xref: /linux/net/ipv4/tcp_input.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 
112 #define REXMIT_NONE	0 /* no loss recovery to do */
113 #define REXMIT_LOST	1 /* retransmit packets marked lost */
114 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
115 
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118 
119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 			     void (*cad)(struct sock *sk, u32 ack_seq))
121 {
122 	icsk->icsk_clean_acked = cad;
123 	static_branch_deferred_inc(&clean_acked_data_enabled);
124 }
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 
127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 {
129 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 	icsk->icsk_clean_acked = NULL;
131 }
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133 
134 void clean_acked_data_flush(void)
135 {
136 	static_key_deferred_flush(&clean_acked_data_enabled);
137 }
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 #endif
140 
141 #ifdef CONFIG_CGROUP_BPF
142 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
143 {
144 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
145 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
146 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
147 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
149 	struct bpf_sock_ops_kern sock_ops;
150 
151 	if (likely(!unknown_opt && !parse_all_opt))
152 		return;
153 
154 	/* The skb will be handled in the
155 	 * bpf_skops_established() or
156 	 * bpf_skops_write_hdr_opt().
157 	 */
158 	switch (sk->sk_state) {
159 	case TCP_SYN_RECV:
160 	case TCP_SYN_SENT:
161 	case TCP_LISTEN:
162 		return;
163 	}
164 
165 	sock_owned_by_me(sk);
166 
167 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
168 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
169 	sock_ops.is_fullsock = 1;
170 	sock_ops.sk = sk;
171 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
172 
173 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
174 }
175 
176 static void bpf_skops_established(struct sock *sk, int bpf_op,
177 				  struct sk_buff *skb)
178 {
179 	struct bpf_sock_ops_kern sock_ops;
180 
181 	sock_owned_by_me(sk);
182 
183 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
184 	sock_ops.op = bpf_op;
185 	sock_ops.is_fullsock = 1;
186 	sock_ops.sk = sk;
187 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
188 	if (skb)
189 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
190 
191 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
192 }
193 #else
194 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
195 {
196 }
197 
198 static void bpf_skops_established(struct sock *sk, int bpf_op,
199 				  struct sk_buff *skb)
200 {
201 }
202 #endif
203 
204 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
205 			     unsigned int len)
206 {
207 	static bool __once __read_mostly;
208 
209 	if (!__once) {
210 		struct net_device *dev;
211 
212 		__once = true;
213 
214 		rcu_read_lock();
215 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
216 		if (!dev || len >= dev->mtu)
217 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
218 				dev ? dev->name : "Unknown driver");
219 		rcu_read_unlock();
220 	}
221 }
222 
223 /* Adapt the MSS value used to make delayed ack decision to the
224  * real world.
225  */
226 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
227 {
228 	struct inet_connection_sock *icsk = inet_csk(sk);
229 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
230 	unsigned int len;
231 
232 	icsk->icsk_ack.last_seg_size = 0;
233 
234 	/* skb->len may jitter because of SACKs, even if peer
235 	 * sends good full-sized frames.
236 	 */
237 	len = skb_shinfo(skb)->gso_size ? : skb->len;
238 	if (len >= icsk->icsk_ack.rcv_mss) {
239 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
240 					       tcp_sk(sk)->advmss);
241 		/* Account for possibly-removed options */
242 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
243 				   MAX_TCP_OPTION_SPACE))
244 			tcp_gro_dev_warn(sk, skb, len);
245 	} else {
246 		/* Otherwise, we make more careful check taking into account,
247 		 * that SACKs block is variable.
248 		 *
249 		 * "len" is invariant segment length, including TCP header.
250 		 */
251 		len += skb->data - skb_transport_header(skb);
252 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
253 		    /* If PSH is not set, packet should be
254 		     * full sized, provided peer TCP is not badly broken.
255 		     * This observation (if it is correct 8)) allows
256 		     * to handle super-low mtu links fairly.
257 		     */
258 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
259 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
260 			/* Subtract also invariant (if peer is RFC compliant),
261 			 * tcp header plus fixed timestamp option length.
262 			 * Resulting "len" is MSS free of SACK jitter.
263 			 */
264 			len -= tcp_sk(sk)->tcp_header_len;
265 			icsk->icsk_ack.last_seg_size = len;
266 			if (len == lss) {
267 				icsk->icsk_ack.rcv_mss = len;
268 				return;
269 			}
270 		}
271 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
272 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
273 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
274 	}
275 }
276 
277 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
278 {
279 	struct inet_connection_sock *icsk = inet_csk(sk);
280 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
281 
282 	if (quickacks == 0)
283 		quickacks = 2;
284 	quickacks = min(quickacks, max_quickacks);
285 	if (quickacks > icsk->icsk_ack.quick)
286 		icsk->icsk_ack.quick = quickacks;
287 }
288 
289 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
290 {
291 	struct inet_connection_sock *icsk = inet_csk(sk);
292 
293 	tcp_incr_quickack(sk, max_quickacks);
294 	inet_csk_exit_pingpong_mode(sk);
295 	icsk->icsk_ack.ato = TCP_ATO_MIN;
296 }
297 EXPORT_SYMBOL(tcp_enter_quickack_mode);
298 
299 /* Send ACKs quickly, if "quick" count is not exhausted
300  * and the session is not interactive.
301  */
302 
303 static bool tcp_in_quickack_mode(struct sock *sk)
304 {
305 	const struct inet_connection_sock *icsk = inet_csk(sk);
306 	const struct dst_entry *dst = __sk_dst_get(sk);
307 
308 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
309 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
310 }
311 
312 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
313 {
314 	if (tp->ecn_flags & TCP_ECN_OK)
315 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
316 }
317 
318 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
319 {
320 	if (tcp_hdr(skb)->cwr) {
321 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
322 
323 		/* If the sender is telling us it has entered CWR, then its
324 		 * cwnd may be very low (even just 1 packet), so we should ACK
325 		 * immediately.
326 		 */
327 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
328 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
329 	}
330 }
331 
332 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
333 {
334 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
335 }
336 
337 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
338 {
339 	struct tcp_sock *tp = tcp_sk(sk);
340 
341 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
342 	case INET_ECN_NOT_ECT:
343 		/* Funny extension: if ECT is not set on a segment,
344 		 * and we already seen ECT on a previous segment,
345 		 * it is probably a retransmit.
346 		 */
347 		if (tp->ecn_flags & TCP_ECN_SEEN)
348 			tcp_enter_quickack_mode(sk, 2);
349 		break;
350 	case INET_ECN_CE:
351 		if (tcp_ca_needs_ecn(sk))
352 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
353 
354 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
355 			/* Better not delay acks, sender can have a very low cwnd */
356 			tcp_enter_quickack_mode(sk, 2);
357 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
358 		}
359 		tp->ecn_flags |= TCP_ECN_SEEN;
360 		break;
361 	default:
362 		if (tcp_ca_needs_ecn(sk))
363 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
364 		tp->ecn_flags |= TCP_ECN_SEEN;
365 		break;
366 	}
367 }
368 
369 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
370 {
371 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
372 		__tcp_ecn_check_ce(sk, skb);
373 }
374 
375 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
376 {
377 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
378 		tp->ecn_flags &= ~TCP_ECN_OK;
379 }
380 
381 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
382 {
383 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
384 		tp->ecn_flags &= ~TCP_ECN_OK;
385 }
386 
387 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
388 {
389 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
390 		return true;
391 	return false;
392 }
393 
394 /* Buffer size and advertised window tuning.
395  *
396  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
397  */
398 
399 static void tcp_sndbuf_expand(struct sock *sk)
400 {
401 	const struct tcp_sock *tp = tcp_sk(sk);
402 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
403 	int sndmem, per_mss;
404 	u32 nr_segs;
405 
406 	/* Worst case is non GSO/TSO : each frame consumes one skb
407 	 * and skb->head is kmalloced using power of two area of memory
408 	 */
409 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
410 		  MAX_TCP_HEADER +
411 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
412 
413 	per_mss = roundup_pow_of_two(per_mss) +
414 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
415 
416 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
417 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
418 
419 	/* Fast Recovery (RFC 5681 3.2) :
420 	 * Cubic needs 1.7 factor, rounded to 2 to include
421 	 * extra cushion (application might react slowly to EPOLLOUT)
422 	 */
423 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
424 	sndmem *= nr_segs * per_mss;
425 
426 	if (sk->sk_sndbuf < sndmem)
427 		WRITE_ONCE(sk->sk_sndbuf,
428 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
429 }
430 
431 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
432  *
433  * All tcp_full_space() is split to two parts: "network" buffer, allocated
434  * forward and advertised in receiver window (tp->rcv_wnd) and
435  * "application buffer", required to isolate scheduling/application
436  * latencies from network.
437  * window_clamp is maximal advertised window. It can be less than
438  * tcp_full_space(), in this case tcp_full_space() - window_clamp
439  * is reserved for "application" buffer. The less window_clamp is
440  * the smoother our behaviour from viewpoint of network, but the lower
441  * throughput and the higher sensitivity of the connection to losses. 8)
442  *
443  * rcv_ssthresh is more strict window_clamp used at "slow start"
444  * phase to predict further behaviour of this connection.
445  * It is used for two goals:
446  * - to enforce header prediction at sender, even when application
447  *   requires some significant "application buffer". It is check #1.
448  * - to prevent pruning of receive queue because of misprediction
449  *   of receiver window. Check #2.
450  *
451  * The scheme does not work when sender sends good segments opening
452  * window and then starts to feed us spaghetti. But it should work
453  * in common situations. Otherwise, we have to rely on queue collapsing.
454  */
455 
456 /* Slow part of check#2. */
457 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
458 {
459 	struct tcp_sock *tp = tcp_sk(sk);
460 	/* Optimize this! */
461 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
462 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
463 
464 	while (tp->rcv_ssthresh <= window) {
465 		if (truesize <= skb->len)
466 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
467 
468 		truesize >>= 1;
469 		window >>= 1;
470 	}
471 	return 0;
472 }
473 
474 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
475 {
476 	struct tcp_sock *tp = tcp_sk(sk);
477 	int room;
478 
479 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
480 
481 	/* Check #1 */
482 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
483 		int incr;
484 
485 		/* Check #2. Increase window, if skb with such overhead
486 		 * will fit to rcvbuf in future.
487 		 */
488 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
489 			incr = 2 * tp->advmss;
490 		else
491 			incr = __tcp_grow_window(sk, skb);
492 
493 		if (incr) {
494 			incr = max_t(int, incr, 2 * skb->len);
495 			tp->rcv_ssthresh += min(room, incr);
496 			inet_csk(sk)->icsk_ack.quick |= 1;
497 		}
498 	}
499 }
500 
501 /* 3. Try to fixup all. It is made immediately after connection enters
502  *    established state.
503  */
504 static void tcp_init_buffer_space(struct sock *sk)
505 {
506 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
507 	struct tcp_sock *tp = tcp_sk(sk);
508 	int maxwin;
509 
510 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
511 		tcp_sndbuf_expand(sk);
512 
513 	tcp_mstamp_refresh(tp);
514 	tp->rcvq_space.time = tp->tcp_mstamp;
515 	tp->rcvq_space.seq = tp->copied_seq;
516 
517 	maxwin = tcp_full_space(sk);
518 
519 	if (tp->window_clamp >= maxwin) {
520 		tp->window_clamp = maxwin;
521 
522 		if (tcp_app_win && maxwin > 4 * tp->advmss)
523 			tp->window_clamp = max(maxwin -
524 					       (maxwin >> tcp_app_win),
525 					       4 * tp->advmss);
526 	}
527 
528 	/* Force reservation of one segment. */
529 	if (tcp_app_win &&
530 	    tp->window_clamp > 2 * tp->advmss &&
531 	    tp->window_clamp + tp->advmss > maxwin)
532 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
533 
534 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
535 	tp->snd_cwnd_stamp = tcp_jiffies32;
536 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
537 				    (u32)TCP_INIT_CWND * tp->advmss);
538 }
539 
540 /* 4. Recalculate window clamp after socket hit its memory bounds. */
541 static void tcp_clamp_window(struct sock *sk)
542 {
543 	struct tcp_sock *tp = tcp_sk(sk);
544 	struct inet_connection_sock *icsk = inet_csk(sk);
545 	struct net *net = sock_net(sk);
546 
547 	icsk->icsk_ack.quick = 0;
548 
549 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
550 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
551 	    !tcp_under_memory_pressure(sk) &&
552 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
553 		WRITE_ONCE(sk->sk_rcvbuf,
554 			   min(atomic_read(&sk->sk_rmem_alloc),
555 			       net->ipv4.sysctl_tcp_rmem[2]));
556 	}
557 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
558 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
559 }
560 
561 /* Initialize RCV_MSS value.
562  * RCV_MSS is an our guess about MSS used by the peer.
563  * We haven't any direct information about the MSS.
564  * It's better to underestimate the RCV_MSS rather than overestimate.
565  * Overestimations make us ACKing less frequently than needed.
566  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
567  */
568 void tcp_initialize_rcv_mss(struct sock *sk)
569 {
570 	const struct tcp_sock *tp = tcp_sk(sk);
571 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
572 
573 	hint = min(hint, tp->rcv_wnd / 2);
574 	hint = min(hint, TCP_MSS_DEFAULT);
575 	hint = max(hint, TCP_MIN_MSS);
576 
577 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
578 }
579 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
580 
581 /* Receiver "autotuning" code.
582  *
583  * The algorithm for RTT estimation w/o timestamps is based on
584  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
585  * <https://public.lanl.gov/radiant/pubs.html#DRS>
586  *
587  * More detail on this code can be found at
588  * <http://staff.psc.edu/jheffner/>,
589  * though this reference is out of date.  A new paper
590  * is pending.
591  */
592 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
593 {
594 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
595 	long m = sample;
596 
597 	if (new_sample != 0) {
598 		/* If we sample in larger samples in the non-timestamp
599 		 * case, we could grossly overestimate the RTT especially
600 		 * with chatty applications or bulk transfer apps which
601 		 * are stalled on filesystem I/O.
602 		 *
603 		 * Also, since we are only going for a minimum in the
604 		 * non-timestamp case, we do not smooth things out
605 		 * else with timestamps disabled convergence takes too
606 		 * long.
607 		 */
608 		if (!win_dep) {
609 			m -= (new_sample >> 3);
610 			new_sample += m;
611 		} else {
612 			m <<= 3;
613 			if (m < new_sample)
614 				new_sample = m;
615 		}
616 	} else {
617 		/* No previous measure. */
618 		new_sample = m << 3;
619 	}
620 
621 	tp->rcv_rtt_est.rtt_us = new_sample;
622 }
623 
624 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
625 {
626 	u32 delta_us;
627 
628 	if (tp->rcv_rtt_est.time == 0)
629 		goto new_measure;
630 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
631 		return;
632 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
633 	if (!delta_us)
634 		delta_us = 1;
635 	tcp_rcv_rtt_update(tp, delta_us, 1);
636 
637 new_measure:
638 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
639 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
640 }
641 
642 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
643 					  const struct sk_buff *skb)
644 {
645 	struct tcp_sock *tp = tcp_sk(sk);
646 
647 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
648 		return;
649 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
650 
651 	if (TCP_SKB_CB(skb)->end_seq -
652 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
653 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
654 		u32 delta_us;
655 
656 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
657 			if (!delta)
658 				delta = 1;
659 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
660 			tcp_rcv_rtt_update(tp, delta_us, 0);
661 		}
662 	}
663 }
664 
665 /*
666  * This function should be called every time data is copied to user space.
667  * It calculates the appropriate TCP receive buffer space.
668  */
669 void tcp_rcv_space_adjust(struct sock *sk)
670 {
671 	struct tcp_sock *tp = tcp_sk(sk);
672 	u32 copied;
673 	int time;
674 
675 	trace_tcp_rcv_space_adjust(sk);
676 
677 	tcp_mstamp_refresh(tp);
678 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
679 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
680 		return;
681 
682 	/* Number of bytes copied to user in last RTT */
683 	copied = tp->copied_seq - tp->rcvq_space.seq;
684 	if (copied <= tp->rcvq_space.space)
685 		goto new_measure;
686 
687 	/* A bit of theory :
688 	 * copied = bytes received in previous RTT, our base window
689 	 * To cope with packet losses, we need a 2x factor
690 	 * To cope with slow start, and sender growing its cwin by 100 %
691 	 * every RTT, we need a 4x factor, because the ACK we are sending
692 	 * now is for the next RTT, not the current one :
693 	 * <prev RTT . ><current RTT .. ><next RTT .... >
694 	 */
695 
696 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
697 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
698 		int rcvmem, rcvbuf;
699 		u64 rcvwin, grow;
700 
701 		/* minimal window to cope with packet losses, assuming
702 		 * steady state. Add some cushion because of small variations.
703 		 */
704 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
705 
706 		/* Accommodate for sender rate increase (eg. slow start) */
707 		grow = rcvwin * (copied - tp->rcvq_space.space);
708 		do_div(grow, tp->rcvq_space.space);
709 		rcvwin += (grow << 1);
710 
711 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
712 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
713 			rcvmem += 128;
714 
715 		do_div(rcvwin, tp->advmss);
716 		rcvbuf = min_t(u64, rcvwin * rcvmem,
717 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
718 		if (rcvbuf > sk->sk_rcvbuf) {
719 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
720 
721 			/* Make the window clamp follow along.  */
722 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
723 		}
724 	}
725 	tp->rcvq_space.space = copied;
726 
727 new_measure:
728 	tp->rcvq_space.seq = tp->copied_seq;
729 	tp->rcvq_space.time = tp->tcp_mstamp;
730 }
731 
732 /* There is something which you must keep in mind when you analyze the
733  * behavior of the tp->ato delayed ack timeout interval.  When a
734  * connection starts up, we want to ack as quickly as possible.  The
735  * problem is that "good" TCP's do slow start at the beginning of data
736  * transmission.  The means that until we send the first few ACK's the
737  * sender will sit on his end and only queue most of his data, because
738  * he can only send snd_cwnd unacked packets at any given time.  For
739  * each ACK we send, he increments snd_cwnd and transmits more of his
740  * queue.  -DaveM
741  */
742 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
743 {
744 	struct tcp_sock *tp = tcp_sk(sk);
745 	struct inet_connection_sock *icsk = inet_csk(sk);
746 	u32 now;
747 
748 	inet_csk_schedule_ack(sk);
749 
750 	tcp_measure_rcv_mss(sk, skb);
751 
752 	tcp_rcv_rtt_measure(tp);
753 
754 	now = tcp_jiffies32;
755 
756 	if (!icsk->icsk_ack.ato) {
757 		/* The _first_ data packet received, initialize
758 		 * delayed ACK engine.
759 		 */
760 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
761 		icsk->icsk_ack.ato = TCP_ATO_MIN;
762 	} else {
763 		int m = now - icsk->icsk_ack.lrcvtime;
764 
765 		if (m <= TCP_ATO_MIN / 2) {
766 			/* The fastest case is the first. */
767 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
768 		} else if (m < icsk->icsk_ack.ato) {
769 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
770 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
771 				icsk->icsk_ack.ato = icsk->icsk_rto;
772 		} else if (m > icsk->icsk_rto) {
773 			/* Too long gap. Apparently sender failed to
774 			 * restart window, so that we send ACKs quickly.
775 			 */
776 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
777 			sk_mem_reclaim(sk);
778 		}
779 	}
780 	icsk->icsk_ack.lrcvtime = now;
781 
782 	tcp_ecn_check_ce(sk, skb);
783 
784 	if (skb->len >= 128)
785 		tcp_grow_window(sk, skb);
786 }
787 
788 /* Called to compute a smoothed rtt estimate. The data fed to this
789  * routine either comes from timestamps, or from segments that were
790  * known _not_ to have been retransmitted [see Karn/Partridge
791  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
792  * piece by Van Jacobson.
793  * NOTE: the next three routines used to be one big routine.
794  * To save cycles in the RFC 1323 implementation it was better to break
795  * it up into three procedures. -- erics
796  */
797 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
798 {
799 	struct tcp_sock *tp = tcp_sk(sk);
800 	long m = mrtt_us; /* RTT */
801 	u32 srtt = tp->srtt_us;
802 
803 	/*	The following amusing code comes from Jacobson's
804 	 *	article in SIGCOMM '88.  Note that rtt and mdev
805 	 *	are scaled versions of rtt and mean deviation.
806 	 *	This is designed to be as fast as possible
807 	 *	m stands for "measurement".
808 	 *
809 	 *	On a 1990 paper the rto value is changed to:
810 	 *	RTO = rtt + 4 * mdev
811 	 *
812 	 * Funny. This algorithm seems to be very broken.
813 	 * These formulae increase RTO, when it should be decreased, increase
814 	 * too slowly, when it should be increased quickly, decrease too quickly
815 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
816 	 * does not matter how to _calculate_ it. Seems, it was trap
817 	 * that VJ failed to avoid. 8)
818 	 */
819 	if (srtt != 0) {
820 		m -= (srtt >> 3);	/* m is now error in rtt est */
821 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
822 		if (m < 0) {
823 			m = -m;		/* m is now abs(error) */
824 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
825 			/* This is similar to one of Eifel findings.
826 			 * Eifel blocks mdev updates when rtt decreases.
827 			 * This solution is a bit different: we use finer gain
828 			 * for mdev in this case (alpha*beta).
829 			 * Like Eifel it also prevents growth of rto,
830 			 * but also it limits too fast rto decreases,
831 			 * happening in pure Eifel.
832 			 */
833 			if (m > 0)
834 				m >>= 3;
835 		} else {
836 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
837 		}
838 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
839 		if (tp->mdev_us > tp->mdev_max_us) {
840 			tp->mdev_max_us = tp->mdev_us;
841 			if (tp->mdev_max_us > tp->rttvar_us)
842 				tp->rttvar_us = tp->mdev_max_us;
843 		}
844 		if (after(tp->snd_una, tp->rtt_seq)) {
845 			if (tp->mdev_max_us < tp->rttvar_us)
846 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
847 			tp->rtt_seq = tp->snd_nxt;
848 			tp->mdev_max_us = tcp_rto_min_us(sk);
849 
850 			tcp_bpf_rtt(sk);
851 		}
852 	} else {
853 		/* no previous measure. */
854 		srtt = m << 3;		/* take the measured time to be rtt */
855 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
856 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
857 		tp->mdev_max_us = tp->rttvar_us;
858 		tp->rtt_seq = tp->snd_nxt;
859 
860 		tcp_bpf_rtt(sk);
861 	}
862 	tp->srtt_us = max(1U, srtt);
863 }
864 
865 static void tcp_update_pacing_rate(struct sock *sk)
866 {
867 	const struct tcp_sock *tp = tcp_sk(sk);
868 	u64 rate;
869 
870 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
871 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
872 
873 	/* current rate is (cwnd * mss) / srtt
874 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
875 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
876 	 *
877 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
878 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
879 	 *	 end of slow start and should slow down.
880 	 */
881 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
882 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
883 	else
884 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
885 
886 	rate *= max(tp->snd_cwnd, tp->packets_out);
887 
888 	if (likely(tp->srtt_us))
889 		do_div(rate, tp->srtt_us);
890 
891 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
892 	 * without any lock. We want to make sure compiler wont store
893 	 * intermediate values in this location.
894 	 */
895 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
896 					     sk->sk_max_pacing_rate));
897 }
898 
899 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
900  * routine referred to above.
901  */
902 static void tcp_set_rto(struct sock *sk)
903 {
904 	const struct tcp_sock *tp = tcp_sk(sk);
905 	/* Old crap is replaced with new one. 8)
906 	 *
907 	 * More seriously:
908 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
909 	 *    It cannot be less due to utterly erratic ACK generation made
910 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
911 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
912 	 *    is invisible. Actually, Linux-2.4 also generates erratic
913 	 *    ACKs in some circumstances.
914 	 */
915 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
916 
917 	/* 2. Fixups made earlier cannot be right.
918 	 *    If we do not estimate RTO correctly without them,
919 	 *    all the algo is pure shit and should be replaced
920 	 *    with correct one. It is exactly, which we pretend to do.
921 	 */
922 
923 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
924 	 * guarantees that rto is higher.
925 	 */
926 	tcp_bound_rto(sk);
927 }
928 
929 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
930 {
931 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
932 
933 	if (!cwnd)
934 		cwnd = TCP_INIT_CWND;
935 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
936 }
937 
938 struct tcp_sacktag_state {
939 	/* Timestamps for earliest and latest never-retransmitted segment
940 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
941 	 * but congestion control should still get an accurate delay signal.
942 	 */
943 	u64	first_sackt;
944 	u64	last_sackt;
945 	u32	reord;
946 	u32	sack_delivered;
947 	int	flag;
948 	unsigned int mss_now;
949 	struct rate_sample *rate;
950 };
951 
952 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
953  * and spurious retransmission information if this DSACK is unlikely caused by
954  * sender's action:
955  * - DSACKed sequence range is larger than maximum receiver's window.
956  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
957  */
958 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
959 			  u32 end_seq, struct tcp_sacktag_state *state)
960 {
961 	u32 seq_len, dup_segs = 1;
962 
963 	if (!before(start_seq, end_seq))
964 		return 0;
965 
966 	seq_len = end_seq - start_seq;
967 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
968 	if (seq_len > tp->max_window)
969 		return 0;
970 	if (seq_len > tp->mss_cache)
971 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
972 
973 	tp->dsack_dups += dup_segs;
974 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
975 	if (tp->dsack_dups > tp->total_retrans)
976 		return 0;
977 
978 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
979 	tp->rack.dsack_seen = 1;
980 
981 	state->flag |= FLAG_DSACKING_ACK;
982 	/* A spurious retransmission is delivered */
983 	state->sack_delivered += dup_segs;
984 
985 	return dup_segs;
986 }
987 
988 /* It's reordering when higher sequence was delivered (i.e. sacked) before
989  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
990  * distance is approximated in full-mss packet distance ("reordering").
991  */
992 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
993 				      const int ts)
994 {
995 	struct tcp_sock *tp = tcp_sk(sk);
996 	const u32 mss = tp->mss_cache;
997 	u32 fack, metric;
998 
999 	fack = tcp_highest_sack_seq(tp);
1000 	if (!before(low_seq, fack))
1001 		return;
1002 
1003 	metric = fack - low_seq;
1004 	if ((metric > tp->reordering * mss) && mss) {
1005 #if FASTRETRANS_DEBUG > 1
1006 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1007 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1008 			 tp->reordering,
1009 			 0,
1010 			 tp->sacked_out,
1011 			 tp->undo_marker ? tp->undo_retrans : 0);
1012 #endif
1013 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1014 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1015 	}
1016 
1017 	/* This exciting event is worth to be remembered. 8) */
1018 	tp->reord_seen++;
1019 	NET_INC_STATS(sock_net(sk),
1020 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1021 }
1022 
1023  /* This must be called before lost_out or retrans_out are updated
1024   * on a new loss, because we want to know if all skbs previously
1025   * known to be lost have already been retransmitted, indicating
1026   * that this newly lost skb is our next skb to retransmit.
1027   */
1028 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1029 {
1030 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1031 	    (tp->retransmit_skb_hint &&
1032 	     before(TCP_SKB_CB(skb)->seq,
1033 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1034 		tp->retransmit_skb_hint = skb;
1035 }
1036 
1037 /* Sum the number of packets on the wire we have marked as lost, and
1038  * notify the congestion control module that the given skb was marked lost.
1039  */
1040 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1041 {
1042 	tp->lost += tcp_skb_pcount(skb);
1043 }
1044 
1045 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1046 {
1047 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1048 	struct tcp_sock *tp = tcp_sk(sk);
1049 
1050 	if (sacked & TCPCB_SACKED_ACKED)
1051 		return;
1052 
1053 	tcp_verify_retransmit_hint(tp, skb);
1054 	if (sacked & TCPCB_LOST) {
1055 		if (sacked & TCPCB_SACKED_RETRANS) {
1056 			/* Account for retransmits that are lost again */
1057 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1058 			tp->retrans_out -= tcp_skb_pcount(skb);
1059 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1060 				      tcp_skb_pcount(skb));
1061 			tcp_notify_skb_loss_event(tp, skb);
1062 		}
1063 	} else {
1064 		tp->lost_out += tcp_skb_pcount(skb);
1065 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1066 		tcp_notify_skb_loss_event(tp, skb);
1067 	}
1068 }
1069 
1070 /* Updates the delivered and delivered_ce counts */
1071 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1072 				bool ece_ack)
1073 {
1074 	tp->delivered += delivered;
1075 	if (ece_ack)
1076 		tp->delivered_ce += delivered;
1077 }
1078 
1079 /* This procedure tags the retransmission queue when SACKs arrive.
1080  *
1081  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1082  * Packets in queue with these bits set are counted in variables
1083  * sacked_out, retrans_out and lost_out, correspondingly.
1084  *
1085  * Valid combinations are:
1086  * Tag  InFlight	Description
1087  * 0	1		- orig segment is in flight.
1088  * S	0		- nothing flies, orig reached receiver.
1089  * L	0		- nothing flies, orig lost by net.
1090  * R	2		- both orig and retransmit are in flight.
1091  * L|R	1		- orig is lost, retransmit is in flight.
1092  * S|R  1		- orig reached receiver, retrans is still in flight.
1093  * (L|S|R is logically valid, it could occur when L|R is sacked,
1094  *  but it is equivalent to plain S and code short-curcuits it to S.
1095  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1096  *
1097  * These 6 states form finite state machine, controlled by the following events:
1098  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1099  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1100  * 3. Loss detection event of two flavors:
1101  *	A. Scoreboard estimator decided the packet is lost.
1102  *	   A'. Reno "three dupacks" marks head of queue lost.
1103  *	B. SACK arrives sacking SND.NXT at the moment, when the
1104  *	   segment was retransmitted.
1105  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1106  *
1107  * It is pleasant to note, that state diagram turns out to be commutative,
1108  * so that we are allowed not to be bothered by order of our actions,
1109  * when multiple events arrive simultaneously. (see the function below).
1110  *
1111  * Reordering detection.
1112  * --------------------
1113  * Reordering metric is maximal distance, which a packet can be displaced
1114  * in packet stream. With SACKs we can estimate it:
1115  *
1116  * 1. SACK fills old hole and the corresponding segment was not
1117  *    ever retransmitted -> reordering. Alas, we cannot use it
1118  *    when segment was retransmitted.
1119  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1120  *    for retransmitted and already SACKed segment -> reordering..
1121  * Both of these heuristics are not used in Loss state, when we cannot
1122  * account for retransmits accurately.
1123  *
1124  * SACK block validation.
1125  * ----------------------
1126  *
1127  * SACK block range validation checks that the received SACK block fits to
1128  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1129  * Note that SND.UNA is not included to the range though being valid because
1130  * it means that the receiver is rather inconsistent with itself reporting
1131  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1132  * perfectly valid, however, in light of RFC2018 which explicitly states
1133  * that "SACK block MUST reflect the newest segment.  Even if the newest
1134  * segment is going to be discarded ...", not that it looks very clever
1135  * in case of head skb. Due to potentional receiver driven attacks, we
1136  * choose to avoid immediate execution of a walk in write queue due to
1137  * reneging and defer head skb's loss recovery to standard loss recovery
1138  * procedure that will eventually trigger (nothing forbids us doing this).
1139  *
1140  * Implements also blockage to start_seq wrap-around. Problem lies in the
1141  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1142  * there's no guarantee that it will be before snd_nxt (n). The problem
1143  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1144  * wrap (s_w):
1145  *
1146  *         <- outs wnd ->                          <- wrapzone ->
1147  *         u     e      n                         u_w   e_w  s n_w
1148  *         |     |      |                          |     |   |  |
1149  * |<------------+------+----- TCP seqno space --------------+---------->|
1150  * ...-- <2^31 ->|                                           |<--------...
1151  * ...---- >2^31 ------>|                                    |<--------...
1152  *
1153  * Current code wouldn't be vulnerable but it's better still to discard such
1154  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1155  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1156  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1157  * equal to the ideal case (infinite seqno space without wrap caused issues).
1158  *
1159  * With D-SACK the lower bound is extended to cover sequence space below
1160  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1161  * again, D-SACK block must not to go across snd_una (for the same reason as
1162  * for the normal SACK blocks, explained above). But there all simplicity
1163  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1164  * fully below undo_marker they do not affect behavior in anyway and can
1165  * therefore be safely ignored. In rare cases (which are more or less
1166  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1167  * fragmentation and packet reordering past skb's retransmission. To consider
1168  * them correctly, the acceptable range must be extended even more though
1169  * the exact amount is rather hard to quantify. However, tp->max_window can
1170  * be used as an exaggerated estimate.
1171  */
1172 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1173 				   u32 start_seq, u32 end_seq)
1174 {
1175 	/* Too far in future, or reversed (interpretation is ambiguous) */
1176 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1177 		return false;
1178 
1179 	/* Nasty start_seq wrap-around check (see comments above) */
1180 	if (!before(start_seq, tp->snd_nxt))
1181 		return false;
1182 
1183 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1184 	 * start_seq == snd_una is non-sensical (see comments above)
1185 	 */
1186 	if (after(start_seq, tp->snd_una))
1187 		return true;
1188 
1189 	if (!is_dsack || !tp->undo_marker)
1190 		return false;
1191 
1192 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1193 	if (after(end_seq, tp->snd_una))
1194 		return false;
1195 
1196 	if (!before(start_seq, tp->undo_marker))
1197 		return true;
1198 
1199 	/* Too old */
1200 	if (!after(end_seq, tp->undo_marker))
1201 		return false;
1202 
1203 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1204 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1205 	 */
1206 	return !before(start_seq, end_seq - tp->max_window);
1207 }
1208 
1209 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1210 			    struct tcp_sack_block_wire *sp, int num_sacks,
1211 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1212 {
1213 	struct tcp_sock *tp = tcp_sk(sk);
1214 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1215 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1216 	u32 dup_segs;
1217 
1218 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1219 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1220 	} else if (num_sacks > 1) {
1221 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1222 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1223 
1224 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1225 			return false;
1226 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1227 	} else {
1228 		return false;
1229 	}
1230 
1231 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1232 	if (!dup_segs) {	/* Skip dubious DSACK */
1233 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1234 		return false;
1235 	}
1236 
1237 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1238 
1239 	/* D-SACK for already forgotten data... Do dumb counting. */
1240 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1241 	    !after(end_seq_0, prior_snd_una) &&
1242 	    after(end_seq_0, tp->undo_marker))
1243 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1244 
1245 	return true;
1246 }
1247 
1248 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1249  * the incoming SACK may not exactly match but we can find smaller MSS
1250  * aligned portion of it that matches. Therefore we might need to fragment
1251  * which may fail and creates some hassle (caller must handle error case
1252  * returns).
1253  *
1254  * FIXME: this could be merged to shift decision code
1255  */
1256 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1257 				  u32 start_seq, u32 end_seq)
1258 {
1259 	int err;
1260 	bool in_sack;
1261 	unsigned int pkt_len;
1262 	unsigned int mss;
1263 
1264 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1265 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1266 
1267 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1268 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1269 		mss = tcp_skb_mss(skb);
1270 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1271 
1272 		if (!in_sack) {
1273 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1274 			if (pkt_len < mss)
1275 				pkt_len = mss;
1276 		} else {
1277 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1278 			if (pkt_len < mss)
1279 				return -EINVAL;
1280 		}
1281 
1282 		/* Round if necessary so that SACKs cover only full MSSes
1283 		 * and/or the remaining small portion (if present)
1284 		 */
1285 		if (pkt_len > mss) {
1286 			unsigned int new_len = (pkt_len / mss) * mss;
1287 			if (!in_sack && new_len < pkt_len)
1288 				new_len += mss;
1289 			pkt_len = new_len;
1290 		}
1291 
1292 		if (pkt_len >= skb->len && !in_sack)
1293 			return 0;
1294 
1295 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1296 				   pkt_len, mss, GFP_ATOMIC);
1297 		if (err < 0)
1298 			return err;
1299 	}
1300 
1301 	return in_sack;
1302 }
1303 
1304 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1305 static u8 tcp_sacktag_one(struct sock *sk,
1306 			  struct tcp_sacktag_state *state, u8 sacked,
1307 			  u32 start_seq, u32 end_seq,
1308 			  int dup_sack, int pcount,
1309 			  u64 xmit_time)
1310 {
1311 	struct tcp_sock *tp = tcp_sk(sk);
1312 
1313 	/* Account D-SACK for retransmitted packet. */
1314 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1315 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1316 		    after(end_seq, tp->undo_marker))
1317 			tp->undo_retrans--;
1318 		if ((sacked & TCPCB_SACKED_ACKED) &&
1319 		    before(start_seq, state->reord))
1320 				state->reord = start_seq;
1321 	}
1322 
1323 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1324 	if (!after(end_seq, tp->snd_una))
1325 		return sacked;
1326 
1327 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1328 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1329 
1330 		if (sacked & TCPCB_SACKED_RETRANS) {
1331 			/* If the segment is not tagged as lost,
1332 			 * we do not clear RETRANS, believing
1333 			 * that retransmission is still in flight.
1334 			 */
1335 			if (sacked & TCPCB_LOST) {
1336 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1337 				tp->lost_out -= pcount;
1338 				tp->retrans_out -= pcount;
1339 			}
1340 		} else {
1341 			if (!(sacked & TCPCB_RETRANS)) {
1342 				/* New sack for not retransmitted frame,
1343 				 * which was in hole. It is reordering.
1344 				 */
1345 				if (before(start_seq,
1346 					   tcp_highest_sack_seq(tp)) &&
1347 				    before(start_seq, state->reord))
1348 					state->reord = start_seq;
1349 
1350 				if (!after(end_seq, tp->high_seq))
1351 					state->flag |= FLAG_ORIG_SACK_ACKED;
1352 				if (state->first_sackt == 0)
1353 					state->first_sackt = xmit_time;
1354 				state->last_sackt = xmit_time;
1355 			}
1356 
1357 			if (sacked & TCPCB_LOST) {
1358 				sacked &= ~TCPCB_LOST;
1359 				tp->lost_out -= pcount;
1360 			}
1361 		}
1362 
1363 		sacked |= TCPCB_SACKED_ACKED;
1364 		state->flag |= FLAG_DATA_SACKED;
1365 		tp->sacked_out += pcount;
1366 		/* Out-of-order packets delivered */
1367 		state->sack_delivered += pcount;
1368 
1369 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1370 		if (tp->lost_skb_hint &&
1371 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1372 			tp->lost_cnt_hint += pcount;
1373 	}
1374 
1375 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1376 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1377 	 * are accounted above as well.
1378 	 */
1379 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1380 		sacked &= ~TCPCB_SACKED_RETRANS;
1381 		tp->retrans_out -= pcount;
1382 	}
1383 
1384 	return sacked;
1385 }
1386 
1387 /* Shift newly-SACKed bytes from this skb to the immediately previous
1388  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1389  */
1390 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1391 			    struct sk_buff *skb,
1392 			    struct tcp_sacktag_state *state,
1393 			    unsigned int pcount, int shifted, int mss,
1394 			    bool dup_sack)
1395 {
1396 	struct tcp_sock *tp = tcp_sk(sk);
1397 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1398 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1399 
1400 	BUG_ON(!pcount);
1401 
1402 	/* Adjust counters and hints for the newly sacked sequence
1403 	 * range but discard the return value since prev is already
1404 	 * marked. We must tag the range first because the seq
1405 	 * advancement below implicitly advances
1406 	 * tcp_highest_sack_seq() when skb is highest_sack.
1407 	 */
1408 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1409 			start_seq, end_seq, dup_sack, pcount,
1410 			tcp_skb_timestamp_us(skb));
1411 	tcp_rate_skb_delivered(sk, skb, state->rate);
1412 
1413 	if (skb == tp->lost_skb_hint)
1414 		tp->lost_cnt_hint += pcount;
1415 
1416 	TCP_SKB_CB(prev)->end_seq += shifted;
1417 	TCP_SKB_CB(skb)->seq += shifted;
1418 
1419 	tcp_skb_pcount_add(prev, pcount);
1420 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1421 	tcp_skb_pcount_add(skb, -pcount);
1422 
1423 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1424 	 * in theory this shouldn't be necessary but as long as DSACK
1425 	 * code can come after this skb later on it's better to keep
1426 	 * setting gso_size to something.
1427 	 */
1428 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1429 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1430 
1431 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1432 	if (tcp_skb_pcount(skb) <= 1)
1433 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1434 
1435 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1436 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1437 
1438 	if (skb->len > 0) {
1439 		BUG_ON(!tcp_skb_pcount(skb));
1440 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1441 		return false;
1442 	}
1443 
1444 	/* Whole SKB was eaten :-) */
1445 
1446 	if (skb == tp->retransmit_skb_hint)
1447 		tp->retransmit_skb_hint = prev;
1448 	if (skb == tp->lost_skb_hint) {
1449 		tp->lost_skb_hint = prev;
1450 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1451 	}
1452 
1453 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1454 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1455 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1456 		TCP_SKB_CB(prev)->end_seq++;
1457 
1458 	if (skb == tcp_highest_sack(sk))
1459 		tcp_advance_highest_sack(sk, skb);
1460 
1461 	tcp_skb_collapse_tstamp(prev, skb);
1462 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1463 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1464 
1465 	tcp_rtx_queue_unlink_and_free(skb, sk);
1466 
1467 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1468 
1469 	return true;
1470 }
1471 
1472 /* I wish gso_size would have a bit more sane initialization than
1473  * something-or-zero which complicates things
1474  */
1475 static int tcp_skb_seglen(const struct sk_buff *skb)
1476 {
1477 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1478 }
1479 
1480 /* Shifting pages past head area doesn't work */
1481 static int skb_can_shift(const struct sk_buff *skb)
1482 {
1483 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1484 }
1485 
1486 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1487 		  int pcount, int shiftlen)
1488 {
1489 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1490 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1491 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1492 	 * even if current MSS is bigger.
1493 	 */
1494 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1495 		return 0;
1496 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1497 		return 0;
1498 	return skb_shift(to, from, shiftlen);
1499 }
1500 
1501 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1502  * skb.
1503  */
1504 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1505 					  struct tcp_sacktag_state *state,
1506 					  u32 start_seq, u32 end_seq,
1507 					  bool dup_sack)
1508 {
1509 	struct tcp_sock *tp = tcp_sk(sk);
1510 	struct sk_buff *prev;
1511 	int mss;
1512 	int pcount = 0;
1513 	int len;
1514 	int in_sack;
1515 
1516 	/* Normally R but no L won't result in plain S */
1517 	if (!dup_sack &&
1518 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1519 		goto fallback;
1520 	if (!skb_can_shift(skb))
1521 		goto fallback;
1522 	/* This frame is about to be dropped (was ACKed). */
1523 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1524 		goto fallback;
1525 
1526 	/* Can only happen with delayed DSACK + discard craziness */
1527 	prev = skb_rb_prev(skb);
1528 	if (!prev)
1529 		goto fallback;
1530 
1531 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1532 		goto fallback;
1533 
1534 	if (!tcp_skb_can_collapse(prev, skb))
1535 		goto fallback;
1536 
1537 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1538 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1539 
1540 	if (in_sack) {
1541 		len = skb->len;
1542 		pcount = tcp_skb_pcount(skb);
1543 		mss = tcp_skb_seglen(skb);
1544 
1545 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1546 		 * drop this restriction as unnecessary
1547 		 */
1548 		if (mss != tcp_skb_seglen(prev))
1549 			goto fallback;
1550 	} else {
1551 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1552 			goto noop;
1553 		/* CHECKME: This is non-MSS split case only?, this will
1554 		 * cause skipped skbs due to advancing loop btw, original
1555 		 * has that feature too
1556 		 */
1557 		if (tcp_skb_pcount(skb) <= 1)
1558 			goto noop;
1559 
1560 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1561 		if (!in_sack) {
1562 			/* TODO: head merge to next could be attempted here
1563 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1564 			 * though it might not be worth of the additional hassle
1565 			 *
1566 			 * ...we can probably just fallback to what was done
1567 			 * previously. We could try merging non-SACKed ones
1568 			 * as well but it probably isn't going to buy off
1569 			 * because later SACKs might again split them, and
1570 			 * it would make skb timestamp tracking considerably
1571 			 * harder problem.
1572 			 */
1573 			goto fallback;
1574 		}
1575 
1576 		len = end_seq - TCP_SKB_CB(skb)->seq;
1577 		BUG_ON(len < 0);
1578 		BUG_ON(len > skb->len);
1579 
1580 		/* MSS boundaries should be honoured or else pcount will
1581 		 * severely break even though it makes things bit trickier.
1582 		 * Optimize common case to avoid most of the divides
1583 		 */
1584 		mss = tcp_skb_mss(skb);
1585 
1586 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1587 		 * drop this restriction as unnecessary
1588 		 */
1589 		if (mss != tcp_skb_seglen(prev))
1590 			goto fallback;
1591 
1592 		if (len == mss) {
1593 			pcount = 1;
1594 		} else if (len < mss) {
1595 			goto noop;
1596 		} else {
1597 			pcount = len / mss;
1598 			len = pcount * mss;
1599 		}
1600 	}
1601 
1602 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1603 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1604 		goto fallback;
1605 
1606 	if (!tcp_skb_shift(prev, skb, pcount, len))
1607 		goto fallback;
1608 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1609 		goto out;
1610 
1611 	/* Hole filled allows collapsing with the next as well, this is very
1612 	 * useful when hole on every nth skb pattern happens
1613 	 */
1614 	skb = skb_rb_next(prev);
1615 	if (!skb)
1616 		goto out;
1617 
1618 	if (!skb_can_shift(skb) ||
1619 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1620 	    (mss != tcp_skb_seglen(skb)))
1621 		goto out;
1622 
1623 	len = skb->len;
1624 	pcount = tcp_skb_pcount(skb);
1625 	if (tcp_skb_shift(prev, skb, pcount, len))
1626 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1627 				len, mss, 0);
1628 
1629 out:
1630 	return prev;
1631 
1632 noop:
1633 	return skb;
1634 
1635 fallback:
1636 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1637 	return NULL;
1638 }
1639 
1640 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1641 					struct tcp_sack_block *next_dup,
1642 					struct tcp_sacktag_state *state,
1643 					u32 start_seq, u32 end_seq,
1644 					bool dup_sack_in)
1645 {
1646 	struct tcp_sock *tp = tcp_sk(sk);
1647 	struct sk_buff *tmp;
1648 
1649 	skb_rbtree_walk_from(skb) {
1650 		int in_sack = 0;
1651 		bool dup_sack = dup_sack_in;
1652 
1653 		/* queue is in-order => we can short-circuit the walk early */
1654 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1655 			break;
1656 
1657 		if (next_dup  &&
1658 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1659 			in_sack = tcp_match_skb_to_sack(sk, skb,
1660 							next_dup->start_seq,
1661 							next_dup->end_seq);
1662 			if (in_sack > 0)
1663 				dup_sack = true;
1664 		}
1665 
1666 		/* skb reference here is a bit tricky to get right, since
1667 		 * shifting can eat and free both this skb and the next,
1668 		 * so not even _safe variant of the loop is enough.
1669 		 */
1670 		if (in_sack <= 0) {
1671 			tmp = tcp_shift_skb_data(sk, skb, state,
1672 						 start_seq, end_seq, dup_sack);
1673 			if (tmp) {
1674 				if (tmp != skb) {
1675 					skb = tmp;
1676 					continue;
1677 				}
1678 
1679 				in_sack = 0;
1680 			} else {
1681 				in_sack = tcp_match_skb_to_sack(sk, skb,
1682 								start_seq,
1683 								end_seq);
1684 			}
1685 		}
1686 
1687 		if (unlikely(in_sack < 0))
1688 			break;
1689 
1690 		if (in_sack) {
1691 			TCP_SKB_CB(skb)->sacked =
1692 				tcp_sacktag_one(sk,
1693 						state,
1694 						TCP_SKB_CB(skb)->sacked,
1695 						TCP_SKB_CB(skb)->seq,
1696 						TCP_SKB_CB(skb)->end_seq,
1697 						dup_sack,
1698 						tcp_skb_pcount(skb),
1699 						tcp_skb_timestamp_us(skb));
1700 			tcp_rate_skb_delivered(sk, skb, state->rate);
1701 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1702 				list_del_init(&skb->tcp_tsorted_anchor);
1703 
1704 			if (!before(TCP_SKB_CB(skb)->seq,
1705 				    tcp_highest_sack_seq(tp)))
1706 				tcp_advance_highest_sack(sk, skb);
1707 		}
1708 	}
1709 	return skb;
1710 }
1711 
1712 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1713 {
1714 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1715 	struct sk_buff *skb;
1716 
1717 	while (*p) {
1718 		parent = *p;
1719 		skb = rb_to_skb(parent);
1720 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1721 			p = &parent->rb_left;
1722 			continue;
1723 		}
1724 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1725 			p = &parent->rb_right;
1726 			continue;
1727 		}
1728 		return skb;
1729 	}
1730 	return NULL;
1731 }
1732 
1733 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1734 					u32 skip_to_seq)
1735 {
1736 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1737 		return skb;
1738 
1739 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1740 }
1741 
1742 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1743 						struct sock *sk,
1744 						struct tcp_sack_block *next_dup,
1745 						struct tcp_sacktag_state *state,
1746 						u32 skip_to_seq)
1747 {
1748 	if (!next_dup)
1749 		return skb;
1750 
1751 	if (before(next_dup->start_seq, skip_to_seq)) {
1752 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1753 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1754 				       next_dup->start_seq, next_dup->end_seq,
1755 				       1);
1756 	}
1757 
1758 	return skb;
1759 }
1760 
1761 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1762 {
1763 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1764 }
1765 
1766 static int
1767 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1768 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1769 {
1770 	struct tcp_sock *tp = tcp_sk(sk);
1771 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1772 				    TCP_SKB_CB(ack_skb)->sacked);
1773 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1774 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1775 	struct tcp_sack_block *cache;
1776 	struct sk_buff *skb;
1777 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1778 	int used_sacks;
1779 	bool found_dup_sack = false;
1780 	int i, j;
1781 	int first_sack_index;
1782 
1783 	state->flag = 0;
1784 	state->reord = tp->snd_nxt;
1785 
1786 	if (!tp->sacked_out)
1787 		tcp_highest_sack_reset(sk);
1788 
1789 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1790 					 num_sacks, prior_snd_una, state);
1791 
1792 	/* Eliminate too old ACKs, but take into
1793 	 * account more or less fresh ones, they can
1794 	 * contain valid SACK info.
1795 	 */
1796 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1797 		return 0;
1798 
1799 	if (!tp->packets_out)
1800 		goto out;
1801 
1802 	used_sacks = 0;
1803 	first_sack_index = 0;
1804 	for (i = 0; i < num_sacks; i++) {
1805 		bool dup_sack = !i && found_dup_sack;
1806 
1807 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1808 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1809 
1810 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1811 					    sp[used_sacks].start_seq,
1812 					    sp[used_sacks].end_seq)) {
1813 			int mib_idx;
1814 
1815 			if (dup_sack) {
1816 				if (!tp->undo_marker)
1817 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1818 				else
1819 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1820 			} else {
1821 				/* Don't count olds caused by ACK reordering */
1822 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1823 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1824 					continue;
1825 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1826 			}
1827 
1828 			NET_INC_STATS(sock_net(sk), mib_idx);
1829 			if (i == 0)
1830 				first_sack_index = -1;
1831 			continue;
1832 		}
1833 
1834 		/* Ignore very old stuff early */
1835 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1836 			if (i == 0)
1837 				first_sack_index = -1;
1838 			continue;
1839 		}
1840 
1841 		used_sacks++;
1842 	}
1843 
1844 	/* order SACK blocks to allow in order walk of the retrans queue */
1845 	for (i = used_sacks - 1; i > 0; i--) {
1846 		for (j = 0; j < i; j++) {
1847 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1848 				swap(sp[j], sp[j + 1]);
1849 
1850 				/* Track where the first SACK block goes to */
1851 				if (j == first_sack_index)
1852 					first_sack_index = j + 1;
1853 			}
1854 		}
1855 	}
1856 
1857 	state->mss_now = tcp_current_mss(sk);
1858 	skb = NULL;
1859 	i = 0;
1860 
1861 	if (!tp->sacked_out) {
1862 		/* It's already past, so skip checking against it */
1863 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1864 	} else {
1865 		cache = tp->recv_sack_cache;
1866 		/* Skip empty blocks in at head of the cache */
1867 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1868 		       !cache->end_seq)
1869 			cache++;
1870 	}
1871 
1872 	while (i < used_sacks) {
1873 		u32 start_seq = sp[i].start_seq;
1874 		u32 end_seq = sp[i].end_seq;
1875 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1876 		struct tcp_sack_block *next_dup = NULL;
1877 
1878 		if (found_dup_sack && ((i + 1) == first_sack_index))
1879 			next_dup = &sp[i + 1];
1880 
1881 		/* Skip too early cached blocks */
1882 		while (tcp_sack_cache_ok(tp, cache) &&
1883 		       !before(start_seq, cache->end_seq))
1884 			cache++;
1885 
1886 		/* Can skip some work by looking recv_sack_cache? */
1887 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1888 		    after(end_seq, cache->start_seq)) {
1889 
1890 			/* Head todo? */
1891 			if (before(start_seq, cache->start_seq)) {
1892 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1893 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1894 						       state,
1895 						       start_seq,
1896 						       cache->start_seq,
1897 						       dup_sack);
1898 			}
1899 
1900 			/* Rest of the block already fully processed? */
1901 			if (!after(end_seq, cache->end_seq))
1902 				goto advance_sp;
1903 
1904 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1905 						       state,
1906 						       cache->end_seq);
1907 
1908 			/* ...tail remains todo... */
1909 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1910 				/* ...but better entrypoint exists! */
1911 				skb = tcp_highest_sack(sk);
1912 				if (!skb)
1913 					break;
1914 				cache++;
1915 				goto walk;
1916 			}
1917 
1918 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1919 			/* Check overlap against next cached too (past this one already) */
1920 			cache++;
1921 			continue;
1922 		}
1923 
1924 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1925 			skb = tcp_highest_sack(sk);
1926 			if (!skb)
1927 				break;
1928 		}
1929 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1930 
1931 walk:
1932 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1933 				       start_seq, end_seq, dup_sack);
1934 
1935 advance_sp:
1936 		i++;
1937 	}
1938 
1939 	/* Clear the head of the cache sack blocks so we can skip it next time */
1940 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1941 		tp->recv_sack_cache[i].start_seq = 0;
1942 		tp->recv_sack_cache[i].end_seq = 0;
1943 	}
1944 	for (j = 0; j < used_sacks; j++)
1945 		tp->recv_sack_cache[i++] = sp[j];
1946 
1947 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1948 		tcp_check_sack_reordering(sk, state->reord, 0);
1949 
1950 	tcp_verify_left_out(tp);
1951 out:
1952 
1953 #if FASTRETRANS_DEBUG > 0
1954 	WARN_ON((int)tp->sacked_out < 0);
1955 	WARN_ON((int)tp->lost_out < 0);
1956 	WARN_ON((int)tp->retrans_out < 0);
1957 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1958 #endif
1959 	return state->flag;
1960 }
1961 
1962 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1963  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1964  */
1965 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1966 {
1967 	u32 holes;
1968 
1969 	holes = max(tp->lost_out, 1U);
1970 	holes = min(holes, tp->packets_out);
1971 
1972 	if ((tp->sacked_out + holes) > tp->packets_out) {
1973 		tp->sacked_out = tp->packets_out - holes;
1974 		return true;
1975 	}
1976 	return false;
1977 }
1978 
1979 /* If we receive more dupacks than we expected counting segments
1980  * in assumption of absent reordering, interpret this as reordering.
1981  * The only another reason could be bug in receiver TCP.
1982  */
1983 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1984 {
1985 	struct tcp_sock *tp = tcp_sk(sk);
1986 
1987 	if (!tcp_limit_reno_sacked(tp))
1988 		return;
1989 
1990 	tp->reordering = min_t(u32, tp->packets_out + addend,
1991 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1992 	tp->reord_seen++;
1993 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1994 }
1995 
1996 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1997 
1998 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
1999 {
2000 	if (num_dupack) {
2001 		struct tcp_sock *tp = tcp_sk(sk);
2002 		u32 prior_sacked = tp->sacked_out;
2003 		s32 delivered;
2004 
2005 		tp->sacked_out += num_dupack;
2006 		tcp_check_reno_reordering(sk, 0);
2007 		delivered = tp->sacked_out - prior_sacked;
2008 		if (delivered > 0)
2009 			tcp_count_delivered(tp, delivered, ece_ack);
2010 		tcp_verify_left_out(tp);
2011 	}
2012 }
2013 
2014 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2015 
2016 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2017 {
2018 	struct tcp_sock *tp = tcp_sk(sk);
2019 
2020 	if (acked > 0) {
2021 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2022 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2023 				    ece_ack);
2024 		if (acked - 1 >= tp->sacked_out)
2025 			tp->sacked_out = 0;
2026 		else
2027 			tp->sacked_out -= acked - 1;
2028 	}
2029 	tcp_check_reno_reordering(sk, acked);
2030 	tcp_verify_left_out(tp);
2031 }
2032 
2033 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2034 {
2035 	tp->sacked_out = 0;
2036 }
2037 
2038 void tcp_clear_retrans(struct tcp_sock *tp)
2039 {
2040 	tp->retrans_out = 0;
2041 	tp->lost_out = 0;
2042 	tp->undo_marker = 0;
2043 	tp->undo_retrans = -1;
2044 	tp->sacked_out = 0;
2045 }
2046 
2047 static inline void tcp_init_undo(struct tcp_sock *tp)
2048 {
2049 	tp->undo_marker = tp->snd_una;
2050 	/* Retransmission still in flight may cause DSACKs later. */
2051 	tp->undo_retrans = tp->retrans_out ? : -1;
2052 }
2053 
2054 static bool tcp_is_rack(const struct sock *sk)
2055 {
2056 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2057 }
2058 
2059 /* If we detect SACK reneging, forget all SACK information
2060  * and reset tags completely, otherwise preserve SACKs. If receiver
2061  * dropped its ofo queue, we will know this due to reneging detection.
2062  */
2063 static void tcp_timeout_mark_lost(struct sock *sk)
2064 {
2065 	struct tcp_sock *tp = tcp_sk(sk);
2066 	struct sk_buff *skb, *head;
2067 	bool is_reneg;			/* is receiver reneging on SACKs? */
2068 
2069 	head = tcp_rtx_queue_head(sk);
2070 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2071 	if (is_reneg) {
2072 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2073 		tp->sacked_out = 0;
2074 		/* Mark SACK reneging until we recover from this loss event. */
2075 		tp->is_sack_reneg = 1;
2076 	} else if (tcp_is_reno(tp)) {
2077 		tcp_reset_reno_sack(tp);
2078 	}
2079 
2080 	skb = head;
2081 	skb_rbtree_walk_from(skb) {
2082 		if (is_reneg)
2083 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2084 		else if (tcp_is_rack(sk) && skb != head &&
2085 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2086 			continue; /* Don't mark recently sent ones lost yet */
2087 		tcp_mark_skb_lost(sk, skb);
2088 	}
2089 	tcp_verify_left_out(tp);
2090 	tcp_clear_all_retrans_hints(tp);
2091 }
2092 
2093 /* Enter Loss state. */
2094 void tcp_enter_loss(struct sock *sk)
2095 {
2096 	const struct inet_connection_sock *icsk = inet_csk(sk);
2097 	struct tcp_sock *tp = tcp_sk(sk);
2098 	struct net *net = sock_net(sk);
2099 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2100 
2101 	tcp_timeout_mark_lost(sk);
2102 
2103 	/* Reduce ssthresh if it has not yet been made inside this window. */
2104 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2105 	    !after(tp->high_seq, tp->snd_una) ||
2106 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2107 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2108 		tp->prior_cwnd = tp->snd_cwnd;
2109 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2110 		tcp_ca_event(sk, CA_EVENT_LOSS);
2111 		tcp_init_undo(tp);
2112 	}
2113 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2114 	tp->snd_cwnd_cnt   = 0;
2115 	tp->snd_cwnd_stamp = tcp_jiffies32;
2116 
2117 	/* Timeout in disordered state after receiving substantial DUPACKs
2118 	 * suggests that the degree of reordering is over-estimated.
2119 	 */
2120 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2121 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2122 		tp->reordering = min_t(unsigned int, tp->reordering,
2123 				       net->ipv4.sysctl_tcp_reordering);
2124 	tcp_set_ca_state(sk, TCP_CA_Loss);
2125 	tp->high_seq = tp->snd_nxt;
2126 	tcp_ecn_queue_cwr(tp);
2127 
2128 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2129 	 * loss recovery is underway except recurring timeout(s) on
2130 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2131 	 */
2132 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2133 		   (new_recovery || icsk->icsk_retransmits) &&
2134 		   !inet_csk(sk)->icsk_mtup.probe_size;
2135 }
2136 
2137 /* If ACK arrived pointing to a remembered SACK, it means that our
2138  * remembered SACKs do not reflect real state of receiver i.e.
2139  * receiver _host_ is heavily congested (or buggy).
2140  *
2141  * To avoid big spurious retransmission bursts due to transient SACK
2142  * scoreboard oddities that look like reneging, we give the receiver a
2143  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2144  * restore sanity to the SACK scoreboard. If the apparent reneging
2145  * persists until this RTO then we'll clear the SACK scoreboard.
2146  */
2147 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2148 {
2149 	if (flag & FLAG_SACK_RENEGING) {
2150 		struct tcp_sock *tp = tcp_sk(sk);
2151 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2152 					  msecs_to_jiffies(10));
2153 
2154 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2155 					  delay, TCP_RTO_MAX);
2156 		return true;
2157 	}
2158 	return false;
2159 }
2160 
2161 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2162  * counter when SACK is enabled (without SACK, sacked_out is used for
2163  * that purpose).
2164  *
2165  * With reordering, holes may still be in flight, so RFC3517 recovery
2166  * uses pure sacked_out (total number of SACKed segments) even though
2167  * it violates the RFC that uses duplicate ACKs, often these are equal
2168  * but when e.g. out-of-window ACKs or packet duplication occurs,
2169  * they differ. Since neither occurs due to loss, TCP should really
2170  * ignore them.
2171  */
2172 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2173 {
2174 	return tp->sacked_out + 1;
2175 }
2176 
2177 /* Linux NewReno/SACK/ECN state machine.
2178  * --------------------------------------
2179  *
2180  * "Open"	Normal state, no dubious events, fast path.
2181  * "Disorder"   In all the respects it is "Open",
2182  *		but requires a bit more attention. It is entered when
2183  *		we see some SACKs or dupacks. It is split of "Open"
2184  *		mainly to move some processing from fast path to slow one.
2185  * "CWR"	CWND was reduced due to some Congestion Notification event.
2186  *		It can be ECN, ICMP source quench, local device congestion.
2187  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2188  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2189  *
2190  * tcp_fastretrans_alert() is entered:
2191  * - each incoming ACK, if state is not "Open"
2192  * - when arrived ACK is unusual, namely:
2193  *	* SACK
2194  *	* Duplicate ACK.
2195  *	* ECN ECE.
2196  *
2197  * Counting packets in flight is pretty simple.
2198  *
2199  *	in_flight = packets_out - left_out + retrans_out
2200  *
2201  *	packets_out is SND.NXT-SND.UNA counted in packets.
2202  *
2203  *	retrans_out is number of retransmitted segments.
2204  *
2205  *	left_out is number of segments left network, but not ACKed yet.
2206  *
2207  *		left_out = sacked_out + lost_out
2208  *
2209  *     sacked_out: Packets, which arrived to receiver out of order
2210  *		   and hence not ACKed. With SACKs this number is simply
2211  *		   amount of SACKed data. Even without SACKs
2212  *		   it is easy to give pretty reliable estimate of this number,
2213  *		   counting duplicate ACKs.
2214  *
2215  *       lost_out: Packets lost by network. TCP has no explicit
2216  *		   "loss notification" feedback from network (for now).
2217  *		   It means that this number can be only _guessed_.
2218  *		   Actually, it is the heuristics to predict lossage that
2219  *		   distinguishes different algorithms.
2220  *
2221  *	F.e. after RTO, when all the queue is considered as lost,
2222  *	lost_out = packets_out and in_flight = retrans_out.
2223  *
2224  *		Essentially, we have now a few algorithms detecting
2225  *		lost packets.
2226  *
2227  *		If the receiver supports SACK:
2228  *
2229  *		RFC6675/3517: It is the conventional algorithm. A packet is
2230  *		considered lost if the number of higher sequence packets
2231  *		SACKed is greater than or equal the DUPACK thoreshold
2232  *		(reordering). This is implemented in tcp_mark_head_lost and
2233  *		tcp_update_scoreboard.
2234  *
2235  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2236  *		(2017-) that checks timing instead of counting DUPACKs.
2237  *		Essentially a packet is considered lost if it's not S/ACKed
2238  *		after RTT + reordering_window, where both metrics are
2239  *		dynamically measured and adjusted. This is implemented in
2240  *		tcp_rack_mark_lost.
2241  *
2242  *		If the receiver does not support SACK:
2243  *
2244  *		NewReno (RFC6582): in Recovery we assume that one segment
2245  *		is lost (classic Reno). While we are in Recovery and
2246  *		a partial ACK arrives, we assume that one more packet
2247  *		is lost (NewReno). This heuristics are the same in NewReno
2248  *		and SACK.
2249  *
2250  * Really tricky (and requiring careful tuning) part of algorithm
2251  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2252  * The first determines the moment _when_ we should reduce CWND and,
2253  * hence, slow down forward transmission. In fact, it determines the moment
2254  * when we decide that hole is caused by loss, rather than by a reorder.
2255  *
2256  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2257  * holes, caused by lost packets.
2258  *
2259  * And the most logically complicated part of algorithm is undo
2260  * heuristics. We detect false retransmits due to both too early
2261  * fast retransmit (reordering) and underestimated RTO, analyzing
2262  * timestamps and D-SACKs. When we detect that some segments were
2263  * retransmitted by mistake and CWND reduction was wrong, we undo
2264  * window reduction and abort recovery phase. This logic is hidden
2265  * inside several functions named tcp_try_undo_<something>.
2266  */
2267 
2268 /* This function decides, when we should leave Disordered state
2269  * and enter Recovery phase, reducing congestion window.
2270  *
2271  * Main question: may we further continue forward transmission
2272  * with the same cwnd?
2273  */
2274 static bool tcp_time_to_recover(struct sock *sk, int flag)
2275 {
2276 	struct tcp_sock *tp = tcp_sk(sk);
2277 
2278 	/* Trick#1: The loss is proven. */
2279 	if (tp->lost_out)
2280 		return true;
2281 
2282 	/* Not-A-Trick#2 : Classic rule... */
2283 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2284 		return true;
2285 
2286 	return false;
2287 }
2288 
2289 /* Detect loss in event "A" above by marking head of queue up as lost.
2290  * For RFC3517 SACK, a segment is considered lost if it
2291  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2292  * the maximum SACKed segments to pass before reaching this limit.
2293  */
2294 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2295 {
2296 	struct tcp_sock *tp = tcp_sk(sk);
2297 	struct sk_buff *skb;
2298 	int cnt;
2299 	/* Use SACK to deduce losses of new sequences sent during recovery */
2300 	const u32 loss_high = tp->snd_nxt;
2301 
2302 	WARN_ON(packets > tp->packets_out);
2303 	skb = tp->lost_skb_hint;
2304 	if (skb) {
2305 		/* Head already handled? */
2306 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2307 			return;
2308 		cnt = tp->lost_cnt_hint;
2309 	} else {
2310 		skb = tcp_rtx_queue_head(sk);
2311 		cnt = 0;
2312 	}
2313 
2314 	skb_rbtree_walk_from(skb) {
2315 		/* TODO: do this better */
2316 		/* this is not the most efficient way to do this... */
2317 		tp->lost_skb_hint = skb;
2318 		tp->lost_cnt_hint = cnt;
2319 
2320 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2321 			break;
2322 
2323 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2324 			cnt += tcp_skb_pcount(skb);
2325 
2326 		if (cnt > packets)
2327 			break;
2328 
2329 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2330 			tcp_mark_skb_lost(sk, skb);
2331 
2332 		if (mark_head)
2333 			break;
2334 	}
2335 	tcp_verify_left_out(tp);
2336 }
2337 
2338 /* Account newly detected lost packet(s) */
2339 
2340 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2341 {
2342 	struct tcp_sock *tp = tcp_sk(sk);
2343 
2344 	if (tcp_is_sack(tp)) {
2345 		int sacked_upto = tp->sacked_out - tp->reordering;
2346 		if (sacked_upto >= 0)
2347 			tcp_mark_head_lost(sk, sacked_upto, 0);
2348 		else if (fast_rexmit)
2349 			tcp_mark_head_lost(sk, 1, 1);
2350 	}
2351 }
2352 
2353 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2354 {
2355 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2356 	       before(tp->rx_opt.rcv_tsecr, when);
2357 }
2358 
2359 /* skb is spurious retransmitted if the returned timestamp echo
2360  * reply is prior to the skb transmission time
2361  */
2362 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2363 				     const struct sk_buff *skb)
2364 {
2365 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2366 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2367 }
2368 
2369 /* Nothing was retransmitted or returned timestamp is less
2370  * than timestamp of the first retransmission.
2371  */
2372 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2373 {
2374 	return tp->retrans_stamp &&
2375 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2376 }
2377 
2378 /* Undo procedures. */
2379 
2380 /* We can clear retrans_stamp when there are no retransmissions in the
2381  * window. It would seem that it is trivially available for us in
2382  * tp->retrans_out, however, that kind of assumptions doesn't consider
2383  * what will happen if errors occur when sending retransmission for the
2384  * second time. ...It could the that such segment has only
2385  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2386  * the head skb is enough except for some reneging corner cases that
2387  * are not worth the effort.
2388  *
2389  * Main reason for all this complexity is the fact that connection dying
2390  * time now depends on the validity of the retrans_stamp, in particular,
2391  * that successive retransmissions of a segment must not advance
2392  * retrans_stamp under any conditions.
2393  */
2394 static bool tcp_any_retrans_done(const struct sock *sk)
2395 {
2396 	const struct tcp_sock *tp = tcp_sk(sk);
2397 	struct sk_buff *skb;
2398 
2399 	if (tp->retrans_out)
2400 		return true;
2401 
2402 	skb = tcp_rtx_queue_head(sk);
2403 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2404 		return true;
2405 
2406 	return false;
2407 }
2408 
2409 static void DBGUNDO(struct sock *sk, const char *msg)
2410 {
2411 #if FASTRETRANS_DEBUG > 1
2412 	struct tcp_sock *tp = tcp_sk(sk);
2413 	struct inet_sock *inet = inet_sk(sk);
2414 
2415 	if (sk->sk_family == AF_INET) {
2416 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2417 			 msg,
2418 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2419 			 tp->snd_cwnd, tcp_left_out(tp),
2420 			 tp->snd_ssthresh, tp->prior_ssthresh,
2421 			 tp->packets_out);
2422 	}
2423 #if IS_ENABLED(CONFIG_IPV6)
2424 	else if (sk->sk_family == AF_INET6) {
2425 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2426 			 msg,
2427 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2428 			 tp->snd_cwnd, tcp_left_out(tp),
2429 			 tp->snd_ssthresh, tp->prior_ssthresh,
2430 			 tp->packets_out);
2431 	}
2432 #endif
2433 #endif
2434 }
2435 
2436 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2437 {
2438 	struct tcp_sock *tp = tcp_sk(sk);
2439 
2440 	if (unmark_loss) {
2441 		struct sk_buff *skb;
2442 
2443 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2444 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2445 		}
2446 		tp->lost_out = 0;
2447 		tcp_clear_all_retrans_hints(tp);
2448 	}
2449 
2450 	if (tp->prior_ssthresh) {
2451 		const struct inet_connection_sock *icsk = inet_csk(sk);
2452 
2453 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2454 
2455 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2456 			tp->snd_ssthresh = tp->prior_ssthresh;
2457 			tcp_ecn_withdraw_cwr(tp);
2458 		}
2459 	}
2460 	tp->snd_cwnd_stamp = tcp_jiffies32;
2461 	tp->undo_marker = 0;
2462 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2463 }
2464 
2465 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2466 {
2467 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2468 }
2469 
2470 /* People celebrate: "We love our President!" */
2471 static bool tcp_try_undo_recovery(struct sock *sk)
2472 {
2473 	struct tcp_sock *tp = tcp_sk(sk);
2474 
2475 	if (tcp_may_undo(tp)) {
2476 		int mib_idx;
2477 
2478 		/* Happy end! We did not retransmit anything
2479 		 * or our original transmission succeeded.
2480 		 */
2481 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2482 		tcp_undo_cwnd_reduction(sk, false);
2483 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2484 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2485 		else
2486 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2487 
2488 		NET_INC_STATS(sock_net(sk), mib_idx);
2489 	} else if (tp->rack.reo_wnd_persist) {
2490 		tp->rack.reo_wnd_persist--;
2491 	}
2492 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2493 		/* Hold old state until something *above* high_seq
2494 		 * is ACKed. For Reno it is MUST to prevent false
2495 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2496 		if (!tcp_any_retrans_done(sk))
2497 			tp->retrans_stamp = 0;
2498 		return true;
2499 	}
2500 	tcp_set_ca_state(sk, TCP_CA_Open);
2501 	tp->is_sack_reneg = 0;
2502 	return false;
2503 }
2504 
2505 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2506 static bool tcp_try_undo_dsack(struct sock *sk)
2507 {
2508 	struct tcp_sock *tp = tcp_sk(sk);
2509 
2510 	if (tp->undo_marker && !tp->undo_retrans) {
2511 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2512 					       tp->rack.reo_wnd_persist + 1);
2513 		DBGUNDO(sk, "D-SACK");
2514 		tcp_undo_cwnd_reduction(sk, false);
2515 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2516 		return true;
2517 	}
2518 	return false;
2519 }
2520 
2521 /* Undo during loss recovery after partial ACK or using F-RTO. */
2522 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2523 {
2524 	struct tcp_sock *tp = tcp_sk(sk);
2525 
2526 	if (frto_undo || tcp_may_undo(tp)) {
2527 		tcp_undo_cwnd_reduction(sk, true);
2528 
2529 		DBGUNDO(sk, "partial loss");
2530 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2531 		if (frto_undo)
2532 			NET_INC_STATS(sock_net(sk),
2533 					LINUX_MIB_TCPSPURIOUSRTOS);
2534 		inet_csk(sk)->icsk_retransmits = 0;
2535 		if (frto_undo || tcp_is_sack(tp)) {
2536 			tcp_set_ca_state(sk, TCP_CA_Open);
2537 			tp->is_sack_reneg = 0;
2538 		}
2539 		return true;
2540 	}
2541 	return false;
2542 }
2543 
2544 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2545  * It computes the number of packets to send (sndcnt) based on packets newly
2546  * delivered:
2547  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2548  *	cwnd reductions across a full RTT.
2549  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2550  *      But when SND_UNA is acked without further losses,
2551  *      slow starts cwnd up to ssthresh to speed up the recovery.
2552  */
2553 static void tcp_init_cwnd_reduction(struct sock *sk)
2554 {
2555 	struct tcp_sock *tp = tcp_sk(sk);
2556 
2557 	tp->high_seq = tp->snd_nxt;
2558 	tp->tlp_high_seq = 0;
2559 	tp->snd_cwnd_cnt = 0;
2560 	tp->prior_cwnd = tp->snd_cwnd;
2561 	tp->prr_delivered = 0;
2562 	tp->prr_out = 0;
2563 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2564 	tcp_ecn_queue_cwr(tp);
2565 }
2566 
2567 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2568 {
2569 	struct tcp_sock *tp = tcp_sk(sk);
2570 	int sndcnt = 0;
2571 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2572 
2573 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2574 		return;
2575 
2576 	tp->prr_delivered += newly_acked_sacked;
2577 	if (delta < 0) {
2578 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2579 			       tp->prior_cwnd - 1;
2580 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2581 	} else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) {
2582 		sndcnt = min_t(int, delta,
2583 			       max_t(int, tp->prr_delivered - tp->prr_out,
2584 				     newly_acked_sacked) + 1);
2585 	} else {
2586 		sndcnt = min(delta, newly_acked_sacked);
2587 	}
2588 	/* Force a fast retransmit upon entering fast recovery */
2589 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2590 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2591 }
2592 
2593 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2594 {
2595 	struct tcp_sock *tp = tcp_sk(sk);
2596 
2597 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2598 		return;
2599 
2600 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2601 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2602 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2603 		tp->snd_cwnd = tp->snd_ssthresh;
2604 		tp->snd_cwnd_stamp = tcp_jiffies32;
2605 	}
2606 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2607 }
2608 
2609 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2610 void tcp_enter_cwr(struct sock *sk)
2611 {
2612 	struct tcp_sock *tp = tcp_sk(sk);
2613 
2614 	tp->prior_ssthresh = 0;
2615 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2616 		tp->undo_marker = 0;
2617 		tcp_init_cwnd_reduction(sk);
2618 		tcp_set_ca_state(sk, TCP_CA_CWR);
2619 	}
2620 }
2621 EXPORT_SYMBOL(tcp_enter_cwr);
2622 
2623 static void tcp_try_keep_open(struct sock *sk)
2624 {
2625 	struct tcp_sock *tp = tcp_sk(sk);
2626 	int state = TCP_CA_Open;
2627 
2628 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2629 		state = TCP_CA_Disorder;
2630 
2631 	if (inet_csk(sk)->icsk_ca_state != state) {
2632 		tcp_set_ca_state(sk, state);
2633 		tp->high_seq = tp->snd_nxt;
2634 	}
2635 }
2636 
2637 static void tcp_try_to_open(struct sock *sk, int flag)
2638 {
2639 	struct tcp_sock *tp = tcp_sk(sk);
2640 
2641 	tcp_verify_left_out(tp);
2642 
2643 	if (!tcp_any_retrans_done(sk))
2644 		tp->retrans_stamp = 0;
2645 
2646 	if (flag & FLAG_ECE)
2647 		tcp_enter_cwr(sk);
2648 
2649 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2650 		tcp_try_keep_open(sk);
2651 	}
2652 }
2653 
2654 static void tcp_mtup_probe_failed(struct sock *sk)
2655 {
2656 	struct inet_connection_sock *icsk = inet_csk(sk);
2657 
2658 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2659 	icsk->icsk_mtup.probe_size = 0;
2660 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2661 }
2662 
2663 static void tcp_mtup_probe_success(struct sock *sk)
2664 {
2665 	struct tcp_sock *tp = tcp_sk(sk);
2666 	struct inet_connection_sock *icsk = inet_csk(sk);
2667 
2668 	/* FIXME: breaks with very large cwnd */
2669 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2670 	tp->snd_cwnd = tp->snd_cwnd *
2671 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2672 		       icsk->icsk_mtup.probe_size;
2673 	tp->snd_cwnd_cnt = 0;
2674 	tp->snd_cwnd_stamp = tcp_jiffies32;
2675 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2676 
2677 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2678 	icsk->icsk_mtup.probe_size = 0;
2679 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2680 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2681 }
2682 
2683 /* Do a simple retransmit without using the backoff mechanisms in
2684  * tcp_timer. This is used for path mtu discovery.
2685  * The socket is already locked here.
2686  */
2687 void tcp_simple_retransmit(struct sock *sk)
2688 {
2689 	const struct inet_connection_sock *icsk = inet_csk(sk);
2690 	struct tcp_sock *tp = tcp_sk(sk);
2691 	struct sk_buff *skb;
2692 	int mss;
2693 
2694 	/* A fastopen SYN request is stored as two separate packets within
2695 	 * the retransmit queue, this is done by tcp_send_syn_data().
2696 	 * As a result simply checking the MSS of the frames in the queue
2697 	 * will not work for the SYN packet.
2698 	 *
2699 	 * Us being here is an indication of a path MTU issue so we can
2700 	 * assume that the fastopen SYN was lost and just mark all the
2701 	 * frames in the retransmit queue as lost. We will use an MSS of
2702 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2703 	 */
2704 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2705 		mss = -1;
2706 	else
2707 		mss = tcp_current_mss(sk);
2708 
2709 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2710 		if (tcp_skb_seglen(skb) > mss)
2711 			tcp_mark_skb_lost(sk, skb);
2712 	}
2713 
2714 	tcp_clear_retrans_hints_partial(tp);
2715 
2716 	if (!tp->lost_out)
2717 		return;
2718 
2719 	if (tcp_is_reno(tp))
2720 		tcp_limit_reno_sacked(tp);
2721 
2722 	tcp_verify_left_out(tp);
2723 
2724 	/* Don't muck with the congestion window here.
2725 	 * Reason is that we do not increase amount of _data_
2726 	 * in network, but units changed and effective
2727 	 * cwnd/ssthresh really reduced now.
2728 	 */
2729 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2730 		tp->high_seq = tp->snd_nxt;
2731 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2732 		tp->prior_ssthresh = 0;
2733 		tp->undo_marker = 0;
2734 		tcp_set_ca_state(sk, TCP_CA_Loss);
2735 	}
2736 	tcp_xmit_retransmit_queue(sk);
2737 }
2738 EXPORT_SYMBOL(tcp_simple_retransmit);
2739 
2740 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2741 {
2742 	struct tcp_sock *tp = tcp_sk(sk);
2743 	int mib_idx;
2744 
2745 	if (tcp_is_reno(tp))
2746 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2747 	else
2748 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2749 
2750 	NET_INC_STATS(sock_net(sk), mib_idx);
2751 
2752 	tp->prior_ssthresh = 0;
2753 	tcp_init_undo(tp);
2754 
2755 	if (!tcp_in_cwnd_reduction(sk)) {
2756 		if (!ece_ack)
2757 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2758 		tcp_init_cwnd_reduction(sk);
2759 	}
2760 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2761 }
2762 
2763 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2764  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2765  */
2766 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2767 			     int *rexmit)
2768 {
2769 	struct tcp_sock *tp = tcp_sk(sk);
2770 	bool recovered = !before(tp->snd_una, tp->high_seq);
2771 
2772 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2773 	    tcp_try_undo_loss(sk, false))
2774 		return;
2775 
2776 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2777 		/* Step 3.b. A timeout is spurious if not all data are
2778 		 * lost, i.e., never-retransmitted data are (s)acked.
2779 		 */
2780 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2781 		    tcp_try_undo_loss(sk, true))
2782 			return;
2783 
2784 		if (after(tp->snd_nxt, tp->high_seq)) {
2785 			if (flag & FLAG_DATA_SACKED || num_dupack)
2786 				tp->frto = 0; /* Step 3.a. loss was real */
2787 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2788 			tp->high_seq = tp->snd_nxt;
2789 			/* Step 2.b. Try send new data (but deferred until cwnd
2790 			 * is updated in tcp_ack()). Otherwise fall back to
2791 			 * the conventional recovery.
2792 			 */
2793 			if (!tcp_write_queue_empty(sk) &&
2794 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2795 				*rexmit = REXMIT_NEW;
2796 				return;
2797 			}
2798 			tp->frto = 0;
2799 		}
2800 	}
2801 
2802 	if (recovered) {
2803 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2804 		tcp_try_undo_recovery(sk);
2805 		return;
2806 	}
2807 	if (tcp_is_reno(tp)) {
2808 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2809 		 * delivered. Lower inflight to clock out (re)tranmissions.
2810 		 */
2811 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2812 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2813 		else if (flag & FLAG_SND_UNA_ADVANCED)
2814 			tcp_reset_reno_sack(tp);
2815 	}
2816 	*rexmit = REXMIT_LOST;
2817 }
2818 
2819 static bool tcp_force_fast_retransmit(struct sock *sk)
2820 {
2821 	struct tcp_sock *tp = tcp_sk(sk);
2822 
2823 	return after(tcp_highest_sack_seq(tp),
2824 		     tp->snd_una + tp->reordering * tp->mss_cache);
2825 }
2826 
2827 /* Undo during fast recovery after partial ACK. */
2828 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2829 				 bool *do_lost)
2830 {
2831 	struct tcp_sock *tp = tcp_sk(sk);
2832 
2833 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2834 		/* Plain luck! Hole if filled with delayed
2835 		 * packet, rather than with a retransmit. Check reordering.
2836 		 */
2837 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2838 
2839 		/* We are getting evidence that the reordering degree is higher
2840 		 * than we realized. If there are no retransmits out then we
2841 		 * can undo. Otherwise we clock out new packets but do not
2842 		 * mark more packets lost or retransmit more.
2843 		 */
2844 		if (tp->retrans_out)
2845 			return true;
2846 
2847 		if (!tcp_any_retrans_done(sk))
2848 			tp->retrans_stamp = 0;
2849 
2850 		DBGUNDO(sk, "partial recovery");
2851 		tcp_undo_cwnd_reduction(sk, true);
2852 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2853 		tcp_try_keep_open(sk);
2854 	} else {
2855 		/* Partial ACK arrived. Force fast retransmit. */
2856 		*do_lost = tcp_force_fast_retransmit(sk);
2857 	}
2858 	return false;
2859 }
2860 
2861 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2862 {
2863 	struct tcp_sock *tp = tcp_sk(sk);
2864 
2865 	if (tcp_rtx_queue_empty(sk))
2866 		return;
2867 
2868 	if (unlikely(tcp_is_reno(tp))) {
2869 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2870 	} else if (tcp_is_rack(sk)) {
2871 		u32 prior_retrans = tp->retrans_out;
2872 
2873 		if (tcp_rack_mark_lost(sk))
2874 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2875 		if (prior_retrans > tp->retrans_out)
2876 			*ack_flag |= FLAG_LOST_RETRANS;
2877 	}
2878 }
2879 
2880 /* Process an event, which can update packets-in-flight not trivially.
2881  * Main goal of this function is to calculate new estimate for left_out,
2882  * taking into account both packets sitting in receiver's buffer and
2883  * packets lost by network.
2884  *
2885  * Besides that it updates the congestion state when packet loss or ECN
2886  * is detected. But it does not reduce the cwnd, it is done by the
2887  * congestion control later.
2888  *
2889  * It does _not_ decide what to send, it is made in function
2890  * tcp_xmit_retransmit_queue().
2891  */
2892 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2893 				  int num_dupack, int *ack_flag, int *rexmit)
2894 {
2895 	struct inet_connection_sock *icsk = inet_csk(sk);
2896 	struct tcp_sock *tp = tcp_sk(sk);
2897 	int fast_rexmit = 0, flag = *ack_flag;
2898 	bool ece_ack = flag & FLAG_ECE;
2899 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2900 				      tcp_force_fast_retransmit(sk));
2901 
2902 	if (!tp->packets_out && tp->sacked_out)
2903 		tp->sacked_out = 0;
2904 
2905 	/* Now state machine starts.
2906 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2907 	if (ece_ack)
2908 		tp->prior_ssthresh = 0;
2909 
2910 	/* B. In all the states check for reneging SACKs. */
2911 	if (tcp_check_sack_reneging(sk, flag))
2912 		return;
2913 
2914 	/* C. Check consistency of the current state. */
2915 	tcp_verify_left_out(tp);
2916 
2917 	/* D. Check state exit conditions. State can be terminated
2918 	 *    when high_seq is ACKed. */
2919 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2920 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2921 		tp->retrans_stamp = 0;
2922 	} else if (!before(tp->snd_una, tp->high_seq)) {
2923 		switch (icsk->icsk_ca_state) {
2924 		case TCP_CA_CWR:
2925 			/* CWR is to be held something *above* high_seq
2926 			 * is ACKed for CWR bit to reach receiver. */
2927 			if (tp->snd_una != tp->high_seq) {
2928 				tcp_end_cwnd_reduction(sk);
2929 				tcp_set_ca_state(sk, TCP_CA_Open);
2930 			}
2931 			break;
2932 
2933 		case TCP_CA_Recovery:
2934 			if (tcp_is_reno(tp))
2935 				tcp_reset_reno_sack(tp);
2936 			if (tcp_try_undo_recovery(sk))
2937 				return;
2938 			tcp_end_cwnd_reduction(sk);
2939 			break;
2940 		}
2941 	}
2942 
2943 	/* E. Process state. */
2944 	switch (icsk->icsk_ca_state) {
2945 	case TCP_CA_Recovery:
2946 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2947 			if (tcp_is_reno(tp))
2948 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2949 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2950 			return;
2951 
2952 		if (tcp_try_undo_dsack(sk))
2953 			tcp_try_keep_open(sk);
2954 
2955 		tcp_identify_packet_loss(sk, ack_flag);
2956 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2957 			if (!tcp_time_to_recover(sk, flag))
2958 				return;
2959 			/* Undo reverts the recovery state. If loss is evident,
2960 			 * starts a new recovery (e.g. reordering then loss);
2961 			 */
2962 			tcp_enter_recovery(sk, ece_ack);
2963 		}
2964 		break;
2965 	case TCP_CA_Loss:
2966 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2967 		tcp_identify_packet_loss(sk, ack_flag);
2968 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2969 		      (*ack_flag & FLAG_LOST_RETRANS)))
2970 			return;
2971 		/* Change state if cwnd is undone or retransmits are lost */
2972 		fallthrough;
2973 	default:
2974 		if (tcp_is_reno(tp)) {
2975 			if (flag & FLAG_SND_UNA_ADVANCED)
2976 				tcp_reset_reno_sack(tp);
2977 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
2978 		}
2979 
2980 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2981 			tcp_try_undo_dsack(sk);
2982 
2983 		tcp_identify_packet_loss(sk, ack_flag);
2984 		if (!tcp_time_to_recover(sk, flag)) {
2985 			tcp_try_to_open(sk, flag);
2986 			return;
2987 		}
2988 
2989 		/* MTU probe failure: don't reduce cwnd */
2990 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2991 		    icsk->icsk_mtup.probe_size &&
2992 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2993 			tcp_mtup_probe_failed(sk);
2994 			/* Restores the reduction we did in tcp_mtup_probe() */
2995 			tp->snd_cwnd++;
2996 			tcp_simple_retransmit(sk);
2997 			return;
2998 		}
2999 
3000 		/* Otherwise enter Recovery state */
3001 		tcp_enter_recovery(sk, ece_ack);
3002 		fast_rexmit = 1;
3003 	}
3004 
3005 	if (!tcp_is_rack(sk) && do_lost)
3006 		tcp_update_scoreboard(sk, fast_rexmit);
3007 	*rexmit = REXMIT_LOST;
3008 }
3009 
3010 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3011 {
3012 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
3013 	struct tcp_sock *tp = tcp_sk(sk);
3014 
3015 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3016 		/* If the remote keeps returning delayed ACKs, eventually
3017 		 * the min filter would pick it up and overestimate the
3018 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3019 		 */
3020 		return;
3021 	}
3022 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3023 			   rtt_us ? : jiffies_to_usecs(1));
3024 }
3025 
3026 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3027 			       long seq_rtt_us, long sack_rtt_us,
3028 			       long ca_rtt_us, struct rate_sample *rs)
3029 {
3030 	const struct tcp_sock *tp = tcp_sk(sk);
3031 
3032 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3033 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3034 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3035 	 * is acked (RFC6298).
3036 	 */
3037 	if (seq_rtt_us < 0)
3038 		seq_rtt_us = sack_rtt_us;
3039 
3040 	/* RTTM Rule: A TSecr value received in a segment is used to
3041 	 * update the averaged RTT measurement only if the segment
3042 	 * acknowledges some new data, i.e., only if it advances the
3043 	 * left edge of the send window.
3044 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3045 	 */
3046 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3047 	    flag & FLAG_ACKED) {
3048 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3049 
3050 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3051 			if (!delta)
3052 				delta = 1;
3053 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3054 			ca_rtt_us = seq_rtt_us;
3055 		}
3056 	}
3057 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3058 	if (seq_rtt_us < 0)
3059 		return false;
3060 
3061 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3062 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3063 	 * values will be skipped with the seq_rtt_us < 0 check above.
3064 	 */
3065 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3066 	tcp_rtt_estimator(sk, seq_rtt_us);
3067 	tcp_set_rto(sk);
3068 
3069 	/* RFC6298: only reset backoff on valid RTT measurement. */
3070 	inet_csk(sk)->icsk_backoff = 0;
3071 	return true;
3072 }
3073 
3074 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3075 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3076 {
3077 	struct rate_sample rs;
3078 	long rtt_us = -1L;
3079 
3080 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3081 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3082 
3083 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3084 }
3085 
3086 
3087 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3088 {
3089 	const struct inet_connection_sock *icsk = inet_csk(sk);
3090 
3091 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3092 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3093 }
3094 
3095 /* Restart timer after forward progress on connection.
3096  * RFC2988 recommends to restart timer to now+rto.
3097  */
3098 void tcp_rearm_rto(struct sock *sk)
3099 {
3100 	const struct inet_connection_sock *icsk = inet_csk(sk);
3101 	struct tcp_sock *tp = tcp_sk(sk);
3102 
3103 	/* If the retrans timer is currently being used by Fast Open
3104 	 * for SYN-ACK retrans purpose, stay put.
3105 	 */
3106 	if (rcu_access_pointer(tp->fastopen_rsk))
3107 		return;
3108 
3109 	if (!tp->packets_out) {
3110 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3111 	} else {
3112 		u32 rto = inet_csk(sk)->icsk_rto;
3113 		/* Offset the time elapsed after installing regular RTO */
3114 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3115 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3116 			s64 delta_us = tcp_rto_delta_us(sk);
3117 			/* delta_us may not be positive if the socket is locked
3118 			 * when the retrans timer fires and is rescheduled.
3119 			 */
3120 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3121 		}
3122 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3123 				     TCP_RTO_MAX);
3124 	}
3125 }
3126 
3127 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3128 static void tcp_set_xmit_timer(struct sock *sk)
3129 {
3130 	if (!tcp_schedule_loss_probe(sk, true))
3131 		tcp_rearm_rto(sk);
3132 }
3133 
3134 /* If we get here, the whole TSO packet has not been acked. */
3135 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3136 {
3137 	struct tcp_sock *tp = tcp_sk(sk);
3138 	u32 packets_acked;
3139 
3140 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3141 
3142 	packets_acked = tcp_skb_pcount(skb);
3143 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3144 		return 0;
3145 	packets_acked -= tcp_skb_pcount(skb);
3146 
3147 	if (packets_acked) {
3148 		BUG_ON(tcp_skb_pcount(skb) == 0);
3149 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3150 	}
3151 
3152 	return packets_acked;
3153 }
3154 
3155 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3156 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3157 {
3158 	const struct skb_shared_info *shinfo;
3159 
3160 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3161 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3162 		return;
3163 
3164 	shinfo = skb_shinfo(skb);
3165 	if (!before(shinfo->tskey, prior_snd_una) &&
3166 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3167 		tcp_skb_tsorted_save(skb) {
3168 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3169 		} tcp_skb_tsorted_restore(skb);
3170 	}
3171 }
3172 
3173 /* Remove acknowledged frames from the retransmission queue. If our packet
3174  * is before the ack sequence we can discard it as it's confirmed to have
3175  * arrived at the other end.
3176  */
3177 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3178 			       u32 prior_fack, u32 prior_snd_una,
3179 			       struct tcp_sacktag_state *sack, bool ece_ack)
3180 {
3181 	const struct inet_connection_sock *icsk = inet_csk(sk);
3182 	u64 first_ackt, last_ackt;
3183 	struct tcp_sock *tp = tcp_sk(sk);
3184 	u32 prior_sacked = tp->sacked_out;
3185 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3186 	struct sk_buff *skb, *next;
3187 	bool fully_acked = true;
3188 	long sack_rtt_us = -1L;
3189 	long seq_rtt_us = -1L;
3190 	long ca_rtt_us = -1L;
3191 	u32 pkts_acked = 0;
3192 	u32 last_in_flight = 0;
3193 	bool rtt_update;
3194 	int flag = 0;
3195 
3196 	first_ackt = 0;
3197 
3198 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3199 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3200 		const u32 start_seq = scb->seq;
3201 		u8 sacked = scb->sacked;
3202 		u32 acked_pcount;
3203 
3204 		/* Determine how many packets and what bytes were acked, tso and else */
3205 		if (after(scb->end_seq, tp->snd_una)) {
3206 			if (tcp_skb_pcount(skb) == 1 ||
3207 			    !after(tp->snd_una, scb->seq))
3208 				break;
3209 
3210 			acked_pcount = tcp_tso_acked(sk, skb);
3211 			if (!acked_pcount)
3212 				break;
3213 			fully_acked = false;
3214 		} else {
3215 			acked_pcount = tcp_skb_pcount(skb);
3216 		}
3217 
3218 		if (unlikely(sacked & TCPCB_RETRANS)) {
3219 			if (sacked & TCPCB_SACKED_RETRANS)
3220 				tp->retrans_out -= acked_pcount;
3221 			flag |= FLAG_RETRANS_DATA_ACKED;
3222 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3223 			last_ackt = tcp_skb_timestamp_us(skb);
3224 			WARN_ON_ONCE(last_ackt == 0);
3225 			if (!first_ackt)
3226 				first_ackt = last_ackt;
3227 
3228 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3229 			if (before(start_seq, reord))
3230 				reord = start_seq;
3231 			if (!after(scb->end_seq, tp->high_seq))
3232 				flag |= FLAG_ORIG_SACK_ACKED;
3233 		}
3234 
3235 		if (sacked & TCPCB_SACKED_ACKED) {
3236 			tp->sacked_out -= acked_pcount;
3237 		} else if (tcp_is_sack(tp)) {
3238 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3239 			if (!tcp_skb_spurious_retrans(tp, skb))
3240 				tcp_rack_advance(tp, sacked, scb->end_seq,
3241 						 tcp_skb_timestamp_us(skb));
3242 		}
3243 		if (sacked & TCPCB_LOST)
3244 			tp->lost_out -= acked_pcount;
3245 
3246 		tp->packets_out -= acked_pcount;
3247 		pkts_acked += acked_pcount;
3248 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3249 
3250 		/* Initial outgoing SYN's get put onto the write_queue
3251 		 * just like anything else we transmit.  It is not
3252 		 * true data, and if we misinform our callers that
3253 		 * this ACK acks real data, we will erroneously exit
3254 		 * connection startup slow start one packet too
3255 		 * quickly.  This is severely frowned upon behavior.
3256 		 */
3257 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3258 			flag |= FLAG_DATA_ACKED;
3259 		} else {
3260 			flag |= FLAG_SYN_ACKED;
3261 			tp->retrans_stamp = 0;
3262 		}
3263 
3264 		if (!fully_acked)
3265 			break;
3266 
3267 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3268 
3269 		next = skb_rb_next(skb);
3270 		if (unlikely(skb == tp->retransmit_skb_hint))
3271 			tp->retransmit_skb_hint = NULL;
3272 		if (unlikely(skb == tp->lost_skb_hint))
3273 			tp->lost_skb_hint = NULL;
3274 		tcp_highest_sack_replace(sk, skb, next);
3275 		tcp_rtx_queue_unlink_and_free(skb, sk);
3276 	}
3277 
3278 	if (!skb)
3279 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3280 
3281 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3282 		tp->snd_up = tp->snd_una;
3283 
3284 	if (skb) {
3285 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3286 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3287 			flag |= FLAG_SACK_RENEGING;
3288 	}
3289 
3290 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3291 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3292 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3293 
3294 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3295 		    last_in_flight && !prior_sacked && fully_acked &&
3296 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3297 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3298 			/* Conservatively mark a delayed ACK. It's typically
3299 			 * from a lone runt packet over the round trip to
3300 			 * a receiver w/o out-of-order or CE events.
3301 			 */
3302 			flag |= FLAG_ACK_MAYBE_DELAYED;
3303 		}
3304 	}
3305 	if (sack->first_sackt) {
3306 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3307 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3308 	}
3309 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3310 					ca_rtt_us, sack->rate);
3311 
3312 	if (flag & FLAG_ACKED) {
3313 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3314 		if (unlikely(icsk->icsk_mtup.probe_size &&
3315 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3316 			tcp_mtup_probe_success(sk);
3317 		}
3318 
3319 		if (tcp_is_reno(tp)) {
3320 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3321 
3322 			/* If any of the cumulatively ACKed segments was
3323 			 * retransmitted, non-SACK case cannot confirm that
3324 			 * progress was due to original transmission due to
3325 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3326 			 * the packets may have been never retransmitted.
3327 			 */
3328 			if (flag & FLAG_RETRANS_DATA_ACKED)
3329 				flag &= ~FLAG_ORIG_SACK_ACKED;
3330 		} else {
3331 			int delta;
3332 
3333 			/* Non-retransmitted hole got filled? That's reordering */
3334 			if (before(reord, prior_fack))
3335 				tcp_check_sack_reordering(sk, reord, 0);
3336 
3337 			delta = prior_sacked - tp->sacked_out;
3338 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3339 		}
3340 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3341 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3342 						    tcp_skb_timestamp_us(skb))) {
3343 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3344 		 * after when the head was last (re)transmitted. Otherwise the
3345 		 * timeout may continue to extend in loss recovery.
3346 		 */
3347 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3348 	}
3349 
3350 	if (icsk->icsk_ca_ops->pkts_acked) {
3351 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3352 					     .rtt_us = sack->rate->rtt_us,
3353 					     .in_flight = last_in_flight };
3354 
3355 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3356 	}
3357 
3358 #if FASTRETRANS_DEBUG > 0
3359 	WARN_ON((int)tp->sacked_out < 0);
3360 	WARN_ON((int)tp->lost_out < 0);
3361 	WARN_ON((int)tp->retrans_out < 0);
3362 	if (!tp->packets_out && tcp_is_sack(tp)) {
3363 		icsk = inet_csk(sk);
3364 		if (tp->lost_out) {
3365 			pr_debug("Leak l=%u %d\n",
3366 				 tp->lost_out, icsk->icsk_ca_state);
3367 			tp->lost_out = 0;
3368 		}
3369 		if (tp->sacked_out) {
3370 			pr_debug("Leak s=%u %d\n",
3371 				 tp->sacked_out, icsk->icsk_ca_state);
3372 			tp->sacked_out = 0;
3373 		}
3374 		if (tp->retrans_out) {
3375 			pr_debug("Leak r=%u %d\n",
3376 				 tp->retrans_out, icsk->icsk_ca_state);
3377 			tp->retrans_out = 0;
3378 		}
3379 	}
3380 #endif
3381 	return flag;
3382 }
3383 
3384 static void tcp_ack_probe(struct sock *sk)
3385 {
3386 	struct inet_connection_sock *icsk = inet_csk(sk);
3387 	struct sk_buff *head = tcp_send_head(sk);
3388 	const struct tcp_sock *tp = tcp_sk(sk);
3389 
3390 	/* Was it a usable window open? */
3391 	if (!head)
3392 		return;
3393 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3394 		icsk->icsk_backoff = 0;
3395 		icsk->icsk_probes_tstamp = 0;
3396 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3397 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3398 		 * This function is not for random using!
3399 		 */
3400 	} else {
3401 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3402 
3403 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3404 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3405 	}
3406 }
3407 
3408 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3409 {
3410 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3411 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3412 }
3413 
3414 /* Decide wheather to run the increase function of congestion control. */
3415 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3416 {
3417 	/* If reordering is high then always grow cwnd whenever data is
3418 	 * delivered regardless of its ordering. Otherwise stay conservative
3419 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3420 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3421 	 * cwnd in tcp_fastretrans_alert() based on more states.
3422 	 */
3423 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3424 		return flag & FLAG_FORWARD_PROGRESS;
3425 
3426 	return flag & FLAG_DATA_ACKED;
3427 }
3428 
3429 /* The "ultimate" congestion control function that aims to replace the rigid
3430  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3431  * It's called toward the end of processing an ACK with precise rate
3432  * information. All transmission or retransmission are delayed afterwards.
3433  */
3434 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3435 			     int flag, const struct rate_sample *rs)
3436 {
3437 	const struct inet_connection_sock *icsk = inet_csk(sk);
3438 
3439 	if (icsk->icsk_ca_ops->cong_control) {
3440 		icsk->icsk_ca_ops->cong_control(sk, rs);
3441 		return;
3442 	}
3443 
3444 	if (tcp_in_cwnd_reduction(sk)) {
3445 		/* Reduce cwnd if state mandates */
3446 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3447 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3448 		/* Advance cwnd if state allows */
3449 		tcp_cong_avoid(sk, ack, acked_sacked);
3450 	}
3451 	tcp_update_pacing_rate(sk);
3452 }
3453 
3454 /* Check that window update is acceptable.
3455  * The function assumes that snd_una<=ack<=snd_next.
3456  */
3457 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3458 					const u32 ack, const u32 ack_seq,
3459 					const u32 nwin)
3460 {
3461 	return	after(ack, tp->snd_una) ||
3462 		after(ack_seq, tp->snd_wl1) ||
3463 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3464 }
3465 
3466 /* If we update tp->snd_una, also update tp->bytes_acked */
3467 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3468 {
3469 	u32 delta = ack - tp->snd_una;
3470 
3471 	sock_owned_by_me((struct sock *)tp);
3472 	tp->bytes_acked += delta;
3473 	tp->snd_una = ack;
3474 }
3475 
3476 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3477 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3478 {
3479 	u32 delta = seq - tp->rcv_nxt;
3480 
3481 	sock_owned_by_me((struct sock *)tp);
3482 	tp->bytes_received += delta;
3483 	WRITE_ONCE(tp->rcv_nxt, seq);
3484 }
3485 
3486 /* Update our send window.
3487  *
3488  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3489  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3490  */
3491 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3492 				 u32 ack_seq)
3493 {
3494 	struct tcp_sock *tp = tcp_sk(sk);
3495 	int flag = 0;
3496 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3497 
3498 	if (likely(!tcp_hdr(skb)->syn))
3499 		nwin <<= tp->rx_opt.snd_wscale;
3500 
3501 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3502 		flag |= FLAG_WIN_UPDATE;
3503 		tcp_update_wl(tp, ack_seq);
3504 
3505 		if (tp->snd_wnd != nwin) {
3506 			tp->snd_wnd = nwin;
3507 
3508 			/* Note, it is the only place, where
3509 			 * fast path is recovered for sending TCP.
3510 			 */
3511 			tp->pred_flags = 0;
3512 			tcp_fast_path_check(sk);
3513 
3514 			if (!tcp_write_queue_empty(sk))
3515 				tcp_slow_start_after_idle_check(sk);
3516 
3517 			if (nwin > tp->max_window) {
3518 				tp->max_window = nwin;
3519 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3520 			}
3521 		}
3522 	}
3523 
3524 	tcp_snd_una_update(tp, ack);
3525 
3526 	return flag;
3527 }
3528 
3529 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3530 				   u32 *last_oow_ack_time)
3531 {
3532 	if (*last_oow_ack_time) {
3533 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3534 
3535 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3536 			NET_INC_STATS(net, mib_idx);
3537 			return true;	/* rate-limited: don't send yet! */
3538 		}
3539 	}
3540 
3541 	*last_oow_ack_time = tcp_jiffies32;
3542 
3543 	return false;	/* not rate-limited: go ahead, send dupack now! */
3544 }
3545 
3546 /* Return true if we're currently rate-limiting out-of-window ACKs and
3547  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3548  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3549  * attacks that send repeated SYNs or ACKs for the same connection. To
3550  * do this, we do not send a duplicate SYNACK or ACK if the remote
3551  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3552  */
3553 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3554 			  int mib_idx, u32 *last_oow_ack_time)
3555 {
3556 	/* Data packets without SYNs are not likely part of an ACK loop. */
3557 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3558 	    !tcp_hdr(skb)->syn)
3559 		return false;
3560 
3561 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3562 }
3563 
3564 /* RFC 5961 7 [ACK Throttling] */
3565 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3566 {
3567 	/* unprotected vars, we dont care of overwrites */
3568 	static u32 challenge_timestamp;
3569 	static unsigned int challenge_count;
3570 	struct tcp_sock *tp = tcp_sk(sk);
3571 	struct net *net = sock_net(sk);
3572 	u32 count, now;
3573 
3574 	/* First check our per-socket dupack rate limit. */
3575 	if (__tcp_oow_rate_limited(net,
3576 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3577 				   &tp->last_oow_ack_time))
3578 		return;
3579 
3580 	/* Then check host-wide RFC 5961 rate limit. */
3581 	now = jiffies / HZ;
3582 	if (now != challenge_timestamp) {
3583 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3584 		u32 half = (ack_limit + 1) >> 1;
3585 
3586 		challenge_timestamp = now;
3587 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3588 	}
3589 	count = READ_ONCE(challenge_count);
3590 	if (count > 0) {
3591 		WRITE_ONCE(challenge_count, count - 1);
3592 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3593 		tcp_send_ack(sk);
3594 	}
3595 }
3596 
3597 static void tcp_store_ts_recent(struct tcp_sock *tp)
3598 {
3599 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3600 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3601 }
3602 
3603 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3604 {
3605 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3606 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3607 		 * extra check below makes sure this can only happen
3608 		 * for pure ACK frames.  -DaveM
3609 		 *
3610 		 * Not only, also it occurs for expired timestamps.
3611 		 */
3612 
3613 		if (tcp_paws_check(&tp->rx_opt, 0))
3614 			tcp_store_ts_recent(tp);
3615 	}
3616 }
3617 
3618 /* This routine deals with acks during a TLP episode and ends an episode by
3619  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3620  */
3621 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3622 {
3623 	struct tcp_sock *tp = tcp_sk(sk);
3624 
3625 	if (before(ack, tp->tlp_high_seq))
3626 		return;
3627 
3628 	if (!tp->tlp_retrans) {
3629 		/* TLP of new data has been acknowledged */
3630 		tp->tlp_high_seq = 0;
3631 	} else if (flag & FLAG_DSACKING_ACK) {
3632 		/* This DSACK means original and TLP probe arrived; no loss */
3633 		tp->tlp_high_seq = 0;
3634 	} else if (after(ack, tp->tlp_high_seq)) {
3635 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3636 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3637 		 */
3638 		tcp_init_cwnd_reduction(sk);
3639 		tcp_set_ca_state(sk, TCP_CA_CWR);
3640 		tcp_end_cwnd_reduction(sk);
3641 		tcp_try_keep_open(sk);
3642 		NET_INC_STATS(sock_net(sk),
3643 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3644 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3645 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3646 		/* Pure dupack: original and TLP probe arrived; no loss */
3647 		tp->tlp_high_seq = 0;
3648 	}
3649 }
3650 
3651 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3652 {
3653 	const struct inet_connection_sock *icsk = inet_csk(sk);
3654 
3655 	if (icsk->icsk_ca_ops->in_ack_event)
3656 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3657 }
3658 
3659 /* Congestion control has updated the cwnd already. So if we're in
3660  * loss recovery then now we do any new sends (for FRTO) or
3661  * retransmits (for CA_Loss or CA_recovery) that make sense.
3662  */
3663 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3664 {
3665 	struct tcp_sock *tp = tcp_sk(sk);
3666 
3667 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3668 		return;
3669 
3670 	if (unlikely(rexmit == REXMIT_NEW)) {
3671 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3672 					  TCP_NAGLE_OFF);
3673 		if (after(tp->snd_nxt, tp->high_seq))
3674 			return;
3675 		tp->frto = 0;
3676 	}
3677 	tcp_xmit_retransmit_queue(sk);
3678 }
3679 
3680 /* Returns the number of packets newly acked or sacked by the current ACK */
3681 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3682 {
3683 	const struct net *net = sock_net(sk);
3684 	struct tcp_sock *tp = tcp_sk(sk);
3685 	u32 delivered;
3686 
3687 	delivered = tp->delivered - prior_delivered;
3688 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3689 	if (flag & FLAG_ECE)
3690 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3691 
3692 	return delivered;
3693 }
3694 
3695 /* This routine deals with incoming acks, but not outgoing ones. */
3696 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3697 {
3698 	struct inet_connection_sock *icsk = inet_csk(sk);
3699 	struct tcp_sock *tp = tcp_sk(sk);
3700 	struct tcp_sacktag_state sack_state;
3701 	struct rate_sample rs = { .prior_delivered = 0 };
3702 	u32 prior_snd_una = tp->snd_una;
3703 	bool is_sack_reneg = tp->is_sack_reneg;
3704 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3705 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3706 	int num_dupack = 0;
3707 	int prior_packets = tp->packets_out;
3708 	u32 delivered = tp->delivered;
3709 	u32 lost = tp->lost;
3710 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3711 	u32 prior_fack;
3712 
3713 	sack_state.first_sackt = 0;
3714 	sack_state.rate = &rs;
3715 	sack_state.sack_delivered = 0;
3716 
3717 	/* We very likely will need to access rtx queue. */
3718 	prefetch(sk->tcp_rtx_queue.rb_node);
3719 
3720 	/* If the ack is older than previous acks
3721 	 * then we can probably ignore it.
3722 	 */
3723 	if (before(ack, prior_snd_una)) {
3724 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3725 		if (before(ack, prior_snd_una - tp->max_window)) {
3726 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3727 				tcp_send_challenge_ack(sk, skb);
3728 			return -1;
3729 		}
3730 		goto old_ack;
3731 	}
3732 
3733 	/* If the ack includes data we haven't sent yet, discard
3734 	 * this segment (RFC793 Section 3.9).
3735 	 */
3736 	if (after(ack, tp->snd_nxt))
3737 		return -1;
3738 
3739 	if (after(ack, prior_snd_una)) {
3740 		flag |= FLAG_SND_UNA_ADVANCED;
3741 		icsk->icsk_retransmits = 0;
3742 
3743 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3744 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3745 			if (icsk->icsk_clean_acked)
3746 				icsk->icsk_clean_acked(sk, ack);
3747 #endif
3748 	}
3749 
3750 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3751 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3752 
3753 	/* ts_recent update must be made after we are sure that the packet
3754 	 * is in window.
3755 	 */
3756 	if (flag & FLAG_UPDATE_TS_RECENT)
3757 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3758 
3759 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3760 	    FLAG_SND_UNA_ADVANCED) {
3761 		/* Window is constant, pure forward advance.
3762 		 * No more checks are required.
3763 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3764 		 */
3765 		tcp_update_wl(tp, ack_seq);
3766 		tcp_snd_una_update(tp, ack);
3767 		flag |= FLAG_WIN_UPDATE;
3768 
3769 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3770 
3771 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3772 	} else {
3773 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3774 
3775 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3776 			flag |= FLAG_DATA;
3777 		else
3778 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3779 
3780 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3781 
3782 		if (TCP_SKB_CB(skb)->sacked)
3783 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3784 							&sack_state);
3785 
3786 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3787 			flag |= FLAG_ECE;
3788 			ack_ev_flags |= CA_ACK_ECE;
3789 		}
3790 
3791 		if (sack_state.sack_delivered)
3792 			tcp_count_delivered(tp, sack_state.sack_delivered,
3793 					    flag & FLAG_ECE);
3794 
3795 		if (flag & FLAG_WIN_UPDATE)
3796 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3797 
3798 		tcp_in_ack_event(sk, ack_ev_flags);
3799 	}
3800 
3801 	/* This is a deviation from RFC3168 since it states that:
3802 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3803 	 * the congestion window, it SHOULD set the CWR bit only on the first
3804 	 * new data packet that it transmits."
3805 	 * We accept CWR on pure ACKs to be more robust
3806 	 * with widely-deployed TCP implementations that do this.
3807 	 */
3808 	tcp_ecn_accept_cwr(sk, skb);
3809 
3810 	/* We passed data and got it acked, remove any soft error
3811 	 * log. Something worked...
3812 	 */
3813 	sk->sk_err_soft = 0;
3814 	icsk->icsk_probes_out = 0;
3815 	tp->rcv_tstamp = tcp_jiffies32;
3816 	if (!prior_packets)
3817 		goto no_queue;
3818 
3819 	/* See if we can take anything off of the retransmit queue. */
3820 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3821 				    &sack_state, flag & FLAG_ECE);
3822 
3823 	tcp_rack_update_reo_wnd(sk, &rs);
3824 
3825 	if (tp->tlp_high_seq)
3826 		tcp_process_tlp_ack(sk, ack, flag);
3827 
3828 	if (tcp_ack_is_dubious(sk, flag)) {
3829 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3830 			num_dupack = 1;
3831 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3832 			if (!(flag & FLAG_DATA))
3833 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3834 		}
3835 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3836 				      &rexmit);
3837 	}
3838 
3839 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3840 	if (flag & FLAG_SET_XMIT_TIMER)
3841 		tcp_set_xmit_timer(sk);
3842 
3843 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3844 		sk_dst_confirm(sk);
3845 
3846 	delivered = tcp_newly_delivered(sk, delivered, flag);
3847 	lost = tp->lost - lost;			/* freshly marked lost */
3848 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3849 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3850 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3851 	tcp_xmit_recovery(sk, rexmit);
3852 	return 1;
3853 
3854 no_queue:
3855 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3856 	if (flag & FLAG_DSACKING_ACK) {
3857 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3858 				      &rexmit);
3859 		tcp_newly_delivered(sk, delivered, flag);
3860 	}
3861 	/* If this ack opens up a zero window, clear backoff.  It was
3862 	 * being used to time the probes, and is probably far higher than
3863 	 * it needs to be for normal retransmission.
3864 	 */
3865 	tcp_ack_probe(sk);
3866 
3867 	if (tp->tlp_high_seq)
3868 		tcp_process_tlp_ack(sk, ack, flag);
3869 	return 1;
3870 
3871 old_ack:
3872 	/* If data was SACKed, tag it and see if we should send more data.
3873 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3874 	 */
3875 	if (TCP_SKB_CB(skb)->sacked) {
3876 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3877 						&sack_state);
3878 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3879 				      &rexmit);
3880 		tcp_newly_delivered(sk, delivered, flag);
3881 		tcp_xmit_recovery(sk, rexmit);
3882 	}
3883 
3884 	return 0;
3885 }
3886 
3887 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3888 				      bool syn, struct tcp_fastopen_cookie *foc,
3889 				      bool exp_opt)
3890 {
3891 	/* Valid only in SYN or SYN-ACK with an even length.  */
3892 	if (!foc || !syn || len < 0 || (len & 1))
3893 		return;
3894 
3895 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3896 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3897 		memcpy(foc->val, cookie, len);
3898 	else if (len != 0)
3899 		len = -1;
3900 	foc->len = len;
3901 	foc->exp = exp_opt;
3902 }
3903 
3904 static bool smc_parse_options(const struct tcphdr *th,
3905 			      struct tcp_options_received *opt_rx,
3906 			      const unsigned char *ptr,
3907 			      int opsize)
3908 {
3909 #if IS_ENABLED(CONFIG_SMC)
3910 	if (static_branch_unlikely(&tcp_have_smc)) {
3911 		if (th->syn && !(opsize & 1) &&
3912 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3913 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3914 			opt_rx->smc_ok = 1;
3915 			return true;
3916 		}
3917 	}
3918 #endif
3919 	return false;
3920 }
3921 
3922 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3923  * value on success.
3924  */
3925 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3926 {
3927 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3928 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3929 	u16 mss = 0;
3930 
3931 	while (length > 0) {
3932 		int opcode = *ptr++;
3933 		int opsize;
3934 
3935 		switch (opcode) {
3936 		case TCPOPT_EOL:
3937 			return mss;
3938 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3939 			length--;
3940 			continue;
3941 		default:
3942 			if (length < 2)
3943 				return mss;
3944 			opsize = *ptr++;
3945 			if (opsize < 2) /* "silly options" */
3946 				return mss;
3947 			if (opsize > length)
3948 				return mss;	/* fail on partial options */
3949 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3950 				u16 in_mss = get_unaligned_be16(ptr);
3951 
3952 				if (in_mss) {
3953 					if (user_mss && user_mss < in_mss)
3954 						in_mss = user_mss;
3955 					mss = in_mss;
3956 				}
3957 			}
3958 			ptr += opsize - 2;
3959 			length -= opsize;
3960 		}
3961 	}
3962 	return mss;
3963 }
3964 
3965 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3966  * But, this can also be called on packets in the established flow when
3967  * the fast version below fails.
3968  */
3969 void tcp_parse_options(const struct net *net,
3970 		       const struct sk_buff *skb,
3971 		       struct tcp_options_received *opt_rx, int estab,
3972 		       struct tcp_fastopen_cookie *foc)
3973 {
3974 	const unsigned char *ptr;
3975 	const struct tcphdr *th = tcp_hdr(skb);
3976 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3977 
3978 	ptr = (const unsigned char *)(th + 1);
3979 	opt_rx->saw_tstamp = 0;
3980 	opt_rx->saw_unknown = 0;
3981 
3982 	while (length > 0) {
3983 		int opcode = *ptr++;
3984 		int opsize;
3985 
3986 		switch (opcode) {
3987 		case TCPOPT_EOL:
3988 			return;
3989 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3990 			length--;
3991 			continue;
3992 		default:
3993 			if (length < 2)
3994 				return;
3995 			opsize = *ptr++;
3996 			if (opsize < 2) /* "silly options" */
3997 				return;
3998 			if (opsize > length)
3999 				return;	/* don't parse partial options */
4000 			switch (opcode) {
4001 			case TCPOPT_MSS:
4002 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4003 					u16 in_mss = get_unaligned_be16(ptr);
4004 					if (in_mss) {
4005 						if (opt_rx->user_mss &&
4006 						    opt_rx->user_mss < in_mss)
4007 							in_mss = opt_rx->user_mss;
4008 						opt_rx->mss_clamp = in_mss;
4009 					}
4010 				}
4011 				break;
4012 			case TCPOPT_WINDOW:
4013 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4014 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
4015 					__u8 snd_wscale = *(__u8 *)ptr;
4016 					opt_rx->wscale_ok = 1;
4017 					if (snd_wscale > TCP_MAX_WSCALE) {
4018 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4019 								     __func__,
4020 								     snd_wscale,
4021 								     TCP_MAX_WSCALE);
4022 						snd_wscale = TCP_MAX_WSCALE;
4023 					}
4024 					opt_rx->snd_wscale = snd_wscale;
4025 				}
4026 				break;
4027 			case TCPOPT_TIMESTAMP:
4028 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4029 				    ((estab && opt_rx->tstamp_ok) ||
4030 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4031 					opt_rx->saw_tstamp = 1;
4032 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4033 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4034 				}
4035 				break;
4036 			case TCPOPT_SACK_PERM:
4037 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4038 				    !estab && net->ipv4.sysctl_tcp_sack) {
4039 					opt_rx->sack_ok = TCP_SACK_SEEN;
4040 					tcp_sack_reset(opt_rx);
4041 				}
4042 				break;
4043 
4044 			case TCPOPT_SACK:
4045 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4046 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4047 				   opt_rx->sack_ok) {
4048 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4049 				}
4050 				break;
4051 #ifdef CONFIG_TCP_MD5SIG
4052 			case TCPOPT_MD5SIG:
4053 				/*
4054 				 * The MD5 Hash has already been
4055 				 * checked (see tcp_v{4,6}_do_rcv()).
4056 				 */
4057 				break;
4058 #endif
4059 			case TCPOPT_FASTOPEN:
4060 				tcp_parse_fastopen_option(
4061 					opsize - TCPOLEN_FASTOPEN_BASE,
4062 					ptr, th->syn, foc, false);
4063 				break;
4064 
4065 			case TCPOPT_EXP:
4066 				/* Fast Open option shares code 254 using a
4067 				 * 16 bits magic number.
4068 				 */
4069 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4070 				    get_unaligned_be16(ptr) ==
4071 				    TCPOPT_FASTOPEN_MAGIC) {
4072 					tcp_parse_fastopen_option(opsize -
4073 						TCPOLEN_EXP_FASTOPEN_BASE,
4074 						ptr + 2, th->syn, foc, true);
4075 					break;
4076 				}
4077 
4078 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4079 					break;
4080 
4081 				opt_rx->saw_unknown = 1;
4082 				break;
4083 
4084 			default:
4085 				opt_rx->saw_unknown = 1;
4086 			}
4087 			ptr += opsize-2;
4088 			length -= opsize;
4089 		}
4090 	}
4091 }
4092 EXPORT_SYMBOL(tcp_parse_options);
4093 
4094 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4095 {
4096 	const __be32 *ptr = (const __be32 *)(th + 1);
4097 
4098 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4099 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4100 		tp->rx_opt.saw_tstamp = 1;
4101 		++ptr;
4102 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4103 		++ptr;
4104 		if (*ptr)
4105 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4106 		else
4107 			tp->rx_opt.rcv_tsecr = 0;
4108 		return true;
4109 	}
4110 	return false;
4111 }
4112 
4113 /* Fast parse options. This hopes to only see timestamps.
4114  * If it is wrong it falls back on tcp_parse_options().
4115  */
4116 static bool tcp_fast_parse_options(const struct net *net,
4117 				   const struct sk_buff *skb,
4118 				   const struct tcphdr *th, struct tcp_sock *tp)
4119 {
4120 	/* In the spirit of fast parsing, compare doff directly to constant
4121 	 * values.  Because equality is used, short doff can be ignored here.
4122 	 */
4123 	if (th->doff == (sizeof(*th) / 4)) {
4124 		tp->rx_opt.saw_tstamp = 0;
4125 		return false;
4126 	} else if (tp->rx_opt.tstamp_ok &&
4127 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4128 		if (tcp_parse_aligned_timestamp(tp, th))
4129 			return true;
4130 	}
4131 
4132 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4133 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4134 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4135 
4136 	return true;
4137 }
4138 
4139 #ifdef CONFIG_TCP_MD5SIG
4140 /*
4141  * Parse MD5 Signature option
4142  */
4143 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4144 {
4145 	int length = (th->doff << 2) - sizeof(*th);
4146 	const u8 *ptr = (const u8 *)(th + 1);
4147 
4148 	/* If not enough data remaining, we can short cut */
4149 	while (length >= TCPOLEN_MD5SIG) {
4150 		int opcode = *ptr++;
4151 		int opsize;
4152 
4153 		switch (opcode) {
4154 		case TCPOPT_EOL:
4155 			return NULL;
4156 		case TCPOPT_NOP:
4157 			length--;
4158 			continue;
4159 		default:
4160 			opsize = *ptr++;
4161 			if (opsize < 2 || opsize > length)
4162 				return NULL;
4163 			if (opcode == TCPOPT_MD5SIG)
4164 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4165 		}
4166 		ptr += opsize - 2;
4167 		length -= opsize;
4168 	}
4169 	return NULL;
4170 }
4171 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4172 #endif
4173 
4174 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4175  *
4176  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4177  * it can pass through stack. So, the following predicate verifies that
4178  * this segment is not used for anything but congestion avoidance or
4179  * fast retransmit. Moreover, we even are able to eliminate most of such
4180  * second order effects, if we apply some small "replay" window (~RTO)
4181  * to timestamp space.
4182  *
4183  * All these measures still do not guarantee that we reject wrapped ACKs
4184  * on networks with high bandwidth, when sequence space is recycled fastly,
4185  * but it guarantees that such events will be very rare and do not affect
4186  * connection seriously. This doesn't look nice, but alas, PAWS is really
4187  * buggy extension.
4188  *
4189  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4190  * states that events when retransmit arrives after original data are rare.
4191  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4192  * the biggest problem on large power networks even with minor reordering.
4193  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4194  * up to bandwidth of 18Gigabit/sec. 8) ]
4195  */
4196 
4197 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4198 {
4199 	const struct tcp_sock *tp = tcp_sk(sk);
4200 	const struct tcphdr *th = tcp_hdr(skb);
4201 	u32 seq = TCP_SKB_CB(skb)->seq;
4202 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4203 
4204 	return (/* 1. Pure ACK with correct sequence number. */
4205 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4206 
4207 		/* 2. ... and duplicate ACK. */
4208 		ack == tp->snd_una &&
4209 
4210 		/* 3. ... and does not update window. */
4211 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4212 
4213 		/* 4. ... and sits in replay window. */
4214 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4215 }
4216 
4217 static inline bool tcp_paws_discard(const struct sock *sk,
4218 				   const struct sk_buff *skb)
4219 {
4220 	const struct tcp_sock *tp = tcp_sk(sk);
4221 
4222 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4223 	       !tcp_disordered_ack(sk, skb);
4224 }
4225 
4226 /* Check segment sequence number for validity.
4227  *
4228  * Segment controls are considered valid, if the segment
4229  * fits to the window after truncation to the window. Acceptability
4230  * of data (and SYN, FIN, of course) is checked separately.
4231  * See tcp_data_queue(), for example.
4232  *
4233  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4234  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4235  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4236  * (borrowed from freebsd)
4237  */
4238 
4239 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4240 {
4241 	return	!before(end_seq, tp->rcv_wup) &&
4242 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4243 }
4244 
4245 /* When we get a reset we do this. */
4246 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4247 {
4248 	trace_tcp_receive_reset(sk);
4249 
4250 	/* mptcp can't tell us to ignore reset pkts,
4251 	 * so just ignore the return value of mptcp_incoming_options().
4252 	 */
4253 	if (sk_is_mptcp(sk))
4254 		mptcp_incoming_options(sk, skb);
4255 
4256 	/* We want the right error as BSD sees it (and indeed as we do). */
4257 	switch (sk->sk_state) {
4258 	case TCP_SYN_SENT:
4259 		sk->sk_err = ECONNREFUSED;
4260 		break;
4261 	case TCP_CLOSE_WAIT:
4262 		sk->sk_err = EPIPE;
4263 		break;
4264 	case TCP_CLOSE:
4265 		return;
4266 	default:
4267 		sk->sk_err = ECONNRESET;
4268 	}
4269 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4270 	smp_wmb();
4271 
4272 	tcp_write_queue_purge(sk);
4273 	tcp_done(sk);
4274 
4275 	if (!sock_flag(sk, SOCK_DEAD))
4276 		sk_error_report(sk);
4277 }
4278 
4279 /*
4280  * 	Process the FIN bit. This now behaves as it is supposed to work
4281  *	and the FIN takes effect when it is validly part of sequence
4282  *	space. Not before when we get holes.
4283  *
4284  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4285  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4286  *	TIME-WAIT)
4287  *
4288  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4289  *	close and we go into CLOSING (and later onto TIME-WAIT)
4290  *
4291  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4292  */
4293 void tcp_fin(struct sock *sk)
4294 {
4295 	struct tcp_sock *tp = tcp_sk(sk);
4296 
4297 	inet_csk_schedule_ack(sk);
4298 
4299 	sk->sk_shutdown |= RCV_SHUTDOWN;
4300 	sock_set_flag(sk, SOCK_DONE);
4301 
4302 	switch (sk->sk_state) {
4303 	case TCP_SYN_RECV:
4304 	case TCP_ESTABLISHED:
4305 		/* Move to CLOSE_WAIT */
4306 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4307 		inet_csk_enter_pingpong_mode(sk);
4308 		break;
4309 
4310 	case TCP_CLOSE_WAIT:
4311 	case TCP_CLOSING:
4312 		/* Received a retransmission of the FIN, do
4313 		 * nothing.
4314 		 */
4315 		break;
4316 	case TCP_LAST_ACK:
4317 		/* RFC793: Remain in the LAST-ACK state. */
4318 		break;
4319 
4320 	case TCP_FIN_WAIT1:
4321 		/* This case occurs when a simultaneous close
4322 		 * happens, we must ack the received FIN and
4323 		 * enter the CLOSING state.
4324 		 */
4325 		tcp_send_ack(sk);
4326 		tcp_set_state(sk, TCP_CLOSING);
4327 		break;
4328 	case TCP_FIN_WAIT2:
4329 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4330 		tcp_send_ack(sk);
4331 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4332 		break;
4333 	default:
4334 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4335 		 * cases we should never reach this piece of code.
4336 		 */
4337 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4338 		       __func__, sk->sk_state);
4339 		break;
4340 	}
4341 
4342 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4343 	 * Probably, we should reset in this case. For now drop them.
4344 	 */
4345 	skb_rbtree_purge(&tp->out_of_order_queue);
4346 	if (tcp_is_sack(tp))
4347 		tcp_sack_reset(&tp->rx_opt);
4348 	sk_mem_reclaim(sk);
4349 
4350 	if (!sock_flag(sk, SOCK_DEAD)) {
4351 		sk->sk_state_change(sk);
4352 
4353 		/* Do not send POLL_HUP for half duplex close. */
4354 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4355 		    sk->sk_state == TCP_CLOSE)
4356 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4357 		else
4358 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4359 	}
4360 }
4361 
4362 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4363 				  u32 end_seq)
4364 {
4365 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4366 		if (before(seq, sp->start_seq))
4367 			sp->start_seq = seq;
4368 		if (after(end_seq, sp->end_seq))
4369 			sp->end_seq = end_seq;
4370 		return true;
4371 	}
4372 	return false;
4373 }
4374 
4375 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4376 {
4377 	struct tcp_sock *tp = tcp_sk(sk);
4378 
4379 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4380 		int mib_idx;
4381 
4382 		if (before(seq, tp->rcv_nxt))
4383 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4384 		else
4385 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4386 
4387 		NET_INC_STATS(sock_net(sk), mib_idx);
4388 
4389 		tp->rx_opt.dsack = 1;
4390 		tp->duplicate_sack[0].start_seq = seq;
4391 		tp->duplicate_sack[0].end_seq = end_seq;
4392 	}
4393 }
4394 
4395 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4396 {
4397 	struct tcp_sock *tp = tcp_sk(sk);
4398 
4399 	if (!tp->rx_opt.dsack)
4400 		tcp_dsack_set(sk, seq, end_seq);
4401 	else
4402 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4403 }
4404 
4405 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4406 {
4407 	/* When the ACK path fails or drops most ACKs, the sender would
4408 	 * timeout and spuriously retransmit the same segment repeatedly.
4409 	 * The receiver remembers and reflects via DSACKs. Leverage the
4410 	 * DSACK state and change the txhash to re-route speculatively.
4411 	 */
4412 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4413 	    sk_rethink_txhash(sk))
4414 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4415 }
4416 
4417 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4418 {
4419 	struct tcp_sock *tp = tcp_sk(sk);
4420 
4421 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4422 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4423 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4424 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4425 
4426 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4427 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4428 
4429 			tcp_rcv_spurious_retrans(sk, skb);
4430 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4431 				end_seq = tp->rcv_nxt;
4432 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4433 		}
4434 	}
4435 
4436 	tcp_send_ack(sk);
4437 }
4438 
4439 /* These routines update the SACK block as out-of-order packets arrive or
4440  * in-order packets close up the sequence space.
4441  */
4442 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4443 {
4444 	int this_sack;
4445 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4446 	struct tcp_sack_block *swalk = sp + 1;
4447 
4448 	/* See if the recent change to the first SACK eats into
4449 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4450 	 */
4451 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4452 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4453 			int i;
4454 
4455 			/* Zap SWALK, by moving every further SACK up by one slot.
4456 			 * Decrease num_sacks.
4457 			 */
4458 			tp->rx_opt.num_sacks--;
4459 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4460 				sp[i] = sp[i + 1];
4461 			continue;
4462 		}
4463 		this_sack++;
4464 		swalk++;
4465 	}
4466 }
4467 
4468 static void tcp_sack_compress_send_ack(struct sock *sk)
4469 {
4470 	struct tcp_sock *tp = tcp_sk(sk);
4471 
4472 	if (!tp->compressed_ack)
4473 		return;
4474 
4475 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4476 		__sock_put(sk);
4477 
4478 	/* Since we have to send one ack finally,
4479 	 * substract one from tp->compressed_ack to keep
4480 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4481 	 */
4482 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4483 		      tp->compressed_ack - 1);
4484 
4485 	tp->compressed_ack = 0;
4486 	tcp_send_ack(sk);
4487 }
4488 
4489 /* Reasonable amount of sack blocks included in TCP SACK option
4490  * The max is 4, but this becomes 3 if TCP timestamps are there.
4491  * Given that SACK packets might be lost, be conservative and use 2.
4492  */
4493 #define TCP_SACK_BLOCKS_EXPECTED 2
4494 
4495 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4496 {
4497 	struct tcp_sock *tp = tcp_sk(sk);
4498 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4499 	int cur_sacks = tp->rx_opt.num_sacks;
4500 	int this_sack;
4501 
4502 	if (!cur_sacks)
4503 		goto new_sack;
4504 
4505 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4506 		if (tcp_sack_extend(sp, seq, end_seq)) {
4507 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4508 				tcp_sack_compress_send_ack(sk);
4509 			/* Rotate this_sack to the first one. */
4510 			for (; this_sack > 0; this_sack--, sp--)
4511 				swap(*sp, *(sp - 1));
4512 			if (cur_sacks > 1)
4513 				tcp_sack_maybe_coalesce(tp);
4514 			return;
4515 		}
4516 	}
4517 
4518 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4519 		tcp_sack_compress_send_ack(sk);
4520 
4521 	/* Could not find an adjacent existing SACK, build a new one,
4522 	 * put it at the front, and shift everyone else down.  We
4523 	 * always know there is at least one SACK present already here.
4524 	 *
4525 	 * If the sack array is full, forget about the last one.
4526 	 */
4527 	if (this_sack >= TCP_NUM_SACKS) {
4528 		this_sack--;
4529 		tp->rx_opt.num_sacks--;
4530 		sp--;
4531 	}
4532 	for (; this_sack > 0; this_sack--, sp--)
4533 		*sp = *(sp - 1);
4534 
4535 new_sack:
4536 	/* Build the new head SACK, and we're done. */
4537 	sp->start_seq = seq;
4538 	sp->end_seq = end_seq;
4539 	tp->rx_opt.num_sacks++;
4540 }
4541 
4542 /* RCV.NXT advances, some SACKs should be eaten. */
4543 
4544 static void tcp_sack_remove(struct tcp_sock *tp)
4545 {
4546 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4547 	int num_sacks = tp->rx_opt.num_sacks;
4548 	int this_sack;
4549 
4550 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4551 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4552 		tp->rx_opt.num_sacks = 0;
4553 		return;
4554 	}
4555 
4556 	for (this_sack = 0; this_sack < num_sacks;) {
4557 		/* Check if the start of the sack is covered by RCV.NXT. */
4558 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4559 			int i;
4560 
4561 			/* RCV.NXT must cover all the block! */
4562 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4563 
4564 			/* Zap this SACK, by moving forward any other SACKS. */
4565 			for (i = this_sack+1; i < num_sacks; i++)
4566 				tp->selective_acks[i-1] = tp->selective_acks[i];
4567 			num_sacks--;
4568 			continue;
4569 		}
4570 		this_sack++;
4571 		sp++;
4572 	}
4573 	tp->rx_opt.num_sacks = num_sacks;
4574 }
4575 
4576 /**
4577  * tcp_try_coalesce - try to merge skb to prior one
4578  * @sk: socket
4579  * @to: prior buffer
4580  * @from: buffer to add in queue
4581  * @fragstolen: pointer to boolean
4582  *
4583  * Before queueing skb @from after @to, try to merge them
4584  * to reduce overall memory use and queue lengths, if cost is small.
4585  * Packets in ofo or receive queues can stay a long time.
4586  * Better try to coalesce them right now to avoid future collapses.
4587  * Returns true if caller should free @from instead of queueing it
4588  */
4589 static bool tcp_try_coalesce(struct sock *sk,
4590 			     struct sk_buff *to,
4591 			     struct sk_buff *from,
4592 			     bool *fragstolen)
4593 {
4594 	int delta;
4595 
4596 	*fragstolen = false;
4597 
4598 	/* Its possible this segment overlaps with prior segment in queue */
4599 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4600 		return false;
4601 
4602 	if (!mptcp_skb_can_collapse(to, from))
4603 		return false;
4604 
4605 #ifdef CONFIG_TLS_DEVICE
4606 	if (from->decrypted != to->decrypted)
4607 		return false;
4608 #endif
4609 
4610 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4611 		return false;
4612 
4613 	atomic_add(delta, &sk->sk_rmem_alloc);
4614 	sk_mem_charge(sk, delta);
4615 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4616 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4617 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4618 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4619 
4620 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4621 		TCP_SKB_CB(to)->has_rxtstamp = true;
4622 		to->tstamp = from->tstamp;
4623 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4624 	}
4625 
4626 	return true;
4627 }
4628 
4629 static bool tcp_ooo_try_coalesce(struct sock *sk,
4630 			     struct sk_buff *to,
4631 			     struct sk_buff *from,
4632 			     bool *fragstolen)
4633 {
4634 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4635 
4636 	/* In case tcp_drop() is called later, update to->gso_segs */
4637 	if (res) {
4638 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4639 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4640 
4641 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4642 	}
4643 	return res;
4644 }
4645 
4646 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4647 {
4648 	sk_drops_add(sk, skb);
4649 	__kfree_skb(skb);
4650 }
4651 
4652 /* This one checks to see if we can put data from the
4653  * out_of_order queue into the receive_queue.
4654  */
4655 static void tcp_ofo_queue(struct sock *sk)
4656 {
4657 	struct tcp_sock *tp = tcp_sk(sk);
4658 	__u32 dsack_high = tp->rcv_nxt;
4659 	bool fin, fragstolen, eaten;
4660 	struct sk_buff *skb, *tail;
4661 	struct rb_node *p;
4662 
4663 	p = rb_first(&tp->out_of_order_queue);
4664 	while (p) {
4665 		skb = rb_to_skb(p);
4666 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4667 			break;
4668 
4669 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4670 			__u32 dsack = dsack_high;
4671 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4672 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4673 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4674 		}
4675 		p = rb_next(p);
4676 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4677 
4678 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4679 			tcp_drop(sk, skb);
4680 			continue;
4681 		}
4682 
4683 		tail = skb_peek_tail(&sk->sk_receive_queue);
4684 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4685 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4686 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4687 		if (!eaten)
4688 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4689 		else
4690 			kfree_skb_partial(skb, fragstolen);
4691 
4692 		if (unlikely(fin)) {
4693 			tcp_fin(sk);
4694 			/* tcp_fin() purges tp->out_of_order_queue,
4695 			 * so we must end this loop right now.
4696 			 */
4697 			break;
4698 		}
4699 	}
4700 }
4701 
4702 static bool tcp_prune_ofo_queue(struct sock *sk);
4703 static int tcp_prune_queue(struct sock *sk);
4704 
4705 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4706 				 unsigned int size)
4707 {
4708 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4709 	    !sk_rmem_schedule(sk, skb, size)) {
4710 
4711 		if (tcp_prune_queue(sk) < 0)
4712 			return -1;
4713 
4714 		while (!sk_rmem_schedule(sk, skb, size)) {
4715 			if (!tcp_prune_ofo_queue(sk))
4716 				return -1;
4717 		}
4718 	}
4719 	return 0;
4720 }
4721 
4722 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4723 {
4724 	struct tcp_sock *tp = tcp_sk(sk);
4725 	struct rb_node **p, *parent;
4726 	struct sk_buff *skb1;
4727 	u32 seq, end_seq;
4728 	bool fragstolen;
4729 
4730 	tcp_ecn_check_ce(sk, skb);
4731 
4732 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4733 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4734 		sk->sk_data_ready(sk);
4735 		tcp_drop(sk, skb);
4736 		return;
4737 	}
4738 
4739 	/* Disable header prediction. */
4740 	tp->pred_flags = 0;
4741 	inet_csk_schedule_ack(sk);
4742 
4743 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4744 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4745 	seq = TCP_SKB_CB(skb)->seq;
4746 	end_seq = TCP_SKB_CB(skb)->end_seq;
4747 
4748 	p = &tp->out_of_order_queue.rb_node;
4749 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4750 		/* Initial out of order segment, build 1 SACK. */
4751 		if (tcp_is_sack(tp)) {
4752 			tp->rx_opt.num_sacks = 1;
4753 			tp->selective_acks[0].start_seq = seq;
4754 			tp->selective_acks[0].end_seq = end_seq;
4755 		}
4756 		rb_link_node(&skb->rbnode, NULL, p);
4757 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4758 		tp->ooo_last_skb = skb;
4759 		goto end;
4760 	}
4761 
4762 	/* In the typical case, we are adding an skb to the end of the list.
4763 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4764 	 */
4765 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4766 				 skb, &fragstolen)) {
4767 coalesce_done:
4768 		/* For non sack flows, do not grow window to force DUPACK
4769 		 * and trigger fast retransmit.
4770 		 */
4771 		if (tcp_is_sack(tp))
4772 			tcp_grow_window(sk, skb);
4773 		kfree_skb_partial(skb, fragstolen);
4774 		skb = NULL;
4775 		goto add_sack;
4776 	}
4777 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4778 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4779 		parent = &tp->ooo_last_skb->rbnode;
4780 		p = &parent->rb_right;
4781 		goto insert;
4782 	}
4783 
4784 	/* Find place to insert this segment. Handle overlaps on the way. */
4785 	parent = NULL;
4786 	while (*p) {
4787 		parent = *p;
4788 		skb1 = rb_to_skb(parent);
4789 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4790 			p = &parent->rb_left;
4791 			continue;
4792 		}
4793 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4794 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4795 				/* All the bits are present. Drop. */
4796 				NET_INC_STATS(sock_net(sk),
4797 					      LINUX_MIB_TCPOFOMERGE);
4798 				tcp_drop(sk, skb);
4799 				skb = NULL;
4800 				tcp_dsack_set(sk, seq, end_seq);
4801 				goto add_sack;
4802 			}
4803 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4804 				/* Partial overlap. */
4805 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4806 			} else {
4807 				/* skb's seq == skb1's seq and skb covers skb1.
4808 				 * Replace skb1 with skb.
4809 				 */
4810 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4811 						&tp->out_of_order_queue);
4812 				tcp_dsack_extend(sk,
4813 						 TCP_SKB_CB(skb1)->seq,
4814 						 TCP_SKB_CB(skb1)->end_seq);
4815 				NET_INC_STATS(sock_net(sk),
4816 					      LINUX_MIB_TCPOFOMERGE);
4817 				tcp_drop(sk, skb1);
4818 				goto merge_right;
4819 			}
4820 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4821 						skb, &fragstolen)) {
4822 			goto coalesce_done;
4823 		}
4824 		p = &parent->rb_right;
4825 	}
4826 insert:
4827 	/* Insert segment into RB tree. */
4828 	rb_link_node(&skb->rbnode, parent, p);
4829 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4830 
4831 merge_right:
4832 	/* Remove other segments covered by skb. */
4833 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4834 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4835 			break;
4836 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4837 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4838 					 end_seq);
4839 			break;
4840 		}
4841 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4842 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4843 				 TCP_SKB_CB(skb1)->end_seq);
4844 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4845 		tcp_drop(sk, skb1);
4846 	}
4847 	/* If there is no skb after us, we are the last_skb ! */
4848 	if (!skb1)
4849 		tp->ooo_last_skb = skb;
4850 
4851 add_sack:
4852 	if (tcp_is_sack(tp))
4853 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4854 end:
4855 	if (skb) {
4856 		/* For non sack flows, do not grow window to force DUPACK
4857 		 * and trigger fast retransmit.
4858 		 */
4859 		if (tcp_is_sack(tp))
4860 			tcp_grow_window(sk, skb);
4861 		skb_condense(skb);
4862 		skb_set_owner_r(skb, sk);
4863 	}
4864 }
4865 
4866 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4867 				      bool *fragstolen)
4868 {
4869 	int eaten;
4870 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4871 
4872 	eaten = (tail &&
4873 		 tcp_try_coalesce(sk, tail,
4874 				  skb, fragstolen)) ? 1 : 0;
4875 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4876 	if (!eaten) {
4877 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4878 		skb_set_owner_r(skb, sk);
4879 	}
4880 	return eaten;
4881 }
4882 
4883 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4884 {
4885 	struct sk_buff *skb;
4886 	int err = -ENOMEM;
4887 	int data_len = 0;
4888 	bool fragstolen;
4889 
4890 	if (size == 0)
4891 		return 0;
4892 
4893 	if (size > PAGE_SIZE) {
4894 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4895 
4896 		data_len = npages << PAGE_SHIFT;
4897 		size = data_len + (size & ~PAGE_MASK);
4898 	}
4899 	skb = alloc_skb_with_frags(size - data_len, data_len,
4900 				   PAGE_ALLOC_COSTLY_ORDER,
4901 				   &err, sk->sk_allocation);
4902 	if (!skb)
4903 		goto err;
4904 
4905 	skb_put(skb, size - data_len);
4906 	skb->data_len = data_len;
4907 	skb->len = size;
4908 
4909 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4910 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4911 		goto err_free;
4912 	}
4913 
4914 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4915 	if (err)
4916 		goto err_free;
4917 
4918 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4919 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4920 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4921 
4922 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4923 		WARN_ON_ONCE(fragstolen); /* should not happen */
4924 		__kfree_skb(skb);
4925 	}
4926 	return size;
4927 
4928 err_free:
4929 	kfree_skb(skb);
4930 err:
4931 	return err;
4932 
4933 }
4934 
4935 void tcp_data_ready(struct sock *sk)
4936 {
4937 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
4938 		sk->sk_data_ready(sk);
4939 }
4940 
4941 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4942 {
4943 	struct tcp_sock *tp = tcp_sk(sk);
4944 	bool fragstolen;
4945 	int eaten;
4946 
4947 	/* If a subflow has been reset, the packet should not continue
4948 	 * to be processed, drop the packet.
4949 	 */
4950 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
4951 		__kfree_skb(skb);
4952 		return;
4953 	}
4954 
4955 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4956 		__kfree_skb(skb);
4957 		return;
4958 	}
4959 	skb_dst_drop(skb);
4960 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4961 
4962 	tp->rx_opt.dsack = 0;
4963 
4964 	/*  Queue data for delivery to the user.
4965 	 *  Packets in sequence go to the receive queue.
4966 	 *  Out of sequence packets to the out_of_order_queue.
4967 	 */
4968 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4969 		if (tcp_receive_window(tp) == 0) {
4970 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4971 			goto out_of_window;
4972 		}
4973 
4974 		/* Ok. In sequence. In window. */
4975 queue_and_out:
4976 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4977 			sk_forced_mem_schedule(sk, skb->truesize);
4978 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4979 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4980 			sk->sk_data_ready(sk);
4981 			goto drop;
4982 		}
4983 
4984 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4985 		if (skb->len)
4986 			tcp_event_data_recv(sk, skb);
4987 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4988 			tcp_fin(sk);
4989 
4990 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4991 			tcp_ofo_queue(sk);
4992 
4993 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4994 			 * gap in queue is filled.
4995 			 */
4996 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4997 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4998 		}
4999 
5000 		if (tp->rx_opt.num_sacks)
5001 			tcp_sack_remove(tp);
5002 
5003 		tcp_fast_path_check(sk);
5004 
5005 		if (eaten > 0)
5006 			kfree_skb_partial(skb, fragstolen);
5007 		if (!sock_flag(sk, SOCK_DEAD))
5008 			tcp_data_ready(sk);
5009 		return;
5010 	}
5011 
5012 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5013 		tcp_rcv_spurious_retrans(sk, skb);
5014 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5015 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5016 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5017 
5018 out_of_window:
5019 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5020 		inet_csk_schedule_ack(sk);
5021 drop:
5022 		tcp_drop(sk, skb);
5023 		return;
5024 	}
5025 
5026 	/* Out of window. F.e. zero window probe. */
5027 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5028 		goto out_of_window;
5029 
5030 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5031 		/* Partial packet, seq < rcv_next < end_seq */
5032 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5033 
5034 		/* If window is closed, drop tail of packet. But after
5035 		 * remembering D-SACK for its head made in previous line.
5036 		 */
5037 		if (!tcp_receive_window(tp)) {
5038 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5039 			goto out_of_window;
5040 		}
5041 		goto queue_and_out;
5042 	}
5043 
5044 	tcp_data_queue_ofo(sk, skb);
5045 }
5046 
5047 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5048 {
5049 	if (list)
5050 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5051 
5052 	return skb_rb_next(skb);
5053 }
5054 
5055 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5056 					struct sk_buff_head *list,
5057 					struct rb_root *root)
5058 {
5059 	struct sk_buff *next = tcp_skb_next(skb, list);
5060 
5061 	if (list)
5062 		__skb_unlink(skb, list);
5063 	else
5064 		rb_erase(&skb->rbnode, root);
5065 
5066 	__kfree_skb(skb);
5067 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5068 
5069 	return next;
5070 }
5071 
5072 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5073 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5074 {
5075 	struct rb_node **p = &root->rb_node;
5076 	struct rb_node *parent = NULL;
5077 	struct sk_buff *skb1;
5078 
5079 	while (*p) {
5080 		parent = *p;
5081 		skb1 = rb_to_skb(parent);
5082 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5083 			p = &parent->rb_left;
5084 		else
5085 			p = &parent->rb_right;
5086 	}
5087 	rb_link_node(&skb->rbnode, parent, p);
5088 	rb_insert_color(&skb->rbnode, root);
5089 }
5090 
5091 /* Collapse contiguous sequence of skbs head..tail with
5092  * sequence numbers start..end.
5093  *
5094  * If tail is NULL, this means until the end of the queue.
5095  *
5096  * Segments with FIN/SYN are not collapsed (only because this
5097  * simplifies code)
5098  */
5099 static void
5100 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5101 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5102 {
5103 	struct sk_buff *skb = head, *n;
5104 	struct sk_buff_head tmp;
5105 	bool end_of_skbs;
5106 
5107 	/* First, check that queue is collapsible and find
5108 	 * the point where collapsing can be useful.
5109 	 */
5110 restart:
5111 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5112 		n = tcp_skb_next(skb, list);
5113 
5114 		/* No new bits? It is possible on ofo queue. */
5115 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5116 			skb = tcp_collapse_one(sk, skb, list, root);
5117 			if (!skb)
5118 				break;
5119 			goto restart;
5120 		}
5121 
5122 		/* The first skb to collapse is:
5123 		 * - not SYN/FIN and
5124 		 * - bloated or contains data before "start" or
5125 		 *   overlaps to the next one and mptcp allow collapsing.
5126 		 */
5127 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5128 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5129 		     before(TCP_SKB_CB(skb)->seq, start))) {
5130 			end_of_skbs = false;
5131 			break;
5132 		}
5133 
5134 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5135 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5136 			end_of_skbs = false;
5137 			break;
5138 		}
5139 
5140 		/* Decided to skip this, advance start seq. */
5141 		start = TCP_SKB_CB(skb)->end_seq;
5142 	}
5143 	if (end_of_skbs ||
5144 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5145 		return;
5146 
5147 	__skb_queue_head_init(&tmp);
5148 
5149 	while (before(start, end)) {
5150 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5151 		struct sk_buff *nskb;
5152 
5153 		nskb = alloc_skb(copy, GFP_ATOMIC);
5154 		if (!nskb)
5155 			break;
5156 
5157 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5158 #ifdef CONFIG_TLS_DEVICE
5159 		nskb->decrypted = skb->decrypted;
5160 #endif
5161 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5162 		if (list)
5163 			__skb_queue_before(list, skb, nskb);
5164 		else
5165 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5166 		skb_set_owner_r(nskb, sk);
5167 		mptcp_skb_ext_move(nskb, skb);
5168 
5169 		/* Copy data, releasing collapsed skbs. */
5170 		while (copy > 0) {
5171 			int offset = start - TCP_SKB_CB(skb)->seq;
5172 			int size = TCP_SKB_CB(skb)->end_seq - start;
5173 
5174 			BUG_ON(offset < 0);
5175 			if (size > 0) {
5176 				size = min(copy, size);
5177 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5178 					BUG();
5179 				TCP_SKB_CB(nskb)->end_seq += size;
5180 				copy -= size;
5181 				start += size;
5182 			}
5183 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5184 				skb = tcp_collapse_one(sk, skb, list, root);
5185 				if (!skb ||
5186 				    skb == tail ||
5187 				    !mptcp_skb_can_collapse(nskb, skb) ||
5188 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5189 					goto end;
5190 #ifdef CONFIG_TLS_DEVICE
5191 				if (skb->decrypted != nskb->decrypted)
5192 					goto end;
5193 #endif
5194 			}
5195 		}
5196 	}
5197 end:
5198 	skb_queue_walk_safe(&tmp, skb, n)
5199 		tcp_rbtree_insert(root, skb);
5200 }
5201 
5202 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5203  * and tcp_collapse() them until all the queue is collapsed.
5204  */
5205 static void tcp_collapse_ofo_queue(struct sock *sk)
5206 {
5207 	struct tcp_sock *tp = tcp_sk(sk);
5208 	u32 range_truesize, sum_tiny = 0;
5209 	struct sk_buff *skb, *head;
5210 	u32 start, end;
5211 
5212 	skb = skb_rb_first(&tp->out_of_order_queue);
5213 new_range:
5214 	if (!skb) {
5215 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5216 		return;
5217 	}
5218 	start = TCP_SKB_CB(skb)->seq;
5219 	end = TCP_SKB_CB(skb)->end_seq;
5220 	range_truesize = skb->truesize;
5221 
5222 	for (head = skb;;) {
5223 		skb = skb_rb_next(skb);
5224 
5225 		/* Range is terminated when we see a gap or when
5226 		 * we are at the queue end.
5227 		 */
5228 		if (!skb ||
5229 		    after(TCP_SKB_CB(skb)->seq, end) ||
5230 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5231 			/* Do not attempt collapsing tiny skbs */
5232 			if (range_truesize != head->truesize ||
5233 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5234 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5235 					     head, skb, start, end);
5236 			} else {
5237 				sum_tiny += range_truesize;
5238 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5239 					return;
5240 			}
5241 			goto new_range;
5242 		}
5243 
5244 		range_truesize += skb->truesize;
5245 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5246 			start = TCP_SKB_CB(skb)->seq;
5247 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5248 			end = TCP_SKB_CB(skb)->end_seq;
5249 	}
5250 }
5251 
5252 /*
5253  * Clean the out-of-order queue to make room.
5254  * We drop high sequences packets to :
5255  * 1) Let a chance for holes to be filled.
5256  * 2) not add too big latencies if thousands of packets sit there.
5257  *    (But if application shrinks SO_RCVBUF, we could still end up
5258  *     freeing whole queue here)
5259  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5260  *
5261  * Return true if queue has shrunk.
5262  */
5263 static bool tcp_prune_ofo_queue(struct sock *sk)
5264 {
5265 	struct tcp_sock *tp = tcp_sk(sk);
5266 	struct rb_node *node, *prev;
5267 	int goal;
5268 
5269 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5270 		return false;
5271 
5272 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5273 	goal = sk->sk_rcvbuf >> 3;
5274 	node = &tp->ooo_last_skb->rbnode;
5275 	do {
5276 		prev = rb_prev(node);
5277 		rb_erase(node, &tp->out_of_order_queue);
5278 		goal -= rb_to_skb(node)->truesize;
5279 		tcp_drop(sk, rb_to_skb(node));
5280 		if (!prev || goal <= 0) {
5281 			sk_mem_reclaim(sk);
5282 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5283 			    !tcp_under_memory_pressure(sk))
5284 				break;
5285 			goal = sk->sk_rcvbuf >> 3;
5286 		}
5287 		node = prev;
5288 	} while (node);
5289 	tp->ooo_last_skb = rb_to_skb(prev);
5290 
5291 	/* Reset SACK state.  A conforming SACK implementation will
5292 	 * do the same at a timeout based retransmit.  When a connection
5293 	 * is in a sad state like this, we care only about integrity
5294 	 * of the connection not performance.
5295 	 */
5296 	if (tp->rx_opt.sack_ok)
5297 		tcp_sack_reset(&tp->rx_opt);
5298 	return true;
5299 }
5300 
5301 /* Reduce allocated memory if we can, trying to get
5302  * the socket within its memory limits again.
5303  *
5304  * Return less than zero if we should start dropping frames
5305  * until the socket owning process reads some of the data
5306  * to stabilize the situation.
5307  */
5308 static int tcp_prune_queue(struct sock *sk)
5309 {
5310 	struct tcp_sock *tp = tcp_sk(sk);
5311 
5312 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5313 
5314 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5315 		tcp_clamp_window(sk);
5316 	else if (tcp_under_memory_pressure(sk))
5317 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5318 
5319 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5320 		return 0;
5321 
5322 	tcp_collapse_ofo_queue(sk);
5323 	if (!skb_queue_empty(&sk->sk_receive_queue))
5324 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5325 			     skb_peek(&sk->sk_receive_queue),
5326 			     NULL,
5327 			     tp->copied_seq, tp->rcv_nxt);
5328 	sk_mem_reclaim(sk);
5329 
5330 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5331 		return 0;
5332 
5333 	/* Collapsing did not help, destructive actions follow.
5334 	 * This must not ever occur. */
5335 
5336 	tcp_prune_ofo_queue(sk);
5337 
5338 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5339 		return 0;
5340 
5341 	/* If we are really being abused, tell the caller to silently
5342 	 * drop receive data on the floor.  It will get retransmitted
5343 	 * and hopefully then we'll have sufficient space.
5344 	 */
5345 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5346 
5347 	/* Massive buffer overcommit. */
5348 	tp->pred_flags = 0;
5349 	return -1;
5350 }
5351 
5352 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5353 {
5354 	const struct tcp_sock *tp = tcp_sk(sk);
5355 
5356 	/* If the user specified a specific send buffer setting, do
5357 	 * not modify it.
5358 	 */
5359 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5360 		return false;
5361 
5362 	/* If we are under global TCP memory pressure, do not expand.  */
5363 	if (tcp_under_memory_pressure(sk))
5364 		return false;
5365 
5366 	/* If we are under soft global TCP memory pressure, do not expand.  */
5367 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5368 		return false;
5369 
5370 	/* If we filled the congestion window, do not expand.  */
5371 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5372 		return false;
5373 
5374 	return true;
5375 }
5376 
5377 static void tcp_new_space(struct sock *sk)
5378 {
5379 	struct tcp_sock *tp = tcp_sk(sk);
5380 
5381 	if (tcp_should_expand_sndbuf(sk)) {
5382 		tcp_sndbuf_expand(sk);
5383 		tp->snd_cwnd_stamp = tcp_jiffies32;
5384 	}
5385 
5386 	sk->sk_write_space(sk);
5387 }
5388 
5389 static void tcp_check_space(struct sock *sk)
5390 {
5391 	/* pairs with tcp_poll() */
5392 	smp_mb();
5393 	if (sk->sk_socket &&
5394 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5395 		tcp_new_space(sk);
5396 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5397 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5398 	}
5399 }
5400 
5401 static inline void tcp_data_snd_check(struct sock *sk)
5402 {
5403 	tcp_push_pending_frames(sk);
5404 	tcp_check_space(sk);
5405 }
5406 
5407 /*
5408  * Check if sending an ack is needed.
5409  */
5410 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5411 {
5412 	struct tcp_sock *tp = tcp_sk(sk);
5413 	unsigned long rtt, delay;
5414 
5415 	    /* More than one full frame received... */
5416 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5417 	     /* ... and right edge of window advances far enough.
5418 	      * (tcp_recvmsg() will send ACK otherwise).
5419 	      * If application uses SO_RCVLOWAT, we want send ack now if
5420 	      * we have not received enough bytes to satisfy the condition.
5421 	      */
5422 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5423 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5424 	    /* We ACK each frame or... */
5425 	    tcp_in_quickack_mode(sk) ||
5426 	    /* Protocol state mandates a one-time immediate ACK */
5427 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5428 send_now:
5429 		tcp_send_ack(sk);
5430 		return;
5431 	}
5432 
5433 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5434 		tcp_send_delayed_ack(sk);
5435 		return;
5436 	}
5437 
5438 	if (!tcp_is_sack(tp) ||
5439 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5440 		goto send_now;
5441 
5442 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5443 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5444 		tp->dup_ack_counter = 0;
5445 	}
5446 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5447 		tp->dup_ack_counter++;
5448 		goto send_now;
5449 	}
5450 	tp->compressed_ack++;
5451 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5452 		return;
5453 
5454 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5455 
5456 	rtt = tp->rcv_rtt_est.rtt_us;
5457 	if (tp->srtt_us && tp->srtt_us < rtt)
5458 		rtt = tp->srtt_us;
5459 
5460 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5461 		      rtt * (NSEC_PER_USEC >> 3)/20);
5462 	sock_hold(sk);
5463 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5464 			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5465 			       HRTIMER_MODE_REL_PINNED_SOFT);
5466 }
5467 
5468 static inline void tcp_ack_snd_check(struct sock *sk)
5469 {
5470 	if (!inet_csk_ack_scheduled(sk)) {
5471 		/* We sent a data segment already. */
5472 		return;
5473 	}
5474 	__tcp_ack_snd_check(sk, 1);
5475 }
5476 
5477 /*
5478  *	This routine is only called when we have urgent data
5479  *	signaled. Its the 'slow' part of tcp_urg. It could be
5480  *	moved inline now as tcp_urg is only called from one
5481  *	place. We handle URGent data wrong. We have to - as
5482  *	BSD still doesn't use the correction from RFC961.
5483  *	For 1003.1g we should support a new option TCP_STDURG to permit
5484  *	either form (or just set the sysctl tcp_stdurg).
5485  */
5486 
5487 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5488 {
5489 	struct tcp_sock *tp = tcp_sk(sk);
5490 	u32 ptr = ntohs(th->urg_ptr);
5491 
5492 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5493 		ptr--;
5494 	ptr += ntohl(th->seq);
5495 
5496 	/* Ignore urgent data that we've already seen and read. */
5497 	if (after(tp->copied_seq, ptr))
5498 		return;
5499 
5500 	/* Do not replay urg ptr.
5501 	 *
5502 	 * NOTE: interesting situation not covered by specs.
5503 	 * Misbehaving sender may send urg ptr, pointing to segment,
5504 	 * which we already have in ofo queue. We are not able to fetch
5505 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5506 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5507 	 * situations. But it is worth to think about possibility of some
5508 	 * DoSes using some hypothetical application level deadlock.
5509 	 */
5510 	if (before(ptr, tp->rcv_nxt))
5511 		return;
5512 
5513 	/* Do we already have a newer (or duplicate) urgent pointer? */
5514 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5515 		return;
5516 
5517 	/* Tell the world about our new urgent pointer. */
5518 	sk_send_sigurg(sk);
5519 
5520 	/* We may be adding urgent data when the last byte read was
5521 	 * urgent. To do this requires some care. We cannot just ignore
5522 	 * tp->copied_seq since we would read the last urgent byte again
5523 	 * as data, nor can we alter copied_seq until this data arrives
5524 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5525 	 *
5526 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5527 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5528 	 * and expect that both A and B disappear from stream. This is _wrong_.
5529 	 * Though this happens in BSD with high probability, this is occasional.
5530 	 * Any application relying on this is buggy. Note also, that fix "works"
5531 	 * only in this artificial test. Insert some normal data between A and B and we will
5532 	 * decline of BSD again. Verdict: it is better to remove to trap
5533 	 * buggy users.
5534 	 */
5535 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5536 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5537 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5538 		tp->copied_seq++;
5539 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5540 			__skb_unlink(skb, &sk->sk_receive_queue);
5541 			__kfree_skb(skb);
5542 		}
5543 	}
5544 
5545 	tp->urg_data = TCP_URG_NOTYET;
5546 	WRITE_ONCE(tp->urg_seq, ptr);
5547 
5548 	/* Disable header prediction. */
5549 	tp->pred_flags = 0;
5550 }
5551 
5552 /* This is the 'fast' part of urgent handling. */
5553 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5554 {
5555 	struct tcp_sock *tp = tcp_sk(sk);
5556 
5557 	/* Check if we get a new urgent pointer - normally not. */
5558 	if (th->urg)
5559 		tcp_check_urg(sk, th);
5560 
5561 	/* Do we wait for any urgent data? - normally not... */
5562 	if (tp->urg_data == TCP_URG_NOTYET) {
5563 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5564 			  th->syn;
5565 
5566 		/* Is the urgent pointer pointing into this packet? */
5567 		if (ptr < skb->len) {
5568 			u8 tmp;
5569 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5570 				BUG();
5571 			tp->urg_data = TCP_URG_VALID | tmp;
5572 			if (!sock_flag(sk, SOCK_DEAD))
5573 				sk->sk_data_ready(sk);
5574 		}
5575 	}
5576 }
5577 
5578 /* Accept RST for rcv_nxt - 1 after a FIN.
5579  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5580  * FIN is sent followed by a RST packet. The RST is sent with the same
5581  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5582  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5583  * ACKs on the closed socket. In addition middleboxes can drop either the
5584  * challenge ACK or a subsequent RST.
5585  */
5586 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5587 {
5588 	struct tcp_sock *tp = tcp_sk(sk);
5589 
5590 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5591 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5592 					       TCPF_CLOSING));
5593 }
5594 
5595 /* Does PAWS and seqno based validation of an incoming segment, flags will
5596  * play significant role here.
5597  */
5598 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5599 				  const struct tcphdr *th, int syn_inerr)
5600 {
5601 	struct tcp_sock *tp = tcp_sk(sk);
5602 	bool rst_seq_match = false;
5603 
5604 	/* RFC1323: H1. Apply PAWS check first. */
5605 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5606 	    tp->rx_opt.saw_tstamp &&
5607 	    tcp_paws_discard(sk, skb)) {
5608 		if (!th->rst) {
5609 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5610 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5611 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5612 						  &tp->last_oow_ack_time))
5613 				tcp_send_dupack(sk, skb);
5614 			goto discard;
5615 		}
5616 		/* Reset is accepted even if it did not pass PAWS. */
5617 	}
5618 
5619 	/* Step 1: check sequence number */
5620 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5621 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5622 		 * (RST) segments are validated by checking their SEQ-fields."
5623 		 * And page 69: "If an incoming segment is not acceptable,
5624 		 * an acknowledgment should be sent in reply (unless the RST
5625 		 * bit is set, if so drop the segment and return)".
5626 		 */
5627 		if (!th->rst) {
5628 			if (th->syn)
5629 				goto syn_challenge;
5630 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5631 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5632 						  &tp->last_oow_ack_time))
5633 				tcp_send_dupack(sk, skb);
5634 		} else if (tcp_reset_check(sk, skb)) {
5635 			tcp_reset(sk, skb);
5636 		}
5637 		goto discard;
5638 	}
5639 
5640 	/* Step 2: check RST bit */
5641 	if (th->rst) {
5642 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5643 		 * FIN and SACK too if available):
5644 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5645 		 * the right-most SACK block,
5646 		 * then
5647 		 *     RESET the connection
5648 		 * else
5649 		 *     Send a challenge ACK
5650 		 */
5651 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5652 		    tcp_reset_check(sk, skb)) {
5653 			rst_seq_match = true;
5654 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5655 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5656 			int max_sack = sp[0].end_seq;
5657 			int this_sack;
5658 
5659 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5660 			     ++this_sack) {
5661 				max_sack = after(sp[this_sack].end_seq,
5662 						 max_sack) ?
5663 					sp[this_sack].end_seq : max_sack;
5664 			}
5665 
5666 			if (TCP_SKB_CB(skb)->seq == max_sack)
5667 				rst_seq_match = true;
5668 		}
5669 
5670 		if (rst_seq_match)
5671 			tcp_reset(sk, skb);
5672 		else {
5673 			/* Disable TFO if RST is out-of-order
5674 			 * and no data has been received
5675 			 * for current active TFO socket
5676 			 */
5677 			if (tp->syn_fastopen && !tp->data_segs_in &&
5678 			    sk->sk_state == TCP_ESTABLISHED)
5679 				tcp_fastopen_active_disable(sk);
5680 			tcp_send_challenge_ack(sk, skb);
5681 		}
5682 		goto discard;
5683 	}
5684 
5685 	/* step 3: check security and precedence [ignored] */
5686 
5687 	/* step 4: Check for a SYN
5688 	 * RFC 5961 4.2 : Send a challenge ack
5689 	 */
5690 	if (th->syn) {
5691 syn_challenge:
5692 		if (syn_inerr)
5693 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5694 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5695 		tcp_send_challenge_ack(sk, skb);
5696 		goto discard;
5697 	}
5698 
5699 	bpf_skops_parse_hdr(sk, skb);
5700 
5701 	return true;
5702 
5703 discard:
5704 	tcp_drop(sk, skb);
5705 	return false;
5706 }
5707 
5708 /*
5709  *	TCP receive function for the ESTABLISHED state.
5710  *
5711  *	It is split into a fast path and a slow path. The fast path is
5712  * 	disabled when:
5713  *	- A zero window was announced from us - zero window probing
5714  *        is only handled properly in the slow path.
5715  *	- Out of order segments arrived.
5716  *	- Urgent data is expected.
5717  *	- There is no buffer space left
5718  *	- Unexpected TCP flags/window values/header lengths are received
5719  *	  (detected by checking the TCP header against pred_flags)
5720  *	- Data is sent in both directions. Fast path only supports pure senders
5721  *	  or pure receivers (this means either the sequence number or the ack
5722  *	  value must stay constant)
5723  *	- Unexpected TCP option.
5724  *
5725  *	When these conditions are not satisfied it drops into a standard
5726  *	receive procedure patterned after RFC793 to handle all cases.
5727  *	The first three cases are guaranteed by proper pred_flags setting,
5728  *	the rest is checked inline. Fast processing is turned on in
5729  *	tcp_data_queue when everything is OK.
5730  */
5731 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5732 {
5733 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5734 	struct tcp_sock *tp = tcp_sk(sk);
5735 	unsigned int len = skb->len;
5736 
5737 	/* TCP congestion window tracking */
5738 	trace_tcp_probe(sk, skb);
5739 
5740 	tcp_mstamp_refresh(tp);
5741 	if (unlikely(!sk->sk_rx_dst))
5742 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5743 	/*
5744 	 *	Header prediction.
5745 	 *	The code loosely follows the one in the famous
5746 	 *	"30 instruction TCP receive" Van Jacobson mail.
5747 	 *
5748 	 *	Van's trick is to deposit buffers into socket queue
5749 	 *	on a device interrupt, to call tcp_recv function
5750 	 *	on the receive process context and checksum and copy
5751 	 *	the buffer to user space. smart...
5752 	 *
5753 	 *	Our current scheme is not silly either but we take the
5754 	 *	extra cost of the net_bh soft interrupt processing...
5755 	 *	We do checksum and copy also but from device to kernel.
5756 	 */
5757 
5758 	tp->rx_opt.saw_tstamp = 0;
5759 
5760 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5761 	 *	if header_prediction is to be made
5762 	 *	'S' will always be tp->tcp_header_len >> 2
5763 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5764 	 *  turn it off	(when there are holes in the receive
5765 	 *	 space for instance)
5766 	 *	PSH flag is ignored.
5767 	 */
5768 
5769 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5770 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5771 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5772 		int tcp_header_len = tp->tcp_header_len;
5773 
5774 		/* Timestamp header prediction: tcp_header_len
5775 		 * is automatically equal to th->doff*4 due to pred_flags
5776 		 * match.
5777 		 */
5778 
5779 		/* Check timestamp */
5780 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5781 			/* No? Slow path! */
5782 			if (!tcp_parse_aligned_timestamp(tp, th))
5783 				goto slow_path;
5784 
5785 			/* If PAWS failed, check it more carefully in slow path */
5786 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5787 				goto slow_path;
5788 
5789 			/* DO NOT update ts_recent here, if checksum fails
5790 			 * and timestamp was corrupted part, it will result
5791 			 * in a hung connection since we will drop all
5792 			 * future packets due to the PAWS test.
5793 			 */
5794 		}
5795 
5796 		if (len <= tcp_header_len) {
5797 			/* Bulk data transfer: sender */
5798 			if (len == tcp_header_len) {
5799 				/* Predicted packet is in window by definition.
5800 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5801 				 * Hence, check seq<=rcv_wup reduces to:
5802 				 */
5803 				if (tcp_header_len ==
5804 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5805 				    tp->rcv_nxt == tp->rcv_wup)
5806 					tcp_store_ts_recent(tp);
5807 
5808 				/* We know that such packets are checksummed
5809 				 * on entry.
5810 				 */
5811 				tcp_ack(sk, skb, 0);
5812 				__kfree_skb(skb);
5813 				tcp_data_snd_check(sk);
5814 				/* When receiving pure ack in fast path, update
5815 				 * last ts ecr directly instead of calling
5816 				 * tcp_rcv_rtt_measure_ts()
5817 				 */
5818 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5819 				return;
5820 			} else { /* Header too small */
5821 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5822 				goto discard;
5823 			}
5824 		} else {
5825 			int eaten = 0;
5826 			bool fragstolen = false;
5827 
5828 			if (tcp_checksum_complete(skb))
5829 				goto csum_error;
5830 
5831 			if ((int)skb->truesize > sk->sk_forward_alloc)
5832 				goto step5;
5833 
5834 			/* Predicted packet is in window by definition.
5835 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5836 			 * Hence, check seq<=rcv_wup reduces to:
5837 			 */
5838 			if (tcp_header_len ==
5839 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5840 			    tp->rcv_nxt == tp->rcv_wup)
5841 				tcp_store_ts_recent(tp);
5842 
5843 			tcp_rcv_rtt_measure_ts(sk, skb);
5844 
5845 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5846 
5847 			/* Bulk data transfer: receiver */
5848 			__skb_pull(skb, tcp_header_len);
5849 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5850 
5851 			tcp_event_data_recv(sk, skb);
5852 
5853 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5854 				/* Well, only one small jumplet in fast path... */
5855 				tcp_ack(sk, skb, FLAG_DATA);
5856 				tcp_data_snd_check(sk);
5857 				if (!inet_csk_ack_scheduled(sk))
5858 					goto no_ack;
5859 			} else {
5860 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5861 			}
5862 
5863 			__tcp_ack_snd_check(sk, 0);
5864 no_ack:
5865 			if (eaten)
5866 				kfree_skb_partial(skb, fragstolen);
5867 			tcp_data_ready(sk);
5868 			return;
5869 		}
5870 	}
5871 
5872 slow_path:
5873 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5874 		goto csum_error;
5875 
5876 	if (!th->ack && !th->rst && !th->syn)
5877 		goto discard;
5878 
5879 	/*
5880 	 *	Standard slow path.
5881 	 */
5882 
5883 	if (!tcp_validate_incoming(sk, skb, th, 1))
5884 		return;
5885 
5886 step5:
5887 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5888 		goto discard;
5889 
5890 	tcp_rcv_rtt_measure_ts(sk, skb);
5891 
5892 	/* Process urgent data. */
5893 	tcp_urg(sk, skb, th);
5894 
5895 	/* step 7: process the segment text */
5896 	tcp_data_queue(sk, skb);
5897 
5898 	tcp_data_snd_check(sk);
5899 	tcp_ack_snd_check(sk);
5900 	return;
5901 
5902 csum_error:
5903 	trace_tcp_bad_csum(skb);
5904 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5905 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5906 
5907 discard:
5908 	tcp_drop(sk, skb);
5909 }
5910 EXPORT_SYMBOL(tcp_rcv_established);
5911 
5912 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5913 {
5914 	struct inet_connection_sock *icsk = inet_csk(sk);
5915 	struct tcp_sock *tp = tcp_sk(sk);
5916 
5917 	tcp_mtup_init(sk);
5918 	icsk->icsk_af_ops->rebuild_header(sk);
5919 	tcp_init_metrics(sk);
5920 
5921 	/* Initialize the congestion window to start the transfer.
5922 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5923 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5924 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5925 	 * retransmission has occurred.
5926 	 */
5927 	if (tp->total_retrans > 1 && tp->undo_marker)
5928 		tp->snd_cwnd = 1;
5929 	else
5930 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5931 	tp->snd_cwnd_stamp = tcp_jiffies32;
5932 
5933 	bpf_skops_established(sk, bpf_op, skb);
5934 	/* Initialize congestion control unless BPF initialized it already: */
5935 	if (!icsk->icsk_ca_initialized)
5936 		tcp_init_congestion_control(sk);
5937 	tcp_init_buffer_space(sk);
5938 }
5939 
5940 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5941 {
5942 	struct tcp_sock *tp = tcp_sk(sk);
5943 	struct inet_connection_sock *icsk = inet_csk(sk);
5944 
5945 	tcp_set_state(sk, TCP_ESTABLISHED);
5946 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5947 
5948 	if (skb) {
5949 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5950 		security_inet_conn_established(sk, skb);
5951 		sk_mark_napi_id(sk, skb);
5952 	}
5953 
5954 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
5955 
5956 	/* Prevent spurious tcp_cwnd_restart() on first data
5957 	 * packet.
5958 	 */
5959 	tp->lsndtime = tcp_jiffies32;
5960 
5961 	if (sock_flag(sk, SOCK_KEEPOPEN))
5962 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5963 
5964 	if (!tp->rx_opt.snd_wscale)
5965 		__tcp_fast_path_on(tp, tp->snd_wnd);
5966 	else
5967 		tp->pred_flags = 0;
5968 }
5969 
5970 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5971 				    struct tcp_fastopen_cookie *cookie)
5972 {
5973 	struct tcp_sock *tp = tcp_sk(sk);
5974 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5975 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5976 	bool syn_drop = false;
5977 
5978 	if (mss == tp->rx_opt.user_mss) {
5979 		struct tcp_options_received opt;
5980 
5981 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5982 		tcp_clear_options(&opt);
5983 		opt.user_mss = opt.mss_clamp = 0;
5984 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5985 		mss = opt.mss_clamp;
5986 	}
5987 
5988 	if (!tp->syn_fastopen) {
5989 		/* Ignore an unsolicited cookie */
5990 		cookie->len = -1;
5991 	} else if (tp->total_retrans) {
5992 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5993 		 * acknowledges data. Presumably the remote received only
5994 		 * the retransmitted (regular) SYNs: either the original
5995 		 * SYN-data or the corresponding SYN-ACK was dropped.
5996 		 */
5997 		syn_drop = (cookie->len < 0 && data);
5998 	} else if (cookie->len < 0 && !tp->syn_data) {
5999 		/* We requested a cookie but didn't get it. If we did not use
6000 		 * the (old) exp opt format then try so next time (try_exp=1).
6001 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6002 		 */
6003 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6004 	}
6005 
6006 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6007 
6008 	if (data) { /* Retransmit unacked data in SYN */
6009 		if (tp->total_retrans)
6010 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6011 		else
6012 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6013 		skb_rbtree_walk_from(data)
6014 			 tcp_mark_skb_lost(sk, data);
6015 		tcp_xmit_retransmit_queue(sk);
6016 		NET_INC_STATS(sock_net(sk),
6017 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6018 		return true;
6019 	}
6020 	tp->syn_data_acked = tp->syn_data;
6021 	if (tp->syn_data_acked) {
6022 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6023 		/* SYN-data is counted as two separate packets in tcp_ack() */
6024 		if (tp->delivered > 1)
6025 			--tp->delivered;
6026 	}
6027 
6028 	tcp_fastopen_add_skb(sk, synack);
6029 
6030 	return false;
6031 }
6032 
6033 static void smc_check_reset_syn(struct tcp_sock *tp)
6034 {
6035 #if IS_ENABLED(CONFIG_SMC)
6036 	if (static_branch_unlikely(&tcp_have_smc)) {
6037 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6038 			tp->syn_smc = 0;
6039 	}
6040 #endif
6041 }
6042 
6043 static void tcp_try_undo_spurious_syn(struct sock *sk)
6044 {
6045 	struct tcp_sock *tp = tcp_sk(sk);
6046 	u32 syn_stamp;
6047 
6048 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6049 	 * spurious if the ACK's timestamp option echo value matches the
6050 	 * original SYN timestamp.
6051 	 */
6052 	syn_stamp = tp->retrans_stamp;
6053 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6054 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6055 		tp->undo_marker = 0;
6056 }
6057 
6058 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6059 					 const struct tcphdr *th)
6060 {
6061 	struct inet_connection_sock *icsk = inet_csk(sk);
6062 	struct tcp_sock *tp = tcp_sk(sk);
6063 	struct tcp_fastopen_cookie foc = { .len = -1 };
6064 	int saved_clamp = tp->rx_opt.mss_clamp;
6065 	bool fastopen_fail;
6066 
6067 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6068 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6069 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6070 
6071 	if (th->ack) {
6072 		/* rfc793:
6073 		 * "If the state is SYN-SENT then
6074 		 *    first check the ACK bit
6075 		 *      If the ACK bit is set
6076 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6077 		 *        a reset (unless the RST bit is set, if so drop
6078 		 *        the segment and return)"
6079 		 */
6080 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6081 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6082 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6083 			if (icsk->icsk_retransmits == 0)
6084 				inet_csk_reset_xmit_timer(sk,
6085 						ICSK_TIME_RETRANS,
6086 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6087 			goto reset_and_undo;
6088 		}
6089 
6090 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6091 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6092 			     tcp_time_stamp(tp))) {
6093 			NET_INC_STATS(sock_net(sk),
6094 					LINUX_MIB_PAWSACTIVEREJECTED);
6095 			goto reset_and_undo;
6096 		}
6097 
6098 		/* Now ACK is acceptable.
6099 		 *
6100 		 * "If the RST bit is set
6101 		 *    If the ACK was acceptable then signal the user "error:
6102 		 *    connection reset", drop the segment, enter CLOSED state,
6103 		 *    delete TCB, and return."
6104 		 */
6105 
6106 		if (th->rst) {
6107 			tcp_reset(sk, skb);
6108 			goto discard;
6109 		}
6110 
6111 		/* rfc793:
6112 		 *   "fifth, if neither of the SYN or RST bits is set then
6113 		 *    drop the segment and return."
6114 		 *
6115 		 *    See note below!
6116 		 *                                        --ANK(990513)
6117 		 */
6118 		if (!th->syn)
6119 			goto discard_and_undo;
6120 
6121 		/* rfc793:
6122 		 *   "If the SYN bit is on ...
6123 		 *    are acceptable then ...
6124 		 *    (our SYN has been ACKed), change the connection
6125 		 *    state to ESTABLISHED..."
6126 		 */
6127 
6128 		tcp_ecn_rcv_synack(tp, th);
6129 
6130 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6131 		tcp_try_undo_spurious_syn(sk);
6132 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6133 
6134 		/* Ok.. it's good. Set up sequence numbers and
6135 		 * move to established.
6136 		 */
6137 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6138 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6139 
6140 		/* RFC1323: The window in SYN & SYN/ACK segments is
6141 		 * never scaled.
6142 		 */
6143 		tp->snd_wnd = ntohs(th->window);
6144 
6145 		if (!tp->rx_opt.wscale_ok) {
6146 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6147 			tp->window_clamp = min(tp->window_clamp, 65535U);
6148 		}
6149 
6150 		if (tp->rx_opt.saw_tstamp) {
6151 			tp->rx_opt.tstamp_ok	   = 1;
6152 			tp->tcp_header_len =
6153 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6154 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6155 			tcp_store_ts_recent(tp);
6156 		} else {
6157 			tp->tcp_header_len = sizeof(struct tcphdr);
6158 		}
6159 
6160 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6161 		tcp_initialize_rcv_mss(sk);
6162 
6163 		/* Remember, tcp_poll() does not lock socket!
6164 		 * Change state from SYN-SENT only after copied_seq
6165 		 * is initialized. */
6166 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6167 
6168 		smc_check_reset_syn(tp);
6169 
6170 		smp_mb();
6171 
6172 		tcp_finish_connect(sk, skb);
6173 
6174 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6175 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6176 
6177 		if (!sock_flag(sk, SOCK_DEAD)) {
6178 			sk->sk_state_change(sk);
6179 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6180 		}
6181 		if (fastopen_fail)
6182 			return -1;
6183 		if (sk->sk_write_pending ||
6184 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6185 		    inet_csk_in_pingpong_mode(sk)) {
6186 			/* Save one ACK. Data will be ready after
6187 			 * several ticks, if write_pending is set.
6188 			 *
6189 			 * It may be deleted, but with this feature tcpdumps
6190 			 * look so _wonderfully_ clever, that I was not able
6191 			 * to stand against the temptation 8)     --ANK
6192 			 */
6193 			inet_csk_schedule_ack(sk);
6194 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6195 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6196 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6197 
6198 discard:
6199 			tcp_drop(sk, skb);
6200 			return 0;
6201 		} else {
6202 			tcp_send_ack(sk);
6203 		}
6204 		return -1;
6205 	}
6206 
6207 	/* No ACK in the segment */
6208 
6209 	if (th->rst) {
6210 		/* rfc793:
6211 		 * "If the RST bit is set
6212 		 *
6213 		 *      Otherwise (no ACK) drop the segment and return."
6214 		 */
6215 
6216 		goto discard_and_undo;
6217 	}
6218 
6219 	/* PAWS check. */
6220 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6221 	    tcp_paws_reject(&tp->rx_opt, 0))
6222 		goto discard_and_undo;
6223 
6224 	if (th->syn) {
6225 		/* We see SYN without ACK. It is attempt of
6226 		 * simultaneous connect with crossed SYNs.
6227 		 * Particularly, it can be connect to self.
6228 		 */
6229 		tcp_set_state(sk, TCP_SYN_RECV);
6230 
6231 		if (tp->rx_opt.saw_tstamp) {
6232 			tp->rx_opt.tstamp_ok = 1;
6233 			tcp_store_ts_recent(tp);
6234 			tp->tcp_header_len =
6235 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6236 		} else {
6237 			tp->tcp_header_len = sizeof(struct tcphdr);
6238 		}
6239 
6240 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6241 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6242 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6243 
6244 		/* RFC1323: The window in SYN & SYN/ACK segments is
6245 		 * never scaled.
6246 		 */
6247 		tp->snd_wnd    = ntohs(th->window);
6248 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6249 		tp->max_window = tp->snd_wnd;
6250 
6251 		tcp_ecn_rcv_syn(tp, th);
6252 
6253 		tcp_mtup_init(sk);
6254 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6255 		tcp_initialize_rcv_mss(sk);
6256 
6257 		tcp_send_synack(sk);
6258 #if 0
6259 		/* Note, we could accept data and URG from this segment.
6260 		 * There are no obstacles to make this (except that we must
6261 		 * either change tcp_recvmsg() to prevent it from returning data
6262 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6263 		 *
6264 		 * However, if we ignore data in ACKless segments sometimes,
6265 		 * we have no reasons to accept it sometimes.
6266 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6267 		 * is not flawless. So, discard packet for sanity.
6268 		 * Uncomment this return to process the data.
6269 		 */
6270 		return -1;
6271 #else
6272 		goto discard;
6273 #endif
6274 	}
6275 	/* "fifth, if neither of the SYN or RST bits is set then
6276 	 * drop the segment and return."
6277 	 */
6278 
6279 discard_and_undo:
6280 	tcp_clear_options(&tp->rx_opt);
6281 	tp->rx_opt.mss_clamp = saved_clamp;
6282 	goto discard;
6283 
6284 reset_and_undo:
6285 	tcp_clear_options(&tp->rx_opt);
6286 	tp->rx_opt.mss_clamp = saved_clamp;
6287 	return 1;
6288 }
6289 
6290 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6291 {
6292 	struct request_sock *req;
6293 
6294 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6295 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6296 	 */
6297 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6298 		tcp_try_undo_loss(sk, false);
6299 
6300 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6301 	tcp_sk(sk)->retrans_stamp = 0;
6302 	inet_csk(sk)->icsk_retransmits = 0;
6303 
6304 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6305 	 * we no longer need req so release it.
6306 	 */
6307 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6308 					lockdep_sock_is_held(sk));
6309 	reqsk_fastopen_remove(sk, req, false);
6310 
6311 	/* Re-arm the timer because data may have been sent out.
6312 	 * This is similar to the regular data transmission case
6313 	 * when new data has just been ack'ed.
6314 	 *
6315 	 * (TFO) - we could try to be more aggressive and
6316 	 * retransmitting any data sooner based on when they
6317 	 * are sent out.
6318 	 */
6319 	tcp_rearm_rto(sk);
6320 }
6321 
6322 /*
6323  *	This function implements the receiving procedure of RFC 793 for
6324  *	all states except ESTABLISHED and TIME_WAIT.
6325  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6326  *	address independent.
6327  */
6328 
6329 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6330 {
6331 	struct tcp_sock *tp = tcp_sk(sk);
6332 	struct inet_connection_sock *icsk = inet_csk(sk);
6333 	const struct tcphdr *th = tcp_hdr(skb);
6334 	struct request_sock *req;
6335 	int queued = 0;
6336 	bool acceptable;
6337 
6338 	switch (sk->sk_state) {
6339 	case TCP_CLOSE:
6340 		goto discard;
6341 
6342 	case TCP_LISTEN:
6343 		if (th->ack)
6344 			return 1;
6345 
6346 		if (th->rst)
6347 			goto discard;
6348 
6349 		if (th->syn) {
6350 			if (th->fin)
6351 				goto discard;
6352 			/* It is possible that we process SYN packets from backlog,
6353 			 * so we need to make sure to disable BH and RCU right there.
6354 			 */
6355 			rcu_read_lock();
6356 			local_bh_disable();
6357 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6358 			local_bh_enable();
6359 			rcu_read_unlock();
6360 
6361 			if (!acceptable)
6362 				return 1;
6363 			consume_skb(skb);
6364 			return 0;
6365 		}
6366 		goto discard;
6367 
6368 	case TCP_SYN_SENT:
6369 		tp->rx_opt.saw_tstamp = 0;
6370 		tcp_mstamp_refresh(tp);
6371 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6372 		if (queued >= 0)
6373 			return queued;
6374 
6375 		/* Do step6 onward by hand. */
6376 		tcp_urg(sk, skb, th);
6377 		__kfree_skb(skb);
6378 		tcp_data_snd_check(sk);
6379 		return 0;
6380 	}
6381 
6382 	tcp_mstamp_refresh(tp);
6383 	tp->rx_opt.saw_tstamp = 0;
6384 	req = rcu_dereference_protected(tp->fastopen_rsk,
6385 					lockdep_sock_is_held(sk));
6386 	if (req) {
6387 		bool req_stolen;
6388 
6389 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6390 		    sk->sk_state != TCP_FIN_WAIT1);
6391 
6392 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6393 			goto discard;
6394 	}
6395 
6396 	if (!th->ack && !th->rst && !th->syn)
6397 		goto discard;
6398 
6399 	if (!tcp_validate_incoming(sk, skb, th, 0))
6400 		return 0;
6401 
6402 	/* step 5: check the ACK field */
6403 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6404 				      FLAG_UPDATE_TS_RECENT |
6405 				      FLAG_NO_CHALLENGE_ACK) > 0;
6406 
6407 	if (!acceptable) {
6408 		if (sk->sk_state == TCP_SYN_RECV)
6409 			return 1;	/* send one RST */
6410 		tcp_send_challenge_ack(sk, skb);
6411 		goto discard;
6412 	}
6413 	switch (sk->sk_state) {
6414 	case TCP_SYN_RECV:
6415 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6416 		if (!tp->srtt_us)
6417 			tcp_synack_rtt_meas(sk, req);
6418 
6419 		if (req) {
6420 			tcp_rcv_synrecv_state_fastopen(sk);
6421 		} else {
6422 			tcp_try_undo_spurious_syn(sk);
6423 			tp->retrans_stamp = 0;
6424 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6425 					  skb);
6426 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6427 		}
6428 		smp_mb();
6429 		tcp_set_state(sk, TCP_ESTABLISHED);
6430 		sk->sk_state_change(sk);
6431 
6432 		/* Note, that this wakeup is only for marginal crossed SYN case.
6433 		 * Passively open sockets are not waked up, because
6434 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6435 		 */
6436 		if (sk->sk_socket)
6437 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6438 
6439 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6440 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6441 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6442 
6443 		if (tp->rx_opt.tstamp_ok)
6444 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6445 
6446 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6447 			tcp_update_pacing_rate(sk);
6448 
6449 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6450 		tp->lsndtime = tcp_jiffies32;
6451 
6452 		tcp_initialize_rcv_mss(sk);
6453 		tcp_fast_path_on(tp);
6454 		break;
6455 
6456 	case TCP_FIN_WAIT1: {
6457 		int tmo;
6458 
6459 		if (req)
6460 			tcp_rcv_synrecv_state_fastopen(sk);
6461 
6462 		if (tp->snd_una != tp->write_seq)
6463 			break;
6464 
6465 		tcp_set_state(sk, TCP_FIN_WAIT2);
6466 		sk->sk_shutdown |= SEND_SHUTDOWN;
6467 
6468 		sk_dst_confirm(sk);
6469 
6470 		if (!sock_flag(sk, SOCK_DEAD)) {
6471 			/* Wake up lingering close() */
6472 			sk->sk_state_change(sk);
6473 			break;
6474 		}
6475 
6476 		if (tp->linger2 < 0) {
6477 			tcp_done(sk);
6478 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6479 			return 1;
6480 		}
6481 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6482 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6483 			/* Receive out of order FIN after close() */
6484 			if (tp->syn_fastopen && th->fin)
6485 				tcp_fastopen_active_disable(sk);
6486 			tcp_done(sk);
6487 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6488 			return 1;
6489 		}
6490 
6491 		tmo = tcp_fin_time(sk);
6492 		if (tmo > TCP_TIMEWAIT_LEN) {
6493 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6494 		} else if (th->fin || sock_owned_by_user(sk)) {
6495 			/* Bad case. We could lose such FIN otherwise.
6496 			 * It is not a big problem, but it looks confusing
6497 			 * and not so rare event. We still can lose it now,
6498 			 * if it spins in bh_lock_sock(), but it is really
6499 			 * marginal case.
6500 			 */
6501 			inet_csk_reset_keepalive_timer(sk, tmo);
6502 		} else {
6503 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6504 			goto discard;
6505 		}
6506 		break;
6507 	}
6508 
6509 	case TCP_CLOSING:
6510 		if (tp->snd_una == tp->write_seq) {
6511 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6512 			goto discard;
6513 		}
6514 		break;
6515 
6516 	case TCP_LAST_ACK:
6517 		if (tp->snd_una == tp->write_seq) {
6518 			tcp_update_metrics(sk);
6519 			tcp_done(sk);
6520 			goto discard;
6521 		}
6522 		break;
6523 	}
6524 
6525 	/* step 6: check the URG bit */
6526 	tcp_urg(sk, skb, th);
6527 
6528 	/* step 7: process the segment text */
6529 	switch (sk->sk_state) {
6530 	case TCP_CLOSE_WAIT:
6531 	case TCP_CLOSING:
6532 	case TCP_LAST_ACK:
6533 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6534 			/* If a subflow has been reset, the packet should not
6535 			 * continue to be processed, drop the packet.
6536 			 */
6537 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6538 				goto discard;
6539 			break;
6540 		}
6541 		fallthrough;
6542 	case TCP_FIN_WAIT1:
6543 	case TCP_FIN_WAIT2:
6544 		/* RFC 793 says to queue data in these states,
6545 		 * RFC 1122 says we MUST send a reset.
6546 		 * BSD 4.4 also does reset.
6547 		 */
6548 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6549 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6550 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6551 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6552 				tcp_reset(sk, skb);
6553 				return 1;
6554 			}
6555 		}
6556 		fallthrough;
6557 	case TCP_ESTABLISHED:
6558 		tcp_data_queue(sk, skb);
6559 		queued = 1;
6560 		break;
6561 	}
6562 
6563 	/* tcp_data could move socket to TIME-WAIT */
6564 	if (sk->sk_state != TCP_CLOSE) {
6565 		tcp_data_snd_check(sk);
6566 		tcp_ack_snd_check(sk);
6567 	}
6568 
6569 	if (!queued) {
6570 discard:
6571 		tcp_drop(sk, skb);
6572 	}
6573 	return 0;
6574 }
6575 EXPORT_SYMBOL(tcp_rcv_state_process);
6576 
6577 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6578 {
6579 	struct inet_request_sock *ireq = inet_rsk(req);
6580 
6581 	if (family == AF_INET)
6582 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6583 				    &ireq->ir_rmt_addr, port);
6584 #if IS_ENABLED(CONFIG_IPV6)
6585 	else if (family == AF_INET6)
6586 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6587 				    &ireq->ir_v6_rmt_addr, port);
6588 #endif
6589 }
6590 
6591 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6592  *
6593  * If we receive a SYN packet with these bits set, it means a
6594  * network is playing bad games with TOS bits. In order to
6595  * avoid possible false congestion notifications, we disable
6596  * TCP ECN negotiation.
6597  *
6598  * Exception: tcp_ca wants ECN. This is required for DCTCP
6599  * congestion control: Linux DCTCP asserts ECT on all packets,
6600  * including SYN, which is most optimal solution; however,
6601  * others, such as FreeBSD do not.
6602  *
6603  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6604  * set, indicating the use of a future TCP extension (such as AccECN). See
6605  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6606  * extensions.
6607  */
6608 static void tcp_ecn_create_request(struct request_sock *req,
6609 				   const struct sk_buff *skb,
6610 				   const struct sock *listen_sk,
6611 				   const struct dst_entry *dst)
6612 {
6613 	const struct tcphdr *th = tcp_hdr(skb);
6614 	const struct net *net = sock_net(listen_sk);
6615 	bool th_ecn = th->ece && th->cwr;
6616 	bool ect, ecn_ok;
6617 	u32 ecn_ok_dst;
6618 
6619 	if (!th_ecn)
6620 		return;
6621 
6622 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6623 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6624 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6625 
6626 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6627 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6628 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6629 		inet_rsk(req)->ecn_ok = 1;
6630 }
6631 
6632 static void tcp_openreq_init(struct request_sock *req,
6633 			     const struct tcp_options_received *rx_opt,
6634 			     struct sk_buff *skb, const struct sock *sk)
6635 {
6636 	struct inet_request_sock *ireq = inet_rsk(req);
6637 
6638 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6639 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6640 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6641 	tcp_rsk(req)->snt_synack = 0;
6642 	tcp_rsk(req)->last_oow_ack_time = 0;
6643 	req->mss = rx_opt->mss_clamp;
6644 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6645 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6646 	ireq->sack_ok = rx_opt->sack_ok;
6647 	ireq->snd_wscale = rx_opt->snd_wscale;
6648 	ireq->wscale_ok = rx_opt->wscale_ok;
6649 	ireq->acked = 0;
6650 	ireq->ecn_ok = 0;
6651 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6652 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6653 	ireq->ir_mark = inet_request_mark(sk, skb);
6654 #if IS_ENABLED(CONFIG_SMC)
6655 	ireq->smc_ok = rx_opt->smc_ok;
6656 #endif
6657 }
6658 
6659 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6660 				      struct sock *sk_listener,
6661 				      bool attach_listener)
6662 {
6663 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6664 					       attach_listener);
6665 
6666 	if (req) {
6667 		struct inet_request_sock *ireq = inet_rsk(req);
6668 
6669 		ireq->ireq_opt = NULL;
6670 #if IS_ENABLED(CONFIG_IPV6)
6671 		ireq->pktopts = NULL;
6672 #endif
6673 		atomic64_set(&ireq->ir_cookie, 0);
6674 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6675 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6676 		ireq->ireq_family = sk_listener->sk_family;
6677 	}
6678 
6679 	return req;
6680 }
6681 EXPORT_SYMBOL(inet_reqsk_alloc);
6682 
6683 /*
6684  * Return true if a syncookie should be sent
6685  */
6686 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6687 {
6688 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6689 	const char *msg = "Dropping request";
6690 	bool want_cookie = false;
6691 	struct net *net = sock_net(sk);
6692 
6693 #ifdef CONFIG_SYN_COOKIES
6694 	if (net->ipv4.sysctl_tcp_syncookies) {
6695 		msg = "Sending cookies";
6696 		want_cookie = true;
6697 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6698 	} else
6699 #endif
6700 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6701 
6702 	if (!queue->synflood_warned &&
6703 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6704 	    xchg(&queue->synflood_warned, 1) == 0)
6705 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6706 				     proto, sk->sk_num, msg);
6707 
6708 	return want_cookie;
6709 }
6710 
6711 static void tcp_reqsk_record_syn(const struct sock *sk,
6712 				 struct request_sock *req,
6713 				 const struct sk_buff *skb)
6714 {
6715 	if (tcp_sk(sk)->save_syn) {
6716 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6717 		struct saved_syn *saved_syn;
6718 		u32 mac_hdrlen;
6719 		void *base;
6720 
6721 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6722 			base = skb_mac_header(skb);
6723 			mac_hdrlen = skb_mac_header_len(skb);
6724 			len += mac_hdrlen;
6725 		} else {
6726 			base = skb_network_header(skb);
6727 			mac_hdrlen = 0;
6728 		}
6729 
6730 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6731 				    GFP_ATOMIC);
6732 		if (saved_syn) {
6733 			saved_syn->mac_hdrlen = mac_hdrlen;
6734 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6735 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6736 			memcpy(saved_syn->data, base, len);
6737 			req->saved_syn = saved_syn;
6738 		}
6739 	}
6740 }
6741 
6742 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6743  * used for SYN cookie generation.
6744  */
6745 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6746 			  const struct tcp_request_sock_ops *af_ops,
6747 			  struct sock *sk, struct tcphdr *th)
6748 {
6749 	struct tcp_sock *tp = tcp_sk(sk);
6750 	u16 mss;
6751 
6752 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6753 	    !inet_csk_reqsk_queue_is_full(sk))
6754 		return 0;
6755 
6756 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6757 		return 0;
6758 
6759 	if (sk_acceptq_is_full(sk)) {
6760 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6761 		return 0;
6762 	}
6763 
6764 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6765 	if (!mss)
6766 		mss = af_ops->mss_clamp;
6767 
6768 	return mss;
6769 }
6770 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6771 
6772 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6773 		     const struct tcp_request_sock_ops *af_ops,
6774 		     struct sock *sk, struct sk_buff *skb)
6775 {
6776 	struct tcp_fastopen_cookie foc = { .len = -1 };
6777 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6778 	struct tcp_options_received tmp_opt;
6779 	struct tcp_sock *tp = tcp_sk(sk);
6780 	struct net *net = sock_net(sk);
6781 	struct sock *fastopen_sk = NULL;
6782 	struct request_sock *req;
6783 	bool want_cookie = false;
6784 	struct dst_entry *dst;
6785 	struct flowi fl;
6786 
6787 	/* TW buckets are converted to open requests without
6788 	 * limitations, they conserve resources and peer is
6789 	 * evidently real one.
6790 	 */
6791 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6792 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6793 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6794 		if (!want_cookie)
6795 			goto drop;
6796 	}
6797 
6798 	if (sk_acceptq_is_full(sk)) {
6799 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6800 		goto drop;
6801 	}
6802 
6803 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6804 	if (!req)
6805 		goto drop;
6806 
6807 	req->syncookie = want_cookie;
6808 	tcp_rsk(req)->af_specific = af_ops;
6809 	tcp_rsk(req)->ts_off = 0;
6810 #if IS_ENABLED(CONFIG_MPTCP)
6811 	tcp_rsk(req)->is_mptcp = 0;
6812 #endif
6813 
6814 	tcp_clear_options(&tmp_opt);
6815 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6816 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6817 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6818 			  want_cookie ? NULL : &foc);
6819 
6820 	if (want_cookie && !tmp_opt.saw_tstamp)
6821 		tcp_clear_options(&tmp_opt);
6822 
6823 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6824 		tmp_opt.smc_ok = 0;
6825 
6826 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6827 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6828 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6829 
6830 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6831 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6832 
6833 	dst = af_ops->route_req(sk, skb, &fl, req);
6834 	if (!dst)
6835 		goto drop_and_free;
6836 
6837 	if (tmp_opt.tstamp_ok)
6838 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6839 
6840 	if (!want_cookie && !isn) {
6841 		/* Kill the following clause, if you dislike this way. */
6842 		if (!net->ipv4.sysctl_tcp_syncookies &&
6843 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6844 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6845 		    !tcp_peer_is_proven(req, dst)) {
6846 			/* Without syncookies last quarter of
6847 			 * backlog is filled with destinations,
6848 			 * proven to be alive.
6849 			 * It means that we continue to communicate
6850 			 * to destinations, already remembered
6851 			 * to the moment of synflood.
6852 			 */
6853 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6854 				    rsk_ops->family);
6855 			goto drop_and_release;
6856 		}
6857 
6858 		isn = af_ops->init_seq(skb);
6859 	}
6860 
6861 	tcp_ecn_create_request(req, skb, sk, dst);
6862 
6863 	if (want_cookie) {
6864 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6865 		if (!tmp_opt.tstamp_ok)
6866 			inet_rsk(req)->ecn_ok = 0;
6867 	}
6868 
6869 	tcp_rsk(req)->snt_isn = isn;
6870 	tcp_rsk(req)->txhash = net_tx_rndhash();
6871 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6872 	tcp_openreq_init_rwin(req, sk, dst);
6873 	sk_rx_queue_set(req_to_sk(req), skb);
6874 	if (!want_cookie) {
6875 		tcp_reqsk_record_syn(sk, req, skb);
6876 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6877 	}
6878 	if (fastopen_sk) {
6879 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6880 				    &foc, TCP_SYNACK_FASTOPEN, skb);
6881 		/* Add the child socket directly into the accept queue */
6882 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6883 			reqsk_fastopen_remove(fastopen_sk, req, false);
6884 			bh_unlock_sock(fastopen_sk);
6885 			sock_put(fastopen_sk);
6886 			goto drop_and_free;
6887 		}
6888 		sk->sk_data_ready(sk);
6889 		bh_unlock_sock(fastopen_sk);
6890 		sock_put(fastopen_sk);
6891 	} else {
6892 		tcp_rsk(req)->tfo_listener = false;
6893 		if (!want_cookie)
6894 			inet_csk_reqsk_queue_hash_add(sk, req,
6895 				tcp_timeout_init((struct sock *)req));
6896 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6897 				    !want_cookie ? TCP_SYNACK_NORMAL :
6898 						   TCP_SYNACK_COOKIE,
6899 				    skb);
6900 		if (want_cookie) {
6901 			reqsk_free(req);
6902 			return 0;
6903 		}
6904 	}
6905 	reqsk_put(req);
6906 	return 0;
6907 
6908 drop_and_release:
6909 	dst_release(dst);
6910 drop_and_free:
6911 	__reqsk_free(req);
6912 drop:
6913 	tcp_listendrop(sk);
6914 	return 0;
6915 }
6916 EXPORT_SYMBOL(tcp_conn_request);
6917