xref: /linux/net/ipv4/tcp_input.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75 
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95 
96 int sysctl_tcp_thin_dupack __read_mostly;
97 
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100 
101 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
102 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
103 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
104 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
105 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
106 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
107 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
108 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
109 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121 
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130 	struct inet_connection_sock *icsk = inet_csk(sk);
131 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
132 	unsigned int len;
133 
134 	icsk->icsk_ack.last_seg_size = 0;
135 
136 	/* skb->len may jitter because of SACKs, even if peer
137 	 * sends good full-sized frames.
138 	 */
139 	len = skb_shinfo(skb)->gso_size ? : skb->len;
140 	if (len >= icsk->icsk_ack.rcv_mss) {
141 		icsk->icsk_ack.rcv_mss = len;
142 	} else {
143 		/* Otherwise, we make more careful check taking into account,
144 		 * that SACKs block is variable.
145 		 *
146 		 * "len" is invariant segment length, including TCP header.
147 		 */
148 		len += skb->data - skb_transport_header(skb);
149 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 		    /* If PSH is not set, packet should be
151 		     * full sized, provided peer TCP is not badly broken.
152 		     * This observation (if it is correct 8)) allows
153 		     * to handle super-low mtu links fairly.
154 		     */
155 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 			/* Subtract also invariant (if peer is RFC compliant),
158 			 * tcp header plus fixed timestamp option length.
159 			 * Resulting "len" is MSS free of SACK jitter.
160 			 */
161 			len -= tcp_sk(sk)->tcp_header_len;
162 			icsk->icsk_ack.last_seg_size = len;
163 			if (len == lss) {
164 				icsk->icsk_ack.rcv_mss = len;
165 				return;
166 			}
167 		}
168 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171 	}
172 }
173 
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176 	struct inet_connection_sock *icsk = inet_csk(sk);
177 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178 
179 	if (quickacks == 0)
180 		quickacks = 2;
181 	if (quickacks > icsk->icsk_ack.quick)
182 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184 
185 void tcp_enter_quickack_mode(struct sock *sk)
186 {
187 	struct inet_connection_sock *icsk = inet_csk(sk);
188 	tcp_incr_quickack(sk);
189 	icsk->icsk_ack.pingpong = 0;
190 	icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192 
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196 
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199 	const struct inet_connection_sock *icsk = inet_csk(sk);
200 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202 
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 	if (tp->ecn_flags & TCP_ECN_OK)
206 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208 
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210 {
211 	if (tcp_hdr(skb)->cwr)
212 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214 
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219 
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221 {
222 	if (tp->ecn_flags & TCP_ECN_OK) {
223 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225 		/* Funny extension: if ECT is not set on a segment,
226 		 * it is surely retransmit. It is not in ECN RFC,
227 		 * but Linux follows this rule. */
228 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229 			tcp_enter_quickack_mode((struct sock *)tp);
230 	}
231 }
232 
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234 {
235 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236 		tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238 
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240 {
241 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242 		tp->ecn_flags &= ~TCP_ECN_OK;
243 }
244 
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246 {
247 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248 		return 1;
249 	return 0;
250 }
251 
252 /* Buffer size and advertised window tuning.
253  *
254  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255  */
256 
257 static void tcp_fixup_sndbuf(struct sock *sk)
258 {
259 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260 		     sizeof(struct sk_buff);
261 
262 	if (sk->sk_sndbuf < 3 * sndmem)
263 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
264 }
265 
266 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
267  *
268  * All tcp_full_space() is split to two parts: "network" buffer, allocated
269  * forward and advertised in receiver window (tp->rcv_wnd) and
270  * "application buffer", required to isolate scheduling/application
271  * latencies from network.
272  * window_clamp is maximal advertised window. It can be less than
273  * tcp_full_space(), in this case tcp_full_space() - window_clamp
274  * is reserved for "application" buffer. The less window_clamp is
275  * the smoother our behaviour from viewpoint of network, but the lower
276  * throughput and the higher sensitivity of the connection to losses. 8)
277  *
278  * rcv_ssthresh is more strict window_clamp used at "slow start"
279  * phase to predict further behaviour of this connection.
280  * It is used for two goals:
281  * - to enforce header prediction at sender, even when application
282  *   requires some significant "application buffer". It is check #1.
283  * - to prevent pruning of receive queue because of misprediction
284  *   of receiver window. Check #2.
285  *
286  * The scheme does not work when sender sends good segments opening
287  * window and then starts to feed us spaghetti. But it should work
288  * in common situations. Otherwise, we have to rely on queue collapsing.
289  */
290 
291 /* Slow part of check#2. */
292 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
293 {
294 	struct tcp_sock *tp = tcp_sk(sk);
295 	/* Optimize this! */
296 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
297 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
298 
299 	while (tp->rcv_ssthresh <= window) {
300 		if (truesize <= skb->len)
301 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
302 
303 		truesize >>= 1;
304 		window >>= 1;
305 	}
306 	return 0;
307 }
308 
309 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
310 {
311 	struct tcp_sock *tp = tcp_sk(sk);
312 
313 	/* Check #1 */
314 	if (tp->rcv_ssthresh < tp->window_clamp &&
315 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
316 	    !tcp_memory_pressure) {
317 		int incr;
318 
319 		/* Check #2. Increase window, if skb with such overhead
320 		 * will fit to rcvbuf in future.
321 		 */
322 		if (tcp_win_from_space(skb->truesize) <= skb->len)
323 			incr = 2 * tp->advmss;
324 		else
325 			incr = __tcp_grow_window(sk, skb);
326 
327 		if (incr) {
328 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
329 					       tp->window_clamp);
330 			inet_csk(sk)->icsk_ack.quick |= 1;
331 		}
332 	}
333 }
334 
335 /* 3. Tuning rcvbuf, when connection enters established state. */
336 
337 static void tcp_fixup_rcvbuf(struct sock *sk)
338 {
339 	struct tcp_sock *tp = tcp_sk(sk);
340 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
341 
342 	/* Try to select rcvbuf so that 4 mss-sized segments
343 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
344 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
345 	 */
346 	while (tcp_win_from_space(rcvmem) < tp->advmss)
347 		rcvmem += 128;
348 	if (sk->sk_rcvbuf < 4 * rcvmem)
349 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
350 }
351 
352 /* 4. Try to fixup all. It is made immediately after connection enters
353  *    established state.
354  */
355 static void tcp_init_buffer_space(struct sock *sk)
356 {
357 	struct tcp_sock *tp = tcp_sk(sk);
358 	int maxwin;
359 
360 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
361 		tcp_fixup_rcvbuf(sk);
362 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
363 		tcp_fixup_sndbuf(sk);
364 
365 	tp->rcvq_space.space = tp->rcv_wnd;
366 
367 	maxwin = tcp_full_space(sk);
368 
369 	if (tp->window_clamp >= maxwin) {
370 		tp->window_clamp = maxwin;
371 
372 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
373 			tp->window_clamp = max(maxwin -
374 					       (maxwin >> sysctl_tcp_app_win),
375 					       4 * tp->advmss);
376 	}
377 
378 	/* Force reservation of one segment. */
379 	if (sysctl_tcp_app_win &&
380 	    tp->window_clamp > 2 * tp->advmss &&
381 	    tp->window_clamp + tp->advmss > maxwin)
382 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
383 
384 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
385 	tp->snd_cwnd_stamp = tcp_time_stamp;
386 }
387 
388 /* 5. Recalculate window clamp after socket hit its memory bounds. */
389 static void tcp_clamp_window(struct sock *sk)
390 {
391 	struct tcp_sock *tp = tcp_sk(sk);
392 	struct inet_connection_sock *icsk = inet_csk(sk);
393 
394 	icsk->icsk_ack.quick = 0;
395 
396 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
397 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
398 	    !tcp_memory_pressure &&
399 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
400 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
401 				    sysctl_tcp_rmem[2]);
402 	}
403 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
404 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
405 }
406 
407 /* Initialize RCV_MSS value.
408  * RCV_MSS is an our guess about MSS used by the peer.
409  * We haven't any direct information about the MSS.
410  * It's better to underestimate the RCV_MSS rather than overestimate.
411  * Overestimations make us ACKing less frequently than needed.
412  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
413  */
414 void tcp_initialize_rcv_mss(struct sock *sk)
415 {
416 	struct tcp_sock *tp = tcp_sk(sk);
417 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
418 
419 	hint = min(hint, tp->rcv_wnd / 2);
420 	hint = min(hint, TCP_MSS_DEFAULT);
421 	hint = max(hint, TCP_MIN_MSS);
422 
423 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
424 }
425 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
426 
427 /* Receiver "autotuning" code.
428  *
429  * The algorithm for RTT estimation w/o timestamps is based on
430  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
431  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
432  *
433  * More detail on this code can be found at
434  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
435  * though this reference is out of date.  A new paper
436  * is pending.
437  */
438 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
439 {
440 	u32 new_sample = tp->rcv_rtt_est.rtt;
441 	long m = sample;
442 
443 	if (m == 0)
444 		m = 1;
445 
446 	if (new_sample != 0) {
447 		/* If we sample in larger samples in the non-timestamp
448 		 * case, we could grossly overestimate the RTT especially
449 		 * with chatty applications or bulk transfer apps which
450 		 * are stalled on filesystem I/O.
451 		 *
452 		 * Also, since we are only going for a minimum in the
453 		 * non-timestamp case, we do not smooth things out
454 		 * else with timestamps disabled convergence takes too
455 		 * long.
456 		 */
457 		if (!win_dep) {
458 			m -= (new_sample >> 3);
459 			new_sample += m;
460 		} else if (m < new_sample)
461 			new_sample = m << 3;
462 	} else {
463 		/* No previous measure. */
464 		new_sample = m << 3;
465 	}
466 
467 	if (tp->rcv_rtt_est.rtt != new_sample)
468 		tp->rcv_rtt_est.rtt = new_sample;
469 }
470 
471 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
472 {
473 	if (tp->rcv_rtt_est.time == 0)
474 		goto new_measure;
475 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
476 		return;
477 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
478 
479 new_measure:
480 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
481 	tp->rcv_rtt_est.time = tcp_time_stamp;
482 }
483 
484 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
485 					  const struct sk_buff *skb)
486 {
487 	struct tcp_sock *tp = tcp_sk(sk);
488 	if (tp->rx_opt.rcv_tsecr &&
489 	    (TCP_SKB_CB(skb)->end_seq -
490 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
491 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
492 }
493 
494 /*
495  * This function should be called every time data is copied to user space.
496  * It calculates the appropriate TCP receive buffer space.
497  */
498 void tcp_rcv_space_adjust(struct sock *sk)
499 {
500 	struct tcp_sock *tp = tcp_sk(sk);
501 	int time;
502 	int space;
503 
504 	if (tp->rcvq_space.time == 0)
505 		goto new_measure;
506 
507 	time = tcp_time_stamp - tp->rcvq_space.time;
508 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
509 		return;
510 
511 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
512 
513 	space = max(tp->rcvq_space.space, space);
514 
515 	if (tp->rcvq_space.space != space) {
516 		int rcvmem;
517 
518 		tp->rcvq_space.space = space;
519 
520 		if (sysctl_tcp_moderate_rcvbuf &&
521 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
522 			int new_clamp = space;
523 
524 			/* Receive space grows, normalize in order to
525 			 * take into account packet headers and sk_buff
526 			 * structure overhead.
527 			 */
528 			space /= tp->advmss;
529 			if (!space)
530 				space = 1;
531 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
532 				  16 + sizeof(struct sk_buff));
533 			while (tcp_win_from_space(rcvmem) < tp->advmss)
534 				rcvmem += 128;
535 			space *= rcvmem;
536 			space = min(space, sysctl_tcp_rmem[2]);
537 			if (space > sk->sk_rcvbuf) {
538 				sk->sk_rcvbuf = space;
539 
540 				/* Make the window clamp follow along.  */
541 				tp->window_clamp = new_clamp;
542 			}
543 		}
544 	}
545 
546 new_measure:
547 	tp->rcvq_space.seq = tp->copied_seq;
548 	tp->rcvq_space.time = tcp_time_stamp;
549 }
550 
551 /* There is something which you must keep in mind when you analyze the
552  * behavior of the tp->ato delayed ack timeout interval.  When a
553  * connection starts up, we want to ack as quickly as possible.  The
554  * problem is that "good" TCP's do slow start at the beginning of data
555  * transmission.  The means that until we send the first few ACK's the
556  * sender will sit on his end and only queue most of his data, because
557  * he can only send snd_cwnd unacked packets at any given time.  For
558  * each ACK we send, he increments snd_cwnd and transmits more of his
559  * queue.  -DaveM
560  */
561 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
562 {
563 	struct tcp_sock *tp = tcp_sk(sk);
564 	struct inet_connection_sock *icsk = inet_csk(sk);
565 	u32 now;
566 
567 	inet_csk_schedule_ack(sk);
568 
569 	tcp_measure_rcv_mss(sk, skb);
570 
571 	tcp_rcv_rtt_measure(tp);
572 
573 	now = tcp_time_stamp;
574 
575 	if (!icsk->icsk_ack.ato) {
576 		/* The _first_ data packet received, initialize
577 		 * delayed ACK engine.
578 		 */
579 		tcp_incr_quickack(sk);
580 		icsk->icsk_ack.ato = TCP_ATO_MIN;
581 	} else {
582 		int m = now - icsk->icsk_ack.lrcvtime;
583 
584 		if (m <= TCP_ATO_MIN / 2) {
585 			/* The fastest case is the first. */
586 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
587 		} else if (m < icsk->icsk_ack.ato) {
588 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
589 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
590 				icsk->icsk_ack.ato = icsk->icsk_rto;
591 		} else if (m > icsk->icsk_rto) {
592 			/* Too long gap. Apparently sender failed to
593 			 * restart window, so that we send ACKs quickly.
594 			 */
595 			tcp_incr_quickack(sk);
596 			sk_mem_reclaim(sk);
597 		}
598 	}
599 	icsk->icsk_ack.lrcvtime = now;
600 
601 	TCP_ECN_check_ce(tp, skb);
602 
603 	if (skb->len >= 128)
604 		tcp_grow_window(sk, skb);
605 }
606 
607 /* Called to compute a smoothed rtt estimate. The data fed to this
608  * routine either comes from timestamps, or from segments that were
609  * known _not_ to have been retransmitted [see Karn/Partridge
610  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
611  * piece by Van Jacobson.
612  * NOTE: the next three routines used to be one big routine.
613  * To save cycles in the RFC 1323 implementation it was better to break
614  * it up into three procedures. -- erics
615  */
616 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
617 {
618 	struct tcp_sock *tp = tcp_sk(sk);
619 	long m = mrtt; /* RTT */
620 
621 	/*	The following amusing code comes from Jacobson's
622 	 *	article in SIGCOMM '88.  Note that rtt and mdev
623 	 *	are scaled versions of rtt and mean deviation.
624 	 *	This is designed to be as fast as possible
625 	 *	m stands for "measurement".
626 	 *
627 	 *	On a 1990 paper the rto value is changed to:
628 	 *	RTO = rtt + 4 * mdev
629 	 *
630 	 * Funny. This algorithm seems to be very broken.
631 	 * These formulae increase RTO, when it should be decreased, increase
632 	 * too slowly, when it should be increased quickly, decrease too quickly
633 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
634 	 * does not matter how to _calculate_ it. Seems, it was trap
635 	 * that VJ failed to avoid. 8)
636 	 */
637 	if (m == 0)
638 		m = 1;
639 	if (tp->srtt != 0) {
640 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
641 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
642 		if (m < 0) {
643 			m = -m;		/* m is now abs(error) */
644 			m -= (tp->mdev >> 2);   /* similar update on mdev */
645 			/* This is similar to one of Eifel findings.
646 			 * Eifel blocks mdev updates when rtt decreases.
647 			 * This solution is a bit different: we use finer gain
648 			 * for mdev in this case (alpha*beta).
649 			 * Like Eifel it also prevents growth of rto,
650 			 * but also it limits too fast rto decreases,
651 			 * happening in pure Eifel.
652 			 */
653 			if (m > 0)
654 				m >>= 3;
655 		} else {
656 			m -= (tp->mdev >> 2);   /* similar update on mdev */
657 		}
658 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
659 		if (tp->mdev > tp->mdev_max) {
660 			tp->mdev_max = tp->mdev;
661 			if (tp->mdev_max > tp->rttvar)
662 				tp->rttvar = tp->mdev_max;
663 		}
664 		if (after(tp->snd_una, tp->rtt_seq)) {
665 			if (tp->mdev_max < tp->rttvar)
666 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
667 			tp->rtt_seq = tp->snd_nxt;
668 			tp->mdev_max = tcp_rto_min(sk);
669 		}
670 	} else {
671 		/* no previous measure. */
672 		tp->srtt = m << 3;	/* take the measured time to be rtt */
673 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
674 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
675 		tp->rtt_seq = tp->snd_nxt;
676 	}
677 }
678 
679 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
680  * routine referred to above.
681  */
682 static inline void tcp_set_rto(struct sock *sk)
683 {
684 	const struct tcp_sock *tp = tcp_sk(sk);
685 	/* Old crap is replaced with new one. 8)
686 	 *
687 	 * More seriously:
688 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
689 	 *    It cannot be less due to utterly erratic ACK generation made
690 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
691 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
692 	 *    is invisible. Actually, Linux-2.4 also generates erratic
693 	 *    ACKs in some circumstances.
694 	 */
695 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
696 
697 	/* 2. Fixups made earlier cannot be right.
698 	 *    If we do not estimate RTO correctly without them,
699 	 *    all the algo is pure shit and should be replaced
700 	 *    with correct one. It is exactly, which we pretend to do.
701 	 */
702 
703 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
704 	 * guarantees that rto is higher.
705 	 */
706 	tcp_bound_rto(sk);
707 }
708 
709 /* Save metrics learned by this TCP session.
710    This function is called only, when TCP finishes successfully
711    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
712  */
713 void tcp_update_metrics(struct sock *sk)
714 {
715 	struct tcp_sock *tp = tcp_sk(sk);
716 	struct dst_entry *dst = __sk_dst_get(sk);
717 
718 	if (sysctl_tcp_nometrics_save)
719 		return;
720 
721 	dst_confirm(dst);
722 
723 	if (dst && (dst->flags & DST_HOST)) {
724 		const struct inet_connection_sock *icsk = inet_csk(sk);
725 		int m;
726 		unsigned long rtt;
727 
728 		if (icsk->icsk_backoff || !tp->srtt) {
729 			/* This session failed to estimate rtt. Why?
730 			 * Probably, no packets returned in time.
731 			 * Reset our results.
732 			 */
733 			if (!(dst_metric_locked(dst, RTAX_RTT)))
734 				dst->metrics[RTAX_RTT - 1] = 0;
735 			return;
736 		}
737 
738 		rtt = dst_metric_rtt(dst, RTAX_RTT);
739 		m = rtt - tp->srtt;
740 
741 		/* If newly calculated rtt larger than stored one,
742 		 * store new one. Otherwise, use EWMA. Remember,
743 		 * rtt overestimation is always better than underestimation.
744 		 */
745 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
746 			if (m <= 0)
747 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
748 			else
749 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
750 		}
751 
752 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
753 			unsigned long var;
754 			if (m < 0)
755 				m = -m;
756 
757 			/* Scale deviation to rttvar fixed point */
758 			m >>= 1;
759 			if (m < tp->mdev)
760 				m = tp->mdev;
761 
762 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
763 			if (m >= var)
764 				var = m;
765 			else
766 				var -= (var - m) >> 2;
767 
768 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
769 		}
770 
771 		if (tcp_in_initial_slowstart(tp)) {
772 			/* Slow start still did not finish. */
773 			if (dst_metric(dst, RTAX_SSTHRESH) &&
774 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
775 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
776 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
777 			if (!dst_metric_locked(dst, RTAX_CWND) &&
778 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
779 				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
780 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
781 			   icsk->icsk_ca_state == TCP_CA_Open) {
782 			/* Cong. avoidance phase, cwnd is reliable. */
783 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
784 				dst->metrics[RTAX_SSTHRESH-1] =
785 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
786 			if (!dst_metric_locked(dst, RTAX_CWND))
787 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
788 		} else {
789 			/* Else slow start did not finish, cwnd is non-sense,
790 			   ssthresh may be also invalid.
791 			 */
792 			if (!dst_metric_locked(dst, RTAX_CWND))
793 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
794 			if (dst_metric(dst, RTAX_SSTHRESH) &&
795 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
796 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
797 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
798 		}
799 
800 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
801 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
802 			    tp->reordering != sysctl_tcp_reordering)
803 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
804 		}
805 	}
806 }
807 
808 /* Numbers are taken from RFC3390.
809  *
810  * John Heffner states:
811  *
812  *	The RFC specifies a window of no more than 4380 bytes
813  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
814  *	is a bit misleading because they use a clamp at 4380 bytes
815  *	rather than use a multiplier in the relevant range.
816  */
817 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
818 {
819 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
820 
821 	if (!cwnd) {
822 		if (tp->mss_cache > 1460)
823 			cwnd = 2;
824 		else
825 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
826 	}
827 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
828 }
829 
830 /* Set slow start threshold and cwnd not falling to slow start */
831 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
832 {
833 	struct tcp_sock *tp = tcp_sk(sk);
834 	const struct inet_connection_sock *icsk = inet_csk(sk);
835 
836 	tp->prior_ssthresh = 0;
837 	tp->bytes_acked = 0;
838 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
839 		tp->undo_marker = 0;
840 		if (set_ssthresh)
841 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
842 		tp->snd_cwnd = min(tp->snd_cwnd,
843 				   tcp_packets_in_flight(tp) + 1U);
844 		tp->snd_cwnd_cnt = 0;
845 		tp->high_seq = tp->snd_nxt;
846 		tp->snd_cwnd_stamp = tcp_time_stamp;
847 		TCP_ECN_queue_cwr(tp);
848 
849 		tcp_set_ca_state(sk, TCP_CA_CWR);
850 	}
851 }
852 
853 /*
854  * Packet counting of FACK is based on in-order assumptions, therefore TCP
855  * disables it when reordering is detected
856  */
857 static void tcp_disable_fack(struct tcp_sock *tp)
858 {
859 	/* RFC3517 uses different metric in lost marker => reset on change */
860 	if (tcp_is_fack(tp))
861 		tp->lost_skb_hint = NULL;
862 	tp->rx_opt.sack_ok &= ~2;
863 }
864 
865 /* Take a notice that peer is sending D-SACKs */
866 static void tcp_dsack_seen(struct tcp_sock *tp)
867 {
868 	tp->rx_opt.sack_ok |= 4;
869 }
870 
871 /* Initialize metrics on socket. */
872 
873 static void tcp_init_metrics(struct sock *sk)
874 {
875 	struct tcp_sock *tp = tcp_sk(sk);
876 	struct dst_entry *dst = __sk_dst_get(sk);
877 
878 	if (dst == NULL)
879 		goto reset;
880 
881 	dst_confirm(dst);
882 
883 	if (dst_metric_locked(dst, RTAX_CWND))
884 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
885 	if (dst_metric(dst, RTAX_SSTHRESH)) {
886 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
887 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
888 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
889 	}
890 	if (dst_metric(dst, RTAX_REORDERING) &&
891 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
892 		tcp_disable_fack(tp);
893 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
894 	}
895 
896 	if (dst_metric(dst, RTAX_RTT) == 0)
897 		goto reset;
898 
899 	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
900 		goto reset;
901 
902 	/* Initial rtt is determined from SYN,SYN-ACK.
903 	 * The segment is small and rtt may appear much
904 	 * less than real one. Use per-dst memory
905 	 * to make it more realistic.
906 	 *
907 	 * A bit of theory. RTT is time passed after "normal" sized packet
908 	 * is sent until it is ACKed. In normal circumstances sending small
909 	 * packets force peer to delay ACKs and calculation is correct too.
910 	 * The algorithm is adaptive and, provided we follow specs, it
911 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
912 	 * tricks sort of "quick acks" for time long enough to decrease RTT
913 	 * to low value, and then abruptly stops to do it and starts to delay
914 	 * ACKs, wait for troubles.
915 	 */
916 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
917 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
918 		tp->rtt_seq = tp->snd_nxt;
919 	}
920 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
921 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
922 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
923 	}
924 	tcp_set_rto(sk);
925 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
926 		goto reset;
927 
928 cwnd:
929 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
930 	tp->snd_cwnd_stamp = tcp_time_stamp;
931 	return;
932 
933 reset:
934 	/* Play conservative. If timestamps are not
935 	 * supported, TCP will fail to recalculate correct
936 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
937 	 */
938 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
939 		tp->srtt = 0;
940 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
941 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
942 	}
943 	goto cwnd;
944 }
945 
946 static void tcp_update_reordering(struct sock *sk, const int metric,
947 				  const int ts)
948 {
949 	struct tcp_sock *tp = tcp_sk(sk);
950 	if (metric > tp->reordering) {
951 		int mib_idx;
952 
953 		tp->reordering = min(TCP_MAX_REORDERING, metric);
954 
955 		/* This exciting event is worth to be remembered. 8) */
956 		if (ts)
957 			mib_idx = LINUX_MIB_TCPTSREORDER;
958 		else if (tcp_is_reno(tp))
959 			mib_idx = LINUX_MIB_TCPRENOREORDER;
960 		else if (tcp_is_fack(tp))
961 			mib_idx = LINUX_MIB_TCPFACKREORDER;
962 		else
963 			mib_idx = LINUX_MIB_TCPSACKREORDER;
964 
965 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
966 #if FASTRETRANS_DEBUG > 1
967 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
968 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
969 		       tp->reordering,
970 		       tp->fackets_out,
971 		       tp->sacked_out,
972 		       tp->undo_marker ? tp->undo_retrans : 0);
973 #endif
974 		tcp_disable_fack(tp);
975 	}
976 }
977 
978 /* This must be called before lost_out is incremented */
979 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
980 {
981 	if ((tp->retransmit_skb_hint == NULL) ||
982 	    before(TCP_SKB_CB(skb)->seq,
983 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
984 		tp->retransmit_skb_hint = skb;
985 
986 	if (!tp->lost_out ||
987 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
988 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
989 }
990 
991 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
992 {
993 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
994 		tcp_verify_retransmit_hint(tp, skb);
995 
996 		tp->lost_out += tcp_skb_pcount(skb);
997 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
998 	}
999 }
1000 
1001 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1002 					    struct sk_buff *skb)
1003 {
1004 	tcp_verify_retransmit_hint(tp, skb);
1005 
1006 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1007 		tp->lost_out += tcp_skb_pcount(skb);
1008 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1009 	}
1010 }
1011 
1012 /* This procedure tags the retransmission queue when SACKs arrive.
1013  *
1014  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1015  * Packets in queue with these bits set are counted in variables
1016  * sacked_out, retrans_out and lost_out, correspondingly.
1017  *
1018  * Valid combinations are:
1019  * Tag  InFlight	Description
1020  * 0	1		- orig segment is in flight.
1021  * S	0		- nothing flies, orig reached receiver.
1022  * L	0		- nothing flies, orig lost by net.
1023  * R	2		- both orig and retransmit are in flight.
1024  * L|R	1		- orig is lost, retransmit is in flight.
1025  * S|R  1		- orig reached receiver, retrans is still in flight.
1026  * (L|S|R is logically valid, it could occur when L|R is sacked,
1027  *  but it is equivalent to plain S and code short-curcuits it to S.
1028  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1029  *
1030  * These 6 states form finite state machine, controlled by the following events:
1031  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1032  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1033  * 3. Loss detection event of one of three flavors:
1034  *	A. Scoreboard estimator decided the packet is lost.
1035  *	   A'. Reno "three dupacks" marks head of queue lost.
1036  *	   A''. Its FACK modfication, head until snd.fack is lost.
1037  *	B. SACK arrives sacking data transmitted after never retransmitted
1038  *	   hole was sent out.
1039  *	C. SACK arrives sacking SND.NXT at the moment, when the
1040  *	   segment was retransmitted.
1041  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1042  *
1043  * It is pleasant to note, that state diagram turns out to be commutative,
1044  * so that we are allowed not to be bothered by order of our actions,
1045  * when multiple events arrive simultaneously. (see the function below).
1046  *
1047  * Reordering detection.
1048  * --------------------
1049  * Reordering metric is maximal distance, which a packet can be displaced
1050  * in packet stream. With SACKs we can estimate it:
1051  *
1052  * 1. SACK fills old hole and the corresponding segment was not
1053  *    ever retransmitted -> reordering. Alas, we cannot use it
1054  *    when segment was retransmitted.
1055  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1056  *    for retransmitted and already SACKed segment -> reordering..
1057  * Both of these heuristics are not used in Loss state, when we cannot
1058  * account for retransmits accurately.
1059  *
1060  * SACK block validation.
1061  * ----------------------
1062  *
1063  * SACK block range validation checks that the received SACK block fits to
1064  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1065  * Note that SND.UNA is not included to the range though being valid because
1066  * it means that the receiver is rather inconsistent with itself reporting
1067  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1068  * perfectly valid, however, in light of RFC2018 which explicitly states
1069  * that "SACK block MUST reflect the newest segment.  Even if the newest
1070  * segment is going to be discarded ...", not that it looks very clever
1071  * in case of head skb. Due to potentional receiver driven attacks, we
1072  * choose to avoid immediate execution of a walk in write queue due to
1073  * reneging and defer head skb's loss recovery to standard loss recovery
1074  * procedure that will eventually trigger (nothing forbids us doing this).
1075  *
1076  * Implements also blockage to start_seq wrap-around. Problem lies in the
1077  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1078  * there's no guarantee that it will be before snd_nxt (n). The problem
1079  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1080  * wrap (s_w):
1081  *
1082  *         <- outs wnd ->                          <- wrapzone ->
1083  *         u     e      n                         u_w   e_w  s n_w
1084  *         |     |      |                          |     |   |  |
1085  * |<------------+------+----- TCP seqno space --------------+---------->|
1086  * ...-- <2^31 ->|                                           |<--------...
1087  * ...---- >2^31 ------>|                                    |<--------...
1088  *
1089  * Current code wouldn't be vulnerable but it's better still to discard such
1090  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1091  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1092  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1093  * equal to the ideal case (infinite seqno space without wrap caused issues).
1094  *
1095  * With D-SACK the lower bound is extended to cover sequence space below
1096  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1097  * again, D-SACK block must not to go across snd_una (for the same reason as
1098  * for the normal SACK blocks, explained above). But there all simplicity
1099  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1100  * fully below undo_marker they do not affect behavior in anyway and can
1101  * therefore be safely ignored. In rare cases (which are more or less
1102  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1103  * fragmentation and packet reordering past skb's retransmission. To consider
1104  * them correctly, the acceptable range must be extended even more though
1105  * the exact amount is rather hard to quantify. However, tp->max_window can
1106  * be used as an exaggerated estimate.
1107  */
1108 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1109 				  u32 start_seq, u32 end_seq)
1110 {
1111 	/* Too far in future, or reversed (interpretation is ambiguous) */
1112 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1113 		return 0;
1114 
1115 	/* Nasty start_seq wrap-around check (see comments above) */
1116 	if (!before(start_seq, tp->snd_nxt))
1117 		return 0;
1118 
1119 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1120 	 * start_seq == snd_una is non-sensical (see comments above)
1121 	 */
1122 	if (after(start_seq, tp->snd_una))
1123 		return 1;
1124 
1125 	if (!is_dsack || !tp->undo_marker)
1126 		return 0;
1127 
1128 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1129 	if (!after(end_seq, tp->snd_una))
1130 		return 0;
1131 
1132 	if (!before(start_seq, tp->undo_marker))
1133 		return 1;
1134 
1135 	/* Too old */
1136 	if (!after(end_seq, tp->undo_marker))
1137 		return 0;
1138 
1139 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1140 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1141 	 */
1142 	return !before(start_seq, end_seq - tp->max_window);
1143 }
1144 
1145 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1146  * Event "C". Later note: FACK people cheated me again 8), we have to account
1147  * for reordering! Ugly, but should help.
1148  *
1149  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1150  * less than what is now known to be received by the other end (derived from
1151  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1152  * retransmitted skbs to avoid some costly processing per ACKs.
1153  */
1154 static void tcp_mark_lost_retrans(struct sock *sk)
1155 {
1156 	const struct inet_connection_sock *icsk = inet_csk(sk);
1157 	struct tcp_sock *tp = tcp_sk(sk);
1158 	struct sk_buff *skb;
1159 	int cnt = 0;
1160 	u32 new_low_seq = tp->snd_nxt;
1161 	u32 received_upto = tcp_highest_sack_seq(tp);
1162 
1163 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1164 	    !after(received_upto, tp->lost_retrans_low) ||
1165 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1166 		return;
1167 
1168 	tcp_for_write_queue(skb, sk) {
1169 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1170 
1171 		if (skb == tcp_send_head(sk))
1172 			break;
1173 		if (cnt == tp->retrans_out)
1174 			break;
1175 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1176 			continue;
1177 
1178 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1179 			continue;
1180 
1181 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1182 		 * constraint here (see above) but figuring out that at
1183 		 * least tp->reordering SACK blocks reside between ack_seq
1184 		 * and received_upto is not easy task to do cheaply with
1185 		 * the available datastructures.
1186 		 *
1187 		 * Whether FACK should check here for tp->reordering segs
1188 		 * in-between one could argue for either way (it would be
1189 		 * rather simple to implement as we could count fack_count
1190 		 * during the walk and do tp->fackets_out - fack_count).
1191 		 */
1192 		if (after(received_upto, ack_seq)) {
1193 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1194 			tp->retrans_out -= tcp_skb_pcount(skb);
1195 
1196 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1197 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1198 		} else {
1199 			if (before(ack_seq, new_low_seq))
1200 				new_low_seq = ack_seq;
1201 			cnt += tcp_skb_pcount(skb);
1202 		}
1203 	}
1204 
1205 	if (tp->retrans_out)
1206 		tp->lost_retrans_low = new_low_seq;
1207 }
1208 
1209 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1210 			   struct tcp_sack_block_wire *sp, int num_sacks,
1211 			   u32 prior_snd_una)
1212 {
1213 	struct tcp_sock *tp = tcp_sk(sk);
1214 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1215 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1216 	int dup_sack = 0;
1217 
1218 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1219 		dup_sack = 1;
1220 		tcp_dsack_seen(tp);
1221 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1222 	} else if (num_sacks > 1) {
1223 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1224 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1225 
1226 		if (!after(end_seq_0, end_seq_1) &&
1227 		    !before(start_seq_0, start_seq_1)) {
1228 			dup_sack = 1;
1229 			tcp_dsack_seen(tp);
1230 			NET_INC_STATS_BH(sock_net(sk),
1231 					LINUX_MIB_TCPDSACKOFORECV);
1232 		}
1233 	}
1234 
1235 	/* D-SACK for already forgotten data... Do dumb counting. */
1236 	if (dup_sack &&
1237 	    !after(end_seq_0, prior_snd_una) &&
1238 	    after(end_seq_0, tp->undo_marker))
1239 		tp->undo_retrans--;
1240 
1241 	return dup_sack;
1242 }
1243 
1244 struct tcp_sacktag_state {
1245 	int reord;
1246 	int fack_count;
1247 	int flag;
1248 };
1249 
1250 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1251  * the incoming SACK may not exactly match but we can find smaller MSS
1252  * aligned portion of it that matches. Therefore we might need to fragment
1253  * which may fail and creates some hassle (caller must handle error case
1254  * returns).
1255  *
1256  * FIXME: this could be merged to shift decision code
1257  */
1258 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1259 				 u32 start_seq, u32 end_seq)
1260 {
1261 	int in_sack, err;
1262 	unsigned int pkt_len;
1263 	unsigned int mss;
1264 
1265 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1266 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1267 
1268 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1269 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1270 		mss = tcp_skb_mss(skb);
1271 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1272 
1273 		if (!in_sack) {
1274 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1275 			if (pkt_len < mss)
1276 				pkt_len = mss;
1277 		} else {
1278 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1279 			if (pkt_len < mss)
1280 				return -EINVAL;
1281 		}
1282 
1283 		/* Round if necessary so that SACKs cover only full MSSes
1284 		 * and/or the remaining small portion (if present)
1285 		 */
1286 		if (pkt_len > mss) {
1287 			unsigned int new_len = (pkt_len / mss) * mss;
1288 			if (!in_sack && new_len < pkt_len) {
1289 				new_len += mss;
1290 				if (new_len > skb->len)
1291 					return 0;
1292 			}
1293 			pkt_len = new_len;
1294 		}
1295 		err = tcp_fragment(sk, skb, pkt_len, mss);
1296 		if (err < 0)
1297 			return err;
1298 	}
1299 
1300 	return in_sack;
1301 }
1302 
1303 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1304 			  struct tcp_sacktag_state *state,
1305 			  int dup_sack, int pcount)
1306 {
1307 	struct tcp_sock *tp = tcp_sk(sk);
1308 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1309 	int fack_count = state->fack_count;
1310 
1311 	/* Account D-SACK for retransmitted packet. */
1312 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1313 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1314 			tp->undo_retrans--;
1315 		if (sacked & TCPCB_SACKED_ACKED)
1316 			state->reord = min(fack_count, state->reord);
1317 	}
1318 
1319 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1320 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1321 		return sacked;
1322 
1323 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1324 		if (sacked & TCPCB_SACKED_RETRANS) {
1325 			/* If the segment is not tagged as lost,
1326 			 * we do not clear RETRANS, believing
1327 			 * that retransmission is still in flight.
1328 			 */
1329 			if (sacked & TCPCB_LOST) {
1330 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1331 				tp->lost_out -= pcount;
1332 				tp->retrans_out -= pcount;
1333 			}
1334 		} else {
1335 			if (!(sacked & TCPCB_RETRANS)) {
1336 				/* New sack for not retransmitted frame,
1337 				 * which was in hole. It is reordering.
1338 				 */
1339 				if (before(TCP_SKB_CB(skb)->seq,
1340 					   tcp_highest_sack_seq(tp)))
1341 					state->reord = min(fack_count,
1342 							   state->reord);
1343 
1344 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1345 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1346 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1347 			}
1348 
1349 			if (sacked & TCPCB_LOST) {
1350 				sacked &= ~TCPCB_LOST;
1351 				tp->lost_out -= pcount;
1352 			}
1353 		}
1354 
1355 		sacked |= TCPCB_SACKED_ACKED;
1356 		state->flag |= FLAG_DATA_SACKED;
1357 		tp->sacked_out += pcount;
1358 
1359 		fack_count += pcount;
1360 
1361 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1362 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1363 		    before(TCP_SKB_CB(skb)->seq,
1364 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1365 			tp->lost_cnt_hint += pcount;
1366 
1367 		if (fack_count > tp->fackets_out)
1368 			tp->fackets_out = fack_count;
1369 	}
1370 
1371 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1372 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1373 	 * are accounted above as well.
1374 	 */
1375 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1376 		sacked &= ~TCPCB_SACKED_RETRANS;
1377 		tp->retrans_out -= pcount;
1378 	}
1379 
1380 	return sacked;
1381 }
1382 
1383 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1384 			   struct tcp_sacktag_state *state,
1385 			   unsigned int pcount, int shifted, int mss,
1386 			   int dup_sack)
1387 {
1388 	struct tcp_sock *tp = tcp_sk(sk);
1389 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1390 
1391 	BUG_ON(!pcount);
1392 
1393 	/* Tweak before seqno plays */
1394 	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1395 	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1396 		tp->lost_cnt_hint += pcount;
1397 
1398 	TCP_SKB_CB(prev)->end_seq += shifted;
1399 	TCP_SKB_CB(skb)->seq += shifted;
1400 
1401 	skb_shinfo(prev)->gso_segs += pcount;
1402 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1403 	skb_shinfo(skb)->gso_segs -= pcount;
1404 
1405 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1406 	 * in theory this shouldn't be necessary but as long as DSACK
1407 	 * code can come after this skb later on it's better to keep
1408 	 * setting gso_size to something.
1409 	 */
1410 	if (!skb_shinfo(prev)->gso_size) {
1411 		skb_shinfo(prev)->gso_size = mss;
1412 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1413 	}
1414 
1415 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1416 	if (skb_shinfo(skb)->gso_segs <= 1) {
1417 		skb_shinfo(skb)->gso_size = 0;
1418 		skb_shinfo(skb)->gso_type = 0;
1419 	}
1420 
1421 	/* We discard results */
1422 	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1423 
1424 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1425 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1426 
1427 	if (skb->len > 0) {
1428 		BUG_ON(!tcp_skb_pcount(skb));
1429 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1430 		return 0;
1431 	}
1432 
1433 	/* Whole SKB was eaten :-) */
1434 
1435 	if (skb == tp->retransmit_skb_hint)
1436 		tp->retransmit_skb_hint = prev;
1437 	if (skb == tp->scoreboard_skb_hint)
1438 		tp->scoreboard_skb_hint = prev;
1439 	if (skb == tp->lost_skb_hint) {
1440 		tp->lost_skb_hint = prev;
1441 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1442 	}
1443 
1444 	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1445 	if (skb == tcp_highest_sack(sk))
1446 		tcp_advance_highest_sack(sk, skb);
1447 
1448 	tcp_unlink_write_queue(skb, sk);
1449 	sk_wmem_free_skb(sk, skb);
1450 
1451 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1452 
1453 	return 1;
1454 }
1455 
1456 /* I wish gso_size would have a bit more sane initialization than
1457  * something-or-zero which complicates things
1458  */
1459 static int tcp_skb_seglen(struct sk_buff *skb)
1460 {
1461 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1462 }
1463 
1464 /* Shifting pages past head area doesn't work */
1465 static int skb_can_shift(struct sk_buff *skb)
1466 {
1467 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1468 }
1469 
1470 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1471  * skb.
1472  */
1473 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1474 					  struct tcp_sacktag_state *state,
1475 					  u32 start_seq, u32 end_seq,
1476 					  int dup_sack)
1477 {
1478 	struct tcp_sock *tp = tcp_sk(sk);
1479 	struct sk_buff *prev;
1480 	int mss;
1481 	int pcount = 0;
1482 	int len;
1483 	int in_sack;
1484 
1485 	if (!sk_can_gso(sk))
1486 		goto fallback;
1487 
1488 	/* Normally R but no L won't result in plain S */
1489 	if (!dup_sack &&
1490 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1491 		goto fallback;
1492 	if (!skb_can_shift(skb))
1493 		goto fallback;
1494 	/* This frame is about to be dropped (was ACKed). */
1495 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1496 		goto fallback;
1497 
1498 	/* Can only happen with delayed DSACK + discard craziness */
1499 	if (unlikely(skb == tcp_write_queue_head(sk)))
1500 		goto fallback;
1501 	prev = tcp_write_queue_prev(sk, skb);
1502 
1503 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1504 		goto fallback;
1505 
1506 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1507 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1508 
1509 	if (in_sack) {
1510 		len = skb->len;
1511 		pcount = tcp_skb_pcount(skb);
1512 		mss = tcp_skb_seglen(skb);
1513 
1514 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1515 		 * drop this restriction as unnecessary
1516 		 */
1517 		if (mss != tcp_skb_seglen(prev))
1518 			goto fallback;
1519 	} else {
1520 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1521 			goto noop;
1522 		/* CHECKME: This is non-MSS split case only?, this will
1523 		 * cause skipped skbs due to advancing loop btw, original
1524 		 * has that feature too
1525 		 */
1526 		if (tcp_skb_pcount(skb) <= 1)
1527 			goto noop;
1528 
1529 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1530 		if (!in_sack) {
1531 			/* TODO: head merge to next could be attempted here
1532 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1533 			 * though it might not be worth of the additional hassle
1534 			 *
1535 			 * ...we can probably just fallback to what was done
1536 			 * previously. We could try merging non-SACKed ones
1537 			 * as well but it probably isn't going to buy off
1538 			 * because later SACKs might again split them, and
1539 			 * it would make skb timestamp tracking considerably
1540 			 * harder problem.
1541 			 */
1542 			goto fallback;
1543 		}
1544 
1545 		len = end_seq - TCP_SKB_CB(skb)->seq;
1546 		BUG_ON(len < 0);
1547 		BUG_ON(len > skb->len);
1548 
1549 		/* MSS boundaries should be honoured or else pcount will
1550 		 * severely break even though it makes things bit trickier.
1551 		 * Optimize common case to avoid most of the divides
1552 		 */
1553 		mss = tcp_skb_mss(skb);
1554 
1555 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1556 		 * drop this restriction as unnecessary
1557 		 */
1558 		if (mss != tcp_skb_seglen(prev))
1559 			goto fallback;
1560 
1561 		if (len == mss) {
1562 			pcount = 1;
1563 		} else if (len < mss) {
1564 			goto noop;
1565 		} else {
1566 			pcount = len / mss;
1567 			len = pcount * mss;
1568 		}
1569 	}
1570 
1571 	if (!skb_shift(prev, skb, len))
1572 		goto fallback;
1573 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1574 		goto out;
1575 
1576 	/* Hole filled allows collapsing with the next as well, this is very
1577 	 * useful when hole on every nth skb pattern happens
1578 	 */
1579 	if (prev == tcp_write_queue_tail(sk))
1580 		goto out;
1581 	skb = tcp_write_queue_next(sk, prev);
1582 
1583 	if (!skb_can_shift(skb) ||
1584 	    (skb == tcp_send_head(sk)) ||
1585 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1586 	    (mss != tcp_skb_seglen(skb)))
1587 		goto out;
1588 
1589 	len = skb->len;
1590 	if (skb_shift(prev, skb, len)) {
1591 		pcount += tcp_skb_pcount(skb);
1592 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1593 	}
1594 
1595 out:
1596 	state->fack_count += pcount;
1597 	return prev;
1598 
1599 noop:
1600 	return skb;
1601 
1602 fallback:
1603 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1604 	return NULL;
1605 }
1606 
1607 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1608 					struct tcp_sack_block *next_dup,
1609 					struct tcp_sacktag_state *state,
1610 					u32 start_seq, u32 end_seq,
1611 					int dup_sack_in)
1612 {
1613 	struct tcp_sock *tp = tcp_sk(sk);
1614 	struct sk_buff *tmp;
1615 
1616 	tcp_for_write_queue_from(skb, sk) {
1617 		int in_sack = 0;
1618 		int dup_sack = dup_sack_in;
1619 
1620 		if (skb == tcp_send_head(sk))
1621 			break;
1622 
1623 		/* queue is in-order => we can short-circuit the walk early */
1624 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1625 			break;
1626 
1627 		if ((next_dup != NULL) &&
1628 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1629 			in_sack = tcp_match_skb_to_sack(sk, skb,
1630 							next_dup->start_seq,
1631 							next_dup->end_seq);
1632 			if (in_sack > 0)
1633 				dup_sack = 1;
1634 		}
1635 
1636 		/* skb reference here is a bit tricky to get right, since
1637 		 * shifting can eat and free both this skb and the next,
1638 		 * so not even _safe variant of the loop is enough.
1639 		 */
1640 		if (in_sack <= 0) {
1641 			tmp = tcp_shift_skb_data(sk, skb, state,
1642 						 start_seq, end_seq, dup_sack);
1643 			if (tmp != NULL) {
1644 				if (tmp != skb) {
1645 					skb = tmp;
1646 					continue;
1647 				}
1648 
1649 				in_sack = 0;
1650 			} else {
1651 				in_sack = tcp_match_skb_to_sack(sk, skb,
1652 								start_seq,
1653 								end_seq);
1654 			}
1655 		}
1656 
1657 		if (unlikely(in_sack < 0))
1658 			break;
1659 
1660 		if (in_sack) {
1661 			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1662 								  state,
1663 								  dup_sack,
1664 								  tcp_skb_pcount(skb));
1665 
1666 			if (!before(TCP_SKB_CB(skb)->seq,
1667 				    tcp_highest_sack_seq(tp)))
1668 				tcp_advance_highest_sack(sk, skb);
1669 		}
1670 
1671 		state->fack_count += tcp_skb_pcount(skb);
1672 	}
1673 	return skb;
1674 }
1675 
1676 /* Avoid all extra work that is being done by sacktag while walking in
1677  * a normal way
1678  */
1679 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1680 					struct tcp_sacktag_state *state,
1681 					u32 skip_to_seq)
1682 {
1683 	tcp_for_write_queue_from(skb, sk) {
1684 		if (skb == tcp_send_head(sk))
1685 			break;
1686 
1687 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1688 			break;
1689 
1690 		state->fack_count += tcp_skb_pcount(skb);
1691 	}
1692 	return skb;
1693 }
1694 
1695 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1696 						struct sock *sk,
1697 						struct tcp_sack_block *next_dup,
1698 						struct tcp_sacktag_state *state,
1699 						u32 skip_to_seq)
1700 {
1701 	if (next_dup == NULL)
1702 		return skb;
1703 
1704 	if (before(next_dup->start_seq, skip_to_seq)) {
1705 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1706 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1707 				       next_dup->start_seq, next_dup->end_seq,
1708 				       1);
1709 	}
1710 
1711 	return skb;
1712 }
1713 
1714 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1715 {
1716 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1717 }
1718 
1719 static int
1720 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1721 			u32 prior_snd_una)
1722 {
1723 	const struct inet_connection_sock *icsk = inet_csk(sk);
1724 	struct tcp_sock *tp = tcp_sk(sk);
1725 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1726 			      TCP_SKB_CB(ack_skb)->sacked);
1727 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1728 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1729 	struct tcp_sack_block *cache;
1730 	struct tcp_sacktag_state state;
1731 	struct sk_buff *skb;
1732 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1733 	int used_sacks;
1734 	int found_dup_sack = 0;
1735 	int i, j;
1736 	int first_sack_index;
1737 
1738 	state.flag = 0;
1739 	state.reord = tp->packets_out;
1740 
1741 	if (!tp->sacked_out) {
1742 		if (WARN_ON(tp->fackets_out))
1743 			tp->fackets_out = 0;
1744 		tcp_highest_sack_reset(sk);
1745 	}
1746 
1747 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1748 					 num_sacks, prior_snd_una);
1749 	if (found_dup_sack)
1750 		state.flag |= FLAG_DSACKING_ACK;
1751 
1752 	/* Eliminate too old ACKs, but take into
1753 	 * account more or less fresh ones, they can
1754 	 * contain valid SACK info.
1755 	 */
1756 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1757 		return 0;
1758 
1759 	if (!tp->packets_out)
1760 		goto out;
1761 
1762 	used_sacks = 0;
1763 	first_sack_index = 0;
1764 	for (i = 0; i < num_sacks; i++) {
1765 		int dup_sack = !i && found_dup_sack;
1766 
1767 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1768 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1769 
1770 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1771 					    sp[used_sacks].start_seq,
1772 					    sp[used_sacks].end_seq)) {
1773 			int mib_idx;
1774 
1775 			if (dup_sack) {
1776 				if (!tp->undo_marker)
1777 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1778 				else
1779 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1780 			} else {
1781 				/* Don't count olds caused by ACK reordering */
1782 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1783 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1784 					continue;
1785 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1786 			}
1787 
1788 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1789 			if (i == 0)
1790 				first_sack_index = -1;
1791 			continue;
1792 		}
1793 
1794 		/* Ignore very old stuff early */
1795 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1796 			continue;
1797 
1798 		used_sacks++;
1799 	}
1800 
1801 	/* order SACK blocks to allow in order walk of the retrans queue */
1802 	for (i = used_sacks - 1; i > 0; i--) {
1803 		for (j = 0; j < i; j++) {
1804 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1805 				swap(sp[j], sp[j + 1]);
1806 
1807 				/* Track where the first SACK block goes to */
1808 				if (j == first_sack_index)
1809 					first_sack_index = j + 1;
1810 			}
1811 		}
1812 	}
1813 
1814 	skb = tcp_write_queue_head(sk);
1815 	state.fack_count = 0;
1816 	i = 0;
1817 
1818 	if (!tp->sacked_out) {
1819 		/* It's already past, so skip checking against it */
1820 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1821 	} else {
1822 		cache = tp->recv_sack_cache;
1823 		/* Skip empty blocks in at head of the cache */
1824 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1825 		       !cache->end_seq)
1826 			cache++;
1827 	}
1828 
1829 	while (i < used_sacks) {
1830 		u32 start_seq = sp[i].start_seq;
1831 		u32 end_seq = sp[i].end_seq;
1832 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1833 		struct tcp_sack_block *next_dup = NULL;
1834 
1835 		if (found_dup_sack && ((i + 1) == first_sack_index))
1836 			next_dup = &sp[i + 1];
1837 
1838 		/* Event "B" in the comment above. */
1839 		if (after(end_seq, tp->high_seq))
1840 			state.flag |= FLAG_DATA_LOST;
1841 
1842 		/* Skip too early cached blocks */
1843 		while (tcp_sack_cache_ok(tp, cache) &&
1844 		       !before(start_seq, cache->end_seq))
1845 			cache++;
1846 
1847 		/* Can skip some work by looking recv_sack_cache? */
1848 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1849 		    after(end_seq, cache->start_seq)) {
1850 
1851 			/* Head todo? */
1852 			if (before(start_seq, cache->start_seq)) {
1853 				skb = tcp_sacktag_skip(skb, sk, &state,
1854 						       start_seq);
1855 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1856 						       &state,
1857 						       start_seq,
1858 						       cache->start_seq,
1859 						       dup_sack);
1860 			}
1861 
1862 			/* Rest of the block already fully processed? */
1863 			if (!after(end_seq, cache->end_seq))
1864 				goto advance_sp;
1865 
1866 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1867 						       &state,
1868 						       cache->end_seq);
1869 
1870 			/* ...tail remains todo... */
1871 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1872 				/* ...but better entrypoint exists! */
1873 				skb = tcp_highest_sack(sk);
1874 				if (skb == NULL)
1875 					break;
1876 				state.fack_count = tp->fackets_out;
1877 				cache++;
1878 				goto walk;
1879 			}
1880 
1881 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1882 			/* Check overlap against next cached too (past this one already) */
1883 			cache++;
1884 			continue;
1885 		}
1886 
1887 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1888 			skb = tcp_highest_sack(sk);
1889 			if (skb == NULL)
1890 				break;
1891 			state.fack_count = tp->fackets_out;
1892 		}
1893 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1894 
1895 walk:
1896 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1897 				       start_seq, end_seq, dup_sack);
1898 
1899 advance_sp:
1900 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1901 		 * due to in-order walk
1902 		 */
1903 		if (after(end_seq, tp->frto_highmark))
1904 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1905 
1906 		i++;
1907 	}
1908 
1909 	/* Clear the head of the cache sack blocks so we can skip it next time */
1910 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1911 		tp->recv_sack_cache[i].start_seq = 0;
1912 		tp->recv_sack_cache[i].end_seq = 0;
1913 	}
1914 	for (j = 0; j < used_sacks; j++)
1915 		tp->recv_sack_cache[i++] = sp[j];
1916 
1917 	tcp_mark_lost_retrans(sk);
1918 
1919 	tcp_verify_left_out(tp);
1920 
1921 	if ((state.reord < tp->fackets_out) &&
1922 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1923 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1924 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1925 
1926 out:
1927 
1928 #if FASTRETRANS_DEBUG > 0
1929 	WARN_ON((int)tp->sacked_out < 0);
1930 	WARN_ON((int)tp->lost_out < 0);
1931 	WARN_ON((int)tp->retrans_out < 0);
1932 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1933 #endif
1934 	return state.flag;
1935 }
1936 
1937 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1938  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1939  */
1940 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1941 {
1942 	u32 holes;
1943 
1944 	holes = max(tp->lost_out, 1U);
1945 	holes = min(holes, tp->packets_out);
1946 
1947 	if ((tp->sacked_out + holes) > tp->packets_out) {
1948 		tp->sacked_out = tp->packets_out - holes;
1949 		return 1;
1950 	}
1951 	return 0;
1952 }
1953 
1954 /* If we receive more dupacks than we expected counting segments
1955  * in assumption of absent reordering, interpret this as reordering.
1956  * The only another reason could be bug in receiver TCP.
1957  */
1958 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1959 {
1960 	struct tcp_sock *tp = tcp_sk(sk);
1961 	if (tcp_limit_reno_sacked(tp))
1962 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1963 }
1964 
1965 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1966 
1967 static void tcp_add_reno_sack(struct sock *sk)
1968 {
1969 	struct tcp_sock *tp = tcp_sk(sk);
1970 	tp->sacked_out++;
1971 	tcp_check_reno_reordering(sk, 0);
1972 	tcp_verify_left_out(tp);
1973 }
1974 
1975 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1976 
1977 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1978 {
1979 	struct tcp_sock *tp = tcp_sk(sk);
1980 
1981 	if (acked > 0) {
1982 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1983 		if (acked - 1 >= tp->sacked_out)
1984 			tp->sacked_out = 0;
1985 		else
1986 			tp->sacked_out -= acked - 1;
1987 	}
1988 	tcp_check_reno_reordering(sk, acked);
1989 	tcp_verify_left_out(tp);
1990 }
1991 
1992 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1993 {
1994 	tp->sacked_out = 0;
1995 }
1996 
1997 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1998 {
1999 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2000 }
2001 
2002 /* F-RTO can only be used if TCP has never retransmitted anything other than
2003  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2004  */
2005 int tcp_use_frto(struct sock *sk)
2006 {
2007 	const struct tcp_sock *tp = tcp_sk(sk);
2008 	const struct inet_connection_sock *icsk = inet_csk(sk);
2009 	struct sk_buff *skb;
2010 
2011 	if (!sysctl_tcp_frto)
2012 		return 0;
2013 
2014 	/* MTU probe and F-RTO won't really play nicely along currently */
2015 	if (icsk->icsk_mtup.probe_size)
2016 		return 0;
2017 
2018 	if (tcp_is_sackfrto(tp))
2019 		return 1;
2020 
2021 	/* Avoid expensive walking of rexmit queue if possible */
2022 	if (tp->retrans_out > 1)
2023 		return 0;
2024 
2025 	skb = tcp_write_queue_head(sk);
2026 	if (tcp_skb_is_last(sk, skb))
2027 		return 1;
2028 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2029 	tcp_for_write_queue_from(skb, sk) {
2030 		if (skb == tcp_send_head(sk))
2031 			break;
2032 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2033 			return 0;
2034 		/* Short-circuit when first non-SACKed skb has been checked */
2035 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2036 			break;
2037 	}
2038 	return 1;
2039 }
2040 
2041 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2042  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2043  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2044  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2045  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2046  * bits are handled if the Loss state is really to be entered (in
2047  * tcp_enter_frto_loss).
2048  *
2049  * Do like tcp_enter_loss() would; when RTO expires the second time it
2050  * does:
2051  *  "Reduce ssthresh if it has not yet been made inside this window."
2052  */
2053 void tcp_enter_frto(struct sock *sk)
2054 {
2055 	const struct inet_connection_sock *icsk = inet_csk(sk);
2056 	struct tcp_sock *tp = tcp_sk(sk);
2057 	struct sk_buff *skb;
2058 
2059 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2060 	    tp->snd_una == tp->high_seq ||
2061 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2062 	     !icsk->icsk_retransmits)) {
2063 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2064 		/* Our state is too optimistic in ssthresh() call because cwnd
2065 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2066 		 * recovery has not yet completed. Pattern would be this: RTO,
2067 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2068 		 * up here twice).
2069 		 * RFC4138 should be more specific on what to do, even though
2070 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2071 		 * due to back-off and complexity of triggering events ...
2072 		 */
2073 		if (tp->frto_counter) {
2074 			u32 stored_cwnd;
2075 			stored_cwnd = tp->snd_cwnd;
2076 			tp->snd_cwnd = 2;
2077 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2078 			tp->snd_cwnd = stored_cwnd;
2079 		} else {
2080 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2081 		}
2082 		/* ... in theory, cong.control module could do "any tricks" in
2083 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2084 		 * counter would have to be faked before the call occurs. We
2085 		 * consider that too expensive, unlikely and hacky, so modules
2086 		 * using these in ssthresh() must deal these incompatibility
2087 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2088 		 */
2089 		tcp_ca_event(sk, CA_EVENT_FRTO);
2090 	}
2091 
2092 	tp->undo_marker = tp->snd_una;
2093 	tp->undo_retrans = 0;
2094 
2095 	skb = tcp_write_queue_head(sk);
2096 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2097 		tp->undo_marker = 0;
2098 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2099 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2100 		tp->retrans_out -= tcp_skb_pcount(skb);
2101 	}
2102 	tcp_verify_left_out(tp);
2103 
2104 	/* Too bad if TCP was application limited */
2105 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2106 
2107 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2108 	 * The last condition is necessary at least in tp->frto_counter case.
2109 	 */
2110 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2111 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2112 	    after(tp->high_seq, tp->snd_una)) {
2113 		tp->frto_highmark = tp->high_seq;
2114 	} else {
2115 		tp->frto_highmark = tp->snd_nxt;
2116 	}
2117 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2118 	tp->high_seq = tp->snd_nxt;
2119 	tp->frto_counter = 1;
2120 }
2121 
2122 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2123  * which indicates that we should follow the traditional RTO recovery,
2124  * i.e. mark everything lost and do go-back-N retransmission.
2125  */
2126 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2127 {
2128 	struct tcp_sock *tp = tcp_sk(sk);
2129 	struct sk_buff *skb;
2130 
2131 	tp->lost_out = 0;
2132 	tp->retrans_out = 0;
2133 	if (tcp_is_reno(tp))
2134 		tcp_reset_reno_sack(tp);
2135 
2136 	tcp_for_write_queue(skb, sk) {
2137 		if (skb == tcp_send_head(sk))
2138 			break;
2139 
2140 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2141 		/*
2142 		 * Count the retransmission made on RTO correctly (only when
2143 		 * waiting for the first ACK and did not get it)...
2144 		 */
2145 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2146 			/* For some reason this R-bit might get cleared? */
2147 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2148 				tp->retrans_out += tcp_skb_pcount(skb);
2149 			/* ...enter this if branch just for the first segment */
2150 			flag |= FLAG_DATA_ACKED;
2151 		} else {
2152 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2153 				tp->undo_marker = 0;
2154 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2155 		}
2156 
2157 		/* Marking forward transmissions that were made after RTO lost
2158 		 * can cause unnecessary retransmissions in some scenarios,
2159 		 * SACK blocks will mitigate that in some but not in all cases.
2160 		 * We used to not mark them but it was causing break-ups with
2161 		 * receivers that do only in-order receival.
2162 		 *
2163 		 * TODO: we could detect presence of such receiver and select
2164 		 * different behavior per flow.
2165 		 */
2166 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2167 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2168 			tp->lost_out += tcp_skb_pcount(skb);
2169 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2170 		}
2171 	}
2172 	tcp_verify_left_out(tp);
2173 
2174 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2175 	tp->snd_cwnd_cnt = 0;
2176 	tp->snd_cwnd_stamp = tcp_time_stamp;
2177 	tp->frto_counter = 0;
2178 	tp->bytes_acked = 0;
2179 
2180 	tp->reordering = min_t(unsigned int, tp->reordering,
2181 			       sysctl_tcp_reordering);
2182 	tcp_set_ca_state(sk, TCP_CA_Loss);
2183 	tp->high_seq = tp->snd_nxt;
2184 	TCP_ECN_queue_cwr(tp);
2185 
2186 	tcp_clear_all_retrans_hints(tp);
2187 }
2188 
2189 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2190 {
2191 	tp->retrans_out = 0;
2192 	tp->lost_out = 0;
2193 
2194 	tp->undo_marker = 0;
2195 	tp->undo_retrans = 0;
2196 }
2197 
2198 void tcp_clear_retrans(struct tcp_sock *tp)
2199 {
2200 	tcp_clear_retrans_partial(tp);
2201 
2202 	tp->fackets_out = 0;
2203 	tp->sacked_out = 0;
2204 }
2205 
2206 /* Enter Loss state. If "how" is not zero, forget all SACK information
2207  * and reset tags completely, otherwise preserve SACKs. If receiver
2208  * dropped its ofo queue, we will know this due to reneging detection.
2209  */
2210 void tcp_enter_loss(struct sock *sk, int how)
2211 {
2212 	const struct inet_connection_sock *icsk = inet_csk(sk);
2213 	struct tcp_sock *tp = tcp_sk(sk);
2214 	struct sk_buff *skb;
2215 
2216 	/* Reduce ssthresh if it has not yet been made inside this window. */
2217 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2218 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2219 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2220 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2221 		tcp_ca_event(sk, CA_EVENT_LOSS);
2222 	}
2223 	tp->snd_cwnd	   = 1;
2224 	tp->snd_cwnd_cnt   = 0;
2225 	tp->snd_cwnd_stamp = tcp_time_stamp;
2226 
2227 	tp->bytes_acked = 0;
2228 	tcp_clear_retrans_partial(tp);
2229 
2230 	if (tcp_is_reno(tp))
2231 		tcp_reset_reno_sack(tp);
2232 
2233 	if (!how) {
2234 		/* Push undo marker, if it was plain RTO and nothing
2235 		 * was retransmitted. */
2236 		tp->undo_marker = tp->snd_una;
2237 	} else {
2238 		tp->sacked_out = 0;
2239 		tp->fackets_out = 0;
2240 	}
2241 	tcp_clear_all_retrans_hints(tp);
2242 
2243 	tcp_for_write_queue(skb, sk) {
2244 		if (skb == tcp_send_head(sk))
2245 			break;
2246 
2247 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2248 			tp->undo_marker = 0;
2249 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2250 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2251 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2252 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2253 			tp->lost_out += tcp_skb_pcount(skb);
2254 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2255 		}
2256 	}
2257 	tcp_verify_left_out(tp);
2258 
2259 	tp->reordering = min_t(unsigned int, tp->reordering,
2260 			       sysctl_tcp_reordering);
2261 	tcp_set_ca_state(sk, TCP_CA_Loss);
2262 	tp->high_seq = tp->snd_nxt;
2263 	TCP_ECN_queue_cwr(tp);
2264 	/* Abort F-RTO algorithm if one is in progress */
2265 	tp->frto_counter = 0;
2266 }
2267 
2268 /* If ACK arrived pointing to a remembered SACK, it means that our
2269  * remembered SACKs do not reflect real state of receiver i.e.
2270  * receiver _host_ is heavily congested (or buggy).
2271  *
2272  * Do processing similar to RTO timeout.
2273  */
2274 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2275 {
2276 	if (flag & FLAG_SACK_RENEGING) {
2277 		struct inet_connection_sock *icsk = inet_csk(sk);
2278 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2279 
2280 		tcp_enter_loss(sk, 1);
2281 		icsk->icsk_retransmits++;
2282 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2283 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2284 					  icsk->icsk_rto, TCP_RTO_MAX);
2285 		return 1;
2286 	}
2287 	return 0;
2288 }
2289 
2290 static inline int tcp_fackets_out(struct tcp_sock *tp)
2291 {
2292 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2293 }
2294 
2295 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2296  * counter when SACK is enabled (without SACK, sacked_out is used for
2297  * that purpose).
2298  *
2299  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2300  * segments up to the highest received SACK block so far and holes in
2301  * between them.
2302  *
2303  * With reordering, holes may still be in flight, so RFC3517 recovery
2304  * uses pure sacked_out (total number of SACKed segments) even though
2305  * it violates the RFC that uses duplicate ACKs, often these are equal
2306  * but when e.g. out-of-window ACKs or packet duplication occurs,
2307  * they differ. Since neither occurs due to loss, TCP should really
2308  * ignore them.
2309  */
2310 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2311 {
2312 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2313 }
2314 
2315 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2316 {
2317 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2318 }
2319 
2320 static inline int tcp_head_timedout(struct sock *sk)
2321 {
2322 	struct tcp_sock *tp = tcp_sk(sk);
2323 
2324 	return tp->packets_out &&
2325 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2326 }
2327 
2328 /* Linux NewReno/SACK/FACK/ECN state machine.
2329  * --------------------------------------
2330  *
2331  * "Open"	Normal state, no dubious events, fast path.
2332  * "Disorder"   In all the respects it is "Open",
2333  *		but requires a bit more attention. It is entered when
2334  *		we see some SACKs or dupacks. It is split of "Open"
2335  *		mainly to move some processing from fast path to slow one.
2336  * "CWR"	CWND was reduced due to some Congestion Notification event.
2337  *		It can be ECN, ICMP source quench, local device congestion.
2338  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2339  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2340  *
2341  * tcp_fastretrans_alert() is entered:
2342  * - each incoming ACK, if state is not "Open"
2343  * - when arrived ACK is unusual, namely:
2344  *	* SACK
2345  *	* Duplicate ACK.
2346  *	* ECN ECE.
2347  *
2348  * Counting packets in flight is pretty simple.
2349  *
2350  *	in_flight = packets_out - left_out + retrans_out
2351  *
2352  *	packets_out is SND.NXT-SND.UNA counted in packets.
2353  *
2354  *	retrans_out is number of retransmitted segments.
2355  *
2356  *	left_out is number of segments left network, but not ACKed yet.
2357  *
2358  *		left_out = sacked_out + lost_out
2359  *
2360  *     sacked_out: Packets, which arrived to receiver out of order
2361  *		   and hence not ACKed. With SACKs this number is simply
2362  *		   amount of SACKed data. Even without SACKs
2363  *		   it is easy to give pretty reliable estimate of this number,
2364  *		   counting duplicate ACKs.
2365  *
2366  *       lost_out: Packets lost by network. TCP has no explicit
2367  *		   "loss notification" feedback from network (for now).
2368  *		   It means that this number can be only _guessed_.
2369  *		   Actually, it is the heuristics to predict lossage that
2370  *		   distinguishes different algorithms.
2371  *
2372  *	F.e. after RTO, when all the queue is considered as lost,
2373  *	lost_out = packets_out and in_flight = retrans_out.
2374  *
2375  *		Essentially, we have now two algorithms counting
2376  *		lost packets.
2377  *
2378  *		FACK: It is the simplest heuristics. As soon as we decided
2379  *		that something is lost, we decide that _all_ not SACKed
2380  *		packets until the most forward SACK are lost. I.e.
2381  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2382  *		It is absolutely correct estimate, if network does not reorder
2383  *		packets. And it loses any connection to reality when reordering
2384  *		takes place. We use FACK by default until reordering
2385  *		is suspected on the path to this destination.
2386  *
2387  *		NewReno: when Recovery is entered, we assume that one segment
2388  *		is lost (classic Reno). While we are in Recovery and
2389  *		a partial ACK arrives, we assume that one more packet
2390  *		is lost (NewReno). This heuristics are the same in NewReno
2391  *		and SACK.
2392  *
2393  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2394  *  deflation etc. CWND is real congestion window, never inflated, changes
2395  *  only according to classic VJ rules.
2396  *
2397  * Really tricky (and requiring careful tuning) part of algorithm
2398  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2399  * The first determines the moment _when_ we should reduce CWND and,
2400  * hence, slow down forward transmission. In fact, it determines the moment
2401  * when we decide that hole is caused by loss, rather than by a reorder.
2402  *
2403  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2404  * holes, caused by lost packets.
2405  *
2406  * And the most logically complicated part of algorithm is undo
2407  * heuristics. We detect false retransmits due to both too early
2408  * fast retransmit (reordering) and underestimated RTO, analyzing
2409  * timestamps and D-SACKs. When we detect that some segments were
2410  * retransmitted by mistake and CWND reduction was wrong, we undo
2411  * window reduction and abort recovery phase. This logic is hidden
2412  * inside several functions named tcp_try_undo_<something>.
2413  */
2414 
2415 /* This function decides, when we should leave Disordered state
2416  * and enter Recovery phase, reducing congestion window.
2417  *
2418  * Main question: may we further continue forward transmission
2419  * with the same cwnd?
2420  */
2421 static int tcp_time_to_recover(struct sock *sk)
2422 {
2423 	struct tcp_sock *tp = tcp_sk(sk);
2424 	__u32 packets_out;
2425 
2426 	/* Do not perform any recovery during F-RTO algorithm */
2427 	if (tp->frto_counter)
2428 		return 0;
2429 
2430 	/* Trick#1: The loss is proven. */
2431 	if (tp->lost_out)
2432 		return 1;
2433 
2434 	/* Not-A-Trick#2 : Classic rule... */
2435 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2436 		return 1;
2437 
2438 	/* Trick#3 : when we use RFC2988 timer restart, fast
2439 	 * retransmit can be triggered by timeout of queue head.
2440 	 */
2441 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2442 		return 1;
2443 
2444 	/* Trick#4: It is still not OK... But will it be useful to delay
2445 	 * recovery more?
2446 	 */
2447 	packets_out = tp->packets_out;
2448 	if (packets_out <= tp->reordering &&
2449 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2450 	    !tcp_may_send_now(sk)) {
2451 		/* We have nothing to send. This connection is limited
2452 		 * either by receiver window or by application.
2453 		 */
2454 		return 1;
2455 	}
2456 
2457 	/* If a thin stream is detected, retransmit after first
2458 	 * received dupack. Employ only if SACK is supported in order
2459 	 * to avoid possible corner-case series of spurious retransmissions
2460 	 * Use only if there are no unsent data.
2461 	 */
2462 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2463 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2464 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2465 		return 1;
2466 
2467 	return 0;
2468 }
2469 
2470 /* New heuristics: it is possible only after we switched to restart timer
2471  * each time when something is ACKed. Hence, we can detect timed out packets
2472  * during fast retransmit without falling to slow start.
2473  *
2474  * Usefulness of this as is very questionable, since we should know which of
2475  * the segments is the next to timeout which is relatively expensive to find
2476  * in general case unless we add some data structure just for that. The
2477  * current approach certainly won't find the right one too often and when it
2478  * finally does find _something_ it usually marks large part of the window
2479  * right away (because a retransmission with a larger timestamp blocks the
2480  * loop from advancing). -ij
2481  */
2482 static void tcp_timeout_skbs(struct sock *sk)
2483 {
2484 	struct tcp_sock *tp = tcp_sk(sk);
2485 	struct sk_buff *skb;
2486 
2487 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2488 		return;
2489 
2490 	skb = tp->scoreboard_skb_hint;
2491 	if (tp->scoreboard_skb_hint == NULL)
2492 		skb = tcp_write_queue_head(sk);
2493 
2494 	tcp_for_write_queue_from(skb, sk) {
2495 		if (skb == tcp_send_head(sk))
2496 			break;
2497 		if (!tcp_skb_timedout(sk, skb))
2498 			break;
2499 
2500 		tcp_skb_mark_lost(tp, skb);
2501 	}
2502 
2503 	tp->scoreboard_skb_hint = skb;
2504 
2505 	tcp_verify_left_out(tp);
2506 }
2507 
2508 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2509  * is against sacked "cnt", otherwise it's against facked "cnt"
2510  */
2511 static void tcp_mark_head_lost(struct sock *sk, int packets)
2512 {
2513 	struct tcp_sock *tp = tcp_sk(sk);
2514 	struct sk_buff *skb;
2515 	int cnt, oldcnt;
2516 	int err;
2517 	unsigned int mss;
2518 
2519 	if (packets == 0)
2520 		return;
2521 
2522 	WARN_ON(packets > tp->packets_out);
2523 	if (tp->lost_skb_hint) {
2524 		skb = tp->lost_skb_hint;
2525 		cnt = tp->lost_cnt_hint;
2526 	} else {
2527 		skb = tcp_write_queue_head(sk);
2528 		cnt = 0;
2529 	}
2530 
2531 	tcp_for_write_queue_from(skb, sk) {
2532 		if (skb == tcp_send_head(sk))
2533 			break;
2534 		/* TODO: do this better */
2535 		/* this is not the most efficient way to do this... */
2536 		tp->lost_skb_hint = skb;
2537 		tp->lost_cnt_hint = cnt;
2538 
2539 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2540 			break;
2541 
2542 		oldcnt = cnt;
2543 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2544 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2545 			cnt += tcp_skb_pcount(skb);
2546 
2547 		if (cnt > packets) {
2548 			if (tcp_is_sack(tp) || (oldcnt >= packets))
2549 				break;
2550 
2551 			mss = skb_shinfo(skb)->gso_size;
2552 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2553 			if (err < 0)
2554 				break;
2555 			cnt = packets;
2556 		}
2557 
2558 		tcp_skb_mark_lost(tp, skb);
2559 	}
2560 	tcp_verify_left_out(tp);
2561 }
2562 
2563 /* Account newly detected lost packet(s) */
2564 
2565 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2566 {
2567 	struct tcp_sock *tp = tcp_sk(sk);
2568 
2569 	if (tcp_is_reno(tp)) {
2570 		tcp_mark_head_lost(sk, 1);
2571 	} else if (tcp_is_fack(tp)) {
2572 		int lost = tp->fackets_out - tp->reordering;
2573 		if (lost <= 0)
2574 			lost = 1;
2575 		tcp_mark_head_lost(sk, lost);
2576 	} else {
2577 		int sacked_upto = tp->sacked_out - tp->reordering;
2578 		if (sacked_upto < fast_rexmit)
2579 			sacked_upto = fast_rexmit;
2580 		tcp_mark_head_lost(sk, sacked_upto);
2581 	}
2582 
2583 	tcp_timeout_skbs(sk);
2584 }
2585 
2586 /* CWND moderation, preventing bursts due to too big ACKs
2587  * in dubious situations.
2588  */
2589 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2590 {
2591 	tp->snd_cwnd = min(tp->snd_cwnd,
2592 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2593 	tp->snd_cwnd_stamp = tcp_time_stamp;
2594 }
2595 
2596 /* Lower bound on congestion window is slow start threshold
2597  * unless congestion avoidance choice decides to overide it.
2598  */
2599 static inline u32 tcp_cwnd_min(const struct sock *sk)
2600 {
2601 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2602 
2603 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2604 }
2605 
2606 /* Decrease cwnd each second ack. */
2607 static void tcp_cwnd_down(struct sock *sk, int flag)
2608 {
2609 	struct tcp_sock *tp = tcp_sk(sk);
2610 	int decr = tp->snd_cwnd_cnt + 1;
2611 
2612 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2613 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2614 		tp->snd_cwnd_cnt = decr & 1;
2615 		decr >>= 1;
2616 
2617 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2618 			tp->snd_cwnd -= decr;
2619 
2620 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2621 		tp->snd_cwnd_stamp = tcp_time_stamp;
2622 	}
2623 }
2624 
2625 /* Nothing was retransmitted or returned timestamp is less
2626  * than timestamp of the first retransmission.
2627  */
2628 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2629 {
2630 	return !tp->retrans_stamp ||
2631 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2632 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2633 }
2634 
2635 /* Undo procedures. */
2636 
2637 #if FASTRETRANS_DEBUG > 1
2638 static void DBGUNDO(struct sock *sk, const char *msg)
2639 {
2640 	struct tcp_sock *tp = tcp_sk(sk);
2641 	struct inet_sock *inet = inet_sk(sk);
2642 
2643 	if (sk->sk_family == AF_INET) {
2644 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2645 		       msg,
2646 		       &inet->inet_daddr, ntohs(inet->inet_dport),
2647 		       tp->snd_cwnd, tcp_left_out(tp),
2648 		       tp->snd_ssthresh, tp->prior_ssthresh,
2649 		       tp->packets_out);
2650 	}
2651 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2652 	else if (sk->sk_family == AF_INET6) {
2653 		struct ipv6_pinfo *np = inet6_sk(sk);
2654 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2655 		       msg,
2656 		       &np->daddr, ntohs(inet->inet_dport),
2657 		       tp->snd_cwnd, tcp_left_out(tp),
2658 		       tp->snd_ssthresh, tp->prior_ssthresh,
2659 		       tp->packets_out);
2660 	}
2661 #endif
2662 }
2663 #else
2664 #define DBGUNDO(x...) do { } while (0)
2665 #endif
2666 
2667 static void tcp_undo_cwr(struct sock *sk, const int undo)
2668 {
2669 	struct tcp_sock *tp = tcp_sk(sk);
2670 
2671 	if (tp->prior_ssthresh) {
2672 		const struct inet_connection_sock *icsk = inet_csk(sk);
2673 
2674 		if (icsk->icsk_ca_ops->undo_cwnd)
2675 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2676 		else
2677 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2678 
2679 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2680 			tp->snd_ssthresh = tp->prior_ssthresh;
2681 			TCP_ECN_withdraw_cwr(tp);
2682 		}
2683 	} else {
2684 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2685 	}
2686 	tcp_moderate_cwnd(tp);
2687 	tp->snd_cwnd_stamp = tcp_time_stamp;
2688 }
2689 
2690 static inline int tcp_may_undo(struct tcp_sock *tp)
2691 {
2692 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2693 }
2694 
2695 /* People celebrate: "We love our President!" */
2696 static int tcp_try_undo_recovery(struct sock *sk)
2697 {
2698 	struct tcp_sock *tp = tcp_sk(sk);
2699 
2700 	if (tcp_may_undo(tp)) {
2701 		int mib_idx;
2702 
2703 		/* Happy end! We did not retransmit anything
2704 		 * or our original transmission succeeded.
2705 		 */
2706 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2707 		tcp_undo_cwr(sk, 1);
2708 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2709 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2710 		else
2711 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2712 
2713 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2714 		tp->undo_marker = 0;
2715 	}
2716 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2717 		/* Hold old state until something *above* high_seq
2718 		 * is ACKed. For Reno it is MUST to prevent false
2719 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2720 		tcp_moderate_cwnd(tp);
2721 		return 1;
2722 	}
2723 	tcp_set_ca_state(sk, TCP_CA_Open);
2724 	return 0;
2725 }
2726 
2727 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2728 static void tcp_try_undo_dsack(struct sock *sk)
2729 {
2730 	struct tcp_sock *tp = tcp_sk(sk);
2731 
2732 	if (tp->undo_marker && !tp->undo_retrans) {
2733 		DBGUNDO(sk, "D-SACK");
2734 		tcp_undo_cwr(sk, 1);
2735 		tp->undo_marker = 0;
2736 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2737 	}
2738 }
2739 
2740 /* We can clear retrans_stamp when there are no retransmissions in the
2741  * window. It would seem that it is trivially available for us in
2742  * tp->retrans_out, however, that kind of assumptions doesn't consider
2743  * what will happen if errors occur when sending retransmission for the
2744  * second time. ...It could the that such segment has only
2745  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2746  * the head skb is enough except for some reneging corner cases that
2747  * are not worth the effort.
2748  *
2749  * Main reason for all this complexity is the fact that connection dying
2750  * time now depends on the validity of the retrans_stamp, in particular,
2751  * that successive retransmissions of a segment must not advance
2752  * retrans_stamp under any conditions.
2753  */
2754 static int tcp_any_retrans_done(struct sock *sk)
2755 {
2756 	struct tcp_sock *tp = tcp_sk(sk);
2757 	struct sk_buff *skb;
2758 
2759 	if (tp->retrans_out)
2760 		return 1;
2761 
2762 	skb = tcp_write_queue_head(sk);
2763 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2764 		return 1;
2765 
2766 	return 0;
2767 }
2768 
2769 /* Undo during fast recovery after partial ACK. */
2770 
2771 static int tcp_try_undo_partial(struct sock *sk, int acked)
2772 {
2773 	struct tcp_sock *tp = tcp_sk(sk);
2774 	/* Partial ACK arrived. Force Hoe's retransmit. */
2775 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2776 
2777 	if (tcp_may_undo(tp)) {
2778 		/* Plain luck! Hole if filled with delayed
2779 		 * packet, rather than with a retransmit.
2780 		 */
2781 		if (!tcp_any_retrans_done(sk))
2782 			tp->retrans_stamp = 0;
2783 
2784 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2785 
2786 		DBGUNDO(sk, "Hoe");
2787 		tcp_undo_cwr(sk, 0);
2788 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2789 
2790 		/* So... Do not make Hoe's retransmit yet.
2791 		 * If the first packet was delayed, the rest
2792 		 * ones are most probably delayed as well.
2793 		 */
2794 		failed = 0;
2795 	}
2796 	return failed;
2797 }
2798 
2799 /* Undo during loss recovery after partial ACK. */
2800 static int tcp_try_undo_loss(struct sock *sk)
2801 {
2802 	struct tcp_sock *tp = tcp_sk(sk);
2803 
2804 	if (tcp_may_undo(tp)) {
2805 		struct sk_buff *skb;
2806 		tcp_for_write_queue(skb, sk) {
2807 			if (skb == tcp_send_head(sk))
2808 				break;
2809 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2810 		}
2811 
2812 		tcp_clear_all_retrans_hints(tp);
2813 
2814 		DBGUNDO(sk, "partial loss");
2815 		tp->lost_out = 0;
2816 		tcp_undo_cwr(sk, 1);
2817 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2818 		inet_csk(sk)->icsk_retransmits = 0;
2819 		tp->undo_marker = 0;
2820 		if (tcp_is_sack(tp))
2821 			tcp_set_ca_state(sk, TCP_CA_Open);
2822 		return 1;
2823 	}
2824 	return 0;
2825 }
2826 
2827 static inline void tcp_complete_cwr(struct sock *sk)
2828 {
2829 	struct tcp_sock *tp = tcp_sk(sk);
2830 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2831 	tp->snd_cwnd_stamp = tcp_time_stamp;
2832 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2833 }
2834 
2835 static void tcp_try_keep_open(struct sock *sk)
2836 {
2837 	struct tcp_sock *tp = tcp_sk(sk);
2838 	int state = TCP_CA_Open;
2839 
2840 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2841 		state = TCP_CA_Disorder;
2842 
2843 	if (inet_csk(sk)->icsk_ca_state != state) {
2844 		tcp_set_ca_state(sk, state);
2845 		tp->high_seq = tp->snd_nxt;
2846 	}
2847 }
2848 
2849 static void tcp_try_to_open(struct sock *sk, int flag)
2850 {
2851 	struct tcp_sock *tp = tcp_sk(sk);
2852 
2853 	tcp_verify_left_out(tp);
2854 
2855 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2856 		tp->retrans_stamp = 0;
2857 
2858 	if (flag & FLAG_ECE)
2859 		tcp_enter_cwr(sk, 1);
2860 
2861 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2862 		tcp_try_keep_open(sk);
2863 		tcp_moderate_cwnd(tp);
2864 	} else {
2865 		tcp_cwnd_down(sk, flag);
2866 	}
2867 }
2868 
2869 static void tcp_mtup_probe_failed(struct sock *sk)
2870 {
2871 	struct inet_connection_sock *icsk = inet_csk(sk);
2872 
2873 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2874 	icsk->icsk_mtup.probe_size = 0;
2875 }
2876 
2877 static void tcp_mtup_probe_success(struct sock *sk)
2878 {
2879 	struct tcp_sock *tp = tcp_sk(sk);
2880 	struct inet_connection_sock *icsk = inet_csk(sk);
2881 
2882 	/* FIXME: breaks with very large cwnd */
2883 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2884 	tp->snd_cwnd = tp->snd_cwnd *
2885 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2886 		       icsk->icsk_mtup.probe_size;
2887 	tp->snd_cwnd_cnt = 0;
2888 	tp->snd_cwnd_stamp = tcp_time_stamp;
2889 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2890 
2891 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2892 	icsk->icsk_mtup.probe_size = 0;
2893 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2894 }
2895 
2896 /* Do a simple retransmit without using the backoff mechanisms in
2897  * tcp_timer. This is used for path mtu discovery.
2898  * The socket is already locked here.
2899  */
2900 void tcp_simple_retransmit(struct sock *sk)
2901 {
2902 	const struct inet_connection_sock *icsk = inet_csk(sk);
2903 	struct tcp_sock *tp = tcp_sk(sk);
2904 	struct sk_buff *skb;
2905 	unsigned int mss = tcp_current_mss(sk);
2906 	u32 prior_lost = tp->lost_out;
2907 
2908 	tcp_for_write_queue(skb, sk) {
2909 		if (skb == tcp_send_head(sk))
2910 			break;
2911 		if (tcp_skb_seglen(skb) > mss &&
2912 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2913 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2914 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2915 				tp->retrans_out -= tcp_skb_pcount(skb);
2916 			}
2917 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2918 		}
2919 	}
2920 
2921 	tcp_clear_retrans_hints_partial(tp);
2922 
2923 	if (prior_lost == tp->lost_out)
2924 		return;
2925 
2926 	if (tcp_is_reno(tp))
2927 		tcp_limit_reno_sacked(tp);
2928 
2929 	tcp_verify_left_out(tp);
2930 
2931 	/* Don't muck with the congestion window here.
2932 	 * Reason is that we do not increase amount of _data_
2933 	 * in network, but units changed and effective
2934 	 * cwnd/ssthresh really reduced now.
2935 	 */
2936 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2937 		tp->high_seq = tp->snd_nxt;
2938 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2939 		tp->prior_ssthresh = 0;
2940 		tp->undo_marker = 0;
2941 		tcp_set_ca_state(sk, TCP_CA_Loss);
2942 	}
2943 	tcp_xmit_retransmit_queue(sk);
2944 }
2945 EXPORT_SYMBOL(tcp_simple_retransmit);
2946 
2947 /* Process an event, which can update packets-in-flight not trivially.
2948  * Main goal of this function is to calculate new estimate for left_out,
2949  * taking into account both packets sitting in receiver's buffer and
2950  * packets lost by network.
2951  *
2952  * Besides that it does CWND reduction, when packet loss is detected
2953  * and changes state of machine.
2954  *
2955  * It does _not_ decide what to send, it is made in function
2956  * tcp_xmit_retransmit_queue().
2957  */
2958 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2959 {
2960 	struct inet_connection_sock *icsk = inet_csk(sk);
2961 	struct tcp_sock *tp = tcp_sk(sk);
2962 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2963 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2964 				    (tcp_fackets_out(tp) > tp->reordering));
2965 	int fast_rexmit = 0, mib_idx;
2966 
2967 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2968 		tp->sacked_out = 0;
2969 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2970 		tp->fackets_out = 0;
2971 
2972 	/* Now state machine starts.
2973 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2974 	if (flag & FLAG_ECE)
2975 		tp->prior_ssthresh = 0;
2976 
2977 	/* B. In all the states check for reneging SACKs. */
2978 	if (tcp_check_sack_reneging(sk, flag))
2979 		return;
2980 
2981 	/* C. Process data loss notification, provided it is valid. */
2982 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2983 	    before(tp->snd_una, tp->high_seq) &&
2984 	    icsk->icsk_ca_state != TCP_CA_Open &&
2985 	    tp->fackets_out > tp->reordering) {
2986 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2987 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2988 	}
2989 
2990 	/* D. Check consistency of the current state. */
2991 	tcp_verify_left_out(tp);
2992 
2993 	/* E. Check state exit conditions. State can be terminated
2994 	 *    when high_seq is ACKed. */
2995 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2996 		WARN_ON(tp->retrans_out != 0);
2997 		tp->retrans_stamp = 0;
2998 	} else if (!before(tp->snd_una, tp->high_seq)) {
2999 		switch (icsk->icsk_ca_state) {
3000 		case TCP_CA_Loss:
3001 			icsk->icsk_retransmits = 0;
3002 			if (tcp_try_undo_recovery(sk))
3003 				return;
3004 			break;
3005 
3006 		case TCP_CA_CWR:
3007 			/* CWR is to be held something *above* high_seq
3008 			 * is ACKed for CWR bit to reach receiver. */
3009 			if (tp->snd_una != tp->high_seq) {
3010 				tcp_complete_cwr(sk);
3011 				tcp_set_ca_state(sk, TCP_CA_Open);
3012 			}
3013 			break;
3014 
3015 		case TCP_CA_Disorder:
3016 			tcp_try_undo_dsack(sk);
3017 			if (!tp->undo_marker ||
3018 			    /* For SACK case do not Open to allow to undo
3019 			     * catching for all duplicate ACKs. */
3020 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3021 				tp->undo_marker = 0;
3022 				tcp_set_ca_state(sk, TCP_CA_Open);
3023 			}
3024 			break;
3025 
3026 		case TCP_CA_Recovery:
3027 			if (tcp_is_reno(tp))
3028 				tcp_reset_reno_sack(tp);
3029 			if (tcp_try_undo_recovery(sk))
3030 				return;
3031 			tcp_complete_cwr(sk);
3032 			break;
3033 		}
3034 	}
3035 
3036 	/* F. Process state. */
3037 	switch (icsk->icsk_ca_state) {
3038 	case TCP_CA_Recovery:
3039 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3040 			if (tcp_is_reno(tp) && is_dupack)
3041 				tcp_add_reno_sack(sk);
3042 		} else
3043 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3044 		break;
3045 	case TCP_CA_Loss:
3046 		if (flag & FLAG_DATA_ACKED)
3047 			icsk->icsk_retransmits = 0;
3048 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3049 			tcp_reset_reno_sack(tp);
3050 		if (!tcp_try_undo_loss(sk)) {
3051 			tcp_moderate_cwnd(tp);
3052 			tcp_xmit_retransmit_queue(sk);
3053 			return;
3054 		}
3055 		if (icsk->icsk_ca_state != TCP_CA_Open)
3056 			return;
3057 		/* Loss is undone; fall through to processing in Open state. */
3058 	default:
3059 		if (tcp_is_reno(tp)) {
3060 			if (flag & FLAG_SND_UNA_ADVANCED)
3061 				tcp_reset_reno_sack(tp);
3062 			if (is_dupack)
3063 				tcp_add_reno_sack(sk);
3064 		}
3065 
3066 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3067 			tcp_try_undo_dsack(sk);
3068 
3069 		if (!tcp_time_to_recover(sk)) {
3070 			tcp_try_to_open(sk, flag);
3071 			return;
3072 		}
3073 
3074 		/* MTU probe failure: don't reduce cwnd */
3075 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3076 		    icsk->icsk_mtup.probe_size &&
3077 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3078 			tcp_mtup_probe_failed(sk);
3079 			/* Restores the reduction we did in tcp_mtup_probe() */
3080 			tp->snd_cwnd++;
3081 			tcp_simple_retransmit(sk);
3082 			return;
3083 		}
3084 
3085 		/* Otherwise enter Recovery state */
3086 
3087 		if (tcp_is_reno(tp))
3088 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3089 		else
3090 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3091 
3092 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3093 
3094 		tp->high_seq = tp->snd_nxt;
3095 		tp->prior_ssthresh = 0;
3096 		tp->undo_marker = tp->snd_una;
3097 		tp->undo_retrans = tp->retrans_out;
3098 
3099 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3100 			if (!(flag & FLAG_ECE))
3101 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3102 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3103 			TCP_ECN_queue_cwr(tp);
3104 		}
3105 
3106 		tp->bytes_acked = 0;
3107 		tp->snd_cwnd_cnt = 0;
3108 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3109 		fast_rexmit = 1;
3110 	}
3111 
3112 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3113 		tcp_update_scoreboard(sk, fast_rexmit);
3114 	tcp_cwnd_down(sk, flag);
3115 	tcp_xmit_retransmit_queue(sk);
3116 }
3117 
3118 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3119 {
3120 	tcp_rtt_estimator(sk, seq_rtt);
3121 	tcp_set_rto(sk);
3122 	inet_csk(sk)->icsk_backoff = 0;
3123 }
3124 
3125 /* Read draft-ietf-tcplw-high-performance before mucking
3126  * with this code. (Supersedes RFC1323)
3127  */
3128 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3129 {
3130 	/* RTTM Rule: A TSecr value received in a segment is used to
3131 	 * update the averaged RTT measurement only if the segment
3132 	 * acknowledges some new data, i.e., only if it advances the
3133 	 * left edge of the send window.
3134 	 *
3135 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3136 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3137 	 *
3138 	 * Changed: reset backoff as soon as we see the first valid sample.
3139 	 * If we do not, we get strongly overestimated rto. With timestamps
3140 	 * samples are accepted even from very old segments: f.e., when rtt=1
3141 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3142 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3143 	 * in window is lost... Voila.	 			--ANK (010210)
3144 	 */
3145 	struct tcp_sock *tp = tcp_sk(sk);
3146 
3147 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3148 }
3149 
3150 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3151 {
3152 	/* We don't have a timestamp. Can only use
3153 	 * packets that are not retransmitted to determine
3154 	 * rtt estimates. Also, we must not reset the
3155 	 * backoff for rto until we get a non-retransmitted
3156 	 * packet. This allows us to deal with a situation
3157 	 * where the network delay has increased suddenly.
3158 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3159 	 */
3160 
3161 	if (flag & FLAG_RETRANS_DATA_ACKED)
3162 		return;
3163 
3164 	tcp_valid_rtt_meas(sk, seq_rtt);
3165 }
3166 
3167 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3168 				      const s32 seq_rtt)
3169 {
3170 	const struct tcp_sock *tp = tcp_sk(sk);
3171 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3172 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3173 		tcp_ack_saw_tstamp(sk, flag);
3174 	else if (seq_rtt >= 0)
3175 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3176 }
3177 
3178 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3179 {
3180 	const struct inet_connection_sock *icsk = inet_csk(sk);
3181 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3182 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3183 }
3184 
3185 /* Restart timer after forward progress on connection.
3186  * RFC2988 recommends to restart timer to now+rto.
3187  */
3188 static void tcp_rearm_rto(struct sock *sk)
3189 {
3190 	struct tcp_sock *tp = tcp_sk(sk);
3191 
3192 	if (!tp->packets_out) {
3193 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3194 	} else {
3195 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3196 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3197 	}
3198 }
3199 
3200 /* If we get here, the whole TSO packet has not been acked. */
3201 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3202 {
3203 	struct tcp_sock *tp = tcp_sk(sk);
3204 	u32 packets_acked;
3205 
3206 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3207 
3208 	packets_acked = tcp_skb_pcount(skb);
3209 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3210 		return 0;
3211 	packets_acked -= tcp_skb_pcount(skb);
3212 
3213 	if (packets_acked) {
3214 		BUG_ON(tcp_skb_pcount(skb) == 0);
3215 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3216 	}
3217 
3218 	return packets_acked;
3219 }
3220 
3221 /* Remove acknowledged frames from the retransmission queue. If our packet
3222  * is before the ack sequence we can discard it as it's confirmed to have
3223  * arrived at the other end.
3224  */
3225 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3226 			       u32 prior_snd_una)
3227 {
3228 	struct tcp_sock *tp = tcp_sk(sk);
3229 	const struct inet_connection_sock *icsk = inet_csk(sk);
3230 	struct sk_buff *skb;
3231 	u32 now = tcp_time_stamp;
3232 	int fully_acked = 1;
3233 	int flag = 0;
3234 	u32 pkts_acked = 0;
3235 	u32 reord = tp->packets_out;
3236 	u32 prior_sacked = tp->sacked_out;
3237 	s32 seq_rtt = -1;
3238 	s32 ca_seq_rtt = -1;
3239 	ktime_t last_ackt = net_invalid_timestamp();
3240 
3241 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3242 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3243 		u32 acked_pcount;
3244 		u8 sacked = scb->sacked;
3245 
3246 		/* Determine how many packets and what bytes were acked, tso and else */
3247 		if (after(scb->end_seq, tp->snd_una)) {
3248 			if (tcp_skb_pcount(skb) == 1 ||
3249 			    !after(tp->snd_una, scb->seq))
3250 				break;
3251 
3252 			acked_pcount = tcp_tso_acked(sk, skb);
3253 			if (!acked_pcount)
3254 				break;
3255 
3256 			fully_acked = 0;
3257 		} else {
3258 			acked_pcount = tcp_skb_pcount(skb);
3259 		}
3260 
3261 		if (sacked & TCPCB_RETRANS) {
3262 			if (sacked & TCPCB_SACKED_RETRANS)
3263 				tp->retrans_out -= acked_pcount;
3264 			flag |= FLAG_RETRANS_DATA_ACKED;
3265 			ca_seq_rtt = -1;
3266 			seq_rtt = -1;
3267 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3268 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3269 		} else {
3270 			ca_seq_rtt = now - scb->when;
3271 			last_ackt = skb->tstamp;
3272 			if (seq_rtt < 0) {
3273 				seq_rtt = ca_seq_rtt;
3274 			}
3275 			if (!(sacked & TCPCB_SACKED_ACKED))
3276 				reord = min(pkts_acked, reord);
3277 		}
3278 
3279 		if (sacked & TCPCB_SACKED_ACKED)
3280 			tp->sacked_out -= acked_pcount;
3281 		if (sacked & TCPCB_LOST)
3282 			tp->lost_out -= acked_pcount;
3283 
3284 		tp->packets_out -= acked_pcount;
3285 		pkts_acked += acked_pcount;
3286 
3287 		/* Initial outgoing SYN's get put onto the write_queue
3288 		 * just like anything else we transmit.  It is not
3289 		 * true data, and if we misinform our callers that
3290 		 * this ACK acks real data, we will erroneously exit
3291 		 * connection startup slow start one packet too
3292 		 * quickly.  This is severely frowned upon behavior.
3293 		 */
3294 		if (!(scb->flags & TCPHDR_SYN)) {
3295 			flag |= FLAG_DATA_ACKED;
3296 		} else {
3297 			flag |= FLAG_SYN_ACKED;
3298 			tp->retrans_stamp = 0;
3299 		}
3300 
3301 		if (!fully_acked)
3302 			break;
3303 
3304 		tcp_unlink_write_queue(skb, sk);
3305 		sk_wmem_free_skb(sk, skb);
3306 		tp->scoreboard_skb_hint = NULL;
3307 		if (skb == tp->retransmit_skb_hint)
3308 			tp->retransmit_skb_hint = NULL;
3309 		if (skb == tp->lost_skb_hint)
3310 			tp->lost_skb_hint = NULL;
3311 	}
3312 
3313 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3314 		tp->snd_up = tp->snd_una;
3315 
3316 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3317 		flag |= FLAG_SACK_RENEGING;
3318 
3319 	if (flag & FLAG_ACKED) {
3320 		const struct tcp_congestion_ops *ca_ops
3321 			= inet_csk(sk)->icsk_ca_ops;
3322 
3323 		if (unlikely(icsk->icsk_mtup.probe_size &&
3324 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3325 			tcp_mtup_probe_success(sk);
3326 		}
3327 
3328 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3329 		tcp_rearm_rto(sk);
3330 
3331 		if (tcp_is_reno(tp)) {
3332 			tcp_remove_reno_sacks(sk, pkts_acked);
3333 		} else {
3334 			int delta;
3335 
3336 			/* Non-retransmitted hole got filled? That's reordering */
3337 			if (reord < prior_fackets)
3338 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3339 
3340 			delta = tcp_is_fack(tp) ? pkts_acked :
3341 						  prior_sacked - tp->sacked_out;
3342 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3343 		}
3344 
3345 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3346 
3347 		if (ca_ops->pkts_acked) {
3348 			s32 rtt_us = -1;
3349 
3350 			/* Is the ACK triggering packet unambiguous? */
3351 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3352 				/* High resolution needed and available? */
3353 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3354 				    !ktime_equal(last_ackt,
3355 						 net_invalid_timestamp()))
3356 					rtt_us = ktime_us_delta(ktime_get_real(),
3357 								last_ackt);
3358 				else if (ca_seq_rtt > 0)
3359 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3360 			}
3361 
3362 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3363 		}
3364 	}
3365 
3366 #if FASTRETRANS_DEBUG > 0
3367 	WARN_ON((int)tp->sacked_out < 0);
3368 	WARN_ON((int)tp->lost_out < 0);
3369 	WARN_ON((int)tp->retrans_out < 0);
3370 	if (!tp->packets_out && tcp_is_sack(tp)) {
3371 		icsk = inet_csk(sk);
3372 		if (tp->lost_out) {
3373 			printk(KERN_DEBUG "Leak l=%u %d\n",
3374 			       tp->lost_out, icsk->icsk_ca_state);
3375 			tp->lost_out = 0;
3376 		}
3377 		if (tp->sacked_out) {
3378 			printk(KERN_DEBUG "Leak s=%u %d\n",
3379 			       tp->sacked_out, icsk->icsk_ca_state);
3380 			tp->sacked_out = 0;
3381 		}
3382 		if (tp->retrans_out) {
3383 			printk(KERN_DEBUG "Leak r=%u %d\n",
3384 			       tp->retrans_out, icsk->icsk_ca_state);
3385 			tp->retrans_out = 0;
3386 		}
3387 	}
3388 #endif
3389 	return flag;
3390 }
3391 
3392 static void tcp_ack_probe(struct sock *sk)
3393 {
3394 	const struct tcp_sock *tp = tcp_sk(sk);
3395 	struct inet_connection_sock *icsk = inet_csk(sk);
3396 
3397 	/* Was it a usable window open? */
3398 
3399 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3400 		icsk->icsk_backoff = 0;
3401 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3402 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3403 		 * This function is not for random using!
3404 		 */
3405 	} else {
3406 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3407 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3408 					  TCP_RTO_MAX);
3409 	}
3410 }
3411 
3412 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3413 {
3414 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3415 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3416 }
3417 
3418 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3419 {
3420 	const struct tcp_sock *tp = tcp_sk(sk);
3421 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3422 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3423 }
3424 
3425 /* Check that window update is acceptable.
3426  * The function assumes that snd_una<=ack<=snd_next.
3427  */
3428 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3429 					const u32 ack, const u32 ack_seq,
3430 					const u32 nwin)
3431 {
3432 	return (after(ack, tp->snd_una) ||
3433 		after(ack_seq, tp->snd_wl1) ||
3434 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3435 }
3436 
3437 /* Update our send window.
3438  *
3439  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3440  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3441  */
3442 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3443 				 u32 ack_seq)
3444 {
3445 	struct tcp_sock *tp = tcp_sk(sk);
3446 	int flag = 0;
3447 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3448 
3449 	if (likely(!tcp_hdr(skb)->syn))
3450 		nwin <<= tp->rx_opt.snd_wscale;
3451 
3452 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3453 		flag |= FLAG_WIN_UPDATE;
3454 		tcp_update_wl(tp, ack_seq);
3455 
3456 		if (tp->snd_wnd != nwin) {
3457 			tp->snd_wnd = nwin;
3458 
3459 			/* Note, it is the only place, where
3460 			 * fast path is recovered for sending TCP.
3461 			 */
3462 			tp->pred_flags = 0;
3463 			tcp_fast_path_check(sk);
3464 
3465 			if (nwin > tp->max_window) {
3466 				tp->max_window = nwin;
3467 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3468 			}
3469 		}
3470 	}
3471 
3472 	tp->snd_una = ack;
3473 
3474 	return flag;
3475 }
3476 
3477 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3478  * continue in congestion avoidance.
3479  */
3480 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3481 {
3482 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3483 	tp->snd_cwnd_cnt = 0;
3484 	tp->bytes_acked = 0;
3485 	TCP_ECN_queue_cwr(tp);
3486 	tcp_moderate_cwnd(tp);
3487 }
3488 
3489 /* A conservative spurious RTO response algorithm: reduce cwnd using
3490  * rate halving and continue in congestion avoidance.
3491  */
3492 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3493 {
3494 	tcp_enter_cwr(sk, 0);
3495 }
3496 
3497 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3498 {
3499 	if (flag & FLAG_ECE)
3500 		tcp_ratehalving_spur_to_response(sk);
3501 	else
3502 		tcp_undo_cwr(sk, 1);
3503 }
3504 
3505 /* F-RTO spurious RTO detection algorithm (RFC4138)
3506  *
3507  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3508  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3509  * window (but not to or beyond highest sequence sent before RTO):
3510  *   On First ACK,  send two new segments out.
3511  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3512  *                  algorithm is not part of the F-RTO detection algorithm
3513  *                  given in RFC4138 but can be selected separately).
3514  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3515  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3516  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3517  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3518  *
3519  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3520  * original window even after we transmit two new data segments.
3521  *
3522  * SACK version:
3523  *   on first step, wait until first cumulative ACK arrives, then move to
3524  *   the second step. In second step, the next ACK decides.
3525  *
3526  * F-RTO is implemented (mainly) in four functions:
3527  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3528  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3529  *     called when tcp_use_frto() showed green light
3530  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3531  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3532  *     to prove that the RTO is indeed spurious. It transfers the control
3533  *     from F-RTO to the conventional RTO recovery
3534  */
3535 static int tcp_process_frto(struct sock *sk, int flag)
3536 {
3537 	struct tcp_sock *tp = tcp_sk(sk);
3538 
3539 	tcp_verify_left_out(tp);
3540 
3541 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3542 	if (flag & FLAG_DATA_ACKED)
3543 		inet_csk(sk)->icsk_retransmits = 0;
3544 
3545 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3546 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3547 		tp->undo_marker = 0;
3548 
3549 	if (!before(tp->snd_una, tp->frto_highmark)) {
3550 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3551 		return 1;
3552 	}
3553 
3554 	if (!tcp_is_sackfrto(tp)) {
3555 		/* RFC4138 shortcoming in step 2; should also have case c):
3556 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3557 		 * data, winupdate
3558 		 */
3559 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3560 			return 1;
3561 
3562 		if (!(flag & FLAG_DATA_ACKED)) {
3563 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3564 					    flag);
3565 			return 1;
3566 		}
3567 	} else {
3568 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3569 			/* Prevent sending of new data. */
3570 			tp->snd_cwnd = min(tp->snd_cwnd,
3571 					   tcp_packets_in_flight(tp));
3572 			return 1;
3573 		}
3574 
3575 		if ((tp->frto_counter >= 2) &&
3576 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3577 		     ((flag & FLAG_DATA_SACKED) &&
3578 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3579 			/* RFC4138 shortcoming (see comment above) */
3580 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3581 			    (flag & FLAG_NOT_DUP))
3582 				return 1;
3583 
3584 			tcp_enter_frto_loss(sk, 3, flag);
3585 			return 1;
3586 		}
3587 	}
3588 
3589 	if (tp->frto_counter == 1) {
3590 		/* tcp_may_send_now needs to see updated state */
3591 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3592 		tp->frto_counter = 2;
3593 
3594 		if (!tcp_may_send_now(sk))
3595 			tcp_enter_frto_loss(sk, 2, flag);
3596 
3597 		return 1;
3598 	} else {
3599 		switch (sysctl_tcp_frto_response) {
3600 		case 2:
3601 			tcp_undo_spur_to_response(sk, flag);
3602 			break;
3603 		case 1:
3604 			tcp_conservative_spur_to_response(tp);
3605 			break;
3606 		default:
3607 			tcp_ratehalving_spur_to_response(sk);
3608 			break;
3609 		}
3610 		tp->frto_counter = 0;
3611 		tp->undo_marker = 0;
3612 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3613 	}
3614 	return 0;
3615 }
3616 
3617 /* This routine deals with incoming acks, but not outgoing ones. */
3618 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3619 {
3620 	struct inet_connection_sock *icsk = inet_csk(sk);
3621 	struct tcp_sock *tp = tcp_sk(sk);
3622 	u32 prior_snd_una = tp->snd_una;
3623 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3624 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3625 	u32 prior_in_flight;
3626 	u32 prior_fackets;
3627 	int prior_packets;
3628 	int frto_cwnd = 0;
3629 
3630 	/* If the ack is older than previous acks
3631 	 * then we can probably ignore it.
3632 	 */
3633 	if (before(ack, prior_snd_una))
3634 		goto old_ack;
3635 
3636 	/* If the ack includes data we haven't sent yet, discard
3637 	 * this segment (RFC793 Section 3.9).
3638 	 */
3639 	if (after(ack, tp->snd_nxt))
3640 		goto invalid_ack;
3641 
3642 	if (after(ack, prior_snd_una))
3643 		flag |= FLAG_SND_UNA_ADVANCED;
3644 
3645 	if (sysctl_tcp_abc) {
3646 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3647 			tp->bytes_acked += ack - prior_snd_una;
3648 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3649 			/* we assume just one segment left network */
3650 			tp->bytes_acked += min(ack - prior_snd_una,
3651 					       tp->mss_cache);
3652 	}
3653 
3654 	prior_fackets = tp->fackets_out;
3655 	prior_in_flight = tcp_packets_in_flight(tp);
3656 
3657 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3658 		/* Window is constant, pure forward advance.
3659 		 * No more checks are required.
3660 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3661 		 */
3662 		tcp_update_wl(tp, ack_seq);
3663 		tp->snd_una = ack;
3664 		flag |= FLAG_WIN_UPDATE;
3665 
3666 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3667 
3668 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3669 	} else {
3670 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3671 			flag |= FLAG_DATA;
3672 		else
3673 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3674 
3675 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3676 
3677 		if (TCP_SKB_CB(skb)->sacked)
3678 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3679 
3680 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3681 			flag |= FLAG_ECE;
3682 
3683 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3684 	}
3685 
3686 	/* We passed data and got it acked, remove any soft error
3687 	 * log. Something worked...
3688 	 */
3689 	sk->sk_err_soft = 0;
3690 	icsk->icsk_probes_out = 0;
3691 	tp->rcv_tstamp = tcp_time_stamp;
3692 	prior_packets = tp->packets_out;
3693 	if (!prior_packets)
3694 		goto no_queue;
3695 
3696 	/* See if we can take anything off of the retransmit queue. */
3697 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3698 
3699 	if (tp->frto_counter)
3700 		frto_cwnd = tcp_process_frto(sk, flag);
3701 	/* Guarantee sacktag reordering detection against wrap-arounds */
3702 	if (before(tp->frto_highmark, tp->snd_una))
3703 		tp->frto_highmark = 0;
3704 
3705 	if (tcp_ack_is_dubious(sk, flag)) {
3706 		/* Advance CWND, if state allows this. */
3707 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3708 		    tcp_may_raise_cwnd(sk, flag))
3709 			tcp_cong_avoid(sk, ack, prior_in_flight);
3710 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3711 				      flag);
3712 	} else {
3713 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3714 			tcp_cong_avoid(sk, ack, prior_in_flight);
3715 	}
3716 
3717 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3718 		dst_confirm(__sk_dst_get(sk));
3719 
3720 	return 1;
3721 
3722 no_queue:
3723 	/* If this ack opens up a zero window, clear backoff.  It was
3724 	 * being used to time the probes, and is probably far higher than
3725 	 * it needs to be for normal retransmission.
3726 	 */
3727 	if (tcp_send_head(sk))
3728 		tcp_ack_probe(sk);
3729 	return 1;
3730 
3731 invalid_ack:
3732 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3733 	return -1;
3734 
3735 old_ack:
3736 	if (TCP_SKB_CB(skb)->sacked) {
3737 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3738 		if (icsk->icsk_ca_state == TCP_CA_Open)
3739 			tcp_try_keep_open(sk);
3740 	}
3741 
3742 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3743 	return 0;
3744 }
3745 
3746 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3747  * But, this can also be called on packets in the established flow when
3748  * the fast version below fails.
3749  */
3750 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3751 		       u8 **hvpp, int estab)
3752 {
3753 	unsigned char *ptr;
3754 	struct tcphdr *th = tcp_hdr(skb);
3755 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3756 
3757 	ptr = (unsigned char *)(th + 1);
3758 	opt_rx->saw_tstamp = 0;
3759 
3760 	while (length > 0) {
3761 		int opcode = *ptr++;
3762 		int opsize;
3763 
3764 		switch (opcode) {
3765 		case TCPOPT_EOL:
3766 			return;
3767 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3768 			length--;
3769 			continue;
3770 		default:
3771 			opsize = *ptr++;
3772 			if (opsize < 2) /* "silly options" */
3773 				return;
3774 			if (opsize > length)
3775 				return;	/* don't parse partial options */
3776 			switch (opcode) {
3777 			case TCPOPT_MSS:
3778 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3779 					u16 in_mss = get_unaligned_be16(ptr);
3780 					if (in_mss) {
3781 						if (opt_rx->user_mss &&
3782 						    opt_rx->user_mss < in_mss)
3783 							in_mss = opt_rx->user_mss;
3784 						opt_rx->mss_clamp = in_mss;
3785 					}
3786 				}
3787 				break;
3788 			case TCPOPT_WINDOW:
3789 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3790 				    !estab && sysctl_tcp_window_scaling) {
3791 					__u8 snd_wscale = *(__u8 *)ptr;
3792 					opt_rx->wscale_ok = 1;
3793 					if (snd_wscale > 14) {
3794 						if (net_ratelimit())
3795 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3796 							       "scaling value %d >14 received.\n",
3797 							       snd_wscale);
3798 						snd_wscale = 14;
3799 					}
3800 					opt_rx->snd_wscale = snd_wscale;
3801 				}
3802 				break;
3803 			case TCPOPT_TIMESTAMP:
3804 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3805 				    ((estab && opt_rx->tstamp_ok) ||
3806 				     (!estab && sysctl_tcp_timestamps))) {
3807 					opt_rx->saw_tstamp = 1;
3808 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3809 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3810 				}
3811 				break;
3812 			case TCPOPT_SACK_PERM:
3813 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3814 				    !estab && sysctl_tcp_sack) {
3815 					opt_rx->sack_ok = 1;
3816 					tcp_sack_reset(opt_rx);
3817 				}
3818 				break;
3819 
3820 			case TCPOPT_SACK:
3821 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3822 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3823 				   opt_rx->sack_ok) {
3824 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3825 				}
3826 				break;
3827 #ifdef CONFIG_TCP_MD5SIG
3828 			case TCPOPT_MD5SIG:
3829 				/*
3830 				 * The MD5 Hash has already been
3831 				 * checked (see tcp_v{4,6}_do_rcv()).
3832 				 */
3833 				break;
3834 #endif
3835 			case TCPOPT_COOKIE:
3836 				/* This option is variable length.
3837 				 */
3838 				switch (opsize) {
3839 				case TCPOLEN_COOKIE_BASE:
3840 					/* not yet implemented */
3841 					break;
3842 				case TCPOLEN_COOKIE_PAIR:
3843 					/* not yet implemented */
3844 					break;
3845 				case TCPOLEN_COOKIE_MIN+0:
3846 				case TCPOLEN_COOKIE_MIN+2:
3847 				case TCPOLEN_COOKIE_MIN+4:
3848 				case TCPOLEN_COOKIE_MIN+6:
3849 				case TCPOLEN_COOKIE_MAX:
3850 					/* 16-bit multiple */
3851 					opt_rx->cookie_plus = opsize;
3852 					*hvpp = ptr;
3853 					break;
3854 				default:
3855 					/* ignore option */
3856 					break;
3857 				}
3858 				break;
3859 			}
3860 
3861 			ptr += opsize-2;
3862 			length -= opsize;
3863 		}
3864 	}
3865 }
3866 EXPORT_SYMBOL(tcp_parse_options);
3867 
3868 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3869 {
3870 	__be32 *ptr = (__be32 *)(th + 1);
3871 
3872 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3873 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3874 		tp->rx_opt.saw_tstamp = 1;
3875 		++ptr;
3876 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3877 		++ptr;
3878 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3879 		return 1;
3880 	}
3881 	return 0;
3882 }
3883 
3884 /* Fast parse options. This hopes to only see timestamps.
3885  * If it is wrong it falls back on tcp_parse_options().
3886  */
3887 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3888 				  struct tcp_sock *tp, u8 **hvpp)
3889 {
3890 	/* In the spirit of fast parsing, compare doff directly to constant
3891 	 * values.  Because equality is used, short doff can be ignored here.
3892 	 */
3893 	if (th->doff == (sizeof(*th) / 4)) {
3894 		tp->rx_opt.saw_tstamp = 0;
3895 		return 0;
3896 	} else if (tp->rx_opt.tstamp_ok &&
3897 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3898 		if (tcp_parse_aligned_timestamp(tp, th))
3899 			return 1;
3900 	}
3901 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3902 	return 1;
3903 }
3904 
3905 #ifdef CONFIG_TCP_MD5SIG
3906 /*
3907  * Parse MD5 Signature option
3908  */
3909 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3910 {
3911 	int length = (th->doff << 2) - sizeof (*th);
3912 	u8 *ptr = (u8*)(th + 1);
3913 
3914 	/* If the TCP option is too short, we can short cut */
3915 	if (length < TCPOLEN_MD5SIG)
3916 		return NULL;
3917 
3918 	while (length > 0) {
3919 		int opcode = *ptr++;
3920 		int opsize;
3921 
3922 		switch(opcode) {
3923 		case TCPOPT_EOL:
3924 			return NULL;
3925 		case TCPOPT_NOP:
3926 			length--;
3927 			continue;
3928 		default:
3929 			opsize = *ptr++;
3930 			if (opsize < 2 || opsize > length)
3931 				return NULL;
3932 			if (opcode == TCPOPT_MD5SIG)
3933 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3934 		}
3935 		ptr += opsize - 2;
3936 		length -= opsize;
3937 	}
3938 	return NULL;
3939 }
3940 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3941 #endif
3942 
3943 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3944 {
3945 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3946 	tp->rx_opt.ts_recent_stamp = get_seconds();
3947 }
3948 
3949 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3950 {
3951 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3952 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3953 		 * extra check below makes sure this can only happen
3954 		 * for pure ACK frames.  -DaveM
3955 		 *
3956 		 * Not only, also it occurs for expired timestamps.
3957 		 */
3958 
3959 		if (tcp_paws_check(&tp->rx_opt, 0))
3960 			tcp_store_ts_recent(tp);
3961 	}
3962 }
3963 
3964 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3965  *
3966  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3967  * it can pass through stack. So, the following predicate verifies that
3968  * this segment is not used for anything but congestion avoidance or
3969  * fast retransmit. Moreover, we even are able to eliminate most of such
3970  * second order effects, if we apply some small "replay" window (~RTO)
3971  * to timestamp space.
3972  *
3973  * All these measures still do not guarantee that we reject wrapped ACKs
3974  * on networks with high bandwidth, when sequence space is recycled fastly,
3975  * but it guarantees that such events will be very rare and do not affect
3976  * connection seriously. This doesn't look nice, but alas, PAWS is really
3977  * buggy extension.
3978  *
3979  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3980  * states that events when retransmit arrives after original data are rare.
3981  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3982  * the biggest problem on large power networks even with minor reordering.
3983  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3984  * up to bandwidth of 18Gigabit/sec. 8) ]
3985  */
3986 
3987 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3988 {
3989 	struct tcp_sock *tp = tcp_sk(sk);
3990 	struct tcphdr *th = tcp_hdr(skb);
3991 	u32 seq = TCP_SKB_CB(skb)->seq;
3992 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3993 
3994 	return (/* 1. Pure ACK with correct sequence number. */
3995 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3996 
3997 		/* 2. ... and duplicate ACK. */
3998 		ack == tp->snd_una &&
3999 
4000 		/* 3. ... and does not update window. */
4001 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4002 
4003 		/* 4. ... and sits in replay window. */
4004 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4005 }
4006 
4007 static inline int tcp_paws_discard(const struct sock *sk,
4008 				   const struct sk_buff *skb)
4009 {
4010 	const struct tcp_sock *tp = tcp_sk(sk);
4011 
4012 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4013 	       !tcp_disordered_ack(sk, skb);
4014 }
4015 
4016 /* Check segment sequence number for validity.
4017  *
4018  * Segment controls are considered valid, if the segment
4019  * fits to the window after truncation to the window. Acceptability
4020  * of data (and SYN, FIN, of course) is checked separately.
4021  * See tcp_data_queue(), for example.
4022  *
4023  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4024  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4025  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4026  * (borrowed from freebsd)
4027  */
4028 
4029 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4030 {
4031 	return	!before(end_seq, tp->rcv_wup) &&
4032 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4033 }
4034 
4035 /* When we get a reset we do this. */
4036 static void tcp_reset(struct sock *sk)
4037 {
4038 	/* We want the right error as BSD sees it (and indeed as we do). */
4039 	switch (sk->sk_state) {
4040 	case TCP_SYN_SENT:
4041 		sk->sk_err = ECONNREFUSED;
4042 		break;
4043 	case TCP_CLOSE_WAIT:
4044 		sk->sk_err = EPIPE;
4045 		break;
4046 	case TCP_CLOSE:
4047 		return;
4048 	default:
4049 		sk->sk_err = ECONNRESET;
4050 	}
4051 
4052 	if (!sock_flag(sk, SOCK_DEAD))
4053 		sk->sk_error_report(sk);
4054 
4055 	tcp_done(sk);
4056 }
4057 
4058 /*
4059  * 	Process the FIN bit. This now behaves as it is supposed to work
4060  *	and the FIN takes effect when it is validly part of sequence
4061  *	space. Not before when we get holes.
4062  *
4063  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4064  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4065  *	TIME-WAIT)
4066  *
4067  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4068  *	close and we go into CLOSING (and later onto TIME-WAIT)
4069  *
4070  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4071  */
4072 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4073 {
4074 	struct tcp_sock *tp = tcp_sk(sk);
4075 
4076 	inet_csk_schedule_ack(sk);
4077 
4078 	sk->sk_shutdown |= RCV_SHUTDOWN;
4079 	sock_set_flag(sk, SOCK_DONE);
4080 
4081 	switch (sk->sk_state) {
4082 	case TCP_SYN_RECV:
4083 	case TCP_ESTABLISHED:
4084 		/* Move to CLOSE_WAIT */
4085 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4086 		inet_csk(sk)->icsk_ack.pingpong = 1;
4087 		break;
4088 
4089 	case TCP_CLOSE_WAIT:
4090 	case TCP_CLOSING:
4091 		/* Received a retransmission of the FIN, do
4092 		 * nothing.
4093 		 */
4094 		break;
4095 	case TCP_LAST_ACK:
4096 		/* RFC793: Remain in the LAST-ACK state. */
4097 		break;
4098 
4099 	case TCP_FIN_WAIT1:
4100 		/* This case occurs when a simultaneous close
4101 		 * happens, we must ack the received FIN and
4102 		 * enter the CLOSING state.
4103 		 */
4104 		tcp_send_ack(sk);
4105 		tcp_set_state(sk, TCP_CLOSING);
4106 		break;
4107 	case TCP_FIN_WAIT2:
4108 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4109 		tcp_send_ack(sk);
4110 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4111 		break;
4112 	default:
4113 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4114 		 * cases we should never reach this piece of code.
4115 		 */
4116 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4117 		       __func__, sk->sk_state);
4118 		break;
4119 	}
4120 
4121 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4122 	 * Probably, we should reset in this case. For now drop them.
4123 	 */
4124 	__skb_queue_purge(&tp->out_of_order_queue);
4125 	if (tcp_is_sack(tp))
4126 		tcp_sack_reset(&tp->rx_opt);
4127 	sk_mem_reclaim(sk);
4128 
4129 	if (!sock_flag(sk, SOCK_DEAD)) {
4130 		sk->sk_state_change(sk);
4131 
4132 		/* Do not send POLL_HUP for half duplex close. */
4133 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4134 		    sk->sk_state == TCP_CLOSE)
4135 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4136 		else
4137 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4138 	}
4139 }
4140 
4141 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4142 				  u32 end_seq)
4143 {
4144 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4145 		if (before(seq, sp->start_seq))
4146 			sp->start_seq = seq;
4147 		if (after(end_seq, sp->end_seq))
4148 			sp->end_seq = end_seq;
4149 		return 1;
4150 	}
4151 	return 0;
4152 }
4153 
4154 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4155 {
4156 	struct tcp_sock *tp = tcp_sk(sk);
4157 
4158 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4159 		int mib_idx;
4160 
4161 		if (before(seq, tp->rcv_nxt))
4162 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4163 		else
4164 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4165 
4166 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4167 
4168 		tp->rx_opt.dsack = 1;
4169 		tp->duplicate_sack[0].start_seq = seq;
4170 		tp->duplicate_sack[0].end_seq = end_seq;
4171 	}
4172 }
4173 
4174 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4175 {
4176 	struct tcp_sock *tp = tcp_sk(sk);
4177 
4178 	if (!tp->rx_opt.dsack)
4179 		tcp_dsack_set(sk, seq, end_seq);
4180 	else
4181 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4182 }
4183 
4184 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4185 {
4186 	struct tcp_sock *tp = tcp_sk(sk);
4187 
4188 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4189 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4190 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4191 		tcp_enter_quickack_mode(sk);
4192 
4193 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4194 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4195 
4196 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4197 				end_seq = tp->rcv_nxt;
4198 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4199 		}
4200 	}
4201 
4202 	tcp_send_ack(sk);
4203 }
4204 
4205 /* These routines update the SACK block as out-of-order packets arrive or
4206  * in-order packets close up the sequence space.
4207  */
4208 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4209 {
4210 	int this_sack;
4211 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4212 	struct tcp_sack_block *swalk = sp + 1;
4213 
4214 	/* See if the recent change to the first SACK eats into
4215 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4216 	 */
4217 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4218 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4219 			int i;
4220 
4221 			/* Zap SWALK, by moving every further SACK up by one slot.
4222 			 * Decrease num_sacks.
4223 			 */
4224 			tp->rx_opt.num_sacks--;
4225 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4226 				sp[i] = sp[i + 1];
4227 			continue;
4228 		}
4229 		this_sack++, swalk++;
4230 	}
4231 }
4232 
4233 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4234 {
4235 	struct tcp_sock *tp = tcp_sk(sk);
4236 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4237 	int cur_sacks = tp->rx_opt.num_sacks;
4238 	int this_sack;
4239 
4240 	if (!cur_sacks)
4241 		goto new_sack;
4242 
4243 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4244 		if (tcp_sack_extend(sp, seq, end_seq)) {
4245 			/* Rotate this_sack to the first one. */
4246 			for (; this_sack > 0; this_sack--, sp--)
4247 				swap(*sp, *(sp - 1));
4248 			if (cur_sacks > 1)
4249 				tcp_sack_maybe_coalesce(tp);
4250 			return;
4251 		}
4252 	}
4253 
4254 	/* Could not find an adjacent existing SACK, build a new one,
4255 	 * put it at the front, and shift everyone else down.  We
4256 	 * always know there is at least one SACK present already here.
4257 	 *
4258 	 * If the sack array is full, forget about the last one.
4259 	 */
4260 	if (this_sack >= TCP_NUM_SACKS) {
4261 		this_sack--;
4262 		tp->rx_opt.num_sacks--;
4263 		sp--;
4264 	}
4265 	for (; this_sack > 0; this_sack--, sp--)
4266 		*sp = *(sp - 1);
4267 
4268 new_sack:
4269 	/* Build the new head SACK, and we're done. */
4270 	sp->start_seq = seq;
4271 	sp->end_seq = end_seq;
4272 	tp->rx_opt.num_sacks++;
4273 }
4274 
4275 /* RCV.NXT advances, some SACKs should be eaten. */
4276 
4277 static void tcp_sack_remove(struct tcp_sock *tp)
4278 {
4279 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4280 	int num_sacks = tp->rx_opt.num_sacks;
4281 	int this_sack;
4282 
4283 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4284 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4285 		tp->rx_opt.num_sacks = 0;
4286 		return;
4287 	}
4288 
4289 	for (this_sack = 0; this_sack < num_sacks;) {
4290 		/* Check if the start of the sack is covered by RCV.NXT. */
4291 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4292 			int i;
4293 
4294 			/* RCV.NXT must cover all the block! */
4295 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4296 
4297 			/* Zap this SACK, by moving forward any other SACKS. */
4298 			for (i=this_sack+1; i < num_sacks; i++)
4299 				tp->selective_acks[i-1] = tp->selective_acks[i];
4300 			num_sacks--;
4301 			continue;
4302 		}
4303 		this_sack++;
4304 		sp++;
4305 	}
4306 	tp->rx_opt.num_sacks = num_sacks;
4307 }
4308 
4309 /* This one checks to see if we can put data from the
4310  * out_of_order queue into the receive_queue.
4311  */
4312 static void tcp_ofo_queue(struct sock *sk)
4313 {
4314 	struct tcp_sock *tp = tcp_sk(sk);
4315 	__u32 dsack_high = tp->rcv_nxt;
4316 	struct sk_buff *skb;
4317 
4318 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4319 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4320 			break;
4321 
4322 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4323 			__u32 dsack = dsack_high;
4324 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4325 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4326 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4327 		}
4328 
4329 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4330 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4331 			__skb_unlink(skb, &tp->out_of_order_queue);
4332 			__kfree_skb(skb);
4333 			continue;
4334 		}
4335 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4336 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4337 			   TCP_SKB_CB(skb)->end_seq);
4338 
4339 		__skb_unlink(skb, &tp->out_of_order_queue);
4340 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4341 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4342 		if (tcp_hdr(skb)->fin)
4343 			tcp_fin(skb, sk, tcp_hdr(skb));
4344 	}
4345 }
4346 
4347 static int tcp_prune_ofo_queue(struct sock *sk);
4348 static int tcp_prune_queue(struct sock *sk);
4349 
4350 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4351 {
4352 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4353 	    !sk_rmem_schedule(sk, size)) {
4354 
4355 		if (tcp_prune_queue(sk) < 0)
4356 			return -1;
4357 
4358 		if (!sk_rmem_schedule(sk, size)) {
4359 			if (!tcp_prune_ofo_queue(sk))
4360 				return -1;
4361 
4362 			if (!sk_rmem_schedule(sk, size))
4363 				return -1;
4364 		}
4365 	}
4366 	return 0;
4367 }
4368 
4369 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4370 {
4371 	struct tcphdr *th = tcp_hdr(skb);
4372 	struct tcp_sock *tp = tcp_sk(sk);
4373 	int eaten = -1;
4374 
4375 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4376 		goto drop;
4377 
4378 	skb_dst_drop(skb);
4379 	__skb_pull(skb, th->doff * 4);
4380 
4381 	TCP_ECN_accept_cwr(tp, skb);
4382 
4383 	tp->rx_opt.dsack = 0;
4384 
4385 	/*  Queue data for delivery to the user.
4386 	 *  Packets in sequence go to the receive queue.
4387 	 *  Out of sequence packets to the out_of_order_queue.
4388 	 */
4389 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4390 		if (tcp_receive_window(tp) == 0)
4391 			goto out_of_window;
4392 
4393 		/* Ok. In sequence. In window. */
4394 		if (tp->ucopy.task == current &&
4395 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4396 		    sock_owned_by_user(sk) && !tp->urg_data) {
4397 			int chunk = min_t(unsigned int, skb->len,
4398 					  tp->ucopy.len);
4399 
4400 			__set_current_state(TASK_RUNNING);
4401 
4402 			local_bh_enable();
4403 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4404 				tp->ucopy.len -= chunk;
4405 				tp->copied_seq += chunk;
4406 				eaten = (chunk == skb->len && !th->fin);
4407 				tcp_rcv_space_adjust(sk);
4408 			}
4409 			local_bh_disable();
4410 		}
4411 
4412 		if (eaten <= 0) {
4413 queue_and_out:
4414 			if (eaten < 0 &&
4415 			    tcp_try_rmem_schedule(sk, skb->truesize))
4416 				goto drop;
4417 
4418 			skb_set_owner_r(skb, sk);
4419 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4420 		}
4421 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4422 		if (skb->len)
4423 			tcp_event_data_recv(sk, skb);
4424 		if (th->fin)
4425 			tcp_fin(skb, sk, th);
4426 
4427 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4428 			tcp_ofo_queue(sk);
4429 
4430 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4431 			 * gap in queue is filled.
4432 			 */
4433 			if (skb_queue_empty(&tp->out_of_order_queue))
4434 				inet_csk(sk)->icsk_ack.pingpong = 0;
4435 		}
4436 
4437 		if (tp->rx_opt.num_sacks)
4438 			tcp_sack_remove(tp);
4439 
4440 		tcp_fast_path_check(sk);
4441 
4442 		if (eaten > 0)
4443 			__kfree_skb(skb);
4444 		else if (!sock_flag(sk, SOCK_DEAD))
4445 			sk->sk_data_ready(sk, 0);
4446 		return;
4447 	}
4448 
4449 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4450 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4451 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4452 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4453 
4454 out_of_window:
4455 		tcp_enter_quickack_mode(sk);
4456 		inet_csk_schedule_ack(sk);
4457 drop:
4458 		__kfree_skb(skb);
4459 		return;
4460 	}
4461 
4462 	/* Out of window. F.e. zero window probe. */
4463 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4464 		goto out_of_window;
4465 
4466 	tcp_enter_quickack_mode(sk);
4467 
4468 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4469 		/* Partial packet, seq < rcv_next < end_seq */
4470 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4471 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4472 			   TCP_SKB_CB(skb)->end_seq);
4473 
4474 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4475 
4476 		/* If window is closed, drop tail of packet. But after
4477 		 * remembering D-SACK for its head made in previous line.
4478 		 */
4479 		if (!tcp_receive_window(tp))
4480 			goto out_of_window;
4481 		goto queue_and_out;
4482 	}
4483 
4484 	TCP_ECN_check_ce(tp, skb);
4485 
4486 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4487 		goto drop;
4488 
4489 	/* Disable header prediction. */
4490 	tp->pred_flags = 0;
4491 	inet_csk_schedule_ack(sk);
4492 
4493 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4494 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4495 
4496 	skb_set_owner_r(skb, sk);
4497 
4498 	if (!skb_peek(&tp->out_of_order_queue)) {
4499 		/* Initial out of order segment, build 1 SACK. */
4500 		if (tcp_is_sack(tp)) {
4501 			tp->rx_opt.num_sacks = 1;
4502 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4503 			tp->selective_acks[0].end_seq =
4504 						TCP_SKB_CB(skb)->end_seq;
4505 		}
4506 		__skb_queue_head(&tp->out_of_order_queue, skb);
4507 	} else {
4508 		struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4509 		u32 seq = TCP_SKB_CB(skb)->seq;
4510 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4511 
4512 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4513 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4514 
4515 			if (!tp->rx_opt.num_sacks ||
4516 			    tp->selective_acks[0].end_seq != seq)
4517 				goto add_sack;
4518 
4519 			/* Common case: data arrive in order after hole. */
4520 			tp->selective_acks[0].end_seq = end_seq;
4521 			return;
4522 		}
4523 
4524 		/* Find place to insert this segment. */
4525 		while (1) {
4526 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4527 				break;
4528 			if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4529 				skb1 = NULL;
4530 				break;
4531 			}
4532 			skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4533 		}
4534 
4535 		/* Do skb overlap to previous one? */
4536 		if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4537 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4538 				/* All the bits are present. Drop. */
4539 				__kfree_skb(skb);
4540 				tcp_dsack_set(sk, seq, end_seq);
4541 				goto add_sack;
4542 			}
4543 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4544 				/* Partial overlap. */
4545 				tcp_dsack_set(sk, seq,
4546 					      TCP_SKB_CB(skb1)->end_seq);
4547 			} else {
4548 				if (skb_queue_is_first(&tp->out_of_order_queue,
4549 						       skb1))
4550 					skb1 = NULL;
4551 				else
4552 					skb1 = skb_queue_prev(
4553 						&tp->out_of_order_queue,
4554 						skb1);
4555 			}
4556 		}
4557 		if (!skb1)
4558 			__skb_queue_head(&tp->out_of_order_queue, skb);
4559 		else
4560 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4561 
4562 		/* And clean segments covered by new one as whole. */
4563 		while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4564 			skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4565 
4566 			if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4567 				break;
4568 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4569 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4570 						 end_seq);
4571 				break;
4572 			}
4573 			__skb_unlink(skb1, &tp->out_of_order_queue);
4574 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4575 					 TCP_SKB_CB(skb1)->end_seq);
4576 			__kfree_skb(skb1);
4577 		}
4578 
4579 add_sack:
4580 		if (tcp_is_sack(tp))
4581 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4582 	}
4583 }
4584 
4585 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4586 					struct sk_buff_head *list)
4587 {
4588 	struct sk_buff *next = NULL;
4589 
4590 	if (!skb_queue_is_last(list, skb))
4591 		next = skb_queue_next(list, skb);
4592 
4593 	__skb_unlink(skb, list);
4594 	__kfree_skb(skb);
4595 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4596 
4597 	return next;
4598 }
4599 
4600 /* Collapse contiguous sequence of skbs head..tail with
4601  * sequence numbers start..end.
4602  *
4603  * If tail is NULL, this means until the end of the list.
4604  *
4605  * Segments with FIN/SYN are not collapsed (only because this
4606  * simplifies code)
4607  */
4608 static void
4609 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4610 	     struct sk_buff *head, struct sk_buff *tail,
4611 	     u32 start, u32 end)
4612 {
4613 	struct sk_buff *skb, *n;
4614 	bool end_of_skbs;
4615 
4616 	/* First, check that queue is collapsible and find
4617 	 * the point where collapsing can be useful. */
4618 	skb = head;
4619 restart:
4620 	end_of_skbs = true;
4621 	skb_queue_walk_from_safe(list, skb, n) {
4622 		if (skb == tail)
4623 			break;
4624 		/* No new bits? It is possible on ofo queue. */
4625 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4626 			skb = tcp_collapse_one(sk, skb, list);
4627 			if (!skb)
4628 				break;
4629 			goto restart;
4630 		}
4631 
4632 		/* The first skb to collapse is:
4633 		 * - not SYN/FIN and
4634 		 * - bloated or contains data before "start" or
4635 		 *   overlaps to the next one.
4636 		 */
4637 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4638 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4639 		     before(TCP_SKB_CB(skb)->seq, start))) {
4640 			end_of_skbs = false;
4641 			break;
4642 		}
4643 
4644 		if (!skb_queue_is_last(list, skb)) {
4645 			struct sk_buff *next = skb_queue_next(list, skb);
4646 			if (next != tail &&
4647 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4648 				end_of_skbs = false;
4649 				break;
4650 			}
4651 		}
4652 
4653 		/* Decided to skip this, advance start seq. */
4654 		start = TCP_SKB_CB(skb)->end_seq;
4655 	}
4656 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4657 		return;
4658 
4659 	while (before(start, end)) {
4660 		struct sk_buff *nskb;
4661 		unsigned int header = skb_headroom(skb);
4662 		int copy = SKB_MAX_ORDER(header, 0);
4663 
4664 		/* Too big header? This can happen with IPv6. */
4665 		if (copy < 0)
4666 			return;
4667 		if (end - start < copy)
4668 			copy = end - start;
4669 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4670 		if (!nskb)
4671 			return;
4672 
4673 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4674 		skb_set_network_header(nskb, (skb_network_header(skb) -
4675 					      skb->head));
4676 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4677 						skb->head));
4678 		skb_reserve(nskb, header);
4679 		memcpy(nskb->head, skb->head, header);
4680 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4681 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4682 		__skb_queue_before(list, skb, nskb);
4683 		skb_set_owner_r(nskb, sk);
4684 
4685 		/* Copy data, releasing collapsed skbs. */
4686 		while (copy > 0) {
4687 			int offset = start - TCP_SKB_CB(skb)->seq;
4688 			int size = TCP_SKB_CB(skb)->end_seq - start;
4689 
4690 			BUG_ON(offset < 0);
4691 			if (size > 0) {
4692 				size = min(copy, size);
4693 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4694 					BUG();
4695 				TCP_SKB_CB(nskb)->end_seq += size;
4696 				copy -= size;
4697 				start += size;
4698 			}
4699 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4700 				skb = tcp_collapse_one(sk, skb, list);
4701 				if (!skb ||
4702 				    skb == tail ||
4703 				    tcp_hdr(skb)->syn ||
4704 				    tcp_hdr(skb)->fin)
4705 					return;
4706 			}
4707 		}
4708 	}
4709 }
4710 
4711 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4712  * and tcp_collapse() them until all the queue is collapsed.
4713  */
4714 static void tcp_collapse_ofo_queue(struct sock *sk)
4715 {
4716 	struct tcp_sock *tp = tcp_sk(sk);
4717 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4718 	struct sk_buff *head;
4719 	u32 start, end;
4720 
4721 	if (skb == NULL)
4722 		return;
4723 
4724 	start = TCP_SKB_CB(skb)->seq;
4725 	end = TCP_SKB_CB(skb)->end_seq;
4726 	head = skb;
4727 
4728 	for (;;) {
4729 		struct sk_buff *next = NULL;
4730 
4731 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4732 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4733 		skb = next;
4734 
4735 		/* Segment is terminated when we see gap or when
4736 		 * we are at the end of all the queue. */
4737 		if (!skb ||
4738 		    after(TCP_SKB_CB(skb)->seq, end) ||
4739 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4740 			tcp_collapse(sk, &tp->out_of_order_queue,
4741 				     head, skb, start, end);
4742 			head = skb;
4743 			if (!skb)
4744 				break;
4745 			/* Start new segment */
4746 			start = TCP_SKB_CB(skb)->seq;
4747 			end = TCP_SKB_CB(skb)->end_seq;
4748 		} else {
4749 			if (before(TCP_SKB_CB(skb)->seq, start))
4750 				start = TCP_SKB_CB(skb)->seq;
4751 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4752 				end = TCP_SKB_CB(skb)->end_seq;
4753 		}
4754 	}
4755 }
4756 
4757 /*
4758  * Purge the out-of-order queue.
4759  * Return true if queue was pruned.
4760  */
4761 static int tcp_prune_ofo_queue(struct sock *sk)
4762 {
4763 	struct tcp_sock *tp = tcp_sk(sk);
4764 	int res = 0;
4765 
4766 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4767 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4768 		__skb_queue_purge(&tp->out_of_order_queue);
4769 
4770 		/* Reset SACK state.  A conforming SACK implementation will
4771 		 * do the same at a timeout based retransmit.  When a connection
4772 		 * is in a sad state like this, we care only about integrity
4773 		 * of the connection not performance.
4774 		 */
4775 		if (tp->rx_opt.sack_ok)
4776 			tcp_sack_reset(&tp->rx_opt);
4777 		sk_mem_reclaim(sk);
4778 		res = 1;
4779 	}
4780 	return res;
4781 }
4782 
4783 /* Reduce allocated memory if we can, trying to get
4784  * the socket within its memory limits again.
4785  *
4786  * Return less than zero if we should start dropping frames
4787  * until the socket owning process reads some of the data
4788  * to stabilize the situation.
4789  */
4790 static int tcp_prune_queue(struct sock *sk)
4791 {
4792 	struct tcp_sock *tp = tcp_sk(sk);
4793 
4794 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4795 
4796 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4797 
4798 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4799 		tcp_clamp_window(sk);
4800 	else if (tcp_memory_pressure)
4801 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4802 
4803 	tcp_collapse_ofo_queue(sk);
4804 	if (!skb_queue_empty(&sk->sk_receive_queue))
4805 		tcp_collapse(sk, &sk->sk_receive_queue,
4806 			     skb_peek(&sk->sk_receive_queue),
4807 			     NULL,
4808 			     tp->copied_seq, tp->rcv_nxt);
4809 	sk_mem_reclaim(sk);
4810 
4811 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4812 		return 0;
4813 
4814 	/* Collapsing did not help, destructive actions follow.
4815 	 * This must not ever occur. */
4816 
4817 	tcp_prune_ofo_queue(sk);
4818 
4819 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4820 		return 0;
4821 
4822 	/* If we are really being abused, tell the caller to silently
4823 	 * drop receive data on the floor.  It will get retransmitted
4824 	 * and hopefully then we'll have sufficient space.
4825 	 */
4826 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4827 
4828 	/* Massive buffer overcommit. */
4829 	tp->pred_flags = 0;
4830 	return -1;
4831 }
4832 
4833 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4834  * As additional protections, we do not touch cwnd in retransmission phases,
4835  * and if application hit its sndbuf limit recently.
4836  */
4837 void tcp_cwnd_application_limited(struct sock *sk)
4838 {
4839 	struct tcp_sock *tp = tcp_sk(sk);
4840 
4841 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4842 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4843 		/* Limited by application or receiver window. */
4844 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4845 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4846 		if (win_used < tp->snd_cwnd) {
4847 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4848 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4849 		}
4850 		tp->snd_cwnd_used = 0;
4851 	}
4852 	tp->snd_cwnd_stamp = tcp_time_stamp;
4853 }
4854 
4855 static int tcp_should_expand_sndbuf(struct sock *sk)
4856 {
4857 	struct tcp_sock *tp = tcp_sk(sk);
4858 
4859 	/* If the user specified a specific send buffer setting, do
4860 	 * not modify it.
4861 	 */
4862 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4863 		return 0;
4864 
4865 	/* If we are under global TCP memory pressure, do not expand.  */
4866 	if (tcp_memory_pressure)
4867 		return 0;
4868 
4869 	/* If we are under soft global TCP memory pressure, do not expand.  */
4870 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4871 		return 0;
4872 
4873 	/* If we filled the congestion window, do not expand.  */
4874 	if (tp->packets_out >= tp->snd_cwnd)
4875 		return 0;
4876 
4877 	return 1;
4878 }
4879 
4880 /* When incoming ACK allowed to free some skb from write_queue,
4881  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4882  * on the exit from tcp input handler.
4883  *
4884  * PROBLEM: sndbuf expansion does not work well with largesend.
4885  */
4886 static void tcp_new_space(struct sock *sk)
4887 {
4888 	struct tcp_sock *tp = tcp_sk(sk);
4889 
4890 	if (tcp_should_expand_sndbuf(sk)) {
4891 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4892 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4893 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4894 				     tp->reordering + 1);
4895 		sndmem *= 2 * demanded;
4896 		if (sndmem > sk->sk_sndbuf)
4897 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4898 		tp->snd_cwnd_stamp = tcp_time_stamp;
4899 	}
4900 
4901 	sk->sk_write_space(sk);
4902 }
4903 
4904 static void tcp_check_space(struct sock *sk)
4905 {
4906 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4907 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4908 		if (sk->sk_socket &&
4909 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4910 			tcp_new_space(sk);
4911 	}
4912 }
4913 
4914 static inline void tcp_data_snd_check(struct sock *sk)
4915 {
4916 	tcp_push_pending_frames(sk);
4917 	tcp_check_space(sk);
4918 }
4919 
4920 /*
4921  * Check if sending an ack is needed.
4922  */
4923 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4924 {
4925 	struct tcp_sock *tp = tcp_sk(sk);
4926 
4927 	    /* More than one full frame received... */
4928 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4929 	     /* ... and right edge of window advances far enough.
4930 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4931 	      */
4932 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4933 	    /* We ACK each frame or... */
4934 	    tcp_in_quickack_mode(sk) ||
4935 	    /* We have out of order data. */
4936 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4937 		/* Then ack it now */
4938 		tcp_send_ack(sk);
4939 	} else {
4940 		/* Else, send delayed ack. */
4941 		tcp_send_delayed_ack(sk);
4942 	}
4943 }
4944 
4945 static inline void tcp_ack_snd_check(struct sock *sk)
4946 {
4947 	if (!inet_csk_ack_scheduled(sk)) {
4948 		/* We sent a data segment already. */
4949 		return;
4950 	}
4951 	__tcp_ack_snd_check(sk, 1);
4952 }
4953 
4954 /*
4955  *	This routine is only called when we have urgent data
4956  *	signaled. Its the 'slow' part of tcp_urg. It could be
4957  *	moved inline now as tcp_urg is only called from one
4958  *	place. We handle URGent data wrong. We have to - as
4959  *	BSD still doesn't use the correction from RFC961.
4960  *	For 1003.1g we should support a new option TCP_STDURG to permit
4961  *	either form (or just set the sysctl tcp_stdurg).
4962  */
4963 
4964 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4965 {
4966 	struct tcp_sock *tp = tcp_sk(sk);
4967 	u32 ptr = ntohs(th->urg_ptr);
4968 
4969 	if (ptr && !sysctl_tcp_stdurg)
4970 		ptr--;
4971 	ptr += ntohl(th->seq);
4972 
4973 	/* Ignore urgent data that we've already seen and read. */
4974 	if (after(tp->copied_seq, ptr))
4975 		return;
4976 
4977 	/* Do not replay urg ptr.
4978 	 *
4979 	 * NOTE: interesting situation not covered by specs.
4980 	 * Misbehaving sender may send urg ptr, pointing to segment,
4981 	 * which we already have in ofo queue. We are not able to fetch
4982 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4983 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4984 	 * situations. But it is worth to think about possibility of some
4985 	 * DoSes using some hypothetical application level deadlock.
4986 	 */
4987 	if (before(ptr, tp->rcv_nxt))
4988 		return;
4989 
4990 	/* Do we already have a newer (or duplicate) urgent pointer? */
4991 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4992 		return;
4993 
4994 	/* Tell the world about our new urgent pointer. */
4995 	sk_send_sigurg(sk);
4996 
4997 	/* We may be adding urgent data when the last byte read was
4998 	 * urgent. To do this requires some care. We cannot just ignore
4999 	 * tp->copied_seq since we would read the last urgent byte again
5000 	 * as data, nor can we alter copied_seq until this data arrives
5001 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5002 	 *
5003 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5004 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5005 	 * and expect that both A and B disappear from stream. This is _wrong_.
5006 	 * Though this happens in BSD with high probability, this is occasional.
5007 	 * Any application relying on this is buggy. Note also, that fix "works"
5008 	 * only in this artificial test. Insert some normal data between A and B and we will
5009 	 * decline of BSD again. Verdict: it is better to remove to trap
5010 	 * buggy users.
5011 	 */
5012 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5013 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5014 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5015 		tp->copied_seq++;
5016 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5017 			__skb_unlink(skb, &sk->sk_receive_queue);
5018 			__kfree_skb(skb);
5019 		}
5020 	}
5021 
5022 	tp->urg_data = TCP_URG_NOTYET;
5023 	tp->urg_seq = ptr;
5024 
5025 	/* Disable header prediction. */
5026 	tp->pred_flags = 0;
5027 }
5028 
5029 /* This is the 'fast' part of urgent handling. */
5030 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5031 {
5032 	struct tcp_sock *tp = tcp_sk(sk);
5033 
5034 	/* Check if we get a new urgent pointer - normally not. */
5035 	if (th->urg)
5036 		tcp_check_urg(sk, th);
5037 
5038 	/* Do we wait for any urgent data? - normally not... */
5039 	if (tp->urg_data == TCP_URG_NOTYET) {
5040 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5041 			  th->syn;
5042 
5043 		/* Is the urgent pointer pointing into this packet? */
5044 		if (ptr < skb->len) {
5045 			u8 tmp;
5046 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5047 				BUG();
5048 			tp->urg_data = TCP_URG_VALID | tmp;
5049 			if (!sock_flag(sk, SOCK_DEAD))
5050 				sk->sk_data_ready(sk, 0);
5051 		}
5052 	}
5053 }
5054 
5055 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5056 {
5057 	struct tcp_sock *tp = tcp_sk(sk);
5058 	int chunk = skb->len - hlen;
5059 	int err;
5060 
5061 	local_bh_enable();
5062 	if (skb_csum_unnecessary(skb))
5063 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5064 	else
5065 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5066 						       tp->ucopy.iov);
5067 
5068 	if (!err) {
5069 		tp->ucopy.len -= chunk;
5070 		tp->copied_seq += chunk;
5071 		tcp_rcv_space_adjust(sk);
5072 	}
5073 
5074 	local_bh_disable();
5075 	return err;
5076 }
5077 
5078 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5079 					    struct sk_buff *skb)
5080 {
5081 	__sum16 result;
5082 
5083 	if (sock_owned_by_user(sk)) {
5084 		local_bh_enable();
5085 		result = __tcp_checksum_complete(skb);
5086 		local_bh_disable();
5087 	} else {
5088 		result = __tcp_checksum_complete(skb);
5089 	}
5090 	return result;
5091 }
5092 
5093 static inline int tcp_checksum_complete_user(struct sock *sk,
5094 					     struct sk_buff *skb)
5095 {
5096 	return !skb_csum_unnecessary(skb) &&
5097 	       __tcp_checksum_complete_user(sk, skb);
5098 }
5099 
5100 #ifdef CONFIG_NET_DMA
5101 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5102 				  int hlen)
5103 {
5104 	struct tcp_sock *tp = tcp_sk(sk);
5105 	int chunk = skb->len - hlen;
5106 	int dma_cookie;
5107 	int copied_early = 0;
5108 
5109 	if (tp->ucopy.wakeup)
5110 		return 0;
5111 
5112 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5113 		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5114 
5115 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5116 
5117 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5118 							 skb, hlen,
5119 							 tp->ucopy.iov, chunk,
5120 							 tp->ucopy.pinned_list);
5121 
5122 		if (dma_cookie < 0)
5123 			goto out;
5124 
5125 		tp->ucopy.dma_cookie = dma_cookie;
5126 		copied_early = 1;
5127 
5128 		tp->ucopy.len -= chunk;
5129 		tp->copied_seq += chunk;
5130 		tcp_rcv_space_adjust(sk);
5131 
5132 		if ((tp->ucopy.len == 0) ||
5133 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5134 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5135 			tp->ucopy.wakeup = 1;
5136 			sk->sk_data_ready(sk, 0);
5137 		}
5138 	} else if (chunk > 0) {
5139 		tp->ucopy.wakeup = 1;
5140 		sk->sk_data_ready(sk, 0);
5141 	}
5142 out:
5143 	return copied_early;
5144 }
5145 #endif /* CONFIG_NET_DMA */
5146 
5147 /* Does PAWS and seqno based validation of an incoming segment, flags will
5148  * play significant role here.
5149  */
5150 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5151 			      struct tcphdr *th, int syn_inerr)
5152 {
5153 	u8 *hash_location;
5154 	struct tcp_sock *tp = tcp_sk(sk);
5155 
5156 	/* RFC1323: H1. Apply PAWS check first. */
5157 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5158 	    tp->rx_opt.saw_tstamp &&
5159 	    tcp_paws_discard(sk, skb)) {
5160 		if (!th->rst) {
5161 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5162 			tcp_send_dupack(sk, skb);
5163 			goto discard;
5164 		}
5165 		/* Reset is accepted even if it did not pass PAWS. */
5166 	}
5167 
5168 	/* Step 1: check sequence number */
5169 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5170 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5171 		 * (RST) segments are validated by checking their SEQ-fields."
5172 		 * And page 69: "If an incoming segment is not acceptable,
5173 		 * an acknowledgment should be sent in reply (unless the RST
5174 		 * bit is set, if so drop the segment and return)".
5175 		 */
5176 		if (!th->rst)
5177 			tcp_send_dupack(sk, skb);
5178 		goto discard;
5179 	}
5180 
5181 	/* Step 2: check RST bit */
5182 	if (th->rst) {
5183 		tcp_reset(sk);
5184 		goto discard;
5185 	}
5186 
5187 	/* ts_recent update must be made after we are sure that the packet
5188 	 * is in window.
5189 	 */
5190 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5191 
5192 	/* step 3: check security and precedence [ignored] */
5193 
5194 	/* step 4: Check for a SYN in window. */
5195 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5196 		if (syn_inerr)
5197 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5198 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5199 		tcp_reset(sk);
5200 		return -1;
5201 	}
5202 
5203 	return 1;
5204 
5205 discard:
5206 	__kfree_skb(skb);
5207 	return 0;
5208 }
5209 
5210 /*
5211  *	TCP receive function for the ESTABLISHED state.
5212  *
5213  *	It is split into a fast path and a slow path. The fast path is
5214  * 	disabled when:
5215  *	- A zero window was announced from us - zero window probing
5216  *        is only handled properly in the slow path.
5217  *	- Out of order segments arrived.
5218  *	- Urgent data is expected.
5219  *	- There is no buffer space left
5220  *	- Unexpected TCP flags/window values/header lengths are received
5221  *	  (detected by checking the TCP header against pred_flags)
5222  *	- Data is sent in both directions. Fast path only supports pure senders
5223  *	  or pure receivers (this means either the sequence number or the ack
5224  *	  value must stay constant)
5225  *	- Unexpected TCP option.
5226  *
5227  *	When these conditions are not satisfied it drops into a standard
5228  *	receive procedure patterned after RFC793 to handle all cases.
5229  *	The first three cases are guaranteed by proper pred_flags setting,
5230  *	the rest is checked inline. Fast processing is turned on in
5231  *	tcp_data_queue when everything is OK.
5232  */
5233 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5234 			struct tcphdr *th, unsigned len)
5235 {
5236 	struct tcp_sock *tp = tcp_sk(sk);
5237 	int res;
5238 
5239 	/*
5240 	 *	Header prediction.
5241 	 *	The code loosely follows the one in the famous
5242 	 *	"30 instruction TCP receive" Van Jacobson mail.
5243 	 *
5244 	 *	Van's trick is to deposit buffers into socket queue
5245 	 *	on a device interrupt, to call tcp_recv function
5246 	 *	on the receive process context and checksum and copy
5247 	 *	the buffer to user space. smart...
5248 	 *
5249 	 *	Our current scheme is not silly either but we take the
5250 	 *	extra cost of the net_bh soft interrupt processing...
5251 	 *	We do checksum and copy also but from device to kernel.
5252 	 */
5253 
5254 	tp->rx_opt.saw_tstamp = 0;
5255 
5256 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5257 	 *	if header_prediction is to be made
5258 	 *	'S' will always be tp->tcp_header_len >> 2
5259 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5260 	 *  turn it off	(when there are holes in the receive
5261 	 *	 space for instance)
5262 	 *	PSH flag is ignored.
5263 	 */
5264 
5265 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5266 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5267 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5268 		int tcp_header_len = tp->tcp_header_len;
5269 
5270 		/* Timestamp header prediction: tcp_header_len
5271 		 * is automatically equal to th->doff*4 due to pred_flags
5272 		 * match.
5273 		 */
5274 
5275 		/* Check timestamp */
5276 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5277 			/* No? Slow path! */
5278 			if (!tcp_parse_aligned_timestamp(tp, th))
5279 				goto slow_path;
5280 
5281 			/* If PAWS failed, check it more carefully in slow path */
5282 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5283 				goto slow_path;
5284 
5285 			/* DO NOT update ts_recent here, if checksum fails
5286 			 * and timestamp was corrupted part, it will result
5287 			 * in a hung connection since we will drop all
5288 			 * future packets due to the PAWS test.
5289 			 */
5290 		}
5291 
5292 		if (len <= tcp_header_len) {
5293 			/* Bulk data transfer: sender */
5294 			if (len == tcp_header_len) {
5295 				/* Predicted packet is in window by definition.
5296 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5297 				 * Hence, check seq<=rcv_wup reduces to:
5298 				 */
5299 				if (tcp_header_len ==
5300 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5301 				    tp->rcv_nxt == tp->rcv_wup)
5302 					tcp_store_ts_recent(tp);
5303 
5304 				/* We know that such packets are checksummed
5305 				 * on entry.
5306 				 */
5307 				tcp_ack(sk, skb, 0);
5308 				__kfree_skb(skb);
5309 				tcp_data_snd_check(sk);
5310 				return 0;
5311 			} else { /* Header too small */
5312 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5313 				goto discard;
5314 			}
5315 		} else {
5316 			int eaten = 0;
5317 			int copied_early = 0;
5318 
5319 			if (tp->copied_seq == tp->rcv_nxt &&
5320 			    len - tcp_header_len <= tp->ucopy.len) {
5321 #ifdef CONFIG_NET_DMA
5322 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5323 					copied_early = 1;
5324 					eaten = 1;
5325 				}
5326 #endif
5327 				if (tp->ucopy.task == current &&
5328 				    sock_owned_by_user(sk) && !copied_early) {
5329 					__set_current_state(TASK_RUNNING);
5330 
5331 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5332 						eaten = 1;
5333 				}
5334 				if (eaten) {
5335 					/* Predicted packet is in window by definition.
5336 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5337 					 * Hence, check seq<=rcv_wup reduces to:
5338 					 */
5339 					if (tcp_header_len ==
5340 					    (sizeof(struct tcphdr) +
5341 					     TCPOLEN_TSTAMP_ALIGNED) &&
5342 					    tp->rcv_nxt == tp->rcv_wup)
5343 						tcp_store_ts_recent(tp);
5344 
5345 					tcp_rcv_rtt_measure_ts(sk, skb);
5346 
5347 					__skb_pull(skb, tcp_header_len);
5348 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5349 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5350 				}
5351 				if (copied_early)
5352 					tcp_cleanup_rbuf(sk, skb->len);
5353 			}
5354 			if (!eaten) {
5355 				if (tcp_checksum_complete_user(sk, skb))
5356 					goto csum_error;
5357 
5358 				/* Predicted packet is in window by definition.
5359 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5360 				 * Hence, check seq<=rcv_wup reduces to:
5361 				 */
5362 				if (tcp_header_len ==
5363 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5364 				    tp->rcv_nxt == tp->rcv_wup)
5365 					tcp_store_ts_recent(tp);
5366 
5367 				tcp_rcv_rtt_measure_ts(sk, skb);
5368 
5369 				if ((int)skb->truesize > sk->sk_forward_alloc)
5370 					goto step5;
5371 
5372 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5373 
5374 				/* Bulk data transfer: receiver */
5375 				__skb_pull(skb, tcp_header_len);
5376 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5377 				skb_set_owner_r(skb, sk);
5378 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5379 			}
5380 
5381 			tcp_event_data_recv(sk, skb);
5382 
5383 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5384 				/* Well, only one small jumplet in fast path... */
5385 				tcp_ack(sk, skb, FLAG_DATA);
5386 				tcp_data_snd_check(sk);
5387 				if (!inet_csk_ack_scheduled(sk))
5388 					goto no_ack;
5389 			}
5390 
5391 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5392 				__tcp_ack_snd_check(sk, 0);
5393 no_ack:
5394 #ifdef CONFIG_NET_DMA
5395 			if (copied_early)
5396 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5397 			else
5398 #endif
5399 			if (eaten)
5400 				__kfree_skb(skb);
5401 			else
5402 				sk->sk_data_ready(sk, 0);
5403 			return 0;
5404 		}
5405 	}
5406 
5407 slow_path:
5408 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5409 		goto csum_error;
5410 
5411 	/*
5412 	 *	Standard slow path.
5413 	 */
5414 
5415 	res = tcp_validate_incoming(sk, skb, th, 1);
5416 	if (res <= 0)
5417 		return -res;
5418 
5419 step5:
5420 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5421 		goto discard;
5422 
5423 	tcp_rcv_rtt_measure_ts(sk, skb);
5424 
5425 	/* Process urgent data. */
5426 	tcp_urg(sk, skb, th);
5427 
5428 	/* step 7: process the segment text */
5429 	tcp_data_queue(sk, skb);
5430 
5431 	tcp_data_snd_check(sk);
5432 	tcp_ack_snd_check(sk);
5433 	return 0;
5434 
5435 csum_error:
5436 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5437 
5438 discard:
5439 	__kfree_skb(skb);
5440 	return 0;
5441 }
5442 EXPORT_SYMBOL(tcp_rcv_established);
5443 
5444 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5445 					 struct tcphdr *th, unsigned len)
5446 {
5447 	u8 *hash_location;
5448 	struct inet_connection_sock *icsk = inet_csk(sk);
5449 	struct tcp_sock *tp = tcp_sk(sk);
5450 	struct tcp_cookie_values *cvp = tp->cookie_values;
5451 	int saved_clamp = tp->rx_opt.mss_clamp;
5452 
5453 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5454 
5455 	if (th->ack) {
5456 		/* rfc793:
5457 		 * "If the state is SYN-SENT then
5458 		 *    first check the ACK bit
5459 		 *      If the ACK bit is set
5460 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5461 		 *        a reset (unless the RST bit is set, if so drop
5462 		 *        the segment and return)"
5463 		 *
5464 		 *  We do not send data with SYN, so that RFC-correct
5465 		 *  test reduces to:
5466 		 */
5467 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5468 			goto reset_and_undo;
5469 
5470 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5471 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5472 			     tcp_time_stamp)) {
5473 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5474 			goto reset_and_undo;
5475 		}
5476 
5477 		/* Now ACK is acceptable.
5478 		 *
5479 		 * "If the RST bit is set
5480 		 *    If the ACK was acceptable then signal the user "error:
5481 		 *    connection reset", drop the segment, enter CLOSED state,
5482 		 *    delete TCB, and return."
5483 		 */
5484 
5485 		if (th->rst) {
5486 			tcp_reset(sk);
5487 			goto discard;
5488 		}
5489 
5490 		/* rfc793:
5491 		 *   "fifth, if neither of the SYN or RST bits is set then
5492 		 *    drop the segment and return."
5493 		 *
5494 		 *    See note below!
5495 		 *                                        --ANK(990513)
5496 		 */
5497 		if (!th->syn)
5498 			goto discard_and_undo;
5499 
5500 		/* rfc793:
5501 		 *   "If the SYN bit is on ...
5502 		 *    are acceptable then ...
5503 		 *    (our SYN has been ACKed), change the connection
5504 		 *    state to ESTABLISHED..."
5505 		 */
5506 
5507 		TCP_ECN_rcv_synack(tp, th);
5508 
5509 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5510 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5511 
5512 		/* Ok.. it's good. Set up sequence numbers and
5513 		 * move to established.
5514 		 */
5515 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5516 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5517 
5518 		/* RFC1323: The window in SYN & SYN/ACK segments is
5519 		 * never scaled.
5520 		 */
5521 		tp->snd_wnd = ntohs(th->window);
5522 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5523 
5524 		if (!tp->rx_opt.wscale_ok) {
5525 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5526 			tp->window_clamp = min(tp->window_clamp, 65535U);
5527 		}
5528 
5529 		if (tp->rx_opt.saw_tstamp) {
5530 			tp->rx_opt.tstamp_ok	   = 1;
5531 			tp->tcp_header_len =
5532 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5533 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5534 			tcp_store_ts_recent(tp);
5535 		} else {
5536 			tp->tcp_header_len = sizeof(struct tcphdr);
5537 		}
5538 
5539 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5540 			tcp_enable_fack(tp);
5541 
5542 		tcp_mtup_init(sk);
5543 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5544 		tcp_initialize_rcv_mss(sk);
5545 
5546 		/* Remember, tcp_poll() does not lock socket!
5547 		 * Change state from SYN-SENT only after copied_seq
5548 		 * is initialized. */
5549 		tp->copied_seq = tp->rcv_nxt;
5550 
5551 		if (cvp != NULL &&
5552 		    cvp->cookie_pair_size > 0 &&
5553 		    tp->rx_opt.cookie_plus > 0) {
5554 			int cookie_size = tp->rx_opt.cookie_plus
5555 					- TCPOLEN_COOKIE_BASE;
5556 			int cookie_pair_size = cookie_size
5557 					     + cvp->cookie_desired;
5558 
5559 			/* A cookie extension option was sent and returned.
5560 			 * Note that each incoming SYNACK replaces the
5561 			 * Responder cookie.  The initial exchange is most
5562 			 * fragile, as protection against spoofing relies
5563 			 * entirely upon the sequence and timestamp (above).
5564 			 * This replacement strategy allows the correct pair to
5565 			 * pass through, while any others will be filtered via
5566 			 * Responder verification later.
5567 			 */
5568 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5569 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5570 				       hash_location, cookie_size);
5571 				cvp->cookie_pair_size = cookie_pair_size;
5572 			}
5573 		}
5574 
5575 		smp_mb();
5576 		tcp_set_state(sk, TCP_ESTABLISHED);
5577 
5578 		security_inet_conn_established(sk, skb);
5579 
5580 		/* Make sure socket is routed, for correct metrics.  */
5581 		icsk->icsk_af_ops->rebuild_header(sk);
5582 
5583 		tcp_init_metrics(sk);
5584 
5585 		tcp_init_congestion_control(sk);
5586 
5587 		/* Prevent spurious tcp_cwnd_restart() on first data
5588 		 * packet.
5589 		 */
5590 		tp->lsndtime = tcp_time_stamp;
5591 
5592 		tcp_init_buffer_space(sk);
5593 
5594 		if (sock_flag(sk, SOCK_KEEPOPEN))
5595 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5596 
5597 		if (!tp->rx_opt.snd_wscale)
5598 			__tcp_fast_path_on(tp, tp->snd_wnd);
5599 		else
5600 			tp->pred_flags = 0;
5601 
5602 		if (!sock_flag(sk, SOCK_DEAD)) {
5603 			sk->sk_state_change(sk);
5604 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5605 		}
5606 
5607 		if (sk->sk_write_pending ||
5608 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5609 		    icsk->icsk_ack.pingpong) {
5610 			/* Save one ACK. Data will be ready after
5611 			 * several ticks, if write_pending is set.
5612 			 *
5613 			 * It may be deleted, but with this feature tcpdumps
5614 			 * look so _wonderfully_ clever, that I was not able
5615 			 * to stand against the temptation 8)     --ANK
5616 			 */
5617 			inet_csk_schedule_ack(sk);
5618 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5619 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5620 			tcp_incr_quickack(sk);
5621 			tcp_enter_quickack_mode(sk);
5622 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5623 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5624 
5625 discard:
5626 			__kfree_skb(skb);
5627 			return 0;
5628 		} else {
5629 			tcp_send_ack(sk);
5630 		}
5631 		return -1;
5632 	}
5633 
5634 	/* No ACK in the segment */
5635 
5636 	if (th->rst) {
5637 		/* rfc793:
5638 		 * "If the RST bit is set
5639 		 *
5640 		 *      Otherwise (no ACK) drop the segment and return."
5641 		 */
5642 
5643 		goto discard_and_undo;
5644 	}
5645 
5646 	/* PAWS check. */
5647 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5648 	    tcp_paws_reject(&tp->rx_opt, 0))
5649 		goto discard_and_undo;
5650 
5651 	if (th->syn) {
5652 		/* We see SYN without ACK. It is attempt of
5653 		 * simultaneous connect with crossed SYNs.
5654 		 * Particularly, it can be connect to self.
5655 		 */
5656 		tcp_set_state(sk, TCP_SYN_RECV);
5657 
5658 		if (tp->rx_opt.saw_tstamp) {
5659 			tp->rx_opt.tstamp_ok = 1;
5660 			tcp_store_ts_recent(tp);
5661 			tp->tcp_header_len =
5662 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5663 		} else {
5664 			tp->tcp_header_len = sizeof(struct tcphdr);
5665 		}
5666 
5667 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5668 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5669 
5670 		/* RFC1323: The window in SYN & SYN/ACK segments is
5671 		 * never scaled.
5672 		 */
5673 		tp->snd_wnd    = ntohs(th->window);
5674 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5675 		tp->max_window = tp->snd_wnd;
5676 
5677 		TCP_ECN_rcv_syn(tp, th);
5678 
5679 		tcp_mtup_init(sk);
5680 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5681 		tcp_initialize_rcv_mss(sk);
5682 
5683 		tcp_send_synack(sk);
5684 #if 0
5685 		/* Note, we could accept data and URG from this segment.
5686 		 * There are no obstacles to make this.
5687 		 *
5688 		 * However, if we ignore data in ACKless segments sometimes,
5689 		 * we have no reasons to accept it sometimes.
5690 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5691 		 * is not flawless. So, discard packet for sanity.
5692 		 * Uncomment this return to process the data.
5693 		 */
5694 		return -1;
5695 #else
5696 		goto discard;
5697 #endif
5698 	}
5699 	/* "fifth, if neither of the SYN or RST bits is set then
5700 	 * drop the segment and return."
5701 	 */
5702 
5703 discard_and_undo:
5704 	tcp_clear_options(&tp->rx_opt);
5705 	tp->rx_opt.mss_clamp = saved_clamp;
5706 	goto discard;
5707 
5708 reset_and_undo:
5709 	tcp_clear_options(&tp->rx_opt);
5710 	tp->rx_opt.mss_clamp = saved_clamp;
5711 	return 1;
5712 }
5713 
5714 /*
5715  *	This function implements the receiving procedure of RFC 793 for
5716  *	all states except ESTABLISHED and TIME_WAIT.
5717  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5718  *	address independent.
5719  */
5720 
5721 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5722 			  struct tcphdr *th, unsigned len)
5723 {
5724 	struct tcp_sock *tp = tcp_sk(sk);
5725 	struct inet_connection_sock *icsk = inet_csk(sk);
5726 	int queued = 0;
5727 	int res;
5728 
5729 	tp->rx_opt.saw_tstamp = 0;
5730 
5731 	switch (sk->sk_state) {
5732 	case TCP_CLOSE:
5733 		goto discard;
5734 
5735 	case TCP_LISTEN:
5736 		if (th->ack)
5737 			return 1;
5738 
5739 		if (th->rst)
5740 			goto discard;
5741 
5742 		if (th->syn) {
5743 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5744 				return 1;
5745 
5746 			/* Now we have several options: In theory there is
5747 			 * nothing else in the frame. KA9Q has an option to
5748 			 * send data with the syn, BSD accepts data with the
5749 			 * syn up to the [to be] advertised window and
5750 			 * Solaris 2.1 gives you a protocol error. For now
5751 			 * we just ignore it, that fits the spec precisely
5752 			 * and avoids incompatibilities. It would be nice in
5753 			 * future to drop through and process the data.
5754 			 *
5755 			 * Now that TTCP is starting to be used we ought to
5756 			 * queue this data.
5757 			 * But, this leaves one open to an easy denial of
5758 			 * service attack, and SYN cookies can't defend
5759 			 * against this problem. So, we drop the data
5760 			 * in the interest of security over speed unless
5761 			 * it's still in use.
5762 			 */
5763 			kfree_skb(skb);
5764 			return 0;
5765 		}
5766 		goto discard;
5767 
5768 	case TCP_SYN_SENT:
5769 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5770 		if (queued >= 0)
5771 			return queued;
5772 
5773 		/* Do step6 onward by hand. */
5774 		tcp_urg(sk, skb, th);
5775 		__kfree_skb(skb);
5776 		tcp_data_snd_check(sk);
5777 		return 0;
5778 	}
5779 
5780 	res = tcp_validate_incoming(sk, skb, th, 0);
5781 	if (res <= 0)
5782 		return -res;
5783 
5784 	/* step 5: check the ACK field */
5785 	if (th->ack) {
5786 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5787 
5788 		switch (sk->sk_state) {
5789 		case TCP_SYN_RECV:
5790 			if (acceptable) {
5791 				tp->copied_seq = tp->rcv_nxt;
5792 				smp_mb();
5793 				tcp_set_state(sk, TCP_ESTABLISHED);
5794 				sk->sk_state_change(sk);
5795 
5796 				/* Note, that this wakeup is only for marginal
5797 				 * crossed SYN case. Passively open sockets
5798 				 * are not waked up, because sk->sk_sleep ==
5799 				 * NULL and sk->sk_socket == NULL.
5800 				 */
5801 				if (sk->sk_socket)
5802 					sk_wake_async(sk,
5803 						      SOCK_WAKE_IO, POLL_OUT);
5804 
5805 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5806 				tp->snd_wnd = ntohs(th->window) <<
5807 					      tp->rx_opt.snd_wscale;
5808 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5809 
5810 				/* tcp_ack considers this ACK as duplicate
5811 				 * and does not calculate rtt.
5812 				 * Force it here.
5813 				 */
5814 				tcp_ack_update_rtt(sk, 0, 0);
5815 
5816 				if (tp->rx_opt.tstamp_ok)
5817 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5818 
5819 				/* Make sure socket is routed, for
5820 				 * correct metrics.
5821 				 */
5822 				icsk->icsk_af_ops->rebuild_header(sk);
5823 
5824 				tcp_init_metrics(sk);
5825 
5826 				tcp_init_congestion_control(sk);
5827 
5828 				/* Prevent spurious tcp_cwnd_restart() on
5829 				 * first data packet.
5830 				 */
5831 				tp->lsndtime = tcp_time_stamp;
5832 
5833 				tcp_mtup_init(sk);
5834 				tcp_initialize_rcv_mss(sk);
5835 				tcp_init_buffer_space(sk);
5836 				tcp_fast_path_on(tp);
5837 			} else {
5838 				return 1;
5839 			}
5840 			break;
5841 
5842 		case TCP_FIN_WAIT1:
5843 			if (tp->snd_una == tp->write_seq) {
5844 				tcp_set_state(sk, TCP_FIN_WAIT2);
5845 				sk->sk_shutdown |= SEND_SHUTDOWN;
5846 				dst_confirm(__sk_dst_get(sk));
5847 
5848 				if (!sock_flag(sk, SOCK_DEAD))
5849 					/* Wake up lingering close() */
5850 					sk->sk_state_change(sk);
5851 				else {
5852 					int tmo;
5853 
5854 					if (tp->linger2 < 0 ||
5855 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5856 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5857 						tcp_done(sk);
5858 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5859 						return 1;
5860 					}
5861 
5862 					tmo = tcp_fin_time(sk);
5863 					if (tmo > TCP_TIMEWAIT_LEN) {
5864 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5865 					} else if (th->fin || sock_owned_by_user(sk)) {
5866 						/* Bad case. We could lose such FIN otherwise.
5867 						 * It is not a big problem, but it looks confusing
5868 						 * and not so rare event. We still can lose it now,
5869 						 * if it spins in bh_lock_sock(), but it is really
5870 						 * marginal case.
5871 						 */
5872 						inet_csk_reset_keepalive_timer(sk, tmo);
5873 					} else {
5874 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5875 						goto discard;
5876 					}
5877 				}
5878 			}
5879 			break;
5880 
5881 		case TCP_CLOSING:
5882 			if (tp->snd_una == tp->write_seq) {
5883 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5884 				goto discard;
5885 			}
5886 			break;
5887 
5888 		case TCP_LAST_ACK:
5889 			if (tp->snd_una == tp->write_seq) {
5890 				tcp_update_metrics(sk);
5891 				tcp_done(sk);
5892 				goto discard;
5893 			}
5894 			break;
5895 		}
5896 	} else
5897 		goto discard;
5898 
5899 	/* step 6: check the URG bit */
5900 	tcp_urg(sk, skb, th);
5901 
5902 	/* step 7: process the segment text */
5903 	switch (sk->sk_state) {
5904 	case TCP_CLOSE_WAIT:
5905 	case TCP_CLOSING:
5906 	case TCP_LAST_ACK:
5907 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5908 			break;
5909 	case TCP_FIN_WAIT1:
5910 	case TCP_FIN_WAIT2:
5911 		/* RFC 793 says to queue data in these states,
5912 		 * RFC 1122 says we MUST send a reset.
5913 		 * BSD 4.4 also does reset.
5914 		 */
5915 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5916 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5917 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5918 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5919 				tcp_reset(sk);
5920 				return 1;
5921 			}
5922 		}
5923 		/* Fall through */
5924 	case TCP_ESTABLISHED:
5925 		tcp_data_queue(sk, skb);
5926 		queued = 1;
5927 		break;
5928 	}
5929 
5930 	/* tcp_data could move socket to TIME-WAIT */
5931 	if (sk->sk_state != TCP_CLOSE) {
5932 		tcp_data_snd_check(sk);
5933 		tcp_ack_snd_check(sk);
5934 	}
5935 
5936 	if (!queued) {
5937 discard:
5938 		__kfree_skb(skb);
5939 	}
5940 	return 0;
5941 }
5942 EXPORT_SYMBOL(tcp_rcv_state_process);
5943