1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #include <linux/mm.h> 65 #include <linux/slab.h> 66 #include <linux/module.h> 67 #include <linux/sysctl.h> 68 #include <linux/kernel.h> 69 #include <net/dst.h> 70 #include <net/tcp.h> 71 #include <net/inet_common.h> 72 #include <linux/ipsec.h> 73 #include <asm/unaligned.h> 74 #include <net/netdma.h> 75 76 int sysctl_tcp_timestamps __read_mostly = 1; 77 int sysctl_tcp_window_scaling __read_mostly = 1; 78 int sysctl_tcp_sack __read_mostly = 1; 79 int sysctl_tcp_fack __read_mostly = 1; 80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 81 EXPORT_SYMBOL(sysctl_tcp_reordering); 82 int sysctl_tcp_ecn __read_mostly = 2; 83 EXPORT_SYMBOL(sysctl_tcp_ecn); 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 2; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 int sysctl_tcp_stdurg __read_mostly; 90 int sysctl_tcp_rfc1337 __read_mostly; 91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 92 int sysctl_tcp_frto __read_mostly = 2; 93 int sysctl_tcp_frto_response __read_mostly; 94 int sysctl_tcp_nometrics_save __read_mostly; 95 96 int sysctl_tcp_thin_dupack __read_mostly; 97 98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 99 int sysctl_tcp_abc __read_mostly; 100 101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 107 #define FLAG_ECE 0x40 /* ECE in this ACK */ 108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 115 116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 121 122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 124 125 /* Adapt the MSS value used to make delayed ack decision to the 126 * real world. 127 */ 128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 129 { 130 struct inet_connection_sock *icsk = inet_csk(sk); 131 const unsigned int lss = icsk->icsk_ack.last_seg_size; 132 unsigned int len; 133 134 icsk->icsk_ack.last_seg_size = 0; 135 136 /* skb->len may jitter because of SACKs, even if peer 137 * sends good full-sized frames. 138 */ 139 len = skb_shinfo(skb)->gso_size ? : skb->len; 140 if (len >= icsk->icsk_ack.rcv_mss) { 141 icsk->icsk_ack.rcv_mss = len; 142 } else { 143 /* Otherwise, we make more careful check taking into account, 144 * that SACKs block is variable. 145 * 146 * "len" is invariant segment length, including TCP header. 147 */ 148 len += skb->data - skb_transport_header(skb); 149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 150 /* If PSH is not set, packet should be 151 * full sized, provided peer TCP is not badly broken. 152 * This observation (if it is correct 8)) allows 153 * to handle super-low mtu links fairly. 154 */ 155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 157 /* Subtract also invariant (if peer is RFC compliant), 158 * tcp header plus fixed timestamp option length. 159 * Resulting "len" is MSS free of SACK jitter. 160 */ 161 len -= tcp_sk(sk)->tcp_header_len; 162 icsk->icsk_ack.last_seg_size = len; 163 if (len == lss) { 164 icsk->icsk_ack.rcv_mss = len; 165 return; 166 } 167 } 168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 171 } 172 } 173 174 static void tcp_incr_quickack(struct sock *sk) 175 { 176 struct inet_connection_sock *icsk = inet_csk(sk); 177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 178 179 if (quickacks == 0) 180 quickacks = 2; 181 if (quickacks > icsk->icsk_ack.quick) 182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 183 } 184 185 static void tcp_enter_quickack_mode(struct sock *sk) 186 { 187 struct inet_connection_sock *icsk = inet_csk(sk); 188 tcp_incr_quickack(sk); 189 icsk->icsk_ack.pingpong = 0; 190 icsk->icsk_ack.ato = TCP_ATO_MIN; 191 } 192 193 /* Send ACKs quickly, if "quick" count is not exhausted 194 * and the session is not interactive. 195 */ 196 197 static inline int tcp_in_quickack_mode(const struct sock *sk) 198 { 199 const struct inet_connection_sock *icsk = inet_csk(sk); 200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 201 } 202 203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 204 { 205 if (tp->ecn_flags & TCP_ECN_OK) 206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 207 } 208 209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb) 210 { 211 if (tcp_hdr(skb)->cwr) 212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 213 } 214 215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 216 { 217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 218 } 219 220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb) 221 { 222 if (tp->ecn_flags & TCP_ECN_OK) { 223 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags)) 224 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 225 /* Funny extension: if ECT is not set on a segment, 226 * it is surely retransmit. It is not in ECN RFC, 227 * but Linux follows this rule. */ 228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags))) 229 tcp_enter_quickack_mode((struct sock *)tp); 230 } 231 } 232 233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th) 234 { 235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 236 tp->ecn_flags &= ~TCP_ECN_OK; 237 } 238 239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th) 240 { 241 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 242 tp->ecn_flags &= ~TCP_ECN_OK; 243 } 244 245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th) 246 { 247 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 248 return 1; 249 return 0; 250 } 251 252 /* Buffer size and advertised window tuning. 253 * 254 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 255 */ 256 257 static void tcp_fixup_sndbuf(struct sock *sk) 258 { 259 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 260 sizeof(struct sk_buff); 261 262 if (sk->sk_sndbuf < 3 * sndmem) 263 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 264 } 265 266 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 267 * 268 * All tcp_full_space() is split to two parts: "network" buffer, allocated 269 * forward and advertised in receiver window (tp->rcv_wnd) and 270 * "application buffer", required to isolate scheduling/application 271 * latencies from network. 272 * window_clamp is maximal advertised window. It can be less than 273 * tcp_full_space(), in this case tcp_full_space() - window_clamp 274 * is reserved for "application" buffer. The less window_clamp is 275 * the smoother our behaviour from viewpoint of network, but the lower 276 * throughput and the higher sensitivity of the connection to losses. 8) 277 * 278 * rcv_ssthresh is more strict window_clamp used at "slow start" 279 * phase to predict further behaviour of this connection. 280 * It is used for two goals: 281 * - to enforce header prediction at sender, even when application 282 * requires some significant "application buffer". It is check #1. 283 * - to prevent pruning of receive queue because of misprediction 284 * of receiver window. Check #2. 285 * 286 * The scheme does not work when sender sends good segments opening 287 * window and then starts to feed us spaghetti. But it should work 288 * in common situations. Otherwise, we have to rely on queue collapsing. 289 */ 290 291 /* Slow part of check#2. */ 292 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 293 { 294 struct tcp_sock *tp = tcp_sk(sk); 295 /* Optimize this! */ 296 int truesize = tcp_win_from_space(skb->truesize) >> 1; 297 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 298 299 while (tp->rcv_ssthresh <= window) { 300 if (truesize <= skb->len) 301 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 302 303 truesize >>= 1; 304 window >>= 1; 305 } 306 return 0; 307 } 308 309 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb) 310 { 311 struct tcp_sock *tp = tcp_sk(sk); 312 313 /* Check #1 */ 314 if (tp->rcv_ssthresh < tp->window_clamp && 315 (int)tp->rcv_ssthresh < tcp_space(sk) && 316 !tcp_memory_pressure) { 317 int incr; 318 319 /* Check #2. Increase window, if skb with such overhead 320 * will fit to rcvbuf in future. 321 */ 322 if (tcp_win_from_space(skb->truesize) <= skb->len) 323 incr = 2 * tp->advmss; 324 else 325 incr = __tcp_grow_window(sk, skb); 326 327 if (incr) { 328 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 329 tp->window_clamp); 330 inet_csk(sk)->icsk_ack.quick |= 1; 331 } 332 } 333 } 334 335 /* 3. Tuning rcvbuf, when connection enters established state. */ 336 337 static void tcp_fixup_rcvbuf(struct sock *sk) 338 { 339 struct tcp_sock *tp = tcp_sk(sk); 340 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 341 342 /* Try to select rcvbuf so that 4 mss-sized segments 343 * will fit to window and corresponding skbs will fit to our rcvbuf. 344 * (was 3; 4 is minimum to allow fast retransmit to work.) 345 */ 346 while (tcp_win_from_space(rcvmem) < tp->advmss) 347 rcvmem += 128; 348 if (sk->sk_rcvbuf < 4 * rcvmem) 349 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 350 } 351 352 /* 4. Try to fixup all. It is made immediately after connection enters 353 * established state. 354 */ 355 static void tcp_init_buffer_space(struct sock *sk) 356 { 357 struct tcp_sock *tp = tcp_sk(sk); 358 int maxwin; 359 360 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 361 tcp_fixup_rcvbuf(sk); 362 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 363 tcp_fixup_sndbuf(sk); 364 365 tp->rcvq_space.space = tp->rcv_wnd; 366 367 maxwin = tcp_full_space(sk); 368 369 if (tp->window_clamp >= maxwin) { 370 tp->window_clamp = maxwin; 371 372 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 373 tp->window_clamp = max(maxwin - 374 (maxwin >> sysctl_tcp_app_win), 375 4 * tp->advmss); 376 } 377 378 /* Force reservation of one segment. */ 379 if (sysctl_tcp_app_win && 380 tp->window_clamp > 2 * tp->advmss && 381 tp->window_clamp + tp->advmss > maxwin) 382 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 383 384 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 385 tp->snd_cwnd_stamp = tcp_time_stamp; 386 } 387 388 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 389 static void tcp_clamp_window(struct sock *sk) 390 { 391 struct tcp_sock *tp = tcp_sk(sk); 392 struct inet_connection_sock *icsk = inet_csk(sk); 393 394 icsk->icsk_ack.quick = 0; 395 396 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 397 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 398 !tcp_memory_pressure && 399 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 400 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 401 sysctl_tcp_rmem[2]); 402 } 403 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 404 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 405 } 406 407 /* Initialize RCV_MSS value. 408 * RCV_MSS is an our guess about MSS used by the peer. 409 * We haven't any direct information about the MSS. 410 * It's better to underestimate the RCV_MSS rather than overestimate. 411 * Overestimations make us ACKing less frequently than needed. 412 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 413 */ 414 void tcp_initialize_rcv_mss(struct sock *sk) 415 { 416 struct tcp_sock *tp = tcp_sk(sk); 417 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 418 419 hint = min(hint, tp->rcv_wnd / 2); 420 hint = min(hint, TCP_MSS_DEFAULT); 421 hint = max(hint, TCP_MIN_MSS); 422 423 inet_csk(sk)->icsk_ack.rcv_mss = hint; 424 } 425 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 426 427 /* Receiver "autotuning" code. 428 * 429 * The algorithm for RTT estimation w/o timestamps is based on 430 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 431 * <http://public.lanl.gov/radiant/pubs.html#DRS> 432 * 433 * More detail on this code can be found at 434 * <http://staff.psc.edu/jheffner/>, 435 * though this reference is out of date. A new paper 436 * is pending. 437 */ 438 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 439 { 440 u32 new_sample = tp->rcv_rtt_est.rtt; 441 long m = sample; 442 443 if (m == 0) 444 m = 1; 445 446 if (new_sample != 0) { 447 /* If we sample in larger samples in the non-timestamp 448 * case, we could grossly overestimate the RTT especially 449 * with chatty applications or bulk transfer apps which 450 * are stalled on filesystem I/O. 451 * 452 * Also, since we are only going for a minimum in the 453 * non-timestamp case, we do not smooth things out 454 * else with timestamps disabled convergence takes too 455 * long. 456 */ 457 if (!win_dep) { 458 m -= (new_sample >> 3); 459 new_sample += m; 460 } else if (m < new_sample) 461 new_sample = m << 3; 462 } else { 463 /* No previous measure. */ 464 new_sample = m << 3; 465 } 466 467 if (tp->rcv_rtt_est.rtt != new_sample) 468 tp->rcv_rtt_est.rtt = new_sample; 469 } 470 471 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 472 { 473 if (tp->rcv_rtt_est.time == 0) 474 goto new_measure; 475 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 476 return; 477 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1); 478 479 new_measure: 480 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 481 tp->rcv_rtt_est.time = tcp_time_stamp; 482 } 483 484 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 485 const struct sk_buff *skb) 486 { 487 struct tcp_sock *tp = tcp_sk(sk); 488 if (tp->rx_opt.rcv_tsecr && 489 (TCP_SKB_CB(skb)->end_seq - 490 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 491 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 492 } 493 494 /* 495 * This function should be called every time data is copied to user space. 496 * It calculates the appropriate TCP receive buffer space. 497 */ 498 void tcp_rcv_space_adjust(struct sock *sk) 499 { 500 struct tcp_sock *tp = tcp_sk(sk); 501 int time; 502 int space; 503 504 if (tp->rcvq_space.time == 0) 505 goto new_measure; 506 507 time = tcp_time_stamp - tp->rcvq_space.time; 508 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 509 return; 510 511 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 512 513 space = max(tp->rcvq_space.space, space); 514 515 if (tp->rcvq_space.space != space) { 516 int rcvmem; 517 518 tp->rcvq_space.space = space; 519 520 if (sysctl_tcp_moderate_rcvbuf && 521 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 522 int new_clamp = space; 523 524 /* Receive space grows, normalize in order to 525 * take into account packet headers and sk_buff 526 * structure overhead. 527 */ 528 space /= tp->advmss; 529 if (!space) 530 space = 1; 531 rcvmem = (tp->advmss + MAX_TCP_HEADER + 532 16 + sizeof(struct sk_buff)); 533 while (tcp_win_from_space(rcvmem) < tp->advmss) 534 rcvmem += 128; 535 space *= rcvmem; 536 space = min(space, sysctl_tcp_rmem[2]); 537 if (space > sk->sk_rcvbuf) { 538 sk->sk_rcvbuf = space; 539 540 /* Make the window clamp follow along. */ 541 tp->window_clamp = new_clamp; 542 } 543 } 544 } 545 546 new_measure: 547 tp->rcvq_space.seq = tp->copied_seq; 548 tp->rcvq_space.time = tcp_time_stamp; 549 } 550 551 /* There is something which you must keep in mind when you analyze the 552 * behavior of the tp->ato delayed ack timeout interval. When a 553 * connection starts up, we want to ack as quickly as possible. The 554 * problem is that "good" TCP's do slow start at the beginning of data 555 * transmission. The means that until we send the first few ACK's the 556 * sender will sit on his end and only queue most of his data, because 557 * he can only send snd_cwnd unacked packets at any given time. For 558 * each ACK we send, he increments snd_cwnd and transmits more of his 559 * queue. -DaveM 560 */ 561 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 562 { 563 struct tcp_sock *tp = tcp_sk(sk); 564 struct inet_connection_sock *icsk = inet_csk(sk); 565 u32 now; 566 567 inet_csk_schedule_ack(sk); 568 569 tcp_measure_rcv_mss(sk, skb); 570 571 tcp_rcv_rtt_measure(tp); 572 573 now = tcp_time_stamp; 574 575 if (!icsk->icsk_ack.ato) { 576 /* The _first_ data packet received, initialize 577 * delayed ACK engine. 578 */ 579 tcp_incr_quickack(sk); 580 icsk->icsk_ack.ato = TCP_ATO_MIN; 581 } else { 582 int m = now - icsk->icsk_ack.lrcvtime; 583 584 if (m <= TCP_ATO_MIN / 2) { 585 /* The fastest case is the first. */ 586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 587 } else if (m < icsk->icsk_ack.ato) { 588 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 589 if (icsk->icsk_ack.ato > icsk->icsk_rto) 590 icsk->icsk_ack.ato = icsk->icsk_rto; 591 } else if (m > icsk->icsk_rto) { 592 /* Too long gap. Apparently sender failed to 593 * restart window, so that we send ACKs quickly. 594 */ 595 tcp_incr_quickack(sk); 596 sk_mem_reclaim(sk); 597 } 598 } 599 icsk->icsk_ack.lrcvtime = now; 600 601 TCP_ECN_check_ce(tp, skb); 602 603 if (skb->len >= 128) 604 tcp_grow_window(sk, skb); 605 } 606 607 /* Called to compute a smoothed rtt estimate. The data fed to this 608 * routine either comes from timestamps, or from segments that were 609 * known _not_ to have been retransmitted [see Karn/Partridge 610 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 611 * piece by Van Jacobson. 612 * NOTE: the next three routines used to be one big routine. 613 * To save cycles in the RFC 1323 implementation it was better to break 614 * it up into three procedures. -- erics 615 */ 616 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 617 { 618 struct tcp_sock *tp = tcp_sk(sk); 619 long m = mrtt; /* RTT */ 620 621 /* The following amusing code comes from Jacobson's 622 * article in SIGCOMM '88. Note that rtt and mdev 623 * are scaled versions of rtt and mean deviation. 624 * This is designed to be as fast as possible 625 * m stands for "measurement". 626 * 627 * On a 1990 paper the rto value is changed to: 628 * RTO = rtt + 4 * mdev 629 * 630 * Funny. This algorithm seems to be very broken. 631 * These formulae increase RTO, when it should be decreased, increase 632 * too slowly, when it should be increased quickly, decrease too quickly 633 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 634 * does not matter how to _calculate_ it. Seems, it was trap 635 * that VJ failed to avoid. 8) 636 */ 637 if (m == 0) 638 m = 1; 639 if (tp->srtt != 0) { 640 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 641 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 642 if (m < 0) { 643 m = -m; /* m is now abs(error) */ 644 m -= (tp->mdev >> 2); /* similar update on mdev */ 645 /* This is similar to one of Eifel findings. 646 * Eifel blocks mdev updates when rtt decreases. 647 * This solution is a bit different: we use finer gain 648 * for mdev in this case (alpha*beta). 649 * Like Eifel it also prevents growth of rto, 650 * but also it limits too fast rto decreases, 651 * happening in pure Eifel. 652 */ 653 if (m > 0) 654 m >>= 3; 655 } else { 656 m -= (tp->mdev >> 2); /* similar update on mdev */ 657 } 658 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 659 if (tp->mdev > tp->mdev_max) { 660 tp->mdev_max = tp->mdev; 661 if (tp->mdev_max > tp->rttvar) 662 tp->rttvar = tp->mdev_max; 663 } 664 if (after(tp->snd_una, tp->rtt_seq)) { 665 if (tp->mdev_max < tp->rttvar) 666 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 667 tp->rtt_seq = tp->snd_nxt; 668 tp->mdev_max = tcp_rto_min(sk); 669 } 670 } else { 671 /* no previous measure. */ 672 tp->srtt = m << 3; /* take the measured time to be rtt */ 673 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 674 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 675 tp->rtt_seq = tp->snd_nxt; 676 } 677 } 678 679 /* Calculate rto without backoff. This is the second half of Van Jacobson's 680 * routine referred to above. 681 */ 682 static inline void tcp_set_rto(struct sock *sk) 683 { 684 const struct tcp_sock *tp = tcp_sk(sk); 685 /* Old crap is replaced with new one. 8) 686 * 687 * More seriously: 688 * 1. If rtt variance happened to be less 50msec, it is hallucination. 689 * It cannot be less due to utterly erratic ACK generation made 690 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 691 * to do with delayed acks, because at cwnd>2 true delack timeout 692 * is invisible. Actually, Linux-2.4 also generates erratic 693 * ACKs in some circumstances. 694 */ 695 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 696 697 /* 2. Fixups made earlier cannot be right. 698 * If we do not estimate RTO correctly without them, 699 * all the algo is pure shit and should be replaced 700 * with correct one. It is exactly, which we pretend to do. 701 */ 702 703 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 704 * guarantees that rto is higher. 705 */ 706 tcp_bound_rto(sk); 707 } 708 709 /* Save metrics learned by this TCP session. 710 This function is called only, when TCP finishes successfully 711 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 712 */ 713 void tcp_update_metrics(struct sock *sk) 714 { 715 struct tcp_sock *tp = tcp_sk(sk); 716 struct dst_entry *dst = __sk_dst_get(sk); 717 718 if (sysctl_tcp_nometrics_save) 719 return; 720 721 dst_confirm(dst); 722 723 if (dst && (dst->flags & DST_HOST)) { 724 const struct inet_connection_sock *icsk = inet_csk(sk); 725 int m; 726 unsigned long rtt; 727 728 if (icsk->icsk_backoff || !tp->srtt) { 729 /* This session failed to estimate rtt. Why? 730 * Probably, no packets returned in time. 731 * Reset our results. 732 */ 733 if (!(dst_metric_locked(dst, RTAX_RTT))) 734 dst->metrics[RTAX_RTT - 1] = 0; 735 return; 736 } 737 738 rtt = dst_metric_rtt(dst, RTAX_RTT); 739 m = rtt - tp->srtt; 740 741 /* If newly calculated rtt larger than stored one, 742 * store new one. Otherwise, use EWMA. Remember, 743 * rtt overestimation is always better than underestimation. 744 */ 745 if (!(dst_metric_locked(dst, RTAX_RTT))) { 746 if (m <= 0) 747 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt); 748 else 749 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3)); 750 } 751 752 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 753 unsigned long var; 754 if (m < 0) 755 m = -m; 756 757 /* Scale deviation to rttvar fixed point */ 758 m >>= 1; 759 if (m < tp->mdev) 760 m = tp->mdev; 761 762 var = dst_metric_rtt(dst, RTAX_RTTVAR); 763 if (m >= var) 764 var = m; 765 else 766 var -= (var - m) >> 2; 767 768 set_dst_metric_rtt(dst, RTAX_RTTVAR, var); 769 } 770 771 if (tcp_in_initial_slowstart(tp)) { 772 /* Slow start still did not finish. */ 773 if (dst_metric(dst, RTAX_SSTHRESH) && 774 !dst_metric_locked(dst, RTAX_SSTHRESH) && 775 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 776 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 777 if (!dst_metric_locked(dst, RTAX_CWND) && 778 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 779 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd; 780 } else if (tp->snd_cwnd > tp->snd_ssthresh && 781 icsk->icsk_ca_state == TCP_CA_Open) { 782 /* Cong. avoidance phase, cwnd is reliable. */ 783 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 784 dst->metrics[RTAX_SSTHRESH-1] = 785 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 786 if (!dst_metric_locked(dst, RTAX_CWND)) 787 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1; 788 } else { 789 /* Else slow start did not finish, cwnd is non-sense, 790 ssthresh may be also invalid. 791 */ 792 if (!dst_metric_locked(dst, RTAX_CWND)) 793 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1; 794 if (dst_metric(dst, RTAX_SSTHRESH) && 795 !dst_metric_locked(dst, RTAX_SSTHRESH) && 796 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH)) 797 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 798 } 799 800 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 801 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering && 802 tp->reordering != sysctl_tcp_reordering) 803 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 804 } 805 } 806 } 807 808 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 809 { 810 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 811 812 if (!cwnd) 813 cwnd = rfc3390_bytes_to_packets(tp->mss_cache); 814 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 815 } 816 817 /* Set slow start threshold and cwnd not falling to slow start */ 818 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 819 { 820 struct tcp_sock *tp = tcp_sk(sk); 821 const struct inet_connection_sock *icsk = inet_csk(sk); 822 823 tp->prior_ssthresh = 0; 824 tp->bytes_acked = 0; 825 if (icsk->icsk_ca_state < TCP_CA_CWR) { 826 tp->undo_marker = 0; 827 if (set_ssthresh) 828 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 829 tp->snd_cwnd = min(tp->snd_cwnd, 830 tcp_packets_in_flight(tp) + 1U); 831 tp->snd_cwnd_cnt = 0; 832 tp->high_seq = tp->snd_nxt; 833 tp->snd_cwnd_stamp = tcp_time_stamp; 834 TCP_ECN_queue_cwr(tp); 835 836 tcp_set_ca_state(sk, TCP_CA_CWR); 837 } 838 } 839 840 /* 841 * Packet counting of FACK is based on in-order assumptions, therefore TCP 842 * disables it when reordering is detected 843 */ 844 static void tcp_disable_fack(struct tcp_sock *tp) 845 { 846 /* RFC3517 uses different metric in lost marker => reset on change */ 847 if (tcp_is_fack(tp)) 848 tp->lost_skb_hint = NULL; 849 tp->rx_opt.sack_ok &= ~2; 850 } 851 852 /* Take a notice that peer is sending D-SACKs */ 853 static void tcp_dsack_seen(struct tcp_sock *tp) 854 { 855 tp->rx_opt.sack_ok |= 4; 856 } 857 858 /* Initialize metrics on socket. */ 859 860 static void tcp_init_metrics(struct sock *sk) 861 { 862 struct tcp_sock *tp = tcp_sk(sk); 863 struct dst_entry *dst = __sk_dst_get(sk); 864 865 if (dst == NULL) 866 goto reset; 867 868 dst_confirm(dst); 869 870 if (dst_metric_locked(dst, RTAX_CWND)) 871 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 872 if (dst_metric(dst, RTAX_SSTHRESH)) { 873 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 874 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 875 tp->snd_ssthresh = tp->snd_cwnd_clamp; 876 } 877 if (dst_metric(dst, RTAX_REORDERING) && 878 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 879 tcp_disable_fack(tp); 880 tp->reordering = dst_metric(dst, RTAX_REORDERING); 881 } 882 883 if (dst_metric(dst, RTAX_RTT) == 0) 884 goto reset; 885 886 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 887 goto reset; 888 889 /* Initial rtt is determined from SYN,SYN-ACK. 890 * The segment is small and rtt may appear much 891 * less than real one. Use per-dst memory 892 * to make it more realistic. 893 * 894 * A bit of theory. RTT is time passed after "normal" sized packet 895 * is sent until it is ACKed. In normal circumstances sending small 896 * packets force peer to delay ACKs and calculation is correct too. 897 * The algorithm is adaptive and, provided we follow specs, it 898 * NEVER underestimate RTT. BUT! If peer tries to make some clever 899 * tricks sort of "quick acks" for time long enough to decrease RTT 900 * to low value, and then abruptly stops to do it and starts to delay 901 * ACKs, wait for troubles. 902 */ 903 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) { 904 tp->srtt = dst_metric_rtt(dst, RTAX_RTT); 905 tp->rtt_seq = tp->snd_nxt; 906 } 907 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) { 908 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR); 909 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 910 } 911 tcp_set_rto(sk); 912 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 913 goto reset; 914 915 cwnd: 916 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 917 tp->snd_cwnd_stamp = tcp_time_stamp; 918 return; 919 920 reset: 921 /* Play conservative. If timestamps are not 922 * supported, TCP will fail to recalculate correct 923 * rtt, if initial rto is too small. FORGET ALL AND RESET! 924 */ 925 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 926 tp->srtt = 0; 927 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 928 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 929 } 930 goto cwnd; 931 } 932 933 static void tcp_update_reordering(struct sock *sk, const int metric, 934 const int ts) 935 { 936 struct tcp_sock *tp = tcp_sk(sk); 937 if (metric > tp->reordering) { 938 int mib_idx; 939 940 tp->reordering = min(TCP_MAX_REORDERING, metric); 941 942 /* This exciting event is worth to be remembered. 8) */ 943 if (ts) 944 mib_idx = LINUX_MIB_TCPTSREORDER; 945 else if (tcp_is_reno(tp)) 946 mib_idx = LINUX_MIB_TCPRENOREORDER; 947 else if (tcp_is_fack(tp)) 948 mib_idx = LINUX_MIB_TCPFACKREORDER; 949 else 950 mib_idx = LINUX_MIB_TCPSACKREORDER; 951 952 NET_INC_STATS_BH(sock_net(sk), mib_idx); 953 #if FASTRETRANS_DEBUG > 1 954 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 955 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 956 tp->reordering, 957 tp->fackets_out, 958 tp->sacked_out, 959 tp->undo_marker ? tp->undo_retrans : 0); 960 #endif 961 tcp_disable_fack(tp); 962 } 963 } 964 965 /* This must be called before lost_out is incremented */ 966 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 967 { 968 if ((tp->retransmit_skb_hint == NULL) || 969 before(TCP_SKB_CB(skb)->seq, 970 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 971 tp->retransmit_skb_hint = skb; 972 973 if (!tp->lost_out || 974 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 975 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 976 } 977 978 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 979 { 980 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 981 tcp_verify_retransmit_hint(tp, skb); 982 983 tp->lost_out += tcp_skb_pcount(skb); 984 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 985 } 986 } 987 988 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 989 struct sk_buff *skb) 990 { 991 tcp_verify_retransmit_hint(tp, skb); 992 993 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 994 tp->lost_out += tcp_skb_pcount(skb); 995 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 996 } 997 } 998 999 /* This procedure tags the retransmission queue when SACKs arrive. 1000 * 1001 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1002 * Packets in queue with these bits set are counted in variables 1003 * sacked_out, retrans_out and lost_out, correspondingly. 1004 * 1005 * Valid combinations are: 1006 * Tag InFlight Description 1007 * 0 1 - orig segment is in flight. 1008 * S 0 - nothing flies, orig reached receiver. 1009 * L 0 - nothing flies, orig lost by net. 1010 * R 2 - both orig and retransmit are in flight. 1011 * L|R 1 - orig is lost, retransmit is in flight. 1012 * S|R 1 - orig reached receiver, retrans is still in flight. 1013 * (L|S|R is logically valid, it could occur when L|R is sacked, 1014 * but it is equivalent to plain S and code short-curcuits it to S. 1015 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1016 * 1017 * These 6 states form finite state machine, controlled by the following events: 1018 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1019 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1020 * 3. Loss detection event of one of three flavors: 1021 * A. Scoreboard estimator decided the packet is lost. 1022 * A'. Reno "three dupacks" marks head of queue lost. 1023 * A''. Its FACK modfication, head until snd.fack is lost. 1024 * B. SACK arrives sacking data transmitted after never retransmitted 1025 * hole was sent out. 1026 * C. SACK arrives sacking SND.NXT at the moment, when the 1027 * segment was retransmitted. 1028 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1029 * 1030 * It is pleasant to note, that state diagram turns out to be commutative, 1031 * so that we are allowed not to be bothered by order of our actions, 1032 * when multiple events arrive simultaneously. (see the function below). 1033 * 1034 * Reordering detection. 1035 * -------------------- 1036 * Reordering metric is maximal distance, which a packet can be displaced 1037 * in packet stream. With SACKs we can estimate it: 1038 * 1039 * 1. SACK fills old hole and the corresponding segment was not 1040 * ever retransmitted -> reordering. Alas, we cannot use it 1041 * when segment was retransmitted. 1042 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1043 * for retransmitted and already SACKed segment -> reordering.. 1044 * Both of these heuristics are not used in Loss state, when we cannot 1045 * account for retransmits accurately. 1046 * 1047 * SACK block validation. 1048 * ---------------------- 1049 * 1050 * SACK block range validation checks that the received SACK block fits to 1051 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1052 * Note that SND.UNA is not included to the range though being valid because 1053 * it means that the receiver is rather inconsistent with itself reporting 1054 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1055 * perfectly valid, however, in light of RFC2018 which explicitly states 1056 * that "SACK block MUST reflect the newest segment. Even if the newest 1057 * segment is going to be discarded ...", not that it looks very clever 1058 * in case of head skb. Due to potentional receiver driven attacks, we 1059 * choose to avoid immediate execution of a walk in write queue due to 1060 * reneging and defer head skb's loss recovery to standard loss recovery 1061 * procedure that will eventually trigger (nothing forbids us doing this). 1062 * 1063 * Implements also blockage to start_seq wrap-around. Problem lies in the 1064 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1065 * there's no guarantee that it will be before snd_nxt (n). The problem 1066 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1067 * wrap (s_w): 1068 * 1069 * <- outs wnd -> <- wrapzone -> 1070 * u e n u_w e_w s n_w 1071 * | | | | | | | 1072 * |<------------+------+----- TCP seqno space --------------+---------->| 1073 * ...-- <2^31 ->| |<--------... 1074 * ...---- >2^31 ------>| |<--------... 1075 * 1076 * Current code wouldn't be vulnerable but it's better still to discard such 1077 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1078 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1079 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1080 * equal to the ideal case (infinite seqno space without wrap caused issues). 1081 * 1082 * With D-SACK the lower bound is extended to cover sequence space below 1083 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1084 * again, D-SACK block must not to go across snd_una (for the same reason as 1085 * for the normal SACK blocks, explained above). But there all simplicity 1086 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1087 * fully below undo_marker they do not affect behavior in anyway and can 1088 * therefore be safely ignored. In rare cases (which are more or less 1089 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1090 * fragmentation and packet reordering past skb's retransmission. To consider 1091 * them correctly, the acceptable range must be extended even more though 1092 * the exact amount is rather hard to quantify. However, tp->max_window can 1093 * be used as an exaggerated estimate. 1094 */ 1095 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1096 u32 start_seq, u32 end_seq) 1097 { 1098 /* Too far in future, or reversed (interpretation is ambiguous) */ 1099 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1100 return 0; 1101 1102 /* Nasty start_seq wrap-around check (see comments above) */ 1103 if (!before(start_seq, tp->snd_nxt)) 1104 return 0; 1105 1106 /* In outstanding window? ...This is valid exit for D-SACKs too. 1107 * start_seq == snd_una is non-sensical (see comments above) 1108 */ 1109 if (after(start_seq, tp->snd_una)) 1110 return 1; 1111 1112 if (!is_dsack || !tp->undo_marker) 1113 return 0; 1114 1115 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1116 if (!after(end_seq, tp->snd_una)) 1117 return 0; 1118 1119 if (!before(start_seq, tp->undo_marker)) 1120 return 1; 1121 1122 /* Too old */ 1123 if (!after(end_seq, tp->undo_marker)) 1124 return 0; 1125 1126 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1127 * start_seq < undo_marker and end_seq >= undo_marker. 1128 */ 1129 return !before(start_seq, end_seq - tp->max_window); 1130 } 1131 1132 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1133 * Event "C". Later note: FACK people cheated me again 8), we have to account 1134 * for reordering! Ugly, but should help. 1135 * 1136 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1137 * less than what is now known to be received by the other end (derived from 1138 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1139 * retransmitted skbs to avoid some costly processing per ACKs. 1140 */ 1141 static void tcp_mark_lost_retrans(struct sock *sk) 1142 { 1143 const struct inet_connection_sock *icsk = inet_csk(sk); 1144 struct tcp_sock *tp = tcp_sk(sk); 1145 struct sk_buff *skb; 1146 int cnt = 0; 1147 u32 new_low_seq = tp->snd_nxt; 1148 u32 received_upto = tcp_highest_sack_seq(tp); 1149 1150 if (!tcp_is_fack(tp) || !tp->retrans_out || 1151 !after(received_upto, tp->lost_retrans_low) || 1152 icsk->icsk_ca_state != TCP_CA_Recovery) 1153 return; 1154 1155 tcp_for_write_queue(skb, sk) { 1156 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1157 1158 if (skb == tcp_send_head(sk)) 1159 break; 1160 if (cnt == tp->retrans_out) 1161 break; 1162 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1163 continue; 1164 1165 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1166 continue; 1167 1168 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1169 * constraint here (see above) but figuring out that at 1170 * least tp->reordering SACK blocks reside between ack_seq 1171 * and received_upto is not easy task to do cheaply with 1172 * the available datastructures. 1173 * 1174 * Whether FACK should check here for tp->reordering segs 1175 * in-between one could argue for either way (it would be 1176 * rather simple to implement as we could count fack_count 1177 * during the walk and do tp->fackets_out - fack_count). 1178 */ 1179 if (after(received_upto, ack_seq)) { 1180 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1181 tp->retrans_out -= tcp_skb_pcount(skb); 1182 1183 tcp_skb_mark_lost_uncond_verify(tp, skb); 1184 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1185 } else { 1186 if (before(ack_seq, new_low_seq)) 1187 new_low_seq = ack_seq; 1188 cnt += tcp_skb_pcount(skb); 1189 } 1190 } 1191 1192 if (tp->retrans_out) 1193 tp->lost_retrans_low = new_low_seq; 1194 } 1195 1196 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb, 1197 struct tcp_sack_block_wire *sp, int num_sacks, 1198 u32 prior_snd_una) 1199 { 1200 struct tcp_sock *tp = tcp_sk(sk); 1201 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1202 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1203 int dup_sack = 0; 1204 1205 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1206 dup_sack = 1; 1207 tcp_dsack_seen(tp); 1208 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1209 } else if (num_sacks > 1) { 1210 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1211 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1212 1213 if (!after(end_seq_0, end_seq_1) && 1214 !before(start_seq_0, start_seq_1)) { 1215 dup_sack = 1; 1216 tcp_dsack_seen(tp); 1217 NET_INC_STATS_BH(sock_net(sk), 1218 LINUX_MIB_TCPDSACKOFORECV); 1219 } 1220 } 1221 1222 /* D-SACK for already forgotten data... Do dumb counting. */ 1223 if (dup_sack && 1224 !after(end_seq_0, prior_snd_una) && 1225 after(end_seq_0, tp->undo_marker)) 1226 tp->undo_retrans--; 1227 1228 return dup_sack; 1229 } 1230 1231 struct tcp_sacktag_state { 1232 int reord; 1233 int fack_count; 1234 int flag; 1235 }; 1236 1237 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1238 * the incoming SACK may not exactly match but we can find smaller MSS 1239 * aligned portion of it that matches. Therefore we might need to fragment 1240 * which may fail and creates some hassle (caller must handle error case 1241 * returns). 1242 * 1243 * FIXME: this could be merged to shift decision code 1244 */ 1245 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1246 u32 start_seq, u32 end_seq) 1247 { 1248 int in_sack, err; 1249 unsigned int pkt_len; 1250 unsigned int mss; 1251 1252 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1253 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1254 1255 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1256 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1257 mss = tcp_skb_mss(skb); 1258 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1259 1260 if (!in_sack) { 1261 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1262 if (pkt_len < mss) 1263 pkt_len = mss; 1264 } else { 1265 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1266 if (pkt_len < mss) 1267 return -EINVAL; 1268 } 1269 1270 /* Round if necessary so that SACKs cover only full MSSes 1271 * and/or the remaining small portion (if present) 1272 */ 1273 if (pkt_len > mss) { 1274 unsigned int new_len = (pkt_len / mss) * mss; 1275 if (!in_sack && new_len < pkt_len) { 1276 new_len += mss; 1277 if (new_len > skb->len) 1278 return 0; 1279 } 1280 pkt_len = new_len; 1281 } 1282 err = tcp_fragment(sk, skb, pkt_len, mss); 1283 if (err < 0) 1284 return err; 1285 } 1286 1287 return in_sack; 1288 } 1289 1290 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk, 1291 struct tcp_sacktag_state *state, 1292 int dup_sack, int pcount) 1293 { 1294 struct tcp_sock *tp = tcp_sk(sk); 1295 u8 sacked = TCP_SKB_CB(skb)->sacked; 1296 int fack_count = state->fack_count; 1297 1298 /* Account D-SACK for retransmitted packet. */ 1299 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1300 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1301 tp->undo_retrans--; 1302 if (sacked & TCPCB_SACKED_ACKED) 1303 state->reord = min(fack_count, state->reord); 1304 } 1305 1306 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1307 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1308 return sacked; 1309 1310 if (!(sacked & TCPCB_SACKED_ACKED)) { 1311 if (sacked & TCPCB_SACKED_RETRANS) { 1312 /* If the segment is not tagged as lost, 1313 * we do not clear RETRANS, believing 1314 * that retransmission is still in flight. 1315 */ 1316 if (sacked & TCPCB_LOST) { 1317 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1318 tp->lost_out -= pcount; 1319 tp->retrans_out -= pcount; 1320 } 1321 } else { 1322 if (!(sacked & TCPCB_RETRANS)) { 1323 /* New sack for not retransmitted frame, 1324 * which was in hole. It is reordering. 1325 */ 1326 if (before(TCP_SKB_CB(skb)->seq, 1327 tcp_highest_sack_seq(tp))) 1328 state->reord = min(fack_count, 1329 state->reord); 1330 1331 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1332 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) 1333 state->flag |= FLAG_ONLY_ORIG_SACKED; 1334 } 1335 1336 if (sacked & TCPCB_LOST) { 1337 sacked &= ~TCPCB_LOST; 1338 tp->lost_out -= pcount; 1339 } 1340 } 1341 1342 sacked |= TCPCB_SACKED_ACKED; 1343 state->flag |= FLAG_DATA_SACKED; 1344 tp->sacked_out += pcount; 1345 1346 fack_count += pcount; 1347 1348 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1349 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1350 before(TCP_SKB_CB(skb)->seq, 1351 TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1352 tp->lost_cnt_hint += pcount; 1353 1354 if (fack_count > tp->fackets_out) 1355 tp->fackets_out = fack_count; 1356 } 1357 1358 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1359 * frames and clear it. undo_retrans is decreased above, L|R frames 1360 * are accounted above as well. 1361 */ 1362 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1363 sacked &= ~TCPCB_SACKED_RETRANS; 1364 tp->retrans_out -= pcount; 1365 } 1366 1367 return sacked; 1368 } 1369 1370 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1371 struct tcp_sacktag_state *state, 1372 unsigned int pcount, int shifted, int mss, 1373 int dup_sack) 1374 { 1375 struct tcp_sock *tp = tcp_sk(sk); 1376 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1377 1378 BUG_ON(!pcount); 1379 1380 /* Tweak before seqno plays */ 1381 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint && 1382 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq)) 1383 tp->lost_cnt_hint += pcount; 1384 1385 TCP_SKB_CB(prev)->end_seq += shifted; 1386 TCP_SKB_CB(skb)->seq += shifted; 1387 1388 skb_shinfo(prev)->gso_segs += pcount; 1389 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1390 skb_shinfo(skb)->gso_segs -= pcount; 1391 1392 /* When we're adding to gso_segs == 1, gso_size will be zero, 1393 * in theory this shouldn't be necessary but as long as DSACK 1394 * code can come after this skb later on it's better to keep 1395 * setting gso_size to something. 1396 */ 1397 if (!skb_shinfo(prev)->gso_size) { 1398 skb_shinfo(prev)->gso_size = mss; 1399 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1400 } 1401 1402 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1403 if (skb_shinfo(skb)->gso_segs <= 1) { 1404 skb_shinfo(skb)->gso_size = 0; 1405 skb_shinfo(skb)->gso_type = 0; 1406 } 1407 1408 /* We discard results */ 1409 tcp_sacktag_one(skb, sk, state, dup_sack, pcount); 1410 1411 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1412 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1413 1414 if (skb->len > 0) { 1415 BUG_ON(!tcp_skb_pcount(skb)); 1416 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1417 return 0; 1418 } 1419 1420 /* Whole SKB was eaten :-) */ 1421 1422 if (skb == tp->retransmit_skb_hint) 1423 tp->retransmit_skb_hint = prev; 1424 if (skb == tp->scoreboard_skb_hint) 1425 tp->scoreboard_skb_hint = prev; 1426 if (skb == tp->lost_skb_hint) { 1427 tp->lost_skb_hint = prev; 1428 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1429 } 1430 1431 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags; 1432 if (skb == tcp_highest_sack(sk)) 1433 tcp_advance_highest_sack(sk, skb); 1434 1435 tcp_unlink_write_queue(skb, sk); 1436 sk_wmem_free_skb(sk, skb); 1437 1438 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1439 1440 return 1; 1441 } 1442 1443 /* I wish gso_size would have a bit more sane initialization than 1444 * something-or-zero which complicates things 1445 */ 1446 static int tcp_skb_seglen(struct sk_buff *skb) 1447 { 1448 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1449 } 1450 1451 /* Shifting pages past head area doesn't work */ 1452 static int skb_can_shift(struct sk_buff *skb) 1453 { 1454 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1455 } 1456 1457 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1458 * skb. 1459 */ 1460 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1461 struct tcp_sacktag_state *state, 1462 u32 start_seq, u32 end_seq, 1463 int dup_sack) 1464 { 1465 struct tcp_sock *tp = tcp_sk(sk); 1466 struct sk_buff *prev; 1467 int mss; 1468 int pcount = 0; 1469 int len; 1470 int in_sack; 1471 1472 if (!sk_can_gso(sk)) 1473 goto fallback; 1474 1475 /* Normally R but no L won't result in plain S */ 1476 if (!dup_sack && 1477 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1478 goto fallback; 1479 if (!skb_can_shift(skb)) 1480 goto fallback; 1481 /* This frame is about to be dropped (was ACKed). */ 1482 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1483 goto fallback; 1484 1485 /* Can only happen with delayed DSACK + discard craziness */ 1486 if (unlikely(skb == tcp_write_queue_head(sk))) 1487 goto fallback; 1488 prev = tcp_write_queue_prev(sk, skb); 1489 1490 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1491 goto fallback; 1492 1493 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1494 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1495 1496 if (in_sack) { 1497 len = skb->len; 1498 pcount = tcp_skb_pcount(skb); 1499 mss = tcp_skb_seglen(skb); 1500 1501 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1502 * drop this restriction as unnecessary 1503 */ 1504 if (mss != tcp_skb_seglen(prev)) 1505 goto fallback; 1506 } else { 1507 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1508 goto noop; 1509 /* CHECKME: This is non-MSS split case only?, this will 1510 * cause skipped skbs due to advancing loop btw, original 1511 * has that feature too 1512 */ 1513 if (tcp_skb_pcount(skb) <= 1) 1514 goto noop; 1515 1516 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1517 if (!in_sack) { 1518 /* TODO: head merge to next could be attempted here 1519 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1520 * though it might not be worth of the additional hassle 1521 * 1522 * ...we can probably just fallback to what was done 1523 * previously. We could try merging non-SACKed ones 1524 * as well but it probably isn't going to buy off 1525 * because later SACKs might again split them, and 1526 * it would make skb timestamp tracking considerably 1527 * harder problem. 1528 */ 1529 goto fallback; 1530 } 1531 1532 len = end_seq - TCP_SKB_CB(skb)->seq; 1533 BUG_ON(len < 0); 1534 BUG_ON(len > skb->len); 1535 1536 /* MSS boundaries should be honoured or else pcount will 1537 * severely break even though it makes things bit trickier. 1538 * Optimize common case to avoid most of the divides 1539 */ 1540 mss = tcp_skb_mss(skb); 1541 1542 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1543 * drop this restriction as unnecessary 1544 */ 1545 if (mss != tcp_skb_seglen(prev)) 1546 goto fallback; 1547 1548 if (len == mss) { 1549 pcount = 1; 1550 } else if (len < mss) { 1551 goto noop; 1552 } else { 1553 pcount = len / mss; 1554 len = pcount * mss; 1555 } 1556 } 1557 1558 if (!skb_shift(prev, skb, len)) 1559 goto fallback; 1560 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1561 goto out; 1562 1563 /* Hole filled allows collapsing with the next as well, this is very 1564 * useful when hole on every nth skb pattern happens 1565 */ 1566 if (prev == tcp_write_queue_tail(sk)) 1567 goto out; 1568 skb = tcp_write_queue_next(sk, prev); 1569 1570 if (!skb_can_shift(skb) || 1571 (skb == tcp_send_head(sk)) || 1572 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1573 (mss != tcp_skb_seglen(skb))) 1574 goto out; 1575 1576 len = skb->len; 1577 if (skb_shift(prev, skb, len)) { 1578 pcount += tcp_skb_pcount(skb); 1579 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1580 } 1581 1582 out: 1583 state->fack_count += pcount; 1584 return prev; 1585 1586 noop: 1587 return skb; 1588 1589 fallback: 1590 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1591 return NULL; 1592 } 1593 1594 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1595 struct tcp_sack_block *next_dup, 1596 struct tcp_sacktag_state *state, 1597 u32 start_seq, u32 end_seq, 1598 int dup_sack_in) 1599 { 1600 struct tcp_sock *tp = tcp_sk(sk); 1601 struct sk_buff *tmp; 1602 1603 tcp_for_write_queue_from(skb, sk) { 1604 int in_sack = 0; 1605 int dup_sack = dup_sack_in; 1606 1607 if (skb == tcp_send_head(sk)) 1608 break; 1609 1610 /* queue is in-order => we can short-circuit the walk early */ 1611 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1612 break; 1613 1614 if ((next_dup != NULL) && 1615 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1616 in_sack = tcp_match_skb_to_sack(sk, skb, 1617 next_dup->start_seq, 1618 next_dup->end_seq); 1619 if (in_sack > 0) 1620 dup_sack = 1; 1621 } 1622 1623 /* skb reference here is a bit tricky to get right, since 1624 * shifting can eat and free both this skb and the next, 1625 * so not even _safe variant of the loop is enough. 1626 */ 1627 if (in_sack <= 0) { 1628 tmp = tcp_shift_skb_data(sk, skb, state, 1629 start_seq, end_seq, dup_sack); 1630 if (tmp != NULL) { 1631 if (tmp != skb) { 1632 skb = tmp; 1633 continue; 1634 } 1635 1636 in_sack = 0; 1637 } else { 1638 in_sack = tcp_match_skb_to_sack(sk, skb, 1639 start_seq, 1640 end_seq); 1641 } 1642 } 1643 1644 if (unlikely(in_sack < 0)) 1645 break; 1646 1647 if (in_sack) { 1648 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk, 1649 state, 1650 dup_sack, 1651 tcp_skb_pcount(skb)); 1652 1653 if (!before(TCP_SKB_CB(skb)->seq, 1654 tcp_highest_sack_seq(tp))) 1655 tcp_advance_highest_sack(sk, skb); 1656 } 1657 1658 state->fack_count += tcp_skb_pcount(skb); 1659 } 1660 return skb; 1661 } 1662 1663 /* Avoid all extra work that is being done by sacktag while walking in 1664 * a normal way 1665 */ 1666 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1667 struct tcp_sacktag_state *state, 1668 u32 skip_to_seq) 1669 { 1670 tcp_for_write_queue_from(skb, sk) { 1671 if (skb == tcp_send_head(sk)) 1672 break; 1673 1674 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1675 break; 1676 1677 state->fack_count += tcp_skb_pcount(skb); 1678 } 1679 return skb; 1680 } 1681 1682 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1683 struct sock *sk, 1684 struct tcp_sack_block *next_dup, 1685 struct tcp_sacktag_state *state, 1686 u32 skip_to_seq) 1687 { 1688 if (next_dup == NULL) 1689 return skb; 1690 1691 if (before(next_dup->start_seq, skip_to_seq)) { 1692 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1693 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1694 next_dup->start_seq, next_dup->end_seq, 1695 1); 1696 } 1697 1698 return skb; 1699 } 1700 1701 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache) 1702 { 1703 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1704 } 1705 1706 static int 1707 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, 1708 u32 prior_snd_una) 1709 { 1710 const struct inet_connection_sock *icsk = inet_csk(sk); 1711 struct tcp_sock *tp = tcp_sk(sk); 1712 unsigned char *ptr = (skb_transport_header(ack_skb) + 1713 TCP_SKB_CB(ack_skb)->sacked); 1714 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1715 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1716 struct tcp_sack_block *cache; 1717 struct tcp_sacktag_state state; 1718 struct sk_buff *skb; 1719 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1720 int used_sacks; 1721 int found_dup_sack = 0; 1722 int i, j; 1723 int first_sack_index; 1724 1725 state.flag = 0; 1726 state.reord = tp->packets_out; 1727 1728 if (!tp->sacked_out) { 1729 if (WARN_ON(tp->fackets_out)) 1730 tp->fackets_out = 0; 1731 tcp_highest_sack_reset(sk); 1732 } 1733 1734 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1735 num_sacks, prior_snd_una); 1736 if (found_dup_sack) 1737 state.flag |= FLAG_DSACKING_ACK; 1738 1739 /* Eliminate too old ACKs, but take into 1740 * account more or less fresh ones, they can 1741 * contain valid SACK info. 1742 */ 1743 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1744 return 0; 1745 1746 if (!tp->packets_out) 1747 goto out; 1748 1749 used_sacks = 0; 1750 first_sack_index = 0; 1751 for (i = 0; i < num_sacks; i++) { 1752 int dup_sack = !i && found_dup_sack; 1753 1754 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1755 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1756 1757 if (!tcp_is_sackblock_valid(tp, dup_sack, 1758 sp[used_sacks].start_seq, 1759 sp[used_sacks].end_seq)) { 1760 int mib_idx; 1761 1762 if (dup_sack) { 1763 if (!tp->undo_marker) 1764 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1765 else 1766 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1767 } else { 1768 /* Don't count olds caused by ACK reordering */ 1769 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1770 !after(sp[used_sacks].end_seq, tp->snd_una)) 1771 continue; 1772 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1773 } 1774 1775 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1776 if (i == 0) 1777 first_sack_index = -1; 1778 continue; 1779 } 1780 1781 /* Ignore very old stuff early */ 1782 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1783 continue; 1784 1785 used_sacks++; 1786 } 1787 1788 /* order SACK blocks to allow in order walk of the retrans queue */ 1789 for (i = used_sacks - 1; i > 0; i--) { 1790 for (j = 0; j < i; j++) { 1791 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1792 swap(sp[j], sp[j + 1]); 1793 1794 /* Track where the first SACK block goes to */ 1795 if (j == first_sack_index) 1796 first_sack_index = j + 1; 1797 } 1798 } 1799 } 1800 1801 skb = tcp_write_queue_head(sk); 1802 state.fack_count = 0; 1803 i = 0; 1804 1805 if (!tp->sacked_out) { 1806 /* It's already past, so skip checking against it */ 1807 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1808 } else { 1809 cache = tp->recv_sack_cache; 1810 /* Skip empty blocks in at head of the cache */ 1811 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1812 !cache->end_seq) 1813 cache++; 1814 } 1815 1816 while (i < used_sacks) { 1817 u32 start_seq = sp[i].start_seq; 1818 u32 end_seq = sp[i].end_seq; 1819 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1820 struct tcp_sack_block *next_dup = NULL; 1821 1822 if (found_dup_sack && ((i + 1) == first_sack_index)) 1823 next_dup = &sp[i + 1]; 1824 1825 /* Event "B" in the comment above. */ 1826 if (after(end_seq, tp->high_seq)) 1827 state.flag |= FLAG_DATA_LOST; 1828 1829 /* Skip too early cached blocks */ 1830 while (tcp_sack_cache_ok(tp, cache) && 1831 !before(start_seq, cache->end_seq)) 1832 cache++; 1833 1834 /* Can skip some work by looking recv_sack_cache? */ 1835 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1836 after(end_seq, cache->start_seq)) { 1837 1838 /* Head todo? */ 1839 if (before(start_seq, cache->start_seq)) { 1840 skb = tcp_sacktag_skip(skb, sk, &state, 1841 start_seq); 1842 skb = tcp_sacktag_walk(skb, sk, next_dup, 1843 &state, 1844 start_seq, 1845 cache->start_seq, 1846 dup_sack); 1847 } 1848 1849 /* Rest of the block already fully processed? */ 1850 if (!after(end_seq, cache->end_seq)) 1851 goto advance_sp; 1852 1853 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1854 &state, 1855 cache->end_seq); 1856 1857 /* ...tail remains todo... */ 1858 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1859 /* ...but better entrypoint exists! */ 1860 skb = tcp_highest_sack(sk); 1861 if (skb == NULL) 1862 break; 1863 state.fack_count = tp->fackets_out; 1864 cache++; 1865 goto walk; 1866 } 1867 1868 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1869 /* Check overlap against next cached too (past this one already) */ 1870 cache++; 1871 continue; 1872 } 1873 1874 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1875 skb = tcp_highest_sack(sk); 1876 if (skb == NULL) 1877 break; 1878 state.fack_count = tp->fackets_out; 1879 } 1880 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1881 1882 walk: 1883 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1884 start_seq, end_seq, dup_sack); 1885 1886 advance_sp: 1887 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1888 * due to in-order walk 1889 */ 1890 if (after(end_seq, tp->frto_highmark)) 1891 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1892 1893 i++; 1894 } 1895 1896 /* Clear the head of the cache sack blocks so we can skip it next time */ 1897 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1898 tp->recv_sack_cache[i].start_seq = 0; 1899 tp->recv_sack_cache[i].end_seq = 0; 1900 } 1901 for (j = 0; j < used_sacks; j++) 1902 tp->recv_sack_cache[i++] = sp[j]; 1903 1904 tcp_mark_lost_retrans(sk); 1905 1906 tcp_verify_left_out(tp); 1907 1908 if ((state.reord < tp->fackets_out) && 1909 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1910 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1911 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1912 1913 out: 1914 1915 #if FASTRETRANS_DEBUG > 0 1916 WARN_ON((int)tp->sacked_out < 0); 1917 WARN_ON((int)tp->lost_out < 0); 1918 WARN_ON((int)tp->retrans_out < 0); 1919 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1920 #endif 1921 return state.flag; 1922 } 1923 1924 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1925 * packets_out. Returns zero if sacked_out adjustement wasn't necessary. 1926 */ 1927 static int tcp_limit_reno_sacked(struct tcp_sock *tp) 1928 { 1929 u32 holes; 1930 1931 holes = max(tp->lost_out, 1U); 1932 holes = min(holes, tp->packets_out); 1933 1934 if ((tp->sacked_out + holes) > tp->packets_out) { 1935 tp->sacked_out = tp->packets_out - holes; 1936 return 1; 1937 } 1938 return 0; 1939 } 1940 1941 /* If we receive more dupacks than we expected counting segments 1942 * in assumption of absent reordering, interpret this as reordering. 1943 * The only another reason could be bug in receiver TCP. 1944 */ 1945 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1946 { 1947 struct tcp_sock *tp = tcp_sk(sk); 1948 if (tcp_limit_reno_sacked(tp)) 1949 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1950 } 1951 1952 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1953 1954 static void tcp_add_reno_sack(struct sock *sk) 1955 { 1956 struct tcp_sock *tp = tcp_sk(sk); 1957 tp->sacked_out++; 1958 tcp_check_reno_reordering(sk, 0); 1959 tcp_verify_left_out(tp); 1960 } 1961 1962 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1963 1964 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1965 { 1966 struct tcp_sock *tp = tcp_sk(sk); 1967 1968 if (acked > 0) { 1969 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1970 if (acked - 1 >= tp->sacked_out) 1971 tp->sacked_out = 0; 1972 else 1973 tp->sacked_out -= acked - 1; 1974 } 1975 tcp_check_reno_reordering(sk, acked); 1976 tcp_verify_left_out(tp); 1977 } 1978 1979 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1980 { 1981 tp->sacked_out = 0; 1982 } 1983 1984 static int tcp_is_sackfrto(const struct tcp_sock *tp) 1985 { 1986 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 1987 } 1988 1989 /* F-RTO can only be used if TCP has never retransmitted anything other than 1990 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 1991 */ 1992 int tcp_use_frto(struct sock *sk) 1993 { 1994 const struct tcp_sock *tp = tcp_sk(sk); 1995 const struct inet_connection_sock *icsk = inet_csk(sk); 1996 struct sk_buff *skb; 1997 1998 if (!sysctl_tcp_frto) 1999 return 0; 2000 2001 /* MTU probe and F-RTO won't really play nicely along currently */ 2002 if (icsk->icsk_mtup.probe_size) 2003 return 0; 2004 2005 if (tcp_is_sackfrto(tp)) 2006 return 1; 2007 2008 /* Avoid expensive walking of rexmit queue if possible */ 2009 if (tp->retrans_out > 1) 2010 return 0; 2011 2012 skb = tcp_write_queue_head(sk); 2013 if (tcp_skb_is_last(sk, skb)) 2014 return 1; 2015 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 2016 tcp_for_write_queue_from(skb, sk) { 2017 if (skb == tcp_send_head(sk)) 2018 break; 2019 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2020 return 0; 2021 /* Short-circuit when first non-SACKed skb has been checked */ 2022 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2023 break; 2024 } 2025 return 1; 2026 } 2027 2028 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 2029 * recovery a bit and use heuristics in tcp_process_frto() to detect if 2030 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 2031 * keep retrans_out counting accurate (with SACK F-RTO, other than head 2032 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 2033 * bits are handled if the Loss state is really to be entered (in 2034 * tcp_enter_frto_loss). 2035 * 2036 * Do like tcp_enter_loss() would; when RTO expires the second time it 2037 * does: 2038 * "Reduce ssthresh if it has not yet been made inside this window." 2039 */ 2040 void tcp_enter_frto(struct sock *sk) 2041 { 2042 const struct inet_connection_sock *icsk = inet_csk(sk); 2043 struct tcp_sock *tp = tcp_sk(sk); 2044 struct sk_buff *skb; 2045 2046 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 2047 tp->snd_una == tp->high_seq || 2048 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 2049 !icsk->icsk_retransmits)) { 2050 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2051 /* Our state is too optimistic in ssthresh() call because cwnd 2052 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 2053 * recovery has not yet completed. Pattern would be this: RTO, 2054 * Cumulative ACK, RTO (2xRTO for the same segment does not end 2055 * up here twice). 2056 * RFC4138 should be more specific on what to do, even though 2057 * RTO is quite unlikely to occur after the first Cumulative ACK 2058 * due to back-off and complexity of triggering events ... 2059 */ 2060 if (tp->frto_counter) { 2061 u32 stored_cwnd; 2062 stored_cwnd = tp->snd_cwnd; 2063 tp->snd_cwnd = 2; 2064 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2065 tp->snd_cwnd = stored_cwnd; 2066 } else { 2067 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2068 } 2069 /* ... in theory, cong.control module could do "any tricks" in 2070 * ssthresh(), which means that ca_state, lost bits and lost_out 2071 * counter would have to be faked before the call occurs. We 2072 * consider that too expensive, unlikely and hacky, so modules 2073 * using these in ssthresh() must deal these incompatibility 2074 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 2075 */ 2076 tcp_ca_event(sk, CA_EVENT_FRTO); 2077 } 2078 2079 tp->undo_marker = tp->snd_una; 2080 tp->undo_retrans = 0; 2081 2082 skb = tcp_write_queue_head(sk); 2083 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2084 tp->undo_marker = 0; 2085 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2086 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2087 tp->retrans_out -= tcp_skb_pcount(skb); 2088 } 2089 tcp_verify_left_out(tp); 2090 2091 /* Too bad if TCP was application limited */ 2092 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2093 2094 /* Earlier loss recovery underway (see RFC4138; Appendix B). 2095 * The last condition is necessary at least in tp->frto_counter case. 2096 */ 2097 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 2098 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 2099 after(tp->high_seq, tp->snd_una)) { 2100 tp->frto_highmark = tp->high_seq; 2101 } else { 2102 tp->frto_highmark = tp->snd_nxt; 2103 } 2104 tcp_set_ca_state(sk, TCP_CA_Disorder); 2105 tp->high_seq = tp->snd_nxt; 2106 tp->frto_counter = 1; 2107 } 2108 2109 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 2110 * which indicates that we should follow the traditional RTO recovery, 2111 * i.e. mark everything lost and do go-back-N retransmission. 2112 */ 2113 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 2114 { 2115 struct tcp_sock *tp = tcp_sk(sk); 2116 struct sk_buff *skb; 2117 2118 tp->lost_out = 0; 2119 tp->retrans_out = 0; 2120 if (tcp_is_reno(tp)) 2121 tcp_reset_reno_sack(tp); 2122 2123 tcp_for_write_queue(skb, sk) { 2124 if (skb == tcp_send_head(sk)) 2125 break; 2126 2127 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2128 /* 2129 * Count the retransmission made on RTO correctly (only when 2130 * waiting for the first ACK and did not get it)... 2131 */ 2132 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 2133 /* For some reason this R-bit might get cleared? */ 2134 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 2135 tp->retrans_out += tcp_skb_pcount(skb); 2136 /* ...enter this if branch just for the first segment */ 2137 flag |= FLAG_DATA_ACKED; 2138 } else { 2139 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2140 tp->undo_marker = 0; 2141 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2142 } 2143 2144 /* Marking forward transmissions that were made after RTO lost 2145 * can cause unnecessary retransmissions in some scenarios, 2146 * SACK blocks will mitigate that in some but not in all cases. 2147 * We used to not mark them but it was causing break-ups with 2148 * receivers that do only in-order receival. 2149 * 2150 * TODO: we could detect presence of such receiver and select 2151 * different behavior per flow. 2152 */ 2153 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2154 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2155 tp->lost_out += tcp_skb_pcount(skb); 2156 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2157 } 2158 } 2159 tcp_verify_left_out(tp); 2160 2161 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2162 tp->snd_cwnd_cnt = 0; 2163 tp->snd_cwnd_stamp = tcp_time_stamp; 2164 tp->frto_counter = 0; 2165 tp->bytes_acked = 0; 2166 2167 tp->reordering = min_t(unsigned int, tp->reordering, 2168 sysctl_tcp_reordering); 2169 tcp_set_ca_state(sk, TCP_CA_Loss); 2170 tp->high_seq = tp->snd_nxt; 2171 TCP_ECN_queue_cwr(tp); 2172 2173 tcp_clear_all_retrans_hints(tp); 2174 } 2175 2176 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2177 { 2178 tp->retrans_out = 0; 2179 tp->lost_out = 0; 2180 2181 tp->undo_marker = 0; 2182 tp->undo_retrans = 0; 2183 } 2184 2185 void tcp_clear_retrans(struct tcp_sock *tp) 2186 { 2187 tcp_clear_retrans_partial(tp); 2188 2189 tp->fackets_out = 0; 2190 tp->sacked_out = 0; 2191 } 2192 2193 /* Enter Loss state. If "how" is not zero, forget all SACK information 2194 * and reset tags completely, otherwise preserve SACKs. If receiver 2195 * dropped its ofo queue, we will know this due to reneging detection. 2196 */ 2197 void tcp_enter_loss(struct sock *sk, int how) 2198 { 2199 const struct inet_connection_sock *icsk = inet_csk(sk); 2200 struct tcp_sock *tp = tcp_sk(sk); 2201 struct sk_buff *skb; 2202 2203 /* Reduce ssthresh if it has not yet been made inside this window. */ 2204 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2205 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2206 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2207 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2208 tcp_ca_event(sk, CA_EVENT_LOSS); 2209 } 2210 tp->snd_cwnd = 1; 2211 tp->snd_cwnd_cnt = 0; 2212 tp->snd_cwnd_stamp = tcp_time_stamp; 2213 2214 tp->bytes_acked = 0; 2215 tcp_clear_retrans_partial(tp); 2216 2217 if (tcp_is_reno(tp)) 2218 tcp_reset_reno_sack(tp); 2219 2220 if (!how) { 2221 /* Push undo marker, if it was plain RTO and nothing 2222 * was retransmitted. */ 2223 tp->undo_marker = tp->snd_una; 2224 } else { 2225 tp->sacked_out = 0; 2226 tp->fackets_out = 0; 2227 } 2228 tcp_clear_all_retrans_hints(tp); 2229 2230 tcp_for_write_queue(skb, sk) { 2231 if (skb == tcp_send_head(sk)) 2232 break; 2233 2234 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2235 tp->undo_marker = 0; 2236 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2237 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2238 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2239 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2240 tp->lost_out += tcp_skb_pcount(skb); 2241 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2242 } 2243 } 2244 tcp_verify_left_out(tp); 2245 2246 tp->reordering = min_t(unsigned int, tp->reordering, 2247 sysctl_tcp_reordering); 2248 tcp_set_ca_state(sk, TCP_CA_Loss); 2249 tp->high_seq = tp->snd_nxt; 2250 TCP_ECN_queue_cwr(tp); 2251 /* Abort F-RTO algorithm if one is in progress */ 2252 tp->frto_counter = 0; 2253 } 2254 2255 /* If ACK arrived pointing to a remembered SACK, it means that our 2256 * remembered SACKs do not reflect real state of receiver i.e. 2257 * receiver _host_ is heavily congested (or buggy). 2258 * 2259 * Do processing similar to RTO timeout. 2260 */ 2261 static int tcp_check_sack_reneging(struct sock *sk, int flag) 2262 { 2263 if (flag & FLAG_SACK_RENEGING) { 2264 struct inet_connection_sock *icsk = inet_csk(sk); 2265 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2266 2267 tcp_enter_loss(sk, 1); 2268 icsk->icsk_retransmits++; 2269 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2270 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2271 icsk->icsk_rto, TCP_RTO_MAX); 2272 return 1; 2273 } 2274 return 0; 2275 } 2276 2277 static inline int tcp_fackets_out(struct tcp_sock *tp) 2278 { 2279 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2280 } 2281 2282 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2283 * counter when SACK is enabled (without SACK, sacked_out is used for 2284 * that purpose). 2285 * 2286 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2287 * segments up to the highest received SACK block so far and holes in 2288 * between them. 2289 * 2290 * With reordering, holes may still be in flight, so RFC3517 recovery 2291 * uses pure sacked_out (total number of SACKed segments) even though 2292 * it violates the RFC that uses duplicate ACKs, often these are equal 2293 * but when e.g. out-of-window ACKs or packet duplication occurs, 2294 * they differ. Since neither occurs due to loss, TCP should really 2295 * ignore them. 2296 */ 2297 static inline int tcp_dupack_heuristics(struct tcp_sock *tp) 2298 { 2299 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2300 } 2301 2302 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 2303 { 2304 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto; 2305 } 2306 2307 static inline int tcp_head_timedout(struct sock *sk) 2308 { 2309 struct tcp_sock *tp = tcp_sk(sk); 2310 2311 return tp->packets_out && 2312 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2313 } 2314 2315 /* Linux NewReno/SACK/FACK/ECN state machine. 2316 * -------------------------------------- 2317 * 2318 * "Open" Normal state, no dubious events, fast path. 2319 * "Disorder" In all the respects it is "Open", 2320 * but requires a bit more attention. It is entered when 2321 * we see some SACKs or dupacks. It is split of "Open" 2322 * mainly to move some processing from fast path to slow one. 2323 * "CWR" CWND was reduced due to some Congestion Notification event. 2324 * It can be ECN, ICMP source quench, local device congestion. 2325 * "Recovery" CWND was reduced, we are fast-retransmitting. 2326 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2327 * 2328 * tcp_fastretrans_alert() is entered: 2329 * - each incoming ACK, if state is not "Open" 2330 * - when arrived ACK is unusual, namely: 2331 * * SACK 2332 * * Duplicate ACK. 2333 * * ECN ECE. 2334 * 2335 * Counting packets in flight is pretty simple. 2336 * 2337 * in_flight = packets_out - left_out + retrans_out 2338 * 2339 * packets_out is SND.NXT-SND.UNA counted in packets. 2340 * 2341 * retrans_out is number of retransmitted segments. 2342 * 2343 * left_out is number of segments left network, but not ACKed yet. 2344 * 2345 * left_out = sacked_out + lost_out 2346 * 2347 * sacked_out: Packets, which arrived to receiver out of order 2348 * and hence not ACKed. With SACKs this number is simply 2349 * amount of SACKed data. Even without SACKs 2350 * it is easy to give pretty reliable estimate of this number, 2351 * counting duplicate ACKs. 2352 * 2353 * lost_out: Packets lost by network. TCP has no explicit 2354 * "loss notification" feedback from network (for now). 2355 * It means that this number can be only _guessed_. 2356 * Actually, it is the heuristics to predict lossage that 2357 * distinguishes different algorithms. 2358 * 2359 * F.e. after RTO, when all the queue is considered as lost, 2360 * lost_out = packets_out and in_flight = retrans_out. 2361 * 2362 * Essentially, we have now two algorithms counting 2363 * lost packets. 2364 * 2365 * FACK: It is the simplest heuristics. As soon as we decided 2366 * that something is lost, we decide that _all_ not SACKed 2367 * packets until the most forward SACK are lost. I.e. 2368 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2369 * It is absolutely correct estimate, if network does not reorder 2370 * packets. And it loses any connection to reality when reordering 2371 * takes place. We use FACK by default until reordering 2372 * is suspected on the path to this destination. 2373 * 2374 * NewReno: when Recovery is entered, we assume that one segment 2375 * is lost (classic Reno). While we are in Recovery and 2376 * a partial ACK arrives, we assume that one more packet 2377 * is lost (NewReno). This heuristics are the same in NewReno 2378 * and SACK. 2379 * 2380 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2381 * deflation etc. CWND is real congestion window, never inflated, changes 2382 * only according to classic VJ rules. 2383 * 2384 * Really tricky (and requiring careful tuning) part of algorithm 2385 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2386 * The first determines the moment _when_ we should reduce CWND and, 2387 * hence, slow down forward transmission. In fact, it determines the moment 2388 * when we decide that hole is caused by loss, rather than by a reorder. 2389 * 2390 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2391 * holes, caused by lost packets. 2392 * 2393 * And the most logically complicated part of algorithm is undo 2394 * heuristics. We detect false retransmits due to both too early 2395 * fast retransmit (reordering) and underestimated RTO, analyzing 2396 * timestamps and D-SACKs. When we detect that some segments were 2397 * retransmitted by mistake and CWND reduction was wrong, we undo 2398 * window reduction and abort recovery phase. This logic is hidden 2399 * inside several functions named tcp_try_undo_<something>. 2400 */ 2401 2402 /* This function decides, when we should leave Disordered state 2403 * and enter Recovery phase, reducing congestion window. 2404 * 2405 * Main question: may we further continue forward transmission 2406 * with the same cwnd? 2407 */ 2408 static int tcp_time_to_recover(struct sock *sk) 2409 { 2410 struct tcp_sock *tp = tcp_sk(sk); 2411 __u32 packets_out; 2412 2413 /* Do not perform any recovery during F-RTO algorithm */ 2414 if (tp->frto_counter) 2415 return 0; 2416 2417 /* Trick#1: The loss is proven. */ 2418 if (tp->lost_out) 2419 return 1; 2420 2421 /* Not-A-Trick#2 : Classic rule... */ 2422 if (tcp_dupack_heuristics(tp) > tp->reordering) 2423 return 1; 2424 2425 /* Trick#3 : when we use RFC2988 timer restart, fast 2426 * retransmit can be triggered by timeout of queue head. 2427 */ 2428 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2429 return 1; 2430 2431 /* Trick#4: It is still not OK... But will it be useful to delay 2432 * recovery more? 2433 */ 2434 packets_out = tp->packets_out; 2435 if (packets_out <= tp->reordering && 2436 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2437 !tcp_may_send_now(sk)) { 2438 /* We have nothing to send. This connection is limited 2439 * either by receiver window or by application. 2440 */ 2441 return 1; 2442 } 2443 2444 /* If a thin stream is detected, retransmit after first 2445 * received dupack. Employ only if SACK is supported in order 2446 * to avoid possible corner-case series of spurious retransmissions 2447 * Use only if there are no unsent data. 2448 */ 2449 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2450 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2451 tcp_is_sack(tp) && !tcp_send_head(sk)) 2452 return 1; 2453 2454 return 0; 2455 } 2456 2457 /* New heuristics: it is possible only after we switched to restart timer 2458 * each time when something is ACKed. Hence, we can detect timed out packets 2459 * during fast retransmit without falling to slow start. 2460 * 2461 * Usefulness of this as is very questionable, since we should know which of 2462 * the segments is the next to timeout which is relatively expensive to find 2463 * in general case unless we add some data structure just for that. The 2464 * current approach certainly won't find the right one too often and when it 2465 * finally does find _something_ it usually marks large part of the window 2466 * right away (because a retransmission with a larger timestamp blocks the 2467 * loop from advancing). -ij 2468 */ 2469 static void tcp_timeout_skbs(struct sock *sk) 2470 { 2471 struct tcp_sock *tp = tcp_sk(sk); 2472 struct sk_buff *skb; 2473 2474 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk)) 2475 return; 2476 2477 skb = tp->scoreboard_skb_hint; 2478 if (tp->scoreboard_skb_hint == NULL) 2479 skb = tcp_write_queue_head(sk); 2480 2481 tcp_for_write_queue_from(skb, sk) { 2482 if (skb == tcp_send_head(sk)) 2483 break; 2484 if (!tcp_skb_timedout(sk, skb)) 2485 break; 2486 2487 tcp_skb_mark_lost(tp, skb); 2488 } 2489 2490 tp->scoreboard_skb_hint = skb; 2491 2492 tcp_verify_left_out(tp); 2493 } 2494 2495 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is 2496 * is against sacked "cnt", otherwise it's against facked "cnt" 2497 */ 2498 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2499 { 2500 struct tcp_sock *tp = tcp_sk(sk); 2501 struct sk_buff *skb; 2502 int cnt, oldcnt; 2503 int err; 2504 unsigned int mss; 2505 2506 WARN_ON(packets > tp->packets_out); 2507 if (tp->lost_skb_hint) { 2508 skb = tp->lost_skb_hint; 2509 cnt = tp->lost_cnt_hint; 2510 /* Head already handled? */ 2511 if (mark_head && skb != tcp_write_queue_head(sk)) 2512 return; 2513 } else { 2514 skb = tcp_write_queue_head(sk); 2515 cnt = 0; 2516 } 2517 2518 tcp_for_write_queue_from(skb, sk) { 2519 if (skb == tcp_send_head(sk)) 2520 break; 2521 /* TODO: do this better */ 2522 /* this is not the most efficient way to do this... */ 2523 tp->lost_skb_hint = skb; 2524 tp->lost_cnt_hint = cnt; 2525 2526 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq)) 2527 break; 2528 2529 oldcnt = cnt; 2530 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2531 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2532 cnt += tcp_skb_pcount(skb); 2533 2534 if (cnt > packets) { 2535 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2536 (oldcnt >= packets)) 2537 break; 2538 2539 mss = skb_shinfo(skb)->gso_size; 2540 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2541 if (err < 0) 2542 break; 2543 cnt = packets; 2544 } 2545 2546 tcp_skb_mark_lost(tp, skb); 2547 2548 if (mark_head) 2549 break; 2550 } 2551 tcp_verify_left_out(tp); 2552 } 2553 2554 /* Account newly detected lost packet(s) */ 2555 2556 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2557 { 2558 struct tcp_sock *tp = tcp_sk(sk); 2559 2560 if (tcp_is_reno(tp)) { 2561 tcp_mark_head_lost(sk, 1, 1); 2562 } else if (tcp_is_fack(tp)) { 2563 int lost = tp->fackets_out - tp->reordering; 2564 if (lost <= 0) 2565 lost = 1; 2566 tcp_mark_head_lost(sk, lost, 0); 2567 } else { 2568 int sacked_upto = tp->sacked_out - tp->reordering; 2569 if (sacked_upto >= 0) 2570 tcp_mark_head_lost(sk, sacked_upto, 0); 2571 else if (fast_rexmit) 2572 tcp_mark_head_lost(sk, 1, 1); 2573 } 2574 2575 tcp_timeout_skbs(sk); 2576 } 2577 2578 /* CWND moderation, preventing bursts due to too big ACKs 2579 * in dubious situations. 2580 */ 2581 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2582 { 2583 tp->snd_cwnd = min(tp->snd_cwnd, 2584 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2585 tp->snd_cwnd_stamp = tcp_time_stamp; 2586 } 2587 2588 /* Lower bound on congestion window is slow start threshold 2589 * unless congestion avoidance choice decides to overide it. 2590 */ 2591 static inline u32 tcp_cwnd_min(const struct sock *sk) 2592 { 2593 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2594 2595 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2596 } 2597 2598 /* Decrease cwnd each second ack. */ 2599 static void tcp_cwnd_down(struct sock *sk, int flag) 2600 { 2601 struct tcp_sock *tp = tcp_sk(sk); 2602 int decr = tp->snd_cwnd_cnt + 1; 2603 2604 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2605 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2606 tp->snd_cwnd_cnt = decr & 1; 2607 decr >>= 1; 2608 2609 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2610 tp->snd_cwnd -= decr; 2611 2612 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2613 tp->snd_cwnd_stamp = tcp_time_stamp; 2614 } 2615 } 2616 2617 /* Nothing was retransmitted or returned timestamp is less 2618 * than timestamp of the first retransmission. 2619 */ 2620 static inline int tcp_packet_delayed(struct tcp_sock *tp) 2621 { 2622 return !tp->retrans_stamp || 2623 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2624 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2625 } 2626 2627 /* Undo procedures. */ 2628 2629 #if FASTRETRANS_DEBUG > 1 2630 static void DBGUNDO(struct sock *sk, const char *msg) 2631 { 2632 struct tcp_sock *tp = tcp_sk(sk); 2633 struct inet_sock *inet = inet_sk(sk); 2634 2635 if (sk->sk_family == AF_INET) { 2636 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2637 msg, 2638 &inet->inet_daddr, ntohs(inet->inet_dport), 2639 tp->snd_cwnd, tcp_left_out(tp), 2640 tp->snd_ssthresh, tp->prior_ssthresh, 2641 tp->packets_out); 2642 } 2643 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2644 else if (sk->sk_family == AF_INET6) { 2645 struct ipv6_pinfo *np = inet6_sk(sk); 2646 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2647 msg, 2648 &np->daddr, ntohs(inet->inet_dport), 2649 tp->snd_cwnd, tcp_left_out(tp), 2650 tp->snd_ssthresh, tp->prior_ssthresh, 2651 tp->packets_out); 2652 } 2653 #endif 2654 } 2655 #else 2656 #define DBGUNDO(x...) do { } while (0) 2657 #endif 2658 2659 static void tcp_undo_cwr(struct sock *sk, const int undo) 2660 { 2661 struct tcp_sock *tp = tcp_sk(sk); 2662 2663 if (tp->prior_ssthresh) { 2664 const struct inet_connection_sock *icsk = inet_csk(sk); 2665 2666 if (icsk->icsk_ca_ops->undo_cwnd) 2667 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2668 else 2669 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2670 2671 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 2672 tp->snd_ssthresh = tp->prior_ssthresh; 2673 TCP_ECN_withdraw_cwr(tp); 2674 } 2675 } else { 2676 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2677 } 2678 tcp_moderate_cwnd(tp); 2679 tp->snd_cwnd_stamp = tcp_time_stamp; 2680 } 2681 2682 static inline int tcp_may_undo(struct tcp_sock *tp) 2683 { 2684 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2685 } 2686 2687 /* People celebrate: "We love our President!" */ 2688 static int tcp_try_undo_recovery(struct sock *sk) 2689 { 2690 struct tcp_sock *tp = tcp_sk(sk); 2691 2692 if (tcp_may_undo(tp)) { 2693 int mib_idx; 2694 2695 /* Happy end! We did not retransmit anything 2696 * or our original transmission succeeded. 2697 */ 2698 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2699 tcp_undo_cwr(sk, 1); 2700 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2701 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2702 else 2703 mib_idx = LINUX_MIB_TCPFULLUNDO; 2704 2705 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2706 tp->undo_marker = 0; 2707 } 2708 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2709 /* Hold old state until something *above* high_seq 2710 * is ACKed. For Reno it is MUST to prevent false 2711 * fast retransmits (RFC2582). SACK TCP is safe. */ 2712 tcp_moderate_cwnd(tp); 2713 return 1; 2714 } 2715 tcp_set_ca_state(sk, TCP_CA_Open); 2716 return 0; 2717 } 2718 2719 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2720 static void tcp_try_undo_dsack(struct sock *sk) 2721 { 2722 struct tcp_sock *tp = tcp_sk(sk); 2723 2724 if (tp->undo_marker && !tp->undo_retrans) { 2725 DBGUNDO(sk, "D-SACK"); 2726 tcp_undo_cwr(sk, 1); 2727 tp->undo_marker = 0; 2728 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2729 } 2730 } 2731 2732 /* We can clear retrans_stamp when there are no retransmissions in the 2733 * window. It would seem that it is trivially available for us in 2734 * tp->retrans_out, however, that kind of assumptions doesn't consider 2735 * what will happen if errors occur when sending retransmission for the 2736 * second time. ...It could the that such segment has only 2737 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2738 * the head skb is enough except for some reneging corner cases that 2739 * are not worth the effort. 2740 * 2741 * Main reason for all this complexity is the fact that connection dying 2742 * time now depends on the validity of the retrans_stamp, in particular, 2743 * that successive retransmissions of a segment must not advance 2744 * retrans_stamp under any conditions. 2745 */ 2746 static int tcp_any_retrans_done(struct sock *sk) 2747 { 2748 struct tcp_sock *tp = tcp_sk(sk); 2749 struct sk_buff *skb; 2750 2751 if (tp->retrans_out) 2752 return 1; 2753 2754 skb = tcp_write_queue_head(sk); 2755 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2756 return 1; 2757 2758 return 0; 2759 } 2760 2761 /* Undo during fast recovery after partial ACK. */ 2762 2763 static int tcp_try_undo_partial(struct sock *sk, int acked) 2764 { 2765 struct tcp_sock *tp = tcp_sk(sk); 2766 /* Partial ACK arrived. Force Hoe's retransmit. */ 2767 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2768 2769 if (tcp_may_undo(tp)) { 2770 /* Plain luck! Hole if filled with delayed 2771 * packet, rather than with a retransmit. 2772 */ 2773 if (!tcp_any_retrans_done(sk)) 2774 tp->retrans_stamp = 0; 2775 2776 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2777 2778 DBGUNDO(sk, "Hoe"); 2779 tcp_undo_cwr(sk, 0); 2780 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2781 2782 /* So... Do not make Hoe's retransmit yet. 2783 * If the first packet was delayed, the rest 2784 * ones are most probably delayed as well. 2785 */ 2786 failed = 0; 2787 } 2788 return failed; 2789 } 2790 2791 /* Undo during loss recovery after partial ACK. */ 2792 static int tcp_try_undo_loss(struct sock *sk) 2793 { 2794 struct tcp_sock *tp = tcp_sk(sk); 2795 2796 if (tcp_may_undo(tp)) { 2797 struct sk_buff *skb; 2798 tcp_for_write_queue(skb, sk) { 2799 if (skb == tcp_send_head(sk)) 2800 break; 2801 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2802 } 2803 2804 tcp_clear_all_retrans_hints(tp); 2805 2806 DBGUNDO(sk, "partial loss"); 2807 tp->lost_out = 0; 2808 tcp_undo_cwr(sk, 1); 2809 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2810 inet_csk(sk)->icsk_retransmits = 0; 2811 tp->undo_marker = 0; 2812 if (tcp_is_sack(tp)) 2813 tcp_set_ca_state(sk, TCP_CA_Open); 2814 return 1; 2815 } 2816 return 0; 2817 } 2818 2819 static inline void tcp_complete_cwr(struct sock *sk) 2820 { 2821 struct tcp_sock *tp = tcp_sk(sk); 2822 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2823 tp->snd_cwnd_stamp = tcp_time_stamp; 2824 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2825 } 2826 2827 static void tcp_try_keep_open(struct sock *sk) 2828 { 2829 struct tcp_sock *tp = tcp_sk(sk); 2830 int state = TCP_CA_Open; 2831 2832 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker) 2833 state = TCP_CA_Disorder; 2834 2835 if (inet_csk(sk)->icsk_ca_state != state) { 2836 tcp_set_ca_state(sk, state); 2837 tp->high_seq = tp->snd_nxt; 2838 } 2839 } 2840 2841 static void tcp_try_to_open(struct sock *sk, int flag) 2842 { 2843 struct tcp_sock *tp = tcp_sk(sk); 2844 2845 tcp_verify_left_out(tp); 2846 2847 if (!tp->frto_counter && !tcp_any_retrans_done(sk)) 2848 tp->retrans_stamp = 0; 2849 2850 if (flag & FLAG_ECE) 2851 tcp_enter_cwr(sk, 1); 2852 2853 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2854 tcp_try_keep_open(sk); 2855 tcp_moderate_cwnd(tp); 2856 } else { 2857 tcp_cwnd_down(sk, flag); 2858 } 2859 } 2860 2861 static void tcp_mtup_probe_failed(struct sock *sk) 2862 { 2863 struct inet_connection_sock *icsk = inet_csk(sk); 2864 2865 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2866 icsk->icsk_mtup.probe_size = 0; 2867 } 2868 2869 static void tcp_mtup_probe_success(struct sock *sk) 2870 { 2871 struct tcp_sock *tp = tcp_sk(sk); 2872 struct inet_connection_sock *icsk = inet_csk(sk); 2873 2874 /* FIXME: breaks with very large cwnd */ 2875 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2876 tp->snd_cwnd = tp->snd_cwnd * 2877 tcp_mss_to_mtu(sk, tp->mss_cache) / 2878 icsk->icsk_mtup.probe_size; 2879 tp->snd_cwnd_cnt = 0; 2880 tp->snd_cwnd_stamp = tcp_time_stamp; 2881 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2882 2883 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2884 icsk->icsk_mtup.probe_size = 0; 2885 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2886 } 2887 2888 /* Do a simple retransmit without using the backoff mechanisms in 2889 * tcp_timer. This is used for path mtu discovery. 2890 * The socket is already locked here. 2891 */ 2892 void tcp_simple_retransmit(struct sock *sk) 2893 { 2894 const struct inet_connection_sock *icsk = inet_csk(sk); 2895 struct tcp_sock *tp = tcp_sk(sk); 2896 struct sk_buff *skb; 2897 unsigned int mss = tcp_current_mss(sk); 2898 u32 prior_lost = tp->lost_out; 2899 2900 tcp_for_write_queue(skb, sk) { 2901 if (skb == tcp_send_head(sk)) 2902 break; 2903 if (tcp_skb_seglen(skb) > mss && 2904 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2905 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2906 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2907 tp->retrans_out -= tcp_skb_pcount(skb); 2908 } 2909 tcp_skb_mark_lost_uncond_verify(tp, skb); 2910 } 2911 } 2912 2913 tcp_clear_retrans_hints_partial(tp); 2914 2915 if (prior_lost == tp->lost_out) 2916 return; 2917 2918 if (tcp_is_reno(tp)) 2919 tcp_limit_reno_sacked(tp); 2920 2921 tcp_verify_left_out(tp); 2922 2923 /* Don't muck with the congestion window here. 2924 * Reason is that we do not increase amount of _data_ 2925 * in network, but units changed and effective 2926 * cwnd/ssthresh really reduced now. 2927 */ 2928 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2929 tp->high_seq = tp->snd_nxt; 2930 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2931 tp->prior_ssthresh = 0; 2932 tp->undo_marker = 0; 2933 tcp_set_ca_state(sk, TCP_CA_Loss); 2934 } 2935 tcp_xmit_retransmit_queue(sk); 2936 } 2937 EXPORT_SYMBOL(tcp_simple_retransmit); 2938 2939 /* Process an event, which can update packets-in-flight not trivially. 2940 * Main goal of this function is to calculate new estimate for left_out, 2941 * taking into account both packets sitting in receiver's buffer and 2942 * packets lost by network. 2943 * 2944 * Besides that it does CWND reduction, when packet loss is detected 2945 * and changes state of machine. 2946 * 2947 * It does _not_ decide what to send, it is made in function 2948 * tcp_xmit_retransmit_queue(). 2949 */ 2950 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag) 2951 { 2952 struct inet_connection_sock *icsk = inet_csk(sk); 2953 struct tcp_sock *tp = tcp_sk(sk); 2954 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 2955 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2956 (tcp_fackets_out(tp) > tp->reordering)); 2957 int fast_rexmit = 0, mib_idx; 2958 2959 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2960 tp->sacked_out = 0; 2961 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2962 tp->fackets_out = 0; 2963 2964 /* Now state machine starts. 2965 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2966 if (flag & FLAG_ECE) 2967 tp->prior_ssthresh = 0; 2968 2969 /* B. In all the states check for reneging SACKs. */ 2970 if (tcp_check_sack_reneging(sk, flag)) 2971 return; 2972 2973 /* C. Process data loss notification, provided it is valid. */ 2974 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) && 2975 before(tp->snd_una, tp->high_seq) && 2976 icsk->icsk_ca_state != TCP_CA_Open && 2977 tp->fackets_out > tp->reordering) { 2978 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0); 2979 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS); 2980 } 2981 2982 /* D. Check consistency of the current state. */ 2983 tcp_verify_left_out(tp); 2984 2985 /* E. Check state exit conditions. State can be terminated 2986 * when high_seq is ACKed. */ 2987 if (icsk->icsk_ca_state == TCP_CA_Open) { 2988 WARN_ON(tp->retrans_out != 0); 2989 tp->retrans_stamp = 0; 2990 } else if (!before(tp->snd_una, tp->high_seq)) { 2991 switch (icsk->icsk_ca_state) { 2992 case TCP_CA_Loss: 2993 icsk->icsk_retransmits = 0; 2994 if (tcp_try_undo_recovery(sk)) 2995 return; 2996 break; 2997 2998 case TCP_CA_CWR: 2999 /* CWR is to be held something *above* high_seq 3000 * is ACKed for CWR bit to reach receiver. */ 3001 if (tp->snd_una != tp->high_seq) { 3002 tcp_complete_cwr(sk); 3003 tcp_set_ca_state(sk, TCP_CA_Open); 3004 } 3005 break; 3006 3007 case TCP_CA_Disorder: 3008 tcp_try_undo_dsack(sk); 3009 if (!tp->undo_marker || 3010 /* For SACK case do not Open to allow to undo 3011 * catching for all duplicate ACKs. */ 3012 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) { 3013 tp->undo_marker = 0; 3014 tcp_set_ca_state(sk, TCP_CA_Open); 3015 } 3016 break; 3017 3018 case TCP_CA_Recovery: 3019 if (tcp_is_reno(tp)) 3020 tcp_reset_reno_sack(tp); 3021 if (tcp_try_undo_recovery(sk)) 3022 return; 3023 tcp_complete_cwr(sk); 3024 break; 3025 } 3026 } 3027 3028 /* F. Process state. */ 3029 switch (icsk->icsk_ca_state) { 3030 case TCP_CA_Recovery: 3031 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3032 if (tcp_is_reno(tp) && is_dupack) 3033 tcp_add_reno_sack(sk); 3034 } else 3035 do_lost = tcp_try_undo_partial(sk, pkts_acked); 3036 break; 3037 case TCP_CA_Loss: 3038 if (flag & FLAG_DATA_ACKED) 3039 icsk->icsk_retransmits = 0; 3040 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 3041 tcp_reset_reno_sack(tp); 3042 if (!tcp_try_undo_loss(sk)) { 3043 tcp_moderate_cwnd(tp); 3044 tcp_xmit_retransmit_queue(sk); 3045 return; 3046 } 3047 if (icsk->icsk_ca_state != TCP_CA_Open) 3048 return; 3049 /* Loss is undone; fall through to processing in Open state. */ 3050 default: 3051 if (tcp_is_reno(tp)) { 3052 if (flag & FLAG_SND_UNA_ADVANCED) 3053 tcp_reset_reno_sack(tp); 3054 if (is_dupack) 3055 tcp_add_reno_sack(sk); 3056 } 3057 3058 if (icsk->icsk_ca_state == TCP_CA_Disorder) 3059 tcp_try_undo_dsack(sk); 3060 3061 if (!tcp_time_to_recover(sk)) { 3062 tcp_try_to_open(sk, flag); 3063 return; 3064 } 3065 3066 /* MTU probe failure: don't reduce cwnd */ 3067 if (icsk->icsk_ca_state < TCP_CA_CWR && 3068 icsk->icsk_mtup.probe_size && 3069 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3070 tcp_mtup_probe_failed(sk); 3071 /* Restores the reduction we did in tcp_mtup_probe() */ 3072 tp->snd_cwnd++; 3073 tcp_simple_retransmit(sk); 3074 return; 3075 } 3076 3077 /* Otherwise enter Recovery state */ 3078 3079 if (tcp_is_reno(tp)) 3080 mib_idx = LINUX_MIB_TCPRENORECOVERY; 3081 else 3082 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 3083 3084 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3085 3086 tp->high_seq = tp->snd_nxt; 3087 tp->prior_ssthresh = 0; 3088 tp->undo_marker = tp->snd_una; 3089 tp->undo_retrans = tp->retrans_out; 3090 3091 if (icsk->icsk_ca_state < TCP_CA_CWR) { 3092 if (!(flag & FLAG_ECE)) 3093 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3094 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 3095 TCP_ECN_queue_cwr(tp); 3096 } 3097 3098 tp->bytes_acked = 0; 3099 tp->snd_cwnd_cnt = 0; 3100 tcp_set_ca_state(sk, TCP_CA_Recovery); 3101 fast_rexmit = 1; 3102 } 3103 3104 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3105 tcp_update_scoreboard(sk, fast_rexmit); 3106 tcp_cwnd_down(sk, flag); 3107 tcp_xmit_retransmit_queue(sk); 3108 } 3109 3110 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3111 { 3112 tcp_rtt_estimator(sk, seq_rtt); 3113 tcp_set_rto(sk); 3114 inet_csk(sk)->icsk_backoff = 0; 3115 } 3116 3117 /* Read draft-ietf-tcplw-high-performance before mucking 3118 * with this code. (Supersedes RFC1323) 3119 */ 3120 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3121 { 3122 /* RTTM Rule: A TSecr value received in a segment is used to 3123 * update the averaged RTT measurement only if the segment 3124 * acknowledges some new data, i.e., only if it advances the 3125 * left edge of the send window. 3126 * 3127 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3128 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3129 * 3130 * Changed: reset backoff as soon as we see the first valid sample. 3131 * If we do not, we get strongly overestimated rto. With timestamps 3132 * samples are accepted even from very old segments: f.e., when rtt=1 3133 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3134 * answer arrives rto becomes 120 seconds! If at least one of segments 3135 * in window is lost... Voila. --ANK (010210) 3136 */ 3137 struct tcp_sock *tp = tcp_sk(sk); 3138 3139 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3140 } 3141 3142 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3143 { 3144 /* We don't have a timestamp. Can only use 3145 * packets that are not retransmitted to determine 3146 * rtt estimates. Also, we must not reset the 3147 * backoff for rto until we get a non-retransmitted 3148 * packet. This allows us to deal with a situation 3149 * where the network delay has increased suddenly. 3150 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3151 */ 3152 3153 if (flag & FLAG_RETRANS_DATA_ACKED) 3154 return; 3155 3156 tcp_valid_rtt_meas(sk, seq_rtt); 3157 } 3158 3159 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3160 const s32 seq_rtt) 3161 { 3162 const struct tcp_sock *tp = tcp_sk(sk); 3163 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3164 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3165 tcp_ack_saw_tstamp(sk, flag); 3166 else if (seq_rtt >= 0) 3167 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3168 } 3169 3170 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3171 { 3172 const struct inet_connection_sock *icsk = inet_csk(sk); 3173 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3174 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3175 } 3176 3177 /* Restart timer after forward progress on connection. 3178 * RFC2988 recommends to restart timer to now+rto. 3179 */ 3180 static void tcp_rearm_rto(struct sock *sk) 3181 { 3182 struct tcp_sock *tp = tcp_sk(sk); 3183 3184 if (!tp->packets_out) { 3185 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3186 } else { 3187 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3188 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3189 } 3190 } 3191 3192 /* If we get here, the whole TSO packet has not been acked. */ 3193 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3194 { 3195 struct tcp_sock *tp = tcp_sk(sk); 3196 u32 packets_acked; 3197 3198 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3199 3200 packets_acked = tcp_skb_pcount(skb); 3201 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3202 return 0; 3203 packets_acked -= tcp_skb_pcount(skb); 3204 3205 if (packets_acked) { 3206 BUG_ON(tcp_skb_pcount(skb) == 0); 3207 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3208 } 3209 3210 return packets_acked; 3211 } 3212 3213 /* Remove acknowledged frames from the retransmission queue. If our packet 3214 * is before the ack sequence we can discard it as it's confirmed to have 3215 * arrived at the other end. 3216 */ 3217 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3218 u32 prior_snd_una) 3219 { 3220 struct tcp_sock *tp = tcp_sk(sk); 3221 const struct inet_connection_sock *icsk = inet_csk(sk); 3222 struct sk_buff *skb; 3223 u32 now = tcp_time_stamp; 3224 int fully_acked = 1; 3225 int flag = 0; 3226 u32 pkts_acked = 0; 3227 u32 reord = tp->packets_out; 3228 u32 prior_sacked = tp->sacked_out; 3229 s32 seq_rtt = -1; 3230 s32 ca_seq_rtt = -1; 3231 ktime_t last_ackt = net_invalid_timestamp(); 3232 3233 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3234 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3235 u32 acked_pcount; 3236 u8 sacked = scb->sacked; 3237 3238 /* Determine how many packets and what bytes were acked, tso and else */ 3239 if (after(scb->end_seq, tp->snd_una)) { 3240 if (tcp_skb_pcount(skb) == 1 || 3241 !after(tp->snd_una, scb->seq)) 3242 break; 3243 3244 acked_pcount = tcp_tso_acked(sk, skb); 3245 if (!acked_pcount) 3246 break; 3247 3248 fully_acked = 0; 3249 } else { 3250 acked_pcount = tcp_skb_pcount(skb); 3251 } 3252 3253 if (sacked & TCPCB_RETRANS) { 3254 if (sacked & TCPCB_SACKED_RETRANS) 3255 tp->retrans_out -= acked_pcount; 3256 flag |= FLAG_RETRANS_DATA_ACKED; 3257 ca_seq_rtt = -1; 3258 seq_rtt = -1; 3259 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3260 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3261 } else { 3262 ca_seq_rtt = now - scb->when; 3263 last_ackt = skb->tstamp; 3264 if (seq_rtt < 0) { 3265 seq_rtt = ca_seq_rtt; 3266 } 3267 if (!(sacked & TCPCB_SACKED_ACKED)) 3268 reord = min(pkts_acked, reord); 3269 } 3270 3271 if (sacked & TCPCB_SACKED_ACKED) 3272 tp->sacked_out -= acked_pcount; 3273 if (sacked & TCPCB_LOST) 3274 tp->lost_out -= acked_pcount; 3275 3276 tp->packets_out -= acked_pcount; 3277 pkts_acked += acked_pcount; 3278 3279 /* Initial outgoing SYN's get put onto the write_queue 3280 * just like anything else we transmit. It is not 3281 * true data, and if we misinform our callers that 3282 * this ACK acks real data, we will erroneously exit 3283 * connection startup slow start one packet too 3284 * quickly. This is severely frowned upon behavior. 3285 */ 3286 if (!(scb->flags & TCPHDR_SYN)) { 3287 flag |= FLAG_DATA_ACKED; 3288 } else { 3289 flag |= FLAG_SYN_ACKED; 3290 tp->retrans_stamp = 0; 3291 } 3292 3293 if (!fully_acked) 3294 break; 3295 3296 tcp_unlink_write_queue(skb, sk); 3297 sk_wmem_free_skb(sk, skb); 3298 tp->scoreboard_skb_hint = NULL; 3299 if (skb == tp->retransmit_skb_hint) 3300 tp->retransmit_skb_hint = NULL; 3301 if (skb == tp->lost_skb_hint) 3302 tp->lost_skb_hint = NULL; 3303 } 3304 3305 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3306 tp->snd_up = tp->snd_una; 3307 3308 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3309 flag |= FLAG_SACK_RENEGING; 3310 3311 if (flag & FLAG_ACKED) { 3312 const struct tcp_congestion_ops *ca_ops 3313 = inet_csk(sk)->icsk_ca_ops; 3314 3315 if (unlikely(icsk->icsk_mtup.probe_size && 3316 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3317 tcp_mtup_probe_success(sk); 3318 } 3319 3320 tcp_ack_update_rtt(sk, flag, seq_rtt); 3321 tcp_rearm_rto(sk); 3322 3323 if (tcp_is_reno(tp)) { 3324 tcp_remove_reno_sacks(sk, pkts_acked); 3325 } else { 3326 int delta; 3327 3328 /* Non-retransmitted hole got filled? That's reordering */ 3329 if (reord < prior_fackets) 3330 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3331 3332 delta = tcp_is_fack(tp) ? pkts_acked : 3333 prior_sacked - tp->sacked_out; 3334 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3335 } 3336 3337 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3338 3339 if (ca_ops->pkts_acked) { 3340 s32 rtt_us = -1; 3341 3342 /* Is the ACK triggering packet unambiguous? */ 3343 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3344 /* High resolution needed and available? */ 3345 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3346 !ktime_equal(last_ackt, 3347 net_invalid_timestamp())) 3348 rtt_us = ktime_us_delta(ktime_get_real(), 3349 last_ackt); 3350 else if (ca_seq_rtt > 0) 3351 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3352 } 3353 3354 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3355 } 3356 } 3357 3358 #if FASTRETRANS_DEBUG > 0 3359 WARN_ON((int)tp->sacked_out < 0); 3360 WARN_ON((int)tp->lost_out < 0); 3361 WARN_ON((int)tp->retrans_out < 0); 3362 if (!tp->packets_out && tcp_is_sack(tp)) { 3363 icsk = inet_csk(sk); 3364 if (tp->lost_out) { 3365 printk(KERN_DEBUG "Leak l=%u %d\n", 3366 tp->lost_out, icsk->icsk_ca_state); 3367 tp->lost_out = 0; 3368 } 3369 if (tp->sacked_out) { 3370 printk(KERN_DEBUG "Leak s=%u %d\n", 3371 tp->sacked_out, icsk->icsk_ca_state); 3372 tp->sacked_out = 0; 3373 } 3374 if (tp->retrans_out) { 3375 printk(KERN_DEBUG "Leak r=%u %d\n", 3376 tp->retrans_out, icsk->icsk_ca_state); 3377 tp->retrans_out = 0; 3378 } 3379 } 3380 #endif 3381 return flag; 3382 } 3383 3384 static void tcp_ack_probe(struct sock *sk) 3385 { 3386 const struct tcp_sock *tp = tcp_sk(sk); 3387 struct inet_connection_sock *icsk = inet_csk(sk); 3388 3389 /* Was it a usable window open? */ 3390 3391 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3392 icsk->icsk_backoff = 0; 3393 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3394 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3395 * This function is not for random using! 3396 */ 3397 } else { 3398 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3399 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3400 TCP_RTO_MAX); 3401 } 3402 } 3403 3404 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 3405 { 3406 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3407 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3408 } 3409 3410 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3411 { 3412 const struct tcp_sock *tp = tcp_sk(sk); 3413 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3414 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 3415 } 3416 3417 /* Check that window update is acceptable. 3418 * The function assumes that snd_una<=ack<=snd_next. 3419 */ 3420 static inline int tcp_may_update_window(const struct tcp_sock *tp, 3421 const u32 ack, const u32 ack_seq, 3422 const u32 nwin) 3423 { 3424 return after(ack, tp->snd_una) || 3425 after(ack_seq, tp->snd_wl1) || 3426 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3427 } 3428 3429 /* Update our send window. 3430 * 3431 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3432 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3433 */ 3434 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 3435 u32 ack_seq) 3436 { 3437 struct tcp_sock *tp = tcp_sk(sk); 3438 int flag = 0; 3439 u32 nwin = ntohs(tcp_hdr(skb)->window); 3440 3441 if (likely(!tcp_hdr(skb)->syn)) 3442 nwin <<= tp->rx_opt.snd_wscale; 3443 3444 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3445 flag |= FLAG_WIN_UPDATE; 3446 tcp_update_wl(tp, ack_seq); 3447 3448 if (tp->snd_wnd != nwin) { 3449 tp->snd_wnd = nwin; 3450 3451 /* Note, it is the only place, where 3452 * fast path is recovered for sending TCP. 3453 */ 3454 tp->pred_flags = 0; 3455 tcp_fast_path_check(sk); 3456 3457 if (nwin > tp->max_window) { 3458 tp->max_window = nwin; 3459 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3460 } 3461 } 3462 } 3463 3464 tp->snd_una = ack; 3465 3466 return flag; 3467 } 3468 3469 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3470 * continue in congestion avoidance. 3471 */ 3472 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3473 { 3474 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3475 tp->snd_cwnd_cnt = 0; 3476 tp->bytes_acked = 0; 3477 TCP_ECN_queue_cwr(tp); 3478 tcp_moderate_cwnd(tp); 3479 } 3480 3481 /* A conservative spurious RTO response algorithm: reduce cwnd using 3482 * rate halving and continue in congestion avoidance. 3483 */ 3484 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3485 { 3486 tcp_enter_cwr(sk, 0); 3487 } 3488 3489 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3490 { 3491 if (flag & FLAG_ECE) 3492 tcp_ratehalving_spur_to_response(sk); 3493 else 3494 tcp_undo_cwr(sk, 1); 3495 } 3496 3497 /* F-RTO spurious RTO detection algorithm (RFC4138) 3498 * 3499 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3500 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3501 * window (but not to or beyond highest sequence sent before RTO): 3502 * On First ACK, send two new segments out. 3503 * On Second ACK, RTO was likely spurious. Do spurious response (response 3504 * algorithm is not part of the F-RTO detection algorithm 3505 * given in RFC4138 but can be selected separately). 3506 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3507 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3508 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3509 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3510 * 3511 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3512 * original window even after we transmit two new data segments. 3513 * 3514 * SACK version: 3515 * on first step, wait until first cumulative ACK arrives, then move to 3516 * the second step. In second step, the next ACK decides. 3517 * 3518 * F-RTO is implemented (mainly) in four functions: 3519 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3520 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3521 * called when tcp_use_frto() showed green light 3522 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3523 * - tcp_enter_frto_loss() is called if there is not enough evidence 3524 * to prove that the RTO is indeed spurious. It transfers the control 3525 * from F-RTO to the conventional RTO recovery 3526 */ 3527 static int tcp_process_frto(struct sock *sk, int flag) 3528 { 3529 struct tcp_sock *tp = tcp_sk(sk); 3530 3531 tcp_verify_left_out(tp); 3532 3533 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3534 if (flag & FLAG_DATA_ACKED) 3535 inet_csk(sk)->icsk_retransmits = 0; 3536 3537 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3538 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3539 tp->undo_marker = 0; 3540 3541 if (!before(tp->snd_una, tp->frto_highmark)) { 3542 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3543 return 1; 3544 } 3545 3546 if (!tcp_is_sackfrto(tp)) { 3547 /* RFC4138 shortcoming in step 2; should also have case c): 3548 * ACK isn't duplicate nor advances window, e.g., opposite dir 3549 * data, winupdate 3550 */ 3551 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3552 return 1; 3553 3554 if (!(flag & FLAG_DATA_ACKED)) { 3555 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3556 flag); 3557 return 1; 3558 } 3559 } else { 3560 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3561 /* Prevent sending of new data. */ 3562 tp->snd_cwnd = min(tp->snd_cwnd, 3563 tcp_packets_in_flight(tp)); 3564 return 1; 3565 } 3566 3567 if ((tp->frto_counter >= 2) && 3568 (!(flag & FLAG_FORWARD_PROGRESS) || 3569 ((flag & FLAG_DATA_SACKED) && 3570 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3571 /* RFC4138 shortcoming (see comment above) */ 3572 if (!(flag & FLAG_FORWARD_PROGRESS) && 3573 (flag & FLAG_NOT_DUP)) 3574 return 1; 3575 3576 tcp_enter_frto_loss(sk, 3, flag); 3577 return 1; 3578 } 3579 } 3580 3581 if (tp->frto_counter == 1) { 3582 /* tcp_may_send_now needs to see updated state */ 3583 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3584 tp->frto_counter = 2; 3585 3586 if (!tcp_may_send_now(sk)) 3587 tcp_enter_frto_loss(sk, 2, flag); 3588 3589 return 1; 3590 } else { 3591 switch (sysctl_tcp_frto_response) { 3592 case 2: 3593 tcp_undo_spur_to_response(sk, flag); 3594 break; 3595 case 1: 3596 tcp_conservative_spur_to_response(tp); 3597 break; 3598 default: 3599 tcp_ratehalving_spur_to_response(sk); 3600 break; 3601 } 3602 tp->frto_counter = 0; 3603 tp->undo_marker = 0; 3604 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3605 } 3606 return 0; 3607 } 3608 3609 /* This routine deals with incoming acks, but not outgoing ones. */ 3610 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 3611 { 3612 struct inet_connection_sock *icsk = inet_csk(sk); 3613 struct tcp_sock *tp = tcp_sk(sk); 3614 u32 prior_snd_una = tp->snd_una; 3615 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3616 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3617 u32 prior_in_flight; 3618 u32 prior_fackets; 3619 int prior_packets; 3620 int frto_cwnd = 0; 3621 3622 /* If the ack is older than previous acks 3623 * then we can probably ignore it. 3624 */ 3625 if (before(ack, prior_snd_una)) 3626 goto old_ack; 3627 3628 /* If the ack includes data we haven't sent yet, discard 3629 * this segment (RFC793 Section 3.9). 3630 */ 3631 if (after(ack, tp->snd_nxt)) 3632 goto invalid_ack; 3633 3634 if (after(ack, prior_snd_una)) 3635 flag |= FLAG_SND_UNA_ADVANCED; 3636 3637 if (sysctl_tcp_abc) { 3638 if (icsk->icsk_ca_state < TCP_CA_CWR) 3639 tp->bytes_acked += ack - prior_snd_una; 3640 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3641 /* we assume just one segment left network */ 3642 tp->bytes_acked += min(ack - prior_snd_una, 3643 tp->mss_cache); 3644 } 3645 3646 prior_fackets = tp->fackets_out; 3647 prior_in_flight = tcp_packets_in_flight(tp); 3648 3649 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3650 /* Window is constant, pure forward advance. 3651 * No more checks are required. 3652 * Note, we use the fact that SND.UNA>=SND.WL2. 3653 */ 3654 tcp_update_wl(tp, ack_seq); 3655 tp->snd_una = ack; 3656 flag |= FLAG_WIN_UPDATE; 3657 3658 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3659 3660 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3661 } else { 3662 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3663 flag |= FLAG_DATA; 3664 else 3665 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3666 3667 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3668 3669 if (TCP_SKB_CB(skb)->sacked) 3670 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3671 3672 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3673 flag |= FLAG_ECE; 3674 3675 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3676 } 3677 3678 /* We passed data and got it acked, remove any soft error 3679 * log. Something worked... 3680 */ 3681 sk->sk_err_soft = 0; 3682 icsk->icsk_probes_out = 0; 3683 tp->rcv_tstamp = tcp_time_stamp; 3684 prior_packets = tp->packets_out; 3685 if (!prior_packets) 3686 goto no_queue; 3687 3688 /* See if we can take anything off of the retransmit queue. */ 3689 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3690 3691 if (tp->frto_counter) 3692 frto_cwnd = tcp_process_frto(sk, flag); 3693 /* Guarantee sacktag reordering detection against wrap-arounds */ 3694 if (before(tp->frto_highmark, tp->snd_una)) 3695 tp->frto_highmark = 0; 3696 3697 if (tcp_ack_is_dubious(sk, flag)) { 3698 /* Advance CWND, if state allows this. */ 3699 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3700 tcp_may_raise_cwnd(sk, flag)) 3701 tcp_cong_avoid(sk, ack, prior_in_flight); 3702 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, 3703 flag); 3704 } else { 3705 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3706 tcp_cong_avoid(sk, ack, prior_in_flight); 3707 } 3708 3709 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3710 dst_confirm(__sk_dst_get(sk)); 3711 3712 return 1; 3713 3714 no_queue: 3715 /* If this ack opens up a zero window, clear backoff. It was 3716 * being used to time the probes, and is probably far higher than 3717 * it needs to be for normal retransmission. 3718 */ 3719 if (tcp_send_head(sk)) 3720 tcp_ack_probe(sk); 3721 return 1; 3722 3723 invalid_ack: 3724 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3725 return -1; 3726 3727 old_ack: 3728 if (TCP_SKB_CB(skb)->sacked) { 3729 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3730 if (icsk->icsk_ca_state == TCP_CA_Open) 3731 tcp_try_keep_open(sk); 3732 } 3733 3734 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3735 return 0; 3736 } 3737 3738 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3739 * But, this can also be called on packets in the established flow when 3740 * the fast version below fails. 3741 */ 3742 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, 3743 u8 **hvpp, int estab) 3744 { 3745 unsigned char *ptr; 3746 struct tcphdr *th = tcp_hdr(skb); 3747 int length = (th->doff * 4) - sizeof(struct tcphdr); 3748 3749 ptr = (unsigned char *)(th + 1); 3750 opt_rx->saw_tstamp = 0; 3751 3752 while (length > 0) { 3753 int opcode = *ptr++; 3754 int opsize; 3755 3756 switch (opcode) { 3757 case TCPOPT_EOL: 3758 return; 3759 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3760 length--; 3761 continue; 3762 default: 3763 opsize = *ptr++; 3764 if (opsize < 2) /* "silly options" */ 3765 return; 3766 if (opsize > length) 3767 return; /* don't parse partial options */ 3768 switch (opcode) { 3769 case TCPOPT_MSS: 3770 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3771 u16 in_mss = get_unaligned_be16(ptr); 3772 if (in_mss) { 3773 if (opt_rx->user_mss && 3774 opt_rx->user_mss < in_mss) 3775 in_mss = opt_rx->user_mss; 3776 opt_rx->mss_clamp = in_mss; 3777 } 3778 } 3779 break; 3780 case TCPOPT_WINDOW: 3781 if (opsize == TCPOLEN_WINDOW && th->syn && 3782 !estab && sysctl_tcp_window_scaling) { 3783 __u8 snd_wscale = *(__u8 *)ptr; 3784 opt_rx->wscale_ok = 1; 3785 if (snd_wscale > 14) { 3786 if (net_ratelimit()) 3787 printk(KERN_INFO "tcp_parse_options: Illegal window " 3788 "scaling value %d >14 received.\n", 3789 snd_wscale); 3790 snd_wscale = 14; 3791 } 3792 opt_rx->snd_wscale = snd_wscale; 3793 } 3794 break; 3795 case TCPOPT_TIMESTAMP: 3796 if ((opsize == TCPOLEN_TIMESTAMP) && 3797 ((estab && opt_rx->tstamp_ok) || 3798 (!estab && sysctl_tcp_timestamps))) { 3799 opt_rx->saw_tstamp = 1; 3800 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3801 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3802 } 3803 break; 3804 case TCPOPT_SACK_PERM: 3805 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3806 !estab && sysctl_tcp_sack) { 3807 opt_rx->sack_ok = 1; 3808 tcp_sack_reset(opt_rx); 3809 } 3810 break; 3811 3812 case TCPOPT_SACK: 3813 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3814 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3815 opt_rx->sack_ok) { 3816 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3817 } 3818 break; 3819 #ifdef CONFIG_TCP_MD5SIG 3820 case TCPOPT_MD5SIG: 3821 /* 3822 * The MD5 Hash has already been 3823 * checked (see tcp_v{4,6}_do_rcv()). 3824 */ 3825 break; 3826 #endif 3827 case TCPOPT_COOKIE: 3828 /* This option is variable length. 3829 */ 3830 switch (opsize) { 3831 case TCPOLEN_COOKIE_BASE: 3832 /* not yet implemented */ 3833 break; 3834 case TCPOLEN_COOKIE_PAIR: 3835 /* not yet implemented */ 3836 break; 3837 case TCPOLEN_COOKIE_MIN+0: 3838 case TCPOLEN_COOKIE_MIN+2: 3839 case TCPOLEN_COOKIE_MIN+4: 3840 case TCPOLEN_COOKIE_MIN+6: 3841 case TCPOLEN_COOKIE_MAX: 3842 /* 16-bit multiple */ 3843 opt_rx->cookie_plus = opsize; 3844 *hvpp = ptr; 3845 break; 3846 default: 3847 /* ignore option */ 3848 break; 3849 } 3850 break; 3851 } 3852 3853 ptr += opsize-2; 3854 length -= opsize; 3855 } 3856 } 3857 } 3858 EXPORT_SYMBOL(tcp_parse_options); 3859 3860 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th) 3861 { 3862 __be32 *ptr = (__be32 *)(th + 1); 3863 3864 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3865 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3866 tp->rx_opt.saw_tstamp = 1; 3867 ++ptr; 3868 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3869 ++ptr; 3870 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3871 return 1; 3872 } 3873 return 0; 3874 } 3875 3876 /* Fast parse options. This hopes to only see timestamps. 3877 * If it is wrong it falls back on tcp_parse_options(). 3878 */ 3879 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 3880 struct tcp_sock *tp, u8 **hvpp) 3881 { 3882 /* In the spirit of fast parsing, compare doff directly to constant 3883 * values. Because equality is used, short doff can be ignored here. 3884 */ 3885 if (th->doff == (sizeof(*th) / 4)) { 3886 tp->rx_opt.saw_tstamp = 0; 3887 return 0; 3888 } else if (tp->rx_opt.tstamp_ok && 3889 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3890 if (tcp_parse_aligned_timestamp(tp, th)) 3891 return 1; 3892 } 3893 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1); 3894 return 1; 3895 } 3896 3897 #ifdef CONFIG_TCP_MD5SIG 3898 /* 3899 * Parse MD5 Signature option 3900 */ 3901 u8 *tcp_parse_md5sig_option(struct tcphdr *th) 3902 { 3903 int length = (th->doff << 2) - sizeof (*th); 3904 u8 *ptr = (u8*)(th + 1); 3905 3906 /* If the TCP option is too short, we can short cut */ 3907 if (length < TCPOLEN_MD5SIG) 3908 return NULL; 3909 3910 while (length > 0) { 3911 int opcode = *ptr++; 3912 int opsize; 3913 3914 switch(opcode) { 3915 case TCPOPT_EOL: 3916 return NULL; 3917 case TCPOPT_NOP: 3918 length--; 3919 continue; 3920 default: 3921 opsize = *ptr++; 3922 if (opsize < 2 || opsize > length) 3923 return NULL; 3924 if (opcode == TCPOPT_MD5SIG) 3925 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3926 } 3927 ptr += opsize - 2; 3928 length -= opsize; 3929 } 3930 return NULL; 3931 } 3932 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3933 #endif 3934 3935 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3936 { 3937 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3938 tp->rx_opt.ts_recent_stamp = get_seconds(); 3939 } 3940 3941 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3942 { 3943 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3944 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3945 * extra check below makes sure this can only happen 3946 * for pure ACK frames. -DaveM 3947 * 3948 * Not only, also it occurs for expired timestamps. 3949 */ 3950 3951 if (tcp_paws_check(&tp->rx_opt, 0)) 3952 tcp_store_ts_recent(tp); 3953 } 3954 } 3955 3956 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3957 * 3958 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3959 * it can pass through stack. So, the following predicate verifies that 3960 * this segment is not used for anything but congestion avoidance or 3961 * fast retransmit. Moreover, we even are able to eliminate most of such 3962 * second order effects, if we apply some small "replay" window (~RTO) 3963 * to timestamp space. 3964 * 3965 * All these measures still do not guarantee that we reject wrapped ACKs 3966 * on networks with high bandwidth, when sequence space is recycled fastly, 3967 * but it guarantees that such events will be very rare and do not affect 3968 * connection seriously. This doesn't look nice, but alas, PAWS is really 3969 * buggy extension. 3970 * 3971 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3972 * states that events when retransmit arrives after original data are rare. 3973 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3974 * the biggest problem on large power networks even with minor reordering. 3975 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3976 * up to bandwidth of 18Gigabit/sec. 8) ] 3977 */ 3978 3979 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3980 { 3981 struct tcp_sock *tp = tcp_sk(sk); 3982 struct tcphdr *th = tcp_hdr(skb); 3983 u32 seq = TCP_SKB_CB(skb)->seq; 3984 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3985 3986 return (/* 1. Pure ACK with correct sequence number. */ 3987 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3988 3989 /* 2. ... and duplicate ACK. */ 3990 ack == tp->snd_una && 3991 3992 /* 3. ... and does not update window. */ 3993 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3994 3995 /* 4. ... and sits in replay window. */ 3996 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3997 } 3998 3999 static inline int tcp_paws_discard(const struct sock *sk, 4000 const struct sk_buff *skb) 4001 { 4002 const struct tcp_sock *tp = tcp_sk(sk); 4003 4004 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4005 !tcp_disordered_ack(sk, skb); 4006 } 4007 4008 /* Check segment sequence number for validity. 4009 * 4010 * Segment controls are considered valid, if the segment 4011 * fits to the window after truncation to the window. Acceptability 4012 * of data (and SYN, FIN, of course) is checked separately. 4013 * See tcp_data_queue(), for example. 4014 * 4015 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4016 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4017 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4018 * (borrowed from freebsd) 4019 */ 4020 4021 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 4022 { 4023 return !before(end_seq, tp->rcv_wup) && 4024 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4025 } 4026 4027 /* When we get a reset we do this. */ 4028 static void tcp_reset(struct sock *sk) 4029 { 4030 /* We want the right error as BSD sees it (and indeed as we do). */ 4031 switch (sk->sk_state) { 4032 case TCP_SYN_SENT: 4033 sk->sk_err = ECONNREFUSED; 4034 break; 4035 case TCP_CLOSE_WAIT: 4036 sk->sk_err = EPIPE; 4037 break; 4038 case TCP_CLOSE: 4039 return; 4040 default: 4041 sk->sk_err = ECONNRESET; 4042 } 4043 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4044 smp_wmb(); 4045 4046 if (!sock_flag(sk, SOCK_DEAD)) 4047 sk->sk_error_report(sk); 4048 4049 tcp_done(sk); 4050 } 4051 4052 /* 4053 * Process the FIN bit. This now behaves as it is supposed to work 4054 * and the FIN takes effect when it is validly part of sequence 4055 * space. Not before when we get holes. 4056 * 4057 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4058 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4059 * TIME-WAIT) 4060 * 4061 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4062 * close and we go into CLOSING (and later onto TIME-WAIT) 4063 * 4064 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4065 */ 4066 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 4067 { 4068 struct tcp_sock *tp = tcp_sk(sk); 4069 4070 inet_csk_schedule_ack(sk); 4071 4072 sk->sk_shutdown |= RCV_SHUTDOWN; 4073 sock_set_flag(sk, SOCK_DONE); 4074 4075 switch (sk->sk_state) { 4076 case TCP_SYN_RECV: 4077 case TCP_ESTABLISHED: 4078 /* Move to CLOSE_WAIT */ 4079 tcp_set_state(sk, TCP_CLOSE_WAIT); 4080 inet_csk(sk)->icsk_ack.pingpong = 1; 4081 break; 4082 4083 case TCP_CLOSE_WAIT: 4084 case TCP_CLOSING: 4085 /* Received a retransmission of the FIN, do 4086 * nothing. 4087 */ 4088 break; 4089 case TCP_LAST_ACK: 4090 /* RFC793: Remain in the LAST-ACK state. */ 4091 break; 4092 4093 case TCP_FIN_WAIT1: 4094 /* This case occurs when a simultaneous close 4095 * happens, we must ack the received FIN and 4096 * enter the CLOSING state. 4097 */ 4098 tcp_send_ack(sk); 4099 tcp_set_state(sk, TCP_CLOSING); 4100 break; 4101 case TCP_FIN_WAIT2: 4102 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4103 tcp_send_ack(sk); 4104 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4105 break; 4106 default: 4107 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4108 * cases we should never reach this piece of code. 4109 */ 4110 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 4111 __func__, sk->sk_state); 4112 break; 4113 } 4114 4115 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4116 * Probably, we should reset in this case. For now drop them. 4117 */ 4118 __skb_queue_purge(&tp->out_of_order_queue); 4119 if (tcp_is_sack(tp)) 4120 tcp_sack_reset(&tp->rx_opt); 4121 sk_mem_reclaim(sk); 4122 4123 if (!sock_flag(sk, SOCK_DEAD)) { 4124 sk->sk_state_change(sk); 4125 4126 /* Do not send POLL_HUP for half duplex close. */ 4127 if (sk->sk_shutdown == SHUTDOWN_MASK || 4128 sk->sk_state == TCP_CLOSE) 4129 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4130 else 4131 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4132 } 4133 } 4134 4135 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4136 u32 end_seq) 4137 { 4138 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4139 if (before(seq, sp->start_seq)) 4140 sp->start_seq = seq; 4141 if (after(end_seq, sp->end_seq)) 4142 sp->end_seq = end_seq; 4143 return 1; 4144 } 4145 return 0; 4146 } 4147 4148 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4149 { 4150 struct tcp_sock *tp = tcp_sk(sk); 4151 4152 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4153 int mib_idx; 4154 4155 if (before(seq, tp->rcv_nxt)) 4156 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4157 else 4158 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4159 4160 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4161 4162 tp->rx_opt.dsack = 1; 4163 tp->duplicate_sack[0].start_seq = seq; 4164 tp->duplicate_sack[0].end_seq = end_seq; 4165 } 4166 } 4167 4168 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4169 { 4170 struct tcp_sock *tp = tcp_sk(sk); 4171 4172 if (!tp->rx_opt.dsack) 4173 tcp_dsack_set(sk, seq, end_seq); 4174 else 4175 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4176 } 4177 4178 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 4179 { 4180 struct tcp_sock *tp = tcp_sk(sk); 4181 4182 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4183 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4184 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4185 tcp_enter_quickack_mode(sk); 4186 4187 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4188 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4189 4190 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4191 end_seq = tp->rcv_nxt; 4192 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4193 } 4194 } 4195 4196 tcp_send_ack(sk); 4197 } 4198 4199 /* These routines update the SACK block as out-of-order packets arrive or 4200 * in-order packets close up the sequence space. 4201 */ 4202 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4203 { 4204 int this_sack; 4205 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4206 struct tcp_sack_block *swalk = sp + 1; 4207 4208 /* See if the recent change to the first SACK eats into 4209 * or hits the sequence space of other SACK blocks, if so coalesce. 4210 */ 4211 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4212 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4213 int i; 4214 4215 /* Zap SWALK, by moving every further SACK up by one slot. 4216 * Decrease num_sacks. 4217 */ 4218 tp->rx_opt.num_sacks--; 4219 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4220 sp[i] = sp[i + 1]; 4221 continue; 4222 } 4223 this_sack++, swalk++; 4224 } 4225 } 4226 4227 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4228 { 4229 struct tcp_sock *tp = tcp_sk(sk); 4230 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4231 int cur_sacks = tp->rx_opt.num_sacks; 4232 int this_sack; 4233 4234 if (!cur_sacks) 4235 goto new_sack; 4236 4237 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4238 if (tcp_sack_extend(sp, seq, end_seq)) { 4239 /* Rotate this_sack to the first one. */ 4240 for (; this_sack > 0; this_sack--, sp--) 4241 swap(*sp, *(sp - 1)); 4242 if (cur_sacks > 1) 4243 tcp_sack_maybe_coalesce(tp); 4244 return; 4245 } 4246 } 4247 4248 /* Could not find an adjacent existing SACK, build a new one, 4249 * put it at the front, and shift everyone else down. We 4250 * always know there is at least one SACK present already here. 4251 * 4252 * If the sack array is full, forget about the last one. 4253 */ 4254 if (this_sack >= TCP_NUM_SACKS) { 4255 this_sack--; 4256 tp->rx_opt.num_sacks--; 4257 sp--; 4258 } 4259 for (; this_sack > 0; this_sack--, sp--) 4260 *sp = *(sp - 1); 4261 4262 new_sack: 4263 /* Build the new head SACK, and we're done. */ 4264 sp->start_seq = seq; 4265 sp->end_seq = end_seq; 4266 tp->rx_opt.num_sacks++; 4267 } 4268 4269 /* RCV.NXT advances, some SACKs should be eaten. */ 4270 4271 static void tcp_sack_remove(struct tcp_sock *tp) 4272 { 4273 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4274 int num_sacks = tp->rx_opt.num_sacks; 4275 int this_sack; 4276 4277 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4278 if (skb_queue_empty(&tp->out_of_order_queue)) { 4279 tp->rx_opt.num_sacks = 0; 4280 return; 4281 } 4282 4283 for (this_sack = 0; this_sack < num_sacks;) { 4284 /* Check if the start of the sack is covered by RCV.NXT. */ 4285 if (!before(tp->rcv_nxt, sp->start_seq)) { 4286 int i; 4287 4288 /* RCV.NXT must cover all the block! */ 4289 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4290 4291 /* Zap this SACK, by moving forward any other SACKS. */ 4292 for (i=this_sack+1; i < num_sacks; i++) 4293 tp->selective_acks[i-1] = tp->selective_acks[i]; 4294 num_sacks--; 4295 continue; 4296 } 4297 this_sack++; 4298 sp++; 4299 } 4300 tp->rx_opt.num_sacks = num_sacks; 4301 } 4302 4303 /* This one checks to see if we can put data from the 4304 * out_of_order queue into the receive_queue. 4305 */ 4306 static void tcp_ofo_queue(struct sock *sk) 4307 { 4308 struct tcp_sock *tp = tcp_sk(sk); 4309 __u32 dsack_high = tp->rcv_nxt; 4310 struct sk_buff *skb; 4311 4312 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4313 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4314 break; 4315 4316 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4317 __u32 dsack = dsack_high; 4318 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4319 dsack_high = TCP_SKB_CB(skb)->end_seq; 4320 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4321 } 4322 4323 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4324 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4325 __skb_unlink(skb, &tp->out_of_order_queue); 4326 __kfree_skb(skb); 4327 continue; 4328 } 4329 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4330 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4331 TCP_SKB_CB(skb)->end_seq); 4332 4333 __skb_unlink(skb, &tp->out_of_order_queue); 4334 __skb_queue_tail(&sk->sk_receive_queue, skb); 4335 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4336 if (tcp_hdr(skb)->fin) 4337 tcp_fin(skb, sk, tcp_hdr(skb)); 4338 } 4339 } 4340 4341 static int tcp_prune_ofo_queue(struct sock *sk); 4342 static int tcp_prune_queue(struct sock *sk); 4343 4344 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size) 4345 { 4346 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4347 !sk_rmem_schedule(sk, size)) { 4348 4349 if (tcp_prune_queue(sk) < 0) 4350 return -1; 4351 4352 if (!sk_rmem_schedule(sk, size)) { 4353 if (!tcp_prune_ofo_queue(sk)) 4354 return -1; 4355 4356 if (!sk_rmem_schedule(sk, size)) 4357 return -1; 4358 } 4359 } 4360 return 0; 4361 } 4362 4363 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4364 { 4365 struct tcphdr *th = tcp_hdr(skb); 4366 struct tcp_sock *tp = tcp_sk(sk); 4367 int eaten = -1; 4368 4369 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4370 goto drop; 4371 4372 skb_dst_drop(skb); 4373 __skb_pull(skb, th->doff * 4); 4374 4375 TCP_ECN_accept_cwr(tp, skb); 4376 4377 tp->rx_opt.dsack = 0; 4378 4379 /* Queue data for delivery to the user. 4380 * Packets in sequence go to the receive queue. 4381 * Out of sequence packets to the out_of_order_queue. 4382 */ 4383 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4384 if (tcp_receive_window(tp) == 0) 4385 goto out_of_window; 4386 4387 /* Ok. In sequence. In window. */ 4388 if (tp->ucopy.task == current && 4389 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4390 sock_owned_by_user(sk) && !tp->urg_data) { 4391 int chunk = min_t(unsigned int, skb->len, 4392 tp->ucopy.len); 4393 4394 __set_current_state(TASK_RUNNING); 4395 4396 local_bh_enable(); 4397 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4398 tp->ucopy.len -= chunk; 4399 tp->copied_seq += chunk; 4400 eaten = (chunk == skb->len && !th->fin); 4401 tcp_rcv_space_adjust(sk); 4402 } 4403 local_bh_disable(); 4404 } 4405 4406 if (eaten <= 0) { 4407 queue_and_out: 4408 if (eaten < 0 && 4409 tcp_try_rmem_schedule(sk, skb->truesize)) 4410 goto drop; 4411 4412 skb_set_owner_r(skb, sk); 4413 __skb_queue_tail(&sk->sk_receive_queue, skb); 4414 } 4415 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4416 if (skb->len) 4417 tcp_event_data_recv(sk, skb); 4418 if (th->fin) 4419 tcp_fin(skb, sk, th); 4420 4421 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4422 tcp_ofo_queue(sk); 4423 4424 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4425 * gap in queue is filled. 4426 */ 4427 if (skb_queue_empty(&tp->out_of_order_queue)) 4428 inet_csk(sk)->icsk_ack.pingpong = 0; 4429 } 4430 4431 if (tp->rx_opt.num_sacks) 4432 tcp_sack_remove(tp); 4433 4434 tcp_fast_path_check(sk); 4435 4436 if (eaten > 0) 4437 __kfree_skb(skb); 4438 else if (!sock_flag(sk, SOCK_DEAD)) 4439 sk->sk_data_ready(sk, 0); 4440 return; 4441 } 4442 4443 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4444 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4445 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4446 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4447 4448 out_of_window: 4449 tcp_enter_quickack_mode(sk); 4450 inet_csk_schedule_ack(sk); 4451 drop: 4452 __kfree_skb(skb); 4453 return; 4454 } 4455 4456 /* Out of window. F.e. zero window probe. */ 4457 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4458 goto out_of_window; 4459 4460 tcp_enter_quickack_mode(sk); 4461 4462 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4463 /* Partial packet, seq < rcv_next < end_seq */ 4464 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4465 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4466 TCP_SKB_CB(skb)->end_seq); 4467 4468 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4469 4470 /* If window is closed, drop tail of packet. But after 4471 * remembering D-SACK for its head made in previous line. 4472 */ 4473 if (!tcp_receive_window(tp)) 4474 goto out_of_window; 4475 goto queue_and_out; 4476 } 4477 4478 TCP_ECN_check_ce(tp, skb); 4479 4480 if (tcp_try_rmem_schedule(sk, skb->truesize)) 4481 goto drop; 4482 4483 /* Disable header prediction. */ 4484 tp->pred_flags = 0; 4485 inet_csk_schedule_ack(sk); 4486 4487 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4488 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4489 4490 skb_set_owner_r(skb, sk); 4491 4492 if (!skb_peek(&tp->out_of_order_queue)) { 4493 /* Initial out of order segment, build 1 SACK. */ 4494 if (tcp_is_sack(tp)) { 4495 tp->rx_opt.num_sacks = 1; 4496 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4497 tp->selective_acks[0].end_seq = 4498 TCP_SKB_CB(skb)->end_seq; 4499 } 4500 __skb_queue_head(&tp->out_of_order_queue, skb); 4501 } else { 4502 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue); 4503 u32 seq = TCP_SKB_CB(skb)->seq; 4504 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4505 4506 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4507 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4508 4509 if (!tp->rx_opt.num_sacks || 4510 tp->selective_acks[0].end_seq != seq) 4511 goto add_sack; 4512 4513 /* Common case: data arrive in order after hole. */ 4514 tp->selective_acks[0].end_seq = end_seq; 4515 return; 4516 } 4517 4518 /* Find place to insert this segment. */ 4519 while (1) { 4520 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4521 break; 4522 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4523 skb1 = NULL; 4524 break; 4525 } 4526 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4527 } 4528 4529 /* Do skb overlap to previous one? */ 4530 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4531 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4532 /* All the bits are present. Drop. */ 4533 __kfree_skb(skb); 4534 tcp_dsack_set(sk, seq, end_seq); 4535 goto add_sack; 4536 } 4537 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4538 /* Partial overlap. */ 4539 tcp_dsack_set(sk, seq, 4540 TCP_SKB_CB(skb1)->end_seq); 4541 } else { 4542 if (skb_queue_is_first(&tp->out_of_order_queue, 4543 skb1)) 4544 skb1 = NULL; 4545 else 4546 skb1 = skb_queue_prev( 4547 &tp->out_of_order_queue, 4548 skb1); 4549 } 4550 } 4551 if (!skb1) 4552 __skb_queue_head(&tp->out_of_order_queue, skb); 4553 else 4554 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4555 4556 /* And clean segments covered by new one as whole. */ 4557 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4558 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4559 4560 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4561 break; 4562 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4563 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4564 end_seq); 4565 break; 4566 } 4567 __skb_unlink(skb1, &tp->out_of_order_queue); 4568 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4569 TCP_SKB_CB(skb1)->end_seq); 4570 __kfree_skb(skb1); 4571 } 4572 4573 add_sack: 4574 if (tcp_is_sack(tp)) 4575 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4576 } 4577 } 4578 4579 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4580 struct sk_buff_head *list) 4581 { 4582 struct sk_buff *next = NULL; 4583 4584 if (!skb_queue_is_last(list, skb)) 4585 next = skb_queue_next(list, skb); 4586 4587 __skb_unlink(skb, list); 4588 __kfree_skb(skb); 4589 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4590 4591 return next; 4592 } 4593 4594 /* Collapse contiguous sequence of skbs head..tail with 4595 * sequence numbers start..end. 4596 * 4597 * If tail is NULL, this means until the end of the list. 4598 * 4599 * Segments with FIN/SYN are not collapsed (only because this 4600 * simplifies code) 4601 */ 4602 static void 4603 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4604 struct sk_buff *head, struct sk_buff *tail, 4605 u32 start, u32 end) 4606 { 4607 struct sk_buff *skb, *n; 4608 bool end_of_skbs; 4609 4610 /* First, check that queue is collapsible and find 4611 * the point where collapsing can be useful. */ 4612 skb = head; 4613 restart: 4614 end_of_skbs = true; 4615 skb_queue_walk_from_safe(list, skb, n) { 4616 if (skb == tail) 4617 break; 4618 /* No new bits? It is possible on ofo queue. */ 4619 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4620 skb = tcp_collapse_one(sk, skb, list); 4621 if (!skb) 4622 break; 4623 goto restart; 4624 } 4625 4626 /* The first skb to collapse is: 4627 * - not SYN/FIN and 4628 * - bloated or contains data before "start" or 4629 * overlaps to the next one. 4630 */ 4631 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4632 (tcp_win_from_space(skb->truesize) > skb->len || 4633 before(TCP_SKB_CB(skb)->seq, start))) { 4634 end_of_skbs = false; 4635 break; 4636 } 4637 4638 if (!skb_queue_is_last(list, skb)) { 4639 struct sk_buff *next = skb_queue_next(list, skb); 4640 if (next != tail && 4641 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4642 end_of_skbs = false; 4643 break; 4644 } 4645 } 4646 4647 /* Decided to skip this, advance start seq. */ 4648 start = TCP_SKB_CB(skb)->end_seq; 4649 } 4650 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4651 return; 4652 4653 while (before(start, end)) { 4654 struct sk_buff *nskb; 4655 unsigned int header = skb_headroom(skb); 4656 int copy = SKB_MAX_ORDER(header, 0); 4657 4658 /* Too big header? This can happen with IPv6. */ 4659 if (copy < 0) 4660 return; 4661 if (end - start < copy) 4662 copy = end - start; 4663 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4664 if (!nskb) 4665 return; 4666 4667 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4668 skb_set_network_header(nskb, (skb_network_header(skb) - 4669 skb->head)); 4670 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4671 skb->head)); 4672 skb_reserve(nskb, header); 4673 memcpy(nskb->head, skb->head, header); 4674 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4675 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4676 __skb_queue_before(list, skb, nskb); 4677 skb_set_owner_r(nskb, sk); 4678 4679 /* Copy data, releasing collapsed skbs. */ 4680 while (copy > 0) { 4681 int offset = start - TCP_SKB_CB(skb)->seq; 4682 int size = TCP_SKB_CB(skb)->end_seq - start; 4683 4684 BUG_ON(offset < 0); 4685 if (size > 0) { 4686 size = min(copy, size); 4687 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4688 BUG(); 4689 TCP_SKB_CB(nskb)->end_seq += size; 4690 copy -= size; 4691 start += size; 4692 } 4693 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4694 skb = tcp_collapse_one(sk, skb, list); 4695 if (!skb || 4696 skb == tail || 4697 tcp_hdr(skb)->syn || 4698 tcp_hdr(skb)->fin) 4699 return; 4700 } 4701 } 4702 } 4703 } 4704 4705 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4706 * and tcp_collapse() them until all the queue is collapsed. 4707 */ 4708 static void tcp_collapse_ofo_queue(struct sock *sk) 4709 { 4710 struct tcp_sock *tp = tcp_sk(sk); 4711 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4712 struct sk_buff *head; 4713 u32 start, end; 4714 4715 if (skb == NULL) 4716 return; 4717 4718 start = TCP_SKB_CB(skb)->seq; 4719 end = TCP_SKB_CB(skb)->end_seq; 4720 head = skb; 4721 4722 for (;;) { 4723 struct sk_buff *next = NULL; 4724 4725 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4726 next = skb_queue_next(&tp->out_of_order_queue, skb); 4727 skb = next; 4728 4729 /* Segment is terminated when we see gap or when 4730 * we are at the end of all the queue. */ 4731 if (!skb || 4732 after(TCP_SKB_CB(skb)->seq, end) || 4733 before(TCP_SKB_CB(skb)->end_seq, start)) { 4734 tcp_collapse(sk, &tp->out_of_order_queue, 4735 head, skb, start, end); 4736 head = skb; 4737 if (!skb) 4738 break; 4739 /* Start new segment */ 4740 start = TCP_SKB_CB(skb)->seq; 4741 end = TCP_SKB_CB(skb)->end_seq; 4742 } else { 4743 if (before(TCP_SKB_CB(skb)->seq, start)) 4744 start = TCP_SKB_CB(skb)->seq; 4745 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4746 end = TCP_SKB_CB(skb)->end_seq; 4747 } 4748 } 4749 } 4750 4751 /* 4752 * Purge the out-of-order queue. 4753 * Return true if queue was pruned. 4754 */ 4755 static int tcp_prune_ofo_queue(struct sock *sk) 4756 { 4757 struct tcp_sock *tp = tcp_sk(sk); 4758 int res = 0; 4759 4760 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4761 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4762 __skb_queue_purge(&tp->out_of_order_queue); 4763 4764 /* Reset SACK state. A conforming SACK implementation will 4765 * do the same at a timeout based retransmit. When a connection 4766 * is in a sad state like this, we care only about integrity 4767 * of the connection not performance. 4768 */ 4769 if (tp->rx_opt.sack_ok) 4770 tcp_sack_reset(&tp->rx_opt); 4771 sk_mem_reclaim(sk); 4772 res = 1; 4773 } 4774 return res; 4775 } 4776 4777 /* Reduce allocated memory if we can, trying to get 4778 * the socket within its memory limits again. 4779 * 4780 * Return less than zero if we should start dropping frames 4781 * until the socket owning process reads some of the data 4782 * to stabilize the situation. 4783 */ 4784 static int tcp_prune_queue(struct sock *sk) 4785 { 4786 struct tcp_sock *tp = tcp_sk(sk); 4787 4788 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4789 4790 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4791 4792 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4793 tcp_clamp_window(sk); 4794 else if (tcp_memory_pressure) 4795 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4796 4797 tcp_collapse_ofo_queue(sk); 4798 if (!skb_queue_empty(&sk->sk_receive_queue)) 4799 tcp_collapse(sk, &sk->sk_receive_queue, 4800 skb_peek(&sk->sk_receive_queue), 4801 NULL, 4802 tp->copied_seq, tp->rcv_nxt); 4803 sk_mem_reclaim(sk); 4804 4805 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4806 return 0; 4807 4808 /* Collapsing did not help, destructive actions follow. 4809 * This must not ever occur. */ 4810 4811 tcp_prune_ofo_queue(sk); 4812 4813 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4814 return 0; 4815 4816 /* If we are really being abused, tell the caller to silently 4817 * drop receive data on the floor. It will get retransmitted 4818 * and hopefully then we'll have sufficient space. 4819 */ 4820 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4821 4822 /* Massive buffer overcommit. */ 4823 tp->pred_flags = 0; 4824 return -1; 4825 } 4826 4827 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4828 * As additional protections, we do not touch cwnd in retransmission phases, 4829 * and if application hit its sndbuf limit recently. 4830 */ 4831 void tcp_cwnd_application_limited(struct sock *sk) 4832 { 4833 struct tcp_sock *tp = tcp_sk(sk); 4834 4835 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4836 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4837 /* Limited by application or receiver window. */ 4838 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4839 u32 win_used = max(tp->snd_cwnd_used, init_win); 4840 if (win_used < tp->snd_cwnd) { 4841 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4842 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4843 } 4844 tp->snd_cwnd_used = 0; 4845 } 4846 tp->snd_cwnd_stamp = tcp_time_stamp; 4847 } 4848 4849 static int tcp_should_expand_sndbuf(struct sock *sk) 4850 { 4851 struct tcp_sock *tp = tcp_sk(sk); 4852 4853 /* If the user specified a specific send buffer setting, do 4854 * not modify it. 4855 */ 4856 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4857 return 0; 4858 4859 /* If we are under global TCP memory pressure, do not expand. */ 4860 if (tcp_memory_pressure) 4861 return 0; 4862 4863 /* If we are under soft global TCP memory pressure, do not expand. */ 4864 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 4865 return 0; 4866 4867 /* If we filled the congestion window, do not expand. */ 4868 if (tp->packets_out >= tp->snd_cwnd) 4869 return 0; 4870 4871 return 1; 4872 } 4873 4874 /* When incoming ACK allowed to free some skb from write_queue, 4875 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4876 * on the exit from tcp input handler. 4877 * 4878 * PROBLEM: sndbuf expansion does not work well with largesend. 4879 */ 4880 static void tcp_new_space(struct sock *sk) 4881 { 4882 struct tcp_sock *tp = tcp_sk(sk); 4883 4884 if (tcp_should_expand_sndbuf(sk)) { 4885 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 4886 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 4887 int demanded = max_t(unsigned int, tp->snd_cwnd, 4888 tp->reordering + 1); 4889 sndmem *= 2 * demanded; 4890 if (sndmem > sk->sk_sndbuf) 4891 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4892 tp->snd_cwnd_stamp = tcp_time_stamp; 4893 } 4894 4895 sk->sk_write_space(sk); 4896 } 4897 4898 static void tcp_check_space(struct sock *sk) 4899 { 4900 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4901 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4902 if (sk->sk_socket && 4903 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4904 tcp_new_space(sk); 4905 } 4906 } 4907 4908 static inline void tcp_data_snd_check(struct sock *sk) 4909 { 4910 tcp_push_pending_frames(sk); 4911 tcp_check_space(sk); 4912 } 4913 4914 /* 4915 * Check if sending an ack is needed. 4916 */ 4917 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4918 { 4919 struct tcp_sock *tp = tcp_sk(sk); 4920 4921 /* More than one full frame received... */ 4922 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4923 /* ... and right edge of window advances far enough. 4924 * (tcp_recvmsg() will send ACK otherwise). Or... 4925 */ 4926 __tcp_select_window(sk) >= tp->rcv_wnd) || 4927 /* We ACK each frame or... */ 4928 tcp_in_quickack_mode(sk) || 4929 /* We have out of order data. */ 4930 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4931 /* Then ack it now */ 4932 tcp_send_ack(sk); 4933 } else { 4934 /* Else, send delayed ack. */ 4935 tcp_send_delayed_ack(sk); 4936 } 4937 } 4938 4939 static inline void tcp_ack_snd_check(struct sock *sk) 4940 { 4941 if (!inet_csk_ack_scheduled(sk)) { 4942 /* We sent a data segment already. */ 4943 return; 4944 } 4945 __tcp_ack_snd_check(sk, 1); 4946 } 4947 4948 /* 4949 * This routine is only called when we have urgent data 4950 * signaled. Its the 'slow' part of tcp_urg. It could be 4951 * moved inline now as tcp_urg is only called from one 4952 * place. We handle URGent data wrong. We have to - as 4953 * BSD still doesn't use the correction from RFC961. 4954 * For 1003.1g we should support a new option TCP_STDURG to permit 4955 * either form (or just set the sysctl tcp_stdurg). 4956 */ 4957 4958 static void tcp_check_urg(struct sock *sk, struct tcphdr *th) 4959 { 4960 struct tcp_sock *tp = tcp_sk(sk); 4961 u32 ptr = ntohs(th->urg_ptr); 4962 4963 if (ptr && !sysctl_tcp_stdurg) 4964 ptr--; 4965 ptr += ntohl(th->seq); 4966 4967 /* Ignore urgent data that we've already seen and read. */ 4968 if (after(tp->copied_seq, ptr)) 4969 return; 4970 4971 /* Do not replay urg ptr. 4972 * 4973 * NOTE: interesting situation not covered by specs. 4974 * Misbehaving sender may send urg ptr, pointing to segment, 4975 * which we already have in ofo queue. We are not able to fetch 4976 * such data and will stay in TCP_URG_NOTYET until will be eaten 4977 * by recvmsg(). Seems, we are not obliged to handle such wicked 4978 * situations. But it is worth to think about possibility of some 4979 * DoSes using some hypothetical application level deadlock. 4980 */ 4981 if (before(ptr, tp->rcv_nxt)) 4982 return; 4983 4984 /* Do we already have a newer (or duplicate) urgent pointer? */ 4985 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4986 return; 4987 4988 /* Tell the world about our new urgent pointer. */ 4989 sk_send_sigurg(sk); 4990 4991 /* We may be adding urgent data when the last byte read was 4992 * urgent. To do this requires some care. We cannot just ignore 4993 * tp->copied_seq since we would read the last urgent byte again 4994 * as data, nor can we alter copied_seq until this data arrives 4995 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4996 * 4997 * NOTE. Double Dutch. Rendering to plain English: author of comment 4998 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4999 * and expect that both A and B disappear from stream. This is _wrong_. 5000 * Though this happens in BSD with high probability, this is occasional. 5001 * Any application relying on this is buggy. Note also, that fix "works" 5002 * only in this artificial test. Insert some normal data between A and B and we will 5003 * decline of BSD again. Verdict: it is better to remove to trap 5004 * buggy users. 5005 */ 5006 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5007 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5008 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5009 tp->copied_seq++; 5010 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5011 __skb_unlink(skb, &sk->sk_receive_queue); 5012 __kfree_skb(skb); 5013 } 5014 } 5015 5016 tp->urg_data = TCP_URG_NOTYET; 5017 tp->urg_seq = ptr; 5018 5019 /* Disable header prediction. */ 5020 tp->pred_flags = 0; 5021 } 5022 5023 /* This is the 'fast' part of urgent handling. */ 5024 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 5025 { 5026 struct tcp_sock *tp = tcp_sk(sk); 5027 5028 /* Check if we get a new urgent pointer - normally not. */ 5029 if (th->urg) 5030 tcp_check_urg(sk, th); 5031 5032 /* Do we wait for any urgent data? - normally not... */ 5033 if (tp->urg_data == TCP_URG_NOTYET) { 5034 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5035 th->syn; 5036 5037 /* Is the urgent pointer pointing into this packet? */ 5038 if (ptr < skb->len) { 5039 u8 tmp; 5040 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5041 BUG(); 5042 tp->urg_data = TCP_URG_VALID | tmp; 5043 if (!sock_flag(sk, SOCK_DEAD)) 5044 sk->sk_data_ready(sk, 0); 5045 } 5046 } 5047 } 5048 5049 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5050 { 5051 struct tcp_sock *tp = tcp_sk(sk); 5052 int chunk = skb->len - hlen; 5053 int err; 5054 5055 local_bh_enable(); 5056 if (skb_csum_unnecessary(skb)) 5057 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 5058 else 5059 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 5060 tp->ucopy.iov); 5061 5062 if (!err) { 5063 tp->ucopy.len -= chunk; 5064 tp->copied_seq += chunk; 5065 tcp_rcv_space_adjust(sk); 5066 } 5067 5068 local_bh_disable(); 5069 return err; 5070 } 5071 5072 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5073 struct sk_buff *skb) 5074 { 5075 __sum16 result; 5076 5077 if (sock_owned_by_user(sk)) { 5078 local_bh_enable(); 5079 result = __tcp_checksum_complete(skb); 5080 local_bh_disable(); 5081 } else { 5082 result = __tcp_checksum_complete(skb); 5083 } 5084 return result; 5085 } 5086 5087 static inline int tcp_checksum_complete_user(struct sock *sk, 5088 struct sk_buff *skb) 5089 { 5090 return !skb_csum_unnecessary(skb) && 5091 __tcp_checksum_complete_user(sk, skb); 5092 } 5093 5094 #ifdef CONFIG_NET_DMA 5095 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 5096 int hlen) 5097 { 5098 struct tcp_sock *tp = tcp_sk(sk); 5099 int chunk = skb->len - hlen; 5100 int dma_cookie; 5101 int copied_early = 0; 5102 5103 if (tp->ucopy.wakeup) 5104 return 0; 5105 5106 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 5107 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 5108 5109 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 5110 5111 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 5112 skb, hlen, 5113 tp->ucopy.iov, chunk, 5114 tp->ucopy.pinned_list); 5115 5116 if (dma_cookie < 0) 5117 goto out; 5118 5119 tp->ucopy.dma_cookie = dma_cookie; 5120 copied_early = 1; 5121 5122 tp->ucopy.len -= chunk; 5123 tp->copied_seq += chunk; 5124 tcp_rcv_space_adjust(sk); 5125 5126 if ((tp->ucopy.len == 0) || 5127 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5128 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5129 tp->ucopy.wakeup = 1; 5130 sk->sk_data_ready(sk, 0); 5131 } 5132 } else if (chunk > 0) { 5133 tp->ucopy.wakeup = 1; 5134 sk->sk_data_ready(sk, 0); 5135 } 5136 out: 5137 return copied_early; 5138 } 5139 #endif /* CONFIG_NET_DMA */ 5140 5141 /* Does PAWS and seqno based validation of an incoming segment, flags will 5142 * play significant role here. 5143 */ 5144 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5145 struct tcphdr *th, int syn_inerr) 5146 { 5147 u8 *hash_location; 5148 struct tcp_sock *tp = tcp_sk(sk); 5149 5150 /* RFC1323: H1. Apply PAWS check first. */ 5151 if (tcp_fast_parse_options(skb, th, tp, &hash_location) && 5152 tp->rx_opt.saw_tstamp && 5153 tcp_paws_discard(sk, skb)) { 5154 if (!th->rst) { 5155 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5156 tcp_send_dupack(sk, skb); 5157 goto discard; 5158 } 5159 /* Reset is accepted even if it did not pass PAWS. */ 5160 } 5161 5162 /* Step 1: check sequence number */ 5163 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5164 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5165 * (RST) segments are validated by checking their SEQ-fields." 5166 * And page 69: "If an incoming segment is not acceptable, 5167 * an acknowledgment should be sent in reply (unless the RST 5168 * bit is set, if so drop the segment and return)". 5169 */ 5170 if (!th->rst) 5171 tcp_send_dupack(sk, skb); 5172 goto discard; 5173 } 5174 5175 /* Step 2: check RST bit */ 5176 if (th->rst) { 5177 tcp_reset(sk); 5178 goto discard; 5179 } 5180 5181 /* ts_recent update must be made after we are sure that the packet 5182 * is in window. 5183 */ 5184 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5185 5186 /* step 3: check security and precedence [ignored] */ 5187 5188 /* step 4: Check for a SYN in window. */ 5189 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5190 if (syn_inerr) 5191 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5192 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN); 5193 tcp_reset(sk); 5194 return -1; 5195 } 5196 5197 return 1; 5198 5199 discard: 5200 __kfree_skb(skb); 5201 return 0; 5202 } 5203 5204 /* 5205 * TCP receive function for the ESTABLISHED state. 5206 * 5207 * It is split into a fast path and a slow path. The fast path is 5208 * disabled when: 5209 * - A zero window was announced from us - zero window probing 5210 * is only handled properly in the slow path. 5211 * - Out of order segments arrived. 5212 * - Urgent data is expected. 5213 * - There is no buffer space left 5214 * - Unexpected TCP flags/window values/header lengths are received 5215 * (detected by checking the TCP header against pred_flags) 5216 * - Data is sent in both directions. Fast path only supports pure senders 5217 * or pure receivers (this means either the sequence number or the ack 5218 * value must stay constant) 5219 * - Unexpected TCP option. 5220 * 5221 * When these conditions are not satisfied it drops into a standard 5222 * receive procedure patterned after RFC793 to handle all cases. 5223 * The first three cases are guaranteed by proper pred_flags setting, 5224 * the rest is checked inline. Fast processing is turned on in 5225 * tcp_data_queue when everything is OK. 5226 */ 5227 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5228 struct tcphdr *th, unsigned len) 5229 { 5230 struct tcp_sock *tp = tcp_sk(sk); 5231 int res; 5232 5233 /* 5234 * Header prediction. 5235 * The code loosely follows the one in the famous 5236 * "30 instruction TCP receive" Van Jacobson mail. 5237 * 5238 * Van's trick is to deposit buffers into socket queue 5239 * on a device interrupt, to call tcp_recv function 5240 * on the receive process context and checksum and copy 5241 * the buffer to user space. smart... 5242 * 5243 * Our current scheme is not silly either but we take the 5244 * extra cost of the net_bh soft interrupt processing... 5245 * We do checksum and copy also but from device to kernel. 5246 */ 5247 5248 tp->rx_opt.saw_tstamp = 0; 5249 5250 /* pred_flags is 0xS?10 << 16 + snd_wnd 5251 * if header_prediction is to be made 5252 * 'S' will always be tp->tcp_header_len >> 2 5253 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5254 * turn it off (when there are holes in the receive 5255 * space for instance) 5256 * PSH flag is ignored. 5257 */ 5258 5259 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5260 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5261 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5262 int tcp_header_len = tp->tcp_header_len; 5263 5264 /* Timestamp header prediction: tcp_header_len 5265 * is automatically equal to th->doff*4 due to pred_flags 5266 * match. 5267 */ 5268 5269 /* Check timestamp */ 5270 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5271 /* No? Slow path! */ 5272 if (!tcp_parse_aligned_timestamp(tp, th)) 5273 goto slow_path; 5274 5275 /* If PAWS failed, check it more carefully in slow path */ 5276 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5277 goto slow_path; 5278 5279 /* DO NOT update ts_recent here, if checksum fails 5280 * and timestamp was corrupted part, it will result 5281 * in a hung connection since we will drop all 5282 * future packets due to the PAWS test. 5283 */ 5284 } 5285 5286 if (len <= tcp_header_len) { 5287 /* Bulk data transfer: sender */ 5288 if (len == tcp_header_len) { 5289 /* Predicted packet is in window by definition. 5290 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5291 * Hence, check seq<=rcv_wup reduces to: 5292 */ 5293 if (tcp_header_len == 5294 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5295 tp->rcv_nxt == tp->rcv_wup) 5296 tcp_store_ts_recent(tp); 5297 5298 /* We know that such packets are checksummed 5299 * on entry. 5300 */ 5301 tcp_ack(sk, skb, 0); 5302 __kfree_skb(skb); 5303 tcp_data_snd_check(sk); 5304 return 0; 5305 } else { /* Header too small */ 5306 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5307 goto discard; 5308 } 5309 } else { 5310 int eaten = 0; 5311 int copied_early = 0; 5312 5313 if (tp->copied_seq == tp->rcv_nxt && 5314 len - tcp_header_len <= tp->ucopy.len) { 5315 #ifdef CONFIG_NET_DMA 5316 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5317 copied_early = 1; 5318 eaten = 1; 5319 } 5320 #endif 5321 if (tp->ucopy.task == current && 5322 sock_owned_by_user(sk) && !copied_early) { 5323 __set_current_state(TASK_RUNNING); 5324 5325 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5326 eaten = 1; 5327 } 5328 if (eaten) { 5329 /* Predicted packet is in window by definition. 5330 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5331 * Hence, check seq<=rcv_wup reduces to: 5332 */ 5333 if (tcp_header_len == 5334 (sizeof(struct tcphdr) + 5335 TCPOLEN_TSTAMP_ALIGNED) && 5336 tp->rcv_nxt == tp->rcv_wup) 5337 tcp_store_ts_recent(tp); 5338 5339 tcp_rcv_rtt_measure_ts(sk, skb); 5340 5341 __skb_pull(skb, tcp_header_len); 5342 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5343 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5344 } 5345 if (copied_early) 5346 tcp_cleanup_rbuf(sk, skb->len); 5347 } 5348 if (!eaten) { 5349 if (tcp_checksum_complete_user(sk, skb)) 5350 goto csum_error; 5351 5352 /* Predicted packet is in window by definition. 5353 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5354 * Hence, check seq<=rcv_wup reduces to: 5355 */ 5356 if (tcp_header_len == 5357 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5358 tp->rcv_nxt == tp->rcv_wup) 5359 tcp_store_ts_recent(tp); 5360 5361 tcp_rcv_rtt_measure_ts(sk, skb); 5362 5363 if ((int)skb->truesize > sk->sk_forward_alloc) 5364 goto step5; 5365 5366 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5367 5368 /* Bulk data transfer: receiver */ 5369 __skb_pull(skb, tcp_header_len); 5370 __skb_queue_tail(&sk->sk_receive_queue, skb); 5371 skb_set_owner_r(skb, sk); 5372 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5373 } 5374 5375 tcp_event_data_recv(sk, skb); 5376 5377 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5378 /* Well, only one small jumplet in fast path... */ 5379 tcp_ack(sk, skb, FLAG_DATA); 5380 tcp_data_snd_check(sk); 5381 if (!inet_csk_ack_scheduled(sk)) 5382 goto no_ack; 5383 } 5384 5385 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5386 __tcp_ack_snd_check(sk, 0); 5387 no_ack: 5388 #ifdef CONFIG_NET_DMA 5389 if (copied_early) 5390 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5391 else 5392 #endif 5393 if (eaten) 5394 __kfree_skb(skb); 5395 else 5396 sk->sk_data_ready(sk, 0); 5397 return 0; 5398 } 5399 } 5400 5401 slow_path: 5402 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5403 goto csum_error; 5404 5405 /* 5406 * Standard slow path. 5407 */ 5408 5409 res = tcp_validate_incoming(sk, skb, th, 1); 5410 if (res <= 0) 5411 return -res; 5412 5413 step5: 5414 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0) 5415 goto discard; 5416 5417 tcp_rcv_rtt_measure_ts(sk, skb); 5418 5419 /* Process urgent data. */ 5420 tcp_urg(sk, skb, th); 5421 5422 /* step 7: process the segment text */ 5423 tcp_data_queue(sk, skb); 5424 5425 tcp_data_snd_check(sk); 5426 tcp_ack_snd_check(sk); 5427 return 0; 5428 5429 csum_error: 5430 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5431 5432 discard: 5433 __kfree_skb(skb); 5434 return 0; 5435 } 5436 EXPORT_SYMBOL(tcp_rcv_established); 5437 5438 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5439 struct tcphdr *th, unsigned len) 5440 { 5441 u8 *hash_location; 5442 struct inet_connection_sock *icsk = inet_csk(sk); 5443 struct tcp_sock *tp = tcp_sk(sk); 5444 struct tcp_cookie_values *cvp = tp->cookie_values; 5445 int saved_clamp = tp->rx_opt.mss_clamp; 5446 5447 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0); 5448 5449 if (th->ack) { 5450 /* rfc793: 5451 * "If the state is SYN-SENT then 5452 * first check the ACK bit 5453 * If the ACK bit is set 5454 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5455 * a reset (unless the RST bit is set, if so drop 5456 * the segment and return)" 5457 * 5458 * We do not send data with SYN, so that RFC-correct 5459 * test reduces to: 5460 */ 5461 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 5462 goto reset_and_undo; 5463 5464 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5465 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5466 tcp_time_stamp)) { 5467 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5468 goto reset_and_undo; 5469 } 5470 5471 /* Now ACK is acceptable. 5472 * 5473 * "If the RST bit is set 5474 * If the ACK was acceptable then signal the user "error: 5475 * connection reset", drop the segment, enter CLOSED state, 5476 * delete TCB, and return." 5477 */ 5478 5479 if (th->rst) { 5480 tcp_reset(sk); 5481 goto discard; 5482 } 5483 5484 /* rfc793: 5485 * "fifth, if neither of the SYN or RST bits is set then 5486 * drop the segment and return." 5487 * 5488 * See note below! 5489 * --ANK(990513) 5490 */ 5491 if (!th->syn) 5492 goto discard_and_undo; 5493 5494 /* rfc793: 5495 * "If the SYN bit is on ... 5496 * are acceptable then ... 5497 * (our SYN has been ACKed), change the connection 5498 * state to ESTABLISHED..." 5499 */ 5500 5501 TCP_ECN_rcv_synack(tp, th); 5502 5503 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5504 tcp_ack(sk, skb, FLAG_SLOWPATH); 5505 5506 /* Ok.. it's good. Set up sequence numbers and 5507 * move to established. 5508 */ 5509 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5510 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5511 5512 /* RFC1323: The window in SYN & SYN/ACK segments is 5513 * never scaled. 5514 */ 5515 tp->snd_wnd = ntohs(th->window); 5516 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5517 5518 if (!tp->rx_opt.wscale_ok) { 5519 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5520 tp->window_clamp = min(tp->window_clamp, 65535U); 5521 } 5522 5523 if (tp->rx_opt.saw_tstamp) { 5524 tp->rx_opt.tstamp_ok = 1; 5525 tp->tcp_header_len = 5526 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5527 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5528 tcp_store_ts_recent(tp); 5529 } else { 5530 tp->tcp_header_len = sizeof(struct tcphdr); 5531 } 5532 5533 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5534 tcp_enable_fack(tp); 5535 5536 tcp_mtup_init(sk); 5537 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5538 tcp_initialize_rcv_mss(sk); 5539 5540 /* Remember, tcp_poll() does not lock socket! 5541 * Change state from SYN-SENT only after copied_seq 5542 * is initialized. */ 5543 tp->copied_seq = tp->rcv_nxt; 5544 5545 if (cvp != NULL && 5546 cvp->cookie_pair_size > 0 && 5547 tp->rx_opt.cookie_plus > 0) { 5548 int cookie_size = tp->rx_opt.cookie_plus 5549 - TCPOLEN_COOKIE_BASE; 5550 int cookie_pair_size = cookie_size 5551 + cvp->cookie_desired; 5552 5553 /* A cookie extension option was sent and returned. 5554 * Note that each incoming SYNACK replaces the 5555 * Responder cookie. The initial exchange is most 5556 * fragile, as protection against spoofing relies 5557 * entirely upon the sequence and timestamp (above). 5558 * This replacement strategy allows the correct pair to 5559 * pass through, while any others will be filtered via 5560 * Responder verification later. 5561 */ 5562 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) { 5563 memcpy(&cvp->cookie_pair[cvp->cookie_desired], 5564 hash_location, cookie_size); 5565 cvp->cookie_pair_size = cookie_pair_size; 5566 } 5567 } 5568 5569 smp_mb(); 5570 tcp_set_state(sk, TCP_ESTABLISHED); 5571 5572 security_inet_conn_established(sk, skb); 5573 5574 /* Make sure socket is routed, for correct metrics. */ 5575 icsk->icsk_af_ops->rebuild_header(sk); 5576 5577 tcp_init_metrics(sk); 5578 5579 tcp_init_congestion_control(sk); 5580 5581 /* Prevent spurious tcp_cwnd_restart() on first data 5582 * packet. 5583 */ 5584 tp->lsndtime = tcp_time_stamp; 5585 5586 tcp_init_buffer_space(sk); 5587 5588 if (sock_flag(sk, SOCK_KEEPOPEN)) 5589 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5590 5591 if (!tp->rx_opt.snd_wscale) 5592 __tcp_fast_path_on(tp, tp->snd_wnd); 5593 else 5594 tp->pred_flags = 0; 5595 5596 if (!sock_flag(sk, SOCK_DEAD)) { 5597 sk->sk_state_change(sk); 5598 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5599 } 5600 5601 if (sk->sk_write_pending || 5602 icsk->icsk_accept_queue.rskq_defer_accept || 5603 icsk->icsk_ack.pingpong) { 5604 /* Save one ACK. Data will be ready after 5605 * several ticks, if write_pending is set. 5606 * 5607 * It may be deleted, but with this feature tcpdumps 5608 * look so _wonderfully_ clever, that I was not able 5609 * to stand against the temptation 8) --ANK 5610 */ 5611 inet_csk_schedule_ack(sk); 5612 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5613 icsk->icsk_ack.ato = TCP_ATO_MIN; 5614 tcp_incr_quickack(sk); 5615 tcp_enter_quickack_mode(sk); 5616 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5617 TCP_DELACK_MAX, TCP_RTO_MAX); 5618 5619 discard: 5620 __kfree_skb(skb); 5621 return 0; 5622 } else { 5623 tcp_send_ack(sk); 5624 } 5625 return -1; 5626 } 5627 5628 /* No ACK in the segment */ 5629 5630 if (th->rst) { 5631 /* rfc793: 5632 * "If the RST bit is set 5633 * 5634 * Otherwise (no ACK) drop the segment and return." 5635 */ 5636 5637 goto discard_and_undo; 5638 } 5639 5640 /* PAWS check. */ 5641 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5642 tcp_paws_reject(&tp->rx_opt, 0)) 5643 goto discard_and_undo; 5644 5645 if (th->syn) { 5646 /* We see SYN without ACK. It is attempt of 5647 * simultaneous connect with crossed SYNs. 5648 * Particularly, it can be connect to self. 5649 */ 5650 tcp_set_state(sk, TCP_SYN_RECV); 5651 5652 if (tp->rx_opt.saw_tstamp) { 5653 tp->rx_opt.tstamp_ok = 1; 5654 tcp_store_ts_recent(tp); 5655 tp->tcp_header_len = 5656 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5657 } else { 5658 tp->tcp_header_len = sizeof(struct tcphdr); 5659 } 5660 5661 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5662 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5663 5664 /* RFC1323: The window in SYN & SYN/ACK segments is 5665 * never scaled. 5666 */ 5667 tp->snd_wnd = ntohs(th->window); 5668 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5669 tp->max_window = tp->snd_wnd; 5670 5671 TCP_ECN_rcv_syn(tp, th); 5672 5673 tcp_mtup_init(sk); 5674 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5675 tcp_initialize_rcv_mss(sk); 5676 5677 tcp_send_synack(sk); 5678 #if 0 5679 /* Note, we could accept data and URG from this segment. 5680 * There are no obstacles to make this. 5681 * 5682 * However, if we ignore data in ACKless segments sometimes, 5683 * we have no reasons to accept it sometimes. 5684 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5685 * is not flawless. So, discard packet for sanity. 5686 * Uncomment this return to process the data. 5687 */ 5688 return -1; 5689 #else 5690 goto discard; 5691 #endif 5692 } 5693 /* "fifth, if neither of the SYN or RST bits is set then 5694 * drop the segment and return." 5695 */ 5696 5697 discard_and_undo: 5698 tcp_clear_options(&tp->rx_opt); 5699 tp->rx_opt.mss_clamp = saved_clamp; 5700 goto discard; 5701 5702 reset_and_undo: 5703 tcp_clear_options(&tp->rx_opt); 5704 tp->rx_opt.mss_clamp = saved_clamp; 5705 return 1; 5706 } 5707 5708 /* 5709 * This function implements the receiving procedure of RFC 793 for 5710 * all states except ESTABLISHED and TIME_WAIT. 5711 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5712 * address independent. 5713 */ 5714 5715 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5716 struct tcphdr *th, unsigned len) 5717 { 5718 struct tcp_sock *tp = tcp_sk(sk); 5719 struct inet_connection_sock *icsk = inet_csk(sk); 5720 int queued = 0; 5721 int res; 5722 5723 tp->rx_opt.saw_tstamp = 0; 5724 5725 switch (sk->sk_state) { 5726 case TCP_CLOSE: 5727 goto discard; 5728 5729 case TCP_LISTEN: 5730 if (th->ack) 5731 return 1; 5732 5733 if (th->rst) 5734 goto discard; 5735 5736 if (th->syn) { 5737 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5738 return 1; 5739 5740 /* Now we have several options: In theory there is 5741 * nothing else in the frame. KA9Q has an option to 5742 * send data with the syn, BSD accepts data with the 5743 * syn up to the [to be] advertised window and 5744 * Solaris 2.1 gives you a protocol error. For now 5745 * we just ignore it, that fits the spec precisely 5746 * and avoids incompatibilities. It would be nice in 5747 * future to drop through and process the data. 5748 * 5749 * Now that TTCP is starting to be used we ought to 5750 * queue this data. 5751 * But, this leaves one open to an easy denial of 5752 * service attack, and SYN cookies can't defend 5753 * against this problem. So, we drop the data 5754 * in the interest of security over speed unless 5755 * it's still in use. 5756 */ 5757 kfree_skb(skb); 5758 return 0; 5759 } 5760 goto discard; 5761 5762 case TCP_SYN_SENT: 5763 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5764 if (queued >= 0) 5765 return queued; 5766 5767 /* Do step6 onward by hand. */ 5768 tcp_urg(sk, skb, th); 5769 __kfree_skb(skb); 5770 tcp_data_snd_check(sk); 5771 return 0; 5772 } 5773 5774 res = tcp_validate_incoming(sk, skb, th, 0); 5775 if (res <= 0) 5776 return -res; 5777 5778 /* step 5: check the ACK field */ 5779 if (th->ack) { 5780 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; 5781 5782 switch (sk->sk_state) { 5783 case TCP_SYN_RECV: 5784 if (acceptable) { 5785 tp->copied_seq = tp->rcv_nxt; 5786 smp_mb(); 5787 tcp_set_state(sk, TCP_ESTABLISHED); 5788 sk->sk_state_change(sk); 5789 5790 /* Note, that this wakeup is only for marginal 5791 * crossed SYN case. Passively open sockets 5792 * are not waked up, because sk->sk_sleep == 5793 * NULL and sk->sk_socket == NULL. 5794 */ 5795 if (sk->sk_socket) 5796 sk_wake_async(sk, 5797 SOCK_WAKE_IO, POLL_OUT); 5798 5799 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5800 tp->snd_wnd = ntohs(th->window) << 5801 tp->rx_opt.snd_wscale; 5802 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5803 5804 /* tcp_ack considers this ACK as duplicate 5805 * and does not calculate rtt. 5806 * Force it here. 5807 */ 5808 tcp_ack_update_rtt(sk, 0, 0); 5809 5810 if (tp->rx_opt.tstamp_ok) 5811 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5812 5813 /* Make sure socket is routed, for 5814 * correct metrics. 5815 */ 5816 icsk->icsk_af_ops->rebuild_header(sk); 5817 5818 tcp_init_metrics(sk); 5819 5820 tcp_init_congestion_control(sk); 5821 5822 /* Prevent spurious tcp_cwnd_restart() on 5823 * first data packet. 5824 */ 5825 tp->lsndtime = tcp_time_stamp; 5826 5827 tcp_mtup_init(sk); 5828 tcp_initialize_rcv_mss(sk); 5829 tcp_init_buffer_space(sk); 5830 tcp_fast_path_on(tp); 5831 } else { 5832 return 1; 5833 } 5834 break; 5835 5836 case TCP_FIN_WAIT1: 5837 if (tp->snd_una == tp->write_seq) { 5838 tcp_set_state(sk, TCP_FIN_WAIT2); 5839 sk->sk_shutdown |= SEND_SHUTDOWN; 5840 dst_confirm(__sk_dst_get(sk)); 5841 5842 if (!sock_flag(sk, SOCK_DEAD)) 5843 /* Wake up lingering close() */ 5844 sk->sk_state_change(sk); 5845 else { 5846 int tmo; 5847 5848 if (tp->linger2 < 0 || 5849 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5850 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5851 tcp_done(sk); 5852 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5853 return 1; 5854 } 5855 5856 tmo = tcp_fin_time(sk); 5857 if (tmo > TCP_TIMEWAIT_LEN) { 5858 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5859 } else if (th->fin || sock_owned_by_user(sk)) { 5860 /* Bad case. We could lose such FIN otherwise. 5861 * It is not a big problem, but it looks confusing 5862 * and not so rare event. We still can lose it now, 5863 * if it spins in bh_lock_sock(), but it is really 5864 * marginal case. 5865 */ 5866 inet_csk_reset_keepalive_timer(sk, tmo); 5867 } else { 5868 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5869 goto discard; 5870 } 5871 } 5872 } 5873 break; 5874 5875 case TCP_CLOSING: 5876 if (tp->snd_una == tp->write_seq) { 5877 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5878 goto discard; 5879 } 5880 break; 5881 5882 case TCP_LAST_ACK: 5883 if (tp->snd_una == tp->write_seq) { 5884 tcp_update_metrics(sk); 5885 tcp_done(sk); 5886 goto discard; 5887 } 5888 break; 5889 } 5890 } else 5891 goto discard; 5892 5893 /* step 6: check the URG bit */ 5894 tcp_urg(sk, skb, th); 5895 5896 /* step 7: process the segment text */ 5897 switch (sk->sk_state) { 5898 case TCP_CLOSE_WAIT: 5899 case TCP_CLOSING: 5900 case TCP_LAST_ACK: 5901 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5902 break; 5903 case TCP_FIN_WAIT1: 5904 case TCP_FIN_WAIT2: 5905 /* RFC 793 says to queue data in these states, 5906 * RFC 1122 says we MUST send a reset. 5907 * BSD 4.4 also does reset. 5908 */ 5909 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5910 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5911 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5912 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5913 tcp_reset(sk); 5914 return 1; 5915 } 5916 } 5917 /* Fall through */ 5918 case TCP_ESTABLISHED: 5919 tcp_data_queue(sk, skb); 5920 queued = 1; 5921 break; 5922 } 5923 5924 /* tcp_data could move socket to TIME-WAIT */ 5925 if (sk->sk_state != TCP_CLOSE) { 5926 tcp_data_snd_check(sk); 5927 tcp_ack_snd_check(sk); 5928 } 5929 5930 if (!queued) { 5931 discard: 5932 __kfree_skb(skb); 5933 } 5934 return 0; 5935 } 5936 EXPORT_SYMBOL(tcp_rcv_state_process); 5937