xref: /linux/net/ipv4/tcp_input.c (revision d1e879ec600f9b3bdd253167533959facfefb17b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/proto_memory.h>
76 #include <net/inet_common.h>
77 #include <linux/ipsec.h>
78 #include <linux/unaligned.h>
79 #include <linux/errqueue.h>
80 #include <trace/events/tcp.h>
81 #include <linux/jump_label_ratelimit.h>
82 #include <net/busy_poll.h>
83 #include <net/mptcp.h>
84 
85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86 
87 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
88 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
89 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
90 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
91 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
92 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
93 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
94 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
95 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
96 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
97 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
99 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
103 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
104 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
105 
106 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
109 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
110 
111 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
112 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
113 
114 #define REXMIT_NONE	0 /* no loss recovery to do */
115 #define REXMIT_LOST	1 /* retransmit packets marked lost */
116 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
117 
118 #if IS_ENABLED(CONFIG_TLS_DEVICE)
119 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
120 
121 void clean_acked_data_enable(struct inet_connection_sock *icsk,
122 			     void (*cad)(struct sock *sk, u32 ack_seq))
123 {
124 	icsk->icsk_clean_acked = cad;
125 	static_branch_deferred_inc(&clean_acked_data_enabled);
126 }
127 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
128 
129 void clean_acked_data_disable(struct inet_connection_sock *icsk)
130 {
131 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
132 	icsk->icsk_clean_acked = NULL;
133 }
134 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
135 
136 void clean_acked_data_flush(void)
137 {
138 	static_key_deferred_flush(&clean_acked_data_enabled);
139 }
140 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
141 #endif
142 
143 #ifdef CONFIG_CGROUP_BPF
144 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
145 {
146 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
147 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
149 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
150 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
151 	struct bpf_sock_ops_kern sock_ops;
152 
153 	if (likely(!unknown_opt && !parse_all_opt))
154 		return;
155 
156 	/* The skb will be handled in the
157 	 * bpf_skops_established() or
158 	 * bpf_skops_write_hdr_opt().
159 	 */
160 	switch (sk->sk_state) {
161 	case TCP_SYN_RECV:
162 	case TCP_SYN_SENT:
163 	case TCP_LISTEN:
164 		return;
165 	}
166 
167 	sock_owned_by_me(sk);
168 
169 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
170 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
171 	sock_ops.is_fullsock = 1;
172 	sock_ops.is_locked_tcp_sock = 1;
173 	sock_ops.sk = sk;
174 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
175 
176 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
177 }
178 
179 static void bpf_skops_established(struct sock *sk, int bpf_op,
180 				  struct sk_buff *skb)
181 {
182 	struct bpf_sock_ops_kern sock_ops;
183 
184 	sock_owned_by_me(sk);
185 
186 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
187 	sock_ops.op = bpf_op;
188 	sock_ops.is_fullsock = 1;
189 	sock_ops.is_locked_tcp_sock = 1;
190 	sock_ops.sk = sk;
191 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
192 	if (skb)
193 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
194 
195 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
196 }
197 #else
198 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
199 {
200 }
201 
202 static void bpf_skops_established(struct sock *sk, int bpf_op,
203 				  struct sk_buff *skb)
204 {
205 }
206 #endif
207 
208 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
209 				    unsigned int len)
210 {
211 	struct net_device *dev;
212 
213 	rcu_read_lock();
214 	dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
215 	if (!dev || len >= READ_ONCE(dev->mtu))
216 		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
217 			dev ? dev->name : "Unknown driver");
218 	rcu_read_unlock();
219 }
220 
221 /* Adapt the MSS value used to make delayed ack decision to the
222  * real world.
223  */
224 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
225 {
226 	struct inet_connection_sock *icsk = inet_csk(sk);
227 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
228 	unsigned int len;
229 
230 	icsk->icsk_ack.last_seg_size = 0;
231 
232 	/* skb->len may jitter because of SACKs, even if peer
233 	 * sends good full-sized frames.
234 	 */
235 	len = skb_shinfo(skb)->gso_size ? : skb->len;
236 	if (len >= icsk->icsk_ack.rcv_mss) {
237 		/* Note: divides are still a bit expensive.
238 		 * For the moment, only adjust scaling_ratio
239 		 * when we update icsk_ack.rcv_mss.
240 		 */
241 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
242 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
243 			u8 old_ratio = tcp_sk(sk)->scaling_ratio;
244 
245 			do_div(val, skb->truesize);
246 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
247 
248 			if (old_ratio != tcp_sk(sk)->scaling_ratio) {
249 				struct tcp_sock *tp = tcp_sk(sk);
250 
251 				val = tcp_win_from_space(sk, sk->sk_rcvbuf);
252 				tcp_set_window_clamp(sk, val);
253 
254 				if (tp->window_clamp < tp->rcvq_space.space)
255 					tp->rcvq_space.space = tp->window_clamp;
256 			}
257 		}
258 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
259 					       tcp_sk(sk)->advmss);
260 		/* Account for possibly-removed options */
261 		DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
262 				tcp_gro_dev_warn, sk, skb, len);
263 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
264 		 * set then it is likely the end of an application write. So
265 		 * more data may not be arriving soon, and yet the data sender
266 		 * may be waiting for an ACK if cwnd-bound or using TX zero
267 		 * copy. So we set ICSK_ACK_PUSHED here so that
268 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
269 		 * reads all of the data and is not ping-pong. If len > MSS
270 		 * then this logic does not matter (and does not hurt) because
271 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
272 		 * reads data and there is more than an MSS of unACKed data.
273 		 */
274 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
275 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
276 	} else {
277 		/* Otherwise, we make more careful check taking into account,
278 		 * that SACKs block is variable.
279 		 *
280 		 * "len" is invariant segment length, including TCP header.
281 		 */
282 		len += skb->data - skb_transport_header(skb);
283 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
284 		    /* If PSH is not set, packet should be
285 		     * full sized, provided peer TCP is not badly broken.
286 		     * This observation (if it is correct 8)) allows
287 		     * to handle super-low mtu links fairly.
288 		     */
289 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
290 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
291 			/* Subtract also invariant (if peer is RFC compliant),
292 			 * tcp header plus fixed timestamp option length.
293 			 * Resulting "len" is MSS free of SACK jitter.
294 			 */
295 			len -= tcp_sk(sk)->tcp_header_len;
296 			icsk->icsk_ack.last_seg_size = len;
297 			if (len == lss) {
298 				icsk->icsk_ack.rcv_mss = len;
299 				return;
300 			}
301 		}
302 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
303 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
304 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
305 	}
306 }
307 
308 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
309 {
310 	struct inet_connection_sock *icsk = inet_csk(sk);
311 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
312 
313 	if (quickacks == 0)
314 		quickacks = 2;
315 	quickacks = min(quickacks, max_quickacks);
316 	if (quickacks > icsk->icsk_ack.quick)
317 		icsk->icsk_ack.quick = quickacks;
318 }
319 
320 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
321 {
322 	struct inet_connection_sock *icsk = inet_csk(sk);
323 
324 	tcp_incr_quickack(sk, max_quickacks);
325 	inet_csk_exit_pingpong_mode(sk);
326 	icsk->icsk_ack.ato = TCP_ATO_MIN;
327 }
328 
329 /* Send ACKs quickly, if "quick" count is not exhausted
330  * and the session is not interactive.
331  */
332 
333 static bool tcp_in_quickack_mode(struct sock *sk)
334 {
335 	const struct inet_connection_sock *icsk = inet_csk(sk);
336 	const struct dst_entry *dst = __sk_dst_get(sk);
337 
338 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
339 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
340 }
341 
342 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
343 {
344 	if (tp->ecn_flags & TCP_ECN_OK)
345 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
346 }
347 
348 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
349 {
350 	if (tcp_hdr(skb)->cwr) {
351 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
352 
353 		/* If the sender is telling us it has entered CWR, then its
354 		 * cwnd may be very low (even just 1 packet), so we should ACK
355 		 * immediately.
356 		 */
357 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
358 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
359 	}
360 }
361 
362 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
363 {
364 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
365 }
366 
367 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
368 {
369 	struct tcp_sock *tp = tcp_sk(sk);
370 
371 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
372 	case INET_ECN_NOT_ECT:
373 		/* Funny extension: if ECT is not set on a segment,
374 		 * and we already seen ECT on a previous segment,
375 		 * it is probably a retransmit.
376 		 */
377 		if (tp->ecn_flags & TCP_ECN_SEEN)
378 			tcp_enter_quickack_mode(sk, 2);
379 		break;
380 	case INET_ECN_CE:
381 		if (tcp_ca_needs_ecn(sk))
382 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
383 
384 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
385 			/* Better not delay acks, sender can have a very low cwnd */
386 			tcp_enter_quickack_mode(sk, 2);
387 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
388 		}
389 		tp->ecn_flags |= TCP_ECN_SEEN;
390 		break;
391 	default:
392 		if (tcp_ca_needs_ecn(sk))
393 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
394 		tp->ecn_flags |= TCP_ECN_SEEN;
395 		break;
396 	}
397 }
398 
399 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
400 {
401 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
402 		__tcp_ecn_check_ce(sk, skb);
403 }
404 
405 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
406 {
407 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
408 		tp->ecn_flags &= ~TCP_ECN_OK;
409 }
410 
411 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
412 {
413 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
414 		tp->ecn_flags &= ~TCP_ECN_OK;
415 }
416 
417 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
418 {
419 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
420 		return true;
421 	return false;
422 }
423 
424 /* Buffer size and advertised window tuning.
425  *
426  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
427  */
428 
429 static void tcp_sndbuf_expand(struct sock *sk)
430 {
431 	const struct tcp_sock *tp = tcp_sk(sk);
432 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
433 	int sndmem, per_mss;
434 	u32 nr_segs;
435 
436 	/* Worst case is non GSO/TSO : each frame consumes one skb
437 	 * and skb->head is kmalloced using power of two area of memory
438 	 */
439 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
440 		  MAX_TCP_HEADER +
441 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
442 
443 	per_mss = roundup_pow_of_two(per_mss) +
444 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
445 
446 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
447 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
448 
449 	/* Fast Recovery (RFC 5681 3.2) :
450 	 * Cubic needs 1.7 factor, rounded to 2 to include
451 	 * extra cushion (application might react slowly to EPOLLOUT)
452 	 */
453 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
454 	sndmem *= nr_segs * per_mss;
455 
456 	if (sk->sk_sndbuf < sndmem)
457 		WRITE_ONCE(sk->sk_sndbuf,
458 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
459 }
460 
461 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
462  *
463  * All tcp_full_space() is split to two parts: "network" buffer, allocated
464  * forward and advertised in receiver window (tp->rcv_wnd) and
465  * "application buffer", required to isolate scheduling/application
466  * latencies from network.
467  * window_clamp is maximal advertised window. It can be less than
468  * tcp_full_space(), in this case tcp_full_space() - window_clamp
469  * is reserved for "application" buffer. The less window_clamp is
470  * the smoother our behaviour from viewpoint of network, but the lower
471  * throughput and the higher sensitivity of the connection to losses. 8)
472  *
473  * rcv_ssthresh is more strict window_clamp used at "slow start"
474  * phase to predict further behaviour of this connection.
475  * It is used for two goals:
476  * - to enforce header prediction at sender, even when application
477  *   requires some significant "application buffer". It is check #1.
478  * - to prevent pruning of receive queue because of misprediction
479  *   of receiver window. Check #2.
480  *
481  * The scheme does not work when sender sends good segments opening
482  * window and then starts to feed us spaghetti. But it should work
483  * in common situations. Otherwise, we have to rely on queue collapsing.
484  */
485 
486 /* Slow part of check#2. */
487 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
488 			     unsigned int skbtruesize)
489 {
490 	const struct tcp_sock *tp = tcp_sk(sk);
491 	/* Optimize this! */
492 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
493 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
494 
495 	while (tp->rcv_ssthresh <= window) {
496 		if (truesize <= skb->len)
497 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
498 
499 		truesize >>= 1;
500 		window >>= 1;
501 	}
502 	return 0;
503 }
504 
505 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
506  * can play nice with us, as sk_buff and skb->head might be either
507  * freed or shared with up to MAX_SKB_FRAGS segments.
508  * Only give a boost to drivers using page frag(s) to hold the frame(s),
509  * and if no payload was pulled in skb->head before reaching us.
510  */
511 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
512 {
513 	u32 truesize = skb->truesize;
514 
515 	if (adjust && !skb_headlen(skb)) {
516 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
517 		/* paranoid check, some drivers might be buggy */
518 		if (unlikely((int)truesize < (int)skb->len))
519 			truesize = skb->truesize;
520 	}
521 	return truesize;
522 }
523 
524 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
525 			    bool adjust)
526 {
527 	struct tcp_sock *tp = tcp_sk(sk);
528 	int room;
529 
530 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
531 
532 	if (room <= 0)
533 		return;
534 
535 	/* Check #1 */
536 	if (!tcp_under_memory_pressure(sk)) {
537 		unsigned int truesize = truesize_adjust(adjust, skb);
538 		int incr;
539 
540 		/* Check #2. Increase window, if skb with such overhead
541 		 * will fit to rcvbuf in future.
542 		 */
543 		if (tcp_win_from_space(sk, truesize) <= skb->len)
544 			incr = 2 * tp->advmss;
545 		else
546 			incr = __tcp_grow_window(sk, skb, truesize);
547 
548 		if (incr) {
549 			incr = max_t(int, incr, 2 * skb->len);
550 			tp->rcv_ssthresh += min(room, incr);
551 			inet_csk(sk)->icsk_ack.quick |= 1;
552 		}
553 	} else {
554 		/* Under pressure:
555 		 * Adjust rcv_ssthresh according to reserved mem
556 		 */
557 		tcp_adjust_rcv_ssthresh(sk);
558 	}
559 }
560 
561 /* 3. Try to fixup all. It is made immediately after connection enters
562  *    established state.
563  */
564 static void tcp_init_buffer_space(struct sock *sk)
565 {
566 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
567 	struct tcp_sock *tp = tcp_sk(sk);
568 	int maxwin;
569 
570 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
571 		tcp_sndbuf_expand(sk);
572 
573 	tcp_mstamp_refresh(tp);
574 	tp->rcvq_space.time = tp->tcp_mstamp;
575 	tp->rcvq_space.seq = tp->copied_seq;
576 
577 	maxwin = tcp_full_space(sk);
578 
579 	if (tp->window_clamp >= maxwin) {
580 		WRITE_ONCE(tp->window_clamp, maxwin);
581 
582 		if (tcp_app_win && maxwin > 4 * tp->advmss)
583 			WRITE_ONCE(tp->window_clamp,
584 				   max(maxwin - (maxwin >> tcp_app_win),
585 				       4 * tp->advmss));
586 	}
587 
588 	/* Force reservation of one segment. */
589 	if (tcp_app_win &&
590 	    tp->window_clamp > 2 * tp->advmss &&
591 	    tp->window_clamp + tp->advmss > maxwin)
592 		WRITE_ONCE(tp->window_clamp,
593 			   max(2 * tp->advmss, maxwin - tp->advmss));
594 
595 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
596 	tp->snd_cwnd_stamp = tcp_jiffies32;
597 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
598 				    (u32)TCP_INIT_CWND * tp->advmss);
599 }
600 
601 /* 4. Recalculate window clamp after socket hit its memory bounds. */
602 static void tcp_clamp_window(struct sock *sk)
603 {
604 	struct tcp_sock *tp = tcp_sk(sk);
605 	struct inet_connection_sock *icsk = inet_csk(sk);
606 	struct net *net = sock_net(sk);
607 	int rmem2;
608 
609 	icsk->icsk_ack.quick = 0;
610 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
611 
612 	if (sk->sk_rcvbuf < rmem2 &&
613 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
614 	    !tcp_under_memory_pressure(sk) &&
615 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
616 		WRITE_ONCE(sk->sk_rcvbuf,
617 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
618 	}
619 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
620 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
621 }
622 
623 /* Initialize RCV_MSS value.
624  * RCV_MSS is an our guess about MSS used by the peer.
625  * We haven't any direct information about the MSS.
626  * It's better to underestimate the RCV_MSS rather than overestimate.
627  * Overestimations make us ACKing less frequently than needed.
628  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
629  */
630 void tcp_initialize_rcv_mss(struct sock *sk)
631 {
632 	const struct tcp_sock *tp = tcp_sk(sk);
633 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
634 
635 	hint = min(hint, tp->rcv_wnd / 2);
636 	hint = min(hint, TCP_MSS_DEFAULT);
637 	hint = max(hint, TCP_MIN_MSS);
638 
639 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
640 }
641 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss);
642 
643 /* Receiver "autotuning" code.
644  *
645  * The algorithm for RTT estimation w/o timestamps is based on
646  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
647  * <https://public.lanl.gov/radiant/pubs.html#DRS>
648  *
649  * More detail on this code can be found at
650  * <http://staff.psc.edu/jheffner/>,
651  * though this reference is out of date.  A new paper
652  * is pending.
653  */
654 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
655 {
656 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
657 	long m = sample;
658 
659 	if (new_sample != 0) {
660 		/* If we sample in larger samples in the non-timestamp
661 		 * case, we could grossly overestimate the RTT especially
662 		 * with chatty applications or bulk transfer apps which
663 		 * are stalled on filesystem I/O.
664 		 *
665 		 * Also, since we are only going for a minimum in the
666 		 * non-timestamp case, we do not smooth things out
667 		 * else with timestamps disabled convergence takes too
668 		 * long.
669 		 */
670 		if (!win_dep) {
671 			m -= (new_sample >> 3);
672 			new_sample += m;
673 		} else {
674 			m <<= 3;
675 			if (m < new_sample)
676 				new_sample = m;
677 		}
678 	} else {
679 		/* No previous measure. */
680 		new_sample = m << 3;
681 	}
682 
683 	tp->rcv_rtt_est.rtt_us = new_sample;
684 }
685 
686 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
687 {
688 	u32 delta_us;
689 
690 	if (tp->rcv_rtt_est.time == 0)
691 		goto new_measure;
692 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
693 		return;
694 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
695 	if (!delta_us)
696 		delta_us = 1;
697 	tcp_rcv_rtt_update(tp, delta_us, 1);
698 
699 new_measure:
700 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
701 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
702 }
703 
704 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp)
705 {
706 	u32 delta, delta_us;
707 
708 	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
709 	if (tp->tcp_usec_ts)
710 		return delta;
711 
712 	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
713 		if (!delta)
714 			delta = 1;
715 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
716 		return delta_us;
717 	}
718 	return -1;
719 }
720 
721 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
722 					  const struct sk_buff *skb)
723 {
724 	struct tcp_sock *tp = tcp_sk(sk);
725 
726 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
727 		return;
728 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
729 
730 	if (TCP_SKB_CB(skb)->end_seq -
731 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
732 		s32 delta = tcp_rtt_tsopt_us(tp);
733 
734 		if (delta >= 0)
735 			tcp_rcv_rtt_update(tp, delta, 0);
736 	}
737 }
738 
739 /*
740  * This function should be called every time data is copied to user space.
741  * It calculates the appropriate TCP receive buffer space.
742  */
743 void tcp_rcv_space_adjust(struct sock *sk)
744 {
745 	struct tcp_sock *tp = tcp_sk(sk);
746 	u32 copied;
747 	int time;
748 
749 	trace_tcp_rcv_space_adjust(sk);
750 
751 	tcp_mstamp_refresh(tp);
752 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
753 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
754 		return;
755 
756 	/* Number of bytes copied to user in last RTT */
757 	copied = tp->copied_seq - tp->rcvq_space.seq;
758 	if (copied <= tp->rcvq_space.space)
759 		goto new_measure;
760 
761 	/* A bit of theory :
762 	 * copied = bytes received in previous RTT, our base window
763 	 * To cope with packet losses, we need a 2x factor
764 	 * To cope with slow start, and sender growing its cwin by 100 %
765 	 * every RTT, we need a 4x factor, because the ACK we are sending
766 	 * now is for the next RTT, not the current one :
767 	 * <prev RTT . ><current RTT .. ><next RTT .... >
768 	 */
769 
770 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
771 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
772 		u64 rcvwin, grow;
773 		int rcvbuf;
774 
775 		/* minimal window to cope with packet losses, assuming
776 		 * steady state. Add some cushion because of small variations.
777 		 */
778 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
779 
780 		/* Accommodate for sender rate increase (eg. slow start) */
781 		grow = rcvwin * (copied - tp->rcvq_space.space);
782 		do_div(grow, tp->rcvq_space.space);
783 		rcvwin += (grow << 1);
784 
785 		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
786 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
787 		if (rcvbuf > sk->sk_rcvbuf) {
788 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
789 
790 			/* Make the window clamp follow along.  */
791 			WRITE_ONCE(tp->window_clamp,
792 				   tcp_win_from_space(sk, rcvbuf));
793 		}
794 	}
795 	tp->rcvq_space.space = copied;
796 
797 new_measure:
798 	tp->rcvq_space.seq = tp->copied_seq;
799 	tp->rcvq_space.time = tp->tcp_mstamp;
800 }
801 
802 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
803 {
804 #if IS_ENABLED(CONFIG_IPV6)
805 	struct inet_connection_sock *icsk = inet_csk(sk);
806 
807 	if (skb->protocol == htons(ETH_P_IPV6))
808 		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
809 #endif
810 }
811 
812 /* There is something which you must keep in mind when you analyze the
813  * behavior of the tp->ato delayed ack timeout interval.  When a
814  * connection starts up, we want to ack as quickly as possible.  The
815  * problem is that "good" TCP's do slow start at the beginning of data
816  * transmission.  The means that until we send the first few ACK's the
817  * sender will sit on his end and only queue most of his data, because
818  * he can only send snd_cwnd unacked packets at any given time.  For
819  * each ACK we send, he increments snd_cwnd and transmits more of his
820  * queue.  -DaveM
821  */
822 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
823 {
824 	struct tcp_sock *tp = tcp_sk(sk);
825 	struct inet_connection_sock *icsk = inet_csk(sk);
826 	u32 now;
827 
828 	inet_csk_schedule_ack(sk);
829 
830 	tcp_measure_rcv_mss(sk, skb);
831 
832 	tcp_rcv_rtt_measure(tp);
833 
834 	now = tcp_jiffies32;
835 
836 	if (!icsk->icsk_ack.ato) {
837 		/* The _first_ data packet received, initialize
838 		 * delayed ACK engine.
839 		 */
840 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
841 		icsk->icsk_ack.ato = TCP_ATO_MIN;
842 	} else {
843 		int m = now - icsk->icsk_ack.lrcvtime;
844 
845 		if (m <= TCP_ATO_MIN / 2) {
846 			/* The fastest case is the first. */
847 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
848 		} else if (m < icsk->icsk_ack.ato) {
849 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
850 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
851 				icsk->icsk_ack.ato = icsk->icsk_rto;
852 		} else if (m > icsk->icsk_rto) {
853 			/* Too long gap. Apparently sender failed to
854 			 * restart window, so that we send ACKs quickly.
855 			 */
856 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
857 		}
858 	}
859 	icsk->icsk_ack.lrcvtime = now;
860 	tcp_save_lrcv_flowlabel(sk, skb);
861 
862 	tcp_ecn_check_ce(sk, skb);
863 
864 	if (skb->len >= 128)
865 		tcp_grow_window(sk, skb, true);
866 }
867 
868 /* Called to compute a smoothed rtt estimate. The data fed to this
869  * routine either comes from timestamps, or from segments that were
870  * known _not_ to have been retransmitted [see Karn/Partridge
871  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
872  * piece by Van Jacobson.
873  * NOTE: the next three routines used to be one big routine.
874  * To save cycles in the RFC 1323 implementation it was better to break
875  * it up into three procedures. -- erics
876  */
877 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
878 {
879 	struct tcp_sock *tp = tcp_sk(sk);
880 	long m = mrtt_us; /* RTT */
881 	u32 srtt = tp->srtt_us;
882 
883 	/*	The following amusing code comes from Jacobson's
884 	 *	article in SIGCOMM '88.  Note that rtt and mdev
885 	 *	are scaled versions of rtt and mean deviation.
886 	 *	This is designed to be as fast as possible
887 	 *	m stands for "measurement".
888 	 *
889 	 *	On a 1990 paper the rto value is changed to:
890 	 *	RTO = rtt + 4 * mdev
891 	 *
892 	 * Funny. This algorithm seems to be very broken.
893 	 * These formulae increase RTO, when it should be decreased, increase
894 	 * too slowly, when it should be increased quickly, decrease too quickly
895 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
896 	 * does not matter how to _calculate_ it. Seems, it was trap
897 	 * that VJ failed to avoid. 8)
898 	 */
899 	if (srtt != 0) {
900 		m -= (srtt >> 3);	/* m is now error in rtt est */
901 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
902 		if (m < 0) {
903 			m = -m;		/* m is now abs(error) */
904 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
905 			/* This is similar to one of Eifel findings.
906 			 * Eifel blocks mdev updates when rtt decreases.
907 			 * This solution is a bit different: we use finer gain
908 			 * for mdev in this case (alpha*beta).
909 			 * Like Eifel it also prevents growth of rto,
910 			 * but also it limits too fast rto decreases,
911 			 * happening in pure Eifel.
912 			 */
913 			if (m > 0)
914 				m >>= 3;
915 		} else {
916 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
917 		}
918 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
919 		if (tp->mdev_us > tp->mdev_max_us) {
920 			tp->mdev_max_us = tp->mdev_us;
921 			if (tp->mdev_max_us > tp->rttvar_us)
922 				tp->rttvar_us = tp->mdev_max_us;
923 		}
924 		if (after(tp->snd_una, tp->rtt_seq)) {
925 			if (tp->mdev_max_us < tp->rttvar_us)
926 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
927 			tp->rtt_seq = tp->snd_nxt;
928 			tp->mdev_max_us = tcp_rto_min_us(sk);
929 
930 			tcp_bpf_rtt(sk, mrtt_us, srtt);
931 		}
932 	} else {
933 		/* no previous measure. */
934 		srtt = m << 3;		/* take the measured time to be rtt */
935 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
936 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
937 		tp->mdev_max_us = tp->rttvar_us;
938 		tp->rtt_seq = tp->snd_nxt;
939 
940 		tcp_bpf_rtt(sk, mrtt_us, srtt);
941 	}
942 	tp->srtt_us = max(1U, srtt);
943 }
944 
945 static void tcp_update_pacing_rate(struct sock *sk)
946 {
947 	const struct tcp_sock *tp = tcp_sk(sk);
948 	u64 rate;
949 
950 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
951 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
952 
953 	/* current rate is (cwnd * mss) / srtt
954 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
955 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
956 	 *
957 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
958 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
959 	 *	 end of slow start and should slow down.
960 	 */
961 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
962 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
963 	else
964 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
965 
966 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
967 
968 	if (likely(tp->srtt_us))
969 		do_div(rate, tp->srtt_us);
970 
971 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
972 	 * without any lock. We want to make sure compiler wont store
973 	 * intermediate values in this location.
974 	 */
975 	WRITE_ONCE(sk->sk_pacing_rate,
976 		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
977 }
978 
979 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
980  * routine referred to above.
981  */
982 static void tcp_set_rto(struct sock *sk)
983 {
984 	const struct tcp_sock *tp = tcp_sk(sk);
985 	/* Old crap is replaced with new one. 8)
986 	 *
987 	 * More seriously:
988 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
989 	 *    It cannot be less due to utterly erratic ACK generation made
990 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
991 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
992 	 *    is invisible. Actually, Linux-2.4 also generates erratic
993 	 *    ACKs in some circumstances.
994 	 */
995 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
996 
997 	/* 2. Fixups made earlier cannot be right.
998 	 *    If we do not estimate RTO correctly without them,
999 	 *    all the algo is pure shit and should be replaced
1000 	 *    with correct one. It is exactly, which we pretend to do.
1001 	 */
1002 
1003 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
1004 	 * guarantees that rto is higher.
1005 	 */
1006 	tcp_bound_rto(sk);
1007 }
1008 
1009 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1010 {
1011 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1012 
1013 	if (!cwnd)
1014 		cwnd = TCP_INIT_CWND;
1015 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1016 }
1017 
1018 struct tcp_sacktag_state {
1019 	/* Timestamps for earliest and latest never-retransmitted segment
1020 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1021 	 * but congestion control should still get an accurate delay signal.
1022 	 */
1023 	u64	first_sackt;
1024 	u64	last_sackt;
1025 	u32	reord;
1026 	u32	sack_delivered;
1027 	int	flag;
1028 	unsigned int mss_now;
1029 	struct rate_sample *rate;
1030 };
1031 
1032 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1033  * and spurious retransmission information if this DSACK is unlikely caused by
1034  * sender's action:
1035  * - DSACKed sequence range is larger than maximum receiver's window.
1036  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1037  */
1038 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1039 			  u32 end_seq, struct tcp_sacktag_state *state)
1040 {
1041 	u32 seq_len, dup_segs = 1;
1042 
1043 	if (!before(start_seq, end_seq))
1044 		return 0;
1045 
1046 	seq_len = end_seq - start_seq;
1047 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1048 	if (seq_len > tp->max_window)
1049 		return 0;
1050 	if (seq_len > tp->mss_cache)
1051 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1052 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1053 		state->flag |= FLAG_DSACK_TLP;
1054 
1055 	tp->dsack_dups += dup_segs;
1056 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1057 	if (tp->dsack_dups > tp->total_retrans)
1058 		return 0;
1059 
1060 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1061 	/* We increase the RACK ordering window in rounds where we receive
1062 	 * DSACKs that may have been due to reordering causing RACK to trigger
1063 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1064 	 * without having seen reordering, or that match TLP probes (TLP
1065 	 * is timer-driven, not triggered by RACK).
1066 	 */
1067 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1068 		tp->rack.dsack_seen = 1;
1069 
1070 	state->flag |= FLAG_DSACKING_ACK;
1071 	/* A spurious retransmission is delivered */
1072 	state->sack_delivered += dup_segs;
1073 
1074 	return dup_segs;
1075 }
1076 
1077 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1078  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1079  * distance is approximated in full-mss packet distance ("reordering").
1080  */
1081 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1082 				      const int ts)
1083 {
1084 	struct tcp_sock *tp = tcp_sk(sk);
1085 	const u32 mss = tp->mss_cache;
1086 	u32 fack, metric;
1087 
1088 	fack = tcp_highest_sack_seq(tp);
1089 	if (!before(low_seq, fack))
1090 		return;
1091 
1092 	metric = fack - low_seq;
1093 	if ((metric > tp->reordering * mss) && mss) {
1094 #if FASTRETRANS_DEBUG > 1
1095 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1096 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1097 			 tp->reordering,
1098 			 0,
1099 			 tp->sacked_out,
1100 			 tp->undo_marker ? tp->undo_retrans : 0);
1101 #endif
1102 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1103 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1104 	}
1105 
1106 	/* This exciting event is worth to be remembered. 8) */
1107 	tp->reord_seen++;
1108 	NET_INC_STATS(sock_net(sk),
1109 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1110 }
1111 
1112  /* This must be called before lost_out or retrans_out are updated
1113   * on a new loss, because we want to know if all skbs previously
1114   * known to be lost have already been retransmitted, indicating
1115   * that this newly lost skb is our next skb to retransmit.
1116   */
1117 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1118 {
1119 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1120 	    (tp->retransmit_skb_hint &&
1121 	     before(TCP_SKB_CB(skb)->seq,
1122 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1123 		tp->retransmit_skb_hint = skb;
1124 }
1125 
1126 /* Sum the number of packets on the wire we have marked as lost, and
1127  * notify the congestion control module that the given skb was marked lost.
1128  */
1129 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1130 {
1131 	tp->lost += tcp_skb_pcount(skb);
1132 }
1133 
1134 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1135 {
1136 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1137 	struct tcp_sock *tp = tcp_sk(sk);
1138 
1139 	if (sacked & TCPCB_SACKED_ACKED)
1140 		return;
1141 
1142 	tcp_verify_retransmit_hint(tp, skb);
1143 	if (sacked & TCPCB_LOST) {
1144 		if (sacked & TCPCB_SACKED_RETRANS) {
1145 			/* Account for retransmits that are lost again */
1146 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1147 			tp->retrans_out -= tcp_skb_pcount(skb);
1148 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1149 				      tcp_skb_pcount(skb));
1150 			tcp_notify_skb_loss_event(tp, skb);
1151 		}
1152 	} else {
1153 		tp->lost_out += tcp_skb_pcount(skb);
1154 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1155 		tcp_notify_skb_loss_event(tp, skb);
1156 	}
1157 }
1158 
1159 /* Updates the delivered and delivered_ce counts */
1160 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1161 				bool ece_ack)
1162 {
1163 	tp->delivered += delivered;
1164 	if (ece_ack)
1165 		tp->delivered_ce += delivered;
1166 }
1167 
1168 /* This procedure tags the retransmission queue when SACKs arrive.
1169  *
1170  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1171  * Packets in queue with these bits set are counted in variables
1172  * sacked_out, retrans_out and lost_out, correspondingly.
1173  *
1174  * Valid combinations are:
1175  * Tag  InFlight	Description
1176  * 0	1		- orig segment is in flight.
1177  * S	0		- nothing flies, orig reached receiver.
1178  * L	0		- nothing flies, orig lost by net.
1179  * R	2		- both orig and retransmit are in flight.
1180  * L|R	1		- orig is lost, retransmit is in flight.
1181  * S|R  1		- orig reached receiver, retrans is still in flight.
1182  * (L|S|R is logically valid, it could occur when L|R is sacked,
1183  *  but it is equivalent to plain S and code short-circuits it to S.
1184  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1185  *
1186  * These 6 states form finite state machine, controlled by the following events:
1187  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1188  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1189  * 3. Loss detection event of two flavors:
1190  *	A. Scoreboard estimator decided the packet is lost.
1191  *	   A'. Reno "three dupacks" marks head of queue lost.
1192  *	B. SACK arrives sacking SND.NXT at the moment, when the
1193  *	   segment was retransmitted.
1194  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1195  *
1196  * It is pleasant to note, that state diagram turns out to be commutative,
1197  * so that we are allowed not to be bothered by order of our actions,
1198  * when multiple events arrive simultaneously. (see the function below).
1199  *
1200  * Reordering detection.
1201  * --------------------
1202  * Reordering metric is maximal distance, which a packet can be displaced
1203  * in packet stream. With SACKs we can estimate it:
1204  *
1205  * 1. SACK fills old hole and the corresponding segment was not
1206  *    ever retransmitted -> reordering. Alas, we cannot use it
1207  *    when segment was retransmitted.
1208  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1209  *    for retransmitted and already SACKed segment -> reordering..
1210  * Both of these heuristics are not used in Loss state, when we cannot
1211  * account for retransmits accurately.
1212  *
1213  * SACK block validation.
1214  * ----------------------
1215  *
1216  * SACK block range validation checks that the received SACK block fits to
1217  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1218  * Note that SND.UNA is not included to the range though being valid because
1219  * it means that the receiver is rather inconsistent with itself reporting
1220  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1221  * perfectly valid, however, in light of RFC2018 which explicitly states
1222  * that "SACK block MUST reflect the newest segment.  Even if the newest
1223  * segment is going to be discarded ...", not that it looks very clever
1224  * in case of head skb. Due to potentional receiver driven attacks, we
1225  * choose to avoid immediate execution of a walk in write queue due to
1226  * reneging and defer head skb's loss recovery to standard loss recovery
1227  * procedure that will eventually trigger (nothing forbids us doing this).
1228  *
1229  * Implements also blockage to start_seq wrap-around. Problem lies in the
1230  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1231  * there's no guarantee that it will be before snd_nxt (n). The problem
1232  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1233  * wrap (s_w):
1234  *
1235  *         <- outs wnd ->                          <- wrapzone ->
1236  *         u     e      n                         u_w   e_w  s n_w
1237  *         |     |      |                          |     |   |  |
1238  * |<------------+------+----- TCP seqno space --------------+---------->|
1239  * ...-- <2^31 ->|                                           |<--------...
1240  * ...---- >2^31 ------>|                                    |<--------...
1241  *
1242  * Current code wouldn't be vulnerable but it's better still to discard such
1243  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1244  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1245  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1246  * equal to the ideal case (infinite seqno space without wrap caused issues).
1247  *
1248  * With D-SACK the lower bound is extended to cover sequence space below
1249  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1250  * again, D-SACK block must not to go across snd_una (for the same reason as
1251  * for the normal SACK blocks, explained above). But there all simplicity
1252  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1253  * fully below undo_marker they do not affect behavior in anyway and can
1254  * therefore be safely ignored. In rare cases (which are more or less
1255  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1256  * fragmentation and packet reordering past skb's retransmission. To consider
1257  * them correctly, the acceptable range must be extended even more though
1258  * the exact amount is rather hard to quantify. However, tp->max_window can
1259  * be used as an exaggerated estimate.
1260  */
1261 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1262 				   u32 start_seq, u32 end_seq)
1263 {
1264 	/* Too far in future, or reversed (interpretation is ambiguous) */
1265 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1266 		return false;
1267 
1268 	/* Nasty start_seq wrap-around check (see comments above) */
1269 	if (!before(start_seq, tp->snd_nxt))
1270 		return false;
1271 
1272 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1273 	 * start_seq == snd_una is non-sensical (see comments above)
1274 	 */
1275 	if (after(start_seq, tp->snd_una))
1276 		return true;
1277 
1278 	if (!is_dsack || !tp->undo_marker)
1279 		return false;
1280 
1281 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1282 	if (after(end_seq, tp->snd_una))
1283 		return false;
1284 
1285 	if (!before(start_seq, tp->undo_marker))
1286 		return true;
1287 
1288 	/* Too old */
1289 	if (!after(end_seq, tp->undo_marker))
1290 		return false;
1291 
1292 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1293 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1294 	 */
1295 	return !before(start_seq, end_seq - tp->max_window);
1296 }
1297 
1298 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1299 			    struct tcp_sack_block_wire *sp, int num_sacks,
1300 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1301 {
1302 	struct tcp_sock *tp = tcp_sk(sk);
1303 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1304 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1305 	u32 dup_segs;
1306 
1307 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1308 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1309 	} else if (num_sacks > 1) {
1310 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1311 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1312 
1313 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1314 			return false;
1315 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1316 	} else {
1317 		return false;
1318 	}
1319 
1320 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1321 	if (!dup_segs) {	/* Skip dubious DSACK */
1322 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1323 		return false;
1324 	}
1325 
1326 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1327 
1328 	/* D-SACK for already forgotten data... Do dumb counting. */
1329 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1330 	    !after(end_seq_0, prior_snd_una) &&
1331 	    after(end_seq_0, tp->undo_marker))
1332 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1333 
1334 	return true;
1335 }
1336 
1337 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1338  * the incoming SACK may not exactly match but we can find smaller MSS
1339  * aligned portion of it that matches. Therefore we might need to fragment
1340  * which may fail and creates some hassle (caller must handle error case
1341  * returns).
1342  *
1343  * FIXME: this could be merged to shift decision code
1344  */
1345 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1346 				  u32 start_seq, u32 end_seq)
1347 {
1348 	int err;
1349 	bool in_sack;
1350 	unsigned int pkt_len;
1351 	unsigned int mss;
1352 
1353 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1354 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1355 
1356 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1357 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1358 		mss = tcp_skb_mss(skb);
1359 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1360 
1361 		if (!in_sack) {
1362 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1363 			if (pkt_len < mss)
1364 				pkt_len = mss;
1365 		} else {
1366 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1367 			if (pkt_len < mss)
1368 				return -EINVAL;
1369 		}
1370 
1371 		/* Round if necessary so that SACKs cover only full MSSes
1372 		 * and/or the remaining small portion (if present)
1373 		 */
1374 		if (pkt_len > mss) {
1375 			unsigned int new_len = (pkt_len / mss) * mss;
1376 			if (!in_sack && new_len < pkt_len)
1377 				new_len += mss;
1378 			pkt_len = new_len;
1379 		}
1380 
1381 		if (pkt_len >= skb->len && !in_sack)
1382 			return 0;
1383 
1384 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1385 				   pkt_len, mss, GFP_ATOMIC);
1386 		if (err < 0)
1387 			return err;
1388 	}
1389 
1390 	return in_sack;
1391 }
1392 
1393 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1394 static u8 tcp_sacktag_one(struct sock *sk,
1395 			  struct tcp_sacktag_state *state, u8 sacked,
1396 			  u32 start_seq, u32 end_seq,
1397 			  int dup_sack, int pcount,
1398 			  u64 xmit_time)
1399 {
1400 	struct tcp_sock *tp = tcp_sk(sk);
1401 
1402 	/* Account D-SACK for retransmitted packet. */
1403 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1404 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1405 		    after(end_seq, tp->undo_marker))
1406 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1407 		if ((sacked & TCPCB_SACKED_ACKED) &&
1408 		    before(start_seq, state->reord))
1409 				state->reord = start_seq;
1410 	}
1411 
1412 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1413 	if (!after(end_seq, tp->snd_una))
1414 		return sacked;
1415 
1416 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1417 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1418 
1419 		if (sacked & TCPCB_SACKED_RETRANS) {
1420 			/* If the segment is not tagged as lost,
1421 			 * we do not clear RETRANS, believing
1422 			 * that retransmission is still in flight.
1423 			 */
1424 			if (sacked & TCPCB_LOST) {
1425 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1426 				tp->lost_out -= pcount;
1427 				tp->retrans_out -= pcount;
1428 			}
1429 		} else {
1430 			if (!(sacked & TCPCB_RETRANS)) {
1431 				/* New sack for not retransmitted frame,
1432 				 * which was in hole. It is reordering.
1433 				 */
1434 				if (before(start_seq,
1435 					   tcp_highest_sack_seq(tp)) &&
1436 				    before(start_seq, state->reord))
1437 					state->reord = start_seq;
1438 
1439 				if (!after(end_seq, tp->high_seq))
1440 					state->flag |= FLAG_ORIG_SACK_ACKED;
1441 				if (state->first_sackt == 0)
1442 					state->first_sackt = xmit_time;
1443 				state->last_sackt = xmit_time;
1444 			}
1445 
1446 			if (sacked & TCPCB_LOST) {
1447 				sacked &= ~TCPCB_LOST;
1448 				tp->lost_out -= pcount;
1449 			}
1450 		}
1451 
1452 		sacked |= TCPCB_SACKED_ACKED;
1453 		state->flag |= FLAG_DATA_SACKED;
1454 		tp->sacked_out += pcount;
1455 		/* Out-of-order packets delivered */
1456 		state->sack_delivered += pcount;
1457 
1458 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1459 		if (tp->lost_skb_hint &&
1460 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1461 			tp->lost_cnt_hint += pcount;
1462 	}
1463 
1464 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1465 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1466 	 * are accounted above as well.
1467 	 */
1468 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1469 		sacked &= ~TCPCB_SACKED_RETRANS;
1470 		tp->retrans_out -= pcount;
1471 	}
1472 
1473 	return sacked;
1474 }
1475 
1476 /* Shift newly-SACKed bytes from this skb to the immediately previous
1477  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1478  */
1479 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1480 			    struct sk_buff *skb,
1481 			    struct tcp_sacktag_state *state,
1482 			    unsigned int pcount, int shifted, int mss,
1483 			    bool dup_sack)
1484 {
1485 	struct tcp_sock *tp = tcp_sk(sk);
1486 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1487 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1488 
1489 	BUG_ON(!pcount);
1490 
1491 	/* Adjust counters and hints for the newly sacked sequence
1492 	 * range but discard the return value since prev is already
1493 	 * marked. We must tag the range first because the seq
1494 	 * advancement below implicitly advances
1495 	 * tcp_highest_sack_seq() when skb is highest_sack.
1496 	 */
1497 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1498 			start_seq, end_seq, dup_sack, pcount,
1499 			tcp_skb_timestamp_us(skb));
1500 	tcp_rate_skb_delivered(sk, skb, state->rate);
1501 
1502 	if (skb == tp->lost_skb_hint)
1503 		tp->lost_cnt_hint += pcount;
1504 
1505 	TCP_SKB_CB(prev)->end_seq += shifted;
1506 	TCP_SKB_CB(skb)->seq += shifted;
1507 
1508 	tcp_skb_pcount_add(prev, pcount);
1509 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1510 	tcp_skb_pcount_add(skb, -pcount);
1511 
1512 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1513 	 * in theory this shouldn't be necessary but as long as DSACK
1514 	 * code can come after this skb later on it's better to keep
1515 	 * setting gso_size to something.
1516 	 */
1517 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1518 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1519 
1520 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1521 	if (tcp_skb_pcount(skb) <= 1)
1522 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1523 
1524 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1525 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1526 
1527 	if (skb->len > 0) {
1528 		BUG_ON(!tcp_skb_pcount(skb));
1529 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1530 		return false;
1531 	}
1532 
1533 	/* Whole SKB was eaten :-) */
1534 
1535 	if (skb == tp->retransmit_skb_hint)
1536 		tp->retransmit_skb_hint = prev;
1537 	if (skb == tp->lost_skb_hint) {
1538 		tp->lost_skb_hint = prev;
1539 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1540 	}
1541 
1542 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1543 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1544 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1545 		TCP_SKB_CB(prev)->end_seq++;
1546 
1547 	if (skb == tcp_highest_sack(sk))
1548 		tcp_advance_highest_sack(sk, skb);
1549 
1550 	tcp_skb_collapse_tstamp(prev, skb);
1551 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1552 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1553 
1554 	tcp_rtx_queue_unlink_and_free(skb, sk);
1555 
1556 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1557 
1558 	return true;
1559 }
1560 
1561 /* I wish gso_size would have a bit more sane initialization than
1562  * something-or-zero which complicates things
1563  */
1564 static int tcp_skb_seglen(const struct sk_buff *skb)
1565 {
1566 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1567 }
1568 
1569 /* Shifting pages past head area doesn't work */
1570 static int skb_can_shift(const struct sk_buff *skb)
1571 {
1572 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1573 }
1574 
1575 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1576 		  int pcount, int shiftlen)
1577 {
1578 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1579 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1580 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1581 	 * even if current MSS is bigger.
1582 	 */
1583 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1584 		return 0;
1585 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1586 		return 0;
1587 	return skb_shift(to, from, shiftlen);
1588 }
1589 
1590 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1591  * skb.
1592  */
1593 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1594 					  struct tcp_sacktag_state *state,
1595 					  u32 start_seq, u32 end_seq,
1596 					  bool dup_sack)
1597 {
1598 	struct tcp_sock *tp = tcp_sk(sk);
1599 	struct sk_buff *prev;
1600 	int mss;
1601 	int pcount = 0;
1602 	int len;
1603 	int in_sack;
1604 
1605 	/* Normally R but no L won't result in plain S */
1606 	if (!dup_sack &&
1607 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1608 		goto fallback;
1609 	if (!skb_can_shift(skb))
1610 		goto fallback;
1611 	/* This frame is about to be dropped (was ACKed). */
1612 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1613 		goto fallback;
1614 
1615 	/* Can only happen with delayed DSACK + discard craziness */
1616 	prev = skb_rb_prev(skb);
1617 	if (!prev)
1618 		goto fallback;
1619 
1620 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1621 		goto fallback;
1622 
1623 	if (!tcp_skb_can_collapse(prev, skb))
1624 		goto fallback;
1625 
1626 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1627 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1628 
1629 	if (in_sack) {
1630 		len = skb->len;
1631 		pcount = tcp_skb_pcount(skb);
1632 		mss = tcp_skb_seglen(skb);
1633 
1634 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1635 		 * drop this restriction as unnecessary
1636 		 */
1637 		if (mss != tcp_skb_seglen(prev))
1638 			goto fallback;
1639 	} else {
1640 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1641 			goto noop;
1642 		/* CHECKME: This is non-MSS split case only?, this will
1643 		 * cause skipped skbs due to advancing loop btw, original
1644 		 * has that feature too
1645 		 */
1646 		if (tcp_skb_pcount(skb) <= 1)
1647 			goto noop;
1648 
1649 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1650 		if (!in_sack) {
1651 			/* TODO: head merge to next could be attempted here
1652 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1653 			 * though it might not be worth of the additional hassle
1654 			 *
1655 			 * ...we can probably just fallback to what was done
1656 			 * previously. We could try merging non-SACKed ones
1657 			 * as well but it probably isn't going to buy off
1658 			 * because later SACKs might again split them, and
1659 			 * it would make skb timestamp tracking considerably
1660 			 * harder problem.
1661 			 */
1662 			goto fallback;
1663 		}
1664 
1665 		len = end_seq - TCP_SKB_CB(skb)->seq;
1666 		BUG_ON(len < 0);
1667 		BUG_ON(len > skb->len);
1668 
1669 		/* MSS boundaries should be honoured or else pcount will
1670 		 * severely break even though it makes things bit trickier.
1671 		 * Optimize common case to avoid most of the divides
1672 		 */
1673 		mss = tcp_skb_mss(skb);
1674 
1675 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1676 		 * drop this restriction as unnecessary
1677 		 */
1678 		if (mss != tcp_skb_seglen(prev))
1679 			goto fallback;
1680 
1681 		if (len == mss) {
1682 			pcount = 1;
1683 		} else if (len < mss) {
1684 			goto noop;
1685 		} else {
1686 			pcount = len / mss;
1687 			len = pcount * mss;
1688 		}
1689 	}
1690 
1691 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1692 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1693 		goto fallback;
1694 
1695 	if (!tcp_skb_shift(prev, skb, pcount, len))
1696 		goto fallback;
1697 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1698 		goto out;
1699 
1700 	/* Hole filled allows collapsing with the next as well, this is very
1701 	 * useful when hole on every nth skb pattern happens
1702 	 */
1703 	skb = skb_rb_next(prev);
1704 	if (!skb)
1705 		goto out;
1706 
1707 	if (!skb_can_shift(skb) ||
1708 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1709 	    (mss != tcp_skb_seglen(skb)))
1710 		goto out;
1711 
1712 	if (!tcp_skb_can_collapse(prev, skb))
1713 		goto out;
1714 	len = skb->len;
1715 	pcount = tcp_skb_pcount(skb);
1716 	if (tcp_skb_shift(prev, skb, pcount, len))
1717 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1718 				len, mss, 0);
1719 
1720 out:
1721 	return prev;
1722 
1723 noop:
1724 	return skb;
1725 
1726 fallback:
1727 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1728 	return NULL;
1729 }
1730 
1731 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1732 					struct tcp_sack_block *next_dup,
1733 					struct tcp_sacktag_state *state,
1734 					u32 start_seq, u32 end_seq,
1735 					bool dup_sack_in)
1736 {
1737 	struct tcp_sock *tp = tcp_sk(sk);
1738 	struct sk_buff *tmp;
1739 
1740 	skb_rbtree_walk_from(skb) {
1741 		int in_sack = 0;
1742 		bool dup_sack = dup_sack_in;
1743 
1744 		/* queue is in-order => we can short-circuit the walk early */
1745 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1746 			break;
1747 
1748 		if (next_dup  &&
1749 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1750 			in_sack = tcp_match_skb_to_sack(sk, skb,
1751 							next_dup->start_seq,
1752 							next_dup->end_seq);
1753 			if (in_sack > 0)
1754 				dup_sack = true;
1755 		}
1756 
1757 		/* skb reference here is a bit tricky to get right, since
1758 		 * shifting can eat and free both this skb and the next,
1759 		 * so not even _safe variant of the loop is enough.
1760 		 */
1761 		if (in_sack <= 0) {
1762 			tmp = tcp_shift_skb_data(sk, skb, state,
1763 						 start_seq, end_seq, dup_sack);
1764 			if (tmp) {
1765 				if (tmp != skb) {
1766 					skb = tmp;
1767 					continue;
1768 				}
1769 
1770 				in_sack = 0;
1771 			} else {
1772 				in_sack = tcp_match_skb_to_sack(sk, skb,
1773 								start_seq,
1774 								end_seq);
1775 			}
1776 		}
1777 
1778 		if (unlikely(in_sack < 0))
1779 			break;
1780 
1781 		if (in_sack) {
1782 			TCP_SKB_CB(skb)->sacked =
1783 				tcp_sacktag_one(sk,
1784 						state,
1785 						TCP_SKB_CB(skb)->sacked,
1786 						TCP_SKB_CB(skb)->seq,
1787 						TCP_SKB_CB(skb)->end_seq,
1788 						dup_sack,
1789 						tcp_skb_pcount(skb),
1790 						tcp_skb_timestamp_us(skb));
1791 			tcp_rate_skb_delivered(sk, skb, state->rate);
1792 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1793 				list_del_init(&skb->tcp_tsorted_anchor);
1794 
1795 			if (!before(TCP_SKB_CB(skb)->seq,
1796 				    tcp_highest_sack_seq(tp)))
1797 				tcp_advance_highest_sack(sk, skb);
1798 		}
1799 	}
1800 	return skb;
1801 }
1802 
1803 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1804 {
1805 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1806 	struct sk_buff *skb;
1807 
1808 	while (*p) {
1809 		parent = *p;
1810 		skb = rb_to_skb(parent);
1811 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1812 			p = &parent->rb_left;
1813 			continue;
1814 		}
1815 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1816 			p = &parent->rb_right;
1817 			continue;
1818 		}
1819 		return skb;
1820 	}
1821 	return NULL;
1822 }
1823 
1824 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1825 					u32 skip_to_seq)
1826 {
1827 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1828 		return skb;
1829 
1830 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1831 }
1832 
1833 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1834 						struct sock *sk,
1835 						struct tcp_sack_block *next_dup,
1836 						struct tcp_sacktag_state *state,
1837 						u32 skip_to_seq)
1838 {
1839 	if (!next_dup)
1840 		return skb;
1841 
1842 	if (before(next_dup->start_seq, skip_to_seq)) {
1843 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1844 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1845 				       next_dup->start_seq, next_dup->end_seq,
1846 				       1);
1847 	}
1848 
1849 	return skb;
1850 }
1851 
1852 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1853 {
1854 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1855 }
1856 
1857 static int
1858 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1859 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1860 {
1861 	struct tcp_sock *tp = tcp_sk(sk);
1862 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1863 				    TCP_SKB_CB(ack_skb)->sacked);
1864 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1865 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1866 	struct tcp_sack_block *cache;
1867 	struct sk_buff *skb;
1868 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1869 	int used_sacks;
1870 	bool found_dup_sack = false;
1871 	int i, j;
1872 	int first_sack_index;
1873 
1874 	state->flag = 0;
1875 	state->reord = tp->snd_nxt;
1876 
1877 	if (!tp->sacked_out)
1878 		tcp_highest_sack_reset(sk);
1879 
1880 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1881 					 num_sacks, prior_snd_una, state);
1882 
1883 	/* Eliminate too old ACKs, but take into
1884 	 * account more or less fresh ones, they can
1885 	 * contain valid SACK info.
1886 	 */
1887 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1888 		return 0;
1889 
1890 	if (!tp->packets_out)
1891 		goto out;
1892 
1893 	used_sacks = 0;
1894 	first_sack_index = 0;
1895 	for (i = 0; i < num_sacks; i++) {
1896 		bool dup_sack = !i && found_dup_sack;
1897 
1898 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1899 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1900 
1901 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1902 					    sp[used_sacks].start_seq,
1903 					    sp[used_sacks].end_seq)) {
1904 			int mib_idx;
1905 
1906 			if (dup_sack) {
1907 				if (!tp->undo_marker)
1908 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1909 				else
1910 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1911 			} else {
1912 				/* Don't count olds caused by ACK reordering */
1913 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1914 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1915 					continue;
1916 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1917 			}
1918 
1919 			NET_INC_STATS(sock_net(sk), mib_idx);
1920 			if (i == 0)
1921 				first_sack_index = -1;
1922 			continue;
1923 		}
1924 
1925 		/* Ignore very old stuff early */
1926 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1927 			if (i == 0)
1928 				first_sack_index = -1;
1929 			continue;
1930 		}
1931 
1932 		used_sacks++;
1933 	}
1934 
1935 	/* order SACK blocks to allow in order walk of the retrans queue */
1936 	for (i = used_sacks - 1; i > 0; i--) {
1937 		for (j = 0; j < i; j++) {
1938 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1939 				swap(sp[j], sp[j + 1]);
1940 
1941 				/* Track where the first SACK block goes to */
1942 				if (j == first_sack_index)
1943 					first_sack_index = j + 1;
1944 			}
1945 		}
1946 	}
1947 
1948 	state->mss_now = tcp_current_mss(sk);
1949 	skb = NULL;
1950 	i = 0;
1951 
1952 	if (!tp->sacked_out) {
1953 		/* It's already past, so skip checking against it */
1954 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1955 	} else {
1956 		cache = tp->recv_sack_cache;
1957 		/* Skip empty blocks in at head of the cache */
1958 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1959 		       !cache->end_seq)
1960 			cache++;
1961 	}
1962 
1963 	while (i < used_sacks) {
1964 		u32 start_seq = sp[i].start_seq;
1965 		u32 end_seq = sp[i].end_seq;
1966 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1967 		struct tcp_sack_block *next_dup = NULL;
1968 
1969 		if (found_dup_sack && ((i + 1) == first_sack_index))
1970 			next_dup = &sp[i + 1];
1971 
1972 		/* Skip too early cached blocks */
1973 		while (tcp_sack_cache_ok(tp, cache) &&
1974 		       !before(start_seq, cache->end_seq))
1975 			cache++;
1976 
1977 		/* Can skip some work by looking recv_sack_cache? */
1978 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1979 		    after(end_seq, cache->start_seq)) {
1980 
1981 			/* Head todo? */
1982 			if (before(start_seq, cache->start_seq)) {
1983 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1984 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1985 						       state,
1986 						       start_seq,
1987 						       cache->start_seq,
1988 						       dup_sack);
1989 			}
1990 
1991 			/* Rest of the block already fully processed? */
1992 			if (!after(end_seq, cache->end_seq))
1993 				goto advance_sp;
1994 
1995 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1996 						       state,
1997 						       cache->end_seq);
1998 
1999 			/* ...tail remains todo... */
2000 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
2001 				/* ...but better entrypoint exists! */
2002 				skb = tcp_highest_sack(sk);
2003 				if (!skb)
2004 					break;
2005 				cache++;
2006 				goto walk;
2007 			}
2008 
2009 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
2010 			/* Check overlap against next cached too (past this one already) */
2011 			cache++;
2012 			continue;
2013 		}
2014 
2015 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2016 			skb = tcp_highest_sack(sk);
2017 			if (!skb)
2018 				break;
2019 		}
2020 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2021 
2022 walk:
2023 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2024 				       start_seq, end_seq, dup_sack);
2025 
2026 advance_sp:
2027 		i++;
2028 	}
2029 
2030 	/* Clear the head of the cache sack blocks so we can skip it next time */
2031 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2032 		tp->recv_sack_cache[i].start_seq = 0;
2033 		tp->recv_sack_cache[i].end_seq = 0;
2034 	}
2035 	for (j = 0; j < used_sacks; j++)
2036 		tp->recv_sack_cache[i++] = sp[j];
2037 
2038 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2039 		tcp_check_sack_reordering(sk, state->reord, 0);
2040 
2041 	tcp_verify_left_out(tp);
2042 out:
2043 
2044 #if FASTRETRANS_DEBUG > 0
2045 	WARN_ON((int)tp->sacked_out < 0);
2046 	WARN_ON((int)tp->lost_out < 0);
2047 	WARN_ON((int)tp->retrans_out < 0);
2048 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2049 #endif
2050 	return state->flag;
2051 }
2052 
2053 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2054  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2055  */
2056 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2057 {
2058 	u32 holes;
2059 
2060 	holes = max(tp->lost_out, 1U);
2061 	holes = min(holes, tp->packets_out);
2062 
2063 	if ((tp->sacked_out + holes) > tp->packets_out) {
2064 		tp->sacked_out = tp->packets_out - holes;
2065 		return true;
2066 	}
2067 	return false;
2068 }
2069 
2070 /* If we receive more dupacks than we expected counting segments
2071  * in assumption of absent reordering, interpret this as reordering.
2072  * The only another reason could be bug in receiver TCP.
2073  */
2074 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2075 {
2076 	struct tcp_sock *tp = tcp_sk(sk);
2077 
2078 	if (!tcp_limit_reno_sacked(tp))
2079 		return;
2080 
2081 	tp->reordering = min_t(u32, tp->packets_out + addend,
2082 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2083 	tp->reord_seen++;
2084 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2085 }
2086 
2087 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2088 
2089 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2090 {
2091 	if (num_dupack) {
2092 		struct tcp_sock *tp = tcp_sk(sk);
2093 		u32 prior_sacked = tp->sacked_out;
2094 		s32 delivered;
2095 
2096 		tp->sacked_out += num_dupack;
2097 		tcp_check_reno_reordering(sk, 0);
2098 		delivered = tp->sacked_out - prior_sacked;
2099 		if (delivered > 0)
2100 			tcp_count_delivered(tp, delivered, ece_ack);
2101 		tcp_verify_left_out(tp);
2102 	}
2103 }
2104 
2105 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2106 
2107 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2108 {
2109 	struct tcp_sock *tp = tcp_sk(sk);
2110 
2111 	if (acked > 0) {
2112 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2113 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2114 				    ece_ack);
2115 		if (acked - 1 >= tp->sacked_out)
2116 			tp->sacked_out = 0;
2117 		else
2118 			tp->sacked_out -= acked - 1;
2119 	}
2120 	tcp_check_reno_reordering(sk, acked);
2121 	tcp_verify_left_out(tp);
2122 }
2123 
2124 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2125 {
2126 	tp->sacked_out = 0;
2127 }
2128 
2129 void tcp_clear_retrans(struct tcp_sock *tp)
2130 {
2131 	tp->retrans_out = 0;
2132 	tp->lost_out = 0;
2133 	tp->undo_marker = 0;
2134 	tp->undo_retrans = -1;
2135 	tp->sacked_out = 0;
2136 	tp->rto_stamp = 0;
2137 	tp->total_rto = 0;
2138 	tp->total_rto_recoveries = 0;
2139 	tp->total_rto_time = 0;
2140 }
2141 
2142 static inline void tcp_init_undo(struct tcp_sock *tp)
2143 {
2144 	tp->undo_marker = tp->snd_una;
2145 
2146 	/* Retransmission still in flight may cause DSACKs later. */
2147 	/* First, account for regular retransmits in flight: */
2148 	tp->undo_retrans = tp->retrans_out;
2149 	/* Next, account for TLP retransmits in flight: */
2150 	if (tp->tlp_high_seq && tp->tlp_retrans)
2151 		tp->undo_retrans++;
2152 	/* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2153 	if (!tp->undo_retrans)
2154 		tp->undo_retrans = -1;
2155 }
2156 
2157 static bool tcp_is_rack(const struct sock *sk)
2158 {
2159 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2160 		TCP_RACK_LOSS_DETECTION;
2161 }
2162 
2163 /* If we detect SACK reneging, forget all SACK information
2164  * and reset tags completely, otherwise preserve SACKs. If receiver
2165  * dropped its ofo queue, we will know this due to reneging detection.
2166  */
2167 static void tcp_timeout_mark_lost(struct sock *sk)
2168 {
2169 	struct tcp_sock *tp = tcp_sk(sk);
2170 	struct sk_buff *skb, *head;
2171 	bool is_reneg;			/* is receiver reneging on SACKs? */
2172 
2173 	head = tcp_rtx_queue_head(sk);
2174 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2175 	if (is_reneg) {
2176 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2177 		tp->sacked_out = 0;
2178 		/* Mark SACK reneging until we recover from this loss event. */
2179 		tp->is_sack_reneg = 1;
2180 	} else if (tcp_is_reno(tp)) {
2181 		tcp_reset_reno_sack(tp);
2182 	}
2183 
2184 	skb = head;
2185 	skb_rbtree_walk_from(skb) {
2186 		if (is_reneg)
2187 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2188 		else if (tcp_is_rack(sk) && skb != head &&
2189 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2190 			continue; /* Don't mark recently sent ones lost yet */
2191 		tcp_mark_skb_lost(sk, skb);
2192 	}
2193 	tcp_verify_left_out(tp);
2194 	tcp_clear_all_retrans_hints(tp);
2195 }
2196 
2197 /* Enter Loss state. */
2198 void tcp_enter_loss(struct sock *sk)
2199 {
2200 	const struct inet_connection_sock *icsk = inet_csk(sk);
2201 	struct tcp_sock *tp = tcp_sk(sk);
2202 	struct net *net = sock_net(sk);
2203 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2204 	u8 reordering;
2205 
2206 	tcp_timeout_mark_lost(sk);
2207 
2208 	/* Reduce ssthresh if it has not yet been made inside this window. */
2209 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2210 	    !after(tp->high_seq, tp->snd_una) ||
2211 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2212 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2213 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2214 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2215 		tcp_ca_event(sk, CA_EVENT_LOSS);
2216 		tcp_init_undo(tp);
2217 	}
2218 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2219 	tp->snd_cwnd_cnt   = 0;
2220 	tp->snd_cwnd_stamp = tcp_jiffies32;
2221 
2222 	/* Timeout in disordered state after receiving substantial DUPACKs
2223 	 * suggests that the degree of reordering is over-estimated.
2224 	 */
2225 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2226 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2227 	    tp->sacked_out >= reordering)
2228 		tp->reordering = min_t(unsigned int, tp->reordering,
2229 				       reordering);
2230 
2231 	tcp_set_ca_state(sk, TCP_CA_Loss);
2232 	tp->high_seq = tp->snd_nxt;
2233 	tp->tlp_high_seq = 0;
2234 	tcp_ecn_queue_cwr(tp);
2235 
2236 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2237 	 * loss recovery is underway except recurring timeout(s) on
2238 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2239 	 */
2240 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2241 		   (new_recovery || icsk->icsk_retransmits) &&
2242 		   !inet_csk(sk)->icsk_mtup.probe_size;
2243 }
2244 
2245 /* If ACK arrived pointing to a remembered SACK, it means that our
2246  * remembered SACKs do not reflect real state of receiver i.e.
2247  * receiver _host_ is heavily congested (or buggy).
2248  *
2249  * To avoid big spurious retransmission bursts due to transient SACK
2250  * scoreboard oddities that look like reneging, we give the receiver a
2251  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2252  * restore sanity to the SACK scoreboard. If the apparent reneging
2253  * persists until this RTO then we'll clear the SACK scoreboard.
2254  */
2255 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2256 {
2257 	if (*ack_flag & FLAG_SACK_RENEGING &&
2258 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2259 		struct tcp_sock *tp = tcp_sk(sk);
2260 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2261 					  msecs_to_jiffies(10));
2262 
2263 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false);
2264 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2265 		return true;
2266 	}
2267 	return false;
2268 }
2269 
2270 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2271  * counter when SACK is enabled (without SACK, sacked_out is used for
2272  * that purpose).
2273  *
2274  * With reordering, holes may still be in flight, so RFC3517 recovery
2275  * uses pure sacked_out (total number of SACKed segments) even though
2276  * it violates the RFC that uses duplicate ACKs, often these are equal
2277  * but when e.g. out-of-window ACKs or packet duplication occurs,
2278  * they differ. Since neither occurs due to loss, TCP should really
2279  * ignore them.
2280  */
2281 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2282 {
2283 	return tp->sacked_out + 1;
2284 }
2285 
2286 /* Linux NewReno/SACK/ECN state machine.
2287  * --------------------------------------
2288  *
2289  * "Open"	Normal state, no dubious events, fast path.
2290  * "Disorder"   In all the respects it is "Open",
2291  *		but requires a bit more attention. It is entered when
2292  *		we see some SACKs or dupacks. It is split of "Open"
2293  *		mainly to move some processing from fast path to slow one.
2294  * "CWR"	CWND was reduced due to some Congestion Notification event.
2295  *		It can be ECN, ICMP source quench, local device congestion.
2296  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2297  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2298  *
2299  * tcp_fastretrans_alert() is entered:
2300  * - each incoming ACK, if state is not "Open"
2301  * - when arrived ACK is unusual, namely:
2302  *	* SACK
2303  *	* Duplicate ACK.
2304  *	* ECN ECE.
2305  *
2306  * Counting packets in flight is pretty simple.
2307  *
2308  *	in_flight = packets_out - left_out + retrans_out
2309  *
2310  *	packets_out is SND.NXT-SND.UNA counted in packets.
2311  *
2312  *	retrans_out is number of retransmitted segments.
2313  *
2314  *	left_out is number of segments left network, but not ACKed yet.
2315  *
2316  *		left_out = sacked_out + lost_out
2317  *
2318  *     sacked_out: Packets, which arrived to receiver out of order
2319  *		   and hence not ACKed. With SACKs this number is simply
2320  *		   amount of SACKed data. Even without SACKs
2321  *		   it is easy to give pretty reliable estimate of this number,
2322  *		   counting duplicate ACKs.
2323  *
2324  *       lost_out: Packets lost by network. TCP has no explicit
2325  *		   "loss notification" feedback from network (for now).
2326  *		   It means that this number can be only _guessed_.
2327  *		   Actually, it is the heuristics to predict lossage that
2328  *		   distinguishes different algorithms.
2329  *
2330  *	F.e. after RTO, when all the queue is considered as lost,
2331  *	lost_out = packets_out and in_flight = retrans_out.
2332  *
2333  *		Essentially, we have now a few algorithms detecting
2334  *		lost packets.
2335  *
2336  *		If the receiver supports SACK:
2337  *
2338  *		RFC6675/3517: It is the conventional algorithm. A packet is
2339  *		considered lost if the number of higher sequence packets
2340  *		SACKed is greater than or equal the DUPACK thoreshold
2341  *		(reordering). This is implemented in tcp_mark_head_lost and
2342  *		tcp_update_scoreboard.
2343  *
2344  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2345  *		(2017-) that checks timing instead of counting DUPACKs.
2346  *		Essentially a packet is considered lost if it's not S/ACKed
2347  *		after RTT + reordering_window, where both metrics are
2348  *		dynamically measured and adjusted. This is implemented in
2349  *		tcp_rack_mark_lost.
2350  *
2351  *		If the receiver does not support SACK:
2352  *
2353  *		NewReno (RFC6582): in Recovery we assume that one segment
2354  *		is lost (classic Reno). While we are in Recovery and
2355  *		a partial ACK arrives, we assume that one more packet
2356  *		is lost (NewReno). This heuristics are the same in NewReno
2357  *		and SACK.
2358  *
2359  * Really tricky (and requiring careful tuning) part of algorithm
2360  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2361  * The first determines the moment _when_ we should reduce CWND and,
2362  * hence, slow down forward transmission. In fact, it determines the moment
2363  * when we decide that hole is caused by loss, rather than by a reorder.
2364  *
2365  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2366  * holes, caused by lost packets.
2367  *
2368  * And the most logically complicated part of algorithm is undo
2369  * heuristics. We detect false retransmits due to both too early
2370  * fast retransmit (reordering) and underestimated RTO, analyzing
2371  * timestamps and D-SACKs. When we detect that some segments were
2372  * retransmitted by mistake and CWND reduction was wrong, we undo
2373  * window reduction and abort recovery phase. This logic is hidden
2374  * inside several functions named tcp_try_undo_<something>.
2375  */
2376 
2377 /* This function decides, when we should leave Disordered state
2378  * and enter Recovery phase, reducing congestion window.
2379  *
2380  * Main question: may we further continue forward transmission
2381  * with the same cwnd?
2382  */
2383 static bool tcp_time_to_recover(struct sock *sk, int flag)
2384 {
2385 	struct tcp_sock *tp = tcp_sk(sk);
2386 
2387 	/* Trick#1: The loss is proven. */
2388 	if (tp->lost_out)
2389 		return true;
2390 
2391 	/* Not-A-Trick#2 : Classic rule... */
2392 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2393 		return true;
2394 
2395 	return false;
2396 }
2397 
2398 /* Detect loss in event "A" above by marking head of queue up as lost.
2399  * For RFC3517 SACK, a segment is considered lost if it
2400  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2401  * the maximum SACKed segments to pass before reaching this limit.
2402  */
2403 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2404 {
2405 	struct tcp_sock *tp = tcp_sk(sk);
2406 	struct sk_buff *skb;
2407 	int cnt;
2408 	/* Use SACK to deduce losses of new sequences sent during recovery */
2409 	const u32 loss_high = tp->snd_nxt;
2410 
2411 	WARN_ON(packets > tp->packets_out);
2412 	skb = tp->lost_skb_hint;
2413 	if (skb) {
2414 		/* Head already handled? */
2415 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2416 			return;
2417 		cnt = tp->lost_cnt_hint;
2418 	} else {
2419 		skb = tcp_rtx_queue_head(sk);
2420 		cnt = 0;
2421 	}
2422 
2423 	skb_rbtree_walk_from(skb) {
2424 		/* TODO: do this better */
2425 		/* this is not the most efficient way to do this... */
2426 		tp->lost_skb_hint = skb;
2427 		tp->lost_cnt_hint = cnt;
2428 
2429 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2430 			break;
2431 
2432 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2433 			cnt += tcp_skb_pcount(skb);
2434 
2435 		if (cnt > packets)
2436 			break;
2437 
2438 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2439 			tcp_mark_skb_lost(sk, skb);
2440 
2441 		if (mark_head)
2442 			break;
2443 	}
2444 	tcp_verify_left_out(tp);
2445 }
2446 
2447 /* Account newly detected lost packet(s) */
2448 
2449 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2450 {
2451 	struct tcp_sock *tp = tcp_sk(sk);
2452 
2453 	if (tcp_is_sack(tp)) {
2454 		int sacked_upto = tp->sacked_out - tp->reordering;
2455 		if (sacked_upto >= 0)
2456 			tcp_mark_head_lost(sk, sacked_upto, 0);
2457 		else if (fast_rexmit)
2458 			tcp_mark_head_lost(sk, 1, 1);
2459 	}
2460 }
2461 
2462 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2463 {
2464 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2465 	       before(tp->rx_opt.rcv_tsecr, when);
2466 }
2467 
2468 /* skb is spurious retransmitted if the returned timestamp echo
2469  * reply is prior to the skb transmission time
2470  */
2471 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2472 				     const struct sk_buff *skb)
2473 {
2474 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2475 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2476 }
2477 
2478 /* Nothing was retransmitted or returned timestamp is less
2479  * than timestamp of the first retransmission.
2480  */
2481 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2482 {
2483 	const struct sock *sk = (const struct sock *)tp;
2484 
2485 	if (tp->retrans_stamp &&
2486 	    tcp_tsopt_ecr_before(tp, tp->retrans_stamp))
2487 		return true;  /* got echoed TS before first retransmission */
2488 
2489 	/* Check if nothing was retransmitted (retrans_stamp==0), which may
2490 	 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp
2491 	 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear
2492 	 * retrans_stamp even if we had retransmitted the SYN.
2493 	 */
2494 	if (!tp->retrans_stamp &&	   /* no record of a retransmit/SYN? */
2495 	    sk->sk_state != TCP_SYN_SENT)  /* not the FLAG_SYN_ACKED case? */
2496 		return true;  /* nothing was retransmitted */
2497 
2498 	return false;
2499 }
2500 
2501 /* Undo procedures. */
2502 
2503 /* We can clear retrans_stamp when there are no retransmissions in the
2504  * window. It would seem that it is trivially available for us in
2505  * tp->retrans_out, however, that kind of assumptions doesn't consider
2506  * what will happen if errors occur when sending retransmission for the
2507  * second time. ...It could the that such segment has only
2508  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2509  * the head skb is enough except for some reneging corner cases that
2510  * are not worth the effort.
2511  *
2512  * Main reason for all this complexity is the fact that connection dying
2513  * time now depends on the validity of the retrans_stamp, in particular,
2514  * that successive retransmissions of a segment must not advance
2515  * retrans_stamp under any conditions.
2516  */
2517 static bool tcp_any_retrans_done(const struct sock *sk)
2518 {
2519 	const struct tcp_sock *tp = tcp_sk(sk);
2520 	struct sk_buff *skb;
2521 
2522 	if (tp->retrans_out)
2523 		return true;
2524 
2525 	skb = tcp_rtx_queue_head(sk);
2526 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2527 		return true;
2528 
2529 	return false;
2530 }
2531 
2532 /* If loss recovery is finished and there are no retransmits out in the
2533  * network, then we clear retrans_stamp so that upon the next loss recovery
2534  * retransmits_timed_out() and timestamp-undo are using the correct value.
2535  */
2536 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2537 {
2538 	if (!tcp_any_retrans_done(sk))
2539 		tcp_sk(sk)->retrans_stamp = 0;
2540 }
2541 
2542 static void DBGUNDO(struct sock *sk, const char *msg)
2543 {
2544 #if FASTRETRANS_DEBUG > 1
2545 	struct tcp_sock *tp = tcp_sk(sk);
2546 	struct inet_sock *inet = inet_sk(sk);
2547 
2548 	if (sk->sk_family == AF_INET) {
2549 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2550 			 msg,
2551 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2552 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2553 			 tp->snd_ssthresh, tp->prior_ssthresh,
2554 			 tp->packets_out);
2555 	}
2556 #if IS_ENABLED(CONFIG_IPV6)
2557 	else if (sk->sk_family == AF_INET6) {
2558 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2559 			 msg,
2560 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2561 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2562 			 tp->snd_ssthresh, tp->prior_ssthresh,
2563 			 tp->packets_out);
2564 	}
2565 #endif
2566 #endif
2567 }
2568 
2569 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2570 {
2571 	struct tcp_sock *tp = tcp_sk(sk);
2572 
2573 	if (unmark_loss) {
2574 		struct sk_buff *skb;
2575 
2576 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2577 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2578 		}
2579 		tp->lost_out = 0;
2580 		tcp_clear_all_retrans_hints(tp);
2581 	}
2582 
2583 	if (tp->prior_ssthresh) {
2584 		const struct inet_connection_sock *icsk = inet_csk(sk);
2585 
2586 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2587 
2588 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2589 			tp->snd_ssthresh = tp->prior_ssthresh;
2590 			tcp_ecn_withdraw_cwr(tp);
2591 		}
2592 	}
2593 	tp->snd_cwnd_stamp = tcp_jiffies32;
2594 	tp->undo_marker = 0;
2595 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2596 }
2597 
2598 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2599 {
2600 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2601 }
2602 
2603 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2604 {
2605 	struct tcp_sock *tp = tcp_sk(sk);
2606 
2607 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2608 		/* Hold old state until something *above* high_seq
2609 		 * is ACKed. For Reno it is MUST to prevent false
2610 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2611 		if (!tcp_any_retrans_done(sk))
2612 			tp->retrans_stamp = 0;
2613 		return true;
2614 	}
2615 	return false;
2616 }
2617 
2618 /* People celebrate: "We love our President!" */
2619 static bool tcp_try_undo_recovery(struct sock *sk)
2620 {
2621 	struct tcp_sock *tp = tcp_sk(sk);
2622 
2623 	if (tcp_may_undo(tp)) {
2624 		int mib_idx;
2625 
2626 		/* Happy end! We did not retransmit anything
2627 		 * or our original transmission succeeded.
2628 		 */
2629 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2630 		tcp_undo_cwnd_reduction(sk, false);
2631 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2632 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2633 		else
2634 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2635 
2636 		NET_INC_STATS(sock_net(sk), mib_idx);
2637 	} else if (tp->rack.reo_wnd_persist) {
2638 		tp->rack.reo_wnd_persist--;
2639 	}
2640 	if (tcp_is_non_sack_preventing_reopen(sk))
2641 		return true;
2642 	tcp_set_ca_state(sk, TCP_CA_Open);
2643 	tp->is_sack_reneg = 0;
2644 	return false;
2645 }
2646 
2647 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2648 static bool tcp_try_undo_dsack(struct sock *sk)
2649 {
2650 	struct tcp_sock *tp = tcp_sk(sk);
2651 
2652 	if (tp->undo_marker && !tp->undo_retrans) {
2653 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2654 					       tp->rack.reo_wnd_persist + 1);
2655 		DBGUNDO(sk, "D-SACK");
2656 		tcp_undo_cwnd_reduction(sk, false);
2657 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2658 		return true;
2659 	}
2660 	return false;
2661 }
2662 
2663 /* Undo during loss recovery after partial ACK or using F-RTO. */
2664 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2665 {
2666 	struct tcp_sock *tp = tcp_sk(sk);
2667 
2668 	if (frto_undo || tcp_may_undo(tp)) {
2669 		tcp_undo_cwnd_reduction(sk, true);
2670 
2671 		DBGUNDO(sk, "partial loss");
2672 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2673 		if (frto_undo)
2674 			NET_INC_STATS(sock_net(sk),
2675 					LINUX_MIB_TCPSPURIOUSRTOS);
2676 		inet_csk(sk)->icsk_retransmits = 0;
2677 		if (tcp_is_non_sack_preventing_reopen(sk))
2678 			return true;
2679 		if (frto_undo || tcp_is_sack(tp)) {
2680 			tcp_set_ca_state(sk, TCP_CA_Open);
2681 			tp->is_sack_reneg = 0;
2682 		}
2683 		return true;
2684 	}
2685 	return false;
2686 }
2687 
2688 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2689  * It computes the number of packets to send (sndcnt) based on packets newly
2690  * delivered:
2691  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2692  *	cwnd reductions across a full RTT.
2693  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2694  *      But when SND_UNA is acked without further losses,
2695  *      slow starts cwnd up to ssthresh to speed up the recovery.
2696  */
2697 static void tcp_init_cwnd_reduction(struct sock *sk)
2698 {
2699 	struct tcp_sock *tp = tcp_sk(sk);
2700 
2701 	tp->high_seq = tp->snd_nxt;
2702 	tp->tlp_high_seq = 0;
2703 	tp->snd_cwnd_cnt = 0;
2704 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2705 	tp->prr_delivered = 0;
2706 	tp->prr_out = 0;
2707 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2708 	tcp_ecn_queue_cwr(tp);
2709 }
2710 
2711 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2712 {
2713 	struct tcp_sock *tp = tcp_sk(sk);
2714 	int sndcnt = 0;
2715 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2716 
2717 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2718 		return;
2719 
2720 	trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag);
2721 
2722 	tp->prr_delivered += newly_acked_sacked;
2723 	if (delta < 0) {
2724 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2725 			       tp->prior_cwnd - 1;
2726 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2727 	} else {
2728 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2729 			       newly_acked_sacked);
2730 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2731 			sndcnt++;
2732 		sndcnt = min(delta, sndcnt);
2733 	}
2734 	/* Force a fast retransmit upon entering fast recovery */
2735 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2736 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2737 }
2738 
2739 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2740 {
2741 	struct tcp_sock *tp = tcp_sk(sk);
2742 
2743 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2744 		return;
2745 
2746 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2747 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2748 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2749 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2750 		tp->snd_cwnd_stamp = tcp_jiffies32;
2751 	}
2752 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2753 }
2754 
2755 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2756 void tcp_enter_cwr(struct sock *sk)
2757 {
2758 	struct tcp_sock *tp = tcp_sk(sk);
2759 
2760 	tp->prior_ssthresh = 0;
2761 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2762 		tp->undo_marker = 0;
2763 		tcp_init_cwnd_reduction(sk);
2764 		tcp_set_ca_state(sk, TCP_CA_CWR);
2765 	}
2766 }
2767 EXPORT_SYMBOL(tcp_enter_cwr);
2768 
2769 static void tcp_try_keep_open(struct sock *sk)
2770 {
2771 	struct tcp_sock *tp = tcp_sk(sk);
2772 	int state = TCP_CA_Open;
2773 
2774 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2775 		state = TCP_CA_Disorder;
2776 
2777 	if (inet_csk(sk)->icsk_ca_state != state) {
2778 		tcp_set_ca_state(sk, state);
2779 		tp->high_seq = tp->snd_nxt;
2780 	}
2781 }
2782 
2783 static void tcp_try_to_open(struct sock *sk, int flag)
2784 {
2785 	struct tcp_sock *tp = tcp_sk(sk);
2786 
2787 	tcp_verify_left_out(tp);
2788 
2789 	if (!tcp_any_retrans_done(sk))
2790 		tp->retrans_stamp = 0;
2791 
2792 	if (flag & FLAG_ECE)
2793 		tcp_enter_cwr(sk);
2794 
2795 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2796 		tcp_try_keep_open(sk);
2797 	}
2798 }
2799 
2800 static void tcp_mtup_probe_failed(struct sock *sk)
2801 {
2802 	struct inet_connection_sock *icsk = inet_csk(sk);
2803 
2804 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2805 	icsk->icsk_mtup.probe_size = 0;
2806 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2807 }
2808 
2809 static void tcp_mtup_probe_success(struct sock *sk)
2810 {
2811 	struct tcp_sock *tp = tcp_sk(sk);
2812 	struct inet_connection_sock *icsk = inet_csk(sk);
2813 	u64 val;
2814 
2815 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2816 
2817 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2818 	do_div(val, icsk->icsk_mtup.probe_size);
2819 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2820 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2821 
2822 	tp->snd_cwnd_cnt = 0;
2823 	tp->snd_cwnd_stamp = tcp_jiffies32;
2824 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2825 
2826 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2827 	icsk->icsk_mtup.probe_size = 0;
2828 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2829 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2830 }
2831 
2832 /* Sometimes we deduce that packets have been dropped due to reasons other than
2833  * congestion, like path MTU reductions or failed client TFO attempts. In these
2834  * cases we call this function to retransmit as many packets as cwnd allows,
2835  * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2836  * non-zero value (and may do so in a later calling context due to TSQ), we
2837  * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2838  * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2839  * are using the correct retrans_stamp and don't declare ETIMEDOUT
2840  * prematurely).
2841  */
2842 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2843 {
2844 	const struct inet_connection_sock *icsk = inet_csk(sk);
2845 	struct tcp_sock *tp = tcp_sk(sk);
2846 
2847 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2848 		tp->high_seq = tp->snd_nxt;
2849 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2850 		tp->prior_ssthresh = 0;
2851 		tp->undo_marker = 0;
2852 		tcp_set_ca_state(sk, TCP_CA_Loss);
2853 	}
2854 	tcp_xmit_retransmit_queue(sk);
2855 }
2856 
2857 /* Do a simple retransmit without using the backoff mechanisms in
2858  * tcp_timer. This is used for path mtu discovery.
2859  * The socket is already locked here.
2860  */
2861 void tcp_simple_retransmit(struct sock *sk)
2862 {
2863 	struct tcp_sock *tp = tcp_sk(sk);
2864 	struct sk_buff *skb;
2865 	int mss;
2866 
2867 	/* A fastopen SYN request is stored as two separate packets within
2868 	 * the retransmit queue, this is done by tcp_send_syn_data().
2869 	 * As a result simply checking the MSS of the frames in the queue
2870 	 * will not work for the SYN packet.
2871 	 *
2872 	 * Us being here is an indication of a path MTU issue so we can
2873 	 * assume that the fastopen SYN was lost and just mark all the
2874 	 * frames in the retransmit queue as lost. We will use an MSS of
2875 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2876 	 */
2877 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2878 		mss = -1;
2879 	else
2880 		mss = tcp_current_mss(sk);
2881 
2882 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2883 		if (tcp_skb_seglen(skb) > mss)
2884 			tcp_mark_skb_lost(sk, skb);
2885 	}
2886 
2887 	tcp_clear_retrans_hints_partial(tp);
2888 
2889 	if (!tp->lost_out)
2890 		return;
2891 
2892 	if (tcp_is_reno(tp))
2893 		tcp_limit_reno_sacked(tp);
2894 
2895 	tcp_verify_left_out(tp);
2896 
2897 	/* Don't muck with the congestion window here.
2898 	 * Reason is that we do not increase amount of _data_
2899 	 * in network, but units changed and effective
2900 	 * cwnd/ssthresh really reduced now.
2901 	 */
2902 	tcp_non_congestion_loss_retransmit(sk);
2903 }
2904 EXPORT_IPV6_MOD(tcp_simple_retransmit);
2905 
2906 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2907 {
2908 	struct tcp_sock *tp = tcp_sk(sk);
2909 	int mib_idx;
2910 
2911 	/* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2912 	tcp_retrans_stamp_cleanup(sk);
2913 
2914 	if (tcp_is_reno(tp))
2915 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2916 	else
2917 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2918 
2919 	NET_INC_STATS(sock_net(sk), mib_idx);
2920 
2921 	tp->prior_ssthresh = 0;
2922 	tcp_init_undo(tp);
2923 
2924 	if (!tcp_in_cwnd_reduction(sk)) {
2925 		if (!ece_ack)
2926 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2927 		tcp_init_cwnd_reduction(sk);
2928 	}
2929 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2930 }
2931 
2932 static void tcp_update_rto_time(struct tcp_sock *tp)
2933 {
2934 	if (tp->rto_stamp) {
2935 		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2936 		tp->rto_stamp = 0;
2937 	}
2938 }
2939 
2940 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2941  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2942  */
2943 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2944 			     int *rexmit)
2945 {
2946 	struct tcp_sock *tp = tcp_sk(sk);
2947 	bool recovered = !before(tp->snd_una, tp->high_seq);
2948 
2949 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2950 	    tcp_try_undo_loss(sk, false))
2951 		return;
2952 
2953 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2954 		/* Step 3.b. A timeout is spurious if not all data are
2955 		 * lost, i.e., never-retransmitted data are (s)acked.
2956 		 */
2957 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2958 		    tcp_try_undo_loss(sk, true))
2959 			return;
2960 
2961 		if (after(tp->snd_nxt, tp->high_seq)) {
2962 			if (flag & FLAG_DATA_SACKED || num_dupack)
2963 				tp->frto = 0; /* Step 3.a. loss was real */
2964 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2965 			tp->high_seq = tp->snd_nxt;
2966 			/* Step 2.b. Try send new data (but deferred until cwnd
2967 			 * is updated in tcp_ack()). Otherwise fall back to
2968 			 * the conventional recovery.
2969 			 */
2970 			if (!tcp_write_queue_empty(sk) &&
2971 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2972 				*rexmit = REXMIT_NEW;
2973 				return;
2974 			}
2975 			tp->frto = 0;
2976 		}
2977 	}
2978 
2979 	if (recovered) {
2980 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2981 		tcp_try_undo_recovery(sk);
2982 		return;
2983 	}
2984 	if (tcp_is_reno(tp)) {
2985 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2986 		 * delivered. Lower inflight to clock out (re)transmissions.
2987 		 */
2988 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2989 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2990 		else if (flag & FLAG_SND_UNA_ADVANCED)
2991 			tcp_reset_reno_sack(tp);
2992 	}
2993 	*rexmit = REXMIT_LOST;
2994 }
2995 
2996 static bool tcp_force_fast_retransmit(struct sock *sk)
2997 {
2998 	struct tcp_sock *tp = tcp_sk(sk);
2999 
3000 	return after(tcp_highest_sack_seq(tp),
3001 		     tp->snd_una + tp->reordering * tp->mss_cache);
3002 }
3003 
3004 /* Undo during fast recovery after partial ACK. */
3005 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
3006 				 bool *do_lost)
3007 {
3008 	struct tcp_sock *tp = tcp_sk(sk);
3009 
3010 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
3011 		/* Plain luck! Hole if filled with delayed
3012 		 * packet, rather than with a retransmit. Check reordering.
3013 		 */
3014 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
3015 
3016 		/* We are getting evidence that the reordering degree is higher
3017 		 * than we realized. If there are no retransmits out then we
3018 		 * can undo. Otherwise we clock out new packets but do not
3019 		 * mark more packets lost or retransmit more.
3020 		 */
3021 		if (tp->retrans_out)
3022 			return true;
3023 
3024 		if (!tcp_any_retrans_done(sk))
3025 			tp->retrans_stamp = 0;
3026 
3027 		DBGUNDO(sk, "partial recovery");
3028 		tcp_undo_cwnd_reduction(sk, true);
3029 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3030 		tcp_try_keep_open(sk);
3031 	} else {
3032 		/* Partial ACK arrived. Force fast retransmit. */
3033 		*do_lost = tcp_force_fast_retransmit(sk);
3034 	}
3035 	return false;
3036 }
3037 
3038 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3039 {
3040 	struct tcp_sock *tp = tcp_sk(sk);
3041 
3042 	if (tcp_rtx_queue_empty(sk))
3043 		return;
3044 
3045 	if (unlikely(tcp_is_reno(tp))) {
3046 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3047 	} else if (tcp_is_rack(sk)) {
3048 		u32 prior_retrans = tp->retrans_out;
3049 
3050 		if (tcp_rack_mark_lost(sk))
3051 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
3052 		if (prior_retrans > tp->retrans_out)
3053 			*ack_flag |= FLAG_LOST_RETRANS;
3054 	}
3055 }
3056 
3057 /* Process an event, which can update packets-in-flight not trivially.
3058  * Main goal of this function is to calculate new estimate for left_out,
3059  * taking into account both packets sitting in receiver's buffer and
3060  * packets lost by network.
3061  *
3062  * Besides that it updates the congestion state when packet loss or ECN
3063  * is detected. But it does not reduce the cwnd, it is done by the
3064  * congestion control later.
3065  *
3066  * It does _not_ decide what to send, it is made in function
3067  * tcp_xmit_retransmit_queue().
3068  */
3069 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3070 				  int num_dupack, int *ack_flag, int *rexmit)
3071 {
3072 	struct inet_connection_sock *icsk = inet_csk(sk);
3073 	struct tcp_sock *tp = tcp_sk(sk);
3074 	int fast_rexmit = 0, flag = *ack_flag;
3075 	bool ece_ack = flag & FLAG_ECE;
3076 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3077 				      tcp_force_fast_retransmit(sk));
3078 
3079 	if (!tp->packets_out && tp->sacked_out)
3080 		tp->sacked_out = 0;
3081 
3082 	/* Now state machine starts.
3083 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3084 	if (ece_ack)
3085 		tp->prior_ssthresh = 0;
3086 
3087 	/* B. In all the states check for reneging SACKs. */
3088 	if (tcp_check_sack_reneging(sk, ack_flag))
3089 		return;
3090 
3091 	/* C. Check consistency of the current state. */
3092 	tcp_verify_left_out(tp);
3093 
3094 	/* D. Check state exit conditions. State can be terminated
3095 	 *    when high_seq is ACKed. */
3096 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3097 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3098 		tp->retrans_stamp = 0;
3099 	} else if (!before(tp->snd_una, tp->high_seq)) {
3100 		switch (icsk->icsk_ca_state) {
3101 		case TCP_CA_CWR:
3102 			/* CWR is to be held something *above* high_seq
3103 			 * is ACKed for CWR bit to reach receiver. */
3104 			if (tp->snd_una != tp->high_seq) {
3105 				tcp_end_cwnd_reduction(sk);
3106 				tcp_set_ca_state(sk, TCP_CA_Open);
3107 			}
3108 			break;
3109 
3110 		case TCP_CA_Recovery:
3111 			if (tcp_is_reno(tp))
3112 				tcp_reset_reno_sack(tp);
3113 			if (tcp_try_undo_recovery(sk))
3114 				return;
3115 			tcp_end_cwnd_reduction(sk);
3116 			break;
3117 		}
3118 	}
3119 
3120 	/* E. Process state. */
3121 	switch (icsk->icsk_ca_state) {
3122 	case TCP_CA_Recovery:
3123 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3124 			if (tcp_is_reno(tp))
3125 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3126 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3127 			return;
3128 
3129 		if (tcp_try_undo_dsack(sk))
3130 			tcp_try_to_open(sk, flag);
3131 
3132 		tcp_identify_packet_loss(sk, ack_flag);
3133 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3134 			if (!tcp_time_to_recover(sk, flag))
3135 				return;
3136 			/* Undo reverts the recovery state. If loss is evident,
3137 			 * starts a new recovery (e.g. reordering then loss);
3138 			 */
3139 			tcp_enter_recovery(sk, ece_ack);
3140 		}
3141 		break;
3142 	case TCP_CA_Loss:
3143 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3144 		if (icsk->icsk_ca_state != TCP_CA_Loss)
3145 			tcp_update_rto_time(tp);
3146 		tcp_identify_packet_loss(sk, ack_flag);
3147 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3148 		      (*ack_flag & FLAG_LOST_RETRANS)))
3149 			return;
3150 		/* Change state if cwnd is undone or retransmits are lost */
3151 		fallthrough;
3152 	default:
3153 		if (tcp_is_reno(tp)) {
3154 			if (flag & FLAG_SND_UNA_ADVANCED)
3155 				tcp_reset_reno_sack(tp);
3156 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3157 		}
3158 
3159 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3160 			tcp_try_undo_dsack(sk);
3161 
3162 		tcp_identify_packet_loss(sk, ack_flag);
3163 		if (!tcp_time_to_recover(sk, flag)) {
3164 			tcp_try_to_open(sk, flag);
3165 			return;
3166 		}
3167 
3168 		/* MTU probe failure: don't reduce cwnd */
3169 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3170 		    icsk->icsk_mtup.probe_size &&
3171 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3172 			tcp_mtup_probe_failed(sk);
3173 			/* Restores the reduction we did in tcp_mtup_probe() */
3174 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3175 			tcp_simple_retransmit(sk);
3176 			return;
3177 		}
3178 
3179 		/* Otherwise enter Recovery state */
3180 		tcp_enter_recovery(sk, ece_ack);
3181 		fast_rexmit = 1;
3182 	}
3183 
3184 	if (!tcp_is_rack(sk) && do_lost)
3185 		tcp_update_scoreboard(sk, fast_rexmit);
3186 	*rexmit = REXMIT_LOST;
3187 }
3188 
3189 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3190 {
3191 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3192 	struct tcp_sock *tp = tcp_sk(sk);
3193 
3194 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3195 		/* If the remote keeps returning delayed ACKs, eventually
3196 		 * the min filter would pick it up and overestimate the
3197 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3198 		 */
3199 		return;
3200 	}
3201 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3202 			   rtt_us ? : jiffies_to_usecs(1));
3203 }
3204 
3205 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3206 			       long seq_rtt_us, long sack_rtt_us,
3207 			       long ca_rtt_us, struct rate_sample *rs)
3208 {
3209 	const struct tcp_sock *tp = tcp_sk(sk);
3210 
3211 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3212 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3213 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3214 	 * is acked (RFC6298).
3215 	 */
3216 	if (seq_rtt_us < 0)
3217 		seq_rtt_us = sack_rtt_us;
3218 
3219 	/* RTTM Rule: A TSecr value received in a segment is used to
3220 	 * update the averaged RTT measurement only if the segment
3221 	 * acknowledges some new data, i.e., only if it advances the
3222 	 * left edge of the send window.
3223 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3224 	 */
3225 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3226 	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3227 		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp);
3228 
3229 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3230 	if (seq_rtt_us < 0)
3231 		return false;
3232 
3233 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3234 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3235 	 * values will be skipped with the seq_rtt_us < 0 check above.
3236 	 */
3237 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3238 	tcp_rtt_estimator(sk, seq_rtt_us);
3239 	tcp_set_rto(sk);
3240 
3241 	/* RFC6298: only reset backoff on valid RTT measurement. */
3242 	inet_csk(sk)->icsk_backoff = 0;
3243 	return true;
3244 }
3245 
3246 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3247 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3248 {
3249 	struct rate_sample rs;
3250 	long rtt_us = -1L;
3251 
3252 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3253 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3254 
3255 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3256 }
3257 
3258 
3259 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3260 {
3261 	const struct inet_connection_sock *icsk = inet_csk(sk);
3262 
3263 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3264 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3265 }
3266 
3267 /* Restart timer after forward progress on connection.
3268  * RFC2988 recommends to restart timer to now+rto.
3269  */
3270 void tcp_rearm_rto(struct sock *sk)
3271 {
3272 	const struct inet_connection_sock *icsk = inet_csk(sk);
3273 	struct tcp_sock *tp = tcp_sk(sk);
3274 
3275 	/* If the retrans timer is currently being used by Fast Open
3276 	 * for SYN-ACK retrans purpose, stay put.
3277 	 */
3278 	if (rcu_access_pointer(tp->fastopen_rsk))
3279 		return;
3280 
3281 	if (!tp->packets_out) {
3282 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3283 	} else {
3284 		u32 rto = inet_csk(sk)->icsk_rto;
3285 		/* Offset the time elapsed after installing regular RTO */
3286 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3287 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3288 			s64 delta_us = tcp_rto_delta_us(sk);
3289 			/* delta_us may not be positive if the socket is locked
3290 			 * when the retrans timer fires and is rescheduled.
3291 			 */
3292 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3293 		}
3294 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true);
3295 	}
3296 }
3297 
3298 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3299 static void tcp_set_xmit_timer(struct sock *sk)
3300 {
3301 	if (!tcp_schedule_loss_probe(sk, true))
3302 		tcp_rearm_rto(sk);
3303 }
3304 
3305 /* If we get here, the whole TSO packet has not been acked. */
3306 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3307 {
3308 	struct tcp_sock *tp = tcp_sk(sk);
3309 	u32 packets_acked;
3310 
3311 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3312 
3313 	packets_acked = tcp_skb_pcount(skb);
3314 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3315 		return 0;
3316 	packets_acked -= tcp_skb_pcount(skb);
3317 
3318 	if (packets_acked) {
3319 		BUG_ON(tcp_skb_pcount(skb) == 0);
3320 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3321 	}
3322 
3323 	return packets_acked;
3324 }
3325 
3326 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3327 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3328 {
3329 	const struct skb_shared_info *shinfo;
3330 
3331 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3332 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3333 		return;
3334 
3335 	shinfo = skb_shinfo(skb);
3336 	if (!before(shinfo->tskey, prior_snd_una) &&
3337 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3338 		tcp_skb_tsorted_save(skb) {
3339 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3340 		} tcp_skb_tsorted_restore(skb);
3341 	}
3342 }
3343 
3344 /* Remove acknowledged frames from the retransmission queue. If our packet
3345  * is before the ack sequence we can discard it as it's confirmed to have
3346  * arrived at the other end.
3347  */
3348 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3349 			       u32 prior_fack, u32 prior_snd_una,
3350 			       struct tcp_sacktag_state *sack, bool ece_ack)
3351 {
3352 	const struct inet_connection_sock *icsk = inet_csk(sk);
3353 	u64 first_ackt, last_ackt;
3354 	struct tcp_sock *tp = tcp_sk(sk);
3355 	u32 prior_sacked = tp->sacked_out;
3356 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3357 	struct sk_buff *skb, *next;
3358 	bool fully_acked = true;
3359 	long sack_rtt_us = -1L;
3360 	long seq_rtt_us = -1L;
3361 	long ca_rtt_us = -1L;
3362 	u32 pkts_acked = 0;
3363 	bool rtt_update;
3364 	int flag = 0;
3365 
3366 	first_ackt = 0;
3367 
3368 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3369 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3370 		const u32 start_seq = scb->seq;
3371 		u8 sacked = scb->sacked;
3372 		u32 acked_pcount;
3373 
3374 		/* Determine how many packets and what bytes were acked, tso and else */
3375 		if (after(scb->end_seq, tp->snd_una)) {
3376 			if (tcp_skb_pcount(skb) == 1 ||
3377 			    !after(tp->snd_una, scb->seq))
3378 				break;
3379 
3380 			acked_pcount = tcp_tso_acked(sk, skb);
3381 			if (!acked_pcount)
3382 				break;
3383 			fully_acked = false;
3384 		} else {
3385 			acked_pcount = tcp_skb_pcount(skb);
3386 		}
3387 
3388 		if (unlikely(sacked & TCPCB_RETRANS)) {
3389 			if (sacked & TCPCB_SACKED_RETRANS)
3390 				tp->retrans_out -= acked_pcount;
3391 			flag |= FLAG_RETRANS_DATA_ACKED;
3392 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3393 			last_ackt = tcp_skb_timestamp_us(skb);
3394 			WARN_ON_ONCE(last_ackt == 0);
3395 			if (!first_ackt)
3396 				first_ackt = last_ackt;
3397 
3398 			if (before(start_seq, reord))
3399 				reord = start_seq;
3400 			if (!after(scb->end_seq, tp->high_seq))
3401 				flag |= FLAG_ORIG_SACK_ACKED;
3402 		}
3403 
3404 		if (sacked & TCPCB_SACKED_ACKED) {
3405 			tp->sacked_out -= acked_pcount;
3406 		} else if (tcp_is_sack(tp)) {
3407 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3408 			if (!tcp_skb_spurious_retrans(tp, skb))
3409 				tcp_rack_advance(tp, sacked, scb->end_seq,
3410 						 tcp_skb_timestamp_us(skb));
3411 		}
3412 		if (sacked & TCPCB_LOST)
3413 			tp->lost_out -= acked_pcount;
3414 
3415 		tp->packets_out -= acked_pcount;
3416 		pkts_acked += acked_pcount;
3417 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3418 
3419 		/* Initial outgoing SYN's get put onto the write_queue
3420 		 * just like anything else we transmit.  It is not
3421 		 * true data, and if we misinform our callers that
3422 		 * this ACK acks real data, we will erroneously exit
3423 		 * connection startup slow start one packet too
3424 		 * quickly.  This is severely frowned upon behavior.
3425 		 */
3426 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3427 			flag |= FLAG_DATA_ACKED;
3428 		} else {
3429 			flag |= FLAG_SYN_ACKED;
3430 			tp->retrans_stamp = 0;
3431 		}
3432 
3433 		if (!fully_acked)
3434 			break;
3435 
3436 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3437 
3438 		next = skb_rb_next(skb);
3439 		if (unlikely(skb == tp->retransmit_skb_hint))
3440 			tp->retransmit_skb_hint = NULL;
3441 		if (unlikely(skb == tp->lost_skb_hint))
3442 			tp->lost_skb_hint = NULL;
3443 		tcp_highest_sack_replace(sk, skb, next);
3444 		tcp_rtx_queue_unlink_and_free(skb, sk);
3445 	}
3446 
3447 	if (!skb)
3448 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3449 
3450 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3451 		tp->snd_up = tp->snd_una;
3452 
3453 	if (skb) {
3454 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3455 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3456 			flag |= FLAG_SACK_RENEGING;
3457 	}
3458 
3459 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3460 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3461 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3462 
3463 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3464 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3465 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3466 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3467 			/* Conservatively mark a delayed ACK. It's typically
3468 			 * from a lone runt packet over the round trip to
3469 			 * a receiver w/o out-of-order or CE events.
3470 			 */
3471 			flag |= FLAG_ACK_MAYBE_DELAYED;
3472 		}
3473 	}
3474 	if (sack->first_sackt) {
3475 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3476 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3477 	}
3478 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3479 					ca_rtt_us, sack->rate);
3480 
3481 	if (flag & FLAG_ACKED) {
3482 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3483 		if (unlikely(icsk->icsk_mtup.probe_size &&
3484 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3485 			tcp_mtup_probe_success(sk);
3486 		}
3487 
3488 		if (tcp_is_reno(tp)) {
3489 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3490 
3491 			/* If any of the cumulatively ACKed segments was
3492 			 * retransmitted, non-SACK case cannot confirm that
3493 			 * progress was due to original transmission due to
3494 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3495 			 * the packets may have been never retransmitted.
3496 			 */
3497 			if (flag & FLAG_RETRANS_DATA_ACKED)
3498 				flag &= ~FLAG_ORIG_SACK_ACKED;
3499 		} else {
3500 			int delta;
3501 
3502 			/* Non-retransmitted hole got filled? That's reordering */
3503 			if (before(reord, prior_fack))
3504 				tcp_check_sack_reordering(sk, reord, 0);
3505 
3506 			delta = prior_sacked - tp->sacked_out;
3507 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3508 		}
3509 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3510 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3511 						    tcp_skb_timestamp_us(skb))) {
3512 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3513 		 * after when the head was last (re)transmitted. Otherwise the
3514 		 * timeout may continue to extend in loss recovery.
3515 		 */
3516 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3517 	}
3518 
3519 	if (icsk->icsk_ca_ops->pkts_acked) {
3520 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3521 					     .rtt_us = sack->rate->rtt_us };
3522 
3523 		sample.in_flight = tp->mss_cache *
3524 			(tp->delivered - sack->rate->prior_delivered);
3525 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3526 	}
3527 
3528 #if FASTRETRANS_DEBUG > 0
3529 	WARN_ON((int)tp->sacked_out < 0);
3530 	WARN_ON((int)tp->lost_out < 0);
3531 	WARN_ON((int)tp->retrans_out < 0);
3532 	if (!tp->packets_out && tcp_is_sack(tp)) {
3533 		icsk = inet_csk(sk);
3534 		if (tp->lost_out) {
3535 			pr_debug("Leak l=%u %d\n",
3536 				 tp->lost_out, icsk->icsk_ca_state);
3537 			tp->lost_out = 0;
3538 		}
3539 		if (tp->sacked_out) {
3540 			pr_debug("Leak s=%u %d\n",
3541 				 tp->sacked_out, icsk->icsk_ca_state);
3542 			tp->sacked_out = 0;
3543 		}
3544 		if (tp->retrans_out) {
3545 			pr_debug("Leak r=%u %d\n",
3546 				 tp->retrans_out, icsk->icsk_ca_state);
3547 			tp->retrans_out = 0;
3548 		}
3549 	}
3550 #endif
3551 	return flag;
3552 }
3553 
3554 static void tcp_ack_probe(struct sock *sk)
3555 {
3556 	struct inet_connection_sock *icsk = inet_csk(sk);
3557 	struct sk_buff *head = tcp_send_head(sk);
3558 	const struct tcp_sock *tp = tcp_sk(sk);
3559 
3560 	/* Was it a usable window open? */
3561 	if (!head)
3562 		return;
3563 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3564 		icsk->icsk_backoff = 0;
3565 		icsk->icsk_probes_tstamp = 0;
3566 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3567 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3568 		 * This function is not for random using!
3569 		 */
3570 	} else {
3571 		unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk));
3572 
3573 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3574 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true);
3575 	}
3576 }
3577 
3578 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3579 {
3580 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3581 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3582 }
3583 
3584 /* Decide wheather to run the increase function of congestion control. */
3585 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3586 {
3587 	/* If reordering is high then always grow cwnd whenever data is
3588 	 * delivered regardless of its ordering. Otherwise stay conservative
3589 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3590 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3591 	 * cwnd in tcp_fastretrans_alert() based on more states.
3592 	 */
3593 	if (tcp_sk(sk)->reordering >
3594 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3595 		return flag & FLAG_FORWARD_PROGRESS;
3596 
3597 	return flag & FLAG_DATA_ACKED;
3598 }
3599 
3600 /* The "ultimate" congestion control function that aims to replace the rigid
3601  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3602  * It's called toward the end of processing an ACK with precise rate
3603  * information. All transmission or retransmission are delayed afterwards.
3604  */
3605 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3606 			     int flag, const struct rate_sample *rs)
3607 {
3608 	const struct inet_connection_sock *icsk = inet_csk(sk);
3609 
3610 	if (icsk->icsk_ca_ops->cong_control) {
3611 		icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3612 		return;
3613 	}
3614 
3615 	if (tcp_in_cwnd_reduction(sk)) {
3616 		/* Reduce cwnd if state mandates */
3617 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3618 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3619 		/* Advance cwnd if state allows */
3620 		tcp_cong_avoid(sk, ack, acked_sacked);
3621 	}
3622 	tcp_update_pacing_rate(sk);
3623 }
3624 
3625 /* Check that window update is acceptable.
3626  * The function assumes that snd_una<=ack<=snd_next.
3627  */
3628 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3629 					const u32 ack, const u32 ack_seq,
3630 					const u32 nwin)
3631 {
3632 	return	after(ack, tp->snd_una) ||
3633 		after(ack_seq, tp->snd_wl1) ||
3634 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3635 }
3636 
3637 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3638 {
3639 #ifdef CONFIG_TCP_AO
3640 	struct tcp_ao_info *ao;
3641 
3642 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3643 		return;
3644 
3645 	ao = rcu_dereference_protected(tp->ao_info,
3646 				       lockdep_sock_is_held((struct sock *)tp));
3647 	if (ao && ack < tp->snd_una) {
3648 		ao->snd_sne++;
3649 		trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3650 	}
3651 #endif
3652 }
3653 
3654 /* If we update tp->snd_una, also update tp->bytes_acked */
3655 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3656 {
3657 	u32 delta = ack - tp->snd_una;
3658 
3659 	sock_owned_by_me((struct sock *)tp);
3660 	tp->bytes_acked += delta;
3661 	tcp_snd_sne_update(tp, ack);
3662 	tp->snd_una = ack;
3663 }
3664 
3665 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3666 {
3667 #ifdef CONFIG_TCP_AO
3668 	struct tcp_ao_info *ao;
3669 
3670 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3671 		return;
3672 
3673 	ao = rcu_dereference_protected(tp->ao_info,
3674 				       lockdep_sock_is_held((struct sock *)tp));
3675 	if (ao && seq < tp->rcv_nxt) {
3676 		ao->rcv_sne++;
3677 		trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3678 	}
3679 #endif
3680 }
3681 
3682 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3683 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3684 {
3685 	u32 delta = seq - tp->rcv_nxt;
3686 
3687 	sock_owned_by_me((struct sock *)tp);
3688 	tp->bytes_received += delta;
3689 	tcp_rcv_sne_update(tp, seq);
3690 	WRITE_ONCE(tp->rcv_nxt, seq);
3691 }
3692 
3693 /* Update our send window.
3694  *
3695  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3696  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3697  */
3698 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3699 				 u32 ack_seq)
3700 {
3701 	struct tcp_sock *tp = tcp_sk(sk);
3702 	int flag = 0;
3703 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3704 
3705 	if (likely(!tcp_hdr(skb)->syn))
3706 		nwin <<= tp->rx_opt.snd_wscale;
3707 
3708 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3709 		flag |= FLAG_WIN_UPDATE;
3710 		tcp_update_wl(tp, ack_seq);
3711 
3712 		if (tp->snd_wnd != nwin) {
3713 			tp->snd_wnd = nwin;
3714 
3715 			/* Note, it is the only place, where
3716 			 * fast path is recovered for sending TCP.
3717 			 */
3718 			tp->pred_flags = 0;
3719 			tcp_fast_path_check(sk);
3720 
3721 			if (!tcp_write_queue_empty(sk))
3722 				tcp_slow_start_after_idle_check(sk);
3723 
3724 			if (nwin > tp->max_window) {
3725 				tp->max_window = nwin;
3726 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3727 			}
3728 		}
3729 	}
3730 
3731 	tcp_snd_una_update(tp, ack);
3732 
3733 	return flag;
3734 }
3735 
3736 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3737 				   u32 *last_oow_ack_time)
3738 {
3739 	/* Paired with the WRITE_ONCE() in this function. */
3740 	u32 val = READ_ONCE(*last_oow_ack_time);
3741 
3742 	if (val) {
3743 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3744 
3745 		if (0 <= elapsed &&
3746 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3747 			NET_INC_STATS(net, mib_idx);
3748 			return true;	/* rate-limited: don't send yet! */
3749 		}
3750 	}
3751 
3752 	/* Paired with the prior READ_ONCE() and with itself,
3753 	 * as we might be lockless.
3754 	 */
3755 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3756 
3757 	return false;	/* not rate-limited: go ahead, send dupack now! */
3758 }
3759 
3760 /* Return true if we're currently rate-limiting out-of-window ACKs and
3761  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3762  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3763  * attacks that send repeated SYNs or ACKs for the same connection. To
3764  * do this, we do not send a duplicate SYNACK or ACK if the remote
3765  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3766  */
3767 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3768 			  int mib_idx, u32 *last_oow_ack_time)
3769 {
3770 	/* Data packets without SYNs are not likely part of an ACK loop. */
3771 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3772 	    !tcp_hdr(skb)->syn)
3773 		return false;
3774 
3775 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3776 }
3777 
3778 /* RFC 5961 7 [ACK Throttling] */
3779 static void tcp_send_challenge_ack(struct sock *sk)
3780 {
3781 	struct tcp_sock *tp = tcp_sk(sk);
3782 	struct net *net = sock_net(sk);
3783 	u32 count, now, ack_limit;
3784 
3785 	/* First check our per-socket dupack rate limit. */
3786 	if (__tcp_oow_rate_limited(net,
3787 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3788 				   &tp->last_oow_ack_time))
3789 		return;
3790 
3791 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3792 	if (ack_limit == INT_MAX)
3793 		goto send_ack;
3794 
3795 	/* Then check host-wide RFC 5961 rate limit. */
3796 	now = jiffies / HZ;
3797 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3798 		u32 half = (ack_limit + 1) >> 1;
3799 
3800 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3801 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3802 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3803 	}
3804 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3805 	if (count > 0) {
3806 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3807 send_ack:
3808 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3809 		tcp_send_ack(sk);
3810 	}
3811 }
3812 
3813 static void tcp_store_ts_recent(struct tcp_sock *tp)
3814 {
3815 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3816 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3817 }
3818 
3819 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3820 {
3821 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3822 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3823 		 * extra check below makes sure this can only happen
3824 		 * for pure ACK frames.  -DaveM
3825 		 *
3826 		 * Not only, also it occurs for expired timestamps.
3827 		 */
3828 
3829 		if (tcp_paws_check(&tp->rx_opt, 0))
3830 			tcp_store_ts_recent(tp);
3831 	}
3832 }
3833 
3834 /* This routine deals with acks during a TLP episode and ends an episode by
3835  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3836  */
3837 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3838 {
3839 	struct tcp_sock *tp = tcp_sk(sk);
3840 
3841 	if (before(ack, tp->tlp_high_seq))
3842 		return;
3843 
3844 	if (!tp->tlp_retrans) {
3845 		/* TLP of new data has been acknowledged */
3846 		tp->tlp_high_seq = 0;
3847 	} else if (flag & FLAG_DSACK_TLP) {
3848 		/* This DSACK means original and TLP probe arrived; no loss */
3849 		tp->tlp_high_seq = 0;
3850 	} else if (after(ack, tp->tlp_high_seq)) {
3851 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3852 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3853 		 */
3854 		tcp_init_cwnd_reduction(sk);
3855 		tcp_set_ca_state(sk, TCP_CA_CWR);
3856 		tcp_end_cwnd_reduction(sk);
3857 		tcp_try_keep_open(sk);
3858 		NET_INC_STATS(sock_net(sk),
3859 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3860 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3861 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3862 		/* Pure dupack: original and TLP probe arrived; no loss */
3863 		tp->tlp_high_seq = 0;
3864 	}
3865 }
3866 
3867 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3868 {
3869 	const struct inet_connection_sock *icsk = inet_csk(sk);
3870 
3871 	if (icsk->icsk_ca_ops->in_ack_event)
3872 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3873 }
3874 
3875 /* Congestion control has updated the cwnd already. So if we're in
3876  * loss recovery then now we do any new sends (for FRTO) or
3877  * retransmits (for CA_Loss or CA_recovery) that make sense.
3878  */
3879 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3880 {
3881 	struct tcp_sock *tp = tcp_sk(sk);
3882 
3883 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3884 		return;
3885 
3886 	if (unlikely(rexmit == REXMIT_NEW)) {
3887 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3888 					  TCP_NAGLE_OFF);
3889 		if (after(tp->snd_nxt, tp->high_seq))
3890 			return;
3891 		tp->frto = 0;
3892 	}
3893 	tcp_xmit_retransmit_queue(sk);
3894 }
3895 
3896 /* Returns the number of packets newly acked or sacked by the current ACK */
3897 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3898 {
3899 	const struct net *net = sock_net(sk);
3900 	struct tcp_sock *tp = tcp_sk(sk);
3901 	u32 delivered;
3902 
3903 	delivered = tp->delivered - prior_delivered;
3904 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3905 	if (flag & FLAG_ECE)
3906 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3907 
3908 	return delivered;
3909 }
3910 
3911 /* This routine deals with incoming acks, but not outgoing ones. */
3912 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3913 {
3914 	struct inet_connection_sock *icsk = inet_csk(sk);
3915 	struct tcp_sock *tp = tcp_sk(sk);
3916 	struct tcp_sacktag_state sack_state;
3917 	struct rate_sample rs = { .prior_delivered = 0 };
3918 	u32 prior_snd_una = tp->snd_una;
3919 	bool is_sack_reneg = tp->is_sack_reneg;
3920 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3921 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3922 	int num_dupack = 0;
3923 	int prior_packets = tp->packets_out;
3924 	u32 delivered = tp->delivered;
3925 	u32 lost = tp->lost;
3926 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3927 	u32 prior_fack;
3928 
3929 	sack_state.first_sackt = 0;
3930 	sack_state.rate = &rs;
3931 	sack_state.sack_delivered = 0;
3932 
3933 	/* We very likely will need to access rtx queue. */
3934 	prefetch(sk->tcp_rtx_queue.rb_node);
3935 
3936 	/* If the ack is older than previous acks
3937 	 * then we can probably ignore it.
3938 	 */
3939 	if (before(ack, prior_snd_una)) {
3940 		u32 max_window;
3941 
3942 		/* do not accept ACK for bytes we never sent. */
3943 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3944 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3945 		if (before(ack, prior_snd_una - max_window)) {
3946 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3947 				tcp_send_challenge_ack(sk);
3948 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3949 		}
3950 		goto old_ack;
3951 	}
3952 
3953 	/* If the ack includes data we haven't sent yet, discard
3954 	 * this segment (RFC793 Section 3.9).
3955 	 */
3956 	if (after(ack, tp->snd_nxt))
3957 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3958 
3959 	if (after(ack, prior_snd_una)) {
3960 		flag |= FLAG_SND_UNA_ADVANCED;
3961 		icsk->icsk_retransmits = 0;
3962 
3963 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3964 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3965 			if (icsk->icsk_clean_acked)
3966 				icsk->icsk_clean_acked(sk, ack);
3967 #endif
3968 	}
3969 
3970 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3971 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3972 
3973 	/* ts_recent update must be made after we are sure that the packet
3974 	 * is in window.
3975 	 */
3976 	if (flag & FLAG_UPDATE_TS_RECENT)
3977 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3978 
3979 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3980 	    FLAG_SND_UNA_ADVANCED) {
3981 		/* Window is constant, pure forward advance.
3982 		 * No more checks are required.
3983 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3984 		 */
3985 		tcp_update_wl(tp, ack_seq);
3986 		tcp_snd_una_update(tp, ack);
3987 		flag |= FLAG_WIN_UPDATE;
3988 
3989 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3990 
3991 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3992 	} else {
3993 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3994 
3995 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3996 			flag |= FLAG_DATA;
3997 		else
3998 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3999 
4000 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
4001 
4002 		if (TCP_SKB_CB(skb)->sacked)
4003 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4004 							&sack_state);
4005 
4006 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
4007 			flag |= FLAG_ECE;
4008 			ack_ev_flags |= CA_ACK_ECE;
4009 		}
4010 
4011 		if (sack_state.sack_delivered)
4012 			tcp_count_delivered(tp, sack_state.sack_delivered,
4013 					    flag & FLAG_ECE);
4014 
4015 		if (flag & FLAG_WIN_UPDATE)
4016 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
4017 
4018 		tcp_in_ack_event(sk, ack_ev_flags);
4019 	}
4020 
4021 	/* This is a deviation from RFC3168 since it states that:
4022 	 * "When the TCP data sender is ready to set the CWR bit after reducing
4023 	 * the congestion window, it SHOULD set the CWR bit only on the first
4024 	 * new data packet that it transmits."
4025 	 * We accept CWR on pure ACKs to be more robust
4026 	 * with widely-deployed TCP implementations that do this.
4027 	 */
4028 	tcp_ecn_accept_cwr(sk, skb);
4029 
4030 	/* We passed data and got it acked, remove any soft error
4031 	 * log. Something worked...
4032 	 */
4033 	WRITE_ONCE(sk->sk_err_soft, 0);
4034 	icsk->icsk_probes_out = 0;
4035 	tp->rcv_tstamp = tcp_jiffies32;
4036 	if (!prior_packets)
4037 		goto no_queue;
4038 
4039 	/* See if we can take anything off of the retransmit queue. */
4040 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
4041 				    &sack_state, flag & FLAG_ECE);
4042 
4043 	tcp_rack_update_reo_wnd(sk, &rs);
4044 
4045 	if (tp->tlp_high_seq)
4046 		tcp_process_tlp_ack(sk, ack, flag);
4047 
4048 	if (tcp_ack_is_dubious(sk, flag)) {
4049 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
4050 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4051 			num_dupack = 1;
4052 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
4053 			if (!(flag & FLAG_DATA))
4054 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4055 		}
4056 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4057 				      &rexmit);
4058 	}
4059 
4060 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
4061 	if (flag & FLAG_SET_XMIT_TIMER)
4062 		tcp_set_xmit_timer(sk);
4063 
4064 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4065 		sk_dst_confirm(sk);
4066 
4067 	delivered = tcp_newly_delivered(sk, delivered, flag);
4068 	lost = tp->lost - lost;			/* freshly marked lost */
4069 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4070 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4071 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4072 	tcp_xmit_recovery(sk, rexmit);
4073 	return 1;
4074 
4075 no_queue:
4076 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4077 	if (flag & FLAG_DSACKING_ACK) {
4078 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4079 				      &rexmit);
4080 		tcp_newly_delivered(sk, delivered, flag);
4081 	}
4082 	/* If this ack opens up a zero window, clear backoff.  It was
4083 	 * being used to time the probes, and is probably far higher than
4084 	 * it needs to be for normal retransmission.
4085 	 */
4086 	tcp_ack_probe(sk);
4087 
4088 	if (tp->tlp_high_seq)
4089 		tcp_process_tlp_ack(sk, ack, flag);
4090 	return 1;
4091 
4092 old_ack:
4093 	/* If data was SACKed, tag it and see if we should send more data.
4094 	 * If data was DSACKed, see if we can undo a cwnd reduction.
4095 	 */
4096 	if (TCP_SKB_CB(skb)->sacked) {
4097 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4098 						&sack_state);
4099 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4100 				      &rexmit);
4101 		tcp_newly_delivered(sk, delivered, flag);
4102 		tcp_xmit_recovery(sk, rexmit);
4103 	}
4104 
4105 	return 0;
4106 }
4107 
4108 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4109 				      bool syn, struct tcp_fastopen_cookie *foc,
4110 				      bool exp_opt)
4111 {
4112 	/* Valid only in SYN or SYN-ACK with an even length.  */
4113 	if (!foc || !syn || len < 0 || (len & 1))
4114 		return;
4115 
4116 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4117 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4118 		memcpy(foc->val, cookie, len);
4119 	else if (len != 0)
4120 		len = -1;
4121 	foc->len = len;
4122 	foc->exp = exp_opt;
4123 }
4124 
4125 static bool smc_parse_options(const struct tcphdr *th,
4126 			      struct tcp_options_received *opt_rx,
4127 			      const unsigned char *ptr,
4128 			      int opsize)
4129 {
4130 #if IS_ENABLED(CONFIG_SMC)
4131 	if (static_branch_unlikely(&tcp_have_smc)) {
4132 		if (th->syn && !(opsize & 1) &&
4133 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4134 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4135 			opt_rx->smc_ok = 1;
4136 			return true;
4137 		}
4138 	}
4139 #endif
4140 	return false;
4141 }
4142 
4143 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4144  * value on success.
4145  */
4146 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4147 {
4148 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4149 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4150 	u16 mss = 0;
4151 
4152 	while (length > 0) {
4153 		int opcode = *ptr++;
4154 		int opsize;
4155 
4156 		switch (opcode) {
4157 		case TCPOPT_EOL:
4158 			return mss;
4159 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4160 			length--;
4161 			continue;
4162 		default:
4163 			if (length < 2)
4164 				return mss;
4165 			opsize = *ptr++;
4166 			if (opsize < 2) /* "silly options" */
4167 				return mss;
4168 			if (opsize > length)
4169 				return mss;	/* fail on partial options */
4170 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4171 				u16 in_mss = get_unaligned_be16(ptr);
4172 
4173 				if (in_mss) {
4174 					if (user_mss && user_mss < in_mss)
4175 						in_mss = user_mss;
4176 					mss = in_mss;
4177 				}
4178 			}
4179 			ptr += opsize - 2;
4180 			length -= opsize;
4181 		}
4182 	}
4183 	return mss;
4184 }
4185 
4186 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4187  * But, this can also be called on packets in the established flow when
4188  * the fast version below fails.
4189  */
4190 void tcp_parse_options(const struct net *net,
4191 		       const struct sk_buff *skb,
4192 		       struct tcp_options_received *opt_rx, int estab,
4193 		       struct tcp_fastopen_cookie *foc)
4194 {
4195 	const unsigned char *ptr;
4196 	const struct tcphdr *th = tcp_hdr(skb);
4197 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4198 
4199 	ptr = (const unsigned char *)(th + 1);
4200 	opt_rx->saw_tstamp = 0;
4201 	opt_rx->saw_unknown = 0;
4202 
4203 	while (length > 0) {
4204 		int opcode = *ptr++;
4205 		int opsize;
4206 
4207 		switch (opcode) {
4208 		case TCPOPT_EOL:
4209 			return;
4210 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4211 			length--;
4212 			continue;
4213 		default:
4214 			if (length < 2)
4215 				return;
4216 			opsize = *ptr++;
4217 			if (opsize < 2) /* "silly options" */
4218 				return;
4219 			if (opsize > length)
4220 				return;	/* don't parse partial options */
4221 			switch (opcode) {
4222 			case TCPOPT_MSS:
4223 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4224 					u16 in_mss = get_unaligned_be16(ptr);
4225 					if (in_mss) {
4226 						if (opt_rx->user_mss &&
4227 						    opt_rx->user_mss < in_mss)
4228 							in_mss = opt_rx->user_mss;
4229 						opt_rx->mss_clamp = in_mss;
4230 					}
4231 				}
4232 				break;
4233 			case TCPOPT_WINDOW:
4234 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4235 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4236 					__u8 snd_wscale = *(__u8 *)ptr;
4237 					opt_rx->wscale_ok = 1;
4238 					if (snd_wscale > TCP_MAX_WSCALE) {
4239 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4240 								     __func__,
4241 								     snd_wscale,
4242 								     TCP_MAX_WSCALE);
4243 						snd_wscale = TCP_MAX_WSCALE;
4244 					}
4245 					opt_rx->snd_wscale = snd_wscale;
4246 				}
4247 				break;
4248 			case TCPOPT_TIMESTAMP:
4249 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4250 				    ((estab && opt_rx->tstamp_ok) ||
4251 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4252 					opt_rx->saw_tstamp = 1;
4253 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4254 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4255 				}
4256 				break;
4257 			case TCPOPT_SACK_PERM:
4258 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4259 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4260 					opt_rx->sack_ok = TCP_SACK_SEEN;
4261 					tcp_sack_reset(opt_rx);
4262 				}
4263 				break;
4264 
4265 			case TCPOPT_SACK:
4266 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4267 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4268 				   opt_rx->sack_ok) {
4269 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4270 				}
4271 				break;
4272 #ifdef CONFIG_TCP_MD5SIG
4273 			case TCPOPT_MD5SIG:
4274 				/* The MD5 Hash has already been
4275 				 * checked (see tcp_v{4,6}_rcv()).
4276 				 */
4277 				break;
4278 #endif
4279 #ifdef CONFIG_TCP_AO
4280 			case TCPOPT_AO:
4281 				/* TCP AO has already been checked
4282 				 * (see tcp_inbound_ao_hash()).
4283 				 */
4284 				break;
4285 #endif
4286 			case TCPOPT_FASTOPEN:
4287 				tcp_parse_fastopen_option(
4288 					opsize - TCPOLEN_FASTOPEN_BASE,
4289 					ptr, th->syn, foc, false);
4290 				break;
4291 
4292 			case TCPOPT_EXP:
4293 				/* Fast Open option shares code 254 using a
4294 				 * 16 bits magic number.
4295 				 */
4296 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4297 				    get_unaligned_be16(ptr) ==
4298 				    TCPOPT_FASTOPEN_MAGIC) {
4299 					tcp_parse_fastopen_option(opsize -
4300 						TCPOLEN_EXP_FASTOPEN_BASE,
4301 						ptr + 2, th->syn, foc, true);
4302 					break;
4303 				}
4304 
4305 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4306 					break;
4307 
4308 				opt_rx->saw_unknown = 1;
4309 				break;
4310 
4311 			default:
4312 				opt_rx->saw_unknown = 1;
4313 			}
4314 			ptr += opsize-2;
4315 			length -= opsize;
4316 		}
4317 	}
4318 }
4319 EXPORT_SYMBOL(tcp_parse_options);
4320 
4321 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4322 {
4323 	const __be32 *ptr = (const __be32 *)(th + 1);
4324 
4325 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4326 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4327 		tp->rx_opt.saw_tstamp = 1;
4328 		++ptr;
4329 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4330 		++ptr;
4331 		if (*ptr)
4332 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4333 		else
4334 			tp->rx_opt.rcv_tsecr = 0;
4335 		return true;
4336 	}
4337 	return false;
4338 }
4339 
4340 /* Fast parse options. This hopes to only see timestamps.
4341  * If it is wrong it falls back on tcp_parse_options().
4342  */
4343 static bool tcp_fast_parse_options(const struct net *net,
4344 				   const struct sk_buff *skb,
4345 				   const struct tcphdr *th, struct tcp_sock *tp)
4346 {
4347 	/* In the spirit of fast parsing, compare doff directly to constant
4348 	 * values.  Because equality is used, short doff can be ignored here.
4349 	 */
4350 	if (th->doff == (sizeof(*th) / 4)) {
4351 		tp->rx_opt.saw_tstamp = 0;
4352 		return false;
4353 	} else if (tp->rx_opt.tstamp_ok &&
4354 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4355 		if (tcp_parse_aligned_timestamp(tp, th))
4356 			return true;
4357 	}
4358 
4359 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4360 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4361 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4362 
4363 	return true;
4364 }
4365 
4366 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4367 /*
4368  * Parse Signature options
4369  */
4370 int tcp_do_parse_auth_options(const struct tcphdr *th,
4371 			      const u8 **md5_hash, const u8 **ao_hash)
4372 {
4373 	int length = (th->doff << 2) - sizeof(*th);
4374 	const u8 *ptr = (const u8 *)(th + 1);
4375 	unsigned int minlen = TCPOLEN_MD5SIG;
4376 
4377 	if (IS_ENABLED(CONFIG_TCP_AO))
4378 		minlen = sizeof(struct tcp_ao_hdr) + 1;
4379 
4380 	*md5_hash = NULL;
4381 	*ao_hash = NULL;
4382 
4383 	/* If not enough data remaining, we can short cut */
4384 	while (length >= minlen) {
4385 		int opcode = *ptr++;
4386 		int opsize;
4387 
4388 		switch (opcode) {
4389 		case TCPOPT_EOL:
4390 			return 0;
4391 		case TCPOPT_NOP:
4392 			length--;
4393 			continue;
4394 		default:
4395 			opsize = *ptr++;
4396 			if (opsize < 2 || opsize > length)
4397 				return -EINVAL;
4398 			if (opcode == TCPOPT_MD5SIG) {
4399 				if (opsize != TCPOLEN_MD5SIG)
4400 					return -EINVAL;
4401 				if (unlikely(*md5_hash || *ao_hash))
4402 					return -EEXIST;
4403 				*md5_hash = ptr;
4404 			} else if (opcode == TCPOPT_AO) {
4405 				if (opsize <= sizeof(struct tcp_ao_hdr))
4406 					return -EINVAL;
4407 				if (unlikely(*md5_hash || *ao_hash))
4408 					return -EEXIST;
4409 				*ao_hash = ptr;
4410 			}
4411 		}
4412 		ptr += opsize - 2;
4413 		length -= opsize;
4414 	}
4415 	return 0;
4416 }
4417 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4418 #endif
4419 
4420 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4421  *
4422  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4423  * it can pass through stack. So, the following predicate verifies that
4424  * this segment is not used for anything but congestion avoidance or
4425  * fast retransmit. Moreover, we even are able to eliminate most of such
4426  * second order effects, if we apply some small "replay" window (~RTO)
4427  * to timestamp space.
4428  *
4429  * All these measures still do not guarantee that we reject wrapped ACKs
4430  * on networks with high bandwidth, when sequence space is recycled fastly,
4431  * but it guarantees that such events will be very rare and do not affect
4432  * connection seriously. This doesn't look nice, but alas, PAWS is really
4433  * buggy extension.
4434  *
4435  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4436  * states that events when retransmit arrives after original data are rare.
4437  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4438  * the biggest problem on large power networks even with minor reordering.
4439  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4440  * up to bandwidth of 18Gigabit/sec. 8) ]
4441  */
4442 
4443 /* Estimates max number of increments of remote peer TSval in
4444  * a replay window (based on our current RTO estimation).
4445  */
4446 static u32 tcp_tsval_replay(const struct sock *sk)
4447 {
4448 	/* If we use usec TS resolution,
4449 	 * then expect the remote peer to use the same resolution.
4450 	 */
4451 	if (tcp_sk(sk)->tcp_usec_ts)
4452 		return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4453 
4454 	/* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4455 	 * We know that some OS (including old linux) can use 1200 Hz.
4456 	 */
4457 	return inet_csk(sk)->icsk_rto * 1200 / HZ;
4458 }
4459 
4460 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk,
4461 						     const struct sk_buff *skb)
4462 {
4463 	const struct tcp_sock *tp = tcp_sk(sk);
4464 	const struct tcphdr *th = tcp_hdr(skb);
4465 	SKB_DR_INIT(reason, TCP_RFC7323_PAWS);
4466 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4467 	u32 seq = TCP_SKB_CB(skb)->seq;
4468 
4469 	/* 1. Is this not a pure ACK ? */
4470 	if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq)
4471 		return reason;
4472 
4473 	/* 2. Is its sequence not the expected one ? */
4474 	if (seq != tp->rcv_nxt)
4475 		return before(seq, tp->rcv_nxt) ?
4476 			SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK :
4477 			reason;
4478 
4479 	/* 3. Is this not a duplicate ACK ? */
4480 	if (ack != tp->snd_una)
4481 		return reason;
4482 
4483 	/* 4. Is this updating the window ? */
4484 	if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) <<
4485 						tp->rx_opt.snd_wscale))
4486 		return reason;
4487 
4488 	/* 5. Is this not in the replay window ? */
4489 	if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) >
4490 	    tcp_tsval_replay(sk))
4491 		return reason;
4492 
4493 	return 0;
4494 }
4495 
4496 /* Check segment sequence number for validity.
4497  *
4498  * Segment controls are considered valid, if the segment
4499  * fits to the window after truncation to the window. Acceptability
4500  * of data (and SYN, FIN, of course) is checked separately.
4501  * See tcp_data_queue(), for example.
4502  *
4503  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4504  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4505  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4506  * (borrowed from freebsd)
4507  */
4508 
4509 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4510 					 u32 seq, u32 end_seq)
4511 {
4512 	if (before(end_seq, tp->rcv_wup))
4513 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4514 
4515 	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4516 		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4517 
4518 	return SKB_NOT_DROPPED_YET;
4519 }
4520 
4521 
4522 void tcp_done_with_error(struct sock *sk, int err)
4523 {
4524 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4525 	WRITE_ONCE(sk->sk_err, err);
4526 	smp_wmb();
4527 
4528 	tcp_write_queue_purge(sk);
4529 	tcp_done(sk);
4530 
4531 	if (!sock_flag(sk, SOCK_DEAD))
4532 		sk_error_report(sk);
4533 }
4534 EXPORT_IPV6_MOD(tcp_done_with_error);
4535 
4536 /* When we get a reset we do this. */
4537 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4538 {
4539 	int err;
4540 
4541 	trace_tcp_receive_reset(sk);
4542 
4543 	/* mptcp can't tell us to ignore reset pkts,
4544 	 * so just ignore the return value of mptcp_incoming_options().
4545 	 */
4546 	if (sk_is_mptcp(sk))
4547 		mptcp_incoming_options(sk, skb);
4548 
4549 	/* We want the right error as BSD sees it (and indeed as we do). */
4550 	switch (sk->sk_state) {
4551 	case TCP_SYN_SENT:
4552 		err = ECONNREFUSED;
4553 		break;
4554 	case TCP_CLOSE_WAIT:
4555 		err = EPIPE;
4556 		break;
4557 	case TCP_CLOSE:
4558 		return;
4559 	default:
4560 		err = ECONNRESET;
4561 	}
4562 	tcp_done_with_error(sk, err);
4563 }
4564 
4565 /*
4566  * 	Process the FIN bit. This now behaves as it is supposed to work
4567  *	and the FIN takes effect when it is validly part of sequence
4568  *	space. Not before when we get holes.
4569  *
4570  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4571  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4572  *	TIME-WAIT)
4573  *
4574  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4575  *	close and we go into CLOSING (and later onto TIME-WAIT)
4576  *
4577  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4578  */
4579 void tcp_fin(struct sock *sk)
4580 {
4581 	struct tcp_sock *tp = tcp_sk(sk);
4582 
4583 	inet_csk_schedule_ack(sk);
4584 
4585 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4586 	sock_set_flag(sk, SOCK_DONE);
4587 
4588 	switch (sk->sk_state) {
4589 	case TCP_SYN_RECV:
4590 	case TCP_ESTABLISHED:
4591 		/* Move to CLOSE_WAIT */
4592 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4593 		inet_csk_enter_pingpong_mode(sk);
4594 		break;
4595 
4596 	case TCP_CLOSE_WAIT:
4597 	case TCP_CLOSING:
4598 		/* Received a retransmission of the FIN, do
4599 		 * nothing.
4600 		 */
4601 		break;
4602 	case TCP_LAST_ACK:
4603 		/* RFC793: Remain in the LAST-ACK state. */
4604 		break;
4605 
4606 	case TCP_FIN_WAIT1:
4607 		/* This case occurs when a simultaneous close
4608 		 * happens, we must ack the received FIN and
4609 		 * enter the CLOSING state.
4610 		 */
4611 		tcp_send_ack(sk);
4612 		tcp_set_state(sk, TCP_CLOSING);
4613 		break;
4614 	case TCP_FIN_WAIT2:
4615 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4616 		tcp_send_ack(sk);
4617 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4618 		break;
4619 	default:
4620 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4621 		 * cases we should never reach this piece of code.
4622 		 */
4623 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4624 		       __func__, sk->sk_state);
4625 		break;
4626 	}
4627 
4628 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4629 	 * Probably, we should reset in this case. For now drop them.
4630 	 */
4631 	skb_rbtree_purge(&tp->out_of_order_queue);
4632 	if (tcp_is_sack(tp))
4633 		tcp_sack_reset(&tp->rx_opt);
4634 
4635 	if (!sock_flag(sk, SOCK_DEAD)) {
4636 		sk->sk_state_change(sk);
4637 
4638 		/* Do not send POLL_HUP for half duplex close. */
4639 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4640 		    sk->sk_state == TCP_CLOSE)
4641 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4642 		else
4643 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4644 	}
4645 }
4646 
4647 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4648 				  u32 end_seq)
4649 {
4650 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4651 		if (before(seq, sp->start_seq))
4652 			sp->start_seq = seq;
4653 		if (after(end_seq, sp->end_seq))
4654 			sp->end_seq = end_seq;
4655 		return true;
4656 	}
4657 	return false;
4658 }
4659 
4660 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4661 {
4662 	struct tcp_sock *tp = tcp_sk(sk);
4663 
4664 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4665 		int mib_idx;
4666 
4667 		if (before(seq, tp->rcv_nxt))
4668 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4669 		else
4670 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4671 
4672 		NET_INC_STATS(sock_net(sk), mib_idx);
4673 
4674 		tp->rx_opt.dsack = 1;
4675 		tp->duplicate_sack[0].start_seq = seq;
4676 		tp->duplicate_sack[0].end_seq = end_seq;
4677 	}
4678 }
4679 
4680 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4681 {
4682 	struct tcp_sock *tp = tcp_sk(sk);
4683 
4684 	if (!tp->rx_opt.dsack)
4685 		tcp_dsack_set(sk, seq, end_seq);
4686 	else
4687 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4688 }
4689 
4690 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4691 {
4692 	/* When the ACK path fails or drops most ACKs, the sender would
4693 	 * timeout and spuriously retransmit the same segment repeatedly.
4694 	 * If it seems our ACKs are not reaching the other side,
4695 	 * based on receiving a duplicate data segment with new flowlabel
4696 	 * (suggesting the sender suffered an RTO), and we are not already
4697 	 * repathing due to our own RTO, then rehash the socket to repath our
4698 	 * packets.
4699 	 */
4700 #if IS_ENABLED(CONFIG_IPV6)
4701 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4702 	    skb->protocol == htons(ETH_P_IPV6) &&
4703 	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4704 	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4705 	    sk_rethink_txhash(sk))
4706 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4707 
4708 	/* Save last flowlabel after a spurious retrans. */
4709 	tcp_save_lrcv_flowlabel(sk, skb);
4710 #endif
4711 }
4712 
4713 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4714 {
4715 	struct tcp_sock *tp = tcp_sk(sk);
4716 
4717 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4718 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4719 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4720 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4721 
4722 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4723 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4724 
4725 			tcp_rcv_spurious_retrans(sk, skb);
4726 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4727 				end_seq = tp->rcv_nxt;
4728 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4729 		}
4730 	}
4731 
4732 	tcp_send_ack(sk);
4733 }
4734 
4735 /* These routines update the SACK block as out-of-order packets arrive or
4736  * in-order packets close up the sequence space.
4737  */
4738 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4739 {
4740 	int this_sack;
4741 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4742 	struct tcp_sack_block *swalk = sp + 1;
4743 
4744 	/* See if the recent change to the first SACK eats into
4745 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4746 	 */
4747 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4748 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4749 			int i;
4750 
4751 			/* Zap SWALK, by moving every further SACK up by one slot.
4752 			 * Decrease num_sacks.
4753 			 */
4754 			tp->rx_opt.num_sacks--;
4755 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4756 				sp[i] = sp[i + 1];
4757 			continue;
4758 		}
4759 		this_sack++;
4760 		swalk++;
4761 	}
4762 }
4763 
4764 void tcp_sack_compress_send_ack(struct sock *sk)
4765 {
4766 	struct tcp_sock *tp = tcp_sk(sk);
4767 
4768 	if (!tp->compressed_ack)
4769 		return;
4770 
4771 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4772 		__sock_put(sk);
4773 
4774 	/* Since we have to send one ack finally,
4775 	 * substract one from tp->compressed_ack to keep
4776 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4777 	 */
4778 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4779 		      tp->compressed_ack - 1);
4780 
4781 	tp->compressed_ack = 0;
4782 	tcp_send_ack(sk);
4783 }
4784 
4785 /* Reasonable amount of sack blocks included in TCP SACK option
4786  * The max is 4, but this becomes 3 if TCP timestamps are there.
4787  * Given that SACK packets might be lost, be conservative and use 2.
4788  */
4789 #define TCP_SACK_BLOCKS_EXPECTED 2
4790 
4791 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4792 {
4793 	struct tcp_sock *tp = tcp_sk(sk);
4794 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4795 	int cur_sacks = tp->rx_opt.num_sacks;
4796 	int this_sack;
4797 
4798 	if (!cur_sacks)
4799 		goto new_sack;
4800 
4801 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4802 		if (tcp_sack_extend(sp, seq, end_seq)) {
4803 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4804 				tcp_sack_compress_send_ack(sk);
4805 			/* Rotate this_sack to the first one. */
4806 			for (; this_sack > 0; this_sack--, sp--)
4807 				swap(*sp, *(sp - 1));
4808 			if (cur_sacks > 1)
4809 				tcp_sack_maybe_coalesce(tp);
4810 			return;
4811 		}
4812 	}
4813 
4814 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4815 		tcp_sack_compress_send_ack(sk);
4816 
4817 	/* Could not find an adjacent existing SACK, build a new one,
4818 	 * put it at the front, and shift everyone else down.  We
4819 	 * always know there is at least one SACK present already here.
4820 	 *
4821 	 * If the sack array is full, forget about the last one.
4822 	 */
4823 	if (this_sack >= TCP_NUM_SACKS) {
4824 		this_sack--;
4825 		tp->rx_opt.num_sacks--;
4826 		sp--;
4827 	}
4828 	for (; this_sack > 0; this_sack--, sp--)
4829 		*sp = *(sp - 1);
4830 
4831 new_sack:
4832 	/* Build the new head SACK, and we're done. */
4833 	sp->start_seq = seq;
4834 	sp->end_seq = end_seq;
4835 	tp->rx_opt.num_sacks++;
4836 }
4837 
4838 /* RCV.NXT advances, some SACKs should be eaten. */
4839 
4840 static void tcp_sack_remove(struct tcp_sock *tp)
4841 {
4842 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4843 	int num_sacks = tp->rx_opt.num_sacks;
4844 	int this_sack;
4845 
4846 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4847 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4848 		tp->rx_opt.num_sacks = 0;
4849 		return;
4850 	}
4851 
4852 	for (this_sack = 0; this_sack < num_sacks;) {
4853 		/* Check if the start of the sack is covered by RCV.NXT. */
4854 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4855 			int i;
4856 
4857 			/* RCV.NXT must cover all the block! */
4858 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4859 
4860 			/* Zap this SACK, by moving forward any other SACKS. */
4861 			for (i = this_sack+1; i < num_sacks; i++)
4862 				tp->selective_acks[i-1] = tp->selective_acks[i];
4863 			num_sacks--;
4864 			continue;
4865 		}
4866 		this_sack++;
4867 		sp++;
4868 	}
4869 	tp->rx_opt.num_sacks = num_sacks;
4870 }
4871 
4872 /**
4873  * tcp_try_coalesce - try to merge skb to prior one
4874  * @sk: socket
4875  * @to: prior buffer
4876  * @from: buffer to add in queue
4877  * @fragstolen: pointer to boolean
4878  *
4879  * Before queueing skb @from after @to, try to merge them
4880  * to reduce overall memory use and queue lengths, if cost is small.
4881  * Packets in ofo or receive queues can stay a long time.
4882  * Better try to coalesce them right now to avoid future collapses.
4883  * Returns true if caller should free @from instead of queueing it
4884  */
4885 static bool tcp_try_coalesce(struct sock *sk,
4886 			     struct sk_buff *to,
4887 			     struct sk_buff *from,
4888 			     bool *fragstolen)
4889 {
4890 	int delta;
4891 
4892 	*fragstolen = false;
4893 
4894 	/* Its possible this segment overlaps with prior segment in queue */
4895 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4896 		return false;
4897 
4898 	if (!tcp_skb_can_collapse_rx(to, from))
4899 		return false;
4900 
4901 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4902 		return false;
4903 
4904 	atomic_add(delta, &sk->sk_rmem_alloc);
4905 	sk_mem_charge(sk, delta);
4906 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4907 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4908 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4909 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4910 
4911 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4912 		TCP_SKB_CB(to)->has_rxtstamp = true;
4913 		to->tstamp = from->tstamp;
4914 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4915 	}
4916 
4917 	return true;
4918 }
4919 
4920 static bool tcp_ooo_try_coalesce(struct sock *sk,
4921 			     struct sk_buff *to,
4922 			     struct sk_buff *from,
4923 			     bool *fragstolen)
4924 {
4925 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4926 
4927 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4928 	if (res) {
4929 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4930 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4931 
4932 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4933 	}
4934 	return res;
4935 }
4936 
4937 noinline_for_tracing static void
4938 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
4939 {
4940 	sk_drops_add(sk, skb);
4941 	sk_skb_reason_drop(sk, skb, reason);
4942 }
4943 
4944 /* This one checks to see if we can put data from the
4945  * out_of_order queue into the receive_queue.
4946  */
4947 static void tcp_ofo_queue(struct sock *sk)
4948 {
4949 	struct tcp_sock *tp = tcp_sk(sk);
4950 	__u32 dsack_high = tp->rcv_nxt;
4951 	bool fin, fragstolen, eaten;
4952 	struct sk_buff *skb, *tail;
4953 	struct rb_node *p;
4954 
4955 	p = rb_first(&tp->out_of_order_queue);
4956 	while (p) {
4957 		skb = rb_to_skb(p);
4958 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4959 			break;
4960 
4961 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4962 			__u32 dsack = dsack_high;
4963 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4964 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4965 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4966 		}
4967 		p = rb_next(p);
4968 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4969 
4970 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4971 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4972 			continue;
4973 		}
4974 
4975 		tail = skb_peek_tail(&sk->sk_receive_queue);
4976 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4977 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4978 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4979 		if (!eaten)
4980 			tcp_add_receive_queue(sk, skb);
4981 		else
4982 			kfree_skb_partial(skb, fragstolen);
4983 
4984 		if (unlikely(fin)) {
4985 			tcp_fin(sk);
4986 			/* tcp_fin() purges tp->out_of_order_queue,
4987 			 * so we must end this loop right now.
4988 			 */
4989 			break;
4990 		}
4991 	}
4992 }
4993 
4994 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4995 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4996 
4997 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4998 				 unsigned int size)
4999 {
5000 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
5001 	    !sk_rmem_schedule(sk, skb, size)) {
5002 
5003 		if (tcp_prune_queue(sk, skb) < 0)
5004 			return -1;
5005 
5006 		while (!sk_rmem_schedule(sk, skb, size)) {
5007 			if (!tcp_prune_ofo_queue(sk, skb))
5008 				return -1;
5009 		}
5010 	}
5011 	return 0;
5012 }
5013 
5014 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
5015 {
5016 	struct tcp_sock *tp = tcp_sk(sk);
5017 	struct rb_node **p, *parent;
5018 	struct sk_buff *skb1;
5019 	u32 seq, end_seq;
5020 	bool fragstolen;
5021 
5022 	tcp_save_lrcv_flowlabel(sk, skb);
5023 	tcp_ecn_check_ce(sk, skb);
5024 
5025 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
5026 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
5027 		sk->sk_data_ready(sk);
5028 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
5029 		return;
5030 	}
5031 
5032 	/* Disable header prediction. */
5033 	tp->pred_flags = 0;
5034 	inet_csk_schedule_ack(sk);
5035 
5036 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
5037 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
5038 	seq = TCP_SKB_CB(skb)->seq;
5039 	end_seq = TCP_SKB_CB(skb)->end_seq;
5040 
5041 	p = &tp->out_of_order_queue.rb_node;
5042 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5043 		/* Initial out of order segment, build 1 SACK. */
5044 		if (tcp_is_sack(tp)) {
5045 			tp->rx_opt.num_sacks = 1;
5046 			tp->selective_acks[0].start_seq = seq;
5047 			tp->selective_acks[0].end_seq = end_seq;
5048 		}
5049 		rb_link_node(&skb->rbnode, NULL, p);
5050 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5051 		tp->ooo_last_skb = skb;
5052 		goto end;
5053 	}
5054 
5055 	/* In the typical case, we are adding an skb to the end of the list.
5056 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
5057 	 */
5058 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
5059 				 skb, &fragstolen)) {
5060 coalesce_done:
5061 		/* For non sack flows, do not grow window to force DUPACK
5062 		 * and trigger fast retransmit.
5063 		 */
5064 		if (tcp_is_sack(tp))
5065 			tcp_grow_window(sk, skb, true);
5066 		kfree_skb_partial(skb, fragstolen);
5067 		skb = NULL;
5068 		goto add_sack;
5069 	}
5070 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
5071 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
5072 		parent = &tp->ooo_last_skb->rbnode;
5073 		p = &parent->rb_right;
5074 		goto insert;
5075 	}
5076 
5077 	/* Find place to insert this segment. Handle overlaps on the way. */
5078 	parent = NULL;
5079 	while (*p) {
5080 		parent = *p;
5081 		skb1 = rb_to_skb(parent);
5082 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
5083 			p = &parent->rb_left;
5084 			continue;
5085 		}
5086 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
5087 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5088 				/* All the bits are present. Drop. */
5089 				NET_INC_STATS(sock_net(sk),
5090 					      LINUX_MIB_TCPOFOMERGE);
5091 				tcp_drop_reason(sk, skb,
5092 						SKB_DROP_REASON_TCP_OFOMERGE);
5093 				skb = NULL;
5094 				tcp_dsack_set(sk, seq, end_seq);
5095 				goto add_sack;
5096 			}
5097 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5098 				/* Partial overlap. */
5099 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5100 			} else {
5101 				/* skb's seq == skb1's seq and skb covers skb1.
5102 				 * Replace skb1 with skb.
5103 				 */
5104 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5105 						&tp->out_of_order_queue);
5106 				tcp_dsack_extend(sk,
5107 						 TCP_SKB_CB(skb1)->seq,
5108 						 TCP_SKB_CB(skb1)->end_seq);
5109 				NET_INC_STATS(sock_net(sk),
5110 					      LINUX_MIB_TCPOFOMERGE);
5111 				tcp_drop_reason(sk, skb1,
5112 						SKB_DROP_REASON_TCP_OFOMERGE);
5113 				goto merge_right;
5114 			}
5115 		} else if (tcp_ooo_try_coalesce(sk, skb1,
5116 						skb, &fragstolen)) {
5117 			goto coalesce_done;
5118 		}
5119 		p = &parent->rb_right;
5120 	}
5121 insert:
5122 	/* Insert segment into RB tree. */
5123 	rb_link_node(&skb->rbnode, parent, p);
5124 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5125 
5126 merge_right:
5127 	/* Remove other segments covered by skb. */
5128 	while ((skb1 = skb_rb_next(skb)) != NULL) {
5129 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5130 			break;
5131 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5132 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5133 					 end_seq);
5134 			break;
5135 		}
5136 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5137 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5138 				 TCP_SKB_CB(skb1)->end_seq);
5139 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5140 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5141 	}
5142 	/* If there is no skb after us, we are the last_skb ! */
5143 	if (!skb1)
5144 		tp->ooo_last_skb = skb;
5145 
5146 add_sack:
5147 	if (tcp_is_sack(tp))
5148 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5149 end:
5150 	if (skb) {
5151 		/* For non sack flows, do not grow window to force DUPACK
5152 		 * and trigger fast retransmit.
5153 		 */
5154 		if (tcp_is_sack(tp))
5155 			tcp_grow_window(sk, skb, false);
5156 		skb_condense(skb);
5157 		skb_set_owner_r(skb, sk);
5158 	}
5159 }
5160 
5161 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5162 				      bool *fragstolen)
5163 {
5164 	int eaten;
5165 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5166 
5167 	eaten = (tail &&
5168 		 tcp_try_coalesce(sk, tail,
5169 				  skb, fragstolen)) ? 1 : 0;
5170 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5171 	if (!eaten) {
5172 		tcp_add_receive_queue(sk, skb);
5173 		skb_set_owner_r(skb, sk);
5174 	}
5175 	return eaten;
5176 }
5177 
5178 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5179 {
5180 	struct sk_buff *skb;
5181 	int err = -ENOMEM;
5182 	int data_len = 0;
5183 	bool fragstolen;
5184 
5185 	if (size == 0)
5186 		return 0;
5187 
5188 	if (size > PAGE_SIZE) {
5189 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5190 
5191 		data_len = npages << PAGE_SHIFT;
5192 		size = data_len + (size & ~PAGE_MASK);
5193 	}
5194 	skb = alloc_skb_with_frags(size - data_len, data_len,
5195 				   PAGE_ALLOC_COSTLY_ORDER,
5196 				   &err, sk->sk_allocation);
5197 	if (!skb)
5198 		goto err;
5199 
5200 	skb_put(skb, size - data_len);
5201 	skb->data_len = data_len;
5202 	skb->len = size;
5203 
5204 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5205 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5206 		goto err_free;
5207 	}
5208 
5209 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5210 	if (err)
5211 		goto err_free;
5212 
5213 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5214 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5215 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5216 
5217 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5218 		WARN_ON_ONCE(fragstolen); /* should not happen */
5219 		__kfree_skb(skb);
5220 	}
5221 	return size;
5222 
5223 err_free:
5224 	kfree_skb(skb);
5225 err:
5226 	return err;
5227 
5228 }
5229 
5230 void tcp_data_ready(struct sock *sk)
5231 {
5232 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5233 		sk->sk_data_ready(sk);
5234 }
5235 
5236 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5237 {
5238 	struct tcp_sock *tp = tcp_sk(sk);
5239 	enum skb_drop_reason reason;
5240 	bool fragstolen;
5241 	int eaten;
5242 
5243 	/* If a subflow has been reset, the packet should not continue
5244 	 * to be processed, drop the packet.
5245 	 */
5246 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5247 		__kfree_skb(skb);
5248 		return;
5249 	}
5250 
5251 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5252 		__kfree_skb(skb);
5253 		return;
5254 	}
5255 	tcp_cleanup_skb(skb);
5256 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5257 
5258 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5259 	tp->rx_opt.dsack = 0;
5260 
5261 	/*  Queue data for delivery to the user.
5262 	 *  Packets in sequence go to the receive queue.
5263 	 *  Out of sequence packets to the out_of_order_queue.
5264 	 */
5265 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5266 		if (tcp_receive_window(tp) == 0) {
5267 			/* Some stacks are known to send bare FIN packets
5268 			 * in a loop even if we send RWIN 0 in our ACK.
5269 			 * Accepting this FIN does not hurt memory pressure
5270 			 * because the FIN flag will simply be merged to the
5271 			 * receive queue tail skb in most cases.
5272 			 */
5273 			if (!skb->len &&
5274 			    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5275 				goto queue_and_out;
5276 
5277 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5278 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5279 			goto out_of_window;
5280 		}
5281 
5282 		/* Ok. In sequence. In window. */
5283 queue_and_out:
5284 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5285 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5286 			inet_csk(sk)->icsk_ack.pending |=
5287 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5288 			inet_csk_schedule_ack(sk);
5289 			sk->sk_data_ready(sk);
5290 
5291 			if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5292 				reason = SKB_DROP_REASON_PROTO_MEM;
5293 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5294 				goto drop;
5295 			}
5296 			sk_forced_mem_schedule(sk, skb->truesize);
5297 		}
5298 
5299 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5300 		if (skb->len)
5301 			tcp_event_data_recv(sk, skb);
5302 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5303 			tcp_fin(sk);
5304 
5305 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5306 			tcp_ofo_queue(sk);
5307 
5308 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5309 			 * gap in queue is filled.
5310 			 */
5311 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5312 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5313 		}
5314 
5315 		if (tp->rx_opt.num_sacks)
5316 			tcp_sack_remove(tp);
5317 
5318 		tcp_fast_path_check(sk);
5319 
5320 		if (eaten > 0)
5321 			kfree_skb_partial(skb, fragstolen);
5322 		if (!sock_flag(sk, SOCK_DEAD))
5323 			tcp_data_ready(sk);
5324 		return;
5325 	}
5326 
5327 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5328 		tcp_rcv_spurious_retrans(sk, skb);
5329 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5330 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5331 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5332 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5333 
5334 out_of_window:
5335 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5336 		inet_csk_schedule_ack(sk);
5337 drop:
5338 		tcp_drop_reason(sk, skb, reason);
5339 		return;
5340 	}
5341 
5342 	/* Out of window. F.e. zero window probe. */
5343 	if (!before(TCP_SKB_CB(skb)->seq,
5344 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5345 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5346 		goto out_of_window;
5347 	}
5348 
5349 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5350 		/* Partial packet, seq < rcv_next < end_seq */
5351 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5352 
5353 		/* If window is closed, drop tail of packet. But after
5354 		 * remembering D-SACK for its head made in previous line.
5355 		 */
5356 		if (!tcp_receive_window(tp)) {
5357 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5358 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5359 			goto out_of_window;
5360 		}
5361 		goto queue_and_out;
5362 	}
5363 
5364 	tcp_data_queue_ofo(sk, skb);
5365 }
5366 
5367 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5368 {
5369 	if (list)
5370 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5371 
5372 	return skb_rb_next(skb);
5373 }
5374 
5375 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5376 					struct sk_buff_head *list,
5377 					struct rb_root *root)
5378 {
5379 	struct sk_buff *next = tcp_skb_next(skb, list);
5380 
5381 	if (list)
5382 		__skb_unlink(skb, list);
5383 	else
5384 		rb_erase(&skb->rbnode, root);
5385 
5386 	__kfree_skb(skb);
5387 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5388 
5389 	return next;
5390 }
5391 
5392 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5393 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5394 {
5395 	struct rb_node **p = &root->rb_node;
5396 	struct rb_node *parent = NULL;
5397 	struct sk_buff *skb1;
5398 
5399 	while (*p) {
5400 		parent = *p;
5401 		skb1 = rb_to_skb(parent);
5402 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5403 			p = &parent->rb_left;
5404 		else
5405 			p = &parent->rb_right;
5406 	}
5407 	rb_link_node(&skb->rbnode, parent, p);
5408 	rb_insert_color(&skb->rbnode, root);
5409 }
5410 
5411 /* Collapse contiguous sequence of skbs head..tail with
5412  * sequence numbers start..end.
5413  *
5414  * If tail is NULL, this means until the end of the queue.
5415  *
5416  * Segments with FIN/SYN are not collapsed (only because this
5417  * simplifies code)
5418  */
5419 static void
5420 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5421 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5422 {
5423 	struct sk_buff *skb = head, *n;
5424 	struct sk_buff_head tmp;
5425 	bool end_of_skbs;
5426 
5427 	/* First, check that queue is collapsible and find
5428 	 * the point where collapsing can be useful.
5429 	 */
5430 restart:
5431 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5432 		n = tcp_skb_next(skb, list);
5433 
5434 		if (!skb_frags_readable(skb))
5435 			goto skip_this;
5436 
5437 		/* No new bits? It is possible on ofo queue. */
5438 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5439 			skb = tcp_collapse_one(sk, skb, list, root);
5440 			if (!skb)
5441 				break;
5442 			goto restart;
5443 		}
5444 
5445 		/* The first skb to collapse is:
5446 		 * - not SYN/FIN and
5447 		 * - bloated or contains data before "start" or
5448 		 *   overlaps to the next one and mptcp allow collapsing.
5449 		 */
5450 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5451 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5452 		     before(TCP_SKB_CB(skb)->seq, start))) {
5453 			end_of_skbs = false;
5454 			break;
5455 		}
5456 
5457 		if (n && n != tail && skb_frags_readable(n) &&
5458 		    tcp_skb_can_collapse_rx(skb, n) &&
5459 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5460 			end_of_skbs = false;
5461 			break;
5462 		}
5463 
5464 skip_this:
5465 		/* Decided to skip this, advance start seq. */
5466 		start = TCP_SKB_CB(skb)->end_seq;
5467 	}
5468 	if (end_of_skbs ||
5469 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5470 	    !skb_frags_readable(skb))
5471 		return;
5472 
5473 	__skb_queue_head_init(&tmp);
5474 
5475 	while (before(start, end)) {
5476 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5477 		struct sk_buff *nskb;
5478 
5479 		nskb = alloc_skb(copy, GFP_ATOMIC);
5480 		if (!nskb)
5481 			break;
5482 
5483 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5484 		skb_copy_decrypted(nskb, skb);
5485 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5486 		if (list)
5487 			__skb_queue_before(list, skb, nskb);
5488 		else
5489 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5490 		skb_set_owner_r(nskb, sk);
5491 		mptcp_skb_ext_move(nskb, skb);
5492 
5493 		/* Copy data, releasing collapsed skbs. */
5494 		while (copy > 0) {
5495 			int offset = start - TCP_SKB_CB(skb)->seq;
5496 			int size = TCP_SKB_CB(skb)->end_seq - start;
5497 
5498 			BUG_ON(offset < 0);
5499 			if (size > 0) {
5500 				size = min(copy, size);
5501 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5502 					BUG();
5503 				TCP_SKB_CB(nskb)->end_seq += size;
5504 				copy -= size;
5505 				start += size;
5506 			}
5507 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5508 				skb = tcp_collapse_one(sk, skb, list, root);
5509 				if (!skb ||
5510 				    skb == tail ||
5511 				    !tcp_skb_can_collapse_rx(nskb, skb) ||
5512 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5513 				    !skb_frags_readable(skb))
5514 					goto end;
5515 			}
5516 		}
5517 	}
5518 end:
5519 	skb_queue_walk_safe(&tmp, skb, n)
5520 		tcp_rbtree_insert(root, skb);
5521 }
5522 
5523 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5524  * and tcp_collapse() them until all the queue is collapsed.
5525  */
5526 static void tcp_collapse_ofo_queue(struct sock *sk)
5527 {
5528 	struct tcp_sock *tp = tcp_sk(sk);
5529 	u32 range_truesize, sum_tiny = 0;
5530 	struct sk_buff *skb, *head;
5531 	u32 start, end;
5532 
5533 	skb = skb_rb_first(&tp->out_of_order_queue);
5534 new_range:
5535 	if (!skb) {
5536 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5537 		return;
5538 	}
5539 	start = TCP_SKB_CB(skb)->seq;
5540 	end = TCP_SKB_CB(skb)->end_seq;
5541 	range_truesize = skb->truesize;
5542 
5543 	for (head = skb;;) {
5544 		skb = skb_rb_next(skb);
5545 
5546 		/* Range is terminated when we see a gap or when
5547 		 * we are at the queue end.
5548 		 */
5549 		if (!skb ||
5550 		    after(TCP_SKB_CB(skb)->seq, end) ||
5551 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5552 			/* Do not attempt collapsing tiny skbs */
5553 			if (range_truesize != head->truesize ||
5554 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5555 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5556 					     head, skb, start, end);
5557 			} else {
5558 				sum_tiny += range_truesize;
5559 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5560 					return;
5561 			}
5562 			goto new_range;
5563 		}
5564 
5565 		range_truesize += skb->truesize;
5566 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5567 			start = TCP_SKB_CB(skb)->seq;
5568 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5569 			end = TCP_SKB_CB(skb)->end_seq;
5570 	}
5571 }
5572 
5573 /*
5574  * Clean the out-of-order queue to make room.
5575  * We drop high sequences packets to :
5576  * 1) Let a chance for holes to be filled.
5577  *    This means we do not drop packets from ooo queue if their sequence
5578  *    is before incoming packet sequence.
5579  * 2) not add too big latencies if thousands of packets sit there.
5580  *    (But if application shrinks SO_RCVBUF, we could still end up
5581  *     freeing whole queue here)
5582  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5583  *
5584  * Return true if queue has shrunk.
5585  */
5586 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5587 {
5588 	struct tcp_sock *tp = tcp_sk(sk);
5589 	struct rb_node *node, *prev;
5590 	bool pruned = false;
5591 	int goal;
5592 
5593 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5594 		return false;
5595 
5596 	goal = sk->sk_rcvbuf >> 3;
5597 	node = &tp->ooo_last_skb->rbnode;
5598 
5599 	do {
5600 		struct sk_buff *skb = rb_to_skb(node);
5601 
5602 		/* If incoming skb would land last in ofo queue, stop pruning. */
5603 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5604 			break;
5605 		pruned = true;
5606 		prev = rb_prev(node);
5607 		rb_erase(node, &tp->out_of_order_queue);
5608 		goal -= skb->truesize;
5609 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5610 		tp->ooo_last_skb = rb_to_skb(prev);
5611 		if (!prev || goal <= 0) {
5612 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5613 			    !tcp_under_memory_pressure(sk))
5614 				break;
5615 			goal = sk->sk_rcvbuf >> 3;
5616 		}
5617 		node = prev;
5618 	} while (node);
5619 
5620 	if (pruned) {
5621 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5622 		/* Reset SACK state.  A conforming SACK implementation will
5623 		 * do the same at a timeout based retransmit.  When a connection
5624 		 * is in a sad state like this, we care only about integrity
5625 		 * of the connection not performance.
5626 		 */
5627 		if (tp->rx_opt.sack_ok)
5628 			tcp_sack_reset(&tp->rx_opt);
5629 	}
5630 	return pruned;
5631 }
5632 
5633 /* Reduce allocated memory if we can, trying to get
5634  * the socket within its memory limits again.
5635  *
5636  * Return less than zero if we should start dropping frames
5637  * until the socket owning process reads some of the data
5638  * to stabilize the situation.
5639  */
5640 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5641 {
5642 	struct tcp_sock *tp = tcp_sk(sk);
5643 
5644 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5645 
5646 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5647 		tcp_clamp_window(sk);
5648 	else if (tcp_under_memory_pressure(sk))
5649 		tcp_adjust_rcv_ssthresh(sk);
5650 
5651 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5652 		return 0;
5653 
5654 	tcp_collapse_ofo_queue(sk);
5655 	if (!skb_queue_empty(&sk->sk_receive_queue))
5656 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5657 			     skb_peek(&sk->sk_receive_queue),
5658 			     NULL,
5659 			     tp->copied_seq, tp->rcv_nxt);
5660 
5661 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5662 		return 0;
5663 
5664 	/* Collapsing did not help, destructive actions follow.
5665 	 * This must not ever occur. */
5666 
5667 	tcp_prune_ofo_queue(sk, in_skb);
5668 
5669 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5670 		return 0;
5671 
5672 	/* If we are really being abused, tell the caller to silently
5673 	 * drop receive data on the floor.  It will get retransmitted
5674 	 * and hopefully then we'll have sufficient space.
5675 	 */
5676 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5677 
5678 	/* Massive buffer overcommit. */
5679 	tp->pred_flags = 0;
5680 	return -1;
5681 }
5682 
5683 static bool tcp_should_expand_sndbuf(struct sock *sk)
5684 {
5685 	const struct tcp_sock *tp = tcp_sk(sk);
5686 
5687 	/* If the user specified a specific send buffer setting, do
5688 	 * not modify it.
5689 	 */
5690 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5691 		return false;
5692 
5693 	/* If we are under global TCP memory pressure, do not expand.  */
5694 	if (tcp_under_memory_pressure(sk)) {
5695 		int unused_mem = sk_unused_reserved_mem(sk);
5696 
5697 		/* Adjust sndbuf according to reserved mem. But make sure
5698 		 * it never goes below SOCK_MIN_SNDBUF.
5699 		 * See sk_stream_moderate_sndbuf() for more details.
5700 		 */
5701 		if (unused_mem > SOCK_MIN_SNDBUF)
5702 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5703 
5704 		return false;
5705 	}
5706 
5707 	/* If we are under soft global TCP memory pressure, do not expand.  */
5708 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5709 		return false;
5710 
5711 	/* If we filled the congestion window, do not expand.  */
5712 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5713 		return false;
5714 
5715 	return true;
5716 }
5717 
5718 static void tcp_new_space(struct sock *sk)
5719 {
5720 	struct tcp_sock *tp = tcp_sk(sk);
5721 
5722 	if (tcp_should_expand_sndbuf(sk)) {
5723 		tcp_sndbuf_expand(sk);
5724 		tp->snd_cwnd_stamp = tcp_jiffies32;
5725 	}
5726 
5727 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5728 }
5729 
5730 /* Caller made space either from:
5731  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5732  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5733  *
5734  * We might be able to generate EPOLLOUT to the application if:
5735  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5736  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5737  *    small enough that tcp_stream_memory_free() decides it
5738  *    is time to generate EPOLLOUT.
5739  */
5740 void tcp_check_space(struct sock *sk)
5741 {
5742 	/* pairs with tcp_poll() */
5743 	smp_mb();
5744 	if (sk->sk_socket &&
5745 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5746 		tcp_new_space(sk);
5747 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5748 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5749 	}
5750 }
5751 
5752 static inline void tcp_data_snd_check(struct sock *sk)
5753 {
5754 	tcp_push_pending_frames(sk);
5755 	tcp_check_space(sk);
5756 }
5757 
5758 /*
5759  * Check if sending an ack is needed.
5760  */
5761 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5762 {
5763 	struct tcp_sock *tp = tcp_sk(sk);
5764 	unsigned long rtt, delay;
5765 
5766 	    /* More than one full frame received... */
5767 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5768 	     /* ... and right edge of window advances far enough.
5769 	      * (tcp_recvmsg() will send ACK otherwise).
5770 	      * If application uses SO_RCVLOWAT, we want send ack now if
5771 	      * we have not received enough bytes to satisfy the condition.
5772 	      */
5773 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5774 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5775 	    /* We ACK each frame or... */
5776 	    tcp_in_quickack_mode(sk) ||
5777 	    /* Protocol state mandates a one-time immediate ACK */
5778 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5779 		/* If we are running from __release_sock() in user context,
5780 		 * Defer the ack until tcp_release_cb().
5781 		 */
5782 		if (sock_owned_by_user_nocheck(sk) &&
5783 		    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5784 			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5785 			return;
5786 		}
5787 send_now:
5788 		tcp_send_ack(sk);
5789 		return;
5790 	}
5791 
5792 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5793 		tcp_send_delayed_ack(sk);
5794 		return;
5795 	}
5796 
5797 	if (!tcp_is_sack(tp) ||
5798 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5799 		goto send_now;
5800 
5801 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5802 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5803 		tp->dup_ack_counter = 0;
5804 	}
5805 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5806 		tp->dup_ack_counter++;
5807 		goto send_now;
5808 	}
5809 	tp->compressed_ack++;
5810 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5811 		return;
5812 
5813 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5814 
5815 	rtt = tp->rcv_rtt_est.rtt_us;
5816 	if (tp->srtt_us && tp->srtt_us < rtt)
5817 		rtt = tp->srtt_us;
5818 
5819 	delay = min_t(unsigned long,
5820 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5821 		      rtt * (NSEC_PER_USEC >> 3)/20);
5822 	sock_hold(sk);
5823 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5824 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5825 			       HRTIMER_MODE_REL_PINNED_SOFT);
5826 }
5827 
5828 static inline void tcp_ack_snd_check(struct sock *sk)
5829 {
5830 	if (!inet_csk_ack_scheduled(sk)) {
5831 		/* We sent a data segment already. */
5832 		return;
5833 	}
5834 	__tcp_ack_snd_check(sk, 1);
5835 }
5836 
5837 /*
5838  *	This routine is only called when we have urgent data
5839  *	signaled. Its the 'slow' part of tcp_urg. It could be
5840  *	moved inline now as tcp_urg is only called from one
5841  *	place. We handle URGent data wrong. We have to - as
5842  *	BSD still doesn't use the correction from RFC961.
5843  *	For 1003.1g we should support a new option TCP_STDURG to permit
5844  *	either form (or just set the sysctl tcp_stdurg).
5845  */
5846 
5847 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5848 {
5849 	struct tcp_sock *tp = tcp_sk(sk);
5850 	u32 ptr = ntohs(th->urg_ptr);
5851 
5852 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5853 		ptr--;
5854 	ptr += ntohl(th->seq);
5855 
5856 	/* Ignore urgent data that we've already seen and read. */
5857 	if (after(tp->copied_seq, ptr))
5858 		return;
5859 
5860 	/* Do not replay urg ptr.
5861 	 *
5862 	 * NOTE: interesting situation not covered by specs.
5863 	 * Misbehaving sender may send urg ptr, pointing to segment,
5864 	 * which we already have in ofo queue. We are not able to fetch
5865 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5866 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5867 	 * situations. But it is worth to think about possibility of some
5868 	 * DoSes using some hypothetical application level deadlock.
5869 	 */
5870 	if (before(ptr, tp->rcv_nxt))
5871 		return;
5872 
5873 	/* Do we already have a newer (or duplicate) urgent pointer? */
5874 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5875 		return;
5876 
5877 	/* Tell the world about our new urgent pointer. */
5878 	sk_send_sigurg(sk);
5879 
5880 	/* We may be adding urgent data when the last byte read was
5881 	 * urgent. To do this requires some care. We cannot just ignore
5882 	 * tp->copied_seq since we would read the last urgent byte again
5883 	 * as data, nor can we alter copied_seq until this data arrives
5884 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5885 	 *
5886 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5887 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5888 	 * and expect that both A and B disappear from stream. This is _wrong_.
5889 	 * Though this happens in BSD with high probability, this is occasional.
5890 	 * Any application relying on this is buggy. Note also, that fix "works"
5891 	 * only in this artificial test. Insert some normal data between A and B and we will
5892 	 * decline of BSD again. Verdict: it is better to remove to trap
5893 	 * buggy users.
5894 	 */
5895 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5896 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5897 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5898 		tp->copied_seq++;
5899 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5900 			__skb_unlink(skb, &sk->sk_receive_queue);
5901 			__kfree_skb(skb);
5902 		}
5903 	}
5904 
5905 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5906 	WRITE_ONCE(tp->urg_seq, ptr);
5907 
5908 	/* Disable header prediction. */
5909 	tp->pred_flags = 0;
5910 }
5911 
5912 /* This is the 'fast' part of urgent handling. */
5913 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5914 {
5915 	struct tcp_sock *tp = tcp_sk(sk);
5916 
5917 	/* Check if we get a new urgent pointer - normally not. */
5918 	if (unlikely(th->urg))
5919 		tcp_check_urg(sk, th);
5920 
5921 	/* Do we wait for any urgent data? - normally not... */
5922 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5923 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5924 			  th->syn;
5925 
5926 		/* Is the urgent pointer pointing into this packet? */
5927 		if (ptr < skb->len) {
5928 			u8 tmp;
5929 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5930 				BUG();
5931 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5932 			if (!sock_flag(sk, SOCK_DEAD))
5933 				sk->sk_data_ready(sk);
5934 		}
5935 	}
5936 }
5937 
5938 /* Accept RST for rcv_nxt - 1 after a FIN.
5939  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5940  * FIN is sent followed by a RST packet. The RST is sent with the same
5941  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5942  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5943  * ACKs on the closed socket. In addition middleboxes can drop either the
5944  * challenge ACK or a subsequent RST.
5945  */
5946 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5947 {
5948 	const struct tcp_sock *tp = tcp_sk(sk);
5949 
5950 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5951 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5952 					       TCPF_CLOSING));
5953 }
5954 
5955 /* Does PAWS and seqno based validation of an incoming segment, flags will
5956  * play significant role here.
5957  */
5958 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5959 				  const struct tcphdr *th, int syn_inerr)
5960 {
5961 	struct tcp_sock *tp = tcp_sk(sk);
5962 	SKB_DR(reason);
5963 
5964 	/* RFC1323: H1. Apply PAWS check first. */
5965 	if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) ||
5966 	    !tp->rx_opt.saw_tstamp ||
5967 	    tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW))
5968 		goto step1;
5969 
5970 	reason = tcp_disordered_ack_check(sk, skb);
5971 	if (!reason)
5972 		goto step1;
5973 	/* Reset is accepted even if it did not pass PAWS. */
5974 	if (th->rst)
5975 		goto step1;
5976 	if (unlikely(th->syn))
5977 		goto syn_challenge;
5978 
5979 	/* Old ACK are common, increment PAWS_OLD_ACK
5980 	 * and do not send a dupack.
5981 	 */
5982 	if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) {
5983 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK);
5984 		goto discard;
5985 	}
5986 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5987 	if (!tcp_oow_rate_limited(sock_net(sk), skb,
5988 				  LINUX_MIB_TCPACKSKIPPEDPAWS,
5989 				  &tp->last_oow_ack_time))
5990 		tcp_send_dupack(sk, skb);
5991 	goto discard;
5992 
5993 step1:
5994 	/* Step 1: check sequence number */
5995 	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5996 	if (reason) {
5997 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5998 		 * (RST) segments are validated by checking their SEQ-fields."
5999 		 * And page 69: "If an incoming segment is not acceptable,
6000 		 * an acknowledgment should be sent in reply (unless the RST
6001 		 * bit is set, if so drop the segment and return)".
6002 		 */
6003 		if (!th->rst) {
6004 			if (th->syn)
6005 				goto syn_challenge;
6006 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
6007 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
6008 						  &tp->last_oow_ack_time))
6009 				tcp_send_dupack(sk, skb);
6010 		} else if (tcp_reset_check(sk, skb)) {
6011 			goto reset;
6012 		}
6013 		goto discard;
6014 	}
6015 
6016 	/* Step 2: check RST bit */
6017 	if (th->rst) {
6018 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
6019 		 * FIN and SACK too if available):
6020 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
6021 		 * the right-most SACK block,
6022 		 * then
6023 		 *     RESET the connection
6024 		 * else
6025 		 *     Send a challenge ACK
6026 		 */
6027 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
6028 		    tcp_reset_check(sk, skb))
6029 			goto reset;
6030 
6031 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
6032 			struct tcp_sack_block *sp = &tp->selective_acks[0];
6033 			int max_sack = sp[0].end_seq;
6034 			int this_sack;
6035 
6036 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
6037 			     ++this_sack) {
6038 				max_sack = after(sp[this_sack].end_seq,
6039 						 max_sack) ?
6040 					sp[this_sack].end_seq : max_sack;
6041 			}
6042 
6043 			if (TCP_SKB_CB(skb)->seq == max_sack)
6044 				goto reset;
6045 		}
6046 
6047 		/* Disable TFO if RST is out-of-order
6048 		 * and no data has been received
6049 		 * for current active TFO socket
6050 		 */
6051 		if (tp->syn_fastopen && !tp->data_segs_in &&
6052 		    sk->sk_state == TCP_ESTABLISHED)
6053 			tcp_fastopen_active_disable(sk);
6054 		tcp_send_challenge_ack(sk);
6055 		SKB_DR_SET(reason, TCP_RESET);
6056 		goto discard;
6057 	}
6058 
6059 	/* step 3: check security and precedence [ignored] */
6060 
6061 	/* step 4: Check for a SYN
6062 	 * RFC 5961 4.2 : Send a challenge ack
6063 	 */
6064 	if (th->syn) {
6065 		if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
6066 		    TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
6067 		    TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
6068 		    TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
6069 			goto pass;
6070 syn_challenge:
6071 		if (syn_inerr)
6072 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6073 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
6074 		tcp_send_challenge_ack(sk);
6075 		SKB_DR_SET(reason, TCP_INVALID_SYN);
6076 		goto discard;
6077 	}
6078 
6079 pass:
6080 	bpf_skops_parse_hdr(sk, skb);
6081 
6082 	return true;
6083 
6084 discard:
6085 	tcp_drop_reason(sk, skb, reason);
6086 	return false;
6087 
6088 reset:
6089 	tcp_reset(sk, skb);
6090 	__kfree_skb(skb);
6091 	return false;
6092 }
6093 
6094 /*
6095  *	TCP receive function for the ESTABLISHED state.
6096  *
6097  *	It is split into a fast path and a slow path. The fast path is
6098  * 	disabled when:
6099  *	- A zero window was announced from us - zero window probing
6100  *        is only handled properly in the slow path.
6101  *	- Out of order segments arrived.
6102  *	- Urgent data is expected.
6103  *	- There is no buffer space left
6104  *	- Unexpected TCP flags/window values/header lengths are received
6105  *	  (detected by checking the TCP header against pred_flags)
6106  *	- Data is sent in both directions. Fast path only supports pure senders
6107  *	  or pure receivers (this means either the sequence number or the ack
6108  *	  value must stay constant)
6109  *	- Unexpected TCP option.
6110  *
6111  *	When these conditions are not satisfied it drops into a standard
6112  *	receive procedure patterned after RFC793 to handle all cases.
6113  *	The first three cases are guaranteed by proper pred_flags setting,
6114  *	the rest is checked inline. Fast processing is turned on in
6115  *	tcp_data_queue when everything is OK.
6116  */
6117 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6118 {
6119 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6120 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
6121 	struct tcp_sock *tp = tcp_sk(sk);
6122 	unsigned int len = skb->len;
6123 
6124 	/* TCP congestion window tracking */
6125 	trace_tcp_probe(sk, skb);
6126 
6127 	tcp_mstamp_refresh(tp);
6128 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6129 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6130 	/*
6131 	 *	Header prediction.
6132 	 *	The code loosely follows the one in the famous
6133 	 *	"30 instruction TCP receive" Van Jacobson mail.
6134 	 *
6135 	 *	Van's trick is to deposit buffers into socket queue
6136 	 *	on a device interrupt, to call tcp_recv function
6137 	 *	on the receive process context and checksum and copy
6138 	 *	the buffer to user space. smart...
6139 	 *
6140 	 *	Our current scheme is not silly either but we take the
6141 	 *	extra cost of the net_bh soft interrupt processing...
6142 	 *	We do checksum and copy also but from device to kernel.
6143 	 */
6144 
6145 	tp->rx_opt.saw_tstamp = 0;
6146 
6147 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6148 	 *	if header_prediction is to be made
6149 	 *	'S' will always be tp->tcp_header_len >> 2
6150 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6151 	 *  turn it off	(when there are holes in the receive
6152 	 *	 space for instance)
6153 	 *	PSH flag is ignored.
6154 	 */
6155 
6156 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6157 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6158 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6159 		int tcp_header_len = tp->tcp_header_len;
6160 
6161 		/* Timestamp header prediction: tcp_header_len
6162 		 * is automatically equal to th->doff*4 due to pred_flags
6163 		 * match.
6164 		 */
6165 
6166 		/* Check timestamp */
6167 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6168 			/* No? Slow path! */
6169 			if (!tcp_parse_aligned_timestamp(tp, th))
6170 				goto slow_path;
6171 
6172 			/* If PAWS failed, check it more carefully in slow path */
6173 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6174 				goto slow_path;
6175 
6176 			/* DO NOT update ts_recent here, if checksum fails
6177 			 * and timestamp was corrupted part, it will result
6178 			 * in a hung connection since we will drop all
6179 			 * future packets due to the PAWS test.
6180 			 */
6181 		}
6182 
6183 		if (len <= tcp_header_len) {
6184 			/* Bulk data transfer: sender */
6185 			if (len == tcp_header_len) {
6186 				/* Predicted packet is in window by definition.
6187 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6188 				 * Hence, check seq<=rcv_wup reduces to:
6189 				 */
6190 				if (tcp_header_len ==
6191 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6192 				    tp->rcv_nxt == tp->rcv_wup)
6193 					tcp_store_ts_recent(tp);
6194 
6195 				/* We know that such packets are checksummed
6196 				 * on entry.
6197 				 */
6198 				tcp_ack(sk, skb, 0);
6199 				__kfree_skb(skb);
6200 				tcp_data_snd_check(sk);
6201 				/* When receiving pure ack in fast path, update
6202 				 * last ts ecr directly instead of calling
6203 				 * tcp_rcv_rtt_measure_ts()
6204 				 */
6205 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6206 				return;
6207 			} else { /* Header too small */
6208 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6209 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6210 				goto discard;
6211 			}
6212 		} else {
6213 			int eaten = 0;
6214 			bool fragstolen = false;
6215 
6216 			if (tcp_checksum_complete(skb))
6217 				goto csum_error;
6218 
6219 			if ((int)skb->truesize > sk->sk_forward_alloc)
6220 				goto step5;
6221 
6222 			/* Predicted packet is in window by definition.
6223 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6224 			 * Hence, check seq<=rcv_wup reduces to:
6225 			 */
6226 			if (tcp_header_len ==
6227 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6228 			    tp->rcv_nxt == tp->rcv_wup)
6229 				tcp_store_ts_recent(tp);
6230 
6231 			tcp_rcv_rtt_measure_ts(sk, skb);
6232 
6233 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6234 
6235 			/* Bulk data transfer: receiver */
6236 			tcp_cleanup_skb(skb);
6237 			__skb_pull(skb, tcp_header_len);
6238 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6239 
6240 			tcp_event_data_recv(sk, skb);
6241 
6242 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6243 				/* Well, only one small jumplet in fast path... */
6244 				tcp_ack(sk, skb, FLAG_DATA);
6245 				tcp_data_snd_check(sk);
6246 				if (!inet_csk_ack_scheduled(sk))
6247 					goto no_ack;
6248 			} else {
6249 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6250 			}
6251 
6252 			__tcp_ack_snd_check(sk, 0);
6253 no_ack:
6254 			if (eaten)
6255 				kfree_skb_partial(skb, fragstolen);
6256 			tcp_data_ready(sk);
6257 			return;
6258 		}
6259 	}
6260 
6261 slow_path:
6262 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6263 		goto csum_error;
6264 
6265 	if (!th->ack && !th->rst && !th->syn) {
6266 		reason = SKB_DROP_REASON_TCP_FLAGS;
6267 		goto discard;
6268 	}
6269 
6270 	/*
6271 	 *	Standard slow path.
6272 	 */
6273 
6274 	if (!tcp_validate_incoming(sk, skb, th, 1))
6275 		return;
6276 
6277 step5:
6278 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6279 	if ((int)reason < 0) {
6280 		reason = -reason;
6281 		goto discard;
6282 	}
6283 	tcp_rcv_rtt_measure_ts(sk, skb);
6284 
6285 	/* Process urgent data. */
6286 	tcp_urg(sk, skb, th);
6287 
6288 	/* step 7: process the segment text */
6289 	tcp_data_queue(sk, skb);
6290 
6291 	tcp_data_snd_check(sk);
6292 	tcp_ack_snd_check(sk);
6293 	return;
6294 
6295 csum_error:
6296 	reason = SKB_DROP_REASON_TCP_CSUM;
6297 	trace_tcp_bad_csum(skb);
6298 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6299 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6300 
6301 discard:
6302 	tcp_drop_reason(sk, skb, reason);
6303 }
6304 EXPORT_IPV6_MOD(tcp_rcv_established);
6305 
6306 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6307 {
6308 	struct inet_connection_sock *icsk = inet_csk(sk);
6309 	struct tcp_sock *tp = tcp_sk(sk);
6310 
6311 	tcp_mtup_init(sk);
6312 	icsk->icsk_af_ops->rebuild_header(sk);
6313 	tcp_init_metrics(sk);
6314 
6315 	/* Initialize the congestion window to start the transfer.
6316 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6317 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6318 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6319 	 * retransmission has occurred.
6320 	 */
6321 	if (tp->total_retrans > 1 && tp->undo_marker)
6322 		tcp_snd_cwnd_set(tp, 1);
6323 	else
6324 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6325 	tp->snd_cwnd_stamp = tcp_jiffies32;
6326 
6327 	bpf_skops_established(sk, bpf_op, skb);
6328 	/* Initialize congestion control unless BPF initialized it already: */
6329 	if (!icsk->icsk_ca_initialized)
6330 		tcp_init_congestion_control(sk);
6331 	tcp_init_buffer_space(sk);
6332 }
6333 
6334 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6335 {
6336 	struct tcp_sock *tp = tcp_sk(sk);
6337 	struct inet_connection_sock *icsk = inet_csk(sk);
6338 
6339 	tcp_ao_finish_connect(sk, skb);
6340 	tcp_set_state(sk, TCP_ESTABLISHED);
6341 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6342 
6343 	if (skb) {
6344 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6345 		security_inet_conn_established(sk, skb);
6346 		sk_mark_napi_id(sk, skb);
6347 	}
6348 
6349 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6350 
6351 	/* Prevent spurious tcp_cwnd_restart() on first data
6352 	 * packet.
6353 	 */
6354 	tp->lsndtime = tcp_jiffies32;
6355 
6356 	if (sock_flag(sk, SOCK_KEEPOPEN))
6357 		tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
6358 
6359 	if (!tp->rx_opt.snd_wscale)
6360 		__tcp_fast_path_on(tp, tp->snd_wnd);
6361 	else
6362 		tp->pred_flags = 0;
6363 }
6364 
6365 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6366 				    struct tcp_fastopen_cookie *cookie)
6367 {
6368 	struct tcp_sock *tp = tcp_sk(sk);
6369 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6370 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6371 	bool syn_drop = false;
6372 
6373 	if (mss == tp->rx_opt.user_mss) {
6374 		struct tcp_options_received opt;
6375 
6376 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6377 		tcp_clear_options(&opt);
6378 		opt.user_mss = opt.mss_clamp = 0;
6379 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6380 		mss = opt.mss_clamp;
6381 	}
6382 
6383 	if (!tp->syn_fastopen) {
6384 		/* Ignore an unsolicited cookie */
6385 		cookie->len = -1;
6386 	} else if (tp->total_retrans) {
6387 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6388 		 * acknowledges data. Presumably the remote received only
6389 		 * the retransmitted (regular) SYNs: either the original
6390 		 * SYN-data or the corresponding SYN-ACK was dropped.
6391 		 */
6392 		syn_drop = (cookie->len < 0 && data);
6393 	} else if (cookie->len < 0 && !tp->syn_data) {
6394 		/* We requested a cookie but didn't get it. If we did not use
6395 		 * the (old) exp opt format then try so next time (try_exp=1).
6396 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6397 		 */
6398 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6399 	}
6400 
6401 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6402 
6403 	if (data) { /* Retransmit unacked data in SYN */
6404 		if (tp->total_retrans)
6405 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6406 		else
6407 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6408 		skb_rbtree_walk_from(data)
6409 			 tcp_mark_skb_lost(sk, data);
6410 		tcp_non_congestion_loss_retransmit(sk);
6411 		NET_INC_STATS(sock_net(sk),
6412 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6413 		return true;
6414 	}
6415 	tp->syn_data_acked = tp->syn_data;
6416 	if (tp->syn_data_acked) {
6417 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6418 		/* SYN-data is counted as two separate packets in tcp_ack() */
6419 		if (tp->delivered > 1)
6420 			--tp->delivered;
6421 	}
6422 
6423 	tcp_fastopen_add_skb(sk, synack);
6424 
6425 	return false;
6426 }
6427 
6428 static void smc_check_reset_syn(struct tcp_sock *tp)
6429 {
6430 #if IS_ENABLED(CONFIG_SMC)
6431 	if (static_branch_unlikely(&tcp_have_smc)) {
6432 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6433 			tp->syn_smc = 0;
6434 	}
6435 #endif
6436 }
6437 
6438 static void tcp_try_undo_spurious_syn(struct sock *sk)
6439 {
6440 	struct tcp_sock *tp = tcp_sk(sk);
6441 	u32 syn_stamp;
6442 
6443 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6444 	 * spurious if the ACK's timestamp option echo value matches the
6445 	 * original SYN timestamp.
6446 	 */
6447 	syn_stamp = tp->retrans_stamp;
6448 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6449 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6450 		tp->undo_marker = 0;
6451 }
6452 
6453 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6454 					 const struct tcphdr *th)
6455 {
6456 	struct inet_connection_sock *icsk = inet_csk(sk);
6457 	struct tcp_sock *tp = tcp_sk(sk);
6458 	struct tcp_fastopen_cookie foc = { .len = -1 };
6459 	int saved_clamp = tp->rx_opt.mss_clamp;
6460 	bool fastopen_fail;
6461 	SKB_DR(reason);
6462 
6463 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6464 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6465 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6466 
6467 	if (th->ack) {
6468 		/* rfc793:
6469 		 * "If the state is SYN-SENT then
6470 		 *    first check the ACK bit
6471 		 *      If the ACK bit is set
6472 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6473 		 *        a reset (unless the RST bit is set, if so drop
6474 		 *        the segment and return)"
6475 		 */
6476 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6477 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6478 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6479 			if (icsk->icsk_retransmits == 0)
6480 				tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6481 						     TCP_TIMEOUT_MIN, false);
6482 			SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6483 			goto reset_and_undo;
6484 		}
6485 
6486 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6487 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6488 			     tcp_time_stamp_ts(tp))) {
6489 			NET_INC_STATS(sock_net(sk),
6490 					LINUX_MIB_PAWSACTIVEREJECTED);
6491 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6492 			goto reset_and_undo;
6493 		}
6494 
6495 		/* Now ACK is acceptable.
6496 		 *
6497 		 * "If the RST bit is set
6498 		 *    If the ACK was acceptable then signal the user "error:
6499 		 *    connection reset", drop the segment, enter CLOSED state,
6500 		 *    delete TCB, and return."
6501 		 */
6502 
6503 		if (th->rst) {
6504 			tcp_reset(sk, skb);
6505 consume:
6506 			__kfree_skb(skb);
6507 			return 0;
6508 		}
6509 
6510 		/* rfc793:
6511 		 *   "fifth, if neither of the SYN or RST bits is set then
6512 		 *    drop the segment and return."
6513 		 *
6514 		 *    See note below!
6515 		 *                                        --ANK(990513)
6516 		 */
6517 		if (!th->syn) {
6518 			SKB_DR_SET(reason, TCP_FLAGS);
6519 			goto discard_and_undo;
6520 		}
6521 		/* rfc793:
6522 		 *   "If the SYN bit is on ...
6523 		 *    are acceptable then ...
6524 		 *    (our SYN has been ACKed), change the connection
6525 		 *    state to ESTABLISHED..."
6526 		 */
6527 
6528 		tcp_ecn_rcv_synack(tp, th);
6529 
6530 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6531 		tcp_try_undo_spurious_syn(sk);
6532 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6533 
6534 		/* Ok.. it's good. Set up sequence numbers and
6535 		 * move to established.
6536 		 */
6537 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6538 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6539 
6540 		/* RFC1323: The window in SYN & SYN/ACK segments is
6541 		 * never scaled.
6542 		 */
6543 		tp->snd_wnd = ntohs(th->window);
6544 
6545 		if (!tp->rx_opt.wscale_ok) {
6546 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6547 			WRITE_ONCE(tp->window_clamp,
6548 				   min(tp->window_clamp, 65535U));
6549 		}
6550 
6551 		if (tp->rx_opt.saw_tstamp) {
6552 			tp->rx_opt.tstamp_ok	   = 1;
6553 			tp->tcp_header_len =
6554 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6555 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6556 			tcp_store_ts_recent(tp);
6557 		} else {
6558 			tp->tcp_header_len = sizeof(struct tcphdr);
6559 		}
6560 
6561 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6562 		tcp_initialize_rcv_mss(sk);
6563 
6564 		/* Remember, tcp_poll() does not lock socket!
6565 		 * Change state from SYN-SENT only after copied_seq
6566 		 * is initialized. */
6567 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6568 
6569 		smc_check_reset_syn(tp);
6570 
6571 		smp_mb();
6572 
6573 		tcp_finish_connect(sk, skb);
6574 
6575 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6576 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6577 
6578 		if (!sock_flag(sk, SOCK_DEAD)) {
6579 			sk->sk_state_change(sk);
6580 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6581 		}
6582 		if (fastopen_fail)
6583 			return -1;
6584 		if (sk->sk_write_pending ||
6585 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6586 		    inet_csk_in_pingpong_mode(sk)) {
6587 			/* Save one ACK. Data will be ready after
6588 			 * several ticks, if write_pending is set.
6589 			 *
6590 			 * It may be deleted, but with this feature tcpdumps
6591 			 * look so _wonderfully_ clever, that I was not able
6592 			 * to stand against the temptation 8)     --ANK
6593 			 */
6594 			inet_csk_schedule_ack(sk);
6595 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6596 			tcp_reset_xmit_timer(sk, ICSK_TIME_DACK,
6597 					     TCP_DELACK_MAX, false);
6598 			goto consume;
6599 		}
6600 		tcp_send_ack(sk);
6601 		return -1;
6602 	}
6603 
6604 	/* No ACK in the segment */
6605 
6606 	if (th->rst) {
6607 		/* rfc793:
6608 		 * "If the RST bit is set
6609 		 *
6610 		 *      Otherwise (no ACK) drop the segment and return."
6611 		 */
6612 		SKB_DR_SET(reason, TCP_RESET);
6613 		goto discard_and_undo;
6614 	}
6615 
6616 	/* PAWS check. */
6617 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6618 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6619 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6620 		goto discard_and_undo;
6621 	}
6622 	if (th->syn) {
6623 		/* We see SYN without ACK. It is attempt of
6624 		 * simultaneous connect with crossed SYNs.
6625 		 * Particularly, it can be connect to self.
6626 		 */
6627 #ifdef CONFIG_TCP_AO
6628 		struct tcp_ao_info *ao;
6629 
6630 		ao = rcu_dereference_protected(tp->ao_info,
6631 					       lockdep_sock_is_held(sk));
6632 		if (ao) {
6633 			WRITE_ONCE(ao->risn, th->seq);
6634 			ao->rcv_sne = 0;
6635 		}
6636 #endif
6637 		tcp_set_state(sk, TCP_SYN_RECV);
6638 
6639 		if (tp->rx_opt.saw_tstamp) {
6640 			tp->rx_opt.tstamp_ok = 1;
6641 			tcp_store_ts_recent(tp);
6642 			tp->tcp_header_len =
6643 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6644 		} else {
6645 			tp->tcp_header_len = sizeof(struct tcphdr);
6646 		}
6647 
6648 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6649 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6650 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6651 
6652 		/* RFC1323: The window in SYN & SYN/ACK segments is
6653 		 * never scaled.
6654 		 */
6655 		tp->snd_wnd    = ntohs(th->window);
6656 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6657 		tp->max_window = tp->snd_wnd;
6658 
6659 		tcp_ecn_rcv_syn(tp, th);
6660 
6661 		tcp_mtup_init(sk);
6662 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6663 		tcp_initialize_rcv_mss(sk);
6664 
6665 		tcp_send_synack(sk);
6666 #if 0
6667 		/* Note, we could accept data and URG from this segment.
6668 		 * There are no obstacles to make this (except that we must
6669 		 * either change tcp_recvmsg() to prevent it from returning data
6670 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6671 		 *
6672 		 * However, if we ignore data in ACKless segments sometimes,
6673 		 * we have no reasons to accept it sometimes.
6674 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6675 		 * is not flawless. So, discard packet for sanity.
6676 		 * Uncomment this return to process the data.
6677 		 */
6678 		return -1;
6679 #else
6680 		goto consume;
6681 #endif
6682 	}
6683 	/* "fifth, if neither of the SYN or RST bits is set then
6684 	 * drop the segment and return."
6685 	 */
6686 
6687 discard_and_undo:
6688 	tcp_clear_options(&tp->rx_opt);
6689 	tp->rx_opt.mss_clamp = saved_clamp;
6690 	tcp_drop_reason(sk, skb, reason);
6691 	return 0;
6692 
6693 reset_and_undo:
6694 	tcp_clear_options(&tp->rx_opt);
6695 	tp->rx_opt.mss_clamp = saved_clamp;
6696 	/* we can reuse/return @reason to its caller to handle the exception */
6697 	return reason;
6698 }
6699 
6700 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6701 {
6702 	struct tcp_sock *tp = tcp_sk(sk);
6703 	struct request_sock *req;
6704 
6705 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6706 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6707 	 */
6708 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6709 		tcp_try_undo_recovery(sk);
6710 
6711 	tcp_update_rto_time(tp);
6712 	inet_csk(sk)->icsk_retransmits = 0;
6713 	/* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6714 	 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6715 	 * need to zero retrans_stamp here to prevent spurious
6716 	 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6717 	 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6718 	 * set entering CA_Recovery, for correct retransmits_timed_out() and
6719 	 * undo behavior.
6720 	 */
6721 	tcp_retrans_stamp_cleanup(sk);
6722 
6723 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6724 	 * we no longer need req so release it.
6725 	 */
6726 	req = rcu_dereference_protected(tp->fastopen_rsk,
6727 					lockdep_sock_is_held(sk));
6728 	reqsk_fastopen_remove(sk, req, false);
6729 
6730 	/* Re-arm the timer because data may have been sent out.
6731 	 * This is similar to the regular data transmission case
6732 	 * when new data has just been ack'ed.
6733 	 *
6734 	 * (TFO) - we could try to be more aggressive and
6735 	 * retransmitting any data sooner based on when they
6736 	 * are sent out.
6737 	 */
6738 	tcp_rearm_rto(sk);
6739 }
6740 
6741 /*
6742  *	This function implements the receiving procedure of RFC 793 for
6743  *	all states except ESTABLISHED and TIME_WAIT.
6744  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6745  *	address independent.
6746  */
6747 
6748 enum skb_drop_reason
6749 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6750 {
6751 	struct tcp_sock *tp = tcp_sk(sk);
6752 	struct inet_connection_sock *icsk = inet_csk(sk);
6753 	const struct tcphdr *th = tcp_hdr(skb);
6754 	struct request_sock *req;
6755 	int queued = 0;
6756 	SKB_DR(reason);
6757 
6758 	switch (sk->sk_state) {
6759 	case TCP_CLOSE:
6760 		SKB_DR_SET(reason, TCP_CLOSE);
6761 		goto discard;
6762 
6763 	case TCP_LISTEN:
6764 		if (th->ack)
6765 			return SKB_DROP_REASON_TCP_FLAGS;
6766 
6767 		if (th->rst) {
6768 			SKB_DR_SET(reason, TCP_RESET);
6769 			goto discard;
6770 		}
6771 		if (th->syn) {
6772 			if (th->fin) {
6773 				SKB_DR_SET(reason, TCP_FLAGS);
6774 				goto discard;
6775 			}
6776 			/* It is possible that we process SYN packets from backlog,
6777 			 * so we need to make sure to disable BH and RCU right there.
6778 			 */
6779 			rcu_read_lock();
6780 			local_bh_disable();
6781 			icsk->icsk_af_ops->conn_request(sk, skb);
6782 			local_bh_enable();
6783 			rcu_read_unlock();
6784 
6785 			consume_skb(skb);
6786 			return 0;
6787 		}
6788 		SKB_DR_SET(reason, TCP_FLAGS);
6789 		goto discard;
6790 
6791 	case TCP_SYN_SENT:
6792 		tp->rx_opt.saw_tstamp = 0;
6793 		tcp_mstamp_refresh(tp);
6794 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6795 		if (queued >= 0)
6796 			return queued;
6797 
6798 		/* Do step6 onward by hand. */
6799 		tcp_urg(sk, skb, th);
6800 		__kfree_skb(skb);
6801 		tcp_data_snd_check(sk);
6802 		return 0;
6803 	}
6804 
6805 	tcp_mstamp_refresh(tp);
6806 	tp->rx_opt.saw_tstamp = 0;
6807 	req = rcu_dereference_protected(tp->fastopen_rsk,
6808 					lockdep_sock_is_held(sk));
6809 	if (req) {
6810 		bool req_stolen;
6811 
6812 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6813 		    sk->sk_state != TCP_FIN_WAIT1);
6814 
6815 		SKB_DR_SET(reason, TCP_FASTOPEN);
6816 		if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason))
6817 			goto discard;
6818 	}
6819 
6820 	if (!th->ack && !th->rst && !th->syn) {
6821 		SKB_DR_SET(reason, TCP_FLAGS);
6822 		goto discard;
6823 	}
6824 	if (!tcp_validate_incoming(sk, skb, th, 0))
6825 		return 0;
6826 
6827 	/* step 5: check the ACK field */
6828 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6829 				  FLAG_UPDATE_TS_RECENT |
6830 				  FLAG_NO_CHALLENGE_ACK);
6831 
6832 	if ((int)reason <= 0) {
6833 		if (sk->sk_state == TCP_SYN_RECV) {
6834 			/* send one RST */
6835 			if (!reason)
6836 				return SKB_DROP_REASON_TCP_OLD_ACK;
6837 			return -reason;
6838 		}
6839 		/* accept old ack during closing */
6840 		if ((int)reason < 0) {
6841 			tcp_send_challenge_ack(sk);
6842 			reason = -reason;
6843 			goto discard;
6844 		}
6845 	}
6846 	SKB_DR_SET(reason, NOT_SPECIFIED);
6847 	switch (sk->sk_state) {
6848 	case TCP_SYN_RECV:
6849 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6850 		if (!tp->srtt_us)
6851 			tcp_synack_rtt_meas(sk, req);
6852 
6853 		if (req) {
6854 			tcp_rcv_synrecv_state_fastopen(sk);
6855 		} else {
6856 			tcp_try_undo_spurious_syn(sk);
6857 			tp->retrans_stamp = 0;
6858 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6859 					  skb);
6860 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6861 		}
6862 		tcp_ao_established(sk);
6863 		smp_mb();
6864 		tcp_set_state(sk, TCP_ESTABLISHED);
6865 		sk->sk_state_change(sk);
6866 
6867 		/* Note, that this wakeup is only for marginal crossed SYN case.
6868 		 * Passively open sockets are not waked up, because
6869 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6870 		 */
6871 		if (sk->sk_socket)
6872 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6873 
6874 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6875 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6876 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6877 
6878 		if (tp->rx_opt.tstamp_ok)
6879 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6880 
6881 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6882 			tcp_update_pacing_rate(sk);
6883 
6884 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6885 		tp->lsndtime = tcp_jiffies32;
6886 
6887 		tcp_initialize_rcv_mss(sk);
6888 		tcp_fast_path_on(tp);
6889 		if (sk->sk_shutdown & SEND_SHUTDOWN)
6890 			tcp_shutdown(sk, SEND_SHUTDOWN);
6891 		break;
6892 
6893 	case TCP_FIN_WAIT1: {
6894 		int tmo;
6895 
6896 		if (req)
6897 			tcp_rcv_synrecv_state_fastopen(sk);
6898 
6899 		if (tp->snd_una != tp->write_seq)
6900 			break;
6901 
6902 		tcp_set_state(sk, TCP_FIN_WAIT2);
6903 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6904 
6905 		sk_dst_confirm(sk);
6906 
6907 		if (!sock_flag(sk, SOCK_DEAD)) {
6908 			/* Wake up lingering close() */
6909 			sk->sk_state_change(sk);
6910 			break;
6911 		}
6912 
6913 		if (READ_ONCE(tp->linger2) < 0) {
6914 			tcp_done(sk);
6915 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6916 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6917 		}
6918 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6919 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6920 			/* Receive out of order FIN after close() */
6921 			if (tp->syn_fastopen && th->fin)
6922 				tcp_fastopen_active_disable(sk);
6923 			tcp_done(sk);
6924 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6925 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6926 		}
6927 
6928 		tmo = tcp_fin_time(sk);
6929 		if (tmo > TCP_TIMEWAIT_LEN) {
6930 			tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6931 		} else if (th->fin || sock_owned_by_user(sk)) {
6932 			/* Bad case. We could lose such FIN otherwise.
6933 			 * It is not a big problem, but it looks confusing
6934 			 * and not so rare event. We still can lose it now,
6935 			 * if it spins in bh_lock_sock(), but it is really
6936 			 * marginal case.
6937 			 */
6938 			tcp_reset_keepalive_timer(sk, tmo);
6939 		} else {
6940 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6941 			goto consume;
6942 		}
6943 		break;
6944 	}
6945 
6946 	case TCP_CLOSING:
6947 		if (tp->snd_una == tp->write_seq) {
6948 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6949 			goto consume;
6950 		}
6951 		break;
6952 
6953 	case TCP_LAST_ACK:
6954 		if (tp->snd_una == tp->write_seq) {
6955 			tcp_update_metrics(sk);
6956 			tcp_done(sk);
6957 			goto consume;
6958 		}
6959 		break;
6960 	}
6961 
6962 	/* step 6: check the URG bit */
6963 	tcp_urg(sk, skb, th);
6964 
6965 	/* step 7: process the segment text */
6966 	switch (sk->sk_state) {
6967 	case TCP_CLOSE_WAIT:
6968 	case TCP_CLOSING:
6969 	case TCP_LAST_ACK:
6970 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6971 			/* If a subflow has been reset, the packet should not
6972 			 * continue to be processed, drop the packet.
6973 			 */
6974 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6975 				goto discard;
6976 			break;
6977 		}
6978 		fallthrough;
6979 	case TCP_FIN_WAIT1:
6980 	case TCP_FIN_WAIT2:
6981 		/* RFC 793 says to queue data in these states,
6982 		 * RFC 1122 says we MUST send a reset.
6983 		 * BSD 4.4 also does reset.
6984 		 */
6985 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6986 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6987 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6988 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6989 				tcp_reset(sk, skb);
6990 				return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6991 			}
6992 		}
6993 		fallthrough;
6994 	case TCP_ESTABLISHED:
6995 		tcp_data_queue(sk, skb);
6996 		queued = 1;
6997 		break;
6998 	}
6999 
7000 	/* tcp_data could move socket to TIME-WAIT */
7001 	if (sk->sk_state != TCP_CLOSE) {
7002 		tcp_data_snd_check(sk);
7003 		tcp_ack_snd_check(sk);
7004 	}
7005 
7006 	if (!queued) {
7007 discard:
7008 		tcp_drop_reason(sk, skb, reason);
7009 	}
7010 	return 0;
7011 
7012 consume:
7013 	__kfree_skb(skb);
7014 	return 0;
7015 }
7016 EXPORT_IPV6_MOD(tcp_rcv_state_process);
7017 
7018 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
7019 {
7020 	struct inet_request_sock *ireq = inet_rsk(req);
7021 
7022 	if (family == AF_INET)
7023 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
7024 				    &ireq->ir_rmt_addr, port);
7025 #if IS_ENABLED(CONFIG_IPV6)
7026 	else if (family == AF_INET6)
7027 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
7028 				    &ireq->ir_v6_rmt_addr, port);
7029 #endif
7030 }
7031 
7032 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
7033  *
7034  * If we receive a SYN packet with these bits set, it means a
7035  * network is playing bad games with TOS bits. In order to
7036  * avoid possible false congestion notifications, we disable
7037  * TCP ECN negotiation.
7038  *
7039  * Exception: tcp_ca wants ECN. This is required for DCTCP
7040  * congestion control: Linux DCTCP asserts ECT on all packets,
7041  * including SYN, which is most optimal solution; however,
7042  * others, such as FreeBSD do not.
7043  *
7044  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
7045  * set, indicating the use of a future TCP extension (such as AccECN). See
7046  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
7047  * extensions.
7048  */
7049 static void tcp_ecn_create_request(struct request_sock *req,
7050 				   const struct sk_buff *skb,
7051 				   const struct sock *listen_sk,
7052 				   const struct dst_entry *dst)
7053 {
7054 	const struct tcphdr *th = tcp_hdr(skb);
7055 	const struct net *net = sock_net(listen_sk);
7056 	bool th_ecn = th->ece && th->cwr;
7057 	bool ect, ecn_ok;
7058 	u32 ecn_ok_dst;
7059 
7060 	if (!th_ecn)
7061 		return;
7062 
7063 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
7064 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
7065 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
7066 
7067 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
7068 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
7069 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
7070 		inet_rsk(req)->ecn_ok = 1;
7071 }
7072 
7073 static void tcp_openreq_init(struct request_sock *req,
7074 			     const struct tcp_options_received *rx_opt,
7075 			     struct sk_buff *skb, const struct sock *sk)
7076 {
7077 	struct inet_request_sock *ireq = inet_rsk(req);
7078 
7079 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
7080 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
7081 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
7082 	tcp_rsk(req)->snt_synack = 0;
7083 	tcp_rsk(req)->snt_tsval_first = 0;
7084 	tcp_rsk(req)->last_oow_ack_time = 0;
7085 	req->mss = rx_opt->mss_clamp;
7086 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
7087 	ireq->tstamp_ok = rx_opt->tstamp_ok;
7088 	ireq->sack_ok = rx_opt->sack_ok;
7089 	ireq->snd_wscale = rx_opt->snd_wscale;
7090 	ireq->wscale_ok = rx_opt->wscale_ok;
7091 	ireq->acked = 0;
7092 	ireq->ecn_ok = 0;
7093 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
7094 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
7095 	ireq->ir_mark = inet_request_mark(sk, skb);
7096 #if IS_ENABLED(CONFIG_SMC)
7097 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
7098 			tcp_sk(sk)->smc_hs_congested(sk));
7099 #endif
7100 }
7101 
7102 /*
7103  * Return true if a syncookie should be sent
7104  */
7105 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7106 {
7107 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7108 	const char *msg = "Dropping request";
7109 	struct net *net = sock_net(sk);
7110 	bool want_cookie = false;
7111 	u8 syncookies;
7112 
7113 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7114 
7115 #ifdef CONFIG_SYN_COOKIES
7116 	if (syncookies) {
7117 		msg = "Sending cookies";
7118 		want_cookie = true;
7119 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7120 	} else
7121 #endif
7122 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7123 
7124 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7125 	    xchg(&queue->synflood_warned, 1) == 0) {
7126 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7127 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7128 					proto, inet6_rcv_saddr(sk),
7129 					sk->sk_num, msg);
7130 		} else {
7131 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7132 					proto, &sk->sk_rcv_saddr,
7133 					sk->sk_num, msg);
7134 		}
7135 	}
7136 
7137 	return want_cookie;
7138 }
7139 
7140 static void tcp_reqsk_record_syn(const struct sock *sk,
7141 				 struct request_sock *req,
7142 				 const struct sk_buff *skb)
7143 {
7144 	if (tcp_sk(sk)->save_syn) {
7145 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7146 		struct saved_syn *saved_syn;
7147 		u32 mac_hdrlen;
7148 		void *base;
7149 
7150 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7151 			base = skb_mac_header(skb);
7152 			mac_hdrlen = skb_mac_header_len(skb);
7153 			len += mac_hdrlen;
7154 		} else {
7155 			base = skb_network_header(skb);
7156 			mac_hdrlen = 0;
7157 		}
7158 
7159 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7160 				    GFP_ATOMIC);
7161 		if (saved_syn) {
7162 			saved_syn->mac_hdrlen = mac_hdrlen;
7163 			saved_syn->network_hdrlen = skb_network_header_len(skb);
7164 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7165 			memcpy(saved_syn->data, base, len);
7166 			req->saved_syn = saved_syn;
7167 		}
7168 	}
7169 }
7170 
7171 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7172  * used for SYN cookie generation.
7173  */
7174 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7175 			  const struct tcp_request_sock_ops *af_ops,
7176 			  struct sock *sk, struct tcphdr *th)
7177 {
7178 	struct tcp_sock *tp = tcp_sk(sk);
7179 	u16 mss;
7180 
7181 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7182 	    !inet_csk_reqsk_queue_is_full(sk))
7183 		return 0;
7184 
7185 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7186 		return 0;
7187 
7188 	if (sk_acceptq_is_full(sk)) {
7189 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7190 		return 0;
7191 	}
7192 
7193 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7194 	if (!mss)
7195 		mss = af_ops->mss_clamp;
7196 
7197 	return mss;
7198 }
7199 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss);
7200 
7201 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7202 		     const struct tcp_request_sock_ops *af_ops,
7203 		     struct sock *sk, struct sk_buff *skb)
7204 {
7205 	struct tcp_fastopen_cookie foc = { .len = -1 };
7206 	struct tcp_options_received tmp_opt;
7207 	struct tcp_sock *tp = tcp_sk(sk);
7208 	struct net *net = sock_net(sk);
7209 	struct sock *fastopen_sk = NULL;
7210 	struct request_sock *req;
7211 	bool want_cookie = false;
7212 	struct dst_entry *dst;
7213 	struct flowi fl;
7214 	u8 syncookies;
7215 	u32 isn;
7216 
7217 #ifdef CONFIG_TCP_AO
7218 	const struct tcp_ao_hdr *aoh;
7219 #endif
7220 
7221 	isn = __this_cpu_read(tcp_tw_isn);
7222 	if (isn) {
7223 		/* TW buckets are converted to open requests without
7224 		 * limitations, they conserve resources and peer is
7225 		 * evidently real one.
7226 		 */
7227 		__this_cpu_write(tcp_tw_isn, 0);
7228 	} else {
7229 		syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7230 
7231 		if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7232 			want_cookie = tcp_syn_flood_action(sk,
7233 							   rsk_ops->slab_name);
7234 			if (!want_cookie)
7235 				goto drop;
7236 		}
7237 	}
7238 
7239 	if (sk_acceptq_is_full(sk)) {
7240 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7241 		goto drop;
7242 	}
7243 
7244 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7245 	if (!req)
7246 		goto drop;
7247 
7248 	req->syncookie = want_cookie;
7249 	tcp_rsk(req)->af_specific = af_ops;
7250 	tcp_rsk(req)->ts_off = 0;
7251 	tcp_rsk(req)->req_usec_ts = false;
7252 #if IS_ENABLED(CONFIG_MPTCP)
7253 	tcp_rsk(req)->is_mptcp = 0;
7254 #endif
7255 
7256 	tcp_clear_options(&tmp_opt);
7257 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7258 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7259 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7260 			  want_cookie ? NULL : &foc);
7261 
7262 	if (want_cookie && !tmp_opt.saw_tstamp)
7263 		tcp_clear_options(&tmp_opt);
7264 
7265 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7266 		tmp_opt.smc_ok = 0;
7267 
7268 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7269 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7270 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7271 
7272 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7273 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7274 
7275 	dst = af_ops->route_req(sk, skb, &fl, req, isn);
7276 	if (!dst)
7277 		goto drop_and_free;
7278 
7279 	if (tmp_opt.tstamp_ok) {
7280 		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7281 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7282 	}
7283 	if (!want_cookie && !isn) {
7284 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7285 
7286 		/* Kill the following clause, if you dislike this way. */
7287 		if (!syncookies &&
7288 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7289 		     (max_syn_backlog >> 2)) &&
7290 		    !tcp_peer_is_proven(req, dst)) {
7291 			/* Without syncookies last quarter of
7292 			 * backlog is filled with destinations,
7293 			 * proven to be alive.
7294 			 * It means that we continue to communicate
7295 			 * to destinations, already remembered
7296 			 * to the moment of synflood.
7297 			 */
7298 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7299 				    rsk_ops->family);
7300 			goto drop_and_release;
7301 		}
7302 
7303 		isn = af_ops->init_seq(skb);
7304 	}
7305 
7306 	tcp_ecn_create_request(req, skb, sk, dst);
7307 
7308 	if (want_cookie) {
7309 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7310 		if (!tmp_opt.tstamp_ok)
7311 			inet_rsk(req)->ecn_ok = 0;
7312 	}
7313 
7314 #ifdef CONFIG_TCP_AO
7315 	if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7316 		goto drop_and_release; /* Invalid TCP options */
7317 	if (aoh) {
7318 		tcp_rsk(req)->used_tcp_ao = true;
7319 		tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7320 		tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7321 
7322 	} else {
7323 		tcp_rsk(req)->used_tcp_ao = false;
7324 	}
7325 #endif
7326 	tcp_rsk(req)->snt_isn = isn;
7327 	tcp_rsk(req)->txhash = net_tx_rndhash();
7328 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7329 	tcp_openreq_init_rwin(req, sk, dst);
7330 	sk_rx_queue_set(req_to_sk(req), skb);
7331 	if (!want_cookie) {
7332 		tcp_reqsk_record_syn(sk, req, skb);
7333 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7334 	}
7335 	if (fastopen_sk) {
7336 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7337 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7338 		/* Add the child socket directly into the accept queue */
7339 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7340 			reqsk_fastopen_remove(fastopen_sk, req, false);
7341 			bh_unlock_sock(fastopen_sk);
7342 			sock_put(fastopen_sk);
7343 			goto drop_and_free;
7344 		}
7345 		sk->sk_data_ready(sk);
7346 		bh_unlock_sock(fastopen_sk);
7347 		sock_put(fastopen_sk);
7348 	} else {
7349 		tcp_rsk(req)->tfo_listener = false;
7350 		if (!want_cookie) {
7351 			req->timeout = tcp_timeout_init((struct sock *)req);
7352 			if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7353 								    req->timeout))) {
7354 				reqsk_free(req);
7355 				dst_release(dst);
7356 				return 0;
7357 			}
7358 
7359 		}
7360 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7361 				    !want_cookie ? TCP_SYNACK_NORMAL :
7362 						   TCP_SYNACK_COOKIE,
7363 				    skb);
7364 		if (want_cookie) {
7365 			reqsk_free(req);
7366 			return 0;
7367 		}
7368 	}
7369 	reqsk_put(req);
7370 	return 0;
7371 
7372 drop_and_release:
7373 	dst_release(dst);
7374 drop_and_free:
7375 	__reqsk_free(req);
7376 drop:
7377 	tcp_listendrop(sk);
7378 	return 0;
7379 }
7380 EXPORT_IPV6_MOD(tcp_conn_request);
7381