1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: 25 * Pedro Roque : Fast Retransmit/Recovery. 26 * Two receive queues. 27 * Retransmit queue handled by TCP. 28 * Better retransmit timer handling. 29 * New congestion avoidance. 30 * Header prediction. 31 * Variable renaming. 32 * 33 * Eric : Fast Retransmit. 34 * Randy Scott : MSS option defines. 35 * Eric Schenk : Fixes to slow start algorithm. 36 * Eric Schenk : Yet another double ACK bug. 37 * Eric Schenk : Delayed ACK bug fixes. 38 * Eric Schenk : Floyd style fast retrans war avoidance. 39 * David S. Miller : Don't allow zero congestion window. 40 * Eric Schenk : Fix retransmitter so that it sends 41 * next packet on ack of previous packet. 42 * Andi Kleen : Moved open_request checking here 43 * and process RSTs for open_requests. 44 * Andi Kleen : Better prune_queue, and other fixes. 45 * Andrey Savochkin: Fix RTT measurements in the presence of 46 * timestamps. 47 * Andrey Savochkin: Check sequence numbers correctly when 48 * removing SACKs due to in sequence incoming 49 * data segments. 50 * Andi Kleen: Make sure we never ack data there is not 51 * enough room for. Also make this condition 52 * a fatal error if it might still happen. 53 * Andi Kleen: Add tcp_measure_rcv_mss to make 54 * connections with MSS<min(MTU,ann. MSS) 55 * work without delayed acks. 56 * Andi Kleen: Process packets with PSH set in the 57 * fast path. 58 * J Hadi Salim: ECN support 59 * Andrei Gurtov, 60 * Pasi Sarolahti, 61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 62 * engine. Lots of bugs are found. 63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 64 */ 65 66 #include <linux/mm.h> 67 #include <linux/module.h> 68 #include <linux/sysctl.h> 69 #include <net/tcp.h> 70 #include <net/inet_common.h> 71 #include <linux/ipsec.h> 72 #include <asm/unaligned.h> 73 #include <net/netdma.h> 74 75 int sysctl_tcp_timestamps __read_mostly = 1; 76 int sysctl_tcp_window_scaling __read_mostly = 1; 77 int sysctl_tcp_sack __read_mostly = 1; 78 int sysctl_tcp_fack __read_mostly = 1; 79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn __read_mostly; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 2; 84 85 int sysctl_tcp_stdurg __read_mostly; 86 int sysctl_tcp_rfc1337 __read_mostly; 87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 88 int sysctl_tcp_frto __read_mostly = 2; 89 int sysctl_tcp_frto_response __read_mostly; 90 int sysctl_tcp_nometrics_save __read_mostly; 91 92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 93 int sysctl_tcp_abc __read_mostly; 94 95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 101 #define FLAG_ECE 0x40 /* ECE in this ACK */ 102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 108 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 109 110 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 111 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 112 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 113 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 114 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 115 116 #define IsSackFrto() (sysctl_tcp_frto == 0x2) 117 118 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 119 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 120 121 /* Adapt the MSS value used to make delayed ack decision to the 122 * real world. 123 */ 124 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 125 { 126 struct inet_connection_sock *icsk = inet_csk(sk); 127 const unsigned int lss = icsk->icsk_ack.last_seg_size; 128 unsigned int len; 129 130 icsk->icsk_ack.last_seg_size = 0; 131 132 /* skb->len may jitter because of SACKs, even if peer 133 * sends good full-sized frames. 134 */ 135 len = skb_shinfo(skb)->gso_size ? : skb->len; 136 if (len >= icsk->icsk_ack.rcv_mss) { 137 icsk->icsk_ack.rcv_mss = len; 138 } else { 139 /* Otherwise, we make more careful check taking into account, 140 * that SACKs block is variable. 141 * 142 * "len" is invariant segment length, including TCP header. 143 */ 144 len += skb->data - skb_transport_header(skb); 145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 146 /* If PSH is not set, packet should be 147 * full sized, provided peer TCP is not badly broken. 148 * This observation (if it is correct 8)) allows 149 * to handle super-low mtu links fairly. 150 */ 151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 153 /* Subtract also invariant (if peer is RFC compliant), 154 * tcp header plus fixed timestamp option length. 155 * Resulting "len" is MSS free of SACK jitter. 156 */ 157 len -= tcp_sk(sk)->tcp_header_len; 158 icsk->icsk_ack.last_seg_size = len; 159 if (len == lss) { 160 icsk->icsk_ack.rcv_mss = len; 161 return; 162 } 163 } 164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 167 } 168 } 169 170 static void tcp_incr_quickack(struct sock *sk) 171 { 172 struct inet_connection_sock *icsk = inet_csk(sk); 173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 174 175 if (quickacks == 0) 176 quickacks = 2; 177 if (quickacks > icsk->icsk_ack.quick) 178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 179 } 180 181 void tcp_enter_quickack_mode(struct sock *sk) 182 { 183 struct inet_connection_sock *icsk = inet_csk(sk); 184 tcp_incr_quickack(sk); 185 icsk->icsk_ack.pingpong = 0; 186 icsk->icsk_ack.ato = TCP_ATO_MIN; 187 } 188 189 /* Send ACKs quickly, if "quick" count is not exhausted 190 * and the session is not interactive. 191 */ 192 193 static inline int tcp_in_quickack_mode(const struct sock *sk) 194 { 195 const struct inet_connection_sock *icsk = inet_csk(sk); 196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 197 } 198 199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 200 { 201 if (tp->ecn_flags & TCP_ECN_OK) 202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 203 } 204 205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb) 206 { 207 if (tcp_hdr(skb)->cwr) 208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 209 } 210 211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 212 { 213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 214 } 215 216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb) 217 { 218 if (tp->ecn_flags & TCP_ECN_OK) { 219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags)) 220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 221 /* Funny extension: if ECT is not set on a segment, 222 * it is surely retransmit. It is not in ECN RFC, 223 * but Linux follows this rule. */ 224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags))) 225 tcp_enter_quickack_mode((struct sock *)tp); 226 } 227 } 228 229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th) 230 { 231 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 232 tp->ecn_flags &= ~TCP_ECN_OK; 233 } 234 235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th) 236 { 237 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 238 tp->ecn_flags &= ~TCP_ECN_OK; 239 } 240 241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th) 242 { 243 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 244 return 1; 245 return 0; 246 } 247 248 /* Buffer size and advertised window tuning. 249 * 250 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 251 */ 252 253 static void tcp_fixup_sndbuf(struct sock *sk) 254 { 255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 256 sizeof(struct sk_buff); 257 258 if (sk->sk_sndbuf < 3 * sndmem) 259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 260 } 261 262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 263 * 264 * All tcp_full_space() is split to two parts: "network" buffer, allocated 265 * forward and advertised in receiver window (tp->rcv_wnd) and 266 * "application buffer", required to isolate scheduling/application 267 * latencies from network. 268 * window_clamp is maximal advertised window. It can be less than 269 * tcp_full_space(), in this case tcp_full_space() - window_clamp 270 * is reserved for "application" buffer. The less window_clamp is 271 * the smoother our behaviour from viewpoint of network, but the lower 272 * throughput and the higher sensitivity of the connection to losses. 8) 273 * 274 * rcv_ssthresh is more strict window_clamp used at "slow start" 275 * phase to predict further behaviour of this connection. 276 * It is used for two goals: 277 * - to enforce header prediction at sender, even when application 278 * requires some significant "application buffer". It is check #1. 279 * - to prevent pruning of receive queue because of misprediction 280 * of receiver window. Check #2. 281 * 282 * The scheme does not work when sender sends good segments opening 283 * window and then starts to feed us spaghetti. But it should work 284 * in common situations. Otherwise, we have to rely on queue collapsing. 285 */ 286 287 /* Slow part of check#2. */ 288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 289 { 290 struct tcp_sock *tp = tcp_sk(sk); 291 /* Optimize this! */ 292 int truesize = tcp_win_from_space(skb->truesize) >> 1; 293 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 294 295 while (tp->rcv_ssthresh <= window) { 296 if (truesize <= skb->len) 297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 298 299 truesize >>= 1; 300 window >>= 1; 301 } 302 return 0; 303 } 304 305 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb) 306 { 307 struct tcp_sock *tp = tcp_sk(sk); 308 309 /* Check #1 */ 310 if (tp->rcv_ssthresh < tp->window_clamp && 311 (int)tp->rcv_ssthresh < tcp_space(sk) && 312 !tcp_memory_pressure) { 313 int incr; 314 315 /* Check #2. Increase window, if skb with such overhead 316 * will fit to rcvbuf in future. 317 */ 318 if (tcp_win_from_space(skb->truesize) <= skb->len) 319 incr = 2 * tp->advmss; 320 else 321 incr = __tcp_grow_window(sk, skb); 322 323 if (incr) { 324 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 325 tp->window_clamp); 326 inet_csk(sk)->icsk_ack.quick |= 1; 327 } 328 } 329 } 330 331 /* 3. Tuning rcvbuf, when connection enters established state. */ 332 333 static void tcp_fixup_rcvbuf(struct sock *sk) 334 { 335 struct tcp_sock *tp = tcp_sk(sk); 336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 337 338 /* Try to select rcvbuf so that 4 mss-sized segments 339 * will fit to window and corresponding skbs will fit to our rcvbuf. 340 * (was 3; 4 is minimum to allow fast retransmit to work.) 341 */ 342 while (tcp_win_from_space(rcvmem) < tp->advmss) 343 rcvmem += 128; 344 if (sk->sk_rcvbuf < 4 * rcvmem) 345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 346 } 347 348 /* 4. Try to fixup all. It is made immediately after connection enters 349 * established state. 350 */ 351 static void tcp_init_buffer_space(struct sock *sk) 352 { 353 struct tcp_sock *tp = tcp_sk(sk); 354 int maxwin; 355 356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 357 tcp_fixup_rcvbuf(sk); 358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 359 tcp_fixup_sndbuf(sk); 360 361 tp->rcvq_space.space = tp->rcv_wnd; 362 363 maxwin = tcp_full_space(sk); 364 365 if (tp->window_clamp >= maxwin) { 366 tp->window_clamp = maxwin; 367 368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 369 tp->window_clamp = max(maxwin - 370 (maxwin >> sysctl_tcp_app_win), 371 4 * tp->advmss); 372 } 373 374 /* Force reservation of one segment. */ 375 if (sysctl_tcp_app_win && 376 tp->window_clamp > 2 * tp->advmss && 377 tp->window_clamp + tp->advmss > maxwin) 378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 379 380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 381 tp->snd_cwnd_stamp = tcp_time_stamp; 382 } 383 384 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 385 static void tcp_clamp_window(struct sock *sk) 386 { 387 struct tcp_sock *tp = tcp_sk(sk); 388 struct inet_connection_sock *icsk = inet_csk(sk); 389 390 icsk->icsk_ack.quick = 0; 391 392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 394 !tcp_memory_pressure && 395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 397 sysctl_tcp_rmem[2]); 398 } 399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 400 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 401 } 402 403 /* Initialize RCV_MSS value. 404 * RCV_MSS is an our guess about MSS used by the peer. 405 * We haven't any direct information about the MSS. 406 * It's better to underestimate the RCV_MSS rather than overestimate. 407 * Overestimations make us ACKing less frequently than needed. 408 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 409 */ 410 void tcp_initialize_rcv_mss(struct sock *sk) 411 { 412 struct tcp_sock *tp = tcp_sk(sk); 413 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 414 415 hint = min(hint, tp->rcv_wnd / 2); 416 hint = min(hint, TCP_MIN_RCVMSS); 417 hint = max(hint, TCP_MIN_MSS); 418 419 inet_csk(sk)->icsk_ack.rcv_mss = hint; 420 } 421 422 /* Receiver "autotuning" code. 423 * 424 * The algorithm for RTT estimation w/o timestamps is based on 425 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 426 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 427 * 428 * More detail on this code can be found at 429 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 430 * though this reference is out of date. A new paper 431 * is pending. 432 */ 433 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 434 { 435 u32 new_sample = tp->rcv_rtt_est.rtt; 436 long m = sample; 437 438 if (m == 0) 439 m = 1; 440 441 if (new_sample != 0) { 442 /* If we sample in larger samples in the non-timestamp 443 * case, we could grossly overestimate the RTT especially 444 * with chatty applications or bulk transfer apps which 445 * are stalled on filesystem I/O. 446 * 447 * Also, since we are only going for a minimum in the 448 * non-timestamp case, we do not smooth things out 449 * else with timestamps disabled convergence takes too 450 * long. 451 */ 452 if (!win_dep) { 453 m -= (new_sample >> 3); 454 new_sample += m; 455 } else if (m < new_sample) 456 new_sample = m << 3; 457 } else { 458 /* No previous measure. */ 459 new_sample = m << 3; 460 } 461 462 if (tp->rcv_rtt_est.rtt != new_sample) 463 tp->rcv_rtt_est.rtt = new_sample; 464 } 465 466 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 467 { 468 if (tp->rcv_rtt_est.time == 0) 469 goto new_measure; 470 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 471 return; 472 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1); 473 474 new_measure: 475 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 476 tp->rcv_rtt_est.time = tcp_time_stamp; 477 } 478 479 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 480 const struct sk_buff *skb) 481 { 482 struct tcp_sock *tp = tcp_sk(sk); 483 if (tp->rx_opt.rcv_tsecr && 484 (TCP_SKB_CB(skb)->end_seq - 485 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 486 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 487 } 488 489 /* 490 * This function should be called every time data is copied to user space. 491 * It calculates the appropriate TCP receive buffer space. 492 */ 493 void tcp_rcv_space_adjust(struct sock *sk) 494 { 495 struct tcp_sock *tp = tcp_sk(sk); 496 int time; 497 int space; 498 499 if (tp->rcvq_space.time == 0) 500 goto new_measure; 501 502 time = tcp_time_stamp - tp->rcvq_space.time; 503 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 504 return; 505 506 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 507 508 space = max(tp->rcvq_space.space, space); 509 510 if (tp->rcvq_space.space != space) { 511 int rcvmem; 512 513 tp->rcvq_space.space = space; 514 515 if (sysctl_tcp_moderate_rcvbuf && 516 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 517 int new_clamp = space; 518 519 /* Receive space grows, normalize in order to 520 * take into account packet headers and sk_buff 521 * structure overhead. 522 */ 523 space /= tp->advmss; 524 if (!space) 525 space = 1; 526 rcvmem = (tp->advmss + MAX_TCP_HEADER + 527 16 + sizeof(struct sk_buff)); 528 while (tcp_win_from_space(rcvmem) < tp->advmss) 529 rcvmem += 128; 530 space *= rcvmem; 531 space = min(space, sysctl_tcp_rmem[2]); 532 if (space > sk->sk_rcvbuf) { 533 sk->sk_rcvbuf = space; 534 535 /* Make the window clamp follow along. */ 536 tp->window_clamp = new_clamp; 537 } 538 } 539 } 540 541 new_measure: 542 tp->rcvq_space.seq = tp->copied_seq; 543 tp->rcvq_space.time = tcp_time_stamp; 544 } 545 546 /* There is something which you must keep in mind when you analyze the 547 * behavior of the tp->ato delayed ack timeout interval. When a 548 * connection starts up, we want to ack as quickly as possible. The 549 * problem is that "good" TCP's do slow start at the beginning of data 550 * transmission. The means that until we send the first few ACK's the 551 * sender will sit on his end and only queue most of his data, because 552 * he can only send snd_cwnd unacked packets at any given time. For 553 * each ACK we send, he increments snd_cwnd and transmits more of his 554 * queue. -DaveM 555 */ 556 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 557 { 558 struct tcp_sock *tp = tcp_sk(sk); 559 struct inet_connection_sock *icsk = inet_csk(sk); 560 u32 now; 561 562 inet_csk_schedule_ack(sk); 563 564 tcp_measure_rcv_mss(sk, skb); 565 566 tcp_rcv_rtt_measure(tp); 567 568 now = tcp_time_stamp; 569 570 if (!icsk->icsk_ack.ato) { 571 /* The _first_ data packet received, initialize 572 * delayed ACK engine. 573 */ 574 tcp_incr_quickack(sk); 575 icsk->icsk_ack.ato = TCP_ATO_MIN; 576 } else { 577 int m = now - icsk->icsk_ack.lrcvtime; 578 579 if (m <= TCP_ATO_MIN / 2) { 580 /* The fastest case is the first. */ 581 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 582 } else if (m < icsk->icsk_ack.ato) { 583 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 584 if (icsk->icsk_ack.ato > icsk->icsk_rto) 585 icsk->icsk_ack.ato = icsk->icsk_rto; 586 } else if (m > icsk->icsk_rto) { 587 /* Too long gap. Apparently sender failed to 588 * restart window, so that we send ACKs quickly. 589 */ 590 tcp_incr_quickack(sk); 591 sk_mem_reclaim(sk); 592 } 593 } 594 icsk->icsk_ack.lrcvtime = now; 595 596 TCP_ECN_check_ce(tp, skb); 597 598 if (skb->len >= 128) 599 tcp_grow_window(sk, skb); 600 } 601 602 static u32 tcp_rto_min(struct sock *sk) 603 { 604 struct dst_entry *dst = __sk_dst_get(sk); 605 u32 rto_min = TCP_RTO_MIN; 606 607 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 608 rto_min = dst->metrics[RTAX_RTO_MIN - 1]; 609 return rto_min; 610 } 611 612 /* Called to compute a smoothed rtt estimate. The data fed to this 613 * routine either comes from timestamps, or from segments that were 614 * known _not_ to have been retransmitted [see Karn/Partridge 615 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 616 * piece by Van Jacobson. 617 * NOTE: the next three routines used to be one big routine. 618 * To save cycles in the RFC 1323 implementation it was better to break 619 * it up into three procedures. -- erics 620 */ 621 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 622 { 623 struct tcp_sock *tp = tcp_sk(sk); 624 long m = mrtt; /* RTT */ 625 626 /* The following amusing code comes from Jacobson's 627 * article in SIGCOMM '88. Note that rtt and mdev 628 * are scaled versions of rtt and mean deviation. 629 * This is designed to be as fast as possible 630 * m stands for "measurement". 631 * 632 * On a 1990 paper the rto value is changed to: 633 * RTO = rtt + 4 * mdev 634 * 635 * Funny. This algorithm seems to be very broken. 636 * These formulae increase RTO, when it should be decreased, increase 637 * too slowly, when it should be increased quickly, decrease too quickly 638 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 639 * does not matter how to _calculate_ it. Seems, it was trap 640 * that VJ failed to avoid. 8) 641 */ 642 if (m == 0) 643 m = 1; 644 if (tp->srtt != 0) { 645 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 646 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 647 if (m < 0) { 648 m = -m; /* m is now abs(error) */ 649 m -= (tp->mdev >> 2); /* similar update on mdev */ 650 /* This is similar to one of Eifel findings. 651 * Eifel blocks mdev updates when rtt decreases. 652 * This solution is a bit different: we use finer gain 653 * for mdev in this case (alpha*beta). 654 * Like Eifel it also prevents growth of rto, 655 * but also it limits too fast rto decreases, 656 * happening in pure Eifel. 657 */ 658 if (m > 0) 659 m >>= 3; 660 } else { 661 m -= (tp->mdev >> 2); /* similar update on mdev */ 662 } 663 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 664 if (tp->mdev > tp->mdev_max) { 665 tp->mdev_max = tp->mdev; 666 if (tp->mdev_max > tp->rttvar) 667 tp->rttvar = tp->mdev_max; 668 } 669 if (after(tp->snd_una, tp->rtt_seq)) { 670 if (tp->mdev_max < tp->rttvar) 671 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 672 tp->rtt_seq = tp->snd_nxt; 673 tp->mdev_max = tcp_rto_min(sk); 674 } 675 } else { 676 /* no previous measure. */ 677 tp->srtt = m << 3; /* take the measured time to be rtt */ 678 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 679 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 680 tp->rtt_seq = tp->snd_nxt; 681 } 682 } 683 684 /* Calculate rto without backoff. This is the second half of Van Jacobson's 685 * routine referred to above. 686 */ 687 static inline void tcp_set_rto(struct sock *sk) 688 { 689 const struct tcp_sock *tp = tcp_sk(sk); 690 /* Old crap is replaced with new one. 8) 691 * 692 * More seriously: 693 * 1. If rtt variance happened to be less 50msec, it is hallucination. 694 * It cannot be less due to utterly erratic ACK generation made 695 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 696 * to do with delayed acks, because at cwnd>2 true delack timeout 697 * is invisible. Actually, Linux-2.4 also generates erratic 698 * ACKs in some circumstances. 699 */ 700 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 701 702 /* 2. Fixups made earlier cannot be right. 703 * If we do not estimate RTO correctly without them, 704 * all the algo is pure shit and should be replaced 705 * with correct one. It is exactly, which we pretend to do. 706 */ 707 } 708 709 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 710 * guarantees that rto is higher. 711 */ 712 static inline void tcp_bound_rto(struct sock *sk) 713 { 714 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 715 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 716 } 717 718 /* Save metrics learned by this TCP session. 719 This function is called only, when TCP finishes successfully 720 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 721 */ 722 void tcp_update_metrics(struct sock *sk) 723 { 724 struct tcp_sock *tp = tcp_sk(sk); 725 struct dst_entry *dst = __sk_dst_get(sk); 726 727 if (sysctl_tcp_nometrics_save) 728 return; 729 730 dst_confirm(dst); 731 732 if (dst && (dst->flags & DST_HOST)) { 733 const struct inet_connection_sock *icsk = inet_csk(sk); 734 int m; 735 736 if (icsk->icsk_backoff || !tp->srtt) { 737 /* This session failed to estimate rtt. Why? 738 * Probably, no packets returned in time. 739 * Reset our results. 740 */ 741 if (!(dst_metric_locked(dst, RTAX_RTT))) 742 dst->metrics[RTAX_RTT - 1] = 0; 743 return; 744 } 745 746 m = dst_metric(dst, RTAX_RTT) - tp->srtt; 747 748 /* If newly calculated rtt larger than stored one, 749 * store new one. Otherwise, use EWMA. Remember, 750 * rtt overestimation is always better than underestimation. 751 */ 752 if (!(dst_metric_locked(dst, RTAX_RTT))) { 753 if (m <= 0) 754 dst->metrics[RTAX_RTT - 1] = tp->srtt; 755 else 756 dst->metrics[RTAX_RTT - 1] -= (m >> 3); 757 } 758 759 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 760 if (m < 0) 761 m = -m; 762 763 /* Scale deviation to rttvar fixed point */ 764 m >>= 1; 765 if (m < tp->mdev) 766 m = tp->mdev; 767 768 if (m >= dst_metric(dst, RTAX_RTTVAR)) 769 dst->metrics[RTAX_RTTVAR - 1] = m; 770 else 771 dst->metrics[RTAX_RTTVAR-1] -= 772 (dst->metrics[RTAX_RTTVAR-1] - m)>>2; 773 } 774 775 if (tp->snd_ssthresh >= 0xFFFF) { 776 /* Slow start still did not finish. */ 777 if (dst_metric(dst, RTAX_SSTHRESH) && 778 !dst_metric_locked(dst, RTAX_SSTHRESH) && 779 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 780 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 781 if (!dst_metric_locked(dst, RTAX_CWND) && 782 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 783 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd; 784 } else if (tp->snd_cwnd > tp->snd_ssthresh && 785 icsk->icsk_ca_state == TCP_CA_Open) { 786 /* Cong. avoidance phase, cwnd is reliable. */ 787 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 788 dst->metrics[RTAX_SSTHRESH-1] = 789 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 790 if (!dst_metric_locked(dst, RTAX_CWND)) 791 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; 792 } else { 793 /* Else slow start did not finish, cwnd is non-sense, 794 ssthresh may be also invalid. 795 */ 796 if (!dst_metric_locked(dst, RTAX_CWND)) 797 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; 798 if (dst->metrics[RTAX_SSTHRESH-1] && 799 !dst_metric_locked(dst, RTAX_SSTHRESH) && 800 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) 801 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 802 } 803 804 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 805 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && 806 tp->reordering != sysctl_tcp_reordering) 807 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 808 } 809 } 810 } 811 812 /* Numbers are taken from RFC3390. 813 * 814 * John Heffner states: 815 * 816 * The RFC specifies a window of no more than 4380 bytes 817 * unless 2*MSS > 4380. Reading the pseudocode in the RFC 818 * is a bit misleading because they use a clamp at 4380 bytes 819 * rather than use a multiplier in the relevant range. 820 */ 821 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 822 { 823 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 824 825 if (!cwnd) { 826 if (tp->mss_cache > 1460) 827 cwnd = 2; 828 else 829 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 830 } 831 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 832 } 833 834 /* Set slow start threshold and cwnd not falling to slow start */ 835 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 836 { 837 struct tcp_sock *tp = tcp_sk(sk); 838 const struct inet_connection_sock *icsk = inet_csk(sk); 839 840 tp->prior_ssthresh = 0; 841 tp->bytes_acked = 0; 842 if (icsk->icsk_ca_state < TCP_CA_CWR) { 843 tp->undo_marker = 0; 844 if (set_ssthresh) 845 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 846 tp->snd_cwnd = min(tp->snd_cwnd, 847 tcp_packets_in_flight(tp) + 1U); 848 tp->snd_cwnd_cnt = 0; 849 tp->high_seq = tp->snd_nxt; 850 tp->snd_cwnd_stamp = tcp_time_stamp; 851 TCP_ECN_queue_cwr(tp); 852 853 tcp_set_ca_state(sk, TCP_CA_CWR); 854 } 855 } 856 857 /* 858 * Packet counting of FACK is based on in-order assumptions, therefore TCP 859 * disables it when reordering is detected 860 */ 861 static void tcp_disable_fack(struct tcp_sock *tp) 862 { 863 /* RFC3517 uses different metric in lost marker => reset on change */ 864 if (tcp_is_fack(tp)) 865 tp->lost_skb_hint = NULL; 866 tp->rx_opt.sack_ok &= ~2; 867 } 868 869 /* Take a notice that peer is sending D-SACKs */ 870 static void tcp_dsack_seen(struct tcp_sock *tp) 871 { 872 tp->rx_opt.sack_ok |= 4; 873 } 874 875 /* Initialize metrics on socket. */ 876 877 static void tcp_init_metrics(struct sock *sk) 878 { 879 struct tcp_sock *tp = tcp_sk(sk); 880 struct dst_entry *dst = __sk_dst_get(sk); 881 882 if (dst == NULL) 883 goto reset; 884 885 dst_confirm(dst); 886 887 if (dst_metric_locked(dst, RTAX_CWND)) 888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 889 if (dst_metric(dst, RTAX_SSTHRESH)) { 890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 892 tp->snd_ssthresh = tp->snd_cwnd_clamp; 893 } 894 if (dst_metric(dst, RTAX_REORDERING) && 895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 896 tcp_disable_fack(tp); 897 tp->reordering = dst_metric(dst, RTAX_REORDERING); 898 } 899 900 if (dst_metric(dst, RTAX_RTT) == 0) 901 goto reset; 902 903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 904 goto reset; 905 906 /* Initial rtt is determined from SYN,SYN-ACK. 907 * The segment is small and rtt may appear much 908 * less than real one. Use per-dst memory 909 * to make it more realistic. 910 * 911 * A bit of theory. RTT is time passed after "normal" sized packet 912 * is sent until it is ACKed. In normal circumstances sending small 913 * packets force peer to delay ACKs and calculation is correct too. 914 * The algorithm is adaptive and, provided we follow specs, it 915 * NEVER underestimate RTT. BUT! If peer tries to make some clever 916 * tricks sort of "quick acks" for time long enough to decrease RTT 917 * to low value, and then abruptly stops to do it and starts to delay 918 * ACKs, wait for troubles. 919 */ 920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) { 921 tp->srtt = dst_metric(dst, RTAX_RTT); 922 tp->rtt_seq = tp->snd_nxt; 923 } 924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { 925 tp->mdev = dst_metric(dst, RTAX_RTTVAR); 926 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 927 } 928 tcp_set_rto(sk); 929 tcp_bound_rto(sk); 930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 931 goto reset; 932 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 933 tp->snd_cwnd_stamp = tcp_time_stamp; 934 return; 935 936 reset: 937 /* Play conservative. If timestamps are not 938 * supported, TCP will fail to recalculate correct 939 * rtt, if initial rto is too small. FORGET ALL AND RESET! 940 */ 941 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 942 tp->srtt = 0; 943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 945 } 946 } 947 948 static void tcp_update_reordering(struct sock *sk, const int metric, 949 const int ts) 950 { 951 struct tcp_sock *tp = tcp_sk(sk); 952 if (metric > tp->reordering) { 953 tp->reordering = min(TCP_MAX_REORDERING, metric); 954 955 /* This exciting event is worth to be remembered. 8) */ 956 if (ts) 957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); 958 else if (tcp_is_reno(tp)) 959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); 960 else if (tcp_is_fack(tp)) 961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); 962 else 963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); 964 #if FASTRETRANS_DEBUG > 1 965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 967 tp->reordering, 968 tp->fackets_out, 969 tp->sacked_out, 970 tp->undo_marker ? tp->undo_retrans : 0); 971 #endif 972 tcp_disable_fack(tp); 973 } 974 } 975 976 /* This procedure tags the retransmission queue when SACKs arrive. 977 * 978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 979 * Packets in queue with these bits set are counted in variables 980 * sacked_out, retrans_out and lost_out, correspondingly. 981 * 982 * Valid combinations are: 983 * Tag InFlight Description 984 * 0 1 - orig segment is in flight. 985 * S 0 - nothing flies, orig reached receiver. 986 * L 0 - nothing flies, orig lost by net. 987 * R 2 - both orig and retransmit are in flight. 988 * L|R 1 - orig is lost, retransmit is in flight. 989 * S|R 1 - orig reached receiver, retrans is still in flight. 990 * (L|S|R is logically valid, it could occur when L|R is sacked, 991 * but it is equivalent to plain S and code short-curcuits it to S. 992 * L|S is logically invalid, it would mean -1 packet in flight 8)) 993 * 994 * These 6 states form finite state machine, controlled by the following events: 995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 997 * 3. Loss detection event of one of three flavors: 998 * A. Scoreboard estimator decided the packet is lost. 999 * A'. Reno "three dupacks" marks head of queue lost. 1000 * A''. Its FACK modfication, head until snd.fack is lost. 1001 * B. SACK arrives sacking data transmitted after never retransmitted 1002 * hole was sent out. 1003 * C. SACK arrives sacking SND.NXT at the moment, when the 1004 * segment was retransmitted. 1005 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1006 * 1007 * It is pleasant to note, that state diagram turns out to be commutative, 1008 * so that we are allowed not to be bothered by order of our actions, 1009 * when multiple events arrive simultaneously. (see the function below). 1010 * 1011 * Reordering detection. 1012 * -------------------- 1013 * Reordering metric is maximal distance, which a packet can be displaced 1014 * in packet stream. With SACKs we can estimate it: 1015 * 1016 * 1. SACK fills old hole and the corresponding segment was not 1017 * ever retransmitted -> reordering. Alas, we cannot use it 1018 * when segment was retransmitted. 1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1020 * for retransmitted and already SACKed segment -> reordering.. 1021 * Both of these heuristics are not used in Loss state, when we cannot 1022 * account for retransmits accurately. 1023 * 1024 * SACK block validation. 1025 * ---------------------- 1026 * 1027 * SACK block range validation checks that the received SACK block fits to 1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1029 * Note that SND.UNA is not included to the range though being valid because 1030 * it means that the receiver is rather inconsistent with itself reporting 1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1032 * perfectly valid, however, in light of RFC2018 which explicitly states 1033 * that "SACK block MUST reflect the newest segment. Even if the newest 1034 * segment is going to be discarded ...", not that it looks very clever 1035 * in case of head skb. Due to potentional receiver driven attacks, we 1036 * choose to avoid immediate execution of a walk in write queue due to 1037 * reneging and defer head skb's loss recovery to standard loss recovery 1038 * procedure that will eventually trigger (nothing forbids us doing this). 1039 * 1040 * Implements also blockage to start_seq wrap-around. Problem lies in the 1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1042 * there's no guarantee that it will be before snd_nxt (n). The problem 1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1044 * wrap (s_w): 1045 * 1046 * <- outs wnd -> <- wrapzone -> 1047 * u e n u_w e_w s n_w 1048 * | | | | | | | 1049 * |<------------+------+----- TCP seqno space --------------+---------->| 1050 * ...-- <2^31 ->| |<--------... 1051 * ...---- >2^31 ------>| |<--------... 1052 * 1053 * Current code wouldn't be vulnerable but it's better still to discard such 1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1057 * equal to the ideal case (infinite seqno space without wrap caused issues). 1058 * 1059 * With D-SACK the lower bound is extended to cover sequence space below 1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1061 * again, D-SACK block must not to go across snd_una (for the same reason as 1062 * for the normal SACK blocks, explained above). But there all simplicity 1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1064 * fully below undo_marker they do not affect behavior in anyway and can 1065 * therefore be safely ignored. In rare cases (which are more or less 1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1067 * fragmentation and packet reordering past skb's retransmission. To consider 1068 * them correctly, the acceptable range must be extended even more though 1069 * the exact amount is rather hard to quantify. However, tp->max_window can 1070 * be used as an exaggerated estimate. 1071 */ 1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1073 u32 start_seq, u32 end_seq) 1074 { 1075 /* Too far in future, or reversed (interpretation is ambiguous) */ 1076 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1077 return 0; 1078 1079 /* Nasty start_seq wrap-around check (see comments above) */ 1080 if (!before(start_seq, tp->snd_nxt)) 1081 return 0; 1082 1083 /* In outstanding window? ...This is valid exit for D-SACKs too. 1084 * start_seq == snd_una is non-sensical (see comments above) 1085 */ 1086 if (after(start_seq, tp->snd_una)) 1087 return 1; 1088 1089 if (!is_dsack || !tp->undo_marker) 1090 return 0; 1091 1092 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1093 if (!after(end_seq, tp->snd_una)) 1094 return 0; 1095 1096 if (!before(start_seq, tp->undo_marker)) 1097 return 1; 1098 1099 /* Too old */ 1100 if (!after(end_seq, tp->undo_marker)) 1101 return 0; 1102 1103 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1104 * start_seq < undo_marker and end_seq >= undo_marker. 1105 */ 1106 return !before(start_seq, end_seq - tp->max_window); 1107 } 1108 1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1110 * Event "C". Later note: FACK people cheated me again 8), we have to account 1111 * for reordering! Ugly, but should help. 1112 * 1113 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1114 * less than what is now known to be received by the other end (derived from 1115 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1116 * retransmitted skbs to avoid some costly processing per ACKs. 1117 */ 1118 static void tcp_mark_lost_retrans(struct sock *sk) 1119 { 1120 const struct inet_connection_sock *icsk = inet_csk(sk); 1121 struct tcp_sock *tp = tcp_sk(sk); 1122 struct sk_buff *skb; 1123 int cnt = 0; 1124 u32 new_low_seq = tp->snd_nxt; 1125 u32 received_upto = tcp_highest_sack_seq(tp); 1126 1127 if (!tcp_is_fack(tp) || !tp->retrans_out || 1128 !after(received_upto, tp->lost_retrans_low) || 1129 icsk->icsk_ca_state != TCP_CA_Recovery) 1130 return; 1131 1132 tcp_for_write_queue(skb, sk) { 1133 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1134 1135 if (skb == tcp_send_head(sk)) 1136 break; 1137 if (cnt == tp->retrans_out) 1138 break; 1139 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1140 continue; 1141 1142 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1143 continue; 1144 1145 if (after(received_upto, ack_seq) && 1146 (tcp_is_fack(tp) || 1147 !before(received_upto, 1148 ack_seq + tp->reordering * tp->mss_cache))) { 1149 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1150 tp->retrans_out -= tcp_skb_pcount(skb); 1151 1152 /* clear lost hint */ 1153 tp->retransmit_skb_hint = NULL; 1154 1155 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1156 tp->lost_out += tcp_skb_pcount(skb); 1157 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1158 } 1159 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); 1160 } else { 1161 if (before(ack_seq, new_low_seq)) 1162 new_low_seq = ack_seq; 1163 cnt += tcp_skb_pcount(skb); 1164 } 1165 } 1166 1167 if (tp->retrans_out) 1168 tp->lost_retrans_low = new_low_seq; 1169 } 1170 1171 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb, 1172 struct tcp_sack_block_wire *sp, int num_sacks, 1173 u32 prior_snd_una) 1174 { 1175 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq)); 1176 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq)); 1177 int dup_sack = 0; 1178 1179 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1180 dup_sack = 1; 1181 tcp_dsack_seen(tp); 1182 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); 1183 } else if (num_sacks > 1) { 1184 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq)); 1185 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq)); 1186 1187 if (!after(end_seq_0, end_seq_1) && 1188 !before(start_seq_0, start_seq_1)) { 1189 dup_sack = 1; 1190 tcp_dsack_seen(tp); 1191 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); 1192 } 1193 } 1194 1195 /* D-SACK for already forgotten data... Do dumb counting. */ 1196 if (dup_sack && 1197 !after(end_seq_0, prior_snd_una) && 1198 after(end_seq_0, tp->undo_marker)) 1199 tp->undo_retrans--; 1200 1201 return dup_sack; 1202 } 1203 1204 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1205 * the incoming SACK may not exactly match but we can find smaller MSS 1206 * aligned portion of it that matches. Therefore we might need to fragment 1207 * which may fail and creates some hassle (caller must handle error case 1208 * returns). 1209 */ 1210 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1211 u32 start_seq, u32 end_seq) 1212 { 1213 int in_sack, err; 1214 unsigned int pkt_len; 1215 1216 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1217 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1218 1219 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1220 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1221 1222 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1223 1224 if (!in_sack) 1225 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1226 else 1227 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1228 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size); 1229 if (err < 0) 1230 return err; 1231 } 1232 1233 return in_sack; 1234 } 1235 1236 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk, 1237 int *reord, int dup_sack, int fack_count) 1238 { 1239 struct tcp_sock *tp = tcp_sk(sk); 1240 u8 sacked = TCP_SKB_CB(skb)->sacked; 1241 int flag = 0; 1242 1243 /* Account D-SACK for retransmitted packet. */ 1244 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1245 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1246 tp->undo_retrans--; 1247 if (sacked & TCPCB_SACKED_ACKED) 1248 *reord = min(fack_count, *reord); 1249 } 1250 1251 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1252 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1253 return flag; 1254 1255 if (!(sacked & TCPCB_SACKED_ACKED)) { 1256 if (sacked & TCPCB_SACKED_RETRANS) { 1257 /* If the segment is not tagged as lost, 1258 * we do not clear RETRANS, believing 1259 * that retransmission is still in flight. 1260 */ 1261 if (sacked & TCPCB_LOST) { 1262 TCP_SKB_CB(skb)->sacked &= 1263 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1264 tp->lost_out -= tcp_skb_pcount(skb); 1265 tp->retrans_out -= tcp_skb_pcount(skb); 1266 1267 /* clear lost hint */ 1268 tp->retransmit_skb_hint = NULL; 1269 } 1270 } else { 1271 if (!(sacked & TCPCB_RETRANS)) { 1272 /* New sack for not retransmitted frame, 1273 * which was in hole. It is reordering. 1274 */ 1275 if (before(TCP_SKB_CB(skb)->seq, 1276 tcp_highest_sack_seq(tp))) 1277 *reord = min(fack_count, *reord); 1278 1279 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1280 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) 1281 flag |= FLAG_ONLY_ORIG_SACKED; 1282 } 1283 1284 if (sacked & TCPCB_LOST) { 1285 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1286 tp->lost_out -= tcp_skb_pcount(skb); 1287 1288 /* clear lost hint */ 1289 tp->retransmit_skb_hint = NULL; 1290 } 1291 } 1292 1293 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; 1294 flag |= FLAG_DATA_SACKED; 1295 tp->sacked_out += tcp_skb_pcount(skb); 1296 1297 fack_count += tcp_skb_pcount(skb); 1298 1299 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1300 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1301 before(TCP_SKB_CB(skb)->seq, 1302 TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1303 tp->lost_cnt_hint += tcp_skb_pcount(skb); 1304 1305 if (fack_count > tp->fackets_out) 1306 tp->fackets_out = fack_count; 1307 1308 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 1309 tcp_advance_highest_sack(sk, skb); 1310 } 1311 1312 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1313 * frames and clear it. undo_retrans is decreased above, L|R frames 1314 * are accounted above as well. 1315 */ 1316 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) { 1317 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1318 tp->retrans_out -= tcp_skb_pcount(skb); 1319 tp->retransmit_skb_hint = NULL; 1320 } 1321 1322 return flag; 1323 } 1324 1325 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1326 struct tcp_sack_block *next_dup, 1327 u32 start_seq, u32 end_seq, 1328 int dup_sack_in, int *fack_count, 1329 int *reord, int *flag) 1330 { 1331 tcp_for_write_queue_from(skb, sk) { 1332 int in_sack = 0; 1333 int dup_sack = dup_sack_in; 1334 1335 if (skb == tcp_send_head(sk)) 1336 break; 1337 1338 /* queue is in-order => we can short-circuit the walk early */ 1339 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1340 break; 1341 1342 if ((next_dup != NULL) && 1343 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1344 in_sack = tcp_match_skb_to_sack(sk, skb, 1345 next_dup->start_seq, 1346 next_dup->end_seq); 1347 if (in_sack > 0) 1348 dup_sack = 1; 1349 } 1350 1351 if (in_sack <= 0) 1352 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, 1353 end_seq); 1354 if (unlikely(in_sack < 0)) 1355 break; 1356 1357 if (in_sack) 1358 *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack, 1359 *fack_count); 1360 1361 *fack_count += tcp_skb_pcount(skb); 1362 } 1363 return skb; 1364 } 1365 1366 /* Avoid all extra work that is being done by sacktag while walking in 1367 * a normal way 1368 */ 1369 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1370 u32 skip_to_seq, int *fack_count) 1371 { 1372 tcp_for_write_queue_from(skb, sk) { 1373 if (skb == tcp_send_head(sk)) 1374 break; 1375 1376 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1377 break; 1378 1379 *fack_count += tcp_skb_pcount(skb); 1380 } 1381 return skb; 1382 } 1383 1384 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1385 struct sock *sk, 1386 struct tcp_sack_block *next_dup, 1387 u32 skip_to_seq, 1388 int *fack_count, int *reord, 1389 int *flag) 1390 { 1391 if (next_dup == NULL) 1392 return skb; 1393 1394 if (before(next_dup->start_seq, skip_to_seq)) { 1395 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count); 1396 tcp_sacktag_walk(skb, sk, NULL, 1397 next_dup->start_seq, next_dup->end_seq, 1398 1, fack_count, reord, flag); 1399 } 1400 1401 return skb; 1402 } 1403 1404 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache) 1405 { 1406 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1407 } 1408 1409 static int 1410 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, 1411 u32 prior_snd_una) 1412 { 1413 const struct inet_connection_sock *icsk = inet_csk(sk); 1414 struct tcp_sock *tp = tcp_sk(sk); 1415 unsigned char *ptr = (skb_transport_header(ack_skb) + 1416 TCP_SKB_CB(ack_skb)->sacked); 1417 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1418 struct tcp_sack_block sp[4]; 1419 struct tcp_sack_block *cache; 1420 struct sk_buff *skb; 1421 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3; 1422 int used_sacks; 1423 int reord = tp->packets_out; 1424 int flag = 0; 1425 int found_dup_sack = 0; 1426 int fack_count; 1427 int i, j; 1428 int first_sack_index; 1429 1430 if (!tp->sacked_out) { 1431 if (WARN_ON(tp->fackets_out)) 1432 tp->fackets_out = 0; 1433 tcp_highest_sack_reset(sk); 1434 } 1435 1436 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire, 1437 num_sacks, prior_snd_una); 1438 if (found_dup_sack) 1439 flag |= FLAG_DSACKING_ACK; 1440 1441 /* Eliminate too old ACKs, but take into 1442 * account more or less fresh ones, they can 1443 * contain valid SACK info. 1444 */ 1445 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1446 return 0; 1447 1448 if (!tp->packets_out) 1449 goto out; 1450 1451 used_sacks = 0; 1452 first_sack_index = 0; 1453 for (i = 0; i < num_sacks; i++) { 1454 int dup_sack = !i && found_dup_sack; 1455 1456 sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq)); 1457 sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq)); 1458 1459 if (!tcp_is_sackblock_valid(tp, dup_sack, 1460 sp[used_sacks].start_seq, 1461 sp[used_sacks].end_seq)) { 1462 if (dup_sack) { 1463 if (!tp->undo_marker) 1464 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO); 1465 else 1466 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD); 1467 } else { 1468 /* Don't count olds caused by ACK reordering */ 1469 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1470 !after(sp[used_sacks].end_seq, tp->snd_una)) 1471 continue; 1472 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD); 1473 } 1474 if (i == 0) 1475 first_sack_index = -1; 1476 continue; 1477 } 1478 1479 /* Ignore very old stuff early */ 1480 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1481 continue; 1482 1483 used_sacks++; 1484 } 1485 1486 /* order SACK blocks to allow in order walk of the retrans queue */ 1487 for (i = used_sacks - 1; i > 0; i--) { 1488 for (j = 0; j < i; j++) { 1489 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1490 struct tcp_sack_block tmp; 1491 1492 tmp = sp[j]; 1493 sp[j] = sp[j + 1]; 1494 sp[j + 1] = tmp; 1495 1496 /* Track where the first SACK block goes to */ 1497 if (j == first_sack_index) 1498 first_sack_index = j + 1; 1499 } 1500 } 1501 } 1502 1503 skb = tcp_write_queue_head(sk); 1504 fack_count = 0; 1505 i = 0; 1506 1507 if (!tp->sacked_out) { 1508 /* It's already past, so skip checking against it */ 1509 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1510 } else { 1511 cache = tp->recv_sack_cache; 1512 /* Skip empty blocks in at head of the cache */ 1513 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1514 !cache->end_seq) 1515 cache++; 1516 } 1517 1518 while (i < used_sacks) { 1519 u32 start_seq = sp[i].start_seq; 1520 u32 end_seq = sp[i].end_seq; 1521 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1522 struct tcp_sack_block *next_dup = NULL; 1523 1524 if (found_dup_sack && ((i + 1) == first_sack_index)) 1525 next_dup = &sp[i + 1]; 1526 1527 /* Event "B" in the comment above. */ 1528 if (after(end_seq, tp->high_seq)) 1529 flag |= FLAG_DATA_LOST; 1530 1531 /* Skip too early cached blocks */ 1532 while (tcp_sack_cache_ok(tp, cache) && 1533 !before(start_seq, cache->end_seq)) 1534 cache++; 1535 1536 /* Can skip some work by looking recv_sack_cache? */ 1537 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1538 after(end_seq, cache->start_seq)) { 1539 1540 /* Head todo? */ 1541 if (before(start_seq, cache->start_seq)) { 1542 skb = tcp_sacktag_skip(skb, sk, start_seq, 1543 &fack_count); 1544 skb = tcp_sacktag_walk(skb, sk, next_dup, 1545 start_seq, 1546 cache->start_seq, 1547 dup_sack, &fack_count, 1548 &reord, &flag); 1549 } 1550 1551 /* Rest of the block already fully processed? */ 1552 if (!after(end_seq, cache->end_seq)) 1553 goto advance_sp; 1554 1555 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1556 cache->end_seq, 1557 &fack_count, &reord, 1558 &flag); 1559 1560 /* ...tail remains todo... */ 1561 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1562 /* ...but better entrypoint exists! */ 1563 skb = tcp_highest_sack(sk); 1564 if (skb == NULL) 1565 break; 1566 fack_count = tp->fackets_out; 1567 cache++; 1568 goto walk; 1569 } 1570 1571 skb = tcp_sacktag_skip(skb, sk, cache->end_seq, 1572 &fack_count); 1573 /* Check overlap against next cached too (past this one already) */ 1574 cache++; 1575 continue; 1576 } 1577 1578 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1579 skb = tcp_highest_sack(sk); 1580 if (skb == NULL) 1581 break; 1582 fack_count = tp->fackets_out; 1583 } 1584 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count); 1585 1586 walk: 1587 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq, 1588 dup_sack, &fack_count, &reord, &flag); 1589 1590 advance_sp: 1591 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1592 * due to in-order walk 1593 */ 1594 if (after(end_seq, tp->frto_highmark)) 1595 flag &= ~FLAG_ONLY_ORIG_SACKED; 1596 1597 i++; 1598 } 1599 1600 /* Clear the head of the cache sack blocks so we can skip it next time */ 1601 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1602 tp->recv_sack_cache[i].start_seq = 0; 1603 tp->recv_sack_cache[i].end_seq = 0; 1604 } 1605 for (j = 0; j < used_sacks; j++) 1606 tp->recv_sack_cache[i++] = sp[j]; 1607 1608 tcp_mark_lost_retrans(sk); 1609 1610 tcp_verify_left_out(tp); 1611 1612 if ((reord < tp->fackets_out) && 1613 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1614 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1615 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 1616 1617 out: 1618 1619 #if FASTRETRANS_DEBUG > 0 1620 BUG_TRAP((int)tp->sacked_out >= 0); 1621 BUG_TRAP((int)tp->lost_out >= 0); 1622 BUG_TRAP((int)tp->retrans_out >= 0); 1623 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); 1624 #endif 1625 return flag; 1626 } 1627 1628 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1629 * packets_out. Returns zero if sacked_out adjustement wasn't necessary. 1630 */ 1631 int tcp_limit_reno_sacked(struct tcp_sock *tp) 1632 { 1633 u32 holes; 1634 1635 holes = max(tp->lost_out, 1U); 1636 holes = min(holes, tp->packets_out); 1637 1638 if ((tp->sacked_out + holes) > tp->packets_out) { 1639 tp->sacked_out = tp->packets_out - holes; 1640 return 1; 1641 } 1642 return 0; 1643 } 1644 1645 /* If we receive more dupacks than we expected counting segments 1646 * in assumption of absent reordering, interpret this as reordering. 1647 * The only another reason could be bug in receiver TCP. 1648 */ 1649 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1650 { 1651 struct tcp_sock *tp = tcp_sk(sk); 1652 if (tcp_limit_reno_sacked(tp)) 1653 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1654 } 1655 1656 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1657 1658 static void tcp_add_reno_sack(struct sock *sk) 1659 { 1660 struct tcp_sock *tp = tcp_sk(sk); 1661 tp->sacked_out++; 1662 tcp_check_reno_reordering(sk, 0); 1663 tcp_verify_left_out(tp); 1664 } 1665 1666 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1667 1668 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1669 { 1670 struct tcp_sock *tp = tcp_sk(sk); 1671 1672 if (acked > 0) { 1673 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1674 if (acked - 1 >= tp->sacked_out) 1675 tp->sacked_out = 0; 1676 else 1677 tp->sacked_out -= acked - 1; 1678 } 1679 tcp_check_reno_reordering(sk, acked); 1680 tcp_verify_left_out(tp); 1681 } 1682 1683 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1684 { 1685 tp->sacked_out = 0; 1686 } 1687 1688 /* F-RTO can only be used if TCP has never retransmitted anything other than 1689 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 1690 */ 1691 int tcp_use_frto(struct sock *sk) 1692 { 1693 const struct tcp_sock *tp = tcp_sk(sk); 1694 const struct inet_connection_sock *icsk = inet_csk(sk); 1695 struct sk_buff *skb; 1696 1697 if (!sysctl_tcp_frto) 1698 return 0; 1699 1700 /* MTU probe and F-RTO won't really play nicely along currently */ 1701 if (icsk->icsk_mtup.probe_size) 1702 return 0; 1703 1704 if (IsSackFrto()) 1705 return 1; 1706 1707 /* Avoid expensive walking of rexmit queue if possible */ 1708 if (tp->retrans_out > 1) 1709 return 0; 1710 1711 skb = tcp_write_queue_head(sk); 1712 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 1713 tcp_for_write_queue_from(skb, sk) { 1714 if (skb == tcp_send_head(sk)) 1715 break; 1716 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1717 return 0; 1718 /* Short-circuit when first non-SACKed skb has been checked */ 1719 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1720 break; 1721 } 1722 return 1; 1723 } 1724 1725 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 1726 * recovery a bit and use heuristics in tcp_process_frto() to detect if 1727 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 1728 * keep retrans_out counting accurate (with SACK F-RTO, other than head 1729 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 1730 * bits are handled if the Loss state is really to be entered (in 1731 * tcp_enter_frto_loss). 1732 * 1733 * Do like tcp_enter_loss() would; when RTO expires the second time it 1734 * does: 1735 * "Reduce ssthresh if it has not yet been made inside this window." 1736 */ 1737 void tcp_enter_frto(struct sock *sk) 1738 { 1739 const struct inet_connection_sock *icsk = inet_csk(sk); 1740 struct tcp_sock *tp = tcp_sk(sk); 1741 struct sk_buff *skb; 1742 1743 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 1744 tp->snd_una == tp->high_seq || 1745 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 1746 !icsk->icsk_retransmits)) { 1747 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1748 /* Our state is too optimistic in ssthresh() call because cwnd 1749 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 1750 * recovery has not yet completed. Pattern would be this: RTO, 1751 * Cumulative ACK, RTO (2xRTO for the same segment does not end 1752 * up here twice). 1753 * RFC4138 should be more specific on what to do, even though 1754 * RTO is quite unlikely to occur after the first Cumulative ACK 1755 * due to back-off and complexity of triggering events ... 1756 */ 1757 if (tp->frto_counter) { 1758 u32 stored_cwnd; 1759 stored_cwnd = tp->snd_cwnd; 1760 tp->snd_cwnd = 2; 1761 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1762 tp->snd_cwnd = stored_cwnd; 1763 } else { 1764 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1765 } 1766 /* ... in theory, cong.control module could do "any tricks" in 1767 * ssthresh(), which means that ca_state, lost bits and lost_out 1768 * counter would have to be faked before the call occurs. We 1769 * consider that too expensive, unlikely and hacky, so modules 1770 * using these in ssthresh() must deal these incompatibility 1771 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 1772 */ 1773 tcp_ca_event(sk, CA_EVENT_FRTO); 1774 } 1775 1776 tp->undo_marker = tp->snd_una; 1777 tp->undo_retrans = 0; 1778 1779 skb = tcp_write_queue_head(sk); 1780 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1781 tp->undo_marker = 0; 1782 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 1783 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1784 tp->retrans_out -= tcp_skb_pcount(skb); 1785 } 1786 tcp_verify_left_out(tp); 1787 1788 /* Too bad if TCP was application limited */ 1789 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 1790 1791 /* Earlier loss recovery underway (see RFC4138; Appendix B). 1792 * The last condition is necessary at least in tp->frto_counter case. 1793 */ 1794 if (IsSackFrto() && (tp->frto_counter || 1795 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 1796 after(tp->high_seq, tp->snd_una)) { 1797 tp->frto_highmark = tp->high_seq; 1798 } else { 1799 tp->frto_highmark = tp->snd_nxt; 1800 } 1801 tcp_set_ca_state(sk, TCP_CA_Disorder); 1802 tp->high_seq = tp->snd_nxt; 1803 tp->frto_counter = 1; 1804 } 1805 1806 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1807 * which indicates that we should follow the traditional RTO recovery, 1808 * i.e. mark everything lost and do go-back-N retransmission. 1809 */ 1810 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 1811 { 1812 struct tcp_sock *tp = tcp_sk(sk); 1813 struct sk_buff *skb; 1814 1815 tp->lost_out = 0; 1816 tp->retrans_out = 0; 1817 if (tcp_is_reno(tp)) 1818 tcp_reset_reno_sack(tp); 1819 1820 tcp_for_write_queue(skb, sk) { 1821 if (skb == tcp_send_head(sk)) 1822 break; 1823 1824 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1825 /* 1826 * Count the retransmission made on RTO correctly (only when 1827 * waiting for the first ACK and did not get it)... 1828 */ 1829 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 1830 /* For some reason this R-bit might get cleared? */ 1831 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1832 tp->retrans_out += tcp_skb_pcount(skb); 1833 /* ...enter this if branch just for the first segment */ 1834 flag |= FLAG_DATA_ACKED; 1835 } else { 1836 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1837 tp->undo_marker = 0; 1838 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1839 } 1840 1841 /* Don't lost mark skbs that were fwd transmitted after RTO */ 1842 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) && 1843 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) { 1844 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1845 tp->lost_out += tcp_skb_pcount(skb); 1846 } 1847 } 1848 tcp_verify_left_out(tp); 1849 1850 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 1851 tp->snd_cwnd_cnt = 0; 1852 tp->snd_cwnd_stamp = tcp_time_stamp; 1853 tp->frto_counter = 0; 1854 tp->bytes_acked = 0; 1855 1856 tp->reordering = min_t(unsigned int, tp->reordering, 1857 sysctl_tcp_reordering); 1858 tcp_set_ca_state(sk, TCP_CA_Loss); 1859 tp->high_seq = tp->frto_highmark; 1860 TCP_ECN_queue_cwr(tp); 1861 1862 tcp_clear_retrans_hints_partial(tp); 1863 } 1864 1865 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 1866 { 1867 tp->retrans_out = 0; 1868 tp->lost_out = 0; 1869 1870 tp->undo_marker = 0; 1871 tp->undo_retrans = 0; 1872 } 1873 1874 void tcp_clear_retrans(struct tcp_sock *tp) 1875 { 1876 tcp_clear_retrans_partial(tp); 1877 1878 tp->fackets_out = 0; 1879 tp->sacked_out = 0; 1880 } 1881 1882 /* Enter Loss state. If "how" is not zero, forget all SACK information 1883 * and reset tags completely, otherwise preserve SACKs. If receiver 1884 * dropped its ofo queue, we will know this due to reneging detection. 1885 */ 1886 void tcp_enter_loss(struct sock *sk, int how) 1887 { 1888 const struct inet_connection_sock *icsk = inet_csk(sk); 1889 struct tcp_sock *tp = tcp_sk(sk); 1890 struct sk_buff *skb; 1891 1892 /* Reduce ssthresh if it has not yet been made inside this window. */ 1893 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 1894 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1895 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1896 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1897 tcp_ca_event(sk, CA_EVENT_LOSS); 1898 } 1899 tp->snd_cwnd = 1; 1900 tp->snd_cwnd_cnt = 0; 1901 tp->snd_cwnd_stamp = tcp_time_stamp; 1902 1903 tp->bytes_acked = 0; 1904 tcp_clear_retrans_partial(tp); 1905 1906 if (tcp_is_reno(tp)) 1907 tcp_reset_reno_sack(tp); 1908 1909 if (!how) { 1910 /* Push undo marker, if it was plain RTO and nothing 1911 * was retransmitted. */ 1912 tp->undo_marker = tp->snd_una; 1913 tcp_clear_retrans_hints_partial(tp); 1914 } else { 1915 tp->sacked_out = 0; 1916 tp->fackets_out = 0; 1917 tcp_clear_all_retrans_hints(tp); 1918 } 1919 1920 tcp_for_write_queue(skb, sk) { 1921 if (skb == tcp_send_head(sk)) 1922 break; 1923 1924 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1925 tp->undo_marker = 0; 1926 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1927 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1928 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1929 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1930 tp->lost_out += tcp_skb_pcount(skb); 1931 } 1932 } 1933 tcp_verify_left_out(tp); 1934 1935 tp->reordering = min_t(unsigned int, tp->reordering, 1936 sysctl_tcp_reordering); 1937 tcp_set_ca_state(sk, TCP_CA_Loss); 1938 tp->high_seq = tp->snd_nxt; 1939 TCP_ECN_queue_cwr(tp); 1940 /* Abort F-RTO algorithm if one is in progress */ 1941 tp->frto_counter = 0; 1942 } 1943 1944 /* If ACK arrived pointing to a remembered SACK, it means that our 1945 * remembered SACKs do not reflect real state of receiver i.e. 1946 * receiver _host_ is heavily congested (or buggy). 1947 * 1948 * Do processing similar to RTO timeout. 1949 */ 1950 static int tcp_check_sack_reneging(struct sock *sk, int flag) 1951 { 1952 if (flag & FLAG_SACK_RENEGING) { 1953 struct inet_connection_sock *icsk = inet_csk(sk); 1954 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); 1955 1956 tcp_enter_loss(sk, 1); 1957 icsk->icsk_retransmits++; 1958 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 1959 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1960 icsk->icsk_rto, TCP_RTO_MAX); 1961 return 1; 1962 } 1963 return 0; 1964 } 1965 1966 static inline int tcp_fackets_out(struct tcp_sock *tp) 1967 { 1968 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 1969 } 1970 1971 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 1972 * counter when SACK is enabled (without SACK, sacked_out is used for 1973 * that purpose). 1974 * 1975 * Instead, with FACK TCP uses fackets_out that includes both SACKed 1976 * segments up to the highest received SACK block so far and holes in 1977 * between them. 1978 * 1979 * With reordering, holes may still be in flight, so RFC3517 recovery 1980 * uses pure sacked_out (total number of SACKed segments) even though 1981 * it violates the RFC that uses duplicate ACKs, often these are equal 1982 * but when e.g. out-of-window ACKs or packet duplication occurs, 1983 * they differ. Since neither occurs due to loss, TCP should really 1984 * ignore them. 1985 */ 1986 static inline int tcp_dupack_heurestics(struct tcp_sock *tp) 1987 { 1988 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 1989 } 1990 1991 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 1992 { 1993 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 1994 } 1995 1996 static inline int tcp_head_timedout(struct sock *sk) 1997 { 1998 struct tcp_sock *tp = tcp_sk(sk); 1999 2000 return tp->packets_out && 2001 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2002 } 2003 2004 /* Linux NewReno/SACK/FACK/ECN state machine. 2005 * -------------------------------------- 2006 * 2007 * "Open" Normal state, no dubious events, fast path. 2008 * "Disorder" In all the respects it is "Open", 2009 * but requires a bit more attention. It is entered when 2010 * we see some SACKs or dupacks. It is split of "Open" 2011 * mainly to move some processing from fast path to slow one. 2012 * "CWR" CWND was reduced due to some Congestion Notification event. 2013 * It can be ECN, ICMP source quench, local device congestion. 2014 * "Recovery" CWND was reduced, we are fast-retransmitting. 2015 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2016 * 2017 * tcp_fastretrans_alert() is entered: 2018 * - each incoming ACK, if state is not "Open" 2019 * - when arrived ACK is unusual, namely: 2020 * * SACK 2021 * * Duplicate ACK. 2022 * * ECN ECE. 2023 * 2024 * Counting packets in flight is pretty simple. 2025 * 2026 * in_flight = packets_out - left_out + retrans_out 2027 * 2028 * packets_out is SND.NXT-SND.UNA counted in packets. 2029 * 2030 * retrans_out is number of retransmitted segments. 2031 * 2032 * left_out is number of segments left network, but not ACKed yet. 2033 * 2034 * left_out = sacked_out + lost_out 2035 * 2036 * sacked_out: Packets, which arrived to receiver out of order 2037 * and hence not ACKed. With SACKs this number is simply 2038 * amount of SACKed data. Even without SACKs 2039 * it is easy to give pretty reliable estimate of this number, 2040 * counting duplicate ACKs. 2041 * 2042 * lost_out: Packets lost by network. TCP has no explicit 2043 * "loss notification" feedback from network (for now). 2044 * It means that this number can be only _guessed_. 2045 * Actually, it is the heuristics to predict lossage that 2046 * distinguishes different algorithms. 2047 * 2048 * F.e. after RTO, when all the queue is considered as lost, 2049 * lost_out = packets_out and in_flight = retrans_out. 2050 * 2051 * Essentially, we have now two algorithms counting 2052 * lost packets. 2053 * 2054 * FACK: It is the simplest heuristics. As soon as we decided 2055 * that something is lost, we decide that _all_ not SACKed 2056 * packets until the most forward SACK are lost. I.e. 2057 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2058 * It is absolutely correct estimate, if network does not reorder 2059 * packets. And it loses any connection to reality when reordering 2060 * takes place. We use FACK by default until reordering 2061 * is suspected on the path to this destination. 2062 * 2063 * NewReno: when Recovery is entered, we assume that one segment 2064 * is lost (classic Reno). While we are in Recovery and 2065 * a partial ACK arrives, we assume that one more packet 2066 * is lost (NewReno). This heuristics are the same in NewReno 2067 * and SACK. 2068 * 2069 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2070 * deflation etc. CWND is real congestion window, never inflated, changes 2071 * only according to classic VJ rules. 2072 * 2073 * Really tricky (and requiring careful tuning) part of algorithm 2074 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2075 * The first determines the moment _when_ we should reduce CWND and, 2076 * hence, slow down forward transmission. In fact, it determines the moment 2077 * when we decide that hole is caused by loss, rather than by a reorder. 2078 * 2079 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2080 * holes, caused by lost packets. 2081 * 2082 * And the most logically complicated part of algorithm is undo 2083 * heuristics. We detect false retransmits due to both too early 2084 * fast retransmit (reordering) and underestimated RTO, analyzing 2085 * timestamps and D-SACKs. When we detect that some segments were 2086 * retransmitted by mistake and CWND reduction was wrong, we undo 2087 * window reduction and abort recovery phase. This logic is hidden 2088 * inside several functions named tcp_try_undo_<something>. 2089 */ 2090 2091 /* This function decides, when we should leave Disordered state 2092 * and enter Recovery phase, reducing congestion window. 2093 * 2094 * Main question: may we further continue forward transmission 2095 * with the same cwnd? 2096 */ 2097 static int tcp_time_to_recover(struct sock *sk) 2098 { 2099 struct tcp_sock *tp = tcp_sk(sk); 2100 __u32 packets_out; 2101 2102 /* Do not perform any recovery during F-RTO algorithm */ 2103 if (tp->frto_counter) 2104 return 0; 2105 2106 /* Trick#1: The loss is proven. */ 2107 if (tp->lost_out) 2108 return 1; 2109 2110 /* Not-A-Trick#2 : Classic rule... */ 2111 if (tcp_dupack_heurestics(tp) > tp->reordering) 2112 return 1; 2113 2114 /* Trick#3 : when we use RFC2988 timer restart, fast 2115 * retransmit can be triggered by timeout of queue head. 2116 */ 2117 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2118 return 1; 2119 2120 /* Trick#4: It is still not OK... But will it be useful to delay 2121 * recovery more? 2122 */ 2123 packets_out = tp->packets_out; 2124 if (packets_out <= tp->reordering && 2125 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2126 !tcp_may_send_now(sk)) { 2127 /* We have nothing to send. This connection is limited 2128 * either by receiver window or by application. 2129 */ 2130 return 1; 2131 } 2132 2133 return 0; 2134 } 2135 2136 /* RFC: This is from the original, I doubt that this is necessary at all: 2137 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we 2138 * retransmitted past LOST markings in the first place? I'm not fully sure 2139 * about undo and end of connection cases, which can cause R without L? 2140 */ 2141 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 2142 { 2143 if ((tp->retransmit_skb_hint != NULL) && 2144 before(TCP_SKB_CB(skb)->seq, 2145 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 2146 tp->retransmit_skb_hint = NULL; 2147 } 2148 2149 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is 2150 * is against sacked "cnt", otherwise it's against facked "cnt" 2151 */ 2152 static void tcp_mark_head_lost(struct sock *sk, int packets) 2153 { 2154 struct tcp_sock *tp = tcp_sk(sk); 2155 struct sk_buff *skb; 2156 int cnt, oldcnt; 2157 int err; 2158 unsigned int mss; 2159 2160 BUG_TRAP(packets <= tp->packets_out); 2161 if (tp->lost_skb_hint) { 2162 skb = tp->lost_skb_hint; 2163 cnt = tp->lost_cnt_hint; 2164 } else { 2165 skb = tcp_write_queue_head(sk); 2166 cnt = 0; 2167 } 2168 2169 tcp_for_write_queue_from(skb, sk) { 2170 if (skb == tcp_send_head(sk)) 2171 break; 2172 /* TODO: do this better */ 2173 /* this is not the most efficient way to do this... */ 2174 tp->lost_skb_hint = skb; 2175 tp->lost_cnt_hint = cnt; 2176 2177 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq)) 2178 break; 2179 2180 oldcnt = cnt; 2181 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2182 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2183 cnt += tcp_skb_pcount(skb); 2184 2185 if (cnt > packets) { 2186 if (tcp_is_sack(tp) || (oldcnt >= packets)) 2187 break; 2188 2189 mss = skb_shinfo(skb)->gso_size; 2190 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2191 if (err < 0) 2192 break; 2193 cnt = packets; 2194 } 2195 2196 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) { 2197 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2198 tp->lost_out += tcp_skb_pcount(skb); 2199 tcp_verify_retransmit_hint(tp, skb); 2200 } 2201 } 2202 tcp_verify_left_out(tp); 2203 } 2204 2205 /* Account newly detected lost packet(s) */ 2206 2207 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2208 { 2209 struct tcp_sock *tp = tcp_sk(sk); 2210 2211 if (tcp_is_reno(tp)) { 2212 tcp_mark_head_lost(sk, 1); 2213 } else if (tcp_is_fack(tp)) { 2214 int lost = tp->fackets_out - tp->reordering; 2215 if (lost <= 0) 2216 lost = 1; 2217 tcp_mark_head_lost(sk, lost); 2218 } else { 2219 int sacked_upto = tp->sacked_out - tp->reordering; 2220 if (sacked_upto < fast_rexmit) 2221 sacked_upto = fast_rexmit; 2222 tcp_mark_head_lost(sk, sacked_upto); 2223 } 2224 2225 /* New heuristics: it is possible only after we switched 2226 * to restart timer each time when something is ACKed. 2227 * Hence, we can detect timed out packets during fast 2228 * retransmit without falling to slow start. 2229 */ 2230 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) { 2231 struct sk_buff *skb; 2232 2233 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint 2234 : tcp_write_queue_head(sk); 2235 2236 tcp_for_write_queue_from(skb, sk) { 2237 if (skb == tcp_send_head(sk)) 2238 break; 2239 if (!tcp_skb_timedout(sk, skb)) 2240 break; 2241 2242 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) { 2243 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2244 tp->lost_out += tcp_skb_pcount(skb); 2245 tcp_verify_retransmit_hint(tp, skb); 2246 } 2247 } 2248 2249 tp->scoreboard_skb_hint = skb; 2250 2251 tcp_verify_left_out(tp); 2252 } 2253 } 2254 2255 /* CWND moderation, preventing bursts due to too big ACKs 2256 * in dubious situations. 2257 */ 2258 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2259 { 2260 tp->snd_cwnd = min(tp->snd_cwnd, 2261 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2262 tp->snd_cwnd_stamp = tcp_time_stamp; 2263 } 2264 2265 /* Lower bound on congestion window is slow start threshold 2266 * unless congestion avoidance choice decides to overide it. 2267 */ 2268 static inline u32 tcp_cwnd_min(const struct sock *sk) 2269 { 2270 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2271 2272 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2273 } 2274 2275 /* Decrease cwnd each second ack. */ 2276 static void tcp_cwnd_down(struct sock *sk, int flag) 2277 { 2278 struct tcp_sock *tp = tcp_sk(sk); 2279 int decr = tp->snd_cwnd_cnt + 1; 2280 2281 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2282 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2283 tp->snd_cwnd_cnt = decr & 1; 2284 decr >>= 1; 2285 2286 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2287 tp->snd_cwnd -= decr; 2288 2289 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2290 tp->snd_cwnd_stamp = tcp_time_stamp; 2291 } 2292 } 2293 2294 /* Nothing was retransmitted or returned timestamp is less 2295 * than timestamp of the first retransmission. 2296 */ 2297 static inline int tcp_packet_delayed(struct tcp_sock *tp) 2298 { 2299 return !tp->retrans_stamp || 2300 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2301 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2302 } 2303 2304 /* Undo procedures. */ 2305 2306 #if FASTRETRANS_DEBUG > 1 2307 static void DBGUNDO(struct sock *sk, const char *msg) 2308 { 2309 struct tcp_sock *tp = tcp_sk(sk); 2310 struct inet_sock *inet = inet_sk(sk); 2311 2312 if (sk->sk_family == AF_INET) { 2313 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n", 2314 msg, 2315 NIPQUAD(inet->daddr), ntohs(inet->dport), 2316 tp->snd_cwnd, tcp_left_out(tp), 2317 tp->snd_ssthresh, tp->prior_ssthresh, 2318 tp->packets_out); 2319 } 2320 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2321 else if (sk->sk_family == AF_INET6) { 2322 struct ipv6_pinfo *np = inet6_sk(sk); 2323 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n", 2324 msg, 2325 NIP6(np->daddr), ntohs(inet->dport), 2326 tp->snd_cwnd, tcp_left_out(tp), 2327 tp->snd_ssthresh, tp->prior_ssthresh, 2328 tp->packets_out); 2329 } 2330 #endif 2331 } 2332 #else 2333 #define DBGUNDO(x...) do { } while (0) 2334 #endif 2335 2336 static void tcp_undo_cwr(struct sock *sk, const int undo) 2337 { 2338 struct tcp_sock *tp = tcp_sk(sk); 2339 2340 if (tp->prior_ssthresh) { 2341 const struct inet_connection_sock *icsk = inet_csk(sk); 2342 2343 if (icsk->icsk_ca_ops->undo_cwnd) 2344 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2345 else 2346 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2347 2348 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 2349 tp->snd_ssthresh = tp->prior_ssthresh; 2350 TCP_ECN_withdraw_cwr(tp); 2351 } 2352 } else { 2353 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2354 } 2355 tcp_moderate_cwnd(tp); 2356 tp->snd_cwnd_stamp = tcp_time_stamp; 2357 2358 /* There is something screwy going on with the retrans hints after 2359 an undo */ 2360 tcp_clear_all_retrans_hints(tp); 2361 } 2362 2363 static inline int tcp_may_undo(struct tcp_sock *tp) 2364 { 2365 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2366 } 2367 2368 /* People celebrate: "We love our President!" */ 2369 static int tcp_try_undo_recovery(struct sock *sk) 2370 { 2371 struct tcp_sock *tp = tcp_sk(sk); 2372 2373 if (tcp_may_undo(tp)) { 2374 /* Happy end! We did not retransmit anything 2375 * or our original transmission succeeded. 2376 */ 2377 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2378 tcp_undo_cwr(sk, 1); 2379 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2380 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 2381 else 2382 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); 2383 tp->undo_marker = 0; 2384 } 2385 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2386 /* Hold old state until something *above* high_seq 2387 * is ACKed. For Reno it is MUST to prevent false 2388 * fast retransmits (RFC2582). SACK TCP is safe. */ 2389 tcp_moderate_cwnd(tp); 2390 return 1; 2391 } 2392 tcp_set_ca_state(sk, TCP_CA_Open); 2393 return 0; 2394 } 2395 2396 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2397 static void tcp_try_undo_dsack(struct sock *sk) 2398 { 2399 struct tcp_sock *tp = tcp_sk(sk); 2400 2401 if (tp->undo_marker && !tp->undo_retrans) { 2402 DBGUNDO(sk, "D-SACK"); 2403 tcp_undo_cwr(sk, 1); 2404 tp->undo_marker = 0; 2405 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); 2406 } 2407 } 2408 2409 /* Undo during fast recovery after partial ACK. */ 2410 2411 static int tcp_try_undo_partial(struct sock *sk, int acked) 2412 { 2413 struct tcp_sock *tp = tcp_sk(sk); 2414 /* Partial ACK arrived. Force Hoe's retransmit. */ 2415 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2416 2417 if (tcp_may_undo(tp)) { 2418 /* Plain luck! Hole if filled with delayed 2419 * packet, rather than with a retransmit. 2420 */ 2421 if (tp->retrans_out == 0) 2422 tp->retrans_stamp = 0; 2423 2424 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2425 2426 DBGUNDO(sk, "Hoe"); 2427 tcp_undo_cwr(sk, 0); 2428 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); 2429 2430 /* So... Do not make Hoe's retransmit yet. 2431 * If the first packet was delayed, the rest 2432 * ones are most probably delayed as well. 2433 */ 2434 failed = 0; 2435 } 2436 return failed; 2437 } 2438 2439 /* Undo during loss recovery after partial ACK. */ 2440 static int tcp_try_undo_loss(struct sock *sk) 2441 { 2442 struct tcp_sock *tp = tcp_sk(sk); 2443 2444 if (tcp_may_undo(tp)) { 2445 struct sk_buff *skb; 2446 tcp_for_write_queue(skb, sk) { 2447 if (skb == tcp_send_head(sk)) 2448 break; 2449 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2450 } 2451 2452 tcp_clear_all_retrans_hints(tp); 2453 2454 DBGUNDO(sk, "partial loss"); 2455 tp->lost_out = 0; 2456 tcp_undo_cwr(sk, 1); 2457 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 2458 inet_csk(sk)->icsk_retransmits = 0; 2459 tp->undo_marker = 0; 2460 if (tcp_is_sack(tp)) 2461 tcp_set_ca_state(sk, TCP_CA_Open); 2462 return 1; 2463 } 2464 return 0; 2465 } 2466 2467 static inline void tcp_complete_cwr(struct sock *sk) 2468 { 2469 struct tcp_sock *tp = tcp_sk(sk); 2470 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2471 tp->snd_cwnd_stamp = tcp_time_stamp; 2472 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2473 } 2474 2475 static void tcp_try_to_open(struct sock *sk, int flag) 2476 { 2477 struct tcp_sock *tp = tcp_sk(sk); 2478 2479 tcp_verify_left_out(tp); 2480 2481 if (tp->retrans_out == 0) 2482 tp->retrans_stamp = 0; 2483 2484 if (flag & FLAG_ECE) 2485 tcp_enter_cwr(sk, 1); 2486 2487 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2488 int state = TCP_CA_Open; 2489 2490 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker) 2491 state = TCP_CA_Disorder; 2492 2493 if (inet_csk(sk)->icsk_ca_state != state) { 2494 tcp_set_ca_state(sk, state); 2495 tp->high_seq = tp->snd_nxt; 2496 } 2497 tcp_moderate_cwnd(tp); 2498 } else { 2499 tcp_cwnd_down(sk, flag); 2500 } 2501 } 2502 2503 static void tcp_mtup_probe_failed(struct sock *sk) 2504 { 2505 struct inet_connection_sock *icsk = inet_csk(sk); 2506 2507 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2508 icsk->icsk_mtup.probe_size = 0; 2509 } 2510 2511 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb) 2512 { 2513 struct tcp_sock *tp = tcp_sk(sk); 2514 struct inet_connection_sock *icsk = inet_csk(sk); 2515 2516 /* FIXME: breaks with very large cwnd */ 2517 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2518 tp->snd_cwnd = tp->snd_cwnd * 2519 tcp_mss_to_mtu(sk, tp->mss_cache) / 2520 icsk->icsk_mtup.probe_size; 2521 tp->snd_cwnd_cnt = 0; 2522 tp->snd_cwnd_stamp = tcp_time_stamp; 2523 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 2524 2525 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2526 icsk->icsk_mtup.probe_size = 0; 2527 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2528 } 2529 2530 /* Process an event, which can update packets-in-flight not trivially. 2531 * Main goal of this function is to calculate new estimate for left_out, 2532 * taking into account both packets sitting in receiver's buffer and 2533 * packets lost by network. 2534 * 2535 * Besides that it does CWND reduction, when packet loss is detected 2536 * and changes state of machine. 2537 * 2538 * It does _not_ decide what to send, it is made in function 2539 * tcp_xmit_retransmit_queue(). 2540 */ 2541 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag) 2542 { 2543 struct inet_connection_sock *icsk = inet_csk(sk); 2544 struct tcp_sock *tp = tcp_sk(sk); 2545 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 2546 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2547 (tcp_fackets_out(tp) > tp->reordering)); 2548 int fast_rexmit = 0; 2549 2550 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2551 tp->sacked_out = 0; 2552 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2553 tp->fackets_out = 0; 2554 2555 /* Now state machine starts. 2556 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2557 if (flag & FLAG_ECE) 2558 tp->prior_ssthresh = 0; 2559 2560 /* B. In all the states check for reneging SACKs. */ 2561 if (tcp_check_sack_reneging(sk, flag)) 2562 return; 2563 2564 /* C. Process data loss notification, provided it is valid. */ 2565 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) && 2566 before(tp->snd_una, tp->high_seq) && 2567 icsk->icsk_ca_state != TCP_CA_Open && 2568 tp->fackets_out > tp->reordering) { 2569 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering); 2570 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); 2571 } 2572 2573 /* D. Check consistency of the current state. */ 2574 tcp_verify_left_out(tp); 2575 2576 /* E. Check state exit conditions. State can be terminated 2577 * when high_seq is ACKed. */ 2578 if (icsk->icsk_ca_state == TCP_CA_Open) { 2579 BUG_TRAP(tp->retrans_out == 0); 2580 tp->retrans_stamp = 0; 2581 } else if (!before(tp->snd_una, tp->high_seq)) { 2582 switch (icsk->icsk_ca_state) { 2583 case TCP_CA_Loss: 2584 icsk->icsk_retransmits = 0; 2585 if (tcp_try_undo_recovery(sk)) 2586 return; 2587 break; 2588 2589 case TCP_CA_CWR: 2590 /* CWR is to be held something *above* high_seq 2591 * is ACKed for CWR bit to reach receiver. */ 2592 if (tp->snd_una != tp->high_seq) { 2593 tcp_complete_cwr(sk); 2594 tcp_set_ca_state(sk, TCP_CA_Open); 2595 } 2596 break; 2597 2598 case TCP_CA_Disorder: 2599 tcp_try_undo_dsack(sk); 2600 if (!tp->undo_marker || 2601 /* For SACK case do not Open to allow to undo 2602 * catching for all duplicate ACKs. */ 2603 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) { 2604 tp->undo_marker = 0; 2605 tcp_set_ca_state(sk, TCP_CA_Open); 2606 } 2607 break; 2608 2609 case TCP_CA_Recovery: 2610 if (tcp_is_reno(tp)) 2611 tcp_reset_reno_sack(tp); 2612 if (tcp_try_undo_recovery(sk)) 2613 return; 2614 tcp_complete_cwr(sk); 2615 break; 2616 } 2617 } 2618 2619 /* F. Process state. */ 2620 switch (icsk->icsk_ca_state) { 2621 case TCP_CA_Recovery: 2622 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2623 if (tcp_is_reno(tp) && is_dupack) 2624 tcp_add_reno_sack(sk); 2625 } else 2626 do_lost = tcp_try_undo_partial(sk, pkts_acked); 2627 break; 2628 case TCP_CA_Loss: 2629 if (flag & FLAG_DATA_ACKED) 2630 icsk->icsk_retransmits = 0; 2631 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 2632 tcp_reset_reno_sack(tp); 2633 if (!tcp_try_undo_loss(sk)) { 2634 tcp_moderate_cwnd(tp); 2635 tcp_xmit_retransmit_queue(sk); 2636 return; 2637 } 2638 if (icsk->icsk_ca_state != TCP_CA_Open) 2639 return; 2640 /* Loss is undone; fall through to processing in Open state. */ 2641 default: 2642 if (tcp_is_reno(tp)) { 2643 if (flag & FLAG_SND_UNA_ADVANCED) 2644 tcp_reset_reno_sack(tp); 2645 if (is_dupack) 2646 tcp_add_reno_sack(sk); 2647 } 2648 2649 if (icsk->icsk_ca_state == TCP_CA_Disorder) 2650 tcp_try_undo_dsack(sk); 2651 2652 if (!tcp_time_to_recover(sk)) { 2653 tcp_try_to_open(sk, flag); 2654 return; 2655 } 2656 2657 /* MTU probe failure: don't reduce cwnd */ 2658 if (icsk->icsk_ca_state < TCP_CA_CWR && 2659 icsk->icsk_mtup.probe_size && 2660 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2661 tcp_mtup_probe_failed(sk); 2662 /* Restores the reduction we did in tcp_mtup_probe() */ 2663 tp->snd_cwnd++; 2664 tcp_simple_retransmit(sk); 2665 return; 2666 } 2667 2668 /* Otherwise enter Recovery state */ 2669 2670 if (tcp_is_reno(tp)) 2671 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); 2672 else 2673 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); 2674 2675 tp->high_seq = tp->snd_nxt; 2676 tp->prior_ssthresh = 0; 2677 tp->undo_marker = tp->snd_una; 2678 tp->undo_retrans = tp->retrans_out; 2679 2680 if (icsk->icsk_ca_state < TCP_CA_CWR) { 2681 if (!(flag & FLAG_ECE)) 2682 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2683 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2684 TCP_ECN_queue_cwr(tp); 2685 } 2686 2687 tp->bytes_acked = 0; 2688 tp->snd_cwnd_cnt = 0; 2689 tcp_set_ca_state(sk, TCP_CA_Recovery); 2690 fast_rexmit = 1; 2691 } 2692 2693 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 2694 tcp_update_scoreboard(sk, fast_rexmit); 2695 tcp_cwnd_down(sk, flag); 2696 tcp_xmit_retransmit_queue(sk); 2697 } 2698 2699 /* Read draft-ietf-tcplw-high-performance before mucking 2700 * with this code. (Supersedes RFC1323) 2701 */ 2702 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 2703 { 2704 /* RTTM Rule: A TSecr value received in a segment is used to 2705 * update the averaged RTT measurement only if the segment 2706 * acknowledges some new data, i.e., only if it advances the 2707 * left edge of the send window. 2708 * 2709 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2710 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 2711 * 2712 * Changed: reset backoff as soon as we see the first valid sample. 2713 * If we do not, we get strongly overestimated rto. With timestamps 2714 * samples are accepted even from very old segments: f.e., when rtt=1 2715 * increases to 8, we retransmit 5 times and after 8 seconds delayed 2716 * answer arrives rto becomes 120 seconds! If at least one of segments 2717 * in window is lost... Voila. --ANK (010210) 2718 */ 2719 struct tcp_sock *tp = tcp_sk(sk); 2720 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2721 tcp_rtt_estimator(sk, seq_rtt); 2722 tcp_set_rto(sk); 2723 inet_csk(sk)->icsk_backoff = 0; 2724 tcp_bound_rto(sk); 2725 } 2726 2727 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 2728 { 2729 /* We don't have a timestamp. Can only use 2730 * packets that are not retransmitted to determine 2731 * rtt estimates. Also, we must not reset the 2732 * backoff for rto until we get a non-retransmitted 2733 * packet. This allows us to deal with a situation 2734 * where the network delay has increased suddenly. 2735 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 2736 */ 2737 2738 if (flag & FLAG_RETRANS_DATA_ACKED) 2739 return; 2740 2741 tcp_rtt_estimator(sk, seq_rtt); 2742 tcp_set_rto(sk); 2743 inet_csk(sk)->icsk_backoff = 0; 2744 tcp_bound_rto(sk); 2745 } 2746 2747 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 2748 const s32 seq_rtt) 2749 { 2750 const struct tcp_sock *tp = tcp_sk(sk); 2751 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 2752 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2753 tcp_ack_saw_tstamp(sk, flag); 2754 else if (seq_rtt >= 0) 2755 tcp_ack_no_tstamp(sk, seq_rtt, flag); 2756 } 2757 2758 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 2759 { 2760 const struct inet_connection_sock *icsk = inet_csk(sk); 2761 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 2762 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2763 } 2764 2765 /* Restart timer after forward progress on connection. 2766 * RFC2988 recommends to restart timer to now+rto. 2767 */ 2768 static void tcp_rearm_rto(struct sock *sk) 2769 { 2770 struct tcp_sock *tp = tcp_sk(sk); 2771 2772 if (!tp->packets_out) { 2773 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2774 } else { 2775 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2776 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2777 } 2778 } 2779 2780 /* If we get here, the whole TSO packet has not been acked. */ 2781 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2782 { 2783 struct tcp_sock *tp = tcp_sk(sk); 2784 u32 packets_acked; 2785 2786 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 2787 2788 packets_acked = tcp_skb_pcount(skb); 2789 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2790 return 0; 2791 packets_acked -= tcp_skb_pcount(skb); 2792 2793 if (packets_acked) { 2794 BUG_ON(tcp_skb_pcount(skb) == 0); 2795 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 2796 } 2797 2798 return packets_acked; 2799 } 2800 2801 /* Remove acknowledged frames from the retransmission queue. If our packet 2802 * is before the ack sequence we can discard it as it's confirmed to have 2803 * arrived at the other end. 2804 */ 2805 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets) 2806 { 2807 struct tcp_sock *tp = tcp_sk(sk); 2808 const struct inet_connection_sock *icsk = inet_csk(sk); 2809 struct sk_buff *skb; 2810 u32 now = tcp_time_stamp; 2811 int fully_acked = 1; 2812 int flag = 0; 2813 u32 pkts_acked = 0; 2814 u32 reord = tp->packets_out; 2815 s32 seq_rtt = -1; 2816 s32 ca_seq_rtt = -1; 2817 ktime_t last_ackt = net_invalid_timestamp(); 2818 2819 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 2820 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2821 u32 end_seq; 2822 u32 acked_pcount; 2823 u8 sacked = scb->sacked; 2824 2825 /* Determine how many packets and what bytes were acked, tso and else */ 2826 if (after(scb->end_seq, tp->snd_una)) { 2827 if (tcp_skb_pcount(skb) == 1 || 2828 !after(tp->snd_una, scb->seq)) 2829 break; 2830 2831 acked_pcount = tcp_tso_acked(sk, skb); 2832 if (!acked_pcount) 2833 break; 2834 2835 fully_acked = 0; 2836 end_seq = tp->snd_una; 2837 } else { 2838 acked_pcount = tcp_skb_pcount(skb); 2839 end_seq = scb->end_seq; 2840 } 2841 2842 /* MTU probing checks */ 2843 if (fully_acked && icsk->icsk_mtup.probe_size && 2844 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) { 2845 tcp_mtup_probe_success(sk, skb); 2846 } 2847 2848 if (sacked & TCPCB_RETRANS) { 2849 if (sacked & TCPCB_SACKED_RETRANS) 2850 tp->retrans_out -= acked_pcount; 2851 flag |= FLAG_RETRANS_DATA_ACKED; 2852 ca_seq_rtt = -1; 2853 seq_rtt = -1; 2854 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 2855 flag |= FLAG_NONHEAD_RETRANS_ACKED; 2856 } else { 2857 ca_seq_rtt = now - scb->when; 2858 last_ackt = skb->tstamp; 2859 if (seq_rtt < 0) { 2860 seq_rtt = ca_seq_rtt; 2861 } 2862 if (!(sacked & TCPCB_SACKED_ACKED)) 2863 reord = min(pkts_acked, reord); 2864 } 2865 2866 if (sacked & TCPCB_SACKED_ACKED) 2867 tp->sacked_out -= acked_pcount; 2868 if (sacked & TCPCB_LOST) 2869 tp->lost_out -= acked_pcount; 2870 2871 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up))) 2872 tp->urg_mode = 0; 2873 2874 tp->packets_out -= acked_pcount; 2875 pkts_acked += acked_pcount; 2876 2877 /* Initial outgoing SYN's get put onto the write_queue 2878 * just like anything else we transmit. It is not 2879 * true data, and if we misinform our callers that 2880 * this ACK acks real data, we will erroneously exit 2881 * connection startup slow start one packet too 2882 * quickly. This is severely frowned upon behavior. 2883 */ 2884 if (!(scb->flags & TCPCB_FLAG_SYN)) { 2885 flag |= FLAG_DATA_ACKED; 2886 } else { 2887 flag |= FLAG_SYN_ACKED; 2888 tp->retrans_stamp = 0; 2889 } 2890 2891 if (!fully_acked) 2892 break; 2893 2894 tcp_unlink_write_queue(skb, sk); 2895 sk_wmem_free_skb(sk, skb); 2896 tcp_clear_all_retrans_hints(tp); 2897 } 2898 2899 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2900 flag |= FLAG_SACK_RENEGING; 2901 2902 if (flag & FLAG_ACKED) { 2903 const struct tcp_congestion_ops *ca_ops 2904 = inet_csk(sk)->icsk_ca_ops; 2905 2906 tcp_ack_update_rtt(sk, flag, seq_rtt); 2907 tcp_rearm_rto(sk); 2908 2909 if (tcp_is_reno(tp)) { 2910 tcp_remove_reno_sacks(sk, pkts_acked); 2911 } else { 2912 /* Non-retransmitted hole got filled? That's reordering */ 2913 if (reord < prior_fackets) 2914 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 2915 } 2916 2917 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 2918 2919 if (ca_ops->pkts_acked) { 2920 s32 rtt_us = -1; 2921 2922 /* Is the ACK triggering packet unambiguous? */ 2923 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 2924 /* High resolution needed and available? */ 2925 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 2926 !ktime_equal(last_ackt, 2927 net_invalid_timestamp())) 2928 rtt_us = ktime_us_delta(ktime_get_real(), 2929 last_ackt); 2930 else if (ca_seq_rtt > 0) 2931 rtt_us = jiffies_to_usecs(ca_seq_rtt); 2932 } 2933 2934 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 2935 } 2936 } 2937 2938 #if FASTRETRANS_DEBUG > 0 2939 BUG_TRAP((int)tp->sacked_out >= 0); 2940 BUG_TRAP((int)tp->lost_out >= 0); 2941 BUG_TRAP((int)tp->retrans_out >= 0); 2942 if (!tp->packets_out && tcp_is_sack(tp)) { 2943 icsk = inet_csk(sk); 2944 if (tp->lost_out) { 2945 printk(KERN_DEBUG "Leak l=%u %d\n", 2946 tp->lost_out, icsk->icsk_ca_state); 2947 tp->lost_out = 0; 2948 } 2949 if (tp->sacked_out) { 2950 printk(KERN_DEBUG "Leak s=%u %d\n", 2951 tp->sacked_out, icsk->icsk_ca_state); 2952 tp->sacked_out = 0; 2953 } 2954 if (tp->retrans_out) { 2955 printk(KERN_DEBUG "Leak r=%u %d\n", 2956 tp->retrans_out, icsk->icsk_ca_state); 2957 tp->retrans_out = 0; 2958 } 2959 } 2960 #endif 2961 return flag; 2962 } 2963 2964 static void tcp_ack_probe(struct sock *sk) 2965 { 2966 const struct tcp_sock *tp = tcp_sk(sk); 2967 struct inet_connection_sock *icsk = inet_csk(sk); 2968 2969 /* Was it a usable window open? */ 2970 2971 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 2972 icsk->icsk_backoff = 0; 2973 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 2974 /* Socket must be waked up by subsequent tcp_data_snd_check(). 2975 * This function is not for random using! 2976 */ 2977 } else { 2978 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2979 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2980 TCP_RTO_MAX); 2981 } 2982 } 2983 2984 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 2985 { 2986 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 2987 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 2988 } 2989 2990 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 2991 { 2992 const struct tcp_sock *tp = tcp_sk(sk); 2993 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 2994 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 2995 } 2996 2997 /* Check that window update is acceptable. 2998 * The function assumes that snd_una<=ack<=snd_next. 2999 */ 3000 static inline int tcp_may_update_window(const struct tcp_sock *tp, 3001 const u32 ack, const u32 ack_seq, 3002 const u32 nwin) 3003 { 3004 return (after(ack, tp->snd_una) || 3005 after(ack_seq, tp->snd_wl1) || 3006 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 3007 } 3008 3009 /* Update our send window. 3010 * 3011 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3012 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3013 */ 3014 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 3015 u32 ack_seq) 3016 { 3017 struct tcp_sock *tp = tcp_sk(sk); 3018 int flag = 0; 3019 u32 nwin = ntohs(tcp_hdr(skb)->window); 3020 3021 if (likely(!tcp_hdr(skb)->syn)) 3022 nwin <<= tp->rx_opt.snd_wscale; 3023 3024 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3025 flag |= FLAG_WIN_UPDATE; 3026 tcp_update_wl(tp, ack, ack_seq); 3027 3028 if (tp->snd_wnd != nwin) { 3029 tp->snd_wnd = nwin; 3030 3031 /* Note, it is the only place, where 3032 * fast path is recovered for sending TCP. 3033 */ 3034 tp->pred_flags = 0; 3035 tcp_fast_path_check(sk); 3036 3037 if (nwin > tp->max_window) { 3038 tp->max_window = nwin; 3039 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3040 } 3041 } 3042 } 3043 3044 tp->snd_una = ack; 3045 3046 return flag; 3047 } 3048 3049 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3050 * continue in congestion avoidance. 3051 */ 3052 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3053 { 3054 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3055 tp->snd_cwnd_cnt = 0; 3056 tp->bytes_acked = 0; 3057 TCP_ECN_queue_cwr(tp); 3058 tcp_moderate_cwnd(tp); 3059 } 3060 3061 /* A conservative spurious RTO response algorithm: reduce cwnd using 3062 * rate halving and continue in congestion avoidance. 3063 */ 3064 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3065 { 3066 tcp_enter_cwr(sk, 0); 3067 } 3068 3069 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3070 { 3071 if (flag & FLAG_ECE) 3072 tcp_ratehalving_spur_to_response(sk); 3073 else 3074 tcp_undo_cwr(sk, 1); 3075 } 3076 3077 /* F-RTO spurious RTO detection algorithm (RFC4138) 3078 * 3079 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3080 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3081 * window (but not to or beyond highest sequence sent before RTO): 3082 * On First ACK, send two new segments out. 3083 * On Second ACK, RTO was likely spurious. Do spurious response (response 3084 * algorithm is not part of the F-RTO detection algorithm 3085 * given in RFC4138 but can be selected separately). 3086 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3087 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3088 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3089 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3090 * 3091 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3092 * original window even after we transmit two new data segments. 3093 * 3094 * SACK version: 3095 * on first step, wait until first cumulative ACK arrives, then move to 3096 * the second step. In second step, the next ACK decides. 3097 * 3098 * F-RTO is implemented (mainly) in four functions: 3099 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3100 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3101 * called when tcp_use_frto() showed green light 3102 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3103 * - tcp_enter_frto_loss() is called if there is not enough evidence 3104 * to prove that the RTO is indeed spurious. It transfers the control 3105 * from F-RTO to the conventional RTO recovery 3106 */ 3107 static int tcp_process_frto(struct sock *sk, int flag) 3108 { 3109 struct tcp_sock *tp = tcp_sk(sk); 3110 3111 tcp_verify_left_out(tp); 3112 3113 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3114 if (flag & FLAG_DATA_ACKED) 3115 inet_csk(sk)->icsk_retransmits = 0; 3116 3117 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3118 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3119 tp->undo_marker = 0; 3120 3121 if (!before(tp->snd_una, tp->frto_highmark)) { 3122 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3123 return 1; 3124 } 3125 3126 if (!IsSackFrto() || tcp_is_reno(tp)) { 3127 /* RFC4138 shortcoming in step 2; should also have case c): 3128 * ACK isn't duplicate nor advances window, e.g., opposite dir 3129 * data, winupdate 3130 */ 3131 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3132 return 1; 3133 3134 if (!(flag & FLAG_DATA_ACKED)) { 3135 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3136 flag); 3137 return 1; 3138 } 3139 } else { 3140 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3141 /* Prevent sending of new data. */ 3142 tp->snd_cwnd = min(tp->snd_cwnd, 3143 tcp_packets_in_flight(tp)); 3144 return 1; 3145 } 3146 3147 if ((tp->frto_counter >= 2) && 3148 (!(flag & FLAG_FORWARD_PROGRESS) || 3149 ((flag & FLAG_DATA_SACKED) && 3150 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3151 /* RFC4138 shortcoming (see comment above) */ 3152 if (!(flag & FLAG_FORWARD_PROGRESS) && 3153 (flag & FLAG_NOT_DUP)) 3154 return 1; 3155 3156 tcp_enter_frto_loss(sk, 3, flag); 3157 return 1; 3158 } 3159 } 3160 3161 if (tp->frto_counter == 1) { 3162 /* tcp_may_send_now needs to see updated state */ 3163 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3164 tp->frto_counter = 2; 3165 3166 if (!tcp_may_send_now(sk)) 3167 tcp_enter_frto_loss(sk, 2, flag); 3168 3169 return 1; 3170 } else { 3171 switch (sysctl_tcp_frto_response) { 3172 case 2: 3173 tcp_undo_spur_to_response(sk, flag); 3174 break; 3175 case 1: 3176 tcp_conservative_spur_to_response(tp); 3177 break; 3178 default: 3179 tcp_ratehalving_spur_to_response(sk); 3180 break; 3181 } 3182 tp->frto_counter = 0; 3183 tp->undo_marker = 0; 3184 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS); 3185 } 3186 return 0; 3187 } 3188 3189 /* This routine deals with incoming acks, but not outgoing ones. */ 3190 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 3191 { 3192 struct inet_connection_sock *icsk = inet_csk(sk); 3193 struct tcp_sock *tp = tcp_sk(sk); 3194 u32 prior_snd_una = tp->snd_una; 3195 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3196 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3197 u32 prior_in_flight; 3198 u32 prior_fackets; 3199 int prior_packets; 3200 int frto_cwnd = 0; 3201 3202 /* If the ack is newer than sent or older than previous acks 3203 * then we can probably ignore it. 3204 */ 3205 if (after(ack, tp->snd_nxt)) 3206 goto uninteresting_ack; 3207 3208 if (before(ack, prior_snd_una)) 3209 goto old_ack; 3210 3211 if (after(ack, prior_snd_una)) 3212 flag |= FLAG_SND_UNA_ADVANCED; 3213 3214 if (sysctl_tcp_abc) { 3215 if (icsk->icsk_ca_state < TCP_CA_CWR) 3216 tp->bytes_acked += ack - prior_snd_una; 3217 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3218 /* we assume just one segment left network */ 3219 tp->bytes_acked += min(ack - prior_snd_una, 3220 tp->mss_cache); 3221 } 3222 3223 prior_fackets = tp->fackets_out; 3224 prior_in_flight = tcp_packets_in_flight(tp); 3225 3226 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3227 /* Window is constant, pure forward advance. 3228 * No more checks are required. 3229 * Note, we use the fact that SND.UNA>=SND.WL2. 3230 */ 3231 tcp_update_wl(tp, ack, ack_seq); 3232 tp->snd_una = ack; 3233 flag |= FLAG_WIN_UPDATE; 3234 3235 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3236 3237 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); 3238 } else { 3239 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3240 flag |= FLAG_DATA; 3241 else 3242 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); 3243 3244 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3245 3246 if (TCP_SKB_CB(skb)->sacked) 3247 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3248 3249 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3250 flag |= FLAG_ECE; 3251 3252 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3253 } 3254 3255 /* We passed data and got it acked, remove any soft error 3256 * log. Something worked... 3257 */ 3258 sk->sk_err_soft = 0; 3259 tp->rcv_tstamp = tcp_time_stamp; 3260 prior_packets = tp->packets_out; 3261 if (!prior_packets) 3262 goto no_queue; 3263 3264 /* See if we can take anything off of the retransmit queue. */ 3265 flag |= tcp_clean_rtx_queue(sk, prior_fackets); 3266 3267 if (tp->frto_counter) 3268 frto_cwnd = tcp_process_frto(sk, flag); 3269 /* Guarantee sacktag reordering detection against wrap-arounds */ 3270 if (before(tp->frto_highmark, tp->snd_una)) 3271 tp->frto_highmark = 0; 3272 3273 if (tcp_ack_is_dubious(sk, flag)) { 3274 /* Advance CWND, if state allows this. */ 3275 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3276 tcp_may_raise_cwnd(sk, flag)) 3277 tcp_cong_avoid(sk, ack, prior_in_flight); 3278 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, 3279 flag); 3280 } else { 3281 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3282 tcp_cong_avoid(sk, ack, prior_in_flight); 3283 } 3284 3285 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3286 dst_confirm(sk->sk_dst_cache); 3287 3288 return 1; 3289 3290 no_queue: 3291 icsk->icsk_probes_out = 0; 3292 3293 /* If this ack opens up a zero window, clear backoff. It was 3294 * being used to time the probes, and is probably far higher than 3295 * it needs to be for normal retransmission. 3296 */ 3297 if (tcp_send_head(sk)) 3298 tcp_ack_probe(sk); 3299 return 1; 3300 3301 old_ack: 3302 if (TCP_SKB_CB(skb)->sacked) 3303 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3304 3305 uninteresting_ack: 3306 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3307 return 0; 3308 } 3309 3310 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3311 * But, this can also be called on packets in the established flow when 3312 * the fast version below fails. 3313 */ 3314 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, 3315 int estab) 3316 { 3317 unsigned char *ptr; 3318 struct tcphdr *th = tcp_hdr(skb); 3319 int length = (th->doff * 4) - sizeof(struct tcphdr); 3320 3321 ptr = (unsigned char *)(th + 1); 3322 opt_rx->saw_tstamp = 0; 3323 3324 while (length > 0) { 3325 int opcode = *ptr++; 3326 int opsize; 3327 3328 switch (opcode) { 3329 case TCPOPT_EOL: 3330 return; 3331 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3332 length--; 3333 continue; 3334 default: 3335 opsize = *ptr++; 3336 if (opsize < 2) /* "silly options" */ 3337 return; 3338 if (opsize > length) 3339 return; /* don't parse partial options */ 3340 switch (opcode) { 3341 case TCPOPT_MSS: 3342 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3343 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr)); 3344 if (in_mss) { 3345 if (opt_rx->user_mss && 3346 opt_rx->user_mss < in_mss) 3347 in_mss = opt_rx->user_mss; 3348 opt_rx->mss_clamp = in_mss; 3349 } 3350 } 3351 break; 3352 case TCPOPT_WINDOW: 3353 if (opsize == TCPOLEN_WINDOW && th->syn && 3354 !estab && sysctl_tcp_window_scaling) { 3355 __u8 snd_wscale = *(__u8 *)ptr; 3356 opt_rx->wscale_ok = 1; 3357 if (snd_wscale > 14) { 3358 if (net_ratelimit()) 3359 printk(KERN_INFO "tcp_parse_options: Illegal window " 3360 "scaling value %d >14 received.\n", 3361 snd_wscale); 3362 snd_wscale = 14; 3363 } 3364 opt_rx->snd_wscale = snd_wscale; 3365 } 3366 break; 3367 case TCPOPT_TIMESTAMP: 3368 if ((opsize == TCPOLEN_TIMESTAMP) && 3369 ((estab && opt_rx->tstamp_ok) || 3370 (!estab && sysctl_tcp_timestamps))) { 3371 opt_rx->saw_tstamp = 1; 3372 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr)); 3373 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4))); 3374 } 3375 break; 3376 case TCPOPT_SACK_PERM: 3377 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3378 !estab && sysctl_tcp_sack) { 3379 opt_rx->sack_ok = 1; 3380 tcp_sack_reset(opt_rx); 3381 } 3382 break; 3383 3384 case TCPOPT_SACK: 3385 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3386 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3387 opt_rx->sack_ok) { 3388 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3389 } 3390 break; 3391 #ifdef CONFIG_TCP_MD5SIG 3392 case TCPOPT_MD5SIG: 3393 /* 3394 * The MD5 Hash has already been 3395 * checked (see tcp_v{4,6}_do_rcv()). 3396 */ 3397 break; 3398 #endif 3399 } 3400 3401 ptr += opsize-2; 3402 length -= opsize; 3403 } 3404 } 3405 } 3406 3407 /* Fast parse options. This hopes to only see timestamps. 3408 * If it is wrong it falls back on tcp_parse_options(). 3409 */ 3410 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 3411 struct tcp_sock *tp) 3412 { 3413 if (th->doff == sizeof(struct tcphdr) >> 2) { 3414 tp->rx_opt.saw_tstamp = 0; 3415 return 0; 3416 } else if (tp->rx_opt.tstamp_ok && 3417 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 3418 __be32 *ptr = (__be32 *)(th + 1); 3419 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3420 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3421 tp->rx_opt.saw_tstamp = 1; 3422 ++ptr; 3423 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3424 ++ptr; 3425 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3426 return 1; 3427 } 3428 } 3429 tcp_parse_options(skb, &tp->rx_opt, 1); 3430 return 1; 3431 } 3432 3433 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3434 { 3435 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3436 tp->rx_opt.ts_recent_stamp = get_seconds(); 3437 } 3438 3439 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3440 { 3441 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3442 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3443 * extra check below makes sure this can only happen 3444 * for pure ACK frames. -DaveM 3445 * 3446 * Not only, also it occurs for expired timestamps. 3447 */ 3448 3449 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 3450 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 3451 tcp_store_ts_recent(tp); 3452 } 3453 } 3454 3455 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3456 * 3457 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3458 * it can pass through stack. So, the following predicate verifies that 3459 * this segment is not used for anything but congestion avoidance or 3460 * fast retransmit. Moreover, we even are able to eliminate most of such 3461 * second order effects, if we apply some small "replay" window (~RTO) 3462 * to timestamp space. 3463 * 3464 * All these measures still do not guarantee that we reject wrapped ACKs 3465 * on networks with high bandwidth, when sequence space is recycled fastly, 3466 * but it guarantees that such events will be very rare and do not affect 3467 * connection seriously. This doesn't look nice, but alas, PAWS is really 3468 * buggy extension. 3469 * 3470 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3471 * states that events when retransmit arrives after original data are rare. 3472 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3473 * the biggest problem on large power networks even with minor reordering. 3474 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3475 * up to bandwidth of 18Gigabit/sec. 8) ] 3476 */ 3477 3478 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3479 { 3480 struct tcp_sock *tp = tcp_sk(sk); 3481 struct tcphdr *th = tcp_hdr(skb); 3482 u32 seq = TCP_SKB_CB(skb)->seq; 3483 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3484 3485 return (/* 1. Pure ACK with correct sequence number. */ 3486 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3487 3488 /* 2. ... and duplicate ACK. */ 3489 ack == tp->snd_una && 3490 3491 /* 3. ... and does not update window. */ 3492 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3493 3494 /* 4. ... and sits in replay window. */ 3495 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3496 } 3497 3498 static inline int tcp_paws_discard(const struct sock *sk, 3499 const struct sk_buff *skb) 3500 { 3501 const struct tcp_sock *tp = tcp_sk(sk); 3502 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 3503 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 3504 !tcp_disordered_ack(sk, skb)); 3505 } 3506 3507 /* Check segment sequence number for validity. 3508 * 3509 * Segment controls are considered valid, if the segment 3510 * fits to the window after truncation to the window. Acceptability 3511 * of data (and SYN, FIN, of course) is checked separately. 3512 * See tcp_data_queue(), for example. 3513 * 3514 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3515 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3516 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3517 * (borrowed from freebsd) 3518 */ 3519 3520 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 3521 { 3522 return !before(end_seq, tp->rcv_wup) && 3523 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3524 } 3525 3526 /* When we get a reset we do this. */ 3527 static void tcp_reset(struct sock *sk) 3528 { 3529 /* We want the right error as BSD sees it (and indeed as we do). */ 3530 switch (sk->sk_state) { 3531 case TCP_SYN_SENT: 3532 sk->sk_err = ECONNREFUSED; 3533 break; 3534 case TCP_CLOSE_WAIT: 3535 sk->sk_err = EPIPE; 3536 break; 3537 case TCP_CLOSE: 3538 return; 3539 default: 3540 sk->sk_err = ECONNRESET; 3541 } 3542 3543 if (!sock_flag(sk, SOCK_DEAD)) 3544 sk->sk_error_report(sk); 3545 3546 tcp_done(sk); 3547 } 3548 3549 /* 3550 * Process the FIN bit. This now behaves as it is supposed to work 3551 * and the FIN takes effect when it is validly part of sequence 3552 * space. Not before when we get holes. 3553 * 3554 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3555 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3556 * TIME-WAIT) 3557 * 3558 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3559 * close and we go into CLOSING (and later onto TIME-WAIT) 3560 * 3561 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3562 */ 3563 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 3564 { 3565 struct tcp_sock *tp = tcp_sk(sk); 3566 3567 inet_csk_schedule_ack(sk); 3568 3569 sk->sk_shutdown |= RCV_SHUTDOWN; 3570 sock_set_flag(sk, SOCK_DONE); 3571 3572 switch (sk->sk_state) { 3573 case TCP_SYN_RECV: 3574 case TCP_ESTABLISHED: 3575 /* Move to CLOSE_WAIT */ 3576 tcp_set_state(sk, TCP_CLOSE_WAIT); 3577 inet_csk(sk)->icsk_ack.pingpong = 1; 3578 break; 3579 3580 case TCP_CLOSE_WAIT: 3581 case TCP_CLOSING: 3582 /* Received a retransmission of the FIN, do 3583 * nothing. 3584 */ 3585 break; 3586 case TCP_LAST_ACK: 3587 /* RFC793: Remain in the LAST-ACK state. */ 3588 break; 3589 3590 case TCP_FIN_WAIT1: 3591 /* This case occurs when a simultaneous close 3592 * happens, we must ack the received FIN and 3593 * enter the CLOSING state. 3594 */ 3595 tcp_send_ack(sk); 3596 tcp_set_state(sk, TCP_CLOSING); 3597 break; 3598 case TCP_FIN_WAIT2: 3599 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3600 tcp_send_ack(sk); 3601 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3602 break; 3603 default: 3604 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3605 * cases we should never reach this piece of code. 3606 */ 3607 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 3608 __func__, sk->sk_state); 3609 break; 3610 } 3611 3612 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3613 * Probably, we should reset in this case. For now drop them. 3614 */ 3615 __skb_queue_purge(&tp->out_of_order_queue); 3616 if (tcp_is_sack(tp)) 3617 tcp_sack_reset(&tp->rx_opt); 3618 sk_mem_reclaim(sk); 3619 3620 if (!sock_flag(sk, SOCK_DEAD)) { 3621 sk->sk_state_change(sk); 3622 3623 /* Do not send POLL_HUP for half duplex close. */ 3624 if (sk->sk_shutdown == SHUTDOWN_MASK || 3625 sk->sk_state == TCP_CLOSE) 3626 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 3627 else 3628 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3629 } 3630 } 3631 3632 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 3633 u32 end_seq) 3634 { 3635 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3636 if (before(seq, sp->start_seq)) 3637 sp->start_seq = seq; 3638 if (after(end_seq, sp->end_seq)) 3639 sp->end_seq = end_seq; 3640 return 1; 3641 } 3642 return 0; 3643 } 3644 3645 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) 3646 { 3647 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3648 if (before(seq, tp->rcv_nxt)) 3649 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); 3650 else 3651 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); 3652 3653 tp->rx_opt.dsack = 1; 3654 tp->duplicate_sack[0].start_seq = seq; 3655 tp->duplicate_sack[0].end_seq = end_seq; 3656 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 3657 4 - tp->rx_opt.tstamp_ok); 3658 } 3659 } 3660 3661 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) 3662 { 3663 if (!tp->rx_opt.dsack) 3664 tcp_dsack_set(tp, seq, end_seq); 3665 else 3666 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3667 } 3668 3669 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 3670 { 3671 struct tcp_sock *tp = tcp_sk(sk); 3672 3673 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3674 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3675 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3676 tcp_enter_quickack_mode(sk); 3677 3678 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3679 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3680 3681 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3682 end_seq = tp->rcv_nxt; 3683 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); 3684 } 3685 } 3686 3687 tcp_send_ack(sk); 3688 } 3689 3690 /* These routines update the SACK block as out-of-order packets arrive or 3691 * in-order packets close up the sequence space. 3692 */ 3693 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 3694 { 3695 int this_sack; 3696 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3697 struct tcp_sack_block *swalk = sp + 1; 3698 3699 /* See if the recent change to the first SACK eats into 3700 * or hits the sequence space of other SACK blocks, if so coalesce. 3701 */ 3702 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 3703 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 3704 int i; 3705 3706 /* Zap SWALK, by moving every further SACK up by one slot. 3707 * Decrease num_sacks. 3708 */ 3709 tp->rx_opt.num_sacks--; 3710 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 3711 tp->rx_opt.dsack, 3712 4 - tp->rx_opt.tstamp_ok); 3713 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 3714 sp[i] = sp[i + 1]; 3715 continue; 3716 } 3717 this_sack++, swalk++; 3718 } 3719 } 3720 3721 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, 3722 struct tcp_sack_block *sack2) 3723 { 3724 __u32 tmp; 3725 3726 tmp = sack1->start_seq; 3727 sack1->start_seq = sack2->start_seq; 3728 sack2->start_seq = tmp; 3729 3730 tmp = sack1->end_seq; 3731 sack1->end_seq = sack2->end_seq; 3732 sack2->end_seq = tmp; 3733 } 3734 3735 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3736 { 3737 struct tcp_sock *tp = tcp_sk(sk); 3738 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3739 int cur_sacks = tp->rx_opt.num_sacks; 3740 int this_sack; 3741 3742 if (!cur_sacks) 3743 goto new_sack; 3744 3745 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 3746 if (tcp_sack_extend(sp, seq, end_seq)) { 3747 /* Rotate this_sack to the first one. */ 3748 for (; this_sack > 0; this_sack--, sp--) 3749 tcp_sack_swap(sp, sp - 1); 3750 if (cur_sacks > 1) 3751 tcp_sack_maybe_coalesce(tp); 3752 return; 3753 } 3754 } 3755 3756 /* Could not find an adjacent existing SACK, build a new one, 3757 * put it at the front, and shift everyone else down. We 3758 * always know there is at least one SACK present already here. 3759 * 3760 * If the sack array is full, forget about the last one. 3761 */ 3762 if (this_sack >= 4) { 3763 this_sack--; 3764 tp->rx_opt.num_sacks--; 3765 sp--; 3766 } 3767 for (; this_sack > 0; this_sack--, sp--) 3768 *sp = *(sp - 1); 3769 3770 new_sack: 3771 /* Build the new head SACK, and we're done. */ 3772 sp->start_seq = seq; 3773 sp->end_seq = end_seq; 3774 tp->rx_opt.num_sacks++; 3775 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 3776 4 - tp->rx_opt.tstamp_ok); 3777 } 3778 3779 /* RCV.NXT advances, some SACKs should be eaten. */ 3780 3781 static void tcp_sack_remove(struct tcp_sock *tp) 3782 { 3783 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3784 int num_sacks = tp->rx_opt.num_sacks; 3785 int this_sack; 3786 3787 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 3788 if (skb_queue_empty(&tp->out_of_order_queue)) { 3789 tp->rx_opt.num_sacks = 0; 3790 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 3791 return; 3792 } 3793 3794 for (this_sack = 0; this_sack < num_sacks;) { 3795 /* Check if the start of the sack is covered by RCV.NXT. */ 3796 if (!before(tp->rcv_nxt, sp->start_seq)) { 3797 int i; 3798 3799 /* RCV.NXT must cover all the block! */ 3800 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); 3801 3802 /* Zap this SACK, by moving forward any other SACKS. */ 3803 for (i=this_sack+1; i < num_sacks; i++) 3804 tp->selective_acks[i-1] = tp->selective_acks[i]; 3805 num_sacks--; 3806 continue; 3807 } 3808 this_sack++; 3809 sp++; 3810 } 3811 if (num_sacks != tp->rx_opt.num_sacks) { 3812 tp->rx_opt.num_sacks = num_sacks; 3813 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 3814 tp->rx_opt.dsack, 3815 4 - tp->rx_opt.tstamp_ok); 3816 } 3817 } 3818 3819 /* This one checks to see if we can put data from the 3820 * out_of_order queue into the receive_queue. 3821 */ 3822 static void tcp_ofo_queue(struct sock *sk) 3823 { 3824 struct tcp_sock *tp = tcp_sk(sk); 3825 __u32 dsack_high = tp->rcv_nxt; 3826 struct sk_buff *skb; 3827 3828 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 3829 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 3830 break; 3831 3832 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 3833 __u32 dsack = dsack_high; 3834 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 3835 dsack_high = TCP_SKB_CB(skb)->end_seq; 3836 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); 3837 } 3838 3839 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3840 SOCK_DEBUG(sk, "ofo packet was already received \n"); 3841 __skb_unlink(skb, &tp->out_of_order_queue); 3842 __kfree_skb(skb); 3843 continue; 3844 } 3845 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 3846 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3847 TCP_SKB_CB(skb)->end_seq); 3848 3849 __skb_unlink(skb, &tp->out_of_order_queue); 3850 __skb_queue_tail(&sk->sk_receive_queue, skb); 3851 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3852 if (tcp_hdr(skb)->fin) 3853 tcp_fin(skb, sk, tcp_hdr(skb)); 3854 } 3855 } 3856 3857 static int tcp_prune_ofo_queue(struct sock *sk); 3858 static int tcp_prune_queue(struct sock *sk); 3859 3860 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size) 3861 { 3862 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3863 !sk_rmem_schedule(sk, size)) { 3864 3865 if (tcp_prune_queue(sk) < 0) 3866 return -1; 3867 3868 if (!sk_rmem_schedule(sk, size)) { 3869 if (!tcp_prune_ofo_queue(sk)) 3870 return -1; 3871 3872 if (!sk_rmem_schedule(sk, size)) 3873 return -1; 3874 } 3875 } 3876 return 0; 3877 } 3878 3879 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 3880 { 3881 struct tcphdr *th = tcp_hdr(skb); 3882 struct tcp_sock *tp = tcp_sk(sk); 3883 int eaten = -1; 3884 3885 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 3886 goto drop; 3887 3888 __skb_pull(skb, th->doff * 4); 3889 3890 TCP_ECN_accept_cwr(tp, skb); 3891 3892 if (tp->rx_opt.dsack) { 3893 tp->rx_opt.dsack = 0; 3894 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, 3895 4 - tp->rx_opt.tstamp_ok); 3896 } 3897 3898 /* Queue data for delivery to the user. 3899 * Packets in sequence go to the receive queue. 3900 * Out of sequence packets to the out_of_order_queue. 3901 */ 3902 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3903 if (tcp_receive_window(tp) == 0) 3904 goto out_of_window; 3905 3906 /* Ok. In sequence. In window. */ 3907 if (tp->ucopy.task == current && 3908 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 3909 sock_owned_by_user(sk) && !tp->urg_data) { 3910 int chunk = min_t(unsigned int, skb->len, 3911 tp->ucopy.len); 3912 3913 __set_current_state(TASK_RUNNING); 3914 3915 local_bh_enable(); 3916 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 3917 tp->ucopy.len -= chunk; 3918 tp->copied_seq += chunk; 3919 eaten = (chunk == skb->len && !th->fin); 3920 tcp_rcv_space_adjust(sk); 3921 } 3922 local_bh_disable(); 3923 } 3924 3925 if (eaten <= 0) { 3926 queue_and_out: 3927 if (eaten < 0 && 3928 tcp_try_rmem_schedule(sk, skb->truesize)) 3929 goto drop; 3930 3931 skb_set_owner_r(skb, sk); 3932 __skb_queue_tail(&sk->sk_receive_queue, skb); 3933 } 3934 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3935 if (skb->len) 3936 tcp_event_data_recv(sk, skb); 3937 if (th->fin) 3938 tcp_fin(skb, sk, th); 3939 3940 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3941 tcp_ofo_queue(sk); 3942 3943 /* RFC2581. 4.2. SHOULD send immediate ACK, when 3944 * gap in queue is filled. 3945 */ 3946 if (skb_queue_empty(&tp->out_of_order_queue)) 3947 inet_csk(sk)->icsk_ack.pingpong = 0; 3948 } 3949 3950 if (tp->rx_opt.num_sacks) 3951 tcp_sack_remove(tp); 3952 3953 tcp_fast_path_check(sk); 3954 3955 if (eaten > 0) 3956 __kfree_skb(skb); 3957 else if (!sock_flag(sk, SOCK_DEAD)) 3958 sk->sk_data_ready(sk, 0); 3959 return; 3960 } 3961 3962 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3963 /* A retransmit, 2nd most common case. Force an immediate ack. */ 3964 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3965 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3966 3967 out_of_window: 3968 tcp_enter_quickack_mode(sk); 3969 inet_csk_schedule_ack(sk); 3970 drop: 3971 __kfree_skb(skb); 3972 return; 3973 } 3974 3975 /* Out of window. F.e. zero window probe. */ 3976 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 3977 goto out_of_window; 3978 3979 tcp_enter_quickack_mode(sk); 3980 3981 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3982 /* Partial packet, seq < rcv_next < end_seq */ 3983 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 3984 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3985 TCP_SKB_CB(skb)->end_seq); 3986 3987 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 3988 3989 /* If window is closed, drop tail of packet. But after 3990 * remembering D-SACK for its head made in previous line. 3991 */ 3992 if (!tcp_receive_window(tp)) 3993 goto out_of_window; 3994 goto queue_and_out; 3995 } 3996 3997 TCP_ECN_check_ce(tp, skb); 3998 3999 if (tcp_try_rmem_schedule(sk, skb->truesize)) 4000 goto drop; 4001 4002 /* Disable header prediction. */ 4003 tp->pred_flags = 0; 4004 inet_csk_schedule_ack(sk); 4005 4006 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4007 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4008 4009 skb_set_owner_r(skb, sk); 4010 4011 if (!skb_peek(&tp->out_of_order_queue)) { 4012 /* Initial out of order segment, build 1 SACK. */ 4013 if (tcp_is_sack(tp)) { 4014 tp->rx_opt.num_sacks = 1; 4015 tp->rx_opt.dsack = 0; 4016 tp->rx_opt.eff_sacks = 1; 4017 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4018 tp->selective_acks[0].end_seq = 4019 TCP_SKB_CB(skb)->end_seq; 4020 } 4021 __skb_queue_head(&tp->out_of_order_queue, skb); 4022 } else { 4023 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 4024 u32 seq = TCP_SKB_CB(skb)->seq; 4025 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4026 4027 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4028 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4029 4030 if (!tp->rx_opt.num_sacks || 4031 tp->selective_acks[0].end_seq != seq) 4032 goto add_sack; 4033 4034 /* Common case: data arrive in order after hole. */ 4035 tp->selective_acks[0].end_seq = end_seq; 4036 return; 4037 } 4038 4039 /* Find place to insert this segment. */ 4040 do { 4041 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4042 break; 4043 } while ((skb1 = skb1->prev) != 4044 (struct sk_buff *)&tp->out_of_order_queue); 4045 4046 /* Do skb overlap to previous one? */ 4047 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue && 4048 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4049 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4050 /* All the bits are present. Drop. */ 4051 __kfree_skb(skb); 4052 tcp_dsack_set(tp, seq, end_seq); 4053 goto add_sack; 4054 } 4055 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4056 /* Partial overlap. */ 4057 tcp_dsack_set(tp, seq, 4058 TCP_SKB_CB(skb1)->end_seq); 4059 } else { 4060 skb1 = skb1->prev; 4061 } 4062 } 4063 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); 4064 4065 /* And clean segments covered by new one as whole. */ 4066 while ((skb1 = skb->next) != 4067 (struct sk_buff *)&tp->out_of_order_queue && 4068 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 4069 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4070 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, 4071 end_seq); 4072 break; 4073 } 4074 __skb_unlink(skb1, &tp->out_of_order_queue); 4075 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, 4076 TCP_SKB_CB(skb1)->end_seq); 4077 __kfree_skb(skb1); 4078 } 4079 4080 add_sack: 4081 if (tcp_is_sack(tp)) 4082 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4083 } 4084 } 4085 4086 /* Collapse contiguous sequence of skbs head..tail with 4087 * sequence numbers start..end. 4088 * Segments with FIN/SYN are not collapsed (only because this 4089 * simplifies code) 4090 */ 4091 static void 4092 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4093 struct sk_buff *head, struct sk_buff *tail, 4094 u32 start, u32 end) 4095 { 4096 struct sk_buff *skb; 4097 4098 /* First, check that queue is collapsible and find 4099 * the point where collapsing can be useful. */ 4100 for (skb = head; skb != tail;) { 4101 /* No new bits? It is possible on ofo queue. */ 4102 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4103 struct sk_buff *next = skb->next; 4104 __skb_unlink(skb, list); 4105 __kfree_skb(skb); 4106 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 4107 skb = next; 4108 continue; 4109 } 4110 4111 /* The first skb to collapse is: 4112 * - not SYN/FIN and 4113 * - bloated or contains data before "start" or 4114 * overlaps to the next one. 4115 */ 4116 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4117 (tcp_win_from_space(skb->truesize) > skb->len || 4118 before(TCP_SKB_CB(skb)->seq, start) || 4119 (skb->next != tail && 4120 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 4121 break; 4122 4123 /* Decided to skip this, advance start seq. */ 4124 start = TCP_SKB_CB(skb)->end_seq; 4125 skb = skb->next; 4126 } 4127 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4128 return; 4129 4130 while (before(start, end)) { 4131 struct sk_buff *nskb; 4132 unsigned int header = skb_headroom(skb); 4133 int copy = SKB_MAX_ORDER(header, 0); 4134 4135 /* Too big header? This can happen with IPv6. */ 4136 if (copy < 0) 4137 return; 4138 if (end - start < copy) 4139 copy = end - start; 4140 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4141 if (!nskb) 4142 return; 4143 4144 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4145 skb_set_network_header(nskb, (skb_network_header(skb) - 4146 skb->head)); 4147 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4148 skb->head)); 4149 skb_reserve(nskb, header); 4150 memcpy(nskb->head, skb->head, header); 4151 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4152 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4153 __skb_insert(nskb, skb->prev, skb, list); 4154 skb_set_owner_r(nskb, sk); 4155 4156 /* Copy data, releasing collapsed skbs. */ 4157 while (copy > 0) { 4158 int offset = start - TCP_SKB_CB(skb)->seq; 4159 int size = TCP_SKB_CB(skb)->end_seq - start; 4160 4161 BUG_ON(offset < 0); 4162 if (size > 0) { 4163 size = min(copy, size); 4164 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4165 BUG(); 4166 TCP_SKB_CB(nskb)->end_seq += size; 4167 copy -= size; 4168 start += size; 4169 } 4170 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4171 struct sk_buff *next = skb->next; 4172 __skb_unlink(skb, list); 4173 __kfree_skb(skb); 4174 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 4175 skb = next; 4176 if (skb == tail || 4177 tcp_hdr(skb)->syn || 4178 tcp_hdr(skb)->fin) 4179 return; 4180 } 4181 } 4182 } 4183 } 4184 4185 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4186 * and tcp_collapse() them until all the queue is collapsed. 4187 */ 4188 static void tcp_collapse_ofo_queue(struct sock *sk) 4189 { 4190 struct tcp_sock *tp = tcp_sk(sk); 4191 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4192 struct sk_buff *head; 4193 u32 start, end; 4194 4195 if (skb == NULL) 4196 return; 4197 4198 start = TCP_SKB_CB(skb)->seq; 4199 end = TCP_SKB_CB(skb)->end_seq; 4200 head = skb; 4201 4202 for (;;) { 4203 skb = skb->next; 4204 4205 /* Segment is terminated when we see gap or when 4206 * we are at the end of all the queue. */ 4207 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 4208 after(TCP_SKB_CB(skb)->seq, end) || 4209 before(TCP_SKB_CB(skb)->end_seq, start)) { 4210 tcp_collapse(sk, &tp->out_of_order_queue, 4211 head, skb, start, end); 4212 head = skb; 4213 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 4214 break; 4215 /* Start new segment */ 4216 start = TCP_SKB_CB(skb)->seq; 4217 end = TCP_SKB_CB(skb)->end_seq; 4218 } else { 4219 if (before(TCP_SKB_CB(skb)->seq, start)) 4220 start = TCP_SKB_CB(skb)->seq; 4221 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4222 end = TCP_SKB_CB(skb)->end_seq; 4223 } 4224 } 4225 } 4226 4227 /* 4228 * Purge the out-of-order queue. 4229 * Return true if queue was pruned. 4230 */ 4231 static int tcp_prune_ofo_queue(struct sock *sk) 4232 { 4233 struct tcp_sock *tp = tcp_sk(sk); 4234 int res = 0; 4235 4236 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4237 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED); 4238 __skb_queue_purge(&tp->out_of_order_queue); 4239 4240 /* Reset SACK state. A conforming SACK implementation will 4241 * do the same at a timeout based retransmit. When a connection 4242 * is in a sad state like this, we care only about integrity 4243 * of the connection not performance. 4244 */ 4245 if (tp->rx_opt.sack_ok) 4246 tcp_sack_reset(&tp->rx_opt); 4247 sk_mem_reclaim(sk); 4248 res = 1; 4249 } 4250 return res; 4251 } 4252 4253 /* Reduce allocated memory if we can, trying to get 4254 * the socket within its memory limits again. 4255 * 4256 * Return less than zero if we should start dropping frames 4257 * until the socket owning process reads some of the data 4258 * to stabilize the situation. 4259 */ 4260 static int tcp_prune_queue(struct sock *sk) 4261 { 4262 struct tcp_sock *tp = tcp_sk(sk); 4263 4264 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4265 4266 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); 4267 4268 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4269 tcp_clamp_window(sk); 4270 else if (tcp_memory_pressure) 4271 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4272 4273 tcp_collapse_ofo_queue(sk); 4274 tcp_collapse(sk, &sk->sk_receive_queue, 4275 sk->sk_receive_queue.next, 4276 (struct sk_buff *)&sk->sk_receive_queue, 4277 tp->copied_seq, tp->rcv_nxt); 4278 sk_mem_reclaim(sk); 4279 4280 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4281 return 0; 4282 4283 /* Collapsing did not help, destructive actions follow. 4284 * This must not ever occur. */ 4285 4286 tcp_prune_ofo_queue(sk); 4287 4288 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4289 return 0; 4290 4291 /* If we are really being abused, tell the caller to silently 4292 * drop receive data on the floor. It will get retransmitted 4293 * and hopefully then we'll have sufficient space. 4294 */ 4295 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); 4296 4297 /* Massive buffer overcommit. */ 4298 tp->pred_flags = 0; 4299 return -1; 4300 } 4301 4302 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4303 * As additional protections, we do not touch cwnd in retransmission phases, 4304 * and if application hit its sndbuf limit recently. 4305 */ 4306 void tcp_cwnd_application_limited(struct sock *sk) 4307 { 4308 struct tcp_sock *tp = tcp_sk(sk); 4309 4310 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4311 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4312 /* Limited by application or receiver window. */ 4313 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4314 u32 win_used = max(tp->snd_cwnd_used, init_win); 4315 if (win_used < tp->snd_cwnd) { 4316 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4317 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4318 } 4319 tp->snd_cwnd_used = 0; 4320 } 4321 tp->snd_cwnd_stamp = tcp_time_stamp; 4322 } 4323 4324 static int tcp_should_expand_sndbuf(struct sock *sk) 4325 { 4326 struct tcp_sock *tp = tcp_sk(sk); 4327 4328 /* If the user specified a specific send buffer setting, do 4329 * not modify it. 4330 */ 4331 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4332 return 0; 4333 4334 /* If we are under global TCP memory pressure, do not expand. */ 4335 if (tcp_memory_pressure) 4336 return 0; 4337 4338 /* If we are under soft global TCP memory pressure, do not expand. */ 4339 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 4340 return 0; 4341 4342 /* If we filled the congestion window, do not expand. */ 4343 if (tp->packets_out >= tp->snd_cwnd) 4344 return 0; 4345 4346 return 1; 4347 } 4348 4349 /* When incoming ACK allowed to free some skb from write_queue, 4350 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4351 * on the exit from tcp input handler. 4352 * 4353 * PROBLEM: sndbuf expansion does not work well with largesend. 4354 */ 4355 static void tcp_new_space(struct sock *sk) 4356 { 4357 struct tcp_sock *tp = tcp_sk(sk); 4358 4359 if (tcp_should_expand_sndbuf(sk)) { 4360 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 4361 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), 4362 demanded = max_t(unsigned int, tp->snd_cwnd, 4363 tp->reordering + 1); 4364 sndmem *= 2 * demanded; 4365 if (sndmem > sk->sk_sndbuf) 4366 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4367 tp->snd_cwnd_stamp = tcp_time_stamp; 4368 } 4369 4370 sk->sk_write_space(sk); 4371 } 4372 4373 static void tcp_check_space(struct sock *sk) 4374 { 4375 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4376 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4377 if (sk->sk_socket && 4378 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4379 tcp_new_space(sk); 4380 } 4381 } 4382 4383 static inline void tcp_data_snd_check(struct sock *sk) 4384 { 4385 tcp_push_pending_frames(sk); 4386 tcp_check_space(sk); 4387 } 4388 4389 /* 4390 * Check if sending an ack is needed. 4391 */ 4392 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4393 { 4394 struct tcp_sock *tp = tcp_sk(sk); 4395 4396 /* More than one full frame received... */ 4397 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 4398 /* ... and right edge of window advances far enough. 4399 * (tcp_recvmsg() will send ACK otherwise). Or... 4400 */ 4401 && __tcp_select_window(sk) >= tp->rcv_wnd) || 4402 /* We ACK each frame or... */ 4403 tcp_in_quickack_mode(sk) || 4404 /* We have out of order data. */ 4405 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4406 /* Then ack it now */ 4407 tcp_send_ack(sk); 4408 } else { 4409 /* Else, send delayed ack. */ 4410 tcp_send_delayed_ack(sk); 4411 } 4412 } 4413 4414 static inline void tcp_ack_snd_check(struct sock *sk) 4415 { 4416 if (!inet_csk_ack_scheduled(sk)) { 4417 /* We sent a data segment already. */ 4418 return; 4419 } 4420 __tcp_ack_snd_check(sk, 1); 4421 } 4422 4423 /* 4424 * This routine is only called when we have urgent data 4425 * signaled. Its the 'slow' part of tcp_urg. It could be 4426 * moved inline now as tcp_urg is only called from one 4427 * place. We handle URGent data wrong. We have to - as 4428 * BSD still doesn't use the correction from RFC961. 4429 * For 1003.1g we should support a new option TCP_STDURG to permit 4430 * either form (or just set the sysctl tcp_stdurg). 4431 */ 4432 4433 static void tcp_check_urg(struct sock *sk, struct tcphdr *th) 4434 { 4435 struct tcp_sock *tp = tcp_sk(sk); 4436 u32 ptr = ntohs(th->urg_ptr); 4437 4438 if (ptr && !sysctl_tcp_stdurg) 4439 ptr--; 4440 ptr += ntohl(th->seq); 4441 4442 /* Ignore urgent data that we've already seen and read. */ 4443 if (after(tp->copied_seq, ptr)) 4444 return; 4445 4446 /* Do not replay urg ptr. 4447 * 4448 * NOTE: interesting situation not covered by specs. 4449 * Misbehaving sender may send urg ptr, pointing to segment, 4450 * which we already have in ofo queue. We are not able to fetch 4451 * such data and will stay in TCP_URG_NOTYET until will be eaten 4452 * by recvmsg(). Seems, we are not obliged to handle such wicked 4453 * situations. But it is worth to think about possibility of some 4454 * DoSes using some hypothetical application level deadlock. 4455 */ 4456 if (before(ptr, tp->rcv_nxt)) 4457 return; 4458 4459 /* Do we already have a newer (or duplicate) urgent pointer? */ 4460 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4461 return; 4462 4463 /* Tell the world about our new urgent pointer. */ 4464 sk_send_sigurg(sk); 4465 4466 /* We may be adding urgent data when the last byte read was 4467 * urgent. To do this requires some care. We cannot just ignore 4468 * tp->copied_seq since we would read the last urgent byte again 4469 * as data, nor can we alter copied_seq until this data arrives 4470 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4471 * 4472 * NOTE. Double Dutch. Rendering to plain English: author of comment 4473 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4474 * and expect that both A and B disappear from stream. This is _wrong_. 4475 * Though this happens in BSD with high probability, this is occasional. 4476 * Any application relying on this is buggy. Note also, that fix "works" 4477 * only in this artificial test. Insert some normal data between A and B and we will 4478 * decline of BSD again. Verdict: it is better to remove to trap 4479 * buggy users. 4480 */ 4481 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4482 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4483 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4484 tp->copied_seq++; 4485 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4486 __skb_unlink(skb, &sk->sk_receive_queue); 4487 __kfree_skb(skb); 4488 } 4489 } 4490 4491 tp->urg_data = TCP_URG_NOTYET; 4492 tp->urg_seq = ptr; 4493 4494 /* Disable header prediction. */ 4495 tp->pred_flags = 0; 4496 } 4497 4498 /* This is the 'fast' part of urgent handling. */ 4499 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 4500 { 4501 struct tcp_sock *tp = tcp_sk(sk); 4502 4503 /* Check if we get a new urgent pointer - normally not. */ 4504 if (th->urg) 4505 tcp_check_urg(sk, th); 4506 4507 /* Do we wait for any urgent data? - normally not... */ 4508 if (tp->urg_data == TCP_URG_NOTYET) { 4509 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4510 th->syn; 4511 4512 /* Is the urgent pointer pointing into this packet? */ 4513 if (ptr < skb->len) { 4514 u8 tmp; 4515 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4516 BUG(); 4517 tp->urg_data = TCP_URG_VALID | tmp; 4518 if (!sock_flag(sk, SOCK_DEAD)) 4519 sk->sk_data_ready(sk, 0); 4520 } 4521 } 4522 } 4523 4524 static int tcp_defer_accept_check(struct sock *sk) 4525 { 4526 struct tcp_sock *tp = tcp_sk(sk); 4527 4528 if (tp->defer_tcp_accept.request) { 4529 int queued_data = tp->rcv_nxt - tp->copied_seq; 4530 int hasfin = !skb_queue_empty(&sk->sk_receive_queue) ? 4531 tcp_hdr((struct sk_buff *) 4532 sk->sk_receive_queue.prev)->fin : 0; 4533 4534 if (queued_data && hasfin) 4535 queued_data--; 4536 4537 if (queued_data && 4538 tp->defer_tcp_accept.listen_sk->sk_state == TCP_LISTEN) { 4539 if (sock_flag(sk, SOCK_KEEPOPEN)) { 4540 inet_csk_reset_keepalive_timer(sk, 4541 keepalive_time_when(tp)); 4542 } else { 4543 inet_csk_delete_keepalive_timer(sk); 4544 } 4545 4546 inet_csk_reqsk_queue_add( 4547 tp->defer_tcp_accept.listen_sk, 4548 tp->defer_tcp_accept.request, 4549 sk); 4550 4551 tp->defer_tcp_accept.listen_sk->sk_data_ready( 4552 tp->defer_tcp_accept.listen_sk, 0); 4553 4554 sock_put(tp->defer_tcp_accept.listen_sk); 4555 sock_put(sk); 4556 tp->defer_tcp_accept.listen_sk = NULL; 4557 tp->defer_tcp_accept.request = NULL; 4558 } else if (hasfin || 4559 tp->defer_tcp_accept.listen_sk->sk_state != TCP_LISTEN) { 4560 tcp_reset(sk); 4561 return -1; 4562 } 4563 } 4564 return 0; 4565 } 4566 4567 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4568 { 4569 struct tcp_sock *tp = tcp_sk(sk); 4570 int chunk = skb->len - hlen; 4571 int err; 4572 4573 local_bh_enable(); 4574 if (skb_csum_unnecessary(skb)) 4575 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4576 else 4577 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4578 tp->ucopy.iov); 4579 4580 if (!err) { 4581 tp->ucopy.len -= chunk; 4582 tp->copied_seq += chunk; 4583 tcp_rcv_space_adjust(sk); 4584 } 4585 4586 local_bh_disable(); 4587 return err; 4588 } 4589 4590 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4591 struct sk_buff *skb) 4592 { 4593 __sum16 result; 4594 4595 if (sock_owned_by_user(sk)) { 4596 local_bh_enable(); 4597 result = __tcp_checksum_complete(skb); 4598 local_bh_disable(); 4599 } else { 4600 result = __tcp_checksum_complete(skb); 4601 } 4602 return result; 4603 } 4604 4605 static inline int tcp_checksum_complete_user(struct sock *sk, 4606 struct sk_buff *skb) 4607 { 4608 return !skb_csum_unnecessary(skb) && 4609 __tcp_checksum_complete_user(sk, skb); 4610 } 4611 4612 #ifdef CONFIG_NET_DMA 4613 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 4614 int hlen) 4615 { 4616 struct tcp_sock *tp = tcp_sk(sk); 4617 int chunk = skb->len - hlen; 4618 int dma_cookie; 4619 int copied_early = 0; 4620 4621 if (tp->ucopy.wakeup) 4622 return 0; 4623 4624 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 4625 tp->ucopy.dma_chan = get_softnet_dma(); 4626 4627 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 4628 4629 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 4630 skb, hlen, 4631 tp->ucopy.iov, chunk, 4632 tp->ucopy.pinned_list); 4633 4634 if (dma_cookie < 0) 4635 goto out; 4636 4637 tp->ucopy.dma_cookie = dma_cookie; 4638 copied_early = 1; 4639 4640 tp->ucopy.len -= chunk; 4641 tp->copied_seq += chunk; 4642 tcp_rcv_space_adjust(sk); 4643 4644 if ((tp->ucopy.len == 0) || 4645 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 4646 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 4647 tp->ucopy.wakeup = 1; 4648 sk->sk_data_ready(sk, 0); 4649 } 4650 } else if (chunk > 0) { 4651 tp->ucopy.wakeup = 1; 4652 sk->sk_data_ready(sk, 0); 4653 } 4654 out: 4655 return copied_early; 4656 } 4657 #endif /* CONFIG_NET_DMA */ 4658 4659 /* 4660 * TCP receive function for the ESTABLISHED state. 4661 * 4662 * It is split into a fast path and a slow path. The fast path is 4663 * disabled when: 4664 * - A zero window was announced from us - zero window probing 4665 * is only handled properly in the slow path. 4666 * - Out of order segments arrived. 4667 * - Urgent data is expected. 4668 * - There is no buffer space left 4669 * - Unexpected TCP flags/window values/header lengths are received 4670 * (detected by checking the TCP header against pred_flags) 4671 * - Data is sent in both directions. Fast path only supports pure senders 4672 * or pure receivers (this means either the sequence number or the ack 4673 * value must stay constant) 4674 * - Unexpected TCP option. 4675 * 4676 * When these conditions are not satisfied it drops into a standard 4677 * receive procedure patterned after RFC793 to handle all cases. 4678 * The first three cases are guaranteed by proper pred_flags setting, 4679 * the rest is checked inline. Fast processing is turned on in 4680 * tcp_data_queue when everything is OK. 4681 */ 4682 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 4683 struct tcphdr *th, unsigned len) 4684 { 4685 struct tcp_sock *tp = tcp_sk(sk); 4686 4687 /* 4688 * Header prediction. 4689 * The code loosely follows the one in the famous 4690 * "30 instruction TCP receive" Van Jacobson mail. 4691 * 4692 * Van's trick is to deposit buffers into socket queue 4693 * on a device interrupt, to call tcp_recv function 4694 * on the receive process context and checksum and copy 4695 * the buffer to user space. smart... 4696 * 4697 * Our current scheme is not silly either but we take the 4698 * extra cost of the net_bh soft interrupt processing... 4699 * We do checksum and copy also but from device to kernel. 4700 */ 4701 4702 tp->rx_opt.saw_tstamp = 0; 4703 4704 /* pred_flags is 0xS?10 << 16 + snd_wnd 4705 * if header_prediction is to be made 4706 * 'S' will always be tp->tcp_header_len >> 2 4707 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 4708 * turn it off (when there are holes in the receive 4709 * space for instance) 4710 * PSH flag is ignored. 4711 */ 4712 4713 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 4714 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4715 int tcp_header_len = tp->tcp_header_len; 4716 4717 /* Timestamp header prediction: tcp_header_len 4718 * is automatically equal to th->doff*4 due to pred_flags 4719 * match. 4720 */ 4721 4722 /* Check timestamp */ 4723 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 4724 __be32 *ptr = (__be32 *)(th + 1); 4725 4726 /* No? Slow path! */ 4727 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4728 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) 4729 goto slow_path; 4730 4731 tp->rx_opt.saw_tstamp = 1; 4732 ++ptr; 4733 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4734 ++ptr; 4735 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 4736 4737 /* If PAWS failed, check it more carefully in slow path */ 4738 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 4739 goto slow_path; 4740 4741 /* DO NOT update ts_recent here, if checksum fails 4742 * and timestamp was corrupted part, it will result 4743 * in a hung connection since we will drop all 4744 * future packets due to the PAWS test. 4745 */ 4746 } 4747 4748 if (len <= tcp_header_len) { 4749 /* Bulk data transfer: sender */ 4750 if (len == tcp_header_len) { 4751 /* Predicted packet is in window by definition. 4752 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4753 * Hence, check seq<=rcv_wup reduces to: 4754 */ 4755 if (tcp_header_len == 4756 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4757 tp->rcv_nxt == tp->rcv_wup) 4758 tcp_store_ts_recent(tp); 4759 4760 /* We know that such packets are checksummed 4761 * on entry. 4762 */ 4763 tcp_ack(sk, skb, 0); 4764 __kfree_skb(skb); 4765 tcp_data_snd_check(sk); 4766 return 0; 4767 } else { /* Header too small */ 4768 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4769 goto discard; 4770 } 4771 } else { 4772 int eaten = 0; 4773 int copied_early = 0; 4774 4775 if (tp->copied_seq == tp->rcv_nxt && 4776 len - tcp_header_len <= tp->ucopy.len) { 4777 #ifdef CONFIG_NET_DMA 4778 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 4779 copied_early = 1; 4780 eaten = 1; 4781 } 4782 #endif 4783 if (tp->ucopy.task == current && 4784 sock_owned_by_user(sk) && !copied_early) { 4785 __set_current_state(TASK_RUNNING); 4786 4787 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 4788 eaten = 1; 4789 } 4790 if (eaten) { 4791 /* Predicted packet is in window by definition. 4792 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4793 * Hence, check seq<=rcv_wup reduces to: 4794 */ 4795 if (tcp_header_len == 4796 (sizeof(struct tcphdr) + 4797 TCPOLEN_TSTAMP_ALIGNED) && 4798 tp->rcv_nxt == tp->rcv_wup) 4799 tcp_store_ts_recent(tp); 4800 4801 tcp_rcv_rtt_measure_ts(sk, skb); 4802 4803 __skb_pull(skb, tcp_header_len); 4804 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4805 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); 4806 } 4807 if (copied_early) 4808 tcp_cleanup_rbuf(sk, skb->len); 4809 } 4810 if (!eaten) { 4811 if (tcp_checksum_complete_user(sk, skb)) 4812 goto csum_error; 4813 4814 /* Predicted packet is in window by definition. 4815 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4816 * Hence, check seq<=rcv_wup reduces to: 4817 */ 4818 if (tcp_header_len == 4819 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4820 tp->rcv_nxt == tp->rcv_wup) 4821 tcp_store_ts_recent(tp); 4822 4823 tcp_rcv_rtt_measure_ts(sk, skb); 4824 4825 if ((int)skb->truesize > sk->sk_forward_alloc) 4826 goto step5; 4827 4828 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); 4829 4830 /* Bulk data transfer: receiver */ 4831 __skb_pull(skb, tcp_header_len); 4832 __skb_queue_tail(&sk->sk_receive_queue, skb); 4833 skb_set_owner_r(skb, sk); 4834 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4835 } 4836 4837 tcp_event_data_recv(sk, skb); 4838 4839 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 4840 /* Well, only one small jumplet in fast path... */ 4841 tcp_ack(sk, skb, FLAG_DATA); 4842 tcp_data_snd_check(sk); 4843 if (!inet_csk_ack_scheduled(sk)) 4844 goto no_ack; 4845 } 4846 4847 __tcp_ack_snd_check(sk, 0); 4848 no_ack: 4849 #ifdef CONFIG_NET_DMA 4850 if (copied_early) 4851 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 4852 else 4853 #endif 4854 if (eaten) 4855 __kfree_skb(skb); 4856 else 4857 sk->sk_data_ready(sk, 0); 4858 return 0; 4859 } 4860 } 4861 4862 slow_path: 4863 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 4864 goto csum_error; 4865 4866 /* 4867 * RFC1323: H1. Apply PAWS check first. 4868 */ 4869 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4870 tcp_paws_discard(sk, skb)) { 4871 if (!th->rst) { 4872 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4873 tcp_send_dupack(sk, skb); 4874 goto discard; 4875 } 4876 /* Resets are accepted even if PAWS failed. 4877 4878 ts_recent update must be made after we are sure 4879 that the packet is in window. 4880 */ 4881 } 4882 4883 /* 4884 * Standard slow path. 4885 */ 4886 4887 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4888 /* RFC793, page 37: "In all states except SYN-SENT, all reset 4889 * (RST) segments are validated by checking their SEQ-fields." 4890 * And page 69: "If an incoming segment is not acceptable, 4891 * an acknowledgment should be sent in reply (unless the RST bit 4892 * is set, if so drop the segment and return)". 4893 */ 4894 if (!th->rst) 4895 tcp_send_dupack(sk, skb); 4896 goto discard; 4897 } 4898 4899 if (th->rst) { 4900 tcp_reset(sk); 4901 goto discard; 4902 } 4903 4904 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4905 4906 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4907 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4908 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4909 tcp_reset(sk); 4910 return 1; 4911 } 4912 4913 step5: 4914 if (th->ack) 4915 tcp_ack(sk, skb, FLAG_SLOWPATH); 4916 4917 tcp_rcv_rtt_measure_ts(sk, skb); 4918 4919 /* Process urgent data. */ 4920 tcp_urg(sk, skb, th); 4921 4922 /* step 7: process the segment text */ 4923 tcp_data_queue(sk, skb); 4924 4925 tcp_data_snd_check(sk); 4926 tcp_ack_snd_check(sk); 4927 4928 if (tcp_defer_accept_check(sk)) 4929 return -1; 4930 return 0; 4931 4932 csum_error: 4933 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4934 4935 discard: 4936 __kfree_skb(skb); 4937 return 0; 4938 } 4939 4940 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 4941 struct tcphdr *th, unsigned len) 4942 { 4943 struct tcp_sock *tp = tcp_sk(sk); 4944 struct inet_connection_sock *icsk = inet_csk(sk); 4945 int saved_clamp = tp->rx_opt.mss_clamp; 4946 4947 tcp_parse_options(skb, &tp->rx_opt, 0); 4948 4949 if (th->ack) { 4950 /* rfc793: 4951 * "If the state is SYN-SENT then 4952 * first check the ACK bit 4953 * If the ACK bit is set 4954 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 4955 * a reset (unless the RST bit is set, if so drop 4956 * the segment and return)" 4957 * 4958 * We do not send data with SYN, so that RFC-correct 4959 * test reduces to: 4960 */ 4961 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 4962 goto reset_and_undo; 4963 4964 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4965 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 4966 tcp_time_stamp)) { 4967 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); 4968 goto reset_and_undo; 4969 } 4970 4971 /* Now ACK is acceptable. 4972 * 4973 * "If the RST bit is set 4974 * If the ACK was acceptable then signal the user "error: 4975 * connection reset", drop the segment, enter CLOSED state, 4976 * delete TCB, and return." 4977 */ 4978 4979 if (th->rst) { 4980 tcp_reset(sk); 4981 goto discard; 4982 } 4983 4984 /* rfc793: 4985 * "fifth, if neither of the SYN or RST bits is set then 4986 * drop the segment and return." 4987 * 4988 * See note below! 4989 * --ANK(990513) 4990 */ 4991 if (!th->syn) 4992 goto discard_and_undo; 4993 4994 /* rfc793: 4995 * "If the SYN bit is on ... 4996 * are acceptable then ... 4997 * (our SYN has been ACKed), change the connection 4998 * state to ESTABLISHED..." 4999 */ 5000 5001 TCP_ECN_rcv_synack(tp, th); 5002 5003 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5004 tcp_ack(sk, skb, FLAG_SLOWPATH); 5005 5006 /* Ok.. it's good. Set up sequence numbers and 5007 * move to established. 5008 */ 5009 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5010 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5011 5012 /* RFC1323: The window in SYN & SYN/ACK segments is 5013 * never scaled. 5014 */ 5015 tp->snd_wnd = ntohs(th->window); 5016 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 5017 5018 if (!tp->rx_opt.wscale_ok) { 5019 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5020 tp->window_clamp = min(tp->window_clamp, 65535U); 5021 } 5022 5023 if (tp->rx_opt.saw_tstamp) { 5024 tp->rx_opt.tstamp_ok = 1; 5025 tp->tcp_header_len = 5026 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5027 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5028 tcp_store_ts_recent(tp); 5029 } else { 5030 tp->tcp_header_len = sizeof(struct tcphdr); 5031 } 5032 5033 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5034 tcp_enable_fack(tp); 5035 5036 tcp_mtup_init(sk); 5037 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5038 tcp_initialize_rcv_mss(sk); 5039 5040 /* Remember, tcp_poll() does not lock socket! 5041 * Change state from SYN-SENT only after copied_seq 5042 * is initialized. */ 5043 tp->copied_seq = tp->rcv_nxt; 5044 smp_mb(); 5045 tcp_set_state(sk, TCP_ESTABLISHED); 5046 5047 security_inet_conn_established(sk, skb); 5048 5049 /* Make sure socket is routed, for correct metrics. */ 5050 icsk->icsk_af_ops->rebuild_header(sk); 5051 5052 tcp_init_metrics(sk); 5053 5054 tcp_init_congestion_control(sk); 5055 5056 /* Prevent spurious tcp_cwnd_restart() on first data 5057 * packet. 5058 */ 5059 tp->lsndtime = tcp_time_stamp; 5060 5061 tcp_init_buffer_space(sk); 5062 5063 if (sock_flag(sk, SOCK_KEEPOPEN)) 5064 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5065 5066 if (!tp->rx_opt.snd_wscale) 5067 __tcp_fast_path_on(tp, tp->snd_wnd); 5068 else 5069 tp->pred_flags = 0; 5070 5071 if (!sock_flag(sk, SOCK_DEAD)) { 5072 sk->sk_state_change(sk); 5073 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5074 } 5075 5076 if (sk->sk_write_pending || 5077 icsk->icsk_accept_queue.rskq_defer_accept || 5078 icsk->icsk_ack.pingpong) { 5079 /* Save one ACK. Data will be ready after 5080 * several ticks, if write_pending is set. 5081 * 5082 * It may be deleted, but with this feature tcpdumps 5083 * look so _wonderfully_ clever, that I was not able 5084 * to stand against the temptation 8) --ANK 5085 */ 5086 inet_csk_schedule_ack(sk); 5087 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5088 icsk->icsk_ack.ato = TCP_ATO_MIN; 5089 tcp_incr_quickack(sk); 5090 tcp_enter_quickack_mode(sk); 5091 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5092 TCP_DELACK_MAX, TCP_RTO_MAX); 5093 5094 discard: 5095 __kfree_skb(skb); 5096 return 0; 5097 } else { 5098 tcp_send_ack(sk); 5099 } 5100 return -1; 5101 } 5102 5103 /* No ACK in the segment */ 5104 5105 if (th->rst) { 5106 /* rfc793: 5107 * "If the RST bit is set 5108 * 5109 * Otherwise (no ACK) drop the segment and return." 5110 */ 5111 5112 goto discard_and_undo; 5113 } 5114 5115 /* PAWS check. */ 5116 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5117 tcp_paws_check(&tp->rx_opt, 0)) 5118 goto discard_and_undo; 5119 5120 if (th->syn) { 5121 /* We see SYN without ACK. It is attempt of 5122 * simultaneous connect with crossed SYNs. 5123 * Particularly, it can be connect to self. 5124 */ 5125 tcp_set_state(sk, TCP_SYN_RECV); 5126 5127 if (tp->rx_opt.saw_tstamp) { 5128 tp->rx_opt.tstamp_ok = 1; 5129 tcp_store_ts_recent(tp); 5130 tp->tcp_header_len = 5131 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5132 } else { 5133 tp->tcp_header_len = sizeof(struct tcphdr); 5134 } 5135 5136 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5137 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5138 5139 /* RFC1323: The window in SYN & SYN/ACK segments is 5140 * never scaled. 5141 */ 5142 tp->snd_wnd = ntohs(th->window); 5143 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5144 tp->max_window = tp->snd_wnd; 5145 5146 TCP_ECN_rcv_syn(tp, th); 5147 5148 tcp_mtup_init(sk); 5149 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5150 tcp_initialize_rcv_mss(sk); 5151 5152 tcp_send_synack(sk); 5153 #if 0 5154 /* Note, we could accept data and URG from this segment. 5155 * There are no obstacles to make this. 5156 * 5157 * However, if we ignore data in ACKless segments sometimes, 5158 * we have no reasons to accept it sometimes. 5159 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5160 * is not flawless. So, discard packet for sanity. 5161 * Uncomment this return to process the data. 5162 */ 5163 return -1; 5164 #else 5165 goto discard; 5166 #endif 5167 } 5168 /* "fifth, if neither of the SYN or RST bits is set then 5169 * drop the segment and return." 5170 */ 5171 5172 discard_and_undo: 5173 tcp_clear_options(&tp->rx_opt); 5174 tp->rx_opt.mss_clamp = saved_clamp; 5175 goto discard; 5176 5177 reset_and_undo: 5178 tcp_clear_options(&tp->rx_opt); 5179 tp->rx_opt.mss_clamp = saved_clamp; 5180 return 1; 5181 } 5182 5183 /* 5184 * This function implements the receiving procedure of RFC 793 for 5185 * all states except ESTABLISHED and TIME_WAIT. 5186 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5187 * address independent. 5188 */ 5189 5190 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5191 struct tcphdr *th, unsigned len) 5192 { 5193 struct tcp_sock *tp = tcp_sk(sk); 5194 struct inet_connection_sock *icsk = inet_csk(sk); 5195 int queued = 0; 5196 5197 tp->rx_opt.saw_tstamp = 0; 5198 5199 switch (sk->sk_state) { 5200 case TCP_CLOSE: 5201 goto discard; 5202 5203 case TCP_LISTEN: 5204 if (th->ack) 5205 return 1; 5206 5207 if (th->rst) 5208 goto discard; 5209 5210 if (th->syn) { 5211 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5212 return 1; 5213 5214 /* Now we have several options: In theory there is 5215 * nothing else in the frame. KA9Q has an option to 5216 * send data with the syn, BSD accepts data with the 5217 * syn up to the [to be] advertised window and 5218 * Solaris 2.1 gives you a protocol error. For now 5219 * we just ignore it, that fits the spec precisely 5220 * and avoids incompatibilities. It would be nice in 5221 * future to drop through and process the data. 5222 * 5223 * Now that TTCP is starting to be used we ought to 5224 * queue this data. 5225 * But, this leaves one open to an easy denial of 5226 * service attack, and SYN cookies can't defend 5227 * against this problem. So, we drop the data 5228 * in the interest of security over speed unless 5229 * it's still in use. 5230 */ 5231 kfree_skb(skb); 5232 return 0; 5233 } 5234 goto discard; 5235 5236 case TCP_SYN_SENT: 5237 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5238 if (queued >= 0) 5239 return queued; 5240 5241 /* Do step6 onward by hand. */ 5242 tcp_urg(sk, skb, th); 5243 __kfree_skb(skb); 5244 tcp_data_snd_check(sk); 5245 return 0; 5246 } 5247 5248 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5249 tcp_paws_discard(sk, skb)) { 5250 if (!th->rst) { 5251 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 5252 tcp_send_dupack(sk, skb); 5253 goto discard; 5254 } 5255 /* Reset is accepted even if it did not pass PAWS. */ 5256 } 5257 5258 /* step 1: check sequence number */ 5259 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5260 if (!th->rst) 5261 tcp_send_dupack(sk, skb); 5262 goto discard; 5263 } 5264 5265 /* step 2: check RST bit */ 5266 if (th->rst) { 5267 tcp_reset(sk); 5268 goto discard; 5269 } 5270 5271 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5272 5273 /* step 3: check security and precedence [ignored] */ 5274 5275 /* step 4: 5276 * 5277 * Check for a SYN in window. 5278 */ 5279 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5280 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 5281 tcp_reset(sk); 5282 return 1; 5283 } 5284 5285 /* step 5: check the ACK field */ 5286 if (th->ack) { 5287 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 5288 5289 switch (sk->sk_state) { 5290 case TCP_SYN_RECV: 5291 if (acceptable) { 5292 tp->copied_seq = tp->rcv_nxt; 5293 smp_mb(); 5294 tcp_set_state(sk, TCP_ESTABLISHED); 5295 sk->sk_state_change(sk); 5296 5297 /* Note, that this wakeup is only for marginal 5298 * crossed SYN case. Passively open sockets 5299 * are not waked up, because sk->sk_sleep == 5300 * NULL and sk->sk_socket == NULL. 5301 */ 5302 if (sk->sk_socket) 5303 sk_wake_async(sk, 5304 SOCK_WAKE_IO, POLL_OUT); 5305 5306 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5307 tp->snd_wnd = ntohs(th->window) << 5308 tp->rx_opt.snd_wscale; 5309 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 5310 TCP_SKB_CB(skb)->seq); 5311 5312 /* tcp_ack considers this ACK as duplicate 5313 * and does not calculate rtt. 5314 * Fix it at least with timestamps. 5315 */ 5316 if (tp->rx_opt.saw_tstamp && 5317 tp->rx_opt.rcv_tsecr && !tp->srtt) 5318 tcp_ack_saw_tstamp(sk, 0); 5319 5320 if (tp->rx_opt.tstamp_ok) 5321 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5322 5323 /* Make sure socket is routed, for 5324 * correct metrics. 5325 */ 5326 icsk->icsk_af_ops->rebuild_header(sk); 5327 5328 tcp_init_metrics(sk); 5329 5330 tcp_init_congestion_control(sk); 5331 5332 /* Prevent spurious tcp_cwnd_restart() on 5333 * first data packet. 5334 */ 5335 tp->lsndtime = tcp_time_stamp; 5336 5337 tcp_mtup_init(sk); 5338 tcp_initialize_rcv_mss(sk); 5339 tcp_init_buffer_space(sk); 5340 tcp_fast_path_on(tp); 5341 } else { 5342 return 1; 5343 } 5344 break; 5345 5346 case TCP_FIN_WAIT1: 5347 if (tp->snd_una == tp->write_seq) { 5348 tcp_set_state(sk, TCP_FIN_WAIT2); 5349 sk->sk_shutdown |= SEND_SHUTDOWN; 5350 dst_confirm(sk->sk_dst_cache); 5351 5352 if (!sock_flag(sk, SOCK_DEAD)) 5353 /* Wake up lingering close() */ 5354 sk->sk_state_change(sk); 5355 else { 5356 int tmo; 5357 5358 if (tp->linger2 < 0 || 5359 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5360 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5361 tcp_done(sk); 5362 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 5363 return 1; 5364 } 5365 5366 tmo = tcp_fin_time(sk); 5367 if (tmo > TCP_TIMEWAIT_LEN) { 5368 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5369 } else if (th->fin || sock_owned_by_user(sk)) { 5370 /* Bad case. We could lose such FIN otherwise. 5371 * It is not a big problem, but it looks confusing 5372 * and not so rare event. We still can lose it now, 5373 * if it spins in bh_lock_sock(), but it is really 5374 * marginal case. 5375 */ 5376 inet_csk_reset_keepalive_timer(sk, tmo); 5377 } else { 5378 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5379 goto discard; 5380 } 5381 } 5382 } 5383 break; 5384 5385 case TCP_CLOSING: 5386 if (tp->snd_una == tp->write_seq) { 5387 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5388 goto discard; 5389 } 5390 break; 5391 5392 case TCP_LAST_ACK: 5393 if (tp->snd_una == tp->write_seq) { 5394 tcp_update_metrics(sk); 5395 tcp_done(sk); 5396 goto discard; 5397 } 5398 break; 5399 } 5400 } else 5401 goto discard; 5402 5403 /* step 6: check the URG bit */ 5404 tcp_urg(sk, skb, th); 5405 5406 /* step 7: process the segment text */ 5407 switch (sk->sk_state) { 5408 case TCP_CLOSE_WAIT: 5409 case TCP_CLOSING: 5410 case TCP_LAST_ACK: 5411 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5412 break; 5413 case TCP_FIN_WAIT1: 5414 case TCP_FIN_WAIT2: 5415 /* RFC 793 says to queue data in these states, 5416 * RFC 1122 says we MUST send a reset. 5417 * BSD 4.4 also does reset. 5418 */ 5419 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5420 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5421 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5422 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 5423 tcp_reset(sk); 5424 return 1; 5425 } 5426 } 5427 /* Fall through */ 5428 case TCP_ESTABLISHED: 5429 tcp_data_queue(sk, skb); 5430 queued = 1; 5431 break; 5432 } 5433 5434 /* tcp_data could move socket to TIME-WAIT */ 5435 if (sk->sk_state != TCP_CLOSE) { 5436 tcp_data_snd_check(sk); 5437 tcp_ack_snd_check(sk); 5438 } 5439 5440 if (!queued) { 5441 discard: 5442 __kfree_skb(skb); 5443 } 5444 return 0; 5445 } 5446 5447 EXPORT_SYMBOL(sysctl_tcp_ecn); 5448 EXPORT_SYMBOL(sysctl_tcp_reordering); 5449 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 5450 EXPORT_SYMBOL(tcp_parse_options); 5451 EXPORT_SYMBOL(tcp_rcv_established); 5452 EXPORT_SYMBOL(tcp_rcv_state_process); 5453 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 5454