1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/proto_memory.h> 76 #include <net/inet_common.h> 77 #include <linux/ipsec.h> 78 #include <linux/unaligned.h> 79 #include <linux/errqueue.h> 80 #include <trace/events/tcp.h> 81 #include <linux/jump_label_ratelimit.h> 82 #include <net/busy_poll.h> 83 #include <net/mptcp.h> 84 85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 86 87 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 88 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 89 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 90 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 91 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 92 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 93 #define FLAG_ECE 0x40 /* ECE in this ACK */ 94 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 95 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 96 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 97 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 98 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 99 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 100 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 101 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 102 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 103 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 104 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 105 #define FLAG_TS_PROGRESS 0x40000 /* Positive timestamp delta */ 106 107 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 108 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 109 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 110 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 111 112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 113 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 114 115 #define REXMIT_NONE 0 /* no loss recovery to do */ 116 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 117 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 118 119 #if IS_ENABLED(CONFIG_TLS_DEVICE) 120 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 121 122 void clean_acked_data_enable(struct inet_connection_sock *icsk, 123 void (*cad)(struct sock *sk, u32 ack_seq)) 124 { 125 icsk->icsk_clean_acked = cad; 126 static_branch_deferred_inc(&clean_acked_data_enabled); 127 } 128 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 129 130 void clean_acked_data_disable(struct inet_connection_sock *icsk) 131 { 132 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 133 icsk->icsk_clean_acked = NULL; 134 } 135 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 136 137 void clean_acked_data_flush(void) 138 { 139 static_key_deferred_flush(&clean_acked_data_enabled); 140 } 141 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 142 #endif 143 144 #ifdef CONFIG_CGROUP_BPF 145 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 146 { 147 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 148 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 150 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 151 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 152 struct bpf_sock_ops_kern sock_ops; 153 154 if (likely(!unknown_opt && !parse_all_opt)) 155 return; 156 157 /* The skb will be handled in the 158 * bpf_skops_established() or 159 * bpf_skops_write_hdr_opt(). 160 */ 161 switch (sk->sk_state) { 162 case TCP_SYN_RECV: 163 case TCP_SYN_SENT: 164 case TCP_LISTEN: 165 return; 166 } 167 168 sock_owned_by_me(sk); 169 170 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 171 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 172 sock_ops.is_fullsock = 1; 173 sock_ops.is_locked_tcp_sock = 1; 174 sock_ops.sk = sk; 175 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 176 177 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 178 } 179 180 static void bpf_skops_established(struct sock *sk, int bpf_op, 181 struct sk_buff *skb) 182 { 183 struct bpf_sock_ops_kern sock_ops; 184 185 sock_owned_by_me(sk); 186 187 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 188 sock_ops.op = bpf_op; 189 sock_ops.is_fullsock = 1; 190 sock_ops.is_locked_tcp_sock = 1; 191 sock_ops.sk = sk; 192 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 193 if (skb) 194 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 195 196 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 197 } 198 #else 199 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 200 { 201 } 202 203 static void bpf_skops_established(struct sock *sk, int bpf_op, 204 struct sk_buff *skb) 205 { 206 } 207 #endif 208 209 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb, 210 unsigned int len) 211 { 212 struct net_device *dev; 213 214 rcu_read_lock(); 215 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 216 if (!dev || len >= READ_ONCE(dev->mtu)) 217 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 218 dev ? dev->name : "Unknown driver"); 219 rcu_read_unlock(); 220 } 221 222 /* Adapt the MSS value used to make delayed ack decision to the 223 * real world. 224 */ 225 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 226 { 227 struct inet_connection_sock *icsk = inet_csk(sk); 228 const unsigned int lss = icsk->icsk_ack.last_seg_size; 229 unsigned int len; 230 231 icsk->icsk_ack.last_seg_size = 0; 232 233 /* skb->len may jitter because of SACKs, even if peer 234 * sends good full-sized frames. 235 */ 236 len = skb_shinfo(skb)->gso_size ? : skb->len; 237 if (len >= icsk->icsk_ack.rcv_mss) { 238 /* Note: divides are still a bit expensive. 239 * For the moment, only adjust scaling_ratio 240 * when we update icsk_ack.rcv_mss. 241 */ 242 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 243 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 244 u8 old_ratio = tcp_sk(sk)->scaling_ratio; 245 246 do_div(val, skb->truesize); 247 tcp_sk(sk)->scaling_ratio = val ? val : 1; 248 249 if (old_ratio != tcp_sk(sk)->scaling_ratio) { 250 struct tcp_sock *tp = tcp_sk(sk); 251 252 val = tcp_win_from_space(sk, sk->sk_rcvbuf); 253 tcp_set_window_clamp(sk, val); 254 255 if (tp->window_clamp < tp->rcvq_space.space) 256 tp->rcvq_space.space = tp->window_clamp; 257 } 258 } 259 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 260 tcp_sk(sk)->advmss); 261 /* Account for possibly-removed options */ 262 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE, 263 tcp_gro_dev_warn, sk, skb, len); 264 /* If the skb has a len of exactly 1*MSS and has the PSH bit 265 * set then it is likely the end of an application write. So 266 * more data may not be arriving soon, and yet the data sender 267 * may be waiting for an ACK if cwnd-bound or using TX zero 268 * copy. So we set ICSK_ACK_PUSHED here so that 269 * tcp_cleanup_rbuf() will send an ACK immediately if the app 270 * reads all of the data and is not ping-pong. If len > MSS 271 * then this logic does not matter (and does not hurt) because 272 * tcp_cleanup_rbuf() will always ACK immediately if the app 273 * reads data and there is more than an MSS of unACKed data. 274 */ 275 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 276 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 277 } else { 278 /* Otherwise, we make more careful check taking into account, 279 * that SACKs block is variable. 280 * 281 * "len" is invariant segment length, including TCP header. 282 */ 283 len += skb->data - skb_transport_header(skb); 284 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 285 /* If PSH is not set, packet should be 286 * full sized, provided peer TCP is not badly broken. 287 * This observation (if it is correct 8)) allows 288 * to handle super-low mtu links fairly. 289 */ 290 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 291 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 292 /* Subtract also invariant (if peer is RFC compliant), 293 * tcp header plus fixed timestamp option length. 294 * Resulting "len" is MSS free of SACK jitter. 295 */ 296 len -= tcp_sk(sk)->tcp_header_len; 297 icsk->icsk_ack.last_seg_size = len; 298 if (len == lss) { 299 icsk->icsk_ack.rcv_mss = len; 300 return; 301 } 302 } 303 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 304 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 305 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 306 } 307 } 308 309 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 310 { 311 struct inet_connection_sock *icsk = inet_csk(sk); 312 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 313 314 if (quickacks == 0) 315 quickacks = 2; 316 quickacks = min(quickacks, max_quickacks); 317 if (quickacks > icsk->icsk_ack.quick) 318 icsk->icsk_ack.quick = quickacks; 319 } 320 321 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 322 { 323 struct inet_connection_sock *icsk = inet_csk(sk); 324 325 tcp_incr_quickack(sk, max_quickacks); 326 inet_csk_exit_pingpong_mode(sk); 327 icsk->icsk_ack.ato = TCP_ATO_MIN; 328 } 329 330 /* Send ACKs quickly, if "quick" count is not exhausted 331 * and the session is not interactive. 332 */ 333 334 static bool tcp_in_quickack_mode(struct sock *sk) 335 { 336 const struct inet_connection_sock *icsk = inet_csk(sk); 337 338 return icsk->icsk_ack.dst_quick_ack || 339 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 340 } 341 342 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 343 { 344 if (tcp_ecn_mode_rfc3168(tp)) 345 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 346 } 347 348 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 349 { 350 if (tcp_hdr(skb)->cwr) { 351 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 352 353 /* If the sender is telling us it has entered CWR, then its 354 * cwnd may be very low (even just 1 packet), so we should ACK 355 * immediately. 356 */ 357 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 358 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 359 } 360 } 361 362 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 363 { 364 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 365 } 366 367 static void tcp_data_ecn_check(struct sock *sk, const struct sk_buff *skb) 368 { 369 struct tcp_sock *tp = tcp_sk(sk); 370 371 if (tcp_ecn_disabled(tp)) 372 return; 373 374 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 375 case INET_ECN_NOT_ECT: 376 /* Funny extension: if ECT is not set on a segment, 377 * and we already seen ECT on a previous segment, 378 * it is probably a retransmit. 379 */ 380 if (tp->ecn_flags & TCP_ECN_SEEN) 381 tcp_enter_quickack_mode(sk, 2); 382 break; 383 case INET_ECN_CE: 384 if (tcp_ca_needs_ecn(sk)) 385 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 386 387 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 388 /* Better not delay acks, sender can have a very low cwnd */ 389 tcp_enter_quickack_mode(sk, 2); 390 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 391 } 392 tp->ecn_flags |= TCP_ECN_SEEN; 393 break; 394 default: 395 if (tcp_ca_needs_ecn(sk)) 396 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 397 tp->ecn_flags |= TCP_ECN_SEEN; 398 break; 399 } 400 } 401 402 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 403 { 404 if (tcp_ecn_mode_rfc3168(tp) && (!th->ece || th->cwr)) 405 tcp_ecn_mode_set(tp, TCP_ECN_DISABLED); 406 } 407 408 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 409 { 410 if (tcp_ecn_mode_rfc3168(tp) && (!th->ece || !th->cwr)) 411 tcp_ecn_mode_set(tp, TCP_ECN_DISABLED); 412 } 413 414 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 415 { 416 if (th->ece && !th->syn && tcp_ecn_mode_rfc3168(tp)) 417 return true; 418 return false; 419 } 420 421 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count) 422 { 423 tp->delivered_ce += ecn_count; 424 } 425 426 /* Updates the delivered and delivered_ce counts */ 427 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 428 bool ece_ack) 429 { 430 tp->delivered += delivered; 431 if (ece_ack) 432 tcp_count_delivered_ce(tp, delivered); 433 } 434 435 /* Buffer size and advertised window tuning. 436 * 437 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 438 */ 439 440 static void tcp_sndbuf_expand(struct sock *sk) 441 { 442 const struct tcp_sock *tp = tcp_sk(sk); 443 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 444 int sndmem, per_mss; 445 u32 nr_segs; 446 447 /* Worst case is non GSO/TSO : each frame consumes one skb 448 * and skb->head is kmalloced using power of two area of memory 449 */ 450 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 451 MAX_TCP_HEADER + 452 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 453 454 per_mss = roundup_pow_of_two(per_mss) + 455 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 456 457 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 458 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 459 460 /* Fast Recovery (RFC 5681 3.2) : 461 * Cubic needs 1.7 factor, rounded to 2 to include 462 * extra cushion (application might react slowly to EPOLLOUT) 463 */ 464 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 465 sndmem *= nr_segs * per_mss; 466 467 if (sk->sk_sndbuf < sndmem) 468 WRITE_ONCE(sk->sk_sndbuf, 469 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 470 } 471 472 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 473 * 474 * All tcp_full_space() is split to two parts: "network" buffer, allocated 475 * forward and advertised in receiver window (tp->rcv_wnd) and 476 * "application buffer", required to isolate scheduling/application 477 * latencies from network. 478 * window_clamp is maximal advertised window. It can be less than 479 * tcp_full_space(), in this case tcp_full_space() - window_clamp 480 * is reserved for "application" buffer. The less window_clamp is 481 * the smoother our behaviour from viewpoint of network, but the lower 482 * throughput and the higher sensitivity of the connection to losses. 8) 483 * 484 * rcv_ssthresh is more strict window_clamp used at "slow start" 485 * phase to predict further behaviour of this connection. 486 * It is used for two goals: 487 * - to enforce header prediction at sender, even when application 488 * requires some significant "application buffer". It is check #1. 489 * - to prevent pruning of receive queue because of misprediction 490 * of receiver window. Check #2. 491 * 492 * The scheme does not work when sender sends good segments opening 493 * window and then starts to feed us spaghetti. But it should work 494 * in common situations. Otherwise, we have to rely on queue collapsing. 495 */ 496 497 /* Slow part of check#2. */ 498 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 499 unsigned int skbtruesize) 500 { 501 const struct tcp_sock *tp = tcp_sk(sk); 502 /* Optimize this! */ 503 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 504 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 505 506 while (tp->rcv_ssthresh <= window) { 507 if (truesize <= skb->len) 508 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 509 510 truesize >>= 1; 511 window >>= 1; 512 } 513 return 0; 514 } 515 516 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 517 * can play nice with us, as sk_buff and skb->head might be either 518 * freed or shared with up to MAX_SKB_FRAGS segments. 519 * Only give a boost to drivers using page frag(s) to hold the frame(s), 520 * and if no payload was pulled in skb->head before reaching us. 521 */ 522 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 523 { 524 u32 truesize = skb->truesize; 525 526 if (adjust && !skb_headlen(skb)) { 527 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 528 /* paranoid check, some drivers might be buggy */ 529 if (unlikely((int)truesize < (int)skb->len)) 530 truesize = skb->truesize; 531 } 532 return truesize; 533 } 534 535 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 536 bool adjust) 537 { 538 struct tcp_sock *tp = tcp_sk(sk); 539 int room; 540 541 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 542 543 if (room <= 0) 544 return; 545 546 /* Check #1 */ 547 if (!tcp_under_memory_pressure(sk)) { 548 unsigned int truesize = truesize_adjust(adjust, skb); 549 int incr; 550 551 /* Check #2. Increase window, if skb with such overhead 552 * will fit to rcvbuf in future. 553 */ 554 if (tcp_win_from_space(sk, truesize) <= skb->len) 555 incr = 2 * tp->advmss; 556 else 557 incr = __tcp_grow_window(sk, skb, truesize); 558 559 if (incr) { 560 incr = max_t(int, incr, 2 * skb->len); 561 tp->rcv_ssthresh += min(room, incr); 562 inet_csk(sk)->icsk_ack.quick |= 1; 563 } 564 } else { 565 /* Under pressure: 566 * Adjust rcv_ssthresh according to reserved mem 567 */ 568 tcp_adjust_rcv_ssthresh(sk); 569 } 570 } 571 572 /* 3. Try to fixup all. It is made immediately after connection enters 573 * established state. 574 */ 575 static void tcp_init_buffer_space(struct sock *sk) 576 { 577 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 578 struct tcp_sock *tp = tcp_sk(sk); 579 int maxwin; 580 581 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 582 tcp_sndbuf_expand(sk); 583 584 tcp_mstamp_refresh(tp); 585 tp->rcvq_space.time = tp->tcp_mstamp; 586 tp->rcvq_space.seq = tp->copied_seq; 587 588 maxwin = tcp_full_space(sk); 589 590 if (tp->window_clamp >= maxwin) { 591 WRITE_ONCE(tp->window_clamp, maxwin); 592 593 if (tcp_app_win && maxwin > 4 * tp->advmss) 594 WRITE_ONCE(tp->window_clamp, 595 max(maxwin - (maxwin >> tcp_app_win), 596 4 * tp->advmss)); 597 } 598 599 /* Force reservation of one segment. */ 600 if (tcp_app_win && 601 tp->window_clamp > 2 * tp->advmss && 602 tp->window_clamp + tp->advmss > maxwin) 603 WRITE_ONCE(tp->window_clamp, 604 max(2 * tp->advmss, maxwin - tp->advmss)); 605 606 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 607 tp->snd_cwnd_stamp = tcp_jiffies32; 608 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 609 (u32)TCP_INIT_CWND * tp->advmss); 610 } 611 612 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 613 static void tcp_clamp_window(struct sock *sk) 614 { 615 struct tcp_sock *tp = tcp_sk(sk); 616 struct inet_connection_sock *icsk = inet_csk(sk); 617 struct net *net = sock_net(sk); 618 int rmem2; 619 620 icsk->icsk_ack.quick = 0; 621 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 622 623 if (sk->sk_rcvbuf < rmem2 && 624 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 625 !tcp_under_memory_pressure(sk) && 626 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 627 WRITE_ONCE(sk->sk_rcvbuf, 628 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 629 } 630 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 631 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 632 } 633 634 /* Initialize RCV_MSS value. 635 * RCV_MSS is an our guess about MSS used by the peer. 636 * We haven't any direct information about the MSS. 637 * It's better to underestimate the RCV_MSS rather than overestimate. 638 * Overestimations make us ACKing less frequently than needed. 639 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 640 */ 641 void tcp_initialize_rcv_mss(struct sock *sk) 642 { 643 const struct tcp_sock *tp = tcp_sk(sk); 644 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 645 646 hint = min(hint, tp->rcv_wnd / 2); 647 hint = min(hint, TCP_MSS_DEFAULT); 648 hint = max(hint, TCP_MIN_MSS); 649 650 inet_csk(sk)->icsk_ack.rcv_mss = hint; 651 } 652 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss); 653 654 /* Receiver "autotuning" code. 655 * 656 * The algorithm for RTT estimation w/o timestamps is based on 657 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 658 * <https://public.lanl.gov/radiant/pubs.html#DRS> 659 * 660 * More detail on this code can be found at 661 * <http://staff.psc.edu/jheffner/>, 662 * though this reference is out of date. A new paper 663 * is pending. 664 */ 665 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 666 { 667 u32 new_sample = tp->rcv_rtt_est.rtt_us; 668 long m = sample; 669 670 if (new_sample != 0) { 671 /* If we sample in larger samples in the non-timestamp 672 * case, we could grossly overestimate the RTT especially 673 * with chatty applications or bulk transfer apps which 674 * are stalled on filesystem I/O. 675 * 676 * Also, since we are only going for a minimum in the 677 * non-timestamp case, we do not smooth things out 678 * else with timestamps disabled convergence takes too 679 * long. 680 */ 681 if (!win_dep) { 682 m -= (new_sample >> 3); 683 new_sample += m; 684 } else { 685 m <<= 3; 686 if (m < new_sample) 687 new_sample = m; 688 } 689 } else { 690 /* No previous measure. */ 691 new_sample = m << 3; 692 } 693 694 tp->rcv_rtt_est.rtt_us = new_sample; 695 } 696 697 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 698 { 699 u32 delta_us; 700 701 if (tp->rcv_rtt_est.time == 0) 702 goto new_measure; 703 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 704 return; 705 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 706 if (!delta_us) 707 delta_us = 1; 708 tcp_rcv_rtt_update(tp, delta_us, 1); 709 710 new_measure: 711 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 712 tp->rcv_rtt_est.time = tp->tcp_mstamp; 713 } 714 715 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp) 716 { 717 u32 delta, delta_us; 718 719 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; 720 if (tp->tcp_usec_ts) 721 return delta; 722 723 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 724 if (!delta) 725 delta = 1; 726 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 727 return delta_us; 728 } 729 return -1; 730 } 731 732 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 733 const struct sk_buff *skb) 734 { 735 struct tcp_sock *tp = tcp_sk(sk); 736 737 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 738 return; 739 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 740 741 if (TCP_SKB_CB(skb)->end_seq - 742 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 743 s32 delta = tcp_rtt_tsopt_us(tp); 744 745 if (delta >= 0) 746 tcp_rcv_rtt_update(tp, delta, 0); 747 } 748 } 749 750 /* 751 * This function should be called every time data is copied to user space. 752 * It calculates the appropriate TCP receive buffer space. 753 */ 754 void tcp_rcv_space_adjust(struct sock *sk) 755 { 756 struct tcp_sock *tp = tcp_sk(sk); 757 u32 copied; 758 int time; 759 760 trace_tcp_rcv_space_adjust(sk); 761 762 tcp_mstamp_refresh(tp); 763 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 764 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 765 return; 766 767 /* Number of bytes copied to user in last RTT */ 768 copied = tp->copied_seq - tp->rcvq_space.seq; 769 if (copied <= tp->rcvq_space.space) 770 goto new_measure; 771 772 /* A bit of theory : 773 * copied = bytes received in previous RTT, our base window 774 * To cope with packet losses, we need a 2x factor 775 * To cope with slow start, and sender growing its cwin by 100 % 776 * every RTT, we need a 4x factor, because the ACK we are sending 777 * now is for the next RTT, not the current one : 778 * <prev RTT . ><current RTT .. ><next RTT .... > 779 */ 780 781 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 782 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 783 u64 rcvwin, grow; 784 int rcvbuf; 785 786 /* minimal window to cope with packet losses, assuming 787 * steady state. Add some cushion because of small variations. 788 */ 789 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 790 791 /* Accommodate for sender rate increase (eg. slow start) */ 792 grow = rcvwin * (copied - tp->rcvq_space.space); 793 do_div(grow, tp->rcvq_space.space); 794 rcvwin += (grow << 1); 795 796 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 797 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 798 if (rcvbuf > sk->sk_rcvbuf) { 799 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 800 801 /* Make the window clamp follow along. */ 802 WRITE_ONCE(tp->window_clamp, 803 tcp_win_from_space(sk, rcvbuf)); 804 } 805 } 806 tp->rcvq_space.space = copied; 807 808 new_measure: 809 tp->rcvq_space.seq = tp->copied_seq; 810 tp->rcvq_space.time = tp->tcp_mstamp; 811 } 812 813 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 814 { 815 #if IS_ENABLED(CONFIG_IPV6) 816 struct inet_connection_sock *icsk = inet_csk(sk); 817 818 if (skb->protocol == htons(ETH_P_IPV6)) 819 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 820 #endif 821 } 822 823 /* There is something which you must keep in mind when you analyze the 824 * behavior of the tp->ato delayed ack timeout interval. When a 825 * connection starts up, we want to ack as quickly as possible. The 826 * problem is that "good" TCP's do slow start at the beginning of data 827 * transmission. The means that until we send the first few ACK's the 828 * sender will sit on his end and only queue most of his data, because 829 * he can only send snd_cwnd unacked packets at any given time. For 830 * each ACK we send, he increments snd_cwnd and transmits more of his 831 * queue. -DaveM 832 */ 833 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 834 { 835 struct tcp_sock *tp = tcp_sk(sk); 836 struct inet_connection_sock *icsk = inet_csk(sk); 837 u32 now; 838 839 inet_csk_schedule_ack(sk); 840 841 tcp_measure_rcv_mss(sk, skb); 842 843 tcp_rcv_rtt_measure(tp); 844 845 now = tcp_jiffies32; 846 847 if (!icsk->icsk_ack.ato) { 848 /* The _first_ data packet received, initialize 849 * delayed ACK engine. 850 */ 851 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 852 icsk->icsk_ack.ato = TCP_ATO_MIN; 853 } else { 854 int m = now - icsk->icsk_ack.lrcvtime; 855 856 if (m <= TCP_ATO_MIN / 2) { 857 /* The fastest case is the first. */ 858 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 859 } else if (m < icsk->icsk_ack.ato) { 860 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 861 if (icsk->icsk_ack.ato > icsk->icsk_rto) 862 icsk->icsk_ack.ato = icsk->icsk_rto; 863 } else if (m > icsk->icsk_rto) { 864 /* Too long gap. Apparently sender failed to 865 * restart window, so that we send ACKs quickly. 866 */ 867 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 868 } 869 } 870 icsk->icsk_ack.lrcvtime = now; 871 tcp_save_lrcv_flowlabel(sk, skb); 872 873 tcp_data_ecn_check(sk, skb); 874 875 if (skb->len >= 128) 876 tcp_grow_window(sk, skb, true); 877 } 878 879 /* Called to compute a smoothed rtt estimate. The data fed to this 880 * routine either comes from timestamps, or from segments that were 881 * known _not_ to have been retransmitted [see Karn/Partridge 882 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 883 * piece by Van Jacobson. 884 * NOTE: the next three routines used to be one big routine. 885 * To save cycles in the RFC 1323 implementation it was better to break 886 * it up into three procedures. -- erics 887 */ 888 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 889 { 890 struct tcp_sock *tp = tcp_sk(sk); 891 long m = mrtt_us; /* RTT */ 892 u32 srtt = tp->srtt_us; 893 894 /* The following amusing code comes from Jacobson's 895 * article in SIGCOMM '88. Note that rtt and mdev 896 * are scaled versions of rtt and mean deviation. 897 * This is designed to be as fast as possible 898 * m stands for "measurement". 899 * 900 * On a 1990 paper the rto value is changed to: 901 * RTO = rtt + 4 * mdev 902 * 903 * Funny. This algorithm seems to be very broken. 904 * These formulae increase RTO, when it should be decreased, increase 905 * too slowly, when it should be increased quickly, decrease too quickly 906 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 907 * does not matter how to _calculate_ it. Seems, it was trap 908 * that VJ failed to avoid. 8) 909 */ 910 if (srtt != 0) { 911 m -= (srtt >> 3); /* m is now error in rtt est */ 912 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 913 if (m < 0) { 914 m = -m; /* m is now abs(error) */ 915 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 916 /* This is similar to one of Eifel findings. 917 * Eifel blocks mdev updates when rtt decreases. 918 * This solution is a bit different: we use finer gain 919 * for mdev in this case (alpha*beta). 920 * Like Eifel it also prevents growth of rto, 921 * but also it limits too fast rto decreases, 922 * happening in pure Eifel. 923 */ 924 if (m > 0) 925 m >>= 3; 926 } else { 927 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 928 } 929 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 930 if (tp->mdev_us > tp->mdev_max_us) { 931 tp->mdev_max_us = tp->mdev_us; 932 if (tp->mdev_max_us > tp->rttvar_us) 933 tp->rttvar_us = tp->mdev_max_us; 934 } 935 if (after(tp->snd_una, tp->rtt_seq)) { 936 if (tp->mdev_max_us < tp->rttvar_us) 937 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 938 tp->rtt_seq = tp->snd_nxt; 939 tp->mdev_max_us = tcp_rto_min_us(sk); 940 941 tcp_bpf_rtt(sk, mrtt_us, srtt); 942 } 943 } else { 944 /* no previous measure. */ 945 srtt = m << 3; /* take the measured time to be rtt */ 946 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 947 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 948 tp->mdev_max_us = tp->rttvar_us; 949 tp->rtt_seq = tp->snd_nxt; 950 951 tcp_bpf_rtt(sk, mrtt_us, srtt); 952 } 953 tp->srtt_us = max(1U, srtt); 954 } 955 956 static void tcp_update_pacing_rate(struct sock *sk) 957 { 958 const struct tcp_sock *tp = tcp_sk(sk); 959 u64 rate; 960 961 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 962 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 963 964 /* current rate is (cwnd * mss) / srtt 965 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 966 * In Congestion Avoidance phase, set it to 120 % the current rate. 967 * 968 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 969 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 970 * end of slow start and should slow down. 971 */ 972 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 973 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 974 else 975 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 976 977 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 978 979 if (likely(tp->srtt_us)) 980 do_div(rate, tp->srtt_us); 981 982 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 983 * without any lock. We want to make sure compiler wont store 984 * intermediate values in this location. 985 */ 986 WRITE_ONCE(sk->sk_pacing_rate, 987 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 988 } 989 990 /* Calculate rto without backoff. This is the second half of Van Jacobson's 991 * routine referred to above. 992 */ 993 static void tcp_set_rto(struct sock *sk) 994 { 995 const struct tcp_sock *tp = tcp_sk(sk); 996 /* Old crap is replaced with new one. 8) 997 * 998 * More seriously: 999 * 1. If rtt variance happened to be less 50msec, it is hallucination. 1000 * It cannot be less due to utterly erratic ACK generation made 1001 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 1002 * to do with delayed acks, because at cwnd>2 true delack timeout 1003 * is invisible. Actually, Linux-2.4 also generates erratic 1004 * ACKs in some circumstances. 1005 */ 1006 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 1007 1008 /* 2. Fixups made earlier cannot be right. 1009 * If we do not estimate RTO correctly without them, 1010 * all the algo is pure shit and should be replaced 1011 * with correct one. It is exactly, which we pretend to do. 1012 */ 1013 1014 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 1015 * guarantees that rto is higher. 1016 */ 1017 tcp_bound_rto(sk); 1018 } 1019 1020 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 1021 { 1022 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 1023 1024 if (!cwnd) 1025 cwnd = TCP_INIT_CWND; 1026 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 1027 } 1028 1029 struct tcp_sacktag_state { 1030 /* Timestamps for earliest and latest never-retransmitted segment 1031 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1032 * but congestion control should still get an accurate delay signal. 1033 */ 1034 u64 first_sackt; 1035 u64 last_sackt; 1036 u32 reord; 1037 u32 sack_delivered; 1038 int flag; 1039 unsigned int mss_now; 1040 struct rate_sample *rate; 1041 }; 1042 1043 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1044 * and spurious retransmission information if this DSACK is unlikely caused by 1045 * sender's action: 1046 * - DSACKed sequence range is larger than maximum receiver's window. 1047 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1048 */ 1049 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1050 u32 end_seq, struct tcp_sacktag_state *state) 1051 { 1052 u32 seq_len, dup_segs = 1; 1053 1054 if (!before(start_seq, end_seq)) 1055 return 0; 1056 1057 seq_len = end_seq - start_seq; 1058 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1059 if (seq_len > tp->max_window) 1060 return 0; 1061 if (seq_len > tp->mss_cache) 1062 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1063 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1064 state->flag |= FLAG_DSACK_TLP; 1065 1066 tp->dsack_dups += dup_segs; 1067 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1068 if (tp->dsack_dups > tp->total_retrans) 1069 return 0; 1070 1071 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1072 /* We increase the RACK ordering window in rounds where we receive 1073 * DSACKs that may have been due to reordering causing RACK to trigger 1074 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1075 * without having seen reordering, or that match TLP probes (TLP 1076 * is timer-driven, not triggered by RACK). 1077 */ 1078 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1079 tp->rack.dsack_seen = 1; 1080 1081 state->flag |= FLAG_DSACKING_ACK; 1082 /* A spurious retransmission is delivered */ 1083 state->sack_delivered += dup_segs; 1084 1085 return dup_segs; 1086 } 1087 1088 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1089 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1090 * distance is approximated in full-mss packet distance ("reordering"). 1091 */ 1092 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1093 const int ts) 1094 { 1095 struct tcp_sock *tp = tcp_sk(sk); 1096 const u32 mss = tp->mss_cache; 1097 u32 fack, metric; 1098 1099 fack = tcp_highest_sack_seq(tp); 1100 if (!before(low_seq, fack)) 1101 return; 1102 1103 metric = fack - low_seq; 1104 if ((metric > tp->reordering * mss) && mss) { 1105 #if FASTRETRANS_DEBUG > 1 1106 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1107 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1108 tp->reordering, 1109 0, 1110 tp->sacked_out, 1111 tp->undo_marker ? tp->undo_retrans : 0); 1112 #endif 1113 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1114 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1115 } 1116 1117 /* This exciting event is worth to be remembered. 8) */ 1118 tp->reord_seen++; 1119 NET_INC_STATS(sock_net(sk), 1120 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1121 } 1122 1123 /* This must be called before lost_out or retrans_out are updated 1124 * on a new loss, because we want to know if all skbs previously 1125 * known to be lost have already been retransmitted, indicating 1126 * that this newly lost skb is our next skb to retransmit. 1127 */ 1128 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1129 { 1130 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1131 (tp->retransmit_skb_hint && 1132 before(TCP_SKB_CB(skb)->seq, 1133 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1134 tp->retransmit_skb_hint = skb; 1135 } 1136 1137 /* Sum the number of packets on the wire we have marked as lost, and 1138 * notify the congestion control module that the given skb was marked lost. 1139 */ 1140 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1141 { 1142 tp->lost += tcp_skb_pcount(skb); 1143 } 1144 1145 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1146 { 1147 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1148 struct tcp_sock *tp = tcp_sk(sk); 1149 1150 if (sacked & TCPCB_SACKED_ACKED) 1151 return; 1152 1153 tcp_verify_retransmit_hint(tp, skb); 1154 if (sacked & TCPCB_LOST) { 1155 if (sacked & TCPCB_SACKED_RETRANS) { 1156 /* Account for retransmits that are lost again */ 1157 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1158 tp->retrans_out -= tcp_skb_pcount(skb); 1159 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1160 tcp_skb_pcount(skb)); 1161 tcp_notify_skb_loss_event(tp, skb); 1162 } 1163 } else { 1164 tp->lost_out += tcp_skb_pcount(skb); 1165 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1166 tcp_notify_skb_loss_event(tp, skb); 1167 } 1168 } 1169 1170 /* This procedure tags the retransmission queue when SACKs arrive. 1171 * 1172 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1173 * Packets in queue with these bits set are counted in variables 1174 * sacked_out, retrans_out and lost_out, correspondingly. 1175 * 1176 * Valid combinations are: 1177 * Tag InFlight Description 1178 * 0 1 - orig segment is in flight. 1179 * S 0 - nothing flies, orig reached receiver. 1180 * L 0 - nothing flies, orig lost by net. 1181 * R 2 - both orig and retransmit are in flight. 1182 * L|R 1 - orig is lost, retransmit is in flight. 1183 * S|R 1 - orig reached receiver, retrans is still in flight. 1184 * (L|S|R is logically valid, it could occur when L|R is sacked, 1185 * but it is equivalent to plain S and code short-circuits it to S. 1186 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1187 * 1188 * These 6 states form finite state machine, controlled by the following events: 1189 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1190 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1191 * 3. Loss detection event of two flavors: 1192 * A. Scoreboard estimator decided the packet is lost. 1193 * A'. Reno "three dupacks" marks head of queue lost. 1194 * B. SACK arrives sacking SND.NXT at the moment, when the 1195 * segment was retransmitted. 1196 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1197 * 1198 * It is pleasant to note, that state diagram turns out to be commutative, 1199 * so that we are allowed not to be bothered by order of our actions, 1200 * when multiple events arrive simultaneously. (see the function below). 1201 * 1202 * Reordering detection. 1203 * -------------------- 1204 * Reordering metric is maximal distance, which a packet can be displaced 1205 * in packet stream. With SACKs we can estimate it: 1206 * 1207 * 1. SACK fills old hole and the corresponding segment was not 1208 * ever retransmitted -> reordering. Alas, we cannot use it 1209 * when segment was retransmitted. 1210 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1211 * for retransmitted and already SACKed segment -> reordering.. 1212 * Both of these heuristics are not used in Loss state, when we cannot 1213 * account for retransmits accurately. 1214 * 1215 * SACK block validation. 1216 * ---------------------- 1217 * 1218 * SACK block range validation checks that the received SACK block fits to 1219 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1220 * Note that SND.UNA is not included to the range though being valid because 1221 * it means that the receiver is rather inconsistent with itself reporting 1222 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1223 * perfectly valid, however, in light of RFC2018 which explicitly states 1224 * that "SACK block MUST reflect the newest segment. Even if the newest 1225 * segment is going to be discarded ...", not that it looks very clever 1226 * in case of head skb. Due to potentional receiver driven attacks, we 1227 * choose to avoid immediate execution of a walk in write queue due to 1228 * reneging and defer head skb's loss recovery to standard loss recovery 1229 * procedure that will eventually trigger (nothing forbids us doing this). 1230 * 1231 * Implements also blockage to start_seq wrap-around. Problem lies in the 1232 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1233 * there's no guarantee that it will be before snd_nxt (n). The problem 1234 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1235 * wrap (s_w): 1236 * 1237 * <- outs wnd -> <- wrapzone -> 1238 * u e n u_w e_w s n_w 1239 * | | | | | | | 1240 * |<------------+------+----- TCP seqno space --------------+---------->| 1241 * ...-- <2^31 ->| |<--------... 1242 * ...---- >2^31 ------>| |<--------... 1243 * 1244 * Current code wouldn't be vulnerable but it's better still to discard such 1245 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1246 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1247 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1248 * equal to the ideal case (infinite seqno space without wrap caused issues). 1249 * 1250 * With D-SACK the lower bound is extended to cover sequence space below 1251 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1252 * again, D-SACK block must not to go across snd_una (for the same reason as 1253 * for the normal SACK blocks, explained above). But there all simplicity 1254 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1255 * fully below undo_marker they do not affect behavior in anyway and can 1256 * therefore be safely ignored. In rare cases (which are more or less 1257 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1258 * fragmentation and packet reordering past skb's retransmission. To consider 1259 * them correctly, the acceptable range must be extended even more though 1260 * the exact amount is rather hard to quantify. However, tp->max_window can 1261 * be used as an exaggerated estimate. 1262 */ 1263 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1264 u32 start_seq, u32 end_seq) 1265 { 1266 /* Too far in future, or reversed (interpretation is ambiguous) */ 1267 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1268 return false; 1269 1270 /* Nasty start_seq wrap-around check (see comments above) */ 1271 if (!before(start_seq, tp->snd_nxt)) 1272 return false; 1273 1274 /* In outstanding window? ...This is valid exit for D-SACKs too. 1275 * start_seq == snd_una is non-sensical (see comments above) 1276 */ 1277 if (after(start_seq, tp->snd_una)) 1278 return true; 1279 1280 if (!is_dsack || !tp->undo_marker) 1281 return false; 1282 1283 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1284 if (after(end_seq, tp->snd_una)) 1285 return false; 1286 1287 if (!before(start_seq, tp->undo_marker)) 1288 return true; 1289 1290 /* Too old */ 1291 if (!after(end_seq, tp->undo_marker)) 1292 return false; 1293 1294 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1295 * start_seq < undo_marker and end_seq >= undo_marker. 1296 */ 1297 return !before(start_seq, end_seq - tp->max_window); 1298 } 1299 1300 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1301 struct tcp_sack_block_wire *sp, int num_sacks, 1302 u32 prior_snd_una, struct tcp_sacktag_state *state) 1303 { 1304 struct tcp_sock *tp = tcp_sk(sk); 1305 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1306 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1307 u32 dup_segs; 1308 1309 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1310 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1311 } else if (num_sacks > 1) { 1312 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1313 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1314 1315 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1316 return false; 1317 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1318 } else { 1319 return false; 1320 } 1321 1322 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1323 if (!dup_segs) { /* Skip dubious DSACK */ 1324 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1325 return false; 1326 } 1327 1328 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1329 1330 /* D-SACK for already forgotten data... Do dumb counting. */ 1331 if (tp->undo_marker && tp->undo_retrans > 0 && 1332 !after(end_seq_0, prior_snd_una) && 1333 after(end_seq_0, tp->undo_marker)) 1334 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1335 1336 return true; 1337 } 1338 1339 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1340 * the incoming SACK may not exactly match but we can find smaller MSS 1341 * aligned portion of it that matches. Therefore we might need to fragment 1342 * which may fail and creates some hassle (caller must handle error case 1343 * returns). 1344 * 1345 * FIXME: this could be merged to shift decision code 1346 */ 1347 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1348 u32 start_seq, u32 end_seq) 1349 { 1350 int err; 1351 bool in_sack; 1352 unsigned int pkt_len; 1353 unsigned int mss; 1354 1355 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1356 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1357 1358 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1359 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1360 mss = tcp_skb_mss(skb); 1361 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1362 1363 if (!in_sack) { 1364 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1365 if (pkt_len < mss) 1366 pkt_len = mss; 1367 } else { 1368 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1369 if (pkt_len < mss) 1370 return -EINVAL; 1371 } 1372 1373 /* Round if necessary so that SACKs cover only full MSSes 1374 * and/or the remaining small portion (if present) 1375 */ 1376 if (pkt_len > mss) { 1377 unsigned int new_len = (pkt_len / mss) * mss; 1378 if (!in_sack && new_len < pkt_len) 1379 new_len += mss; 1380 pkt_len = new_len; 1381 } 1382 1383 if (pkt_len >= skb->len && !in_sack) 1384 return 0; 1385 1386 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1387 pkt_len, mss, GFP_ATOMIC); 1388 if (err < 0) 1389 return err; 1390 } 1391 1392 return in_sack; 1393 } 1394 1395 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1396 static u8 tcp_sacktag_one(struct sock *sk, 1397 struct tcp_sacktag_state *state, u8 sacked, 1398 u32 start_seq, u32 end_seq, 1399 int dup_sack, int pcount, 1400 u64 xmit_time) 1401 { 1402 struct tcp_sock *tp = tcp_sk(sk); 1403 1404 /* Account D-SACK for retransmitted packet. */ 1405 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1406 if (tp->undo_marker && tp->undo_retrans > 0 && 1407 after(end_seq, tp->undo_marker)) 1408 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1409 if ((sacked & TCPCB_SACKED_ACKED) && 1410 before(start_seq, state->reord)) 1411 state->reord = start_seq; 1412 } 1413 1414 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1415 if (!after(end_seq, tp->snd_una)) 1416 return sacked; 1417 1418 if (!(sacked & TCPCB_SACKED_ACKED)) { 1419 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1420 1421 if (sacked & TCPCB_SACKED_RETRANS) { 1422 /* If the segment is not tagged as lost, 1423 * we do not clear RETRANS, believing 1424 * that retransmission is still in flight. 1425 */ 1426 if (sacked & TCPCB_LOST) { 1427 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1428 tp->lost_out -= pcount; 1429 tp->retrans_out -= pcount; 1430 } 1431 } else { 1432 if (!(sacked & TCPCB_RETRANS)) { 1433 /* New sack for not retransmitted frame, 1434 * which was in hole. It is reordering. 1435 */ 1436 if (before(start_seq, 1437 tcp_highest_sack_seq(tp)) && 1438 before(start_seq, state->reord)) 1439 state->reord = start_seq; 1440 1441 if (!after(end_seq, tp->high_seq)) 1442 state->flag |= FLAG_ORIG_SACK_ACKED; 1443 if (state->first_sackt == 0) 1444 state->first_sackt = xmit_time; 1445 state->last_sackt = xmit_time; 1446 } 1447 1448 if (sacked & TCPCB_LOST) { 1449 sacked &= ~TCPCB_LOST; 1450 tp->lost_out -= pcount; 1451 } 1452 } 1453 1454 sacked |= TCPCB_SACKED_ACKED; 1455 state->flag |= FLAG_DATA_SACKED; 1456 tp->sacked_out += pcount; 1457 /* Out-of-order packets delivered */ 1458 state->sack_delivered += pcount; 1459 1460 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1461 if (tp->lost_skb_hint && 1462 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1463 tp->lost_cnt_hint += pcount; 1464 } 1465 1466 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1467 * frames and clear it. undo_retrans is decreased above, L|R frames 1468 * are accounted above as well. 1469 */ 1470 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1471 sacked &= ~TCPCB_SACKED_RETRANS; 1472 tp->retrans_out -= pcount; 1473 } 1474 1475 return sacked; 1476 } 1477 1478 /* Shift newly-SACKed bytes from this skb to the immediately previous 1479 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1480 */ 1481 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1482 struct sk_buff *skb, 1483 struct tcp_sacktag_state *state, 1484 unsigned int pcount, int shifted, int mss, 1485 bool dup_sack) 1486 { 1487 struct tcp_sock *tp = tcp_sk(sk); 1488 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1489 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1490 1491 BUG_ON(!pcount); 1492 1493 /* Adjust counters and hints for the newly sacked sequence 1494 * range but discard the return value since prev is already 1495 * marked. We must tag the range first because the seq 1496 * advancement below implicitly advances 1497 * tcp_highest_sack_seq() when skb is highest_sack. 1498 */ 1499 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1500 start_seq, end_seq, dup_sack, pcount, 1501 tcp_skb_timestamp_us(skb)); 1502 tcp_rate_skb_delivered(sk, skb, state->rate); 1503 1504 if (skb == tp->lost_skb_hint) 1505 tp->lost_cnt_hint += pcount; 1506 1507 TCP_SKB_CB(prev)->end_seq += shifted; 1508 TCP_SKB_CB(skb)->seq += shifted; 1509 1510 tcp_skb_pcount_add(prev, pcount); 1511 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1512 tcp_skb_pcount_add(skb, -pcount); 1513 1514 /* When we're adding to gso_segs == 1, gso_size will be zero, 1515 * in theory this shouldn't be necessary but as long as DSACK 1516 * code can come after this skb later on it's better to keep 1517 * setting gso_size to something. 1518 */ 1519 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1520 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1521 1522 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1523 if (tcp_skb_pcount(skb) <= 1) 1524 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1525 1526 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1527 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1528 1529 if (skb->len > 0) { 1530 BUG_ON(!tcp_skb_pcount(skb)); 1531 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1532 return false; 1533 } 1534 1535 /* Whole SKB was eaten :-) */ 1536 1537 if (skb == tp->retransmit_skb_hint) 1538 tp->retransmit_skb_hint = prev; 1539 if (skb == tp->lost_skb_hint) { 1540 tp->lost_skb_hint = prev; 1541 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1542 } 1543 1544 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1545 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1546 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1547 TCP_SKB_CB(prev)->end_seq++; 1548 1549 if (skb == tcp_highest_sack(sk)) 1550 tcp_advance_highest_sack(sk, skb); 1551 1552 tcp_skb_collapse_tstamp(prev, skb); 1553 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1554 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1555 1556 tcp_rtx_queue_unlink_and_free(skb, sk); 1557 1558 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1559 1560 return true; 1561 } 1562 1563 /* I wish gso_size would have a bit more sane initialization than 1564 * something-or-zero which complicates things 1565 */ 1566 static int tcp_skb_seglen(const struct sk_buff *skb) 1567 { 1568 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1569 } 1570 1571 /* Shifting pages past head area doesn't work */ 1572 static int skb_can_shift(const struct sk_buff *skb) 1573 { 1574 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1575 } 1576 1577 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1578 int pcount, int shiftlen) 1579 { 1580 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1581 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1582 * to make sure not storing more than 65535 * 8 bytes per skb, 1583 * even if current MSS is bigger. 1584 */ 1585 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1586 return 0; 1587 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1588 return 0; 1589 return skb_shift(to, from, shiftlen); 1590 } 1591 1592 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1593 * skb. 1594 */ 1595 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1596 struct tcp_sacktag_state *state, 1597 u32 start_seq, u32 end_seq, 1598 bool dup_sack) 1599 { 1600 struct tcp_sock *tp = tcp_sk(sk); 1601 struct sk_buff *prev; 1602 int mss; 1603 int pcount = 0; 1604 int len; 1605 int in_sack; 1606 1607 /* Normally R but no L won't result in plain S */ 1608 if (!dup_sack && 1609 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1610 goto fallback; 1611 if (!skb_can_shift(skb)) 1612 goto fallback; 1613 /* This frame is about to be dropped (was ACKed). */ 1614 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1615 goto fallback; 1616 1617 /* Can only happen with delayed DSACK + discard craziness */ 1618 prev = skb_rb_prev(skb); 1619 if (!prev) 1620 goto fallback; 1621 1622 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1623 goto fallback; 1624 1625 if (!tcp_skb_can_collapse(prev, skb)) 1626 goto fallback; 1627 1628 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1629 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1630 1631 if (in_sack) { 1632 len = skb->len; 1633 pcount = tcp_skb_pcount(skb); 1634 mss = tcp_skb_seglen(skb); 1635 1636 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1637 * drop this restriction as unnecessary 1638 */ 1639 if (mss != tcp_skb_seglen(prev)) 1640 goto fallback; 1641 } else { 1642 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1643 goto noop; 1644 /* CHECKME: This is non-MSS split case only?, this will 1645 * cause skipped skbs due to advancing loop btw, original 1646 * has that feature too 1647 */ 1648 if (tcp_skb_pcount(skb) <= 1) 1649 goto noop; 1650 1651 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1652 if (!in_sack) { 1653 /* TODO: head merge to next could be attempted here 1654 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1655 * though it might not be worth of the additional hassle 1656 * 1657 * ...we can probably just fallback to what was done 1658 * previously. We could try merging non-SACKed ones 1659 * as well but it probably isn't going to buy off 1660 * because later SACKs might again split them, and 1661 * it would make skb timestamp tracking considerably 1662 * harder problem. 1663 */ 1664 goto fallback; 1665 } 1666 1667 len = end_seq - TCP_SKB_CB(skb)->seq; 1668 BUG_ON(len < 0); 1669 BUG_ON(len > skb->len); 1670 1671 /* MSS boundaries should be honoured or else pcount will 1672 * severely break even though it makes things bit trickier. 1673 * Optimize common case to avoid most of the divides 1674 */ 1675 mss = tcp_skb_mss(skb); 1676 1677 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1678 * drop this restriction as unnecessary 1679 */ 1680 if (mss != tcp_skb_seglen(prev)) 1681 goto fallback; 1682 1683 if (len == mss) { 1684 pcount = 1; 1685 } else if (len < mss) { 1686 goto noop; 1687 } else { 1688 pcount = len / mss; 1689 len = pcount * mss; 1690 } 1691 } 1692 1693 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1694 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1695 goto fallback; 1696 1697 if (!tcp_skb_shift(prev, skb, pcount, len)) 1698 goto fallback; 1699 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1700 goto out; 1701 1702 /* Hole filled allows collapsing with the next as well, this is very 1703 * useful when hole on every nth skb pattern happens 1704 */ 1705 skb = skb_rb_next(prev); 1706 if (!skb) 1707 goto out; 1708 1709 if (!skb_can_shift(skb) || 1710 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1711 (mss != tcp_skb_seglen(skb))) 1712 goto out; 1713 1714 if (!tcp_skb_can_collapse(prev, skb)) 1715 goto out; 1716 len = skb->len; 1717 pcount = tcp_skb_pcount(skb); 1718 if (tcp_skb_shift(prev, skb, pcount, len)) 1719 tcp_shifted_skb(sk, prev, skb, state, pcount, 1720 len, mss, 0); 1721 1722 out: 1723 return prev; 1724 1725 noop: 1726 return skb; 1727 1728 fallback: 1729 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1730 return NULL; 1731 } 1732 1733 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1734 struct tcp_sack_block *next_dup, 1735 struct tcp_sacktag_state *state, 1736 u32 start_seq, u32 end_seq, 1737 bool dup_sack_in) 1738 { 1739 struct tcp_sock *tp = tcp_sk(sk); 1740 struct sk_buff *tmp; 1741 1742 skb_rbtree_walk_from(skb) { 1743 int in_sack = 0; 1744 bool dup_sack = dup_sack_in; 1745 1746 /* queue is in-order => we can short-circuit the walk early */ 1747 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1748 break; 1749 1750 if (next_dup && 1751 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1752 in_sack = tcp_match_skb_to_sack(sk, skb, 1753 next_dup->start_seq, 1754 next_dup->end_seq); 1755 if (in_sack > 0) 1756 dup_sack = true; 1757 } 1758 1759 /* skb reference here is a bit tricky to get right, since 1760 * shifting can eat and free both this skb and the next, 1761 * so not even _safe variant of the loop is enough. 1762 */ 1763 if (in_sack <= 0) { 1764 tmp = tcp_shift_skb_data(sk, skb, state, 1765 start_seq, end_seq, dup_sack); 1766 if (tmp) { 1767 if (tmp != skb) { 1768 skb = tmp; 1769 continue; 1770 } 1771 1772 in_sack = 0; 1773 } else { 1774 in_sack = tcp_match_skb_to_sack(sk, skb, 1775 start_seq, 1776 end_seq); 1777 } 1778 } 1779 1780 if (unlikely(in_sack < 0)) 1781 break; 1782 1783 if (in_sack) { 1784 TCP_SKB_CB(skb)->sacked = 1785 tcp_sacktag_one(sk, 1786 state, 1787 TCP_SKB_CB(skb)->sacked, 1788 TCP_SKB_CB(skb)->seq, 1789 TCP_SKB_CB(skb)->end_seq, 1790 dup_sack, 1791 tcp_skb_pcount(skb), 1792 tcp_skb_timestamp_us(skb)); 1793 tcp_rate_skb_delivered(sk, skb, state->rate); 1794 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1795 list_del_init(&skb->tcp_tsorted_anchor); 1796 1797 if (!before(TCP_SKB_CB(skb)->seq, 1798 tcp_highest_sack_seq(tp))) 1799 tcp_advance_highest_sack(sk, skb); 1800 } 1801 } 1802 return skb; 1803 } 1804 1805 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1806 { 1807 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1808 struct sk_buff *skb; 1809 1810 while (*p) { 1811 parent = *p; 1812 skb = rb_to_skb(parent); 1813 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1814 p = &parent->rb_left; 1815 continue; 1816 } 1817 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1818 p = &parent->rb_right; 1819 continue; 1820 } 1821 return skb; 1822 } 1823 return NULL; 1824 } 1825 1826 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1827 u32 skip_to_seq) 1828 { 1829 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1830 return skb; 1831 1832 return tcp_sacktag_bsearch(sk, skip_to_seq); 1833 } 1834 1835 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1836 struct sock *sk, 1837 struct tcp_sack_block *next_dup, 1838 struct tcp_sacktag_state *state, 1839 u32 skip_to_seq) 1840 { 1841 if (!next_dup) 1842 return skb; 1843 1844 if (before(next_dup->start_seq, skip_to_seq)) { 1845 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1846 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1847 next_dup->start_seq, next_dup->end_seq, 1848 1); 1849 } 1850 1851 return skb; 1852 } 1853 1854 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1855 { 1856 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1857 } 1858 1859 static int 1860 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1861 u32 prior_snd_una, struct tcp_sacktag_state *state) 1862 { 1863 struct tcp_sock *tp = tcp_sk(sk); 1864 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1865 TCP_SKB_CB(ack_skb)->sacked); 1866 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1867 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1868 struct tcp_sack_block *cache; 1869 struct sk_buff *skb; 1870 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1871 int used_sacks; 1872 bool found_dup_sack = false; 1873 int i, j; 1874 int first_sack_index; 1875 1876 state->flag = 0; 1877 state->reord = tp->snd_nxt; 1878 1879 if (!tp->sacked_out) 1880 tcp_highest_sack_reset(sk); 1881 1882 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1883 num_sacks, prior_snd_una, state); 1884 1885 /* Eliminate too old ACKs, but take into 1886 * account more or less fresh ones, they can 1887 * contain valid SACK info. 1888 */ 1889 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1890 return 0; 1891 1892 if (!tp->packets_out) 1893 goto out; 1894 1895 used_sacks = 0; 1896 first_sack_index = 0; 1897 for (i = 0; i < num_sacks; i++) { 1898 bool dup_sack = !i && found_dup_sack; 1899 1900 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1901 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1902 1903 if (!tcp_is_sackblock_valid(tp, dup_sack, 1904 sp[used_sacks].start_seq, 1905 sp[used_sacks].end_seq)) { 1906 int mib_idx; 1907 1908 if (dup_sack) { 1909 if (!tp->undo_marker) 1910 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1911 else 1912 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1913 } else { 1914 /* Don't count olds caused by ACK reordering */ 1915 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1916 !after(sp[used_sacks].end_seq, tp->snd_una)) 1917 continue; 1918 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1919 } 1920 1921 NET_INC_STATS(sock_net(sk), mib_idx); 1922 if (i == 0) 1923 first_sack_index = -1; 1924 continue; 1925 } 1926 1927 /* Ignore very old stuff early */ 1928 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1929 if (i == 0) 1930 first_sack_index = -1; 1931 continue; 1932 } 1933 1934 used_sacks++; 1935 } 1936 1937 /* order SACK blocks to allow in order walk of the retrans queue */ 1938 for (i = used_sacks - 1; i > 0; i--) { 1939 for (j = 0; j < i; j++) { 1940 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1941 swap(sp[j], sp[j + 1]); 1942 1943 /* Track where the first SACK block goes to */ 1944 if (j == first_sack_index) 1945 first_sack_index = j + 1; 1946 } 1947 } 1948 } 1949 1950 state->mss_now = tcp_current_mss(sk); 1951 skb = NULL; 1952 i = 0; 1953 1954 if (!tp->sacked_out) { 1955 /* It's already past, so skip checking against it */ 1956 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1957 } else { 1958 cache = tp->recv_sack_cache; 1959 /* Skip empty blocks in at head of the cache */ 1960 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1961 !cache->end_seq) 1962 cache++; 1963 } 1964 1965 while (i < used_sacks) { 1966 u32 start_seq = sp[i].start_seq; 1967 u32 end_seq = sp[i].end_seq; 1968 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1969 struct tcp_sack_block *next_dup = NULL; 1970 1971 if (found_dup_sack && ((i + 1) == first_sack_index)) 1972 next_dup = &sp[i + 1]; 1973 1974 /* Skip too early cached blocks */ 1975 while (tcp_sack_cache_ok(tp, cache) && 1976 !before(start_seq, cache->end_seq)) 1977 cache++; 1978 1979 /* Can skip some work by looking recv_sack_cache? */ 1980 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1981 after(end_seq, cache->start_seq)) { 1982 1983 /* Head todo? */ 1984 if (before(start_seq, cache->start_seq)) { 1985 skb = tcp_sacktag_skip(skb, sk, start_seq); 1986 skb = tcp_sacktag_walk(skb, sk, next_dup, 1987 state, 1988 start_seq, 1989 cache->start_seq, 1990 dup_sack); 1991 } 1992 1993 /* Rest of the block already fully processed? */ 1994 if (!after(end_seq, cache->end_seq)) 1995 goto advance_sp; 1996 1997 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1998 state, 1999 cache->end_seq); 2000 2001 /* ...tail remains todo... */ 2002 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 2003 /* ...but better entrypoint exists! */ 2004 skb = tcp_highest_sack(sk); 2005 if (!skb) 2006 break; 2007 cache++; 2008 goto walk; 2009 } 2010 2011 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 2012 /* Check overlap against next cached too (past this one already) */ 2013 cache++; 2014 continue; 2015 } 2016 2017 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 2018 skb = tcp_highest_sack(sk); 2019 if (!skb) 2020 break; 2021 } 2022 skb = tcp_sacktag_skip(skb, sk, start_seq); 2023 2024 walk: 2025 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2026 start_seq, end_seq, dup_sack); 2027 2028 advance_sp: 2029 i++; 2030 } 2031 2032 /* Clear the head of the cache sack blocks so we can skip it next time */ 2033 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2034 tp->recv_sack_cache[i].start_seq = 0; 2035 tp->recv_sack_cache[i].end_seq = 0; 2036 } 2037 for (j = 0; j < used_sacks; j++) 2038 tp->recv_sack_cache[i++] = sp[j]; 2039 2040 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2041 tcp_check_sack_reordering(sk, state->reord, 0); 2042 2043 tcp_verify_left_out(tp); 2044 out: 2045 2046 #if FASTRETRANS_DEBUG > 0 2047 WARN_ON((int)tp->sacked_out < 0); 2048 WARN_ON((int)tp->lost_out < 0); 2049 WARN_ON((int)tp->retrans_out < 0); 2050 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2051 #endif 2052 return state->flag; 2053 } 2054 2055 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2056 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2057 */ 2058 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2059 { 2060 u32 holes; 2061 2062 holes = max(tp->lost_out, 1U); 2063 holes = min(holes, tp->packets_out); 2064 2065 if ((tp->sacked_out + holes) > tp->packets_out) { 2066 tp->sacked_out = tp->packets_out - holes; 2067 return true; 2068 } 2069 return false; 2070 } 2071 2072 /* If we receive more dupacks than we expected counting segments 2073 * in assumption of absent reordering, interpret this as reordering. 2074 * The only another reason could be bug in receiver TCP. 2075 */ 2076 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2077 { 2078 struct tcp_sock *tp = tcp_sk(sk); 2079 2080 if (!tcp_limit_reno_sacked(tp)) 2081 return; 2082 2083 tp->reordering = min_t(u32, tp->packets_out + addend, 2084 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2085 tp->reord_seen++; 2086 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2087 } 2088 2089 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2090 2091 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2092 { 2093 if (num_dupack) { 2094 struct tcp_sock *tp = tcp_sk(sk); 2095 u32 prior_sacked = tp->sacked_out; 2096 s32 delivered; 2097 2098 tp->sacked_out += num_dupack; 2099 tcp_check_reno_reordering(sk, 0); 2100 delivered = tp->sacked_out - prior_sacked; 2101 if (delivered > 0) 2102 tcp_count_delivered(tp, delivered, ece_ack); 2103 tcp_verify_left_out(tp); 2104 } 2105 } 2106 2107 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2108 2109 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2110 { 2111 struct tcp_sock *tp = tcp_sk(sk); 2112 2113 if (acked > 0) { 2114 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2115 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2116 ece_ack); 2117 if (acked - 1 >= tp->sacked_out) 2118 tp->sacked_out = 0; 2119 else 2120 tp->sacked_out -= acked - 1; 2121 } 2122 tcp_check_reno_reordering(sk, acked); 2123 tcp_verify_left_out(tp); 2124 } 2125 2126 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2127 { 2128 tp->sacked_out = 0; 2129 } 2130 2131 void tcp_clear_retrans(struct tcp_sock *tp) 2132 { 2133 tp->retrans_out = 0; 2134 tp->lost_out = 0; 2135 tp->undo_marker = 0; 2136 tp->undo_retrans = -1; 2137 tp->sacked_out = 0; 2138 tp->rto_stamp = 0; 2139 tp->total_rto = 0; 2140 tp->total_rto_recoveries = 0; 2141 tp->total_rto_time = 0; 2142 } 2143 2144 static inline void tcp_init_undo(struct tcp_sock *tp) 2145 { 2146 tp->undo_marker = tp->snd_una; 2147 2148 /* Retransmission still in flight may cause DSACKs later. */ 2149 /* First, account for regular retransmits in flight: */ 2150 tp->undo_retrans = tp->retrans_out; 2151 /* Next, account for TLP retransmits in flight: */ 2152 if (tp->tlp_high_seq && tp->tlp_retrans) 2153 tp->undo_retrans++; 2154 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2155 if (!tp->undo_retrans) 2156 tp->undo_retrans = -1; 2157 } 2158 2159 static bool tcp_is_rack(const struct sock *sk) 2160 { 2161 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2162 TCP_RACK_LOSS_DETECTION; 2163 } 2164 2165 /* If we detect SACK reneging, forget all SACK information 2166 * and reset tags completely, otherwise preserve SACKs. If receiver 2167 * dropped its ofo queue, we will know this due to reneging detection. 2168 */ 2169 static void tcp_timeout_mark_lost(struct sock *sk) 2170 { 2171 struct tcp_sock *tp = tcp_sk(sk); 2172 struct sk_buff *skb, *head; 2173 bool is_reneg; /* is receiver reneging on SACKs? */ 2174 2175 head = tcp_rtx_queue_head(sk); 2176 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2177 if (is_reneg) { 2178 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2179 tp->sacked_out = 0; 2180 /* Mark SACK reneging until we recover from this loss event. */ 2181 tp->is_sack_reneg = 1; 2182 } else if (tcp_is_reno(tp)) { 2183 tcp_reset_reno_sack(tp); 2184 } 2185 2186 skb = head; 2187 skb_rbtree_walk_from(skb) { 2188 if (is_reneg) 2189 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2190 else if (tcp_is_rack(sk) && skb != head && 2191 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2192 continue; /* Don't mark recently sent ones lost yet */ 2193 tcp_mark_skb_lost(sk, skb); 2194 } 2195 tcp_verify_left_out(tp); 2196 tcp_clear_all_retrans_hints(tp); 2197 } 2198 2199 /* Enter Loss state. */ 2200 void tcp_enter_loss(struct sock *sk) 2201 { 2202 const struct inet_connection_sock *icsk = inet_csk(sk); 2203 struct tcp_sock *tp = tcp_sk(sk); 2204 struct net *net = sock_net(sk); 2205 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2206 u8 reordering; 2207 2208 tcp_timeout_mark_lost(sk); 2209 2210 /* Reduce ssthresh if it has not yet been made inside this window. */ 2211 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2212 !after(tp->high_seq, tp->snd_una) || 2213 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2214 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2215 tp->prior_cwnd = tcp_snd_cwnd(tp); 2216 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2217 tcp_ca_event(sk, CA_EVENT_LOSS); 2218 tcp_init_undo(tp); 2219 } 2220 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2221 tp->snd_cwnd_cnt = 0; 2222 tp->snd_cwnd_stamp = tcp_jiffies32; 2223 2224 /* Timeout in disordered state after receiving substantial DUPACKs 2225 * suggests that the degree of reordering is over-estimated. 2226 */ 2227 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2228 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2229 tp->sacked_out >= reordering) 2230 tp->reordering = min_t(unsigned int, tp->reordering, 2231 reordering); 2232 2233 tcp_set_ca_state(sk, TCP_CA_Loss); 2234 tp->high_seq = tp->snd_nxt; 2235 tp->tlp_high_seq = 0; 2236 tcp_ecn_queue_cwr(tp); 2237 2238 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2239 * loss recovery is underway except recurring timeout(s) on 2240 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2241 */ 2242 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2243 (new_recovery || icsk->icsk_retransmits) && 2244 !inet_csk(sk)->icsk_mtup.probe_size; 2245 } 2246 2247 /* If ACK arrived pointing to a remembered SACK, it means that our 2248 * remembered SACKs do not reflect real state of receiver i.e. 2249 * receiver _host_ is heavily congested (or buggy). 2250 * 2251 * To avoid big spurious retransmission bursts due to transient SACK 2252 * scoreboard oddities that look like reneging, we give the receiver a 2253 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2254 * restore sanity to the SACK scoreboard. If the apparent reneging 2255 * persists until this RTO then we'll clear the SACK scoreboard. 2256 */ 2257 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2258 { 2259 if (*ack_flag & FLAG_SACK_RENEGING && 2260 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2261 struct tcp_sock *tp = tcp_sk(sk); 2262 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2263 msecs_to_jiffies(10)); 2264 2265 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false); 2266 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2267 return true; 2268 } 2269 return false; 2270 } 2271 2272 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2273 * counter when SACK is enabled (without SACK, sacked_out is used for 2274 * that purpose). 2275 * 2276 * With reordering, holes may still be in flight, so RFC3517 recovery 2277 * uses pure sacked_out (total number of SACKed segments) even though 2278 * it violates the RFC that uses duplicate ACKs, often these are equal 2279 * but when e.g. out-of-window ACKs or packet duplication occurs, 2280 * they differ. Since neither occurs due to loss, TCP should really 2281 * ignore them. 2282 */ 2283 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2284 { 2285 return tp->sacked_out + 1; 2286 } 2287 2288 /* Linux NewReno/SACK/ECN state machine. 2289 * -------------------------------------- 2290 * 2291 * "Open" Normal state, no dubious events, fast path. 2292 * "Disorder" In all the respects it is "Open", 2293 * but requires a bit more attention. It is entered when 2294 * we see some SACKs or dupacks. It is split of "Open" 2295 * mainly to move some processing from fast path to slow one. 2296 * "CWR" CWND was reduced due to some Congestion Notification event. 2297 * It can be ECN, ICMP source quench, local device congestion. 2298 * "Recovery" CWND was reduced, we are fast-retransmitting. 2299 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2300 * 2301 * tcp_fastretrans_alert() is entered: 2302 * - each incoming ACK, if state is not "Open" 2303 * - when arrived ACK is unusual, namely: 2304 * * SACK 2305 * * Duplicate ACK. 2306 * * ECN ECE. 2307 * 2308 * Counting packets in flight is pretty simple. 2309 * 2310 * in_flight = packets_out - left_out + retrans_out 2311 * 2312 * packets_out is SND.NXT-SND.UNA counted in packets. 2313 * 2314 * retrans_out is number of retransmitted segments. 2315 * 2316 * left_out is number of segments left network, but not ACKed yet. 2317 * 2318 * left_out = sacked_out + lost_out 2319 * 2320 * sacked_out: Packets, which arrived to receiver out of order 2321 * and hence not ACKed. With SACKs this number is simply 2322 * amount of SACKed data. Even without SACKs 2323 * it is easy to give pretty reliable estimate of this number, 2324 * counting duplicate ACKs. 2325 * 2326 * lost_out: Packets lost by network. TCP has no explicit 2327 * "loss notification" feedback from network (for now). 2328 * It means that this number can be only _guessed_. 2329 * Actually, it is the heuristics to predict lossage that 2330 * distinguishes different algorithms. 2331 * 2332 * F.e. after RTO, when all the queue is considered as lost, 2333 * lost_out = packets_out and in_flight = retrans_out. 2334 * 2335 * Essentially, we have now a few algorithms detecting 2336 * lost packets. 2337 * 2338 * If the receiver supports SACK: 2339 * 2340 * RFC6675/3517: It is the conventional algorithm. A packet is 2341 * considered lost if the number of higher sequence packets 2342 * SACKed is greater than or equal the DUPACK thoreshold 2343 * (reordering). This is implemented in tcp_mark_head_lost and 2344 * tcp_update_scoreboard. 2345 * 2346 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2347 * (2017-) that checks timing instead of counting DUPACKs. 2348 * Essentially a packet is considered lost if it's not S/ACKed 2349 * after RTT + reordering_window, where both metrics are 2350 * dynamically measured and adjusted. This is implemented in 2351 * tcp_rack_mark_lost. 2352 * 2353 * If the receiver does not support SACK: 2354 * 2355 * NewReno (RFC6582): in Recovery we assume that one segment 2356 * is lost (classic Reno). While we are in Recovery and 2357 * a partial ACK arrives, we assume that one more packet 2358 * is lost (NewReno). This heuristics are the same in NewReno 2359 * and SACK. 2360 * 2361 * Really tricky (and requiring careful tuning) part of algorithm 2362 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2363 * The first determines the moment _when_ we should reduce CWND and, 2364 * hence, slow down forward transmission. In fact, it determines the moment 2365 * when we decide that hole is caused by loss, rather than by a reorder. 2366 * 2367 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2368 * holes, caused by lost packets. 2369 * 2370 * And the most logically complicated part of algorithm is undo 2371 * heuristics. We detect false retransmits due to both too early 2372 * fast retransmit (reordering) and underestimated RTO, analyzing 2373 * timestamps and D-SACKs. When we detect that some segments were 2374 * retransmitted by mistake and CWND reduction was wrong, we undo 2375 * window reduction and abort recovery phase. This logic is hidden 2376 * inside several functions named tcp_try_undo_<something>. 2377 */ 2378 2379 /* This function decides, when we should leave Disordered state 2380 * and enter Recovery phase, reducing congestion window. 2381 * 2382 * Main question: may we further continue forward transmission 2383 * with the same cwnd? 2384 */ 2385 static bool tcp_time_to_recover(struct sock *sk, int flag) 2386 { 2387 struct tcp_sock *tp = tcp_sk(sk); 2388 2389 /* Trick#1: The loss is proven. */ 2390 if (tp->lost_out) 2391 return true; 2392 2393 /* Not-A-Trick#2 : Classic rule... */ 2394 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2395 return true; 2396 2397 return false; 2398 } 2399 2400 /* Detect loss in event "A" above by marking head of queue up as lost. 2401 * For RFC3517 SACK, a segment is considered lost if it 2402 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2403 * the maximum SACKed segments to pass before reaching this limit. 2404 */ 2405 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2406 { 2407 struct tcp_sock *tp = tcp_sk(sk); 2408 struct sk_buff *skb; 2409 int cnt; 2410 /* Use SACK to deduce losses of new sequences sent during recovery */ 2411 const u32 loss_high = tp->snd_nxt; 2412 2413 WARN_ON(packets > tp->packets_out); 2414 skb = tp->lost_skb_hint; 2415 if (skb) { 2416 /* Head already handled? */ 2417 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2418 return; 2419 cnt = tp->lost_cnt_hint; 2420 } else { 2421 skb = tcp_rtx_queue_head(sk); 2422 cnt = 0; 2423 } 2424 2425 skb_rbtree_walk_from(skb) { 2426 /* TODO: do this better */ 2427 /* this is not the most efficient way to do this... */ 2428 tp->lost_skb_hint = skb; 2429 tp->lost_cnt_hint = cnt; 2430 2431 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2432 break; 2433 2434 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2435 cnt += tcp_skb_pcount(skb); 2436 2437 if (cnt > packets) 2438 break; 2439 2440 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2441 tcp_mark_skb_lost(sk, skb); 2442 2443 if (mark_head) 2444 break; 2445 } 2446 tcp_verify_left_out(tp); 2447 } 2448 2449 /* Account newly detected lost packet(s) */ 2450 2451 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2452 { 2453 struct tcp_sock *tp = tcp_sk(sk); 2454 2455 if (tcp_is_sack(tp)) { 2456 int sacked_upto = tp->sacked_out - tp->reordering; 2457 if (sacked_upto >= 0) 2458 tcp_mark_head_lost(sk, sacked_upto, 0); 2459 else if (fast_rexmit) 2460 tcp_mark_head_lost(sk, 1, 1); 2461 } 2462 } 2463 2464 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2465 { 2466 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2467 before(tp->rx_opt.rcv_tsecr, when); 2468 } 2469 2470 /* skb is spurious retransmitted if the returned timestamp echo 2471 * reply is prior to the skb transmission time 2472 */ 2473 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2474 const struct sk_buff *skb) 2475 { 2476 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2477 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); 2478 } 2479 2480 /* Nothing was retransmitted or returned timestamp is less 2481 * than timestamp of the first retransmission. 2482 */ 2483 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2484 { 2485 const struct sock *sk = (const struct sock *)tp; 2486 2487 if (tp->retrans_stamp && 2488 tcp_tsopt_ecr_before(tp, tp->retrans_stamp)) 2489 return true; /* got echoed TS before first retransmission */ 2490 2491 /* Check if nothing was retransmitted (retrans_stamp==0), which may 2492 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp 2493 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear 2494 * retrans_stamp even if we had retransmitted the SYN. 2495 */ 2496 if (!tp->retrans_stamp && /* no record of a retransmit/SYN? */ 2497 sk->sk_state != TCP_SYN_SENT) /* not the FLAG_SYN_ACKED case? */ 2498 return true; /* nothing was retransmitted */ 2499 2500 return false; 2501 } 2502 2503 /* Undo procedures. */ 2504 2505 /* We can clear retrans_stamp when there are no retransmissions in the 2506 * window. It would seem that it is trivially available for us in 2507 * tp->retrans_out, however, that kind of assumptions doesn't consider 2508 * what will happen if errors occur when sending retransmission for the 2509 * second time. ...It could the that such segment has only 2510 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2511 * the head skb is enough except for some reneging corner cases that 2512 * are not worth the effort. 2513 * 2514 * Main reason for all this complexity is the fact that connection dying 2515 * time now depends on the validity of the retrans_stamp, in particular, 2516 * that successive retransmissions of a segment must not advance 2517 * retrans_stamp under any conditions. 2518 */ 2519 static bool tcp_any_retrans_done(const struct sock *sk) 2520 { 2521 const struct tcp_sock *tp = tcp_sk(sk); 2522 struct sk_buff *skb; 2523 2524 if (tp->retrans_out) 2525 return true; 2526 2527 skb = tcp_rtx_queue_head(sk); 2528 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2529 return true; 2530 2531 return false; 2532 } 2533 2534 /* If loss recovery is finished and there are no retransmits out in the 2535 * network, then we clear retrans_stamp so that upon the next loss recovery 2536 * retransmits_timed_out() and timestamp-undo are using the correct value. 2537 */ 2538 static void tcp_retrans_stamp_cleanup(struct sock *sk) 2539 { 2540 if (!tcp_any_retrans_done(sk)) 2541 tcp_sk(sk)->retrans_stamp = 0; 2542 } 2543 2544 static void DBGUNDO(struct sock *sk, const char *msg) 2545 { 2546 #if FASTRETRANS_DEBUG > 1 2547 struct tcp_sock *tp = tcp_sk(sk); 2548 struct inet_sock *inet = inet_sk(sk); 2549 2550 if (sk->sk_family == AF_INET) { 2551 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2552 msg, 2553 &inet->inet_daddr, ntohs(inet->inet_dport), 2554 tcp_snd_cwnd(tp), tcp_left_out(tp), 2555 tp->snd_ssthresh, tp->prior_ssthresh, 2556 tp->packets_out); 2557 } 2558 #if IS_ENABLED(CONFIG_IPV6) 2559 else if (sk->sk_family == AF_INET6) { 2560 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2561 msg, 2562 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2563 tcp_snd_cwnd(tp), tcp_left_out(tp), 2564 tp->snd_ssthresh, tp->prior_ssthresh, 2565 tp->packets_out); 2566 } 2567 #endif 2568 #endif 2569 } 2570 2571 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2572 { 2573 struct tcp_sock *tp = tcp_sk(sk); 2574 2575 if (unmark_loss) { 2576 struct sk_buff *skb; 2577 2578 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2579 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2580 } 2581 tp->lost_out = 0; 2582 tcp_clear_all_retrans_hints(tp); 2583 } 2584 2585 if (tp->prior_ssthresh) { 2586 const struct inet_connection_sock *icsk = inet_csk(sk); 2587 2588 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2589 2590 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2591 tp->snd_ssthresh = tp->prior_ssthresh; 2592 tcp_ecn_withdraw_cwr(tp); 2593 } 2594 } 2595 tp->snd_cwnd_stamp = tcp_jiffies32; 2596 tp->undo_marker = 0; 2597 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2598 } 2599 2600 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2601 { 2602 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2603 } 2604 2605 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2606 { 2607 struct tcp_sock *tp = tcp_sk(sk); 2608 2609 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2610 /* Hold old state until something *above* high_seq 2611 * is ACKed. For Reno it is MUST to prevent false 2612 * fast retransmits (RFC2582). SACK TCP is safe. */ 2613 if (!tcp_any_retrans_done(sk)) 2614 tp->retrans_stamp = 0; 2615 return true; 2616 } 2617 return false; 2618 } 2619 2620 /* People celebrate: "We love our President!" */ 2621 static bool tcp_try_undo_recovery(struct sock *sk) 2622 { 2623 struct tcp_sock *tp = tcp_sk(sk); 2624 2625 if (tcp_may_undo(tp)) { 2626 int mib_idx; 2627 2628 /* Happy end! We did not retransmit anything 2629 * or our original transmission succeeded. 2630 */ 2631 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2632 tcp_undo_cwnd_reduction(sk, false); 2633 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2634 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2635 else 2636 mib_idx = LINUX_MIB_TCPFULLUNDO; 2637 2638 NET_INC_STATS(sock_net(sk), mib_idx); 2639 } else if (tp->rack.reo_wnd_persist) { 2640 tp->rack.reo_wnd_persist--; 2641 } 2642 if (tcp_is_non_sack_preventing_reopen(sk)) 2643 return true; 2644 tcp_set_ca_state(sk, TCP_CA_Open); 2645 tp->is_sack_reneg = 0; 2646 return false; 2647 } 2648 2649 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2650 static bool tcp_try_undo_dsack(struct sock *sk) 2651 { 2652 struct tcp_sock *tp = tcp_sk(sk); 2653 2654 if (tp->undo_marker && !tp->undo_retrans) { 2655 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2656 tp->rack.reo_wnd_persist + 1); 2657 DBGUNDO(sk, "D-SACK"); 2658 tcp_undo_cwnd_reduction(sk, false); 2659 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2660 return true; 2661 } 2662 return false; 2663 } 2664 2665 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2666 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2667 { 2668 struct tcp_sock *tp = tcp_sk(sk); 2669 2670 if (frto_undo || tcp_may_undo(tp)) { 2671 tcp_undo_cwnd_reduction(sk, true); 2672 2673 DBGUNDO(sk, "partial loss"); 2674 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2675 if (frto_undo) 2676 NET_INC_STATS(sock_net(sk), 2677 LINUX_MIB_TCPSPURIOUSRTOS); 2678 inet_csk(sk)->icsk_retransmits = 0; 2679 if (tcp_is_non_sack_preventing_reopen(sk)) 2680 return true; 2681 if (frto_undo || tcp_is_sack(tp)) { 2682 tcp_set_ca_state(sk, TCP_CA_Open); 2683 tp->is_sack_reneg = 0; 2684 } 2685 return true; 2686 } 2687 return false; 2688 } 2689 2690 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2691 * It computes the number of packets to send (sndcnt) based on packets newly 2692 * delivered: 2693 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2694 * cwnd reductions across a full RTT. 2695 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2696 * But when SND_UNA is acked without further losses, 2697 * slow starts cwnd up to ssthresh to speed up the recovery. 2698 */ 2699 static void tcp_init_cwnd_reduction(struct sock *sk) 2700 { 2701 struct tcp_sock *tp = tcp_sk(sk); 2702 2703 tp->high_seq = tp->snd_nxt; 2704 tp->tlp_high_seq = 0; 2705 tp->snd_cwnd_cnt = 0; 2706 tp->prior_cwnd = tcp_snd_cwnd(tp); 2707 tp->prr_delivered = 0; 2708 tp->prr_out = 0; 2709 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2710 tcp_ecn_queue_cwr(tp); 2711 } 2712 2713 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2714 { 2715 struct tcp_sock *tp = tcp_sk(sk); 2716 int sndcnt = 0; 2717 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2718 2719 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2720 return; 2721 2722 trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag); 2723 2724 tp->prr_delivered += newly_acked_sacked; 2725 if (delta < 0) { 2726 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2727 tp->prior_cwnd - 1; 2728 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2729 } else { 2730 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2731 newly_acked_sacked); 2732 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2733 sndcnt++; 2734 sndcnt = min(delta, sndcnt); 2735 } 2736 /* Force a fast retransmit upon entering fast recovery */ 2737 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2738 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2739 } 2740 2741 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2742 { 2743 struct tcp_sock *tp = tcp_sk(sk); 2744 2745 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2746 return; 2747 2748 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2749 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2750 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2751 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2752 tp->snd_cwnd_stamp = tcp_jiffies32; 2753 } 2754 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2755 } 2756 2757 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2758 void tcp_enter_cwr(struct sock *sk) 2759 { 2760 struct tcp_sock *tp = tcp_sk(sk); 2761 2762 tp->prior_ssthresh = 0; 2763 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2764 tp->undo_marker = 0; 2765 tcp_init_cwnd_reduction(sk); 2766 tcp_set_ca_state(sk, TCP_CA_CWR); 2767 } 2768 } 2769 EXPORT_SYMBOL(tcp_enter_cwr); 2770 2771 static void tcp_try_keep_open(struct sock *sk) 2772 { 2773 struct tcp_sock *tp = tcp_sk(sk); 2774 int state = TCP_CA_Open; 2775 2776 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2777 state = TCP_CA_Disorder; 2778 2779 if (inet_csk(sk)->icsk_ca_state != state) { 2780 tcp_set_ca_state(sk, state); 2781 tp->high_seq = tp->snd_nxt; 2782 } 2783 } 2784 2785 static void tcp_try_to_open(struct sock *sk, int flag) 2786 { 2787 struct tcp_sock *tp = tcp_sk(sk); 2788 2789 tcp_verify_left_out(tp); 2790 2791 if (!tcp_any_retrans_done(sk)) 2792 tp->retrans_stamp = 0; 2793 2794 if (flag & FLAG_ECE) 2795 tcp_enter_cwr(sk); 2796 2797 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2798 tcp_try_keep_open(sk); 2799 } 2800 } 2801 2802 static void tcp_mtup_probe_failed(struct sock *sk) 2803 { 2804 struct inet_connection_sock *icsk = inet_csk(sk); 2805 2806 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2807 icsk->icsk_mtup.probe_size = 0; 2808 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2809 } 2810 2811 static void tcp_mtup_probe_success(struct sock *sk) 2812 { 2813 struct tcp_sock *tp = tcp_sk(sk); 2814 struct inet_connection_sock *icsk = inet_csk(sk); 2815 u64 val; 2816 2817 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2818 2819 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2820 do_div(val, icsk->icsk_mtup.probe_size); 2821 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2822 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2823 2824 tp->snd_cwnd_cnt = 0; 2825 tp->snd_cwnd_stamp = tcp_jiffies32; 2826 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2827 2828 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2829 icsk->icsk_mtup.probe_size = 0; 2830 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2831 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2832 } 2833 2834 /* Sometimes we deduce that packets have been dropped due to reasons other than 2835 * congestion, like path MTU reductions or failed client TFO attempts. In these 2836 * cases we call this function to retransmit as many packets as cwnd allows, 2837 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2838 * non-zero value (and may do so in a later calling context due to TSQ), we 2839 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2840 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2841 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2842 * prematurely). 2843 */ 2844 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2845 { 2846 const struct inet_connection_sock *icsk = inet_csk(sk); 2847 struct tcp_sock *tp = tcp_sk(sk); 2848 2849 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2850 tp->high_seq = tp->snd_nxt; 2851 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2852 tp->prior_ssthresh = 0; 2853 tp->undo_marker = 0; 2854 tcp_set_ca_state(sk, TCP_CA_Loss); 2855 } 2856 tcp_xmit_retransmit_queue(sk); 2857 } 2858 2859 /* Do a simple retransmit without using the backoff mechanisms in 2860 * tcp_timer. This is used for path mtu discovery. 2861 * The socket is already locked here. 2862 */ 2863 void tcp_simple_retransmit(struct sock *sk) 2864 { 2865 struct tcp_sock *tp = tcp_sk(sk); 2866 struct sk_buff *skb; 2867 int mss; 2868 2869 /* A fastopen SYN request is stored as two separate packets within 2870 * the retransmit queue, this is done by tcp_send_syn_data(). 2871 * As a result simply checking the MSS of the frames in the queue 2872 * will not work for the SYN packet. 2873 * 2874 * Us being here is an indication of a path MTU issue so we can 2875 * assume that the fastopen SYN was lost and just mark all the 2876 * frames in the retransmit queue as lost. We will use an MSS of 2877 * -1 to mark all frames as lost, otherwise compute the current MSS. 2878 */ 2879 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2880 mss = -1; 2881 else 2882 mss = tcp_current_mss(sk); 2883 2884 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2885 if (tcp_skb_seglen(skb) > mss) 2886 tcp_mark_skb_lost(sk, skb); 2887 } 2888 2889 tcp_clear_retrans_hints_partial(tp); 2890 2891 if (!tp->lost_out) 2892 return; 2893 2894 if (tcp_is_reno(tp)) 2895 tcp_limit_reno_sacked(tp); 2896 2897 tcp_verify_left_out(tp); 2898 2899 /* Don't muck with the congestion window here. 2900 * Reason is that we do not increase amount of _data_ 2901 * in network, but units changed and effective 2902 * cwnd/ssthresh really reduced now. 2903 */ 2904 tcp_non_congestion_loss_retransmit(sk); 2905 } 2906 EXPORT_IPV6_MOD(tcp_simple_retransmit); 2907 2908 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2909 { 2910 struct tcp_sock *tp = tcp_sk(sk); 2911 int mib_idx; 2912 2913 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */ 2914 tcp_retrans_stamp_cleanup(sk); 2915 2916 if (tcp_is_reno(tp)) 2917 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2918 else 2919 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2920 2921 NET_INC_STATS(sock_net(sk), mib_idx); 2922 2923 tp->prior_ssthresh = 0; 2924 tcp_init_undo(tp); 2925 2926 if (!tcp_in_cwnd_reduction(sk)) { 2927 if (!ece_ack) 2928 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2929 tcp_init_cwnd_reduction(sk); 2930 } 2931 tcp_set_ca_state(sk, TCP_CA_Recovery); 2932 } 2933 2934 static void tcp_update_rto_time(struct tcp_sock *tp) 2935 { 2936 if (tp->rto_stamp) { 2937 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; 2938 tp->rto_stamp = 0; 2939 } 2940 } 2941 2942 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2943 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2944 */ 2945 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2946 int *rexmit) 2947 { 2948 struct tcp_sock *tp = tcp_sk(sk); 2949 bool recovered = !before(tp->snd_una, tp->high_seq); 2950 2951 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2952 tcp_try_undo_loss(sk, false)) 2953 return; 2954 2955 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2956 /* Step 3.b. A timeout is spurious if not all data are 2957 * lost, i.e., never-retransmitted data are (s)acked. 2958 */ 2959 if ((flag & FLAG_ORIG_SACK_ACKED) && 2960 tcp_try_undo_loss(sk, true)) 2961 return; 2962 2963 if (after(tp->snd_nxt, tp->high_seq)) { 2964 if (flag & FLAG_DATA_SACKED || num_dupack) 2965 tp->frto = 0; /* Step 3.a. loss was real */ 2966 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2967 tp->high_seq = tp->snd_nxt; 2968 /* Step 2.b. Try send new data (but deferred until cwnd 2969 * is updated in tcp_ack()). Otherwise fall back to 2970 * the conventional recovery. 2971 */ 2972 if (!tcp_write_queue_empty(sk) && 2973 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2974 *rexmit = REXMIT_NEW; 2975 return; 2976 } 2977 tp->frto = 0; 2978 } 2979 } 2980 2981 if (recovered) { 2982 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2983 tcp_try_undo_recovery(sk); 2984 return; 2985 } 2986 if (tcp_is_reno(tp)) { 2987 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2988 * delivered. Lower inflight to clock out (re)transmissions. 2989 */ 2990 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2991 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2992 else if (flag & FLAG_SND_UNA_ADVANCED) 2993 tcp_reset_reno_sack(tp); 2994 } 2995 *rexmit = REXMIT_LOST; 2996 } 2997 2998 static bool tcp_force_fast_retransmit(struct sock *sk) 2999 { 3000 struct tcp_sock *tp = tcp_sk(sk); 3001 3002 return after(tcp_highest_sack_seq(tp), 3003 tp->snd_una + tp->reordering * tp->mss_cache); 3004 } 3005 3006 /* Undo during fast recovery after partial ACK. */ 3007 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 3008 bool *do_lost) 3009 { 3010 struct tcp_sock *tp = tcp_sk(sk); 3011 3012 if (tp->undo_marker && tcp_packet_delayed(tp)) { 3013 /* Plain luck! Hole if filled with delayed 3014 * packet, rather than with a retransmit. Check reordering. 3015 */ 3016 tcp_check_sack_reordering(sk, prior_snd_una, 1); 3017 3018 /* We are getting evidence that the reordering degree is higher 3019 * than we realized. If there are no retransmits out then we 3020 * can undo. Otherwise we clock out new packets but do not 3021 * mark more packets lost or retransmit more. 3022 */ 3023 if (tp->retrans_out) 3024 return true; 3025 3026 if (!tcp_any_retrans_done(sk)) 3027 tp->retrans_stamp = 0; 3028 3029 DBGUNDO(sk, "partial recovery"); 3030 tcp_undo_cwnd_reduction(sk, true); 3031 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 3032 tcp_try_keep_open(sk); 3033 } else { 3034 /* Partial ACK arrived. Force fast retransmit. */ 3035 *do_lost = tcp_force_fast_retransmit(sk); 3036 } 3037 return false; 3038 } 3039 3040 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 3041 { 3042 struct tcp_sock *tp = tcp_sk(sk); 3043 3044 if (tcp_rtx_queue_empty(sk)) 3045 return; 3046 3047 if (unlikely(tcp_is_reno(tp))) { 3048 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 3049 } else if (tcp_is_rack(sk)) { 3050 u32 prior_retrans = tp->retrans_out; 3051 3052 if (tcp_rack_mark_lost(sk)) 3053 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 3054 if (prior_retrans > tp->retrans_out) 3055 *ack_flag |= FLAG_LOST_RETRANS; 3056 } 3057 } 3058 3059 /* Process an event, which can update packets-in-flight not trivially. 3060 * Main goal of this function is to calculate new estimate for left_out, 3061 * taking into account both packets sitting in receiver's buffer and 3062 * packets lost by network. 3063 * 3064 * Besides that it updates the congestion state when packet loss or ECN 3065 * is detected. But it does not reduce the cwnd, it is done by the 3066 * congestion control later. 3067 * 3068 * It does _not_ decide what to send, it is made in function 3069 * tcp_xmit_retransmit_queue(). 3070 */ 3071 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3072 int num_dupack, int *ack_flag, int *rexmit) 3073 { 3074 struct inet_connection_sock *icsk = inet_csk(sk); 3075 struct tcp_sock *tp = tcp_sk(sk); 3076 int fast_rexmit = 0, flag = *ack_flag; 3077 bool ece_ack = flag & FLAG_ECE; 3078 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3079 tcp_force_fast_retransmit(sk)); 3080 3081 if (!tp->packets_out && tp->sacked_out) 3082 tp->sacked_out = 0; 3083 3084 /* Now state machine starts. 3085 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3086 if (ece_ack) 3087 tp->prior_ssthresh = 0; 3088 3089 /* B. In all the states check for reneging SACKs. */ 3090 if (tcp_check_sack_reneging(sk, ack_flag)) 3091 return; 3092 3093 /* C. Check consistency of the current state. */ 3094 tcp_verify_left_out(tp); 3095 3096 /* D. Check state exit conditions. State can be terminated 3097 * when high_seq is ACKed. */ 3098 if (icsk->icsk_ca_state == TCP_CA_Open) { 3099 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3100 tp->retrans_stamp = 0; 3101 } else if (!before(tp->snd_una, tp->high_seq)) { 3102 switch (icsk->icsk_ca_state) { 3103 case TCP_CA_CWR: 3104 /* CWR is to be held something *above* high_seq 3105 * is ACKed for CWR bit to reach receiver. */ 3106 if (tp->snd_una != tp->high_seq) { 3107 tcp_end_cwnd_reduction(sk); 3108 tcp_set_ca_state(sk, TCP_CA_Open); 3109 } 3110 break; 3111 3112 case TCP_CA_Recovery: 3113 if (tcp_is_reno(tp)) 3114 tcp_reset_reno_sack(tp); 3115 if (tcp_try_undo_recovery(sk)) 3116 return; 3117 tcp_end_cwnd_reduction(sk); 3118 break; 3119 } 3120 } 3121 3122 /* E. Process state. */ 3123 switch (icsk->icsk_ca_state) { 3124 case TCP_CA_Recovery: 3125 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3126 if (tcp_is_reno(tp)) 3127 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3128 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3129 return; 3130 3131 if (tcp_try_undo_dsack(sk)) 3132 tcp_try_to_open(sk, flag); 3133 3134 tcp_identify_packet_loss(sk, ack_flag); 3135 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3136 if (!tcp_time_to_recover(sk, flag)) 3137 return; 3138 /* Undo reverts the recovery state. If loss is evident, 3139 * starts a new recovery (e.g. reordering then loss); 3140 */ 3141 tcp_enter_recovery(sk, ece_ack); 3142 } 3143 break; 3144 case TCP_CA_Loss: 3145 tcp_process_loss(sk, flag, num_dupack, rexmit); 3146 if (icsk->icsk_ca_state != TCP_CA_Loss) 3147 tcp_update_rto_time(tp); 3148 tcp_identify_packet_loss(sk, ack_flag); 3149 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3150 (*ack_flag & FLAG_LOST_RETRANS))) 3151 return; 3152 /* Change state if cwnd is undone or retransmits are lost */ 3153 fallthrough; 3154 default: 3155 if (tcp_is_reno(tp)) { 3156 if (flag & FLAG_SND_UNA_ADVANCED) 3157 tcp_reset_reno_sack(tp); 3158 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3159 } 3160 3161 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3162 tcp_try_undo_dsack(sk); 3163 3164 tcp_identify_packet_loss(sk, ack_flag); 3165 if (!tcp_time_to_recover(sk, flag)) { 3166 tcp_try_to_open(sk, flag); 3167 return; 3168 } 3169 3170 /* MTU probe failure: don't reduce cwnd */ 3171 if (icsk->icsk_ca_state < TCP_CA_CWR && 3172 icsk->icsk_mtup.probe_size && 3173 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3174 tcp_mtup_probe_failed(sk); 3175 /* Restores the reduction we did in tcp_mtup_probe() */ 3176 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3177 tcp_simple_retransmit(sk); 3178 return; 3179 } 3180 3181 /* Otherwise enter Recovery state */ 3182 tcp_enter_recovery(sk, ece_ack); 3183 fast_rexmit = 1; 3184 } 3185 3186 if (!tcp_is_rack(sk) && do_lost) 3187 tcp_update_scoreboard(sk, fast_rexmit); 3188 *rexmit = REXMIT_LOST; 3189 } 3190 3191 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3192 { 3193 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3194 struct tcp_sock *tp = tcp_sk(sk); 3195 3196 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3197 /* If the remote keeps returning delayed ACKs, eventually 3198 * the min filter would pick it up and overestimate the 3199 * prop. delay when it expires. Skip suspected delayed ACKs. 3200 */ 3201 return; 3202 } 3203 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3204 rtt_us ? : jiffies_to_usecs(1)); 3205 } 3206 3207 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3208 long seq_rtt_us, long sack_rtt_us, 3209 long ca_rtt_us, struct rate_sample *rs) 3210 { 3211 const struct tcp_sock *tp = tcp_sk(sk); 3212 3213 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3214 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3215 * Karn's algorithm forbids taking RTT if some retransmitted data 3216 * is acked (RFC6298). 3217 */ 3218 if (seq_rtt_us < 0) 3219 seq_rtt_us = sack_rtt_us; 3220 3221 /* RTTM Rule: A TSecr value received in a segment is used to 3222 * update the averaged RTT measurement only if the segment 3223 * acknowledges some new data, i.e., only if it advances the 3224 * left edge of the send window. 3225 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3226 */ 3227 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && 3228 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) 3229 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp); 3230 3231 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3232 if (seq_rtt_us < 0) 3233 return false; 3234 3235 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3236 * always taken together with ACK, SACK, or TS-opts. Any negative 3237 * values will be skipped with the seq_rtt_us < 0 check above. 3238 */ 3239 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3240 tcp_rtt_estimator(sk, seq_rtt_us); 3241 tcp_set_rto(sk); 3242 3243 /* RFC6298: only reset backoff on valid RTT measurement. */ 3244 inet_csk(sk)->icsk_backoff = 0; 3245 return true; 3246 } 3247 3248 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3249 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3250 { 3251 struct rate_sample rs; 3252 long rtt_us = -1L; 3253 3254 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3255 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3256 3257 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3258 } 3259 3260 3261 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3262 { 3263 const struct inet_connection_sock *icsk = inet_csk(sk); 3264 3265 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3266 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3267 } 3268 3269 /* Restart timer after forward progress on connection. 3270 * RFC2988 recommends to restart timer to now+rto. 3271 */ 3272 void tcp_rearm_rto(struct sock *sk) 3273 { 3274 const struct inet_connection_sock *icsk = inet_csk(sk); 3275 struct tcp_sock *tp = tcp_sk(sk); 3276 3277 /* If the retrans timer is currently being used by Fast Open 3278 * for SYN-ACK retrans purpose, stay put. 3279 */ 3280 if (rcu_access_pointer(tp->fastopen_rsk)) 3281 return; 3282 3283 if (!tp->packets_out) { 3284 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3285 } else { 3286 u32 rto = inet_csk(sk)->icsk_rto; 3287 /* Offset the time elapsed after installing regular RTO */ 3288 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3289 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3290 s64 delta_us = tcp_rto_delta_us(sk); 3291 /* delta_us may not be positive if the socket is locked 3292 * when the retrans timer fires and is rescheduled. 3293 */ 3294 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3295 } 3296 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true); 3297 } 3298 } 3299 3300 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3301 static void tcp_set_xmit_timer(struct sock *sk) 3302 { 3303 if (!tcp_schedule_loss_probe(sk, true)) 3304 tcp_rearm_rto(sk); 3305 } 3306 3307 /* If we get here, the whole TSO packet has not been acked. */ 3308 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3309 { 3310 struct tcp_sock *tp = tcp_sk(sk); 3311 u32 packets_acked; 3312 3313 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3314 3315 packets_acked = tcp_skb_pcount(skb); 3316 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3317 return 0; 3318 packets_acked -= tcp_skb_pcount(skb); 3319 3320 if (packets_acked) { 3321 BUG_ON(tcp_skb_pcount(skb) == 0); 3322 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3323 } 3324 3325 return packets_acked; 3326 } 3327 3328 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3329 const struct sk_buff *ack_skb, u32 prior_snd_una) 3330 { 3331 const struct skb_shared_info *shinfo; 3332 3333 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3334 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3335 return; 3336 3337 shinfo = skb_shinfo(skb); 3338 if (!before(shinfo->tskey, prior_snd_una) && 3339 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3340 tcp_skb_tsorted_save(skb) { 3341 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3342 } tcp_skb_tsorted_restore(skb); 3343 } 3344 } 3345 3346 /* Remove acknowledged frames from the retransmission queue. If our packet 3347 * is before the ack sequence we can discard it as it's confirmed to have 3348 * arrived at the other end. 3349 */ 3350 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3351 u32 prior_fack, u32 prior_snd_una, 3352 struct tcp_sacktag_state *sack, bool ece_ack) 3353 { 3354 const struct inet_connection_sock *icsk = inet_csk(sk); 3355 u64 first_ackt, last_ackt; 3356 struct tcp_sock *tp = tcp_sk(sk); 3357 u32 prior_sacked = tp->sacked_out; 3358 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3359 struct sk_buff *skb, *next; 3360 bool fully_acked = true; 3361 long sack_rtt_us = -1L; 3362 long seq_rtt_us = -1L; 3363 long ca_rtt_us = -1L; 3364 u32 pkts_acked = 0; 3365 bool rtt_update; 3366 int flag = 0; 3367 3368 first_ackt = 0; 3369 3370 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3371 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3372 const u32 start_seq = scb->seq; 3373 u8 sacked = scb->sacked; 3374 u32 acked_pcount; 3375 3376 /* Determine how many packets and what bytes were acked, tso and else */ 3377 if (after(scb->end_seq, tp->snd_una)) { 3378 if (tcp_skb_pcount(skb) == 1 || 3379 !after(tp->snd_una, scb->seq)) 3380 break; 3381 3382 acked_pcount = tcp_tso_acked(sk, skb); 3383 if (!acked_pcount) 3384 break; 3385 fully_acked = false; 3386 } else { 3387 acked_pcount = tcp_skb_pcount(skb); 3388 } 3389 3390 if (unlikely(sacked & TCPCB_RETRANS)) { 3391 if (sacked & TCPCB_SACKED_RETRANS) 3392 tp->retrans_out -= acked_pcount; 3393 flag |= FLAG_RETRANS_DATA_ACKED; 3394 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3395 last_ackt = tcp_skb_timestamp_us(skb); 3396 WARN_ON_ONCE(last_ackt == 0); 3397 if (!first_ackt) 3398 first_ackt = last_ackt; 3399 3400 if (before(start_seq, reord)) 3401 reord = start_seq; 3402 if (!after(scb->end_seq, tp->high_seq)) 3403 flag |= FLAG_ORIG_SACK_ACKED; 3404 } 3405 3406 if (sacked & TCPCB_SACKED_ACKED) { 3407 tp->sacked_out -= acked_pcount; 3408 } else if (tcp_is_sack(tp)) { 3409 tcp_count_delivered(tp, acked_pcount, ece_ack); 3410 if (!tcp_skb_spurious_retrans(tp, skb)) 3411 tcp_rack_advance(tp, sacked, scb->end_seq, 3412 tcp_skb_timestamp_us(skb)); 3413 } 3414 if (sacked & TCPCB_LOST) 3415 tp->lost_out -= acked_pcount; 3416 3417 tp->packets_out -= acked_pcount; 3418 pkts_acked += acked_pcount; 3419 tcp_rate_skb_delivered(sk, skb, sack->rate); 3420 3421 /* Initial outgoing SYN's get put onto the write_queue 3422 * just like anything else we transmit. It is not 3423 * true data, and if we misinform our callers that 3424 * this ACK acks real data, we will erroneously exit 3425 * connection startup slow start one packet too 3426 * quickly. This is severely frowned upon behavior. 3427 */ 3428 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3429 flag |= FLAG_DATA_ACKED; 3430 } else { 3431 flag |= FLAG_SYN_ACKED; 3432 tp->retrans_stamp = 0; 3433 } 3434 3435 if (!fully_acked) 3436 break; 3437 3438 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3439 3440 next = skb_rb_next(skb); 3441 if (unlikely(skb == tp->retransmit_skb_hint)) 3442 tp->retransmit_skb_hint = NULL; 3443 if (unlikely(skb == tp->lost_skb_hint)) 3444 tp->lost_skb_hint = NULL; 3445 tcp_highest_sack_replace(sk, skb, next); 3446 tcp_rtx_queue_unlink_and_free(skb, sk); 3447 } 3448 3449 if (!skb) 3450 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3451 3452 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3453 tp->snd_up = tp->snd_una; 3454 3455 if (skb) { 3456 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3457 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3458 flag |= FLAG_SACK_RENEGING; 3459 } 3460 3461 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3462 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3463 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3464 3465 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3466 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3467 sack->rate->prior_delivered + 1 == tp->delivered && 3468 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3469 /* Conservatively mark a delayed ACK. It's typically 3470 * from a lone runt packet over the round trip to 3471 * a receiver w/o out-of-order or CE events. 3472 */ 3473 flag |= FLAG_ACK_MAYBE_DELAYED; 3474 } 3475 } 3476 if (sack->first_sackt) { 3477 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3478 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3479 } 3480 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3481 ca_rtt_us, sack->rate); 3482 3483 if (flag & FLAG_ACKED) { 3484 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3485 if (unlikely(icsk->icsk_mtup.probe_size && 3486 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3487 tcp_mtup_probe_success(sk); 3488 } 3489 3490 if (tcp_is_reno(tp)) { 3491 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3492 3493 /* If any of the cumulatively ACKed segments was 3494 * retransmitted, non-SACK case cannot confirm that 3495 * progress was due to original transmission due to 3496 * lack of TCPCB_SACKED_ACKED bits even if some of 3497 * the packets may have been never retransmitted. 3498 */ 3499 if (flag & FLAG_RETRANS_DATA_ACKED) 3500 flag &= ~FLAG_ORIG_SACK_ACKED; 3501 } else { 3502 int delta; 3503 3504 /* Non-retransmitted hole got filled? That's reordering */ 3505 if (before(reord, prior_fack)) 3506 tcp_check_sack_reordering(sk, reord, 0); 3507 3508 delta = prior_sacked - tp->sacked_out; 3509 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3510 } 3511 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3512 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3513 tcp_skb_timestamp_us(skb))) { 3514 /* Do not re-arm RTO if the sack RTT is measured from data sent 3515 * after when the head was last (re)transmitted. Otherwise the 3516 * timeout may continue to extend in loss recovery. 3517 */ 3518 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3519 } 3520 3521 if (icsk->icsk_ca_ops->pkts_acked) { 3522 struct ack_sample sample = { .pkts_acked = pkts_acked, 3523 .rtt_us = sack->rate->rtt_us }; 3524 3525 sample.in_flight = tp->mss_cache * 3526 (tp->delivered - sack->rate->prior_delivered); 3527 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3528 } 3529 3530 #if FASTRETRANS_DEBUG > 0 3531 WARN_ON((int)tp->sacked_out < 0); 3532 WARN_ON((int)tp->lost_out < 0); 3533 WARN_ON((int)tp->retrans_out < 0); 3534 if (!tp->packets_out && tcp_is_sack(tp)) { 3535 icsk = inet_csk(sk); 3536 if (tp->lost_out) { 3537 pr_debug("Leak l=%u %d\n", 3538 tp->lost_out, icsk->icsk_ca_state); 3539 tp->lost_out = 0; 3540 } 3541 if (tp->sacked_out) { 3542 pr_debug("Leak s=%u %d\n", 3543 tp->sacked_out, icsk->icsk_ca_state); 3544 tp->sacked_out = 0; 3545 } 3546 if (tp->retrans_out) { 3547 pr_debug("Leak r=%u %d\n", 3548 tp->retrans_out, icsk->icsk_ca_state); 3549 tp->retrans_out = 0; 3550 } 3551 } 3552 #endif 3553 return flag; 3554 } 3555 3556 static void tcp_ack_probe(struct sock *sk) 3557 { 3558 struct inet_connection_sock *icsk = inet_csk(sk); 3559 struct sk_buff *head = tcp_send_head(sk); 3560 const struct tcp_sock *tp = tcp_sk(sk); 3561 3562 /* Was it a usable window open? */ 3563 if (!head) 3564 return; 3565 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3566 icsk->icsk_backoff = 0; 3567 icsk->icsk_probes_tstamp = 0; 3568 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3569 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3570 * This function is not for random using! 3571 */ 3572 } else { 3573 unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk)); 3574 3575 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3576 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true); 3577 } 3578 } 3579 3580 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3581 { 3582 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3583 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3584 } 3585 3586 /* Decide wheather to run the increase function of congestion control. */ 3587 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3588 { 3589 /* If reordering is high then always grow cwnd whenever data is 3590 * delivered regardless of its ordering. Otherwise stay conservative 3591 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3592 * new SACK or ECE mark may first advance cwnd here and later reduce 3593 * cwnd in tcp_fastretrans_alert() based on more states. 3594 */ 3595 if (tcp_sk(sk)->reordering > 3596 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3597 return flag & FLAG_FORWARD_PROGRESS; 3598 3599 return flag & FLAG_DATA_ACKED; 3600 } 3601 3602 /* The "ultimate" congestion control function that aims to replace the rigid 3603 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3604 * It's called toward the end of processing an ACK with precise rate 3605 * information. All transmission or retransmission are delayed afterwards. 3606 */ 3607 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3608 int flag, const struct rate_sample *rs) 3609 { 3610 const struct inet_connection_sock *icsk = inet_csk(sk); 3611 3612 if (icsk->icsk_ca_ops->cong_control) { 3613 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs); 3614 return; 3615 } 3616 3617 if (tcp_in_cwnd_reduction(sk)) { 3618 /* Reduce cwnd if state mandates */ 3619 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3620 } else if (tcp_may_raise_cwnd(sk, flag)) { 3621 /* Advance cwnd if state allows */ 3622 tcp_cong_avoid(sk, ack, acked_sacked); 3623 } 3624 tcp_update_pacing_rate(sk); 3625 } 3626 3627 /* Check that window update is acceptable. 3628 * The function assumes that snd_una<=ack<=snd_next. 3629 */ 3630 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3631 const u32 ack, const u32 ack_seq, 3632 const u32 nwin) 3633 { 3634 return after(ack, tp->snd_una) || 3635 after(ack_seq, tp->snd_wl1) || 3636 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3637 } 3638 3639 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack) 3640 { 3641 #ifdef CONFIG_TCP_AO 3642 struct tcp_ao_info *ao; 3643 3644 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3645 return; 3646 3647 ao = rcu_dereference_protected(tp->ao_info, 3648 lockdep_sock_is_held((struct sock *)tp)); 3649 if (ao && ack < tp->snd_una) { 3650 ao->snd_sne++; 3651 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne); 3652 } 3653 #endif 3654 } 3655 3656 /* If we update tp->snd_una, also update tp->bytes_acked */ 3657 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3658 { 3659 u32 delta = ack - tp->snd_una; 3660 3661 sock_owned_by_me((struct sock *)tp); 3662 tp->bytes_acked += delta; 3663 tcp_snd_sne_update(tp, ack); 3664 tp->snd_una = ack; 3665 } 3666 3667 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq) 3668 { 3669 #ifdef CONFIG_TCP_AO 3670 struct tcp_ao_info *ao; 3671 3672 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3673 return; 3674 3675 ao = rcu_dereference_protected(tp->ao_info, 3676 lockdep_sock_is_held((struct sock *)tp)); 3677 if (ao && seq < tp->rcv_nxt) { 3678 ao->rcv_sne++; 3679 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne); 3680 } 3681 #endif 3682 } 3683 3684 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3685 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3686 { 3687 u32 delta = seq - tp->rcv_nxt; 3688 3689 sock_owned_by_me((struct sock *)tp); 3690 tp->bytes_received += delta; 3691 tcp_rcv_sne_update(tp, seq); 3692 WRITE_ONCE(tp->rcv_nxt, seq); 3693 } 3694 3695 /* Update our send window. 3696 * 3697 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3698 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3699 */ 3700 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3701 u32 ack_seq) 3702 { 3703 struct tcp_sock *tp = tcp_sk(sk); 3704 int flag = 0; 3705 u32 nwin = ntohs(tcp_hdr(skb)->window); 3706 3707 if (likely(!tcp_hdr(skb)->syn)) 3708 nwin <<= tp->rx_opt.snd_wscale; 3709 3710 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3711 flag |= FLAG_WIN_UPDATE; 3712 tcp_update_wl(tp, ack_seq); 3713 3714 if (tp->snd_wnd != nwin) { 3715 tp->snd_wnd = nwin; 3716 3717 /* Note, it is the only place, where 3718 * fast path is recovered for sending TCP. 3719 */ 3720 tp->pred_flags = 0; 3721 tcp_fast_path_check(sk); 3722 3723 if (!tcp_write_queue_empty(sk)) 3724 tcp_slow_start_after_idle_check(sk); 3725 3726 if (nwin > tp->max_window) { 3727 tp->max_window = nwin; 3728 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3729 } 3730 } 3731 } 3732 3733 tcp_snd_una_update(tp, ack); 3734 3735 return flag; 3736 } 3737 3738 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3739 u32 *last_oow_ack_time) 3740 { 3741 /* Paired with the WRITE_ONCE() in this function. */ 3742 u32 val = READ_ONCE(*last_oow_ack_time); 3743 3744 if (val) { 3745 s32 elapsed = (s32)(tcp_jiffies32 - val); 3746 3747 if (0 <= elapsed && 3748 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3749 NET_INC_STATS(net, mib_idx); 3750 return true; /* rate-limited: don't send yet! */ 3751 } 3752 } 3753 3754 /* Paired with the prior READ_ONCE() and with itself, 3755 * as we might be lockless. 3756 */ 3757 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3758 3759 return false; /* not rate-limited: go ahead, send dupack now! */ 3760 } 3761 3762 /* Return true if we're currently rate-limiting out-of-window ACKs and 3763 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3764 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3765 * attacks that send repeated SYNs or ACKs for the same connection. To 3766 * do this, we do not send a duplicate SYNACK or ACK if the remote 3767 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3768 */ 3769 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3770 int mib_idx, u32 *last_oow_ack_time) 3771 { 3772 /* Data packets without SYNs are not likely part of an ACK loop. */ 3773 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3774 !tcp_hdr(skb)->syn) 3775 return false; 3776 3777 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3778 } 3779 3780 /* RFC 5961 7 [ACK Throttling] */ 3781 static void tcp_send_challenge_ack(struct sock *sk) 3782 { 3783 struct tcp_sock *tp = tcp_sk(sk); 3784 struct net *net = sock_net(sk); 3785 u32 count, now, ack_limit; 3786 3787 /* First check our per-socket dupack rate limit. */ 3788 if (__tcp_oow_rate_limited(net, 3789 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3790 &tp->last_oow_ack_time)) 3791 return; 3792 3793 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3794 if (ack_limit == INT_MAX) 3795 goto send_ack; 3796 3797 /* Then check host-wide RFC 5961 rate limit. */ 3798 now = jiffies / HZ; 3799 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3800 u32 half = (ack_limit + 1) >> 1; 3801 3802 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3803 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3804 get_random_u32_inclusive(half, ack_limit + half - 1)); 3805 } 3806 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3807 if (count > 0) { 3808 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3809 send_ack: 3810 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3811 tcp_send_ack(sk); 3812 } 3813 } 3814 3815 static void tcp_store_ts_recent(struct tcp_sock *tp) 3816 { 3817 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3818 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3819 } 3820 3821 static int __tcp_replace_ts_recent(struct tcp_sock *tp, s32 tstamp_delta) 3822 { 3823 tcp_store_ts_recent(tp); 3824 return tstamp_delta > 0 ? FLAG_TS_PROGRESS : 0; 3825 } 3826 3827 static int tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3828 { 3829 s32 delta; 3830 3831 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3832 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3833 * extra check below makes sure this can only happen 3834 * for pure ACK frames. -DaveM 3835 * 3836 * Not only, also it occurs for expired timestamps. 3837 */ 3838 3839 if (tcp_paws_check(&tp->rx_opt, 0)) { 3840 delta = tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent; 3841 return __tcp_replace_ts_recent(tp, delta); 3842 } 3843 } 3844 3845 return 0; 3846 } 3847 3848 /* This routine deals with acks during a TLP episode and ends an episode by 3849 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3850 */ 3851 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3852 { 3853 struct tcp_sock *tp = tcp_sk(sk); 3854 3855 if (before(ack, tp->tlp_high_seq)) 3856 return; 3857 3858 if (!tp->tlp_retrans) { 3859 /* TLP of new data has been acknowledged */ 3860 tp->tlp_high_seq = 0; 3861 } else if (flag & FLAG_DSACK_TLP) { 3862 /* This DSACK means original and TLP probe arrived; no loss */ 3863 tp->tlp_high_seq = 0; 3864 } else if (after(ack, tp->tlp_high_seq)) { 3865 /* ACK advances: there was a loss, so reduce cwnd. Reset 3866 * tlp_high_seq in tcp_init_cwnd_reduction() 3867 */ 3868 tcp_init_cwnd_reduction(sk); 3869 tcp_set_ca_state(sk, TCP_CA_CWR); 3870 tcp_end_cwnd_reduction(sk); 3871 tcp_try_keep_open(sk); 3872 NET_INC_STATS(sock_net(sk), 3873 LINUX_MIB_TCPLOSSPROBERECOVERY); 3874 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3875 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3876 /* Pure dupack: original and TLP probe arrived; no loss */ 3877 tp->tlp_high_seq = 0; 3878 } 3879 } 3880 3881 static void tcp_in_ack_event(struct sock *sk, int flag) 3882 { 3883 const struct inet_connection_sock *icsk = inet_csk(sk); 3884 3885 if (icsk->icsk_ca_ops->in_ack_event) { 3886 u32 ack_ev_flags = 0; 3887 3888 if (flag & FLAG_WIN_UPDATE) 3889 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3890 if (flag & FLAG_SLOWPATH) { 3891 ack_ev_flags |= CA_ACK_SLOWPATH; 3892 if (flag & FLAG_ECE) 3893 ack_ev_flags |= CA_ACK_ECE; 3894 } 3895 3896 icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags); 3897 } 3898 } 3899 3900 /* Congestion control has updated the cwnd already. So if we're in 3901 * loss recovery then now we do any new sends (for FRTO) or 3902 * retransmits (for CA_Loss or CA_recovery) that make sense. 3903 */ 3904 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3905 { 3906 struct tcp_sock *tp = tcp_sk(sk); 3907 3908 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3909 return; 3910 3911 if (unlikely(rexmit == REXMIT_NEW)) { 3912 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3913 TCP_NAGLE_OFF); 3914 if (after(tp->snd_nxt, tp->high_seq)) 3915 return; 3916 tp->frto = 0; 3917 } 3918 tcp_xmit_retransmit_queue(sk); 3919 } 3920 3921 /* Returns the number of packets newly acked or sacked by the current ACK */ 3922 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3923 { 3924 const struct net *net = sock_net(sk); 3925 struct tcp_sock *tp = tcp_sk(sk); 3926 u32 delivered; 3927 3928 delivered = tp->delivered - prior_delivered; 3929 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3930 if (flag & FLAG_ECE) 3931 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3932 3933 return delivered; 3934 } 3935 3936 /* This routine deals with incoming acks, but not outgoing ones. */ 3937 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3938 { 3939 struct inet_connection_sock *icsk = inet_csk(sk); 3940 struct tcp_sock *tp = tcp_sk(sk); 3941 struct tcp_sacktag_state sack_state; 3942 struct rate_sample rs = { .prior_delivered = 0 }; 3943 u32 prior_snd_una = tp->snd_una; 3944 bool is_sack_reneg = tp->is_sack_reneg; 3945 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3946 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3947 int num_dupack = 0; 3948 int prior_packets = tp->packets_out; 3949 u32 delivered = tp->delivered; 3950 u32 lost = tp->lost; 3951 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3952 u32 prior_fack; 3953 3954 sack_state.first_sackt = 0; 3955 sack_state.rate = &rs; 3956 sack_state.sack_delivered = 0; 3957 3958 /* We very likely will need to access rtx queue. */ 3959 prefetch(sk->tcp_rtx_queue.rb_node); 3960 3961 /* If the ack is older than previous acks 3962 * then we can probably ignore it. 3963 */ 3964 if (before(ack, prior_snd_una)) { 3965 u32 max_window; 3966 3967 /* do not accept ACK for bytes we never sent. */ 3968 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3969 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3970 if (before(ack, prior_snd_una - max_window)) { 3971 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3972 tcp_send_challenge_ack(sk); 3973 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3974 } 3975 goto old_ack; 3976 } 3977 3978 /* If the ack includes data we haven't sent yet, discard 3979 * this segment (RFC793 Section 3.9). 3980 */ 3981 if (after(ack, tp->snd_nxt)) 3982 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3983 3984 if (after(ack, prior_snd_una)) { 3985 flag |= FLAG_SND_UNA_ADVANCED; 3986 icsk->icsk_retransmits = 0; 3987 3988 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3989 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3990 if (icsk->icsk_clean_acked) 3991 icsk->icsk_clean_acked(sk, ack); 3992 #endif 3993 } 3994 3995 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3996 rs.prior_in_flight = tcp_packets_in_flight(tp); 3997 3998 /* ts_recent update must be made after we are sure that the packet 3999 * is in window. 4000 */ 4001 if (flag & FLAG_UPDATE_TS_RECENT) 4002 flag |= tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4003 4004 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 4005 FLAG_SND_UNA_ADVANCED) { 4006 /* Window is constant, pure forward advance. 4007 * No more checks are required. 4008 * Note, we use the fact that SND.UNA>=SND.WL2. 4009 */ 4010 tcp_update_wl(tp, ack_seq); 4011 tcp_snd_una_update(tp, ack); 4012 flag |= FLAG_WIN_UPDATE; 4013 4014 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 4015 } else { 4016 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 4017 flag |= FLAG_DATA; 4018 else 4019 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 4020 4021 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 4022 4023 if (TCP_SKB_CB(skb)->sacked) 4024 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4025 &sack_state); 4026 4027 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) 4028 flag |= FLAG_ECE; 4029 4030 if (sack_state.sack_delivered) 4031 tcp_count_delivered(tp, sack_state.sack_delivered, 4032 flag & FLAG_ECE); 4033 } 4034 4035 /* This is a deviation from RFC3168 since it states that: 4036 * "When the TCP data sender is ready to set the CWR bit after reducing 4037 * the congestion window, it SHOULD set the CWR bit only on the first 4038 * new data packet that it transmits." 4039 * We accept CWR on pure ACKs to be more robust 4040 * with widely-deployed TCP implementations that do this. 4041 */ 4042 tcp_ecn_accept_cwr(sk, skb); 4043 4044 /* We passed data and got it acked, remove any soft error 4045 * log. Something worked... 4046 */ 4047 WRITE_ONCE(sk->sk_err_soft, 0); 4048 icsk->icsk_probes_out = 0; 4049 tp->rcv_tstamp = tcp_jiffies32; 4050 if (!prior_packets) 4051 goto no_queue; 4052 4053 /* See if we can take anything off of the retransmit queue. */ 4054 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 4055 &sack_state, flag & FLAG_ECE); 4056 4057 tcp_rack_update_reo_wnd(sk, &rs); 4058 4059 tcp_in_ack_event(sk, flag); 4060 4061 if (tp->tlp_high_seq) 4062 tcp_process_tlp_ack(sk, ack, flag); 4063 4064 if (tcp_ack_is_dubious(sk, flag)) { 4065 if (!(flag & (FLAG_SND_UNA_ADVANCED | 4066 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 4067 num_dupack = 1; 4068 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 4069 if (!(flag & FLAG_DATA)) 4070 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4071 } 4072 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4073 &rexmit); 4074 } 4075 4076 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 4077 if (flag & FLAG_SET_XMIT_TIMER) 4078 tcp_set_xmit_timer(sk); 4079 4080 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 4081 sk_dst_confirm(sk); 4082 4083 delivered = tcp_newly_delivered(sk, delivered, flag); 4084 lost = tp->lost - lost; /* freshly marked lost */ 4085 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 4086 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 4087 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 4088 tcp_xmit_recovery(sk, rexmit); 4089 return 1; 4090 4091 no_queue: 4092 tcp_in_ack_event(sk, flag); 4093 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 4094 if (flag & FLAG_DSACKING_ACK) { 4095 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4096 &rexmit); 4097 tcp_newly_delivered(sk, delivered, flag); 4098 } 4099 /* If this ack opens up a zero window, clear backoff. It was 4100 * being used to time the probes, and is probably far higher than 4101 * it needs to be for normal retransmission. 4102 */ 4103 tcp_ack_probe(sk); 4104 4105 if (tp->tlp_high_seq) 4106 tcp_process_tlp_ack(sk, ack, flag); 4107 return 1; 4108 4109 old_ack: 4110 /* If data was SACKed, tag it and see if we should send more data. 4111 * If data was DSACKed, see if we can undo a cwnd reduction. 4112 */ 4113 if (TCP_SKB_CB(skb)->sacked) { 4114 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4115 &sack_state); 4116 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4117 &rexmit); 4118 tcp_newly_delivered(sk, delivered, flag); 4119 tcp_xmit_recovery(sk, rexmit); 4120 } 4121 4122 return 0; 4123 } 4124 4125 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4126 bool syn, struct tcp_fastopen_cookie *foc, 4127 bool exp_opt) 4128 { 4129 /* Valid only in SYN or SYN-ACK with an even length. */ 4130 if (!foc || !syn || len < 0 || (len & 1)) 4131 return; 4132 4133 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4134 len <= TCP_FASTOPEN_COOKIE_MAX) 4135 memcpy(foc->val, cookie, len); 4136 else if (len != 0) 4137 len = -1; 4138 foc->len = len; 4139 foc->exp = exp_opt; 4140 } 4141 4142 static bool smc_parse_options(const struct tcphdr *th, 4143 struct tcp_options_received *opt_rx, 4144 const unsigned char *ptr, 4145 int opsize) 4146 { 4147 #if IS_ENABLED(CONFIG_SMC) 4148 if (static_branch_unlikely(&tcp_have_smc)) { 4149 if (th->syn && !(opsize & 1) && 4150 opsize >= TCPOLEN_EXP_SMC_BASE && 4151 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4152 opt_rx->smc_ok = 1; 4153 return true; 4154 } 4155 } 4156 #endif 4157 return false; 4158 } 4159 4160 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4161 * value on success. 4162 */ 4163 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4164 { 4165 const unsigned char *ptr = (const unsigned char *)(th + 1); 4166 int length = (th->doff * 4) - sizeof(struct tcphdr); 4167 u16 mss = 0; 4168 4169 while (length > 0) { 4170 int opcode = *ptr++; 4171 int opsize; 4172 4173 switch (opcode) { 4174 case TCPOPT_EOL: 4175 return mss; 4176 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4177 length--; 4178 continue; 4179 default: 4180 if (length < 2) 4181 return mss; 4182 opsize = *ptr++; 4183 if (opsize < 2) /* "silly options" */ 4184 return mss; 4185 if (opsize > length) 4186 return mss; /* fail on partial options */ 4187 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4188 u16 in_mss = get_unaligned_be16(ptr); 4189 4190 if (in_mss) { 4191 if (user_mss && user_mss < in_mss) 4192 in_mss = user_mss; 4193 mss = in_mss; 4194 } 4195 } 4196 ptr += opsize - 2; 4197 length -= opsize; 4198 } 4199 } 4200 return mss; 4201 } 4202 4203 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4204 * But, this can also be called on packets in the established flow when 4205 * the fast version below fails. 4206 */ 4207 void tcp_parse_options(const struct net *net, 4208 const struct sk_buff *skb, 4209 struct tcp_options_received *opt_rx, int estab, 4210 struct tcp_fastopen_cookie *foc) 4211 { 4212 const unsigned char *ptr; 4213 const struct tcphdr *th = tcp_hdr(skb); 4214 int length = (th->doff * 4) - sizeof(struct tcphdr); 4215 4216 ptr = (const unsigned char *)(th + 1); 4217 opt_rx->saw_tstamp = 0; 4218 opt_rx->saw_unknown = 0; 4219 4220 while (length > 0) { 4221 int opcode = *ptr++; 4222 int opsize; 4223 4224 switch (opcode) { 4225 case TCPOPT_EOL: 4226 return; 4227 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4228 length--; 4229 continue; 4230 default: 4231 if (length < 2) 4232 return; 4233 opsize = *ptr++; 4234 if (opsize < 2) /* "silly options" */ 4235 return; 4236 if (opsize > length) 4237 return; /* don't parse partial options */ 4238 switch (opcode) { 4239 case TCPOPT_MSS: 4240 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4241 u16 in_mss = get_unaligned_be16(ptr); 4242 if (in_mss) { 4243 if (opt_rx->user_mss && 4244 opt_rx->user_mss < in_mss) 4245 in_mss = opt_rx->user_mss; 4246 opt_rx->mss_clamp = in_mss; 4247 } 4248 } 4249 break; 4250 case TCPOPT_WINDOW: 4251 if (opsize == TCPOLEN_WINDOW && th->syn && 4252 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4253 __u8 snd_wscale = *(__u8 *)ptr; 4254 opt_rx->wscale_ok = 1; 4255 if (snd_wscale > TCP_MAX_WSCALE) { 4256 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4257 __func__, 4258 snd_wscale, 4259 TCP_MAX_WSCALE); 4260 snd_wscale = TCP_MAX_WSCALE; 4261 } 4262 opt_rx->snd_wscale = snd_wscale; 4263 } 4264 break; 4265 case TCPOPT_TIMESTAMP: 4266 if ((opsize == TCPOLEN_TIMESTAMP) && 4267 ((estab && opt_rx->tstamp_ok) || 4268 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4269 opt_rx->saw_tstamp = 1; 4270 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4271 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4272 } 4273 break; 4274 case TCPOPT_SACK_PERM: 4275 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4276 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4277 opt_rx->sack_ok = TCP_SACK_SEEN; 4278 tcp_sack_reset(opt_rx); 4279 } 4280 break; 4281 4282 case TCPOPT_SACK: 4283 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4284 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4285 opt_rx->sack_ok) { 4286 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4287 } 4288 break; 4289 #ifdef CONFIG_TCP_MD5SIG 4290 case TCPOPT_MD5SIG: 4291 /* The MD5 Hash has already been 4292 * checked (see tcp_v{4,6}_rcv()). 4293 */ 4294 break; 4295 #endif 4296 #ifdef CONFIG_TCP_AO 4297 case TCPOPT_AO: 4298 /* TCP AO has already been checked 4299 * (see tcp_inbound_ao_hash()). 4300 */ 4301 break; 4302 #endif 4303 case TCPOPT_FASTOPEN: 4304 tcp_parse_fastopen_option( 4305 opsize - TCPOLEN_FASTOPEN_BASE, 4306 ptr, th->syn, foc, false); 4307 break; 4308 4309 case TCPOPT_EXP: 4310 /* Fast Open option shares code 254 using a 4311 * 16 bits magic number. 4312 */ 4313 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4314 get_unaligned_be16(ptr) == 4315 TCPOPT_FASTOPEN_MAGIC) { 4316 tcp_parse_fastopen_option(opsize - 4317 TCPOLEN_EXP_FASTOPEN_BASE, 4318 ptr + 2, th->syn, foc, true); 4319 break; 4320 } 4321 4322 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4323 break; 4324 4325 opt_rx->saw_unknown = 1; 4326 break; 4327 4328 default: 4329 opt_rx->saw_unknown = 1; 4330 } 4331 ptr += opsize-2; 4332 length -= opsize; 4333 } 4334 } 4335 } 4336 EXPORT_SYMBOL(tcp_parse_options); 4337 4338 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4339 { 4340 const __be32 *ptr = (const __be32 *)(th + 1); 4341 4342 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4343 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4344 tp->rx_opt.saw_tstamp = 1; 4345 ++ptr; 4346 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4347 ++ptr; 4348 if (*ptr) 4349 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4350 else 4351 tp->rx_opt.rcv_tsecr = 0; 4352 return true; 4353 } 4354 return false; 4355 } 4356 4357 /* Fast parse options. This hopes to only see timestamps. 4358 * If it is wrong it falls back on tcp_parse_options(). 4359 */ 4360 static bool tcp_fast_parse_options(const struct net *net, 4361 const struct sk_buff *skb, 4362 const struct tcphdr *th, struct tcp_sock *tp) 4363 { 4364 /* In the spirit of fast parsing, compare doff directly to constant 4365 * values. Because equality is used, short doff can be ignored here. 4366 */ 4367 if (th->doff == (sizeof(*th) / 4)) { 4368 tp->rx_opt.saw_tstamp = 0; 4369 return false; 4370 } else if (tp->rx_opt.tstamp_ok && 4371 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4372 if (tcp_parse_aligned_timestamp(tp, th)) 4373 return true; 4374 } 4375 4376 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4377 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4378 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4379 4380 return true; 4381 } 4382 4383 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4384 /* 4385 * Parse Signature options 4386 */ 4387 int tcp_do_parse_auth_options(const struct tcphdr *th, 4388 const u8 **md5_hash, const u8 **ao_hash) 4389 { 4390 int length = (th->doff << 2) - sizeof(*th); 4391 const u8 *ptr = (const u8 *)(th + 1); 4392 unsigned int minlen = TCPOLEN_MD5SIG; 4393 4394 if (IS_ENABLED(CONFIG_TCP_AO)) 4395 minlen = sizeof(struct tcp_ao_hdr) + 1; 4396 4397 *md5_hash = NULL; 4398 *ao_hash = NULL; 4399 4400 /* If not enough data remaining, we can short cut */ 4401 while (length >= minlen) { 4402 int opcode = *ptr++; 4403 int opsize; 4404 4405 switch (opcode) { 4406 case TCPOPT_EOL: 4407 return 0; 4408 case TCPOPT_NOP: 4409 length--; 4410 continue; 4411 default: 4412 opsize = *ptr++; 4413 if (opsize < 2 || opsize > length) 4414 return -EINVAL; 4415 if (opcode == TCPOPT_MD5SIG) { 4416 if (opsize != TCPOLEN_MD5SIG) 4417 return -EINVAL; 4418 if (unlikely(*md5_hash || *ao_hash)) 4419 return -EEXIST; 4420 *md5_hash = ptr; 4421 } else if (opcode == TCPOPT_AO) { 4422 if (opsize <= sizeof(struct tcp_ao_hdr)) 4423 return -EINVAL; 4424 if (unlikely(*md5_hash || *ao_hash)) 4425 return -EEXIST; 4426 *ao_hash = ptr; 4427 } 4428 } 4429 ptr += opsize - 2; 4430 length -= opsize; 4431 } 4432 return 0; 4433 } 4434 EXPORT_SYMBOL(tcp_do_parse_auth_options); 4435 #endif 4436 4437 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4438 * 4439 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4440 * it can pass through stack. So, the following predicate verifies that 4441 * this segment is not used for anything but congestion avoidance or 4442 * fast retransmit. Moreover, we even are able to eliminate most of such 4443 * second order effects, if we apply some small "replay" window (~RTO) 4444 * to timestamp space. 4445 * 4446 * All these measures still do not guarantee that we reject wrapped ACKs 4447 * on networks with high bandwidth, when sequence space is recycled fastly, 4448 * but it guarantees that such events will be very rare and do not affect 4449 * connection seriously. This doesn't look nice, but alas, PAWS is really 4450 * buggy extension. 4451 * 4452 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4453 * states that events when retransmit arrives after original data are rare. 4454 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4455 * the biggest problem on large power networks even with minor reordering. 4456 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4457 * up to bandwidth of 18Gigabit/sec. 8) ] 4458 */ 4459 4460 /* Estimates max number of increments of remote peer TSval in 4461 * a replay window (based on our current RTO estimation). 4462 */ 4463 static u32 tcp_tsval_replay(const struct sock *sk) 4464 { 4465 /* If we use usec TS resolution, 4466 * then expect the remote peer to use the same resolution. 4467 */ 4468 if (tcp_sk(sk)->tcp_usec_ts) 4469 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ); 4470 4471 /* RFC 7323 recommends a TSval clock between 1ms and 1sec. 4472 * We know that some OS (including old linux) can use 1200 Hz. 4473 */ 4474 return inet_csk(sk)->icsk_rto * 1200 / HZ; 4475 } 4476 4477 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk, 4478 const struct sk_buff *skb) 4479 { 4480 const struct tcp_sock *tp = tcp_sk(sk); 4481 const struct tcphdr *th = tcp_hdr(skb); 4482 SKB_DR_INIT(reason, TCP_RFC7323_PAWS); 4483 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4484 u32 seq = TCP_SKB_CB(skb)->seq; 4485 4486 /* 1. Is this not a pure ACK ? */ 4487 if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq) 4488 return reason; 4489 4490 /* 2. Is its sequence not the expected one ? */ 4491 if (seq != tp->rcv_nxt) 4492 return before(seq, tp->rcv_nxt) ? 4493 SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK : 4494 reason; 4495 4496 /* 3. Is this not a duplicate ACK ? */ 4497 if (ack != tp->snd_una) 4498 return reason; 4499 4500 /* 4. Is this updating the window ? */ 4501 if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) << 4502 tp->rx_opt.snd_wscale)) 4503 return reason; 4504 4505 /* 5. Is this not in the replay window ? */ 4506 if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > 4507 tcp_tsval_replay(sk)) 4508 return reason; 4509 4510 return 0; 4511 } 4512 4513 /* Check segment sequence number for validity. 4514 * 4515 * Segment controls are considered valid, if the segment 4516 * fits to the window after truncation to the window. Acceptability 4517 * of data (and SYN, FIN, of course) is checked separately. 4518 * See tcp_data_queue(), for example. 4519 * 4520 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4521 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4522 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4523 * (borrowed from freebsd) 4524 */ 4525 4526 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4527 u32 seq, u32 end_seq) 4528 { 4529 if (before(end_seq, tp->rcv_wup)) 4530 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4531 4532 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4533 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4534 4535 return SKB_NOT_DROPPED_YET; 4536 } 4537 4538 4539 void tcp_done_with_error(struct sock *sk, int err) 4540 { 4541 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4542 WRITE_ONCE(sk->sk_err, err); 4543 smp_wmb(); 4544 4545 tcp_write_queue_purge(sk); 4546 tcp_done(sk); 4547 4548 if (!sock_flag(sk, SOCK_DEAD)) 4549 sk_error_report(sk); 4550 } 4551 EXPORT_IPV6_MOD(tcp_done_with_error); 4552 4553 /* When we get a reset we do this. */ 4554 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4555 { 4556 int err; 4557 4558 trace_tcp_receive_reset(sk); 4559 4560 /* mptcp can't tell us to ignore reset pkts, 4561 * so just ignore the return value of mptcp_incoming_options(). 4562 */ 4563 if (sk_is_mptcp(sk)) 4564 mptcp_incoming_options(sk, skb); 4565 4566 /* We want the right error as BSD sees it (and indeed as we do). */ 4567 switch (sk->sk_state) { 4568 case TCP_SYN_SENT: 4569 err = ECONNREFUSED; 4570 break; 4571 case TCP_CLOSE_WAIT: 4572 err = EPIPE; 4573 break; 4574 case TCP_CLOSE: 4575 return; 4576 default: 4577 err = ECONNRESET; 4578 } 4579 tcp_done_with_error(sk, err); 4580 } 4581 4582 /* 4583 * Process the FIN bit. This now behaves as it is supposed to work 4584 * and the FIN takes effect when it is validly part of sequence 4585 * space. Not before when we get holes. 4586 * 4587 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4588 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4589 * TIME-WAIT) 4590 * 4591 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4592 * close and we go into CLOSING (and later onto TIME-WAIT) 4593 * 4594 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4595 */ 4596 void tcp_fin(struct sock *sk) 4597 { 4598 struct tcp_sock *tp = tcp_sk(sk); 4599 4600 inet_csk_schedule_ack(sk); 4601 4602 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4603 sock_set_flag(sk, SOCK_DONE); 4604 4605 switch (sk->sk_state) { 4606 case TCP_SYN_RECV: 4607 case TCP_ESTABLISHED: 4608 /* Move to CLOSE_WAIT */ 4609 tcp_set_state(sk, TCP_CLOSE_WAIT); 4610 inet_csk_enter_pingpong_mode(sk); 4611 break; 4612 4613 case TCP_CLOSE_WAIT: 4614 case TCP_CLOSING: 4615 /* Received a retransmission of the FIN, do 4616 * nothing. 4617 */ 4618 break; 4619 case TCP_LAST_ACK: 4620 /* RFC793: Remain in the LAST-ACK state. */ 4621 break; 4622 4623 case TCP_FIN_WAIT1: 4624 /* This case occurs when a simultaneous close 4625 * happens, we must ack the received FIN and 4626 * enter the CLOSING state. 4627 */ 4628 tcp_send_ack(sk); 4629 tcp_set_state(sk, TCP_CLOSING); 4630 break; 4631 case TCP_FIN_WAIT2: 4632 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4633 tcp_send_ack(sk); 4634 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4635 break; 4636 default: 4637 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4638 * cases we should never reach this piece of code. 4639 */ 4640 pr_err("%s: Impossible, sk->sk_state=%d\n", 4641 __func__, sk->sk_state); 4642 break; 4643 } 4644 4645 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4646 * Probably, we should reset in this case. For now drop them. 4647 */ 4648 skb_rbtree_purge(&tp->out_of_order_queue); 4649 if (tcp_is_sack(tp)) 4650 tcp_sack_reset(&tp->rx_opt); 4651 4652 if (!sock_flag(sk, SOCK_DEAD)) { 4653 sk->sk_state_change(sk); 4654 4655 /* Do not send POLL_HUP for half duplex close. */ 4656 if (sk->sk_shutdown == SHUTDOWN_MASK || 4657 sk->sk_state == TCP_CLOSE) 4658 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4659 else 4660 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4661 } 4662 } 4663 4664 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4665 u32 end_seq) 4666 { 4667 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4668 if (before(seq, sp->start_seq)) 4669 sp->start_seq = seq; 4670 if (after(end_seq, sp->end_seq)) 4671 sp->end_seq = end_seq; 4672 return true; 4673 } 4674 return false; 4675 } 4676 4677 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4678 { 4679 struct tcp_sock *tp = tcp_sk(sk); 4680 4681 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4682 int mib_idx; 4683 4684 if (before(seq, tp->rcv_nxt)) 4685 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4686 else 4687 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4688 4689 NET_INC_STATS(sock_net(sk), mib_idx); 4690 4691 tp->rx_opt.dsack = 1; 4692 tp->duplicate_sack[0].start_seq = seq; 4693 tp->duplicate_sack[0].end_seq = end_seq; 4694 } 4695 } 4696 4697 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4698 { 4699 struct tcp_sock *tp = tcp_sk(sk); 4700 4701 if (!tp->rx_opt.dsack) 4702 tcp_dsack_set(sk, seq, end_seq); 4703 else 4704 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4705 } 4706 4707 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4708 { 4709 /* When the ACK path fails or drops most ACKs, the sender would 4710 * timeout and spuriously retransmit the same segment repeatedly. 4711 * If it seems our ACKs are not reaching the other side, 4712 * based on receiving a duplicate data segment with new flowlabel 4713 * (suggesting the sender suffered an RTO), and we are not already 4714 * repathing due to our own RTO, then rehash the socket to repath our 4715 * packets. 4716 */ 4717 #if IS_ENABLED(CONFIG_IPV6) 4718 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 4719 skb->protocol == htons(ETH_P_IPV6) && 4720 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 4721 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 4722 sk_rethink_txhash(sk)) 4723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4724 4725 /* Save last flowlabel after a spurious retrans. */ 4726 tcp_save_lrcv_flowlabel(sk, skb); 4727 #endif 4728 } 4729 4730 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4731 { 4732 struct tcp_sock *tp = tcp_sk(sk); 4733 4734 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4735 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4736 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4737 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4738 4739 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4740 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4741 4742 tcp_rcv_spurious_retrans(sk, skb); 4743 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4744 end_seq = tp->rcv_nxt; 4745 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4746 } 4747 } 4748 4749 tcp_send_ack(sk); 4750 } 4751 4752 /* These routines update the SACK block as out-of-order packets arrive or 4753 * in-order packets close up the sequence space. 4754 */ 4755 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4756 { 4757 int this_sack; 4758 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4759 struct tcp_sack_block *swalk = sp + 1; 4760 4761 /* See if the recent change to the first SACK eats into 4762 * or hits the sequence space of other SACK blocks, if so coalesce. 4763 */ 4764 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4765 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4766 int i; 4767 4768 /* Zap SWALK, by moving every further SACK up by one slot. 4769 * Decrease num_sacks. 4770 */ 4771 tp->rx_opt.num_sacks--; 4772 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4773 sp[i] = sp[i + 1]; 4774 continue; 4775 } 4776 this_sack++; 4777 swalk++; 4778 } 4779 } 4780 4781 void tcp_sack_compress_send_ack(struct sock *sk) 4782 { 4783 struct tcp_sock *tp = tcp_sk(sk); 4784 4785 if (!tp->compressed_ack) 4786 return; 4787 4788 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4789 __sock_put(sk); 4790 4791 /* Since we have to send one ack finally, 4792 * substract one from tp->compressed_ack to keep 4793 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4794 */ 4795 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4796 tp->compressed_ack - 1); 4797 4798 tp->compressed_ack = 0; 4799 tcp_send_ack(sk); 4800 } 4801 4802 /* Reasonable amount of sack blocks included in TCP SACK option 4803 * The max is 4, but this becomes 3 if TCP timestamps are there. 4804 * Given that SACK packets might be lost, be conservative and use 2. 4805 */ 4806 #define TCP_SACK_BLOCKS_EXPECTED 2 4807 4808 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4809 { 4810 struct tcp_sock *tp = tcp_sk(sk); 4811 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4812 int cur_sacks = tp->rx_opt.num_sacks; 4813 int this_sack; 4814 4815 if (!cur_sacks) 4816 goto new_sack; 4817 4818 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4819 if (tcp_sack_extend(sp, seq, end_seq)) { 4820 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4821 tcp_sack_compress_send_ack(sk); 4822 /* Rotate this_sack to the first one. */ 4823 for (; this_sack > 0; this_sack--, sp--) 4824 swap(*sp, *(sp - 1)); 4825 if (cur_sacks > 1) 4826 tcp_sack_maybe_coalesce(tp); 4827 return; 4828 } 4829 } 4830 4831 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4832 tcp_sack_compress_send_ack(sk); 4833 4834 /* Could not find an adjacent existing SACK, build a new one, 4835 * put it at the front, and shift everyone else down. We 4836 * always know there is at least one SACK present already here. 4837 * 4838 * If the sack array is full, forget about the last one. 4839 */ 4840 if (this_sack >= TCP_NUM_SACKS) { 4841 this_sack--; 4842 tp->rx_opt.num_sacks--; 4843 sp--; 4844 } 4845 for (; this_sack > 0; this_sack--, sp--) 4846 *sp = *(sp - 1); 4847 4848 new_sack: 4849 /* Build the new head SACK, and we're done. */ 4850 sp->start_seq = seq; 4851 sp->end_seq = end_seq; 4852 tp->rx_opt.num_sacks++; 4853 } 4854 4855 /* RCV.NXT advances, some SACKs should be eaten. */ 4856 4857 static void tcp_sack_remove(struct tcp_sock *tp) 4858 { 4859 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4860 int num_sacks = tp->rx_opt.num_sacks; 4861 int this_sack; 4862 4863 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4864 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4865 tp->rx_opt.num_sacks = 0; 4866 return; 4867 } 4868 4869 for (this_sack = 0; this_sack < num_sacks;) { 4870 /* Check if the start of the sack is covered by RCV.NXT. */ 4871 if (!before(tp->rcv_nxt, sp->start_seq)) { 4872 int i; 4873 4874 /* RCV.NXT must cover all the block! */ 4875 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4876 4877 /* Zap this SACK, by moving forward any other SACKS. */ 4878 for (i = this_sack+1; i < num_sacks; i++) 4879 tp->selective_acks[i-1] = tp->selective_acks[i]; 4880 num_sacks--; 4881 continue; 4882 } 4883 this_sack++; 4884 sp++; 4885 } 4886 tp->rx_opt.num_sacks = num_sacks; 4887 } 4888 4889 /** 4890 * tcp_try_coalesce - try to merge skb to prior one 4891 * @sk: socket 4892 * @to: prior buffer 4893 * @from: buffer to add in queue 4894 * @fragstolen: pointer to boolean 4895 * 4896 * Before queueing skb @from after @to, try to merge them 4897 * to reduce overall memory use and queue lengths, if cost is small. 4898 * Packets in ofo or receive queues can stay a long time. 4899 * Better try to coalesce them right now to avoid future collapses. 4900 * Returns true if caller should free @from instead of queueing it 4901 */ 4902 static bool tcp_try_coalesce(struct sock *sk, 4903 struct sk_buff *to, 4904 struct sk_buff *from, 4905 bool *fragstolen) 4906 { 4907 int delta; 4908 4909 *fragstolen = false; 4910 4911 /* Its possible this segment overlaps with prior segment in queue */ 4912 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4913 return false; 4914 4915 if (!tcp_skb_can_collapse_rx(to, from)) 4916 return false; 4917 4918 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4919 return false; 4920 4921 atomic_add(delta, &sk->sk_rmem_alloc); 4922 sk_mem_charge(sk, delta); 4923 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4924 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4925 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4926 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4927 4928 if (TCP_SKB_CB(from)->has_rxtstamp) { 4929 TCP_SKB_CB(to)->has_rxtstamp = true; 4930 to->tstamp = from->tstamp; 4931 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4932 } 4933 4934 return true; 4935 } 4936 4937 static bool tcp_ooo_try_coalesce(struct sock *sk, 4938 struct sk_buff *to, 4939 struct sk_buff *from, 4940 bool *fragstolen) 4941 { 4942 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4943 4944 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4945 if (res) { 4946 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4947 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4948 4949 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4950 } 4951 return res; 4952 } 4953 4954 noinline_for_tracing static void 4955 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 4956 { 4957 sk_drops_add(sk, skb); 4958 sk_skb_reason_drop(sk, skb, reason); 4959 } 4960 4961 /* This one checks to see if we can put data from the 4962 * out_of_order queue into the receive_queue. 4963 */ 4964 static void tcp_ofo_queue(struct sock *sk) 4965 { 4966 struct tcp_sock *tp = tcp_sk(sk); 4967 __u32 dsack_high = tp->rcv_nxt; 4968 bool fin, fragstolen, eaten; 4969 struct sk_buff *skb, *tail; 4970 struct rb_node *p; 4971 4972 p = rb_first(&tp->out_of_order_queue); 4973 while (p) { 4974 skb = rb_to_skb(p); 4975 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4976 break; 4977 4978 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4979 __u32 dsack = dsack_high; 4980 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4981 dsack_high = TCP_SKB_CB(skb)->end_seq; 4982 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4983 } 4984 p = rb_next(p); 4985 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4986 4987 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4988 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4989 continue; 4990 } 4991 4992 tail = skb_peek_tail(&sk->sk_receive_queue); 4993 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4994 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4995 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4996 if (!eaten) 4997 tcp_add_receive_queue(sk, skb); 4998 else 4999 kfree_skb_partial(skb, fragstolen); 5000 5001 if (unlikely(fin)) { 5002 tcp_fin(sk); 5003 /* tcp_fin() purges tp->out_of_order_queue, 5004 * so we must end this loop right now. 5005 */ 5006 break; 5007 } 5008 } 5009 } 5010 5011 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 5012 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 5013 5014 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 5015 unsigned int size) 5016 { 5017 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 5018 !sk_rmem_schedule(sk, skb, size)) { 5019 5020 if (tcp_prune_queue(sk, skb) < 0) 5021 return -1; 5022 5023 while (!sk_rmem_schedule(sk, skb, size)) { 5024 if (!tcp_prune_ofo_queue(sk, skb)) 5025 return -1; 5026 } 5027 } 5028 return 0; 5029 } 5030 5031 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 5032 { 5033 struct tcp_sock *tp = tcp_sk(sk); 5034 struct rb_node **p, *parent; 5035 struct sk_buff *skb1; 5036 u32 seq, end_seq; 5037 bool fragstolen; 5038 5039 tcp_save_lrcv_flowlabel(sk, skb); 5040 tcp_data_ecn_check(sk, skb); 5041 5042 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 5043 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 5044 sk->sk_data_ready(sk); 5045 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 5046 return; 5047 } 5048 5049 /* Disable header prediction. */ 5050 tp->pred_flags = 0; 5051 inet_csk_schedule_ack(sk); 5052 5053 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 5054 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 5055 seq = TCP_SKB_CB(skb)->seq; 5056 end_seq = TCP_SKB_CB(skb)->end_seq; 5057 5058 p = &tp->out_of_order_queue.rb_node; 5059 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5060 /* Initial out of order segment, build 1 SACK. */ 5061 if (tcp_is_sack(tp)) { 5062 tp->rx_opt.num_sacks = 1; 5063 tp->selective_acks[0].start_seq = seq; 5064 tp->selective_acks[0].end_seq = end_seq; 5065 } 5066 rb_link_node(&skb->rbnode, NULL, p); 5067 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5068 tp->ooo_last_skb = skb; 5069 goto end; 5070 } 5071 5072 /* In the typical case, we are adding an skb to the end of the list. 5073 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 5074 */ 5075 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 5076 skb, &fragstolen)) { 5077 coalesce_done: 5078 /* For non sack flows, do not grow window to force DUPACK 5079 * and trigger fast retransmit. 5080 */ 5081 if (tcp_is_sack(tp)) 5082 tcp_grow_window(sk, skb, true); 5083 kfree_skb_partial(skb, fragstolen); 5084 skb = NULL; 5085 goto add_sack; 5086 } 5087 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 5088 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 5089 parent = &tp->ooo_last_skb->rbnode; 5090 p = &parent->rb_right; 5091 goto insert; 5092 } 5093 5094 /* Find place to insert this segment. Handle overlaps on the way. */ 5095 parent = NULL; 5096 while (*p) { 5097 parent = *p; 5098 skb1 = rb_to_skb(parent); 5099 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 5100 p = &parent->rb_left; 5101 continue; 5102 } 5103 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 5104 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5105 /* All the bits are present. Drop. */ 5106 NET_INC_STATS(sock_net(sk), 5107 LINUX_MIB_TCPOFOMERGE); 5108 tcp_drop_reason(sk, skb, 5109 SKB_DROP_REASON_TCP_OFOMERGE); 5110 skb = NULL; 5111 tcp_dsack_set(sk, seq, end_seq); 5112 goto add_sack; 5113 } 5114 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 5115 /* Partial overlap. */ 5116 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 5117 } else { 5118 /* skb's seq == skb1's seq and skb covers skb1. 5119 * Replace skb1 with skb. 5120 */ 5121 rb_replace_node(&skb1->rbnode, &skb->rbnode, 5122 &tp->out_of_order_queue); 5123 tcp_dsack_extend(sk, 5124 TCP_SKB_CB(skb1)->seq, 5125 TCP_SKB_CB(skb1)->end_seq); 5126 NET_INC_STATS(sock_net(sk), 5127 LINUX_MIB_TCPOFOMERGE); 5128 tcp_drop_reason(sk, skb1, 5129 SKB_DROP_REASON_TCP_OFOMERGE); 5130 goto merge_right; 5131 } 5132 } else if (tcp_ooo_try_coalesce(sk, skb1, 5133 skb, &fragstolen)) { 5134 goto coalesce_done; 5135 } 5136 p = &parent->rb_right; 5137 } 5138 insert: 5139 /* Insert segment into RB tree. */ 5140 rb_link_node(&skb->rbnode, parent, p); 5141 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5142 5143 merge_right: 5144 /* Remove other segments covered by skb. */ 5145 while ((skb1 = skb_rb_next(skb)) != NULL) { 5146 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5147 break; 5148 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5149 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5150 end_seq); 5151 break; 5152 } 5153 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5154 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5155 TCP_SKB_CB(skb1)->end_seq); 5156 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5157 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5158 } 5159 /* If there is no skb after us, we are the last_skb ! */ 5160 if (!skb1) 5161 tp->ooo_last_skb = skb; 5162 5163 add_sack: 5164 if (tcp_is_sack(tp)) 5165 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5166 end: 5167 if (skb) { 5168 /* For non sack flows, do not grow window to force DUPACK 5169 * and trigger fast retransmit. 5170 */ 5171 if (tcp_is_sack(tp)) 5172 tcp_grow_window(sk, skb, false); 5173 skb_condense(skb); 5174 skb_set_owner_r(skb, sk); 5175 } 5176 } 5177 5178 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5179 bool *fragstolen) 5180 { 5181 int eaten; 5182 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5183 5184 eaten = (tail && 5185 tcp_try_coalesce(sk, tail, 5186 skb, fragstolen)) ? 1 : 0; 5187 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5188 if (!eaten) { 5189 tcp_add_receive_queue(sk, skb); 5190 skb_set_owner_r(skb, sk); 5191 } 5192 return eaten; 5193 } 5194 5195 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5196 { 5197 struct sk_buff *skb; 5198 int err = -ENOMEM; 5199 int data_len = 0; 5200 bool fragstolen; 5201 5202 if (size == 0) 5203 return 0; 5204 5205 if (size > PAGE_SIZE) { 5206 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5207 5208 data_len = npages << PAGE_SHIFT; 5209 size = data_len + (size & ~PAGE_MASK); 5210 } 5211 skb = alloc_skb_with_frags(size - data_len, data_len, 5212 PAGE_ALLOC_COSTLY_ORDER, 5213 &err, sk->sk_allocation); 5214 if (!skb) 5215 goto err; 5216 5217 skb_put(skb, size - data_len); 5218 skb->data_len = data_len; 5219 skb->len = size; 5220 5221 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5222 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5223 goto err_free; 5224 } 5225 5226 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5227 if (err) 5228 goto err_free; 5229 5230 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5231 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5232 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5233 5234 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5235 WARN_ON_ONCE(fragstolen); /* should not happen */ 5236 __kfree_skb(skb); 5237 } 5238 return size; 5239 5240 err_free: 5241 kfree_skb(skb); 5242 err: 5243 return err; 5244 5245 } 5246 5247 void tcp_data_ready(struct sock *sk) 5248 { 5249 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5250 sk->sk_data_ready(sk); 5251 } 5252 5253 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5254 { 5255 struct tcp_sock *tp = tcp_sk(sk); 5256 enum skb_drop_reason reason; 5257 bool fragstolen; 5258 int eaten; 5259 5260 /* If a subflow has been reset, the packet should not continue 5261 * to be processed, drop the packet. 5262 */ 5263 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5264 __kfree_skb(skb); 5265 return; 5266 } 5267 5268 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5269 __kfree_skb(skb); 5270 return; 5271 } 5272 tcp_cleanup_skb(skb); 5273 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5274 5275 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5276 tp->rx_opt.dsack = 0; 5277 5278 /* Queue data for delivery to the user. 5279 * Packets in sequence go to the receive queue. 5280 * Out of sequence packets to the out_of_order_queue. 5281 */ 5282 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5283 if (tcp_receive_window(tp) == 0) { 5284 /* Some stacks are known to send bare FIN packets 5285 * in a loop even if we send RWIN 0 in our ACK. 5286 * Accepting this FIN does not hurt memory pressure 5287 * because the FIN flag will simply be merged to the 5288 * receive queue tail skb in most cases. 5289 */ 5290 if (!skb->len && 5291 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 5292 goto queue_and_out; 5293 5294 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5295 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5296 goto out_of_window; 5297 } 5298 5299 /* Ok. In sequence. In window. */ 5300 queue_and_out: 5301 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5302 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5303 inet_csk(sk)->icsk_ack.pending |= 5304 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5305 inet_csk_schedule_ack(sk); 5306 sk->sk_data_ready(sk); 5307 5308 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) { 5309 reason = SKB_DROP_REASON_PROTO_MEM; 5310 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5311 goto drop; 5312 } 5313 sk_forced_mem_schedule(sk, skb->truesize); 5314 } 5315 5316 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5317 if (skb->len) 5318 tcp_event_data_recv(sk, skb); 5319 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5320 tcp_fin(sk); 5321 5322 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5323 tcp_ofo_queue(sk); 5324 5325 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5326 * gap in queue is filled. 5327 */ 5328 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5329 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5330 } 5331 5332 if (tp->rx_opt.num_sacks) 5333 tcp_sack_remove(tp); 5334 5335 tcp_fast_path_check(sk); 5336 5337 if (eaten > 0) 5338 kfree_skb_partial(skb, fragstolen); 5339 if (!sock_flag(sk, SOCK_DEAD)) 5340 tcp_data_ready(sk); 5341 return; 5342 } 5343 5344 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5345 tcp_rcv_spurious_retrans(sk, skb); 5346 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5347 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5348 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5349 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5350 5351 out_of_window: 5352 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5353 inet_csk_schedule_ack(sk); 5354 drop: 5355 tcp_drop_reason(sk, skb, reason); 5356 return; 5357 } 5358 5359 /* Out of window. F.e. zero window probe. */ 5360 if (!before(TCP_SKB_CB(skb)->seq, 5361 tp->rcv_nxt + tcp_receive_window(tp))) { 5362 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5363 goto out_of_window; 5364 } 5365 5366 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5367 /* Partial packet, seq < rcv_next < end_seq */ 5368 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5369 5370 /* If window is closed, drop tail of packet. But after 5371 * remembering D-SACK for its head made in previous line. 5372 */ 5373 if (!tcp_receive_window(tp)) { 5374 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5375 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5376 goto out_of_window; 5377 } 5378 goto queue_and_out; 5379 } 5380 5381 tcp_data_queue_ofo(sk, skb); 5382 } 5383 5384 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5385 { 5386 if (list) 5387 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5388 5389 return skb_rb_next(skb); 5390 } 5391 5392 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5393 struct sk_buff_head *list, 5394 struct rb_root *root) 5395 { 5396 struct sk_buff *next = tcp_skb_next(skb, list); 5397 5398 if (list) 5399 __skb_unlink(skb, list); 5400 else 5401 rb_erase(&skb->rbnode, root); 5402 5403 __kfree_skb(skb); 5404 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5405 5406 return next; 5407 } 5408 5409 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5410 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5411 { 5412 struct rb_node **p = &root->rb_node; 5413 struct rb_node *parent = NULL; 5414 struct sk_buff *skb1; 5415 5416 while (*p) { 5417 parent = *p; 5418 skb1 = rb_to_skb(parent); 5419 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5420 p = &parent->rb_left; 5421 else 5422 p = &parent->rb_right; 5423 } 5424 rb_link_node(&skb->rbnode, parent, p); 5425 rb_insert_color(&skb->rbnode, root); 5426 } 5427 5428 /* Collapse contiguous sequence of skbs head..tail with 5429 * sequence numbers start..end. 5430 * 5431 * If tail is NULL, this means until the end of the queue. 5432 * 5433 * Segments with FIN/SYN are not collapsed (only because this 5434 * simplifies code) 5435 */ 5436 static void 5437 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5438 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5439 { 5440 struct sk_buff *skb = head, *n; 5441 struct sk_buff_head tmp; 5442 bool end_of_skbs; 5443 5444 /* First, check that queue is collapsible and find 5445 * the point where collapsing can be useful. 5446 */ 5447 restart: 5448 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5449 n = tcp_skb_next(skb, list); 5450 5451 if (!skb_frags_readable(skb)) 5452 goto skip_this; 5453 5454 /* No new bits? It is possible on ofo queue. */ 5455 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5456 skb = tcp_collapse_one(sk, skb, list, root); 5457 if (!skb) 5458 break; 5459 goto restart; 5460 } 5461 5462 /* The first skb to collapse is: 5463 * - not SYN/FIN and 5464 * - bloated or contains data before "start" or 5465 * overlaps to the next one and mptcp allow collapsing. 5466 */ 5467 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5468 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5469 before(TCP_SKB_CB(skb)->seq, start))) { 5470 end_of_skbs = false; 5471 break; 5472 } 5473 5474 if (n && n != tail && skb_frags_readable(n) && 5475 tcp_skb_can_collapse_rx(skb, n) && 5476 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5477 end_of_skbs = false; 5478 break; 5479 } 5480 5481 skip_this: 5482 /* Decided to skip this, advance start seq. */ 5483 start = TCP_SKB_CB(skb)->end_seq; 5484 } 5485 if (end_of_skbs || 5486 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5487 !skb_frags_readable(skb)) 5488 return; 5489 5490 __skb_queue_head_init(&tmp); 5491 5492 while (before(start, end)) { 5493 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5494 struct sk_buff *nskb; 5495 5496 nskb = alloc_skb(copy, GFP_ATOMIC); 5497 if (!nskb) 5498 break; 5499 5500 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5501 skb_copy_decrypted(nskb, skb); 5502 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5503 if (list) 5504 __skb_queue_before(list, skb, nskb); 5505 else 5506 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5507 skb_set_owner_r(nskb, sk); 5508 mptcp_skb_ext_move(nskb, skb); 5509 5510 /* Copy data, releasing collapsed skbs. */ 5511 while (copy > 0) { 5512 int offset = start - TCP_SKB_CB(skb)->seq; 5513 int size = TCP_SKB_CB(skb)->end_seq - start; 5514 5515 BUG_ON(offset < 0); 5516 if (size > 0) { 5517 size = min(copy, size); 5518 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5519 BUG(); 5520 TCP_SKB_CB(nskb)->end_seq += size; 5521 copy -= size; 5522 start += size; 5523 } 5524 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5525 skb = tcp_collapse_one(sk, skb, list, root); 5526 if (!skb || 5527 skb == tail || 5528 !tcp_skb_can_collapse_rx(nskb, skb) || 5529 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5530 !skb_frags_readable(skb)) 5531 goto end; 5532 } 5533 } 5534 } 5535 end: 5536 skb_queue_walk_safe(&tmp, skb, n) 5537 tcp_rbtree_insert(root, skb); 5538 } 5539 5540 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5541 * and tcp_collapse() them until all the queue is collapsed. 5542 */ 5543 static void tcp_collapse_ofo_queue(struct sock *sk) 5544 { 5545 struct tcp_sock *tp = tcp_sk(sk); 5546 u32 range_truesize, sum_tiny = 0; 5547 struct sk_buff *skb, *head; 5548 u32 start, end; 5549 5550 skb = skb_rb_first(&tp->out_of_order_queue); 5551 new_range: 5552 if (!skb) { 5553 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5554 return; 5555 } 5556 start = TCP_SKB_CB(skb)->seq; 5557 end = TCP_SKB_CB(skb)->end_seq; 5558 range_truesize = skb->truesize; 5559 5560 for (head = skb;;) { 5561 skb = skb_rb_next(skb); 5562 5563 /* Range is terminated when we see a gap or when 5564 * we are at the queue end. 5565 */ 5566 if (!skb || 5567 after(TCP_SKB_CB(skb)->seq, end) || 5568 before(TCP_SKB_CB(skb)->end_seq, start)) { 5569 /* Do not attempt collapsing tiny skbs */ 5570 if (range_truesize != head->truesize || 5571 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5572 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5573 head, skb, start, end); 5574 } else { 5575 sum_tiny += range_truesize; 5576 if (sum_tiny > sk->sk_rcvbuf >> 3) 5577 return; 5578 } 5579 goto new_range; 5580 } 5581 5582 range_truesize += skb->truesize; 5583 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5584 start = TCP_SKB_CB(skb)->seq; 5585 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5586 end = TCP_SKB_CB(skb)->end_seq; 5587 } 5588 } 5589 5590 /* 5591 * Clean the out-of-order queue to make room. 5592 * We drop high sequences packets to : 5593 * 1) Let a chance for holes to be filled. 5594 * This means we do not drop packets from ooo queue if their sequence 5595 * is before incoming packet sequence. 5596 * 2) not add too big latencies if thousands of packets sit there. 5597 * (But if application shrinks SO_RCVBUF, we could still end up 5598 * freeing whole queue here) 5599 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5600 * 5601 * Return true if queue has shrunk. 5602 */ 5603 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5604 { 5605 struct tcp_sock *tp = tcp_sk(sk); 5606 struct rb_node *node, *prev; 5607 bool pruned = false; 5608 int goal; 5609 5610 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5611 return false; 5612 5613 goal = sk->sk_rcvbuf >> 3; 5614 node = &tp->ooo_last_skb->rbnode; 5615 5616 do { 5617 struct sk_buff *skb = rb_to_skb(node); 5618 5619 /* If incoming skb would land last in ofo queue, stop pruning. */ 5620 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5621 break; 5622 pruned = true; 5623 prev = rb_prev(node); 5624 rb_erase(node, &tp->out_of_order_queue); 5625 goal -= skb->truesize; 5626 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5627 tp->ooo_last_skb = rb_to_skb(prev); 5628 if (!prev || goal <= 0) { 5629 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5630 !tcp_under_memory_pressure(sk)) 5631 break; 5632 goal = sk->sk_rcvbuf >> 3; 5633 } 5634 node = prev; 5635 } while (node); 5636 5637 if (pruned) { 5638 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5639 /* Reset SACK state. A conforming SACK implementation will 5640 * do the same at a timeout based retransmit. When a connection 5641 * is in a sad state like this, we care only about integrity 5642 * of the connection not performance. 5643 */ 5644 if (tp->rx_opt.sack_ok) 5645 tcp_sack_reset(&tp->rx_opt); 5646 } 5647 return pruned; 5648 } 5649 5650 /* Reduce allocated memory if we can, trying to get 5651 * the socket within its memory limits again. 5652 * 5653 * Return less than zero if we should start dropping frames 5654 * until the socket owning process reads some of the data 5655 * to stabilize the situation. 5656 */ 5657 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5658 { 5659 struct tcp_sock *tp = tcp_sk(sk); 5660 5661 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5662 5663 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5664 tcp_clamp_window(sk); 5665 else if (tcp_under_memory_pressure(sk)) 5666 tcp_adjust_rcv_ssthresh(sk); 5667 5668 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5669 return 0; 5670 5671 tcp_collapse_ofo_queue(sk); 5672 if (!skb_queue_empty(&sk->sk_receive_queue)) 5673 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5674 skb_peek(&sk->sk_receive_queue), 5675 NULL, 5676 tp->copied_seq, tp->rcv_nxt); 5677 5678 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5679 return 0; 5680 5681 /* Collapsing did not help, destructive actions follow. 5682 * This must not ever occur. */ 5683 5684 tcp_prune_ofo_queue(sk, in_skb); 5685 5686 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5687 return 0; 5688 5689 /* If we are really being abused, tell the caller to silently 5690 * drop receive data on the floor. It will get retransmitted 5691 * and hopefully then we'll have sufficient space. 5692 */ 5693 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5694 5695 /* Massive buffer overcommit. */ 5696 tp->pred_flags = 0; 5697 return -1; 5698 } 5699 5700 static bool tcp_should_expand_sndbuf(struct sock *sk) 5701 { 5702 const struct tcp_sock *tp = tcp_sk(sk); 5703 5704 /* If the user specified a specific send buffer setting, do 5705 * not modify it. 5706 */ 5707 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5708 return false; 5709 5710 /* If we are under global TCP memory pressure, do not expand. */ 5711 if (tcp_under_memory_pressure(sk)) { 5712 int unused_mem = sk_unused_reserved_mem(sk); 5713 5714 /* Adjust sndbuf according to reserved mem. But make sure 5715 * it never goes below SOCK_MIN_SNDBUF. 5716 * See sk_stream_moderate_sndbuf() for more details. 5717 */ 5718 if (unused_mem > SOCK_MIN_SNDBUF) 5719 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5720 5721 return false; 5722 } 5723 5724 /* If we are under soft global TCP memory pressure, do not expand. */ 5725 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5726 return false; 5727 5728 /* If we filled the congestion window, do not expand. */ 5729 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5730 return false; 5731 5732 return true; 5733 } 5734 5735 static void tcp_new_space(struct sock *sk) 5736 { 5737 struct tcp_sock *tp = tcp_sk(sk); 5738 5739 if (tcp_should_expand_sndbuf(sk)) { 5740 tcp_sndbuf_expand(sk); 5741 tp->snd_cwnd_stamp = tcp_jiffies32; 5742 } 5743 5744 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5745 } 5746 5747 /* Caller made space either from: 5748 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5749 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5750 * 5751 * We might be able to generate EPOLLOUT to the application if: 5752 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5753 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5754 * small enough that tcp_stream_memory_free() decides it 5755 * is time to generate EPOLLOUT. 5756 */ 5757 void tcp_check_space(struct sock *sk) 5758 { 5759 /* pairs with tcp_poll() */ 5760 smp_mb(); 5761 if (sk->sk_socket && 5762 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5763 tcp_new_space(sk); 5764 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5765 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5766 } 5767 } 5768 5769 static inline void tcp_data_snd_check(struct sock *sk) 5770 { 5771 tcp_push_pending_frames(sk); 5772 tcp_check_space(sk); 5773 } 5774 5775 /* 5776 * Check if sending an ack is needed. 5777 */ 5778 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5779 { 5780 struct tcp_sock *tp = tcp_sk(sk); 5781 unsigned long rtt, delay; 5782 5783 /* More than one full frame received... */ 5784 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5785 /* ... and right edge of window advances far enough. 5786 * (tcp_recvmsg() will send ACK otherwise). 5787 * If application uses SO_RCVLOWAT, we want send ack now if 5788 * we have not received enough bytes to satisfy the condition. 5789 */ 5790 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5791 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5792 /* We ACK each frame or... */ 5793 tcp_in_quickack_mode(sk) || 5794 /* Protocol state mandates a one-time immediate ACK */ 5795 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5796 /* If we are running from __release_sock() in user context, 5797 * Defer the ack until tcp_release_cb(). 5798 */ 5799 if (sock_owned_by_user_nocheck(sk) && 5800 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { 5801 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5802 return; 5803 } 5804 send_now: 5805 tcp_send_ack(sk); 5806 return; 5807 } 5808 5809 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5810 tcp_send_delayed_ack(sk); 5811 return; 5812 } 5813 5814 if (!tcp_is_sack(tp) || 5815 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5816 goto send_now; 5817 5818 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5819 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5820 tp->dup_ack_counter = 0; 5821 } 5822 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5823 tp->dup_ack_counter++; 5824 goto send_now; 5825 } 5826 tp->compressed_ack++; 5827 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5828 return; 5829 5830 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5831 5832 rtt = tp->rcv_rtt_est.rtt_us; 5833 if (tp->srtt_us && tp->srtt_us < rtt) 5834 rtt = tp->srtt_us; 5835 5836 delay = min_t(unsigned long, 5837 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5838 rtt * (NSEC_PER_USEC >> 3)/20); 5839 sock_hold(sk); 5840 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5841 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5842 HRTIMER_MODE_REL_PINNED_SOFT); 5843 } 5844 5845 static inline void tcp_ack_snd_check(struct sock *sk) 5846 { 5847 if (!inet_csk_ack_scheduled(sk)) { 5848 /* We sent a data segment already. */ 5849 return; 5850 } 5851 __tcp_ack_snd_check(sk, 1); 5852 } 5853 5854 /* 5855 * This routine is only called when we have urgent data 5856 * signaled. Its the 'slow' part of tcp_urg. It could be 5857 * moved inline now as tcp_urg is only called from one 5858 * place. We handle URGent data wrong. We have to - as 5859 * BSD still doesn't use the correction from RFC961. 5860 * For 1003.1g we should support a new option TCP_STDURG to permit 5861 * either form (or just set the sysctl tcp_stdurg). 5862 */ 5863 5864 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5865 { 5866 struct tcp_sock *tp = tcp_sk(sk); 5867 u32 ptr = ntohs(th->urg_ptr); 5868 5869 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5870 ptr--; 5871 ptr += ntohl(th->seq); 5872 5873 /* Ignore urgent data that we've already seen and read. */ 5874 if (after(tp->copied_seq, ptr)) 5875 return; 5876 5877 /* Do not replay urg ptr. 5878 * 5879 * NOTE: interesting situation not covered by specs. 5880 * Misbehaving sender may send urg ptr, pointing to segment, 5881 * which we already have in ofo queue. We are not able to fetch 5882 * such data and will stay in TCP_URG_NOTYET until will be eaten 5883 * by recvmsg(). Seems, we are not obliged to handle such wicked 5884 * situations. But it is worth to think about possibility of some 5885 * DoSes using some hypothetical application level deadlock. 5886 */ 5887 if (before(ptr, tp->rcv_nxt)) 5888 return; 5889 5890 /* Do we already have a newer (or duplicate) urgent pointer? */ 5891 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5892 return; 5893 5894 /* Tell the world about our new urgent pointer. */ 5895 sk_send_sigurg(sk); 5896 5897 /* We may be adding urgent data when the last byte read was 5898 * urgent. To do this requires some care. We cannot just ignore 5899 * tp->copied_seq since we would read the last urgent byte again 5900 * as data, nor can we alter copied_seq until this data arrives 5901 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5902 * 5903 * NOTE. Double Dutch. Rendering to plain English: author of comment 5904 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5905 * and expect that both A and B disappear from stream. This is _wrong_. 5906 * Though this happens in BSD with high probability, this is occasional. 5907 * Any application relying on this is buggy. Note also, that fix "works" 5908 * only in this artificial test. Insert some normal data between A and B and we will 5909 * decline of BSD again. Verdict: it is better to remove to trap 5910 * buggy users. 5911 */ 5912 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5913 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5914 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5915 tp->copied_seq++; 5916 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5917 __skb_unlink(skb, &sk->sk_receive_queue); 5918 __kfree_skb(skb); 5919 } 5920 } 5921 5922 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5923 WRITE_ONCE(tp->urg_seq, ptr); 5924 5925 /* Disable header prediction. */ 5926 tp->pred_flags = 0; 5927 } 5928 5929 /* This is the 'fast' part of urgent handling. */ 5930 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5931 { 5932 struct tcp_sock *tp = tcp_sk(sk); 5933 5934 /* Check if we get a new urgent pointer - normally not. */ 5935 if (unlikely(th->urg)) 5936 tcp_check_urg(sk, th); 5937 5938 /* Do we wait for any urgent data? - normally not... */ 5939 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5940 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5941 th->syn; 5942 5943 /* Is the urgent pointer pointing into this packet? */ 5944 if (ptr < skb->len) { 5945 u8 tmp; 5946 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5947 BUG(); 5948 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5949 if (!sock_flag(sk, SOCK_DEAD)) 5950 sk->sk_data_ready(sk); 5951 } 5952 } 5953 } 5954 5955 /* Accept RST for rcv_nxt - 1 after a FIN. 5956 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5957 * FIN is sent followed by a RST packet. The RST is sent with the same 5958 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5959 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5960 * ACKs on the closed socket. In addition middleboxes can drop either the 5961 * challenge ACK or a subsequent RST. 5962 */ 5963 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5964 { 5965 const struct tcp_sock *tp = tcp_sk(sk); 5966 5967 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5968 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5969 TCPF_CLOSING)); 5970 } 5971 5972 /* Does PAWS and seqno based validation of an incoming segment, flags will 5973 * play significant role here. 5974 */ 5975 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5976 const struct tcphdr *th, int syn_inerr) 5977 { 5978 struct tcp_sock *tp = tcp_sk(sk); 5979 SKB_DR(reason); 5980 5981 /* RFC1323: H1. Apply PAWS check first. */ 5982 if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) || 5983 !tp->rx_opt.saw_tstamp || 5984 tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW)) 5985 goto step1; 5986 5987 reason = tcp_disordered_ack_check(sk, skb); 5988 if (!reason) 5989 goto step1; 5990 /* Reset is accepted even if it did not pass PAWS. */ 5991 if (th->rst) 5992 goto step1; 5993 if (unlikely(th->syn)) 5994 goto syn_challenge; 5995 5996 /* Old ACK are common, increment PAWS_OLD_ACK 5997 * and do not send a dupack. 5998 */ 5999 if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) { 6000 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK); 6001 goto discard; 6002 } 6003 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 6004 if (!tcp_oow_rate_limited(sock_net(sk), skb, 6005 LINUX_MIB_TCPACKSKIPPEDPAWS, 6006 &tp->last_oow_ack_time)) 6007 tcp_send_dupack(sk, skb); 6008 goto discard; 6009 6010 step1: 6011 /* Step 1: check sequence number */ 6012 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 6013 if (reason) { 6014 /* RFC793, page 37: "In all states except SYN-SENT, all reset 6015 * (RST) segments are validated by checking their SEQ-fields." 6016 * And page 69: "If an incoming segment is not acceptable, 6017 * an acknowledgment should be sent in reply (unless the RST 6018 * bit is set, if so drop the segment and return)". 6019 */ 6020 if (!th->rst) { 6021 if (th->syn) 6022 goto syn_challenge; 6023 if (!tcp_oow_rate_limited(sock_net(sk), skb, 6024 LINUX_MIB_TCPACKSKIPPEDSEQ, 6025 &tp->last_oow_ack_time)) 6026 tcp_send_dupack(sk, skb); 6027 } else if (tcp_reset_check(sk, skb)) { 6028 goto reset; 6029 } 6030 goto discard; 6031 } 6032 6033 /* Step 2: check RST bit */ 6034 if (th->rst) { 6035 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 6036 * FIN and SACK too if available): 6037 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 6038 * the right-most SACK block, 6039 * then 6040 * RESET the connection 6041 * else 6042 * Send a challenge ACK 6043 */ 6044 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 6045 tcp_reset_check(sk, skb)) 6046 goto reset; 6047 6048 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 6049 struct tcp_sack_block *sp = &tp->selective_acks[0]; 6050 int max_sack = sp[0].end_seq; 6051 int this_sack; 6052 6053 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 6054 ++this_sack) { 6055 max_sack = after(sp[this_sack].end_seq, 6056 max_sack) ? 6057 sp[this_sack].end_seq : max_sack; 6058 } 6059 6060 if (TCP_SKB_CB(skb)->seq == max_sack) 6061 goto reset; 6062 } 6063 6064 /* Disable TFO if RST is out-of-order 6065 * and no data has been received 6066 * for current active TFO socket 6067 */ 6068 if (tp->syn_fastopen && !tp->data_segs_in && 6069 sk->sk_state == TCP_ESTABLISHED) 6070 tcp_fastopen_active_disable(sk); 6071 tcp_send_challenge_ack(sk); 6072 SKB_DR_SET(reason, TCP_RESET); 6073 goto discard; 6074 } 6075 6076 /* step 3: check security and precedence [ignored] */ 6077 6078 /* step 4: Check for a SYN 6079 * RFC 5961 4.2 : Send a challenge ack 6080 */ 6081 if (th->syn) { 6082 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack && 6083 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq && 6084 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt && 6085 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt) 6086 goto pass; 6087 syn_challenge: 6088 if (syn_inerr) 6089 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6090 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 6091 tcp_send_challenge_ack(sk); 6092 SKB_DR_SET(reason, TCP_INVALID_SYN); 6093 goto discard; 6094 } 6095 6096 pass: 6097 bpf_skops_parse_hdr(sk, skb); 6098 6099 return true; 6100 6101 discard: 6102 tcp_drop_reason(sk, skb, reason); 6103 return false; 6104 6105 reset: 6106 tcp_reset(sk, skb); 6107 __kfree_skb(skb); 6108 return false; 6109 } 6110 6111 /* 6112 * TCP receive function for the ESTABLISHED state. 6113 * 6114 * It is split into a fast path and a slow path. The fast path is 6115 * disabled when: 6116 * - A zero window was announced from us - zero window probing 6117 * is only handled properly in the slow path. 6118 * - Out of order segments arrived. 6119 * - Urgent data is expected. 6120 * - There is no buffer space left 6121 * - Unexpected TCP flags/window values/header lengths are received 6122 * (detected by checking the TCP header against pred_flags) 6123 * - Data is sent in both directions. Fast path only supports pure senders 6124 * or pure receivers (this means either the sequence number or the ack 6125 * value must stay constant) 6126 * - Unexpected TCP option. 6127 * 6128 * When these conditions are not satisfied it drops into a standard 6129 * receive procedure patterned after RFC793 to handle all cases. 6130 * The first three cases are guaranteed by proper pred_flags setting, 6131 * the rest is checked inline. Fast processing is turned on in 6132 * tcp_data_queue when everything is OK. 6133 */ 6134 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 6135 { 6136 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 6137 const struct tcphdr *th = (const struct tcphdr *)skb->data; 6138 struct tcp_sock *tp = tcp_sk(sk); 6139 unsigned int len = skb->len; 6140 6141 /* TCP congestion window tracking */ 6142 trace_tcp_probe(sk, skb); 6143 6144 tcp_mstamp_refresh(tp); 6145 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 6146 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 6147 /* 6148 * Header prediction. 6149 * The code loosely follows the one in the famous 6150 * "30 instruction TCP receive" Van Jacobson mail. 6151 * 6152 * Van's trick is to deposit buffers into socket queue 6153 * on a device interrupt, to call tcp_recv function 6154 * on the receive process context and checksum and copy 6155 * the buffer to user space. smart... 6156 * 6157 * Our current scheme is not silly either but we take the 6158 * extra cost of the net_bh soft interrupt processing... 6159 * We do checksum and copy also but from device to kernel. 6160 */ 6161 6162 tp->rx_opt.saw_tstamp = 0; 6163 6164 /* pred_flags is 0xS?10 << 16 + snd_wnd 6165 * if header_prediction is to be made 6166 * 'S' will always be tp->tcp_header_len >> 2 6167 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6168 * turn it off (when there are holes in the receive 6169 * space for instance) 6170 * PSH flag is ignored. 6171 */ 6172 6173 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6174 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6175 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6176 int tcp_header_len = tp->tcp_header_len; 6177 s32 delta = 0; 6178 int flag = 0; 6179 6180 /* Timestamp header prediction: tcp_header_len 6181 * is automatically equal to th->doff*4 due to pred_flags 6182 * match. 6183 */ 6184 6185 /* Check timestamp */ 6186 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6187 /* No? Slow path! */ 6188 if (!tcp_parse_aligned_timestamp(tp, th)) 6189 goto slow_path; 6190 6191 delta = tp->rx_opt.rcv_tsval - 6192 tp->rx_opt.ts_recent; 6193 /* If PAWS failed, check it more carefully in slow path */ 6194 if (delta < 0) 6195 goto slow_path; 6196 6197 /* DO NOT update ts_recent here, if checksum fails 6198 * and timestamp was corrupted part, it will result 6199 * in a hung connection since we will drop all 6200 * future packets due to the PAWS test. 6201 */ 6202 } 6203 6204 if (len <= tcp_header_len) { 6205 /* Bulk data transfer: sender */ 6206 if (len == tcp_header_len) { 6207 /* Predicted packet is in window by definition. 6208 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6209 * Hence, check seq<=rcv_wup reduces to: 6210 */ 6211 if (tcp_header_len == 6212 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6213 tp->rcv_nxt == tp->rcv_wup) 6214 flag |= __tcp_replace_ts_recent(tp, 6215 delta); 6216 6217 /* We know that such packets are checksummed 6218 * on entry. 6219 */ 6220 tcp_ack(sk, skb, flag); 6221 __kfree_skb(skb); 6222 tcp_data_snd_check(sk); 6223 /* When receiving pure ack in fast path, update 6224 * last ts ecr directly instead of calling 6225 * tcp_rcv_rtt_measure_ts() 6226 */ 6227 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6228 return; 6229 } else { /* Header too small */ 6230 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6231 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6232 goto discard; 6233 } 6234 } else { 6235 int eaten = 0; 6236 bool fragstolen = false; 6237 6238 if (tcp_checksum_complete(skb)) 6239 goto csum_error; 6240 6241 if ((int)skb->truesize > sk->sk_forward_alloc) 6242 goto step5; 6243 6244 /* Predicted packet is in window by definition. 6245 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6246 * Hence, check seq<=rcv_wup reduces to: 6247 */ 6248 if (tcp_header_len == 6249 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6250 tp->rcv_nxt == tp->rcv_wup) 6251 flag |= __tcp_replace_ts_recent(tp, 6252 delta); 6253 6254 tcp_rcv_rtt_measure_ts(sk, skb); 6255 6256 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6257 6258 /* Bulk data transfer: receiver */ 6259 tcp_cleanup_skb(skb); 6260 __skb_pull(skb, tcp_header_len); 6261 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6262 6263 tcp_event_data_recv(sk, skb); 6264 6265 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6266 /* Well, only one small jumplet in fast path... */ 6267 tcp_ack(sk, skb, flag | FLAG_DATA); 6268 tcp_data_snd_check(sk); 6269 if (!inet_csk_ack_scheduled(sk)) 6270 goto no_ack; 6271 } else { 6272 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6273 } 6274 6275 __tcp_ack_snd_check(sk, 0); 6276 no_ack: 6277 if (eaten) 6278 kfree_skb_partial(skb, fragstolen); 6279 tcp_data_ready(sk); 6280 return; 6281 } 6282 } 6283 6284 slow_path: 6285 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6286 goto csum_error; 6287 6288 if (!th->ack && !th->rst && !th->syn) { 6289 reason = SKB_DROP_REASON_TCP_FLAGS; 6290 goto discard; 6291 } 6292 6293 /* 6294 * Standard slow path. 6295 */ 6296 6297 if (!tcp_validate_incoming(sk, skb, th, 1)) 6298 return; 6299 6300 step5: 6301 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6302 if ((int)reason < 0) { 6303 reason = -reason; 6304 goto discard; 6305 } 6306 tcp_rcv_rtt_measure_ts(sk, skb); 6307 6308 /* Process urgent data. */ 6309 tcp_urg(sk, skb, th); 6310 6311 /* step 7: process the segment text */ 6312 tcp_data_queue(sk, skb); 6313 6314 tcp_data_snd_check(sk); 6315 tcp_ack_snd_check(sk); 6316 return; 6317 6318 csum_error: 6319 reason = SKB_DROP_REASON_TCP_CSUM; 6320 trace_tcp_bad_csum(skb); 6321 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6322 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6323 6324 discard: 6325 tcp_drop_reason(sk, skb, reason); 6326 } 6327 EXPORT_IPV6_MOD(tcp_rcv_established); 6328 6329 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6330 { 6331 struct inet_connection_sock *icsk = inet_csk(sk); 6332 struct tcp_sock *tp = tcp_sk(sk); 6333 6334 tcp_mtup_init(sk); 6335 icsk->icsk_af_ops->rebuild_header(sk); 6336 tcp_init_metrics(sk); 6337 6338 /* Initialize the congestion window to start the transfer. 6339 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6340 * retransmitted. In light of RFC6298 more aggressive 1sec 6341 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6342 * retransmission has occurred. 6343 */ 6344 if (tp->total_retrans > 1 && tp->undo_marker) 6345 tcp_snd_cwnd_set(tp, 1); 6346 else 6347 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6348 tp->snd_cwnd_stamp = tcp_jiffies32; 6349 6350 bpf_skops_established(sk, bpf_op, skb); 6351 /* Initialize congestion control unless BPF initialized it already: */ 6352 if (!icsk->icsk_ca_initialized) 6353 tcp_init_congestion_control(sk); 6354 tcp_init_buffer_space(sk); 6355 } 6356 6357 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6358 { 6359 struct tcp_sock *tp = tcp_sk(sk); 6360 struct inet_connection_sock *icsk = inet_csk(sk); 6361 6362 tcp_ao_finish_connect(sk, skb); 6363 tcp_set_state(sk, TCP_ESTABLISHED); 6364 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6365 6366 if (skb) { 6367 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6368 security_inet_conn_established(sk, skb); 6369 sk_mark_napi_id(sk, skb); 6370 } 6371 6372 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6373 6374 /* Prevent spurious tcp_cwnd_restart() on first data 6375 * packet. 6376 */ 6377 tp->lsndtime = tcp_jiffies32; 6378 6379 if (sock_flag(sk, SOCK_KEEPOPEN)) 6380 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6381 6382 if (!tp->rx_opt.snd_wscale) 6383 __tcp_fast_path_on(tp, tp->snd_wnd); 6384 else 6385 tp->pred_flags = 0; 6386 } 6387 6388 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6389 struct tcp_fastopen_cookie *cookie) 6390 { 6391 struct tcp_sock *tp = tcp_sk(sk); 6392 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6393 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6394 bool syn_drop = false; 6395 6396 if (mss == tp->rx_opt.user_mss) { 6397 struct tcp_options_received opt; 6398 6399 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6400 tcp_clear_options(&opt); 6401 opt.user_mss = opt.mss_clamp = 0; 6402 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6403 mss = opt.mss_clamp; 6404 } 6405 6406 if (!tp->syn_fastopen) { 6407 /* Ignore an unsolicited cookie */ 6408 cookie->len = -1; 6409 } else if (tp->total_retrans) { 6410 /* SYN timed out and the SYN-ACK neither has a cookie nor 6411 * acknowledges data. Presumably the remote received only 6412 * the retransmitted (regular) SYNs: either the original 6413 * SYN-data or the corresponding SYN-ACK was dropped. 6414 */ 6415 syn_drop = (cookie->len < 0 && data); 6416 } else if (cookie->len < 0 && !tp->syn_data) { 6417 /* We requested a cookie but didn't get it. If we did not use 6418 * the (old) exp opt format then try so next time (try_exp=1). 6419 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6420 */ 6421 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6422 } 6423 6424 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6425 6426 if (data) { /* Retransmit unacked data in SYN */ 6427 if (tp->total_retrans) 6428 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6429 else 6430 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6431 skb_rbtree_walk_from(data) 6432 tcp_mark_skb_lost(sk, data); 6433 tcp_non_congestion_loss_retransmit(sk); 6434 NET_INC_STATS(sock_net(sk), 6435 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6436 return true; 6437 } 6438 tp->syn_data_acked = tp->syn_data; 6439 if (tp->syn_data_acked) { 6440 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6441 /* SYN-data is counted as two separate packets in tcp_ack() */ 6442 if (tp->delivered > 1) 6443 --tp->delivered; 6444 } 6445 6446 tcp_fastopen_add_skb(sk, synack); 6447 6448 return false; 6449 } 6450 6451 static void smc_check_reset_syn(struct tcp_sock *tp) 6452 { 6453 #if IS_ENABLED(CONFIG_SMC) 6454 if (static_branch_unlikely(&tcp_have_smc)) { 6455 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6456 tp->syn_smc = 0; 6457 } 6458 #endif 6459 } 6460 6461 static void tcp_try_undo_spurious_syn(struct sock *sk) 6462 { 6463 struct tcp_sock *tp = tcp_sk(sk); 6464 u32 syn_stamp; 6465 6466 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6467 * spurious if the ACK's timestamp option echo value matches the 6468 * original SYN timestamp. 6469 */ 6470 syn_stamp = tp->retrans_stamp; 6471 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6472 syn_stamp == tp->rx_opt.rcv_tsecr) 6473 tp->undo_marker = 0; 6474 } 6475 6476 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6477 const struct tcphdr *th) 6478 { 6479 struct inet_connection_sock *icsk = inet_csk(sk); 6480 struct tcp_sock *tp = tcp_sk(sk); 6481 struct tcp_fastopen_cookie foc = { .len = -1 }; 6482 int saved_clamp = tp->rx_opt.mss_clamp; 6483 bool fastopen_fail; 6484 SKB_DR(reason); 6485 6486 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6487 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6488 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6489 6490 if (th->ack) { 6491 /* rfc793: 6492 * "If the state is SYN-SENT then 6493 * first check the ACK bit 6494 * If the ACK bit is set 6495 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6496 * a reset (unless the RST bit is set, if so drop 6497 * the segment and return)" 6498 */ 6499 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6500 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6501 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6502 if (icsk->icsk_retransmits == 0) 6503 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 6504 TCP_TIMEOUT_MIN, false); 6505 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE); 6506 goto reset_and_undo; 6507 } 6508 6509 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6510 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6511 tcp_time_stamp_ts(tp))) { 6512 NET_INC_STATS(sock_net(sk), 6513 LINUX_MIB_PAWSACTIVEREJECTED); 6514 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6515 goto reset_and_undo; 6516 } 6517 6518 /* Now ACK is acceptable. 6519 * 6520 * "If the RST bit is set 6521 * If the ACK was acceptable then signal the user "error: 6522 * connection reset", drop the segment, enter CLOSED state, 6523 * delete TCB, and return." 6524 */ 6525 6526 if (th->rst) { 6527 tcp_reset(sk, skb); 6528 consume: 6529 __kfree_skb(skb); 6530 return 0; 6531 } 6532 6533 /* rfc793: 6534 * "fifth, if neither of the SYN or RST bits is set then 6535 * drop the segment and return." 6536 * 6537 * See note below! 6538 * --ANK(990513) 6539 */ 6540 if (!th->syn) { 6541 SKB_DR_SET(reason, TCP_FLAGS); 6542 goto discard_and_undo; 6543 } 6544 /* rfc793: 6545 * "If the SYN bit is on ... 6546 * are acceptable then ... 6547 * (our SYN has been ACKed), change the connection 6548 * state to ESTABLISHED..." 6549 */ 6550 6551 tcp_ecn_rcv_synack(tp, th); 6552 6553 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6554 tcp_try_undo_spurious_syn(sk); 6555 tcp_ack(sk, skb, FLAG_SLOWPATH); 6556 6557 /* Ok.. it's good. Set up sequence numbers and 6558 * move to established. 6559 */ 6560 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6561 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6562 6563 /* RFC1323: The window in SYN & SYN/ACK segments is 6564 * never scaled. 6565 */ 6566 tp->snd_wnd = ntohs(th->window); 6567 6568 if (!tp->rx_opt.wscale_ok) { 6569 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6570 WRITE_ONCE(tp->window_clamp, 6571 min(tp->window_clamp, 65535U)); 6572 } 6573 6574 if (tp->rx_opt.saw_tstamp) { 6575 tp->rx_opt.tstamp_ok = 1; 6576 tp->tcp_header_len = 6577 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6578 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6579 tcp_store_ts_recent(tp); 6580 } else { 6581 tp->tcp_header_len = sizeof(struct tcphdr); 6582 } 6583 6584 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6585 tcp_initialize_rcv_mss(sk); 6586 6587 /* Remember, tcp_poll() does not lock socket! 6588 * Change state from SYN-SENT only after copied_seq 6589 * is initialized. */ 6590 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6591 6592 smc_check_reset_syn(tp); 6593 6594 smp_mb(); 6595 6596 tcp_finish_connect(sk, skb); 6597 6598 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6599 tcp_rcv_fastopen_synack(sk, skb, &foc); 6600 6601 if (!sock_flag(sk, SOCK_DEAD)) { 6602 sk->sk_state_change(sk); 6603 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6604 } 6605 if (fastopen_fail) 6606 return -1; 6607 if (sk->sk_write_pending || 6608 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6609 inet_csk_in_pingpong_mode(sk)) { 6610 /* Save one ACK. Data will be ready after 6611 * several ticks, if write_pending is set. 6612 * 6613 * It may be deleted, but with this feature tcpdumps 6614 * look so _wonderfully_ clever, that I was not able 6615 * to stand against the temptation 8) --ANK 6616 */ 6617 inet_csk_schedule_ack(sk); 6618 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6619 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, 6620 TCP_DELACK_MAX, false); 6621 goto consume; 6622 } 6623 tcp_send_ack(sk); 6624 return -1; 6625 } 6626 6627 /* No ACK in the segment */ 6628 6629 if (th->rst) { 6630 /* rfc793: 6631 * "If the RST bit is set 6632 * 6633 * Otherwise (no ACK) drop the segment and return." 6634 */ 6635 SKB_DR_SET(reason, TCP_RESET); 6636 goto discard_and_undo; 6637 } 6638 6639 /* PAWS check. */ 6640 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6641 tcp_paws_reject(&tp->rx_opt, 0)) { 6642 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6643 goto discard_and_undo; 6644 } 6645 if (th->syn) { 6646 /* We see SYN without ACK. It is attempt of 6647 * simultaneous connect with crossed SYNs. 6648 * Particularly, it can be connect to self. 6649 */ 6650 #ifdef CONFIG_TCP_AO 6651 struct tcp_ao_info *ao; 6652 6653 ao = rcu_dereference_protected(tp->ao_info, 6654 lockdep_sock_is_held(sk)); 6655 if (ao) { 6656 WRITE_ONCE(ao->risn, th->seq); 6657 ao->rcv_sne = 0; 6658 } 6659 #endif 6660 tcp_set_state(sk, TCP_SYN_RECV); 6661 6662 if (tp->rx_opt.saw_tstamp) { 6663 tp->rx_opt.tstamp_ok = 1; 6664 tcp_store_ts_recent(tp); 6665 tp->tcp_header_len = 6666 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6667 } else { 6668 tp->tcp_header_len = sizeof(struct tcphdr); 6669 } 6670 6671 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6672 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6673 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6674 6675 /* RFC1323: The window in SYN & SYN/ACK segments is 6676 * never scaled. 6677 */ 6678 tp->snd_wnd = ntohs(th->window); 6679 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6680 tp->max_window = tp->snd_wnd; 6681 6682 tcp_ecn_rcv_syn(tp, th); 6683 6684 tcp_mtup_init(sk); 6685 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6686 tcp_initialize_rcv_mss(sk); 6687 6688 tcp_send_synack(sk); 6689 #if 0 6690 /* Note, we could accept data and URG from this segment. 6691 * There are no obstacles to make this (except that we must 6692 * either change tcp_recvmsg() to prevent it from returning data 6693 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6694 * 6695 * However, if we ignore data in ACKless segments sometimes, 6696 * we have no reasons to accept it sometimes. 6697 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6698 * is not flawless. So, discard packet for sanity. 6699 * Uncomment this return to process the data. 6700 */ 6701 return -1; 6702 #else 6703 goto consume; 6704 #endif 6705 } 6706 /* "fifth, if neither of the SYN or RST bits is set then 6707 * drop the segment and return." 6708 */ 6709 6710 discard_and_undo: 6711 tcp_clear_options(&tp->rx_opt); 6712 tp->rx_opt.mss_clamp = saved_clamp; 6713 tcp_drop_reason(sk, skb, reason); 6714 return 0; 6715 6716 reset_and_undo: 6717 tcp_clear_options(&tp->rx_opt); 6718 tp->rx_opt.mss_clamp = saved_clamp; 6719 /* we can reuse/return @reason to its caller to handle the exception */ 6720 return reason; 6721 } 6722 6723 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6724 { 6725 struct tcp_sock *tp = tcp_sk(sk); 6726 struct request_sock *req; 6727 6728 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6729 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6730 */ 6731 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6732 tcp_try_undo_recovery(sk); 6733 6734 tcp_update_rto_time(tp); 6735 inet_csk(sk)->icsk_retransmits = 0; 6736 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set 6737 * retrans_stamp but don't enter CA_Loss, so in case that happened we 6738 * need to zero retrans_stamp here to prevent spurious 6739 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us 6740 * to enter CA_Recovery then we need to leave retrans_stamp as it was 6741 * set entering CA_Recovery, for correct retransmits_timed_out() and 6742 * undo behavior. 6743 */ 6744 tcp_retrans_stamp_cleanup(sk); 6745 6746 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6747 * we no longer need req so release it. 6748 */ 6749 req = rcu_dereference_protected(tp->fastopen_rsk, 6750 lockdep_sock_is_held(sk)); 6751 reqsk_fastopen_remove(sk, req, false); 6752 6753 /* Re-arm the timer because data may have been sent out. 6754 * This is similar to the regular data transmission case 6755 * when new data has just been ack'ed. 6756 * 6757 * (TFO) - we could try to be more aggressive and 6758 * retransmitting any data sooner based on when they 6759 * are sent out. 6760 */ 6761 tcp_rearm_rto(sk); 6762 } 6763 6764 /* 6765 * This function implements the receiving procedure of RFC 793 for 6766 * all states except ESTABLISHED and TIME_WAIT. 6767 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6768 * address independent. 6769 */ 6770 6771 enum skb_drop_reason 6772 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6773 { 6774 struct tcp_sock *tp = tcp_sk(sk); 6775 struct inet_connection_sock *icsk = inet_csk(sk); 6776 const struct tcphdr *th = tcp_hdr(skb); 6777 struct request_sock *req; 6778 int queued = 0; 6779 SKB_DR(reason); 6780 6781 switch (sk->sk_state) { 6782 case TCP_CLOSE: 6783 SKB_DR_SET(reason, TCP_CLOSE); 6784 goto discard; 6785 6786 case TCP_LISTEN: 6787 if (th->ack) 6788 return SKB_DROP_REASON_TCP_FLAGS; 6789 6790 if (th->rst) { 6791 SKB_DR_SET(reason, TCP_RESET); 6792 goto discard; 6793 } 6794 if (th->syn) { 6795 if (th->fin) { 6796 SKB_DR_SET(reason, TCP_FLAGS); 6797 goto discard; 6798 } 6799 /* It is possible that we process SYN packets from backlog, 6800 * so we need to make sure to disable BH and RCU right there. 6801 */ 6802 rcu_read_lock(); 6803 local_bh_disable(); 6804 icsk->icsk_af_ops->conn_request(sk, skb); 6805 local_bh_enable(); 6806 rcu_read_unlock(); 6807 6808 consume_skb(skb); 6809 return 0; 6810 } 6811 SKB_DR_SET(reason, TCP_FLAGS); 6812 goto discard; 6813 6814 case TCP_SYN_SENT: 6815 tp->rx_opt.saw_tstamp = 0; 6816 tcp_mstamp_refresh(tp); 6817 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6818 if (queued >= 0) 6819 return queued; 6820 6821 /* Do step6 onward by hand. */ 6822 tcp_urg(sk, skb, th); 6823 __kfree_skb(skb); 6824 tcp_data_snd_check(sk); 6825 return 0; 6826 } 6827 6828 tcp_mstamp_refresh(tp); 6829 tp->rx_opt.saw_tstamp = 0; 6830 req = rcu_dereference_protected(tp->fastopen_rsk, 6831 lockdep_sock_is_held(sk)); 6832 if (req) { 6833 bool req_stolen; 6834 6835 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6836 sk->sk_state != TCP_FIN_WAIT1); 6837 6838 SKB_DR_SET(reason, TCP_FASTOPEN); 6839 if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason)) 6840 goto discard; 6841 } 6842 6843 if (!th->ack && !th->rst && !th->syn) { 6844 SKB_DR_SET(reason, TCP_FLAGS); 6845 goto discard; 6846 } 6847 if (!tcp_validate_incoming(sk, skb, th, 0)) 6848 return 0; 6849 6850 /* step 5: check the ACK field */ 6851 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | 6852 FLAG_UPDATE_TS_RECENT | 6853 FLAG_NO_CHALLENGE_ACK); 6854 6855 if ((int)reason <= 0) { 6856 if (sk->sk_state == TCP_SYN_RECV) { 6857 /* send one RST */ 6858 if (!reason) 6859 return SKB_DROP_REASON_TCP_OLD_ACK; 6860 return -reason; 6861 } 6862 /* accept old ack during closing */ 6863 if ((int)reason < 0) { 6864 tcp_send_challenge_ack(sk); 6865 reason = -reason; 6866 goto discard; 6867 } 6868 } 6869 SKB_DR_SET(reason, NOT_SPECIFIED); 6870 switch (sk->sk_state) { 6871 case TCP_SYN_RECV: 6872 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6873 if (!tp->srtt_us) 6874 tcp_synack_rtt_meas(sk, req); 6875 6876 if (req) { 6877 tcp_rcv_synrecv_state_fastopen(sk); 6878 } else { 6879 tcp_try_undo_spurious_syn(sk); 6880 tp->retrans_stamp = 0; 6881 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6882 skb); 6883 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6884 } 6885 tcp_ao_established(sk); 6886 smp_mb(); 6887 tcp_set_state(sk, TCP_ESTABLISHED); 6888 sk->sk_state_change(sk); 6889 6890 /* Note, that this wakeup is only for marginal crossed SYN case. 6891 * Passively open sockets are not waked up, because 6892 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6893 */ 6894 if (sk->sk_socket) 6895 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6896 6897 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6898 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6899 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6900 6901 if (tp->rx_opt.tstamp_ok) 6902 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6903 6904 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6905 tcp_update_pacing_rate(sk); 6906 6907 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6908 tp->lsndtime = tcp_jiffies32; 6909 6910 tcp_initialize_rcv_mss(sk); 6911 tcp_fast_path_on(tp); 6912 if (sk->sk_shutdown & SEND_SHUTDOWN) 6913 tcp_shutdown(sk, SEND_SHUTDOWN); 6914 break; 6915 6916 case TCP_FIN_WAIT1: { 6917 int tmo; 6918 6919 if (req) 6920 tcp_rcv_synrecv_state_fastopen(sk); 6921 6922 if (tp->snd_una != tp->write_seq) 6923 break; 6924 6925 tcp_set_state(sk, TCP_FIN_WAIT2); 6926 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6927 6928 sk_dst_confirm(sk); 6929 6930 if (!sock_flag(sk, SOCK_DEAD)) { 6931 /* Wake up lingering close() */ 6932 sk->sk_state_change(sk); 6933 break; 6934 } 6935 6936 if (READ_ONCE(tp->linger2) < 0) { 6937 tcp_done(sk); 6938 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6939 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6940 } 6941 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6942 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6943 /* Receive out of order FIN after close() */ 6944 if (tp->syn_fastopen && th->fin) 6945 tcp_fastopen_active_disable(sk); 6946 tcp_done(sk); 6947 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6948 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6949 } 6950 6951 tmo = tcp_fin_time(sk); 6952 if (tmo > TCP_TIMEWAIT_LEN) { 6953 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6954 } else if (th->fin || sock_owned_by_user(sk)) { 6955 /* Bad case. We could lose such FIN otherwise. 6956 * It is not a big problem, but it looks confusing 6957 * and not so rare event. We still can lose it now, 6958 * if it spins in bh_lock_sock(), but it is really 6959 * marginal case. 6960 */ 6961 tcp_reset_keepalive_timer(sk, tmo); 6962 } else { 6963 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6964 goto consume; 6965 } 6966 break; 6967 } 6968 6969 case TCP_CLOSING: 6970 if (tp->snd_una == tp->write_seq) { 6971 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6972 goto consume; 6973 } 6974 break; 6975 6976 case TCP_LAST_ACK: 6977 if (tp->snd_una == tp->write_seq) { 6978 tcp_update_metrics(sk); 6979 tcp_done(sk); 6980 goto consume; 6981 } 6982 break; 6983 } 6984 6985 /* step 6: check the URG bit */ 6986 tcp_urg(sk, skb, th); 6987 6988 /* step 7: process the segment text */ 6989 switch (sk->sk_state) { 6990 case TCP_CLOSE_WAIT: 6991 case TCP_CLOSING: 6992 case TCP_LAST_ACK: 6993 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6994 /* If a subflow has been reset, the packet should not 6995 * continue to be processed, drop the packet. 6996 */ 6997 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6998 goto discard; 6999 break; 7000 } 7001 fallthrough; 7002 case TCP_FIN_WAIT1: 7003 case TCP_FIN_WAIT2: 7004 /* RFC 793 says to queue data in these states, 7005 * RFC 1122 says we MUST send a reset. 7006 * BSD 4.4 also does reset. 7007 */ 7008 if (sk->sk_shutdown & RCV_SHUTDOWN) { 7009 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 7010 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 7011 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 7012 tcp_reset(sk, skb); 7013 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 7014 } 7015 } 7016 fallthrough; 7017 case TCP_ESTABLISHED: 7018 tcp_data_queue(sk, skb); 7019 queued = 1; 7020 break; 7021 } 7022 7023 /* tcp_data could move socket to TIME-WAIT */ 7024 if (sk->sk_state != TCP_CLOSE) { 7025 tcp_data_snd_check(sk); 7026 tcp_ack_snd_check(sk); 7027 } 7028 7029 if (!queued) { 7030 discard: 7031 tcp_drop_reason(sk, skb, reason); 7032 } 7033 return 0; 7034 7035 consume: 7036 __kfree_skb(skb); 7037 return 0; 7038 } 7039 EXPORT_IPV6_MOD(tcp_rcv_state_process); 7040 7041 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 7042 { 7043 struct inet_request_sock *ireq = inet_rsk(req); 7044 7045 if (family == AF_INET) 7046 net_dbg_ratelimited("drop open request from %pI4/%u\n", 7047 &ireq->ir_rmt_addr, port); 7048 #if IS_ENABLED(CONFIG_IPV6) 7049 else if (family == AF_INET6) 7050 net_dbg_ratelimited("drop open request from %pI6/%u\n", 7051 &ireq->ir_v6_rmt_addr, port); 7052 #endif 7053 } 7054 7055 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 7056 * 7057 * If we receive a SYN packet with these bits set, it means a 7058 * network is playing bad games with TOS bits. In order to 7059 * avoid possible false congestion notifications, we disable 7060 * TCP ECN negotiation. 7061 * 7062 * Exception: tcp_ca wants ECN. This is required for DCTCP 7063 * congestion control: Linux DCTCP asserts ECT on all packets, 7064 * including SYN, which is most optimal solution; however, 7065 * others, such as FreeBSD do not. 7066 * 7067 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 7068 * set, indicating the use of a future TCP extension (such as AccECN). See 7069 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 7070 * extensions. 7071 */ 7072 static void tcp_ecn_create_request(struct request_sock *req, 7073 const struct sk_buff *skb, 7074 const struct sock *listen_sk, 7075 const struct dst_entry *dst) 7076 { 7077 const struct tcphdr *th = tcp_hdr(skb); 7078 const struct net *net = sock_net(listen_sk); 7079 bool th_ecn = th->ece && th->cwr; 7080 bool ect, ecn_ok; 7081 u32 ecn_ok_dst; 7082 7083 if (!th_ecn) 7084 return; 7085 7086 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 7087 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 7088 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 7089 7090 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 7091 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 7092 tcp_bpf_ca_needs_ecn((struct sock *)req)) 7093 inet_rsk(req)->ecn_ok = 1; 7094 } 7095 7096 static void tcp_openreq_init(struct request_sock *req, 7097 const struct tcp_options_received *rx_opt, 7098 struct sk_buff *skb, const struct sock *sk) 7099 { 7100 struct inet_request_sock *ireq = inet_rsk(req); 7101 7102 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 7103 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 7104 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 7105 tcp_rsk(req)->snt_synack = 0; 7106 tcp_rsk(req)->snt_tsval_first = 0; 7107 tcp_rsk(req)->last_oow_ack_time = 0; 7108 req->mss = rx_opt->mss_clamp; 7109 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 7110 ireq->tstamp_ok = rx_opt->tstamp_ok; 7111 ireq->sack_ok = rx_opt->sack_ok; 7112 ireq->snd_wscale = rx_opt->snd_wscale; 7113 ireq->wscale_ok = rx_opt->wscale_ok; 7114 ireq->acked = 0; 7115 ireq->ecn_ok = 0; 7116 ireq->ir_rmt_port = tcp_hdr(skb)->source; 7117 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 7118 ireq->ir_mark = inet_request_mark(sk, skb); 7119 #if IS_ENABLED(CONFIG_SMC) 7120 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 7121 tcp_sk(sk)->smc_hs_congested(sk)); 7122 #endif 7123 } 7124 7125 /* 7126 * Return true if a syncookie should be sent 7127 */ 7128 static bool tcp_syn_flood_action(struct sock *sk, const char *proto) 7129 { 7130 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 7131 const char *msg = "Dropping request"; 7132 struct net *net = sock_net(sk); 7133 bool want_cookie = false; 7134 u8 syncookies; 7135 7136 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7137 7138 #ifdef CONFIG_SYN_COOKIES 7139 if (syncookies) { 7140 msg = "Sending cookies"; 7141 want_cookie = true; 7142 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 7143 } else 7144 #endif 7145 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 7146 7147 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 7148 xchg(&queue->synflood_warned, 1) == 0) { 7149 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 7150 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 7151 proto, inet6_rcv_saddr(sk), 7152 sk->sk_num, msg); 7153 } else { 7154 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7155 proto, &sk->sk_rcv_saddr, 7156 sk->sk_num, msg); 7157 } 7158 } 7159 7160 return want_cookie; 7161 } 7162 7163 static void tcp_reqsk_record_syn(const struct sock *sk, 7164 struct request_sock *req, 7165 const struct sk_buff *skb) 7166 { 7167 if (tcp_sk(sk)->save_syn) { 7168 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7169 struct saved_syn *saved_syn; 7170 u32 mac_hdrlen; 7171 void *base; 7172 7173 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7174 base = skb_mac_header(skb); 7175 mac_hdrlen = skb_mac_header_len(skb); 7176 len += mac_hdrlen; 7177 } else { 7178 base = skb_network_header(skb); 7179 mac_hdrlen = 0; 7180 } 7181 7182 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7183 GFP_ATOMIC); 7184 if (saved_syn) { 7185 saved_syn->mac_hdrlen = mac_hdrlen; 7186 saved_syn->network_hdrlen = skb_network_header_len(skb); 7187 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7188 memcpy(saved_syn->data, base, len); 7189 req->saved_syn = saved_syn; 7190 } 7191 } 7192 } 7193 7194 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7195 * used for SYN cookie generation. 7196 */ 7197 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7198 const struct tcp_request_sock_ops *af_ops, 7199 struct sock *sk, struct tcphdr *th) 7200 { 7201 struct tcp_sock *tp = tcp_sk(sk); 7202 u16 mss; 7203 7204 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7205 !inet_csk_reqsk_queue_is_full(sk)) 7206 return 0; 7207 7208 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7209 return 0; 7210 7211 if (sk_acceptq_is_full(sk)) { 7212 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7213 return 0; 7214 } 7215 7216 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7217 if (!mss) 7218 mss = af_ops->mss_clamp; 7219 7220 return mss; 7221 } 7222 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss); 7223 7224 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7225 const struct tcp_request_sock_ops *af_ops, 7226 struct sock *sk, struct sk_buff *skb) 7227 { 7228 struct tcp_fastopen_cookie foc = { .len = -1 }; 7229 struct tcp_options_received tmp_opt; 7230 struct tcp_sock *tp = tcp_sk(sk); 7231 struct net *net = sock_net(sk); 7232 struct sock *fastopen_sk = NULL; 7233 struct request_sock *req; 7234 bool want_cookie = false; 7235 struct dst_entry *dst; 7236 struct flowi fl; 7237 u8 syncookies; 7238 u32 isn; 7239 7240 #ifdef CONFIG_TCP_AO 7241 const struct tcp_ao_hdr *aoh; 7242 #endif 7243 7244 isn = __this_cpu_read(tcp_tw_isn); 7245 if (isn) { 7246 /* TW buckets are converted to open requests without 7247 * limitations, they conserve resources and peer is 7248 * evidently real one. 7249 */ 7250 __this_cpu_write(tcp_tw_isn, 0); 7251 } else { 7252 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7253 7254 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) { 7255 want_cookie = tcp_syn_flood_action(sk, 7256 rsk_ops->slab_name); 7257 if (!want_cookie) 7258 goto drop; 7259 } 7260 } 7261 7262 if (sk_acceptq_is_full(sk)) { 7263 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7264 goto drop; 7265 } 7266 7267 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7268 if (!req) 7269 goto drop; 7270 7271 req->syncookie = want_cookie; 7272 tcp_rsk(req)->af_specific = af_ops; 7273 tcp_rsk(req)->ts_off = 0; 7274 tcp_rsk(req)->req_usec_ts = false; 7275 #if IS_ENABLED(CONFIG_MPTCP) 7276 tcp_rsk(req)->is_mptcp = 0; 7277 #endif 7278 7279 tcp_clear_options(&tmp_opt); 7280 tmp_opt.mss_clamp = af_ops->mss_clamp; 7281 tmp_opt.user_mss = tp->rx_opt.user_mss; 7282 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7283 want_cookie ? NULL : &foc); 7284 7285 if (want_cookie && !tmp_opt.saw_tstamp) 7286 tcp_clear_options(&tmp_opt); 7287 7288 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7289 tmp_opt.smc_ok = 0; 7290 7291 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7292 tcp_openreq_init(req, &tmp_opt, skb, sk); 7293 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7294 7295 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7296 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7297 7298 dst = af_ops->route_req(sk, skb, &fl, req, isn); 7299 if (!dst) 7300 goto drop_and_free; 7301 7302 if (tmp_opt.tstamp_ok) { 7303 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 7304 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7305 } 7306 if (!want_cookie && !isn) { 7307 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7308 7309 /* Kill the following clause, if you dislike this way. */ 7310 if (!syncookies && 7311 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7312 (max_syn_backlog >> 2)) && 7313 !tcp_peer_is_proven(req, dst)) { 7314 /* Without syncookies last quarter of 7315 * backlog is filled with destinations, 7316 * proven to be alive. 7317 * It means that we continue to communicate 7318 * to destinations, already remembered 7319 * to the moment of synflood. 7320 */ 7321 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7322 rsk_ops->family); 7323 goto drop_and_release; 7324 } 7325 7326 isn = af_ops->init_seq(skb); 7327 } 7328 7329 tcp_ecn_create_request(req, skb, sk, dst); 7330 7331 if (want_cookie) { 7332 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7333 if (!tmp_opt.tstamp_ok) 7334 inet_rsk(req)->ecn_ok = 0; 7335 } 7336 7337 #ifdef CONFIG_TCP_AO 7338 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 7339 goto drop_and_release; /* Invalid TCP options */ 7340 if (aoh) { 7341 tcp_rsk(req)->used_tcp_ao = true; 7342 tcp_rsk(req)->ao_rcv_next = aoh->keyid; 7343 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid; 7344 7345 } else { 7346 tcp_rsk(req)->used_tcp_ao = false; 7347 } 7348 #endif 7349 tcp_rsk(req)->snt_isn = isn; 7350 tcp_rsk(req)->txhash = net_tx_rndhash(); 7351 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7352 tcp_openreq_init_rwin(req, sk, dst); 7353 sk_rx_queue_set(req_to_sk(req), skb); 7354 if (!want_cookie) { 7355 tcp_reqsk_record_syn(sk, req, skb); 7356 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7357 } 7358 if (fastopen_sk) { 7359 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7360 &foc, TCP_SYNACK_FASTOPEN, skb); 7361 /* Add the child socket directly into the accept queue */ 7362 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7363 reqsk_fastopen_remove(fastopen_sk, req, false); 7364 bh_unlock_sock(fastopen_sk); 7365 sock_put(fastopen_sk); 7366 goto drop_and_free; 7367 } 7368 sk->sk_data_ready(sk); 7369 bh_unlock_sock(fastopen_sk); 7370 sock_put(fastopen_sk); 7371 } else { 7372 tcp_rsk(req)->tfo_listener = false; 7373 if (!want_cookie) { 7374 req->timeout = tcp_timeout_init((struct sock *)req); 7375 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req, 7376 req->timeout))) { 7377 reqsk_free(req); 7378 dst_release(dst); 7379 return 0; 7380 } 7381 7382 } 7383 af_ops->send_synack(sk, dst, &fl, req, &foc, 7384 !want_cookie ? TCP_SYNACK_NORMAL : 7385 TCP_SYNACK_COOKIE, 7386 skb); 7387 if (want_cookie) { 7388 reqsk_free(req); 7389 return 0; 7390 } 7391 } 7392 reqsk_put(req); 7393 return 0; 7394 7395 drop_and_release: 7396 dst_release(dst); 7397 drop_and_free: 7398 __reqsk_free(req); 7399 drop: 7400 tcp_listendrop(sk); 7401 return 0; 7402 } 7403 EXPORT_IPV6_MOD(tcp_conn_request); 7404