1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly; 83 int sysctl_tcp_max_reordering __read_mostly = 300; 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 /* rfc5961 challenge ack rate limiting */ 90 int sysctl_tcp_challenge_ack_limit = 1000; 91 92 int sysctl_tcp_stdurg __read_mostly; 93 int sysctl_tcp_rfc1337 __read_mostly; 94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 95 int sysctl_tcp_frto __read_mostly = 2; 96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 97 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 98 int sysctl_tcp_early_retrans __read_mostly = 3; 99 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 100 101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 107 #define FLAG_ECE 0x40 /* ECE in this ACK */ 108 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 115 116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 120 121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 123 124 #define REXMIT_NONE 0 /* no loss recovery to do */ 125 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 126 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 127 128 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 129 unsigned int len) 130 { 131 static bool __once __read_mostly; 132 133 if (!__once) { 134 struct net_device *dev; 135 136 __once = true; 137 138 rcu_read_lock(); 139 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 140 if (!dev || len >= dev->mtu) 141 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 142 dev ? dev->name : "Unknown driver"); 143 rcu_read_unlock(); 144 } 145 } 146 147 /* Adapt the MSS value used to make delayed ack decision to the 148 * real world. 149 */ 150 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 151 { 152 struct inet_connection_sock *icsk = inet_csk(sk); 153 const unsigned int lss = icsk->icsk_ack.last_seg_size; 154 unsigned int len; 155 156 icsk->icsk_ack.last_seg_size = 0; 157 158 /* skb->len may jitter because of SACKs, even if peer 159 * sends good full-sized frames. 160 */ 161 len = skb_shinfo(skb)->gso_size ? : skb->len; 162 if (len >= icsk->icsk_ack.rcv_mss) { 163 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 164 tcp_sk(sk)->advmss); 165 /* Account for possibly-removed options */ 166 if (unlikely(len > icsk->icsk_ack.rcv_mss + 167 MAX_TCP_OPTION_SPACE)) 168 tcp_gro_dev_warn(sk, skb, len); 169 } else { 170 /* Otherwise, we make more careful check taking into account, 171 * that SACKs block is variable. 172 * 173 * "len" is invariant segment length, including TCP header. 174 */ 175 len += skb->data - skb_transport_header(skb); 176 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 177 /* If PSH is not set, packet should be 178 * full sized, provided peer TCP is not badly broken. 179 * This observation (if it is correct 8)) allows 180 * to handle super-low mtu links fairly. 181 */ 182 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 183 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 184 /* Subtract also invariant (if peer is RFC compliant), 185 * tcp header plus fixed timestamp option length. 186 * Resulting "len" is MSS free of SACK jitter. 187 */ 188 len -= tcp_sk(sk)->tcp_header_len; 189 icsk->icsk_ack.last_seg_size = len; 190 if (len == lss) { 191 icsk->icsk_ack.rcv_mss = len; 192 return; 193 } 194 } 195 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 198 } 199 } 200 201 static void tcp_incr_quickack(struct sock *sk) 202 { 203 struct inet_connection_sock *icsk = inet_csk(sk); 204 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 205 206 if (quickacks == 0) 207 quickacks = 2; 208 if (quickacks > icsk->icsk_ack.quick) 209 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 210 } 211 212 static void tcp_enter_quickack_mode(struct sock *sk) 213 { 214 struct inet_connection_sock *icsk = inet_csk(sk); 215 tcp_incr_quickack(sk); 216 icsk->icsk_ack.pingpong = 0; 217 icsk->icsk_ack.ato = TCP_ATO_MIN; 218 } 219 220 /* Send ACKs quickly, if "quick" count is not exhausted 221 * and the session is not interactive. 222 */ 223 224 static bool tcp_in_quickack_mode(struct sock *sk) 225 { 226 const struct inet_connection_sock *icsk = inet_csk(sk); 227 const struct dst_entry *dst = __sk_dst_get(sk); 228 229 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 230 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 231 } 232 233 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 234 { 235 if (tp->ecn_flags & TCP_ECN_OK) 236 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 237 } 238 239 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 240 { 241 if (tcp_hdr(skb)->cwr) 242 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 243 } 244 245 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 246 { 247 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 248 } 249 250 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 251 { 252 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 253 case INET_ECN_NOT_ECT: 254 /* Funny extension: if ECT is not set on a segment, 255 * and we already seen ECT on a previous segment, 256 * it is probably a retransmit. 257 */ 258 if (tp->ecn_flags & TCP_ECN_SEEN) 259 tcp_enter_quickack_mode((struct sock *)tp); 260 break; 261 case INET_ECN_CE: 262 if (tcp_ca_needs_ecn((struct sock *)tp)) 263 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 264 265 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 266 /* Better not delay acks, sender can have a very low cwnd */ 267 tcp_enter_quickack_mode((struct sock *)tp); 268 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 269 } 270 tp->ecn_flags |= TCP_ECN_SEEN; 271 break; 272 default: 273 if (tcp_ca_needs_ecn((struct sock *)tp)) 274 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 275 tp->ecn_flags |= TCP_ECN_SEEN; 276 break; 277 } 278 } 279 280 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 281 { 282 if (tp->ecn_flags & TCP_ECN_OK) 283 __tcp_ecn_check_ce(tp, skb); 284 } 285 286 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 287 { 288 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 289 tp->ecn_flags &= ~TCP_ECN_OK; 290 } 291 292 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 293 { 294 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 295 tp->ecn_flags &= ~TCP_ECN_OK; 296 } 297 298 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 299 { 300 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 301 return true; 302 return false; 303 } 304 305 /* Buffer size and advertised window tuning. 306 * 307 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 308 */ 309 310 static void tcp_sndbuf_expand(struct sock *sk) 311 { 312 const struct tcp_sock *tp = tcp_sk(sk); 313 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 314 int sndmem, per_mss; 315 u32 nr_segs; 316 317 /* Worst case is non GSO/TSO : each frame consumes one skb 318 * and skb->head is kmalloced using power of two area of memory 319 */ 320 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 321 MAX_TCP_HEADER + 322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 323 324 per_mss = roundup_pow_of_two(per_mss) + 325 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 326 327 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 328 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 329 330 /* Fast Recovery (RFC 5681 3.2) : 331 * Cubic needs 1.7 factor, rounded to 2 to include 332 * extra cushion (application might react slowly to POLLOUT) 333 */ 334 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 335 sndmem *= nr_segs * per_mss; 336 337 if (sk->sk_sndbuf < sndmem) 338 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 339 } 340 341 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 342 * 343 * All tcp_full_space() is split to two parts: "network" buffer, allocated 344 * forward and advertised in receiver window (tp->rcv_wnd) and 345 * "application buffer", required to isolate scheduling/application 346 * latencies from network. 347 * window_clamp is maximal advertised window. It can be less than 348 * tcp_full_space(), in this case tcp_full_space() - window_clamp 349 * is reserved for "application" buffer. The less window_clamp is 350 * the smoother our behaviour from viewpoint of network, but the lower 351 * throughput and the higher sensitivity of the connection to losses. 8) 352 * 353 * rcv_ssthresh is more strict window_clamp used at "slow start" 354 * phase to predict further behaviour of this connection. 355 * It is used for two goals: 356 * - to enforce header prediction at sender, even when application 357 * requires some significant "application buffer". It is check #1. 358 * - to prevent pruning of receive queue because of misprediction 359 * of receiver window. Check #2. 360 * 361 * The scheme does not work when sender sends good segments opening 362 * window and then starts to feed us spaghetti. But it should work 363 * in common situations. Otherwise, we have to rely on queue collapsing. 364 */ 365 366 /* Slow part of check#2. */ 367 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 368 { 369 struct tcp_sock *tp = tcp_sk(sk); 370 /* Optimize this! */ 371 int truesize = tcp_win_from_space(skb->truesize) >> 1; 372 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 373 374 while (tp->rcv_ssthresh <= window) { 375 if (truesize <= skb->len) 376 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 377 378 truesize >>= 1; 379 window >>= 1; 380 } 381 return 0; 382 } 383 384 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 385 { 386 struct tcp_sock *tp = tcp_sk(sk); 387 388 /* Check #1 */ 389 if (tp->rcv_ssthresh < tp->window_clamp && 390 (int)tp->rcv_ssthresh < tcp_space(sk) && 391 !tcp_under_memory_pressure(sk)) { 392 int incr; 393 394 /* Check #2. Increase window, if skb with such overhead 395 * will fit to rcvbuf in future. 396 */ 397 if (tcp_win_from_space(skb->truesize) <= skb->len) 398 incr = 2 * tp->advmss; 399 else 400 incr = __tcp_grow_window(sk, skb); 401 402 if (incr) { 403 incr = max_t(int, incr, 2 * skb->len); 404 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 405 tp->window_clamp); 406 inet_csk(sk)->icsk_ack.quick |= 1; 407 } 408 } 409 } 410 411 /* 3. Tuning rcvbuf, when connection enters established state. */ 412 static void tcp_fixup_rcvbuf(struct sock *sk) 413 { 414 u32 mss = tcp_sk(sk)->advmss; 415 int rcvmem; 416 417 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 418 tcp_default_init_rwnd(mss); 419 420 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 421 * Allow enough cushion so that sender is not limited by our window 422 */ 423 if (sysctl_tcp_moderate_rcvbuf) 424 rcvmem <<= 2; 425 426 if (sk->sk_rcvbuf < rcvmem) 427 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 428 } 429 430 /* 4. Try to fixup all. It is made immediately after connection enters 431 * established state. 432 */ 433 void tcp_init_buffer_space(struct sock *sk) 434 { 435 struct tcp_sock *tp = tcp_sk(sk); 436 int maxwin; 437 438 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 439 tcp_fixup_rcvbuf(sk); 440 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 441 tcp_sndbuf_expand(sk); 442 443 tp->rcvq_space.space = tp->rcv_wnd; 444 skb_mstamp_get(&tp->tcp_mstamp); 445 tp->rcvq_space.time = tp->tcp_mstamp; 446 tp->rcvq_space.seq = tp->copied_seq; 447 448 maxwin = tcp_full_space(sk); 449 450 if (tp->window_clamp >= maxwin) { 451 tp->window_clamp = maxwin; 452 453 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 454 tp->window_clamp = max(maxwin - 455 (maxwin >> sysctl_tcp_app_win), 456 4 * tp->advmss); 457 } 458 459 /* Force reservation of one segment. */ 460 if (sysctl_tcp_app_win && 461 tp->window_clamp > 2 * tp->advmss && 462 tp->window_clamp + tp->advmss > maxwin) 463 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 464 465 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 466 tp->snd_cwnd_stamp = tcp_jiffies32; 467 } 468 469 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 470 static void tcp_clamp_window(struct sock *sk) 471 { 472 struct tcp_sock *tp = tcp_sk(sk); 473 struct inet_connection_sock *icsk = inet_csk(sk); 474 475 icsk->icsk_ack.quick = 0; 476 477 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 478 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 479 !tcp_under_memory_pressure(sk) && 480 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 481 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 482 sysctl_tcp_rmem[2]); 483 } 484 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 485 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 486 } 487 488 /* Initialize RCV_MSS value. 489 * RCV_MSS is an our guess about MSS used by the peer. 490 * We haven't any direct information about the MSS. 491 * It's better to underestimate the RCV_MSS rather than overestimate. 492 * Overestimations make us ACKing less frequently than needed. 493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 494 */ 495 void tcp_initialize_rcv_mss(struct sock *sk) 496 { 497 const struct tcp_sock *tp = tcp_sk(sk); 498 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 499 500 hint = min(hint, tp->rcv_wnd / 2); 501 hint = min(hint, TCP_MSS_DEFAULT); 502 hint = max(hint, TCP_MIN_MSS); 503 504 inet_csk(sk)->icsk_ack.rcv_mss = hint; 505 } 506 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 507 508 /* Receiver "autotuning" code. 509 * 510 * The algorithm for RTT estimation w/o timestamps is based on 511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 512 * <http://public.lanl.gov/radiant/pubs.html#DRS> 513 * 514 * More detail on this code can be found at 515 * <http://staff.psc.edu/jheffner/>, 516 * though this reference is out of date. A new paper 517 * is pending. 518 */ 519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 520 { 521 u32 new_sample = tp->rcv_rtt_est.rtt_us; 522 long m = sample; 523 524 if (m == 0) 525 m = 1; 526 527 if (new_sample != 0) { 528 /* If we sample in larger samples in the non-timestamp 529 * case, we could grossly overestimate the RTT especially 530 * with chatty applications or bulk transfer apps which 531 * are stalled on filesystem I/O. 532 * 533 * Also, since we are only going for a minimum in the 534 * non-timestamp case, we do not smooth things out 535 * else with timestamps disabled convergence takes too 536 * long. 537 */ 538 if (!win_dep) { 539 m -= (new_sample >> 3); 540 new_sample += m; 541 } else { 542 m <<= 3; 543 if (m < new_sample) 544 new_sample = m; 545 } 546 } else { 547 /* No previous measure. */ 548 new_sample = m << 3; 549 } 550 551 tp->rcv_rtt_est.rtt_us = new_sample; 552 } 553 554 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 555 { 556 u32 delta_us; 557 558 if (tp->rcv_rtt_est.time.v64 == 0) 559 goto new_measure; 560 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 561 return; 562 delta_us = skb_mstamp_us_delta(&tp->tcp_mstamp, &tp->rcv_rtt_est.time); 563 tcp_rcv_rtt_update(tp, delta_us, 1); 564 565 new_measure: 566 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 567 tp->rcv_rtt_est.time = tp->tcp_mstamp; 568 } 569 570 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 571 const struct sk_buff *skb) 572 { 573 struct tcp_sock *tp = tcp_sk(sk); 574 if (tp->rx_opt.rcv_tsecr && 575 (TCP_SKB_CB(skb)->end_seq - 576 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 577 tcp_rcv_rtt_update(tp, 578 jiffies_to_usecs(tcp_time_stamp - 579 tp->rx_opt.rcv_tsecr), 580 0); 581 } 582 583 /* 584 * This function should be called every time data is copied to user space. 585 * It calculates the appropriate TCP receive buffer space. 586 */ 587 void tcp_rcv_space_adjust(struct sock *sk) 588 { 589 struct tcp_sock *tp = tcp_sk(sk); 590 int time; 591 int copied; 592 593 time = skb_mstamp_us_delta(&tp->tcp_mstamp, &tp->rcvq_space.time); 594 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 595 return; 596 597 /* Number of bytes copied to user in last RTT */ 598 copied = tp->copied_seq - tp->rcvq_space.seq; 599 if (copied <= tp->rcvq_space.space) 600 goto new_measure; 601 602 /* A bit of theory : 603 * copied = bytes received in previous RTT, our base window 604 * To cope with packet losses, we need a 2x factor 605 * To cope with slow start, and sender growing its cwin by 100 % 606 * every RTT, we need a 4x factor, because the ACK we are sending 607 * now is for the next RTT, not the current one : 608 * <prev RTT . ><current RTT .. ><next RTT .... > 609 */ 610 611 if (sysctl_tcp_moderate_rcvbuf && 612 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 613 int rcvwin, rcvmem, rcvbuf; 614 615 /* minimal window to cope with packet losses, assuming 616 * steady state. Add some cushion because of small variations. 617 */ 618 rcvwin = (copied << 1) + 16 * tp->advmss; 619 620 /* If rate increased by 25%, 621 * assume slow start, rcvwin = 3 * copied 622 * If rate increased by 50%, 623 * assume sender can use 2x growth, rcvwin = 4 * copied 624 */ 625 if (copied >= 626 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 627 if (copied >= 628 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 629 rcvwin <<= 1; 630 else 631 rcvwin += (rcvwin >> 1); 632 } 633 634 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 635 while (tcp_win_from_space(rcvmem) < tp->advmss) 636 rcvmem += 128; 637 638 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 639 if (rcvbuf > sk->sk_rcvbuf) { 640 sk->sk_rcvbuf = rcvbuf; 641 642 /* Make the window clamp follow along. */ 643 tp->window_clamp = rcvwin; 644 } 645 } 646 tp->rcvq_space.space = copied; 647 648 new_measure: 649 tp->rcvq_space.seq = tp->copied_seq; 650 tp->rcvq_space.time = tp->tcp_mstamp; 651 } 652 653 /* There is something which you must keep in mind when you analyze the 654 * behavior of the tp->ato delayed ack timeout interval. When a 655 * connection starts up, we want to ack as quickly as possible. The 656 * problem is that "good" TCP's do slow start at the beginning of data 657 * transmission. The means that until we send the first few ACK's the 658 * sender will sit on his end and only queue most of his data, because 659 * he can only send snd_cwnd unacked packets at any given time. For 660 * each ACK we send, he increments snd_cwnd and transmits more of his 661 * queue. -DaveM 662 */ 663 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 664 { 665 struct tcp_sock *tp = tcp_sk(sk); 666 struct inet_connection_sock *icsk = inet_csk(sk); 667 u32 now; 668 669 inet_csk_schedule_ack(sk); 670 671 tcp_measure_rcv_mss(sk, skb); 672 673 tcp_rcv_rtt_measure(tp); 674 675 now = tcp_time_stamp; 676 677 if (!icsk->icsk_ack.ato) { 678 /* The _first_ data packet received, initialize 679 * delayed ACK engine. 680 */ 681 tcp_incr_quickack(sk); 682 icsk->icsk_ack.ato = TCP_ATO_MIN; 683 } else { 684 int m = now - icsk->icsk_ack.lrcvtime; 685 686 if (m <= TCP_ATO_MIN / 2) { 687 /* The fastest case is the first. */ 688 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 689 } else if (m < icsk->icsk_ack.ato) { 690 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 691 if (icsk->icsk_ack.ato > icsk->icsk_rto) 692 icsk->icsk_ack.ato = icsk->icsk_rto; 693 } else if (m > icsk->icsk_rto) { 694 /* Too long gap. Apparently sender failed to 695 * restart window, so that we send ACKs quickly. 696 */ 697 tcp_incr_quickack(sk); 698 sk_mem_reclaim(sk); 699 } 700 } 701 icsk->icsk_ack.lrcvtime = now; 702 703 tcp_ecn_check_ce(tp, skb); 704 705 if (skb->len >= 128) 706 tcp_grow_window(sk, skb); 707 } 708 709 /* Called to compute a smoothed rtt estimate. The data fed to this 710 * routine either comes from timestamps, or from segments that were 711 * known _not_ to have been retransmitted [see Karn/Partridge 712 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 713 * piece by Van Jacobson. 714 * NOTE: the next three routines used to be one big routine. 715 * To save cycles in the RFC 1323 implementation it was better to break 716 * it up into three procedures. -- erics 717 */ 718 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 719 { 720 struct tcp_sock *tp = tcp_sk(sk); 721 long m = mrtt_us; /* RTT */ 722 u32 srtt = tp->srtt_us; 723 724 /* The following amusing code comes from Jacobson's 725 * article in SIGCOMM '88. Note that rtt and mdev 726 * are scaled versions of rtt and mean deviation. 727 * This is designed to be as fast as possible 728 * m stands for "measurement". 729 * 730 * On a 1990 paper the rto value is changed to: 731 * RTO = rtt + 4 * mdev 732 * 733 * Funny. This algorithm seems to be very broken. 734 * These formulae increase RTO, when it should be decreased, increase 735 * too slowly, when it should be increased quickly, decrease too quickly 736 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 737 * does not matter how to _calculate_ it. Seems, it was trap 738 * that VJ failed to avoid. 8) 739 */ 740 if (srtt != 0) { 741 m -= (srtt >> 3); /* m is now error in rtt est */ 742 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 743 if (m < 0) { 744 m = -m; /* m is now abs(error) */ 745 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 746 /* This is similar to one of Eifel findings. 747 * Eifel blocks mdev updates when rtt decreases. 748 * This solution is a bit different: we use finer gain 749 * for mdev in this case (alpha*beta). 750 * Like Eifel it also prevents growth of rto, 751 * but also it limits too fast rto decreases, 752 * happening in pure Eifel. 753 */ 754 if (m > 0) 755 m >>= 3; 756 } else { 757 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 758 } 759 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 760 if (tp->mdev_us > tp->mdev_max_us) { 761 tp->mdev_max_us = tp->mdev_us; 762 if (tp->mdev_max_us > tp->rttvar_us) 763 tp->rttvar_us = tp->mdev_max_us; 764 } 765 if (after(tp->snd_una, tp->rtt_seq)) { 766 if (tp->mdev_max_us < tp->rttvar_us) 767 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 768 tp->rtt_seq = tp->snd_nxt; 769 tp->mdev_max_us = tcp_rto_min_us(sk); 770 } 771 } else { 772 /* no previous measure. */ 773 srtt = m << 3; /* take the measured time to be rtt */ 774 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 775 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 776 tp->mdev_max_us = tp->rttvar_us; 777 tp->rtt_seq = tp->snd_nxt; 778 } 779 tp->srtt_us = max(1U, srtt); 780 } 781 782 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 783 * Note: TCP stack does not yet implement pacing. 784 * FQ packet scheduler can be used to implement cheap but effective 785 * TCP pacing, to smooth the burst on large writes when packets 786 * in flight is significantly lower than cwnd (or rwin) 787 */ 788 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 789 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 790 791 static void tcp_update_pacing_rate(struct sock *sk) 792 { 793 const struct tcp_sock *tp = tcp_sk(sk); 794 u64 rate; 795 796 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 797 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 798 799 /* current rate is (cwnd * mss) / srtt 800 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 801 * In Congestion Avoidance phase, set it to 120 % the current rate. 802 * 803 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 804 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 805 * end of slow start and should slow down. 806 */ 807 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 808 rate *= sysctl_tcp_pacing_ss_ratio; 809 else 810 rate *= sysctl_tcp_pacing_ca_ratio; 811 812 rate *= max(tp->snd_cwnd, tp->packets_out); 813 814 if (likely(tp->srtt_us)) 815 do_div(rate, tp->srtt_us); 816 817 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 818 * without any lock. We want to make sure compiler wont store 819 * intermediate values in this location. 820 */ 821 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 822 sk->sk_max_pacing_rate); 823 } 824 825 /* Calculate rto without backoff. This is the second half of Van Jacobson's 826 * routine referred to above. 827 */ 828 static void tcp_set_rto(struct sock *sk) 829 { 830 const struct tcp_sock *tp = tcp_sk(sk); 831 /* Old crap is replaced with new one. 8) 832 * 833 * More seriously: 834 * 1. If rtt variance happened to be less 50msec, it is hallucination. 835 * It cannot be less due to utterly erratic ACK generation made 836 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 837 * to do with delayed acks, because at cwnd>2 true delack timeout 838 * is invisible. Actually, Linux-2.4 also generates erratic 839 * ACKs in some circumstances. 840 */ 841 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 842 843 /* 2. Fixups made earlier cannot be right. 844 * If we do not estimate RTO correctly without them, 845 * all the algo is pure shit and should be replaced 846 * with correct one. It is exactly, which we pretend to do. 847 */ 848 849 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 850 * guarantees that rto is higher. 851 */ 852 tcp_bound_rto(sk); 853 } 854 855 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 856 { 857 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 858 859 if (!cwnd) 860 cwnd = TCP_INIT_CWND; 861 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 862 } 863 864 /* 865 * Packet counting of FACK is based on in-order assumptions, therefore TCP 866 * disables it when reordering is detected 867 */ 868 void tcp_disable_fack(struct tcp_sock *tp) 869 { 870 /* RFC3517 uses different metric in lost marker => reset on change */ 871 if (tcp_is_fack(tp)) 872 tp->lost_skb_hint = NULL; 873 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 874 } 875 876 /* Take a notice that peer is sending D-SACKs */ 877 static void tcp_dsack_seen(struct tcp_sock *tp) 878 { 879 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 880 } 881 882 static void tcp_update_reordering(struct sock *sk, const int metric, 883 const int ts) 884 { 885 struct tcp_sock *tp = tcp_sk(sk); 886 int mib_idx; 887 888 if (metric > tp->reordering) { 889 tp->reordering = min(sysctl_tcp_max_reordering, metric); 890 891 #if FASTRETRANS_DEBUG > 1 892 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 893 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 894 tp->reordering, 895 tp->fackets_out, 896 tp->sacked_out, 897 tp->undo_marker ? tp->undo_retrans : 0); 898 #endif 899 tcp_disable_fack(tp); 900 } 901 902 tp->rack.reord = 1; 903 904 /* This exciting event is worth to be remembered. 8) */ 905 if (ts) 906 mib_idx = LINUX_MIB_TCPTSREORDER; 907 else if (tcp_is_reno(tp)) 908 mib_idx = LINUX_MIB_TCPRENOREORDER; 909 else if (tcp_is_fack(tp)) 910 mib_idx = LINUX_MIB_TCPFACKREORDER; 911 else 912 mib_idx = LINUX_MIB_TCPSACKREORDER; 913 914 NET_INC_STATS(sock_net(sk), mib_idx); 915 } 916 917 /* This must be called before lost_out is incremented */ 918 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 919 { 920 if (!tp->retransmit_skb_hint || 921 before(TCP_SKB_CB(skb)->seq, 922 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 923 tp->retransmit_skb_hint = skb; 924 } 925 926 /* Sum the number of packets on the wire we have marked as lost. 927 * There are two cases we care about here: 928 * a) Packet hasn't been marked lost (nor retransmitted), 929 * and this is the first loss. 930 * b) Packet has been marked both lost and retransmitted, 931 * and this means we think it was lost again. 932 */ 933 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 934 { 935 __u8 sacked = TCP_SKB_CB(skb)->sacked; 936 937 if (!(sacked & TCPCB_LOST) || 938 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 939 tp->lost += tcp_skb_pcount(skb); 940 } 941 942 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 943 { 944 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 945 tcp_verify_retransmit_hint(tp, skb); 946 947 tp->lost_out += tcp_skb_pcount(skb); 948 tcp_sum_lost(tp, skb); 949 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 950 } 951 } 952 953 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 954 { 955 tcp_verify_retransmit_hint(tp, skb); 956 957 tcp_sum_lost(tp, skb); 958 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 959 tp->lost_out += tcp_skb_pcount(skb); 960 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 961 } 962 } 963 964 /* This procedure tags the retransmission queue when SACKs arrive. 965 * 966 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 967 * Packets in queue with these bits set are counted in variables 968 * sacked_out, retrans_out and lost_out, correspondingly. 969 * 970 * Valid combinations are: 971 * Tag InFlight Description 972 * 0 1 - orig segment is in flight. 973 * S 0 - nothing flies, orig reached receiver. 974 * L 0 - nothing flies, orig lost by net. 975 * R 2 - both orig and retransmit are in flight. 976 * L|R 1 - orig is lost, retransmit is in flight. 977 * S|R 1 - orig reached receiver, retrans is still in flight. 978 * (L|S|R is logically valid, it could occur when L|R is sacked, 979 * but it is equivalent to plain S and code short-curcuits it to S. 980 * L|S is logically invalid, it would mean -1 packet in flight 8)) 981 * 982 * These 6 states form finite state machine, controlled by the following events: 983 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 984 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 985 * 3. Loss detection event of two flavors: 986 * A. Scoreboard estimator decided the packet is lost. 987 * A'. Reno "three dupacks" marks head of queue lost. 988 * A''. Its FACK modification, head until snd.fack is lost. 989 * B. SACK arrives sacking SND.NXT at the moment, when the 990 * segment was retransmitted. 991 * 4. D-SACK added new rule: D-SACK changes any tag to S. 992 * 993 * It is pleasant to note, that state diagram turns out to be commutative, 994 * so that we are allowed not to be bothered by order of our actions, 995 * when multiple events arrive simultaneously. (see the function below). 996 * 997 * Reordering detection. 998 * -------------------- 999 * Reordering metric is maximal distance, which a packet can be displaced 1000 * in packet stream. With SACKs we can estimate it: 1001 * 1002 * 1. SACK fills old hole and the corresponding segment was not 1003 * ever retransmitted -> reordering. Alas, we cannot use it 1004 * when segment was retransmitted. 1005 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1006 * for retransmitted and already SACKed segment -> reordering.. 1007 * Both of these heuristics are not used in Loss state, when we cannot 1008 * account for retransmits accurately. 1009 * 1010 * SACK block validation. 1011 * ---------------------- 1012 * 1013 * SACK block range validation checks that the received SACK block fits to 1014 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1015 * Note that SND.UNA is not included to the range though being valid because 1016 * it means that the receiver is rather inconsistent with itself reporting 1017 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1018 * perfectly valid, however, in light of RFC2018 which explicitly states 1019 * that "SACK block MUST reflect the newest segment. Even if the newest 1020 * segment is going to be discarded ...", not that it looks very clever 1021 * in case of head skb. Due to potentional receiver driven attacks, we 1022 * choose to avoid immediate execution of a walk in write queue due to 1023 * reneging and defer head skb's loss recovery to standard loss recovery 1024 * procedure that will eventually trigger (nothing forbids us doing this). 1025 * 1026 * Implements also blockage to start_seq wrap-around. Problem lies in the 1027 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1028 * there's no guarantee that it will be before snd_nxt (n). The problem 1029 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1030 * wrap (s_w): 1031 * 1032 * <- outs wnd -> <- wrapzone -> 1033 * u e n u_w e_w s n_w 1034 * | | | | | | | 1035 * |<------------+------+----- TCP seqno space --------------+---------->| 1036 * ...-- <2^31 ->| |<--------... 1037 * ...---- >2^31 ------>| |<--------... 1038 * 1039 * Current code wouldn't be vulnerable but it's better still to discard such 1040 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1041 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1042 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1043 * equal to the ideal case (infinite seqno space without wrap caused issues). 1044 * 1045 * With D-SACK the lower bound is extended to cover sequence space below 1046 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1047 * again, D-SACK block must not to go across snd_una (for the same reason as 1048 * for the normal SACK blocks, explained above). But there all simplicity 1049 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1050 * fully below undo_marker they do not affect behavior in anyway and can 1051 * therefore be safely ignored. In rare cases (which are more or less 1052 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1053 * fragmentation and packet reordering past skb's retransmission. To consider 1054 * them correctly, the acceptable range must be extended even more though 1055 * the exact amount is rather hard to quantify. However, tp->max_window can 1056 * be used as an exaggerated estimate. 1057 */ 1058 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1059 u32 start_seq, u32 end_seq) 1060 { 1061 /* Too far in future, or reversed (interpretation is ambiguous) */ 1062 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1063 return false; 1064 1065 /* Nasty start_seq wrap-around check (see comments above) */ 1066 if (!before(start_seq, tp->snd_nxt)) 1067 return false; 1068 1069 /* In outstanding window? ...This is valid exit for D-SACKs too. 1070 * start_seq == snd_una is non-sensical (see comments above) 1071 */ 1072 if (after(start_seq, tp->snd_una)) 1073 return true; 1074 1075 if (!is_dsack || !tp->undo_marker) 1076 return false; 1077 1078 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1079 if (after(end_seq, tp->snd_una)) 1080 return false; 1081 1082 if (!before(start_seq, tp->undo_marker)) 1083 return true; 1084 1085 /* Too old */ 1086 if (!after(end_seq, tp->undo_marker)) 1087 return false; 1088 1089 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1090 * start_seq < undo_marker and end_seq >= undo_marker. 1091 */ 1092 return !before(start_seq, end_seq - tp->max_window); 1093 } 1094 1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1096 struct tcp_sack_block_wire *sp, int num_sacks, 1097 u32 prior_snd_una) 1098 { 1099 struct tcp_sock *tp = tcp_sk(sk); 1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1102 bool dup_sack = false; 1103 1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1105 dup_sack = true; 1106 tcp_dsack_seen(tp); 1107 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1108 } else if (num_sacks > 1) { 1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1111 1112 if (!after(end_seq_0, end_seq_1) && 1113 !before(start_seq_0, start_seq_1)) { 1114 dup_sack = true; 1115 tcp_dsack_seen(tp); 1116 NET_INC_STATS(sock_net(sk), 1117 LINUX_MIB_TCPDSACKOFORECV); 1118 } 1119 } 1120 1121 /* D-SACK for already forgotten data... Do dumb counting. */ 1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1123 !after(end_seq_0, prior_snd_una) && 1124 after(end_seq_0, tp->undo_marker)) 1125 tp->undo_retrans--; 1126 1127 return dup_sack; 1128 } 1129 1130 struct tcp_sacktag_state { 1131 int reord; 1132 int fack_count; 1133 /* Timestamps for earliest and latest never-retransmitted segment 1134 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1135 * but congestion control should still get an accurate delay signal. 1136 */ 1137 struct skb_mstamp first_sackt; 1138 struct skb_mstamp last_sackt; 1139 struct rate_sample *rate; 1140 int flag; 1141 }; 1142 1143 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1144 * the incoming SACK may not exactly match but we can find smaller MSS 1145 * aligned portion of it that matches. Therefore we might need to fragment 1146 * which may fail and creates some hassle (caller must handle error case 1147 * returns). 1148 * 1149 * FIXME: this could be merged to shift decision code 1150 */ 1151 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1152 u32 start_seq, u32 end_seq) 1153 { 1154 int err; 1155 bool in_sack; 1156 unsigned int pkt_len; 1157 unsigned int mss; 1158 1159 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1160 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1161 1162 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1163 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1164 mss = tcp_skb_mss(skb); 1165 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1166 1167 if (!in_sack) { 1168 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1169 if (pkt_len < mss) 1170 pkt_len = mss; 1171 } else { 1172 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1173 if (pkt_len < mss) 1174 return -EINVAL; 1175 } 1176 1177 /* Round if necessary so that SACKs cover only full MSSes 1178 * and/or the remaining small portion (if present) 1179 */ 1180 if (pkt_len > mss) { 1181 unsigned int new_len = (pkt_len / mss) * mss; 1182 if (!in_sack && new_len < pkt_len) 1183 new_len += mss; 1184 pkt_len = new_len; 1185 } 1186 1187 if (pkt_len >= skb->len && !in_sack) 1188 return 0; 1189 1190 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1191 if (err < 0) 1192 return err; 1193 } 1194 1195 return in_sack; 1196 } 1197 1198 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1199 static u8 tcp_sacktag_one(struct sock *sk, 1200 struct tcp_sacktag_state *state, u8 sacked, 1201 u32 start_seq, u32 end_seq, 1202 int dup_sack, int pcount, 1203 const struct skb_mstamp *xmit_time) 1204 { 1205 struct tcp_sock *tp = tcp_sk(sk); 1206 int fack_count = state->fack_count; 1207 1208 /* Account D-SACK for retransmitted packet. */ 1209 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1210 if (tp->undo_marker && tp->undo_retrans > 0 && 1211 after(end_seq, tp->undo_marker)) 1212 tp->undo_retrans--; 1213 if (sacked & TCPCB_SACKED_ACKED) 1214 state->reord = min(fack_count, state->reord); 1215 } 1216 1217 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1218 if (!after(end_seq, tp->snd_una)) 1219 return sacked; 1220 1221 if (!(sacked & TCPCB_SACKED_ACKED)) { 1222 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1223 1224 if (sacked & TCPCB_SACKED_RETRANS) { 1225 /* If the segment is not tagged as lost, 1226 * we do not clear RETRANS, believing 1227 * that retransmission is still in flight. 1228 */ 1229 if (sacked & TCPCB_LOST) { 1230 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1231 tp->lost_out -= pcount; 1232 tp->retrans_out -= pcount; 1233 } 1234 } else { 1235 if (!(sacked & TCPCB_RETRANS)) { 1236 /* New sack for not retransmitted frame, 1237 * which was in hole. It is reordering. 1238 */ 1239 if (before(start_seq, 1240 tcp_highest_sack_seq(tp))) 1241 state->reord = min(fack_count, 1242 state->reord); 1243 if (!after(end_seq, tp->high_seq)) 1244 state->flag |= FLAG_ORIG_SACK_ACKED; 1245 if (state->first_sackt.v64 == 0) 1246 state->first_sackt = *xmit_time; 1247 state->last_sackt = *xmit_time; 1248 } 1249 1250 if (sacked & TCPCB_LOST) { 1251 sacked &= ~TCPCB_LOST; 1252 tp->lost_out -= pcount; 1253 } 1254 } 1255 1256 sacked |= TCPCB_SACKED_ACKED; 1257 state->flag |= FLAG_DATA_SACKED; 1258 tp->sacked_out += pcount; 1259 tp->delivered += pcount; /* Out-of-order packets delivered */ 1260 1261 fack_count += pcount; 1262 1263 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1264 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1265 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1266 tp->lost_cnt_hint += pcount; 1267 1268 if (fack_count > tp->fackets_out) 1269 tp->fackets_out = fack_count; 1270 } 1271 1272 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1273 * frames and clear it. undo_retrans is decreased above, L|R frames 1274 * are accounted above as well. 1275 */ 1276 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1277 sacked &= ~TCPCB_SACKED_RETRANS; 1278 tp->retrans_out -= pcount; 1279 } 1280 1281 return sacked; 1282 } 1283 1284 /* Shift newly-SACKed bytes from this skb to the immediately previous 1285 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1286 */ 1287 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1288 struct tcp_sacktag_state *state, 1289 unsigned int pcount, int shifted, int mss, 1290 bool dup_sack) 1291 { 1292 struct tcp_sock *tp = tcp_sk(sk); 1293 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1294 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1295 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1296 1297 BUG_ON(!pcount); 1298 1299 /* Adjust counters and hints for the newly sacked sequence 1300 * range but discard the return value since prev is already 1301 * marked. We must tag the range first because the seq 1302 * advancement below implicitly advances 1303 * tcp_highest_sack_seq() when skb is highest_sack. 1304 */ 1305 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1306 start_seq, end_seq, dup_sack, pcount, 1307 &skb->skb_mstamp); 1308 tcp_rate_skb_delivered(sk, skb, state->rate); 1309 1310 if (skb == tp->lost_skb_hint) 1311 tp->lost_cnt_hint += pcount; 1312 1313 TCP_SKB_CB(prev)->end_seq += shifted; 1314 TCP_SKB_CB(skb)->seq += shifted; 1315 1316 tcp_skb_pcount_add(prev, pcount); 1317 BUG_ON(tcp_skb_pcount(skb) < pcount); 1318 tcp_skb_pcount_add(skb, -pcount); 1319 1320 /* When we're adding to gso_segs == 1, gso_size will be zero, 1321 * in theory this shouldn't be necessary but as long as DSACK 1322 * code can come after this skb later on it's better to keep 1323 * setting gso_size to something. 1324 */ 1325 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1326 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1327 1328 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1329 if (tcp_skb_pcount(skb) <= 1) 1330 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1331 1332 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1333 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1334 1335 if (skb->len > 0) { 1336 BUG_ON(!tcp_skb_pcount(skb)); 1337 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1338 return false; 1339 } 1340 1341 /* Whole SKB was eaten :-) */ 1342 1343 if (skb == tp->retransmit_skb_hint) 1344 tp->retransmit_skb_hint = prev; 1345 if (skb == tp->lost_skb_hint) { 1346 tp->lost_skb_hint = prev; 1347 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1348 } 1349 1350 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1351 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1352 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1353 TCP_SKB_CB(prev)->end_seq++; 1354 1355 if (skb == tcp_highest_sack(sk)) 1356 tcp_advance_highest_sack(sk, skb); 1357 1358 tcp_skb_collapse_tstamp(prev, skb); 1359 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64)) 1360 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0; 1361 1362 tcp_unlink_write_queue(skb, sk); 1363 sk_wmem_free_skb(sk, skb); 1364 1365 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1366 1367 return true; 1368 } 1369 1370 /* I wish gso_size would have a bit more sane initialization than 1371 * something-or-zero which complicates things 1372 */ 1373 static int tcp_skb_seglen(const struct sk_buff *skb) 1374 { 1375 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1376 } 1377 1378 /* Shifting pages past head area doesn't work */ 1379 static int skb_can_shift(const struct sk_buff *skb) 1380 { 1381 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1382 } 1383 1384 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1385 * skb. 1386 */ 1387 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1388 struct tcp_sacktag_state *state, 1389 u32 start_seq, u32 end_seq, 1390 bool dup_sack) 1391 { 1392 struct tcp_sock *tp = tcp_sk(sk); 1393 struct sk_buff *prev; 1394 int mss; 1395 int pcount = 0; 1396 int len; 1397 int in_sack; 1398 1399 if (!sk_can_gso(sk)) 1400 goto fallback; 1401 1402 /* Normally R but no L won't result in plain S */ 1403 if (!dup_sack && 1404 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1405 goto fallback; 1406 if (!skb_can_shift(skb)) 1407 goto fallback; 1408 /* This frame is about to be dropped (was ACKed). */ 1409 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1410 goto fallback; 1411 1412 /* Can only happen with delayed DSACK + discard craziness */ 1413 if (unlikely(skb == tcp_write_queue_head(sk))) 1414 goto fallback; 1415 prev = tcp_write_queue_prev(sk, skb); 1416 1417 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1418 goto fallback; 1419 1420 if (!tcp_skb_can_collapse_to(prev)) 1421 goto fallback; 1422 1423 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1424 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1425 1426 if (in_sack) { 1427 len = skb->len; 1428 pcount = tcp_skb_pcount(skb); 1429 mss = tcp_skb_seglen(skb); 1430 1431 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1432 * drop this restriction as unnecessary 1433 */ 1434 if (mss != tcp_skb_seglen(prev)) 1435 goto fallback; 1436 } else { 1437 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1438 goto noop; 1439 /* CHECKME: This is non-MSS split case only?, this will 1440 * cause skipped skbs due to advancing loop btw, original 1441 * has that feature too 1442 */ 1443 if (tcp_skb_pcount(skb) <= 1) 1444 goto noop; 1445 1446 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1447 if (!in_sack) { 1448 /* TODO: head merge to next could be attempted here 1449 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1450 * though it might not be worth of the additional hassle 1451 * 1452 * ...we can probably just fallback to what was done 1453 * previously. We could try merging non-SACKed ones 1454 * as well but it probably isn't going to buy off 1455 * because later SACKs might again split them, and 1456 * it would make skb timestamp tracking considerably 1457 * harder problem. 1458 */ 1459 goto fallback; 1460 } 1461 1462 len = end_seq - TCP_SKB_CB(skb)->seq; 1463 BUG_ON(len < 0); 1464 BUG_ON(len > skb->len); 1465 1466 /* MSS boundaries should be honoured or else pcount will 1467 * severely break even though it makes things bit trickier. 1468 * Optimize common case to avoid most of the divides 1469 */ 1470 mss = tcp_skb_mss(skb); 1471 1472 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1473 * drop this restriction as unnecessary 1474 */ 1475 if (mss != tcp_skb_seglen(prev)) 1476 goto fallback; 1477 1478 if (len == mss) { 1479 pcount = 1; 1480 } else if (len < mss) { 1481 goto noop; 1482 } else { 1483 pcount = len / mss; 1484 len = pcount * mss; 1485 } 1486 } 1487 1488 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1489 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1490 goto fallback; 1491 1492 if (!skb_shift(prev, skb, len)) 1493 goto fallback; 1494 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1495 goto out; 1496 1497 /* Hole filled allows collapsing with the next as well, this is very 1498 * useful when hole on every nth skb pattern happens 1499 */ 1500 if (prev == tcp_write_queue_tail(sk)) 1501 goto out; 1502 skb = tcp_write_queue_next(sk, prev); 1503 1504 if (!skb_can_shift(skb) || 1505 (skb == tcp_send_head(sk)) || 1506 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1507 (mss != tcp_skb_seglen(skb))) 1508 goto out; 1509 1510 len = skb->len; 1511 if (skb_shift(prev, skb, len)) { 1512 pcount += tcp_skb_pcount(skb); 1513 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1514 } 1515 1516 out: 1517 state->fack_count += pcount; 1518 return prev; 1519 1520 noop: 1521 return skb; 1522 1523 fallback: 1524 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1525 return NULL; 1526 } 1527 1528 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1529 struct tcp_sack_block *next_dup, 1530 struct tcp_sacktag_state *state, 1531 u32 start_seq, u32 end_seq, 1532 bool dup_sack_in) 1533 { 1534 struct tcp_sock *tp = tcp_sk(sk); 1535 struct sk_buff *tmp; 1536 1537 tcp_for_write_queue_from(skb, sk) { 1538 int in_sack = 0; 1539 bool dup_sack = dup_sack_in; 1540 1541 if (skb == tcp_send_head(sk)) 1542 break; 1543 1544 /* queue is in-order => we can short-circuit the walk early */ 1545 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1546 break; 1547 1548 if (next_dup && 1549 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1550 in_sack = tcp_match_skb_to_sack(sk, skb, 1551 next_dup->start_seq, 1552 next_dup->end_seq); 1553 if (in_sack > 0) 1554 dup_sack = true; 1555 } 1556 1557 /* skb reference here is a bit tricky to get right, since 1558 * shifting can eat and free both this skb and the next, 1559 * so not even _safe variant of the loop is enough. 1560 */ 1561 if (in_sack <= 0) { 1562 tmp = tcp_shift_skb_data(sk, skb, state, 1563 start_seq, end_seq, dup_sack); 1564 if (tmp) { 1565 if (tmp != skb) { 1566 skb = tmp; 1567 continue; 1568 } 1569 1570 in_sack = 0; 1571 } else { 1572 in_sack = tcp_match_skb_to_sack(sk, skb, 1573 start_seq, 1574 end_seq); 1575 } 1576 } 1577 1578 if (unlikely(in_sack < 0)) 1579 break; 1580 1581 if (in_sack) { 1582 TCP_SKB_CB(skb)->sacked = 1583 tcp_sacktag_one(sk, 1584 state, 1585 TCP_SKB_CB(skb)->sacked, 1586 TCP_SKB_CB(skb)->seq, 1587 TCP_SKB_CB(skb)->end_seq, 1588 dup_sack, 1589 tcp_skb_pcount(skb), 1590 &skb->skb_mstamp); 1591 tcp_rate_skb_delivered(sk, skb, state->rate); 1592 1593 if (!before(TCP_SKB_CB(skb)->seq, 1594 tcp_highest_sack_seq(tp))) 1595 tcp_advance_highest_sack(sk, skb); 1596 } 1597 1598 state->fack_count += tcp_skb_pcount(skb); 1599 } 1600 return skb; 1601 } 1602 1603 /* Avoid all extra work that is being done by sacktag while walking in 1604 * a normal way 1605 */ 1606 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1607 struct tcp_sacktag_state *state, 1608 u32 skip_to_seq) 1609 { 1610 tcp_for_write_queue_from(skb, sk) { 1611 if (skb == tcp_send_head(sk)) 1612 break; 1613 1614 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1615 break; 1616 1617 state->fack_count += tcp_skb_pcount(skb); 1618 } 1619 return skb; 1620 } 1621 1622 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1623 struct sock *sk, 1624 struct tcp_sack_block *next_dup, 1625 struct tcp_sacktag_state *state, 1626 u32 skip_to_seq) 1627 { 1628 if (!next_dup) 1629 return skb; 1630 1631 if (before(next_dup->start_seq, skip_to_seq)) { 1632 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1633 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1634 next_dup->start_seq, next_dup->end_seq, 1635 1); 1636 } 1637 1638 return skb; 1639 } 1640 1641 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1642 { 1643 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1644 } 1645 1646 static int 1647 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1648 u32 prior_snd_una, struct tcp_sacktag_state *state) 1649 { 1650 struct tcp_sock *tp = tcp_sk(sk); 1651 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1652 TCP_SKB_CB(ack_skb)->sacked); 1653 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1654 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1655 struct tcp_sack_block *cache; 1656 struct sk_buff *skb; 1657 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1658 int used_sacks; 1659 bool found_dup_sack = false; 1660 int i, j; 1661 int first_sack_index; 1662 1663 state->flag = 0; 1664 state->reord = tp->packets_out; 1665 1666 if (!tp->sacked_out) { 1667 if (WARN_ON(tp->fackets_out)) 1668 tp->fackets_out = 0; 1669 tcp_highest_sack_reset(sk); 1670 } 1671 1672 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1673 num_sacks, prior_snd_una); 1674 if (found_dup_sack) { 1675 state->flag |= FLAG_DSACKING_ACK; 1676 tp->delivered++; /* A spurious retransmission is delivered */ 1677 } 1678 1679 /* Eliminate too old ACKs, but take into 1680 * account more or less fresh ones, they can 1681 * contain valid SACK info. 1682 */ 1683 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1684 return 0; 1685 1686 if (!tp->packets_out) 1687 goto out; 1688 1689 used_sacks = 0; 1690 first_sack_index = 0; 1691 for (i = 0; i < num_sacks; i++) { 1692 bool dup_sack = !i && found_dup_sack; 1693 1694 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1695 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1696 1697 if (!tcp_is_sackblock_valid(tp, dup_sack, 1698 sp[used_sacks].start_seq, 1699 sp[used_sacks].end_seq)) { 1700 int mib_idx; 1701 1702 if (dup_sack) { 1703 if (!tp->undo_marker) 1704 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1705 else 1706 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1707 } else { 1708 /* Don't count olds caused by ACK reordering */ 1709 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1710 !after(sp[used_sacks].end_seq, tp->snd_una)) 1711 continue; 1712 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1713 } 1714 1715 NET_INC_STATS(sock_net(sk), mib_idx); 1716 if (i == 0) 1717 first_sack_index = -1; 1718 continue; 1719 } 1720 1721 /* Ignore very old stuff early */ 1722 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1723 continue; 1724 1725 used_sacks++; 1726 } 1727 1728 /* order SACK blocks to allow in order walk of the retrans queue */ 1729 for (i = used_sacks - 1; i > 0; i--) { 1730 for (j = 0; j < i; j++) { 1731 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1732 swap(sp[j], sp[j + 1]); 1733 1734 /* Track where the first SACK block goes to */ 1735 if (j == first_sack_index) 1736 first_sack_index = j + 1; 1737 } 1738 } 1739 } 1740 1741 skb = tcp_write_queue_head(sk); 1742 state->fack_count = 0; 1743 i = 0; 1744 1745 if (!tp->sacked_out) { 1746 /* It's already past, so skip checking against it */ 1747 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1748 } else { 1749 cache = tp->recv_sack_cache; 1750 /* Skip empty blocks in at head of the cache */ 1751 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1752 !cache->end_seq) 1753 cache++; 1754 } 1755 1756 while (i < used_sacks) { 1757 u32 start_seq = sp[i].start_seq; 1758 u32 end_seq = sp[i].end_seq; 1759 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1760 struct tcp_sack_block *next_dup = NULL; 1761 1762 if (found_dup_sack && ((i + 1) == first_sack_index)) 1763 next_dup = &sp[i + 1]; 1764 1765 /* Skip too early cached blocks */ 1766 while (tcp_sack_cache_ok(tp, cache) && 1767 !before(start_seq, cache->end_seq)) 1768 cache++; 1769 1770 /* Can skip some work by looking recv_sack_cache? */ 1771 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1772 after(end_seq, cache->start_seq)) { 1773 1774 /* Head todo? */ 1775 if (before(start_seq, cache->start_seq)) { 1776 skb = tcp_sacktag_skip(skb, sk, state, 1777 start_seq); 1778 skb = tcp_sacktag_walk(skb, sk, next_dup, 1779 state, 1780 start_seq, 1781 cache->start_seq, 1782 dup_sack); 1783 } 1784 1785 /* Rest of the block already fully processed? */ 1786 if (!after(end_seq, cache->end_seq)) 1787 goto advance_sp; 1788 1789 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1790 state, 1791 cache->end_seq); 1792 1793 /* ...tail remains todo... */ 1794 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1795 /* ...but better entrypoint exists! */ 1796 skb = tcp_highest_sack(sk); 1797 if (!skb) 1798 break; 1799 state->fack_count = tp->fackets_out; 1800 cache++; 1801 goto walk; 1802 } 1803 1804 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1805 /* Check overlap against next cached too (past this one already) */ 1806 cache++; 1807 continue; 1808 } 1809 1810 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1811 skb = tcp_highest_sack(sk); 1812 if (!skb) 1813 break; 1814 state->fack_count = tp->fackets_out; 1815 } 1816 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1817 1818 walk: 1819 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1820 start_seq, end_seq, dup_sack); 1821 1822 advance_sp: 1823 i++; 1824 } 1825 1826 /* Clear the head of the cache sack blocks so we can skip it next time */ 1827 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1828 tp->recv_sack_cache[i].start_seq = 0; 1829 tp->recv_sack_cache[i].end_seq = 0; 1830 } 1831 for (j = 0; j < used_sacks; j++) 1832 tp->recv_sack_cache[i++] = sp[j]; 1833 1834 if ((state->reord < tp->fackets_out) && 1835 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1836 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1837 1838 tcp_verify_left_out(tp); 1839 out: 1840 1841 #if FASTRETRANS_DEBUG > 0 1842 WARN_ON((int)tp->sacked_out < 0); 1843 WARN_ON((int)tp->lost_out < 0); 1844 WARN_ON((int)tp->retrans_out < 0); 1845 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1846 #endif 1847 return state->flag; 1848 } 1849 1850 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1851 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1852 */ 1853 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1854 { 1855 u32 holes; 1856 1857 holes = max(tp->lost_out, 1U); 1858 holes = min(holes, tp->packets_out); 1859 1860 if ((tp->sacked_out + holes) > tp->packets_out) { 1861 tp->sacked_out = tp->packets_out - holes; 1862 return true; 1863 } 1864 return false; 1865 } 1866 1867 /* If we receive more dupacks than we expected counting segments 1868 * in assumption of absent reordering, interpret this as reordering. 1869 * The only another reason could be bug in receiver TCP. 1870 */ 1871 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1872 { 1873 struct tcp_sock *tp = tcp_sk(sk); 1874 if (tcp_limit_reno_sacked(tp)) 1875 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1876 } 1877 1878 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1879 1880 static void tcp_add_reno_sack(struct sock *sk) 1881 { 1882 struct tcp_sock *tp = tcp_sk(sk); 1883 u32 prior_sacked = tp->sacked_out; 1884 1885 tp->sacked_out++; 1886 tcp_check_reno_reordering(sk, 0); 1887 if (tp->sacked_out > prior_sacked) 1888 tp->delivered++; /* Some out-of-order packet is delivered */ 1889 tcp_verify_left_out(tp); 1890 } 1891 1892 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1893 1894 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1895 { 1896 struct tcp_sock *tp = tcp_sk(sk); 1897 1898 if (acked > 0) { 1899 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1900 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1901 if (acked - 1 >= tp->sacked_out) 1902 tp->sacked_out = 0; 1903 else 1904 tp->sacked_out -= acked - 1; 1905 } 1906 tcp_check_reno_reordering(sk, acked); 1907 tcp_verify_left_out(tp); 1908 } 1909 1910 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1911 { 1912 tp->sacked_out = 0; 1913 } 1914 1915 void tcp_clear_retrans(struct tcp_sock *tp) 1916 { 1917 tp->retrans_out = 0; 1918 tp->lost_out = 0; 1919 tp->undo_marker = 0; 1920 tp->undo_retrans = -1; 1921 tp->fackets_out = 0; 1922 tp->sacked_out = 0; 1923 } 1924 1925 static inline void tcp_init_undo(struct tcp_sock *tp) 1926 { 1927 tp->undo_marker = tp->snd_una; 1928 /* Retransmission still in flight may cause DSACKs later. */ 1929 tp->undo_retrans = tp->retrans_out ? : -1; 1930 } 1931 1932 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1933 * and reset tags completely, otherwise preserve SACKs. If receiver 1934 * dropped its ofo queue, we will know this due to reneging detection. 1935 */ 1936 void tcp_enter_loss(struct sock *sk) 1937 { 1938 const struct inet_connection_sock *icsk = inet_csk(sk); 1939 struct tcp_sock *tp = tcp_sk(sk); 1940 struct net *net = sock_net(sk); 1941 struct sk_buff *skb; 1942 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1943 bool is_reneg; /* is receiver reneging on SACKs? */ 1944 bool mark_lost; 1945 1946 /* Reduce ssthresh if it has not yet been made inside this window. */ 1947 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1948 !after(tp->high_seq, tp->snd_una) || 1949 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1950 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1951 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1952 tcp_ca_event(sk, CA_EVENT_LOSS); 1953 tcp_init_undo(tp); 1954 } 1955 tp->snd_cwnd = 1; 1956 tp->snd_cwnd_cnt = 0; 1957 tp->snd_cwnd_stamp = tcp_jiffies32; 1958 1959 tp->retrans_out = 0; 1960 tp->lost_out = 0; 1961 1962 if (tcp_is_reno(tp)) 1963 tcp_reset_reno_sack(tp); 1964 1965 skb = tcp_write_queue_head(sk); 1966 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1967 if (is_reneg) { 1968 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1969 tp->sacked_out = 0; 1970 tp->fackets_out = 0; 1971 } 1972 tcp_clear_all_retrans_hints(tp); 1973 1974 tcp_for_write_queue(skb, sk) { 1975 if (skb == tcp_send_head(sk)) 1976 break; 1977 1978 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1979 is_reneg); 1980 if (mark_lost) 1981 tcp_sum_lost(tp, skb); 1982 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1983 if (mark_lost) { 1984 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1985 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1986 tp->lost_out += tcp_skb_pcount(skb); 1987 } 1988 } 1989 tcp_verify_left_out(tp); 1990 1991 /* Timeout in disordered state after receiving substantial DUPACKs 1992 * suggests that the degree of reordering is over-estimated. 1993 */ 1994 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1995 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1996 tp->reordering = min_t(unsigned int, tp->reordering, 1997 net->ipv4.sysctl_tcp_reordering); 1998 tcp_set_ca_state(sk, TCP_CA_Loss); 1999 tp->high_seq = tp->snd_nxt; 2000 tcp_ecn_queue_cwr(tp); 2001 2002 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2003 * loss recovery is underway except recurring timeout(s) on 2004 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2005 * 2006 * In theory F-RTO can be used repeatedly during loss recovery. 2007 * In practice this interacts badly with broken middle-boxes that 2008 * falsely raise the receive window, which results in repeated 2009 * timeouts and stop-and-go behavior. 2010 */ 2011 tp->frto = sysctl_tcp_frto && 2012 (new_recovery || icsk->icsk_retransmits) && 2013 !inet_csk(sk)->icsk_mtup.probe_size; 2014 } 2015 2016 /* If ACK arrived pointing to a remembered SACK, it means that our 2017 * remembered SACKs do not reflect real state of receiver i.e. 2018 * receiver _host_ is heavily congested (or buggy). 2019 * 2020 * To avoid big spurious retransmission bursts due to transient SACK 2021 * scoreboard oddities that look like reneging, we give the receiver a 2022 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2023 * restore sanity to the SACK scoreboard. If the apparent reneging 2024 * persists until this RTO then we'll clear the SACK scoreboard. 2025 */ 2026 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2027 { 2028 if (flag & FLAG_SACK_RENEGING) { 2029 struct tcp_sock *tp = tcp_sk(sk); 2030 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2031 msecs_to_jiffies(10)); 2032 2033 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2034 delay, TCP_RTO_MAX); 2035 return true; 2036 } 2037 return false; 2038 } 2039 2040 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2041 { 2042 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2043 } 2044 2045 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2046 * counter when SACK is enabled (without SACK, sacked_out is used for 2047 * that purpose). 2048 * 2049 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2050 * segments up to the highest received SACK block so far and holes in 2051 * between them. 2052 * 2053 * With reordering, holes may still be in flight, so RFC3517 recovery 2054 * uses pure sacked_out (total number of SACKed segments) even though 2055 * it violates the RFC that uses duplicate ACKs, often these are equal 2056 * but when e.g. out-of-window ACKs or packet duplication occurs, 2057 * they differ. Since neither occurs due to loss, TCP should really 2058 * ignore them. 2059 */ 2060 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2061 { 2062 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2063 } 2064 2065 /* Linux NewReno/SACK/FACK/ECN state machine. 2066 * -------------------------------------- 2067 * 2068 * "Open" Normal state, no dubious events, fast path. 2069 * "Disorder" In all the respects it is "Open", 2070 * but requires a bit more attention. It is entered when 2071 * we see some SACKs or dupacks. It is split of "Open" 2072 * mainly to move some processing from fast path to slow one. 2073 * "CWR" CWND was reduced due to some Congestion Notification event. 2074 * It can be ECN, ICMP source quench, local device congestion. 2075 * "Recovery" CWND was reduced, we are fast-retransmitting. 2076 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2077 * 2078 * tcp_fastretrans_alert() is entered: 2079 * - each incoming ACK, if state is not "Open" 2080 * - when arrived ACK is unusual, namely: 2081 * * SACK 2082 * * Duplicate ACK. 2083 * * ECN ECE. 2084 * 2085 * Counting packets in flight is pretty simple. 2086 * 2087 * in_flight = packets_out - left_out + retrans_out 2088 * 2089 * packets_out is SND.NXT-SND.UNA counted in packets. 2090 * 2091 * retrans_out is number of retransmitted segments. 2092 * 2093 * left_out is number of segments left network, but not ACKed yet. 2094 * 2095 * left_out = sacked_out + lost_out 2096 * 2097 * sacked_out: Packets, which arrived to receiver out of order 2098 * and hence not ACKed. With SACKs this number is simply 2099 * amount of SACKed data. Even without SACKs 2100 * it is easy to give pretty reliable estimate of this number, 2101 * counting duplicate ACKs. 2102 * 2103 * lost_out: Packets lost by network. TCP has no explicit 2104 * "loss notification" feedback from network (for now). 2105 * It means that this number can be only _guessed_. 2106 * Actually, it is the heuristics to predict lossage that 2107 * distinguishes different algorithms. 2108 * 2109 * F.e. after RTO, when all the queue is considered as lost, 2110 * lost_out = packets_out and in_flight = retrans_out. 2111 * 2112 * Essentially, we have now a few algorithms detecting 2113 * lost packets. 2114 * 2115 * If the receiver supports SACK: 2116 * 2117 * RFC6675/3517: It is the conventional algorithm. A packet is 2118 * considered lost if the number of higher sequence packets 2119 * SACKed is greater than or equal the DUPACK thoreshold 2120 * (reordering). This is implemented in tcp_mark_head_lost and 2121 * tcp_update_scoreboard. 2122 * 2123 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2124 * (2017-) that checks timing instead of counting DUPACKs. 2125 * Essentially a packet is considered lost if it's not S/ACKed 2126 * after RTT + reordering_window, where both metrics are 2127 * dynamically measured and adjusted. This is implemented in 2128 * tcp_rack_mark_lost. 2129 * 2130 * FACK (Disabled by default. Subsumbed by RACK): 2131 * It is the simplest heuristics. As soon as we decided 2132 * that something is lost, we decide that _all_ not SACKed 2133 * packets until the most forward SACK are lost. I.e. 2134 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2135 * It is absolutely correct estimate, if network does not reorder 2136 * packets. And it loses any connection to reality when reordering 2137 * takes place. We use FACK by default until reordering 2138 * is suspected on the path to this destination. 2139 * 2140 * If the receiver does not support SACK: 2141 * 2142 * NewReno (RFC6582): in Recovery we assume that one segment 2143 * is lost (classic Reno). While we are in Recovery and 2144 * a partial ACK arrives, we assume that one more packet 2145 * is lost (NewReno). This heuristics are the same in NewReno 2146 * and SACK. 2147 * 2148 * Really tricky (and requiring careful tuning) part of algorithm 2149 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2150 * The first determines the moment _when_ we should reduce CWND and, 2151 * hence, slow down forward transmission. In fact, it determines the moment 2152 * when we decide that hole is caused by loss, rather than by a reorder. 2153 * 2154 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2155 * holes, caused by lost packets. 2156 * 2157 * And the most logically complicated part of algorithm is undo 2158 * heuristics. We detect false retransmits due to both too early 2159 * fast retransmit (reordering) and underestimated RTO, analyzing 2160 * timestamps and D-SACKs. When we detect that some segments were 2161 * retransmitted by mistake and CWND reduction was wrong, we undo 2162 * window reduction and abort recovery phase. This logic is hidden 2163 * inside several functions named tcp_try_undo_<something>. 2164 */ 2165 2166 /* This function decides, when we should leave Disordered state 2167 * and enter Recovery phase, reducing congestion window. 2168 * 2169 * Main question: may we further continue forward transmission 2170 * with the same cwnd? 2171 */ 2172 static bool tcp_time_to_recover(struct sock *sk, int flag) 2173 { 2174 struct tcp_sock *tp = tcp_sk(sk); 2175 2176 /* Trick#1: The loss is proven. */ 2177 if (tp->lost_out) 2178 return true; 2179 2180 /* Not-A-Trick#2 : Classic rule... */ 2181 if (tcp_dupack_heuristics(tp) > tp->reordering) 2182 return true; 2183 2184 return false; 2185 } 2186 2187 /* Detect loss in event "A" above by marking head of queue up as lost. 2188 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2189 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2190 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2191 * the maximum SACKed segments to pass before reaching this limit. 2192 */ 2193 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2194 { 2195 struct tcp_sock *tp = tcp_sk(sk); 2196 struct sk_buff *skb; 2197 int cnt, oldcnt, lost; 2198 unsigned int mss; 2199 /* Use SACK to deduce losses of new sequences sent during recovery */ 2200 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2201 2202 WARN_ON(packets > tp->packets_out); 2203 if (tp->lost_skb_hint) { 2204 skb = tp->lost_skb_hint; 2205 cnt = tp->lost_cnt_hint; 2206 /* Head already handled? */ 2207 if (mark_head && skb != tcp_write_queue_head(sk)) 2208 return; 2209 } else { 2210 skb = tcp_write_queue_head(sk); 2211 cnt = 0; 2212 } 2213 2214 tcp_for_write_queue_from(skb, sk) { 2215 if (skb == tcp_send_head(sk)) 2216 break; 2217 /* TODO: do this better */ 2218 /* this is not the most efficient way to do this... */ 2219 tp->lost_skb_hint = skb; 2220 tp->lost_cnt_hint = cnt; 2221 2222 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2223 break; 2224 2225 oldcnt = cnt; 2226 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2227 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2228 cnt += tcp_skb_pcount(skb); 2229 2230 if (cnt > packets) { 2231 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2232 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2233 (oldcnt >= packets)) 2234 break; 2235 2236 mss = tcp_skb_mss(skb); 2237 /* If needed, chop off the prefix to mark as lost. */ 2238 lost = (packets - oldcnt) * mss; 2239 if (lost < skb->len && 2240 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2241 break; 2242 cnt = packets; 2243 } 2244 2245 tcp_skb_mark_lost(tp, skb); 2246 2247 if (mark_head) 2248 break; 2249 } 2250 tcp_verify_left_out(tp); 2251 } 2252 2253 /* Account newly detected lost packet(s) */ 2254 2255 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2256 { 2257 struct tcp_sock *tp = tcp_sk(sk); 2258 2259 if (tcp_is_reno(tp)) { 2260 tcp_mark_head_lost(sk, 1, 1); 2261 } else if (tcp_is_fack(tp)) { 2262 int lost = tp->fackets_out - tp->reordering; 2263 if (lost <= 0) 2264 lost = 1; 2265 tcp_mark_head_lost(sk, lost, 0); 2266 } else { 2267 int sacked_upto = tp->sacked_out - tp->reordering; 2268 if (sacked_upto >= 0) 2269 tcp_mark_head_lost(sk, sacked_upto, 0); 2270 else if (fast_rexmit) 2271 tcp_mark_head_lost(sk, 1, 1); 2272 } 2273 } 2274 2275 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2276 { 2277 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2278 before(tp->rx_opt.rcv_tsecr, when); 2279 } 2280 2281 /* skb is spurious retransmitted if the returned timestamp echo 2282 * reply is prior to the skb transmission time 2283 */ 2284 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2285 const struct sk_buff *skb) 2286 { 2287 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2288 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2289 } 2290 2291 /* Nothing was retransmitted or returned timestamp is less 2292 * than timestamp of the first retransmission. 2293 */ 2294 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2295 { 2296 return !tp->retrans_stamp || 2297 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2298 } 2299 2300 /* Undo procedures. */ 2301 2302 /* We can clear retrans_stamp when there are no retransmissions in the 2303 * window. It would seem that it is trivially available for us in 2304 * tp->retrans_out, however, that kind of assumptions doesn't consider 2305 * what will happen if errors occur when sending retransmission for the 2306 * second time. ...It could the that such segment has only 2307 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2308 * the head skb is enough except for some reneging corner cases that 2309 * are not worth the effort. 2310 * 2311 * Main reason for all this complexity is the fact that connection dying 2312 * time now depends on the validity of the retrans_stamp, in particular, 2313 * that successive retransmissions of a segment must not advance 2314 * retrans_stamp under any conditions. 2315 */ 2316 static bool tcp_any_retrans_done(const struct sock *sk) 2317 { 2318 const struct tcp_sock *tp = tcp_sk(sk); 2319 struct sk_buff *skb; 2320 2321 if (tp->retrans_out) 2322 return true; 2323 2324 skb = tcp_write_queue_head(sk); 2325 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2326 return true; 2327 2328 return false; 2329 } 2330 2331 #if FASTRETRANS_DEBUG > 1 2332 static void DBGUNDO(struct sock *sk, const char *msg) 2333 { 2334 struct tcp_sock *tp = tcp_sk(sk); 2335 struct inet_sock *inet = inet_sk(sk); 2336 2337 if (sk->sk_family == AF_INET) { 2338 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2339 msg, 2340 &inet->inet_daddr, ntohs(inet->inet_dport), 2341 tp->snd_cwnd, tcp_left_out(tp), 2342 tp->snd_ssthresh, tp->prior_ssthresh, 2343 tp->packets_out); 2344 } 2345 #if IS_ENABLED(CONFIG_IPV6) 2346 else if (sk->sk_family == AF_INET6) { 2347 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2348 msg, 2349 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2350 tp->snd_cwnd, tcp_left_out(tp), 2351 tp->snd_ssthresh, tp->prior_ssthresh, 2352 tp->packets_out); 2353 } 2354 #endif 2355 } 2356 #else 2357 #define DBGUNDO(x...) do { } while (0) 2358 #endif 2359 2360 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2361 { 2362 struct tcp_sock *tp = tcp_sk(sk); 2363 2364 if (unmark_loss) { 2365 struct sk_buff *skb; 2366 2367 tcp_for_write_queue(skb, sk) { 2368 if (skb == tcp_send_head(sk)) 2369 break; 2370 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2371 } 2372 tp->lost_out = 0; 2373 tcp_clear_all_retrans_hints(tp); 2374 } 2375 2376 if (tp->prior_ssthresh) { 2377 const struct inet_connection_sock *icsk = inet_csk(sk); 2378 2379 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2380 2381 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2382 tp->snd_ssthresh = tp->prior_ssthresh; 2383 tcp_ecn_withdraw_cwr(tp); 2384 } 2385 } 2386 tp->snd_cwnd_stamp = tcp_jiffies32; 2387 tp->undo_marker = 0; 2388 } 2389 2390 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2391 { 2392 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2393 } 2394 2395 /* People celebrate: "We love our President!" */ 2396 static bool tcp_try_undo_recovery(struct sock *sk) 2397 { 2398 struct tcp_sock *tp = tcp_sk(sk); 2399 2400 if (tcp_may_undo(tp)) { 2401 int mib_idx; 2402 2403 /* Happy end! We did not retransmit anything 2404 * or our original transmission succeeded. 2405 */ 2406 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2407 tcp_undo_cwnd_reduction(sk, false); 2408 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2409 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2410 else 2411 mib_idx = LINUX_MIB_TCPFULLUNDO; 2412 2413 NET_INC_STATS(sock_net(sk), mib_idx); 2414 } 2415 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2416 /* Hold old state until something *above* high_seq 2417 * is ACKed. For Reno it is MUST to prevent false 2418 * fast retransmits (RFC2582). SACK TCP is safe. */ 2419 if (!tcp_any_retrans_done(sk)) 2420 tp->retrans_stamp = 0; 2421 return true; 2422 } 2423 tcp_set_ca_state(sk, TCP_CA_Open); 2424 return false; 2425 } 2426 2427 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2428 static bool tcp_try_undo_dsack(struct sock *sk) 2429 { 2430 struct tcp_sock *tp = tcp_sk(sk); 2431 2432 if (tp->undo_marker && !tp->undo_retrans) { 2433 DBGUNDO(sk, "D-SACK"); 2434 tcp_undo_cwnd_reduction(sk, false); 2435 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2436 return true; 2437 } 2438 return false; 2439 } 2440 2441 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2442 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2443 { 2444 struct tcp_sock *tp = tcp_sk(sk); 2445 2446 if (frto_undo || tcp_may_undo(tp)) { 2447 tcp_undo_cwnd_reduction(sk, true); 2448 2449 DBGUNDO(sk, "partial loss"); 2450 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2451 if (frto_undo) 2452 NET_INC_STATS(sock_net(sk), 2453 LINUX_MIB_TCPSPURIOUSRTOS); 2454 inet_csk(sk)->icsk_retransmits = 0; 2455 if (frto_undo || tcp_is_sack(tp)) 2456 tcp_set_ca_state(sk, TCP_CA_Open); 2457 return true; 2458 } 2459 return false; 2460 } 2461 2462 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2463 * It computes the number of packets to send (sndcnt) based on packets newly 2464 * delivered: 2465 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2466 * cwnd reductions across a full RTT. 2467 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2468 * But when the retransmits are acked without further losses, PRR 2469 * slow starts cwnd up to ssthresh to speed up the recovery. 2470 */ 2471 static void tcp_init_cwnd_reduction(struct sock *sk) 2472 { 2473 struct tcp_sock *tp = tcp_sk(sk); 2474 2475 tp->high_seq = tp->snd_nxt; 2476 tp->tlp_high_seq = 0; 2477 tp->snd_cwnd_cnt = 0; 2478 tp->prior_cwnd = tp->snd_cwnd; 2479 tp->prr_delivered = 0; 2480 tp->prr_out = 0; 2481 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2482 tcp_ecn_queue_cwr(tp); 2483 } 2484 2485 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2486 { 2487 struct tcp_sock *tp = tcp_sk(sk); 2488 int sndcnt = 0; 2489 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2490 2491 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2492 return; 2493 2494 tp->prr_delivered += newly_acked_sacked; 2495 if (delta < 0) { 2496 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2497 tp->prior_cwnd - 1; 2498 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2499 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2500 !(flag & FLAG_LOST_RETRANS)) { 2501 sndcnt = min_t(int, delta, 2502 max_t(int, tp->prr_delivered - tp->prr_out, 2503 newly_acked_sacked) + 1); 2504 } else { 2505 sndcnt = min(delta, newly_acked_sacked); 2506 } 2507 /* Force a fast retransmit upon entering fast recovery */ 2508 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2509 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2510 } 2511 2512 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2513 { 2514 struct tcp_sock *tp = tcp_sk(sk); 2515 2516 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2517 return; 2518 2519 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2520 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2521 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2522 tp->snd_cwnd = tp->snd_ssthresh; 2523 tp->snd_cwnd_stamp = tcp_jiffies32; 2524 } 2525 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2526 } 2527 2528 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2529 void tcp_enter_cwr(struct sock *sk) 2530 { 2531 struct tcp_sock *tp = tcp_sk(sk); 2532 2533 tp->prior_ssthresh = 0; 2534 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2535 tp->undo_marker = 0; 2536 tcp_init_cwnd_reduction(sk); 2537 tcp_set_ca_state(sk, TCP_CA_CWR); 2538 } 2539 } 2540 EXPORT_SYMBOL(tcp_enter_cwr); 2541 2542 static void tcp_try_keep_open(struct sock *sk) 2543 { 2544 struct tcp_sock *tp = tcp_sk(sk); 2545 int state = TCP_CA_Open; 2546 2547 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2548 state = TCP_CA_Disorder; 2549 2550 if (inet_csk(sk)->icsk_ca_state != state) { 2551 tcp_set_ca_state(sk, state); 2552 tp->high_seq = tp->snd_nxt; 2553 } 2554 } 2555 2556 static void tcp_try_to_open(struct sock *sk, int flag) 2557 { 2558 struct tcp_sock *tp = tcp_sk(sk); 2559 2560 tcp_verify_left_out(tp); 2561 2562 if (!tcp_any_retrans_done(sk)) 2563 tp->retrans_stamp = 0; 2564 2565 if (flag & FLAG_ECE) 2566 tcp_enter_cwr(sk); 2567 2568 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2569 tcp_try_keep_open(sk); 2570 } 2571 } 2572 2573 static void tcp_mtup_probe_failed(struct sock *sk) 2574 { 2575 struct inet_connection_sock *icsk = inet_csk(sk); 2576 2577 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2578 icsk->icsk_mtup.probe_size = 0; 2579 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2580 } 2581 2582 static void tcp_mtup_probe_success(struct sock *sk) 2583 { 2584 struct tcp_sock *tp = tcp_sk(sk); 2585 struct inet_connection_sock *icsk = inet_csk(sk); 2586 2587 /* FIXME: breaks with very large cwnd */ 2588 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2589 tp->snd_cwnd = tp->snd_cwnd * 2590 tcp_mss_to_mtu(sk, tp->mss_cache) / 2591 icsk->icsk_mtup.probe_size; 2592 tp->snd_cwnd_cnt = 0; 2593 tp->snd_cwnd_stamp = tcp_jiffies32; 2594 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2595 2596 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2597 icsk->icsk_mtup.probe_size = 0; 2598 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2599 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2600 } 2601 2602 /* Do a simple retransmit without using the backoff mechanisms in 2603 * tcp_timer. This is used for path mtu discovery. 2604 * The socket is already locked here. 2605 */ 2606 void tcp_simple_retransmit(struct sock *sk) 2607 { 2608 const struct inet_connection_sock *icsk = inet_csk(sk); 2609 struct tcp_sock *tp = tcp_sk(sk); 2610 struct sk_buff *skb; 2611 unsigned int mss = tcp_current_mss(sk); 2612 u32 prior_lost = tp->lost_out; 2613 2614 tcp_for_write_queue(skb, sk) { 2615 if (skb == tcp_send_head(sk)) 2616 break; 2617 if (tcp_skb_seglen(skb) > mss && 2618 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2619 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2620 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2621 tp->retrans_out -= tcp_skb_pcount(skb); 2622 } 2623 tcp_skb_mark_lost_uncond_verify(tp, skb); 2624 } 2625 } 2626 2627 tcp_clear_retrans_hints_partial(tp); 2628 2629 if (prior_lost == tp->lost_out) 2630 return; 2631 2632 if (tcp_is_reno(tp)) 2633 tcp_limit_reno_sacked(tp); 2634 2635 tcp_verify_left_out(tp); 2636 2637 /* Don't muck with the congestion window here. 2638 * Reason is that we do not increase amount of _data_ 2639 * in network, but units changed and effective 2640 * cwnd/ssthresh really reduced now. 2641 */ 2642 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2643 tp->high_seq = tp->snd_nxt; 2644 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2645 tp->prior_ssthresh = 0; 2646 tp->undo_marker = 0; 2647 tcp_set_ca_state(sk, TCP_CA_Loss); 2648 } 2649 tcp_xmit_retransmit_queue(sk); 2650 } 2651 EXPORT_SYMBOL(tcp_simple_retransmit); 2652 2653 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2654 { 2655 struct tcp_sock *tp = tcp_sk(sk); 2656 int mib_idx; 2657 2658 if (tcp_is_reno(tp)) 2659 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2660 else 2661 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2662 2663 NET_INC_STATS(sock_net(sk), mib_idx); 2664 2665 tp->prior_ssthresh = 0; 2666 tcp_init_undo(tp); 2667 2668 if (!tcp_in_cwnd_reduction(sk)) { 2669 if (!ece_ack) 2670 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2671 tcp_init_cwnd_reduction(sk); 2672 } 2673 tcp_set_ca_state(sk, TCP_CA_Recovery); 2674 } 2675 2676 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2677 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2678 */ 2679 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2680 int *rexmit) 2681 { 2682 struct tcp_sock *tp = tcp_sk(sk); 2683 bool recovered = !before(tp->snd_una, tp->high_seq); 2684 2685 if ((flag & FLAG_SND_UNA_ADVANCED) && 2686 tcp_try_undo_loss(sk, false)) 2687 return; 2688 2689 /* The ACK (s)acks some never-retransmitted data meaning not all 2690 * the data packets before the timeout were lost. Therefore we 2691 * undo the congestion window and state. This is essentially 2692 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2693 * a retransmitted skb is permantly marked, we can apply such an 2694 * operation even if F-RTO was not used. 2695 */ 2696 if ((flag & FLAG_ORIG_SACK_ACKED) && 2697 tcp_try_undo_loss(sk, tp->undo_marker)) 2698 return; 2699 2700 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2701 if (after(tp->snd_nxt, tp->high_seq)) { 2702 if (flag & FLAG_DATA_SACKED || is_dupack) 2703 tp->frto = 0; /* Step 3.a. loss was real */ 2704 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2705 tp->high_seq = tp->snd_nxt; 2706 /* Step 2.b. Try send new data (but deferred until cwnd 2707 * is updated in tcp_ack()). Otherwise fall back to 2708 * the conventional recovery. 2709 */ 2710 if (tcp_send_head(sk) && 2711 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2712 *rexmit = REXMIT_NEW; 2713 return; 2714 } 2715 tp->frto = 0; 2716 } 2717 } 2718 2719 if (recovered) { 2720 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2721 tcp_try_undo_recovery(sk); 2722 return; 2723 } 2724 if (tcp_is_reno(tp)) { 2725 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2726 * delivered. Lower inflight to clock out (re)tranmissions. 2727 */ 2728 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2729 tcp_add_reno_sack(sk); 2730 else if (flag & FLAG_SND_UNA_ADVANCED) 2731 tcp_reset_reno_sack(tp); 2732 } 2733 *rexmit = REXMIT_LOST; 2734 } 2735 2736 /* Undo during fast recovery after partial ACK. */ 2737 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2738 { 2739 struct tcp_sock *tp = tcp_sk(sk); 2740 2741 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2742 /* Plain luck! Hole if filled with delayed 2743 * packet, rather than with a retransmit. 2744 */ 2745 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2746 2747 /* We are getting evidence that the reordering degree is higher 2748 * than we realized. If there are no retransmits out then we 2749 * can undo. Otherwise we clock out new packets but do not 2750 * mark more packets lost or retransmit more. 2751 */ 2752 if (tp->retrans_out) 2753 return true; 2754 2755 if (!tcp_any_retrans_done(sk)) 2756 tp->retrans_stamp = 0; 2757 2758 DBGUNDO(sk, "partial recovery"); 2759 tcp_undo_cwnd_reduction(sk, true); 2760 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2761 tcp_try_keep_open(sk); 2762 return true; 2763 } 2764 return false; 2765 } 2766 2767 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2768 { 2769 struct tcp_sock *tp = tcp_sk(sk); 2770 2771 /* Use RACK to detect loss */ 2772 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2773 u32 prior_retrans = tp->retrans_out; 2774 2775 tcp_rack_mark_lost(sk); 2776 if (prior_retrans > tp->retrans_out) 2777 *ack_flag |= FLAG_LOST_RETRANS; 2778 } 2779 } 2780 2781 /* Process an event, which can update packets-in-flight not trivially. 2782 * Main goal of this function is to calculate new estimate for left_out, 2783 * taking into account both packets sitting in receiver's buffer and 2784 * packets lost by network. 2785 * 2786 * Besides that it updates the congestion state when packet loss or ECN 2787 * is detected. But it does not reduce the cwnd, it is done by the 2788 * congestion control later. 2789 * 2790 * It does _not_ decide what to send, it is made in function 2791 * tcp_xmit_retransmit_queue(). 2792 */ 2793 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2794 bool is_dupack, int *ack_flag, int *rexmit) 2795 { 2796 struct inet_connection_sock *icsk = inet_csk(sk); 2797 struct tcp_sock *tp = tcp_sk(sk); 2798 int fast_rexmit = 0, flag = *ack_flag; 2799 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2800 (tcp_fackets_out(tp) > tp->reordering)); 2801 2802 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2803 tp->sacked_out = 0; 2804 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2805 tp->fackets_out = 0; 2806 2807 /* Now state machine starts. 2808 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2809 if (flag & FLAG_ECE) 2810 tp->prior_ssthresh = 0; 2811 2812 /* B. In all the states check for reneging SACKs. */ 2813 if (tcp_check_sack_reneging(sk, flag)) 2814 return; 2815 2816 /* C. Check consistency of the current state. */ 2817 tcp_verify_left_out(tp); 2818 2819 /* D. Check state exit conditions. State can be terminated 2820 * when high_seq is ACKed. */ 2821 if (icsk->icsk_ca_state == TCP_CA_Open) { 2822 WARN_ON(tp->retrans_out != 0); 2823 tp->retrans_stamp = 0; 2824 } else if (!before(tp->snd_una, tp->high_seq)) { 2825 switch (icsk->icsk_ca_state) { 2826 case TCP_CA_CWR: 2827 /* CWR is to be held something *above* high_seq 2828 * is ACKed for CWR bit to reach receiver. */ 2829 if (tp->snd_una != tp->high_seq) { 2830 tcp_end_cwnd_reduction(sk); 2831 tcp_set_ca_state(sk, TCP_CA_Open); 2832 } 2833 break; 2834 2835 case TCP_CA_Recovery: 2836 if (tcp_is_reno(tp)) 2837 tcp_reset_reno_sack(tp); 2838 if (tcp_try_undo_recovery(sk)) 2839 return; 2840 tcp_end_cwnd_reduction(sk); 2841 break; 2842 } 2843 } 2844 2845 /* E. Process state. */ 2846 switch (icsk->icsk_ca_state) { 2847 case TCP_CA_Recovery: 2848 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2849 if (tcp_is_reno(tp) && is_dupack) 2850 tcp_add_reno_sack(sk); 2851 } else { 2852 if (tcp_try_undo_partial(sk, acked)) 2853 return; 2854 /* Partial ACK arrived. Force fast retransmit. */ 2855 do_lost = tcp_is_reno(tp) || 2856 tcp_fackets_out(tp) > tp->reordering; 2857 } 2858 if (tcp_try_undo_dsack(sk)) { 2859 tcp_try_keep_open(sk); 2860 return; 2861 } 2862 tcp_rack_identify_loss(sk, ack_flag); 2863 break; 2864 case TCP_CA_Loss: 2865 tcp_process_loss(sk, flag, is_dupack, rexmit); 2866 tcp_rack_identify_loss(sk, ack_flag); 2867 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2868 (*ack_flag & FLAG_LOST_RETRANS))) 2869 return; 2870 /* Change state if cwnd is undone or retransmits are lost */ 2871 default: 2872 if (tcp_is_reno(tp)) { 2873 if (flag & FLAG_SND_UNA_ADVANCED) 2874 tcp_reset_reno_sack(tp); 2875 if (is_dupack) 2876 tcp_add_reno_sack(sk); 2877 } 2878 2879 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2880 tcp_try_undo_dsack(sk); 2881 2882 tcp_rack_identify_loss(sk, ack_flag); 2883 if (!tcp_time_to_recover(sk, flag)) { 2884 tcp_try_to_open(sk, flag); 2885 return; 2886 } 2887 2888 /* MTU probe failure: don't reduce cwnd */ 2889 if (icsk->icsk_ca_state < TCP_CA_CWR && 2890 icsk->icsk_mtup.probe_size && 2891 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2892 tcp_mtup_probe_failed(sk); 2893 /* Restores the reduction we did in tcp_mtup_probe() */ 2894 tp->snd_cwnd++; 2895 tcp_simple_retransmit(sk); 2896 return; 2897 } 2898 2899 /* Otherwise enter Recovery state */ 2900 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2901 fast_rexmit = 1; 2902 } 2903 2904 if (do_lost) 2905 tcp_update_scoreboard(sk, fast_rexmit); 2906 *rexmit = REXMIT_LOST; 2907 } 2908 2909 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2910 { 2911 struct tcp_sock *tp = tcp_sk(sk); 2912 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2913 2914 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp, 2915 rtt_us ? : jiffies_to_usecs(1)); 2916 } 2917 2918 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2919 long seq_rtt_us, long sack_rtt_us, 2920 long ca_rtt_us) 2921 { 2922 const struct tcp_sock *tp = tcp_sk(sk); 2923 2924 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2925 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2926 * Karn's algorithm forbids taking RTT if some retransmitted data 2927 * is acked (RFC6298). 2928 */ 2929 if (seq_rtt_us < 0) 2930 seq_rtt_us = sack_rtt_us; 2931 2932 /* RTTM Rule: A TSecr value received in a segment is used to 2933 * update the averaged RTT measurement only if the segment 2934 * acknowledges some new data, i.e., only if it advances the 2935 * left edge of the send window. 2936 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2937 */ 2938 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2939 flag & FLAG_ACKED) 2940 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp - 2941 tp->rx_opt.rcv_tsecr); 2942 if (seq_rtt_us < 0) 2943 return false; 2944 2945 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2946 * always taken together with ACK, SACK, or TS-opts. Any negative 2947 * values will be skipped with the seq_rtt_us < 0 check above. 2948 */ 2949 tcp_update_rtt_min(sk, ca_rtt_us); 2950 tcp_rtt_estimator(sk, seq_rtt_us); 2951 tcp_set_rto(sk); 2952 2953 /* RFC6298: only reset backoff on valid RTT measurement. */ 2954 inet_csk(sk)->icsk_backoff = 0; 2955 return true; 2956 } 2957 2958 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2959 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2960 { 2961 long rtt_us = -1L; 2962 2963 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) { 2964 struct skb_mstamp now; 2965 2966 skb_mstamp_get(&now); 2967 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack); 2968 } 2969 2970 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us); 2971 } 2972 2973 2974 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2975 { 2976 const struct inet_connection_sock *icsk = inet_csk(sk); 2977 2978 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2979 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2980 } 2981 2982 /* Restart timer after forward progress on connection. 2983 * RFC2988 recommends to restart timer to now+rto. 2984 */ 2985 void tcp_rearm_rto(struct sock *sk) 2986 { 2987 const struct inet_connection_sock *icsk = inet_csk(sk); 2988 struct tcp_sock *tp = tcp_sk(sk); 2989 2990 /* If the retrans timer is currently being used by Fast Open 2991 * for SYN-ACK retrans purpose, stay put. 2992 */ 2993 if (tp->fastopen_rsk) 2994 return; 2995 2996 if (!tp->packets_out) { 2997 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2998 } else { 2999 u32 rto = inet_csk(sk)->icsk_rto; 3000 /* Offset the time elapsed after installing regular RTO */ 3001 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3002 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3003 struct sk_buff *skb = tcp_write_queue_head(sk); 3004 const u32 rto_time_stamp = 3005 tcp_skb_timestamp(skb) + rto; 3006 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 3007 /* delta may not be positive if the socket is locked 3008 * when the retrans timer fires and is rescheduled. 3009 */ 3010 if (delta > 0) 3011 rto = delta; 3012 } 3013 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3014 TCP_RTO_MAX); 3015 } 3016 } 3017 3018 /* If we get here, the whole TSO packet has not been acked. */ 3019 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3020 { 3021 struct tcp_sock *tp = tcp_sk(sk); 3022 u32 packets_acked; 3023 3024 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3025 3026 packets_acked = tcp_skb_pcount(skb); 3027 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3028 return 0; 3029 packets_acked -= tcp_skb_pcount(skb); 3030 3031 if (packets_acked) { 3032 BUG_ON(tcp_skb_pcount(skb) == 0); 3033 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3034 } 3035 3036 return packets_acked; 3037 } 3038 3039 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3040 u32 prior_snd_una) 3041 { 3042 const struct skb_shared_info *shinfo; 3043 3044 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3045 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3046 return; 3047 3048 shinfo = skb_shinfo(skb); 3049 if (!before(shinfo->tskey, prior_snd_una) && 3050 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3051 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3052 } 3053 3054 /* Remove acknowledged frames from the retransmission queue. If our packet 3055 * is before the ack sequence we can discard it as it's confirmed to have 3056 * arrived at the other end. 3057 */ 3058 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3059 u32 prior_snd_una, int *acked, 3060 struct tcp_sacktag_state *sack) 3061 { 3062 const struct inet_connection_sock *icsk = inet_csk(sk); 3063 struct skb_mstamp first_ackt, last_ackt; 3064 struct tcp_sock *tp = tcp_sk(sk); 3065 struct skb_mstamp *now = &tp->tcp_mstamp; 3066 u32 prior_sacked = tp->sacked_out; 3067 u32 reord = tp->packets_out; 3068 bool fully_acked = true; 3069 long sack_rtt_us = -1L; 3070 long seq_rtt_us = -1L; 3071 long ca_rtt_us = -1L; 3072 struct sk_buff *skb; 3073 u32 pkts_acked = 0; 3074 u32 last_in_flight = 0; 3075 bool rtt_update; 3076 int flag = 0; 3077 3078 first_ackt.v64 = 0; 3079 3080 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3081 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3082 u8 sacked = scb->sacked; 3083 u32 acked_pcount; 3084 3085 tcp_ack_tstamp(sk, skb, prior_snd_una); 3086 3087 /* Determine how many packets and what bytes were acked, tso and else */ 3088 if (after(scb->end_seq, tp->snd_una)) { 3089 if (tcp_skb_pcount(skb) == 1 || 3090 !after(tp->snd_una, scb->seq)) 3091 break; 3092 3093 acked_pcount = tcp_tso_acked(sk, skb); 3094 if (!acked_pcount) 3095 break; 3096 fully_acked = false; 3097 } else { 3098 /* Speedup tcp_unlink_write_queue() and next loop */ 3099 prefetchw(skb->next); 3100 acked_pcount = tcp_skb_pcount(skb); 3101 } 3102 3103 if (unlikely(sacked & TCPCB_RETRANS)) { 3104 if (sacked & TCPCB_SACKED_RETRANS) 3105 tp->retrans_out -= acked_pcount; 3106 flag |= FLAG_RETRANS_DATA_ACKED; 3107 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3108 last_ackt = skb->skb_mstamp; 3109 WARN_ON_ONCE(last_ackt.v64 == 0); 3110 if (!first_ackt.v64) 3111 first_ackt = last_ackt; 3112 3113 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3114 reord = min(pkts_acked, reord); 3115 if (!after(scb->end_seq, tp->high_seq)) 3116 flag |= FLAG_ORIG_SACK_ACKED; 3117 } 3118 3119 if (sacked & TCPCB_SACKED_ACKED) { 3120 tp->sacked_out -= acked_pcount; 3121 } else if (tcp_is_sack(tp)) { 3122 tp->delivered += acked_pcount; 3123 if (!tcp_skb_spurious_retrans(tp, skb)) 3124 tcp_rack_advance(tp, sacked, scb->end_seq, 3125 &skb->skb_mstamp); 3126 } 3127 if (sacked & TCPCB_LOST) 3128 tp->lost_out -= acked_pcount; 3129 3130 tp->packets_out -= acked_pcount; 3131 pkts_acked += acked_pcount; 3132 tcp_rate_skb_delivered(sk, skb, sack->rate); 3133 3134 /* Initial outgoing SYN's get put onto the write_queue 3135 * just like anything else we transmit. It is not 3136 * true data, and if we misinform our callers that 3137 * this ACK acks real data, we will erroneously exit 3138 * connection startup slow start one packet too 3139 * quickly. This is severely frowned upon behavior. 3140 */ 3141 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3142 flag |= FLAG_DATA_ACKED; 3143 } else { 3144 flag |= FLAG_SYN_ACKED; 3145 tp->retrans_stamp = 0; 3146 } 3147 3148 if (!fully_acked) 3149 break; 3150 3151 tcp_unlink_write_queue(skb, sk); 3152 sk_wmem_free_skb(sk, skb); 3153 if (unlikely(skb == tp->retransmit_skb_hint)) 3154 tp->retransmit_skb_hint = NULL; 3155 if (unlikely(skb == tp->lost_skb_hint)) 3156 tp->lost_skb_hint = NULL; 3157 } 3158 3159 if (!skb) 3160 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3161 3162 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3163 tp->snd_up = tp->snd_una; 3164 3165 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3166 flag |= FLAG_SACK_RENEGING; 3167 3168 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3169 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt); 3170 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt); 3171 } 3172 if (sack->first_sackt.v64) { 3173 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt); 3174 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt); 3175 } 3176 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */ 3177 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3178 ca_rtt_us); 3179 3180 if (flag & FLAG_ACKED) { 3181 tcp_rearm_rto(sk); 3182 if (unlikely(icsk->icsk_mtup.probe_size && 3183 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3184 tcp_mtup_probe_success(sk); 3185 } 3186 3187 if (tcp_is_reno(tp)) { 3188 tcp_remove_reno_sacks(sk, pkts_acked); 3189 } else { 3190 int delta; 3191 3192 /* Non-retransmitted hole got filled? That's reordering */ 3193 if (reord < prior_fackets) 3194 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3195 3196 delta = tcp_is_fack(tp) ? pkts_acked : 3197 prior_sacked - tp->sacked_out; 3198 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3199 } 3200 3201 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3202 3203 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3204 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) { 3205 /* Do not re-arm RTO if the sack RTT is measured from data sent 3206 * after when the head was last (re)transmitted. Otherwise the 3207 * timeout may continue to extend in loss recovery. 3208 */ 3209 tcp_rearm_rto(sk); 3210 } 3211 3212 if (icsk->icsk_ca_ops->pkts_acked) { 3213 struct ack_sample sample = { .pkts_acked = pkts_acked, 3214 .rtt_us = ca_rtt_us, 3215 .in_flight = last_in_flight }; 3216 3217 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3218 } 3219 3220 #if FASTRETRANS_DEBUG > 0 3221 WARN_ON((int)tp->sacked_out < 0); 3222 WARN_ON((int)tp->lost_out < 0); 3223 WARN_ON((int)tp->retrans_out < 0); 3224 if (!tp->packets_out && tcp_is_sack(tp)) { 3225 icsk = inet_csk(sk); 3226 if (tp->lost_out) { 3227 pr_debug("Leak l=%u %d\n", 3228 tp->lost_out, icsk->icsk_ca_state); 3229 tp->lost_out = 0; 3230 } 3231 if (tp->sacked_out) { 3232 pr_debug("Leak s=%u %d\n", 3233 tp->sacked_out, icsk->icsk_ca_state); 3234 tp->sacked_out = 0; 3235 } 3236 if (tp->retrans_out) { 3237 pr_debug("Leak r=%u %d\n", 3238 tp->retrans_out, icsk->icsk_ca_state); 3239 tp->retrans_out = 0; 3240 } 3241 } 3242 #endif 3243 *acked = pkts_acked; 3244 return flag; 3245 } 3246 3247 static void tcp_ack_probe(struct sock *sk) 3248 { 3249 const struct tcp_sock *tp = tcp_sk(sk); 3250 struct inet_connection_sock *icsk = inet_csk(sk); 3251 3252 /* Was it a usable window open? */ 3253 3254 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3255 icsk->icsk_backoff = 0; 3256 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3257 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3258 * This function is not for random using! 3259 */ 3260 } else { 3261 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3262 3263 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3264 when, TCP_RTO_MAX); 3265 } 3266 } 3267 3268 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3269 { 3270 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3271 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3272 } 3273 3274 /* Decide wheather to run the increase function of congestion control. */ 3275 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3276 { 3277 /* If reordering is high then always grow cwnd whenever data is 3278 * delivered regardless of its ordering. Otherwise stay conservative 3279 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3280 * new SACK or ECE mark may first advance cwnd here and later reduce 3281 * cwnd in tcp_fastretrans_alert() based on more states. 3282 */ 3283 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3284 return flag & FLAG_FORWARD_PROGRESS; 3285 3286 return flag & FLAG_DATA_ACKED; 3287 } 3288 3289 /* The "ultimate" congestion control function that aims to replace the rigid 3290 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3291 * It's called toward the end of processing an ACK with precise rate 3292 * information. All transmission or retransmission are delayed afterwards. 3293 */ 3294 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3295 int flag, const struct rate_sample *rs) 3296 { 3297 const struct inet_connection_sock *icsk = inet_csk(sk); 3298 3299 if (icsk->icsk_ca_ops->cong_control) { 3300 icsk->icsk_ca_ops->cong_control(sk, rs); 3301 return; 3302 } 3303 3304 if (tcp_in_cwnd_reduction(sk)) { 3305 /* Reduce cwnd if state mandates */ 3306 tcp_cwnd_reduction(sk, acked_sacked, flag); 3307 } else if (tcp_may_raise_cwnd(sk, flag)) { 3308 /* Advance cwnd if state allows */ 3309 tcp_cong_avoid(sk, ack, acked_sacked); 3310 } 3311 tcp_update_pacing_rate(sk); 3312 } 3313 3314 /* Check that window update is acceptable. 3315 * The function assumes that snd_una<=ack<=snd_next. 3316 */ 3317 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3318 const u32 ack, const u32 ack_seq, 3319 const u32 nwin) 3320 { 3321 return after(ack, tp->snd_una) || 3322 after(ack_seq, tp->snd_wl1) || 3323 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3324 } 3325 3326 /* If we update tp->snd_una, also update tp->bytes_acked */ 3327 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3328 { 3329 u32 delta = ack - tp->snd_una; 3330 3331 sock_owned_by_me((struct sock *)tp); 3332 tp->bytes_acked += delta; 3333 tp->snd_una = ack; 3334 } 3335 3336 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3337 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3338 { 3339 u32 delta = seq - tp->rcv_nxt; 3340 3341 sock_owned_by_me((struct sock *)tp); 3342 tp->bytes_received += delta; 3343 tp->rcv_nxt = seq; 3344 } 3345 3346 /* Update our send window. 3347 * 3348 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3349 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3350 */ 3351 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3352 u32 ack_seq) 3353 { 3354 struct tcp_sock *tp = tcp_sk(sk); 3355 int flag = 0; 3356 u32 nwin = ntohs(tcp_hdr(skb)->window); 3357 3358 if (likely(!tcp_hdr(skb)->syn)) 3359 nwin <<= tp->rx_opt.snd_wscale; 3360 3361 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3362 flag |= FLAG_WIN_UPDATE; 3363 tcp_update_wl(tp, ack_seq); 3364 3365 if (tp->snd_wnd != nwin) { 3366 tp->snd_wnd = nwin; 3367 3368 /* Note, it is the only place, where 3369 * fast path is recovered for sending TCP. 3370 */ 3371 tp->pred_flags = 0; 3372 tcp_fast_path_check(sk); 3373 3374 if (tcp_send_head(sk)) 3375 tcp_slow_start_after_idle_check(sk); 3376 3377 if (nwin > tp->max_window) { 3378 tp->max_window = nwin; 3379 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3380 } 3381 } 3382 } 3383 3384 tcp_snd_una_update(tp, ack); 3385 3386 return flag; 3387 } 3388 3389 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3390 u32 *last_oow_ack_time) 3391 { 3392 if (*last_oow_ack_time) { 3393 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); 3394 3395 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3396 NET_INC_STATS(net, mib_idx); 3397 return true; /* rate-limited: don't send yet! */ 3398 } 3399 } 3400 3401 *last_oow_ack_time = tcp_time_stamp; 3402 3403 return false; /* not rate-limited: go ahead, send dupack now! */ 3404 } 3405 3406 /* Return true if we're currently rate-limiting out-of-window ACKs and 3407 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3408 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3409 * attacks that send repeated SYNs or ACKs for the same connection. To 3410 * do this, we do not send a duplicate SYNACK or ACK if the remote 3411 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3412 */ 3413 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3414 int mib_idx, u32 *last_oow_ack_time) 3415 { 3416 /* Data packets without SYNs are not likely part of an ACK loop. */ 3417 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3418 !tcp_hdr(skb)->syn) 3419 return false; 3420 3421 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3422 } 3423 3424 /* RFC 5961 7 [ACK Throttling] */ 3425 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3426 { 3427 /* unprotected vars, we dont care of overwrites */ 3428 static u32 challenge_timestamp; 3429 static unsigned int challenge_count; 3430 struct tcp_sock *tp = tcp_sk(sk); 3431 u32 count, now; 3432 3433 /* First check our per-socket dupack rate limit. */ 3434 if (__tcp_oow_rate_limited(sock_net(sk), 3435 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3436 &tp->last_oow_ack_time)) 3437 return; 3438 3439 /* Then check host-wide RFC 5961 rate limit. */ 3440 now = jiffies / HZ; 3441 if (now != challenge_timestamp) { 3442 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3443 3444 challenge_timestamp = now; 3445 WRITE_ONCE(challenge_count, half + 3446 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3447 } 3448 count = READ_ONCE(challenge_count); 3449 if (count > 0) { 3450 WRITE_ONCE(challenge_count, count - 1); 3451 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3452 tcp_send_ack(sk); 3453 } 3454 } 3455 3456 static void tcp_store_ts_recent(struct tcp_sock *tp) 3457 { 3458 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3459 tp->rx_opt.ts_recent_stamp = get_seconds(); 3460 } 3461 3462 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3463 { 3464 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3465 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3466 * extra check below makes sure this can only happen 3467 * for pure ACK frames. -DaveM 3468 * 3469 * Not only, also it occurs for expired timestamps. 3470 */ 3471 3472 if (tcp_paws_check(&tp->rx_opt, 0)) 3473 tcp_store_ts_recent(tp); 3474 } 3475 } 3476 3477 /* This routine deals with acks during a TLP episode. 3478 * We mark the end of a TLP episode on receiving TLP dupack or when 3479 * ack is after tlp_high_seq. 3480 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3481 */ 3482 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3483 { 3484 struct tcp_sock *tp = tcp_sk(sk); 3485 3486 if (before(ack, tp->tlp_high_seq)) 3487 return; 3488 3489 if (flag & FLAG_DSACKING_ACK) { 3490 /* This DSACK means original and TLP probe arrived; no loss */ 3491 tp->tlp_high_seq = 0; 3492 } else if (after(ack, tp->tlp_high_seq)) { 3493 /* ACK advances: there was a loss, so reduce cwnd. Reset 3494 * tlp_high_seq in tcp_init_cwnd_reduction() 3495 */ 3496 tcp_init_cwnd_reduction(sk); 3497 tcp_set_ca_state(sk, TCP_CA_CWR); 3498 tcp_end_cwnd_reduction(sk); 3499 tcp_try_keep_open(sk); 3500 NET_INC_STATS(sock_net(sk), 3501 LINUX_MIB_TCPLOSSPROBERECOVERY); 3502 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3503 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3504 /* Pure dupack: original and TLP probe arrived; no loss */ 3505 tp->tlp_high_seq = 0; 3506 } 3507 } 3508 3509 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3510 { 3511 const struct inet_connection_sock *icsk = inet_csk(sk); 3512 3513 if (icsk->icsk_ca_ops->in_ack_event) 3514 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3515 } 3516 3517 /* Congestion control has updated the cwnd already. So if we're in 3518 * loss recovery then now we do any new sends (for FRTO) or 3519 * retransmits (for CA_Loss or CA_recovery) that make sense. 3520 */ 3521 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3522 { 3523 struct tcp_sock *tp = tcp_sk(sk); 3524 3525 if (rexmit == REXMIT_NONE) 3526 return; 3527 3528 if (unlikely(rexmit == 2)) { 3529 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3530 TCP_NAGLE_OFF); 3531 if (after(tp->snd_nxt, tp->high_seq)) 3532 return; 3533 tp->frto = 0; 3534 } 3535 tcp_xmit_retransmit_queue(sk); 3536 } 3537 3538 /* This routine deals with incoming acks, but not outgoing ones. */ 3539 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3540 { 3541 struct inet_connection_sock *icsk = inet_csk(sk); 3542 struct tcp_sock *tp = tcp_sk(sk); 3543 struct tcp_sacktag_state sack_state; 3544 struct rate_sample rs = { .prior_delivered = 0 }; 3545 u32 prior_snd_una = tp->snd_una; 3546 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3547 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3548 bool is_dupack = false; 3549 u32 prior_fackets; 3550 int prior_packets = tp->packets_out; 3551 u32 delivered = tp->delivered; 3552 u32 lost = tp->lost; 3553 int acked = 0; /* Number of packets newly acked */ 3554 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3555 3556 sack_state.first_sackt.v64 = 0; 3557 sack_state.rate = &rs; 3558 3559 /* We very likely will need to access write queue head. */ 3560 prefetchw(sk->sk_write_queue.next); 3561 3562 /* If the ack is older than previous acks 3563 * then we can probably ignore it. 3564 */ 3565 if (before(ack, prior_snd_una)) { 3566 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3567 if (before(ack, prior_snd_una - tp->max_window)) { 3568 tcp_send_challenge_ack(sk, skb); 3569 return -1; 3570 } 3571 goto old_ack; 3572 } 3573 3574 /* If the ack includes data we haven't sent yet, discard 3575 * this segment (RFC793 Section 3.9). 3576 */ 3577 if (after(ack, tp->snd_nxt)) 3578 goto invalid_ack; 3579 3580 if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3581 tcp_rearm_rto(sk); 3582 3583 if (after(ack, prior_snd_una)) { 3584 flag |= FLAG_SND_UNA_ADVANCED; 3585 icsk->icsk_retransmits = 0; 3586 } 3587 3588 prior_fackets = tp->fackets_out; 3589 rs.prior_in_flight = tcp_packets_in_flight(tp); 3590 3591 /* ts_recent update must be made after we are sure that the packet 3592 * is in window. 3593 */ 3594 if (flag & FLAG_UPDATE_TS_RECENT) 3595 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3596 3597 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3598 /* Window is constant, pure forward advance. 3599 * No more checks are required. 3600 * Note, we use the fact that SND.UNA>=SND.WL2. 3601 */ 3602 tcp_update_wl(tp, ack_seq); 3603 tcp_snd_una_update(tp, ack); 3604 flag |= FLAG_WIN_UPDATE; 3605 3606 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3607 3608 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3609 } else { 3610 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3611 3612 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3613 flag |= FLAG_DATA; 3614 else 3615 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3616 3617 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3618 3619 if (TCP_SKB_CB(skb)->sacked) 3620 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3621 &sack_state); 3622 3623 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3624 flag |= FLAG_ECE; 3625 ack_ev_flags |= CA_ACK_ECE; 3626 } 3627 3628 if (flag & FLAG_WIN_UPDATE) 3629 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3630 3631 tcp_in_ack_event(sk, ack_ev_flags); 3632 } 3633 3634 /* We passed data and got it acked, remove any soft error 3635 * log. Something worked... 3636 */ 3637 sk->sk_err_soft = 0; 3638 icsk->icsk_probes_out = 0; 3639 tp->rcv_tstamp = tcp_time_stamp; 3640 if (!prior_packets) 3641 goto no_queue; 3642 3643 /* See if we can take anything off of the retransmit queue. */ 3644 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3645 &sack_state); 3646 3647 if (tcp_ack_is_dubious(sk, flag)) { 3648 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3649 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3650 } 3651 if (tp->tlp_high_seq) 3652 tcp_process_tlp_ack(sk, ack, flag); 3653 3654 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3655 sk_dst_confirm(sk); 3656 3657 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3658 tcp_schedule_loss_probe(sk); 3659 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3660 lost = tp->lost - lost; /* freshly marked lost */ 3661 tcp_rate_gen(sk, delivered, lost, sack_state.rate); 3662 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3663 tcp_xmit_recovery(sk, rexmit); 3664 return 1; 3665 3666 no_queue: 3667 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3668 if (flag & FLAG_DSACKING_ACK) 3669 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3670 /* If this ack opens up a zero window, clear backoff. It was 3671 * being used to time the probes, and is probably far higher than 3672 * it needs to be for normal retransmission. 3673 */ 3674 if (tcp_send_head(sk)) 3675 tcp_ack_probe(sk); 3676 3677 if (tp->tlp_high_seq) 3678 tcp_process_tlp_ack(sk, ack, flag); 3679 return 1; 3680 3681 invalid_ack: 3682 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3683 return -1; 3684 3685 old_ack: 3686 /* If data was SACKed, tag it and see if we should send more data. 3687 * If data was DSACKed, see if we can undo a cwnd reduction. 3688 */ 3689 if (TCP_SKB_CB(skb)->sacked) { 3690 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3691 &sack_state); 3692 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3693 tcp_xmit_recovery(sk, rexmit); 3694 } 3695 3696 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3697 return 0; 3698 } 3699 3700 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3701 bool syn, struct tcp_fastopen_cookie *foc, 3702 bool exp_opt) 3703 { 3704 /* Valid only in SYN or SYN-ACK with an even length. */ 3705 if (!foc || !syn || len < 0 || (len & 1)) 3706 return; 3707 3708 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3709 len <= TCP_FASTOPEN_COOKIE_MAX) 3710 memcpy(foc->val, cookie, len); 3711 else if (len != 0) 3712 len = -1; 3713 foc->len = len; 3714 foc->exp = exp_opt; 3715 } 3716 3717 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3718 * But, this can also be called on packets in the established flow when 3719 * the fast version below fails. 3720 */ 3721 void tcp_parse_options(const struct sk_buff *skb, 3722 struct tcp_options_received *opt_rx, int estab, 3723 struct tcp_fastopen_cookie *foc) 3724 { 3725 const unsigned char *ptr; 3726 const struct tcphdr *th = tcp_hdr(skb); 3727 int length = (th->doff * 4) - sizeof(struct tcphdr); 3728 3729 ptr = (const unsigned char *)(th + 1); 3730 opt_rx->saw_tstamp = 0; 3731 3732 while (length > 0) { 3733 int opcode = *ptr++; 3734 int opsize; 3735 3736 switch (opcode) { 3737 case TCPOPT_EOL: 3738 return; 3739 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3740 length--; 3741 continue; 3742 default: 3743 opsize = *ptr++; 3744 if (opsize < 2) /* "silly options" */ 3745 return; 3746 if (opsize > length) 3747 return; /* don't parse partial options */ 3748 switch (opcode) { 3749 case TCPOPT_MSS: 3750 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3751 u16 in_mss = get_unaligned_be16(ptr); 3752 if (in_mss) { 3753 if (opt_rx->user_mss && 3754 opt_rx->user_mss < in_mss) 3755 in_mss = opt_rx->user_mss; 3756 opt_rx->mss_clamp = in_mss; 3757 } 3758 } 3759 break; 3760 case TCPOPT_WINDOW: 3761 if (opsize == TCPOLEN_WINDOW && th->syn && 3762 !estab && sysctl_tcp_window_scaling) { 3763 __u8 snd_wscale = *(__u8 *)ptr; 3764 opt_rx->wscale_ok = 1; 3765 if (snd_wscale > TCP_MAX_WSCALE) { 3766 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3767 __func__, 3768 snd_wscale, 3769 TCP_MAX_WSCALE); 3770 snd_wscale = TCP_MAX_WSCALE; 3771 } 3772 opt_rx->snd_wscale = snd_wscale; 3773 } 3774 break; 3775 case TCPOPT_TIMESTAMP: 3776 if ((opsize == TCPOLEN_TIMESTAMP) && 3777 ((estab && opt_rx->tstamp_ok) || 3778 (!estab && sysctl_tcp_timestamps))) { 3779 opt_rx->saw_tstamp = 1; 3780 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3781 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3782 } 3783 break; 3784 case TCPOPT_SACK_PERM: 3785 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3786 !estab && sysctl_tcp_sack) { 3787 opt_rx->sack_ok = TCP_SACK_SEEN; 3788 tcp_sack_reset(opt_rx); 3789 } 3790 break; 3791 3792 case TCPOPT_SACK: 3793 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3794 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3795 opt_rx->sack_ok) { 3796 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3797 } 3798 break; 3799 #ifdef CONFIG_TCP_MD5SIG 3800 case TCPOPT_MD5SIG: 3801 /* 3802 * The MD5 Hash has already been 3803 * checked (see tcp_v{4,6}_do_rcv()). 3804 */ 3805 break; 3806 #endif 3807 case TCPOPT_FASTOPEN: 3808 tcp_parse_fastopen_option( 3809 opsize - TCPOLEN_FASTOPEN_BASE, 3810 ptr, th->syn, foc, false); 3811 break; 3812 3813 case TCPOPT_EXP: 3814 /* Fast Open option shares code 254 using a 3815 * 16 bits magic number. 3816 */ 3817 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3818 get_unaligned_be16(ptr) == 3819 TCPOPT_FASTOPEN_MAGIC) 3820 tcp_parse_fastopen_option(opsize - 3821 TCPOLEN_EXP_FASTOPEN_BASE, 3822 ptr + 2, th->syn, foc, true); 3823 break; 3824 3825 } 3826 ptr += opsize-2; 3827 length -= opsize; 3828 } 3829 } 3830 } 3831 EXPORT_SYMBOL(tcp_parse_options); 3832 3833 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3834 { 3835 const __be32 *ptr = (const __be32 *)(th + 1); 3836 3837 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3838 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3839 tp->rx_opt.saw_tstamp = 1; 3840 ++ptr; 3841 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3842 ++ptr; 3843 if (*ptr) 3844 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3845 else 3846 tp->rx_opt.rcv_tsecr = 0; 3847 return true; 3848 } 3849 return false; 3850 } 3851 3852 /* Fast parse options. This hopes to only see timestamps. 3853 * If it is wrong it falls back on tcp_parse_options(). 3854 */ 3855 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3856 const struct tcphdr *th, struct tcp_sock *tp) 3857 { 3858 /* In the spirit of fast parsing, compare doff directly to constant 3859 * values. Because equality is used, short doff can be ignored here. 3860 */ 3861 if (th->doff == (sizeof(*th) / 4)) { 3862 tp->rx_opt.saw_tstamp = 0; 3863 return false; 3864 } else if (tp->rx_opt.tstamp_ok && 3865 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3866 if (tcp_parse_aligned_timestamp(tp, th)) 3867 return true; 3868 } 3869 3870 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3871 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3872 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3873 3874 return true; 3875 } 3876 3877 #ifdef CONFIG_TCP_MD5SIG 3878 /* 3879 * Parse MD5 Signature option 3880 */ 3881 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3882 { 3883 int length = (th->doff << 2) - sizeof(*th); 3884 const u8 *ptr = (const u8 *)(th + 1); 3885 3886 /* If the TCP option is too short, we can short cut */ 3887 if (length < TCPOLEN_MD5SIG) 3888 return NULL; 3889 3890 while (length > 0) { 3891 int opcode = *ptr++; 3892 int opsize; 3893 3894 switch (opcode) { 3895 case TCPOPT_EOL: 3896 return NULL; 3897 case TCPOPT_NOP: 3898 length--; 3899 continue; 3900 default: 3901 opsize = *ptr++; 3902 if (opsize < 2 || opsize > length) 3903 return NULL; 3904 if (opcode == TCPOPT_MD5SIG) 3905 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3906 } 3907 ptr += opsize - 2; 3908 length -= opsize; 3909 } 3910 return NULL; 3911 } 3912 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3913 #endif 3914 3915 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3916 * 3917 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3918 * it can pass through stack. So, the following predicate verifies that 3919 * this segment is not used for anything but congestion avoidance or 3920 * fast retransmit. Moreover, we even are able to eliminate most of such 3921 * second order effects, if we apply some small "replay" window (~RTO) 3922 * to timestamp space. 3923 * 3924 * All these measures still do not guarantee that we reject wrapped ACKs 3925 * on networks with high bandwidth, when sequence space is recycled fastly, 3926 * but it guarantees that such events will be very rare and do not affect 3927 * connection seriously. This doesn't look nice, but alas, PAWS is really 3928 * buggy extension. 3929 * 3930 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3931 * states that events when retransmit arrives after original data are rare. 3932 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3933 * the biggest problem on large power networks even with minor reordering. 3934 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3935 * up to bandwidth of 18Gigabit/sec. 8) ] 3936 */ 3937 3938 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3939 { 3940 const struct tcp_sock *tp = tcp_sk(sk); 3941 const struct tcphdr *th = tcp_hdr(skb); 3942 u32 seq = TCP_SKB_CB(skb)->seq; 3943 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3944 3945 return (/* 1. Pure ACK with correct sequence number. */ 3946 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3947 3948 /* 2. ... and duplicate ACK. */ 3949 ack == tp->snd_una && 3950 3951 /* 3. ... and does not update window. */ 3952 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3953 3954 /* 4. ... and sits in replay window. */ 3955 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3956 } 3957 3958 static inline bool tcp_paws_discard(const struct sock *sk, 3959 const struct sk_buff *skb) 3960 { 3961 const struct tcp_sock *tp = tcp_sk(sk); 3962 3963 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3964 !tcp_disordered_ack(sk, skb); 3965 } 3966 3967 /* Check segment sequence number for validity. 3968 * 3969 * Segment controls are considered valid, if the segment 3970 * fits to the window after truncation to the window. Acceptability 3971 * of data (and SYN, FIN, of course) is checked separately. 3972 * See tcp_data_queue(), for example. 3973 * 3974 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3975 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3976 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3977 * (borrowed from freebsd) 3978 */ 3979 3980 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3981 { 3982 return !before(end_seq, tp->rcv_wup) && 3983 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3984 } 3985 3986 /* When we get a reset we do this. */ 3987 void tcp_reset(struct sock *sk) 3988 { 3989 /* We want the right error as BSD sees it (and indeed as we do). */ 3990 switch (sk->sk_state) { 3991 case TCP_SYN_SENT: 3992 sk->sk_err = ECONNREFUSED; 3993 break; 3994 case TCP_CLOSE_WAIT: 3995 sk->sk_err = EPIPE; 3996 break; 3997 case TCP_CLOSE: 3998 return; 3999 default: 4000 sk->sk_err = ECONNRESET; 4001 } 4002 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4003 smp_wmb(); 4004 4005 tcp_done(sk); 4006 4007 if (!sock_flag(sk, SOCK_DEAD)) 4008 sk->sk_error_report(sk); 4009 } 4010 4011 /* 4012 * Process the FIN bit. This now behaves as it is supposed to work 4013 * and the FIN takes effect when it is validly part of sequence 4014 * space. Not before when we get holes. 4015 * 4016 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4017 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4018 * TIME-WAIT) 4019 * 4020 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4021 * close and we go into CLOSING (and later onto TIME-WAIT) 4022 * 4023 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4024 */ 4025 void tcp_fin(struct sock *sk) 4026 { 4027 struct tcp_sock *tp = tcp_sk(sk); 4028 4029 inet_csk_schedule_ack(sk); 4030 4031 sk->sk_shutdown |= RCV_SHUTDOWN; 4032 sock_set_flag(sk, SOCK_DONE); 4033 4034 switch (sk->sk_state) { 4035 case TCP_SYN_RECV: 4036 case TCP_ESTABLISHED: 4037 /* Move to CLOSE_WAIT */ 4038 tcp_set_state(sk, TCP_CLOSE_WAIT); 4039 inet_csk(sk)->icsk_ack.pingpong = 1; 4040 break; 4041 4042 case TCP_CLOSE_WAIT: 4043 case TCP_CLOSING: 4044 /* Received a retransmission of the FIN, do 4045 * nothing. 4046 */ 4047 break; 4048 case TCP_LAST_ACK: 4049 /* RFC793: Remain in the LAST-ACK state. */ 4050 break; 4051 4052 case TCP_FIN_WAIT1: 4053 /* This case occurs when a simultaneous close 4054 * happens, we must ack the received FIN and 4055 * enter the CLOSING state. 4056 */ 4057 tcp_send_ack(sk); 4058 tcp_set_state(sk, TCP_CLOSING); 4059 break; 4060 case TCP_FIN_WAIT2: 4061 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4062 tcp_send_ack(sk); 4063 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4064 break; 4065 default: 4066 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4067 * cases we should never reach this piece of code. 4068 */ 4069 pr_err("%s: Impossible, sk->sk_state=%d\n", 4070 __func__, sk->sk_state); 4071 break; 4072 } 4073 4074 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4075 * Probably, we should reset in this case. For now drop them. 4076 */ 4077 skb_rbtree_purge(&tp->out_of_order_queue); 4078 if (tcp_is_sack(tp)) 4079 tcp_sack_reset(&tp->rx_opt); 4080 sk_mem_reclaim(sk); 4081 4082 if (!sock_flag(sk, SOCK_DEAD)) { 4083 sk->sk_state_change(sk); 4084 4085 /* Do not send POLL_HUP for half duplex close. */ 4086 if (sk->sk_shutdown == SHUTDOWN_MASK || 4087 sk->sk_state == TCP_CLOSE) 4088 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4089 else 4090 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4091 } 4092 } 4093 4094 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4095 u32 end_seq) 4096 { 4097 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4098 if (before(seq, sp->start_seq)) 4099 sp->start_seq = seq; 4100 if (after(end_seq, sp->end_seq)) 4101 sp->end_seq = end_seq; 4102 return true; 4103 } 4104 return false; 4105 } 4106 4107 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4108 { 4109 struct tcp_sock *tp = tcp_sk(sk); 4110 4111 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4112 int mib_idx; 4113 4114 if (before(seq, tp->rcv_nxt)) 4115 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4116 else 4117 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4118 4119 NET_INC_STATS(sock_net(sk), mib_idx); 4120 4121 tp->rx_opt.dsack = 1; 4122 tp->duplicate_sack[0].start_seq = seq; 4123 tp->duplicate_sack[0].end_seq = end_seq; 4124 } 4125 } 4126 4127 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4128 { 4129 struct tcp_sock *tp = tcp_sk(sk); 4130 4131 if (!tp->rx_opt.dsack) 4132 tcp_dsack_set(sk, seq, end_seq); 4133 else 4134 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4135 } 4136 4137 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4138 { 4139 struct tcp_sock *tp = tcp_sk(sk); 4140 4141 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4142 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4143 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4144 tcp_enter_quickack_mode(sk); 4145 4146 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4147 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4148 4149 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4150 end_seq = tp->rcv_nxt; 4151 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4152 } 4153 } 4154 4155 tcp_send_ack(sk); 4156 } 4157 4158 /* These routines update the SACK block as out-of-order packets arrive or 4159 * in-order packets close up the sequence space. 4160 */ 4161 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4162 { 4163 int this_sack; 4164 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4165 struct tcp_sack_block *swalk = sp + 1; 4166 4167 /* See if the recent change to the first SACK eats into 4168 * or hits the sequence space of other SACK blocks, if so coalesce. 4169 */ 4170 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4171 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4172 int i; 4173 4174 /* Zap SWALK, by moving every further SACK up by one slot. 4175 * Decrease num_sacks. 4176 */ 4177 tp->rx_opt.num_sacks--; 4178 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4179 sp[i] = sp[i + 1]; 4180 continue; 4181 } 4182 this_sack++, swalk++; 4183 } 4184 } 4185 4186 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4187 { 4188 struct tcp_sock *tp = tcp_sk(sk); 4189 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4190 int cur_sacks = tp->rx_opt.num_sacks; 4191 int this_sack; 4192 4193 if (!cur_sacks) 4194 goto new_sack; 4195 4196 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4197 if (tcp_sack_extend(sp, seq, end_seq)) { 4198 /* Rotate this_sack to the first one. */ 4199 for (; this_sack > 0; this_sack--, sp--) 4200 swap(*sp, *(sp - 1)); 4201 if (cur_sacks > 1) 4202 tcp_sack_maybe_coalesce(tp); 4203 return; 4204 } 4205 } 4206 4207 /* Could not find an adjacent existing SACK, build a new one, 4208 * put it at the front, and shift everyone else down. We 4209 * always know there is at least one SACK present already here. 4210 * 4211 * If the sack array is full, forget about the last one. 4212 */ 4213 if (this_sack >= TCP_NUM_SACKS) { 4214 this_sack--; 4215 tp->rx_opt.num_sacks--; 4216 sp--; 4217 } 4218 for (; this_sack > 0; this_sack--, sp--) 4219 *sp = *(sp - 1); 4220 4221 new_sack: 4222 /* Build the new head SACK, and we're done. */ 4223 sp->start_seq = seq; 4224 sp->end_seq = end_seq; 4225 tp->rx_opt.num_sacks++; 4226 } 4227 4228 /* RCV.NXT advances, some SACKs should be eaten. */ 4229 4230 static void tcp_sack_remove(struct tcp_sock *tp) 4231 { 4232 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4233 int num_sacks = tp->rx_opt.num_sacks; 4234 int this_sack; 4235 4236 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4237 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4238 tp->rx_opt.num_sacks = 0; 4239 return; 4240 } 4241 4242 for (this_sack = 0; this_sack < num_sacks;) { 4243 /* Check if the start of the sack is covered by RCV.NXT. */ 4244 if (!before(tp->rcv_nxt, sp->start_seq)) { 4245 int i; 4246 4247 /* RCV.NXT must cover all the block! */ 4248 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4249 4250 /* Zap this SACK, by moving forward any other SACKS. */ 4251 for (i = this_sack+1; i < num_sacks; i++) 4252 tp->selective_acks[i-1] = tp->selective_acks[i]; 4253 num_sacks--; 4254 continue; 4255 } 4256 this_sack++; 4257 sp++; 4258 } 4259 tp->rx_opt.num_sacks = num_sacks; 4260 } 4261 4262 /** 4263 * tcp_try_coalesce - try to merge skb to prior one 4264 * @sk: socket 4265 * @to: prior buffer 4266 * @from: buffer to add in queue 4267 * @fragstolen: pointer to boolean 4268 * 4269 * Before queueing skb @from after @to, try to merge them 4270 * to reduce overall memory use and queue lengths, if cost is small. 4271 * Packets in ofo or receive queues can stay a long time. 4272 * Better try to coalesce them right now to avoid future collapses. 4273 * Returns true if caller should free @from instead of queueing it 4274 */ 4275 static bool tcp_try_coalesce(struct sock *sk, 4276 struct sk_buff *to, 4277 struct sk_buff *from, 4278 bool *fragstolen) 4279 { 4280 int delta; 4281 4282 *fragstolen = false; 4283 4284 /* Its possible this segment overlaps with prior segment in queue */ 4285 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4286 return false; 4287 4288 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4289 return false; 4290 4291 atomic_add(delta, &sk->sk_rmem_alloc); 4292 sk_mem_charge(sk, delta); 4293 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4294 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4295 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4296 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4297 return true; 4298 } 4299 4300 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4301 { 4302 sk_drops_add(sk, skb); 4303 __kfree_skb(skb); 4304 } 4305 4306 /* This one checks to see if we can put data from the 4307 * out_of_order queue into the receive_queue. 4308 */ 4309 static void tcp_ofo_queue(struct sock *sk) 4310 { 4311 struct tcp_sock *tp = tcp_sk(sk); 4312 __u32 dsack_high = tp->rcv_nxt; 4313 bool fin, fragstolen, eaten; 4314 struct sk_buff *skb, *tail; 4315 struct rb_node *p; 4316 4317 p = rb_first(&tp->out_of_order_queue); 4318 while (p) { 4319 skb = rb_entry(p, struct sk_buff, rbnode); 4320 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4321 break; 4322 4323 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4324 __u32 dsack = dsack_high; 4325 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4326 dsack_high = TCP_SKB_CB(skb)->end_seq; 4327 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4328 } 4329 p = rb_next(p); 4330 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4331 4332 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4333 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4334 tcp_drop(sk, skb); 4335 continue; 4336 } 4337 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4338 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4339 TCP_SKB_CB(skb)->end_seq); 4340 4341 tail = skb_peek_tail(&sk->sk_receive_queue); 4342 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4343 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4344 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4345 if (!eaten) 4346 __skb_queue_tail(&sk->sk_receive_queue, skb); 4347 else 4348 kfree_skb_partial(skb, fragstolen); 4349 4350 if (unlikely(fin)) { 4351 tcp_fin(sk); 4352 /* tcp_fin() purges tp->out_of_order_queue, 4353 * so we must end this loop right now. 4354 */ 4355 break; 4356 } 4357 } 4358 } 4359 4360 static bool tcp_prune_ofo_queue(struct sock *sk); 4361 static int tcp_prune_queue(struct sock *sk); 4362 4363 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4364 unsigned int size) 4365 { 4366 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4367 !sk_rmem_schedule(sk, skb, size)) { 4368 4369 if (tcp_prune_queue(sk) < 0) 4370 return -1; 4371 4372 while (!sk_rmem_schedule(sk, skb, size)) { 4373 if (!tcp_prune_ofo_queue(sk)) 4374 return -1; 4375 } 4376 } 4377 return 0; 4378 } 4379 4380 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4381 { 4382 struct tcp_sock *tp = tcp_sk(sk); 4383 struct rb_node **p, *q, *parent; 4384 struct sk_buff *skb1; 4385 u32 seq, end_seq; 4386 bool fragstolen; 4387 4388 tcp_ecn_check_ce(tp, skb); 4389 4390 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4391 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4392 tcp_drop(sk, skb); 4393 return; 4394 } 4395 4396 /* Disable header prediction. */ 4397 tp->pred_flags = 0; 4398 inet_csk_schedule_ack(sk); 4399 4400 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4401 seq = TCP_SKB_CB(skb)->seq; 4402 end_seq = TCP_SKB_CB(skb)->end_seq; 4403 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4404 tp->rcv_nxt, seq, end_seq); 4405 4406 p = &tp->out_of_order_queue.rb_node; 4407 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4408 /* Initial out of order segment, build 1 SACK. */ 4409 if (tcp_is_sack(tp)) { 4410 tp->rx_opt.num_sacks = 1; 4411 tp->selective_acks[0].start_seq = seq; 4412 tp->selective_acks[0].end_seq = end_seq; 4413 } 4414 rb_link_node(&skb->rbnode, NULL, p); 4415 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4416 tp->ooo_last_skb = skb; 4417 goto end; 4418 } 4419 4420 /* In the typical case, we are adding an skb to the end of the list. 4421 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4422 */ 4423 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) { 4424 coalesce_done: 4425 tcp_grow_window(sk, skb); 4426 kfree_skb_partial(skb, fragstolen); 4427 skb = NULL; 4428 goto add_sack; 4429 } 4430 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4431 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4432 parent = &tp->ooo_last_skb->rbnode; 4433 p = &parent->rb_right; 4434 goto insert; 4435 } 4436 4437 /* Find place to insert this segment. Handle overlaps on the way. */ 4438 parent = NULL; 4439 while (*p) { 4440 parent = *p; 4441 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4442 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4443 p = &parent->rb_left; 4444 continue; 4445 } 4446 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4447 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4448 /* All the bits are present. Drop. */ 4449 NET_INC_STATS(sock_net(sk), 4450 LINUX_MIB_TCPOFOMERGE); 4451 __kfree_skb(skb); 4452 skb = NULL; 4453 tcp_dsack_set(sk, seq, end_seq); 4454 goto add_sack; 4455 } 4456 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4457 /* Partial overlap. */ 4458 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4459 } else { 4460 /* skb's seq == skb1's seq and skb covers skb1. 4461 * Replace skb1 with skb. 4462 */ 4463 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4464 &tp->out_of_order_queue); 4465 tcp_dsack_extend(sk, 4466 TCP_SKB_CB(skb1)->seq, 4467 TCP_SKB_CB(skb1)->end_seq); 4468 NET_INC_STATS(sock_net(sk), 4469 LINUX_MIB_TCPOFOMERGE); 4470 __kfree_skb(skb1); 4471 goto merge_right; 4472 } 4473 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4474 goto coalesce_done; 4475 } 4476 p = &parent->rb_right; 4477 } 4478 insert: 4479 /* Insert segment into RB tree. */ 4480 rb_link_node(&skb->rbnode, parent, p); 4481 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4482 4483 merge_right: 4484 /* Remove other segments covered by skb. */ 4485 while ((q = rb_next(&skb->rbnode)) != NULL) { 4486 skb1 = rb_entry(q, struct sk_buff, rbnode); 4487 4488 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4489 break; 4490 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4491 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4492 end_seq); 4493 break; 4494 } 4495 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4496 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4497 TCP_SKB_CB(skb1)->end_seq); 4498 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4499 tcp_drop(sk, skb1); 4500 } 4501 /* If there is no skb after us, we are the last_skb ! */ 4502 if (!q) 4503 tp->ooo_last_skb = skb; 4504 4505 add_sack: 4506 if (tcp_is_sack(tp)) 4507 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4508 end: 4509 if (skb) { 4510 tcp_grow_window(sk, skb); 4511 skb_condense(skb); 4512 skb_set_owner_r(skb, sk); 4513 } 4514 } 4515 4516 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4517 bool *fragstolen) 4518 { 4519 int eaten; 4520 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4521 4522 __skb_pull(skb, hdrlen); 4523 eaten = (tail && 4524 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4525 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4526 if (!eaten) { 4527 __skb_queue_tail(&sk->sk_receive_queue, skb); 4528 skb_set_owner_r(skb, sk); 4529 } 4530 return eaten; 4531 } 4532 4533 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4534 { 4535 struct sk_buff *skb; 4536 int err = -ENOMEM; 4537 int data_len = 0; 4538 bool fragstolen; 4539 4540 if (size == 0) 4541 return 0; 4542 4543 if (size > PAGE_SIZE) { 4544 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4545 4546 data_len = npages << PAGE_SHIFT; 4547 size = data_len + (size & ~PAGE_MASK); 4548 } 4549 skb = alloc_skb_with_frags(size - data_len, data_len, 4550 PAGE_ALLOC_COSTLY_ORDER, 4551 &err, sk->sk_allocation); 4552 if (!skb) 4553 goto err; 4554 4555 skb_put(skb, size - data_len); 4556 skb->data_len = data_len; 4557 skb->len = size; 4558 4559 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4560 goto err_free; 4561 4562 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4563 if (err) 4564 goto err_free; 4565 4566 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4567 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4568 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4569 4570 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4571 WARN_ON_ONCE(fragstolen); /* should not happen */ 4572 __kfree_skb(skb); 4573 } 4574 return size; 4575 4576 err_free: 4577 kfree_skb(skb); 4578 err: 4579 return err; 4580 4581 } 4582 4583 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4584 { 4585 struct tcp_sock *tp = tcp_sk(sk); 4586 bool fragstolen = false; 4587 int eaten = -1; 4588 4589 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4590 __kfree_skb(skb); 4591 return; 4592 } 4593 skb_dst_drop(skb); 4594 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4595 4596 tcp_ecn_accept_cwr(tp, skb); 4597 4598 tp->rx_opt.dsack = 0; 4599 4600 /* Queue data for delivery to the user. 4601 * Packets in sequence go to the receive queue. 4602 * Out of sequence packets to the out_of_order_queue. 4603 */ 4604 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4605 if (tcp_receive_window(tp) == 0) 4606 goto out_of_window; 4607 4608 /* Ok. In sequence. In window. */ 4609 if (tp->ucopy.task == current && 4610 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4611 sock_owned_by_user(sk) && !tp->urg_data) { 4612 int chunk = min_t(unsigned int, skb->len, 4613 tp->ucopy.len); 4614 4615 __set_current_state(TASK_RUNNING); 4616 4617 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4618 tp->ucopy.len -= chunk; 4619 tp->copied_seq += chunk; 4620 eaten = (chunk == skb->len); 4621 tcp_rcv_space_adjust(sk); 4622 } 4623 } 4624 4625 if (eaten <= 0) { 4626 queue_and_out: 4627 if (eaten < 0) { 4628 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4629 sk_forced_mem_schedule(sk, skb->truesize); 4630 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4631 goto drop; 4632 } 4633 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4634 } 4635 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4636 if (skb->len) 4637 tcp_event_data_recv(sk, skb); 4638 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4639 tcp_fin(sk); 4640 4641 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4642 tcp_ofo_queue(sk); 4643 4644 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4645 * gap in queue is filled. 4646 */ 4647 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4648 inet_csk(sk)->icsk_ack.pingpong = 0; 4649 } 4650 4651 if (tp->rx_opt.num_sacks) 4652 tcp_sack_remove(tp); 4653 4654 tcp_fast_path_check(sk); 4655 4656 if (eaten > 0) 4657 kfree_skb_partial(skb, fragstolen); 4658 if (!sock_flag(sk, SOCK_DEAD)) 4659 sk->sk_data_ready(sk); 4660 return; 4661 } 4662 4663 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4664 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4665 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4666 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4667 4668 out_of_window: 4669 tcp_enter_quickack_mode(sk); 4670 inet_csk_schedule_ack(sk); 4671 drop: 4672 tcp_drop(sk, skb); 4673 return; 4674 } 4675 4676 /* Out of window. F.e. zero window probe. */ 4677 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4678 goto out_of_window; 4679 4680 tcp_enter_quickack_mode(sk); 4681 4682 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4683 /* Partial packet, seq < rcv_next < end_seq */ 4684 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4685 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4686 TCP_SKB_CB(skb)->end_seq); 4687 4688 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4689 4690 /* If window is closed, drop tail of packet. But after 4691 * remembering D-SACK for its head made in previous line. 4692 */ 4693 if (!tcp_receive_window(tp)) 4694 goto out_of_window; 4695 goto queue_and_out; 4696 } 4697 4698 tcp_data_queue_ofo(sk, skb); 4699 } 4700 4701 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4702 { 4703 if (list) 4704 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4705 4706 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode); 4707 } 4708 4709 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4710 struct sk_buff_head *list, 4711 struct rb_root *root) 4712 { 4713 struct sk_buff *next = tcp_skb_next(skb, list); 4714 4715 if (list) 4716 __skb_unlink(skb, list); 4717 else 4718 rb_erase(&skb->rbnode, root); 4719 4720 __kfree_skb(skb); 4721 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4722 4723 return next; 4724 } 4725 4726 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4727 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4728 { 4729 struct rb_node **p = &root->rb_node; 4730 struct rb_node *parent = NULL; 4731 struct sk_buff *skb1; 4732 4733 while (*p) { 4734 parent = *p; 4735 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4736 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4737 p = &parent->rb_left; 4738 else 4739 p = &parent->rb_right; 4740 } 4741 rb_link_node(&skb->rbnode, parent, p); 4742 rb_insert_color(&skb->rbnode, root); 4743 } 4744 4745 /* Collapse contiguous sequence of skbs head..tail with 4746 * sequence numbers start..end. 4747 * 4748 * If tail is NULL, this means until the end of the queue. 4749 * 4750 * Segments with FIN/SYN are not collapsed (only because this 4751 * simplifies code) 4752 */ 4753 static void 4754 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4755 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4756 { 4757 struct sk_buff *skb = head, *n; 4758 struct sk_buff_head tmp; 4759 bool end_of_skbs; 4760 4761 /* First, check that queue is collapsible and find 4762 * the point where collapsing can be useful. 4763 */ 4764 restart: 4765 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4766 n = tcp_skb_next(skb, list); 4767 4768 /* No new bits? It is possible on ofo queue. */ 4769 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4770 skb = tcp_collapse_one(sk, skb, list, root); 4771 if (!skb) 4772 break; 4773 goto restart; 4774 } 4775 4776 /* The first skb to collapse is: 4777 * - not SYN/FIN and 4778 * - bloated or contains data before "start" or 4779 * overlaps to the next one. 4780 */ 4781 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4782 (tcp_win_from_space(skb->truesize) > skb->len || 4783 before(TCP_SKB_CB(skb)->seq, start))) { 4784 end_of_skbs = false; 4785 break; 4786 } 4787 4788 if (n && n != tail && 4789 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4790 end_of_skbs = false; 4791 break; 4792 } 4793 4794 /* Decided to skip this, advance start seq. */ 4795 start = TCP_SKB_CB(skb)->end_seq; 4796 } 4797 if (end_of_skbs || 4798 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4799 return; 4800 4801 __skb_queue_head_init(&tmp); 4802 4803 while (before(start, end)) { 4804 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4805 struct sk_buff *nskb; 4806 4807 nskb = alloc_skb(copy, GFP_ATOMIC); 4808 if (!nskb) 4809 break; 4810 4811 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4812 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4813 if (list) 4814 __skb_queue_before(list, skb, nskb); 4815 else 4816 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4817 skb_set_owner_r(nskb, sk); 4818 4819 /* Copy data, releasing collapsed skbs. */ 4820 while (copy > 0) { 4821 int offset = start - TCP_SKB_CB(skb)->seq; 4822 int size = TCP_SKB_CB(skb)->end_seq - start; 4823 4824 BUG_ON(offset < 0); 4825 if (size > 0) { 4826 size = min(copy, size); 4827 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4828 BUG(); 4829 TCP_SKB_CB(nskb)->end_seq += size; 4830 copy -= size; 4831 start += size; 4832 } 4833 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4834 skb = tcp_collapse_one(sk, skb, list, root); 4835 if (!skb || 4836 skb == tail || 4837 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4838 goto end; 4839 } 4840 } 4841 } 4842 end: 4843 skb_queue_walk_safe(&tmp, skb, n) 4844 tcp_rbtree_insert(root, skb); 4845 } 4846 4847 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4848 * and tcp_collapse() them until all the queue is collapsed. 4849 */ 4850 static void tcp_collapse_ofo_queue(struct sock *sk) 4851 { 4852 struct tcp_sock *tp = tcp_sk(sk); 4853 struct sk_buff *skb, *head; 4854 struct rb_node *p; 4855 u32 start, end; 4856 4857 p = rb_first(&tp->out_of_order_queue); 4858 skb = rb_entry_safe(p, struct sk_buff, rbnode); 4859 new_range: 4860 if (!skb) { 4861 p = rb_last(&tp->out_of_order_queue); 4862 /* Note: This is possible p is NULL here. We do not 4863 * use rb_entry_safe(), as ooo_last_skb is valid only 4864 * if rbtree is not empty. 4865 */ 4866 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode); 4867 return; 4868 } 4869 start = TCP_SKB_CB(skb)->seq; 4870 end = TCP_SKB_CB(skb)->end_seq; 4871 4872 for (head = skb;;) { 4873 skb = tcp_skb_next(skb, NULL); 4874 4875 /* Range is terminated when we see a gap or when 4876 * we are at the queue end. 4877 */ 4878 if (!skb || 4879 after(TCP_SKB_CB(skb)->seq, end) || 4880 before(TCP_SKB_CB(skb)->end_seq, start)) { 4881 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4882 head, skb, start, end); 4883 goto new_range; 4884 } 4885 4886 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4887 start = TCP_SKB_CB(skb)->seq; 4888 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4889 end = TCP_SKB_CB(skb)->end_seq; 4890 } 4891 } 4892 4893 /* 4894 * Clean the out-of-order queue to make room. 4895 * We drop high sequences packets to : 4896 * 1) Let a chance for holes to be filled. 4897 * 2) not add too big latencies if thousands of packets sit there. 4898 * (But if application shrinks SO_RCVBUF, we could still end up 4899 * freeing whole queue here) 4900 * 4901 * Return true if queue has shrunk. 4902 */ 4903 static bool tcp_prune_ofo_queue(struct sock *sk) 4904 { 4905 struct tcp_sock *tp = tcp_sk(sk); 4906 struct rb_node *node, *prev; 4907 4908 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4909 return false; 4910 4911 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4912 node = &tp->ooo_last_skb->rbnode; 4913 do { 4914 prev = rb_prev(node); 4915 rb_erase(node, &tp->out_of_order_queue); 4916 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode)); 4917 sk_mem_reclaim(sk); 4918 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4919 !tcp_under_memory_pressure(sk)) 4920 break; 4921 node = prev; 4922 } while (node); 4923 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode); 4924 4925 /* Reset SACK state. A conforming SACK implementation will 4926 * do the same at a timeout based retransmit. When a connection 4927 * is in a sad state like this, we care only about integrity 4928 * of the connection not performance. 4929 */ 4930 if (tp->rx_opt.sack_ok) 4931 tcp_sack_reset(&tp->rx_opt); 4932 return true; 4933 } 4934 4935 /* Reduce allocated memory if we can, trying to get 4936 * the socket within its memory limits again. 4937 * 4938 * Return less than zero if we should start dropping frames 4939 * until the socket owning process reads some of the data 4940 * to stabilize the situation. 4941 */ 4942 static int tcp_prune_queue(struct sock *sk) 4943 { 4944 struct tcp_sock *tp = tcp_sk(sk); 4945 4946 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4947 4948 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4949 4950 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4951 tcp_clamp_window(sk); 4952 else if (tcp_under_memory_pressure(sk)) 4953 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4954 4955 tcp_collapse_ofo_queue(sk); 4956 if (!skb_queue_empty(&sk->sk_receive_queue)) 4957 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4958 skb_peek(&sk->sk_receive_queue), 4959 NULL, 4960 tp->copied_seq, tp->rcv_nxt); 4961 sk_mem_reclaim(sk); 4962 4963 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4964 return 0; 4965 4966 /* Collapsing did not help, destructive actions follow. 4967 * This must not ever occur. */ 4968 4969 tcp_prune_ofo_queue(sk); 4970 4971 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4972 return 0; 4973 4974 /* If we are really being abused, tell the caller to silently 4975 * drop receive data on the floor. It will get retransmitted 4976 * and hopefully then we'll have sufficient space. 4977 */ 4978 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4979 4980 /* Massive buffer overcommit. */ 4981 tp->pred_flags = 0; 4982 return -1; 4983 } 4984 4985 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4986 { 4987 const struct tcp_sock *tp = tcp_sk(sk); 4988 4989 /* If the user specified a specific send buffer setting, do 4990 * not modify it. 4991 */ 4992 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4993 return false; 4994 4995 /* If we are under global TCP memory pressure, do not expand. */ 4996 if (tcp_under_memory_pressure(sk)) 4997 return false; 4998 4999 /* If we are under soft global TCP memory pressure, do not expand. */ 5000 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5001 return false; 5002 5003 /* If we filled the congestion window, do not expand. */ 5004 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5005 return false; 5006 5007 return true; 5008 } 5009 5010 /* When incoming ACK allowed to free some skb from write_queue, 5011 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5012 * on the exit from tcp input handler. 5013 * 5014 * PROBLEM: sndbuf expansion does not work well with largesend. 5015 */ 5016 static void tcp_new_space(struct sock *sk) 5017 { 5018 struct tcp_sock *tp = tcp_sk(sk); 5019 5020 if (tcp_should_expand_sndbuf(sk)) { 5021 tcp_sndbuf_expand(sk); 5022 tp->snd_cwnd_stamp = tcp_jiffies32; 5023 } 5024 5025 sk->sk_write_space(sk); 5026 } 5027 5028 static void tcp_check_space(struct sock *sk) 5029 { 5030 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5031 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5032 /* pairs with tcp_poll() */ 5033 smp_mb(); 5034 if (sk->sk_socket && 5035 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5036 tcp_new_space(sk); 5037 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5038 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5039 } 5040 } 5041 } 5042 5043 static inline void tcp_data_snd_check(struct sock *sk) 5044 { 5045 tcp_push_pending_frames(sk); 5046 tcp_check_space(sk); 5047 } 5048 5049 /* 5050 * Check if sending an ack is needed. 5051 */ 5052 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5053 { 5054 struct tcp_sock *tp = tcp_sk(sk); 5055 5056 /* More than one full frame received... */ 5057 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5058 /* ... and right edge of window advances far enough. 5059 * (tcp_recvmsg() will send ACK otherwise). Or... 5060 */ 5061 __tcp_select_window(sk) >= tp->rcv_wnd) || 5062 /* We ACK each frame or... */ 5063 tcp_in_quickack_mode(sk) || 5064 /* We have out of order data. */ 5065 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5066 /* Then ack it now */ 5067 tcp_send_ack(sk); 5068 } else { 5069 /* Else, send delayed ack. */ 5070 tcp_send_delayed_ack(sk); 5071 } 5072 } 5073 5074 static inline void tcp_ack_snd_check(struct sock *sk) 5075 { 5076 if (!inet_csk_ack_scheduled(sk)) { 5077 /* We sent a data segment already. */ 5078 return; 5079 } 5080 __tcp_ack_snd_check(sk, 1); 5081 } 5082 5083 /* 5084 * This routine is only called when we have urgent data 5085 * signaled. Its the 'slow' part of tcp_urg. It could be 5086 * moved inline now as tcp_urg is only called from one 5087 * place. We handle URGent data wrong. We have to - as 5088 * BSD still doesn't use the correction from RFC961. 5089 * For 1003.1g we should support a new option TCP_STDURG to permit 5090 * either form (or just set the sysctl tcp_stdurg). 5091 */ 5092 5093 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5094 { 5095 struct tcp_sock *tp = tcp_sk(sk); 5096 u32 ptr = ntohs(th->urg_ptr); 5097 5098 if (ptr && !sysctl_tcp_stdurg) 5099 ptr--; 5100 ptr += ntohl(th->seq); 5101 5102 /* Ignore urgent data that we've already seen and read. */ 5103 if (after(tp->copied_seq, ptr)) 5104 return; 5105 5106 /* Do not replay urg ptr. 5107 * 5108 * NOTE: interesting situation not covered by specs. 5109 * Misbehaving sender may send urg ptr, pointing to segment, 5110 * which we already have in ofo queue. We are not able to fetch 5111 * such data and will stay in TCP_URG_NOTYET until will be eaten 5112 * by recvmsg(). Seems, we are not obliged to handle such wicked 5113 * situations. But it is worth to think about possibility of some 5114 * DoSes using some hypothetical application level deadlock. 5115 */ 5116 if (before(ptr, tp->rcv_nxt)) 5117 return; 5118 5119 /* Do we already have a newer (or duplicate) urgent pointer? */ 5120 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5121 return; 5122 5123 /* Tell the world about our new urgent pointer. */ 5124 sk_send_sigurg(sk); 5125 5126 /* We may be adding urgent data when the last byte read was 5127 * urgent. To do this requires some care. We cannot just ignore 5128 * tp->copied_seq since we would read the last urgent byte again 5129 * as data, nor can we alter copied_seq until this data arrives 5130 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5131 * 5132 * NOTE. Double Dutch. Rendering to plain English: author of comment 5133 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5134 * and expect that both A and B disappear from stream. This is _wrong_. 5135 * Though this happens in BSD with high probability, this is occasional. 5136 * Any application relying on this is buggy. Note also, that fix "works" 5137 * only in this artificial test. Insert some normal data between A and B and we will 5138 * decline of BSD again. Verdict: it is better to remove to trap 5139 * buggy users. 5140 */ 5141 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5142 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5143 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5144 tp->copied_seq++; 5145 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5146 __skb_unlink(skb, &sk->sk_receive_queue); 5147 __kfree_skb(skb); 5148 } 5149 } 5150 5151 tp->urg_data = TCP_URG_NOTYET; 5152 tp->urg_seq = ptr; 5153 5154 /* Disable header prediction. */ 5155 tp->pred_flags = 0; 5156 } 5157 5158 /* This is the 'fast' part of urgent handling. */ 5159 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5160 { 5161 struct tcp_sock *tp = tcp_sk(sk); 5162 5163 /* Check if we get a new urgent pointer - normally not. */ 5164 if (th->urg) 5165 tcp_check_urg(sk, th); 5166 5167 /* Do we wait for any urgent data? - normally not... */ 5168 if (tp->urg_data == TCP_URG_NOTYET) { 5169 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5170 th->syn; 5171 5172 /* Is the urgent pointer pointing into this packet? */ 5173 if (ptr < skb->len) { 5174 u8 tmp; 5175 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5176 BUG(); 5177 tp->urg_data = TCP_URG_VALID | tmp; 5178 if (!sock_flag(sk, SOCK_DEAD)) 5179 sk->sk_data_ready(sk); 5180 } 5181 } 5182 } 5183 5184 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5185 { 5186 struct tcp_sock *tp = tcp_sk(sk); 5187 int chunk = skb->len - hlen; 5188 int err; 5189 5190 if (skb_csum_unnecessary(skb)) 5191 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5192 else 5193 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5194 5195 if (!err) { 5196 tp->ucopy.len -= chunk; 5197 tp->copied_seq += chunk; 5198 tcp_rcv_space_adjust(sk); 5199 } 5200 5201 return err; 5202 } 5203 5204 /* Accept RST for rcv_nxt - 1 after a FIN. 5205 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5206 * FIN is sent followed by a RST packet. The RST is sent with the same 5207 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5208 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5209 * ACKs on the closed socket. In addition middleboxes can drop either the 5210 * challenge ACK or a subsequent RST. 5211 */ 5212 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5213 { 5214 struct tcp_sock *tp = tcp_sk(sk); 5215 5216 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5217 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5218 TCPF_CLOSING)); 5219 } 5220 5221 /* Does PAWS and seqno based validation of an incoming segment, flags will 5222 * play significant role here. 5223 */ 5224 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5225 const struct tcphdr *th, int syn_inerr) 5226 { 5227 struct tcp_sock *tp = tcp_sk(sk); 5228 bool rst_seq_match = false; 5229 5230 /* RFC1323: H1. Apply PAWS check first. */ 5231 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5232 tcp_paws_discard(sk, skb)) { 5233 if (!th->rst) { 5234 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5235 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5236 LINUX_MIB_TCPACKSKIPPEDPAWS, 5237 &tp->last_oow_ack_time)) 5238 tcp_send_dupack(sk, skb); 5239 goto discard; 5240 } 5241 /* Reset is accepted even if it did not pass PAWS. */ 5242 } 5243 5244 /* Step 1: check sequence number */ 5245 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5246 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5247 * (RST) segments are validated by checking their SEQ-fields." 5248 * And page 69: "If an incoming segment is not acceptable, 5249 * an acknowledgment should be sent in reply (unless the RST 5250 * bit is set, if so drop the segment and return)". 5251 */ 5252 if (!th->rst) { 5253 if (th->syn) 5254 goto syn_challenge; 5255 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5256 LINUX_MIB_TCPACKSKIPPEDSEQ, 5257 &tp->last_oow_ack_time)) 5258 tcp_send_dupack(sk, skb); 5259 } else if (tcp_reset_check(sk, skb)) { 5260 tcp_reset(sk); 5261 } 5262 goto discard; 5263 } 5264 5265 /* Step 2: check RST bit */ 5266 if (th->rst) { 5267 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5268 * FIN and SACK too if available): 5269 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5270 * the right-most SACK block, 5271 * then 5272 * RESET the connection 5273 * else 5274 * Send a challenge ACK 5275 */ 5276 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5277 tcp_reset_check(sk, skb)) { 5278 rst_seq_match = true; 5279 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5280 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5281 int max_sack = sp[0].end_seq; 5282 int this_sack; 5283 5284 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5285 ++this_sack) { 5286 max_sack = after(sp[this_sack].end_seq, 5287 max_sack) ? 5288 sp[this_sack].end_seq : max_sack; 5289 } 5290 5291 if (TCP_SKB_CB(skb)->seq == max_sack) 5292 rst_seq_match = true; 5293 } 5294 5295 if (rst_seq_match) 5296 tcp_reset(sk); 5297 else { 5298 /* Disable TFO if RST is out-of-order 5299 * and no data has been received 5300 * for current active TFO socket 5301 */ 5302 if (tp->syn_fastopen && !tp->data_segs_in && 5303 sk->sk_state == TCP_ESTABLISHED) 5304 tcp_fastopen_active_disable(sk); 5305 tcp_send_challenge_ack(sk, skb); 5306 } 5307 goto discard; 5308 } 5309 5310 /* step 3: check security and precedence [ignored] */ 5311 5312 /* step 4: Check for a SYN 5313 * RFC 5961 4.2 : Send a challenge ack 5314 */ 5315 if (th->syn) { 5316 syn_challenge: 5317 if (syn_inerr) 5318 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5319 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5320 tcp_send_challenge_ack(sk, skb); 5321 goto discard; 5322 } 5323 5324 return true; 5325 5326 discard: 5327 tcp_drop(sk, skb); 5328 return false; 5329 } 5330 5331 /* 5332 * TCP receive function for the ESTABLISHED state. 5333 * 5334 * It is split into a fast path and a slow path. The fast path is 5335 * disabled when: 5336 * - A zero window was announced from us - zero window probing 5337 * is only handled properly in the slow path. 5338 * - Out of order segments arrived. 5339 * - Urgent data is expected. 5340 * - There is no buffer space left 5341 * - Unexpected TCP flags/window values/header lengths are received 5342 * (detected by checking the TCP header against pred_flags) 5343 * - Data is sent in both directions. Fast path only supports pure senders 5344 * or pure receivers (this means either the sequence number or the ack 5345 * value must stay constant) 5346 * - Unexpected TCP option. 5347 * 5348 * When these conditions are not satisfied it drops into a standard 5349 * receive procedure patterned after RFC793 to handle all cases. 5350 * The first three cases are guaranteed by proper pred_flags setting, 5351 * the rest is checked inline. Fast processing is turned on in 5352 * tcp_data_queue when everything is OK. 5353 */ 5354 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5355 const struct tcphdr *th, unsigned int len) 5356 { 5357 struct tcp_sock *tp = tcp_sk(sk); 5358 5359 skb_mstamp_get(&tp->tcp_mstamp); 5360 if (unlikely(!sk->sk_rx_dst)) 5361 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5362 /* 5363 * Header prediction. 5364 * The code loosely follows the one in the famous 5365 * "30 instruction TCP receive" Van Jacobson mail. 5366 * 5367 * Van's trick is to deposit buffers into socket queue 5368 * on a device interrupt, to call tcp_recv function 5369 * on the receive process context and checksum and copy 5370 * the buffer to user space. smart... 5371 * 5372 * Our current scheme is not silly either but we take the 5373 * extra cost of the net_bh soft interrupt processing... 5374 * We do checksum and copy also but from device to kernel. 5375 */ 5376 5377 tp->rx_opt.saw_tstamp = 0; 5378 5379 /* pred_flags is 0xS?10 << 16 + snd_wnd 5380 * if header_prediction is to be made 5381 * 'S' will always be tp->tcp_header_len >> 2 5382 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5383 * turn it off (when there are holes in the receive 5384 * space for instance) 5385 * PSH flag is ignored. 5386 */ 5387 5388 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5389 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5390 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5391 int tcp_header_len = tp->tcp_header_len; 5392 5393 /* Timestamp header prediction: tcp_header_len 5394 * is automatically equal to th->doff*4 due to pred_flags 5395 * match. 5396 */ 5397 5398 /* Check timestamp */ 5399 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5400 /* No? Slow path! */ 5401 if (!tcp_parse_aligned_timestamp(tp, th)) 5402 goto slow_path; 5403 5404 /* If PAWS failed, check it more carefully in slow path */ 5405 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5406 goto slow_path; 5407 5408 /* DO NOT update ts_recent here, if checksum fails 5409 * and timestamp was corrupted part, it will result 5410 * in a hung connection since we will drop all 5411 * future packets due to the PAWS test. 5412 */ 5413 } 5414 5415 if (len <= tcp_header_len) { 5416 /* Bulk data transfer: sender */ 5417 if (len == tcp_header_len) { 5418 /* Predicted packet is in window by definition. 5419 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5420 * Hence, check seq<=rcv_wup reduces to: 5421 */ 5422 if (tcp_header_len == 5423 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5424 tp->rcv_nxt == tp->rcv_wup) 5425 tcp_store_ts_recent(tp); 5426 5427 /* We know that such packets are checksummed 5428 * on entry. 5429 */ 5430 tcp_ack(sk, skb, 0); 5431 __kfree_skb(skb); 5432 tcp_data_snd_check(sk); 5433 return; 5434 } else { /* Header too small */ 5435 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5436 goto discard; 5437 } 5438 } else { 5439 int eaten = 0; 5440 bool fragstolen = false; 5441 5442 if (tp->ucopy.task == current && 5443 tp->copied_seq == tp->rcv_nxt && 5444 len - tcp_header_len <= tp->ucopy.len && 5445 sock_owned_by_user(sk)) { 5446 __set_current_state(TASK_RUNNING); 5447 5448 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5449 /* Predicted packet is in window by definition. 5450 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5451 * Hence, check seq<=rcv_wup reduces to: 5452 */ 5453 if (tcp_header_len == 5454 (sizeof(struct tcphdr) + 5455 TCPOLEN_TSTAMP_ALIGNED) && 5456 tp->rcv_nxt == tp->rcv_wup) 5457 tcp_store_ts_recent(tp); 5458 5459 tcp_rcv_rtt_measure_ts(sk, skb); 5460 5461 __skb_pull(skb, tcp_header_len); 5462 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5463 NET_INC_STATS(sock_net(sk), 5464 LINUX_MIB_TCPHPHITSTOUSER); 5465 eaten = 1; 5466 } 5467 } 5468 if (!eaten) { 5469 if (tcp_checksum_complete(skb)) 5470 goto csum_error; 5471 5472 if ((int)skb->truesize > sk->sk_forward_alloc) 5473 goto step5; 5474 5475 /* Predicted packet is in window by definition. 5476 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5477 * Hence, check seq<=rcv_wup reduces to: 5478 */ 5479 if (tcp_header_len == 5480 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5481 tp->rcv_nxt == tp->rcv_wup) 5482 tcp_store_ts_recent(tp); 5483 5484 tcp_rcv_rtt_measure_ts(sk, skb); 5485 5486 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5487 5488 /* Bulk data transfer: receiver */ 5489 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5490 &fragstolen); 5491 } 5492 5493 tcp_event_data_recv(sk, skb); 5494 5495 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5496 /* Well, only one small jumplet in fast path... */ 5497 tcp_ack(sk, skb, FLAG_DATA); 5498 tcp_data_snd_check(sk); 5499 if (!inet_csk_ack_scheduled(sk)) 5500 goto no_ack; 5501 } 5502 5503 __tcp_ack_snd_check(sk, 0); 5504 no_ack: 5505 if (eaten) 5506 kfree_skb_partial(skb, fragstolen); 5507 sk->sk_data_ready(sk); 5508 return; 5509 } 5510 } 5511 5512 slow_path: 5513 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5514 goto csum_error; 5515 5516 if (!th->ack && !th->rst && !th->syn) 5517 goto discard; 5518 5519 /* 5520 * Standard slow path. 5521 */ 5522 5523 if (!tcp_validate_incoming(sk, skb, th, 1)) 5524 return; 5525 5526 step5: 5527 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5528 goto discard; 5529 5530 tcp_rcv_rtt_measure_ts(sk, skb); 5531 5532 /* Process urgent data. */ 5533 tcp_urg(sk, skb, th); 5534 5535 /* step 7: process the segment text */ 5536 tcp_data_queue(sk, skb); 5537 5538 tcp_data_snd_check(sk); 5539 tcp_ack_snd_check(sk); 5540 return; 5541 5542 csum_error: 5543 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5544 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5545 5546 discard: 5547 tcp_drop(sk, skb); 5548 } 5549 EXPORT_SYMBOL(tcp_rcv_established); 5550 5551 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5552 { 5553 struct tcp_sock *tp = tcp_sk(sk); 5554 struct inet_connection_sock *icsk = inet_csk(sk); 5555 5556 tcp_set_state(sk, TCP_ESTABLISHED); 5557 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5558 5559 if (skb) { 5560 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5561 security_inet_conn_established(sk, skb); 5562 } 5563 5564 /* Make sure socket is routed, for correct metrics. */ 5565 icsk->icsk_af_ops->rebuild_header(sk); 5566 5567 tcp_init_metrics(sk); 5568 5569 tcp_init_congestion_control(sk); 5570 5571 /* Prevent spurious tcp_cwnd_restart() on first data 5572 * packet. 5573 */ 5574 tp->lsndtime = tcp_jiffies32; 5575 5576 tcp_init_buffer_space(sk); 5577 5578 if (sock_flag(sk, SOCK_KEEPOPEN)) 5579 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5580 5581 if (!tp->rx_opt.snd_wscale) 5582 __tcp_fast_path_on(tp, tp->snd_wnd); 5583 else 5584 tp->pred_flags = 0; 5585 5586 } 5587 5588 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5589 struct tcp_fastopen_cookie *cookie) 5590 { 5591 struct tcp_sock *tp = tcp_sk(sk); 5592 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5593 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5594 bool syn_drop = false; 5595 5596 if (mss == tp->rx_opt.user_mss) { 5597 struct tcp_options_received opt; 5598 5599 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5600 tcp_clear_options(&opt); 5601 opt.user_mss = opt.mss_clamp = 0; 5602 tcp_parse_options(synack, &opt, 0, NULL); 5603 mss = opt.mss_clamp; 5604 } 5605 5606 if (!tp->syn_fastopen) { 5607 /* Ignore an unsolicited cookie */ 5608 cookie->len = -1; 5609 } else if (tp->total_retrans) { 5610 /* SYN timed out and the SYN-ACK neither has a cookie nor 5611 * acknowledges data. Presumably the remote received only 5612 * the retransmitted (regular) SYNs: either the original 5613 * SYN-data or the corresponding SYN-ACK was dropped. 5614 */ 5615 syn_drop = (cookie->len < 0 && data); 5616 } else if (cookie->len < 0 && !tp->syn_data) { 5617 /* We requested a cookie but didn't get it. If we did not use 5618 * the (old) exp opt format then try so next time (try_exp=1). 5619 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5620 */ 5621 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5622 } 5623 5624 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5625 5626 if (data) { /* Retransmit unacked data in SYN */ 5627 tcp_for_write_queue_from(data, sk) { 5628 if (data == tcp_send_head(sk) || 5629 __tcp_retransmit_skb(sk, data, 1)) 5630 break; 5631 } 5632 tcp_rearm_rto(sk); 5633 NET_INC_STATS(sock_net(sk), 5634 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5635 return true; 5636 } 5637 tp->syn_data_acked = tp->syn_data; 5638 if (tp->syn_data_acked) 5639 NET_INC_STATS(sock_net(sk), 5640 LINUX_MIB_TCPFASTOPENACTIVE); 5641 5642 tcp_fastopen_add_skb(sk, synack); 5643 5644 return false; 5645 } 5646 5647 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5648 const struct tcphdr *th) 5649 { 5650 struct inet_connection_sock *icsk = inet_csk(sk); 5651 struct tcp_sock *tp = tcp_sk(sk); 5652 struct tcp_fastopen_cookie foc = { .len = -1 }; 5653 int saved_clamp = tp->rx_opt.mss_clamp; 5654 bool fastopen_fail; 5655 5656 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5657 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5658 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5659 5660 if (th->ack) { 5661 /* rfc793: 5662 * "If the state is SYN-SENT then 5663 * first check the ACK bit 5664 * If the ACK bit is set 5665 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5666 * a reset (unless the RST bit is set, if so drop 5667 * the segment and return)" 5668 */ 5669 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5670 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5671 goto reset_and_undo; 5672 5673 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5674 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5675 tcp_time_stamp)) { 5676 NET_INC_STATS(sock_net(sk), 5677 LINUX_MIB_PAWSACTIVEREJECTED); 5678 goto reset_and_undo; 5679 } 5680 5681 /* Now ACK is acceptable. 5682 * 5683 * "If the RST bit is set 5684 * If the ACK was acceptable then signal the user "error: 5685 * connection reset", drop the segment, enter CLOSED state, 5686 * delete TCB, and return." 5687 */ 5688 5689 if (th->rst) { 5690 tcp_reset(sk); 5691 goto discard; 5692 } 5693 5694 /* rfc793: 5695 * "fifth, if neither of the SYN or RST bits is set then 5696 * drop the segment and return." 5697 * 5698 * See note below! 5699 * --ANK(990513) 5700 */ 5701 if (!th->syn) 5702 goto discard_and_undo; 5703 5704 /* rfc793: 5705 * "If the SYN bit is on ... 5706 * are acceptable then ... 5707 * (our SYN has been ACKed), change the connection 5708 * state to ESTABLISHED..." 5709 */ 5710 5711 tcp_ecn_rcv_synack(tp, th); 5712 5713 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5714 tcp_ack(sk, skb, FLAG_SLOWPATH); 5715 5716 /* Ok.. it's good. Set up sequence numbers and 5717 * move to established. 5718 */ 5719 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5720 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5721 5722 /* RFC1323: The window in SYN & SYN/ACK segments is 5723 * never scaled. 5724 */ 5725 tp->snd_wnd = ntohs(th->window); 5726 5727 if (!tp->rx_opt.wscale_ok) { 5728 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5729 tp->window_clamp = min(tp->window_clamp, 65535U); 5730 } 5731 5732 if (tp->rx_opt.saw_tstamp) { 5733 tp->rx_opt.tstamp_ok = 1; 5734 tp->tcp_header_len = 5735 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5736 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5737 tcp_store_ts_recent(tp); 5738 } else { 5739 tp->tcp_header_len = sizeof(struct tcphdr); 5740 } 5741 5742 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5743 tcp_enable_fack(tp); 5744 5745 tcp_mtup_init(sk); 5746 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5747 tcp_initialize_rcv_mss(sk); 5748 5749 /* Remember, tcp_poll() does not lock socket! 5750 * Change state from SYN-SENT only after copied_seq 5751 * is initialized. */ 5752 tp->copied_seq = tp->rcv_nxt; 5753 5754 smp_mb(); 5755 5756 tcp_finish_connect(sk, skb); 5757 5758 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5759 tcp_rcv_fastopen_synack(sk, skb, &foc); 5760 5761 if (!sock_flag(sk, SOCK_DEAD)) { 5762 sk->sk_state_change(sk); 5763 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5764 } 5765 if (fastopen_fail) 5766 return -1; 5767 if (sk->sk_write_pending || 5768 icsk->icsk_accept_queue.rskq_defer_accept || 5769 icsk->icsk_ack.pingpong) { 5770 /* Save one ACK. Data will be ready after 5771 * several ticks, if write_pending is set. 5772 * 5773 * It may be deleted, but with this feature tcpdumps 5774 * look so _wonderfully_ clever, that I was not able 5775 * to stand against the temptation 8) --ANK 5776 */ 5777 inet_csk_schedule_ack(sk); 5778 tcp_enter_quickack_mode(sk); 5779 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5780 TCP_DELACK_MAX, TCP_RTO_MAX); 5781 5782 discard: 5783 tcp_drop(sk, skb); 5784 return 0; 5785 } else { 5786 tcp_send_ack(sk); 5787 } 5788 return -1; 5789 } 5790 5791 /* No ACK in the segment */ 5792 5793 if (th->rst) { 5794 /* rfc793: 5795 * "If the RST bit is set 5796 * 5797 * Otherwise (no ACK) drop the segment and return." 5798 */ 5799 5800 goto discard_and_undo; 5801 } 5802 5803 /* PAWS check. */ 5804 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5805 tcp_paws_reject(&tp->rx_opt, 0)) 5806 goto discard_and_undo; 5807 5808 if (th->syn) { 5809 /* We see SYN without ACK. It is attempt of 5810 * simultaneous connect with crossed SYNs. 5811 * Particularly, it can be connect to self. 5812 */ 5813 tcp_set_state(sk, TCP_SYN_RECV); 5814 5815 if (tp->rx_opt.saw_tstamp) { 5816 tp->rx_opt.tstamp_ok = 1; 5817 tcp_store_ts_recent(tp); 5818 tp->tcp_header_len = 5819 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5820 } else { 5821 tp->tcp_header_len = sizeof(struct tcphdr); 5822 } 5823 5824 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5825 tp->copied_seq = tp->rcv_nxt; 5826 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5827 5828 /* RFC1323: The window in SYN & SYN/ACK segments is 5829 * never scaled. 5830 */ 5831 tp->snd_wnd = ntohs(th->window); 5832 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5833 tp->max_window = tp->snd_wnd; 5834 5835 tcp_ecn_rcv_syn(tp, th); 5836 5837 tcp_mtup_init(sk); 5838 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5839 tcp_initialize_rcv_mss(sk); 5840 5841 tcp_send_synack(sk); 5842 #if 0 5843 /* Note, we could accept data and URG from this segment. 5844 * There are no obstacles to make this (except that we must 5845 * either change tcp_recvmsg() to prevent it from returning data 5846 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5847 * 5848 * However, if we ignore data in ACKless segments sometimes, 5849 * we have no reasons to accept it sometimes. 5850 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5851 * is not flawless. So, discard packet for sanity. 5852 * Uncomment this return to process the data. 5853 */ 5854 return -1; 5855 #else 5856 goto discard; 5857 #endif 5858 } 5859 /* "fifth, if neither of the SYN or RST bits is set then 5860 * drop the segment and return." 5861 */ 5862 5863 discard_and_undo: 5864 tcp_clear_options(&tp->rx_opt); 5865 tp->rx_opt.mss_clamp = saved_clamp; 5866 goto discard; 5867 5868 reset_and_undo: 5869 tcp_clear_options(&tp->rx_opt); 5870 tp->rx_opt.mss_clamp = saved_clamp; 5871 return 1; 5872 } 5873 5874 /* 5875 * This function implements the receiving procedure of RFC 793 for 5876 * all states except ESTABLISHED and TIME_WAIT. 5877 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5878 * address independent. 5879 */ 5880 5881 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5882 { 5883 struct tcp_sock *tp = tcp_sk(sk); 5884 struct inet_connection_sock *icsk = inet_csk(sk); 5885 const struct tcphdr *th = tcp_hdr(skb); 5886 struct request_sock *req; 5887 int queued = 0; 5888 bool acceptable; 5889 5890 switch (sk->sk_state) { 5891 case TCP_CLOSE: 5892 goto discard; 5893 5894 case TCP_LISTEN: 5895 if (th->ack) 5896 return 1; 5897 5898 if (th->rst) 5899 goto discard; 5900 5901 if (th->syn) { 5902 if (th->fin) 5903 goto discard; 5904 /* It is possible that we process SYN packets from backlog, 5905 * so we need to make sure to disable BH right there. 5906 */ 5907 local_bh_disable(); 5908 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5909 local_bh_enable(); 5910 5911 if (!acceptable) 5912 return 1; 5913 consume_skb(skb); 5914 return 0; 5915 } 5916 goto discard; 5917 5918 case TCP_SYN_SENT: 5919 tp->rx_opt.saw_tstamp = 0; 5920 skb_mstamp_get(&tp->tcp_mstamp); 5921 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5922 if (queued >= 0) 5923 return queued; 5924 5925 /* Do step6 onward by hand. */ 5926 tcp_urg(sk, skb, th); 5927 __kfree_skb(skb); 5928 tcp_data_snd_check(sk); 5929 return 0; 5930 } 5931 5932 skb_mstamp_get(&tp->tcp_mstamp); 5933 tp->rx_opt.saw_tstamp = 0; 5934 req = tp->fastopen_rsk; 5935 if (req) { 5936 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5937 sk->sk_state != TCP_FIN_WAIT1); 5938 5939 if (!tcp_check_req(sk, skb, req, true)) 5940 goto discard; 5941 } 5942 5943 if (!th->ack && !th->rst && !th->syn) 5944 goto discard; 5945 5946 if (!tcp_validate_incoming(sk, skb, th, 0)) 5947 return 0; 5948 5949 /* step 5: check the ACK field */ 5950 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5951 FLAG_UPDATE_TS_RECENT) > 0; 5952 5953 switch (sk->sk_state) { 5954 case TCP_SYN_RECV: 5955 if (!acceptable) 5956 return 1; 5957 5958 if (!tp->srtt_us) 5959 tcp_synack_rtt_meas(sk, req); 5960 5961 /* Once we leave TCP_SYN_RECV, we no longer need req 5962 * so release it. 5963 */ 5964 if (req) { 5965 inet_csk(sk)->icsk_retransmits = 0; 5966 reqsk_fastopen_remove(sk, req, false); 5967 } else { 5968 /* Make sure socket is routed, for correct metrics. */ 5969 icsk->icsk_af_ops->rebuild_header(sk); 5970 tcp_init_congestion_control(sk); 5971 5972 tcp_mtup_init(sk); 5973 tp->copied_seq = tp->rcv_nxt; 5974 tcp_init_buffer_space(sk); 5975 } 5976 smp_mb(); 5977 tcp_set_state(sk, TCP_ESTABLISHED); 5978 sk->sk_state_change(sk); 5979 5980 /* Note, that this wakeup is only for marginal crossed SYN case. 5981 * Passively open sockets are not waked up, because 5982 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5983 */ 5984 if (sk->sk_socket) 5985 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5986 5987 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5988 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5989 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5990 5991 if (tp->rx_opt.tstamp_ok) 5992 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5993 5994 if (req) { 5995 /* Re-arm the timer because data may have been sent out. 5996 * This is similar to the regular data transmission case 5997 * when new data has just been ack'ed. 5998 * 5999 * (TFO) - we could try to be more aggressive and 6000 * retransmitting any data sooner based on when they 6001 * are sent out. 6002 */ 6003 tcp_rearm_rto(sk); 6004 } else 6005 tcp_init_metrics(sk); 6006 6007 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6008 tcp_update_pacing_rate(sk); 6009 6010 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6011 tp->lsndtime = tcp_jiffies32; 6012 6013 tcp_initialize_rcv_mss(sk); 6014 tcp_fast_path_on(tp); 6015 break; 6016 6017 case TCP_FIN_WAIT1: { 6018 int tmo; 6019 6020 /* If we enter the TCP_FIN_WAIT1 state and we are a 6021 * Fast Open socket and this is the first acceptable 6022 * ACK we have received, this would have acknowledged 6023 * our SYNACK so stop the SYNACK timer. 6024 */ 6025 if (req) { 6026 /* Return RST if ack_seq is invalid. 6027 * Note that RFC793 only says to generate a 6028 * DUPACK for it but for TCP Fast Open it seems 6029 * better to treat this case like TCP_SYN_RECV 6030 * above. 6031 */ 6032 if (!acceptable) 6033 return 1; 6034 /* We no longer need the request sock. */ 6035 reqsk_fastopen_remove(sk, req, false); 6036 tcp_rearm_rto(sk); 6037 } 6038 if (tp->snd_una != tp->write_seq) 6039 break; 6040 6041 tcp_set_state(sk, TCP_FIN_WAIT2); 6042 sk->sk_shutdown |= SEND_SHUTDOWN; 6043 6044 sk_dst_confirm(sk); 6045 6046 if (!sock_flag(sk, SOCK_DEAD)) { 6047 /* Wake up lingering close() */ 6048 sk->sk_state_change(sk); 6049 break; 6050 } 6051 6052 if (tp->linger2 < 0) { 6053 tcp_done(sk); 6054 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6055 return 1; 6056 } 6057 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6058 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6059 /* Receive out of order FIN after close() */ 6060 if (tp->syn_fastopen && th->fin) 6061 tcp_fastopen_active_disable(sk); 6062 tcp_done(sk); 6063 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6064 return 1; 6065 } 6066 6067 tmo = tcp_fin_time(sk); 6068 if (tmo > TCP_TIMEWAIT_LEN) { 6069 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6070 } else if (th->fin || sock_owned_by_user(sk)) { 6071 /* Bad case. We could lose such FIN otherwise. 6072 * It is not a big problem, but it looks confusing 6073 * and not so rare event. We still can lose it now, 6074 * if it spins in bh_lock_sock(), but it is really 6075 * marginal case. 6076 */ 6077 inet_csk_reset_keepalive_timer(sk, tmo); 6078 } else { 6079 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6080 goto discard; 6081 } 6082 break; 6083 } 6084 6085 case TCP_CLOSING: 6086 if (tp->snd_una == tp->write_seq) { 6087 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6088 goto discard; 6089 } 6090 break; 6091 6092 case TCP_LAST_ACK: 6093 if (tp->snd_una == tp->write_seq) { 6094 tcp_update_metrics(sk); 6095 tcp_done(sk); 6096 goto discard; 6097 } 6098 break; 6099 } 6100 6101 /* step 6: check the URG bit */ 6102 tcp_urg(sk, skb, th); 6103 6104 /* step 7: process the segment text */ 6105 switch (sk->sk_state) { 6106 case TCP_CLOSE_WAIT: 6107 case TCP_CLOSING: 6108 case TCP_LAST_ACK: 6109 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6110 break; 6111 case TCP_FIN_WAIT1: 6112 case TCP_FIN_WAIT2: 6113 /* RFC 793 says to queue data in these states, 6114 * RFC 1122 says we MUST send a reset. 6115 * BSD 4.4 also does reset. 6116 */ 6117 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6118 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6119 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6120 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6121 tcp_reset(sk); 6122 return 1; 6123 } 6124 } 6125 /* Fall through */ 6126 case TCP_ESTABLISHED: 6127 tcp_data_queue(sk, skb); 6128 queued = 1; 6129 break; 6130 } 6131 6132 /* tcp_data could move socket to TIME-WAIT */ 6133 if (sk->sk_state != TCP_CLOSE) { 6134 tcp_data_snd_check(sk); 6135 tcp_ack_snd_check(sk); 6136 } 6137 6138 if (!queued) { 6139 discard: 6140 tcp_drop(sk, skb); 6141 } 6142 return 0; 6143 } 6144 EXPORT_SYMBOL(tcp_rcv_state_process); 6145 6146 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6147 { 6148 struct inet_request_sock *ireq = inet_rsk(req); 6149 6150 if (family == AF_INET) 6151 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6152 &ireq->ir_rmt_addr, port); 6153 #if IS_ENABLED(CONFIG_IPV6) 6154 else if (family == AF_INET6) 6155 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6156 &ireq->ir_v6_rmt_addr, port); 6157 #endif 6158 } 6159 6160 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6161 * 6162 * If we receive a SYN packet with these bits set, it means a 6163 * network is playing bad games with TOS bits. In order to 6164 * avoid possible false congestion notifications, we disable 6165 * TCP ECN negotiation. 6166 * 6167 * Exception: tcp_ca wants ECN. This is required for DCTCP 6168 * congestion control: Linux DCTCP asserts ECT on all packets, 6169 * including SYN, which is most optimal solution; however, 6170 * others, such as FreeBSD do not. 6171 */ 6172 static void tcp_ecn_create_request(struct request_sock *req, 6173 const struct sk_buff *skb, 6174 const struct sock *listen_sk, 6175 const struct dst_entry *dst) 6176 { 6177 const struct tcphdr *th = tcp_hdr(skb); 6178 const struct net *net = sock_net(listen_sk); 6179 bool th_ecn = th->ece && th->cwr; 6180 bool ect, ecn_ok; 6181 u32 ecn_ok_dst; 6182 6183 if (!th_ecn) 6184 return; 6185 6186 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6187 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6188 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6189 6190 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6191 (ecn_ok_dst & DST_FEATURE_ECN_CA)) 6192 inet_rsk(req)->ecn_ok = 1; 6193 } 6194 6195 static void tcp_openreq_init(struct request_sock *req, 6196 const struct tcp_options_received *rx_opt, 6197 struct sk_buff *skb, const struct sock *sk) 6198 { 6199 struct inet_request_sock *ireq = inet_rsk(req); 6200 6201 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6202 req->cookie_ts = 0; 6203 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6204 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6205 skb_mstamp_get(&tcp_rsk(req)->snt_synack); 6206 tcp_rsk(req)->last_oow_ack_time = 0; 6207 req->mss = rx_opt->mss_clamp; 6208 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6209 ireq->tstamp_ok = rx_opt->tstamp_ok; 6210 ireq->sack_ok = rx_opt->sack_ok; 6211 ireq->snd_wscale = rx_opt->snd_wscale; 6212 ireq->wscale_ok = rx_opt->wscale_ok; 6213 ireq->acked = 0; 6214 ireq->ecn_ok = 0; 6215 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6216 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6217 ireq->ir_mark = inet_request_mark(sk, skb); 6218 } 6219 6220 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6221 struct sock *sk_listener, 6222 bool attach_listener) 6223 { 6224 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6225 attach_listener); 6226 6227 if (req) { 6228 struct inet_request_sock *ireq = inet_rsk(req); 6229 6230 kmemcheck_annotate_bitfield(ireq, flags); 6231 ireq->opt = NULL; 6232 #if IS_ENABLED(CONFIG_IPV6) 6233 ireq->pktopts = NULL; 6234 #endif 6235 atomic64_set(&ireq->ir_cookie, 0); 6236 ireq->ireq_state = TCP_NEW_SYN_RECV; 6237 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6238 ireq->ireq_family = sk_listener->sk_family; 6239 } 6240 6241 return req; 6242 } 6243 EXPORT_SYMBOL(inet_reqsk_alloc); 6244 6245 /* 6246 * Return true if a syncookie should be sent 6247 */ 6248 static bool tcp_syn_flood_action(const struct sock *sk, 6249 const struct sk_buff *skb, 6250 const char *proto) 6251 { 6252 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6253 const char *msg = "Dropping request"; 6254 bool want_cookie = false; 6255 struct net *net = sock_net(sk); 6256 6257 #ifdef CONFIG_SYN_COOKIES 6258 if (net->ipv4.sysctl_tcp_syncookies) { 6259 msg = "Sending cookies"; 6260 want_cookie = true; 6261 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6262 } else 6263 #endif 6264 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6265 6266 if (!queue->synflood_warned && 6267 net->ipv4.sysctl_tcp_syncookies != 2 && 6268 xchg(&queue->synflood_warned, 1) == 0) 6269 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6270 proto, ntohs(tcp_hdr(skb)->dest), msg); 6271 6272 return want_cookie; 6273 } 6274 6275 static void tcp_reqsk_record_syn(const struct sock *sk, 6276 struct request_sock *req, 6277 const struct sk_buff *skb) 6278 { 6279 if (tcp_sk(sk)->save_syn) { 6280 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6281 u32 *copy; 6282 6283 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6284 if (copy) { 6285 copy[0] = len; 6286 memcpy(©[1], skb_network_header(skb), len); 6287 req->saved_syn = copy; 6288 } 6289 } 6290 } 6291 6292 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6293 const struct tcp_request_sock_ops *af_ops, 6294 struct sock *sk, struct sk_buff *skb) 6295 { 6296 struct tcp_fastopen_cookie foc = { .len = -1 }; 6297 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6298 struct tcp_options_received tmp_opt; 6299 struct tcp_sock *tp = tcp_sk(sk); 6300 struct net *net = sock_net(sk); 6301 struct sock *fastopen_sk = NULL; 6302 struct dst_entry *dst = NULL; 6303 struct request_sock *req; 6304 bool want_cookie = false; 6305 struct flowi fl; 6306 6307 /* TW buckets are converted to open requests without 6308 * limitations, they conserve resources and peer is 6309 * evidently real one. 6310 */ 6311 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6312 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6313 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6314 if (!want_cookie) 6315 goto drop; 6316 } 6317 6318 if (sk_acceptq_is_full(sk)) { 6319 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6320 goto drop; 6321 } 6322 6323 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6324 if (!req) 6325 goto drop; 6326 6327 tcp_rsk(req)->af_specific = af_ops; 6328 tcp_rsk(req)->ts_off = 0; 6329 6330 tcp_clear_options(&tmp_opt); 6331 tmp_opt.mss_clamp = af_ops->mss_clamp; 6332 tmp_opt.user_mss = tp->rx_opt.user_mss; 6333 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 6334 6335 if (want_cookie && !tmp_opt.saw_tstamp) 6336 tcp_clear_options(&tmp_opt); 6337 6338 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6339 tcp_openreq_init(req, &tmp_opt, skb, sk); 6340 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6341 6342 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6343 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6344 6345 af_ops->init_req(req, sk, skb); 6346 6347 if (security_inet_conn_request(sk, skb, req)) 6348 goto drop_and_free; 6349 6350 if (tmp_opt.tstamp_ok) 6351 tcp_rsk(req)->ts_off = af_ops->init_ts_off(skb); 6352 6353 if (!want_cookie && !isn) { 6354 /* Kill the following clause, if you dislike this way. */ 6355 if (!net->ipv4.sysctl_tcp_syncookies && 6356 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6357 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6358 !tcp_peer_is_proven(req, dst)) { 6359 /* Without syncookies last quarter of 6360 * backlog is filled with destinations, 6361 * proven to be alive. 6362 * It means that we continue to communicate 6363 * to destinations, already remembered 6364 * to the moment of synflood. 6365 */ 6366 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6367 rsk_ops->family); 6368 goto drop_and_release; 6369 } 6370 6371 isn = af_ops->init_seq(skb); 6372 } 6373 if (!dst) { 6374 dst = af_ops->route_req(sk, &fl, req); 6375 if (!dst) 6376 goto drop_and_free; 6377 } 6378 6379 tcp_ecn_create_request(req, skb, sk, dst); 6380 6381 if (want_cookie) { 6382 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6383 req->cookie_ts = tmp_opt.tstamp_ok; 6384 if (!tmp_opt.tstamp_ok) 6385 inet_rsk(req)->ecn_ok = 0; 6386 } 6387 6388 tcp_rsk(req)->snt_isn = isn; 6389 tcp_rsk(req)->txhash = net_tx_rndhash(); 6390 tcp_openreq_init_rwin(req, sk, dst); 6391 if (!want_cookie) { 6392 tcp_reqsk_record_syn(sk, req, skb); 6393 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6394 } 6395 if (fastopen_sk) { 6396 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6397 &foc, TCP_SYNACK_FASTOPEN); 6398 /* Add the child socket directly into the accept queue */ 6399 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6400 sk->sk_data_ready(sk); 6401 bh_unlock_sock(fastopen_sk); 6402 sock_put(fastopen_sk); 6403 } else { 6404 tcp_rsk(req)->tfo_listener = false; 6405 if (!want_cookie) 6406 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6407 af_ops->send_synack(sk, dst, &fl, req, &foc, 6408 !want_cookie ? TCP_SYNACK_NORMAL : 6409 TCP_SYNACK_COOKIE); 6410 if (want_cookie) { 6411 reqsk_free(req); 6412 return 0; 6413 } 6414 } 6415 reqsk_put(req); 6416 return 0; 6417 6418 drop_and_release: 6419 dst_release(dst); 6420 drop_and_free: 6421 reqsk_free(req); 6422 drop: 6423 tcp_listendrop(sk); 6424 return 0; 6425 } 6426 EXPORT_SYMBOL(tcp_conn_request); 6427