1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_fack __read_mostly; 80 int sysctl_tcp_max_reordering __read_mostly = 300; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 1; 84 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 85 86 /* rfc5961 challenge ack rate limiting */ 87 int sysctl_tcp_challenge_ack_limit = 1000; 88 89 int sysctl_tcp_stdurg __read_mostly; 90 int sysctl_tcp_rfc1337 __read_mostly; 91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 92 int sysctl_tcp_frto __read_mostly = 2; 93 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 94 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 95 int sysctl_tcp_early_retrans __read_mostly = 3; 96 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 97 98 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 99 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 100 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 101 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 102 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 103 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 104 #define FLAG_ECE 0x40 /* ECE in this ACK */ 105 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 106 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 107 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 108 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 109 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 110 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 111 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 112 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 113 114 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 115 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 116 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 117 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 118 119 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 120 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 121 122 #define REXMIT_NONE 0 /* no loss recovery to do */ 123 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 124 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 125 126 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 127 unsigned int len) 128 { 129 static bool __once __read_mostly; 130 131 if (!__once) { 132 struct net_device *dev; 133 134 __once = true; 135 136 rcu_read_lock(); 137 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 138 if (!dev || len >= dev->mtu) 139 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 140 dev ? dev->name : "Unknown driver"); 141 rcu_read_unlock(); 142 } 143 } 144 145 /* Adapt the MSS value used to make delayed ack decision to the 146 * real world. 147 */ 148 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 149 { 150 struct inet_connection_sock *icsk = inet_csk(sk); 151 const unsigned int lss = icsk->icsk_ack.last_seg_size; 152 unsigned int len; 153 154 icsk->icsk_ack.last_seg_size = 0; 155 156 /* skb->len may jitter because of SACKs, even if peer 157 * sends good full-sized frames. 158 */ 159 len = skb_shinfo(skb)->gso_size ? : skb->len; 160 if (len >= icsk->icsk_ack.rcv_mss) { 161 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 162 tcp_sk(sk)->advmss); 163 /* Account for possibly-removed options */ 164 if (unlikely(len > icsk->icsk_ack.rcv_mss + 165 MAX_TCP_OPTION_SPACE)) 166 tcp_gro_dev_warn(sk, skb, len); 167 } else { 168 /* Otherwise, we make more careful check taking into account, 169 * that SACKs block is variable. 170 * 171 * "len" is invariant segment length, including TCP header. 172 */ 173 len += skb->data - skb_transport_header(skb); 174 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 175 /* If PSH is not set, packet should be 176 * full sized, provided peer TCP is not badly broken. 177 * This observation (if it is correct 8)) allows 178 * to handle super-low mtu links fairly. 179 */ 180 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 181 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 182 /* Subtract also invariant (if peer is RFC compliant), 183 * tcp header plus fixed timestamp option length. 184 * Resulting "len" is MSS free of SACK jitter. 185 */ 186 len -= tcp_sk(sk)->tcp_header_len; 187 icsk->icsk_ack.last_seg_size = len; 188 if (len == lss) { 189 icsk->icsk_ack.rcv_mss = len; 190 return; 191 } 192 } 193 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 194 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 195 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 196 } 197 } 198 199 static void tcp_incr_quickack(struct sock *sk) 200 { 201 struct inet_connection_sock *icsk = inet_csk(sk); 202 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 203 204 if (quickacks == 0) 205 quickacks = 2; 206 if (quickacks > icsk->icsk_ack.quick) 207 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 208 } 209 210 static void tcp_enter_quickack_mode(struct sock *sk) 211 { 212 struct inet_connection_sock *icsk = inet_csk(sk); 213 tcp_incr_quickack(sk); 214 icsk->icsk_ack.pingpong = 0; 215 icsk->icsk_ack.ato = TCP_ATO_MIN; 216 } 217 218 /* Send ACKs quickly, if "quick" count is not exhausted 219 * and the session is not interactive. 220 */ 221 222 static bool tcp_in_quickack_mode(struct sock *sk) 223 { 224 const struct inet_connection_sock *icsk = inet_csk(sk); 225 const struct dst_entry *dst = __sk_dst_get(sk); 226 227 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 228 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 229 } 230 231 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 232 { 233 if (tp->ecn_flags & TCP_ECN_OK) 234 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 235 } 236 237 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 238 { 239 if (tcp_hdr(skb)->cwr) 240 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 241 } 242 243 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 244 { 245 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 246 } 247 248 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 249 { 250 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 251 case INET_ECN_NOT_ECT: 252 /* Funny extension: if ECT is not set on a segment, 253 * and we already seen ECT on a previous segment, 254 * it is probably a retransmit. 255 */ 256 if (tp->ecn_flags & TCP_ECN_SEEN) 257 tcp_enter_quickack_mode((struct sock *)tp); 258 break; 259 case INET_ECN_CE: 260 if (tcp_ca_needs_ecn((struct sock *)tp)) 261 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 262 263 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 264 /* Better not delay acks, sender can have a very low cwnd */ 265 tcp_enter_quickack_mode((struct sock *)tp); 266 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 267 } 268 tp->ecn_flags |= TCP_ECN_SEEN; 269 break; 270 default: 271 if (tcp_ca_needs_ecn((struct sock *)tp)) 272 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 273 tp->ecn_flags |= TCP_ECN_SEEN; 274 break; 275 } 276 } 277 278 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 279 { 280 if (tp->ecn_flags & TCP_ECN_OK) 281 __tcp_ecn_check_ce(tp, skb); 282 } 283 284 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 285 { 286 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 287 tp->ecn_flags &= ~TCP_ECN_OK; 288 } 289 290 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 291 { 292 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 293 tp->ecn_flags &= ~TCP_ECN_OK; 294 } 295 296 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 297 { 298 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 299 return true; 300 return false; 301 } 302 303 /* Buffer size and advertised window tuning. 304 * 305 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 306 */ 307 308 static void tcp_sndbuf_expand(struct sock *sk) 309 { 310 const struct tcp_sock *tp = tcp_sk(sk); 311 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 312 int sndmem, per_mss; 313 u32 nr_segs; 314 315 /* Worst case is non GSO/TSO : each frame consumes one skb 316 * and skb->head is kmalloced using power of two area of memory 317 */ 318 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 319 MAX_TCP_HEADER + 320 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 321 322 per_mss = roundup_pow_of_two(per_mss) + 323 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 324 325 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 326 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 327 328 /* Fast Recovery (RFC 5681 3.2) : 329 * Cubic needs 1.7 factor, rounded to 2 to include 330 * extra cushion (application might react slowly to POLLOUT) 331 */ 332 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 333 sndmem *= nr_segs * per_mss; 334 335 if (sk->sk_sndbuf < sndmem) 336 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 337 } 338 339 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 340 * 341 * All tcp_full_space() is split to two parts: "network" buffer, allocated 342 * forward and advertised in receiver window (tp->rcv_wnd) and 343 * "application buffer", required to isolate scheduling/application 344 * latencies from network. 345 * window_clamp is maximal advertised window. It can be less than 346 * tcp_full_space(), in this case tcp_full_space() - window_clamp 347 * is reserved for "application" buffer. The less window_clamp is 348 * the smoother our behaviour from viewpoint of network, but the lower 349 * throughput and the higher sensitivity of the connection to losses. 8) 350 * 351 * rcv_ssthresh is more strict window_clamp used at "slow start" 352 * phase to predict further behaviour of this connection. 353 * It is used for two goals: 354 * - to enforce header prediction at sender, even when application 355 * requires some significant "application buffer". It is check #1. 356 * - to prevent pruning of receive queue because of misprediction 357 * of receiver window. Check #2. 358 * 359 * The scheme does not work when sender sends good segments opening 360 * window and then starts to feed us spaghetti. But it should work 361 * in common situations. Otherwise, we have to rely on queue collapsing. 362 */ 363 364 /* Slow part of check#2. */ 365 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 366 { 367 struct tcp_sock *tp = tcp_sk(sk); 368 /* Optimize this! */ 369 int truesize = tcp_win_from_space(skb->truesize) >> 1; 370 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 371 372 while (tp->rcv_ssthresh <= window) { 373 if (truesize <= skb->len) 374 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 375 376 truesize >>= 1; 377 window >>= 1; 378 } 379 return 0; 380 } 381 382 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 383 { 384 struct tcp_sock *tp = tcp_sk(sk); 385 386 /* Check #1 */ 387 if (tp->rcv_ssthresh < tp->window_clamp && 388 (int)tp->rcv_ssthresh < tcp_space(sk) && 389 !tcp_under_memory_pressure(sk)) { 390 int incr; 391 392 /* Check #2. Increase window, if skb with such overhead 393 * will fit to rcvbuf in future. 394 */ 395 if (tcp_win_from_space(skb->truesize) <= skb->len) 396 incr = 2 * tp->advmss; 397 else 398 incr = __tcp_grow_window(sk, skb); 399 400 if (incr) { 401 incr = max_t(int, incr, 2 * skb->len); 402 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 403 tp->window_clamp); 404 inet_csk(sk)->icsk_ack.quick |= 1; 405 } 406 } 407 } 408 409 /* 3. Tuning rcvbuf, when connection enters established state. */ 410 static void tcp_fixup_rcvbuf(struct sock *sk) 411 { 412 u32 mss = tcp_sk(sk)->advmss; 413 int rcvmem; 414 415 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 416 tcp_default_init_rwnd(mss); 417 418 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 419 * Allow enough cushion so that sender is not limited by our window 420 */ 421 if (sysctl_tcp_moderate_rcvbuf) 422 rcvmem <<= 2; 423 424 if (sk->sk_rcvbuf < rcvmem) 425 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 426 } 427 428 /* 4. Try to fixup all. It is made immediately after connection enters 429 * established state. 430 */ 431 void tcp_init_buffer_space(struct sock *sk) 432 { 433 struct tcp_sock *tp = tcp_sk(sk); 434 int maxwin; 435 436 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 437 tcp_fixup_rcvbuf(sk); 438 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 439 tcp_sndbuf_expand(sk); 440 441 tp->rcvq_space.space = tp->rcv_wnd; 442 tcp_mstamp_refresh(tp); 443 tp->rcvq_space.time = tp->tcp_mstamp; 444 tp->rcvq_space.seq = tp->copied_seq; 445 446 maxwin = tcp_full_space(sk); 447 448 if (tp->window_clamp >= maxwin) { 449 tp->window_clamp = maxwin; 450 451 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 452 tp->window_clamp = max(maxwin - 453 (maxwin >> sysctl_tcp_app_win), 454 4 * tp->advmss); 455 } 456 457 /* Force reservation of one segment. */ 458 if (sysctl_tcp_app_win && 459 tp->window_clamp > 2 * tp->advmss && 460 tp->window_clamp + tp->advmss > maxwin) 461 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 462 463 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 464 tp->snd_cwnd_stamp = tcp_jiffies32; 465 } 466 467 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 468 static void tcp_clamp_window(struct sock *sk) 469 { 470 struct tcp_sock *tp = tcp_sk(sk); 471 struct inet_connection_sock *icsk = inet_csk(sk); 472 473 icsk->icsk_ack.quick = 0; 474 475 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 476 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 477 !tcp_under_memory_pressure(sk) && 478 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 479 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 480 sysctl_tcp_rmem[2]); 481 } 482 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 483 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 484 } 485 486 /* Initialize RCV_MSS value. 487 * RCV_MSS is an our guess about MSS used by the peer. 488 * We haven't any direct information about the MSS. 489 * It's better to underestimate the RCV_MSS rather than overestimate. 490 * Overestimations make us ACKing less frequently than needed. 491 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 492 */ 493 void tcp_initialize_rcv_mss(struct sock *sk) 494 { 495 const struct tcp_sock *tp = tcp_sk(sk); 496 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 497 498 hint = min(hint, tp->rcv_wnd / 2); 499 hint = min(hint, TCP_MSS_DEFAULT); 500 hint = max(hint, TCP_MIN_MSS); 501 502 inet_csk(sk)->icsk_ack.rcv_mss = hint; 503 } 504 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 505 506 /* Receiver "autotuning" code. 507 * 508 * The algorithm for RTT estimation w/o timestamps is based on 509 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 510 * <http://public.lanl.gov/radiant/pubs.html#DRS> 511 * 512 * More detail on this code can be found at 513 * <http://staff.psc.edu/jheffner/>, 514 * though this reference is out of date. A new paper 515 * is pending. 516 */ 517 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 518 { 519 u32 new_sample = tp->rcv_rtt_est.rtt_us; 520 long m = sample; 521 522 if (m == 0) 523 m = 1; 524 525 if (new_sample != 0) { 526 /* If we sample in larger samples in the non-timestamp 527 * case, we could grossly overestimate the RTT especially 528 * with chatty applications or bulk transfer apps which 529 * are stalled on filesystem I/O. 530 * 531 * Also, since we are only going for a minimum in the 532 * non-timestamp case, we do not smooth things out 533 * else with timestamps disabled convergence takes too 534 * long. 535 */ 536 if (!win_dep) { 537 m -= (new_sample >> 3); 538 new_sample += m; 539 } else { 540 m <<= 3; 541 if (m < new_sample) 542 new_sample = m; 543 } 544 } else { 545 /* No previous measure. */ 546 new_sample = m << 3; 547 } 548 549 tp->rcv_rtt_est.rtt_us = new_sample; 550 } 551 552 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 553 { 554 u32 delta_us; 555 556 if (tp->rcv_rtt_est.time == 0) 557 goto new_measure; 558 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 559 return; 560 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 561 tcp_rcv_rtt_update(tp, delta_us, 1); 562 563 new_measure: 564 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 565 tp->rcv_rtt_est.time = tp->tcp_mstamp; 566 } 567 568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 569 const struct sk_buff *skb) 570 { 571 struct tcp_sock *tp = tcp_sk(sk); 572 573 if (tp->rx_opt.rcv_tsecr && 574 (TCP_SKB_CB(skb)->end_seq - 575 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 576 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 577 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 578 579 tcp_rcv_rtt_update(tp, delta_us, 0); 580 } 581 } 582 583 /* 584 * This function should be called every time data is copied to user space. 585 * It calculates the appropriate TCP receive buffer space. 586 */ 587 void tcp_rcv_space_adjust(struct sock *sk) 588 { 589 struct tcp_sock *tp = tcp_sk(sk); 590 int time; 591 int copied; 592 593 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 594 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 595 return; 596 597 /* Number of bytes copied to user in last RTT */ 598 copied = tp->copied_seq - tp->rcvq_space.seq; 599 if (copied <= tp->rcvq_space.space) 600 goto new_measure; 601 602 /* A bit of theory : 603 * copied = bytes received in previous RTT, our base window 604 * To cope with packet losses, we need a 2x factor 605 * To cope with slow start, and sender growing its cwin by 100 % 606 * every RTT, we need a 4x factor, because the ACK we are sending 607 * now is for the next RTT, not the current one : 608 * <prev RTT . ><current RTT .. ><next RTT .... > 609 */ 610 611 if (sysctl_tcp_moderate_rcvbuf && 612 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 613 int rcvwin, rcvmem, rcvbuf; 614 615 /* minimal window to cope with packet losses, assuming 616 * steady state. Add some cushion because of small variations. 617 */ 618 rcvwin = (copied << 1) + 16 * tp->advmss; 619 620 /* If rate increased by 25%, 621 * assume slow start, rcvwin = 3 * copied 622 * If rate increased by 50%, 623 * assume sender can use 2x growth, rcvwin = 4 * copied 624 */ 625 if (copied >= 626 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 627 if (copied >= 628 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 629 rcvwin <<= 1; 630 else 631 rcvwin += (rcvwin >> 1); 632 } 633 634 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 635 while (tcp_win_from_space(rcvmem) < tp->advmss) 636 rcvmem += 128; 637 638 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 639 if (rcvbuf > sk->sk_rcvbuf) { 640 sk->sk_rcvbuf = rcvbuf; 641 642 /* Make the window clamp follow along. */ 643 tp->window_clamp = rcvwin; 644 } 645 } 646 tp->rcvq_space.space = copied; 647 648 new_measure: 649 tp->rcvq_space.seq = tp->copied_seq; 650 tp->rcvq_space.time = tp->tcp_mstamp; 651 } 652 653 /* There is something which you must keep in mind when you analyze the 654 * behavior of the tp->ato delayed ack timeout interval. When a 655 * connection starts up, we want to ack as quickly as possible. The 656 * problem is that "good" TCP's do slow start at the beginning of data 657 * transmission. The means that until we send the first few ACK's the 658 * sender will sit on his end and only queue most of his data, because 659 * he can only send snd_cwnd unacked packets at any given time. For 660 * each ACK we send, he increments snd_cwnd and transmits more of his 661 * queue. -DaveM 662 */ 663 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 664 { 665 struct tcp_sock *tp = tcp_sk(sk); 666 struct inet_connection_sock *icsk = inet_csk(sk); 667 u32 now; 668 669 inet_csk_schedule_ack(sk); 670 671 tcp_measure_rcv_mss(sk, skb); 672 673 tcp_rcv_rtt_measure(tp); 674 675 now = tcp_jiffies32; 676 677 if (!icsk->icsk_ack.ato) { 678 /* The _first_ data packet received, initialize 679 * delayed ACK engine. 680 */ 681 tcp_incr_quickack(sk); 682 icsk->icsk_ack.ato = TCP_ATO_MIN; 683 } else { 684 int m = now - icsk->icsk_ack.lrcvtime; 685 686 if (m <= TCP_ATO_MIN / 2) { 687 /* The fastest case is the first. */ 688 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 689 } else if (m < icsk->icsk_ack.ato) { 690 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 691 if (icsk->icsk_ack.ato > icsk->icsk_rto) 692 icsk->icsk_ack.ato = icsk->icsk_rto; 693 } else if (m > icsk->icsk_rto) { 694 /* Too long gap. Apparently sender failed to 695 * restart window, so that we send ACKs quickly. 696 */ 697 tcp_incr_quickack(sk); 698 sk_mem_reclaim(sk); 699 } 700 } 701 icsk->icsk_ack.lrcvtime = now; 702 703 tcp_ecn_check_ce(tp, skb); 704 705 if (skb->len >= 128) 706 tcp_grow_window(sk, skb); 707 } 708 709 /* Called to compute a smoothed rtt estimate. The data fed to this 710 * routine either comes from timestamps, or from segments that were 711 * known _not_ to have been retransmitted [see Karn/Partridge 712 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 713 * piece by Van Jacobson. 714 * NOTE: the next three routines used to be one big routine. 715 * To save cycles in the RFC 1323 implementation it was better to break 716 * it up into three procedures. -- erics 717 */ 718 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 719 { 720 struct tcp_sock *tp = tcp_sk(sk); 721 long m = mrtt_us; /* RTT */ 722 u32 srtt = tp->srtt_us; 723 724 /* The following amusing code comes from Jacobson's 725 * article in SIGCOMM '88. Note that rtt and mdev 726 * are scaled versions of rtt and mean deviation. 727 * This is designed to be as fast as possible 728 * m stands for "measurement". 729 * 730 * On a 1990 paper the rto value is changed to: 731 * RTO = rtt + 4 * mdev 732 * 733 * Funny. This algorithm seems to be very broken. 734 * These formulae increase RTO, when it should be decreased, increase 735 * too slowly, when it should be increased quickly, decrease too quickly 736 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 737 * does not matter how to _calculate_ it. Seems, it was trap 738 * that VJ failed to avoid. 8) 739 */ 740 if (srtt != 0) { 741 m -= (srtt >> 3); /* m is now error in rtt est */ 742 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 743 if (m < 0) { 744 m = -m; /* m is now abs(error) */ 745 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 746 /* This is similar to one of Eifel findings. 747 * Eifel blocks mdev updates when rtt decreases. 748 * This solution is a bit different: we use finer gain 749 * for mdev in this case (alpha*beta). 750 * Like Eifel it also prevents growth of rto, 751 * but also it limits too fast rto decreases, 752 * happening in pure Eifel. 753 */ 754 if (m > 0) 755 m >>= 3; 756 } else { 757 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 758 } 759 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 760 if (tp->mdev_us > tp->mdev_max_us) { 761 tp->mdev_max_us = tp->mdev_us; 762 if (tp->mdev_max_us > tp->rttvar_us) 763 tp->rttvar_us = tp->mdev_max_us; 764 } 765 if (after(tp->snd_una, tp->rtt_seq)) { 766 if (tp->mdev_max_us < tp->rttvar_us) 767 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 768 tp->rtt_seq = tp->snd_nxt; 769 tp->mdev_max_us = tcp_rto_min_us(sk); 770 } 771 } else { 772 /* no previous measure. */ 773 srtt = m << 3; /* take the measured time to be rtt */ 774 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 775 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 776 tp->mdev_max_us = tp->rttvar_us; 777 tp->rtt_seq = tp->snd_nxt; 778 } 779 tp->srtt_us = max(1U, srtt); 780 } 781 782 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 783 * Note: TCP stack does not yet implement pacing. 784 * FQ packet scheduler can be used to implement cheap but effective 785 * TCP pacing, to smooth the burst on large writes when packets 786 * in flight is significantly lower than cwnd (or rwin) 787 */ 788 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 789 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 790 791 static void tcp_update_pacing_rate(struct sock *sk) 792 { 793 const struct tcp_sock *tp = tcp_sk(sk); 794 u64 rate; 795 796 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 797 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 798 799 /* current rate is (cwnd * mss) / srtt 800 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 801 * In Congestion Avoidance phase, set it to 120 % the current rate. 802 * 803 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 804 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 805 * end of slow start and should slow down. 806 */ 807 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 808 rate *= sysctl_tcp_pacing_ss_ratio; 809 else 810 rate *= sysctl_tcp_pacing_ca_ratio; 811 812 rate *= max(tp->snd_cwnd, tp->packets_out); 813 814 if (likely(tp->srtt_us)) 815 do_div(rate, tp->srtt_us); 816 817 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 818 * without any lock. We want to make sure compiler wont store 819 * intermediate values in this location. 820 */ 821 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 822 sk->sk_max_pacing_rate); 823 } 824 825 /* Calculate rto without backoff. This is the second half of Van Jacobson's 826 * routine referred to above. 827 */ 828 static void tcp_set_rto(struct sock *sk) 829 { 830 const struct tcp_sock *tp = tcp_sk(sk); 831 /* Old crap is replaced with new one. 8) 832 * 833 * More seriously: 834 * 1. If rtt variance happened to be less 50msec, it is hallucination. 835 * It cannot be less due to utterly erratic ACK generation made 836 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 837 * to do with delayed acks, because at cwnd>2 true delack timeout 838 * is invisible. Actually, Linux-2.4 also generates erratic 839 * ACKs in some circumstances. 840 */ 841 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 842 843 /* 2. Fixups made earlier cannot be right. 844 * If we do not estimate RTO correctly without them, 845 * all the algo is pure shit and should be replaced 846 * with correct one. It is exactly, which we pretend to do. 847 */ 848 849 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 850 * guarantees that rto is higher. 851 */ 852 tcp_bound_rto(sk); 853 } 854 855 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 856 { 857 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 858 859 if (!cwnd) 860 cwnd = TCP_INIT_CWND; 861 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 862 } 863 864 /* 865 * Packet counting of FACK is based on in-order assumptions, therefore TCP 866 * disables it when reordering is detected 867 */ 868 void tcp_disable_fack(struct tcp_sock *tp) 869 { 870 /* RFC3517 uses different metric in lost marker => reset on change */ 871 if (tcp_is_fack(tp)) 872 tp->lost_skb_hint = NULL; 873 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 874 } 875 876 /* Take a notice that peer is sending D-SACKs */ 877 static void tcp_dsack_seen(struct tcp_sock *tp) 878 { 879 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 880 } 881 882 static void tcp_update_reordering(struct sock *sk, const int metric, 883 const int ts) 884 { 885 struct tcp_sock *tp = tcp_sk(sk); 886 int mib_idx; 887 888 if (WARN_ON_ONCE(metric < 0)) 889 return; 890 891 if (metric > tp->reordering) { 892 tp->reordering = min(sysctl_tcp_max_reordering, metric); 893 894 #if FASTRETRANS_DEBUG > 1 895 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 896 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 897 tp->reordering, 898 tp->fackets_out, 899 tp->sacked_out, 900 tp->undo_marker ? tp->undo_retrans : 0); 901 #endif 902 tcp_disable_fack(tp); 903 } 904 905 tp->rack.reord = 1; 906 907 /* This exciting event is worth to be remembered. 8) */ 908 if (ts) 909 mib_idx = LINUX_MIB_TCPTSREORDER; 910 else if (tcp_is_reno(tp)) 911 mib_idx = LINUX_MIB_TCPRENOREORDER; 912 else if (tcp_is_fack(tp)) 913 mib_idx = LINUX_MIB_TCPFACKREORDER; 914 else 915 mib_idx = LINUX_MIB_TCPSACKREORDER; 916 917 NET_INC_STATS(sock_net(sk), mib_idx); 918 } 919 920 /* This must be called before lost_out is incremented */ 921 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 922 { 923 if (!tp->retransmit_skb_hint || 924 before(TCP_SKB_CB(skb)->seq, 925 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 926 tp->retransmit_skb_hint = skb; 927 } 928 929 /* Sum the number of packets on the wire we have marked as lost. 930 * There are two cases we care about here: 931 * a) Packet hasn't been marked lost (nor retransmitted), 932 * and this is the first loss. 933 * b) Packet has been marked both lost and retransmitted, 934 * and this means we think it was lost again. 935 */ 936 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 937 { 938 __u8 sacked = TCP_SKB_CB(skb)->sacked; 939 940 if (!(sacked & TCPCB_LOST) || 941 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 942 tp->lost += tcp_skb_pcount(skb); 943 } 944 945 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 946 { 947 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 948 tcp_verify_retransmit_hint(tp, skb); 949 950 tp->lost_out += tcp_skb_pcount(skb); 951 tcp_sum_lost(tp, skb); 952 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 953 } 954 } 955 956 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 957 { 958 tcp_verify_retransmit_hint(tp, skb); 959 960 tcp_sum_lost(tp, skb); 961 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 962 tp->lost_out += tcp_skb_pcount(skb); 963 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 964 } 965 } 966 967 /* This procedure tags the retransmission queue when SACKs arrive. 968 * 969 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 970 * Packets in queue with these bits set are counted in variables 971 * sacked_out, retrans_out and lost_out, correspondingly. 972 * 973 * Valid combinations are: 974 * Tag InFlight Description 975 * 0 1 - orig segment is in flight. 976 * S 0 - nothing flies, orig reached receiver. 977 * L 0 - nothing flies, orig lost by net. 978 * R 2 - both orig and retransmit are in flight. 979 * L|R 1 - orig is lost, retransmit is in flight. 980 * S|R 1 - orig reached receiver, retrans is still in flight. 981 * (L|S|R is logically valid, it could occur when L|R is sacked, 982 * but it is equivalent to plain S and code short-curcuits it to S. 983 * L|S is logically invalid, it would mean -1 packet in flight 8)) 984 * 985 * These 6 states form finite state machine, controlled by the following events: 986 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 987 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 988 * 3. Loss detection event of two flavors: 989 * A. Scoreboard estimator decided the packet is lost. 990 * A'. Reno "three dupacks" marks head of queue lost. 991 * A''. Its FACK modification, head until snd.fack is lost. 992 * B. SACK arrives sacking SND.NXT at the moment, when the 993 * segment was retransmitted. 994 * 4. D-SACK added new rule: D-SACK changes any tag to S. 995 * 996 * It is pleasant to note, that state diagram turns out to be commutative, 997 * so that we are allowed not to be bothered by order of our actions, 998 * when multiple events arrive simultaneously. (see the function below). 999 * 1000 * Reordering detection. 1001 * -------------------- 1002 * Reordering metric is maximal distance, which a packet can be displaced 1003 * in packet stream. With SACKs we can estimate it: 1004 * 1005 * 1. SACK fills old hole and the corresponding segment was not 1006 * ever retransmitted -> reordering. Alas, we cannot use it 1007 * when segment was retransmitted. 1008 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1009 * for retransmitted and already SACKed segment -> reordering.. 1010 * Both of these heuristics are not used in Loss state, when we cannot 1011 * account for retransmits accurately. 1012 * 1013 * SACK block validation. 1014 * ---------------------- 1015 * 1016 * SACK block range validation checks that the received SACK block fits to 1017 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1018 * Note that SND.UNA is not included to the range though being valid because 1019 * it means that the receiver is rather inconsistent with itself reporting 1020 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1021 * perfectly valid, however, in light of RFC2018 which explicitly states 1022 * that "SACK block MUST reflect the newest segment. Even if the newest 1023 * segment is going to be discarded ...", not that it looks very clever 1024 * in case of head skb. Due to potentional receiver driven attacks, we 1025 * choose to avoid immediate execution of a walk in write queue due to 1026 * reneging and defer head skb's loss recovery to standard loss recovery 1027 * procedure that will eventually trigger (nothing forbids us doing this). 1028 * 1029 * Implements also blockage to start_seq wrap-around. Problem lies in the 1030 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1031 * there's no guarantee that it will be before snd_nxt (n). The problem 1032 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1033 * wrap (s_w): 1034 * 1035 * <- outs wnd -> <- wrapzone -> 1036 * u e n u_w e_w s n_w 1037 * | | | | | | | 1038 * |<------------+------+----- TCP seqno space --------------+---------->| 1039 * ...-- <2^31 ->| |<--------... 1040 * ...---- >2^31 ------>| |<--------... 1041 * 1042 * Current code wouldn't be vulnerable but it's better still to discard such 1043 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1044 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1045 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1046 * equal to the ideal case (infinite seqno space without wrap caused issues). 1047 * 1048 * With D-SACK the lower bound is extended to cover sequence space below 1049 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1050 * again, D-SACK block must not to go across snd_una (for the same reason as 1051 * for the normal SACK blocks, explained above). But there all simplicity 1052 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1053 * fully below undo_marker they do not affect behavior in anyway and can 1054 * therefore be safely ignored. In rare cases (which are more or less 1055 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1056 * fragmentation and packet reordering past skb's retransmission. To consider 1057 * them correctly, the acceptable range must be extended even more though 1058 * the exact amount is rather hard to quantify. However, tp->max_window can 1059 * be used as an exaggerated estimate. 1060 */ 1061 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1062 u32 start_seq, u32 end_seq) 1063 { 1064 /* Too far in future, or reversed (interpretation is ambiguous) */ 1065 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1066 return false; 1067 1068 /* Nasty start_seq wrap-around check (see comments above) */ 1069 if (!before(start_seq, tp->snd_nxt)) 1070 return false; 1071 1072 /* In outstanding window? ...This is valid exit for D-SACKs too. 1073 * start_seq == snd_una is non-sensical (see comments above) 1074 */ 1075 if (after(start_seq, tp->snd_una)) 1076 return true; 1077 1078 if (!is_dsack || !tp->undo_marker) 1079 return false; 1080 1081 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1082 if (after(end_seq, tp->snd_una)) 1083 return false; 1084 1085 if (!before(start_seq, tp->undo_marker)) 1086 return true; 1087 1088 /* Too old */ 1089 if (!after(end_seq, tp->undo_marker)) 1090 return false; 1091 1092 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1093 * start_seq < undo_marker and end_seq >= undo_marker. 1094 */ 1095 return !before(start_seq, end_seq - tp->max_window); 1096 } 1097 1098 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1099 struct tcp_sack_block_wire *sp, int num_sacks, 1100 u32 prior_snd_una) 1101 { 1102 struct tcp_sock *tp = tcp_sk(sk); 1103 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1104 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1105 bool dup_sack = false; 1106 1107 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1108 dup_sack = true; 1109 tcp_dsack_seen(tp); 1110 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1111 } else if (num_sacks > 1) { 1112 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1113 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1114 1115 if (!after(end_seq_0, end_seq_1) && 1116 !before(start_seq_0, start_seq_1)) { 1117 dup_sack = true; 1118 tcp_dsack_seen(tp); 1119 NET_INC_STATS(sock_net(sk), 1120 LINUX_MIB_TCPDSACKOFORECV); 1121 } 1122 } 1123 1124 /* D-SACK for already forgotten data... Do dumb counting. */ 1125 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1126 !after(end_seq_0, prior_snd_una) && 1127 after(end_seq_0, tp->undo_marker)) 1128 tp->undo_retrans--; 1129 1130 return dup_sack; 1131 } 1132 1133 struct tcp_sacktag_state { 1134 int reord; 1135 int fack_count; 1136 /* Timestamps for earliest and latest never-retransmitted segment 1137 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1138 * but congestion control should still get an accurate delay signal. 1139 */ 1140 u64 first_sackt; 1141 u64 last_sackt; 1142 struct rate_sample *rate; 1143 int flag; 1144 }; 1145 1146 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1147 * the incoming SACK may not exactly match but we can find smaller MSS 1148 * aligned portion of it that matches. Therefore we might need to fragment 1149 * which may fail and creates some hassle (caller must handle error case 1150 * returns). 1151 * 1152 * FIXME: this could be merged to shift decision code 1153 */ 1154 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1155 u32 start_seq, u32 end_seq) 1156 { 1157 int err; 1158 bool in_sack; 1159 unsigned int pkt_len; 1160 unsigned int mss; 1161 1162 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1163 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1164 1165 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1166 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1167 mss = tcp_skb_mss(skb); 1168 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1169 1170 if (!in_sack) { 1171 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1172 if (pkt_len < mss) 1173 pkt_len = mss; 1174 } else { 1175 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1176 if (pkt_len < mss) 1177 return -EINVAL; 1178 } 1179 1180 /* Round if necessary so that SACKs cover only full MSSes 1181 * and/or the remaining small portion (if present) 1182 */ 1183 if (pkt_len > mss) { 1184 unsigned int new_len = (pkt_len / mss) * mss; 1185 if (!in_sack && new_len < pkt_len) 1186 new_len += mss; 1187 pkt_len = new_len; 1188 } 1189 1190 if (pkt_len >= skb->len && !in_sack) 1191 return 0; 1192 1193 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1194 if (err < 0) 1195 return err; 1196 } 1197 1198 return in_sack; 1199 } 1200 1201 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1202 static u8 tcp_sacktag_one(struct sock *sk, 1203 struct tcp_sacktag_state *state, u8 sacked, 1204 u32 start_seq, u32 end_seq, 1205 int dup_sack, int pcount, 1206 u64 xmit_time) 1207 { 1208 struct tcp_sock *tp = tcp_sk(sk); 1209 int fack_count = state->fack_count; 1210 1211 /* Account D-SACK for retransmitted packet. */ 1212 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1213 if (tp->undo_marker && tp->undo_retrans > 0 && 1214 after(end_seq, tp->undo_marker)) 1215 tp->undo_retrans--; 1216 if (sacked & TCPCB_SACKED_ACKED) 1217 state->reord = min(fack_count, state->reord); 1218 } 1219 1220 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1221 if (!after(end_seq, tp->snd_una)) 1222 return sacked; 1223 1224 if (!(sacked & TCPCB_SACKED_ACKED)) { 1225 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1226 1227 if (sacked & TCPCB_SACKED_RETRANS) { 1228 /* If the segment is not tagged as lost, 1229 * we do not clear RETRANS, believing 1230 * that retransmission is still in flight. 1231 */ 1232 if (sacked & TCPCB_LOST) { 1233 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1234 tp->lost_out -= pcount; 1235 tp->retrans_out -= pcount; 1236 } 1237 } else { 1238 if (!(sacked & TCPCB_RETRANS)) { 1239 /* New sack for not retransmitted frame, 1240 * which was in hole. It is reordering. 1241 */ 1242 if (before(start_seq, 1243 tcp_highest_sack_seq(tp))) 1244 state->reord = min(fack_count, 1245 state->reord); 1246 if (!after(end_seq, tp->high_seq)) 1247 state->flag |= FLAG_ORIG_SACK_ACKED; 1248 if (state->first_sackt == 0) 1249 state->first_sackt = xmit_time; 1250 state->last_sackt = xmit_time; 1251 } 1252 1253 if (sacked & TCPCB_LOST) { 1254 sacked &= ~TCPCB_LOST; 1255 tp->lost_out -= pcount; 1256 } 1257 } 1258 1259 sacked |= TCPCB_SACKED_ACKED; 1260 state->flag |= FLAG_DATA_SACKED; 1261 tp->sacked_out += pcount; 1262 tp->delivered += pcount; /* Out-of-order packets delivered */ 1263 1264 fack_count += pcount; 1265 1266 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1267 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1268 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1269 tp->lost_cnt_hint += pcount; 1270 1271 if (fack_count > tp->fackets_out) 1272 tp->fackets_out = fack_count; 1273 } 1274 1275 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1276 * frames and clear it. undo_retrans is decreased above, L|R frames 1277 * are accounted above as well. 1278 */ 1279 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1280 sacked &= ~TCPCB_SACKED_RETRANS; 1281 tp->retrans_out -= pcount; 1282 } 1283 1284 return sacked; 1285 } 1286 1287 /* Shift newly-SACKed bytes from this skb to the immediately previous 1288 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1289 */ 1290 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1291 struct tcp_sacktag_state *state, 1292 unsigned int pcount, int shifted, int mss, 1293 bool dup_sack) 1294 { 1295 struct tcp_sock *tp = tcp_sk(sk); 1296 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1297 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1298 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1299 1300 BUG_ON(!pcount); 1301 1302 /* Adjust counters and hints for the newly sacked sequence 1303 * range but discard the return value since prev is already 1304 * marked. We must tag the range first because the seq 1305 * advancement below implicitly advances 1306 * tcp_highest_sack_seq() when skb is highest_sack. 1307 */ 1308 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1309 start_seq, end_seq, dup_sack, pcount, 1310 skb->skb_mstamp); 1311 tcp_rate_skb_delivered(sk, skb, state->rate); 1312 1313 if (skb == tp->lost_skb_hint) 1314 tp->lost_cnt_hint += pcount; 1315 1316 TCP_SKB_CB(prev)->end_seq += shifted; 1317 TCP_SKB_CB(skb)->seq += shifted; 1318 1319 tcp_skb_pcount_add(prev, pcount); 1320 BUG_ON(tcp_skb_pcount(skb) < pcount); 1321 tcp_skb_pcount_add(skb, -pcount); 1322 1323 /* When we're adding to gso_segs == 1, gso_size will be zero, 1324 * in theory this shouldn't be necessary but as long as DSACK 1325 * code can come after this skb later on it's better to keep 1326 * setting gso_size to something. 1327 */ 1328 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1329 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1330 1331 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1332 if (tcp_skb_pcount(skb) <= 1) 1333 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1334 1335 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1336 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1337 1338 if (skb->len > 0) { 1339 BUG_ON(!tcp_skb_pcount(skb)); 1340 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1341 return false; 1342 } 1343 1344 /* Whole SKB was eaten :-) */ 1345 1346 if (skb == tp->retransmit_skb_hint) 1347 tp->retransmit_skb_hint = prev; 1348 if (skb == tp->lost_skb_hint) { 1349 tp->lost_skb_hint = prev; 1350 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1351 } 1352 1353 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1354 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1355 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1356 TCP_SKB_CB(prev)->end_seq++; 1357 1358 if (skb == tcp_highest_sack(sk)) 1359 tcp_advance_highest_sack(sk, skb); 1360 1361 tcp_skb_collapse_tstamp(prev, skb); 1362 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1363 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1364 1365 tcp_unlink_write_queue(skb, sk); 1366 sk_wmem_free_skb(sk, skb); 1367 1368 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1369 1370 return true; 1371 } 1372 1373 /* I wish gso_size would have a bit more sane initialization than 1374 * something-or-zero which complicates things 1375 */ 1376 static int tcp_skb_seglen(const struct sk_buff *skb) 1377 { 1378 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1379 } 1380 1381 /* Shifting pages past head area doesn't work */ 1382 static int skb_can_shift(const struct sk_buff *skb) 1383 { 1384 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1385 } 1386 1387 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1388 * skb. 1389 */ 1390 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1391 struct tcp_sacktag_state *state, 1392 u32 start_seq, u32 end_seq, 1393 bool dup_sack) 1394 { 1395 struct tcp_sock *tp = tcp_sk(sk); 1396 struct sk_buff *prev; 1397 int mss; 1398 int pcount = 0; 1399 int len; 1400 int in_sack; 1401 1402 if (!sk_can_gso(sk)) 1403 goto fallback; 1404 1405 /* Normally R but no L won't result in plain S */ 1406 if (!dup_sack && 1407 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1408 goto fallback; 1409 if (!skb_can_shift(skb)) 1410 goto fallback; 1411 /* This frame is about to be dropped (was ACKed). */ 1412 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1413 goto fallback; 1414 1415 /* Can only happen with delayed DSACK + discard craziness */ 1416 if (unlikely(skb == tcp_write_queue_head(sk))) 1417 goto fallback; 1418 prev = tcp_write_queue_prev(sk, skb); 1419 1420 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1421 goto fallback; 1422 1423 if (!tcp_skb_can_collapse_to(prev)) 1424 goto fallback; 1425 1426 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1427 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1428 1429 if (in_sack) { 1430 len = skb->len; 1431 pcount = tcp_skb_pcount(skb); 1432 mss = tcp_skb_seglen(skb); 1433 1434 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1435 * drop this restriction as unnecessary 1436 */ 1437 if (mss != tcp_skb_seglen(prev)) 1438 goto fallback; 1439 } else { 1440 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1441 goto noop; 1442 /* CHECKME: This is non-MSS split case only?, this will 1443 * cause skipped skbs due to advancing loop btw, original 1444 * has that feature too 1445 */ 1446 if (tcp_skb_pcount(skb) <= 1) 1447 goto noop; 1448 1449 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1450 if (!in_sack) { 1451 /* TODO: head merge to next could be attempted here 1452 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1453 * though it might not be worth of the additional hassle 1454 * 1455 * ...we can probably just fallback to what was done 1456 * previously. We could try merging non-SACKed ones 1457 * as well but it probably isn't going to buy off 1458 * because later SACKs might again split them, and 1459 * it would make skb timestamp tracking considerably 1460 * harder problem. 1461 */ 1462 goto fallback; 1463 } 1464 1465 len = end_seq - TCP_SKB_CB(skb)->seq; 1466 BUG_ON(len < 0); 1467 BUG_ON(len > skb->len); 1468 1469 /* MSS boundaries should be honoured or else pcount will 1470 * severely break even though it makes things bit trickier. 1471 * Optimize common case to avoid most of the divides 1472 */ 1473 mss = tcp_skb_mss(skb); 1474 1475 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1476 * drop this restriction as unnecessary 1477 */ 1478 if (mss != tcp_skb_seglen(prev)) 1479 goto fallback; 1480 1481 if (len == mss) { 1482 pcount = 1; 1483 } else if (len < mss) { 1484 goto noop; 1485 } else { 1486 pcount = len / mss; 1487 len = pcount * mss; 1488 } 1489 } 1490 1491 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1492 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1493 goto fallback; 1494 1495 if (!skb_shift(prev, skb, len)) 1496 goto fallback; 1497 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1498 goto out; 1499 1500 /* Hole filled allows collapsing with the next as well, this is very 1501 * useful when hole on every nth skb pattern happens 1502 */ 1503 if (prev == tcp_write_queue_tail(sk)) 1504 goto out; 1505 skb = tcp_write_queue_next(sk, prev); 1506 1507 if (!skb_can_shift(skb) || 1508 (skb == tcp_send_head(sk)) || 1509 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1510 (mss != tcp_skb_seglen(skb))) 1511 goto out; 1512 1513 len = skb->len; 1514 if (skb_shift(prev, skb, len)) { 1515 pcount += tcp_skb_pcount(skb); 1516 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1517 } 1518 1519 out: 1520 state->fack_count += pcount; 1521 return prev; 1522 1523 noop: 1524 return skb; 1525 1526 fallback: 1527 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1528 return NULL; 1529 } 1530 1531 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1532 struct tcp_sack_block *next_dup, 1533 struct tcp_sacktag_state *state, 1534 u32 start_seq, u32 end_seq, 1535 bool dup_sack_in) 1536 { 1537 struct tcp_sock *tp = tcp_sk(sk); 1538 struct sk_buff *tmp; 1539 1540 tcp_for_write_queue_from(skb, sk) { 1541 int in_sack = 0; 1542 bool dup_sack = dup_sack_in; 1543 1544 if (skb == tcp_send_head(sk)) 1545 break; 1546 1547 /* queue is in-order => we can short-circuit the walk early */ 1548 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1549 break; 1550 1551 if (next_dup && 1552 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1553 in_sack = tcp_match_skb_to_sack(sk, skb, 1554 next_dup->start_seq, 1555 next_dup->end_seq); 1556 if (in_sack > 0) 1557 dup_sack = true; 1558 } 1559 1560 /* skb reference here is a bit tricky to get right, since 1561 * shifting can eat and free both this skb and the next, 1562 * so not even _safe variant of the loop is enough. 1563 */ 1564 if (in_sack <= 0) { 1565 tmp = tcp_shift_skb_data(sk, skb, state, 1566 start_seq, end_seq, dup_sack); 1567 if (tmp) { 1568 if (tmp != skb) { 1569 skb = tmp; 1570 continue; 1571 } 1572 1573 in_sack = 0; 1574 } else { 1575 in_sack = tcp_match_skb_to_sack(sk, skb, 1576 start_seq, 1577 end_seq); 1578 } 1579 } 1580 1581 if (unlikely(in_sack < 0)) 1582 break; 1583 1584 if (in_sack) { 1585 TCP_SKB_CB(skb)->sacked = 1586 tcp_sacktag_one(sk, 1587 state, 1588 TCP_SKB_CB(skb)->sacked, 1589 TCP_SKB_CB(skb)->seq, 1590 TCP_SKB_CB(skb)->end_seq, 1591 dup_sack, 1592 tcp_skb_pcount(skb), 1593 skb->skb_mstamp); 1594 tcp_rate_skb_delivered(sk, skb, state->rate); 1595 1596 if (!before(TCP_SKB_CB(skb)->seq, 1597 tcp_highest_sack_seq(tp))) 1598 tcp_advance_highest_sack(sk, skb); 1599 } 1600 1601 state->fack_count += tcp_skb_pcount(skb); 1602 } 1603 return skb; 1604 } 1605 1606 /* Avoid all extra work that is being done by sacktag while walking in 1607 * a normal way 1608 */ 1609 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1610 struct tcp_sacktag_state *state, 1611 u32 skip_to_seq) 1612 { 1613 tcp_for_write_queue_from(skb, sk) { 1614 if (skb == tcp_send_head(sk)) 1615 break; 1616 1617 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1618 break; 1619 1620 state->fack_count += tcp_skb_pcount(skb); 1621 } 1622 return skb; 1623 } 1624 1625 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1626 struct sock *sk, 1627 struct tcp_sack_block *next_dup, 1628 struct tcp_sacktag_state *state, 1629 u32 skip_to_seq) 1630 { 1631 if (!next_dup) 1632 return skb; 1633 1634 if (before(next_dup->start_seq, skip_to_seq)) { 1635 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1636 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1637 next_dup->start_seq, next_dup->end_seq, 1638 1); 1639 } 1640 1641 return skb; 1642 } 1643 1644 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1645 { 1646 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1647 } 1648 1649 static int 1650 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1651 u32 prior_snd_una, struct tcp_sacktag_state *state) 1652 { 1653 struct tcp_sock *tp = tcp_sk(sk); 1654 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1655 TCP_SKB_CB(ack_skb)->sacked); 1656 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1657 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1658 struct tcp_sack_block *cache; 1659 struct sk_buff *skb; 1660 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1661 int used_sacks; 1662 bool found_dup_sack = false; 1663 int i, j; 1664 int first_sack_index; 1665 1666 state->flag = 0; 1667 state->reord = tp->packets_out; 1668 1669 if (!tp->sacked_out) { 1670 if (WARN_ON(tp->fackets_out)) 1671 tp->fackets_out = 0; 1672 tcp_highest_sack_reset(sk); 1673 } 1674 1675 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1676 num_sacks, prior_snd_una); 1677 if (found_dup_sack) { 1678 state->flag |= FLAG_DSACKING_ACK; 1679 tp->delivered++; /* A spurious retransmission is delivered */ 1680 } 1681 1682 /* Eliminate too old ACKs, but take into 1683 * account more or less fresh ones, they can 1684 * contain valid SACK info. 1685 */ 1686 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1687 return 0; 1688 1689 if (!tp->packets_out) 1690 goto out; 1691 1692 used_sacks = 0; 1693 first_sack_index = 0; 1694 for (i = 0; i < num_sacks; i++) { 1695 bool dup_sack = !i && found_dup_sack; 1696 1697 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1698 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1699 1700 if (!tcp_is_sackblock_valid(tp, dup_sack, 1701 sp[used_sacks].start_seq, 1702 sp[used_sacks].end_seq)) { 1703 int mib_idx; 1704 1705 if (dup_sack) { 1706 if (!tp->undo_marker) 1707 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1708 else 1709 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1710 } else { 1711 /* Don't count olds caused by ACK reordering */ 1712 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1713 !after(sp[used_sacks].end_seq, tp->snd_una)) 1714 continue; 1715 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1716 } 1717 1718 NET_INC_STATS(sock_net(sk), mib_idx); 1719 if (i == 0) 1720 first_sack_index = -1; 1721 continue; 1722 } 1723 1724 /* Ignore very old stuff early */ 1725 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1726 continue; 1727 1728 used_sacks++; 1729 } 1730 1731 /* order SACK blocks to allow in order walk of the retrans queue */ 1732 for (i = used_sacks - 1; i > 0; i--) { 1733 for (j = 0; j < i; j++) { 1734 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1735 swap(sp[j], sp[j + 1]); 1736 1737 /* Track where the first SACK block goes to */ 1738 if (j == first_sack_index) 1739 first_sack_index = j + 1; 1740 } 1741 } 1742 } 1743 1744 skb = tcp_write_queue_head(sk); 1745 state->fack_count = 0; 1746 i = 0; 1747 1748 if (!tp->sacked_out) { 1749 /* It's already past, so skip checking against it */ 1750 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1751 } else { 1752 cache = tp->recv_sack_cache; 1753 /* Skip empty blocks in at head of the cache */ 1754 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1755 !cache->end_seq) 1756 cache++; 1757 } 1758 1759 while (i < used_sacks) { 1760 u32 start_seq = sp[i].start_seq; 1761 u32 end_seq = sp[i].end_seq; 1762 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1763 struct tcp_sack_block *next_dup = NULL; 1764 1765 if (found_dup_sack && ((i + 1) == first_sack_index)) 1766 next_dup = &sp[i + 1]; 1767 1768 /* Skip too early cached blocks */ 1769 while (tcp_sack_cache_ok(tp, cache) && 1770 !before(start_seq, cache->end_seq)) 1771 cache++; 1772 1773 /* Can skip some work by looking recv_sack_cache? */ 1774 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1775 after(end_seq, cache->start_seq)) { 1776 1777 /* Head todo? */ 1778 if (before(start_seq, cache->start_seq)) { 1779 skb = tcp_sacktag_skip(skb, sk, state, 1780 start_seq); 1781 skb = tcp_sacktag_walk(skb, sk, next_dup, 1782 state, 1783 start_seq, 1784 cache->start_seq, 1785 dup_sack); 1786 } 1787 1788 /* Rest of the block already fully processed? */ 1789 if (!after(end_seq, cache->end_seq)) 1790 goto advance_sp; 1791 1792 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1793 state, 1794 cache->end_seq); 1795 1796 /* ...tail remains todo... */ 1797 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1798 /* ...but better entrypoint exists! */ 1799 skb = tcp_highest_sack(sk); 1800 if (!skb) 1801 break; 1802 state->fack_count = tp->fackets_out; 1803 cache++; 1804 goto walk; 1805 } 1806 1807 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1808 /* Check overlap against next cached too (past this one already) */ 1809 cache++; 1810 continue; 1811 } 1812 1813 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1814 skb = tcp_highest_sack(sk); 1815 if (!skb) 1816 break; 1817 state->fack_count = tp->fackets_out; 1818 } 1819 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1820 1821 walk: 1822 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1823 start_seq, end_seq, dup_sack); 1824 1825 advance_sp: 1826 i++; 1827 } 1828 1829 /* Clear the head of the cache sack blocks so we can skip it next time */ 1830 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1831 tp->recv_sack_cache[i].start_seq = 0; 1832 tp->recv_sack_cache[i].end_seq = 0; 1833 } 1834 for (j = 0; j < used_sacks; j++) 1835 tp->recv_sack_cache[i++] = sp[j]; 1836 1837 if ((state->reord < tp->fackets_out) && 1838 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1839 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1840 1841 tcp_verify_left_out(tp); 1842 out: 1843 1844 #if FASTRETRANS_DEBUG > 0 1845 WARN_ON((int)tp->sacked_out < 0); 1846 WARN_ON((int)tp->lost_out < 0); 1847 WARN_ON((int)tp->retrans_out < 0); 1848 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1849 #endif 1850 return state->flag; 1851 } 1852 1853 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1854 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1855 */ 1856 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1857 { 1858 u32 holes; 1859 1860 holes = max(tp->lost_out, 1U); 1861 holes = min(holes, tp->packets_out); 1862 1863 if ((tp->sacked_out + holes) > tp->packets_out) { 1864 tp->sacked_out = tp->packets_out - holes; 1865 return true; 1866 } 1867 return false; 1868 } 1869 1870 /* If we receive more dupacks than we expected counting segments 1871 * in assumption of absent reordering, interpret this as reordering. 1872 * The only another reason could be bug in receiver TCP. 1873 */ 1874 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1875 { 1876 struct tcp_sock *tp = tcp_sk(sk); 1877 if (tcp_limit_reno_sacked(tp)) 1878 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1879 } 1880 1881 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1882 1883 static void tcp_add_reno_sack(struct sock *sk) 1884 { 1885 struct tcp_sock *tp = tcp_sk(sk); 1886 u32 prior_sacked = tp->sacked_out; 1887 1888 tp->sacked_out++; 1889 tcp_check_reno_reordering(sk, 0); 1890 if (tp->sacked_out > prior_sacked) 1891 tp->delivered++; /* Some out-of-order packet is delivered */ 1892 tcp_verify_left_out(tp); 1893 } 1894 1895 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1896 1897 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1898 { 1899 struct tcp_sock *tp = tcp_sk(sk); 1900 1901 if (acked > 0) { 1902 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1903 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1904 if (acked - 1 >= tp->sacked_out) 1905 tp->sacked_out = 0; 1906 else 1907 tp->sacked_out -= acked - 1; 1908 } 1909 tcp_check_reno_reordering(sk, acked); 1910 tcp_verify_left_out(tp); 1911 } 1912 1913 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1914 { 1915 tp->sacked_out = 0; 1916 } 1917 1918 void tcp_clear_retrans(struct tcp_sock *tp) 1919 { 1920 tp->retrans_out = 0; 1921 tp->lost_out = 0; 1922 tp->undo_marker = 0; 1923 tp->undo_retrans = -1; 1924 tp->fackets_out = 0; 1925 tp->sacked_out = 0; 1926 } 1927 1928 static inline void tcp_init_undo(struct tcp_sock *tp) 1929 { 1930 tp->undo_marker = tp->snd_una; 1931 /* Retransmission still in flight may cause DSACKs later. */ 1932 tp->undo_retrans = tp->retrans_out ? : -1; 1933 } 1934 1935 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1936 * and reset tags completely, otherwise preserve SACKs. If receiver 1937 * dropped its ofo queue, we will know this due to reneging detection. 1938 */ 1939 void tcp_enter_loss(struct sock *sk) 1940 { 1941 const struct inet_connection_sock *icsk = inet_csk(sk); 1942 struct tcp_sock *tp = tcp_sk(sk); 1943 struct net *net = sock_net(sk); 1944 struct sk_buff *skb; 1945 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1946 bool is_reneg; /* is receiver reneging on SACKs? */ 1947 bool mark_lost; 1948 1949 /* Reduce ssthresh if it has not yet been made inside this window. */ 1950 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1951 !after(tp->high_seq, tp->snd_una) || 1952 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1953 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1954 tp->prior_cwnd = tp->snd_cwnd; 1955 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1956 tcp_ca_event(sk, CA_EVENT_LOSS); 1957 tcp_init_undo(tp); 1958 } 1959 tp->snd_cwnd = 1; 1960 tp->snd_cwnd_cnt = 0; 1961 tp->snd_cwnd_stamp = tcp_jiffies32; 1962 1963 tp->retrans_out = 0; 1964 tp->lost_out = 0; 1965 1966 if (tcp_is_reno(tp)) 1967 tcp_reset_reno_sack(tp); 1968 1969 skb = tcp_write_queue_head(sk); 1970 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1971 if (is_reneg) { 1972 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1973 tp->sacked_out = 0; 1974 tp->fackets_out = 0; 1975 } 1976 tcp_clear_all_retrans_hints(tp); 1977 1978 tcp_for_write_queue(skb, sk) { 1979 if (skb == tcp_send_head(sk)) 1980 break; 1981 1982 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1983 is_reneg); 1984 if (mark_lost) 1985 tcp_sum_lost(tp, skb); 1986 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1987 if (mark_lost) { 1988 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1989 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1990 tp->lost_out += tcp_skb_pcount(skb); 1991 } 1992 } 1993 tcp_verify_left_out(tp); 1994 1995 /* Timeout in disordered state after receiving substantial DUPACKs 1996 * suggests that the degree of reordering is over-estimated. 1997 */ 1998 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1999 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2000 tp->reordering = min_t(unsigned int, tp->reordering, 2001 net->ipv4.sysctl_tcp_reordering); 2002 tcp_set_ca_state(sk, TCP_CA_Loss); 2003 tp->high_seq = tp->snd_nxt; 2004 tcp_ecn_queue_cwr(tp); 2005 2006 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2007 * loss recovery is underway except recurring timeout(s) on 2008 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2009 * 2010 * In theory F-RTO can be used repeatedly during loss recovery. 2011 * In practice this interacts badly with broken middle-boxes that 2012 * falsely raise the receive window, which results in repeated 2013 * timeouts and stop-and-go behavior. 2014 */ 2015 tp->frto = sysctl_tcp_frto && 2016 (new_recovery || icsk->icsk_retransmits) && 2017 !inet_csk(sk)->icsk_mtup.probe_size; 2018 } 2019 2020 /* If ACK arrived pointing to a remembered SACK, it means that our 2021 * remembered SACKs do not reflect real state of receiver i.e. 2022 * receiver _host_ is heavily congested (or buggy). 2023 * 2024 * To avoid big spurious retransmission bursts due to transient SACK 2025 * scoreboard oddities that look like reneging, we give the receiver a 2026 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2027 * restore sanity to the SACK scoreboard. If the apparent reneging 2028 * persists until this RTO then we'll clear the SACK scoreboard. 2029 */ 2030 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2031 { 2032 if (flag & FLAG_SACK_RENEGING) { 2033 struct tcp_sock *tp = tcp_sk(sk); 2034 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2035 msecs_to_jiffies(10)); 2036 2037 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2038 delay, TCP_RTO_MAX); 2039 return true; 2040 } 2041 return false; 2042 } 2043 2044 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2045 { 2046 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2047 } 2048 2049 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2050 * counter when SACK is enabled (without SACK, sacked_out is used for 2051 * that purpose). 2052 * 2053 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2054 * segments up to the highest received SACK block so far and holes in 2055 * between them. 2056 * 2057 * With reordering, holes may still be in flight, so RFC3517 recovery 2058 * uses pure sacked_out (total number of SACKed segments) even though 2059 * it violates the RFC that uses duplicate ACKs, often these are equal 2060 * but when e.g. out-of-window ACKs or packet duplication occurs, 2061 * they differ. Since neither occurs due to loss, TCP should really 2062 * ignore them. 2063 */ 2064 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2065 { 2066 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2067 } 2068 2069 /* Linux NewReno/SACK/FACK/ECN state machine. 2070 * -------------------------------------- 2071 * 2072 * "Open" Normal state, no dubious events, fast path. 2073 * "Disorder" In all the respects it is "Open", 2074 * but requires a bit more attention. It is entered when 2075 * we see some SACKs or dupacks. It is split of "Open" 2076 * mainly to move some processing from fast path to slow one. 2077 * "CWR" CWND was reduced due to some Congestion Notification event. 2078 * It can be ECN, ICMP source quench, local device congestion. 2079 * "Recovery" CWND was reduced, we are fast-retransmitting. 2080 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2081 * 2082 * tcp_fastretrans_alert() is entered: 2083 * - each incoming ACK, if state is not "Open" 2084 * - when arrived ACK is unusual, namely: 2085 * * SACK 2086 * * Duplicate ACK. 2087 * * ECN ECE. 2088 * 2089 * Counting packets in flight is pretty simple. 2090 * 2091 * in_flight = packets_out - left_out + retrans_out 2092 * 2093 * packets_out is SND.NXT-SND.UNA counted in packets. 2094 * 2095 * retrans_out is number of retransmitted segments. 2096 * 2097 * left_out is number of segments left network, but not ACKed yet. 2098 * 2099 * left_out = sacked_out + lost_out 2100 * 2101 * sacked_out: Packets, which arrived to receiver out of order 2102 * and hence not ACKed. With SACKs this number is simply 2103 * amount of SACKed data. Even without SACKs 2104 * it is easy to give pretty reliable estimate of this number, 2105 * counting duplicate ACKs. 2106 * 2107 * lost_out: Packets lost by network. TCP has no explicit 2108 * "loss notification" feedback from network (for now). 2109 * It means that this number can be only _guessed_. 2110 * Actually, it is the heuristics to predict lossage that 2111 * distinguishes different algorithms. 2112 * 2113 * F.e. after RTO, when all the queue is considered as lost, 2114 * lost_out = packets_out and in_flight = retrans_out. 2115 * 2116 * Essentially, we have now a few algorithms detecting 2117 * lost packets. 2118 * 2119 * If the receiver supports SACK: 2120 * 2121 * RFC6675/3517: It is the conventional algorithm. A packet is 2122 * considered lost if the number of higher sequence packets 2123 * SACKed is greater than or equal the DUPACK thoreshold 2124 * (reordering). This is implemented in tcp_mark_head_lost and 2125 * tcp_update_scoreboard. 2126 * 2127 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2128 * (2017-) that checks timing instead of counting DUPACKs. 2129 * Essentially a packet is considered lost if it's not S/ACKed 2130 * after RTT + reordering_window, where both metrics are 2131 * dynamically measured and adjusted. This is implemented in 2132 * tcp_rack_mark_lost. 2133 * 2134 * FACK (Disabled by default. Subsumbed by RACK): 2135 * It is the simplest heuristics. As soon as we decided 2136 * that something is lost, we decide that _all_ not SACKed 2137 * packets until the most forward SACK are lost. I.e. 2138 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2139 * It is absolutely correct estimate, if network does not reorder 2140 * packets. And it loses any connection to reality when reordering 2141 * takes place. We use FACK by default until reordering 2142 * is suspected on the path to this destination. 2143 * 2144 * If the receiver does not support SACK: 2145 * 2146 * NewReno (RFC6582): in Recovery we assume that one segment 2147 * is lost (classic Reno). While we are in Recovery and 2148 * a partial ACK arrives, we assume that one more packet 2149 * is lost (NewReno). This heuristics are the same in NewReno 2150 * and SACK. 2151 * 2152 * Really tricky (and requiring careful tuning) part of algorithm 2153 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2154 * The first determines the moment _when_ we should reduce CWND and, 2155 * hence, slow down forward transmission. In fact, it determines the moment 2156 * when we decide that hole is caused by loss, rather than by a reorder. 2157 * 2158 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2159 * holes, caused by lost packets. 2160 * 2161 * And the most logically complicated part of algorithm is undo 2162 * heuristics. We detect false retransmits due to both too early 2163 * fast retransmit (reordering) and underestimated RTO, analyzing 2164 * timestamps and D-SACKs. When we detect that some segments were 2165 * retransmitted by mistake and CWND reduction was wrong, we undo 2166 * window reduction and abort recovery phase. This logic is hidden 2167 * inside several functions named tcp_try_undo_<something>. 2168 */ 2169 2170 /* This function decides, when we should leave Disordered state 2171 * and enter Recovery phase, reducing congestion window. 2172 * 2173 * Main question: may we further continue forward transmission 2174 * with the same cwnd? 2175 */ 2176 static bool tcp_time_to_recover(struct sock *sk, int flag) 2177 { 2178 struct tcp_sock *tp = tcp_sk(sk); 2179 2180 /* Trick#1: The loss is proven. */ 2181 if (tp->lost_out) 2182 return true; 2183 2184 /* Not-A-Trick#2 : Classic rule... */ 2185 if (tcp_dupack_heuristics(tp) > tp->reordering) 2186 return true; 2187 2188 return false; 2189 } 2190 2191 /* Detect loss in event "A" above by marking head of queue up as lost. 2192 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2193 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2194 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2195 * the maximum SACKed segments to pass before reaching this limit. 2196 */ 2197 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2198 { 2199 struct tcp_sock *tp = tcp_sk(sk); 2200 struct sk_buff *skb; 2201 int cnt, oldcnt, lost; 2202 unsigned int mss; 2203 /* Use SACK to deduce losses of new sequences sent during recovery */ 2204 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2205 2206 WARN_ON(packets > tp->packets_out); 2207 if (tp->lost_skb_hint) { 2208 skb = tp->lost_skb_hint; 2209 cnt = tp->lost_cnt_hint; 2210 /* Head already handled? */ 2211 if (mark_head && skb != tcp_write_queue_head(sk)) 2212 return; 2213 } else { 2214 skb = tcp_write_queue_head(sk); 2215 cnt = 0; 2216 } 2217 2218 tcp_for_write_queue_from(skb, sk) { 2219 if (skb == tcp_send_head(sk)) 2220 break; 2221 /* TODO: do this better */ 2222 /* this is not the most efficient way to do this... */ 2223 tp->lost_skb_hint = skb; 2224 tp->lost_cnt_hint = cnt; 2225 2226 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2227 break; 2228 2229 oldcnt = cnt; 2230 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2231 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2232 cnt += tcp_skb_pcount(skb); 2233 2234 if (cnt > packets) { 2235 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2236 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2237 (oldcnt >= packets)) 2238 break; 2239 2240 mss = tcp_skb_mss(skb); 2241 /* If needed, chop off the prefix to mark as lost. */ 2242 lost = (packets - oldcnt) * mss; 2243 if (lost < skb->len && 2244 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2245 break; 2246 cnt = packets; 2247 } 2248 2249 tcp_skb_mark_lost(tp, skb); 2250 2251 if (mark_head) 2252 break; 2253 } 2254 tcp_verify_left_out(tp); 2255 } 2256 2257 /* Account newly detected lost packet(s) */ 2258 2259 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2260 { 2261 struct tcp_sock *tp = tcp_sk(sk); 2262 2263 if (tcp_is_reno(tp)) { 2264 tcp_mark_head_lost(sk, 1, 1); 2265 } else if (tcp_is_fack(tp)) { 2266 int lost = tp->fackets_out - tp->reordering; 2267 if (lost <= 0) 2268 lost = 1; 2269 tcp_mark_head_lost(sk, lost, 0); 2270 } else { 2271 int sacked_upto = tp->sacked_out - tp->reordering; 2272 if (sacked_upto >= 0) 2273 tcp_mark_head_lost(sk, sacked_upto, 0); 2274 else if (fast_rexmit) 2275 tcp_mark_head_lost(sk, 1, 1); 2276 } 2277 } 2278 2279 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2280 { 2281 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2282 before(tp->rx_opt.rcv_tsecr, when); 2283 } 2284 2285 /* skb is spurious retransmitted if the returned timestamp echo 2286 * reply is prior to the skb transmission time 2287 */ 2288 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2289 const struct sk_buff *skb) 2290 { 2291 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2292 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2293 } 2294 2295 /* Nothing was retransmitted or returned timestamp is less 2296 * than timestamp of the first retransmission. 2297 */ 2298 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2299 { 2300 return !tp->retrans_stamp || 2301 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2302 } 2303 2304 /* Undo procedures. */ 2305 2306 /* We can clear retrans_stamp when there are no retransmissions in the 2307 * window. It would seem that it is trivially available for us in 2308 * tp->retrans_out, however, that kind of assumptions doesn't consider 2309 * what will happen if errors occur when sending retransmission for the 2310 * second time. ...It could the that such segment has only 2311 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2312 * the head skb is enough except for some reneging corner cases that 2313 * are not worth the effort. 2314 * 2315 * Main reason for all this complexity is the fact that connection dying 2316 * time now depends on the validity of the retrans_stamp, in particular, 2317 * that successive retransmissions of a segment must not advance 2318 * retrans_stamp under any conditions. 2319 */ 2320 static bool tcp_any_retrans_done(const struct sock *sk) 2321 { 2322 const struct tcp_sock *tp = tcp_sk(sk); 2323 struct sk_buff *skb; 2324 2325 if (tp->retrans_out) 2326 return true; 2327 2328 skb = tcp_write_queue_head(sk); 2329 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2330 return true; 2331 2332 return false; 2333 } 2334 2335 #if FASTRETRANS_DEBUG > 1 2336 static void DBGUNDO(struct sock *sk, const char *msg) 2337 { 2338 struct tcp_sock *tp = tcp_sk(sk); 2339 struct inet_sock *inet = inet_sk(sk); 2340 2341 if (sk->sk_family == AF_INET) { 2342 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2343 msg, 2344 &inet->inet_daddr, ntohs(inet->inet_dport), 2345 tp->snd_cwnd, tcp_left_out(tp), 2346 tp->snd_ssthresh, tp->prior_ssthresh, 2347 tp->packets_out); 2348 } 2349 #if IS_ENABLED(CONFIG_IPV6) 2350 else if (sk->sk_family == AF_INET6) { 2351 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2352 msg, 2353 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2354 tp->snd_cwnd, tcp_left_out(tp), 2355 tp->snd_ssthresh, tp->prior_ssthresh, 2356 tp->packets_out); 2357 } 2358 #endif 2359 } 2360 #else 2361 #define DBGUNDO(x...) do { } while (0) 2362 #endif 2363 2364 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2365 { 2366 struct tcp_sock *tp = tcp_sk(sk); 2367 2368 if (unmark_loss) { 2369 struct sk_buff *skb; 2370 2371 tcp_for_write_queue(skb, sk) { 2372 if (skb == tcp_send_head(sk)) 2373 break; 2374 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2375 } 2376 tp->lost_out = 0; 2377 tcp_clear_all_retrans_hints(tp); 2378 } 2379 2380 if (tp->prior_ssthresh) { 2381 const struct inet_connection_sock *icsk = inet_csk(sk); 2382 2383 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2384 2385 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2386 tp->snd_ssthresh = tp->prior_ssthresh; 2387 tcp_ecn_withdraw_cwr(tp); 2388 } 2389 } 2390 tp->snd_cwnd_stamp = tcp_jiffies32; 2391 tp->undo_marker = 0; 2392 } 2393 2394 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2395 { 2396 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2397 } 2398 2399 /* People celebrate: "We love our President!" */ 2400 static bool tcp_try_undo_recovery(struct sock *sk) 2401 { 2402 struct tcp_sock *tp = tcp_sk(sk); 2403 2404 if (tcp_may_undo(tp)) { 2405 int mib_idx; 2406 2407 /* Happy end! We did not retransmit anything 2408 * or our original transmission succeeded. 2409 */ 2410 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2411 tcp_undo_cwnd_reduction(sk, false); 2412 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2413 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2414 else 2415 mib_idx = LINUX_MIB_TCPFULLUNDO; 2416 2417 NET_INC_STATS(sock_net(sk), mib_idx); 2418 } 2419 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2420 /* Hold old state until something *above* high_seq 2421 * is ACKed. For Reno it is MUST to prevent false 2422 * fast retransmits (RFC2582). SACK TCP is safe. */ 2423 if (!tcp_any_retrans_done(sk)) 2424 tp->retrans_stamp = 0; 2425 return true; 2426 } 2427 tcp_set_ca_state(sk, TCP_CA_Open); 2428 return false; 2429 } 2430 2431 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2432 static bool tcp_try_undo_dsack(struct sock *sk) 2433 { 2434 struct tcp_sock *tp = tcp_sk(sk); 2435 2436 if (tp->undo_marker && !tp->undo_retrans) { 2437 DBGUNDO(sk, "D-SACK"); 2438 tcp_undo_cwnd_reduction(sk, false); 2439 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2440 return true; 2441 } 2442 return false; 2443 } 2444 2445 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2446 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2447 { 2448 struct tcp_sock *tp = tcp_sk(sk); 2449 2450 if (frto_undo || tcp_may_undo(tp)) { 2451 tcp_undo_cwnd_reduction(sk, true); 2452 2453 DBGUNDO(sk, "partial loss"); 2454 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2455 if (frto_undo) 2456 NET_INC_STATS(sock_net(sk), 2457 LINUX_MIB_TCPSPURIOUSRTOS); 2458 inet_csk(sk)->icsk_retransmits = 0; 2459 if (frto_undo || tcp_is_sack(tp)) 2460 tcp_set_ca_state(sk, TCP_CA_Open); 2461 return true; 2462 } 2463 return false; 2464 } 2465 2466 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2467 * It computes the number of packets to send (sndcnt) based on packets newly 2468 * delivered: 2469 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2470 * cwnd reductions across a full RTT. 2471 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2472 * But when the retransmits are acked without further losses, PRR 2473 * slow starts cwnd up to ssthresh to speed up the recovery. 2474 */ 2475 static void tcp_init_cwnd_reduction(struct sock *sk) 2476 { 2477 struct tcp_sock *tp = tcp_sk(sk); 2478 2479 tp->high_seq = tp->snd_nxt; 2480 tp->tlp_high_seq = 0; 2481 tp->snd_cwnd_cnt = 0; 2482 tp->prior_cwnd = tp->snd_cwnd; 2483 tp->prr_delivered = 0; 2484 tp->prr_out = 0; 2485 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2486 tcp_ecn_queue_cwr(tp); 2487 } 2488 2489 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2490 { 2491 struct tcp_sock *tp = tcp_sk(sk); 2492 int sndcnt = 0; 2493 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2494 2495 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2496 return; 2497 2498 tp->prr_delivered += newly_acked_sacked; 2499 if (delta < 0) { 2500 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2501 tp->prior_cwnd - 1; 2502 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2503 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2504 !(flag & FLAG_LOST_RETRANS)) { 2505 sndcnt = min_t(int, delta, 2506 max_t(int, tp->prr_delivered - tp->prr_out, 2507 newly_acked_sacked) + 1); 2508 } else { 2509 sndcnt = min(delta, newly_acked_sacked); 2510 } 2511 /* Force a fast retransmit upon entering fast recovery */ 2512 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2513 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2514 } 2515 2516 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2517 { 2518 struct tcp_sock *tp = tcp_sk(sk); 2519 2520 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2521 return; 2522 2523 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2524 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2525 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2526 tp->snd_cwnd = tp->snd_ssthresh; 2527 tp->snd_cwnd_stamp = tcp_jiffies32; 2528 } 2529 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2530 } 2531 2532 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2533 void tcp_enter_cwr(struct sock *sk) 2534 { 2535 struct tcp_sock *tp = tcp_sk(sk); 2536 2537 tp->prior_ssthresh = 0; 2538 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2539 tp->undo_marker = 0; 2540 tcp_init_cwnd_reduction(sk); 2541 tcp_set_ca_state(sk, TCP_CA_CWR); 2542 } 2543 } 2544 EXPORT_SYMBOL(tcp_enter_cwr); 2545 2546 static void tcp_try_keep_open(struct sock *sk) 2547 { 2548 struct tcp_sock *tp = tcp_sk(sk); 2549 int state = TCP_CA_Open; 2550 2551 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2552 state = TCP_CA_Disorder; 2553 2554 if (inet_csk(sk)->icsk_ca_state != state) { 2555 tcp_set_ca_state(sk, state); 2556 tp->high_seq = tp->snd_nxt; 2557 } 2558 } 2559 2560 static void tcp_try_to_open(struct sock *sk, int flag) 2561 { 2562 struct tcp_sock *tp = tcp_sk(sk); 2563 2564 tcp_verify_left_out(tp); 2565 2566 if (!tcp_any_retrans_done(sk)) 2567 tp->retrans_stamp = 0; 2568 2569 if (flag & FLAG_ECE) 2570 tcp_enter_cwr(sk); 2571 2572 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2573 tcp_try_keep_open(sk); 2574 } 2575 } 2576 2577 static void tcp_mtup_probe_failed(struct sock *sk) 2578 { 2579 struct inet_connection_sock *icsk = inet_csk(sk); 2580 2581 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2582 icsk->icsk_mtup.probe_size = 0; 2583 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2584 } 2585 2586 static void tcp_mtup_probe_success(struct sock *sk) 2587 { 2588 struct tcp_sock *tp = tcp_sk(sk); 2589 struct inet_connection_sock *icsk = inet_csk(sk); 2590 2591 /* FIXME: breaks with very large cwnd */ 2592 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2593 tp->snd_cwnd = tp->snd_cwnd * 2594 tcp_mss_to_mtu(sk, tp->mss_cache) / 2595 icsk->icsk_mtup.probe_size; 2596 tp->snd_cwnd_cnt = 0; 2597 tp->snd_cwnd_stamp = tcp_jiffies32; 2598 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2599 2600 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2601 icsk->icsk_mtup.probe_size = 0; 2602 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2603 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2604 } 2605 2606 /* Do a simple retransmit without using the backoff mechanisms in 2607 * tcp_timer. This is used for path mtu discovery. 2608 * The socket is already locked here. 2609 */ 2610 void tcp_simple_retransmit(struct sock *sk) 2611 { 2612 const struct inet_connection_sock *icsk = inet_csk(sk); 2613 struct tcp_sock *tp = tcp_sk(sk); 2614 struct sk_buff *skb; 2615 unsigned int mss = tcp_current_mss(sk); 2616 u32 prior_lost = tp->lost_out; 2617 2618 tcp_for_write_queue(skb, sk) { 2619 if (skb == tcp_send_head(sk)) 2620 break; 2621 if (tcp_skb_seglen(skb) > mss && 2622 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2623 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2624 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2625 tp->retrans_out -= tcp_skb_pcount(skb); 2626 } 2627 tcp_skb_mark_lost_uncond_verify(tp, skb); 2628 } 2629 } 2630 2631 tcp_clear_retrans_hints_partial(tp); 2632 2633 if (prior_lost == tp->lost_out) 2634 return; 2635 2636 if (tcp_is_reno(tp)) 2637 tcp_limit_reno_sacked(tp); 2638 2639 tcp_verify_left_out(tp); 2640 2641 /* Don't muck with the congestion window here. 2642 * Reason is that we do not increase amount of _data_ 2643 * in network, but units changed and effective 2644 * cwnd/ssthresh really reduced now. 2645 */ 2646 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2647 tp->high_seq = tp->snd_nxt; 2648 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2649 tp->prior_ssthresh = 0; 2650 tp->undo_marker = 0; 2651 tcp_set_ca_state(sk, TCP_CA_Loss); 2652 } 2653 tcp_xmit_retransmit_queue(sk); 2654 } 2655 EXPORT_SYMBOL(tcp_simple_retransmit); 2656 2657 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2658 { 2659 struct tcp_sock *tp = tcp_sk(sk); 2660 int mib_idx; 2661 2662 if (tcp_is_reno(tp)) 2663 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2664 else 2665 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2666 2667 NET_INC_STATS(sock_net(sk), mib_idx); 2668 2669 tp->prior_ssthresh = 0; 2670 tcp_init_undo(tp); 2671 2672 if (!tcp_in_cwnd_reduction(sk)) { 2673 if (!ece_ack) 2674 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2675 tcp_init_cwnd_reduction(sk); 2676 } 2677 tcp_set_ca_state(sk, TCP_CA_Recovery); 2678 } 2679 2680 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2681 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2682 */ 2683 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2684 int *rexmit) 2685 { 2686 struct tcp_sock *tp = tcp_sk(sk); 2687 bool recovered = !before(tp->snd_una, tp->high_seq); 2688 2689 if ((flag & FLAG_SND_UNA_ADVANCED) && 2690 tcp_try_undo_loss(sk, false)) 2691 return; 2692 2693 /* The ACK (s)acks some never-retransmitted data meaning not all 2694 * the data packets before the timeout were lost. Therefore we 2695 * undo the congestion window and state. This is essentially 2696 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2697 * a retransmitted skb is permantly marked, we can apply such an 2698 * operation even if F-RTO was not used. 2699 */ 2700 if ((flag & FLAG_ORIG_SACK_ACKED) && 2701 tcp_try_undo_loss(sk, tp->undo_marker)) 2702 return; 2703 2704 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2705 if (after(tp->snd_nxt, tp->high_seq)) { 2706 if (flag & FLAG_DATA_SACKED || is_dupack) 2707 tp->frto = 0; /* Step 3.a. loss was real */ 2708 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2709 tp->high_seq = tp->snd_nxt; 2710 /* Step 2.b. Try send new data (but deferred until cwnd 2711 * is updated in tcp_ack()). Otherwise fall back to 2712 * the conventional recovery. 2713 */ 2714 if (tcp_send_head(sk) && 2715 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2716 *rexmit = REXMIT_NEW; 2717 return; 2718 } 2719 tp->frto = 0; 2720 } 2721 } 2722 2723 if (recovered) { 2724 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2725 tcp_try_undo_recovery(sk); 2726 return; 2727 } 2728 if (tcp_is_reno(tp)) { 2729 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2730 * delivered. Lower inflight to clock out (re)tranmissions. 2731 */ 2732 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2733 tcp_add_reno_sack(sk); 2734 else if (flag & FLAG_SND_UNA_ADVANCED) 2735 tcp_reset_reno_sack(tp); 2736 } 2737 *rexmit = REXMIT_LOST; 2738 } 2739 2740 /* Undo during fast recovery after partial ACK. */ 2741 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2742 { 2743 struct tcp_sock *tp = tcp_sk(sk); 2744 2745 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2746 /* Plain luck! Hole if filled with delayed 2747 * packet, rather than with a retransmit. 2748 */ 2749 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2750 2751 /* We are getting evidence that the reordering degree is higher 2752 * than we realized. If there are no retransmits out then we 2753 * can undo. Otherwise we clock out new packets but do not 2754 * mark more packets lost or retransmit more. 2755 */ 2756 if (tp->retrans_out) 2757 return true; 2758 2759 if (!tcp_any_retrans_done(sk)) 2760 tp->retrans_stamp = 0; 2761 2762 DBGUNDO(sk, "partial recovery"); 2763 tcp_undo_cwnd_reduction(sk, true); 2764 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2765 tcp_try_keep_open(sk); 2766 return true; 2767 } 2768 return false; 2769 } 2770 2771 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2772 { 2773 struct tcp_sock *tp = tcp_sk(sk); 2774 2775 /* Use RACK to detect loss */ 2776 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2777 u32 prior_retrans = tp->retrans_out; 2778 2779 tcp_rack_mark_lost(sk); 2780 if (prior_retrans > tp->retrans_out) 2781 *ack_flag |= FLAG_LOST_RETRANS; 2782 } 2783 } 2784 2785 /* Process an event, which can update packets-in-flight not trivially. 2786 * Main goal of this function is to calculate new estimate for left_out, 2787 * taking into account both packets sitting in receiver's buffer and 2788 * packets lost by network. 2789 * 2790 * Besides that it updates the congestion state when packet loss or ECN 2791 * is detected. But it does not reduce the cwnd, it is done by the 2792 * congestion control later. 2793 * 2794 * It does _not_ decide what to send, it is made in function 2795 * tcp_xmit_retransmit_queue(). 2796 */ 2797 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2798 bool is_dupack, int *ack_flag, int *rexmit) 2799 { 2800 struct inet_connection_sock *icsk = inet_csk(sk); 2801 struct tcp_sock *tp = tcp_sk(sk); 2802 int fast_rexmit = 0, flag = *ack_flag; 2803 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2804 (tcp_fackets_out(tp) > tp->reordering)); 2805 2806 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2807 tp->sacked_out = 0; 2808 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2809 tp->fackets_out = 0; 2810 2811 /* Now state machine starts. 2812 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2813 if (flag & FLAG_ECE) 2814 tp->prior_ssthresh = 0; 2815 2816 /* B. In all the states check for reneging SACKs. */ 2817 if (tcp_check_sack_reneging(sk, flag)) 2818 return; 2819 2820 /* C. Check consistency of the current state. */ 2821 tcp_verify_left_out(tp); 2822 2823 /* D. Check state exit conditions. State can be terminated 2824 * when high_seq is ACKed. */ 2825 if (icsk->icsk_ca_state == TCP_CA_Open) { 2826 WARN_ON(tp->retrans_out != 0); 2827 tp->retrans_stamp = 0; 2828 } else if (!before(tp->snd_una, tp->high_seq)) { 2829 switch (icsk->icsk_ca_state) { 2830 case TCP_CA_CWR: 2831 /* CWR is to be held something *above* high_seq 2832 * is ACKed for CWR bit to reach receiver. */ 2833 if (tp->snd_una != tp->high_seq) { 2834 tcp_end_cwnd_reduction(sk); 2835 tcp_set_ca_state(sk, TCP_CA_Open); 2836 } 2837 break; 2838 2839 case TCP_CA_Recovery: 2840 if (tcp_is_reno(tp)) 2841 tcp_reset_reno_sack(tp); 2842 if (tcp_try_undo_recovery(sk)) 2843 return; 2844 tcp_end_cwnd_reduction(sk); 2845 break; 2846 } 2847 } 2848 2849 /* E. Process state. */ 2850 switch (icsk->icsk_ca_state) { 2851 case TCP_CA_Recovery: 2852 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2853 if (tcp_is_reno(tp) && is_dupack) 2854 tcp_add_reno_sack(sk); 2855 } else { 2856 if (tcp_try_undo_partial(sk, acked)) 2857 return; 2858 /* Partial ACK arrived. Force fast retransmit. */ 2859 do_lost = tcp_is_reno(tp) || 2860 tcp_fackets_out(tp) > tp->reordering; 2861 } 2862 if (tcp_try_undo_dsack(sk)) { 2863 tcp_try_keep_open(sk); 2864 return; 2865 } 2866 tcp_rack_identify_loss(sk, ack_flag); 2867 break; 2868 case TCP_CA_Loss: 2869 tcp_process_loss(sk, flag, is_dupack, rexmit); 2870 tcp_rack_identify_loss(sk, ack_flag); 2871 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2872 (*ack_flag & FLAG_LOST_RETRANS))) 2873 return; 2874 /* Change state if cwnd is undone or retransmits are lost */ 2875 default: 2876 if (tcp_is_reno(tp)) { 2877 if (flag & FLAG_SND_UNA_ADVANCED) 2878 tcp_reset_reno_sack(tp); 2879 if (is_dupack) 2880 tcp_add_reno_sack(sk); 2881 } 2882 2883 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2884 tcp_try_undo_dsack(sk); 2885 2886 tcp_rack_identify_loss(sk, ack_flag); 2887 if (!tcp_time_to_recover(sk, flag)) { 2888 tcp_try_to_open(sk, flag); 2889 return; 2890 } 2891 2892 /* MTU probe failure: don't reduce cwnd */ 2893 if (icsk->icsk_ca_state < TCP_CA_CWR && 2894 icsk->icsk_mtup.probe_size && 2895 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2896 tcp_mtup_probe_failed(sk); 2897 /* Restores the reduction we did in tcp_mtup_probe() */ 2898 tp->snd_cwnd++; 2899 tcp_simple_retransmit(sk); 2900 return; 2901 } 2902 2903 /* Otherwise enter Recovery state */ 2904 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2905 fast_rexmit = 1; 2906 } 2907 2908 if (do_lost) 2909 tcp_update_scoreboard(sk, fast_rexmit); 2910 *rexmit = REXMIT_LOST; 2911 } 2912 2913 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2914 { 2915 struct tcp_sock *tp = tcp_sk(sk); 2916 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2917 2918 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2919 rtt_us ? : jiffies_to_usecs(1)); 2920 } 2921 2922 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2923 long seq_rtt_us, long sack_rtt_us, 2924 long ca_rtt_us, struct rate_sample *rs) 2925 { 2926 const struct tcp_sock *tp = tcp_sk(sk); 2927 2928 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2929 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2930 * Karn's algorithm forbids taking RTT if some retransmitted data 2931 * is acked (RFC6298). 2932 */ 2933 if (seq_rtt_us < 0) 2934 seq_rtt_us = sack_rtt_us; 2935 2936 /* RTTM Rule: A TSecr value received in a segment is used to 2937 * update the averaged RTT measurement only if the segment 2938 * acknowledges some new data, i.e., only if it advances the 2939 * left edge of the send window. 2940 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2941 */ 2942 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2943 flag & FLAG_ACKED) { 2944 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2945 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2946 2947 seq_rtt_us = ca_rtt_us = delta_us; 2948 } 2949 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2950 if (seq_rtt_us < 0) 2951 return false; 2952 2953 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2954 * always taken together with ACK, SACK, or TS-opts. Any negative 2955 * values will be skipped with the seq_rtt_us < 0 check above. 2956 */ 2957 tcp_update_rtt_min(sk, ca_rtt_us); 2958 tcp_rtt_estimator(sk, seq_rtt_us); 2959 tcp_set_rto(sk); 2960 2961 /* RFC6298: only reset backoff on valid RTT measurement. */ 2962 inet_csk(sk)->icsk_backoff = 0; 2963 return true; 2964 } 2965 2966 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2967 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2968 { 2969 struct rate_sample rs; 2970 long rtt_us = -1L; 2971 2972 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2973 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2974 2975 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2976 } 2977 2978 2979 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2980 { 2981 const struct inet_connection_sock *icsk = inet_csk(sk); 2982 2983 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2984 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2985 } 2986 2987 /* Restart timer after forward progress on connection. 2988 * RFC2988 recommends to restart timer to now+rto. 2989 */ 2990 void tcp_rearm_rto(struct sock *sk) 2991 { 2992 const struct inet_connection_sock *icsk = inet_csk(sk); 2993 struct tcp_sock *tp = tcp_sk(sk); 2994 2995 /* If the retrans timer is currently being used by Fast Open 2996 * for SYN-ACK retrans purpose, stay put. 2997 */ 2998 if (tp->fastopen_rsk) 2999 return; 3000 3001 if (!tp->packets_out) { 3002 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3003 } else { 3004 u32 rto = inet_csk(sk)->icsk_rto; 3005 /* Offset the time elapsed after installing regular RTO */ 3006 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3007 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3008 s64 delta_us = tcp_rto_delta_us(sk); 3009 /* delta_us may not be positive if the socket is locked 3010 * when the retrans timer fires and is rescheduled. 3011 */ 3012 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3013 } 3014 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3015 TCP_RTO_MAX); 3016 } 3017 } 3018 3019 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3020 static void tcp_set_xmit_timer(struct sock *sk) 3021 { 3022 if (!tcp_schedule_loss_probe(sk)) 3023 tcp_rearm_rto(sk); 3024 } 3025 3026 /* If we get here, the whole TSO packet has not been acked. */ 3027 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3028 { 3029 struct tcp_sock *tp = tcp_sk(sk); 3030 u32 packets_acked; 3031 3032 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3033 3034 packets_acked = tcp_skb_pcount(skb); 3035 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3036 return 0; 3037 packets_acked -= tcp_skb_pcount(skb); 3038 3039 if (packets_acked) { 3040 BUG_ON(tcp_skb_pcount(skb) == 0); 3041 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3042 } 3043 3044 return packets_acked; 3045 } 3046 3047 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3048 u32 prior_snd_una) 3049 { 3050 const struct skb_shared_info *shinfo; 3051 3052 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3053 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3054 return; 3055 3056 shinfo = skb_shinfo(skb); 3057 if (!before(shinfo->tskey, prior_snd_una) && 3058 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3059 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3060 } 3061 3062 /* Remove acknowledged frames from the retransmission queue. If our packet 3063 * is before the ack sequence we can discard it as it's confirmed to have 3064 * arrived at the other end. 3065 */ 3066 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3067 u32 prior_snd_una, int *acked, 3068 struct tcp_sacktag_state *sack) 3069 { 3070 const struct inet_connection_sock *icsk = inet_csk(sk); 3071 u64 first_ackt, last_ackt; 3072 struct tcp_sock *tp = tcp_sk(sk); 3073 u32 prior_sacked = tp->sacked_out; 3074 u32 reord = tp->packets_out; 3075 bool fully_acked = true; 3076 long sack_rtt_us = -1L; 3077 long seq_rtt_us = -1L; 3078 long ca_rtt_us = -1L; 3079 struct sk_buff *skb; 3080 u32 pkts_acked = 0; 3081 u32 last_in_flight = 0; 3082 bool rtt_update; 3083 int flag = 0; 3084 3085 first_ackt = 0; 3086 3087 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3088 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3089 u8 sacked = scb->sacked; 3090 u32 acked_pcount; 3091 3092 tcp_ack_tstamp(sk, skb, prior_snd_una); 3093 3094 /* Determine how many packets and what bytes were acked, tso and else */ 3095 if (after(scb->end_seq, tp->snd_una)) { 3096 if (tcp_skb_pcount(skb) == 1 || 3097 !after(tp->snd_una, scb->seq)) 3098 break; 3099 3100 acked_pcount = tcp_tso_acked(sk, skb); 3101 if (!acked_pcount) 3102 break; 3103 fully_acked = false; 3104 } else { 3105 /* Speedup tcp_unlink_write_queue() and next loop */ 3106 prefetchw(skb->next); 3107 acked_pcount = tcp_skb_pcount(skb); 3108 } 3109 3110 if (unlikely(sacked & TCPCB_RETRANS)) { 3111 if (sacked & TCPCB_SACKED_RETRANS) 3112 tp->retrans_out -= acked_pcount; 3113 flag |= FLAG_RETRANS_DATA_ACKED; 3114 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3115 last_ackt = skb->skb_mstamp; 3116 WARN_ON_ONCE(last_ackt == 0); 3117 if (!first_ackt) 3118 first_ackt = last_ackt; 3119 3120 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3121 reord = min(pkts_acked, reord); 3122 if (!after(scb->end_seq, tp->high_seq)) 3123 flag |= FLAG_ORIG_SACK_ACKED; 3124 } 3125 3126 if (sacked & TCPCB_SACKED_ACKED) { 3127 tp->sacked_out -= acked_pcount; 3128 } else if (tcp_is_sack(tp)) { 3129 tp->delivered += acked_pcount; 3130 if (!tcp_skb_spurious_retrans(tp, skb)) 3131 tcp_rack_advance(tp, sacked, scb->end_seq, 3132 skb->skb_mstamp); 3133 } 3134 if (sacked & TCPCB_LOST) 3135 tp->lost_out -= acked_pcount; 3136 3137 tp->packets_out -= acked_pcount; 3138 pkts_acked += acked_pcount; 3139 tcp_rate_skb_delivered(sk, skb, sack->rate); 3140 3141 /* Initial outgoing SYN's get put onto the write_queue 3142 * just like anything else we transmit. It is not 3143 * true data, and if we misinform our callers that 3144 * this ACK acks real data, we will erroneously exit 3145 * connection startup slow start one packet too 3146 * quickly. This is severely frowned upon behavior. 3147 */ 3148 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3149 flag |= FLAG_DATA_ACKED; 3150 } else { 3151 flag |= FLAG_SYN_ACKED; 3152 tp->retrans_stamp = 0; 3153 } 3154 3155 if (!fully_acked) 3156 break; 3157 3158 tcp_unlink_write_queue(skb, sk); 3159 sk_wmem_free_skb(sk, skb); 3160 if (unlikely(skb == tp->retransmit_skb_hint)) 3161 tp->retransmit_skb_hint = NULL; 3162 if (unlikely(skb == tp->lost_skb_hint)) 3163 tp->lost_skb_hint = NULL; 3164 } 3165 3166 if (!skb) 3167 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3168 3169 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3170 tp->snd_up = tp->snd_una; 3171 3172 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3173 flag |= FLAG_SACK_RENEGING; 3174 3175 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3176 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3177 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3178 } 3179 if (sack->first_sackt) { 3180 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3181 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3182 } 3183 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3184 ca_rtt_us, sack->rate); 3185 3186 if (flag & FLAG_ACKED) { 3187 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3188 if (unlikely(icsk->icsk_mtup.probe_size && 3189 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3190 tcp_mtup_probe_success(sk); 3191 } 3192 3193 if (tcp_is_reno(tp)) { 3194 tcp_remove_reno_sacks(sk, pkts_acked); 3195 } else { 3196 int delta; 3197 3198 /* Non-retransmitted hole got filled? That's reordering */ 3199 if (reord < prior_fackets && reord <= tp->fackets_out) 3200 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3201 3202 delta = tcp_is_fack(tp) ? pkts_acked : 3203 prior_sacked - tp->sacked_out; 3204 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3205 } 3206 3207 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3208 3209 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3210 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3211 /* Do not re-arm RTO if the sack RTT is measured from data sent 3212 * after when the head was last (re)transmitted. Otherwise the 3213 * timeout may continue to extend in loss recovery. 3214 */ 3215 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3216 } 3217 3218 if (icsk->icsk_ca_ops->pkts_acked) { 3219 struct ack_sample sample = { .pkts_acked = pkts_acked, 3220 .rtt_us = sack->rate->rtt_us, 3221 .in_flight = last_in_flight }; 3222 3223 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3224 } 3225 3226 #if FASTRETRANS_DEBUG > 0 3227 WARN_ON((int)tp->sacked_out < 0); 3228 WARN_ON((int)tp->lost_out < 0); 3229 WARN_ON((int)tp->retrans_out < 0); 3230 if (!tp->packets_out && tcp_is_sack(tp)) { 3231 icsk = inet_csk(sk); 3232 if (tp->lost_out) { 3233 pr_debug("Leak l=%u %d\n", 3234 tp->lost_out, icsk->icsk_ca_state); 3235 tp->lost_out = 0; 3236 } 3237 if (tp->sacked_out) { 3238 pr_debug("Leak s=%u %d\n", 3239 tp->sacked_out, icsk->icsk_ca_state); 3240 tp->sacked_out = 0; 3241 } 3242 if (tp->retrans_out) { 3243 pr_debug("Leak r=%u %d\n", 3244 tp->retrans_out, icsk->icsk_ca_state); 3245 tp->retrans_out = 0; 3246 } 3247 } 3248 #endif 3249 *acked = pkts_acked; 3250 return flag; 3251 } 3252 3253 static void tcp_ack_probe(struct sock *sk) 3254 { 3255 const struct tcp_sock *tp = tcp_sk(sk); 3256 struct inet_connection_sock *icsk = inet_csk(sk); 3257 3258 /* Was it a usable window open? */ 3259 3260 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3261 icsk->icsk_backoff = 0; 3262 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3263 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3264 * This function is not for random using! 3265 */ 3266 } else { 3267 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3268 3269 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3270 when, TCP_RTO_MAX); 3271 } 3272 } 3273 3274 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3275 { 3276 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3277 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3278 } 3279 3280 /* Decide wheather to run the increase function of congestion control. */ 3281 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3282 { 3283 /* If reordering is high then always grow cwnd whenever data is 3284 * delivered regardless of its ordering. Otherwise stay conservative 3285 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3286 * new SACK or ECE mark may first advance cwnd here and later reduce 3287 * cwnd in tcp_fastretrans_alert() based on more states. 3288 */ 3289 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3290 return flag & FLAG_FORWARD_PROGRESS; 3291 3292 return flag & FLAG_DATA_ACKED; 3293 } 3294 3295 /* The "ultimate" congestion control function that aims to replace the rigid 3296 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3297 * It's called toward the end of processing an ACK with precise rate 3298 * information. All transmission or retransmission are delayed afterwards. 3299 */ 3300 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3301 int flag, const struct rate_sample *rs) 3302 { 3303 const struct inet_connection_sock *icsk = inet_csk(sk); 3304 3305 if (icsk->icsk_ca_ops->cong_control) { 3306 icsk->icsk_ca_ops->cong_control(sk, rs); 3307 return; 3308 } 3309 3310 if (tcp_in_cwnd_reduction(sk)) { 3311 /* Reduce cwnd if state mandates */ 3312 tcp_cwnd_reduction(sk, acked_sacked, flag); 3313 } else if (tcp_may_raise_cwnd(sk, flag)) { 3314 /* Advance cwnd if state allows */ 3315 tcp_cong_avoid(sk, ack, acked_sacked); 3316 } 3317 tcp_update_pacing_rate(sk); 3318 } 3319 3320 /* Check that window update is acceptable. 3321 * The function assumes that snd_una<=ack<=snd_next. 3322 */ 3323 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3324 const u32 ack, const u32 ack_seq, 3325 const u32 nwin) 3326 { 3327 return after(ack, tp->snd_una) || 3328 after(ack_seq, tp->snd_wl1) || 3329 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3330 } 3331 3332 /* If we update tp->snd_una, also update tp->bytes_acked */ 3333 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3334 { 3335 u32 delta = ack - tp->snd_una; 3336 3337 sock_owned_by_me((struct sock *)tp); 3338 tp->bytes_acked += delta; 3339 tp->snd_una = ack; 3340 } 3341 3342 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3343 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3344 { 3345 u32 delta = seq - tp->rcv_nxt; 3346 3347 sock_owned_by_me((struct sock *)tp); 3348 tp->bytes_received += delta; 3349 tp->rcv_nxt = seq; 3350 } 3351 3352 /* Update our send window. 3353 * 3354 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3355 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3356 */ 3357 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3358 u32 ack_seq) 3359 { 3360 struct tcp_sock *tp = tcp_sk(sk); 3361 int flag = 0; 3362 u32 nwin = ntohs(tcp_hdr(skb)->window); 3363 3364 if (likely(!tcp_hdr(skb)->syn)) 3365 nwin <<= tp->rx_opt.snd_wscale; 3366 3367 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3368 flag |= FLAG_WIN_UPDATE; 3369 tcp_update_wl(tp, ack_seq); 3370 3371 if (tp->snd_wnd != nwin) { 3372 tp->snd_wnd = nwin; 3373 3374 if (tcp_send_head(sk)) 3375 tcp_slow_start_after_idle_check(sk); 3376 3377 if (nwin > tp->max_window) { 3378 tp->max_window = nwin; 3379 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3380 } 3381 } 3382 } 3383 3384 tcp_snd_una_update(tp, ack); 3385 3386 return flag; 3387 } 3388 3389 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3390 u32 *last_oow_ack_time) 3391 { 3392 if (*last_oow_ack_time) { 3393 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3394 3395 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3396 NET_INC_STATS(net, mib_idx); 3397 return true; /* rate-limited: don't send yet! */ 3398 } 3399 } 3400 3401 *last_oow_ack_time = tcp_jiffies32; 3402 3403 return false; /* not rate-limited: go ahead, send dupack now! */ 3404 } 3405 3406 /* Return true if we're currently rate-limiting out-of-window ACKs and 3407 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3408 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3409 * attacks that send repeated SYNs or ACKs for the same connection. To 3410 * do this, we do not send a duplicate SYNACK or ACK if the remote 3411 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3412 */ 3413 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3414 int mib_idx, u32 *last_oow_ack_time) 3415 { 3416 /* Data packets without SYNs are not likely part of an ACK loop. */ 3417 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3418 !tcp_hdr(skb)->syn) 3419 return false; 3420 3421 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3422 } 3423 3424 /* RFC 5961 7 [ACK Throttling] */ 3425 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3426 { 3427 /* unprotected vars, we dont care of overwrites */ 3428 static u32 challenge_timestamp; 3429 static unsigned int challenge_count; 3430 struct tcp_sock *tp = tcp_sk(sk); 3431 u32 count, now; 3432 3433 /* First check our per-socket dupack rate limit. */ 3434 if (__tcp_oow_rate_limited(sock_net(sk), 3435 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3436 &tp->last_oow_ack_time)) 3437 return; 3438 3439 /* Then check host-wide RFC 5961 rate limit. */ 3440 now = jiffies / HZ; 3441 if (now != challenge_timestamp) { 3442 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3443 3444 challenge_timestamp = now; 3445 WRITE_ONCE(challenge_count, half + 3446 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3447 } 3448 count = READ_ONCE(challenge_count); 3449 if (count > 0) { 3450 WRITE_ONCE(challenge_count, count - 1); 3451 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3452 tcp_send_ack(sk); 3453 } 3454 } 3455 3456 static void tcp_store_ts_recent(struct tcp_sock *tp) 3457 { 3458 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3459 tp->rx_opt.ts_recent_stamp = get_seconds(); 3460 } 3461 3462 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3463 { 3464 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3465 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3466 * extra check below makes sure this can only happen 3467 * for pure ACK frames. -DaveM 3468 * 3469 * Not only, also it occurs for expired timestamps. 3470 */ 3471 3472 if (tcp_paws_check(&tp->rx_opt, 0)) 3473 tcp_store_ts_recent(tp); 3474 } 3475 } 3476 3477 /* This routine deals with acks during a TLP episode. 3478 * We mark the end of a TLP episode on receiving TLP dupack or when 3479 * ack is after tlp_high_seq. 3480 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3481 */ 3482 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3483 { 3484 struct tcp_sock *tp = tcp_sk(sk); 3485 3486 if (before(ack, tp->tlp_high_seq)) 3487 return; 3488 3489 if (flag & FLAG_DSACKING_ACK) { 3490 /* This DSACK means original and TLP probe arrived; no loss */ 3491 tp->tlp_high_seq = 0; 3492 } else if (after(ack, tp->tlp_high_seq)) { 3493 /* ACK advances: there was a loss, so reduce cwnd. Reset 3494 * tlp_high_seq in tcp_init_cwnd_reduction() 3495 */ 3496 tcp_init_cwnd_reduction(sk); 3497 tcp_set_ca_state(sk, TCP_CA_CWR); 3498 tcp_end_cwnd_reduction(sk); 3499 tcp_try_keep_open(sk); 3500 NET_INC_STATS(sock_net(sk), 3501 LINUX_MIB_TCPLOSSPROBERECOVERY); 3502 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3503 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3504 /* Pure dupack: original and TLP probe arrived; no loss */ 3505 tp->tlp_high_seq = 0; 3506 } 3507 } 3508 3509 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3510 { 3511 const struct inet_connection_sock *icsk = inet_csk(sk); 3512 3513 if (icsk->icsk_ca_ops->in_ack_event) 3514 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3515 } 3516 3517 /* Congestion control has updated the cwnd already. So if we're in 3518 * loss recovery then now we do any new sends (for FRTO) or 3519 * retransmits (for CA_Loss or CA_recovery) that make sense. 3520 */ 3521 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3522 { 3523 struct tcp_sock *tp = tcp_sk(sk); 3524 3525 if (rexmit == REXMIT_NONE) 3526 return; 3527 3528 if (unlikely(rexmit == 2)) { 3529 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3530 TCP_NAGLE_OFF); 3531 if (after(tp->snd_nxt, tp->high_seq)) 3532 return; 3533 tp->frto = 0; 3534 } 3535 tcp_xmit_retransmit_queue(sk); 3536 } 3537 3538 /* This routine deals with incoming acks, but not outgoing ones. */ 3539 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3540 { 3541 struct inet_connection_sock *icsk = inet_csk(sk); 3542 struct tcp_sock *tp = tcp_sk(sk); 3543 struct tcp_sacktag_state sack_state; 3544 struct rate_sample rs = { .prior_delivered = 0 }; 3545 u32 prior_snd_una = tp->snd_una; 3546 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3547 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3548 bool is_dupack = false; 3549 u32 prior_fackets; 3550 int prior_packets = tp->packets_out; 3551 u32 delivered = tp->delivered; 3552 u32 lost = tp->lost; 3553 int acked = 0; /* Number of packets newly acked */ 3554 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3555 u32 ack_ev_flags = 0; 3556 3557 sack_state.first_sackt = 0; 3558 sack_state.rate = &rs; 3559 3560 /* We very likely will need to access write queue head. */ 3561 prefetchw(sk->sk_write_queue.next); 3562 3563 /* If the ack is older than previous acks 3564 * then we can probably ignore it. 3565 */ 3566 if (before(ack, prior_snd_una)) { 3567 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3568 if (before(ack, prior_snd_una - tp->max_window)) { 3569 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3570 tcp_send_challenge_ack(sk, skb); 3571 return -1; 3572 } 3573 goto old_ack; 3574 } 3575 3576 /* If the ack includes data we haven't sent yet, discard 3577 * this segment (RFC793 Section 3.9). 3578 */ 3579 if (after(ack, tp->snd_nxt)) 3580 goto invalid_ack; 3581 3582 if (after(ack, prior_snd_una)) { 3583 flag |= FLAG_SND_UNA_ADVANCED; 3584 icsk->icsk_retransmits = 0; 3585 } 3586 3587 prior_fackets = tp->fackets_out; 3588 rs.prior_in_flight = tcp_packets_in_flight(tp); 3589 3590 /* ts_recent update must be made after we are sure that the packet 3591 * is in window. 3592 */ 3593 if (flag & FLAG_UPDATE_TS_RECENT) 3594 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3595 3596 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3597 flag |= FLAG_DATA; 3598 else 3599 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3600 3601 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3602 3603 if (TCP_SKB_CB(skb)->sacked) 3604 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3605 &sack_state); 3606 3607 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3608 flag |= FLAG_ECE; 3609 ack_ev_flags = CA_ACK_ECE; 3610 } 3611 3612 if (flag & FLAG_WIN_UPDATE) 3613 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3614 3615 tcp_in_ack_event(sk, ack_ev_flags); 3616 3617 /* We passed data and got it acked, remove any soft error 3618 * log. Something worked... 3619 */ 3620 sk->sk_err_soft = 0; 3621 icsk->icsk_probes_out = 0; 3622 tp->rcv_tstamp = tcp_jiffies32; 3623 if (!prior_packets) 3624 goto no_queue; 3625 3626 /* See if we can take anything off of the retransmit queue. */ 3627 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3628 &sack_state); 3629 3630 if (tp->tlp_high_seq) 3631 tcp_process_tlp_ack(sk, ack, flag); 3632 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3633 if (flag & FLAG_SET_XMIT_TIMER) 3634 tcp_set_xmit_timer(sk); 3635 3636 if (tcp_ack_is_dubious(sk, flag)) { 3637 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3638 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3639 } 3640 3641 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3642 sk_dst_confirm(sk); 3643 3644 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3645 lost = tp->lost - lost; /* freshly marked lost */ 3646 tcp_rate_gen(sk, delivered, lost, sack_state.rate); 3647 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3648 tcp_xmit_recovery(sk, rexmit); 3649 return 1; 3650 3651 no_queue: 3652 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3653 if (flag & FLAG_DSACKING_ACK) 3654 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3655 /* If this ack opens up a zero window, clear backoff. It was 3656 * being used to time the probes, and is probably far higher than 3657 * it needs to be for normal retransmission. 3658 */ 3659 if (tcp_send_head(sk)) 3660 tcp_ack_probe(sk); 3661 3662 if (tp->tlp_high_seq) 3663 tcp_process_tlp_ack(sk, ack, flag); 3664 return 1; 3665 3666 invalid_ack: 3667 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3668 return -1; 3669 3670 old_ack: 3671 /* If data was SACKed, tag it and see if we should send more data. 3672 * If data was DSACKed, see if we can undo a cwnd reduction. 3673 */ 3674 if (TCP_SKB_CB(skb)->sacked) { 3675 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3676 &sack_state); 3677 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3678 tcp_xmit_recovery(sk, rexmit); 3679 } 3680 3681 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3682 return 0; 3683 } 3684 3685 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3686 bool syn, struct tcp_fastopen_cookie *foc, 3687 bool exp_opt) 3688 { 3689 /* Valid only in SYN or SYN-ACK with an even length. */ 3690 if (!foc || !syn || len < 0 || (len & 1)) 3691 return; 3692 3693 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3694 len <= TCP_FASTOPEN_COOKIE_MAX) 3695 memcpy(foc->val, cookie, len); 3696 else if (len != 0) 3697 len = -1; 3698 foc->len = len; 3699 foc->exp = exp_opt; 3700 } 3701 3702 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3703 * But, this can also be called on packets in the established flow when 3704 * the fast version below fails. 3705 */ 3706 void tcp_parse_options(const struct net *net, 3707 const struct sk_buff *skb, 3708 struct tcp_options_received *opt_rx, int estab, 3709 struct tcp_fastopen_cookie *foc) 3710 { 3711 const unsigned char *ptr; 3712 const struct tcphdr *th = tcp_hdr(skb); 3713 int length = (th->doff * 4) - sizeof(struct tcphdr); 3714 3715 ptr = (const unsigned char *)(th + 1); 3716 opt_rx->saw_tstamp = 0; 3717 3718 while (length > 0) { 3719 int opcode = *ptr++; 3720 int opsize; 3721 3722 switch (opcode) { 3723 case TCPOPT_EOL: 3724 return; 3725 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3726 length--; 3727 continue; 3728 default: 3729 opsize = *ptr++; 3730 if (opsize < 2) /* "silly options" */ 3731 return; 3732 if (opsize > length) 3733 return; /* don't parse partial options */ 3734 switch (opcode) { 3735 case TCPOPT_MSS: 3736 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3737 u16 in_mss = get_unaligned_be16(ptr); 3738 if (in_mss) { 3739 if (opt_rx->user_mss && 3740 opt_rx->user_mss < in_mss) 3741 in_mss = opt_rx->user_mss; 3742 opt_rx->mss_clamp = in_mss; 3743 } 3744 } 3745 break; 3746 case TCPOPT_WINDOW: 3747 if (opsize == TCPOLEN_WINDOW && th->syn && 3748 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3749 __u8 snd_wscale = *(__u8 *)ptr; 3750 opt_rx->wscale_ok = 1; 3751 if (snd_wscale > TCP_MAX_WSCALE) { 3752 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3753 __func__, 3754 snd_wscale, 3755 TCP_MAX_WSCALE); 3756 snd_wscale = TCP_MAX_WSCALE; 3757 } 3758 opt_rx->snd_wscale = snd_wscale; 3759 } 3760 break; 3761 case TCPOPT_TIMESTAMP: 3762 if ((opsize == TCPOLEN_TIMESTAMP) && 3763 ((estab && opt_rx->tstamp_ok) || 3764 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3765 opt_rx->saw_tstamp = 1; 3766 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3767 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3768 } 3769 break; 3770 case TCPOPT_SACK_PERM: 3771 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3772 !estab && net->ipv4.sysctl_tcp_sack) { 3773 opt_rx->sack_ok = TCP_SACK_SEEN; 3774 tcp_sack_reset(opt_rx); 3775 } 3776 break; 3777 3778 case TCPOPT_SACK: 3779 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3780 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3781 opt_rx->sack_ok) { 3782 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3783 } 3784 break; 3785 #ifdef CONFIG_TCP_MD5SIG 3786 case TCPOPT_MD5SIG: 3787 /* 3788 * The MD5 Hash has already been 3789 * checked (see tcp_v{4,6}_do_rcv()). 3790 */ 3791 break; 3792 #endif 3793 case TCPOPT_FASTOPEN: 3794 tcp_parse_fastopen_option( 3795 opsize - TCPOLEN_FASTOPEN_BASE, 3796 ptr, th->syn, foc, false); 3797 break; 3798 3799 case TCPOPT_EXP: 3800 /* Fast Open option shares code 254 using a 3801 * 16 bits magic number. 3802 */ 3803 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3804 get_unaligned_be16(ptr) == 3805 TCPOPT_FASTOPEN_MAGIC) 3806 tcp_parse_fastopen_option(opsize - 3807 TCPOLEN_EXP_FASTOPEN_BASE, 3808 ptr + 2, th->syn, foc, true); 3809 break; 3810 3811 } 3812 ptr += opsize-2; 3813 length -= opsize; 3814 } 3815 } 3816 } 3817 EXPORT_SYMBOL(tcp_parse_options); 3818 3819 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3820 { 3821 const __be32 *ptr = (const __be32 *)(th + 1); 3822 3823 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3824 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3825 tp->rx_opt.saw_tstamp = 1; 3826 ++ptr; 3827 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3828 ++ptr; 3829 if (*ptr) 3830 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3831 else 3832 tp->rx_opt.rcv_tsecr = 0; 3833 return true; 3834 } 3835 return false; 3836 } 3837 3838 /* Fast parse options. This hopes to only see timestamps. 3839 * If it is wrong it falls back on tcp_parse_options(). 3840 */ 3841 static bool tcp_fast_parse_options(const struct net *net, 3842 const struct sk_buff *skb, 3843 const struct tcphdr *th, struct tcp_sock *tp) 3844 { 3845 /* In the spirit of fast parsing, compare doff directly to constant 3846 * values. Because equality is used, short doff can be ignored here. 3847 */ 3848 if (th->doff == (sizeof(*th) / 4)) { 3849 tp->rx_opt.saw_tstamp = 0; 3850 return false; 3851 } else if (tp->rx_opt.tstamp_ok && 3852 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3853 if (tcp_parse_aligned_timestamp(tp, th)) 3854 return true; 3855 } 3856 3857 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3858 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3859 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3860 3861 return true; 3862 } 3863 3864 #ifdef CONFIG_TCP_MD5SIG 3865 /* 3866 * Parse MD5 Signature option 3867 */ 3868 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3869 { 3870 int length = (th->doff << 2) - sizeof(*th); 3871 const u8 *ptr = (const u8 *)(th + 1); 3872 3873 /* If the TCP option is too short, we can short cut */ 3874 if (length < TCPOLEN_MD5SIG) 3875 return NULL; 3876 3877 while (length > 0) { 3878 int opcode = *ptr++; 3879 int opsize; 3880 3881 switch (opcode) { 3882 case TCPOPT_EOL: 3883 return NULL; 3884 case TCPOPT_NOP: 3885 length--; 3886 continue; 3887 default: 3888 opsize = *ptr++; 3889 if (opsize < 2 || opsize > length) 3890 return NULL; 3891 if (opcode == TCPOPT_MD5SIG) 3892 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3893 } 3894 ptr += opsize - 2; 3895 length -= opsize; 3896 } 3897 return NULL; 3898 } 3899 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3900 #endif 3901 3902 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3903 * 3904 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3905 * it can pass through stack. So, the following predicate verifies that 3906 * this segment is not used for anything but congestion avoidance or 3907 * fast retransmit. Moreover, we even are able to eliminate most of such 3908 * second order effects, if we apply some small "replay" window (~RTO) 3909 * to timestamp space. 3910 * 3911 * All these measures still do not guarantee that we reject wrapped ACKs 3912 * on networks with high bandwidth, when sequence space is recycled fastly, 3913 * but it guarantees that such events will be very rare and do not affect 3914 * connection seriously. This doesn't look nice, but alas, PAWS is really 3915 * buggy extension. 3916 * 3917 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3918 * states that events when retransmit arrives after original data are rare. 3919 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3920 * the biggest problem on large power networks even with minor reordering. 3921 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3922 * up to bandwidth of 18Gigabit/sec. 8) ] 3923 */ 3924 3925 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3926 { 3927 const struct tcp_sock *tp = tcp_sk(sk); 3928 const struct tcphdr *th = tcp_hdr(skb); 3929 u32 seq = TCP_SKB_CB(skb)->seq; 3930 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3931 3932 return (/* 1. Pure ACK with correct sequence number. */ 3933 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3934 3935 /* 2. ... and duplicate ACK. */ 3936 ack == tp->snd_una && 3937 3938 /* 3. ... and does not update window. */ 3939 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3940 3941 /* 4. ... and sits in replay window. */ 3942 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3943 } 3944 3945 static inline bool tcp_paws_discard(const struct sock *sk, 3946 const struct sk_buff *skb) 3947 { 3948 const struct tcp_sock *tp = tcp_sk(sk); 3949 3950 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3951 !tcp_disordered_ack(sk, skb); 3952 } 3953 3954 /* Check segment sequence number for validity. 3955 * 3956 * Segment controls are considered valid, if the segment 3957 * fits to the window after truncation to the window. Acceptability 3958 * of data (and SYN, FIN, of course) is checked separately. 3959 * See tcp_data_queue(), for example. 3960 * 3961 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3962 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3963 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3964 * (borrowed from freebsd) 3965 */ 3966 3967 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3968 { 3969 return !before(end_seq, tp->rcv_wup) && 3970 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3971 } 3972 3973 /* When we get a reset we do this. */ 3974 void tcp_reset(struct sock *sk) 3975 { 3976 /* We want the right error as BSD sees it (and indeed as we do). */ 3977 switch (sk->sk_state) { 3978 case TCP_SYN_SENT: 3979 sk->sk_err = ECONNREFUSED; 3980 break; 3981 case TCP_CLOSE_WAIT: 3982 sk->sk_err = EPIPE; 3983 break; 3984 case TCP_CLOSE: 3985 return; 3986 default: 3987 sk->sk_err = ECONNRESET; 3988 } 3989 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3990 smp_wmb(); 3991 3992 tcp_done(sk); 3993 3994 if (!sock_flag(sk, SOCK_DEAD)) 3995 sk->sk_error_report(sk); 3996 } 3997 3998 /* 3999 * Process the FIN bit. This now behaves as it is supposed to work 4000 * and the FIN takes effect when it is validly part of sequence 4001 * space. Not before when we get holes. 4002 * 4003 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4004 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4005 * TIME-WAIT) 4006 * 4007 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4008 * close and we go into CLOSING (and later onto TIME-WAIT) 4009 * 4010 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4011 */ 4012 void tcp_fin(struct sock *sk) 4013 { 4014 struct tcp_sock *tp = tcp_sk(sk); 4015 4016 inet_csk_schedule_ack(sk); 4017 4018 sk->sk_shutdown |= RCV_SHUTDOWN; 4019 sock_set_flag(sk, SOCK_DONE); 4020 4021 switch (sk->sk_state) { 4022 case TCP_SYN_RECV: 4023 case TCP_ESTABLISHED: 4024 /* Move to CLOSE_WAIT */ 4025 tcp_set_state(sk, TCP_CLOSE_WAIT); 4026 inet_csk(sk)->icsk_ack.pingpong = 1; 4027 break; 4028 4029 case TCP_CLOSE_WAIT: 4030 case TCP_CLOSING: 4031 /* Received a retransmission of the FIN, do 4032 * nothing. 4033 */ 4034 break; 4035 case TCP_LAST_ACK: 4036 /* RFC793: Remain in the LAST-ACK state. */ 4037 break; 4038 4039 case TCP_FIN_WAIT1: 4040 /* This case occurs when a simultaneous close 4041 * happens, we must ack the received FIN and 4042 * enter the CLOSING state. 4043 */ 4044 tcp_send_ack(sk); 4045 tcp_set_state(sk, TCP_CLOSING); 4046 break; 4047 case TCP_FIN_WAIT2: 4048 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4049 tcp_send_ack(sk); 4050 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4051 break; 4052 default: 4053 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4054 * cases we should never reach this piece of code. 4055 */ 4056 pr_err("%s: Impossible, sk->sk_state=%d\n", 4057 __func__, sk->sk_state); 4058 break; 4059 } 4060 4061 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4062 * Probably, we should reset in this case. For now drop them. 4063 */ 4064 skb_rbtree_purge(&tp->out_of_order_queue); 4065 if (tcp_is_sack(tp)) 4066 tcp_sack_reset(&tp->rx_opt); 4067 sk_mem_reclaim(sk); 4068 4069 if (!sock_flag(sk, SOCK_DEAD)) { 4070 sk->sk_state_change(sk); 4071 4072 /* Do not send POLL_HUP for half duplex close. */ 4073 if (sk->sk_shutdown == SHUTDOWN_MASK || 4074 sk->sk_state == TCP_CLOSE) 4075 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4076 else 4077 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4078 } 4079 } 4080 4081 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4082 u32 end_seq) 4083 { 4084 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4085 if (before(seq, sp->start_seq)) 4086 sp->start_seq = seq; 4087 if (after(end_seq, sp->end_seq)) 4088 sp->end_seq = end_seq; 4089 return true; 4090 } 4091 return false; 4092 } 4093 4094 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4095 { 4096 struct tcp_sock *tp = tcp_sk(sk); 4097 4098 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4099 int mib_idx; 4100 4101 if (before(seq, tp->rcv_nxt)) 4102 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4103 else 4104 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4105 4106 NET_INC_STATS(sock_net(sk), mib_idx); 4107 4108 tp->rx_opt.dsack = 1; 4109 tp->duplicate_sack[0].start_seq = seq; 4110 tp->duplicate_sack[0].end_seq = end_seq; 4111 } 4112 } 4113 4114 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4115 { 4116 struct tcp_sock *tp = tcp_sk(sk); 4117 4118 if (!tp->rx_opt.dsack) 4119 tcp_dsack_set(sk, seq, end_seq); 4120 else 4121 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4122 } 4123 4124 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4125 { 4126 struct tcp_sock *tp = tcp_sk(sk); 4127 4128 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4129 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4130 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4131 tcp_enter_quickack_mode(sk); 4132 4133 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4134 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4135 4136 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4137 end_seq = tp->rcv_nxt; 4138 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4139 } 4140 } 4141 4142 tcp_send_ack(sk); 4143 } 4144 4145 /* These routines update the SACK block as out-of-order packets arrive or 4146 * in-order packets close up the sequence space. 4147 */ 4148 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4149 { 4150 int this_sack; 4151 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4152 struct tcp_sack_block *swalk = sp + 1; 4153 4154 /* See if the recent change to the first SACK eats into 4155 * or hits the sequence space of other SACK blocks, if so coalesce. 4156 */ 4157 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4158 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4159 int i; 4160 4161 /* Zap SWALK, by moving every further SACK up by one slot. 4162 * Decrease num_sacks. 4163 */ 4164 tp->rx_opt.num_sacks--; 4165 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4166 sp[i] = sp[i + 1]; 4167 continue; 4168 } 4169 this_sack++, swalk++; 4170 } 4171 } 4172 4173 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4174 { 4175 struct tcp_sock *tp = tcp_sk(sk); 4176 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4177 int cur_sacks = tp->rx_opt.num_sacks; 4178 int this_sack; 4179 4180 if (!cur_sacks) 4181 goto new_sack; 4182 4183 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4184 if (tcp_sack_extend(sp, seq, end_seq)) { 4185 /* Rotate this_sack to the first one. */ 4186 for (; this_sack > 0; this_sack--, sp--) 4187 swap(*sp, *(sp - 1)); 4188 if (cur_sacks > 1) 4189 tcp_sack_maybe_coalesce(tp); 4190 return; 4191 } 4192 } 4193 4194 /* Could not find an adjacent existing SACK, build a new one, 4195 * put it at the front, and shift everyone else down. We 4196 * always know there is at least one SACK present already here. 4197 * 4198 * If the sack array is full, forget about the last one. 4199 */ 4200 if (this_sack >= TCP_NUM_SACKS) { 4201 this_sack--; 4202 tp->rx_opt.num_sacks--; 4203 sp--; 4204 } 4205 for (; this_sack > 0; this_sack--, sp--) 4206 *sp = *(sp - 1); 4207 4208 new_sack: 4209 /* Build the new head SACK, and we're done. */ 4210 sp->start_seq = seq; 4211 sp->end_seq = end_seq; 4212 tp->rx_opt.num_sacks++; 4213 } 4214 4215 /* RCV.NXT advances, some SACKs should be eaten. */ 4216 4217 static void tcp_sack_remove(struct tcp_sock *tp) 4218 { 4219 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4220 int num_sacks = tp->rx_opt.num_sacks; 4221 int this_sack; 4222 4223 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4224 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4225 tp->rx_opt.num_sacks = 0; 4226 return; 4227 } 4228 4229 for (this_sack = 0; this_sack < num_sacks;) { 4230 /* Check if the start of the sack is covered by RCV.NXT. */ 4231 if (!before(tp->rcv_nxt, sp->start_seq)) { 4232 int i; 4233 4234 /* RCV.NXT must cover all the block! */ 4235 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4236 4237 /* Zap this SACK, by moving forward any other SACKS. */ 4238 for (i = this_sack+1; i < num_sacks; i++) 4239 tp->selective_acks[i-1] = tp->selective_acks[i]; 4240 num_sacks--; 4241 continue; 4242 } 4243 this_sack++; 4244 sp++; 4245 } 4246 tp->rx_opt.num_sacks = num_sacks; 4247 } 4248 4249 enum tcp_queue { 4250 OOO_QUEUE, 4251 RCV_QUEUE, 4252 }; 4253 4254 /** 4255 * tcp_try_coalesce - try to merge skb to prior one 4256 * @sk: socket 4257 * @dest: destination queue 4258 * @to: prior buffer 4259 * @from: buffer to add in queue 4260 * @fragstolen: pointer to boolean 4261 * 4262 * Before queueing skb @from after @to, try to merge them 4263 * to reduce overall memory use and queue lengths, if cost is small. 4264 * Packets in ofo or receive queues can stay a long time. 4265 * Better try to coalesce them right now to avoid future collapses. 4266 * Returns true if caller should free @from instead of queueing it 4267 */ 4268 static bool tcp_try_coalesce(struct sock *sk, 4269 enum tcp_queue dest, 4270 struct sk_buff *to, 4271 struct sk_buff *from, 4272 bool *fragstolen) 4273 { 4274 int delta; 4275 4276 *fragstolen = false; 4277 4278 /* Its possible this segment overlaps with prior segment in queue */ 4279 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4280 return false; 4281 4282 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4283 return false; 4284 4285 atomic_add(delta, &sk->sk_rmem_alloc); 4286 sk_mem_charge(sk, delta); 4287 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4288 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4289 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4290 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4291 4292 if (TCP_SKB_CB(from)->has_rxtstamp) { 4293 TCP_SKB_CB(to)->has_rxtstamp = true; 4294 if (dest == OOO_QUEUE) 4295 TCP_SKB_CB(to)->swtstamp = TCP_SKB_CB(from)->swtstamp; 4296 else 4297 to->tstamp = from->tstamp; 4298 } 4299 4300 return true; 4301 } 4302 4303 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4304 { 4305 sk_drops_add(sk, skb); 4306 __kfree_skb(skb); 4307 } 4308 4309 /* This one checks to see if we can put data from the 4310 * out_of_order queue into the receive_queue. 4311 */ 4312 static void tcp_ofo_queue(struct sock *sk) 4313 { 4314 struct tcp_sock *tp = tcp_sk(sk); 4315 __u32 dsack_high = tp->rcv_nxt; 4316 bool fin, fragstolen, eaten; 4317 struct sk_buff *skb, *tail; 4318 struct rb_node *p; 4319 4320 p = rb_first(&tp->out_of_order_queue); 4321 while (p) { 4322 skb = rb_entry(p, struct sk_buff, rbnode); 4323 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4324 break; 4325 4326 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4327 __u32 dsack = dsack_high; 4328 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4329 dsack_high = TCP_SKB_CB(skb)->end_seq; 4330 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4331 } 4332 p = rb_next(p); 4333 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4334 /* Replace tstamp which was stomped by rbnode */ 4335 if (TCP_SKB_CB(skb)->has_rxtstamp) 4336 skb->tstamp = TCP_SKB_CB(skb)->swtstamp; 4337 4338 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4339 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4340 tcp_drop(sk, skb); 4341 continue; 4342 } 4343 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4344 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4345 TCP_SKB_CB(skb)->end_seq); 4346 4347 tail = skb_peek_tail(&sk->sk_receive_queue); 4348 eaten = tail && tcp_try_coalesce(sk, RCV_QUEUE, 4349 tail, skb, &fragstolen); 4350 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4351 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4352 if (!eaten) 4353 __skb_queue_tail(&sk->sk_receive_queue, skb); 4354 else 4355 kfree_skb_partial(skb, fragstolen); 4356 4357 if (unlikely(fin)) { 4358 tcp_fin(sk); 4359 /* tcp_fin() purges tp->out_of_order_queue, 4360 * so we must end this loop right now. 4361 */ 4362 break; 4363 } 4364 } 4365 } 4366 4367 static bool tcp_prune_ofo_queue(struct sock *sk); 4368 static int tcp_prune_queue(struct sock *sk); 4369 4370 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4371 unsigned int size) 4372 { 4373 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4374 !sk_rmem_schedule(sk, skb, size)) { 4375 4376 if (tcp_prune_queue(sk) < 0) 4377 return -1; 4378 4379 while (!sk_rmem_schedule(sk, skb, size)) { 4380 if (!tcp_prune_ofo_queue(sk)) 4381 return -1; 4382 } 4383 } 4384 return 0; 4385 } 4386 4387 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4388 { 4389 struct tcp_sock *tp = tcp_sk(sk); 4390 struct rb_node **p, *q, *parent; 4391 struct sk_buff *skb1; 4392 u32 seq, end_seq; 4393 bool fragstolen; 4394 4395 tcp_ecn_check_ce(tp, skb); 4396 4397 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4398 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4399 tcp_drop(sk, skb); 4400 return; 4401 } 4402 4403 /* Stash tstamp to avoid being stomped on by rbnode */ 4404 if (TCP_SKB_CB(skb)->has_rxtstamp) 4405 TCP_SKB_CB(skb)->swtstamp = skb->tstamp; 4406 4407 inet_csk_schedule_ack(sk); 4408 4409 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4410 seq = TCP_SKB_CB(skb)->seq; 4411 end_seq = TCP_SKB_CB(skb)->end_seq; 4412 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4413 tp->rcv_nxt, seq, end_seq); 4414 4415 p = &tp->out_of_order_queue.rb_node; 4416 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4417 /* Initial out of order segment, build 1 SACK. */ 4418 if (tcp_is_sack(tp)) { 4419 tp->rx_opt.num_sacks = 1; 4420 tp->selective_acks[0].start_seq = seq; 4421 tp->selective_acks[0].end_seq = end_seq; 4422 } 4423 rb_link_node(&skb->rbnode, NULL, p); 4424 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4425 tp->ooo_last_skb = skb; 4426 goto end; 4427 } 4428 4429 /* In the typical case, we are adding an skb to the end of the list. 4430 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4431 */ 4432 if (tcp_try_coalesce(sk, OOO_QUEUE, tp->ooo_last_skb, 4433 skb, &fragstolen)) { 4434 coalesce_done: 4435 tcp_grow_window(sk, skb); 4436 kfree_skb_partial(skb, fragstolen); 4437 skb = NULL; 4438 goto add_sack; 4439 } 4440 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4441 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4442 parent = &tp->ooo_last_skb->rbnode; 4443 p = &parent->rb_right; 4444 goto insert; 4445 } 4446 4447 /* Find place to insert this segment. Handle overlaps on the way. */ 4448 parent = NULL; 4449 while (*p) { 4450 parent = *p; 4451 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4452 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4453 p = &parent->rb_left; 4454 continue; 4455 } 4456 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4457 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4458 /* All the bits are present. Drop. */ 4459 NET_INC_STATS(sock_net(sk), 4460 LINUX_MIB_TCPOFOMERGE); 4461 __kfree_skb(skb); 4462 skb = NULL; 4463 tcp_dsack_set(sk, seq, end_seq); 4464 goto add_sack; 4465 } 4466 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4467 /* Partial overlap. */ 4468 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4469 } else { 4470 /* skb's seq == skb1's seq and skb covers skb1. 4471 * Replace skb1 with skb. 4472 */ 4473 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4474 &tp->out_of_order_queue); 4475 tcp_dsack_extend(sk, 4476 TCP_SKB_CB(skb1)->seq, 4477 TCP_SKB_CB(skb1)->end_seq); 4478 NET_INC_STATS(sock_net(sk), 4479 LINUX_MIB_TCPOFOMERGE); 4480 __kfree_skb(skb1); 4481 goto merge_right; 4482 } 4483 } else if (tcp_try_coalesce(sk, OOO_QUEUE, skb1, 4484 skb, &fragstolen)) { 4485 goto coalesce_done; 4486 } 4487 p = &parent->rb_right; 4488 } 4489 insert: 4490 /* Insert segment into RB tree. */ 4491 rb_link_node(&skb->rbnode, parent, p); 4492 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4493 4494 merge_right: 4495 /* Remove other segments covered by skb. */ 4496 while ((q = rb_next(&skb->rbnode)) != NULL) { 4497 skb1 = rb_entry(q, struct sk_buff, rbnode); 4498 4499 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4500 break; 4501 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4502 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4503 end_seq); 4504 break; 4505 } 4506 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4507 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4508 TCP_SKB_CB(skb1)->end_seq); 4509 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4510 tcp_drop(sk, skb1); 4511 } 4512 /* If there is no skb after us, we are the last_skb ! */ 4513 if (!q) 4514 tp->ooo_last_skb = skb; 4515 4516 add_sack: 4517 if (tcp_is_sack(tp)) 4518 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4519 end: 4520 if (skb) { 4521 tcp_grow_window(sk, skb); 4522 skb_condense(skb); 4523 skb_set_owner_r(skb, sk); 4524 } 4525 } 4526 4527 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4528 bool *fragstolen) 4529 { 4530 int eaten; 4531 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4532 4533 __skb_pull(skb, hdrlen); 4534 eaten = (tail && 4535 tcp_try_coalesce(sk, RCV_QUEUE, tail, 4536 skb, fragstolen)) ? 1 : 0; 4537 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4538 if (!eaten) { 4539 __skb_queue_tail(&sk->sk_receive_queue, skb); 4540 skb_set_owner_r(skb, sk); 4541 } 4542 return eaten; 4543 } 4544 4545 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4546 { 4547 struct sk_buff *skb; 4548 int err = -ENOMEM; 4549 int data_len = 0; 4550 bool fragstolen; 4551 4552 if (size == 0) 4553 return 0; 4554 4555 if (size > PAGE_SIZE) { 4556 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4557 4558 data_len = npages << PAGE_SHIFT; 4559 size = data_len + (size & ~PAGE_MASK); 4560 } 4561 skb = alloc_skb_with_frags(size - data_len, data_len, 4562 PAGE_ALLOC_COSTLY_ORDER, 4563 &err, sk->sk_allocation); 4564 if (!skb) 4565 goto err; 4566 4567 skb_put(skb, size - data_len); 4568 skb->data_len = data_len; 4569 skb->len = size; 4570 4571 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4572 goto err_free; 4573 4574 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4575 if (err) 4576 goto err_free; 4577 4578 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4579 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4580 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4581 4582 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4583 WARN_ON_ONCE(fragstolen); /* should not happen */ 4584 __kfree_skb(skb); 4585 } 4586 return size; 4587 4588 err_free: 4589 kfree_skb(skb); 4590 err: 4591 return err; 4592 4593 } 4594 4595 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4596 { 4597 struct tcp_sock *tp = tcp_sk(sk); 4598 bool fragstolen; 4599 int eaten; 4600 4601 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4602 __kfree_skb(skb); 4603 return; 4604 } 4605 skb_dst_drop(skb); 4606 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4607 4608 tcp_ecn_accept_cwr(tp, skb); 4609 4610 tp->rx_opt.dsack = 0; 4611 4612 /* Queue data for delivery to the user. 4613 * Packets in sequence go to the receive queue. 4614 * Out of sequence packets to the out_of_order_queue. 4615 */ 4616 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4617 if (tcp_receive_window(tp) == 0) 4618 goto out_of_window; 4619 4620 /* Ok. In sequence. In window. */ 4621 queue_and_out: 4622 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4623 sk_forced_mem_schedule(sk, skb->truesize); 4624 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4625 goto drop; 4626 4627 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4628 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4629 if (skb->len) 4630 tcp_event_data_recv(sk, skb); 4631 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4632 tcp_fin(sk); 4633 4634 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4635 tcp_ofo_queue(sk); 4636 4637 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4638 * gap in queue is filled. 4639 */ 4640 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4641 inet_csk(sk)->icsk_ack.pingpong = 0; 4642 } 4643 4644 if (tp->rx_opt.num_sacks) 4645 tcp_sack_remove(tp); 4646 4647 if (eaten > 0) 4648 kfree_skb_partial(skb, fragstolen); 4649 if (!sock_flag(sk, SOCK_DEAD)) 4650 sk->sk_data_ready(sk); 4651 return; 4652 } 4653 4654 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4655 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4656 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4657 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4658 4659 out_of_window: 4660 tcp_enter_quickack_mode(sk); 4661 inet_csk_schedule_ack(sk); 4662 drop: 4663 tcp_drop(sk, skb); 4664 return; 4665 } 4666 4667 /* Out of window. F.e. zero window probe. */ 4668 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4669 goto out_of_window; 4670 4671 tcp_enter_quickack_mode(sk); 4672 4673 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4674 /* Partial packet, seq < rcv_next < end_seq */ 4675 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4676 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4677 TCP_SKB_CB(skb)->end_seq); 4678 4679 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4680 4681 /* If window is closed, drop tail of packet. But after 4682 * remembering D-SACK for its head made in previous line. 4683 */ 4684 if (!tcp_receive_window(tp)) 4685 goto out_of_window; 4686 goto queue_and_out; 4687 } 4688 4689 tcp_data_queue_ofo(sk, skb); 4690 } 4691 4692 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4693 { 4694 if (list) 4695 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4696 4697 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode); 4698 } 4699 4700 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4701 struct sk_buff_head *list, 4702 struct rb_root *root) 4703 { 4704 struct sk_buff *next = tcp_skb_next(skb, list); 4705 4706 if (list) 4707 __skb_unlink(skb, list); 4708 else 4709 rb_erase(&skb->rbnode, root); 4710 4711 __kfree_skb(skb); 4712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4713 4714 return next; 4715 } 4716 4717 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4718 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4719 { 4720 struct rb_node **p = &root->rb_node; 4721 struct rb_node *parent = NULL; 4722 struct sk_buff *skb1; 4723 4724 while (*p) { 4725 parent = *p; 4726 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4727 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4728 p = &parent->rb_left; 4729 else 4730 p = &parent->rb_right; 4731 } 4732 rb_link_node(&skb->rbnode, parent, p); 4733 rb_insert_color(&skb->rbnode, root); 4734 } 4735 4736 /* Collapse contiguous sequence of skbs head..tail with 4737 * sequence numbers start..end. 4738 * 4739 * If tail is NULL, this means until the end of the queue. 4740 * 4741 * Segments with FIN/SYN are not collapsed (only because this 4742 * simplifies code) 4743 */ 4744 static void 4745 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4746 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4747 { 4748 struct sk_buff *skb = head, *n; 4749 struct sk_buff_head tmp; 4750 bool end_of_skbs; 4751 4752 /* First, check that queue is collapsible and find 4753 * the point where collapsing can be useful. 4754 */ 4755 restart: 4756 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4757 n = tcp_skb_next(skb, list); 4758 4759 /* No new bits? It is possible on ofo queue. */ 4760 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4761 skb = tcp_collapse_one(sk, skb, list, root); 4762 if (!skb) 4763 break; 4764 goto restart; 4765 } 4766 4767 /* The first skb to collapse is: 4768 * - not SYN/FIN and 4769 * - bloated or contains data before "start" or 4770 * overlaps to the next one. 4771 */ 4772 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4773 (tcp_win_from_space(skb->truesize) > skb->len || 4774 before(TCP_SKB_CB(skb)->seq, start))) { 4775 end_of_skbs = false; 4776 break; 4777 } 4778 4779 if (n && n != tail && 4780 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4781 end_of_skbs = false; 4782 break; 4783 } 4784 4785 /* Decided to skip this, advance start seq. */ 4786 start = TCP_SKB_CB(skb)->end_seq; 4787 } 4788 if (end_of_skbs || 4789 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4790 return; 4791 4792 __skb_queue_head_init(&tmp); 4793 4794 while (before(start, end)) { 4795 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4796 struct sk_buff *nskb; 4797 4798 nskb = alloc_skb(copy, GFP_ATOMIC); 4799 if (!nskb) 4800 break; 4801 4802 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4803 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4804 if (list) 4805 __skb_queue_before(list, skb, nskb); 4806 else 4807 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4808 skb_set_owner_r(nskb, sk); 4809 4810 /* Copy data, releasing collapsed skbs. */ 4811 while (copy > 0) { 4812 int offset = start - TCP_SKB_CB(skb)->seq; 4813 int size = TCP_SKB_CB(skb)->end_seq - start; 4814 4815 BUG_ON(offset < 0); 4816 if (size > 0) { 4817 size = min(copy, size); 4818 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4819 BUG(); 4820 TCP_SKB_CB(nskb)->end_seq += size; 4821 copy -= size; 4822 start += size; 4823 } 4824 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4825 skb = tcp_collapse_one(sk, skb, list, root); 4826 if (!skb || 4827 skb == tail || 4828 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4829 goto end; 4830 } 4831 } 4832 } 4833 end: 4834 skb_queue_walk_safe(&tmp, skb, n) 4835 tcp_rbtree_insert(root, skb); 4836 } 4837 4838 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4839 * and tcp_collapse() them until all the queue is collapsed. 4840 */ 4841 static void tcp_collapse_ofo_queue(struct sock *sk) 4842 { 4843 struct tcp_sock *tp = tcp_sk(sk); 4844 struct sk_buff *skb, *head; 4845 struct rb_node *p; 4846 u32 start, end; 4847 4848 p = rb_first(&tp->out_of_order_queue); 4849 skb = rb_entry_safe(p, struct sk_buff, rbnode); 4850 new_range: 4851 if (!skb) { 4852 p = rb_last(&tp->out_of_order_queue); 4853 /* Note: This is possible p is NULL here. We do not 4854 * use rb_entry_safe(), as ooo_last_skb is valid only 4855 * if rbtree is not empty. 4856 */ 4857 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode); 4858 return; 4859 } 4860 start = TCP_SKB_CB(skb)->seq; 4861 end = TCP_SKB_CB(skb)->end_seq; 4862 4863 for (head = skb;;) { 4864 skb = tcp_skb_next(skb, NULL); 4865 4866 /* Range is terminated when we see a gap or when 4867 * we are at the queue end. 4868 */ 4869 if (!skb || 4870 after(TCP_SKB_CB(skb)->seq, end) || 4871 before(TCP_SKB_CB(skb)->end_seq, start)) { 4872 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4873 head, skb, start, end); 4874 goto new_range; 4875 } 4876 4877 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4878 start = TCP_SKB_CB(skb)->seq; 4879 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4880 end = TCP_SKB_CB(skb)->end_seq; 4881 } 4882 } 4883 4884 /* 4885 * Clean the out-of-order queue to make room. 4886 * We drop high sequences packets to : 4887 * 1) Let a chance for holes to be filled. 4888 * 2) not add too big latencies if thousands of packets sit there. 4889 * (But if application shrinks SO_RCVBUF, we could still end up 4890 * freeing whole queue here) 4891 * 4892 * Return true if queue has shrunk. 4893 */ 4894 static bool tcp_prune_ofo_queue(struct sock *sk) 4895 { 4896 struct tcp_sock *tp = tcp_sk(sk); 4897 struct rb_node *node, *prev; 4898 4899 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4900 return false; 4901 4902 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4903 node = &tp->ooo_last_skb->rbnode; 4904 do { 4905 prev = rb_prev(node); 4906 rb_erase(node, &tp->out_of_order_queue); 4907 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode)); 4908 sk_mem_reclaim(sk); 4909 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4910 !tcp_under_memory_pressure(sk)) 4911 break; 4912 node = prev; 4913 } while (node); 4914 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode); 4915 4916 /* Reset SACK state. A conforming SACK implementation will 4917 * do the same at a timeout based retransmit. When a connection 4918 * is in a sad state like this, we care only about integrity 4919 * of the connection not performance. 4920 */ 4921 if (tp->rx_opt.sack_ok) 4922 tcp_sack_reset(&tp->rx_opt); 4923 return true; 4924 } 4925 4926 /* Reduce allocated memory if we can, trying to get 4927 * the socket within its memory limits again. 4928 * 4929 * Return less than zero if we should start dropping frames 4930 * until the socket owning process reads some of the data 4931 * to stabilize the situation. 4932 */ 4933 static int tcp_prune_queue(struct sock *sk) 4934 { 4935 struct tcp_sock *tp = tcp_sk(sk); 4936 4937 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4938 4939 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4940 4941 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4942 tcp_clamp_window(sk); 4943 else if (tcp_under_memory_pressure(sk)) 4944 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4945 4946 tcp_collapse_ofo_queue(sk); 4947 if (!skb_queue_empty(&sk->sk_receive_queue)) 4948 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4949 skb_peek(&sk->sk_receive_queue), 4950 NULL, 4951 tp->copied_seq, tp->rcv_nxt); 4952 sk_mem_reclaim(sk); 4953 4954 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4955 return 0; 4956 4957 /* Collapsing did not help, destructive actions follow. 4958 * This must not ever occur. */ 4959 4960 tcp_prune_ofo_queue(sk); 4961 4962 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4963 return 0; 4964 4965 /* If we are really being abused, tell the caller to silently 4966 * drop receive data on the floor. It will get retransmitted 4967 * and hopefully then we'll have sufficient space. 4968 */ 4969 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4970 4971 /* Massive buffer overcommit. */ 4972 return -1; 4973 } 4974 4975 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4976 { 4977 const struct tcp_sock *tp = tcp_sk(sk); 4978 4979 /* If the user specified a specific send buffer setting, do 4980 * not modify it. 4981 */ 4982 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4983 return false; 4984 4985 /* If we are under global TCP memory pressure, do not expand. */ 4986 if (tcp_under_memory_pressure(sk)) 4987 return false; 4988 4989 /* If we are under soft global TCP memory pressure, do not expand. */ 4990 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4991 return false; 4992 4993 /* If we filled the congestion window, do not expand. */ 4994 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 4995 return false; 4996 4997 return true; 4998 } 4999 5000 /* When incoming ACK allowed to free some skb from write_queue, 5001 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5002 * on the exit from tcp input handler. 5003 * 5004 * PROBLEM: sndbuf expansion does not work well with largesend. 5005 */ 5006 static void tcp_new_space(struct sock *sk) 5007 { 5008 struct tcp_sock *tp = tcp_sk(sk); 5009 5010 if (tcp_should_expand_sndbuf(sk)) { 5011 tcp_sndbuf_expand(sk); 5012 tp->snd_cwnd_stamp = tcp_jiffies32; 5013 } 5014 5015 sk->sk_write_space(sk); 5016 } 5017 5018 static void tcp_check_space(struct sock *sk) 5019 { 5020 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5021 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5022 /* pairs with tcp_poll() */ 5023 smp_mb(); 5024 if (sk->sk_socket && 5025 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5026 tcp_new_space(sk); 5027 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5028 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5029 } 5030 } 5031 } 5032 5033 static inline void tcp_data_snd_check(struct sock *sk) 5034 { 5035 tcp_push_pending_frames(sk); 5036 tcp_check_space(sk); 5037 } 5038 5039 /* 5040 * Check if sending an ack is needed. 5041 */ 5042 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5043 { 5044 struct tcp_sock *tp = tcp_sk(sk); 5045 5046 /* More than one full frame received... */ 5047 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5048 /* ... and right edge of window advances far enough. 5049 * (tcp_recvmsg() will send ACK otherwise). Or... 5050 */ 5051 __tcp_select_window(sk) >= tp->rcv_wnd) || 5052 /* We ACK each frame or... */ 5053 tcp_in_quickack_mode(sk) || 5054 /* We have out of order data. */ 5055 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5056 /* Then ack it now */ 5057 tcp_send_ack(sk); 5058 } else { 5059 /* Else, send delayed ack. */ 5060 tcp_send_delayed_ack(sk); 5061 } 5062 } 5063 5064 static inline void tcp_ack_snd_check(struct sock *sk) 5065 { 5066 if (!inet_csk_ack_scheduled(sk)) { 5067 /* We sent a data segment already. */ 5068 return; 5069 } 5070 __tcp_ack_snd_check(sk, 1); 5071 } 5072 5073 /* 5074 * This routine is only called when we have urgent data 5075 * signaled. Its the 'slow' part of tcp_urg. It could be 5076 * moved inline now as tcp_urg is only called from one 5077 * place. We handle URGent data wrong. We have to - as 5078 * BSD still doesn't use the correction from RFC961. 5079 * For 1003.1g we should support a new option TCP_STDURG to permit 5080 * either form (or just set the sysctl tcp_stdurg). 5081 */ 5082 5083 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5084 { 5085 struct tcp_sock *tp = tcp_sk(sk); 5086 u32 ptr = ntohs(th->urg_ptr); 5087 5088 if (ptr && !sysctl_tcp_stdurg) 5089 ptr--; 5090 ptr += ntohl(th->seq); 5091 5092 /* Ignore urgent data that we've already seen and read. */ 5093 if (after(tp->copied_seq, ptr)) 5094 return; 5095 5096 /* Do not replay urg ptr. 5097 * 5098 * NOTE: interesting situation not covered by specs. 5099 * Misbehaving sender may send urg ptr, pointing to segment, 5100 * which we already have in ofo queue. We are not able to fetch 5101 * such data and will stay in TCP_URG_NOTYET until will be eaten 5102 * by recvmsg(). Seems, we are not obliged to handle such wicked 5103 * situations. But it is worth to think about possibility of some 5104 * DoSes using some hypothetical application level deadlock. 5105 */ 5106 if (before(ptr, tp->rcv_nxt)) 5107 return; 5108 5109 /* Do we already have a newer (or duplicate) urgent pointer? */ 5110 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5111 return; 5112 5113 /* Tell the world about our new urgent pointer. */ 5114 sk_send_sigurg(sk); 5115 5116 /* We may be adding urgent data when the last byte read was 5117 * urgent. To do this requires some care. We cannot just ignore 5118 * tp->copied_seq since we would read the last urgent byte again 5119 * as data, nor can we alter copied_seq until this data arrives 5120 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5121 * 5122 * NOTE. Double Dutch. Rendering to plain English: author of comment 5123 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5124 * and expect that both A and B disappear from stream. This is _wrong_. 5125 * Though this happens in BSD with high probability, this is occasional. 5126 * Any application relying on this is buggy. Note also, that fix "works" 5127 * only in this artificial test. Insert some normal data between A and B and we will 5128 * decline of BSD again. Verdict: it is better to remove to trap 5129 * buggy users. 5130 */ 5131 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5132 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5133 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5134 tp->copied_seq++; 5135 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5136 __skb_unlink(skb, &sk->sk_receive_queue); 5137 __kfree_skb(skb); 5138 } 5139 } 5140 5141 tp->urg_data = TCP_URG_NOTYET; 5142 tp->urg_seq = ptr; 5143 } 5144 5145 /* This is the 'fast' part of urgent handling. */ 5146 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5147 { 5148 struct tcp_sock *tp = tcp_sk(sk); 5149 5150 /* Check if we get a new urgent pointer - normally not. */ 5151 if (th->urg) 5152 tcp_check_urg(sk, th); 5153 5154 /* Do we wait for any urgent data? - normally not... */ 5155 if (tp->urg_data == TCP_URG_NOTYET) { 5156 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5157 th->syn; 5158 5159 /* Is the urgent pointer pointing into this packet? */ 5160 if (ptr < skb->len) { 5161 u8 tmp; 5162 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5163 BUG(); 5164 tp->urg_data = TCP_URG_VALID | tmp; 5165 if (!sock_flag(sk, SOCK_DEAD)) 5166 sk->sk_data_ready(sk); 5167 } 5168 } 5169 } 5170 5171 /* Accept RST for rcv_nxt - 1 after a FIN. 5172 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5173 * FIN is sent followed by a RST packet. The RST is sent with the same 5174 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5175 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5176 * ACKs on the closed socket. In addition middleboxes can drop either the 5177 * challenge ACK or a subsequent RST. 5178 */ 5179 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5180 { 5181 struct tcp_sock *tp = tcp_sk(sk); 5182 5183 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5184 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5185 TCPF_CLOSING)); 5186 } 5187 5188 /* Does PAWS and seqno based validation of an incoming segment, flags will 5189 * play significant role here. 5190 */ 5191 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5192 const struct tcphdr *th, int syn_inerr) 5193 { 5194 struct tcp_sock *tp = tcp_sk(sk); 5195 bool rst_seq_match = false; 5196 5197 /* RFC1323: H1. Apply PAWS check first. */ 5198 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5199 tp->rx_opt.saw_tstamp && 5200 tcp_paws_discard(sk, skb)) { 5201 if (!th->rst) { 5202 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5203 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5204 LINUX_MIB_TCPACKSKIPPEDPAWS, 5205 &tp->last_oow_ack_time)) 5206 tcp_send_dupack(sk, skb); 5207 goto discard; 5208 } 5209 /* Reset is accepted even if it did not pass PAWS. */ 5210 } 5211 5212 /* Step 1: check sequence number */ 5213 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5214 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5215 * (RST) segments are validated by checking their SEQ-fields." 5216 * And page 69: "If an incoming segment is not acceptable, 5217 * an acknowledgment should be sent in reply (unless the RST 5218 * bit is set, if so drop the segment and return)". 5219 */ 5220 if (!th->rst) { 5221 if (th->syn) 5222 goto syn_challenge; 5223 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5224 LINUX_MIB_TCPACKSKIPPEDSEQ, 5225 &tp->last_oow_ack_time)) 5226 tcp_send_dupack(sk, skb); 5227 } else if (tcp_reset_check(sk, skb)) { 5228 tcp_reset(sk); 5229 } 5230 goto discard; 5231 } 5232 5233 /* Step 2: check RST bit */ 5234 if (th->rst) { 5235 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5236 * FIN and SACK too if available): 5237 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5238 * the right-most SACK block, 5239 * then 5240 * RESET the connection 5241 * else 5242 * Send a challenge ACK 5243 */ 5244 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5245 tcp_reset_check(sk, skb)) { 5246 rst_seq_match = true; 5247 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5248 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5249 int max_sack = sp[0].end_seq; 5250 int this_sack; 5251 5252 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5253 ++this_sack) { 5254 max_sack = after(sp[this_sack].end_seq, 5255 max_sack) ? 5256 sp[this_sack].end_seq : max_sack; 5257 } 5258 5259 if (TCP_SKB_CB(skb)->seq == max_sack) 5260 rst_seq_match = true; 5261 } 5262 5263 if (rst_seq_match) 5264 tcp_reset(sk); 5265 else { 5266 /* Disable TFO if RST is out-of-order 5267 * and no data has been received 5268 * for current active TFO socket 5269 */ 5270 if (tp->syn_fastopen && !tp->data_segs_in && 5271 sk->sk_state == TCP_ESTABLISHED) 5272 tcp_fastopen_active_disable(sk); 5273 tcp_send_challenge_ack(sk, skb); 5274 } 5275 goto discard; 5276 } 5277 5278 /* step 3: check security and precedence [ignored] */ 5279 5280 /* step 4: Check for a SYN 5281 * RFC 5961 4.2 : Send a challenge ack 5282 */ 5283 if (th->syn) { 5284 syn_challenge: 5285 if (syn_inerr) 5286 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5287 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5288 tcp_send_challenge_ack(sk, skb); 5289 goto discard; 5290 } 5291 5292 return true; 5293 5294 discard: 5295 tcp_drop(sk, skb); 5296 return false; 5297 } 5298 5299 /* 5300 * TCP receive function for the ESTABLISHED state. 5301 */ 5302 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5303 const struct tcphdr *th) 5304 { 5305 unsigned int len = skb->len; 5306 struct tcp_sock *tp = tcp_sk(sk); 5307 5308 tcp_mstamp_refresh(tp); 5309 if (unlikely(!sk->sk_rx_dst)) 5310 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5311 5312 tp->rx_opt.saw_tstamp = 0; 5313 5314 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5315 goto csum_error; 5316 5317 if (!th->ack && !th->rst && !th->syn) 5318 goto discard; 5319 5320 if (!tcp_validate_incoming(sk, skb, th, 1)) 5321 return; 5322 5323 if (tcp_ack(sk, skb, FLAG_UPDATE_TS_RECENT) < 0) 5324 goto discard; 5325 5326 tcp_rcv_rtt_measure_ts(sk, skb); 5327 5328 /* Process urgent data. */ 5329 tcp_urg(sk, skb, th); 5330 5331 /* step 7: process the segment text */ 5332 tcp_data_queue(sk, skb); 5333 5334 tcp_data_snd_check(sk); 5335 tcp_ack_snd_check(sk); 5336 return; 5337 5338 csum_error: 5339 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5340 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5341 5342 discard: 5343 tcp_drop(sk, skb); 5344 } 5345 EXPORT_SYMBOL(tcp_rcv_established); 5346 5347 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5348 { 5349 struct tcp_sock *tp = tcp_sk(sk); 5350 struct inet_connection_sock *icsk = inet_csk(sk); 5351 5352 tcp_set_state(sk, TCP_ESTABLISHED); 5353 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5354 5355 if (skb) { 5356 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5357 security_inet_conn_established(sk, skb); 5358 } 5359 5360 /* Make sure socket is routed, for correct metrics. */ 5361 icsk->icsk_af_ops->rebuild_header(sk); 5362 5363 tcp_init_metrics(sk); 5364 tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5365 tcp_init_congestion_control(sk); 5366 5367 /* Prevent spurious tcp_cwnd_restart() on first data 5368 * packet. 5369 */ 5370 tp->lsndtime = tcp_jiffies32; 5371 5372 tcp_init_buffer_space(sk); 5373 5374 if (sock_flag(sk, SOCK_KEEPOPEN)) 5375 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5376 } 5377 5378 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5379 struct tcp_fastopen_cookie *cookie) 5380 { 5381 struct tcp_sock *tp = tcp_sk(sk); 5382 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5383 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5384 bool syn_drop = false; 5385 5386 if (mss == tp->rx_opt.user_mss) { 5387 struct tcp_options_received opt; 5388 5389 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5390 tcp_clear_options(&opt); 5391 opt.user_mss = opt.mss_clamp = 0; 5392 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5393 mss = opt.mss_clamp; 5394 } 5395 5396 if (!tp->syn_fastopen) { 5397 /* Ignore an unsolicited cookie */ 5398 cookie->len = -1; 5399 } else if (tp->total_retrans) { 5400 /* SYN timed out and the SYN-ACK neither has a cookie nor 5401 * acknowledges data. Presumably the remote received only 5402 * the retransmitted (regular) SYNs: either the original 5403 * SYN-data or the corresponding SYN-ACK was dropped. 5404 */ 5405 syn_drop = (cookie->len < 0 && data); 5406 } else if (cookie->len < 0 && !tp->syn_data) { 5407 /* We requested a cookie but didn't get it. If we did not use 5408 * the (old) exp opt format then try so next time (try_exp=1). 5409 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5410 */ 5411 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5412 } 5413 5414 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5415 5416 if (data) { /* Retransmit unacked data in SYN */ 5417 tcp_for_write_queue_from(data, sk) { 5418 if (data == tcp_send_head(sk) || 5419 __tcp_retransmit_skb(sk, data, 1)) 5420 break; 5421 } 5422 tcp_rearm_rto(sk); 5423 NET_INC_STATS(sock_net(sk), 5424 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5425 return true; 5426 } 5427 tp->syn_data_acked = tp->syn_data; 5428 if (tp->syn_data_acked) 5429 NET_INC_STATS(sock_net(sk), 5430 LINUX_MIB_TCPFASTOPENACTIVE); 5431 5432 tcp_fastopen_add_skb(sk, synack); 5433 5434 return false; 5435 } 5436 5437 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5438 const struct tcphdr *th) 5439 { 5440 struct inet_connection_sock *icsk = inet_csk(sk); 5441 struct tcp_sock *tp = tcp_sk(sk); 5442 struct tcp_fastopen_cookie foc = { .len = -1 }; 5443 int saved_clamp = tp->rx_opt.mss_clamp; 5444 bool fastopen_fail; 5445 5446 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5447 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5448 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5449 5450 if (th->ack) { 5451 /* rfc793: 5452 * "If the state is SYN-SENT then 5453 * first check the ACK bit 5454 * If the ACK bit is set 5455 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5456 * a reset (unless the RST bit is set, if so drop 5457 * the segment and return)" 5458 */ 5459 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5460 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5461 goto reset_and_undo; 5462 5463 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5464 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5465 tcp_time_stamp(tp))) { 5466 NET_INC_STATS(sock_net(sk), 5467 LINUX_MIB_PAWSACTIVEREJECTED); 5468 goto reset_and_undo; 5469 } 5470 5471 /* Now ACK is acceptable. 5472 * 5473 * "If the RST bit is set 5474 * If the ACK was acceptable then signal the user "error: 5475 * connection reset", drop the segment, enter CLOSED state, 5476 * delete TCB, and return." 5477 */ 5478 5479 if (th->rst) { 5480 tcp_reset(sk); 5481 goto discard; 5482 } 5483 5484 /* rfc793: 5485 * "fifth, if neither of the SYN or RST bits is set then 5486 * drop the segment and return." 5487 * 5488 * See note below! 5489 * --ANK(990513) 5490 */ 5491 if (!th->syn) 5492 goto discard_and_undo; 5493 5494 /* rfc793: 5495 * "If the SYN bit is on ... 5496 * are acceptable then ... 5497 * (our SYN has been ACKed), change the connection 5498 * state to ESTABLISHED..." 5499 */ 5500 5501 tcp_ecn_rcv_synack(tp, th); 5502 5503 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5504 tcp_ack(sk, skb, 0); 5505 5506 /* Ok.. it's good. Set up sequence numbers and 5507 * move to established. 5508 */ 5509 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5510 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5511 5512 /* RFC1323: The window in SYN & SYN/ACK segments is 5513 * never scaled. 5514 */ 5515 tp->snd_wnd = ntohs(th->window); 5516 5517 if (!tp->rx_opt.wscale_ok) { 5518 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5519 tp->window_clamp = min(tp->window_clamp, 65535U); 5520 } 5521 5522 if (tp->rx_opt.saw_tstamp) { 5523 tp->rx_opt.tstamp_ok = 1; 5524 tp->tcp_header_len = 5525 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5526 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5527 tcp_store_ts_recent(tp); 5528 } else { 5529 tp->tcp_header_len = sizeof(struct tcphdr); 5530 } 5531 5532 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5533 tcp_enable_fack(tp); 5534 5535 tcp_mtup_init(sk); 5536 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5537 tcp_initialize_rcv_mss(sk); 5538 5539 /* Remember, tcp_poll() does not lock socket! 5540 * Change state from SYN-SENT only after copied_seq 5541 * is initialized. */ 5542 tp->copied_seq = tp->rcv_nxt; 5543 5544 smp_mb(); 5545 5546 tcp_finish_connect(sk, skb); 5547 5548 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5549 tcp_rcv_fastopen_synack(sk, skb, &foc); 5550 5551 if (!sock_flag(sk, SOCK_DEAD)) { 5552 sk->sk_state_change(sk); 5553 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5554 } 5555 if (fastopen_fail) 5556 return -1; 5557 if (sk->sk_write_pending || 5558 icsk->icsk_accept_queue.rskq_defer_accept || 5559 icsk->icsk_ack.pingpong) { 5560 /* Save one ACK. Data will be ready after 5561 * several ticks, if write_pending is set. 5562 * 5563 * It may be deleted, but with this feature tcpdumps 5564 * look so _wonderfully_ clever, that I was not able 5565 * to stand against the temptation 8) --ANK 5566 */ 5567 inet_csk_schedule_ack(sk); 5568 tcp_enter_quickack_mode(sk); 5569 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5570 TCP_DELACK_MAX, TCP_RTO_MAX); 5571 5572 discard: 5573 tcp_drop(sk, skb); 5574 return 0; 5575 } else { 5576 tcp_send_ack(sk); 5577 } 5578 return -1; 5579 } 5580 5581 /* No ACK in the segment */ 5582 5583 if (th->rst) { 5584 /* rfc793: 5585 * "If the RST bit is set 5586 * 5587 * Otherwise (no ACK) drop the segment and return." 5588 */ 5589 5590 goto discard_and_undo; 5591 } 5592 5593 /* PAWS check. */ 5594 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5595 tcp_paws_reject(&tp->rx_opt, 0)) 5596 goto discard_and_undo; 5597 5598 if (th->syn) { 5599 /* We see SYN without ACK. It is attempt of 5600 * simultaneous connect with crossed SYNs. 5601 * Particularly, it can be connect to self. 5602 */ 5603 tcp_set_state(sk, TCP_SYN_RECV); 5604 5605 if (tp->rx_opt.saw_tstamp) { 5606 tp->rx_opt.tstamp_ok = 1; 5607 tcp_store_ts_recent(tp); 5608 tp->tcp_header_len = 5609 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5610 } else { 5611 tp->tcp_header_len = sizeof(struct tcphdr); 5612 } 5613 5614 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5615 tp->copied_seq = tp->rcv_nxt; 5616 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5617 5618 /* RFC1323: The window in SYN & SYN/ACK segments is 5619 * never scaled. 5620 */ 5621 tp->snd_wnd = ntohs(th->window); 5622 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5623 tp->max_window = tp->snd_wnd; 5624 5625 tcp_ecn_rcv_syn(tp, th); 5626 5627 tcp_mtup_init(sk); 5628 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5629 tcp_initialize_rcv_mss(sk); 5630 5631 tcp_send_synack(sk); 5632 #if 0 5633 /* Note, we could accept data and URG from this segment. 5634 * There are no obstacles to make this (except that we must 5635 * either change tcp_recvmsg() to prevent it from returning data 5636 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5637 * 5638 * However, if we ignore data in ACKless segments sometimes, 5639 * we have no reasons to accept it sometimes. 5640 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5641 * is not flawless. So, discard packet for sanity. 5642 * Uncomment this return to process the data. 5643 */ 5644 return -1; 5645 #else 5646 goto discard; 5647 #endif 5648 } 5649 /* "fifth, if neither of the SYN or RST bits is set then 5650 * drop the segment and return." 5651 */ 5652 5653 discard_and_undo: 5654 tcp_clear_options(&tp->rx_opt); 5655 tp->rx_opt.mss_clamp = saved_clamp; 5656 goto discard; 5657 5658 reset_and_undo: 5659 tcp_clear_options(&tp->rx_opt); 5660 tp->rx_opt.mss_clamp = saved_clamp; 5661 return 1; 5662 } 5663 5664 /* 5665 * This function implements the receiving procedure of RFC 793 for 5666 * all states except ESTABLISHED and TIME_WAIT. 5667 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5668 * address independent. 5669 */ 5670 5671 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5672 { 5673 struct tcp_sock *tp = tcp_sk(sk); 5674 struct inet_connection_sock *icsk = inet_csk(sk); 5675 const struct tcphdr *th = tcp_hdr(skb); 5676 struct request_sock *req; 5677 int queued = 0; 5678 bool acceptable; 5679 5680 switch (sk->sk_state) { 5681 case TCP_CLOSE: 5682 goto discard; 5683 5684 case TCP_LISTEN: 5685 if (th->ack) 5686 return 1; 5687 5688 if (th->rst) 5689 goto discard; 5690 5691 if (th->syn) { 5692 if (th->fin) 5693 goto discard; 5694 /* It is possible that we process SYN packets from backlog, 5695 * so we need to make sure to disable BH right there. 5696 */ 5697 local_bh_disable(); 5698 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5699 local_bh_enable(); 5700 5701 if (!acceptable) 5702 return 1; 5703 consume_skb(skb); 5704 return 0; 5705 } 5706 goto discard; 5707 5708 case TCP_SYN_SENT: 5709 tp->rx_opt.saw_tstamp = 0; 5710 tcp_mstamp_refresh(tp); 5711 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5712 if (queued >= 0) 5713 return queued; 5714 5715 /* Do step6 onward by hand. */ 5716 tcp_urg(sk, skb, th); 5717 __kfree_skb(skb); 5718 tcp_data_snd_check(sk); 5719 return 0; 5720 } 5721 5722 tcp_mstamp_refresh(tp); 5723 tp->rx_opt.saw_tstamp = 0; 5724 req = tp->fastopen_rsk; 5725 if (req) { 5726 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5727 sk->sk_state != TCP_FIN_WAIT1); 5728 5729 if (!tcp_check_req(sk, skb, req, true)) 5730 goto discard; 5731 } 5732 5733 if (!th->ack && !th->rst && !th->syn) 5734 goto discard; 5735 5736 if (!tcp_validate_incoming(sk, skb, th, 0)) 5737 return 0; 5738 5739 /* step 5: check the ACK field */ 5740 5741 acceptable = tcp_ack(sk, skb, FLAG_UPDATE_TS_RECENT | 5742 FLAG_NO_CHALLENGE_ACK) > 0; 5743 5744 if (!acceptable) { 5745 if (sk->sk_state == TCP_SYN_RECV) 5746 return 1; /* send one RST */ 5747 tcp_send_challenge_ack(sk, skb); 5748 goto discard; 5749 } 5750 switch (sk->sk_state) { 5751 case TCP_SYN_RECV: 5752 if (!tp->srtt_us) 5753 tcp_synack_rtt_meas(sk, req); 5754 5755 /* Once we leave TCP_SYN_RECV, we no longer need req 5756 * so release it. 5757 */ 5758 if (req) { 5759 inet_csk(sk)->icsk_retransmits = 0; 5760 reqsk_fastopen_remove(sk, req, false); 5761 } else { 5762 /* Make sure socket is routed, for correct metrics. */ 5763 icsk->icsk_af_ops->rebuild_header(sk); 5764 tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 5765 tcp_init_congestion_control(sk); 5766 5767 tcp_mtup_init(sk); 5768 tp->copied_seq = tp->rcv_nxt; 5769 tcp_init_buffer_space(sk); 5770 } 5771 smp_mb(); 5772 tcp_set_state(sk, TCP_ESTABLISHED); 5773 sk->sk_state_change(sk); 5774 5775 /* Note, that this wakeup is only for marginal crossed SYN case. 5776 * Passively open sockets are not waked up, because 5777 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5778 */ 5779 if (sk->sk_socket) 5780 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5781 5782 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5783 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5784 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5785 5786 if (tp->rx_opt.tstamp_ok) 5787 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5788 5789 if (req) { 5790 /* Re-arm the timer because data may have been sent out. 5791 * This is similar to the regular data transmission case 5792 * when new data has just been ack'ed. 5793 * 5794 * (TFO) - we could try to be more aggressive and 5795 * retransmitting any data sooner based on when they 5796 * are sent out. 5797 */ 5798 tcp_rearm_rto(sk); 5799 } else 5800 tcp_init_metrics(sk); 5801 5802 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5803 tcp_update_pacing_rate(sk); 5804 5805 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5806 tp->lsndtime = tcp_jiffies32; 5807 5808 tcp_initialize_rcv_mss(sk); 5809 break; 5810 5811 case TCP_FIN_WAIT1: { 5812 int tmo; 5813 5814 /* If we enter the TCP_FIN_WAIT1 state and we are a 5815 * Fast Open socket and this is the first acceptable 5816 * ACK we have received, this would have acknowledged 5817 * our SYNACK so stop the SYNACK timer. 5818 */ 5819 if (req) { 5820 /* We no longer need the request sock. */ 5821 reqsk_fastopen_remove(sk, req, false); 5822 tcp_rearm_rto(sk); 5823 } 5824 if (tp->snd_una != tp->write_seq) 5825 break; 5826 5827 tcp_set_state(sk, TCP_FIN_WAIT2); 5828 sk->sk_shutdown |= SEND_SHUTDOWN; 5829 5830 sk_dst_confirm(sk); 5831 5832 if (!sock_flag(sk, SOCK_DEAD)) { 5833 /* Wake up lingering close() */ 5834 sk->sk_state_change(sk); 5835 break; 5836 } 5837 5838 if (tp->linger2 < 0) { 5839 tcp_done(sk); 5840 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5841 return 1; 5842 } 5843 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5844 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5845 /* Receive out of order FIN after close() */ 5846 if (tp->syn_fastopen && th->fin) 5847 tcp_fastopen_active_disable(sk); 5848 tcp_done(sk); 5849 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5850 return 1; 5851 } 5852 5853 tmo = tcp_fin_time(sk); 5854 if (tmo > TCP_TIMEWAIT_LEN) { 5855 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5856 } else if (th->fin || sock_owned_by_user(sk)) { 5857 /* Bad case. We could lose such FIN otherwise. 5858 * It is not a big problem, but it looks confusing 5859 * and not so rare event. We still can lose it now, 5860 * if it spins in bh_lock_sock(), but it is really 5861 * marginal case. 5862 */ 5863 inet_csk_reset_keepalive_timer(sk, tmo); 5864 } else { 5865 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5866 goto discard; 5867 } 5868 break; 5869 } 5870 5871 case TCP_CLOSING: 5872 if (tp->snd_una == tp->write_seq) { 5873 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5874 goto discard; 5875 } 5876 break; 5877 5878 case TCP_LAST_ACK: 5879 if (tp->snd_una == tp->write_seq) { 5880 tcp_update_metrics(sk); 5881 tcp_done(sk); 5882 goto discard; 5883 } 5884 break; 5885 } 5886 5887 /* step 6: check the URG bit */ 5888 tcp_urg(sk, skb, th); 5889 5890 /* step 7: process the segment text */ 5891 switch (sk->sk_state) { 5892 case TCP_CLOSE_WAIT: 5893 case TCP_CLOSING: 5894 case TCP_LAST_ACK: 5895 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5896 break; 5897 case TCP_FIN_WAIT1: 5898 case TCP_FIN_WAIT2: 5899 /* RFC 793 says to queue data in these states, 5900 * RFC 1122 says we MUST send a reset. 5901 * BSD 4.4 also does reset. 5902 */ 5903 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5904 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5905 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5906 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5907 tcp_reset(sk); 5908 return 1; 5909 } 5910 } 5911 /* Fall through */ 5912 case TCP_ESTABLISHED: 5913 tcp_data_queue(sk, skb); 5914 queued = 1; 5915 break; 5916 } 5917 5918 /* tcp_data could move socket to TIME-WAIT */ 5919 if (sk->sk_state != TCP_CLOSE) { 5920 tcp_data_snd_check(sk); 5921 tcp_ack_snd_check(sk); 5922 } 5923 5924 if (!queued) { 5925 discard: 5926 tcp_drop(sk, skb); 5927 } 5928 return 0; 5929 } 5930 EXPORT_SYMBOL(tcp_rcv_state_process); 5931 5932 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 5933 { 5934 struct inet_request_sock *ireq = inet_rsk(req); 5935 5936 if (family == AF_INET) 5937 net_dbg_ratelimited("drop open request from %pI4/%u\n", 5938 &ireq->ir_rmt_addr, port); 5939 #if IS_ENABLED(CONFIG_IPV6) 5940 else if (family == AF_INET6) 5941 net_dbg_ratelimited("drop open request from %pI6/%u\n", 5942 &ireq->ir_v6_rmt_addr, port); 5943 #endif 5944 } 5945 5946 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 5947 * 5948 * If we receive a SYN packet with these bits set, it means a 5949 * network is playing bad games with TOS bits. In order to 5950 * avoid possible false congestion notifications, we disable 5951 * TCP ECN negotiation. 5952 * 5953 * Exception: tcp_ca wants ECN. This is required for DCTCP 5954 * congestion control: Linux DCTCP asserts ECT on all packets, 5955 * including SYN, which is most optimal solution; however, 5956 * others, such as FreeBSD do not. 5957 */ 5958 static void tcp_ecn_create_request(struct request_sock *req, 5959 const struct sk_buff *skb, 5960 const struct sock *listen_sk, 5961 const struct dst_entry *dst) 5962 { 5963 const struct tcphdr *th = tcp_hdr(skb); 5964 const struct net *net = sock_net(listen_sk); 5965 bool th_ecn = th->ece && th->cwr; 5966 bool ect, ecn_ok; 5967 u32 ecn_ok_dst; 5968 5969 if (!th_ecn) 5970 return; 5971 5972 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 5973 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 5974 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 5975 5976 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 5977 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 5978 tcp_bpf_ca_needs_ecn((struct sock *)req)) 5979 inet_rsk(req)->ecn_ok = 1; 5980 } 5981 5982 static void tcp_openreq_init(struct request_sock *req, 5983 const struct tcp_options_received *rx_opt, 5984 struct sk_buff *skb, const struct sock *sk) 5985 { 5986 struct inet_request_sock *ireq = inet_rsk(req); 5987 5988 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 5989 req->cookie_ts = 0; 5990 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 5991 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5992 tcp_rsk(req)->snt_synack = tcp_clock_us(); 5993 tcp_rsk(req)->last_oow_ack_time = 0; 5994 req->mss = rx_opt->mss_clamp; 5995 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 5996 ireq->tstamp_ok = rx_opt->tstamp_ok; 5997 ireq->sack_ok = rx_opt->sack_ok; 5998 ireq->snd_wscale = rx_opt->snd_wscale; 5999 ireq->wscale_ok = rx_opt->wscale_ok; 6000 ireq->acked = 0; 6001 ireq->ecn_ok = 0; 6002 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6003 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6004 ireq->ir_mark = inet_request_mark(sk, skb); 6005 } 6006 6007 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6008 struct sock *sk_listener, 6009 bool attach_listener) 6010 { 6011 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6012 attach_listener); 6013 6014 if (req) { 6015 struct inet_request_sock *ireq = inet_rsk(req); 6016 6017 kmemcheck_annotate_bitfield(ireq, flags); 6018 ireq->opt = NULL; 6019 #if IS_ENABLED(CONFIG_IPV6) 6020 ireq->pktopts = NULL; 6021 #endif 6022 atomic64_set(&ireq->ir_cookie, 0); 6023 ireq->ireq_state = TCP_NEW_SYN_RECV; 6024 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6025 ireq->ireq_family = sk_listener->sk_family; 6026 } 6027 6028 return req; 6029 } 6030 EXPORT_SYMBOL(inet_reqsk_alloc); 6031 6032 /* 6033 * Return true if a syncookie should be sent 6034 */ 6035 static bool tcp_syn_flood_action(const struct sock *sk, 6036 const struct sk_buff *skb, 6037 const char *proto) 6038 { 6039 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6040 const char *msg = "Dropping request"; 6041 bool want_cookie = false; 6042 struct net *net = sock_net(sk); 6043 6044 #ifdef CONFIG_SYN_COOKIES 6045 if (net->ipv4.sysctl_tcp_syncookies) { 6046 msg = "Sending cookies"; 6047 want_cookie = true; 6048 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6049 } else 6050 #endif 6051 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6052 6053 if (!queue->synflood_warned && 6054 net->ipv4.sysctl_tcp_syncookies != 2 && 6055 xchg(&queue->synflood_warned, 1) == 0) 6056 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6057 proto, ntohs(tcp_hdr(skb)->dest), msg); 6058 6059 return want_cookie; 6060 } 6061 6062 static void tcp_reqsk_record_syn(const struct sock *sk, 6063 struct request_sock *req, 6064 const struct sk_buff *skb) 6065 { 6066 if (tcp_sk(sk)->save_syn) { 6067 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6068 u32 *copy; 6069 6070 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6071 if (copy) { 6072 copy[0] = len; 6073 memcpy(©[1], skb_network_header(skb), len); 6074 req->saved_syn = copy; 6075 } 6076 } 6077 } 6078 6079 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6080 const struct tcp_request_sock_ops *af_ops, 6081 struct sock *sk, struct sk_buff *skb) 6082 { 6083 struct tcp_fastopen_cookie foc = { .len = -1 }; 6084 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6085 struct tcp_options_received tmp_opt; 6086 struct tcp_sock *tp = tcp_sk(sk); 6087 struct net *net = sock_net(sk); 6088 struct sock *fastopen_sk = NULL; 6089 struct dst_entry *dst = NULL; 6090 struct request_sock *req; 6091 bool want_cookie = false; 6092 struct flowi fl; 6093 6094 /* TW buckets are converted to open requests without 6095 * limitations, they conserve resources and peer is 6096 * evidently real one. 6097 */ 6098 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6099 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6100 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6101 if (!want_cookie) 6102 goto drop; 6103 } 6104 6105 if (sk_acceptq_is_full(sk)) { 6106 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6107 goto drop; 6108 } 6109 6110 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6111 if (!req) 6112 goto drop; 6113 6114 tcp_rsk(req)->af_specific = af_ops; 6115 tcp_rsk(req)->ts_off = 0; 6116 6117 tcp_clear_options(&tmp_opt); 6118 tmp_opt.mss_clamp = af_ops->mss_clamp; 6119 tmp_opt.user_mss = tp->rx_opt.user_mss; 6120 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6121 want_cookie ? NULL : &foc); 6122 6123 if (want_cookie && !tmp_opt.saw_tstamp) 6124 tcp_clear_options(&tmp_opt); 6125 6126 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6127 tcp_openreq_init(req, &tmp_opt, skb, sk); 6128 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6129 6130 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6131 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6132 6133 af_ops->init_req(req, sk, skb); 6134 6135 if (security_inet_conn_request(sk, skb, req)) 6136 goto drop_and_free; 6137 6138 if (tmp_opt.tstamp_ok) 6139 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6140 6141 dst = af_ops->route_req(sk, &fl, req); 6142 if (!dst) 6143 goto drop_and_free; 6144 6145 if (!want_cookie && !isn) { 6146 /* Kill the following clause, if you dislike this way. */ 6147 if (!net->ipv4.sysctl_tcp_syncookies && 6148 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6149 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6150 !tcp_peer_is_proven(req, dst)) { 6151 /* Without syncookies last quarter of 6152 * backlog is filled with destinations, 6153 * proven to be alive. 6154 * It means that we continue to communicate 6155 * to destinations, already remembered 6156 * to the moment of synflood. 6157 */ 6158 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6159 rsk_ops->family); 6160 goto drop_and_release; 6161 } 6162 6163 isn = af_ops->init_seq(skb); 6164 } 6165 6166 tcp_ecn_create_request(req, skb, sk, dst); 6167 6168 if (want_cookie) { 6169 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6170 req->cookie_ts = tmp_opt.tstamp_ok; 6171 if (!tmp_opt.tstamp_ok) 6172 inet_rsk(req)->ecn_ok = 0; 6173 } 6174 6175 tcp_rsk(req)->snt_isn = isn; 6176 tcp_rsk(req)->txhash = net_tx_rndhash(); 6177 tcp_openreq_init_rwin(req, sk, dst); 6178 if (!want_cookie) { 6179 tcp_reqsk_record_syn(sk, req, skb); 6180 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc); 6181 } 6182 if (fastopen_sk) { 6183 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6184 &foc, TCP_SYNACK_FASTOPEN); 6185 /* Add the child socket directly into the accept queue */ 6186 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6187 sk->sk_data_ready(sk); 6188 bh_unlock_sock(fastopen_sk); 6189 sock_put(fastopen_sk); 6190 } else { 6191 tcp_rsk(req)->tfo_listener = false; 6192 if (!want_cookie) 6193 inet_csk_reqsk_queue_hash_add(sk, req, 6194 tcp_timeout_init((struct sock *)req)); 6195 af_ops->send_synack(sk, dst, &fl, req, &foc, 6196 !want_cookie ? TCP_SYNACK_NORMAL : 6197 TCP_SYNACK_COOKIE); 6198 if (want_cookie) { 6199 reqsk_free(req); 6200 return 0; 6201 } 6202 } 6203 reqsk_put(req); 6204 return 0; 6205 6206 drop_and_release: 6207 dst_release(dst); 6208 drop_and_free: 6209 reqsk_free(req); 6210 drop: 6211 tcp_listendrop(sk); 6212 return 0; 6213 } 6214 EXPORT_SYMBOL(tcp_conn_request); 6215