1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 84 85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 91 #define FLAG_ECE 0x40 /* ECE in this ACK */ 92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 102 103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 107 108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 110 111 #define REXMIT_NONE 0 /* no loss recovery to do */ 112 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 114 115 #if IS_ENABLED(CONFIG_TLS_DEVICE) 116 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 117 118 void clean_acked_data_enable(struct inet_connection_sock *icsk, 119 void (*cad)(struct sock *sk, u32 ack_seq)) 120 { 121 icsk->icsk_clean_acked = cad; 122 static_branch_deferred_inc(&clean_acked_data_enabled); 123 } 124 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 125 126 void clean_acked_data_disable(struct inet_connection_sock *icsk) 127 { 128 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 129 icsk->icsk_clean_acked = NULL; 130 } 131 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 132 133 void clean_acked_data_flush(void) 134 { 135 static_key_deferred_flush(&clean_acked_data_enabled); 136 } 137 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 138 #endif 139 140 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 141 unsigned int len) 142 { 143 static bool __once __read_mostly; 144 145 if (!__once) { 146 struct net_device *dev; 147 148 __once = true; 149 150 rcu_read_lock(); 151 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 152 if (!dev || len >= dev->mtu) 153 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 154 dev ? dev->name : "Unknown driver"); 155 rcu_read_unlock(); 156 } 157 } 158 159 /* Adapt the MSS value used to make delayed ack decision to the 160 * real world. 161 */ 162 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const unsigned int lss = icsk->icsk_ack.last_seg_size; 166 unsigned int len; 167 168 icsk->icsk_ack.last_seg_size = 0; 169 170 /* skb->len may jitter because of SACKs, even if peer 171 * sends good full-sized frames. 172 */ 173 len = skb_shinfo(skb)->gso_size ? : skb->len; 174 if (len >= icsk->icsk_ack.rcv_mss) { 175 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 176 tcp_sk(sk)->advmss); 177 /* Account for possibly-removed options */ 178 if (unlikely(len > icsk->icsk_ack.rcv_mss + 179 MAX_TCP_OPTION_SPACE)) 180 tcp_gro_dev_warn(sk, skb, len); 181 } else { 182 /* Otherwise, we make more careful check taking into account, 183 * that SACKs block is variable. 184 * 185 * "len" is invariant segment length, including TCP header. 186 */ 187 len += skb->data - skb_transport_header(skb); 188 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 189 /* If PSH is not set, packet should be 190 * full sized, provided peer TCP is not badly broken. 191 * This observation (if it is correct 8)) allows 192 * to handle super-low mtu links fairly. 193 */ 194 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 195 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 196 /* Subtract also invariant (if peer is RFC compliant), 197 * tcp header plus fixed timestamp option length. 198 * Resulting "len" is MSS free of SACK jitter. 199 */ 200 len -= tcp_sk(sk)->tcp_header_len; 201 icsk->icsk_ack.last_seg_size = len; 202 if (len == lss) { 203 icsk->icsk_ack.rcv_mss = len; 204 return; 205 } 206 } 207 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 208 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 210 } 211 } 212 213 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 214 { 215 struct inet_connection_sock *icsk = inet_csk(sk); 216 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 217 218 if (quickacks == 0) 219 quickacks = 2; 220 quickacks = min(quickacks, max_quickacks); 221 if (quickacks > icsk->icsk_ack.quick) 222 icsk->icsk_ack.quick = quickacks; 223 } 224 225 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 226 { 227 struct inet_connection_sock *icsk = inet_csk(sk); 228 229 tcp_incr_quickack(sk, max_quickacks); 230 inet_csk_exit_pingpong_mode(sk); 231 icsk->icsk_ack.ato = TCP_ATO_MIN; 232 } 233 EXPORT_SYMBOL(tcp_enter_quickack_mode); 234 235 /* Send ACKs quickly, if "quick" count is not exhausted 236 * and the session is not interactive. 237 */ 238 239 static bool tcp_in_quickack_mode(struct sock *sk) 240 { 241 const struct inet_connection_sock *icsk = inet_csk(sk); 242 const struct dst_entry *dst = __sk_dst_get(sk); 243 244 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 245 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 246 } 247 248 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 249 { 250 if (tp->ecn_flags & TCP_ECN_OK) 251 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 252 } 253 254 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 255 { 256 if (tcp_hdr(skb)->cwr) { 257 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 258 259 /* If the sender is telling us it has entered CWR, then its 260 * cwnd may be very low (even just 1 packet), so we should ACK 261 * immediately. 262 */ 263 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 264 } 265 } 266 267 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 268 { 269 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 270 } 271 272 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 273 { 274 struct tcp_sock *tp = tcp_sk(sk); 275 276 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 277 case INET_ECN_NOT_ECT: 278 /* Funny extension: if ECT is not set on a segment, 279 * and we already seen ECT on a previous segment, 280 * it is probably a retransmit. 281 */ 282 if (tp->ecn_flags & TCP_ECN_SEEN) 283 tcp_enter_quickack_mode(sk, 2); 284 break; 285 case INET_ECN_CE: 286 if (tcp_ca_needs_ecn(sk)) 287 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 288 289 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 290 /* Better not delay acks, sender can have a very low cwnd */ 291 tcp_enter_quickack_mode(sk, 2); 292 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 293 } 294 tp->ecn_flags |= TCP_ECN_SEEN; 295 break; 296 default: 297 if (tcp_ca_needs_ecn(sk)) 298 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 299 tp->ecn_flags |= TCP_ECN_SEEN; 300 break; 301 } 302 } 303 304 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 305 { 306 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 307 __tcp_ecn_check_ce(sk, skb); 308 } 309 310 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 311 { 312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 313 tp->ecn_flags &= ~TCP_ECN_OK; 314 } 315 316 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 317 { 318 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 319 tp->ecn_flags &= ~TCP_ECN_OK; 320 } 321 322 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 323 { 324 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 325 return true; 326 return false; 327 } 328 329 /* Buffer size and advertised window tuning. 330 * 331 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 332 */ 333 334 static void tcp_sndbuf_expand(struct sock *sk) 335 { 336 const struct tcp_sock *tp = tcp_sk(sk); 337 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 338 int sndmem, per_mss; 339 u32 nr_segs; 340 341 /* Worst case is non GSO/TSO : each frame consumes one skb 342 * and skb->head is kmalloced using power of two area of memory 343 */ 344 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 345 MAX_TCP_HEADER + 346 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 347 348 per_mss = roundup_pow_of_two(per_mss) + 349 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 350 351 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 352 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 353 354 /* Fast Recovery (RFC 5681 3.2) : 355 * Cubic needs 1.7 factor, rounded to 2 to include 356 * extra cushion (application might react slowly to EPOLLOUT) 357 */ 358 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 359 sndmem *= nr_segs * per_mss; 360 361 if (sk->sk_sndbuf < sndmem) 362 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 363 } 364 365 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 366 * 367 * All tcp_full_space() is split to two parts: "network" buffer, allocated 368 * forward and advertised in receiver window (tp->rcv_wnd) and 369 * "application buffer", required to isolate scheduling/application 370 * latencies from network. 371 * window_clamp is maximal advertised window. It can be less than 372 * tcp_full_space(), in this case tcp_full_space() - window_clamp 373 * is reserved for "application" buffer. The less window_clamp is 374 * the smoother our behaviour from viewpoint of network, but the lower 375 * throughput and the higher sensitivity of the connection to losses. 8) 376 * 377 * rcv_ssthresh is more strict window_clamp used at "slow start" 378 * phase to predict further behaviour of this connection. 379 * It is used for two goals: 380 * - to enforce header prediction at sender, even when application 381 * requires some significant "application buffer". It is check #1. 382 * - to prevent pruning of receive queue because of misprediction 383 * of receiver window. Check #2. 384 * 385 * The scheme does not work when sender sends good segments opening 386 * window and then starts to feed us spaghetti. But it should work 387 * in common situations. Otherwise, we have to rely on queue collapsing. 388 */ 389 390 /* Slow part of check#2. */ 391 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 392 { 393 struct tcp_sock *tp = tcp_sk(sk); 394 /* Optimize this! */ 395 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 396 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 397 398 while (tp->rcv_ssthresh <= window) { 399 if (truesize <= skb->len) 400 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 401 402 truesize >>= 1; 403 window >>= 1; 404 } 405 return 0; 406 } 407 408 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 409 { 410 struct tcp_sock *tp = tcp_sk(sk); 411 int room; 412 413 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 414 415 /* Check #1 */ 416 if (room > 0 && !tcp_under_memory_pressure(sk)) { 417 int incr; 418 419 /* Check #2. Increase window, if skb with such overhead 420 * will fit to rcvbuf in future. 421 */ 422 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 423 incr = 2 * tp->advmss; 424 else 425 incr = __tcp_grow_window(sk, skb); 426 427 if (incr) { 428 incr = max_t(int, incr, 2 * skb->len); 429 tp->rcv_ssthresh += min(room, incr); 430 inet_csk(sk)->icsk_ack.quick |= 1; 431 } 432 } 433 } 434 435 /* 3. Try to fixup all. It is made immediately after connection enters 436 * established state. 437 */ 438 void tcp_init_buffer_space(struct sock *sk) 439 { 440 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 441 struct tcp_sock *tp = tcp_sk(sk); 442 int maxwin; 443 444 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 445 tcp_sndbuf_expand(sk); 446 447 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); 448 tcp_mstamp_refresh(tp); 449 tp->rcvq_space.time = tp->tcp_mstamp; 450 tp->rcvq_space.seq = tp->copied_seq; 451 452 maxwin = tcp_full_space(sk); 453 454 if (tp->window_clamp >= maxwin) { 455 tp->window_clamp = maxwin; 456 457 if (tcp_app_win && maxwin > 4 * tp->advmss) 458 tp->window_clamp = max(maxwin - 459 (maxwin >> tcp_app_win), 460 4 * tp->advmss); 461 } 462 463 /* Force reservation of one segment. */ 464 if (tcp_app_win && 465 tp->window_clamp > 2 * tp->advmss && 466 tp->window_clamp + tp->advmss > maxwin) 467 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 468 469 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 470 tp->snd_cwnd_stamp = tcp_jiffies32; 471 } 472 473 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 474 static void tcp_clamp_window(struct sock *sk) 475 { 476 struct tcp_sock *tp = tcp_sk(sk); 477 struct inet_connection_sock *icsk = inet_csk(sk); 478 struct net *net = sock_net(sk); 479 480 icsk->icsk_ack.quick = 0; 481 482 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 483 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 484 !tcp_under_memory_pressure(sk) && 485 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 486 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 487 net->ipv4.sysctl_tcp_rmem[2]); 488 } 489 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 490 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 491 } 492 493 /* Initialize RCV_MSS value. 494 * RCV_MSS is an our guess about MSS used by the peer. 495 * We haven't any direct information about the MSS. 496 * It's better to underestimate the RCV_MSS rather than overestimate. 497 * Overestimations make us ACKing less frequently than needed. 498 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 499 */ 500 void tcp_initialize_rcv_mss(struct sock *sk) 501 { 502 const struct tcp_sock *tp = tcp_sk(sk); 503 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 504 505 hint = min(hint, tp->rcv_wnd / 2); 506 hint = min(hint, TCP_MSS_DEFAULT); 507 hint = max(hint, TCP_MIN_MSS); 508 509 inet_csk(sk)->icsk_ack.rcv_mss = hint; 510 } 511 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 512 513 /* Receiver "autotuning" code. 514 * 515 * The algorithm for RTT estimation w/o timestamps is based on 516 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 517 * <http://public.lanl.gov/radiant/pubs.html#DRS> 518 * 519 * More detail on this code can be found at 520 * <http://staff.psc.edu/jheffner/>, 521 * though this reference is out of date. A new paper 522 * is pending. 523 */ 524 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 525 { 526 u32 new_sample = tp->rcv_rtt_est.rtt_us; 527 long m = sample; 528 529 if (new_sample != 0) { 530 /* If we sample in larger samples in the non-timestamp 531 * case, we could grossly overestimate the RTT especially 532 * with chatty applications or bulk transfer apps which 533 * are stalled on filesystem I/O. 534 * 535 * Also, since we are only going for a minimum in the 536 * non-timestamp case, we do not smooth things out 537 * else with timestamps disabled convergence takes too 538 * long. 539 */ 540 if (!win_dep) { 541 m -= (new_sample >> 3); 542 new_sample += m; 543 } else { 544 m <<= 3; 545 if (m < new_sample) 546 new_sample = m; 547 } 548 } else { 549 /* No previous measure. */ 550 new_sample = m << 3; 551 } 552 553 tp->rcv_rtt_est.rtt_us = new_sample; 554 } 555 556 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 557 { 558 u32 delta_us; 559 560 if (tp->rcv_rtt_est.time == 0) 561 goto new_measure; 562 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 563 return; 564 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 565 if (!delta_us) 566 delta_us = 1; 567 tcp_rcv_rtt_update(tp, delta_us, 1); 568 569 new_measure: 570 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 571 tp->rcv_rtt_est.time = tp->tcp_mstamp; 572 } 573 574 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 575 const struct sk_buff *skb) 576 { 577 struct tcp_sock *tp = tcp_sk(sk); 578 579 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 580 return; 581 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 582 583 if (TCP_SKB_CB(skb)->end_seq - 584 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 585 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 586 u32 delta_us; 587 588 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 589 if (!delta) 590 delta = 1; 591 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 592 tcp_rcv_rtt_update(tp, delta_us, 0); 593 } 594 } 595 } 596 597 /* 598 * This function should be called every time data is copied to user space. 599 * It calculates the appropriate TCP receive buffer space. 600 */ 601 void tcp_rcv_space_adjust(struct sock *sk) 602 { 603 struct tcp_sock *tp = tcp_sk(sk); 604 u32 copied; 605 int time; 606 607 trace_tcp_rcv_space_adjust(sk); 608 609 tcp_mstamp_refresh(tp); 610 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 611 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 612 return; 613 614 /* Number of bytes copied to user in last RTT */ 615 copied = tp->copied_seq - tp->rcvq_space.seq; 616 if (copied <= tp->rcvq_space.space) 617 goto new_measure; 618 619 /* A bit of theory : 620 * copied = bytes received in previous RTT, our base window 621 * To cope with packet losses, we need a 2x factor 622 * To cope with slow start, and sender growing its cwin by 100 % 623 * every RTT, we need a 4x factor, because the ACK we are sending 624 * now is for the next RTT, not the current one : 625 * <prev RTT . ><current RTT .. ><next RTT .... > 626 */ 627 628 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 629 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 630 int rcvmem, rcvbuf; 631 u64 rcvwin, grow; 632 633 /* minimal window to cope with packet losses, assuming 634 * steady state. Add some cushion because of small variations. 635 */ 636 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 637 638 /* Accommodate for sender rate increase (eg. slow start) */ 639 grow = rcvwin * (copied - tp->rcvq_space.space); 640 do_div(grow, tp->rcvq_space.space); 641 rcvwin += (grow << 1); 642 643 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 644 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 645 rcvmem += 128; 646 647 do_div(rcvwin, tp->advmss); 648 rcvbuf = min_t(u64, rcvwin * rcvmem, 649 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 650 if (rcvbuf > sk->sk_rcvbuf) { 651 sk->sk_rcvbuf = rcvbuf; 652 653 /* Make the window clamp follow along. */ 654 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 655 } 656 } 657 tp->rcvq_space.space = copied; 658 659 new_measure: 660 tp->rcvq_space.seq = tp->copied_seq; 661 tp->rcvq_space.time = tp->tcp_mstamp; 662 } 663 664 /* There is something which you must keep in mind when you analyze the 665 * behavior of the tp->ato delayed ack timeout interval. When a 666 * connection starts up, we want to ack as quickly as possible. The 667 * problem is that "good" TCP's do slow start at the beginning of data 668 * transmission. The means that until we send the first few ACK's the 669 * sender will sit on his end and only queue most of his data, because 670 * he can only send snd_cwnd unacked packets at any given time. For 671 * each ACK we send, he increments snd_cwnd and transmits more of his 672 * queue. -DaveM 673 */ 674 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 675 { 676 struct tcp_sock *tp = tcp_sk(sk); 677 struct inet_connection_sock *icsk = inet_csk(sk); 678 u32 now; 679 680 inet_csk_schedule_ack(sk); 681 682 tcp_measure_rcv_mss(sk, skb); 683 684 tcp_rcv_rtt_measure(tp); 685 686 now = tcp_jiffies32; 687 688 if (!icsk->icsk_ack.ato) { 689 /* The _first_ data packet received, initialize 690 * delayed ACK engine. 691 */ 692 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 693 icsk->icsk_ack.ato = TCP_ATO_MIN; 694 } else { 695 int m = now - icsk->icsk_ack.lrcvtime; 696 697 if (m <= TCP_ATO_MIN / 2) { 698 /* The fastest case is the first. */ 699 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 700 } else if (m < icsk->icsk_ack.ato) { 701 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 702 if (icsk->icsk_ack.ato > icsk->icsk_rto) 703 icsk->icsk_ack.ato = icsk->icsk_rto; 704 } else if (m > icsk->icsk_rto) { 705 /* Too long gap. Apparently sender failed to 706 * restart window, so that we send ACKs quickly. 707 */ 708 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 709 sk_mem_reclaim(sk); 710 } 711 } 712 icsk->icsk_ack.lrcvtime = now; 713 714 tcp_ecn_check_ce(sk, skb); 715 716 if (skb->len >= 128) 717 tcp_grow_window(sk, skb); 718 } 719 720 /* Called to compute a smoothed rtt estimate. The data fed to this 721 * routine either comes from timestamps, or from segments that were 722 * known _not_ to have been retransmitted [see Karn/Partridge 723 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 724 * piece by Van Jacobson. 725 * NOTE: the next three routines used to be one big routine. 726 * To save cycles in the RFC 1323 implementation it was better to break 727 * it up into three procedures. -- erics 728 */ 729 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 730 { 731 struct tcp_sock *tp = tcp_sk(sk); 732 long m = mrtt_us; /* RTT */ 733 u32 srtt = tp->srtt_us; 734 735 /* The following amusing code comes from Jacobson's 736 * article in SIGCOMM '88. Note that rtt and mdev 737 * are scaled versions of rtt and mean deviation. 738 * This is designed to be as fast as possible 739 * m stands for "measurement". 740 * 741 * On a 1990 paper the rto value is changed to: 742 * RTO = rtt + 4 * mdev 743 * 744 * Funny. This algorithm seems to be very broken. 745 * These formulae increase RTO, when it should be decreased, increase 746 * too slowly, when it should be increased quickly, decrease too quickly 747 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 748 * does not matter how to _calculate_ it. Seems, it was trap 749 * that VJ failed to avoid. 8) 750 */ 751 if (srtt != 0) { 752 m -= (srtt >> 3); /* m is now error in rtt est */ 753 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 754 if (m < 0) { 755 m = -m; /* m is now abs(error) */ 756 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 757 /* This is similar to one of Eifel findings. 758 * Eifel blocks mdev updates when rtt decreases. 759 * This solution is a bit different: we use finer gain 760 * for mdev in this case (alpha*beta). 761 * Like Eifel it also prevents growth of rto, 762 * but also it limits too fast rto decreases, 763 * happening in pure Eifel. 764 */ 765 if (m > 0) 766 m >>= 3; 767 } else { 768 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 769 } 770 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 771 if (tp->mdev_us > tp->mdev_max_us) { 772 tp->mdev_max_us = tp->mdev_us; 773 if (tp->mdev_max_us > tp->rttvar_us) 774 tp->rttvar_us = tp->mdev_max_us; 775 } 776 if (after(tp->snd_una, tp->rtt_seq)) { 777 if (tp->mdev_max_us < tp->rttvar_us) 778 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 779 tp->rtt_seq = tp->snd_nxt; 780 tp->mdev_max_us = tcp_rto_min_us(sk); 781 782 tcp_bpf_rtt(sk); 783 } 784 } else { 785 /* no previous measure. */ 786 srtt = m << 3; /* take the measured time to be rtt */ 787 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 788 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 789 tp->mdev_max_us = tp->rttvar_us; 790 tp->rtt_seq = tp->snd_nxt; 791 792 tcp_bpf_rtt(sk); 793 } 794 tp->srtt_us = max(1U, srtt); 795 } 796 797 static void tcp_update_pacing_rate(struct sock *sk) 798 { 799 const struct tcp_sock *tp = tcp_sk(sk); 800 u64 rate; 801 802 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 803 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 804 805 /* current rate is (cwnd * mss) / srtt 806 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 807 * In Congestion Avoidance phase, set it to 120 % the current rate. 808 * 809 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 810 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 811 * end of slow start and should slow down. 812 */ 813 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 814 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 815 else 816 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 817 818 rate *= max(tp->snd_cwnd, tp->packets_out); 819 820 if (likely(tp->srtt_us)) 821 do_div(rate, tp->srtt_us); 822 823 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 824 * without any lock. We want to make sure compiler wont store 825 * intermediate values in this location. 826 */ 827 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 828 sk->sk_max_pacing_rate)); 829 } 830 831 /* Calculate rto without backoff. This is the second half of Van Jacobson's 832 * routine referred to above. 833 */ 834 static void tcp_set_rto(struct sock *sk) 835 { 836 const struct tcp_sock *tp = tcp_sk(sk); 837 /* Old crap is replaced with new one. 8) 838 * 839 * More seriously: 840 * 1. If rtt variance happened to be less 50msec, it is hallucination. 841 * It cannot be less due to utterly erratic ACK generation made 842 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 843 * to do with delayed acks, because at cwnd>2 true delack timeout 844 * is invisible. Actually, Linux-2.4 also generates erratic 845 * ACKs in some circumstances. 846 */ 847 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 848 849 /* 2. Fixups made earlier cannot be right. 850 * If we do not estimate RTO correctly without them, 851 * all the algo is pure shit and should be replaced 852 * with correct one. It is exactly, which we pretend to do. 853 */ 854 855 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 856 * guarantees that rto is higher. 857 */ 858 tcp_bound_rto(sk); 859 } 860 861 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 862 { 863 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 864 865 if (!cwnd) 866 cwnd = TCP_INIT_CWND; 867 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 868 } 869 870 /* Take a notice that peer is sending D-SACKs */ 871 static void tcp_dsack_seen(struct tcp_sock *tp) 872 { 873 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 874 tp->rack.dsack_seen = 1; 875 tp->dsack_dups++; 876 } 877 878 /* It's reordering when higher sequence was delivered (i.e. sacked) before 879 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 880 * distance is approximated in full-mss packet distance ("reordering"). 881 */ 882 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 883 const int ts) 884 { 885 struct tcp_sock *tp = tcp_sk(sk); 886 const u32 mss = tp->mss_cache; 887 u32 fack, metric; 888 889 fack = tcp_highest_sack_seq(tp); 890 if (!before(low_seq, fack)) 891 return; 892 893 metric = fack - low_seq; 894 if ((metric > tp->reordering * mss) && mss) { 895 #if FASTRETRANS_DEBUG > 1 896 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 897 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 898 tp->reordering, 899 0, 900 tp->sacked_out, 901 tp->undo_marker ? tp->undo_retrans : 0); 902 #endif 903 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 904 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 905 } 906 907 /* This exciting event is worth to be remembered. 8) */ 908 tp->reord_seen++; 909 NET_INC_STATS(sock_net(sk), 910 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 911 } 912 913 /* This must be called before lost_out is incremented */ 914 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 915 { 916 if (!tp->retransmit_skb_hint || 917 before(TCP_SKB_CB(skb)->seq, 918 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 919 tp->retransmit_skb_hint = skb; 920 } 921 922 /* Sum the number of packets on the wire we have marked as lost. 923 * There are two cases we care about here: 924 * a) Packet hasn't been marked lost (nor retransmitted), 925 * and this is the first loss. 926 * b) Packet has been marked both lost and retransmitted, 927 * and this means we think it was lost again. 928 */ 929 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 930 { 931 __u8 sacked = TCP_SKB_CB(skb)->sacked; 932 933 if (!(sacked & TCPCB_LOST) || 934 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 935 tp->lost += tcp_skb_pcount(skb); 936 } 937 938 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 939 { 940 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 941 tcp_verify_retransmit_hint(tp, skb); 942 943 tp->lost_out += tcp_skb_pcount(skb); 944 tcp_sum_lost(tp, skb); 945 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 946 } 947 } 948 949 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 950 { 951 tcp_verify_retransmit_hint(tp, skb); 952 953 tcp_sum_lost(tp, skb); 954 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 955 tp->lost_out += tcp_skb_pcount(skb); 956 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 957 } 958 } 959 960 /* This procedure tags the retransmission queue when SACKs arrive. 961 * 962 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 963 * Packets in queue with these bits set are counted in variables 964 * sacked_out, retrans_out and lost_out, correspondingly. 965 * 966 * Valid combinations are: 967 * Tag InFlight Description 968 * 0 1 - orig segment is in flight. 969 * S 0 - nothing flies, orig reached receiver. 970 * L 0 - nothing flies, orig lost by net. 971 * R 2 - both orig and retransmit are in flight. 972 * L|R 1 - orig is lost, retransmit is in flight. 973 * S|R 1 - orig reached receiver, retrans is still in flight. 974 * (L|S|R is logically valid, it could occur when L|R is sacked, 975 * but it is equivalent to plain S and code short-curcuits it to S. 976 * L|S is logically invalid, it would mean -1 packet in flight 8)) 977 * 978 * These 6 states form finite state machine, controlled by the following events: 979 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 980 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 981 * 3. Loss detection event of two flavors: 982 * A. Scoreboard estimator decided the packet is lost. 983 * A'. Reno "three dupacks" marks head of queue lost. 984 * B. SACK arrives sacking SND.NXT at the moment, when the 985 * segment was retransmitted. 986 * 4. D-SACK added new rule: D-SACK changes any tag to S. 987 * 988 * It is pleasant to note, that state diagram turns out to be commutative, 989 * so that we are allowed not to be bothered by order of our actions, 990 * when multiple events arrive simultaneously. (see the function below). 991 * 992 * Reordering detection. 993 * -------------------- 994 * Reordering metric is maximal distance, which a packet can be displaced 995 * in packet stream. With SACKs we can estimate it: 996 * 997 * 1. SACK fills old hole and the corresponding segment was not 998 * ever retransmitted -> reordering. Alas, we cannot use it 999 * when segment was retransmitted. 1000 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1001 * for retransmitted and already SACKed segment -> reordering.. 1002 * Both of these heuristics are not used in Loss state, when we cannot 1003 * account for retransmits accurately. 1004 * 1005 * SACK block validation. 1006 * ---------------------- 1007 * 1008 * SACK block range validation checks that the received SACK block fits to 1009 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1010 * Note that SND.UNA is not included to the range though being valid because 1011 * it means that the receiver is rather inconsistent with itself reporting 1012 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1013 * perfectly valid, however, in light of RFC2018 which explicitly states 1014 * that "SACK block MUST reflect the newest segment. Even if the newest 1015 * segment is going to be discarded ...", not that it looks very clever 1016 * in case of head skb. Due to potentional receiver driven attacks, we 1017 * choose to avoid immediate execution of a walk in write queue due to 1018 * reneging and defer head skb's loss recovery to standard loss recovery 1019 * procedure that will eventually trigger (nothing forbids us doing this). 1020 * 1021 * Implements also blockage to start_seq wrap-around. Problem lies in the 1022 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1023 * there's no guarantee that it will be before snd_nxt (n). The problem 1024 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1025 * wrap (s_w): 1026 * 1027 * <- outs wnd -> <- wrapzone -> 1028 * u e n u_w e_w s n_w 1029 * | | | | | | | 1030 * |<------------+------+----- TCP seqno space --------------+---------->| 1031 * ...-- <2^31 ->| |<--------... 1032 * ...---- >2^31 ------>| |<--------... 1033 * 1034 * Current code wouldn't be vulnerable but it's better still to discard such 1035 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1036 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1037 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1038 * equal to the ideal case (infinite seqno space without wrap caused issues). 1039 * 1040 * With D-SACK the lower bound is extended to cover sequence space below 1041 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1042 * again, D-SACK block must not to go across snd_una (for the same reason as 1043 * for the normal SACK blocks, explained above). But there all simplicity 1044 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1045 * fully below undo_marker they do not affect behavior in anyway and can 1046 * therefore be safely ignored. In rare cases (which are more or less 1047 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1048 * fragmentation and packet reordering past skb's retransmission. To consider 1049 * them correctly, the acceptable range must be extended even more though 1050 * the exact amount is rather hard to quantify. However, tp->max_window can 1051 * be used as an exaggerated estimate. 1052 */ 1053 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1054 u32 start_seq, u32 end_seq) 1055 { 1056 /* Too far in future, or reversed (interpretation is ambiguous) */ 1057 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1058 return false; 1059 1060 /* Nasty start_seq wrap-around check (see comments above) */ 1061 if (!before(start_seq, tp->snd_nxt)) 1062 return false; 1063 1064 /* In outstanding window? ...This is valid exit for D-SACKs too. 1065 * start_seq == snd_una is non-sensical (see comments above) 1066 */ 1067 if (after(start_seq, tp->snd_una)) 1068 return true; 1069 1070 if (!is_dsack || !tp->undo_marker) 1071 return false; 1072 1073 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1074 if (after(end_seq, tp->snd_una)) 1075 return false; 1076 1077 if (!before(start_seq, tp->undo_marker)) 1078 return true; 1079 1080 /* Too old */ 1081 if (!after(end_seq, tp->undo_marker)) 1082 return false; 1083 1084 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1085 * start_seq < undo_marker and end_seq >= undo_marker. 1086 */ 1087 return !before(start_seq, end_seq - tp->max_window); 1088 } 1089 1090 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1091 struct tcp_sack_block_wire *sp, int num_sacks, 1092 u32 prior_snd_una) 1093 { 1094 struct tcp_sock *tp = tcp_sk(sk); 1095 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1096 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1097 bool dup_sack = false; 1098 1099 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1100 dup_sack = true; 1101 tcp_dsack_seen(tp); 1102 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1103 } else if (num_sacks > 1) { 1104 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1105 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1106 1107 if (!after(end_seq_0, end_seq_1) && 1108 !before(start_seq_0, start_seq_1)) { 1109 dup_sack = true; 1110 tcp_dsack_seen(tp); 1111 NET_INC_STATS(sock_net(sk), 1112 LINUX_MIB_TCPDSACKOFORECV); 1113 } 1114 } 1115 1116 /* D-SACK for already forgotten data... Do dumb counting. */ 1117 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1118 !after(end_seq_0, prior_snd_una) && 1119 after(end_seq_0, tp->undo_marker)) 1120 tp->undo_retrans--; 1121 1122 return dup_sack; 1123 } 1124 1125 struct tcp_sacktag_state { 1126 u32 reord; 1127 /* Timestamps for earliest and latest never-retransmitted segment 1128 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1129 * but congestion control should still get an accurate delay signal. 1130 */ 1131 u64 first_sackt; 1132 u64 last_sackt; 1133 struct rate_sample *rate; 1134 int flag; 1135 unsigned int mss_now; 1136 }; 1137 1138 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1139 * the incoming SACK may not exactly match but we can find smaller MSS 1140 * aligned portion of it that matches. Therefore we might need to fragment 1141 * which may fail and creates some hassle (caller must handle error case 1142 * returns). 1143 * 1144 * FIXME: this could be merged to shift decision code 1145 */ 1146 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1147 u32 start_seq, u32 end_seq) 1148 { 1149 int err; 1150 bool in_sack; 1151 unsigned int pkt_len; 1152 unsigned int mss; 1153 1154 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1155 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1156 1157 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1158 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1159 mss = tcp_skb_mss(skb); 1160 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1161 1162 if (!in_sack) { 1163 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1164 if (pkt_len < mss) 1165 pkt_len = mss; 1166 } else { 1167 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1168 if (pkt_len < mss) 1169 return -EINVAL; 1170 } 1171 1172 /* Round if necessary so that SACKs cover only full MSSes 1173 * and/or the remaining small portion (if present) 1174 */ 1175 if (pkt_len > mss) { 1176 unsigned int new_len = (pkt_len / mss) * mss; 1177 if (!in_sack && new_len < pkt_len) 1178 new_len += mss; 1179 pkt_len = new_len; 1180 } 1181 1182 if (pkt_len >= skb->len && !in_sack) 1183 return 0; 1184 1185 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1186 pkt_len, mss, GFP_ATOMIC); 1187 if (err < 0) 1188 return err; 1189 } 1190 1191 return in_sack; 1192 } 1193 1194 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1195 static u8 tcp_sacktag_one(struct sock *sk, 1196 struct tcp_sacktag_state *state, u8 sacked, 1197 u32 start_seq, u32 end_seq, 1198 int dup_sack, int pcount, 1199 u64 xmit_time) 1200 { 1201 struct tcp_sock *tp = tcp_sk(sk); 1202 1203 /* Account D-SACK for retransmitted packet. */ 1204 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1205 if (tp->undo_marker && tp->undo_retrans > 0 && 1206 after(end_seq, tp->undo_marker)) 1207 tp->undo_retrans--; 1208 if ((sacked & TCPCB_SACKED_ACKED) && 1209 before(start_seq, state->reord)) 1210 state->reord = start_seq; 1211 } 1212 1213 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1214 if (!after(end_seq, tp->snd_una)) 1215 return sacked; 1216 1217 if (!(sacked & TCPCB_SACKED_ACKED)) { 1218 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1219 1220 if (sacked & TCPCB_SACKED_RETRANS) { 1221 /* If the segment is not tagged as lost, 1222 * we do not clear RETRANS, believing 1223 * that retransmission is still in flight. 1224 */ 1225 if (sacked & TCPCB_LOST) { 1226 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1227 tp->lost_out -= pcount; 1228 tp->retrans_out -= pcount; 1229 } 1230 } else { 1231 if (!(sacked & TCPCB_RETRANS)) { 1232 /* New sack for not retransmitted frame, 1233 * which was in hole. It is reordering. 1234 */ 1235 if (before(start_seq, 1236 tcp_highest_sack_seq(tp)) && 1237 before(start_seq, state->reord)) 1238 state->reord = start_seq; 1239 1240 if (!after(end_seq, tp->high_seq)) 1241 state->flag |= FLAG_ORIG_SACK_ACKED; 1242 if (state->first_sackt == 0) 1243 state->first_sackt = xmit_time; 1244 state->last_sackt = xmit_time; 1245 } 1246 1247 if (sacked & TCPCB_LOST) { 1248 sacked &= ~TCPCB_LOST; 1249 tp->lost_out -= pcount; 1250 } 1251 } 1252 1253 sacked |= TCPCB_SACKED_ACKED; 1254 state->flag |= FLAG_DATA_SACKED; 1255 tp->sacked_out += pcount; 1256 tp->delivered += pcount; /* Out-of-order packets delivered */ 1257 1258 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1259 if (tp->lost_skb_hint && 1260 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1261 tp->lost_cnt_hint += pcount; 1262 } 1263 1264 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1265 * frames and clear it. undo_retrans is decreased above, L|R frames 1266 * are accounted above as well. 1267 */ 1268 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1269 sacked &= ~TCPCB_SACKED_RETRANS; 1270 tp->retrans_out -= pcount; 1271 } 1272 1273 return sacked; 1274 } 1275 1276 /* Shift newly-SACKed bytes from this skb to the immediately previous 1277 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1278 */ 1279 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1280 struct sk_buff *skb, 1281 struct tcp_sacktag_state *state, 1282 unsigned int pcount, int shifted, int mss, 1283 bool dup_sack) 1284 { 1285 struct tcp_sock *tp = tcp_sk(sk); 1286 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1287 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1288 1289 BUG_ON(!pcount); 1290 1291 /* Adjust counters and hints for the newly sacked sequence 1292 * range but discard the return value since prev is already 1293 * marked. We must tag the range first because the seq 1294 * advancement below implicitly advances 1295 * tcp_highest_sack_seq() when skb is highest_sack. 1296 */ 1297 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1298 start_seq, end_seq, dup_sack, pcount, 1299 tcp_skb_timestamp_us(skb)); 1300 tcp_rate_skb_delivered(sk, skb, state->rate); 1301 1302 if (skb == tp->lost_skb_hint) 1303 tp->lost_cnt_hint += pcount; 1304 1305 TCP_SKB_CB(prev)->end_seq += shifted; 1306 TCP_SKB_CB(skb)->seq += shifted; 1307 1308 tcp_skb_pcount_add(prev, pcount); 1309 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1310 tcp_skb_pcount_add(skb, -pcount); 1311 1312 /* When we're adding to gso_segs == 1, gso_size will be zero, 1313 * in theory this shouldn't be necessary but as long as DSACK 1314 * code can come after this skb later on it's better to keep 1315 * setting gso_size to something. 1316 */ 1317 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1318 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1319 1320 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1321 if (tcp_skb_pcount(skb) <= 1) 1322 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1323 1324 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1325 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1326 1327 if (skb->len > 0) { 1328 BUG_ON(!tcp_skb_pcount(skb)); 1329 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1330 return false; 1331 } 1332 1333 /* Whole SKB was eaten :-) */ 1334 1335 if (skb == tp->retransmit_skb_hint) 1336 tp->retransmit_skb_hint = prev; 1337 if (skb == tp->lost_skb_hint) { 1338 tp->lost_skb_hint = prev; 1339 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1340 } 1341 1342 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1343 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1344 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1345 TCP_SKB_CB(prev)->end_seq++; 1346 1347 if (skb == tcp_highest_sack(sk)) 1348 tcp_advance_highest_sack(sk, skb); 1349 1350 tcp_skb_collapse_tstamp(prev, skb); 1351 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1352 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1353 1354 tcp_rtx_queue_unlink_and_free(skb, sk); 1355 1356 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1357 1358 return true; 1359 } 1360 1361 /* I wish gso_size would have a bit more sane initialization than 1362 * something-or-zero which complicates things 1363 */ 1364 static int tcp_skb_seglen(const struct sk_buff *skb) 1365 { 1366 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1367 } 1368 1369 /* Shifting pages past head area doesn't work */ 1370 static int skb_can_shift(const struct sk_buff *skb) 1371 { 1372 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1373 } 1374 1375 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1376 int pcount, int shiftlen) 1377 { 1378 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1379 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1380 * to make sure not storing more than 65535 * 8 bytes per skb, 1381 * even if current MSS is bigger. 1382 */ 1383 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1384 return 0; 1385 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1386 return 0; 1387 return skb_shift(to, from, shiftlen); 1388 } 1389 1390 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1391 * skb. 1392 */ 1393 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1394 struct tcp_sacktag_state *state, 1395 u32 start_seq, u32 end_seq, 1396 bool dup_sack) 1397 { 1398 struct tcp_sock *tp = tcp_sk(sk); 1399 struct sk_buff *prev; 1400 int mss; 1401 int pcount = 0; 1402 int len; 1403 int in_sack; 1404 1405 /* Normally R but no L won't result in plain S */ 1406 if (!dup_sack && 1407 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1408 goto fallback; 1409 if (!skb_can_shift(skb)) 1410 goto fallback; 1411 /* This frame is about to be dropped (was ACKed). */ 1412 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1413 goto fallback; 1414 1415 /* Can only happen with delayed DSACK + discard craziness */ 1416 prev = skb_rb_prev(skb); 1417 if (!prev) 1418 goto fallback; 1419 1420 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1421 goto fallback; 1422 1423 if (!tcp_skb_can_collapse_to(prev)) 1424 goto fallback; 1425 1426 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1427 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1428 1429 if (in_sack) { 1430 len = skb->len; 1431 pcount = tcp_skb_pcount(skb); 1432 mss = tcp_skb_seglen(skb); 1433 1434 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1435 * drop this restriction as unnecessary 1436 */ 1437 if (mss != tcp_skb_seglen(prev)) 1438 goto fallback; 1439 } else { 1440 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1441 goto noop; 1442 /* CHECKME: This is non-MSS split case only?, this will 1443 * cause skipped skbs due to advancing loop btw, original 1444 * has that feature too 1445 */ 1446 if (tcp_skb_pcount(skb) <= 1) 1447 goto noop; 1448 1449 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1450 if (!in_sack) { 1451 /* TODO: head merge to next could be attempted here 1452 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1453 * though it might not be worth of the additional hassle 1454 * 1455 * ...we can probably just fallback to what was done 1456 * previously. We could try merging non-SACKed ones 1457 * as well but it probably isn't going to buy off 1458 * because later SACKs might again split them, and 1459 * it would make skb timestamp tracking considerably 1460 * harder problem. 1461 */ 1462 goto fallback; 1463 } 1464 1465 len = end_seq - TCP_SKB_CB(skb)->seq; 1466 BUG_ON(len < 0); 1467 BUG_ON(len > skb->len); 1468 1469 /* MSS boundaries should be honoured or else pcount will 1470 * severely break even though it makes things bit trickier. 1471 * Optimize common case to avoid most of the divides 1472 */ 1473 mss = tcp_skb_mss(skb); 1474 1475 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1476 * drop this restriction as unnecessary 1477 */ 1478 if (mss != tcp_skb_seglen(prev)) 1479 goto fallback; 1480 1481 if (len == mss) { 1482 pcount = 1; 1483 } else if (len < mss) { 1484 goto noop; 1485 } else { 1486 pcount = len / mss; 1487 len = pcount * mss; 1488 } 1489 } 1490 1491 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1492 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1493 goto fallback; 1494 1495 if (!tcp_skb_shift(prev, skb, pcount, len)) 1496 goto fallback; 1497 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1498 goto out; 1499 1500 /* Hole filled allows collapsing with the next as well, this is very 1501 * useful when hole on every nth skb pattern happens 1502 */ 1503 skb = skb_rb_next(prev); 1504 if (!skb) 1505 goto out; 1506 1507 if (!skb_can_shift(skb) || 1508 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1509 (mss != tcp_skb_seglen(skb))) 1510 goto out; 1511 1512 len = skb->len; 1513 pcount = tcp_skb_pcount(skb); 1514 if (tcp_skb_shift(prev, skb, pcount, len)) 1515 tcp_shifted_skb(sk, prev, skb, state, pcount, 1516 len, mss, 0); 1517 1518 out: 1519 return prev; 1520 1521 noop: 1522 return skb; 1523 1524 fallback: 1525 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1526 return NULL; 1527 } 1528 1529 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1530 struct tcp_sack_block *next_dup, 1531 struct tcp_sacktag_state *state, 1532 u32 start_seq, u32 end_seq, 1533 bool dup_sack_in) 1534 { 1535 struct tcp_sock *tp = tcp_sk(sk); 1536 struct sk_buff *tmp; 1537 1538 skb_rbtree_walk_from(skb) { 1539 int in_sack = 0; 1540 bool dup_sack = dup_sack_in; 1541 1542 /* queue is in-order => we can short-circuit the walk early */ 1543 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1544 break; 1545 1546 if (next_dup && 1547 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1548 in_sack = tcp_match_skb_to_sack(sk, skb, 1549 next_dup->start_seq, 1550 next_dup->end_seq); 1551 if (in_sack > 0) 1552 dup_sack = true; 1553 } 1554 1555 /* skb reference here is a bit tricky to get right, since 1556 * shifting can eat and free both this skb and the next, 1557 * so not even _safe variant of the loop is enough. 1558 */ 1559 if (in_sack <= 0) { 1560 tmp = tcp_shift_skb_data(sk, skb, state, 1561 start_seq, end_seq, dup_sack); 1562 if (tmp) { 1563 if (tmp != skb) { 1564 skb = tmp; 1565 continue; 1566 } 1567 1568 in_sack = 0; 1569 } else { 1570 in_sack = tcp_match_skb_to_sack(sk, skb, 1571 start_seq, 1572 end_seq); 1573 } 1574 } 1575 1576 if (unlikely(in_sack < 0)) 1577 break; 1578 1579 if (in_sack) { 1580 TCP_SKB_CB(skb)->sacked = 1581 tcp_sacktag_one(sk, 1582 state, 1583 TCP_SKB_CB(skb)->sacked, 1584 TCP_SKB_CB(skb)->seq, 1585 TCP_SKB_CB(skb)->end_seq, 1586 dup_sack, 1587 tcp_skb_pcount(skb), 1588 tcp_skb_timestamp_us(skb)); 1589 tcp_rate_skb_delivered(sk, skb, state->rate); 1590 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1591 list_del_init(&skb->tcp_tsorted_anchor); 1592 1593 if (!before(TCP_SKB_CB(skb)->seq, 1594 tcp_highest_sack_seq(tp))) 1595 tcp_advance_highest_sack(sk, skb); 1596 } 1597 } 1598 return skb; 1599 } 1600 1601 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1602 { 1603 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1604 struct sk_buff *skb; 1605 1606 while (*p) { 1607 parent = *p; 1608 skb = rb_to_skb(parent); 1609 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1610 p = &parent->rb_left; 1611 continue; 1612 } 1613 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1614 p = &parent->rb_right; 1615 continue; 1616 } 1617 return skb; 1618 } 1619 return NULL; 1620 } 1621 1622 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1623 u32 skip_to_seq) 1624 { 1625 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1626 return skb; 1627 1628 return tcp_sacktag_bsearch(sk, skip_to_seq); 1629 } 1630 1631 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1632 struct sock *sk, 1633 struct tcp_sack_block *next_dup, 1634 struct tcp_sacktag_state *state, 1635 u32 skip_to_seq) 1636 { 1637 if (!next_dup) 1638 return skb; 1639 1640 if (before(next_dup->start_seq, skip_to_seq)) { 1641 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1642 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1643 next_dup->start_seq, next_dup->end_seq, 1644 1); 1645 } 1646 1647 return skb; 1648 } 1649 1650 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1651 { 1652 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1653 } 1654 1655 static int 1656 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1657 u32 prior_snd_una, struct tcp_sacktag_state *state) 1658 { 1659 struct tcp_sock *tp = tcp_sk(sk); 1660 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1661 TCP_SKB_CB(ack_skb)->sacked); 1662 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1663 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1664 struct tcp_sack_block *cache; 1665 struct sk_buff *skb; 1666 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1667 int used_sacks; 1668 bool found_dup_sack = false; 1669 int i, j; 1670 int first_sack_index; 1671 1672 state->flag = 0; 1673 state->reord = tp->snd_nxt; 1674 1675 if (!tp->sacked_out) 1676 tcp_highest_sack_reset(sk); 1677 1678 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1679 num_sacks, prior_snd_una); 1680 if (found_dup_sack) { 1681 state->flag |= FLAG_DSACKING_ACK; 1682 tp->delivered++; /* A spurious retransmission is delivered */ 1683 } 1684 1685 /* Eliminate too old ACKs, but take into 1686 * account more or less fresh ones, they can 1687 * contain valid SACK info. 1688 */ 1689 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1690 return 0; 1691 1692 if (!tp->packets_out) 1693 goto out; 1694 1695 used_sacks = 0; 1696 first_sack_index = 0; 1697 for (i = 0; i < num_sacks; i++) { 1698 bool dup_sack = !i && found_dup_sack; 1699 1700 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1701 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1702 1703 if (!tcp_is_sackblock_valid(tp, dup_sack, 1704 sp[used_sacks].start_seq, 1705 sp[used_sacks].end_seq)) { 1706 int mib_idx; 1707 1708 if (dup_sack) { 1709 if (!tp->undo_marker) 1710 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1711 else 1712 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1713 } else { 1714 /* Don't count olds caused by ACK reordering */ 1715 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1716 !after(sp[used_sacks].end_seq, tp->snd_una)) 1717 continue; 1718 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1719 } 1720 1721 NET_INC_STATS(sock_net(sk), mib_idx); 1722 if (i == 0) 1723 first_sack_index = -1; 1724 continue; 1725 } 1726 1727 /* Ignore very old stuff early */ 1728 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1729 continue; 1730 1731 used_sacks++; 1732 } 1733 1734 /* order SACK blocks to allow in order walk of the retrans queue */ 1735 for (i = used_sacks - 1; i > 0; i--) { 1736 for (j = 0; j < i; j++) { 1737 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1738 swap(sp[j], sp[j + 1]); 1739 1740 /* Track where the first SACK block goes to */ 1741 if (j == first_sack_index) 1742 first_sack_index = j + 1; 1743 } 1744 } 1745 } 1746 1747 state->mss_now = tcp_current_mss(sk); 1748 skb = NULL; 1749 i = 0; 1750 1751 if (!tp->sacked_out) { 1752 /* It's already past, so skip checking against it */ 1753 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1754 } else { 1755 cache = tp->recv_sack_cache; 1756 /* Skip empty blocks in at head of the cache */ 1757 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1758 !cache->end_seq) 1759 cache++; 1760 } 1761 1762 while (i < used_sacks) { 1763 u32 start_seq = sp[i].start_seq; 1764 u32 end_seq = sp[i].end_seq; 1765 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1766 struct tcp_sack_block *next_dup = NULL; 1767 1768 if (found_dup_sack && ((i + 1) == first_sack_index)) 1769 next_dup = &sp[i + 1]; 1770 1771 /* Skip too early cached blocks */ 1772 while (tcp_sack_cache_ok(tp, cache) && 1773 !before(start_seq, cache->end_seq)) 1774 cache++; 1775 1776 /* Can skip some work by looking recv_sack_cache? */ 1777 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1778 after(end_seq, cache->start_seq)) { 1779 1780 /* Head todo? */ 1781 if (before(start_seq, cache->start_seq)) { 1782 skb = tcp_sacktag_skip(skb, sk, start_seq); 1783 skb = tcp_sacktag_walk(skb, sk, next_dup, 1784 state, 1785 start_seq, 1786 cache->start_seq, 1787 dup_sack); 1788 } 1789 1790 /* Rest of the block already fully processed? */ 1791 if (!after(end_seq, cache->end_seq)) 1792 goto advance_sp; 1793 1794 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1795 state, 1796 cache->end_seq); 1797 1798 /* ...tail remains todo... */ 1799 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1800 /* ...but better entrypoint exists! */ 1801 skb = tcp_highest_sack(sk); 1802 if (!skb) 1803 break; 1804 cache++; 1805 goto walk; 1806 } 1807 1808 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1809 /* Check overlap against next cached too (past this one already) */ 1810 cache++; 1811 continue; 1812 } 1813 1814 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1815 skb = tcp_highest_sack(sk); 1816 if (!skb) 1817 break; 1818 } 1819 skb = tcp_sacktag_skip(skb, sk, start_seq); 1820 1821 walk: 1822 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1823 start_seq, end_seq, dup_sack); 1824 1825 advance_sp: 1826 i++; 1827 } 1828 1829 /* Clear the head of the cache sack blocks so we can skip it next time */ 1830 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1831 tp->recv_sack_cache[i].start_seq = 0; 1832 tp->recv_sack_cache[i].end_seq = 0; 1833 } 1834 for (j = 0; j < used_sacks; j++) 1835 tp->recv_sack_cache[i++] = sp[j]; 1836 1837 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1838 tcp_check_sack_reordering(sk, state->reord, 0); 1839 1840 tcp_verify_left_out(tp); 1841 out: 1842 1843 #if FASTRETRANS_DEBUG > 0 1844 WARN_ON((int)tp->sacked_out < 0); 1845 WARN_ON((int)tp->lost_out < 0); 1846 WARN_ON((int)tp->retrans_out < 0); 1847 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1848 #endif 1849 return state->flag; 1850 } 1851 1852 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1853 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1854 */ 1855 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1856 { 1857 u32 holes; 1858 1859 holes = max(tp->lost_out, 1U); 1860 holes = min(holes, tp->packets_out); 1861 1862 if ((tp->sacked_out + holes) > tp->packets_out) { 1863 tp->sacked_out = tp->packets_out - holes; 1864 return true; 1865 } 1866 return false; 1867 } 1868 1869 /* If we receive more dupacks than we expected counting segments 1870 * in assumption of absent reordering, interpret this as reordering. 1871 * The only another reason could be bug in receiver TCP. 1872 */ 1873 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1874 { 1875 struct tcp_sock *tp = tcp_sk(sk); 1876 1877 if (!tcp_limit_reno_sacked(tp)) 1878 return; 1879 1880 tp->reordering = min_t(u32, tp->packets_out + addend, 1881 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1882 tp->reord_seen++; 1883 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1884 } 1885 1886 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1887 1888 static void tcp_add_reno_sack(struct sock *sk, int num_dupack) 1889 { 1890 if (num_dupack) { 1891 struct tcp_sock *tp = tcp_sk(sk); 1892 u32 prior_sacked = tp->sacked_out; 1893 s32 delivered; 1894 1895 tp->sacked_out += num_dupack; 1896 tcp_check_reno_reordering(sk, 0); 1897 delivered = tp->sacked_out - prior_sacked; 1898 if (delivered > 0) 1899 tp->delivered += delivered; 1900 tcp_verify_left_out(tp); 1901 } 1902 } 1903 1904 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1905 1906 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1907 { 1908 struct tcp_sock *tp = tcp_sk(sk); 1909 1910 if (acked > 0) { 1911 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1912 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1913 if (acked - 1 >= tp->sacked_out) 1914 tp->sacked_out = 0; 1915 else 1916 tp->sacked_out -= acked - 1; 1917 } 1918 tcp_check_reno_reordering(sk, acked); 1919 tcp_verify_left_out(tp); 1920 } 1921 1922 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1923 { 1924 tp->sacked_out = 0; 1925 } 1926 1927 void tcp_clear_retrans(struct tcp_sock *tp) 1928 { 1929 tp->retrans_out = 0; 1930 tp->lost_out = 0; 1931 tp->undo_marker = 0; 1932 tp->undo_retrans = -1; 1933 tp->sacked_out = 0; 1934 } 1935 1936 static inline void tcp_init_undo(struct tcp_sock *tp) 1937 { 1938 tp->undo_marker = tp->snd_una; 1939 /* Retransmission still in flight may cause DSACKs later. */ 1940 tp->undo_retrans = tp->retrans_out ? : -1; 1941 } 1942 1943 static bool tcp_is_rack(const struct sock *sk) 1944 { 1945 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1946 } 1947 1948 /* If we detect SACK reneging, forget all SACK information 1949 * and reset tags completely, otherwise preserve SACKs. If receiver 1950 * dropped its ofo queue, we will know this due to reneging detection. 1951 */ 1952 static void tcp_timeout_mark_lost(struct sock *sk) 1953 { 1954 struct tcp_sock *tp = tcp_sk(sk); 1955 struct sk_buff *skb, *head; 1956 bool is_reneg; /* is receiver reneging on SACKs? */ 1957 1958 head = tcp_rtx_queue_head(sk); 1959 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1960 if (is_reneg) { 1961 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1962 tp->sacked_out = 0; 1963 /* Mark SACK reneging until we recover from this loss event. */ 1964 tp->is_sack_reneg = 1; 1965 } else if (tcp_is_reno(tp)) { 1966 tcp_reset_reno_sack(tp); 1967 } 1968 1969 skb = head; 1970 skb_rbtree_walk_from(skb) { 1971 if (is_reneg) 1972 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1973 else if (tcp_is_rack(sk) && skb != head && 1974 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1975 continue; /* Don't mark recently sent ones lost yet */ 1976 tcp_mark_skb_lost(sk, skb); 1977 } 1978 tcp_verify_left_out(tp); 1979 tcp_clear_all_retrans_hints(tp); 1980 } 1981 1982 /* Enter Loss state. */ 1983 void tcp_enter_loss(struct sock *sk) 1984 { 1985 const struct inet_connection_sock *icsk = inet_csk(sk); 1986 struct tcp_sock *tp = tcp_sk(sk); 1987 struct net *net = sock_net(sk); 1988 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1989 1990 tcp_timeout_mark_lost(sk); 1991 1992 /* Reduce ssthresh if it has not yet been made inside this window. */ 1993 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1994 !after(tp->high_seq, tp->snd_una) || 1995 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1996 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1997 tp->prior_cwnd = tp->snd_cwnd; 1998 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1999 tcp_ca_event(sk, CA_EVENT_LOSS); 2000 tcp_init_undo(tp); 2001 } 2002 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2003 tp->snd_cwnd_cnt = 0; 2004 tp->snd_cwnd_stamp = tcp_jiffies32; 2005 2006 /* Timeout in disordered state after receiving substantial DUPACKs 2007 * suggests that the degree of reordering is over-estimated. 2008 */ 2009 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2010 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2011 tp->reordering = min_t(unsigned int, tp->reordering, 2012 net->ipv4.sysctl_tcp_reordering); 2013 tcp_set_ca_state(sk, TCP_CA_Loss); 2014 tp->high_seq = tp->snd_nxt; 2015 tcp_ecn_queue_cwr(tp); 2016 2017 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2018 * loss recovery is underway except recurring timeout(s) on 2019 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2020 */ 2021 tp->frto = net->ipv4.sysctl_tcp_frto && 2022 (new_recovery || icsk->icsk_retransmits) && 2023 !inet_csk(sk)->icsk_mtup.probe_size; 2024 } 2025 2026 /* If ACK arrived pointing to a remembered SACK, it means that our 2027 * remembered SACKs do not reflect real state of receiver i.e. 2028 * receiver _host_ is heavily congested (or buggy). 2029 * 2030 * To avoid big spurious retransmission bursts due to transient SACK 2031 * scoreboard oddities that look like reneging, we give the receiver a 2032 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2033 * restore sanity to the SACK scoreboard. If the apparent reneging 2034 * persists until this RTO then we'll clear the SACK scoreboard. 2035 */ 2036 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2037 { 2038 if (flag & FLAG_SACK_RENEGING) { 2039 struct tcp_sock *tp = tcp_sk(sk); 2040 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2041 msecs_to_jiffies(10)); 2042 2043 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2044 delay, TCP_RTO_MAX); 2045 return true; 2046 } 2047 return false; 2048 } 2049 2050 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2051 * counter when SACK is enabled (without SACK, sacked_out is used for 2052 * that purpose). 2053 * 2054 * With reordering, holes may still be in flight, so RFC3517 recovery 2055 * uses pure sacked_out (total number of SACKed segments) even though 2056 * it violates the RFC that uses duplicate ACKs, often these are equal 2057 * but when e.g. out-of-window ACKs or packet duplication occurs, 2058 * they differ. Since neither occurs due to loss, TCP should really 2059 * ignore them. 2060 */ 2061 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2062 { 2063 return tp->sacked_out + 1; 2064 } 2065 2066 /* Linux NewReno/SACK/ECN state machine. 2067 * -------------------------------------- 2068 * 2069 * "Open" Normal state, no dubious events, fast path. 2070 * "Disorder" In all the respects it is "Open", 2071 * but requires a bit more attention. It is entered when 2072 * we see some SACKs or dupacks. It is split of "Open" 2073 * mainly to move some processing from fast path to slow one. 2074 * "CWR" CWND was reduced due to some Congestion Notification event. 2075 * It can be ECN, ICMP source quench, local device congestion. 2076 * "Recovery" CWND was reduced, we are fast-retransmitting. 2077 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2078 * 2079 * tcp_fastretrans_alert() is entered: 2080 * - each incoming ACK, if state is not "Open" 2081 * - when arrived ACK is unusual, namely: 2082 * * SACK 2083 * * Duplicate ACK. 2084 * * ECN ECE. 2085 * 2086 * Counting packets in flight is pretty simple. 2087 * 2088 * in_flight = packets_out - left_out + retrans_out 2089 * 2090 * packets_out is SND.NXT-SND.UNA counted in packets. 2091 * 2092 * retrans_out is number of retransmitted segments. 2093 * 2094 * left_out is number of segments left network, but not ACKed yet. 2095 * 2096 * left_out = sacked_out + lost_out 2097 * 2098 * sacked_out: Packets, which arrived to receiver out of order 2099 * and hence not ACKed. With SACKs this number is simply 2100 * amount of SACKed data. Even without SACKs 2101 * it is easy to give pretty reliable estimate of this number, 2102 * counting duplicate ACKs. 2103 * 2104 * lost_out: Packets lost by network. TCP has no explicit 2105 * "loss notification" feedback from network (for now). 2106 * It means that this number can be only _guessed_. 2107 * Actually, it is the heuristics to predict lossage that 2108 * distinguishes different algorithms. 2109 * 2110 * F.e. after RTO, when all the queue is considered as lost, 2111 * lost_out = packets_out and in_flight = retrans_out. 2112 * 2113 * Essentially, we have now a few algorithms detecting 2114 * lost packets. 2115 * 2116 * If the receiver supports SACK: 2117 * 2118 * RFC6675/3517: It is the conventional algorithm. A packet is 2119 * considered lost if the number of higher sequence packets 2120 * SACKed is greater than or equal the DUPACK thoreshold 2121 * (reordering). This is implemented in tcp_mark_head_lost and 2122 * tcp_update_scoreboard. 2123 * 2124 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2125 * (2017-) that checks timing instead of counting DUPACKs. 2126 * Essentially a packet is considered lost if it's not S/ACKed 2127 * after RTT + reordering_window, where both metrics are 2128 * dynamically measured and adjusted. This is implemented in 2129 * tcp_rack_mark_lost. 2130 * 2131 * If the receiver does not support SACK: 2132 * 2133 * NewReno (RFC6582): in Recovery we assume that one segment 2134 * is lost (classic Reno). While we are in Recovery and 2135 * a partial ACK arrives, we assume that one more packet 2136 * is lost (NewReno). This heuristics are the same in NewReno 2137 * and SACK. 2138 * 2139 * Really tricky (and requiring careful tuning) part of algorithm 2140 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2141 * The first determines the moment _when_ we should reduce CWND and, 2142 * hence, slow down forward transmission. In fact, it determines the moment 2143 * when we decide that hole is caused by loss, rather than by a reorder. 2144 * 2145 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2146 * holes, caused by lost packets. 2147 * 2148 * And the most logically complicated part of algorithm is undo 2149 * heuristics. We detect false retransmits due to both too early 2150 * fast retransmit (reordering) and underestimated RTO, analyzing 2151 * timestamps and D-SACKs. When we detect that some segments were 2152 * retransmitted by mistake and CWND reduction was wrong, we undo 2153 * window reduction and abort recovery phase. This logic is hidden 2154 * inside several functions named tcp_try_undo_<something>. 2155 */ 2156 2157 /* This function decides, when we should leave Disordered state 2158 * and enter Recovery phase, reducing congestion window. 2159 * 2160 * Main question: may we further continue forward transmission 2161 * with the same cwnd? 2162 */ 2163 static bool tcp_time_to_recover(struct sock *sk, int flag) 2164 { 2165 struct tcp_sock *tp = tcp_sk(sk); 2166 2167 /* Trick#1: The loss is proven. */ 2168 if (tp->lost_out) 2169 return true; 2170 2171 /* Not-A-Trick#2 : Classic rule... */ 2172 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2173 return true; 2174 2175 return false; 2176 } 2177 2178 /* Detect loss in event "A" above by marking head of queue up as lost. 2179 * For non-SACK(Reno) senders, the first "packets" number of segments 2180 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2181 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2182 * the maximum SACKed segments to pass before reaching this limit. 2183 */ 2184 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2185 { 2186 struct tcp_sock *tp = tcp_sk(sk); 2187 struct sk_buff *skb; 2188 int cnt, oldcnt, lost; 2189 unsigned int mss; 2190 /* Use SACK to deduce losses of new sequences sent during recovery */ 2191 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2192 2193 WARN_ON(packets > tp->packets_out); 2194 skb = tp->lost_skb_hint; 2195 if (skb) { 2196 /* Head already handled? */ 2197 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2198 return; 2199 cnt = tp->lost_cnt_hint; 2200 } else { 2201 skb = tcp_rtx_queue_head(sk); 2202 cnt = 0; 2203 } 2204 2205 skb_rbtree_walk_from(skb) { 2206 /* TODO: do this better */ 2207 /* this is not the most efficient way to do this... */ 2208 tp->lost_skb_hint = skb; 2209 tp->lost_cnt_hint = cnt; 2210 2211 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2212 break; 2213 2214 oldcnt = cnt; 2215 if (tcp_is_reno(tp) || 2216 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2217 cnt += tcp_skb_pcount(skb); 2218 2219 if (cnt > packets) { 2220 if (tcp_is_sack(tp) || 2221 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2222 (oldcnt >= packets)) 2223 break; 2224 2225 mss = tcp_skb_mss(skb); 2226 /* If needed, chop off the prefix to mark as lost. */ 2227 lost = (packets - oldcnt) * mss; 2228 if (lost < skb->len && 2229 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2230 lost, mss, GFP_ATOMIC) < 0) 2231 break; 2232 cnt = packets; 2233 } 2234 2235 tcp_skb_mark_lost(tp, skb); 2236 2237 if (mark_head) 2238 break; 2239 } 2240 tcp_verify_left_out(tp); 2241 } 2242 2243 /* Account newly detected lost packet(s) */ 2244 2245 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2246 { 2247 struct tcp_sock *tp = tcp_sk(sk); 2248 2249 if (tcp_is_sack(tp)) { 2250 int sacked_upto = tp->sacked_out - tp->reordering; 2251 if (sacked_upto >= 0) 2252 tcp_mark_head_lost(sk, sacked_upto, 0); 2253 else if (fast_rexmit) 2254 tcp_mark_head_lost(sk, 1, 1); 2255 } 2256 } 2257 2258 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2259 { 2260 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2261 before(tp->rx_opt.rcv_tsecr, when); 2262 } 2263 2264 /* skb is spurious retransmitted if the returned timestamp echo 2265 * reply is prior to the skb transmission time 2266 */ 2267 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2268 const struct sk_buff *skb) 2269 { 2270 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2271 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2272 } 2273 2274 /* Nothing was retransmitted or returned timestamp is less 2275 * than timestamp of the first retransmission. 2276 */ 2277 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2278 { 2279 return tp->retrans_stamp && 2280 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2281 } 2282 2283 /* Undo procedures. */ 2284 2285 /* We can clear retrans_stamp when there are no retransmissions in the 2286 * window. It would seem that it is trivially available for us in 2287 * tp->retrans_out, however, that kind of assumptions doesn't consider 2288 * what will happen if errors occur when sending retransmission for the 2289 * second time. ...It could the that such segment has only 2290 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2291 * the head skb is enough except for some reneging corner cases that 2292 * are not worth the effort. 2293 * 2294 * Main reason for all this complexity is the fact that connection dying 2295 * time now depends on the validity of the retrans_stamp, in particular, 2296 * that successive retransmissions of a segment must not advance 2297 * retrans_stamp under any conditions. 2298 */ 2299 static bool tcp_any_retrans_done(const struct sock *sk) 2300 { 2301 const struct tcp_sock *tp = tcp_sk(sk); 2302 struct sk_buff *skb; 2303 2304 if (tp->retrans_out) 2305 return true; 2306 2307 skb = tcp_rtx_queue_head(sk); 2308 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2309 return true; 2310 2311 return false; 2312 } 2313 2314 static void DBGUNDO(struct sock *sk, const char *msg) 2315 { 2316 #if FASTRETRANS_DEBUG > 1 2317 struct tcp_sock *tp = tcp_sk(sk); 2318 struct inet_sock *inet = inet_sk(sk); 2319 2320 if (sk->sk_family == AF_INET) { 2321 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2322 msg, 2323 &inet->inet_daddr, ntohs(inet->inet_dport), 2324 tp->snd_cwnd, tcp_left_out(tp), 2325 tp->snd_ssthresh, tp->prior_ssthresh, 2326 tp->packets_out); 2327 } 2328 #if IS_ENABLED(CONFIG_IPV6) 2329 else if (sk->sk_family == AF_INET6) { 2330 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2331 msg, 2332 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2333 tp->snd_cwnd, tcp_left_out(tp), 2334 tp->snd_ssthresh, tp->prior_ssthresh, 2335 tp->packets_out); 2336 } 2337 #endif 2338 #endif 2339 } 2340 2341 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2342 { 2343 struct tcp_sock *tp = tcp_sk(sk); 2344 2345 if (unmark_loss) { 2346 struct sk_buff *skb; 2347 2348 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2349 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2350 } 2351 tp->lost_out = 0; 2352 tcp_clear_all_retrans_hints(tp); 2353 } 2354 2355 if (tp->prior_ssthresh) { 2356 const struct inet_connection_sock *icsk = inet_csk(sk); 2357 2358 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2359 2360 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2361 tp->snd_ssthresh = tp->prior_ssthresh; 2362 tcp_ecn_withdraw_cwr(tp); 2363 } 2364 } 2365 tp->snd_cwnd_stamp = tcp_jiffies32; 2366 tp->undo_marker = 0; 2367 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2368 } 2369 2370 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2371 { 2372 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2373 } 2374 2375 /* People celebrate: "We love our President!" */ 2376 static bool tcp_try_undo_recovery(struct sock *sk) 2377 { 2378 struct tcp_sock *tp = tcp_sk(sk); 2379 2380 if (tcp_may_undo(tp)) { 2381 int mib_idx; 2382 2383 /* Happy end! We did not retransmit anything 2384 * or our original transmission succeeded. 2385 */ 2386 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2387 tcp_undo_cwnd_reduction(sk, false); 2388 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2389 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2390 else 2391 mib_idx = LINUX_MIB_TCPFULLUNDO; 2392 2393 NET_INC_STATS(sock_net(sk), mib_idx); 2394 } else if (tp->rack.reo_wnd_persist) { 2395 tp->rack.reo_wnd_persist--; 2396 } 2397 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2398 /* Hold old state until something *above* high_seq 2399 * is ACKed. For Reno it is MUST to prevent false 2400 * fast retransmits (RFC2582). SACK TCP is safe. */ 2401 if (!tcp_any_retrans_done(sk)) 2402 tp->retrans_stamp = 0; 2403 return true; 2404 } 2405 tcp_set_ca_state(sk, TCP_CA_Open); 2406 tp->is_sack_reneg = 0; 2407 return false; 2408 } 2409 2410 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2411 static bool tcp_try_undo_dsack(struct sock *sk) 2412 { 2413 struct tcp_sock *tp = tcp_sk(sk); 2414 2415 if (tp->undo_marker && !tp->undo_retrans) { 2416 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2417 tp->rack.reo_wnd_persist + 1); 2418 DBGUNDO(sk, "D-SACK"); 2419 tcp_undo_cwnd_reduction(sk, false); 2420 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2421 return true; 2422 } 2423 return false; 2424 } 2425 2426 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2427 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2428 { 2429 struct tcp_sock *tp = tcp_sk(sk); 2430 2431 if (frto_undo || tcp_may_undo(tp)) { 2432 tcp_undo_cwnd_reduction(sk, true); 2433 2434 DBGUNDO(sk, "partial loss"); 2435 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2436 if (frto_undo) 2437 NET_INC_STATS(sock_net(sk), 2438 LINUX_MIB_TCPSPURIOUSRTOS); 2439 inet_csk(sk)->icsk_retransmits = 0; 2440 if (frto_undo || tcp_is_sack(tp)) { 2441 tcp_set_ca_state(sk, TCP_CA_Open); 2442 tp->is_sack_reneg = 0; 2443 } 2444 return true; 2445 } 2446 return false; 2447 } 2448 2449 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2450 * It computes the number of packets to send (sndcnt) based on packets newly 2451 * delivered: 2452 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2453 * cwnd reductions across a full RTT. 2454 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2455 * But when the retransmits are acked without further losses, PRR 2456 * slow starts cwnd up to ssthresh to speed up the recovery. 2457 */ 2458 static void tcp_init_cwnd_reduction(struct sock *sk) 2459 { 2460 struct tcp_sock *tp = tcp_sk(sk); 2461 2462 tp->high_seq = tp->snd_nxt; 2463 tp->tlp_high_seq = 0; 2464 tp->snd_cwnd_cnt = 0; 2465 tp->prior_cwnd = tp->snd_cwnd; 2466 tp->prr_delivered = 0; 2467 tp->prr_out = 0; 2468 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2469 tcp_ecn_queue_cwr(tp); 2470 } 2471 2472 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2473 { 2474 struct tcp_sock *tp = tcp_sk(sk); 2475 int sndcnt = 0; 2476 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2477 2478 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2479 return; 2480 2481 tp->prr_delivered += newly_acked_sacked; 2482 if (delta < 0) { 2483 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2484 tp->prior_cwnd - 1; 2485 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2486 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) == 2487 FLAG_RETRANS_DATA_ACKED) { 2488 sndcnt = min_t(int, delta, 2489 max_t(int, tp->prr_delivered - tp->prr_out, 2490 newly_acked_sacked) + 1); 2491 } else { 2492 sndcnt = min(delta, newly_acked_sacked); 2493 } 2494 /* Force a fast retransmit upon entering fast recovery */ 2495 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2496 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2497 } 2498 2499 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2500 { 2501 struct tcp_sock *tp = tcp_sk(sk); 2502 2503 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2504 return; 2505 2506 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2507 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2508 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2509 tp->snd_cwnd = tp->snd_ssthresh; 2510 tp->snd_cwnd_stamp = tcp_jiffies32; 2511 } 2512 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2513 } 2514 2515 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2516 void tcp_enter_cwr(struct sock *sk) 2517 { 2518 struct tcp_sock *tp = tcp_sk(sk); 2519 2520 tp->prior_ssthresh = 0; 2521 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2522 tp->undo_marker = 0; 2523 tcp_init_cwnd_reduction(sk); 2524 tcp_set_ca_state(sk, TCP_CA_CWR); 2525 } 2526 } 2527 EXPORT_SYMBOL(tcp_enter_cwr); 2528 2529 static void tcp_try_keep_open(struct sock *sk) 2530 { 2531 struct tcp_sock *tp = tcp_sk(sk); 2532 int state = TCP_CA_Open; 2533 2534 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2535 state = TCP_CA_Disorder; 2536 2537 if (inet_csk(sk)->icsk_ca_state != state) { 2538 tcp_set_ca_state(sk, state); 2539 tp->high_seq = tp->snd_nxt; 2540 } 2541 } 2542 2543 static void tcp_try_to_open(struct sock *sk, int flag) 2544 { 2545 struct tcp_sock *tp = tcp_sk(sk); 2546 2547 tcp_verify_left_out(tp); 2548 2549 if (!tcp_any_retrans_done(sk)) 2550 tp->retrans_stamp = 0; 2551 2552 if (flag & FLAG_ECE) 2553 tcp_enter_cwr(sk); 2554 2555 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2556 tcp_try_keep_open(sk); 2557 } 2558 } 2559 2560 static void tcp_mtup_probe_failed(struct sock *sk) 2561 { 2562 struct inet_connection_sock *icsk = inet_csk(sk); 2563 2564 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2565 icsk->icsk_mtup.probe_size = 0; 2566 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2567 } 2568 2569 static void tcp_mtup_probe_success(struct sock *sk) 2570 { 2571 struct tcp_sock *tp = tcp_sk(sk); 2572 struct inet_connection_sock *icsk = inet_csk(sk); 2573 2574 /* FIXME: breaks with very large cwnd */ 2575 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2576 tp->snd_cwnd = tp->snd_cwnd * 2577 tcp_mss_to_mtu(sk, tp->mss_cache) / 2578 icsk->icsk_mtup.probe_size; 2579 tp->snd_cwnd_cnt = 0; 2580 tp->snd_cwnd_stamp = tcp_jiffies32; 2581 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2582 2583 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2584 icsk->icsk_mtup.probe_size = 0; 2585 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2586 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2587 } 2588 2589 /* Do a simple retransmit without using the backoff mechanisms in 2590 * tcp_timer. This is used for path mtu discovery. 2591 * The socket is already locked here. 2592 */ 2593 void tcp_simple_retransmit(struct sock *sk) 2594 { 2595 const struct inet_connection_sock *icsk = inet_csk(sk); 2596 struct tcp_sock *tp = tcp_sk(sk); 2597 struct sk_buff *skb; 2598 unsigned int mss = tcp_current_mss(sk); 2599 2600 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2601 if (tcp_skb_seglen(skb) > mss && 2602 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2603 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2604 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2605 tp->retrans_out -= tcp_skb_pcount(skb); 2606 } 2607 tcp_skb_mark_lost_uncond_verify(tp, skb); 2608 } 2609 } 2610 2611 tcp_clear_retrans_hints_partial(tp); 2612 2613 if (!tp->lost_out) 2614 return; 2615 2616 if (tcp_is_reno(tp)) 2617 tcp_limit_reno_sacked(tp); 2618 2619 tcp_verify_left_out(tp); 2620 2621 /* Don't muck with the congestion window here. 2622 * Reason is that we do not increase amount of _data_ 2623 * in network, but units changed and effective 2624 * cwnd/ssthresh really reduced now. 2625 */ 2626 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2627 tp->high_seq = tp->snd_nxt; 2628 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2629 tp->prior_ssthresh = 0; 2630 tp->undo_marker = 0; 2631 tcp_set_ca_state(sk, TCP_CA_Loss); 2632 } 2633 tcp_xmit_retransmit_queue(sk); 2634 } 2635 EXPORT_SYMBOL(tcp_simple_retransmit); 2636 2637 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2638 { 2639 struct tcp_sock *tp = tcp_sk(sk); 2640 int mib_idx; 2641 2642 if (tcp_is_reno(tp)) 2643 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2644 else 2645 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2646 2647 NET_INC_STATS(sock_net(sk), mib_idx); 2648 2649 tp->prior_ssthresh = 0; 2650 tcp_init_undo(tp); 2651 2652 if (!tcp_in_cwnd_reduction(sk)) { 2653 if (!ece_ack) 2654 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2655 tcp_init_cwnd_reduction(sk); 2656 } 2657 tcp_set_ca_state(sk, TCP_CA_Recovery); 2658 } 2659 2660 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2661 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2662 */ 2663 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2664 int *rexmit) 2665 { 2666 struct tcp_sock *tp = tcp_sk(sk); 2667 bool recovered = !before(tp->snd_una, tp->high_seq); 2668 2669 if ((flag & FLAG_SND_UNA_ADVANCED || tp->fastopen_rsk) && 2670 tcp_try_undo_loss(sk, false)) 2671 return; 2672 2673 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2674 /* Step 3.b. A timeout is spurious if not all data are 2675 * lost, i.e., never-retransmitted data are (s)acked. 2676 */ 2677 if ((flag & FLAG_ORIG_SACK_ACKED) && 2678 tcp_try_undo_loss(sk, true)) 2679 return; 2680 2681 if (after(tp->snd_nxt, tp->high_seq)) { 2682 if (flag & FLAG_DATA_SACKED || num_dupack) 2683 tp->frto = 0; /* Step 3.a. loss was real */ 2684 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2685 tp->high_seq = tp->snd_nxt; 2686 /* Step 2.b. Try send new data (but deferred until cwnd 2687 * is updated in tcp_ack()). Otherwise fall back to 2688 * the conventional recovery. 2689 */ 2690 if (!tcp_write_queue_empty(sk) && 2691 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2692 *rexmit = REXMIT_NEW; 2693 return; 2694 } 2695 tp->frto = 0; 2696 } 2697 } 2698 2699 if (recovered) { 2700 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2701 tcp_try_undo_recovery(sk); 2702 return; 2703 } 2704 if (tcp_is_reno(tp)) { 2705 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2706 * delivered. Lower inflight to clock out (re)tranmissions. 2707 */ 2708 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2709 tcp_add_reno_sack(sk, num_dupack); 2710 else if (flag & FLAG_SND_UNA_ADVANCED) 2711 tcp_reset_reno_sack(tp); 2712 } 2713 *rexmit = REXMIT_LOST; 2714 } 2715 2716 /* Undo during fast recovery after partial ACK. */ 2717 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2718 { 2719 struct tcp_sock *tp = tcp_sk(sk); 2720 2721 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2722 /* Plain luck! Hole if filled with delayed 2723 * packet, rather than with a retransmit. Check reordering. 2724 */ 2725 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2726 2727 /* We are getting evidence that the reordering degree is higher 2728 * than we realized. If there are no retransmits out then we 2729 * can undo. Otherwise we clock out new packets but do not 2730 * mark more packets lost or retransmit more. 2731 */ 2732 if (tp->retrans_out) 2733 return true; 2734 2735 if (!tcp_any_retrans_done(sk)) 2736 tp->retrans_stamp = 0; 2737 2738 DBGUNDO(sk, "partial recovery"); 2739 tcp_undo_cwnd_reduction(sk, true); 2740 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2741 tcp_try_keep_open(sk); 2742 return true; 2743 } 2744 return false; 2745 } 2746 2747 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2748 { 2749 struct tcp_sock *tp = tcp_sk(sk); 2750 2751 if (tcp_rtx_queue_empty(sk)) 2752 return; 2753 2754 if (unlikely(tcp_is_reno(tp))) { 2755 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2756 } else if (tcp_is_rack(sk)) { 2757 u32 prior_retrans = tp->retrans_out; 2758 2759 tcp_rack_mark_lost(sk); 2760 if (prior_retrans > tp->retrans_out) 2761 *ack_flag |= FLAG_LOST_RETRANS; 2762 } 2763 } 2764 2765 static bool tcp_force_fast_retransmit(struct sock *sk) 2766 { 2767 struct tcp_sock *tp = tcp_sk(sk); 2768 2769 return after(tcp_highest_sack_seq(tp), 2770 tp->snd_una + tp->reordering * tp->mss_cache); 2771 } 2772 2773 /* Process an event, which can update packets-in-flight not trivially. 2774 * Main goal of this function is to calculate new estimate for left_out, 2775 * taking into account both packets sitting in receiver's buffer and 2776 * packets lost by network. 2777 * 2778 * Besides that it updates the congestion state when packet loss or ECN 2779 * is detected. But it does not reduce the cwnd, it is done by the 2780 * congestion control later. 2781 * 2782 * It does _not_ decide what to send, it is made in function 2783 * tcp_xmit_retransmit_queue(). 2784 */ 2785 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2786 int num_dupack, int *ack_flag, int *rexmit) 2787 { 2788 struct inet_connection_sock *icsk = inet_csk(sk); 2789 struct tcp_sock *tp = tcp_sk(sk); 2790 int fast_rexmit = 0, flag = *ack_flag; 2791 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2792 tcp_force_fast_retransmit(sk)); 2793 2794 if (!tp->packets_out && tp->sacked_out) 2795 tp->sacked_out = 0; 2796 2797 /* Now state machine starts. 2798 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2799 if (flag & FLAG_ECE) 2800 tp->prior_ssthresh = 0; 2801 2802 /* B. In all the states check for reneging SACKs. */ 2803 if (tcp_check_sack_reneging(sk, flag)) 2804 return; 2805 2806 /* C. Check consistency of the current state. */ 2807 tcp_verify_left_out(tp); 2808 2809 /* D. Check state exit conditions. State can be terminated 2810 * when high_seq is ACKed. */ 2811 if (icsk->icsk_ca_state == TCP_CA_Open) { 2812 WARN_ON(tp->retrans_out != 0); 2813 tp->retrans_stamp = 0; 2814 } else if (!before(tp->snd_una, tp->high_seq)) { 2815 switch (icsk->icsk_ca_state) { 2816 case TCP_CA_CWR: 2817 /* CWR is to be held something *above* high_seq 2818 * is ACKed for CWR bit to reach receiver. */ 2819 if (tp->snd_una != tp->high_seq) { 2820 tcp_end_cwnd_reduction(sk); 2821 tcp_set_ca_state(sk, TCP_CA_Open); 2822 } 2823 break; 2824 2825 case TCP_CA_Recovery: 2826 if (tcp_is_reno(tp)) 2827 tcp_reset_reno_sack(tp); 2828 if (tcp_try_undo_recovery(sk)) 2829 return; 2830 tcp_end_cwnd_reduction(sk); 2831 break; 2832 } 2833 } 2834 2835 /* E. Process state. */ 2836 switch (icsk->icsk_ca_state) { 2837 case TCP_CA_Recovery: 2838 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2839 if (tcp_is_reno(tp)) 2840 tcp_add_reno_sack(sk, num_dupack); 2841 } else { 2842 if (tcp_try_undo_partial(sk, prior_snd_una)) 2843 return; 2844 /* Partial ACK arrived. Force fast retransmit. */ 2845 do_lost = tcp_is_reno(tp) || 2846 tcp_force_fast_retransmit(sk); 2847 } 2848 if (tcp_try_undo_dsack(sk)) { 2849 tcp_try_keep_open(sk); 2850 return; 2851 } 2852 tcp_identify_packet_loss(sk, ack_flag); 2853 break; 2854 case TCP_CA_Loss: 2855 tcp_process_loss(sk, flag, num_dupack, rexmit); 2856 tcp_identify_packet_loss(sk, ack_flag); 2857 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2858 (*ack_flag & FLAG_LOST_RETRANS))) 2859 return; 2860 /* Change state if cwnd is undone or retransmits are lost */ 2861 /* fall through */ 2862 default: 2863 if (tcp_is_reno(tp)) { 2864 if (flag & FLAG_SND_UNA_ADVANCED) 2865 tcp_reset_reno_sack(tp); 2866 tcp_add_reno_sack(sk, num_dupack); 2867 } 2868 2869 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2870 tcp_try_undo_dsack(sk); 2871 2872 tcp_identify_packet_loss(sk, ack_flag); 2873 if (!tcp_time_to_recover(sk, flag)) { 2874 tcp_try_to_open(sk, flag); 2875 return; 2876 } 2877 2878 /* MTU probe failure: don't reduce cwnd */ 2879 if (icsk->icsk_ca_state < TCP_CA_CWR && 2880 icsk->icsk_mtup.probe_size && 2881 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2882 tcp_mtup_probe_failed(sk); 2883 /* Restores the reduction we did in tcp_mtup_probe() */ 2884 tp->snd_cwnd++; 2885 tcp_simple_retransmit(sk); 2886 return; 2887 } 2888 2889 /* Otherwise enter Recovery state */ 2890 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2891 fast_rexmit = 1; 2892 } 2893 2894 if (!tcp_is_rack(sk) && do_lost) 2895 tcp_update_scoreboard(sk, fast_rexmit); 2896 *rexmit = REXMIT_LOST; 2897 } 2898 2899 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2900 { 2901 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2902 struct tcp_sock *tp = tcp_sk(sk); 2903 2904 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2905 /* If the remote keeps returning delayed ACKs, eventually 2906 * the min filter would pick it up and overestimate the 2907 * prop. delay when it expires. Skip suspected delayed ACKs. 2908 */ 2909 return; 2910 } 2911 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2912 rtt_us ? : jiffies_to_usecs(1)); 2913 } 2914 2915 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2916 long seq_rtt_us, long sack_rtt_us, 2917 long ca_rtt_us, struct rate_sample *rs) 2918 { 2919 const struct tcp_sock *tp = tcp_sk(sk); 2920 2921 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2922 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2923 * Karn's algorithm forbids taking RTT if some retransmitted data 2924 * is acked (RFC6298). 2925 */ 2926 if (seq_rtt_us < 0) 2927 seq_rtt_us = sack_rtt_us; 2928 2929 /* RTTM Rule: A TSecr value received in a segment is used to 2930 * update the averaged RTT measurement only if the segment 2931 * acknowledges some new data, i.e., only if it advances the 2932 * left edge of the send window. 2933 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2934 */ 2935 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2936 flag & FLAG_ACKED) { 2937 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2938 2939 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 2940 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2941 ca_rtt_us = seq_rtt_us; 2942 } 2943 } 2944 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2945 if (seq_rtt_us < 0) 2946 return false; 2947 2948 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2949 * always taken together with ACK, SACK, or TS-opts. Any negative 2950 * values will be skipped with the seq_rtt_us < 0 check above. 2951 */ 2952 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2953 tcp_rtt_estimator(sk, seq_rtt_us); 2954 tcp_set_rto(sk); 2955 2956 /* RFC6298: only reset backoff on valid RTT measurement. */ 2957 inet_csk(sk)->icsk_backoff = 0; 2958 return true; 2959 } 2960 2961 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2962 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2963 { 2964 struct rate_sample rs; 2965 long rtt_us = -1L; 2966 2967 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2968 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2969 2970 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2971 } 2972 2973 2974 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2975 { 2976 const struct inet_connection_sock *icsk = inet_csk(sk); 2977 2978 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2979 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2980 } 2981 2982 /* Restart timer after forward progress on connection. 2983 * RFC2988 recommends to restart timer to now+rto. 2984 */ 2985 void tcp_rearm_rto(struct sock *sk) 2986 { 2987 const struct inet_connection_sock *icsk = inet_csk(sk); 2988 struct tcp_sock *tp = tcp_sk(sk); 2989 2990 /* If the retrans timer is currently being used by Fast Open 2991 * for SYN-ACK retrans purpose, stay put. 2992 */ 2993 if (tp->fastopen_rsk) 2994 return; 2995 2996 if (!tp->packets_out) { 2997 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2998 } else { 2999 u32 rto = inet_csk(sk)->icsk_rto; 3000 /* Offset the time elapsed after installing regular RTO */ 3001 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3002 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3003 s64 delta_us = tcp_rto_delta_us(sk); 3004 /* delta_us may not be positive if the socket is locked 3005 * when the retrans timer fires and is rescheduled. 3006 */ 3007 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3008 } 3009 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3010 TCP_RTO_MAX, tcp_rtx_queue_head(sk)); 3011 } 3012 } 3013 3014 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3015 static void tcp_set_xmit_timer(struct sock *sk) 3016 { 3017 if (!tcp_schedule_loss_probe(sk, true)) 3018 tcp_rearm_rto(sk); 3019 } 3020 3021 /* If we get here, the whole TSO packet has not been acked. */ 3022 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3023 { 3024 struct tcp_sock *tp = tcp_sk(sk); 3025 u32 packets_acked; 3026 3027 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3028 3029 packets_acked = tcp_skb_pcount(skb); 3030 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3031 return 0; 3032 packets_acked -= tcp_skb_pcount(skb); 3033 3034 if (packets_acked) { 3035 BUG_ON(tcp_skb_pcount(skb) == 0); 3036 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3037 } 3038 3039 return packets_acked; 3040 } 3041 3042 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3043 u32 prior_snd_una) 3044 { 3045 const struct skb_shared_info *shinfo; 3046 3047 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3048 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3049 return; 3050 3051 shinfo = skb_shinfo(skb); 3052 if (!before(shinfo->tskey, prior_snd_una) && 3053 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3054 tcp_skb_tsorted_save(skb) { 3055 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3056 } tcp_skb_tsorted_restore(skb); 3057 } 3058 } 3059 3060 /* Remove acknowledged frames from the retransmission queue. If our packet 3061 * is before the ack sequence we can discard it as it's confirmed to have 3062 * arrived at the other end. 3063 */ 3064 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3065 u32 prior_snd_una, 3066 struct tcp_sacktag_state *sack) 3067 { 3068 const struct inet_connection_sock *icsk = inet_csk(sk); 3069 u64 first_ackt, last_ackt; 3070 struct tcp_sock *tp = tcp_sk(sk); 3071 u32 prior_sacked = tp->sacked_out; 3072 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3073 struct sk_buff *skb, *next; 3074 bool fully_acked = true; 3075 long sack_rtt_us = -1L; 3076 long seq_rtt_us = -1L; 3077 long ca_rtt_us = -1L; 3078 u32 pkts_acked = 0; 3079 u32 last_in_flight = 0; 3080 bool rtt_update; 3081 int flag = 0; 3082 3083 first_ackt = 0; 3084 3085 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3086 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3087 const u32 start_seq = scb->seq; 3088 u8 sacked = scb->sacked; 3089 u32 acked_pcount; 3090 3091 tcp_ack_tstamp(sk, skb, prior_snd_una); 3092 3093 /* Determine how many packets and what bytes were acked, tso and else */ 3094 if (after(scb->end_seq, tp->snd_una)) { 3095 if (tcp_skb_pcount(skb) == 1 || 3096 !after(tp->snd_una, scb->seq)) 3097 break; 3098 3099 acked_pcount = tcp_tso_acked(sk, skb); 3100 if (!acked_pcount) 3101 break; 3102 fully_acked = false; 3103 } else { 3104 acked_pcount = tcp_skb_pcount(skb); 3105 } 3106 3107 if (unlikely(sacked & TCPCB_RETRANS)) { 3108 if (sacked & TCPCB_SACKED_RETRANS) 3109 tp->retrans_out -= acked_pcount; 3110 flag |= FLAG_RETRANS_DATA_ACKED; 3111 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3112 last_ackt = tcp_skb_timestamp_us(skb); 3113 WARN_ON_ONCE(last_ackt == 0); 3114 if (!first_ackt) 3115 first_ackt = last_ackt; 3116 3117 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3118 if (before(start_seq, reord)) 3119 reord = start_seq; 3120 if (!after(scb->end_seq, tp->high_seq)) 3121 flag |= FLAG_ORIG_SACK_ACKED; 3122 } 3123 3124 if (sacked & TCPCB_SACKED_ACKED) { 3125 tp->sacked_out -= acked_pcount; 3126 } else if (tcp_is_sack(tp)) { 3127 tp->delivered += acked_pcount; 3128 if (!tcp_skb_spurious_retrans(tp, skb)) 3129 tcp_rack_advance(tp, sacked, scb->end_seq, 3130 tcp_skb_timestamp_us(skb)); 3131 } 3132 if (sacked & TCPCB_LOST) 3133 tp->lost_out -= acked_pcount; 3134 3135 tp->packets_out -= acked_pcount; 3136 pkts_acked += acked_pcount; 3137 tcp_rate_skb_delivered(sk, skb, sack->rate); 3138 3139 /* Initial outgoing SYN's get put onto the write_queue 3140 * just like anything else we transmit. It is not 3141 * true data, and if we misinform our callers that 3142 * this ACK acks real data, we will erroneously exit 3143 * connection startup slow start one packet too 3144 * quickly. This is severely frowned upon behavior. 3145 */ 3146 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3147 flag |= FLAG_DATA_ACKED; 3148 } else { 3149 flag |= FLAG_SYN_ACKED; 3150 tp->retrans_stamp = 0; 3151 } 3152 3153 if (!fully_acked) 3154 break; 3155 3156 next = skb_rb_next(skb); 3157 if (unlikely(skb == tp->retransmit_skb_hint)) 3158 tp->retransmit_skb_hint = NULL; 3159 if (unlikely(skb == tp->lost_skb_hint)) 3160 tp->lost_skb_hint = NULL; 3161 tcp_rtx_queue_unlink_and_free(skb, sk); 3162 } 3163 3164 if (!skb) 3165 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3166 3167 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3168 tp->snd_up = tp->snd_una; 3169 3170 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3171 flag |= FLAG_SACK_RENEGING; 3172 3173 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3174 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3175 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3176 3177 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3178 last_in_flight && !prior_sacked && fully_acked && 3179 sack->rate->prior_delivered + 1 == tp->delivered && 3180 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3181 /* Conservatively mark a delayed ACK. It's typically 3182 * from a lone runt packet over the round trip to 3183 * a receiver w/o out-of-order or CE events. 3184 */ 3185 flag |= FLAG_ACK_MAYBE_DELAYED; 3186 } 3187 } 3188 if (sack->first_sackt) { 3189 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3190 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3191 } 3192 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3193 ca_rtt_us, sack->rate); 3194 3195 if (flag & FLAG_ACKED) { 3196 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3197 if (unlikely(icsk->icsk_mtup.probe_size && 3198 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3199 tcp_mtup_probe_success(sk); 3200 } 3201 3202 if (tcp_is_reno(tp)) { 3203 tcp_remove_reno_sacks(sk, pkts_acked); 3204 3205 /* If any of the cumulatively ACKed segments was 3206 * retransmitted, non-SACK case cannot confirm that 3207 * progress was due to original transmission due to 3208 * lack of TCPCB_SACKED_ACKED bits even if some of 3209 * the packets may have been never retransmitted. 3210 */ 3211 if (flag & FLAG_RETRANS_DATA_ACKED) 3212 flag &= ~FLAG_ORIG_SACK_ACKED; 3213 } else { 3214 int delta; 3215 3216 /* Non-retransmitted hole got filled? That's reordering */ 3217 if (before(reord, prior_fack)) 3218 tcp_check_sack_reordering(sk, reord, 0); 3219 3220 delta = prior_sacked - tp->sacked_out; 3221 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3222 } 3223 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3224 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3225 tcp_skb_timestamp_us(skb))) { 3226 /* Do not re-arm RTO if the sack RTT is measured from data sent 3227 * after when the head was last (re)transmitted. Otherwise the 3228 * timeout may continue to extend in loss recovery. 3229 */ 3230 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3231 } 3232 3233 if (icsk->icsk_ca_ops->pkts_acked) { 3234 struct ack_sample sample = { .pkts_acked = pkts_acked, 3235 .rtt_us = sack->rate->rtt_us, 3236 .in_flight = last_in_flight }; 3237 3238 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3239 } 3240 3241 #if FASTRETRANS_DEBUG > 0 3242 WARN_ON((int)tp->sacked_out < 0); 3243 WARN_ON((int)tp->lost_out < 0); 3244 WARN_ON((int)tp->retrans_out < 0); 3245 if (!tp->packets_out && tcp_is_sack(tp)) { 3246 icsk = inet_csk(sk); 3247 if (tp->lost_out) { 3248 pr_debug("Leak l=%u %d\n", 3249 tp->lost_out, icsk->icsk_ca_state); 3250 tp->lost_out = 0; 3251 } 3252 if (tp->sacked_out) { 3253 pr_debug("Leak s=%u %d\n", 3254 tp->sacked_out, icsk->icsk_ca_state); 3255 tp->sacked_out = 0; 3256 } 3257 if (tp->retrans_out) { 3258 pr_debug("Leak r=%u %d\n", 3259 tp->retrans_out, icsk->icsk_ca_state); 3260 tp->retrans_out = 0; 3261 } 3262 } 3263 #endif 3264 return flag; 3265 } 3266 3267 static void tcp_ack_probe(struct sock *sk) 3268 { 3269 struct inet_connection_sock *icsk = inet_csk(sk); 3270 struct sk_buff *head = tcp_send_head(sk); 3271 const struct tcp_sock *tp = tcp_sk(sk); 3272 3273 /* Was it a usable window open? */ 3274 if (!head) 3275 return; 3276 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3277 icsk->icsk_backoff = 0; 3278 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3279 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3280 * This function is not for random using! 3281 */ 3282 } else { 3283 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3284 3285 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3286 when, TCP_RTO_MAX, NULL); 3287 } 3288 } 3289 3290 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3291 { 3292 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3293 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3294 } 3295 3296 /* Decide wheather to run the increase function of congestion control. */ 3297 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3298 { 3299 /* If reordering is high then always grow cwnd whenever data is 3300 * delivered regardless of its ordering. Otherwise stay conservative 3301 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3302 * new SACK or ECE mark may first advance cwnd here and later reduce 3303 * cwnd in tcp_fastretrans_alert() based on more states. 3304 */ 3305 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3306 return flag & FLAG_FORWARD_PROGRESS; 3307 3308 return flag & FLAG_DATA_ACKED; 3309 } 3310 3311 /* The "ultimate" congestion control function that aims to replace the rigid 3312 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3313 * It's called toward the end of processing an ACK with precise rate 3314 * information. All transmission or retransmission are delayed afterwards. 3315 */ 3316 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3317 int flag, const struct rate_sample *rs) 3318 { 3319 const struct inet_connection_sock *icsk = inet_csk(sk); 3320 3321 if (icsk->icsk_ca_ops->cong_control) { 3322 icsk->icsk_ca_ops->cong_control(sk, rs); 3323 return; 3324 } 3325 3326 if (tcp_in_cwnd_reduction(sk)) { 3327 /* Reduce cwnd if state mandates */ 3328 tcp_cwnd_reduction(sk, acked_sacked, flag); 3329 } else if (tcp_may_raise_cwnd(sk, flag)) { 3330 /* Advance cwnd if state allows */ 3331 tcp_cong_avoid(sk, ack, acked_sacked); 3332 } 3333 tcp_update_pacing_rate(sk); 3334 } 3335 3336 /* Check that window update is acceptable. 3337 * The function assumes that snd_una<=ack<=snd_next. 3338 */ 3339 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3340 const u32 ack, const u32 ack_seq, 3341 const u32 nwin) 3342 { 3343 return after(ack, tp->snd_una) || 3344 after(ack_seq, tp->snd_wl1) || 3345 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3346 } 3347 3348 /* If we update tp->snd_una, also update tp->bytes_acked */ 3349 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3350 { 3351 u32 delta = ack - tp->snd_una; 3352 3353 sock_owned_by_me((struct sock *)tp); 3354 tp->bytes_acked += delta; 3355 tp->snd_una = ack; 3356 } 3357 3358 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3359 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3360 { 3361 u32 delta = seq - tp->rcv_nxt; 3362 3363 sock_owned_by_me((struct sock *)tp); 3364 tp->bytes_received += delta; 3365 tp->rcv_nxt = seq; 3366 } 3367 3368 /* Update our send window. 3369 * 3370 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3371 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3372 */ 3373 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3374 u32 ack_seq) 3375 { 3376 struct tcp_sock *tp = tcp_sk(sk); 3377 int flag = 0; 3378 u32 nwin = ntohs(tcp_hdr(skb)->window); 3379 3380 if (likely(!tcp_hdr(skb)->syn)) 3381 nwin <<= tp->rx_opt.snd_wscale; 3382 3383 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3384 flag |= FLAG_WIN_UPDATE; 3385 tcp_update_wl(tp, ack_seq); 3386 3387 if (tp->snd_wnd != nwin) { 3388 tp->snd_wnd = nwin; 3389 3390 /* Note, it is the only place, where 3391 * fast path is recovered for sending TCP. 3392 */ 3393 tp->pred_flags = 0; 3394 tcp_fast_path_check(sk); 3395 3396 if (!tcp_write_queue_empty(sk)) 3397 tcp_slow_start_after_idle_check(sk); 3398 3399 if (nwin > tp->max_window) { 3400 tp->max_window = nwin; 3401 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3402 } 3403 } 3404 } 3405 3406 tcp_snd_una_update(tp, ack); 3407 3408 return flag; 3409 } 3410 3411 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3412 u32 *last_oow_ack_time) 3413 { 3414 if (*last_oow_ack_time) { 3415 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3416 3417 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3418 NET_INC_STATS(net, mib_idx); 3419 return true; /* rate-limited: don't send yet! */ 3420 } 3421 } 3422 3423 *last_oow_ack_time = tcp_jiffies32; 3424 3425 return false; /* not rate-limited: go ahead, send dupack now! */ 3426 } 3427 3428 /* Return true if we're currently rate-limiting out-of-window ACKs and 3429 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3430 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3431 * attacks that send repeated SYNs or ACKs for the same connection. To 3432 * do this, we do not send a duplicate SYNACK or ACK if the remote 3433 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3434 */ 3435 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3436 int mib_idx, u32 *last_oow_ack_time) 3437 { 3438 /* Data packets without SYNs are not likely part of an ACK loop. */ 3439 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3440 !tcp_hdr(skb)->syn) 3441 return false; 3442 3443 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3444 } 3445 3446 /* RFC 5961 7 [ACK Throttling] */ 3447 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3448 { 3449 /* unprotected vars, we dont care of overwrites */ 3450 static u32 challenge_timestamp; 3451 static unsigned int challenge_count; 3452 struct tcp_sock *tp = tcp_sk(sk); 3453 struct net *net = sock_net(sk); 3454 u32 count, now; 3455 3456 /* First check our per-socket dupack rate limit. */ 3457 if (__tcp_oow_rate_limited(net, 3458 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3459 &tp->last_oow_ack_time)) 3460 return; 3461 3462 /* Then check host-wide RFC 5961 rate limit. */ 3463 now = jiffies / HZ; 3464 if (now != challenge_timestamp) { 3465 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3466 u32 half = (ack_limit + 1) >> 1; 3467 3468 challenge_timestamp = now; 3469 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3470 } 3471 count = READ_ONCE(challenge_count); 3472 if (count > 0) { 3473 WRITE_ONCE(challenge_count, count - 1); 3474 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3475 tcp_send_ack(sk); 3476 } 3477 } 3478 3479 static void tcp_store_ts_recent(struct tcp_sock *tp) 3480 { 3481 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3482 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3483 } 3484 3485 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3486 { 3487 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3488 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3489 * extra check below makes sure this can only happen 3490 * for pure ACK frames. -DaveM 3491 * 3492 * Not only, also it occurs for expired timestamps. 3493 */ 3494 3495 if (tcp_paws_check(&tp->rx_opt, 0)) 3496 tcp_store_ts_recent(tp); 3497 } 3498 } 3499 3500 /* This routine deals with acks during a TLP episode. 3501 * We mark the end of a TLP episode on receiving TLP dupack or when 3502 * ack is after tlp_high_seq. 3503 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3504 */ 3505 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3506 { 3507 struct tcp_sock *tp = tcp_sk(sk); 3508 3509 if (before(ack, tp->tlp_high_seq)) 3510 return; 3511 3512 if (flag & FLAG_DSACKING_ACK) { 3513 /* This DSACK means original and TLP probe arrived; no loss */ 3514 tp->tlp_high_seq = 0; 3515 } else if (after(ack, tp->tlp_high_seq)) { 3516 /* ACK advances: there was a loss, so reduce cwnd. Reset 3517 * tlp_high_seq in tcp_init_cwnd_reduction() 3518 */ 3519 tcp_init_cwnd_reduction(sk); 3520 tcp_set_ca_state(sk, TCP_CA_CWR); 3521 tcp_end_cwnd_reduction(sk); 3522 tcp_try_keep_open(sk); 3523 NET_INC_STATS(sock_net(sk), 3524 LINUX_MIB_TCPLOSSPROBERECOVERY); 3525 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3526 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3527 /* Pure dupack: original and TLP probe arrived; no loss */ 3528 tp->tlp_high_seq = 0; 3529 } 3530 } 3531 3532 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3533 { 3534 const struct inet_connection_sock *icsk = inet_csk(sk); 3535 3536 if (icsk->icsk_ca_ops->in_ack_event) 3537 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3538 } 3539 3540 /* Congestion control has updated the cwnd already. So if we're in 3541 * loss recovery then now we do any new sends (for FRTO) or 3542 * retransmits (for CA_Loss or CA_recovery) that make sense. 3543 */ 3544 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3545 { 3546 struct tcp_sock *tp = tcp_sk(sk); 3547 3548 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3549 return; 3550 3551 if (unlikely(rexmit == 2)) { 3552 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3553 TCP_NAGLE_OFF); 3554 if (after(tp->snd_nxt, tp->high_seq)) 3555 return; 3556 tp->frto = 0; 3557 } 3558 tcp_xmit_retransmit_queue(sk); 3559 } 3560 3561 /* Returns the number of packets newly acked or sacked by the current ACK */ 3562 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3563 { 3564 const struct net *net = sock_net(sk); 3565 struct tcp_sock *tp = tcp_sk(sk); 3566 u32 delivered; 3567 3568 delivered = tp->delivered - prior_delivered; 3569 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3570 if (flag & FLAG_ECE) { 3571 tp->delivered_ce += delivered; 3572 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3573 } 3574 return delivered; 3575 } 3576 3577 /* This routine deals with incoming acks, but not outgoing ones. */ 3578 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3579 { 3580 struct inet_connection_sock *icsk = inet_csk(sk); 3581 struct tcp_sock *tp = tcp_sk(sk); 3582 struct tcp_sacktag_state sack_state; 3583 struct rate_sample rs = { .prior_delivered = 0 }; 3584 u32 prior_snd_una = tp->snd_una; 3585 bool is_sack_reneg = tp->is_sack_reneg; 3586 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3587 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3588 int num_dupack = 0; 3589 int prior_packets = tp->packets_out; 3590 u32 delivered = tp->delivered; 3591 u32 lost = tp->lost; 3592 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3593 u32 prior_fack; 3594 3595 sack_state.first_sackt = 0; 3596 sack_state.rate = &rs; 3597 3598 /* We very likely will need to access rtx queue. */ 3599 prefetch(sk->tcp_rtx_queue.rb_node); 3600 3601 /* If the ack is older than previous acks 3602 * then we can probably ignore it. 3603 */ 3604 if (before(ack, prior_snd_una)) { 3605 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3606 if (before(ack, prior_snd_una - tp->max_window)) { 3607 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3608 tcp_send_challenge_ack(sk, skb); 3609 return -1; 3610 } 3611 goto old_ack; 3612 } 3613 3614 /* If the ack includes data we haven't sent yet, discard 3615 * this segment (RFC793 Section 3.9). 3616 */ 3617 if (after(ack, tp->snd_nxt)) 3618 return -1; 3619 3620 if (after(ack, prior_snd_una)) { 3621 flag |= FLAG_SND_UNA_ADVANCED; 3622 icsk->icsk_retransmits = 0; 3623 3624 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3625 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3626 if (icsk->icsk_clean_acked) 3627 icsk->icsk_clean_acked(sk, ack); 3628 #endif 3629 } 3630 3631 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3632 rs.prior_in_flight = tcp_packets_in_flight(tp); 3633 3634 /* ts_recent update must be made after we are sure that the packet 3635 * is in window. 3636 */ 3637 if (flag & FLAG_UPDATE_TS_RECENT) 3638 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3639 3640 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3641 FLAG_SND_UNA_ADVANCED) { 3642 /* Window is constant, pure forward advance. 3643 * No more checks are required. 3644 * Note, we use the fact that SND.UNA>=SND.WL2. 3645 */ 3646 tcp_update_wl(tp, ack_seq); 3647 tcp_snd_una_update(tp, ack); 3648 flag |= FLAG_WIN_UPDATE; 3649 3650 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3651 3652 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3653 } else { 3654 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3655 3656 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3657 flag |= FLAG_DATA; 3658 else 3659 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3660 3661 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3662 3663 if (TCP_SKB_CB(skb)->sacked) 3664 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3665 &sack_state); 3666 3667 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3668 flag |= FLAG_ECE; 3669 ack_ev_flags |= CA_ACK_ECE; 3670 } 3671 3672 if (flag & FLAG_WIN_UPDATE) 3673 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3674 3675 tcp_in_ack_event(sk, ack_ev_flags); 3676 } 3677 3678 /* We passed data and got it acked, remove any soft error 3679 * log. Something worked... 3680 */ 3681 sk->sk_err_soft = 0; 3682 icsk->icsk_probes_out = 0; 3683 tp->rcv_tstamp = tcp_jiffies32; 3684 if (!prior_packets) 3685 goto no_queue; 3686 3687 /* See if we can take anything off of the retransmit queue. */ 3688 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3689 3690 tcp_rack_update_reo_wnd(sk, &rs); 3691 3692 if (tp->tlp_high_seq) 3693 tcp_process_tlp_ack(sk, ack, flag); 3694 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3695 if (flag & FLAG_SET_XMIT_TIMER) 3696 tcp_set_xmit_timer(sk); 3697 3698 if (tcp_ack_is_dubious(sk, flag)) { 3699 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3700 num_dupack = 1; 3701 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3702 if (!(flag & FLAG_DATA)) 3703 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3704 } 3705 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3706 &rexmit); 3707 } 3708 3709 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3710 sk_dst_confirm(sk); 3711 3712 delivered = tcp_newly_delivered(sk, delivered, flag); 3713 lost = tp->lost - lost; /* freshly marked lost */ 3714 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3715 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3716 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3717 tcp_xmit_recovery(sk, rexmit); 3718 return 1; 3719 3720 no_queue: 3721 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3722 if (flag & FLAG_DSACKING_ACK) { 3723 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3724 &rexmit); 3725 tcp_newly_delivered(sk, delivered, flag); 3726 } 3727 /* If this ack opens up a zero window, clear backoff. It was 3728 * being used to time the probes, and is probably far higher than 3729 * it needs to be for normal retransmission. 3730 */ 3731 tcp_ack_probe(sk); 3732 3733 if (tp->tlp_high_seq) 3734 tcp_process_tlp_ack(sk, ack, flag); 3735 return 1; 3736 3737 old_ack: 3738 /* If data was SACKed, tag it and see if we should send more data. 3739 * If data was DSACKed, see if we can undo a cwnd reduction. 3740 */ 3741 if (TCP_SKB_CB(skb)->sacked) { 3742 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3743 &sack_state); 3744 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3745 &rexmit); 3746 tcp_newly_delivered(sk, delivered, flag); 3747 tcp_xmit_recovery(sk, rexmit); 3748 } 3749 3750 return 0; 3751 } 3752 3753 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3754 bool syn, struct tcp_fastopen_cookie *foc, 3755 bool exp_opt) 3756 { 3757 /* Valid only in SYN or SYN-ACK with an even length. */ 3758 if (!foc || !syn || len < 0 || (len & 1)) 3759 return; 3760 3761 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3762 len <= TCP_FASTOPEN_COOKIE_MAX) 3763 memcpy(foc->val, cookie, len); 3764 else if (len != 0) 3765 len = -1; 3766 foc->len = len; 3767 foc->exp = exp_opt; 3768 } 3769 3770 static void smc_parse_options(const struct tcphdr *th, 3771 struct tcp_options_received *opt_rx, 3772 const unsigned char *ptr, 3773 int opsize) 3774 { 3775 #if IS_ENABLED(CONFIG_SMC) 3776 if (static_branch_unlikely(&tcp_have_smc)) { 3777 if (th->syn && !(opsize & 1) && 3778 opsize >= TCPOLEN_EXP_SMC_BASE && 3779 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3780 opt_rx->smc_ok = 1; 3781 } 3782 #endif 3783 } 3784 3785 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3786 * But, this can also be called on packets in the established flow when 3787 * the fast version below fails. 3788 */ 3789 void tcp_parse_options(const struct net *net, 3790 const struct sk_buff *skb, 3791 struct tcp_options_received *opt_rx, int estab, 3792 struct tcp_fastopen_cookie *foc) 3793 { 3794 const unsigned char *ptr; 3795 const struct tcphdr *th = tcp_hdr(skb); 3796 int length = (th->doff * 4) - sizeof(struct tcphdr); 3797 3798 ptr = (const unsigned char *)(th + 1); 3799 opt_rx->saw_tstamp = 0; 3800 3801 while (length > 0) { 3802 int opcode = *ptr++; 3803 int opsize; 3804 3805 switch (opcode) { 3806 case TCPOPT_EOL: 3807 return; 3808 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3809 length--; 3810 continue; 3811 default: 3812 if (length < 2) 3813 return; 3814 opsize = *ptr++; 3815 if (opsize < 2) /* "silly options" */ 3816 return; 3817 if (opsize > length) 3818 return; /* don't parse partial options */ 3819 switch (opcode) { 3820 case TCPOPT_MSS: 3821 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3822 u16 in_mss = get_unaligned_be16(ptr); 3823 if (in_mss) { 3824 if (opt_rx->user_mss && 3825 opt_rx->user_mss < in_mss) 3826 in_mss = opt_rx->user_mss; 3827 opt_rx->mss_clamp = in_mss; 3828 } 3829 } 3830 break; 3831 case TCPOPT_WINDOW: 3832 if (opsize == TCPOLEN_WINDOW && th->syn && 3833 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3834 __u8 snd_wscale = *(__u8 *)ptr; 3835 opt_rx->wscale_ok = 1; 3836 if (snd_wscale > TCP_MAX_WSCALE) { 3837 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3838 __func__, 3839 snd_wscale, 3840 TCP_MAX_WSCALE); 3841 snd_wscale = TCP_MAX_WSCALE; 3842 } 3843 opt_rx->snd_wscale = snd_wscale; 3844 } 3845 break; 3846 case TCPOPT_TIMESTAMP: 3847 if ((opsize == TCPOLEN_TIMESTAMP) && 3848 ((estab && opt_rx->tstamp_ok) || 3849 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3850 opt_rx->saw_tstamp = 1; 3851 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3852 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3853 } 3854 break; 3855 case TCPOPT_SACK_PERM: 3856 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3857 !estab && net->ipv4.sysctl_tcp_sack) { 3858 opt_rx->sack_ok = TCP_SACK_SEEN; 3859 tcp_sack_reset(opt_rx); 3860 } 3861 break; 3862 3863 case TCPOPT_SACK: 3864 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3865 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3866 opt_rx->sack_ok) { 3867 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3868 } 3869 break; 3870 #ifdef CONFIG_TCP_MD5SIG 3871 case TCPOPT_MD5SIG: 3872 /* 3873 * The MD5 Hash has already been 3874 * checked (see tcp_v{4,6}_do_rcv()). 3875 */ 3876 break; 3877 #endif 3878 case TCPOPT_FASTOPEN: 3879 tcp_parse_fastopen_option( 3880 opsize - TCPOLEN_FASTOPEN_BASE, 3881 ptr, th->syn, foc, false); 3882 break; 3883 3884 case TCPOPT_EXP: 3885 /* Fast Open option shares code 254 using a 3886 * 16 bits magic number. 3887 */ 3888 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3889 get_unaligned_be16(ptr) == 3890 TCPOPT_FASTOPEN_MAGIC) 3891 tcp_parse_fastopen_option(opsize - 3892 TCPOLEN_EXP_FASTOPEN_BASE, 3893 ptr + 2, th->syn, foc, true); 3894 else 3895 smc_parse_options(th, opt_rx, ptr, 3896 opsize); 3897 break; 3898 3899 } 3900 ptr += opsize-2; 3901 length -= opsize; 3902 } 3903 } 3904 } 3905 EXPORT_SYMBOL(tcp_parse_options); 3906 3907 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3908 { 3909 const __be32 *ptr = (const __be32 *)(th + 1); 3910 3911 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3912 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3913 tp->rx_opt.saw_tstamp = 1; 3914 ++ptr; 3915 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3916 ++ptr; 3917 if (*ptr) 3918 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3919 else 3920 tp->rx_opt.rcv_tsecr = 0; 3921 return true; 3922 } 3923 return false; 3924 } 3925 3926 /* Fast parse options. This hopes to only see timestamps. 3927 * If it is wrong it falls back on tcp_parse_options(). 3928 */ 3929 static bool tcp_fast_parse_options(const struct net *net, 3930 const struct sk_buff *skb, 3931 const struct tcphdr *th, struct tcp_sock *tp) 3932 { 3933 /* In the spirit of fast parsing, compare doff directly to constant 3934 * values. Because equality is used, short doff can be ignored here. 3935 */ 3936 if (th->doff == (sizeof(*th) / 4)) { 3937 tp->rx_opt.saw_tstamp = 0; 3938 return false; 3939 } else if (tp->rx_opt.tstamp_ok && 3940 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3941 if (tcp_parse_aligned_timestamp(tp, th)) 3942 return true; 3943 } 3944 3945 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3946 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3947 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3948 3949 return true; 3950 } 3951 3952 #ifdef CONFIG_TCP_MD5SIG 3953 /* 3954 * Parse MD5 Signature option 3955 */ 3956 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3957 { 3958 int length = (th->doff << 2) - sizeof(*th); 3959 const u8 *ptr = (const u8 *)(th + 1); 3960 3961 /* If not enough data remaining, we can short cut */ 3962 while (length >= TCPOLEN_MD5SIG) { 3963 int opcode = *ptr++; 3964 int opsize; 3965 3966 switch (opcode) { 3967 case TCPOPT_EOL: 3968 return NULL; 3969 case TCPOPT_NOP: 3970 length--; 3971 continue; 3972 default: 3973 opsize = *ptr++; 3974 if (opsize < 2 || opsize > length) 3975 return NULL; 3976 if (opcode == TCPOPT_MD5SIG) 3977 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3978 } 3979 ptr += opsize - 2; 3980 length -= opsize; 3981 } 3982 return NULL; 3983 } 3984 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3985 #endif 3986 3987 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3988 * 3989 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3990 * it can pass through stack. So, the following predicate verifies that 3991 * this segment is not used for anything but congestion avoidance or 3992 * fast retransmit. Moreover, we even are able to eliminate most of such 3993 * second order effects, if we apply some small "replay" window (~RTO) 3994 * to timestamp space. 3995 * 3996 * All these measures still do not guarantee that we reject wrapped ACKs 3997 * on networks with high bandwidth, when sequence space is recycled fastly, 3998 * but it guarantees that such events will be very rare and do not affect 3999 * connection seriously. This doesn't look nice, but alas, PAWS is really 4000 * buggy extension. 4001 * 4002 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4003 * states that events when retransmit arrives after original data are rare. 4004 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4005 * the biggest problem on large power networks even with minor reordering. 4006 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4007 * up to bandwidth of 18Gigabit/sec. 8) ] 4008 */ 4009 4010 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4011 { 4012 const struct tcp_sock *tp = tcp_sk(sk); 4013 const struct tcphdr *th = tcp_hdr(skb); 4014 u32 seq = TCP_SKB_CB(skb)->seq; 4015 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4016 4017 return (/* 1. Pure ACK with correct sequence number. */ 4018 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4019 4020 /* 2. ... and duplicate ACK. */ 4021 ack == tp->snd_una && 4022 4023 /* 3. ... and does not update window. */ 4024 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4025 4026 /* 4. ... and sits in replay window. */ 4027 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4028 } 4029 4030 static inline bool tcp_paws_discard(const struct sock *sk, 4031 const struct sk_buff *skb) 4032 { 4033 const struct tcp_sock *tp = tcp_sk(sk); 4034 4035 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4036 !tcp_disordered_ack(sk, skb); 4037 } 4038 4039 /* Check segment sequence number for validity. 4040 * 4041 * Segment controls are considered valid, if the segment 4042 * fits to the window after truncation to the window. Acceptability 4043 * of data (and SYN, FIN, of course) is checked separately. 4044 * See tcp_data_queue(), for example. 4045 * 4046 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4047 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4048 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4049 * (borrowed from freebsd) 4050 */ 4051 4052 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4053 { 4054 return !before(end_seq, tp->rcv_wup) && 4055 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4056 } 4057 4058 /* When we get a reset we do this. */ 4059 void tcp_reset(struct sock *sk) 4060 { 4061 trace_tcp_receive_reset(sk); 4062 4063 /* We want the right error as BSD sees it (and indeed as we do). */ 4064 switch (sk->sk_state) { 4065 case TCP_SYN_SENT: 4066 sk->sk_err = ECONNREFUSED; 4067 break; 4068 case TCP_CLOSE_WAIT: 4069 sk->sk_err = EPIPE; 4070 break; 4071 case TCP_CLOSE: 4072 return; 4073 default: 4074 sk->sk_err = ECONNRESET; 4075 } 4076 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4077 smp_wmb(); 4078 4079 tcp_write_queue_purge(sk); 4080 tcp_done(sk); 4081 4082 if (!sock_flag(sk, SOCK_DEAD)) 4083 sk->sk_error_report(sk); 4084 } 4085 4086 /* 4087 * Process the FIN bit. This now behaves as it is supposed to work 4088 * and the FIN takes effect when it is validly part of sequence 4089 * space. Not before when we get holes. 4090 * 4091 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4092 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4093 * TIME-WAIT) 4094 * 4095 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4096 * close and we go into CLOSING (and later onto TIME-WAIT) 4097 * 4098 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4099 */ 4100 void tcp_fin(struct sock *sk) 4101 { 4102 struct tcp_sock *tp = tcp_sk(sk); 4103 4104 inet_csk_schedule_ack(sk); 4105 4106 sk->sk_shutdown |= RCV_SHUTDOWN; 4107 sock_set_flag(sk, SOCK_DONE); 4108 4109 switch (sk->sk_state) { 4110 case TCP_SYN_RECV: 4111 case TCP_ESTABLISHED: 4112 /* Move to CLOSE_WAIT */ 4113 tcp_set_state(sk, TCP_CLOSE_WAIT); 4114 inet_csk_enter_pingpong_mode(sk); 4115 break; 4116 4117 case TCP_CLOSE_WAIT: 4118 case TCP_CLOSING: 4119 /* Received a retransmission of the FIN, do 4120 * nothing. 4121 */ 4122 break; 4123 case TCP_LAST_ACK: 4124 /* RFC793: Remain in the LAST-ACK state. */ 4125 break; 4126 4127 case TCP_FIN_WAIT1: 4128 /* This case occurs when a simultaneous close 4129 * happens, we must ack the received FIN and 4130 * enter the CLOSING state. 4131 */ 4132 tcp_send_ack(sk); 4133 tcp_set_state(sk, TCP_CLOSING); 4134 break; 4135 case TCP_FIN_WAIT2: 4136 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4137 tcp_send_ack(sk); 4138 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4139 break; 4140 default: 4141 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4142 * cases we should never reach this piece of code. 4143 */ 4144 pr_err("%s: Impossible, sk->sk_state=%d\n", 4145 __func__, sk->sk_state); 4146 break; 4147 } 4148 4149 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4150 * Probably, we should reset in this case. For now drop them. 4151 */ 4152 skb_rbtree_purge(&tp->out_of_order_queue); 4153 if (tcp_is_sack(tp)) 4154 tcp_sack_reset(&tp->rx_opt); 4155 sk_mem_reclaim(sk); 4156 4157 if (!sock_flag(sk, SOCK_DEAD)) { 4158 sk->sk_state_change(sk); 4159 4160 /* Do not send POLL_HUP for half duplex close. */ 4161 if (sk->sk_shutdown == SHUTDOWN_MASK || 4162 sk->sk_state == TCP_CLOSE) 4163 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4164 else 4165 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4166 } 4167 } 4168 4169 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4170 u32 end_seq) 4171 { 4172 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4173 if (before(seq, sp->start_seq)) 4174 sp->start_seq = seq; 4175 if (after(end_seq, sp->end_seq)) 4176 sp->end_seq = end_seq; 4177 return true; 4178 } 4179 return false; 4180 } 4181 4182 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4183 { 4184 struct tcp_sock *tp = tcp_sk(sk); 4185 4186 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4187 int mib_idx; 4188 4189 if (before(seq, tp->rcv_nxt)) 4190 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4191 else 4192 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4193 4194 NET_INC_STATS(sock_net(sk), mib_idx); 4195 4196 tp->rx_opt.dsack = 1; 4197 tp->duplicate_sack[0].start_seq = seq; 4198 tp->duplicate_sack[0].end_seq = end_seq; 4199 } 4200 } 4201 4202 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4203 { 4204 struct tcp_sock *tp = tcp_sk(sk); 4205 4206 if (!tp->rx_opt.dsack) 4207 tcp_dsack_set(sk, seq, end_seq); 4208 else 4209 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4210 } 4211 4212 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4213 { 4214 /* When the ACK path fails or drops most ACKs, the sender would 4215 * timeout and spuriously retransmit the same segment repeatedly. 4216 * The receiver remembers and reflects via DSACKs. Leverage the 4217 * DSACK state and change the txhash to re-route speculatively. 4218 */ 4219 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) 4220 sk_rethink_txhash(sk); 4221 } 4222 4223 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4224 { 4225 struct tcp_sock *tp = tcp_sk(sk); 4226 4227 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4228 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4229 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4230 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4231 4232 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4233 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4234 4235 tcp_rcv_spurious_retrans(sk, skb); 4236 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4237 end_seq = tp->rcv_nxt; 4238 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4239 } 4240 } 4241 4242 tcp_send_ack(sk); 4243 } 4244 4245 /* These routines update the SACK block as out-of-order packets arrive or 4246 * in-order packets close up the sequence space. 4247 */ 4248 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4249 { 4250 int this_sack; 4251 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4252 struct tcp_sack_block *swalk = sp + 1; 4253 4254 /* See if the recent change to the first SACK eats into 4255 * or hits the sequence space of other SACK blocks, if so coalesce. 4256 */ 4257 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4258 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4259 int i; 4260 4261 /* Zap SWALK, by moving every further SACK up by one slot. 4262 * Decrease num_sacks. 4263 */ 4264 tp->rx_opt.num_sacks--; 4265 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4266 sp[i] = sp[i + 1]; 4267 continue; 4268 } 4269 this_sack++, swalk++; 4270 } 4271 } 4272 4273 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4274 { 4275 struct tcp_sock *tp = tcp_sk(sk); 4276 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4277 int cur_sacks = tp->rx_opt.num_sacks; 4278 int this_sack; 4279 4280 if (!cur_sacks) 4281 goto new_sack; 4282 4283 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4284 if (tcp_sack_extend(sp, seq, end_seq)) { 4285 /* Rotate this_sack to the first one. */ 4286 for (; this_sack > 0; this_sack--, sp--) 4287 swap(*sp, *(sp - 1)); 4288 if (cur_sacks > 1) 4289 tcp_sack_maybe_coalesce(tp); 4290 return; 4291 } 4292 } 4293 4294 /* Could not find an adjacent existing SACK, build a new one, 4295 * put it at the front, and shift everyone else down. We 4296 * always know there is at least one SACK present already here. 4297 * 4298 * If the sack array is full, forget about the last one. 4299 */ 4300 if (this_sack >= TCP_NUM_SACKS) { 4301 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH) 4302 tcp_send_ack(sk); 4303 this_sack--; 4304 tp->rx_opt.num_sacks--; 4305 sp--; 4306 } 4307 for (; this_sack > 0; this_sack--, sp--) 4308 *sp = *(sp - 1); 4309 4310 new_sack: 4311 /* Build the new head SACK, and we're done. */ 4312 sp->start_seq = seq; 4313 sp->end_seq = end_seq; 4314 tp->rx_opt.num_sacks++; 4315 } 4316 4317 /* RCV.NXT advances, some SACKs should be eaten. */ 4318 4319 static void tcp_sack_remove(struct tcp_sock *tp) 4320 { 4321 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4322 int num_sacks = tp->rx_opt.num_sacks; 4323 int this_sack; 4324 4325 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4326 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4327 tp->rx_opt.num_sacks = 0; 4328 return; 4329 } 4330 4331 for (this_sack = 0; this_sack < num_sacks;) { 4332 /* Check if the start of the sack is covered by RCV.NXT. */ 4333 if (!before(tp->rcv_nxt, sp->start_seq)) { 4334 int i; 4335 4336 /* RCV.NXT must cover all the block! */ 4337 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4338 4339 /* Zap this SACK, by moving forward any other SACKS. */ 4340 for (i = this_sack+1; i < num_sacks; i++) 4341 tp->selective_acks[i-1] = tp->selective_acks[i]; 4342 num_sacks--; 4343 continue; 4344 } 4345 this_sack++; 4346 sp++; 4347 } 4348 tp->rx_opt.num_sacks = num_sacks; 4349 } 4350 4351 /** 4352 * tcp_try_coalesce - try to merge skb to prior one 4353 * @sk: socket 4354 * @dest: destination queue 4355 * @to: prior buffer 4356 * @from: buffer to add in queue 4357 * @fragstolen: pointer to boolean 4358 * 4359 * Before queueing skb @from after @to, try to merge them 4360 * to reduce overall memory use and queue lengths, if cost is small. 4361 * Packets in ofo or receive queues can stay a long time. 4362 * Better try to coalesce them right now to avoid future collapses. 4363 * Returns true if caller should free @from instead of queueing it 4364 */ 4365 static bool tcp_try_coalesce(struct sock *sk, 4366 struct sk_buff *to, 4367 struct sk_buff *from, 4368 bool *fragstolen) 4369 { 4370 int delta; 4371 4372 *fragstolen = false; 4373 4374 /* Its possible this segment overlaps with prior segment in queue */ 4375 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4376 return false; 4377 4378 #ifdef CONFIG_TLS_DEVICE 4379 if (from->decrypted != to->decrypted) 4380 return false; 4381 #endif 4382 4383 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4384 return false; 4385 4386 atomic_add(delta, &sk->sk_rmem_alloc); 4387 sk_mem_charge(sk, delta); 4388 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4389 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4390 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4391 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4392 4393 if (TCP_SKB_CB(from)->has_rxtstamp) { 4394 TCP_SKB_CB(to)->has_rxtstamp = true; 4395 to->tstamp = from->tstamp; 4396 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4397 } 4398 4399 return true; 4400 } 4401 4402 static bool tcp_ooo_try_coalesce(struct sock *sk, 4403 struct sk_buff *to, 4404 struct sk_buff *from, 4405 bool *fragstolen) 4406 { 4407 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4408 4409 /* In case tcp_drop() is called later, update to->gso_segs */ 4410 if (res) { 4411 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4412 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4413 4414 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4415 } 4416 return res; 4417 } 4418 4419 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4420 { 4421 sk_drops_add(sk, skb); 4422 __kfree_skb(skb); 4423 } 4424 4425 /* This one checks to see if we can put data from the 4426 * out_of_order queue into the receive_queue. 4427 */ 4428 static void tcp_ofo_queue(struct sock *sk) 4429 { 4430 struct tcp_sock *tp = tcp_sk(sk); 4431 __u32 dsack_high = tp->rcv_nxt; 4432 bool fin, fragstolen, eaten; 4433 struct sk_buff *skb, *tail; 4434 struct rb_node *p; 4435 4436 p = rb_first(&tp->out_of_order_queue); 4437 while (p) { 4438 skb = rb_to_skb(p); 4439 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4440 break; 4441 4442 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4443 __u32 dsack = dsack_high; 4444 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4445 dsack_high = TCP_SKB_CB(skb)->end_seq; 4446 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4447 } 4448 p = rb_next(p); 4449 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4450 4451 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4452 tcp_drop(sk, skb); 4453 continue; 4454 } 4455 4456 tail = skb_peek_tail(&sk->sk_receive_queue); 4457 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4458 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4459 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4460 if (!eaten) 4461 __skb_queue_tail(&sk->sk_receive_queue, skb); 4462 else 4463 kfree_skb_partial(skb, fragstolen); 4464 4465 if (unlikely(fin)) { 4466 tcp_fin(sk); 4467 /* tcp_fin() purges tp->out_of_order_queue, 4468 * so we must end this loop right now. 4469 */ 4470 break; 4471 } 4472 } 4473 } 4474 4475 static bool tcp_prune_ofo_queue(struct sock *sk); 4476 static int tcp_prune_queue(struct sock *sk); 4477 4478 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4479 unsigned int size) 4480 { 4481 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4482 !sk_rmem_schedule(sk, skb, size)) { 4483 4484 if (tcp_prune_queue(sk) < 0) 4485 return -1; 4486 4487 while (!sk_rmem_schedule(sk, skb, size)) { 4488 if (!tcp_prune_ofo_queue(sk)) 4489 return -1; 4490 } 4491 } 4492 return 0; 4493 } 4494 4495 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4496 { 4497 struct tcp_sock *tp = tcp_sk(sk); 4498 struct rb_node **p, *parent; 4499 struct sk_buff *skb1; 4500 u32 seq, end_seq; 4501 bool fragstolen; 4502 4503 tcp_ecn_check_ce(sk, skb); 4504 4505 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4506 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4507 tcp_drop(sk, skb); 4508 return; 4509 } 4510 4511 /* Disable header prediction. */ 4512 tp->pred_flags = 0; 4513 inet_csk_schedule_ack(sk); 4514 4515 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4516 seq = TCP_SKB_CB(skb)->seq; 4517 end_seq = TCP_SKB_CB(skb)->end_seq; 4518 4519 p = &tp->out_of_order_queue.rb_node; 4520 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4521 /* Initial out of order segment, build 1 SACK. */ 4522 if (tcp_is_sack(tp)) { 4523 tp->rx_opt.num_sacks = 1; 4524 tp->selective_acks[0].start_seq = seq; 4525 tp->selective_acks[0].end_seq = end_seq; 4526 } 4527 rb_link_node(&skb->rbnode, NULL, p); 4528 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4529 tp->ooo_last_skb = skb; 4530 goto end; 4531 } 4532 4533 /* In the typical case, we are adding an skb to the end of the list. 4534 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4535 */ 4536 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4537 skb, &fragstolen)) { 4538 coalesce_done: 4539 tcp_grow_window(sk, skb); 4540 kfree_skb_partial(skb, fragstolen); 4541 skb = NULL; 4542 goto add_sack; 4543 } 4544 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4545 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4546 parent = &tp->ooo_last_skb->rbnode; 4547 p = &parent->rb_right; 4548 goto insert; 4549 } 4550 4551 /* Find place to insert this segment. Handle overlaps on the way. */ 4552 parent = NULL; 4553 while (*p) { 4554 parent = *p; 4555 skb1 = rb_to_skb(parent); 4556 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4557 p = &parent->rb_left; 4558 continue; 4559 } 4560 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4561 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4562 /* All the bits are present. Drop. */ 4563 NET_INC_STATS(sock_net(sk), 4564 LINUX_MIB_TCPOFOMERGE); 4565 tcp_drop(sk, skb); 4566 skb = NULL; 4567 tcp_dsack_set(sk, seq, end_seq); 4568 goto add_sack; 4569 } 4570 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4571 /* Partial overlap. */ 4572 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4573 } else { 4574 /* skb's seq == skb1's seq and skb covers skb1. 4575 * Replace skb1 with skb. 4576 */ 4577 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4578 &tp->out_of_order_queue); 4579 tcp_dsack_extend(sk, 4580 TCP_SKB_CB(skb1)->seq, 4581 TCP_SKB_CB(skb1)->end_seq); 4582 NET_INC_STATS(sock_net(sk), 4583 LINUX_MIB_TCPOFOMERGE); 4584 tcp_drop(sk, skb1); 4585 goto merge_right; 4586 } 4587 } else if (tcp_ooo_try_coalesce(sk, skb1, 4588 skb, &fragstolen)) { 4589 goto coalesce_done; 4590 } 4591 p = &parent->rb_right; 4592 } 4593 insert: 4594 /* Insert segment into RB tree. */ 4595 rb_link_node(&skb->rbnode, parent, p); 4596 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4597 4598 merge_right: 4599 /* Remove other segments covered by skb. */ 4600 while ((skb1 = skb_rb_next(skb)) != NULL) { 4601 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4602 break; 4603 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4604 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4605 end_seq); 4606 break; 4607 } 4608 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4609 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4610 TCP_SKB_CB(skb1)->end_seq); 4611 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4612 tcp_drop(sk, skb1); 4613 } 4614 /* If there is no skb after us, we are the last_skb ! */ 4615 if (!skb1) 4616 tp->ooo_last_skb = skb; 4617 4618 add_sack: 4619 if (tcp_is_sack(tp)) 4620 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4621 end: 4622 if (skb) { 4623 tcp_grow_window(sk, skb); 4624 skb_condense(skb); 4625 skb_set_owner_r(skb, sk); 4626 } 4627 } 4628 4629 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4630 bool *fragstolen) 4631 { 4632 int eaten; 4633 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4634 4635 eaten = (tail && 4636 tcp_try_coalesce(sk, tail, 4637 skb, fragstolen)) ? 1 : 0; 4638 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4639 if (!eaten) { 4640 __skb_queue_tail(&sk->sk_receive_queue, skb); 4641 skb_set_owner_r(skb, sk); 4642 } 4643 return eaten; 4644 } 4645 4646 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4647 { 4648 struct sk_buff *skb; 4649 int err = -ENOMEM; 4650 int data_len = 0; 4651 bool fragstolen; 4652 4653 if (size == 0) 4654 return 0; 4655 4656 if (size > PAGE_SIZE) { 4657 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4658 4659 data_len = npages << PAGE_SHIFT; 4660 size = data_len + (size & ~PAGE_MASK); 4661 } 4662 skb = alloc_skb_with_frags(size - data_len, data_len, 4663 PAGE_ALLOC_COSTLY_ORDER, 4664 &err, sk->sk_allocation); 4665 if (!skb) 4666 goto err; 4667 4668 skb_put(skb, size - data_len); 4669 skb->data_len = data_len; 4670 skb->len = size; 4671 4672 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4673 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4674 goto err_free; 4675 } 4676 4677 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4678 if (err) 4679 goto err_free; 4680 4681 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4682 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4683 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4684 4685 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4686 WARN_ON_ONCE(fragstolen); /* should not happen */ 4687 __kfree_skb(skb); 4688 } 4689 return size; 4690 4691 err_free: 4692 kfree_skb(skb); 4693 err: 4694 return err; 4695 4696 } 4697 4698 void tcp_data_ready(struct sock *sk) 4699 { 4700 const struct tcp_sock *tp = tcp_sk(sk); 4701 int avail = tp->rcv_nxt - tp->copied_seq; 4702 4703 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4704 return; 4705 4706 sk->sk_data_ready(sk); 4707 } 4708 4709 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4710 { 4711 struct tcp_sock *tp = tcp_sk(sk); 4712 bool fragstolen; 4713 int eaten; 4714 4715 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4716 __kfree_skb(skb); 4717 return; 4718 } 4719 skb_dst_drop(skb); 4720 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4721 4722 tcp_ecn_accept_cwr(sk, skb); 4723 4724 tp->rx_opt.dsack = 0; 4725 4726 /* Queue data for delivery to the user. 4727 * Packets in sequence go to the receive queue. 4728 * Out of sequence packets to the out_of_order_queue. 4729 */ 4730 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4731 if (tcp_receive_window(tp) == 0) { 4732 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4733 goto out_of_window; 4734 } 4735 4736 /* Ok. In sequence. In window. */ 4737 queue_and_out: 4738 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4739 sk_forced_mem_schedule(sk, skb->truesize); 4740 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4741 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4742 goto drop; 4743 } 4744 4745 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 4746 if (skb->len) 4747 tcp_event_data_recv(sk, skb); 4748 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4749 tcp_fin(sk); 4750 4751 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4752 tcp_ofo_queue(sk); 4753 4754 /* RFC5681. 4.2. SHOULD send immediate ACK, when 4755 * gap in queue is filled. 4756 */ 4757 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4758 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 4759 } 4760 4761 if (tp->rx_opt.num_sacks) 4762 tcp_sack_remove(tp); 4763 4764 tcp_fast_path_check(sk); 4765 4766 if (eaten > 0) 4767 kfree_skb_partial(skb, fragstolen); 4768 if (!sock_flag(sk, SOCK_DEAD)) 4769 tcp_data_ready(sk); 4770 return; 4771 } 4772 4773 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4774 tcp_rcv_spurious_retrans(sk, skb); 4775 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4776 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4777 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4778 4779 out_of_window: 4780 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4781 inet_csk_schedule_ack(sk); 4782 drop: 4783 tcp_drop(sk, skb); 4784 return; 4785 } 4786 4787 /* Out of window. F.e. zero window probe. */ 4788 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4789 goto out_of_window; 4790 4791 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4792 /* Partial packet, seq < rcv_next < end_seq */ 4793 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4794 4795 /* If window is closed, drop tail of packet. But after 4796 * remembering D-SACK for its head made in previous line. 4797 */ 4798 if (!tcp_receive_window(tp)) { 4799 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4800 goto out_of_window; 4801 } 4802 goto queue_and_out; 4803 } 4804 4805 tcp_data_queue_ofo(sk, skb); 4806 } 4807 4808 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4809 { 4810 if (list) 4811 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4812 4813 return skb_rb_next(skb); 4814 } 4815 4816 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4817 struct sk_buff_head *list, 4818 struct rb_root *root) 4819 { 4820 struct sk_buff *next = tcp_skb_next(skb, list); 4821 4822 if (list) 4823 __skb_unlink(skb, list); 4824 else 4825 rb_erase(&skb->rbnode, root); 4826 4827 __kfree_skb(skb); 4828 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4829 4830 return next; 4831 } 4832 4833 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4834 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4835 { 4836 struct rb_node **p = &root->rb_node; 4837 struct rb_node *parent = NULL; 4838 struct sk_buff *skb1; 4839 4840 while (*p) { 4841 parent = *p; 4842 skb1 = rb_to_skb(parent); 4843 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4844 p = &parent->rb_left; 4845 else 4846 p = &parent->rb_right; 4847 } 4848 rb_link_node(&skb->rbnode, parent, p); 4849 rb_insert_color(&skb->rbnode, root); 4850 } 4851 4852 /* Collapse contiguous sequence of skbs head..tail with 4853 * sequence numbers start..end. 4854 * 4855 * If tail is NULL, this means until the end of the queue. 4856 * 4857 * Segments with FIN/SYN are not collapsed (only because this 4858 * simplifies code) 4859 */ 4860 static void 4861 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4862 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4863 { 4864 struct sk_buff *skb = head, *n; 4865 struct sk_buff_head tmp; 4866 bool end_of_skbs; 4867 4868 /* First, check that queue is collapsible and find 4869 * the point where collapsing can be useful. 4870 */ 4871 restart: 4872 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4873 n = tcp_skb_next(skb, list); 4874 4875 /* No new bits? It is possible on ofo queue. */ 4876 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4877 skb = tcp_collapse_one(sk, skb, list, root); 4878 if (!skb) 4879 break; 4880 goto restart; 4881 } 4882 4883 /* The first skb to collapse is: 4884 * - not SYN/FIN and 4885 * - bloated or contains data before "start" or 4886 * overlaps to the next one. 4887 */ 4888 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4889 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4890 before(TCP_SKB_CB(skb)->seq, start))) { 4891 end_of_skbs = false; 4892 break; 4893 } 4894 4895 if (n && n != tail && 4896 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4897 end_of_skbs = false; 4898 break; 4899 } 4900 4901 /* Decided to skip this, advance start seq. */ 4902 start = TCP_SKB_CB(skb)->end_seq; 4903 } 4904 if (end_of_skbs || 4905 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4906 return; 4907 4908 __skb_queue_head_init(&tmp); 4909 4910 while (before(start, end)) { 4911 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4912 struct sk_buff *nskb; 4913 4914 nskb = alloc_skb(copy, GFP_ATOMIC); 4915 if (!nskb) 4916 break; 4917 4918 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4919 #ifdef CONFIG_TLS_DEVICE 4920 nskb->decrypted = skb->decrypted; 4921 #endif 4922 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4923 if (list) 4924 __skb_queue_before(list, skb, nskb); 4925 else 4926 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4927 skb_set_owner_r(nskb, sk); 4928 4929 /* Copy data, releasing collapsed skbs. */ 4930 while (copy > 0) { 4931 int offset = start - TCP_SKB_CB(skb)->seq; 4932 int size = TCP_SKB_CB(skb)->end_seq - start; 4933 4934 BUG_ON(offset < 0); 4935 if (size > 0) { 4936 size = min(copy, size); 4937 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4938 BUG(); 4939 TCP_SKB_CB(nskb)->end_seq += size; 4940 copy -= size; 4941 start += size; 4942 } 4943 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4944 skb = tcp_collapse_one(sk, skb, list, root); 4945 if (!skb || 4946 skb == tail || 4947 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4948 goto end; 4949 #ifdef CONFIG_TLS_DEVICE 4950 if (skb->decrypted != nskb->decrypted) 4951 goto end; 4952 #endif 4953 } 4954 } 4955 } 4956 end: 4957 skb_queue_walk_safe(&tmp, skb, n) 4958 tcp_rbtree_insert(root, skb); 4959 } 4960 4961 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4962 * and tcp_collapse() them until all the queue is collapsed. 4963 */ 4964 static void tcp_collapse_ofo_queue(struct sock *sk) 4965 { 4966 struct tcp_sock *tp = tcp_sk(sk); 4967 u32 range_truesize, sum_tiny = 0; 4968 struct sk_buff *skb, *head; 4969 u32 start, end; 4970 4971 skb = skb_rb_first(&tp->out_of_order_queue); 4972 new_range: 4973 if (!skb) { 4974 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4975 return; 4976 } 4977 start = TCP_SKB_CB(skb)->seq; 4978 end = TCP_SKB_CB(skb)->end_seq; 4979 range_truesize = skb->truesize; 4980 4981 for (head = skb;;) { 4982 skb = skb_rb_next(skb); 4983 4984 /* Range is terminated when we see a gap or when 4985 * we are at the queue end. 4986 */ 4987 if (!skb || 4988 after(TCP_SKB_CB(skb)->seq, end) || 4989 before(TCP_SKB_CB(skb)->end_seq, start)) { 4990 /* Do not attempt collapsing tiny skbs */ 4991 if (range_truesize != head->truesize || 4992 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 4993 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4994 head, skb, start, end); 4995 } else { 4996 sum_tiny += range_truesize; 4997 if (sum_tiny > sk->sk_rcvbuf >> 3) 4998 return; 4999 } 5000 goto new_range; 5001 } 5002 5003 range_truesize += skb->truesize; 5004 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5005 start = TCP_SKB_CB(skb)->seq; 5006 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5007 end = TCP_SKB_CB(skb)->end_seq; 5008 } 5009 } 5010 5011 /* 5012 * Clean the out-of-order queue to make room. 5013 * We drop high sequences packets to : 5014 * 1) Let a chance for holes to be filled. 5015 * 2) not add too big latencies if thousands of packets sit there. 5016 * (But if application shrinks SO_RCVBUF, we could still end up 5017 * freeing whole queue here) 5018 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5019 * 5020 * Return true if queue has shrunk. 5021 */ 5022 static bool tcp_prune_ofo_queue(struct sock *sk) 5023 { 5024 struct tcp_sock *tp = tcp_sk(sk); 5025 struct rb_node *node, *prev; 5026 int goal; 5027 5028 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5029 return false; 5030 5031 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5032 goal = sk->sk_rcvbuf >> 3; 5033 node = &tp->ooo_last_skb->rbnode; 5034 do { 5035 prev = rb_prev(node); 5036 rb_erase(node, &tp->out_of_order_queue); 5037 goal -= rb_to_skb(node)->truesize; 5038 tcp_drop(sk, rb_to_skb(node)); 5039 if (!prev || goal <= 0) { 5040 sk_mem_reclaim(sk); 5041 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5042 !tcp_under_memory_pressure(sk)) 5043 break; 5044 goal = sk->sk_rcvbuf >> 3; 5045 } 5046 node = prev; 5047 } while (node); 5048 tp->ooo_last_skb = rb_to_skb(prev); 5049 5050 /* Reset SACK state. A conforming SACK implementation will 5051 * do the same at a timeout based retransmit. When a connection 5052 * is in a sad state like this, we care only about integrity 5053 * of the connection not performance. 5054 */ 5055 if (tp->rx_opt.sack_ok) 5056 tcp_sack_reset(&tp->rx_opt); 5057 return true; 5058 } 5059 5060 /* Reduce allocated memory if we can, trying to get 5061 * the socket within its memory limits again. 5062 * 5063 * Return less than zero if we should start dropping frames 5064 * until the socket owning process reads some of the data 5065 * to stabilize the situation. 5066 */ 5067 static int tcp_prune_queue(struct sock *sk) 5068 { 5069 struct tcp_sock *tp = tcp_sk(sk); 5070 5071 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5072 5073 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5074 tcp_clamp_window(sk); 5075 else if (tcp_under_memory_pressure(sk)) 5076 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5077 5078 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5079 return 0; 5080 5081 tcp_collapse_ofo_queue(sk); 5082 if (!skb_queue_empty(&sk->sk_receive_queue)) 5083 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5084 skb_peek(&sk->sk_receive_queue), 5085 NULL, 5086 tp->copied_seq, tp->rcv_nxt); 5087 sk_mem_reclaim(sk); 5088 5089 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5090 return 0; 5091 5092 /* Collapsing did not help, destructive actions follow. 5093 * This must not ever occur. */ 5094 5095 tcp_prune_ofo_queue(sk); 5096 5097 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5098 return 0; 5099 5100 /* If we are really being abused, tell the caller to silently 5101 * drop receive data on the floor. It will get retransmitted 5102 * and hopefully then we'll have sufficient space. 5103 */ 5104 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5105 5106 /* Massive buffer overcommit. */ 5107 tp->pred_flags = 0; 5108 return -1; 5109 } 5110 5111 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5112 { 5113 const struct tcp_sock *tp = tcp_sk(sk); 5114 5115 /* If the user specified a specific send buffer setting, do 5116 * not modify it. 5117 */ 5118 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5119 return false; 5120 5121 /* If we are under global TCP memory pressure, do not expand. */ 5122 if (tcp_under_memory_pressure(sk)) 5123 return false; 5124 5125 /* If we are under soft global TCP memory pressure, do not expand. */ 5126 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5127 return false; 5128 5129 /* If we filled the congestion window, do not expand. */ 5130 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5131 return false; 5132 5133 return true; 5134 } 5135 5136 /* When incoming ACK allowed to free some skb from write_queue, 5137 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5138 * on the exit from tcp input handler. 5139 * 5140 * PROBLEM: sndbuf expansion does not work well with largesend. 5141 */ 5142 static void tcp_new_space(struct sock *sk) 5143 { 5144 struct tcp_sock *tp = tcp_sk(sk); 5145 5146 if (tcp_should_expand_sndbuf(sk)) { 5147 tcp_sndbuf_expand(sk); 5148 tp->snd_cwnd_stamp = tcp_jiffies32; 5149 } 5150 5151 sk->sk_write_space(sk); 5152 } 5153 5154 static void tcp_check_space(struct sock *sk) 5155 { 5156 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5157 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5158 /* pairs with tcp_poll() */ 5159 smp_mb(); 5160 if (sk->sk_socket && 5161 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5162 tcp_new_space(sk); 5163 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5164 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5165 } 5166 } 5167 } 5168 5169 static inline void tcp_data_snd_check(struct sock *sk) 5170 { 5171 tcp_push_pending_frames(sk); 5172 tcp_check_space(sk); 5173 } 5174 5175 /* 5176 * Check if sending an ack is needed. 5177 */ 5178 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5179 { 5180 struct tcp_sock *tp = tcp_sk(sk); 5181 unsigned long rtt, delay; 5182 5183 /* More than one full frame received... */ 5184 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5185 /* ... and right edge of window advances far enough. 5186 * (tcp_recvmsg() will send ACK otherwise). 5187 * If application uses SO_RCVLOWAT, we want send ack now if 5188 * we have not received enough bytes to satisfy the condition. 5189 */ 5190 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5191 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5192 /* We ACK each frame or... */ 5193 tcp_in_quickack_mode(sk) || 5194 /* Protocol state mandates a one-time immediate ACK */ 5195 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5196 send_now: 5197 tcp_send_ack(sk); 5198 return; 5199 } 5200 5201 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5202 tcp_send_delayed_ack(sk); 5203 return; 5204 } 5205 5206 if (!tcp_is_sack(tp) || 5207 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5208 goto send_now; 5209 5210 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5211 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5212 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH) 5213 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 5214 tp->compressed_ack - TCP_FASTRETRANS_THRESH); 5215 tp->compressed_ack = 0; 5216 } 5217 5218 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH) 5219 goto send_now; 5220 5221 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5222 return; 5223 5224 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5225 5226 rtt = tp->rcv_rtt_est.rtt_us; 5227 if (tp->srtt_us && tp->srtt_us < rtt) 5228 rtt = tp->srtt_us; 5229 5230 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5231 rtt * (NSEC_PER_USEC >> 3)/20); 5232 sock_hold(sk); 5233 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5234 HRTIMER_MODE_REL_PINNED_SOFT); 5235 } 5236 5237 static inline void tcp_ack_snd_check(struct sock *sk) 5238 { 5239 if (!inet_csk_ack_scheduled(sk)) { 5240 /* We sent a data segment already. */ 5241 return; 5242 } 5243 __tcp_ack_snd_check(sk, 1); 5244 } 5245 5246 /* 5247 * This routine is only called when we have urgent data 5248 * signaled. Its the 'slow' part of tcp_urg. It could be 5249 * moved inline now as tcp_urg is only called from one 5250 * place. We handle URGent data wrong. We have to - as 5251 * BSD still doesn't use the correction from RFC961. 5252 * For 1003.1g we should support a new option TCP_STDURG to permit 5253 * either form (or just set the sysctl tcp_stdurg). 5254 */ 5255 5256 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5257 { 5258 struct tcp_sock *tp = tcp_sk(sk); 5259 u32 ptr = ntohs(th->urg_ptr); 5260 5261 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5262 ptr--; 5263 ptr += ntohl(th->seq); 5264 5265 /* Ignore urgent data that we've already seen and read. */ 5266 if (after(tp->copied_seq, ptr)) 5267 return; 5268 5269 /* Do not replay urg ptr. 5270 * 5271 * NOTE: interesting situation not covered by specs. 5272 * Misbehaving sender may send urg ptr, pointing to segment, 5273 * which we already have in ofo queue. We are not able to fetch 5274 * such data and will stay in TCP_URG_NOTYET until will be eaten 5275 * by recvmsg(). Seems, we are not obliged to handle such wicked 5276 * situations. But it is worth to think about possibility of some 5277 * DoSes using some hypothetical application level deadlock. 5278 */ 5279 if (before(ptr, tp->rcv_nxt)) 5280 return; 5281 5282 /* Do we already have a newer (or duplicate) urgent pointer? */ 5283 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5284 return; 5285 5286 /* Tell the world about our new urgent pointer. */ 5287 sk_send_sigurg(sk); 5288 5289 /* We may be adding urgent data when the last byte read was 5290 * urgent. To do this requires some care. We cannot just ignore 5291 * tp->copied_seq since we would read the last urgent byte again 5292 * as data, nor can we alter copied_seq until this data arrives 5293 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5294 * 5295 * NOTE. Double Dutch. Rendering to plain English: author of comment 5296 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5297 * and expect that both A and B disappear from stream. This is _wrong_. 5298 * Though this happens in BSD with high probability, this is occasional. 5299 * Any application relying on this is buggy. Note also, that fix "works" 5300 * only in this artificial test. Insert some normal data between A and B and we will 5301 * decline of BSD again. Verdict: it is better to remove to trap 5302 * buggy users. 5303 */ 5304 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5305 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5306 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5307 tp->copied_seq++; 5308 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5309 __skb_unlink(skb, &sk->sk_receive_queue); 5310 __kfree_skb(skb); 5311 } 5312 } 5313 5314 tp->urg_data = TCP_URG_NOTYET; 5315 tp->urg_seq = ptr; 5316 5317 /* Disable header prediction. */ 5318 tp->pred_flags = 0; 5319 } 5320 5321 /* This is the 'fast' part of urgent handling. */ 5322 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5323 { 5324 struct tcp_sock *tp = tcp_sk(sk); 5325 5326 /* Check if we get a new urgent pointer - normally not. */ 5327 if (th->urg) 5328 tcp_check_urg(sk, th); 5329 5330 /* Do we wait for any urgent data? - normally not... */ 5331 if (tp->urg_data == TCP_URG_NOTYET) { 5332 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5333 th->syn; 5334 5335 /* Is the urgent pointer pointing into this packet? */ 5336 if (ptr < skb->len) { 5337 u8 tmp; 5338 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5339 BUG(); 5340 tp->urg_data = TCP_URG_VALID | tmp; 5341 if (!sock_flag(sk, SOCK_DEAD)) 5342 sk->sk_data_ready(sk); 5343 } 5344 } 5345 } 5346 5347 /* Accept RST for rcv_nxt - 1 after a FIN. 5348 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5349 * FIN is sent followed by a RST packet. The RST is sent with the same 5350 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5351 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5352 * ACKs on the closed socket. In addition middleboxes can drop either the 5353 * challenge ACK or a subsequent RST. 5354 */ 5355 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5356 { 5357 struct tcp_sock *tp = tcp_sk(sk); 5358 5359 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5360 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5361 TCPF_CLOSING)); 5362 } 5363 5364 /* Does PAWS and seqno based validation of an incoming segment, flags will 5365 * play significant role here. 5366 */ 5367 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5368 const struct tcphdr *th, int syn_inerr) 5369 { 5370 struct tcp_sock *tp = tcp_sk(sk); 5371 bool rst_seq_match = false; 5372 5373 /* RFC1323: H1. Apply PAWS check first. */ 5374 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5375 tp->rx_opt.saw_tstamp && 5376 tcp_paws_discard(sk, skb)) { 5377 if (!th->rst) { 5378 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5379 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5380 LINUX_MIB_TCPACKSKIPPEDPAWS, 5381 &tp->last_oow_ack_time)) 5382 tcp_send_dupack(sk, skb); 5383 goto discard; 5384 } 5385 /* Reset is accepted even if it did not pass PAWS. */ 5386 } 5387 5388 /* Step 1: check sequence number */ 5389 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5390 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5391 * (RST) segments are validated by checking their SEQ-fields." 5392 * And page 69: "If an incoming segment is not acceptable, 5393 * an acknowledgment should be sent in reply (unless the RST 5394 * bit is set, if so drop the segment and return)". 5395 */ 5396 if (!th->rst) { 5397 if (th->syn) 5398 goto syn_challenge; 5399 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5400 LINUX_MIB_TCPACKSKIPPEDSEQ, 5401 &tp->last_oow_ack_time)) 5402 tcp_send_dupack(sk, skb); 5403 } else if (tcp_reset_check(sk, skb)) { 5404 tcp_reset(sk); 5405 } 5406 goto discard; 5407 } 5408 5409 /* Step 2: check RST bit */ 5410 if (th->rst) { 5411 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5412 * FIN and SACK too if available): 5413 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5414 * the right-most SACK block, 5415 * then 5416 * RESET the connection 5417 * else 5418 * Send a challenge ACK 5419 */ 5420 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5421 tcp_reset_check(sk, skb)) { 5422 rst_seq_match = true; 5423 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5424 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5425 int max_sack = sp[0].end_seq; 5426 int this_sack; 5427 5428 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5429 ++this_sack) { 5430 max_sack = after(sp[this_sack].end_seq, 5431 max_sack) ? 5432 sp[this_sack].end_seq : max_sack; 5433 } 5434 5435 if (TCP_SKB_CB(skb)->seq == max_sack) 5436 rst_seq_match = true; 5437 } 5438 5439 if (rst_seq_match) 5440 tcp_reset(sk); 5441 else { 5442 /* Disable TFO if RST is out-of-order 5443 * and no data has been received 5444 * for current active TFO socket 5445 */ 5446 if (tp->syn_fastopen && !tp->data_segs_in && 5447 sk->sk_state == TCP_ESTABLISHED) 5448 tcp_fastopen_active_disable(sk); 5449 tcp_send_challenge_ack(sk, skb); 5450 } 5451 goto discard; 5452 } 5453 5454 /* step 3: check security and precedence [ignored] */ 5455 5456 /* step 4: Check for a SYN 5457 * RFC 5961 4.2 : Send a challenge ack 5458 */ 5459 if (th->syn) { 5460 syn_challenge: 5461 if (syn_inerr) 5462 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5463 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5464 tcp_send_challenge_ack(sk, skb); 5465 goto discard; 5466 } 5467 5468 return true; 5469 5470 discard: 5471 tcp_drop(sk, skb); 5472 return false; 5473 } 5474 5475 /* 5476 * TCP receive function for the ESTABLISHED state. 5477 * 5478 * It is split into a fast path and a slow path. The fast path is 5479 * disabled when: 5480 * - A zero window was announced from us - zero window probing 5481 * is only handled properly in the slow path. 5482 * - Out of order segments arrived. 5483 * - Urgent data is expected. 5484 * - There is no buffer space left 5485 * - Unexpected TCP flags/window values/header lengths are received 5486 * (detected by checking the TCP header against pred_flags) 5487 * - Data is sent in both directions. Fast path only supports pure senders 5488 * or pure receivers (this means either the sequence number or the ack 5489 * value must stay constant) 5490 * - Unexpected TCP option. 5491 * 5492 * When these conditions are not satisfied it drops into a standard 5493 * receive procedure patterned after RFC793 to handle all cases. 5494 * The first three cases are guaranteed by proper pred_flags setting, 5495 * the rest is checked inline. Fast processing is turned on in 5496 * tcp_data_queue when everything is OK. 5497 */ 5498 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5499 { 5500 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5501 struct tcp_sock *tp = tcp_sk(sk); 5502 unsigned int len = skb->len; 5503 5504 /* TCP congestion window tracking */ 5505 trace_tcp_probe(sk, skb); 5506 5507 tcp_mstamp_refresh(tp); 5508 if (unlikely(!sk->sk_rx_dst)) 5509 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5510 /* 5511 * Header prediction. 5512 * The code loosely follows the one in the famous 5513 * "30 instruction TCP receive" Van Jacobson mail. 5514 * 5515 * Van's trick is to deposit buffers into socket queue 5516 * on a device interrupt, to call tcp_recv function 5517 * on the receive process context and checksum and copy 5518 * the buffer to user space. smart... 5519 * 5520 * Our current scheme is not silly either but we take the 5521 * extra cost of the net_bh soft interrupt processing... 5522 * We do checksum and copy also but from device to kernel. 5523 */ 5524 5525 tp->rx_opt.saw_tstamp = 0; 5526 5527 /* pred_flags is 0xS?10 << 16 + snd_wnd 5528 * if header_prediction is to be made 5529 * 'S' will always be tp->tcp_header_len >> 2 5530 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5531 * turn it off (when there are holes in the receive 5532 * space for instance) 5533 * PSH flag is ignored. 5534 */ 5535 5536 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5537 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5538 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5539 int tcp_header_len = tp->tcp_header_len; 5540 5541 /* Timestamp header prediction: tcp_header_len 5542 * is automatically equal to th->doff*4 due to pred_flags 5543 * match. 5544 */ 5545 5546 /* Check timestamp */ 5547 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5548 /* No? Slow path! */ 5549 if (!tcp_parse_aligned_timestamp(tp, th)) 5550 goto slow_path; 5551 5552 /* If PAWS failed, check it more carefully in slow path */ 5553 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5554 goto slow_path; 5555 5556 /* DO NOT update ts_recent here, if checksum fails 5557 * and timestamp was corrupted part, it will result 5558 * in a hung connection since we will drop all 5559 * future packets due to the PAWS test. 5560 */ 5561 } 5562 5563 if (len <= tcp_header_len) { 5564 /* Bulk data transfer: sender */ 5565 if (len == tcp_header_len) { 5566 /* Predicted packet is in window by definition. 5567 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5568 * Hence, check seq<=rcv_wup reduces to: 5569 */ 5570 if (tcp_header_len == 5571 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5572 tp->rcv_nxt == tp->rcv_wup) 5573 tcp_store_ts_recent(tp); 5574 5575 /* We know that such packets are checksummed 5576 * on entry. 5577 */ 5578 tcp_ack(sk, skb, 0); 5579 __kfree_skb(skb); 5580 tcp_data_snd_check(sk); 5581 /* When receiving pure ack in fast path, update 5582 * last ts ecr directly instead of calling 5583 * tcp_rcv_rtt_measure_ts() 5584 */ 5585 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5586 return; 5587 } else { /* Header too small */ 5588 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5589 goto discard; 5590 } 5591 } else { 5592 int eaten = 0; 5593 bool fragstolen = false; 5594 5595 if (tcp_checksum_complete(skb)) 5596 goto csum_error; 5597 5598 if ((int)skb->truesize > sk->sk_forward_alloc) 5599 goto step5; 5600 5601 /* Predicted packet is in window by definition. 5602 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5603 * Hence, check seq<=rcv_wup reduces to: 5604 */ 5605 if (tcp_header_len == 5606 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5607 tp->rcv_nxt == tp->rcv_wup) 5608 tcp_store_ts_recent(tp); 5609 5610 tcp_rcv_rtt_measure_ts(sk, skb); 5611 5612 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5613 5614 /* Bulk data transfer: receiver */ 5615 __skb_pull(skb, tcp_header_len); 5616 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5617 5618 tcp_event_data_recv(sk, skb); 5619 5620 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5621 /* Well, only one small jumplet in fast path... */ 5622 tcp_ack(sk, skb, FLAG_DATA); 5623 tcp_data_snd_check(sk); 5624 if (!inet_csk_ack_scheduled(sk)) 5625 goto no_ack; 5626 } 5627 5628 __tcp_ack_snd_check(sk, 0); 5629 no_ack: 5630 if (eaten) 5631 kfree_skb_partial(skb, fragstolen); 5632 tcp_data_ready(sk); 5633 return; 5634 } 5635 } 5636 5637 slow_path: 5638 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5639 goto csum_error; 5640 5641 if (!th->ack && !th->rst && !th->syn) 5642 goto discard; 5643 5644 /* 5645 * Standard slow path. 5646 */ 5647 5648 if (!tcp_validate_incoming(sk, skb, th, 1)) 5649 return; 5650 5651 step5: 5652 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5653 goto discard; 5654 5655 tcp_rcv_rtt_measure_ts(sk, skb); 5656 5657 /* Process urgent data. */ 5658 tcp_urg(sk, skb, th); 5659 5660 /* step 7: process the segment text */ 5661 tcp_data_queue(sk, skb); 5662 5663 tcp_data_snd_check(sk); 5664 tcp_ack_snd_check(sk); 5665 return; 5666 5667 csum_error: 5668 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5669 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5670 5671 discard: 5672 tcp_drop(sk, skb); 5673 } 5674 EXPORT_SYMBOL(tcp_rcv_established); 5675 5676 void tcp_init_transfer(struct sock *sk, int bpf_op) 5677 { 5678 struct inet_connection_sock *icsk = inet_csk(sk); 5679 struct tcp_sock *tp = tcp_sk(sk); 5680 5681 tcp_mtup_init(sk); 5682 icsk->icsk_af_ops->rebuild_header(sk); 5683 tcp_init_metrics(sk); 5684 5685 /* Initialize the congestion window to start the transfer. 5686 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5687 * retransmitted. In light of RFC6298 more aggressive 1sec 5688 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5689 * retransmission has occurred. 5690 */ 5691 if (tp->total_retrans > 1 && tp->undo_marker) 5692 tp->snd_cwnd = 1; 5693 else 5694 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5695 tp->snd_cwnd_stamp = tcp_jiffies32; 5696 5697 tcp_call_bpf(sk, bpf_op, 0, NULL); 5698 tcp_init_congestion_control(sk); 5699 tcp_init_buffer_space(sk); 5700 } 5701 5702 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5703 { 5704 struct tcp_sock *tp = tcp_sk(sk); 5705 struct inet_connection_sock *icsk = inet_csk(sk); 5706 5707 tcp_set_state(sk, TCP_ESTABLISHED); 5708 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5709 5710 if (skb) { 5711 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5712 security_inet_conn_established(sk, skb); 5713 sk_mark_napi_id(sk, skb); 5714 } 5715 5716 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5717 5718 /* Prevent spurious tcp_cwnd_restart() on first data 5719 * packet. 5720 */ 5721 tp->lsndtime = tcp_jiffies32; 5722 5723 if (sock_flag(sk, SOCK_KEEPOPEN)) 5724 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5725 5726 if (!tp->rx_opt.snd_wscale) 5727 __tcp_fast_path_on(tp, tp->snd_wnd); 5728 else 5729 tp->pred_flags = 0; 5730 } 5731 5732 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5733 struct tcp_fastopen_cookie *cookie) 5734 { 5735 struct tcp_sock *tp = tcp_sk(sk); 5736 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5737 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5738 bool syn_drop = false; 5739 5740 if (mss == tp->rx_opt.user_mss) { 5741 struct tcp_options_received opt; 5742 5743 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5744 tcp_clear_options(&opt); 5745 opt.user_mss = opt.mss_clamp = 0; 5746 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5747 mss = opt.mss_clamp; 5748 } 5749 5750 if (!tp->syn_fastopen) { 5751 /* Ignore an unsolicited cookie */ 5752 cookie->len = -1; 5753 } else if (tp->total_retrans) { 5754 /* SYN timed out and the SYN-ACK neither has a cookie nor 5755 * acknowledges data. Presumably the remote received only 5756 * the retransmitted (regular) SYNs: either the original 5757 * SYN-data or the corresponding SYN-ACK was dropped. 5758 */ 5759 syn_drop = (cookie->len < 0 && data); 5760 } else if (cookie->len < 0 && !tp->syn_data) { 5761 /* We requested a cookie but didn't get it. If we did not use 5762 * the (old) exp opt format then try so next time (try_exp=1). 5763 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5764 */ 5765 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5766 } 5767 5768 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5769 5770 if (data) { /* Retransmit unacked data in SYN */ 5771 skb_rbtree_walk_from(data) { 5772 if (__tcp_retransmit_skb(sk, data, 1)) 5773 break; 5774 } 5775 tcp_rearm_rto(sk); 5776 NET_INC_STATS(sock_net(sk), 5777 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5778 return true; 5779 } 5780 tp->syn_data_acked = tp->syn_data; 5781 if (tp->syn_data_acked) { 5782 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5783 /* SYN-data is counted as two separate packets in tcp_ack() */ 5784 if (tp->delivered > 1) 5785 --tp->delivered; 5786 } 5787 5788 tcp_fastopen_add_skb(sk, synack); 5789 5790 return false; 5791 } 5792 5793 static void smc_check_reset_syn(struct tcp_sock *tp) 5794 { 5795 #if IS_ENABLED(CONFIG_SMC) 5796 if (static_branch_unlikely(&tcp_have_smc)) { 5797 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5798 tp->syn_smc = 0; 5799 } 5800 #endif 5801 } 5802 5803 static void tcp_try_undo_spurious_syn(struct sock *sk) 5804 { 5805 struct tcp_sock *tp = tcp_sk(sk); 5806 u32 syn_stamp; 5807 5808 /* undo_marker is set when SYN or SYNACK times out. The timeout is 5809 * spurious if the ACK's timestamp option echo value matches the 5810 * original SYN timestamp. 5811 */ 5812 syn_stamp = tp->retrans_stamp; 5813 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 5814 syn_stamp == tp->rx_opt.rcv_tsecr) 5815 tp->undo_marker = 0; 5816 } 5817 5818 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5819 const struct tcphdr *th) 5820 { 5821 struct inet_connection_sock *icsk = inet_csk(sk); 5822 struct tcp_sock *tp = tcp_sk(sk); 5823 struct tcp_fastopen_cookie foc = { .len = -1 }; 5824 int saved_clamp = tp->rx_opt.mss_clamp; 5825 bool fastopen_fail; 5826 5827 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5828 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5829 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5830 5831 if (th->ack) { 5832 /* rfc793: 5833 * "If the state is SYN-SENT then 5834 * first check the ACK bit 5835 * If the ACK bit is set 5836 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5837 * a reset (unless the RST bit is set, if so drop 5838 * the segment and return)" 5839 */ 5840 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5841 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5842 goto reset_and_undo; 5843 5844 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5845 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5846 tcp_time_stamp(tp))) { 5847 NET_INC_STATS(sock_net(sk), 5848 LINUX_MIB_PAWSACTIVEREJECTED); 5849 goto reset_and_undo; 5850 } 5851 5852 /* Now ACK is acceptable. 5853 * 5854 * "If the RST bit is set 5855 * If the ACK was acceptable then signal the user "error: 5856 * connection reset", drop the segment, enter CLOSED state, 5857 * delete TCB, and return." 5858 */ 5859 5860 if (th->rst) { 5861 tcp_reset(sk); 5862 goto discard; 5863 } 5864 5865 /* rfc793: 5866 * "fifth, if neither of the SYN or RST bits is set then 5867 * drop the segment and return." 5868 * 5869 * See note below! 5870 * --ANK(990513) 5871 */ 5872 if (!th->syn) 5873 goto discard_and_undo; 5874 5875 /* rfc793: 5876 * "If the SYN bit is on ... 5877 * are acceptable then ... 5878 * (our SYN has been ACKed), change the connection 5879 * state to ESTABLISHED..." 5880 */ 5881 5882 tcp_ecn_rcv_synack(tp, th); 5883 5884 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5885 tcp_try_undo_spurious_syn(sk); 5886 tcp_ack(sk, skb, FLAG_SLOWPATH); 5887 5888 /* Ok.. it's good. Set up sequence numbers and 5889 * move to established. 5890 */ 5891 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5892 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5893 5894 /* RFC1323: The window in SYN & SYN/ACK segments is 5895 * never scaled. 5896 */ 5897 tp->snd_wnd = ntohs(th->window); 5898 5899 if (!tp->rx_opt.wscale_ok) { 5900 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5901 tp->window_clamp = min(tp->window_clamp, 65535U); 5902 } 5903 5904 if (tp->rx_opt.saw_tstamp) { 5905 tp->rx_opt.tstamp_ok = 1; 5906 tp->tcp_header_len = 5907 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5908 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5909 tcp_store_ts_recent(tp); 5910 } else { 5911 tp->tcp_header_len = sizeof(struct tcphdr); 5912 } 5913 5914 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5915 tcp_initialize_rcv_mss(sk); 5916 5917 /* Remember, tcp_poll() does not lock socket! 5918 * Change state from SYN-SENT only after copied_seq 5919 * is initialized. */ 5920 tp->copied_seq = tp->rcv_nxt; 5921 5922 smc_check_reset_syn(tp); 5923 5924 smp_mb(); 5925 5926 tcp_finish_connect(sk, skb); 5927 5928 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5929 tcp_rcv_fastopen_synack(sk, skb, &foc); 5930 5931 if (!sock_flag(sk, SOCK_DEAD)) { 5932 sk->sk_state_change(sk); 5933 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5934 } 5935 if (fastopen_fail) 5936 return -1; 5937 if (sk->sk_write_pending || 5938 icsk->icsk_accept_queue.rskq_defer_accept || 5939 inet_csk_in_pingpong_mode(sk)) { 5940 /* Save one ACK. Data will be ready after 5941 * several ticks, if write_pending is set. 5942 * 5943 * It may be deleted, but with this feature tcpdumps 5944 * look so _wonderfully_ clever, that I was not able 5945 * to stand against the temptation 8) --ANK 5946 */ 5947 inet_csk_schedule_ack(sk); 5948 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5949 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5950 TCP_DELACK_MAX, TCP_RTO_MAX); 5951 5952 discard: 5953 tcp_drop(sk, skb); 5954 return 0; 5955 } else { 5956 tcp_send_ack(sk); 5957 } 5958 return -1; 5959 } 5960 5961 /* No ACK in the segment */ 5962 5963 if (th->rst) { 5964 /* rfc793: 5965 * "If the RST bit is set 5966 * 5967 * Otherwise (no ACK) drop the segment and return." 5968 */ 5969 5970 goto discard_and_undo; 5971 } 5972 5973 /* PAWS check. */ 5974 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5975 tcp_paws_reject(&tp->rx_opt, 0)) 5976 goto discard_and_undo; 5977 5978 if (th->syn) { 5979 /* We see SYN without ACK. It is attempt of 5980 * simultaneous connect with crossed SYNs. 5981 * Particularly, it can be connect to self. 5982 */ 5983 tcp_set_state(sk, TCP_SYN_RECV); 5984 5985 if (tp->rx_opt.saw_tstamp) { 5986 tp->rx_opt.tstamp_ok = 1; 5987 tcp_store_ts_recent(tp); 5988 tp->tcp_header_len = 5989 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5990 } else { 5991 tp->tcp_header_len = sizeof(struct tcphdr); 5992 } 5993 5994 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5995 tp->copied_seq = tp->rcv_nxt; 5996 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5997 5998 /* RFC1323: The window in SYN & SYN/ACK segments is 5999 * never scaled. 6000 */ 6001 tp->snd_wnd = ntohs(th->window); 6002 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6003 tp->max_window = tp->snd_wnd; 6004 6005 tcp_ecn_rcv_syn(tp, th); 6006 6007 tcp_mtup_init(sk); 6008 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6009 tcp_initialize_rcv_mss(sk); 6010 6011 tcp_send_synack(sk); 6012 #if 0 6013 /* Note, we could accept data and URG from this segment. 6014 * There are no obstacles to make this (except that we must 6015 * either change tcp_recvmsg() to prevent it from returning data 6016 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6017 * 6018 * However, if we ignore data in ACKless segments sometimes, 6019 * we have no reasons to accept it sometimes. 6020 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6021 * is not flawless. So, discard packet for sanity. 6022 * Uncomment this return to process the data. 6023 */ 6024 return -1; 6025 #else 6026 goto discard; 6027 #endif 6028 } 6029 /* "fifth, if neither of the SYN or RST bits is set then 6030 * drop the segment and return." 6031 */ 6032 6033 discard_and_undo: 6034 tcp_clear_options(&tp->rx_opt); 6035 tp->rx_opt.mss_clamp = saved_clamp; 6036 goto discard; 6037 6038 reset_and_undo: 6039 tcp_clear_options(&tp->rx_opt); 6040 tp->rx_opt.mss_clamp = saved_clamp; 6041 return 1; 6042 } 6043 6044 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6045 { 6046 tcp_try_undo_loss(sk, false); 6047 6048 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6049 tcp_sk(sk)->retrans_stamp = 0; 6050 inet_csk(sk)->icsk_retransmits = 0; 6051 6052 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6053 * we no longer need req so release it. 6054 */ 6055 reqsk_fastopen_remove(sk, tcp_sk(sk)->fastopen_rsk, false); 6056 6057 /* Re-arm the timer because data may have been sent out. 6058 * This is similar to the regular data transmission case 6059 * when new data has just been ack'ed. 6060 * 6061 * (TFO) - we could try to be more aggressive and 6062 * retransmitting any data sooner based on when they 6063 * are sent out. 6064 */ 6065 tcp_rearm_rto(sk); 6066 } 6067 6068 /* 6069 * This function implements the receiving procedure of RFC 793 for 6070 * all states except ESTABLISHED and TIME_WAIT. 6071 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6072 * address independent. 6073 */ 6074 6075 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6076 { 6077 struct tcp_sock *tp = tcp_sk(sk); 6078 struct inet_connection_sock *icsk = inet_csk(sk); 6079 const struct tcphdr *th = tcp_hdr(skb); 6080 struct request_sock *req; 6081 int queued = 0; 6082 bool acceptable; 6083 6084 switch (sk->sk_state) { 6085 case TCP_CLOSE: 6086 goto discard; 6087 6088 case TCP_LISTEN: 6089 if (th->ack) 6090 return 1; 6091 6092 if (th->rst) 6093 goto discard; 6094 6095 if (th->syn) { 6096 if (th->fin) 6097 goto discard; 6098 /* It is possible that we process SYN packets from backlog, 6099 * so we need to make sure to disable BH and RCU right there. 6100 */ 6101 rcu_read_lock(); 6102 local_bh_disable(); 6103 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6104 local_bh_enable(); 6105 rcu_read_unlock(); 6106 6107 if (!acceptable) 6108 return 1; 6109 consume_skb(skb); 6110 return 0; 6111 } 6112 goto discard; 6113 6114 case TCP_SYN_SENT: 6115 tp->rx_opt.saw_tstamp = 0; 6116 tcp_mstamp_refresh(tp); 6117 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6118 if (queued >= 0) 6119 return queued; 6120 6121 /* Do step6 onward by hand. */ 6122 tcp_urg(sk, skb, th); 6123 __kfree_skb(skb); 6124 tcp_data_snd_check(sk); 6125 return 0; 6126 } 6127 6128 tcp_mstamp_refresh(tp); 6129 tp->rx_opt.saw_tstamp = 0; 6130 req = tp->fastopen_rsk; 6131 if (req) { 6132 bool req_stolen; 6133 6134 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6135 sk->sk_state != TCP_FIN_WAIT1); 6136 6137 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6138 goto discard; 6139 } 6140 6141 if (!th->ack && !th->rst && !th->syn) 6142 goto discard; 6143 6144 if (!tcp_validate_incoming(sk, skb, th, 0)) 6145 return 0; 6146 6147 /* step 5: check the ACK field */ 6148 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6149 FLAG_UPDATE_TS_RECENT | 6150 FLAG_NO_CHALLENGE_ACK) > 0; 6151 6152 if (!acceptable) { 6153 if (sk->sk_state == TCP_SYN_RECV) 6154 return 1; /* send one RST */ 6155 tcp_send_challenge_ack(sk, skb); 6156 goto discard; 6157 } 6158 switch (sk->sk_state) { 6159 case TCP_SYN_RECV: 6160 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6161 if (!tp->srtt_us) 6162 tcp_synack_rtt_meas(sk, req); 6163 6164 if (req) { 6165 tcp_rcv_synrecv_state_fastopen(sk); 6166 } else { 6167 tcp_try_undo_spurious_syn(sk); 6168 tp->retrans_stamp = 0; 6169 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6170 tp->copied_seq = tp->rcv_nxt; 6171 } 6172 smp_mb(); 6173 tcp_set_state(sk, TCP_ESTABLISHED); 6174 sk->sk_state_change(sk); 6175 6176 /* Note, that this wakeup is only for marginal crossed SYN case. 6177 * Passively open sockets are not waked up, because 6178 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6179 */ 6180 if (sk->sk_socket) 6181 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6182 6183 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6184 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6185 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6186 6187 if (tp->rx_opt.tstamp_ok) 6188 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6189 6190 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6191 tcp_update_pacing_rate(sk); 6192 6193 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6194 tp->lsndtime = tcp_jiffies32; 6195 6196 tcp_initialize_rcv_mss(sk); 6197 tcp_fast_path_on(tp); 6198 break; 6199 6200 case TCP_FIN_WAIT1: { 6201 int tmo; 6202 6203 if (req) 6204 tcp_rcv_synrecv_state_fastopen(sk); 6205 6206 if (tp->snd_una != tp->write_seq) 6207 break; 6208 6209 tcp_set_state(sk, TCP_FIN_WAIT2); 6210 sk->sk_shutdown |= SEND_SHUTDOWN; 6211 6212 sk_dst_confirm(sk); 6213 6214 if (!sock_flag(sk, SOCK_DEAD)) { 6215 /* Wake up lingering close() */ 6216 sk->sk_state_change(sk); 6217 break; 6218 } 6219 6220 if (tp->linger2 < 0) { 6221 tcp_done(sk); 6222 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6223 return 1; 6224 } 6225 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6226 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6227 /* Receive out of order FIN after close() */ 6228 if (tp->syn_fastopen && th->fin) 6229 tcp_fastopen_active_disable(sk); 6230 tcp_done(sk); 6231 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6232 return 1; 6233 } 6234 6235 tmo = tcp_fin_time(sk); 6236 if (tmo > TCP_TIMEWAIT_LEN) { 6237 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6238 } else if (th->fin || sock_owned_by_user(sk)) { 6239 /* Bad case. We could lose such FIN otherwise. 6240 * It is not a big problem, but it looks confusing 6241 * and not so rare event. We still can lose it now, 6242 * if it spins in bh_lock_sock(), but it is really 6243 * marginal case. 6244 */ 6245 inet_csk_reset_keepalive_timer(sk, tmo); 6246 } else { 6247 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6248 goto discard; 6249 } 6250 break; 6251 } 6252 6253 case TCP_CLOSING: 6254 if (tp->snd_una == tp->write_seq) { 6255 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6256 goto discard; 6257 } 6258 break; 6259 6260 case TCP_LAST_ACK: 6261 if (tp->snd_una == tp->write_seq) { 6262 tcp_update_metrics(sk); 6263 tcp_done(sk); 6264 goto discard; 6265 } 6266 break; 6267 } 6268 6269 /* step 6: check the URG bit */ 6270 tcp_urg(sk, skb, th); 6271 6272 /* step 7: process the segment text */ 6273 switch (sk->sk_state) { 6274 case TCP_CLOSE_WAIT: 6275 case TCP_CLOSING: 6276 case TCP_LAST_ACK: 6277 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6278 break; 6279 /* fall through */ 6280 case TCP_FIN_WAIT1: 6281 case TCP_FIN_WAIT2: 6282 /* RFC 793 says to queue data in these states, 6283 * RFC 1122 says we MUST send a reset. 6284 * BSD 4.4 also does reset. 6285 */ 6286 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6287 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6288 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6289 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6290 tcp_reset(sk); 6291 return 1; 6292 } 6293 } 6294 /* Fall through */ 6295 case TCP_ESTABLISHED: 6296 tcp_data_queue(sk, skb); 6297 queued = 1; 6298 break; 6299 } 6300 6301 /* tcp_data could move socket to TIME-WAIT */ 6302 if (sk->sk_state != TCP_CLOSE) { 6303 tcp_data_snd_check(sk); 6304 tcp_ack_snd_check(sk); 6305 } 6306 6307 if (!queued) { 6308 discard: 6309 tcp_drop(sk, skb); 6310 } 6311 return 0; 6312 } 6313 EXPORT_SYMBOL(tcp_rcv_state_process); 6314 6315 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6316 { 6317 struct inet_request_sock *ireq = inet_rsk(req); 6318 6319 if (family == AF_INET) 6320 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6321 &ireq->ir_rmt_addr, port); 6322 #if IS_ENABLED(CONFIG_IPV6) 6323 else if (family == AF_INET6) 6324 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6325 &ireq->ir_v6_rmt_addr, port); 6326 #endif 6327 } 6328 6329 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6330 * 6331 * If we receive a SYN packet with these bits set, it means a 6332 * network is playing bad games with TOS bits. In order to 6333 * avoid possible false congestion notifications, we disable 6334 * TCP ECN negotiation. 6335 * 6336 * Exception: tcp_ca wants ECN. This is required for DCTCP 6337 * congestion control: Linux DCTCP asserts ECT on all packets, 6338 * including SYN, which is most optimal solution; however, 6339 * others, such as FreeBSD do not. 6340 * 6341 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6342 * set, indicating the use of a future TCP extension (such as AccECN). See 6343 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6344 * extensions. 6345 */ 6346 static void tcp_ecn_create_request(struct request_sock *req, 6347 const struct sk_buff *skb, 6348 const struct sock *listen_sk, 6349 const struct dst_entry *dst) 6350 { 6351 const struct tcphdr *th = tcp_hdr(skb); 6352 const struct net *net = sock_net(listen_sk); 6353 bool th_ecn = th->ece && th->cwr; 6354 bool ect, ecn_ok; 6355 u32 ecn_ok_dst; 6356 6357 if (!th_ecn) 6358 return; 6359 6360 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6361 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6362 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6363 6364 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6365 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6366 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6367 inet_rsk(req)->ecn_ok = 1; 6368 } 6369 6370 static void tcp_openreq_init(struct request_sock *req, 6371 const struct tcp_options_received *rx_opt, 6372 struct sk_buff *skb, const struct sock *sk) 6373 { 6374 struct inet_request_sock *ireq = inet_rsk(req); 6375 6376 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6377 req->cookie_ts = 0; 6378 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6379 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6380 tcp_rsk(req)->snt_synack = 0; 6381 tcp_rsk(req)->last_oow_ack_time = 0; 6382 req->mss = rx_opt->mss_clamp; 6383 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6384 ireq->tstamp_ok = rx_opt->tstamp_ok; 6385 ireq->sack_ok = rx_opt->sack_ok; 6386 ireq->snd_wscale = rx_opt->snd_wscale; 6387 ireq->wscale_ok = rx_opt->wscale_ok; 6388 ireq->acked = 0; 6389 ireq->ecn_ok = 0; 6390 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6391 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6392 ireq->ir_mark = inet_request_mark(sk, skb); 6393 #if IS_ENABLED(CONFIG_SMC) 6394 ireq->smc_ok = rx_opt->smc_ok; 6395 #endif 6396 } 6397 6398 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6399 struct sock *sk_listener, 6400 bool attach_listener) 6401 { 6402 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6403 attach_listener); 6404 6405 if (req) { 6406 struct inet_request_sock *ireq = inet_rsk(req); 6407 6408 ireq->ireq_opt = NULL; 6409 #if IS_ENABLED(CONFIG_IPV6) 6410 ireq->pktopts = NULL; 6411 #endif 6412 atomic64_set(&ireq->ir_cookie, 0); 6413 ireq->ireq_state = TCP_NEW_SYN_RECV; 6414 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6415 ireq->ireq_family = sk_listener->sk_family; 6416 } 6417 6418 return req; 6419 } 6420 EXPORT_SYMBOL(inet_reqsk_alloc); 6421 6422 /* 6423 * Return true if a syncookie should be sent 6424 */ 6425 static bool tcp_syn_flood_action(const struct sock *sk, 6426 const struct sk_buff *skb, 6427 const char *proto) 6428 { 6429 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6430 const char *msg = "Dropping request"; 6431 bool want_cookie = false; 6432 struct net *net = sock_net(sk); 6433 6434 #ifdef CONFIG_SYN_COOKIES 6435 if (net->ipv4.sysctl_tcp_syncookies) { 6436 msg = "Sending cookies"; 6437 want_cookie = true; 6438 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6439 } else 6440 #endif 6441 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6442 6443 if (!queue->synflood_warned && 6444 net->ipv4.sysctl_tcp_syncookies != 2 && 6445 xchg(&queue->synflood_warned, 1) == 0) 6446 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6447 proto, ntohs(tcp_hdr(skb)->dest), msg); 6448 6449 return want_cookie; 6450 } 6451 6452 static void tcp_reqsk_record_syn(const struct sock *sk, 6453 struct request_sock *req, 6454 const struct sk_buff *skb) 6455 { 6456 if (tcp_sk(sk)->save_syn) { 6457 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6458 u32 *copy; 6459 6460 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6461 if (copy) { 6462 copy[0] = len; 6463 memcpy(©[1], skb_network_header(skb), len); 6464 req->saved_syn = copy; 6465 } 6466 } 6467 } 6468 6469 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6470 const struct tcp_request_sock_ops *af_ops, 6471 struct sock *sk, struct sk_buff *skb) 6472 { 6473 struct tcp_fastopen_cookie foc = { .len = -1 }; 6474 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6475 struct tcp_options_received tmp_opt; 6476 struct tcp_sock *tp = tcp_sk(sk); 6477 struct net *net = sock_net(sk); 6478 struct sock *fastopen_sk = NULL; 6479 struct request_sock *req; 6480 bool want_cookie = false; 6481 struct dst_entry *dst; 6482 struct flowi fl; 6483 6484 /* TW buckets are converted to open requests without 6485 * limitations, they conserve resources and peer is 6486 * evidently real one. 6487 */ 6488 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6489 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6490 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6491 if (!want_cookie) 6492 goto drop; 6493 } 6494 6495 if (sk_acceptq_is_full(sk)) { 6496 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6497 goto drop; 6498 } 6499 6500 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6501 if (!req) 6502 goto drop; 6503 6504 tcp_rsk(req)->af_specific = af_ops; 6505 tcp_rsk(req)->ts_off = 0; 6506 6507 tcp_clear_options(&tmp_opt); 6508 tmp_opt.mss_clamp = af_ops->mss_clamp; 6509 tmp_opt.user_mss = tp->rx_opt.user_mss; 6510 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6511 want_cookie ? NULL : &foc); 6512 6513 if (want_cookie && !tmp_opt.saw_tstamp) 6514 tcp_clear_options(&tmp_opt); 6515 6516 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6517 tmp_opt.smc_ok = 0; 6518 6519 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6520 tcp_openreq_init(req, &tmp_opt, skb, sk); 6521 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6522 6523 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6524 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6525 6526 af_ops->init_req(req, sk, skb); 6527 6528 if (security_inet_conn_request(sk, skb, req)) 6529 goto drop_and_free; 6530 6531 if (tmp_opt.tstamp_ok) 6532 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6533 6534 dst = af_ops->route_req(sk, &fl, req); 6535 if (!dst) 6536 goto drop_and_free; 6537 6538 if (!want_cookie && !isn) { 6539 /* Kill the following clause, if you dislike this way. */ 6540 if (!net->ipv4.sysctl_tcp_syncookies && 6541 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6542 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6543 !tcp_peer_is_proven(req, dst)) { 6544 /* Without syncookies last quarter of 6545 * backlog is filled with destinations, 6546 * proven to be alive. 6547 * It means that we continue to communicate 6548 * to destinations, already remembered 6549 * to the moment of synflood. 6550 */ 6551 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6552 rsk_ops->family); 6553 goto drop_and_release; 6554 } 6555 6556 isn = af_ops->init_seq(skb); 6557 } 6558 6559 tcp_ecn_create_request(req, skb, sk, dst); 6560 6561 if (want_cookie) { 6562 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6563 req->cookie_ts = tmp_opt.tstamp_ok; 6564 if (!tmp_opt.tstamp_ok) 6565 inet_rsk(req)->ecn_ok = 0; 6566 } 6567 6568 tcp_rsk(req)->snt_isn = isn; 6569 tcp_rsk(req)->txhash = net_tx_rndhash(); 6570 tcp_openreq_init_rwin(req, sk, dst); 6571 sk_rx_queue_set(req_to_sk(req), skb); 6572 if (!want_cookie) { 6573 tcp_reqsk_record_syn(sk, req, skb); 6574 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6575 } 6576 if (fastopen_sk) { 6577 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6578 &foc, TCP_SYNACK_FASTOPEN); 6579 /* Add the child socket directly into the accept queue */ 6580 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6581 reqsk_fastopen_remove(fastopen_sk, req, false); 6582 bh_unlock_sock(fastopen_sk); 6583 sock_put(fastopen_sk); 6584 goto drop_and_free; 6585 } 6586 sk->sk_data_ready(sk); 6587 bh_unlock_sock(fastopen_sk); 6588 sock_put(fastopen_sk); 6589 } else { 6590 tcp_rsk(req)->tfo_listener = false; 6591 if (!want_cookie) 6592 inet_csk_reqsk_queue_hash_add(sk, req, 6593 tcp_timeout_init((struct sock *)req)); 6594 af_ops->send_synack(sk, dst, &fl, req, &foc, 6595 !want_cookie ? TCP_SYNACK_NORMAL : 6596 TCP_SYNACK_COOKIE); 6597 if (want_cookie) { 6598 reqsk_free(req); 6599 return 0; 6600 } 6601 } 6602 reqsk_put(req); 6603 return 0; 6604 6605 drop_and_release: 6606 dst_release(dst); 6607 drop_and_free: 6608 __reqsk_free(req); 6609 drop: 6610 tcp_listendrop(sk); 6611 return 0; 6612 } 6613 EXPORT_SYMBOL(tcp_conn_request); 6614