xref: /linux/net/ipv4/tcp_input.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75 
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95 
96 int sysctl_tcp_thin_dupack __read_mostly;
97 
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100 
101 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
102 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
103 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
104 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
105 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
106 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
107 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
108 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
109 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121 
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130 	struct inet_connection_sock *icsk = inet_csk(sk);
131 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
132 	unsigned int len;
133 
134 	icsk->icsk_ack.last_seg_size = 0;
135 
136 	/* skb->len may jitter because of SACKs, even if peer
137 	 * sends good full-sized frames.
138 	 */
139 	len = skb_shinfo(skb)->gso_size ? : skb->len;
140 	if (len >= icsk->icsk_ack.rcv_mss) {
141 		icsk->icsk_ack.rcv_mss = len;
142 	} else {
143 		/* Otherwise, we make more careful check taking into account,
144 		 * that SACKs block is variable.
145 		 *
146 		 * "len" is invariant segment length, including TCP header.
147 		 */
148 		len += skb->data - skb_transport_header(skb);
149 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 		    /* If PSH is not set, packet should be
151 		     * full sized, provided peer TCP is not badly broken.
152 		     * This observation (if it is correct 8)) allows
153 		     * to handle super-low mtu links fairly.
154 		     */
155 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 			/* Subtract also invariant (if peer is RFC compliant),
158 			 * tcp header plus fixed timestamp option length.
159 			 * Resulting "len" is MSS free of SACK jitter.
160 			 */
161 			len -= tcp_sk(sk)->tcp_header_len;
162 			icsk->icsk_ack.last_seg_size = len;
163 			if (len == lss) {
164 				icsk->icsk_ack.rcv_mss = len;
165 				return;
166 			}
167 		}
168 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171 	}
172 }
173 
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176 	struct inet_connection_sock *icsk = inet_csk(sk);
177 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178 
179 	if (quickacks == 0)
180 		quickacks = 2;
181 	if (quickacks > icsk->icsk_ack.quick)
182 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184 
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187 	struct inet_connection_sock *icsk = inet_csk(sk);
188 	tcp_incr_quickack(sk);
189 	icsk->icsk_ack.pingpong = 0;
190 	icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192 
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196 
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199 	const struct inet_connection_sock *icsk = inet_csk(sk);
200 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202 
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 	if (tp->ecn_flags & TCP_ECN_OK)
206 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208 
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210 {
211 	if (tcp_hdr(skb)->cwr)
212 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214 
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219 
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221 {
222 	if (tp->ecn_flags & TCP_ECN_OK) {
223 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225 		/* Funny extension: if ECT is not set on a segment,
226 		 * it is surely retransmit. It is not in ECN RFC,
227 		 * but Linux follows this rule. */
228 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229 			tcp_enter_quickack_mode((struct sock *)tp);
230 	}
231 }
232 
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234 {
235 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236 		tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238 
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240 {
241 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242 		tp->ecn_flags &= ~TCP_ECN_OK;
243 }
244 
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246 {
247 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248 		return 1;
249 	return 0;
250 }
251 
252 /* Buffer size and advertised window tuning.
253  *
254  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255  */
256 
257 static void tcp_fixup_sndbuf(struct sock *sk)
258 {
259 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260 		     sizeof(struct sk_buff);
261 
262 	if (sk->sk_sndbuf < 3 * sndmem)
263 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
264 }
265 
266 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
267  *
268  * All tcp_full_space() is split to two parts: "network" buffer, allocated
269  * forward and advertised in receiver window (tp->rcv_wnd) and
270  * "application buffer", required to isolate scheduling/application
271  * latencies from network.
272  * window_clamp is maximal advertised window. It can be less than
273  * tcp_full_space(), in this case tcp_full_space() - window_clamp
274  * is reserved for "application" buffer. The less window_clamp is
275  * the smoother our behaviour from viewpoint of network, but the lower
276  * throughput and the higher sensitivity of the connection to losses. 8)
277  *
278  * rcv_ssthresh is more strict window_clamp used at "slow start"
279  * phase to predict further behaviour of this connection.
280  * It is used for two goals:
281  * - to enforce header prediction at sender, even when application
282  *   requires some significant "application buffer". It is check #1.
283  * - to prevent pruning of receive queue because of misprediction
284  *   of receiver window. Check #2.
285  *
286  * The scheme does not work when sender sends good segments opening
287  * window and then starts to feed us spaghetti. But it should work
288  * in common situations. Otherwise, we have to rely on queue collapsing.
289  */
290 
291 /* Slow part of check#2. */
292 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
293 {
294 	struct tcp_sock *tp = tcp_sk(sk);
295 	/* Optimize this! */
296 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
297 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
298 
299 	while (tp->rcv_ssthresh <= window) {
300 		if (truesize <= skb->len)
301 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
302 
303 		truesize >>= 1;
304 		window >>= 1;
305 	}
306 	return 0;
307 }
308 
309 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
310 {
311 	struct tcp_sock *tp = tcp_sk(sk);
312 
313 	/* Check #1 */
314 	if (tp->rcv_ssthresh < tp->window_clamp &&
315 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
316 	    !tcp_memory_pressure) {
317 		int incr;
318 
319 		/* Check #2. Increase window, if skb with such overhead
320 		 * will fit to rcvbuf in future.
321 		 */
322 		if (tcp_win_from_space(skb->truesize) <= skb->len)
323 			incr = 2 * tp->advmss;
324 		else
325 			incr = __tcp_grow_window(sk, skb);
326 
327 		if (incr) {
328 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
329 					       tp->window_clamp);
330 			inet_csk(sk)->icsk_ack.quick |= 1;
331 		}
332 	}
333 }
334 
335 /* 3. Tuning rcvbuf, when connection enters established state. */
336 
337 static void tcp_fixup_rcvbuf(struct sock *sk)
338 {
339 	struct tcp_sock *tp = tcp_sk(sk);
340 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
341 
342 	/* Try to select rcvbuf so that 4 mss-sized segments
343 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
344 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
345 	 */
346 	while (tcp_win_from_space(rcvmem) < tp->advmss)
347 		rcvmem += 128;
348 	if (sk->sk_rcvbuf < 4 * rcvmem)
349 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
350 }
351 
352 /* 4. Try to fixup all. It is made immediately after connection enters
353  *    established state.
354  */
355 static void tcp_init_buffer_space(struct sock *sk)
356 {
357 	struct tcp_sock *tp = tcp_sk(sk);
358 	int maxwin;
359 
360 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
361 		tcp_fixup_rcvbuf(sk);
362 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
363 		tcp_fixup_sndbuf(sk);
364 
365 	tp->rcvq_space.space = tp->rcv_wnd;
366 
367 	maxwin = tcp_full_space(sk);
368 
369 	if (tp->window_clamp >= maxwin) {
370 		tp->window_clamp = maxwin;
371 
372 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
373 			tp->window_clamp = max(maxwin -
374 					       (maxwin >> sysctl_tcp_app_win),
375 					       4 * tp->advmss);
376 	}
377 
378 	/* Force reservation of one segment. */
379 	if (sysctl_tcp_app_win &&
380 	    tp->window_clamp > 2 * tp->advmss &&
381 	    tp->window_clamp + tp->advmss > maxwin)
382 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
383 
384 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
385 	tp->snd_cwnd_stamp = tcp_time_stamp;
386 }
387 
388 /* 5. Recalculate window clamp after socket hit its memory bounds. */
389 static void tcp_clamp_window(struct sock *sk)
390 {
391 	struct tcp_sock *tp = tcp_sk(sk);
392 	struct inet_connection_sock *icsk = inet_csk(sk);
393 
394 	icsk->icsk_ack.quick = 0;
395 
396 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
397 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
398 	    !tcp_memory_pressure &&
399 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
400 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
401 				    sysctl_tcp_rmem[2]);
402 	}
403 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
404 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
405 }
406 
407 /* Initialize RCV_MSS value.
408  * RCV_MSS is an our guess about MSS used by the peer.
409  * We haven't any direct information about the MSS.
410  * It's better to underestimate the RCV_MSS rather than overestimate.
411  * Overestimations make us ACKing less frequently than needed.
412  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
413  */
414 void tcp_initialize_rcv_mss(struct sock *sk)
415 {
416 	struct tcp_sock *tp = tcp_sk(sk);
417 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
418 
419 	hint = min(hint, tp->rcv_wnd / 2);
420 	hint = min(hint, TCP_MSS_DEFAULT);
421 	hint = max(hint, TCP_MIN_MSS);
422 
423 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
424 }
425 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
426 
427 /* Receiver "autotuning" code.
428  *
429  * The algorithm for RTT estimation w/o timestamps is based on
430  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
431  * <http://public.lanl.gov/radiant/pubs.html#DRS>
432  *
433  * More detail on this code can be found at
434  * <http://staff.psc.edu/jheffner/>,
435  * though this reference is out of date.  A new paper
436  * is pending.
437  */
438 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
439 {
440 	u32 new_sample = tp->rcv_rtt_est.rtt;
441 	long m = sample;
442 
443 	if (m == 0)
444 		m = 1;
445 
446 	if (new_sample != 0) {
447 		/* If we sample in larger samples in the non-timestamp
448 		 * case, we could grossly overestimate the RTT especially
449 		 * with chatty applications or bulk transfer apps which
450 		 * are stalled on filesystem I/O.
451 		 *
452 		 * Also, since we are only going for a minimum in the
453 		 * non-timestamp case, we do not smooth things out
454 		 * else with timestamps disabled convergence takes too
455 		 * long.
456 		 */
457 		if (!win_dep) {
458 			m -= (new_sample >> 3);
459 			new_sample += m;
460 		} else if (m < new_sample)
461 			new_sample = m << 3;
462 	} else {
463 		/* No previous measure. */
464 		new_sample = m << 3;
465 	}
466 
467 	if (tp->rcv_rtt_est.rtt != new_sample)
468 		tp->rcv_rtt_est.rtt = new_sample;
469 }
470 
471 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
472 {
473 	if (tp->rcv_rtt_est.time == 0)
474 		goto new_measure;
475 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
476 		return;
477 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
478 
479 new_measure:
480 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
481 	tp->rcv_rtt_est.time = tcp_time_stamp;
482 }
483 
484 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
485 					  const struct sk_buff *skb)
486 {
487 	struct tcp_sock *tp = tcp_sk(sk);
488 	if (tp->rx_opt.rcv_tsecr &&
489 	    (TCP_SKB_CB(skb)->end_seq -
490 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
491 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
492 }
493 
494 /*
495  * This function should be called every time data is copied to user space.
496  * It calculates the appropriate TCP receive buffer space.
497  */
498 void tcp_rcv_space_adjust(struct sock *sk)
499 {
500 	struct tcp_sock *tp = tcp_sk(sk);
501 	int time;
502 	int space;
503 
504 	if (tp->rcvq_space.time == 0)
505 		goto new_measure;
506 
507 	time = tcp_time_stamp - tp->rcvq_space.time;
508 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
509 		return;
510 
511 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
512 
513 	space = max(tp->rcvq_space.space, space);
514 
515 	if (tp->rcvq_space.space != space) {
516 		int rcvmem;
517 
518 		tp->rcvq_space.space = space;
519 
520 		if (sysctl_tcp_moderate_rcvbuf &&
521 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
522 			int new_clamp = space;
523 
524 			/* Receive space grows, normalize in order to
525 			 * take into account packet headers and sk_buff
526 			 * structure overhead.
527 			 */
528 			space /= tp->advmss;
529 			if (!space)
530 				space = 1;
531 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
532 				  16 + sizeof(struct sk_buff));
533 			while (tcp_win_from_space(rcvmem) < tp->advmss)
534 				rcvmem += 128;
535 			space *= rcvmem;
536 			space = min(space, sysctl_tcp_rmem[2]);
537 			if (space > sk->sk_rcvbuf) {
538 				sk->sk_rcvbuf = space;
539 
540 				/* Make the window clamp follow along.  */
541 				tp->window_clamp = new_clamp;
542 			}
543 		}
544 	}
545 
546 new_measure:
547 	tp->rcvq_space.seq = tp->copied_seq;
548 	tp->rcvq_space.time = tcp_time_stamp;
549 }
550 
551 /* There is something which you must keep in mind when you analyze the
552  * behavior of the tp->ato delayed ack timeout interval.  When a
553  * connection starts up, we want to ack as quickly as possible.  The
554  * problem is that "good" TCP's do slow start at the beginning of data
555  * transmission.  The means that until we send the first few ACK's the
556  * sender will sit on his end and only queue most of his data, because
557  * he can only send snd_cwnd unacked packets at any given time.  For
558  * each ACK we send, he increments snd_cwnd and transmits more of his
559  * queue.  -DaveM
560  */
561 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
562 {
563 	struct tcp_sock *tp = tcp_sk(sk);
564 	struct inet_connection_sock *icsk = inet_csk(sk);
565 	u32 now;
566 
567 	inet_csk_schedule_ack(sk);
568 
569 	tcp_measure_rcv_mss(sk, skb);
570 
571 	tcp_rcv_rtt_measure(tp);
572 
573 	now = tcp_time_stamp;
574 
575 	if (!icsk->icsk_ack.ato) {
576 		/* The _first_ data packet received, initialize
577 		 * delayed ACK engine.
578 		 */
579 		tcp_incr_quickack(sk);
580 		icsk->icsk_ack.ato = TCP_ATO_MIN;
581 	} else {
582 		int m = now - icsk->icsk_ack.lrcvtime;
583 
584 		if (m <= TCP_ATO_MIN / 2) {
585 			/* The fastest case is the first. */
586 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
587 		} else if (m < icsk->icsk_ack.ato) {
588 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
589 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
590 				icsk->icsk_ack.ato = icsk->icsk_rto;
591 		} else if (m > icsk->icsk_rto) {
592 			/* Too long gap. Apparently sender failed to
593 			 * restart window, so that we send ACKs quickly.
594 			 */
595 			tcp_incr_quickack(sk);
596 			sk_mem_reclaim(sk);
597 		}
598 	}
599 	icsk->icsk_ack.lrcvtime = now;
600 
601 	TCP_ECN_check_ce(tp, skb);
602 
603 	if (skb->len >= 128)
604 		tcp_grow_window(sk, skb);
605 }
606 
607 /* Called to compute a smoothed rtt estimate. The data fed to this
608  * routine either comes from timestamps, or from segments that were
609  * known _not_ to have been retransmitted [see Karn/Partridge
610  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
611  * piece by Van Jacobson.
612  * NOTE: the next three routines used to be one big routine.
613  * To save cycles in the RFC 1323 implementation it was better to break
614  * it up into three procedures. -- erics
615  */
616 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
617 {
618 	struct tcp_sock *tp = tcp_sk(sk);
619 	long m = mrtt; /* RTT */
620 
621 	/*	The following amusing code comes from Jacobson's
622 	 *	article in SIGCOMM '88.  Note that rtt and mdev
623 	 *	are scaled versions of rtt and mean deviation.
624 	 *	This is designed to be as fast as possible
625 	 *	m stands for "measurement".
626 	 *
627 	 *	On a 1990 paper the rto value is changed to:
628 	 *	RTO = rtt + 4 * mdev
629 	 *
630 	 * Funny. This algorithm seems to be very broken.
631 	 * These formulae increase RTO, when it should be decreased, increase
632 	 * too slowly, when it should be increased quickly, decrease too quickly
633 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
634 	 * does not matter how to _calculate_ it. Seems, it was trap
635 	 * that VJ failed to avoid. 8)
636 	 */
637 	if (m == 0)
638 		m = 1;
639 	if (tp->srtt != 0) {
640 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
641 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
642 		if (m < 0) {
643 			m = -m;		/* m is now abs(error) */
644 			m -= (tp->mdev >> 2);   /* similar update on mdev */
645 			/* This is similar to one of Eifel findings.
646 			 * Eifel blocks mdev updates when rtt decreases.
647 			 * This solution is a bit different: we use finer gain
648 			 * for mdev in this case (alpha*beta).
649 			 * Like Eifel it also prevents growth of rto,
650 			 * but also it limits too fast rto decreases,
651 			 * happening in pure Eifel.
652 			 */
653 			if (m > 0)
654 				m >>= 3;
655 		} else {
656 			m -= (tp->mdev >> 2);   /* similar update on mdev */
657 		}
658 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
659 		if (tp->mdev > tp->mdev_max) {
660 			tp->mdev_max = tp->mdev;
661 			if (tp->mdev_max > tp->rttvar)
662 				tp->rttvar = tp->mdev_max;
663 		}
664 		if (after(tp->snd_una, tp->rtt_seq)) {
665 			if (tp->mdev_max < tp->rttvar)
666 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
667 			tp->rtt_seq = tp->snd_nxt;
668 			tp->mdev_max = tcp_rto_min(sk);
669 		}
670 	} else {
671 		/* no previous measure. */
672 		tp->srtt = m << 3;	/* take the measured time to be rtt */
673 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
674 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
675 		tp->rtt_seq = tp->snd_nxt;
676 	}
677 }
678 
679 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
680  * routine referred to above.
681  */
682 static inline void tcp_set_rto(struct sock *sk)
683 {
684 	const struct tcp_sock *tp = tcp_sk(sk);
685 	/* Old crap is replaced with new one. 8)
686 	 *
687 	 * More seriously:
688 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
689 	 *    It cannot be less due to utterly erratic ACK generation made
690 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
691 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
692 	 *    is invisible. Actually, Linux-2.4 also generates erratic
693 	 *    ACKs in some circumstances.
694 	 */
695 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
696 
697 	/* 2. Fixups made earlier cannot be right.
698 	 *    If we do not estimate RTO correctly without them,
699 	 *    all the algo is pure shit and should be replaced
700 	 *    with correct one. It is exactly, which we pretend to do.
701 	 */
702 
703 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
704 	 * guarantees that rto is higher.
705 	 */
706 	tcp_bound_rto(sk);
707 }
708 
709 /* Save metrics learned by this TCP session.
710    This function is called only, when TCP finishes successfully
711    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
712  */
713 void tcp_update_metrics(struct sock *sk)
714 {
715 	struct tcp_sock *tp = tcp_sk(sk);
716 	struct dst_entry *dst = __sk_dst_get(sk);
717 
718 	if (sysctl_tcp_nometrics_save)
719 		return;
720 
721 	dst_confirm(dst);
722 
723 	if (dst && (dst->flags & DST_HOST)) {
724 		const struct inet_connection_sock *icsk = inet_csk(sk);
725 		int m;
726 		unsigned long rtt;
727 
728 		if (icsk->icsk_backoff || !tp->srtt) {
729 			/* This session failed to estimate rtt. Why?
730 			 * Probably, no packets returned in time.
731 			 * Reset our results.
732 			 */
733 			if (!(dst_metric_locked(dst, RTAX_RTT)))
734 				dst->metrics[RTAX_RTT - 1] = 0;
735 			return;
736 		}
737 
738 		rtt = dst_metric_rtt(dst, RTAX_RTT);
739 		m = rtt - tp->srtt;
740 
741 		/* If newly calculated rtt larger than stored one,
742 		 * store new one. Otherwise, use EWMA. Remember,
743 		 * rtt overestimation is always better than underestimation.
744 		 */
745 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
746 			if (m <= 0)
747 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
748 			else
749 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
750 		}
751 
752 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
753 			unsigned long var;
754 			if (m < 0)
755 				m = -m;
756 
757 			/* Scale deviation to rttvar fixed point */
758 			m >>= 1;
759 			if (m < tp->mdev)
760 				m = tp->mdev;
761 
762 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
763 			if (m >= var)
764 				var = m;
765 			else
766 				var -= (var - m) >> 2;
767 
768 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
769 		}
770 
771 		if (tcp_in_initial_slowstart(tp)) {
772 			/* Slow start still did not finish. */
773 			if (dst_metric(dst, RTAX_SSTHRESH) &&
774 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
775 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
776 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
777 			if (!dst_metric_locked(dst, RTAX_CWND) &&
778 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
779 				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
780 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
781 			   icsk->icsk_ca_state == TCP_CA_Open) {
782 			/* Cong. avoidance phase, cwnd is reliable. */
783 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
784 				dst->metrics[RTAX_SSTHRESH-1] =
785 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
786 			if (!dst_metric_locked(dst, RTAX_CWND))
787 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
788 		} else {
789 			/* Else slow start did not finish, cwnd is non-sense,
790 			   ssthresh may be also invalid.
791 			 */
792 			if (!dst_metric_locked(dst, RTAX_CWND))
793 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
794 			if (dst_metric(dst, RTAX_SSTHRESH) &&
795 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
796 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
797 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
798 		}
799 
800 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
801 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
802 			    tp->reordering != sysctl_tcp_reordering)
803 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
804 		}
805 	}
806 }
807 
808 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
809 {
810 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
811 
812 	if (!cwnd)
813 		cwnd = rfc3390_bytes_to_packets(tp->mss_cache);
814 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
815 }
816 
817 /* Set slow start threshold and cwnd not falling to slow start */
818 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
819 {
820 	struct tcp_sock *tp = tcp_sk(sk);
821 	const struct inet_connection_sock *icsk = inet_csk(sk);
822 
823 	tp->prior_ssthresh = 0;
824 	tp->bytes_acked = 0;
825 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
826 		tp->undo_marker = 0;
827 		if (set_ssthresh)
828 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
829 		tp->snd_cwnd = min(tp->snd_cwnd,
830 				   tcp_packets_in_flight(tp) + 1U);
831 		tp->snd_cwnd_cnt = 0;
832 		tp->high_seq = tp->snd_nxt;
833 		tp->snd_cwnd_stamp = tcp_time_stamp;
834 		TCP_ECN_queue_cwr(tp);
835 
836 		tcp_set_ca_state(sk, TCP_CA_CWR);
837 	}
838 }
839 
840 /*
841  * Packet counting of FACK is based on in-order assumptions, therefore TCP
842  * disables it when reordering is detected
843  */
844 static void tcp_disable_fack(struct tcp_sock *tp)
845 {
846 	/* RFC3517 uses different metric in lost marker => reset on change */
847 	if (tcp_is_fack(tp))
848 		tp->lost_skb_hint = NULL;
849 	tp->rx_opt.sack_ok &= ~2;
850 }
851 
852 /* Take a notice that peer is sending D-SACKs */
853 static void tcp_dsack_seen(struct tcp_sock *tp)
854 {
855 	tp->rx_opt.sack_ok |= 4;
856 }
857 
858 /* Initialize metrics on socket. */
859 
860 static void tcp_init_metrics(struct sock *sk)
861 {
862 	struct tcp_sock *tp = tcp_sk(sk);
863 	struct dst_entry *dst = __sk_dst_get(sk);
864 
865 	if (dst == NULL)
866 		goto reset;
867 
868 	dst_confirm(dst);
869 
870 	if (dst_metric_locked(dst, RTAX_CWND))
871 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
872 	if (dst_metric(dst, RTAX_SSTHRESH)) {
873 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
874 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
875 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
876 	}
877 	if (dst_metric(dst, RTAX_REORDERING) &&
878 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
879 		tcp_disable_fack(tp);
880 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
881 	}
882 
883 	if (dst_metric(dst, RTAX_RTT) == 0)
884 		goto reset;
885 
886 	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
887 		goto reset;
888 
889 	/* Initial rtt is determined from SYN,SYN-ACK.
890 	 * The segment is small and rtt may appear much
891 	 * less than real one. Use per-dst memory
892 	 * to make it more realistic.
893 	 *
894 	 * A bit of theory. RTT is time passed after "normal" sized packet
895 	 * is sent until it is ACKed. In normal circumstances sending small
896 	 * packets force peer to delay ACKs and calculation is correct too.
897 	 * The algorithm is adaptive and, provided we follow specs, it
898 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
899 	 * tricks sort of "quick acks" for time long enough to decrease RTT
900 	 * to low value, and then abruptly stops to do it and starts to delay
901 	 * ACKs, wait for troubles.
902 	 */
903 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
904 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
905 		tp->rtt_seq = tp->snd_nxt;
906 	}
907 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
908 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
909 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
910 	}
911 	tcp_set_rto(sk);
912 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
913 		goto reset;
914 
915 cwnd:
916 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
917 	tp->snd_cwnd_stamp = tcp_time_stamp;
918 	return;
919 
920 reset:
921 	/* Play conservative. If timestamps are not
922 	 * supported, TCP will fail to recalculate correct
923 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
924 	 */
925 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
926 		tp->srtt = 0;
927 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
928 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
929 	}
930 	goto cwnd;
931 }
932 
933 static void tcp_update_reordering(struct sock *sk, const int metric,
934 				  const int ts)
935 {
936 	struct tcp_sock *tp = tcp_sk(sk);
937 	if (metric > tp->reordering) {
938 		int mib_idx;
939 
940 		tp->reordering = min(TCP_MAX_REORDERING, metric);
941 
942 		/* This exciting event is worth to be remembered. 8) */
943 		if (ts)
944 			mib_idx = LINUX_MIB_TCPTSREORDER;
945 		else if (tcp_is_reno(tp))
946 			mib_idx = LINUX_MIB_TCPRENOREORDER;
947 		else if (tcp_is_fack(tp))
948 			mib_idx = LINUX_MIB_TCPFACKREORDER;
949 		else
950 			mib_idx = LINUX_MIB_TCPSACKREORDER;
951 
952 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
953 #if FASTRETRANS_DEBUG > 1
954 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
955 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
956 		       tp->reordering,
957 		       tp->fackets_out,
958 		       tp->sacked_out,
959 		       tp->undo_marker ? tp->undo_retrans : 0);
960 #endif
961 		tcp_disable_fack(tp);
962 	}
963 }
964 
965 /* This must be called before lost_out is incremented */
966 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
967 {
968 	if ((tp->retransmit_skb_hint == NULL) ||
969 	    before(TCP_SKB_CB(skb)->seq,
970 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
971 		tp->retransmit_skb_hint = skb;
972 
973 	if (!tp->lost_out ||
974 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
975 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
976 }
977 
978 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
979 {
980 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
981 		tcp_verify_retransmit_hint(tp, skb);
982 
983 		tp->lost_out += tcp_skb_pcount(skb);
984 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
985 	}
986 }
987 
988 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
989 					    struct sk_buff *skb)
990 {
991 	tcp_verify_retransmit_hint(tp, skb);
992 
993 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
994 		tp->lost_out += tcp_skb_pcount(skb);
995 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
996 	}
997 }
998 
999 /* This procedure tags the retransmission queue when SACKs arrive.
1000  *
1001  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1002  * Packets in queue with these bits set are counted in variables
1003  * sacked_out, retrans_out and lost_out, correspondingly.
1004  *
1005  * Valid combinations are:
1006  * Tag  InFlight	Description
1007  * 0	1		- orig segment is in flight.
1008  * S	0		- nothing flies, orig reached receiver.
1009  * L	0		- nothing flies, orig lost by net.
1010  * R	2		- both orig and retransmit are in flight.
1011  * L|R	1		- orig is lost, retransmit is in flight.
1012  * S|R  1		- orig reached receiver, retrans is still in flight.
1013  * (L|S|R is logically valid, it could occur when L|R is sacked,
1014  *  but it is equivalent to plain S and code short-curcuits it to S.
1015  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1016  *
1017  * These 6 states form finite state machine, controlled by the following events:
1018  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1019  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1020  * 3. Loss detection event of one of three flavors:
1021  *	A. Scoreboard estimator decided the packet is lost.
1022  *	   A'. Reno "three dupacks" marks head of queue lost.
1023  *	   A''. Its FACK modfication, head until snd.fack is lost.
1024  *	B. SACK arrives sacking data transmitted after never retransmitted
1025  *	   hole was sent out.
1026  *	C. SACK arrives sacking SND.NXT at the moment, when the
1027  *	   segment was retransmitted.
1028  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1029  *
1030  * It is pleasant to note, that state diagram turns out to be commutative,
1031  * so that we are allowed not to be bothered by order of our actions,
1032  * when multiple events arrive simultaneously. (see the function below).
1033  *
1034  * Reordering detection.
1035  * --------------------
1036  * Reordering metric is maximal distance, which a packet can be displaced
1037  * in packet stream. With SACKs we can estimate it:
1038  *
1039  * 1. SACK fills old hole and the corresponding segment was not
1040  *    ever retransmitted -> reordering. Alas, we cannot use it
1041  *    when segment was retransmitted.
1042  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1043  *    for retransmitted and already SACKed segment -> reordering..
1044  * Both of these heuristics are not used in Loss state, when we cannot
1045  * account for retransmits accurately.
1046  *
1047  * SACK block validation.
1048  * ----------------------
1049  *
1050  * SACK block range validation checks that the received SACK block fits to
1051  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1052  * Note that SND.UNA is not included to the range though being valid because
1053  * it means that the receiver is rather inconsistent with itself reporting
1054  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1055  * perfectly valid, however, in light of RFC2018 which explicitly states
1056  * that "SACK block MUST reflect the newest segment.  Even if the newest
1057  * segment is going to be discarded ...", not that it looks very clever
1058  * in case of head skb. Due to potentional receiver driven attacks, we
1059  * choose to avoid immediate execution of a walk in write queue due to
1060  * reneging and defer head skb's loss recovery to standard loss recovery
1061  * procedure that will eventually trigger (nothing forbids us doing this).
1062  *
1063  * Implements also blockage to start_seq wrap-around. Problem lies in the
1064  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1065  * there's no guarantee that it will be before snd_nxt (n). The problem
1066  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1067  * wrap (s_w):
1068  *
1069  *         <- outs wnd ->                          <- wrapzone ->
1070  *         u     e      n                         u_w   e_w  s n_w
1071  *         |     |      |                          |     |   |  |
1072  * |<------------+------+----- TCP seqno space --------------+---------->|
1073  * ...-- <2^31 ->|                                           |<--------...
1074  * ...---- >2^31 ------>|                                    |<--------...
1075  *
1076  * Current code wouldn't be vulnerable but it's better still to discard such
1077  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1078  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1079  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1080  * equal to the ideal case (infinite seqno space without wrap caused issues).
1081  *
1082  * With D-SACK the lower bound is extended to cover sequence space below
1083  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1084  * again, D-SACK block must not to go across snd_una (for the same reason as
1085  * for the normal SACK blocks, explained above). But there all simplicity
1086  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1087  * fully below undo_marker they do not affect behavior in anyway and can
1088  * therefore be safely ignored. In rare cases (which are more or less
1089  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1090  * fragmentation and packet reordering past skb's retransmission. To consider
1091  * them correctly, the acceptable range must be extended even more though
1092  * the exact amount is rather hard to quantify. However, tp->max_window can
1093  * be used as an exaggerated estimate.
1094  */
1095 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1096 				  u32 start_seq, u32 end_seq)
1097 {
1098 	/* Too far in future, or reversed (interpretation is ambiguous) */
1099 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1100 		return 0;
1101 
1102 	/* Nasty start_seq wrap-around check (see comments above) */
1103 	if (!before(start_seq, tp->snd_nxt))
1104 		return 0;
1105 
1106 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1107 	 * start_seq == snd_una is non-sensical (see comments above)
1108 	 */
1109 	if (after(start_seq, tp->snd_una))
1110 		return 1;
1111 
1112 	if (!is_dsack || !tp->undo_marker)
1113 		return 0;
1114 
1115 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1116 	if (!after(end_seq, tp->snd_una))
1117 		return 0;
1118 
1119 	if (!before(start_seq, tp->undo_marker))
1120 		return 1;
1121 
1122 	/* Too old */
1123 	if (!after(end_seq, tp->undo_marker))
1124 		return 0;
1125 
1126 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1127 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1128 	 */
1129 	return !before(start_seq, end_seq - tp->max_window);
1130 }
1131 
1132 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1133  * Event "C". Later note: FACK people cheated me again 8), we have to account
1134  * for reordering! Ugly, but should help.
1135  *
1136  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1137  * less than what is now known to be received by the other end (derived from
1138  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1139  * retransmitted skbs to avoid some costly processing per ACKs.
1140  */
1141 static void tcp_mark_lost_retrans(struct sock *sk)
1142 {
1143 	const struct inet_connection_sock *icsk = inet_csk(sk);
1144 	struct tcp_sock *tp = tcp_sk(sk);
1145 	struct sk_buff *skb;
1146 	int cnt = 0;
1147 	u32 new_low_seq = tp->snd_nxt;
1148 	u32 received_upto = tcp_highest_sack_seq(tp);
1149 
1150 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1151 	    !after(received_upto, tp->lost_retrans_low) ||
1152 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1153 		return;
1154 
1155 	tcp_for_write_queue(skb, sk) {
1156 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1157 
1158 		if (skb == tcp_send_head(sk))
1159 			break;
1160 		if (cnt == tp->retrans_out)
1161 			break;
1162 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1163 			continue;
1164 
1165 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1166 			continue;
1167 
1168 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1169 		 * constraint here (see above) but figuring out that at
1170 		 * least tp->reordering SACK blocks reside between ack_seq
1171 		 * and received_upto is not easy task to do cheaply with
1172 		 * the available datastructures.
1173 		 *
1174 		 * Whether FACK should check here for tp->reordering segs
1175 		 * in-between one could argue for either way (it would be
1176 		 * rather simple to implement as we could count fack_count
1177 		 * during the walk and do tp->fackets_out - fack_count).
1178 		 */
1179 		if (after(received_upto, ack_seq)) {
1180 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1181 			tp->retrans_out -= tcp_skb_pcount(skb);
1182 
1183 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1184 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1185 		} else {
1186 			if (before(ack_seq, new_low_seq))
1187 				new_low_seq = ack_seq;
1188 			cnt += tcp_skb_pcount(skb);
1189 		}
1190 	}
1191 
1192 	if (tp->retrans_out)
1193 		tp->lost_retrans_low = new_low_seq;
1194 }
1195 
1196 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1197 			   struct tcp_sack_block_wire *sp, int num_sacks,
1198 			   u32 prior_snd_una)
1199 {
1200 	struct tcp_sock *tp = tcp_sk(sk);
1201 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1202 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1203 	int dup_sack = 0;
1204 
1205 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1206 		dup_sack = 1;
1207 		tcp_dsack_seen(tp);
1208 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1209 	} else if (num_sacks > 1) {
1210 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1211 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1212 
1213 		if (!after(end_seq_0, end_seq_1) &&
1214 		    !before(start_seq_0, start_seq_1)) {
1215 			dup_sack = 1;
1216 			tcp_dsack_seen(tp);
1217 			NET_INC_STATS_BH(sock_net(sk),
1218 					LINUX_MIB_TCPDSACKOFORECV);
1219 		}
1220 	}
1221 
1222 	/* D-SACK for already forgotten data... Do dumb counting. */
1223 	if (dup_sack &&
1224 	    !after(end_seq_0, prior_snd_una) &&
1225 	    after(end_seq_0, tp->undo_marker))
1226 		tp->undo_retrans--;
1227 
1228 	return dup_sack;
1229 }
1230 
1231 struct tcp_sacktag_state {
1232 	int reord;
1233 	int fack_count;
1234 	int flag;
1235 };
1236 
1237 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1238  * the incoming SACK may not exactly match but we can find smaller MSS
1239  * aligned portion of it that matches. Therefore we might need to fragment
1240  * which may fail and creates some hassle (caller must handle error case
1241  * returns).
1242  *
1243  * FIXME: this could be merged to shift decision code
1244  */
1245 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1246 				 u32 start_seq, u32 end_seq)
1247 {
1248 	int in_sack, err;
1249 	unsigned int pkt_len;
1250 	unsigned int mss;
1251 
1252 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1253 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1254 
1255 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1256 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1257 		mss = tcp_skb_mss(skb);
1258 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1259 
1260 		if (!in_sack) {
1261 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1262 			if (pkt_len < mss)
1263 				pkt_len = mss;
1264 		} else {
1265 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1266 			if (pkt_len < mss)
1267 				return -EINVAL;
1268 		}
1269 
1270 		/* Round if necessary so that SACKs cover only full MSSes
1271 		 * and/or the remaining small portion (if present)
1272 		 */
1273 		if (pkt_len > mss) {
1274 			unsigned int new_len = (pkt_len / mss) * mss;
1275 			if (!in_sack && new_len < pkt_len) {
1276 				new_len += mss;
1277 				if (new_len > skb->len)
1278 					return 0;
1279 			}
1280 			pkt_len = new_len;
1281 		}
1282 		err = tcp_fragment(sk, skb, pkt_len, mss);
1283 		if (err < 0)
1284 			return err;
1285 	}
1286 
1287 	return in_sack;
1288 }
1289 
1290 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1291 			  struct tcp_sacktag_state *state,
1292 			  int dup_sack, int pcount)
1293 {
1294 	struct tcp_sock *tp = tcp_sk(sk);
1295 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1296 	int fack_count = state->fack_count;
1297 
1298 	/* Account D-SACK for retransmitted packet. */
1299 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1300 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1301 			tp->undo_retrans--;
1302 		if (sacked & TCPCB_SACKED_ACKED)
1303 			state->reord = min(fack_count, state->reord);
1304 	}
1305 
1306 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1307 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1308 		return sacked;
1309 
1310 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1311 		if (sacked & TCPCB_SACKED_RETRANS) {
1312 			/* If the segment is not tagged as lost,
1313 			 * we do not clear RETRANS, believing
1314 			 * that retransmission is still in flight.
1315 			 */
1316 			if (sacked & TCPCB_LOST) {
1317 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1318 				tp->lost_out -= pcount;
1319 				tp->retrans_out -= pcount;
1320 			}
1321 		} else {
1322 			if (!(sacked & TCPCB_RETRANS)) {
1323 				/* New sack for not retransmitted frame,
1324 				 * which was in hole. It is reordering.
1325 				 */
1326 				if (before(TCP_SKB_CB(skb)->seq,
1327 					   tcp_highest_sack_seq(tp)))
1328 					state->reord = min(fack_count,
1329 							   state->reord);
1330 
1331 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1332 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1333 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1334 			}
1335 
1336 			if (sacked & TCPCB_LOST) {
1337 				sacked &= ~TCPCB_LOST;
1338 				tp->lost_out -= pcount;
1339 			}
1340 		}
1341 
1342 		sacked |= TCPCB_SACKED_ACKED;
1343 		state->flag |= FLAG_DATA_SACKED;
1344 		tp->sacked_out += pcount;
1345 
1346 		fack_count += pcount;
1347 
1348 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1349 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1350 		    before(TCP_SKB_CB(skb)->seq,
1351 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1352 			tp->lost_cnt_hint += pcount;
1353 
1354 		if (fack_count > tp->fackets_out)
1355 			tp->fackets_out = fack_count;
1356 	}
1357 
1358 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1359 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1360 	 * are accounted above as well.
1361 	 */
1362 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1363 		sacked &= ~TCPCB_SACKED_RETRANS;
1364 		tp->retrans_out -= pcount;
1365 	}
1366 
1367 	return sacked;
1368 }
1369 
1370 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1371 			   struct tcp_sacktag_state *state,
1372 			   unsigned int pcount, int shifted, int mss,
1373 			   int dup_sack)
1374 {
1375 	struct tcp_sock *tp = tcp_sk(sk);
1376 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1377 
1378 	BUG_ON(!pcount);
1379 
1380 	/* Tweak before seqno plays */
1381 	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1382 	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1383 		tp->lost_cnt_hint += pcount;
1384 
1385 	TCP_SKB_CB(prev)->end_seq += shifted;
1386 	TCP_SKB_CB(skb)->seq += shifted;
1387 
1388 	skb_shinfo(prev)->gso_segs += pcount;
1389 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1390 	skb_shinfo(skb)->gso_segs -= pcount;
1391 
1392 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1393 	 * in theory this shouldn't be necessary but as long as DSACK
1394 	 * code can come after this skb later on it's better to keep
1395 	 * setting gso_size to something.
1396 	 */
1397 	if (!skb_shinfo(prev)->gso_size) {
1398 		skb_shinfo(prev)->gso_size = mss;
1399 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1400 	}
1401 
1402 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1403 	if (skb_shinfo(skb)->gso_segs <= 1) {
1404 		skb_shinfo(skb)->gso_size = 0;
1405 		skb_shinfo(skb)->gso_type = 0;
1406 	}
1407 
1408 	/* We discard results */
1409 	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1410 
1411 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1412 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1413 
1414 	if (skb->len > 0) {
1415 		BUG_ON(!tcp_skb_pcount(skb));
1416 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1417 		return 0;
1418 	}
1419 
1420 	/* Whole SKB was eaten :-) */
1421 
1422 	if (skb == tp->retransmit_skb_hint)
1423 		tp->retransmit_skb_hint = prev;
1424 	if (skb == tp->scoreboard_skb_hint)
1425 		tp->scoreboard_skb_hint = prev;
1426 	if (skb == tp->lost_skb_hint) {
1427 		tp->lost_skb_hint = prev;
1428 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1429 	}
1430 
1431 	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1432 	if (skb == tcp_highest_sack(sk))
1433 		tcp_advance_highest_sack(sk, skb);
1434 
1435 	tcp_unlink_write_queue(skb, sk);
1436 	sk_wmem_free_skb(sk, skb);
1437 
1438 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1439 
1440 	return 1;
1441 }
1442 
1443 /* I wish gso_size would have a bit more sane initialization than
1444  * something-or-zero which complicates things
1445  */
1446 static int tcp_skb_seglen(struct sk_buff *skb)
1447 {
1448 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1449 }
1450 
1451 /* Shifting pages past head area doesn't work */
1452 static int skb_can_shift(struct sk_buff *skb)
1453 {
1454 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1455 }
1456 
1457 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1458  * skb.
1459  */
1460 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1461 					  struct tcp_sacktag_state *state,
1462 					  u32 start_seq, u32 end_seq,
1463 					  int dup_sack)
1464 {
1465 	struct tcp_sock *tp = tcp_sk(sk);
1466 	struct sk_buff *prev;
1467 	int mss;
1468 	int pcount = 0;
1469 	int len;
1470 	int in_sack;
1471 
1472 	if (!sk_can_gso(sk))
1473 		goto fallback;
1474 
1475 	/* Normally R but no L won't result in plain S */
1476 	if (!dup_sack &&
1477 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1478 		goto fallback;
1479 	if (!skb_can_shift(skb))
1480 		goto fallback;
1481 	/* This frame is about to be dropped (was ACKed). */
1482 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1483 		goto fallback;
1484 
1485 	/* Can only happen with delayed DSACK + discard craziness */
1486 	if (unlikely(skb == tcp_write_queue_head(sk)))
1487 		goto fallback;
1488 	prev = tcp_write_queue_prev(sk, skb);
1489 
1490 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1491 		goto fallback;
1492 
1493 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1494 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1495 
1496 	if (in_sack) {
1497 		len = skb->len;
1498 		pcount = tcp_skb_pcount(skb);
1499 		mss = tcp_skb_seglen(skb);
1500 
1501 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1502 		 * drop this restriction as unnecessary
1503 		 */
1504 		if (mss != tcp_skb_seglen(prev))
1505 			goto fallback;
1506 	} else {
1507 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1508 			goto noop;
1509 		/* CHECKME: This is non-MSS split case only?, this will
1510 		 * cause skipped skbs due to advancing loop btw, original
1511 		 * has that feature too
1512 		 */
1513 		if (tcp_skb_pcount(skb) <= 1)
1514 			goto noop;
1515 
1516 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1517 		if (!in_sack) {
1518 			/* TODO: head merge to next could be attempted here
1519 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1520 			 * though it might not be worth of the additional hassle
1521 			 *
1522 			 * ...we can probably just fallback to what was done
1523 			 * previously. We could try merging non-SACKed ones
1524 			 * as well but it probably isn't going to buy off
1525 			 * because later SACKs might again split them, and
1526 			 * it would make skb timestamp tracking considerably
1527 			 * harder problem.
1528 			 */
1529 			goto fallback;
1530 		}
1531 
1532 		len = end_seq - TCP_SKB_CB(skb)->seq;
1533 		BUG_ON(len < 0);
1534 		BUG_ON(len > skb->len);
1535 
1536 		/* MSS boundaries should be honoured or else pcount will
1537 		 * severely break even though it makes things bit trickier.
1538 		 * Optimize common case to avoid most of the divides
1539 		 */
1540 		mss = tcp_skb_mss(skb);
1541 
1542 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1543 		 * drop this restriction as unnecessary
1544 		 */
1545 		if (mss != tcp_skb_seglen(prev))
1546 			goto fallback;
1547 
1548 		if (len == mss) {
1549 			pcount = 1;
1550 		} else if (len < mss) {
1551 			goto noop;
1552 		} else {
1553 			pcount = len / mss;
1554 			len = pcount * mss;
1555 		}
1556 	}
1557 
1558 	if (!skb_shift(prev, skb, len))
1559 		goto fallback;
1560 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1561 		goto out;
1562 
1563 	/* Hole filled allows collapsing with the next as well, this is very
1564 	 * useful when hole on every nth skb pattern happens
1565 	 */
1566 	if (prev == tcp_write_queue_tail(sk))
1567 		goto out;
1568 	skb = tcp_write_queue_next(sk, prev);
1569 
1570 	if (!skb_can_shift(skb) ||
1571 	    (skb == tcp_send_head(sk)) ||
1572 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1573 	    (mss != tcp_skb_seglen(skb)))
1574 		goto out;
1575 
1576 	len = skb->len;
1577 	if (skb_shift(prev, skb, len)) {
1578 		pcount += tcp_skb_pcount(skb);
1579 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1580 	}
1581 
1582 out:
1583 	state->fack_count += pcount;
1584 	return prev;
1585 
1586 noop:
1587 	return skb;
1588 
1589 fallback:
1590 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1591 	return NULL;
1592 }
1593 
1594 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1595 					struct tcp_sack_block *next_dup,
1596 					struct tcp_sacktag_state *state,
1597 					u32 start_seq, u32 end_seq,
1598 					int dup_sack_in)
1599 {
1600 	struct tcp_sock *tp = tcp_sk(sk);
1601 	struct sk_buff *tmp;
1602 
1603 	tcp_for_write_queue_from(skb, sk) {
1604 		int in_sack = 0;
1605 		int dup_sack = dup_sack_in;
1606 
1607 		if (skb == tcp_send_head(sk))
1608 			break;
1609 
1610 		/* queue is in-order => we can short-circuit the walk early */
1611 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1612 			break;
1613 
1614 		if ((next_dup != NULL) &&
1615 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1616 			in_sack = tcp_match_skb_to_sack(sk, skb,
1617 							next_dup->start_seq,
1618 							next_dup->end_seq);
1619 			if (in_sack > 0)
1620 				dup_sack = 1;
1621 		}
1622 
1623 		/* skb reference here is a bit tricky to get right, since
1624 		 * shifting can eat and free both this skb and the next,
1625 		 * so not even _safe variant of the loop is enough.
1626 		 */
1627 		if (in_sack <= 0) {
1628 			tmp = tcp_shift_skb_data(sk, skb, state,
1629 						 start_seq, end_seq, dup_sack);
1630 			if (tmp != NULL) {
1631 				if (tmp != skb) {
1632 					skb = tmp;
1633 					continue;
1634 				}
1635 
1636 				in_sack = 0;
1637 			} else {
1638 				in_sack = tcp_match_skb_to_sack(sk, skb,
1639 								start_seq,
1640 								end_seq);
1641 			}
1642 		}
1643 
1644 		if (unlikely(in_sack < 0))
1645 			break;
1646 
1647 		if (in_sack) {
1648 			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1649 								  state,
1650 								  dup_sack,
1651 								  tcp_skb_pcount(skb));
1652 
1653 			if (!before(TCP_SKB_CB(skb)->seq,
1654 				    tcp_highest_sack_seq(tp)))
1655 				tcp_advance_highest_sack(sk, skb);
1656 		}
1657 
1658 		state->fack_count += tcp_skb_pcount(skb);
1659 	}
1660 	return skb;
1661 }
1662 
1663 /* Avoid all extra work that is being done by sacktag while walking in
1664  * a normal way
1665  */
1666 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1667 					struct tcp_sacktag_state *state,
1668 					u32 skip_to_seq)
1669 {
1670 	tcp_for_write_queue_from(skb, sk) {
1671 		if (skb == tcp_send_head(sk))
1672 			break;
1673 
1674 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1675 			break;
1676 
1677 		state->fack_count += tcp_skb_pcount(skb);
1678 	}
1679 	return skb;
1680 }
1681 
1682 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1683 						struct sock *sk,
1684 						struct tcp_sack_block *next_dup,
1685 						struct tcp_sacktag_state *state,
1686 						u32 skip_to_seq)
1687 {
1688 	if (next_dup == NULL)
1689 		return skb;
1690 
1691 	if (before(next_dup->start_seq, skip_to_seq)) {
1692 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1693 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1694 				       next_dup->start_seq, next_dup->end_seq,
1695 				       1);
1696 	}
1697 
1698 	return skb;
1699 }
1700 
1701 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1702 {
1703 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1704 }
1705 
1706 static int
1707 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1708 			u32 prior_snd_una)
1709 {
1710 	const struct inet_connection_sock *icsk = inet_csk(sk);
1711 	struct tcp_sock *tp = tcp_sk(sk);
1712 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1713 			      TCP_SKB_CB(ack_skb)->sacked);
1714 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1715 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1716 	struct tcp_sack_block *cache;
1717 	struct tcp_sacktag_state state;
1718 	struct sk_buff *skb;
1719 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1720 	int used_sacks;
1721 	int found_dup_sack = 0;
1722 	int i, j;
1723 	int first_sack_index;
1724 
1725 	state.flag = 0;
1726 	state.reord = tp->packets_out;
1727 
1728 	if (!tp->sacked_out) {
1729 		if (WARN_ON(tp->fackets_out))
1730 			tp->fackets_out = 0;
1731 		tcp_highest_sack_reset(sk);
1732 	}
1733 
1734 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1735 					 num_sacks, prior_snd_una);
1736 	if (found_dup_sack)
1737 		state.flag |= FLAG_DSACKING_ACK;
1738 
1739 	/* Eliminate too old ACKs, but take into
1740 	 * account more or less fresh ones, they can
1741 	 * contain valid SACK info.
1742 	 */
1743 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1744 		return 0;
1745 
1746 	if (!tp->packets_out)
1747 		goto out;
1748 
1749 	used_sacks = 0;
1750 	first_sack_index = 0;
1751 	for (i = 0; i < num_sacks; i++) {
1752 		int dup_sack = !i && found_dup_sack;
1753 
1754 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1755 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1756 
1757 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1758 					    sp[used_sacks].start_seq,
1759 					    sp[used_sacks].end_seq)) {
1760 			int mib_idx;
1761 
1762 			if (dup_sack) {
1763 				if (!tp->undo_marker)
1764 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1765 				else
1766 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1767 			} else {
1768 				/* Don't count olds caused by ACK reordering */
1769 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1770 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1771 					continue;
1772 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1773 			}
1774 
1775 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1776 			if (i == 0)
1777 				first_sack_index = -1;
1778 			continue;
1779 		}
1780 
1781 		/* Ignore very old stuff early */
1782 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1783 			continue;
1784 
1785 		used_sacks++;
1786 	}
1787 
1788 	/* order SACK blocks to allow in order walk of the retrans queue */
1789 	for (i = used_sacks - 1; i > 0; i--) {
1790 		for (j = 0; j < i; j++) {
1791 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1792 				swap(sp[j], sp[j + 1]);
1793 
1794 				/* Track where the first SACK block goes to */
1795 				if (j == first_sack_index)
1796 					first_sack_index = j + 1;
1797 			}
1798 		}
1799 	}
1800 
1801 	skb = tcp_write_queue_head(sk);
1802 	state.fack_count = 0;
1803 	i = 0;
1804 
1805 	if (!tp->sacked_out) {
1806 		/* It's already past, so skip checking against it */
1807 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1808 	} else {
1809 		cache = tp->recv_sack_cache;
1810 		/* Skip empty blocks in at head of the cache */
1811 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1812 		       !cache->end_seq)
1813 			cache++;
1814 	}
1815 
1816 	while (i < used_sacks) {
1817 		u32 start_seq = sp[i].start_seq;
1818 		u32 end_seq = sp[i].end_seq;
1819 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1820 		struct tcp_sack_block *next_dup = NULL;
1821 
1822 		if (found_dup_sack && ((i + 1) == first_sack_index))
1823 			next_dup = &sp[i + 1];
1824 
1825 		/* Event "B" in the comment above. */
1826 		if (after(end_seq, tp->high_seq))
1827 			state.flag |= FLAG_DATA_LOST;
1828 
1829 		/* Skip too early cached blocks */
1830 		while (tcp_sack_cache_ok(tp, cache) &&
1831 		       !before(start_seq, cache->end_seq))
1832 			cache++;
1833 
1834 		/* Can skip some work by looking recv_sack_cache? */
1835 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1836 		    after(end_seq, cache->start_seq)) {
1837 
1838 			/* Head todo? */
1839 			if (before(start_seq, cache->start_seq)) {
1840 				skb = tcp_sacktag_skip(skb, sk, &state,
1841 						       start_seq);
1842 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1843 						       &state,
1844 						       start_seq,
1845 						       cache->start_seq,
1846 						       dup_sack);
1847 			}
1848 
1849 			/* Rest of the block already fully processed? */
1850 			if (!after(end_seq, cache->end_seq))
1851 				goto advance_sp;
1852 
1853 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1854 						       &state,
1855 						       cache->end_seq);
1856 
1857 			/* ...tail remains todo... */
1858 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1859 				/* ...but better entrypoint exists! */
1860 				skb = tcp_highest_sack(sk);
1861 				if (skb == NULL)
1862 					break;
1863 				state.fack_count = tp->fackets_out;
1864 				cache++;
1865 				goto walk;
1866 			}
1867 
1868 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1869 			/* Check overlap against next cached too (past this one already) */
1870 			cache++;
1871 			continue;
1872 		}
1873 
1874 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1875 			skb = tcp_highest_sack(sk);
1876 			if (skb == NULL)
1877 				break;
1878 			state.fack_count = tp->fackets_out;
1879 		}
1880 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1881 
1882 walk:
1883 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1884 				       start_seq, end_seq, dup_sack);
1885 
1886 advance_sp:
1887 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1888 		 * due to in-order walk
1889 		 */
1890 		if (after(end_seq, tp->frto_highmark))
1891 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1892 
1893 		i++;
1894 	}
1895 
1896 	/* Clear the head of the cache sack blocks so we can skip it next time */
1897 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1898 		tp->recv_sack_cache[i].start_seq = 0;
1899 		tp->recv_sack_cache[i].end_seq = 0;
1900 	}
1901 	for (j = 0; j < used_sacks; j++)
1902 		tp->recv_sack_cache[i++] = sp[j];
1903 
1904 	tcp_mark_lost_retrans(sk);
1905 
1906 	tcp_verify_left_out(tp);
1907 
1908 	if ((state.reord < tp->fackets_out) &&
1909 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1910 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1911 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1912 
1913 out:
1914 
1915 #if FASTRETRANS_DEBUG > 0
1916 	WARN_ON((int)tp->sacked_out < 0);
1917 	WARN_ON((int)tp->lost_out < 0);
1918 	WARN_ON((int)tp->retrans_out < 0);
1919 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1920 #endif
1921 	return state.flag;
1922 }
1923 
1924 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1925  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1926  */
1927 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1928 {
1929 	u32 holes;
1930 
1931 	holes = max(tp->lost_out, 1U);
1932 	holes = min(holes, tp->packets_out);
1933 
1934 	if ((tp->sacked_out + holes) > tp->packets_out) {
1935 		tp->sacked_out = tp->packets_out - holes;
1936 		return 1;
1937 	}
1938 	return 0;
1939 }
1940 
1941 /* If we receive more dupacks than we expected counting segments
1942  * in assumption of absent reordering, interpret this as reordering.
1943  * The only another reason could be bug in receiver TCP.
1944  */
1945 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1946 {
1947 	struct tcp_sock *tp = tcp_sk(sk);
1948 	if (tcp_limit_reno_sacked(tp))
1949 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1950 }
1951 
1952 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1953 
1954 static void tcp_add_reno_sack(struct sock *sk)
1955 {
1956 	struct tcp_sock *tp = tcp_sk(sk);
1957 	tp->sacked_out++;
1958 	tcp_check_reno_reordering(sk, 0);
1959 	tcp_verify_left_out(tp);
1960 }
1961 
1962 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1963 
1964 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1965 {
1966 	struct tcp_sock *tp = tcp_sk(sk);
1967 
1968 	if (acked > 0) {
1969 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1970 		if (acked - 1 >= tp->sacked_out)
1971 			tp->sacked_out = 0;
1972 		else
1973 			tp->sacked_out -= acked - 1;
1974 	}
1975 	tcp_check_reno_reordering(sk, acked);
1976 	tcp_verify_left_out(tp);
1977 }
1978 
1979 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1980 {
1981 	tp->sacked_out = 0;
1982 }
1983 
1984 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1985 {
1986 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1987 }
1988 
1989 /* F-RTO can only be used if TCP has never retransmitted anything other than
1990  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1991  */
1992 int tcp_use_frto(struct sock *sk)
1993 {
1994 	const struct tcp_sock *tp = tcp_sk(sk);
1995 	const struct inet_connection_sock *icsk = inet_csk(sk);
1996 	struct sk_buff *skb;
1997 
1998 	if (!sysctl_tcp_frto)
1999 		return 0;
2000 
2001 	/* MTU probe and F-RTO won't really play nicely along currently */
2002 	if (icsk->icsk_mtup.probe_size)
2003 		return 0;
2004 
2005 	if (tcp_is_sackfrto(tp))
2006 		return 1;
2007 
2008 	/* Avoid expensive walking of rexmit queue if possible */
2009 	if (tp->retrans_out > 1)
2010 		return 0;
2011 
2012 	skb = tcp_write_queue_head(sk);
2013 	if (tcp_skb_is_last(sk, skb))
2014 		return 1;
2015 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2016 	tcp_for_write_queue_from(skb, sk) {
2017 		if (skb == tcp_send_head(sk))
2018 			break;
2019 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2020 			return 0;
2021 		/* Short-circuit when first non-SACKed skb has been checked */
2022 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2023 			break;
2024 	}
2025 	return 1;
2026 }
2027 
2028 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2029  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2030  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2031  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2032  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2033  * bits are handled if the Loss state is really to be entered (in
2034  * tcp_enter_frto_loss).
2035  *
2036  * Do like tcp_enter_loss() would; when RTO expires the second time it
2037  * does:
2038  *  "Reduce ssthresh if it has not yet been made inside this window."
2039  */
2040 void tcp_enter_frto(struct sock *sk)
2041 {
2042 	const struct inet_connection_sock *icsk = inet_csk(sk);
2043 	struct tcp_sock *tp = tcp_sk(sk);
2044 	struct sk_buff *skb;
2045 
2046 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2047 	    tp->snd_una == tp->high_seq ||
2048 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2049 	     !icsk->icsk_retransmits)) {
2050 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2051 		/* Our state is too optimistic in ssthresh() call because cwnd
2052 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2053 		 * recovery has not yet completed. Pattern would be this: RTO,
2054 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2055 		 * up here twice).
2056 		 * RFC4138 should be more specific on what to do, even though
2057 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2058 		 * due to back-off and complexity of triggering events ...
2059 		 */
2060 		if (tp->frto_counter) {
2061 			u32 stored_cwnd;
2062 			stored_cwnd = tp->snd_cwnd;
2063 			tp->snd_cwnd = 2;
2064 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2065 			tp->snd_cwnd = stored_cwnd;
2066 		} else {
2067 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2068 		}
2069 		/* ... in theory, cong.control module could do "any tricks" in
2070 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2071 		 * counter would have to be faked before the call occurs. We
2072 		 * consider that too expensive, unlikely and hacky, so modules
2073 		 * using these in ssthresh() must deal these incompatibility
2074 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2075 		 */
2076 		tcp_ca_event(sk, CA_EVENT_FRTO);
2077 	}
2078 
2079 	tp->undo_marker = tp->snd_una;
2080 	tp->undo_retrans = 0;
2081 
2082 	skb = tcp_write_queue_head(sk);
2083 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2084 		tp->undo_marker = 0;
2085 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2086 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2087 		tp->retrans_out -= tcp_skb_pcount(skb);
2088 	}
2089 	tcp_verify_left_out(tp);
2090 
2091 	/* Too bad if TCP was application limited */
2092 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2093 
2094 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2095 	 * The last condition is necessary at least in tp->frto_counter case.
2096 	 */
2097 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2098 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2099 	    after(tp->high_seq, tp->snd_una)) {
2100 		tp->frto_highmark = tp->high_seq;
2101 	} else {
2102 		tp->frto_highmark = tp->snd_nxt;
2103 	}
2104 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2105 	tp->high_seq = tp->snd_nxt;
2106 	tp->frto_counter = 1;
2107 }
2108 
2109 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2110  * which indicates that we should follow the traditional RTO recovery,
2111  * i.e. mark everything lost and do go-back-N retransmission.
2112  */
2113 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2114 {
2115 	struct tcp_sock *tp = tcp_sk(sk);
2116 	struct sk_buff *skb;
2117 
2118 	tp->lost_out = 0;
2119 	tp->retrans_out = 0;
2120 	if (tcp_is_reno(tp))
2121 		tcp_reset_reno_sack(tp);
2122 
2123 	tcp_for_write_queue(skb, sk) {
2124 		if (skb == tcp_send_head(sk))
2125 			break;
2126 
2127 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2128 		/*
2129 		 * Count the retransmission made on RTO correctly (only when
2130 		 * waiting for the first ACK and did not get it)...
2131 		 */
2132 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2133 			/* For some reason this R-bit might get cleared? */
2134 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2135 				tp->retrans_out += tcp_skb_pcount(skb);
2136 			/* ...enter this if branch just for the first segment */
2137 			flag |= FLAG_DATA_ACKED;
2138 		} else {
2139 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2140 				tp->undo_marker = 0;
2141 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2142 		}
2143 
2144 		/* Marking forward transmissions that were made after RTO lost
2145 		 * can cause unnecessary retransmissions in some scenarios,
2146 		 * SACK blocks will mitigate that in some but not in all cases.
2147 		 * We used to not mark them but it was causing break-ups with
2148 		 * receivers that do only in-order receival.
2149 		 *
2150 		 * TODO: we could detect presence of such receiver and select
2151 		 * different behavior per flow.
2152 		 */
2153 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2154 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2155 			tp->lost_out += tcp_skb_pcount(skb);
2156 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2157 		}
2158 	}
2159 	tcp_verify_left_out(tp);
2160 
2161 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2162 	tp->snd_cwnd_cnt = 0;
2163 	tp->snd_cwnd_stamp = tcp_time_stamp;
2164 	tp->frto_counter = 0;
2165 	tp->bytes_acked = 0;
2166 
2167 	tp->reordering = min_t(unsigned int, tp->reordering,
2168 			       sysctl_tcp_reordering);
2169 	tcp_set_ca_state(sk, TCP_CA_Loss);
2170 	tp->high_seq = tp->snd_nxt;
2171 	TCP_ECN_queue_cwr(tp);
2172 
2173 	tcp_clear_all_retrans_hints(tp);
2174 }
2175 
2176 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2177 {
2178 	tp->retrans_out = 0;
2179 	tp->lost_out = 0;
2180 
2181 	tp->undo_marker = 0;
2182 	tp->undo_retrans = 0;
2183 }
2184 
2185 void tcp_clear_retrans(struct tcp_sock *tp)
2186 {
2187 	tcp_clear_retrans_partial(tp);
2188 
2189 	tp->fackets_out = 0;
2190 	tp->sacked_out = 0;
2191 }
2192 
2193 /* Enter Loss state. If "how" is not zero, forget all SACK information
2194  * and reset tags completely, otherwise preserve SACKs. If receiver
2195  * dropped its ofo queue, we will know this due to reneging detection.
2196  */
2197 void tcp_enter_loss(struct sock *sk, int how)
2198 {
2199 	const struct inet_connection_sock *icsk = inet_csk(sk);
2200 	struct tcp_sock *tp = tcp_sk(sk);
2201 	struct sk_buff *skb;
2202 
2203 	/* Reduce ssthresh if it has not yet been made inside this window. */
2204 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2205 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2206 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2207 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2208 		tcp_ca_event(sk, CA_EVENT_LOSS);
2209 	}
2210 	tp->snd_cwnd	   = 1;
2211 	tp->snd_cwnd_cnt   = 0;
2212 	tp->snd_cwnd_stamp = tcp_time_stamp;
2213 
2214 	tp->bytes_acked = 0;
2215 	tcp_clear_retrans_partial(tp);
2216 
2217 	if (tcp_is_reno(tp))
2218 		tcp_reset_reno_sack(tp);
2219 
2220 	if (!how) {
2221 		/* Push undo marker, if it was plain RTO and nothing
2222 		 * was retransmitted. */
2223 		tp->undo_marker = tp->snd_una;
2224 	} else {
2225 		tp->sacked_out = 0;
2226 		tp->fackets_out = 0;
2227 	}
2228 	tcp_clear_all_retrans_hints(tp);
2229 
2230 	tcp_for_write_queue(skb, sk) {
2231 		if (skb == tcp_send_head(sk))
2232 			break;
2233 
2234 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2235 			tp->undo_marker = 0;
2236 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2237 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2238 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2239 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2240 			tp->lost_out += tcp_skb_pcount(skb);
2241 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2242 		}
2243 	}
2244 	tcp_verify_left_out(tp);
2245 
2246 	tp->reordering = min_t(unsigned int, tp->reordering,
2247 			       sysctl_tcp_reordering);
2248 	tcp_set_ca_state(sk, TCP_CA_Loss);
2249 	tp->high_seq = tp->snd_nxt;
2250 	TCP_ECN_queue_cwr(tp);
2251 	/* Abort F-RTO algorithm if one is in progress */
2252 	tp->frto_counter = 0;
2253 }
2254 
2255 /* If ACK arrived pointing to a remembered SACK, it means that our
2256  * remembered SACKs do not reflect real state of receiver i.e.
2257  * receiver _host_ is heavily congested (or buggy).
2258  *
2259  * Do processing similar to RTO timeout.
2260  */
2261 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2262 {
2263 	if (flag & FLAG_SACK_RENEGING) {
2264 		struct inet_connection_sock *icsk = inet_csk(sk);
2265 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2266 
2267 		tcp_enter_loss(sk, 1);
2268 		icsk->icsk_retransmits++;
2269 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2270 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2271 					  icsk->icsk_rto, TCP_RTO_MAX);
2272 		return 1;
2273 	}
2274 	return 0;
2275 }
2276 
2277 static inline int tcp_fackets_out(struct tcp_sock *tp)
2278 {
2279 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2280 }
2281 
2282 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2283  * counter when SACK is enabled (without SACK, sacked_out is used for
2284  * that purpose).
2285  *
2286  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2287  * segments up to the highest received SACK block so far and holes in
2288  * between them.
2289  *
2290  * With reordering, holes may still be in flight, so RFC3517 recovery
2291  * uses pure sacked_out (total number of SACKed segments) even though
2292  * it violates the RFC that uses duplicate ACKs, often these are equal
2293  * but when e.g. out-of-window ACKs or packet duplication occurs,
2294  * they differ. Since neither occurs due to loss, TCP should really
2295  * ignore them.
2296  */
2297 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2298 {
2299 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2300 }
2301 
2302 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2303 {
2304 	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2305 }
2306 
2307 static inline int tcp_head_timedout(struct sock *sk)
2308 {
2309 	struct tcp_sock *tp = tcp_sk(sk);
2310 
2311 	return tp->packets_out &&
2312 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2313 }
2314 
2315 /* Linux NewReno/SACK/FACK/ECN state machine.
2316  * --------------------------------------
2317  *
2318  * "Open"	Normal state, no dubious events, fast path.
2319  * "Disorder"   In all the respects it is "Open",
2320  *		but requires a bit more attention. It is entered when
2321  *		we see some SACKs or dupacks. It is split of "Open"
2322  *		mainly to move some processing from fast path to slow one.
2323  * "CWR"	CWND was reduced due to some Congestion Notification event.
2324  *		It can be ECN, ICMP source quench, local device congestion.
2325  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2326  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2327  *
2328  * tcp_fastretrans_alert() is entered:
2329  * - each incoming ACK, if state is not "Open"
2330  * - when arrived ACK is unusual, namely:
2331  *	* SACK
2332  *	* Duplicate ACK.
2333  *	* ECN ECE.
2334  *
2335  * Counting packets in flight is pretty simple.
2336  *
2337  *	in_flight = packets_out - left_out + retrans_out
2338  *
2339  *	packets_out is SND.NXT-SND.UNA counted in packets.
2340  *
2341  *	retrans_out is number of retransmitted segments.
2342  *
2343  *	left_out is number of segments left network, but not ACKed yet.
2344  *
2345  *		left_out = sacked_out + lost_out
2346  *
2347  *     sacked_out: Packets, which arrived to receiver out of order
2348  *		   and hence not ACKed. With SACKs this number is simply
2349  *		   amount of SACKed data. Even without SACKs
2350  *		   it is easy to give pretty reliable estimate of this number,
2351  *		   counting duplicate ACKs.
2352  *
2353  *       lost_out: Packets lost by network. TCP has no explicit
2354  *		   "loss notification" feedback from network (for now).
2355  *		   It means that this number can be only _guessed_.
2356  *		   Actually, it is the heuristics to predict lossage that
2357  *		   distinguishes different algorithms.
2358  *
2359  *	F.e. after RTO, when all the queue is considered as lost,
2360  *	lost_out = packets_out and in_flight = retrans_out.
2361  *
2362  *		Essentially, we have now two algorithms counting
2363  *		lost packets.
2364  *
2365  *		FACK: It is the simplest heuristics. As soon as we decided
2366  *		that something is lost, we decide that _all_ not SACKed
2367  *		packets until the most forward SACK are lost. I.e.
2368  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2369  *		It is absolutely correct estimate, if network does not reorder
2370  *		packets. And it loses any connection to reality when reordering
2371  *		takes place. We use FACK by default until reordering
2372  *		is suspected on the path to this destination.
2373  *
2374  *		NewReno: when Recovery is entered, we assume that one segment
2375  *		is lost (classic Reno). While we are in Recovery and
2376  *		a partial ACK arrives, we assume that one more packet
2377  *		is lost (NewReno). This heuristics are the same in NewReno
2378  *		and SACK.
2379  *
2380  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2381  *  deflation etc. CWND is real congestion window, never inflated, changes
2382  *  only according to classic VJ rules.
2383  *
2384  * Really tricky (and requiring careful tuning) part of algorithm
2385  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2386  * The first determines the moment _when_ we should reduce CWND and,
2387  * hence, slow down forward transmission. In fact, it determines the moment
2388  * when we decide that hole is caused by loss, rather than by a reorder.
2389  *
2390  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2391  * holes, caused by lost packets.
2392  *
2393  * And the most logically complicated part of algorithm is undo
2394  * heuristics. We detect false retransmits due to both too early
2395  * fast retransmit (reordering) and underestimated RTO, analyzing
2396  * timestamps and D-SACKs. When we detect that some segments were
2397  * retransmitted by mistake and CWND reduction was wrong, we undo
2398  * window reduction and abort recovery phase. This logic is hidden
2399  * inside several functions named tcp_try_undo_<something>.
2400  */
2401 
2402 /* This function decides, when we should leave Disordered state
2403  * and enter Recovery phase, reducing congestion window.
2404  *
2405  * Main question: may we further continue forward transmission
2406  * with the same cwnd?
2407  */
2408 static int tcp_time_to_recover(struct sock *sk)
2409 {
2410 	struct tcp_sock *tp = tcp_sk(sk);
2411 	__u32 packets_out;
2412 
2413 	/* Do not perform any recovery during F-RTO algorithm */
2414 	if (tp->frto_counter)
2415 		return 0;
2416 
2417 	/* Trick#1: The loss is proven. */
2418 	if (tp->lost_out)
2419 		return 1;
2420 
2421 	/* Not-A-Trick#2 : Classic rule... */
2422 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2423 		return 1;
2424 
2425 	/* Trick#3 : when we use RFC2988 timer restart, fast
2426 	 * retransmit can be triggered by timeout of queue head.
2427 	 */
2428 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2429 		return 1;
2430 
2431 	/* Trick#4: It is still not OK... But will it be useful to delay
2432 	 * recovery more?
2433 	 */
2434 	packets_out = tp->packets_out;
2435 	if (packets_out <= tp->reordering &&
2436 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2437 	    !tcp_may_send_now(sk)) {
2438 		/* We have nothing to send. This connection is limited
2439 		 * either by receiver window or by application.
2440 		 */
2441 		return 1;
2442 	}
2443 
2444 	/* If a thin stream is detected, retransmit after first
2445 	 * received dupack. Employ only if SACK is supported in order
2446 	 * to avoid possible corner-case series of spurious retransmissions
2447 	 * Use only if there are no unsent data.
2448 	 */
2449 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2450 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2451 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2452 		return 1;
2453 
2454 	return 0;
2455 }
2456 
2457 /* New heuristics: it is possible only after we switched to restart timer
2458  * each time when something is ACKed. Hence, we can detect timed out packets
2459  * during fast retransmit without falling to slow start.
2460  *
2461  * Usefulness of this as is very questionable, since we should know which of
2462  * the segments is the next to timeout which is relatively expensive to find
2463  * in general case unless we add some data structure just for that. The
2464  * current approach certainly won't find the right one too often and when it
2465  * finally does find _something_ it usually marks large part of the window
2466  * right away (because a retransmission with a larger timestamp blocks the
2467  * loop from advancing). -ij
2468  */
2469 static void tcp_timeout_skbs(struct sock *sk)
2470 {
2471 	struct tcp_sock *tp = tcp_sk(sk);
2472 	struct sk_buff *skb;
2473 
2474 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2475 		return;
2476 
2477 	skb = tp->scoreboard_skb_hint;
2478 	if (tp->scoreboard_skb_hint == NULL)
2479 		skb = tcp_write_queue_head(sk);
2480 
2481 	tcp_for_write_queue_from(skb, sk) {
2482 		if (skb == tcp_send_head(sk))
2483 			break;
2484 		if (!tcp_skb_timedout(sk, skb))
2485 			break;
2486 
2487 		tcp_skb_mark_lost(tp, skb);
2488 	}
2489 
2490 	tp->scoreboard_skb_hint = skb;
2491 
2492 	tcp_verify_left_out(tp);
2493 }
2494 
2495 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2496  * is against sacked "cnt", otherwise it's against facked "cnt"
2497  */
2498 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2499 {
2500 	struct tcp_sock *tp = tcp_sk(sk);
2501 	struct sk_buff *skb;
2502 	int cnt, oldcnt;
2503 	int err;
2504 	unsigned int mss;
2505 
2506 	WARN_ON(packets > tp->packets_out);
2507 	if (tp->lost_skb_hint) {
2508 		skb = tp->lost_skb_hint;
2509 		cnt = tp->lost_cnt_hint;
2510 		/* Head already handled? */
2511 		if (mark_head && skb != tcp_write_queue_head(sk))
2512 			return;
2513 	} else {
2514 		skb = tcp_write_queue_head(sk);
2515 		cnt = 0;
2516 	}
2517 
2518 	tcp_for_write_queue_from(skb, sk) {
2519 		if (skb == tcp_send_head(sk))
2520 			break;
2521 		/* TODO: do this better */
2522 		/* this is not the most efficient way to do this... */
2523 		tp->lost_skb_hint = skb;
2524 		tp->lost_cnt_hint = cnt;
2525 
2526 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2527 			break;
2528 
2529 		oldcnt = cnt;
2530 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2531 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2532 			cnt += tcp_skb_pcount(skb);
2533 
2534 		if (cnt > packets) {
2535 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2536 			    (oldcnt >= packets))
2537 				break;
2538 
2539 			mss = skb_shinfo(skb)->gso_size;
2540 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2541 			if (err < 0)
2542 				break;
2543 			cnt = packets;
2544 		}
2545 
2546 		tcp_skb_mark_lost(tp, skb);
2547 
2548 		if (mark_head)
2549 			break;
2550 	}
2551 	tcp_verify_left_out(tp);
2552 }
2553 
2554 /* Account newly detected lost packet(s) */
2555 
2556 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2557 {
2558 	struct tcp_sock *tp = tcp_sk(sk);
2559 
2560 	if (tcp_is_reno(tp)) {
2561 		tcp_mark_head_lost(sk, 1, 1);
2562 	} else if (tcp_is_fack(tp)) {
2563 		int lost = tp->fackets_out - tp->reordering;
2564 		if (lost <= 0)
2565 			lost = 1;
2566 		tcp_mark_head_lost(sk, lost, 0);
2567 	} else {
2568 		int sacked_upto = tp->sacked_out - tp->reordering;
2569 		if (sacked_upto >= 0)
2570 			tcp_mark_head_lost(sk, sacked_upto, 0);
2571 		else if (fast_rexmit)
2572 			tcp_mark_head_lost(sk, 1, 1);
2573 	}
2574 
2575 	tcp_timeout_skbs(sk);
2576 }
2577 
2578 /* CWND moderation, preventing bursts due to too big ACKs
2579  * in dubious situations.
2580  */
2581 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2582 {
2583 	tp->snd_cwnd = min(tp->snd_cwnd,
2584 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2585 	tp->snd_cwnd_stamp = tcp_time_stamp;
2586 }
2587 
2588 /* Lower bound on congestion window is slow start threshold
2589  * unless congestion avoidance choice decides to overide it.
2590  */
2591 static inline u32 tcp_cwnd_min(const struct sock *sk)
2592 {
2593 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2594 
2595 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2596 }
2597 
2598 /* Decrease cwnd each second ack. */
2599 static void tcp_cwnd_down(struct sock *sk, int flag)
2600 {
2601 	struct tcp_sock *tp = tcp_sk(sk);
2602 	int decr = tp->snd_cwnd_cnt + 1;
2603 
2604 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2605 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2606 		tp->snd_cwnd_cnt = decr & 1;
2607 		decr >>= 1;
2608 
2609 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2610 			tp->snd_cwnd -= decr;
2611 
2612 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2613 		tp->snd_cwnd_stamp = tcp_time_stamp;
2614 	}
2615 }
2616 
2617 /* Nothing was retransmitted or returned timestamp is less
2618  * than timestamp of the first retransmission.
2619  */
2620 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2621 {
2622 	return !tp->retrans_stamp ||
2623 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2624 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2625 }
2626 
2627 /* Undo procedures. */
2628 
2629 #if FASTRETRANS_DEBUG > 1
2630 static void DBGUNDO(struct sock *sk, const char *msg)
2631 {
2632 	struct tcp_sock *tp = tcp_sk(sk);
2633 	struct inet_sock *inet = inet_sk(sk);
2634 
2635 	if (sk->sk_family == AF_INET) {
2636 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2637 		       msg,
2638 		       &inet->inet_daddr, ntohs(inet->inet_dport),
2639 		       tp->snd_cwnd, tcp_left_out(tp),
2640 		       tp->snd_ssthresh, tp->prior_ssthresh,
2641 		       tp->packets_out);
2642 	}
2643 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2644 	else if (sk->sk_family == AF_INET6) {
2645 		struct ipv6_pinfo *np = inet6_sk(sk);
2646 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2647 		       msg,
2648 		       &np->daddr, ntohs(inet->inet_dport),
2649 		       tp->snd_cwnd, tcp_left_out(tp),
2650 		       tp->snd_ssthresh, tp->prior_ssthresh,
2651 		       tp->packets_out);
2652 	}
2653 #endif
2654 }
2655 #else
2656 #define DBGUNDO(x...) do { } while (0)
2657 #endif
2658 
2659 static void tcp_undo_cwr(struct sock *sk, const int undo)
2660 {
2661 	struct tcp_sock *tp = tcp_sk(sk);
2662 
2663 	if (tp->prior_ssthresh) {
2664 		const struct inet_connection_sock *icsk = inet_csk(sk);
2665 
2666 		if (icsk->icsk_ca_ops->undo_cwnd)
2667 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2668 		else
2669 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2670 
2671 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2672 			tp->snd_ssthresh = tp->prior_ssthresh;
2673 			TCP_ECN_withdraw_cwr(tp);
2674 		}
2675 	} else {
2676 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2677 	}
2678 	tcp_moderate_cwnd(tp);
2679 	tp->snd_cwnd_stamp = tcp_time_stamp;
2680 }
2681 
2682 static inline int tcp_may_undo(struct tcp_sock *tp)
2683 {
2684 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2685 }
2686 
2687 /* People celebrate: "We love our President!" */
2688 static int tcp_try_undo_recovery(struct sock *sk)
2689 {
2690 	struct tcp_sock *tp = tcp_sk(sk);
2691 
2692 	if (tcp_may_undo(tp)) {
2693 		int mib_idx;
2694 
2695 		/* Happy end! We did not retransmit anything
2696 		 * or our original transmission succeeded.
2697 		 */
2698 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2699 		tcp_undo_cwr(sk, 1);
2700 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2701 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2702 		else
2703 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2704 
2705 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2706 		tp->undo_marker = 0;
2707 	}
2708 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2709 		/* Hold old state until something *above* high_seq
2710 		 * is ACKed. For Reno it is MUST to prevent false
2711 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2712 		tcp_moderate_cwnd(tp);
2713 		return 1;
2714 	}
2715 	tcp_set_ca_state(sk, TCP_CA_Open);
2716 	return 0;
2717 }
2718 
2719 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2720 static void tcp_try_undo_dsack(struct sock *sk)
2721 {
2722 	struct tcp_sock *tp = tcp_sk(sk);
2723 
2724 	if (tp->undo_marker && !tp->undo_retrans) {
2725 		DBGUNDO(sk, "D-SACK");
2726 		tcp_undo_cwr(sk, 1);
2727 		tp->undo_marker = 0;
2728 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2729 	}
2730 }
2731 
2732 /* We can clear retrans_stamp when there are no retransmissions in the
2733  * window. It would seem that it is trivially available for us in
2734  * tp->retrans_out, however, that kind of assumptions doesn't consider
2735  * what will happen if errors occur when sending retransmission for the
2736  * second time. ...It could the that such segment has only
2737  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2738  * the head skb is enough except for some reneging corner cases that
2739  * are not worth the effort.
2740  *
2741  * Main reason for all this complexity is the fact that connection dying
2742  * time now depends on the validity of the retrans_stamp, in particular,
2743  * that successive retransmissions of a segment must not advance
2744  * retrans_stamp under any conditions.
2745  */
2746 static int tcp_any_retrans_done(struct sock *sk)
2747 {
2748 	struct tcp_sock *tp = tcp_sk(sk);
2749 	struct sk_buff *skb;
2750 
2751 	if (tp->retrans_out)
2752 		return 1;
2753 
2754 	skb = tcp_write_queue_head(sk);
2755 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2756 		return 1;
2757 
2758 	return 0;
2759 }
2760 
2761 /* Undo during fast recovery after partial ACK. */
2762 
2763 static int tcp_try_undo_partial(struct sock *sk, int acked)
2764 {
2765 	struct tcp_sock *tp = tcp_sk(sk);
2766 	/* Partial ACK arrived. Force Hoe's retransmit. */
2767 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2768 
2769 	if (tcp_may_undo(tp)) {
2770 		/* Plain luck! Hole if filled with delayed
2771 		 * packet, rather than with a retransmit.
2772 		 */
2773 		if (!tcp_any_retrans_done(sk))
2774 			tp->retrans_stamp = 0;
2775 
2776 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2777 
2778 		DBGUNDO(sk, "Hoe");
2779 		tcp_undo_cwr(sk, 0);
2780 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2781 
2782 		/* So... Do not make Hoe's retransmit yet.
2783 		 * If the first packet was delayed, the rest
2784 		 * ones are most probably delayed as well.
2785 		 */
2786 		failed = 0;
2787 	}
2788 	return failed;
2789 }
2790 
2791 /* Undo during loss recovery after partial ACK. */
2792 static int tcp_try_undo_loss(struct sock *sk)
2793 {
2794 	struct tcp_sock *tp = tcp_sk(sk);
2795 
2796 	if (tcp_may_undo(tp)) {
2797 		struct sk_buff *skb;
2798 		tcp_for_write_queue(skb, sk) {
2799 			if (skb == tcp_send_head(sk))
2800 				break;
2801 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2802 		}
2803 
2804 		tcp_clear_all_retrans_hints(tp);
2805 
2806 		DBGUNDO(sk, "partial loss");
2807 		tp->lost_out = 0;
2808 		tcp_undo_cwr(sk, 1);
2809 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2810 		inet_csk(sk)->icsk_retransmits = 0;
2811 		tp->undo_marker = 0;
2812 		if (tcp_is_sack(tp))
2813 			tcp_set_ca_state(sk, TCP_CA_Open);
2814 		return 1;
2815 	}
2816 	return 0;
2817 }
2818 
2819 static inline void tcp_complete_cwr(struct sock *sk)
2820 {
2821 	struct tcp_sock *tp = tcp_sk(sk);
2822 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2823 	tp->snd_cwnd_stamp = tcp_time_stamp;
2824 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2825 }
2826 
2827 static void tcp_try_keep_open(struct sock *sk)
2828 {
2829 	struct tcp_sock *tp = tcp_sk(sk);
2830 	int state = TCP_CA_Open;
2831 
2832 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2833 		state = TCP_CA_Disorder;
2834 
2835 	if (inet_csk(sk)->icsk_ca_state != state) {
2836 		tcp_set_ca_state(sk, state);
2837 		tp->high_seq = tp->snd_nxt;
2838 	}
2839 }
2840 
2841 static void tcp_try_to_open(struct sock *sk, int flag)
2842 {
2843 	struct tcp_sock *tp = tcp_sk(sk);
2844 
2845 	tcp_verify_left_out(tp);
2846 
2847 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2848 		tp->retrans_stamp = 0;
2849 
2850 	if (flag & FLAG_ECE)
2851 		tcp_enter_cwr(sk, 1);
2852 
2853 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2854 		tcp_try_keep_open(sk);
2855 		tcp_moderate_cwnd(tp);
2856 	} else {
2857 		tcp_cwnd_down(sk, flag);
2858 	}
2859 }
2860 
2861 static void tcp_mtup_probe_failed(struct sock *sk)
2862 {
2863 	struct inet_connection_sock *icsk = inet_csk(sk);
2864 
2865 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2866 	icsk->icsk_mtup.probe_size = 0;
2867 }
2868 
2869 static void tcp_mtup_probe_success(struct sock *sk)
2870 {
2871 	struct tcp_sock *tp = tcp_sk(sk);
2872 	struct inet_connection_sock *icsk = inet_csk(sk);
2873 
2874 	/* FIXME: breaks with very large cwnd */
2875 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2876 	tp->snd_cwnd = tp->snd_cwnd *
2877 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2878 		       icsk->icsk_mtup.probe_size;
2879 	tp->snd_cwnd_cnt = 0;
2880 	tp->snd_cwnd_stamp = tcp_time_stamp;
2881 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2882 
2883 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2884 	icsk->icsk_mtup.probe_size = 0;
2885 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2886 }
2887 
2888 /* Do a simple retransmit without using the backoff mechanisms in
2889  * tcp_timer. This is used for path mtu discovery.
2890  * The socket is already locked here.
2891  */
2892 void tcp_simple_retransmit(struct sock *sk)
2893 {
2894 	const struct inet_connection_sock *icsk = inet_csk(sk);
2895 	struct tcp_sock *tp = tcp_sk(sk);
2896 	struct sk_buff *skb;
2897 	unsigned int mss = tcp_current_mss(sk);
2898 	u32 prior_lost = tp->lost_out;
2899 
2900 	tcp_for_write_queue(skb, sk) {
2901 		if (skb == tcp_send_head(sk))
2902 			break;
2903 		if (tcp_skb_seglen(skb) > mss &&
2904 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2905 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2906 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2907 				tp->retrans_out -= tcp_skb_pcount(skb);
2908 			}
2909 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2910 		}
2911 	}
2912 
2913 	tcp_clear_retrans_hints_partial(tp);
2914 
2915 	if (prior_lost == tp->lost_out)
2916 		return;
2917 
2918 	if (tcp_is_reno(tp))
2919 		tcp_limit_reno_sacked(tp);
2920 
2921 	tcp_verify_left_out(tp);
2922 
2923 	/* Don't muck with the congestion window here.
2924 	 * Reason is that we do not increase amount of _data_
2925 	 * in network, but units changed and effective
2926 	 * cwnd/ssthresh really reduced now.
2927 	 */
2928 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2929 		tp->high_seq = tp->snd_nxt;
2930 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2931 		tp->prior_ssthresh = 0;
2932 		tp->undo_marker = 0;
2933 		tcp_set_ca_state(sk, TCP_CA_Loss);
2934 	}
2935 	tcp_xmit_retransmit_queue(sk);
2936 }
2937 EXPORT_SYMBOL(tcp_simple_retransmit);
2938 
2939 /* Process an event, which can update packets-in-flight not trivially.
2940  * Main goal of this function is to calculate new estimate for left_out,
2941  * taking into account both packets sitting in receiver's buffer and
2942  * packets lost by network.
2943  *
2944  * Besides that it does CWND reduction, when packet loss is detected
2945  * and changes state of machine.
2946  *
2947  * It does _not_ decide what to send, it is made in function
2948  * tcp_xmit_retransmit_queue().
2949  */
2950 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2951 {
2952 	struct inet_connection_sock *icsk = inet_csk(sk);
2953 	struct tcp_sock *tp = tcp_sk(sk);
2954 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2955 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2956 				    (tcp_fackets_out(tp) > tp->reordering));
2957 	int fast_rexmit = 0, mib_idx;
2958 
2959 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2960 		tp->sacked_out = 0;
2961 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2962 		tp->fackets_out = 0;
2963 
2964 	/* Now state machine starts.
2965 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2966 	if (flag & FLAG_ECE)
2967 		tp->prior_ssthresh = 0;
2968 
2969 	/* B. In all the states check for reneging SACKs. */
2970 	if (tcp_check_sack_reneging(sk, flag))
2971 		return;
2972 
2973 	/* C. Process data loss notification, provided it is valid. */
2974 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2975 	    before(tp->snd_una, tp->high_seq) &&
2976 	    icsk->icsk_ca_state != TCP_CA_Open &&
2977 	    tp->fackets_out > tp->reordering) {
2978 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
2979 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2980 	}
2981 
2982 	/* D. Check consistency of the current state. */
2983 	tcp_verify_left_out(tp);
2984 
2985 	/* E. Check state exit conditions. State can be terminated
2986 	 *    when high_seq is ACKed. */
2987 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2988 		WARN_ON(tp->retrans_out != 0);
2989 		tp->retrans_stamp = 0;
2990 	} else if (!before(tp->snd_una, tp->high_seq)) {
2991 		switch (icsk->icsk_ca_state) {
2992 		case TCP_CA_Loss:
2993 			icsk->icsk_retransmits = 0;
2994 			if (tcp_try_undo_recovery(sk))
2995 				return;
2996 			break;
2997 
2998 		case TCP_CA_CWR:
2999 			/* CWR is to be held something *above* high_seq
3000 			 * is ACKed for CWR bit to reach receiver. */
3001 			if (tp->snd_una != tp->high_seq) {
3002 				tcp_complete_cwr(sk);
3003 				tcp_set_ca_state(sk, TCP_CA_Open);
3004 			}
3005 			break;
3006 
3007 		case TCP_CA_Disorder:
3008 			tcp_try_undo_dsack(sk);
3009 			if (!tp->undo_marker ||
3010 			    /* For SACK case do not Open to allow to undo
3011 			     * catching for all duplicate ACKs. */
3012 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3013 				tp->undo_marker = 0;
3014 				tcp_set_ca_state(sk, TCP_CA_Open);
3015 			}
3016 			break;
3017 
3018 		case TCP_CA_Recovery:
3019 			if (tcp_is_reno(tp))
3020 				tcp_reset_reno_sack(tp);
3021 			if (tcp_try_undo_recovery(sk))
3022 				return;
3023 			tcp_complete_cwr(sk);
3024 			break;
3025 		}
3026 	}
3027 
3028 	/* F. Process state. */
3029 	switch (icsk->icsk_ca_state) {
3030 	case TCP_CA_Recovery:
3031 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3032 			if (tcp_is_reno(tp) && is_dupack)
3033 				tcp_add_reno_sack(sk);
3034 		} else
3035 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3036 		break;
3037 	case TCP_CA_Loss:
3038 		if (flag & FLAG_DATA_ACKED)
3039 			icsk->icsk_retransmits = 0;
3040 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3041 			tcp_reset_reno_sack(tp);
3042 		if (!tcp_try_undo_loss(sk)) {
3043 			tcp_moderate_cwnd(tp);
3044 			tcp_xmit_retransmit_queue(sk);
3045 			return;
3046 		}
3047 		if (icsk->icsk_ca_state != TCP_CA_Open)
3048 			return;
3049 		/* Loss is undone; fall through to processing in Open state. */
3050 	default:
3051 		if (tcp_is_reno(tp)) {
3052 			if (flag & FLAG_SND_UNA_ADVANCED)
3053 				tcp_reset_reno_sack(tp);
3054 			if (is_dupack)
3055 				tcp_add_reno_sack(sk);
3056 		}
3057 
3058 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3059 			tcp_try_undo_dsack(sk);
3060 
3061 		if (!tcp_time_to_recover(sk)) {
3062 			tcp_try_to_open(sk, flag);
3063 			return;
3064 		}
3065 
3066 		/* MTU probe failure: don't reduce cwnd */
3067 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3068 		    icsk->icsk_mtup.probe_size &&
3069 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3070 			tcp_mtup_probe_failed(sk);
3071 			/* Restores the reduction we did in tcp_mtup_probe() */
3072 			tp->snd_cwnd++;
3073 			tcp_simple_retransmit(sk);
3074 			return;
3075 		}
3076 
3077 		/* Otherwise enter Recovery state */
3078 
3079 		if (tcp_is_reno(tp))
3080 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3081 		else
3082 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3083 
3084 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3085 
3086 		tp->high_seq = tp->snd_nxt;
3087 		tp->prior_ssthresh = 0;
3088 		tp->undo_marker = tp->snd_una;
3089 		tp->undo_retrans = tp->retrans_out;
3090 
3091 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3092 			if (!(flag & FLAG_ECE))
3093 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3094 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3095 			TCP_ECN_queue_cwr(tp);
3096 		}
3097 
3098 		tp->bytes_acked = 0;
3099 		tp->snd_cwnd_cnt = 0;
3100 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3101 		fast_rexmit = 1;
3102 	}
3103 
3104 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3105 		tcp_update_scoreboard(sk, fast_rexmit);
3106 	tcp_cwnd_down(sk, flag);
3107 	tcp_xmit_retransmit_queue(sk);
3108 }
3109 
3110 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3111 {
3112 	tcp_rtt_estimator(sk, seq_rtt);
3113 	tcp_set_rto(sk);
3114 	inet_csk(sk)->icsk_backoff = 0;
3115 }
3116 
3117 /* Read draft-ietf-tcplw-high-performance before mucking
3118  * with this code. (Supersedes RFC1323)
3119  */
3120 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3121 {
3122 	/* RTTM Rule: A TSecr value received in a segment is used to
3123 	 * update the averaged RTT measurement only if the segment
3124 	 * acknowledges some new data, i.e., only if it advances the
3125 	 * left edge of the send window.
3126 	 *
3127 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3128 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3129 	 *
3130 	 * Changed: reset backoff as soon as we see the first valid sample.
3131 	 * If we do not, we get strongly overestimated rto. With timestamps
3132 	 * samples are accepted even from very old segments: f.e., when rtt=1
3133 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3134 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3135 	 * in window is lost... Voila.	 			--ANK (010210)
3136 	 */
3137 	struct tcp_sock *tp = tcp_sk(sk);
3138 
3139 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3140 }
3141 
3142 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3143 {
3144 	/* We don't have a timestamp. Can only use
3145 	 * packets that are not retransmitted to determine
3146 	 * rtt estimates. Also, we must not reset the
3147 	 * backoff for rto until we get a non-retransmitted
3148 	 * packet. This allows us to deal with a situation
3149 	 * where the network delay has increased suddenly.
3150 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3151 	 */
3152 
3153 	if (flag & FLAG_RETRANS_DATA_ACKED)
3154 		return;
3155 
3156 	tcp_valid_rtt_meas(sk, seq_rtt);
3157 }
3158 
3159 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3160 				      const s32 seq_rtt)
3161 {
3162 	const struct tcp_sock *tp = tcp_sk(sk);
3163 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3164 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3165 		tcp_ack_saw_tstamp(sk, flag);
3166 	else if (seq_rtt >= 0)
3167 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3168 }
3169 
3170 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3171 {
3172 	const struct inet_connection_sock *icsk = inet_csk(sk);
3173 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3174 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3175 }
3176 
3177 /* Restart timer after forward progress on connection.
3178  * RFC2988 recommends to restart timer to now+rto.
3179  */
3180 static void tcp_rearm_rto(struct sock *sk)
3181 {
3182 	struct tcp_sock *tp = tcp_sk(sk);
3183 
3184 	if (!tp->packets_out) {
3185 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3186 	} else {
3187 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3188 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3189 	}
3190 }
3191 
3192 /* If we get here, the whole TSO packet has not been acked. */
3193 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3194 {
3195 	struct tcp_sock *tp = tcp_sk(sk);
3196 	u32 packets_acked;
3197 
3198 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3199 
3200 	packets_acked = tcp_skb_pcount(skb);
3201 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3202 		return 0;
3203 	packets_acked -= tcp_skb_pcount(skb);
3204 
3205 	if (packets_acked) {
3206 		BUG_ON(tcp_skb_pcount(skb) == 0);
3207 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3208 	}
3209 
3210 	return packets_acked;
3211 }
3212 
3213 /* Remove acknowledged frames from the retransmission queue. If our packet
3214  * is before the ack sequence we can discard it as it's confirmed to have
3215  * arrived at the other end.
3216  */
3217 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3218 			       u32 prior_snd_una)
3219 {
3220 	struct tcp_sock *tp = tcp_sk(sk);
3221 	const struct inet_connection_sock *icsk = inet_csk(sk);
3222 	struct sk_buff *skb;
3223 	u32 now = tcp_time_stamp;
3224 	int fully_acked = 1;
3225 	int flag = 0;
3226 	u32 pkts_acked = 0;
3227 	u32 reord = tp->packets_out;
3228 	u32 prior_sacked = tp->sacked_out;
3229 	s32 seq_rtt = -1;
3230 	s32 ca_seq_rtt = -1;
3231 	ktime_t last_ackt = net_invalid_timestamp();
3232 
3233 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3234 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3235 		u32 acked_pcount;
3236 		u8 sacked = scb->sacked;
3237 
3238 		/* Determine how many packets and what bytes were acked, tso and else */
3239 		if (after(scb->end_seq, tp->snd_una)) {
3240 			if (tcp_skb_pcount(skb) == 1 ||
3241 			    !after(tp->snd_una, scb->seq))
3242 				break;
3243 
3244 			acked_pcount = tcp_tso_acked(sk, skb);
3245 			if (!acked_pcount)
3246 				break;
3247 
3248 			fully_acked = 0;
3249 		} else {
3250 			acked_pcount = tcp_skb_pcount(skb);
3251 		}
3252 
3253 		if (sacked & TCPCB_RETRANS) {
3254 			if (sacked & TCPCB_SACKED_RETRANS)
3255 				tp->retrans_out -= acked_pcount;
3256 			flag |= FLAG_RETRANS_DATA_ACKED;
3257 			ca_seq_rtt = -1;
3258 			seq_rtt = -1;
3259 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3260 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3261 		} else {
3262 			ca_seq_rtt = now - scb->when;
3263 			last_ackt = skb->tstamp;
3264 			if (seq_rtt < 0) {
3265 				seq_rtt = ca_seq_rtt;
3266 			}
3267 			if (!(sacked & TCPCB_SACKED_ACKED))
3268 				reord = min(pkts_acked, reord);
3269 		}
3270 
3271 		if (sacked & TCPCB_SACKED_ACKED)
3272 			tp->sacked_out -= acked_pcount;
3273 		if (sacked & TCPCB_LOST)
3274 			tp->lost_out -= acked_pcount;
3275 
3276 		tp->packets_out -= acked_pcount;
3277 		pkts_acked += acked_pcount;
3278 
3279 		/* Initial outgoing SYN's get put onto the write_queue
3280 		 * just like anything else we transmit.  It is not
3281 		 * true data, and if we misinform our callers that
3282 		 * this ACK acks real data, we will erroneously exit
3283 		 * connection startup slow start one packet too
3284 		 * quickly.  This is severely frowned upon behavior.
3285 		 */
3286 		if (!(scb->flags & TCPHDR_SYN)) {
3287 			flag |= FLAG_DATA_ACKED;
3288 		} else {
3289 			flag |= FLAG_SYN_ACKED;
3290 			tp->retrans_stamp = 0;
3291 		}
3292 
3293 		if (!fully_acked)
3294 			break;
3295 
3296 		tcp_unlink_write_queue(skb, sk);
3297 		sk_wmem_free_skb(sk, skb);
3298 		tp->scoreboard_skb_hint = NULL;
3299 		if (skb == tp->retransmit_skb_hint)
3300 			tp->retransmit_skb_hint = NULL;
3301 		if (skb == tp->lost_skb_hint)
3302 			tp->lost_skb_hint = NULL;
3303 	}
3304 
3305 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3306 		tp->snd_up = tp->snd_una;
3307 
3308 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3309 		flag |= FLAG_SACK_RENEGING;
3310 
3311 	if (flag & FLAG_ACKED) {
3312 		const struct tcp_congestion_ops *ca_ops
3313 			= inet_csk(sk)->icsk_ca_ops;
3314 
3315 		if (unlikely(icsk->icsk_mtup.probe_size &&
3316 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3317 			tcp_mtup_probe_success(sk);
3318 		}
3319 
3320 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3321 		tcp_rearm_rto(sk);
3322 
3323 		if (tcp_is_reno(tp)) {
3324 			tcp_remove_reno_sacks(sk, pkts_acked);
3325 		} else {
3326 			int delta;
3327 
3328 			/* Non-retransmitted hole got filled? That's reordering */
3329 			if (reord < prior_fackets)
3330 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3331 
3332 			delta = tcp_is_fack(tp) ? pkts_acked :
3333 						  prior_sacked - tp->sacked_out;
3334 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3335 		}
3336 
3337 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3338 
3339 		if (ca_ops->pkts_acked) {
3340 			s32 rtt_us = -1;
3341 
3342 			/* Is the ACK triggering packet unambiguous? */
3343 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3344 				/* High resolution needed and available? */
3345 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3346 				    !ktime_equal(last_ackt,
3347 						 net_invalid_timestamp()))
3348 					rtt_us = ktime_us_delta(ktime_get_real(),
3349 								last_ackt);
3350 				else if (ca_seq_rtt > 0)
3351 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3352 			}
3353 
3354 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3355 		}
3356 	}
3357 
3358 #if FASTRETRANS_DEBUG > 0
3359 	WARN_ON((int)tp->sacked_out < 0);
3360 	WARN_ON((int)tp->lost_out < 0);
3361 	WARN_ON((int)tp->retrans_out < 0);
3362 	if (!tp->packets_out && tcp_is_sack(tp)) {
3363 		icsk = inet_csk(sk);
3364 		if (tp->lost_out) {
3365 			printk(KERN_DEBUG "Leak l=%u %d\n",
3366 			       tp->lost_out, icsk->icsk_ca_state);
3367 			tp->lost_out = 0;
3368 		}
3369 		if (tp->sacked_out) {
3370 			printk(KERN_DEBUG "Leak s=%u %d\n",
3371 			       tp->sacked_out, icsk->icsk_ca_state);
3372 			tp->sacked_out = 0;
3373 		}
3374 		if (tp->retrans_out) {
3375 			printk(KERN_DEBUG "Leak r=%u %d\n",
3376 			       tp->retrans_out, icsk->icsk_ca_state);
3377 			tp->retrans_out = 0;
3378 		}
3379 	}
3380 #endif
3381 	return flag;
3382 }
3383 
3384 static void tcp_ack_probe(struct sock *sk)
3385 {
3386 	const struct tcp_sock *tp = tcp_sk(sk);
3387 	struct inet_connection_sock *icsk = inet_csk(sk);
3388 
3389 	/* Was it a usable window open? */
3390 
3391 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3392 		icsk->icsk_backoff = 0;
3393 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3394 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3395 		 * This function is not for random using!
3396 		 */
3397 	} else {
3398 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3399 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3400 					  TCP_RTO_MAX);
3401 	}
3402 }
3403 
3404 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3405 {
3406 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3407 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3408 }
3409 
3410 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3411 {
3412 	const struct tcp_sock *tp = tcp_sk(sk);
3413 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3414 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3415 }
3416 
3417 /* Check that window update is acceptable.
3418  * The function assumes that snd_una<=ack<=snd_next.
3419  */
3420 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3421 					const u32 ack, const u32 ack_seq,
3422 					const u32 nwin)
3423 {
3424 	return	after(ack, tp->snd_una) ||
3425 		after(ack_seq, tp->snd_wl1) ||
3426 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3427 }
3428 
3429 /* Update our send window.
3430  *
3431  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3432  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3433  */
3434 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3435 				 u32 ack_seq)
3436 {
3437 	struct tcp_sock *tp = tcp_sk(sk);
3438 	int flag = 0;
3439 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3440 
3441 	if (likely(!tcp_hdr(skb)->syn))
3442 		nwin <<= tp->rx_opt.snd_wscale;
3443 
3444 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3445 		flag |= FLAG_WIN_UPDATE;
3446 		tcp_update_wl(tp, ack_seq);
3447 
3448 		if (tp->snd_wnd != nwin) {
3449 			tp->snd_wnd = nwin;
3450 
3451 			/* Note, it is the only place, where
3452 			 * fast path is recovered for sending TCP.
3453 			 */
3454 			tp->pred_flags = 0;
3455 			tcp_fast_path_check(sk);
3456 
3457 			if (nwin > tp->max_window) {
3458 				tp->max_window = nwin;
3459 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3460 			}
3461 		}
3462 	}
3463 
3464 	tp->snd_una = ack;
3465 
3466 	return flag;
3467 }
3468 
3469 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3470  * continue in congestion avoidance.
3471  */
3472 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3473 {
3474 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3475 	tp->snd_cwnd_cnt = 0;
3476 	tp->bytes_acked = 0;
3477 	TCP_ECN_queue_cwr(tp);
3478 	tcp_moderate_cwnd(tp);
3479 }
3480 
3481 /* A conservative spurious RTO response algorithm: reduce cwnd using
3482  * rate halving and continue in congestion avoidance.
3483  */
3484 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3485 {
3486 	tcp_enter_cwr(sk, 0);
3487 }
3488 
3489 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3490 {
3491 	if (flag & FLAG_ECE)
3492 		tcp_ratehalving_spur_to_response(sk);
3493 	else
3494 		tcp_undo_cwr(sk, 1);
3495 }
3496 
3497 /* F-RTO spurious RTO detection algorithm (RFC4138)
3498  *
3499  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3500  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3501  * window (but not to or beyond highest sequence sent before RTO):
3502  *   On First ACK,  send two new segments out.
3503  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3504  *                  algorithm is not part of the F-RTO detection algorithm
3505  *                  given in RFC4138 but can be selected separately).
3506  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3507  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3508  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3509  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3510  *
3511  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3512  * original window even after we transmit two new data segments.
3513  *
3514  * SACK version:
3515  *   on first step, wait until first cumulative ACK arrives, then move to
3516  *   the second step. In second step, the next ACK decides.
3517  *
3518  * F-RTO is implemented (mainly) in four functions:
3519  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3520  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3521  *     called when tcp_use_frto() showed green light
3522  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3523  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3524  *     to prove that the RTO is indeed spurious. It transfers the control
3525  *     from F-RTO to the conventional RTO recovery
3526  */
3527 static int tcp_process_frto(struct sock *sk, int flag)
3528 {
3529 	struct tcp_sock *tp = tcp_sk(sk);
3530 
3531 	tcp_verify_left_out(tp);
3532 
3533 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3534 	if (flag & FLAG_DATA_ACKED)
3535 		inet_csk(sk)->icsk_retransmits = 0;
3536 
3537 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3538 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3539 		tp->undo_marker = 0;
3540 
3541 	if (!before(tp->snd_una, tp->frto_highmark)) {
3542 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3543 		return 1;
3544 	}
3545 
3546 	if (!tcp_is_sackfrto(tp)) {
3547 		/* RFC4138 shortcoming in step 2; should also have case c):
3548 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3549 		 * data, winupdate
3550 		 */
3551 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3552 			return 1;
3553 
3554 		if (!(flag & FLAG_DATA_ACKED)) {
3555 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3556 					    flag);
3557 			return 1;
3558 		}
3559 	} else {
3560 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3561 			/* Prevent sending of new data. */
3562 			tp->snd_cwnd = min(tp->snd_cwnd,
3563 					   tcp_packets_in_flight(tp));
3564 			return 1;
3565 		}
3566 
3567 		if ((tp->frto_counter >= 2) &&
3568 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3569 		     ((flag & FLAG_DATA_SACKED) &&
3570 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3571 			/* RFC4138 shortcoming (see comment above) */
3572 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3573 			    (flag & FLAG_NOT_DUP))
3574 				return 1;
3575 
3576 			tcp_enter_frto_loss(sk, 3, flag);
3577 			return 1;
3578 		}
3579 	}
3580 
3581 	if (tp->frto_counter == 1) {
3582 		/* tcp_may_send_now needs to see updated state */
3583 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3584 		tp->frto_counter = 2;
3585 
3586 		if (!tcp_may_send_now(sk))
3587 			tcp_enter_frto_loss(sk, 2, flag);
3588 
3589 		return 1;
3590 	} else {
3591 		switch (sysctl_tcp_frto_response) {
3592 		case 2:
3593 			tcp_undo_spur_to_response(sk, flag);
3594 			break;
3595 		case 1:
3596 			tcp_conservative_spur_to_response(tp);
3597 			break;
3598 		default:
3599 			tcp_ratehalving_spur_to_response(sk);
3600 			break;
3601 		}
3602 		tp->frto_counter = 0;
3603 		tp->undo_marker = 0;
3604 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3605 	}
3606 	return 0;
3607 }
3608 
3609 /* This routine deals with incoming acks, but not outgoing ones. */
3610 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3611 {
3612 	struct inet_connection_sock *icsk = inet_csk(sk);
3613 	struct tcp_sock *tp = tcp_sk(sk);
3614 	u32 prior_snd_una = tp->snd_una;
3615 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3616 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3617 	u32 prior_in_flight;
3618 	u32 prior_fackets;
3619 	int prior_packets;
3620 	int frto_cwnd = 0;
3621 
3622 	/* If the ack is older than previous acks
3623 	 * then we can probably ignore it.
3624 	 */
3625 	if (before(ack, prior_snd_una))
3626 		goto old_ack;
3627 
3628 	/* If the ack includes data we haven't sent yet, discard
3629 	 * this segment (RFC793 Section 3.9).
3630 	 */
3631 	if (after(ack, tp->snd_nxt))
3632 		goto invalid_ack;
3633 
3634 	if (after(ack, prior_snd_una))
3635 		flag |= FLAG_SND_UNA_ADVANCED;
3636 
3637 	if (sysctl_tcp_abc) {
3638 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3639 			tp->bytes_acked += ack - prior_snd_una;
3640 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3641 			/* we assume just one segment left network */
3642 			tp->bytes_acked += min(ack - prior_snd_una,
3643 					       tp->mss_cache);
3644 	}
3645 
3646 	prior_fackets = tp->fackets_out;
3647 	prior_in_flight = tcp_packets_in_flight(tp);
3648 
3649 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3650 		/* Window is constant, pure forward advance.
3651 		 * No more checks are required.
3652 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3653 		 */
3654 		tcp_update_wl(tp, ack_seq);
3655 		tp->snd_una = ack;
3656 		flag |= FLAG_WIN_UPDATE;
3657 
3658 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3659 
3660 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3661 	} else {
3662 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3663 			flag |= FLAG_DATA;
3664 		else
3665 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3666 
3667 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3668 
3669 		if (TCP_SKB_CB(skb)->sacked)
3670 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3671 
3672 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3673 			flag |= FLAG_ECE;
3674 
3675 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3676 	}
3677 
3678 	/* We passed data and got it acked, remove any soft error
3679 	 * log. Something worked...
3680 	 */
3681 	sk->sk_err_soft = 0;
3682 	icsk->icsk_probes_out = 0;
3683 	tp->rcv_tstamp = tcp_time_stamp;
3684 	prior_packets = tp->packets_out;
3685 	if (!prior_packets)
3686 		goto no_queue;
3687 
3688 	/* See if we can take anything off of the retransmit queue. */
3689 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3690 
3691 	if (tp->frto_counter)
3692 		frto_cwnd = tcp_process_frto(sk, flag);
3693 	/* Guarantee sacktag reordering detection against wrap-arounds */
3694 	if (before(tp->frto_highmark, tp->snd_una))
3695 		tp->frto_highmark = 0;
3696 
3697 	if (tcp_ack_is_dubious(sk, flag)) {
3698 		/* Advance CWND, if state allows this. */
3699 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3700 		    tcp_may_raise_cwnd(sk, flag))
3701 			tcp_cong_avoid(sk, ack, prior_in_flight);
3702 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3703 				      flag);
3704 	} else {
3705 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3706 			tcp_cong_avoid(sk, ack, prior_in_flight);
3707 	}
3708 
3709 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3710 		dst_confirm(__sk_dst_get(sk));
3711 
3712 	return 1;
3713 
3714 no_queue:
3715 	/* If this ack opens up a zero window, clear backoff.  It was
3716 	 * being used to time the probes, and is probably far higher than
3717 	 * it needs to be for normal retransmission.
3718 	 */
3719 	if (tcp_send_head(sk))
3720 		tcp_ack_probe(sk);
3721 	return 1;
3722 
3723 invalid_ack:
3724 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3725 	return -1;
3726 
3727 old_ack:
3728 	if (TCP_SKB_CB(skb)->sacked) {
3729 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3730 		if (icsk->icsk_ca_state == TCP_CA_Open)
3731 			tcp_try_keep_open(sk);
3732 	}
3733 
3734 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3735 	return 0;
3736 }
3737 
3738 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3739  * But, this can also be called on packets in the established flow when
3740  * the fast version below fails.
3741  */
3742 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3743 		       u8 **hvpp, int estab)
3744 {
3745 	unsigned char *ptr;
3746 	struct tcphdr *th = tcp_hdr(skb);
3747 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3748 
3749 	ptr = (unsigned char *)(th + 1);
3750 	opt_rx->saw_tstamp = 0;
3751 
3752 	while (length > 0) {
3753 		int opcode = *ptr++;
3754 		int opsize;
3755 
3756 		switch (opcode) {
3757 		case TCPOPT_EOL:
3758 			return;
3759 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3760 			length--;
3761 			continue;
3762 		default:
3763 			opsize = *ptr++;
3764 			if (opsize < 2) /* "silly options" */
3765 				return;
3766 			if (opsize > length)
3767 				return;	/* don't parse partial options */
3768 			switch (opcode) {
3769 			case TCPOPT_MSS:
3770 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3771 					u16 in_mss = get_unaligned_be16(ptr);
3772 					if (in_mss) {
3773 						if (opt_rx->user_mss &&
3774 						    opt_rx->user_mss < in_mss)
3775 							in_mss = opt_rx->user_mss;
3776 						opt_rx->mss_clamp = in_mss;
3777 					}
3778 				}
3779 				break;
3780 			case TCPOPT_WINDOW:
3781 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3782 				    !estab && sysctl_tcp_window_scaling) {
3783 					__u8 snd_wscale = *(__u8 *)ptr;
3784 					opt_rx->wscale_ok = 1;
3785 					if (snd_wscale > 14) {
3786 						if (net_ratelimit())
3787 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3788 							       "scaling value %d >14 received.\n",
3789 							       snd_wscale);
3790 						snd_wscale = 14;
3791 					}
3792 					opt_rx->snd_wscale = snd_wscale;
3793 				}
3794 				break;
3795 			case TCPOPT_TIMESTAMP:
3796 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3797 				    ((estab && opt_rx->tstamp_ok) ||
3798 				     (!estab && sysctl_tcp_timestamps))) {
3799 					opt_rx->saw_tstamp = 1;
3800 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3801 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3802 				}
3803 				break;
3804 			case TCPOPT_SACK_PERM:
3805 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3806 				    !estab && sysctl_tcp_sack) {
3807 					opt_rx->sack_ok = 1;
3808 					tcp_sack_reset(opt_rx);
3809 				}
3810 				break;
3811 
3812 			case TCPOPT_SACK:
3813 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3814 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3815 				   opt_rx->sack_ok) {
3816 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3817 				}
3818 				break;
3819 #ifdef CONFIG_TCP_MD5SIG
3820 			case TCPOPT_MD5SIG:
3821 				/*
3822 				 * The MD5 Hash has already been
3823 				 * checked (see tcp_v{4,6}_do_rcv()).
3824 				 */
3825 				break;
3826 #endif
3827 			case TCPOPT_COOKIE:
3828 				/* This option is variable length.
3829 				 */
3830 				switch (opsize) {
3831 				case TCPOLEN_COOKIE_BASE:
3832 					/* not yet implemented */
3833 					break;
3834 				case TCPOLEN_COOKIE_PAIR:
3835 					/* not yet implemented */
3836 					break;
3837 				case TCPOLEN_COOKIE_MIN+0:
3838 				case TCPOLEN_COOKIE_MIN+2:
3839 				case TCPOLEN_COOKIE_MIN+4:
3840 				case TCPOLEN_COOKIE_MIN+6:
3841 				case TCPOLEN_COOKIE_MAX:
3842 					/* 16-bit multiple */
3843 					opt_rx->cookie_plus = opsize;
3844 					*hvpp = ptr;
3845 					break;
3846 				default:
3847 					/* ignore option */
3848 					break;
3849 				}
3850 				break;
3851 			}
3852 
3853 			ptr += opsize-2;
3854 			length -= opsize;
3855 		}
3856 	}
3857 }
3858 EXPORT_SYMBOL(tcp_parse_options);
3859 
3860 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3861 {
3862 	__be32 *ptr = (__be32 *)(th + 1);
3863 
3864 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3865 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3866 		tp->rx_opt.saw_tstamp = 1;
3867 		++ptr;
3868 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3869 		++ptr;
3870 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3871 		return 1;
3872 	}
3873 	return 0;
3874 }
3875 
3876 /* Fast parse options. This hopes to only see timestamps.
3877  * If it is wrong it falls back on tcp_parse_options().
3878  */
3879 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3880 				  struct tcp_sock *tp, u8 **hvpp)
3881 {
3882 	/* In the spirit of fast parsing, compare doff directly to constant
3883 	 * values.  Because equality is used, short doff can be ignored here.
3884 	 */
3885 	if (th->doff == (sizeof(*th) / 4)) {
3886 		tp->rx_opt.saw_tstamp = 0;
3887 		return 0;
3888 	} else if (tp->rx_opt.tstamp_ok &&
3889 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3890 		if (tcp_parse_aligned_timestamp(tp, th))
3891 			return 1;
3892 	}
3893 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3894 	return 1;
3895 }
3896 
3897 #ifdef CONFIG_TCP_MD5SIG
3898 /*
3899  * Parse MD5 Signature option
3900  */
3901 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3902 {
3903 	int length = (th->doff << 2) - sizeof (*th);
3904 	u8 *ptr = (u8*)(th + 1);
3905 
3906 	/* If the TCP option is too short, we can short cut */
3907 	if (length < TCPOLEN_MD5SIG)
3908 		return NULL;
3909 
3910 	while (length > 0) {
3911 		int opcode = *ptr++;
3912 		int opsize;
3913 
3914 		switch(opcode) {
3915 		case TCPOPT_EOL:
3916 			return NULL;
3917 		case TCPOPT_NOP:
3918 			length--;
3919 			continue;
3920 		default:
3921 			opsize = *ptr++;
3922 			if (opsize < 2 || opsize > length)
3923 				return NULL;
3924 			if (opcode == TCPOPT_MD5SIG)
3925 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3926 		}
3927 		ptr += opsize - 2;
3928 		length -= opsize;
3929 	}
3930 	return NULL;
3931 }
3932 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3933 #endif
3934 
3935 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3936 {
3937 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3938 	tp->rx_opt.ts_recent_stamp = get_seconds();
3939 }
3940 
3941 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3942 {
3943 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3944 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3945 		 * extra check below makes sure this can only happen
3946 		 * for pure ACK frames.  -DaveM
3947 		 *
3948 		 * Not only, also it occurs for expired timestamps.
3949 		 */
3950 
3951 		if (tcp_paws_check(&tp->rx_opt, 0))
3952 			tcp_store_ts_recent(tp);
3953 	}
3954 }
3955 
3956 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3957  *
3958  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3959  * it can pass through stack. So, the following predicate verifies that
3960  * this segment is not used for anything but congestion avoidance or
3961  * fast retransmit. Moreover, we even are able to eliminate most of such
3962  * second order effects, if we apply some small "replay" window (~RTO)
3963  * to timestamp space.
3964  *
3965  * All these measures still do not guarantee that we reject wrapped ACKs
3966  * on networks with high bandwidth, when sequence space is recycled fastly,
3967  * but it guarantees that such events will be very rare and do not affect
3968  * connection seriously. This doesn't look nice, but alas, PAWS is really
3969  * buggy extension.
3970  *
3971  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3972  * states that events when retransmit arrives after original data are rare.
3973  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3974  * the biggest problem on large power networks even with minor reordering.
3975  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3976  * up to bandwidth of 18Gigabit/sec. 8) ]
3977  */
3978 
3979 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3980 {
3981 	struct tcp_sock *tp = tcp_sk(sk);
3982 	struct tcphdr *th = tcp_hdr(skb);
3983 	u32 seq = TCP_SKB_CB(skb)->seq;
3984 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3985 
3986 	return (/* 1. Pure ACK with correct sequence number. */
3987 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3988 
3989 		/* 2. ... and duplicate ACK. */
3990 		ack == tp->snd_una &&
3991 
3992 		/* 3. ... and does not update window. */
3993 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3994 
3995 		/* 4. ... and sits in replay window. */
3996 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3997 }
3998 
3999 static inline int tcp_paws_discard(const struct sock *sk,
4000 				   const struct sk_buff *skb)
4001 {
4002 	const struct tcp_sock *tp = tcp_sk(sk);
4003 
4004 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4005 	       !tcp_disordered_ack(sk, skb);
4006 }
4007 
4008 /* Check segment sequence number for validity.
4009  *
4010  * Segment controls are considered valid, if the segment
4011  * fits to the window after truncation to the window. Acceptability
4012  * of data (and SYN, FIN, of course) is checked separately.
4013  * See tcp_data_queue(), for example.
4014  *
4015  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4016  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4017  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4018  * (borrowed from freebsd)
4019  */
4020 
4021 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4022 {
4023 	return	!before(end_seq, tp->rcv_wup) &&
4024 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4025 }
4026 
4027 /* When we get a reset we do this. */
4028 static void tcp_reset(struct sock *sk)
4029 {
4030 	/* We want the right error as BSD sees it (and indeed as we do). */
4031 	switch (sk->sk_state) {
4032 	case TCP_SYN_SENT:
4033 		sk->sk_err = ECONNREFUSED;
4034 		break;
4035 	case TCP_CLOSE_WAIT:
4036 		sk->sk_err = EPIPE;
4037 		break;
4038 	case TCP_CLOSE:
4039 		return;
4040 	default:
4041 		sk->sk_err = ECONNRESET;
4042 	}
4043 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4044 	smp_wmb();
4045 
4046 	if (!sock_flag(sk, SOCK_DEAD))
4047 		sk->sk_error_report(sk);
4048 
4049 	tcp_done(sk);
4050 }
4051 
4052 /*
4053  * 	Process the FIN bit. This now behaves as it is supposed to work
4054  *	and the FIN takes effect when it is validly part of sequence
4055  *	space. Not before when we get holes.
4056  *
4057  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4058  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4059  *	TIME-WAIT)
4060  *
4061  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4062  *	close and we go into CLOSING (and later onto TIME-WAIT)
4063  *
4064  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4065  */
4066 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4067 {
4068 	struct tcp_sock *tp = tcp_sk(sk);
4069 
4070 	inet_csk_schedule_ack(sk);
4071 
4072 	sk->sk_shutdown |= RCV_SHUTDOWN;
4073 	sock_set_flag(sk, SOCK_DONE);
4074 
4075 	switch (sk->sk_state) {
4076 	case TCP_SYN_RECV:
4077 	case TCP_ESTABLISHED:
4078 		/* Move to CLOSE_WAIT */
4079 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4080 		inet_csk(sk)->icsk_ack.pingpong = 1;
4081 		break;
4082 
4083 	case TCP_CLOSE_WAIT:
4084 	case TCP_CLOSING:
4085 		/* Received a retransmission of the FIN, do
4086 		 * nothing.
4087 		 */
4088 		break;
4089 	case TCP_LAST_ACK:
4090 		/* RFC793: Remain in the LAST-ACK state. */
4091 		break;
4092 
4093 	case TCP_FIN_WAIT1:
4094 		/* This case occurs when a simultaneous close
4095 		 * happens, we must ack the received FIN and
4096 		 * enter the CLOSING state.
4097 		 */
4098 		tcp_send_ack(sk);
4099 		tcp_set_state(sk, TCP_CLOSING);
4100 		break;
4101 	case TCP_FIN_WAIT2:
4102 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4103 		tcp_send_ack(sk);
4104 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4105 		break;
4106 	default:
4107 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4108 		 * cases we should never reach this piece of code.
4109 		 */
4110 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4111 		       __func__, sk->sk_state);
4112 		break;
4113 	}
4114 
4115 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4116 	 * Probably, we should reset in this case. For now drop them.
4117 	 */
4118 	__skb_queue_purge(&tp->out_of_order_queue);
4119 	if (tcp_is_sack(tp))
4120 		tcp_sack_reset(&tp->rx_opt);
4121 	sk_mem_reclaim(sk);
4122 
4123 	if (!sock_flag(sk, SOCK_DEAD)) {
4124 		sk->sk_state_change(sk);
4125 
4126 		/* Do not send POLL_HUP for half duplex close. */
4127 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4128 		    sk->sk_state == TCP_CLOSE)
4129 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4130 		else
4131 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4132 	}
4133 }
4134 
4135 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4136 				  u32 end_seq)
4137 {
4138 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4139 		if (before(seq, sp->start_seq))
4140 			sp->start_seq = seq;
4141 		if (after(end_seq, sp->end_seq))
4142 			sp->end_seq = end_seq;
4143 		return 1;
4144 	}
4145 	return 0;
4146 }
4147 
4148 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4149 {
4150 	struct tcp_sock *tp = tcp_sk(sk);
4151 
4152 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4153 		int mib_idx;
4154 
4155 		if (before(seq, tp->rcv_nxt))
4156 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4157 		else
4158 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4159 
4160 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4161 
4162 		tp->rx_opt.dsack = 1;
4163 		tp->duplicate_sack[0].start_seq = seq;
4164 		tp->duplicate_sack[0].end_seq = end_seq;
4165 	}
4166 }
4167 
4168 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4169 {
4170 	struct tcp_sock *tp = tcp_sk(sk);
4171 
4172 	if (!tp->rx_opt.dsack)
4173 		tcp_dsack_set(sk, seq, end_seq);
4174 	else
4175 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4176 }
4177 
4178 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4179 {
4180 	struct tcp_sock *tp = tcp_sk(sk);
4181 
4182 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4183 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4184 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4185 		tcp_enter_quickack_mode(sk);
4186 
4187 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4188 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4189 
4190 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4191 				end_seq = tp->rcv_nxt;
4192 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4193 		}
4194 	}
4195 
4196 	tcp_send_ack(sk);
4197 }
4198 
4199 /* These routines update the SACK block as out-of-order packets arrive or
4200  * in-order packets close up the sequence space.
4201  */
4202 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4203 {
4204 	int this_sack;
4205 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4206 	struct tcp_sack_block *swalk = sp + 1;
4207 
4208 	/* See if the recent change to the first SACK eats into
4209 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4210 	 */
4211 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4212 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4213 			int i;
4214 
4215 			/* Zap SWALK, by moving every further SACK up by one slot.
4216 			 * Decrease num_sacks.
4217 			 */
4218 			tp->rx_opt.num_sacks--;
4219 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4220 				sp[i] = sp[i + 1];
4221 			continue;
4222 		}
4223 		this_sack++, swalk++;
4224 	}
4225 }
4226 
4227 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4228 {
4229 	struct tcp_sock *tp = tcp_sk(sk);
4230 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4231 	int cur_sacks = tp->rx_opt.num_sacks;
4232 	int this_sack;
4233 
4234 	if (!cur_sacks)
4235 		goto new_sack;
4236 
4237 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4238 		if (tcp_sack_extend(sp, seq, end_seq)) {
4239 			/* Rotate this_sack to the first one. */
4240 			for (; this_sack > 0; this_sack--, sp--)
4241 				swap(*sp, *(sp - 1));
4242 			if (cur_sacks > 1)
4243 				tcp_sack_maybe_coalesce(tp);
4244 			return;
4245 		}
4246 	}
4247 
4248 	/* Could not find an adjacent existing SACK, build a new one,
4249 	 * put it at the front, and shift everyone else down.  We
4250 	 * always know there is at least one SACK present already here.
4251 	 *
4252 	 * If the sack array is full, forget about the last one.
4253 	 */
4254 	if (this_sack >= TCP_NUM_SACKS) {
4255 		this_sack--;
4256 		tp->rx_opt.num_sacks--;
4257 		sp--;
4258 	}
4259 	for (; this_sack > 0; this_sack--, sp--)
4260 		*sp = *(sp - 1);
4261 
4262 new_sack:
4263 	/* Build the new head SACK, and we're done. */
4264 	sp->start_seq = seq;
4265 	sp->end_seq = end_seq;
4266 	tp->rx_opt.num_sacks++;
4267 }
4268 
4269 /* RCV.NXT advances, some SACKs should be eaten. */
4270 
4271 static void tcp_sack_remove(struct tcp_sock *tp)
4272 {
4273 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4274 	int num_sacks = tp->rx_opt.num_sacks;
4275 	int this_sack;
4276 
4277 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4278 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4279 		tp->rx_opt.num_sacks = 0;
4280 		return;
4281 	}
4282 
4283 	for (this_sack = 0; this_sack < num_sacks;) {
4284 		/* Check if the start of the sack is covered by RCV.NXT. */
4285 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4286 			int i;
4287 
4288 			/* RCV.NXT must cover all the block! */
4289 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4290 
4291 			/* Zap this SACK, by moving forward any other SACKS. */
4292 			for (i=this_sack+1; i < num_sacks; i++)
4293 				tp->selective_acks[i-1] = tp->selective_acks[i];
4294 			num_sacks--;
4295 			continue;
4296 		}
4297 		this_sack++;
4298 		sp++;
4299 	}
4300 	tp->rx_opt.num_sacks = num_sacks;
4301 }
4302 
4303 /* This one checks to see if we can put data from the
4304  * out_of_order queue into the receive_queue.
4305  */
4306 static void tcp_ofo_queue(struct sock *sk)
4307 {
4308 	struct tcp_sock *tp = tcp_sk(sk);
4309 	__u32 dsack_high = tp->rcv_nxt;
4310 	struct sk_buff *skb;
4311 
4312 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4313 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4314 			break;
4315 
4316 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4317 			__u32 dsack = dsack_high;
4318 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4319 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4320 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4321 		}
4322 
4323 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4324 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4325 			__skb_unlink(skb, &tp->out_of_order_queue);
4326 			__kfree_skb(skb);
4327 			continue;
4328 		}
4329 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4330 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4331 			   TCP_SKB_CB(skb)->end_seq);
4332 
4333 		__skb_unlink(skb, &tp->out_of_order_queue);
4334 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4335 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4336 		if (tcp_hdr(skb)->fin)
4337 			tcp_fin(skb, sk, tcp_hdr(skb));
4338 	}
4339 }
4340 
4341 static int tcp_prune_ofo_queue(struct sock *sk);
4342 static int tcp_prune_queue(struct sock *sk);
4343 
4344 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4345 {
4346 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4347 	    !sk_rmem_schedule(sk, size)) {
4348 
4349 		if (tcp_prune_queue(sk) < 0)
4350 			return -1;
4351 
4352 		if (!sk_rmem_schedule(sk, size)) {
4353 			if (!tcp_prune_ofo_queue(sk))
4354 				return -1;
4355 
4356 			if (!sk_rmem_schedule(sk, size))
4357 				return -1;
4358 		}
4359 	}
4360 	return 0;
4361 }
4362 
4363 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4364 {
4365 	struct tcphdr *th = tcp_hdr(skb);
4366 	struct tcp_sock *tp = tcp_sk(sk);
4367 	int eaten = -1;
4368 
4369 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4370 		goto drop;
4371 
4372 	skb_dst_drop(skb);
4373 	__skb_pull(skb, th->doff * 4);
4374 
4375 	TCP_ECN_accept_cwr(tp, skb);
4376 
4377 	tp->rx_opt.dsack = 0;
4378 
4379 	/*  Queue data for delivery to the user.
4380 	 *  Packets in sequence go to the receive queue.
4381 	 *  Out of sequence packets to the out_of_order_queue.
4382 	 */
4383 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4384 		if (tcp_receive_window(tp) == 0)
4385 			goto out_of_window;
4386 
4387 		/* Ok. In sequence. In window. */
4388 		if (tp->ucopy.task == current &&
4389 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4390 		    sock_owned_by_user(sk) && !tp->urg_data) {
4391 			int chunk = min_t(unsigned int, skb->len,
4392 					  tp->ucopy.len);
4393 
4394 			__set_current_state(TASK_RUNNING);
4395 
4396 			local_bh_enable();
4397 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4398 				tp->ucopy.len -= chunk;
4399 				tp->copied_seq += chunk;
4400 				eaten = (chunk == skb->len && !th->fin);
4401 				tcp_rcv_space_adjust(sk);
4402 			}
4403 			local_bh_disable();
4404 		}
4405 
4406 		if (eaten <= 0) {
4407 queue_and_out:
4408 			if (eaten < 0 &&
4409 			    tcp_try_rmem_schedule(sk, skb->truesize))
4410 				goto drop;
4411 
4412 			skb_set_owner_r(skb, sk);
4413 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4414 		}
4415 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4416 		if (skb->len)
4417 			tcp_event_data_recv(sk, skb);
4418 		if (th->fin)
4419 			tcp_fin(skb, sk, th);
4420 
4421 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4422 			tcp_ofo_queue(sk);
4423 
4424 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4425 			 * gap in queue is filled.
4426 			 */
4427 			if (skb_queue_empty(&tp->out_of_order_queue))
4428 				inet_csk(sk)->icsk_ack.pingpong = 0;
4429 		}
4430 
4431 		if (tp->rx_opt.num_sacks)
4432 			tcp_sack_remove(tp);
4433 
4434 		tcp_fast_path_check(sk);
4435 
4436 		if (eaten > 0)
4437 			__kfree_skb(skb);
4438 		else if (!sock_flag(sk, SOCK_DEAD))
4439 			sk->sk_data_ready(sk, 0);
4440 		return;
4441 	}
4442 
4443 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4444 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4445 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4446 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4447 
4448 out_of_window:
4449 		tcp_enter_quickack_mode(sk);
4450 		inet_csk_schedule_ack(sk);
4451 drop:
4452 		__kfree_skb(skb);
4453 		return;
4454 	}
4455 
4456 	/* Out of window. F.e. zero window probe. */
4457 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4458 		goto out_of_window;
4459 
4460 	tcp_enter_quickack_mode(sk);
4461 
4462 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4463 		/* Partial packet, seq < rcv_next < end_seq */
4464 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4465 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4466 			   TCP_SKB_CB(skb)->end_seq);
4467 
4468 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4469 
4470 		/* If window is closed, drop tail of packet. But after
4471 		 * remembering D-SACK for its head made in previous line.
4472 		 */
4473 		if (!tcp_receive_window(tp))
4474 			goto out_of_window;
4475 		goto queue_and_out;
4476 	}
4477 
4478 	TCP_ECN_check_ce(tp, skb);
4479 
4480 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4481 		goto drop;
4482 
4483 	/* Disable header prediction. */
4484 	tp->pred_flags = 0;
4485 	inet_csk_schedule_ack(sk);
4486 
4487 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4488 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4489 
4490 	skb_set_owner_r(skb, sk);
4491 
4492 	if (!skb_peek(&tp->out_of_order_queue)) {
4493 		/* Initial out of order segment, build 1 SACK. */
4494 		if (tcp_is_sack(tp)) {
4495 			tp->rx_opt.num_sacks = 1;
4496 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4497 			tp->selective_acks[0].end_seq =
4498 						TCP_SKB_CB(skb)->end_seq;
4499 		}
4500 		__skb_queue_head(&tp->out_of_order_queue, skb);
4501 	} else {
4502 		struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4503 		u32 seq = TCP_SKB_CB(skb)->seq;
4504 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4505 
4506 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4507 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4508 
4509 			if (!tp->rx_opt.num_sacks ||
4510 			    tp->selective_acks[0].end_seq != seq)
4511 				goto add_sack;
4512 
4513 			/* Common case: data arrive in order after hole. */
4514 			tp->selective_acks[0].end_seq = end_seq;
4515 			return;
4516 		}
4517 
4518 		/* Find place to insert this segment. */
4519 		while (1) {
4520 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4521 				break;
4522 			if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4523 				skb1 = NULL;
4524 				break;
4525 			}
4526 			skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4527 		}
4528 
4529 		/* Do skb overlap to previous one? */
4530 		if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4531 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4532 				/* All the bits are present. Drop. */
4533 				__kfree_skb(skb);
4534 				tcp_dsack_set(sk, seq, end_seq);
4535 				goto add_sack;
4536 			}
4537 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4538 				/* Partial overlap. */
4539 				tcp_dsack_set(sk, seq,
4540 					      TCP_SKB_CB(skb1)->end_seq);
4541 			} else {
4542 				if (skb_queue_is_first(&tp->out_of_order_queue,
4543 						       skb1))
4544 					skb1 = NULL;
4545 				else
4546 					skb1 = skb_queue_prev(
4547 						&tp->out_of_order_queue,
4548 						skb1);
4549 			}
4550 		}
4551 		if (!skb1)
4552 			__skb_queue_head(&tp->out_of_order_queue, skb);
4553 		else
4554 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4555 
4556 		/* And clean segments covered by new one as whole. */
4557 		while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4558 			skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4559 
4560 			if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4561 				break;
4562 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4563 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4564 						 end_seq);
4565 				break;
4566 			}
4567 			__skb_unlink(skb1, &tp->out_of_order_queue);
4568 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4569 					 TCP_SKB_CB(skb1)->end_seq);
4570 			__kfree_skb(skb1);
4571 		}
4572 
4573 add_sack:
4574 		if (tcp_is_sack(tp))
4575 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4576 	}
4577 }
4578 
4579 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4580 					struct sk_buff_head *list)
4581 {
4582 	struct sk_buff *next = NULL;
4583 
4584 	if (!skb_queue_is_last(list, skb))
4585 		next = skb_queue_next(list, skb);
4586 
4587 	__skb_unlink(skb, list);
4588 	__kfree_skb(skb);
4589 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4590 
4591 	return next;
4592 }
4593 
4594 /* Collapse contiguous sequence of skbs head..tail with
4595  * sequence numbers start..end.
4596  *
4597  * If tail is NULL, this means until the end of the list.
4598  *
4599  * Segments with FIN/SYN are not collapsed (only because this
4600  * simplifies code)
4601  */
4602 static void
4603 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4604 	     struct sk_buff *head, struct sk_buff *tail,
4605 	     u32 start, u32 end)
4606 {
4607 	struct sk_buff *skb, *n;
4608 	bool end_of_skbs;
4609 
4610 	/* First, check that queue is collapsible and find
4611 	 * the point where collapsing can be useful. */
4612 	skb = head;
4613 restart:
4614 	end_of_skbs = true;
4615 	skb_queue_walk_from_safe(list, skb, n) {
4616 		if (skb == tail)
4617 			break;
4618 		/* No new bits? It is possible on ofo queue. */
4619 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4620 			skb = tcp_collapse_one(sk, skb, list);
4621 			if (!skb)
4622 				break;
4623 			goto restart;
4624 		}
4625 
4626 		/* The first skb to collapse is:
4627 		 * - not SYN/FIN and
4628 		 * - bloated or contains data before "start" or
4629 		 *   overlaps to the next one.
4630 		 */
4631 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4632 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4633 		     before(TCP_SKB_CB(skb)->seq, start))) {
4634 			end_of_skbs = false;
4635 			break;
4636 		}
4637 
4638 		if (!skb_queue_is_last(list, skb)) {
4639 			struct sk_buff *next = skb_queue_next(list, skb);
4640 			if (next != tail &&
4641 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4642 				end_of_skbs = false;
4643 				break;
4644 			}
4645 		}
4646 
4647 		/* Decided to skip this, advance start seq. */
4648 		start = TCP_SKB_CB(skb)->end_seq;
4649 	}
4650 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4651 		return;
4652 
4653 	while (before(start, end)) {
4654 		struct sk_buff *nskb;
4655 		unsigned int header = skb_headroom(skb);
4656 		int copy = SKB_MAX_ORDER(header, 0);
4657 
4658 		/* Too big header? This can happen with IPv6. */
4659 		if (copy < 0)
4660 			return;
4661 		if (end - start < copy)
4662 			copy = end - start;
4663 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4664 		if (!nskb)
4665 			return;
4666 
4667 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4668 		skb_set_network_header(nskb, (skb_network_header(skb) -
4669 					      skb->head));
4670 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4671 						skb->head));
4672 		skb_reserve(nskb, header);
4673 		memcpy(nskb->head, skb->head, header);
4674 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4675 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4676 		__skb_queue_before(list, skb, nskb);
4677 		skb_set_owner_r(nskb, sk);
4678 
4679 		/* Copy data, releasing collapsed skbs. */
4680 		while (copy > 0) {
4681 			int offset = start - TCP_SKB_CB(skb)->seq;
4682 			int size = TCP_SKB_CB(skb)->end_seq - start;
4683 
4684 			BUG_ON(offset < 0);
4685 			if (size > 0) {
4686 				size = min(copy, size);
4687 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4688 					BUG();
4689 				TCP_SKB_CB(nskb)->end_seq += size;
4690 				copy -= size;
4691 				start += size;
4692 			}
4693 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4694 				skb = tcp_collapse_one(sk, skb, list);
4695 				if (!skb ||
4696 				    skb == tail ||
4697 				    tcp_hdr(skb)->syn ||
4698 				    tcp_hdr(skb)->fin)
4699 					return;
4700 			}
4701 		}
4702 	}
4703 }
4704 
4705 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4706  * and tcp_collapse() them until all the queue is collapsed.
4707  */
4708 static void tcp_collapse_ofo_queue(struct sock *sk)
4709 {
4710 	struct tcp_sock *tp = tcp_sk(sk);
4711 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4712 	struct sk_buff *head;
4713 	u32 start, end;
4714 
4715 	if (skb == NULL)
4716 		return;
4717 
4718 	start = TCP_SKB_CB(skb)->seq;
4719 	end = TCP_SKB_CB(skb)->end_seq;
4720 	head = skb;
4721 
4722 	for (;;) {
4723 		struct sk_buff *next = NULL;
4724 
4725 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4726 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4727 		skb = next;
4728 
4729 		/* Segment is terminated when we see gap or when
4730 		 * we are at the end of all the queue. */
4731 		if (!skb ||
4732 		    after(TCP_SKB_CB(skb)->seq, end) ||
4733 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4734 			tcp_collapse(sk, &tp->out_of_order_queue,
4735 				     head, skb, start, end);
4736 			head = skb;
4737 			if (!skb)
4738 				break;
4739 			/* Start new segment */
4740 			start = TCP_SKB_CB(skb)->seq;
4741 			end = TCP_SKB_CB(skb)->end_seq;
4742 		} else {
4743 			if (before(TCP_SKB_CB(skb)->seq, start))
4744 				start = TCP_SKB_CB(skb)->seq;
4745 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4746 				end = TCP_SKB_CB(skb)->end_seq;
4747 		}
4748 	}
4749 }
4750 
4751 /*
4752  * Purge the out-of-order queue.
4753  * Return true if queue was pruned.
4754  */
4755 static int tcp_prune_ofo_queue(struct sock *sk)
4756 {
4757 	struct tcp_sock *tp = tcp_sk(sk);
4758 	int res = 0;
4759 
4760 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4761 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4762 		__skb_queue_purge(&tp->out_of_order_queue);
4763 
4764 		/* Reset SACK state.  A conforming SACK implementation will
4765 		 * do the same at a timeout based retransmit.  When a connection
4766 		 * is in a sad state like this, we care only about integrity
4767 		 * of the connection not performance.
4768 		 */
4769 		if (tp->rx_opt.sack_ok)
4770 			tcp_sack_reset(&tp->rx_opt);
4771 		sk_mem_reclaim(sk);
4772 		res = 1;
4773 	}
4774 	return res;
4775 }
4776 
4777 /* Reduce allocated memory if we can, trying to get
4778  * the socket within its memory limits again.
4779  *
4780  * Return less than zero if we should start dropping frames
4781  * until the socket owning process reads some of the data
4782  * to stabilize the situation.
4783  */
4784 static int tcp_prune_queue(struct sock *sk)
4785 {
4786 	struct tcp_sock *tp = tcp_sk(sk);
4787 
4788 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4789 
4790 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4791 
4792 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4793 		tcp_clamp_window(sk);
4794 	else if (tcp_memory_pressure)
4795 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4796 
4797 	tcp_collapse_ofo_queue(sk);
4798 	if (!skb_queue_empty(&sk->sk_receive_queue))
4799 		tcp_collapse(sk, &sk->sk_receive_queue,
4800 			     skb_peek(&sk->sk_receive_queue),
4801 			     NULL,
4802 			     tp->copied_seq, tp->rcv_nxt);
4803 	sk_mem_reclaim(sk);
4804 
4805 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4806 		return 0;
4807 
4808 	/* Collapsing did not help, destructive actions follow.
4809 	 * This must not ever occur. */
4810 
4811 	tcp_prune_ofo_queue(sk);
4812 
4813 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4814 		return 0;
4815 
4816 	/* If we are really being abused, tell the caller to silently
4817 	 * drop receive data on the floor.  It will get retransmitted
4818 	 * and hopefully then we'll have sufficient space.
4819 	 */
4820 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4821 
4822 	/* Massive buffer overcommit. */
4823 	tp->pred_flags = 0;
4824 	return -1;
4825 }
4826 
4827 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4828  * As additional protections, we do not touch cwnd in retransmission phases,
4829  * and if application hit its sndbuf limit recently.
4830  */
4831 void tcp_cwnd_application_limited(struct sock *sk)
4832 {
4833 	struct tcp_sock *tp = tcp_sk(sk);
4834 
4835 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4836 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4837 		/* Limited by application or receiver window. */
4838 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4839 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4840 		if (win_used < tp->snd_cwnd) {
4841 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4842 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4843 		}
4844 		tp->snd_cwnd_used = 0;
4845 	}
4846 	tp->snd_cwnd_stamp = tcp_time_stamp;
4847 }
4848 
4849 static int tcp_should_expand_sndbuf(struct sock *sk)
4850 {
4851 	struct tcp_sock *tp = tcp_sk(sk);
4852 
4853 	/* If the user specified a specific send buffer setting, do
4854 	 * not modify it.
4855 	 */
4856 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4857 		return 0;
4858 
4859 	/* If we are under global TCP memory pressure, do not expand.  */
4860 	if (tcp_memory_pressure)
4861 		return 0;
4862 
4863 	/* If we are under soft global TCP memory pressure, do not expand.  */
4864 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4865 		return 0;
4866 
4867 	/* If we filled the congestion window, do not expand.  */
4868 	if (tp->packets_out >= tp->snd_cwnd)
4869 		return 0;
4870 
4871 	return 1;
4872 }
4873 
4874 /* When incoming ACK allowed to free some skb from write_queue,
4875  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4876  * on the exit from tcp input handler.
4877  *
4878  * PROBLEM: sndbuf expansion does not work well with largesend.
4879  */
4880 static void tcp_new_space(struct sock *sk)
4881 {
4882 	struct tcp_sock *tp = tcp_sk(sk);
4883 
4884 	if (tcp_should_expand_sndbuf(sk)) {
4885 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4886 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4887 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4888 				     tp->reordering + 1);
4889 		sndmem *= 2 * demanded;
4890 		if (sndmem > sk->sk_sndbuf)
4891 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4892 		tp->snd_cwnd_stamp = tcp_time_stamp;
4893 	}
4894 
4895 	sk->sk_write_space(sk);
4896 }
4897 
4898 static void tcp_check_space(struct sock *sk)
4899 {
4900 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4901 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4902 		if (sk->sk_socket &&
4903 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4904 			tcp_new_space(sk);
4905 	}
4906 }
4907 
4908 static inline void tcp_data_snd_check(struct sock *sk)
4909 {
4910 	tcp_push_pending_frames(sk);
4911 	tcp_check_space(sk);
4912 }
4913 
4914 /*
4915  * Check if sending an ack is needed.
4916  */
4917 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4918 {
4919 	struct tcp_sock *tp = tcp_sk(sk);
4920 
4921 	    /* More than one full frame received... */
4922 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4923 	     /* ... and right edge of window advances far enough.
4924 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4925 	      */
4926 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4927 	    /* We ACK each frame or... */
4928 	    tcp_in_quickack_mode(sk) ||
4929 	    /* We have out of order data. */
4930 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4931 		/* Then ack it now */
4932 		tcp_send_ack(sk);
4933 	} else {
4934 		/* Else, send delayed ack. */
4935 		tcp_send_delayed_ack(sk);
4936 	}
4937 }
4938 
4939 static inline void tcp_ack_snd_check(struct sock *sk)
4940 {
4941 	if (!inet_csk_ack_scheduled(sk)) {
4942 		/* We sent a data segment already. */
4943 		return;
4944 	}
4945 	__tcp_ack_snd_check(sk, 1);
4946 }
4947 
4948 /*
4949  *	This routine is only called when we have urgent data
4950  *	signaled. Its the 'slow' part of tcp_urg. It could be
4951  *	moved inline now as tcp_urg is only called from one
4952  *	place. We handle URGent data wrong. We have to - as
4953  *	BSD still doesn't use the correction from RFC961.
4954  *	For 1003.1g we should support a new option TCP_STDURG to permit
4955  *	either form (or just set the sysctl tcp_stdurg).
4956  */
4957 
4958 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4959 {
4960 	struct tcp_sock *tp = tcp_sk(sk);
4961 	u32 ptr = ntohs(th->urg_ptr);
4962 
4963 	if (ptr && !sysctl_tcp_stdurg)
4964 		ptr--;
4965 	ptr += ntohl(th->seq);
4966 
4967 	/* Ignore urgent data that we've already seen and read. */
4968 	if (after(tp->copied_seq, ptr))
4969 		return;
4970 
4971 	/* Do not replay urg ptr.
4972 	 *
4973 	 * NOTE: interesting situation not covered by specs.
4974 	 * Misbehaving sender may send urg ptr, pointing to segment,
4975 	 * which we already have in ofo queue. We are not able to fetch
4976 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4977 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4978 	 * situations. But it is worth to think about possibility of some
4979 	 * DoSes using some hypothetical application level deadlock.
4980 	 */
4981 	if (before(ptr, tp->rcv_nxt))
4982 		return;
4983 
4984 	/* Do we already have a newer (or duplicate) urgent pointer? */
4985 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4986 		return;
4987 
4988 	/* Tell the world about our new urgent pointer. */
4989 	sk_send_sigurg(sk);
4990 
4991 	/* We may be adding urgent data when the last byte read was
4992 	 * urgent. To do this requires some care. We cannot just ignore
4993 	 * tp->copied_seq since we would read the last urgent byte again
4994 	 * as data, nor can we alter copied_seq until this data arrives
4995 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4996 	 *
4997 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4998 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4999 	 * and expect that both A and B disappear from stream. This is _wrong_.
5000 	 * Though this happens in BSD with high probability, this is occasional.
5001 	 * Any application relying on this is buggy. Note also, that fix "works"
5002 	 * only in this artificial test. Insert some normal data between A and B and we will
5003 	 * decline of BSD again. Verdict: it is better to remove to trap
5004 	 * buggy users.
5005 	 */
5006 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5007 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5008 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5009 		tp->copied_seq++;
5010 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5011 			__skb_unlink(skb, &sk->sk_receive_queue);
5012 			__kfree_skb(skb);
5013 		}
5014 	}
5015 
5016 	tp->urg_data = TCP_URG_NOTYET;
5017 	tp->urg_seq = ptr;
5018 
5019 	/* Disable header prediction. */
5020 	tp->pred_flags = 0;
5021 }
5022 
5023 /* This is the 'fast' part of urgent handling. */
5024 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5025 {
5026 	struct tcp_sock *tp = tcp_sk(sk);
5027 
5028 	/* Check if we get a new urgent pointer - normally not. */
5029 	if (th->urg)
5030 		tcp_check_urg(sk, th);
5031 
5032 	/* Do we wait for any urgent data? - normally not... */
5033 	if (tp->urg_data == TCP_URG_NOTYET) {
5034 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5035 			  th->syn;
5036 
5037 		/* Is the urgent pointer pointing into this packet? */
5038 		if (ptr < skb->len) {
5039 			u8 tmp;
5040 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5041 				BUG();
5042 			tp->urg_data = TCP_URG_VALID | tmp;
5043 			if (!sock_flag(sk, SOCK_DEAD))
5044 				sk->sk_data_ready(sk, 0);
5045 		}
5046 	}
5047 }
5048 
5049 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5050 {
5051 	struct tcp_sock *tp = tcp_sk(sk);
5052 	int chunk = skb->len - hlen;
5053 	int err;
5054 
5055 	local_bh_enable();
5056 	if (skb_csum_unnecessary(skb))
5057 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5058 	else
5059 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5060 						       tp->ucopy.iov);
5061 
5062 	if (!err) {
5063 		tp->ucopy.len -= chunk;
5064 		tp->copied_seq += chunk;
5065 		tcp_rcv_space_adjust(sk);
5066 	}
5067 
5068 	local_bh_disable();
5069 	return err;
5070 }
5071 
5072 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5073 					    struct sk_buff *skb)
5074 {
5075 	__sum16 result;
5076 
5077 	if (sock_owned_by_user(sk)) {
5078 		local_bh_enable();
5079 		result = __tcp_checksum_complete(skb);
5080 		local_bh_disable();
5081 	} else {
5082 		result = __tcp_checksum_complete(skb);
5083 	}
5084 	return result;
5085 }
5086 
5087 static inline int tcp_checksum_complete_user(struct sock *sk,
5088 					     struct sk_buff *skb)
5089 {
5090 	return !skb_csum_unnecessary(skb) &&
5091 	       __tcp_checksum_complete_user(sk, skb);
5092 }
5093 
5094 #ifdef CONFIG_NET_DMA
5095 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5096 				  int hlen)
5097 {
5098 	struct tcp_sock *tp = tcp_sk(sk);
5099 	int chunk = skb->len - hlen;
5100 	int dma_cookie;
5101 	int copied_early = 0;
5102 
5103 	if (tp->ucopy.wakeup)
5104 		return 0;
5105 
5106 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5107 		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5108 
5109 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5110 
5111 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5112 							 skb, hlen,
5113 							 tp->ucopy.iov, chunk,
5114 							 tp->ucopy.pinned_list);
5115 
5116 		if (dma_cookie < 0)
5117 			goto out;
5118 
5119 		tp->ucopy.dma_cookie = dma_cookie;
5120 		copied_early = 1;
5121 
5122 		tp->ucopy.len -= chunk;
5123 		tp->copied_seq += chunk;
5124 		tcp_rcv_space_adjust(sk);
5125 
5126 		if ((tp->ucopy.len == 0) ||
5127 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5128 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5129 			tp->ucopy.wakeup = 1;
5130 			sk->sk_data_ready(sk, 0);
5131 		}
5132 	} else if (chunk > 0) {
5133 		tp->ucopy.wakeup = 1;
5134 		sk->sk_data_ready(sk, 0);
5135 	}
5136 out:
5137 	return copied_early;
5138 }
5139 #endif /* CONFIG_NET_DMA */
5140 
5141 /* Does PAWS and seqno based validation of an incoming segment, flags will
5142  * play significant role here.
5143  */
5144 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5145 			      struct tcphdr *th, int syn_inerr)
5146 {
5147 	u8 *hash_location;
5148 	struct tcp_sock *tp = tcp_sk(sk);
5149 
5150 	/* RFC1323: H1. Apply PAWS check first. */
5151 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5152 	    tp->rx_opt.saw_tstamp &&
5153 	    tcp_paws_discard(sk, skb)) {
5154 		if (!th->rst) {
5155 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5156 			tcp_send_dupack(sk, skb);
5157 			goto discard;
5158 		}
5159 		/* Reset is accepted even if it did not pass PAWS. */
5160 	}
5161 
5162 	/* Step 1: check sequence number */
5163 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5164 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5165 		 * (RST) segments are validated by checking their SEQ-fields."
5166 		 * And page 69: "If an incoming segment is not acceptable,
5167 		 * an acknowledgment should be sent in reply (unless the RST
5168 		 * bit is set, if so drop the segment and return)".
5169 		 */
5170 		if (!th->rst)
5171 			tcp_send_dupack(sk, skb);
5172 		goto discard;
5173 	}
5174 
5175 	/* Step 2: check RST bit */
5176 	if (th->rst) {
5177 		tcp_reset(sk);
5178 		goto discard;
5179 	}
5180 
5181 	/* ts_recent update must be made after we are sure that the packet
5182 	 * is in window.
5183 	 */
5184 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5185 
5186 	/* step 3: check security and precedence [ignored] */
5187 
5188 	/* step 4: Check for a SYN in window. */
5189 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5190 		if (syn_inerr)
5191 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5192 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5193 		tcp_reset(sk);
5194 		return -1;
5195 	}
5196 
5197 	return 1;
5198 
5199 discard:
5200 	__kfree_skb(skb);
5201 	return 0;
5202 }
5203 
5204 /*
5205  *	TCP receive function for the ESTABLISHED state.
5206  *
5207  *	It is split into a fast path and a slow path. The fast path is
5208  * 	disabled when:
5209  *	- A zero window was announced from us - zero window probing
5210  *        is only handled properly in the slow path.
5211  *	- Out of order segments arrived.
5212  *	- Urgent data is expected.
5213  *	- There is no buffer space left
5214  *	- Unexpected TCP flags/window values/header lengths are received
5215  *	  (detected by checking the TCP header against pred_flags)
5216  *	- Data is sent in both directions. Fast path only supports pure senders
5217  *	  or pure receivers (this means either the sequence number or the ack
5218  *	  value must stay constant)
5219  *	- Unexpected TCP option.
5220  *
5221  *	When these conditions are not satisfied it drops into a standard
5222  *	receive procedure patterned after RFC793 to handle all cases.
5223  *	The first three cases are guaranteed by proper pred_flags setting,
5224  *	the rest is checked inline. Fast processing is turned on in
5225  *	tcp_data_queue when everything is OK.
5226  */
5227 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5228 			struct tcphdr *th, unsigned len)
5229 {
5230 	struct tcp_sock *tp = tcp_sk(sk);
5231 	int res;
5232 
5233 	/*
5234 	 *	Header prediction.
5235 	 *	The code loosely follows the one in the famous
5236 	 *	"30 instruction TCP receive" Van Jacobson mail.
5237 	 *
5238 	 *	Van's trick is to deposit buffers into socket queue
5239 	 *	on a device interrupt, to call tcp_recv function
5240 	 *	on the receive process context and checksum and copy
5241 	 *	the buffer to user space. smart...
5242 	 *
5243 	 *	Our current scheme is not silly either but we take the
5244 	 *	extra cost of the net_bh soft interrupt processing...
5245 	 *	We do checksum and copy also but from device to kernel.
5246 	 */
5247 
5248 	tp->rx_opt.saw_tstamp = 0;
5249 
5250 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5251 	 *	if header_prediction is to be made
5252 	 *	'S' will always be tp->tcp_header_len >> 2
5253 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5254 	 *  turn it off	(when there are holes in the receive
5255 	 *	 space for instance)
5256 	 *	PSH flag is ignored.
5257 	 */
5258 
5259 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5260 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5261 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5262 		int tcp_header_len = tp->tcp_header_len;
5263 
5264 		/* Timestamp header prediction: tcp_header_len
5265 		 * is automatically equal to th->doff*4 due to pred_flags
5266 		 * match.
5267 		 */
5268 
5269 		/* Check timestamp */
5270 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5271 			/* No? Slow path! */
5272 			if (!tcp_parse_aligned_timestamp(tp, th))
5273 				goto slow_path;
5274 
5275 			/* If PAWS failed, check it more carefully in slow path */
5276 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5277 				goto slow_path;
5278 
5279 			/* DO NOT update ts_recent here, if checksum fails
5280 			 * and timestamp was corrupted part, it will result
5281 			 * in a hung connection since we will drop all
5282 			 * future packets due to the PAWS test.
5283 			 */
5284 		}
5285 
5286 		if (len <= tcp_header_len) {
5287 			/* Bulk data transfer: sender */
5288 			if (len == tcp_header_len) {
5289 				/* Predicted packet is in window by definition.
5290 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5291 				 * Hence, check seq<=rcv_wup reduces to:
5292 				 */
5293 				if (tcp_header_len ==
5294 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5295 				    tp->rcv_nxt == tp->rcv_wup)
5296 					tcp_store_ts_recent(tp);
5297 
5298 				/* We know that such packets are checksummed
5299 				 * on entry.
5300 				 */
5301 				tcp_ack(sk, skb, 0);
5302 				__kfree_skb(skb);
5303 				tcp_data_snd_check(sk);
5304 				return 0;
5305 			} else { /* Header too small */
5306 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5307 				goto discard;
5308 			}
5309 		} else {
5310 			int eaten = 0;
5311 			int copied_early = 0;
5312 
5313 			if (tp->copied_seq == tp->rcv_nxt &&
5314 			    len - tcp_header_len <= tp->ucopy.len) {
5315 #ifdef CONFIG_NET_DMA
5316 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5317 					copied_early = 1;
5318 					eaten = 1;
5319 				}
5320 #endif
5321 				if (tp->ucopy.task == current &&
5322 				    sock_owned_by_user(sk) && !copied_early) {
5323 					__set_current_state(TASK_RUNNING);
5324 
5325 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5326 						eaten = 1;
5327 				}
5328 				if (eaten) {
5329 					/* Predicted packet is in window by definition.
5330 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5331 					 * Hence, check seq<=rcv_wup reduces to:
5332 					 */
5333 					if (tcp_header_len ==
5334 					    (sizeof(struct tcphdr) +
5335 					     TCPOLEN_TSTAMP_ALIGNED) &&
5336 					    tp->rcv_nxt == tp->rcv_wup)
5337 						tcp_store_ts_recent(tp);
5338 
5339 					tcp_rcv_rtt_measure_ts(sk, skb);
5340 
5341 					__skb_pull(skb, tcp_header_len);
5342 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5343 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5344 				}
5345 				if (copied_early)
5346 					tcp_cleanup_rbuf(sk, skb->len);
5347 			}
5348 			if (!eaten) {
5349 				if (tcp_checksum_complete_user(sk, skb))
5350 					goto csum_error;
5351 
5352 				/* Predicted packet is in window by definition.
5353 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5354 				 * Hence, check seq<=rcv_wup reduces to:
5355 				 */
5356 				if (tcp_header_len ==
5357 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5358 				    tp->rcv_nxt == tp->rcv_wup)
5359 					tcp_store_ts_recent(tp);
5360 
5361 				tcp_rcv_rtt_measure_ts(sk, skb);
5362 
5363 				if ((int)skb->truesize > sk->sk_forward_alloc)
5364 					goto step5;
5365 
5366 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5367 
5368 				/* Bulk data transfer: receiver */
5369 				__skb_pull(skb, tcp_header_len);
5370 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5371 				skb_set_owner_r(skb, sk);
5372 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5373 			}
5374 
5375 			tcp_event_data_recv(sk, skb);
5376 
5377 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5378 				/* Well, only one small jumplet in fast path... */
5379 				tcp_ack(sk, skb, FLAG_DATA);
5380 				tcp_data_snd_check(sk);
5381 				if (!inet_csk_ack_scheduled(sk))
5382 					goto no_ack;
5383 			}
5384 
5385 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5386 				__tcp_ack_snd_check(sk, 0);
5387 no_ack:
5388 #ifdef CONFIG_NET_DMA
5389 			if (copied_early)
5390 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5391 			else
5392 #endif
5393 			if (eaten)
5394 				__kfree_skb(skb);
5395 			else
5396 				sk->sk_data_ready(sk, 0);
5397 			return 0;
5398 		}
5399 	}
5400 
5401 slow_path:
5402 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5403 		goto csum_error;
5404 
5405 	/*
5406 	 *	Standard slow path.
5407 	 */
5408 
5409 	res = tcp_validate_incoming(sk, skb, th, 1);
5410 	if (res <= 0)
5411 		return -res;
5412 
5413 step5:
5414 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5415 		goto discard;
5416 
5417 	tcp_rcv_rtt_measure_ts(sk, skb);
5418 
5419 	/* Process urgent data. */
5420 	tcp_urg(sk, skb, th);
5421 
5422 	/* step 7: process the segment text */
5423 	tcp_data_queue(sk, skb);
5424 
5425 	tcp_data_snd_check(sk);
5426 	tcp_ack_snd_check(sk);
5427 	return 0;
5428 
5429 csum_error:
5430 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5431 
5432 discard:
5433 	__kfree_skb(skb);
5434 	return 0;
5435 }
5436 EXPORT_SYMBOL(tcp_rcv_established);
5437 
5438 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5439 					 struct tcphdr *th, unsigned len)
5440 {
5441 	u8 *hash_location;
5442 	struct inet_connection_sock *icsk = inet_csk(sk);
5443 	struct tcp_sock *tp = tcp_sk(sk);
5444 	struct tcp_cookie_values *cvp = tp->cookie_values;
5445 	int saved_clamp = tp->rx_opt.mss_clamp;
5446 
5447 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5448 
5449 	if (th->ack) {
5450 		/* rfc793:
5451 		 * "If the state is SYN-SENT then
5452 		 *    first check the ACK bit
5453 		 *      If the ACK bit is set
5454 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5455 		 *        a reset (unless the RST bit is set, if so drop
5456 		 *        the segment and return)"
5457 		 *
5458 		 *  We do not send data with SYN, so that RFC-correct
5459 		 *  test reduces to:
5460 		 */
5461 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5462 			goto reset_and_undo;
5463 
5464 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5465 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5466 			     tcp_time_stamp)) {
5467 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5468 			goto reset_and_undo;
5469 		}
5470 
5471 		/* Now ACK is acceptable.
5472 		 *
5473 		 * "If the RST bit is set
5474 		 *    If the ACK was acceptable then signal the user "error:
5475 		 *    connection reset", drop the segment, enter CLOSED state,
5476 		 *    delete TCB, and return."
5477 		 */
5478 
5479 		if (th->rst) {
5480 			tcp_reset(sk);
5481 			goto discard;
5482 		}
5483 
5484 		/* rfc793:
5485 		 *   "fifth, if neither of the SYN or RST bits is set then
5486 		 *    drop the segment and return."
5487 		 *
5488 		 *    See note below!
5489 		 *                                        --ANK(990513)
5490 		 */
5491 		if (!th->syn)
5492 			goto discard_and_undo;
5493 
5494 		/* rfc793:
5495 		 *   "If the SYN bit is on ...
5496 		 *    are acceptable then ...
5497 		 *    (our SYN has been ACKed), change the connection
5498 		 *    state to ESTABLISHED..."
5499 		 */
5500 
5501 		TCP_ECN_rcv_synack(tp, th);
5502 
5503 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5504 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5505 
5506 		/* Ok.. it's good. Set up sequence numbers and
5507 		 * move to established.
5508 		 */
5509 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5510 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5511 
5512 		/* RFC1323: The window in SYN & SYN/ACK segments is
5513 		 * never scaled.
5514 		 */
5515 		tp->snd_wnd = ntohs(th->window);
5516 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5517 
5518 		if (!tp->rx_opt.wscale_ok) {
5519 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5520 			tp->window_clamp = min(tp->window_clamp, 65535U);
5521 		}
5522 
5523 		if (tp->rx_opt.saw_tstamp) {
5524 			tp->rx_opt.tstamp_ok	   = 1;
5525 			tp->tcp_header_len =
5526 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5527 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5528 			tcp_store_ts_recent(tp);
5529 		} else {
5530 			tp->tcp_header_len = sizeof(struct tcphdr);
5531 		}
5532 
5533 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5534 			tcp_enable_fack(tp);
5535 
5536 		tcp_mtup_init(sk);
5537 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5538 		tcp_initialize_rcv_mss(sk);
5539 
5540 		/* Remember, tcp_poll() does not lock socket!
5541 		 * Change state from SYN-SENT only after copied_seq
5542 		 * is initialized. */
5543 		tp->copied_seq = tp->rcv_nxt;
5544 
5545 		if (cvp != NULL &&
5546 		    cvp->cookie_pair_size > 0 &&
5547 		    tp->rx_opt.cookie_plus > 0) {
5548 			int cookie_size = tp->rx_opt.cookie_plus
5549 					- TCPOLEN_COOKIE_BASE;
5550 			int cookie_pair_size = cookie_size
5551 					     + cvp->cookie_desired;
5552 
5553 			/* A cookie extension option was sent and returned.
5554 			 * Note that each incoming SYNACK replaces the
5555 			 * Responder cookie.  The initial exchange is most
5556 			 * fragile, as protection against spoofing relies
5557 			 * entirely upon the sequence and timestamp (above).
5558 			 * This replacement strategy allows the correct pair to
5559 			 * pass through, while any others will be filtered via
5560 			 * Responder verification later.
5561 			 */
5562 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5563 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5564 				       hash_location, cookie_size);
5565 				cvp->cookie_pair_size = cookie_pair_size;
5566 			}
5567 		}
5568 
5569 		smp_mb();
5570 		tcp_set_state(sk, TCP_ESTABLISHED);
5571 
5572 		security_inet_conn_established(sk, skb);
5573 
5574 		/* Make sure socket is routed, for correct metrics.  */
5575 		icsk->icsk_af_ops->rebuild_header(sk);
5576 
5577 		tcp_init_metrics(sk);
5578 
5579 		tcp_init_congestion_control(sk);
5580 
5581 		/* Prevent spurious tcp_cwnd_restart() on first data
5582 		 * packet.
5583 		 */
5584 		tp->lsndtime = tcp_time_stamp;
5585 
5586 		tcp_init_buffer_space(sk);
5587 
5588 		if (sock_flag(sk, SOCK_KEEPOPEN))
5589 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5590 
5591 		if (!tp->rx_opt.snd_wscale)
5592 			__tcp_fast_path_on(tp, tp->snd_wnd);
5593 		else
5594 			tp->pred_flags = 0;
5595 
5596 		if (!sock_flag(sk, SOCK_DEAD)) {
5597 			sk->sk_state_change(sk);
5598 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5599 		}
5600 
5601 		if (sk->sk_write_pending ||
5602 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5603 		    icsk->icsk_ack.pingpong) {
5604 			/* Save one ACK. Data will be ready after
5605 			 * several ticks, if write_pending is set.
5606 			 *
5607 			 * It may be deleted, but with this feature tcpdumps
5608 			 * look so _wonderfully_ clever, that I was not able
5609 			 * to stand against the temptation 8)     --ANK
5610 			 */
5611 			inet_csk_schedule_ack(sk);
5612 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5613 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5614 			tcp_incr_quickack(sk);
5615 			tcp_enter_quickack_mode(sk);
5616 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5617 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5618 
5619 discard:
5620 			__kfree_skb(skb);
5621 			return 0;
5622 		} else {
5623 			tcp_send_ack(sk);
5624 		}
5625 		return -1;
5626 	}
5627 
5628 	/* No ACK in the segment */
5629 
5630 	if (th->rst) {
5631 		/* rfc793:
5632 		 * "If the RST bit is set
5633 		 *
5634 		 *      Otherwise (no ACK) drop the segment and return."
5635 		 */
5636 
5637 		goto discard_and_undo;
5638 	}
5639 
5640 	/* PAWS check. */
5641 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5642 	    tcp_paws_reject(&tp->rx_opt, 0))
5643 		goto discard_and_undo;
5644 
5645 	if (th->syn) {
5646 		/* We see SYN without ACK. It is attempt of
5647 		 * simultaneous connect with crossed SYNs.
5648 		 * Particularly, it can be connect to self.
5649 		 */
5650 		tcp_set_state(sk, TCP_SYN_RECV);
5651 
5652 		if (tp->rx_opt.saw_tstamp) {
5653 			tp->rx_opt.tstamp_ok = 1;
5654 			tcp_store_ts_recent(tp);
5655 			tp->tcp_header_len =
5656 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5657 		} else {
5658 			tp->tcp_header_len = sizeof(struct tcphdr);
5659 		}
5660 
5661 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5662 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5663 
5664 		/* RFC1323: The window in SYN & SYN/ACK segments is
5665 		 * never scaled.
5666 		 */
5667 		tp->snd_wnd    = ntohs(th->window);
5668 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5669 		tp->max_window = tp->snd_wnd;
5670 
5671 		TCP_ECN_rcv_syn(tp, th);
5672 
5673 		tcp_mtup_init(sk);
5674 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5675 		tcp_initialize_rcv_mss(sk);
5676 
5677 		tcp_send_synack(sk);
5678 #if 0
5679 		/* Note, we could accept data and URG from this segment.
5680 		 * There are no obstacles to make this.
5681 		 *
5682 		 * However, if we ignore data in ACKless segments sometimes,
5683 		 * we have no reasons to accept it sometimes.
5684 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5685 		 * is not flawless. So, discard packet for sanity.
5686 		 * Uncomment this return to process the data.
5687 		 */
5688 		return -1;
5689 #else
5690 		goto discard;
5691 #endif
5692 	}
5693 	/* "fifth, if neither of the SYN or RST bits is set then
5694 	 * drop the segment and return."
5695 	 */
5696 
5697 discard_and_undo:
5698 	tcp_clear_options(&tp->rx_opt);
5699 	tp->rx_opt.mss_clamp = saved_clamp;
5700 	goto discard;
5701 
5702 reset_and_undo:
5703 	tcp_clear_options(&tp->rx_opt);
5704 	tp->rx_opt.mss_clamp = saved_clamp;
5705 	return 1;
5706 }
5707 
5708 /*
5709  *	This function implements the receiving procedure of RFC 793 for
5710  *	all states except ESTABLISHED and TIME_WAIT.
5711  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5712  *	address independent.
5713  */
5714 
5715 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5716 			  struct tcphdr *th, unsigned len)
5717 {
5718 	struct tcp_sock *tp = tcp_sk(sk);
5719 	struct inet_connection_sock *icsk = inet_csk(sk);
5720 	int queued = 0;
5721 	int res;
5722 
5723 	tp->rx_opt.saw_tstamp = 0;
5724 
5725 	switch (sk->sk_state) {
5726 	case TCP_CLOSE:
5727 		goto discard;
5728 
5729 	case TCP_LISTEN:
5730 		if (th->ack)
5731 			return 1;
5732 
5733 		if (th->rst)
5734 			goto discard;
5735 
5736 		if (th->syn) {
5737 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5738 				return 1;
5739 
5740 			/* Now we have several options: In theory there is
5741 			 * nothing else in the frame. KA9Q has an option to
5742 			 * send data with the syn, BSD accepts data with the
5743 			 * syn up to the [to be] advertised window and
5744 			 * Solaris 2.1 gives you a protocol error. For now
5745 			 * we just ignore it, that fits the spec precisely
5746 			 * and avoids incompatibilities. It would be nice in
5747 			 * future to drop through and process the data.
5748 			 *
5749 			 * Now that TTCP is starting to be used we ought to
5750 			 * queue this data.
5751 			 * But, this leaves one open to an easy denial of
5752 			 * service attack, and SYN cookies can't defend
5753 			 * against this problem. So, we drop the data
5754 			 * in the interest of security over speed unless
5755 			 * it's still in use.
5756 			 */
5757 			kfree_skb(skb);
5758 			return 0;
5759 		}
5760 		goto discard;
5761 
5762 	case TCP_SYN_SENT:
5763 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5764 		if (queued >= 0)
5765 			return queued;
5766 
5767 		/* Do step6 onward by hand. */
5768 		tcp_urg(sk, skb, th);
5769 		__kfree_skb(skb);
5770 		tcp_data_snd_check(sk);
5771 		return 0;
5772 	}
5773 
5774 	res = tcp_validate_incoming(sk, skb, th, 0);
5775 	if (res <= 0)
5776 		return -res;
5777 
5778 	/* step 5: check the ACK field */
5779 	if (th->ack) {
5780 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5781 
5782 		switch (sk->sk_state) {
5783 		case TCP_SYN_RECV:
5784 			if (acceptable) {
5785 				tp->copied_seq = tp->rcv_nxt;
5786 				smp_mb();
5787 				tcp_set_state(sk, TCP_ESTABLISHED);
5788 				sk->sk_state_change(sk);
5789 
5790 				/* Note, that this wakeup is only for marginal
5791 				 * crossed SYN case. Passively open sockets
5792 				 * are not waked up, because sk->sk_sleep ==
5793 				 * NULL and sk->sk_socket == NULL.
5794 				 */
5795 				if (sk->sk_socket)
5796 					sk_wake_async(sk,
5797 						      SOCK_WAKE_IO, POLL_OUT);
5798 
5799 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5800 				tp->snd_wnd = ntohs(th->window) <<
5801 					      tp->rx_opt.snd_wscale;
5802 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5803 
5804 				/* tcp_ack considers this ACK as duplicate
5805 				 * and does not calculate rtt.
5806 				 * Force it here.
5807 				 */
5808 				tcp_ack_update_rtt(sk, 0, 0);
5809 
5810 				if (tp->rx_opt.tstamp_ok)
5811 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5812 
5813 				/* Make sure socket is routed, for
5814 				 * correct metrics.
5815 				 */
5816 				icsk->icsk_af_ops->rebuild_header(sk);
5817 
5818 				tcp_init_metrics(sk);
5819 
5820 				tcp_init_congestion_control(sk);
5821 
5822 				/* Prevent spurious tcp_cwnd_restart() on
5823 				 * first data packet.
5824 				 */
5825 				tp->lsndtime = tcp_time_stamp;
5826 
5827 				tcp_mtup_init(sk);
5828 				tcp_initialize_rcv_mss(sk);
5829 				tcp_init_buffer_space(sk);
5830 				tcp_fast_path_on(tp);
5831 			} else {
5832 				return 1;
5833 			}
5834 			break;
5835 
5836 		case TCP_FIN_WAIT1:
5837 			if (tp->snd_una == tp->write_seq) {
5838 				tcp_set_state(sk, TCP_FIN_WAIT2);
5839 				sk->sk_shutdown |= SEND_SHUTDOWN;
5840 				dst_confirm(__sk_dst_get(sk));
5841 
5842 				if (!sock_flag(sk, SOCK_DEAD))
5843 					/* Wake up lingering close() */
5844 					sk->sk_state_change(sk);
5845 				else {
5846 					int tmo;
5847 
5848 					if (tp->linger2 < 0 ||
5849 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5850 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5851 						tcp_done(sk);
5852 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5853 						return 1;
5854 					}
5855 
5856 					tmo = tcp_fin_time(sk);
5857 					if (tmo > TCP_TIMEWAIT_LEN) {
5858 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5859 					} else if (th->fin || sock_owned_by_user(sk)) {
5860 						/* Bad case. We could lose such FIN otherwise.
5861 						 * It is not a big problem, but it looks confusing
5862 						 * and not so rare event. We still can lose it now,
5863 						 * if it spins in bh_lock_sock(), but it is really
5864 						 * marginal case.
5865 						 */
5866 						inet_csk_reset_keepalive_timer(sk, tmo);
5867 					} else {
5868 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5869 						goto discard;
5870 					}
5871 				}
5872 			}
5873 			break;
5874 
5875 		case TCP_CLOSING:
5876 			if (tp->snd_una == tp->write_seq) {
5877 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5878 				goto discard;
5879 			}
5880 			break;
5881 
5882 		case TCP_LAST_ACK:
5883 			if (tp->snd_una == tp->write_seq) {
5884 				tcp_update_metrics(sk);
5885 				tcp_done(sk);
5886 				goto discard;
5887 			}
5888 			break;
5889 		}
5890 	} else
5891 		goto discard;
5892 
5893 	/* step 6: check the URG bit */
5894 	tcp_urg(sk, skb, th);
5895 
5896 	/* step 7: process the segment text */
5897 	switch (sk->sk_state) {
5898 	case TCP_CLOSE_WAIT:
5899 	case TCP_CLOSING:
5900 	case TCP_LAST_ACK:
5901 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5902 			break;
5903 	case TCP_FIN_WAIT1:
5904 	case TCP_FIN_WAIT2:
5905 		/* RFC 793 says to queue data in these states,
5906 		 * RFC 1122 says we MUST send a reset.
5907 		 * BSD 4.4 also does reset.
5908 		 */
5909 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5910 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5911 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5912 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5913 				tcp_reset(sk);
5914 				return 1;
5915 			}
5916 		}
5917 		/* Fall through */
5918 	case TCP_ESTABLISHED:
5919 		tcp_data_queue(sk, skb);
5920 		queued = 1;
5921 		break;
5922 	}
5923 
5924 	/* tcp_data could move socket to TIME-WAIT */
5925 	if (sk->sk_state != TCP_CLOSE) {
5926 		tcp_data_snd_check(sk);
5927 		tcp_ack_snd_check(sk);
5928 	}
5929 
5930 	if (!queued) {
5931 discard:
5932 		__kfree_skb(skb);
5933 	}
5934 	return 0;
5935 }
5936 EXPORT_SYMBOL(tcp_rcv_state_process);
5937