756 default: 2757 sk->sk_err = ECONNRESET; 2758 } 2759 2760 if (!sock_flag(sk, SOCK_DEAD)) 2761 sk->sk_error_report(sk); 2762 2763 tcp_done(sk); 2764 } 2765 2766 /* 2767 * Process the FIN bit. This now behaves as it is supposed to work 2768 * and the FIN takes effect when it is validly part of sequence 2769 * space. Not before when we get holes. 2770 * 2771 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 2772 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 2773 * TIME-WAIT) 2774 * 2775 * If we are in FINWAIT-1, a received FIN indicates simultaneous 2776 * close and we go into CLOSING (and later onto TIME-WAIT) 2777 * 2778 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 2779 */ 2780 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 2781 { 2782 struct tcp_sock *tp = tcp_sk(sk); 2783 2784 inet_csk_schedule_ack(sk); 2785 2786 sk->sk_shutdown |= RCV_SHUTDOWN; 2787 sock_set_flag(sk, SOCK_DONE); 2788 2789 switch (sk->sk_state) { 2790 case TCP_SYN_RECV: 2791 case TCP_ESTABLISHED: 2792 /* Move to CLOSE_WAIT */ 2793 tcp_set_state(sk, TCP_CLOSE_WAIT); 2794 inet_csk(sk)->icsk_ack.pingpong = 1; 2795 break; 2796 2797 case TCP_CLOSE_WAIT: 2798 case TCP_CLOSING: 2799 /* Received a retransmission of the FIN, do 2800 * nothing. 2801 */ 2802 break; 2803 case TCP_LAST_ACK: 2804 /* RFC793: Remain in the LAST-ACK state. */ 2805 break; 2806 2807 case TCP_FIN_WAIT1: 2808 /* This case occurs when a simultaneous close 2809 * happens, we must ack the received FIN and 2810 * enter the CLOSING state. 2811 */ 2812 tcp_send_ack(sk); 2813 tcp_set_state(sk, TCP_CLOSING); 2814 break; 2815 case TCP_FIN_WAIT2: 2816 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 2817 tcp_send_ack(sk); 2818 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 2819 break; 2820 default: 2821 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 2822 * cases we should never reach this piece of code. 2823 */ 2824 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 2825 __FUNCTION__, sk->sk_state); 2826 break; 2827 }; 2828 2829 /* It _is_ possible, that we have something out-of-order _after_ FIN. 2830 * Probably, we should reset in this case. For now drop them. 2831 */ 2832 __skb_queue_purge(&tp->out_of_order_queue); 2833 if (tp->rx_opt.sack_ok) 2834 tcp_sack_reset(&tp->rx_opt); 2835 sk_stream_mem_reclaim(sk); 2836 2837 if (!sock_flag(sk, SOCK_DEAD)) { 2838 sk->sk_state_change(sk); 2839 2840 /* Do not send POLL_HUP for half duplex close. */ 2841 if (sk->sk_shutdown == SHUTDOWN_MASK || 2842 sk->sk_state == TCP_CLOSE) 2843 sk_wake_async(sk, 1, POLL_HUP); 2844 else 2845 sk_wake_async(sk, 1, POLL_IN); 2846 } 2847 } 2848 2849 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq) 2850 { 2851 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 2852 if (before(seq, sp->start_seq)) 2853 sp->start_seq = seq; 2854 if (after(end_seq, sp->end_seq)) 2855 sp->end_seq = end_seq; 2856 return 1; 2857 } 2858 return 0; 2859 } 2860 2861 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) 2862 { 2863 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 2864 if (before(seq, tp->rcv_nxt)) 2865 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); 2866 else 2867 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); 2868 2869 tp->rx_opt.dsack = 1; 2870 tp->duplicate_sack[0].start_seq = seq; 2871 tp->duplicate_sack[0].end_seq = end_seq; 2872 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok); 2873 } 2874 } 2875 2876 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) 2877 { 2878 if (!tp->rx_opt.dsack) 2879 tcp_dsack_set(tp, seq, end_seq); 2880 else 2881 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 2882 } 2883 2884 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 2885 { 2886 struct tcp_sock *tp = tcp_sk(sk); 2887 2888 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 2889 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 2890 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 2891 tcp_enter_quickack_mode(sk); 2892 2893 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 2894 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2895 2896 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 2897 end_seq = tp->rcv_nxt; 2898 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); 2899 } 2900 } 2901 2902 tcp_send_ack(sk); 2903 } 2904 2905 /* These routines update the SACK block as out-of-order packets arrive or 2906 * in-order packets close up the sequence space. 2907 */ 2908 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 2909 { 2910 int this_sack; 2911 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2912 struct tcp_sack_block *swalk = sp+1; 2913 2914 /* See if the recent change to the first SACK eats into 2915 * or hits the sequence space of other SACK blocks, if so coalesce. 2916 */ 2917 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) { 2918 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 2919 int i; 2920 2921 /* Zap SWALK, by moving every further SACK up by one slot. 2922 * Decrease num_sacks. 2923 */ 2924 tp->rx_opt.num_sacks--; 2925 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 2926 for(i=this_sack; i < tp->rx_opt.num_sacks; i++) 2927 sp[i] = sp[i+1]; 2928 continue; 2929 } 2930 this_sack++, swalk++; 2931 } 2932 } 2933 2934 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2) 2935 { 2936 __u32 tmp; 2937 2938 tmp = sack1->start_seq; 2939 sack1->start_seq = sack2->start_seq; 2940 sack2->start_seq = tmp; 2941 2942 tmp = sack1->end_seq; 2943 sack1->end_seq = sack2->end_seq; 2944 sack2->end_seq = tmp; 2945 } 2946 2947 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 2948 { 2949 struct tcp_sock *tp = tcp_sk(sk); 2950 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2951 int cur_sacks = tp->rx_opt.num_sacks; 2952 int this_sack; 2953 2954 if (!cur_sacks) 2955 goto new_sack; 2956 2957 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) { 2958 if (tcp_sack_extend(sp, seq, end_seq)) { 2959 /* Rotate this_sack to the first one. */ 2960 for (; this_sack>0; this_sack--, sp--) 2961 tcp_sack_swap(sp, sp-1); 2962 if (cur_sacks > 1) 2963 tcp_sack_maybe_coalesce(tp); 2964 return; 2965 } 2966 } 2967 2968 /* Could not find an adjacent existing SACK, build a new one, 2969 * put it at the front, and shift everyone else down. We 2970 * always know there is at least one SACK present already here. 2971 * 2972 * If the sack array is full, forget about the last one. 2973 */ 2974 if (this_sack >= 4) { 2975 this_sack--; 2976 tp->rx_opt.num_sacks--; 2977 sp--; 2978 } 2979 for(; this_sack > 0; this_sack--, sp--) 2980 *sp = *(sp-1); 2981 2982 new_sack: 2983 /* Build the new head SACK, and we're done. */ 2984 sp->start_seq = seq; 2985 sp->end_seq = end_seq; 2986 tp->rx_opt.num_sacks++; 2987 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 2988 } 2989 2990 /* RCV.NXT advances, some SACKs should be eaten. */ 2991 2992 static void tcp_sack_remove(struct tcp_sock *tp) 2993 { 2994 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2995 int num_sacks = tp->rx_opt.num_sacks; 2996 int this_sack; 2997 2998 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 2999 if (skb_queue_empty(&tp->out_of_order_queue)) { 3000 tp->rx_opt.num_sacks = 0; 3001 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 3002 return; 3003 } 3004 3005 for(this_sack = 0; this_sack < num_sacks; ) { 3006 /* Check if the start of the sack is covered by RCV.NXT. */ 3007 if (!before(tp->rcv_nxt, sp->start_seq)) { 3008 int i; 3009 3010 /* RCV.NXT must cover all the block! */ 3011 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); 3012 3013 /* Zap this SACK, by moving forward any other SACKS. */ 3014 for (i=this_sack+1; i < num_sacks; i++) 3015 tp->selective_acks[i-1] = tp->selective_acks[i]; 3016 num_sacks--; 3017 continue; 3018 } 3019 this_sack++; 3020 sp++; 3021 } 3022 if (num_sacks != tp->rx_opt.num_sacks) { 3023 tp->rx_opt.num_sacks = num_sacks; 3024 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3025 } 3026 } 3027 3028 /* This one checks to see if we can put data from the 3029 * out_of_order queue into the receive_queue. 3030 */ 3031 static void tcp_ofo_queue(struct sock *sk) 3032 { 3033 struct tcp_sock *tp = tcp_sk(sk); 3034 __u32 dsack_high = tp->rcv_nxt; 3035 struct sk_buff *skb; 3036 3037 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 3038 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 3039 break; 3040 3041 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 3042 __u32 dsack = dsack_high; 3043 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 3044 dsack_high = TCP_SKB_CB(skb)->end_seq; 3045 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); 3046 } 3047 3048 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3049 SOCK_DEBUG(sk, "ofo packet was already received \n"); 3050 __skb_unlink(skb, &tp->out_of_order_queue); 3051 __kfree_skb(skb); 3052 continue; 3053 } 3054 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 3055 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3056 TCP_SKB_CB(skb)->end_seq); 3057 3058 __skb_unlink(skb, &tp->out_of_order_queue); 3059 __skb_queue_tail(&sk->sk_receive_queue, skb); 3060 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3061 if(skb->h.th->fin) 3062 tcp_fin(skb, sk, skb->h.th); 3063 } 3064 } 3065 3066 static int tcp_prune_queue(struct sock *sk); 3067 3068 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 3069 { 3070 struct tcphdr *th = skb->h.th; 3071 struct tcp_sock *tp = tcp_sk(sk); 3072 int eaten = -1; 3073 3074 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 3075 goto drop; 3076 3077 __skb_pull(skb, th->doff*4); 3078 3079 TCP_ECN_accept_cwr(tp, skb); 3080 3081 if (tp->rx_opt.dsack) { 3082 tp->rx_opt.dsack = 0; 3083 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, 3084 4 - tp->rx_opt.tstamp_ok); 3085 } 3086 3087 /* Queue data for delivery to the user. 3088 * Packets in sequence go to the receive queue. 3089 * Out of sequence packets to the out_of_order_queue. 3090 */ 3091 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3092 if (tcp_receive_window(tp) == 0) 3093 goto out_of_window; 3094 3095 /* Ok. In sequence. In window. */ 3096 if (tp->ucopy.task == current && 3097 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 3098 sock_owned_by_user(sk) && !tp->urg_data) { 3099 int chunk = min_t(unsigned int, skb->len, 3100 tp->ucopy.len); 3101 3102 __set_current_state(TASK_RUNNING); 3103 3104 local_bh_enable(); 3105 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 3106 tp->ucopy.len -= chunk; 3107 tp->copied_seq += chunk; 3108 eaten = (chunk == skb->len && !th->fin); 3109 tcp_rcv_space_adjust(sk); 3110 } 3111 local_bh_disable(); 3112 } 3113 3114 if (eaten <= 0) { 3115 queue_and_out: 3116 if (eaten < 0 && 3117 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3118 !sk_stream_rmem_schedule(sk, skb))) { 3119 if (tcp_prune_queue(sk) < 0 || 3120 !sk_stream_rmem_schedule(sk, skb)) 3121 goto drop; 3122 } 3123 sk_stream_set_owner_r(skb, sk); 3124 __skb_queue_tail(&sk->sk_receive_queue, skb); 3125 } 3126 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3127 if(skb->len) 3128 tcp_event_data_recv(sk, tp, skb); 3129 if(th->fin) 3130 tcp_fin(skb, sk, th); 3131 3132 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3133 tcp_ofo_queue(sk); 3134 3135 /* RFC2581. 4.2. SHOULD send immediate ACK, when 3136 * gap in queue is filled. 3137 */ 3138 if (skb_queue_empty(&tp->out_of_order_queue)) 3139 inet_csk(sk)->icsk_ack.pingpong = 0; 3140 } 3141 3142 if (tp->rx_opt.num_sacks) 3143 tcp_sack_remove(tp); 3144 3145 tcp_fast_path_check(sk, tp); 3146 3147 if (eaten > 0) 3148 __kfree_skb(skb); 3149 else if (!sock_flag(sk, SOCK_DEAD)) 3150 sk->sk_data_ready(sk, 0); 3151 return; 3152 } 3153 3154 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3155 /* A retransmit, 2nd most common case. Force an immediate ack. */ 3156 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3157 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3158 3159 out_of_window: 3160 tcp_enter_quickack_mode(sk); 3161 inet_csk_schedule_ack(sk); 3162 drop: 3163 __kfree_skb(skb); 3164 return; 3165 } 3166 3167 /* Out of window. F.e. zero window probe. */ 3168 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 3169 goto out_of_window; 3170 3171 tcp_enter_quickack_mode(sk); 3172 3173 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3174 /* Partial packet, seq < rcv_next < end_seq */ 3175 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 3176 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3177 TCP_SKB_CB(skb)->end_seq); 3178 3179 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 3180 3181 /* If window is closed, drop tail of packet. But after 3182 * remembering D-SACK for its head made in previous line. 3183 */ 3184 if (!tcp_receive_window(tp)) 3185 goto out_of_window; 3186 goto queue_and_out; 3187 } 3188 3189 TCP_ECN_check_ce(tp, skb); 3190 3191 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3192 !sk_stream_rmem_schedule(sk, skb)) { 3193 if (tcp_prune_queue(sk) < 0 || 3194 !sk_stream_rmem_schedule(sk, skb)) 3195 goto drop; 3196 } 3197 3198 /* Disable header prediction. */ 3199 tp->pred_flags = 0; 3200 inet_csk_schedule_ack(sk); 3201 3202 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 3203 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3204 3205 sk_stream_set_owner_r(skb, sk); 3206 3207 if (!skb_peek(&tp->out_of_order_queue)) { 3208 /* Initial out of order segment, build 1 SACK. */ 3209 if (tp->rx_opt.sack_ok) { 3210 tp->rx_opt.num_sacks = 1; 3211 tp->rx_opt.dsack = 0; 3212 tp->rx_opt.eff_sacks = 1; 3213 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 3214 tp->selective_acks[0].end_seq = 3215 TCP_SKB_CB(skb)->end_seq; 3216 } 3217 __skb_queue_head(&tp->out_of_order_queue,skb); 3218 } else { 3219 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 3220 u32 seq = TCP_SKB_CB(skb)->seq; 3221 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3222 3223 if (seq == TCP_SKB_CB(skb1)->end_seq) { 3224 __skb_append(skb1, skb, &tp->out_of_order_queue); 3225 3226 if (!tp->rx_opt.num_sacks || 3227 tp->selective_acks[0].end_seq != seq) 3228 goto add_sack; 3229 3230 /* Common case: data arrive in order after hole. */ 3231 tp->selective_acks[0].end_seq = end_seq; 3232 return; 3233 } 3234 3235 /* Find place to insert this segment. */ 3236 do { 3237 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 3238 break; 3239 } while ((skb1 = skb1->prev) != 3240 (struct sk_buff*)&tp->out_of_order_queue); 3241 3242 /* Do skb overlap to previous one? */ 3243 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue && 3244 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 3245 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3246 /* All the bits are present. Drop. */ 3247 __kfree_skb(skb); 3248 tcp_dsack_set(tp, seq, end_seq); 3249 goto add_sack; 3250 } 3251 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 3252 /* Partial overlap. */ 3253 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq); 3254 } else { 3255 skb1 = skb1->prev; 3256 } 3257 } 3258 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); 3259 3260 /* And clean segments covered by new one as whole. */ 3261 while ((skb1 = skb->next) != 3262 (struct sk_buff*)&tp->out_of_order_queue && 3263 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 3264 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3265 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq); 3266 break; 3267 } 3268 __skb_unlink(skb1, &tp->out_of_order_queue); 3269 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq); 3270 __kfree_skb(skb1); 3271 } 3272 3273 add_sack: 3274 if (tp->rx_opt.sack_ok) 3275 tcp_sack_new_ofo_skb(sk, seq, end_seq); 3276 } 3277 } 3278 3279 /* Collapse contiguous sequence of skbs head..tail with 3280 * sequence numbers start..end. 3281 * Segments with FIN/SYN are not collapsed (only because this 3282 * simplifies code) 3283 */ 3284 static void 3285 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 3286 struct sk_buff *head, struct sk_buff *tail, 3287 u32 start, u32 end) 3288 { 3289 struct sk_buff *skb; 3290 3291 /* First, check that queue is collapsible and find 3292 * the point where collapsing can be useful. */ 3293 for (skb = head; skb != tail; ) { 3294 /* No new bits? It is possible on ofo queue. */ 3295 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3296 struct sk_buff *next = skb->next; 3297 __skb_unlink(skb, list); 3298 __kfree_skb(skb); 3299 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3300 skb = next; 3301 continue; 3302 } 3303 3304 /* The first skb to collapse is: 3305 * - not SYN/FIN and 3306 * - bloated or contains data before "start" or 3307 * overlaps to the next one. 3308 */ 3309 if (!skb->h.th->syn && !skb->h.th->fin && 3310 (tcp_win_from_space(skb->truesize) > skb->len || 3311 before(TCP_SKB_CB(skb)->seq, start) || 3312 (skb->next != tail && 3313 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 3314 break; 3315 3316 /* Decided to skip this, advance start seq. */ 3317 start = TCP_SKB_CB(skb)->end_seq; 3318 skb = skb->next; 3319 } 3320 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3321 return; 3322 3323 while (before(start, end)) { 3324 struct sk_buff *nskb; 3325 int header = skb_headroom(skb); 3326 int copy = SKB_MAX_ORDER(header, 0); 3327 3328 /* Too big header? This can happen with IPv6. */ 3329 if (copy < 0) 3330 return; 3331 if (end-start < copy) 3332 copy = end-start; 3333 nskb = alloc_skb(copy+header, GFP_ATOMIC); 3334 if (!nskb) 3335 return; 3336 skb_reserve(nskb, header); 3337 memcpy(nskb->head, skb->head, header); 3338 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head); 3339 nskb->h.raw = nskb->head + (skb->h.raw-skb->head); 3340 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head); 3341 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 3342 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 3343 __skb_insert(nskb, skb->prev, skb, list); 3344 sk_stream_set_owner_r(nskb, sk); 3345 3346 /* Copy data, releasing collapsed skbs. */ 3347 while (copy > 0) { 3348 int offset = start - TCP_SKB_CB(skb)->seq; 3349 int size = TCP_SKB_CB(skb)->end_seq - start; 3350 3351 BUG_ON(offset < 0); 3352 if (size > 0) { 3353 size = min(copy, size); 3354 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 3355 BUG(); 3356 TCP_SKB_CB(nskb)->end_seq += size; 3357 copy -= size; 3358 start += size; 3359 } 3360 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3361 struct sk_buff *next = skb->next; 3362 __skb_unlink(skb, list); 3363 __kfree_skb(skb); 3364 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3365 skb = next; 3366 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3367 return; 3368 } 3369 } 3370 } 3371 } 3372 3373 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 3374 * and tcp_collapse() them until all the queue is collapsed. 3375 */ 3376 static void tcp_collapse_ofo_queue(struct sock *sk) 3377 { 3378 struct tcp_sock *tp = tcp_sk(sk); 3379 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 3380 struct sk_buff *head; 3381 u32 start, end; 3382 3383 if (skb == NULL) 3384 return; 3385 3386 start = TCP_SKB_CB(skb)->seq; 3387 end = TCP_SKB_CB(skb)->end_seq; 3388 head = skb; 3389 3390 for (;;) { 3391 skb = skb->next; 3392 3393 /* Segment is terminated when we see gap or when 3394 * we are at the end of all the queue. */ 3395 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 3396 after(TCP_SKB_CB(skb)->seq, end) || 3397 before(TCP_SKB_CB(skb)->end_seq, start)) { 3398 tcp_collapse(sk, &tp->out_of_order_queue, 3399 head, skb, start, end); 3400 head = skb; 3401 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 3402 break; 3403 /* Start new segment */ 3404 start = TCP_SKB_CB(skb)->seq; 3405 end = TCP_SKB_CB(skb)->end_seq; 3406 } else { 3407 if (before(TCP_SKB_CB(skb)->seq, start)) 3408 start = TCP_SKB_CB(skb)->seq; 3409 if (after(TCP_SKB_CB(skb)->end_seq, end)) 3410 end = TCP_SKB_CB(skb)->end_seq; 3411 } 3412 } 3413 } 3414 3415 /* Reduce allocated memory if we can, trying to get 3416 * the socket within its memory limits again. 3417 * 3418 * Return less than zero if we should start dropping frames 3419 * until the socket owning process reads some of the data 3420 * to stabilize the situation. 3421 */ 3422 static int tcp_prune_queue(struct sock *sk) 3423 { 3424 struct tcp_sock *tp = tcp_sk(sk); 3425 3426 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 3427 3428 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); 3429 3430 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 3431 tcp_clamp_window(sk, tp); 3432 else if (tcp_memory_pressure) 3433 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 3434 3435 tcp_collapse_ofo_queue(sk); 3436 tcp_collapse(sk, &sk->sk_receive_queue, 3437 sk->sk_receive_queue.next, 3438 (struct sk_buff*)&sk->sk_receive_queue, 3439 tp->copied_seq, tp->rcv_nxt); 3440 sk_stream_mem_reclaim(sk); 3441 3442 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3443 return 0; 3444 3445 /* Collapsing did not help, destructive actions follow. 3446 * This must not ever occur. */ 3447 3448 /* First, purge the out_of_order queue. */ 3449 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3450 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED); 3451 __skb_queue_purge(&tp->out_of_order_queue); 3452 3453 /* Reset SACK state. A conforming SACK implementation will 3454 * do the same at a timeout based retransmit. When a connection 3455 * is in a sad state like this, we care only about integrity 3456 * of the connection not performance. 3457 */ 3458 if (tp->rx_opt.sack_ok) 3459 tcp_sack_reset(&tp->rx_opt); 3460 sk_stream_mem_reclaim(sk); 3461 } 3462 3463 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3464 return 0; 3465 3466 /* If we are really being abused, tell the caller to silently 3467 * drop receive data on the floor. It will get retransmitted 3468 * and hopefully then we'll have sufficient space. 3469 */ 3470 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); 3471 3472 /* Massive buffer overcommit. */ 3473 tp->pred_flags = 0; 3474 return -1; 3475 } 3476 3477 3478 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 3479 * As additional protections, we do not touch cwnd in retransmission phases, 3480 * and if application hit its sndbuf limit recently. 3481 */ 3482 void tcp_cwnd_application_limited(struct sock *sk) 3483 { 3484 struct tcp_sock *tp = tcp_sk(sk); 3485 3486 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 3487 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 3488 /* Limited by application or receiver window. */ 3489 u32 win_used = max(tp->snd_cwnd_used, 2U); 3490 if (win_used < tp->snd_cwnd) { 3491 tp->snd_ssthresh = tcp_current_ssthresh(sk); 3492 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 3493 } 3494 tp->snd_cwnd_used = 0; 3495 } 3496 tp->snd_cwnd_stamp = tcp_time_stamp; 3497 } 3498 3499 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp) 3500 { 3501 /* If the user specified a specific send buffer setting, do 3502 * not modify it. 3503 */ 3504 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 3505 return 0; 3506 3507 /* If we are under global TCP memory pressure, do not expand. */ 3508 if (tcp_memory_pressure) 3509 return 0; 3510 3511 /* If we are under soft global TCP memory pressure, do not expand. */ 3512 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 3513 return 0; 3514 3515 /* If we filled the congestion window, do not expand. */ 3516 if (tp->packets_out >= tp->snd_cwnd) 3517 return 0; 3518 3519 return 1; 3520 } 3521 3522 /* When incoming ACK allowed to free some skb from write_queue, 3523 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 3524 * on the exit from tcp input handler. 3525 * 3526 * PROBLEM: sndbuf expansion does not work well with largesend. 3527 */ 3528 static void tcp_new_space(struct sock *sk) 3529 { 3530 struct tcp_sock *tp = tcp_sk(sk); 3531 3532 if (tcp_should_expand_sndbuf(sk, tp)) { 3533 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 3534 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), 3535 demanded = max_t(unsigned int, tp->snd_cwnd, 3536 tp->reordering + 1); 3537 sndmem *= 2*demanded; 3538 if (sndmem > sk->sk_sndbuf) 3539 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 3540 tp->snd_cwnd_stamp = tcp_time_stamp; 3541 } 3542 3543 sk->sk_write_space(sk); 3544 } 3545 3546 static void tcp_check_space(struct sock *sk) 3547 { 3548 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 3549 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 3550 if (sk->sk_socket && 3551 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 3552 tcp_new_space(sk); 3553 } 3554 } 3555 3556 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp) 3557 { 3558 tcp_push_pending_frames(sk, tp); 3559 tcp_check_space(sk); 3560 } 3561 3562 /* 3563 * Check if sending an ack is needed. 3564 */ 3565 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 3566 { 3567 struct tcp_sock *tp = tcp_sk(sk); 3568 3569 /* More than one full frame received... */ 3570 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 3571 /* ... and right edge of window advances far enough. 3572 * (tcp_recvmsg() will send ACK otherwise). Or... 3573 */ 3574 && __tcp_select_window(sk) >= tp->rcv_wnd) || 3575 /* We ACK each frame or... */ 3576 tcp_in_quickack_mode(sk) || 3577 /* We have out of order data. */ 3578 (ofo_possible && 3579 skb_peek(&tp->out_of_order_queue))) { 3580 /* Then ack it now */ 3581 tcp_send_ack(sk); 3582 } else { 3583 /* Else, send delayed ack. */ 3584 tcp_send_delayed_ack(sk); 3585 } 3586 } 3587 3588 static inline void tcp_ack_snd_check(struct sock *sk) 3589 { 3590 if (!inet_csk_ack_scheduled(sk)) { 3591 /* We sent a data segment already. */ 3592 return; 3593 } 3594 __tcp_ack_snd_check(sk, 1); 3595 } 3596 3597 /* 3598 * This routine is only called when we have urgent data 3599 * signaled. Its the 'slow' part of tcp_urg. It could be 3600 * moved inline now as tcp_urg is only called from one 3601 * place. We handle URGent data wrong. We have to - as 3602 * BSD still doesn't use the correction from RFC961. 3603 * For 1003.1g we should support a new option TCP_STDURG to permit 3604 * either form (or just set the sysctl tcp_stdurg). 3605 */ 3606 3607 static void tcp_check_urg(struct sock * sk, struct tcphdr * th) 3608 { 3609 struct tcp_sock *tp = tcp_sk(sk); 3610 u32 ptr = ntohs(th->urg_ptr); 3611 3612 if (ptr && !sysctl_tcp_stdurg) 3613 ptr--; 3614 ptr += ntohl(th->seq); 3615 3616 /* Ignore urgent data that we've already seen and read. */ 3617 if (after(tp->copied_seq, ptr)) 3618 return; 3619 3620 /* Do not replay urg ptr. 3621 * 3622 * NOTE: interesting situation not covered by specs. 3623 * Misbehaving sender may send urg ptr, pointing to segment, 3624 * which we already have in ofo queue. We are not able to fetch 3625 * such data and will stay in TCP_URG_NOTYET until will be eaten 3626 * by recvmsg(). Seems, we are not obliged to handle such wicked 3627 * situations. But it is worth to think about possibility of some 3628 * DoSes using some hypothetical application level deadlock. 3629 */ 3630 if (before(ptr, tp->rcv_nxt)) 3631 return; 3632 3633 /* Do we already have a newer (or duplicate) urgent pointer? */ 3634 if (tp->urg_data && !after(ptr, tp->urg_seq)) 3635 return; 3636 3637 /* Tell the world about our new urgent pointer. */ 3638 sk_send_sigurg(sk); 3639 3640 /* We may be adding urgent data when the last byte read was 3641 * urgent. To do this requires some care. We cannot just ignore 3642 * tp->copied_seq since we would read the last urgent byte again 3643 * as data, nor can we alter copied_seq until this data arrives 3644 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 3645 * 3646 * NOTE. Double Dutch. Rendering to plain English: author of comment 3647 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 3648 * and expect that both A and B disappear from stream. This is _wrong_. 3649 * Though this happens in BSD with high probability, this is occasional. 3650 * Any application relying on this is buggy. Note also, that fix "works" 3651 * only in this artificial test. Insert some normal data between A and B and we will 3652 * decline of BSD again. Verdict: it is better to remove to trap 3653 * buggy users. 3654 */ 3655 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 3656 !sock_flag(sk, SOCK_URGINLINE) && 3657 tp->copied_seq != tp->rcv_nxt) { 3658 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 3659 tp->copied_seq++; 3660 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 3661 __skb_unlink(skb, &sk->sk_receive_queue); 3662 __kfree_skb(skb); 3663 } 3664 } 3665 3666 tp->urg_data = TCP_URG_NOTYET; 3667 tp->urg_seq = ptr; 3668 3669 /* Disable header prediction. */ 3670 tp->pred_flags = 0; 3671 } 3672 3673 /* This is the 'fast' part of urgent handling. */ 3674 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 3675 { 3676 struct tcp_sock *tp = tcp_sk(sk); 3677 3678 /* Check if we get a new urgent pointer - normally not. */ 3679 if (th->urg) 3680 tcp_check_urg(sk,th); 3681 3682 /* Do we wait for any urgent data? - normally not... */ 3683 if (tp->urg_data == TCP_URG_NOTYET) { 3684 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 3685 th->syn; 3686 3687 /* Is the urgent pointer pointing into this packet? */ 3688 if (ptr < skb->len) { 3689 u8 tmp; 3690 if (skb_copy_bits(skb, ptr, &tmp, 1)) 3691 BUG(); 3692 tp->urg_data = TCP_URG_VALID | tmp; 3693 if (!sock_flag(sk, SOCK_DEAD)) 3694 sk->sk_data_ready(sk, 0); 3695 } 3696 } 3697 } 3698 3699 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 3700 { 3701 struct tcp_sock *tp = tcp_sk(sk); 3702 int chunk = skb->len - hlen; 3703 int err; 3704 3705 local_bh_enable(); 3706 if (skb->ip_summed==CHECKSUM_UNNECESSARY) 3707 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 3708 else 3709 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 3710 tp->ucopy.iov); 3711 3712 if (!err) { 3713 tp->ucopy.len -= chunk; 3714 tp->copied_seq += chunk; 3715 tcp_rcv_space_adjust(sk); 3716 } 3717 3718 local_bh_disable(); 3719 return err; 3720 } 3721 3722 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 3723 { 3724 int result; 3725 3726 if (sock_owned_by_user(sk)) { 3727 local_bh_enable(); 3728 result = __tcp_checksum_complete(skb); 3729 local_bh_disable(); 3730 } else { 3731 result = __tcp_checksum_complete(skb); 3732 } 3733 return result; 3734 } 3735 3736 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 3737 { 3738 return skb->ip_summed != CHECKSUM_UNNECESSARY && 3739 __tcp_checksum_complete_user(sk, skb); 3740 } 3741 3742 /* 3743 * TCP receive function for the ESTABLISHED state. 3744 * 3745 * It is split into a fast path and a slow path. The fast path is 3746 * disabled when: 3747 * - A zero window was announced from us - zero window probing 3748 * is only handled properly in the slow path. 3749 * - Out of order segments arrived. 3750 * - Urgent data is expected. 3751 * - There is no buffer space left 3752 * - Unexpected TCP flags/window values/header lengths are received 3753 * (detected by checking the TCP header against pred_flags) 3754 * - Data is sent in both directions. Fast path only supports pure senders 3755 * or pure receivers (this means either the sequence number or the ack 3756 * value must stay constant) 3757 * - Unexpected TCP option. 3758 * 3759 * When these conditions are not satisfied it drops into a standard 3760 * receive procedure patterned after RFC793 to handle all cases. 3761 * The first three cases are guaranteed by proper pred_flags setting, 3762 * the rest is checked inline. Fast processing is turned on in 3763 * tcp_data_queue when everything is OK. 3764 */ 3765 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 3766 struct tcphdr *th, unsigned len) 3767 { 3768 struct tcp_sock *tp = tcp_sk(sk); 3769 3770 /* 3771 * Header prediction. 3772 * The code loosely follows the one in the famous 3773 * "30 instruction TCP receive" Van Jacobson mail. 3774 * 3775 * Van's trick is to deposit buffers into socket queue 3776 * on a device interrupt, to call tcp_recv function 3777 * on the receive process context and checksum and copy 3778 * the buffer to user space. smart... 3779 * 3780 * Our current scheme is not silly either but we take the 3781 * extra cost of the net_bh soft interrupt processing... 3782 * We do checksum and copy also but from device to kernel. 3783 */ 3784 3785 tp->rx_opt.saw_tstamp = 0; 3786 3787 /* pred_flags is 0xS?10 << 16 + snd_wnd 3788 * if header_prediction is to be made 3789 * 'S' will always be tp->tcp_header_len >> 2 3790 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 3791 * turn it off (when there are holes in the receive 3792 * space for instance) 3793 * PSH flag is ignored. 3794 */ 3795 3796 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 3797 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3798 int tcp_header_len = tp->tcp_header_len; 3799 3800 /* Timestamp header prediction: tcp_header_len 3801 * is automatically equal to th->doff*4 due to pred_flags 3802 * match. 3803 */ 3804 3805 /* Check timestamp */ 3806 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 3807 __u32 *ptr = (__u32 *)(th + 1); 3808 3809 /* No? Slow path! */ 3810 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3811 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) 3812 goto slow_path; 3813 3814 tp->rx_opt.saw_tstamp = 1; 3815 ++ptr; 3816 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3817 ++ptr; 3818 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3819 3820 /* If PAWS failed, check it more carefully in slow path */ 3821 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 3822 goto slow_path; 3823 3824 /* DO NOT update ts_recent here, if checksum fails 3825 * and timestamp was corrupted part, it will result 3826 * in a hung connection since we will drop all 3827 * future packets due to the PAWS test. 3828 */ 3829 } 3830 3831 if (len <= tcp_header_len) { 3832 /* Bulk data transfer: sender */ 3833 if (len == tcp_header_len) { 3834 /* Predicted packet is in window by definition. 3835 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3836 * Hence, check seq<=rcv_wup reduces to: 3837 */ 3838 if (tcp_header_len == 3839 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 3840 tp->rcv_nxt == tp->rcv_wup) 3841 tcp_store_ts_recent(tp); 3842 3843 tcp_rcv_rtt_measure_ts(sk, skb); 3844 3845 /* We know that such packets are checksummed 3846 * on entry. 3847 */ 3848 tcp_ack(sk, skb, 0); 3849 __kfree_skb(skb); 3850 tcp_data_snd_check(sk, tp); 3851 return 0; 3852 } else { /* Header too small */ 3853 TCP_INC_STATS_BH(TCP_MIB_INERRS); 3854 goto discard; 3855 } 3856 } else { 3857 int eaten = 0; 3858 3859 if (tp->ucopy.task == current && 3860 tp->copied_seq == tp->rcv_nxt && 3861 len - tcp_header_len <= tp->ucopy.len && 3862 sock_owned_by_user(sk)) { 3863 __set_current_state(TASK_RUNNING); 3864 3865 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 3866 /* Predicted packet is in window by definition. 3867 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3868 * Hence, check seq<=rcv_wup reduces to: 3869 */ 3870 if (tcp_header_len == 3871 (sizeof(struct tcphdr) + 3872 TCPOLEN_TSTAMP_ALIGNED) && 3873 tp->rcv_nxt == tp->rcv_wup) 3874 tcp_store_ts_recent(tp); 3875 3876 tcp_rcv_rtt_measure_ts(sk, skb); 3877 3878 __skb_pull(skb, tcp_header_len); 3879 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3880 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); 3881 eaten = 1; 3882 } 3883 } 3884 if (!eaten) { 3885 if (tcp_checksum_complete_user(sk, skb)) 3886 goto csum_error; 3887 3888 /* Predicted packet is in window by definition. 3889 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3890 * Hence, check seq<=rcv_wup reduces to: 3891 */ 3892 if (tcp_header_len == 3893 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 3894 tp->rcv_nxt == tp->rcv_wup) 3895 tcp_store_ts_recent(tp); 3896 3897 tcp_rcv_rtt_measure_ts(sk, skb); 3898 3899 if ((int)skb->truesize > sk->sk_forward_alloc) 3900 goto step5; 3901 3902 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); 3903 3904 /* Bulk data transfer: receiver */ 3905 __skb_pull(skb,tcp_header_len); 3906 __skb_queue_tail(&sk->sk_receive_queue, skb); 3907 sk_stream_set_owner_r(skb, sk); 3908 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3909 } 3910 3911 tcp_event_data_recv(sk, tp, skb); 3912 3913 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 3914 /* Well, only one small jumplet in fast path... */ 3915 tcp_ack(sk, skb, FLAG_DATA); 3916 tcp_data_snd_check(sk, tp); 3917 if (!inet_csk_ack_scheduled(sk)) 3918 goto no_ack; 3919 } 3920 3921 __tcp_ack_snd_check(sk, 0); 3922 no_ack: 3923 if (eaten) 3924 __kfree_skb(skb); 3925 else 3926 sk->sk_data_ready(sk, 0); 3927 return 0; 3928 } 3929 } 3930 3931 slow_path: 3932 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb)) 3933 goto csum_error; 3934 3935 /* 3936 * RFC1323: H1. Apply PAWS check first. 3937 */ 3938 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 3939 tcp_paws_discard(sk, skb)) { 3940 if (!th->rst) { 3941 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 3942 tcp_send_dupack(sk, skb); 3943 goto discard; 3944 } 3945 /* Resets are accepted even if PAWS failed. 3946 3947 ts_recent update must be made after we are sure 3948 that the packet is in window. 3949 */ 3950 } 3951 3952 /* 3953 * Standard slow path. 3954 */ 3955 3956 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 3957 /* RFC793, page 37: "In all states except SYN-SENT, all reset 3958 * (RST) segments are validated by checking their SEQ-fields." 3959 * And page 69: "If an incoming segment is not acceptable, 3960 * an acknowledgment should be sent in reply (unless the RST bit 3961 * is set, if so drop the segment and return)". 3962 */ 3963 if (!th->rst) 3964 tcp_send_dupack(sk, skb); 3965 goto discard; 3966 } 3967 3968 if(th->rst) { 3969 tcp_reset(sk); 3970 goto discard; 3971 } 3972 3973 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3974 3975 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3976 TCP_INC_STATS_BH(TCP_MIB_INERRS); 3977 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 3978 tcp_reset(sk); 3979 return 1; 3980 } 3981 3982 step5: 3983 if(th->ack) 3984 tcp_ack(sk, skb, FLAG_SLOWPATH); 3985 3986 tcp_rcv_rtt_measure_ts(sk, skb); 3987 3988 /* Process urgent data. */ 3989 tcp_urg(sk, skb, th); 3990 3991 /* step 7: process the segment text */ 3992 tcp_data_queue(sk, skb); 3993 3994 tcp_data_snd_check(sk, tp); 3995 tcp_ack_snd_check(sk); 3996 return 0; 3997 3998 csum_error: 3999 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4000 4001 discard: 4002 __kfree_skb(skb); 4003 return 0; 4004 } 4005 4006 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 4007 struct tcphdr *th, unsigned len) 4008 { 4009 struct tcp_sock *tp = tcp_sk(sk); 4010 struct inet_connection_sock *icsk = inet_csk(sk); 4011 int saved_clamp = tp->rx_opt.mss_clamp; 4012 4013 tcp_parse_options(skb, &tp->rx_opt, 0); 4014 4015 if (th->ack) { 4016 /* rfc793: 4017 * "If the state is SYN-SENT then 4018 * first check the ACK bit 4019 * If the ACK bit is set 4020 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 4021 * a reset (unless the RST bit is set, if so drop 4022 * the segment and return)" 4023 * 4024 * We do not send data with SYN, so that RFC-correct 4025 * test reduces to: 4026 */ 4027 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 4028 goto reset_and_undo; 4029 4030 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4031 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 4032 tcp_time_stamp)) { 4033 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); 4034 goto reset_and_undo; 4035 } 4036 4037 /* Now ACK is acceptable. 4038 * 4039 * "If the RST bit is set 4040 * If the ACK was acceptable then signal the user "error: 4041 * connection reset", drop the segment, enter CLOSED state, 4042 * delete TCB, and return." 4043 */ 4044 4045 if (th->rst) { 4046 tcp_reset(sk); 4047 goto discard; 4048 } 4049 4050 /* rfc793: 4051 * "fifth, if neither of the SYN or RST bits is set then 4052 * drop the segment and return." 4053 * 4054 * See note below! 4055 * --ANK(990513) 4056 */ 4057 if (!th->syn) 4058 goto discard_and_undo; 4059 4060 /* rfc793: 4061 * "If the SYN bit is on ... 4062 * are acceptable then ... 4063 * (our SYN has been ACKed), change the connection 4064 * state to ESTABLISHED..." 4065 */ 4066 4067 TCP_ECN_rcv_synack(tp, th); 4068 if (tp->ecn_flags&TCP_ECN_OK) 4069 sock_set_flag(sk, SOCK_NO_LARGESEND); 4070 4071 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4072 tcp_ack(sk, skb, FLAG_SLOWPATH); 4073 4074 /* Ok.. it's good. Set up sequence numbers and 4075 * move to established. 4076 */ 4077 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4078 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4079 4080 /* RFC1323: The window in SYN & SYN/ACK segments is 4081 * never scaled. 4082 */ 4083 tp->snd_wnd = ntohs(th->window); 4084 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 4085 4086 if (!tp->rx_opt.wscale_ok) { 4087 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 4088 tp->window_clamp = min(tp->window_clamp, 65535U); 4089 } 4090 4091 if (tp->rx_opt.saw_tstamp) { 4092 tp->rx_opt.tstamp_ok = 1; 4093 tp->tcp_header_len = 4094 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4095 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4096 tcp_store_ts_recent(tp); 4097 } else { 4098 tp->tcp_header_len = sizeof(struct tcphdr); 4099 } 4100 4101 if (tp->rx_opt.sack_ok && sysctl_tcp_fack) 4102 tp->rx_opt.sack_ok |= 2; 4103 4104 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4105 tcp_initialize_rcv_mss(sk); 4106 4107 /* Remember, tcp_poll() does not lock socket! 4108 * Change state from SYN-SENT only after copied_seq 4109 * is initialized. */ 4110 tp->copied_seq = tp->rcv_nxt; 4111 mb(); 4112 tcp_set_state(sk, TCP_ESTABLISHED); 4113 4114 /* Make sure socket is routed, for correct metrics. */ 4115 icsk->icsk_af_ops->rebuild_header(sk); 4116 4117 tcp_init_metrics(sk); 4118 4119 tcp_init_congestion_control(sk); 4120 4121 /* Prevent spurious tcp_cwnd_restart() on first data 4122 * packet. 4123 */ 4124 tp->lsndtime = tcp_time_stamp; 4125 4126 tcp_init_buffer_space(sk); 4127 4128 if (sock_flag(sk, SOCK_KEEPOPEN)) 4129 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 4130 4131 if (!tp->rx_opt.snd_wscale) 4132 __tcp_fast_path_on(tp, tp->snd_wnd); 4133 else 4134 tp->pred_flags = 0; 4135 4136 if (!sock_flag(sk, SOCK_DEAD)) { 4137 sk->sk_state_change(sk); 4138 sk_wake_async(sk, 0, POLL_OUT); 4139 } 4140 4141 if (sk->sk_write_pending || 4142 icsk->icsk_accept_queue.rskq_defer_accept || 4143 icsk->icsk_ack.pingpong) { 4144 /* Save one ACK. Data will be ready after 4145 * several ticks, if write_pending is set. 4146 * 4147 * It may be deleted, but with this feature tcpdumps 4148 * look so _wonderfully_ clever, that I was not able 4149 * to stand against the temptation 8) --ANK 4150 */ 4151 inet_csk_schedule_ack(sk); 4152 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 4153 icsk->icsk_ack.ato = TCP_ATO_MIN; 4154 tcp_incr_quickack(sk); 4155 tcp_enter_quickack_mode(sk); 4156 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 4157 TCP_DELACK_MAX, TCP_RTO_MAX); 4158 4159 discard: 4160 __kfree_skb(skb); 4161 return 0; 4162 } else { 4163 tcp_send_ack(sk); 4164 } 4165 return -1; 4166 } 4167 4168 /* No ACK in the segment */ 4169 4170 if (th->rst) { 4171 /* rfc793: 4172 * "If the RST bit is set 4173 * 4174 * Otherwise (no ACK) drop the segment and return." 4175 */ 4176 4177 goto discard_and_undo; 4178 } 4179 4180 /* PAWS check. */ 4181 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0)) 4182 goto discard_and_undo; 4183 4184 if (th->syn) { 4185 /* We see SYN without ACK. It is attempt of 4186 * simultaneous connect with crossed SYNs. 4187 * Particularly, it can be connect to self. 4188 */ 4189 tcp_set_state(sk, TCP_SYN_RECV); 4190 4191 if (tp->rx_opt.saw_tstamp) { 4192 tp->rx_opt.tstamp_ok = 1; 4193 tcp_store_ts_recent(tp); 4194 tp->tcp_header_len = 4195 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4196 } else { 4197 tp->tcp_header_len = sizeof(struct tcphdr); 4198 } 4199 4200 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4201 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4202 4203 /* RFC1323: The window in SYN & SYN/ACK segments is 4204 * never scaled. 4205 */ 4206 tp->snd_wnd = ntohs(th->window); 4207 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4208 tp->max_window = tp->snd_wnd; 4209 4210 TCP_ECN_rcv_syn(tp, th); 4211 if (tp->ecn_flags&TCP_ECN_OK) 4212 sock_set_flag(sk, SOCK_NO_LARGESEND); 4213 4214 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4215 tcp_initialize_rcv_mss(sk); 4216 4217 4218 tcp_send_synack(sk); 4219 #if 0 4220 /* Note, we could accept data and URG from this segment. 4221 * There are no obstacles to make this. 4222 * 4223 * However, if we ignore data in ACKless segments sometimes, 4224 * we have no reasons to accept it sometimes. 4225 * Also, seems the code doing it in step6 of tcp_rcv_state_process 4226 * is not flawless. So, discard packet for sanity. 4227 * Uncomment this return to process the data. 4228 */ 4229 return -1; 4230 #else 4231 goto discard; 4232 #endif 4233 } 4234 /* "fifth, if neither of the SYN or RST bits is set then 4235 * drop the segment and return." 4236 */ 4237 4238 discard_and_undo: 4239 tcp_clear_options(&tp->rx_opt); 4240 tp->rx_opt.mss_clamp = saved_clamp; 4241 goto discard; 4242 4243 reset_and_undo: 4244 tcp_clear_options(&tp->rx_opt); 4245 tp->rx_opt.mss_clamp = saved_clamp; 4246 return 1; 4247 } 4248 4249 4250 /* 4251 * This function implements the receiving procedure of RFC 793 for 4252 * all states except ESTABLISHED and TIME_WAIT. 4253 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 4254 * address independent. 4255 */ 4256 4257 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 4258 struct tcphdr *th, unsigned len) 4259 { 4260 struct tcp_sock *tp = tcp_sk(sk); 4261 struct inet_connection_sock *icsk = inet_csk(sk); 4262 int queued = 0; 4263 4264 tp->rx_opt.saw_tstamp = 0; 4265 4266 switch (sk->sk_state) { 4267 case TCP_CLOSE: 4268 goto discard; 4269 4270 case TCP_LISTEN: 4271 if(th->ack) 4272 return 1; 4273 4274 if(th->rst) 4275 goto discard; 4276 4277 if(th->syn) { 4278 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 4279 return 1; 4280 4281 /* Now we have several options: In theory there is 4282 * nothing else in the frame. KA9Q has an option to 4283 * send data with the syn, BSD accepts data with the 4284 * syn up to the [to be] advertised window and 4285 * Solaris 2.1 gives you a protocol error. For now 4286 * we just ignore it, that fits the spec precisely 4287 * and avoids incompatibilities. It would be nice in 4288 * future to drop through and process the data. 4289 * 4290 * Now that TTCP is starting to be used we ought to 4291 * queue this data. 4292 * But, this leaves one open to an easy denial of 4293 * service attack, and SYN cookies can't defend 4294 * against this problem. So, we drop the data 4295 * in the interest of security over speed. 4296 */ 4297 goto discard; 4298 } 4299 goto discard; 4300 4301 case TCP_SYN_SENT: 4302 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 4303 if (queued >= 0) 4304 return queued; 4305 4306 /* Do step6 onward by hand. */ 4307 tcp_urg(sk, skb, th); 4308 __kfree_skb(skb); 4309 tcp_data_snd_check(sk, tp); 4310 return 0; 4311 } 4312 4313 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4314 tcp_paws_discard(sk, skb)) { 4315 if (!th->rst) { 4316 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4317 tcp_send_dupack(sk, skb); 4318 goto discard; 4319 } 4320 /* Reset is accepted even if it did not pass PAWS. */ 4321 } 4322 4323 /* step 1: check sequence number */ 4324 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4325 if (!th->rst) 4326 tcp_send_dupack(sk, skb); 4327 goto discard; 4328 } 4329 4330 /* step 2: check RST bit */ 4331 if(th->rst) { 4332 tcp_reset(sk); 4333 goto discard; 4334 } 4335 4336 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4337 4338 /* step 3: check security and precedence [ignored] */ 4339 4340 /* step 4: 4341 * 4342 * Check for a SYN in window. 4343 */ 4344 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4345 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4346 tcp_reset(sk); 4347 return 1; 4348 } 4349 4350 /* step 5: check the ACK field */ 4351 if (th->ack) { 4352 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 4353 4354 switch(sk->sk_state) { 4355 case TCP_SYN_RECV: 4356 if (acceptable) { 4357 tp->copied_seq = tp->rcv_nxt; 4358 mb(); 4359 tcp_set_state(sk, TCP_ESTABLISHED); 4360 sk->sk_state_change(sk); 4361 4362 /* Note, that this wakeup is only for marginal 4363 * crossed SYN case. Passively open sockets 4364 * are not waked up, because sk->sk_sleep == 4365 * NULL and sk->sk_socket == NULL. 4366 */ 4367 if (sk->sk_socket) { 4368 sk_wake_async(sk,0,POLL_OUT); 4369 } 4370 4371 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 4372 tp->snd_wnd = ntohs(th->window) << 4373 tp->rx_opt.snd_wscale; 4374 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 4375 TCP_SKB_CB(skb)->seq); 4376 4377 /* tcp_ack considers this ACK as duplicate 4378 * and does not calculate rtt. 4379 * Fix it at least with timestamps. 4380 */ 4381 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4382 !tp->srtt) 4383 tcp_ack_saw_tstamp(sk, 0); 4384 4385 if (tp->rx_opt.tstamp_ok) 4386 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4387 4388 /* Make sure socket is routed, for 4389 * correct metrics. 4390 */ 4391 icsk->icsk_af_ops->rebuild_header(sk); 4392 4393 tcp_init_metrics(sk); 4394 4395 tcp_init_congestion_control(sk); 4396 4397 /* Prevent spurious tcp_cwnd_restart() on 4398 * first data packet. 4399 */ 4400 tp->lsndtime = tcp_time_stamp; 4401 4402 tcp_initialize_rcv_mss(sk); 4403 tcp_init_buffer_space(sk); 4404 tcp_fast_path_on(tp); 4405 } else { 4406 return 1; 4407 } 4408 break; 4409 4410 case TCP_FIN_WAIT1: 4411 if (tp->snd_una == tp->write_seq) { 4412 tcp_set_state(sk, TCP_FIN_WAIT2); 4413 sk->sk_shutdown |= SEND_SHUTDOWN; 4414 dst_confirm(sk->sk_dst_cache); 4415 4416 if (!sock_flag(sk, SOCK_DEAD)) 4417 /* Wake up lingering close() */ 4418 sk->sk_state_change(sk); 4419 else { 4420 int tmo; 4421 4422 if (tp->linger2 < 0 || 4423 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4424 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 4425 tcp_done(sk); 4426 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4427 return 1; 4428 } 4429 4430 tmo = tcp_fin_time(sk); 4431 if (tmo > TCP_TIMEWAIT_LEN) { 4432 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 4433 } else if (th->fin || sock_owned_by_user(sk)) { 4434 /* Bad case. We could lose such FIN otherwise. 4435 * It is not a big problem, but it looks confusing 4436 * and not so rare event. We still can lose it now, 4437 * if it spins in bh_lock_sock(), but it is really 4438 * marginal case. 4439 */ 4440 inet_csk_reset_keepalive_timer(sk, tmo); 4441 } else { 4442 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 4443 goto discard; 4444 } 4445 } 4446 } 4447 break; 4448 4449 case TCP_CLOSING: 4450 if (tp->snd_una == tp->write_seq) { 4451 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4452 goto discard; 4453 } 4454 break; 4455 4456 case TCP_LAST_ACK: 4457 if (tp->snd_una == tp->write_seq) { 4458 tcp_update_metrics(sk); 4459 tcp_done(sk); 4460 goto discard; 4461 } 4462 break; 4463 } 4464 } else 4465 goto discard; 4466 4467 /* step 6: check the URG bit */ 4468 tcp_urg(sk, skb, th); 4469 4470 /* step 7: process the segment text */ 4471 switch (sk->sk_state) { 4472 case TCP_CLOSE_WAIT: 4473 case TCP_CLOSING: 4474 case TCP_LAST_ACK: 4475 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4476 break; 4477 case TCP_FIN_WAIT1: 4478 case TCP_FIN_WAIT2: 4479 /* RFC 793 says to queue data in these states, 4480 * RFC 1122 says we MUST send a reset. 4481 * BSD 4.4 also does reset. 4482 */ 4483 if (sk->sk_shutdown & RCV_SHUTDOWN) { 4484 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4485 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 4486 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4487 tcp_reset(sk); 4488 return 1; 4489 } 4490 } 4491 /* Fall through */ 4492 case TCP_ESTABLISHED: 4493 tcp_data_queue(sk, skb); 4494 queued = 1; 4495 break; 4496 } 4497 4498 /* tcp_data could move socket to TIME-WAIT */ 4499 if (sk->sk_state != TCP_CLOSE) { 4500 tcp_data_snd_check(sk, tp); 4501 tcp_ack_snd_check(sk); 4502 } 4503 4504 if (!queued) { 4505 discard: 4506 __kfree_skb(skb); 4507 } 4508 return 0; 4509 } 4510 4511 EXPORT_SYMBOL(sysctl_tcp_ecn); 4512 EXPORT_SYMBOL(sysctl_tcp_reordering); 4513 EXPORT_SYMBOL(sysctl_tcp_abc); 4514 EXPORT_SYMBOL(tcp_parse_options); 4515 EXPORT_SYMBOL(tcp_rcv_established); 4516 EXPORT_SYMBOL(tcp_rcv_state_process); 4517 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 4518