xref: /linux/net/ipv4/tcp_input.c (revision d4ce5458ea1b7d8ca49c436d602095c4912777d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 #include <net/busy_poll.h>
82 
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84 
85 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
86 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
87 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
88 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
89 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
90 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
91 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
92 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
95 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
101 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
102 
103 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
107 
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110 
111 #define REXMIT_NONE	0 /* no loss recovery to do */
112 #define REXMIT_LOST	1 /* retransmit packets marked lost */
113 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
114 
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
117 
118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 			     void (*cad)(struct sock *sk, u32 ack_seq))
120 {
121 	icsk->icsk_clean_acked = cad;
122 	static_branch_inc(&clean_acked_data_enabled);
123 }
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125 
126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
127 {
128 	static_branch_dec(&clean_acked_data_enabled);
129 	icsk->icsk_clean_acked = NULL;
130 }
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 #endif
133 
134 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
135 			     unsigned int len)
136 {
137 	static bool __once __read_mostly;
138 
139 	if (!__once) {
140 		struct net_device *dev;
141 
142 		__once = true;
143 
144 		rcu_read_lock();
145 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
146 		if (!dev || len >= dev->mtu)
147 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
148 				dev ? dev->name : "Unknown driver");
149 		rcu_read_unlock();
150 	}
151 }
152 
153 /* Adapt the MSS value used to make delayed ack decision to the
154  * real world.
155  */
156 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
157 {
158 	struct inet_connection_sock *icsk = inet_csk(sk);
159 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
160 	unsigned int len;
161 
162 	icsk->icsk_ack.last_seg_size = 0;
163 
164 	/* skb->len may jitter because of SACKs, even if peer
165 	 * sends good full-sized frames.
166 	 */
167 	len = skb_shinfo(skb)->gso_size ? : skb->len;
168 	if (len >= icsk->icsk_ack.rcv_mss) {
169 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
170 					       tcp_sk(sk)->advmss);
171 		/* Account for possibly-removed options */
172 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
173 				   MAX_TCP_OPTION_SPACE))
174 			tcp_gro_dev_warn(sk, skb, len);
175 	} else {
176 		/* Otherwise, we make more careful check taking into account,
177 		 * that SACKs block is variable.
178 		 *
179 		 * "len" is invariant segment length, including TCP header.
180 		 */
181 		len += skb->data - skb_transport_header(skb);
182 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
183 		    /* If PSH is not set, packet should be
184 		     * full sized, provided peer TCP is not badly broken.
185 		     * This observation (if it is correct 8)) allows
186 		     * to handle super-low mtu links fairly.
187 		     */
188 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
189 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
190 			/* Subtract also invariant (if peer is RFC compliant),
191 			 * tcp header plus fixed timestamp option length.
192 			 * Resulting "len" is MSS free of SACK jitter.
193 			 */
194 			len -= tcp_sk(sk)->tcp_header_len;
195 			icsk->icsk_ack.last_seg_size = len;
196 			if (len == lss) {
197 				icsk->icsk_ack.rcv_mss = len;
198 				return;
199 			}
200 		}
201 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
202 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
203 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
204 	}
205 }
206 
207 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
208 {
209 	struct inet_connection_sock *icsk = inet_csk(sk);
210 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
211 
212 	if (quickacks == 0)
213 		quickacks = 2;
214 	quickacks = min(quickacks, max_quickacks);
215 	if (quickacks > icsk->icsk_ack.quick)
216 		icsk->icsk_ack.quick = quickacks;
217 }
218 
219 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
220 {
221 	struct inet_connection_sock *icsk = inet_csk(sk);
222 
223 	tcp_incr_quickack(sk, max_quickacks);
224 	icsk->icsk_ack.pingpong = 0;
225 	icsk->icsk_ack.ato = TCP_ATO_MIN;
226 }
227 EXPORT_SYMBOL(tcp_enter_quickack_mode);
228 
229 /* Send ACKs quickly, if "quick" count is not exhausted
230  * and the session is not interactive.
231  */
232 
233 static bool tcp_in_quickack_mode(struct sock *sk)
234 {
235 	const struct inet_connection_sock *icsk = inet_csk(sk);
236 	const struct dst_entry *dst = __sk_dst_get(sk);
237 
238 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
239 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
240 }
241 
242 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
243 {
244 	if (tp->ecn_flags & TCP_ECN_OK)
245 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
246 }
247 
248 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
249 {
250 	if (tcp_hdr(skb)->cwr) {
251 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
252 
253 		/* If the sender is telling us it has entered CWR, then its
254 		 * cwnd may be very low (even just 1 packet), so we should ACK
255 		 * immediately.
256 		 */
257 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
258 	}
259 }
260 
261 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
262 {
263 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
264 }
265 
266 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
267 {
268 	struct tcp_sock *tp = tcp_sk(sk);
269 
270 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
271 	case INET_ECN_NOT_ECT:
272 		/* Funny extension: if ECT is not set on a segment,
273 		 * and we already seen ECT on a previous segment,
274 		 * it is probably a retransmit.
275 		 */
276 		if (tp->ecn_flags & TCP_ECN_SEEN)
277 			tcp_enter_quickack_mode(sk, 2);
278 		break;
279 	case INET_ECN_CE:
280 		if (tcp_ca_needs_ecn(sk))
281 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
282 
283 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
284 			/* Better not delay acks, sender can have a very low cwnd */
285 			tcp_enter_quickack_mode(sk, 2);
286 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
287 		}
288 		tp->ecn_flags |= TCP_ECN_SEEN;
289 		break;
290 	default:
291 		if (tcp_ca_needs_ecn(sk))
292 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
293 		tp->ecn_flags |= TCP_ECN_SEEN;
294 		break;
295 	}
296 }
297 
298 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
299 {
300 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
301 		__tcp_ecn_check_ce(sk, skb);
302 }
303 
304 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
305 {
306 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
307 		tp->ecn_flags &= ~TCP_ECN_OK;
308 }
309 
310 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
311 {
312 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
313 		tp->ecn_flags &= ~TCP_ECN_OK;
314 }
315 
316 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
317 {
318 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
319 		return true;
320 	return false;
321 }
322 
323 /* Buffer size and advertised window tuning.
324  *
325  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
326  */
327 
328 static void tcp_sndbuf_expand(struct sock *sk)
329 {
330 	const struct tcp_sock *tp = tcp_sk(sk);
331 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
332 	int sndmem, per_mss;
333 	u32 nr_segs;
334 
335 	/* Worst case is non GSO/TSO : each frame consumes one skb
336 	 * and skb->head is kmalloced using power of two area of memory
337 	 */
338 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
339 		  MAX_TCP_HEADER +
340 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
341 
342 	per_mss = roundup_pow_of_two(per_mss) +
343 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
344 
345 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
346 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
347 
348 	/* Fast Recovery (RFC 5681 3.2) :
349 	 * Cubic needs 1.7 factor, rounded to 2 to include
350 	 * extra cushion (application might react slowly to EPOLLOUT)
351 	 */
352 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
353 	sndmem *= nr_segs * per_mss;
354 
355 	if (sk->sk_sndbuf < sndmem)
356 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
357 }
358 
359 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
360  *
361  * All tcp_full_space() is split to two parts: "network" buffer, allocated
362  * forward and advertised in receiver window (tp->rcv_wnd) and
363  * "application buffer", required to isolate scheduling/application
364  * latencies from network.
365  * window_clamp is maximal advertised window. It can be less than
366  * tcp_full_space(), in this case tcp_full_space() - window_clamp
367  * is reserved for "application" buffer. The less window_clamp is
368  * the smoother our behaviour from viewpoint of network, but the lower
369  * throughput and the higher sensitivity of the connection to losses. 8)
370  *
371  * rcv_ssthresh is more strict window_clamp used at "slow start"
372  * phase to predict further behaviour of this connection.
373  * It is used for two goals:
374  * - to enforce header prediction at sender, even when application
375  *   requires some significant "application buffer". It is check #1.
376  * - to prevent pruning of receive queue because of misprediction
377  *   of receiver window. Check #2.
378  *
379  * The scheme does not work when sender sends good segments opening
380  * window and then starts to feed us spaghetti. But it should work
381  * in common situations. Otherwise, we have to rely on queue collapsing.
382  */
383 
384 /* Slow part of check#2. */
385 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
386 {
387 	struct tcp_sock *tp = tcp_sk(sk);
388 	/* Optimize this! */
389 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
390 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
391 
392 	while (tp->rcv_ssthresh <= window) {
393 		if (truesize <= skb->len)
394 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
395 
396 		truesize >>= 1;
397 		window >>= 1;
398 	}
399 	return 0;
400 }
401 
402 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
403 {
404 	struct tcp_sock *tp = tcp_sk(sk);
405 
406 	/* Check #1 */
407 	if (tp->rcv_ssthresh < tp->window_clamp &&
408 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
409 	    !tcp_under_memory_pressure(sk)) {
410 		int incr;
411 
412 		/* Check #2. Increase window, if skb with such overhead
413 		 * will fit to rcvbuf in future.
414 		 */
415 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
416 			incr = 2 * tp->advmss;
417 		else
418 			incr = __tcp_grow_window(sk, skb);
419 
420 		if (incr) {
421 			incr = max_t(int, incr, 2 * skb->len);
422 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
423 					       tp->window_clamp);
424 			inet_csk(sk)->icsk_ack.quick |= 1;
425 		}
426 	}
427 }
428 
429 /* 3. Try to fixup all. It is made immediately after connection enters
430  *    established state.
431  */
432 void tcp_init_buffer_space(struct sock *sk)
433 {
434 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
435 	struct tcp_sock *tp = tcp_sk(sk);
436 	int maxwin;
437 
438 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
439 		tcp_sndbuf_expand(sk);
440 
441 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
442 	tcp_mstamp_refresh(tp);
443 	tp->rcvq_space.time = tp->tcp_mstamp;
444 	tp->rcvq_space.seq = tp->copied_seq;
445 
446 	maxwin = tcp_full_space(sk);
447 
448 	if (tp->window_clamp >= maxwin) {
449 		tp->window_clamp = maxwin;
450 
451 		if (tcp_app_win && maxwin > 4 * tp->advmss)
452 			tp->window_clamp = max(maxwin -
453 					       (maxwin >> tcp_app_win),
454 					       4 * tp->advmss);
455 	}
456 
457 	/* Force reservation of one segment. */
458 	if (tcp_app_win &&
459 	    tp->window_clamp > 2 * tp->advmss &&
460 	    tp->window_clamp + tp->advmss > maxwin)
461 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
462 
463 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
464 	tp->snd_cwnd_stamp = tcp_jiffies32;
465 }
466 
467 /* 4. Recalculate window clamp after socket hit its memory bounds. */
468 static void tcp_clamp_window(struct sock *sk)
469 {
470 	struct tcp_sock *tp = tcp_sk(sk);
471 	struct inet_connection_sock *icsk = inet_csk(sk);
472 	struct net *net = sock_net(sk);
473 
474 	icsk->icsk_ack.quick = 0;
475 
476 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
477 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
478 	    !tcp_under_memory_pressure(sk) &&
479 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
480 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
481 				    net->ipv4.sysctl_tcp_rmem[2]);
482 	}
483 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
484 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
485 }
486 
487 /* Initialize RCV_MSS value.
488  * RCV_MSS is an our guess about MSS used by the peer.
489  * We haven't any direct information about the MSS.
490  * It's better to underestimate the RCV_MSS rather than overestimate.
491  * Overestimations make us ACKing less frequently than needed.
492  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
493  */
494 void tcp_initialize_rcv_mss(struct sock *sk)
495 {
496 	const struct tcp_sock *tp = tcp_sk(sk);
497 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
498 
499 	hint = min(hint, tp->rcv_wnd / 2);
500 	hint = min(hint, TCP_MSS_DEFAULT);
501 	hint = max(hint, TCP_MIN_MSS);
502 
503 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
504 }
505 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
506 
507 /* Receiver "autotuning" code.
508  *
509  * The algorithm for RTT estimation w/o timestamps is based on
510  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
511  * <http://public.lanl.gov/radiant/pubs.html#DRS>
512  *
513  * More detail on this code can be found at
514  * <http://staff.psc.edu/jheffner/>,
515  * though this reference is out of date.  A new paper
516  * is pending.
517  */
518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
519 {
520 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
521 	long m = sample;
522 
523 	if (new_sample != 0) {
524 		/* If we sample in larger samples in the non-timestamp
525 		 * case, we could grossly overestimate the RTT especially
526 		 * with chatty applications or bulk transfer apps which
527 		 * are stalled on filesystem I/O.
528 		 *
529 		 * Also, since we are only going for a minimum in the
530 		 * non-timestamp case, we do not smooth things out
531 		 * else with timestamps disabled convergence takes too
532 		 * long.
533 		 */
534 		if (!win_dep) {
535 			m -= (new_sample >> 3);
536 			new_sample += m;
537 		} else {
538 			m <<= 3;
539 			if (m < new_sample)
540 				new_sample = m;
541 		}
542 	} else {
543 		/* No previous measure. */
544 		new_sample = m << 3;
545 	}
546 
547 	tp->rcv_rtt_est.rtt_us = new_sample;
548 }
549 
550 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
551 {
552 	u32 delta_us;
553 
554 	if (tp->rcv_rtt_est.time == 0)
555 		goto new_measure;
556 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
557 		return;
558 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
559 	if (!delta_us)
560 		delta_us = 1;
561 	tcp_rcv_rtt_update(tp, delta_us, 1);
562 
563 new_measure:
564 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
565 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
566 }
567 
568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
569 					  const struct sk_buff *skb)
570 {
571 	struct tcp_sock *tp = tcp_sk(sk);
572 
573 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
574 		return;
575 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
576 
577 	if (TCP_SKB_CB(skb)->end_seq -
578 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
579 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
580 		u32 delta_us;
581 
582 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
583 			if (!delta)
584 				delta = 1;
585 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
586 			tcp_rcv_rtt_update(tp, delta_us, 0);
587 		}
588 	}
589 }
590 
591 /*
592  * This function should be called every time data is copied to user space.
593  * It calculates the appropriate TCP receive buffer space.
594  */
595 void tcp_rcv_space_adjust(struct sock *sk)
596 {
597 	struct tcp_sock *tp = tcp_sk(sk);
598 	u32 copied;
599 	int time;
600 
601 	trace_tcp_rcv_space_adjust(sk);
602 
603 	tcp_mstamp_refresh(tp);
604 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
605 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
606 		return;
607 
608 	/* Number of bytes copied to user in last RTT */
609 	copied = tp->copied_seq - tp->rcvq_space.seq;
610 	if (copied <= tp->rcvq_space.space)
611 		goto new_measure;
612 
613 	/* A bit of theory :
614 	 * copied = bytes received in previous RTT, our base window
615 	 * To cope with packet losses, we need a 2x factor
616 	 * To cope with slow start, and sender growing its cwin by 100 %
617 	 * every RTT, we need a 4x factor, because the ACK we are sending
618 	 * now is for the next RTT, not the current one :
619 	 * <prev RTT . ><current RTT .. ><next RTT .... >
620 	 */
621 
622 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
623 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
624 		int rcvmem, rcvbuf;
625 		u64 rcvwin, grow;
626 
627 		/* minimal window to cope with packet losses, assuming
628 		 * steady state. Add some cushion because of small variations.
629 		 */
630 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
631 
632 		/* Accommodate for sender rate increase (eg. slow start) */
633 		grow = rcvwin * (copied - tp->rcvq_space.space);
634 		do_div(grow, tp->rcvq_space.space);
635 		rcvwin += (grow << 1);
636 
637 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
638 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
639 			rcvmem += 128;
640 
641 		do_div(rcvwin, tp->advmss);
642 		rcvbuf = min_t(u64, rcvwin * rcvmem,
643 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
644 		if (rcvbuf > sk->sk_rcvbuf) {
645 			sk->sk_rcvbuf = rcvbuf;
646 
647 			/* Make the window clamp follow along.  */
648 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
649 		}
650 	}
651 	tp->rcvq_space.space = copied;
652 
653 new_measure:
654 	tp->rcvq_space.seq = tp->copied_seq;
655 	tp->rcvq_space.time = tp->tcp_mstamp;
656 }
657 
658 /* There is something which you must keep in mind when you analyze the
659  * behavior of the tp->ato delayed ack timeout interval.  When a
660  * connection starts up, we want to ack as quickly as possible.  The
661  * problem is that "good" TCP's do slow start at the beginning of data
662  * transmission.  The means that until we send the first few ACK's the
663  * sender will sit on his end and only queue most of his data, because
664  * he can only send snd_cwnd unacked packets at any given time.  For
665  * each ACK we send, he increments snd_cwnd and transmits more of his
666  * queue.  -DaveM
667  */
668 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
669 {
670 	struct tcp_sock *tp = tcp_sk(sk);
671 	struct inet_connection_sock *icsk = inet_csk(sk);
672 	u32 now;
673 
674 	inet_csk_schedule_ack(sk);
675 
676 	tcp_measure_rcv_mss(sk, skb);
677 
678 	tcp_rcv_rtt_measure(tp);
679 
680 	now = tcp_jiffies32;
681 
682 	if (!icsk->icsk_ack.ato) {
683 		/* The _first_ data packet received, initialize
684 		 * delayed ACK engine.
685 		 */
686 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
687 		icsk->icsk_ack.ato = TCP_ATO_MIN;
688 	} else {
689 		int m = now - icsk->icsk_ack.lrcvtime;
690 
691 		if (m <= TCP_ATO_MIN / 2) {
692 			/* The fastest case is the first. */
693 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
694 		} else if (m < icsk->icsk_ack.ato) {
695 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
696 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
697 				icsk->icsk_ack.ato = icsk->icsk_rto;
698 		} else if (m > icsk->icsk_rto) {
699 			/* Too long gap. Apparently sender failed to
700 			 * restart window, so that we send ACKs quickly.
701 			 */
702 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
703 			sk_mem_reclaim(sk);
704 		}
705 	}
706 	icsk->icsk_ack.lrcvtime = now;
707 
708 	tcp_ecn_check_ce(sk, skb);
709 
710 	if (skb->len >= 128)
711 		tcp_grow_window(sk, skb);
712 }
713 
714 /* Called to compute a smoothed rtt estimate. The data fed to this
715  * routine either comes from timestamps, or from segments that were
716  * known _not_ to have been retransmitted [see Karn/Partridge
717  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
718  * piece by Van Jacobson.
719  * NOTE: the next three routines used to be one big routine.
720  * To save cycles in the RFC 1323 implementation it was better to break
721  * it up into three procedures. -- erics
722  */
723 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
724 {
725 	struct tcp_sock *tp = tcp_sk(sk);
726 	long m = mrtt_us; /* RTT */
727 	u32 srtt = tp->srtt_us;
728 
729 	/*	The following amusing code comes from Jacobson's
730 	 *	article in SIGCOMM '88.  Note that rtt and mdev
731 	 *	are scaled versions of rtt and mean deviation.
732 	 *	This is designed to be as fast as possible
733 	 *	m stands for "measurement".
734 	 *
735 	 *	On a 1990 paper the rto value is changed to:
736 	 *	RTO = rtt + 4 * mdev
737 	 *
738 	 * Funny. This algorithm seems to be very broken.
739 	 * These formulae increase RTO, when it should be decreased, increase
740 	 * too slowly, when it should be increased quickly, decrease too quickly
741 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
742 	 * does not matter how to _calculate_ it. Seems, it was trap
743 	 * that VJ failed to avoid. 8)
744 	 */
745 	if (srtt != 0) {
746 		m -= (srtt >> 3);	/* m is now error in rtt est */
747 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
748 		if (m < 0) {
749 			m = -m;		/* m is now abs(error) */
750 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
751 			/* This is similar to one of Eifel findings.
752 			 * Eifel blocks mdev updates when rtt decreases.
753 			 * This solution is a bit different: we use finer gain
754 			 * for mdev in this case (alpha*beta).
755 			 * Like Eifel it also prevents growth of rto,
756 			 * but also it limits too fast rto decreases,
757 			 * happening in pure Eifel.
758 			 */
759 			if (m > 0)
760 				m >>= 3;
761 		} else {
762 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
763 		}
764 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
765 		if (tp->mdev_us > tp->mdev_max_us) {
766 			tp->mdev_max_us = tp->mdev_us;
767 			if (tp->mdev_max_us > tp->rttvar_us)
768 				tp->rttvar_us = tp->mdev_max_us;
769 		}
770 		if (after(tp->snd_una, tp->rtt_seq)) {
771 			if (tp->mdev_max_us < tp->rttvar_us)
772 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
773 			tp->rtt_seq = tp->snd_nxt;
774 			tp->mdev_max_us = tcp_rto_min_us(sk);
775 		}
776 	} else {
777 		/* no previous measure. */
778 		srtt = m << 3;		/* take the measured time to be rtt */
779 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
780 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
781 		tp->mdev_max_us = tp->rttvar_us;
782 		tp->rtt_seq = tp->snd_nxt;
783 	}
784 	tp->srtt_us = max(1U, srtt);
785 }
786 
787 static void tcp_update_pacing_rate(struct sock *sk)
788 {
789 	const struct tcp_sock *tp = tcp_sk(sk);
790 	u64 rate;
791 
792 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
793 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
794 
795 	/* current rate is (cwnd * mss) / srtt
796 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
797 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
798 	 *
799 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
800 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
801 	 *	 end of slow start and should slow down.
802 	 */
803 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
804 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
805 	else
806 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
807 
808 	rate *= max(tp->snd_cwnd, tp->packets_out);
809 
810 	if (likely(tp->srtt_us))
811 		do_div(rate, tp->srtt_us);
812 
813 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
814 	 * without any lock. We want to make sure compiler wont store
815 	 * intermediate values in this location.
816 	 */
817 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
818 					     sk->sk_max_pacing_rate));
819 }
820 
821 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
822  * routine referred to above.
823  */
824 static void tcp_set_rto(struct sock *sk)
825 {
826 	const struct tcp_sock *tp = tcp_sk(sk);
827 	/* Old crap is replaced with new one. 8)
828 	 *
829 	 * More seriously:
830 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
831 	 *    It cannot be less due to utterly erratic ACK generation made
832 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
833 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
834 	 *    is invisible. Actually, Linux-2.4 also generates erratic
835 	 *    ACKs in some circumstances.
836 	 */
837 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
838 
839 	/* 2. Fixups made earlier cannot be right.
840 	 *    If we do not estimate RTO correctly without them,
841 	 *    all the algo is pure shit and should be replaced
842 	 *    with correct one. It is exactly, which we pretend to do.
843 	 */
844 
845 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
846 	 * guarantees that rto is higher.
847 	 */
848 	tcp_bound_rto(sk);
849 }
850 
851 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
852 {
853 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
854 
855 	if (!cwnd)
856 		cwnd = TCP_INIT_CWND;
857 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
858 }
859 
860 /* Take a notice that peer is sending D-SACKs */
861 static void tcp_dsack_seen(struct tcp_sock *tp)
862 {
863 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
864 	tp->rack.dsack_seen = 1;
865 	tp->dsack_dups++;
866 }
867 
868 /* It's reordering when higher sequence was delivered (i.e. sacked) before
869  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
870  * distance is approximated in full-mss packet distance ("reordering").
871  */
872 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
873 				      const int ts)
874 {
875 	struct tcp_sock *tp = tcp_sk(sk);
876 	const u32 mss = tp->mss_cache;
877 	u32 fack, metric;
878 
879 	fack = tcp_highest_sack_seq(tp);
880 	if (!before(low_seq, fack))
881 		return;
882 
883 	metric = fack - low_seq;
884 	if ((metric > tp->reordering * mss) && mss) {
885 #if FASTRETRANS_DEBUG > 1
886 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
887 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
888 			 tp->reordering,
889 			 0,
890 			 tp->sacked_out,
891 			 tp->undo_marker ? tp->undo_retrans : 0);
892 #endif
893 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
894 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
895 	}
896 
897 	/* This exciting event is worth to be remembered. 8) */
898 	tp->reord_seen++;
899 	NET_INC_STATS(sock_net(sk),
900 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
901 }
902 
903 /* This must be called before lost_out is incremented */
904 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
905 {
906 	if (!tp->retransmit_skb_hint ||
907 	    before(TCP_SKB_CB(skb)->seq,
908 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
909 		tp->retransmit_skb_hint = skb;
910 }
911 
912 /* Sum the number of packets on the wire we have marked as lost.
913  * There are two cases we care about here:
914  * a) Packet hasn't been marked lost (nor retransmitted),
915  *    and this is the first loss.
916  * b) Packet has been marked both lost and retransmitted,
917  *    and this means we think it was lost again.
918  */
919 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
920 {
921 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
922 
923 	if (!(sacked & TCPCB_LOST) ||
924 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
925 		tp->lost += tcp_skb_pcount(skb);
926 }
927 
928 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
929 {
930 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
931 		tcp_verify_retransmit_hint(tp, skb);
932 
933 		tp->lost_out += tcp_skb_pcount(skb);
934 		tcp_sum_lost(tp, skb);
935 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
936 	}
937 }
938 
939 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
940 {
941 	tcp_verify_retransmit_hint(tp, skb);
942 
943 	tcp_sum_lost(tp, skb);
944 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
945 		tp->lost_out += tcp_skb_pcount(skb);
946 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
947 	}
948 }
949 
950 /* This procedure tags the retransmission queue when SACKs arrive.
951  *
952  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
953  * Packets in queue with these bits set are counted in variables
954  * sacked_out, retrans_out and lost_out, correspondingly.
955  *
956  * Valid combinations are:
957  * Tag  InFlight	Description
958  * 0	1		- orig segment is in flight.
959  * S	0		- nothing flies, orig reached receiver.
960  * L	0		- nothing flies, orig lost by net.
961  * R	2		- both orig and retransmit are in flight.
962  * L|R	1		- orig is lost, retransmit is in flight.
963  * S|R  1		- orig reached receiver, retrans is still in flight.
964  * (L|S|R is logically valid, it could occur when L|R is sacked,
965  *  but it is equivalent to plain S and code short-curcuits it to S.
966  *  L|S is logically invalid, it would mean -1 packet in flight 8))
967  *
968  * These 6 states form finite state machine, controlled by the following events:
969  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
970  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
971  * 3. Loss detection event of two flavors:
972  *	A. Scoreboard estimator decided the packet is lost.
973  *	   A'. Reno "three dupacks" marks head of queue lost.
974  *	B. SACK arrives sacking SND.NXT at the moment, when the
975  *	   segment was retransmitted.
976  * 4. D-SACK added new rule: D-SACK changes any tag to S.
977  *
978  * It is pleasant to note, that state diagram turns out to be commutative,
979  * so that we are allowed not to be bothered by order of our actions,
980  * when multiple events arrive simultaneously. (see the function below).
981  *
982  * Reordering detection.
983  * --------------------
984  * Reordering metric is maximal distance, which a packet can be displaced
985  * in packet stream. With SACKs we can estimate it:
986  *
987  * 1. SACK fills old hole and the corresponding segment was not
988  *    ever retransmitted -> reordering. Alas, we cannot use it
989  *    when segment was retransmitted.
990  * 2. The last flaw is solved with D-SACK. D-SACK arrives
991  *    for retransmitted and already SACKed segment -> reordering..
992  * Both of these heuristics are not used in Loss state, when we cannot
993  * account for retransmits accurately.
994  *
995  * SACK block validation.
996  * ----------------------
997  *
998  * SACK block range validation checks that the received SACK block fits to
999  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1000  * Note that SND.UNA is not included to the range though being valid because
1001  * it means that the receiver is rather inconsistent with itself reporting
1002  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1003  * perfectly valid, however, in light of RFC2018 which explicitly states
1004  * that "SACK block MUST reflect the newest segment.  Even if the newest
1005  * segment is going to be discarded ...", not that it looks very clever
1006  * in case of head skb. Due to potentional receiver driven attacks, we
1007  * choose to avoid immediate execution of a walk in write queue due to
1008  * reneging and defer head skb's loss recovery to standard loss recovery
1009  * procedure that will eventually trigger (nothing forbids us doing this).
1010  *
1011  * Implements also blockage to start_seq wrap-around. Problem lies in the
1012  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1013  * there's no guarantee that it will be before snd_nxt (n). The problem
1014  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1015  * wrap (s_w):
1016  *
1017  *         <- outs wnd ->                          <- wrapzone ->
1018  *         u     e      n                         u_w   e_w  s n_w
1019  *         |     |      |                          |     |   |  |
1020  * |<------------+------+----- TCP seqno space --------------+---------->|
1021  * ...-- <2^31 ->|                                           |<--------...
1022  * ...---- >2^31 ------>|                                    |<--------...
1023  *
1024  * Current code wouldn't be vulnerable but it's better still to discard such
1025  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1026  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1027  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1028  * equal to the ideal case (infinite seqno space without wrap caused issues).
1029  *
1030  * With D-SACK the lower bound is extended to cover sequence space below
1031  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1032  * again, D-SACK block must not to go across snd_una (for the same reason as
1033  * for the normal SACK blocks, explained above). But there all simplicity
1034  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1035  * fully below undo_marker they do not affect behavior in anyway and can
1036  * therefore be safely ignored. In rare cases (which are more or less
1037  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1038  * fragmentation and packet reordering past skb's retransmission. To consider
1039  * them correctly, the acceptable range must be extended even more though
1040  * the exact amount is rather hard to quantify. However, tp->max_window can
1041  * be used as an exaggerated estimate.
1042  */
1043 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1044 				   u32 start_seq, u32 end_seq)
1045 {
1046 	/* Too far in future, or reversed (interpretation is ambiguous) */
1047 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1048 		return false;
1049 
1050 	/* Nasty start_seq wrap-around check (see comments above) */
1051 	if (!before(start_seq, tp->snd_nxt))
1052 		return false;
1053 
1054 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1055 	 * start_seq == snd_una is non-sensical (see comments above)
1056 	 */
1057 	if (after(start_seq, tp->snd_una))
1058 		return true;
1059 
1060 	if (!is_dsack || !tp->undo_marker)
1061 		return false;
1062 
1063 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1064 	if (after(end_seq, tp->snd_una))
1065 		return false;
1066 
1067 	if (!before(start_seq, tp->undo_marker))
1068 		return true;
1069 
1070 	/* Too old */
1071 	if (!after(end_seq, tp->undo_marker))
1072 		return false;
1073 
1074 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1075 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1076 	 */
1077 	return !before(start_seq, end_seq - tp->max_window);
1078 }
1079 
1080 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1081 			    struct tcp_sack_block_wire *sp, int num_sacks,
1082 			    u32 prior_snd_una)
1083 {
1084 	struct tcp_sock *tp = tcp_sk(sk);
1085 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1086 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1087 	bool dup_sack = false;
1088 
1089 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1090 		dup_sack = true;
1091 		tcp_dsack_seen(tp);
1092 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1093 	} else if (num_sacks > 1) {
1094 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1095 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1096 
1097 		if (!after(end_seq_0, end_seq_1) &&
1098 		    !before(start_seq_0, start_seq_1)) {
1099 			dup_sack = true;
1100 			tcp_dsack_seen(tp);
1101 			NET_INC_STATS(sock_net(sk),
1102 					LINUX_MIB_TCPDSACKOFORECV);
1103 		}
1104 	}
1105 
1106 	/* D-SACK for already forgotten data... Do dumb counting. */
1107 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1108 	    !after(end_seq_0, prior_snd_una) &&
1109 	    after(end_seq_0, tp->undo_marker))
1110 		tp->undo_retrans--;
1111 
1112 	return dup_sack;
1113 }
1114 
1115 struct tcp_sacktag_state {
1116 	u32	reord;
1117 	/* Timestamps for earliest and latest never-retransmitted segment
1118 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1119 	 * but congestion control should still get an accurate delay signal.
1120 	 */
1121 	u64	first_sackt;
1122 	u64	last_sackt;
1123 	struct rate_sample *rate;
1124 	int	flag;
1125 	unsigned int mss_now;
1126 };
1127 
1128 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1129  * the incoming SACK may not exactly match but we can find smaller MSS
1130  * aligned portion of it that matches. Therefore we might need to fragment
1131  * which may fail and creates some hassle (caller must handle error case
1132  * returns).
1133  *
1134  * FIXME: this could be merged to shift decision code
1135  */
1136 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1137 				  u32 start_seq, u32 end_seq)
1138 {
1139 	int err;
1140 	bool in_sack;
1141 	unsigned int pkt_len;
1142 	unsigned int mss;
1143 
1144 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1145 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1146 
1147 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1148 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1149 		mss = tcp_skb_mss(skb);
1150 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1151 
1152 		if (!in_sack) {
1153 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1154 			if (pkt_len < mss)
1155 				pkt_len = mss;
1156 		} else {
1157 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1158 			if (pkt_len < mss)
1159 				return -EINVAL;
1160 		}
1161 
1162 		/* Round if necessary so that SACKs cover only full MSSes
1163 		 * and/or the remaining small portion (if present)
1164 		 */
1165 		if (pkt_len > mss) {
1166 			unsigned int new_len = (pkt_len / mss) * mss;
1167 			if (!in_sack && new_len < pkt_len)
1168 				new_len += mss;
1169 			pkt_len = new_len;
1170 		}
1171 
1172 		if (pkt_len >= skb->len && !in_sack)
1173 			return 0;
1174 
1175 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1176 				   pkt_len, mss, GFP_ATOMIC);
1177 		if (err < 0)
1178 			return err;
1179 	}
1180 
1181 	return in_sack;
1182 }
1183 
1184 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1185 static u8 tcp_sacktag_one(struct sock *sk,
1186 			  struct tcp_sacktag_state *state, u8 sacked,
1187 			  u32 start_seq, u32 end_seq,
1188 			  int dup_sack, int pcount,
1189 			  u64 xmit_time)
1190 {
1191 	struct tcp_sock *tp = tcp_sk(sk);
1192 
1193 	/* Account D-SACK for retransmitted packet. */
1194 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1195 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1196 		    after(end_seq, tp->undo_marker))
1197 			tp->undo_retrans--;
1198 		if ((sacked & TCPCB_SACKED_ACKED) &&
1199 		    before(start_seq, state->reord))
1200 				state->reord = start_seq;
1201 	}
1202 
1203 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1204 	if (!after(end_seq, tp->snd_una))
1205 		return sacked;
1206 
1207 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1208 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1209 
1210 		if (sacked & TCPCB_SACKED_RETRANS) {
1211 			/* If the segment is not tagged as lost,
1212 			 * we do not clear RETRANS, believing
1213 			 * that retransmission is still in flight.
1214 			 */
1215 			if (sacked & TCPCB_LOST) {
1216 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1217 				tp->lost_out -= pcount;
1218 				tp->retrans_out -= pcount;
1219 			}
1220 		} else {
1221 			if (!(sacked & TCPCB_RETRANS)) {
1222 				/* New sack for not retransmitted frame,
1223 				 * which was in hole. It is reordering.
1224 				 */
1225 				if (before(start_seq,
1226 					   tcp_highest_sack_seq(tp)) &&
1227 				    before(start_seq, state->reord))
1228 					state->reord = start_seq;
1229 
1230 				if (!after(end_seq, tp->high_seq))
1231 					state->flag |= FLAG_ORIG_SACK_ACKED;
1232 				if (state->first_sackt == 0)
1233 					state->first_sackt = xmit_time;
1234 				state->last_sackt = xmit_time;
1235 			}
1236 
1237 			if (sacked & TCPCB_LOST) {
1238 				sacked &= ~TCPCB_LOST;
1239 				tp->lost_out -= pcount;
1240 			}
1241 		}
1242 
1243 		sacked |= TCPCB_SACKED_ACKED;
1244 		state->flag |= FLAG_DATA_SACKED;
1245 		tp->sacked_out += pcount;
1246 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1247 
1248 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1249 		if (tp->lost_skb_hint &&
1250 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1251 			tp->lost_cnt_hint += pcount;
1252 	}
1253 
1254 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1255 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1256 	 * are accounted above as well.
1257 	 */
1258 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1259 		sacked &= ~TCPCB_SACKED_RETRANS;
1260 		tp->retrans_out -= pcount;
1261 	}
1262 
1263 	return sacked;
1264 }
1265 
1266 /* Shift newly-SACKed bytes from this skb to the immediately previous
1267  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1268  */
1269 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1270 			    struct sk_buff *skb,
1271 			    struct tcp_sacktag_state *state,
1272 			    unsigned int pcount, int shifted, int mss,
1273 			    bool dup_sack)
1274 {
1275 	struct tcp_sock *tp = tcp_sk(sk);
1276 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1277 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1278 
1279 	BUG_ON(!pcount);
1280 
1281 	/* Adjust counters and hints for the newly sacked sequence
1282 	 * range but discard the return value since prev is already
1283 	 * marked. We must tag the range first because the seq
1284 	 * advancement below implicitly advances
1285 	 * tcp_highest_sack_seq() when skb is highest_sack.
1286 	 */
1287 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1288 			start_seq, end_seq, dup_sack, pcount,
1289 			tcp_skb_timestamp_us(skb));
1290 	tcp_rate_skb_delivered(sk, skb, state->rate);
1291 
1292 	if (skb == tp->lost_skb_hint)
1293 		tp->lost_cnt_hint += pcount;
1294 
1295 	TCP_SKB_CB(prev)->end_seq += shifted;
1296 	TCP_SKB_CB(skb)->seq += shifted;
1297 
1298 	tcp_skb_pcount_add(prev, pcount);
1299 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1300 	tcp_skb_pcount_add(skb, -pcount);
1301 
1302 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1303 	 * in theory this shouldn't be necessary but as long as DSACK
1304 	 * code can come after this skb later on it's better to keep
1305 	 * setting gso_size to something.
1306 	 */
1307 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1308 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1309 
1310 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1311 	if (tcp_skb_pcount(skb) <= 1)
1312 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1313 
1314 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1315 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1316 
1317 	if (skb->len > 0) {
1318 		BUG_ON(!tcp_skb_pcount(skb));
1319 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1320 		return false;
1321 	}
1322 
1323 	/* Whole SKB was eaten :-) */
1324 
1325 	if (skb == tp->retransmit_skb_hint)
1326 		tp->retransmit_skb_hint = prev;
1327 	if (skb == tp->lost_skb_hint) {
1328 		tp->lost_skb_hint = prev;
1329 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1330 	}
1331 
1332 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1333 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1334 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1335 		TCP_SKB_CB(prev)->end_seq++;
1336 
1337 	if (skb == tcp_highest_sack(sk))
1338 		tcp_advance_highest_sack(sk, skb);
1339 
1340 	tcp_skb_collapse_tstamp(prev, skb);
1341 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1342 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1343 
1344 	tcp_rtx_queue_unlink_and_free(skb, sk);
1345 
1346 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1347 
1348 	return true;
1349 }
1350 
1351 /* I wish gso_size would have a bit more sane initialization than
1352  * something-or-zero which complicates things
1353  */
1354 static int tcp_skb_seglen(const struct sk_buff *skb)
1355 {
1356 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1357 }
1358 
1359 /* Shifting pages past head area doesn't work */
1360 static int skb_can_shift(const struct sk_buff *skb)
1361 {
1362 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1363 }
1364 
1365 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1366  * skb.
1367  */
1368 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1369 					  struct tcp_sacktag_state *state,
1370 					  u32 start_seq, u32 end_seq,
1371 					  bool dup_sack)
1372 {
1373 	struct tcp_sock *tp = tcp_sk(sk);
1374 	struct sk_buff *prev;
1375 	int mss;
1376 	int pcount = 0;
1377 	int len;
1378 	int in_sack;
1379 
1380 	/* Normally R but no L won't result in plain S */
1381 	if (!dup_sack &&
1382 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1383 		goto fallback;
1384 	if (!skb_can_shift(skb))
1385 		goto fallback;
1386 	/* This frame is about to be dropped (was ACKed). */
1387 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1388 		goto fallback;
1389 
1390 	/* Can only happen with delayed DSACK + discard craziness */
1391 	prev = skb_rb_prev(skb);
1392 	if (!prev)
1393 		goto fallback;
1394 
1395 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1396 		goto fallback;
1397 
1398 	if (!tcp_skb_can_collapse_to(prev))
1399 		goto fallback;
1400 
1401 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1402 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1403 
1404 	if (in_sack) {
1405 		len = skb->len;
1406 		pcount = tcp_skb_pcount(skb);
1407 		mss = tcp_skb_seglen(skb);
1408 
1409 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1410 		 * drop this restriction as unnecessary
1411 		 */
1412 		if (mss != tcp_skb_seglen(prev))
1413 			goto fallback;
1414 	} else {
1415 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1416 			goto noop;
1417 		/* CHECKME: This is non-MSS split case only?, this will
1418 		 * cause skipped skbs due to advancing loop btw, original
1419 		 * has that feature too
1420 		 */
1421 		if (tcp_skb_pcount(skb) <= 1)
1422 			goto noop;
1423 
1424 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1425 		if (!in_sack) {
1426 			/* TODO: head merge to next could be attempted here
1427 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1428 			 * though it might not be worth of the additional hassle
1429 			 *
1430 			 * ...we can probably just fallback to what was done
1431 			 * previously. We could try merging non-SACKed ones
1432 			 * as well but it probably isn't going to buy off
1433 			 * because later SACKs might again split them, and
1434 			 * it would make skb timestamp tracking considerably
1435 			 * harder problem.
1436 			 */
1437 			goto fallback;
1438 		}
1439 
1440 		len = end_seq - TCP_SKB_CB(skb)->seq;
1441 		BUG_ON(len < 0);
1442 		BUG_ON(len > skb->len);
1443 
1444 		/* MSS boundaries should be honoured or else pcount will
1445 		 * severely break even though it makes things bit trickier.
1446 		 * Optimize common case to avoid most of the divides
1447 		 */
1448 		mss = tcp_skb_mss(skb);
1449 
1450 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1451 		 * drop this restriction as unnecessary
1452 		 */
1453 		if (mss != tcp_skb_seglen(prev))
1454 			goto fallback;
1455 
1456 		if (len == mss) {
1457 			pcount = 1;
1458 		} else if (len < mss) {
1459 			goto noop;
1460 		} else {
1461 			pcount = len / mss;
1462 			len = pcount * mss;
1463 		}
1464 	}
1465 
1466 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1467 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1468 		goto fallback;
1469 
1470 	if (!skb_shift(prev, skb, len))
1471 		goto fallback;
1472 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1473 		goto out;
1474 
1475 	/* Hole filled allows collapsing with the next as well, this is very
1476 	 * useful when hole on every nth skb pattern happens
1477 	 */
1478 	skb = skb_rb_next(prev);
1479 	if (!skb)
1480 		goto out;
1481 
1482 	if (!skb_can_shift(skb) ||
1483 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1484 	    (mss != tcp_skb_seglen(skb)))
1485 		goto out;
1486 
1487 	len = skb->len;
1488 	if (skb_shift(prev, skb, len)) {
1489 		pcount += tcp_skb_pcount(skb);
1490 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1491 				len, mss, 0);
1492 	}
1493 
1494 out:
1495 	return prev;
1496 
1497 noop:
1498 	return skb;
1499 
1500 fallback:
1501 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1502 	return NULL;
1503 }
1504 
1505 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1506 					struct tcp_sack_block *next_dup,
1507 					struct tcp_sacktag_state *state,
1508 					u32 start_seq, u32 end_seq,
1509 					bool dup_sack_in)
1510 {
1511 	struct tcp_sock *tp = tcp_sk(sk);
1512 	struct sk_buff *tmp;
1513 
1514 	skb_rbtree_walk_from(skb) {
1515 		int in_sack = 0;
1516 		bool dup_sack = dup_sack_in;
1517 
1518 		/* queue is in-order => we can short-circuit the walk early */
1519 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1520 			break;
1521 
1522 		if (next_dup  &&
1523 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1524 			in_sack = tcp_match_skb_to_sack(sk, skb,
1525 							next_dup->start_seq,
1526 							next_dup->end_seq);
1527 			if (in_sack > 0)
1528 				dup_sack = true;
1529 		}
1530 
1531 		/* skb reference here is a bit tricky to get right, since
1532 		 * shifting can eat and free both this skb and the next,
1533 		 * so not even _safe variant of the loop is enough.
1534 		 */
1535 		if (in_sack <= 0) {
1536 			tmp = tcp_shift_skb_data(sk, skb, state,
1537 						 start_seq, end_seq, dup_sack);
1538 			if (tmp) {
1539 				if (tmp != skb) {
1540 					skb = tmp;
1541 					continue;
1542 				}
1543 
1544 				in_sack = 0;
1545 			} else {
1546 				in_sack = tcp_match_skb_to_sack(sk, skb,
1547 								start_seq,
1548 								end_seq);
1549 			}
1550 		}
1551 
1552 		if (unlikely(in_sack < 0))
1553 			break;
1554 
1555 		if (in_sack) {
1556 			TCP_SKB_CB(skb)->sacked =
1557 				tcp_sacktag_one(sk,
1558 						state,
1559 						TCP_SKB_CB(skb)->sacked,
1560 						TCP_SKB_CB(skb)->seq,
1561 						TCP_SKB_CB(skb)->end_seq,
1562 						dup_sack,
1563 						tcp_skb_pcount(skb),
1564 						tcp_skb_timestamp_us(skb));
1565 			tcp_rate_skb_delivered(sk, skb, state->rate);
1566 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1567 				list_del_init(&skb->tcp_tsorted_anchor);
1568 
1569 			if (!before(TCP_SKB_CB(skb)->seq,
1570 				    tcp_highest_sack_seq(tp)))
1571 				tcp_advance_highest_sack(sk, skb);
1572 		}
1573 	}
1574 	return skb;
1575 }
1576 
1577 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1578 					   struct tcp_sacktag_state *state,
1579 					   u32 seq)
1580 {
1581 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1582 	struct sk_buff *skb;
1583 
1584 	while (*p) {
1585 		parent = *p;
1586 		skb = rb_to_skb(parent);
1587 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1588 			p = &parent->rb_left;
1589 			continue;
1590 		}
1591 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1592 			p = &parent->rb_right;
1593 			continue;
1594 		}
1595 		return skb;
1596 	}
1597 	return NULL;
1598 }
1599 
1600 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1601 					struct tcp_sacktag_state *state,
1602 					u32 skip_to_seq)
1603 {
1604 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1605 		return skb;
1606 
1607 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1608 }
1609 
1610 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1611 						struct sock *sk,
1612 						struct tcp_sack_block *next_dup,
1613 						struct tcp_sacktag_state *state,
1614 						u32 skip_to_seq)
1615 {
1616 	if (!next_dup)
1617 		return skb;
1618 
1619 	if (before(next_dup->start_seq, skip_to_seq)) {
1620 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1621 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1622 				       next_dup->start_seq, next_dup->end_seq,
1623 				       1);
1624 	}
1625 
1626 	return skb;
1627 }
1628 
1629 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1630 {
1631 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1632 }
1633 
1634 static int
1635 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1636 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1637 {
1638 	struct tcp_sock *tp = tcp_sk(sk);
1639 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1640 				    TCP_SKB_CB(ack_skb)->sacked);
1641 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1642 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1643 	struct tcp_sack_block *cache;
1644 	struct sk_buff *skb;
1645 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1646 	int used_sacks;
1647 	bool found_dup_sack = false;
1648 	int i, j;
1649 	int first_sack_index;
1650 
1651 	state->flag = 0;
1652 	state->reord = tp->snd_nxt;
1653 
1654 	if (!tp->sacked_out)
1655 		tcp_highest_sack_reset(sk);
1656 
1657 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1658 					 num_sacks, prior_snd_una);
1659 	if (found_dup_sack) {
1660 		state->flag |= FLAG_DSACKING_ACK;
1661 		tp->delivered++; /* A spurious retransmission is delivered */
1662 	}
1663 
1664 	/* Eliminate too old ACKs, but take into
1665 	 * account more or less fresh ones, they can
1666 	 * contain valid SACK info.
1667 	 */
1668 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1669 		return 0;
1670 
1671 	if (!tp->packets_out)
1672 		goto out;
1673 
1674 	used_sacks = 0;
1675 	first_sack_index = 0;
1676 	for (i = 0; i < num_sacks; i++) {
1677 		bool dup_sack = !i && found_dup_sack;
1678 
1679 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1680 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1681 
1682 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1683 					    sp[used_sacks].start_seq,
1684 					    sp[used_sacks].end_seq)) {
1685 			int mib_idx;
1686 
1687 			if (dup_sack) {
1688 				if (!tp->undo_marker)
1689 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1690 				else
1691 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1692 			} else {
1693 				/* Don't count olds caused by ACK reordering */
1694 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1695 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1696 					continue;
1697 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1698 			}
1699 
1700 			NET_INC_STATS(sock_net(sk), mib_idx);
1701 			if (i == 0)
1702 				first_sack_index = -1;
1703 			continue;
1704 		}
1705 
1706 		/* Ignore very old stuff early */
1707 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1708 			continue;
1709 
1710 		used_sacks++;
1711 	}
1712 
1713 	/* order SACK blocks to allow in order walk of the retrans queue */
1714 	for (i = used_sacks - 1; i > 0; i--) {
1715 		for (j = 0; j < i; j++) {
1716 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1717 				swap(sp[j], sp[j + 1]);
1718 
1719 				/* Track where the first SACK block goes to */
1720 				if (j == first_sack_index)
1721 					first_sack_index = j + 1;
1722 			}
1723 		}
1724 	}
1725 
1726 	state->mss_now = tcp_current_mss(sk);
1727 	skb = NULL;
1728 	i = 0;
1729 
1730 	if (!tp->sacked_out) {
1731 		/* It's already past, so skip checking against it */
1732 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1733 	} else {
1734 		cache = tp->recv_sack_cache;
1735 		/* Skip empty blocks in at head of the cache */
1736 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1737 		       !cache->end_seq)
1738 			cache++;
1739 	}
1740 
1741 	while (i < used_sacks) {
1742 		u32 start_seq = sp[i].start_seq;
1743 		u32 end_seq = sp[i].end_seq;
1744 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1745 		struct tcp_sack_block *next_dup = NULL;
1746 
1747 		if (found_dup_sack && ((i + 1) == first_sack_index))
1748 			next_dup = &sp[i + 1];
1749 
1750 		/* Skip too early cached blocks */
1751 		while (tcp_sack_cache_ok(tp, cache) &&
1752 		       !before(start_seq, cache->end_seq))
1753 			cache++;
1754 
1755 		/* Can skip some work by looking recv_sack_cache? */
1756 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1757 		    after(end_seq, cache->start_seq)) {
1758 
1759 			/* Head todo? */
1760 			if (before(start_seq, cache->start_seq)) {
1761 				skb = tcp_sacktag_skip(skb, sk, state,
1762 						       start_seq);
1763 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1764 						       state,
1765 						       start_seq,
1766 						       cache->start_seq,
1767 						       dup_sack);
1768 			}
1769 
1770 			/* Rest of the block already fully processed? */
1771 			if (!after(end_seq, cache->end_seq))
1772 				goto advance_sp;
1773 
1774 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1775 						       state,
1776 						       cache->end_seq);
1777 
1778 			/* ...tail remains todo... */
1779 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1780 				/* ...but better entrypoint exists! */
1781 				skb = tcp_highest_sack(sk);
1782 				if (!skb)
1783 					break;
1784 				cache++;
1785 				goto walk;
1786 			}
1787 
1788 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1789 			/* Check overlap against next cached too (past this one already) */
1790 			cache++;
1791 			continue;
1792 		}
1793 
1794 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1795 			skb = tcp_highest_sack(sk);
1796 			if (!skb)
1797 				break;
1798 		}
1799 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1800 
1801 walk:
1802 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1803 				       start_seq, end_seq, dup_sack);
1804 
1805 advance_sp:
1806 		i++;
1807 	}
1808 
1809 	/* Clear the head of the cache sack blocks so we can skip it next time */
1810 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1811 		tp->recv_sack_cache[i].start_seq = 0;
1812 		tp->recv_sack_cache[i].end_seq = 0;
1813 	}
1814 	for (j = 0; j < used_sacks; j++)
1815 		tp->recv_sack_cache[i++] = sp[j];
1816 
1817 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1818 		tcp_check_sack_reordering(sk, state->reord, 0);
1819 
1820 	tcp_verify_left_out(tp);
1821 out:
1822 
1823 #if FASTRETRANS_DEBUG > 0
1824 	WARN_ON((int)tp->sacked_out < 0);
1825 	WARN_ON((int)tp->lost_out < 0);
1826 	WARN_ON((int)tp->retrans_out < 0);
1827 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1828 #endif
1829 	return state->flag;
1830 }
1831 
1832 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1833  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1834  */
1835 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1836 {
1837 	u32 holes;
1838 
1839 	holes = max(tp->lost_out, 1U);
1840 	holes = min(holes, tp->packets_out);
1841 
1842 	if ((tp->sacked_out + holes) > tp->packets_out) {
1843 		tp->sacked_out = tp->packets_out - holes;
1844 		return true;
1845 	}
1846 	return false;
1847 }
1848 
1849 /* If we receive more dupacks than we expected counting segments
1850  * in assumption of absent reordering, interpret this as reordering.
1851  * The only another reason could be bug in receiver TCP.
1852  */
1853 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1854 {
1855 	struct tcp_sock *tp = tcp_sk(sk);
1856 
1857 	if (!tcp_limit_reno_sacked(tp))
1858 		return;
1859 
1860 	tp->reordering = min_t(u32, tp->packets_out + addend,
1861 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1862 	tp->reord_seen++;
1863 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1864 }
1865 
1866 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1867 
1868 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1869 {
1870 	if (num_dupack) {
1871 		struct tcp_sock *tp = tcp_sk(sk);
1872 		u32 prior_sacked = tp->sacked_out;
1873 		s32 delivered;
1874 
1875 		tp->sacked_out += num_dupack;
1876 		tcp_check_reno_reordering(sk, 0);
1877 		delivered = tp->sacked_out - prior_sacked;
1878 		if (delivered > 0)
1879 			tp->delivered += delivered;
1880 		tcp_verify_left_out(tp);
1881 	}
1882 }
1883 
1884 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1885 
1886 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1887 {
1888 	struct tcp_sock *tp = tcp_sk(sk);
1889 
1890 	if (acked > 0) {
1891 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1892 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1893 		if (acked - 1 >= tp->sacked_out)
1894 			tp->sacked_out = 0;
1895 		else
1896 			tp->sacked_out -= acked - 1;
1897 	}
1898 	tcp_check_reno_reordering(sk, acked);
1899 	tcp_verify_left_out(tp);
1900 }
1901 
1902 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1903 {
1904 	tp->sacked_out = 0;
1905 }
1906 
1907 void tcp_clear_retrans(struct tcp_sock *tp)
1908 {
1909 	tp->retrans_out = 0;
1910 	tp->lost_out = 0;
1911 	tp->undo_marker = 0;
1912 	tp->undo_retrans = -1;
1913 	tp->sacked_out = 0;
1914 }
1915 
1916 static inline void tcp_init_undo(struct tcp_sock *tp)
1917 {
1918 	tp->undo_marker = tp->snd_una;
1919 	/* Retransmission still in flight may cause DSACKs later. */
1920 	tp->undo_retrans = tp->retrans_out ? : -1;
1921 }
1922 
1923 static bool tcp_is_rack(const struct sock *sk)
1924 {
1925 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1926 }
1927 
1928 /* If we detect SACK reneging, forget all SACK information
1929  * and reset tags completely, otherwise preserve SACKs. If receiver
1930  * dropped its ofo queue, we will know this due to reneging detection.
1931  */
1932 static void tcp_timeout_mark_lost(struct sock *sk)
1933 {
1934 	struct tcp_sock *tp = tcp_sk(sk);
1935 	struct sk_buff *skb, *head;
1936 	bool is_reneg;			/* is receiver reneging on SACKs? */
1937 
1938 	head = tcp_rtx_queue_head(sk);
1939 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1940 	if (is_reneg) {
1941 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1942 		tp->sacked_out = 0;
1943 		/* Mark SACK reneging until we recover from this loss event. */
1944 		tp->is_sack_reneg = 1;
1945 	} else if (tcp_is_reno(tp)) {
1946 		tcp_reset_reno_sack(tp);
1947 	}
1948 
1949 	skb = head;
1950 	skb_rbtree_walk_from(skb) {
1951 		if (is_reneg)
1952 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1953 		else if (tcp_is_rack(sk) && skb != head &&
1954 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1955 			continue; /* Don't mark recently sent ones lost yet */
1956 		tcp_mark_skb_lost(sk, skb);
1957 	}
1958 	tcp_verify_left_out(tp);
1959 	tcp_clear_all_retrans_hints(tp);
1960 }
1961 
1962 /* Enter Loss state. */
1963 void tcp_enter_loss(struct sock *sk)
1964 {
1965 	const struct inet_connection_sock *icsk = inet_csk(sk);
1966 	struct tcp_sock *tp = tcp_sk(sk);
1967 	struct net *net = sock_net(sk);
1968 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1969 
1970 	tcp_timeout_mark_lost(sk);
1971 
1972 	/* Reduce ssthresh if it has not yet been made inside this window. */
1973 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1974 	    !after(tp->high_seq, tp->snd_una) ||
1975 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1976 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1977 		tp->prior_cwnd = tp->snd_cwnd;
1978 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1979 		tcp_ca_event(sk, CA_EVENT_LOSS);
1980 		tcp_init_undo(tp);
1981 	}
1982 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
1983 	tp->snd_cwnd_cnt   = 0;
1984 	tp->snd_cwnd_stamp = tcp_jiffies32;
1985 
1986 	/* Timeout in disordered state after receiving substantial DUPACKs
1987 	 * suggests that the degree of reordering is over-estimated.
1988 	 */
1989 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1990 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1991 		tp->reordering = min_t(unsigned int, tp->reordering,
1992 				       net->ipv4.sysctl_tcp_reordering);
1993 	tcp_set_ca_state(sk, TCP_CA_Loss);
1994 	tp->high_seq = tp->snd_nxt;
1995 	tcp_ecn_queue_cwr(tp);
1996 
1997 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1998 	 * loss recovery is underway except recurring timeout(s) on
1999 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2000 	 */
2001 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2002 		   (new_recovery || icsk->icsk_retransmits) &&
2003 		   !inet_csk(sk)->icsk_mtup.probe_size;
2004 }
2005 
2006 /* If ACK arrived pointing to a remembered SACK, it means that our
2007  * remembered SACKs do not reflect real state of receiver i.e.
2008  * receiver _host_ is heavily congested (or buggy).
2009  *
2010  * To avoid big spurious retransmission bursts due to transient SACK
2011  * scoreboard oddities that look like reneging, we give the receiver a
2012  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2013  * restore sanity to the SACK scoreboard. If the apparent reneging
2014  * persists until this RTO then we'll clear the SACK scoreboard.
2015  */
2016 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2017 {
2018 	if (flag & FLAG_SACK_RENEGING) {
2019 		struct tcp_sock *tp = tcp_sk(sk);
2020 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2021 					  msecs_to_jiffies(10));
2022 
2023 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2024 					  delay, TCP_RTO_MAX);
2025 		return true;
2026 	}
2027 	return false;
2028 }
2029 
2030 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2031  * counter when SACK is enabled (without SACK, sacked_out is used for
2032  * that purpose).
2033  *
2034  * With reordering, holes may still be in flight, so RFC3517 recovery
2035  * uses pure sacked_out (total number of SACKed segments) even though
2036  * it violates the RFC that uses duplicate ACKs, often these are equal
2037  * but when e.g. out-of-window ACKs or packet duplication occurs,
2038  * they differ. Since neither occurs due to loss, TCP should really
2039  * ignore them.
2040  */
2041 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2042 {
2043 	return tp->sacked_out + 1;
2044 }
2045 
2046 /* Linux NewReno/SACK/ECN state machine.
2047  * --------------------------------------
2048  *
2049  * "Open"	Normal state, no dubious events, fast path.
2050  * "Disorder"   In all the respects it is "Open",
2051  *		but requires a bit more attention. It is entered when
2052  *		we see some SACKs or dupacks. It is split of "Open"
2053  *		mainly to move some processing from fast path to slow one.
2054  * "CWR"	CWND was reduced due to some Congestion Notification event.
2055  *		It can be ECN, ICMP source quench, local device congestion.
2056  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2057  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2058  *
2059  * tcp_fastretrans_alert() is entered:
2060  * - each incoming ACK, if state is not "Open"
2061  * - when arrived ACK is unusual, namely:
2062  *	* SACK
2063  *	* Duplicate ACK.
2064  *	* ECN ECE.
2065  *
2066  * Counting packets in flight is pretty simple.
2067  *
2068  *	in_flight = packets_out - left_out + retrans_out
2069  *
2070  *	packets_out is SND.NXT-SND.UNA counted in packets.
2071  *
2072  *	retrans_out is number of retransmitted segments.
2073  *
2074  *	left_out is number of segments left network, but not ACKed yet.
2075  *
2076  *		left_out = sacked_out + lost_out
2077  *
2078  *     sacked_out: Packets, which arrived to receiver out of order
2079  *		   and hence not ACKed. With SACKs this number is simply
2080  *		   amount of SACKed data. Even without SACKs
2081  *		   it is easy to give pretty reliable estimate of this number,
2082  *		   counting duplicate ACKs.
2083  *
2084  *       lost_out: Packets lost by network. TCP has no explicit
2085  *		   "loss notification" feedback from network (for now).
2086  *		   It means that this number can be only _guessed_.
2087  *		   Actually, it is the heuristics to predict lossage that
2088  *		   distinguishes different algorithms.
2089  *
2090  *	F.e. after RTO, when all the queue is considered as lost,
2091  *	lost_out = packets_out and in_flight = retrans_out.
2092  *
2093  *		Essentially, we have now a few algorithms detecting
2094  *		lost packets.
2095  *
2096  *		If the receiver supports SACK:
2097  *
2098  *		RFC6675/3517: It is the conventional algorithm. A packet is
2099  *		considered lost if the number of higher sequence packets
2100  *		SACKed is greater than or equal the DUPACK thoreshold
2101  *		(reordering). This is implemented in tcp_mark_head_lost and
2102  *		tcp_update_scoreboard.
2103  *
2104  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2105  *		(2017-) that checks timing instead of counting DUPACKs.
2106  *		Essentially a packet is considered lost if it's not S/ACKed
2107  *		after RTT + reordering_window, where both metrics are
2108  *		dynamically measured and adjusted. This is implemented in
2109  *		tcp_rack_mark_lost.
2110  *
2111  *		If the receiver does not support SACK:
2112  *
2113  *		NewReno (RFC6582): in Recovery we assume that one segment
2114  *		is lost (classic Reno). While we are in Recovery and
2115  *		a partial ACK arrives, we assume that one more packet
2116  *		is lost (NewReno). This heuristics are the same in NewReno
2117  *		and SACK.
2118  *
2119  * Really tricky (and requiring careful tuning) part of algorithm
2120  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2121  * The first determines the moment _when_ we should reduce CWND and,
2122  * hence, slow down forward transmission. In fact, it determines the moment
2123  * when we decide that hole is caused by loss, rather than by a reorder.
2124  *
2125  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2126  * holes, caused by lost packets.
2127  *
2128  * And the most logically complicated part of algorithm is undo
2129  * heuristics. We detect false retransmits due to both too early
2130  * fast retransmit (reordering) and underestimated RTO, analyzing
2131  * timestamps and D-SACKs. When we detect that some segments were
2132  * retransmitted by mistake and CWND reduction was wrong, we undo
2133  * window reduction and abort recovery phase. This logic is hidden
2134  * inside several functions named tcp_try_undo_<something>.
2135  */
2136 
2137 /* This function decides, when we should leave Disordered state
2138  * and enter Recovery phase, reducing congestion window.
2139  *
2140  * Main question: may we further continue forward transmission
2141  * with the same cwnd?
2142  */
2143 static bool tcp_time_to_recover(struct sock *sk, int flag)
2144 {
2145 	struct tcp_sock *tp = tcp_sk(sk);
2146 
2147 	/* Trick#1: The loss is proven. */
2148 	if (tp->lost_out)
2149 		return true;
2150 
2151 	/* Not-A-Trick#2 : Classic rule... */
2152 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2153 		return true;
2154 
2155 	return false;
2156 }
2157 
2158 /* Detect loss in event "A" above by marking head of queue up as lost.
2159  * For non-SACK(Reno) senders, the first "packets" number of segments
2160  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2161  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2162  * the maximum SACKed segments to pass before reaching this limit.
2163  */
2164 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2165 {
2166 	struct tcp_sock *tp = tcp_sk(sk);
2167 	struct sk_buff *skb;
2168 	int cnt, oldcnt, lost;
2169 	unsigned int mss;
2170 	/* Use SACK to deduce losses of new sequences sent during recovery */
2171 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2172 
2173 	WARN_ON(packets > tp->packets_out);
2174 	skb = tp->lost_skb_hint;
2175 	if (skb) {
2176 		/* Head already handled? */
2177 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2178 			return;
2179 		cnt = tp->lost_cnt_hint;
2180 	} else {
2181 		skb = tcp_rtx_queue_head(sk);
2182 		cnt = 0;
2183 	}
2184 
2185 	skb_rbtree_walk_from(skb) {
2186 		/* TODO: do this better */
2187 		/* this is not the most efficient way to do this... */
2188 		tp->lost_skb_hint = skb;
2189 		tp->lost_cnt_hint = cnt;
2190 
2191 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2192 			break;
2193 
2194 		oldcnt = cnt;
2195 		if (tcp_is_reno(tp) ||
2196 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2197 			cnt += tcp_skb_pcount(skb);
2198 
2199 		if (cnt > packets) {
2200 			if (tcp_is_sack(tp) ||
2201 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2202 			    (oldcnt >= packets))
2203 				break;
2204 
2205 			mss = tcp_skb_mss(skb);
2206 			/* If needed, chop off the prefix to mark as lost. */
2207 			lost = (packets - oldcnt) * mss;
2208 			if (lost < skb->len &&
2209 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2210 					 lost, mss, GFP_ATOMIC) < 0)
2211 				break;
2212 			cnt = packets;
2213 		}
2214 
2215 		tcp_skb_mark_lost(tp, skb);
2216 
2217 		if (mark_head)
2218 			break;
2219 	}
2220 	tcp_verify_left_out(tp);
2221 }
2222 
2223 /* Account newly detected lost packet(s) */
2224 
2225 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2226 {
2227 	struct tcp_sock *tp = tcp_sk(sk);
2228 
2229 	if (tcp_is_sack(tp)) {
2230 		int sacked_upto = tp->sacked_out - tp->reordering;
2231 		if (sacked_upto >= 0)
2232 			tcp_mark_head_lost(sk, sacked_upto, 0);
2233 		else if (fast_rexmit)
2234 			tcp_mark_head_lost(sk, 1, 1);
2235 	}
2236 }
2237 
2238 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2239 {
2240 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2241 	       before(tp->rx_opt.rcv_tsecr, when);
2242 }
2243 
2244 /* skb is spurious retransmitted if the returned timestamp echo
2245  * reply is prior to the skb transmission time
2246  */
2247 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2248 				     const struct sk_buff *skb)
2249 {
2250 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2251 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2252 }
2253 
2254 /* Nothing was retransmitted or returned timestamp is less
2255  * than timestamp of the first retransmission.
2256  */
2257 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2258 {
2259 	return !tp->retrans_stamp ||
2260 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2261 }
2262 
2263 /* Undo procedures. */
2264 
2265 /* We can clear retrans_stamp when there are no retransmissions in the
2266  * window. It would seem that it is trivially available for us in
2267  * tp->retrans_out, however, that kind of assumptions doesn't consider
2268  * what will happen if errors occur when sending retransmission for the
2269  * second time. ...It could the that such segment has only
2270  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2271  * the head skb is enough except for some reneging corner cases that
2272  * are not worth the effort.
2273  *
2274  * Main reason for all this complexity is the fact that connection dying
2275  * time now depends on the validity of the retrans_stamp, in particular,
2276  * that successive retransmissions of a segment must not advance
2277  * retrans_stamp under any conditions.
2278  */
2279 static bool tcp_any_retrans_done(const struct sock *sk)
2280 {
2281 	const struct tcp_sock *tp = tcp_sk(sk);
2282 	struct sk_buff *skb;
2283 
2284 	if (tp->retrans_out)
2285 		return true;
2286 
2287 	skb = tcp_rtx_queue_head(sk);
2288 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2289 		return true;
2290 
2291 	return false;
2292 }
2293 
2294 static void DBGUNDO(struct sock *sk, const char *msg)
2295 {
2296 #if FASTRETRANS_DEBUG > 1
2297 	struct tcp_sock *tp = tcp_sk(sk);
2298 	struct inet_sock *inet = inet_sk(sk);
2299 
2300 	if (sk->sk_family == AF_INET) {
2301 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2302 			 msg,
2303 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2304 			 tp->snd_cwnd, tcp_left_out(tp),
2305 			 tp->snd_ssthresh, tp->prior_ssthresh,
2306 			 tp->packets_out);
2307 	}
2308 #if IS_ENABLED(CONFIG_IPV6)
2309 	else if (sk->sk_family == AF_INET6) {
2310 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2311 			 msg,
2312 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2313 			 tp->snd_cwnd, tcp_left_out(tp),
2314 			 tp->snd_ssthresh, tp->prior_ssthresh,
2315 			 tp->packets_out);
2316 	}
2317 #endif
2318 #endif
2319 }
2320 
2321 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2322 {
2323 	struct tcp_sock *tp = tcp_sk(sk);
2324 
2325 	if (unmark_loss) {
2326 		struct sk_buff *skb;
2327 
2328 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2329 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2330 		}
2331 		tp->lost_out = 0;
2332 		tcp_clear_all_retrans_hints(tp);
2333 	}
2334 
2335 	if (tp->prior_ssthresh) {
2336 		const struct inet_connection_sock *icsk = inet_csk(sk);
2337 
2338 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2339 
2340 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2341 			tp->snd_ssthresh = tp->prior_ssthresh;
2342 			tcp_ecn_withdraw_cwr(tp);
2343 		}
2344 	}
2345 	tp->snd_cwnd_stamp = tcp_jiffies32;
2346 	tp->undo_marker = 0;
2347 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2348 }
2349 
2350 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2351 {
2352 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2353 }
2354 
2355 /* People celebrate: "We love our President!" */
2356 static bool tcp_try_undo_recovery(struct sock *sk)
2357 {
2358 	struct tcp_sock *tp = tcp_sk(sk);
2359 
2360 	if (tcp_may_undo(tp)) {
2361 		int mib_idx;
2362 
2363 		/* Happy end! We did not retransmit anything
2364 		 * or our original transmission succeeded.
2365 		 */
2366 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2367 		tcp_undo_cwnd_reduction(sk, false);
2368 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2369 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2370 		else
2371 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2372 
2373 		NET_INC_STATS(sock_net(sk), mib_idx);
2374 	} else if (tp->rack.reo_wnd_persist) {
2375 		tp->rack.reo_wnd_persist--;
2376 	}
2377 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2378 		/* Hold old state until something *above* high_seq
2379 		 * is ACKed. For Reno it is MUST to prevent false
2380 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2381 		if (!tcp_any_retrans_done(sk))
2382 			tp->retrans_stamp = 0;
2383 		return true;
2384 	}
2385 	tcp_set_ca_state(sk, TCP_CA_Open);
2386 	tp->is_sack_reneg = 0;
2387 	return false;
2388 }
2389 
2390 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2391 static bool tcp_try_undo_dsack(struct sock *sk)
2392 {
2393 	struct tcp_sock *tp = tcp_sk(sk);
2394 
2395 	if (tp->undo_marker && !tp->undo_retrans) {
2396 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2397 					       tp->rack.reo_wnd_persist + 1);
2398 		DBGUNDO(sk, "D-SACK");
2399 		tcp_undo_cwnd_reduction(sk, false);
2400 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2401 		return true;
2402 	}
2403 	return false;
2404 }
2405 
2406 /* Undo during loss recovery after partial ACK or using F-RTO. */
2407 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2408 {
2409 	struct tcp_sock *tp = tcp_sk(sk);
2410 
2411 	if (frto_undo || tcp_may_undo(tp)) {
2412 		tcp_undo_cwnd_reduction(sk, true);
2413 
2414 		DBGUNDO(sk, "partial loss");
2415 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2416 		if (frto_undo)
2417 			NET_INC_STATS(sock_net(sk),
2418 					LINUX_MIB_TCPSPURIOUSRTOS);
2419 		inet_csk(sk)->icsk_retransmits = 0;
2420 		if (frto_undo || tcp_is_sack(tp)) {
2421 			tcp_set_ca_state(sk, TCP_CA_Open);
2422 			tp->is_sack_reneg = 0;
2423 		}
2424 		return true;
2425 	}
2426 	return false;
2427 }
2428 
2429 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2430  * It computes the number of packets to send (sndcnt) based on packets newly
2431  * delivered:
2432  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2433  *	cwnd reductions across a full RTT.
2434  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2435  *      But when the retransmits are acked without further losses, PRR
2436  *      slow starts cwnd up to ssthresh to speed up the recovery.
2437  */
2438 static void tcp_init_cwnd_reduction(struct sock *sk)
2439 {
2440 	struct tcp_sock *tp = tcp_sk(sk);
2441 
2442 	tp->high_seq = tp->snd_nxt;
2443 	tp->tlp_high_seq = 0;
2444 	tp->snd_cwnd_cnt = 0;
2445 	tp->prior_cwnd = tp->snd_cwnd;
2446 	tp->prr_delivered = 0;
2447 	tp->prr_out = 0;
2448 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2449 	tcp_ecn_queue_cwr(tp);
2450 }
2451 
2452 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2453 {
2454 	struct tcp_sock *tp = tcp_sk(sk);
2455 	int sndcnt = 0;
2456 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2457 
2458 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2459 		return;
2460 
2461 	tp->prr_delivered += newly_acked_sacked;
2462 	if (delta < 0) {
2463 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2464 			       tp->prior_cwnd - 1;
2465 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2466 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2467 		   FLAG_RETRANS_DATA_ACKED) {
2468 		sndcnt = min_t(int, delta,
2469 			       max_t(int, tp->prr_delivered - tp->prr_out,
2470 				     newly_acked_sacked) + 1);
2471 	} else {
2472 		sndcnt = min(delta, newly_acked_sacked);
2473 	}
2474 	/* Force a fast retransmit upon entering fast recovery */
2475 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2476 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2477 }
2478 
2479 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2480 {
2481 	struct tcp_sock *tp = tcp_sk(sk);
2482 
2483 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2484 		return;
2485 
2486 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2487 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2488 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2489 		tp->snd_cwnd = tp->snd_ssthresh;
2490 		tp->snd_cwnd_stamp = tcp_jiffies32;
2491 	}
2492 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2493 }
2494 
2495 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2496 void tcp_enter_cwr(struct sock *sk)
2497 {
2498 	struct tcp_sock *tp = tcp_sk(sk);
2499 
2500 	tp->prior_ssthresh = 0;
2501 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2502 		tp->undo_marker = 0;
2503 		tcp_init_cwnd_reduction(sk);
2504 		tcp_set_ca_state(sk, TCP_CA_CWR);
2505 	}
2506 }
2507 EXPORT_SYMBOL(tcp_enter_cwr);
2508 
2509 static void tcp_try_keep_open(struct sock *sk)
2510 {
2511 	struct tcp_sock *tp = tcp_sk(sk);
2512 	int state = TCP_CA_Open;
2513 
2514 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2515 		state = TCP_CA_Disorder;
2516 
2517 	if (inet_csk(sk)->icsk_ca_state != state) {
2518 		tcp_set_ca_state(sk, state);
2519 		tp->high_seq = tp->snd_nxt;
2520 	}
2521 }
2522 
2523 static void tcp_try_to_open(struct sock *sk, int flag)
2524 {
2525 	struct tcp_sock *tp = tcp_sk(sk);
2526 
2527 	tcp_verify_left_out(tp);
2528 
2529 	if (!tcp_any_retrans_done(sk))
2530 		tp->retrans_stamp = 0;
2531 
2532 	if (flag & FLAG_ECE)
2533 		tcp_enter_cwr(sk);
2534 
2535 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2536 		tcp_try_keep_open(sk);
2537 	}
2538 }
2539 
2540 static void tcp_mtup_probe_failed(struct sock *sk)
2541 {
2542 	struct inet_connection_sock *icsk = inet_csk(sk);
2543 
2544 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2545 	icsk->icsk_mtup.probe_size = 0;
2546 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2547 }
2548 
2549 static void tcp_mtup_probe_success(struct sock *sk)
2550 {
2551 	struct tcp_sock *tp = tcp_sk(sk);
2552 	struct inet_connection_sock *icsk = inet_csk(sk);
2553 
2554 	/* FIXME: breaks with very large cwnd */
2555 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2556 	tp->snd_cwnd = tp->snd_cwnd *
2557 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2558 		       icsk->icsk_mtup.probe_size;
2559 	tp->snd_cwnd_cnt = 0;
2560 	tp->snd_cwnd_stamp = tcp_jiffies32;
2561 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2562 
2563 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2564 	icsk->icsk_mtup.probe_size = 0;
2565 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2566 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2567 }
2568 
2569 /* Do a simple retransmit without using the backoff mechanisms in
2570  * tcp_timer. This is used for path mtu discovery.
2571  * The socket is already locked here.
2572  */
2573 void tcp_simple_retransmit(struct sock *sk)
2574 {
2575 	const struct inet_connection_sock *icsk = inet_csk(sk);
2576 	struct tcp_sock *tp = tcp_sk(sk);
2577 	struct sk_buff *skb;
2578 	unsigned int mss = tcp_current_mss(sk);
2579 
2580 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2581 		if (tcp_skb_seglen(skb) > mss &&
2582 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2583 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2584 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2585 				tp->retrans_out -= tcp_skb_pcount(skb);
2586 			}
2587 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2588 		}
2589 	}
2590 
2591 	tcp_clear_retrans_hints_partial(tp);
2592 
2593 	if (!tp->lost_out)
2594 		return;
2595 
2596 	if (tcp_is_reno(tp))
2597 		tcp_limit_reno_sacked(tp);
2598 
2599 	tcp_verify_left_out(tp);
2600 
2601 	/* Don't muck with the congestion window here.
2602 	 * Reason is that we do not increase amount of _data_
2603 	 * in network, but units changed and effective
2604 	 * cwnd/ssthresh really reduced now.
2605 	 */
2606 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2607 		tp->high_seq = tp->snd_nxt;
2608 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2609 		tp->prior_ssthresh = 0;
2610 		tp->undo_marker = 0;
2611 		tcp_set_ca_state(sk, TCP_CA_Loss);
2612 	}
2613 	tcp_xmit_retransmit_queue(sk);
2614 }
2615 EXPORT_SYMBOL(tcp_simple_retransmit);
2616 
2617 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2618 {
2619 	struct tcp_sock *tp = tcp_sk(sk);
2620 	int mib_idx;
2621 
2622 	if (tcp_is_reno(tp))
2623 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2624 	else
2625 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2626 
2627 	NET_INC_STATS(sock_net(sk), mib_idx);
2628 
2629 	tp->prior_ssthresh = 0;
2630 	tcp_init_undo(tp);
2631 
2632 	if (!tcp_in_cwnd_reduction(sk)) {
2633 		if (!ece_ack)
2634 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2635 		tcp_init_cwnd_reduction(sk);
2636 	}
2637 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2638 }
2639 
2640 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2641  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2642  */
2643 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2644 			     int *rexmit)
2645 {
2646 	struct tcp_sock *tp = tcp_sk(sk);
2647 	bool recovered = !before(tp->snd_una, tp->high_seq);
2648 
2649 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2650 	    tcp_try_undo_loss(sk, false))
2651 		return;
2652 
2653 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2654 		/* Step 3.b. A timeout is spurious if not all data are
2655 		 * lost, i.e., never-retransmitted data are (s)acked.
2656 		 */
2657 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2658 		    tcp_try_undo_loss(sk, true))
2659 			return;
2660 
2661 		if (after(tp->snd_nxt, tp->high_seq)) {
2662 			if (flag & FLAG_DATA_SACKED || num_dupack)
2663 				tp->frto = 0; /* Step 3.a. loss was real */
2664 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2665 			tp->high_seq = tp->snd_nxt;
2666 			/* Step 2.b. Try send new data (but deferred until cwnd
2667 			 * is updated in tcp_ack()). Otherwise fall back to
2668 			 * the conventional recovery.
2669 			 */
2670 			if (!tcp_write_queue_empty(sk) &&
2671 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2672 				*rexmit = REXMIT_NEW;
2673 				return;
2674 			}
2675 			tp->frto = 0;
2676 		}
2677 	}
2678 
2679 	if (recovered) {
2680 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2681 		tcp_try_undo_recovery(sk);
2682 		return;
2683 	}
2684 	if (tcp_is_reno(tp)) {
2685 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2686 		 * delivered. Lower inflight to clock out (re)tranmissions.
2687 		 */
2688 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2689 			tcp_add_reno_sack(sk, num_dupack);
2690 		else if (flag & FLAG_SND_UNA_ADVANCED)
2691 			tcp_reset_reno_sack(tp);
2692 	}
2693 	*rexmit = REXMIT_LOST;
2694 }
2695 
2696 /* Undo during fast recovery after partial ACK. */
2697 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2698 {
2699 	struct tcp_sock *tp = tcp_sk(sk);
2700 
2701 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2702 		/* Plain luck! Hole if filled with delayed
2703 		 * packet, rather than with a retransmit. Check reordering.
2704 		 */
2705 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2706 
2707 		/* We are getting evidence that the reordering degree is higher
2708 		 * than we realized. If there are no retransmits out then we
2709 		 * can undo. Otherwise we clock out new packets but do not
2710 		 * mark more packets lost or retransmit more.
2711 		 */
2712 		if (tp->retrans_out)
2713 			return true;
2714 
2715 		if (!tcp_any_retrans_done(sk))
2716 			tp->retrans_stamp = 0;
2717 
2718 		DBGUNDO(sk, "partial recovery");
2719 		tcp_undo_cwnd_reduction(sk, true);
2720 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2721 		tcp_try_keep_open(sk);
2722 		return true;
2723 	}
2724 	return false;
2725 }
2726 
2727 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2728 {
2729 	struct tcp_sock *tp = tcp_sk(sk);
2730 
2731 	if (tcp_rtx_queue_empty(sk))
2732 		return;
2733 
2734 	if (unlikely(tcp_is_reno(tp))) {
2735 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2736 	} else if (tcp_is_rack(sk)) {
2737 		u32 prior_retrans = tp->retrans_out;
2738 
2739 		tcp_rack_mark_lost(sk);
2740 		if (prior_retrans > tp->retrans_out)
2741 			*ack_flag |= FLAG_LOST_RETRANS;
2742 	}
2743 }
2744 
2745 static bool tcp_force_fast_retransmit(struct sock *sk)
2746 {
2747 	struct tcp_sock *tp = tcp_sk(sk);
2748 
2749 	return after(tcp_highest_sack_seq(tp),
2750 		     tp->snd_una + tp->reordering * tp->mss_cache);
2751 }
2752 
2753 /* Process an event, which can update packets-in-flight not trivially.
2754  * Main goal of this function is to calculate new estimate for left_out,
2755  * taking into account both packets sitting in receiver's buffer and
2756  * packets lost by network.
2757  *
2758  * Besides that it updates the congestion state when packet loss or ECN
2759  * is detected. But it does not reduce the cwnd, it is done by the
2760  * congestion control later.
2761  *
2762  * It does _not_ decide what to send, it is made in function
2763  * tcp_xmit_retransmit_queue().
2764  */
2765 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2766 				  int num_dupack, int *ack_flag, int *rexmit)
2767 {
2768 	struct inet_connection_sock *icsk = inet_csk(sk);
2769 	struct tcp_sock *tp = tcp_sk(sk);
2770 	int fast_rexmit = 0, flag = *ack_flag;
2771 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2772 				      tcp_force_fast_retransmit(sk));
2773 
2774 	if (!tp->packets_out && tp->sacked_out)
2775 		tp->sacked_out = 0;
2776 
2777 	/* Now state machine starts.
2778 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2779 	if (flag & FLAG_ECE)
2780 		tp->prior_ssthresh = 0;
2781 
2782 	/* B. In all the states check for reneging SACKs. */
2783 	if (tcp_check_sack_reneging(sk, flag))
2784 		return;
2785 
2786 	/* C. Check consistency of the current state. */
2787 	tcp_verify_left_out(tp);
2788 
2789 	/* D. Check state exit conditions. State can be terminated
2790 	 *    when high_seq is ACKed. */
2791 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2792 		WARN_ON(tp->retrans_out != 0);
2793 		tp->retrans_stamp = 0;
2794 	} else if (!before(tp->snd_una, tp->high_seq)) {
2795 		switch (icsk->icsk_ca_state) {
2796 		case TCP_CA_CWR:
2797 			/* CWR is to be held something *above* high_seq
2798 			 * is ACKed for CWR bit to reach receiver. */
2799 			if (tp->snd_una != tp->high_seq) {
2800 				tcp_end_cwnd_reduction(sk);
2801 				tcp_set_ca_state(sk, TCP_CA_Open);
2802 			}
2803 			break;
2804 
2805 		case TCP_CA_Recovery:
2806 			if (tcp_is_reno(tp))
2807 				tcp_reset_reno_sack(tp);
2808 			if (tcp_try_undo_recovery(sk))
2809 				return;
2810 			tcp_end_cwnd_reduction(sk);
2811 			break;
2812 		}
2813 	}
2814 
2815 	/* E. Process state. */
2816 	switch (icsk->icsk_ca_state) {
2817 	case TCP_CA_Recovery:
2818 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2819 			if (tcp_is_reno(tp))
2820 				tcp_add_reno_sack(sk, num_dupack);
2821 		} else {
2822 			if (tcp_try_undo_partial(sk, prior_snd_una))
2823 				return;
2824 			/* Partial ACK arrived. Force fast retransmit. */
2825 			do_lost = tcp_is_reno(tp) ||
2826 				  tcp_force_fast_retransmit(sk);
2827 		}
2828 		if (tcp_try_undo_dsack(sk)) {
2829 			tcp_try_keep_open(sk);
2830 			return;
2831 		}
2832 		tcp_identify_packet_loss(sk, ack_flag);
2833 		break;
2834 	case TCP_CA_Loss:
2835 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2836 		tcp_identify_packet_loss(sk, ack_flag);
2837 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2838 		      (*ack_flag & FLAG_LOST_RETRANS)))
2839 			return;
2840 		/* Change state if cwnd is undone or retransmits are lost */
2841 		/* fall through */
2842 	default:
2843 		if (tcp_is_reno(tp)) {
2844 			if (flag & FLAG_SND_UNA_ADVANCED)
2845 				tcp_reset_reno_sack(tp);
2846 			tcp_add_reno_sack(sk, num_dupack);
2847 		}
2848 
2849 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2850 			tcp_try_undo_dsack(sk);
2851 
2852 		tcp_identify_packet_loss(sk, ack_flag);
2853 		if (!tcp_time_to_recover(sk, flag)) {
2854 			tcp_try_to_open(sk, flag);
2855 			return;
2856 		}
2857 
2858 		/* MTU probe failure: don't reduce cwnd */
2859 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2860 		    icsk->icsk_mtup.probe_size &&
2861 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2862 			tcp_mtup_probe_failed(sk);
2863 			/* Restores the reduction we did in tcp_mtup_probe() */
2864 			tp->snd_cwnd++;
2865 			tcp_simple_retransmit(sk);
2866 			return;
2867 		}
2868 
2869 		/* Otherwise enter Recovery state */
2870 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2871 		fast_rexmit = 1;
2872 	}
2873 
2874 	if (!tcp_is_rack(sk) && do_lost)
2875 		tcp_update_scoreboard(sk, fast_rexmit);
2876 	*rexmit = REXMIT_LOST;
2877 }
2878 
2879 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2880 {
2881 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2882 	struct tcp_sock *tp = tcp_sk(sk);
2883 
2884 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2885 		/* If the remote keeps returning delayed ACKs, eventually
2886 		 * the min filter would pick it up and overestimate the
2887 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2888 		 */
2889 		return;
2890 	}
2891 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2892 			   rtt_us ? : jiffies_to_usecs(1));
2893 }
2894 
2895 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2896 			       long seq_rtt_us, long sack_rtt_us,
2897 			       long ca_rtt_us, struct rate_sample *rs)
2898 {
2899 	const struct tcp_sock *tp = tcp_sk(sk);
2900 
2901 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2902 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2903 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2904 	 * is acked (RFC6298).
2905 	 */
2906 	if (seq_rtt_us < 0)
2907 		seq_rtt_us = sack_rtt_us;
2908 
2909 	/* RTTM Rule: A TSecr value received in a segment is used to
2910 	 * update the averaged RTT measurement only if the segment
2911 	 * acknowledges some new data, i.e., only if it advances the
2912 	 * left edge of the send window.
2913 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2914 	 */
2915 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2916 	    flag & FLAG_ACKED) {
2917 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2918 
2919 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2920 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2921 			ca_rtt_us = seq_rtt_us;
2922 		}
2923 	}
2924 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2925 	if (seq_rtt_us < 0)
2926 		return false;
2927 
2928 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2929 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2930 	 * values will be skipped with the seq_rtt_us < 0 check above.
2931 	 */
2932 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2933 	tcp_rtt_estimator(sk, seq_rtt_us);
2934 	tcp_set_rto(sk);
2935 
2936 	/* RFC6298: only reset backoff on valid RTT measurement. */
2937 	inet_csk(sk)->icsk_backoff = 0;
2938 	return true;
2939 }
2940 
2941 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2942 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2943 {
2944 	struct rate_sample rs;
2945 	long rtt_us = -1L;
2946 
2947 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2948 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2949 
2950 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2951 }
2952 
2953 
2954 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2955 {
2956 	const struct inet_connection_sock *icsk = inet_csk(sk);
2957 
2958 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2959 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2960 }
2961 
2962 /* Restart timer after forward progress on connection.
2963  * RFC2988 recommends to restart timer to now+rto.
2964  */
2965 void tcp_rearm_rto(struct sock *sk)
2966 {
2967 	const struct inet_connection_sock *icsk = inet_csk(sk);
2968 	struct tcp_sock *tp = tcp_sk(sk);
2969 
2970 	/* If the retrans timer is currently being used by Fast Open
2971 	 * for SYN-ACK retrans purpose, stay put.
2972 	 */
2973 	if (tp->fastopen_rsk)
2974 		return;
2975 
2976 	if (!tp->packets_out) {
2977 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2978 	} else {
2979 		u32 rto = inet_csk(sk)->icsk_rto;
2980 		/* Offset the time elapsed after installing regular RTO */
2981 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2982 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2983 			s64 delta_us = tcp_rto_delta_us(sk);
2984 			/* delta_us may not be positive if the socket is locked
2985 			 * when the retrans timer fires and is rescheduled.
2986 			 */
2987 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2988 		}
2989 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2990 				     TCP_RTO_MAX, tcp_rtx_queue_head(sk));
2991 	}
2992 }
2993 
2994 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2995 static void tcp_set_xmit_timer(struct sock *sk)
2996 {
2997 	if (!tcp_schedule_loss_probe(sk, true))
2998 		tcp_rearm_rto(sk);
2999 }
3000 
3001 /* If we get here, the whole TSO packet has not been acked. */
3002 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3003 {
3004 	struct tcp_sock *tp = tcp_sk(sk);
3005 	u32 packets_acked;
3006 
3007 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3008 
3009 	packets_acked = tcp_skb_pcount(skb);
3010 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3011 		return 0;
3012 	packets_acked -= tcp_skb_pcount(skb);
3013 
3014 	if (packets_acked) {
3015 		BUG_ON(tcp_skb_pcount(skb) == 0);
3016 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3017 	}
3018 
3019 	return packets_acked;
3020 }
3021 
3022 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3023 			   u32 prior_snd_una)
3024 {
3025 	const struct skb_shared_info *shinfo;
3026 
3027 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3028 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3029 		return;
3030 
3031 	shinfo = skb_shinfo(skb);
3032 	if (!before(shinfo->tskey, prior_snd_una) &&
3033 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3034 		tcp_skb_tsorted_save(skb) {
3035 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3036 		} tcp_skb_tsorted_restore(skb);
3037 	}
3038 }
3039 
3040 /* Remove acknowledged frames from the retransmission queue. If our packet
3041  * is before the ack sequence we can discard it as it's confirmed to have
3042  * arrived at the other end.
3043  */
3044 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3045 			       u32 prior_snd_una,
3046 			       struct tcp_sacktag_state *sack)
3047 {
3048 	const struct inet_connection_sock *icsk = inet_csk(sk);
3049 	u64 first_ackt, last_ackt;
3050 	struct tcp_sock *tp = tcp_sk(sk);
3051 	u32 prior_sacked = tp->sacked_out;
3052 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3053 	struct sk_buff *skb, *next;
3054 	bool fully_acked = true;
3055 	long sack_rtt_us = -1L;
3056 	long seq_rtt_us = -1L;
3057 	long ca_rtt_us = -1L;
3058 	u32 pkts_acked = 0;
3059 	u32 last_in_flight = 0;
3060 	bool rtt_update;
3061 	int flag = 0;
3062 
3063 	first_ackt = 0;
3064 
3065 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3066 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3067 		const u32 start_seq = scb->seq;
3068 		u8 sacked = scb->sacked;
3069 		u32 acked_pcount;
3070 
3071 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3072 
3073 		/* Determine how many packets and what bytes were acked, tso and else */
3074 		if (after(scb->end_seq, tp->snd_una)) {
3075 			if (tcp_skb_pcount(skb) == 1 ||
3076 			    !after(tp->snd_una, scb->seq))
3077 				break;
3078 
3079 			acked_pcount = tcp_tso_acked(sk, skb);
3080 			if (!acked_pcount)
3081 				break;
3082 			fully_acked = false;
3083 		} else {
3084 			acked_pcount = tcp_skb_pcount(skb);
3085 		}
3086 
3087 		if (unlikely(sacked & TCPCB_RETRANS)) {
3088 			if (sacked & TCPCB_SACKED_RETRANS)
3089 				tp->retrans_out -= acked_pcount;
3090 			flag |= FLAG_RETRANS_DATA_ACKED;
3091 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3092 			last_ackt = tcp_skb_timestamp_us(skb);
3093 			WARN_ON_ONCE(last_ackt == 0);
3094 			if (!first_ackt)
3095 				first_ackt = last_ackt;
3096 
3097 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3098 			if (before(start_seq, reord))
3099 				reord = start_seq;
3100 			if (!after(scb->end_seq, tp->high_seq))
3101 				flag |= FLAG_ORIG_SACK_ACKED;
3102 		}
3103 
3104 		if (sacked & TCPCB_SACKED_ACKED) {
3105 			tp->sacked_out -= acked_pcount;
3106 		} else if (tcp_is_sack(tp)) {
3107 			tp->delivered += acked_pcount;
3108 			if (!tcp_skb_spurious_retrans(tp, skb))
3109 				tcp_rack_advance(tp, sacked, scb->end_seq,
3110 						 tcp_skb_timestamp_us(skb));
3111 		}
3112 		if (sacked & TCPCB_LOST)
3113 			tp->lost_out -= acked_pcount;
3114 
3115 		tp->packets_out -= acked_pcount;
3116 		pkts_acked += acked_pcount;
3117 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3118 
3119 		/* Initial outgoing SYN's get put onto the write_queue
3120 		 * just like anything else we transmit.  It is not
3121 		 * true data, and if we misinform our callers that
3122 		 * this ACK acks real data, we will erroneously exit
3123 		 * connection startup slow start one packet too
3124 		 * quickly.  This is severely frowned upon behavior.
3125 		 */
3126 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3127 			flag |= FLAG_DATA_ACKED;
3128 		} else {
3129 			flag |= FLAG_SYN_ACKED;
3130 			tp->retrans_stamp = 0;
3131 		}
3132 
3133 		if (!fully_acked)
3134 			break;
3135 
3136 		next = skb_rb_next(skb);
3137 		if (unlikely(skb == tp->retransmit_skb_hint))
3138 			tp->retransmit_skb_hint = NULL;
3139 		if (unlikely(skb == tp->lost_skb_hint))
3140 			tp->lost_skb_hint = NULL;
3141 		tcp_rtx_queue_unlink_and_free(skb, sk);
3142 	}
3143 
3144 	if (!skb)
3145 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3146 
3147 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3148 		tp->snd_up = tp->snd_una;
3149 
3150 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3151 		flag |= FLAG_SACK_RENEGING;
3152 
3153 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3154 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3155 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3156 
3157 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3158 		    last_in_flight && !prior_sacked && fully_acked &&
3159 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3160 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3161 			/* Conservatively mark a delayed ACK. It's typically
3162 			 * from a lone runt packet over the round trip to
3163 			 * a receiver w/o out-of-order or CE events.
3164 			 */
3165 			flag |= FLAG_ACK_MAYBE_DELAYED;
3166 		}
3167 	}
3168 	if (sack->first_sackt) {
3169 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3170 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3171 	}
3172 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3173 					ca_rtt_us, sack->rate);
3174 
3175 	if (flag & FLAG_ACKED) {
3176 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3177 		if (unlikely(icsk->icsk_mtup.probe_size &&
3178 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3179 			tcp_mtup_probe_success(sk);
3180 		}
3181 
3182 		if (tcp_is_reno(tp)) {
3183 			tcp_remove_reno_sacks(sk, pkts_acked);
3184 
3185 			/* If any of the cumulatively ACKed segments was
3186 			 * retransmitted, non-SACK case cannot confirm that
3187 			 * progress was due to original transmission due to
3188 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3189 			 * the packets may have been never retransmitted.
3190 			 */
3191 			if (flag & FLAG_RETRANS_DATA_ACKED)
3192 				flag &= ~FLAG_ORIG_SACK_ACKED;
3193 		} else {
3194 			int delta;
3195 
3196 			/* Non-retransmitted hole got filled? That's reordering */
3197 			if (before(reord, prior_fack))
3198 				tcp_check_sack_reordering(sk, reord, 0);
3199 
3200 			delta = prior_sacked - tp->sacked_out;
3201 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3202 		}
3203 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3204 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3205 						    tcp_skb_timestamp_us(skb))) {
3206 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3207 		 * after when the head was last (re)transmitted. Otherwise the
3208 		 * timeout may continue to extend in loss recovery.
3209 		 */
3210 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3211 	}
3212 
3213 	if (icsk->icsk_ca_ops->pkts_acked) {
3214 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3215 					     .rtt_us = sack->rate->rtt_us,
3216 					     .in_flight = last_in_flight };
3217 
3218 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3219 	}
3220 
3221 #if FASTRETRANS_DEBUG > 0
3222 	WARN_ON((int)tp->sacked_out < 0);
3223 	WARN_ON((int)tp->lost_out < 0);
3224 	WARN_ON((int)tp->retrans_out < 0);
3225 	if (!tp->packets_out && tcp_is_sack(tp)) {
3226 		icsk = inet_csk(sk);
3227 		if (tp->lost_out) {
3228 			pr_debug("Leak l=%u %d\n",
3229 				 tp->lost_out, icsk->icsk_ca_state);
3230 			tp->lost_out = 0;
3231 		}
3232 		if (tp->sacked_out) {
3233 			pr_debug("Leak s=%u %d\n",
3234 				 tp->sacked_out, icsk->icsk_ca_state);
3235 			tp->sacked_out = 0;
3236 		}
3237 		if (tp->retrans_out) {
3238 			pr_debug("Leak r=%u %d\n",
3239 				 tp->retrans_out, icsk->icsk_ca_state);
3240 			tp->retrans_out = 0;
3241 		}
3242 	}
3243 #endif
3244 	return flag;
3245 }
3246 
3247 static void tcp_ack_probe(struct sock *sk)
3248 {
3249 	struct inet_connection_sock *icsk = inet_csk(sk);
3250 	struct sk_buff *head = tcp_send_head(sk);
3251 	const struct tcp_sock *tp = tcp_sk(sk);
3252 
3253 	/* Was it a usable window open? */
3254 	if (!head)
3255 		return;
3256 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3257 		icsk->icsk_backoff = 0;
3258 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3259 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3260 		 * This function is not for random using!
3261 		 */
3262 	} else {
3263 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3264 
3265 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3266 				     when, TCP_RTO_MAX, NULL);
3267 	}
3268 }
3269 
3270 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3271 {
3272 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3273 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3274 }
3275 
3276 /* Decide wheather to run the increase function of congestion control. */
3277 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3278 {
3279 	/* If reordering is high then always grow cwnd whenever data is
3280 	 * delivered regardless of its ordering. Otherwise stay conservative
3281 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3282 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3283 	 * cwnd in tcp_fastretrans_alert() based on more states.
3284 	 */
3285 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3286 		return flag & FLAG_FORWARD_PROGRESS;
3287 
3288 	return flag & FLAG_DATA_ACKED;
3289 }
3290 
3291 /* The "ultimate" congestion control function that aims to replace the rigid
3292  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3293  * It's called toward the end of processing an ACK with precise rate
3294  * information. All transmission or retransmission are delayed afterwards.
3295  */
3296 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3297 			     int flag, const struct rate_sample *rs)
3298 {
3299 	const struct inet_connection_sock *icsk = inet_csk(sk);
3300 
3301 	if (icsk->icsk_ca_ops->cong_control) {
3302 		icsk->icsk_ca_ops->cong_control(sk, rs);
3303 		return;
3304 	}
3305 
3306 	if (tcp_in_cwnd_reduction(sk)) {
3307 		/* Reduce cwnd if state mandates */
3308 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3309 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3310 		/* Advance cwnd if state allows */
3311 		tcp_cong_avoid(sk, ack, acked_sacked);
3312 	}
3313 	tcp_update_pacing_rate(sk);
3314 }
3315 
3316 /* Check that window update is acceptable.
3317  * The function assumes that snd_una<=ack<=snd_next.
3318  */
3319 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3320 					const u32 ack, const u32 ack_seq,
3321 					const u32 nwin)
3322 {
3323 	return	after(ack, tp->snd_una) ||
3324 		after(ack_seq, tp->snd_wl1) ||
3325 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3326 }
3327 
3328 /* If we update tp->snd_una, also update tp->bytes_acked */
3329 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3330 {
3331 	u32 delta = ack - tp->snd_una;
3332 
3333 	sock_owned_by_me((struct sock *)tp);
3334 	tp->bytes_acked += delta;
3335 	tp->snd_una = ack;
3336 }
3337 
3338 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3339 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3340 {
3341 	u32 delta = seq - tp->rcv_nxt;
3342 
3343 	sock_owned_by_me((struct sock *)tp);
3344 	tp->bytes_received += delta;
3345 	tp->rcv_nxt = seq;
3346 }
3347 
3348 /* Update our send window.
3349  *
3350  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3351  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3352  */
3353 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3354 				 u32 ack_seq)
3355 {
3356 	struct tcp_sock *tp = tcp_sk(sk);
3357 	int flag = 0;
3358 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3359 
3360 	if (likely(!tcp_hdr(skb)->syn))
3361 		nwin <<= tp->rx_opt.snd_wscale;
3362 
3363 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3364 		flag |= FLAG_WIN_UPDATE;
3365 		tcp_update_wl(tp, ack_seq);
3366 
3367 		if (tp->snd_wnd != nwin) {
3368 			tp->snd_wnd = nwin;
3369 
3370 			/* Note, it is the only place, where
3371 			 * fast path is recovered for sending TCP.
3372 			 */
3373 			tp->pred_flags = 0;
3374 			tcp_fast_path_check(sk);
3375 
3376 			if (!tcp_write_queue_empty(sk))
3377 				tcp_slow_start_after_idle_check(sk);
3378 
3379 			if (nwin > tp->max_window) {
3380 				tp->max_window = nwin;
3381 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3382 			}
3383 		}
3384 	}
3385 
3386 	tcp_snd_una_update(tp, ack);
3387 
3388 	return flag;
3389 }
3390 
3391 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3392 				   u32 *last_oow_ack_time)
3393 {
3394 	if (*last_oow_ack_time) {
3395 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3396 
3397 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3398 			NET_INC_STATS(net, mib_idx);
3399 			return true;	/* rate-limited: don't send yet! */
3400 		}
3401 	}
3402 
3403 	*last_oow_ack_time = tcp_jiffies32;
3404 
3405 	return false;	/* not rate-limited: go ahead, send dupack now! */
3406 }
3407 
3408 /* Return true if we're currently rate-limiting out-of-window ACKs and
3409  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3410  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3411  * attacks that send repeated SYNs or ACKs for the same connection. To
3412  * do this, we do not send a duplicate SYNACK or ACK if the remote
3413  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3414  */
3415 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3416 			  int mib_idx, u32 *last_oow_ack_time)
3417 {
3418 	/* Data packets without SYNs are not likely part of an ACK loop. */
3419 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3420 	    !tcp_hdr(skb)->syn)
3421 		return false;
3422 
3423 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3424 }
3425 
3426 /* RFC 5961 7 [ACK Throttling] */
3427 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3428 {
3429 	/* unprotected vars, we dont care of overwrites */
3430 	static u32 challenge_timestamp;
3431 	static unsigned int challenge_count;
3432 	struct tcp_sock *tp = tcp_sk(sk);
3433 	struct net *net = sock_net(sk);
3434 	u32 count, now;
3435 
3436 	/* First check our per-socket dupack rate limit. */
3437 	if (__tcp_oow_rate_limited(net,
3438 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3439 				   &tp->last_oow_ack_time))
3440 		return;
3441 
3442 	/* Then check host-wide RFC 5961 rate limit. */
3443 	now = jiffies / HZ;
3444 	if (now != challenge_timestamp) {
3445 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3446 		u32 half = (ack_limit + 1) >> 1;
3447 
3448 		challenge_timestamp = now;
3449 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3450 	}
3451 	count = READ_ONCE(challenge_count);
3452 	if (count > 0) {
3453 		WRITE_ONCE(challenge_count, count - 1);
3454 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3455 		tcp_send_ack(sk);
3456 	}
3457 }
3458 
3459 static void tcp_store_ts_recent(struct tcp_sock *tp)
3460 {
3461 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3462 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3463 }
3464 
3465 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3466 {
3467 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3468 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3469 		 * extra check below makes sure this can only happen
3470 		 * for pure ACK frames.  -DaveM
3471 		 *
3472 		 * Not only, also it occurs for expired timestamps.
3473 		 */
3474 
3475 		if (tcp_paws_check(&tp->rx_opt, 0))
3476 			tcp_store_ts_recent(tp);
3477 	}
3478 }
3479 
3480 /* This routine deals with acks during a TLP episode.
3481  * We mark the end of a TLP episode on receiving TLP dupack or when
3482  * ack is after tlp_high_seq.
3483  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3484  */
3485 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3486 {
3487 	struct tcp_sock *tp = tcp_sk(sk);
3488 
3489 	if (before(ack, tp->tlp_high_seq))
3490 		return;
3491 
3492 	if (flag & FLAG_DSACKING_ACK) {
3493 		/* This DSACK means original and TLP probe arrived; no loss */
3494 		tp->tlp_high_seq = 0;
3495 	} else if (after(ack, tp->tlp_high_seq)) {
3496 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3497 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3498 		 */
3499 		tcp_init_cwnd_reduction(sk);
3500 		tcp_set_ca_state(sk, TCP_CA_CWR);
3501 		tcp_end_cwnd_reduction(sk);
3502 		tcp_try_keep_open(sk);
3503 		NET_INC_STATS(sock_net(sk),
3504 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3505 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3506 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3507 		/* Pure dupack: original and TLP probe arrived; no loss */
3508 		tp->tlp_high_seq = 0;
3509 	}
3510 }
3511 
3512 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3513 {
3514 	const struct inet_connection_sock *icsk = inet_csk(sk);
3515 
3516 	if (icsk->icsk_ca_ops->in_ack_event)
3517 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3518 }
3519 
3520 /* Congestion control has updated the cwnd already. So if we're in
3521  * loss recovery then now we do any new sends (for FRTO) or
3522  * retransmits (for CA_Loss or CA_recovery) that make sense.
3523  */
3524 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3525 {
3526 	struct tcp_sock *tp = tcp_sk(sk);
3527 
3528 	if (rexmit == REXMIT_NONE)
3529 		return;
3530 
3531 	if (unlikely(rexmit == 2)) {
3532 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3533 					  TCP_NAGLE_OFF);
3534 		if (after(tp->snd_nxt, tp->high_seq))
3535 			return;
3536 		tp->frto = 0;
3537 	}
3538 	tcp_xmit_retransmit_queue(sk);
3539 }
3540 
3541 /* Returns the number of packets newly acked or sacked by the current ACK */
3542 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3543 {
3544 	const struct net *net = sock_net(sk);
3545 	struct tcp_sock *tp = tcp_sk(sk);
3546 	u32 delivered;
3547 
3548 	delivered = tp->delivered - prior_delivered;
3549 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3550 	if (flag & FLAG_ECE) {
3551 		tp->delivered_ce += delivered;
3552 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3553 	}
3554 	return delivered;
3555 }
3556 
3557 /* This routine deals with incoming acks, but not outgoing ones. */
3558 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3559 {
3560 	struct inet_connection_sock *icsk = inet_csk(sk);
3561 	struct tcp_sock *tp = tcp_sk(sk);
3562 	struct tcp_sacktag_state sack_state;
3563 	struct rate_sample rs = { .prior_delivered = 0 };
3564 	u32 prior_snd_una = tp->snd_una;
3565 	bool is_sack_reneg = tp->is_sack_reneg;
3566 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3567 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3568 	int num_dupack = 0;
3569 	int prior_packets = tp->packets_out;
3570 	u32 delivered = tp->delivered;
3571 	u32 lost = tp->lost;
3572 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3573 	u32 prior_fack;
3574 
3575 	sack_state.first_sackt = 0;
3576 	sack_state.rate = &rs;
3577 
3578 	/* We very likely will need to access rtx queue. */
3579 	prefetch(sk->tcp_rtx_queue.rb_node);
3580 
3581 	/* If the ack is older than previous acks
3582 	 * then we can probably ignore it.
3583 	 */
3584 	if (before(ack, prior_snd_una)) {
3585 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3586 		if (before(ack, prior_snd_una - tp->max_window)) {
3587 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3588 				tcp_send_challenge_ack(sk, skb);
3589 			return -1;
3590 		}
3591 		goto old_ack;
3592 	}
3593 
3594 	/* If the ack includes data we haven't sent yet, discard
3595 	 * this segment (RFC793 Section 3.9).
3596 	 */
3597 	if (after(ack, tp->snd_nxt))
3598 		goto invalid_ack;
3599 
3600 	if (after(ack, prior_snd_una)) {
3601 		flag |= FLAG_SND_UNA_ADVANCED;
3602 		icsk->icsk_retransmits = 0;
3603 
3604 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3605 		if (static_branch_unlikely(&clean_acked_data_enabled))
3606 			if (icsk->icsk_clean_acked)
3607 				icsk->icsk_clean_acked(sk, ack);
3608 #endif
3609 	}
3610 
3611 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3612 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3613 
3614 	/* ts_recent update must be made after we are sure that the packet
3615 	 * is in window.
3616 	 */
3617 	if (flag & FLAG_UPDATE_TS_RECENT)
3618 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3619 
3620 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3621 	    FLAG_SND_UNA_ADVANCED) {
3622 		/* Window is constant, pure forward advance.
3623 		 * No more checks are required.
3624 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3625 		 */
3626 		tcp_update_wl(tp, ack_seq);
3627 		tcp_snd_una_update(tp, ack);
3628 		flag |= FLAG_WIN_UPDATE;
3629 
3630 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3631 
3632 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3633 	} else {
3634 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3635 
3636 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3637 			flag |= FLAG_DATA;
3638 		else
3639 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3640 
3641 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3642 
3643 		if (TCP_SKB_CB(skb)->sacked)
3644 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3645 							&sack_state);
3646 
3647 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3648 			flag |= FLAG_ECE;
3649 			ack_ev_flags |= CA_ACK_ECE;
3650 		}
3651 
3652 		if (flag & FLAG_WIN_UPDATE)
3653 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3654 
3655 		tcp_in_ack_event(sk, ack_ev_flags);
3656 	}
3657 
3658 	/* We passed data and got it acked, remove any soft error
3659 	 * log. Something worked...
3660 	 */
3661 	sk->sk_err_soft = 0;
3662 	icsk->icsk_probes_out = 0;
3663 	tp->rcv_tstamp = tcp_jiffies32;
3664 	if (!prior_packets)
3665 		goto no_queue;
3666 
3667 	/* See if we can take anything off of the retransmit queue. */
3668 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3669 
3670 	tcp_rack_update_reo_wnd(sk, &rs);
3671 
3672 	if (tp->tlp_high_seq)
3673 		tcp_process_tlp_ack(sk, ack, flag);
3674 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3675 	if (flag & FLAG_SET_XMIT_TIMER)
3676 		tcp_set_xmit_timer(sk);
3677 
3678 	if (tcp_ack_is_dubious(sk, flag)) {
3679 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3680 			num_dupack = 1;
3681 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3682 			if (!(flag & FLAG_DATA))
3683 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3684 		}
3685 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3686 				      &rexmit);
3687 	}
3688 
3689 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3690 		sk_dst_confirm(sk);
3691 
3692 	delivered = tcp_newly_delivered(sk, delivered, flag);
3693 	lost = tp->lost - lost;			/* freshly marked lost */
3694 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3695 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3696 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3697 	tcp_xmit_recovery(sk, rexmit);
3698 	return 1;
3699 
3700 no_queue:
3701 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3702 	if (flag & FLAG_DSACKING_ACK) {
3703 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3704 				      &rexmit);
3705 		tcp_newly_delivered(sk, delivered, flag);
3706 	}
3707 	/* If this ack opens up a zero window, clear backoff.  It was
3708 	 * being used to time the probes, and is probably far higher than
3709 	 * it needs to be for normal retransmission.
3710 	 */
3711 	tcp_ack_probe(sk);
3712 
3713 	if (tp->tlp_high_seq)
3714 		tcp_process_tlp_ack(sk, ack, flag);
3715 	return 1;
3716 
3717 invalid_ack:
3718 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3719 	return -1;
3720 
3721 old_ack:
3722 	/* If data was SACKed, tag it and see if we should send more data.
3723 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3724 	 */
3725 	if (TCP_SKB_CB(skb)->sacked) {
3726 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3727 						&sack_state);
3728 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3729 				      &rexmit);
3730 		tcp_newly_delivered(sk, delivered, flag);
3731 		tcp_xmit_recovery(sk, rexmit);
3732 	}
3733 
3734 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3735 	return 0;
3736 }
3737 
3738 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3739 				      bool syn, struct tcp_fastopen_cookie *foc,
3740 				      bool exp_opt)
3741 {
3742 	/* Valid only in SYN or SYN-ACK with an even length.  */
3743 	if (!foc || !syn || len < 0 || (len & 1))
3744 		return;
3745 
3746 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3747 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3748 		memcpy(foc->val, cookie, len);
3749 	else if (len != 0)
3750 		len = -1;
3751 	foc->len = len;
3752 	foc->exp = exp_opt;
3753 }
3754 
3755 static void smc_parse_options(const struct tcphdr *th,
3756 			      struct tcp_options_received *opt_rx,
3757 			      const unsigned char *ptr,
3758 			      int opsize)
3759 {
3760 #if IS_ENABLED(CONFIG_SMC)
3761 	if (static_branch_unlikely(&tcp_have_smc)) {
3762 		if (th->syn && !(opsize & 1) &&
3763 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3764 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3765 			opt_rx->smc_ok = 1;
3766 	}
3767 #endif
3768 }
3769 
3770 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3771  * But, this can also be called on packets in the established flow when
3772  * the fast version below fails.
3773  */
3774 void tcp_parse_options(const struct net *net,
3775 		       const struct sk_buff *skb,
3776 		       struct tcp_options_received *opt_rx, int estab,
3777 		       struct tcp_fastopen_cookie *foc)
3778 {
3779 	const unsigned char *ptr;
3780 	const struct tcphdr *th = tcp_hdr(skb);
3781 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3782 
3783 	ptr = (const unsigned char *)(th + 1);
3784 	opt_rx->saw_tstamp = 0;
3785 
3786 	while (length > 0) {
3787 		int opcode = *ptr++;
3788 		int opsize;
3789 
3790 		switch (opcode) {
3791 		case TCPOPT_EOL:
3792 			return;
3793 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3794 			length--;
3795 			continue;
3796 		default:
3797 			opsize = *ptr++;
3798 			if (opsize < 2) /* "silly options" */
3799 				return;
3800 			if (opsize > length)
3801 				return;	/* don't parse partial options */
3802 			switch (opcode) {
3803 			case TCPOPT_MSS:
3804 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3805 					u16 in_mss = get_unaligned_be16(ptr);
3806 					if (in_mss) {
3807 						if (opt_rx->user_mss &&
3808 						    opt_rx->user_mss < in_mss)
3809 							in_mss = opt_rx->user_mss;
3810 						opt_rx->mss_clamp = in_mss;
3811 					}
3812 				}
3813 				break;
3814 			case TCPOPT_WINDOW:
3815 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3816 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3817 					__u8 snd_wscale = *(__u8 *)ptr;
3818 					opt_rx->wscale_ok = 1;
3819 					if (snd_wscale > TCP_MAX_WSCALE) {
3820 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3821 								     __func__,
3822 								     snd_wscale,
3823 								     TCP_MAX_WSCALE);
3824 						snd_wscale = TCP_MAX_WSCALE;
3825 					}
3826 					opt_rx->snd_wscale = snd_wscale;
3827 				}
3828 				break;
3829 			case TCPOPT_TIMESTAMP:
3830 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3831 				    ((estab && opt_rx->tstamp_ok) ||
3832 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3833 					opt_rx->saw_tstamp = 1;
3834 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3835 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3836 				}
3837 				break;
3838 			case TCPOPT_SACK_PERM:
3839 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3840 				    !estab && net->ipv4.sysctl_tcp_sack) {
3841 					opt_rx->sack_ok = TCP_SACK_SEEN;
3842 					tcp_sack_reset(opt_rx);
3843 				}
3844 				break;
3845 
3846 			case TCPOPT_SACK:
3847 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3848 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3849 				   opt_rx->sack_ok) {
3850 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3851 				}
3852 				break;
3853 #ifdef CONFIG_TCP_MD5SIG
3854 			case TCPOPT_MD5SIG:
3855 				/*
3856 				 * The MD5 Hash has already been
3857 				 * checked (see tcp_v{4,6}_do_rcv()).
3858 				 */
3859 				break;
3860 #endif
3861 			case TCPOPT_FASTOPEN:
3862 				tcp_parse_fastopen_option(
3863 					opsize - TCPOLEN_FASTOPEN_BASE,
3864 					ptr, th->syn, foc, false);
3865 				break;
3866 
3867 			case TCPOPT_EXP:
3868 				/* Fast Open option shares code 254 using a
3869 				 * 16 bits magic number.
3870 				 */
3871 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3872 				    get_unaligned_be16(ptr) ==
3873 				    TCPOPT_FASTOPEN_MAGIC)
3874 					tcp_parse_fastopen_option(opsize -
3875 						TCPOLEN_EXP_FASTOPEN_BASE,
3876 						ptr + 2, th->syn, foc, true);
3877 				else
3878 					smc_parse_options(th, opt_rx, ptr,
3879 							  opsize);
3880 				break;
3881 
3882 			}
3883 			ptr += opsize-2;
3884 			length -= opsize;
3885 		}
3886 	}
3887 }
3888 EXPORT_SYMBOL(tcp_parse_options);
3889 
3890 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3891 {
3892 	const __be32 *ptr = (const __be32 *)(th + 1);
3893 
3894 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3895 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3896 		tp->rx_opt.saw_tstamp = 1;
3897 		++ptr;
3898 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3899 		++ptr;
3900 		if (*ptr)
3901 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3902 		else
3903 			tp->rx_opt.rcv_tsecr = 0;
3904 		return true;
3905 	}
3906 	return false;
3907 }
3908 
3909 /* Fast parse options. This hopes to only see timestamps.
3910  * If it is wrong it falls back on tcp_parse_options().
3911  */
3912 static bool tcp_fast_parse_options(const struct net *net,
3913 				   const struct sk_buff *skb,
3914 				   const struct tcphdr *th, struct tcp_sock *tp)
3915 {
3916 	/* In the spirit of fast parsing, compare doff directly to constant
3917 	 * values.  Because equality is used, short doff can be ignored here.
3918 	 */
3919 	if (th->doff == (sizeof(*th) / 4)) {
3920 		tp->rx_opt.saw_tstamp = 0;
3921 		return false;
3922 	} else if (tp->rx_opt.tstamp_ok &&
3923 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3924 		if (tcp_parse_aligned_timestamp(tp, th))
3925 			return true;
3926 	}
3927 
3928 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3929 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3930 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3931 
3932 	return true;
3933 }
3934 
3935 #ifdef CONFIG_TCP_MD5SIG
3936 /*
3937  * Parse MD5 Signature option
3938  */
3939 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3940 {
3941 	int length = (th->doff << 2) - sizeof(*th);
3942 	const u8 *ptr = (const u8 *)(th + 1);
3943 
3944 	/* If not enough data remaining, we can short cut */
3945 	while (length >= TCPOLEN_MD5SIG) {
3946 		int opcode = *ptr++;
3947 		int opsize;
3948 
3949 		switch (opcode) {
3950 		case TCPOPT_EOL:
3951 			return NULL;
3952 		case TCPOPT_NOP:
3953 			length--;
3954 			continue;
3955 		default:
3956 			opsize = *ptr++;
3957 			if (opsize < 2 || opsize > length)
3958 				return NULL;
3959 			if (opcode == TCPOPT_MD5SIG)
3960 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3961 		}
3962 		ptr += opsize - 2;
3963 		length -= opsize;
3964 	}
3965 	return NULL;
3966 }
3967 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3968 #endif
3969 
3970 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3971  *
3972  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3973  * it can pass through stack. So, the following predicate verifies that
3974  * this segment is not used for anything but congestion avoidance or
3975  * fast retransmit. Moreover, we even are able to eliminate most of such
3976  * second order effects, if we apply some small "replay" window (~RTO)
3977  * to timestamp space.
3978  *
3979  * All these measures still do not guarantee that we reject wrapped ACKs
3980  * on networks with high bandwidth, when sequence space is recycled fastly,
3981  * but it guarantees that such events will be very rare and do not affect
3982  * connection seriously. This doesn't look nice, but alas, PAWS is really
3983  * buggy extension.
3984  *
3985  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3986  * states that events when retransmit arrives after original data are rare.
3987  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3988  * the biggest problem on large power networks even with minor reordering.
3989  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3990  * up to bandwidth of 18Gigabit/sec. 8) ]
3991  */
3992 
3993 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3994 {
3995 	const struct tcp_sock *tp = tcp_sk(sk);
3996 	const struct tcphdr *th = tcp_hdr(skb);
3997 	u32 seq = TCP_SKB_CB(skb)->seq;
3998 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3999 
4000 	return (/* 1. Pure ACK with correct sequence number. */
4001 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4002 
4003 		/* 2. ... and duplicate ACK. */
4004 		ack == tp->snd_una &&
4005 
4006 		/* 3. ... and does not update window. */
4007 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4008 
4009 		/* 4. ... and sits in replay window. */
4010 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4011 }
4012 
4013 static inline bool tcp_paws_discard(const struct sock *sk,
4014 				   const struct sk_buff *skb)
4015 {
4016 	const struct tcp_sock *tp = tcp_sk(sk);
4017 
4018 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4019 	       !tcp_disordered_ack(sk, skb);
4020 }
4021 
4022 /* Check segment sequence number for validity.
4023  *
4024  * Segment controls are considered valid, if the segment
4025  * fits to the window after truncation to the window. Acceptability
4026  * of data (and SYN, FIN, of course) is checked separately.
4027  * See tcp_data_queue(), for example.
4028  *
4029  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4030  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4031  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4032  * (borrowed from freebsd)
4033  */
4034 
4035 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4036 {
4037 	return	!before(end_seq, tp->rcv_wup) &&
4038 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4039 }
4040 
4041 /* When we get a reset we do this. */
4042 void tcp_reset(struct sock *sk)
4043 {
4044 	trace_tcp_receive_reset(sk);
4045 
4046 	/* We want the right error as BSD sees it (and indeed as we do). */
4047 	switch (sk->sk_state) {
4048 	case TCP_SYN_SENT:
4049 		sk->sk_err = ECONNREFUSED;
4050 		break;
4051 	case TCP_CLOSE_WAIT:
4052 		sk->sk_err = EPIPE;
4053 		break;
4054 	case TCP_CLOSE:
4055 		return;
4056 	default:
4057 		sk->sk_err = ECONNRESET;
4058 	}
4059 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4060 	smp_wmb();
4061 
4062 	tcp_write_queue_purge(sk);
4063 	tcp_done(sk);
4064 
4065 	if (!sock_flag(sk, SOCK_DEAD))
4066 		sk->sk_error_report(sk);
4067 }
4068 
4069 /*
4070  * 	Process the FIN bit. This now behaves as it is supposed to work
4071  *	and the FIN takes effect when it is validly part of sequence
4072  *	space. Not before when we get holes.
4073  *
4074  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4075  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4076  *	TIME-WAIT)
4077  *
4078  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4079  *	close and we go into CLOSING (and later onto TIME-WAIT)
4080  *
4081  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4082  */
4083 void tcp_fin(struct sock *sk)
4084 {
4085 	struct tcp_sock *tp = tcp_sk(sk);
4086 
4087 	inet_csk_schedule_ack(sk);
4088 
4089 	sk->sk_shutdown |= RCV_SHUTDOWN;
4090 	sock_set_flag(sk, SOCK_DONE);
4091 
4092 	switch (sk->sk_state) {
4093 	case TCP_SYN_RECV:
4094 	case TCP_ESTABLISHED:
4095 		/* Move to CLOSE_WAIT */
4096 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4097 		inet_csk(sk)->icsk_ack.pingpong = 1;
4098 		break;
4099 
4100 	case TCP_CLOSE_WAIT:
4101 	case TCP_CLOSING:
4102 		/* Received a retransmission of the FIN, do
4103 		 * nothing.
4104 		 */
4105 		break;
4106 	case TCP_LAST_ACK:
4107 		/* RFC793: Remain in the LAST-ACK state. */
4108 		break;
4109 
4110 	case TCP_FIN_WAIT1:
4111 		/* This case occurs when a simultaneous close
4112 		 * happens, we must ack the received FIN and
4113 		 * enter the CLOSING state.
4114 		 */
4115 		tcp_send_ack(sk);
4116 		tcp_set_state(sk, TCP_CLOSING);
4117 		break;
4118 	case TCP_FIN_WAIT2:
4119 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4120 		tcp_send_ack(sk);
4121 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4122 		break;
4123 	default:
4124 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4125 		 * cases we should never reach this piece of code.
4126 		 */
4127 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4128 		       __func__, sk->sk_state);
4129 		break;
4130 	}
4131 
4132 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4133 	 * Probably, we should reset in this case. For now drop them.
4134 	 */
4135 	skb_rbtree_purge(&tp->out_of_order_queue);
4136 	if (tcp_is_sack(tp))
4137 		tcp_sack_reset(&tp->rx_opt);
4138 	sk_mem_reclaim(sk);
4139 
4140 	if (!sock_flag(sk, SOCK_DEAD)) {
4141 		sk->sk_state_change(sk);
4142 
4143 		/* Do not send POLL_HUP for half duplex close. */
4144 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4145 		    sk->sk_state == TCP_CLOSE)
4146 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4147 		else
4148 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4149 	}
4150 }
4151 
4152 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4153 				  u32 end_seq)
4154 {
4155 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4156 		if (before(seq, sp->start_seq))
4157 			sp->start_seq = seq;
4158 		if (after(end_seq, sp->end_seq))
4159 			sp->end_seq = end_seq;
4160 		return true;
4161 	}
4162 	return false;
4163 }
4164 
4165 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4166 {
4167 	struct tcp_sock *tp = tcp_sk(sk);
4168 
4169 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4170 		int mib_idx;
4171 
4172 		if (before(seq, tp->rcv_nxt))
4173 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4174 		else
4175 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4176 
4177 		NET_INC_STATS(sock_net(sk), mib_idx);
4178 
4179 		tp->rx_opt.dsack = 1;
4180 		tp->duplicate_sack[0].start_seq = seq;
4181 		tp->duplicate_sack[0].end_seq = end_seq;
4182 	}
4183 }
4184 
4185 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4186 {
4187 	struct tcp_sock *tp = tcp_sk(sk);
4188 
4189 	if (!tp->rx_opt.dsack)
4190 		tcp_dsack_set(sk, seq, end_seq);
4191 	else
4192 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4193 }
4194 
4195 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4196 {
4197 	/* When the ACK path fails or drops most ACKs, the sender would
4198 	 * timeout and spuriously retransmit the same segment repeatedly.
4199 	 * The receiver remembers and reflects via DSACKs. Leverage the
4200 	 * DSACK state and change the txhash to re-route speculatively.
4201 	 */
4202 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4203 		sk_rethink_txhash(sk);
4204 }
4205 
4206 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4207 {
4208 	struct tcp_sock *tp = tcp_sk(sk);
4209 
4210 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4211 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4212 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4213 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4214 
4215 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4216 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4217 
4218 			tcp_rcv_spurious_retrans(sk, skb);
4219 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4220 				end_seq = tp->rcv_nxt;
4221 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4222 		}
4223 	}
4224 
4225 	tcp_send_ack(sk);
4226 }
4227 
4228 /* These routines update the SACK block as out-of-order packets arrive or
4229  * in-order packets close up the sequence space.
4230  */
4231 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4232 {
4233 	int this_sack;
4234 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4235 	struct tcp_sack_block *swalk = sp + 1;
4236 
4237 	/* See if the recent change to the first SACK eats into
4238 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4239 	 */
4240 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4241 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4242 			int i;
4243 
4244 			/* Zap SWALK, by moving every further SACK up by one slot.
4245 			 * Decrease num_sacks.
4246 			 */
4247 			tp->rx_opt.num_sacks--;
4248 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4249 				sp[i] = sp[i + 1];
4250 			continue;
4251 		}
4252 		this_sack++, swalk++;
4253 	}
4254 }
4255 
4256 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4257 {
4258 	struct tcp_sock *tp = tcp_sk(sk);
4259 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4260 	int cur_sacks = tp->rx_opt.num_sacks;
4261 	int this_sack;
4262 
4263 	if (!cur_sacks)
4264 		goto new_sack;
4265 
4266 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4267 		if (tcp_sack_extend(sp, seq, end_seq)) {
4268 			/* Rotate this_sack to the first one. */
4269 			for (; this_sack > 0; this_sack--, sp--)
4270 				swap(*sp, *(sp - 1));
4271 			if (cur_sacks > 1)
4272 				tcp_sack_maybe_coalesce(tp);
4273 			return;
4274 		}
4275 	}
4276 
4277 	/* Could not find an adjacent existing SACK, build a new one,
4278 	 * put it at the front, and shift everyone else down.  We
4279 	 * always know there is at least one SACK present already here.
4280 	 *
4281 	 * If the sack array is full, forget about the last one.
4282 	 */
4283 	if (this_sack >= TCP_NUM_SACKS) {
4284 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4285 			tcp_send_ack(sk);
4286 		this_sack--;
4287 		tp->rx_opt.num_sacks--;
4288 		sp--;
4289 	}
4290 	for (; this_sack > 0; this_sack--, sp--)
4291 		*sp = *(sp - 1);
4292 
4293 new_sack:
4294 	/* Build the new head SACK, and we're done. */
4295 	sp->start_seq = seq;
4296 	sp->end_seq = end_seq;
4297 	tp->rx_opt.num_sacks++;
4298 }
4299 
4300 /* RCV.NXT advances, some SACKs should be eaten. */
4301 
4302 static void tcp_sack_remove(struct tcp_sock *tp)
4303 {
4304 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4305 	int num_sacks = tp->rx_opt.num_sacks;
4306 	int this_sack;
4307 
4308 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4309 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4310 		tp->rx_opt.num_sacks = 0;
4311 		return;
4312 	}
4313 
4314 	for (this_sack = 0; this_sack < num_sacks;) {
4315 		/* Check if the start of the sack is covered by RCV.NXT. */
4316 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4317 			int i;
4318 
4319 			/* RCV.NXT must cover all the block! */
4320 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4321 
4322 			/* Zap this SACK, by moving forward any other SACKS. */
4323 			for (i = this_sack+1; i < num_sacks; i++)
4324 				tp->selective_acks[i-1] = tp->selective_acks[i];
4325 			num_sacks--;
4326 			continue;
4327 		}
4328 		this_sack++;
4329 		sp++;
4330 	}
4331 	tp->rx_opt.num_sacks = num_sacks;
4332 }
4333 
4334 /**
4335  * tcp_try_coalesce - try to merge skb to prior one
4336  * @sk: socket
4337  * @dest: destination queue
4338  * @to: prior buffer
4339  * @from: buffer to add in queue
4340  * @fragstolen: pointer to boolean
4341  *
4342  * Before queueing skb @from after @to, try to merge them
4343  * to reduce overall memory use and queue lengths, if cost is small.
4344  * Packets in ofo or receive queues can stay a long time.
4345  * Better try to coalesce them right now to avoid future collapses.
4346  * Returns true if caller should free @from instead of queueing it
4347  */
4348 static bool tcp_try_coalesce(struct sock *sk,
4349 			     struct sk_buff *to,
4350 			     struct sk_buff *from,
4351 			     bool *fragstolen)
4352 {
4353 	int delta;
4354 
4355 	*fragstolen = false;
4356 
4357 	/* Its possible this segment overlaps with prior segment in queue */
4358 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4359 		return false;
4360 
4361 #ifdef CONFIG_TLS_DEVICE
4362 	if (from->decrypted != to->decrypted)
4363 		return false;
4364 #endif
4365 
4366 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4367 		return false;
4368 
4369 	atomic_add(delta, &sk->sk_rmem_alloc);
4370 	sk_mem_charge(sk, delta);
4371 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4372 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4373 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4374 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4375 
4376 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4377 		TCP_SKB_CB(to)->has_rxtstamp = true;
4378 		to->tstamp = from->tstamp;
4379 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4380 	}
4381 
4382 	return true;
4383 }
4384 
4385 static bool tcp_ooo_try_coalesce(struct sock *sk,
4386 			     struct sk_buff *to,
4387 			     struct sk_buff *from,
4388 			     bool *fragstolen)
4389 {
4390 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4391 
4392 	/* In case tcp_drop() is called later, update to->gso_segs */
4393 	if (res) {
4394 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4395 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4396 
4397 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4398 	}
4399 	return res;
4400 }
4401 
4402 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4403 {
4404 	sk_drops_add(sk, skb);
4405 	__kfree_skb(skb);
4406 }
4407 
4408 /* This one checks to see if we can put data from the
4409  * out_of_order queue into the receive_queue.
4410  */
4411 static void tcp_ofo_queue(struct sock *sk)
4412 {
4413 	struct tcp_sock *tp = tcp_sk(sk);
4414 	__u32 dsack_high = tp->rcv_nxt;
4415 	bool fin, fragstolen, eaten;
4416 	struct sk_buff *skb, *tail;
4417 	struct rb_node *p;
4418 
4419 	p = rb_first(&tp->out_of_order_queue);
4420 	while (p) {
4421 		skb = rb_to_skb(p);
4422 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4423 			break;
4424 
4425 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4426 			__u32 dsack = dsack_high;
4427 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4428 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4429 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4430 		}
4431 		p = rb_next(p);
4432 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4433 
4434 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4435 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4436 			tcp_drop(sk, skb);
4437 			continue;
4438 		}
4439 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4440 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4441 			   TCP_SKB_CB(skb)->end_seq);
4442 
4443 		tail = skb_peek_tail(&sk->sk_receive_queue);
4444 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4445 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4446 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4447 		if (!eaten)
4448 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4449 		else
4450 			kfree_skb_partial(skb, fragstolen);
4451 
4452 		if (unlikely(fin)) {
4453 			tcp_fin(sk);
4454 			/* tcp_fin() purges tp->out_of_order_queue,
4455 			 * so we must end this loop right now.
4456 			 */
4457 			break;
4458 		}
4459 	}
4460 }
4461 
4462 static bool tcp_prune_ofo_queue(struct sock *sk);
4463 static int tcp_prune_queue(struct sock *sk);
4464 
4465 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4466 				 unsigned int size)
4467 {
4468 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4469 	    !sk_rmem_schedule(sk, skb, size)) {
4470 
4471 		if (tcp_prune_queue(sk) < 0)
4472 			return -1;
4473 
4474 		while (!sk_rmem_schedule(sk, skb, size)) {
4475 			if (!tcp_prune_ofo_queue(sk))
4476 				return -1;
4477 		}
4478 	}
4479 	return 0;
4480 }
4481 
4482 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4483 {
4484 	struct tcp_sock *tp = tcp_sk(sk);
4485 	struct rb_node **p, *parent;
4486 	struct sk_buff *skb1;
4487 	u32 seq, end_seq;
4488 	bool fragstolen;
4489 
4490 	tcp_ecn_check_ce(sk, skb);
4491 
4492 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4493 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4494 		tcp_drop(sk, skb);
4495 		return;
4496 	}
4497 
4498 	/* Disable header prediction. */
4499 	tp->pred_flags = 0;
4500 	inet_csk_schedule_ack(sk);
4501 
4502 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4503 	seq = TCP_SKB_CB(skb)->seq;
4504 	end_seq = TCP_SKB_CB(skb)->end_seq;
4505 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4506 		   tp->rcv_nxt, seq, end_seq);
4507 
4508 	p = &tp->out_of_order_queue.rb_node;
4509 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4510 		/* Initial out of order segment, build 1 SACK. */
4511 		if (tcp_is_sack(tp)) {
4512 			tp->rx_opt.num_sacks = 1;
4513 			tp->selective_acks[0].start_seq = seq;
4514 			tp->selective_acks[0].end_seq = end_seq;
4515 		}
4516 		rb_link_node(&skb->rbnode, NULL, p);
4517 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4518 		tp->ooo_last_skb = skb;
4519 		goto end;
4520 	}
4521 
4522 	/* In the typical case, we are adding an skb to the end of the list.
4523 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4524 	 */
4525 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4526 				 skb, &fragstolen)) {
4527 coalesce_done:
4528 		tcp_grow_window(sk, skb);
4529 		kfree_skb_partial(skb, fragstolen);
4530 		skb = NULL;
4531 		goto add_sack;
4532 	}
4533 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4534 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4535 		parent = &tp->ooo_last_skb->rbnode;
4536 		p = &parent->rb_right;
4537 		goto insert;
4538 	}
4539 
4540 	/* Find place to insert this segment. Handle overlaps on the way. */
4541 	parent = NULL;
4542 	while (*p) {
4543 		parent = *p;
4544 		skb1 = rb_to_skb(parent);
4545 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4546 			p = &parent->rb_left;
4547 			continue;
4548 		}
4549 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4550 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4551 				/* All the bits are present. Drop. */
4552 				NET_INC_STATS(sock_net(sk),
4553 					      LINUX_MIB_TCPOFOMERGE);
4554 				tcp_drop(sk, skb);
4555 				skb = NULL;
4556 				tcp_dsack_set(sk, seq, end_seq);
4557 				goto add_sack;
4558 			}
4559 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4560 				/* Partial overlap. */
4561 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4562 			} else {
4563 				/* skb's seq == skb1's seq and skb covers skb1.
4564 				 * Replace skb1 with skb.
4565 				 */
4566 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4567 						&tp->out_of_order_queue);
4568 				tcp_dsack_extend(sk,
4569 						 TCP_SKB_CB(skb1)->seq,
4570 						 TCP_SKB_CB(skb1)->end_seq);
4571 				NET_INC_STATS(sock_net(sk),
4572 					      LINUX_MIB_TCPOFOMERGE);
4573 				tcp_drop(sk, skb1);
4574 				goto merge_right;
4575 			}
4576 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4577 						skb, &fragstolen)) {
4578 			goto coalesce_done;
4579 		}
4580 		p = &parent->rb_right;
4581 	}
4582 insert:
4583 	/* Insert segment into RB tree. */
4584 	rb_link_node(&skb->rbnode, parent, p);
4585 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4586 
4587 merge_right:
4588 	/* Remove other segments covered by skb. */
4589 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4590 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4591 			break;
4592 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4593 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4594 					 end_seq);
4595 			break;
4596 		}
4597 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4598 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4599 				 TCP_SKB_CB(skb1)->end_seq);
4600 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4601 		tcp_drop(sk, skb1);
4602 	}
4603 	/* If there is no skb after us, we are the last_skb ! */
4604 	if (!skb1)
4605 		tp->ooo_last_skb = skb;
4606 
4607 add_sack:
4608 	if (tcp_is_sack(tp))
4609 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4610 end:
4611 	if (skb) {
4612 		tcp_grow_window(sk, skb);
4613 		skb_condense(skb);
4614 		skb_set_owner_r(skb, sk);
4615 	}
4616 }
4617 
4618 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4619 				      bool *fragstolen)
4620 {
4621 	int eaten;
4622 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4623 
4624 	eaten = (tail &&
4625 		 tcp_try_coalesce(sk, tail,
4626 				  skb, fragstolen)) ? 1 : 0;
4627 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4628 	if (!eaten) {
4629 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4630 		skb_set_owner_r(skb, sk);
4631 	}
4632 	return eaten;
4633 }
4634 
4635 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4636 {
4637 	struct sk_buff *skb;
4638 	int err = -ENOMEM;
4639 	int data_len = 0;
4640 	bool fragstolen;
4641 
4642 	if (size == 0)
4643 		return 0;
4644 
4645 	if (size > PAGE_SIZE) {
4646 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4647 
4648 		data_len = npages << PAGE_SHIFT;
4649 		size = data_len + (size & ~PAGE_MASK);
4650 	}
4651 	skb = alloc_skb_with_frags(size - data_len, data_len,
4652 				   PAGE_ALLOC_COSTLY_ORDER,
4653 				   &err, sk->sk_allocation);
4654 	if (!skb)
4655 		goto err;
4656 
4657 	skb_put(skb, size - data_len);
4658 	skb->data_len = data_len;
4659 	skb->len = size;
4660 
4661 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4662 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4663 		goto err_free;
4664 	}
4665 
4666 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4667 	if (err)
4668 		goto err_free;
4669 
4670 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4671 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4672 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4673 
4674 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4675 		WARN_ON_ONCE(fragstolen); /* should not happen */
4676 		__kfree_skb(skb);
4677 	}
4678 	return size;
4679 
4680 err_free:
4681 	kfree_skb(skb);
4682 err:
4683 	return err;
4684 
4685 }
4686 
4687 void tcp_data_ready(struct sock *sk)
4688 {
4689 	const struct tcp_sock *tp = tcp_sk(sk);
4690 	int avail = tp->rcv_nxt - tp->copied_seq;
4691 
4692 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4693 		return;
4694 
4695 	sk->sk_data_ready(sk);
4696 }
4697 
4698 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4699 {
4700 	struct tcp_sock *tp = tcp_sk(sk);
4701 	bool fragstolen;
4702 	int eaten;
4703 
4704 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4705 		__kfree_skb(skb);
4706 		return;
4707 	}
4708 	skb_dst_drop(skb);
4709 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4710 
4711 	tcp_ecn_accept_cwr(sk, skb);
4712 
4713 	tp->rx_opt.dsack = 0;
4714 
4715 	/*  Queue data for delivery to the user.
4716 	 *  Packets in sequence go to the receive queue.
4717 	 *  Out of sequence packets to the out_of_order_queue.
4718 	 */
4719 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4720 		if (tcp_receive_window(tp) == 0) {
4721 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4722 			goto out_of_window;
4723 		}
4724 
4725 		/* Ok. In sequence. In window. */
4726 queue_and_out:
4727 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4728 			sk_forced_mem_schedule(sk, skb->truesize);
4729 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4730 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4731 			goto drop;
4732 		}
4733 
4734 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4735 		if (skb->len)
4736 			tcp_event_data_recv(sk, skb);
4737 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4738 			tcp_fin(sk);
4739 
4740 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4741 			tcp_ofo_queue(sk);
4742 
4743 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4744 			 * gap in queue is filled.
4745 			 */
4746 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4747 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4748 		}
4749 
4750 		if (tp->rx_opt.num_sacks)
4751 			tcp_sack_remove(tp);
4752 
4753 		tcp_fast_path_check(sk);
4754 
4755 		if (eaten > 0)
4756 			kfree_skb_partial(skb, fragstolen);
4757 		if (!sock_flag(sk, SOCK_DEAD))
4758 			tcp_data_ready(sk);
4759 		return;
4760 	}
4761 
4762 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4763 		tcp_rcv_spurious_retrans(sk, skb);
4764 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4765 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4766 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4767 
4768 out_of_window:
4769 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4770 		inet_csk_schedule_ack(sk);
4771 drop:
4772 		tcp_drop(sk, skb);
4773 		return;
4774 	}
4775 
4776 	/* Out of window. F.e. zero window probe. */
4777 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4778 		goto out_of_window;
4779 
4780 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4781 		/* Partial packet, seq < rcv_next < end_seq */
4782 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4783 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4784 			   TCP_SKB_CB(skb)->end_seq);
4785 
4786 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4787 
4788 		/* If window is closed, drop tail of packet. But after
4789 		 * remembering D-SACK for its head made in previous line.
4790 		 */
4791 		if (!tcp_receive_window(tp)) {
4792 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4793 			goto out_of_window;
4794 		}
4795 		goto queue_and_out;
4796 	}
4797 
4798 	tcp_data_queue_ofo(sk, skb);
4799 }
4800 
4801 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4802 {
4803 	if (list)
4804 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4805 
4806 	return skb_rb_next(skb);
4807 }
4808 
4809 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4810 					struct sk_buff_head *list,
4811 					struct rb_root *root)
4812 {
4813 	struct sk_buff *next = tcp_skb_next(skb, list);
4814 
4815 	if (list)
4816 		__skb_unlink(skb, list);
4817 	else
4818 		rb_erase(&skb->rbnode, root);
4819 
4820 	__kfree_skb(skb);
4821 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4822 
4823 	return next;
4824 }
4825 
4826 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4827 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4828 {
4829 	struct rb_node **p = &root->rb_node;
4830 	struct rb_node *parent = NULL;
4831 	struct sk_buff *skb1;
4832 
4833 	while (*p) {
4834 		parent = *p;
4835 		skb1 = rb_to_skb(parent);
4836 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4837 			p = &parent->rb_left;
4838 		else
4839 			p = &parent->rb_right;
4840 	}
4841 	rb_link_node(&skb->rbnode, parent, p);
4842 	rb_insert_color(&skb->rbnode, root);
4843 }
4844 
4845 /* Collapse contiguous sequence of skbs head..tail with
4846  * sequence numbers start..end.
4847  *
4848  * If tail is NULL, this means until the end of the queue.
4849  *
4850  * Segments with FIN/SYN are not collapsed (only because this
4851  * simplifies code)
4852  */
4853 static void
4854 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4855 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4856 {
4857 	struct sk_buff *skb = head, *n;
4858 	struct sk_buff_head tmp;
4859 	bool end_of_skbs;
4860 
4861 	/* First, check that queue is collapsible and find
4862 	 * the point where collapsing can be useful.
4863 	 */
4864 restart:
4865 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4866 		n = tcp_skb_next(skb, list);
4867 
4868 		/* No new bits? It is possible on ofo queue. */
4869 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4870 			skb = tcp_collapse_one(sk, skb, list, root);
4871 			if (!skb)
4872 				break;
4873 			goto restart;
4874 		}
4875 
4876 		/* The first skb to collapse is:
4877 		 * - not SYN/FIN and
4878 		 * - bloated or contains data before "start" or
4879 		 *   overlaps to the next one.
4880 		 */
4881 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4882 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4883 		     before(TCP_SKB_CB(skb)->seq, start))) {
4884 			end_of_skbs = false;
4885 			break;
4886 		}
4887 
4888 		if (n && n != tail &&
4889 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4890 			end_of_skbs = false;
4891 			break;
4892 		}
4893 
4894 		/* Decided to skip this, advance start seq. */
4895 		start = TCP_SKB_CB(skb)->end_seq;
4896 	}
4897 	if (end_of_skbs ||
4898 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4899 		return;
4900 
4901 	__skb_queue_head_init(&tmp);
4902 
4903 	while (before(start, end)) {
4904 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4905 		struct sk_buff *nskb;
4906 
4907 		nskb = alloc_skb(copy, GFP_ATOMIC);
4908 		if (!nskb)
4909 			break;
4910 
4911 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4912 #ifdef CONFIG_TLS_DEVICE
4913 		nskb->decrypted = skb->decrypted;
4914 #endif
4915 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4916 		if (list)
4917 			__skb_queue_before(list, skb, nskb);
4918 		else
4919 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4920 		skb_set_owner_r(nskb, sk);
4921 
4922 		/* Copy data, releasing collapsed skbs. */
4923 		while (copy > 0) {
4924 			int offset = start - TCP_SKB_CB(skb)->seq;
4925 			int size = TCP_SKB_CB(skb)->end_seq - start;
4926 
4927 			BUG_ON(offset < 0);
4928 			if (size > 0) {
4929 				size = min(copy, size);
4930 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4931 					BUG();
4932 				TCP_SKB_CB(nskb)->end_seq += size;
4933 				copy -= size;
4934 				start += size;
4935 			}
4936 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4937 				skb = tcp_collapse_one(sk, skb, list, root);
4938 				if (!skb ||
4939 				    skb == tail ||
4940 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4941 					goto end;
4942 #ifdef CONFIG_TLS_DEVICE
4943 				if (skb->decrypted != nskb->decrypted)
4944 					goto end;
4945 #endif
4946 			}
4947 		}
4948 	}
4949 end:
4950 	skb_queue_walk_safe(&tmp, skb, n)
4951 		tcp_rbtree_insert(root, skb);
4952 }
4953 
4954 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4955  * and tcp_collapse() them until all the queue is collapsed.
4956  */
4957 static void tcp_collapse_ofo_queue(struct sock *sk)
4958 {
4959 	struct tcp_sock *tp = tcp_sk(sk);
4960 	u32 range_truesize, sum_tiny = 0;
4961 	struct sk_buff *skb, *head;
4962 	u32 start, end;
4963 
4964 	skb = skb_rb_first(&tp->out_of_order_queue);
4965 new_range:
4966 	if (!skb) {
4967 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4968 		return;
4969 	}
4970 	start = TCP_SKB_CB(skb)->seq;
4971 	end = TCP_SKB_CB(skb)->end_seq;
4972 	range_truesize = skb->truesize;
4973 
4974 	for (head = skb;;) {
4975 		skb = skb_rb_next(skb);
4976 
4977 		/* Range is terminated when we see a gap or when
4978 		 * we are at the queue end.
4979 		 */
4980 		if (!skb ||
4981 		    after(TCP_SKB_CB(skb)->seq, end) ||
4982 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4983 			/* Do not attempt collapsing tiny skbs */
4984 			if (range_truesize != head->truesize ||
4985 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4986 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4987 					     head, skb, start, end);
4988 			} else {
4989 				sum_tiny += range_truesize;
4990 				if (sum_tiny > sk->sk_rcvbuf >> 3)
4991 					return;
4992 			}
4993 			goto new_range;
4994 		}
4995 
4996 		range_truesize += skb->truesize;
4997 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4998 			start = TCP_SKB_CB(skb)->seq;
4999 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5000 			end = TCP_SKB_CB(skb)->end_seq;
5001 	}
5002 }
5003 
5004 /*
5005  * Clean the out-of-order queue to make room.
5006  * We drop high sequences packets to :
5007  * 1) Let a chance for holes to be filled.
5008  * 2) not add too big latencies if thousands of packets sit there.
5009  *    (But if application shrinks SO_RCVBUF, we could still end up
5010  *     freeing whole queue here)
5011  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5012  *
5013  * Return true if queue has shrunk.
5014  */
5015 static bool tcp_prune_ofo_queue(struct sock *sk)
5016 {
5017 	struct tcp_sock *tp = tcp_sk(sk);
5018 	struct rb_node *node, *prev;
5019 	int goal;
5020 
5021 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5022 		return false;
5023 
5024 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5025 	goal = sk->sk_rcvbuf >> 3;
5026 	node = &tp->ooo_last_skb->rbnode;
5027 	do {
5028 		prev = rb_prev(node);
5029 		rb_erase(node, &tp->out_of_order_queue);
5030 		goal -= rb_to_skb(node)->truesize;
5031 		tcp_drop(sk, rb_to_skb(node));
5032 		if (!prev || goal <= 0) {
5033 			sk_mem_reclaim(sk);
5034 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5035 			    !tcp_under_memory_pressure(sk))
5036 				break;
5037 			goal = sk->sk_rcvbuf >> 3;
5038 		}
5039 		node = prev;
5040 	} while (node);
5041 	tp->ooo_last_skb = rb_to_skb(prev);
5042 
5043 	/* Reset SACK state.  A conforming SACK implementation will
5044 	 * do the same at a timeout based retransmit.  When a connection
5045 	 * is in a sad state like this, we care only about integrity
5046 	 * of the connection not performance.
5047 	 */
5048 	if (tp->rx_opt.sack_ok)
5049 		tcp_sack_reset(&tp->rx_opt);
5050 	return true;
5051 }
5052 
5053 /* Reduce allocated memory if we can, trying to get
5054  * the socket within its memory limits again.
5055  *
5056  * Return less than zero if we should start dropping frames
5057  * until the socket owning process reads some of the data
5058  * to stabilize the situation.
5059  */
5060 static int tcp_prune_queue(struct sock *sk)
5061 {
5062 	struct tcp_sock *tp = tcp_sk(sk);
5063 
5064 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5065 
5066 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5067 
5068 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5069 		tcp_clamp_window(sk);
5070 	else if (tcp_under_memory_pressure(sk))
5071 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5072 
5073 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5074 		return 0;
5075 
5076 	tcp_collapse_ofo_queue(sk);
5077 	if (!skb_queue_empty(&sk->sk_receive_queue))
5078 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5079 			     skb_peek(&sk->sk_receive_queue),
5080 			     NULL,
5081 			     tp->copied_seq, tp->rcv_nxt);
5082 	sk_mem_reclaim(sk);
5083 
5084 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5085 		return 0;
5086 
5087 	/* Collapsing did not help, destructive actions follow.
5088 	 * This must not ever occur. */
5089 
5090 	tcp_prune_ofo_queue(sk);
5091 
5092 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5093 		return 0;
5094 
5095 	/* If we are really being abused, tell the caller to silently
5096 	 * drop receive data on the floor.  It will get retransmitted
5097 	 * and hopefully then we'll have sufficient space.
5098 	 */
5099 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5100 
5101 	/* Massive buffer overcommit. */
5102 	tp->pred_flags = 0;
5103 	return -1;
5104 }
5105 
5106 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5107 {
5108 	const struct tcp_sock *tp = tcp_sk(sk);
5109 
5110 	/* If the user specified a specific send buffer setting, do
5111 	 * not modify it.
5112 	 */
5113 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5114 		return false;
5115 
5116 	/* If we are under global TCP memory pressure, do not expand.  */
5117 	if (tcp_under_memory_pressure(sk))
5118 		return false;
5119 
5120 	/* If we are under soft global TCP memory pressure, do not expand.  */
5121 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5122 		return false;
5123 
5124 	/* If we filled the congestion window, do not expand.  */
5125 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5126 		return false;
5127 
5128 	return true;
5129 }
5130 
5131 /* When incoming ACK allowed to free some skb from write_queue,
5132  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5133  * on the exit from tcp input handler.
5134  *
5135  * PROBLEM: sndbuf expansion does not work well with largesend.
5136  */
5137 static void tcp_new_space(struct sock *sk)
5138 {
5139 	struct tcp_sock *tp = tcp_sk(sk);
5140 
5141 	if (tcp_should_expand_sndbuf(sk)) {
5142 		tcp_sndbuf_expand(sk);
5143 		tp->snd_cwnd_stamp = tcp_jiffies32;
5144 	}
5145 
5146 	sk->sk_write_space(sk);
5147 }
5148 
5149 static void tcp_check_space(struct sock *sk)
5150 {
5151 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5152 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5153 		/* pairs with tcp_poll() */
5154 		smp_mb();
5155 		if (sk->sk_socket &&
5156 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5157 			tcp_new_space(sk);
5158 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5159 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5160 		}
5161 	}
5162 }
5163 
5164 static inline void tcp_data_snd_check(struct sock *sk)
5165 {
5166 	tcp_push_pending_frames(sk);
5167 	tcp_check_space(sk);
5168 }
5169 
5170 /*
5171  * Check if sending an ack is needed.
5172  */
5173 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5174 {
5175 	struct tcp_sock *tp = tcp_sk(sk);
5176 	unsigned long rtt, delay;
5177 
5178 	    /* More than one full frame received... */
5179 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5180 	     /* ... and right edge of window advances far enough.
5181 	      * (tcp_recvmsg() will send ACK otherwise).
5182 	      * If application uses SO_RCVLOWAT, we want send ack now if
5183 	      * we have not received enough bytes to satisfy the condition.
5184 	      */
5185 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5186 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5187 	    /* We ACK each frame or... */
5188 	    tcp_in_quickack_mode(sk) ||
5189 	    /* Protocol state mandates a one-time immediate ACK */
5190 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5191 send_now:
5192 		tcp_send_ack(sk);
5193 		return;
5194 	}
5195 
5196 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5197 		tcp_send_delayed_ack(sk);
5198 		return;
5199 	}
5200 
5201 	if (!tcp_is_sack(tp) ||
5202 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5203 		goto send_now;
5204 
5205 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5206 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5207 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5208 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5209 				      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5210 		tp->compressed_ack = 0;
5211 	}
5212 
5213 	if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5214 		goto send_now;
5215 
5216 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5217 		return;
5218 
5219 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5220 
5221 	rtt = tp->rcv_rtt_est.rtt_us;
5222 	if (tp->srtt_us && tp->srtt_us < rtt)
5223 		rtt = tp->srtt_us;
5224 
5225 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5226 		      rtt * (NSEC_PER_USEC >> 3)/20);
5227 	sock_hold(sk);
5228 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5229 		      HRTIMER_MODE_REL_PINNED_SOFT);
5230 }
5231 
5232 static inline void tcp_ack_snd_check(struct sock *sk)
5233 {
5234 	if (!inet_csk_ack_scheduled(sk)) {
5235 		/* We sent a data segment already. */
5236 		return;
5237 	}
5238 	__tcp_ack_snd_check(sk, 1);
5239 }
5240 
5241 /*
5242  *	This routine is only called when we have urgent data
5243  *	signaled. Its the 'slow' part of tcp_urg. It could be
5244  *	moved inline now as tcp_urg is only called from one
5245  *	place. We handle URGent data wrong. We have to - as
5246  *	BSD still doesn't use the correction from RFC961.
5247  *	For 1003.1g we should support a new option TCP_STDURG to permit
5248  *	either form (or just set the sysctl tcp_stdurg).
5249  */
5250 
5251 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5252 {
5253 	struct tcp_sock *tp = tcp_sk(sk);
5254 	u32 ptr = ntohs(th->urg_ptr);
5255 
5256 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5257 		ptr--;
5258 	ptr += ntohl(th->seq);
5259 
5260 	/* Ignore urgent data that we've already seen and read. */
5261 	if (after(tp->copied_seq, ptr))
5262 		return;
5263 
5264 	/* Do not replay urg ptr.
5265 	 *
5266 	 * NOTE: interesting situation not covered by specs.
5267 	 * Misbehaving sender may send urg ptr, pointing to segment,
5268 	 * which we already have in ofo queue. We are not able to fetch
5269 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5270 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5271 	 * situations. But it is worth to think about possibility of some
5272 	 * DoSes using some hypothetical application level deadlock.
5273 	 */
5274 	if (before(ptr, tp->rcv_nxt))
5275 		return;
5276 
5277 	/* Do we already have a newer (or duplicate) urgent pointer? */
5278 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5279 		return;
5280 
5281 	/* Tell the world about our new urgent pointer. */
5282 	sk_send_sigurg(sk);
5283 
5284 	/* We may be adding urgent data when the last byte read was
5285 	 * urgent. To do this requires some care. We cannot just ignore
5286 	 * tp->copied_seq since we would read the last urgent byte again
5287 	 * as data, nor can we alter copied_seq until this data arrives
5288 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5289 	 *
5290 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5291 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5292 	 * and expect that both A and B disappear from stream. This is _wrong_.
5293 	 * Though this happens in BSD with high probability, this is occasional.
5294 	 * Any application relying on this is buggy. Note also, that fix "works"
5295 	 * only in this artificial test. Insert some normal data between A and B and we will
5296 	 * decline of BSD again. Verdict: it is better to remove to trap
5297 	 * buggy users.
5298 	 */
5299 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5300 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5301 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5302 		tp->copied_seq++;
5303 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5304 			__skb_unlink(skb, &sk->sk_receive_queue);
5305 			__kfree_skb(skb);
5306 		}
5307 	}
5308 
5309 	tp->urg_data = TCP_URG_NOTYET;
5310 	tp->urg_seq = ptr;
5311 
5312 	/* Disable header prediction. */
5313 	tp->pred_flags = 0;
5314 }
5315 
5316 /* This is the 'fast' part of urgent handling. */
5317 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5318 {
5319 	struct tcp_sock *tp = tcp_sk(sk);
5320 
5321 	/* Check if we get a new urgent pointer - normally not. */
5322 	if (th->urg)
5323 		tcp_check_urg(sk, th);
5324 
5325 	/* Do we wait for any urgent data? - normally not... */
5326 	if (tp->urg_data == TCP_URG_NOTYET) {
5327 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5328 			  th->syn;
5329 
5330 		/* Is the urgent pointer pointing into this packet? */
5331 		if (ptr < skb->len) {
5332 			u8 tmp;
5333 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5334 				BUG();
5335 			tp->urg_data = TCP_URG_VALID | tmp;
5336 			if (!sock_flag(sk, SOCK_DEAD))
5337 				sk->sk_data_ready(sk);
5338 		}
5339 	}
5340 }
5341 
5342 /* Accept RST for rcv_nxt - 1 after a FIN.
5343  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5344  * FIN is sent followed by a RST packet. The RST is sent with the same
5345  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5346  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5347  * ACKs on the closed socket. In addition middleboxes can drop either the
5348  * challenge ACK or a subsequent RST.
5349  */
5350 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5351 {
5352 	struct tcp_sock *tp = tcp_sk(sk);
5353 
5354 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5355 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5356 					       TCPF_CLOSING));
5357 }
5358 
5359 /* Does PAWS and seqno based validation of an incoming segment, flags will
5360  * play significant role here.
5361  */
5362 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5363 				  const struct tcphdr *th, int syn_inerr)
5364 {
5365 	struct tcp_sock *tp = tcp_sk(sk);
5366 	bool rst_seq_match = false;
5367 
5368 	/* RFC1323: H1. Apply PAWS check first. */
5369 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5370 	    tp->rx_opt.saw_tstamp &&
5371 	    tcp_paws_discard(sk, skb)) {
5372 		if (!th->rst) {
5373 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5374 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5375 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5376 						  &tp->last_oow_ack_time))
5377 				tcp_send_dupack(sk, skb);
5378 			goto discard;
5379 		}
5380 		/* Reset is accepted even if it did not pass PAWS. */
5381 	}
5382 
5383 	/* Step 1: check sequence number */
5384 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5385 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5386 		 * (RST) segments are validated by checking their SEQ-fields."
5387 		 * And page 69: "If an incoming segment is not acceptable,
5388 		 * an acknowledgment should be sent in reply (unless the RST
5389 		 * bit is set, if so drop the segment and return)".
5390 		 */
5391 		if (!th->rst) {
5392 			if (th->syn)
5393 				goto syn_challenge;
5394 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5395 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5396 						  &tp->last_oow_ack_time))
5397 				tcp_send_dupack(sk, skb);
5398 		} else if (tcp_reset_check(sk, skb)) {
5399 			tcp_reset(sk);
5400 		}
5401 		goto discard;
5402 	}
5403 
5404 	/* Step 2: check RST bit */
5405 	if (th->rst) {
5406 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5407 		 * FIN and SACK too if available):
5408 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5409 		 * the right-most SACK block,
5410 		 * then
5411 		 *     RESET the connection
5412 		 * else
5413 		 *     Send a challenge ACK
5414 		 */
5415 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5416 		    tcp_reset_check(sk, skb)) {
5417 			rst_seq_match = true;
5418 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5419 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5420 			int max_sack = sp[0].end_seq;
5421 			int this_sack;
5422 
5423 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5424 			     ++this_sack) {
5425 				max_sack = after(sp[this_sack].end_seq,
5426 						 max_sack) ?
5427 					sp[this_sack].end_seq : max_sack;
5428 			}
5429 
5430 			if (TCP_SKB_CB(skb)->seq == max_sack)
5431 				rst_seq_match = true;
5432 		}
5433 
5434 		if (rst_seq_match)
5435 			tcp_reset(sk);
5436 		else {
5437 			/* Disable TFO if RST is out-of-order
5438 			 * and no data has been received
5439 			 * for current active TFO socket
5440 			 */
5441 			if (tp->syn_fastopen && !tp->data_segs_in &&
5442 			    sk->sk_state == TCP_ESTABLISHED)
5443 				tcp_fastopen_active_disable(sk);
5444 			tcp_send_challenge_ack(sk, skb);
5445 		}
5446 		goto discard;
5447 	}
5448 
5449 	/* step 3: check security and precedence [ignored] */
5450 
5451 	/* step 4: Check for a SYN
5452 	 * RFC 5961 4.2 : Send a challenge ack
5453 	 */
5454 	if (th->syn) {
5455 syn_challenge:
5456 		if (syn_inerr)
5457 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5458 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5459 		tcp_send_challenge_ack(sk, skb);
5460 		goto discard;
5461 	}
5462 
5463 	return true;
5464 
5465 discard:
5466 	tcp_drop(sk, skb);
5467 	return false;
5468 }
5469 
5470 /*
5471  *	TCP receive function for the ESTABLISHED state.
5472  *
5473  *	It is split into a fast path and a slow path. The fast path is
5474  * 	disabled when:
5475  *	- A zero window was announced from us - zero window probing
5476  *        is only handled properly in the slow path.
5477  *	- Out of order segments arrived.
5478  *	- Urgent data is expected.
5479  *	- There is no buffer space left
5480  *	- Unexpected TCP flags/window values/header lengths are received
5481  *	  (detected by checking the TCP header against pred_flags)
5482  *	- Data is sent in both directions. Fast path only supports pure senders
5483  *	  or pure receivers (this means either the sequence number or the ack
5484  *	  value must stay constant)
5485  *	- Unexpected TCP option.
5486  *
5487  *	When these conditions are not satisfied it drops into a standard
5488  *	receive procedure patterned after RFC793 to handle all cases.
5489  *	The first three cases are guaranteed by proper pred_flags setting,
5490  *	the rest is checked inline. Fast processing is turned on in
5491  *	tcp_data_queue when everything is OK.
5492  */
5493 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5494 {
5495 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5496 	struct tcp_sock *tp = tcp_sk(sk);
5497 	unsigned int len = skb->len;
5498 
5499 	/* TCP congestion window tracking */
5500 	trace_tcp_probe(sk, skb);
5501 
5502 	tcp_mstamp_refresh(tp);
5503 	if (unlikely(!sk->sk_rx_dst))
5504 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5505 	/*
5506 	 *	Header prediction.
5507 	 *	The code loosely follows the one in the famous
5508 	 *	"30 instruction TCP receive" Van Jacobson mail.
5509 	 *
5510 	 *	Van's trick is to deposit buffers into socket queue
5511 	 *	on a device interrupt, to call tcp_recv function
5512 	 *	on the receive process context and checksum and copy
5513 	 *	the buffer to user space. smart...
5514 	 *
5515 	 *	Our current scheme is not silly either but we take the
5516 	 *	extra cost of the net_bh soft interrupt processing...
5517 	 *	We do checksum and copy also but from device to kernel.
5518 	 */
5519 
5520 	tp->rx_opt.saw_tstamp = 0;
5521 
5522 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5523 	 *	if header_prediction is to be made
5524 	 *	'S' will always be tp->tcp_header_len >> 2
5525 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5526 	 *  turn it off	(when there are holes in the receive
5527 	 *	 space for instance)
5528 	 *	PSH flag is ignored.
5529 	 */
5530 
5531 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5532 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5533 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5534 		int tcp_header_len = tp->tcp_header_len;
5535 
5536 		/* Timestamp header prediction: tcp_header_len
5537 		 * is automatically equal to th->doff*4 due to pred_flags
5538 		 * match.
5539 		 */
5540 
5541 		/* Check timestamp */
5542 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5543 			/* No? Slow path! */
5544 			if (!tcp_parse_aligned_timestamp(tp, th))
5545 				goto slow_path;
5546 
5547 			/* If PAWS failed, check it more carefully in slow path */
5548 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5549 				goto slow_path;
5550 
5551 			/* DO NOT update ts_recent here, if checksum fails
5552 			 * and timestamp was corrupted part, it will result
5553 			 * in a hung connection since we will drop all
5554 			 * future packets due to the PAWS test.
5555 			 */
5556 		}
5557 
5558 		if (len <= tcp_header_len) {
5559 			/* Bulk data transfer: sender */
5560 			if (len == tcp_header_len) {
5561 				/* Predicted packet is in window by definition.
5562 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5563 				 * Hence, check seq<=rcv_wup reduces to:
5564 				 */
5565 				if (tcp_header_len ==
5566 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5567 				    tp->rcv_nxt == tp->rcv_wup)
5568 					tcp_store_ts_recent(tp);
5569 
5570 				/* We know that such packets are checksummed
5571 				 * on entry.
5572 				 */
5573 				tcp_ack(sk, skb, 0);
5574 				__kfree_skb(skb);
5575 				tcp_data_snd_check(sk);
5576 				/* When receiving pure ack in fast path, update
5577 				 * last ts ecr directly instead of calling
5578 				 * tcp_rcv_rtt_measure_ts()
5579 				 */
5580 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5581 				return;
5582 			} else { /* Header too small */
5583 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5584 				goto discard;
5585 			}
5586 		} else {
5587 			int eaten = 0;
5588 			bool fragstolen = false;
5589 
5590 			if (tcp_checksum_complete(skb))
5591 				goto csum_error;
5592 
5593 			if ((int)skb->truesize > sk->sk_forward_alloc)
5594 				goto step5;
5595 
5596 			/* Predicted packet is in window by definition.
5597 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5598 			 * Hence, check seq<=rcv_wup reduces to:
5599 			 */
5600 			if (tcp_header_len ==
5601 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5602 			    tp->rcv_nxt == tp->rcv_wup)
5603 				tcp_store_ts_recent(tp);
5604 
5605 			tcp_rcv_rtt_measure_ts(sk, skb);
5606 
5607 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5608 
5609 			/* Bulk data transfer: receiver */
5610 			__skb_pull(skb, tcp_header_len);
5611 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5612 
5613 			tcp_event_data_recv(sk, skb);
5614 
5615 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5616 				/* Well, only one small jumplet in fast path... */
5617 				tcp_ack(sk, skb, FLAG_DATA);
5618 				tcp_data_snd_check(sk);
5619 				if (!inet_csk_ack_scheduled(sk))
5620 					goto no_ack;
5621 			}
5622 
5623 			__tcp_ack_snd_check(sk, 0);
5624 no_ack:
5625 			if (eaten)
5626 				kfree_skb_partial(skb, fragstolen);
5627 			tcp_data_ready(sk);
5628 			return;
5629 		}
5630 	}
5631 
5632 slow_path:
5633 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5634 		goto csum_error;
5635 
5636 	if (!th->ack && !th->rst && !th->syn)
5637 		goto discard;
5638 
5639 	/*
5640 	 *	Standard slow path.
5641 	 */
5642 
5643 	if (!tcp_validate_incoming(sk, skb, th, 1))
5644 		return;
5645 
5646 step5:
5647 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5648 		goto discard;
5649 
5650 	tcp_rcv_rtt_measure_ts(sk, skb);
5651 
5652 	/* Process urgent data. */
5653 	tcp_urg(sk, skb, th);
5654 
5655 	/* step 7: process the segment text */
5656 	tcp_data_queue(sk, skb);
5657 
5658 	tcp_data_snd_check(sk);
5659 	tcp_ack_snd_check(sk);
5660 	return;
5661 
5662 csum_error:
5663 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5664 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5665 
5666 discard:
5667 	tcp_drop(sk, skb);
5668 }
5669 EXPORT_SYMBOL(tcp_rcv_established);
5670 
5671 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5672 {
5673 	struct tcp_sock *tp = tcp_sk(sk);
5674 	struct inet_connection_sock *icsk = inet_csk(sk);
5675 
5676 	tcp_set_state(sk, TCP_ESTABLISHED);
5677 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5678 
5679 	if (skb) {
5680 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5681 		security_inet_conn_established(sk, skb);
5682 		sk_mark_napi_id(sk, skb);
5683 	}
5684 
5685 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5686 
5687 	/* Prevent spurious tcp_cwnd_restart() on first data
5688 	 * packet.
5689 	 */
5690 	tp->lsndtime = tcp_jiffies32;
5691 
5692 	if (sock_flag(sk, SOCK_KEEPOPEN))
5693 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5694 
5695 	if (!tp->rx_opt.snd_wscale)
5696 		__tcp_fast_path_on(tp, tp->snd_wnd);
5697 	else
5698 		tp->pred_flags = 0;
5699 }
5700 
5701 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5702 				    struct tcp_fastopen_cookie *cookie)
5703 {
5704 	struct tcp_sock *tp = tcp_sk(sk);
5705 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5706 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5707 	bool syn_drop = false;
5708 
5709 	if (mss == tp->rx_opt.user_mss) {
5710 		struct tcp_options_received opt;
5711 
5712 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5713 		tcp_clear_options(&opt);
5714 		opt.user_mss = opt.mss_clamp = 0;
5715 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5716 		mss = opt.mss_clamp;
5717 	}
5718 
5719 	if (!tp->syn_fastopen) {
5720 		/* Ignore an unsolicited cookie */
5721 		cookie->len = -1;
5722 	} else if (tp->total_retrans) {
5723 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5724 		 * acknowledges data. Presumably the remote received only
5725 		 * the retransmitted (regular) SYNs: either the original
5726 		 * SYN-data or the corresponding SYN-ACK was dropped.
5727 		 */
5728 		syn_drop = (cookie->len < 0 && data);
5729 	} else if (cookie->len < 0 && !tp->syn_data) {
5730 		/* We requested a cookie but didn't get it. If we did not use
5731 		 * the (old) exp opt format then try so next time (try_exp=1).
5732 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5733 		 */
5734 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5735 	}
5736 
5737 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5738 
5739 	if (data) { /* Retransmit unacked data in SYN */
5740 		skb_rbtree_walk_from(data) {
5741 			if (__tcp_retransmit_skb(sk, data, 1))
5742 				break;
5743 		}
5744 		tcp_rearm_rto(sk);
5745 		NET_INC_STATS(sock_net(sk),
5746 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5747 		return true;
5748 	}
5749 	tp->syn_data_acked = tp->syn_data;
5750 	if (tp->syn_data_acked) {
5751 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5752 		/* SYN-data is counted as two separate packets in tcp_ack() */
5753 		if (tp->delivered > 1)
5754 			--tp->delivered;
5755 	}
5756 
5757 	tcp_fastopen_add_skb(sk, synack);
5758 
5759 	return false;
5760 }
5761 
5762 static void smc_check_reset_syn(struct tcp_sock *tp)
5763 {
5764 #if IS_ENABLED(CONFIG_SMC)
5765 	if (static_branch_unlikely(&tcp_have_smc)) {
5766 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5767 			tp->syn_smc = 0;
5768 	}
5769 #endif
5770 }
5771 
5772 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5773 					 const struct tcphdr *th)
5774 {
5775 	struct inet_connection_sock *icsk = inet_csk(sk);
5776 	struct tcp_sock *tp = tcp_sk(sk);
5777 	struct tcp_fastopen_cookie foc = { .len = -1 };
5778 	int saved_clamp = tp->rx_opt.mss_clamp;
5779 	bool fastopen_fail;
5780 
5781 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5782 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5783 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5784 
5785 	if (th->ack) {
5786 		/* rfc793:
5787 		 * "If the state is SYN-SENT then
5788 		 *    first check the ACK bit
5789 		 *      If the ACK bit is set
5790 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5791 		 *        a reset (unless the RST bit is set, if so drop
5792 		 *        the segment and return)"
5793 		 */
5794 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5795 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5796 			goto reset_and_undo;
5797 
5798 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5799 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5800 			     tcp_time_stamp(tp))) {
5801 			NET_INC_STATS(sock_net(sk),
5802 					LINUX_MIB_PAWSACTIVEREJECTED);
5803 			goto reset_and_undo;
5804 		}
5805 
5806 		/* Now ACK is acceptable.
5807 		 *
5808 		 * "If the RST bit is set
5809 		 *    If the ACK was acceptable then signal the user "error:
5810 		 *    connection reset", drop the segment, enter CLOSED state,
5811 		 *    delete TCB, and return."
5812 		 */
5813 
5814 		if (th->rst) {
5815 			tcp_reset(sk);
5816 			goto discard;
5817 		}
5818 
5819 		/* rfc793:
5820 		 *   "fifth, if neither of the SYN or RST bits is set then
5821 		 *    drop the segment and return."
5822 		 *
5823 		 *    See note below!
5824 		 *                                        --ANK(990513)
5825 		 */
5826 		if (!th->syn)
5827 			goto discard_and_undo;
5828 
5829 		/* rfc793:
5830 		 *   "If the SYN bit is on ...
5831 		 *    are acceptable then ...
5832 		 *    (our SYN has been ACKed), change the connection
5833 		 *    state to ESTABLISHED..."
5834 		 */
5835 
5836 		tcp_ecn_rcv_synack(tp, th);
5837 
5838 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5839 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5840 
5841 		/* Ok.. it's good. Set up sequence numbers and
5842 		 * move to established.
5843 		 */
5844 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5845 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5846 
5847 		/* RFC1323: The window in SYN & SYN/ACK segments is
5848 		 * never scaled.
5849 		 */
5850 		tp->snd_wnd = ntohs(th->window);
5851 
5852 		if (!tp->rx_opt.wscale_ok) {
5853 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5854 			tp->window_clamp = min(tp->window_clamp, 65535U);
5855 		}
5856 
5857 		if (tp->rx_opt.saw_tstamp) {
5858 			tp->rx_opt.tstamp_ok	   = 1;
5859 			tp->tcp_header_len =
5860 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5861 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5862 			tcp_store_ts_recent(tp);
5863 		} else {
5864 			tp->tcp_header_len = sizeof(struct tcphdr);
5865 		}
5866 
5867 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5868 		tcp_initialize_rcv_mss(sk);
5869 
5870 		/* Remember, tcp_poll() does not lock socket!
5871 		 * Change state from SYN-SENT only after copied_seq
5872 		 * is initialized. */
5873 		tp->copied_seq = tp->rcv_nxt;
5874 
5875 		smc_check_reset_syn(tp);
5876 
5877 		smp_mb();
5878 
5879 		tcp_finish_connect(sk, skb);
5880 
5881 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5882 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5883 
5884 		if (!sock_flag(sk, SOCK_DEAD)) {
5885 			sk->sk_state_change(sk);
5886 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5887 		}
5888 		if (fastopen_fail)
5889 			return -1;
5890 		if (sk->sk_write_pending ||
5891 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5892 		    icsk->icsk_ack.pingpong) {
5893 			/* Save one ACK. Data will be ready after
5894 			 * several ticks, if write_pending is set.
5895 			 *
5896 			 * It may be deleted, but with this feature tcpdumps
5897 			 * look so _wonderfully_ clever, that I was not able
5898 			 * to stand against the temptation 8)     --ANK
5899 			 */
5900 			inet_csk_schedule_ack(sk);
5901 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5902 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5903 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5904 
5905 discard:
5906 			tcp_drop(sk, skb);
5907 			return 0;
5908 		} else {
5909 			tcp_send_ack(sk);
5910 		}
5911 		return -1;
5912 	}
5913 
5914 	/* No ACK in the segment */
5915 
5916 	if (th->rst) {
5917 		/* rfc793:
5918 		 * "If the RST bit is set
5919 		 *
5920 		 *      Otherwise (no ACK) drop the segment and return."
5921 		 */
5922 
5923 		goto discard_and_undo;
5924 	}
5925 
5926 	/* PAWS check. */
5927 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5928 	    tcp_paws_reject(&tp->rx_opt, 0))
5929 		goto discard_and_undo;
5930 
5931 	if (th->syn) {
5932 		/* We see SYN without ACK. It is attempt of
5933 		 * simultaneous connect with crossed SYNs.
5934 		 * Particularly, it can be connect to self.
5935 		 */
5936 		tcp_set_state(sk, TCP_SYN_RECV);
5937 
5938 		if (tp->rx_opt.saw_tstamp) {
5939 			tp->rx_opt.tstamp_ok = 1;
5940 			tcp_store_ts_recent(tp);
5941 			tp->tcp_header_len =
5942 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5943 		} else {
5944 			tp->tcp_header_len = sizeof(struct tcphdr);
5945 		}
5946 
5947 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5948 		tp->copied_seq = tp->rcv_nxt;
5949 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5950 
5951 		/* RFC1323: The window in SYN & SYN/ACK segments is
5952 		 * never scaled.
5953 		 */
5954 		tp->snd_wnd    = ntohs(th->window);
5955 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5956 		tp->max_window = tp->snd_wnd;
5957 
5958 		tcp_ecn_rcv_syn(tp, th);
5959 
5960 		tcp_mtup_init(sk);
5961 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5962 		tcp_initialize_rcv_mss(sk);
5963 
5964 		tcp_send_synack(sk);
5965 #if 0
5966 		/* Note, we could accept data and URG from this segment.
5967 		 * There are no obstacles to make this (except that we must
5968 		 * either change tcp_recvmsg() to prevent it from returning data
5969 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5970 		 *
5971 		 * However, if we ignore data in ACKless segments sometimes,
5972 		 * we have no reasons to accept it sometimes.
5973 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5974 		 * is not flawless. So, discard packet for sanity.
5975 		 * Uncomment this return to process the data.
5976 		 */
5977 		return -1;
5978 #else
5979 		goto discard;
5980 #endif
5981 	}
5982 	/* "fifth, if neither of the SYN or RST bits is set then
5983 	 * drop the segment and return."
5984 	 */
5985 
5986 discard_and_undo:
5987 	tcp_clear_options(&tp->rx_opt);
5988 	tp->rx_opt.mss_clamp = saved_clamp;
5989 	goto discard;
5990 
5991 reset_and_undo:
5992 	tcp_clear_options(&tp->rx_opt);
5993 	tp->rx_opt.mss_clamp = saved_clamp;
5994 	return 1;
5995 }
5996 
5997 /*
5998  *	This function implements the receiving procedure of RFC 793 for
5999  *	all states except ESTABLISHED and TIME_WAIT.
6000  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6001  *	address independent.
6002  */
6003 
6004 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6005 {
6006 	struct tcp_sock *tp = tcp_sk(sk);
6007 	struct inet_connection_sock *icsk = inet_csk(sk);
6008 	const struct tcphdr *th = tcp_hdr(skb);
6009 	struct request_sock *req;
6010 	int queued = 0;
6011 	bool acceptable;
6012 
6013 	switch (sk->sk_state) {
6014 	case TCP_CLOSE:
6015 		goto discard;
6016 
6017 	case TCP_LISTEN:
6018 		if (th->ack)
6019 			return 1;
6020 
6021 		if (th->rst)
6022 			goto discard;
6023 
6024 		if (th->syn) {
6025 			if (th->fin)
6026 				goto discard;
6027 			/* It is possible that we process SYN packets from backlog,
6028 			 * so we need to make sure to disable BH and RCU right there.
6029 			 */
6030 			rcu_read_lock();
6031 			local_bh_disable();
6032 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6033 			local_bh_enable();
6034 			rcu_read_unlock();
6035 
6036 			if (!acceptable)
6037 				return 1;
6038 			consume_skb(skb);
6039 			return 0;
6040 		}
6041 		goto discard;
6042 
6043 	case TCP_SYN_SENT:
6044 		tp->rx_opt.saw_tstamp = 0;
6045 		tcp_mstamp_refresh(tp);
6046 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6047 		if (queued >= 0)
6048 			return queued;
6049 
6050 		/* Do step6 onward by hand. */
6051 		tcp_urg(sk, skb, th);
6052 		__kfree_skb(skb);
6053 		tcp_data_snd_check(sk);
6054 		return 0;
6055 	}
6056 
6057 	tcp_mstamp_refresh(tp);
6058 	tp->rx_opt.saw_tstamp = 0;
6059 	req = tp->fastopen_rsk;
6060 	if (req) {
6061 		bool req_stolen;
6062 
6063 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6064 		    sk->sk_state != TCP_FIN_WAIT1);
6065 
6066 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6067 			goto discard;
6068 	}
6069 
6070 	if (!th->ack && !th->rst && !th->syn)
6071 		goto discard;
6072 
6073 	if (!tcp_validate_incoming(sk, skb, th, 0))
6074 		return 0;
6075 
6076 	/* step 5: check the ACK field */
6077 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6078 				      FLAG_UPDATE_TS_RECENT |
6079 				      FLAG_NO_CHALLENGE_ACK) > 0;
6080 
6081 	if (!acceptable) {
6082 		if (sk->sk_state == TCP_SYN_RECV)
6083 			return 1;	/* send one RST */
6084 		tcp_send_challenge_ack(sk, skb);
6085 		goto discard;
6086 	}
6087 	switch (sk->sk_state) {
6088 	case TCP_SYN_RECV:
6089 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6090 		if (!tp->srtt_us)
6091 			tcp_synack_rtt_meas(sk, req);
6092 
6093 		/* Once we leave TCP_SYN_RECV, we no longer need req
6094 		 * so release it.
6095 		 */
6096 		if (req) {
6097 			inet_csk(sk)->icsk_retransmits = 0;
6098 			reqsk_fastopen_remove(sk, req, false);
6099 			/* Re-arm the timer because data may have been sent out.
6100 			 * This is similar to the regular data transmission case
6101 			 * when new data has just been ack'ed.
6102 			 *
6103 			 * (TFO) - we could try to be more aggressive and
6104 			 * retransmitting any data sooner based on when they
6105 			 * are sent out.
6106 			 */
6107 			tcp_rearm_rto(sk);
6108 		} else {
6109 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6110 			tp->copied_seq = tp->rcv_nxt;
6111 		}
6112 		smp_mb();
6113 		tcp_set_state(sk, TCP_ESTABLISHED);
6114 		sk->sk_state_change(sk);
6115 
6116 		/* Note, that this wakeup is only for marginal crossed SYN case.
6117 		 * Passively open sockets are not waked up, because
6118 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6119 		 */
6120 		if (sk->sk_socket)
6121 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6122 
6123 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6124 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6125 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6126 
6127 		if (tp->rx_opt.tstamp_ok)
6128 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6129 
6130 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6131 			tcp_update_pacing_rate(sk);
6132 
6133 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6134 		tp->lsndtime = tcp_jiffies32;
6135 
6136 		tcp_initialize_rcv_mss(sk);
6137 		tcp_fast_path_on(tp);
6138 		break;
6139 
6140 	case TCP_FIN_WAIT1: {
6141 		int tmo;
6142 
6143 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6144 		 * Fast Open socket and this is the first acceptable
6145 		 * ACK we have received, this would have acknowledged
6146 		 * our SYNACK so stop the SYNACK timer.
6147 		 */
6148 		if (req) {
6149 			/* We no longer need the request sock. */
6150 			reqsk_fastopen_remove(sk, req, false);
6151 			tcp_rearm_rto(sk);
6152 		}
6153 		if (tp->snd_una != tp->write_seq)
6154 			break;
6155 
6156 		tcp_set_state(sk, TCP_FIN_WAIT2);
6157 		sk->sk_shutdown |= SEND_SHUTDOWN;
6158 
6159 		sk_dst_confirm(sk);
6160 
6161 		if (!sock_flag(sk, SOCK_DEAD)) {
6162 			/* Wake up lingering close() */
6163 			sk->sk_state_change(sk);
6164 			break;
6165 		}
6166 
6167 		if (tp->linger2 < 0) {
6168 			tcp_done(sk);
6169 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6170 			return 1;
6171 		}
6172 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6173 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6174 			/* Receive out of order FIN after close() */
6175 			if (tp->syn_fastopen && th->fin)
6176 				tcp_fastopen_active_disable(sk);
6177 			tcp_done(sk);
6178 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6179 			return 1;
6180 		}
6181 
6182 		tmo = tcp_fin_time(sk);
6183 		if (tmo > TCP_TIMEWAIT_LEN) {
6184 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6185 		} else if (th->fin || sock_owned_by_user(sk)) {
6186 			/* Bad case. We could lose such FIN otherwise.
6187 			 * It is not a big problem, but it looks confusing
6188 			 * and not so rare event. We still can lose it now,
6189 			 * if it spins in bh_lock_sock(), but it is really
6190 			 * marginal case.
6191 			 */
6192 			inet_csk_reset_keepalive_timer(sk, tmo);
6193 		} else {
6194 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6195 			goto discard;
6196 		}
6197 		break;
6198 	}
6199 
6200 	case TCP_CLOSING:
6201 		if (tp->snd_una == tp->write_seq) {
6202 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6203 			goto discard;
6204 		}
6205 		break;
6206 
6207 	case TCP_LAST_ACK:
6208 		if (tp->snd_una == tp->write_seq) {
6209 			tcp_update_metrics(sk);
6210 			tcp_done(sk);
6211 			goto discard;
6212 		}
6213 		break;
6214 	}
6215 
6216 	/* step 6: check the URG bit */
6217 	tcp_urg(sk, skb, th);
6218 
6219 	/* step 7: process the segment text */
6220 	switch (sk->sk_state) {
6221 	case TCP_CLOSE_WAIT:
6222 	case TCP_CLOSING:
6223 	case TCP_LAST_ACK:
6224 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6225 			break;
6226 		/* fall through */
6227 	case TCP_FIN_WAIT1:
6228 	case TCP_FIN_WAIT2:
6229 		/* RFC 793 says to queue data in these states,
6230 		 * RFC 1122 says we MUST send a reset.
6231 		 * BSD 4.4 also does reset.
6232 		 */
6233 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6234 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6235 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6236 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6237 				tcp_reset(sk);
6238 				return 1;
6239 			}
6240 		}
6241 		/* Fall through */
6242 	case TCP_ESTABLISHED:
6243 		tcp_data_queue(sk, skb);
6244 		queued = 1;
6245 		break;
6246 	}
6247 
6248 	/* tcp_data could move socket to TIME-WAIT */
6249 	if (sk->sk_state != TCP_CLOSE) {
6250 		tcp_data_snd_check(sk);
6251 		tcp_ack_snd_check(sk);
6252 	}
6253 
6254 	if (!queued) {
6255 discard:
6256 		tcp_drop(sk, skb);
6257 	}
6258 	return 0;
6259 }
6260 EXPORT_SYMBOL(tcp_rcv_state_process);
6261 
6262 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6263 {
6264 	struct inet_request_sock *ireq = inet_rsk(req);
6265 
6266 	if (family == AF_INET)
6267 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6268 				    &ireq->ir_rmt_addr, port);
6269 #if IS_ENABLED(CONFIG_IPV6)
6270 	else if (family == AF_INET6)
6271 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6272 				    &ireq->ir_v6_rmt_addr, port);
6273 #endif
6274 }
6275 
6276 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6277  *
6278  * If we receive a SYN packet with these bits set, it means a
6279  * network is playing bad games with TOS bits. In order to
6280  * avoid possible false congestion notifications, we disable
6281  * TCP ECN negotiation.
6282  *
6283  * Exception: tcp_ca wants ECN. This is required for DCTCP
6284  * congestion control: Linux DCTCP asserts ECT on all packets,
6285  * including SYN, which is most optimal solution; however,
6286  * others, such as FreeBSD do not.
6287  */
6288 static void tcp_ecn_create_request(struct request_sock *req,
6289 				   const struct sk_buff *skb,
6290 				   const struct sock *listen_sk,
6291 				   const struct dst_entry *dst)
6292 {
6293 	const struct tcphdr *th = tcp_hdr(skb);
6294 	const struct net *net = sock_net(listen_sk);
6295 	bool th_ecn = th->ece && th->cwr;
6296 	bool ect, ecn_ok;
6297 	u32 ecn_ok_dst;
6298 
6299 	if (!th_ecn)
6300 		return;
6301 
6302 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6303 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6304 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6305 
6306 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6307 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6308 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6309 		inet_rsk(req)->ecn_ok = 1;
6310 }
6311 
6312 static void tcp_openreq_init(struct request_sock *req,
6313 			     const struct tcp_options_received *rx_opt,
6314 			     struct sk_buff *skb, const struct sock *sk)
6315 {
6316 	struct inet_request_sock *ireq = inet_rsk(req);
6317 
6318 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6319 	req->cookie_ts = 0;
6320 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6321 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6322 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6323 	tcp_rsk(req)->last_oow_ack_time = 0;
6324 	req->mss = rx_opt->mss_clamp;
6325 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6326 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6327 	ireq->sack_ok = rx_opt->sack_ok;
6328 	ireq->snd_wscale = rx_opt->snd_wscale;
6329 	ireq->wscale_ok = rx_opt->wscale_ok;
6330 	ireq->acked = 0;
6331 	ireq->ecn_ok = 0;
6332 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6333 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6334 	ireq->ir_mark = inet_request_mark(sk, skb);
6335 #if IS_ENABLED(CONFIG_SMC)
6336 	ireq->smc_ok = rx_opt->smc_ok;
6337 #endif
6338 }
6339 
6340 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6341 				      struct sock *sk_listener,
6342 				      bool attach_listener)
6343 {
6344 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6345 					       attach_listener);
6346 
6347 	if (req) {
6348 		struct inet_request_sock *ireq = inet_rsk(req);
6349 
6350 		ireq->ireq_opt = NULL;
6351 #if IS_ENABLED(CONFIG_IPV6)
6352 		ireq->pktopts = NULL;
6353 #endif
6354 		atomic64_set(&ireq->ir_cookie, 0);
6355 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6356 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6357 		ireq->ireq_family = sk_listener->sk_family;
6358 	}
6359 
6360 	return req;
6361 }
6362 EXPORT_SYMBOL(inet_reqsk_alloc);
6363 
6364 /*
6365  * Return true if a syncookie should be sent
6366  */
6367 static bool tcp_syn_flood_action(const struct sock *sk,
6368 				 const struct sk_buff *skb,
6369 				 const char *proto)
6370 {
6371 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6372 	const char *msg = "Dropping request";
6373 	bool want_cookie = false;
6374 	struct net *net = sock_net(sk);
6375 
6376 #ifdef CONFIG_SYN_COOKIES
6377 	if (net->ipv4.sysctl_tcp_syncookies) {
6378 		msg = "Sending cookies";
6379 		want_cookie = true;
6380 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6381 	} else
6382 #endif
6383 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6384 
6385 	if (!queue->synflood_warned &&
6386 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6387 	    xchg(&queue->synflood_warned, 1) == 0)
6388 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6389 				     proto, ntohs(tcp_hdr(skb)->dest), msg);
6390 
6391 	return want_cookie;
6392 }
6393 
6394 static void tcp_reqsk_record_syn(const struct sock *sk,
6395 				 struct request_sock *req,
6396 				 const struct sk_buff *skb)
6397 {
6398 	if (tcp_sk(sk)->save_syn) {
6399 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6400 		u32 *copy;
6401 
6402 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6403 		if (copy) {
6404 			copy[0] = len;
6405 			memcpy(&copy[1], skb_network_header(skb), len);
6406 			req->saved_syn = copy;
6407 		}
6408 	}
6409 }
6410 
6411 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6412 		     const struct tcp_request_sock_ops *af_ops,
6413 		     struct sock *sk, struct sk_buff *skb)
6414 {
6415 	struct tcp_fastopen_cookie foc = { .len = -1 };
6416 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6417 	struct tcp_options_received tmp_opt;
6418 	struct tcp_sock *tp = tcp_sk(sk);
6419 	struct net *net = sock_net(sk);
6420 	struct sock *fastopen_sk = NULL;
6421 	struct request_sock *req;
6422 	bool want_cookie = false;
6423 	struct dst_entry *dst;
6424 	struct flowi fl;
6425 
6426 	/* TW buckets are converted to open requests without
6427 	 * limitations, they conserve resources and peer is
6428 	 * evidently real one.
6429 	 */
6430 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6431 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6432 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6433 		if (!want_cookie)
6434 			goto drop;
6435 	}
6436 
6437 	if (sk_acceptq_is_full(sk)) {
6438 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6439 		goto drop;
6440 	}
6441 
6442 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6443 	if (!req)
6444 		goto drop;
6445 
6446 	tcp_rsk(req)->af_specific = af_ops;
6447 	tcp_rsk(req)->ts_off = 0;
6448 
6449 	tcp_clear_options(&tmp_opt);
6450 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6451 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6452 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6453 			  want_cookie ? NULL : &foc);
6454 
6455 	if (want_cookie && !tmp_opt.saw_tstamp)
6456 		tcp_clear_options(&tmp_opt);
6457 
6458 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6459 		tmp_opt.smc_ok = 0;
6460 
6461 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6462 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6463 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6464 
6465 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6466 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6467 
6468 	af_ops->init_req(req, sk, skb);
6469 
6470 	if (security_inet_conn_request(sk, skb, req))
6471 		goto drop_and_free;
6472 
6473 	if (tmp_opt.tstamp_ok)
6474 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6475 
6476 	dst = af_ops->route_req(sk, &fl, req);
6477 	if (!dst)
6478 		goto drop_and_free;
6479 
6480 	if (!want_cookie && !isn) {
6481 		/* Kill the following clause, if you dislike this way. */
6482 		if (!net->ipv4.sysctl_tcp_syncookies &&
6483 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6484 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6485 		    !tcp_peer_is_proven(req, dst)) {
6486 			/* Without syncookies last quarter of
6487 			 * backlog is filled with destinations,
6488 			 * proven to be alive.
6489 			 * It means that we continue to communicate
6490 			 * to destinations, already remembered
6491 			 * to the moment of synflood.
6492 			 */
6493 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6494 				    rsk_ops->family);
6495 			goto drop_and_release;
6496 		}
6497 
6498 		isn = af_ops->init_seq(skb);
6499 	}
6500 
6501 	tcp_ecn_create_request(req, skb, sk, dst);
6502 
6503 	if (want_cookie) {
6504 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6505 		req->cookie_ts = tmp_opt.tstamp_ok;
6506 		if (!tmp_opt.tstamp_ok)
6507 			inet_rsk(req)->ecn_ok = 0;
6508 	}
6509 
6510 	tcp_rsk(req)->snt_isn = isn;
6511 	tcp_rsk(req)->txhash = net_tx_rndhash();
6512 	tcp_openreq_init_rwin(req, sk, dst);
6513 	sk_rx_queue_set(req_to_sk(req), skb);
6514 	if (!want_cookie) {
6515 		tcp_reqsk_record_syn(sk, req, skb);
6516 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6517 	}
6518 	if (fastopen_sk) {
6519 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6520 				    &foc, TCP_SYNACK_FASTOPEN);
6521 		/* Add the child socket directly into the accept queue */
6522 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6523 		sk->sk_data_ready(sk);
6524 		bh_unlock_sock(fastopen_sk);
6525 		sock_put(fastopen_sk);
6526 	} else {
6527 		tcp_rsk(req)->tfo_listener = false;
6528 		if (!want_cookie)
6529 			inet_csk_reqsk_queue_hash_add(sk, req,
6530 				tcp_timeout_init((struct sock *)req));
6531 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6532 				    !want_cookie ? TCP_SYNACK_NORMAL :
6533 						   TCP_SYNACK_COOKIE);
6534 		if (want_cookie) {
6535 			reqsk_free(req);
6536 			return 0;
6537 		}
6538 	}
6539 	reqsk_put(req);
6540 	return 0;
6541 
6542 drop_and_release:
6543 	dst_release(dst);
6544 drop_and_free:
6545 	reqsk_free(req);
6546 drop:
6547 	tcp_listendrop(sk);
6548 	return 0;
6549 }
6550 EXPORT_SYMBOL(tcp_conn_request);
6551