1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 #include <net/busy_poll.h> 82 83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 84 85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 91 #define FLAG_ECE 0x40 /* ECE in this ACK */ 92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 102 103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 107 108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 110 111 #define REXMIT_NONE 0 /* no loss recovery to do */ 112 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 114 115 #if IS_ENABLED(CONFIG_TLS_DEVICE) 116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled); 117 118 void clean_acked_data_enable(struct inet_connection_sock *icsk, 119 void (*cad)(struct sock *sk, u32 ack_seq)) 120 { 121 icsk->icsk_clean_acked = cad; 122 static_branch_inc(&clean_acked_data_enabled); 123 } 124 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 125 126 void clean_acked_data_disable(struct inet_connection_sock *icsk) 127 { 128 static_branch_dec(&clean_acked_data_enabled); 129 icsk->icsk_clean_acked = NULL; 130 } 131 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 132 #endif 133 134 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 135 unsigned int len) 136 { 137 static bool __once __read_mostly; 138 139 if (!__once) { 140 struct net_device *dev; 141 142 __once = true; 143 144 rcu_read_lock(); 145 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 146 if (!dev || len >= dev->mtu) 147 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 148 dev ? dev->name : "Unknown driver"); 149 rcu_read_unlock(); 150 } 151 } 152 153 /* Adapt the MSS value used to make delayed ack decision to the 154 * real world. 155 */ 156 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 157 { 158 struct inet_connection_sock *icsk = inet_csk(sk); 159 const unsigned int lss = icsk->icsk_ack.last_seg_size; 160 unsigned int len; 161 162 icsk->icsk_ack.last_seg_size = 0; 163 164 /* skb->len may jitter because of SACKs, even if peer 165 * sends good full-sized frames. 166 */ 167 len = skb_shinfo(skb)->gso_size ? : skb->len; 168 if (len >= icsk->icsk_ack.rcv_mss) { 169 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 170 tcp_sk(sk)->advmss); 171 /* Account for possibly-removed options */ 172 if (unlikely(len > icsk->icsk_ack.rcv_mss + 173 MAX_TCP_OPTION_SPACE)) 174 tcp_gro_dev_warn(sk, skb, len); 175 } else { 176 /* Otherwise, we make more careful check taking into account, 177 * that SACKs block is variable. 178 * 179 * "len" is invariant segment length, including TCP header. 180 */ 181 len += skb->data - skb_transport_header(skb); 182 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 183 /* If PSH is not set, packet should be 184 * full sized, provided peer TCP is not badly broken. 185 * This observation (if it is correct 8)) allows 186 * to handle super-low mtu links fairly. 187 */ 188 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 189 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 190 /* Subtract also invariant (if peer is RFC compliant), 191 * tcp header plus fixed timestamp option length. 192 * Resulting "len" is MSS free of SACK jitter. 193 */ 194 len -= tcp_sk(sk)->tcp_header_len; 195 icsk->icsk_ack.last_seg_size = len; 196 if (len == lss) { 197 icsk->icsk_ack.rcv_mss = len; 198 return; 199 } 200 } 201 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 203 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 204 } 205 } 206 207 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 208 { 209 struct inet_connection_sock *icsk = inet_csk(sk); 210 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 211 212 if (quickacks == 0) 213 quickacks = 2; 214 quickacks = min(quickacks, max_quickacks); 215 if (quickacks > icsk->icsk_ack.quick) 216 icsk->icsk_ack.quick = quickacks; 217 } 218 219 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 220 { 221 struct inet_connection_sock *icsk = inet_csk(sk); 222 223 tcp_incr_quickack(sk, max_quickacks); 224 icsk->icsk_ack.pingpong = 0; 225 icsk->icsk_ack.ato = TCP_ATO_MIN; 226 } 227 EXPORT_SYMBOL(tcp_enter_quickack_mode); 228 229 /* Send ACKs quickly, if "quick" count is not exhausted 230 * and the session is not interactive. 231 */ 232 233 static bool tcp_in_quickack_mode(struct sock *sk) 234 { 235 const struct inet_connection_sock *icsk = inet_csk(sk); 236 const struct dst_entry *dst = __sk_dst_get(sk); 237 238 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 239 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 240 } 241 242 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 243 { 244 if (tp->ecn_flags & TCP_ECN_OK) 245 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 246 } 247 248 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 249 { 250 if (tcp_hdr(skb)->cwr) { 251 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 252 253 /* If the sender is telling us it has entered CWR, then its 254 * cwnd may be very low (even just 1 packet), so we should ACK 255 * immediately. 256 */ 257 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 258 } 259 } 260 261 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 262 { 263 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 264 } 265 266 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 267 { 268 struct tcp_sock *tp = tcp_sk(sk); 269 270 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 271 case INET_ECN_NOT_ECT: 272 /* Funny extension: if ECT is not set on a segment, 273 * and we already seen ECT on a previous segment, 274 * it is probably a retransmit. 275 */ 276 if (tp->ecn_flags & TCP_ECN_SEEN) 277 tcp_enter_quickack_mode(sk, 2); 278 break; 279 case INET_ECN_CE: 280 if (tcp_ca_needs_ecn(sk)) 281 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 282 283 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 284 /* Better not delay acks, sender can have a very low cwnd */ 285 tcp_enter_quickack_mode(sk, 2); 286 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 287 } 288 tp->ecn_flags |= TCP_ECN_SEEN; 289 break; 290 default: 291 if (tcp_ca_needs_ecn(sk)) 292 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 293 tp->ecn_flags |= TCP_ECN_SEEN; 294 break; 295 } 296 } 297 298 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 299 { 300 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 301 __tcp_ecn_check_ce(sk, skb); 302 } 303 304 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 305 { 306 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 307 tp->ecn_flags &= ~TCP_ECN_OK; 308 } 309 310 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 311 { 312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 313 tp->ecn_flags &= ~TCP_ECN_OK; 314 } 315 316 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 317 { 318 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 319 return true; 320 return false; 321 } 322 323 /* Buffer size and advertised window tuning. 324 * 325 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 326 */ 327 328 static void tcp_sndbuf_expand(struct sock *sk) 329 { 330 const struct tcp_sock *tp = tcp_sk(sk); 331 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 332 int sndmem, per_mss; 333 u32 nr_segs; 334 335 /* Worst case is non GSO/TSO : each frame consumes one skb 336 * and skb->head is kmalloced using power of two area of memory 337 */ 338 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 339 MAX_TCP_HEADER + 340 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 341 342 per_mss = roundup_pow_of_two(per_mss) + 343 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 344 345 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 346 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 347 348 /* Fast Recovery (RFC 5681 3.2) : 349 * Cubic needs 1.7 factor, rounded to 2 to include 350 * extra cushion (application might react slowly to EPOLLOUT) 351 */ 352 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 353 sndmem *= nr_segs * per_mss; 354 355 if (sk->sk_sndbuf < sndmem) 356 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 357 } 358 359 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 360 * 361 * All tcp_full_space() is split to two parts: "network" buffer, allocated 362 * forward and advertised in receiver window (tp->rcv_wnd) and 363 * "application buffer", required to isolate scheduling/application 364 * latencies from network. 365 * window_clamp is maximal advertised window. It can be less than 366 * tcp_full_space(), in this case tcp_full_space() - window_clamp 367 * is reserved for "application" buffer. The less window_clamp is 368 * the smoother our behaviour from viewpoint of network, but the lower 369 * throughput and the higher sensitivity of the connection to losses. 8) 370 * 371 * rcv_ssthresh is more strict window_clamp used at "slow start" 372 * phase to predict further behaviour of this connection. 373 * It is used for two goals: 374 * - to enforce header prediction at sender, even when application 375 * requires some significant "application buffer". It is check #1. 376 * - to prevent pruning of receive queue because of misprediction 377 * of receiver window. Check #2. 378 * 379 * The scheme does not work when sender sends good segments opening 380 * window and then starts to feed us spaghetti. But it should work 381 * in common situations. Otherwise, we have to rely on queue collapsing. 382 */ 383 384 /* Slow part of check#2. */ 385 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 386 { 387 struct tcp_sock *tp = tcp_sk(sk); 388 /* Optimize this! */ 389 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 390 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 391 392 while (tp->rcv_ssthresh <= window) { 393 if (truesize <= skb->len) 394 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 395 396 truesize >>= 1; 397 window >>= 1; 398 } 399 return 0; 400 } 401 402 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 403 { 404 struct tcp_sock *tp = tcp_sk(sk); 405 406 /* Check #1 */ 407 if (tp->rcv_ssthresh < tp->window_clamp && 408 (int)tp->rcv_ssthresh < tcp_space(sk) && 409 !tcp_under_memory_pressure(sk)) { 410 int incr; 411 412 /* Check #2. Increase window, if skb with such overhead 413 * will fit to rcvbuf in future. 414 */ 415 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 416 incr = 2 * tp->advmss; 417 else 418 incr = __tcp_grow_window(sk, skb); 419 420 if (incr) { 421 incr = max_t(int, incr, 2 * skb->len); 422 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 423 tp->window_clamp); 424 inet_csk(sk)->icsk_ack.quick |= 1; 425 } 426 } 427 } 428 429 /* 3. Try to fixup all. It is made immediately after connection enters 430 * established state. 431 */ 432 void tcp_init_buffer_space(struct sock *sk) 433 { 434 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 435 struct tcp_sock *tp = tcp_sk(sk); 436 int maxwin; 437 438 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 439 tcp_sndbuf_expand(sk); 440 441 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); 442 tcp_mstamp_refresh(tp); 443 tp->rcvq_space.time = tp->tcp_mstamp; 444 tp->rcvq_space.seq = tp->copied_seq; 445 446 maxwin = tcp_full_space(sk); 447 448 if (tp->window_clamp >= maxwin) { 449 tp->window_clamp = maxwin; 450 451 if (tcp_app_win && maxwin > 4 * tp->advmss) 452 tp->window_clamp = max(maxwin - 453 (maxwin >> tcp_app_win), 454 4 * tp->advmss); 455 } 456 457 /* Force reservation of one segment. */ 458 if (tcp_app_win && 459 tp->window_clamp > 2 * tp->advmss && 460 tp->window_clamp + tp->advmss > maxwin) 461 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 462 463 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 464 tp->snd_cwnd_stamp = tcp_jiffies32; 465 } 466 467 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 468 static void tcp_clamp_window(struct sock *sk) 469 { 470 struct tcp_sock *tp = tcp_sk(sk); 471 struct inet_connection_sock *icsk = inet_csk(sk); 472 struct net *net = sock_net(sk); 473 474 icsk->icsk_ack.quick = 0; 475 476 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 477 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 478 !tcp_under_memory_pressure(sk) && 479 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 480 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 481 net->ipv4.sysctl_tcp_rmem[2]); 482 } 483 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 484 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 485 } 486 487 /* Initialize RCV_MSS value. 488 * RCV_MSS is an our guess about MSS used by the peer. 489 * We haven't any direct information about the MSS. 490 * It's better to underestimate the RCV_MSS rather than overestimate. 491 * Overestimations make us ACKing less frequently than needed. 492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 493 */ 494 void tcp_initialize_rcv_mss(struct sock *sk) 495 { 496 const struct tcp_sock *tp = tcp_sk(sk); 497 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 498 499 hint = min(hint, tp->rcv_wnd / 2); 500 hint = min(hint, TCP_MSS_DEFAULT); 501 hint = max(hint, TCP_MIN_MSS); 502 503 inet_csk(sk)->icsk_ack.rcv_mss = hint; 504 } 505 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 506 507 /* Receiver "autotuning" code. 508 * 509 * The algorithm for RTT estimation w/o timestamps is based on 510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 511 * <http://public.lanl.gov/radiant/pubs.html#DRS> 512 * 513 * More detail on this code can be found at 514 * <http://staff.psc.edu/jheffner/>, 515 * though this reference is out of date. A new paper 516 * is pending. 517 */ 518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 519 { 520 u32 new_sample = tp->rcv_rtt_est.rtt_us; 521 long m = sample; 522 523 if (new_sample != 0) { 524 /* If we sample in larger samples in the non-timestamp 525 * case, we could grossly overestimate the RTT especially 526 * with chatty applications or bulk transfer apps which 527 * are stalled on filesystem I/O. 528 * 529 * Also, since we are only going for a minimum in the 530 * non-timestamp case, we do not smooth things out 531 * else with timestamps disabled convergence takes too 532 * long. 533 */ 534 if (!win_dep) { 535 m -= (new_sample >> 3); 536 new_sample += m; 537 } else { 538 m <<= 3; 539 if (m < new_sample) 540 new_sample = m; 541 } 542 } else { 543 /* No previous measure. */ 544 new_sample = m << 3; 545 } 546 547 tp->rcv_rtt_est.rtt_us = new_sample; 548 } 549 550 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 551 { 552 u32 delta_us; 553 554 if (tp->rcv_rtt_est.time == 0) 555 goto new_measure; 556 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 557 return; 558 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 559 if (!delta_us) 560 delta_us = 1; 561 tcp_rcv_rtt_update(tp, delta_us, 1); 562 563 new_measure: 564 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 565 tp->rcv_rtt_est.time = tp->tcp_mstamp; 566 } 567 568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 569 const struct sk_buff *skb) 570 { 571 struct tcp_sock *tp = tcp_sk(sk); 572 573 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 574 return; 575 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 576 577 if (TCP_SKB_CB(skb)->end_seq - 578 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 579 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 580 u32 delta_us; 581 582 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 583 if (!delta) 584 delta = 1; 585 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 586 tcp_rcv_rtt_update(tp, delta_us, 0); 587 } 588 } 589 } 590 591 /* 592 * This function should be called every time data is copied to user space. 593 * It calculates the appropriate TCP receive buffer space. 594 */ 595 void tcp_rcv_space_adjust(struct sock *sk) 596 { 597 struct tcp_sock *tp = tcp_sk(sk); 598 u32 copied; 599 int time; 600 601 trace_tcp_rcv_space_adjust(sk); 602 603 tcp_mstamp_refresh(tp); 604 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 605 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 606 return; 607 608 /* Number of bytes copied to user in last RTT */ 609 copied = tp->copied_seq - tp->rcvq_space.seq; 610 if (copied <= tp->rcvq_space.space) 611 goto new_measure; 612 613 /* A bit of theory : 614 * copied = bytes received in previous RTT, our base window 615 * To cope with packet losses, we need a 2x factor 616 * To cope with slow start, and sender growing its cwin by 100 % 617 * every RTT, we need a 4x factor, because the ACK we are sending 618 * now is for the next RTT, not the current one : 619 * <prev RTT . ><current RTT .. ><next RTT .... > 620 */ 621 622 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 623 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 624 int rcvmem, rcvbuf; 625 u64 rcvwin, grow; 626 627 /* minimal window to cope with packet losses, assuming 628 * steady state. Add some cushion because of small variations. 629 */ 630 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 631 632 /* Accommodate for sender rate increase (eg. slow start) */ 633 grow = rcvwin * (copied - tp->rcvq_space.space); 634 do_div(grow, tp->rcvq_space.space); 635 rcvwin += (grow << 1); 636 637 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 638 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 639 rcvmem += 128; 640 641 do_div(rcvwin, tp->advmss); 642 rcvbuf = min_t(u64, rcvwin * rcvmem, 643 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 644 if (rcvbuf > sk->sk_rcvbuf) { 645 sk->sk_rcvbuf = rcvbuf; 646 647 /* Make the window clamp follow along. */ 648 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 649 } 650 } 651 tp->rcvq_space.space = copied; 652 653 new_measure: 654 tp->rcvq_space.seq = tp->copied_seq; 655 tp->rcvq_space.time = tp->tcp_mstamp; 656 } 657 658 /* There is something which you must keep in mind when you analyze the 659 * behavior of the tp->ato delayed ack timeout interval. When a 660 * connection starts up, we want to ack as quickly as possible. The 661 * problem is that "good" TCP's do slow start at the beginning of data 662 * transmission. The means that until we send the first few ACK's the 663 * sender will sit on his end and only queue most of his data, because 664 * he can only send snd_cwnd unacked packets at any given time. For 665 * each ACK we send, he increments snd_cwnd and transmits more of his 666 * queue. -DaveM 667 */ 668 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 669 { 670 struct tcp_sock *tp = tcp_sk(sk); 671 struct inet_connection_sock *icsk = inet_csk(sk); 672 u32 now; 673 674 inet_csk_schedule_ack(sk); 675 676 tcp_measure_rcv_mss(sk, skb); 677 678 tcp_rcv_rtt_measure(tp); 679 680 now = tcp_jiffies32; 681 682 if (!icsk->icsk_ack.ato) { 683 /* The _first_ data packet received, initialize 684 * delayed ACK engine. 685 */ 686 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 687 icsk->icsk_ack.ato = TCP_ATO_MIN; 688 } else { 689 int m = now - icsk->icsk_ack.lrcvtime; 690 691 if (m <= TCP_ATO_MIN / 2) { 692 /* The fastest case is the first. */ 693 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 694 } else if (m < icsk->icsk_ack.ato) { 695 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 696 if (icsk->icsk_ack.ato > icsk->icsk_rto) 697 icsk->icsk_ack.ato = icsk->icsk_rto; 698 } else if (m > icsk->icsk_rto) { 699 /* Too long gap. Apparently sender failed to 700 * restart window, so that we send ACKs quickly. 701 */ 702 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 703 sk_mem_reclaim(sk); 704 } 705 } 706 icsk->icsk_ack.lrcvtime = now; 707 708 tcp_ecn_check_ce(sk, skb); 709 710 if (skb->len >= 128) 711 tcp_grow_window(sk, skb); 712 } 713 714 /* Called to compute a smoothed rtt estimate. The data fed to this 715 * routine either comes from timestamps, or from segments that were 716 * known _not_ to have been retransmitted [see Karn/Partridge 717 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 718 * piece by Van Jacobson. 719 * NOTE: the next three routines used to be one big routine. 720 * To save cycles in the RFC 1323 implementation it was better to break 721 * it up into three procedures. -- erics 722 */ 723 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 724 { 725 struct tcp_sock *tp = tcp_sk(sk); 726 long m = mrtt_us; /* RTT */ 727 u32 srtt = tp->srtt_us; 728 729 /* The following amusing code comes from Jacobson's 730 * article in SIGCOMM '88. Note that rtt and mdev 731 * are scaled versions of rtt and mean deviation. 732 * This is designed to be as fast as possible 733 * m stands for "measurement". 734 * 735 * On a 1990 paper the rto value is changed to: 736 * RTO = rtt + 4 * mdev 737 * 738 * Funny. This algorithm seems to be very broken. 739 * These formulae increase RTO, when it should be decreased, increase 740 * too slowly, when it should be increased quickly, decrease too quickly 741 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 742 * does not matter how to _calculate_ it. Seems, it was trap 743 * that VJ failed to avoid. 8) 744 */ 745 if (srtt != 0) { 746 m -= (srtt >> 3); /* m is now error in rtt est */ 747 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 748 if (m < 0) { 749 m = -m; /* m is now abs(error) */ 750 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 751 /* This is similar to one of Eifel findings. 752 * Eifel blocks mdev updates when rtt decreases. 753 * This solution is a bit different: we use finer gain 754 * for mdev in this case (alpha*beta). 755 * Like Eifel it also prevents growth of rto, 756 * but also it limits too fast rto decreases, 757 * happening in pure Eifel. 758 */ 759 if (m > 0) 760 m >>= 3; 761 } else { 762 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 763 } 764 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 765 if (tp->mdev_us > tp->mdev_max_us) { 766 tp->mdev_max_us = tp->mdev_us; 767 if (tp->mdev_max_us > tp->rttvar_us) 768 tp->rttvar_us = tp->mdev_max_us; 769 } 770 if (after(tp->snd_una, tp->rtt_seq)) { 771 if (tp->mdev_max_us < tp->rttvar_us) 772 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 773 tp->rtt_seq = tp->snd_nxt; 774 tp->mdev_max_us = tcp_rto_min_us(sk); 775 } 776 } else { 777 /* no previous measure. */ 778 srtt = m << 3; /* take the measured time to be rtt */ 779 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 780 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 781 tp->mdev_max_us = tp->rttvar_us; 782 tp->rtt_seq = tp->snd_nxt; 783 } 784 tp->srtt_us = max(1U, srtt); 785 } 786 787 static void tcp_update_pacing_rate(struct sock *sk) 788 { 789 const struct tcp_sock *tp = tcp_sk(sk); 790 u64 rate; 791 792 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 793 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 794 795 /* current rate is (cwnd * mss) / srtt 796 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 797 * In Congestion Avoidance phase, set it to 120 % the current rate. 798 * 799 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 800 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 801 * end of slow start and should slow down. 802 */ 803 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 804 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 805 else 806 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 807 808 rate *= max(tp->snd_cwnd, tp->packets_out); 809 810 if (likely(tp->srtt_us)) 811 do_div(rate, tp->srtt_us); 812 813 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 814 * without any lock. We want to make sure compiler wont store 815 * intermediate values in this location. 816 */ 817 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 818 sk->sk_max_pacing_rate)); 819 } 820 821 /* Calculate rto without backoff. This is the second half of Van Jacobson's 822 * routine referred to above. 823 */ 824 static void tcp_set_rto(struct sock *sk) 825 { 826 const struct tcp_sock *tp = tcp_sk(sk); 827 /* Old crap is replaced with new one. 8) 828 * 829 * More seriously: 830 * 1. If rtt variance happened to be less 50msec, it is hallucination. 831 * It cannot be less due to utterly erratic ACK generation made 832 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 833 * to do with delayed acks, because at cwnd>2 true delack timeout 834 * is invisible. Actually, Linux-2.4 also generates erratic 835 * ACKs in some circumstances. 836 */ 837 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 838 839 /* 2. Fixups made earlier cannot be right. 840 * If we do not estimate RTO correctly without them, 841 * all the algo is pure shit and should be replaced 842 * with correct one. It is exactly, which we pretend to do. 843 */ 844 845 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 846 * guarantees that rto is higher. 847 */ 848 tcp_bound_rto(sk); 849 } 850 851 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 852 { 853 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 854 855 if (!cwnd) 856 cwnd = TCP_INIT_CWND; 857 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 858 } 859 860 /* Take a notice that peer is sending D-SACKs */ 861 static void tcp_dsack_seen(struct tcp_sock *tp) 862 { 863 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 864 tp->rack.dsack_seen = 1; 865 tp->dsack_dups++; 866 } 867 868 /* It's reordering when higher sequence was delivered (i.e. sacked) before 869 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 870 * distance is approximated in full-mss packet distance ("reordering"). 871 */ 872 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 873 const int ts) 874 { 875 struct tcp_sock *tp = tcp_sk(sk); 876 const u32 mss = tp->mss_cache; 877 u32 fack, metric; 878 879 fack = tcp_highest_sack_seq(tp); 880 if (!before(low_seq, fack)) 881 return; 882 883 metric = fack - low_seq; 884 if ((metric > tp->reordering * mss) && mss) { 885 #if FASTRETRANS_DEBUG > 1 886 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 887 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 888 tp->reordering, 889 0, 890 tp->sacked_out, 891 tp->undo_marker ? tp->undo_retrans : 0); 892 #endif 893 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 894 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 895 } 896 897 /* This exciting event is worth to be remembered. 8) */ 898 tp->reord_seen++; 899 NET_INC_STATS(sock_net(sk), 900 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 901 } 902 903 /* This must be called before lost_out is incremented */ 904 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 905 { 906 if (!tp->retransmit_skb_hint || 907 before(TCP_SKB_CB(skb)->seq, 908 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 909 tp->retransmit_skb_hint = skb; 910 } 911 912 /* Sum the number of packets on the wire we have marked as lost. 913 * There are two cases we care about here: 914 * a) Packet hasn't been marked lost (nor retransmitted), 915 * and this is the first loss. 916 * b) Packet has been marked both lost and retransmitted, 917 * and this means we think it was lost again. 918 */ 919 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 920 { 921 __u8 sacked = TCP_SKB_CB(skb)->sacked; 922 923 if (!(sacked & TCPCB_LOST) || 924 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 925 tp->lost += tcp_skb_pcount(skb); 926 } 927 928 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 929 { 930 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 931 tcp_verify_retransmit_hint(tp, skb); 932 933 tp->lost_out += tcp_skb_pcount(skb); 934 tcp_sum_lost(tp, skb); 935 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 936 } 937 } 938 939 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 940 { 941 tcp_verify_retransmit_hint(tp, skb); 942 943 tcp_sum_lost(tp, skb); 944 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 945 tp->lost_out += tcp_skb_pcount(skb); 946 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 947 } 948 } 949 950 /* This procedure tags the retransmission queue when SACKs arrive. 951 * 952 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 953 * Packets in queue with these bits set are counted in variables 954 * sacked_out, retrans_out and lost_out, correspondingly. 955 * 956 * Valid combinations are: 957 * Tag InFlight Description 958 * 0 1 - orig segment is in flight. 959 * S 0 - nothing flies, orig reached receiver. 960 * L 0 - nothing flies, orig lost by net. 961 * R 2 - both orig and retransmit are in flight. 962 * L|R 1 - orig is lost, retransmit is in flight. 963 * S|R 1 - orig reached receiver, retrans is still in flight. 964 * (L|S|R is logically valid, it could occur when L|R is sacked, 965 * but it is equivalent to plain S and code short-curcuits it to S. 966 * L|S is logically invalid, it would mean -1 packet in flight 8)) 967 * 968 * These 6 states form finite state machine, controlled by the following events: 969 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 970 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 971 * 3. Loss detection event of two flavors: 972 * A. Scoreboard estimator decided the packet is lost. 973 * A'. Reno "three dupacks" marks head of queue lost. 974 * B. SACK arrives sacking SND.NXT at the moment, when the 975 * segment was retransmitted. 976 * 4. D-SACK added new rule: D-SACK changes any tag to S. 977 * 978 * It is pleasant to note, that state diagram turns out to be commutative, 979 * so that we are allowed not to be bothered by order of our actions, 980 * when multiple events arrive simultaneously. (see the function below). 981 * 982 * Reordering detection. 983 * -------------------- 984 * Reordering metric is maximal distance, which a packet can be displaced 985 * in packet stream. With SACKs we can estimate it: 986 * 987 * 1. SACK fills old hole and the corresponding segment was not 988 * ever retransmitted -> reordering. Alas, we cannot use it 989 * when segment was retransmitted. 990 * 2. The last flaw is solved with D-SACK. D-SACK arrives 991 * for retransmitted and already SACKed segment -> reordering.. 992 * Both of these heuristics are not used in Loss state, when we cannot 993 * account for retransmits accurately. 994 * 995 * SACK block validation. 996 * ---------------------- 997 * 998 * SACK block range validation checks that the received SACK block fits to 999 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1000 * Note that SND.UNA is not included to the range though being valid because 1001 * it means that the receiver is rather inconsistent with itself reporting 1002 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1003 * perfectly valid, however, in light of RFC2018 which explicitly states 1004 * that "SACK block MUST reflect the newest segment. Even if the newest 1005 * segment is going to be discarded ...", not that it looks very clever 1006 * in case of head skb. Due to potentional receiver driven attacks, we 1007 * choose to avoid immediate execution of a walk in write queue due to 1008 * reneging and defer head skb's loss recovery to standard loss recovery 1009 * procedure that will eventually trigger (nothing forbids us doing this). 1010 * 1011 * Implements also blockage to start_seq wrap-around. Problem lies in the 1012 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1013 * there's no guarantee that it will be before snd_nxt (n). The problem 1014 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1015 * wrap (s_w): 1016 * 1017 * <- outs wnd -> <- wrapzone -> 1018 * u e n u_w e_w s n_w 1019 * | | | | | | | 1020 * |<------------+------+----- TCP seqno space --------------+---------->| 1021 * ...-- <2^31 ->| |<--------... 1022 * ...---- >2^31 ------>| |<--------... 1023 * 1024 * Current code wouldn't be vulnerable but it's better still to discard such 1025 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1026 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1027 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1028 * equal to the ideal case (infinite seqno space without wrap caused issues). 1029 * 1030 * With D-SACK the lower bound is extended to cover sequence space below 1031 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1032 * again, D-SACK block must not to go across snd_una (for the same reason as 1033 * for the normal SACK blocks, explained above). But there all simplicity 1034 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1035 * fully below undo_marker they do not affect behavior in anyway and can 1036 * therefore be safely ignored. In rare cases (which are more or less 1037 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1038 * fragmentation and packet reordering past skb's retransmission. To consider 1039 * them correctly, the acceptable range must be extended even more though 1040 * the exact amount is rather hard to quantify. However, tp->max_window can 1041 * be used as an exaggerated estimate. 1042 */ 1043 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1044 u32 start_seq, u32 end_seq) 1045 { 1046 /* Too far in future, or reversed (interpretation is ambiguous) */ 1047 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1048 return false; 1049 1050 /* Nasty start_seq wrap-around check (see comments above) */ 1051 if (!before(start_seq, tp->snd_nxt)) 1052 return false; 1053 1054 /* In outstanding window? ...This is valid exit for D-SACKs too. 1055 * start_seq == snd_una is non-sensical (see comments above) 1056 */ 1057 if (after(start_seq, tp->snd_una)) 1058 return true; 1059 1060 if (!is_dsack || !tp->undo_marker) 1061 return false; 1062 1063 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1064 if (after(end_seq, tp->snd_una)) 1065 return false; 1066 1067 if (!before(start_seq, tp->undo_marker)) 1068 return true; 1069 1070 /* Too old */ 1071 if (!after(end_seq, tp->undo_marker)) 1072 return false; 1073 1074 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1075 * start_seq < undo_marker and end_seq >= undo_marker. 1076 */ 1077 return !before(start_seq, end_seq - tp->max_window); 1078 } 1079 1080 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1081 struct tcp_sack_block_wire *sp, int num_sacks, 1082 u32 prior_snd_una) 1083 { 1084 struct tcp_sock *tp = tcp_sk(sk); 1085 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1086 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1087 bool dup_sack = false; 1088 1089 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1090 dup_sack = true; 1091 tcp_dsack_seen(tp); 1092 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1093 } else if (num_sacks > 1) { 1094 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1095 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1096 1097 if (!after(end_seq_0, end_seq_1) && 1098 !before(start_seq_0, start_seq_1)) { 1099 dup_sack = true; 1100 tcp_dsack_seen(tp); 1101 NET_INC_STATS(sock_net(sk), 1102 LINUX_MIB_TCPDSACKOFORECV); 1103 } 1104 } 1105 1106 /* D-SACK for already forgotten data... Do dumb counting. */ 1107 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1108 !after(end_seq_0, prior_snd_una) && 1109 after(end_seq_0, tp->undo_marker)) 1110 tp->undo_retrans--; 1111 1112 return dup_sack; 1113 } 1114 1115 struct tcp_sacktag_state { 1116 u32 reord; 1117 /* Timestamps for earliest and latest never-retransmitted segment 1118 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1119 * but congestion control should still get an accurate delay signal. 1120 */ 1121 u64 first_sackt; 1122 u64 last_sackt; 1123 struct rate_sample *rate; 1124 int flag; 1125 unsigned int mss_now; 1126 }; 1127 1128 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1129 * the incoming SACK may not exactly match but we can find smaller MSS 1130 * aligned portion of it that matches. Therefore we might need to fragment 1131 * which may fail and creates some hassle (caller must handle error case 1132 * returns). 1133 * 1134 * FIXME: this could be merged to shift decision code 1135 */ 1136 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1137 u32 start_seq, u32 end_seq) 1138 { 1139 int err; 1140 bool in_sack; 1141 unsigned int pkt_len; 1142 unsigned int mss; 1143 1144 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1145 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1146 1147 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1148 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1149 mss = tcp_skb_mss(skb); 1150 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1151 1152 if (!in_sack) { 1153 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1154 if (pkt_len < mss) 1155 pkt_len = mss; 1156 } else { 1157 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1158 if (pkt_len < mss) 1159 return -EINVAL; 1160 } 1161 1162 /* Round if necessary so that SACKs cover only full MSSes 1163 * and/or the remaining small portion (if present) 1164 */ 1165 if (pkt_len > mss) { 1166 unsigned int new_len = (pkt_len / mss) * mss; 1167 if (!in_sack && new_len < pkt_len) 1168 new_len += mss; 1169 pkt_len = new_len; 1170 } 1171 1172 if (pkt_len >= skb->len && !in_sack) 1173 return 0; 1174 1175 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1176 pkt_len, mss, GFP_ATOMIC); 1177 if (err < 0) 1178 return err; 1179 } 1180 1181 return in_sack; 1182 } 1183 1184 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1185 static u8 tcp_sacktag_one(struct sock *sk, 1186 struct tcp_sacktag_state *state, u8 sacked, 1187 u32 start_seq, u32 end_seq, 1188 int dup_sack, int pcount, 1189 u64 xmit_time) 1190 { 1191 struct tcp_sock *tp = tcp_sk(sk); 1192 1193 /* Account D-SACK for retransmitted packet. */ 1194 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1195 if (tp->undo_marker && tp->undo_retrans > 0 && 1196 after(end_seq, tp->undo_marker)) 1197 tp->undo_retrans--; 1198 if ((sacked & TCPCB_SACKED_ACKED) && 1199 before(start_seq, state->reord)) 1200 state->reord = start_seq; 1201 } 1202 1203 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1204 if (!after(end_seq, tp->snd_una)) 1205 return sacked; 1206 1207 if (!(sacked & TCPCB_SACKED_ACKED)) { 1208 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1209 1210 if (sacked & TCPCB_SACKED_RETRANS) { 1211 /* If the segment is not tagged as lost, 1212 * we do not clear RETRANS, believing 1213 * that retransmission is still in flight. 1214 */ 1215 if (sacked & TCPCB_LOST) { 1216 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1217 tp->lost_out -= pcount; 1218 tp->retrans_out -= pcount; 1219 } 1220 } else { 1221 if (!(sacked & TCPCB_RETRANS)) { 1222 /* New sack for not retransmitted frame, 1223 * which was in hole. It is reordering. 1224 */ 1225 if (before(start_seq, 1226 tcp_highest_sack_seq(tp)) && 1227 before(start_seq, state->reord)) 1228 state->reord = start_seq; 1229 1230 if (!after(end_seq, tp->high_seq)) 1231 state->flag |= FLAG_ORIG_SACK_ACKED; 1232 if (state->first_sackt == 0) 1233 state->first_sackt = xmit_time; 1234 state->last_sackt = xmit_time; 1235 } 1236 1237 if (sacked & TCPCB_LOST) { 1238 sacked &= ~TCPCB_LOST; 1239 tp->lost_out -= pcount; 1240 } 1241 } 1242 1243 sacked |= TCPCB_SACKED_ACKED; 1244 state->flag |= FLAG_DATA_SACKED; 1245 tp->sacked_out += pcount; 1246 tp->delivered += pcount; /* Out-of-order packets delivered */ 1247 1248 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1249 if (tp->lost_skb_hint && 1250 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1251 tp->lost_cnt_hint += pcount; 1252 } 1253 1254 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1255 * frames and clear it. undo_retrans is decreased above, L|R frames 1256 * are accounted above as well. 1257 */ 1258 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1259 sacked &= ~TCPCB_SACKED_RETRANS; 1260 tp->retrans_out -= pcount; 1261 } 1262 1263 return sacked; 1264 } 1265 1266 /* Shift newly-SACKed bytes from this skb to the immediately previous 1267 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1268 */ 1269 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1270 struct sk_buff *skb, 1271 struct tcp_sacktag_state *state, 1272 unsigned int pcount, int shifted, int mss, 1273 bool dup_sack) 1274 { 1275 struct tcp_sock *tp = tcp_sk(sk); 1276 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1277 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1278 1279 BUG_ON(!pcount); 1280 1281 /* Adjust counters and hints for the newly sacked sequence 1282 * range but discard the return value since prev is already 1283 * marked. We must tag the range first because the seq 1284 * advancement below implicitly advances 1285 * tcp_highest_sack_seq() when skb is highest_sack. 1286 */ 1287 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1288 start_seq, end_seq, dup_sack, pcount, 1289 tcp_skb_timestamp_us(skb)); 1290 tcp_rate_skb_delivered(sk, skb, state->rate); 1291 1292 if (skb == tp->lost_skb_hint) 1293 tp->lost_cnt_hint += pcount; 1294 1295 TCP_SKB_CB(prev)->end_seq += shifted; 1296 TCP_SKB_CB(skb)->seq += shifted; 1297 1298 tcp_skb_pcount_add(prev, pcount); 1299 BUG_ON(tcp_skb_pcount(skb) < pcount); 1300 tcp_skb_pcount_add(skb, -pcount); 1301 1302 /* When we're adding to gso_segs == 1, gso_size will be zero, 1303 * in theory this shouldn't be necessary but as long as DSACK 1304 * code can come after this skb later on it's better to keep 1305 * setting gso_size to something. 1306 */ 1307 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1308 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1309 1310 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1311 if (tcp_skb_pcount(skb) <= 1) 1312 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1313 1314 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1315 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1316 1317 if (skb->len > 0) { 1318 BUG_ON(!tcp_skb_pcount(skb)); 1319 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1320 return false; 1321 } 1322 1323 /* Whole SKB was eaten :-) */ 1324 1325 if (skb == tp->retransmit_skb_hint) 1326 tp->retransmit_skb_hint = prev; 1327 if (skb == tp->lost_skb_hint) { 1328 tp->lost_skb_hint = prev; 1329 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1330 } 1331 1332 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1333 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1334 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1335 TCP_SKB_CB(prev)->end_seq++; 1336 1337 if (skb == tcp_highest_sack(sk)) 1338 tcp_advance_highest_sack(sk, skb); 1339 1340 tcp_skb_collapse_tstamp(prev, skb); 1341 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1342 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1343 1344 tcp_rtx_queue_unlink_and_free(skb, sk); 1345 1346 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1347 1348 return true; 1349 } 1350 1351 /* I wish gso_size would have a bit more sane initialization than 1352 * something-or-zero which complicates things 1353 */ 1354 static int tcp_skb_seglen(const struct sk_buff *skb) 1355 { 1356 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1357 } 1358 1359 /* Shifting pages past head area doesn't work */ 1360 static int skb_can_shift(const struct sk_buff *skb) 1361 { 1362 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1363 } 1364 1365 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1366 * skb. 1367 */ 1368 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1369 struct tcp_sacktag_state *state, 1370 u32 start_seq, u32 end_seq, 1371 bool dup_sack) 1372 { 1373 struct tcp_sock *tp = tcp_sk(sk); 1374 struct sk_buff *prev; 1375 int mss; 1376 int pcount = 0; 1377 int len; 1378 int in_sack; 1379 1380 /* Normally R but no L won't result in plain S */ 1381 if (!dup_sack && 1382 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1383 goto fallback; 1384 if (!skb_can_shift(skb)) 1385 goto fallback; 1386 /* This frame is about to be dropped (was ACKed). */ 1387 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1388 goto fallback; 1389 1390 /* Can only happen with delayed DSACK + discard craziness */ 1391 prev = skb_rb_prev(skb); 1392 if (!prev) 1393 goto fallback; 1394 1395 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1396 goto fallback; 1397 1398 if (!tcp_skb_can_collapse_to(prev)) 1399 goto fallback; 1400 1401 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1402 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1403 1404 if (in_sack) { 1405 len = skb->len; 1406 pcount = tcp_skb_pcount(skb); 1407 mss = tcp_skb_seglen(skb); 1408 1409 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1410 * drop this restriction as unnecessary 1411 */ 1412 if (mss != tcp_skb_seglen(prev)) 1413 goto fallback; 1414 } else { 1415 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1416 goto noop; 1417 /* CHECKME: This is non-MSS split case only?, this will 1418 * cause skipped skbs due to advancing loop btw, original 1419 * has that feature too 1420 */ 1421 if (tcp_skb_pcount(skb) <= 1) 1422 goto noop; 1423 1424 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1425 if (!in_sack) { 1426 /* TODO: head merge to next could be attempted here 1427 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1428 * though it might not be worth of the additional hassle 1429 * 1430 * ...we can probably just fallback to what was done 1431 * previously. We could try merging non-SACKed ones 1432 * as well but it probably isn't going to buy off 1433 * because later SACKs might again split them, and 1434 * it would make skb timestamp tracking considerably 1435 * harder problem. 1436 */ 1437 goto fallback; 1438 } 1439 1440 len = end_seq - TCP_SKB_CB(skb)->seq; 1441 BUG_ON(len < 0); 1442 BUG_ON(len > skb->len); 1443 1444 /* MSS boundaries should be honoured or else pcount will 1445 * severely break even though it makes things bit trickier. 1446 * Optimize common case to avoid most of the divides 1447 */ 1448 mss = tcp_skb_mss(skb); 1449 1450 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1451 * drop this restriction as unnecessary 1452 */ 1453 if (mss != tcp_skb_seglen(prev)) 1454 goto fallback; 1455 1456 if (len == mss) { 1457 pcount = 1; 1458 } else if (len < mss) { 1459 goto noop; 1460 } else { 1461 pcount = len / mss; 1462 len = pcount * mss; 1463 } 1464 } 1465 1466 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1467 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1468 goto fallback; 1469 1470 if (!skb_shift(prev, skb, len)) 1471 goto fallback; 1472 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1473 goto out; 1474 1475 /* Hole filled allows collapsing with the next as well, this is very 1476 * useful when hole on every nth skb pattern happens 1477 */ 1478 skb = skb_rb_next(prev); 1479 if (!skb) 1480 goto out; 1481 1482 if (!skb_can_shift(skb) || 1483 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1484 (mss != tcp_skb_seglen(skb))) 1485 goto out; 1486 1487 len = skb->len; 1488 if (skb_shift(prev, skb, len)) { 1489 pcount += tcp_skb_pcount(skb); 1490 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1491 len, mss, 0); 1492 } 1493 1494 out: 1495 return prev; 1496 1497 noop: 1498 return skb; 1499 1500 fallback: 1501 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1502 return NULL; 1503 } 1504 1505 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1506 struct tcp_sack_block *next_dup, 1507 struct tcp_sacktag_state *state, 1508 u32 start_seq, u32 end_seq, 1509 bool dup_sack_in) 1510 { 1511 struct tcp_sock *tp = tcp_sk(sk); 1512 struct sk_buff *tmp; 1513 1514 skb_rbtree_walk_from(skb) { 1515 int in_sack = 0; 1516 bool dup_sack = dup_sack_in; 1517 1518 /* queue is in-order => we can short-circuit the walk early */ 1519 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1520 break; 1521 1522 if (next_dup && 1523 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1524 in_sack = tcp_match_skb_to_sack(sk, skb, 1525 next_dup->start_seq, 1526 next_dup->end_seq); 1527 if (in_sack > 0) 1528 dup_sack = true; 1529 } 1530 1531 /* skb reference here is a bit tricky to get right, since 1532 * shifting can eat and free both this skb and the next, 1533 * so not even _safe variant of the loop is enough. 1534 */ 1535 if (in_sack <= 0) { 1536 tmp = tcp_shift_skb_data(sk, skb, state, 1537 start_seq, end_seq, dup_sack); 1538 if (tmp) { 1539 if (tmp != skb) { 1540 skb = tmp; 1541 continue; 1542 } 1543 1544 in_sack = 0; 1545 } else { 1546 in_sack = tcp_match_skb_to_sack(sk, skb, 1547 start_seq, 1548 end_seq); 1549 } 1550 } 1551 1552 if (unlikely(in_sack < 0)) 1553 break; 1554 1555 if (in_sack) { 1556 TCP_SKB_CB(skb)->sacked = 1557 tcp_sacktag_one(sk, 1558 state, 1559 TCP_SKB_CB(skb)->sacked, 1560 TCP_SKB_CB(skb)->seq, 1561 TCP_SKB_CB(skb)->end_seq, 1562 dup_sack, 1563 tcp_skb_pcount(skb), 1564 tcp_skb_timestamp_us(skb)); 1565 tcp_rate_skb_delivered(sk, skb, state->rate); 1566 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1567 list_del_init(&skb->tcp_tsorted_anchor); 1568 1569 if (!before(TCP_SKB_CB(skb)->seq, 1570 tcp_highest_sack_seq(tp))) 1571 tcp_advance_highest_sack(sk, skb); 1572 } 1573 } 1574 return skb; 1575 } 1576 1577 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1578 struct tcp_sacktag_state *state, 1579 u32 seq) 1580 { 1581 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1582 struct sk_buff *skb; 1583 1584 while (*p) { 1585 parent = *p; 1586 skb = rb_to_skb(parent); 1587 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1588 p = &parent->rb_left; 1589 continue; 1590 } 1591 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1592 p = &parent->rb_right; 1593 continue; 1594 } 1595 return skb; 1596 } 1597 return NULL; 1598 } 1599 1600 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1601 struct tcp_sacktag_state *state, 1602 u32 skip_to_seq) 1603 { 1604 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1605 return skb; 1606 1607 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1608 } 1609 1610 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1611 struct sock *sk, 1612 struct tcp_sack_block *next_dup, 1613 struct tcp_sacktag_state *state, 1614 u32 skip_to_seq) 1615 { 1616 if (!next_dup) 1617 return skb; 1618 1619 if (before(next_dup->start_seq, skip_to_seq)) { 1620 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1621 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1622 next_dup->start_seq, next_dup->end_seq, 1623 1); 1624 } 1625 1626 return skb; 1627 } 1628 1629 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1630 { 1631 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1632 } 1633 1634 static int 1635 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1636 u32 prior_snd_una, struct tcp_sacktag_state *state) 1637 { 1638 struct tcp_sock *tp = tcp_sk(sk); 1639 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1640 TCP_SKB_CB(ack_skb)->sacked); 1641 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1642 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1643 struct tcp_sack_block *cache; 1644 struct sk_buff *skb; 1645 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1646 int used_sacks; 1647 bool found_dup_sack = false; 1648 int i, j; 1649 int first_sack_index; 1650 1651 state->flag = 0; 1652 state->reord = tp->snd_nxt; 1653 1654 if (!tp->sacked_out) 1655 tcp_highest_sack_reset(sk); 1656 1657 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1658 num_sacks, prior_snd_una); 1659 if (found_dup_sack) { 1660 state->flag |= FLAG_DSACKING_ACK; 1661 tp->delivered++; /* A spurious retransmission is delivered */ 1662 } 1663 1664 /* Eliminate too old ACKs, but take into 1665 * account more or less fresh ones, they can 1666 * contain valid SACK info. 1667 */ 1668 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1669 return 0; 1670 1671 if (!tp->packets_out) 1672 goto out; 1673 1674 used_sacks = 0; 1675 first_sack_index = 0; 1676 for (i = 0; i < num_sacks; i++) { 1677 bool dup_sack = !i && found_dup_sack; 1678 1679 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1680 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1681 1682 if (!tcp_is_sackblock_valid(tp, dup_sack, 1683 sp[used_sacks].start_seq, 1684 sp[used_sacks].end_seq)) { 1685 int mib_idx; 1686 1687 if (dup_sack) { 1688 if (!tp->undo_marker) 1689 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1690 else 1691 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1692 } else { 1693 /* Don't count olds caused by ACK reordering */ 1694 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1695 !after(sp[used_sacks].end_seq, tp->snd_una)) 1696 continue; 1697 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1698 } 1699 1700 NET_INC_STATS(sock_net(sk), mib_idx); 1701 if (i == 0) 1702 first_sack_index = -1; 1703 continue; 1704 } 1705 1706 /* Ignore very old stuff early */ 1707 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1708 continue; 1709 1710 used_sacks++; 1711 } 1712 1713 /* order SACK blocks to allow in order walk of the retrans queue */ 1714 for (i = used_sacks - 1; i > 0; i--) { 1715 for (j = 0; j < i; j++) { 1716 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1717 swap(sp[j], sp[j + 1]); 1718 1719 /* Track where the first SACK block goes to */ 1720 if (j == first_sack_index) 1721 first_sack_index = j + 1; 1722 } 1723 } 1724 } 1725 1726 state->mss_now = tcp_current_mss(sk); 1727 skb = NULL; 1728 i = 0; 1729 1730 if (!tp->sacked_out) { 1731 /* It's already past, so skip checking against it */ 1732 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1733 } else { 1734 cache = tp->recv_sack_cache; 1735 /* Skip empty blocks in at head of the cache */ 1736 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1737 !cache->end_seq) 1738 cache++; 1739 } 1740 1741 while (i < used_sacks) { 1742 u32 start_seq = sp[i].start_seq; 1743 u32 end_seq = sp[i].end_seq; 1744 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1745 struct tcp_sack_block *next_dup = NULL; 1746 1747 if (found_dup_sack && ((i + 1) == first_sack_index)) 1748 next_dup = &sp[i + 1]; 1749 1750 /* Skip too early cached blocks */ 1751 while (tcp_sack_cache_ok(tp, cache) && 1752 !before(start_seq, cache->end_seq)) 1753 cache++; 1754 1755 /* Can skip some work by looking recv_sack_cache? */ 1756 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1757 after(end_seq, cache->start_seq)) { 1758 1759 /* Head todo? */ 1760 if (before(start_seq, cache->start_seq)) { 1761 skb = tcp_sacktag_skip(skb, sk, state, 1762 start_seq); 1763 skb = tcp_sacktag_walk(skb, sk, next_dup, 1764 state, 1765 start_seq, 1766 cache->start_seq, 1767 dup_sack); 1768 } 1769 1770 /* Rest of the block already fully processed? */ 1771 if (!after(end_seq, cache->end_seq)) 1772 goto advance_sp; 1773 1774 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1775 state, 1776 cache->end_seq); 1777 1778 /* ...tail remains todo... */ 1779 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1780 /* ...but better entrypoint exists! */ 1781 skb = tcp_highest_sack(sk); 1782 if (!skb) 1783 break; 1784 cache++; 1785 goto walk; 1786 } 1787 1788 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1789 /* Check overlap against next cached too (past this one already) */ 1790 cache++; 1791 continue; 1792 } 1793 1794 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1795 skb = tcp_highest_sack(sk); 1796 if (!skb) 1797 break; 1798 } 1799 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1800 1801 walk: 1802 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1803 start_seq, end_seq, dup_sack); 1804 1805 advance_sp: 1806 i++; 1807 } 1808 1809 /* Clear the head of the cache sack blocks so we can skip it next time */ 1810 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1811 tp->recv_sack_cache[i].start_seq = 0; 1812 tp->recv_sack_cache[i].end_seq = 0; 1813 } 1814 for (j = 0; j < used_sacks; j++) 1815 tp->recv_sack_cache[i++] = sp[j]; 1816 1817 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1818 tcp_check_sack_reordering(sk, state->reord, 0); 1819 1820 tcp_verify_left_out(tp); 1821 out: 1822 1823 #if FASTRETRANS_DEBUG > 0 1824 WARN_ON((int)tp->sacked_out < 0); 1825 WARN_ON((int)tp->lost_out < 0); 1826 WARN_ON((int)tp->retrans_out < 0); 1827 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1828 #endif 1829 return state->flag; 1830 } 1831 1832 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1833 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1834 */ 1835 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1836 { 1837 u32 holes; 1838 1839 holes = max(tp->lost_out, 1U); 1840 holes = min(holes, tp->packets_out); 1841 1842 if ((tp->sacked_out + holes) > tp->packets_out) { 1843 tp->sacked_out = tp->packets_out - holes; 1844 return true; 1845 } 1846 return false; 1847 } 1848 1849 /* If we receive more dupacks than we expected counting segments 1850 * in assumption of absent reordering, interpret this as reordering. 1851 * The only another reason could be bug in receiver TCP. 1852 */ 1853 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1854 { 1855 struct tcp_sock *tp = tcp_sk(sk); 1856 1857 if (!tcp_limit_reno_sacked(tp)) 1858 return; 1859 1860 tp->reordering = min_t(u32, tp->packets_out + addend, 1861 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1862 tp->reord_seen++; 1863 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1864 } 1865 1866 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1867 1868 static void tcp_add_reno_sack(struct sock *sk, int num_dupack) 1869 { 1870 if (num_dupack) { 1871 struct tcp_sock *tp = tcp_sk(sk); 1872 u32 prior_sacked = tp->sacked_out; 1873 s32 delivered; 1874 1875 tp->sacked_out += num_dupack; 1876 tcp_check_reno_reordering(sk, 0); 1877 delivered = tp->sacked_out - prior_sacked; 1878 if (delivered > 0) 1879 tp->delivered += delivered; 1880 tcp_verify_left_out(tp); 1881 } 1882 } 1883 1884 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1885 1886 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1887 { 1888 struct tcp_sock *tp = tcp_sk(sk); 1889 1890 if (acked > 0) { 1891 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1892 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1893 if (acked - 1 >= tp->sacked_out) 1894 tp->sacked_out = 0; 1895 else 1896 tp->sacked_out -= acked - 1; 1897 } 1898 tcp_check_reno_reordering(sk, acked); 1899 tcp_verify_left_out(tp); 1900 } 1901 1902 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1903 { 1904 tp->sacked_out = 0; 1905 } 1906 1907 void tcp_clear_retrans(struct tcp_sock *tp) 1908 { 1909 tp->retrans_out = 0; 1910 tp->lost_out = 0; 1911 tp->undo_marker = 0; 1912 tp->undo_retrans = -1; 1913 tp->sacked_out = 0; 1914 } 1915 1916 static inline void tcp_init_undo(struct tcp_sock *tp) 1917 { 1918 tp->undo_marker = tp->snd_una; 1919 /* Retransmission still in flight may cause DSACKs later. */ 1920 tp->undo_retrans = tp->retrans_out ? : -1; 1921 } 1922 1923 static bool tcp_is_rack(const struct sock *sk) 1924 { 1925 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1926 } 1927 1928 /* If we detect SACK reneging, forget all SACK information 1929 * and reset tags completely, otherwise preserve SACKs. If receiver 1930 * dropped its ofo queue, we will know this due to reneging detection. 1931 */ 1932 static void tcp_timeout_mark_lost(struct sock *sk) 1933 { 1934 struct tcp_sock *tp = tcp_sk(sk); 1935 struct sk_buff *skb, *head; 1936 bool is_reneg; /* is receiver reneging on SACKs? */ 1937 1938 head = tcp_rtx_queue_head(sk); 1939 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1940 if (is_reneg) { 1941 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1942 tp->sacked_out = 0; 1943 /* Mark SACK reneging until we recover from this loss event. */ 1944 tp->is_sack_reneg = 1; 1945 } else if (tcp_is_reno(tp)) { 1946 tcp_reset_reno_sack(tp); 1947 } 1948 1949 skb = head; 1950 skb_rbtree_walk_from(skb) { 1951 if (is_reneg) 1952 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1953 else if (tcp_is_rack(sk) && skb != head && 1954 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1955 continue; /* Don't mark recently sent ones lost yet */ 1956 tcp_mark_skb_lost(sk, skb); 1957 } 1958 tcp_verify_left_out(tp); 1959 tcp_clear_all_retrans_hints(tp); 1960 } 1961 1962 /* Enter Loss state. */ 1963 void tcp_enter_loss(struct sock *sk) 1964 { 1965 const struct inet_connection_sock *icsk = inet_csk(sk); 1966 struct tcp_sock *tp = tcp_sk(sk); 1967 struct net *net = sock_net(sk); 1968 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1969 1970 tcp_timeout_mark_lost(sk); 1971 1972 /* Reduce ssthresh if it has not yet been made inside this window. */ 1973 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1974 !after(tp->high_seq, tp->snd_una) || 1975 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1976 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1977 tp->prior_cwnd = tp->snd_cwnd; 1978 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1979 tcp_ca_event(sk, CA_EVENT_LOSS); 1980 tcp_init_undo(tp); 1981 } 1982 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 1983 tp->snd_cwnd_cnt = 0; 1984 tp->snd_cwnd_stamp = tcp_jiffies32; 1985 1986 /* Timeout in disordered state after receiving substantial DUPACKs 1987 * suggests that the degree of reordering is over-estimated. 1988 */ 1989 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1990 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1991 tp->reordering = min_t(unsigned int, tp->reordering, 1992 net->ipv4.sysctl_tcp_reordering); 1993 tcp_set_ca_state(sk, TCP_CA_Loss); 1994 tp->high_seq = tp->snd_nxt; 1995 tcp_ecn_queue_cwr(tp); 1996 1997 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1998 * loss recovery is underway except recurring timeout(s) on 1999 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2000 */ 2001 tp->frto = net->ipv4.sysctl_tcp_frto && 2002 (new_recovery || icsk->icsk_retransmits) && 2003 !inet_csk(sk)->icsk_mtup.probe_size; 2004 } 2005 2006 /* If ACK arrived pointing to a remembered SACK, it means that our 2007 * remembered SACKs do not reflect real state of receiver i.e. 2008 * receiver _host_ is heavily congested (or buggy). 2009 * 2010 * To avoid big spurious retransmission bursts due to transient SACK 2011 * scoreboard oddities that look like reneging, we give the receiver a 2012 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2013 * restore sanity to the SACK scoreboard. If the apparent reneging 2014 * persists until this RTO then we'll clear the SACK scoreboard. 2015 */ 2016 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2017 { 2018 if (flag & FLAG_SACK_RENEGING) { 2019 struct tcp_sock *tp = tcp_sk(sk); 2020 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2021 msecs_to_jiffies(10)); 2022 2023 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2024 delay, TCP_RTO_MAX); 2025 return true; 2026 } 2027 return false; 2028 } 2029 2030 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2031 * counter when SACK is enabled (without SACK, sacked_out is used for 2032 * that purpose). 2033 * 2034 * With reordering, holes may still be in flight, so RFC3517 recovery 2035 * uses pure sacked_out (total number of SACKed segments) even though 2036 * it violates the RFC that uses duplicate ACKs, often these are equal 2037 * but when e.g. out-of-window ACKs or packet duplication occurs, 2038 * they differ. Since neither occurs due to loss, TCP should really 2039 * ignore them. 2040 */ 2041 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2042 { 2043 return tp->sacked_out + 1; 2044 } 2045 2046 /* Linux NewReno/SACK/ECN state machine. 2047 * -------------------------------------- 2048 * 2049 * "Open" Normal state, no dubious events, fast path. 2050 * "Disorder" In all the respects it is "Open", 2051 * but requires a bit more attention. It is entered when 2052 * we see some SACKs or dupacks. It is split of "Open" 2053 * mainly to move some processing from fast path to slow one. 2054 * "CWR" CWND was reduced due to some Congestion Notification event. 2055 * It can be ECN, ICMP source quench, local device congestion. 2056 * "Recovery" CWND was reduced, we are fast-retransmitting. 2057 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2058 * 2059 * tcp_fastretrans_alert() is entered: 2060 * - each incoming ACK, if state is not "Open" 2061 * - when arrived ACK is unusual, namely: 2062 * * SACK 2063 * * Duplicate ACK. 2064 * * ECN ECE. 2065 * 2066 * Counting packets in flight is pretty simple. 2067 * 2068 * in_flight = packets_out - left_out + retrans_out 2069 * 2070 * packets_out is SND.NXT-SND.UNA counted in packets. 2071 * 2072 * retrans_out is number of retransmitted segments. 2073 * 2074 * left_out is number of segments left network, but not ACKed yet. 2075 * 2076 * left_out = sacked_out + lost_out 2077 * 2078 * sacked_out: Packets, which arrived to receiver out of order 2079 * and hence not ACKed. With SACKs this number is simply 2080 * amount of SACKed data. Even without SACKs 2081 * it is easy to give pretty reliable estimate of this number, 2082 * counting duplicate ACKs. 2083 * 2084 * lost_out: Packets lost by network. TCP has no explicit 2085 * "loss notification" feedback from network (for now). 2086 * It means that this number can be only _guessed_. 2087 * Actually, it is the heuristics to predict lossage that 2088 * distinguishes different algorithms. 2089 * 2090 * F.e. after RTO, when all the queue is considered as lost, 2091 * lost_out = packets_out and in_flight = retrans_out. 2092 * 2093 * Essentially, we have now a few algorithms detecting 2094 * lost packets. 2095 * 2096 * If the receiver supports SACK: 2097 * 2098 * RFC6675/3517: It is the conventional algorithm. A packet is 2099 * considered lost if the number of higher sequence packets 2100 * SACKed is greater than or equal the DUPACK thoreshold 2101 * (reordering). This is implemented in tcp_mark_head_lost and 2102 * tcp_update_scoreboard. 2103 * 2104 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2105 * (2017-) that checks timing instead of counting DUPACKs. 2106 * Essentially a packet is considered lost if it's not S/ACKed 2107 * after RTT + reordering_window, where both metrics are 2108 * dynamically measured and adjusted. This is implemented in 2109 * tcp_rack_mark_lost. 2110 * 2111 * If the receiver does not support SACK: 2112 * 2113 * NewReno (RFC6582): in Recovery we assume that one segment 2114 * is lost (classic Reno). While we are in Recovery and 2115 * a partial ACK arrives, we assume that one more packet 2116 * is lost (NewReno). This heuristics are the same in NewReno 2117 * and SACK. 2118 * 2119 * Really tricky (and requiring careful tuning) part of algorithm 2120 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2121 * The first determines the moment _when_ we should reduce CWND and, 2122 * hence, slow down forward transmission. In fact, it determines the moment 2123 * when we decide that hole is caused by loss, rather than by a reorder. 2124 * 2125 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2126 * holes, caused by lost packets. 2127 * 2128 * And the most logically complicated part of algorithm is undo 2129 * heuristics. We detect false retransmits due to both too early 2130 * fast retransmit (reordering) and underestimated RTO, analyzing 2131 * timestamps and D-SACKs. When we detect that some segments were 2132 * retransmitted by mistake and CWND reduction was wrong, we undo 2133 * window reduction and abort recovery phase. This logic is hidden 2134 * inside several functions named tcp_try_undo_<something>. 2135 */ 2136 2137 /* This function decides, when we should leave Disordered state 2138 * and enter Recovery phase, reducing congestion window. 2139 * 2140 * Main question: may we further continue forward transmission 2141 * with the same cwnd? 2142 */ 2143 static bool tcp_time_to_recover(struct sock *sk, int flag) 2144 { 2145 struct tcp_sock *tp = tcp_sk(sk); 2146 2147 /* Trick#1: The loss is proven. */ 2148 if (tp->lost_out) 2149 return true; 2150 2151 /* Not-A-Trick#2 : Classic rule... */ 2152 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2153 return true; 2154 2155 return false; 2156 } 2157 2158 /* Detect loss in event "A" above by marking head of queue up as lost. 2159 * For non-SACK(Reno) senders, the first "packets" number of segments 2160 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2161 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2162 * the maximum SACKed segments to pass before reaching this limit. 2163 */ 2164 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2165 { 2166 struct tcp_sock *tp = tcp_sk(sk); 2167 struct sk_buff *skb; 2168 int cnt, oldcnt, lost; 2169 unsigned int mss; 2170 /* Use SACK to deduce losses of new sequences sent during recovery */ 2171 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2172 2173 WARN_ON(packets > tp->packets_out); 2174 skb = tp->lost_skb_hint; 2175 if (skb) { 2176 /* Head already handled? */ 2177 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2178 return; 2179 cnt = tp->lost_cnt_hint; 2180 } else { 2181 skb = tcp_rtx_queue_head(sk); 2182 cnt = 0; 2183 } 2184 2185 skb_rbtree_walk_from(skb) { 2186 /* TODO: do this better */ 2187 /* this is not the most efficient way to do this... */ 2188 tp->lost_skb_hint = skb; 2189 tp->lost_cnt_hint = cnt; 2190 2191 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2192 break; 2193 2194 oldcnt = cnt; 2195 if (tcp_is_reno(tp) || 2196 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2197 cnt += tcp_skb_pcount(skb); 2198 2199 if (cnt > packets) { 2200 if (tcp_is_sack(tp) || 2201 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2202 (oldcnt >= packets)) 2203 break; 2204 2205 mss = tcp_skb_mss(skb); 2206 /* If needed, chop off the prefix to mark as lost. */ 2207 lost = (packets - oldcnt) * mss; 2208 if (lost < skb->len && 2209 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2210 lost, mss, GFP_ATOMIC) < 0) 2211 break; 2212 cnt = packets; 2213 } 2214 2215 tcp_skb_mark_lost(tp, skb); 2216 2217 if (mark_head) 2218 break; 2219 } 2220 tcp_verify_left_out(tp); 2221 } 2222 2223 /* Account newly detected lost packet(s) */ 2224 2225 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2226 { 2227 struct tcp_sock *tp = tcp_sk(sk); 2228 2229 if (tcp_is_sack(tp)) { 2230 int sacked_upto = tp->sacked_out - tp->reordering; 2231 if (sacked_upto >= 0) 2232 tcp_mark_head_lost(sk, sacked_upto, 0); 2233 else if (fast_rexmit) 2234 tcp_mark_head_lost(sk, 1, 1); 2235 } 2236 } 2237 2238 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2239 { 2240 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2241 before(tp->rx_opt.rcv_tsecr, when); 2242 } 2243 2244 /* skb is spurious retransmitted if the returned timestamp echo 2245 * reply is prior to the skb transmission time 2246 */ 2247 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2248 const struct sk_buff *skb) 2249 { 2250 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2251 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2252 } 2253 2254 /* Nothing was retransmitted or returned timestamp is less 2255 * than timestamp of the first retransmission. 2256 */ 2257 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2258 { 2259 return !tp->retrans_stamp || 2260 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2261 } 2262 2263 /* Undo procedures. */ 2264 2265 /* We can clear retrans_stamp when there are no retransmissions in the 2266 * window. It would seem that it is trivially available for us in 2267 * tp->retrans_out, however, that kind of assumptions doesn't consider 2268 * what will happen if errors occur when sending retransmission for the 2269 * second time. ...It could the that such segment has only 2270 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2271 * the head skb is enough except for some reneging corner cases that 2272 * are not worth the effort. 2273 * 2274 * Main reason for all this complexity is the fact that connection dying 2275 * time now depends on the validity of the retrans_stamp, in particular, 2276 * that successive retransmissions of a segment must not advance 2277 * retrans_stamp under any conditions. 2278 */ 2279 static bool tcp_any_retrans_done(const struct sock *sk) 2280 { 2281 const struct tcp_sock *tp = tcp_sk(sk); 2282 struct sk_buff *skb; 2283 2284 if (tp->retrans_out) 2285 return true; 2286 2287 skb = tcp_rtx_queue_head(sk); 2288 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2289 return true; 2290 2291 return false; 2292 } 2293 2294 static void DBGUNDO(struct sock *sk, const char *msg) 2295 { 2296 #if FASTRETRANS_DEBUG > 1 2297 struct tcp_sock *tp = tcp_sk(sk); 2298 struct inet_sock *inet = inet_sk(sk); 2299 2300 if (sk->sk_family == AF_INET) { 2301 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2302 msg, 2303 &inet->inet_daddr, ntohs(inet->inet_dport), 2304 tp->snd_cwnd, tcp_left_out(tp), 2305 tp->snd_ssthresh, tp->prior_ssthresh, 2306 tp->packets_out); 2307 } 2308 #if IS_ENABLED(CONFIG_IPV6) 2309 else if (sk->sk_family == AF_INET6) { 2310 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2311 msg, 2312 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2313 tp->snd_cwnd, tcp_left_out(tp), 2314 tp->snd_ssthresh, tp->prior_ssthresh, 2315 tp->packets_out); 2316 } 2317 #endif 2318 #endif 2319 } 2320 2321 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2322 { 2323 struct tcp_sock *tp = tcp_sk(sk); 2324 2325 if (unmark_loss) { 2326 struct sk_buff *skb; 2327 2328 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2329 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2330 } 2331 tp->lost_out = 0; 2332 tcp_clear_all_retrans_hints(tp); 2333 } 2334 2335 if (tp->prior_ssthresh) { 2336 const struct inet_connection_sock *icsk = inet_csk(sk); 2337 2338 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2339 2340 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2341 tp->snd_ssthresh = tp->prior_ssthresh; 2342 tcp_ecn_withdraw_cwr(tp); 2343 } 2344 } 2345 tp->snd_cwnd_stamp = tcp_jiffies32; 2346 tp->undo_marker = 0; 2347 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2348 } 2349 2350 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2351 { 2352 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2353 } 2354 2355 /* People celebrate: "We love our President!" */ 2356 static bool tcp_try_undo_recovery(struct sock *sk) 2357 { 2358 struct tcp_sock *tp = tcp_sk(sk); 2359 2360 if (tcp_may_undo(tp)) { 2361 int mib_idx; 2362 2363 /* Happy end! We did not retransmit anything 2364 * or our original transmission succeeded. 2365 */ 2366 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2367 tcp_undo_cwnd_reduction(sk, false); 2368 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2369 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2370 else 2371 mib_idx = LINUX_MIB_TCPFULLUNDO; 2372 2373 NET_INC_STATS(sock_net(sk), mib_idx); 2374 } else if (tp->rack.reo_wnd_persist) { 2375 tp->rack.reo_wnd_persist--; 2376 } 2377 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2378 /* Hold old state until something *above* high_seq 2379 * is ACKed. For Reno it is MUST to prevent false 2380 * fast retransmits (RFC2582). SACK TCP is safe. */ 2381 if (!tcp_any_retrans_done(sk)) 2382 tp->retrans_stamp = 0; 2383 return true; 2384 } 2385 tcp_set_ca_state(sk, TCP_CA_Open); 2386 tp->is_sack_reneg = 0; 2387 return false; 2388 } 2389 2390 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2391 static bool tcp_try_undo_dsack(struct sock *sk) 2392 { 2393 struct tcp_sock *tp = tcp_sk(sk); 2394 2395 if (tp->undo_marker && !tp->undo_retrans) { 2396 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2397 tp->rack.reo_wnd_persist + 1); 2398 DBGUNDO(sk, "D-SACK"); 2399 tcp_undo_cwnd_reduction(sk, false); 2400 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2401 return true; 2402 } 2403 return false; 2404 } 2405 2406 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2407 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2408 { 2409 struct tcp_sock *tp = tcp_sk(sk); 2410 2411 if (frto_undo || tcp_may_undo(tp)) { 2412 tcp_undo_cwnd_reduction(sk, true); 2413 2414 DBGUNDO(sk, "partial loss"); 2415 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2416 if (frto_undo) 2417 NET_INC_STATS(sock_net(sk), 2418 LINUX_MIB_TCPSPURIOUSRTOS); 2419 inet_csk(sk)->icsk_retransmits = 0; 2420 if (frto_undo || tcp_is_sack(tp)) { 2421 tcp_set_ca_state(sk, TCP_CA_Open); 2422 tp->is_sack_reneg = 0; 2423 } 2424 return true; 2425 } 2426 return false; 2427 } 2428 2429 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2430 * It computes the number of packets to send (sndcnt) based on packets newly 2431 * delivered: 2432 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2433 * cwnd reductions across a full RTT. 2434 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2435 * But when the retransmits are acked without further losses, PRR 2436 * slow starts cwnd up to ssthresh to speed up the recovery. 2437 */ 2438 static void tcp_init_cwnd_reduction(struct sock *sk) 2439 { 2440 struct tcp_sock *tp = tcp_sk(sk); 2441 2442 tp->high_seq = tp->snd_nxt; 2443 tp->tlp_high_seq = 0; 2444 tp->snd_cwnd_cnt = 0; 2445 tp->prior_cwnd = tp->snd_cwnd; 2446 tp->prr_delivered = 0; 2447 tp->prr_out = 0; 2448 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2449 tcp_ecn_queue_cwr(tp); 2450 } 2451 2452 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2453 { 2454 struct tcp_sock *tp = tcp_sk(sk); 2455 int sndcnt = 0; 2456 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2457 2458 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2459 return; 2460 2461 tp->prr_delivered += newly_acked_sacked; 2462 if (delta < 0) { 2463 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2464 tp->prior_cwnd - 1; 2465 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2466 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) == 2467 FLAG_RETRANS_DATA_ACKED) { 2468 sndcnt = min_t(int, delta, 2469 max_t(int, tp->prr_delivered - tp->prr_out, 2470 newly_acked_sacked) + 1); 2471 } else { 2472 sndcnt = min(delta, newly_acked_sacked); 2473 } 2474 /* Force a fast retransmit upon entering fast recovery */ 2475 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2476 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2477 } 2478 2479 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2480 { 2481 struct tcp_sock *tp = tcp_sk(sk); 2482 2483 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2484 return; 2485 2486 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2487 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2488 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2489 tp->snd_cwnd = tp->snd_ssthresh; 2490 tp->snd_cwnd_stamp = tcp_jiffies32; 2491 } 2492 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2493 } 2494 2495 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2496 void tcp_enter_cwr(struct sock *sk) 2497 { 2498 struct tcp_sock *tp = tcp_sk(sk); 2499 2500 tp->prior_ssthresh = 0; 2501 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2502 tp->undo_marker = 0; 2503 tcp_init_cwnd_reduction(sk); 2504 tcp_set_ca_state(sk, TCP_CA_CWR); 2505 } 2506 } 2507 EXPORT_SYMBOL(tcp_enter_cwr); 2508 2509 static void tcp_try_keep_open(struct sock *sk) 2510 { 2511 struct tcp_sock *tp = tcp_sk(sk); 2512 int state = TCP_CA_Open; 2513 2514 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2515 state = TCP_CA_Disorder; 2516 2517 if (inet_csk(sk)->icsk_ca_state != state) { 2518 tcp_set_ca_state(sk, state); 2519 tp->high_seq = tp->snd_nxt; 2520 } 2521 } 2522 2523 static void tcp_try_to_open(struct sock *sk, int flag) 2524 { 2525 struct tcp_sock *tp = tcp_sk(sk); 2526 2527 tcp_verify_left_out(tp); 2528 2529 if (!tcp_any_retrans_done(sk)) 2530 tp->retrans_stamp = 0; 2531 2532 if (flag & FLAG_ECE) 2533 tcp_enter_cwr(sk); 2534 2535 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2536 tcp_try_keep_open(sk); 2537 } 2538 } 2539 2540 static void tcp_mtup_probe_failed(struct sock *sk) 2541 { 2542 struct inet_connection_sock *icsk = inet_csk(sk); 2543 2544 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2545 icsk->icsk_mtup.probe_size = 0; 2546 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2547 } 2548 2549 static void tcp_mtup_probe_success(struct sock *sk) 2550 { 2551 struct tcp_sock *tp = tcp_sk(sk); 2552 struct inet_connection_sock *icsk = inet_csk(sk); 2553 2554 /* FIXME: breaks with very large cwnd */ 2555 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2556 tp->snd_cwnd = tp->snd_cwnd * 2557 tcp_mss_to_mtu(sk, tp->mss_cache) / 2558 icsk->icsk_mtup.probe_size; 2559 tp->snd_cwnd_cnt = 0; 2560 tp->snd_cwnd_stamp = tcp_jiffies32; 2561 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2562 2563 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2564 icsk->icsk_mtup.probe_size = 0; 2565 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2566 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2567 } 2568 2569 /* Do a simple retransmit without using the backoff mechanisms in 2570 * tcp_timer. This is used for path mtu discovery. 2571 * The socket is already locked here. 2572 */ 2573 void tcp_simple_retransmit(struct sock *sk) 2574 { 2575 const struct inet_connection_sock *icsk = inet_csk(sk); 2576 struct tcp_sock *tp = tcp_sk(sk); 2577 struct sk_buff *skb; 2578 unsigned int mss = tcp_current_mss(sk); 2579 2580 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2581 if (tcp_skb_seglen(skb) > mss && 2582 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2583 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2584 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2585 tp->retrans_out -= tcp_skb_pcount(skb); 2586 } 2587 tcp_skb_mark_lost_uncond_verify(tp, skb); 2588 } 2589 } 2590 2591 tcp_clear_retrans_hints_partial(tp); 2592 2593 if (!tp->lost_out) 2594 return; 2595 2596 if (tcp_is_reno(tp)) 2597 tcp_limit_reno_sacked(tp); 2598 2599 tcp_verify_left_out(tp); 2600 2601 /* Don't muck with the congestion window here. 2602 * Reason is that we do not increase amount of _data_ 2603 * in network, but units changed and effective 2604 * cwnd/ssthresh really reduced now. 2605 */ 2606 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2607 tp->high_seq = tp->snd_nxt; 2608 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2609 tp->prior_ssthresh = 0; 2610 tp->undo_marker = 0; 2611 tcp_set_ca_state(sk, TCP_CA_Loss); 2612 } 2613 tcp_xmit_retransmit_queue(sk); 2614 } 2615 EXPORT_SYMBOL(tcp_simple_retransmit); 2616 2617 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2618 { 2619 struct tcp_sock *tp = tcp_sk(sk); 2620 int mib_idx; 2621 2622 if (tcp_is_reno(tp)) 2623 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2624 else 2625 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2626 2627 NET_INC_STATS(sock_net(sk), mib_idx); 2628 2629 tp->prior_ssthresh = 0; 2630 tcp_init_undo(tp); 2631 2632 if (!tcp_in_cwnd_reduction(sk)) { 2633 if (!ece_ack) 2634 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2635 tcp_init_cwnd_reduction(sk); 2636 } 2637 tcp_set_ca_state(sk, TCP_CA_Recovery); 2638 } 2639 2640 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2641 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2642 */ 2643 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2644 int *rexmit) 2645 { 2646 struct tcp_sock *tp = tcp_sk(sk); 2647 bool recovered = !before(tp->snd_una, tp->high_seq); 2648 2649 if ((flag & FLAG_SND_UNA_ADVANCED) && 2650 tcp_try_undo_loss(sk, false)) 2651 return; 2652 2653 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2654 /* Step 3.b. A timeout is spurious if not all data are 2655 * lost, i.e., never-retransmitted data are (s)acked. 2656 */ 2657 if ((flag & FLAG_ORIG_SACK_ACKED) && 2658 tcp_try_undo_loss(sk, true)) 2659 return; 2660 2661 if (after(tp->snd_nxt, tp->high_seq)) { 2662 if (flag & FLAG_DATA_SACKED || num_dupack) 2663 tp->frto = 0; /* Step 3.a. loss was real */ 2664 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2665 tp->high_seq = tp->snd_nxt; 2666 /* Step 2.b. Try send new data (but deferred until cwnd 2667 * is updated in tcp_ack()). Otherwise fall back to 2668 * the conventional recovery. 2669 */ 2670 if (!tcp_write_queue_empty(sk) && 2671 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2672 *rexmit = REXMIT_NEW; 2673 return; 2674 } 2675 tp->frto = 0; 2676 } 2677 } 2678 2679 if (recovered) { 2680 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2681 tcp_try_undo_recovery(sk); 2682 return; 2683 } 2684 if (tcp_is_reno(tp)) { 2685 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2686 * delivered. Lower inflight to clock out (re)tranmissions. 2687 */ 2688 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2689 tcp_add_reno_sack(sk, num_dupack); 2690 else if (flag & FLAG_SND_UNA_ADVANCED) 2691 tcp_reset_reno_sack(tp); 2692 } 2693 *rexmit = REXMIT_LOST; 2694 } 2695 2696 /* Undo during fast recovery after partial ACK. */ 2697 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2698 { 2699 struct tcp_sock *tp = tcp_sk(sk); 2700 2701 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2702 /* Plain luck! Hole if filled with delayed 2703 * packet, rather than with a retransmit. Check reordering. 2704 */ 2705 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2706 2707 /* We are getting evidence that the reordering degree is higher 2708 * than we realized. If there are no retransmits out then we 2709 * can undo. Otherwise we clock out new packets but do not 2710 * mark more packets lost or retransmit more. 2711 */ 2712 if (tp->retrans_out) 2713 return true; 2714 2715 if (!tcp_any_retrans_done(sk)) 2716 tp->retrans_stamp = 0; 2717 2718 DBGUNDO(sk, "partial recovery"); 2719 tcp_undo_cwnd_reduction(sk, true); 2720 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2721 tcp_try_keep_open(sk); 2722 return true; 2723 } 2724 return false; 2725 } 2726 2727 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2728 { 2729 struct tcp_sock *tp = tcp_sk(sk); 2730 2731 if (tcp_rtx_queue_empty(sk)) 2732 return; 2733 2734 if (unlikely(tcp_is_reno(tp))) { 2735 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2736 } else if (tcp_is_rack(sk)) { 2737 u32 prior_retrans = tp->retrans_out; 2738 2739 tcp_rack_mark_lost(sk); 2740 if (prior_retrans > tp->retrans_out) 2741 *ack_flag |= FLAG_LOST_RETRANS; 2742 } 2743 } 2744 2745 static bool tcp_force_fast_retransmit(struct sock *sk) 2746 { 2747 struct tcp_sock *tp = tcp_sk(sk); 2748 2749 return after(tcp_highest_sack_seq(tp), 2750 tp->snd_una + tp->reordering * tp->mss_cache); 2751 } 2752 2753 /* Process an event, which can update packets-in-flight not trivially. 2754 * Main goal of this function is to calculate new estimate for left_out, 2755 * taking into account both packets sitting in receiver's buffer and 2756 * packets lost by network. 2757 * 2758 * Besides that it updates the congestion state when packet loss or ECN 2759 * is detected. But it does not reduce the cwnd, it is done by the 2760 * congestion control later. 2761 * 2762 * It does _not_ decide what to send, it is made in function 2763 * tcp_xmit_retransmit_queue(). 2764 */ 2765 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2766 int num_dupack, int *ack_flag, int *rexmit) 2767 { 2768 struct inet_connection_sock *icsk = inet_csk(sk); 2769 struct tcp_sock *tp = tcp_sk(sk); 2770 int fast_rexmit = 0, flag = *ack_flag; 2771 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2772 tcp_force_fast_retransmit(sk)); 2773 2774 if (!tp->packets_out && tp->sacked_out) 2775 tp->sacked_out = 0; 2776 2777 /* Now state machine starts. 2778 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2779 if (flag & FLAG_ECE) 2780 tp->prior_ssthresh = 0; 2781 2782 /* B. In all the states check for reneging SACKs. */ 2783 if (tcp_check_sack_reneging(sk, flag)) 2784 return; 2785 2786 /* C. Check consistency of the current state. */ 2787 tcp_verify_left_out(tp); 2788 2789 /* D. Check state exit conditions. State can be terminated 2790 * when high_seq is ACKed. */ 2791 if (icsk->icsk_ca_state == TCP_CA_Open) { 2792 WARN_ON(tp->retrans_out != 0); 2793 tp->retrans_stamp = 0; 2794 } else if (!before(tp->snd_una, tp->high_seq)) { 2795 switch (icsk->icsk_ca_state) { 2796 case TCP_CA_CWR: 2797 /* CWR is to be held something *above* high_seq 2798 * is ACKed for CWR bit to reach receiver. */ 2799 if (tp->snd_una != tp->high_seq) { 2800 tcp_end_cwnd_reduction(sk); 2801 tcp_set_ca_state(sk, TCP_CA_Open); 2802 } 2803 break; 2804 2805 case TCP_CA_Recovery: 2806 if (tcp_is_reno(tp)) 2807 tcp_reset_reno_sack(tp); 2808 if (tcp_try_undo_recovery(sk)) 2809 return; 2810 tcp_end_cwnd_reduction(sk); 2811 break; 2812 } 2813 } 2814 2815 /* E. Process state. */ 2816 switch (icsk->icsk_ca_state) { 2817 case TCP_CA_Recovery: 2818 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2819 if (tcp_is_reno(tp)) 2820 tcp_add_reno_sack(sk, num_dupack); 2821 } else { 2822 if (tcp_try_undo_partial(sk, prior_snd_una)) 2823 return; 2824 /* Partial ACK arrived. Force fast retransmit. */ 2825 do_lost = tcp_is_reno(tp) || 2826 tcp_force_fast_retransmit(sk); 2827 } 2828 if (tcp_try_undo_dsack(sk)) { 2829 tcp_try_keep_open(sk); 2830 return; 2831 } 2832 tcp_identify_packet_loss(sk, ack_flag); 2833 break; 2834 case TCP_CA_Loss: 2835 tcp_process_loss(sk, flag, num_dupack, rexmit); 2836 tcp_identify_packet_loss(sk, ack_flag); 2837 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2838 (*ack_flag & FLAG_LOST_RETRANS))) 2839 return; 2840 /* Change state if cwnd is undone or retransmits are lost */ 2841 /* fall through */ 2842 default: 2843 if (tcp_is_reno(tp)) { 2844 if (flag & FLAG_SND_UNA_ADVANCED) 2845 tcp_reset_reno_sack(tp); 2846 tcp_add_reno_sack(sk, num_dupack); 2847 } 2848 2849 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2850 tcp_try_undo_dsack(sk); 2851 2852 tcp_identify_packet_loss(sk, ack_flag); 2853 if (!tcp_time_to_recover(sk, flag)) { 2854 tcp_try_to_open(sk, flag); 2855 return; 2856 } 2857 2858 /* MTU probe failure: don't reduce cwnd */ 2859 if (icsk->icsk_ca_state < TCP_CA_CWR && 2860 icsk->icsk_mtup.probe_size && 2861 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2862 tcp_mtup_probe_failed(sk); 2863 /* Restores the reduction we did in tcp_mtup_probe() */ 2864 tp->snd_cwnd++; 2865 tcp_simple_retransmit(sk); 2866 return; 2867 } 2868 2869 /* Otherwise enter Recovery state */ 2870 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2871 fast_rexmit = 1; 2872 } 2873 2874 if (!tcp_is_rack(sk) && do_lost) 2875 tcp_update_scoreboard(sk, fast_rexmit); 2876 *rexmit = REXMIT_LOST; 2877 } 2878 2879 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2880 { 2881 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2882 struct tcp_sock *tp = tcp_sk(sk); 2883 2884 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2885 /* If the remote keeps returning delayed ACKs, eventually 2886 * the min filter would pick it up and overestimate the 2887 * prop. delay when it expires. Skip suspected delayed ACKs. 2888 */ 2889 return; 2890 } 2891 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2892 rtt_us ? : jiffies_to_usecs(1)); 2893 } 2894 2895 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2896 long seq_rtt_us, long sack_rtt_us, 2897 long ca_rtt_us, struct rate_sample *rs) 2898 { 2899 const struct tcp_sock *tp = tcp_sk(sk); 2900 2901 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2902 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2903 * Karn's algorithm forbids taking RTT if some retransmitted data 2904 * is acked (RFC6298). 2905 */ 2906 if (seq_rtt_us < 0) 2907 seq_rtt_us = sack_rtt_us; 2908 2909 /* RTTM Rule: A TSecr value received in a segment is used to 2910 * update the averaged RTT measurement only if the segment 2911 * acknowledges some new data, i.e., only if it advances the 2912 * left edge of the send window. 2913 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2914 */ 2915 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2916 flag & FLAG_ACKED) { 2917 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2918 2919 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 2920 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2921 ca_rtt_us = seq_rtt_us; 2922 } 2923 } 2924 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2925 if (seq_rtt_us < 0) 2926 return false; 2927 2928 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2929 * always taken together with ACK, SACK, or TS-opts. Any negative 2930 * values will be skipped with the seq_rtt_us < 0 check above. 2931 */ 2932 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2933 tcp_rtt_estimator(sk, seq_rtt_us); 2934 tcp_set_rto(sk); 2935 2936 /* RFC6298: only reset backoff on valid RTT measurement. */ 2937 inet_csk(sk)->icsk_backoff = 0; 2938 return true; 2939 } 2940 2941 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2942 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2943 { 2944 struct rate_sample rs; 2945 long rtt_us = -1L; 2946 2947 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2948 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2949 2950 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2951 } 2952 2953 2954 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2955 { 2956 const struct inet_connection_sock *icsk = inet_csk(sk); 2957 2958 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2959 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2960 } 2961 2962 /* Restart timer after forward progress on connection. 2963 * RFC2988 recommends to restart timer to now+rto. 2964 */ 2965 void tcp_rearm_rto(struct sock *sk) 2966 { 2967 const struct inet_connection_sock *icsk = inet_csk(sk); 2968 struct tcp_sock *tp = tcp_sk(sk); 2969 2970 /* If the retrans timer is currently being used by Fast Open 2971 * for SYN-ACK retrans purpose, stay put. 2972 */ 2973 if (tp->fastopen_rsk) 2974 return; 2975 2976 if (!tp->packets_out) { 2977 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2978 } else { 2979 u32 rto = inet_csk(sk)->icsk_rto; 2980 /* Offset the time elapsed after installing regular RTO */ 2981 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2982 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2983 s64 delta_us = tcp_rto_delta_us(sk); 2984 /* delta_us may not be positive if the socket is locked 2985 * when the retrans timer fires and is rescheduled. 2986 */ 2987 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2988 } 2989 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2990 TCP_RTO_MAX, tcp_rtx_queue_head(sk)); 2991 } 2992 } 2993 2994 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2995 static void tcp_set_xmit_timer(struct sock *sk) 2996 { 2997 if (!tcp_schedule_loss_probe(sk, true)) 2998 tcp_rearm_rto(sk); 2999 } 3000 3001 /* If we get here, the whole TSO packet has not been acked. */ 3002 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3003 { 3004 struct tcp_sock *tp = tcp_sk(sk); 3005 u32 packets_acked; 3006 3007 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3008 3009 packets_acked = tcp_skb_pcount(skb); 3010 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3011 return 0; 3012 packets_acked -= tcp_skb_pcount(skb); 3013 3014 if (packets_acked) { 3015 BUG_ON(tcp_skb_pcount(skb) == 0); 3016 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3017 } 3018 3019 return packets_acked; 3020 } 3021 3022 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3023 u32 prior_snd_una) 3024 { 3025 const struct skb_shared_info *shinfo; 3026 3027 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3028 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3029 return; 3030 3031 shinfo = skb_shinfo(skb); 3032 if (!before(shinfo->tskey, prior_snd_una) && 3033 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3034 tcp_skb_tsorted_save(skb) { 3035 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3036 } tcp_skb_tsorted_restore(skb); 3037 } 3038 } 3039 3040 /* Remove acknowledged frames from the retransmission queue. If our packet 3041 * is before the ack sequence we can discard it as it's confirmed to have 3042 * arrived at the other end. 3043 */ 3044 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3045 u32 prior_snd_una, 3046 struct tcp_sacktag_state *sack) 3047 { 3048 const struct inet_connection_sock *icsk = inet_csk(sk); 3049 u64 first_ackt, last_ackt; 3050 struct tcp_sock *tp = tcp_sk(sk); 3051 u32 prior_sacked = tp->sacked_out; 3052 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3053 struct sk_buff *skb, *next; 3054 bool fully_acked = true; 3055 long sack_rtt_us = -1L; 3056 long seq_rtt_us = -1L; 3057 long ca_rtt_us = -1L; 3058 u32 pkts_acked = 0; 3059 u32 last_in_flight = 0; 3060 bool rtt_update; 3061 int flag = 0; 3062 3063 first_ackt = 0; 3064 3065 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3066 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3067 const u32 start_seq = scb->seq; 3068 u8 sacked = scb->sacked; 3069 u32 acked_pcount; 3070 3071 tcp_ack_tstamp(sk, skb, prior_snd_una); 3072 3073 /* Determine how many packets and what bytes were acked, tso and else */ 3074 if (after(scb->end_seq, tp->snd_una)) { 3075 if (tcp_skb_pcount(skb) == 1 || 3076 !after(tp->snd_una, scb->seq)) 3077 break; 3078 3079 acked_pcount = tcp_tso_acked(sk, skb); 3080 if (!acked_pcount) 3081 break; 3082 fully_acked = false; 3083 } else { 3084 acked_pcount = tcp_skb_pcount(skb); 3085 } 3086 3087 if (unlikely(sacked & TCPCB_RETRANS)) { 3088 if (sacked & TCPCB_SACKED_RETRANS) 3089 tp->retrans_out -= acked_pcount; 3090 flag |= FLAG_RETRANS_DATA_ACKED; 3091 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3092 last_ackt = tcp_skb_timestamp_us(skb); 3093 WARN_ON_ONCE(last_ackt == 0); 3094 if (!first_ackt) 3095 first_ackt = last_ackt; 3096 3097 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3098 if (before(start_seq, reord)) 3099 reord = start_seq; 3100 if (!after(scb->end_seq, tp->high_seq)) 3101 flag |= FLAG_ORIG_SACK_ACKED; 3102 } 3103 3104 if (sacked & TCPCB_SACKED_ACKED) { 3105 tp->sacked_out -= acked_pcount; 3106 } else if (tcp_is_sack(tp)) { 3107 tp->delivered += acked_pcount; 3108 if (!tcp_skb_spurious_retrans(tp, skb)) 3109 tcp_rack_advance(tp, sacked, scb->end_seq, 3110 tcp_skb_timestamp_us(skb)); 3111 } 3112 if (sacked & TCPCB_LOST) 3113 tp->lost_out -= acked_pcount; 3114 3115 tp->packets_out -= acked_pcount; 3116 pkts_acked += acked_pcount; 3117 tcp_rate_skb_delivered(sk, skb, sack->rate); 3118 3119 /* Initial outgoing SYN's get put onto the write_queue 3120 * just like anything else we transmit. It is not 3121 * true data, and if we misinform our callers that 3122 * this ACK acks real data, we will erroneously exit 3123 * connection startup slow start one packet too 3124 * quickly. This is severely frowned upon behavior. 3125 */ 3126 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3127 flag |= FLAG_DATA_ACKED; 3128 } else { 3129 flag |= FLAG_SYN_ACKED; 3130 tp->retrans_stamp = 0; 3131 } 3132 3133 if (!fully_acked) 3134 break; 3135 3136 next = skb_rb_next(skb); 3137 if (unlikely(skb == tp->retransmit_skb_hint)) 3138 tp->retransmit_skb_hint = NULL; 3139 if (unlikely(skb == tp->lost_skb_hint)) 3140 tp->lost_skb_hint = NULL; 3141 tcp_rtx_queue_unlink_and_free(skb, sk); 3142 } 3143 3144 if (!skb) 3145 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3146 3147 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3148 tp->snd_up = tp->snd_una; 3149 3150 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3151 flag |= FLAG_SACK_RENEGING; 3152 3153 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3154 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3155 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3156 3157 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3158 last_in_flight && !prior_sacked && fully_acked && 3159 sack->rate->prior_delivered + 1 == tp->delivered && 3160 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3161 /* Conservatively mark a delayed ACK. It's typically 3162 * from a lone runt packet over the round trip to 3163 * a receiver w/o out-of-order or CE events. 3164 */ 3165 flag |= FLAG_ACK_MAYBE_DELAYED; 3166 } 3167 } 3168 if (sack->first_sackt) { 3169 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3170 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3171 } 3172 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3173 ca_rtt_us, sack->rate); 3174 3175 if (flag & FLAG_ACKED) { 3176 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3177 if (unlikely(icsk->icsk_mtup.probe_size && 3178 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3179 tcp_mtup_probe_success(sk); 3180 } 3181 3182 if (tcp_is_reno(tp)) { 3183 tcp_remove_reno_sacks(sk, pkts_acked); 3184 3185 /* If any of the cumulatively ACKed segments was 3186 * retransmitted, non-SACK case cannot confirm that 3187 * progress was due to original transmission due to 3188 * lack of TCPCB_SACKED_ACKED bits even if some of 3189 * the packets may have been never retransmitted. 3190 */ 3191 if (flag & FLAG_RETRANS_DATA_ACKED) 3192 flag &= ~FLAG_ORIG_SACK_ACKED; 3193 } else { 3194 int delta; 3195 3196 /* Non-retransmitted hole got filled? That's reordering */ 3197 if (before(reord, prior_fack)) 3198 tcp_check_sack_reordering(sk, reord, 0); 3199 3200 delta = prior_sacked - tp->sacked_out; 3201 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3202 } 3203 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3204 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3205 tcp_skb_timestamp_us(skb))) { 3206 /* Do not re-arm RTO if the sack RTT is measured from data sent 3207 * after when the head was last (re)transmitted. Otherwise the 3208 * timeout may continue to extend in loss recovery. 3209 */ 3210 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3211 } 3212 3213 if (icsk->icsk_ca_ops->pkts_acked) { 3214 struct ack_sample sample = { .pkts_acked = pkts_acked, 3215 .rtt_us = sack->rate->rtt_us, 3216 .in_flight = last_in_flight }; 3217 3218 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3219 } 3220 3221 #if FASTRETRANS_DEBUG > 0 3222 WARN_ON((int)tp->sacked_out < 0); 3223 WARN_ON((int)tp->lost_out < 0); 3224 WARN_ON((int)tp->retrans_out < 0); 3225 if (!tp->packets_out && tcp_is_sack(tp)) { 3226 icsk = inet_csk(sk); 3227 if (tp->lost_out) { 3228 pr_debug("Leak l=%u %d\n", 3229 tp->lost_out, icsk->icsk_ca_state); 3230 tp->lost_out = 0; 3231 } 3232 if (tp->sacked_out) { 3233 pr_debug("Leak s=%u %d\n", 3234 tp->sacked_out, icsk->icsk_ca_state); 3235 tp->sacked_out = 0; 3236 } 3237 if (tp->retrans_out) { 3238 pr_debug("Leak r=%u %d\n", 3239 tp->retrans_out, icsk->icsk_ca_state); 3240 tp->retrans_out = 0; 3241 } 3242 } 3243 #endif 3244 return flag; 3245 } 3246 3247 static void tcp_ack_probe(struct sock *sk) 3248 { 3249 struct inet_connection_sock *icsk = inet_csk(sk); 3250 struct sk_buff *head = tcp_send_head(sk); 3251 const struct tcp_sock *tp = tcp_sk(sk); 3252 3253 /* Was it a usable window open? */ 3254 if (!head) 3255 return; 3256 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3257 icsk->icsk_backoff = 0; 3258 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3259 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3260 * This function is not for random using! 3261 */ 3262 } else { 3263 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3264 3265 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3266 when, TCP_RTO_MAX, NULL); 3267 } 3268 } 3269 3270 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3271 { 3272 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3273 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3274 } 3275 3276 /* Decide wheather to run the increase function of congestion control. */ 3277 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3278 { 3279 /* If reordering is high then always grow cwnd whenever data is 3280 * delivered regardless of its ordering. Otherwise stay conservative 3281 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3282 * new SACK or ECE mark may first advance cwnd here and later reduce 3283 * cwnd in tcp_fastretrans_alert() based on more states. 3284 */ 3285 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3286 return flag & FLAG_FORWARD_PROGRESS; 3287 3288 return flag & FLAG_DATA_ACKED; 3289 } 3290 3291 /* The "ultimate" congestion control function that aims to replace the rigid 3292 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3293 * It's called toward the end of processing an ACK with precise rate 3294 * information. All transmission or retransmission are delayed afterwards. 3295 */ 3296 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3297 int flag, const struct rate_sample *rs) 3298 { 3299 const struct inet_connection_sock *icsk = inet_csk(sk); 3300 3301 if (icsk->icsk_ca_ops->cong_control) { 3302 icsk->icsk_ca_ops->cong_control(sk, rs); 3303 return; 3304 } 3305 3306 if (tcp_in_cwnd_reduction(sk)) { 3307 /* Reduce cwnd if state mandates */ 3308 tcp_cwnd_reduction(sk, acked_sacked, flag); 3309 } else if (tcp_may_raise_cwnd(sk, flag)) { 3310 /* Advance cwnd if state allows */ 3311 tcp_cong_avoid(sk, ack, acked_sacked); 3312 } 3313 tcp_update_pacing_rate(sk); 3314 } 3315 3316 /* Check that window update is acceptable. 3317 * The function assumes that snd_una<=ack<=snd_next. 3318 */ 3319 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3320 const u32 ack, const u32 ack_seq, 3321 const u32 nwin) 3322 { 3323 return after(ack, tp->snd_una) || 3324 after(ack_seq, tp->snd_wl1) || 3325 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3326 } 3327 3328 /* If we update tp->snd_una, also update tp->bytes_acked */ 3329 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3330 { 3331 u32 delta = ack - tp->snd_una; 3332 3333 sock_owned_by_me((struct sock *)tp); 3334 tp->bytes_acked += delta; 3335 tp->snd_una = ack; 3336 } 3337 3338 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3339 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3340 { 3341 u32 delta = seq - tp->rcv_nxt; 3342 3343 sock_owned_by_me((struct sock *)tp); 3344 tp->bytes_received += delta; 3345 tp->rcv_nxt = seq; 3346 } 3347 3348 /* Update our send window. 3349 * 3350 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3351 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3352 */ 3353 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3354 u32 ack_seq) 3355 { 3356 struct tcp_sock *tp = tcp_sk(sk); 3357 int flag = 0; 3358 u32 nwin = ntohs(tcp_hdr(skb)->window); 3359 3360 if (likely(!tcp_hdr(skb)->syn)) 3361 nwin <<= tp->rx_opt.snd_wscale; 3362 3363 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3364 flag |= FLAG_WIN_UPDATE; 3365 tcp_update_wl(tp, ack_seq); 3366 3367 if (tp->snd_wnd != nwin) { 3368 tp->snd_wnd = nwin; 3369 3370 /* Note, it is the only place, where 3371 * fast path is recovered for sending TCP. 3372 */ 3373 tp->pred_flags = 0; 3374 tcp_fast_path_check(sk); 3375 3376 if (!tcp_write_queue_empty(sk)) 3377 tcp_slow_start_after_idle_check(sk); 3378 3379 if (nwin > tp->max_window) { 3380 tp->max_window = nwin; 3381 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3382 } 3383 } 3384 } 3385 3386 tcp_snd_una_update(tp, ack); 3387 3388 return flag; 3389 } 3390 3391 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3392 u32 *last_oow_ack_time) 3393 { 3394 if (*last_oow_ack_time) { 3395 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3396 3397 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3398 NET_INC_STATS(net, mib_idx); 3399 return true; /* rate-limited: don't send yet! */ 3400 } 3401 } 3402 3403 *last_oow_ack_time = tcp_jiffies32; 3404 3405 return false; /* not rate-limited: go ahead, send dupack now! */ 3406 } 3407 3408 /* Return true if we're currently rate-limiting out-of-window ACKs and 3409 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3410 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3411 * attacks that send repeated SYNs or ACKs for the same connection. To 3412 * do this, we do not send a duplicate SYNACK or ACK if the remote 3413 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3414 */ 3415 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3416 int mib_idx, u32 *last_oow_ack_time) 3417 { 3418 /* Data packets without SYNs are not likely part of an ACK loop. */ 3419 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3420 !tcp_hdr(skb)->syn) 3421 return false; 3422 3423 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3424 } 3425 3426 /* RFC 5961 7 [ACK Throttling] */ 3427 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3428 { 3429 /* unprotected vars, we dont care of overwrites */ 3430 static u32 challenge_timestamp; 3431 static unsigned int challenge_count; 3432 struct tcp_sock *tp = tcp_sk(sk); 3433 struct net *net = sock_net(sk); 3434 u32 count, now; 3435 3436 /* First check our per-socket dupack rate limit. */ 3437 if (__tcp_oow_rate_limited(net, 3438 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3439 &tp->last_oow_ack_time)) 3440 return; 3441 3442 /* Then check host-wide RFC 5961 rate limit. */ 3443 now = jiffies / HZ; 3444 if (now != challenge_timestamp) { 3445 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3446 u32 half = (ack_limit + 1) >> 1; 3447 3448 challenge_timestamp = now; 3449 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3450 } 3451 count = READ_ONCE(challenge_count); 3452 if (count > 0) { 3453 WRITE_ONCE(challenge_count, count - 1); 3454 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3455 tcp_send_ack(sk); 3456 } 3457 } 3458 3459 static void tcp_store_ts_recent(struct tcp_sock *tp) 3460 { 3461 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3462 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3463 } 3464 3465 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3466 { 3467 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3468 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3469 * extra check below makes sure this can only happen 3470 * for pure ACK frames. -DaveM 3471 * 3472 * Not only, also it occurs for expired timestamps. 3473 */ 3474 3475 if (tcp_paws_check(&tp->rx_opt, 0)) 3476 tcp_store_ts_recent(tp); 3477 } 3478 } 3479 3480 /* This routine deals with acks during a TLP episode. 3481 * We mark the end of a TLP episode on receiving TLP dupack or when 3482 * ack is after tlp_high_seq. 3483 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3484 */ 3485 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3486 { 3487 struct tcp_sock *tp = tcp_sk(sk); 3488 3489 if (before(ack, tp->tlp_high_seq)) 3490 return; 3491 3492 if (flag & FLAG_DSACKING_ACK) { 3493 /* This DSACK means original and TLP probe arrived; no loss */ 3494 tp->tlp_high_seq = 0; 3495 } else if (after(ack, tp->tlp_high_seq)) { 3496 /* ACK advances: there was a loss, so reduce cwnd. Reset 3497 * tlp_high_seq in tcp_init_cwnd_reduction() 3498 */ 3499 tcp_init_cwnd_reduction(sk); 3500 tcp_set_ca_state(sk, TCP_CA_CWR); 3501 tcp_end_cwnd_reduction(sk); 3502 tcp_try_keep_open(sk); 3503 NET_INC_STATS(sock_net(sk), 3504 LINUX_MIB_TCPLOSSPROBERECOVERY); 3505 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3506 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3507 /* Pure dupack: original and TLP probe arrived; no loss */ 3508 tp->tlp_high_seq = 0; 3509 } 3510 } 3511 3512 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3513 { 3514 const struct inet_connection_sock *icsk = inet_csk(sk); 3515 3516 if (icsk->icsk_ca_ops->in_ack_event) 3517 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3518 } 3519 3520 /* Congestion control has updated the cwnd already. So if we're in 3521 * loss recovery then now we do any new sends (for FRTO) or 3522 * retransmits (for CA_Loss or CA_recovery) that make sense. 3523 */ 3524 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3525 { 3526 struct tcp_sock *tp = tcp_sk(sk); 3527 3528 if (rexmit == REXMIT_NONE) 3529 return; 3530 3531 if (unlikely(rexmit == 2)) { 3532 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3533 TCP_NAGLE_OFF); 3534 if (after(tp->snd_nxt, tp->high_seq)) 3535 return; 3536 tp->frto = 0; 3537 } 3538 tcp_xmit_retransmit_queue(sk); 3539 } 3540 3541 /* Returns the number of packets newly acked or sacked by the current ACK */ 3542 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3543 { 3544 const struct net *net = sock_net(sk); 3545 struct tcp_sock *tp = tcp_sk(sk); 3546 u32 delivered; 3547 3548 delivered = tp->delivered - prior_delivered; 3549 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3550 if (flag & FLAG_ECE) { 3551 tp->delivered_ce += delivered; 3552 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3553 } 3554 return delivered; 3555 } 3556 3557 /* This routine deals with incoming acks, but not outgoing ones. */ 3558 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3559 { 3560 struct inet_connection_sock *icsk = inet_csk(sk); 3561 struct tcp_sock *tp = tcp_sk(sk); 3562 struct tcp_sacktag_state sack_state; 3563 struct rate_sample rs = { .prior_delivered = 0 }; 3564 u32 prior_snd_una = tp->snd_una; 3565 bool is_sack_reneg = tp->is_sack_reneg; 3566 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3567 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3568 int num_dupack = 0; 3569 int prior_packets = tp->packets_out; 3570 u32 delivered = tp->delivered; 3571 u32 lost = tp->lost; 3572 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3573 u32 prior_fack; 3574 3575 sack_state.first_sackt = 0; 3576 sack_state.rate = &rs; 3577 3578 /* We very likely will need to access rtx queue. */ 3579 prefetch(sk->tcp_rtx_queue.rb_node); 3580 3581 /* If the ack is older than previous acks 3582 * then we can probably ignore it. 3583 */ 3584 if (before(ack, prior_snd_una)) { 3585 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3586 if (before(ack, prior_snd_una - tp->max_window)) { 3587 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3588 tcp_send_challenge_ack(sk, skb); 3589 return -1; 3590 } 3591 goto old_ack; 3592 } 3593 3594 /* If the ack includes data we haven't sent yet, discard 3595 * this segment (RFC793 Section 3.9). 3596 */ 3597 if (after(ack, tp->snd_nxt)) 3598 goto invalid_ack; 3599 3600 if (after(ack, prior_snd_una)) { 3601 flag |= FLAG_SND_UNA_ADVANCED; 3602 icsk->icsk_retransmits = 0; 3603 3604 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3605 if (static_branch_unlikely(&clean_acked_data_enabled)) 3606 if (icsk->icsk_clean_acked) 3607 icsk->icsk_clean_acked(sk, ack); 3608 #endif 3609 } 3610 3611 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3612 rs.prior_in_flight = tcp_packets_in_flight(tp); 3613 3614 /* ts_recent update must be made after we are sure that the packet 3615 * is in window. 3616 */ 3617 if (flag & FLAG_UPDATE_TS_RECENT) 3618 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3619 3620 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3621 FLAG_SND_UNA_ADVANCED) { 3622 /* Window is constant, pure forward advance. 3623 * No more checks are required. 3624 * Note, we use the fact that SND.UNA>=SND.WL2. 3625 */ 3626 tcp_update_wl(tp, ack_seq); 3627 tcp_snd_una_update(tp, ack); 3628 flag |= FLAG_WIN_UPDATE; 3629 3630 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3631 3632 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3633 } else { 3634 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3635 3636 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3637 flag |= FLAG_DATA; 3638 else 3639 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3640 3641 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3642 3643 if (TCP_SKB_CB(skb)->sacked) 3644 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3645 &sack_state); 3646 3647 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3648 flag |= FLAG_ECE; 3649 ack_ev_flags |= CA_ACK_ECE; 3650 } 3651 3652 if (flag & FLAG_WIN_UPDATE) 3653 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3654 3655 tcp_in_ack_event(sk, ack_ev_flags); 3656 } 3657 3658 /* We passed data and got it acked, remove any soft error 3659 * log. Something worked... 3660 */ 3661 sk->sk_err_soft = 0; 3662 icsk->icsk_probes_out = 0; 3663 tp->rcv_tstamp = tcp_jiffies32; 3664 if (!prior_packets) 3665 goto no_queue; 3666 3667 /* See if we can take anything off of the retransmit queue. */ 3668 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3669 3670 tcp_rack_update_reo_wnd(sk, &rs); 3671 3672 if (tp->tlp_high_seq) 3673 tcp_process_tlp_ack(sk, ack, flag); 3674 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3675 if (flag & FLAG_SET_XMIT_TIMER) 3676 tcp_set_xmit_timer(sk); 3677 3678 if (tcp_ack_is_dubious(sk, flag)) { 3679 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3680 num_dupack = 1; 3681 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3682 if (!(flag & FLAG_DATA)) 3683 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3684 } 3685 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3686 &rexmit); 3687 } 3688 3689 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3690 sk_dst_confirm(sk); 3691 3692 delivered = tcp_newly_delivered(sk, delivered, flag); 3693 lost = tp->lost - lost; /* freshly marked lost */ 3694 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3695 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3696 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3697 tcp_xmit_recovery(sk, rexmit); 3698 return 1; 3699 3700 no_queue: 3701 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3702 if (flag & FLAG_DSACKING_ACK) { 3703 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3704 &rexmit); 3705 tcp_newly_delivered(sk, delivered, flag); 3706 } 3707 /* If this ack opens up a zero window, clear backoff. It was 3708 * being used to time the probes, and is probably far higher than 3709 * it needs to be for normal retransmission. 3710 */ 3711 tcp_ack_probe(sk); 3712 3713 if (tp->tlp_high_seq) 3714 tcp_process_tlp_ack(sk, ack, flag); 3715 return 1; 3716 3717 invalid_ack: 3718 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3719 return -1; 3720 3721 old_ack: 3722 /* If data was SACKed, tag it and see if we should send more data. 3723 * If data was DSACKed, see if we can undo a cwnd reduction. 3724 */ 3725 if (TCP_SKB_CB(skb)->sacked) { 3726 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3727 &sack_state); 3728 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3729 &rexmit); 3730 tcp_newly_delivered(sk, delivered, flag); 3731 tcp_xmit_recovery(sk, rexmit); 3732 } 3733 3734 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3735 return 0; 3736 } 3737 3738 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3739 bool syn, struct tcp_fastopen_cookie *foc, 3740 bool exp_opt) 3741 { 3742 /* Valid only in SYN or SYN-ACK with an even length. */ 3743 if (!foc || !syn || len < 0 || (len & 1)) 3744 return; 3745 3746 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3747 len <= TCP_FASTOPEN_COOKIE_MAX) 3748 memcpy(foc->val, cookie, len); 3749 else if (len != 0) 3750 len = -1; 3751 foc->len = len; 3752 foc->exp = exp_opt; 3753 } 3754 3755 static void smc_parse_options(const struct tcphdr *th, 3756 struct tcp_options_received *opt_rx, 3757 const unsigned char *ptr, 3758 int opsize) 3759 { 3760 #if IS_ENABLED(CONFIG_SMC) 3761 if (static_branch_unlikely(&tcp_have_smc)) { 3762 if (th->syn && !(opsize & 1) && 3763 opsize >= TCPOLEN_EXP_SMC_BASE && 3764 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3765 opt_rx->smc_ok = 1; 3766 } 3767 #endif 3768 } 3769 3770 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3771 * But, this can also be called on packets in the established flow when 3772 * the fast version below fails. 3773 */ 3774 void tcp_parse_options(const struct net *net, 3775 const struct sk_buff *skb, 3776 struct tcp_options_received *opt_rx, int estab, 3777 struct tcp_fastopen_cookie *foc) 3778 { 3779 const unsigned char *ptr; 3780 const struct tcphdr *th = tcp_hdr(skb); 3781 int length = (th->doff * 4) - sizeof(struct tcphdr); 3782 3783 ptr = (const unsigned char *)(th + 1); 3784 opt_rx->saw_tstamp = 0; 3785 3786 while (length > 0) { 3787 int opcode = *ptr++; 3788 int opsize; 3789 3790 switch (opcode) { 3791 case TCPOPT_EOL: 3792 return; 3793 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3794 length--; 3795 continue; 3796 default: 3797 opsize = *ptr++; 3798 if (opsize < 2) /* "silly options" */ 3799 return; 3800 if (opsize > length) 3801 return; /* don't parse partial options */ 3802 switch (opcode) { 3803 case TCPOPT_MSS: 3804 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3805 u16 in_mss = get_unaligned_be16(ptr); 3806 if (in_mss) { 3807 if (opt_rx->user_mss && 3808 opt_rx->user_mss < in_mss) 3809 in_mss = opt_rx->user_mss; 3810 opt_rx->mss_clamp = in_mss; 3811 } 3812 } 3813 break; 3814 case TCPOPT_WINDOW: 3815 if (opsize == TCPOLEN_WINDOW && th->syn && 3816 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3817 __u8 snd_wscale = *(__u8 *)ptr; 3818 opt_rx->wscale_ok = 1; 3819 if (snd_wscale > TCP_MAX_WSCALE) { 3820 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3821 __func__, 3822 snd_wscale, 3823 TCP_MAX_WSCALE); 3824 snd_wscale = TCP_MAX_WSCALE; 3825 } 3826 opt_rx->snd_wscale = snd_wscale; 3827 } 3828 break; 3829 case TCPOPT_TIMESTAMP: 3830 if ((opsize == TCPOLEN_TIMESTAMP) && 3831 ((estab && opt_rx->tstamp_ok) || 3832 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3833 opt_rx->saw_tstamp = 1; 3834 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3835 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3836 } 3837 break; 3838 case TCPOPT_SACK_PERM: 3839 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3840 !estab && net->ipv4.sysctl_tcp_sack) { 3841 opt_rx->sack_ok = TCP_SACK_SEEN; 3842 tcp_sack_reset(opt_rx); 3843 } 3844 break; 3845 3846 case TCPOPT_SACK: 3847 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3848 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3849 opt_rx->sack_ok) { 3850 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3851 } 3852 break; 3853 #ifdef CONFIG_TCP_MD5SIG 3854 case TCPOPT_MD5SIG: 3855 /* 3856 * The MD5 Hash has already been 3857 * checked (see tcp_v{4,6}_do_rcv()). 3858 */ 3859 break; 3860 #endif 3861 case TCPOPT_FASTOPEN: 3862 tcp_parse_fastopen_option( 3863 opsize - TCPOLEN_FASTOPEN_BASE, 3864 ptr, th->syn, foc, false); 3865 break; 3866 3867 case TCPOPT_EXP: 3868 /* Fast Open option shares code 254 using a 3869 * 16 bits magic number. 3870 */ 3871 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3872 get_unaligned_be16(ptr) == 3873 TCPOPT_FASTOPEN_MAGIC) 3874 tcp_parse_fastopen_option(opsize - 3875 TCPOLEN_EXP_FASTOPEN_BASE, 3876 ptr + 2, th->syn, foc, true); 3877 else 3878 smc_parse_options(th, opt_rx, ptr, 3879 opsize); 3880 break; 3881 3882 } 3883 ptr += opsize-2; 3884 length -= opsize; 3885 } 3886 } 3887 } 3888 EXPORT_SYMBOL(tcp_parse_options); 3889 3890 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3891 { 3892 const __be32 *ptr = (const __be32 *)(th + 1); 3893 3894 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3895 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3896 tp->rx_opt.saw_tstamp = 1; 3897 ++ptr; 3898 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3899 ++ptr; 3900 if (*ptr) 3901 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3902 else 3903 tp->rx_opt.rcv_tsecr = 0; 3904 return true; 3905 } 3906 return false; 3907 } 3908 3909 /* Fast parse options. This hopes to only see timestamps. 3910 * If it is wrong it falls back on tcp_parse_options(). 3911 */ 3912 static bool tcp_fast_parse_options(const struct net *net, 3913 const struct sk_buff *skb, 3914 const struct tcphdr *th, struct tcp_sock *tp) 3915 { 3916 /* In the spirit of fast parsing, compare doff directly to constant 3917 * values. Because equality is used, short doff can be ignored here. 3918 */ 3919 if (th->doff == (sizeof(*th) / 4)) { 3920 tp->rx_opt.saw_tstamp = 0; 3921 return false; 3922 } else if (tp->rx_opt.tstamp_ok && 3923 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3924 if (tcp_parse_aligned_timestamp(tp, th)) 3925 return true; 3926 } 3927 3928 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3929 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3930 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3931 3932 return true; 3933 } 3934 3935 #ifdef CONFIG_TCP_MD5SIG 3936 /* 3937 * Parse MD5 Signature option 3938 */ 3939 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3940 { 3941 int length = (th->doff << 2) - sizeof(*th); 3942 const u8 *ptr = (const u8 *)(th + 1); 3943 3944 /* If not enough data remaining, we can short cut */ 3945 while (length >= TCPOLEN_MD5SIG) { 3946 int opcode = *ptr++; 3947 int opsize; 3948 3949 switch (opcode) { 3950 case TCPOPT_EOL: 3951 return NULL; 3952 case TCPOPT_NOP: 3953 length--; 3954 continue; 3955 default: 3956 opsize = *ptr++; 3957 if (opsize < 2 || opsize > length) 3958 return NULL; 3959 if (opcode == TCPOPT_MD5SIG) 3960 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3961 } 3962 ptr += opsize - 2; 3963 length -= opsize; 3964 } 3965 return NULL; 3966 } 3967 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3968 #endif 3969 3970 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3971 * 3972 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3973 * it can pass through stack. So, the following predicate verifies that 3974 * this segment is not used for anything but congestion avoidance or 3975 * fast retransmit. Moreover, we even are able to eliminate most of such 3976 * second order effects, if we apply some small "replay" window (~RTO) 3977 * to timestamp space. 3978 * 3979 * All these measures still do not guarantee that we reject wrapped ACKs 3980 * on networks with high bandwidth, when sequence space is recycled fastly, 3981 * but it guarantees that such events will be very rare and do not affect 3982 * connection seriously. This doesn't look nice, but alas, PAWS is really 3983 * buggy extension. 3984 * 3985 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3986 * states that events when retransmit arrives after original data are rare. 3987 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3988 * the biggest problem on large power networks even with minor reordering. 3989 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3990 * up to bandwidth of 18Gigabit/sec. 8) ] 3991 */ 3992 3993 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3994 { 3995 const struct tcp_sock *tp = tcp_sk(sk); 3996 const struct tcphdr *th = tcp_hdr(skb); 3997 u32 seq = TCP_SKB_CB(skb)->seq; 3998 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3999 4000 return (/* 1. Pure ACK with correct sequence number. */ 4001 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4002 4003 /* 2. ... and duplicate ACK. */ 4004 ack == tp->snd_una && 4005 4006 /* 3. ... and does not update window. */ 4007 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4008 4009 /* 4. ... and sits in replay window. */ 4010 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4011 } 4012 4013 static inline bool tcp_paws_discard(const struct sock *sk, 4014 const struct sk_buff *skb) 4015 { 4016 const struct tcp_sock *tp = tcp_sk(sk); 4017 4018 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4019 !tcp_disordered_ack(sk, skb); 4020 } 4021 4022 /* Check segment sequence number for validity. 4023 * 4024 * Segment controls are considered valid, if the segment 4025 * fits to the window after truncation to the window. Acceptability 4026 * of data (and SYN, FIN, of course) is checked separately. 4027 * See tcp_data_queue(), for example. 4028 * 4029 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4030 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4031 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4032 * (borrowed from freebsd) 4033 */ 4034 4035 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4036 { 4037 return !before(end_seq, tp->rcv_wup) && 4038 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4039 } 4040 4041 /* When we get a reset we do this. */ 4042 void tcp_reset(struct sock *sk) 4043 { 4044 trace_tcp_receive_reset(sk); 4045 4046 /* We want the right error as BSD sees it (and indeed as we do). */ 4047 switch (sk->sk_state) { 4048 case TCP_SYN_SENT: 4049 sk->sk_err = ECONNREFUSED; 4050 break; 4051 case TCP_CLOSE_WAIT: 4052 sk->sk_err = EPIPE; 4053 break; 4054 case TCP_CLOSE: 4055 return; 4056 default: 4057 sk->sk_err = ECONNRESET; 4058 } 4059 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4060 smp_wmb(); 4061 4062 tcp_write_queue_purge(sk); 4063 tcp_done(sk); 4064 4065 if (!sock_flag(sk, SOCK_DEAD)) 4066 sk->sk_error_report(sk); 4067 } 4068 4069 /* 4070 * Process the FIN bit. This now behaves as it is supposed to work 4071 * and the FIN takes effect when it is validly part of sequence 4072 * space. Not before when we get holes. 4073 * 4074 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4075 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4076 * TIME-WAIT) 4077 * 4078 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4079 * close and we go into CLOSING (and later onto TIME-WAIT) 4080 * 4081 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4082 */ 4083 void tcp_fin(struct sock *sk) 4084 { 4085 struct tcp_sock *tp = tcp_sk(sk); 4086 4087 inet_csk_schedule_ack(sk); 4088 4089 sk->sk_shutdown |= RCV_SHUTDOWN; 4090 sock_set_flag(sk, SOCK_DONE); 4091 4092 switch (sk->sk_state) { 4093 case TCP_SYN_RECV: 4094 case TCP_ESTABLISHED: 4095 /* Move to CLOSE_WAIT */ 4096 tcp_set_state(sk, TCP_CLOSE_WAIT); 4097 inet_csk(sk)->icsk_ack.pingpong = 1; 4098 break; 4099 4100 case TCP_CLOSE_WAIT: 4101 case TCP_CLOSING: 4102 /* Received a retransmission of the FIN, do 4103 * nothing. 4104 */ 4105 break; 4106 case TCP_LAST_ACK: 4107 /* RFC793: Remain in the LAST-ACK state. */ 4108 break; 4109 4110 case TCP_FIN_WAIT1: 4111 /* This case occurs when a simultaneous close 4112 * happens, we must ack the received FIN and 4113 * enter the CLOSING state. 4114 */ 4115 tcp_send_ack(sk); 4116 tcp_set_state(sk, TCP_CLOSING); 4117 break; 4118 case TCP_FIN_WAIT2: 4119 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4120 tcp_send_ack(sk); 4121 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4122 break; 4123 default: 4124 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4125 * cases we should never reach this piece of code. 4126 */ 4127 pr_err("%s: Impossible, sk->sk_state=%d\n", 4128 __func__, sk->sk_state); 4129 break; 4130 } 4131 4132 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4133 * Probably, we should reset in this case. For now drop them. 4134 */ 4135 skb_rbtree_purge(&tp->out_of_order_queue); 4136 if (tcp_is_sack(tp)) 4137 tcp_sack_reset(&tp->rx_opt); 4138 sk_mem_reclaim(sk); 4139 4140 if (!sock_flag(sk, SOCK_DEAD)) { 4141 sk->sk_state_change(sk); 4142 4143 /* Do not send POLL_HUP for half duplex close. */ 4144 if (sk->sk_shutdown == SHUTDOWN_MASK || 4145 sk->sk_state == TCP_CLOSE) 4146 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4147 else 4148 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4149 } 4150 } 4151 4152 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4153 u32 end_seq) 4154 { 4155 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4156 if (before(seq, sp->start_seq)) 4157 sp->start_seq = seq; 4158 if (after(end_seq, sp->end_seq)) 4159 sp->end_seq = end_seq; 4160 return true; 4161 } 4162 return false; 4163 } 4164 4165 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4166 { 4167 struct tcp_sock *tp = tcp_sk(sk); 4168 4169 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4170 int mib_idx; 4171 4172 if (before(seq, tp->rcv_nxt)) 4173 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4174 else 4175 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4176 4177 NET_INC_STATS(sock_net(sk), mib_idx); 4178 4179 tp->rx_opt.dsack = 1; 4180 tp->duplicate_sack[0].start_seq = seq; 4181 tp->duplicate_sack[0].end_seq = end_seq; 4182 } 4183 } 4184 4185 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4186 { 4187 struct tcp_sock *tp = tcp_sk(sk); 4188 4189 if (!tp->rx_opt.dsack) 4190 tcp_dsack_set(sk, seq, end_seq); 4191 else 4192 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4193 } 4194 4195 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4196 { 4197 /* When the ACK path fails or drops most ACKs, the sender would 4198 * timeout and spuriously retransmit the same segment repeatedly. 4199 * The receiver remembers and reflects via DSACKs. Leverage the 4200 * DSACK state and change the txhash to re-route speculatively. 4201 */ 4202 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) 4203 sk_rethink_txhash(sk); 4204 } 4205 4206 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4207 { 4208 struct tcp_sock *tp = tcp_sk(sk); 4209 4210 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4211 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4212 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4213 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4214 4215 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4216 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4217 4218 tcp_rcv_spurious_retrans(sk, skb); 4219 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4220 end_seq = tp->rcv_nxt; 4221 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4222 } 4223 } 4224 4225 tcp_send_ack(sk); 4226 } 4227 4228 /* These routines update the SACK block as out-of-order packets arrive or 4229 * in-order packets close up the sequence space. 4230 */ 4231 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4232 { 4233 int this_sack; 4234 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4235 struct tcp_sack_block *swalk = sp + 1; 4236 4237 /* See if the recent change to the first SACK eats into 4238 * or hits the sequence space of other SACK blocks, if so coalesce. 4239 */ 4240 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4241 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4242 int i; 4243 4244 /* Zap SWALK, by moving every further SACK up by one slot. 4245 * Decrease num_sacks. 4246 */ 4247 tp->rx_opt.num_sacks--; 4248 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4249 sp[i] = sp[i + 1]; 4250 continue; 4251 } 4252 this_sack++, swalk++; 4253 } 4254 } 4255 4256 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4257 { 4258 struct tcp_sock *tp = tcp_sk(sk); 4259 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4260 int cur_sacks = tp->rx_opt.num_sacks; 4261 int this_sack; 4262 4263 if (!cur_sacks) 4264 goto new_sack; 4265 4266 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4267 if (tcp_sack_extend(sp, seq, end_seq)) { 4268 /* Rotate this_sack to the first one. */ 4269 for (; this_sack > 0; this_sack--, sp--) 4270 swap(*sp, *(sp - 1)); 4271 if (cur_sacks > 1) 4272 tcp_sack_maybe_coalesce(tp); 4273 return; 4274 } 4275 } 4276 4277 /* Could not find an adjacent existing SACK, build a new one, 4278 * put it at the front, and shift everyone else down. We 4279 * always know there is at least one SACK present already here. 4280 * 4281 * If the sack array is full, forget about the last one. 4282 */ 4283 if (this_sack >= TCP_NUM_SACKS) { 4284 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH) 4285 tcp_send_ack(sk); 4286 this_sack--; 4287 tp->rx_opt.num_sacks--; 4288 sp--; 4289 } 4290 for (; this_sack > 0; this_sack--, sp--) 4291 *sp = *(sp - 1); 4292 4293 new_sack: 4294 /* Build the new head SACK, and we're done. */ 4295 sp->start_seq = seq; 4296 sp->end_seq = end_seq; 4297 tp->rx_opt.num_sacks++; 4298 } 4299 4300 /* RCV.NXT advances, some SACKs should be eaten. */ 4301 4302 static void tcp_sack_remove(struct tcp_sock *tp) 4303 { 4304 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4305 int num_sacks = tp->rx_opt.num_sacks; 4306 int this_sack; 4307 4308 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4309 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4310 tp->rx_opt.num_sacks = 0; 4311 return; 4312 } 4313 4314 for (this_sack = 0; this_sack < num_sacks;) { 4315 /* Check if the start of the sack is covered by RCV.NXT. */ 4316 if (!before(tp->rcv_nxt, sp->start_seq)) { 4317 int i; 4318 4319 /* RCV.NXT must cover all the block! */ 4320 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4321 4322 /* Zap this SACK, by moving forward any other SACKS. */ 4323 for (i = this_sack+1; i < num_sacks; i++) 4324 tp->selective_acks[i-1] = tp->selective_acks[i]; 4325 num_sacks--; 4326 continue; 4327 } 4328 this_sack++; 4329 sp++; 4330 } 4331 tp->rx_opt.num_sacks = num_sacks; 4332 } 4333 4334 /** 4335 * tcp_try_coalesce - try to merge skb to prior one 4336 * @sk: socket 4337 * @dest: destination queue 4338 * @to: prior buffer 4339 * @from: buffer to add in queue 4340 * @fragstolen: pointer to boolean 4341 * 4342 * Before queueing skb @from after @to, try to merge them 4343 * to reduce overall memory use and queue lengths, if cost is small. 4344 * Packets in ofo or receive queues can stay a long time. 4345 * Better try to coalesce them right now to avoid future collapses. 4346 * Returns true if caller should free @from instead of queueing it 4347 */ 4348 static bool tcp_try_coalesce(struct sock *sk, 4349 struct sk_buff *to, 4350 struct sk_buff *from, 4351 bool *fragstolen) 4352 { 4353 int delta; 4354 4355 *fragstolen = false; 4356 4357 /* Its possible this segment overlaps with prior segment in queue */ 4358 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4359 return false; 4360 4361 #ifdef CONFIG_TLS_DEVICE 4362 if (from->decrypted != to->decrypted) 4363 return false; 4364 #endif 4365 4366 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4367 return false; 4368 4369 atomic_add(delta, &sk->sk_rmem_alloc); 4370 sk_mem_charge(sk, delta); 4371 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4372 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4373 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4374 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4375 4376 if (TCP_SKB_CB(from)->has_rxtstamp) { 4377 TCP_SKB_CB(to)->has_rxtstamp = true; 4378 to->tstamp = from->tstamp; 4379 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4380 } 4381 4382 return true; 4383 } 4384 4385 static bool tcp_ooo_try_coalesce(struct sock *sk, 4386 struct sk_buff *to, 4387 struct sk_buff *from, 4388 bool *fragstolen) 4389 { 4390 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4391 4392 /* In case tcp_drop() is called later, update to->gso_segs */ 4393 if (res) { 4394 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4395 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4396 4397 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4398 } 4399 return res; 4400 } 4401 4402 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4403 { 4404 sk_drops_add(sk, skb); 4405 __kfree_skb(skb); 4406 } 4407 4408 /* This one checks to see if we can put data from the 4409 * out_of_order queue into the receive_queue. 4410 */ 4411 static void tcp_ofo_queue(struct sock *sk) 4412 { 4413 struct tcp_sock *tp = tcp_sk(sk); 4414 __u32 dsack_high = tp->rcv_nxt; 4415 bool fin, fragstolen, eaten; 4416 struct sk_buff *skb, *tail; 4417 struct rb_node *p; 4418 4419 p = rb_first(&tp->out_of_order_queue); 4420 while (p) { 4421 skb = rb_to_skb(p); 4422 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4423 break; 4424 4425 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4426 __u32 dsack = dsack_high; 4427 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4428 dsack_high = TCP_SKB_CB(skb)->end_seq; 4429 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4430 } 4431 p = rb_next(p); 4432 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4433 4434 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4435 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4436 tcp_drop(sk, skb); 4437 continue; 4438 } 4439 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4440 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4441 TCP_SKB_CB(skb)->end_seq); 4442 4443 tail = skb_peek_tail(&sk->sk_receive_queue); 4444 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4445 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4446 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4447 if (!eaten) 4448 __skb_queue_tail(&sk->sk_receive_queue, skb); 4449 else 4450 kfree_skb_partial(skb, fragstolen); 4451 4452 if (unlikely(fin)) { 4453 tcp_fin(sk); 4454 /* tcp_fin() purges tp->out_of_order_queue, 4455 * so we must end this loop right now. 4456 */ 4457 break; 4458 } 4459 } 4460 } 4461 4462 static bool tcp_prune_ofo_queue(struct sock *sk); 4463 static int tcp_prune_queue(struct sock *sk); 4464 4465 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4466 unsigned int size) 4467 { 4468 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4469 !sk_rmem_schedule(sk, skb, size)) { 4470 4471 if (tcp_prune_queue(sk) < 0) 4472 return -1; 4473 4474 while (!sk_rmem_schedule(sk, skb, size)) { 4475 if (!tcp_prune_ofo_queue(sk)) 4476 return -1; 4477 } 4478 } 4479 return 0; 4480 } 4481 4482 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4483 { 4484 struct tcp_sock *tp = tcp_sk(sk); 4485 struct rb_node **p, *parent; 4486 struct sk_buff *skb1; 4487 u32 seq, end_seq; 4488 bool fragstolen; 4489 4490 tcp_ecn_check_ce(sk, skb); 4491 4492 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4493 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4494 tcp_drop(sk, skb); 4495 return; 4496 } 4497 4498 /* Disable header prediction. */ 4499 tp->pred_flags = 0; 4500 inet_csk_schedule_ack(sk); 4501 4502 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4503 seq = TCP_SKB_CB(skb)->seq; 4504 end_seq = TCP_SKB_CB(skb)->end_seq; 4505 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4506 tp->rcv_nxt, seq, end_seq); 4507 4508 p = &tp->out_of_order_queue.rb_node; 4509 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4510 /* Initial out of order segment, build 1 SACK. */ 4511 if (tcp_is_sack(tp)) { 4512 tp->rx_opt.num_sacks = 1; 4513 tp->selective_acks[0].start_seq = seq; 4514 tp->selective_acks[0].end_seq = end_seq; 4515 } 4516 rb_link_node(&skb->rbnode, NULL, p); 4517 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4518 tp->ooo_last_skb = skb; 4519 goto end; 4520 } 4521 4522 /* In the typical case, we are adding an skb to the end of the list. 4523 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4524 */ 4525 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4526 skb, &fragstolen)) { 4527 coalesce_done: 4528 tcp_grow_window(sk, skb); 4529 kfree_skb_partial(skb, fragstolen); 4530 skb = NULL; 4531 goto add_sack; 4532 } 4533 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4534 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4535 parent = &tp->ooo_last_skb->rbnode; 4536 p = &parent->rb_right; 4537 goto insert; 4538 } 4539 4540 /* Find place to insert this segment. Handle overlaps on the way. */ 4541 parent = NULL; 4542 while (*p) { 4543 parent = *p; 4544 skb1 = rb_to_skb(parent); 4545 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4546 p = &parent->rb_left; 4547 continue; 4548 } 4549 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4550 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4551 /* All the bits are present. Drop. */ 4552 NET_INC_STATS(sock_net(sk), 4553 LINUX_MIB_TCPOFOMERGE); 4554 tcp_drop(sk, skb); 4555 skb = NULL; 4556 tcp_dsack_set(sk, seq, end_seq); 4557 goto add_sack; 4558 } 4559 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4560 /* Partial overlap. */ 4561 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4562 } else { 4563 /* skb's seq == skb1's seq and skb covers skb1. 4564 * Replace skb1 with skb. 4565 */ 4566 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4567 &tp->out_of_order_queue); 4568 tcp_dsack_extend(sk, 4569 TCP_SKB_CB(skb1)->seq, 4570 TCP_SKB_CB(skb1)->end_seq); 4571 NET_INC_STATS(sock_net(sk), 4572 LINUX_MIB_TCPOFOMERGE); 4573 tcp_drop(sk, skb1); 4574 goto merge_right; 4575 } 4576 } else if (tcp_ooo_try_coalesce(sk, skb1, 4577 skb, &fragstolen)) { 4578 goto coalesce_done; 4579 } 4580 p = &parent->rb_right; 4581 } 4582 insert: 4583 /* Insert segment into RB tree. */ 4584 rb_link_node(&skb->rbnode, parent, p); 4585 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4586 4587 merge_right: 4588 /* Remove other segments covered by skb. */ 4589 while ((skb1 = skb_rb_next(skb)) != NULL) { 4590 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4591 break; 4592 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4593 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4594 end_seq); 4595 break; 4596 } 4597 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4598 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4599 TCP_SKB_CB(skb1)->end_seq); 4600 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4601 tcp_drop(sk, skb1); 4602 } 4603 /* If there is no skb after us, we are the last_skb ! */ 4604 if (!skb1) 4605 tp->ooo_last_skb = skb; 4606 4607 add_sack: 4608 if (tcp_is_sack(tp)) 4609 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4610 end: 4611 if (skb) { 4612 tcp_grow_window(sk, skb); 4613 skb_condense(skb); 4614 skb_set_owner_r(skb, sk); 4615 } 4616 } 4617 4618 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4619 bool *fragstolen) 4620 { 4621 int eaten; 4622 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4623 4624 eaten = (tail && 4625 tcp_try_coalesce(sk, tail, 4626 skb, fragstolen)) ? 1 : 0; 4627 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4628 if (!eaten) { 4629 __skb_queue_tail(&sk->sk_receive_queue, skb); 4630 skb_set_owner_r(skb, sk); 4631 } 4632 return eaten; 4633 } 4634 4635 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4636 { 4637 struct sk_buff *skb; 4638 int err = -ENOMEM; 4639 int data_len = 0; 4640 bool fragstolen; 4641 4642 if (size == 0) 4643 return 0; 4644 4645 if (size > PAGE_SIZE) { 4646 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4647 4648 data_len = npages << PAGE_SHIFT; 4649 size = data_len + (size & ~PAGE_MASK); 4650 } 4651 skb = alloc_skb_with_frags(size - data_len, data_len, 4652 PAGE_ALLOC_COSTLY_ORDER, 4653 &err, sk->sk_allocation); 4654 if (!skb) 4655 goto err; 4656 4657 skb_put(skb, size - data_len); 4658 skb->data_len = data_len; 4659 skb->len = size; 4660 4661 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4662 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4663 goto err_free; 4664 } 4665 4666 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4667 if (err) 4668 goto err_free; 4669 4670 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4671 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4672 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4673 4674 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4675 WARN_ON_ONCE(fragstolen); /* should not happen */ 4676 __kfree_skb(skb); 4677 } 4678 return size; 4679 4680 err_free: 4681 kfree_skb(skb); 4682 err: 4683 return err; 4684 4685 } 4686 4687 void tcp_data_ready(struct sock *sk) 4688 { 4689 const struct tcp_sock *tp = tcp_sk(sk); 4690 int avail = tp->rcv_nxt - tp->copied_seq; 4691 4692 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4693 return; 4694 4695 sk->sk_data_ready(sk); 4696 } 4697 4698 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4699 { 4700 struct tcp_sock *tp = tcp_sk(sk); 4701 bool fragstolen; 4702 int eaten; 4703 4704 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4705 __kfree_skb(skb); 4706 return; 4707 } 4708 skb_dst_drop(skb); 4709 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4710 4711 tcp_ecn_accept_cwr(sk, skb); 4712 4713 tp->rx_opt.dsack = 0; 4714 4715 /* Queue data for delivery to the user. 4716 * Packets in sequence go to the receive queue. 4717 * Out of sequence packets to the out_of_order_queue. 4718 */ 4719 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4720 if (tcp_receive_window(tp) == 0) { 4721 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4722 goto out_of_window; 4723 } 4724 4725 /* Ok. In sequence. In window. */ 4726 queue_and_out: 4727 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4728 sk_forced_mem_schedule(sk, skb->truesize); 4729 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4730 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4731 goto drop; 4732 } 4733 4734 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 4735 if (skb->len) 4736 tcp_event_data_recv(sk, skb); 4737 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4738 tcp_fin(sk); 4739 4740 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4741 tcp_ofo_queue(sk); 4742 4743 /* RFC5681. 4.2. SHOULD send immediate ACK, when 4744 * gap in queue is filled. 4745 */ 4746 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4747 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 4748 } 4749 4750 if (tp->rx_opt.num_sacks) 4751 tcp_sack_remove(tp); 4752 4753 tcp_fast_path_check(sk); 4754 4755 if (eaten > 0) 4756 kfree_skb_partial(skb, fragstolen); 4757 if (!sock_flag(sk, SOCK_DEAD)) 4758 tcp_data_ready(sk); 4759 return; 4760 } 4761 4762 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4763 tcp_rcv_spurious_retrans(sk, skb); 4764 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4765 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4766 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4767 4768 out_of_window: 4769 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4770 inet_csk_schedule_ack(sk); 4771 drop: 4772 tcp_drop(sk, skb); 4773 return; 4774 } 4775 4776 /* Out of window. F.e. zero window probe. */ 4777 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4778 goto out_of_window; 4779 4780 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4781 /* Partial packet, seq < rcv_next < end_seq */ 4782 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4783 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4784 TCP_SKB_CB(skb)->end_seq); 4785 4786 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4787 4788 /* If window is closed, drop tail of packet. But after 4789 * remembering D-SACK for its head made in previous line. 4790 */ 4791 if (!tcp_receive_window(tp)) { 4792 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4793 goto out_of_window; 4794 } 4795 goto queue_and_out; 4796 } 4797 4798 tcp_data_queue_ofo(sk, skb); 4799 } 4800 4801 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4802 { 4803 if (list) 4804 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4805 4806 return skb_rb_next(skb); 4807 } 4808 4809 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4810 struct sk_buff_head *list, 4811 struct rb_root *root) 4812 { 4813 struct sk_buff *next = tcp_skb_next(skb, list); 4814 4815 if (list) 4816 __skb_unlink(skb, list); 4817 else 4818 rb_erase(&skb->rbnode, root); 4819 4820 __kfree_skb(skb); 4821 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4822 4823 return next; 4824 } 4825 4826 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4827 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4828 { 4829 struct rb_node **p = &root->rb_node; 4830 struct rb_node *parent = NULL; 4831 struct sk_buff *skb1; 4832 4833 while (*p) { 4834 parent = *p; 4835 skb1 = rb_to_skb(parent); 4836 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4837 p = &parent->rb_left; 4838 else 4839 p = &parent->rb_right; 4840 } 4841 rb_link_node(&skb->rbnode, parent, p); 4842 rb_insert_color(&skb->rbnode, root); 4843 } 4844 4845 /* Collapse contiguous sequence of skbs head..tail with 4846 * sequence numbers start..end. 4847 * 4848 * If tail is NULL, this means until the end of the queue. 4849 * 4850 * Segments with FIN/SYN are not collapsed (only because this 4851 * simplifies code) 4852 */ 4853 static void 4854 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4855 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4856 { 4857 struct sk_buff *skb = head, *n; 4858 struct sk_buff_head tmp; 4859 bool end_of_skbs; 4860 4861 /* First, check that queue is collapsible and find 4862 * the point where collapsing can be useful. 4863 */ 4864 restart: 4865 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4866 n = tcp_skb_next(skb, list); 4867 4868 /* No new bits? It is possible on ofo queue. */ 4869 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4870 skb = tcp_collapse_one(sk, skb, list, root); 4871 if (!skb) 4872 break; 4873 goto restart; 4874 } 4875 4876 /* The first skb to collapse is: 4877 * - not SYN/FIN and 4878 * - bloated or contains data before "start" or 4879 * overlaps to the next one. 4880 */ 4881 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4882 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4883 before(TCP_SKB_CB(skb)->seq, start))) { 4884 end_of_skbs = false; 4885 break; 4886 } 4887 4888 if (n && n != tail && 4889 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4890 end_of_skbs = false; 4891 break; 4892 } 4893 4894 /* Decided to skip this, advance start seq. */ 4895 start = TCP_SKB_CB(skb)->end_seq; 4896 } 4897 if (end_of_skbs || 4898 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4899 return; 4900 4901 __skb_queue_head_init(&tmp); 4902 4903 while (before(start, end)) { 4904 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4905 struct sk_buff *nskb; 4906 4907 nskb = alloc_skb(copy, GFP_ATOMIC); 4908 if (!nskb) 4909 break; 4910 4911 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4912 #ifdef CONFIG_TLS_DEVICE 4913 nskb->decrypted = skb->decrypted; 4914 #endif 4915 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4916 if (list) 4917 __skb_queue_before(list, skb, nskb); 4918 else 4919 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4920 skb_set_owner_r(nskb, sk); 4921 4922 /* Copy data, releasing collapsed skbs. */ 4923 while (copy > 0) { 4924 int offset = start - TCP_SKB_CB(skb)->seq; 4925 int size = TCP_SKB_CB(skb)->end_seq - start; 4926 4927 BUG_ON(offset < 0); 4928 if (size > 0) { 4929 size = min(copy, size); 4930 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4931 BUG(); 4932 TCP_SKB_CB(nskb)->end_seq += size; 4933 copy -= size; 4934 start += size; 4935 } 4936 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4937 skb = tcp_collapse_one(sk, skb, list, root); 4938 if (!skb || 4939 skb == tail || 4940 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4941 goto end; 4942 #ifdef CONFIG_TLS_DEVICE 4943 if (skb->decrypted != nskb->decrypted) 4944 goto end; 4945 #endif 4946 } 4947 } 4948 } 4949 end: 4950 skb_queue_walk_safe(&tmp, skb, n) 4951 tcp_rbtree_insert(root, skb); 4952 } 4953 4954 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4955 * and tcp_collapse() them until all the queue is collapsed. 4956 */ 4957 static void tcp_collapse_ofo_queue(struct sock *sk) 4958 { 4959 struct tcp_sock *tp = tcp_sk(sk); 4960 u32 range_truesize, sum_tiny = 0; 4961 struct sk_buff *skb, *head; 4962 u32 start, end; 4963 4964 skb = skb_rb_first(&tp->out_of_order_queue); 4965 new_range: 4966 if (!skb) { 4967 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4968 return; 4969 } 4970 start = TCP_SKB_CB(skb)->seq; 4971 end = TCP_SKB_CB(skb)->end_seq; 4972 range_truesize = skb->truesize; 4973 4974 for (head = skb;;) { 4975 skb = skb_rb_next(skb); 4976 4977 /* Range is terminated when we see a gap or when 4978 * we are at the queue end. 4979 */ 4980 if (!skb || 4981 after(TCP_SKB_CB(skb)->seq, end) || 4982 before(TCP_SKB_CB(skb)->end_seq, start)) { 4983 /* Do not attempt collapsing tiny skbs */ 4984 if (range_truesize != head->truesize || 4985 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 4986 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4987 head, skb, start, end); 4988 } else { 4989 sum_tiny += range_truesize; 4990 if (sum_tiny > sk->sk_rcvbuf >> 3) 4991 return; 4992 } 4993 goto new_range; 4994 } 4995 4996 range_truesize += skb->truesize; 4997 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4998 start = TCP_SKB_CB(skb)->seq; 4999 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5000 end = TCP_SKB_CB(skb)->end_seq; 5001 } 5002 } 5003 5004 /* 5005 * Clean the out-of-order queue to make room. 5006 * We drop high sequences packets to : 5007 * 1) Let a chance for holes to be filled. 5008 * 2) not add too big latencies if thousands of packets sit there. 5009 * (But if application shrinks SO_RCVBUF, we could still end up 5010 * freeing whole queue here) 5011 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5012 * 5013 * Return true if queue has shrunk. 5014 */ 5015 static bool tcp_prune_ofo_queue(struct sock *sk) 5016 { 5017 struct tcp_sock *tp = tcp_sk(sk); 5018 struct rb_node *node, *prev; 5019 int goal; 5020 5021 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5022 return false; 5023 5024 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5025 goal = sk->sk_rcvbuf >> 3; 5026 node = &tp->ooo_last_skb->rbnode; 5027 do { 5028 prev = rb_prev(node); 5029 rb_erase(node, &tp->out_of_order_queue); 5030 goal -= rb_to_skb(node)->truesize; 5031 tcp_drop(sk, rb_to_skb(node)); 5032 if (!prev || goal <= 0) { 5033 sk_mem_reclaim(sk); 5034 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5035 !tcp_under_memory_pressure(sk)) 5036 break; 5037 goal = sk->sk_rcvbuf >> 3; 5038 } 5039 node = prev; 5040 } while (node); 5041 tp->ooo_last_skb = rb_to_skb(prev); 5042 5043 /* Reset SACK state. A conforming SACK implementation will 5044 * do the same at a timeout based retransmit. When a connection 5045 * is in a sad state like this, we care only about integrity 5046 * of the connection not performance. 5047 */ 5048 if (tp->rx_opt.sack_ok) 5049 tcp_sack_reset(&tp->rx_opt); 5050 return true; 5051 } 5052 5053 /* Reduce allocated memory if we can, trying to get 5054 * the socket within its memory limits again. 5055 * 5056 * Return less than zero if we should start dropping frames 5057 * until the socket owning process reads some of the data 5058 * to stabilize the situation. 5059 */ 5060 static int tcp_prune_queue(struct sock *sk) 5061 { 5062 struct tcp_sock *tp = tcp_sk(sk); 5063 5064 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 5065 5066 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5067 5068 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5069 tcp_clamp_window(sk); 5070 else if (tcp_under_memory_pressure(sk)) 5071 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5072 5073 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5074 return 0; 5075 5076 tcp_collapse_ofo_queue(sk); 5077 if (!skb_queue_empty(&sk->sk_receive_queue)) 5078 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5079 skb_peek(&sk->sk_receive_queue), 5080 NULL, 5081 tp->copied_seq, tp->rcv_nxt); 5082 sk_mem_reclaim(sk); 5083 5084 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5085 return 0; 5086 5087 /* Collapsing did not help, destructive actions follow. 5088 * This must not ever occur. */ 5089 5090 tcp_prune_ofo_queue(sk); 5091 5092 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5093 return 0; 5094 5095 /* If we are really being abused, tell the caller to silently 5096 * drop receive data on the floor. It will get retransmitted 5097 * and hopefully then we'll have sufficient space. 5098 */ 5099 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5100 5101 /* Massive buffer overcommit. */ 5102 tp->pred_flags = 0; 5103 return -1; 5104 } 5105 5106 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5107 { 5108 const struct tcp_sock *tp = tcp_sk(sk); 5109 5110 /* If the user specified a specific send buffer setting, do 5111 * not modify it. 5112 */ 5113 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5114 return false; 5115 5116 /* If we are under global TCP memory pressure, do not expand. */ 5117 if (tcp_under_memory_pressure(sk)) 5118 return false; 5119 5120 /* If we are under soft global TCP memory pressure, do not expand. */ 5121 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5122 return false; 5123 5124 /* If we filled the congestion window, do not expand. */ 5125 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5126 return false; 5127 5128 return true; 5129 } 5130 5131 /* When incoming ACK allowed to free some skb from write_queue, 5132 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5133 * on the exit from tcp input handler. 5134 * 5135 * PROBLEM: sndbuf expansion does not work well with largesend. 5136 */ 5137 static void tcp_new_space(struct sock *sk) 5138 { 5139 struct tcp_sock *tp = tcp_sk(sk); 5140 5141 if (tcp_should_expand_sndbuf(sk)) { 5142 tcp_sndbuf_expand(sk); 5143 tp->snd_cwnd_stamp = tcp_jiffies32; 5144 } 5145 5146 sk->sk_write_space(sk); 5147 } 5148 5149 static void tcp_check_space(struct sock *sk) 5150 { 5151 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5152 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5153 /* pairs with tcp_poll() */ 5154 smp_mb(); 5155 if (sk->sk_socket && 5156 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5157 tcp_new_space(sk); 5158 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5159 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5160 } 5161 } 5162 } 5163 5164 static inline void tcp_data_snd_check(struct sock *sk) 5165 { 5166 tcp_push_pending_frames(sk); 5167 tcp_check_space(sk); 5168 } 5169 5170 /* 5171 * Check if sending an ack is needed. 5172 */ 5173 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5174 { 5175 struct tcp_sock *tp = tcp_sk(sk); 5176 unsigned long rtt, delay; 5177 5178 /* More than one full frame received... */ 5179 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5180 /* ... and right edge of window advances far enough. 5181 * (tcp_recvmsg() will send ACK otherwise). 5182 * If application uses SO_RCVLOWAT, we want send ack now if 5183 * we have not received enough bytes to satisfy the condition. 5184 */ 5185 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5186 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5187 /* We ACK each frame or... */ 5188 tcp_in_quickack_mode(sk) || 5189 /* Protocol state mandates a one-time immediate ACK */ 5190 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5191 send_now: 5192 tcp_send_ack(sk); 5193 return; 5194 } 5195 5196 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5197 tcp_send_delayed_ack(sk); 5198 return; 5199 } 5200 5201 if (!tcp_is_sack(tp) || 5202 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5203 goto send_now; 5204 5205 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5206 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5207 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH) 5208 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 5209 tp->compressed_ack - TCP_FASTRETRANS_THRESH); 5210 tp->compressed_ack = 0; 5211 } 5212 5213 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH) 5214 goto send_now; 5215 5216 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5217 return; 5218 5219 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5220 5221 rtt = tp->rcv_rtt_est.rtt_us; 5222 if (tp->srtt_us && tp->srtt_us < rtt) 5223 rtt = tp->srtt_us; 5224 5225 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5226 rtt * (NSEC_PER_USEC >> 3)/20); 5227 sock_hold(sk); 5228 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5229 HRTIMER_MODE_REL_PINNED_SOFT); 5230 } 5231 5232 static inline void tcp_ack_snd_check(struct sock *sk) 5233 { 5234 if (!inet_csk_ack_scheduled(sk)) { 5235 /* We sent a data segment already. */ 5236 return; 5237 } 5238 __tcp_ack_snd_check(sk, 1); 5239 } 5240 5241 /* 5242 * This routine is only called when we have urgent data 5243 * signaled. Its the 'slow' part of tcp_urg. It could be 5244 * moved inline now as tcp_urg is only called from one 5245 * place. We handle URGent data wrong. We have to - as 5246 * BSD still doesn't use the correction from RFC961. 5247 * For 1003.1g we should support a new option TCP_STDURG to permit 5248 * either form (or just set the sysctl tcp_stdurg). 5249 */ 5250 5251 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5252 { 5253 struct tcp_sock *tp = tcp_sk(sk); 5254 u32 ptr = ntohs(th->urg_ptr); 5255 5256 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5257 ptr--; 5258 ptr += ntohl(th->seq); 5259 5260 /* Ignore urgent data that we've already seen and read. */ 5261 if (after(tp->copied_seq, ptr)) 5262 return; 5263 5264 /* Do not replay urg ptr. 5265 * 5266 * NOTE: interesting situation not covered by specs. 5267 * Misbehaving sender may send urg ptr, pointing to segment, 5268 * which we already have in ofo queue. We are not able to fetch 5269 * such data and will stay in TCP_URG_NOTYET until will be eaten 5270 * by recvmsg(). Seems, we are not obliged to handle such wicked 5271 * situations. But it is worth to think about possibility of some 5272 * DoSes using some hypothetical application level deadlock. 5273 */ 5274 if (before(ptr, tp->rcv_nxt)) 5275 return; 5276 5277 /* Do we already have a newer (or duplicate) urgent pointer? */ 5278 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5279 return; 5280 5281 /* Tell the world about our new urgent pointer. */ 5282 sk_send_sigurg(sk); 5283 5284 /* We may be adding urgent data when the last byte read was 5285 * urgent. To do this requires some care. We cannot just ignore 5286 * tp->copied_seq since we would read the last urgent byte again 5287 * as data, nor can we alter copied_seq until this data arrives 5288 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5289 * 5290 * NOTE. Double Dutch. Rendering to plain English: author of comment 5291 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5292 * and expect that both A and B disappear from stream. This is _wrong_. 5293 * Though this happens in BSD with high probability, this is occasional. 5294 * Any application relying on this is buggy. Note also, that fix "works" 5295 * only in this artificial test. Insert some normal data between A and B and we will 5296 * decline of BSD again. Verdict: it is better to remove to trap 5297 * buggy users. 5298 */ 5299 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5300 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5301 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5302 tp->copied_seq++; 5303 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5304 __skb_unlink(skb, &sk->sk_receive_queue); 5305 __kfree_skb(skb); 5306 } 5307 } 5308 5309 tp->urg_data = TCP_URG_NOTYET; 5310 tp->urg_seq = ptr; 5311 5312 /* Disable header prediction. */ 5313 tp->pred_flags = 0; 5314 } 5315 5316 /* This is the 'fast' part of urgent handling. */ 5317 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5318 { 5319 struct tcp_sock *tp = tcp_sk(sk); 5320 5321 /* Check if we get a new urgent pointer - normally not. */ 5322 if (th->urg) 5323 tcp_check_urg(sk, th); 5324 5325 /* Do we wait for any urgent data? - normally not... */ 5326 if (tp->urg_data == TCP_URG_NOTYET) { 5327 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5328 th->syn; 5329 5330 /* Is the urgent pointer pointing into this packet? */ 5331 if (ptr < skb->len) { 5332 u8 tmp; 5333 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5334 BUG(); 5335 tp->urg_data = TCP_URG_VALID | tmp; 5336 if (!sock_flag(sk, SOCK_DEAD)) 5337 sk->sk_data_ready(sk); 5338 } 5339 } 5340 } 5341 5342 /* Accept RST for rcv_nxt - 1 after a FIN. 5343 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5344 * FIN is sent followed by a RST packet. The RST is sent with the same 5345 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5346 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5347 * ACKs on the closed socket. In addition middleboxes can drop either the 5348 * challenge ACK or a subsequent RST. 5349 */ 5350 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5351 { 5352 struct tcp_sock *tp = tcp_sk(sk); 5353 5354 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5355 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5356 TCPF_CLOSING)); 5357 } 5358 5359 /* Does PAWS and seqno based validation of an incoming segment, flags will 5360 * play significant role here. 5361 */ 5362 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5363 const struct tcphdr *th, int syn_inerr) 5364 { 5365 struct tcp_sock *tp = tcp_sk(sk); 5366 bool rst_seq_match = false; 5367 5368 /* RFC1323: H1. Apply PAWS check first. */ 5369 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5370 tp->rx_opt.saw_tstamp && 5371 tcp_paws_discard(sk, skb)) { 5372 if (!th->rst) { 5373 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5374 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5375 LINUX_MIB_TCPACKSKIPPEDPAWS, 5376 &tp->last_oow_ack_time)) 5377 tcp_send_dupack(sk, skb); 5378 goto discard; 5379 } 5380 /* Reset is accepted even if it did not pass PAWS. */ 5381 } 5382 5383 /* Step 1: check sequence number */ 5384 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5385 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5386 * (RST) segments are validated by checking their SEQ-fields." 5387 * And page 69: "If an incoming segment is not acceptable, 5388 * an acknowledgment should be sent in reply (unless the RST 5389 * bit is set, if so drop the segment and return)". 5390 */ 5391 if (!th->rst) { 5392 if (th->syn) 5393 goto syn_challenge; 5394 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5395 LINUX_MIB_TCPACKSKIPPEDSEQ, 5396 &tp->last_oow_ack_time)) 5397 tcp_send_dupack(sk, skb); 5398 } else if (tcp_reset_check(sk, skb)) { 5399 tcp_reset(sk); 5400 } 5401 goto discard; 5402 } 5403 5404 /* Step 2: check RST bit */ 5405 if (th->rst) { 5406 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5407 * FIN and SACK too if available): 5408 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5409 * the right-most SACK block, 5410 * then 5411 * RESET the connection 5412 * else 5413 * Send a challenge ACK 5414 */ 5415 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5416 tcp_reset_check(sk, skb)) { 5417 rst_seq_match = true; 5418 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5419 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5420 int max_sack = sp[0].end_seq; 5421 int this_sack; 5422 5423 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5424 ++this_sack) { 5425 max_sack = after(sp[this_sack].end_seq, 5426 max_sack) ? 5427 sp[this_sack].end_seq : max_sack; 5428 } 5429 5430 if (TCP_SKB_CB(skb)->seq == max_sack) 5431 rst_seq_match = true; 5432 } 5433 5434 if (rst_seq_match) 5435 tcp_reset(sk); 5436 else { 5437 /* Disable TFO if RST is out-of-order 5438 * and no data has been received 5439 * for current active TFO socket 5440 */ 5441 if (tp->syn_fastopen && !tp->data_segs_in && 5442 sk->sk_state == TCP_ESTABLISHED) 5443 tcp_fastopen_active_disable(sk); 5444 tcp_send_challenge_ack(sk, skb); 5445 } 5446 goto discard; 5447 } 5448 5449 /* step 3: check security and precedence [ignored] */ 5450 5451 /* step 4: Check for a SYN 5452 * RFC 5961 4.2 : Send a challenge ack 5453 */ 5454 if (th->syn) { 5455 syn_challenge: 5456 if (syn_inerr) 5457 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5458 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5459 tcp_send_challenge_ack(sk, skb); 5460 goto discard; 5461 } 5462 5463 return true; 5464 5465 discard: 5466 tcp_drop(sk, skb); 5467 return false; 5468 } 5469 5470 /* 5471 * TCP receive function for the ESTABLISHED state. 5472 * 5473 * It is split into a fast path and a slow path. The fast path is 5474 * disabled when: 5475 * - A zero window was announced from us - zero window probing 5476 * is only handled properly in the slow path. 5477 * - Out of order segments arrived. 5478 * - Urgent data is expected. 5479 * - There is no buffer space left 5480 * - Unexpected TCP flags/window values/header lengths are received 5481 * (detected by checking the TCP header against pred_flags) 5482 * - Data is sent in both directions. Fast path only supports pure senders 5483 * or pure receivers (this means either the sequence number or the ack 5484 * value must stay constant) 5485 * - Unexpected TCP option. 5486 * 5487 * When these conditions are not satisfied it drops into a standard 5488 * receive procedure patterned after RFC793 to handle all cases. 5489 * The first three cases are guaranteed by proper pred_flags setting, 5490 * the rest is checked inline. Fast processing is turned on in 5491 * tcp_data_queue when everything is OK. 5492 */ 5493 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5494 { 5495 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5496 struct tcp_sock *tp = tcp_sk(sk); 5497 unsigned int len = skb->len; 5498 5499 /* TCP congestion window tracking */ 5500 trace_tcp_probe(sk, skb); 5501 5502 tcp_mstamp_refresh(tp); 5503 if (unlikely(!sk->sk_rx_dst)) 5504 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5505 /* 5506 * Header prediction. 5507 * The code loosely follows the one in the famous 5508 * "30 instruction TCP receive" Van Jacobson mail. 5509 * 5510 * Van's trick is to deposit buffers into socket queue 5511 * on a device interrupt, to call tcp_recv function 5512 * on the receive process context and checksum and copy 5513 * the buffer to user space. smart... 5514 * 5515 * Our current scheme is not silly either but we take the 5516 * extra cost of the net_bh soft interrupt processing... 5517 * We do checksum and copy also but from device to kernel. 5518 */ 5519 5520 tp->rx_opt.saw_tstamp = 0; 5521 5522 /* pred_flags is 0xS?10 << 16 + snd_wnd 5523 * if header_prediction is to be made 5524 * 'S' will always be tp->tcp_header_len >> 2 5525 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5526 * turn it off (when there are holes in the receive 5527 * space for instance) 5528 * PSH flag is ignored. 5529 */ 5530 5531 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5532 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5533 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5534 int tcp_header_len = tp->tcp_header_len; 5535 5536 /* Timestamp header prediction: tcp_header_len 5537 * is automatically equal to th->doff*4 due to pred_flags 5538 * match. 5539 */ 5540 5541 /* Check timestamp */ 5542 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5543 /* No? Slow path! */ 5544 if (!tcp_parse_aligned_timestamp(tp, th)) 5545 goto slow_path; 5546 5547 /* If PAWS failed, check it more carefully in slow path */ 5548 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5549 goto slow_path; 5550 5551 /* DO NOT update ts_recent here, if checksum fails 5552 * and timestamp was corrupted part, it will result 5553 * in a hung connection since we will drop all 5554 * future packets due to the PAWS test. 5555 */ 5556 } 5557 5558 if (len <= tcp_header_len) { 5559 /* Bulk data transfer: sender */ 5560 if (len == tcp_header_len) { 5561 /* Predicted packet is in window by definition. 5562 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5563 * Hence, check seq<=rcv_wup reduces to: 5564 */ 5565 if (tcp_header_len == 5566 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5567 tp->rcv_nxt == tp->rcv_wup) 5568 tcp_store_ts_recent(tp); 5569 5570 /* We know that such packets are checksummed 5571 * on entry. 5572 */ 5573 tcp_ack(sk, skb, 0); 5574 __kfree_skb(skb); 5575 tcp_data_snd_check(sk); 5576 /* When receiving pure ack in fast path, update 5577 * last ts ecr directly instead of calling 5578 * tcp_rcv_rtt_measure_ts() 5579 */ 5580 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5581 return; 5582 } else { /* Header too small */ 5583 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5584 goto discard; 5585 } 5586 } else { 5587 int eaten = 0; 5588 bool fragstolen = false; 5589 5590 if (tcp_checksum_complete(skb)) 5591 goto csum_error; 5592 5593 if ((int)skb->truesize > sk->sk_forward_alloc) 5594 goto step5; 5595 5596 /* Predicted packet is in window by definition. 5597 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5598 * Hence, check seq<=rcv_wup reduces to: 5599 */ 5600 if (tcp_header_len == 5601 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5602 tp->rcv_nxt == tp->rcv_wup) 5603 tcp_store_ts_recent(tp); 5604 5605 tcp_rcv_rtt_measure_ts(sk, skb); 5606 5607 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5608 5609 /* Bulk data transfer: receiver */ 5610 __skb_pull(skb, tcp_header_len); 5611 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5612 5613 tcp_event_data_recv(sk, skb); 5614 5615 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5616 /* Well, only one small jumplet in fast path... */ 5617 tcp_ack(sk, skb, FLAG_DATA); 5618 tcp_data_snd_check(sk); 5619 if (!inet_csk_ack_scheduled(sk)) 5620 goto no_ack; 5621 } 5622 5623 __tcp_ack_snd_check(sk, 0); 5624 no_ack: 5625 if (eaten) 5626 kfree_skb_partial(skb, fragstolen); 5627 tcp_data_ready(sk); 5628 return; 5629 } 5630 } 5631 5632 slow_path: 5633 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5634 goto csum_error; 5635 5636 if (!th->ack && !th->rst && !th->syn) 5637 goto discard; 5638 5639 /* 5640 * Standard slow path. 5641 */ 5642 5643 if (!tcp_validate_incoming(sk, skb, th, 1)) 5644 return; 5645 5646 step5: 5647 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5648 goto discard; 5649 5650 tcp_rcv_rtt_measure_ts(sk, skb); 5651 5652 /* Process urgent data. */ 5653 tcp_urg(sk, skb, th); 5654 5655 /* step 7: process the segment text */ 5656 tcp_data_queue(sk, skb); 5657 5658 tcp_data_snd_check(sk); 5659 tcp_ack_snd_check(sk); 5660 return; 5661 5662 csum_error: 5663 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5664 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5665 5666 discard: 5667 tcp_drop(sk, skb); 5668 } 5669 EXPORT_SYMBOL(tcp_rcv_established); 5670 5671 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5672 { 5673 struct tcp_sock *tp = tcp_sk(sk); 5674 struct inet_connection_sock *icsk = inet_csk(sk); 5675 5676 tcp_set_state(sk, TCP_ESTABLISHED); 5677 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5678 5679 if (skb) { 5680 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5681 security_inet_conn_established(sk, skb); 5682 sk_mark_napi_id(sk, skb); 5683 } 5684 5685 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5686 5687 /* Prevent spurious tcp_cwnd_restart() on first data 5688 * packet. 5689 */ 5690 tp->lsndtime = tcp_jiffies32; 5691 5692 if (sock_flag(sk, SOCK_KEEPOPEN)) 5693 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5694 5695 if (!tp->rx_opt.snd_wscale) 5696 __tcp_fast_path_on(tp, tp->snd_wnd); 5697 else 5698 tp->pred_flags = 0; 5699 } 5700 5701 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5702 struct tcp_fastopen_cookie *cookie) 5703 { 5704 struct tcp_sock *tp = tcp_sk(sk); 5705 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5706 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5707 bool syn_drop = false; 5708 5709 if (mss == tp->rx_opt.user_mss) { 5710 struct tcp_options_received opt; 5711 5712 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5713 tcp_clear_options(&opt); 5714 opt.user_mss = opt.mss_clamp = 0; 5715 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5716 mss = opt.mss_clamp; 5717 } 5718 5719 if (!tp->syn_fastopen) { 5720 /* Ignore an unsolicited cookie */ 5721 cookie->len = -1; 5722 } else if (tp->total_retrans) { 5723 /* SYN timed out and the SYN-ACK neither has a cookie nor 5724 * acknowledges data. Presumably the remote received only 5725 * the retransmitted (regular) SYNs: either the original 5726 * SYN-data or the corresponding SYN-ACK was dropped. 5727 */ 5728 syn_drop = (cookie->len < 0 && data); 5729 } else if (cookie->len < 0 && !tp->syn_data) { 5730 /* We requested a cookie but didn't get it. If we did not use 5731 * the (old) exp opt format then try so next time (try_exp=1). 5732 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5733 */ 5734 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5735 } 5736 5737 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5738 5739 if (data) { /* Retransmit unacked data in SYN */ 5740 skb_rbtree_walk_from(data) { 5741 if (__tcp_retransmit_skb(sk, data, 1)) 5742 break; 5743 } 5744 tcp_rearm_rto(sk); 5745 NET_INC_STATS(sock_net(sk), 5746 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5747 return true; 5748 } 5749 tp->syn_data_acked = tp->syn_data; 5750 if (tp->syn_data_acked) { 5751 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5752 /* SYN-data is counted as two separate packets in tcp_ack() */ 5753 if (tp->delivered > 1) 5754 --tp->delivered; 5755 } 5756 5757 tcp_fastopen_add_skb(sk, synack); 5758 5759 return false; 5760 } 5761 5762 static void smc_check_reset_syn(struct tcp_sock *tp) 5763 { 5764 #if IS_ENABLED(CONFIG_SMC) 5765 if (static_branch_unlikely(&tcp_have_smc)) { 5766 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5767 tp->syn_smc = 0; 5768 } 5769 #endif 5770 } 5771 5772 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5773 const struct tcphdr *th) 5774 { 5775 struct inet_connection_sock *icsk = inet_csk(sk); 5776 struct tcp_sock *tp = tcp_sk(sk); 5777 struct tcp_fastopen_cookie foc = { .len = -1 }; 5778 int saved_clamp = tp->rx_opt.mss_clamp; 5779 bool fastopen_fail; 5780 5781 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5782 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5783 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5784 5785 if (th->ack) { 5786 /* rfc793: 5787 * "If the state is SYN-SENT then 5788 * first check the ACK bit 5789 * If the ACK bit is set 5790 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5791 * a reset (unless the RST bit is set, if so drop 5792 * the segment and return)" 5793 */ 5794 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5795 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5796 goto reset_and_undo; 5797 5798 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5799 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5800 tcp_time_stamp(tp))) { 5801 NET_INC_STATS(sock_net(sk), 5802 LINUX_MIB_PAWSACTIVEREJECTED); 5803 goto reset_and_undo; 5804 } 5805 5806 /* Now ACK is acceptable. 5807 * 5808 * "If the RST bit is set 5809 * If the ACK was acceptable then signal the user "error: 5810 * connection reset", drop the segment, enter CLOSED state, 5811 * delete TCB, and return." 5812 */ 5813 5814 if (th->rst) { 5815 tcp_reset(sk); 5816 goto discard; 5817 } 5818 5819 /* rfc793: 5820 * "fifth, if neither of the SYN or RST bits is set then 5821 * drop the segment and return." 5822 * 5823 * See note below! 5824 * --ANK(990513) 5825 */ 5826 if (!th->syn) 5827 goto discard_and_undo; 5828 5829 /* rfc793: 5830 * "If the SYN bit is on ... 5831 * are acceptable then ... 5832 * (our SYN has been ACKed), change the connection 5833 * state to ESTABLISHED..." 5834 */ 5835 5836 tcp_ecn_rcv_synack(tp, th); 5837 5838 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5839 tcp_ack(sk, skb, FLAG_SLOWPATH); 5840 5841 /* Ok.. it's good. Set up sequence numbers and 5842 * move to established. 5843 */ 5844 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5845 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5846 5847 /* RFC1323: The window in SYN & SYN/ACK segments is 5848 * never scaled. 5849 */ 5850 tp->snd_wnd = ntohs(th->window); 5851 5852 if (!tp->rx_opt.wscale_ok) { 5853 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5854 tp->window_clamp = min(tp->window_clamp, 65535U); 5855 } 5856 5857 if (tp->rx_opt.saw_tstamp) { 5858 tp->rx_opt.tstamp_ok = 1; 5859 tp->tcp_header_len = 5860 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5861 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5862 tcp_store_ts_recent(tp); 5863 } else { 5864 tp->tcp_header_len = sizeof(struct tcphdr); 5865 } 5866 5867 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5868 tcp_initialize_rcv_mss(sk); 5869 5870 /* Remember, tcp_poll() does not lock socket! 5871 * Change state from SYN-SENT only after copied_seq 5872 * is initialized. */ 5873 tp->copied_seq = tp->rcv_nxt; 5874 5875 smc_check_reset_syn(tp); 5876 5877 smp_mb(); 5878 5879 tcp_finish_connect(sk, skb); 5880 5881 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5882 tcp_rcv_fastopen_synack(sk, skb, &foc); 5883 5884 if (!sock_flag(sk, SOCK_DEAD)) { 5885 sk->sk_state_change(sk); 5886 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5887 } 5888 if (fastopen_fail) 5889 return -1; 5890 if (sk->sk_write_pending || 5891 icsk->icsk_accept_queue.rskq_defer_accept || 5892 icsk->icsk_ack.pingpong) { 5893 /* Save one ACK. Data will be ready after 5894 * several ticks, if write_pending is set. 5895 * 5896 * It may be deleted, but with this feature tcpdumps 5897 * look so _wonderfully_ clever, that I was not able 5898 * to stand against the temptation 8) --ANK 5899 */ 5900 inet_csk_schedule_ack(sk); 5901 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5902 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5903 TCP_DELACK_MAX, TCP_RTO_MAX); 5904 5905 discard: 5906 tcp_drop(sk, skb); 5907 return 0; 5908 } else { 5909 tcp_send_ack(sk); 5910 } 5911 return -1; 5912 } 5913 5914 /* No ACK in the segment */ 5915 5916 if (th->rst) { 5917 /* rfc793: 5918 * "If the RST bit is set 5919 * 5920 * Otherwise (no ACK) drop the segment and return." 5921 */ 5922 5923 goto discard_and_undo; 5924 } 5925 5926 /* PAWS check. */ 5927 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5928 tcp_paws_reject(&tp->rx_opt, 0)) 5929 goto discard_and_undo; 5930 5931 if (th->syn) { 5932 /* We see SYN without ACK. It is attempt of 5933 * simultaneous connect with crossed SYNs. 5934 * Particularly, it can be connect to self. 5935 */ 5936 tcp_set_state(sk, TCP_SYN_RECV); 5937 5938 if (tp->rx_opt.saw_tstamp) { 5939 tp->rx_opt.tstamp_ok = 1; 5940 tcp_store_ts_recent(tp); 5941 tp->tcp_header_len = 5942 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5943 } else { 5944 tp->tcp_header_len = sizeof(struct tcphdr); 5945 } 5946 5947 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5948 tp->copied_seq = tp->rcv_nxt; 5949 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5950 5951 /* RFC1323: The window in SYN & SYN/ACK segments is 5952 * never scaled. 5953 */ 5954 tp->snd_wnd = ntohs(th->window); 5955 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5956 tp->max_window = tp->snd_wnd; 5957 5958 tcp_ecn_rcv_syn(tp, th); 5959 5960 tcp_mtup_init(sk); 5961 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5962 tcp_initialize_rcv_mss(sk); 5963 5964 tcp_send_synack(sk); 5965 #if 0 5966 /* Note, we could accept data and URG from this segment. 5967 * There are no obstacles to make this (except that we must 5968 * either change tcp_recvmsg() to prevent it from returning data 5969 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5970 * 5971 * However, if we ignore data in ACKless segments sometimes, 5972 * we have no reasons to accept it sometimes. 5973 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5974 * is not flawless. So, discard packet for sanity. 5975 * Uncomment this return to process the data. 5976 */ 5977 return -1; 5978 #else 5979 goto discard; 5980 #endif 5981 } 5982 /* "fifth, if neither of the SYN or RST bits is set then 5983 * drop the segment and return." 5984 */ 5985 5986 discard_and_undo: 5987 tcp_clear_options(&tp->rx_opt); 5988 tp->rx_opt.mss_clamp = saved_clamp; 5989 goto discard; 5990 5991 reset_and_undo: 5992 tcp_clear_options(&tp->rx_opt); 5993 tp->rx_opt.mss_clamp = saved_clamp; 5994 return 1; 5995 } 5996 5997 /* 5998 * This function implements the receiving procedure of RFC 793 for 5999 * all states except ESTABLISHED and TIME_WAIT. 6000 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6001 * address independent. 6002 */ 6003 6004 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6005 { 6006 struct tcp_sock *tp = tcp_sk(sk); 6007 struct inet_connection_sock *icsk = inet_csk(sk); 6008 const struct tcphdr *th = tcp_hdr(skb); 6009 struct request_sock *req; 6010 int queued = 0; 6011 bool acceptable; 6012 6013 switch (sk->sk_state) { 6014 case TCP_CLOSE: 6015 goto discard; 6016 6017 case TCP_LISTEN: 6018 if (th->ack) 6019 return 1; 6020 6021 if (th->rst) 6022 goto discard; 6023 6024 if (th->syn) { 6025 if (th->fin) 6026 goto discard; 6027 /* It is possible that we process SYN packets from backlog, 6028 * so we need to make sure to disable BH and RCU right there. 6029 */ 6030 rcu_read_lock(); 6031 local_bh_disable(); 6032 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6033 local_bh_enable(); 6034 rcu_read_unlock(); 6035 6036 if (!acceptable) 6037 return 1; 6038 consume_skb(skb); 6039 return 0; 6040 } 6041 goto discard; 6042 6043 case TCP_SYN_SENT: 6044 tp->rx_opt.saw_tstamp = 0; 6045 tcp_mstamp_refresh(tp); 6046 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6047 if (queued >= 0) 6048 return queued; 6049 6050 /* Do step6 onward by hand. */ 6051 tcp_urg(sk, skb, th); 6052 __kfree_skb(skb); 6053 tcp_data_snd_check(sk); 6054 return 0; 6055 } 6056 6057 tcp_mstamp_refresh(tp); 6058 tp->rx_opt.saw_tstamp = 0; 6059 req = tp->fastopen_rsk; 6060 if (req) { 6061 bool req_stolen; 6062 6063 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6064 sk->sk_state != TCP_FIN_WAIT1); 6065 6066 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6067 goto discard; 6068 } 6069 6070 if (!th->ack && !th->rst && !th->syn) 6071 goto discard; 6072 6073 if (!tcp_validate_incoming(sk, skb, th, 0)) 6074 return 0; 6075 6076 /* step 5: check the ACK field */ 6077 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6078 FLAG_UPDATE_TS_RECENT | 6079 FLAG_NO_CHALLENGE_ACK) > 0; 6080 6081 if (!acceptable) { 6082 if (sk->sk_state == TCP_SYN_RECV) 6083 return 1; /* send one RST */ 6084 tcp_send_challenge_ack(sk, skb); 6085 goto discard; 6086 } 6087 switch (sk->sk_state) { 6088 case TCP_SYN_RECV: 6089 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6090 if (!tp->srtt_us) 6091 tcp_synack_rtt_meas(sk, req); 6092 6093 /* Once we leave TCP_SYN_RECV, we no longer need req 6094 * so release it. 6095 */ 6096 if (req) { 6097 inet_csk(sk)->icsk_retransmits = 0; 6098 reqsk_fastopen_remove(sk, req, false); 6099 /* Re-arm the timer because data may have been sent out. 6100 * This is similar to the regular data transmission case 6101 * when new data has just been ack'ed. 6102 * 6103 * (TFO) - we could try to be more aggressive and 6104 * retransmitting any data sooner based on when they 6105 * are sent out. 6106 */ 6107 tcp_rearm_rto(sk); 6108 } else { 6109 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6110 tp->copied_seq = tp->rcv_nxt; 6111 } 6112 smp_mb(); 6113 tcp_set_state(sk, TCP_ESTABLISHED); 6114 sk->sk_state_change(sk); 6115 6116 /* Note, that this wakeup is only for marginal crossed SYN case. 6117 * Passively open sockets are not waked up, because 6118 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6119 */ 6120 if (sk->sk_socket) 6121 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6122 6123 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6124 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6125 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6126 6127 if (tp->rx_opt.tstamp_ok) 6128 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6129 6130 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6131 tcp_update_pacing_rate(sk); 6132 6133 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6134 tp->lsndtime = tcp_jiffies32; 6135 6136 tcp_initialize_rcv_mss(sk); 6137 tcp_fast_path_on(tp); 6138 break; 6139 6140 case TCP_FIN_WAIT1: { 6141 int tmo; 6142 6143 /* If we enter the TCP_FIN_WAIT1 state and we are a 6144 * Fast Open socket and this is the first acceptable 6145 * ACK we have received, this would have acknowledged 6146 * our SYNACK so stop the SYNACK timer. 6147 */ 6148 if (req) { 6149 /* We no longer need the request sock. */ 6150 reqsk_fastopen_remove(sk, req, false); 6151 tcp_rearm_rto(sk); 6152 } 6153 if (tp->snd_una != tp->write_seq) 6154 break; 6155 6156 tcp_set_state(sk, TCP_FIN_WAIT2); 6157 sk->sk_shutdown |= SEND_SHUTDOWN; 6158 6159 sk_dst_confirm(sk); 6160 6161 if (!sock_flag(sk, SOCK_DEAD)) { 6162 /* Wake up lingering close() */ 6163 sk->sk_state_change(sk); 6164 break; 6165 } 6166 6167 if (tp->linger2 < 0) { 6168 tcp_done(sk); 6169 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6170 return 1; 6171 } 6172 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6173 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6174 /* Receive out of order FIN after close() */ 6175 if (tp->syn_fastopen && th->fin) 6176 tcp_fastopen_active_disable(sk); 6177 tcp_done(sk); 6178 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6179 return 1; 6180 } 6181 6182 tmo = tcp_fin_time(sk); 6183 if (tmo > TCP_TIMEWAIT_LEN) { 6184 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6185 } else if (th->fin || sock_owned_by_user(sk)) { 6186 /* Bad case. We could lose such FIN otherwise. 6187 * It is not a big problem, but it looks confusing 6188 * and not so rare event. We still can lose it now, 6189 * if it spins in bh_lock_sock(), but it is really 6190 * marginal case. 6191 */ 6192 inet_csk_reset_keepalive_timer(sk, tmo); 6193 } else { 6194 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6195 goto discard; 6196 } 6197 break; 6198 } 6199 6200 case TCP_CLOSING: 6201 if (tp->snd_una == tp->write_seq) { 6202 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6203 goto discard; 6204 } 6205 break; 6206 6207 case TCP_LAST_ACK: 6208 if (tp->snd_una == tp->write_seq) { 6209 tcp_update_metrics(sk); 6210 tcp_done(sk); 6211 goto discard; 6212 } 6213 break; 6214 } 6215 6216 /* step 6: check the URG bit */ 6217 tcp_urg(sk, skb, th); 6218 6219 /* step 7: process the segment text */ 6220 switch (sk->sk_state) { 6221 case TCP_CLOSE_WAIT: 6222 case TCP_CLOSING: 6223 case TCP_LAST_ACK: 6224 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6225 break; 6226 /* fall through */ 6227 case TCP_FIN_WAIT1: 6228 case TCP_FIN_WAIT2: 6229 /* RFC 793 says to queue data in these states, 6230 * RFC 1122 says we MUST send a reset. 6231 * BSD 4.4 also does reset. 6232 */ 6233 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6234 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6235 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6236 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6237 tcp_reset(sk); 6238 return 1; 6239 } 6240 } 6241 /* Fall through */ 6242 case TCP_ESTABLISHED: 6243 tcp_data_queue(sk, skb); 6244 queued = 1; 6245 break; 6246 } 6247 6248 /* tcp_data could move socket to TIME-WAIT */ 6249 if (sk->sk_state != TCP_CLOSE) { 6250 tcp_data_snd_check(sk); 6251 tcp_ack_snd_check(sk); 6252 } 6253 6254 if (!queued) { 6255 discard: 6256 tcp_drop(sk, skb); 6257 } 6258 return 0; 6259 } 6260 EXPORT_SYMBOL(tcp_rcv_state_process); 6261 6262 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6263 { 6264 struct inet_request_sock *ireq = inet_rsk(req); 6265 6266 if (family == AF_INET) 6267 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6268 &ireq->ir_rmt_addr, port); 6269 #if IS_ENABLED(CONFIG_IPV6) 6270 else if (family == AF_INET6) 6271 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6272 &ireq->ir_v6_rmt_addr, port); 6273 #endif 6274 } 6275 6276 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6277 * 6278 * If we receive a SYN packet with these bits set, it means a 6279 * network is playing bad games with TOS bits. In order to 6280 * avoid possible false congestion notifications, we disable 6281 * TCP ECN negotiation. 6282 * 6283 * Exception: tcp_ca wants ECN. This is required for DCTCP 6284 * congestion control: Linux DCTCP asserts ECT on all packets, 6285 * including SYN, which is most optimal solution; however, 6286 * others, such as FreeBSD do not. 6287 */ 6288 static void tcp_ecn_create_request(struct request_sock *req, 6289 const struct sk_buff *skb, 6290 const struct sock *listen_sk, 6291 const struct dst_entry *dst) 6292 { 6293 const struct tcphdr *th = tcp_hdr(skb); 6294 const struct net *net = sock_net(listen_sk); 6295 bool th_ecn = th->ece && th->cwr; 6296 bool ect, ecn_ok; 6297 u32 ecn_ok_dst; 6298 6299 if (!th_ecn) 6300 return; 6301 6302 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6303 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6304 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6305 6306 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6307 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6308 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6309 inet_rsk(req)->ecn_ok = 1; 6310 } 6311 6312 static void tcp_openreq_init(struct request_sock *req, 6313 const struct tcp_options_received *rx_opt, 6314 struct sk_buff *skb, const struct sock *sk) 6315 { 6316 struct inet_request_sock *ireq = inet_rsk(req); 6317 6318 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6319 req->cookie_ts = 0; 6320 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6321 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6322 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6323 tcp_rsk(req)->last_oow_ack_time = 0; 6324 req->mss = rx_opt->mss_clamp; 6325 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6326 ireq->tstamp_ok = rx_opt->tstamp_ok; 6327 ireq->sack_ok = rx_opt->sack_ok; 6328 ireq->snd_wscale = rx_opt->snd_wscale; 6329 ireq->wscale_ok = rx_opt->wscale_ok; 6330 ireq->acked = 0; 6331 ireq->ecn_ok = 0; 6332 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6333 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6334 ireq->ir_mark = inet_request_mark(sk, skb); 6335 #if IS_ENABLED(CONFIG_SMC) 6336 ireq->smc_ok = rx_opt->smc_ok; 6337 #endif 6338 } 6339 6340 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6341 struct sock *sk_listener, 6342 bool attach_listener) 6343 { 6344 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6345 attach_listener); 6346 6347 if (req) { 6348 struct inet_request_sock *ireq = inet_rsk(req); 6349 6350 ireq->ireq_opt = NULL; 6351 #if IS_ENABLED(CONFIG_IPV6) 6352 ireq->pktopts = NULL; 6353 #endif 6354 atomic64_set(&ireq->ir_cookie, 0); 6355 ireq->ireq_state = TCP_NEW_SYN_RECV; 6356 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6357 ireq->ireq_family = sk_listener->sk_family; 6358 } 6359 6360 return req; 6361 } 6362 EXPORT_SYMBOL(inet_reqsk_alloc); 6363 6364 /* 6365 * Return true if a syncookie should be sent 6366 */ 6367 static bool tcp_syn_flood_action(const struct sock *sk, 6368 const struct sk_buff *skb, 6369 const char *proto) 6370 { 6371 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6372 const char *msg = "Dropping request"; 6373 bool want_cookie = false; 6374 struct net *net = sock_net(sk); 6375 6376 #ifdef CONFIG_SYN_COOKIES 6377 if (net->ipv4.sysctl_tcp_syncookies) { 6378 msg = "Sending cookies"; 6379 want_cookie = true; 6380 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6381 } else 6382 #endif 6383 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6384 6385 if (!queue->synflood_warned && 6386 net->ipv4.sysctl_tcp_syncookies != 2 && 6387 xchg(&queue->synflood_warned, 1) == 0) 6388 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6389 proto, ntohs(tcp_hdr(skb)->dest), msg); 6390 6391 return want_cookie; 6392 } 6393 6394 static void tcp_reqsk_record_syn(const struct sock *sk, 6395 struct request_sock *req, 6396 const struct sk_buff *skb) 6397 { 6398 if (tcp_sk(sk)->save_syn) { 6399 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6400 u32 *copy; 6401 6402 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6403 if (copy) { 6404 copy[0] = len; 6405 memcpy(©[1], skb_network_header(skb), len); 6406 req->saved_syn = copy; 6407 } 6408 } 6409 } 6410 6411 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6412 const struct tcp_request_sock_ops *af_ops, 6413 struct sock *sk, struct sk_buff *skb) 6414 { 6415 struct tcp_fastopen_cookie foc = { .len = -1 }; 6416 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6417 struct tcp_options_received tmp_opt; 6418 struct tcp_sock *tp = tcp_sk(sk); 6419 struct net *net = sock_net(sk); 6420 struct sock *fastopen_sk = NULL; 6421 struct request_sock *req; 6422 bool want_cookie = false; 6423 struct dst_entry *dst; 6424 struct flowi fl; 6425 6426 /* TW buckets are converted to open requests without 6427 * limitations, they conserve resources and peer is 6428 * evidently real one. 6429 */ 6430 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6431 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6432 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6433 if (!want_cookie) 6434 goto drop; 6435 } 6436 6437 if (sk_acceptq_is_full(sk)) { 6438 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6439 goto drop; 6440 } 6441 6442 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6443 if (!req) 6444 goto drop; 6445 6446 tcp_rsk(req)->af_specific = af_ops; 6447 tcp_rsk(req)->ts_off = 0; 6448 6449 tcp_clear_options(&tmp_opt); 6450 tmp_opt.mss_clamp = af_ops->mss_clamp; 6451 tmp_opt.user_mss = tp->rx_opt.user_mss; 6452 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6453 want_cookie ? NULL : &foc); 6454 6455 if (want_cookie && !tmp_opt.saw_tstamp) 6456 tcp_clear_options(&tmp_opt); 6457 6458 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6459 tmp_opt.smc_ok = 0; 6460 6461 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6462 tcp_openreq_init(req, &tmp_opt, skb, sk); 6463 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6464 6465 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6466 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6467 6468 af_ops->init_req(req, sk, skb); 6469 6470 if (security_inet_conn_request(sk, skb, req)) 6471 goto drop_and_free; 6472 6473 if (tmp_opt.tstamp_ok) 6474 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6475 6476 dst = af_ops->route_req(sk, &fl, req); 6477 if (!dst) 6478 goto drop_and_free; 6479 6480 if (!want_cookie && !isn) { 6481 /* Kill the following clause, if you dislike this way. */ 6482 if (!net->ipv4.sysctl_tcp_syncookies && 6483 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6484 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6485 !tcp_peer_is_proven(req, dst)) { 6486 /* Without syncookies last quarter of 6487 * backlog is filled with destinations, 6488 * proven to be alive. 6489 * It means that we continue to communicate 6490 * to destinations, already remembered 6491 * to the moment of synflood. 6492 */ 6493 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6494 rsk_ops->family); 6495 goto drop_and_release; 6496 } 6497 6498 isn = af_ops->init_seq(skb); 6499 } 6500 6501 tcp_ecn_create_request(req, skb, sk, dst); 6502 6503 if (want_cookie) { 6504 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6505 req->cookie_ts = tmp_opt.tstamp_ok; 6506 if (!tmp_opt.tstamp_ok) 6507 inet_rsk(req)->ecn_ok = 0; 6508 } 6509 6510 tcp_rsk(req)->snt_isn = isn; 6511 tcp_rsk(req)->txhash = net_tx_rndhash(); 6512 tcp_openreq_init_rwin(req, sk, dst); 6513 sk_rx_queue_set(req_to_sk(req), skb); 6514 if (!want_cookie) { 6515 tcp_reqsk_record_syn(sk, req, skb); 6516 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6517 } 6518 if (fastopen_sk) { 6519 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6520 &foc, TCP_SYNACK_FASTOPEN); 6521 /* Add the child socket directly into the accept queue */ 6522 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6523 sk->sk_data_ready(sk); 6524 bh_unlock_sock(fastopen_sk); 6525 sock_put(fastopen_sk); 6526 } else { 6527 tcp_rsk(req)->tfo_listener = false; 6528 if (!want_cookie) 6529 inet_csk_reqsk_queue_hash_add(sk, req, 6530 tcp_timeout_init((struct sock *)req)); 6531 af_ops->send_synack(sk, dst, &fl, req, &foc, 6532 !want_cookie ? TCP_SYNACK_NORMAL : 6533 TCP_SYNACK_COOKIE); 6534 if (want_cookie) { 6535 reqsk_free(req); 6536 return 0; 6537 } 6538 } 6539 reqsk_put(req); 6540 return 0; 6541 6542 drop_and_release: 6543 dst_release(dst); 6544 drop_and_free: 6545 reqsk_free(req); 6546 drop: 6547 tcp_listendrop(sk); 6548 return 0; 6549 } 6550 EXPORT_SYMBOL(tcp_conn_request); 6551