xref: /linux/net/ipv4/tcp_input.c (revision bec36eca6f5d1d83a9c3733fc40ba173ad849df2)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
68 #include <net/dst.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91 
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94 
95 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
102 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
109 
110 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 
116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118 
119 /* Adapt the MSS value used to make delayed ack decision to the
120  * real world.
121  */
122 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
123 {
124 	struct inet_connection_sock *icsk = inet_csk(sk);
125 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
126 	unsigned int len;
127 
128 	icsk->icsk_ack.last_seg_size = 0;
129 
130 	/* skb->len may jitter because of SACKs, even if peer
131 	 * sends good full-sized frames.
132 	 */
133 	len = skb_shinfo(skb)->gso_size ? : skb->len;
134 	if (len >= icsk->icsk_ack.rcv_mss) {
135 		icsk->icsk_ack.rcv_mss = len;
136 	} else {
137 		/* Otherwise, we make more careful check taking into account,
138 		 * that SACKs block is variable.
139 		 *
140 		 * "len" is invariant segment length, including TCP header.
141 		 */
142 		len += skb->data - skb_transport_header(skb);
143 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
144 		    /* If PSH is not set, packet should be
145 		     * full sized, provided peer TCP is not badly broken.
146 		     * This observation (if it is correct 8)) allows
147 		     * to handle super-low mtu links fairly.
148 		     */
149 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
150 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
151 			/* Subtract also invariant (if peer is RFC compliant),
152 			 * tcp header plus fixed timestamp option length.
153 			 * Resulting "len" is MSS free of SACK jitter.
154 			 */
155 			len -= tcp_sk(sk)->tcp_header_len;
156 			icsk->icsk_ack.last_seg_size = len;
157 			if (len == lss) {
158 				icsk->icsk_ack.rcv_mss = len;
159 				return;
160 			}
161 		}
162 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
163 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
164 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
165 	}
166 }
167 
168 static void tcp_incr_quickack(struct sock *sk)
169 {
170 	struct inet_connection_sock *icsk = inet_csk(sk);
171 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
172 
173 	if (quickacks == 0)
174 		quickacks = 2;
175 	if (quickacks > icsk->icsk_ack.quick)
176 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
177 }
178 
179 void tcp_enter_quickack_mode(struct sock *sk)
180 {
181 	struct inet_connection_sock *icsk = inet_csk(sk);
182 	tcp_incr_quickack(sk);
183 	icsk->icsk_ack.pingpong = 0;
184 	icsk->icsk_ack.ato = TCP_ATO_MIN;
185 }
186 
187 /* Send ACKs quickly, if "quick" count is not exhausted
188  * and the session is not interactive.
189  */
190 
191 static inline int tcp_in_quickack_mode(const struct sock *sk)
192 {
193 	const struct inet_connection_sock *icsk = inet_csk(sk);
194 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
195 }
196 
197 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198 {
199 	if (tp->ecn_flags & TCP_ECN_OK)
200 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
201 }
202 
203 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204 {
205 	if (tcp_hdr(skb)->cwr)
206 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
207 }
208 
209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210 {
211 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212 }
213 
214 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215 {
216 	if (tp->ecn_flags & TCP_ECN_OK) {
217 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
218 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
219 		/* Funny extension: if ECT is not set on a segment,
220 		 * it is surely retransmit. It is not in ECN RFC,
221 		 * but Linux follows this rule. */
222 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
223 			tcp_enter_quickack_mode((struct sock *)tp);
224 	}
225 }
226 
227 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228 {
229 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
230 		tp->ecn_flags &= ~TCP_ECN_OK;
231 }
232 
233 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234 {
235 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
236 		tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238 
239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240 {
241 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
242 		return 1;
243 	return 0;
244 }
245 
246 /* Buffer size and advertised window tuning.
247  *
248  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
249  */
250 
251 static void tcp_fixup_sndbuf(struct sock *sk)
252 {
253 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
254 		     sizeof(struct sk_buff);
255 
256 	if (sk->sk_sndbuf < 3 * sndmem)
257 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
258 }
259 
260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261  *
262  * All tcp_full_space() is split to two parts: "network" buffer, allocated
263  * forward and advertised in receiver window (tp->rcv_wnd) and
264  * "application buffer", required to isolate scheduling/application
265  * latencies from network.
266  * window_clamp is maximal advertised window. It can be less than
267  * tcp_full_space(), in this case tcp_full_space() - window_clamp
268  * is reserved for "application" buffer. The less window_clamp is
269  * the smoother our behaviour from viewpoint of network, but the lower
270  * throughput and the higher sensitivity of the connection to losses. 8)
271  *
272  * rcv_ssthresh is more strict window_clamp used at "slow start"
273  * phase to predict further behaviour of this connection.
274  * It is used for two goals:
275  * - to enforce header prediction at sender, even when application
276  *   requires some significant "application buffer". It is check #1.
277  * - to prevent pruning of receive queue because of misprediction
278  *   of receiver window. Check #2.
279  *
280  * The scheme does not work when sender sends good segments opening
281  * window and then starts to feed us spaghetti. But it should work
282  * in common situations. Otherwise, we have to rely on queue collapsing.
283  */
284 
285 /* Slow part of check#2. */
286 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
287 {
288 	struct tcp_sock *tp = tcp_sk(sk);
289 	/* Optimize this! */
290 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
291 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
292 
293 	while (tp->rcv_ssthresh <= window) {
294 		if (truesize <= skb->len)
295 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
296 
297 		truesize >>= 1;
298 		window >>= 1;
299 	}
300 	return 0;
301 }
302 
303 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
304 {
305 	struct tcp_sock *tp = tcp_sk(sk);
306 
307 	/* Check #1 */
308 	if (tp->rcv_ssthresh < tp->window_clamp &&
309 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
310 	    !tcp_memory_pressure) {
311 		int incr;
312 
313 		/* Check #2. Increase window, if skb with such overhead
314 		 * will fit to rcvbuf in future.
315 		 */
316 		if (tcp_win_from_space(skb->truesize) <= skb->len)
317 			incr = 2 * tp->advmss;
318 		else
319 			incr = __tcp_grow_window(sk, skb);
320 
321 		if (incr) {
322 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
323 					       tp->window_clamp);
324 			inet_csk(sk)->icsk_ack.quick |= 1;
325 		}
326 	}
327 }
328 
329 /* 3. Tuning rcvbuf, when connection enters established state. */
330 
331 static void tcp_fixup_rcvbuf(struct sock *sk)
332 {
333 	struct tcp_sock *tp = tcp_sk(sk);
334 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335 
336 	/* Try to select rcvbuf so that 4 mss-sized segments
337 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
338 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
339 	 */
340 	while (tcp_win_from_space(rcvmem) < tp->advmss)
341 		rcvmem += 128;
342 	if (sk->sk_rcvbuf < 4 * rcvmem)
343 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
344 }
345 
346 /* 4. Try to fixup all. It is made immediately after connection enters
347  *    established state.
348  */
349 static void tcp_init_buffer_space(struct sock *sk)
350 {
351 	struct tcp_sock *tp = tcp_sk(sk);
352 	int maxwin;
353 
354 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
355 		tcp_fixup_rcvbuf(sk);
356 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
357 		tcp_fixup_sndbuf(sk);
358 
359 	tp->rcvq_space.space = tp->rcv_wnd;
360 
361 	maxwin = tcp_full_space(sk);
362 
363 	if (tp->window_clamp >= maxwin) {
364 		tp->window_clamp = maxwin;
365 
366 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
367 			tp->window_clamp = max(maxwin -
368 					       (maxwin >> sysctl_tcp_app_win),
369 					       4 * tp->advmss);
370 	}
371 
372 	/* Force reservation of one segment. */
373 	if (sysctl_tcp_app_win &&
374 	    tp->window_clamp > 2 * tp->advmss &&
375 	    tp->window_clamp + tp->advmss > maxwin)
376 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377 
378 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
379 	tp->snd_cwnd_stamp = tcp_time_stamp;
380 }
381 
382 /* 5. Recalculate window clamp after socket hit its memory bounds. */
383 static void tcp_clamp_window(struct sock *sk)
384 {
385 	struct tcp_sock *tp = tcp_sk(sk);
386 	struct inet_connection_sock *icsk = inet_csk(sk);
387 
388 	icsk->icsk_ack.quick = 0;
389 
390 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
391 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
392 	    !tcp_memory_pressure &&
393 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
394 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
395 				    sysctl_tcp_rmem[2]);
396 	}
397 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
398 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
399 }
400 
401 /* Initialize RCV_MSS value.
402  * RCV_MSS is an our guess about MSS used by the peer.
403  * We haven't any direct information about the MSS.
404  * It's better to underestimate the RCV_MSS rather than overestimate.
405  * Overestimations make us ACKing less frequently than needed.
406  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407  */
408 void tcp_initialize_rcv_mss(struct sock *sk)
409 {
410 	struct tcp_sock *tp = tcp_sk(sk);
411 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412 
413 	hint = min(hint, tp->rcv_wnd / 2);
414 	hint = min(hint, TCP_MIN_RCVMSS);
415 	hint = max(hint, TCP_MIN_MSS);
416 
417 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
418 }
419 
420 /* Receiver "autotuning" code.
421  *
422  * The algorithm for RTT estimation w/o timestamps is based on
423  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
424  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425  *
426  * More detail on this code can be found at
427  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
428  * though this reference is out of date.  A new paper
429  * is pending.
430  */
431 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432 {
433 	u32 new_sample = tp->rcv_rtt_est.rtt;
434 	long m = sample;
435 
436 	if (m == 0)
437 		m = 1;
438 
439 	if (new_sample != 0) {
440 		/* If we sample in larger samples in the non-timestamp
441 		 * case, we could grossly overestimate the RTT especially
442 		 * with chatty applications or bulk transfer apps which
443 		 * are stalled on filesystem I/O.
444 		 *
445 		 * Also, since we are only going for a minimum in the
446 		 * non-timestamp case, we do not smooth things out
447 		 * else with timestamps disabled convergence takes too
448 		 * long.
449 		 */
450 		if (!win_dep) {
451 			m -= (new_sample >> 3);
452 			new_sample += m;
453 		} else if (m < new_sample)
454 			new_sample = m << 3;
455 	} else {
456 		/* No previous measure. */
457 		new_sample = m << 3;
458 	}
459 
460 	if (tp->rcv_rtt_est.rtt != new_sample)
461 		tp->rcv_rtt_est.rtt = new_sample;
462 }
463 
464 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465 {
466 	if (tp->rcv_rtt_est.time == 0)
467 		goto new_measure;
468 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
469 		return;
470 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
471 
472 new_measure:
473 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
474 	tp->rcv_rtt_est.time = tcp_time_stamp;
475 }
476 
477 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
478 					  const struct sk_buff *skb)
479 {
480 	struct tcp_sock *tp = tcp_sk(sk);
481 	if (tp->rx_opt.rcv_tsecr &&
482 	    (TCP_SKB_CB(skb)->end_seq -
483 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
484 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
485 }
486 
487 /*
488  * This function should be called every time data is copied to user space.
489  * It calculates the appropriate TCP receive buffer space.
490  */
491 void tcp_rcv_space_adjust(struct sock *sk)
492 {
493 	struct tcp_sock *tp = tcp_sk(sk);
494 	int time;
495 	int space;
496 
497 	if (tp->rcvq_space.time == 0)
498 		goto new_measure;
499 
500 	time = tcp_time_stamp - tp->rcvq_space.time;
501 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
502 		return;
503 
504 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505 
506 	space = max(tp->rcvq_space.space, space);
507 
508 	if (tp->rcvq_space.space != space) {
509 		int rcvmem;
510 
511 		tp->rcvq_space.space = space;
512 
513 		if (sysctl_tcp_moderate_rcvbuf &&
514 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
515 			int new_clamp = space;
516 
517 			/* Receive space grows, normalize in order to
518 			 * take into account packet headers and sk_buff
519 			 * structure overhead.
520 			 */
521 			space /= tp->advmss;
522 			if (!space)
523 				space = 1;
524 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
525 				  16 + sizeof(struct sk_buff));
526 			while (tcp_win_from_space(rcvmem) < tp->advmss)
527 				rcvmem += 128;
528 			space *= rcvmem;
529 			space = min(space, sysctl_tcp_rmem[2]);
530 			if (space > sk->sk_rcvbuf) {
531 				sk->sk_rcvbuf = space;
532 
533 				/* Make the window clamp follow along.  */
534 				tp->window_clamp = new_clamp;
535 			}
536 		}
537 	}
538 
539 new_measure:
540 	tp->rcvq_space.seq = tp->copied_seq;
541 	tp->rcvq_space.time = tcp_time_stamp;
542 }
543 
544 /* There is something which you must keep in mind when you analyze the
545  * behavior of the tp->ato delayed ack timeout interval.  When a
546  * connection starts up, we want to ack as quickly as possible.  The
547  * problem is that "good" TCP's do slow start at the beginning of data
548  * transmission.  The means that until we send the first few ACK's the
549  * sender will sit on his end and only queue most of his data, because
550  * he can only send snd_cwnd unacked packets at any given time.  For
551  * each ACK we send, he increments snd_cwnd and transmits more of his
552  * queue.  -DaveM
553  */
554 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
555 {
556 	struct tcp_sock *tp = tcp_sk(sk);
557 	struct inet_connection_sock *icsk = inet_csk(sk);
558 	u32 now;
559 
560 	inet_csk_schedule_ack(sk);
561 
562 	tcp_measure_rcv_mss(sk, skb);
563 
564 	tcp_rcv_rtt_measure(tp);
565 
566 	now = tcp_time_stamp;
567 
568 	if (!icsk->icsk_ack.ato) {
569 		/* The _first_ data packet received, initialize
570 		 * delayed ACK engine.
571 		 */
572 		tcp_incr_quickack(sk);
573 		icsk->icsk_ack.ato = TCP_ATO_MIN;
574 	} else {
575 		int m = now - icsk->icsk_ack.lrcvtime;
576 
577 		if (m <= TCP_ATO_MIN / 2) {
578 			/* The fastest case is the first. */
579 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
580 		} else if (m < icsk->icsk_ack.ato) {
581 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
582 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
583 				icsk->icsk_ack.ato = icsk->icsk_rto;
584 		} else if (m > icsk->icsk_rto) {
585 			/* Too long gap. Apparently sender failed to
586 			 * restart window, so that we send ACKs quickly.
587 			 */
588 			tcp_incr_quickack(sk);
589 			sk_mem_reclaim(sk);
590 		}
591 	}
592 	icsk->icsk_ack.lrcvtime = now;
593 
594 	TCP_ECN_check_ce(tp, skb);
595 
596 	if (skb->len >= 128)
597 		tcp_grow_window(sk, skb);
598 }
599 
600 static u32 tcp_rto_min(struct sock *sk)
601 {
602 	struct dst_entry *dst = __sk_dst_get(sk);
603 	u32 rto_min = TCP_RTO_MIN;
604 
605 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
606 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
607 	return rto_min;
608 }
609 
610 /* Called to compute a smoothed rtt estimate. The data fed to this
611  * routine either comes from timestamps, or from segments that were
612  * known _not_ to have been retransmitted [see Karn/Partridge
613  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614  * piece by Van Jacobson.
615  * NOTE: the next three routines used to be one big routine.
616  * To save cycles in the RFC 1323 implementation it was better to break
617  * it up into three procedures. -- erics
618  */
619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 {
621 	struct tcp_sock *tp = tcp_sk(sk);
622 	long m = mrtt; /* RTT */
623 
624 	/*	The following amusing code comes from Jacobson's
625 	 *	article in SIGCOMM '88.  Note that rtt and mdev
626 	 *	are scaled versions of rtt and mean deviation.
627 	 *	This is designed to be as fast as possible
628 	 *	m stands for "measurement".
629 	 *
630 	 *	On a 1990 paper the rto value is changed to:
631 	 *	RTO = rtt + 4 * mdev
632 	 *
633 	 * Funny. This algorithm seems to be very broken.
634 	 * These formulae increase RTO, when it should be decreased, increase
635 	 * too slowly, when it should be increased quickly, decrease too quickly
636 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637 	 * does not matter how to _calculate_ it. Seems, it was trap
638 	 * that VJ failed to avoid. 8)
639 	 */
640 	if (m == 0)
641 		m = 1;
642 	if (tp->srtt != 0) {
643 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
644 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
645 		if (m < 0) {
646 			m = -m;		/* m is now abs(error) */
647 			m -= (tp->mdev >> 2);   /* similar update on mdev */
648 			/* This is similar to one of Eifel findings.
649 			 * Eifel blocks mdev updates when rtt decreases.
650 			 * This solution is a bit different: we use finer gain
651 			 * for mdev in this case (alpha*beta).
652 			 * Like Eifel it also prevents growth of rto,
653 			 * but also it limits too fast rto decreases,
654 			 * happening in pure Eifel.
655 			 */
656 			if (m > 0)
657 				m >>= 3;
658 		} else {
659 			m -= (tp->mdev >> 2);   /* similar update on mdev */
660 		}
661 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
662 		if (tp->mdev > tp->mdev_max) {
663 			tp->mdev_max = tp->mdev;
664 			if (tp->mdev_max > tp->rttvar)
665 				tp->rttvar = tp->mdev_max;
666 		}
667 		if (after(tp->snd_una, tp->rtt_seq)) {
668 			if (tp->mdev_max < tp->rttvar)
669 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
670 			tp->rtt_seq = tp->snd_nxt;
671 			tp->mdev_max = tcp_rto_min(sk);
672 		}
673 	} else {
674 		/* no previous measure. */
675 		tp->srtt = m << 3;	/* take the measured time to be rtt */
676 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
677 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
678 		tp->rtt_seq = tp->snd_nxt;
679 	}
680 }
681 
682 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
683  * routine referred to above.
684  */
685 static inline void tcp_set_rto(struct sock *sk)
686 {
687 	const struct tcp_sock *tp = tcp_sk(sk);
688 	/* Old crap is replaced with new one. 8)
689 	 *
690 	 * More seriously:
691 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692 	 *    It cannot be less due to utterly erratic ACK generation made
693 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
695 	 *    is invisible. Actually, Linux-2.4 also generates erratic
696 	 *    ACKs in some circumstances.
697 	 */
698 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
699 
700 	/* 2. Fixups made earlier cannot be right.
701 	 *    If we do not estimate RTO correctly without them,
702 	 *    all the algo is pure shit and should be replaced
703 	 *    with correct one. It is exactly, which we pretend to do.
704 	 */
705 
706 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 	 * guarantees that rto is higher.
708 	 */
709 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
710 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
711 }
712 
713 /* Save metrics learned by this TCP session.
714    This function is called only, when TCP finishes successfully
715    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
716  */
717 void tcp_update_metrics(struct sock *sk)
718 {
719 	struct tcp_sock *tp = tcp_sk(sk);
720 	struct dst_entry *dst = __sk_dst_get(sk);
721 
722 	if (sysctl_tcp_nometrics_save)
723 		return;
724 
725 	dst_confirm(dst);
726 
727 	if (dst && (dst->flags & DST_HOST)) {
728 		const struct inet_connection_sock *icsk = inet_csk(sk);
729 		int m;
730 		unsigned long rtt;
731 
732 		if (icsk->icsk_backoff || !tp->srtt) {
733 			/* This session failed to estimate rtt. Why?
734 			 * Probably, no packets returned in time.
735 			 * Reset our results.
736 			 */
737 			if (!(dst_metric_locked(dst, RTAX_RTT)))
738 				dst->metrics[RTAX_RTT - 1] = 0;
739 			return;
740 		}
741 
742 		rtt = dst_metric_rtt(dst, RTAX_RTT);
743 		m = rtt - tp->srtt;
744 
745 		/* If newly calculated rtt larger than stored one,
746 		 * store new one. Otherwise, use EWMA. Remember,
747 		 * rtt overestimation is always better than underestimation.
748 		 */
749 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
750 			if (m <= 0)
751 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
752 			else
753 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
754 		}
755 
756 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
757 			unsigned long var;
758 			if (m < 0)
759 				m = -m;
760 
761 			/* Scale deviation to rttvar fixed point */
762 			m >>= 1;
763 			if (m < tp->mdev)
764 				m = tp->mdev;
765 
766 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
767 			if (m >= var)
768 				var = m;
769 			else
770 				var -= (var - m) >> 2;
771 
772 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
773 		}
774 
775 		if (tp->snd_ssthresh >= 0xFFFF) {
776 			/* Slow start still did not finish. */
777 			if (dst_metric(dst, RTAX_SSTHRESH) &&
778 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
779 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
780 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
781 			if (!dst_metric_locked(dst, RTAX_CWND) &&
782 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
783 				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
784 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
785 			   icsk->icsk_ca_state == TCP_CA_Open) {
786 			/* Cong. avoidance phase, cwnd is reliable. */
787 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
788 				dst->metrics[RTAX_SSTHRESH-1] =
789 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
790 			if (!dst_metric_locked(dst, RTAX_CWND))
791 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
792 		} else {
793 			/* Else slow start did not finish, cwnd is non-sense,
794 			   ssthresh may be also invalid.
795 			 */
796 			if (!dst_metric_locked(dst, RTAX_CWND))
797 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
798 			if (dst_metric(dst, RTAX_SSTHRESH) &&
799 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
800 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
801 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
802 		}
803 
804 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
805 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
806 			    tp->reordering != sysctl_tcp_reordering)
807 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
808 		}
809 	}
810 }
811 
812 /* Numbers are taken from RFC3390.
813  *
814  * John Heffner states:
815  *
816  *	The RFC specifies a window of no more than 4380 bytes
817  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
818  *	is a bit misleading because they use a clamp at 4380 bytes
819  *	rather than use a multiplier in the relevant range.
820  */
821 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
822 {
823 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
824 
825 	if (!cwnd) {
826 		if (tp->mss_cache > 1460)
827 			cwnd = 2;
828 		else
829 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
830 	}
831 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
832 }
833 
834 /* Set slow start threshold and cwnd not falling to slow start */
835 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
836 {
837 	struct tcp_sock *tp = tcp_sk(sk);
838 	const struct inet_connection_sock *icsk = inet_csk(sk);
839 
840 	tp->prior_ssthresh = 0;
841 	tp->bytes_acked = 0;
842 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
843 		tp->undo_marker = 0;
844 		if (set_ssthresh)
845 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
846 		tp->snd_cwnd = min(tp->snd_cwnd,
847 				   tcp_packets_in_flight(tp) + 1U);
848 		tp->snd_cwnd_cnt = 0;
849 		tp->high_seq = tp->snd_nxt;
850 		tp->snd_cwnd_stamp = tcp_time_stamp;
851 		TCP_ECN_queue_cwr(tp);
852 
853 		tcp_set_ca_state(sk, TCP_CA_CWR);
854 	}
855 }
856 
857 /*
858  * Packet counting of FACK is based on in-order assumptions, therefore TCP
859  * disables it when reordering is detected
860  */
861 static void tcp_disable_fack(struct tcp_sock *tp)
862 {
863 	/* RFC3517 uses different metric in lost marker => reset on change */
864 	if (tcp_is_fack(tp))
865 		tp->lost_skb_hint = NULL;
866 	tp->rx_opt.sack_ok &= ~2;
867 }
868 
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872 	tp->rx_opt.sack_ok |= 4;
873 }
874 
875 /* Initialize metrics on socket. */
876 
877 static void tcp_init_metrics(struct sock *sk)
878 {
879 	struct tcp_sock *tp = tcp_sk(sk);
880 	struct dst_entry *dst = __sk_dst_get(sk);
881 
882 	if (dst == NULL)
883 		goto reset;
884 
885 	dst_confirm(dst);
886 
887 	if (dst_metric_locked(dst, RTAX_CWND))
888 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 	if (dst_metric(dst, RTAX_SSTHRESH)) {
890 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 	}
894 	if (dst_metric(dst, RTAX_REORDERING) &&
895 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 		tcp_disable_fack(tp);
897 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 	}
899 
900 	if (dst_metric(dst, RTAX_RTT) == 0)
901 		goto reset;
902 
903 	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 		goto reset;
905 
906 	/* Initial rtt is determined from SYN,SYN-ACK.
907 	 * The segment is small and rtt may appear much
908 	 * less than real one. Use per-dst memory
909 	 * to make it more realistic.
910 	 *
911 	 * A bit of theory. RTT is time passed after "normal" sized packet
912 	 * is sent until it is ACKed. In normal circumstances sending small
913 	 * packets force peer to delay ACKs and calculation is correct too.
914 	 * The algorithm is adaptive and, provided we follow specs, it
915 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 	 * tricks sort of "quick acks" for time long enough to decrease RTT
917 	 * to low value, and then abruptly stops to do it and starts to delay
918 	 * ACKs, wait for troubles.
919 	 */
920 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
921 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
922 		tp->rtt_seq = tp->snd_nxt;
923 	}
924 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
925 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
926 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
927 	}
928 	tcp_set_rto(sk);
929 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
930 		goto reset;
931 
932 cwnd:
933 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
934 	tp->snd_cwnd_stamp = tcp_time_stamp;
935 	return;
936 
937 reset:
938 	/* Play conservative. If timestamps are not
939 	 * supported, TCP will fail to recalculate correct
940 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
941 	 */
942 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
943 		tp->srtt = 0;
944 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
945 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
946 	}
947 	goto cwnd;
948 }
949 
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951 				  const int ts)
952 {
953 	struct tcp_sock *tp = tcp_sk(sk);
954 	if (metric > tp->reordering) {
955 		int mib_idx;
956 
957 		tp->reordering = min(TCP_MAX_REORDERING, metric);
958 
959 		/* This exciting event is worth to be remembered. 8) */
960 		if (ts)
961 			mib_idx = LINUX_MIB_TCPTSREORDER;
962 		else if (tcp_is_reno(tp))
963 			mib_idx = LINUX_MIB_TCPRENOREORDER;
964 		else if (tcp_is_fack(tp))
965 			mib_idx = LINUX_MIB_TCPFACKREORDER;
966 		else
967 			mib_idx = LINUX_MIB_TCPSACKREORDER;
968 
969 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973 		       tp->reordering,
974 		       tp->fackets_out,
975 		       tp->sacked_out,
976 		       tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978 		tcp_disable_fack(tp);
979 	}
980 }
981 
982 /* This must be called before lost_out is incremented */
983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
984 {
985 	if ((tp->retransmit_skb_hint == NULL) ||
986 	    before(TCP_SKB_CB(skb)->seq,
987 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988 		tp->retransmit_skb_hint = skb;
989 
990 	if (!tp->lost_out ||
991 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
993 }
994 
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
996 {
997 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998 		tcp_verify_retransmit_hint(tp, skb);
999 
1000 		tp->lost_out += tcp_skb_pcount(skb);
1001 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002 	}
1003 }
1004 
1005 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1006 					    struct sk_buff *skb)
1007 {
1008 	tcp_verify_retransmit_hint(tp, skb);
1009 
1010 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1011 		tp->lost_out += tcp_skb_pcount(skb);
1012 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013 	}
1014 }
1015 
1016 /* This procedure tags the retransmission queue when SACKs arrive.
1017  *
1018  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1019  * Packets in queue with these bits set are counted in variables
1020  * sacked_out, retrans_out and lost_out, correspondingly.
1021  *
1022  * Valid combinations are:
1023  * Tag  InFlight	Description
1024  * 0	1		- orig segment is in flight.
1025  * S	0		- nothing flies, orig reached receiver.
1026  * L	0		- nothing flies, orig lost by net.
1027  * R	2		- both orig and retransmit are in flight.
1028  * L|R	1		- orig is lost, retransmit is in flight.
1029  * S|R  1		- orig reached receiver, retrans is still in flight.
1030  * (L|S|R is logically valid, it could occur when L|R is sacked,
1031  *  but it is equivalent to plain S and code short-curcuits it to S.
1032  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1033  *
1034  * These 6 states form finite state machine, controlled by the following events:
1035  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1036  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1037  * 3. Loss detection event of one of three flavors:
1038  *	A. Scoreboard estimator decided the packet is lost.
1039  *	   A'. Reno "three dupacks" marks head of queue lost.
1040  *	   A''. Its FACK modfication, head until snd.fack is lost.
1041  *	B. SACK arrives sacking data transmitted after never retransmitted
1042  *	   hole was sent out.
1043  *	C. SACK arrives sacking SND.NXT at the moment, when the
1044  *	   segment was retransmitted.
1045  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1046  *
1047  * It is pleasant to note, that state diagram turns out to be commutative,
1048  * so that we are allowed not to be bothered by order of our actions,
1049  * when multiple events arrive simultaneously. (see the function below).
1050  *
1051  * Reordering detection.
1052  * --------------------
1053  * Reordering metric is maximal distance, which a packet can be displaced
1054  * in packet stream. With SACKs we can estimate it:
1055  *
1056  * 1. SACK fills old hole and the corresponding segment was not
1057  *    ever retransmitted -> reordering. Alas, we cannot use it
1058  *    when segment was retransmitted.
1059  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1060  *    for retransmitted and already SACKed segment -> reordering..
1061  * Both of these heuristics are not used in Loss state, when we cannot
1062  * account for retransmits accurately.
1063  *
1064  * SACK block validation.
1065  * ----------------------
1066  *
1067  * SACK block range validation checks that the received SACK block fits to
1068  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1069  * Note that SND.UNA is not included to the range though being valid because
1070  * it means that the receiver is rather inconsistent with itself reporting
1071  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1072  * perfectly valid, however, in light of RFC2018 which explicitly states
1073  * that "SACK block MUST reflect the newest segment.  Even if the newest
1074  * segment is going to be discarded ...", not that it looks very clever
1075  * in case of head skb. Due to potentional receiver driven attacks, we
1076  * choose to avoid immediate execution of a walk in write queue due to
1077  * reneging and defer head skb's loss recovery to standard loss recovery
1078  * procedure that will eventually trigger (nothing forbids us doing this).
1079  *
1080  * Implements also blockage to start_seq wrap-around. Problem lies in the
1081  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1082  * there's no guarantee that it will be before snd_nxt (n). The problem
1083  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1084  * wrap (s_w):
1085  *
1086  *         <- outs wnd ->                          <- wrapzone ->
1087  *         u     e      n                         u_w   e_w  s n_w
1088  *         |     |      |                          |     |   |  |
1089  * |<------------+------+----- TCP seqno space --------------+---------->|
1090  * ...-- <2^31 ->|                                           |<--------...
1091  * ...---- >2^31 ------>|                                    |<--------...
1092  *
1093  * Current code wouldn't be vulnerable but it's better still to discard such
1094  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1095  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1096  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1097  * equal to the ideal case (infinite seqno space without wrap caused issues).
1098  *
1099  * With D-SACK the lower bound is extended to cover sequence space below
1100  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1101  * again, D-SACK block must not to go across snd_una (for the same reason as
1102  * for the normal SACK blocks, explained above). But there all simplicity
1103  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1104  * fully below undo_marker they do not affect behavior in anyway and can
1105  * therefore be safely ignored. In rare cases (which are more or less
1106  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1107  * fragmentation and packet reordering past skb's retransmission. To consider
1108  * them correctly, the acceptable range must be extended even more though
1109  * the exact amount is rather hard to quantify. However, tp->max_window can
1110  * be used as an exaggerated estimate.
1111  */
1112 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1113 				  u32 start_seq, u32 end_seq)
1114 {
1115 	/* Too far in future, or reversed (interpretation is ambiguous) */
1116 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1117 		return 0;
1118 
1119 	/* Nasty start_seq wrap-around check (see comments above) */
1120 	if (!before(start_seq, tp->snd_nxt))
1121 		return 0;
1122 
1123 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1124 	 * start_seq == snd_una is non-sensical (see comments above)
1125 	 */
1126 	if (after(start_seq, tp->snd_una))
1127 		return 1;
1128 
1129 	if (!is_dsack || !tp->undo_marker)
1130 		return 0;
1131 
1132 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1133 	if (!after(end_seq, tp->snd_una))
1134 		return 0;
1135 
1136 	if (!before(start_seq, tp->undo_marker))
1137 		return 1;
1138 
1139 	/* Too old */
1140 	if (!after(end_seq, tp->undo_marker))
1141 		return 0;
1142 
1143 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1144 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1145 	 */
1146 	return !before(start_seq, end_seq - tp->max_window);
1147 }
1148 
1149 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1150  * Event "C". Later note: FACK people cheated me again 8), we have to account
1151  * for reordering! Ugly, but should help.
1152  *
1153  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1154  * less than what is now known to be received by the other end (derived from
1155  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1156  * retransmitted skbs to avoid some costly processing per ACKs.
1157  */
1158 static void tcp_mark_lost_retrans(struct sock *sk)
1159 {
1160 	const struct inet_connection_sock *icsk = inet_csk(sk);
1161 	struct tcp_sock *tp = tcp_sk(sk);
1162 	struct sk_buff *skb;
1163 	int cnt = 0;
1164 	u32 new_low_seq = tp->snd_nxt;
1165 	u32 received_upto = tcp_highest_sack_seq(tp);
1166 
1167 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1168 	    !after(received_upto, tp->lost_retrans_low) ||
1169 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1170 		return;
1171 
1172 	tcp_for_write_queue(skb, sk) {
1173 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1174 
1175 		if (skb == tcp_send_head(sk))
1176 			break;
1177 		if (cnt == tp->retrans_out)
1178 			break;
1179 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1180 			continue;
1181 
1182 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1183 			continue;
1184 
1185 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1186 		 * constraint here (see above) but figuring out that at
1187 		 * least tp->reordering SACK blocks reside between ack_seq
1188 		 * and received_upto is not easy task to do cheaply with
1189 		 * the available datastructures.
1190 		 *
1191 		 * Whether FACK should check here for tp->reordering segs
1192 		 * in-between one could argue for either way (it would be
1193 		 * rather simple to implement as we could count fack_count
1194 		 * during the walk and do tp->fackets_out - fack_count).
1195 		 */
1196 		if (after(received_upto, ack_seq)) {
1197 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1198 			tp->retrans_out -= tcp_skb_pcount(skb);
1199 
1200 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1201 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1202 		} else {
1203 			if (before(ack_seq, new_low_seq))
1204 				new_low_seq = ack_seq;
1205 			cnt += tcp_skb_pcount(skb);
1206 		}
1207 	}
1208 
1209 	if (tp->retrans_out)
1210 		tp->lost_retrans_low = new_low_seq;
1211 }
1212 
1213 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1214 			   struct tcp_sack_block_wire *sp, int num_sacks,
1215 			   u32 prior_snd_una)
1216 {
1217 	struct tcp_sock *tp = tcp_sk(sk);
1218 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1219 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1220 	int dup_sack = 0;
1221 
1222 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1223 		dup_sack = 1;
1224 		tcp_dsack_seen(tp);
1225 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1226 	} else if (num_sacks > 1) {
1227 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1228 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1229 
1230 		if (!after(end_seq_0, end_seq_1) &&
1231 		    !before(start_seq_0, start_seq_1)) {
1232 			dup_sack = 1;
1233 			tcp_dsack_seen(tp);
1234 			NET_INC_STATS_BH(sock_net(sk),
1235 					LINUX_MIB_TCPDSACKOFORECV);
1236 		}
1237 	}
1238 
1239 	/* D-SACK for already forgotten data... Do dumb counting. */
1240 	if (dup_sack &&
1241 	    !after(end_seq_0, prior_snd_una) &&
1242 	    after(end_seq_0, tp->undo_marker))
1243 		tp->undo_retrans--;
1244 
1245 	return dup_sack;
1246 }
1247 
1248 struct tcp_sacktag_state {
1249 	int reord;
1250 	int fack_count;
1251 	int flag;
1252 };
1253 
1254 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1255  * the incoming SACK may not exactly match but we can find smaller MSS
1256  * aligned portion of it that matches. Therefore we might need to fragment
1257  * which may fail and creates some hassle (caller must handle error case
1258  * returns).
1259  *
1260  * FIXME: this could be merged to shift decision code
1261  */
1262 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1263 				 u32 start_seq, u32 end_seq)
1264 {
1265 	int in_sack, err;
1266 	unsigned int pkt_len;
1267 	unsigned int mss;
1268 
1269 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1270 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1271 
1272 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1273 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1274 		mss = tcp_skb_mss(skb);
1275 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1276 
1277 		if (!in_sack) {
1278 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1279 			if (pkt_len < mss)
1280 				pkt_len = mss;
1281 		} else {
1282 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1283 			if (pkt_len < mss)
1284 				return -EINVAL;
1285 		}
1286 
1287 		/* Round if necessary so that SACKs cover only full MSSes
1288 		 * and/or the remaining small portion (if present)
1289 		 */
1290 		if (pkt_len > mss) {
1291 			unsigned int new_len = (pkt_len / mss) * mss;
1292 			if (!in_sack && new_len < pkt_len) {
1293 				new_len += mss;
1294 				if (new_len > skb->len)
1295 					return 0;
1296 			}
1297 			pkt_len = new_len;
1298 		}
1299 		err = tcp_fragment(sk, skb, pkt_len, mss);
1300 		if (err < 0)
1301 			return err;
1302 	}
1303 
1304 	return in_sack;
1305 }
1306 
1307 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1308 			  struct tcp_sacktag_state *state,
1309 			  int dup_sack, int pcount)
1310 {
1311 	struct tcp_sock *tp = tcp_sk(sk);
1312 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1313 	int fack_count = state->fack_count;
1314 
1315 	/* Account D-SACK for retransmitted packet. */
1316 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1317 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1318 			tp->undo_retrans--;
1319 		if (sacked & TCPCB_SACKED_ACKED)
1320 			state->reord = min(fack_count, state->reord);
1321 	}
1322 
1323 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1324 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1325 		return sacked;
1326 
1327 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1328 		if (sacked & TCPCB_SACKED_RETRANS) {
1329 			/* If the segment is not tagged as lost,
1330 			 * we do not clear RETRANS, believing
1331 			 * that retransmission is still in flight.
1332 			 */
1333 			if (sacked & TCPCB_LOST) {
1334 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1335 				tp->lost_out -= pcount;
1336 				tp->retrans_out -= pcount;
1337 			}
1338 		} else {
1339 			if (!(sacked & TCPCB_RETRANS)) {
1340 				/* New sack for not retransmitted frame,
1341 				 * which was in hole. It is reordering.
1342 				 */
1343 				if (before(TCP_SKB_CB(skb)->seq,
1344 					   tcp_highest_sack_seq(tp)))
1345 					state->reord = min(fack_count,
1346 							   state->reord);
1347 
1348 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1349 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1350 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1351 			}
1352 
1353 			if (sacked & TCPCB_LOST) {
1354 				sacked &= ~TCPCB_LOST;
1355 				tp->lost_out -= pcount;
1356 			}
1357 		}
1358 
1359 		sacked |= TCPCB_SACKED_ACKED;
1360 		state->flag |= FLAG_DATA_SACKED;
1361 		tp->sacked_out += pcount;
1362 
1363 		fack_count += pcount;
1364 
1365 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1366 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1367 		    before(TCP_SKB_CB(skb)->seq,
1368 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1369 			tp->lost_cnt_hint += pcount;
1370 
1371 		if (fack_count > tp->fackets_out)
1372 			tp->fackets_out = fack_count;
1373 	}
1374 
1375 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1376 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1377 	 * are accounted above as well.
1378 	 */
1379 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1380 		sacked &= ~TCPCB_SACKED_RETRANS;
1381 		tp->retrans_out -= pcount;
1382 	}
1383 
1384 	return sacked;
1385 }
1386 
1387 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1388 			   struct tcp_sacktag_state *state,
1389 			   unsigned int pcount, int shifted, int mss,
1390 			   int dup_sack)
1391 {
1392 	struct tcp_sock *tp = tcp_sk(sk);
1393 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1394 
1395 	BUG_ON(!pcount);
1396 
1397 	/* Tweak before seqno plays */
1398 	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1399 	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1400 		tp->lost_cnt_hint += pcount;
1401 
1402 	TCP_SKB_CB(prev)->end_seq += shifted;
1403 	TCP_SKB_CB(skb)->seq += shifted;
1404 
1405 	skb_shinfo(prev)->gso_segs += pcount;
1406 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1407 	skb_shinfo(skb)->gso_segs -= pcount;
1408 
1409 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1410 	 * in theory this shouldn't be necessary but as long as DSACK
1411 	 * code can come after this skb later on it's better to keep
1412 	 * setting gso_size to something.
1413 	 */
1414 	if (!skb_shinfo(prev)->gso_size) {
1415 		skb_shinfo(prev)->gso_size = mss;
1416 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1417 	}
1418 
1419 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1420 	if (skb_shinfo(skb)->gso_segs <= 1) {
1421 		skb_shinfo(skb)->gso_size = 0;
1422 		skb_shinfo(skb)->gso_type = 0;
1423 	}
1424 
1425 	/* We discard results */
1426 	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1427 
1428 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1429 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1430 
1431 	if (skb->len > 0) {
1432 		BUG_ON(!tcp_skb_pcount(skb));
1433 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1434 		return 0;
1435 	}
1436 
1437 	/* Whole SKB was eaten :-) */
1438 
1439 	if (skb == tp->retransmit_skb_hint)
1440 		tp->retransmit_skb_hint = prev;
1441 	if (skb == tp->scoreboard_skb_hint)
1442 		tp->scoreboard_skb_hint = prev;
1443 	if (skb == tp->lost_skb_hint) {
1444 		tp->lost_skb_hint = prev;
1445 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1446 	}
1447 
1448 	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1449 	if (skb == tcp_highest_sack(sk))
1450 		tcp_advance_highest_sack(sk, skb);
1451 
1452 	tcp_unlink_write_queue(skb, sk);
1453 	sk_wmem_free_skb(sk, skb);
1454 
1455 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1456 
1457 	return 1;
1458 }
1459 
1460 /* I wish gso_size would have a bit more sane initialization than
1461  * something-or-zero which complicates things
1462  */
1463 static int tcp_skb_seglen(struct sk_buff *skb)
1464 {
1465 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1466 }
1467 
1468 /* Shifting pages past head area doesn't work */
1469 static int skb_can_shift(struct sk_buff *skb)
1470 {
1471 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1472 }
1473 
1474 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1475  * skb.
1476  */
1477 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1478 					  struct tcp_sacktag_state *state,
1479 					  u32 start_seq, u32 end_seq,
1480 					  int dup_sack)
1481 {
1482 	struct tcp_sock *tp = tcp_sk(sk);
1483 	struct sk_buff *prev;
1484 	int mss;
1485 	int pcount = 0;
1486 	int len;
1487 	int in_sack;
1488 
1489 	if (!sk_can_gso(sk))
1490 		goto fallback;
1491 
1492 	/* Normally R but no L won't result in plain S */
1493 	if (!dup_sack &&
1494 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1495 		goto fallback;
1496 	if (!skb_can_shift(skb))
1497 		goto fallback;
1498 	/* This frame is about to be dropped (was ACKed). */
1499 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1500 		goto fallback;
1501 
1502 	/* Can only happen with delayed DSACK + discard craziness */
1503 	if (unlikely(skb == tcp_write_queue_head(sk)))
1504 		goto fallback;
1505 	prev = tcp_write_queue_prev(sk, skb);
1506 
1507 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1508 		goto fallback;
1509 
1510 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1511 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1512 
1513 	if (in_sack) {
1514 		len = skb->len;
1515 		pcount = tcp_skb_pcount(skb);
1516 		mss = tcp_skb_seglen(skb);
1517 
1518 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1519 		 * drop this restriction as unnecessary
1520 		 */
1521 		if (mss != tcp_skb_seglen(prev))
1522 			goto fallback;
1523 	} else {
1524 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1525 			goto noop;
1526 		/* CHECKME: This is non-MSS split case only?, this will
1527 		 * cause skipped skbs due to advancing loop btw, original
1528 		 * has that feature too
1529 		 */
1530 		if (tcp_skb_pcount(skb) <= 1)
1531 			goto noop;
1532 
1533 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1534 		if (!in_sack) {
1535 			/* TODO: head merge to next could be attempted here
1536 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1537 			 * though it might not be worth of the additional hassle
1538 			 *
1539 			 * ...we can probably just fallback to what was done
1540 			 * previously. We could try merging non-SACKed ones
1541 			 * as well but it probably isn't going to buy off
1542 			 * because later SACKs might again split them, and
1543 			 * it would make skb timestamp tracking considerably
1544 			 * harder problem.
1545 			 */
1546 			goto fallback;
1547 		}
1548 
1549 		len = end_seq - TCP_SKB_CB(skb)->seq;
1550 		BUG_ON(len < 0);
1551 		BUG_ON(len > skb->len);
1552 
1553 		/* MSS boundaries should be honoured or else pcount will
1554 		 * severely break even though it makes things bit trickier.
1555 		 * Optimize common case to avoid most of the divides
1556 		 */
1557 		mss = tcp_skb_mss(skb);
1558 
1559 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1560 		 * drop this restriction as unnecessary
1561 		 */
1562 		if (mss != tcp_skb_seglen(prev))
1563 			goto fallback;
1564 
1565 		if (len == mss) {
1566 			pcount = 1;
1567 		} else if (len < mss) {
1568 			goto noop;
1569 		} else {
1570 			pcount = len / mss;
1571 			len = pcount * mss;
1572 		}
1573 	}
1574 
1575 	if (!skb_shift(prev, skb, len))
1576 		goto fallback;
1577 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1578 		goto out;
1579 
1580 	/* Hole filled allows collapsing with the next as well, this is very
1581 	 * useful when hole on every nth skb pattern happens
1582 	 */
1583 	if (prev == tcp_write_queue_tail(sk))
1584 		goto out;
1585 	skb = tcp_write_queue_next(sk, prev);
1586 
1587 	if (!skb_can_shift(skb) ||
1588 	    (skb == tcp_send_head(sk)) ||
1589 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1590 	    (mss != tcp_skb_seglen(skb)))
1591 		goto out;
1592 
1593 	len = skb->len;
1594 	if (skb_shift(prev, skb, len)) {
1595 		pcount += tcp_skb_pcount(skb);
1596 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1597 	}
1598 
1599 out:
1600 	state->fack_count += pcount;
1601 	return prev;
1602 
1603 noop:
1604 	return skb;
1605 
1606 fallback:
1607 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1608 	return NULL;
1609 }
1610 
1611 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1612 					struct tcp_sack_block *next_dup,
1613 					struct tcp_sacktag_state *state,
1614 					u32 start_seq, u32 end_seq,
1615 					int dup_sack_in)
1616 {
1617 	struct tcp_sock *tp = tcp_sk(sk);
1618 	struct sk_buff *tmp;
1619 
1620 	tcp_for_write_queue_from(skb, sk) {
1621 		int in_sack = 0;
1622 		int dup_sack = dup_sack_in;
1623 
1624 		if (skb == tcp_send_head(sk))
1625 			break;
1626 
1627 		/* queue is in-order => we can short-circuit the walk early */
1628 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1629 			break;
1630 
1631 		if ((next_dup != NULL) &&
1632 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1633 			in_sack = tcp_match_skb_to_sack(sk, skb,
1634 							next_dup->start_seq,
1635 							next_dup->end_seq);
1636 			if (in_sack > 0)
1637 				dup_sack = 1;
1638 		}
1639 
1640 		/* skb reference here is a bit tricky to get right, since
1641 		 * shifting can eat and free both this skb and the next,
1642 		 * so not even _safe variant of the loop is enough.
1643 		 */
1644 		if (in_sack <= 0) {
1645 			tmp = tcp_shift_skb_data(sk, skb, state,
1646 						 start_seq, end_seq, dup_sack);
1647 			if (tmp != NULL) {
1648 				if (tmp != skb) {
1649 					skb = tmp;
1650 					continue;
1651 				}
1652 
1653 				in_sack = 0;
1654 			} else {
1655 				in_sack = tcp_match_skb_to_sack(sk, skb,
1656 								start_seq,
1657 								end_seq);
1658 			}
1659 		}
1660 
1661 		if (unlikely(in_sack < 0))
1662 			break;
1663 
1664 		if (in_sack) {
1665 			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1666 								  state,
1667 								  dup_sack,
1668 								  tcp_skb_pcount(skb));
1669 
1670 			if (!before(TCP_SKB_CB(skb)->seq,
1671 				    tcp_highest_sack_seq(tp)))
1672 				tcp_advance_highest_sack(sk, skb);
1673 		}
1674 
1675 		state->fack_count += tcp_skb_pcount(skb);
1676 	}
1677 	return skb;
1678 }
1679 
1680 /* Avoid all extra work that is being done by sacktag while walking in
1681  * a normal way
1682  */
1683 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1684 					struct tcp_sacktag_state *state,
1685 					u32 skip_to_seq)
1686 {
1687 	tcp_for_write_queue_from(skb, sk) {
1688 		if (skb == tcp_send_head(sk))
1689 			break;
1690 
1691 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1692 			break;
1693 
1694 		state->fack_count += tcp_skb_pcount(skb);
1695 	}
1696 	return skb;
1697 }
1698 
1699 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1700 						struct sock *sk,
1701 						struct tcp_sack_block *next_dup,
1702 						struct tcp_sacktag_state *state,
1703 						u32 skip_to_seq)
1704 {
1705 	if (next_dup == NULL)
1706 		return skb;
1707 
1708 	if (before(next_dup->start_seq, skip_to_seq)) {
1709 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1710 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1711 				       next_dup->start_seq, next_dup->end_seq,
1712 				       1);
1713 	}
1714 
1715 	return skb;
1716 }
1717 
1718 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1719 {
1720 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1721 }
1722 
1723 static int
1724 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1725 			u32 prior_snd_una)
1726 {
1727 	const struct inet_connection_sock *icsk = inet_csk(sk);
1728 	struct tcp_sock *tp = tcp_sk(sk);
1729 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1730 			      TCP_SKB_CB(ack_skb)->sacked);
1731 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1732 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1733 	struct tcp_sack_block *cache;
1734 	struct tcp_sacktag_state state;
1735 	struct sk_buff *skb;
1736 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1737 	int used_sacks;
1738 	int found_dup_sack = 0;
1739 	int i, j;
1740 	int first_sack_index;
1741 
1742 	state.flag = 0;
1743 	state.reord = tp->packets_out;
1744 
1745 	if (!tp->sacked_out) {
1746 		if (WARN_ON(tp->fackets_out))
1747 			tp->fackets_out = 0;
1748 		tcp_highest_sack_reset(sk);
1749 	}
1750 
1751 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1752 					 num_sacks, prior_snd_una);
1753 	if (found_dup_sack)
1754 		state.flag |= FLAG_DSACKING_ACK;
1755 
1756 	/* Eliminate too old ACKs, but take into
1757 	 * account more or less fresh ones, they can
1758 	 * contain valid SACK info.
1759 	 */
1760 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1761 		return 0;
1762 
1763 	if (!tp->packets_out)
1764 		goto out;
1765 
1766 	used_sacks = 0;
1767 	first_sack_index = 0;
1768 	for (i = 0; i < num_sacks; i++) {
1769 		int dup_sack = !i && found_dup_sack;
1770 
1771 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1772 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1773 
1774 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1775 					    sp[used_sacks].start_seq,
1776 					    sp[used_sacks].end_seq)) {
1777 			int mib_idx;
1778 
1779 			if (dup_sack) {
1780 				if (!tp->undo_marker)
1781 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1782 				else
1783 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1784 			} else {
1785 				/* Don't count olds caused by ACK reordering */
1786 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1787 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1788 					continue;
1789 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1790 			}
1791 
1792 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1793 			if (i == 0)
1794 				first_sack_index = -1;
1795 			continue;
1796 		}
1797 
1798 		/* Ignore very old stuff early */
1799 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1800 			continue;
1801 
1802 		used_sacks++;
1803 	}
1804 
1805 	/* order SACK blocks to allow in order walk of the retrans queue */
1806 	for (i = used_sacks - 1; i > 0; i--) {
1807 		for (j = 0; j < i; j++) {
1808 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1809 				swap(sp[j], sp[j + 1]);
1810 
1811 				/* Track where the first SACK block goes to */
1812 				if (j == first_sack_index)
1813 					first_sack_index = j + 1;
1814 			}
1815 		}
1816 	}
1817 
1818 	skb = tcp_write_queue_head(sk);
1819 	state.fack_count = 0;
1820 	i = 0;
1821 
1822 	if (!tp->sacked_out) {
1823 		/* It's already past, so skip checking against it */
1824 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1825 	} else {
1826 		cache = tp->recv_sack_cache;
1827 		/* Skip empty blocks in at head of the cache */
1828 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1829 		       !cache->end_seq)
1830 			cache++;
1831 	}
1832 
1833 	while (i < used_sacks) {
1834 		u32 start_seq = sp[i].start_seq;
1835 		u32 end_seq = sp[i].end_seq;
1836 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1837 		struct tcp_sack_block *next_dup = NULL;
1838 
1839 		if (found_dup_sack && ((i + 1) == first_sack_index))
1840 			next_dup = &sp[i + 1];
1841 
1842 		/* Event "B" in the comment above. */
1843 		if (after(end_seq, tp->high_seq))
1844 			state.flag |= FLAG_DATA_LOST;
1845 
1846 		/* Skip too early cached blocks */
1847 		while (tcp_sack_cache_ok(tp, cache) &&
1848 		       !before(start_seq, cache->end_seq))
1849 			cache++;
1850 
1851 		/* Can skip some work by looking recv_sack_cache? */
1852 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1853 		    after(end_seq, cache->start_seq)) {
1854 
1855 			/* Head todo? */
1856 			if (before(start_seq, cache->start_seq)) {
1857 				skb = tcp_sacktag_skip(skb, sk, &state,
1858 						       start_seq);
1859 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1860 						       &state,
1861 						       start_seq,
1862 						       cache->start_seq,
1863 						       dup_sack);
1864 			}
1865 
1866 			/* Rest of the block already fully processed? */
1867 			if (!after(end_seq, cache->end_seq))
1868 				goto advance_sp;
1869 
1870 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1871 						       &state,
1872 						       cache->end_seq);
1873 
1874 			/* ...tail remains todo... */
1875 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1876 				/* ...but better entrypoint exists! */
1877 				skb = tcp_highest_sack(sk);
1878 				if (skb == NULL)
1879 					break;
1880 				state.fack_count = tp->fackets_out;
1881 				cache++;
1882 				goto walk;
1883 			}
1884 
1885 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1886 			/* Check overlap against next cached too (past this one already) */
1887 			cache++;
1888 			continue;
1889 		}
1890 
1891 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1892 			skb = tcp_highest_sack(sk);
1893 			if (skb == NULL)
1894 				break;
1895 			state.fack_count = tp->fackets_out;
1896 		}
1897 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1898 
1899 walk:
1900 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1901 				       start_seq, end_seq, dup_sack);
1902 
1903 advance_sp:
1904 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1905 		 * due to in-order walk
1906 		 */
1907 		if (after(end_seq, tp->frto_highmark))
1908 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1909 
1910 		i++;
1911 	}
1912 
1913 	/* Clear the head of the cache sack blocks so we can skip it next time */
1914 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1915 		tp->recv_sack_cache[i].start_seq = 0;
1916 		tp->recv_sack_cache[i].end_seq = 0;
1917 	}
1918 	for (j = 0; j < used_sacks; j++)
1919 		tp->recv_sack_cache[i++] = sp[j];
1920 
1921 	tcp_mark_lost_retrans(sk);
1922 
1923 	tcp_verify_left_out(tp);
1924 
1925 	if ((state.reord < tp->fackets_out) &&
1926 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1927 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1928 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1929 
1930 out:
1931 
1932 #if FASTRETRANS_DEBUG > 0
1933 	WARN_ON((int)tp->sacked_out < 0);
1934 	WARN_ON((int)tp->lost_out < 0);
1935 	WARN_ON((int)tp->retrans_out < 0);
1936 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1937 #endif
1938 	return state.flag;
1939 }
1940 
1941 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1942  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1943  */
1944 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1945 {
1946 	u32 holes;
1947 
1948 	holes = max(tp->lost_out, 1U);
1949 	holes = min(holes, tp->packets_out);
1950 
1951 	if ((tp->sacked_out + holes) > tp->packets_out) {
1952 		tp->sacked_out = tp->packets_out - holes;
1953 		return 1;
1954 	}
1955 	return 0;
1956 }
1957 
1958 /* If we receive more dupacks than we expected counting segments
1959  * in assumption of absent reordering, interpret this as reordering.
1960  * The only another reason could be bug in receiver TCP.
1961  */
1962 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1963 {
1964 	struct tcp_sock *tp = tcp_sk(sk);
1965 	if (tcp_limit_reno_sacked(tp))
1966 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1967 }
1968 
1969 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1970 
1971 static void tcp_add_reno_sack(struct sock *sk)
1972 {
1973 	struct tcp_sock *tp = tcp_sk(sk);
1974 	tp->sacked_out++;
1975 	tcp_check_reno_reordering(sk, 0);
1976 	tcp_verify_left_out(tp);
1977 }
1978 
1979 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1980 
1981 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1982 {
1983 	struct tcp_sock *tp = tcp_sk(sk);
1984 
1985 	if (acked > 0) {
1986 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1987 		if (acked - 1 >= tp->sacked_out)
1988 			tp->sacked_out = 0;
1989 		else
1990 			tp->sacked_out -= acked - 1;
1991 	}
1992 	tcp_check_reno_reordering(sk, acked);
1993 	tcp_verify_left_out(tp);
1994 }
1995 
1996 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1997 {
1998 	tp->sacked_out = 0;
1999 }
2000 
2001 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2002 {
2003 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2004 }
2005 
2006 /* F-RTO can only be used if TCP has never retransmitted anything other than
2007  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2008  */
2009 int tcp_use_frto(struct sock *sk)
2010 {
2011 	const struct tcp_sock *tp = tcp_sk(sk);
2012 	const struct inet_connection_sock *icsk = inet_csk(sk);
2013 	struct sk_buff *skb;
2014 
2015 	if (!sysctl_tcp_frto)
2016 		return 0;
2017 
2018 	/* MTU probe and F-RTO won't really play nicely along currently */
2019 	if (icsk->icsk_mtup.probe_size)
2020 		return 0;
2021 
2022 	if (tcp_is_sackfrto(tp))
2023 		return 1;
2024 
2025 	/* Avoid expensive walking of rexmit queue if possible */
2026 	if (tp->retrans_out > 1)
2027 		return 0;
2028 
2029 	skb = tcp_write_queue_head(sk);
2030 	if (tcp_skb_is_last(sk, skb))
2031 		return 1;
2032 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2033 	tcp_for_write_queue_from(skb, sk) {
2034 		if (skb == tcp_send_head(sk))
2035 			break;
2036 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2037 			return 0;
2038 		/* Short-circuit when first non-SACKed skb has been checked */
2039 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2040 			break;
2041 	}
2042 	return 1;
2043 }
2044 
2045 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2046  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2047  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2048  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2049  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2050  * bits are handled if the Loss state is really to be entered (in
2051  * tcp_enter_frto_loss).
2052  *
2053  * Do like tcp_enter_loss() would; when RTO expires the second time it
2054  * does:
2055  *  "Reduce ssthresh if it has not yet been made inside this window."
2056  */
2057 void tcp_enter_frto(struct sock *sk)
2058 {
2059 	const struct inet_connection_sock *icsk = inet_csk(sk);
2060 	struct tcp_sock *tp = tcp_sk(sk);
2061 	struct sk_buff *skb;
2062 
2063 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2064 	    tp->snd_una == tp->high_seq ||
2065 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2066 	     !icsk->icsk_retransmits)) {
2067 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2068 		/* Our state is too optimistic in ssthresh() call because cwnd
2069 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2070 		 * recovery has not yet completed. Pattern would be this: RTO,
2071 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2072 		 * up here twice).
2073 		 * RFC4138 should be more specific on what to do, even though
2074 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2075 		 * due to back-off and complexity of triggering events ...
2076 		 */
2077 		if (tp->frto_counter) {
2078 			u32 stored_cwnd;
2079 			stored_cwnd = tp->snd_cwnd;
2080 			tp->snd_cwnd = 2;
2081 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2082 			tp->snd_cwnd = stored_cwnd;
2083 		} else {
2084 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2085 		}
2086 		/* ... in theory, cong.control module could do "any tricks" in
2087 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2088 		 * counter would have to be faked before the call occurs. We
2089 		 * consider that too expensive, unlikely and hacky, so modules
2090 		 * using these in ssthresh() must deal these incompatibility
2091 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2092 		 */
2093 		tcp_ca_event(sk, CA_EVENT_FRTO);
2094 	}
2095 
2096 	tp->undo_marker = tp->snd_una;
2097 	tp->undo_retrans = 0;
2098 
2099 	skb = tcp_write_queue_head(sk);
2100 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2101 		tp->undo_marker = 0;
2102 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2103 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2104 		tp->retrans_out -= tcp_skb_pcount(skb);
2105 	}
2106 	tcp_verify_left_out(tp);
2107 
2108 	/* Too bad if TCP was application limited */
2109 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2110 
2111 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2112 	 * The last condition is necessary at least in tp->frto_counter case.
2113 	 */
2114 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2115 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2116 	    after(tp->high_seq, tp->snd_una)) {
2117 		tp->frto_highmark = tp->high_seq;
2118 	} else {
2119 		tp->frto_highmark = tp->snd_nxt;
2120 	}
2121 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2122 	tp->high_seq = tp->snd_nxt;
2123 	tp->frto_counter = 1;
2124 }
2125 
2126 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2127  * which indicates that we should follow the traditional RTO recovery,
2128  * i.e. mark everything lost and do go-back-N retransmission.
2129  */
2130 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2131 {
2132 	struct tcp_sock *tp = tcp_sk(sk);
2133 	struct sk_buff *skb;
2134 
2135 	tp->lost_out = 0;
2136 	tp->retrans_out = 0;
2137 	if (tcp_is_reno(tp))
2138 		tcp_reset_reno_sack(tp);
2139 
2140 	tcp_for_write_queue(skb, sk) {
2141 		if (skb == tcp_send_head(sk))
2142 			break;
2143 
2144 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2145 		/*
2146 		 * Count the retransmission made on RTO correctly (only when
2147 		 * waiting for the first ACK and did not get it)...
2148 		 */
2149 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2150 			/* For some reason this R-bit might get cleared? */
2151 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2152 				tp->retrans_out += tcp_skb_pcount(skb);
2153 			/* ...enter this if branch just for the first segment */
2154 			flag |= FLAG_DATA_ACKED;
2155 		} else {
2156 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2157 				tp->undo_marker = 0;
2158 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2159 		}
2160 
2161 		/* Marking forward transmissions that were made after RTO lost
2162 		 * can cause unnecessary retransmissions in some scenarios,
2163 		 * SACK blocks will mitigate that in some but not in all cases.
2164 		 * We used to not mark them but it was causing break-ups with
2165 		 * receivers that do only in-order receival.
2166 		 *
2167 		 * TODO: we could detect presence of such receiver and select
2168 		 * different behavior per flow.
2169 		 */
2170 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2171 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2172 			tp->lost_out += tcp_skb_pcount(skb);
2173 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2174 		}
2175 	}
2176 	tcp_verify_left_out(tp);
2177 
2178 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2179 	tp->snd_cwnd_cnt = 0;
2180 	tp->snd_cwnd_stamp = tcp_time_stamp;
2181 	tp->frto_counter = 0;
2182 	tp->bytes_acked = 0;
2183 
2184 	tp->reordering = min_t(unsigned int, tp->reordering,
2185 			       sysctl_tcp_reordering);
2186 	tcp_set_ca_state(sk, TCP_CA_Loss);
2187 	tp->high_seq = tp->snd_nxt;
2188 	TCP_ECN_queue_cwr(tp);
2189 
2190 	tcp_clear_all_retrans_hints(tp);
2191 }
2192 
2193 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2194 {
2195 	tp->retrans_out = 0;
2196 	tp->lost_out = 0;
2197 
2198 	tp->undo_marker = 0;
2199 	tp->undo_retrans = 0;
2200 }
2201 
2202 void tcp_clear_retrans(struct tcp_sock *tp)
2203 {
2204 	tcp_clear_retrans_partial(tp);
2205 
2206 	tp->fackets_out = 0;
2207 	tp->sacked_out = 0;
2208 }
2209 
2210 /* Enter Loss state. If "how" is not zero, forget all SACK information
2211  * and reset tags completely, otherwise preserve SACKs. If receiver
2212  * dropped its ofo queue, we will know this due to reneging detection.
2213  */
2214 void tcp_enter_loss(struct sock *sk, int how)
2215 {
2216 	const struct inet_connection_sock *icsk = inet_csk(sk);
2217 	struct tcp_sock *tp = tcp_sk(sk);
2218 	struct sk_buff *skb;
2219 
2220 	/* Reduce ssthresh if it has not yet been made inside this window. */
2221 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2222 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2223 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2224 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2225 		tcp_ca_event(sk, CA_EVENT_LOSS);
2226 	}
2227 	tp->snd_cwnd	   = 1;
2228 	tp->snd_cwnd_cnt   = 0;
2229 	tp->snd_cwnd_stamp = tcp_time_stamp;
2230 
2231 	tp->bytes_acked = 0;
2232 	tcp_clear_retrans_partial(tp);
2233 
2234 	if (tcp_is_reno(tp))
2235 		tcp_reset_reno_sack(tp);
2236 
2237 	if (!how) {
2238 		/* Push undo marker, if it was plain RTO and nothing
2239 		 * was retransmitted. */
2240 		tp->undo_marker = tp->snd_una;
2241 	} else {
2242 		tp->sacked_out = 0;
2243 		tp->fackets_out = 0;
2244 	}
2245 	tcp_clear_all_retrans_hints(tp);
2246 
2247 	tcp_for_write_queue(skb, sk) {
2248 		if (skb == tcp_send_head(sk))
2249 			break;
2250 
2251 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2252 			tp->undo_marker = 0;
2253 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2254 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2255 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2256 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2257 			tp->lost_out += tcp_skb_pcount(skb);
2258 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2259 		}
2260 	}
2261 	tcp_verify_left_out(tp);
2262 
2263 	tp->reordering = min_t(unsigned int, tp->reordering,
2264 			       sysctl_tcp_reordering);
2265 	tcp_set_ca_state(sk, TCP_CA_Loss);
2266 	tp->high_seq = tp->snd_nxt;
2267 	TCP_ECN_queue_cwr(tp);
2268 	/* Abort F-RTO algorithm if one is in progress */
2269 	tp->frto_counter = 0;
2270 }
2271 
2272 /* If ACK arrived pointing to a remembered SACK, it means that our
2273  * remembered SACKs do not reflect real state of receiver i.e.
2274  * receiver _host_ is heavily congested (or buggy).
2275  *
2276  * Do processing similar to RTO timeout.
2277  */
2278 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2279 {
2280 	if (flag & FLAG_SACK_RENEGING) {
2281 		struct inet_connection_sock *icsk = inet_csk(sk);
2282 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2283 
2284 		tcp_enter_loss(sk, 1);
2285 		icsk->icsk_retransmits++;
2286 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2287 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2288 					  icsk->icsk_rto, TCP_RTO_MAX);
2289 		return 1;
2290 	}
2291 	return 0;
2292 }
2293 
2294 static inline int tcp_fackets_out(struct tcp_sock *tp)
2295 {
2296 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2297 }
2298 
2299 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2300  * counter when SACK is enabled (without SACK, sacked_out is used for
2301  * that purpose).
2302  *
2303  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2304  * segments up to the highest received SACK block so far and holes in
2305  * between them.
2306  *
2307  * With reordering, holes may still be in flight, so RFC3517 recovery
2308  * uses pure sacked_out (total number of SACKed segments) even though
2309  * it violates the RFC that uses duplicate ACKs, often these are equal
2310  * but when e.g. out-of-window ACKs or packet duplication occurs,
2311  * they differ. Since neither occurs due to loss, TCP should really
2312  * ignore them.
2313  */
2314 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2315 {
2316 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2317 }
2318 
2319 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2320 {
2321 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2322 }
2323 
2324 static inline int tcp_head_timedout(struct sock *sk)
2325 {
2326 	struct tcp_sock *tp = tcp_sk(sk);
2327 
2328 	return tp->packets_out &&
2329 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2330 }
2331 
2332 /* Linux NewReno/SACK/FACK/ECN state machine.
2333  * --------------------------------------
2334  *
2335  * "Open"	Normal state, no dubious events, fast path.
2336  * "Disorder"   In all the respects it is "Open",
2337  *		but requires a bit more attention. It is entered when
2338  *		we see some SACKs or dupacks. It is split of "Open"
2339  *		mainly to move some processing from fast path to slow one.
2340  * "CWR"	CWND was reduced due to some Congestion Notification event.
2341  *		It can be ECN, ICMP source quench, local device congestion.
2342  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2343  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2344  *
2345  * tcp_fastretrans_alert() is entered:
2346  * - each incoming ACK, if state is not "Open"
2347  * - when arrived ACK is unusual, namely:
2348  *	* SACK
2349  *	* Duplicate ACK.
2350  *	* ECN ECE.
2351  *
2352  * Counting packets in flight is pretty simple.
2353  *
2354  *	in_flight = packets_out - left_out + retrans_out
2355  *
2356  *	packets_out is SND.NXT-SND.UNA counted in packets.
2357  *
2358  *	retrans_out is number of retransmitted segments.
2359  *
2360  *	left_out is number of segments left network, but not ACKed yet.
2361  *
2362  *		left_out = sacked_out + lost_out
2363  *
2364  *     sacked_out: Packets, which arrived to receiver out of order
2365  *		   and hence not ACKed. With SACKs this number is simply
2366  *		   amount of SACKed data. Even without SACKs
2367  *		   it is easy to give pretty reliable estimate of this number,
2368  *		   counting duplicate ACKs.
2369  *
2370  *       lost_out: Packets lost by network. TCP has no explicit
2371  *		   "loss notification" feedback from network (for now).
2372  *		   It means that this number can be only _guessed_.
2373  *		   Actually, it is the heuristics to predict lossage that
2374  *		   distinguishes different algorithms.
2375  *
2376  *	F.e. after RTO, when all the queue is considered as lost,
2377  *	lost_out = packets_out and in_flight = retrans_out.
2378  *
2379  *		Essentially, we have now two algorithms counting
2380  *		lost packets.
2381  *
2382  *		FACK: It is the simplest heuristics. As soon as we decided
2383  *		that something is lost, we decide that _all_ not SACKed
2384  *		packets until the most forward SACK are lost. I.e.
2385  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2386  *		It is absolutely correct estimate, if network does not reorder
2387  *		packets. And it loses any connection to reality when reordering
2388  *		takes place. We use FACK by default until reordering
2389  *		is suspected on the path to this destination.
2390  *
2391  *		NewReno: when Recovery is entered, we assume that one segment
2392  *		is lost (classic Reno). While we are in Recovery and
2393  *		a partial ACK arrives, we assume that one more packet
2394  *		is lost (NewReno). This heuristics are the same in NewReno
2395  *		and SACK.
2396  *
2397  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2398  *  deflation etc. CWND is real congestion window, never inflated, changes
2399  *  only according to classic VJ rules.
2400  *
2401  * Really tricky (and requiring careful tuning) part of algorithm
2402  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2403  * The first determines the moment _when_ we should reduce CWND and,
2404  * hence, slow down forward transmission. In fact, it determines the moment
2405  * when we decide that hole is caused by loss, rather than by a reorder.
2406  *
2407  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2408  * holes, caused by lost packets.
2409  *
2410  * And the most logically complicated part of algorithm is undo
2411  * heuristics. We detect false retransmits due to both too early
2412  * fast retransmit (reordering) and underestimated RTO, analyzing
2413  * timestamps and D-SACKs. When we detect that some segments were
2414  * retransmitted by mistake and CWND reduction was wrong, we undo
2415  * window reduction and abort recovery phase. This logic is hidden
2416  * inside several functions named tcp_try_undo_<something>.
2417  */
2418 
2419 /* This function decides, when we should leave Disordered state
2420  * and enter Recovery phase, reducing congestion window.
2421  *
2422  * Main question: may we further continue forward transmission
2423  * with the same cwnd?
2424  */
2425 static int tcp_time_to_recover(struct sock *sk)
2426 {
2427 	struct tcp_sock *tp = tcp_sk(sk);
2428 	__u32 packets_out;
2429 
2430 	/* Do not perform any recovery during F-RTO algorithm */
2431 	if (tp->frto_counter)
2432 		return 0;
2433 
2434 	/* Trick#1: The loss is proven. */
2435 	if (tp->lost_out)
2436 		return 1;
2437 
2438 	/* Not-A-Trick#2 : Classic rule... */
2439 	if (tcp_dupack_heurestics(tp) > tp->reordering)
2440 		return 1;
2441 
2442 	/* Trick#3 : when we use RFC2988 timer restart, fast
2443 	 * retransmit can be triggered by timeout of queue head.
2444 	 */
2445 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2446 		return 1;
2447 
2448 	/* Trick#4: It is still not OK... But will it be useful to delay
2449 	 * recovery more?
2450 	 */
2451 	packets_out = tp->packets_out;
2452 	if (packets_out <= tp->reordering &&
2453 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2454 	    !tcp_may_send_now(sk)) {
2455 		/* We have nothing to send. This connection is limited
2456 		 * either by receiver window or by application.
2457 		 */
2458 		return 1;
2459 	}
2460 
2461 	return 0;
2462 }
2463 
2464 /* New heuristics: it is possible only after we switched to restart timer
2465  * each time when something is ACKed. Hence, we can detect timed out packets
2466  * during fast retransmit without falling to slow start.
2467  *
2468  * Usefulness of this as is very questionable, since we should know which of
2469  * the segments is the next to timeout which is relatively expensive to find
2470  * in general case unless we add some data structure just for that. The
2471  * current approach certainly won't find the right one too often and when it
2472  * finally does find _something_ it usually marks large part of the window
2473  * right away (because a retransmission with a larger timestamp blocks the
2474  * loop from advancing). -ij
2475  */
2476 static void tcp_timeout_skbs(struct sock *sk)
2477 {
2478 	struct tcp_sock *tp = tcp_sk(sk);
2479 	struct sk_buff *skb;
2480 
2481 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2482 		return;
2483 
2484 	skb = tp->scoreboard_skb_hint;
2485 	if (tp->scoreboard_skb_hint == NULL)
2486 		skb = tcp_write_queue_head(sk);
2487 
2488 	tcp_for_write_queue_from(skb, sk) {
2489 		if (skb == tcp_send_head(sk))
2490 			break;
2491 		if (!tcp_skb_timedout(sk, skb))
2492 			break;
2493 
2494 		tcp_skb_mark_lost(tp, skb);
2495 	}
2496 
2497 	tp->scoreboard_skb_hint = skb;
2498 
2499 	tcp_verify_left_out(tp);
2500 }
2501 
2502 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2503  * is against sacked "cnt", otherwise it's against facked "cnt"
2504  */
2505 static void tcp_mark_head_lost(struct sock *sk, int packets)
2506 {
2507 	struct tcp_sock *tp = tcp_sk(sk);
2508 	struct sk_buff *skb;
2509 	int cnt, oldcnt;
2510 	int err;
2511 	unsigned int mss;
2512 
2513 	WARN_ON(packets > tp->packets_out);
2514 	if (tp->lost_skb_hint) {
2515 		skb = tp->lost_skb_hint;
2516 		cnt = tp->lost_cnt_hint;
2517 	} else {
2518 		skb = tcp_write_queue_head(sk);
2519 		cnt = 0;
2520 	}
2521 
2522 	tcp_for_write_queue_from(skb, sk) {
2523 		if (skb == tcp_send_head(sk))
2524 			break;
2525 		/* TODO: do this better */
2526 		/* this is not the most efficient way to do this... */
2527 		tp->lost_skb_hint = skb;
2528 		tp->lost_cnt_hint = cnt;
2529 
2530 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2531 			break;
2532 
2533 		oldcnt = cnt;
2534 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2535 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2536 			cnt += tcp_skb_pcount(skb);
2537 
2538 		if (cnt > packets) {
2539 			if (tcp_is_sack(tp) || (oldcnt >= packets))
2540 				break;
2541 
2542 			mss = skb_shinfo(skb)->gso_size;
2543 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2544 			if (err < 0)
2545 				break;
2546 			cnt = packets;
2547 		}
2548 
2549 		tcp_skb_mark_lost(tp, skb);
2550 	}
2551 	tcp_verify_left_out(tp);
2552 }
2553 
2554 /* Account newly detected lost packet(s) */
2555 
2556 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2557 {
2558 	struct tcp_sock *tp = tcp_sk(sk);
2559 
2560 	if (tcp_is_reno(tp)) {
2561 		tcp_mark_head_lost(sk, 1);
2562 	} else if (tcp_is_fack(tp)) {
2563 		int lost = tp->fackets_out - tp->reordering;
2564 		if (lost <= 0)
2565 			lost = 1;
2566 		tcp_mark_head_lost(sk, lost);
2567 	} else {
2568 		int sacked_upto = tp->sacked_out - tp->reordering;
2569 		if (sacked_upto < fast_rexmit)
2570 			sacked_upto = fast_rexmit;
2571 		tcp_mark_head_lost(sk, sacked_upto);
2572 	}
2573 
2574 	tcp_timeout_skbs(sk);
2575 }
2576 
2577 /* CWND moderation, preventing bursts due to too big ACKs
2578  * in dubious situations.
2579  */
2580 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2581 {
2582 	tp->snd_cwnd = min(tp->snd_cwnd,
2583 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2584 	tp->snd_cwnd_stamp = tcp_time_stamp;
2585 }
2586 
2587 /* Lower bound on congestion window is slow start threshold
2588  * unless congestion avoidance choice decides to overide it.
2589  */
2590 static inline u32 tcp_cwnd_min(const struct sock *sk)
2591 {
2592 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2593 
2594 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2595 }
2596 
2597 /* Decrease cwnd each second ack. */
2598 static void tcp_cwnd_down(struct sock *sk, int flag)
2599 {
2600 	struct tcp_sock *tp = tcp_sk(sk);
2601 	int decr = tp->snd_cwnd_cnt + 1;
2602 
2603 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2604 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2605 		tp->snd_cwnd_cnt = decr & 1;
2606 		decr >>= 1;
2607 
2608 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2609 			tp->snd_cwnd -= decr;
2610 
2611 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2612 		tp->snd_cwnd_stamp = tcp_time_stamp;
2613 	}
2614 }
2615 
2616 /* Nothing was retransmitted or returned timestamp is less
2617  * than timestamp of the first retransmission.
2618  */
2619 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2620 {
2621 	return !tp->retrans_stamp ||
2622 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2623 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2624 }
2625 
2626 /* Undo procedures. */
2627 
2628 #if FASTRETRANS_DEBUG > 1
2629 static void DBGUNDO(struct sock *sk, const char *msg)
2630 {
2631 	struct tcp_sock *tp = tcp_sk(sk);
2632 	struct inet_sock *inet = inet_sk(sk);
2633 
2634 	if (sk->sk_family == AF_INET) {
2635 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2636 		       msg,
2637 		       &inet->daddr, ntohs(inet->dport),
2638 		       tp->snd_cwnd, tcp_left_out(tp),
2639 		       tp->snd_ssthresh, tp->prior_ssthresh,
2640 		       tp->packets_out);
2641 	}
2642 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2643 	else if (sk->sk_family == AF_INET6) {
2644 		struct ipv6_pinfo *np = inet6_sk(sk);
2645 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2646 		       msg,
2647 		       &np->daddr, ntohs(inet->dport),
2648 		       tp->snd_cwnd, tcp_left_out(tp),
2649 		       tp->snd_ssthresh, tp->prior_ssthresh,
2650 		       tp->packets_out);
2651 	}
2652 #endif
2653 }
2654 #else
2655 #define DBGUNDO(x...) do { } while (0)
2656 #endif
2657 
2658 static void tcp_undo_cwr(struct sock *sk, const int undo)
2659 {
2660 	struct tcp_sock *tp = tcp_sk(sk);
2661 
2662 	if (tp->prior_ssthresh) {
2663 		const struct inet_connection_sock *icsk = inet_csk(sk);
2664 
2665 		if (icsk->icsk_ca_ops->undo_cwnd)
2666 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2667 		else
2668 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2669 
2670 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2671 			tp->snd_ssthresh = tp->prior_ssthresh;
2672 			TCP_ECN_withdraw_cwr(tp);
2673 		}
2674 	} else {
2675 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2676 	}
2677 	tcp_moderate_cwnd(tp);
2678 	tp->snd_cwnd_stamp = tcp_time_stamp;
2679 }
2680 
2681 static inline int tcp_may_undo(struct tcp_sock *tp)
2682 {
2683 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2684 }
2685 
2686 /* People celebrate: "We love our President!" */
2687 static int tcp_try_undo_recovery(struct sock *sk)
2688 {
2689 	struct tcp_sock *tp = tcp_sk(sk);
2690 
2691 	if (tcp_may_undo(tp)) {
2692 		int mib_idx;
2693 
2694 		/* Happy end! We did not retransmit anything
2695 		 * or our original transmission succeeded.
2696 		 */
2697 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2698 		tcp_undo_cwr(sk, 1);
2699 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2700 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2701 		else
2702 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2703 
2704 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2705 		tp->undo_marker = 0;
2706 	}
2707 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2708 		/* Hold old state until something *above* high_seq
2709 		 * is ACKed. For Reno it is MUST to prevent false
2710 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2711 		tcp_moderate_cwnd(tp);
2712 		return 1;
2713 	}
2714 	tcp_set_ca_state(sk, TCP_CA_Open);
2715 	return 0;
2716 }
2717 
2718 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2719 static void tcp_try_undo_dsack(struct sock *sk)
2720 {
2721 	struct tcp_sock *tp = tcp_sk(sk);
2722 
2723 	if (tp->undo_marker && !tp->undo_retrans) {
2724 		DBGUNDO(sk, "D-SACK");
2725 		tcp_undo_cwr(sk, 1);
2726 		tp->undo_marker = 0;
2727 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2728 	}
2729 }
2730 
2731 /* Undo during fast recovery after partial ACK. */
2732 
2733 static int tcp_try_undo_partial(struct sock *sk, int acked)
2734 {
2735 	struct tcp_sock *tp = tcp_sk(sk);
2736 	/* Partial ACK arrived. Force Hoe's retransmit. */
2737 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2738 
2739 	if (tcp_may_undo(tp)) {
2740 		/* Plain luck! Hole if filled with delayed
2741 		 * packet, rather than with a retransmit.
2742 		 */
2743 		if (tp->retrans_out == 0)
2744 			tp->retrans_stamp = 0;
2745 
2746 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2747 
2748 		DBGUNDO(sk, "Hoe");
2749 		tcp_undo_cwr(sk, 0);
2750 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2751 
2752 		/* So... Do not make Hoe's retransmit yet.
2753 		 * If the first packet was delayed, the rest
2754 		 * ones are most probably delayed as well.
2755 		 */
2756 		failed = 0;
2757 	}
2758 	return failed;
2759 }
2760 
2761 /* Undo during loss recovery after partial ACK. */
2762 static int tcp_try_undo_loss(struct sock *sk)
2763 {
2764 	struct tcp_sock *tp = tcp_sk(sk);
2765 
2766 	if (tcp_may_undo(tp)) {
2767 		struct sk_buff *skb;
2768 		tcp_for_write_queue(skb, sk) {
2769 			if (skb == tcp_send_head(sk))
2770 				break;
2771 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2772 		}
2773 
2774 		tcp_clear_all_retrans_hints(tp);
2775 
2776 		DBGUNDO(sk, "partial loss");
2777 		tp->lost_out = 0;
2778 		tcp_undo_cwr(sk, 1);
2779 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2780 		inet_csk(sk)->icsk_retransmits = 0;
2781 		tp->undo_marker = 0;
2782 		if (tcp_is_sack(tp))
2783 			tcp_set_ca_state(sk, TCP_CA_Open);
2784 		return 1;
2785 	}
2786 	return 0;
2787 }
2788 
2789 static inline void tcp_complete_cwr(struct sock *sk)
2790 {
2791 	struct tcp_sock *tp = tcp_sk(sk);
2792 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2793 	tp->snd_cwnd_stamp = tcp_time_stamp;
2794 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2795 }
2796 
2797 static void tcp_try_keep_open(struct sock *sk)
2798 {
2799 	struct tcp_sock *tp = tcp_sk(sk);
2800 	int state = TCP_CA_Open;
2801 
2802 	if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2803 		state = TCP_CA_Disorder;
2804 
2805 	if (inet_csk(sk)->icsk_ca_state != state) {
2806 		tcp_set_ca_state(sk, state);
2807 		tp->high_seq = tp->snd_nxt;
2808 	}
2809 }
2810 
2811 static void tcp_try_to_open(struct sock *sk, int flag)
2812 {
2813 	struct tcp_sock *tp = tcp_sk(sk);
2814 
2815 	tcp_verify_left_out(tp);
2816 
2817 	if (!tp->frto_counter && tp->retrans_out == 0)
2818 		tp->retrans_stamp = 0;
2819 
2820 	if (flag & FLAG_ECE)
2821 		tcp_enter_cwr(sk, 1);
2822 
2823 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2824 		tcp_try_keep_open(sk);
2825 		tcp_moderate_cwnd(tp);
2826 	} else {
2827 		tcp_cwnd_down(sk, flag);
2828 	}
2829 }
2830 
2831 static void tcp_mtup_probe_failed(struct sock *sk)
2832 {
2833 	struct inet_connection_sock *icsk = inet_csk(sk);
2834 
2835 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2836 	icsk->icsk_mtup.probe_size = 0;
2837 }
2838 
2839 static void tcp_mtup_probe_success(struct sock *sk)
2840 {
2841 	struct tcp_sock *tp = tcp_sk(sk);
2842 	struct inet_connection_sock *icsk = inet_csk(sk);
2843 
2844 	/* FIXME: breaks with very large cwnd */
2845 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2846 	tp->snd_cwnd = tp->snd_cwnd *
2847 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2848 		       icsk->icsk_mtup.probe_size;
2849 	tp->snd_cwnd_cnt = 0;
2850 	tp->snd_cwnd_stamp = tcp_time_stamp;
2851 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2852 
2853 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2854 	icsk->icsk_mtup.probe_size = 0;
2855 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2856 }
2857 
2858 /* Do a simple retransmit without using the backoff mechanisms in
2859  * tcp_timer. This is used for path mtu discovery.
2860  * The socket is already locked here.
2861  */
2862 void tcp_simple_retransmit(struct sock *sk)
2863 {
2864 	const struct inet_connection_sock *icsk = inet_csk(sk);
2865 	struct tcp_sock *tp = tcp_sk(sk);
2866 	struct sk_buff *skb;
2867 	unsigned int mss = tcp_current_mss(sk);
2868 	u32 prior_lost = tp->lost_out;
2869 
2870 	tcp_for_write_queue(skb, sk) {
2871 		if (skb == tcp_send_head(sk))
2872 			break;
2873 		if (tcp_skb_seglen(skb) > mss &&
2874 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2875 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2876 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2877 				tp->retrans_out -= tcp_skb_pcount(skb);
2878 			}
2879 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2880 		}
2881 	}
2882 
2883 	tcp_clear_retrans_hints_partial(tp);
2884 
2885 	if (prior_lost == tp->lost_out)
2886 		return;
2887 
2888 	if (tcp_is_reno(tp))
2889 		tcp_limit_reno_sacked(tp);
2890 
2891 	tcp_verify_left_out(tp);
2892 
2893 	/* Don't muck with the congestion window here.
2894 	 * Reason is that we do not increase amount of _data_
2895 	 * in network, but units changed and effective
2896 	 * cwnd/ssthresh really reduced now.
2897 	 */
2898 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2899 		tp->high_seq = tp->snd_nxt;
2900 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2901 		tp->prior_ssthresh = 0;
2902 		tp->undo_marker = 0;
2903 		tcp_set_ca_state(sk, TCP_CA_Loss);
2904 	}
2905 	tcp_xmit_retransmit_queue(sk);
2906 }
2907 
2908 /* Process an event, which can update packets-in-flight not trivially.
2909  * Main goal of this function is to calculate new estimate for left_out,
2910  * taking into account both packets sitting in receiver's buffer and
2911  * packets lost by network.
2912  *
2913  * Besides that it does CWND reduction, when packet loss is detected
2914  * and changes state of machine.
2915  *
2916  * It does _not_ decide what to send, it is made in function
2917  * tcp_xmit_retransmit_queue().
2918  */
2919 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2920 {
2921 	struct inet_connection_sock *icsk = inet_csk(sk);
2922 	struct tcp_sock *tp = tcp_sk(sk);
2923 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2924 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2925 				    (tcp_fackets_out(tp) > tp->reordering));
2926 	int fast_rexmit = 0, mib_idx;
2927 
2928 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2929 		tp->sacked_out = 0;
2930 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2931 		tp->fackets_out = 0;
2932 
2933 	/* Now state machine starts.
2934 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2935 	if (flag & FLAG_ECE)
2936 		tp->prior_ssthresh = 0;
2937 
2938 	/* B. In all the states check for reneging SACKs. */
2939 	if (tcp_check_sack_reneging(sk, flag))
2940 		return;
2941 
2942 	/* C. Process data loss notification, provided it is valid. */
2943 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2944 	    before(tp->snd_una, tp->high_seq) &&
2945 	    icsk->icsk_ca_state != TCP_CA_Open &&
2946 	    tp->fackets_out > tp->reordering) {
2947 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2948 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2949 	}
2950 
2951 	/* D. Check consistency of the current state. */
2952 	tcp_verify_left_out(tp);
2953 
2954 	/* E. Check state exit conditions. State can be terminated
2955 	 *    when high_seq is ACKed. */
2956 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2957 		WARN_ON(tp->retrans_out != 0);
2958 		tp->retrans_stamp = 0;
2959 	} else if (!before(tp->snd_una, tp->high_seq)) {
2960 		switch (icsk->icsk_ca_state) {
2961 		case TCP_CA_Loss:
2962 			icsk->icsk_retransmits = 0;
2963 			if (tcp_try_undo_recovery(sk))
2964 				return;
2965 			break;
2966 
2967 		case TCP_CA_CWR:
2968 			/* CWR is to be held something *above* high_seq
2969 			 * is ACKed for CWR bit to reach receiver. */
2970 			if (tp->snd_una != tp->high_seq) {
2971 				tcp_complete_cwr(sk);
2972 				tcp_set_ca_state(sk, TCP_CA_Open);
2973 			}
2974 			break;
2975 
2976 		case TCP_CA_Disorder:
2977 			tcp_try_undo_dsack(sk);
2978 			if (!tp->undo_marker ||
2979 			    /* For SACK case do not Open to allow to undo
2980 			     * catching for all duplicate ACKs. */
2981 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2982 				tp->undo_marker = 0;
2983 				tcp_set_ca_state(sk, TCP_CA_Open);
2984 			}
2985 			break;
2986 
2987 		case TCP_CA_Recovery:
2988 			if (tcp_is_reno(tp))
2989 				tcp_reset_reno_sack(tp);
2990 			if (tcp_try_undo_recovery(sk))
2991 				return;
2992 			tcp_complete_cwr(sk);
2993 			break;
2994 		}
2995 	}
2996 
2997 	/* F. Process state. */
2998 	switch (icsk->icsk_ca_state) {
2999 	case TCP_CA_Recovery:
3000 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3001 			if (tcp_is_reno(tp) && is_dupack)
3002 				tcp_add_reno_sack(sk);
3003 		} else
3004 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3005 		break;
3006 	case TCP_CA_Loss:
3007 		if (flag & FLAG_DATA_ACKED)
3008 			icsk->icsk_retransmits = 0;
3009 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3010 			tcp_reset_reno_sack(tp);
3011 		if (!tcp_try_undo_loss(sk)) {
3012 			tcp_moderate_cwnd(tp);
3013 			tcp_xmit_retransmit_queue(sk);
3014 			return;
3015 		}
3016 		if (icsk->icsk_ca_state != TCP_CA_Open)
3017 			return;
3018 		/* Loss is undone; fall through to processing in Open state. */
3019 	default:
3020 		if (tcp_is_reno(tp)) {
3021 			if (flag & FLAG_SND_UNA_ADVANCED)
3022 				tcp_reset_reno_sack(tp);
3023 			if (is_dupack)
3024 				tcp_add_reno_sack(sk);
3025 		}
3026 
3027 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3028 			tcp_try_undo_dsack(sk);
3029 
3030 		if (!tcp_time_to_recover(sk)) {
3031 			tcp_try_to_open(sk, flag);
3032 			return;
3033 		}
3034 
3035 		/* MTU probe failure: don't reduce cwnd */
3036 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3037 		    icsk->icsk_mtup.probe_size &&
3038 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3039 			tcp_mtup_probe_failed(sk);
3040 			/* Restores the reduction we did in tcp_mtup_probe() */
3041 			tp->snd_cwnd++;
3042 			tcp_simple_retransmit(sk);
3043 			return;
3044 		}
3045 
3046 		/* Otherwise enter Recovery state */
3047 
3048 		if (tcp_is_reno(tp))
3049 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3050 		else
3051 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3052 
3053 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3054 
3055 		tp->high_seq = tp->snd_nxt;
3056 		tp->prior_ssthresh = 0;
3057 		tp->undo_marker = tp->snd_una;
3058 		tp->undo_retrans = tp->retrans_out;
3059 
3060 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3061 			if (!(flag & FLAG_ECE))
3062 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3063 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3064 			TCP_ECN_queue_cwr(tp);
3065 		}
3066 
3067 		tp->bytes_acked = 0;
3068 		tp->snd_cwnd_cnt = 0;
3069 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3070 		fast_rexmit = 1;
3071 	}
3072 
3073 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3074 		tcp_update_scoreboard(sk, fast_rexmit);
3075 	tcp_cwnd_down(sk, flag);
3076 	tcp_xmit_retransmit_queue(sk);
3077 }
3078 
3079 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3080 {
3081 	tcp_rtt_estimator(sk, seq_rtt);
3082 	tcp_set_rto(sk);
3083 	inet_csk(sk)->icsk_backoff = 0;
3084 }
3085 
3086 /* Read draft-ietf-tcplw-high-performance before mucking
3087  * with this code. (Supersedes RFC1323)
3088  */
3089 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3090 {
3091 	/* RTTM Rule: A TSecr value received in a segment is used to
3092 	 * update the averaged RTT measurement only if the segment
3093 	 * acknowledges some new data, i.e., only if it advances the
3094 	 * left edge of the send window.
3095 	 *
3096 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3097 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3098 	 *
3099 	 * Changed: reset backoff as soon as we see the first valid sample.
3100 	 * If we do not, we get strongly overestimated rto. With timestamps
3101 	 * samples are accepted even from very old segments: f.e., when rtt=1
3102 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3103 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3104 	 * in window is lost... Voila.	 			--ANK (010210)
3105 	 */
3106 	struct tcp_sock *tp = tcp_sk(sk);
3107 
3108 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3109 }
3110 
3111 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3112 {
3113 	/* We don't have a timestamp. Can only use
3114 	 * packets that are not retransmitted to determine
3115 	 * rtt estimates. Also, we must not reset the
3116 	 * backoff for rto until we get a non-retransmitted
3117 	 * packet. This allows us to deal with a situation
3118 	 * where the network delay has increased suddenly.
3119 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3120 	 */
3121 
3122 	if (flag & FLAG_RETRANS_DATA_ACKED)
3123 		return;
3124 
3125 	tcp_valid_rtt_meas(sk, seq_rtt);
3126 }
3127 
3128 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3129 				      const s32 seq_rtt)
3130 {
3131 	const struct tcp_sock *tp = tcp_sk(sk);
3132 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3133 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3134 		tcp_ack_saw_tstamp(sk, flag);
3135 	else if (seq_rtt >= 0)
3136 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3137 }
3138 
3139 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3140 {
3141 	const struct inet_connection_sock *icsk = inet_csk(sk);
3142 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3143 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3144 }
3145 
3146 /* Restart timer after forward progress on connection.
3147  * RFC2988 recommends to restart timer to now+rto.
3148  */
3149 static void tcp_rearm_rto(struct sock *sk)
3150 {
3151 	struct tcp_sock *tp = tcp_sk(sk);
3152 
3153 	if (!tp->packets_out) {
3154 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3155 	} else {
3156 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3157 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3158 	}
3159 }
3160 
3161 /* If we get here, the whole TSO packet has not been acked. */
3162 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3163 {
3164 	struct tcp_sock *tp = tcp_sk(sk);
3165 	u32 packets_acked;
3166 
3167 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3168 
3169 	packets_acked = tcp_skb_pcount(skb);
3170 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3171 		return 0;
3172 	packets_acked -= tcp_skb_pcount(skb);
3173 
3174 	if (packets_acked) {
3175 		BUG_ON(tcp_skb_pcount(skb) == 0);
3176 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3177 	}
3178 
3179 	return packets_acked;
3180 }
3181 
3182 /* Remove acknowledged frames from the retransmission queue. If our packet
3183  * is before the ack sequence we can discard it as it's confirmed to have
3184  * arrived at the other end.
3185  */
3186 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3187 			       u32 prior_snd_una)
3188 {
3189 	struct tcp_sock *tp = tcp_sk(sk);
3190 	const struct inet_connection_sock *icsk = inet_csk(sk);
3191 	struct sk_buff *skb;
3192 	u32 now = tcp_time_stamp;
3193 	int fully_acked = 1;
3194 	int flag = 0;
3195 	u32 pkts_acked = 0;
3196 	u32 reord = tp->packets_out;
3197 	u32 prior_sacked = tp->sacked_out;
3198 	s32 seq_rtt = -1;
3199 	s32 ca_seq_rtt = -1;
3200 	ktime_t last_ackt = net_invalid_timestamp();
3201 
3202 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3203 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3204 		u32 acked_pcount;
3205 		u8 sacked = scb->sacked;
3206 
3207 		/* Determine how many packets and what bytes were acked, tso and else */
3208 		if (after(scb->end_seq, tp->snd_una)) {
3209 			if (tcp_skb_pcount(skb) == 1 ||
3210 			    !after(tp->snd_una, scb->seq))
3211 				break;
3212 
3213 			acked_pcount = tcp_tso_acked(sk, skb);
3214 			if (!acked_pcount)
3215 				break;
3216 
3217 			fully_acked = 0;
3218 		} else {
3219 			acked_pcount = tcp_skb_pcount(skb);
3220 		}
3221 
3222 		if (sacked & TCPCB_RETRANS) {
3223 			if (sacked & TCPCB_SACKED_RETRANS)
3224 				tp->retrans_out -= acked_pcount;
3225 			flag |= FLAG_RETRANS_DATA_ACKED;
3226 			ca_seq_rtt = -1;
3227 			seq_rtt = -1;
3228 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3229 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3230 		} else {
3231 			ca_seq_rtt = now - scb->when;
3232 			last_ackt = skb->tstamp;
3233 			if (seq_rtt < 0) {
3234 				seq_rtt = ca_seq_rtt;
3235 			}
3236 			if (!(sacked & TCPCB_SACKED_ACKED))
3237 				reord = min(pkts_acked, reord);
3238 		}
3239 
3240 		if (sacked & TCPCB_SACKED_ACKED)
3241 			tp->sacked_out -= acked_pcount;
3242 		if (sacked & TCPCB_LOST)
3243 			tp->lost_out -= acked_pcount;
3244 
3245 		tp->packets_out -= acked_pcount;
3246 		pkts_acked += acked_pcount;
3247 
3248 		/* Initial outgoing SYN's get put onto the write_queue
3249 		 * just like anything else we transmit.  It is not
3250 		 * true data, and if we misinform our callers that
3251 		 * this ACK acks real data, we will erroneously exit
3252 		 * connection startup slow start one packet too
3253 		 * quickly.  This is severely frowned upon behavior.
3254 		 */
3255 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
3256 			flag |= FLAG_DATA_ACKED;
3257 		} else {
3258 			flag |= FLAG_SYN_ACKED;
3259 			tp->retrans_stamp = 0;
3260 		}
3261 
3262 		if (!fully_acked)
3263 			break;
3264 
3265 		tcp_unlink_write_queue(skb, sk);
3266 		sk_wmem_free_skb(sk, skb);
3267 		tp->scoreboard_skb_hint = NULL;
3268 		if (skb == tp->retransmit_skb_hint)
3269 			tp->retransmit_skb_hint = NULL;
3270 		if (skb == tp->lost_skb_hint)
3271 			tp->lost_skb_hint = NULL;
3272 	}
3273 
3274 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3275 		tp->snd_up = tp->snd_una;
3276 
3277 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3278 		flag |= FLAG_SACK_RENEGING;
3279 
3280 	if (flag & FLAG_ACKED) {
3281 		const struct tcp_congestion_ops *ca_ops
3282 			= inet_csk(sk)->icsk_ca_ops;
3283 
3284 		if (unlikely(icsk->icsk_mtup.probe_size &&
3285 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3286 			tcp_mtup_probe_success(sk);
3287 		}
3288 
3289 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3290 		tcp_rearm_rto(sk);
3291 
3292 		if (tcp_is_reno(tp)) {
3293 			tcp_remove_reno_sacks(sk, pkts_acked);
3294 		} else {
3295 			int delta;
3296 
3297 			/* Non-retransmitted hole got filled? That's reordering */
3298 			if (reord < prior_fackets)
3299 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3300 
3301 			delta = tcp_is_fack(tp) ? pkts_acked :
3302 						  prior_sacked - tp->sacked_out;
3303 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3304 		}
3305 
3306 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3307 
3308 		if (ca_ops->pkts_acked) {
3309 			s32 rtt_us = -1;
3310 
3311 			/* Is the ACK triggering packet unambiguous? */
3312 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3313 				/* High resolution needed and available? */
3314 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3315 				    !ktime_equal(last_ackt,
3316 						 net_invalid_timestamp()))
3317 					rtt_us = ktime_us_delta(ktime_get_real(),
3318 								last_ackt);
3319 				else if (ca_seq_rtt > 0)
3320 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3321 			}
3322 
3323 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3324 		}
3325 	}
3326 
3327 #if FASTRETRANS_DEBUG > 0
3328 	WARN_ON((int)tp->sacked_out < 0);
3329 	WARN_ON((int)tp->lost_out < 0);
3330 	WARN_ON((int)tp->retrans_out < 0);
3331 	if (!tp->packets_out && tcp_is_sack(tp)) {
3332 		icsk = inet_csk(sk);
3333 		if (tp->lost_out) {
3334 			printk(KERN_DEBUG "Leak l=%u %d\n",
3335 			       tp->lost_out, icsk->icsk_ca_state);
3336 			tp->lost_out = 0;
3337 		}
3338 		if (tp->sacked_out) {
3339 			printk(KERN_DEBUG "Leak s=%u %d\n",
3340 			       tp->sacked_out, icsk->icsk_ca_state);
3341 			tp->sacked_out = 0;
3342 		}
3343 		if (tp->retrans_out) {
3344 			printk(KERN_DEBUG "Leak r=%u %d\n",
3345 			       tp->retrans_out, icsk->icsk_ca_state);
3346 			tp->retrans_out = 0;
3347 		}
3348 	}
3349 #endif
3350 	return flag;
3351 }
3352 
3353 static void tcp_ack_probe(struct sock *sk)
3354 {
3355 	const struct tcp_sock *tp = tcp_sk(sk);
3356 	struct inet_connection_sock *icsk = inet_csk(sk);
3357 
3358 	/* Was it a usable window open? */
3359 
3360 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3361 		icsk->icsk_backoff = 0;
3362 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3363 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3364 		 * This function is not for random using!
3365 		 */
3366 	} else {
3367 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3368 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3369 					  TCP_RTO_MAX);
3370 	}
3371 }
3372 
3373 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3374 {
3375 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3376 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3377 }
3378 
3379 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3380 {
3381 	const struct tcp_sock *tp = tcp_sk(sk);
3382 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3383 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3384 }
3385 
3386 /* Check that window update is acceptable.
3387  * The function assumes that snd_una<=ack<=snd_next.
3388  */
3389 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3390 					const u32 ack, const u32 ack_seq,
3391 					const u32 nwin)
3392 {
3393 	return (after(ack, tp->snd_una) ||
3394 		after(ack_seq, tp->snd_wl1) ||
3395 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3396 }
3397 
3398 /* Update our send window.
3399  *
3400  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3401  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3402  */
3403 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3404 				 u32 ack_seq)
3405 {
3406 	struct tcp_sock *tp = tcp_sk(sk);
3407 	int flag = 0;
3408 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3409 
3410 	if (likely(!tcp_hdr(skb)->syn))
3411 		nwin <<= tp->rx_opt.snd_wscale;
3412 
3413 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3414 		flag |= FLAG_WIN_UPDATE;
3415 		tcp_update_wl(tp, ack_seq);
3416 
3417 		if (tp->snd_wnd != nwin) {
3418 			tp->snd_wnd = nwin;
3419 
3420 			/* Note, it is the only place, where
3421 			 * fast path is recovered for sending TCP.
3422 			 */
3423 			tp->pred_flags = 0;
3424 			tcp_fast_path_check(sk);
3425 
3426 			if (nwin > tp->max_window) {
3427 				tp->max_window = nwin;
3428 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3429 			}
3430 		}
3431 	}
3432 
3433 	tp->snd_una = ack;
3434 
3435 	return flag;
3436 }
3437 
3438 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3439  * continue in congestion avoidance.
3440  */
3441 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3442 {
3443 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3444 	tp->snd_cwnd_cnt = 0;
3445 	tp->bytes_acked = 0;
3446 	TCP_ECN_queue_cwr(tp);
3447 	tcp_moderate_cwnd(tp);
3448 }
3449 
3450 /* A conservative spurious RTO response algorithm: reduce cwnd using
3451  * rate halving and continue in congestion avoidance.
3452  */
3453 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3454 {
3455 	tcp_enter_cwr(sk, 0);
3456 }
3457 
3458 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3459 {
3460 	if (flag & FLAG_ECE)
3461 		tcp_ratehalving_spur_to_response(sk);
3462 	else
3463 		tcp_undo_cwr(sk, 1);
3464 }
3465 
3466 /* F-RTO spurious RTO detection algorithm (RFC4138)
3467  *
3468  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3469  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3470  * window (but not to or beyond highest sequence sent before RTO):
3471  *   On First ACK,  send two new segments out.
3472  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3473  *                  algorithm is not part of the F-RTO detection algorithm
3474  *                  given in RFC4138 but can be selected separately).
3475  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3476  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3477  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3478  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3479  *
3480  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3481  * original window even after we transmit two new data segments.
3482  *
3483  * SACK version:
3484  *   on first step, wait until first cumulative ACK arrives, then move to
3485  *   the second step. In second step, the next ACK decides.
3486  *
3487  * F-RTO is implemented (mainly) in four functions:
3488  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3489  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3490  *     called when tcp_use_frto() showed green light
3491  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3492  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3493  *     to prove that the RTO is indeed spurious. It transfers the control
3494  *     from F-RTO to the conventional RTO recovery
3495  */
3496 static int tcp_process_frto(struct sock *sk, int flag)
3497 {
3498 	struct tcp_sock *tp = tcp_sk(sk);
3499 
3500 	tcp_verify_left_out(tp);
3501 
3502 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3503 	if (flag & FLAG_DATA_ACKED)
3504 		inet_csk(sk)->icsk_retransmits = 0;
3505 
3506 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3507 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3508 		tp->undo_marker = 0;
3509 
3510 	if (!before(tp->snd_una, tp->frto_highmark)) {
3511 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3512 		return 1;
3513 	}
3514 
3515 	if (!tcp_is_sackfrto(tp)) {
3516 		/* RFC4138 shortcoming in step 2; should also have case c):
3517 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3518 		 * data, winupdate
3519 		 */
3520 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3521 			return 1;
3522 
3523 		if (!(flag & FLAG_DATA_ACKED)) {
3524 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3525 					    flag);
3526 			return 1;
3527 		}
3528 	} else {
3529 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3530 			/* Prevent sending of new data. */
3531 			tp->snd_cwnd = min(tp->snd_cwnd,
3532 					   tcp_packets_in_flight(tp));
3533 			return 1;
3534 		}
3535 
3536 		if ((tp->frto_counter >= 2) &&
3537 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3538 		     ((flag & FLAG_DATA_SACKED) &&
3539 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3540 			/* RFC4138 shortcoming (see comment above) */
3541 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3542 			    (flag & FLAG_NOT_DUP))
3543 				return 1;
3544 
3545 			tcp_enter_frto_loss(sk, 3, flag);
3546 			return 1;
3547 		}
3548 	}
3549 
3550 	if (tp->frto_counter == 1) {
3551 		/* tcp_may_send_now needs to see updated state */
3552 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3553 		tp->frto_counter = 2;
3554 
3555 		if (!tcp_may_send_now(sk))
3556 			tcp_enter_frto_loss(sk, 2, flag);
3557 
3558 		return 1;
3559 	} else {
3560 		switch (sysctl_tcp_frto_response) {
3561 		case 2:
3562 			tcp_undo_spur_to_response(sk, flag);
3563 			break;
3564 		case 1:
3565 			tcp_conservative_spur_to_response(tp);
3566 			break;
3567 		default:
3568 			tcp_ratehalving_spur_to_response(sk);
3569 			break;
3570 		}
3571 		tp->frto_counter = 0;
3572 		tp->undo_marker = 0;
3573 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3574 	}
3575 	return 0;
3576 }
3577 
3578 /* This routine deals with incoming acks, but not outgoing ones. */
3579 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3580 {
3581 	struct inet_connection_sock *icsk = inet_csk(sk);
3582 	struct tcp_sock *tp = tcp_sk(sk);
3583 	u32 prior_snd_una = tp->snd_una;
3584 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3585 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3586 	u32 prior_in_flight;
3587 	u32 prior_fackets;
3588 	int prior_packets;
3589 	int frto_cwnd = 0;
3590 
3591 	/* If the ack is older than previous acks
3592 	 * then we can probably ignore it.
3593 	 */
3594 	if (before(ack, prior_snd_una))
3595 		goto old_ack;
3596 
3597 	/* If the ack includes data we haven't sent yet, discard
3598 	 * this segment (RFC793 Section 3.9).
3599 	 */
3600 	if (after(ack, tp->snd_nxt))
3601 		goto invalid_ack;
3602 
3603 	if (after(ack, prior_snd_una))
3604 		flag |= FLAG_SND_UNA_ADVANCED;
3605 
3606 	if (sysctl_tcp_abc) {
3607 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3608 			tp->bytes_acked += ack - prior_snd_una;
3609 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3610 			/* we assume just one segment left network */
3611 			tp->bytes_acked += min(ack - prior_snd_una,
3612 					       tp->mss_cache);
3613 	}
3614 
3615 	prior_fackets = tp->fackets_out;
3616 	prior_in_flight = tcp_packets_in_flight(tp);
3617 
3618 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3619 		/* Window is constant, pure forward advance.
3620 		 * No more checks are required.
3621 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3622 		 */
3623 		tcp_update_wl(tp, ack_seq);
3624 		tp->snd_una = ack;
3625 		flag |= FLAG_WIN_UPDATE;
3626 
3627 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3628 
3629 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3630 	} else {
3631 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3632 			flag |= FLAG_DATA;
3633 		else
3634 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3635 
3636 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3637 
3638 		if (TCP_SKB_CB(skb)->sacked)
3639 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3640 
3641 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3642 			flag |= FLAG_ECE;
3643 
3644 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3645 	}
3646 
3647 	/* We passed data and got it acked, remove any soft error
3648 	 * log. Something worked...
3649 	 */
3650 	sk->sk_err_soft = 0;
3651 	icsk->icsk_probes_out = 0;
3652 	tp->rcv_tstamp = tcp_time_stamp;
3653 	prior_packets = tp->packets_out;
3654 	if (!prior_packets)
3655 		goto no_queue;
3656 
3657 	/* See if we can take anything off of the retransmit queue. */
3658 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3659 
3660 	if (tp->frto_counter)
3661 		frto_cwnd = tcp_process_frto(sk, flag);
3662 	/* Guarantee sacktag reordering detection against wrap-arounds */
3663 	if (before(tp->frto_highmark, tp->snd_una))
3664 		tp->frto_highmark = 0;
3665 
3666 	if (tcp_ack_is_dubious(sk, flag)) {
3667 		/* Advance CWND, if state allows this. */
3668 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3669 		    tcp_may_raise_cwnd(sk, flag))
3670 			tcp_cong_avoid(sk, ack, prior_in_flight);
3671 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3672 				      flag);
3673 	} else {
3674 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3675 			tcp_cong_avoid(sk, ack, prior_in_flight);
3676 	}
3677 
3678 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3679 		dst_confirm(sk->sk_dst_cache);
3680 
3681 	return 1;
3682 
3683 no_queue:
3684 	/* If this ack opens up a zero window, clear backoff.  It was
3685 	 * being used to time the probes, and is probably far higher than
3686 	 * it needs to be for normal retransmission.
3687 	 */
3688 	if (tcp_send_head(sk))
3689 		tcp_ack_probe(sk);
3690 	return 1;
3691 
3692 invalid_ack:
3693 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3694 	return -1;
3695 
3696 old_ack:
3697 	if (TCP_SKB_CB(skb)->sacked) {
3698 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3699 		if (icsk->icsk_ca_state == TCP_CA_Open)
3700 			tcp_try_keep_open(sk);
3701 	}
3702 
3703 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3704 	return 0;
3705 }
3706 
3707 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3708  * But, this can also be called on packets in the established flow when
3709  * the fast version below fails.
3710  */
3711 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3712 		       int estab)
3713 {
3714 	unsigned char *ptr;
3715 	struct tcphdr *th = tcp_hdr(skb);
3716 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3717 
3718 	ptr = (unsigned char *)(th + 1);
3719 	opt_rx->saw_tstamp = 0;
3720 
3721 	while (length > 0) {
3722 		int opcode = *ptr++;
3723 		int opsize;
3724 
3725 		switch (opcode) {
3726 		case TCPOPT_EOL:
3727 			return;
3728 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3729 			length--;
3730 			continue;
3731 		default:
3732 			opsize = *ptr++;
3733 			if (opsize < 2) /* "silly options" */
3734 				return;
3735 			if (opsize > length)
3736 				return;	/* don't parse partial options */
3737 			switch (opcode) {
3738 			case TCPOPT_MSS:
3739 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3740 					u16 in_mss = get_unaligned_be16(ptr);
3741 					if (in_mss) {
3742 						if (opt_rx->user_mss &&
3743 						    opt_rx->user_mss < in_mss)
3744 							in_mss = opt_rx->user_mss;
3745 						opt_rx->mss_clamp = in_mss;
3746 					}
3747 				}
3748 				break;
3749 			case TCPOPT_WINDOW:
3750 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3751 				    !estab && sysctl_tcp_window_scaling) {
3752 					__u8 snd_wscale = *(__u8 *)ptr;
3753 					opt_rx->wscale_ok = 1;
3754 					if (snd_wscale > 14) {
3755 						if (net_ratelimit())
3756 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3757 							       "scaling value %d >14 received.\n",
3758 							       snd_wscale);
3759 						snd_wscale = 14;
3760 					}
3761 					opt_rx->snd_wscale = snd_wscale;
3762 				}
3763 				break;
3764 			case TCPOPT_TIMESTAMP:
3765 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3766 				    ((estab && opt_rx->tstamp_ok) ||
3767 				     (!estab && sysctl_tcp_timestamps))) {
3768 					opt_rx->saw_tstamp = 1;
3769 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3770 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3771 				}
3772 				break;
3773 			case TCPOPT_SACK_PERM:
3774 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3775 				    !estab && sysctl_tcp_sack) {
3776 					opt_rx->sack_ok = 1;
3777 					tcp_sack_reset(opt_rx);
3778 				}
3779 				break;
3780 
3781 			case TCPOPT_SACK:
3782 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3783 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3784 				   opt_rx->sack_ok) {
3785 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3786 				}
3787 				break;
3788 #ifdef CONFIG_TCP_MD5SIG
3789 			case TCPOPT_MD5SIG:
3790 				/*
3791 				 * The MD5 Hash has already been
3792 				 * checked (see tcp_v{4,6}_do_rcv()).
3793 				 */
3794 				break;
3795 #endif
3796 			}
3797 
3798 			ptr += opsize-2;
3799 			length -= opsize;
3800 		}
3801 	}
3802 }
3803 
3804 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3805 {
3806 	__be32 *ptr = (__be32 *)(th + 1);
3807 
3808 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3809 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3810 		tp->rx_opt.saw_tstamp = 1;
3811 		++ptr;
3812 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3813 		++ptr;
3814 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3815 		return 1;
3816 	}
3817 	return 0;
3818 }
3819 
3820 /* Fast parse options. This hopes to only see timestamps.
3821  * If it is wrong it falls back on tcp_parse_options().
3822  */
3823 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3824 				  struct tcp_sock *tp)
3825 {
3826 	if (th->doff == sizeof(struct tcphdr) >> 2) {
3827 		tp->rx_opt.saw_tstamp = 0;
3828 		return 0;
3829 	} else if (tp->rx_opt.tstamp_ok &&
3830 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3831 		if (tcp_parse_aligned_timestamp(tp, th))
3832 			return 1;
3833 	}
3834 	tcp_parse_options(skb, &tp->rx_opt, 1);
3835 	return 1;
3836 }
3837 
3838 #ifdef CONFIG_TCP_MD5SIG
3839 /*
3840  * Parse MD5 Signature option
3841  */
3842 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3843 {
3844 	int length = (th->doff << 2) - sizeof (*th);
3845 	u8 *ptr = (u8*)(th + 1);
3846 
3847 	/* If the TCP option is too short, we can short cut */
3848 	if (length < TCPOLEN_MD5SIG)
3849 		return NULL;
3850 
3851 	while (length > 0) {
3852 		int opcode = *ptr++;
3853 		int opsize;
3854 
3855 		switch(opcode) {
3856 		case TCPOPT_EOL:
3857 			return NULL;
3858 		case TCPOPT_NOP:
3859 			length--;
3860 			continue;
3861 		default:
3862 			opsize = *ptr++;
3863 			if (opsize < 2 || opsize > length)
3864 				return NULL;
3865 			if (opcode == TCPOPT_MD5SIG)
3866 				return ptr;
3867 		}
3868 		ptr += opsize - 2;
3869 		length -= opsize;
3870 	}
3871 	return NULL;
3872 }
3873 #endif
3874 
3875 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3876 {
3877 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3878 	tp->rx_opt.ts_recent_stamp = get_seconds();
3879 }
3880 
3881 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3882 {
3883 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3884 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3885 		 * extra check below makes sure this can only happen
3886 		 * for pure ACK frames.  -DaveM
3887 		 *
3888 		 * Not only, also it occurs for expired timestamps.
3889 		 */
3890 
3891 		if (tcp_paws_check(&tp->rx_opt, 0))
3892 			tcp_store_ts_recent(tp);
3893 	}
3894 }
3895 
3896 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3897  *
3898  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3899  * it can pass through stack. So, the following predicate verifies that
3900  * this segment is not used for anything but congestion avoidance or
3901  * fast retransmit. Moreover, we even are able to eliminate most of such
3902  * second order effects, if we apply some small "replay" window (~RTO)
3903  * to timestamp space.
3904  *
3905  * All these measures still do not guarantee that we reject wrapped ACKs
3906  * on networks with high bandwidth, when sequence space is recycled fastly,
3907  * but it guarantees that such events will be very rare and do not affect
3908  * connection seriously. This doesn't look nice, but alas, PAWS is really
3909  * buggy extension.
3910  *
3911  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3912  * states that events when retransmit arrives after original data are rare.
3913  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3914  * the biggest problem on large power networks even with minor reordering.
3915  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3916  * up to bandwidth of 18Gigabit/sec. 8) ]
3917  */
3918 
3919 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3920 {
3921 	struct tcp_sock *tp = tcp_sk(sk);
3922 	struct tcphdr *th = tcp_hdr(skb);
3923 	u32 seq = TCP_SKB_CB(skb)->seq;
3924 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3925 
3926 	return (/* 1. Pure ACK with correct sequence number. */
3927 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3928 
3929 		/* 2. ... and duplicate ACK. */
3930 		ack == tp->snd_una &&
3931 
3932 		/* 3. ... and does not update window. */
3933 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3934 
3935 		/* 4. ... and sits in replay window. */
3936 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3937 }
3938 
3939 static inline int tcp_paws_discard(const struct sock *sk,
3940 				   const struct sk_buff *skb)
3941 {
3942 	const struct tcp_sock *tp = tcp_sk(sk);
3943 
3944 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3945 	       !tcp_disordered_ack(sk, skb);
3946 }
3947 
3948 /* Check segment sequence number for validity.
3949  *
3950  * Segment controls are considered valid, if the segment
3951  * fits to the window after truncation to the window. Acceptability
3952  * of data (and SYN, FIN, of course) is checked separately.
3953  * See tcp_data_queue(), for example.
3954  *
3955  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3956  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3957  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3958  * (borrowed from freebsd)
3959  */
3960 
3961 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3962 {
3963 	return	!before(end_seq, tp->rcv_wup) &&
3964 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3965 }
3966 
3967 /* When we get a reset we do this. */
3968 static void tcp_reset(struct sock *sk)
3969 {
3970 	/* We want the right error as BSD sees it (and indeed as we do). */
3971 	switch (sk->sk_state) {
3972 	case TCP_SYN_SENT:
3973 		sk->sk_err = ECONNREFUSED;
3974 		break;
3975 	case TCP_CLOSE_WAIT:
3976 		sk->sk_err = EPIPE;
3977 		break;
3978 	case TCP_CLOSE:
3979 		return;
3980 	default:
3981 		sk->sk_err = ECONNRESET;
3982 	}
3983 
3984 	if (!sock_flag(sk, SOCK_DEAD))
3985 		sk->sk_error_report(sk);
3986 
3987 	tcp_done(sk);
3988 }
3989 
3990 /*
3991  * 	Process the FIN bit. This now behaves as it is supposed to work
3992  *	and the FIN takes effect when it is validly part of sequence
3993  *	space. Not before when we get holes.
3994  *
3995  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3996  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3997  *	TIME-WAIT)
3998  *
3999  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4000  *	close and we go into CLOSING (and later onto TIME-WAIT)
4001  *
4002  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4003  */
4004 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4005 {
4006 	struct tcp_sock *tp = tcp_sk(sk);
4007 
4008 	inet_csk_schedule_ack(sk);
4009 
4010 	sk->sk_shutdown |= RCV_SHUTDOWN;
4011 	sock_set_flag(sk, SOCK_DONE);
4012 
4013 	switch (sk->sk_state) {
4014 	case TCP_SYN_RECV:
4015 	case TCP_ESTABLISHED:
4016 		/* Move to CLOSE_WAIT */
4017 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4018 		inet_csk(sk)->icsk_ack.pingpong = 1;
4019 		break;
4020 
4021 	case TCP_CLOSE_WAIT:
4022 	case TCP_CLOSING:
4023 		/* Received a retransmission of the FIN, do
4024 		 * nothing.
4025 		 */
4026 		break;
4027 	case TCP_LAST_ACK:
4028 		/* RFC793: Remain in the LAST-ACK state. */
4029 		break;
4030 
4031 	case TCP_FIN_WAIT1:
4032 		/* This case occurs when a simultaneous close
4033 		 * happens, we must ack the received FIN and
4034 		 * enter the CLOSING state.
4035 		 */
4036 		tcp_send_ack(sk);
4037 		tcp_set_state(sk, TCP_CLOSING);
4038 		break;
4039 	case TCP_FIN_WAIT2:
4040 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4041 		tcp_send_ack(sk);
4042 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4043 		break;
4044 	default:
4045 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4046 		 * cases we should never reach this piece of code.
4047 		 */
4048 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4049 		       __func__, sk->sk_state);
4050 		break;
4051 	}
4052 
4053 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4054 	 * Probably, we should reset in this case. For now drop them.
4055 	 */
4056 	__skb_queue_purge(&tp->out_of_order_queue);
4057 	if (tcp_is_sack(tp))
4058 		tcp_sack_reset(&tp->rx_opt);
4059 	sk_mem_reclaim(sk);
4060 
4061 	if (!sock_flag(sk, SOCK_DEAD)) {
4062 		sk->sk_state_change(sk);
4063 
4064 		/* Do not send POLL_HUP for half duplex close. */
4065 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4066 		    sk->sk_state == TCP_CLOSE)
4067 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4068 		else
4069 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4070 	}
4071 }
4072 
4073 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4074 				  u32 end_seq)
4075 {
4076 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4077 		if (before(seq, sp->start_seq))
4078 			sp->start_seq = seq;
4079 		if (after(end_seq, sp->end_seq))
4080 			sp->end_seq = end_seq;
4081 		return 1;
4082 	}
4083 	return 0;
4084 }
4085 
4086 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4087 {
4088 	struct tcp_sock *tp = tcp_sk(sk);
4089 
4090 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4091 		int mib_idx;
4092 
4093 		if (before(seq, tp->rcv_nxt))
4094 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4095 		else
4096 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4097 
4098 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4099 
4100 		tp->rx_opt.dsack = 1;
4101 		tp->duplicate_sack[0].start_seq = seq;
4102 		tp->duplicate_sack[0].end_seq = end_seq;
4103 	}
4104 }
4105 
4106 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4107 {
4108 	struct tcp_sock *tp = tcp_sk(sk);
4109 
4110 	if (!tp->rx_opt.dsack)
4111 		tcp_dsack_set(sk, seq, end_seq);
4112 	else
4113 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4114 }
4115 
4116 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4117 {
4118 	struct tcp_sock *tp = tcp_sk(sk);
4119 
4120 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4121 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4122 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4123 		tcp_enter_quickack_mode(sk);
4124 
4125 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4126 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4127 
4128 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4129 				end_seq = tp->rcv_nxt;
4130 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4131 		}
4132 	}
4133 
4134 	tcp_send_ack(sk);
4135 }
4136 
4137 /* These routines update the SACK block as out-of-order packets arrive or
4138  * in-order packets close up the sequence space.
4139  */
4140 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4141 {
4142 	int this_sack;
4143 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4144 	struct tcp_sack_block *swalk = sp + 1;
4145 
4146 	/* See if the recent change to the first SACK eats into
4147 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4148 	 */
4149 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4150 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4151 			int i;
4152 
4153 			/* Zap SWALK, by moving every further SACK up by one slot.
4154 			 * Decrease num_sacks.
4155 			 */
4156 			tp->rx_opt.num_sacks--;
4157 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4158 				sp[i] = sp[i + 1];
4159 			continue;
4160 		}
4161 		this_sack++, swalk++;
4162 	}
4163 }
4164 
4165 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4166 {
4167 	struct tcp_sock *tp = tcp_sk(sk);
4168 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4169 	int cur_sacks = tp->rx_opt.num_sacks;
4170 	int this_sack;
4171 
4172 	if (!cur_sacks)
4173 		goto new_sack;
4174 
4175 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4176 		if (tcp_sack_extend(sp, seq, end_seq)) {
4177 			/* Rotate this_sack to the first one. */
4178 			for (; this_sack > 0; this_sack--, sp--)
4179 				swap(*sp, *(sp - 1));
4180 			if (cur_sacks > 1)
4181 				tcp_sack_maybe_coalesce(tp);
4182 			return;
4183 		}
4184 	}
4185 
4186 	/* Could not find an adjacent existing SACK, build a new one,
4187 	 * put it at the front, and shift everyone else down.  We
4188 	 * always know there is at least one SACK present already here.
4189 	 *
4190 	 * If the sack array is full, forget about the last one.
4191 	 */
4192 	if (this_sack >= TCP_NUM_SACKS) {
4193 		this_sack--;
4194 		tp->rx_opt.num_sacks--;
4195 		sp--;
4196 	}
4197 	for (; this_sack > 0; this_sack--, sp--)
4198 		*sp = *(sp - 1);
4199 
4200 new_sack:
4201 	/* Build the new head SACK, and we're done. */
4202 	sp->start_seq = seq;
4203 	sp->end_seq = end_seq;
4204 	tp->rx_opt.num_sacks++;
4205 }
4206 
4207 /* RCV.NXT advances, some SACKs should be eaten. */
4208 
4209 static void tcp_sack_remove(struct tcp_sock *tp)
4210 {
4211 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4212 	int num_sacks = tp->rx_opt.num_sacks;
4213 	int this_sack;
4214 
4215 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4216 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4217 		tp->rx_opt.num_sacks = 0;
4218 		return;
4219 	}
4220 
4221 	for (this_sack = 0; this_sack < num_sacks;) {
4222 		/* Check if the start of the sack is covered by RCV.NXT. */
4223 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4224 			int i;
4225 
4226 			/* RCV.NXT must cover all the block! */
4227 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4228 
4229 			/* Zap this SACK, by moving forward any other SACKS. */
4230 			for (i=this_sack+1; i < num_sacks; i++)
4231 				tp->selective_acks[i-1] = tp->selective_acks[i];
4232 			num_sacks--;
4233 			continue;
4234 		}
4235 		this_sack++;
4236 		sp++;
4237 	}
4238 	tp->rx_opt.num_sacks = num_sacks;
4239 }
4240 
4241 /* This one checks to see if we can put data from the
4242  * out_of_order queue into the receive_queue.
4243  */
4244 static void tcp_ofo_queue(struct sock *sk)
4245 {
4246 	struct tcp_sock *tp = tcp_sk(sk);
4247 	__u32 dsack_high = tp->rcv_nxt;
4248 	struct sk_buff *skb;
4249 
4250 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4251 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4252 			break;
4253 
4254 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4255 			__u32 dsack = dsack_high;
4256 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4257 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4258 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4259 		}
4260 
4261 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4262 			SOCK_DEBUG(sk, "ofo packet was already received \n");
4263 			__skb_unlink(skb, &tp->out_of_order_queue);
4264 			__kfree_skb(skb);
4265 			continue;
4266 		}
4267 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4268 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4269 			   TCP_SKB_CB(skb)->end_seq);
4270 
4271 		__skb_unlink(skb, &tp->out_of_order_queue);
4272 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4273 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4274 		if (tcp_hdr(skb)->fin)
4275 			tcp_fin(skb, sk, tcp_hdr(skb));
4276 	}
4277 }
4278 
4279 static int tcp_prune_ofo_queue(struct sock *sk);
4280 static int tcp_prune_queue(struct sock *sk);
4281 
4282 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4283 {
4284 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4285 	    !sk_rmem_schedule(sk, size)) {
4286 
4287 		if (tcp_prune_queue(sk) < 0)
4288 			return -1;
4289 
4290 		if (!sk_rmem_schedule(sk, size)) {
4291 			if (!tcp_prune_ofo_queue(sk))
4292 				return -1;
4293 
4294 			if (!sk_rmem_schedule(sk, size))
4295 				return -1;
4296 		}
4297 	}
4298 	return 0;
4299 }
4300 
4301 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4302 {
4303 	struct tcphdr *th = tcp_hdr(skb);
4304 	struct tcp_sock *tp = tcp_sk(sk);
4305 	int eaten = -1;
4306 
4307 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4308 		goto drop;
4309 
4310 	__skb_pull(skb, th->doff * 4);
4311 
4312 	TCP_ECN_accept_cwr(tp, skb);
4313 
4314 	tp->rx_opt.dsack = 0;
4315 
4316 	/*  Queue data for delivery to the user.
4317 	 *  Packets in sequence go to the receive queue.
4318 	 *  Out of sequence packets to the out_of_order_queue.
4319 	 */
4320 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4321 		if (tcp_receive_window(tp) == 0)
4322 			goto out_of_window;
4323 
4324 		/* Ok. In sequence. In window. */
4325 		if (tp->ucopy.task == current &&
4326 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4327 		    sock_owned_by_user(sk) && !tp->urg_data) {
4328 			int chunk = min_t(unsigned int, skb->len,
4329 					  tp->ucopy.len);
4330 
4331 			__set_current_state(TASK_RUNNING);
4332 
4333 			local_bh_enable();
4334 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4335 				tp->ucopy.len -= chunk;
4336 				tp->copied_seq += chunk;
4337 				eaten = (chunk == skb->len && !th->fin);
4338 				tcp_rcv_space_adjust(sk);
4339 			}
4340 			local_bh_disable();
4341 		}
4342 
4343 		if (eaten <= 0) {
4344 queue_and_out:
4345 			if (eaten < 0 &&
4346 			    tcp_try_rmem_schedule(sk, skb->truesize))
4347 				goto drop;
4348 
4349 			skb_set_owner_r(skb, sk);
4350 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4351 		}
4352 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4353 		if (skb->len)
4354 			tcp_event_data_recv(sk, skb);
4355 		if (th->fin)
4356 			tcp_fin(skb, sk, th);
4357 
4358 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4359 			tcp_ofo_queue(sk);
4360 
4361 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4362 			 * gap in queue is filled.
4363 			 */
4364 			if (skb_queue_empty(&tp->out_of_order_queue))
4365 				inet_csk(sk)->icsk_ack.pingpong = 0;
4366 		}
4367 
4368 		if (tp->rx_opt.num_sacks)
4369 			tcp_sack_remove(tp);
4370 
4371 		tcp_fast_path_check(sk);
4372 
4373 		if (eaten > 0)
4374 			__kfree_skb(skb);
4375 		else if (!sock_flag(sk, SOCK_DEAD))
4376 			sk->sk_data_ready(sk, 0);
4377 		return;
4378 	}
4379 
4380 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4381 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4382 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4383 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4384 
4385 out_of_window:
4386 		tcp_enter_quickack_mode(sk);
4387 		inet_csk_schedule_ack(sk);
4388 drop:
4389 		__kfree_skb(skb);
4390 		return;
4391 	}
4392 
4393 	/* Out of window. F.e. zero window probe. */
4394 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4395 		goto out_of_window;
4396 
4397 	tcp_enter_quickack_mode(sk);
4398 
4399 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4400 		/* Partial packet, seq < rcv_next < end_seq */
4401 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4402 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4403 			   TCP_SKB_CB(skb)->end_seq);
4404 
4405 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4406 
4407 		/* If window is closed, drop tail of packet. But after
4408 		 * remembering D-SACK for its head made in previous line.
4409 		 */
4410 		if (!tcp_receive_window(tp))
4411 			goto out_of_window;
4412 		goto queue_and_out;
4413 	}
4414 
4415 	TCP_ECN_check_ce(tp, skb);
4416 
4417 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4418 		goto drop;
4419 
4420 	/* Disable header prediction. */
4421 	tp->pred_flags = 0;
4422 	inet_csk_schedule_ack(sk);
4423 
4424 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4425 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4426 
4427 	skb_set_owner_r(skb, sk);
4428 
4429 	if (!skb_peek(&tp->out_of_order_queue)) {
4430 		/* Initial out of order segment, build 1 SACK. */
4431 		if (tcp_is_sack(tp)) {
4432 			tp->rx_opt.num_sacks = 1;
4433 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4434 			tp->selective_acks[0].end_seq =
4435 						TCP_SKB_CB(skb)->end_seq;
4436 		}
4437 		__skb_queue_head(&tp->out_of_order_queue, skb);
4438 	} else {
4439 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4440 		u32 seq = TCP_SKB_CB(skb)->seq;
4441 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4442 
4443 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4444 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4445 
4446 			if (!tp->rx_opt.num_sacks ||
4447 			    tp->selective_acks[0].end_seq != seq)
4448 				goto add_sack;
4449 
4450 			/* Common case: data arrive in order after hole. */
4451 			tp->selective_acks[0].end_seq = end_seq;
4452 			return;
4453 		}
4454 
4455 		/* Find place to insert this segment. */
4456 		do {
4457 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4458 				break;
4459 		} while ((skb1 = skb1->prev) !=
4460 			 (struct sk_buff *)&tp->out_of_order_queue);
4461 
4462 		/* Do skb overlap to previous one? */
4463 		if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4464 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4465 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4466 				/* All the bits are present. Drop. */
4467 				__kfree_skb(skb);
4468 				tcp_dsack_set(sk, seq, end_seq);
4469 				goto add_sack;
4470 			}
4471 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4472 				/* Partial overlap. */
4473 				tcp_dsack_set(sk, seq,
4474 					      TCP_SKB_CB(skb1)->end_seq);
4475 			} else {
4476 				skb1 = skb1->prev;
4477 			}
4478 		}
4479 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4480 
4481 		/* And clean segments covered by new one as whole. */
4482 		while ((skb1 = skb->next) !=
4483 		       (struct sk_buff *)&tp->out_of_order_queue &&
4484 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4485 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4486 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4487 						 end_seq);
4488 				break;
4489 			}
4490 			__skb_unlink(skb1, &tp->out_of_order_queue);
4491 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4492 					 TCP_SKB_CB(skb1)->end_seq);
4493 			__kfree_skb(skb1);
4494 		}
4495 
4496 add_sack:
4497 		if (tcp_is_sack(tp))
4498 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4499 	}
4500 }
4501 
4502 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4503 					struct sk_buff_head *list)
4504 {
4505 	struct sk_buff *next = skb->next;
4506 
4507 	__skb_unlink(skb, list);
4508 	__kfree_skb(skb);
4509 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4510 
4511 	return next;
4512 }
4513 
4514 /* Collapse contiguous sequence of skbs head..tail with
4515  * sequence numbers start..end.
4516  * Segments with FIN/SYN are not collapsed (only because this
4517  * simplifies code)
4518  */
4519 static void
4520 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4521 	     struct sk_buff *head, struct sk_buff *tail,
4522 	     u32 start, u32 end)
4523 {
4524 	struct sk_buff *skb;
4525 
4526 	/* First, check that queue is collapsible and find
4527 	 * the point where collapsing can be useful. */
4528 	for (skb = head; skb != tail;) {
4529 		/* No new bits? It is possible on ofo queue. */
4530 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4531 			skb = tcp_collapse_one(sk, skb, list);
4532 			continue;
4533 		}
4534 
4535 		/* The first skb to collapse is:
4536 		 * - not SYN/FIN and
4537 		 * - bloated or contains data before "start" or
4538 		 *   overlaps to the next one.
4539 		 */
4540 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4541 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4542 		     before(TCP_SKB_CB(skb)->seq, start) ||
4543 		     (skb->next != tail &&
4544 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4545 			break;
4546 
4547 		/* Decided to skip this, advance start seq. */
4548 		start = TCP_SKB_CB(skb)->end_seq;
4549 		skb = skb->next;
4550 	}
4551 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4552 		return;
4553 
4554 	while (before(start, end)) {
4555 		struct sk_buff *nskb;
4556 		unsigned int header = skb_headroom(skb);
4557 		int copy = SKB_MAX_ORDER(header, 0);
4558 
4559 		/* Too big header? This can happen with IPv6. */
4560 		if (copy < 0)
4561 			return;
4562 		if (end - start < copy)
4563 			copy = end - start;
4564 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4565 		if (!nskb)
4566 			return;
4567 
4568 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4569 		skb_set_network_header(nskb, (skb_network_header(skb) -
4570 					      skb->head));
4571 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4572 						skb->head));
4573 		skb_reserve(nskb, header);
4574 		memcpy(nskb->head, skb->head, header);
4575 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4576 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4577 		__skb_queue_before(list, skb, nskb);
4578 		skb_set_owner_r(nskb, sk);
4579 
4580 		/* Copy data, releasing collapsed skbs. */
4581 		while (copy > 0) {
4582 			int offset = start - TCP_SKB_CB(skb)->seq;
4583 			int size = TCP_SKB_CB(skb)->end_seq - start;
4584 
4585 			BUG_ON(offset < 0);
4586 			if (size > 0) {
4587 				size = min(copy, size);
4588 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4589 					BUG();
4590 				TCP_SKB_CB(nskb)->end_seq += size;
4591 				copy -= size;
4592 				start += size;
4593 			}
4594 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4595 				skb = tcp_collapse_one(sk, skb, list);
4596 				if (skb == tail ||
4597 				    tcp_hdr(skb)->syn ||
4598 				    tcp_hdr(skb)->fin)
4599 					return;
4600 			}
4601 		}
4602 	}
4603 }
4604 
4605 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4606  * and tcp_collapse() them until all the queue is collapsed.
4607  */
4608 static void tcp_collapse_ofo_queue(struct sock *sk)
4609 {
4610 	struct tcp_sock *tp = tcp_sk(sk);
4611 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4612 	struct sk_buff *head;
4613 	u32 start, end;
4614 
4615 	if (skb == NULL)
4616 		return;
4617 
4618 	start = TCP_SKB_CB(skb)->seq;
4619 	end = TCP_SKB_CB(skb)->end_seq;
4620 	head = skb;
4621 
4622 	for (;;) {
4623 		skb = skb->next;
4624 
4625 		/* Segment is terminated when we see gap or when
4626 		 * we are at the end of all the queue. */
4627 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4628 		    after(TCP_SKB_CB(skb)->seq, end) ||
4629 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4630 			tcp_collapse(sk, &tp->out_of_order_queue,
4631 				     head, skb, start, end);
4632 			head = skb;
4633 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4634 				break;
4635 			/* Start new segment */
4636 			start = TCP_SKB_CB(skb)->seq;
4637 			end = TCP_SKB_CB(skb)->end_seq;
4638 		} else {
4639 			if (before(TCP_SKB_CB(skb)->seq, start))
4640 				start = TCP_SKB_CB(skb)->seq;
4641 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4642 				end = TCP_SKB_CB(skb)->end_seq;
4643 		}
4644 	}
4645 }
4646 
4647 /*
4648  * Purge the out-of-order queue.
4649  * Return true if queue was pruned.
4650  */
4651 static int tcp_prune_ofo_queue(struct sock *sk)
4652 {
4653 	struct tcp_sock *tp = tcp_sk(sk);
4654 	int res = 0;
4655 
4656 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4657 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4658 		__skb_queue_purge(&tp->out_of_order_queue);
4659 
4660 		/* Reset SACK state.  A conforming SACK implementation will
4661 		 * do the same at a timeout based retransmit.  When a connection
4662 		 * is in a sad state like this, we care only about integrity
4663 		 * of the connection not performance.
4664 		 */
4665 		if (tp->rx_opt.sack_ok)
4666 			tcp_sack_reset(&tp->rx_opt);
4667 		sk_mem_reclaim(sk);
4668 		res = 1;
4669 	}
4670 	return res;
4671 }
4672 
4673 /* Reduce allocated memory if we can, trying to get
4674  * the socket within its memory limits again.
4675  *
4676  * Return less than zero if we should start dropping frames
4677  * until the socket owning process reads some of the data
4678  * to stabilize the situation.
4679  */
4680 static int tcp_prune_queue(struct sock *sk)
4681 {
4682 	struct tcp_sock *tp = tcp_sk(sk);
4683 
4684 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4685 
4686 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4687 
4688 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4689 		tcp_clamp_window(sk);
4690 	else if (tcp_memory_pressure)
4691 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4692 
4693 	tcp_collapse_ofo_queue(sk);
4694 	tcp_collapse(sk, &sk->sk_receive_queue,
4695 		     sk->sk_receive_queue.next,
4696 		     (struct sk_buff *)&sk->sk_receive_queue,
4697 		     tp->copied_seq, tp->rcv_nxt);
4698 	sk_mem_reclaim(sk);
4699 
4700 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4701 		return 0;
4702 
4703 	/* Collapsing did not help, destructive actions follow.
4704 	 * This must not ever occur. */
4705 
4706 	tcp_prune_ofo_queue(sk);
4707 
4708 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4709 		return 0;
4710 
4711 	/* If we are really being abused, tell the caller to silently
4712 	 * drop receive data on the floor.  It will get retransmitted
4713 	 * and hopefully then we'll have sufficient space.
4714 	 */
4715 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4716 
4717 	/* Massive buffer overcommit. */
4718 	tp->pred_flags = 0;
4719 	return -1;
4720 }
4721 
4722 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4723  * As additional protections, we do not touch cwnd in retransmission phases,
4724  * and if application hit its sndbuf limit recently.
4725  */
4726 void tcp_cwnd_application_limited(struct sock *sk)
4727 {
4728 	struct tcp_sock *tp = tcp_sk(sk);
4729 
4730 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4731 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4732 		/* Limited by application or receiver window. */
4733 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4734 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4735 		if (win_used < tp->snd_cwnd) {
4736 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4737 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4738 		}
4739 		tp->snd_cwnd_used = 0;
4740 	}
4741 	tp->snd_cwnd_stamp = tcp_time_stamp;
4742 }
4743 
4744 static int tcp_should_expand_sndbuf(struct sock *sk)
4745 {
4746 	struct tcp_sock *tp = tcp_sk(sk);
4747 
4748 	/* If the user specified a specific send buffer setting, do
4749 	 * not modify it.
4750 	 */
4751 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4752 		return 0;
4753 
4754 	/* If we are under global TCP memory pressure, do not expand.  */
4755 	if (tcp_memory_pressure)
4756 		return 0;
4757 
4758 	/* If we are under soft global TCP memory pressure, do not expand.  */
4759 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4760 		return 0;
4761 
4762 	/* If we filled the congestion window, do not expand.  */
4763 	if (tp->packets_out >= tp->snd_cwnd)
4764 		return 0;
4765 
4766 	return 1;
4767 }
4768 
4769 /* When incoming ACK allowed to free some skb from write_queue,
4770  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4771  * on the exit from tcp input handler.
4772  *
4773  * PROBLEM: sndbuf expansion does not work well with largesend.
4774  */
4775 static void tcp_new_space(struct sock *sk)
4776 {
4777 	struct tcp_sock *tp = tcp_sk(sk);
4778 
4779 	if (tcp_should_expand_sndbuf(sk)) {
4780 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4781 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4782 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4783 				     tp->reordering + 1);
4784 		sndmem *= 2 * demanded;
4785 		if (sndmem > sk->sk_sndbuf)
4786 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4787 		tp->snd_cwnd_stamp = tcp_time_stamp;
4788 	}
4789 
4790 	sk->sk_write_space(sk);
4791 }
4792 
4793 static void tcp_check_space(struct sock *sk)
4794 {
4795 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4796 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4797 		if (sk->sk_socket &&
4798 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4799 			tcp_new_space(sk);
4800 	}
4801 }
4802 
4803 static inline void tcp_data_snd_check(struct sock *sk)
4804 {
4805 	tcp_push_pending_frames(sk);
4806 	tcp_check_space(sk);
4807 }
4808 
4809 /*
4810  * Check if sending an ack is needed.
4811  */
4812 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4813 {
4814 	struct tcp_sock *tp = tcp_sk(sk);
4815 
4816 	    /* More than one full frame received... */
4817 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4818 	     /* ... and right edge of window advances far enough.
4819 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4820 	      */
4821 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4822 	    /* We ACK each frame or... */
4823 	    tcp_in_quickack_mode(sk) ||
4824 	    /* We have out of order data. */
4825 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4826 		/* Then ack it now */
4827 		tcp_send_ack(sk);
4828 	} else {
4829 		/* Else, send delayed ack. */
4830 		tcp_send_delayed_ack(sk);
4831 	}
4832 }
4833 
4834 static inline void tcp_ack_snd_check(struct sock *sk)
4835 {
4836 	if (!inet_csk_ack_scheduled(sk)) {
4837 		/* We sent a data segment already. */
4838 		return;
4839 	}
4840 	__tcp_ack_snd_check(sk, 1);
4841 }
4842 
4843 /*
4844  *	This routine is only called when we have urgent data
4845  *	signaled. Its the 'slow' part of tcp_urg. It could be
4846  *	moved inline now as tcp_urg is only called from one
4847  *	place. We handle URGent data wrong. We have to - as
4848  *	BSD still doesn't use the correction from RFC961.
4849  *	For 1003.1g we should support a new option TCP_STDURG to permit
4850  *	either form (or just set the sysctl tcp_stdurg).
4851  */
4852 
4853 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4854 {
4855 	struct tcp_sock *tp = tcp_sk(sk);
4856 	u32 ptr = ntohs(th->urg_ptr);
4857 
4858 	if (ptr && !sysctl_tcp_stdurg)
4859 		ptr--;
4860 	ptr += ntohl(th->seq);
4861 
4862 	/* Ignore urgent data that we've already seen and read. */
4863 	if (after(tp->copied_seq, ptr))
4864 		return;
4865 
4866 	/* Do not replay urg ptr.
4867 	 *
4868 	 * NOTE: interesting situation not covered by specs.
4869 	 * Misbehaving sender may send urg ptr, pointing to segment,
4870 	 * which we already have in ofo queue. We are not able to fetch
4871 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4872 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4873 	 * situations. But it is worth to think about possibility of some
4874 	 * DoSes using some hypothetical application level deadlock.
4875 	 */
4876 	if (before(ptr, tp->rcv_nxt))
4877 		return;
4878 
4879 	/* Do we already have a newer (or duplicate) urgent pointer? */
4880 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4881 		return;
4882 
4883 	/* Tell the world about our new urgent pointer. */
4884 	sk_send_sigurg(sk);
4885 
4886 	/* We may be adding urgent data when the last byte read was
4887 	 * urgent. To do this requires some care. We cannot just ignore
4888 	 * tp->copied_seq since we would read the last urgent byte again
4889 	 * as data, nor can we alter copied_seq until this data arrives
4890 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4891 	 *
4892 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4893 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4894 	 * and expect that both A and B disappear from stream. This is _wrong_.
4895 	 * Though this happens in BSD with high probability, this is occasional.
4896 	 * Any application relying on this is buggy. Note also, that fix "works"
4897 	 * only in this artificial test. Insert some normal data between A and B and we will
4898 	 * decline of BSD again. Verdict: it is better to remove to trap
4899 	 * buggy users.
4900 	 */
4901 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4902 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4903 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4904 		tp->copied_seq++;
4905 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4906 			__skb_unlink(skb, &sk->sk_receive_queue);
4907 			__kfree_skb(skb);
4908 		}
4909 	}
4910 
4911 	tp->urg_data = TCP_URG_NOTYET;
4912 	tp->urg_seq = ptr;
4913 
4914 	/* Disable header prediction. */
4915 	tp->pred_flags = 0;
4916 }
4917 
4918 /* This is the 'fast' part of urgent handling. */
4919 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4920 {
4921 	struct tcp_sock *tp = tcp_sk(sk);
4922 
4923 	/* Check if we get a new urgent pointer - normally not. */
4924 	if (th->urg)
4925 		tcp_check_urg(sk, th);
4926 
4927 	/* Do we wait for any urgent data? - normally not... */
4928 	if (tp->urg_data == TCP_URG_NOTYET) {
4929 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4930 			  th->syn;
4931 
4932 		/* Is the urgent pointer pointing into this packet? */
4933 		if (ptr < skb->len) {
4934 			u8 tmp;
4935 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4936 				BUG();
4937 			tp->urg_data = TCP_URG_VALID | tmp;
4938 			if (!sock_flag(sk, SOCK_DEAD))
4939 				sk->sk_data_ready(sk, 0);
4940 		}
4941 	}
4942 }
4943 
4944 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4945 {
4946 	struct tcp_sock *tp = tcp_sk(sk);
4947 	int chunk = skb->len - hlen;
4948 	int err;
4949 
4950 	local_bh_enable();
4951 	if (skb_csum_unnecessary(skb))
4952 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4953 	else
4954 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4955 						       tp->ucopy.iov);
4956 
4957 	if (!err) {
4958 		tp->ucopy.len -= chunk;
4959 		tp->copied_seq += chunk;
4960 		tcp_rcv_space_adjust(sk);
4961 	}
4962 
4963 	local_bh_disable();
4964 	return err;
4965 }
4966 
4967 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4968 					    struct sk_buff *skb)
4969 {
4970 	__sum16 result;
4971 
4972 	if (sock_owned_by_user(sk)) {
4973 		local_bh_enable();
4974 		result = __tcp_checksum_complete(skb);
4975 		local_bh_disable();
4976 	} else {
4977 		result = __tcp_checksum_complete(skb);
4978 	}
4979 	return result;
4980 }
4981 
4982 static inline int tcp_checksum_complete_user(struct sock *sk,
4983 					     struct sk_buff *skb)
4984 {
4985 	return !skb_csum_unnecessary(skb) &&
4986 	       __tcp_checksum_complete_user(sk, skb);
4987 }
4988 
4989 #ifdef CONFIG_NET_DMA
4990 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4991 				  int hlen)
4992 {
4993 	struct tcp_sock *tp = tcp_sk(sk);
4994 	int chunk = skb->len - hlen;
4995 	int dma_cookie;
4996 	int copied_early = 0;
4997 
4998 	if (tp->ucopy.wakeup)
4999 		return 0;
5000 
5001 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5002 		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5003 
5004 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5005 
5006 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5007 							 skb, hlen,
5008 							 tp->ucopy.iov, chunk,
5009 							 tp->ucopy.pinned_list);
5010 
5011 		if (dma_cookie < 0)
5012 			goto out;
5013 
5014 		tp->ucopy.dma_cookie = dma_cookie;
5015 		copied_early = 1;
5016 
5017 		tp->ucopy.len -= chunk;
5018 		tp->copied_seq += chunk;
5019 		tcp_rcv_space_adjust(sk);
5020 
5021 		if ((tp->ucopy.len == 0) ||
5022 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5023 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5024 			tp->ucopy.wakeup = 1;
5025 			sk->sk_data_ready(sk, 0);
5026 		}
5027 	} else if (chunk > 0) {
5028 		tp->ucopy.wakeup = 1;
5029 		sk->sk_data_ready(sk, 0);
5030 	}
5031 out:
5032 	return copied_early;
5033 }
5034 #endif /* CONFIG_NET_DMA */
5035 
5036 /* Does PAWS and seqno based validation of an incoming segment, flags will
5037  * play significant role here.
5038  */
5039 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5040 			      struct tcphdr *th, int syn_inerr)
5041 {
5042 	struct tcp_sock *tp = tcp_sk(sk);
5043 
5044 	/* RFC1323: H1. Apply PAWS check first. */
5045 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5046 	    tcp_paws_discard(sk, skb)) {
5047 		if (!th->rst) {
5048 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5049 			tcp_send_dupack(sk, skb);
5050 			goto discard;
5051 		}
5052 		/* Reset is accepted even if it did not pass PAWS. */
5053 	}
5054 
5055 	/* Step 1: check sequence number */
5056 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5057 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5058 		 * (RST) segments are validated by checking their SEQ-fields."
5059 		 * And page 69: "If an incoming segment is not acceptable,
5060 		 * an acknowledgment should be sent in reply (unless the RST
5061 		 * bit is set, if so drop the segment and return)".
5062 		 */
5063 		if (!th->rst)
5064 			tcp_send_dupack(sk, skb);
5065 		goto discard;
5066 	}
5067 
5068 	/* Step 2: check RST bit */
5069 	if (th->rst) {
5070 		tcp_reset(sk);
5071 		goto discard;
5072 	}
5073 
5074 	/* ts_recent update must be made after we are sure that the packet
5075 	 * is in window.
5076 	 */
5077 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5078 
5079 	/* step 3: check security and precedence [ignored] */
5080 
5081 	/* step 4: Check for a SYN in window. */
5082 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5083 		if (syn_inerr)
5084 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5085 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5086 		tcp_reset(sk);
5087 		return -1;
5088 	}
5089 
5090 	return 1;
5091 
5092 discard:
5093 	__kfree_skb(skb);
5094 	return 0;
5095 }
5096 
5097 /*
5098  *	TCP receive function for the ESTABLISHED state.
5099  *
5100  *	It is split into a fast path and a slow path. The fast path is
5101  * 	disabled when:
5102  *	- A zero window was announced from us - zero window probing
5103  *        is only handled properly in the slow path.
5104  *	- Out of order segments arrived.
5105  *	- Urgent data is expected.
5106  *	- There is no buffer space left
5107  *	- Unexpected TCP flags/window values/header lengths are received
5108  *	  (detected by checking the TCP header against pred_flags)
5109  *	- Data is sent in both directions. Fast path only supports pure senders
5110  *	  or pure receivers (this means either the sequence number or the ack
5111  *	  value must stay constant)
5112  *	- Unexpected TCP option.
5113  *
5114  *	When these conditions are not satisfied it drops into a standard
5115  *	receive procedure patterned after RFC793 to handle all cases.
5116  *	The first three cases are guaranteed by proper pred_flags setting,
5117  *	the rest is checked inline. Fast processing is turned on in
5118  *	tcp_data_queue when everything is OK.
5119  */
5120 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5121 			struct tcphdr *th, unsigned len)
5122 {
5123 	struct tcp_sock *tp = tcp_sk(sk);
5124 	int res;
5125 
5126 	/*
5127 	 *	Header prediction.
5128 	 *	The code loosely follows the one in the famous
5129 	 *	"30 instruction TCP receive" Van Jacobson mail.
5130 	 *
5131 	 *	Van's trick is to deposit buffers into socket queue
5132 	 *	on a device interrupt, to call tcp_recv function
5133 	 *	on the receive process context and checksum and copy
5134 	 *	the buffer to user space. smart...
5135 	 *
5136 	 *	Our current scheme is not silly either but we take the
5137 	 *	extra cost of the net_bh soft interrupt processing...
5138 	 *	We do checksum and copy also but from device to kernel.
5139 	 */
5140 
5141 	tp->rx_opt.saw_tstamp = 0;
5142 
5143 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5144 	 *	if header_prediction is to be made
5145 	 *	'S' will always be tp->tcp_header_len >> 2
5146 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5147 	 *  turn it off	(when there are holes in the receive
5148 	 *	 space for instance)
5149 	 *	PSH flag is ignored.
5150 	 */
5151 
5152 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5153 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5154 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5155 		int tcp_header_len = tp->tcp_header_len;
5156 
5157 		/* Timestamp header prediction: tcp_header_len
5158 		 * is automatically equal to th->doff*4 due to pred_flags
5159 		 * match.
5160 		 */
5161 
5162 		/* Check timestamp */
5163 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5164 			/* No? Slow path! */
5165 			if (!tcp_parse_aligned_timestamp(tp, th))
5166 				goto slow_path;
5167 
5168 			/* If PAWS failed, check it more carefully in slow path */
5169 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5170 				goto slow_path;
5171 
5172 			/* DO NOT update ts_recent here, if checksum fails
5173 			 * and timestamp was corrupted part, it will result
5174 			 * in a hung connection since we will drop all
5175 			 * future packets due to the PAWS test.
5176 			 */
5177 		}
5178 
5179 		if (len <= tcp_header_len) {
5180 			/* Bulk data transfer: sender */
5181 			if (len == tcp_header_len) {
5182 				/* Predicted packet is in window by definition.
5183 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5184 				 * Hence, check seq<=rcv_wup reduces to:
5185 				 */
5186 				if (tcp_header_len ==
5187 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5188 				    tp->rcv_nxt == tp->rcv_wup)
5189 					tcp_store_ts_recent(tp);
5190 
5191 				/* We know that such packets are checksummed
5192 				 * on entry.
5193 				 */
5194 				tcp_ack(sk, skb, 0);
5195 				__kfree_skb(skb);
5196 				tcp_data_snd_check(sk);
5197 				return 0;
5198 			} else { /* Header too small */
5199 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5200 				goto discard;
5201 			}
5202 		} else {
5203 			int eaten = 0;
5204 			int copied_early = 0;
5205 
5206 			if (tp->copied_seq == tp->rcv_nxt &&
5207 			    len - tcp_header_len <= tp->ucopy.len) {
5208 #ifdef CONFIG_NET_DMA
5209 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5210 					copied_early = 1;
5211 					eaten = 1;
5212 				}
5213 #endif
5214 				if (tp->ucopy.task == current &&
5215 				    sock_owned_by_user(sk) && !copied_early) {
5216 					__set_current_state(TASK_RUNNING);
5217 
5218 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5219 						eaten = 1;
5220 				}
5221 				if (eaten) {
5222 					/* Predicted packet is in window by definition.
5223 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5224 					 * Hence, check seq<=rcv_wup reduces to:
5225 					 */
5226 					if (tcp_header_len ==
5227 					    (sizeof(struct tcphdr) +
5228 					     TCPOLEN_TSTAMP_ALIGNED) &&
5229 					    tp->rcv_nxt == tp->rcv_wup)
5230 						tcp_store_ts_recent(tp);
5231 
5232 					tcp_rcv_rtt_measure_ts(sk, skb);
5233 
5234 					__skb_pull(skb, tcp_header_len);
5235 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5236 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5237 				}
5238 				if (copied_early)
5239 					tcp_cleanup_rbuf(sk, skb->len);
5240 			}
5241 			if (!eaten) {
5242 				if (tcp_checksum_complete_user(sk, skb))
5243 					goto csum_error;
5244 
5245 				/* Predicted packet is in window by definition.
5246 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5247 				 * Hence, check seq<=rcv_wup reduces to:
5248 				 */
5249 				if (tcp_header_len ==
5250 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5251 				    tp->rcv_nxt == tp->rcv_wup)
5252 					tcp_store_ts_recent(tp);
5253 
5254 				tcp_rcv_rtt_measure_ts(sk, skb);
5255 
5256 				if ((int)skb->truesize > sk->sk_forward_alloc)
5257 					goto step5;
5258 
5259 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5260 
5261 				/* Bulk data transfer: receiver */
5262 				__skb_pull(skb, tcp_header_len);
5263 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5264 				skb_set_owner_r(skb, sk);
5265 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5266 			}
5267 
5268 			tcp_event_data_recv(sk, skb);
5269 
5270 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5271 				/* Well, only one small jumplet in fast path... */
5272 				tcp_ack(sk, skb, FLAG_DATA);
5273 				tcp_data_snd_check(sk);
5274 				if (!inet_csk_ack_scheduled(sk))
5275 					goto no_ack;
5276 			}
5277 
5278 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5279 				__tcp_ack_snd_check(sk, 0);
5280 no_ack:
5281 #ifdef CONFIG_NET_DMA
5282 			if (copied_early)
5283 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5284 			else
5285 #endif
5286 			if (eaten)
5287 				__kfree_skb(skb);
5288 			else
5289 				sk->sk_data_ready(sk, 0);
5290 			return 0;
5291 		}
5292 	}
5293 
5294 slow_path:
5295 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5296 		goto csum_error;
5297 
5298 	/*
5299 	 *	Standard slow path.
5300 	 */
5301 
5302 	res = tcp_validate_incoming(sk, skb, th, 1);
5303 	if (res <= 0)
5304 		return -res;
5305 
5306 step5:
5307 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5308 		goto discard;
5309 
5310 	tcp_rcv_rtt_measure_ts(sk, skb);
5311 
5312 	/* Process urgent data. */
5313 	tcp_urg(sk, skb, th);
5314 
5315 	/* step 7: process the segment text */
5316 	tcp_data_queue(sk, skb);
5317 
5318 	tcp_data_snd_check(sk);
5319 	tcp_ack_snd_check(sk);
5320 	return 0;
5321 
5322 csum_error:
5323 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5324 
5325 discard:
5326 	__kfree_skb(skb);
5327 	return 0;
5328 }
5329 
5330 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5331 					 struct tcphdr *th, unsigned len)
5332 {
5333 	struct tcp_sock *tp = tcp_sk(sk);
5334 	struct inet_connection_sock *icsk = inet_csk(sk);
5335 	int saved_clamp = tp->rx_opt.mss_clamp;
5336 
5337 	tcp_parse_options(skb, &tp->rx_opt, 0);
5338 
5339 	if (th->ack) {
5340 		/* rfc793:
5341 		 * "If the state is SYN-SENT then
5342 		 *    first check the ACK bit
5343 		 *      If the ACK bit is set
5344 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5345 		 *        a reset (unless the RST bit is set, if so drop
5346 		 *        the segment and return)"
5347 		 *
5348 		 *  We do not send data with SYN, so that RFC-correct
5349 		 *  test reduces to:
5350 		 */
5351 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5352 			goto reset_and_undo;
5353 
5354 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5355 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5356 			     tcp_time_stamp)) {
5357 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5358 			goto reset_and_undo;
5359 		}
5360 
5361 		/* Now ACK is acceptable.
5362 		 *
5363 		 * "If the RST bit is set
5364 		 *    If the ACK was acceptable then signal the user "error:
5365 		 *    connection reset", drop the segment, enter CLOSED state,
5366 		 *    delete TCB, and return."
5367 		 */
5368 
5369 		if (th->rst) {
5370 			tcp_reset(sk);
5371 			goto discard;
5372 		}
5373 
5374 		/* rfc793:
5375 		 *   "fifth, if neither of the SYN or RST bits is set then
5376 		 *    drop the segment and return."
5377 		 *
5378 		 *    See note below!
5379 		 *                                        --ANK(990513)
5380 		 */
5381 		if (!th->syn)
5382 			goto discard_and_undo;
5383 
5384 		/* rfc793:
5385 		 *   "If the SYN bit is on ...
5386 		 *    are acceptable then ...
5387 		 *    (our SYN has been ACKed), change the connection
5388 		 *    state to ESTABLISHED..."
5389 		 */
5390 
5391 		TCP_ECN_rcv_synack(tp, th);
5392 
5393 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5394 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5395 
5396 		/* Ok.. it's good. Set up sequence numbers and
5397 		 * move to established.
5398 		 */
5399 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5400 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5401 
5402 		/* RFC1323: The window in SYN & SYN/ACK segments is
5403 		 * never scaled.
5404 		 */
5405 		tp->snd_wnd = ntohs(th->window);
5406 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5407 
5408 		if (!tp->rx_opt.wscale_ok) {
5409 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5410 			tp->window_clamp = min(tp->window_clamp, 65535U);
5411 		}
5412 
5413 		if (tp->rx_opt.saw_tstamp) {
5414 			tp->rx_opt.tstamp_ok	   = 1;
5415 			tp->tcp_header_len =
5416 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5417 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5418 			tcp_store_ts_recent(tp);
5419 		} else {
5420 			tp->tcp_header_len = sizeof(struct tcphdr);
5421 		}
5422 
5423 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5424 			tcp_enable_fack(tp);
5425 
5426 		tcp_mtup_init(sk);
5427 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5428 		tcp_initialize_rcv_mss(sk);
5429 
5430 		/* Remember, tcp_poll() does not lock socket!
5431 		 * Change state from SYN-SENT only after copied_seq
5432 		 * is initialized. */
5433 		tp->copied_seq = tp->rcv_nxt;
5434 		smp_mb();
5435 		tcp_set_state(sk, TCP_ESTABLISHED);
5436 
5437 		security_inet_conn_established(sk, skb);
5438 
5439 		/* Make sure socket is routed, for correct metrics.  */
5440 		icsk->icsk_af_ops->rebuild_header(sk);
5441 
5442 		tcp_init_metrics(sk);
5443 
5444 		tcp_init_congestion_control(sk);
5445 
5446 		/* Prevent spurious tcp_cwnd_restart() on first data
5447 		 * packet.
5448 		 */
5449 		tp->lsndtime = tcp_time_stamp;
5450 
5451 		tcp_init_buffer_space(sk);
5452 
5453 		if (sock_flag(sk, SOCK_KEEPOPEN))
5454 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5455 
5456 		if (!tp->rx_opt.snd_wscale)
5457 			__tcp_fast_path_on(tp, tp->snd_wnd);
5458 		else
5459 			tp->pred_flags = 0;
5460 
5461 		if (!sock_flag(sk, SOCK_DEAD)) {
5462 			sk->sk_state_change(sk);
5463 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5464 		}
5465 
5466 		if (sk->sk_write_pending ||
5467 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5468 		    icsk->icsk_ack.pingpong) {
5469 			/* Save one ACK. Data will be ready after
5470 			 * several ticks, if write_pending is set.
5471 			 *
5472 			 * It may be deleted, but with this feature tcpdumps
5473 			 * look so _wonderfully_ clever, that I was not able
5474 			 * to stand against the temptation 8)     --ANK
5475 			 */
5476 			inet_csk_schedule_ack(sk);
5477 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5478 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5479 			tcp_incr_quickack(sk);
5480 			tcp_enter_quickack_mode(sk);
5481 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5482 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5483 
5484 discard:
5485 			__kfree_skb(skb);
5486 			return 0;
5487 		} else {
5488 			tcp_send_ack(sk);
5489 		}
5490 		return -1;
5491 	}
5492 
5493 	/* No ACK in the segment */
5494 
5495 	if (th->rst) {
5496 		/* rfc793:
5497 		 * "If the RST bit is set
5498 		 *
5499 		 *      Otherwise (no ACK) drop the segment and return."
5500 		 */
5501 
5502 		goto discard_and_undo;
5503 	}
5504 
5505 	/* PAWS check. */
5506 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5507 	    tcp_paws_reject(&tp->rx_opt, 0))
5508 		goto discard_and_undo;
5509 
5510 	if (th->syn) {
5511 		/* We see SYN without ACK. It is attempt of
5512 		 * simultaneous connect with crossed SYNs.
5513 		 * Particularly, it can be connect to self.
5514 		 */
5515 		tcp_set_state(sk, TCP_SYN_RECV);
5516 
5517 		if (tp->rx_opt.saw_tstamp) {
5518 			tp->rx_opt.tstamp_ok = 1;
5519 			tcp_store_ts_recent(tp);
5520 			tp->tcp_header_len =
5521 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5522 		} else {
5523 			tp->tcp_header_len = sizeof(struct tcphdr);
5524 		}
5525 
5526 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5527 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5528 
5529 		/* RFC1323: The window in SYN & SYN/ACK segments is
5530 		 * never scaled.
5531 		 */
5532 		tp->snd_wnd    = ntohs(th->window);
5533 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5534 		tp->max_window = tp->snd_wnd;
5535 
5536 		TCP_ECN_rcv_syn(tp, th);
5537 
5538 		tcp_mtup_init(sk);
5539 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5540 		tcp_initialize_rcv_mss(sk);
5541 
5542 		tcp_send_synack(sk);
5543 #if 0
5544 		/* Note, we could accept data and URG from this segment.
5545 		 * There are no obstacles to make this.
5546 		 *
5547 		 * However, if we ignore data in ACKless segments sometimes,
5548 		 * we have no reasons to accept it sometimes.
5549 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5550 		 * is not flawless. So, discard packet for sanity.
5551 		 * Uncomment this return to process the data.
5552 		 */
5553 		return -1;
5554 #else
5555 		goto discard;
5556 #endif
5557 	}
5558 	/* "fifth, if neither of the SYN or RST bits is set then
5559 	 * drop the segment and return."
5560 	 */
5561 
5562 discard_and_undo:
5563 	tcp_clear_options(&tp->rx_opt);
5564 	tp->rx_opt.mss_clamp = saved_clamp;
5565 	goto discard;
5566 
5567 reset_and_undo:
5568 	tcp_clear_options(&tp->rx_opt);
5569 	tp->rx_opt.mss_clamp = saved_clamp;
5570 	return 1;
5571 }
5572 
5573 /*
5574  *	This function implements the receiving procedure of RFC 793 for
5575  *	all states except ESTABLISHED and TIME_WAIT.
5576  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5577  *	address independent.
5578  */
5579 
5580 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5581 			  struct tcphdr *th, unsigned len)
5582 {
5583 	struct tcp_sock *tp = tcp_sk(sk);
5584 	struct inet_connection_sock *icsk = inet_csk(sk);
5585 	int queued = 0;
5586 	int res;
5587 
5588 	tp->rx_opt.saw_tstamp = 0;
5589 
5590 	switch (sk->sk_state) {
5591 	case TCP_CLOSE:
5592 		goto discard;
5593 
5594 	case TCP_LISTEN:
5595 		if (th->ack)
5596 			return 1;
5597 
5598 		if (th->rst)
5599 			goto discard;
5600 
5601 		if (th->syn) {
5602 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5603 				return 1;
5604 
5605 			/* Now we have several options: In theory there is
5606 			 * nothing else in the frame. KA9Q has an option to
5607 			 * send data with the syn, BSD accepts data with the
5608 			 * syn up to the [to be] advertised window and
5609 			 * Solaris 2.1 gives you a protocol error. For now
5610 			 * we just ignore it, that fits the spec precisely
5611 			 * and avoids incompatibilities. It would be nice in
5612 			 * future to drop through and process the data.
5613 			 *
5614 			 * Now that TTCP is starting to be used we ought to
5615 			 * queue this data.
5616 			 * But, this leaves one open to an easy denial of
5617 			 * service attack, and SYN cookies can't defend
5618 			 * against this problem. So, we drop the data
5619 			 * in the interest of security over speed unless
5620 			 * it's still in use.
5621 			 */
5622 			kfree_skb(skb);
5623 			return 0;
5624 		}
5625 		goto discard;
5626 
5627 	case TCP_SYN_SENT:
5628 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5629 		if (queued >= 0)
5630 			return queued;
5631 
5632 		/* Do step6 onward by hand. */
5633 		tcp_urg(sk, skb, th);
5634 		__kfree_skb(skb);
5635 		tcp_data_snd_check(sk);
5636 		return 0;
5637 	}
5638 
5639 	res = tcp_validate_incoming(sk, skb, th, 0);
5640 	if (res <= 0)
5641 		return -res;
5642 
5643 	/* step 5: check the ACK field */
5644 	if (th->ack) {
5645 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5646 
5647 		switch (sk->sk_state) {
5648 		case TCP_SYN_RECV:
5649 			if (acceptable) {
5650 				tp->copied_seq = tp->rcv_nxt;
5651 				smp_mb();
5652 				tcp_set_state(sk, TCP_ESTABLISHED);
5653 				sk->sk_state_change(sk);
5654 
5655 				/* Note, that this wakeup is only for marginal
5656 				 * crossed SYN case. Passively open sockets
5657 				 * are not waked up, because sk->sk_sleep ==
5658 				 * NULL and sk->sk_socket == NULL.
5659 				 */
5660 				if (sk->sk_socket)
5661 					sk_wake_async(sk,
5662 						      SOCK_WAKE_IO, POLL_OUT);
5663 
5664 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5665 				tp->snd_wnd = ntohs(th->window) <<
5666 					      tp->rx_opt.snd_wscale;
5667 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5668 
5669 				/* tcp_ack considers this ACK as duplicate
5670 				 * and does not calculate rtt.
5671 				 * Fix it at least with timestamps.
5672 				 */
5673 				if (tp->rx_opt.saw_tstamp &&
5674 				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5675 					tcp_ack_saw_tstamp(sk, 0);
5676 
5677 				if (tp->rx_opt.tstamp_ok)
5678 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5679 
5680 				/* Make sure socket is routed, for
5681 				 * correct metrics.
5682 				 */
5683 				icsk->icsk_af_ops->rebuild_header(sk);
5684 
5685 				tcp_init_metrics(sk);
5686 
5687 				tcp_init_congestion_control(sk);
5688 
5689 				/* Prevent spurious tcp_cwnd_restart() on
5690 				 * first data packet.
5691 				 */
5692 				tp->lsndtime = tcp_time_stamp;
5693 
5694 				tcp_mtup_init(sk);
5695 				tcp_initialize_rcv_mss(sk);
5696 				tcp_init_buffer_space(sk);
5697 				tcp_fast_path_on(tp);
5698 			} else {
5699 				return 1;
5700 			}
5701 			break;
5702 
5703 		case TCP_FIN_WAIT1:
5704 			if (tp->snd_una == tp->write_seq) {
5705 				tcp_set_state(sk, TCP_FIN_WAIT2);
5706 				sk->sk_shutdown |= SEND_SHUTDOWN;
5707 				dst_confirm(sk->sk_dst_cache);
5708 
5709 				if (!sock_flag(sk, SOCK_DEAD))
5710 					/* Wake up lingering close() */
5711 					sk->sk_state_change(sk);
5712 				else {
5713 					int tmo;
5714 
5715 					if (tp->linger2 < 0 ||
5716 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5717 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5718 						tcp_done(sk);
5719 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5720 						return 1;
5721 					}
5722 
5723 					tmo = tcp_fin_time(sk);
5724 					if (tmo > TCP_TIMEWAIT_LEN) {
5725 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5726 					} else if (th->fin || sock_owned_by_user(sk)) {
5727 						/* Bad case. We could lose such FIN otherwise.
5728 						 * It is not a big problem, but it looks confusing
5729 						 * and not so rare event. We still can lose it now,
5730 						 * if it spins in bh_lock_sock(), but it is really
5731 						 * marginal case.
5732 						 */
5733 						inet_csk_reset_keepalive_timer(sk, tmo);
5734 					} else {
5735 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5736 						goto discard;
5737 					}
5738 				}
5739 			}
5740 			break;
5741 
5742 		case TCP_CLOSING:
5743 			if (tp->snd_una == tp->write_seq) {
5744 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5745 				goto discard;
5746 			}
5747 			break;
5748 
5749 		case TCP_LAST_ACK:
5750 			if (tp->snd_una == tp->write_seq) {
5751 				tcp_update_metrics(sk);
5752 				tcp_done(sk);
5753 				goto discard;
5754 			}
5755 			break;
5756 		}
5757 	} else
5758 		goto discard;
5759 
5760 	/* step 6: check the URG bit */
5761 	tcp_urg(sk, skb, th);
5762 
5763 	/* step 7: process the segment text */
5764 	switch (sk->sk_state) {
5765 	case TCP_CLOSE_WAIT:
5766 	case TCP_CLOSING:
5767 	case TCP_LAST_ACK:
5768 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5769 			break;
5770 	case TCP_FIN_WAIT1:
5771 	case TCP_FIN_WAIT2:
5772 		/* RFC 793 says to queue data in these states,
5773 		 * RFC 1122 says we MUST send a reset.
5774 		 * BSD 4.4 also does reset.
5775 		 */
5776 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5777 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5778 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5779 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5780 				tcp_reset(sk);
5781 				return 1;
5782 			}
5783 		}
5784 		/* Fall through */
5785 	case TCP_ESTABLISHED:
5786 		tcp_data_queue(sk, skb);
5787 		queued = 1;
5788 		break;
5789 	}
5790 
5791 	/* tcp_data could move socket to TIME-WAIT */
5792 	if (sk->sk_state != TCP_CLOSE) {
5793 		tcp_data_snd_check(sk);
5794 		tcp_ack_snd_check(sk);
5795 	}
5796 
5797 	if (!queued) {
5798 discard:
5799 		__kfree_skb(skb);
5800 	}
5801 	return 0;
5802 }
5803 
5804 EXPORT_SYMBOL(sysctl_tcp_ecn);
5805 EXPORT_SYMBOL(sysctl_tcp_reordering);
5806 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5807 EXPORT_SYMBOL(tcp_parse_options);
5808 #ifdef CONFIG_TCP_MD5SIG
5809 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5810 #endif
5811 EXPORT_SYMBOL(tcp_rcv_established);
5812 EXPORT_SYMBOL(tcp_rcv_state_process);
5813 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5814