xref: /linux/net/ipv4/tcp_input.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_frto_response __read_mostly;
97 
98 int sysctl_tcp_thin_dupack __read_mostly;
99 
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 2;
102 
103 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
104 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
105 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
106 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
107 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
108 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
109 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
110 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
112 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
115 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
117 
118 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
121 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
122 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
123 
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126 
127 /* Adapt the MSS value used to make delayed ack decision to the
128  * real world.
129  */
130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131 {
132 	struct inet_connection_sock *icsk = inet_csk(sk);
133 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 	unsigned int len;
135 
136 	icsk->icsk_ack.last_seg_size = 0;
137 
138 	/* skb->len may jitter because of SACKs, even if peer
139 	 * sends good full-sized frames.
140 	 */
141 	len = skb_shinfo(skb)->gso_size ? : skb->len;
142 	if (len >= icsk->icsk_ack.rcv_mss) {
143 		icsk->icsk_ack.rcv_mss = len;
144 	} else {
145 		/* Otherwise, we make more careful check taking into account,
146 		 * that SACKs block is variable.
147 		 *
148 		 * "len" is invariant segment length, including TCP header.
149 		 */
150 		len += skb->data - skb_transport_header(skb);
151 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152 		    /* If PSH is not set, packet should be
153 		     * full sized, provided peer TCP is not badly broken.
154 		     * This observation (if it is correct 8)) allows
155 		     * to handle super-low mtu links fairly.
156 		     */
157 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159 			/* Subtract also invariant (if peer is RFC compliant),
160 			 * tcp header plus fixed timestamp option length.
161 			 * Resulting "len" is MSS free of SACK jitter.
162 			 */
163 			len -= tcp_sk(sk)->tcp_header_len;
164 			icsk->icsk_ack.last_seg_size = len;
165 			if (len == lss) {
166 				icsk->icsk_ack.rcv_mss = len;
167 				return;
168 			}
169 		}
170 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 	}
174 }
175 
176 static void tcp_incr_quickack(struct sock *sk)
177 {
178 	struct inet_connection_sock *icsk = inet_csk(sk);
179 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180 
181 	if (quickacks == 0)
182 		quickacks = 2;
183 	if (quickacks > icsk->icsk_ack.quick)
184 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 }
186 
187 static void tcp_enter_quickack_mode(struct sock *sk)
188 {
189 	struct inet_connection_sock *icsk = inet_csk(sk);
190 	tcp_incr_quickack(sk);
191 	icsk->icsk_ack.pingpong = 0;
192 	icsk->icsk_ack.ato = TCP_ATO_MIN;
193 }
194 
195 /* Send ACKs quickly, if "quick" count is not exhausted
196  * and the session is not interactive.
197  */
198 
199 static inline bool tcp_in_quickack_mode(const struct sock *sk)
200 {
201 	const struct inet_connection_sock *icsk = inet_csk(sk);
202 
203 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
204 }
205 
206 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
207 {
208 	if (tp->ecn_flags & TCP_ECN_OK)
209 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210 }
211 
212 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
213 {
214 	if (tcp_hdr(skb)->cwr)
215 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 }
217 
218 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
219 {
220 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221 }
222 
223 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
224 {
225 	if (!(tp->ecn_flags & TCP_ECN_OK))
226 		return;
227 
228 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
229 	case INET_ECN_NOT_ECT:
230 		/* Funny extension: if ECT is not set on a segment,
231 		 * and we already seen ECT on a previous segment,
232 		 * it is probably a retransmit.
233 		 */
234 		if (tp->ecn_flags & TCP_ECN_SEEN)
235 			tcp_enter_quickack_mode((struct sock *)tp);
236 		break;
237 	case INET_ECN_CE:
238 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
239 			/* Better not delay acks, sender can have a very low cwnd */
240 			tcp_enter_quickack_mode((struct sock *)tp);
241 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
242 		}
243 		/* fallinto */
244 	default:
245 		tp->ecn_flags |= TCP_ECN_SEEN;
246 	}
247 }
248 
249 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
250 {
251 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
252 		tp->ecn_flags &= ~TCP_ECN_OK;
253 }
254 
255 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
256 {
257 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
258 		tp->ecn_flags &= ~TCP_ECN_OK;
259 }
260 
261 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
262 {
263 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
264 		return true;
265 	return false;
266 }
267 
268 /* Buffer size and advertised window tuning.
269  *
270  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
271  */
272 
273 static void tcp_fixup_sndbuf(struct sock *sk)
274 {
275 	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
276 
277 	sndmem *= TCP_INIT_CWND;
278 	if (sk->sk_sndbuf < sndmem)
279 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
280 }
281 
282 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
283  *
284  * All tcp_full_space() is split to two parts: "network" buffer, allocated
285  * forward and advertised in receiver window (tp->rcv_wnd) and
286  * "application buffer", required to isolate scheduling/application
287  * latencies from network.
288  * window_clamp is maximal advertised window. It can be less than
289  * tcp_full_space(), in this case tcp_full_space() - window_clamp
290  * is reserved for "application" buffer. The less window_clamp is
291  * the smoother our behaviour from viewpoint of network, but the lower
292  * throughput and the higher sensitivity of the connection to losses. 8)
293  *
294  * rcv_ssthresh is more strict window_clamp used at "slow start"
295  * phase to predict further behaviour of this connection.
296  * It is used for two goals:
297  * - to enforce header prediction at sender, even when application
298  *   requires some significant "application buffer". It is check #1.
299  * - to prevent pruning of receive queue because of misprediction
300  *   of receiver window. Check #2.
301  *
302  * The scheme does not work when sender sends good segments opening
303  * window and then starts to feed us spaghetti. But it should work
304  * in common situations. Otherwise, we have to rely on queue collapsing.
305  */
306 
307 /* Slow part of check#2. */
308 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
309 {
310 	struct tcp_sock *tp = tcp_sk(sk);
311 	/* Optimize this! */
312 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
313 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
314 
315 	while (tp->rcv_ssthresh <= window) {
316 		if (truesize <= skb->len)
317 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
318 
319 		truesize >>= 1;
320 		window >>= 1;
321 	}
322 	return 0;
323 }
324 
325 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
326 {
327 	struct tcp_sock *tp = tcp_sk(sk);
328 
329 	/* Check #1 */
330 	if (tp->rcv_ssthresh < tp->window_clamp &&
331 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
332 	    !sk_under_memory_pressure(sk)) {
333 		int incr;
334 
335 		/* Check #2. Increase window, if skb with such overhead
336 		 * will fit to rcvbuf in future.
337 		 */
338 		if (tcp_win_from_space(skb->truesize) <= skb->len)
339 			incr = 2 * tp->advmss;
340 		else
341 			incr = __tcp_grow_window(sk, skb);
342 
343 		if (incr) {
344 			incr = max_t(int, incr, 2 * skb->len);
345 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
346 					       tp->window_clamp);
347 			inet_csk(sk)->icsk_ack.quick |= 1;
348 		}
349 	}
350 }
351 
352 /* 3. Tuning rcvbuf, when connection enters established state. */
353 
354 static void tcp_fixup_rcvbuf(struct sock *sk)
355 {
356 	u32 mss = tcp_sk(sk)->advmss;
357 	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
358 	int rcvmem;
359 
360 	/* Limit to 10 segments if mss <= 1460,
361 	 * or 14600/mss segments, with a minimum of two segments.
362 	 */
363 	if (mss > 1460)
364 		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
365 
366 	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
367 	while (tcp_win_from_space(rcvmem) < mss)
368 		rcvmem += 128;
369 
370 	rcvmem *= icwnd;
371 
372 	if (sk->sk_rcvbuf < rcvmem)
373 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
374 }
375 
376 /* 4. Try to fixup all. It is made immediately after connection enters
377  *    established state.
378  */
379 void tcp_init_buffer_space(struct sock *sk)
380 {
381 	struct tcp_sock *tp = tcp_sk(sk);
382 	int maxwin;
383 
384 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
385 		tcp_fixup_rcvbuf(sk);
386 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
387 		tcp_fixup_sndbuf(sk);
388 
389 	tp->rcvq_space.space = tp->rcv_wnd;
390 
391 	maxwin = tcp_full_space(sk);
392 
393 	if (tp->window_clamp >= maxwin) {
394 		tp->window_clamp = maxwin;
395 
396 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
397 			tp->window_clamp = max(maxwin -
398 					       (maxwin >> sysctl_tcp_app_win),
399 					       4 * tp->advmss);
400 	}
401 
402 	/* Force reservation of one segment. */
403 	if (sysctl_tcp_app_win &&
404 	    tp->window_clamp > 2 * tp->advmss &&
405 	    tp->window_clamp + tp->advmss > maxwin)
406 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
407 
408 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
409 	tp->snd_cwnd_stamp = tcp_time_stamp;
410 }
411 
412 /* 5. Recalculate window clamp after socket hit its memory bounds. */
413 static void tcp_clamp_window(struct sock *sk)
414 {
415 	struct tcp_sock *tp = tcp_sk(sk);
416 	struct inet_connection_sock *icsk = inet_csk(sk);
417 
418 	icsk->icsk_ack.quick = 0;
419 
420 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
421 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
422 	    !sk_under_memory_pressure(sk) &&
423 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
424 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
425 				    sysctl_tcp_rmem[2]);
426 	}
427 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
428 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
429 }
430 
431 /* Initialize RCV_MSS value.
432  * RCV_MSS is an our guess about MSS used by the peer.
433  * We haven't any direct information about the MSS.
434  * It's better to underestimate the RCV_MSS rather than overestimate.
435  * Overestimations make us ACKing less frequently than needed.
436  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
437  */
438 void tcp_initialize_rcv_mss(struct sock *sk)
439 {
440 	const struct tcp_sock *tp = tcp_sk(sk);
441 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
442 
443 	hint = min(hint, tp->rcv_wnd / 2);
444 	hint = min(hint, TCP_MSS_DEFAULT);
445 	hint = max(hint, TCP_MIN_MSS);
446 
447 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
448 }
449 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
450 
451 /* Receiver "autotuning" code.
452  *
453  * The algorithm for RTT estimation w/o timestamps is based on
454  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
455  * <http://public.lanl.gov/radiant/pubs.html#DRS>
456  *
457  * More detail on this code can be found at
458  * <http://staff.psc.edu/jheffner/>,
459  * though this reference is out of date.  A new paper
460  * is pending.
461  */
462 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
463 {
464 	u32 new_sample = tp->rcv_rtt_est.rtt;
465 	long m = sample;
466 
467 	if (m == 0)
468 		m = 1;
469 
470 	if (new_sample != 0) {
471 		/* If we sample in larger samples in the non-timestamp
472 		 * case, we could grossly overestimate the RTT especially
473 		 * with chatty applications or bulk transfer apps which
474 		 * are stalled on filesystem I/O.
475 		 *
476 		 * Also, since we are only going for a minimum in the
477 		 * non-timestamp case, we do not smooth things out
478 		 * else with timestamps disabled convergence takes too
479 		 * long.
480 		 */
481 		if (!win_dep) {
482 			m -= (new_sample >> 3);
483 			new_sample += m;
484 		} else {
485 			m <<= 3;
486 			if (m < new_sample)
487 				new_sample = m;
488 		}
489 	} else {
490 		/* No previous measure. */
491 		new_sample = m << 3;
492 	}
493 
494 	if (tp->rcv_rtt_est.rtt != new_sample)
495 		tp->rcv_rtt_est.rtt = new_sample;
496 }
497 
498 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
499 {
500 	if (tp->rcv_rtt_est.time == 0)
501 		goto new_measure;
502 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
503 		return;
504 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
505 
506 new_measure:
507 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
508 	tp->rcv_rtt_est.time = tcp_time_stamp;
509 }
510 
511 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
512 					  const struct sk_buff *skb)
513 {
514 	struct tcp_sock *tp = tcp_sk(sk);
515 	if (tp->rx_opt.rcv_tsecr &&
516 	    (TCP_SKB_CB(skb)->end_seq -
517 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
518 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
519 }
520 
521 /*
522  * This function should be called every time data is copied to user space.
523  * It calculates the appropriate TCP receive buffer space.
524  */
525 void tcp_rcv_space_adjust(struct sock *sk)
526 {
527 	struct tcp_sock *tp = tcp_sk(sk);
528 	int time;
529 	int space;
530 
531 	if (tp->rcvq_space.time == 0)
532 		goto new_measure;
533 
534 	time = tcp_time_stamp - tp->rcvq_space.time;
535 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
536 		return;
537 
538 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
539 
540 	space = max(tp->rcvq_space.space, space);
541 
542 	if (tp->rcvq_space.space != space) {
543 		int rcvmem;
544 
545 		tp->rcvq_space.space = space;
546 
547 		if (sysctl_tcp_moderate_rcvbuf &&
548 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
549 			int new_clamp = space;
550 
551 			/* Receive space grows, normalize in order to
552 			 * take into account packet headers and sk_buff
553 			 * structure overhead.
554 			 */
555 			space /= tp->advmss;
556 			if (!space)
557 				space = 1;
558 			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
559 			while (tcp_win_from_space(rcvmem) < tp->advmss)
560 				rcvmem += 128;
561 			space *= rcvmem;
562 			space = min(space, sysctl_tcp_rmem[2]);
563 			if (space > sk->sk_rcvbuf) {
564 				sk->sk_rcvbuf = space;
565 
566 				/* Make the window clamp follow along.  */
567 				tp->window_clamp = new_clamp;
568 			}
569 		}
570 	}
571 
572 new_measure:
573 	tp->rcvq_space.seq = tp->copied_seq;
574 	tp->rcvq_space.time = tcp_time_stamp;
575 }
576 
577 /* There is something which you must keep in mind when you analyze the
578  * behavior of the tp->ato delayed ack timeout interval.  When a
579  * connection starts up, we want to ack as quickly as possible.  The
580  * problem is that "good" TCP's do slow start at the beginning of data
581  * transmission.  The means that until we send the first few ACK's the
582  * sender will sit on his end and only queue most of his data, because
583  * he can only send snd_cwnd unacked packets at any given time.  For
584  * each ACK we send, he increments snd_cwnd and transmits more of his
585  * queue.  -DaveM
586  */
587 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
588 {
589 	struct tcp_sock *tp = tcp_sk(sk);
590 	struct inet_connection_sock *icsk = inet_csk(sk);
591 	u32 now;
592 
593 	inet_csk_schedule_ack(sk);
594 
595 	tcp_measure_rcv_mss(sk, skb);
596 
597 	tcp_rcv_rtt_measure(tp);
598 
599 	now = tcp_time_stamp;
600 
601 	if (!icsk->icsk_ack.ato) {
602 		/* The _first_ data packet received, initialize
603 		 * delayed ACK engine.
604 		 */
605 		tcp_incr_quickack(sk);
606 		icsk->icsk_ack.ato = TCP_ATO_MIN;
607 	} else {
608 		int m = now - icsk->icsk_ack.lrcvtime;
609 
610 		if (m <= TCP_ATO_MIN / 2) {
611 			/* The fastest case is the first. */
612 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
613 		} else if (m < icsk->icsk_ack.ato) {
614 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
615 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
616 				icsk->icsk_ack.ato = icsk->icsk_rto;
617 		} else if (m > icsk->icsk_rto) {
618 			/* Too long gap. Apparently sender failed to
619 			 * restart window, so that we send ACKs quickly.
620 			 */
621 			tcp_incr_quickack(sk);
622 			sk_mem_reclaim(sk);
623 		}
624 	}
625 	icsk->icsk_ack.lrcvtime = now;
626 
627 	TCP_ECN_check_ce(tp, skb);
628 
629 	if (skb->len >= 128)
630 		tcp_grow_window(sk, skb);
631 }
632 
633 /* Called to compute a smoothed rtt estimate. The data fed to this
634  * routine either comes from timestamps, or from segments that were
635  * known _not_ to have been retransmitted [see Karn/Partridge
636  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
637  * piece by Van Jacobson.
638  * NOTE: the next three routines used to be one big routine.
639  * To save cycles in the RFC 1323 implementation it was better to break
640  * it up into three procedures. -- erics
641  */
642 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
643 {
644 	struct tcp_sock *tp = tcp_sk(sk);
645 	long m = mrtt; /* RTT */
646 
647 	/*	The following amusing code comes from Jacobson's
648 	 *	article in SIGCOMM '88.  Note that rtt and mdev
649 	 *	are scaled versions of rtt and mean deviation.
650 	 *	This is designed to be as fast as possible
651 	 *	m stands for "measurement".
652 	 *
653 	 *	On a 1990 paper the rto value is changed to:
654 	 *	RTO = rtt + 4 * mdev
655 	 *
656 	 * Funny. This algorithm seems to be very broken.
657 	 * These formulae increase RTO, when it should be decreased, increase
658 	 * too slowly, when it should be increased quickly, decrease too quickly
659 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
660 	 * does not matter how to _calculate_ it. Seems, it was trap
661 	 * that VJ failed to avoid. 8)
662 	 */
663 	if (m == 0)
664 		m = 1;
665 	if (tp->srtt != 0) {
666 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
667 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
668 		if (m < 0) {
669 			m = -m;		/* m is now abs(error) */
670 			m -= (tp->mdev >> 2);   /* similar update on mdev */
671 			/* This is similar to one of Eifel findings.
672 			 * Eifel blocks mdev updates when rtt decreases.
673 			 * This solution is a bit different: we use finer gain
674 			 * for mdev in this case (alpha*beta).
675 			 * Like Eifel it also prevents growth of rto,
676 			 * but also it limits too fast rto decreases,
677 			 * happening in pure Eifel.
678 			 */
679 			if (m > 0)
680 				m >>= 3;
681 		} else {
682 			m -= (tp->mdev >> 2);   /* similar update on mdev */
683 		}
684 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
685 		if (tp->mdev > tp->mdev_max) {
686 			tp->mdev_max = tp->mdev;
687 			if (tp->mdev_max > tp->rttvar)
688 				tp->rttvar = tp->mdev_max;
689 		}
690 		if (after(tp->snd_una, tp->rtt_seq)) {
691 			if (tp->mdev_max < tp->rttvar)
692 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
693 			tp->rtt_seq = tp->snd_nxt;
694 			tp->mdev_max = tcp_rto_min(sk);
695 		}
696 	} else {
697 		/* no previous measure. */
698 		tp->srtt = m << 3;	/* take the measured time to be rtt */
699 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
700 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
701 		tp->rtt_seq = tp->snd_nxt;
702 	}
703 }
704 
705 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
706  * routine referred to above.
707  */
708 void tcp_set_rto(struct sock *sk)
709 {
710 	const struct tcp_sock *tp = tcp_sk(sk);
711 	/* Old crap is replaced with new one. 8)
712 	 *
713 	 * More seriously:
714 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
715 	 *    It cannot be less due to utterly erratic ACK generation made
716 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
717 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
718 	 *    is invisible. Actually, Linux-2.4 also generates erratic
719 	 *    ACKs in some circumstances.
720 	 */
721 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
722 
723 	/* 2. Fixups made earlier cannot be right.
724 	 *    If we do not estimate RTO correctly without them,
725 	 *    all the algo is pure shit and should be replaced
726 	 *    with correct one. It is exactly, which we pretend to do.
727 	 */
728 
729 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
730 	 * guarantees that rto is higher.
731 	 */
732 	tcp_bound_rto(sk);
733 }
734 
735 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
736 {
737 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
738 
739 	if (!cwnd)
740 		cwnd = TCP_INIT_CWND;
741 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
742 }
743 
744 /*
745  * Packet counting of FACK is based on in-order assumptions, therefore TCP
746  * disables it when reordering is detected
747  */
748 void tcp_disable_fack(struct tcp_sock *tp)
749 {
750 	/* RFC3517 uses different metric in lost marker => reset on change */
751 	if (tcp_is_fack(tp))
752 		tp->lost_skb_hint = NULL;
753 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
754 }
755 
756 /* Take a notice that peer is sending D-SACKs */
757 static void tcp_dsack_seen(struct tcp_sock *tp)
758 {
759 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
760 }
761 
762 static void tcp_update_reordering(struct sock *sk, const int metric,
763 				  const int ts)
764 {
765 	struct tcp_sock *tp = tcp_sk(sk);
766 	if (metric > tp->reordering) {
767 		int mib_idx;
768 
769 		tp->reordering = min(TCP_MAX_REORDERING, metric);
770 
771 		/* This exciting event is worth to be remembered. 8) */
772 		if (ts)
773 			mib_idx = LINUX_MIB_TCPTSREORDER;
774 		else if (tcp_is_reno(tp))
775 			mib_idx = LINUX_MIB_TCPRENOREORDER;
776 		else if (tcp_is_fack(tp))
777 			mib_idx = LINUX_MIB_TCPFACKREORDER;
778 		else
779 			mib_idx = LINUX_MIB_TCPSACKREORDER;
780 
781 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
782 #if FASTRETRANS_DEBUG > 1
783 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
784 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
785 			 tp->reordering,
786 			 tp->fackets_out,
787 			 tp->sacked_out,
788 			 tp->undo_marker ? tp->undo_retrans : 0);
789 #endif
790 		tcp_disable_fack(tp);
791 	}
792 
793 	if (metric > 0)
794 		tcp_disable_early_retrans(tp);
795 }
796 
797 /* This must be called before lost_out is incremented */
798 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
799 {
800 	if ((tp->retransmit_skb_hint == NULL) ||
801 	    before(TCP_SKB_CB(skb)->seq,
802 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
803 		tp->retransmit_skb_hint = skb;
804 
805 	if (!tp->lost_out ||
806 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
807 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
808 }
809 
810 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
811 {
812 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
813 		tcp_verify_retransmit_hint(tp, skb);
814 
815 		tp->lost_out += tcp_skb_pcount(skb);
816 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
817 	}
818 }
819 
820 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
821 					    struct sk_buff *skb)
822 {
823 	tcp_verify_retransmit_hint(tp, skb);
824 
825 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
826 		tp->lost_out += tcp_skb_pcount(skb);
827 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
828 	}
829 }
830 
831 /* This procedure tags the retransmission queue when SACKs arrive.
832  *
833  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
834  * Packets in queue with these bits set are counted in variables
835  * sacked_out, retrans_out and lost_out, correspondingly.
836  *
837  * Valid combinations are:
838  * Tag  InFlight	Description
839  * 0	1		- orig segment is in flight.
840  * S	0		- nothing flies, orig reached receiver.
841  * L	0		- nothing flies, orig lost by net.
842  * R	2		- both orig and retransmit are in flight.
843  * L|R	1		- orig is lost, retransmit is in flight.
844  * S|R  1		- orig reached receiver, retrans is still in flight.
845  * (L|S|R is logically valid, it could occur when L|R is sacked,
846  *  but it is equivalent to plain S and code short-curcuits it to S.
847  *  L|S is logically invalid, it would mean -1 packet in flight 8))
848  *
849  * These 6 states form finite state machine, controlled by the following events:
850  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
851  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
852  * 3. Loss detection event of two flavors:
853  *	A. Scoreboard estimator decided the packet is lost.
854  *	   A'. Reno "three dupacks" marks head of queue lost.
855  *	   A''. Its FACK modification, head until snd.fack is lost.
856  *	B. SACK arrives sacking SND.NXT at the moment, when the
857  *	   segment was retransmitted.
858  * 4. D-SACK added new rule: D-SACK changes any tag to S.
859  *
860  * It is pleasant to note, that state diagram turns out to be commutative,
861  * so that we are allowed not to be bothered by order of our actions,
862  * when multiple events arrive simultaneously. (see the function below).
863  *
864  * Reordering detection.
865  * --------------------
866  * Reordering metric is maximal distance, which a packet can be displaced
867  * in packet stream. With SACKs we can estimate it:
868  *
869  * 1. SACK fills old hole and the corresponding segment was not
870  *    ever retransmitted -> reordering. Alas, we cannot use it
871  *    when segment was retransmitted.
872  * 2. The last flaw is solved with D-SACK. D-SACK arrives
873  *    for retransmitted and already SACKed segment -> reordering..
874  * Both of these heuristics are not used in Loss state, when we cannot
875  * account for retransmits accurately.
876  *
877  * SACK block validation.
878  * ----------------------
879  *
880  * SACK block range validation checks that the received SACK block fits to
881  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
882  * Note that SND.UNA is not included to the range though being valid because
883  * it means that the receiver is rather inconsistent with itself reporting
884  * SACK reneging when it should advance SND.UNA. Such SACK block this is
885  * perfectly valid, however, in light of RFC2018 which explicitly states
886  * that "SACK block MUST reflect the newest segment.  Even if the newest
887  * segment is going to be discarded ...", not that it looks very clever
888  * in case of head skb. Due to potentional receiver driven attacks, we
889  * choose to avoid immediate execution of a walk in write queue due to
890  * reneging and defer head skb's loss recovery to standard loss recovery
891  * procedure that will eventually trigger (nothing forbids us doing this).
892  *
893  * Implements also blockage to start_seq wrap-around. Problem lies in the
894  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
895  * there's no guarantee that it will be before snd_nxt (n). The problem
896  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
897  * wrap (s_w):
898  *
899  *         <- outs wnd ->                          <- wrapzone ->
900  *         u     e      n                         u_w   e_w  s n_w
901  *         |     |      |                          |     |   |  |
902  * |<------------+------+----- TCP seqno space --------------+---------->|
903  * ...-- <2^31 ->|                                           |<--------...
904  * ...---- >2^31 ------>|                                    |<--------...
905  *
906  * Current code wouldn't be vulnerable but it's better still to discard such
907  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
908  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
909  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
910  * equal to the ideal case (infinite seqno space without wrap caused issues).
911  *
912  * With D-SACK the lower bound is extended to cover sequence space below
913  * SND.UNA down to undo_marker, which is the last point of interest. Yet
914  * again, D-SACK block must not to go across snd_una (for the same reason as
915  * for the normal SACK blocks, explained above). But there all simplicity
916  * ends, TCP might receive valid D-SACKs below that. As long as they reside
917  * fully below undo_marker they do not affect behavior in anyway and can
918  * therefore be safely ignored. In rare cases (which are more or less
919  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
920  * fragmentation and packet reordering past skb's retransmission. To consider
921  * them correctly, the acceptable range must be extended even more though
922  * the exact amount is rather hard to quantify. However, tp->max_window can
923  * be used as an exaggerated estimate.
924  */
925 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
926 				   u32 start_seq, u32 end_seq)
927 {
928 	/* Too far in future, or reversed (interpretation is ambiguous) */
929 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
930 		return false;
931 
932 	/* Nasty start_seq wrap-around check (see comments above) */
933 	if (!before(start_seq, tp->snd_nxt))
934 		return false;
935 
936 	/* In outstanding window? ...This is valid exit for D-SACKs too.
937 	 * start_seq == snd_una is non-sensical (see comments above)
938 	 */
939 	if (after(start_seq, tp->snd_una))
940 		return true;
941 
942 	if (!is_dsack || !tp->undo_marker)
943 		return false;
944 
945 	/* ...Then it's D-SACK, and must reside below snd_una completely */
946 	if (after(end_seq, tp->snd_una))
947 		return false;
948 
949 	if (!before(start_seq, tp->undo_marker))
950 		return true;
951 
952 	/* Too old */
953 	if (!after(end_seq, tp->undo_marker))
954 		return false;
955 
956 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
957 	 *   start_seq < undo_marker and end_seq >= undo_marker.
958 	 */
959 	return !before(start_seq, end_seq - tp->max_window);
960 }
961 
962 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
963  * Event "B". Later note: FACK people cheated me again 8), we have to account
964  * for reordering! Ugly, but should help.
965  *
966  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
967  * less than what is now known to be received by the other end (derived from
968  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
969  * retransmitted skbs to avoid some costly processing per ACKs.
970  */
971 static void tcp_mark_lost_retrans(struct sock *sk)
972 {
973 	const struct inet_connection_sock *icsk = inet_csk(sk);
974 	struct tcp_sock *tp = tcp_sk(sk);
975 	struct sk_buff *skb;
976 	int cnt = 0;
977 	u32 new_low_seq = tp->snd_nxt;
978 	u32 received_upto = tcp_highest_sack_seq(tp);
979 
980 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
981 	    !after(received_upto, tp->lost_retrans_low) ||
982 	    icsk->icsk_ca_state != TCP_CA_Recovery)
983 		return;
984 
985 	tcp_for_write_queue(skb, sk) {
986 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
987 
988 		if (skb == tcp_send_head(sk))
989 			break;
990 		if (cnt == tp->retrans_out)
991 			break;
992 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
993 			continue;
994 
995 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
996 			continue;
997 
998 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
999 		 * constraint here (see above) but figuring out that at
1000 		 * least tp->reordering SACK blocks reside between ack_seq
1001 		 * and received_upto is not easy task to do cheaply with
1002 		 * the available datastructures.
1003 		 *
1004 		 * Whether FACK should check here for tp->reordering segs
1005 		 * in-between one could argue for either way (it would be
1006 		 * rather simple to implement as we could count fack_count
1007 		 * during the walk and do tp->fackets_out - fack_count).
1008 		 */
1009 		if (after(received_upto, ack_seq)) {
1010 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1011 			tp->retrans_out -= tcp_skb_pcount(skb);
1012 
1013 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1014 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1015 		} else {
1016 			if (before(ack_seq, new_low_seq))
1017 				new_low_seq = ack_seq;
1018 			cnt += tcp_skb_pcount(skb);
1019 		}
1020 	}
1021 
1022 	if (tp->retrans_out)
1023 		tp->lost_retrans_low = new_low_seq;
1024 }
1025 
1026 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1027 			    struct tcp_sack_block_wire *sp, int num_sacks,
1028 			    u32 prior_snd_una)
1029 {
1030 	struct tcp_sock *tp = tcp_sk(sk);
1031 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1032 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1033 	bool dup_sack = false;
1034 
1035 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1036 		dup_sack = true;
1037 		tcp_dsack_seen(tp);
1038 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1039 	} else if (num_sacks > 1) {
1040 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1041 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1042 
1043 		if (!after(end_seq_0, end_seq_1) &&
1044 		    !before(start_seq_0, start_seq_1)) {
1045 			dup_sack = true;
1046 			tcp_dsack_seen(tp);
1047 			NET_INC_STATS_BH(sock_net(sk),
1048 					LINUX_MIB_TCPDSACKOFORECV);
1049 		}
1050 	}
1051 
1052 	/* D-SACK for already forgotten data... Do dumb counting. */
1053 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1054 	    !after(end_seq_0, prior_snd_una) &&
1055 	    after(end_seq_0, tp->undo_marker))
1056 		tp->undo_retrans--;
1057 
1058 	return dup_sack;
1059 }
1060 
1061 struct tcp_sacktag_state {
1062 	int reord;
1063 	int fack_count;
1064 	int flag;
1065 };
1066 
1067 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1068  * the incoming SACK may not exactly match but we can find smaller MSS
1069  * aligned portion of it that matches. Therefore we might need to fragment
1070  * which may fail and creates some hassle (caller must handle error case
1071  * returns).
1072  *
1073  * FIXME: this could be merged to shift decision code
1074  */
1075 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1076 				  u32 start_seq, u32 end_seq)
1077 {
1078 	int err;
1079 	bool in_sack;
1080 	unsigned int pkt_len;
1081 	unsigned int mss;
1082 
1083 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1084 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1085 
1086 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1087 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1088 		mss = tcp_skb_mss(skb);
1089 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1090 
1091 		if (!in_sack) {
1092 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1093 			if (pkt_len < mss)
1094 				pkt_len = mss;
1095 		} else {
1096 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1097 			if (pkt_len < mss)
1098 				return -EINVAL;
1099 		}
1100 
1101 		/* Round if necessary so that SACKs cover only full MSSes
1102 		 * and/or the remaining small portion (if present)
1103 		 */
1104 		if (pkt_len > mss) {
1105 			unsigned int new_len = (pkt_len / mss) * mss;
1106 			if (!in_sack && new_len < pkt_len) {
1107 				new_len += mss;
1108 				if (new_len > skb->len)
1109 					return 0;
1110 			}
1111 			pkt_len = new_len;
1112 		}
1113 		err = tcp_fragment(sk, skb, pkt_len, mss);
1114 		if (err < 0)
1115 			return err;
1116 	}
1117 
1118 	return in_sack;
1119 }
1120 
1121 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1122 static u8 tcp_sacktag_one(struct sock *sk,
1123 			  struct tcp_sacktag_state *state, u8 sacked,
1124 			  u32 start_seq, u32 end_seq,
1125 			  bool dup_sack, int pcount)
1126 {
1127 	struct tcp_sock *tp = tcp_sk(sk);
1128 	int fack_count = state->fack_count;
1129 
1130 	/* Account D-SACK for retransmitted packet. */
1131 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1132 		if (tp->undo_marker && tp->undo_retrans &&
1133 		    after(end_seq, tp->undo_marker))
1134 			tp->undo_retrans--;
1135 		if (sacked & TCPCB_SACKED_ACKED)
1136 			state->reord = min(fack_count, state->reord);
1137 	}
1138 
1139 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1140 	if (!after(end_seq, tp->snd_una))
1141 		return sacked;
1142 
1143 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1144 		if (sacked & TCPCB_SACKED_RETRANS) {
1145 			/* If the segment is not tagged as lost,
1146 			 * we do not clear RETRANS, believing
1147 			 * that retransmission is still in flight.
1148 			 */
1149 			if (sacked & TCPCB_LOST) {
1150 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1151 				tp->lost_out -= pcount;
1152 				tp->retrans_out -= pcount;
1153 			}
1154 		} else {
1155 			if (!(sacked & TCPCB_RETRANS)) {
1156 				/* New sack for not retransmitted frame,
1157 				 * which was in hole. It is reordering.
1158 				 */
1159 				if (before(start_seq,
1160 					   tcp_highest_sack_seq(tp)))
1161 					state->reord = min(fack_count,
1162 							   state->reord);
1163 
1164 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1165 				if (!after(end_seq, tp->frto_highmark))
1166 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1167 			}
1168 
1169 			if (sacked & TCPCB_LOST) {
1170 				sacked &= ~TCPCB_LOST;
1171 				tp->lost_out -= pcount;
1172 			}
1173 		}
1174 
1175 		sacked |= TCPCB_SACKED_ACKED;
1176 		state->flag |= FLAG_DATA_SACKED;
1177 		tp->sacked_out += pcount;
1178 
1179 		fack_count += pcount;
1180 
1181 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1182 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1183 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1184 			tp->lost_cnt_hint += pcount;
1185 
1186 		if (fack_count > tp->fackets_out)
1187 			tp->fackets_out = fack_count;
1188 	}
1189 
1190 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1191 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1192 	 * are accounted above as well.
1193 	 */
1194 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1195 		sacked &= ~TCPCB_SACKED_RETRANS;
1196 		tp->retrans_out -= pcount;
1197 	}
1198 
1199 	return sacked;
1200 }
1201 
1202 /* Shift newly-SACKed bytes from this skb to the immediately previous
1203  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1204  */
1205 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1206 			    struct tcp_sacktag_state *state,
1207 			    unsigned int pcount, int shifted, int mss,
1208 			    bool dup_sack)
1209 {
1210 	struct tcp_sock *tp = tcp_sk(sk);
1211 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1212 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1213 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1214 
1215 	BUG_ON(!pcount);
1216 
1217 	/* Adjust counters and hints for the newly sacked sequence
1218 	 * range but discard the return value since prev is already
1219 	 * marked. We must tag the range first because the seq
1220 	 * advancement below implicitly advances
1221 	 * tcp_highest_sack_seq() when skb is highest_sack.
1222 	 */
1223 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1224 			start_seq, end_seq, dup_sack, pcount);
1225 
1226 	if (skb == tp->lost_skb_hint)
1227 		tp->lost_cnt_hint += pcount;
1228 
1229 	TCP_SKB_CB(prev)->end_seq += shifted;
1230 	TCP_SKB_CB(skb)->seq += shifted;
1231 
1232 	skb_shinfo(prev)->gso_segs += pcount;
1233 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1234 	skb_shinfo(skb)->gso_segs -= pcount;
1235 
1236 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1237 	 * in theory this shouldn't be necessary but as long as DSACK
1238 	 * code can come after this skb later on it's better to keep
1239 	 * setting gso_size to something.
1240 	 */
1241 	if (!skb_shinfo(prev)->gso_size) {
1242 		skb_shinfo(prev)->gso_size = mss;
1243 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1244 	}
1245 
1246 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1247 	if (skb_shinfo(skb)->gso_segs <= 1) {
1248 		skb_shinfo(skb)->gso_size = 0;
1249 		skb_shinfo(skb)->gso_type = 0;
1250 	}
1251 
1252 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1253 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1254 
1255 	if (skb->len > 0) {
1256 		BUG_ON(!tcp_skb_pcount(skb));
1257 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1258 		return false;
1259 	}
1260 
1261 	/* Whole SKB was eaten :-) */
1262 
1263 	if (skb == tp->retransmit_skb_hint)
1264 		tp->retransmit_skb_hint = prev;
1265 	if (skb == tp->scoreboard_skb_hint)
1266 		tp->scoreboard_skb_hint = prev;
1267 	if (skb == tp->lost_skb_hint) {
1268 		tp->lost_skb_hint = prev;
1269 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1270 	}
1271 
1272 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1273 	if (skb == tcp_highest_sack(sk))
1274 		tcp_advance_highest_sack(sk, skb);
1275 
1276 	tcp_unlink_write_queue(skb, sk);
1277 	sk_wmem_free_skb(sk, skb);
1278 
1279 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1280 
1281 	return true;
1282 }
1283 
1284 /* I wish gso_size would have a bit more sane initialization than
1285  * something-or-zero which complicates things
1286  */
1287 static int tcp_skb_seglen(const struct sk_buff *skb)
1288 {
1289 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1290 }
1291 
1292 /* Shifting pages past head area doesn't work */
1293 static int skb_can_shift(const struct sk_buff *skb)
1294 {
1295 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1296 }
1297 
1298 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1299  * skb.
1300  */
1301 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1302 					  struct tcp_sacktag_state *state,
1303 					  u32 start_seq, u32 end_seq,
1304 					  bool dup_sack)
1305 {
1306 	struct tcp_sock *tp = tcp_sk(sk);
1307 	struct sk_buff *prev;
1308 	int mss;
1309 	int pcount = 0;
1310 	int len;
1311 	int in_sack;
1312 
1313 	if (!sk_can_gso(sk))
1314 		goto fallback;
1315 
1316 	/* Normally R but no L won't result in plain S */
1317 	if (!dup_sack &&
1318 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1319 		goto fallback;
1320 	if (!skb_can_shift(skb))
1321 		goto fallback;
1322 	/* This frame is about to be dropped (was ACKed). */
1323 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1324 		goto fallback;
1325 
1326 	/* Can only happen with delayed DSACK + discard craziness */
1327 	if (unlikely(skb == tcp_write_queue_head(sk)))
1328 		goto fallback;
1329 	prev = tcp_write_queue_prev(sk, skb);
1330 
1331 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1332 		goto fallback;
1333 
1334 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1335 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1336 
1337 	if (in_sack) {
1338 		len = skb->len;
1339 		pcount = tcp_skb_pcount(skb);
1340 		mss = tcp_skb_seglen(skb);
1341 
1342 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1343 		 * drop this restriction as unnecessary
1344 		 */
1345 		if (mss != tcp_skb_seglen(prev))
1346 			goto fallback;
1347 	} else {
1348 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1349 			goto noop;
1350 		/* CHECKME: This is non-MSS split case only?, this will
1351 		 * cause skipped skbs due to advancing loop btw, original
1352 		 * has that feature too
1353 		 */
1354 		if (tcp_skb_pcount(skb) <= 1)
1355 			goto noop;
1356 
1357 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1358 		if (!in_sack) {
1359 			/* TODO: head merge to next could be attempted here
1360 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1361 			 * though it might not be worth of the additional hassle
1362 			 *
1363 			 * ...we can probably just fallback to what was done
1364 			 * previously. We could try merging non-SACKed ones
1365 			 * as well but it probably isn't going to buy off
1366 			 * because later SACKs might again split them, and
1367 			 * it would make skb timestamp tracking considerably
1368 			 * harder problem.
1369 			 */
1370 			goto fallback;
1371 		}
1372 
1373 		len = end_seq - TCP_SKB_CB(skb)->seq;
1374 		BUG_ON(len < 0);
1375 		BUG_ON(len > skb->len);
1376 
1377 		/* MSS boundaries should be honoured or else pcount will
1378 		 * severely break even though it makes things bit trickier.
1379 		 * Optimize common case to avoid most of the divides
1380 		 */
1381 		mss = tcp_skb_mss(skb);
1382 
1383 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1384 		 * drop this restriction as unnecessary
1385 		 */
1386 		if (mss != tcp_skb_seglen(prev))
1387 			goto fallback;
1388 
1389 		if (len == mss) {
1390 			pcount = 1;
1391 		} else if (len < mss) {
1392 			goto noop;
1393 		} else {
1394 			pcount = len / mss;
1395 			len = pcount * mss;
1396 		}
1397 	}
1398 
1399 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1400 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1401 		goto fallback;
1402 
1403 	if (!skb_shift(prev, skb, len))
1404 		goto fallback;
1405 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1406 		goto out;
1407 
1408 	/* Hole filled allows collapsing with the next as well, this is very
1409 	 * useful when hole on every nth skb pattern happens
1410 	 */
1411 	if (prev == tcp_write_queue_tail(sk))
1412 		goto out;
1413 	skb = tcp_write_queue_next(sk, prev);
1414 
1415 	if (!skb_can_shift(skb) ||
1416 	    (skb == tcp_send_head(sk)) ||
1417 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1418 	    (mss != tcp_skb_seglen(skb)))
1419 		goto out;
1420 
1421 	len = skb->len;
1422 	if (skb_shift(prev, skb, len)) {
1423 		pcount += tcp_skb_pcount(skb);
1424 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1425 	}
1426 
1427 out:
1428 	state->fack_count += pcount;
1429 	return prev;
1430 
1431 noop:
1432 	return skb;
1433 
1434 fallback:
1435 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1436 	return NULL;
1437 }
1438 
1439 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1440 					struct tcp_sack_block *next_dup,
1441 					struct tcp_sacktag_state *state,
1442 					u32 start_seq, u32 end_seq,
1443 					bool dup_sack_in)
1444 {
1445 	struct tcp_sock *tp = tcp_sk(sk);
1446 	struct sk_buff *tmp;
1447 
1448 	tcp_for_write_queue_from(skb, sk) {
1449 		int in_sack = 0;
1450 		bool dup_sack = dup_sack_in;
1451 
1452 		if (skb == tcp_send_head(sk))
1453 			break;
1454 
1455 		/* queue is in-order => we can short-circuit the walk early */
1456 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1457 			break;
1458 
1459 		if ((next_dup != NULL) &&
1460 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1461 			in_sack = tcp_match_skb_to_sack(sk, skb,
1462 							next_dup->start_seq,
1463 							next_dup->end_seq);
1464 			if (in_sack > 0)
1465 				dup_sack = true;
1466 		}
1467 
1468 		/* skb reference here is a bit tricky to get right, since
1469 		 * shifting can eat and free both this skb and the next,
1470 		 * so not even _safe variant of the loop is enough.
1471 		 */
1472 		if (in_sack <= 0) {
1473 			tmp = tcp_shift_skb_data(sk, skb, state,
1474 						 start_seq, end_seq, dup_sack);
1475 			if (tmp != NULL) {
1476 				if (tmp != skb) {
1477 					skb = tmp;
1478 					continue;
1479 				}
1480 
1481 				in_sack = 0;
1482 			} else {
1483 				in_sack = tcp_match_skb_to_sack(sk, skb,
1484 								start_seq,
1485 								end_seq);
1486 			}
1487 		}
1488 
1489 		if (unlikely(in_sack < 0))
1490 			break;
1491 
1492 		if (in_sack) {
1493 			TCP_SKB_CB(skb)->sacked =
1494 				tcp_sacktag_one(sk,
1495 						state,
1496 						TCP_SKB_CB(skb)->sacked,
1497 						TCP_SKB_CB(skb)->seq,
1498 						TCP_SKB_CB(skb)->end_seq,
1499 						dup_sack,
1500 						tcp_skb_pcount(skb));
1501 
1502 			if (!before(TCP_SKB_CB(skb)->seq,
1503 				    tcp_highest_sack_seq(tp)))
1504 				tcp_advance_highest_sack(sk, skb);
1505 		}
1506 
1507 		state->fack_count += tcp_skb_pcount(skb);
1508 	}
1509 	return skb;
1510 }
1511 
1512 /* Avoid all extra work that is being done by sacktag while walking in
1513  * a normal way
1514  */
1515 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1516 					struct tcp_sacktag_state *state,
1517 					u32 skip_to_seq)
1518 {
1519 	tcp_for_write_queue_from(skb, sk) {
1520 		if (skb == tcp_send_head(sk))
1521 			break;
1522 
1523 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1524 			break;
1525 
1526 		state->fack_count += tcp_skb_pcount(skb);
1527 	}
1528 	return skb;
1529 }
1530 
1531 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1532 						struct sock *sk,
1533 						struct tcp_sack_block *next_dup,
1534 						struct tcp_sacktag_state *state,
1535 						u32 skip_to_seq)
1536 {
1537 	if (next_dup == NULL)
1538 		return skb;
1539 
1540 	if (before(next_dup->start_seq, skip_to_seq)) {
1541 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1542 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1543 				       next_dup->start_seq, next_dup->end_seq,
1544 				       1);
1545 	}
1546 
1547 	return skb;
1548 }
1549 
1550 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1551 {
1552 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1553 }
1554 
1555 static int
1556 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1557 			u32 prior_snd_una)
1558 {
1559 	const struct inet_connection_sock *icsk = inet_csk(sk);
1560 	struct tcp_sock *tp = tcp_sk(sk);
1561 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1562 				    TCP_SKB_CB(ack_skb)->sacked);
1563 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1564 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1565 	struct tcp_sack_block *cache;
1566 	struct tcp_sacktag_state state;
1567 	struct sk_buff *skb;
1568 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1569 	int used_sacks;
1570 	bool found_dup_sack = false;
1571 	int i, j;
1572 	int first_sack_index;
1573 
1574 	state.flag = 0;
1575 	state.reord = tp->packets_out;
1576 
1577 	if (!tp->sacked_out) {
1578 		if (WARN_ON(tp->fackets_out))
1579 			tp->fackets_out = 0;
1580 		tcp_highest_sack_reset(sk);
1581 	}
1582 
1583 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1584 					 num_sacks, prior_snd_una);
1585 	if (found_dup_sack)
1586 		state.flag |= FLAG_DSACKING_ACK;
1587 
1588 	/* Eliminate too old ACKs, but take into
1589 	 * account more or less fresh ones, they can
1590 	 * contain valid SACK info.
1591 	 */
1592 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1593 		return 0;
1594 
1595 	if (!tp->packets_out)
1596 		goto out;
1597 
1598 	used_sacks = 0;
1599 	first_sack_index = 0;
1600 	for (i = 0; i < num_sacks; i++) {
1601 		bool dup_sack = !i && found_dup_sack;
1602 
1603 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1604 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1605 
1606 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1607 					    sp[used_sacks].start_seq,
1608 					    sp[used_sacks].end_seq)) {
1609 			int mib_idx;
1610 
1611 			if (dup_sack) {
1612 				if (!tp->undo_marker)
1613 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1614 				else
1615 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1616 			} else {
1617 				/* Don't count olds caused by ACK reordering */
1618 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1619 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1620 					continue;
1621 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1622 			}
1623 
1624 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1625 			if (i == 0)
1626 				first_sack_index = -1;
1627 			continue;
1628 		}
1629 
1630 		/* Ignore very old stuff early */
1631 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1632 			continue;
1633 
1634 		used_sacks++;
1635 	}
1636 
1637 	/* order SACK blocks to allow in order walk of the retrans queue */
1638 	for (i = used_sacks - 1; i > 0; i--) {
1639 		for (j = 0; j < i; j++) {
1640 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1641 				swap(sp[j], sp[j + 1]);
1642 
1643 				/* Track where the first SACK block goes to */
1644 				if (j == first_sack_index)
1645 					first_sack_index = j + 1;
1646 			}
1647 		}
1648 	}
1649 
1650 	skb = tcp_write_queue_head(sk);
1651 	state.fack_count = 0;
1652 	i = 0;
1653 
1654 	if (!tp->sacked_out) {
1655 		/* It's already past, so skip checking against it */
1656 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1657 	} else {
1658 		cache = tp->recv_sack_cache;
1659 		/* Skip empty blocks in at head of the cache */
1660 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1661 		       !cache->end_seq)
1662 			cache++;
1663 	}
1664 
1665 	while (i < used_sacks) {
1666 		u32 start_seq = sp[i].start_seq;
1667 		u32 end_seq = sp[i].end_seq;
1668 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1669 		struct tcp_sack_block *next_dup = NULL;
1670 
1671 		if (found_dup_sack && ((i + 1) == first_sack_index))
1672 			next_dup = &sp[i + 1];
1673 
1674 		/* Skip too early cached blocks */
1675 		while (tcp_sack_cache_ok(tp, cache) &&
1676 		       !before(start_seq, cache->end_seq))
1677 			cache++;
1678 
1679 		/* Can skip some work by looking recv_sack_cache? */
1680 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1681 		    after(end_seq, cache->start_seq)) {
1682 
1683 			/* Head todo? */
1684 			if (before(start_seq, cache->start_seq)) {
1685 				skb = tcp_sacktag_skip(skb, sk, &state,
1686 						       start_seq);
1687 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1688 						       &state,
1689 						       start_seq,
1690 						       cache->start_seq,
1691 						       dup_sack);
1692 			}
1693 
1694 			/* Rest of the block already fully processed? */
1695 			if (!after(end_seq, cache->end_seq))
1696 				goto advance_sp;
1697 
1698 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1699 						       &state,
1700 						       cache->end_seq);
1701 
1702 			/* ...tail remains todo... */
1703 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1704 				/* ...but better entrypoint exists! */
1705 				skb = tcp_highest_sack(sk);
1706 				if (skb == NULL)
1707 					break;
1708 				state.fack_count = tp->fackets_out;
1709 				cache++;
1710 				goto walk;
1711 			}
1712 
1713 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1714 			/* Check overlap against next cached too (past this one already) */
1715 			cache++;
1716 			continue;
1717 		}
1718 
1719 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1720 			skb = tcp_highest_sack(sk);
1721 			if (skb == NULL)
1722 				break;
1723 			state.fack_count = tp->fackets_out;
1724 		}
1725 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1726 
1727 walk:
1728 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1729 				       start_seq, end_seq, dup_sack);
1730 
1731 advance_sp:
1732 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1733 		 * due to in-order walk
1734 		 */
1735 		if (after(end_seq, tp->frto_highmark))
1736 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1737 
1738 		i++;
1739 	}
1740 
1741 	/* Clear the head of the cache sack blocks so we can skip it next time */
1742 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1743 		tp->recv_sack_cache[i].start_seq = 0;
1744 		tp->recv_sack_cache[i].end_seq = 0;
1745 	}
1746 	for (j = 0; j < used_sacks; j++)
1747 		tp->recv_sack_cache[i++] = sp[j];
1748 
1749 	tcp_mark_lost_retrans(sk);
1750 
1751 	tcp_verify_left_out(tp);
1752 
1753 	if ((state.reord < tp->fackets_out) &&
1754 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1755 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1756 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1757 
1758 out:
1759 
1760 #if FASTRETRANS_DEBUG > 0
1761 	WARN_ON((int)tp->sacked_out < 0);
1762 	WARN_ON((int)tp->lost_out < 0);
1763 	WARN_ON((int)tp->retrans_out < 0);
1764 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1765 #endif
1766 	return state.flag;
1767 }
1768 
1769 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1770  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1771  */
1772 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1773 {
1774 	u32 holes;
1775 
1776 	holes = max(tp->lost_out, 1U);
1777 	holes = min(holes, tp->packets_out);
1778 
1779 	if ((tp->sacked_out + holes) > tp->packets_out) {
1780 		tp->sacked_out = tp->packets_out - holes;
1781 		return true;
1782 	}
1783 	return false;
1784 }
1785 
1786 /* If we receive more dupacks than we expected counting segments
1787  * in assumption of absent reordering, interpret this as reordering.
1788  * The only another reason could be bug in receiver TCP.
1789  */
1790 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1791 {
1792 	struct tcp_sock *tp = tcp_sk(sk);
1793 	if (tcp_limit_reno_sacked(tp))
1794 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1795 }
1796 
1797 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1798 
1799 static void tcp_add_reno_sack(struct sock *sk)
1800 {
1801 	struct tcp_sock *tp = tcp_sk(sk);
1802 	tp->sacked_out++;
1803 	tcp_check_reno_reordering(sk, 0);
1804 	tcp_verify_left_out(tp);
1805 }
1806 
1807 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1808 
1809 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1810 {
1811 	struct tcp_sock *tp = tcp_sk(sk);
1812 
1813 	if (acked > 0) {
1814 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1815 		if (acked - 1 >= tp->sacked_out)
1816 			tp->sacked_out = 0;
1817 		else
1818 			tp->sacked_out -= acked - 1;
1819 	}
1820 	tcp_check_reno_reordering(sk, acked);
1821 	tcp_verify_left_out(tp);
1822 }
1823 
1824 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1825 {
1826 	tp->sacked_out = 0;
1827 }
1828 
1829 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1830 {
1831 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1832 }
1833 
1834 /* F-RTO can only be used if TCP has never retransmitted anything other than
1835  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1836  */
1837 bool tcp_use_frto(struct sock *sk)
1838 {
1839 	const struct tcp_sock *tp = tcp_sk(sk);
1840 	const struct inet_connection_sock *icsk = inet_csk(sk);
1841 	struct sk_buff *skb;
1842 
1843 	if (!sysctl_tcp_frto)
1844 		return false;
1845 
1846 	/* MTU probe and F-RTO won't really play nicely along currently */
1847 	if (icsk->icsk_mtup.probe_size)
1848 		return false;
1849 
1850 	if (tcp_is_sackfrto(tp))
1851 		return true;
1852 
1853 	/* Avoid expensive walking of rexmit queue if possible */
1854 	if (tp->retrans_out > 1)
1855 		return false;
1856 
1857 	skb = tcp_write_queue_head(sk);
1858 	if (tcp_skb_is_last(sk, skb))
1859 		return true;
1860 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1861 	tcp_for_write_queue_from(skb, sk) {
1862 		if (skb == tcp_send_head(sk))
1863 			break;
1864 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1865 			return false;
1866 		/* Short-circuit when first non-SACKed skb has been checked */
1867 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1868 			break;
1869 	}
1870 	return true;
1871 }
1872 
1873 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1874  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1875  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1876  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1877  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1878  * bits are handled if the Loss state is really to be entered (in
1879  * tcp_enter_frto_loss).
1880  *
1881  * Do like tcp_enter_loss() would; when RTO expires the second time it
1882  * does:
1883  *  "Reduce ssthresh if it has not yet been made inside this window."
1884  */
1885 void tcp_enter_frto(struct sock *sk)
1886 {
1887 	const struct inet_connection_sock *icsk = inet_csk(sk);
1888 	struct tcp_sock *tp = tcp_sk(sk);
1889 	struct sk_buff *skb;
1890 
1891 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1892 	    tp->snd_una == tp->high_seq ||
1893 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1894 	     !icsk->icsk_retransmits)) {
1895 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1896 		/* Our state is too optimistic in ssthresh() call because cwnd
1897 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1898 		 * recovery has not yet completed. Pattern would be this: RTO,
1899 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1900 		 * up here twice).
1901 		 * RFC4138 should be more specific on what to do, even though
1902 		 * RTO is quite unlikely to occur after the first Cumulative ACK
1903 		 * due to back-off and complexity of triggering events ...
1904 		 */
1905 		if (tp->frto_counter) {
1906 			u32 stored_cwnd;
1907 			stored_cwnd = tp->snd_cwnd;
1908 			tp->snd_cwnd = 2;
1909 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1910 			tp->snd_cwnd = stored_cwnd;
1911 		} else {
1912 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1913 		}
1914 		/* ... in theory, cong.control module could do "any tricks" in
1915 		 * ssthresh(), which means that ca_state, lost bits and lost_out
1916 		 * counter would have to be faked before the call occurs. We
1917 		 * consider that too expensive, unlikely and hacky, so modules
1918 		 * using these in ssthresh() must deal these incompatibility
1919 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1920 		 */
1921 		tcp_ca_event(sk, CA_EVENT_FRTO);
1922 	}
1923 
1924 	tp->undo_marker = tp->snd_una;
1925 	tp->undo_retrans = 0;
1926 
1927 	skb = tcp_write_queue_head(sk);
1928 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1929 		tp->undo_marker = 0;
1930 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1931 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1932 		tp->retrans_out -= tcp_skb_pcount(skb);
1933 	}
1934 	tcp_verify_left_out(tp);
1935 
1936 	/* Too bad if TCP was application limited */
1937 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1938 
1939 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1940 	 * The last condition is necessary at least in tp->frto_counter case.
1941 	 */
1942 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1943 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1944 	    after(tp->high_seq, tp->snd_una)) {
1945 		tp->frto_highmark = tp->high_seq;
1946 	} else {
1947 		tp->frto_highmark = tp->snd_nxt;
1948 	}
1949 	tcp_set_ca_state(sk, TCP_CA_Disorder);
1950 	tp->high_seq = tp->snd_nxt;
1951 	tp->frto_counter = 1;
1952 }
1953 
1954 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1955  * which indicates that we should follow the traditional RTO recovery,
1956  * i.e. mark everything lost and do go-back-N retransmission.
1957  */
1958 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1959 {
1960 	struct tcp_sock *tp = tcp_sk(sk);
1961 	struct sk_buff *skb;
1962 
1963 	tp->lost_out = 0;
1964 	tp->retrans_out = 0;
1965 	if (tcp_is_reno(tp))
1966 		tcp_reset_reno_sack(tp);
1967 
1968 	tcp_for_write_queue(skb, sk) {
1969 		if (skb == tcp_send_head(sk))
1970 			break;
1971 
1972 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1973 		/*
1974 		 * Count the retransmission made on RTO correctly (only when
1975 		 * waiting for the first ACK and did not get it)...
1976 		 */
1977 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1978 			/* For some reason this R-bit might get cleared? */
1979 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1980 				tp->retrans_out += tcp_skb_pcount(skb);
1981 			/* ...enter this if branch just for the first segment */
1982 			flag |= FLAG_DATA_ACKED;
1983 		} else {
1984 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1985 				tp->undo_marker = 0;
1986 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1987 		}
1988 
1989 		/* Marking forward transmissions that were made after RTO lost
1990 		 * can cause unnecessary retransmissions in some scenarios,
1991 		 * SACK blocks will mitigate that in some but not in all cases.
1992 		 * We used to not mark them but it was causing break-ups with
1993 		 * receivers that do only in-order receival.
1994 		 *
1995 		 * TODO: we could detect presence of such receiver and select
1996 		 * different behavior per flow.
1997 		 */
1998 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1999 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2000 			tp->lost_out += tcp_skb_pcount(skb);
2001 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2002 		}
2003 	}
2004 	tcp_verify_left_out(tp);
2005 
2006 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2007 	tp->snd_cwnd_cnt = 0;
2008 	tp->snd_cwnd_stamp = tcp_time_stamp;
2009 	tp->frto_counter = 0;
2010 
2011 	tp->reordering = min_t(unsigned int, tp->reordering,
2012 			       sysctl_tcp_reordering);
2013 	tcp_set_ca_state(sk, TCP_CA_Loss);
2014 	tp->high_seq = tp->snd_nxt;
2015 	TCP_ECN_queue_cwr(tp);
2016 
2017 	tcp_clear_all_retrans_hints(tp);
2018 }
2019 
2020 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2021 {
2022 	tp->retrans_out = 0;
2023 	tp->lost_out = 0;
2024 
2025 	tp->undo_marker = 0;
2026 	tp->undo_retrans = 0;
2027 }
2028 
2029 void tcp_clear_retrans(struct tcp_sock *tp)
2030 {
2031 	tcp_clear_retrans_partial(tp);
2032 
2033 	tp->fackets_out = 0;
2034 	tp->sacked_out = 0;
2035 }
2036 
2037 /* Enter Loss state. If "how" is not zero, forget all SACK information
2038  * and reset tags completely, otherwise preserve SACKs. If receiver
2039  * dropped its ofo queue, we will know this due to reneging detection.
2040  */
2041 void tcp_enter_loss(struct sock *sk, int how)
2042 {
2043 	const struct inet_connection_sock *icsk = inet_csk(sk);
2044 	struct tcp_sock *tp = tcp_sk(sk);
2045 	struct sk_buff *skb;
2046 
2047 	/* Reduce ssthresh if it has not yet been made inside this window. */
2048 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2049 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2050 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2051 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2052 		tcp_ca_event(sk, CA_EVENT_LOSS);
2053 	}
2054 	tp->snd_cwnd	   = 1;
2055 	tp->snd_cwnd_cnt   = 0;
2056 	tp->snd_cwnd_stamp = tcp_time_stamp;
2057 
2058 	tcp_clear_retrans_partial(tp);
2059 
2060 	if (tcp_is_reno(tp))
2061 		tcp_reset_reno_sack(tp);
2062 
2063 	tp->undo_marker = tp->snd_una;
2064 	if (how) {
2065 		tp->sacked_out = 0;
2066 		tp->fackets_out = 0;
2067 	}
2068 	tcp_clear_all_retrans_hints(tp);
2069 
2070 	tcp_for_write_queue(skb, sk) {
2071 		if (skb == tcp_send_head(sk))
2072 			break;
2073 
2074 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2075 			tp->undo_marker = 0;
2076 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2077 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2078 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2079 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2080 			tp->lost_out += tcp_skb_pcount(skb);
2081 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2082 		}
2083 	}
2084 	tcp_verify_left_out(tp);
2085 
2086 	tp->reordering = min_t(unsigned int, tp->reordering,
2087 			       sysctl_tcp_reordering);
2088 	tcp_set_ca_state(sk, TCP_CA_Loss);
2089 	tp->high_seq = tp->snd_nxt;
2090 	TCP_ECN_queue_cwr(tp);
2091 	/* Abort F-RTO algorithm if one is in progress */
2092 	tp->frto_counter = 0;
2093 }
2094 
2095 /* If ACK arrived pointing to a remembered SACK, it means that our
2096  * remembered SACKs do not reflect real state of receiver i.e.
2097  * receiver _host_ is heavily congested (or buggy).
2098  *
2099  * Do processing similar to RTO timeout.
2100  */
2101 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2102 {
2103 	if (flag & FLAG_SACK_RENEGING) {
2104 		struct inet_connection_sock *icsk = inet_csk(sk);
2105 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2106 
2107 		tcp_enter_loss(sk, 1);
2108 		icsk->icsk_retransmits++;
2109 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2110 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2111 					  icsk->icsk_rto, TCP_RTO_MAX);
2112 		return true;
2113 	}
2114 	return false;
2115 }
2116 
2117 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2118 {
2119 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2120 }
2121 
2122 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2123  * counter when SACK is enabled (without SACK, sacked_out is used for
2124  * that purpose).
2125  *
2126  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2127  * segments up to the highest received SACK block so far and holes in
2128  * between them.
2129  *
2130  * With reordering, holes may still be in flight, so RFC3517 recovery
2131  * uses pure sacked_out (total number of SACKed segments) even though
2132  * it violates the RFC that uses duplicate ACKs, often these are equal
2133  * but when e.g. out-of-window ACKs or packet duplication occurs,
2134  * they differ. Since neither occurs due to loss, TCP should really
2135  * ignore them.
2136  */
2137 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2138 {
2139 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2140 }
2141 
2142 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2143 {
2144 	struct tcp_sock *tp = tcp_sk(sk);
2145 	unsigned long delay;
2146 
2147 	/* Delay early retransmit and entering fast recovery for
2148 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2149 	 * available, or RTO is scheduled to fire first.
2150 	 */
2151 	if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2152 		return false;
2153 
2154 	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2155 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2156 		return false;
2157 
2158 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2159 	tp->early_retrans_delayed = 1;
2160 	return true;
2161 }
2162 
2163 static inline int tcp_skb_timedout(const struct sock *sk,
2164 				   const struct sk_buff *skb)
2165 {
2166 	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2167 }
2168 
2169 static inline int tcp_head_timedout(const struct sock *sk)
2170 {
2171 	const struct tcp_sock *tp = tcp_sk(sk);
2172 
2173 	return tp->packets_out &&
2174 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2175 }
2176 
2177 /* Linux NewReno/SACK/FACK/ECN state machine.
2178  * --------------------------------------
2179  *
2180  * "Open"	Normal state, no dubious events, fast path.
2181  * "Disorder"   In all the respects it is "Open",
2182  *		but requires a bit more attention. It is entered when
2183  *		we see some SACKs or dupacks. It is split of "Open"
2184  *		mainly to move some processing from fast path to slow one.
2185  * "CWR"	CWND was reduced due to some Congestion Notification event.
2186  *		It can be ECN, ICMP source quench, local device congestion.
2187  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2188  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2189  *
2190  * tcp_fastretrans_alert() is entered:
2191  * - each incoming ACK, if state is not "Open"
2192  * - when arrived ACK is unusual, namely:
2193  *	* SACK
2194  *	* Duplicate ACK.
2195  *	* ECN ECE.
2196  *
2197  * Counting packets in flight is pretty simple.
2198  *
2199  *	in_flight = packets_out - left_out + retrans_out
2200  *
2201  *	packets_out is SND.NXT-SND.UNA counted in packets.
2202  *
2203  *	retrans_out is number of retransmitted segments.
2204  *
2205  *	left_out is number of segments left network, but not ACKed yet.
2206  *
2207  *		left_out = sacked_out + lost_out
2208  *
2209  *     sacked_out: Packets, which arrived to receiver out of order
2210  *		   and hence not ACKed. With SACKs this number is simply
2211  *		   amount of SACKed data. Even without SACKs
2212  *		   it is easy to give pretty reliable estimate of this number,
2213  *		   counting duplicate ACKs.
2214  *
2215  *       lost_out: Packets lost by network. TCP has no explicit
2216  *		   "loss notification" feedback from network (for now).
2217  *		   It means that this number can be only _guessed_.
2218  *		   Actually, it is the heuristics to predict lossage that
2219  *		   distinguishes different algorithms.
2220  *
2221  *	F.e. after RTO, when all the queue is considered as lost,
2222  *	lost_out = packets_out and in_flight = retrans_out.
2223  *
2224  *		Essentially, we have now two algorithms counting
2225  *		lost packets.
2226  *
2227  *		FACK: It is the simplest heuristics. As soon as we decided
2228  *		that something is lost, we decide that _all_ not SACKed
2229  *		packets until the most forward SACK are lost. I.e.
2230  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2231  *		It is absolutely correct estimate, if network does not reorder
2232  *		packets. And it loses any connection to reality when reordering
2233  *		takes place. We use FACK by default until reordering
2234  *		is suspected on the path to this destination.
2235  *
2236  *		NewReno: when Recovery is entered, we assume that one segment
2237  *		is lost (classic Reno). While we are in Recovery and
2238  *		a partial ACK arrives, we assume that one more packet
2239  *		is lost (NewReno). This heuristics are the same in NewReno
2240  *		and SACK.
2241  *
2242  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2243  *  deflation etc. CWND is real congestion window, never inflated, changes
2244  *  only according to classic VJ rules.
2245  *
2246  * Really tricky (and requiring careful tuning) part of algorithm
2247  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2248  * The first determines the moment _when_ we should reduce CWND and,
2249  * hence, slow down forward transmission. In fact, it determines the moment
2250  * when we decide that hole is caused by loss, rather than by a reorder.
2251  *
2252  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2253  * holes, caused by lost packets.
2254  *
2255  * And the most logically complicated part of algorithm is undo
2256  * heuristics. We detect false retransmits due to both too early
2257  * fast retransmit (reordering) and underestimated RTO, analyzing
2258  * timestamps and D-SACKs. When we detect that some segments were
2259  * retransmitted by mistake and CWND reduction was wrong, we undo
2260  * window reduction and abort recovery phase. This logic is hidden
2261  * inside several functions named tcp_try_undo_<something>.
2262  */
2263 
2264 /* This function decides, when we should leave Disordered state
2265  * and enter Recovery phase, reducing congestion window.
2266  *
2267  * Main question: may we further continue forward transmission
2268  * with the same cwnd?
2269  */
2270 static bool tcp_time_to_recover(struct sock *sk, int flag)
2271 {
2272 	struct tcp_sock *tp = tcp_sk(sk);
2273 	__u32 packets_out;
2274 
2275 	/* Do not perform any recovery during F-RTO algorithm */
2276 	if (tp->frto_counter)
2277 		return false;
2278 
2279 	/* Trick#1: The loss is proven. */
2280 	if (tp->lost_out)
2281 		return true;
2282 
2283 	/* Not-A-Trick#2 : Classic rule... */
2284 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2285 		return true;
2286 
2287 	/* Trick#3 : when we use RFC2988 timer restart, fast
2288 	 * retransmit can be triggered by timeout of queue head.
2289 	 */
2290 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2291 		return true;
2292 
2293 	/* Trick#4: It is still not OK... But will it be useful to delay
2294 	 * recovery more?
2295 	 */
2296 	packets_out = tp->packets_out;
2297 	if (packets_out <= tp->reordering &&
2298 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2299 	    !tcp_may_send_now(sk)) {
2300 		/* We have nothing to send. This connection is limited
2301 		 * either by receiver window or by application.
2302 		 */
2303 		return true;
2304 	}
2305 
2306 	/* If a thin stream is detected, retransmit after first
2307 	 * received dupack. Employ only if SACK is supported in order
2308 	 * to avoid possible corner-case series of spurious retransmissions
2309 	 * Use only if there are no unsent data.
2310 	 */
2311 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2312 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2313 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2314 		return true;
2315 
2316 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2317 	 * retransmissions due to small network reorderings, we implement
2318 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2319 	 * interval if appropriate.
2320 	 */
2321 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2322 	    (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2323 	    !tcp_may_send_now(sk))
2324 		return !tcp_pause_early_retransmit(sk, flag);
2325 
2326 	return false;
2327 }
2328 
2329 /* New heuristics: it is possible only after we switched to restart timer
2330  * each time when something is ACKed. Hence, we can detect timed out packets
2331  * during fast retransmit without falling to slow start.
2332  *
2333  * Usefulness of this as is very questionable, since we should know which of
2334  * the segments is the next to timeout which is relatively expensive to find
2335  * in general case unless we add some data structure just for that. The
2336  * current approach certainly won't find the right one too often and when it
2337  * finally does find _something_ it usually marks large part of the window
2338  * right away (because a retransmission with a larger timestamp blocks the
2339  * loop from advancing). -ij
2340  */
2341 static void tcp_timeout_skbs(struct sock *sk)
2342 {
2343 	struct tcp_sock *tp = tcp_sk(sk);
2344 	struct sk_buff *skb;
2345 
2346 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2347 		return;
2348 
2349 	skb = tp->scoreboard_skb_hint;
2350 	if (tp->scoreboard_skb_hint == NULL)
2351 		skb = tcp_write_queue_head(sk);
2352 
2353 	tcp_for_write_queue_from(skb, sk) {
2354 		if (skb == tcp_send_head(sk))
2355 			break;
2356 		if (!tcp_skb_timedout(sk, skb))
2357 			break;
2358 
2359 		tcp_skb_mark_lost(tp, skb);
2360 	}
2361 
2362 	tp->scoreboard_skb_hint = skb;
2363 
2364 	tcp_verify_left_out(tp);
2365 }
2366 
2367 /* Detect loss in event "A" above by marking head of queue up as lost.
2368  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2369  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2370  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2371  * the maximum SACKed segments to pass before reaching this limit.
2372  */
2373 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2374 {
2375 	struct tcp_sock *tp = tcp_sk(sk);
2376 	struct sk_buff *skb;
2377 	int cnt, oldcnt;
2378 	int err;
2379 	unsigned int mss;
2380 	/* Use SACK to deduce losses of new sequences sent during recovery */
2381 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2382 
2383 	WARN_ON(packets > tp->packets_out);
2384 	if (tp->lost_skb_hint) {
2385 		skb = tp->lost_skb_hint;
2386 		cnt = tp->lost_cnt_hint;
2387 		/* Head already handled? */
2388 		if (mark_head && skb != tcp_write_queue_head(sk))
2389 			return;
2390 	} else {
2391 		skb = tcp_write_queue_head(sk);
2392 		cnt = 0;
2393 	}
2394 
2395 	tcp_for_write_queue_from(skb, sk) {
2396 		if (skb == tcp_send_head(sk))
2397 			break;
2398 		/* TODO: do this better */
2399 		/* this is not the most efficient way to do this... */
2400 		tp->lost_skb_hint = skb;
2401 		tp->lost_cnt_hint = cnt;
2402 
2403 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2404 			break;
2405 
2406 		oldcnt = cnt;
2407 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2408 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2409 			cnt += tcp_skb_pcount(skb);
2410 
2411 		if (cnt > packets) {
2412 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2413 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2414 			    (oldcnt >= packets))
2415 				break;
2416 
2417 			mss = skb_shinfo(skb)->gso_size;
2418 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2419 			if (err < 0)
2420 				break;
2421 			cnt = packets;
2422 		}
2423 
2424 		tcp_skb_mark_lost(tp, skb);
2425 
2426 		if (mark_head)
2427 			break;
2428 	}
2429 	tcp_verify_left_out(tp);
2430 }
2431 
2432 /* Account newly detected lost packet(s) */
2433 
2434 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2435 {
2436 	struct tcp_sock *tp = tcp_sk(sk);
2437 
2438 	if (tcp_is_reno(tp)) {
2439 		tcp_mark_head_lost(sk, 1, 1);
2440 	} else if (tcp_is_fack(tp)) {
2441 		int lost = tp->fackets_out - tp->reordering;
2442 		if (lost <= 0)
2443 			lost = 1;
2444 		tcp_mark_head_lost(sk, lost, 0);
2445 	} else {
2446 		int sacked_upto = tp->sacked_out - tp->reordering;
2447 		if (sacked_upto >= 0)
2448 			tcp_mark_head_lost(sk, sacked_upto, 0);
2449 		else if (fast_rexmit)
2450 			tcp_mark_head_lost(sk, 1, 1);
2451 	}
2452 
2453 	tcp_timeout_skbs(sk);
2454 }
2455 
2456 /* CWND moderation, preventing bursts due to too big ACKs
2457  * in dubious situations.
2458  */
2459 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2460 {
2461 	tp->snd_cwnd = min(tp->snd_cwnd,
2462 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2463 	tp->snd_cwnd_stamp = tcp_time_stamp;
2464 }
2465 
2466 /* Nothing was retransmitted or returned timestamp is less
2467  * than timestamp of the first retransmission.
2468  */
2469 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2470 {
2471 	return !tp->retrans_stamp ||
2472 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2473 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2474 }
2475 
2476 /* Undo procedures. */
2477 
2478 #if FASTRETRANS_DEBUG > 1
2479 static void DBGUNDO(struct sock *sk, const char *msg)
2480 {
2481 	struct tcp_sock *tp = tcp_sk(sk);
2482 	struct inet_sock *inet = inet_sk(sk);
2483 
2484 	if (sk->sk_family == AF_INET) {
2485 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2486 			 msg,
2487 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2488 			 tp->snd_cwnd, tcp_left_out(tp),
2489 			 tp->snd_ssthresh, tp->prior_ssthresh,
2490 			 tp->packets_out);
2491 	}
2492 #if IS_ENABLED(CONFIG_IPV6)
2493 	else if (sk->sk_family == AF_INET6) {
2494 		struct ipv6_pinfo *np = inet6_sk(sk);
2495 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2496 			 msg,
2497 			 &np->daddr, ntohs(inet->inet_dport),
2498 			 tp->snd_cwnd, tcp_left_out(tp),
2499 			 tp->snd_ssthresh, tp->prior_ssthresh,
2500 			 tp->packets_out);
2501 	}
2502 #endif
2503 }
2504 #else
2505 #define DBGUNDO(x...) do { } while (0)
2506 #endif
2507 
2508 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2509 {
2510 	struct tcp_sock *tp = tcp_sk(sk);
2511 
2512 	if (tp->prior_ssthresh) {
2513 		const struct inet_connection_sock *icsk = inet_csk(sk);
2514 
2515 		if (icsk->icsk_ca_ops->undo_cwnd)
2516 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2517 		else
2518 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2519 
2520 		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2521 			tp->snd_ssthresh = tp->prior_ssthresh;
2522 			TCP_ECN_withdraw_cwr(tp);
2523 		}
2524 	} else {
2525 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2526 	}
2527 	tp->snd_cwnd_stamp = tcp_time_stamp;
2528 }
2529 
2530 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2531 {
2532 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2533 }
2534 
2535 /* People celebrate: "We love our President!" */
2536 static bool tcp_try_undo_recovery(struct sock *sk)
2537 {
2538 	struct tcp_sock *tp = tcp_sk(sk);
2539 
2540 	if (tcp_may_undo(tp)) {
2541 		int mib_idx;
2542 
2543 		/* Happy end! We did not retransmit anything
2544 		 * or our original transmission succeeded.
2545 		 */
2546 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2547 		tcp_undo_cwr(sk, true);
2548 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2549 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2550 		else
2551 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2552 
2553 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2554 		tp->undo_marker = 0;
2555 	}
2556 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2557 		/* Hold old state until something *above* high_seq
2558 		 * is ACKed. For Reno it is MUST to prevent false
2559 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2560 		tcp_moderate_cwnd(tp);
2561 		return true;
2562 	}
2563 	tcp_set_ca_state(sk, TCP_CA_Open);
2564 	return false;
2565 }
2566 
2567 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2568 static void tcp_try_undo_dsack(struct sock *sk)
2569 {
2570 	struct tcp_sock *tp = tcp_sk(sk);
2571 
2572 	if (tp->undo_marker && !tp->undo_retrans) {
2573 		DBGUNDO(sk, "D-SACK");
2574 		tcp_undo_cwr(sk, true);
2575 		tp->undo_marker = 0;
2576 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2577 	}
2578 }
2579 
2580 /* We can clear retrans_stamp when there are no retransmissions in the
2581  * window. It would seem that it is trivially available for us in
2582  * tp->retrans_out, however, that kind of assumptions doesn't consider
2583  * what will happen if errors occur when sending retransmission for the
2584  * second time. ...It could the that such segment has only
2585  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2586  * the head skb is enough except for some reneging corner cases that
2587  * are not worth the effort.
2588  *
2589  * Main reason for all this complexity is the fact that connection dying
2590  * time now depends on the validity of the retrans_stamp, in particular,
2591  * that successive retransmissions of a segment must not advance
2592  * retrans_stamp under any conditions.
2593  */
2594 static bool tcp_any_retrans_done(const struct sock *sk)
2595 {
2596 	const struct tcp_sock *tp = tcp_sk(sk);
2597 	struct sk_buff *skb;
2598 
2599 	if (tp->retrans_out)
2600 		return true;
2601 
2602 	skb = tcp_write_queue_head(sk);
2603 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2604 		return true;
2605 
2606 	return false;
2607 }
2608 
2609 /* Undo during fast recovery after partial ACK. */
2610 
2611 static int tcp_try_undo_partial(struct sock *sk, int acked)
2612 {
2613 	struct tcp_sock *tp = tcp_sk(sk);
2614 	/* Partial ACK arrived. Force Hoe's retransmit. */
2615 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2616 
2617 	if (tcp_may_undo(tp)) {
2618 		/* Plain luck! Hole if filled with delayed
2619 		 * packet, rather than with a retransmit.
2620 		 */
2621 		if (!tcp_any_retrans_done(sk))
2622 			tp->retrans_stamp = 0;
2623 
2624 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2625 
2626 		DBGUNDO(sk, "Hoe");
2627 		tcp_undo_cwr(sk, false);
2628 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2629 
2630 		/* So... Do not make Hoe's retransmit yet.
2631 		 * If the first packet was delayed, the rest
2632 		 * ones are most probably delayed as well.
2633 		 */
2634 		failed = 0;
2635 	}
2636 	return failed;
2637 }
2638 
2639 /* Undo during loss recovery after partial ACK. */
2640 static bool tcp_try_undo_loss(struct sock *sk)
2641 {
2642 	struct tcp_sock *tp = tcp_sk(sk);
2643 
2644 	if (tcp_may_undo(tp)) {
2645 		struct sk_buff *skb;
2646 		tcp_for_write_queue(skb, sk) {
2647 			if (skb == tcp_send_head(sk))
2648 				break;
2649 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2650 		}
2651 
2652 		tcp_clear_all_retrans_hints(tp);
2653 
2654 		DBGUNDO(sk, "partial loss");
2655 		tp->lost_out = 0;
2656 		tcp_undo_cwr(sk, true);
2657 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2658 		inet_csk(sk)->icsk_retransmits = 0;
2659 		tp->undo_marker = 0;
2660 		if (tcp_is_sack(tp))
2661 			tcp_set_ca_state(sk, TCP_CA_Open);
2662 		return true;
2663 	}
2664 	return false;
2665 }
2666 
2667 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2668  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2669  * It computes the number of packets to send (sndcnt) based on packets newly
2670  * delivered:
2671  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2672  *	cwnd reductions across a full RTT.
2673  *   2) If packets in flight is lower than ssthresh (such as due to excess
2674  *	losses and/or application stalls), do not perform any further cwnd
2675  *	reductions, but instead slow start up to ssthresh.
2676  */
2677 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2678 {
2679 	struct tcp_sock *tp = tcp_sk(sk);
2680 
2681 	tp->high_seq = tp->snd_nxt;
2682 	tp->snd_cwnd_cnt = 0;
2683 	tp->prior_cwnd = tp->snd_cwnd;
2684 	tp->prr_delivered = 0;
2685 	tp->prr_out = 0;
2686 	if (set_ssthresh)
2687 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2688 	TCP_ECN_queue_cwr(tp);
2689 }
2690 
2691 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2692 			       int fast_rexmit)
2693 {
2694 	struct tcp_sock *tp = tcp_sk(sk);
2695 	int sndcnt = 0;
2696 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2697 
2698 	tp->prr_delivered += newly_acked_sacked;
2699 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2700 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2701 			       tp->prior_cwnd - 1;
2702 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2703 	} else {
2704 		sndcnt = min_t(int, delta,
2705 			       max_t(int, tp->prr_delivered - tp->prr_out,
2706 				     newly_acked_sacked) + 1);
2707 	}
2708 
2709 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2710 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2711 }
2712 
2713 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2714 {
2715 	struct tcp_sock *tp = tcp_sk(sk);
2716 
2717 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2718 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2719 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2720 		tp->snd_cwnd = tp->snd_ssthresh;
2721 		tp->snd_cwnd_stamp = tcp_time_stamp;
2722 	}
2723 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2724 }
2725 
2726 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2727 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2728 {
2729 	struct tcp_sock *tp = tcp_sk(sk);
2730 
2731 	tp->prior_ssthresh = 0;
2732 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2733 		tp->undo_marker = 0;
2734 		tcp_init_cwnd_reduction(sk, set_ssthresh);
2735 		tcp_set_ca_state(sk, TCP_CA_CWR);
2736 	}
2737 }
2738 
2739 static void tcp_try_keep_open(struct sock *sk)
2740 {
2741 	struct tcp_sock *tp = tcp_sk(sk);
2742 	int state = TCP_CA_Open;
2743 
2744 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2745 		state = TCP_CA_Disorder;
2746 
2747 	if (inet_csk(sk)->icsk_ca_state != state) {
2748 		tcp_set_ca_state(sk, state);
2749 		tp->high_seq = tp->snd_nxt;
2750 	}
2751 }
2752 
2753 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2754 {
2755 	struct tcp_sock *tp = tcp_sk(sk);
2756 
2757 	tcp_verify_left_out(tp);
2758 
2759 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2760 		tp->retrans_stamp = 0;
2761 
2762 	if (flag & FLAG_ECE)
2763 		tcp_enter_cwr(sk, 1);
2764 
2765 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2766 		tcp_try_keep_open(sk);
2767 		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2768 			tcp_moderate_cwnd(tp);
2769 	} else {
2770 		tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2771 	}
2772 }
2773 
2774 static void tcp_mtup_probe_failed(struct sock *sk)
2775 {
2776 	struct inet_connection_sock *icsk = inet_csk(sk);
2777 
2778 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2779 	icsk->icsk_mtup.probe_size = 0;
2780 }
2781 
2782 static void tcp_mtup_probe_success(struct sock *sk)
2783 {
2784 	struct tcp_sock *tp = tcp_sk(sk);
2785 	struct inet_connection_sock *icsk = inet_csk(sk);
2786 
2787 	/* FIXME: breaks with very large cwnd */
2788 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2789 	tp->snd_cwnd = tp->snd_cwnd *
2790 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2791 		       icsk->icsk_mtup.probe_size;
2792 	tp->snd_cwnd_cnt = 0;
2793 	tp->snd_cwnd_stamp = tcp_time_stamp;
2794 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2795 
2796 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2797 	icsk->icsk_mtup.probe_size = 0;
2798 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2799 }
2800 
2801 /* Do a simple retransmit without using the backoff mechanisms in
2802  * tcp_timer. This is used for path mtu discovery.
2803  * The socket is already locked here.
2804  */
2805 void tcp_simple_retransmit(struct sock *sk)
2806 {
2807 	const struct inet_connection_sock *icsk = inet_csk(sk);
2808 	struct tcp_sock *tp = tcp_sk(sk);
2809 	struct sk_buff *skb;
2810 	unsigned int mss = tcp_current_mss(sk);
2811 	u32 prior_lost = tp->lost_out;
2812 
2813 	tcp_for_write_queue(skb, sk) {
2814 		if (skb == tcp_send_head(sk))
2815 			break;
2816 		if (tcp_skb_seglen(skb) > mss &&
2817 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2818 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2819 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2820 				tp->retrans_out -= tcp_skb_pcount(skb);
2821 			}
2822 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2823 		}
2824 	}
2825 
2826 	tcp_clear_retrans_hints_partial(tp);
2827 
2828 	if (prior_lost == tp->lost_out)
2829 		return;
2830 
2831 	if (tcp_is_reno(tp))
2832 		tcp_limit_reno_sacked(tp);
2833 
2834 	tcp_verify_left_out(tp);
2835 
2836 	/* Don't muck with the congestion window here.
2837 	 * Reason is that we do not increase amount of _data_
2838 	 * in network, but units changed and effective
2839 	 * cwnd/ssthresh really reduced now.
2840 	 */
2841 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2842 		tp->high_seq = tp->snd_nxt;
2843 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2844 		tp->prior_ssthresh = 0;
2845 		tp->undo_marker = 0;
2846 		tcp_set_ca_state(sk, TCP_CA_Loss);
2847 	}
2848 	tcp_xmit_retransmit_queue(sk);
2849 }
2850 EXPORT_SYMBOL(tcp_simple_retransmit);
2851 
2852 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2853 {
2854 	struct tcp_sock *tp = tcp_sk(sk);
2855 	int mib_idx;
2856 
2857 	if (tcp_is_reno(tp))
2858 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2859 	else
2860 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2861 
2862 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2863 
2864 	tp->prior_ssthresh = 0;
2865 	tp->undo_marker = tp->snd_una;
2866 	tp->undo_retrans = tp->retrans_out;
2867 
2868 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2869 		if (!ece_ack)
2870 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2871 		tcp_init_cwnd_reduction(sk, true);
2872 	}
2873 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2874 }
2875 
2876 /* Process an event, which can update packets-in-flight not trivially.
2877  * Main goal of this function is to calculate new estimate for left_out,
2878  * taking into account both packets sitting in receiver's buffer and
2879  * packets lost by network.
2880  *
2881  * Besides that it does CWND reduction, when packet loss is detected
2882  * and changes state of machine.
2883  *
2884  * It does _not_ decide what to send, it is made in function
2885  * tcp_xmit_retransmit_queue().
2886  */
2887 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2888 				  int prior_sacked, bool is_dupack,
2889 				  int flag)
2890 {
2891 	struct inet_connection_sock *icsk = inet_csk(sk);
2892 	struct tcp_sock *tp = tcp_sk(sk);
2893 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2894 				    (tcp_fackets_out(tp) > tp->reordering));
2895 	int newly_acked_sacked = 0;
2896 	int fast_rexmit = 0;
2897 
2898 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2899 		tp->sacked_out = 0;
2900 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2901 		tp->fackets_out = 0;
2902 
2903 	/* Now state machine starts.
2904 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2905 	if (flag & FLAG_ECE)
2906 		tp->prior_ssthresh = 0;
2907 
2908 	/* B. In all the states check for reneging SACKs. */
2909 	if (tcp_check_sack_reneging(sk, flag))
2910 		return;
2911 
2912 	/* C. Check consistency of the current state. */
2913 	tcp_verify_left_out(tp);
2914 
2915 	/* D. Check state exit conditions. State can be terminated
2916 	 *    when high_seq is ACKed. */
2917 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2918 		WARN_ON(tp->retrans_out != 0);
2919 		tp->retrans_stamp = 0;
2920 	} else if (!before(tp->snd_una, tp->high_seq)) {
2921 		switch (icsk->icsk_ca_state) {
2922 		case TCP_CA_Loss:
2923 			icsk->icsk_retransmits = 0;
2924 			if (tcp_try_undo_recovery(sk))
2925 				return;
2926 			break;
2927 
2928 		case TCP_CA_CWR:
2929 			/* CWR is to be held something *above* high_seq
2930 			 * is ACKed for CWR bit to reach receiver. */
2931 			if (tp->snd_una != tp->high_seq) {
2932 				tcp_end_cwnd_reduction(sk);
2933 				tcp_set_ca_state(sk, TCP_CA_Open);
2934 			}
2935 			break;
2936 
2937 		case TCP_CA_Recovery:
2938 			if (tcp_is_reno(tp))
2939 				tcp_reset_reno_sack(tp);
2940 			if (tcp_try_undo_recovery(sk))
2941 				return;
2942 			tcp_end_cwnd_reduction(sk);
2943 			break;
2944 		}
2945 	}
2946 
2947 	/* E. Process state. */
2948 	switch (icsk->icsk_ca_state) {
2949 	case TCP_CA_Recovery:
2950 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2951 			if (tcp_is_reno(tp) && is_dupack)
2952 				tcp_add_reno_sack(sk);
2953 		} else
2954 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2955 		newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2956 		break;
2957 	case TCP_CA_Loss:
2958 		if (flag & FLAG_DATA_ACKED)
2959 			icsk->icsk_retransmits = 0;
2960 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2961 			tcp_reset_reno_sack(tp);
2962 		if (!tcp_try_undo_loss(sk)) {
2963 			tcp_moderate_cwnd(tp);
2964 			tcp_xmit_retransmit_queue(sk);
2965 			return;
2966 		}
2967 		if (icsk->icsk_ca_state != TCP_CA_Open)
2968 			return;
2969 		/* Loss is undone; fall through to processing in Open state. */
2970 	default:
2971 		if (tcp_is_reno(tp)) {
2972 			if (flag & FLAG_SND_UNA_ADVANCED)
2973 				tcp_reset_reno_sack(tp);
2974 			if (is_dupack)
2975 				tcp_add_reno_sack(sk);
2976 		}
2977 		newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2978 
2979 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2980 			tcp_try_undo_dsack(sk);
2981 
2982 		if (!tcp_time_to_recover(sk, flag)) {
2983 			tcp_try_to_open(sk, flag, newly_acked_sacked);
2984 			return;
2985 		}
2986 
2987 		/* MTU probe failure: don't reduce cwnd */
2988 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2989 		    icsk->icsk_mtup.probe_size &&
2990 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2991 			tcp_mtup_probe_failed(sk);
2992 			/* Restores the reduction we did in tcp_mtup_probe() */
2993 			tp->snd_cwnd++;
2994 			tcp_simple_retransmit(sk);
2995 			return;
2996 		}
2997 
2998 		/* Otherwise enter Recovery state */
2999 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
3000 		fast_rexmit = 1;
3001 	}
3002 
3003 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3004 		tcp_update_scoreboard(sk, fast_rexmit);
3005 	tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
3006 	tcp_xmit_retransmit_queue(sk);
3007 }
3008 
3009 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3010 {
3011 	tcp_rtt_estimator(sk, seq_rtt);
3012 	tcp_set_rto(sk);
3013 	inet_csk(sk)->icsk_backoff = 0;
3014 }
3015 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3016 
3017 /* Read draft-ietf-tcplw-high-performance before mucking
3018  * with this code. (Supersedes RFC1323)
3019  */
3020 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3021 {
3022 	/* RTTM Rule: A TSecr value received in a segment is used to
3023 	 * update the averaged RTT measurement only if the segment
3024 	 * acknowledges some new data, i.e., only if it advances the
3025 	 * left edge of the send window.
3026 	 *
3027 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3028 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3029 	 *
3030 	 * Changed: reset backoff as soon as we see the first valid sample.
3031 	 * If we do not, we get strongly overestimated rto. With timestamps
3032 	 * samples are accepted even from very old segments: f.e., when rtt=1
3033 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3034 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3035 	 * in window is lost... Voila.	 			--ANK (010210)
3036 	 */
3037 	struct tcp_sock *tp = tcp_sk(sk);
3038 
3039 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3040 }
3041 
3042 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3043 {
3044 	/* We don't have a timestamp. Can only use
3045 	 * packets that are not retransmitted to determine
3046 	 * rtt estimates. Also, we must not reset the
3047 	 * backoff for rto until we get a non-retransmitted
3048 	 * packet. This allows us to deal with a situation
3049 	 * where the network delay has increased suddenly.
3050 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3051 	 */
3052 
3053 	if (flag & FLAG_RETRANS_DATA_ACKED)
3054 		return;
3055 
3056 	tcp_valid_rtt_meas(sk, seq_rtt);
3057 }
3058 
3059 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3060 				      const s32 seq_rtt)
3061 {
3062 	const struct tcp_sock *tp = tcp_sk(sk);
3063 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3064 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3065 		tcp_ack_saw_tstamp(sk, flag);
3066 	else if (seq_rtt >= 0)
3067 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3068 }
3069 
3070 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3071 {
3072 	const struct inet_connection_sock *icsk = inet_csk(sk);
3073 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3074 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3075 }
3076 
3077 /* Restart timer after forward progress on connection.
3078  * RFC2988 recommends to restart timer to now+rto.
3079  */
3080 void tcp_rearm_rto(struct sock *sk)
3081 {
3082 	struct tcp_sock *tp = tcp_sk(sk);
3083 
3084 	/* If the retrans timer is currently being used by Fast Open
3085 	 * for SYN-ACK retrans purpose, stay put.
3086 	 */
3087 	if (tp->fastopen_rsk)
3088 		return;
3089 
3090 	if (!tp->packets_out) {
3091 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3092 	} else {
3093 		u32 rto = inet_csk(sk)->icsk_rto;
3094 		/* Offset the time elapsed after installing regular RTO */
3095 		if (tp->early_retrans_delayed) {
3096 			struct sk_buff *skb = tcp_write_queue_head(sk);
3097 			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3098 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3099 			/* delta may not be positive if the socket is locked
3100 			 * when the delayed ER timer fires and is rescheduled.
3101 			 */
3102 			if (delta > 0)
3103 				rto = delta;
3104 		}
3105 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3106 					  TCP_RTO_MAX);
3107 	}
3108 	tp->early_retrans_delayed = 0;
3109 }
3110 
3111 /* This function is called when the delayed ER timer fires. TCP enters
3112  * fast recovery and performs fast-retransmit.
3113  */
3114 void tcp_resume_early_retransmit(struct sock *sk)
3115 {
3116 	struct tcp_sock *tp = tcp_sk(sk);
3117 
3118 	tcp_rearm_rto(sk);
3119 
3120 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3121 	if (!tp->do_early_retrans)
3122 		return;
3123 
3124 	tcp_enter_recovery(sk, false);
3125 	tcp_update_scoreboard(sk, 1);
3126 	tcp_xmit_retransmit_queue(sk);
3127 }
3128 
3129 /* If we get here, the whole TSO packet has not been acked. */
3130 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3131 {
3132 	struct tcp_sock *tp = tcp_sk(sk);
3133 	u32 packets_acked;
3134 
3135 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3136 
3137 	packets_acked = tcp_skb_pcount(skb);
3138 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3139 		return 0;
3140 	packets_acked -= tcp_skb_pcount(skb);
3141 
3142 	if (packets_acked) {
3143 		BUG_ON(tcp_skb_pcount(skb) == 0);
3144 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3145 	}
3146 
3147 	return packets_acked;
3148 }
3149 
3150 /* Remove acknowledged frames from the retransmission queue. If our packet
3151  * is before the ack sequence we can discard it as it's confirmed to have
3152  * arrived at the other end.
3153  */
3154 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3155 			       u32 prior_snd_una)
3156 {
3157 	struct tcp_sock *tp = tcp_sk(sk);
3158 	const struct inet_connection_sock *icsk = inet_csk(sk);
3159 	struct sk_buff *skb;
3160 	u32 now = tcp_time_stamp;
3161 	int fully_acked = true;
3162 	int flag = 0;
3163 	u32 pkts_acked = 0;
3164 	u32 reord = tp->packets_out;
3165 	u32 prior_sacked = tp->sacked_out;
3166 	s32 seq_rtt = -1;
3167 	s32 ca_seq_rtt = -1;
3168 	ktime_t last_ackt = net_invalid_timestamp();
3169 
3170 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3171 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3172 		u32 acked_pcount;
3173 		u8 sacked = scb->sacked;
3174 
3175 		/* Determine how many packets and what bytes were acked, tso and else */
3176 		if (after(scb->end_seq, tp->snd_una)) {
3177 			if (tcp_skb_pcount(skb) == 1 ||
3178 			    !after(tp->snd_una, scb->seq))
3179 				break;
3180 
3181 			acked_pcount = tcp_tso_acked(sk, skb);
3182 			if (!acked_pcount)
3183 				break;
3184 
3185 			fully_acked = false;
3186 		} else {
3187 			acked_pcount = tcp_skb_pcount(skb);
3188 		}
3189 
3190 		if (sacked & TCPCB_RETRANS) {
3191 			if (sacked & TCPCB_SACKED_RETRANS)
3192 				tp->retrans_out -= acked_pcount;
3193 			flag |= FLAG_RETRANS_DATA_ACKED;
3194 			ca_seq_rtt = -1;
3195 			seq_rtt = -1;
3196 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3197 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3198 		} else {
3199 			ca_seq_rtt = now - scb->when;
3200 			last_ackt = skb->tstamp;
3201 			if (seq_rtt < 0) {
3202 				seq_rtt = ca_seq_rtt;
3203 			}
3204 			if (!(sacked & TCPCB_SACKED_ACKED))
3205 				reord = min(pkts_acked, reord);
3206 		}
3207 
3208 		if (sacked & TCPCB_SACKED_ACKED)
3209 			tp->sacked_out -= acked_pcount;
3210 		if (sacked & TCPCB_LOST)
3211 			tp->lost_out -= acked_pcount;
3212 
3213 		tp->packets_out -= acked_pcount;
3214 		pkts_acked += acked_pcount;
3215 
3216 		/* Initial outgoing SYN's get put onto the write_queue
3217 		 * just like anything else we transmit.  It is not
3218 		 * true data, and if we misinform our callers that
3219 		 * this ACK acks real data, we will erroneously exit
3220 		 * connection startup slow start one packet too
3221 		 * quickly.  This is severely frowned upon behavior.
3222 		 */
3223 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3224 			flag |= FLAG_DATA_ACKED;
3225 		} else {
3226 			flag |= FLAG_SYN_ACKED;
3227 			tp->retrans_stamp = 0;
3228 		}
3229 
3230 		if (!fully_acked)
3231 			break;
3232 
3233 		tcp_unlink_write_queue(skb, sk);
3234 		sk_wmem_free_skb(sk, skb);
3235 		tp->scoreboard_skb_hint = NULL;
3236 		if (skb == tp->retransmit_skb_hint)
3237 			tp->retransmit_skb_hint = NULL;
3238 		if (skb == tp->lost_skb_hint)
3239 			tp->lost_skb_hint = NULL;
3240 	}
3241 
3242 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3243 		tp->snd_up = tp->snd_una;
3244 
3245 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3246 		flag |= FLAG_SACK_RENEGING;
3247 
3248 	if (flag & FLAG_ACKED) {
3249 		const struct tcp_congestion_ops *ca_ops
3250 			= inet_csk(sk)->icsk_ca_ops;
3251 
3252 		if (unlikely(icsk->icsk_mtup.probe_size &&
3253 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3254 			tcp_mtup_probe_success(sk);
3255 		}
3256 
3257 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3258 		tcp_rearm_rto(sk);
3259 
3260 		if (tcp_is_reno(tp)) {
3261 			tcp_remove_reno_sacks(sk, pkts_acked);
3262 		} else {
3263 			int delta;
3264 
3265 			/* Non-retransmitted hole got filled? That's reordering */
3266 			if (reord < prior_fackets)
3267 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3268 
3269 			delta = tcp_is_fack(tp) ? pkts_acked :
3270 						  prior_sacked - tp->sacked_out;
3271 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3272 		}
3273 
3274 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3275 
3276 		if (ca_ops->pkts_acked) {
3277 			s32 rtt_us = -1;
3278 
3279 			/* Is the ACK triggering packet unambiguous? */
3280 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3281 				/* High resolution needed and available? */
3282 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3283 				    !ktime_equal(last_ackt,
3284 						 net_invalid_timestamp()))
3285 					rtt_us = ktime_us_delta(ktime_get_real(),
3286 								last_ackt);
3287 				else if (ca_seq_rtt >= 0)
3288 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3289 			}
3290 
3291 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3292 		}
3293 	}
3294 
3295 #if FASTRETRANS_DEBUG > 0
3296 	WARN_ON((int)tp->sacked_out < 0);
3297 	WARN_ON((int)tp->lost_out < 0);
3298 	WARN_ON((int)tp->retrans_out < 0);
3299 	if (!tp->packets_out && tcp_is_sack(tp)) {
3300 		icsk = inet_csk(sk);
3301 		if (tp->lost_out) {
3302 			pr_debug("Leak l=%u %d\n",
3303 				 tp->lost_out, icsk->icsk_ca_state);
3304 			tp->lost_out = 0;
3305 		}
3306 		if (tp->sacked_out) {
3307 			pr_debug("Leak s=%u %d\n",
3308 				 tp->sacked_out, icsk->icsk_ca_state);
3309 			tp->sacked_out = 0;
3310 		}
3311 		if (tp->retrans_out) {
3312 			pr_debug("Leak r=%u %d\n",
3313 				 tp->retrans_out, icsk->icsk_ca_state);
3314 			tp->retrans_out = 0;
3315 		}
3316 	}
3317 #endif
3318 	return flag;
3319 }
3320 
3321 static void tcp_ack_probe(struct sock *sk)
3322 {
3323 	const struct tcp_sock *tp = tcp_sk(sk);
3324 	struct inet_connection_sock *icsk = inet_csk(sk);
3325 
3326 	/* Was it a usable window open? */
3327 
3328 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3329 		icsk->icsk_backoff = 0;
3330 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3331 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3332 		 * This function is not for random using!
3333 		 */
3334 	} else {
3335 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3336 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3337 					  TCP_RTO_MAX);
3338 	}
3339 }
3340 
3341 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3342 {
3343 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3344 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3345 }
3346 
3347 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3348 {
3349 	const struct tcp_sock *tp = tcp_sk(sk);
3350 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3351 		!tcp_in_cwnd_reduction(sk);
3352 }
3353 
3354 /* Check that window update is acceptable.
3355  * The function assumes that snd_una<=ack<=snd_next.
3356  */
3357 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3358 					const u32 ack, const u32 ack_seq,
3359 					const u32 nwin)
3360 {
3361 	return	after(ack, tp->snd_una) ||
3362 		after(ack_seq, tp->snd_wl1) ||
3363 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3364 }
3365 
3366 /* Update our send window.
3367  *
3368  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3369  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3370  */
3371 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3372 				 u32 ack_seq)
3373 {
3374 	struct tcp_sock *tp = tcp_sk(sk);
3375 	int flag = 0;
3376 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3377 
3378 	if (likely(!tcp_hdr(skb)->syn))
3379 		nwin <<= tp->rx_opt.snd_wscale;
3380 
3381 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3382 		flag |= FLAG_WIN_UPDATE;
3383 		tcp_update_wl(tp, ack_seq);
3384 
3385 		if (tp->snd_wnd != nwin) {
3386 			tp->snd_wnd = nwin;
3387 
3388 			/* Note, it is the only place, where
3389 			 * fast path is recovered for sending TCP.
3390 			 */
3391 			tp->pred_flags = 0;
3392 			tcp_fast_path_check(sk);
3393 
3394 			if (nwin > tp->max_window) {
3395 				tp->max_window = nwin;
3396 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3397 			}
3398 		}
3399 	}
3400 
3401 	tp->snd_una = ack;
3402 
3403 	return flag;
3404 }
3405 
3406 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3407  * continue in congestion avoidance.
3408  */
3409 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3410 {
3411 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3412 	tp->snd_cwnd_cnt = 0;
3413 	TCP_ECN_queue_cwr(tp);
3414 	tcp_moderate_cwnd(tp);
3415 }
3416 
3417 /* A conservative spurious RTO response algorithm: reduce cwnd using
3418  * PRR and continue in congestion avoidance.
3419  */
3420 static void tcp_cwr_spur_to_response(struct sock *sk)
3421 {
3422 	tcp_enter_cwr(sk, 0);
3423 }
3424 
3425 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3426 {
3427 	if (flag & FLAG_ECE)
3428 		tcp_cwr_spur_to_response(sk);
3429 	else
3430 		tcp_undo_cwr(sk, true);
3431 }
3432 
3433 /* F-RTO spurious RTO detection algorithm (RFC4138)
3434  *
3435  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3436  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3437  * window (but not to or beyond highest sequence sent before RTO):
3438  *   On First ACK,  send two new segments out.
3439  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3440  *                  algorithm is not part of the F-RTO detection algorithm
3441  *                  given in RFC4138 but can be selected separately).
3442  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3443  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3444  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3445  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3446  *
3447  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3448  * original window even after we transmit two new data segments.
3449  *
3450  * SACK version:
3451  *   on first step, wait until first cumulative ACK arrives, then move to
3452  *   the second step. In second step, the next ACK decides.
3453  *
3454  * F-RTO is implemented (mainly) in four functions:
3455  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3456  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3457  *     called when tcp_use_frto() showed green light
3458  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3459  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3460  *     to prove that the RTO is indeed spurious. It transfers the control
3461  *     from F-RTO to the conventional RTO recovery
3462  */
3463 static bool tcp_process_frto(struct sock *sk, int flag)
3464 {
3465 	struct tcp_sock *tp = tcp_sk(sk);
3466 
3467 	tcp_verify_left_out(tp);
3468 
3469 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3470 	if (flag & FLAG_DATA_ACKED)
3471 		inet_csk(sk)->icsk_retransmits = 0;
3472 
3473 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3474 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3475 		tp->undo_marker = 0;
3476 
3477 	if (!before(tp->snd_una, tp->frto_highmark)) {
3478 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3479 		return true;
3480 	}
3481 
3482 	if (!tcp_is_sackfrto(tp)) {
3483 		/* RFC4138 shortcoming in step 2; should also have case c):
3484 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3485 		 * data, winupdate
3486 		 */
3487 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3488 			return true;
3489 
3490 		if (!(flag & FLAG_DATA_ACKED)) {
3491 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3492 					    flag);
3493 			return true;
3494 		}
3495 	} else {
3496 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3497 			if (!tcp_packets_in_flight(tp)) {
3498 				tcp_enter_frto_loss(sk, 2, flag);
3499 				return true;
3500 			}
3501 
3502 			/* Prevent sending of new data. */
3503 			tp->snd_cwnd = min(tp->snd_cwnd,
3504 					   tcp_packets_in_flight(tp));
3505 			return true;
3506 		}
3507 
3508 		if ((tp->frto_counter >= 2) &&
3509 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3510 		     ((flag & FLAG_DATA_SACKED) &&
3511 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3512 			/* RFC4138 shortcoming (see comment above) */
3513 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3514 			    (flag & FLAG_NOT_DUP))
3515 				return true;
3516 
3517 			tcp_enter_frto_loss(sk, 3, flag);
3518 			return true;
3519 		}
3520 	}
3521 
3522 	if (tp->frto_counter == 1) {
3523 		/* tcp_may_send_now needs to see updated state */
3524 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3525 		tp->frto_counter = 2;
3526 
3527 		if (!tcp_may_send_now(sk))
3528 			tcp_enter_frto_loss(sk, 2, flag);
3529 
3530 		return true;
3531 	} else {
3532 		switch (sysctl_tcp_frto_response) {
3533 		case 2:
3534 			tcp_undo_spur_to_response(sk, flag);
3535 			break;
3536 		case 1:
3537 			tcp_conservative_spur_to_response(tp);
3538 			break;
3539 		default:
3540 			tcp_cwr_spur_to_response(sk);
3541 			break;
3542 		}
3543 		tp->frto_counter = 0;
3544 		tp->undo_marker = 0;
3545 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3546 	}
3547 	return false;
3548 }
3549 
3550 /* RFC 5961 7 [ACK Throttling] */
3551 static void tcp_send_challenge_ack(struct sock *sk)
3552 {
3553 	/* unprotected vars, we dont care of overwrites */
3554 	static u32 challenge_timestamp;
3555 	static unsigned int challenge_count;
3556 	u32 now = jiffies / HZ;
3557 
3558 	if (now != challenge_timestamp) {
3559 		challenge_timestamp = now;
3560 		challenge_count = 0;
3561 	}
3562 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3563 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3564 		tcp_send_ack(sk);
3565 	}
3566 }
3567 
3568 static void tcp_store_ts_recent(struct tcp_sock *tp)
3569 {
3570 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3571 	tp->rx_opt.ts_recent_stamp = get_seconds();
3572 }
3573 
3574 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3575 {
3576 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3577 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3578 		 * extra check below makes sure this can only happen
3579 		 * for pure ACK frames.  -DaveM
3580 		 *
3581 		 * Not only, also it occurs for expired timestamps.
3582 		 */
3583 
3584 		if (tcp_paws_check(&tp->rx_opt, 0))
3585 			tcp_store_ts_recent(tp);
3586 	}
3587 }
3588 
3589 /* This routine deals with incoming acks, but not outgoing ones. */
3590 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3591 {
3592 	struct inet_connection_sock *icsk = inet_csk(sk);
3593 	struct tcp_sock *tp = tcp_sk(sk);
3594 	u32 prior_snd_una = tp->snd_una;
3595 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3596 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3597 	bool is_dupack = false;
3598 	u32 prior_in_flight;
3599 	u32 prior_fackets;
3600 	int prior_packets;
3601 	int prior_sacked = tp->sacked_out;
3602 	int pkts_acked = 0;
3603 	bool frto_cwnd = false;
3604 
3605 	/* If the ack is older than previous acks
3606 	 * then we can probably ignore it.
3607 	 */
3608 	if (before(ack, prior_snd_una)) {
3609 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3610 		if (before(ack, prior_snd_una - tp->max_window)) {
3611 			tcp_send_challenge_ack(sk);
3612 			return -1;
3613 		}
3614 		goto old_ack;
3615 	}
3616 
3617 	/* If the ack includes data we haven't sent yet, discard
3618 	 * this segment (RFC793 Section 3.9).
3619 	 */
3620 	if (after(ack, tp->snd_nxt))
3621 		goto invalid_ack;
3622 
3623 	if (tp->early_retrans_delayed)
3624 		tcp_rearm_rto(sk);
3625 
3626 	if (after(ack, prior_snd_una))
3627 		flag |= FLAG_SND_UNA_ADVANCED;
3628 
3629 	prior_fackets = tp->fackets_out;
3630 	prior_in_flight = tcp_packets_in_flight(tp);
3631 
3632 	/* ts_recent update must be made after we are sure that the packet
3633 	 * is in window.
3634 	 */
3635 	if (flag & FLAG_UPDATE_TS_RECENT)
3636 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3637 
3638 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3639 		/* Window is constant, pure forward advance.
3640 		 * No more checks are required.
3641 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3642 		 */
3643 		tcp_update_wl(tp, ack_seq);
3644 		tp->snd_una = ack;
3645 		flag |= FLAG_WIN_UPDATE;
3646 
3647 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3648 
3649 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3650 	} else {
3651 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3652 			flag |= FLAG_DATA;
3653 		else
3654 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3655 
3656 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3657 
3658 		if (TCP_SKB_CB(skb)->sacked)
3659 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3660 
3661 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3662 			flag |= FLAG_ECE;
3663 
3664 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3665 	}
3666 
3667 	/* We passed data and got it acked, remove any soft error
3668 	 * log. Something worked...
3669 	 */
3670 	sk->sk_err_soft = 0;
3671 	icsk->icsk_probes_out = 0;
3672 	tp->rcv_tstamp = tcp_time_stamp;
3673 	prior_packets = tp->packets_out;
3674 	if (!prior_packets)
3675 		goto no_queue;
3676 
3677 	/* See if we can take anything off of the retransmit queue. */
3678 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3679 
3680 	pkts_acked = prior_packets - tp->packets_out;
3681 
3682 	if (tp->frto_counter)
3683 		frto_cwnd = tcp_process_frto(sk, flag);
3684 	/* Guarantee sacktag reordering detection against wrap-arounds */
3685 	if (before(tp->frto_highmark, tp->snd_una))
3686 		tp->frto_highmark = 0;
3687 
3688 	if (tcp_ack_is_dubious(sk, flag)) {
3689 		/* Advance CWND, if state allows this. */
3690 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3691 		    tcp_may_raise_cwnd(sk, flag))
3692 			tcp_cong_avoid(sk, ack, prior_in_flight);
3693 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3694 		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3695 				      is_dupack, flag);
3696 	} else {
3697 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3698 			tcp_cong_avoid(sk, ack, prior_in_flight);
3699 	}
3700 
3701 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3702 		struct dst_entry *dst = __sk_dst_get(sk);
3703 		if (dst)
3704 			dst_confirm(dst);
3705 	}
3706 	return 1;
3707 
3708 no_queue:
3709 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3710 	if (flag & FLAG_DSACKING_ACK)
3711 		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3712 				      is_dupack, flag);
3713 	/* If this ack opens up a zero window, clear backoff.  It was
3714 	 * being used to time the probes, and is probably far higher than
3715 	 * it needs to be for normal retransmission.
3716 	 */
3717 	if (tcp_send_head(sk))
3718 		tcp_ack_probe(sk);
3719 	return 1;
3720 
3721 invalid_ack:
3722 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3723 	return -1;
3724 
3725 old_ack:
3726 	/* If data was SACKed, tag it and see if we should send more data.
3727 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3728 	 */
3729 	if (TCP_SKB_CB(skb)->sacked) {
3730 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3731 		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3732 				      is_dupack, flag);
3733 	}
3734 
3735 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3736 	return 0;
3737 }
3738 
3739 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3740  * But, this can also be called on packets in the established flow when
3741  * the fast version below fails.
3742  */
3743 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3744 		       const u8 **hvpp, int estab,
3745 		       struct tcp_fastopen_cookie *foc)
3746 {
3747 	const unsigned char *ptr;
3748 	const struct tcphdr *th = tcp_hdr(skb);
3749 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3750 
3751 	ptr = (const unsigned char *)(th + 1);
3752 	opt_rx->saw_tstamp = 0;
3753 
3754 	while (length > 0) {
3755 		int opcode = *ptr++;
3756 		int opsize;
3757 
3758 		switch (opcode) {
3759 		case TCPOPT_EOL:
3760 			return;
3761 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3762 			length--;
3763 			continue;
3764 		default:
3765 			opsize = *ptr++;
3766 			if (opsize < 2) /* "silly options" */
3767 				return;
3768 			if (opsize > length)
3769 				return;	/* don't parse partial options */
3770 			switch (opcode) {
3771 			case TCPOPT_MSS:
3772 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3773 					u16 in_mss = get_unaligned_be16(ptr);
3774 					if (in_mss) {
3775 						if (opt_rx->user_mss &&
3776 						    opt_rx->user_mss < in_mss)
3777 							in_mss = opt_rx->user_mss;
3778 						opt_rx->mss_clamp = in_mss;
3779 					}
3780 				}
3781 				break;
3782 			case TCPOPT_WINDOW:
3783 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3784 				    !estab && sysctl_tcp_window_scaling) {
3785 					__u8 snd_wscale = *(__u8 *)ptr;
3786 					opt_rx->wscale_ok = 1;
3787 					if (snd_wscale > 14) {
3788 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3789 								     __func__,
3790 								     snd_wscale);
3791 						snd_wscale = 14;
3792 					}
3793 					opt_rx->snd_wscale = snd_wscale;
3794 				}
3795 				break;
3796 			case TCPOPT_TIMESTAMP:
3797 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3798 				    ((estab && opt_rx->tstamp_ok) ||
3799 				     (!estab && sysctl_tcp_timestamps))) {
3800 					opt_rx->saw_tstamp = 1;
3801 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3802 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3803 				}
3804 				break;
3805 			case TCPOPT_SACK_PERM:
3806 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3807 				    !estab && sysctl_tcp_sack) {
3808 					opt_rx->sack_ok = TCP_SACK_SEEN;
3809 					tcp_sack_reset(opt_rx);
3810 				}
3811 				break;
3812 
3813 			case TCPOPT_SACK:
3814 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3815 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3816 				   opt_rx->sack_ok) {
3817 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3818 				}
3819 				break;
3820 #ifdef CONFIG_TCP_MD5SIG
3821 			case TCPOPT_MD5SIG:
3822 				/*
3823 				 * The MD5 Hash has already been
3824 				 * checked (see tcp_v{4,6}_do_rcv()).
3825 				 */
3826 				break;
3827 #endif
3828 			case TCPOPT_COOKIE:
3829 				/* This option is variable length.
3830 				 */
3831 				switch (opsize) {
3832 				case TCPOLEN_COOKIE_BASE:
3833 					/* not yet implemented */
3834 					break;
3835 				case TCPOLEN_COOKIE_PAIR:
3836 					/* not yet implemented */
3837 					break;
3838 				case TCPOLEN_COOKIE_MIN+0:
3839 				case TCPOLEN_COOKIE_MIN+2:
3840 				case TCPOLEN_COOKIE_MIN+4:
3841 				case TCPOLEN_COOKIE_MIN+6:
3842 				case TCPOLEN_COOKIE_MAX:
3843 					/* 16-bit multiple */
3844 					opt_rx->cookie_plus = opsize;
3845 					*hvpp = ptr;
3846 					break;
3847 				default:
3848 					/* ignore option */
3849 					break;
3850 				}
3851 				break;
3852 
3853 			case TCPOPT_EXP:
3854 				/* Fast Open option shares code 254 using a
3855 				 * 16 bits magic number. It's valid only in
3856 				 * SYN or SYN-ACK with an even size.
3857 				 */
3858 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3859 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3860 				    foc == NULL || !th->syn || (opsize & 1))
3861 					break;
3862 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3863 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3864 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3865 					memcpy(foc->val, ptr + 2, foc->len);
3866 				else if (foc->len != 0)
3867 					foc->len = -1;
3868 				break;
3869 
3870 			}
3871 			ptr += opsize-2;
3872 			length -= opsize;
3873 		}
3874 	}
3875 }
3876 EXPORT_SYMBOL(tcp_parse_options);
3877 
3878 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3879 {
3880 	const __be32 *ptr = (const __be32 *)(th + 1);
3881 
3882 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3883 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3884 		tp->rx_opt.saw_tstamp = 1;
3885 		++ptr;
3886 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3887 		++ptr;
3888 		tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3889 		return true;
3890 	}
3891 	return false;
3892 }
3893 
3894 /* Fast parse options. This hopes to only see timestamps.
3895  * If it is wrong it falls back on tcp_parse_options().
3896  */
3897 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3898 				   const struct tcphdr *th,
3899 				   struct tcp_sock *tp, const u8 **hvpp)
3900 {
3901 	/* In the spirit of fast parsing, compare doff directly to constant
3902 	 * values.  Because equality is used, short doff can be ignored here.
3903 	 */
3904 	if (th->doff == (sizeof(*th) / 4)) {
3905 		tp->rx_opt.saw_tstamp = 0;
3906 		return false;
3907 	} else if (tp->rx_opt.tstamp_ok &&
3908 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3909 		if (tcp_parse_aligned_timestamp(tp, th))
3910 			return true;
3911 	}
3912 
3913 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
3914 	if (tp->rx_opt.saw_tstamp)
3915 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3916 
3917 	return true;
3918 }
3919 
3920 #ifdef CONFIG_TCP_MD5SIG
3921 /*
3922  * Parse MD5 Signature option
3923  */
3924 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3925 {
3926 	int length = (th->doff << 2) - sizeof(*th);
3927 	const u8 *ptr = (const u8 *)(th + 1);
3928 
3929 	/* If the TCP option is too short, we can short cut */
3930 	if (length < TCPOLEN_MD5SIG)
3931 		return NULL;
3932 
3933 	while (length > 0) {
3934 		int opcode = *ptr++;
3935 		int opsize;
3936 
3937 		switch(opcode) {
3938 		case TCPOPT_EOL:
3939 			return NULL;
3940 		case TCPOPT_NOP:
3941 			length--;
3942 			continue;
3943 		default:
3944 			opsize = *ptr++;
3945 			if (opsize < 2 || opsize > length)
3946 				return NULL;
3947 			if (opcode == TCPOPT_MD5SIG)
3948 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3949 		}
3950 		ptr += opsize - 2;
3951 		length -= opsize;
3952 	}
3953 	return NULL;
3954 }
3955 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3956 #endif
3957 
3958 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3959  *
3960  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3961  * it can pass through stack. So, the following predicate verifies that
3962  * this segment is not used for anything but congestion avoidance or
3963  * fast retransmit. Moreover, we even are able to eliminate most of such
3964  * second order effects, if we apply some small "replay" window (~RTO)
3965  * to timestamp space.
3966  *
3967  * All these measures still do not guarantee that we reject wrapped ACKs
3968  * on networks with high bandwidth, when sequence space is recycled fastly,
3969  * but it guarantees that such events will be very rare and do not affect
3970  * connection seriously. This doesn't look nice, but alas, PAWS is really
3971  * buggy extension.
3972  *
3973  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3974  * states that events when retransmit arrives after original data are rare.
3975  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3976  * the biggest problem on large power networks even with minor reordering.
3977  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3978  * up to bandwidth of 18Gigabit/sec. 8) ]
3979  */
3980 
3981 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3982 {
3983 	const struct tcp_sock *tp = tcp_sk(sk);
3984 	const struct tcphdr *th = tcp_hdr(skb);
3985 	u32 seq = TCP_SKB_CB(skb)->seq;
3986 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3987 
3988 	return (/* 1. Pure ACK with correct sequence number. */
3989 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3990 
3991 		/* 2. ... and duplicate ACK. */
3992 		ack == tp->snd_una &&
3993 
3994 		/* 3. ... and does not update window. */
3995 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3996 
3997 		/* 4. ... and sits in replay window. */
3998 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3999 }
4000 
4001 static inline bool tcp_paws_discard(const struct sock *sk,
4002 				   const struct sk_buff *skb)
4003 {
4004 	const struct tcp_sock *tp = tcp_sk(sk);
4005 
4006 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4007 	       !tcp_disordered_ack(sk, skb);
4008 }
4009 
4010 /* Check segment sequence number for validity.
4011  *
4012  * Segment controls are considered valid, if the segment
4013  * fits to the window after truncation to the window. Acceptability
4014  * of data (and SYN, FIN, of course) is checked separately.
4015  * See tcp_data_queue(), for example.
4016  *
4017  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4018  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4019  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4020  * (borrowed from freebsd)
4021  */
4022 
4023 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4024 {
4025 	return	!before(end_seq, tp->rcv_wup) &&
4026 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4027 }
4028 
4029 /* When we get a reset we do this. */
4030 void tcp_reset(struct sock *sk)
4031 {
4032 	/* We want the right error as BSD sees it (and indeed as we do). */
4033 	switch (sk->sk_state) {
4034 	case TCP_SYN_SENT:
4035 		sk->sk_err = ECONNREFUSED;
4036 		break;
4037 	case TCP_CLOSE_WAIT:
4038 		sk->sk_err = EPIPE;
4039 		break;
4040 	case TCP_CLOSE:
4041 		return;
4042 	default:
4043 		sk->sk_err = ECONNRESET;
4044 	}
4045 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4046 	smp_wmb();
4047 
4048 	if (!sock_flag(sk, SOCK_DEAD))
4049 		sk->sk_error_report(sk);
4050 
4051 	tcp_done(sk);
4052 }
4053 
4054 /*
4055  * 	Process the FIN bit. This now behaves as it is supposed to work
4056  *	and the FIN takes effect when it is validly part of sequence
4057  *	space. Not before when we get holes.
4058  *
4059  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4060  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4061  *	TIME-WAIT)
4062  *
4063  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4064  *	close and we go into CLOSING (and later onto TIME-WAIT)
4065  *
4066  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4067  */
4068 static void tcp_fin(struct sock *sk)
4069 {
4070 	struct tcp_sock *tp = tcp_sk(sk);
4071 
4072 	inet_csk_schedule_ack(sk);
4073 
4074 	sk->sk_shutdown |= RCV_SHUTDOWN;
4075 	sock_set_flag(sk, SOCK_DONE);
4076 
4077 	switch (sk->sk_state) {
4078 	case TCP_SYN_RECV:
4079 	case TCP_ESTABLISHED:
4080 		/* Move to CLOSE_WAIT */
4081 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4082 		inet_csk(sk)->icsk_ack.pingpong = 1;
4083 		break;
4084 
4085 	case TCP_CLOSE_WAIT:
4086 	case TCP_CLOSING:
4087 		/* Received a retransmission of the FIN, do
4088 		 * nothing.
4089 		 */
4090 		break;
4091 	case TCP_LAST_ACK:
4092 		/* RFC793: Remain in the LAST-ACK state. */
4093 		break;
4094 
4095 	case TCP_FIN_WAIT1:
4096 		/* This case occurs when a simultaneous close
4097 		 * happens, we must ack the received FIN and
4098 		 * enter the CLOSING state.
4099 		 */
4100 		tcp_send_ack(sk);
4101 		tcp_set_state(sk, TCP_CLOSING);
4102 		break;
4103 	case TCP_FIN_WAIT2:
4104 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4105 		tcp_send_ack(sk);
4106 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4107 		break;
4108 	default:
4109 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4110 		 * cases we should never reach this piece of code.
4111 		 */
4112 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4113 		       __func__, sk->sk_state);
4114 		break;
4115 	}
4116 
4117 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4118 	 * Probably, we should reset in this case. For now drop them.
4119 	 */
4120 	__skb_queue_purge(&tp->out_of_order_queue);
4121 	if (tcp_is_sack(tp))
4122 		tcp_sack_reset(&tp->rx_opt);
4123 	sk_mem_reclaim(sk);
4124 
4125 	if (!sock_flag(sk, SOCK_DEAD)) {
4126 		sk->sk_state_change(sk);
4127 
4128 		/* Do not send POLL_HUP for half duplex close. */
4129 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4130 		    sk->sk_state == TCP_CLOSE)
4131 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4132 		else
4133 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4134 	}
4135 }
4136 
4137 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4138 				  u32 end_seq)
4139 {
4140 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4141 		if (before(seq, sp->start_seq))
4142 			sp->start_seq = seq;
4143 		if (after(end_seq, sp->end_seq))
4144 			sp->end_seq = end_seq;
4145 		return true;
4146 	}
4147 	return false;
4148 }
4149 
4150 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4151 {
4152 	struct tcp_sock *tp = tcp_sk(sk);
4153 
4154 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4155 		int mib_idx;
4156 
4157 		if (before(seq, tp->rcv_nxt))
4158 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4159 		else
4160 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4161 
4162 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4163 
4164 		tp->rx_opt.dsack = 1;
4165 		tp->duplicate_sack[0].start_seq = seq;
4166 		tp->duplicate_sack[0].end_seq = end_seq;
4167 	}
4168 }
4169 
4170 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4171 {
4172 	struct tcp_sock *tp = tcp_sk(sk);
4173 
4174 	if (!tp->rx_opt.dsack)
4175 		tcp_dsack_set(sk, seq, end_seq);
4176 	else
4177 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4178 }
4179 
4180 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4181 {
4182 	struct tcp_sock *tp = tcp_sk(sk);
4183 
4184 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4185 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4186 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4187 		tcp_enter_quickack_mode(sk);
4188 
4189 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4190 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4191 
4192 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4193 				end_seq = tp->rcv_nxt;
4194 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4195 		}
4196 	}
4197 
4198 	tcp_send_ack(sk);
4199 }
4200 
4201 /* These routines update the SACK block as out-of-order packets arrive or
4202  * in-order packets close up the sequence space.
4203  */
4204 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4205 {
4206 	int this_sack;
4207 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4208 	struct tcp_sack_block *swalk = sp + 1;
4209 
4210 	/* See if the recent change to the first SACK eats into
4211 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4212 	 */
4213 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4214 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4215 			int i;
4216 
4217 			/* Zap SWALK, by moving every further SACK up by one slot.
4218 			 * Decrease num_sacks.
4219 			 */
4220 			tp->rx_opt.num_sacks--;
4221 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4222 				sp[i] = sp[i + 1];
4223 			continue;
4224 		}
4225 		this_sack++, swalk++;
4226 	}
4227 }
4228 
4229 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4230 {
4231 	struct tcp_sock *tp = tcp_sk(sk);
4232 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4233 	int cur_sacks = tp->rx_opt.num_sacks;
4234 	int this_sack;
4235 
4236 	if (!cur_sacks)
4237 		goto new_sack;
4238 
4239 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4240 		if (tcp_sack_extend(sp, seq, end_seq)) {
4241 			/* Rotate this_sack to the first one. */
4242 			for (; this_sack > 0; this_sack--, sp--)
4243 				swap(*sp, *(sp - 1));
4244 			if (cur_sacks > 1)
4245 				tcp_sack_maybe_coalesce(tp);
4246 			return;
4247 		}
4248 	}
4249 
4250 	/* Could not find an adjacent existing SACK, build a new one,
4251 	 * put it at the front, and shift everyone else down.  We
4252 	 * always know there is at least one SACK present already here.
4253 	 *
4254 	 * If the sack array is full, forget about the last one.
4255 	 */
4256 	if (this_sack >= TCP_NUM_SACKS) {
4257 		this_sack--;
4258 		tp->rx_opt.num_sacks--;
4259 		sp--;
4260 	}
4261 	for (; this_sack > 0; this_sack--, sp--)
4262 		*sp = *(sp - 1);
4263 
4264 new_sack:
4265 	/* Build the new head SACK, and we're done. */
4266 	sp->start_seq = seq;
4267 	sp->end_seq = end_seq;
4268 	tp->rx_opt.num_sacks++;
4269 }
4270 
4271 /* RCV.NXT advances, some SACKs should be eaten. */
4272 
4273 static void tcp_sack_remove(struct tcp_sock *tp)
4274 {
4275 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4276 	int num_sacks = tp->rx_opt.num_sacks;
4277 	int this_sack;
4278 
4279 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4280 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4281 		tp->rx_opt.num_sacks = 0;
4282 		return;
4283 	}
4284 
4285 	for (this_sack = 0; this_sack < num_sacks;) {
4286 		/* Check if the start of the sack is covered by RCV.NXT. */
4287 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4288 			int i;
4289 
4290 			/* RCV.NXT must cover all the block! */
4291 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4292 
4293 			/* Zap this SACK, by moving forward any other SACKS. */
4294 			for (i=this_sack+1; i < num_sacks; i++)
4295 				tp->selective_acks[i-1] = tp->selective_acks[i];
4296 			num_sacks--;
4297 			continue;
4298 		}
4299 		this_sack++;
4300 		sp++;
4301 	}
4302 	tp->rx_opt.num_sacks = num_sacks;
4303 }
4304 
4305 /* This one checks to see if we can put data from the
4306  * out_of_order queue into the receive_queue.
4307  */
4308 static void tcp_ofo_queue(struct sock *sk)
4309 {
4310 	struct tcp_sock *tp = tcp_sk(sk);
4311 	__u32 dsack_high = tp->rcv_nxt;
4312 	struct sk_buff *skb;
4313 
4314 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4315 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4316 			break;
4317 
4318 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4319 			__u32 dsack = dsack_high;
4320 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4321 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4322 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4323 		}
4324 
4325 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4326 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4327 			__skb_unlink(skb, &tp->out_of_order_queue);
4328 			__kfree_skb(skb);
4329 			continue;
4330 		}
4331 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4332 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4333 			   TCP_SKB_CB(skb)->end_seq);
4334 
4335 		__skb_unlink(skb, &tp->out_of_order_queue);
4336 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4337 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4338 		if (tcp_hdr(skb)->fin)
4339 			tcp_fin(sk);
4340 	}
4341 }
4342 
4343 static bool tcp_prune_ofo_queue(struct sock *sk);
4344 static int tcp_prune_queue(struct sock *sk);
4345 
4346 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4347 				 unsigned int size)
4348 {
4349 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4350 	    !sk_rmem_schedule(sk, skb, size)) {
4351 
4352 		if (tcp_prune_queue(sk) < 0)
4353 			return -1;
4354 
4355 		if (!sk_rmem_schedule(sk, skb, size)) {
4356 			if (!tcp_prune_ofo_queue(sk))
4357 				return -1;
4358 
4359 			if (!sk_rmem_schedule(sk, skb, size))
4360 				return -1;
4361 		}
4362 	}
4363 	return 0;
4364 }
4365 
4366 /**
4367  * tcp_try_coalesce - try to merge skb to prior one
4368  * @sk: socket
4369  * @to: prior buffer
4370  * @from: buffer to add in queue
4371  * @fragstolen: pointer to boolean
4372  *
4373  * Before queueing skb @from after @to, try to merge them
4374  * to reduce overall memory use and queue lengths, if cost is small.
4375  * Packets in ofo or receive queues can stay a long time.
4376  * Better try to coalesce them right now to avoid future collapses.
4377  * Returns true if caller should free @from instead of queueing it
4378  */
4379 static bool tcp_try_coalesce(struct sock *sk,
4380 			     struct sk_buff *to,
4381 			     struct sk_buff *from,
4382 			     bool *fragstolen)
4383 {
4384 	int delta;
4385 
4386 	*fragstolen = false;
4387 
4388 	if (tcp_hdr(from)->fin)
4389 		return false;
4390 
4391 	/* Its possible this segment overlaps with prior segment in queue */
4392 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4393 		return false;
4394 
4395 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4396 		return false;
4397 
4398 	atomic_add(delta, &sk->sk_rmem_alloc);
4399 	sk_mem_charge(sk, delta);
4400 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4401 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4402 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4403 	return true;
4404 }
4405 
4406 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4407 {
4408 	struct tcp_sock *tp = tcp_sk(sk);
4409 	struct sk_buff *skb1;
4410 	u32 seq, end_seq;
4411 
4412 	TCP_ECN_check_ce(tp, skb);
4413 
4414 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4415 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4416 		__kfree_skb(skb);
4417 		return;
4418 	}
4419 
4420 	/* Disable header prediction. */
4421 	tp->pred_flags = 0;
4422 	inet_csk_schedule_ack(sk);
4423 
4424 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4425 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4426 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4427 
4428 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4429 	if (!skb1) {
4430 		/* Initial out of order segment, build 1 SACK. */
4431 		if (tcp_is_sack(tp)) {
4432 			tp->rx_opt.num_sacks = 1;
4433 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4434 			tp->selective_acks[0].end_seq =
4435 						TCP_SKB_CB(skb)->end_seq;
4436 		}
4437 		__skb_queue_head(&tp->out_of_order_queue, skb);
4438 		goto end;
4439 	}
4440 
4441 	seq = TCP_SKB_CB(skb)->seq;
4442 	end_seq = TCP_SKB_CB(skb)->end_seq;
4443 
4444 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4445 		bool fragstolen;
4446 
4447 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4448 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4449 		} else {
4450 			kfree_skb_partial(skb, fragstolen);
4451 			skb = NULL;
4452 		}
4453 
4454 		if (!tp->rx_opt.num_sacks ||
4455 		    tp->selective_acks[0].end_seq != seq)
4456 			goto add_sack;
4457 
4458 		/* Common case: data arrive in order after hole. */
4459 		tp->selective_acks[0].end_seq = end_seq;
4460 		goto end;
4461 	}
4462 
4463 	/* Find place to insert this segment. */
4464 	while (1) {
4465 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4466 			break;
4467 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4468 			skb1 = NULL;
4469 			break;
4470 		}
4471 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4472 	}
4473 
4474 	/* Do skb overlap to previous one? */
4475 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4476 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4477 			/* All the bits are present. Drop. */
4478 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4479 			__kfree_skb(skb);
4480 			skb = NULL;
4481 			tcp_dsack_set(sk, seq, end_seq);
4482 			goto add_sack;
4483 		}
4484 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4485 			/* Partial overlap. */
4486 			tcp_dsack_set(sk, seq,
4487 				      TCP_SKB_CB(skb1)->end_seq);
4488 		} else {
4489 			if (skb_queue_is_first(&tp->out_of_order_queue,
4490 					       skb1))
4491 				skb1 = NULL;
4492 			else
4493 				skb1 = skb_queue_prev(
4494 					&tp->out_of_order_queue,
4495 					skb1);
4496 		}
4497 	}
4498 	if (!skb1)
4499 		__skb_queue_head(&tp->out_of_order_queue, skb);
4500 	else
4501 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4502 
4503 	/* And clean segments covered by new one as whole. */
4504 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4505 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4506 
4507 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4508 			break;
4509 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4510 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4511 					 end_seq);
4512 			break;
4513 		}
4514 		__skb_unlink(skb1, &tp->out_of_order_queue);
4515 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4516 				 TCP_SKB_CB(skb1)->end_seq);
4517 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4518 		__kfree_skb(skb1);
4519 	}
4520 
4521 add_sack:
4522 	if (tcp_is_sack(tp))
4523 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4524 end:
4525 	if (skb)
4526 		skb_set_owner_r(skb, sk);
4527 }
4528 
4529 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4530 		  bool *fragstolen)
4531 {
4532 	int eaten;
4533 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4534 
4535 	__skb_pull(skb, hdrlen);
4536 	eaten = (tail &&
4537 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4538 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4539 	if (!eaten) {
4540 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4541 		skb_set_owner_r(skb, sk);
4542 	}
4543 	return eaten;
4544 }
4545 
4546 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4547 {
4548 	struct sk_buff *skb = NULL;
4549 	struct tcphdr *th;
4550 	bool fragstolen;
4551 
4552 	if (size == 0)
4553 		return 0;
4554 
4555 	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4556 	if (!skb)
4557 		goto err;
4558 
4559 	if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4560 		goto err_free;
4561 
4562 	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4563 	skb_reset_transport_header(skb);
4564 	memset(th, 0, sizeof(*th));
4565 
4566 	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4567 		goto err_free;
4568 
4569 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4570 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4571 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4572 
4573 	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4574 		WARN_ON_ONCE(fragstolen); /* should not happen */
4575 		__kfree_skb(skb);
4576 	}
4577 	return size;
4578 
4579 err_free:
4580 	kfree_skb(skb);
4581 err:
4582 	return -ENOMEM;
4583 }
4584 
4585 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4586 {
4587 	const struct tcphdr *th = tcp_hdr(skb);
4588 	struct tcp_sock *tp = tcp_sk(sk);
4589 	int eaten = -1;
4590 	bool fragstolen = false;
4591 
4592 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4593 		goto drop;
4594 
4595 	skb_dst_drop(skb);
4596 	__skb_pull(skb, th->doff * 4);
4597 
4598 	TCP_ECN_accept_cwr(tp, skb);
4599 
4600 	tp->rx_opt.dsack = 0;
4601 
4602 	/*  Queue data for delivery to the user.
4603 	 *  Packets in sequence go to the receive queue.
4604 	 *  Out of sequence packets to the out_of_order_queue.
4605 	 */
4606 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4607 		if (tcp_receive_window(tp) == 0)
4608 			goto out_of_window;
4609 
4610 		/* Ok. In sequence. In window. */
4611 		if (tp->ucopy.task == current &&
4612 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4613 		    sock_owned_by_user(sk) && !tp->urg_data) {
4614 			int chunk = min_t(unsigned int, skb->len,
4615 					  tp->ucopy.len);
4616 
4617 			__set_current_state(TASK_RUNNING);
4618 
4619 			local_bh_enable();
4620 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4621 				tp->ucopy.len -= chunk;
4622 				tp->copied_seq += chunk;
4623 				eaten = (chunk == skb->len);
4624 				tcp_rcv_space_adjust(sk);
4625 			}
4626 			local_bh_disable();
4627 		}
4628 
4629 		if (eaten <= 0) {
4630 queue_and_out:
4631 			if (eaten < 0 &&
4632 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4633 				goto drop;
4634 
4635 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4636 		}
4637 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4638 		if (skb->len)
4639 			tcp_event_data_recv(sk, skb);
4640 		if (th->fin)
4641 			tcp_fin(sk);
4642 
4643 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4644 			tcp_ofo_queue(sk);
4645 
4646 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4647 			 * gap in queue is filled.
4648 			 */
4649 			if (skb_queue_empty(&tp->out_of_order_queue))
4650 				inet_csk(sk)->icsk_ack.pingpong = 0;
4651 		}
4652 
4653 		if (tp->rx_opt.num_sacks)
4654 			tcp_sack_remove(tp);
4655 
4656 		tcp_fast_path_check(sk);
4657 
4658 		if (eaten > 0)
4659 			kfree_skb_partial(skb, fragstolen);
4660 		if (!sock_flag(sk, SOCK_DEAD))
4661 			sk->sk_data_ready(sk, 0);
4662 		return;
4663 	}
4664 
4665 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4666 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4667 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4668 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4669 
4670 out_of_window:
4671 		tcp_enter_quickack_mode(sk);
4672 		inet_csk_schedule_ack(sk);
4673 drop:
4674 		__kfree_skb(skb);
4675 		return;
4676 	}
4677 
4678 	/* Out of window. F.e. zero window probe. */
4679 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4680 		goto out_of_window;
4681 
4682 	tcp_enter_quickack_mode(sk);
4683 
4684 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4685 		/* Partial packet, seq < rcv_next < end_seq */
4686 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4687 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4688 			   TCP_SKB_CB(skb)->end_seq);
4689 
4690 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4691 
4692 		/* If window is closed, drop tail of packet. But after
4693 		 * remembering D-SACK for its head made in previous line.
4694 		 */
4695 		if (!tcp_receive_window(tp))
4696 			goto out_of_window;
4697 		goto queue_and_out;
4698 	}
4699 
4700 	tcp_data_queue_ofo(sk, skb);
4701 }
4702 
4703 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4704 					struct sk_buff_head *list)
4705 {
4706 	struct sk_buff *next = NULL;
4707 
4708 	if (!skb_queue_is_last(list, skb))
4709 		next = skb_queue_next(list, skb);
4710 
4711 	__skb_unlink(skb, list);
4712 	__kfree_skb(skb);
4713 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4714 
4715 	return next;
4716 }
4717 
4718 /* Collapse contiguous sequence of skbs head..tail with
4719  * sequence numbers start..end.
4720  *
4721  * If tail is NULL, this means until the end of the list.
4722  *
4723  * Segments with FIN/SYN are not collapsed (only because this
4724  * simplifies code)
4725  */
4726 static void
4727 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4728 	     struct sk_buff *head, struct sk_buff *tail,
4729 	     u32 start, u32 end)
4730 {
4731 	struct sk_buff *skb, *n;
4732 	bool end_of_skbs;
4733 
4734 	/* First, check that queue is collapsible and find
4735 	 * the point where collapsing can be useful. */
4736 	skb = head;
4737 restart:
4738 	end_of_skbs = true;
4739 	skb_queue_walk_from_safe(list, skb, n) {
4740 		if (skb == tail)
4741 			break;
4742 		/* No new bits? It is possible on ofo queue. */
4743 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4744 			skb = tcp_collapse_one(sk, skb, list);
4745 			if (!skb)
4746 				break;
4747 			goto restart;
4748 		}
4749 
4750 		/* The first skb to collapse is:
4751 		 * - not SYN/FIN and
4752 		 * - bloated or contains data before "start" or
4753 		 *   overlaps to the next one.
4754 		 */
4755 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4756 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4757 		     before(TCP_SKB_CB(skb)->seq, start))) {
4758 			end_of_skbs = false;
4759 			break;
4760 		}
4761 
4762 		if (!skb_queue_is_last(list, skb)) {
4763 			struct sk_buff *next = skb_queue_next(list, skb);
4764 			if (next != tail &&
4765 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4766 				end_of_skbs = false;
4767 				break;
4768 			}
4769 		}
4770 
4771 		/* Decided to skip this, advance start seq. */
4772 		start = TCP_SKB_CB(skb)->end_seq;
4773 	}
4774 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4775 		return;
4776 
4777 	while (before(start, end)) {
4778 		struct sk_buff *nskb;
4779 		unsigned int header = skb_headroom(skb);
4780 		int copy = SKB_MAX_ORDER(header, 0);
4781 
4782 		/* Too big header? This can happen with IPv6. */
4783 		if (copy < 0)
4784 			return;
4785 		if (end - start < copy)
4786 			copy = end - start;
4787 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4788 		if (!nskb)
4789 			return;
4790 
4791 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4792 		skb_set_network_header(nskb, (skb_network_header(skb) -
4793 					      skb->head));
4794 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4795 						skb->head));
4796 		skb_reserve(nskb, header);
4797 		memcpy(nskb->head, skb->head, header);
4798 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4799 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4800 		__skb_queue_before(list, skb, nskb);
4801 		skb_set_owner_r(nskb, sk);
4802 
4803 		/* Copy data, releasing collapsed skbs. */
4804 		while (copy > 0) {
4805 			int offset = start - TCP_SKB_CB(skb)->seq;
4806 			int size = TCP_SKB_CB(skb)->end_seq - start;
4807 
4808 			BUG_ON(offset < 0);
4809 			if (size > 0) {
4810 				size = min(copy, size);
4811 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4812 					BUG();
4813 				TCP_SKB_CB(nskb)->end_seq += size;
4814 				copy -= size;
4815 				start += size;
4816 			}
4817 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4818 				skb = tcp_collapse_one(sk, skb, list);
4819 				if (!skb ||
4820 				    skb == tail ||
4821 				    tcp_hdr(skb)->syn ||
4822 				    tcp_hdr(skb)->fin)
4823 					return;
4824 			}
4825 		}
4826 	}
4827 }
4828 
4829 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4830  * and tcp_collapse() them until all the queue is collapsed.
4831  */
4832 static void tcp_collapse_ofo_queue(struct sock *sk)
4833 {
4834 	struct tcp_sock *tp = tcp_sk(sk);
4835 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4836 	struct sk_buff *head;
4837 	u32 start, end;
4838 
4839 	if (skb == NULL)
4840 		return;
4841 
4842 	start = TCP_SKB_CB(skb)->seq;
4843 	end = TCP_SKB_CB(skb)->end_seq;
4844 	head = skb;
4845 
4846 	for (;;) {
4847 		struct sk_buff *next = NULL;
4848 
4849 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4850 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4851 		skb = next;
4852 
4853 		/* Segment is terminated when we see gap or when
4854 		 * we are at the end of all the queue. */
4855 		if (!skb ||
4856 		    after(TCP_SKB_CB(skb)->seq, end) ||
4857 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4858 			tcp_collapse(sk, &tp->out_of_order_queue,
4859 				     head, skb, start, end);
4860 			head = skb;
4861 			if (!skb)
4862 				break;
4863 			/* Start new segment */
4864 			start = TCP_SKB_CB(skb)->seq;
4865 			end = TCP_SKB_CB(skb)->end_seq;
4866 		} else {
4867 			if (before(TCP_SKB_CB(skb)->seq, start))
4868 				start = TCP_SKB_CB(skb)->seq;
4869 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4870 				end = TCP_SKB_CB(skb)->end_seq;
4871 		}
4872 	}
4873 }
4874 
4875 /*
4876  * Purge the out-of-order queue.
4877  * Return true if queue was pruned.
4878  */
4879 static bool tcp_prune_ofo_queue(struct sock *sk)
4880 {
4881 	struct tcp_sock *tp = tcp_sk(sk);
4882 	bool res = false;
4883 
4884 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4885 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4886 		__skb_queue_purge(&tp->out_of_order_queue);
4887 
4888 		/* Reset SACK state.  A conforming SACK implementation will
4889 		 * do the same at a timeout based retransmit.  When a connection
4890 		 * is in a sad state like this, we care only about integrity
4891 		 * of the connection not performance.
4892 		 */
4893 		if (tp->rx_opt.sack_ok)
4894 			tcp_sack_reset(&tp->rx_opt);
4895 		sk_mem_reclaim(sk);
4896 		res = true;
4897 	}
4898 	return res;
4899 }
4900 
4901 /* Reduce allocated memory if we can, trying to get
4902  * the socket within its memory limits again.
4903  *
4904  * Return less than zero if we should start dropping frames
4905  * until the socket owning process reads some of the data
4906  * to stabilize the situation.
4907  */
4908 static int tcp_prune_queue(struct sock *sk)
4909 {
4910 	struct tcp_sock *tp = tcp_sk(sk);
4911 
4912 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4913 
4914 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4915 
4916 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4917 		tcp_clamp_window(sk);
4918 	else if (sk_under_memory_pressure(sk))
4919 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4920 
4921 	tcp_collapse_ofo_queue(sk);
4922 	if (!skb_queue_empty(&sk->sk_receive_queue))
4923 		tcp_collapse(sk, &sk->sk_receive_queue,
4924 			     skb_peek(&sk->sk_receive_queue),
4925 			     NULL,
4926 			     tp->copied_seq, tp->rcv_nxt);
4927 	sk_mem_reclaim(sk);
4928 
4929 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4930 		return 0;
4931 
4932 	/* Collapsing did not help, destructive actions follow.
4933 	 * This must not ever occur. */
4934 
4935 	tcp_prune_ofo_queue(sk);
4936 
4937 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4938 		return 0;
4939 
4940 	/* If we are really being abused, tell the caller to silently
4941 	 * drop receive data on the floor.  It will get retransmitted
4942 	 * and hopefully then we'll have sufficient space.
4943 	 */
4944 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4945 
4946 	/* Massive buffer overcommit. */
4947 	tp->pred_flags = 0;
4948 	return -1;
4949 }
4950 
4951 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4952  * As additional protections, we do not touch cwnd in retransmission phases,
4953  * and if application hit its sndbuf limit recently.
4954  */
4955 void tcp_cwnd_application_limited(struct sock *sk)
4956 {
4957 	struct tcp_sock *tp = tcp_sk(sk);
4958 
4959 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4960 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4961 		/* Limited by application or receiver window. */
4962 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4963 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4964 		if (win_used < tp->snd_cwnd) {
4965 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4966 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4967 		}
4968 		tp->snd_cwnd_used = 0;
4969 	}
4970 	tp->snd_cwnd_stamp = tcp_time_stamp;
4971 }
4972 
4973 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4974 {
4975 	const struct tcp_sock *tp = tcp_sk(sk);
4976 
4977 	/* If the user specified a specific send buffer setting, do
4978 	 * not modify it.
4979 	 */
4980 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4981 		return false;
4982 
4983 	/* If we are under global TCP memory pressure, do not expand.  */
4984 	if (sk_under_memory_pressure(sk))
4985 		return false;
4986 
4987 	/* If we are under soft global TCP memory pressure, do not expand.  */
4988 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4989 		return false;
4990 
4991 	/* If we filled the congestion window, do not expand.  */
4992 	if (tp->packets_out >= tp->snd_cwnd)
4993 		return false;
4994 
4995 	return true;
4996 }
4997 
4998 /* When incoming ACK allowed to free some skb from write_queue,
4999  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5000  * on the exit from tcp input handler.
5001  *
5002  * PROBLEM: sndbuf expansion does not work well with largesend.
5003  */
5004 static void tcp_new_space(struct sock *sk)
5005 {
5006 	struct tcp_sock *tp = tcp_sk(sk);
5007 
5008 	if (tcp_should_expand_sndbuf(sk)) {
5009 		int sndmem = SKB_TRUESIZE(max_t(u32,
5010 						tp->rx_opt.mss_clamp,
5011 						tp->mss_cache) +
5012 					  MAX_TCP_HEADER);
5013 		int demanded = max_t(unsigned int, tp->snd_cwnd,
5014 				     tp->reordering + 1);
5015 		sndmem *= 2 * demanded;
5016 		if (sndmem > sk->sk_sndbuf)
5017 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5018 		tp->snd_cwnd_stamp = tcp_time_stamp;
5019 	}
5020 
5021 	sk->sk_write_space(sk);
5022 }
5023 
5024 static void tcp_check_space(struct sock *sk)
5025 {
5026 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5027 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5028 		if (sk->sk_socket &&
5029 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5030 			tcp_new_space(sk);
5031 	}
5032 }
5033 
5034 static inline void tcp_data_snd_check(struct sock *sk)
5035 {
5036 	tcp_push_pending_frames(sk);
5037 	tcp_check_space(sk);
5038 }
5039 
5040 /*
5041  * Check if sending an ack is needed.
5042  */
5043 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5044 {
5045 	struct tcp_sock *tp = tcp_sk(sk);
5046 
5047 	    /* More than one full frame received... */
5048 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5049 	     /* ... and right edge of window advances far enough.
5050 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5051 	      */
5052 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5053 	    /* We ACK each frame or... */
5054 	    tcp_in_quickack_mode(sk) ||
5055 	    /* We have out of order data. */
5056 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5057 		/* Then ack it now */
5058 		tcp_send_ack(sk);
5059 	} else {
5060 		/* Else, send delayed ack. */
5061 		tcp_send_delayed_ack(sk);
5062 	}
5063 }
5064 
5065 static inline void tcp_ack_snd_check(struct sock *sk)
5066 {
5067 	if (!inet_csk_ack_scheduled(sk)) {
5068 		/* We sent a data segment already. */
5069 		return;
5070 	}
5071 	__tcp_ack_snd_check(sk, 1);
5072 }
5073 
5074 /*
5075  *	This routine is only called when we have urgent data
5076  *	signaled. Its the 'slow' part of tcp_urg. It could be
5077  *	moved inline now as tcp_urg is only called from one
5078  *	place. We handle URGent data wrong. We have to - as
5079  *	BSD still doesn't use the correction from RFC961.
5080  *	For 1003.1g we should support a new option TCP_STDURG to permit
5081  *	either form (or just set the sysctl tcp_stdurg).
5082  */
5083 
5084 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5085 {
5086 	struct tcp_sock *tp = tcp_sk(sk);
5087 	u32 ptr = ntohs(th->urg_ptr);
5088 
5089 	if (ptr && !sysctl_tcp_stdurg)
5090 		ptr--;
5091 	ptr += ntohl(th->seq);
5092 
5093 	/* Ignore urgent data that we've already seen and read. */
5094 	if (after(tp->copied_seq, ptr))
5095 		return;
5096 
5097 	/* Do not replay urg ptr.
5098 	 *
5099 	 * NOTE: interesting situation not covered by specs.
5100 	 * Misbehaving sender may send urg ptr, pointing to segment,
5101 	 * which we already have in ofo queue. We are not able to fetch
5102 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5103 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5104 	 * situations. But it is worth to think about possibility of some
5105 	 * DoSes using some hypothetical application level deadlock.
5106 	 */
5107 	if (before(ptr, tp->rcv_nxt))
5108 		return;
5109 
5110 	/* Do we already have a newer (or duplicate) urgent pointer? */
5111 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5112 		return;
5113 
5114 	/* Tell the world about our new urgent pointer. */
5115 	sk_send_sigurg(sk);
5116 
5117 	/* We may be adding urgent data when the last byte read was
5118 	 * urgent. To do this requires some care. We cannot just ignore
5119 	 * tp->copied_seq since we would read the last urgent byte again
5120 	 * as data, nor can we alter copied_seq until this data arrives
5121 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5122 	 *
5123 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5124 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5125 	 * and expect that both A and B disappear from stream. This is _wrong_.
5126 	 * Though this happens in BSD with high probability, this is occasional.
5127 	 * Any application relying on this is buggy. Note also, that fix "works"
5128 	 * only in this artificial test. Insert some normal data between A and B and we will
5129 	 * decline of BSD again. Verdict: it is better to remove to trap
5130 	 * buggy users.
5131 	 */
5132 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5133 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5134 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5135 		tp->copied_seq++;
5136 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5137 			__skb_unlink(skb, &sk->sk_receive_queue);
5138 			__kfree_skb(skb);
5139 		}
5140 	}
5141 
5142 	tp->urg_data = TCP_URG_NOTYET;
5143 	tp->urg_seq = ptr;
5144 
5145 	/* Disable header prediction. */
5146 	tp->pred_flags = 0;
5147 }
5148 
5149 /* This is the 'fast' part of urgent handling. */
5150 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5151 {
5152 	struct tcp_sock *tp = tcp_sk(sk);
5153 
5154 	/* Check if we get a new urgent pointer - normally not. */
5155 	if (th->urg)
5156 		tcp_check_urg(sk, th);
5157 
5158 	/* Do we wait for any urgent data? - normally not... */
5159 	if (tp->urg_data == TCP_URG_NOTYET) {
5160 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5161 			  th->syn;
5162 
5163 		/* Is the urgent pointer pointing into this packet? */
5164 		if (ptr < skb->len) {
5165 			u8 tmp;
5166 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5167 				BUG();
5168 			tp->urg_data = TCP_URG_VALID | tmp;
5169 			if (!sock_flag(sk, SOCK_DEAD))
5170 				sk->sk_data_ready(sk, 0);
5171 		}
5172 	}
5173 }
5174 
5175 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5176 {
5177 	struct tcp_sock *tp = tcp_sk(sk);
5178 	int chunk = skb->len - hlen;
5179 	int err;
5180 
5181 	local_bh_enable();
5182 	if (skb_csum_unnecessary(skb))
5183 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5184 	else
5185 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5186 						       tp->ucopy.iov);
5187 
5188 	if (!err) {
5189 		tp->ucopy.len -= chunk;
5190 		tp->copied_seq += chunk;
5191 		tcp_rcv_space_adjust(sk);
5192 	}
5193 
5194 	local_bh_disable();
5195 	return err;
5196 }
5197 
5198 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5199 					    struct sk_buff *skb)
5200 {
5201 	__sum16 result;
5202 
5203 	if (sock_owned_by_user(sk)) {
5204 		local_bh_enable();
5205 		result = __tcp_checksum_complete(skb);
5206 		local_bh_disable();
5207 	} else {
5208 		result = __tcp_checksum_complete(skb);
5209 	}
5210 	return result;
5211 }
5212 
5213 static inline bool tcp_checksum_complete_user(struct sock *sk,
5214 					     struct sk_buff *skb)
5215 {
5216 	return !skb_csum_unnecessary(skb) &&
5217 	       __tcp_checksum_complete_user(sk, skb);
5218 }
5219 
5220 #ifdef CONFIG_NET_DMA
5221 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5222 				  int hlen)
5223 {
5224 	struct tcp_sock *tp = tcp_sk(sk);
5225 	int chunk = skb->len - hlen;
5226 	int dma_cookie;
5227 	bool copied_early = false;
5228 
5229 	if (tp->ucopy.wakeup)
5230 		return false;
5231 
5232 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5233 		tp->ucopy.dma_chan = net_dma_find_channel();
5234 
5235 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5236 
5237 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5238 							 skb, hlen,
5239 							 tp->ucopy.iov, chunk,
5240 							 tp->ucopy.pinned_list);
5241 
5242 		if (dma_cookie < 0)
5243 			goto out;
5244 
5245 		tp->ucopy.dma_cookie = dma_cookie;
5246 		copied_early = true;
5247 
5248 		tp->ucopy.len -= chunk;
5249 		tp->copied_seq += chunk;
5250 		tcp_rcv_space_adjust(sk);
5251 
5252 		if ((tp->ucopy.len == 0) ||
5253 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5254 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5255 			tp->ucopy.wakeup = 1;
5256 			sk->sk_data_ready(sk, 0);
5257 		}
5258 	} else if (chunk > 0) {
5259 		tp->ucopy.wakeup = 1;
5260 		sk->sk_data_ready(sk, 0);
5261 	}
5262 out:
5263 	return copied_early;
5264 }
5265 #endif /* CONFIG_NET_DMA */
5266 
5267 /* Does PAWS and seqno based validation of an incoming segment, flags will
5268  * play significant role here.
5269  */
5270 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5271 				  const struct tcphdr *th, int syn_inerr)
5272 {
5273 	const u8 *hash_location;
5274 	struct tcp_sock *tp = tcp_sk(sk);
5275 
5276 	/* RFC1323: H1. Apply PAWS check first. */
5277 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5278 	    tp->rx_opt.saw_tstamp &&
5279 	    tcp_paws_discard(sk, skb)) {
5280 		if (!th->rst) {
5281 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5282 			tcp_send_dupack(sk, skb);
5283 			goto discard;
5284 		}
5285 		/* Reset is accepted even if it did not pass PAWS. */
5286 	}
5287 
5288 	/* Step 1: check sequence number */
5289 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5290 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5291 		 * (RST) segments are validated by checking their SEQ-fields."
5292 		 * And page 69: "If an incoming segment is not acceptable,
5293 		 * an acknowledgment should be sent in reply (unless the RST
5294 		 * bit is set, if so drop the segment and return)".
5295 		 */
5296 		if (!th->rst) {
5297 			if (th->syn)
5298 				goto syn_challenge;
5299 			tcp_send_dupack(sk, skb);
5300 		}
5301 		goto discard;
5302 	}
5303 
5304 	/* Step 2: check RST bit */
5305 	if (th->rst) {
5306 		/* RFC 5961 3.2 :
5307 		 * If sequence number exactly matches RCV.NXT, then
5308 		 *     RESET the connection
5309 		 * else
5310 		 *     Send a challenge ACK
5311 		 */
5312 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5313 			tcp_reset(sk);
5314 		else
5315 			tcp_send_challenge_ack(sk);
5316 		goto discard;
5317 	}
5318 
5319 	/* step 3: check security and precedence [ignored] */
5320 
5321 	/* step 4: Check for a SYN
5322 	 * RFC 5691 4.2 : Send a challenge ack
5323 	 */
5324 	if (th->syn) {
5325 syn_challenge:
5326 		if (syn_inerr)
5327 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5328 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5329 		tcp_send_challenge_ack(sk);
5330 		goto discard;
5331 	}
5332 
5333 	return true;
5334 
5335 discard:
5336 	__kfree_skb(skb);
5337 	return false;
5338 }
5339 
5340 /*
5341  *	TCP receive function for the ESTABLISHED state.
5342  *
5343  *	It is split into a fast path and a slow path. The fast path is
5344  * 	disabled when:
5345  *	- A zero window was announced from us - zero window probing
5346  *        is only handled properly in the slow path.
5347  *	- Out of order segments arrived.
5348  *	- Urgent data is expected.
5349  *	- There is no buffer space left
5350  *	- Unexpected TCP flags/window values/header lengths are received
5351  *	  (detected by checking the TCP header against pred_flags)
5352  *	- Data is sent in both directions. Fast path only supports pure senders
5353  *	  or pure receivers (this means either the sequence number or the ack
5354  *	  value must stay constant)
5355  *	- Unexpected TCP option.
5356  *
5357  *	When these conditions are not satisfied it drops into a standard
5358  *	receive procedure patterned after RFC793 to handle all cases.
5359  *	The first three cases are guaranteed by proper pred_flags setting,
5360  *	the rest is checked inline. Fast processing is turned on in
5361  *	tcp_data_queue when everything is OK.
5362  */
5363 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5364 			const struct tcphdr *th, unsigned int len)
5365 {
5366 	struct tcp_sock *tp = tcp_sk(sk);
5367 
5368 	if (unlikely(sk->sk_rx_dst == NULL))
5369 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5370 	/*
5371 	 *	Header prediction.
5372 	 *	The code loosely follows the one in the famous
5373 	 *	"30 instruction TCP receive" Van Jacobson mail.
5374 	 *
5375 	 *	Van's trick is to deposit buffers into socket queue
5376 	 *	on a device interrupt, to call tcp_recv function
5377 	 *	on the receive process context and checksum and copy
5378 	 *	the buffer to user space. smart...
5379 	 *
5380 	 *	Our current scheme is not silly either but we take the
5381 	 *	extra cost of the net_bh soft interrupt processing...
5382 	 *	We do checksum and copy also but from device to kernel.
5383 	 */
5384 
5385 	tp->rx_opt.saw_tstamp = 0;
5386 
5387 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5388 	 *	if header_prediction is to be made
5389 	 *	'S' will always be tp->tcp_header_len >> 2
5390 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5391 	 *  turn it off	(when there are holes in the receive
5392 	 *	 space for instance)
5393 	 *	PSH flag is ignored.
5394 	 */
5395 
5396 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5397 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5398 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5399 		int tcp_header_len = tp->tcp_header_len;
5400 
5401 		/* Timestamp header prediction: tcp_header_len
5402 		 * is automatically equal to th->doff*4 due to pred_flags
5403 		 * match.
5404 		 */
5405 
5406 		/* Check timestamp */
5407 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5408 			/* No? Slow path! */
5409 			if (!tcp_parse_aligned_timestamp(tp, th))
5410 				goto slow_path;
5411 
5412 			/* If PAWS failed, check it more carefully in slow path */
5413 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5414 				goto slow_path;
5415 
5416 			/* DO NOT update ts_recent here, if checksum fails
5417 			 * and timestamp was corrupted part, it will result
5418 			 * in a hung connection since we will drop all
5419 			 * future packets due to the PAWS test.
5420 			 */
5421 		}
5422 
5423 		if (len <= tcp_header_len) {
5424 			/* Bulk data transfer: sender */
5425 			if (len == tcp_header_len) {
5426 				/* Predicted packet is in window by definition.
5427 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5428 				 * Hence, check seq<=rcv_wup reduces to:
5429 				 */
5430 				if (tcp_header_len ==
5431 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5432 				    tp->rcv_nxt == tp->rcv_wup)
5433 					tcp_store_ts_recent(tp);
5434 
5435 				/* We know that such packets are checksummed
5436 				 * on entry.
5437 				 */
5438 				tcp_ack(sk, skb, 0);
5439 				__kfree_skb(skb);
5440 				tcp_data_snd_check(sk);
5441 				return 0;
5442 			} else { /* Header too small */
5443 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5444 				goto discard;
5445 			}
5446 		} else {
5447 			int eaten = 0;
5448 			int copied_early = 0;
5449 			bool fragstolen = false;
5450 
5451 			if (tp->copied_seq == tp->rcv_nxt &&
5452 			    len - tcp_header_len <= tp->ucopy.len) {
5453 #ifdef CONFIG_NET_DMA
5454 				if (tp->ucopy.task == current &&
5455 				    sock_owned_by_user(sk) &&
5456 				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5457 					copied_early = 1;
5458 					eaten = 1;
5459 				}
5460 #endif
5461 				if (tp->ucopy.task == current &&
5462 				    sock_owned_by_user(sk) && !copied_early) {
5463 					__set_current_state(TASK_RUNNING);
5464 
5465 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5466 						eaten = 1;
5467 				}
5468 				if (eaten) {
5469 					/* Predicted packet is in window by definition.
5470 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5471 					 * Hence, check seq<=rcv_wup reduces to:
5472 					 */
5473 					if (tcp_header_len ==
5474 					    (sizeof(struct tcphdr) +
5475 					     TCPOLEN_TSTAMP_ALIGNED) &&
5476 					    tp->rcv_nxt == tp->rcv_wup)
5477 						tcp_store_ts_recent(tp);
5478 
5479 					tcp_rcv_rtt_measure_ts(sk, skb);
5480 
5481 					__skb_pull(skb, tcp_header_len);
5482 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5483 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5484 				}
5485 				if (copied_early)
5486 					tcp_cleanup_rbuf(sk, skb->len);
5487 			}
5488 			if (!eaten) {
5489 				if (tcp_checksum_complete_user(sk, skb))
5490 					goto csum_error;
5491 
5492 				if ((int)skb->truesize > sk->sk_forward_alloc)
5493 					goto step5;
5494 
5495 				/* Predicted packet is in window by definition.
5496 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5497 				 * Hence, check seq<=rcv_wup reduces to:
5498 				 */
5499 				if (tcp_header_len ==
5500 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5501 				    tp->rcv_nxt == tp->rcv_wup)
5502 					tcp_store_ts_recent(tp);
5503 
5504 				tcp_rcv_rtt_measure_ts(sk, skb);
5505 
5506 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5507 
5508 				/* Bulk data transfer: receiver */
5509 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5510 						      &fragstolen);
5511 			}
5512 
5513 			tcp_event_data_recv(sk, skb);
5514 
5515 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5516 				/* Well, only one small jumplet in fast path... */
5517 				tcp_ack(sk, skb, FLAG_DATA);
5518 				tcp_data_snd_check(sk);
5519 				if (!inet_csk_ack_scheduled(sk))
5520 					goto no_ack;
5521 			}
5522 
5523 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5524 				__tcp_ack_snd_check(sk, 0);
5525 no_ack:
5526 #ifdef CONFIG_NET_DMA
5527 			if (copied_early)
5528 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5529 			else
5530 #endif
5531 			if (eaten)
5532 				kfree_skb_partial(skb, fragstolen);
5533 			sk->sk_data_ready(sk, 0);
5534 			return 0;
5535 		}
5536 	}
5537 
5538 slow_path:
5539 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5540 		goto csum_error;
5541 
5542 	if (!th->ack && !th->rst)
5543 		goto discard;
5544 
5545 	/*
5546 	 *	Standard slow path.
5547 	 */
5548 
5549 	if (!tcp_validate_incoming(sk, skb, th, 1))
5550 		return 0;
5551 
5552 step5:
5553 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5554 		goto discard;
5555 
5556 	tcp_rcv_rtt_measure_ts(sk, skb);
5557 
5558 	/* Process urgent data. */
5559 	tcp_urg(sk, skb, th);
5560 
5561 	/* step 7: process the segment text */
5562 	tcp_data_queue(sk, skb);
5563 
5564 	tcp_data_snd_check(sk);
5565 	tcp_ack_snd_check(sk);
5566 	return 0;
5567 
5568 csum_error:
5569 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5570 
5571 discard:
5572 	__kfree_skb(skb);
5573 	return 0;
5574 }
5575 EXPORT_SYMBOL(tcp_rcv_established);
5576 
5577 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5578 {
5579 	struct tcp_sock *tp = tcp_sk(sk);
5580 	struct inet_connection_sock *icsk = inet_csk(sk);
5581 
5582 	tcp_set_state(sk, TCP_ESTABLISHED);
5583 
5584 	if (skb != NULL) {
5585 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5586 		security_inet_conn_established(sk, skb);
5587 	}
5588 
5589 	/* Make sure socket is routed, for correct metrics.  */
5590 	icsk->icsk_af_ops->rebuild_header(sk);
5591 
5592 	tcp_init_metrics(sk);
5593 
5594 	tcp_init_congestion_control(sk);
5595 
5596 	/* Prevent spurious tcp_cwnd_restart() on first data
5597 	 * packet.
5598 	 */
5599 	tp->lsndtime = tcp_time_stamp;
5600 
5601 	tcp_init_buffer_space(sk);
5602 
5603 	if (sock_flag(sk, SOCK_KEEPOPEN))
5604 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5605 
5606 	if (!tp->rx_opt.snd_wscale)
5607 		__tcp_fast_path_on(tp, tp->snd_wnd);
5608 	else
5609 		tp->pred_flags = 0;
5610 
5611 	if (!sock_flag(sk, SOCK_DEAD)) {
5612 		sk->sk_state_change(sk);
5613 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5614 	}
5615 }
5616 
5617 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5618 				    struct tcp_fastopen_cookie *cookie)
5619 {
5620 	struct tcp_sock *tp = tcp_sk(sk);
5621 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5622 	u16 mss = tp->rx_opt.mss_clamp;
5623 	bool syn_drop;
5624 
5625 	if (mss == tp->rx_opt.user_mss) {
5626 		struct tcp_options_received opt;
5627 		const u8 *hash_location;
5628 
5629 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5630 		tcp_clear_options(&opt);
5631 		opt.user_mss = opt.mss_clamp = 0;
5632 		tcp_parse_options(synack, &opt, &hash_location, 0, NULL);
5633 		mss = opt.mss_clamp;
5634 	}
5635 
5636 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5637 		cookie->len = -1;
5638 
5639 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5640 	 * the remote receives only the retransmitted (regular) SYNs: either
5641 	 * the original SYN-data or the corresponding SYN-ACK is lost.
5642 	 */
5643 	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5644 
5645 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5646 
5647 	if (data) { /* Retransmit unacked data in SYN */
5648 		tcp_for_write_queue_from(data, sk) {
5649 			if (data == tcp_send_head(sk) ||
5650 			    __tcp_retransmit_skb(sk, data))
5651 				break;
5652 		}
5653 		tcp_rearm_rto(sk);
5654 		return true;
5655 	}
5656 	tp->syn_data_acked = tp->syn_data;
5657 	return false;
5658 }
5659 
5660 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5661 					 const struct tcphdr *th, unsigned int len)
5662 {
5663 	const u8 *hash_location;
5664 	struct inet_connection_sock *icsk = inet_csk(sk);
5665 	struct tcp_sock *tp = tcp_sk(sk);
5666 	struct tcp_cookie_values *cvp = tp->cookie_values;
5667 	struct tcp_fastopen_cookie foc = { .len = -1 };
5668 	int saved_clamp = tp->rx_opt.mss_clamp;
5669 
5670 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc);
5671 	if (tp->rx_opt.saw_tstamp)
5672 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5673 
5674 	if (th->ack) {
5675 		/* rfc793:
5676 		 * "If the state is SYN-SENT then
5677 		 *    first check the ACK bit
5678 		 *      If the ACK bit is set
5679 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5680 		 *        a reset (unless the RST bit is set, if so drop
5681 		 *        the segment and return)"
5682 		 */
5683 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5684 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5685 			goto reset_and_undo;
5686 
5687 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5688 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5689 			     tcp_time_stamp)) {
5690 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5691 			goto reset_and_undo;
5692 		}
5693 
5694 		/* Now ACK is acceptable.
5695 		 *
5696 		 * "If the RST bit is set
5697 		 *    If the ACK was acceptable then signal the user "error:
5698 		 *    connection reset", drop the segment, enter CLOSED state,
5699 		 *    delete TCB, and return."
5700 		 */
5701 
5702 		if (th->rst) {
5703 			tcp_reset(sk);
5704 			goto discard;
5705 		}
5706 
5707 		/* rfc793:
5708 		 *   "fifth, if neither of the SYN or RST bits is set then
5709 		 *    drop the segment and return."
5710 		 *
5711 		 *    See note below!
5712 		 *                                        --ANK(990513)
5713 		 */
5714 		if (!th->syn)
5715 			goto discard_and_undo;
5716 
5717 		/* rfc793:
5718 		 *   "If the SYN bit is on ...
5719 		 *    are acceptable then ...
5720 		 *    (our SYN has been ACKed), change the connection
5721 		 *    state to ESTABLISHED..."
5722 		 */
5723 
5724 		TCP_ECN_rcv_synack(tp, th);
5725 
5726 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5727 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5728 
5729 		/* Ok.. it's good. Set up sequence numbers and
5730 		 * move to established.
5731 		 */
5732 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5733 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5734 
5735 		/* RFC1323: The window in SYN & SYN/ACK segments is
5736 		 * never scaled.
5737 		 */
5738 		tp->snd_wnd = ntohs(th->window);
5739 
5740 		if (!tp->rx_opt.wscale_ok) {
5741 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5742 			tp->window_clamp = min(tp->window_clamp, 65535U);
5743 		}
5744 
5745 		if (tp->rx_opt.saw_tstamp) {
5746 			tp->rx_opt.tstamp_ok	   = 1;
5747 			tp->tcp_header_len =
5748 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5749 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5750 			tcp_store_ts_recent(tp);
5751 		} else {
5752 			tp->tcp_header_len = sizeof(struct tcphdr);
5753 		}
5754 
5755 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5756 			tcp_enable_fack(tp);
5757 
5758 		tcp_mtup_init(sk);
5759 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5760 		tcp_initialize_rcv_mss(sk);
5761 
5762 		/* Remember, tcp_poll() does not lock socket!
5763 		 * Change state from SYN-SENT only after copied_seq
5764 		 * is initialized. */
5765 		tp->copied_seq = tp->rcv_nxt;
5766 
5767 		if (cvp != NULL &&
5768 		    cvp->cookie_pair_size > 0 &&
5769 		    tp->rx_opt.cookie_plus > 0) {
5770 			int cookie_size = tp->rx_opt.cookie_plus
5771 					- TCPOLEN_COOKIE_BASE;
5772 			int cookie_pair_size = cookie_size
5773 					     + cvp->cookie_desired;
5774 
5775 			/* A cookie extension option was sent and returned.
5776 			 * Note that each incoming SYNACK replaces the
5777 			 * Responder cookie.  The initial exchange is most
5778 			 * fragile, as protection against spoofing relies
5779 			 * entirely upon the sequence and timestamp (above).
5780 			 * This replacement strategy allows the correct pair to
5781 			 * pass through, while any others will be filtered via
5782 			 * Responder verification later.
5783 			 */
5784 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5785 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5786 				       hash_location, cookie_size);
5787 				cvp->cookie_pair_size = cookie_pair_size;
5788 			}
5789 		}
5790 
5791 		smp_mb();
5792 
5793 		tcp_finish_connect(sk, skb);
5794 
5795 		if ((tp->syn_fastopen || tp->syn_data) &&
5796 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5797 			return -1;
5798 
5799 		if (sk->sk_write_pending ||
5800 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5801 		    icsk->icsk_ack.pingpong) {
5802 			/* Save one ACK. Data will be ready after
5803 			 * several ticks, if write_pending is set.
5804 			 *
5805 			 * It may be deleted, but with this feature tcpdumps
5806 			 * look so _wonderfully_ clever, that I was not able
5807 			 * to stand against the temptation 8)     --ANK
5808 			 */
5809 			inet_csk_schedule_ack(sk);
5810 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5811 			tcp_enter_quickack_mode(sk);
5812 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5813 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5814 
5815 discard:
5816 			__kfree_skb(skb);
5817 			return 0;
5818 		} else {
5819 			tcp_send_ack(sk);
5820 		}
5821 		return -1;
5822 	}
5823 
5824 	/* No ACK in the segment */
5825 
5826 	if (th->rst) {
5827 		/* rfc793:
5828 		 * "If the RST bit is set
5829 		 *
5830 		 *      Otherwise (no ACK) drop the segment and return."
5831 		 */
5832 
5833 		goto discard_and_undo;
5834 	}
5835 
5836 	/* PAWS check. */
5837 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5838 	    tcp_paws_reject(&tp->rx_opt, 0))
5839 		goto discard_and_undo;
5840 
5841 	if (th->syn) {
5842 		/* We see SYN without ACK. It is attempt of
5843 		 * simultaneous connect with crossed SYNs.
5844 		 * Particularly, it can be connect to self.
5845 		 */
5846 		tcp_set_state(sk, TCP_SYN_RECV);
5847 
5848 		if (tp->rx_opt.saw_tstamp) {
5849 			tp->rx_opt.tstamp_ok = 1;
5850 			tcp_store_ts_recent(tp);
5851 			tp->tcp_header_len =
5852 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5853 		} else {
5854 			tp->tcp_header_len = sizeof(struct tcphdr);
5855 		}
5856 
5857 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5858 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5859 
5860 		/* RFC1323: The window in SYN & SYN/ACK segments is
5861 		 * never scaled.
5862 		 */
5863 		tp->snd_wnd    = ntohs(th->window);
5864 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5865 		tp->max_window = tp->snd_wnd;
5866 
5867 		TCP_ECN_rcv_syn(tp, th);
5868 
5869 		tcp_mtup_init(sk);
5870 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5871 		tcp_initialize_rcv_mss(sk);
5872 
5873 		tcp_send_synack(sk);
5874 #if 0
5875 		/* Note, we could accept data and URG from this segment.
5876 		 * There are no obstacles to make this (except that we must
5877 		 * either change tcp_recvmsg() to prevent it from returning data
5878 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5879 		 *
5880 		 * However, if we ignore data in ACKless segments sometimes,
5881 		 * we have no reasons to accept it sometimes.
5882 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5883 		 * is not flawless. So, discard packet for sanity.
5884 		 * Uncomment this return to process the data.
5885 		 */
5886 		return -1;
5887 #else
5888 		goto discard;
5889 #endif
5890 	}
5891 	/* "fifth, if neither of the SYN or RST bits is set then
5892 	 * drop the segment and return."
5893 	 */
5894 
5895 discard_and_undo:
5896 	tcp_clear_options(&tp->rx_opt);
5897 	tp->rx_opt.mss_clamp = saved_clamp;
5898 	goto discard;
5899 
5900 reset_and_undo:
5901 	tcp_clear_options(&tp->rx_opt);
5902 	tp->rx_opt.mss_clamp = saved_clamp;
5903 	return 1;
5904 }
5905 
5906 /*
5907  *	This function implements the receiving procedure of RFC 793 for
5908  *	all states except ESTABLISHED and TIME_WAIT.
5909  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5910  *	address independent.
5911  */
5912 
5913 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5914 			  const struct tcphdr *th, unsigned int len)
5915 {
5916 	struct tcp_sock *tp = tcp_sk(sk);
5917 	struct inet_connection_sock *icsk = inet_csk(sk);
5918 	struct request_sock *req;
5919 	int queued = 0;
5920 
5921 	tp->rx_opt.saw_tstamp = 0;
5922 
5923 	switch (sk->sk_state) {
5924 	case TCP_CLOSE:
5925 		goto discard;
5926 
5927 	case TCP_LISTEN:
5928 		if (th->ack)
5929 			return 1;
5930 
5931 		if (th->rst)
5932 			goto discard;
5933 
5934 		if (th->syn) {
5935 			if (th->fin)
5936 				goto discard;
5937 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5938 				return 1;
5939 
5940 			/* Now we have several options: In theory there is
5941 			 * nothing else in the frame. KA9Q has an option to
5942 			 * send data with the syn, BSD accepts data with the
5943 			 * syn up to the [to be] advertised window and
5944 			 * Solaris 2.1 gives you a protocol error. For now
5945 			 * we just ignore it, that fits the spec precisely
5946 			 * and avoids incompatibilities. It would be nice in
5947 			 * future to drop through and process the data.
5948 			 *
5949 			 * Now that TTCP is starting to be used we ought to
5950 			 * queue this data.
5951 			 * But, this leaves one open to an easy denial of
5952 			 * service attack, and SYN cookies can't defend
5953 			 * against this problem. So, we drop the data
5954 			 * in the interest of security over speed unless
5955 			 * it's still in use.
5956 			 */
5957 			kfree_skb(skb);
5958 			return 0;
5959 		}
5960 		goto discard;
5961 
5962 	case TCP_SYN_SENT:
5963 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5964 		if (queued >= 0)
5965 			return queued;
5966 
5967 		/* Do step6 onward by hand. */
5968 		tcp_urg(sk, skb, th);
5969 		__kfree_skb(skb);
5970 		tcp_data_snd_check(sk);
5971 		return 0;
5972 	}
5973 
5974 	req = tp->fastopen_rsk;
5975 	if (req != NULL) {
5976 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5977 		    sk->sk_state != TCP_FIN_WAIT1);
5978 
5979 		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5980 			goto discard;
5981 	}
5982 
5983 	if (!th->ack && !th->rst)
5984 		goto discard;
5985 
5986 	if (!tcp_validate_incoming(sk, skb, th, 0))
5987 		return 0;
5988 
5989 	/* step 5: check the ACK field */
5990 	if (true) {
5991 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5992 						  FLAG_UPDATE_TS_RECENT) > 0;
5993 
5994 		switch (sk->sk_state) {
5995 		case TCP_SYN_RECV:
5996 			if (acceptable) {
5997 				/* Once we leave TCP_SYN_RECV, we no longer
5998 				 * need req so release it.
5999 				 */
6000 				if (req) {
6001 					tcp_synack_rtt_meas(sk, req);
6002 					tp->total_retrans = req->num_retrans;
6003 
6004 					reqsk_fastopen_remove(sk, req, false);
6005 				} else {
6006 					/* Make sure socket is routed, for
6007 					 * correct metrics.
6008 					 */
6009 					icsk->icsk_af_ops->rebuild_header(sk);
6010 					tcp_init_congestion_control(sk);
6011 
6012 					tcp_mtup_init(sk);
6013 					tcp_init_buffer_space(sk);
6014 					tp->copied_seq = tp->rcv_nxt;
6015 				}
6016 				smp_mb();
6017 				tcp_set_state(sk, TCP_ESTABLISHED);
6018 				sk->sk_state_change(sk);
6019 
6020 				/* Note, that this wakeup is only for marginal
6021 				 * crossed SYN case. Passively open sockets
6022 				 * are not waked up, because sk->sk_sleep ==
6023 				 * NULL and sk->sk_socket == NULL.
6024 				 */
6025 				if (sk->sk_socket)
6026 					sk_wake_async(sk,
6027 						      SOCK_WAKE_IO, POLL_OUT);
6028 
6029 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6030 				tp->snd_wnd = ntohs(th->window) <<
6031 					      tp->rx_opt.snd_wscale;
6032 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6033 
6034 				if (tp->rx_opt.tstamp_ok)
6035 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6036 
6037 				if (req) {
6038 					/* Re-arm the timer because data may
6039 					 * have been sent out. This is similar
6040 					 * to the regular data transmission case
6041 					 * when new data has just been ack'ed.
6042 					 *
6043 					 * (TFO) - we could try to be more
6044 					 * aggressive and retranmitting any data
6045 					 * sooner based on when they were sent
6046 					 * out.
6047 					 */
6048 					tcp_rearm_rto(sk);
6049 				} else
6050 					tcp_init_metrics(sk);
6051 
6052 				/* Prevent spurious tcp_cwnd_restart() on
6053 				 * first data packet.
6054 				 */
6055 				tp->lsndtime = tcp_time_stamp;
6056 
6057 				tcp_initialize_rcv_mss(sk);
6058 				tcp_fast_path_on(tp);
6059 			} else {
6060 				return 1;
6061 			}
6062 			break;
6063 
6064 		case TCP_FIN_WAIT1:
6065 			/* If we enter the TCP_FIN_WAIT1 state and we are a
6066 			 * Fast Open socket and this is the first acceptable
6067 			 * ACK we have received, this would have acknowledged
6068 			 * our SYNACK so stop the SYNACK timer.
6069 			 */
6070 			if (req != NULL) {
6071 				/* Return RST if ack_seq is invalid.
6072 				 * Note that RFC793 only says to generate a
6073 				 * DUPACK for it but for TCP Fast Open it seems
6074 				 * better to treat this case like TCP_SYN_RECV
6075 				 * above.
6076 				 */
6077 				if (!acceptable)
6078 					return 1;
6079 				/* We no longer need the request sock. */
6080 				reqsk_fastopen_remove(sk, req, false);
6081 				tcp_rearm_rto(sk);
6082 			}
6083 			if (tp->snd_una == tp->write_seq) {
6084 				struct dst_entry *dst;
6085 
6086 				tcp_set_state(sk, TCP_FIN_WAIT2);
6087 				sk->sk_shutdown |= SEND_SHUTDOWN;
6088 
6089 				dst = __sk_dst_get(sk);
6090 				if (dst)
6091 					dst_confirm(dst);
6092 
6093 				if (!sock_flag(sk, SOCK_DEAD))
6094 					/* Wake up lingering close() */
6095 					sk->sk_state_change(sk);
6096 				else {
6097 					int tmo;
6098 
6099 					if (tp->linger2 < 0 ||
6100 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6101 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6102 						tcp_done(sk);
6103 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6104 						return 1;
6105 					}
6106 
6107 					tmo = tcp_fin_time(sk);
6108 					if (tmo > TCP_TIMEWAIT_LEN) {
6109 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6110 					} else if (th->fin || sock_owned_by_user(sk)) {
6111 						/* Bad case. We could lose such FIN otherwise.
6112 						 * It is not a big problem, but it looks confusing
6113 						 * and not so rare event. We still can lose it now,
6114 						 * if it spins in bh_lock_sock(), but it is really
6115 						 * marginal case.
6116 						 */
6117 						inet_csk_reset_keepalive_timer(sk, tmo);
6118 					} else {
6119 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6120 						goto discard;
6121 					}
6122 				}
6123 			}
6124 			break;
6125 
6126 		case TCP_CLOSING:
6127 			if (tp->snd_una == tp->write_seq) {
6128 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6129 				goto discard;
6130 			}
6131 			break;
6132 
6133 		case TCP_LAST_ACK:
6134 			if (tp->snd_una == tp->write_seq) {
6135 				tcp_update_metrics(sk);
6136 				tcp_done(sk);
6137 				goto discard;
6138 			}
6139 			break;
6140 		}
6141 	}
6142 
6143 	/* step 6: check the URG bit */
6144 	tcp_urg(sk, skb, th);
6145 
6146 	/* step 7: process the segment text */
6147 	switch (sk->sk_state) {
6148 	case TCP_CLOSE_WAIT:
6149 	case TCP_CLOSING:
6150 	case TCP_LAST_ACK:
6151 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6152 			break;
6153 	case TCP_FIN_WAIT1:
6154 	case TCP_FIN_WAIT2:
6155 		/* RFC 793 says to queue data in these states,
6156 		 * RFC 1122 says we MUST send a reset.
6157 		 * BSD 4.4 also does reset.
6158 		 */
6159 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6160 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6161 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6162 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6163 				tcp_reset(sk);
6164 				return 1;
6165 			}
6166 		}
6167 		/* Fall through */
6168 	case TCP_ESTABLISHED:
6169 		tcp_data_queue(sk, skb);
6170 		queued = 1;
6171 		break;
6172 	}
6173 
6174 	/* tcp_data could move socket to TIME-WAIT */
6175 	if (sk->sk_state != TCP_CLOSE) {
6176 		tcp_data_snd_check(sk);
6177 		tcp_ack_snd_check(sk);
6178 	}
6179 
6180 	if (!queued) {
6181 discard:
6182 		__kfree_skb(skb);
6183 	}
6184 	return 0;
6185 }
6186 EXPORT_SYMBOL(tcp_rcv_state_process);
6187