1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 83 84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 90 #define FLAG_ECE 0x40 /* ECE in this ACK */ 91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 100 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 101 102 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 103 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 104 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 105 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 106 107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 109 110 #define REXMIT_NONE 0 /* no loss recovery to do */ 111 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 112 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 113 114 #if IS_ENABLED(CONFIG_TLS_DEVICE) 115 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled); 116 117 void clean_acked_data_enable(struct inet_connection_sock *icsk, 118 void (*cad)(struct sock *sk, u32 ack_seq)) 119 { 120 icsk->icsk_clean_acked = cad; 121 static_branch_inc(&clean_acked_data_enabled); 122 } 123 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 124 125 void clean_acked_data_disable(struct inet_connection_sock *icsk) 126 { 127 static_branch_dec(&clean_acked_data_enabled); 128 icsk->icsk_clean_acked = NULL; 129 } 130 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 131 #endif 132 133 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 134 unsigned int len) 135 { 136 static bool __once __read_mostly; 137 138 if (!__once) { 139 struct net_device *dev; 140 141 __once = true; 142 143 rcu_read_lock(); 144 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 145 if (!dev || len >= dev->mtu) 146 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 147 dev ? dev->name : "Unknown driver"); 148 rcu_read_unlock(); 149 } 150 } 151 152 /* Adapt the MSS value used to make delayed ack decision to the 153 * real world. 154 */ 155 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 156 { 157 struct inet_connection_sock *icsk = inet_csk(sk); 158 const unsigned int lss = icsk->icsk_ack.last_seg_size; 159 unsigned int len; 160 161 icsk->icsk_ack.last_seg_size = 0; 162 163 /* skb->len may jitter because of SACKs, even if peer 164 * sends good full-sized frames. 165 */ 166 len = skb_shinfo(skb)->gso_size ? : skb->len; 167 if (len >= icsk->icsk_ack.rcv_mss) { 168 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 169 tcp_sk(sk)->advmss); 170 /* Account for possibly-removed options */ 171 if (unlikely(len > icsk->icsk_ack.rcv_mss + 172 MAX_TCP_OPTION_SPACE)) 173 tcp_gro_dev_warn(sk, skb, len); 174 } else { 175 /* Otherwise, we make more careful check taking into account, 176 * that SACKs block is variable. 177 * 178 * "len" is invariant segment length, including TCP header. 179 */ 180 len += skb->data - skb_transport_header(skb); 181 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 182 /* If PSH is not set, packet should be 183 * full sized, provided peer TCP is not badly broken. 184 * This observation (if it is correct 8)) allows 185 * to handle super-low mtu links fairly. 186 */ 187 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 188 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 189 /* Subtract also invariant (if peer is RFC compliant), 190 * tcp header plus fixed timestamp option length. 191 * Resulting "len" is MSS free of SACK jitter. 192 */ 193 len -= tcp_sk(sk)->tcp_header_len; 194 icsk->icsk_ack.last_seg_size = len; 195 if (len == lss) { 196 icsk->icsk_ack.rcv_mss = len; 197 return; 198 } 199 } 200 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 201 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 203 } 204 } 205 206 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 207 { 208 struct inet_connection_sock *icsk = inet_csk(sk); 209 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 210 211 if (quickacks == 0) 212 quickacks = 2; 213 quickacks = min(quickacks, max_quickacks); 214 if (quickacks > icsk->icsk_ack.quick) 215 icsk->icsk_ack.quick = quickacks; 216 } 217 218 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 219 { 220 struct inet_connection_sock *icsk = inet_csk(sk); 221 222 tcp_incr_quickack(sk, max_quickacks); 223 icsk->icsk_ack.pingpong = 0; 224 icsk->icsk_ack.ato = TCP_ATO_MIN; 225 } 226 EXPORT_SYMBOL(tcp_enter_quickack_mode); 227 228 /* Send ACKs quickly, if "quick" count is not exhausted 229 * and the session is not interactive. 230 */ 231 232 static bool tcp_in_quickack_mode(struct sock *sk) 233 { 234 const struct inet_connection_sock *icsk = inet_csk(sk); 235 const struct dst_entry *dst = __sk_dst_get(sk); 236 237 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 238 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 239 } 240 241 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 242 { 243 if (tp->ecn_flags & TCP_ECN_OK) 244 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 245 } 246 247 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 248 { 249 if (tcp_hdr(skb)->cwr) { 250 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 251 252 /* If the sender is telling us it has entered CWR, then its 253 * cwnd may be very low (even just 1 packet), so we should ACK 254 * immediately. 255 */ 256 tcp_enter_quickack_mode((struct sock *)tp, 2); 257 } 258 } 259 260 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 261 { 262 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 263 } 264 265 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 266 { 267 struct tcp_sock *tp = tcp_sk(sk); 268 269 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 270 case INET_ECN_NOT_ECT: 271 /* Funny extension: if ECT is not set on a segment, 272 * and we already seen ECT on a previous segment, 273 * it is probably a retransmit. 274 */ 275 if (tp->ecn_flags & TCP_ECN_SEEN) 276 tcp_enter_quickack_mode(sk, 2); 277 break; 278 case INET_ECN_CE: 279 if (tcp_ca_needs_ecn(sk)) 280 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 281 282 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 283 /* Better not delay acks, sender can have a very low cwnd */ 284 tcp_enter_quickack_mode(sk, 2); 285 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 286 } 287 tp->ecn_flags |= TCP_ECN_SEEN; 288 break; 289 default: 290 if (tcp_ca_needs_ecn(sk)) 291 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 292 tp->ecn_flags |= TCP_ECN_SEEN; 293 break; 294 } 295 } 296 297 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 298 { 299 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 300 __tcp_ecn_check_ce(sk, skb); 301 } 302 303 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 304 { 305 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 306 tp->ecn_flags &= ~TCP_ECN_OK; 307 } 308 309 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 310 { 311 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 312 tp->ecn_flags &= ~TCP_ECN_OK; 313 } 314 315 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 316 { 317 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 318 return true; 319 return false; 320 } 321 322 /* Buffer size and advertised window tuning. 323 * 324 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 325 */ 326 327 static void tcp_sndbuf_expand(struct sock *sk) 328 { 329 const struct tcp_sock *tp = tcp_sk(sk); 330 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 331 int sndmem, per_mss; 332 u32 nr_segs; 333 334 /* Worst case is non GSO/TSO : each frame consumes one skb 335 * and skb->head is kmalloced using power of two area of memory 336 */ 337 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 338 MAX_TCP_HEADER + 339 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 340 341 per_mss = roundup_pow_of_two(per_mss) + 342 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 343 344 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 345 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 346 347 /* Fast Recovery (RFC 5681 3.2) : 348 * Cubic needs 1.7 factor, rounded to 2 to include 349 * extra cushion (application might react slowly to EPOLLOUT) 350 */ 351 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 352 sndmem *= nr_segs * per_mss; 353 354 if (sk->sk_sndbuf < sndmem) 355 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 356 } 357 358 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 359 * 360 * All tcp_full_space() is split to two parts: "network" buffer, allocated 361 * forward and advertised in receiver window (tp->rcv_wnd) and 362 * "application buffer", required to isolate scheduling/application 363 * latencies from network. 364 * window_clamp is maximal advertised window. It can be less than 365 * tcp_full_space(), in this case tcp_full_space() - window_clamp 366 * is reserved for "application" buffer. The less window_clamp is 367 * the smoother our behaviour from viewpoint of network, but the lower 368 * throughput and the higher sensitivity of the connection to losses. 8) 369 * 370 * rcv_ssthresh is more strict window_clamp used at "slow start" 371 * phase to predict further behaviour of this connection. 372 * It is used for two goals: 373 * - to enforce header prediction at sender, even when application 374 * requires some significant "application buffer". It is check #1. 375 * - to prevent pruning of receive queue because of misprediction 376 * of receiver window. Check #2. 377 * 378 * The scheme does not work when sender sends good segments opening 379 * window and then starts to feed us spaghetti. But it should work 380 * in common situations. Otherwise, we have to rely on queue collapsing. 381 */ 382 383 /* Slow part of check#2. */ 384 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 385 { 386 struct tcp_sock *tp = tcp_sk(sk); 387 /* Optimize this! */ 388 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 389 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 390 391 while (tp->rcv_ssthresh <= window) { 392 if (truesize <= skb->len) 393 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 394 395 truesize >>= 1; 396 window >>= 1; 397 } 398 return 0; 399 } 400 401 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 402 { 403 struct tcp_sock *tp = tcp_sk(sk); 404 405 /* Check #1 */ 406 if (tp->rcv_ssthresh < tp->window_clamp && 407 (int)tp->rcv_ssthresh < tcp_space(sk) && 408 !tcp_under_memory_pressure(sk)) { 409 int incr; 410 411 /* Check #2. Increase window, if skb with such overhead 412 * will fit to rcvbuf in future. 413 */ 414 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 415 incr = 2 * tp->advmss; 416 else 417 incr = __tcp_grow_window(sk, skb); 418 419 if (incr) { 420 incr = max_t(int, incr, 2 * skb->len); 421 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 422 tp->window_clamp); 423 inet_csk(sk)->icsk_ack.quick |= 1; 424 } 425 } 426 } 427 428 /* 3. Tuning rcvbuf, when connection enters established state. */ 429 static void tcp_fixup_rcvbuf(struct sock *sk) 430 { 431 u32 mss = tcp_sk(sk)->advmss; 432 int rcvmem; 433 434 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 435 tcp_default_init_rwnd(mss); 436 437 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 438 * Allow enough cushion so that sender is not limited by our window 439 */ 440 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 441 rcvmem <<= 2; 442 443 if (sk->sk_rcvbuf < rcvmem) 444 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 445 } 446 447 /* 4. Try to fixup all. It is made immediately after connection enters 448 * established state. 449 */ 450 void tcp_init_buffer_space(struct sock *sk) 451 { 452 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 453 struct tcp_sock *tp = tcp_sk(sk); 454 int maxwin; 455 456 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 457 tcp_fixup_rcvbuf(sk); 458 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 459 tcp_sndbuf_expand(sk); 460 461 tp->rcvq_space.space = tp->rcv_wnd; 462 tcp_mstamp_refresh(tp); 463 tp->rcvq_space.time = tp->tcp_mstamp; 464 tp->rcvq_space.seq = tp->copied_seq; 465 466 maxwin = tcp_full_space(sk); 467 468 if (tp->window_clamp >= maxwin) { 469 tp->window_clamp = maxwin; 470 471 if (tcp_app_win && maxwin > 4 * tp->advmss) 472 tp->window_clamp = max(maxwin - 473 (maxwin >> tcp_app_win), 474 4 * tp->advmss); 475 } 476 477 /* Force reservation of one segment. */ 478 if (tcp_app_win && 479 tp->window_clamp > 2 * tp->advmss && 480 tp->window_clamp + tp->advmss > maxwin) 481 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 482 483 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 484 tp->snd_cwnd_stamp = tcp_jiffies32; 485 } 486 487 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 488 static void tcp_clamp_window(struct sock *sk) 489 { 490 struct tcp_sock *tp = tcp_sk(sk); 491 struct inet_connection_sock *icsk = inet_csk(sk); 492 struct net *net = sock_net(sk); 493 494 icsk->icsk_ack.quick = 0; 495 496 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 497 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 498 !tcp_under_memory_pressure(sk) && 499 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 500 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 501 net->ipv4.sysctl_tcp_rmem[2]); 502 } 503 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 504 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 505 } 506 507 /* Initialize RCV_MSS value. 508 * RCV_MSS is an our guess about MSS used by the peer. 509 * We haven't any direct information about the MSS. 510 * It's better to underestimate the RCV_MSS rather than overestimate. 511 * Overestimations make us ACKing less frequently than needed. 512 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 513 */ 514 void tcp_initialize_rcv_mss(struct sock *sk) 515 { 516 const struct tcp_sock *tp = tcp_sk(sk); 517 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 518 519 hint = min(hint, tp->rcv_wnd / 2); 520 hint = min(hint, TCP_MSS_DEFAULT); 521 hint = max(hint, TCP_MIN_MSS); 522 523 inet_csk(sk)->icsk_ack.rcv_mss = hint; 524 } 525 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 526 527 /* Receiver "autotuning" code. 528 * 529 * The algorithm for RTT estimation w/o timestamps is based on 530 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 531 * <http://public.lanl.gov/radiant/pubs.html#DRS> 532 * 533 * More detail on this code can be found at 534 * <http://staff.psc.edu/jheffner/>, 535 * though this reference is out of date. A new paper 536 * is pending. 537 */ 538 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 539 { 540 u32 new_sample = tp->rcv_rtt_est.rtt_us; 541 long m = sample; 542 543 if (new_sample != 0) { 544 /* If we sample in larger samples in the non-timestamp 545 * case, we could grossly overestimate the RTT especially 546 * with chatty applications or bulk transfer apps which 547 * are stalled on filesystem I/O. 548 * 549 * Also, since we are only going for a minimum in the 550 * non-timestamp case, we do not smooth things out 551 * else with timestamps disabled convergence takes too 552 * long. 553 */ 554 if (!win_dep) { 555 m -= (new_sample >> 3); 556 new_sample += m; 557 } else { 558 m <<= 3; 559 if (m < new_sample) 560 new_sample = m; 561 } 562 } else { 563 /* No previous measure. */ 564 new_sample = m << 3; 565 } 566 567 tp->rcv_rtt_est.rtt_us = new_sample; 568 } 569 570 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 571 { 572 u32 delta_us; 573 574 if (tp->rcv_rtt_est.time == 0) 575 goto new_measure; 576 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 577 return; 578 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 579 if (!delta_us) 580 delta_us = 1; 581 tcp_rcv_rtt_update(tp, delta_us, 1); 582 583 new_measure: 584 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 585 tp->rcv_rtt_est.time = tp->tcp_mstamp; 586 } 587 588 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 589 const struct sk_buff *skb) 590 { 591 struct tcp_sock *tp = tcp_sk(sk); 592 593 if (tp->rx_opt.rcv_tsecr && 594 (TCP_SKB_CB(skb)->end_seq - 595 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 596 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 597 u32 delta_us; 598 599 if (!delta) 600 delta = 1; 601 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 602 tcp_rcv_rtt_update(tp, delta_us, 0); 603 } 604 } 605 606 /* 607 * This function should be called every time data is copied to user space. 608 * It calculates the appropriate TCP receive buffer space. 609 */ 610 void tcp_rcv_space_adjust(struct sock *sk) 611 { 612 struct tcp_sock *tp = tcp_sk(sk); 613 u32 copied; 614 int time; 615 616 trace_tcp_rcv_space_adjust(sk); 617 618 tcp_mstamp_refresh(tp); 619 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 620 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 621 return; 622 623 /* Number of bytes copied to user in last RTT */ 624 copied = tp->copied_seq - tp->rcvq_space.seq; 625 if (copied <= tp->rcvq_space.space) 626 goto new_measure; 627 628 /* A bit of theory : 629 * copied = bytes received in previous RTT, our base window 630 * To cope with packet losses, we need a 2x factor 631 * To cope with slow start, and sender growing its cwin by 100 % 632 * every RTT, we need a 4x factor, because the ACK we are sending 633 * now is for the next RTT, not the current one : 634 * <prev RTT . ><current RTT .. ><next RTT .... > 635 */ 636 637 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 638 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 639 int rcvmem, rcvbuf; 640 u64 rcvwin, grow; 641 642 /* minimal window to cope with packet losses, assuming 643 * steady state. Add some cushion because of small variations. 644 */ 645 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 646 647 /* Accommodate for sender rate increase (eg. slow start) */ 648 grow = rcvwin * (copied - tp->rcvq_space.space); 649 do_div(grow, tp->rcvq_space.space); 650 rcvwin += (grow << 1); 651 652 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 653 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 654 rcvmem += 128; 655 656 do_div(rcvwin, tp->advmss); 657 rcvbuf = min_t(u64, rcvwin * rcvmem, 658 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 659 if (rcvbuf > sk->sk_rcvbuf) { 660 sk->sk_rcvbuf = rcvbuf; 661 662 /* Make the window clamp follow along. */ 663 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 664 } 665 } 666 tp->rcvq_space.space = copied; 667 668 new_measure: 669 tp->rcvq_space.seq = tp->copied_seq; 670 tp->rcvq_space.time = tp->tcp_mstamp; 671 } 672 673 /* There is something which you must keep in mind when you analyze the 674 * behavior of the tp->ato delayed ack timeout interval. When a 675 * connection starts up, we want to ack as quickly as possible. The 676 * problem is that "good" TCP's do slow start at the beginning of data 677 * transmission. The means that until we send the first few ACK's the 678 * sender will sit on his end and only queue most of his data, because 679 * he can only send snd_cwnd unacked packets at any given time. For 680 * each ACK we send, he increments snd_cwnd and transmits more of his 681 * queue. -DaveM 682 */ 683 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 684 { 685 struct tcp_sock *tp = tcp_sk(sk); 686 struct inet_connection_sock *icsk = inet_csk(sk); 687 u32 now; 688 689 inet_csk_schedule_ack(sk); 690 691 tcp_measure_rcv_mss(sk, skb); 692 693 tcp_rcv_rtt_measure(tp); 694 695 now = tcp_jiffies32; 696 697 if (!icsk->icsk_ack.ato) { 698 /* The _first_ data packet received, initialize 699 * delayed ACK engine. 700 */ 701 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 702 icsk->icsk_ack.ato = TCP_ATO_MIN; 703 } else { 704 int m = now - icsk->icsk_ack.lrcvtime; 705 706 if (m <= TCP_ATO_MIN / 2) { 707 /* The fastest case is the first. */ 708 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 709 } else if (m < icsk->icsk_ack.ato) { 710 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 711 if (icsk->icsk_ack.ato > icsk->icsk_rto) 712 icsk->icsk_ack.ato = icsk->icsk_rto; 713 } else if (m > icsk->icsk_rto) { 714 /* Too long gap. Apparently sender failed to 715 * restart window, so that we send ACKs quickly. 716 */ 717 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 718 sk_mem_reclaim(sk); 719 } 720 } 721 icsk->icsk_ack.lrcvtime = now; 722 723 tcp_ecn_check_ce(sk, skb); 724 725 if (skb->len >= 128) 726 tcp_grow_window(sk, skb); 727 } 728 729 /* Called to compute a smoothed rtt estimate. The data fed to this 730 * routine either comes from timestamps, or from segments that were 731 * known _not_ to have been retransmitted [see Karn/Partridge 732 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 733 * piece by Van Jacobson. 734 * NOTE: the next three routines used to be one big routine. 735 * To save cycles in the RFC 1323 implementation it was better to break 736 * it up into three procedures. -- erics 737 */ 738 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 739 { 740 struct tcp_sock *tp = tcp_sk(sk); 741 long m = mrtt_us; /* RTT */ 742 u32 srtt = tp->srtt_us; 743 744 /* The following amusing code comes from Jacobson's 745 * article in SIGCOMM '88. Note that rtt and mdev 746 * are scaled versions of rtt and mean deviation. 747 * This is designed to be as fast as possible 748 * m stands for "measurement". 749 * 750 * On a 1990 paper the rto value is changed to: 751 * RTO = rtt + 4 * mdev 752 * 753 * Funny. This algorithm seems to be very broken. 754 * These formulae increase RTO, when it should be decreased, increase 755 * too slowly, when it should be increased quickly, decrease too quickly 756 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 757 * does not matter how to _calculate_ it. Seems, it was trap 758 * that VJ failed to avoid. 8) 759 */ 760 if (srtt != 0) { 761 m -= (srtt >> 3); /* m is now error in rtt est */ 762 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 763 if (m < 0) { 764 m = -m; /* m is now abs(error) */ 765 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 766 /* This is similar to one of Eifel findings. 767 * Eifel blocks mdev updates when rtt decreases. 768 * This solution is a bit different: we use finer gain 769 * for mdev in this case (alpha*beta). 770 * Like Eifel it also prevents growth of rto, 771 * but also it limits too fast rto decreases, 772 * happening in pure Eifel. 773 */ 774 if (m > 0) 775 m >>= 3; 776 } else { 777 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 778 } 779 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 780 if (tp->mdev_us > tp->mdev_max_us) { 781 tp->mdev_max_us = tp->mdev_us; 782 if (tp->mdev_max_us > tp->rttvar_us) 783 tp->rttvar_us = tp->mdev_max_us; 784 } 785 if (after(tp->snd_una, tp->rtt_seq)) { 786 if (tp->mdev_max_us < tp->rttvar_us) 787 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 788 tp->rtt_seq = tp->snd_nxt; 789 tp->mdev_max_us = tcp_rto_min_us(sk); 790 } 791 } else { 792 /* no previous measure. */ 793 srtt = m << 3; /* take the measured time to be rtt */ 794 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 795 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 796 tp->mdev_max_us = tp->rttvar_us; 797 tp->rtt_seq = tp->snd_nxt; 798 } 799 tp->srtt_us = max(1U, srtt); 800 } 801 802 static void tcp_update_pacing_rate(struct sock *sk) 803 { 804 const struct tcp_sock *tp = tcp_sk(sk); 805 u64 rate; 806 807 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 808 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 809 810 /* current rate is (cwnd * mss) / srtt 811 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 812 * In Congestion Avoidance phase, set it to 120 % the current rate. 813 * 814 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 815 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 816 * end of slow start and should slow down. 817 */ 818 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 819 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 820 else 821 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 822 823 rate *= max(tp->snd_cwnd, tp->packets_out); 824 825 if (likely(tp->srtt_us)) 826 do_div(rate, tp->srtt_us); 827 828 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 829 * without any lock. We want to make sure compiler wont store 830 * intermediate values in this location. 831 */ 832 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 833 sk->sk_max_pacing_rate)); 834 } 835 836 /* Calculate rto without backoff. This is the second half of Van Jacobson's 837 * routine referred to above. 838 */ 839 static void tcp_set_rto(struct sock *sk) 840 { 841 const struct tcp_sock *tp = tcp_sk(sk); 842 /* Old crap is replaced with new one. 8) 843 * 844 * More seriously: 845 * 1. If rtt variance happened to be less 50msec, it is hallucination. 846 * It cannot be less due to utterly erratic ACK generation made 847 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 848 * to do with delayed acks, because at cwnd>2 true delack timeout 849 * is invisible. Actually, Linux-2.4 also generates erratic 850 * ACKs in some circumstances. 851 */ 852 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 853 854 /* 2. Fixups made earlier cannot be right. 855 * If we do not estimate RTO correctly without them, 856 * all the algo is pure shit and should be replaced 857 * with correct one. It is exactly, which we pretend to do. 858 */ 859 860 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 861 * guarantees that rto is higher. 862 */ 863 tcp_bound_rto(sk); 864 } 865 866 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 867 { 868 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 869 870 if (!cwnd) 871 cwnd = TCP_INIT_CWND; 872 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 873 } 874 875 /* Take a notice that peer is sending D-SACKs */ 876 static void tcp_dsack_seen(struct tcp_sock *tp) 877 { 878 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 879 tp->rack.dsack_seen = 1; 880 } 881 882 /* It's reordering when higher sequence was delivered (i.e. sacked) before 883 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 884 * distance is approximated in full-mss packet distance ("reordering"). 885 */ 886 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 887 const int ts) 888 { 889 struct tcp_sock *tp = tcp_sk(sk); 890 const u32 mss = tp->mss_cache; 891 u32 fack, metric; 892 893 fack = tcp_highest_sack_seq(tp); 894 if (!before(low_seq, fack)) 895 return; 896 897 metric = fack - low_seq; 898 if ((metric > tp->reordering * mss) && mss) { 899 #if FASTRETRANS_DEBUG > 1 900 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 901 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 902 tp->reordering, 903 0, 904 tp->sacked_out, 905 tp->undo_marker ? tp->undo_retrans : 0); 906 #endif 907 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 908 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 909 } 910 911 tp->rack.reord = 1; 912 /* This exciting event is worth to be remembered. 8) */ 913 NET_INC_STATS(sock_net(sk), 914 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 915 } 916 917 /* This must be called before lost_out is incremented */ 918 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 919 { 920 if (!tp->retransmit_skb_hint || 921 before(TCP_SKB_CB(skb)->seq, 922 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 923 tp->retransmit_skb_hint = skb; 924 } 925 926 /* Sum the number of packets on the wire we have marked as lost. 927 * There are two cases we care about here: 928 * a) Packet hasn't been marked lost (nor retransmitted), 929 * and this is the first loss. 930 * b) Packet has been marked both lost and retransmitted, 931 * and this means we think it was lost again. 932 */ 933 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 934 { 935 __u8 sacked = TCP_SKB_CB(skb)->sacked; 936 937 if (!(sacked & TCPCB_LOST) || 938 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 939 tp->lost += tcp_skb_pcount(skb); 940 } 941 942 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 943 { 944 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 945 tcp_verify_retransmit_hint(tp, skb); 946 947 tp->lost_out += tcp_skb_pcount(skb); 948 tcp_sum_lost(tp, skb); 949 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 950 } 951 } 952 953 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 954 { 955 tcp_verify_retransmit_hint(tp, skb); 956 957 tcp_sum_lost(tp, skb); 958 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 959 tp->lost_out += tcp_skb_pcount(skb); 960 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 961 } 962 } 963 964 /* This procedure tags the retransmission queue when SACKs arrive. 965 * 966 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 967 * Packets in queue with these bits set are counted in variables 968 * sacked_out, retrans_out and lost_out, correspondingly. 969 * 970 * Valid combinations are: 971 * Tag InFlight Description 972 * 0 1 - orig segment is in flight. 973 * S 0 - nothing flies, orig reached receiver. 974 * L 0 - nothing flies, orig lost by net. 975 * R 2 - both orig and retransmit are in flight. 976 * L|R 1 - orig is lost, retransmit is in flight. 977 * S|R 1 - orig reached receiver, retrans is still in flight. 978 * (L|S|R is logically valid, it could occur when L|R is sacked, 979 * but it is equivalent to plain S and code short-curcuits it to S. 980 * L|S is logically invalid, it would mean -1 packet in flight 8)) 981 * 982 * These 6 states form finite state machine, controlled by the following events: 983 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 984 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 985 * 3. Loss detection event of two flavors: 986 * A. Scoreboard estimator decided the packet is lost. 987 * A'. Reno "three dupacks" marks head of queue lost. 988 * B. SACK arrives sacking SND.NXT at the moment, when the 989 * segment was retransmitted. 990 * 4. D-SACK added new rule: D-SACK changes any tag to S. 991 * 992 * It is pleasant to note, that state diagram turns out to be commutative, 993 * so that we are allowed not to be bothered by order of our actions, 994 * when multiple events arrive simultaneously. (see the function below). 995 * 996 * Reordering detection. 997 * -------------------- 998 * Reordering metric is maximal distance, which a packet can be displaced 999 * in packet stream. With SACKs we can estimate it: 1000 * 1001 * 1. SACK fills old hole and the corresponding segment was not 1002 * ever retransmitted -> reordering. Alas, we cannot use it 1003 * when segment was retransmitted. 1004 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1005 * for retransmitted and already SACKed segment -> reordering.. 1006 * Both of these heuristics are not used in Loss state, when we cannot 1007 * account for retransmits accurately. 1008 * 1009 * SACK block validation. 1010 * ---------------------- 1011 * 1012 * SACK block range validation checks that the received SACK block fits to 1013 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1014 * Note that SND.UNA is not included to the range though being valid because 1015 * it means that the receiver is rather inconsistent with itself reporting 1016 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1017 * perfectly valid, however, in light of RFC2018 which explicitly states 1018 * that "SACK block MUST reflect the newest segment. Even if the newest 1019 * segment is going to be discarded ...", not that it looks very clever 1020 * in case of head skb. Due to potentional receiver driven attacks, we 1021 * choose to avoid immediate execution of a walk in write queue due to 1022 * reneging and defer head skb's loss recovery to standard loss recovery 1023 * procedure that will eventually trigger (nothing forbids us doing this). 1024 * 1025 * Implements also blockage to start_seq wrap-around. Problem lies in the 1026 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1027 * there's no guarantee that it will be before snd_nxt (n). The problem 1028 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1029 * wrap (s_w): 1030 * 1031 * <- outs wnd -> <- wrapzone -> 1032 * u e n u_w e_w s n_w 1033 * | | | | | | | 1034 * |<------------+------+----- TCP seqno space --------------+---------->| 1035 * ...-- <2^31 ->| |<--------... 1036 * ...---- >2^31 ------>| |<--------... 1037 * 1038 * Current code wouldn't be vulnerable but it's better still to discard such 1039 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1040 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1041 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1042 * equal to the ideal case (infinite seqno space without wrap caused issues). 1043 * 1044 * With D-SACK the lower bound is extended to cover sequence space below 1045 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1046 * again, D-SACK block must not to go across snd_una (for the same reason as 1047 * for the normal SACK blocks, explained above). But there all simplicity 1048 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1049 * fully below undo_marker they do not affect behavior in anyway and can 1050 * therefore be safely ignored. In rare cases (which are more or less 1051 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1052 * fragmentation and packet reordering past skb's retransmission. To consider 1053 * them correctly, the acceptable range must be extended even more though 1054 * the exact amount is rather hard to quantify. However, tp->max_window can 1055 * be used as an exaggerated estimate. 1056 */ 1057 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1058 u32 start_seq, u32 end_seq) 1059 { 1060 /* Too far in future, or reversed (interpretation is ambiguous) */ 1061 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1062 return false; 1063 1064 /* Nasty start_seq wrap-around check (see comments above) */ 1065 if (!before(start_seq, tp->snd_nxt)) 1066 return false; 1067 1068 /* In outstanding window? ...This is valid exit for D-SACKs too. 1069 * start_seq == snd_una is non-sensical (see comments above) 1070 */ 1071 if (after(start_seq, tp->snd_una)) 1072 return true; 1073 1074 if (!is_dsack || !tp->undo_marker) 1075 return false; 1076 1077 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1078 if (after(end_seq, tp->snd_una)) 1079 return false; 1080 1081 if (!before(start_seq, tp->undo_marker)) 1082 return true; 1083 1084 /* Too old */ 1085 if (!after(end_seq, tp->undo_marker)) 1086 return false; 1087 1088 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1089 * start_seq < undo_marker and end_seq >= undo_marker. 1090 */ 1091 return !before(start_seq, end_seq - tp->max_window); 1092 } 1093 1094 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1095 struct tcp_sack_block_wire *sp, int num_sacks, 1096 u32 prior_snd_una) 1097 { 1098 struct tcp_sock *tp = tcp_sk(sk); 1099 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1100 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1101 bool dup_sack = false; 1102 1103 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1104 dup_sack = true; 1105 tcp_dsack_seen(tp); 1106 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1107 } else if (num_sacks > 1) { 1108 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1109 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1110 1111 if (!after(end_seq_0, end_seq_1) && 1112 !before(start_seq_0, start_seq_1)) { 1113 dup_sack = true; 1114 tcp_dsack_seen(tp); 1115 NET_INC_STATS(sock_net(sk), 1116 LINUX_MIB_TCPDSACKOFORECV); 1117 } 1118 } 1119 1120 /* D-SACK for already forgotten data... Do dumb counting. */ 1121 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1122 !after(end_seq_0, prior_snd_una) && 1123 after(end_seq_0, tp->undo_marker)) 1124 tp->undo_retrans--; 1125 1126 return dup_sack; 1127 } 1128 1129 struct tcp_sacktag_state { 1130 u32 reord; 1131 /* Timestamps for earliest and latest never-retransmitted segment 1132 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1133 * but congestion control should still get an accurate delay signal. 1134 */ 1135 u64 first_sackt; 1136 u64 last_sackt; 1137 struct rate_sample *rate; 1138 int flag; 1139 unsigned int mss_now; 1140 }; 1141 1142 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1143 * the incoming SACK may not exactly match but we can find smaller MSS 1144 * aligned portion of it that matches. Therefore we might need to fragment 1145 * which may fail and creates some hassle (caller must handle error case 1146 * returns). 1147 * 1148 * FIXME: this could be merged to shift decision code 1149 */ 1150 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1151 u32 start_seq, u32 end_seq) 1152 { 1153 int err; 1154 bool in_sack; 1155 unsigned int pkt_len; 1156 unsigned int mss; 1157 1158 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1159 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1160 1161 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1162 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1163 mss = tcp_skb_mss(skb); 1164 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1165 1166 if (!in_sack) { 1167 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1168 if (pkt_len < mss) 1169 pkt_len = mss; 1170 } else { 1171 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1172 if (pkt_len < mss) 1173 return -EINVAL; 1174 } 1175 1176 /* Round if necessary so that SACKs cover only full MSSes 1177 * and/or the remaining small portion (if present) 1178 */ 1179 if (pkt_len > mss) { 1180 unsigned int new_len = (pkt_len / mss) * mss; 1181 if (!in_sack && new_len < pkt_len) 1182 new_len += mss; 1183 pkt_len = new_len; 1184 } 1185 1186 if (pkt_len >= skb->len && !in_sack) 1187 return 0; 1188 1189 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1190 pkt_len, mss, GFP_ATOMIC); 1191 if (err < 0) 1192 return err; 1193 } 1194 1195 return in_sack; 1196 } 1197 1198 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1199 static u8 tcp_sacktag_one(struct sock *sk, 1200 struct tcp_sacktag_state *state, u8 sacked, 1201 u32 start_seq, u32 end_seq, 1202 int dup_sack, int pcount, 1203 u64 xmit_time) 1204 { 1205 struct tcp_sock *tp = tcp_sk(sk); 1206 1207 /* Account D-SACK for retransmitted packet. */ 1208 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1209 if (tp->undo_marker && tp->undo_retrans > 0 && 1210 after(end_seq, tp->undo_marker)) 1211 tp->undo_retrans--; 1212 if ((sacked & TCPCB_SACKED_ACKED) && 1213 before(start_seq, state->reord)) 1214 state->reord = start_seq; 1215 } 1216 1217 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1218 if (!after(end_seq, tp->snd_una)) 1219 return sacked; 1220 1221 if (!(sacked & TCPCB_SACKED_ACKED)) { 1222 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1223 1224 if (sacked & TCPCB_SACKED_RETRANS) { 1225 /* If the segment is not tagged as lost, 1226 * we do not clear RETRANS, believing 1227 * that retransmission is still in flight. 1228 */ 1229 if (sacked & TCPCB_LOST) { 1230 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1231 tp->lost_out -= pcount; 1232 tp->retrans_out -= pcount; 1233 } 1234 } else { 1235 if (!(sacked & TCPCB_RETRANS)) { 1236 /* New sack for not retransmitted frame, 1237 * which was in hole. It is reordering. 1238 */ 1239 if (before(start_seq, 1240 tcp_highest_sack_seq(tp)) && 1241 before(start_seq, state->reord)) 1242 state->reord = start_seq; 1243 1244 if (!after(end_seq, tp->high_seq)) 1245 state->flag |= FLAG_ORIG_SACK_ACKED; 1246 if (state->first_sackt == 0) 1247 state->first_sackt = xmit_time; 1248 state->last_sackt = xmit_time; 1249 } 1250 1251 if (sacked & TCPCB_LOST) { 1252 sacked &= ~TCPCB_LOST; 1253 tp->lost_out -= pcount; 1254 } 1255 } 1256 1257 sacked |= TCPCB_SACKED_ACKED; 1258 state->flag |= FLAG_DATA_SACKED; 1259 tp->sacked_out += pcount; 1260 tp->delivered += pcount; /* Out-of-order packets delivered */ 1261 1262 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1263 if (tp->lost_skb_hint && 1264 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1265 tp->lost_cnt_hint += pcount; 1266 } 1267 1268 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1269 * frames and clear it. undo_retrans is decreased above, L|R frames 1270 * are accounted above as well. 1271 */ 1272 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1273 sacked &= ~TCPCB_SACKED_RETRANS; 1274 tp->retrans_out -= pcount; 1275 } 1276 1277 return sacked; 1278 } 1279 1280 /* Shift newly-SACKed bytes from this skb to the immediately previous 1281 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1282 */ 1283 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1284 struct sk_buff *skb, 1285 struct tcp_sacktag_state *state, 1286 unsigned int pcount, int shifted, int mss, 1287 bool dup_sack) 1288 { 1289 struct tcp_sock *tp = tcp_sk(sk); 1290 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1291 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1292 1293 BUG_ON(!pcount); 1294 1295 /* Adjust counters and hints for the newly sacked sequence 1296 * range but discard the return value since prev is already 1297 * marked. We must tag the range first because the seq 1298 * advancement below implicitly advances 1299 * tcp_highest_sack_seq() when skb is highest_sack. 1300 */ 1301 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1302 start_seq, end_seq, dup_sack, pcount, 1303 skb->skb_mstamp); 1304 tcp_rate_skb_delivered(sk, skb, state->rate); 1305 1306 if (skb == tp->lost_skb_hint) 1307 tp->lost_cnt_hint += pcount; 1308 1309 TCP_SKB_CB(prev)->end_seq += shifted; 1310 TCP_SKB_CB(skb)->seq += shifted; 1311 1312 tcp_skb_pcount_add(prev, pcount); 1313 BUG_ON(tcp_skb_pcount(skb) < pcount); 1314 tcp_skb_pcount_add(skb, -pcount); 1315 1316 /* When we're adding to gso_segs == 1, gso_size will be zero, 1317 * in theory this shouldn't be necessary but as long as DSACK 1318 * code can come after this skb later on it's better to keep 1319 * setting gso_size to something. 1320 */ 1321 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1322 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1323 1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1325 if (tcp_skb_pcount(skb) <= 1) 1326 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1327 1328 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1329 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1330 1331 if (skb->len > 0) { 1332 BUG_ON(!tcp_skb_pcount(skb)); 1333 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1334 return false; 1335 } 1336 1337 /* Whole SKB was eaten :-) */ 1338 1339 if (skb == tp->retransmit_skb_hint) 1340 tp->retransmit_skb_hint = prev; 1341 if (skb == tp->lost_skb_hint) { 1342 tp->lost_skb_hint = prev; 1343 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1344 } 1345 1346 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1347 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1348 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1349 TCP_SKB_CB(prev)->end_seq++; 1350 1351 if (skb == tcp_highest_sack(sk)) 1352 tcp_advance_highest_sack(sk, skb); 1353 1354 tcp_skb_collapse_tstamp(prev, skb); 1355 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1356 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1357 1358 tcp_rtx_queue_unlink_and_free(skb, sk); 1359 1360 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1361 1362 return true; 1363 } 1364 1365 /* I wish gso_size would have a bit more sane initialization than 1366 * something-or-zero which complicates things 1367 */ 1368 static int tcp_skb_seglen(const struct sk_buff *skb) 1369 { 1370 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1371 } 1372 1373 /* Shifting pages past head area doesn't work */ 1374 static int skb_can_shift(const struct sk_buff *skb) 1375 { 1376 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1377 } 1378 1379 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1380 * skb. 1381 */ 1382 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1383 struct tcp_sacktag_state *state, 1384 u32 start_seq, u32 end_seq, 1385 bool dup_sack) 1386 { 1387 struct tcp_sock *tp = tcp_sk(sk); 1388 struct sk_buff *prev; 1389 int mss; 1390 int pcount = 0; 1391 int len; 1392 int in_sack; 1393 1394 /* Normally R but no L won't result in plain S */ 1395 if (!dup_sack && 1396 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1397 goto fallback; 1398 if (!skb_can_shift(skb)) 1399 goto fallback; 1400 /* This frame is about to be dropped (was ACKed). */ 1401 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1402 goto fallback; 1403 1404 /* Can only happen with delayed DSACK + discard craziness */ 1405 prev = skb_rb_prev(skb); 1406 if (!prev) 1407 goto fallback; 1408 1409 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1410 goto fallback; 1411 1412 if (!tcp_skb_can_collapse_to(prev)) 1413 goto fallback; 1414 1415 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1416 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1417 1418 if (in_sack) { 1419 len = skb->len; 1420 pcount = tcp_skb_pcount(skb); 1421 mss = tcp_skb_seglen(skb); 1422 1423 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1424 * drop this restriction as unnecessary 1425 */ 1426 if (mss != tcp_skb_seglen(prev)) 1427 goto fallback; 1428 } else { 1429 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1430 goto noop; 1431 /* CHECKME: This is non-MSS split case only?, this will 1432 * cause skipped skbs due to advancing loop btw, original 1433 * has that feature too 1434 */ 1435 if (tcp_skb_pcount(skb) <= 1) 1436 goto noop; 1437 1438 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1439 if (!in_sack) { 1440 /* TODO: head merge to next could be attempted here 1441 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1442 * though it might not be worth of the additional hassle 1443 * 1444 * ...we can probably just fallback to what was done 1445 * previously. We could try merging non-SACKed ones 1446 * as well but it probably isn't going to buy off 1447 * because later SACKs might again split them, and 1448 * it would make skb timestamp tracking considerably 1449 * harder problem. 1450 */ 1451 goto fallback; 1452 } 1453 1454 len = end_seq - TCP_SKB_CB(skb)->seq; 1455 BUG_ON(len < 0); 1456 BUG_ON(len > skb->len); 1457 1458 /* MSS boundaries should be honoured or else pcount will 1459 * severely break even though it makes things bit trickier. 1460 * Optimize common case to avoid most of the divides 1461 */ 1462 mss = tcp_skb_mss(skb); 1463 1464 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1465 * drop this restriction as unnecessary 1466 */ 1467 if (mss != tcp_skb_seglen(prev)) 1468 goto fallback; 1469 1470 if (len == mss) { 1471 pcount = 1; 1472 } else if (len < mss) { 1473 goto noop; 1474 } else { 1475 pcount = len / mss; 1476 len = pcount * mss; 1477 } 1478 } 1479 1480 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1481 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1482 goto fallback; 1483 1484 if (!skb_shift(prev, skb, len)) 1485 goto fallback; 1486 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1487 goto out; 1488 1489 /* Hole filled allows collapsing with the next as well, this is very 1490 * useful when hole on every nth skb pattern happens 1491 */ 1492 skb = skb_rb_next(prev); 1493 if (!skb) 1494 goto out; 1495 1496 if (!skb_can_shift(skb) || 1497 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1498 (mss != tcp_skb_seglen(skb))) 1499 goto out; 1500 1501 len = skb->len; 1502 if (skb_shift(prev, skb, len)) { 1503 pcount += tcp_skb_pcount(skb); 1504 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1505 len, mss, 0); 1506 } 1507 1508 out: 1509 return prev; 1510 1511 noop: 1512 return skb; 1513 1514 fallback: 1515 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1516 return NULL; 1517 } 1518 1519 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1520 struct tcp_sack_block *next_dup, 1521 struct tcp_sacktag_state *state, 1522 u32 start_seq, u32 end_seq, 1523 bool dup_sack_in) 1524 { 1525 struct tcp_sock *tp = tcp_sk(sk); 1526 struct sk_buff *tmp; 1527 1528 skb_rbtree_walk_from(skb) { 1529 int in_sack = 0; 1530 bool dup_sack = dup_sack_in; 1531 1532 /* queue is in-order => we can short-circuit the walk early */ 1533 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1534 break; 1535 1536 if (next_dup && 1537 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1538 in_sack = tcp_match_skb_to_sack(sk, skb, 1539 next_dup->start_seq, 1540 next_dup->end_seq); 1541 if (in_sack > 0) 1542 dup_sack = true; 1543 } 1544 1545 /* skb reference here is a bit tricky to get right, since 1546 * shifting can eat and free both this skb and the next, 1547 * so not even _safe variant of the loop is enough. 1548 */ 1549 if (in_sack <= 0) { 1550 tmp = tcp_shift_skb_data(sk, skb, state, 1551 start_seq, end_seq, dup_sack); 1552 if (tmp) { 1553 if (tmp != skb) { 1554 skb = tmp; 1555 continue; 1556 } 1557 1558 in_sack = 0; 1559 } else { 1560 in_sack = tcp_match_skb_to_sack(sk, skb, 1561 start_seq, 1562 end_seq); 1563 } 1564 } 1565 1566 if (unlikely(in_sack < 0)) 1567 break; 1568 1569 if (in_sack) { 1570 TCP_SKB_CB(skb)->sacked = 1571 tcp_sacktag_one(sk, 1572 state, 1573 TCP_SKB_CB(skb)->sacked, 1574 TCP_SKB_CB(skb)->seq, 1575 TCP_SKB_CB(skb)->end_seq, 1576 dup_sack, 1577 tcp_skb_pcount(skb), 1578 skb->skb_mstamp); 1579 tcp_rate_skb_delivered(sk, skb, state->rate); 1580 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1581 list_del_init(&skb->tcp_tsorted_anchor); 1582 1583 if (!before(TCP_SKB_CB(skb)->seq, 1584 tcp_highest_sack_seq(tp))) 1585 tcp_advance_highest_sack(sk, skb); 1586 } 1587 } 1588 return skb; 1589 } 1590 1591 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1592 struct tcp_sacktag_state *state, 1593 u32 seq) 1594 { 1595 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1596 struct sk_buff *skb; 1597 1598 while (*p) { 1599 parent = *p; 1600 skb = rb_to_skb(parent); 1601 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1602 p = &parent->rb_left; 1603 continue; 1604 } 1605 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1606 p = &parent->rb_right; 1607 continue; 1608 } 1609 return skb; 1610 } 1611 return NULL; 1612 } 1613 1614 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1615 struct tcp_sacktag_state *state, 1616 u32 skip_to_seq) 1617 { 1618 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1619 return skb; 1620 1621 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1622 } 1623 1624 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1625 struct sock *sk, 1626 struct tcp_sack_block *next_dup, 1627 struct tcp_sacktag_state *state, 1628 u32 skip_to_seq) 1629 { 1630 if (!next_dup) 1631 return skb; 1632 1633 if (before(next_dup->start_seq, skip_to_seq)) { 1634 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1635 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1636 next_dup->start_seq, next_dup->end_seq, 1637 1); 1638 } 1639 1640 return skb; 1641 } 1642 1643 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1644 { 1645 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1646 } 1647 1648 static int 1649 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1650 u32 prior_snd_una, struct tcp_sacktag_state *state) 1651 { 1652 struct tcp_sock *tp = tcp_sk(sk); 1653 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1654 TCP_SKB_CB(ack_skb)->sacked); 1655 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1656 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1657 struct tcp_sack_block *cache; 1658 struct sk_buff *skb; 1659 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1660 int used_sacks; 1661 bool found_dup_sack = false; 1662 int i, j; 1663 int first_sack_index; 1664 1665 state->flag = 0; 1666 state->reord = tp->snd_nxt; 1667 1668 if (!tp->sacked_out) 1669 tcp_highest_sack_reset(sk); 1670 1671 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1672 num_sacks, prior_snd_una); 1673 if (found_dup_sack) { 1674 state->flag |= FLAG_DSACKING_ACK; 1675 tp->delivered++; /* A spurious retransmission is delivered */ 1676 } 1677 1678 /* Eliminate too old ACKs, but take into 1679 * account more or less fresh ones, they can 1680 * contain valid SACK info. 1681 */ 1682 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1683 return 0; 1684 1685 if (!tp->packets_out) 1686 goto out; 1687 1688 used_sacks = 0; 1689 first_sack_index = 0; 1690 for (i = 0; i < num_sacks; i++) { 1691 bool dup_sack = !i && found_dup_sack; 1692 1693 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1694 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1695 1696 if (!tcp_is_sackblock_valid(tp, dup_sack, 1697 sp[used_sacks].start_seq, 1698 sp[used_sacks].end_seq)) { 1699 int mib_idx; 1700 1701 if (dup_sack) { 1702 if (!tp->undo_marker) 1703 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1704 else 1705 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1706 } else { 1707 /* Don't count olds caused by ACK reordering */ 1708 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1709 !after(sp[used_sacks].end_seq, tp->snd_una)) 1710 continue; 1711 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1712 } 1713 1714 NET_INC_STATS(sock_net(sk), mib_idx); 1715 if (i == 0) 1716 first_sack_index = -1; 1717 continue; 1718 } 1719 1720 /* Ignore very old stuff early */ 1721 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1722 continue; 1723 1724 used_sacks++; 1725 } 1726 1727 /* order SACK blocks to allow in order walk of the retrans queue */ 1728 for (i = used_sacks - 1; i > 0; i--) { 1729 for (j = 0; j < i; j++) { 1730 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1731 swap(sp[j], sp[j + 1]); 1732 1733 /* Track where the first SACK block goes to */ 1734 if (j == first_sack_index) 1735 first_sack_index = j + 1; 1736 } 1737 } 1738 } 1739 1740 state->mss_now = tcp_current_mss(sk); 1741 skb = NULL; 1742 i = 0; 1743 1744 if (!tp->sacked_out) { 1745 /* It's already past, so skip checking against it */ 1746 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1747 } else { 1748 cache = tp->recv_sack_cache; 1749 /* Skip empty blocks in at head of the cache */ 1750 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1751 !cache->end_seq) 1752 cache++; 1753 } 1754 1755 while (i < used_sacks) { 1756 u32 start_seq = sp[i].start_seq; 1757 u32 end_seq = sp[i].end_seq; 1758 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1759 struct tcp_sack_block *next_dup = NULL; 1760 1761 if (found_dup_sack && ((i + 1) == first_sack_index)) 1762 next_dup = &sp[i + 1]; 1763 1764 /* Skip too early cached blocks */ 1765 while (tcp_sack_cache_ok(tp, cache) && 1766 !before(start_seq, cache->end_seq)) 1767 cache++; 1768 1769 /* Can skip some work by looking recv_sack_cache? */ 1770 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1771 after(end_seq, cache->start_seq)) { 1772 1773 /* Head todo? */ 1774 if (before(start_seq, cache->start_seq)) { 1775 skb = tcp_sacktag_skip(skb, sk, state, 1776 start_seq); 1777 skb = tcp_sacktag_walk(skb, sk, next_dup, 1778 state, 1779 start_seq, 1780 cache->start_seq, 1781 dup_sack); 1782 } 1783 1784 /* Rest of the block already fully processed? */ 1785 if (!after(end_seq, cache->end_seq)) 1786 goto advance_sp; 1787 1788 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1789 state, 1790 cache->end_seq); 1791 1792 /* ...tail remains todo... */ 1793 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1794 /* ...but better entrypoint exists! */ 1795 skb = tcp_highest_sack(sk); 1796 if (!skb) 1797 break; 1798 cache++; 1799 goto walk; 1800 } 1801 1802 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1803 /* Check overlap against next cached too (past this one already) */ 1804 cache++; 1805 continue; 1806 } 1807 1808 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1809 skb = tcp_highest_sack(sk); 1810 if (!skb) 1811 break; 1812 } 1813 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1814 1815 walk: 1816 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1817 start_seq, end_seq, dup_sack); 1818 1819 advance_sp: 1820 i++; 1821 } 1822 1823 /* Clear the head of the cache sack blocks so we can skip it next time */ 1824 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1825 tp->recv_sack_cache[i].start_seq = 0; 1826 tp->recv_sack_cache[i].end_seq = 0; 1827 } 1828 for (j = 0; j < used_sacks; j++) 1829 tp->recv_sack_cache[i++] = sp[j]; 1830 1831 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1832 tcp_check_sack_reordering(sk, state->reord, 0); 1833 1834 tcp_verify_left_out(tp); 1835 out: 1836 1837 #if FASTRETRANS_DEBUG > 0 1838 WARN_ON((int)tp->sacked_out < 0); 1839 WARN_ON((int)tp->lost_out < 0); 1840 WARN_ON((int)tp->retrans_out < 0); 1841 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1842 #endif 1843 return state->flag; 1844 } 1845 1846 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1847 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1848 */ 1849 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1850 { 1851 u32 holes; 1852 1853 holes = max(tp->lost_out, 1U); 1854 holes = min(holes, tp->packets_out); 1855 1856 if ((tp->sacked_out + holes) > tp->packets_out) { 1857 tp->sacked_out = tp->packets_out - holes; 1858 return true; 1859 } 1860 return false; 1861 } 1862 1863 /* If we receive more dupacks than we expected counting segments 1864 * in assumption of absent reordering, interpret this as reordering. 1865 * The only another reason could be bug in receiver TCP. 1866 */ 1867 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1868 { 1869 struct tcp_sock *tp = tcp_sk(sk); 1870 1871 if (!tcp_limit_reno_sacked(tp)) 1872 return; 1873 1874 tp->reordering = min_t(u32, tp->packets_out + addend, 1875 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1876 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1877 } 1878 1879 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1880 1881 static void tcp_add_reno_sack(struct sock *sk) 1882 { 1883 struct tcp_sock *tp = tcp_sk(sk); 1884 u32 prior_sacked = tp->sacked_out; 1885 1886 tp->sacked_out++; 1887 tcp_check_reno_reordering(sk, 0); 1888 if (tp->sacked_out > prior_sacked) 1889 tp->delivered++; /* Some out-of-order packet is delivered */ 1890 tcp_verify_left_out(tp); 1891 } 1892 1893 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1894 1895 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1896 { 1897 struct tcp_sock *tp = tcp_sk(sk); 1898 1899 if (acked > 0) { 1900 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1901 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1902 if (acked - 1 >= tp->sacked_out) 1903 tp->sacked_out = 0; 1904 else 1905 tp->sacked_out -= acked - 1; 1906 } 1907 tcp_check_reno_reordering(sk, acked); 1908 tcp_verify_left_out(tp); 1909 } 1910 1911 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1912 { 1913 tp->sacked_out = 0; 1914 } 1915 1916 void tcp_clear_retrans(struct tcp_sock *tp) 1917 { 1918 tp->retrans_out = 0; 1919 tp->lost_out = 0; 1920 tp->undo_marker = 0; 1921 tp->undo_retrans = -1; 1922 tp->sacked_out = 0; 1923 } 1924 1925 static inline void tcp_init_undo(struct tcp_sock *tp) 1926 { 1927 tp->undo_marker = tp->snd_una; 1928 /* Retransmission still in flight may cause DSACKs later. */ 1929 tp->undo_retrans = tp->retrans_out ? : -1; 1930 } 1931 1932 static bool tcp_is_rack(const struct sock *sk) 1933 { 1934 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1935 } 1936 1937 /* If we detect SACK reneging, forget all SACK information 1938 * and reset tags completely, otherwise preserve SACKs. If receiver 1939 * dropped its ofo queue, we will know this due to reneging detection. 1940 */ 1941 static void tcp_timeout_mark_lost(struct sock *sk) 1942 { 1943 struct tcp_sock *tp = tcp_sk(sk); 1944 struct sk_buff *skb, *head; 1945 bool is_reneg; /* is receiver reneging on SACKs? */ 1946 1947 head = tcp_rtx_queue_head(sk); 1948 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1949 if (is_reneg) { 1950 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1951 tp->sacked_out = 0; 1952 /* Mark SACK reneging until we recover from this loss event. */ 1953 tp->is_sack_reneg = 1; 1954 } else if (tcp_is_reno(tp)) { 1955 tcp_reset_reno_sack(tp); 1956 } 1957 1958 skb = head; 1959 skb_rbtree_walk_from(skb) { 1960 if (is_reneg) 1961 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1962 else if (tcp_is_rack(sk) && skb != head && 1963 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1964 continue; /* Don't mark recently sent ones lost yet */ 1965 tcp_mark_skb_lost(sk, skb); 1966 } 1967 tcp_verify_left_out(tp); 1968 tcp_clear_all_retrans_hints(tp); 1969 } 1970 1971 /* Enter Loss state. */ 1972 void tcp_enter_loss(struct sock *sk) 1973 { 1974 const struct inet_connection_sock *icsk = inet_csk(sk); 1975 struct tcp_sock *tp = tcp_sk(sk); 1976 struct net *net = sock_net(sk); 1977 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1978 1979 tcp_timeout_mark_lost(sk); 1980 1981 /* Reduce ssthresh if it has not yet been made inside this window. */ 1982 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1983 !after(tp->high_seq, tp->snd_una) || 1984 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1985 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1986 tp->prior_cwnd = tp->snd_cwnd; 1987 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1988 tcp_ca_event(sk, CA_EVENT_LOSS); 1989 tcp_init_undo(tp); 1990 } 1991 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 1992 tp->snd_cwnd_cnt = 0; 1993 tp->snd_cwnd_stamp = tcp_jiffies32; 1994 1995 /* Timeout in disordered state after receiving substantial DUPACKs 1996 * suggests that the degree of reordering is over-estimated. 1997 */ 1998 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1999 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2000 tp->reordering = min_t(unsigned int, tp->reordering, 2001 net->ipv4.sysctl_tcp_reordering); 2002 tcp_set_ca_state(sk, TCP_CA_Loss); 2003 tp->high_seq = tp->snd_nxt; 2004 tcp_ecn_queue_cwr(tp); 2005 2006 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2007 * loss recovery is underway except recurring timeout(s) on 2008 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2009 */ 2010 tp->frto = net->ipv4.sysctl_tcp_frto && 2011 (new_recovery || icsk->icsk_retransmits) && 2012 !inet_csk(sk)->icsk_mtup.probe_size; 2013 } 2014 2015 /* If ACK arrived pointing to a remembered SACK, it means that our 2016 * remembered SACKs do not reflect real state of receiver i.e. 2017 * receiver _host_ is heavily congested (or buggy). 2018 * 2019 * To avoid big spurious retransmission bursts due to transient SACK 2020 * scoreboard oddities that look like reneging, we give the receiver a 2021 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2022 * restore sanity to the SACK scoreboard. If the apparent reneging 2023 * persists until this RTO then we'll clear the SACK scoreboard. 2024 */ 2025 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2026 { 2027 if (flag & FLAG_SACK_RENEGING) { 2028 struct tcp_sock *tp = tcp_sk(sk); 2029 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2030 msecs_to_jiffies(10)); 2031 2032 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2033 delay, TCP_RTO_MAX); 2034 return true; 2035 } 2036 return false; 2037 } 2038 2039 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2040 * counter when SACK is enabled (without SACK, sacked_out is used for 2041 * that purpose). 2042 * 2043 * With reordering, holes may still be in flight, so RFC3517 recovery 2044 * uses pure sacked_out (total number of SACKed segments) even though 2045 * it violates the RFC that uses duplicate ACKs, often these are equal 2046 * but when e.g. out-of-window ACKs or packet duplication occurs, 2047 * they differ. Since neither occurs due to loss, TCP should really 2048 * ignore them. 2049 */ 2050 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2051 { 2052 return tp->sacked_out + 1; 2053 } 2054 2055 /* Linux NewReno/SACK/ECN state machine. 2056 * -------------------------------------- 2057 * 2058 * "Open" Normal state, no dubious events, fast path. 2059 * "Disorder" In all the respects it is "Open", 2060 * but requires a bit more attention. It is entered when 2061 * we see some SACKs or dupacks. It is split of "Open" 2062 * mainly to move some processing from fast path to slow one. 2063 * "CWR" CWND was reduced due to some Congestion Notification event. 2064 * It can be ECN, ICMP source quench, local device congestion. 2065 * "Recovery" CWND was reduced, we are fast-retransmitting. 2066 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2067 * 2068 * tcp_fastretrans_alert() is entered: 2069 * - each incoming ACK, if state is not "Open" 2070 * - when arrived ACK is unusual, namely: 2071 * * SACK 2072 * * Duplicate ACK. 2073 * * ECN ECE. 2074 * 2075 * Counting packets in flight is pretty simple. 2076 * 2077 * in_flight = packets_out - left_out + retrans_out 2078 * 2079 * packets_out is SND.NXT-SND.UNA counted in packets. 2080 * 2081 * retrans_out is number of retransmitted segments. 2082 * 2083 * left_out is number of segments left network, but not ACKed yet. 2084 * 2085 * left_out = sacked_out + lost_out 2086 * 2087 * sacked_out: Packets, which arrived to receiver out of order 2088 * and hence not ACKed. With SACKs this number is simply 2089 * amount of SACKed data. Even without SACKs 2090 * it is easy to give pretty reliable estimate of this number, 2091 * counting duplicate ACKs. 2092 * 2093 * lost_out: Packets lost by network. TCP has no explicit 2094 * "loss notification" feedback from network (for now). 2095 * It means that this number can be only _guessed_. 2096 * Actually, it is the heuristics to predict lossage that 2097 * distinguishes different algorithms. 2098 * 2099 * F.e. after RTO, when all the queue is considered as lost, 2100 * lost_out = packets_out and in_flight = retrans_out. 2101 * 2102 * Essentially, we have now a few algorithms detecting 2103 * lost packets. 2104 * 2105 * If the receiver supports SACK: 2106 * 2107 * RFC6675/3517: It is the conventional algorithm. A packet is 2108 * considered lost if the number of higher sequence packets 2109 * SACKed is greater than or equal the DUPACK thoreshold 2110 * (reordering). This is implemented in tcp_mark_head_lost and 2111 * tcp_update_scoreboard. 2112 * 2113 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2114 * (2017-) that checks timing instead of counting DUPACKs. 2115 * Essentially a packet is considered lost if it's not S/ACKed 2116 * after RTT + reordering_window, where both metrics are 2117 * dynamically measured and adjusted. This is implemented in 2118 * tcp_rack_mark_lost. 2119 * 2120 * If the receiver does not support SACK: 2121 * 2122 * NewReno (RFC6582): in Recovery we assume that one segment 2123 * is lost (classic Reno). While we are in Recovery and 2124 * a partial ACK arrives, we assume that one more packet 2125 * is lost (NewReno). This heuristics are the same in NewReno 2126 * and SACK. 2127 * 2128 * Really tricky (and requiring careful tuning) part of algorithm 2129 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2130 * The first determines the moment _when_ we should reduce CWND and, 2131 * hence, slow down forward transmission. In fact, it determines the moment 2132 * when we decide that hole is caused by loss, rather than by a reorder. 2133 * 2134 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2135 * holes, caused by lost packets. 2136 * 2137 * And the most logically complicated part of algorithm is undo 2138 * heuristics. We detect false retransmits due to both too early 2139 * fast retransmit (reordering) and underestimated RTO, analyzing 2140 * timestamps and D-SACKs. When we detect that some segments were 2141 * retransmitted by mistake and CWND reduction was wrong, we undo 2142 * window reduction and abort recovery phase. This logic is hidden 2143 * inside several functions named tcp_try_undo_<something>. 2144 */ 2145 2146 /* This function decides, when we should leave Disordered state 2147 * and enter Recovery phase, reducing congestion window. 2148 * 2149 * Main question: may we further continue forward transmission 2150 * with the same cwnd? 2151 */ 2152 static bool tcp_time_to_recover(struct sock *sk, int flag) 2153 { 2154 struct tcp_sock *tp = tcp_sk(sk); 2155 2156 /* Trick#1: The loss is proven. */ 2157 if (tp->lost_out) 2158 return true; 2159 2160 /* Not-A-Trick#2 : Classic rule... */ 2161 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2162 return true; 2163 2164 return false; 2165 } 2166 2167 /* Detect loss in event "A" above by marking head of queue up as lost. 2168 * For non-SACK(Reno) senders, the first "packets" number of segments 2169 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2170 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2171 * the maximum SACKed segments to pass before reaching this limit. 2172 */ 2173 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2174 { 2175 struct tcp_sock *tp = tcp_sk(sk); 2176 struct sk_buff *skb; 2177 int cnt, oldcnt, lost; 2178 unsigned int mss; 2179 /* Use SACK to deduce losses of new sequences sent during recovery */ 2180 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2181 2182 WARN_ON(packets > tp->packets_out); 2183 skb = tp->lost_skb_hint; 2184 if (skb) { 2185 /* Head already handled? */ 2186 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2187 return; 2188 cnt = tp->lost_cnt_hint; 2189 } else { 2190 skb = tcp_rtx_queue_head(sk); 2191 cnt = 0; 2192 } 2193 2194 skb_rbtree_walk_from(skb) { 2195 /* TODO: do this better */ 2196 /* this is not the most efficient way to do this... */ 2197 tp->lost_skb_hint = skb; 2198 tp->lost_cnt_hint = cnt; 2199 2200 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2201 break; 2202 2203 oldcnt = cnt; 2204 if (tcp_is_reno(tp) || 2205 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2206 cnt += tcp_skb_pcount(skb); 2207 2208 if (cnt > packets) { 2209 if (tcp_is_sack(tp) || 2210 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2211 (oldcnt >= packets)) 2212 break; 2213 2214 mss = tcp_skb_mss(skb); 2215 /* If needed, chop off the prefix to mark as lost. */ 2216 lost = (packets - oldcnt) * mss; 2217 if (lost < skb->len && 2218 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2219 lost, mss, GFP_ATOMIC) < 0) 2220 break; 2221 cnt = packets; 2222 } 2223 2224 tcp_skb_mark_lost(tp, skb); 2225 2226 if (mark_head) 2227 break; 2228 } 2229 tcp_verify_left_out(tp); 2230 } 2231 2232 /* Account newly detected lost packet(s) */ 2233 2234 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2235 { 2236 struct tcp_sock *tp = tcp_sk(sk); 2237 2238 if (tcp_is_sack(tp)) { 2239 int sacked_upto = tp->sacked_out - tp->reordering; 2240 if (sacked_upto >= 0) 2241 tcp_mark_head_lost(sk, sacked_upto, 0); 2242 else if (fast_rexmit) 2243 tcp_mark_head_lost(sk, 1, 1); 2244 } 2245 } 2246 2247 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2248 { 2249 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2250 before(tp->rx_opt.rcv_tsecr, when); 2251 } 2252 2253 /* skb is spurious retransmitted if the returned timestamp echo 2254 * reply is prior to the skb transmission time 2255 */ 2256 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2257 const struct sk_buff *skb) 2258 { 2259 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2260 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2261 } 2262 2263 /* Nothing was retransmitted or returned timestamp is less 2264 * than timestamp of the first retransmission. 2265 */ 2266 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2267 { 2268 return !tp->retrans_stamp || 2269 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2270 } 2271 2272 /* Undo procedures. */ 2273 2274 /* We can clear retrans_stamp when there are no retransmissions in the 2275 * window. It would seem that it is trivially available for us in 2276 * tp->retrans_out, however, that kind of assumptions doesn't consider 2277 * what will happen if errors occur when sending retransmission for the 2278 * second time. ...It could the that such segment has only 2279 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2280 * the head skb is enough except for some reneging corner cases that 2281 * are not worth the effort. 2282 * 2283 * Main reason for all this complexity is the fact that connection dying 2284 * time now depends on the validity of the retrans_stamp, in particular, 2285 * that successive retransmissions of a segment must not advance 2286 * retrans_stamp under any conditions. 2287 */ 2288 static bool tcp_any_retrans_done(const struct sock *sk) 2289 { 2290 const struct tcp_sock *tp = tcp_sk(sk); 2291 struct sk_buff *skb; 2292 2293 if (tp->retrans_out) 2294 return true; 2295 2296 skb = tcp_rtx_queue_head(sk); 2297 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2298 return true; 2299 2300 return false; 2301 } 2302 2303 static void DBGUNDO(struct sock *sk, const char *msg) 2304 { 2305 #if FASTRETRANS_DEBUG > 1 2306 struct tcp_sock *tp = tcp_sk(sk); 2307 struct inet_sock *inet = inet_sk(sk); 2308 2309 if (sk->sk_family == AF_INET) { 2310 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2311 msg, 2312 &inet->inet_daddr, ntohs(inet->inet_dport), 2313 tp->snd_cwnd, tcp_left_out(tp), 2314 tp->snd_ssthresh, tp->prior_ssthresh, 2315 tp->packets_out); 2316 } 2317 #if IS_ENABLED(CONFIG_IPV6) 2318 else if (sk->sk_family == AF_INET6) { 2319 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2320 msg, 2321 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2322 tp->snd_cwnd, tcp_left_out(tp), 2323 tp->snd_ssthresh, tp->prior_ssthresh, 2324 tp->packets_out); 2325 } 2326 #endif 2327 #endif 2328 } 2329 2330 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2331 { 2332 struct tcp_sock *tp = tcp_sk(sk); 2333 2334 if (unmark_loss) { 2335 struct sk_buff *skb; 2336 2337 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2338 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2339 } 2340 tp->lost_out = 0; 2341 tcp_clear_all_retrans_hints(tp); 2342 } 2343 2344 if (tp->prior_ssthresh) { 2345 const struct inet_connection_sock *icsk = inet_csk(sk); 2346 2347 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2348 2349 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2350 tp->snd_ssthresh = tp->prior_ssthresh; 2351 tcp_ecn_withdraw_cwr(tp); 2352 } 2353 } 2354 tp->snd_cwnd_stamp = tcp_jiffies32; 2355 tp->undo_marker = 0; 2356 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2357 } 2358 2359 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2360 { 2361 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2362 } 2363 2364 /* People celebrate: "We love our President!" */ 2365 static bool tcp_try_undo_recovery(struct sock *sk) 2366 { 2367 struct tcp_sock *tp = tcp_sk(sk); 2368 2369 if (tcp_may_undo(tp)) { 2370 int mib_idx; 2371 2372 /* Happy end! We did not retransmit anything 2373 * or our original transmission succeeded. 2374 */ 2375 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2376 tcp_undo_cwnd_reduction(sk, false); 2377 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2378 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2379 else 2380 mib_idx = LINUX_MIB_TCPFULLUNDO; 2381 2382 NET_INC_STATS(sock_net(sk), mib_idx); 2383 } else if (tp->rack.reo_wnd_persist) { 2384 tp->rack.reo_wnd_persist--; 2385 } 2386 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2387 /* Hold old state until something *above* high_seq 2388 * is ACKed. For Reno it is MUST to prevent false 2389 * fast retransmits (RFC2582). SACK TCP is safe. */ 2390 if (!tcp_any_retrans_done(sk)) 2391 tp->retrans_stamp = 0; 2392 return true; 2393 } 2394 tcp_set_ca_state(sk, TCP_CA_Open); 2395 tp->is_sack_reneg = 0; 2396 return false; 2397 } 2398 2399 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2400 static bool tcp_try_undo_dsack(struct sock *sk) 2401 { 2402 struct tcp_sock *tp = tcp_sk(sk); 2403 2404 if (tp->undo_marker && !tp->undo_retrans) { 2405 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2406 tp->rack.reo_wnd_persist + 1); 2407 DBGUNDO(sk, "D-SACK"); 2408 tcp_undo_cwnd_reduction(sk, false); 2409 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2410 return true; 2411 } 2412 return false; 2413 } 2414 2415 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2416 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2417 { 2418 struct tcp_sock *tp = tcp_sk(sk); 2419 2420 if (frto_undo || tcp_may_undo(tp)) { 2421 tcp_undo_cwnd_reduction(sk, true); 2422 2423 DBGUNDO(sk, "partial loss"); 2424 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2425 if (frto_undo) 2426 NET_INC_STATS(sock_net(sk), 2427 LINUX_MIB_TCPSPURIOUSRTOS); 2428 inet_csk(sk)->icsk_retransmits = 0; 2429 if (frto_undo || tcp_is_sack(tp)) { 2430 tcp_set_ca_state(sk, TCP_CA_Open); 2431 tp->is_sack_reneg = 0; 2432 } 2433 return true; 2434 } 2435 return false; 2436 } 2437 2438 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2439 * It computes the number of packets to send (sndcnt) based on packets newly 2440 * delivered: 2441 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2442 * cwnd reductions across a full RTT. 2443 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2444 * But when the retransmits are acked without further losses, PRR 2445 * slow starts cwnd up to ssthresh to speed up the recovery. 2446 */ 2447 static void tcp_init_cwnd_reduction(struct sock *sk) 2448 { 2449 struct tcp_sock *tp = tcp_sk(sk); 2450 2451 tp->high_seq = tp->snd_nxt; 2452 tp->tlp_high_seq = 0; 2453 tp->snd_cwnd_cnt = 0; 2454 tp->prior_cwnd = tp->snd_cwnd; 2455 tp->prr_delivered = 0; 2456 tp->prr_out = 0; 2457 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2458 tcp_ecn_queue_cwr(tp); 2459 } 2460 2461 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2462 { 2463 struct tcp_sock *tp = tcp_sk(sk); 2464 int sndcnt = 0; 2465 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2466 2467 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2468 return; 2469 2470 tp->prr_delivered += newly_acked_sacked; 2471 if (delta < 0) { 2472 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2473 tp->prior_cwnd - 1; 2474 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2475 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2476 !(flag & FLAG_LOST_RETRANS)) { 2477 sndcnt = min_t(int, delta, 2478 max_t(int, tp->prr_delivered - tp->prr_out, 2479 newly_acked_sacked) + 1); 2480 } else { 2481 sndcnt = min(delta, newly_acked_sacked); 2482 } 2483 /* Force a fast retransmit upon entering fast recovery */ 2484 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2485 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2486 } 2487 2488 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2489 { 2490 struct tcp_sock *tp = tcp_sk(sk); 2491 2492 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2493 return; 2494 2495 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2496 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2497 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2498 tp->snd_cwnd = tp->snd_ssthresh; 2499 tp->snd_cwnd_stamp = tcp_jiffies32; 2500 } 2501 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2502 } 2503 2504 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2505 void tcp_enter_cwr(struct sock *sk) 2506 { 2507 struct tcp_sock *tp = tcp_sk(sk); 2508 2509 tp->prior_ssthresh = 0; 2510 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2511 tp->undo_marker = 0; 2512 tcp_init_cwnd_reduction(sk); 2513 tcp_set_ca_state(sk, TCP_CA_CWR); 2514 } 2515 } 2516 EXPORT_SYMBOL(tcp_enter_cwr); 2517 2518 static void tcp_try_keep_open(struct sock *sk) 2519 { 2520 struct tcp_sock *tp = tcp_sk(sk); 2521 int state = TCP_CA_Open; 2522 2523 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2524 state = TCP_CA_Disorder; 2525 2526 if (inet_csk(sk)->icsk_ca_state != state) { 2527 tcp_set_ca_state(sk, state); 2528 tp->high_seq = tp->snd_nxt; 2529 } 2530 } 2531 2532 static void tcp_try_to_open(struct sock *sk, int flag) 2533 { 2534 struct tcp_sock *tp = tcp_sk(sk); 2535 2536 tcp_verify_left_out(tp); 2537 2538 if (!tcp_any_retrans_done(sk)) 2539 tp->retrans_stamp = 0; 2540 2541 if (flag & FLAG_ECE) 2542 tcp_enter_cwr(sk); 2543 2544 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2545 tcp_try_keep_open(sk); 2546 } 2547 } 2548 2549 static void tcp_mtup_probe_failed(struct sock *sk) 2550 { 2551 struct inet_connection_sock *icsk = inet_csk(sk); 2552 2553 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2554 icsk->icsk_mtup.probe_size = 0; 2555 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2556 } 2557 2558 static void tcp_mtup_probe_success(struct sock *sk) 2559 { 2560 struct tcp_sock *tp = tcp_sk(sk); 2561 struct inet_connection_sock *icsk = inet_csk(sk); 2562 2563 /* FIXME: breaks with very large cwnd */ 2564 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2565 tp->snd_cwnd = tp->snd_cwnd * 2566 tcp_mss_to_mtu(sk, tp->mss_cache) / 2567 icsk->icsk_mtup.probe_size; 2568 tp->snd_cwnd_cnt = 0; 2569 tp->snd_cwnd_stamp = tcp_jiffies32; 2570 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2571 2572 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2573 icsk->icsk_mtup.probe_size = 0; 2574 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2575 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2576 } 2577 2578 /* Do a simple retransmit without using the backoff mechanisms in 2579 * tcp_timer. This is used for path mtu discovery. 2580 * The socket is already locked here. 2581 */ 2582 void tcp_simple_retransmit(struct sock *sk) 2583 { 2584 const struct inet_connection_sock *icsk = inet_csk(sk); 2585 struct tcp_sock *tp = tcp_sk(sk); 2586 struct sk_buff *skb; 2587 unsigned int mss = tcp_current_mss(sk); 2588 2589 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2590 if (tcp_skb_seglen(skb) > mss && 2591 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2592 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2593 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2594 tp->retrans_out -= tcp_skb_pcount(skb); 2595 } 2596 tcp_skb_mark_lost_uncond_verify(tp, skb); 2597 } 2598 } 2599 2600 tcp_clear_retrans_hints_partial(tp); 2601 2602 if (!tp->lost_out) 2603 return; 2604 2605 if (tcp_is_reno(tp)) 2606 tcp_limit_reno_sacked(tp); 2607 2608 tcp_verify_left_out(tp); 2609 2610 /* Don't muck with the congestion window here. 2611 * Reason is that we do not increase amount of _data_ 2612 * in network, but units changed and effective 2613 * cwnd/ssthresh really reduced now. 2614 */ 2615 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2616 tp->high_seq = tp->snd_nxt; 2617 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2618 tp->prior_ssthresh = 0; 2619 tp->undo_marker = 0; 2620 tcp_set_ca_state(sk, TCP_CA_Loss); 2621 } 2622 tcp_xmit_retransmit_queue(sk); 2623 } 2624 EXPORT_SYMBOL(tcp_simple_retransmit); 2625 2626 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2627 { 2628 struct tcp_sock *tp = tcp_sk(sk); 2629 int mib_idx; 2630 2631 if (tcp_is_reno(tp)) 2632 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2633 else 2634 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2635 2636 NET_INC_STATS(sock_net(sk), mib_idx); 2637 2638 tp->prior_ssthresh = 0; 2639 tcp_init_undo(tp); 2640 2641 if (!tcp_in_cwnd_reduction(sk)) { 2642 if (!ece_ack) 2643 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2644 tcp_init_cwnd_reduction(sk); 2645 } 2646 tcp_set_ca_state(sk, TCP_CA_Recovery); 2647 } 2648 2649 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2650 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2651 */ 2652 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2653 int *rexmit) 2654 { 2655 struct tcp_sock *tp = tcp_sk(sk); 2656 bool recovered = !before(tp->snd_una, tp->high_seq); 2657 2658 if ((flag & FLAG_SND_UNA_ADVANCED) && 2659 tcp_try_undo_loss(sk, false)) 2660 return; 2661 2662 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2663 /* Step 3.b. A timeout is spurious if not all data are 2664 * lost, i.e., never-retransmitted data are (s)acked. 2665 */ 2666 if ((flag & FLAG_ORIG_SACK_ACKED) && 2667 tcp_try_undo_loss(sk, true)) 2668 return; 2669 2670 if (after(tp->snd_nxt, tp->high_seq)) { 2671 if (flag & FLAG_DATA_SACKED || is_dupack) 2672 tp->frto = 0; /* Step 3.a. loss was real */ 2673 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2674 tp->high_seq = tp->snd_nxt; 2675 /* Step 2.b. Try send new data (but deferred until cwnd 2676 * is updated in tcp_ack()). Otherwise fall back to 2677 * the conventional recovery. 2678 */ 2679 if (!tcp_write_queue_empty(sk) && 2680 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2681 *rexmit = REXMIT_NEW; 2682 return; 2683 } 2684 tp->frto = 0; 2685 } 2686 } 2687 2688 if (recovered) { 2689 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2690 tcp_try_undo_recovery(sk); 2691 return; 2692 } 2693 if (tcp_is_reno(tp)) { 2694 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2695 * delivered. Lower inflight to clock out (re)tranmissions. 2696 */ 2697 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2698 tcp_add_reno_sack(sk); 2699 else if (flag & FLAG_SND_UNA_ADVANCED) 2700 tcp_reset_reno_sack(tp); 2701 } 2702 *rexmit = REXMIT_LOST; 2703 } 2704 2705 /* Undo during fast recovery after partial ACK. */ 2706 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2707 { 2708 struct tcp_sock *tp = tcp_sk(sk); 2709 2710 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2711 /* Plain luck! Hole if filled with delayed 2712 * packet, rather than with a retransmit. Check reordering. 2713 */ 2714 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2715 2716 /* We are getting evidence that the reordering degree is higher 2717 * than we realized. If there are no retransmits out then we 2718 * can undo. Otherwise we clock out new packets but do not 2719 * mark more packets lost or retransmit more. 2720 */ 2721 if (tp->retrans_out) 2722 return true; 2723 2724 if (!tcp_any_retrans_done(sk)) 2725 tp->retrans_stamp = 0; 2726 2727 DBGUNDO(sk, "partial recovery"); 2728 tcp_undo_cwnd_reduction(sk, true); 2729 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2730 tcp_try_keep_open(sk); 2731 return true; 2732 } 2733 return false; 2734 } 2735 2736 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2737 { 2738 struct tcp_sock *tp = tcp_sk(sk); 2739 2740 if (tcp_rtx_queue_empty(sk)) 2741 return; 2742 2743 if (unlikely(tcp_is_reno(tp))) { 2744 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2745 } else if (tcp_is_rack(sk)) { 2746 u32 prior_retrans = tp->retrans_out; 2747 2748 tcp_rack_mark_lost(sk); 2749 if (prior_retrans > tp->retrans_out) 2750 *ack_flag |= FLAG_LOST_RETRANS; 2751 } 2752 } 2753 2754 static bool tcp_force_fast_retransmit(struct sock *sk) 2755 { 2756 struct tcp_sock *tp = tcp_sk(sk); 2757 2758 return after(tcp_highest_sack_seq(tp), 2759 tp->snd_una + tp->reordering * tp->mss_cache); 2760 } 2761 2762 /* Process an event, which can update packets-in-flight not trivially. 2763 * Main goal of this function is to calculate new estimate for left_out, 2764 * taking into account both packets sitting in receiver's buffer and 2765 * packets lost by network. 2766 * 2767 * Besides that it updates the congestion state when packet loss or ECN 2768 * is detected. But it does not reduce the cwnd, it is done by the 2769 * congestion control later. 2770 * 2771 * It does _not_ decide what to send, it is made in function 2772 * tcp_xmit_retransmit_queue(). 2773 */ 2774 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2775 bool is_dupack, int *ack_flag, int *rexmit) 2776 { 2777 struct inet_connection_sock *icsk = inet_csk(sk); 2778 struct tcp_sock *tp = tcp_sk(sk); 2779 int fast_rexmit = 0, flag = *ack_flag; 2780 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2781 tcp_force_fast_retransmit(sk)); 2782 2783 if (!tp->packets_out && tp->sacked_out) 2784 tp->sacked_out = 0; 2785 2786 /* Now state machine starts. 2787 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2788 if (flag & FLAG_ECE) 2789 tp->prior_ssthresh = 0; 2790 2791 /* B. In all the states check for reneging SACKs. */ 2792 if (tcp_check_sack_reneging(sk, flag)) 2793 return; 2794 2795 /* C. Check consistency of the current state. */ 2796 tcp_verify_left_out(tp); 2797 2798 /* D. Check state exit conditions. State can be terminated 2799 * when high_seq is ACKed. */ 2800 if (icsk->icsk_ca_state == TCP_CA_Open) { 2801 WARN_ON(tp->retrans_out != 0); 2802 tp->retrans_stamp = 0; 2803 } else if (!before(tp->snd_una, tp->high_seq)) { 2804 switch (icsk->icsk_ca_state) { 2805 case TCP_CA_CWR: 2806 /* CWR is to be held something *above* high_seq 2807 * is ACKed for CWR bit to reach receiver. */ 2808 if (tp->snd_una != tp->high_seq) { 2809 tcp_end_cwnd_reduction(sk); 2810 tcp_set_ca_state(sk, TCP_CA_Open); 2811 } 2812 break; 2813 2814 case TCP_CA_Recovery: 2815 if (tcp_is_reno(tp)) 2816 tcp_reset_reno_sack(tp); 2817 if (tcp_try_undo_recovery(sk)) 2818 return; 2819 tcp_end_cwnd_reduction(sk); 2820 break; 2821 } 2822 } 2823 2824 /* E. Process state. */ 2825 switch (icsk->icsk_ca_state) { 2826 case TCP_CA_Recovery: 2827 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2828 if (tcp_is_reno(tp) && is_dupack) 2829 tcp_add_reno_sack(sk); 2830 } else { 2831 if (tcp_try_undo_partial(sk, prior_snd_una)) 2832 return; 2833 /* Partial ACK arrived. Force fast retransmit. */ 2834 do_lost = tcp_is_reno(tp) || 2835 tcp_force_fast_retransmit(sk); 2836 } 2837 if (tcp_try_undo_dsack(sk)) { 2838 tcp_try_keep_open(sk); 2839 return; 2840 } 2841 tcp_identify_packet_loss(sk, ack_flag); 2842 break; 2843 case TCP_CA_Loss: 2844 tcp_process_loss(sk, flag, is_dupack, rexmit); 2845 tcp_identify_packet_loss(sk, ack_flag); 2846 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2847 (*ack_flag & FLAG_LOST_RETRANS))) 2848 return; 2849 /* Change state if cwnd is undone or retransmits are lost */ 2850 /* fall through */ 2851 default: 2852 if (tcp_is_reno(tp)) { 2853 if (flag & FLAG_SND_UNA_ADVANCED) 2854 tcp_reset_reno_sack(tp); 2855 if (is_dupack) 2856 tcp_add_reno_sack(sk); 2857 } 2858 2859 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2860 tcp_try_undo_dsack(sk); 2861 2862 tcp_identify_packet_loss(sk, ack_flag); 2863 if (!tcp_time_to_recover(sk, flag)) { 2864 tcp_try_to_open(sk, flag); 2865 return; 2866 } 2867 2868 /* MTU probe failure: don't reduce cwnd */ 2869 if (icsk->icsk_ca_state < TCP_CA_CWR && 2870 icsk->icsk_mtup.probe_size && 2871 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2872 tcp_mtup_probe_failed(sk); 2873 /* Restores the reduction we did in tcp_mtup_probe() */ 2874 tp->snd_cwnd++; 2875 tcp_simple_retransmit(sk); 2876 return; 2877 } 2878 2879 /* Otherwise enter Recovery state */ 2880 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2881 fast_rexmit = 1; 2882 } 2883 2884 if (!tcp_is_rack(sk) && do_lost) 2885 tcp_update_scoreboard(sk, fast_rexmit); 2886 *rexmit = REXMIT_LOST; 2887 } 2888 2889 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2890 { 2891 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2892 struct tcp_sock *tp = tcp_sk(sk); 2893 2894 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2895 /* If the remote keeps returning delayed ACKs, eventually 2896 * the min filter would pick it up and overestimate the 2897 * prop. delay when it expires. Skip suspected delayed ACKs. 2898 */ 2899 return; 2900 } 2901 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2902 rtt_us ? : jiffies_to_usecs(1)); 2903 } 2904 2905 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2906 long seq_rtt_us, long sack_rtt_us, 2907 long ca_rtt_us, struct rate_sample *rs) 2908 { 2909 const struct tcp_sock *tp = tcp_sk(sk); 2910 2911 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2912 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2913 * Karn's algorithm forbids taking RTT if some retransmitted data 2914 * is acked (RFC6298). 2915 */ 2916 if (seq_rtt_us < 0) 2917 seq_rtt_us = sack_rtt_us; 2918 2919 /* RTTM Rule: A TSecr value received in a segment is used to 2920 * update the averaged RTT measurement only if the segment 2921 * acknowledges some new data, i.e., only if it advances the 2922 * left edge of the send window. 2923 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2924 */ 2925 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2926 flag & FLAG_ACKED) { 2927 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2928 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2929 2930 seq_rtt_us = ca_rtt_us = delta_us; 2931 } 2932 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2933 if (seq_rtt_us < 0) 2934 return false; 2935 2936 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2937 * always taken together with ACK, SACK, or TS-opts. Any negative 2938 * values will be skipped with the seq_rtt_us < 0 check above. 2939 */ 2940 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2941 tcp_rtt_estimator(sk, seq_rtt_us); 2942 tcp_set_rto(sk); 2943 2944 /* RFC6298: only reset backoff on valid RTT measurement. */ 2945 inet_csk(sk)->icsk_backoff = 0; 2946 return true; 2947 } 2948 2949 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2950 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2951 { 2952 struct rate_sample rs; 2953 long rtt_us = -1L; 2954 2955 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2956 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2957 2958 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2959 } 2960 2961 2962 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2963 { 2964 const struct inet_connection_sock *icsk = inet_csk(sk); 2965 2966 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2967 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2968 } 2969 2970 /* Restart timer after forward progress on connection. 2971 * RFC2988 recommends to restart timer to now+rto. 2972 */ 2973 void tcp_rearm_rto(struct sock *sk) 2974 { 2975 const struct inet_connection_sock *icsk = inet_csk(sk); 2976 struct tcp_sock *tp = tcp_sk(sk); 2977 2978 /* If the retrans timer is currently being used by Fast Open 2979 * for SYN-ACK retrans purpose, stay put. 2980 */ 2981 if (tp->fastopen_rsk) 2982 return; 2983 2984 if (!tp->packets_out) { 2985 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2986 } else { 2987 u32 rto = inet_csk(sk)->icsk_rto; 2988 /* Offset the time elapsed after installing regular RTO */ 2989 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2990 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2991 s64 delta_us = tcp_rto_delta_us(sk); 2992 /* delta_us may not be positive if the socket is locked 2993 * when the retrans timer fires and is rescheduled. 2994 */ 2995 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2996 } 2997 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2998 TCP_RTO_MAX); 2999 } 3000 } 3001 3002 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3003 static void tcp_set_xmit_timer(struct sock *sk) 3004 { 3005 if (!tcp_schedule_loss_probe(sk, true)) 3006 tcp_rearm_rto(sk); 3007 } 3008 3009 /* If we get here, the whole TSO packet has not been acked. */ 3010 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3011 { 3012 struct tcp_sock *tp = tcp_sk(sk); 3013 u32 packets_acked; 3014 3015 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3016 3017 packets_acked = tcp_skb_pcount(skb); 3018 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3019 return 0; 3020 packets_acked -= tcp_skb_pcount(skb); 3021 3022 if (packets_acked) { 3023 BUG_ON(tcp_skb_pcount(skb) == 0); 3024 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3025 } 3026 3027 return packets_acked; 3028 } 3029 3030 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3031 u32 prior_snd_una) 3032 { 3033 const struct skb_shared_info *shinfo; 3034 3035 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3036 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3037 return; 3038 3039 shinfo = skb_shinfo(skb); 3040 if (!before(shinfo->tskey, prior_snd_una) && 3041 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3042 tcp_skb_tsorted_save(skb) { 3043 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3044 } tcp_skb_tsorted_restore(skb); 3045 } 3046 } 3047 3048 /* Remove acknowledged frames from the retransmission queue. If our packet 3049 * is before the ack sequence we can discard it as it's confirmed to have 3050 * arrived at the other end. 3051 */ 3052 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3053 u32 prior_snd_una, 3054 struct tcp_sacktag_state *sack) 3055 { 3056 const struct inet_connection_sock *icsk = inet_csk(sk); 3057 u64 first_ackt, last_ackt; 3058 struct tcp_sock *tp = tcp_sk(sk); 3059 u32 prior_sacked = tp->sacked_out; 3060 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3061 struct sk_buff *skb, *next; 3062 bool fully_acked = true; 3063 long sack_rtt_us = -1L; 3064 long seq_rtt_us = -1L; 3065 long ca_rtt_us = -1L; 3066 u32 pkts_acked = 0; 3067 u32 last_in_flight = 0; 3068 bool rtt_update; 3069 int flag = 0; 3070 3071 first_ackt = 0; 3072 3073 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3074 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3075 const u32 start_seq = scb->seq; 3076 u8 sacked = scb->sacked; 3077 u32 acked_pcount; 3078 3079 tcp_ack_tstamp(sk, skb, prior_snd_una); 3080 3081 /* Determine how many packets and what bytes were acked, tso and else */ 3082 if (after(scb->end_seq, tp->snd_una)) { 3083 if (tcp_skb_pcount(skb) == 1 || 3084 !after(tp->snd_una, scb->seq)) 3085 break; 3086 3087 acked_pcount = tcp_tso_acked(sk, skb); 3088 if (!acked_pcount) 3089 break; 3090 fully_acked = false; 3091 } else { 3092 acked_pcount = tcp_skb_pcount(skb); 3093 } 3094 3095 if (unlikely(sacked & TCPCB_RETRANS)) { 3096 if (sacked & TCPCB_SACKED_RETRANS) 3097 tp->retrans_out -= acked_pcount; 3098 flag |= FLAG_RETRANS_DATA_ACKED; 3099 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3100 last_ackt = skb->skb_mstamp; 3101 WARN_ON_ONCE(last_ackt == 0); 3102 if (!first_ackt) 3103 first_ackt = last_ackt; 3104 3105 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3106 if (before(start_seq, reord)) 3107 reord = start_seq; 3108 if (!after(scb->end_seq, tp->high_seq)) 3109 flag |= FLAG_ORIG_SACK_ACKED; 3110 } 3111 3112 if (sacked & TCPCB_SACKED_ACKED) { 3113 tp->sacked_out -= acked_pcount; 3114 } else if (tcp_is_sack(tp)) { 3115 tp->delivered += acked_pcount; 3116 if (!tcp_skb_spurious_retrans(tp, skb)) 3117 tcp_rack_advance(tp, sacked, scb->end_seq, 3118 skb->skb_mstamp); 3119 } 3120 if (sacked & TCPCB_LOST) 3121 tp->lost_out -= acked_pcount; 3122 3123 tp->packets_out -= acked_pcount; 3124 pkts_acked += acked_pcount; 3125 tcp_rate_skb_delivered(sk, skb, sack->rate); 3126 3127 /* Initial outgoing SYN's get put onto the write_queue 3128 * just like anything else we transmit. It is not 3129 * true data, and if we misinform our callers that 3130 * this ACK acks real data, we will erroneously exit 3131 * connection startup slow start one packet too 3132 * quickly. This is severely frowned upon behavior. 3133 */ 3134 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3135 flag |= FLAG_DATA_ACKED; 3136 } else { 3137 flag |= FLAG_SYN_ACKED; 3138 tp->retrans_stamp = 0; 3139 } 3140 3141 if (!fully_acked) 3142 break; 3143 3144 next = skb_rb_next(skb); 3145 if (unlikely(skb == tp->retransmit_skb_hint)) 3146 tp->retransmit_skb_hint = NULL; 3147 if (unlikely(skb == tp->lost_skb_hint)) 3148 tp->lost_skb_hint = NULL; 3149 tcp_rtx_queue_unlink_and_free(skb, sk); 3150 } 3151 3152 if (!skb) 3153 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3154 3155 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3156 tp->snd_up = tp->snd_una; 3157 3158 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3159 flag |= FLAG_SACK_RENEGING; 3160 3161 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3162 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3163 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3164 3165 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3166 last_in_flight && !prior_sacked && fully_acked && 3167 sack->rate->prior_delivered + 1 == tp->delivered && 3168 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3169 /* Conservatively mark a delayed ACK. It's typically 3170 * from a lone runt packet over the round trip to 3171 * a receiver w/o out-of-order or CE events. 3172 */ 3173 flag |= FLAG_ACK_MAYBE_DELAYED; 3174 } 3175 } 3176 if (sack->first_sackt) { 3177 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3178 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3179 } 3180 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3181 ca_rtt_us, sack->rate); 3182 3183 if (flag & FLAG_ACKED) { 3184 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3185 if (unlikely(icsk->icsk_mtup.probe_size && 3186 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3187 tcp_mtup_probe_success(sk); 3188 } 3189 3190 if (tcp_is_reno(tp)) { 3191 tcp_remove_reno_sacks(sk, pkts_acked); 3192 3193 /* If any of the cumulatively ACKed segments was 3194 * retransmitted, non-SACK case cannot confirm that 3195 * progress was due to original transmission due to 3196 * lack of TCPCB_SACKED_ACKED bits even if some of 3197 * the packets may have been never retransmitted. 3198 */ 3199 if (flag & FLAG_RETRANS_DATA_ACKED) 3200 flag &= ~FLAG_ORIG_SACK_ACKED; 3201 } else { 3202 int delta; 3203 3204 /* Non-retransmitted hole got filled? That's reordering */ 3205 if (before(reord, prior_fack)) 3206 tcp_check_sack_reordering(sk, reord, 0); 3207 3208 delta = prior_sacked - tp->sacked_out; 3209 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3210 } 3211 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3212 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3213 /* Do not re-arm RTO if the sack RTT is measured from data sent 3214 * after when the head was last (re)transmitted. Otherwise the 3215 * timeout may continue to extend in loss recovery. 3216 */ 3217 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3218 } 3219 3220 if (icsk->icsk_ca_ops->pkts_acked) { 3221 struct ack_sample sample = { .pkts_acked = pkts_acked, 3222 .rtt_us = sack->rate->rtt_us, 3223 .in_flight = last_in_flight }; 3224 3225 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3226 } 3227 3228 #if FASTRETRANS_DEBUG > 0 3229 WARN_ON((int)tp->sacked_out < 0); 3230 WARN_ON((int)tp->lost_out < 0); 3231 WARN_ON((int)tp->retrans_out < 0); 3232 if (!tp->packets_out && tcp_is_sack(tp)) { 3233 icsk = inet_csk(sk); 3234 if (tp->lost_out) { 3235 pr_debug("Leak l=%u %d\n", 3236 tp->lost_out, icsk->icsk_ca_state); 3237 tp->lost_out = 0; 3238 } 3239 if (tp->sacked_out) { 3240 pr_debug("Leak s=%u %d\n", 3241 tp->sacked_out, icsk->icsk_ca_state); 3242 tp->sacked_out = 0; 3243 } 3244 if (tp->retrans_out) { 3245 pr_debug("Leak r=%u %d\n", 3246 tp->retrans_out, icsk->icsk_ca_state); 3247 tp->retrans_out = 0; 3248 } 3249 } 3250 #endif 3251 return flag; 3252 } 3253 3254 static void tcp_ack_probe(struct sock *sk) 3255 { 3256 struct inet_connection_sock *icsk = inet_csk(sk); 3257 struct sk_buff *head = tcp_send_head(sk); 3258 const struct tcp_sock *tp = tcp_sk(sk); 3259 3260 /* Was it a usable window open? */ 3261 if (!head) 3262 return; 3263 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3264 icsk->icsk_backoff = 0; 3265 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3266 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3267 * This function is not for random using! 3268 */ 3269 } else { 3270 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3271 3272 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3273 when, TCP_RTO_MAX); 3274 } 3275 } 3276 3277 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3278 { 3279 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3280 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3281 } 3282 3283 /* Decide wheather to run the increase function of congestion control. */ 3284 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3285 { 3286 /* If reordering is high then always grow cwnd whenever data is 3287 * delivered regardless of its ordering. Otherwise stay conservative 3288 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3289 * new SACK or ECE mark may first advance cwnd here and later reduce 3290 * cwnd in tcp_fastretrans_alert() based on more states. 3291 */ 3292 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3293 return flag & FLAG_FORWARD_PROGRESS; 3294 3295 return flag & FLAG_DATA_ACKED; 3296 } 3297 3298 /* The "ultimate" congestion control function that aims to replace the rigid 3299 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3300 * It's called toward the end of processing an ACK with precise rate 3301 * information. All transmission or retransmission are delayed afterwards. 3302 */ 3303 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3304 int flag, const struct rate_sample *rs) 3305 { 3306 const struct inet_connection_sock *icsk = inet_csk(sk); 3307 3308 if (icsk->icsk_ca_ops->cong_control) { 3309 icsk->icsk_ca_ops->cong_control(sk, rs); 3310 return; 3311 } 3312 3313 if (tcp_in_cwnd_reduction(sk)) { 3314 /* Reduce cwnd if state mandates */ 3315 tcp_cwnd_reduction(sk, acked_sacked, flag); 3316 } else if (tcp_may_raise_cwnd(sk, flag)) { 3317 /* Advance cwnd if state allows */ 3318 tcp_cong_avoid(sk, ack, acked_sacked); 3319 } 3320 tcp_update_pacing_rate(sk); 3321 } 3322 3323 /* Check that window update is acceptable. 3324 * The function assumes that snd_una<=ack<=snd_next. 3325 */ 3326 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3327 const u32 ack, const u32 ack_seq, 3328 const u32 nwin) 3329 { 3330 return after(ack, tp->snd_una) || 3331 after(ack_seq, tp->snd_wl1) || 3332 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3333 } 3334 3335 /* If we update tp->snd_una, also update tp->bytes_acked */ 3336 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3337 { 3338 u32 delta = ack - tp->snd_una; 3339 3340 sock_owned_by_me((struct sock *)tp); 3341 tp->bytes_acked += delta; 3342 tp->snd_una = ack; 3343 } 3344 3345 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3346 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3347 { 3348 u32 delta = seq - tp->rcv_nxt; 3349 3350 sock_owned_by_me((struct sock *)tp); 3351 tp->bytes_received += delta; 3352 tp->rcv_nxt = seq; 3353 } 3354 3355 /* Update our send window. 3356 * 3357 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3358 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3359 */ 3360 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3361 u32 ack_seq) 3362 { 3363 struct tcp_sock *tp = tcp_sk(sk); 3364 int flag = 0; 3365 u32 nwin = ntohs(tcp_hdr(skb)->window); 3366 3367 if (likely(!tcp_hdr(skb)->syn)) 3368 nwin <<= tp->rx_opt.snd_wscale; 3369 3370 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3371 flag |= FLAG_WIN_UPDATE; 3372 tcp_update_wl(tp, ack_seq); 3373 3374 if (tp->snd_wnd != nwin) { 3375 tp->snd_wnd = nwin; 3376 3377 /* Note, it is the only place, where 3378 * fast path is recovered for sending TCP. 3379 */ 3380 tp->pred_flags = 0; 3381 tcp_fast_path_check(sk); 3382 3383 if (!tcp_write_queue_empty(sk)) 3384 tcp_slow_start_after_idle_check(sk); 3385 3386 if (nwin > tp->max_window) { 3387 tp->max_window = nwin; 3388 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3389 } 3390 } 3391 } 3392 3393 tcp_snd_una_update(tp, ack); 3394 3395 return flag; 3396 } 3397 3398 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3399 u32 *last_oow_ack_time) 3400 { 3401 if (*last_oow_ack_time) { 3402 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3403 3404 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3405 NET_INC_STATS(net, mib_idx); 3406 return true; /* rate-limited: don't send yet! */ 3407 } 3408 } 3409 3410 *last_oow_ack_time = tcp_jiffies32; 3411 3412 return false; /* not rate-limited: go ahead, send dupack now! */ 3413 } 3414 3415 /* Return true if we're currently rate-limiting out-of-window ACKs and 3416 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3417 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3418 * attacks that send repeated SYNs or ACKs for the same connection. To 3419 * do this, we do not send a duplicate SYNACK or ACK if the remote 3420 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3421 */ 3422 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3423 int mib_idx, u32 *last_oow_ack_time) 3424 { 3425 /* Data packets without SYNs are not likely part of an ACK loop. */ 3426 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3427 !tcp_hdr(skb)->syn) 3428 return false; 3429 3430 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3431 } 3432 3433 /* RFC 5961 7 [ACK Throttling] */ 3434 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3435 { 3436 /* unprotected vars, we dont care of overwrites */ 3437 static u32 challenge_timestamp; 3438 static unsigned int challenge_count; 3439 struct tcp_sock *tp = tcp_sk(sk); 3440 struct net *net = sock_net(sk); 3441 u32 count, now; 3442 3443 /* First check our per-socket dupack rate limit. */ 3444 if (__tcp_oow_rate_limited(net, 3445 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3446 &tp->last_oow_ack_time)) 3447 return; 3448 3449 /* Then check host-wide RFC 5961 rate limit. */ 3450 now = jiffies / HZ; 3451 if (now != challenge_timestamp) { 3452 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3453 u32 half = (ack_limit + 1) >> 1; 3454 3455 challenge_timestamp = now; 3456 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3457 } 3458 count = READ_ONCE(challenge_count); 3459 if (count > 0) { 3460 WRITE_ONCE(challenge_count, count - 1); 3461 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3462 tcp_send_ack(sk); 3463 } 3464 } 3465 3466 static void tcp_store_ts_recent(struct tcp_sock *tp) 3467 { 3468 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3469 tp->rx_opt.ts_recent_stamp = get_seconds(); 3470 } 3471 3472 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3473 { 3474 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3475 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3476 * extra check below makes sure this can only happen 3477 * for pure ACK frames. -DaveM 3478 * 3479 * Not only, also it occurs for expired timestamps. 3480 */ 3481 3482 if (tcp_paws_check(&tp->rx_opt, 0)) 3483 tcp_store_ts_recent(tp); 3484 } 3485 } 3486 3487 /* This routine deals with acks during a TLP episode. 3488 * We mark the end of a TLP episode on receiving TLP dupack or when 3489 * ack is after tlp_high_seq. 3490 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3491 */ 3492 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3493 { 3494 struct tcp_sock *tp = tcp_sk(sk); 3495 3496 if (before(ack, tp->tlp_high_seq)) 3497 return; 3498 3499 if (flag & FLAG_DSACKING_ACK) { 3500 /* This DSACK means original and TLP probe arrived; no loss */ 3501 tp->tlp_high_seq = 0; 3502 } else if (after(ack, tp->tlp_high_seq)) { 3503 /* ACK advances: there was a loss, so reduce cwnd. Reset 3504 * tlp_high_seq in tcp_init_cwnd_reduction() 3505 */ 3506 tcp_init_cwnd_reduction(sk); 3507 tcp_set_ca_state(sk, TCP_CA_CWR); 3508 tcp_end_cwnd_reduction(sk); 3509 tcp_try_keep_open(sk); 3510 NET_INC_STATS(sock_net(sk), 3511 LINUX_MIB_TCPLOSSPROBERECOVERY); 3512 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3513 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3514 /* Pure dupack: original and TLP probe arrived; no loss */ 3515 tp->tlp_high_seq = 0; 3516 } 3517 } 3518 3519 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3520 { 3521 const struct inet_connection_sock *icsk = inet_csk(sk); 3522 3523 if (icsk->icsk_ca_ops->in_ack_event) 3524 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3525 } 3526 3527 /* Congestion control has updated the cwnd already. So if we're in 3528 * loss recovery then now we do any new sends (for FRTO) or 3529 * retransmits (for CA_Loss or CA_recovery) that make sense. 3530 */ 3531 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3532 { 3533 struct tcp_sock *tp = tcp_sk(sk); 3534 3535 if (rexmit == REXMIT_NONE) 3536 return; 3537 3538 if (unlikely(rexmit == 2)) { 3539 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3540 TCP_NAGLE_OFF); 3541 if (after(tp->snd_nxt, tp->high_seq)) 3542 return; 3543 tp->frto = 0; 3544 } 3545 tcp_xmit_retransmit_queue(sk); 3546 } 3547 3548 /* Returns the number of packets newly acked or sacked by the current ACK */ 3549 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3550 { 3551 const struct net *net = sock_net(sk); 3552 struct tcp_sock *tp = tcp_sk(sk); 3553 u32 delivered; 3554 3555 delivered = tp->delivered - prior_delivered; 3556 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3557 if (flag & FLAG_ECE) { 3558 tp->delivered_ce += delivered; 3559 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3560 } 3561 return delivered; 3562 } 3563 3564 /* This routine deals with incoming acks, but not outgoing ones. */ 3565 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3566 { 3567 struct inet_connection_sock *icsk = inet_csk(sk); 3568 struct tcp_sock *tp = tcp_sk(sk); 3569 struct tcp_sacktag_state sack_state; 3570 struct rate_sample rs = { .prior_delivered = 0 }; 3571 u32 prior_snd_una = tp->snd_una; 3572 bool is_sack_reneg = tp->is_sack_reneg; 3573 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3574 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3575 bool is_dupack = false; 3576 int prior_packets = tp->packets_out; 3577 u32 delivered = tp->delivered; 3578 u32 lost = tp->lost; 3579 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3580 u32 prior_fack; 3581 3582 sack_state.first_sackt = 0; 3583 sack_state.rate = &rs; 3584 3585 /* We very likely will need to access rtx queue. */ 3586 prefetch(sk->tcp_rtx_queue.rb_node); 3587 3588 /* If the ack is older than previous acks 3589 * then we can probably ignore it. 3590 */ 3591 if (before(ack, prior_snd_una)) { 3592 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3593 if (before(ack, prior_snd_una - tp->max_window)) { 3594 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3595 tcp_send_challenge_ack(sk, skb); 3596 return -1; 3597 } 3598 goto old_ack; 3599 } 3600 3601 /* If the ack includes data we haven't sent yet, discard 3602 * this segment (RFC793 Section 3.9). 3603 */ 3604 if (after(ack, tp->snd_nxt)) 3605 goto invalid_ack; 3606 3607 if (after(ack, prior_snd_una)) { 3608 flag |= FLAG_SND_UNA_ADVANCED; 3609 icsk->icsk_retransmits = 0; 3610 3611 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3612 if (static_branch_unlikely(&clean_acked_data_enabled)) 3613 if (icsk->icsk_clean_acked) 3614 icsk->icsk_clean_acked(sk, ack); 3615 #endif 3616 } 3617 3618 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3619 rs.prior_in_flight = tcp_packets_in_flight(tp); 3620 3621 /* ts_recent update must be made after we are sure that the packet 3622 * is in window. 3623 */ 3624 if (flag & FLAG_UPDATE_TS_RECENT) 3625 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3626 3627 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3628 /* Window is constant, pure forward advance. 3629 * No more checks are required. 3630 * Note, we use the fact that SND.UNA>=SND.WL2. 3631 */ 3632 tcp_update_wl(tp, ack_seq); 3633 tcp_snd_una_update(tp, ack); 3634 flag |= FLAG_WIN_UPDATE; 3635 3636 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3637 3638 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3639 } else { 3640 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3641 3642 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3643 flag |= FLAG_DATA; 3644 else 3645 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3646 3647 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3648 3649 if (TCP_SKB_CB(skb)->sacked) 3650 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3651 &sack_state); 3652 3653 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3654 flag |= FLAG_ECE; 3655 ack_ev_flags |= CA_ACK_ECE; 3656 } 3657 3658 if (flag & FLAG_WIN_UPDATE) 3659 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3660 3661 tcp_in_ack_event(sk, ack_ev_flags); 3662 } 3663 3664 /* We passed data and got it acked, remove any soft error 3665 * log. Something worked... 3666 */ 3667 sk->sk_err_soft = 0; 3668 icsk->icsk_probes_out = 0; 3669 tp->rcv_tstamp = tcp_jiffies32; 3670 if (!prior_packets) 3671 goto no_queue; 3672 3673 /* See if we can take anything off of the retransmit queue. */ 3674 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3675 3676 tcp_rack_update_reo_wnd(sk, &rs); 3677 3678 if (tp->tlp_high_seq) 3679 tcp_process_tlp_ack(sk, ack, flag); 3680 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3681 if (flag & FLAG_SET_XMIT_TIMER) 3682 tcp_set_xmit_timer(sk); 3683 3684 if (tcp_ack_is_dubious(sk, flag)) { 3685 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3686 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3687 &rexmit); 3688 } 3689 3690 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3691 sk_dst_confirm(sk); 3692 3693 delivered = tcp_newly_delivered(sk, delivered, flag); 3694 lost = tp->lost - lost; /* freshly marked lost */ 3695 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3696 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3697 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3698 tcp_xmit_recovery(sk, rexmit); 3699 return 1; 3700 3701 no_queue: 3702 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3703 if (flag & FLAG_DSACKING_ACK) { 3704 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3705 &rexmit); 3706 tcp_newly_delivered(sk, delivered, flag); 3707 } 3708 /* If this ack opens up a zero window, clear backoff. It was 3709 * being used to time the probes, and is probably far higher than 3710 * it needs to be for normal retransmission. 3711 */ 3712 tcp_ack_probe(sk); 3713 3714 if (tp->tlp_high_seq) 3715 tcp_process_tlp_ack(sk, ack, flag); 3716 return 1; 3717 3718 invalid_ack: 3719 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3720 return -1; 3721 3722 old_ack: 3723 /* If data was SACKed, tag it and see if we should send more data. 3724 * If data was DSACKed, see if we can undo a cwnd reduction. 3725 */ 3726 if (TCP_SKB_CB(skb)->sacked) { 3727 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3728 &sack_state); 3729 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3730 &rexmit); 3731 tcp_newly_delivered(sk, delivered, flag); 3732 tcp_xmit_recovery(sk, rexmit); 3733 } 3734 3735 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3736 return 0; 3737 } 3738 3739 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3740 bool syn, struct tcp_fastopen_cookie *foc, 3741 bool exp_opt) 3742 { 3743 /* Valid only in SYN or SYN-ACK with an even length. */ 3744 if (!foc || !syn || len < 0 || (len & 1)) 3745 return; 3746 3747 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3748 len <= TCP_FASTOPEN_COOKIE_MAX) 3749 memcpy(foc->val, cookie, len); 3750 else if (len != 0) 3751 len = -1; 3752 foc->len = len; 3753 foc->exp = exp_opt; 3754 } 3755 3756 static void smc_parse_options(const struct tcphdr *th, 3757 struct tcp_options_received *opt_rx, 3758 const unsigned char *ptr, 3759 int opsize) 3760 { 3761 #if IS_ENABLED(CONFIG_SMC) 3762 if (static_branch_unlikely(&tcp_have_smc)) { 3763 if (th->syn && !(opsize & 1) && 3764 opsize >= TCPOLEN_EXP_SMC_BASE && 3765 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3766 opt_rx->smc_ok = 1; 3767 } 3768 #endif 3769 } 3770 3771 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3772 * But, this can also be called on packets in the established flow when 3773 * the fast version below fails. 3774 */ 3775 void tcp_parse_options(const struct net *net, 3776 const struct sk_buff *skb, 3777 struct tcp_options_received *opt_rx, int estab, 3778 struct tcp_fastopen_cookie *foc) 3779 { 3780 const unsigned char *ptr; 3781 const struct tcphdr *th = tcp_hdr(skb); 3782 int length = (th->doff * 4) - sizeof(struct tcphdr); 3783 3784 ptr = (const unsigned char *)(th + 1); 3785 opt_rx->saw_tstamp = 0; 3786 3787 while (length > 0) { 3788 int opcode = *ptr++; 3789 int opsize; 3790 3791 switch (opcode) { 3792 case TCPOPT_EOL: 3793 return; 3794 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3795 length--; 3796 continue; 3797 default: 3798 opsize = *ptr++; 3799 if (opsize < 2) /* "silly options" */ 3800 return; 3801 if (opsize > length) 3802 return; /* don't parse partial options */ 3803 switch (opcode) { 3804 case TCPOPT_MSS: 3805 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3806 u16 in_mss = get_unaligned_be16(ptr); 3807 if (in_mss) { 3808 if (opt_rx->user_mss && 3809 opt_rx->user_mss < in_mss) 3810 in_mss = opt_rx->user_mss; 3811 opt_rx->mss_clamp = in_mss; 3812 } 3813 } 3814 break; 3815 case TCPOPT_WINDOW: 3816 if (opsize == TCPOLEN_WINDOW && th->syn && 3817 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3818 __u8 snd_wscale = *(__u8 *)ptr; 3819 opt_rx->wscale_ok = 1; 3820 if (snd_wscale > TCP_MAX_WSCALE) { 3821 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3822 __func__, 3823 snd_wscale, 3824 TCP_MAX_WSCALE); 3825 snd_wscale = TCP_MAX_WSCALE; 3826 } 3827 opt_rx->snd_wscale = snd_wscale; 3828 } 3829 break; 3830 case TCPOPT_TIMESTAMP: 3831 if ((opsize == TCPOLEN_TIMESTAMP) && 3832 ((estab && opt_rx->tstamp_ok) || 3833 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3834 opt_rx->saw_tstamp = 1; 3835 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3836 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3837 } 3838 break; 3839 case TCPOPT_SACK_PERM: 3840 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3841 !estab && net->ipv4.sysctl_tcp_sack) { 3842 opt_rx->sack_ok = TCP_SACK_SEEN; 3843 tcp_sack_reset(opt_rx); 3844 } 3845 break; 3846 3847 case TCPOPT_SACK: 3848 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3849 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3850 opt_rx->sack_ok) { 3851 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3852 } 3853 break; 3854 #ifdef CONFIG_TCP_MD5SIG 3855 case TCPOPT_MD5SIG: 3856 /* 3857 * The MD5 Hash has already been 3858 * checked (see tcp_v{4,6}_do_rcv()). 3859 */ 3860 break; 3861 #endif 3862 case TCPOPT_FASTOPEN: 3863 tcp_parse_fastopen_option( 3864 opsize - TCPOLEN_FASTOPEN_BASE, 3865 ptr, th->syn, foc, false); 3866 break; 3867 3868 case TCPOPT_EXP: 3869 /* Fast Open option shares code 254 using a 3870 * 16 bits magic number. 3871 */ 3872 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3873 get_unaligned_be16(ptr) == 3874 TCPOPT_FASTOPEN_MAGIC) 3875 tcp_parse_fastopen_option(opsize - 3876 TCPOLEN_EXP_FASTOPEN_BASE, 3877 ptr + 2, th->syn, foc, true); 3878 else 3879 smc_parse_options(th, opt_rx, ptr, 3880 opsize); 3881 break; 3882 3883 } 3884 ptr += opsize-2; 3885 length -= opsize; 3886 } 3887 } 3888 } 3889 EXPORT_SYMBOL(tcp_parse_options); 3890 3891 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3892 { 3893 const __be32 *ptr = (const __be32 *)(th + 1); 3894 3895 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3896 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3897 tp->rx_opt.saw_tstamp = 1; 3898 ++ptr; 3899 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3900 ++ptr; 3901 if (*ptr) 3902 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3903 else 3904 tp->rx_opt.rcv_tsecr = 0; 3905 return true; 3906 } 3907 return false; 3908 } 3909 3910 /* Fast parse options. This hopes to only see timestamps. 3911 * If it is wrong it falls back on tcp_parse_options(). 3912 */ 3913 static bool tcp_fast_parse_options(const struct net *net, 3914 const struct sk_buff *skb, 3915 const struct tcphdr *th, struct tcp_sock *tp) 3916 { 3917 /* In the spirit of fast parsing, compare doff directly to constant 3918 * values. Because equality is used, short doff can be ignored here. 3919 */ 3920 if (th->doff == (sizeof(*th) / 4)) { 3921 tp->rx_opt.saw_tstamp = 0; 3922 return false; 3923 } else if (tp->rx_opt.tstamp_ok && 3924 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3925 if (tcp_parse_aligned_timestamp(tp, th)) 3926 return true; 3927 } 3928 3929 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3930 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3931 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3932 3933 return true; 3934 } 3935 3936 #ifdef CONFIG_TCP_MD5SIG 3937 /* 3938 * Parse MD5 Signature option 3939 */ 3940 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3941 { 3942 int length = (th->doff << 2) - sizeof(*th); 3943 const u8 *ptr = (const u8 *)(th + 1); 3944 3945 /* If not enough data remaining, we can short cut */ 3946 while (length >= TCPOLEN_MD5SIG) { 3947 int opcode = *ptr++; 3948 int opsize; 3949 3950 switch (opcode) { 3951 case TCPOPT_EOL: 3952 return NULL; 3953 case TCPOPT_NOP: 3954 length--; 3955 continue; 3956 default: 3957 opsize = *ptr++; 3958 if (opsize < 2 || opsize > length) 3959 return NULL; 3960 if (opcode == TCPOPT_MD5SIG) 3961 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3962 } 3963 ptr += opsize - 2; 3964 length -= opsize; 3965 } 3966 return NULL; 3967 } 3968 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3969 #endif 3970 3971 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3972 * 3973 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3974 * it can pass through stack. So, the following predicate verifies that 3975 * this segment is not used for anything but congestion avoidance or 3976 * fast retransmit. Moreover, we even are able to eliminate most of such 3977 * second order effects, if we apply some small "replay" window (~RTO) 3978 * to timestamp space. 3979 * 3980 * All these measures still do not guarantee that we reject wrapped ACKs 3981 * on networks with high bandwidth, when sequence space is recycled fastly, 3982 * but it guarantees that such events will be very rare and do not affect 3983 * connection seriously. This doesn't look nice, but alas, PAWS is really 3984 * buggy extension. 3985 * 3986 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3987 * states that events when retransmit arrives after original data are rare. 3988 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3989 * the biggest problem on large power networks even with minor reordering. 3990 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3991 * up to bandwidth of 18Gigabit/sec. 8) ] 3992 */ 3993 3994 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3995 { 3996 const struct tcp_sock *tp = tcp_sk(sk); 3997 const struct tcphdr *th = tcp_hdr(skb); 3998 u32 seq = TCP_SKB_CB(skb)->seq; 3999 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4000 4001 return (/* 1. Pure ACK with correct sequence number. */ 4002 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4003 4004 /* 2. ... and duplicate ACK. */ 4005 ack == tp->snd_una && 4006 4007 /* 3. ... and does not update window. */ 4008 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4009 4010 /* 4. ... and sits in replay window. */ 4011 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4012 } 4013 4014 static inline bool tcp_paws_discard(const struct sock *sk, 4015 const struct sk_buff *skb) 4016 { 4017 const struct tcp_sock *tp = tcp_sk(sk); 4018 4019 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4020 !tcp_disordered_ack(sk, skb); 4021 } 4022 4023 /* Check segment sequence number for validity. 4024 * 4025 * Segment controls are considered valid, if the segment 4026 * fits to the window after truncation to the window. Acceptability 4027 * of data (and SYN, FIN, of course) is checked separately. 4028 * See tcp_data_queue(), for example. 4029 * 4030 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4031 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4032 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4033 * (borrowed from freebsd) 4034 */ 4035 4036 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4037 { 4038 return !before(end_seq, tp->rcv_wup) && 4039 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4040 } 4041 4042 /* When we get a reset we do this. */ 4043 void tcp_reset(struct sock *sk) 4044 { 4045 trace_tcp_receive_reset(sk); 4046 4047 /* We want the right error as BSD sees it (and indeed as we do). */ 4048 switch (sk->sk_state) { 4049 case TCP_SYN_SENT: 4050 sk->sk_err = ECONNREFUSED; 4051 break; 4052 case TCP_CLOSE_WAIT: 4053 sk->sk_err = EPIPE; 4054 break; 4055 case TCP_CLOSE: 4056 return; 4057 default: 4058 sk->sk_err = ECONNRESET; 4059 } 4060 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4061 smp_wmb(); 4062 4063 tcp_write_queue_purge(sk); 4064 tcp_done(sk); 4065 4066 if (!sock_flag(sk, SOCK_DEAD)) 4067 sk->sk_error_report(sk); 4068 } 4069 4070 /* 4071 * Process the FIN bit. This now behaves as it is supposed to work 4072 * and the FIN takes effect when it is validly part of sequence 4073 * space. Not before when we get holes. 4074 * 4075 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4076 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4077 * TIME-WAIT) 4078 * 4079 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4080 * close and we go into CLOSING (and later onto TIME-WAIT) 4081 * 4082 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4083 */ 4084 void tcp_fin(struct sock *sk) 4085 { 4086 struct tcp_sock *tp = tcp_sk(sk); 4087 4088 inet_csk_schedule_ack(sk); 4089 4090 sk->sk_shutdown |= RCV_SHUTDOWN; 4091 sock_set_flag(sk, SOCK_DONE); 4092 4093 switch (sk->sk_state) { 4094 case TCP_SYN_RECV: 4095 case TCP_ESTABLISHED: 4096 /* Move to CLOSE_WAIT */ 4097 tcp_set_state(sk, TCP_CLOSE_WAIT); 4098 inet_csk(sk)->icsk_ack.pingpong = 1; 4099 break; 4100 4101 case TCP_CLOSE_WAIT: 4102 case TCP_CLOSING: 4103 /* Received a retransmission of the FIN, do 4104 * nothing. 4105 */ 4106 break; 4107 case TCP_LAST_ACK: 4108 /* RFC793: Remain in the LAST-ACK state. */ 4109 break; 4110 4111 case TCP_FIN_WAIT1: 4112 /* This case occurs when a simultaneous close 4113 * happens, we must ack the received FIN and 4114 * enter the CLOSING state. 4115 */ 4116 tcp_send_ack(sk); 4117 tcp_set_state(sk, TCP_CLOSING); 4118 break; 4119 case TCP_FIN_WAIT2: 4120 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4121 tcp_send_ack(sk); 4122 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4123 break; 4124 default: 4125 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4126 * cases we should never reach this piece of code. 4127 */ 4128 pr_err("%s: Impossible, sk->sk_state=%d\n", 4129 __func__, sk->sk_state); 4130 break; 4131 } 4132 4133 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4134 * Probably, we should reset in this case. For now drop them. 4135 */ 4136 skb_rbtree_purge(&tp->out_of_order_queue); 4137 if (tcp_is_sack(tp)) 4138 tcp_sack_reset(&tp->rx_opt); 4139 sk_mem_reclaim(sk); 4140 4141 if (!sock_flag(sk, SOCK_DEAD)) { 4142 sk->sk_state_change(sk); 4143 4144 /* Do not send POLL_HUP for half duplex close. */ 4145 if (sk->sk_shutdown == SHUTDOWN_MASK || 4146 sk->sk_state == TCP_CLOSE) 4147 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4148 else 4149 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4150 } 4151 } 4152 4153 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4154 u32 end_seq) 4155 { 4156 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4157 if (before(seq, sp->start_seq)) 4158 sp->start_seq = seq; 4159 if (after(end_seq, sp->end_seq)) 4160 sp->end_seq = end_seq; 4161 return true; 4162 } 4163 return false; 4164 } 4165 4166 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4167 { 4168 struct tcp_sock *tp = tcp_sk(sk); 4169 4170 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4171 int mib_idx; 4172 4173 if (before(seq, tp->rcv_nxt)) 4174 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4175 else 4176 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4177 4178 NET_INC_STATS(sock_net(sk), mib_idx); 4179 4180 tp->rx_opt.dsack = 1; 4181 tp->duplicate_sack[0].start_seq = seq; 4182 tp->duplicate_sack[0].end_seq = end_seq; 4183 } 4184 } 4185 4186 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4187 { 4188 struct tcp_sock *tp = tcp_sk(sk); 4189 4190 if (!tp->rx_opt.dsack) 4191 tcp_dsack_set(sk, seq, end_seq); 4192 else 4193 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4194 } 4195 4196 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4197 { 4198 struct tcp_sock *tp = tcp_sk(sk); 4199 4200 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4201 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4202 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4203 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4204 4205 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4206 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4207 4208 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4209 end_seq = tp->rcv_nxt; 4210 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4211 } 4212 } 4213 4214 tcp_send_ack(sk); 4215 } 4216 4217 /* These routines update the SACK block as out-of-order packets arrive or 4218 * in-order packets close up the sequence space. 4219 */ 4220 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4221 { 4222 int this_sack; 4223 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4224 struct tcp_sack_block *swalk = sp + 1; 4225 4226 /* See if the recent change to the first SACK eats into 4227 * or hits the sequence space of other SACK blocks, if so coalesce. 4228 */ 4229 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4230 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4231 int i; 4232 4233 /* Zap SWALK, by moving every further SACK up by one slot. 4234 * Decrease num_sacks. 4235 */ 4236 tp->rx_opt.num_sacks--; 4237 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4238 sp[i] = sp[i + 1]; 4239 continue; 4240 } 4241 this_sack++, swalk++; 4242 } 4243 } 4244 4245 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4246 { 4247 struct tcp_sock *tp = tcp_sk(sk); 4248 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4249 int cur_sacks = tp->rx_opt.num_sacks; 4250 int this_sack; 4251 4252 if (!cur_sacks) 4253 goto new_sack; 4254 4255 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4256 if (tcp_sack_extend(sp, seq, end_seq)) { 4257 /* Rotate this_sack to the first one. */ 4258 for (; this_sack > 0; this_sack--, sp--) 4259 swap(*sp, *(sp - 1)); 4260 if (cur_sacks > 1) 4261 tcp_sack_maybe_coalesce(tp); 4262 return; 4263 } 4264 } 4265 4266 /* Could not find an adjacent existing SACK, build a new one, 4267 * put it at the front, and shift everyone else down. We 4268 * always know there is at least one SACK present already here. 4269 * 4270 * If the sack array is full, forget about the last one. 4271 */ 4272 if (this_sack >= TCP_NUM_SACKS) { 4273 if (tp->compressed_ack) 4274 tcp_send_ack(sk); 4275 this_sack--; 4276 tp->rx_opt.num_sacks--; 4277 sp--; 4278 } 4279 for (; this_sack > 0; this_sack--, sp--) 4280 *sp = *(sp - 1); 4281 4282 new_sack: 4283 /* Build the new head SACK, and we're done. */ 4284 sp->start_seq = seq; 4285 sp->end_seq = end_seq; 4286 tp->rx_opt.num_sacks++; 4287 } 4288 4289 /* RCV.NXT advances, some SACKs should be eaten. */ 4290 4291 static void tcp_sack_remove(struct tcp_sock *tp) 4292 { 4293 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4294 int num_sacks = tp->rx_opt.num_sacks; 4295 int this_sack; 4296 4297 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4298 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4299 tp->rx_opt.num_sacks = 0; 4300 return; 4301 } 4302 4303 for (this_sack = 0; this_sack < num_sacks;) { 4304 /* Check if the start of the sack is covered by RCV.NXT. */ 4305 if (!before(tp->rcv_nxt, sp->start_seq)) { 4306 int i; 4307 4308 /* RCV.NXT must cover all the block! */ 4309 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4310 4311 /* Zap this SACK, by moving forward any other SACKS. */ 4312 for (i = this_sack+1; i < num_sacks; i++) 4313 tp->selective_acks[i-1] = tp->selective_acks[i]; 4314 num_sacks--; 4315 continue; 4316 } 4317 this_sack++; 4318 sp++; 4319 } 4320 tp->rx_opt.num_sacks = num_sacks; 4321 } 4322 4323 /** 4324 * tcp_try_coalesce - try to merge skb to prior one 4325 * @sk: socket 4326 * @dest: destination queue 4327 * @to: prior buffer 4328 * @from: buffer to add in queue 4329 * @fragstolen: pointer to boolean 4330 * 4331 * Before queueing skb @from after @to, try to merge them 4332 * to reduce overall memory use and queue lengths, if cost is small. 4333 * Packets in ofo or receive queues can stay a long time. 4334 * Better try to coalesce them right now to avoid future collapses. 4335 * Returns true if caller should free @from instead of queueing it 4336 */ 4337 static bool tcp_try_coalesce(struct sock *sk, 4338 struct sk_buff *to, 4339 struct sk_buff *from, 4340 bool *fragstolen) 4341 { 4342 int delta; 4343 4344 *fragstolen = false; 4345 4346 /* Its possible this segment overlaps with prior segment in queue */ 4347 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4348 return false; 4349 4350 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4351 return false; 4352 4353 atomic_add(delta, &sk->sk_rmem_alloc); 4354 sk_mem_charge(sk, delta); 4355 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4356 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4357 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4358 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4359 4360 if (TCP_SKB_CB(from)->has_rxtstamp) { 4361 TCP_SKB_CB(to)->has_rxtstamp = true; 4362 to->tstamp = from->tstamp; 4363 } 4364 4365 return true; 4366 } 4367 4368 static bool tcp_ooo_try_coalesce(struct sock *sk, 4369 struct sk_buff *to, 4370 struct sk_buff *from, 4371 bool *fragstolen) 4372 { 4373 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4374 4375 /* In case tcp_drop() is called later, update to->gso_segs */ 4376 if (res) { 4377 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4378 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4379 4380 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4381 } 4382 return res; 4383 } 4384 4385 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4386 { 4387 sk_drops_add(sk, skb); 4388 __kfree_skb(skb); 4389 } 4390 4391 /* This one checks to see if we can put data from the 4392 * out_of_order queue into the receive_queue. 4393 */ 4394 static void tcp_ofo_queue(struct sock *sk) 4395 { 4396 struct tcp_sock *tp = tcp_sk(sk); 4397 __u32 dsack_high = tp->rcv_nxt; 4398 bool fin, fragstolen, eaten; 4399 struct sk_buff *skb, *tail; 4400 struct rb_node *p; 4401 4402 p = rb_first(&tp->out_of_order_queue); 4403 while (p) { 4404 skb = rb_to_skb(p); 4405 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4406 break; 4407 4408 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4409 __u32 dsack = dsack_high; 4410 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4411 dsack_high = TCP_SKB_CB(skb)->end_seq; 4412 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4413 } 4414 p = rb_next(p); 4415 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4416 4417 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4418 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4419 tcp_drop(sk, skb); 4420 continue; 4421 } 4422 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4423 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4424 TCP_SKB_CB(skb)->end_seq); 4425 4426 tail = skb_peek_tail(&sk->sk_receive_queue); 4427 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4428 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4429 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4430 if (!eaten) 4431 __skb_queue_tail(&sk->sk_receive_queue, skb); 4432 else 4433 kfree_skb_partial(skb, fragstolen); 4434 4435 if (unlikely(fin)) { 4436 tcp_fin(sk); 4437 /* tcp_fin() purges tp->out_of_order_queue, 4438 * so we must end this loop right now. 4439 */ 4440 break; 4441 } 4442 } 4443 } 4444 4445 static bool tcp_prune_ofo_queue(struct sock *sk); 4446 static int tcp_prune_queue(struct sock *sk); 4447 4448 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4449 unsigned int size) 4450 { 4451 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4452 !sk_rmem_schedule(sk, skb, size)) { 4453 4454 if (tcp_prune_queue(sk) < 0) 4455 return -1; 4456 4457 while (!sk_rmem_schedule(sk, skb, size)) { 4458 if (!tcp_prune_ofo_queue(sk)) 4459 return -1; 4460 } 4461 } 4462 return 0; 4463 } 4464 4465 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4466 { 4467 struct tcp_sock *tp = tcp_sk(sk); 4468 struct rb_node **p, *parent; 4469 struct sk_buff *skb1; 4470 u32 seq, end_seq; 4471 bool fragstolen; 4472 4473 tcp_ecn_check_ce(sk, skb); 4474 4475 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4476 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4477 tcp_drop(sk, skb); 4478 return; 4479 } 4480 4481 /* Disable header prediction. */ 4482 tp->pred_flags = 0; 4483 inet_csk_schedule_ack(sk); 4484 4485 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4486 seq = TCP_SKB_CB(skb)->seq; 4487 end_seq = TCP_SKB_CB(skb)->end_seq; 4488 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4489 tp->rcv_nxt, seq, end_seq); 4490 4491 p = &tp->out_of_order_queue.rb_node; 4492 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4493 /* Initial out of order segment, build 1 SACK. */ 4494 if (tcp_is_sack(tp)) { 4495 tp->rx_opt.num_sacks = 1; 4496 tp->selective_acks[0].start_seq = seq; 4497 tp->selective_acks[0].end_seq = end_seq; 4498 } 4499 rb_link_node(&skb->rbnode, NULL, p); 4500 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4501 tp->ooo_last_skb = skb; 4502 goto end; 4503 } 4504 4505 /* In the typical case, we are adding an skb to the end of the list. 4506 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4507 */ 4508 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4509 skb, &fragstolen)) { 4510 coalesce_done: 4511 tcp_grow_window(sk, skb); 4512 kfree_skb_partial(skb, fragstolen); 4513 skb = NULL; 4514 goto add_sack; 4515 } 4516 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4517 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4518 parent = &tp->ooo_last_skb->rbnode; 4519 p = &parent->rb_right; 4520 goto insert; 4521 } 4522 4523 /* Find place to insert this segment. Handle overlaps on the way. */ 4524 parent = NULL; 4525 while (*p) { 4526 parent = *p; 4527 skb1 = rb_to_skb(parent); 4528 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4529 p = &parent->rb_left; 4530 continue; 4531 } 4532 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4533 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4534 /* All the bits are present. Drop. */ 4535 NET_INC_STATS(sock_net(sk), 4536 LINUX_MIB_TCPOFOMERGE); 4537 tcp_drop(sk, skb); 4538 skb = NULL; 4539 tcp_dsack_set(sk, seq, end_seq); 4540 goto add_sack; 4541 } 4542 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4543 /* Partial overlap. */ 4544 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4545 } else { 4546 /* skb's seq == skb1's seq and skb covers skb1. 4547 * Replace skb1 with skb. 4548 */ 4549 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4550 &tp->out_of_order_queue); 4551 tcp_dsack_extend(sk, 4552 TCP_SKB_CB(skb1)->seq, 4553 TCP_SKB_CB(skb1)->end_seq); 4554 NET_INC_STATS(sock_net(sk), 4555 LINUX_MIB_TCPOFOMERGE); 4556 tcp_drop(sk, skb1); 4557 goto merge_right; 4558 } 4559 } else if (tcp_ooo_try_coalesce(sk, skb1, 4560 skb, &fragstolen)) { 4561 goto coalesce_done; 4562 } 4563 p = &parent->rb_right; 4564 } 4565 insert: 4566 /* Insert segment into RB tree. */ 4567 rb_link_node(&skb->rbnode, parent, p); 4568 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4569 4570 merge_right: 4571 /* Remove other segments covered by skb. */ 4572 while ((skb1 = skb_rb_next(skb)) != NULL) { 4573 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4574 break; 4575 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4576 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4577 end_seq); 4578 break; 4579 } 4580 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4581 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4582 TCP_SKB_CB(skb1)->end_seq); 4583 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4584 tcp_drop(sk, skb1); 4585 } 4586 /* If there is no skb after us, we are the last_skb ! */ 4587 if (!skb1) 4588 tp->ooo_last_skb = skb; 4589 4590 add_sack: 4591 if (tcp_is_sack(tp)) 4592 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4593 end: 4594 if (skb) { 4595 tcp_grow_window(sk, skb); 4596 skb_condense(skb); 4597 skb_set_owner_r(skb, sk); 4598 } 4599 } 4600 4601 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4602 bool *fragstolen) 4603 { 4604 int eaten; 4605 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4606 4607 __skb_pull(skb, hdrlen); 4608 eaten = (tail && 4609 tcp_try_coalesce(sk, tail, 4610 skb, fragstolen)) ? 1 : 0; 4611 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4612 if (!eaten) { 4613 __skb_queue_tail(&sk->sk_receive_queue, skb); 4614 skb_set_owner_r(skb, sk); 4615 } 4616 return eaten; 4617 } 4618 4619 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4620 { 4621 struct sk_buff *skb; 4622 int err = -ENOMEM; 4623 int data_len = 0; 4624 bool fragstolen; 4625 4626 if (size == 0) 4627 return 0; 4628 4629 if (size > PAGE_SIZE) { 4630 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4631 4632 data_len = npages << PAGE_SHIFT; 4633 size = data_len + (size & ~PAGE_MASK); 4634 } 4635 skb = alloc_skb_with_frags(size - data_len, data_len, 4636 PAGE_ALLOC_COSTLY_ORDER, 4637 &err, sk->sk_allocation); 4638 if (!skb) 4639 goto err; 4640 4641 skb_put(skb, size - data_len); 4642 skb->data_len = data_len; 4643 skb->len = size; 4644 4645 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4646 goto err_free; 4647 4648 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4649 if (err) 4650 goto err_free; 4651 4652 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4653 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4654 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4655 4656 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4657 WARN_ON_ONCE(fragstolen); /* should not happen */ 4658 __kfree_skb(skb); 4659 } 4660 return size; 4661 4662 err_free: 4663 kfree_skb(skb); 4664 err: 4665 return err; 4666 4667 } 4668 4669 void tcp_data_ready(struct sock *sk) 4670 { 4671 const struct tcp_sock *tp = tcp_sk(sk); 4672 int avail = tp->rcv_nxt - tp->copied_seq; 4673 4674 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4675 return; 4676 4677 sk->sk_data_ready(sk); 4678 } 4679 4680 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4681 { 4682 struct tcp_sock *tp = tcp_sk(sk); 4683 bool fragstolen; 4684 int eaten; 4685 4686 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4687 __kfree_skb(skb); 4688 return; 4689 } 4690 skb_dst_drop(skb); 4691 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4692 4693 tcp_ecn_accept_cwr(tp, skb); 4694 4695 tp->rx_opt.dsack = 0; 4696 4697 /* Queue data for delivery to the user. 4698 * Packets in sequence go to the receive queue. 4699 * Out of sequence packets to the out_of_order_queue. 4700 */ 4701 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4702 if (tcp_receive_window(tp) == 0) 4703 goto out_of_window; 4704 4705 /* Ok. In sequence. In window. */ 4706 queue_and_out: 4707 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4708 sk_forced_mem_schedule(sk, skb->truesize); 4709 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4710 goto drop; 4711 4712 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4713 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4714 if (skb->len) 4715 tcp_event_data_recv(sk, skb); 4716 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4717 tcp_fin(sk); 4718 4719 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4720 tcp_ofo_queue(sk); 4721 4722 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4723 * gap in queue is filled. 4724 */ 4725 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4726 inet_csk(sk)->icsk_ack.pingpong = 0; 4727 } 4728 4729 if (tp->rx_opt.num_sacks) 4730 tcp_sack_remove(tp); 4731 4732 tcp_fast_path_check(sk); 4733 4734 if (eaten > 0) 4735 kfree_skb_partial(skb, fragstolen); 4736 if (!sock_flag(sk, SOCK_DEAD)) 4737 tcp_data_ready(sk); 4738 return; 4739 } 4740 4741 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4742 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4743 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4744 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4745 4746 out_of_window: 4747 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4748 inet_csk_schedule_ack(sk); 4749 drop: 4750 tcp_drop(sk, skb); 4751 return; 4752 } 4753 4754 /* Out of window. F.e. zero window probe. */ 4755 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4756 goto out_of_window; 4757 4758 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4759 /* Partial packet, seq < rcv_next < end_seq */ 4760 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4761 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4762 TCP_SKB_CB(skb)->end_seq); 4763 4764 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4765 4766 /* If window is closed, drop tail of packet. But after 4767 * remembering D-SACK for its head made in previous line. 4768 */ 4769 if (!tcp_receive_window(tp)) 4770 goto out_of_window; 4771 goto queue_and_out; 4772 } 4773 4774 tcp_data_queue_ofo(sk, skb); 4775 } 4776 4777 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4778 { 4779 if (list) 4780 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4781 4782 return skb_rb_next(skb); 4783 } 4784 4785 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4786 struct sk_buff_head *list, 4787 struct rb_root *root) 4788 { 4789 struct sk_buff *next = tcp_skb_next(skb, list); 4790 4791 if (list) 4792 __skb_unlink(skb, list); 4793 else 4794 rb_erase(&skb->rbnode, root); 4795 4796 __kfree_skb(skb); 4797 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4798 4799 return next; 4800 } 4801 4802 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4803 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4804 { 4805 struct rb_node **p = &root->rb_node; 4806 struct rb_node *parent = NULL; 4807 struct sk_buff *skb1; 4808 4809 while (*p) { 4810 parent = *p; 4811 skb1 = rb_to_skb(parent); 4812 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4813 p = &parent->rb_left; 4814 else 4815 p = &parent->rb_right; 4816 } 4817 rb_link_node(&skb->rbnode, parent, p); 4818 rb_insert_color(&skb->rbnode, root); 4819 } 4820 4821 /* Collapse contiguous sequence of skbs head..tail with 4822 * sequence numbers start..end. 4823 * 4824 * If tail is NULL, this means until the end of the queue. 4825 * 4826 * Segments with FIN/SYN are not collapsed (only because this 4827 * simplifies code) 4828 */ 4829 static void 4830 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4831 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4832 { 4833 struct sk_buff *skb = head, *n; 4834 struct sk_buff_head tmp; 4835 bool end_of_skbs; 4836 4837 /* First, check that queue is collapsible and find 4838 * the point where collapsing can be useful. 4839 */ 4840 restart: 4841 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4842 n = tcp_skb_next(skb, list); 4843 4844 /* No new bits? It is possible on ofo queue. */ 4845 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4846 skb = tcp_collapse_one(sk, skb, list, root); 4847 if (!skb) 4848 break; 4849 goto restart; 4850 } 4851 4852 /* The first skb to collapse is: 4853 * - not SYN/FIN and 4854 * - bloated or contains data before "start" or 4855 * overlaps to the next one. 4856 */ 4857 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4858 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4859 before(TCP_SKB_CB(skb)->seq, start))) { 4860 end_of_skbs = false; 4861 break; 4862 } 4863 4864 if (n && n != tail && 4865 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4866 end_of_skbs = false; 4867 break; 4868 } 4869 4870 /* Decided to skip this, advance start seq. */ 4871 start = TCP_SKB_CB(skb)->end_seq; 4872 } 4873 if (end_of_skbs || 4874 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4875 return; 4876 4877 __skb_queue_head_init(&tmp); 4878 4879 while (before(start, end)) { 4880 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4881 struct sk_buff *nskb; 4882 4883 nskb = alloc_skb(copy, GFP_ATOMIC); 4884 if (!nskb) 4885 break; 4886 4887 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4888 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4889 if (list) 4890 __skb_queue_before(list, skb, nskb); 4891 else 4892 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4893 skb_set_owner_r(nskb, sk); 4894 4895 /* Copy data, releasing collapsed skbs. */ 4896 while (copy > 0) { 4897 int offset = start - TCP_SKB_CB(skb)->seq; 4898 int size = TCP_SKB_CB(skb)->end_seq - start; 4899 4900 BUG_ON(offset < 0); 4901 if (size > 0) { 4902 size = min(copy, size); 4903 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4904 BUG(); 4905 TCP_SKB_CB(nskb)->end_seq += size; 4906 copy -= size; 4907 start += size; 4908 } 4909 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4910 skb = tcp_collapse_one(sk, skb, list, root); 4911 if (!skb || 4912 skb == tail || 4913 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4914 goto end; 4915 } 4916 } 4917 } 4918 end: 4919 skb_queue_walk_safe(&tmp, skb, n) 4920 tcp_rbtree_insert(root, skb); 4921 } 4922 4923 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4924 * and tcp_collapse() them until all the queue is collapsed. 4925 */ 4926 static void tcp_collapse_ofo_queue(struct sock *sk) 4927 { 4928 struct tcp_sock *tp = tcp_sk(sk); 4929 u32 range_truesize, sum_tiny = 0; 4930 struct sk_buff *skb, *head; 4931 u32 start, end; 4932 4933 skb = skb_rb_first(&tp->out_of_order_queue); 4934 new_range: 4935 if (!skb) { 4936 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4937 return; 4938 } 4939 start = TCP_SKB_CB(skb)->seq; 4940 end = TCP_SKB_CB(skb)->end_seq; 4941 range_truesize = skb->truesize; 4942 4943 for (head = skb;;) { 4944 skb = skb_rb_next(skb); 4945 4946 /* Range is terminated when we see a gap or when 4947 * we are at the queue end. 4948 */ 4949 if (!skb || 4950 after(TCP_SKB_CB(skb)->seq, end) || 4951 before(TCP_SKB_CB(skb)->end_seq, start)) { 4952 /* Do not attempt collapsing tiny skbs */ 4953 if (range_truesize != head->truesize || 4954 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 4955 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4956 head, skb, start, end); 4957 } else { 4958 sum_tiny += range_truesize; 4959 if (sum_tiny > sk->sk_rcvbuf >> 3) 4960 return; 4961 } 4962 goto new_range; 4963 } 4964 4965 range_truesize += skb->truesize; 4966 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4967 start = TCP_SKB_CB(skb)->seq; 4968 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4969 end = TCP_SKB_CB(skb)->end_seq; 4970 } 4971 } 4972 4973 /* 4974 * Clean the out-of-order queue to make room. 4975 * We drop high sequences packets to : 4976 * 1) Let a chance for holes to be filled. 4977 * 2) not add too big latencies if thousands of packets sit there. 4978 * (But if application shrinks SO_RCVBUF, we could still end up 4979 * freeing whole queue here) 4980 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 4981 * 4982 * Return true if queue has shrunk. 4983 */ 4984 static bool tcp_prune_ofo_queue(struct sock *sk) 4985 { 4986 struct tcp_sock *tp = tcp_sk(sk); 4987 struct rb_node *node, *prev; 4988 int goal; 4989 4990 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4991 return false; 4992 4993 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4994 goal = sk->sk_rcvbuf >> 3; 4995 node = &tp->ooo_last_skb->rbnode; 4996 do { 4997 prev = rb_prev(node); 4998 rb_erase(node, &tp->out_of_order_queue); 4999 goal -= rb_to_skb(node)->truesize; 5000 tcp_drop(sk, rb_to_skb(node)); 5001 if (!prev || goal <= 0) { 5002 sk_mem_reclaim(sk); 5003 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5004 !tcp_under_memory_pressure(sk)) 5005 break; 5006 goal = sk->sk_rcvbuf >> 3; 5007 } 5008 node = prev; 5009 } while (node); 5010 tp->ooo_last_skb = rb_to_skb(prev); 5011 5012 /* Reset SACK state. A conforming SACK implementation will 5013 * do the same at a timeout based retransmit. When a connection 5014 * is in a sad state like this, we care only about integrity 5015 * of the connection not performance. 5016 */ 5017 if (tp->rx_opt.sack_ok) 5018 tcp_sack_reset(&tp->rx_opt); 5019 return true; 5020 } 5021 5022 /* Reduce allocated memory if we can, trying to get 5023 * the socket within its memory limits again. 5024 * 5025 * Return less than zero if we should start dropping frames 5026 * until the socket owning process reads some of the data 5027 * to stabilize the situation. 5028 */ 5029 static int tcp_prune_queue(struct sock *sk) 5030 { 5031 struct tcp_sock *tp = tcp_sk(sk); 5032 5033 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 5034 5035 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5036 5037 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5038 tcp_clamp_window(sk); 5039 else if (tcp_under_memory_pressure(sk)) 5040 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5041 5042 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5043 return 0; 5044 5045 tcp_collapse_ofo_queue(sk); 5046 if (!skb_queue_empty(&sk->sk_receive_queue)) 5047 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5048 skb_peek(&sk->sk_receive_queue), 5049 NULL, 5050 tp->copied_seq, tp->rcv_nxt); 5051 sk_mem_reclaim(sk); 5052 5053 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5054 return 0; 5055 5056 /* Collapsing did not help, destructive actions follow. 5057 * This must not ever occur. */ 5058 5059 tcp_prune_ofo_queue(sk); 5060 5061 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5062 return 0; 5063 5064 /* If we are really being abused, tell the caller to silently 5065 * drop receive data on the floor. It will get retransmitted 5066 * and hopefully then we'll have sufficient space. 5067 */ 5068 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5069 5070 /* Massive buffer overcommit. */ 5071 tp->pred_flags = 0; 5072 return -1; 5073 } 5074 5075 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5076 { 5077 const struct tcp_sock *tp = tcp_sk(sk); 5078 5079 /* If the user specified a specific send buffer setting, do 5080 * not modify it. 5081 */ 5082 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5083 return false; 5084 5085 /* If we are under global TCP memory pressure, do not expand. */ 5086 if (tcp_under_memory_pressure(sk)) 5087 return false; 5088 5089 /* If we are under soft global TCP memory pressure, do not expand. */ 5090 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5091 return false; 5092 5093 /* If we filled the congestion window, do not expand. */ 5094 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5095 return false; 5096 5097 return true; 5098 } 5099 5100 /* When incoming ACK allowed to free some skb from write_queue, 5101 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5102 * on the exit from tcp input handler. 5103 * 5104 * PROBLEM: sndbuf expansion does not work well with largesend. 5105 */ 5106 static void tcp_new_space(struct sock *sk) 5107 { 5108 struct tcp_sock *tp = tcp_sk(sk); 5109 5110 if (tcp_should_expand_sndbuf(sk)) { 5111 tcp_sndbuf_expand(sk); 5112 tp->snd_cwnd_stamp = tcp_jiffies32; 5113 } 5114 5115 sk->sk_write_space(sk); 5116 } 5117 5118 static void tcp_check_space(struct sock *sk) 5119 { 5120 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5121 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5122 /* pairs with tcp_poll() */ 5123 smp_mb(); 5124 if (sk->sk_socket && 5125 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5126 tcp_new_space(sk); 5127 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5128 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5129 } 5130 } 5131 } 5132 5133 static inline void tcp_data_snd_check(struct sock *sk) 5134 { 5135 tcp_push_pending_frames(sk); 5136 tcp_check_space(sk); 5137 } 5138 5139 /* 5140 * Check if sending an ack is needed. 5141 */ 5142 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5143 { 5144 struct tcp_sock *tp = tcp_sk(sk); 5145 unsigned long rtt, delay; 5146 5147 /* More than one full frame received... */ 5148 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5149 /* ... and right edge of window advances far enough. 5150 * (tcp_recvmsg() will send ACK otherwise). 5151 * If application uses SO_RCVLOWAT, we want send ack now if 5152 * we have not received enough bytes to satisfy the condition. 5153 */ 5154 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5155 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5156 /* We ACK each frame or... */ 5157 tcp_in_quickack_mode(sk)) { 5158 send_now: 5159 tcp_send_ack(sk); 5160 return; 5161 } 5162 5163 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5164 tcp_send_delayed_ack(sk); 5165 return; 5166 } 5167 5168 if (!tcp_is_sack(tp) || 5169 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5170 goto send_now; 5171 tp->compressed_ack++; 5172 5173 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5174 return; 5175 5176 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5177 5178 rtt = tp->rcv_rtt_est.rtt_us; 5179 if (tp->srtt_us && tp->srtt_us < rtt) 5180 rtt = tp->srtt_us; 5181 5182 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5183 rtt * (NSEC_PER_USEC >> 3)/20); 5184 sock_hold(sk); 5185 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5186 HRTIMER_MODE_REL_PINNED_SOFT); 5187 } 5188 5189 static inline void tcp_ack_snd_check(struct sock *sk) 5190 { 5191 if (!inet_csk_ack_scheduled(sk)) { 5192 /* We sent a data segment already. */ 5193 return; 5194 } 5195 __tcp_ack_snd_check(sk, 1); 5196 } 5197 5198 /* 5199 * This routine is only called when we have urgent data 5200 * signaled. Its the 'slow' part of tcp_urg. It could be 5201 * moved inline now as tcp_urg is only called from one 5202 * place. We handle URGent data wrong. We have to - as 5203 * BSD still doesn't use the correction from RFC961. 5204 * For 1003.1g we should support a new option TCP_STDURG to permit 5205 * either form (or just set the sysctl tcp_stdurg). 5206 */ 5207 5208 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5209 { 5210 struct tcp_sock *tp = tcp_sk(sk); 5211 u32 ptr = ntohs(th->urg_ptr); 5212 5213 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5214 ptr--; 5215 ptr += ntohl(th->seq); 5216 5217 /* Ignore urgent data that we've already seen and read. */ 5218 if (after(tp->copied_seq, ptr)) 5219 return; 5220 5221 /* Do not replay urg ptr. 5222 * 5223 * NOTE: interesting situation not covered by specs. 5224 * Misbehaving sender may send urg ptr, pointing to segment, 5225 * which we already have in ofo queue. We are not able to fetch 5226 * such data and will stay in TCP_URG_NOTYET until will be eaten 5227 * by recvmsg(). Seems, we are not obliged to handle such wicked 5228 * situations. But it is worth to think about possibility of some 5229 * DoSes using some hypothetical application level deadlock. 5230 */ 5231 if (before(ptr, tp->rcv_nxt)) 5232 return; 5233 5234 /* Do we already have a newer (or duplicate) urgent pointer? */ 5235 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5236 return; 5237 5238 /* Tell the world about our new urgent pointer. */ 5239 sk_send_sigurg(sk); 5240 5241 /* We may be adding urgent data when the last byte read was 5242 * urgent. To do this requires some care. We cannot just ignore 5243 * tp->copied_seq since we would read the last urgent byte again 5244 * as data, nor can we alter copied_seq until this data arrives 5245 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5246 * 5247 * NOTE. Double Dutch. Rendering to plain English: author of comment 5248 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5249 * and expect that both A and B disappear from stream. This is _wrong_. 5250 * Though this happens in BSD with high probability, this is occasional. 5251 * Any application relying on this is buggy. Note also, that fix "works" 5252 * only in this artificial test. Insert some normal data between A and B and we will 5253 * decline of BSD again. Verdict: it is better to remove to trap 5254 * buggy users. 5255 */ 5256 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5257 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5258 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5259 tp->copied_seq++; 5260 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5261 __skb_unlink(skb, &sk->sk_receive_queue); 5262 __kfree_skb(skb); 5263 } 5264 } 5265 5266 tp->urg_data = TCP_URG_NOTYET; 5267 tp->urg_seq = ptr; 5268 5269 /* Disable header prediction. */ 5270 tp->pred_flags = 0; 5271 } 5272 5273 /* This is the 'fast' part of urgent handling. */ 5274 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5275 { 5276 struct tcp_sock *tp = tcp_sk(sk); 5277 5278 /* Check if we get a new urgent pointer - normally not. */ 5279 if (th->urg) 5280 tcp_check_urg(sk, th); 5281 5282 /* Do we wait for any urgent data? - normally not... */ 5283 if (tp->urg_data == TCP_URG_NOTYET) { 5284 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5285 th->syn; 5286 5287 /* Is the urgent pointer pointing into this packet? */ 5288 if (ptr < skb->len) { 5289 u8 tmp; 5290 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5291 BUG(); 5292 tp->urg_data = TCP_URG_VALID | tmp; 5293 if (!sock_flag(sk, SOCK_DEAD)) 5294 sk->sk_data_ready(sk); 5295 } 5296 } 5297 } 5298 5299 /* Accept RST for rcv_nxt - 1 after a FIN. 5300 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5301 * FIN is sent followed by a RST packet. The RST is sent with the same 5302 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5303 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5304 * ACKs on the closed socket. In addition middleboxes can drop either the 5305 * challenge ACK or a subsequent RST. 5306 */ 5307 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5308 { 5309 struct tcp_sock *tp = tcp_sk(sk); 5310 5311 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5312 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5313 TCPF_CLOSING)); 5314 } 5315 5316 /* Does PAWS and seqno based validation of an incoming segment, flags will 5317 * play significant role here. 5318 */ 5319 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5320 const struct tcphdr *th, int syn_inerr) 5321 { 5322 struct tcp_sock *tp = tcp_sk(sk); 5323 bool rst_seq_match = false; 5324 5325 /* RFC1323: H1. Apply PAWS check first. */ 5326 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5327 tp->rx_opt.saw_tstamp && 5328 tcp_paws_discard(sk, skb)) { 5329 if (!th->rst) { 5330 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5331 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5332 LINUX_MIB_TCPACKSKIPPEDPAWS, 5333 &tp->last_oow_ack_time)) 5334 tcp_send_dupack(sk, skb); 5335 goto discard; 5336 } 5337 /* Reset is accepted even if it did not pass PAWS. */ 5338 } 5339 5340 /* Step 1: check sequence number */ 5341 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5342 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5343 * (RST) segments are validated by checking their SEQ-fields." 5344 * And page 69: "If an incoming segment is not acceptable, 5345 * an acknowledgment should be sent in reply (unless the RST 5346 * bit is set, if so drop the segment and return)". 5347 */ 5348 if (!th->rst) { 5349 if (th->syn) 5350 goto syn_challenge; 5351 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5352 LINUX_MIB_TCPACKSKIPPEDSEQ, 5353 &tp->last_oow_ack_time)) 5354 tcp_send_dupack(sk, skb); 5355 } else if (tcp_reset_check(sk, skb)) { 5356 tcp_reset(sk); 5357 } 5358 goto discard; 5359 } 5360 5361 /* Step 2: check RST bit */ 5362 if (th->rst) { 5363 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5364 * FIN and SACK too if available): 5365 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5366 * the right-most SACK block, 5367 * then 5368 * RESET the connection 5369 * else 5370 * Send a challenge ACK 5371 */ 5372 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5373 tcp_reset_check(sk, skb)) { 5374 rst_seq_match = true; 5375 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5376 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5377 int max_sack = sp[0].end_seq; 5378 int this_sack; 5379 5380 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5381 ++this_sack) { 5382 max_sack = after(sp[this_sack].end_seq, 5383 max_sack) ? 5384 sp[this_sack].end_seq : max_sack; 5385 } 5386 5387 if (TCP_SKB_CB(skb)->seq == max_sack) 5388 rst_seq_match = true; 5389 } 5390 5391 if (rst_seq_match) 5392 tcp_reset(sk); 5393 else { 5394 /* Disable TFO if RST is out-of-order 5395 * and no data has been received 5396 * for current active TFO socket 5397 */ 5398 if (tp->syn_fastopen && !tp->data_segs_in && 5399 sk->sk_state == TCP_ESTABLISHED) 5400 tcp_fastopen_active_disable(sk); 5401 tcp_send_challenge_ack(sk, skb); 5402 } 5403 goto discard; 5404 } 5405 5406 /* step 3: check security and precedence [ignored] */ 5407 5408 /* step 4: Check for a SYN 5409 * RFC 5961 4.2 : Send a challenge ack 5410 */ 5411 if (th->syn) { 5412 syn_challenge: 5413 if (syn_inerr) 5414 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5415 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5416 tcp_send_challenge_ack(sk, skb); 5417 goto discard; 5418 } 5419 5420 return true; 5421 5422 discard: 5423 tcp_drop(sk, skb); 5424 return false; 5425 } 5426 5427 /* 5428 * TCP receive function for the ESTABLISHED state. 5429 * 5430 * It is split into a fast path and a slow path. The fast path is 5431 * disabled when: 5432 * - A zero window was announced from us - zero window probing 5433 * is only handled properly in the slow path. 5434 * - Out of order segments arrived. 5435 * - Urgent data is expected. 5436 * - There is no buffer space left 5437 * - Unexpected TCP flags/window values/header lengths are received 5438 * (detected by checking the TCP header against pred_flags) 5439 * - Data is sent in both directions. Fast path only supports pure senders 5440 * or pure receivers (this means either the sequence number or the ack 5441 * value must stay constant) 5442 * - Unexpected TCP option. 5443 * 5444 * When these conditions are not satisfied it drops into a standard 5445 * receive procedure patterned after RFC793 to handle all cases. 5446 * The first three cases are guaranteed by proper pred_flags setting, 5447 * the rest is checked inline. Fast processing is turned on in 5448 * tcp_data_queue when everything is OK. 5449 */ 5450 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5451 { 5452 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5453 struct tcp_sock *tp = tcp_sk(sk); 5454 unsigned int len = skb->len; 5455 5456 /* TCP congestion window tracking */ 5457 trace_tcp_probe(sk, skb); 5458 5459 tcp_mstamp_refresh(tp); 5460 if (unlikely(!sk->sk_rx_dst)) 5461 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5462 /* 5463 * Header prediction. 5464 * The code loosely follows the one in the famous 5465 * "30 instruction TCP receive" Van Jacobson mail. 5466 * 5467 * Van's trick is to deposit buffers into socket queue 5468 * on a device interrupt, to call tcp_recv function 5469 * on the receive process context and checksum and copy 5470 * the buffer to user space. smart... 5471 * 5472 * Our current scheme is not silly either but we take the 5473 * extra cost of the net_bh soft interrupt processing... 5474 * We do checksum and copy also but from device to kernel. 5475 */ 5476 5477 tp->rx_opt.saw_tstamp = 0; 5478 5479 /* pred_flags is 0xS?10 << 16 + snd_wnd 5480 * if header_prediction is to be made 5481 * 'S' will always be tp->tcp_header_len >> 2 5482 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5483 * turn it off (when there are holes in the receive 5484 * space for instance) 5485 * PSH flag is ignored. 5486 */ 5487 5488 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5489 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5490 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5491 int tcp_header_len = tp->tcp_header_len; 5492 5493 /* Timestamp header prediction: tcp_header_len 5494 * is automatically equal to th->doff*4 due to pred_flags 5495 * match. 5496 */ 5497 5498 /* Check timestamp */ 5499 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5500 /* No? Slow path! */ 5501 if (!tcp_parse_aligned_timestamp(tp, th)) 5502 goto slow_path; 5503 5504 /* If PAWS failed, check it more carefully in slow path */ 5505 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5506 goto slow_path; 5507 5508 /* DO NOT update ts_recent here, if checksum fails 5509 * and timestamp was corrupted part, it will result 5510 * in a hung connection since we will drop all 5511 * future packets due to the PAWS test. 5512 */ 5513 } 5514 5515 if (len <= tcp_header_len) { 5516 /* Bulk data transfer: sender */ 5517 if (len == tcp_header_len) { 5518 /* Predicted packet is in window by definition. 5519 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5520 * Hence, check seq<=rcv_wup reduces to: 5521 */ 5522 if (tcp_header_len == 5523 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5524 tp->rcv_nxt == tp->rcv_wup) 5525 tcp_store_ts_recent(tp); 5526 5527 /* We know that such packets are checksummed 5528 * on entry. 5529 */ 5530 tcp_ack(sk, skb, 0); 5531 __kfree_skb(skb); 5532 tcp_data_snd_check(sk); 5533 return; 5534 } else { /* Header too small */ 5535 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5536 goto discard; 5537 } 5538 } else { 5539 int eaten = 0; 5540 bool fragstolen = false; 5541 5542 if (tcp_checksum_complete(skb)) 5543 goto csum_error; 5544 5545 if ((int)skb->truesize > sk->sk_forward_alloc) 5546 goto step5; 5547 5548 /* Predicted packet is in window by definition. 5549 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5550 * Hence, check seq<=rcv_wup reduces to: 5551 */ 5552 if (tcp_header_len == 5553 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5554 tp->rcv_nxt == tp->rcv_wup) 5555 tcp_store_ts_recent(tp); 5556 5557 tcp_rcv_rtt_measure_ts(sk, skb); 5558 5559 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5560 5561 /* Bulk data transfer: receiver */ 5562 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5563 &fragstolen); 5564 5565 tcp_event_data_recv(sk, skb); 5566 5567 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5568 /* Well, only one small jumplet in fast path... */ 5569 tcp_ack(sk, skb, FLAG_DATA); 5570 tcp_data_snd_check(sk); 5571 if (!inet_csk_ack_scheduled(sk)) 5572 goto no_ack; 5573 } 5574 5575 __tcp_ack_snd_check(sk, 0); 5576 no_ack: 5577 if (eaten) 5578 kfree_skb_partial(skb, fragstolen); 5579 tcp_data_ready(sk); 5580 return; 5581 } 5582 } 5583 5584 slow_path: 5585 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5586 goto csum_error; 5587 5588 if (!th->ack && !th->rst && !th->syn) 5589 goto discard; 5590 5591 /* 5592 * Standard slow path. 5593 */ 5594 5595 if (!tcp_validate_incoming(sk, skb, th, 1)) 5596 return; 5597 5598 step5: 5599 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5600 goto discard; 5601 5602 tcp_rcv_rtt_measure_ts(sk, skb); 5603 5604 /* Process urgent data. */ 5605 tcp_urg(sk, skb, th); 5606 5607 /* step 7: process the segment text */ 5608 tcp_data_queue(sk, skb); 5609 5610 tcp_data_snd_check(sk); 5611 tcp_ack_snd_check(sk); 5612 return; 5613 5614 csum_error: 5615 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5616 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5617 5618 discard: 5619 tcp_drop(sk, skb); 5620 } 5621 EXPORT_SYMBOL(tcp_rcv_established); 5622 5623 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5624 { 5625 struct tcp_sock *tp = tcp_sk(sk); 5626 struct inet_connection_sock *icsk = inet_csk(sk); 5627 5628 tcp_set_state(sk, TCP_ESTABLISHED); 5629 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5630 5631 if (skb) { 5632 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5633 security_inet_conn_established(sk, skb); 5634 } 5635 5636 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5637 5638 /* Prevent spurious tcp_cwnd_restart() on first data 5639 * packet. 5640 */ 5641 tp->lsndtime = tcp_jiffies32; 5642 5643 if (sock_flag(sk, SOCK_KEEPOPEN)) 5644 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5645 5646 if (!tp->rx_opt.snd_wscale) 5647 __tcp_fast_path_on(tp, tp->snd_wnd); 5648 else 5649 tp->pred_flags = 0; 5650 } 5651 5652 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5653 struct tcp_fastopen_cookie *cookie) 5654 { 5655 struct tcp_sock *tp = tcp_sk(sk); 5656 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5657 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5658 bool syn_drop = false; 5659 5660 if (mss == tp->rx_opt.user_mss) { 5661 struct tcp_options_received opt; 5662 5663 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5664 tcp_clear_options(&opt); 5665 opt.user_mss = opt.mss_clamp = 0; 5666 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5667 mss = opt.mss_clamp; 5668 } 5669 5670 if (!tp->syn_fastopen) { 5671 /* Ignore an unsolicited cookie */ 5672 cookie->len = -1; 5673 } else if (tp->total_retrans) { 5674 /* SYN timed out and the SYN-ACK neither has a cookie nor 5675 * acknowledges data. Presumably the remote received only 5676 * the retransmitted (regular) SYNs: either the original 5677 * SYN-data or the corresponding SYN-ACK was dropped. 5678 */ 5679 syn_drop = (cookie->len < 0 && data); 5680 } else if (cookie->len < 0 && !tp->syn_data) { 5681 /* We requested a cookie but didn't get it. If we did not use 5682 * the (old) exp opt format then try so next time (try_exp=1). 5683 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5684 */ 5685 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5686 } 5687 5688 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5689 5690 if (data) { /* Retransmit unacked data in SYN */ 5691 skb_rbtree_walk_from(data) { 5692 if (__tcp_retransmit_skb(sk, data, 1)) 5693 break; 5694 } 5695 tcp_rearm_rto(sk); 5696 NET_INC_STATS(sock_net(sk), 5697 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5698 return true; 5699 } 5700 tp->syn_data_acked = tp->syn_data; 5701 if (tp->syn_data_acked) { 5702 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5703 /* SYN-data is counted as two separate packets in tcp_ack() */ 5704 if (tp->delivered > 1) 5705 --tp->delivered; 5706 } 5707 5708 tcp_fastopen_add_skb(sk, synack); 5709 5710 return false; 5711 } 5712 5713 static void smc_check_reset_syn(struct tcp_sock *tp) 5714 { 5715 #if IS_ENABLED(CONFIG_SMC) 5716 if (static_branch_unlikely(&tcp_have_smc)) { 5717 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5718 tp->syn_smc = 0; 5719 } 5720 #endif 5721 } 5722 5723 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5724 const struct tcphdr *th) 5725 { 5726 struct inet_connection_sock *icsk = inet_csk(sk); 5727 struct tcp_sock *tp = tcp_sk(sk); 5728 struct tcp_fastopen_cookie foc = { .len = -1 }; 5729 int saved_clamp = tp->rx_opt.mss_clamp; 5730 bool fastopen_fail; 5731 5732 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5733 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5734 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5735 5736 if (th->ack) { 5737 /* rfc793: 5738 * "If the state is SYN-SENT then 5739 * first check the ACK bit 5740 * If the ACK bit is set 5741 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5742 * a reset (unless the RST bit is set, if so drop 5743 * the segment and return)" 5744 */ 5745 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5746 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5747 goto reset_and_undo; 5748 5749 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5750 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5751 tcp_time_stamp(tp))) { 5752 NET_INC_STATS(sock_net(sk), 5753 LINUX_MIB_PAWSACTIVEREJECTED); 5754 goto reset_and_undo; 5755 } 5756 5757 /* Now ACK is acceptable. 5758 * 5759 * "If the RST bit is set 5760 * If the ACK was acceptable then signal the user "error: 5761 * connection reset", drop the segment, enter CLOSED state, 5762 * delete TCB, and return." 5763 */ 5764 5765 if (th->rst) { 5766 tcp_reset(sk); 5767 goto discard; 5768 } 5769 5770 /* rfc793: 5771 * "fifth, if neither of the SYN or RST bits is set then 5772 * drop the segment and return." 5773 * 5774 * See note below! 5775 * --ANK(990513) 5776 */ 5777 if (!th->syn) 5778 goto discard_and_undo; 5779 5780 /* rfc793: 5781 * "If the SYN bit is on ... 5782 * are acceptable then ... 5783 * (our SYN has been ACKed), change the connection 5784 * state to ESTABLISHED..." 5785 */ 5786 5787 tcp_ecn_rcv_synack(tp, th); 5788 5789 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5790 tcp_ack(sk, skb, FLAG_SLOWPATH); 5791 5792 /* Ok.. it's good. Set up sequence numbers and 5793 * move to established. 5794 */ 5795 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5796 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5797 5798 /* RFC1323: The window in SYN & SYN/ACK segments is 5799 * never scaled. 5800 */ 5801 tp->snd_wnd = ntohs(th->window); 5802 5803 if (!tp->rx_opt.wscale_ok) { 5804 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5805 tp->window_clamp = min(tp->window_clamp, 65535U); 5806 } 5807 5808 if (tp->rx_opt.saw_tstamp) { 5809 tp->rx_opt.tstamp_ok = 1; 5810 tp->tcp_header_len = 5811 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5812 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5813 tcp_store_ts_recent(tp); 5814 } else { 5815 tp->tcp_header_len = sizeof(struct tcphdr); 5816 } 5817 5818 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5819 tcp_initialize_rcv_mss(sk); 5820 5821 /* Remember, tcp_poll() does not lock socket! 5822 * Change state from SYN-SENT only after copied_seq 5823 * is initialized. */ 5824 tp->copied_seq = tp->rcv_nxt; 5825 5826 smc_check_reset_syn(tp); 5827 5828 smp_mb(); 5829 5830 tcp_finish_connect(sk, skb); 5831 5832 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5833 tcp_rcv_fastopen_synack(sk, skb, &foc); 5834 5835 if (!sock_flag(sk, SOCK_DEAD)) { 5836 sk->sk_state_change(sk); 5837 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5838 } 5839 if (fastopen_fail) 5840 return -1; 5841 if (sk->sk_write_pending || 5842 icsk->icsk_accept_queue.rskq_defer_accept || 5843 icsk->icsk_ack.pingpong) { 5844 /* Save one ACK. Data will be ready after 5845 * several ticks, if write_pending is set. 5846 * 5847 * It may be deleted, but with this feature tcpdumps 5848 * look so _wonderfully_ clever, that I was not able 5849 * to stand against the temptation 8) --ANK 5850 */ 5851 inet_csk_schedule_ack(sk); 5852 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5853 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5854 TCP_DELACK_MAX, TCP_RTO_MAX); 5855 5856 discard: 5857 tcp_drop(sk, skb); 5858 return 0; 5859 } else { 5860 tcp_send_ack(sk); 5861 } 5862 return -1; 5863 } 5864 5865 /* No ACK in the segment */ 5866 5867 if (th->rst) { 5868 /* rfc793: 5869 * "If the RST bit is set 5870 * 5871 * Otherwise (no ACK) drop the segment and return." 5872 */ 5873 5874 goto discard_and_undo; 5875 } 5876 5877 /* PAWS check. */ 5878 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5879 tcp_paws_reject(&tp->rx_opt, 0)) 5880 goto discard_and_undo; 5881 5882 if (th->syn) { 5883 /* We see SYN without ACK. It is attempt of 5884 * simultaneous connect with crossed SYNs. 5885 * Particularly, it can be connect to self. 5886 */ 5887 tcp_set_state(sk, TCP_SYN_RECV); 5888 5889 if (tp->rx_opt.saw_tstamp) { 5890 tp->rx_opt.tstamp_ok = 1; 5891 tcp_store_ts_recent(tp); 5892 tp->tcp_header_len = 5893 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5894 } else { 5895 tp->tcp_header_len = sizeof(struct tcphdr); 5896 } 5897 5898 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5899 tp->copied_seq = tp->rcv_nxt; 5900 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5901 5902 /* RFC1323: The window in SYN & SYN/ACK segments is 5903 * never scaled. 5904 */ 5905 tp->snd_wnd = ntohs(th->window); 5906 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5907 tp->max_window = tp->snd_wnd; 5908 5909 tcp_ecn_rcv_syn(tp, th); 5910 5911 tcp_mtup_init(sk); 5912 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5913 tcp_initialize_rcv_mss(sk); 5914 5915 tcp_send_synack(sk); 5916 #if 0 5917 /* Note, we could accept data and URG from this segment. 5918 * There are no obstacles to make this (except that we must 5919 * either change tcp_recvmsg() to prevent it from returning data 5920 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5921 * 5922 * However, if we ignore data in ACKless segments sometimes, 5923 * we have no reasons to accept it sometimes. 5924 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5925 * is not flawless. So, discard packet for sanity. 5926 * Uncomment this return to process the data. 5927 */ 5928 return -1; 5929 #else 5930 goto discard; 5931 #endif 5932 } 5933 /* "fifth, if neither of the SYN or RST bits is set then 5934 * drop the segment and return." 5935 */ 5936 5937 discard_and_undo: 5938 tcp_clear_options(&tp->rx_opt); 5939 tp->rx_opt.mss_clamp = saved_clamp; 5940 goto discard; 5941 5942 reset_and_undo: 5943 tcp_clear_options(&tp->rx_opt); 5944 tp->rx_opt.mss_clamp = saved_clamp; 5945 return 1; 5946 } 5947 5948 /* 5949 * This function implements the receiving procedure of RFC 793 for 5950 * all states except ESTABLISHED and TIME_WAIT. 5951 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5952 * address independent. 5953 */ 5954 5955 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5956 { 5957 struct tcp_sock *tp = tcp_sk(sk); 5958 struct inet_connection_sock *icsk = inet_csk(sk); 5959 const struct tcphdr *th = tcp_hdr(skb); 5960 struct request_sock *req; 5961 int queued = 0; 5962 bool acceptable; 5963 5964 switch (sk->sk_state) { 5965 case TCP_CLOSE: 5966 goto discard; 5967 5968 case TCP_LISTEN: 5969 if (th->ack) 5970 return 1; 5971 5972 if (th->rst) 5973 goto discard; 5974 5975 if (th->syn) { 5976 if (th->fin) 5977 goto discard; 5978 /* It is possible that we process SYN packets from backlog, 5979 * so we need to make sure to disable BH right there. 5980 */ 5981 local_bh_disable(); 5982 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5983 local_bh_enable(); 5984 5985 if (!acceptable) 5986 return 1; 5987 consume_skb(skb); 5988 return 0; 5989 } 5990 goto discard; 5991 5992 case TCP_SYN_SENT: 5993 tp->rx_opt.saw_tstamp = 0; 5994 tcp_mstamp_refresh(tp); 5995 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5996 if (queued >= 0) 5997 return queued; 5998 5999 /* Do step6 onward by hand. */ 6000 tcp_urg(sk, skb, th); 6001 __kfree_skb(skb); 6002 tcp_data_snd_check(sk); 6003 return 0; 6004 } 6005 6006 tcp_mstamp_refresh(tp); 6007 tp->rx_opt.saw_tstamp = 0; 6008 req = tp->fastopen_rsk; 6009 if (req) { 6010 bool req_stolen; 6011 6012 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6013 sk->sk_state != TCP_FIN_WAIT1); 6014 6015 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6016 goto discard; 6017 } 6018 6019 if (!th->ack && !th->rst && !th->syn) 6020 goto discard; 6021 6022 if (!tcp_validate_incoming(sk, skb, th, 0)) 6023 return 0; 6024 6025 /* step 5: check the ACK field */ 6026 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6027 FLAG_UPDATE_TS_RECENT | 6028 FLAG_NO_CHALLENGE_ACK) > 0; 6029 6030 if (!acceptable) { 6031 if (sk->sk_state == TCP_SYN_RECV) 6032 return 1; /* send one RST */ 6033 tcp_send_challenge_ack(sk, skb); 6034 goto discard; 6035 } 6036 switch (sk->sk_state) { 6037 case TCP_SYN_RECV: 6038 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6039 if (!tp->srtt_us) 6040 tcp_synack_rtt_meas(sk, req); 6041 6042 /* Once we leave TCP_SYN_RECV, we no longer need req 6043 * so release it. 6044 */ 6045 if (req) { 6046 inet_csk(sk)->icsk_retransmits = 0; 6047 reqsk_fastopen_remove(sk, req, false); 6048 /* Re-arm the timer because data may have been sent out. 6049 * This is similar to the regular data transmission case 6050 * when new data has just been ack'ed. 6051 * 6052 * (TFO) - we could try to be more aggressive and 6053 * retransmitting any data sooner based on when they 6054 * are sent out. 6055 */ 6056 tcp_rearm_rto(sk); 6057 } else { 6058 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6059 tp->copied_seq = tp->rcv_nxt; 6060 } 6061 smp_mb(); 6062 tcp_set_state(sk, TCP_ESTABLISHED); 6063 sk->sk_state_change(sk); 6064 6065 /* Note, that this wakeup is only for marginal crossed SYN case. 6066 * Passively open sockets are not waked up, because 6067 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6068 */ 6069 if (sk->sk_socket) 6070 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6071 6072 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6073 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6074 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6075 6076 if (tp->rx_opt.tstamp_ok) 6077 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6078 6079 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6080 tcp_update_pacing_rate(sk); 6081 6082 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6083 tp->lsndtime = tcp_jiffies32; 6084 6085 tcp_initialize_rcv_mss(sk); 6086 tcp_fast_path_on(tp); 6087 break; 6088 6089 case TCP_FIN_WAIT1: { 6090 int tmo; 6091 6092 /* If we enter the TCP_FIN_WAIT1 state and we are a 6093 * Fast Open socket and this is the first acceptable 6094 * ACK we have received, this would have acknowledged 6095 * our SYNACK so stop the SYNACK timer. 6096 */ 6097 if (req) { 6098 /* We no longer need the request sock. */ 6099 reqsk_fastopen_remove(sk, req, false); 6100 tcp_rearm_rto(sk); 6101 } 6102 if (tp->snd_una != tp->write_seq) 6103 break; 6104 6105 tcp_set_state(sk, TCP_FIN_WAIT2); 6106 sk->sk_shutdown |= SEND_SHUTDOWN; 6107 6108 sk_dst_confirm(sk); 6109 6110 if (!sock_flag(sk, SOCK_DEAD)) { 6111 /* Wake up lingering close() */ 6112 sk->sk_state_change(sk); 6113 break; 6114 } 6115 6116 if (tp->linger2 < 0) { 6117 tcp_done(sk); 6118 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6119 return 1; 6120 } 6121 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6122 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6123 /* Receive out of order FIN after close() */ 6124 if (tp->syn_fastopen && th->fin) 6125 tcp_fastopen_active_disable(sk); 6126 tcp_done(sk); 6127 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6128 return 1; 6129 } 6130 6131 tmo = tcp_fin_time(sk); 6132 if (tmo > TCP_TIMEWAIT_LEN) { 6133 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6134 } else if (th->fin || sock_owned_by_user(sk)) { 6135 /* Bad case. We could lose such FIN otherwise. 6136 * It is not a big problem, but it looks confusing 6137 * and not so rare event. We still can lose it now, 6138 * if it spins in bh_lock_sock(), but it is really 6139 * marginal case. 6140 */ 6141 inet_csk_reset_keepalive_timer(sk, tmo); 6142 } else { 6143 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6144 goto discard; 6145 } 6146 break; 6147 } 6148 6149 case TCP_CLOSING: 6150 if (tp->snd_una == tp->write_seq) { 6151 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6152 goto discard; 6153 } 6154 break; 6155 6156 case TCP_LAST_ACK: 6157 if (tp->snd_una == tp->write_seq) { 6158 tcp_update_metrics(sk); 6159 tcp_done(sk); 6160 goto discard; 6161 } 6162 break; 6163 } 6164 6165 /* step 6: check the URG bit */ 6166 tcp_urg(sk, skb, th); 6167 6168 /* step 7: process the segment text */ 6169 switch (sk->sk_state) { 6170 case TCP_CLOSE_WAIT: 6171 case TCP_CLOSING: 6172 case TCP_LAST_ACK: 6173 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6174 break; 6175 /* fall through */ 6176 case TCP_FIN_WAIT1: 6177 case TCP_FIN_WAIT2: 6178 /* RFC 793 says to queue data in these states, 6179 * RFC 1122 says we MUST send a reset. 6180 * BSD 4.4 also does reset. 6181 */ 6182 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6183 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6184 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6185 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6186 tcp_reset(sk); 6187 return 1; 6188 } 6189 } 6190 /* Fall through */ 6191 case TCP_ESTABLISHED: 6192 tcp_data_queue(sk, skb); 6193 queued = 1; 6194 break; 6195 } 6196 6197 /* tcp_data could move socket to TIME-WAIT */ 6198 if (sk->sk_state != TCP_CLOSE) { 6199 tcp_data_snd_check(sk); 6200 tcp_ack_snd_check(sk); 6201 } 6202 6203 if (!queued) { 6204 discard: 6205 tcp_drop(sk, skb); 6206 } 6207 return 0; 6208 } 6209 EXPORT_SYMBOL(tcp_rcv_state_process); 6210 6211 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6212 { 6213 struct inet_request_sock *ireq = inet_rsk(req); 6214 6215 if (family == AF_INET) 6216 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6217 &ireq->ir_rmt_addr, port); 6218 #if IS_ENABLED(CONFIG_IPV6) 6219 else if (family == AF_INET6) 6220 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6221 &ireq->ir_v6_rmt_addr, port); 6222 #endif 6223 } 6224 6225 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6226 * 6227 * If we receive a SYN packet with these bits set, it means a 6228 * network is playing bad games with TOS bits. In order to 6229 * avoid possible false congestion notifications, we disable 6230 * TCP ECN negotiation. 6231 * 6232 * Exception: tcp_ca wants ECN. This is required for DCTCP 6233 * congestion control: Linux DCTCP asserts ECT on all packets, 6234 * including SYN, which is most optimal solution; however, 6235 * others, such as FreeBSD do not. 6236 */ 6237 static void tcp_ecn_create_request(struct request_sock *req, 6238 const struct sk_buff *skb, 6239 const struct sock *listen_sk, 6240 const struct dst_entry *dst) 6241 { 6242 const struct tcphdr *th = tcp_hdr(skb); 6243 const struct net *net = sock_net(listen_sk); 6244 bool th_ecn = th->ece && th->cwr; 6245 bool ect, ecn_ok; 6246 u32 ecn_ok_dst; 6247 6248 if (!th_ecn) 6249 return; 6250 6251 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6252 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6253 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6254 6255 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6256 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6257 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6258 inet_rsk(req)->ecn_ok = 1; 6259 } 6260 6261 static void tcp_openreq_init(struct request_sock *req, 6262 const struct tcp_options_received *rx_opt, 6263 struct sk_buff *skb, const struct sock *sk) 6264 { 6265 struct inet_request_sock *ireq = inet_rsk(req); 6266 6267 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6268 req->cookie_ts = 0; 6269 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6270 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6271 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6272 tcp_rsk(req)->last_oow_ack_time = 0; 6273 req->mss = rx_opt->mss_clamp; 6274 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6275 ireq->tstamp_ok = rx_opt->tstamp_ok; 6276 ireq->sack_ok = rx_opt->sack_ok; 6277 ireq->snd_wscale = rx_opt->snd_wscale; 6278 ireq->wscale_ok = rx_opt->wscale_ok; 6279 ireq->acked = 0; 6280 ireq->ecn_ok = 0; 6281 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6282 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6283 ireq->ir_mark = inet_request_mark(sk, skb); 6284 #if IS_ENABLED(CONFIG_SMC) 6285 ireq->smc_ok = rx_opt->smc_ok; 6286 #endif 6287 } 6288 6289 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6290 struct sock *sk_listener, 6291 bool attach_listener) 6292 { 6293 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6294 attach_listener); 6295 6296 if (req) { 6297 struct inet_request_sock *ireq = inet_rsk(req); 6298 6299 ireq->ireq_opt = NULL; 6300 #if IS_ENABLED(CONFIG_IPV6) 6301 ireq->pktopts = NULL; 6302 #endif 6303 atomic64_set(&ireq->ir_cookie, 0); 6304 ireq->ireq_state = TCP_NEW_SYN_RECV; 6305 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6306 ireq->ireq_family = sk_listener->sk_family; 6307 } 6308 6309 return req; 6310 } 6311 EXPORT_SYMBOL(inet_reqsk_alloc); 6312 6313 /* 6314 * Return true if a syncookie should be sent 6315 */ 6316 static bool tcp_syn_flood_action(const struct sock *sk, 6317 const struct sk_buff *skb, 6318 const char *proto) 6319 { 6320 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6321 const char *msg = "Dropping request"; 6322 bool want_cookie = false; 6323 struct net *net = sock_net(sk); 6324 6325 #ifdef CONFIG_SYN_COOKIES 6326 if (net->ipv4.sysctl_tcp_syncookies) { 6327 msg = "Sending cookies"; 6328 want_cookie = true; 6329 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6330 } else 6331 #endif 6332 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6333 6334 if (!queue->synflood_warned && 6335 net->ipv4.sysctl_tcp_syncookies != 2 && 6336 xchg(&queue->synflood_warned, 1) == 0) 6337 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6338 proto, ntohs(tcp_hdr(skb)->dest), msg); 6339 6340 return want_cookie; 6341 } 6342 6343 static void tcp_reqsk_record_syn(const struct sock *sk, 6344 struct request_sock *req, 6345 const struct sk_buff *skb) 6346 { 6347 if (tcp_sk(sk)->save_syn) { 6348 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6349 u32 *copy; 6350 6351 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6352 if (copy) { 6353 copy[0] = len; 6354 memcpy(©[1], skb_network_header(skb), len); 6355 req->saved_syn = copy; 6356 } 6357 } 6358 } 6359 6360 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6361 const struct tcp_request_sock_ops *af_ops, 6362 struct sock *sk, struct sk_buff *skb) 6363 { 6364 struct tcp_fastopen_cookie foc = { .len = -1 }; 6365 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6366 struct tcp_options_received tmp_opt; 6367 struct tcp_sock *tp = tcp_sk(sk); 6368 struct net *net = sock_net(sk); 6369 struct sock *fastopen_sk = NULL; 6370 struct request_sock *req; 6371 bool want_cookie = false; 6372 struct dst_entry *dst; 6373 struct flowi fl; 6374 6375 /* TW buckets are converted to open requests without 6376 * limitations, they conserve resources and peer is 6377 * evidently real one. 6378 */ 6379 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6380 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6381 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6382 if (!want_cookie) 6383 goto drop; 6384 } 6385 6386 if (sk_acceptq_is_full(sk)) { 6387 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6388 goto drop; 6389 } 6390 6391 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6392 if (!req) 6393 goto drop; 6394 6395 tcp_rsk(req)->af_specific = af_ops; 6396 tcp_rsk(req)->ts_off = 0; 6397 6398 tcp_clear_options(&tmp_opt); 6399 tmp_opt.mss_clamp = af_ops->mss_clamp; 6400 tmp_opt.user_mss = tp->rx_opt.user_mss; 6401 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6402 want_cookie ? NULL : &foc); 6403 6404 if (want_cookie && !tmp_opt.saw_tstamp) 6405 tcp_clear_options(&tmp_opt); 6406 6407 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6408 tmp_opt.smc_ok = 0; 6409 6410 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6411 tcp_openreq_init(req, &tmp_opt, skb, sk); 6412 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6413 6414 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6415 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6416 6417 af_ops->init_req(req, sk, skb); 6418 6419 if (security_inet_conn_request(sk, skb, req)) 6420 goto drop_and_free; 6421 6422 if (tmp_opt.tstamp_ok) 6423 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6424 6425 dst = af_ops->route_req(sk, &fl, req); 6426 if (!dst) 6427 goto drop_and_free; 6428 6429 if (!want_cookie && !isn) { 6430 /* Kill the following clause, if you dislike this way. */ 6431 if (!net->ipv4.sysctl_tcp_syncookies && 6432 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6433 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6434 !tcp_peer_is_proven(req, dst)) { 6435 /* Without syncookies last quarter of 6436 * backlog is filled with destinations, 6437 * proven to be alive. 6438 * It means that we continue to communicate 6439 * to destinations, already remembered 6440 * to the moment of synflood. 6441 */ 6442 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6443 rsk_ops->family); 6444 goto drop_and_release; 6445 } 6446 6447 isn = af_ops->init_seq(skb); 6448 } 6449 6450 tcp_ecn_create_request(req, skb, sk, dst); 6451 6452 if (want_cookie) { 6453 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6454 req->cookie_ts = tmp_opt.tstamp_ok; 6455 if (!tmp_opt.tstamp_ok) 6456 inet_rsk(req)->ecn_ok = 0; 6457 } 6458 6459 tcp_rsk(req)->snt_isn = isn; 6460 tcp_rsk(req)->txhash = net_tx_rndhash(); 6461 tcp_openreq_init_rwin(req, sk, dst); 6462 if (!want_cookie) { 6463 tcp_reqsk_record_syn(sk, req, skb); 6464 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6465 } 6466 if (fastopen_sk) { 6467 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6468 &foc, TCP_SYNACK_FASTOPEN); 6469 /* Add the child socket directly into the accept queue */ 6470 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6471 sk->sk_data_ready(sk); 6472 bh_unlock_sock(fastopen_sk); 6473 sock_put(fastopen_sk); 6474 } else { 6475 tcp_rsk(req)->tfo_listener = false; 6476 if (!want_cookie) 6477 inet_csk_reqsk_queue_hash_add(sk, req, 6478 tcp_timeout_init((struct sock *)req)); 6479 af_ops->send_synack(sk, dst, &fl, req, &foc, 6480 !want_cookie ? TCP_SYNACK_NORMAL : 6481 TCP_SYNACK_COOKIE); 6482 if (want_cookie) { 6483 reqsk_free(req); 6484 return 0; 6485 } 6486 } 6487 reqsk_put(req); 6488 return 0; 6489 6490 drop_and_release: 6491 dst_release(dst); 6492 drop_and_free: 6493 reqsk_free(req); 6494 drop: 6495 tcp_listendrop(sk); 6496 return 0; 6497 } 6498 EXPORT_SYMBOL(tcp_conn_request); 6499