xref: /linux/net/ipv4/tcp_input.c (revision d7ee147d4f84219a44670eb0db3a91e58d14a81c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91 
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94 
95 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
102 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
109 
110 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 
116 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
117 
118 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
119 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120 
121 /* Adapt the MSS value used to make delayed ack decision to the
122  * real world.
123  */
124 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
125 {
126 	struct inet_connection_sock *icsk = inet_csk(sk);
127 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 	unsigned int len;
129 
130 	icsk->icsk_ack.last_seg_size = 0;
131 
132 	/* skb->len may jitter because of SACKs, even if peer
133 	 * sends good full-sized frames.
134 	 */
135 	len = skb_shinfo(skb)->gso_size ? : skb->len;
136 	if (len >= icsk->icsk_ack.rcv_mss) {
137 		icsk->icsk_ack.rcv_mss = len;
138 	} else {
139 		/* Otherwise, we make more careful check taking into account,
140 		 * that SACKs block is variable.
141 		 *
142 		 * "len" is invariant segment length, including TCP header.
143 		 */
144 		len += skb->data - skb_transport_header(skb);
145 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 		    /* If PSH is not set, packet should be
147 		     * full sized, provided peer TCP is not badly broken.
148 		     * This observation (if it is correct 8)) allows
149 		     * to handle super-low mtu links fairly.
150 		     */
151 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 			/* Subtract also invariant (if peer is RFC compliant),
154 			 * tcp header plus fixed timestamp option length.
155 			 * Resulting "len" is MSS free of SACK jitter.
156 			 */
157 			len -= tcp_sk(sk)->tcp_header_len;
158 			icsk->icsk_ack.last_seg_size = len;
159 			if (len == lss) {
160 				icsk->icsk_ack.rcv_mss = len;
161 				return;
162 			}
163 		}
164 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 	}
168 }
169 
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172 	struct inet_connection_sock *icsk = inet_csk(sk);
173 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174 
175 	if (quickacks == 0)
176 		quickacks = 2;
177 	if (quickacks > icsk->icsk_ack.quick)
178 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180 
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183 	struct inet_connection_sock *icsk = inet_csk(sk);
184 	tcp_incr_quickack(sk);
185 	icsk->icsk_ack.pingpong = 0;
186 	icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188 
189 /* Send ACKs quickly, if "quick" count is not exhausted
190  * and the session is not interactive.
191  */
192 
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195 	const struct inet_connection_sock *icsk = inet_csk(sk);
196 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198 
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201 	if (tp->ecn_flags & TCP_ECN_OK)
202 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204 
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207 	if (tcp_hdr(skb)->cwr)
208 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210 
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215 
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218 	if (tp->ecn_flags & TCP_ECN_OK) {
219 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 		/* Funny extension: if ECT is not set on a segment,
222 		 * it is surely retransmit. It is not in ECN RFC,
223 		 * but Linux follows this rule. */
224 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 			tcp_enter_quickack_mode((struct sock *)tp);
226 	}
227 }
228 
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
232 		tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234 
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
238 		tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240 
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
244 		return 1;
245 	return 0;
246 }
247 
248 /* Buffer size and advertised window tuning.
249  *
250  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251  */
252 
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 		     sizeof(struct sk_buff);
257 
258 	if (sk->sk_sndbuf < 3 * sndmem)
259 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261 
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263  *
264  * All tcp_full_space() is split to two parts: "network" buffer, allocated
265  * forward and advertised in receiver window (tp->rcv_wnd) and
266  * "application buffer", required to isolate scheduling/application
267  * latencies from network.
268  * window_clamp is maximal advertised window. It can be less than
269  * tcp_full_space(), in this case tcp_full_space() - window_clamp
270  * is reserved for "application" buffer. The less window_clamp is
271  * the smoother our behaviour from viewpoint of network, but the lower
272  * throughput and the higher sensitivity of the connection to losses. 8)
273  *
274  * rcv_ssthresh is more strict window_clamp used at "slow start"
275  * phase to predict further behaviour of this connection.
276  * It is used for two goals:
277  * - to enforce header prediction at sender, even when application
278  *   requires some significant "application buffer". It is check #1.
279  * - to prevent pruning of receive queue because of misprediction
280  *   of receiver window. Check #2.
281  *
282  * The scheme does not work when sender sends good segments opening
283  * window and then starts to feed us spaghetti. But it should work
284  * in common situations. Otherwise, we have to rely on queue collapsing.
285  */
286 
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290 	struct tcp_sock *tp = tcp_sk(sk);
291 	/* Optimize this! */
292 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
293 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
294 
295 	while (tp->rcv_ssthresh <= window) {
296 		if (truesize <= skb->len)
297 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298 
299 		truesize >>= 1;
300 		window >>= 1;
301 	}
302 	return 0;
303 }
304 
305 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
306 {
307 	struct tcp_sock *tp = tcp_sk(sk);
308 
309 	/* Check #1 */
310 	if (tp->rcv_ssthresh < tp->window_clamp &&
311 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
312 	    !tcp_memory_pressure) {
313 		int incr;
314 
315 		/* Check #2. Increase window, if skb with such overhead
316 		 * will fit to rcvbuf in future.
317 		 */
318 		if (tcp_win_from_space(skb->truesize) <= skb->len)
319 			incr = 2 * tp->advmss;
320 		else
321 			incr = __tcp_grow_window(sk, skb);
322 
323 		if (incr) {
324 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
325 					       tp->window_clamp);
326 			inet_csk(sk)->icsk_ack.quick |= 1;
327 		}
328 	}
329 }
330 
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332 
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335 	struct tcp_sock *tp = tcp_sk(sk);
336 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337 
338 	/* Try to select rcvbuf so that 4 mss-sized segments
339 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 	 */
342 	while (tcp_win_from_space(rcvmem) < tp->advmss)
343 		rcvmem += 128;
344 	if (sk->sk_rcvbuf < 4 * rcvmem)
345 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347 
348 /* 4. Try to fixup all. It is made immediately after connection enters
349  *    established state.
350  */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353 	struct tcp_sock *tp = tcp_sk(sk);
354 	int maxwin;
355 
356 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 		tcp_fixup_rcvbuf(sk);
358 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 		tcp_fixup_sndbuf(sk);
360 
361 	tp->rcvq_space.space = tp->rcv_wnd;
362 
363 	maxwin = tcp_full_space(sk);
364 
365 	if (tp->window_clamp >= maxwin) {
366 		tp->window_clamp = maxwin;
367 
368 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 			tp->window_clamp = max(maxwin -
370 					       (maxwin >> sysctl_tcp_app_win),
371 					       4 * tp->advmss);
372 	}
373 
374 	/* Force reservation of one segment. */
375 	if (sysctl_tcp_app_win &&
376 	    tp->window_clamp > 2 * tp->advmss &&
377 	    tp->window_clamp + tp->advmss > maxwin)
378 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379 
380 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 	tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383 
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387 	struct tcp_sock *tp = tcp_sk(sk);
388 	struct inet_connection_sock *icsk = inet_csk(sk);
389 
390 	icsk->icsk_ack.quick = 0;
391 
392 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 	    !tcp_memory_pressure &&
395 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 				    sysctl_tcp_rmem[2]);
398 	}
399 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
401 }
402 
403 /* Initialize RCV_MSS value.
404  * RCV_MSS is an our guess about MSS used by the peer.
405  * We haven't any direct information about the MSS.
406  * It's better to underestimate the RCV_MSS rather than overestimate.
407  * Overestimations make us ACKing less frequently than needed.
408  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
409  */
410 void tcp_initialize_rcv_mss(struct sock *sk)
411 {
412 	struct tcp_sock *tp = tcp_sk(sk);
413 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
414 
415 	hint = min(hint, tp->rcv_wnd / 2);
416 	hint = min(hint, TCP_MIN_RCVMSS);
417 	hint = max(hint, TCP_MIN_MSS);
418 
419 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
420 }
421 
422 /* Receiver "autotuning" code.
423  *
424  * The algorithm for RTT estimation w/o timestamps is based on
425  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
426  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
427  *
428  * More detail on this code can be found at
429  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
430  * though this reference is out of date.  A new paper
431  * is pending.
432  */
433 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
434 {
435 	u32 new_sample = tp->rcv_rtt_est.rtt;
436 	long m = sample;
437 
438 	if (m == 0)
439 		m = 1;
440 
441 	if (new_sample != 0) {
442 		/* If we sample in larger samples in the non-timestamp
443 		 * case, we could grossly overestimate the RTT especially
444 		 * with chatty applications or bulk transfer apps which
445 		 * are stalled on filesystem I/O.
446 		 *
447 		 * Also, since we are only going for a minimum in the
448 		 * non-timestamp case, we do not smooth things out
449 		 * else with timestamps disabled convergence takes too
450 		 * long.
451 		 */
452 		if (!win_dep) {
453 			m -= (new_sample >> 3);
454 			new_sample += m;
455 		} else if (m < new_sample)
456 			new_sample = m << 3;
457 	} else {
458 		/* No previous measure. */
459 		new_sample = m << 3;
460 	}
461 
462 	if (tp->rcv_rtt_est.rtt != new_sample)
463 		tp->rcv_rtt_est.rtt = new_sample;
464 }
465 
466 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
467 {
468 	if (tp->rcv_rtt_est.time == 0)
469 		goto new_measure;
470 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
471 		return;
472 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
473 
474 new_measure:
475 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
476 	tp->rcv_rtt_est.time = tcp_time_stamp;
477 }
478 
479 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
480 					  const struct sk_buff *skb)
481 {
482 	struct tcp_sock *tp = tcp_sk(sk);
483 	if (tp->rx_opt.rcv_tsecr &&
484 	    (TCP_SKB_CB(skb)->end_seq -
485 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
486 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487 }
488 
489 /*
490  * This function should be called every time data is copied to user space.
491  * It calculates the appropriate TCP receive buffer space.
492  */
493 void tcp_rcv_space_adjust(struct sock *sk)
494 {
495 	struct tcp_sock *tp = tcp_sk(sk);
496 	int time;
497 	int space;
498 
499 	if (tp->rcvq_space.time == 0)
500 		goto new_measure;
501 
502 	time = tcp_time_stamp - tp->rcvq_space.time;
503 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
504 		return;
505 
506 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
507 
508 	space = max(tp->rcvq_space.space, space);
509 
510 	if (tp->rcvq_space.space != space) {
511 		int rcvmem;
512 
513 		tp->rcvq_space.space = space;
514 
515 		if (sysctl_tcp_moderate_rcvbuf &&
516 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
517 			int new_clamp = space;
518 
519 			/* Receive space grows, normalize in order to
520 			 * take into account packet headers and sk_buff
521 			 * structure overhead.
522 			 */
523 			space /= tp->advmss;
524 			if (!space)
525 				space = 1;
526 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
527 				  16 + sizeof(struct sk_buff));
528 			while (tcp_win_from_space(rcvmem) < tp->advmss)
529 				rcvmem += 128;
530 			space *= rcvmem;
531 			space = min(space, sysctl_tcp_rmem[2]);
532 			if (space > sk->sk_rcvbuf) {
533 				sk->sk_rcvbuf = space;
534 
535 				/* Make the window clamp follow along.  */
536 				tp->window_clamp = new_clamp;
537 			}
538 		}
539 	}
540 
541 new_measure:
542 	tp->rcvq_space.seq = tp->copied_seq;
543 	tp->rcvq_space.time = tcp_time_stamp;
544 }
545 
546 /* There is something which you must keep in mind when you analyze the
547  * behavior of the tp->ato delayed ack timeout interval.  When a
548  * connection starts up, we want to ack as quickly as possible.  The
549  * problem is that "good" TCP's do slow start at the beginning of data
550  * transmission.  The means that until we send the first few ACK's the
551  * sender will sit on his end and only queue most of his data, because
552  * he can only send snd_cwnd unacked packets at any given time.  For
553  * each ACK we send, he increments snd_cwnd and transmits more of his
554  * queue.  -DaveM
555  */
556 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
557 {
558 	struct tcp_sock *tp = tcp_sk(sk);
559 	struct inet_connection_sock *icsk = inet_csk(sk);
560 	u32 now;
561 
562 	inet_csk_schedule_ack(sk);
563 
564 	tcp_measure_rcv_mss(sk, skb);
565 
566 	tcp_rcv_rtt_measure(tp);
567 
568 	now = tcp_time_stamp;
569 
570 	if (!icsk->icsk_ack.ato) {
571 		/* The _first_ data packet received, initialize
572 		 * delayed ACK engine.
573 		 */
574 		tcp_incr_quickack(sk);
575 		icsk->icsk_ack.ato = TCP_ATO_MIN;
576 	} else {
577 		int m = now - icsk->icsk_ack.lrcvtime;
578 
579 		if (m <= TCP_ATO_MIN / 2) {
580 			/* The fastest case is the first. */
581 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
582 		} else if (m < icsk->icsk_ack.ato) {
583 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
584 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
585 				icsk->icsk_ack.ato = icsk->icsk_rto;
586 		} else if (m > icsk->icsk_rto) {
587 			/* Too long gap. Apparently sender failed to
588 			 * restart window, so that we send ACKs quickly.
589 			 */
590 			tcp_incr_quickack(sk);
591 			sk_mem_reclaim(sk);
592 		}
593 	}
594 	icsk->icsk_ack.lrcvtime = now;
595 
596 	TCP_ECN_check_ce(tp, skb);
597 
598 	if (skb->len >= 128)
599 		tcp_grow_window(sk, skb);
600 }
601 
602 static u32 tcp_rto_min(struct sock *sk)
603 {
604 	struct dst_entry *dst = __sk_dst_get(sk);
605 	u32 rto_min = TCP_RTO_MIN;
606 
607 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
608 		rto_min = dst->metrics[RTAX_RTO_MIN - 1];
609 	return rto_min;
610 }
611 
612 /* Called to compute a smoothed rtt estimate. The data fed to this
613  * routine either comes from timestamps, or from segments that were
614  * known _not_ to have been retransmitted [see Karn/Partridge
615  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
616  * piece by Van Jacobson.
617  * NOTE: the next three routines used to be one big routine.
618  * To save cycles in the RFC 1323 implementation it was better to break
619  * it up into three procedures. -- erics
620  */
621 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
622 {
623 	struct tcp_sock *tp = tcp_sk(sk);
624 	long m = mrtt; /* RTT */
625 
626 	/*	The following amusing code comes from Jacobson's
627 	 *	article in SIGCOMM '88.  Note that rtt and mdev
628 	 *	are scaled versions of rtt and mean deviation.
629 	 *	This is designed to be as fast as possible
630 	 *	m stands for "measurement".
631 	 *
632 	 *	On a 1990 paper the rto value is changed to:
633 	 *	RTO = rtt + 4 * mdev
634 	 *
635 	 * Funny. This algorithm seems to be very broken.
636 	 * These formulae increase RTO, when it should be decreased, increase
637 	 * too slowly, when it should be increased quickly, decrease too quickly
638 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
639 	 * does not matter how to _calculate_ it. Seems, it was trap
640 	 * that VJ failed to avoid. 8)
641 	 */
642 	if (m == 0)
643 		m = 1;
644 	if (tp->srtt != 0) {
645 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
646 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
647 		if (m < 0) {
648 			m = -m;		/* m is now abs(error) */
649 			m -= (tp->mdev >> 2);   /* similar update on mdev */
650 			/* This is similar to one of Eifel findings.
651 			 * Eifel blocks mdev updates when rtt decreases.
652 			 * This solution is a bit different: we use finer gain
653 			 * for mdev in this case (alpha*beta).
654 			 * Like Eifel it also prevents growth of rto,
655 			 * but also it limits too fast rto decreases,
656 			 * happening in pure Eifel.
657 			 */
658 			if (m > 0)
659 				m >>= 3;
660 		} else {
661 			m -= (tp->mdev >> 2);   /* similar update on mdev */
662 		}
663 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
664 		if (tp->mdev > tp->mdev_max) {
665 			tp->mdev_max = tp->mdev;
666 			if (tp->mdev_max > tp->rttvar)
667 				tp->rttvar = tp->mdev_max;
668 		}
669 		if (after(tp->snd_una, tp->rtt_seq)) {
670 			if (tp->mdev_max < tp->rttvar)
671 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
672 			tp->rtt_seq = tp->snd_nxt;
673 			tp->mdev_max = tcp_rto_min(sk);
674 		}
675 	} else {
676 		/* no previous measure. */
677 		tp->srtt = m << 3;	/* take the measured time to be rtt */
678 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
679 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
680 		tp->rtt_seq = tp->snd_nxt;
681 	}
682 }
683 
684 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
685  * routine referred to above.
686  */
687 static inline void tcp_set_rto(struct sock *sk)
688 {
689 	const struct tcp_sock *tp = tcp_sk(sk);
690 	/* Old crap is replaced with new one. 8)
691 	 *
692 	 * More seriously:
693 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
694 	 *    It cannot be less due to utterly erratic ACK generation made
695 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
696 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
697 	 *    is invisible. Actually, Linux-2.4 also generates erratic
698 	 *    ACKs in some circumstances.
699 	 */
700 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
701 
702 	/* 2. Fixups made earlier cannot be right.
703 	 *    If we do not estimate RTO correctly without them,
704 	 *    all the algo is pure shit and should be replaced
705 	 *    with correct one. It is exactly, which we pretend to do.
706 	 */
707 }
708 
709 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
710  * guarantees that rto is higher.
711  */
712 static inline void tcp_bound_rto(struct sock *sk)
713 {
714 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
715 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
716 }
717 
718 /* Save metrics learned by this TCP session.
719    This function is called only, when TCP finishes successfully
720    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
721  */
722 void tcp_update_metrics(struct sock *sk)
723 {
724 	struct tcp_sock *tp = tcp_sk(sk);
725 	struct dst_entry *dst = __sk_dst_get(sk);
726 
727 	if (sysctl_tcp_nometrics_save)
728 		return;
729 
730 	dst_confirm(dst);
731 
732 	if (dst && (dst->flags & DST_HOST)) {
733 		const struct inet_connection_sock *icsk = inet_csk(sk);
734 		int m;
735 
736 		if (icsk->icsk_backoff || !tp->srtt) {
737 			/* This session failed to estimate rtt. Why?
738 			 * Probably, no packets returned in time.
739 			 * Reset our results.
740 			 */
741 			if (!(dst_metric_locked(dst, RTAX_RTT)))
742 				dst->metrics[RTAX_RTT - 1] = 0;
743 			return;
744 		}
745 
746 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
747 
748 		/* If newly calculated rtt larger than stored one,
749 		 * store new one. Otherwise, use EWMA. Remember,
750 		 * rtt overestimation is always better than underestimation.
751 		 */
752 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
753 			if (m <= 0)
754 				dst->metrics[RTAX_RTT - 1] = tp->srtt;
755 			else
756 				dst->metrics[RTAX_RTT - 1] -= (m >> 3);
757 		}
758 
759 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
760 			if (m < 0)
761 				m = -m;
762 
763 			/* Scale deviation to rttvar fixed point */
764 			m >>= 1;
765 			if (m < tp->mdev)
766 				m = tp->mdev;
767 
768 			if (m >= dst_metric(dst, RTAX_RTTVAR))
769 				dst->metrics[RTAX_RTTVAR - 1] = m;
770 			else
771 				dst->metrics[RTAX_RTTVAR-1] -=
772 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
773 		}
774 
775 		if (tp->snd_ssthresh >= 0xFFFF) {
776 			/* Slow start still did not finish. */
777 			if (dst_metric(dst, RTAX_SSTHRESH) &&
778 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
779 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
780 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
781 			if (!dst_metric_locked(dst, RTAX_CWND) &&
782 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
783 				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
784 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
785 			   icsk->icsk_ca_state == TCP_CA_Open) {
786 			/* Cong. avoidance phase, cwnd is reliable. */
787 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
788 				dst->metrics[RTAX_SSTHRESH-1] =
789 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
790 			if (!dst_metric_locked(dst, RTAX_CWND))
791 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
792 		} else {
793 			/* Else slow start did not finish, cwnd is non-sense,
794 			   ssthresh may be also invalid.
795 			 */
796 			if (!dst_metric_locked(dst, RTAX_CWND))
797 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
798 			if (dst->metrics[RTAX_SSTHRESH-1] &&
799 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
800 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
801 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
802 		}
803 
804 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
805 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
806 			    tp->reordering != sysctl_tcp_reordering)
807 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
808 		}
809 	}
810 }
811 
812 /* Numbers are taken from RFC3390.
813  *
814  * John Heffner states:
815  *
816  *	The RFC specifies a window of no more than 4380 bytes
817  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
818  *	is a bit misleading because they use a clamp at 4380 bytes
819  *	rather than use a multiplier in the relevant range.
820  */
821 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
822 {
823 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
824 
825 	if (!cwnd) {
826 		if (tp->mss_cache > 1460)
827 			cwnd = 2;
828 		else
829 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
830 	}
831 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
832 }
833 
834 /* Set slow start threshold and cwnd not falling to slow start */
835 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
836 {
837 	struct tcp_sock *tp = tcp_sk(sk);
838 	const struct inet_connection_sock *icsk = inet_csk(sk);
839 
840 	tp->prior_ssthresh = 0;
841 	tp->bytes_acked = 0;
842 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
843 		tp->undo_marker = 0;
844 		if (set_ssthresh)
845 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
846 		tp->snd_cwnd = min(tp->snd_cwnd,
847 				   tcp_packets_in_flight(tp) + 1U);
848 		tp->snd_cwnd_cnt = 0;
849 		tp->high_seq = tp->snd_nxt;
850 		tp->snd_cwnd_stamp = tcp_time_stamp;
851 		TCP_ECN_queue_cwr(tp);
852 
853 		tcp_set_ca_state(sk, TCP_CA_CWR);
854 	}
855 }
856 
857 /*
858  * Packet counting of FACK is based on in-order assumptions, therefore TCP
859  * disables it when reordering is detected
860  */
861 static void tcp_disable_fack(struct tcp_sock *tp)
862 {
863 	/* RFC3517 uses different metric in lost marker => reset on change */
864 	if (tcp_is_fack(tp))
865 		tp->lost_skb_hint = NULL;
866 	tp->rx_opt.sack_ok &= ~2;
867 }
868 
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872 	tp->rx_opt.sack_ok |= 4;
873 }
874 
875 /* Initialize metrics on socket. */
876 
877 static void tcp_init_metrics(struct sock *sk)
878 {
879 	struct tcp_sock *tp = tcp_sk(sk);
880 	struct dst_entry *dst = __sk_dst_get(sk);
881 
882 	if (dst == NULL)
883 		goto reset;
884 
885 	dst_confirm(dst);
886 
887 	if (dst_metric_locked(dst, RTAX_CWND))
888 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 	if (dst_metric(dst, RTAX_SSTHRESH)) {
890 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 	}
894 	if (dst_metric(dst, RTAX_REORDERING) &&
895 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 		tcp_disable_fack(tp);
897 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 	}
899 
900 	if (dst_metric(dst, RTAX_RTT) == 0)
901 		goto reset;
902 
903 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 		goto reset;
905 
906 	/* Initial rtt is determined from SYN,SYN-ACK.
907 	 * The segment is small and rtt may appear much
908 	 * less than real one. Use per-dst memory
909 	 * to make it more realistic.
910 	 *
911 	 * A bit of theory. RTT is time passed after "normal" sized packet
912 	 * is sent until it is ACKed. In normal circumstances sending small
913 	 * packets force peer to delay ACKs and calculation is correct too.
914 	 * The algorithm is adaptive and, provided we follow specs, it
915 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 	 * tricks sort of "quick acks" for time long enough to decrease RTT
917 	 * to low value, and then abruptly stops to do it and starts to delay
918 	 * ACKs, wait for troubles.
919 	 */
920 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 		tp->srtt = dst_metric(dst, RTAX_RTT);
922 		tp->rtt_seq = tp->snd_nxt;
923 	}
924 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
927 	}
928 	tcp_set_rto(sk);
929 	tcp_bound_rto(sk);
930 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931 		goto reset;
932 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 	tp->snd_cwnd_stamp = tcp_time_stamp;
934 	return;
935 
936 reset:
937 	/* Play conservative. If timestamps are not
938 	 * supported, TCP will fail to recalculate correct
939 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 	 */
941 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 		tp->srtt = 0;
943 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945 	}
946 }
947 
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949 				  const int ts)
950 {
951 	struct tcp_sock *tp = tcp_sk(sk);
952 	if (metric > tp->reordering) {
953 		tp->reordering = min(TCP_MAX_REORDERING, metric);
954 
955 		/* This exciting event is worth to be remembered. 8) */
956 		if (ts)
957 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958 		else if (tcp_is_reno(tp))
959 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960 		else if (tcp_is_fack(tp))
961 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 		else
963 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967 		       tp->reordering,
968 		       tp->fackets_out,
969 		       tp->sacked_out,
970 		       tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972 		tcp_disable_fack(tp);
973 	}
974 }
975 
976 /* This procedure tags the retransmission queue when SACKs arrive.
977  *
978  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979  * Packets in queue with these bits set are counted in variables
980  * sacked_out, retrans_out and lost_out, correspondingly.
981  *
982  * Valid combinations are:
983  * Tag  InFlight	Description
984  * 0	1		- orig segment is in flight.
985  * S	0		- nothing flies, orig reached receiver.
986  * L	0		- nothing flies, orig lost by net.
987  * R	2		- both orig and retransmit are in flight.
988  * L|R	1		- orig is lost, retransmit is in flight.
989  * S|R  1		- orig reached receiver, retrans is still in flight.
990  * (L|S|R is logically valid, it could occur when L|R is sacked,
991  *  but it is equivalent to plain S and code short-curcuits it to S.
992  *  L|S is logically invalid, it would mean -1 packet in flight 8))
993  *
994  * These 6 states form finite state machine, controlled by the following events:
995  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997  * 3. Loss detection event of one of three flavors:
998  *	A. Scoreboard estimator decided the packet is lost.
999  *	   A'. Reno "three dupacks" marks head of queue lost.
1000  *	   A''. Its FACK modfication, head until snd.fack is lost.
1001  *	B. SACK arrives sacking data transmitted after never retransmitted
1002  *	   hole was sent out.
1003  *	C. SACK arrives sacking SND.NXT at the moment, when the
1004  *	   segment was retransmitted.
1005  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006  *
1007  * It is pleasant to note, that state diagram turns out to be commutative,
1008  * so that we are allowed not to be bothered by order of our actions,
1009  * when multiple events arrive simultaneously. (see the function below).
1010  *
1011  * Reordering detection.
1012  * --------------------
1013  * Reordering metric is maximal distance, which a packet can be displaced
1014  * in packet stream. With SACKs we can estimate it:
1015  *
1016  * 1. SACK fills old hole and the corresponding segment was not
1017  *    ever retransmitted -> reordering. Alas, we cannot use it
1018  *    when segment was retransmitted.
1019  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020  *    for retransmitted and already SACKed segment -> reordering..
1021  * Both of these heuristics are not used in Loss state, when we cannot
1022  * account for retransmits accurately.
1023  *
1024  * SACK block validation.
1025  * ----------------------
1026  *
1027  * SACK block range validation checks that the received SACK block fits to
1028  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029  * Note that SND.UNA is not included to the range though being valid because
1030  * it means that the receiver is rather inconsistent with itself reporting
1031  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032  * perfectly valid, however, in light of RFC2018 which explicitly states
1033  * that "SACK block MUST reflect the newest segment.  Even if the newest
1034  * segment is going to be discarded ...", not that it looks very clever
1035  * in case of head skb. Due to potentional receiver driven attacks, we
1036  * choose to avoid immediate execution of a walk in write queue due to
1037  * reneging and defer head skb's loss recovery to standard loss recovery
1038  * procedure that will eventually trigger (nothing forbids us doing this).
1039  *
1040  * Implements also blockage to start_seq wrap-around. Problem lies in the
1041  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042  * there's no guarantee that it will be before snd_nxt (n). The problem
1043  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044  * wrap (s_w):
1045  *
1046  *         <- outs wnd ->                          <- wrapzone ->
1047  *         u     e      n                         u_w   e_w  s n_w
1048  *         |     |      |                          |     |   |  |
1049  * |<------------+------+----- TCP seqno space --------------+---------->|
1050  * ...-- <2^31 ->|                                           |<--------...
1051  * ...---- >2^31 ------>|                                    |<--------...
1052  *
1053  * Current code wouldn't be vulnerable but it's better still to discard such
1054  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057  * equal to the ideal case (infinite seqno space without wrap caused issues).
1058  *
1059  * With D-SACK the lower bound is extended to cover sequence space below
1060  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061  * again, D-SACK block must not to go across snd_una (for the same reason as
1062  * for the normal SACK blocks, explained above). But there all simplicity
1063  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064  * fully below undo_marker they do not affect behavior in anyway and can
1065  * therefore be safely ignored. In rare cases (which are more or less
1066  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067  * fragmentation and packet reordering past skb's retransmission. To consider
1068  * them correctly, the acceptable range must be extended even more though
1069  * the exact amount is rather hard to quantify. However, tp->max_window can
1070  * be used as an exaggerated estimate.
1071  */
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 				  u32 start_seq, u32 end_seq)
1074 {
1075 	/* Too far in future, or reversed (interpretation is ambiguous) */
1076 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 		return 0;
1078 
1079 	/* Nasty start_seq wrap-around check (see comments above) */
1080 	if (!before(start_seq, tp->snd_nxt))
1081 		return 0;
1082 
1083 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1084 	 * start_seq == snd_una is non-sensical (see comments above)
1085 	 */
1086 	if (after(start_seq, tp->snd_una))
1087 		return 1;
1088 
1089 	if (!is_dsack || !tp->undo_marker)
1090 		return 0;
1091 
1092 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1093 	if (!after(end_seq, tp->snd_una))
1094 		return 0;
1095 
1096 	if (!before(start_seq, tp->undo_marker))
1097 		return 1;
1098 
1099 	/* Too old */
1100 	if (!after(end_seq, tp->undo_marker))
1101 		return 0;
1102 
1103 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1105 	 */
1106 	return !before(start_seq, end_seq - tp->max_window);
1107 }
1108 
1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110  * Event "C". Later note: FACK people cheated me again 8), we have to account
1111  * for reordering! Ugly, but should help.
1112  *
1113  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114  * less than what is now known to be received by the other end (derived from
1115  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1116  * retransmitted skbs to avoid some costly processing per ACKs.
1117  */
1118 static void tcp_mark_lost_retrans(struct sock *sk)
1119 {
1120 	const struct inet_connection_sock *icsk = inet_csk(sk);
1121 	struct tcp_sock *tp = tcp_sk(sk);
1122 	struct sk_buff *skb;
1123 	int cnt = 0;
1124 	u32 new_low_seq = tp->snd_nxt;
1125 	u32 received_upto = tcp_highest_sack_seq(tp);
1126 
1127 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1128 	    !after(received_upto, tp->lost_retrans_low) ||
1129 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1130 		return;
1131 
1132 	tcp_for_write_queue(skb, sk) {
1133 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1134 
1135 		if (skb == tcp_send_head(sk))
1136 			break;
1137 		if (cnt == tp->retrans_out)
1138 			break;
1139 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1140 			continue;
1141 
1142 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1143 			continue;
1144 
1145 		if (after(received_upto, ack_seq) &&
1146 		    (tcp_is_fack(tp) ||
1147 		     !before(received_upto,
1148 			     ack_seq + tp->reordering * tp->mss_cache))) {
1149 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1150 			tp->retrans_out -= tcp_skb_pcount(skb);
1151 
1152 			/* clear lost hint */
1153 			tp->retransmit_skb_hint = NULL;
1154 
1155 			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1156 				tp->lost_out += tcp_skb_pcount(skb);
1157 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1158 			}
1159 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1160 		} else {
1161 			if (before(ack_seq, new_low_seq))
1162 				new_low_seq = ack_seq;
1163 			cnt += tcp_skb_pcount(skb);
1164 		}
1165 	}
1166 
1167 	if (tp->retrans_out)
1168 		tp->lost_retrans_low = new_low_seq;
1169 }
1170 
1171 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1172 			   struct tcp_sack_block_wire *sp, int num_sacks,
1173 			   u32 prior_snd_una)
1174 {
1175 	u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1176 	u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1177 	int dup_sack = 0;
1178 
1179 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1180 		dup_sack = 1;
1181 		tcp_dsack_seen(tp);
1182 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1183 	} else if (num_sacks > 1) {
1184 		u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1185 		u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1186 
1187 		if (!after(end_seq_0, end_seq_1) &&
1188 		    !before(start_seq_0, start_seq_1)) {
1189 			dup_sack = 1;
1190 			tcp_dsack_seen(tp);
1191 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1192 		}
1193 	}
1194 
1195 	/* D-SACK for already forgotten data... Do dumb counting. */
1196 	if (dup_sack &&
1197 	    !after(end_seq_0, prior_snd_una) &&
1198 	    after(end_seq_0, tp->undo_marker))
1199 		tp->undo_retrans--;
1200 
1201 	return dup_sack;
1202 }
1203 
1204 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1205  * the incoming SACK may not exactly match but we can find smaller MSS
1206  * aligned portion of it that matches. Therefore we might need to fragment
1207  * which may fail and creates some hassle (caller must handle error case
1208  * returns).
1209  */
1210 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1211 				 u32 start_seq, u32 end_seq)
1212 {
1213 	int in_sack, err;
1214 	unsigned int pkt_len;
1215 
1216 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1217 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1218 
1219 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1220 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1221 
1222 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1223 
1224 		if (!in_sack)
1225 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1226 		else
1227 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1228 		err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1229 		if (err < 0)
1230 			return err;
1231 	}
1232 
1233 	return in_sack;
1234 }
1235 
1236 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1237 			   int *reord, int dup_sack, int fack_count)
1238 {
1239 	struct tcp_sock *tp = tcp_sk(sk);
1240 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1241 	int flag = 0;
1242 
1243 	/* Account D-SACK for retransmitted packet. */
1244 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1245 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1246 			tp->undo_retrans--;
1247 		if (sacked & TCPCB_SACKED_ACKED)
1248 			*reord = min(fack_count, *reord);
1249 	}
1250 
1251 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1252 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1253 		return flag;
1254 
1255 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1256 		if (sacked & TCPCB_SACKED_RETRANS) {
1257 			/* If the segment is not tagged as lost,
1258 			 * we do not clear RETRANS, believing
1259 			 * that retransmission is still in flight.
1260 			 */
1261 			if (sacked & TCPCB_LOST) {
1262 				TCP_SKB_CB(skb)->sacked &=
1263 					~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1264 				tp->lost_out -= tcp_skb_pcount(skb);
1265 				tp->retrans_out -= tcp_skb_pcount(skb);
1266 
1267 				/* clear lost hint */
1268 				tp->retransmit_skb_hint = NULL;
1269 			}
1270 		} else {
1271 			if (!(sacked & TCPCB_RETRANS)) {
1272 				/* New sack for not retransmitted frame,
1273 				 * which was in hole. It is reordering.
1274 				 */
1275 				if (before(TCP_SKB_CB(skb)->seq,
1276 					   tcp_highest_sack_seq(tp)))
1277 					*reord = min(fack_count, *reord);
1278 
1279 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1280 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1281 					flag |= FLAG_ONLY_ORIG_SACKED;
1282 			}
1283 
1284 			if (sacked & TCPCB_LOST) {
1285 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1286 				tp->lost_out -= tcp_skb_pcount(skb);
1287 
1288 				/* clear lost hint */
1289 				tp->retransmit_skb_hint = NULL;
1290 			}
1291 		}
1292 
1293 		TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1294 		flag |= FLAG_DATA_SACKED;
1295 		tp->sacked_out += tcp_skb_pcount(skb);
1296 
1297 		fack_count += tcp_skb_pcount(skb);
1298 
1299 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1300 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1301 		    before(TCP_SKB_CB(skb)->seq,
1302 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1303 			tp->lost_cnt_hint += tcp_skb_pcount(skb);
1304 
1305 		if (fack_count > tp->fackets_out)
1306 			tp->fackets_out = fack_count;
1307 
1308 		if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1309 			tcp_advance_highest_sack(sk, skb);
1310 	}
1311 
1312 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1313 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1314 	 * are accounted above as well.
1315 	 */
1316 	if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1317 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1318 		tp->retrans_out -= tcp_skb_pcount(skb);
1319 		tp->retransmit_skb_hint = NULL;
1320 	}
1321 
1322 	return flag;
1323 }
1324 
1325 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1326 					struct tcp_sack_block *next_dup,
1327 					u32 start_seq, u32 end_seq,
1328 					int dup_sack_in, int *fack_count,
1329 					int *reord, int *flag)
1330 {
1331 	tcp_for_write_queue_from(skb, sk) {
1332 		int in_sack = 0;
1333 		int dup_sack = dup_sack_in;
1334 
1335 		if (skb == tcp_send_head(sk))
1336 			break;
1337 
1338 		/* queue is in-order => we can short-circuit the walk early */
1339 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1340 			break;
1341 
1342 		if ((next_dup != NULL) &&
1343 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1344 			in_sack = tcp_match_skb_to_sack(sk, skb,
1345 							next_dup->start_seq,
1346 							next_dup->end_seq);
1347 			if (in_sack > 0)
1348 				dup_sack = 1;
1349 		}
1350 
1351 		if (in_sack <= 0)
1352 			in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1353 							end_seq);
1354 		if (unlikely(in_sack < 0))
1355 			break;
1356 
1357 		if (in_sack)
1358 			*flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1359 						 *fack_count);
1360 
1361 		*fack_count += tcp_skb_pcount(skb);
1362 	}
1363 	return skb;
1364 }
1365 
1366 /* Avoid all extra work that is being done by sacktag while walking in
1367  * a normal way
1368  */
1369 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1370 					u32 skip_to_seq, int *fack_count)
1371 {
1372 	tcp_for_write_queue_from(skb, sk) {
1373 		if (skb == tcp_send_head(sk))
1374 			break;
1375 
1376 		if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1377 			break;
1378 
1379 		*fack_count += tcp_skb_pcount(skb);
1380 	}
1381 	return skb;
1382 }
1383 
1384 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1385 						struct sock *sk,
1386 						struct tcp_sack_block *next_dup,
1387 						u32 skip_to_seq,
1388 						int *fack_count, int *reord,
1389 						int *flag)
1390 {
1391 	if (next_dup == NULL)
1392 		return skb;
1393 
1394 	if (before(next_dup->start_seq, skip_to_seq)) {
1395 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1396 		tcp_sacktag_walk(skb, sk, NULL,
1397 				 next_dup->start_seq, next_dup->end_seq,
1398 				 1, fack_count, reord, flag);
1399 	}
1400 
1401 	return skb;
1402 }
1403 
1404 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1405 {
1406 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1407 }
1408 
1409 static int
1410 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1411 			u32 prior_snd_una)
1412 {
1413 	const struct inet_connection_sock *icsk = inet_csk(sk);
1414 	struct tcp_sock *tp = tcp_sk(sk);
1415 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1416 			      TCP_SKB_CB(ack_skb)->sacked);
1417 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1418 	struct tcp_sack_block sp[4];
1419 	struct tcp_sack_block *cache;
1420 	struct sk_buff *skb;
1421 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1422 	int used_sacks;
1423 	int reord = tp->packets_out;
1424 	int flag = 0;
1425 	int found_dup_sack = 0;
1426 	int fack_count;
1427 	int i, j;
1428 	int first_sack_index;
1429 
1430 	if (!tp->sacked_out) {
1431 		if (WARN_ON(tp->fackets_out))
1432 			tp->fackets_out = 0;
1433 		tcp_highest_sack_reset(sk);
1434 	}
1435 
1436 	found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1437 					 num_sacks, prior_snd_una);
1438 	if (found_dup_sack)
1439 		flag |= FLAG_DSACKING_ACK;
1440 
1441 	/* Eliminate too old ACKs, but take into
1442 	 * account more or less fresh ones, they can
1443 	 * contain valid SACK info.
1444 	 */
1445 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1446 		return 0;
1447 
1448 	if (!tp->packets_out)
1449 		goto out;
1450 
1451 	used_sacks = 0;
1452 	first_sack_index = 0;
1453 	for (i = 0; i < num_sacks; i++) {
1454 		int dup_sack = !i && found_dup_sack;
1455 
1456 		sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1457 		sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1458 
1459 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1460 					    sp[used_sacks].start_seq,
1461 					    sp[used_sacks].end_seq)) {
1462 			if (dup_sack) {
1463 				if (!tp->undo_marker)
1464 					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1465 				else
1466 					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1467 			} else {
1468 				/* Don't count olds caused by ACK reordering */
1469 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1470 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1471 					continue;
1472 				NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1473 			}
1474 			if (i == 0)
1475 				first_sack_index = -1;
1476 			continue;
1477 		}
1478 
1479 		/* Ignore very old stuff early */
1480 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1481 			continue;
1482 
1483 		used_sacks++;
1484 	}
1485 
1486 	/* order SACK blocks to allow in order walk of the retrans queue */
1487 	for (i = used_sacks - 1; i > 0; i--) {
1488 		for (j = 0; j < i; j++) {
1489 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1490 				struct tcp_sack_block tmp;
1491 
1492 				tmp = sp[j];
1493 				sp[j] = sp[j + 1];
1494 				sp[j + 1] = tmp;
1495 
1496 				/* Track where the first SACK block goes to */
1497 				if (j == first_sack_index)
1498 					first_sack_index = j + 1;
1499 			}
1500 		}
1501 	}
1502 
1503 	skb = tcp_write_queue_head(sk);
1504 	fack_count = 0;
1505 	i = 0;
1506 
1507 	if (!tp->sacked_out) {
1508 		/* It's already past, so skip checking against it */
1509 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1510 	} else {
1511 		cache = tp->recv_sack_cache;
1512 		/* Skip empty blocks in at head of the cache */
1513 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1514 		       !cache->end_seq)
1515 			cache++;
1516 	}
1517 
1518 	while (i < used_sacks) {
1519 		u32 start_seq = sp[i].start_seq;
1520 		u32 end_seq = sp[i].end_seq;
1521 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1522 		struct tcp_sack_block *next_dup = NULL;
1523 
1524 		if (found_dup_sack && ((i + 1) == first_sack_index))
1525 			next_dup = &sp[i + 1];
1526 
1527 		/* Event "B" in the comment above. */
1528 		if (after(end_seq, tp->high_seq))
1529 			flag |= FLAG_DATA_LOST;
1530 
1531 		/* Skip too early cached blocks */
1532 		while (tcp_sack_cache_ok(tp, cache) &&
1533 		       !before(start_seq, cache->end_seq))
1534 			cache++;
1535 
1536 		/* Can skip some work by looking recv_sack_cache? */
1537 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1538 		    after(end_seq, cache->start_seq)) {
1539 
1540 			/* Head todo? */
1541 			if (before(start_seq, cache->start_seq)) {
1542 				skb = tcp_sacktag_skip(skb, sk, start_seq,
1543 						       &fack_count);
1544 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1545 						       start_seq,
1546 						       cache->start_seq,
1547 						       dup_sack, &fack_count,
1548 						       &reord, &flag);
1549 			}
1550 
1551 			/* Rest of the block already fully processed? */
1552 			if (!after(end_seq, cache->end_seq))
1553 				goto advance_sp;
1554 
1555 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1556 						       cache->end_seq,
1557 						       &fack_count, &reord,
1558 						       &flag);
1559 
1560 			/* ...tail remains todo... */
1561 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1562 				/* ...but better entrypoint exists! */
1563 				skb = tcp_highest_sack(sk);
1564 				if (skb == NULL)
1565 					break;
1566 				fack_count = tp->fackets_out;
1567 				cache++;
1568 				goto walk;
1569 			}
1570 
1571 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1572 					       &fack_count);
1573 			/* Check overlap against next cached too (past this one already) */
1574 			cache++;
1575 			continue;
1576 		}
1577 
1578 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1579 			skb = tcp_highest_sack(sk);
1580 			if (skb == NULL)
1581 				break;
1582 			fack_count = tp->fackets_out;
1583 		}
1584 		skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1585 
1586 walk:
1587 		skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1588 				       dup_sack, &fack_count, &reord, &flag);
1589 
1590 advance_sp:
1591 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1592 		 * due to in-order walk
1593 		 */
1594 		if (after(end_seq, tp->frto_highmark))
1595 			flag &= ~FLAG_ONLY_ORIG_SACKED;
1596 
1597 		i++;
1598 	}
1599 
1600 	/* Clear the head of the cache sack blocks so we can skip it next time */
1601 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1602 		tp->recv_sack_cache[i].start_seq = 0;
1603 		tp->recv_sack_cache[i].end_seq = 0;
1604 	}
1605 	for (j = 0; j < used_sacks; j++)
1606 		tp->recv_sack_cache[i++] = sp[j];
1607 
1608 	tcp_mark_lost_retrans(sk);
1609 
1610 	tcp_verify_left_out(tp);
1611 
1612 	if ((reord < tp->fackets_out) &&
1613 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1614 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1615 		tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1616 
1617 out:
1618 
1619 #if FASTRETRANS_DEBUG > 0
1620 	BUG_TRAP((int)tp->sacked_out >= 0);
1621 	BUG_TRAP((int)tp->lost_out >= 0);
1622 	BUG_TRAP((int)tp->retrans_out >= 0);
1623 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1624 #endif
1625 	return flag;
1626 }
1627 
1628 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1629  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1630  */
1631 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1632 {
1633 	u32 holes;
1634 
1635 	holes = max(tp->lost_out, 1U);
1636 	holes = min(holes, tp->packets_out);
1637 
1638 	if ((tp->sacked_out + holes) > tp->packets_out) {
1639 		tp->sacked_out = tp->packets_out - holes;
1640 		return 1;
1641 	}
1642 	return 0;
1643 }
1644 
1645 /* If we receive more dupacks than we expected counting segments
1646  * in assumption of absent reordering, interpret this as reordering.
1647  * The only another reason could be bug in receiver TCP.
1648  */
1649 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1650 {
1651 	struct tcp_sock *tp = tcp_sk(sk);
1652 	if (tcp_limit_reno_sacked(tp))
1653 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1654 }
1655 
1656 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1657 
1658 static void tcp_add_reno_sack(struct sock *sk)
1659 {
1660 	struct tcp_sock *tp = tcp_sk(sk);
1661 	tp->sacked_out++;
1662 	tcp_check_reno_reordering(sk, 0);
1663 	tcp_verify_left_out(tp);
1664 }
1665 
1666 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1667 
1668 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1669 {
1670 	struct tcp_sock *tp = tcp_sk(sk);
1671 
1672 	if (acked > 0) {
1673 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1674 		if (acked - 1 >= tp->sacked_out)
1675 			tp->sacked_out = 0;
1676 		else
1677 			tp->sacked_out -= acked - 1;
1678 	}
1679 	tcp_check_reno_reordering(sk, acked);
1680 	tcp_verify_left_out(tp);
1681 }
1682 
1683 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1684 {
1685 	tp->sacked_out = 0;
1686 }
1687 
1688 /* F-RTO can only be used if TCP has never retransmitted anything other than
1689  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1690  */
1691 int tcp_use_frto(struct sock *sk)
1692 {
1693 	const struct tcp_sock *tp = tcp_sk(sk);
1694 	const struct inet_connection_sock *icsk = inet_csk(sk);
1695 	struct sk_buff *skb;
1696 
1697 	if (!sysctl_tcp_frto)
1698 		return 0;
1699 
1700 	/* MTU probe and F-RTO won't really play nicely along currently */
1701 	if (icsk->icsk_mtup.probe_size)
1702 		return 0;
1703 
1704 	if (IsSackFrto())
1705 		return 1;
1706 
1707 	/* Avoid expensive walking of rexmit queue if possible */
1708 	if (tp->retrans_out > 1)
1709 		return 0;
1710 
1711 	skb = tcp_write_queue_head(sk);
1712 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1713 	tcp_for_write_queue_from(skb, sk) {
1714 		if (skb == tcp_send_head(sk))
1715 			break;
1716 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1717 			return 0;
1718 		/* Short-circuit when first non-SACKed skb has been checked */
1719 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1720 			break;
1721 	}
1722 	return 1;
1723 }
1724 
1725 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1726  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1727  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1728  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1729  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1730  * bits are handled if the Loss state is really to be entered (in
1731  * tcp_enter_frto_loss).
1732  *
1733  * Do like tcp_enter_loss() would; when RTO expires the second time it
1734  * does:
1735  *  "Reduce ssthresh if it has not yet been made inside this window."
1736  */
1737 void tcp_enter_frto(struct sock *sk)
1738 {
1739 	const struct inet_connection_sock *icsk = inet_csk(sk);
1740 	struct tcp_sock *tp = tcp_sk(sk);
1741 	struct sk_buff *skb;
1742 
1743 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1744 	    tp->snd_una == tp->high_seq ||
1745 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1746 	     !icsk->icsk_retransmits)) {
1747 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1748 		/* Our state is too optimistic in ssthresh() call because cwnd
1749 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1750 		 * recovery has not yet completed. Pattern would be this: RTO,
1751 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1752 		 * up here twice).
1753 		 * RFC4138 should be more specific on what to do, even though
1754 		 * RTO is quite unlikely to occur after the first Cumulative ACK
1755 		 * due to back-off and complexity of triggering events ...
1756 		 */
1757 		if (tp->frto_counter) {
1758 			u32 stored_cwnd;
1759 			stored_cwnd = tp->snd_cwnd;
1760 			tp->snd_cwnd = 2;
1761 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1762 			tp->snd_cwnd = stored_cwnd;
1763 		} else {
1764 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1765 		}
1766 		/* ... in theory, cong.control module could do "any tricks" in
1767 		 * ssthresh(), which means that ca_state, lost bits and lost_out
1768 		 * counter would have to be faked before the call occurs. We
1769 		 * consider that too expensive, unlikely and hacky, so modules
1770 		 * using these in ssthresh() must deal these incompatibility
1771 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1772 		 */
1773 		tcp_ca_event(sk, CA_EVENT_FRTO);
1774 	}
1775 
1776 	tp->undo_marker = tp->snd_una;
1777 	tp->undo_retrans = 0;
1778 
1779 	skb = tcp_write_queue_head(sk);
1780 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1781 		tp->undo_marker = 0;
1782 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1783 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1784 		tp->retrans_out -= tcp_skb_pcount(skb);
1785 	}
1786 	tcp_verify_left_out(tp);
1787 
1788 	/* Too bad if TCP was application limited */
1789 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1790 
1791 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1792 	 * The last condition is necessary at least in tp->frto_counter case.
1793 	 */
1794 	if (IsSackFrto() && (tp->frto_counter ||
1795 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1796 	    after(tp->high_seq, tp->snd_una)) {
1797 		tp->frto_highmark = tp->high_seq;
1798 	} else {
1799 		tp->frto_highmark = tp->snd_nxt;
1800 	}
1801 	tcp_set_ca_state(sk, TCP_CA_Disorder);
1802 	tp->high_seq = tp->snd_nxt;
1803 	tp->frto_counter = 1;
1804 }
1805 
1806 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1807  * which indicates that we should follow the traditional RTO recovery,
1808  * i.e. mark everything lost and do go-back-N retransmission.
1809  */
1810 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1811 {
1812 	struct tcp_sock *tp = tcp_sk(sk);
1813 	struct sk_buff *skb;
1814 
1815 	tp->lost_out = 0;
1816 	tp->retrans_out = 0;
1817 	if (tcp_is_reno(tp))
1818 		tcp_reset_reno_sack(tp);
1819 
1820 	tcp_for_write_queue(skb, sk) {
1821 		if (skb == tcp_send_head(sk))
1822 			break;
1823 
1824 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1825 		/*
1826 		 * Count the retransmission made on RTO correctly (only when
1827 		 * waiting for the first ACK and did not get it)...
1828 		 */
1829 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1830 			/* For some reason this R-bit might get cleared? */
1831 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1832 				tp->retrans_out += tcp_skb_pcount(skb);
1833 			/* ...enter this if branch just for the first segment */
1834 			flag |= FLAG_DATA_ACKED;
1835 		} else {
1836 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1837 				tp->undo_marker = 0;
1838 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1839 		}
1840 
1841 		/* Don't lost mark skbs that were fwd transmitted after RTO */
1842 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) &&
1843 		    !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1844 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1845 			tp->lost_out += tcp_skb_pcount(skb);
1846 		}
1847 	}
1848 	tcp_verify_left_out(tp);
1849 
1850 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1851 	tp->snd_cwnd_cnt = 0;
1852 	tp->snd_cwnd_stamp = tcp_time_stamp;
1853 	tp->frto_counter = 0;
1854 	tp->bytes_acked = 0;
1855 
1856 	tp->reordering = min_t(unsigned int, tp->reordering,
1857 			       sysctl_tcp_reordering);
1858 	tcp_set_ca_state(sk, TCP_CA_Loss);
1859 	tp->high_seq = tp->frto_highmark;
1860 	TCP_ECN_queue_cwr(tp);
1861 
1862 	tcp_clear_retrans_hints_partial(tp);
1863 }
1864 
1865 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1866 {
1867 	tp->retrans_out = 0;
1868 	tp->lost_out = 0;
1869 
1870 	tp->undo_marker = 0;
1871 	tp->undo_retrans = 0;
1872 }
1873 
1874 void tcp_clear_retrans(struct tcp_sock *tp)
1875 {
1876 	tcp_clear_retrans_partial(tp);
1877 
1878 	tp->fackets_out = 0;
1879 	tp->sacked_out = 0;
1880 }
1881 
1882 /* Enter Loss state. If "how" is not zero, forget all SACK information
1883  * and reset tags completely, otherwise preserve SACKs. If receiver
1884  * dropped its ofo queue, we will know this due to reneging detection.
1885  */
1886 void tcp_enter_loss(struct sock *sk, int how)
1887 {
1888 	const struct inet_connection_sock *icsk = inet_csk(sk);
1889 	struct tcp_sock *tp = tcp_sk(sk);
1890 	struct sk_buff *skb;
1891 
1892 	/* Reduce ssthresh if it has not yet been made inside this window. */
1893 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1894 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1895 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1896 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1897 		tcp_ca_event(sk, CA_EVENT_LOSS);
1898 	}
1899 	tp->snd_cwnd	   = 1;
1900 	tp->snd_cwnd_cnt   = 0;
1901 	tp->snd_cwnd_stamp = tcp_time_stamp;
1902 
1903 	tp->bytes_acked = 0;
1904 	tcp_clear_retrans_partial(tp);
1905 
1906 	if (tcp_is_reno(tp))
1907 		tcp_reset_reno_sack(tp);
1908 
1909 	if (!how) {
1910 		/* Push undo marker, if it was plain RTO and nothing
1911 		 * was retransmitted. */
1912 		tp->undo_marker = tp->snd_una;
1913 		tcp_clear_retrans_hints_partial(tp);
1914 	} else {
1915 		tp->sacked_out = 0;
1916 		tp->fackets_out = 0;
1917 		tcp_clear_all_retrans_hints(tp);
1918 	}
1919 
1920 	tcp_for_write_queue(skb, sk) {
1921 		if (skb == tcp_send_head(sk))
1922 			break;
1923 
1924 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1925 			tp->undo_marker = 0;
1926 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1927 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1928 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1929 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1930 			tp->lost_out += tcp_skb_pcount(skb);
1931 		}
1932 	}
1933 	tcp_verify_left_out(tp);
1934 
1935 	tp->reordering = min_t(unsigned int, tp->reordering,
1936 			       sysctl_tcp_reordering);
1937 	tcp_set_ca_state(sk, TCP_CA_Loss);
1938 	tp->high_seq = tp->snd_nxt;
1939 	TCP_ECN_queue_cwr(tp);
1940 	/* Abort F-RTO algorithm if one is in progress */
1941 	tp->frto_counter = 0;
1942 }
1943 
1944 /* If ACK arrived pointing to a remembered SACK, it means that our
1945  * remembered SACKs do not reflect real state of receiver i.e.
1946  * receiver _host_ is heavily congested (or buggy).
1947  *
1948  * Do processing similar to RTO timeout.
1949  */
1950 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1951 {
1952 	if (flag & FLAG_SACK_RENEGING) {
1953 		struct inet_connection_sock *icsk = inet_csk(sk);
1954 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1955 
1956 		tcp_enter_loss(sk, 1);
1957 		icsk->icsk_retransmits++;
1958 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1959 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1960 					  icsk->icsk_rto, TCP_RTO_MAX);
1961 		return 1;
1962 	}
1963 	return 0;
1964 }
1965 
1966 static inline int tcp_fackets_out(struct tcp_sock *tp)
1967 {
1968 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1969 }
1970 
1971 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1972  * counter when SACK is enabled (without SACK, sacked_out is used for
1973  * that purpose).
1974  *
1975  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1976  * segments up to the highest received SACK block so far and holes in
1977  * between them.
1978  *
1979  * With reordering, holes may still be in flight, so RFC3517 recovery
1980  * uses pure sacked_out (total number of SACKed segments) even though
1981  * it violates the RFC that uses duplicate ACKs, often these are equal
1982  * but when e.g. out-of-window ACKs or packet duplication occurs,
1983  * they differ. Since neither occurs due to loss, TCP should really
1984  * ignore them.
1985  */
1986 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1987 {
1988 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1989 }
1990 
1991 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1992 {
1993 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1994 }
1995 
1996 static inline int tcp_head_timedout(struct sock *sk)
1997 {
1998 	struct tcp_sock *tp = tcp_sk(sk);
1999 
2000 	return tp->packets_out &&
2001 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2002 }
2003 
2004 /* Linux NewReno/SACK/FACK/ECN state machine.
2005  * --------------------------------------
2006  *
2007  * "Open"	Normal state, no dubious events, fast path.
2008  * "Disorder"   In all the respects it is "Open",
2009  *		but requires a bit more attention. It is entered when
2010  *		we see some SACKs or dupacks. It is split of "Open"
2011  *		mainly to move some processing from fast path to slow one.
2012  * "CWR"	CWND was reduced due to some Congestion Notification event.
2013  *		It can be ECN, ICMP source quench, local device congestion.
2014  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2015  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2016  *
2017  * tcp_fastretrans_alert() is entered:
2018  * - each incoming ACK, if state is not "Open"
2019  * - when arrived ACK is unusual, namely:
2020  *	* SACK
2021  *	* Duplicate ACK.
2022  *	* ECN ECE.
2023  *
2024  * Counting packets in flight is pretty simple.
2025  *
2026  *	in_flight = packets_out - left_out + retrans_out
2027  *
2028  *	packets_out is SND.NXT-SND.UNA counted in packets.
2029  *
2030  *	retrans_out is number of retransmitted segments.
2031  *
2032  *	left_out is number of segments left network, but not ACKed yet.
2033  *
2034  *		left_out = sacked_out + lost_out
2035  *
2036  *     sacked_out: Packets, which arrived to receiver out of order
2037  *		   and hence not ACKed. With SACKs this number is simply
2038  *		   amount of SACKed data. Even without SACKs
2039  *		   it is easy to give pretty reliable estimate of this number,
2040  *		   counting duplicate ACKs.
2041  *
2042  *       lost_out: Packets lost by network. TCP has no explicit
2043  *		   "loss notification" feedback from network (for now).
2044  *		   It means that this number can be only _guessed_.
2045  *		   Actually, it is the heuristics to predict lossage that
2046  *		   distinguishes different algorithms.
2047  *
2048  *	F.e. after RTO, when all the queue is considered as lost,
2049  *	lost_out = packets_out and in_flight = retrans_out.
2050  *
2051  *		Essentially, we have now two algorithms counting
2052  *		lost packets.
2053  *
2054  *		FACK: It is the simplest heuristics. As soon as we decided
2055  *		that something is lost, we decide that _all_ not SACKed
2056  *		packets until the most forward SACK are lost. I.e.
2057  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2058  *		It is absolutely correct estimate, if network does not reorder
2059  *		packets. And it loses any connection to reality when reordering
2060  *		takes place. We use FACK by default until reordering
2061  *		is suspected on the path to this destination.
2062  *
2063  *		NewReno: when Recovery is entered, we assume that one segment
2064  *		is lost (classic Reno). While we are in Recovery and
2065  *		a partial ACK arrives, we assume that one more packet
2066  *		is lost (NewReno). This heuristics are the same in NewReno
2067  *		and SACK.
2068  *
2069  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2070  *  deflation etc. CWND is real congestion window, never inflated, changes
2071  *  only according to classic VJ rules.
2072  *
2073  * Really tricky (and requiring careful tuning) part of algorithm
2074  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2075  * The first determines the moment _when_ we should reduce CWND and,
2076  * hence, slow down forward transmission. In fact, it determines the moment
2077  * when we decide that hole is caused by loss, rather than by a reorder.
2078  *
2079  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2080  * holes, caused by lost packets.
2081  *
2082  * And the most logically complicated part of algorithm is undo
2083  * heuristics. We detect false retransmits due to both too early
2084  * fast retransmit (reordering) and underestimated RTO, analyzing
2085  * timestamps and D-SACKs. When we detect that some segments were
2086  * retransmitted by mistake and CWND reduction was wrong, we undo
2087  * window reduction and abort recovery phase. This logic is hidden
2088  * inside several functions named tcp_try_undo_<something>.
2089  */
2090 
2091 /* This function decides, when we should leave Disordered state
2092  * and enter Recovery phase, reducing congestion window.
2093  *
2094  * Main question: may we further continue forward transmission
2095  * with the same cwnd?
2096  */
2097 static int tcp_time_to_recover(struct sock *sk)
2098 {
2099 	struct tcp_sock *tp = tcp_sk(sk);
2100 	__u32 packets_out;
2101 
2102 	/* Do not perform any recovery during F-RTO algorithm */
2103 	if (tp->frto_counter)
2104 		return 0;
2105 
2106 	/* Trick#1: The loss is proven. */
2107 	if (tp->lost_out)
2108 		return 1;
2109 
2110 	/* Not-A-Trick#2 : Classic rule... */
2111 	if (tcp_dupack_heurestics(tp) > tp->reordering)
2112 		return 1;
2113 
2114 	/* Trick#3 : when we use RFC2988 timer restart, fast
2115 	 * retransmit can be triggered by timeout of queue head.
2116 	 */
2117 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2118 		return 1;
2119 
2120 	/* Trick#4: It is still not OK... But will it be useful to delay
2121 	 * recovery more?
2122 	 */
2123 	packets_out = tp->packets_out;
2124 	if (packets_out <= tp->reordering &&
2125 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2126 	    !tcp_may_send_now(sk)) {
2127 		/* We have nothing to send. This connection is limited
2128 		 * either by receiver window or by application.
2129 		 */
2130 		return 1;
2131 	}
2132 
2133 	return 0;
2134 }
2135 
2136 /* RFC: This is from the original, I doubt that this is necessary at all:
2137  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2138  * retransmitted past LOST markings in the first place? I'm not fully sure
2139  * about undo and end of connection cases, which can cause R without L?
2140  */
2141 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2142 {
2143 	if ((tp->retransmit_skb_hint != NULL) &&
2144 	    before(TCP_SKB_CB(skb)->seq,
2145 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2146 		tp->retransmit_skb_hint = NULL;
2147 }
2148 
2149 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2150  * is against sacked "cnt", otherwise it's against facked "cnt"
2151  */
2152 static void tcp_mark_head_lost(struct sock *sk, int packets)
2153 {
2154 	struct tcp_sock *tp = tcp_sk(sk);
2155 	struct sk_buff *skb;
2156 	int cnt, oldcnt;
2157 	int err;
2158 	unsigned int mss;
2159 
2160 	BUG_TRAP(packets <= tp->packets_out);
2161 	if (tp->lost_skb_hint) {
2162 		skb = tp->lost_skb_hint;
2163 		cnt = tp->lost_cnt_hint;
2164 	} else {
2165 		skb = tcp_write_queue_head(sk);
2166 		cnt = 0;
2167 	}
2168 
2169 	tcp_for_write_queue_from(skb, sk) {
2170 		if (skb == tcp_send_head(sk))
2171 			break;
2172 		/* TODO: do this better */
2173 		/* this is not the most efficient way to do this... */
2174 		tp->lost_skb_hint = skb;
2175 		tp->lost_cnt_hint = cnt;
2176 
2177 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2178 			break;
2179 
2180 		oldcnt = cnt;
2181 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2182 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2183 			cnt += tcp_skb_pcount(skb);
2184 
2185 		if (cnt > packets) {
2186 			if (tcp_is_sack(tp) || (oldcnt >= packets))
2187 				break;
2188 
2189 			mss = skb_shinfo(skb)->gso_size;
2190 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2191 			if (err < 0)
2192 				break;
2193 			cnt = packets;
2194 		}
2195 
2196 		if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2197 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2198 			tp->lost_out += tcp_skb_pcount(skb);
2199 			tcp_verify_retransmit_hint(tp, skb);
2200 		}
2201 	}
2202 	tcp_verify_left_out(tp);
2203 }
2204 
2205 /* Account newly detected lost packet(s) */
2206 
2207 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2208 {
2209 	struct tcp_sock *tp = tcp_sk(sk);
2210 
2211 	if (tcp_is_reno(tp)) {
2212 		tcp_mark_head_lost(sk, 1);
2213 	} else if (tcp_is_fack(tp)) {
2214 		int lost = tp->fackets_out - tp->reordering;
2215 		if (lost <= 0)
2216 			lost = 1;
2217 		tcp_mark_head_lost(sk, lost);
2218 	} else {
2219 		int sacked_upto = tp->sacked_out - tp->reordering;
2220 		if (sacked_upto < fast_rexmit)
2221 			sacked_upto = fast_rexmit;
2222 		tcp_mark_head_lost(sk, sacked_upto);
2223 	}
2224 
2225 	/* New heuristics: it is possible only after we switched
2226 	 * to restart timer each time when something is ACKed.
2227 	 * Hence, we can detect timed out packets during fast
2228 	 * retransmit without falling to slow start.
2229 	 */
2230 	if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2231 		struct sk_buff *skb;
2232 
2233 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2234 			: tcp_write_queue_head(sk);
2235 
2236 		tcp_for_write_queue_from(skb, sk) {
2237 			if (skb == tcp_send_head(sk))
2238 				break;
2239 			if (!tcp_skb_timedout(sk, skb))
2240 				break;
2241 
2242 			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2243 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2244 				tp->lost_out += tcp_skb_pcount(skb);
2245 				tcp_verify_retransmit_hint(tp, skb);
2246 			}
2247 		}
2248 
2249 		tp->scoreboard_skb_hint = skb;
2250 
2251 		tcp_verify_left_out(tp);
2252 	}
2253 }
2254 
2255 /* CWND moderation, preventing bursts due to too big ACKs
2256  * in dubious situations.
2257  */
2258 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2259 {
2260 	tp->snd_cwnd = min(tp->snd_cwnd,
2261 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2262 	tp->snd_cwnd_stamp = tcp_time_stamp;
2263 }
2264 
2265 /* Lower bound on congestion window is slow start threshold
2266  * unless congestion avoidance choice decides to overide it.
2267  */
2268 static inline u32 tcp_cwnd_min(const struct sock *sk)
2269 {
2270 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2271 
2272 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2273 }
2274 
2275 /* Decrease cwnd each second ack. */
2276 static void tcp_cwnd_down(struct sock *sk, int flag)
2277 {
2278 	struct tcp_sock *tp = tcp_sk(sk);
2279 	int decr = tp->snd_cwnd_cnt + 1;
2280 
2281 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2282 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2283 		tp->snd_cwnd_cnt = decr & 1;
2284 		decr >>= 1;
2285 
2286 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2287 			tp->snd_cwnd -= decr;
2288 
2289 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2290 		tp->snd_cwnd_stamp = tcp_time_stamp;
2291 	}
2292 }
2293 
2294 /* Nothing was retransmitted or returned timestamp is less
2295  * than timestamp of the first retransmission.
2296  */
2297 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2298 {
2299 	return !tp->retrans_stamp ||
2300 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2301 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2302 }
2303 
2304 /* Undo procedures. */
2305 
2306 #if FASTRETRANS_DEBUG > 1
2307 static void DBGUNDO(struct sock *sk, const char *msg)
2308 {
2309 	struct tcp_sock *tp = tcp_sk(sk);
2310 	struct inet_sock *inet = inet_sk(sk);
2311 
2312 	if (sk->sk_family == AF_INET) {
2313 		printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2314 		       msg,
2315 		       NIPQUAD(inet->daddr), ntohs(inet->dport),
2316 		       tp->snd_cwnd, tcp_left_out(tp),
2317 		       tp->snd_ssthresh, tp->prior_ssthresh,
2318 		       tp->packets_out);
2319 	}
2320 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2321 	else if (sk->sk_family == AF_INET6) {
2322 		struct ipv6_pinfo *np = inet6_sk(sk);
2323 		printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2324 		       msg,
2325 		       NIP6(np->daddr), ntohs(inet->dport),
2326 		       tp->snd_cwnd, tcp_left_out(tp),
2327 		       tp->snd_ssthresh, tp->prior_ssthresh,
2328 		       tp->packets_out);
2329 	}
2330 #endif
2331 }
2332 #else
2333 #define DBGUNDO(x...) do { } while (0)
2334 #endif
2335 
2336 static void tcp_undo_cwr(struct sock *sk, const int undo)
2337 {
2338 	struct tcp_sock *tp = tcp_sk(sk);
2339 
2340 	if (tp->prior_ssthresh) {
2341 		const struct inet_connection_sock *icsk = inet_csk(sk);
2342 
2343 		if (icsk->icsk_ca_ops->undo_cwnd)
2344 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2345 		else
2346 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2347 
2348 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2349 			tp->snd_ssthresh = tp->prior_ssthresh;
2350 			TCP_ECN_withdraw_cwr(tp);
2351 		}
2352 	} else {
2353 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2354 	}
2355 	tcp_moderate_cwnd(tp);
2356 	tp->snd_cwnd_stamp = tcp_time_stamp;
2357 
2358 	/* There is something screwy going on with the retrans hints after
2359 	   an undo */
2360 	tcp_clear_all_retrans_hints(tp);
2361 }
2362 
2363 static inline int tcp_may_undo(struct tcp_sock *tp)
2364 {
2365 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2366 }
2367 
2368 /* People celebrate: "We love our President!" */
2369 static int tcp_try_undo_recovery(struct sock *sk)
2370 {
2371 	struct tcp_sock *tp = tcp_sk(sk);
2372 
2373 	if (tcp_may_undo(tp)) {
2374 		/* Happy end! We did not retransmit anything
2375 		 * or our original transmission succeeded.
2376 		 */
2377 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2378 		tcp_undo_cwr(sk, 1);
2379 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2380 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2381 		else
2382 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2383 		tp->undo_marker = 0;
2384 	}
2385 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2386 		/* Hold old state until something *above* high_seq
2387 		 * is ACKed. For Reno it is MUST to prevent false
2388 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2389 		tcp_moderate_cwnd(tp);
2390 		return 1;
2391 	}
2392 	tcp_set_ca_state(sk, TCP_CA_Open);
2393 	return 0;
2394 }
2395 
2396 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2397 static void tcp_try_undo_dsack(struct sock *sk)
2398 {
2399 	struct tcp_sock *tp = tcp_sk(sk);
2400 
2401 	if (tp->undo_marker && !tp->undo_retrans) {
2402 		DBGUNDO(sk, "D-SACK");
2403 		tcp_undo_cwr(sk, 1);
2404 		tp->undo_marker = 0;
2405 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2406 	}
2407 }
2408 
2409 /* Undo during fast recovery after partial ACK. */
2410 
2411 static int tcp_try_undo_partial(struct sock *sk, int acked)
2412 {
2413 	struct tcp_sock *tp = tcp_sk(sk);
2414 	/* Partial ACK arrived. Force Hoe's retransmit. */
2415 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2416 
2417 	if (tcp_may_undo(tp)) {
2418 		/* Plain luck! Hole if filled with delayed
2419 		 * packet, rather than with a retransmit.
2420 		 */
2421 		if (tp->retrans_out == 0)
2422 			tp->retrans_stamp = 0;
2423 
2424 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2425 
2426 		DBGUNDO(sk, "Hoe");
2427 		tcp_undo_cwr(sk, 0);
2428 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2429 
2430 		/* So... Do not make Hoe's retransmit yet.
2431 		 * If the first packet was delayed, the rest
2432 		 * ones are most probably delayed as well.
2433 		 */
2434 		failed = 0;
2435 	}
2436 	return failed;
2437 }
2438 
2439 /* Undo during loss recovery after partial ACK. */
2440 static int tcp_try_undo_loss(struct sock *sk)
2441 {
2442 	struct tcp_sock *tp = tcp_sk(sk);
2443 
2444 	if (tcp_may_undo(tp)) {
2445 		struct sk_buff *skb;
2446 		tcp_for_write_queue(skb, sk) {
2447 			if (skb == tcp_send_head(sk))
2448 				break;
2449 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2450 		}
2451 
2452 		tcp_clear_all_retrans_hints(tp);
2453 
2454 		DBGUNDO(sk, "partial loss");
2455 		tp->lost_out = 0;
2456 		tcp_undo_cwr(sk, 1);
2457 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2458 		inet_csk(sk)->icsk_retransmits = 0;
2459 		tp->undo_marker = 0;
2460 		if (tcp_is_sack(tp))
2461 			tcp_set_ca_state(sk, TCP_CA_Open);
2462 		return 1;
2463 	}
2464 	return 0;
2465 }
2466 
2467 static inline void tcp_complete_cwr(struct sock *sk)
2468 {
2469 	struct tcp_sock *tp = tcp_sk(sk);
2470 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2471 	tp->snd_cwnd_stamp = tcp_time_stamp;
2472 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2473 }
2474 
2475 static void tcp_try_to_open(struct sock *sk, int flag)
2476 {
2477 	struct tcp_sock *tp = tcp_sk(sk);
2478 
2479 	tcp_verify_left_out(tp);
2480 
2481 	if (tp->retrans_out == 0)
2482 		tp->retrans_stamp = 0;
2483 
2484 	if (flag & FLAG_ECE)
2485 		tcp_enter_cwr(sk, 1);
2486 
2487 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2488 		int state = TCP_CA_Open;
2489 
2490 		if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2491 			state = TCP_CA_Disorder;
2492 
2493 		if (inet_csk(sk)->icsk_ca_state != state) {
2494 			tcp_set_ca_state(sk, state);
2495 			tp->high_seq = tp->snd_nxt;
2496 		}
2497 		tcp_moderate_cwnd(tp);
2498 	} else {
2499 		tcp_cwnd_down(sk, flag);
2500 	}
2501 }
2502 
2503 static void tcp_mtup_probe_failed(struct sock *sk)
2504 {
2505 	struct inet_connection_sock *icsk = inet_csk(sk);
2506 
2507 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2508 	icsk->icsk_mtup.probe_size = 0;
2509 }
2510 
2511 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2512 {
2513 	struct tcp_sock *tp = tcp_sk(sk);
2514 	struct inet_connection_sock *icsk = inet_csk(sk);
2515 
2516 	/* FIXME: breaks with very large cwnd */
2517 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2518 	tp->snd_cwnd = tp->snd_cwnd *
2519 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2520 		       icsk->icsk_mtup.probe_size;
2521 	tp->snd_cwnd_cnt = 0;
2522 	tp->snd_cwnd_stamp = tcp_time_stamp;
2523 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2524 
2525 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2526 	icsk->icsk_mtup.probe_size = 0;
2527 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2528 }
2529 
2530 /* Process an event, which can update packets-in-flight not trivially.
2531  * Main goal of this function is to calculate new estimate for left_out,
2532  * taking into account both packets sitting in receiver's buffer and
2533  * packets lost by network.
2534  *
2535  * Besides that it does CWND reduction, when packet loss is detected
2536  * and changes state of machine.
2537  *
2538  * It does _not_ decide what to send, it is made in function
2539  * tcp_xmit_retransmit_queue().
2540  */
2541 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2542 {
2543 	struct inet_connection_sock *icsk = inet_csk(sk);
2544 	struct tcp_sock *tp = tcp_sk(sk);
2545 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2546 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2547 				    (tcp_fackets_out(tp) > tp->reordering));
2548 	int fast_rexmit = 0;
2549 
2550 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2551 		tp->sacked_out = 0;
2552 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2553 		tp->fackets_out = 0;
2554 
2555 	/* Now state machine starts.
2556 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2557 	if (flag & FLAG_ECE)
2558 		tp->prior_ssthresh = 0;
2559 
2560 	/* B. In all the states check for reneging SACKs. */
2561 	if (tcp_check_sack_reneging(sk, flag))
2562 		return;
2563 
2564 	/* C. Process data loss notification, provided it is valid. */
2565 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2566 	    before(tp->snd_una, tp->high_seq) &&
2567 	    icsk->icsk_ca_state != TCP_CA_Open &&
2568 	    tp->fackets_out > tp->reordering) {
2569 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2570 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2571 	}
2572 
2573 	/* D. Check consistency of the current state. */
2574 	tcp_verify_left_out(tp);
2575 
2576 	/* E. Check state exit conditions. State can be terminated
2577 	 *    when high_seq is ACKed. */
2578 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2579 		BUG_TRAP(tp->retrans_out == 0);
2580 		tp->retrans_stamp = 0;
2581 	} else if (!before(tp->snd_una, tp->high_seq)) {
2582 		switch (icsk->icsk_ca_state) {
2583 		case TCP_CA_Loss:
2584 			icsk->icsk_retransmits = 0;
2585 			if (tcp_try_undo_recovery(sk))
2586 				return;
2587 			break;
2588 
2589 		case TCP_CA_CWR:
2590 			/* CWR is to be held something *above* high_seq
2591 			 * is ACKed for CWR bit to reach receiver. */
2592 			if (tp->snd_una != tp->high_seq) {
2593 				tcp_complete_cwr(sk);
2594 				tcp_set_ca_state(sk, TCP_CA_Open);
2595 			}
2596 			break;
2597 
2598 		case TCP_CA_Disorder:
2599 			tcp_try_undo_dsack(sk);
2600 			if (!tp->undo_marker ||
2601 			    /* For SACK case do not Open to allow to undo
2602 			     * catching for all duplicate ACKs. */
2603 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2604 				tp->undo_marker = 0;
2605 				tcp_set_ca_state(sk, TCP_CA_Open);
2606 			}
2607 			break;
2608 
2609 		case TCP_CA_Recovery:
2610 			if (tcp_is_reno(tp))
2611 				tcp_reset_reno_sack(tp);
2612 			if (tcp_try_undo_recovery(sk))
2613 				return;
2614 			tcp_complete_cwr(sk);
2615 			break;
2616 		}
2617 	}
2618 
2619 	/* F. Process state. */
2620 	switch (icsk->icsk_ca_state) {
2621 	case TCP_CA_Recovery:
2622 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2623 			if (tcp_is_reno(tp) && is_dupack)
2624 				tcp_add_reno_sack(sk);
2625 		} else
2626 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2627 		break;
2628 	case TCP_CA_Loss:
2629 		if (flag & FLAG_DATA_ACKED)
2630 			icsk->icsk_retransmits = 0;
2631 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2632 			tcp_reset_reno_sack(tp);
2633 		if (!tcp_try_undo_loss(sk)) {
2634 			tcp_moderate_cwnd(tp);
2635 			tcp_xmit_retransmit_queue(sk);
2636 			return;
2637 		}
2638 		if (icsk->icsk_ca_state != TCP_CA_Open)
2639 			return;
2640 		/* Loss is undone; fall through to processing in Open state. */
2641 	default:
2642 		if (tcp_is_reno(tp)) {
2643 			if (flag & FLAG_SND_UNA_ADVANCED)
2644 				tcp_reset_reno_sack(tp);
2645 			if (is_dupack)
2646 				tcp_add_reno_sack(sk);
2647 		}
2648 
2649 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2650 			tcp_try_undo_dsack(sk);
2651 
2652 		if (!tcp_time_to_recover(sk)) {
2653 			tcp_try_to_open(sk, flag);
2654 			return;
2655 		}
2656 
2657 		/* MTU probe failure: don't reduce cwnd */
2658 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2659 		    icsk->icsk_mtup.probe_size &&
2660 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2661 			tcp_mtup_probe_failed(sk);
2662 			/* Restores the reduction we did in tcp_mtup_probe() */
2663 			tp->snd_cwnd++;
2664 			tcp_simple_retransmit(sk);
2665 			return;
2666 		}
2667 
2668 		/* Otherwise enter Recovery state */
2669 
2670 		if (tcp_is_reno(tp))
2671 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2672 		else
2673 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2674 
2675 		tp->high_seq = tp->snd_nxt;
2676 		tp->prior_ssthresh = 0;
2677 		tp->undo_marker = tp->snd_una;
2678 		tp->undo_retrans = tp->retrans_out;
2679 
2680 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2681 			if (!(flag & FLAG_ECE))
2682 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2683 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2684 			TCP_ECN_queue_cwr(tp);
2685 		}
2686 
2687 		tp->bytes_acked = 0;
2688 		tp->snd_cwnd_cnt = 0;
2689 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2690 		fast_rexmit = 1;
2691 	}
2692 
2693 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2694 		tcp_update_scoreboard(sk, fast_rexmit);
2695 	tcp_cwnd_down(sk, flag);
2696 	tcp_xmit_retransmit_queue(sk);
2697 }
2698 
2699 /* Read draft-ietf-tcplw-high-performance before mucking
2700  * with this code. (Supersedes RFC1323)
2701  */
2702 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2703 {
2704 	/* RTTM Rule: A TSecr value received in a segment is used to
2705 	 * update the averaged RTT measurement only if the segment
2706 	 * acknowledges some new data, i.e., only if it advances the
2707 	 * left edge of the send window.
2708 	 *
2709 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2710 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2711 	 *
2712 	 * Changed: reset backoff as soon as we see the first valid sample.
2713 	 * If we do not, we get strongly overestimated rto. With timestamps
2714 	 * samples are accepted even from very old segments: f.e., when rtt=1
2715 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2716 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2717 	 * in window is lost... Voila.	 			--ANK (010210)
2718 	 */
2719 	struct tcp_sock *tp = tcp_sk(sk);
2720 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2721 	tcp_rtt_estimator(sk, seq_rtt);
2722 	tcp_set_rto(sk);
2723 	inet_csk(sk)->icsk_backoff = 0;
2724 	tcp_bound_rto(sk);
2725 }
2726 
2727 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2728 {
2729 	/* We don't have a timestamp. Can only use
2730 	 * packets that are not retransmitted to determine
2731 	 * rtt estimates. Also, we must not reset the
2732 	 * backoff for rto until we get a non-retransmitted
2733 	 * packet. This allows us to deal with a situation
2734 	 * where the network delay has increased suddenly.
2735 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2736 	 */
2737 
2738 	if (flag & FLAG_RETRANS_DATA_ACKED)
2739 		return;
2740 
2741 	tcp_rtt_estimator(sk, seq_rtt);
2742 	tcp_set_rto(sk);
2743 	inet_csk(sk)->icsk_backoff = 0;
2744 	tcp_bound_rto(sk);
2745 }
2746 
2747 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2748 				      const s32 seq_rtt)
2749 {
2750 	const struct tcp_sock *tp = tcp_sk(sk);
2751 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2752 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2753 		tcp_ack_saw_tstamp(sk, flag);
2754 	else if (seq_rtt >= 0)
2755 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2756 }
2757 
2758 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2759 {
2760 	const struct inet_connection_sock *icsk = inet_csk(sk);
2761 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2762 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2763 }
2764 
2765 /* Restart timer after forward progress on connection.
2766  * RFC2988 recommends to restart timer to now+rto.
2767  */
2768 static void tcp_rearm_rto(struct sock *sk)
2769 {
2770 	struct tcp_sock *tp = tcp_sk(sk);
2771 
2772 	if (!tp->packets_out) {
2773 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2774 	} else {
2775 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2776 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2777 	}
2778 }
2779 
2780 /* If we get here, the whole TSO packet has not been acked. */
2781 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2782 {
2783 	struct tcp_sock *tp = tcp_sk(sk);
2784 	u32 packets_acked;
2785 
2786 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2787 
2788 	packets_acked = tcp_skb_pcount(skb);
2789 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2790 		return 0;
2791 	packets_acked -= tcp_skb_pcount(skb);
2792 
2793 	if (packets_acked) {
2794 		BUG_ON(tcp_skb_pcount(skb) == 0);
2795 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2796 	}
2797 
2798 	return packets_acked;
2799 }
2800 
2801 /* Remove acknowledged frames from the retransmission queue. If our packet
2802  * is before the ack sequence we can discard it as it's confirmed to have
2803  * arrived at the other end.
2804  */
2805 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2806 {
2807 	struct tcp_sock *tp = tcp_sk(sk);
2808 	const struct inet_connection_sock *icsk = inet_csk(sk);
2809 	struct sk_buff *skb;
2810 	u32 now = tcp_time_stamp;
2811 	int fully_acked = 1;
2812 	int flag = 0;
2813 	u32 pkts_acked = 0;
2814 	u32 reord = tp->packets_out;
2815 	s32 seq_rtt = -1;
2816 	s32 ca_seq_rtt = -1;
2817 	ktime_t last_ackt = net_invalid_timestamp();
2818 
2819 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2820 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2821 		u32 end_seq;
2822 		u32 acked_pcount;
2823 		u8 sacked = scb->sacked;
2824 
2825 		/* Determine how many packets and what bytes were acked, tso and else */
2826 		if (after(scb->end_seq, tp->snd_una)) {
2827 			if (tcp_skb_pcount(skb) == 1 ||
2828 			    !after(tp->snd_una, scb->seq))
2829 				break;
2830 
2831 			acked_pcount = tcp_tso_acked(sk, skb);
2832 			if (!acked_pcount)
2833 				break;
2834 
2835 			fully_acked = 0;
2836 			end_seq = tp->snd_una;
2837 		} else {
2838 			acked_pcount = tcp_skb_pcount(skb);
2839 			end_seq = scb->end_seq;
2840 		}
2841 
2842 		/* MTU probing checks */
2843 		if (fully_acked && icsk->icsk_mtup.probe_size &&
2844 		    !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2845 			tcp_mtup_probe_success(sk, skb);
2846 		}
2847 
2848 		if (sacked & TCPCB_RETRANS) {
2849 			if (sacked & TCPCB_SACKED_RETRANS)
2850 				tp->retrans_out -= acked_pcount;
2851 			flag |= FLAG_RETRANS_DATA_ACKED;
2852 			ca_seq_rtt = -1;
2853 			seq_rtt = -1;
2854 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2855 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
2856 		} else {
2857 			ca_seq_rtt = now - scb->when;
2858 			last_ackt = skb->tstamp;
2859 			if (seq_rtt < 0) {
2860 				seq_rtt = ca_seq_rtt;
2861 			}
2862 			if (!(sacked & TCPCB_SACKED_ACKED))
2863 				reord = min(pkts_acked, reord);
2864 		}
2865 
2866 		if (sacked & TCPCB_SACKED_ACKED)
2867 			tp->sacked_out -= acked_pcount;
2868 		if (sacked & TCPCB_LOST)
2869 			tp->lost_out -= acked_pcount;
2870 
2871 		if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2872 			tp->urg_mode = 0;
2873 
2874 		tp->packets_out -= acked_pcount;
2875 		pkts_acked += acked_pcount;
2876 
2877 		/* Initial outgoing SYN's get put onto the write_queue
2878 		 * just like anything else we transmit.  It is not
2879 		 * true data, and if we misinform our callers that
2880 		 * this ACK acks real data, we will erroneously exit
2881 		 * connection startup slow start one packet too
2882 		 * quickly.  This is severely frowned upon behavior.
2883 		 */
2884 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2885 			flag |= FLAG_DATA_ACKED;
2886 		} else {
2887 			flag |= FLAG_SYN_ACKED;
2888 			tp->retrans_stamp = 0;
2889 		}
2890 
2891 		if (!fully_acked)
2892 			break;
2893 
2894 		tcp_unlink_write_queue(skb, sk);
2895 		sk_wmem_free_skb(sk, skb);
2896 		tcp_clear_all_retrans_hints(tp);
2897 	}
2898 
2899 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2900 		flag |= FLAG_SACK_RENEGING;
2901 
2902 	if (flag & FLAG_ACKED) {
2903 		const struct tcp_congestion_ops *ca_ops
2904 			= inet_csk(sk)->icsk_ca_ops;
2905 
2906 		tcp_ack_update_rtt(sk, flag, seq_rtt);
2907 		tcp_rearm_rto(sk);
2908 
2909 		if (tcp_is_reno(tp)) {
2910 			tcp_remove_reno_sacks(sk, pkts_acked);
2911 		} else {
2912 			/* Non-retransmitted hole got filled? That's reordering */
2913 			if (reord < prior_fackets)
2914 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2915 		}
2916 
2917 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2918 
2919 		if (ca_ops->pkts_acked) {
2920 			s32 rtt_us = -1;
2921 
2922 			/* Is the ACK triggering packet unambiguous? */
2923 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2924 				/* High resolution needed and available? */
2925 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2926 				    !ktime_equal(last_ackt,
2927 						 net_invalid_timestamp()))
2928 					rtt_us = ktime_us_delta(ktime_get_real(),
2929 								last_ackt);
2930 				else if (ca_seq_rtt > 0)
2931 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
2932 			}
2933 
2934 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2935 		}
2936 	}
2937 
2938 #if FASTRETRANS_DEBUG > 0
2939 	BUG_TRAP((int)tp->sacked_out >= 0);
2940 	BUG_TRAP((int)tp->lost_out >= 0);
2941 	BUG_TRAP((int)tp->retrans_out >= 0);
2942 	if (!tp->packets_out && tcp_is_sack(tp)) {
2943 		icsk = inet_csk(sk);
2944 		if (tp->lost_out) {
2945 			printk(KERN_DEBUG "Leak l=%u %d\n",
2946 			       tp->lost_out, icsk->icsk_ca_state);
2947 			tp->lost_out = 0;
2948 		}
2949 		if (tp->sacked_out) {
2950 			printk(KERN_DEBUG "Leak s=%u %d\n",
2951 			       tp->sacked_out, icsk->icsk_ca_state);
2952 			tp->sacked_out = 0;
2953 		}
2954 		if (tp->retrans_out) {
2955 			printk(KERN_DEBUG "Leak r=%u %d\n",
2956 			       tp->retrans_out, icsk->icsk_ca_state);
2957 			tp->retrans_out = 0;
2958 		}
2959 	}
2960 #endif
2961 	return flag;
2962 }
2963 
2964 static void tcp_ack_probe(struct sock *sk)
2965 {
2966 	const struct tcp_sock *tp = tcp_sk(sk);
2967 	struct inet_connection_sock *icsk = inet_csk(sk);
2968 
2969 	/* Was it a usable window open? */
2970 
2971 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2972 		icsk->icsk_backoff = 0;
2973 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2974 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2975 		 * This function is not for random using!
2976 		 */
2977 	} else {
2978 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2979 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2980 					  TCP_RTO_MAX);
2981 	}
2982 }
2983 
2984 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2985 {
2986 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2987 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2988 }
2989 
2990 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2991 {
2992 	const struct tcp_sock *tp = tcp_sk(sk);
2993 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2994 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2995 }
2996 
2997 /* Check that window update is acceptable.
2998  * The function assumes that snd_una<=ack<=snd_next.
2999  */
3000 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3001 					const u32 ack, const u32 ack_seq,
3002 					const u32 nwin)
3003 {
3004 	return (after(ack, tp->snd_una) ||
3005 		after(ack_seq, tp->snd_wl1) ||
3006 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3007 }
3008 
3009 /* Update our send window.
3010  *
3011  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3012  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3013  */
3014 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3015 				 u32 ack_seq)
3016 {
3017 	struct tcp_sock *tp = tcp_sk(sk);
3018 	int flag = 0;
3019 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3020 
3021 	if (likely(!tcp_hdr(skb)->syn))
3022 		nwin <<= tp->rx_opt.snd_wscale;
3023 
3024 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3025 		flag |= FLAG_WIN_UPDATE;
3026 		tcp_update_wl(tp, ack, ack_seq);
3027 
3028 		if (tp->snd_wnd != nwin) {
3029 			tp->snd_wnd = nwin;
3030 
3031 			/* Note, it is the only place, where
3032 			 * fast path is recovered for sending TCP.
3033 			 */
3034 			tp->pred_flags = 0;
3035 			tcp_fast_path_check(sk);
3036 
3037 			if (nwin > tp->max_window) {
3038 				tp->max_window = nwin;
3039 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3040 			}
3041 		}
3042 	}
3043 
3044 	tp->snd_una = ack;
3045 
3046 	return flag;
3047 }
3048 
3049 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3050  * continue in congestion avoidance.
3051  */
3052 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3053 {
3054 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3055 	tp->snd_cwnd_cnt = 0;
3056 	tp->bytes_acked = 0;
3057 	TCP_ECN_queue_cwr(tp);
3058 	tcp_moderate_cwnd(tp);
3059 }
3060 
3061 /* A conservative spurious RTO response algorithm: reduce cwnd using
3062  * rate halving and continue in congestion avoidance.
3063  */
3064 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3065 {
3066 	tcp_enter_cwr(sk, 0);
3067 }
3068 
3069 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3070 {
3071 	if (flag & FLAG_ECE)
3072 		tcp_ratehalving_spur_to_response(sk);
3073 	else
3074 		tcp_undo_cwr(sk, 1);
3075 }
3076 
3077 /* F-RTO spurious RTO detection algorithm (RFC4138)
3078  *
3079  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3080  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3081  * window (but not to or beyond highest sequence sent before RTO):
3082  *   On First ACK,  send two new segments out.
3083  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3084  *                  algorithm is not part of the F-RTO detection algorithm
3085  *                  given in RFC4138 but can be selected separately).
3086  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3087  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3088  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3089  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3090  *
3091  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3092  * original window even after we transmit two new data segments.
3093  *
3094  * SACK version:
3095  *   on first step, wait until first cumulative ACK arrives, then move to
3096  *   the second step. In second step, the next ACK decides.
3097  *
3098  * F-RTO is implemented (mainly) in four functions:
3099  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3100  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3101  *     called when tcp_use_frto() showed green light
3102  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3103  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3104  *     to prove that the RTO is indeed spurious. It transfers the control
3105  *     from F-RTO to the conventional RTO recovery
3106  */
3107 static int tcp_process_frto(struct sock *sk, int flag)
3108 {
3109 	struct tcp_sock *tp = tcp_sk(sk);
3110 
3111 	tcp_verify_left_out(tp);
3112 
3113 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3114 	if (flag & FLAG_DATA_ACKED)
3115 		inet_csk(sk)->icsk_retransmits = 0;
3116 
3117 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3118 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3119 		tp->undo_marker = 0;
3120 
3121 	if (!before(tp->snd_una, tp->frto_highmark)) {
3122 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3123 		return 1;
3124 	}
3125 
3126 	if (!IsSackFrto() || tcp_is_reno(tp)) {
3127 		/* RFC4138 shortcoming in step 2; should also have case c):
3128 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3129 		 * data, winupdate
3130 		 */
3131 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3132 			return 1;
3133 
3134 		if (!(flag & FLAG_DATA_ACKED)) {
3135 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3136 					    flag);
3137 			return 1;
3138 		}
3139 	} else {
3140 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3141 			/* Prevent sending of new data. */
3142 			tp->snd_cwnd = min(tp->snd_cwnd,
3143 					   tcp_packets_in_flight(tp));
3144 			return 1;
3145 		}
3146 
3147 		if ((tp->frto_counter >= 2) &&
3148 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3149 		     ((flag & FLAG_DATA_SACKED) &&
3150 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3151 			/* RFC4138 shortcoming (see comment above) */
3152 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3153 			    (flag & FLAG_NOT_DUP))
3154 				return 1;
3155 
3156 			tcp_enter_frto_loss(sk, 3, flag);
3157 			return 1;
3158 		}
3159 	}
3160 
3161 	if (tp->frto_counter == 1) {
3162 		/* tcp_may_send_now needs to see updated state */
3163 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3164 		tp->frto_counter = 2;
3165 
3166 		if (!tcp_may_send_now(sk))
3167 			tcp_enter_frto_loss(sk, 2, flag);
3168 
3169 		return 1;
3170 	} else {
3171 		switch (sysctl_tcp_frto_response) {
3172 		case 2:
3173 			tcp_undo_spur_to_response(sk, flag);
3174 			break;
3175 		case 1:
3176 			tcp_conservative_spur_to_response(tp);
3177 			break;
3178 		default:
3179 			tcp_ratehalving_spur_to_response(sk);
3180 			break;
3181 		}
3182 		tp->frto_counter = 0;
3183 		tp->undo_marker = 0;
3184 		NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3185 	}
3186 	return 0;
3187 }
3188 
3189 /* This routine deals with incoming acks, but not outgoing ones. */
3190 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3191 {
3192 	struct inet_connection_sock *icsk = inet_csk(sk);
3193 	struct tcp_sock *tp = tcp_sk(sk);
3194 	u32 prior_snd_una = tp->snd_una;
3195 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3196 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3197 	u32 prior_in_flight;
3198 	u32 prior_fackets;
3199 	int prior_packets;
3200 	int frto_cwnd = 0;
3201 
3202 	/* If the ack is newer than sent or older than previous acks
3203 	 * then we can probably ignore it.
3204 	 */
3205 	if (after(ack, tp->snd_nxt))
3206 		goto uninteresting_ack;
3207 
3208 	if (before(ack, prior_snd_una))
3209 		goto old_ack;
3210 
3211 	if (after(ack, prior_snd_una))
3212 		flag |= FLAG_SND_UNA_ADVANCED;
3213 
3214 	if (sysctl_tcp_abc) {
3215 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3216 			tp->bytes_acked += ack - prior_snd_una;
3217 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3218 			/* we assume just one segment left network */
3219 			tp->bytes_acked += min(ack - prior_snd_una,
3220 					       tp->mss_cache);
3221 	}
3222 
3223 	prior_fackets = tp->fackets_out;
3224 	prior_in_flight = tcp_packets_in_flight(tp);
3225 
3226 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3227 		/* Window is constant, pure forward advance.
3228 		 * No more checks are required.
3229 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3230 		 */
3231 		tcp_update_wl(tp, ack, ack_seq);
3232 		tp->snd_una = ack;
3233 		flag |= FLAG_WIN_UPDATE;
3234 
3235 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3236 
3237 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3238 	} else {
3239 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3240 			flag |= FLAG_DATA;
3241 		else
3242 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3243 
3244 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3245 
3246 		if (TCP_SKB_CB(skb)->sacked)
3247 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3248 
3249 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3250 			flag |= FLAG_ECE;
3251 
3252 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3253 	}
3254 
3255 	/* We passed data and got it acked, remove any soft error
3256 	 * log. Something worked...
3257 	 */
3258 	sk->sk_err_soft = 0;
3259 	tp->rcv_tstamp = tcp_time_stamp;
3260 	prior_packets = tp->packets_out;
3261 	if (!prior_packets)
3262 		goto no_queue;
3263 
3264 	/* See if we can take anything off of the retransmit queue. */
3265 	flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3266 
3267 	if (tp->frto_counter)
3268 		frto_cwnd = tcp_process_frto(sk, flag);
3269 	/* Guarantee sacktag reordering detection against wrap-arounds */
3270 	if (before(tp->frto_highmark, tp->snd_una))
3271 		tp->frto_highmark = 0;
3272 
3273 	if (tcp_ack_is_dubious(sk, flag)) {
3274 		/* Advance CWND, if state allows this. */
3275 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3276 		    tcp_may_raise_cwnd(sk, flag))
3277 			tcp_cong_avoid(sk, ack, prior_in_flight);
3278 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3279 				      flag);
3280 	} else {
3281 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3282 			tcp_cong_avoid(sk, ack, prior_in_flight);
3283 	}
3284 
3285 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3286 		dst_confirm(sk->sk_dst_cache);
3287 
3288 	return 1;
3289 
3290 no_queue:
3291 	icsk->icsk_probes_out = 0;
3292 
3293 	/* If this ack opens up a zero window, clear backoff.  It was
3294 	 * being used to time the probes, and is probably far higher than
3295 	 * it needs to be for normal retransmission.
3296 	 */
3297 	if (tcp_send_head(sk))
3298 		tcp_ack_probe(sk);
3299 	return 1;
3300 
3301 old_ack:
3302 	if (TCP_SKB_CB(skb)->sacked)
3303 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3304 
3305 uninteresting_ack:
3306 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3307 	return 0;
3308 }
3309 
3310 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3311  * But, this can also be called on packets in the established flow when
3312  * the fast version below fails.
3313  */
3314 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3315 		       int estab)
3316 {
3317 	unsigned char *ptr;
3318 	struct tcphdr *th = tcp_hdr(skb);
3319 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3320 
3321 	ptr = (unsigned char *)(th + 1);
3322 	opt_rx->saw_tstamp = 0;
3323 
3324 	while (length > 0) {
3325 		int opcode = *ptr++;
3326 		int opsize;
3327 
3328 		switch (opcode) {
3329 		case TCPOPT_EOL:
3330 			return;
3331 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3332 			length--;
3333 			continue;
3334 		default:
3335 			opsize = *ptr++;
3336 			if (opsize < 2) /* "silly options" */
3337 				return;
3338 			if (opsize > length)
3339 				return;	/* don't parse partial options */
3340 			switch (opcode) {
3341 			case TCPOPT_MSS:
3342 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3343 					u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3344 					if (in_mss) {
3345 						if (opt_rx->user_mss &&
3346 						    opt_rx->user_mss < in_mss)
3347 							in_mss = opt_rx->user_mss;
3348 						opt_rx->mss_clamp = in_mss;
3349 					}
3350 				}
3351 				break;
3352 			case TCPOPT_WINDOW:
3353 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3354 				    !estab && sysctl_tcp_window_scaling) {
3355 					__u8 snd_wscale = *(__u8 *)ptr;
3356 					opt_rx->wscale_ok = 1;
3357 					if (snd_wscale > 14) {
3358 						if (net_ratelimit())
3359 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3360 							       "scaling value %d >14 received.\n",
3361 							       snd_wscale);
3362 						snd_wscale = 14;
3363 					}
3364 					opt_rx->snd_wscale = snd_wscale;
3365 				}
3366 				break;
3367 			case TCPOPT_TIMESTAMP:
3368 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3369 				    ((estab && opt_rx->tstamp_ok) ||
3370 				     (!estab && sysctl_tcp_timestamps))) {
3371 					opt_rx->saw_tstamp = 1;
3372 					opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3373 					opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3374 				}
3375 				break;
3376 			case TCPOPT_SACK_PERM:
3377 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3378 				    !estab && sysctl_tcp_sack) {
3379 					opt_rx->sack_ok = 1;
3380 					tcp_sack_reset(opt_rx);
3381 				}
3382 				break;
3383 
3384 			case TCPOPT_SACK:
3385 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3386 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3387 				   opt_rx->sack_ok) {
3388 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3389 				}
3390 				break;
3391 #ifdef CONFIG_TCP_MD5SIG
3392 			case TCPOPT_MD5SIG:
3393 				/*
3394 				 * The MD5 Hash has already been
3395 				 * checked (see tcp_v{4,6}_do_rcv()).
3396 				 */
3397 				break;
3398 #endif
3399 			}
3400 
3401 			ptr += opsize-2;
3402 			length -= opsize;
3403 		}
3404 	}
3405 }
3406 
3407 /* Fast parse options. This hopes to only see timestamps.
3408  * If it is wrong it falls back on tcp_parse_options().
3409  */
3410 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3411 				  struct tcp_sock *tp)
3412 {
3413 	if (th->doff == sizeof(struct tcphdr) >> 2) {
3414 		tp->rx_opt.saw_tstamp = 0;
3415 		return 0;
3416 	} else if (tp->rx_opt.tstamp_ok &&
3417 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3418 		__be32 *ptr = (__be32 *)(th + 1);
3419 		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3420 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3421 			tp->rx_opt.saw_tstamp = 1;
3422 			++ptr;
3423 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3424 			++ptr;
3425 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3426 			return 1;
3427 		}
3428 	}
3429 	tcp_parse_options(skb, &tp->rx_opt, 1);
3430 	return 1;
3431 }
3432 
3433 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3434 {
3435 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3436 	tp->rx_opt.ts_recent_stamp = get_seconds();
3437 }
3438 
3439 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3440 {
3441 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3442 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3443 		 * extra check below makes sure this can only happen
3444 		 * for pure ACK frames.  -DaveM
3445 		 *
3446 		 * Not only, also it occurs for expired timestamps.
3447 		 */
3448 
3449 		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3450 		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3451 			tcp_store_ts_recent(tp);
3452 	}
3453 }
3454 
3455 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3456  *
3457  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3458  * it can pass through stack. So, the following predicate verifies that
3459  * this segment is not used for anything but congestion avoidance or
3460  * fast retransmit. Moreover, we even are able to eliminate most of such
3461  * second order effects, if we apply some small "replay" window (~RTO)
3462  * to timestamp space.
3463  *
3464  * All these measures still do not guarantee that we reject wrapped ACKs
3465  * on networks with high bandwidth, when sequence space is recycled fastly,
3466  * but it guarantees that such events will be very rare and do not affect
3467  * connection seriously. This doesn't look nice, but alas, PAWS is really
3468  * buggy extension.
3469  *
3470  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3471  * states that events when retransmit arrives after original data are rare.
3472  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3473  * the biggest problem on large power networks even with minor reordering.
3474  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3475  * up to bandwidth of 18Gigabit/sec. 8) ]
3476  */
3477 
3478 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3479 {
3480 	struct tcp_sock *tp = tcp_sk(sk);
3481 	struct tcphdr *th = tcp_hdr(skb);
3482 	u32 seq = TCP_SKB_CB(skb)->seq;
3483 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3484 
3485 	return (/* 1. Pure ACK with correct sequence number. */
3486 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3487 
3488 		/* 2. ... and duplicate ACK. */
3489 		ack == tp->snd_una &&
3490 
3491 		/* 3. ... and does not update window. */
3492 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3493 
3494 		/* 4. ... and sits in replay window. */
3495 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3496 }
3497 
3498 static inline int tcp_paws_discard(const struct sock *sk,
3499 				   const struct sk_buff *skb)
3500 {
3501 	const struct tcp_sock *tp = tcp_sk(sk);
3502 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3503 		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3504 		!tcp_disordered_ack(sk, skb));
3505 }
3506 
3507 /* Check segment sequence number for validity.
3508  *
3509  * Segment controls are considered valid, if the segment
3510  * fits to the window after truncation to the window. Acceptability
3511  * of data (and SYN, FIN, of course) is checked separately.
3512  * See tcp_data_queue(), for example.
3513  *
3514  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3515  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3516  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3517  * (borrowed from freebsd)
3518  */
3519 
3520 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3521 {
3522 	return	!before(end_seq, tp->rcv_wup) &&
3523 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3524 }
3525 
3526 /* When we get a reset we do this. */
3527 static void tcp_reset(struct sock *sk)
3528 {
3529 	/* We want the right error as BSD sees it (and indeed as we do). */
3530 	switch (sk->sk_state) {
3531 	case TCP_SYN_SENT:
3532 		sk->sk_err = ECONNREFUSED;
3533 		break;
3534 	case TCP_CLOSE_WAIT:
3535 		sk->sk_err = EPIPE;
3536 		break;
3537 	case TCP_CLOSE:
3538 		return;
3539 	default:
3540 		sk->sk_err = ECONNRESET;
3541 	}
3542 
3543 	if (!sock_flag(sk, SOCK_DEAD))
3544 		sk->sk_error_report(sk);
3545 
3546 	tcp_done(sk);
3547 }
3548 
3549 /*
3550  * 	Process the FIN bit. This now behaves as it is supposed to work
3551  *	and the FIN takes effect when it is validly part of sequence
3552  *	space. Not before when we get holes.
3553  *
3554  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3555  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3556  *	TIME-WAIT)
3557  *
3558  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3559  *	close and we go into CLOSING (and later onto TIME-WAIT)
3560  *
3561  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3562  */
3563 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3564 {
3565 	struct tcp_sock *tp = tcp_sk(sk);
3566 
3567 	inet_csk_schedule_ack(sk);
3568 
3569 	sk->sk_shutdown |= RCV_SHUTDOWN;
3570 	sock_set_flag(sk, SOCK_DONE);
3571 
3572 	switch (sk->sk_state) {
3573 	case TCP_SYN_RECV:
3574 	case TCP_ESTABLISHED:
3575 		/* Move to CLOSE_WAIT */
3576 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3577 		inet_csk(sk)->icsk_ack.pingpong = 1;
3578 		break;
3579 
3580 	case TCP_CLOSE_WAIT:
3581 	case TCP_CLOSING:
3582 		/* Received a retransmission of the FIN, do
3583 		 * nothing.
3584 		 */
3585 		break;
3586 	case TCP_LAST_ACK:
3587 		/* RFC793: Remain in the LAST-ACK state. */
3588 		break;
3589 
3590 	case TCP_FIN_WAIT1:
3591 		/* This case occurs when a simultaneous close
3592 		 * happens, we must ack the received FIN and
3593 		 * enter the CLOSING state.
3594 		 */
3595 		tcp_send_ack(sk);
3596 		tcp_set_state(sk, TCP_CLOSING);
3597 		break;
3598 	case TCP_FIN_WAIT2:
3599 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3600 		tcp_send_ack(sk);
3601 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3602 		break;
3603 	default:
3604 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3605 		 * cases we should never reach this piece of code.
3606 		 */
3607 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3608 		       __func__, sk->sk_state);
3609 		break;
3610 	}
3611 
3612 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3613 	 * Probably, we should reset in this case. For now drop them.
3614 	 */
3615 	__skb_queue_purge(&tp->out_of_order_queue);
3616 	if (tcp_is_sack(tp))
3617 		tcp_sack_reset(&tp->rx_opt);
3618 	sk_mem_reclaim(sk);
3619 
3620 	if (!sock_flag(sk, SOCK_DEAD)) {
3621 		sk->sk_state_change(sk);
3622 
3623 		/* Do not send POLL_HUP for half duplex close. */
3624 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3625 		    sk->sk_state == TCP_CLOSE)
3626 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3627 		else
3628 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3629 	}
3630 }
3631 
3632 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3633 				  u32 end_seq)
3634 {
3635 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3636 		if (before(seq, sp->start_seq))
3637 			sp->start_seq = seq;
3638 		if (after(end_seq, sp->end_seq))
3639 			sp->end_seq = end_seq;
3640 		return 1;
3641 	}
3642 	return 0;
3643 }
3644 
3645 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3646 {
3647 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3648 		if (before(seq, tp->rcv_nxt))
3649 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3650 		else
3651 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3652 
3653 		tp->rx_opt.dsack = 1;
3654 		tp->duplicate_sack[0].start_seq = seq;
3655 		tp->duplicate_sack[0].end_seq = end_seq;
3656 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3657 					   4 - tp->rx_opt.tstamp_ok);
3658 	}
3659 }
3660 
3661 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3662 {
3663 	if (!tp->rx_opt.dsack)
3664 		tcp_dsack_set(tp, seq, end_seq);
3665 	else
3666 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3667 }
3668 
3669 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3670 {
3671 	struct tcp_sock *tp = tcp_sk(sk);
3672 
3673 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3674 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3675 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3676 		tcp_enter_quickack_mode(sk);
3677 
3678 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3679 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3680 
3681 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3682 				end_seq = tp->rcv_nxt;
3683 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3684 		}
3685 	}
3686 
3687 	tcp_send_ack(sk);
3688 }
3689 
3690 /* These routines update the SACK block as out-of-order packets arrive or
3691  * in-order packets close up the sequence space.
3692  */
3693 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3694 {
3695 	int this_sack;
3696 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3697 	struct tcp_sack_block *swalk = sp + 1;
3698 
3699 	/* See if the recent change to the first SACK eats into
3700 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3701 	 */
3702 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3703 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3704 			int i;
3705 
3706 			/* Zap SWALK, by moving every further SACK up by one slot.
3707 			 * Decrease num_sacks.
3708 			 */
3709 			tp->rx_opt.num_sacks--;
3710 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3711 						   tp->rx_opt.dsack,
3712 						   4 - tp->rx_opt.tstamp_ok);
3713 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3714 				sp[i] = sp[i + 1];
3715 			continue;
3716 		}
3717 		this_sack++, swalk++;
3718 	}
3719 }
3720 
3721 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3722 				 struct tcp_sack_block *sack2)
3723 {
3724 	__u32 tmp;
3725 
3726 	tmp = sack1->start_seq;
3727 	sack1->start_seq = sack2->start_seq;
3728 	sack2->start_seq = tmp;
3729 
3730 	tmp = sack1->end_seq;
3731 	sack1->end_seq = sack2->end_seq;
3732 	sack2->end_seq = tmp;
3733 }
3734 
3735 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3736 {
3737 	struct tcp_sock *tp = tcp_sk(sk);
3738 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3739 	int cur_sacks = tp->rx_opt.num_sacks;
3740 	int this_sack;
3741 
3742 	if (!cur_sacks)
3743 		goto new_sack;
3744 
3745 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3746 		if (tcp_sack_extend(sp, seq, end_seq)) {
3747 			/* Rotate this_sack to the first one. */
3748 			for (; this_sack > 0; this_sack--, sp--)
3749 				tcp_sack_swap(sp, sp - 1);
3750 			if (cur_sacks > 1)
3751 				tcp_sack_maybe_coalesce(tp);
3752 			return;
3753 		}
3754 	}
3755 
3756 	/* Could not find an adjacent existing SACK, build a new one,
3757 	 * put it at the front, and shift everyone else down.  We
3758 	 * always know there is at least one SACK present already here.
3759 	 *
3760 	 * If the sack array is full, forget about the last one.
3761 	 */
3762 	if (this_sack >= 4) {
3763 		this_sack--;
3764 		tp->rx_opt.num_sacks--;
3765 		sp--;
3766 	}
3767 	for (; this_sack > 0; this_sack--, sp--)
3768 		*sp = *(sp - 1);
3769 
3770 new_sack:
3771 	/* Build the new head SACK, and we're done. */
3772 	sp->start_seq = seq;
3773 	sp->end_seq = end_seq;
3774 	tp->rx_opt.num_sacks++;
3775 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3776 				   4 - tp->rx_opt.tstamp_ok);
3777 }
3778 
3779 /* RCV.NXT advances, some SACKs should be eaten. */
3780 
3781 static void tcp_sack_remove(struct tcp_sock *tp)
3782 {
3783 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3784 	int num_sacks = tp->rx_opt.num_sacks;
3785 	int this_sack;
3786 
3787 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3788 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3789 		tp->rx_opt.num_sacks = 0;
3790 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3791 		return;
3792 	}
3793 
3794 	for (this_sack = 0; this_sack < num_sacks;) {
3795 		/* Check if the start of the sack is covered by RCV.NXT. */
3796 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3797 			int i;
3798 
3799 			/* RCV.NXT must cover all the block! */
3800 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3801 
3802 			/* Zap this SACK, by moving forward any other SACKS. */
3803 			for (i=this_sack+1; i < num_sacks; i++)
3804 				tp->selective_acks[i-1] = tp->selective_acks[i];
3805 			num_sacks--;
3806 			continue;
3807 		}
3808 		this_sack++;
3809 		sp++;
3810 	}
3811 	if (num_sacks != tp->rx_opt.num_sacks) {
3812 		tp->rx_opt.num_sacks = num_sacks;
3813 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3814 					   tp->rx_opt.dsack,
3815 					   4 - tp->rx_opt.tstamp_ok);
3816 	}
3817 }
3818 
3819 /* This one checks to see if we can put data from the
3820  * out_of_order queue into the receive_queue.
3821  */
3822 static void tcp_ofo_queue(struct sock *sk)
3823 {
3824 	struct tcp_sock *tp = tcp_sk(sk);
3825 	__u32 dsack_high = tp->rcv_nxt;
3826 	struct sk_buff *skb;
3827 
3828 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3829 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3830 			break;
3831 
3832 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3833 			__u32 dsack = dsack_high;
3834 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3835 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3836 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3837 		}
3838 
3839 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3840 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3841 			__skb_unlink(skb, &tp->out_of_order_queue);
3842 			__kfree_skb(skb);
3843 			continue;
3844 		}
3845 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3846 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3847 			   TCP_SKB_CB(skb)->end_seq);
3848 
3849 		__skb_unlink(skb, &tp->out_of_order_queue);
3850 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3851 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3852 		if (tcp_hdr(skb)->fin)
3853 			tcp_fin(skb, sk, tcp_hdr(skb));
3854 	}
3855 }
3856 
3857 static int tcp_prune_ofo_queue(struct sock *sk);
3858 static int tcp_prune_queue(struct sock *sk);
3859 
3860 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3861 {
3862 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3863 	    !sk_rmem_schedule(sk, size)) {
3864 
3865 		if (tcp_prune_queue(sk) < 0)
3866 			return -1;
3867 
3868 		if (!sk_rmem_schedule(sk, size)) {
3869 			if (!tcp_prune_ofo_queue(sk))
3870 				return -1;
3871 
3872 			if (!sk_rmem_schedule(sk, size))
3873 				return -1;
3874 		}
3875 	}
3876 	return 0;
3877 }
3878 
3879 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3880 {
3881 	struct tcphdr *th = tcp_hdr(skb);
3882 	struct tcp_sock *tp = tcp_sk(sk);
3883 	int eaten = -1;
3884 
3885 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3886 		goto drop;
3887 
3888 	__skb_pull(skb, th->doff * 4);
3889 
3890 	TCP_ECN_accept_cwr(tp, skb);
3891 
3892 	if (tp->rx_opt.dsack) {
3893 		tp->rx_opt.dsack = 0;
3894 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3895 					     4 - tp->rx_opt.tstamp_ok);
3896 	}
3897 
3898 	/*  Queue data for delivery to the user.
3899 	 *  Packets in sequence go to the receive queue.
3900 	 *  Out of sequence packets to the out_of_order_queue.
3901 	 */
3902 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3903 		if (tcp_receive_window(tp) == 0)
3904 			goto out_of_window;
3905 
3906 		/* Ok. In sequence. In window. */
3907 		if (tp->ucopy.task == current &&
3908 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3909 		    sock_owned_by_user(sk) && !tp->urg_data) {
3910 			int chunk = min_t(unsigned int, skb->len,
3911 					  tp->ucopy.len);
3912 
3913 			__set_current_state(TASK_RUNNING);
3914 
3915 			local_bh_enable();
3916 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3917 				tp->ucopy.len -= chunk;
3918 				tp->copied_seq += chunk;
3919 				eaten = (chunk == skb->len && !th->fin);
3920 				tcp_rcv_space_adjust(sk);
3921 			}
3922 			local_bh_disable();
3923 		}
3924 
3925 		if (eaten <= 0) {
3926 queue_and_out:
3927 			if (eaten < 0 &&
3928 			    tcp_try_rmem_schedule(sk, skb->truesize))
3929 				goto drop;
3930 
3931 			skb_set_owner_r(skb, sk);
3932 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3933 		}
3934 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3935 		if (skb->len)
3936 			tcp_event_data_recv(sk, skb);
3937 		if (th->fin)
3938 			tcp_fin(skb, sk, th);
3939 
3940 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3941 			tcp_ofo_queue(sk);
3942 
3943 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3944 			 * gap in queue is filled.
3945 			 */
3946 			if (skb_queue_empty(&tp->out_of_order_queue))
3947 				inet_csk(sk)->icsk_ack.pingpong = 0;
3948 		}
3949 
3950 		if (tp->rx_opt.num_sacks)
3951 			tcp_sack_remove(tp);
3952 
3953 		tcp_fast_path_check(sk);
3954 
3955 		if (eaten > 0)
3956 			__kfree_skb(skb);
3957 		else if (!sock_flag(sk, SOCK_DEAD))
3958 			sk->sk_data_ready(sk, 0);
3959 		return;
3960 	}
3961 
3962 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3963 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3964 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3965 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3966 
3967 out_of_window:
3968 		tcp_enter_quickack_mode(sk);
3969 		inet_csk_schedule_ack(sk);
3970 drop:
3971 		__kfree_skb(skb);
3972 		return;
3973 	}
3974 
3975 	/* Out of window. F.e. zero window probe. */
3976 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3977 		goto out_of_window;
3978 
3979 	tcp_enter_quickack_mode(sk);
3980 
3981 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3982 		/* Partial packet, seq < rcv_next < end_seq */
3983 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3984 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3985 			   TCP_SKB_CB(skb)->end_seq);
3986 
3987 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3988 
3989 		/* If window is closed, drop tail of packet. But after
3990 		 * remembering D-SACK for its head made in previous line.
3991 		 */
3992 		if (!tcp_receive_window(tp))
3993 			goto out_of_window;
3994 		goto queue_and_out;
3995 	}
3996 
3997 	TCP_ECN_check_ce(tp, skb);
3998 
3999 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4000 		goto drop;
4001 
4002 	/* Disable header prediction. */
4003 	tp->pred_flags = 0;
4004 	inet_csk_schedule_ack(sk);
4005 
4006 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4007 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4008 
4009 	skb_set_owner_r(skb, sk);
4010 
4011 	if (!skb_peek(&tp->out_of_order_queue)) {
4012 		/* Initial out of order segment, build 1 SACK. */
4013 		if (tcp_is_sack(tp)) {
4014 			tp->rx_opt.num_sacks = 1;
4015 			tp->rx_opt.dsack     = 0;
4016 			tp->rx_opt.eff_sacks = 1;
4017 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4018 			tp->selective_acks[0].end_seq =
4019 						TCP_SKB_CB(skb)->end_seq;
4020 		}
4021 		__skb_queue_head(&tp->out_of_order_queue, skb);
4022 	} else {
4023 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4024 		u32 seq = TCP_SKB_CB(skb)->seq;
4025 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4026 
4027 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4028 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4029 
4030 			if (!tp->rx_opt.num_sacks ||
4031 			    tp->selective_acks[0].end_seq != seq)
4032 				goto add_sack;
4033 
4034 			/* Common case: data arrive in order after hole. */
4035 			tp->selective_acks[0].end_seq = end_seq;
4036 			return;
4037 		}
4038 
4039 		/* Find place to insert this segment. */
4040 		do {
4041 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4042 				break;
4043 		} while ((skb1 = skb1->prev) !=
4044 			 (struct sk_buff *)&tp->out_of_order_queue);
4045 
4046 		/* Do skb overlap to previous one? */
4047 		if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4048 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4049 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4050 				/* All the bits are present. Drop. */
4051 				__kfree_skb(skb);
4052 				tcp_dsack_set(tp, seq, end_seq);
4053 				goto add_sack;
4054 			}
4055 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4056 				/* Partial overlap. */
4057 				tcp_dsack_set(tp, seq,
4058 					      TCP_SKB_CB(skb1)->end_seq);
4059 			} else {
4060 				skb1 = skb1->prev;
4061 			}
4062 		}
4063 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4064 
4065 		/* And clean segments covered by new one as whole. */
4066 		while ((skb1 = skb->next) !=
4067 		       (struct sk_buff *)&tp->out_of_order_queue &&
4068 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4069 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4070 				tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4071 						 end_seq);
4072 				break;
4073 			}
4074 			__skb_unlink(skb1, &tp->out_of_order_queue);
4075 			tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4076 					 TCP_SKB_CB(skb1)->end_seq);
4077 			__kfree_skb(skb1);
4078 		}
4079 
4080 add_sack:
4081 		if (tcp_is_sack(tp))
4082 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4083 	}
4084 }
4085 
4086 /* Collapse contiguous sequence of skbs head..tail with
4087  * sequence numbers start..end.
4088  * Segments with FIN/SYN are not collapsed (only because this
4089  * simplifies code)
4090  */
4091 static void
4092 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4093 	     struct sk_buff *head, struct sk_buff *tail,
4094 	     u32 start, u32 end)
4095 {
4096 	struct sk_buff *skb;
4097 
4098 	/* First, check that queue is collapsible and find
4099 	 * the point where collapsing can be useful. */
4100 	for (skb = head; skb != tail;) {
4101 		/* No new bits? It is possible on ofo queue. */
4102 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4103 			struct sk_buff *next = skb->next;
4104 			__skb_unlink(skb, list);
4105 			__kfree_skb(skb);
4106 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4107 			skb = next;
4108 			continue;
4109 		}
4110 
4111 		/* The first skb to collapse is:
4112 		 * - not SYN/FIN and
4113 		 * - bloated or contains data before "start" or
4114 		 *   overlaps to the next one.
4115 		 */
4116 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4117 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4118 		     before(TCP_SKB_CB(skb)->seq, start) ||
4119 		     (skb->next != tail &&
4120 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4121 			break;
4122 
4123 		/* Decided to skip this, advance start seq. */
4124 		start = TCP_SKB_CB(skb)->end_seq;
4125 		skb = skb->next;
4126 	}
4127 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4128 		return;
4129 
4130 	while (before(start, end)) {
4131 		struct sk_buff *nskb;
4132 		unsigned int header = skb_headroom(skb);
4133 		int copy = SKB_MAX_ORDER(header, 0);
4134 
4135 		/* Too big header? This can happen with IPv6. */
4136 		if (copy < 0)
4137 			return;
4138 		if (end - start < copy)
4139 			copy = end - start;
4140 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4141 		if (!nskb)
4142 			return;
4143 
4144 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4145 		skb_set_network_header(nskb, (skb_network_header(skb) -
4146 					      skb->head));
4147 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4148 						skb->head));
4149 		skb_reserve(nskb, header);
4150 		memcpy(nskb->head, skb->head, header);
4151 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4152 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4153 		__skb_insert(nskb, skb->prev, skb, list);
4154 		skb_set_owner_r(nskb, sk);
4155 
4156 		/* Copy data, releasing collapsed skbs. */
4157 		while (copy > 0) {
4158 			int offset = start - TCP_SKB_CB(skb)->seq;
4159 			int size = TCP_SKB_CB(skb)->end_seq - start;
4160 
4161 			BUG_ON(offset < 0);
4162 			if (size > 0) {
4163 				size = min(copy, size);
4164 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4165 					BUG();
4166 				TCP_SKB_CB(nskb)->end_seq += size;
4167 				copy -= size;
4168 				start += size;
4169 			}
4170 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4171 				struct sk_buff *next = skb->next;
4172 				__skb_unlink(skb, list);
4173 				__kfree_skb(skb);
4174 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4175 				skb = next;
4176 				if (skb == tail ||
4177 				    tcp_hdr(skb)->syn ||
4178 				    tcp_hdr(skb)->fin)
4179 					return;
4180 			}
4181 		}
4182 	}
4183 }
4184 
4185 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4186  * and tcp_collapse() them until all the queue is collapsed.
4187  */
4188 static void tcp_collapse_ofo_queue(struct sock *sk)
4189 {
4190 	struct tcp_sock *tp = tcp_sk(sk);
4191 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4192 	struct sk_buff *head;
4193 	u32 start, end;
4194 
4195 	if (skb == NULL)
4196 		return;
4197 
4198 	start = TCP_SKB_CB(skb)->seq;
4199 	end = TCP_SKB_CB(skb)->end_seq;
4200 	head = skb;
4201 
4202 	for (;;) {
4203 		skb = skb->next;
4204 
4205 		/* Segment is terminated when we see gap or when
4206 		 * we are at the end of all the queue. */
4207 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4208 		    after(TCP_SKB_CB(skb)->seq, end) ||
4209 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4210 			tcp_collapse(sk, &tp->out_of_order_queue,
4211 				     head, skb, start, end);
4212 			head = skb;
4213 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4214 				break;
4215 			/* Start new segment */
4216 			start = TCP_SKB_CB(skb)->seq;
4217 			end = TCP_SKB_CB(skb)->end_seq;
4218 		} else {
4219 			if (before(TCP_SKB_CB(skb)->seq, start))
4220 				start = TCP_SKB_CB(skb)->seq;
4221 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4222 				end = TCP_SKB_CB(skb)->end_seq;
4223 		}
4224 	}
4225 }
4226 
4227 /*
4228  * Purge the out-of-order queue.
4229  * Return true if queue was pruned.
4230  */
4231 static int tcp_prune_ofo_queue(struct sock *sk)
4232 {
4233 	struct tcp_sock *tp = tcp_sk(sk);
4234 	int res = 0;
4235 
4236 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4237 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4238 		__skb_queue_purge(&tp->out_of_order_queue);
4239 
4240 		/* Reset SACK state.  A conforming SACK implementation will
4241 		 * do the same at a timeout based retransmit.  When a connection
4242 		 * is in a sad state like this, we care only about integrity
4243 		 * of the connection not performance.
4244 		 */
4245 		if (tp->rx_opt.sack_ok)
4246 			tcp_sack_reset(&tp->rx_opt);
4247 		sk_mem_reclaim(sk);
4248 		res = 1;
4249 	}
4250 	return res;
4251 }
4252 
4253 /* Reduce allocated memory if we can, trying to get
4254  * the socket within its memory limits again.
4255  *
4256  * Return less than zero if we should start dropping frames
4257  * until the socket owning process reads some of the data
4258  * to stabilize the situation.
4259  */
4260 static int tcp_prune_queue(struct sock *sk)
4261 {
4262 	struct tcp_sock *tp = tcp_sk(sk);
4263 
4264 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4265 
4266 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4267 
4268 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4269 		tcp_clamp_window(sk);
4270 	else if (tcp_memory_pressure)
4271 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4272 
4273 	tcp_collapse_ofo_queue(sk);
4274 	tcp_collapse(sk, &sk->sk_receive_queue,
4275 		     sk->sk_receive_queue.next,
4276 		     (struct sk_buff *)&sk->sk_receive_queue,
4277 		     tp->copied_seq, tp->rcv_nxt);
4278 	sk_mem_reclaim(sk);
4279 
4280 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4281 		return 0;
4282 
4283 	/* Collapsing did not help, destructive actions follow.
4284 	 * This must not ever occur. */
4285 
4286 	tcp_prune_ofo_queue(sk);
4287 
4288 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4289 		return 0;
4290 
4291 	/* If we are really being abused, tell the caller to silently
4292 	 * drop receive data on the floor.  It will get retransmitted
4293 	 * and hopefully then we'll have sufficient space.
4294 	 */
4295 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4296 
4297 	/* Massive buffer overcommit. */
4298 	tp->pred_flags = 0;
4299 	return -1;
4300 }
4301 
4302 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4303  * As additional protections, we do not touch cwnd in retransmission phases,
4304  * and if application hit its sndbuf limit recently.
4305  */
4306 void tcp_cwnd_application_limited(struct sock *sk)
4307 {
4308 	struct tcp_sock *tp = tcp_sk(sk);
4309 
4310 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4311 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4312 		/* Limited by application or receiver window. */
4313 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4314 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4315 		if (win_used < tp->snd_cwnd) {
4316 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4317 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4318 		}
4319 		tp->snd_cwnd_used = 0;
4320 	}
4321 	tp->snd_cwnd_stamp = tcp_time_stamp;
4322 }
4323 
4324 static int tcp_should_expand_sndbuf(struct sock *sk)
4325 {
4326 	struct tcp_sock *tp = tcp_sk(sk);
4327 
4328 	/* If the user specified a specific send buffer setting, do
4329 	 * not modify it.
4330 	 */
4331 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4332 		return 0;
4333 
4334 	/* If we are under global TCP memory pressure, do not expand.  */
4335 	if (tcp_memory_pressure)
4336 		return 0;
4337 
4338 	/* If we are under soft global TCP memory pressure, do not expand.  */
4339 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4340 		return 0;
4341 
4342 	/* If we filled the congestion window, do not expand.  */
4343 	if (tp->packets_out >= tp->snd_cwnd)
4344 		return 0;
4345 
4346 	return 1;
4347 }
4348 
4349 /* When incoming ACK allowed to free some skb from write_queue,
4350  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4351  * on the exit from tcp input handler.
4352  *
4353  * PROBLEM: sndbuf expansion does not work well with largesend.
4354  */
4355 static void tcp_new_space(struct sock *sk)
4356 {
4357 	struct tcp_sock *tp = tcp_sk(sk);
4358 
4359 	if (tcp_should_expand_sndbuf(sk)) {
4360 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4361 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4362 		    demanded = max_t(unsigned int, tp->snd_cwnd,
4363 				     tp->reordering + 1);
4364 		sndmem *= 2 * demanded;
4365 		if (sndmem > sk->sk_sndbuf)
4366 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4367 		tp->snd_cwnd_stamp = tcp_time_stamp;
4368 	}
4369 
4370 	sk->sk_write_space(sk);
4371 }
4372 
4373 static void tcp_check_space(struct sock *sk)
4374 {
4375 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4376 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4377 		if (sk->sk_socket &&
4378 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4379 			tcp_new_space(sk);
4380 	}
4381 }
4382 
4383 static inline void tcp_data_snd_check(struct sock *sk)
4384 {
4385 	tcp_push_pending_frames(sk);
4386 	tcp_check_space(sk);
4387 }
4388 
4389 /*
4390  * Check if sending an ack is needed.
4391  */
4392 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4393 {
4394 	struct tcp_sock *tp = tcp_sk(sk);
4395 
4396 	    /* More than one full frame received... */
4397 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4398 	     /* ... and right edge of window advances far enough.
4399 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4400 	      */
4401 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4402 	    /* We ACK each frame or... */
4403 	    tcp_in_quickack_mode(sk) ||
4404 	    /* We have out of order data. */
4405 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4406 		/* Then ack it now */
4407 		tcp_send_ack(sk);
4408 	} else {
4409 		/* Else, send delayed ack. */
4410 		tcp_send_delayed_ack(sk);
4411 	}
4412 }
4413 
4414 static inline void tcp_ack_snd_check(struct sock *sk)
4415 {
4416 	if (!inet_csk_ack_scheduled(sk)) {
4417 		/* We sent a data segment already. */
4418 		return;
4419 	}
4420 	__tcp_ack_snd_check(sk, 1);
4421 }
4422 
4423 /*
4424  *	This routine is only called when we have urgent data
4425  *	signaled. Its the 'slow' part of tcp_urg. It could be
4426  *	moved inline now as tcp_urg is only called from one
4427  *	place. We handle URGent data wrong. We have to - as
4428  *	BSD still doesn't use the correction from RFC961.
4429  *	For 1003.1g we should support a new option TCP_STDURG to permit
4430  *	either form (or just set the sysctl tcp_stdurg).
4431  */
4432 
4433 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4434 {
4435 	struct tcp_sock *tp = tcp_sk(sk);
4436 	u32 ptr = ntohs(th->urg_ptr);
4437 
4438 	if (ptr && !sysctl_tcp_stdurg)
4439 		ptr--;
4440 	ptr += ntohl(th->seq);
4441 
4442 	/* Ignore urgent data that we've already seen and read. */
4443 	if (after(tp->copied_seq, ptr))
4444 		return;
4445 
4446 	/* Do not replay urg ptr.
4447 	 *
4448 	 * NOTE: interesting situation not covered by specs.
4449 	 * Misbehaving sender may send urg ptr, pointing to segment,
4450 	 * which we already have in ofo queue. We are not able to fetch
4451 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4452 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4453 	 * situations. But it is worth to think about possibility of some
4454 	 * DoSes using some hypothetical application level deadlock.
4455 	 */
4456 	if (before(ptr, tp->rcv_nxt))
4457 		return;
4458 
4459 	/* Do we already have a newer (or duplicate) urgent pointer? */
4460 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4461 		return;
4462 
4463 	/* Tell the world about our new urgent pointer. */
4464 	sk_send_sigurg(sk);
4465 
4466 	/* We may be adding urgent data when the last byte read was
4467 	 * urgent. To do this requires some care. We cannot just ignore
4468 	 * tp->copied_seq since we would read the last urgent byte again
4469 	 * as data, nor can we alter copied_seq until this data arrives
4470 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4471 	 *
4472 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4473 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4474 	 * and expect that both A and B disappear from stream. This is _wrong_.
4475 	 * Though this happens in BSD with high probability, this is occasional.
4476 	 * Any application relying on this is buggy. Note also, that fix "works"
4477 	 * only in this artificial test. Insert some normal data between A and B and we will
4478 	 * decline of BSD again. Verdict: it is better to remove to trap
4479 	 * buggy users.
4480 	 */
4481 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4482 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4483 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4484 		tp->copied_seq++;
4485 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4486 			__skb_unlink(skb, &sk->sk_receive_queue);
4487 			__kfree_skb(skb);
4488 		}
4489 	}
4490 
4491 	tp->urg_data = TCP_URG_NOTYET;
4492 	tp->urg_seq = ptr;
4493 
4494 	/* Disable header prediction. */
4495 	tp->pred_flags = 0;
4496 }
4497 
4498 /* This is the 'fast' part of urgent handling. */
4499 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4500 {
4501 	struct tcp_sock *tp = tcp_sk(sk);
4502 
4503 	/* Check if we get a new urgent pointer - normally not. */
4504 	if (th->urg)
4505 		tcp_check_urg(sk, th);
4506 
4507 	/* Do we wait for any urgent data? - normally not... */
4508 	if (tp->urg_data == TCP_URG_NOTYET) {
4509 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4510 			  th->syn;
4511 
4512 		/* Is the urgent pointer pointing into this packet? */
4513 		if (ptr < skb->len) {
4514 			u8 tmp;
4515 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4516 				BUG();
4517 			tp->urg_data = TCP_URG_VALID | tmp;
4518 			if (!sock_flag(sk, SOCK_DEAD))
4519 				sk->sk_data_ready(sk, 0);
4520 		}
4521 	}
4522 }
4523 
4524 static int tcp_defer_accept_check(struct sock *sk)
4525 {
4526 	struct tcp_sock *tp = tcp_sk(sk);
4527 
4528 	if (tp->defer_tcp_accept.request) {
4529 		int queued_data =  tp->rcv_nxt - tp->copied_seq;
4530 		int hasfin =  !skb_queue_empty(&sk->sk_receive_queue) ?
4531 			tcp_hdr((struct sk_buff *)
4532 				sk->sk_receive_queue.prev)->fin : 0;
4533 
4534 		if (queued_data && hasfin)
4535 			queued_data--;
4536 
4537 		if (queued_data &&
4538 		    tp->defer_tcp_accept.listen_sk->sk_state == TCP_LISTEN) {
4539 			if (sock_flag(sk, SOCK_KEEPOPEN)) {
4540 				inet_csk_reset_keepalive_timer(sk,
4541 							       keepalive_time_when(tp));
4542 			} else {
4543 				inet_csk_delete_keepalive_timer(sk);
4544 			}
4545 
4546 			inet_csk_reqsk_queue_add(
4547 				tp->defer_tcp_accept.listen_sk,
4548 				tp->defer_tcp_accept.request,
4549 				sk);
4550 
4551 			tp->defer_tcp_accept.listen_sk->sk_data_ready(
4552 				tp->defer_tcp_accept.listen_sk, 0);
4553 
4554 			sock_put(tp->defer_tcp_accept.listen_sk);
4555 			sock_put(sk);
4556 			tp->defer_tcp_accept.listen_sk = NULL;
4557 			tp->defer_tcp_accept.request = NULL;
4558 		} else if (hasfin ||
4559 			   tp->defer_tcp_accept.listen_sk->sk_state != TCP_LISTEN) {
4560 			tcp_reset(sk);
4561 			return -1;
4562 		}
4563 	}
4564 	return 0;
4565 }
4566 
4567 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4568 {
4569 	struct tcp_sock *tp = tcp_sk(sk);
4570 	int chunk = skb->len - hlen;
4571 	int err;
4572 
4573 	local_bh_enable();
4574 	if (skb_csum_unnecessary(skb))
4575 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4576 	else
4577 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4578 						       tp->ucopy.iov);
4579 
4580 	if (!err) {
4581 		tp->ucopy.len -= chunk;
4582 		tp->copied_seq += chunk;
4583 		tcp_rcv_space_adjust(sk);
4584 	}
4585 
4586 	local_bh_disable();
4587 	return err;
4588 }
4589 
4590 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4591 					    struct sk_buff *skb)
4592 {
4593 	__sum16 result;
4594 
4595 	if (sock_owned_by_user(sk)) {
4596 		local_bh_enable();
4597 		result = __tcp_checksum_complete(skb);
4598 		local_bh_disable();
4599 	} else {
4600 		result = __tcp_checksum_complete(skb);
4601 	}
4602 	return result;
4603 }
4604 
4605 static inline int tcp_checksum_complete_user(struct sock *sk,
4606 					     struct sk_buff *skb)
4607 {
4608 	return !skb_csum_unnecessary(skb) &&
4609 	       __tcp_checksum_complete_user(sk, skb);
4610 }
4611 
4612 #ifdef CONFIG_NET_DMA
4613 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4614 				  int hlen)
4615 {
4616 	struct tcp_sock *tp = tcp_sk(sk);
4617 	int chunk = skb->len - hlen;
4618 	int dma_cookie;
4619 	int copied_early = 0;
4620 
4621 	if (tp->ucopy.wakeup)
4622 		return 0;
4623 
4624 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4625 		tp->ucopy.dma_chan = get_softnet_dma();
4626 
4627 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4628 
4629 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4630 							 skb, hlen,
4631 							 tp->ucopy.iov, chunk,
4632 							 tp->ucopy.pinned_list);
4633 
4634 		if (dma_cookie < 0)
4635 			goto out;
4636 
4637 		tp->ucopy.dma_cookie = dma_cookie;
4638 		copied_early = 1;
4639 
4640 		tp->ucopy.len -= chunk;
4641 		tp->copied_seq += chunk;
4642 		tcp_rcv_space_adjust(sk);
4643 
4644 		if ((tp->ucopy.len == 0) ||
4645 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4646 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4647 			tp->ucopy.wakeup = 1;
4648 			sk->sk_data_ready(sk, 0);
4649 		}
4650 	} else if (chunk > 0) {
4651 		tp->ucopy.wakeup = 1;
4652 		sk->sk_data_ready(sk, 0);
4653 	}
4654 out:
4655 	return copied_early;
4656 }
4657 #endif /* CONFIG_NET_DMA */
4658 
4659 /*
4660  *	TCP receive function for the ESTABLISHED state.
4661  *
4662  *	It is split into a fast path and a slow path. The fast path is
4663  * 	disabled when:
4664  *	- A zero window was announced from us - zero window probing
4665  *        is only handled properly in the slow path.
4666  *	- Out of order segments arrived.
4667  *	- Urgent data is expected.
4668  *	- There is no buffer space left
4669  *	- Unexpected TCP flags/window values/header lengths are received
4670  *	  (detected by checking the TCP header against pred_flags)
4671  *	- Data is sent in both directions. Fast path only supports pure senders
4672  *	  or pure receivers (this means either the sequence number or the ack
4673  *	  value must stay constant)
4674  *	- Unexpected TCP option.
4675  *
4676  *	When these conditions are not satisfied it drops into a standard
4677  *	receive procedure patterned after RFC793 to handle all cases.
4678  *	The first three cases are guaranteed by proper pred_flags setting,
4679  *	the rest is checked inline. Fast processing is turned on in
4680  *	tcp_data_queue when everything is OK.
4681  */
4682 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4683 			struct tcphdr *th, unsigned len)
4684 {
4685 	struct tcp_sock *tp = tcp_sk(sk);
4686 
4687 	/*
4688 	 *	Header prediction.
4689 	 *	The code loosely follows the one in the famous
4690 	 *	"30 instruction TCP receive" Van Jacobson mail.
4691 	 *
4692 	 *	Van's trick is to deposit buffers into socket queue
4693 	 *	on a device interrupt, to call tcp_recv function
4694 	 *	on the receive process context and checksum and copy
4695 	 *	the buffer to user space. smart...
4696 	 *
4697 	 *	Our current scheme is not silly either but we take the
4698 	 *	extra cost of the net_bh soft interrupt processing...
4699 	 *	We do checksum and copy also but from device to kernel.
4700 	 */
4701 
4702 	tp->rx_opt.saw_tstamp = 0;
4703 
4704 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4705 	 *	if header_prediction is to be made
4706 	 *	'S' will always be tp->tcp_header_len >> 2
4707 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4708 	 *  turn it off	(when there are holes in the receive
4709 	 *	 space for instance)
4710 	 *	PSH flag is ignored.
4711 	 */
4712 
4713 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4714 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4715 		int tcp_header_len = tp->tcp_header_len;
4716 
4717 		/* Timestamp header prediction: tcp_header_len
4718 		 * is automatically equal to th->doff*4 due to pred_flags
4719 		 * match.
4720 		 */
4721 
4722 		/* Check timestamp */
4723 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4724 			__be32 *ptr = (__be32 *)(th + 1);
4725 
4726 			/* No? Slow path! */
4727 			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4728 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4729 				goto slow_path;
4730 
4731 			tp->rx_opt.saw_tstamp = 1;
4732 			++ptr;
4733 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4734 			++ptr;
4735 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4736 
4737 			/* If PAWS failed, check it more carefully in slow path */
4738 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4739 				goto slow_path;
4740 
4741 			/* DO NOT update ts_recent here, if checksum fails
4742 			 * and timestamp was corrupted part, it will result
4743 			 * in a hung connection since we will drop all
4744 			 * future packets due to the PAWS test.
4745 			 */
4746 		}
4747 
4748 		if (len <= tcp_header_len) {
4749 			/* Bulk data transfer: sender */
4750 			if (len == tcp_header_len) {
4751 				/* Predicted packet is in window by definition.
4752 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4753 				 * Hence, check seq<=rcv_wup reduces to:
4754 				 */
4755 				if (tcp_header_len ==
4756 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4757 				    tp->rcv_nxt == tp->rcv_wup)
4758 					tcp_store_ts_recent(tp);
4759 
4760 				/* We know that such packets are checksummed
4761 				 * on entry.
4762 				 */
4763 				tcp_ack(sk, skb, 0);
4764 				__kfree_skb(skb);
4765 				tcp_data_snd_check(sk);
4766 				return 0;
4767 			} else { /* Header too small */
4768 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4769 				goto discard;
4770 			}
4771 		} else {
4772 			int eaten = 0;
4773 			int copied_early = 0;
4774 
4775 			if (tp->copied_seq == tp->rcv_nxt &&
4776 			    len - tcp_header_len <= tp->ucopy.len) {
4777 #ifdef CONFIG_NET_DMA
4778 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4779 					copied_early = 1;
4780 					eaten = 1;
4781 				}
4782 #endif
4783 				if (tp->ucopy.task == current &&
4784 				    sock_owned_by_user(sk) && !copied_early) {
4785 					__set_current_state(TASK_RUNNING);
4786 
4787 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4788 						eaten = 1;
4789 				}
4790 				if (eaten) {
4791 					/* Predicted packet is in window by definition.
4792 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4793 					 * Hence, check seq<=rcv_wup reduces to:
4794 					 */
4795 					if (tcp_header_len ==
4796 					    (sizeof(struct tcphdr) +
4797 					     TCPOLEN_TSTAMP_ALIGNED) &&
4798 					    tp->rcv_nxt == tp->rcv_wup)
4799 						tcp_store_ts_recent(tp);
4800 
4801 					tcp_rcv_rtt_measure_ts(sk, skb);
4802 
4803 					__skb_pull(skb, tcp_header_len);
4804 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4805 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4806 				}
4807 				if (copied_early)
4808 					tcp_cleanup_rbuf(sk, skb->len);
4809 			}
4810 			if (!eaten) {
4811 				if (tcp_checksum_complete_user(sk, skb))
4812 					goto csum_error;
4813 
4814 				/* Predicted packet is in window by definition.
4815 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4816 				 * Hence, check seq<=rcv_wup reduces to:
4817 				 */
4818 				if (tcp_header_len ==
4819 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4820 				    tp->rcv_nxt == tp->rcv_wup)
4821 					tcp_store_ts_recent(tp);
4822 
4823 				tcp_rcv_rtt_measure_ts(sk, skb);
4824 
4825 				if ((int)skb->truesize > sk->sk_forward_alloc)
4826 					goto step5;
4827 
4828 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4829 
4830 				/* Bulk data transfer: receiver */
4831 				__skb_pull(skb, tcp_header_len);
4832 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4833 				skb_set_owner_r(skb, sk);
4834 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4835 			}
4836 
4837 			tcp_event_data_recv(sk, skb);
4838 
4839 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4840 				/* Well, only one small jumplet in fast path... */
4841 				tcp_ack(sk, skb, FLAG_DATA);
4842 				tcp_data_snd_check(sk);
4843 				if (!inet_csk_ack_scheduled(sk))
4844 					goto no_ack;
4845 			}
4846 
4847 			__tcp_ack_snd_check(sk, 0);
4848 no_ack:
4849 #ifdef CONFIG_NET_DMA
4850 			if (copied_early)
4851 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4852 			else
4853 #endif
4854 			if (eaten)
4855 				__kfree_skb(skb);
4856 			else
4857 				sk->sk_data_ready(sk, 0);
4858 			return 0;
4859 		}
4860 	}
4861 
4862 slow_path:
4863 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4864 		goto csum_error;
4865 
4866 	/*
4867 	 * RFC1323: H1. Apply PAWS check first.
4868 	 */
4869 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4870 	    tcp_paws_discard(sk, skb)) {
4871 		if (!th->rst) {
4872 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4873 			tcp_send_dupack(sk, skb);
4874 			goto discard;
4875 		}
4876 		/* Resets are accepted even if PAWS failed.
4877 
4878 		   ts_recent update must be made after we are sure
4879 		   that the packet is in window.
4880 		 */
4881 	}
4882 
4883 	/*
4884 	 *	Standard slow path.
4885 	 */
4886 
4887 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4888 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4889 		 * (RST) segments are validated by checking their SEQ-fields."
4890 		 * And page 69: "If an incoming segment is not acceptable,
4891 		 * an acknowledgment should be sent in reply (unless the RST bit
4892 		 * is set, if so drop the segment and return)".
4893 		 */
4894 		if (!th->rst)
4895 			tcp_send_dupack(sk, skb);
4896 		goto discard;
4897 	}
4898 
4899 	if (th->rst) {
4900 		tcp_reset(sk);
4901 		goto discard;
4902 	}
4903 
4904 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4905 
4906 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4907 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4908 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4909 		tcp_reset(sk);
4910 		return 1;
4911 	}
4912 
4913 step5:
4914 	if (th->ack)
4915 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4916 
4917 	tcp_rcv_rtt_measure_ts(sk, skb);
4918 
4919 	/* Process urgent data. */
4920 	tcp_urg(sk, skb, th);
4921 
4922 	/* step 7: process the segment text */
4923 	tcp_data_queue(sk, skb);
4924 
4925 	tcp_data_snd_check(sk);
4926 	tcp_ack_snd_check(sk);
4927 
4928 	if (tcp_defer_accept_check(sk))
4929 		return -1;
4930 	return 0;
4931 
4932 csum_error:
4933 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4934 
4935 discard:
4936 	__kfree_skb(skb);
4937 	return 0;
4938 }
4939 
4940 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4941 					 struct tcphdr *th, unsigned len)
4942 {
4943 	struct tcp_sock *tp = tcp_sk(sk);
4944 	struct inet_connection_sock *icsk = inet_csk(sk);
4945 	int saved_clamp = tp->rx_opt.mss_clamp;
4946 
4947 	tcp_parse_options(skb, &tp->rx_opt, 0);
4948 
4949 	if (th->ack) {
4950 		/* rfc793:
4951 		 * "If the state is SYN-SENT then
4952 		 *    first check the ACK bit
4953 		 *      If the ACK bit is set
4954 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4955 		 *        a reset (unless the RST bit is set, if so drop
4956 		 *        the segment and return)"
4957 		 *
4958 		 *  We do not send data with SYN, so that RFC-correct
4959 		 *  test reduces to:
4960 		 */
4961 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4962 			goto reset_and_undo;
4963 
4964 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4965 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4966 			     tcp_time_stamp)) {
4967 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4968 			goto reset_and_undo;
4969 		}
4970 
4971 		/* Now ACK is acceptable.
4972 		 *
4973 		 * "If the RST bit is set
4974 		 *    If the ACK was acceptable then signal the user "error:
4975 		 *    connection reset", drop the segment, enter CLOSED state,
4976 		 *    delete TCB, and return."
4977 		 */
4978 
4979 		if (th->rst) {
4980 			tcp_reset(sk);
4981 			goto discard;
4982 		}
4983 
4984 		/* rfc793:
4985 		 *   "fifth, if neither of the SYN or RST bits is set then
4986 		 *    drop the segment and return."
4987 		 *
4988 		 *    See note below!
4989 		 *                                        --ANK(990513)
4990 		 */
4991 		if (!th->syn)
4992 			goto discard_and_undo;
4993 
4994 		/* rfc793:
4995 		 *   "If the SYN bit is on ...
4996 		 *    are acceptable then ...
4997 		 *    (our SYN has been ACKed), change the connection
4998 		 *    state to ESTABLISHED..."
4999 		 */
5000 
5001 		TCP_ECN_rcv_synack(tp, th);
5002 
5003 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5004 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5005 
5006 		/* Ok.. it's good. Set up sequence numbers and
5007 		 * move to established.
5008 		 */
5009 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5010 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5011 
5012 		/* RFC1323: The window in SYN & SYN/ACK segments is
5013 		 * never scaled.
5014 		 */
5015 		tp->snd_wnd = ntohs(th->window);
5016 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5017 
5018 		if (!tp->rx_opt.wscale_ok) {
5019 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5020 			tp->window_clamp = min(tp->window_clamp, 65535U);
5021 		}
5022 
5023 		if (tp->rx_opt.saw_tstamp) {
5024 			tp->rx_opt.tstamp_ok	   = 1;
5025 			tp->tcp_header_len =
5026 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5027 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5028 			tcp_store_ts_recent(tp);
5029 		} else {
5030 			tp->tcp_header_len = sizeof(struct tcphdr);
5031 		}
5032 
5033 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5034 			tcp_enable_fack(tp);
5035 
5036 		tcp_mtup_init(sk);
5037 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5038 		tcp_initialize_rcv_mss(sk);
5039 
5040 		/* Remember, tcp_poll() does not lock socket!
5041 		 * Change state from SYN-SENT only after copied_seq
5042 		 * is initialized. */
5043 		tp->copied_seq = tp->rcv_nxt;
5044 		smp_mb();
5045 		tcp_set_state(sk, TCP_ESTABLISHED);
5046 
5047 		security_inet_conn_established(sk, skb);
5048 
5049 		/* Make sure socket is routed, for correct metrics.  */
5050 		icsk->icsk_af_ops->rebuild_header(sk);
5051 
5052 		tcp_init_metrics(sk);
5053 
5054 		tcp_init_congestion_control(sk);
5055 
5056 		/* Prevent spurious tcp_cwnd_restart() on first data
5057 		 * packet.
5058 		 */
5059 		tp->lsndtime = tcp_time_stamp;
5060 
5061 		tcp_init_buffer_space(sk);
5062 
5063 		if (sock_flag(sk, SOCK_KEEPOPEN))
5064 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5065 
5066 		if (!tp->rx_opt.snd_wscale)
5067 			__tcp_fast_path_on(tp, tp->snd_wnd);
5068 		else
5069 			tp->pred_flags = 0;
5070 
5071 		if (!sock_flag(sk, SOCK_DEAD)) {
5072 			sk->sk_state_change(sk);
5073 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5074 		}
5075 
5076 		if (sk->sk_write_pending ||
5077 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5078 		    icsk->icsk_ack.pingpong) {
5079 			/* Save one ACK. Data will be ready after
5080 			 * several ticks, if write_pending is set.
5081 			 *
5082 			 * It may be deleted, but with this feature tcpdumps
5083 			 * look so _wonderfully_ clever, that I was not able
5084 			 * to stand against the temptation 8)     --ANK
5085 			 */
5086 			inet_csk_schedule_ack(sk);
5087 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5088 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5089 			tcp_incr_quickack(sk);
5090 			tcp_enter_quickack_mode(sk);
5091 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5092 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5093 
5094 discard:
5095 			__kfree_skb(skb);
5096 			return 0;
5097 		} else {
5098 			tcp_send_ack(sk);
5099 		}
5100 		return -1;
5101 	}
5102 
5103 	/* No ACK in the segment */
5104 
5105 	if (th->rst) {
5106 		/* rfc793:
5107 		 * "If the RST bit is set
5108 		 *
5109 		 *      Otherwise (no ACK) drop the segment and return."
5110 		 */
5111 
5112 		goto discard_and_undo;
5113 	}
5114 
5115 	/* PAWS check. */
5116 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5117 	    tcp_paws_check(&tp->rx_opt, 0))
5118 		goto discard_and_undo;
5119 
5120 	if (th->syn) {
5121 		/* We see SYN without ACK. It is attempt of
5122 		 * simultaneous connect with crossed SYNs.
5123 		 * Particularly, it can be connect to self.
5124 		 */
5125 		tcp_set_state(sk, TCP_SYN_RECV);
5126 
5127 		if (tp->rx_opt.saw_tstamp) {
5128 			tp->rx_opt.tstamp_ok = 1;
5129 			tcp_store_ts_recent(tp);
5130 			tp->tcp_header_len =
5131 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5132 		} else {
5133 			tp->tcp_header_len = sizeof(struct tcphdr);
5134 		}
5135 
5136 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5137 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5138 
5139 		/* RFC1323: The window in SYN & SYN/ACK segments is
5140 		 * never scaled.
5141 		 */
5142 		tp->snd_wnd    = ntohs(th->window);
5143 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5144 		tp->max_window = tp->snd_wnd;
5145 
5146 		TCP_ECN_rcv_syn(tp, th);
5147 
5148 		tcp_mtup_init(sk);
5149 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5150 		tcp_initialize_rcv_mss(sk);
5151 
5152 		tcp_send_synack(sk);
5153 #if 0
5154 		/* Note, we could accept data and URG from this segment.
5155 		 * There are no obstacles to make this.
5156 		 *
5157 		 * However, if we ignore data in ACKless segments sometimes,
5158 		 * we have no reasons to accept it sometimes.
5159 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5160 		 * is not flawless. So, discard packet for sanity.
5161 		 * Uncomment this return to process the data.
5162 		 */
5163 		return -1;
5164 #else
5165 		goto discard;
5166 #endif
5167 	}
5168 	/* "fifth, if neither of the SYN or RST bits is set then
5169 	 * drop the segment and return."
5170 	 */
5171 
5172 discard_and_undo:
5173 	tcp_clear_options(&tp->rx_opt);
5174 	tp->rx_opt.mss_clamp = saved_clamp;
5175 	goto discard;
5176 
5177 reset_and_undo:
5178 	tcp_clear_options(&tp->rx_opt);
5179 	tp->rx_opt.mss_clamp = saved_clamp;
5180 	return 1;
5181 }
5182 
5183 /*
5184  *	This function implements the receiving procedure of RFC 793 for
5185  *	all states except ESTABLISHED and TIME_WAIT.
5186  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5187  *	address independent.
5188  */
5189 
5190 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5191 			  struct tcphdr *th, unsigned len)
5192 {
5193 	struct tcp_sock *tp = tcp_sk(sk);
5194 	struct inet_connection_sock *icsk = inet_csk(sk);
5195 	int queued = 0;
5196 
5197 	tp->rx_opt.saw_tstamp = 0;
5198 
5199 	switch (sk->sk_state) {
5200 	case TCP_CLOSE:
5201 		goto discard;
5202 
5203 	case TCP_LISTEN:
5204 		if (th->ack)
5205 			return 1;
5206 
5207 		if (th->rst)
5208 			goto discard;
5209 
5210 		if (th->syn) {
5211 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5212 				return 1;
5213 
5214 			/* Now we have several options: In theory there is
5215 			 * nothing else in the frame. KA9Q has an option to
5216 			 * send data with the syn, BSD accepts data with the
5217 			 * syn up to the [to be] advertised window and
5218 			 * Solaris 2.1 gives you a protocol error. For now
5219 			 * we just ignore it, that fits the spec precisely
5220 			 * and avoids incompatibilities. It would be nice in
5221 			 * future to drop through and process the data.
5222 			 *
5223 			 * Now that TTCP is starting to be used we ought to
5224 			 * queue this data.
5225 			 * But, this leaves one open to an easy denial of
5226 			 * service attack, and SYN cookies can't defend
5227 			 * against this problem. So, we drop the data
5228 			 * in the interest of security over speed unless
5229 			 * it's still in use.
5230 			 */
5231 			kfree_skb(skb);
5232 			return 0;
5233 		}
5234 		goto discard;
5235 
5236 	case TCP_SYN_SENT:
5237 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5238 		if (queued >= 0)
5239 			return queued;
5240 
5241 		/* Do step6 onward by hand. */
5242 		tcp_urg(sk, skb, th);
5243 		__kfree_skb(skb);
5244 		tcp_data_snd_check(sk);
5245 		return 0;
5246 	}
5247 
5248 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5249 	    tcp_paws_discard(sk, skb)) {
5250 		if (!th->rst) {
5251 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5252 			tcp_send_dupack(sk, skb);
5253 			goto discard;
5254 		}
5255 		/* Reset is accepted even if it did not pass PAWS. */
5256 	}
5257 
5258 	/* step 1: check sequence number */
5259 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5260 		if (!th->rst)
5261 			tcp_send_dupack(sk, skb);
5262 		goto discard;
5263 	}
5264 
5265 	/* step 2: check RST bit */
5266 	if (th->rst) {
5267 		tcp_reset(sk);
5268 		goto discard;
5269 	}
5270 
5271 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5272 
5273 	/* step 3: check security and precedence [ignored] */
5274 
5275 	/*	step 4:
5276 	 *
5277 	 *	Check for a SYN in window.
5278 	 */
5279 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5280 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5281 		tcp_reset(sk);
5282 		return 1;
5283 	}
5284 
5285 	/* step 5: check the ACK field */
5286 	if (th->ack) {
5287 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5288 
5289 		switch (sk->sk_state) {
5290 		case TCP_SYN_RECV:
5291 			if (acceptable) {
5292 				tp->copied_seq = tp->rcv_nxt;
5293 				smp_mb();
5294 				tcp_set_state(sk, TCP_ESTABLISHED);
5295 				sk->sk_state_change(sk);
5296 
5297 				/* Note, that this wakeup is only for marginal
5298 				 * crossed SYN case. Passively open sockets
5299 				 * are not waked up, because sk->sk_sleep ==
5300 				 * NULL and sk->sk_socket == NULL.
5301 				 */
5302 				if (sk->sk_socket)
5303 					sk_wake_async(sk,
5304 						      SOCK_WAKE_IO, POLL_OUT);
5305 
5306 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5307 				tp->snd_wnd = ntohs(th->window) <<
5308 					      tp->rx_opt.snd_wscale;
5309 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5310 					    TCP_SKB_CB(skb)->seq);
5311 
5312 				/* tcp_ack considers this ACK as duplicate
5313 				 * and does not calculate rtt.
5314 				 * Fix it at least with timestamps.
5315 				 */
5316 				if (tp->rx_opt.saw_tstamp &&
5317 				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5318 					tcp_ack_saw_tstamp(sk, 0);
5319 
5320 				if (tp->rx_opt.tstamp_ok)
5321 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5322 
5323 				/* Make sure socket is routed, for
5324 				 * correct metrics.
5325 				 */
5326 				icsk->icsk_af_ops->rebuild_header(sk);
5327 
5328 				tcp_init_metrics(sk);
5329 
5330 				tcp_init_congestion_control(sk);
5331 
5332 				/* Prevent spurious tcp_cwnd_restart() on
5333 				 * first data packet.
5334 				 */
5335 				tp->lsndtime = tcp_time_stamp;
5336 
5337 				tcp_mtup_init(sk);
5338 				tcp_initialize_rcv_mss(sk);
5339 				tcp_init_buffer_space(sk);
5340 				tcp_fast_path_on(tp);
5341 			} else {
5342 				return 1;
5343 			}
5344 			break;
5345 
5346 		case TCP_FIN_WAIT1:
5347 			if (tp->snd_una == tp->write_seq) {
5348 				tcp_set_state(sk, TCP_FIN_WAIT2);
5349 				sk->sk_shutdown |= SEND_SHUTDOWN;
5350 				dst_confirm(sk->sk_dst_cache);
5351 
5352 				if (!sock_flag(sk, SOCK_DEAD))
5353 					/* Wake up lingering close() */
5354 					sk->sk_state_change(sk);
5355 				else {
5356 					int tmo;
5357 
5358 					if (tp->linger2 < 0 ||
5359 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5360 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5361 						tcp_done(sk);
5362 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5363 						return 1;
5364 					}
5365 
5366 					tmo = tcp_fin_time(sk);
5367 					if (tmo > TCP_TIMEWAIT_LEN) {
5368 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5369 					} else if (th->fin || sock_owned_by_user(sk)) {
5370 						/* Bad case. We could lose such FIN otherwise.
5371 						 * It is not a big problem, but it looks confusing
5372 						 * and not so rare event. We still can lose it now,
5373 						 * if it spins in bh_lock_sock(), but it is really
5374 						 * marginal case.
5375 						 */
5376 						inet_csk_reset_keepalive_timer(sk, tmo);
5377 					} else {
5378 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5379 						goto discard;
5380 					}
5381 				}
5382 			}
5383 			break;
5384 
5385 		case TCP_CLOSING:
5386 			if (tp->snd_una == tp->write_seq) {
5387 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5388 				goto discard;
5389 			}
5390 			break;
5391 
5392 		case TCP_LAST_ACK:
5393 			if (tp->snd_una == tp->write_seq) {
5394 				tcp_update_metrics(sk);
5395 				tcp_done(sk);
5396 				goto discard;
5397 			}
5398 			break;
5399 		}
5400 	} else
5401 		goto discard;
5402 
5403 	/* step 6: check the URG bit */
5404 	tcp_urg(sk, skb, th);
5405 
5406 	/* step 7: process the segment text */
5407 	switch (sk->sk_state) {
5408 	case TCP_CLOSE_WAIT:
5409 	case TCP_CLOSING:
5410 	case TCP_LAST_ACK:
5411 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5412 			break;
5413 	case TCP_FIN_WAIT1:
5414 	case TCP_FIN_WAIT2:
5415 		/* RFC 793 says to queue data in these states,
5416 		 * RFC 1122 says we MUST send a reset.
5417 		 * BSD 4.4 also does reset.
5418 		 */
5419 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5420 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5421 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5422 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5423 				tcp_reset(sk);
5424 				return 1;
5425 			}
5426 		}
5427 		/* Fall through */
5428 	case TCP_ESTABLISHED:
5429 		tcp_data_queue(sk, skb);
5430 		queued = 1;
5431 		break;
5432 	}
5433 
5434 	/* tcp_data could move socket to TIME-WAIT */
5435 	if (sk->sk_state != TCP_CLOSE) {
5436 		tcp_data_snd_check(sk);
5437 		tcp_ack_snd_check(sk);
5438 	}
5439 
5440 	if (!queued) {
5441 discard:
5442 		__kfree_skb(skb);
5443 	}
5444 	return 0;
5445 }
5446 
5447 EXPORT_SYMBOL(sysctl_tcp_ecn);
5448 EXPORT_SYMBOL(sysctl_tcp_reordering);
5449 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5450 EXPORT_SYMBOL(tcp_parse_options);
5451 EXPORT_SYMBOL(tcp_rcv_established);
5452 EXPORT_SYMBOL(tcp_rcv_state_process);
5453 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5454