1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly = 1; 83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 84 int sysctl_tcp_max_reordering __read_mostly = 300; 85 EXPORT_SYMBOL(sysctl_tcp_reordering); 86 int sysctl_tcp_dsack __read_mostly = 1; 87 int sysctl_tcp_app_win __read_mostly = 31; 88 int sysctl_tcp_adv_win_scale __read_mostly = 1; 89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 90 91 /* rfc5961 challenge ack rate limiting */ 92 int sysctl_tcp_challenge_ack_limit = 100; 93 94 int sysctl_tcp_stdurg __read_mostly; 95 int sysctl_tcp_rfc1337 __read_mostly; 96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 97 int sysctl_tcp_frto __read_mostly = 2; 98 99 int sysctl_tcp_thin_dupack __read_mostly; 100 101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 102 int sysctl_tcp_early_retrans __read_mostly = 3; 103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 104 105 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 106 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 107 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 108 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 109 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 110 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 111 #define FLAG_ECE 0x40 /* ECE in this ACK */ 112 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 113 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 114 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 115 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 116 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 117 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 118 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 119 120 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 121 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 122 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 123 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 124 125 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 126 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 127 128 /* Adapt the MSS value used to make delayed ack decision to the 129 * real world. 130 */ 131 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 132 { 133 struct inet_connection_sock *icsk = inet_csk(sk); 134 const unsigned int lss = icsk->icsk_ack.last_seg_size; 135 unsigned int len; 136 137 icsk->icsk_ack.last_seg_size = 0; 138 139 /* skb->len may jitter because of SACKs, even if peer 140 * sends good full-sized frames. 141 */ 142 len = skb_shinfo(skb)->gso_size ? : skb->len; 143 if (len >= icsk->icsk_ack.rcv_mss) { 144 icsk->icsk_ack.rcv_mss = len; 145 } else { 146 /* Otherwise, we make more careful check taking into account, 147 * that SACKs block is variable. 148 * 149 * "len" is invariant segment length, including TCP header. 150 */ 151 len += skb->data - skb_transport_header(skb); 152 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 153 /* If PSH is not set, packet should be 154 * full sized, provided peer TCP is not badly broken. 155 * This observation (if it is correct 8)) allows 156 * to handle super-low mtu links fairly. 157 */ 158 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 159 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 160 /* Subtract also invariant (if peer is RFC compliant), 161 * tcp header plus fixed timestamp option length. 162 * Resulting "len" is MSS free of SACK jitter. 163 */ 164 len -= tcp_sk(sk)->tcp_header_len; 165 icsk->icsk_ack.last_seg_size = len; 166 if (len == lss) { 167 icsk->icsk_ack.rcv_mss = len; 168 return; 169 } 170 } 171 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 173 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 174 } 175 } 176 177 static void tcp_incr_quickack(struct sock *sk) 178 { 179 struct inet_connection_sock *icsk = inet_csk(sk); 180 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 181 182 if (quickacks == 0) 183 quickacks = 2; 184 if (quickacks > icsk->icsk_ack.quick) 185 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 186 } 187 188 static void tcp_enter_quickack_mode(struct sock *sk) 189 { 190 struct inet_connection_sock *icsk = inet_csk(sk); 191 tcp_incr_quickack(sk); 192 icsk->icsk_ack.pingpong = 0; 193 icsk->icsk_ack.ato = TCP_ATO_MIN; 194 } 195 196 /* Send ACKs quickly, if "quick" count is not exhausted 197 * and the session is not interactive. 198 */ 199 200 static bool tcp_in_quickack_mode(struct sock *sk) 201 { 202 const struct inet_connection_sock *icsk = inet_csk(sk); 203 const struct dst_entry *dst = __sk_dst_get(sk); 204 205 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 206 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 207 } 208 209 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 210 { 211 if (tp->ecn_flags & TCP_ECN_OK) 212 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 213 } 214 215 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 216 { 217 if (tcp_hdr(skb)->cwr) 218 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 219 } 220 221 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 222 { 223 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 224 } 225 226 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 227 { 228 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 229 case INET_ECN_NOT_ECT: 230 /* Funny extension: if ECT is not set on a segment, 231 * and we already seen ECT on a previous segment, 232 * it is probably a retransmit. 233 */ 234 if (tp->ecn_flags & TCP_ECN_SEEN) 235 tcp_enter_quickack_mode((struct sock *)tp); 236 break; 237 case INET_ECN_CE: 238 if (tcp_ca_needs_ecn((struct sock *)tp)) 239 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 240 241 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 242 /* Better not delay acks, sender can have a very low cwnd */ 243 tcp_enter_quickack_mode((struct sock *)tp); 244 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 245 } 246 tp->ecn_flags |= TCP_ECN_SEEN; 247 break; 248 default: 249 if (tcp_ca_needs_ecn((struct sock *)tp)) 250 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 251 tp->ecn_flags |= TCP_ECN_SEEN; 252 break; 253 } 254 } 255 256 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 257 { 258 if (tp->ecn_flags & TCP_ECN_OK) 259 __tcp_ecn_check_ce(tp, skb); 260 } 261 262 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 263 { 264 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 265 tp->ecn_flags &= ~TCP_ECN_OK; 266 } 267 268 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 269 { 270 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 271 tp->ecn_flags &= ~TCP_ECN_OK; 272 } 273 274 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 275 { 276 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 277 return true; 278 return false; 279 } 280 281 /* Buffer size and advertised window tuning. 282 * 283 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 284 */ 285 286 static void tcp_sndbuf_expand(struct sock *sk) 287 { 288 const struct tcp_sock *tp = tcp_sk(sk); 289 int sndmem, per_mss; 290 u32 nr_segs; 291 292 /* Worst case is non GSO/TSO : each frame consumes one skb 293 * and skb->head is kmalloced using power of two area of memory 294 */ 295 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 296 MAX_TCP_HEADER + 297 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 298 299 per_mss = roundup_pow_of_two(per_mss) + 300 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 301 302 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 303 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 304 305 /* Fast Recovery (RFC 5681 3.2) : 306 * Cubic needs 1.7 factor, rounded to 2 to include 307 * extra cushion (application might react slowly to POLLOUT) 308 */ 309 sndmem = 2 * nr_segs * per_mss; 310 311 if (sk->sk_sndbuf < sndmem) 312 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 313 } 314 315 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 316 * 317 * All tcp_full_space() is split to two parts: "network" buffer, allocated 318 * forward and advertised in receiver window (tp->rcv_wnd) and 319 * "application buffer", required to isolate scheduling/application 320 * latencies from network. 321 * window_clamp is maximal advertised window. It can be less than 322 * tcp_full_space(), in this case tcp_full_space() - window_clamp 323 * is reserved for "application" buffer. The less window_clamp is 324 * the smoother our behaviour from viewpoint of network, but the lower 325 * throughput and the higher sensitivity of the connection to losses. 8) 326 * 327 * rcv_ssthresh is more strict window_clamp used at "slow start" 328 * phase to predict further behaviour of this connection. 329 * It is used for two goals: 330 * - to enforce header prediction at sender, even when application 331 * requires some significant "application buffer". It is check #1. 332 * - to prevent pruning of receive queue because of misprediction 333 * of receiver window. Check #2. 334 * 335 * The scheme does not work when sender sends good segments opening 336 * window and then starts to feed us spaghetti. But it should work 337 * in common situations. Otherwise, we have to rely on queue collapsing. 338 */ 339 340 /* Slow part of check#2. */ 341 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 342 { 343 struct tcp_sock *tp = tcp_sk(sk); 344 /* Optimize this! */ 345 int truesize = tcp_win_from_space(skb->truesize) >> 1; 346 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 347 348 while (tp->rcv_ssthresh <= window) { 349 if (truesize <= skb->len) 350 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 351 352 truesize >>= 1; 353 window >>= 1; 354 } 355 return 0; 356 } 357 358 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 359 { 360 struct tcp_sock *tp = tcp_sk(sk); 361 362 /* Check #1 */ 363 if (tp->rcv_ssthresh < tp->window_clamp && 364 (int)tp->rcv_ssthresh < tcp_space(sk) && 365 !tcp_under_memory_pressure(sk)) { 366 int incr; 367 368 /* Check #2. Increase window, if skb with such overhead 369 * will fit to rcvbuf in future. 370 */ 371 if (tcp_win_from_space(skb->truesize) <= skb->len) 372 incr = 2 * tp->advmss; 373 else 374 incr = __tcp_grow_window(sk, skb); 375 376 if (incr) { 377 incr = max_t(int, incr, 2 * skb->len); 378 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 379 tp->window_clamp); 380 inet_csk(sk)->icsk_ack.quick |= 1; 381 } 382 } 383 } 384 385 /* 3. Tuning rcvbuf, when connection enters established state. */ 386 static void tcp_fixup_rcvbuf(struct sock *sk) 387 { 388 u32 mss = tcp_sk(sk)->advmss; 389 int rcvmem; 390 391 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 392 tcp_default_init_rwnd(mss); 393 394 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 395 * Allow enough cushion so that sender is not limited by our window 396 */ 397 if (sysctl_tcp_moderate_rcvbuf) 398 rcvmem <<= 2; 399 400 if (sk->sk_rcvbuf < rcvmem) 401 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 402 } 403 404 /* 4. Try to fixup all. It is made immediately after connection enters 405 * established state. 406 */ 407 void tcp_init_buffer_space(struct sock *sk) 408 { 409 struct tcp_sock *tp = tcp_sk(sk); 410 int maxwin; 411 412 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 413 tcp_fixup_rcvbuf(sk); 414 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 415 tcp_sndbuf_expand(sk); 416 417 tp->rcvq_space.space = tp->rcv_wnd; 418 tp->rcvq_space.time = tcp_time_stamp; 419 tp->rcvq_space.seq = tp->copied_seq; 420 421 maxwin = tcp_full_space(sk); 422 423 if (tp->window_clamp >= maxwin) { 424 tp->window_clamp = maxwin; 425 426 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 427 tp->window_clamp = max(maxwin - 428 (maxwin >> sysctl_tcp_app_win), 429 4 * tp->advmss); 430 } 431 432 /* Force reservation of one segment. */ 433 if (sysctl_tcp_app_win && 434 tp->window_clamp > 2 * tp->advmss && 435 tp->window_clamp + tp->advmss > maxwin) 436 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 437 438 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 439 tp->snd_cwnd_stamp = tcp_time_stamp; 440 } 441 442 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 443 static void tcp_clamp_window(struct sock *sk) 444 { 445 struct tcp_sock *tp = tcp_sk(sk); 446 struct inet_connection_sock *icsk = inet_csk(sk); 447 448 icsk->icsk_ack.quick = 0; 449 450 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 451 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 452 !tcp_under_memory_pressure(sk) && 453 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 454 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 455 sysctl_tcp_rmem[2]); 456 } 457 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 458 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 459 } 460 461 /* Initialize RCV_MSS value. 462 * RCV_MSS is an our guess about MSS used by the peer. 463 * We haven't any direct information about the MSS. 464 * It's better to underestimate the RCV_MSS rather than overestimate. 465 * Overestimations make us ACKing less frequently than needed. 466 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 467 */ 468 void tcp_initialize_rcv_mss(struct sock *sk) 469 { 470 const struct tcp_sock *tp = tcp_sk(sk); 471 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 472 473 hint = min(hint, tp->rcv_wnd / 2); 474 hint = min(hint, TCP_MSS_DEFAULT); 475 hint = max(hint, TCP_MIN_MSS); 476 477 inet_csk(sk)->icsk_ack.rcv_mss = hint; 478 } 479 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 480 481 /* Receiver "autotuning" code. 482 * 483 * The algorithm for RTT estimation w/o timestamps is based on 484 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 485 * <http://public.lanl.gov/radiant/pubs.html#DRS> 486 * 487 * More detail on this code can be found at 488 * <http://staff.psc.edu/jheffner/>, 489 * though this reference is out of date. A new paper 490 * is pending. 491 */ 492 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 493 { 494 u32 new_sample = tp->rcv_rtt_est.rtt; 495 long m = sample; 496 497 if (m == 0) 498 m = 1; 499 500 if (new_sample != 0) { 501 /* If we sample in larger samples in the non-timestamp 502 * case, we could grossly overestimate the RTT especially 503 * with chatty applications or bulk transfer apps which 504 * are stalled on filesystem I/O. 505 * 506 * Also, since we are only going for a minimum in the 507 * non-timestamp case, we do not smooth things out 508 * else with timestamps disabled convergence takes too 509 * long. 510 */ 511 if (!win_dep) { 512 m -= (new_sample >> 3); 513 new_sample += m; 514 } else { 515 m <<= 3; 516 if (m < new_sample) 517 new_sample = m; 518 } 519 } else { 520 /* No previous measure. */ 521 new_sample = m << 3; 522 } 523 524 if (tp->rcv_rtt_est.rtt != new_sample) 525 tp->rcv_rtt_est.rtt = new_sample; 526 } 527 528 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 529 { 530 if (tp->rcv_rtt_est.time == 0) 531 goto new_measure; 532 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 533 return; 534 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 535 536 new_measure: 537 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 538 tp->rcv_rtt_est.time = tcp_time_stamp; 539 } 540 541 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 542 const struct sk_buff *skb) 543 { 544 struct tcp_sock *tp = tcp_sk(sk); 545 if (tp->rx_opt.rcv_tsecr && 546 (TCP_SKB_CB(skb)->end_seq - 547 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 548 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 549 } 550 551 /* 552 * This function should be called every time data is copied to user space. 553 * It calculates the appropriate TCP receive buffer space. 554 */ 555 void tcp_rcv_space_adjust(struct sock *sk) 556 { 557 struct tcp_sock *tp = tcp_sk(sk); 558 int time; 559 int copied; 560 561 time = tcp_time_stamp - tp->rcvq_space.time; 562 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 563 return; 564 565 /* Number of bytes copied to user in last RTT */ 566 copied = tp->copied_seq - tp->rcvq_space.seq; 567 if (copied <= tp->rcvq_space.space) 568 goto new_measure; 569 570 /* A bit of theory : 571 * copied = bytes received in previous RTT, our base window 572 * To cope with packet losses, we need a 2x factor 573 * To cope with slow start, and sender growing its cwin by 100 % 574 * every RTT, we need a 4x factor, because the ACK we are sending 575 * now is for the next RTT, not the current one : 576 * <prev RTT . ><current RTT .. ><next RTT .... > 577 */ 578 579 if (sysctl_tcp_moderate_rcvbuf && 580 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 581 int rcvwin, rcvmem, rcvbuf; 582 583 /* minimal window to cope with packet losses, assuming 584 * steady state. Add some cushion because of small variations. 585 */ 586 rcvwin = (copied << 1) + 16 * tp->advmss; 587 588 /* If rate increased by 25%, 589 * assume slow start, rcvwin = 3 * copied 590 * If rate increased by 50%, 591 * assume sender can use 2x growth, rcvwin = 4 * copied 592 */ 593 if (copied >= 594 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 595 if (copied >= 596 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 597 rcvwin <<= 1; 598 else 599 rcvwin += (rcvwin >> 1); 600 } 601 602 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 603 while (tcp_win_from_space(rcvmem) < tp->advmss) 604 rcvmem += 128; 605 606 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 607 if (rcvbuf > sk->sk_rcvbuf) { 608 sk->sk_rcvbuf = rcvbuf; 609 610 /* Make the window clamp follow along. */ 611 tp->window_clamp = rcvwin; 612 } 613 } 614 tp->rcvq_space.space = copied; 615 616 new_measure: 617 tp->rcvq_space.seq = tp->copied_seq; 618 tp->rcvq_space.time = tcp_time_stamp; 619 } 620 621 /* There is something which you must keep in mind when you analyze the 622 * behavior of the tp->ato delayed ack timeout interval. When a 623 * connection starts up, we want to ack as quickly as possible. The 624 * problem is that "good" TCP's do slow start at the beginning of data 625 * transmission. The means that until we send the first few ACK's the 626 * sender will sit on his end and only queue most of his data, because 627 * he can only send snd_cwnd unacked packets at any given time. For 628 * each ACK we send, he increments snd_cwnd and transmits more of his 629 * queue. -DaveM 630 */ 631 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 632 { 633 struct tcp_sock *tp = tcp_sk(sk); 634 struct inet_connection_sock *icsk = inet_csk(sk); 635 u32 now; 636 637 inet_csk_schedule_ack(sk); 638 639 tcp_measure_rcv_mss(sk, skb); 640 641 tcp_rcv_rtt_measure(tp); 642 643 now = tcp_time_stamp; 644 645 if (!icsk->icsk_ack.ato) { 646 /* The _first_ data packet received, initialize 647 * delayed ACK engine. 648 */ 649 tcp_incr_quickack(sk); 650 icsk->icsk_ack.ato = TCP_ATO_MIN; 651 } else { 652 int m = now - icsk->icsk_ack.lrcvtime; 653 654 if (m <= TCP_ATO_MIN / 2) { 655 /* The fastest case is the first. */ 656 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 657 } else if (m < icsk->icsk_ack.ato) { 658 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 659 if (icsk->icsk_ack.ato > icsk->icsk_rto) 660 icsk->icsk_ack.ato = icsk->icsk_rto; 661 } else if (m > icsk->icsk_rto) { 662 /* Too long gap. Apparently sender failed to 663 * restart window, so that we send ACKs quickly. 664 */ 665 tcp_incr_quickack(sk); 666 sk_mem_reclaim(sk); 667 } 668 } 669 icsk->icsk_ack.lrcvtime = now; 670 671 tcp_ecn_check_ce(tp, skb); 672 673 if (skb->len >= 128) 674 tcp_grow_window(sk, skb); 675 } 676 677 /* Called to compute a smoothed rtt estimate. The data fed to this 678 * routine either comes from timestamps, or from segments that were 679 * known _not_ to have been retransmitted [see Karn/Partridge 680 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 681 * piece by Van Jacobson. 682 * NOTE: the next three routines used to be one big routine. 683 * To save cycles in the RFC 1323 implementation it was better to break 684 * it up into three procedures. -- erics 685 */ 686 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 687 { 688 struct tcp_sock *tp = tcp_sk(sk); 689 long m = mrtt_us; /* RTT */ 690 u32 srtt = tp->srtt_us; 691 692 /* The following amusing code comes from Jacobson's 693 * article in SIGCOMM '88. Note that rtt and mdev 694 * are scaled versions of rtt and mean deviation. 695 * This is designed to be as fast as possible 696 * m stands for "measurement". 697 * 698 * On a 1990 paper the rto value is changed to: 699 * RTO = rtt + 4 * mdev 700 * 701 * Funny. This algorithm seems to be very broken. 702 * These formulae increase RTO, when it should be decreased, increase 703 * too slowly, when it should be increased quickly, decrease too quickly 704 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 705 * does not matter how to _calculate_ it. Seems, it was trap 706 * that VJ failed to avoid. 8) 707 */ 708 if (srtt != 0) { 709 m -= (srtt >> 3); /* m is now error in rtt est */ 710 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 711 if (m < 0) { 712 m = -m; /* m is now abs(error) */ 713 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 714 /* This is similar to one of Eifel findings. 715 * Eifel blocks mdev updates when rtt decreases. 716 * This solution is a bit different: we use finer gain 717 * for mdev in this case (alpha*beta). 718 * Like Eifel it also prevents growth of rto, 719 * but also it limits too fast rto decreases, 720 * happening in pure Eifel. 721 */ 722 if (m > 0) 723 m >>= 3; 724 } else { 725 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 726 } 727 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 728 if (tp->mdev_us > tp->mdev_max_us) { 729 tp->mdev_max_us = tp->mdev_us; 730 if (tp->mdev_max_us > tp->rttvar_us) 731 tp->rttvar_us = tp->mdev_max_us; 732 } 733 if (after(tp->snd_una, tp->rtt_seq)) { 734 if (tp->mdev_max_us < tp->rttvar_us) 735 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 736 tp->rtt_seq = tp->snd_nxt; 737 tp->mdev_max_us = tcp_rto_min_us(sk); 738 } 739 } else { 740 /* no previous measure. */ 741 srtt = m << 3; /* take the measured time to be rtt */ 742 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 743 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 744 tp->mdev_max_us = tp->rttvar_us; 745 tp->rtt_seq = tp->snd_nxt; 746 } 747 tp->srtt_us = max(1U, srtt); 748 } 749 750 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 751 * Note: TCP stack does not yet implement pacing. 752 * FQ packet scheduler can be used to implement cheap but effective 753 * TCP pacing, to smooth the burst on large writes when packets 754 * in flight is significantly lower than cwnd (or rwin) 755 */ 756 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 757 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 758 759 static void tcp_update_pacing_rate(struct sock *sk) 760 { 761 const struct tcp_sock *tp = tcp_sk(sk); 762 u64 rate; 763 764 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 765 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 766 767 /* current rate is (cwnd * mss) / srtt 768 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 769 * In Congestion Avoidance phase, set it to 120 % the current rate. 770 * 771 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 772 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 773 * end of slow start and should slow down. 774 */ 775 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 776 rate *= sysctl_tcp_pacing_ss_ratio; 777 else 778 rate *= sysctl_tcp_pacing_ca_ratio; 779 780 rate *= max(tp->snd_cwnd, tp->packets_out); 781 782 if (likely(tp->srtt_us)) 783 do_div(rate, tp->srtt_us); 784 785 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 786 * without any lock. We want to make sure compiler wont store 787 * intermediate values in this location. 788 */ 789 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 790 sk->sk_max_pacing_rate); 791 } 792 793 /* Calculate rto without backoff. This is the second half of Van Jacobson's 794 * routine referred to above. 795 */ 796 static void tcp_set_rto(struct sock *sk) 797 { 798 const struct tcp_sock *tp = tcp_sk(sk); 799 /* Old crap is replaced with new one. 8) 800 * 801 * More seriously: 802 * 1. If rtt variance happened to be less 50msec, it is hallucination. 803 * It cannot be less due to utterly erratic ACK generation made 804 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 805 * to do with delayed acks, because at cwnd>2 true delack timeout 806 * is invisible. Actually, Linux-2.4 also generates erratic 807 * ACKs in some circumstances. 808 */ 809 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 810 811 /* 2. Fixups made earlier cannot be right. 812 * If we do not estimate RTO correctly without them, 813 * all the algo is pure shit and should be replaced 814 * with correct one. It is exactly, which we pretend to do. 815 */ 816 817 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 818 * guarantees that rto is higher. 819 */ 820 tcp_bound_rto(sk); 821 } 822 823 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 824 { 825 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 826 827 if (!cwnd) 828 cwnd = TCP_INIT_CWND; 829 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 830 } 831 832 /* 833 * Packet counting of FACK is based on in-order assumptions, therefore TCP 834 * disables it when reordering is detected 835 */ 836 void tcp_disable_fack(struct tcp_sock *tp) 837 { 838 /* RFC3517 uses different metric in lost marker => reset on change */ 839 if (tcp_is_fack(tp)) 840 tp->lost_skb_hint = NULL; 841 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 842 } 843 844 /* Take a notice that peer is sending D-SACKs */ 845 static void tcp_dsack_seen(struct tcp_sock *tp) 846 { 847 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 848 } 849 850 static void tcp_update_reordering(struct sock *sk, const int metric, 851 const int ts) 852 { 853 struct tcp_sock *tp = tcp_sk(sk); 854 if (metric > tp->reordering) { 855 int mib_idx; 856 857 tp->reordering = min(sysctl_tcp_max_reordering, metric); 858 859 /* This exciting event is worth to be remembered. 8) */ 860 if (ts) 861 mib_idx = LINUX_MIB_TCPTSREORDER; 862 else if (tcp_is_reno(tp)) 863 mib_idx = LINUX_MIB_TCPRENOREORDER; 864 else if (tcp_is_fack(tp)) 865 mib_idx = LINUX_MIB_TCPFACKREORDER; 866 else 867 mib_idx = LINUX_MIB_TCPSACKREORDER; 868 869 NET_INC_STATS_BH(sock_net(sk), mib_idx); 870 #if FASTRETRANS_DEBUG > 1 871 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 872 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 873 tp->reordering, 874 tp->fackets_out, 875 tp->sacked_out, 876 tp->undo_marker ? tp->undo_retrans : 0); 877 #endif 878 tcp_disable_fack(tp); 879 } 880 881 if (metric > 0) 882 tcp_disable_early_retrans(tp); 883 } 884 885 /* This must be called before lost_out is incremented */ 886 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 887 { 888 if (!tp->retransmit_skb_hint || 889 before(TCP_SKB_CB(skb)->seq, 890 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 891 tp->retransmit_skb_hint = skb; 892 893 if (!tp->lost_out || 894 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 895 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 896 } 897 898 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 899 { 900 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 901 tcp_verify_retransmit_hint(tp, skb); 902 903 tp->lost_out += tcp_skb_pcount(skb); 904 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 905 } 906 } 907 908 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 909 struct sk_buff *skb) 910 { 911 tcp_verify_retransmit_hint(tp, skb); 912 913 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 914 tp->lost_out += tcp_skb_pcount(skb); 915 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 916 } 917 } 918 919 /* This procedure tags the retransmission queue when SACKs arrive. 920 * 921 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 922 * Packets in queue with these bits set are counted in variables 923 * sacked_out, retrans_out and lost_out, correspondingly. 924 * 925 * Valid combinations are: 926 * Tag InFlight Description 927 * 0 1 - orig segment is in flight. 928 * S 0 - nothing flies, orig reached receiver. 929 * L 0 - nothing flies, orig lost by net. 930 * R 2 - both orig and retransmit are in flight. 931 * L|R 1 - orig is lost, retransmit is in flight. 932 * S|R 1 - orig reached receiver, retrans is still in flight. 933 * (L|S|R is logically valid, it could occur when L|R is sacked, 934 * but it is equivalent to plain S and code short-curcuits it to S. 935 * L|S is logically invalid, it would mean -1 packet in flight 8)) 936 * 937 * These 6 states form finite state machine, controlled by the following events: 938 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 939 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 940 * 3. Loss detection event of two flavors: 941 * A. Scoreboard estimator decided the packet is lost. 942 * A'. Reno "three dupacks" marks head of queue lost. 943 * A''. Its FACK modification, head until snd.fack is lost. 944 * B. SACK arrives sacking SND.NXT at the moment, when the 945 * segment was retransmitted. 946 * 4. D-SACK added new rule: D-SACK changes any tag to S. 947 * 948 * It is pleasant to note, that state diagram turns out to be commutative, 949 * so that we are allowed not to be bothered by order of our actions, 950 * when multiple events arrive simultaneously. (see the function below). 951 * 952 * Reordering detection. 953 * -------------------- 954 * Reordering metric is maximal distance, which a packet can be displaced 955 * in packet stream. With SACKs we can estimate it: 956 * 957 * 1. SACK fills old hole and the corresponding segment was not 958 * ever retransmitted -> reordering. Alas, we cannot use it 959 * when segment was retransmitted. 960 * 2. The last flaw is solved with D-SACK. D-SACK arrives 961 * for retransmitted and already SACKed segment -> reordering.. 962 * Both of these heuristics are not used in Loss state, when we cannot 963 * account for retransmits accurately. 964 * 965 * SACK block validation. 966 * ---------------------- 967 * 968 * SACK block range validation checks that the received SACK block fits to 969 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 970 * Note that SND.UNA is not included to the range though being valid because 971 * it means that the receiver is rather inconsistent with itself reporting 972 * SACK reneging when it should advance SND.UNA. Such SACK block this is 973 * perfectly valid, however, in light of RFC2018 which explicitly states 974 * that "SACK block MUST reflect the newest segment. Even if the newest 975 * segment is going to be discarded ...", not that it looks very clever 976 * in case of head skb. Due to potentional receiver driven attacks, we 977 * choose to avoid immediate execution of a walk in write queue due to 978 * reneging and defer head skb's loss recovery to standard loss recovery 979 * procedure that will eventually trigger (nothing forbids us doing this). 980 * 981 * Implements also blockage to start_seq wrap-around. Problem lies in the 982 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 983 * there's no guarantee that it will be before snd_nxt (n). The problem 984 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 985 * wrap (s_w): 986 * 987 * <- outs wnd -> <- wrapzone -> 988 * u e n u_w e_w s n_w 989 * | | | | | | | 990 * |<------------+------+----- TCP seqno space --------------+---------->| 991 * ...-- <2^31 ->| |<--------... 992 * ...---- >2^31 ------>| |<--------... 993 * 994 * Current code wouldn't be vulnerable but it's better still to discard such 995 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 996 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 997 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 998 * equal to the ideal case (infinite seqno space without wrap caused issues). 999 * 1000 * With D-SACK the lower bound is extended to cover sequence space below 1001 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1002 * again, D-SACK block must not to go across snd_una (for the same reason as 1003 * for the normal SACK blocks, explained above). But there all simplicity 1004 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1005 * fully below undo_marker they do not affect behavior in anyway and can 1006 * therefore be safely ignored. In rare cases (which are more or less 1007 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1008 * fragmentation and packet reordering past skb's retransmission. To consider 1009 * them correctly, the acceptable range must be extended even more though 1010 * the exact amount is rather hard to quantify. However, tp->max_window can 1011 * be used as an exaggerated estimate. 1012 */ 1013 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1014 u32 start_seq, u32 end_seq) 1015 { 1016 /* Too far in future, or reversed (interpretation is ambiguous) */ 1017 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1018 return false; 1019 1020 /* Nasty start_seq wrap-around check (see comments above) */ 1021 if (!before(start_seq, tp->snd_nxt)) 1022 return false; 1023 1024 /* In outstanding window? ...This is valid exit for D-SACKs too. 1025 * start_seq == snd_una is non-sensical (see comments above) 1026 */ 1027 if (after(start_seq, tp->snd_una)) 1028 return true; 1029 1030 if (!is_dsack || !tp->undo_marker) 1031 return false; 1032 1033 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1034 if (after(end_seq, tp->snd_una)) 1035 return false; 1036 1037 if (!before(start_seq, tp->undo_marker)) 1038 return true; 1039 1040 /* Too old */ 1041 if (!after(end_seq, tp->undo_marker)) 1042 return false; 1043 1044 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1045 * start_seq < undo_marker and end_seq >= undo_marker. 1046 */ 1047 return !before(start_seq, end_seq - tp->max_window); 1048 } 1049 1050 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1051 * Event "B". Later note: FACK people cheated me again 8), we have to account 1052 * for reordering! Ugly, but should help. 1053 * 1054 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1055 * less than what is now known to be received by the other end (derived from 1056 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1057 * retransmitted skbs to avoid some costly processing per ACKs. 1058 */ 1059 static void tcp_mark_lost_retrans(struct sock *sk, int *flag) 1060 { 1061 const struct inet_connection_sock *icsk = inet_csk(sk); 1062 struct tcp_sock *tp = tcp_sk(sk); 1063 struct sk_buff *skb; 1064 int cnt = 0; 1065 u32 new_low_seq = tp->snd_nxt; 1066 u32 received_upto = tcp_highest_sack_seq(tp); 1067 1068 if (!tcp_is_fack(tp) || !tp->retrans_out || 1069 !after(received_upto, tp->lost_retrans_low) || 1070 icsk->icsk_ca_state != TCP_CA_Recovery) 1071 return; 1072 1073 tcp_for_write_queue(skb, sk) { 1074 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1075 1076 if (skb == tcp_send_head(sk)) 1077 break; 1078 if (cnt == tp->retrans_out) 1079 break; 1080 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1081 continue; 1082 1083 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1084 continue; 1085 1086 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1087 * constraint here (see above) but figuring out that at 1088 * least tp->reordering SACK blocks reside between ack_seq 1089 * and received_upto is not easy task to do cheaply with 1090 * the available datastructures. 1091 * 1092 * Whether FACK should check here for tp->reordering segs 1093 * in-between one could argue for either way (it would be 1094 * rather simple to implement as we could count fack_count 1095 * during the walk and do tp->fackets_out - fack_count). 1096 */ 1097 if (after(received_upto, ack_seq)) { 1098 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1099 tp->retrans_out -= tcp_skb_pcount(skb); 1100 *flag |= FLAG_LOST_RETRANS; 1101 tcp_skb_mark_lost_uncond_verify(tp, skb); 1102 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1103 } else { 1104 if (before(ack_seq, new_low_seq)) 1105 new_low_seq = ack_seq; 1106 cnt += tcp_skb_pcount(skb); 1107 } 1108 } 1109 1110 if (tp->retrans_out) 1111 tp->lost_retrans_low = new_low_seq; 1112 } 1113 1114 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1115 struct tcp_sack_block_wire *sp, int num_sacks, 1116 u32 prior_snd_una) 1117 { 1118 struct tcp_sock *tp = tcp_sk(sk); 1119 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1120 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1121 bool dup_sack = false; 1122 1123 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1124 dup_sack = true; 1125 tcp_dsack_seen(tp); 1126 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1127 } else if (num_sacks > 1) { 1128 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1129 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1130 1131 if (!after(end_seq_0, end_seq_1) && 1132 !before(start_seq_0, start_seq_1)) { 1133 dup_sack = true; 1134 tcp_dsack_seen(tp); 1135 NET_INC_STATS_BH(sock_net(sk), 1136 LINUX_MIB_TCPDSACKOFORECV); 1137 } 1138 } 1139 1140 /* D-SACK for already forgotten data... Do dumb counting. */ 1141 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1142 !after(end_seq_0, prior_snd_una) && 1143 after(end_seq_0, tp->undo_marker)) 1144 tp->undo_retrans--; 1145 1146 return dup_sack; 1147 } 1148 1149 struct tcp_sacktag_state { 1150 int reord; 1151 int fack_count; 1152 /* Timestamps for earliest and latest never-retransmitted segment 1153 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1154 * but congestion control should still get an accurate delay signal. 1155 */ 1156 struct skb_mstamp first_sackt; 1157 struct skb_mstamp last_sackt; 1158 int flag; 1159 }; 1160 1161 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1162 * the incoming SACK may not exactly match but we can find smaller MSS 1163 * aligned portion of it that matches. Therefore we might need to fragment 1164 * which may fail and creates some hassle (caller must handle error case 1165 * returns). 1166 * 1167 * FIXME: this could be merged to shift decision code 1168 */ 1169 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1170 u32 start_seq, u32 end_seq) 1171 { 1172 int err; 1173 bool in_sack; 1174 unsigned int pkt_len; 1175 unsigned int mss; 1176 1177 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1178 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1179 1180 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1181 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1182 mss = tcp_skb_mss(skb); 1183 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1184 1185 if (!in_sack) { 1186 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1187 if (pkt_len < mss) 1188 pkt_len = mss; 1189 } else { 1190 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1191 if (pkt_len < mss) 1192 return -EINVAL; 1193 } 1194 1195 /* Round if necessary so that SACKs cover only full MSSes 1196 * and/or the remaining small portion (if present) 1197 */ 1198 if (pkt_len > mss) { 1199 unsigned int new_len = (pkt_len / mss) * mss; 1200 if (!in_sack && new_len < pkt_len) { 1201 new_len += mss; 1202 if (new_len >= skb->len) 1203 return 0; 1204 } 1205 pkt_len = new_len; 1206 } 1207 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1208 if (err < 0) 1209 return err; 1210 } 1211 1212 return in_sack; 1213 } 1214 1215 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1216 static u8 tcp_sacktag_one(struct sock *sk, 1217 struct tcp_sacktag_state *state, u8 sacked, 1218 u32 start_seq, u32 end_seq, 1219 int dup_sack, int pcount, 1220 const struct skb_mstamp *xmit_time) 1221 { 1222 struct tcp_sock *tp = tcp_sk(sk); 1223 int fack_count = state->fack_count; 1224 1225 /* Account D-SACK for retransmitted packet. */ 1226 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1227 if (tp->undo_marker && tp->undo_retrans > 0 && 1228 after(end_seq, tp->undo_marker)) 1229 tp->undo_retrans--; 1230 if (sacked & TCPCB_SACKED_ACKED) 1231 state->reord = min(fack_count, state->reord); 1232 } 1233 1234 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1235 if (!after(end_seq, tp->snd_una)) 1236 return sacked; 1237 1238 if (!(sacked & TCPCB_SACKED_ACKED)) { 1239 if (sacked & TCPCB_SACKED_RETRANS) { 1240 /* If the segment is not tagged as lost, 1241 * we do not clear RETRANS, believing 1242 * that retransmission is still in flight. 1243 */ 1244 if (sacked & TCPCB_LOST) { 1245 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1246 tp->lost_out -= pcount; 1247 tp->retrans_out -= pcount; 1248 } 1249 } else { 1250 if (!(sacked & TCPCB_RETRANS)) { 1251 /* New sack for not retransmitted frame, 1252 * which was in hole. It is reordering. 1253 */ 1254 if (before(start_seq, 1255 tcp_highest_sack_seq(tp))) 1256 state->reord = min(fack_count, 1257 state->reord); 1258 if (!after(end_seq, tp->high_seq)) 1259 state->flag |= FLAG_ORIG_SACK_ACKED; 1260 if (state->first_sackt.v64 == 0) 1261 state->first_sackt = *xmit_time; 1262 state->last_sackt = *xmit_time; 1263 } 1264 1265 if (sacked & TCPCB_LOST) { 1266 sacked &= ~TCPCB_LOST; 1267 tp->lost_out -= pcount; 1268 } 1269 } 1270 1271 sacked |= TCPCB_SACKED_ACKED; 1272 state->flag |= FLAG_DATA_SACKED; 1273 tp->sacked_out += pcount; 1274 1275 fack_count += pcount; 1276 1277 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1278 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1279 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1280 tp->lost_cnt_hint += pcount; 1281 1282 if (fack_count > tp->fackets_out) 1283 tp->fackets_out = fack_count; 1284 } 1285 1286 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1287 * frames and clear it. undo_retrans is decreased above, L|R frames 1288 * are accounted above as well. 1289 */ 1290 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1291 sacked &= ~TCPCB_SACKED_RETRANS; 1292 tp->retrans_out -= pcount; 1293 } 1294 1295 return sacked; 1296 } 1297 1298 /* Shift newly-SACKed bytes from this skb to the immediately previous 1299 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1300 */ 1301 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1302 struct tcp_sacktag_state *state, 1303 unsigned int pcount, int shifted, int mss, 1304 bool dup_sack) 1305 { 1306 struct tcp_sock *tp = tcp_sk(sk); 1307 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1308 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1309 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1310 1311 BUG_ON(!pcount); 1312 1313 /* Adjust counters and hints for the newly sacked sequence 1314 * range but discard the return value since prev is already 1315 * marked. We must tag the range first because the seq 1316 * advancement below implicitly advances 1317 * tcp_highest_sack_seq() when skb is highest_sack. 1318 */ 1319 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1320 start_seq, end_seq, dup_sack, pcount, 1321 &skb->skb_mstamp); 1322 1323 if (skb == tp->lost_skb_hint) 1324 tp->lost_cnt_hint += pcount; 1325 1326 TCP_SKB_CB(prev)->end_seq += shifted; 1327 TCP_SKB_CB(skb)->seq += shifted; 1328 1329 tcp_skb_pcount_add(prev, pcount); 1330 BUG_ON(tcp_skb_pcount(skb) < pcount); 1331 tcp_skb_pcount_add(skb, -pcount); 1332 1333 /* When we're adding to gso_segs == 1, gso_size will be zero, 1334 * in theory this shouldn't be necessary but as long as DSACK 1335 * code can come after this skb later on it's better to keep 1336 * setting gso_size to something. 1337 */ 1338 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1339 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1340 1341 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1342 if (tcp_skb_pcount(skb) <= 1) 1343 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1344 1345 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1346 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1347 1348 if (skb->len > 0) { 1349 BUG_ON(!tcp_skb_pcount(skb)); 1350 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1351 return false; 1352 } 1353 1354 /* Whole SKB was eaten :-) */ 1355 1356 if (skb == tp->retransmit_skb_hint) 1357 tp->retransmit_skb_hint = prev; 1358 if (skb == tp->lost_skb_hint) { 1359 tp->lost_skb_hint = prev; 1360 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1361 } 1362 1363 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1364 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1365 TCP_SKB_CB(prev)->end_seq++; 1366 1367 if (skb == tcp_highest_sack(sk)) 1368 tcp_advance_highest_sack(sk, skb); 1369 1370 tcp_unlink_write_queue(skb, sk); 1371 sk_wmem_free_skb(sk, skb); 1372 1373 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1374 1375 return true; 1376 } 1377 1378 /* I wish gso_size would have a bit more sane initialization than 1379 * something-or-zero which complicates things 1380 */ 1381 static int tcp_skb_seglen(const struct sk_buff *skb) 1382 { 1383 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1384 } 1385 1386 /* Shifting pages past head area doesn't work */ 1387 static int skb_can_shift(const struct sk_buff *skb) 1388 { 1389 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1390 } 1391 1392 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1393 * skb. 1394 */ 1395 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1396 struct tcp_sacktag_state *state, 1397 u32 start_seq, u32 end_seq, 1398 bool dup_sack) 1399 { 1400 struct tcp_sock *tp = tcp_sk(sk); 1401 struct sk_buff *prev; 1402 int mss; 1403 int pcount = 0; 1404 int len; 1405 int in_sack; 1406 1407 if (!sk_can_gso(sk)) 1408 goto fallback; 1409 1410 /* Normally R but no L won't result in plain S */ 1411 if (!dup_sack && 1412 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1413 goto fallback; 1414 if (!skb_can_shift(skb)) 1415 goto fallback; 1416 /* This frame is about to be dropped (was ACKed). */ 1417 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1418 goto fallback; 1419 1420 /* Can only happen with delayed DSACK + discard craziness */ 1421 if (unlikely(skb == tcp_write_queue_head(sk))) 1422 goto fallback; 1423 prev = tcp_write_queue_prev(sk, skb); 1424 1425 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1426 goto fallback; 1427 1428 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1429 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1430 1431 if (in_sack) { 1432 len = skb->len; 1433 pcount = tcp_skb_pcount(skb); 1434 mss = tcp_skb_seglen(skb); 1435 1436 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1437 * drop this restriction as unnecessary 1438 */ 1439 if (mss != tcp_skb_seglen(prev)) 1440 goto fallback; 1441 } else { 1442 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1443 goto noop; 1444 /* CHECKME: This is non-MSS split case only?, this will 1445 * cause skipped skbs due to advancing loop btw, original 1446 * has that feature too 1447 */ 1448 if (tcp_skb_pcount(skb) <= 1) 1449 goto noop; 1450 1451 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1452 if (!in_sack) { 1453 /* TODO: head merge to next could be attempted here 1454 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1455 * though it might not be worth of the additional hassle 1456 * 1457 * ...we can probably just fallback to what was done 1458 * previously. We could try merging non-SACKed ones 1459 * as well but it probably isn't going to buy off 1460 * because later SACKs might again split them, and 1461 * it would make skb timestamp tracking considerably 1462 * harder problem. 1463 */ 1464 goto fallback; 1465 } 1466 1467 len = end_seq - TCP_SKB_CB(skb)->seq; 1468 BUG_ON(len < 0); 1469 BUG_ON(len > skb->len); 1470 1471 /* MSS boundaries should be honoured or else pcount will 1472 * severely break even though it makes things bit trickier. 1473 * Optimize common case to avoid most of the divides 1474 */ 1475 mss = tcp_skb_mss(skb); 1476 1477 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1478 * drop this restriction as unnecessary 1479 */ 1480 if (mss != tcp_skb_seglen(prev)) 1481 goto fallback; 1482 1483 if (len == mss) { 1484 pcount = 1; 1485 } else if (len < mss) { 1486 goto noop; 1487 } else { 1488 pcount = len / mss; 1489 len = pcount * mss; 1490 } 1491 } 1492 1493 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1494 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1495 goto fallback; 1496 1497 if (!skb_shift(prev, skb, len)) 1498 goto fallback; 1499 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1500 goto out; 1501 1502 /* Hole filled allows collapsing with the next as well, this is very 1503 * useful when hole on every nth skb pattern happens 1504 */ 1505 if (prev == tcp_write_queue_tail(sk)) 1506 goto out; 1507 skb = tcp_write_queue_next(sk, prev); 1508 1509 if (!skb_can_shift(skb) || 1510 (skb == tcp_send_head(sk)) || 1511 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1512 (mss != tcp_skb_seglen(skb))) 1513 goto out; 1514 1515 len = skb->len; 1516 if (skb_shift(prev, skb, len)) { 1517 pcount += tcp_skb_pcount(skb); 1518 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1519 } 1520 1521 out: 1522 state->fack_count += pcount; 1523 return prev; 1524 1525 noop: 1526 return skb; 1527 1528 fallback: 1529 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1530 return NULL; 1531 } 1532 1533 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1534 struct tcp_sack_block *next_dup, 1535 struct tcp_sacktag_state *state, 1536 u32 start_seq, u32 end_seq, 1537 bool dup_sack_in) 1538 { 1539 struct tcp_sock *tp = tcp_sk(sk); 1540 struct sk_buff *tmp; 1541 1542 tcp_for_write_queue_from(skb, sk) { 1543 int in_sack = 0; 1544 bool dup_sack = dup_sack_in; 1545 1546 if (skb == tcp_send_head(sk)) 1547 break; 1548 1549 /* queue is in-order => we can short-circuit the walk early */ 1550 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1551 break; 1552 1553 if (next_dup && 1554 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1555 in_sack = tcp_match_skb_to_sack(sk, skb, 1556 next_dup->start_seq, 1557 next_dup->end_seq); 1558 if (in_sack > 0) 1559 dup_sack = true; 1560 } 1561 1562 /* skb reference here is a bit tricky to get right, since 1563 * shifting can eat and free both this skb and the next, 1564 * so not even _safe variant of the loop is enough. 1565 */ 1566 if (in_sack <= 0) { 1567 tmp = tcp_shift_skb_data(sk, skb, state, 1568 start_seq, end_seq, dup_sack); 1569 if (tmp) { 1570 if (tmp != skb) { 1571 skb = tmp; 1572 continue; 1573 } 1574 1575 in_sack = 0; 1576 } else { 1577 in_sack = tcp_match_skb_to_sack(sk, skb, 1578 start_seq, 1579 end_seq); 1580 } 1581 } 1582 1583 if (unlikely(in_sack < 0)) 1584 break; 1585 1586 if (in_sack) { 1587 TCP_SKB_CB(skb)->sacked = 1588 tcp_sacktag_one(sk, 1589 state, 1590 TCP_SKB_CB(skb)->sacked, 1591 TCP_SKB_CB(skb)->seq, 1592 TCP_SKB_CB(skb)->end_seq, 1593 dup_sack, 1594 tcp_skb_pcount(skb), 1595 &skb->skb_mstamp); 1596 1597 if (!before(TCP_SKB_CB(skb)->seq, 1598 tcp_highest_sack_seq(tp))) 1599 tcp_advance_highest_sack(sk, skb); 1600 } 1601 1602 state->fack_count += tcp_skb_pcount(skb); 1603 } 1604 return skb; 1605 } 1606 1607 /* Avoid all extra work that is being done by sacktag while walking in 1608 * a normal way 1609 */ 1610 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1611 struct tcp_sacktag_state *state, 1612 u32 skip_to_seq) 1613 { 1614 tcp_for_write_queue_from(skb, sk) { 1615 if (skb == tcp_send_head(sk)) 1616 break; 1617 1618 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1619 break; 1620 1621 state->fack_count += tcp_skb_pcount(skb); 1622 } 1623 return skb; 1624 } 1625 1626 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1627 struct sock *sk, 1628 struct tcp_sack_block *next_dup, 1629 struct tcp_sacktag_state *state, 1630 u32 skip_to_seq) 1631 { 1632 if (!next_dup) 1633 return skb; 1634 1635 if (before(next_dup->start_seq, skip_to_seq)) { 1636 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1637 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1638 next_dup->start_seq, next_dup->end_seq, 1639 1); 1640 } 1641 1642 return skb; 1643 } 1644 1645 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1646 { 1647 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1648 } 1649 1650 static int 1651 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1652 u32 prior_snd_una, struct tcp_sacktag_state *state) 1653 { 1654 struct tcp_sock *tp = tcp_sk(sk); 1655 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1656 TCP_SKB_CB(ack_skb)->sacked); 1657 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1658 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1659 struct tcp_sack_block *cache; 1660 struct sk_buff *skb; 1661 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1662 int used_sacks; 1663 bool found_dup_sack = false; 1664 int i, j; 1665 int first_sack_index; 1666 1667 state->flag = 0; 1668 state->reord = tp->packets_out; 1669 1670 if (!tp->sacked_out) { 1671 if (WARN_ON(tp->fackets_out)) 1672 tp->fackets_out = 0; 1673 tcp_highest_sack_reset(sk); 1674 } 1675 1676 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1677 num_sacks, prior_snd_una); 1678 if (found_dup_sack) 1679 state->flag |= FLAG_DSACKING_ACK; 1680 1681 /* Eliminate too old ACKs, but take into 1682 * account more or less fresh ones, they can 1683 * contain valid SACK info. 1684 */ 1685 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1686 return 0; 1687 1688 if (!tp->packets_out) 1689 goto out; 1690 1691 used_sacks = 0; 1692 first_sack_index = 0; 1693 for (i = 0; i < num_sacks; i++) { 1694 bool dup_sack = !i && found_dup_sack; 1695 1696 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1697 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1698 1699 if (!tcp_is_sackblock_valid(tp, dup_sack, 1700 sp[used_sacks].start_seq, 1701 sp[used_sacks].end_seq)) { 1702 int mib_idx; 1703 1704 if (dup_sack) { 1705 if (!tp->undo_marker) 1706 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1707 else 1708 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1709 } else { 1710 /* Don't count olds caused by ACK reordering */ 1711 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1712 !after(sp[used_sacks].end_seq, tp->snd_una)) 1713 continue; 1714 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1715 } 1716 1717 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1718 if (i == 0) 1719 first_sack_index = -1; 1720 continue; 1721 } 1722 1723 /* Ignore very old stuff early */ 1724 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1725 continue; 1726 1727 used_sacks++; 1728 } 1729 1730 /* order SACK blocks to allow in order walk of the retrans queue */ 1731 for (i = used_sacks - 1; i > 0; i--) { 1732 for (j = 0; j < i; j++) { 1733 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1734 swap(sp[j], sp[j + 1]); 1735 1736 /* Track where the first SACK block goes to */ 1737 if (j == first_sack_index) 1738 first_sack_index = j + 1; 1739 } 1740 } 1741 } 1742 1743 skb = tcp_write_queue_head(sk); 1744 state->fack_count = 0; 1745 i = 0; 1746 1747 if (!tp->sacked_out) { 1748 /* It's already past, so skip checking against it */ 1749 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1750 } else { 1751 cache = tp->recv_sack_cache; 1752 /* Skip empty blocks in at head of the cache */ 1753 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1754 !cache->end_seq) 1755 cache++; 1756 } 1757 1758 while (i < used_sacks) { 1759 u32 start_seq = sp[i].start_seq; 1760 u32 end_seq = sp[i].end_seq; 1761 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1762 struct tcp_sack_block *next_dup = NULL; 1763 1764 if (found_dup_sack && ((i + 1) == first_sack_index)) 1765 next_dup = &sp[i + 1]; 1766 1767 /* Skip too early cached blocks */ 1768 while (tcp_sack_cache_ok(tp, cache) && 1769 !before(start_seq, cache->end_seq)) 1770 cache++; 1771 1772 /* Can skip some work by looking recv_sack_cache? */ 1773 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1774 after(end_seq, cache->start_seq)) { 1775 1776 /* Head todo? */ 1777 if (before(start_seq, cache->start_seq)) { 1778 skb = tcp_sacktag_skip(skb, sk, state, 1779 start_seq); 1780 skb = tcp_sacktag_walk(skb, sk, next_dup, 1781 state, 1782 start_seq, 1783 cache->start_seq, 1784 dup_sack); 1785 } 1786 1787 /* Rest of the block already fully processed? */ 1788 if (!after(end_seq, cache->end_seq)) 1789 goto advance_sp; 1790 1791 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1792 state, 1793 cache->end_seq); 1794 1795 /* ...tail remains todo... */ 1796 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1797 /* ...but better entrypoint exists! */ 1798 skb = tcp_highest_sack(sk); 1799 if (!skb) 1800 break; 1801 state->fack_count = tp->fackets_out; 1802 cache++; 1803 goto walk; 1804 } 1805 1806 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1807 /* Check overlap against next cached too (past this one already) */ 1808 cache++; 1809 continue; 1810 } 1811 1812 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1813 skb = tcp_highest_sack(sk); 1814 if (!skb) 1815 break; 1816 state->fack_count = tp->fackets_out; 1817 } 1818 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1819 1820 walk: 1821 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1822 start_seq, end_seq, dup_sack); 1823 1824 advance_sp: 1825 i++; 1826 } 1827 1828 /* Clear the head of the cache sack blocks so we can skip it next time */ 1829 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1830 tp->recv_sack_cache[i].start_seq = 0; 1831 tp->recv_sack_cache[i].end_seq = 0; 1832 } 1833 for (j = 0; j < used_sacks; j++) 1834 tp->recv_sack_cache[i++] = sp[j]; 1835 1836 if ((state->reord < tp->fackets_out) && 1837 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1838 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1839 1840 tcp_mark_lost_retrans(sk, &state->flag); 1841 tcp_verify_left_out(tp); 1842 out: 1843 1844 #if FASTRETRANS_DEBUG > 0 1845 WARN_ON((int)tp->sacked_out < 0); 1846 WARN_ON((int)tp->lost_out < 0); 1847 WARN_ON((int)tp->retrans_out < 0); 1848 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1849 #endif 1850 return state->flag; 1851 } 1852 1853 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1854 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1855 */ 1856 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1857 { 1858 u32 holes; 1859 1860 holes = max(tp->lost_out, 1U); 1861 holes = min(holes, tp->packets_out); 1862 1863 if ((tp->sacked_out + holes) > tp->packets_out) { 1864 tp->sacked_out = tp->packets_out - holes; 1865 return true; 1866 } 1867 return false; 1868 } 1869 1870 /* If we receive more dupacks than we expected counting segments 1871 * in assumption of absent reordering, interpret this as reordering. 1872 * The only another reason could be bug in receiver TCP. 1873 */ 1874 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1875 { 1876 struct tcp_sock *tp = tcp_sk(sk); 1877 if (tcp_limit_reno_sacked(tp)) 1878 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1879 } 1880 1881 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1882 1883 static void tcp_add_reno_sack(struct sock *sk) 1884 { 1885 struct tcp_sock *tp = tcp_sk(sk); 1886 tp->sacked_out++; 1887 tcp_check_reno_reordering(sk, 0); 1888 tcp_verify_left_out(tp); 1889 } 1890 1891 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1892 1893 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1894 { 1895 struct tcp_sock *tp = tcp_sk(sk); 1896 1897 if (acked > 0) { 1898 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1899 if (acked - 1 >= tp->sacked_out) 1900 tp->sacked_out = 0; 1901 else 1902 tp->sacked_out -= acked - 1; 1903 } 1904 tcp_check_reno_reordering(sk, acked); 1905 tcp_verify_left_out(tp); 1906 } 1907 1908 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1909 { 1910 tp->sacked_out = 0; 1911 } 1912 1913 void tcp_clear_retrans(struct tcp_sock *tp) 1914 { 1915 tp->retrans_out = 0; 1916 tp->lost_out = 0; 1917 tp->undo_marker = 0; 1918 tp->undo_retrans = -1; 1919 tp->fackets_out = 0; 1920 tp->sacked_out = 0; 1921 } 1922 1923 static inline void tcp_init_undo(struct tcp_sock *tp) 1924 { 1925 tp->undo_marker = tp->snd_una; 1926 /* Retransmission still in flight may cause DSACKs later. */ 1927 tp->undo_retrans = tp->retrans_out ? : -1; 1928 } 1929 1930 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1931 * and reset tags completely, otherwise preserve SACKs. If receiver 1932 * dropped its ofo queue, we will know this due to reneging detection. 1933 */ 1934 void tcp_enter_loss(struct sock *sk) 1935 { 1936 const struct inet_connection_sock *icsk = inet_csk(sk); 1937 struct tcp_sock *tp = tcp_sk(sk); 1938 struct sk_buff *skb; 1939 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1940 bool is_reneg; /* is receiver reneging on SACKs? */ 1941 1942 /* Reduce ssthresh if it has not yet been made inside this window. */ 1943 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1944 !after(tp->high_seq, tp->snd_una) || 1945 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1946 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1947 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1948 tcp_ca_event(sk, CA_EVENT_LOSS); 1949 tcp_init_undo(tp); 1950 } 1951 tp->snd_cwnd = 1; 1952 tp->snd_cwnd_cnt = 0; 1953 tp->snd_cwnd_stamp = tcp_time_stamp; 1954 1955 tp->retrans_out = 0; 1956 tp->lost_out = 0; 1957 1958 if (tcp_is_reno(tp)) 1959 tcp_reset_reno_sack(tp); 1960 1961 skb = tcp_write_queue_head(sk); 1962 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1963 if (is_reneg) { 1964 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1965 tp->sacked_out = 0; 1966 tp->fackets_out = 0; 1967 } 1968 tcp_clear_all_retrans_hints(tp); 1969 1970 tcp_for_write_queue(skb, sk) { 1971 if (skb == tcp_send_head(sk)) 1972 break; 1973 1974 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1975 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) { 1976 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1977 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1978 tp->lost_out += tcp_skb_pcount(skb); 1979 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1980 } 1981 } 1982 tcp_verify_left_out(tp); 1983 1984 /* Timeout in disordered state after receiving substantial DUPACKs 1985 * suggests that the degree of reordering is over-estimated. 1986 */ 1987 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1988 tp->sacked_out >= sysctl_tcp_reordering) 1989 tp->reordering = min_t(unsigned int, tp->reordering, 1990 sysctl_tcp_reordering); 1991 tcp_set_ca_state(sk, TCP_CA_Loss); 1992 tp->high_seq = tp->snd_nxt; 1993 tcp_ecn_queue_cwr(tp); 1994 1995 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1996 * loss recovery is underway except recurring timeout(s) on 1997 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1998 */ 1999 tp->frto = sysctl_tcp_frto && 2000 (new_recovery || icsk->icsk_retransmits) && 2001 !inet_csk(sk)->icsk_mtup.probe_size; 2002 } 2003 2004 /* If ACK arrived pointing to a remembered SACK, it means that our 2005 * remembered SACKs do not reflect real state of receiver i.e. 2006 * receiver _host_ is heavily congested (or buggy). 2007 * 2008 * To avoid big spurious retransmission bursts due to transient SACK 2009 * scoreboard oddities that look like reneging, we give the receiver a 2010 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2011 * restore sanity to the SACK scoreboard. If the apparent reneging 2012 * persists until this RTO then we'll clear the SACK scoreboard. 2013 */ 2014 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2015 { 2016 if (flag & FLAG_SACK_RENEGING) { 2017 struct tcp_sock *tp = tcp_sk(sk); 2018 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2019 msecs_to_jiffies(10)); 2020 2021 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2022 delay, TCP_RTO_MAX); 2023 return true; 2024 } 2025 return false; 2026 } 2027 2028 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2029 { 2030 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2031 } 2032 2033 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2034 * counter when SACK is enabled (without SACK, sacked_out is used for 2035 * that purpose). 2036 * 2037 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2038 * segments up to the highest received SACK block so far and holes in 2039 * between them. 2040 * 2041 * With reordering, holes may still be in flight, so RFC3517 recovery 2042 * uses pure sacked_out (total number of SACKed segments) even though 2043 * it violates the RFC that uses duplicate ACKs, often these are equal 2044 * but when e.g. out-of-window ACKs or packet duplication occurs, 2045 * they differ. Since neither occurs due to loss, TCP should really 2046 * ignore them. 2047 */ 2048 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2049 { 2050 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2051 } 2052 2053 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2054 { 2055 struct tcp_sock *tp = tcp_sk(sk); 2056 unsigned long delay; 2057 2058 /* Delay early retransmit and entering fast recovery for 2059 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2060 * available, or RTO is scheduled to fire first. 2061 */ 2062 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2063 (flag & FLAG_ECE) || !tp->srtt_us) 2064 return false; 2065 2066 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2067 msecs_to_jiffies(2)); 2068 2069 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2070 return false; 2071 2072 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2073 TCP_RTO_MAX); 2074 return true; 2075 } 2076 2077 /* Linux NewReno/SACK/FACK/ECN state machine. 2078 * -------------------------------------- 2079 * 2080 * "Open" Normal state, no dubious events, fast path. 2081 * "Disorder" In all the respects it is "Open", 2082 * but requires a bit more attention. It is entered when 2083 * we see some SACKs or dupacks. It is split of "Open" 2084 * mainly to move some processing from fast path to slow one. 2085 * "CWR" CWND was reduced due to some Congestion Notification event. 2086 * It can be ECN, ICMP source quench, local device congestion. 2087 * "Recovery" CWND was reduced, we are fast-retransmitting. 2088 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2089 * 2090 * tcp_fastretrans_alert() is entered: 2091 * - each incoming ACK, if state is not "Open" 2092 * - when arrived ACK is unusual, namely: 2093 * * SACK 2094 * * Duplicate ACK. 2095 * * ECN ECE. 2096 * 2097 * Counting packets in flight is pretty simple. 2098 * 2099 * in_flight = packets_out - left_out + retrans_out 2100 * 2101 * packets_out is SND.NXT-SND.UNA counted in packets. 2102 * 2103 * retrans_out is number of retransmitted segments. 2104 * 2105 * left_out is number of segments left network, but not ACKed yet. 2106 * 2107 * left_out = sacked_out + lost_out 2108 * 2109 * sacked_out: Packets, which arrived to receiver out of order 2110 * and hence not ACKed. With SACKs this number is simply 2111 * amount of SACKed data. Even without SACKs 2112 * it is easy to give pretty reliable estimate of this number, 2113 * counting duplicate ACKs. 2114 * 2115 * lost_out: Packets lost by network. TCP has no explicit 2116 * "loss notification" feedback from network (for now). 2117 * It means that this number can be only _guessed_. 2118 * Actually, it is the heuristics to predict lossage that 2119 * distinguishes different algorithms. 2120 * 2121 * F.e. after RTO, when all the queue is considered as lost, 2122 * lost_out = packets_out and in_flight = retrans_out. 2123 * 2124 * Essentially, we have now two algorithms counting 2125 * lost packets. 2126 * 2127 * FACK: It is the simplest heuristics. As soon as we decided 2128 * that something is lost, we decide that _all_ not SACKed 2129 * packets until the most forward SACK are lost. I.e. 2130 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2131 * It is absolutely correct estimate, if network does not reorder 2132 * packets. And it loses any connection to reality when reordering 2133 * takes place. We use FACK by default until reordering 2134 * is suspected on the path to this destination. 2135 * 2136 * NewReno: when Recovery is entered, we assume that one segment 2137 * is lost (classic Reno). While we are in Recovery and 2138 * a partial ACK arrives, we assume that one more packet 2139 * is lost (NewReno). This heuristics are the same in NewReno 2140 * and SACK. 2141 * 2142 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2143 * deflation etc. CWND is real congestion window, never inflated, changes 2144 * only according to classic VJ rules. 2145 * 2146 * Really tricky (and requiring careful tuning) part of algorithm 2147 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2148 * The first determines the moment _when_ we should reduce CWND and, 2149 * hence, slow down forward transmission. In fact, it determines the moment 2150 * when we decide that hole is caused by loss, rather than by a reorder. 2151 * 2152 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2153 * holes, caused by lost packets. 2154 * 2155 * And the most logically complicated part of algorithm is undo 2156 * heuristics. We detect false retransmits due to both too early 2157 * fast retransmit (reordering) and underestimated RTO, analyzing 2158 * timestamps and D-SACKs. When we detect that some segments were 2159 * retransmitted by mistake and CWND reduction was wrong, we undo 2160 * window reduction and abort recovery phase. This logic is hidden 2161 * inside several functions named tcp_try_undo_<something>. 2162 */ 2163 2164 /* This function decides, when we should leave Disordered state 2165 * and enter Recovery phase, reducing congestion window. 2166 * 2167 * Main question: may we further continue forward transmission 2168 * with the same cwnd? 2169 */ 2170 static bool tcp_time_to_recover(struct sock *sk, int flag) 2171 { 2172 struct tcp_sock *tp = tcp_sk(sk); 2173 __u32 packets_out; 2174 2175 /* Trick#1: The loss is proven. */ 2176 if (tp->lost_out) 2177 return true; 2178 2179 /* Not-A-Trick#2 : Classic rule... */ 2180 if (tcp_dupack_heuristics(tp) > tp->reordering) 2181 return true; 2182 2183 /* Trick#4: It is still not OK... But will it be useful to delay 2184 * recovery more? 2185 */ 2186 packets_out = tp->packets_out; 2187 if (packets_out <= tp->reordering && 2188 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2189 !tcp_may_send_now(sk)) { 2190 /* We have nothing to send. This connection is limited 2191 * either by receiver window or by application. 2192 */ 2193 return true; 2194 } 2195 2196 /* If a thin stream is detected, retransmit after first 2197 * received dupack. Employ only if SACK is supported in order 2198 * to avoid possible corner-case series of spurious retransmissions 2199 * Use only if there are no unsent data. 2200 */ 2201 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2202 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2203 tcp_is_sack(tp) && !tcp_send_head(sk)) 2204 return true; 2205 2206 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2207 * retransmissions due to small network reorderings, we implement 2208 * Mitigation A.3 in the RFC and delay the retransmission for a short 2209 * interval if appropriate. 2210 */ 2211 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2212 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2213 !tcp_may_send_now(sk)) 2214 return !tcp_pause_early_retransmit(sk, flag); 2215 2216 return false; 2217 } 2218 2219 /* Detect loss in event "A" above by marking head of queue up as lost. 2220 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2221 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2222 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2223 * the maximum SACKed segments to pass before reaching this limit. 2224 */ 2225 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2226 { 2227 struct tcp_sock *tp = tcp_sk(sk); 2228 struct sk_buff *skb; 2229 int cnt, oldcnt; 2230 int err; 2231 unsigned int mss; 2232 /* Use SACK to deduce losses of new sequences sent during recovery */ 2233 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2234 2235 WARN_ON(packets > tp->packets_out); 2236 if (tp->lost_skb_hint) { 2237 skb = tp->lost_skb_hint; 2238 cnt = tp->lost_cnt_hint; 2239 /* Head already handled? */ 2240 if (mark_head && skb != tcp_write_queue_head(sk)) 2241 return; 2242 } else { 2243 skb = tcp_write_queue_head(sk); 2244 cnt = 0; 2245 } 2246 2247 tcp_for_write_queue_from(skb, sk) { 2248 if (skb == tcp_send_head(sk)) 2249 break; 2250 /* TODO: do this better */ 2251 /* this is not the most efficient way to do this... */ 2252 tp->lost_skb_hint = skb; 2253 tp->lost_cnt_hint = cnt; 2254 2255 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2256 break; 2257 2258 oldcnt = cnt; 2259 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2260 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2261 cnt += tcp_skb_pcount(skb); 2262 2263 if (cnt > packets) { 2264 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2265 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2266 (oldcnt >= packets)) 2267 break; 2268 2269 mss = tcp_skb_mss(skb); 2270 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, 2271 mss, GFP_ATOMIC); 2272 if (err < 0) 2273 break; 2274 cnt = packets; 2275 } 2276 2277 tcp_skb_mark_lost(tp, skb); 2278 2279 if (mark_head) 2280 break; 2281 } 2282 tcp_verify_left_out(tp); 2283 } 2284 2285 /* Account newly detected lost packet(s) */ 2286 2287 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2288 { 2289 struct tcp_sock *tp = tcp_sk(sk); 2290 2291 if (tcp_is_reno(tp)) { 2292 tcp_mark_head_lost(sk, 1, 1); 2293 } else if (tcp_is_fack(tp)) { 2294 int lost = tp->fackets_out - tp->reordering; 2295 if (lost <= 0) 2296 lost = 1; 2297 tcp_mark_head_lost(sk, lost, 0); 2298 } else { 2299 int sacked_upto = tp->sacked_out - tp->reordering; 2300 if (sacked_upto >= 0) 2301 tcp_mark_head_lost(sk, sacked_upto, 0); 2302 else if (fast_rexmit) 2303 tcp_mark_head_lost(sk, 1, 1); 2304 } 2305 } 2306 2307 /* CWND moderation, preventing bursts due to too big ACKs 2308 * in dubious situations. 2309 */ 2310 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2311 { 2312 tp->snd_cwnd = min(tp->snd_cwnd, 2313 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2314 tp->snd_cwnd_stamp = tcp_time_stamp; 2315 } 2316 2317 /* Nothing was retransmitted or returned timestamp is less 2318 * than timestamp of the first retransmission. 2319 */ 2320 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2321 { 2322 return !tp->retrans_stamp || 2323 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2324 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2325 } 2326 2327 /* Undo procedures. */ 2328 2329 /* We can clear retrans_stamp when there are no retransmissions in the 2330 * window. It would seem that it is trivially available for us in 2331 * tp->retrans_out, however, that kind of assumptions doesn't consider 2332 * what will happen if errors occur when sending retransmission for the 2333 * second time. ...It could the that such segment has only 2334 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2335 * the head skb is enough except for some reneging corner cases that 2336 * are not worth the effort. 2337 * 2338 * Main reason for all this complexity is the fact that connection dying 2339 * time now depends on the validity of the retrans_stamp, in particular, 2340 * that successive retransmissions of a segment must not advance 2341 * retrans_stamp under any conditions. 2342 */ 2343 static bool tcp_any_retrans_done(const struct sock *sk) 2344 { 2345 const struct tcp_sock *tp = tcp_sk(sk); 2346 struct sk_buff *skb; 2347 2348 if (tp->retrans_out) 2349 return true; 2350 2351 skb = tcp_write_queue_head(sk); 2352 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2353 return true; 2354 2355 return false; 2356 } 2357 2358 #if FASTRETRANS_DEBUG > 1 2359 static void DBGUNDO(struct sock *sk, const char *msg) 2360 { 2361 struct tcp_sock *tp = tcp_sk(sk); 2362 struct inet_sock *inet = inet_sk(sk); 2363 2364 if (sk->sk_family == AF_INET) { 2365 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2366 msg, 2367 &inet->inet_daddr, ntohs(inet->inet_dport), 2368 tp->snd_cwnd, tcp_left_out(tp), 2369 tp->snd_ssthresh, tp->prior_ssthresh, 2370 tp->packets_out); 2371 } 2372 #if IS_ENABLED(CONFIG_IPV6) 2373 else if (sk->sk_family == AF_INET6) { 2374 struct ipv6_pinfo *np = inet6_sk(sk); 2375 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2376 msg, 2377 &np->daddr, ntohs(inet->inet_dport), 2378 tp->snd_cwnd, tcp_left_out(tp), 2379 tp->snd_ssthresh, tp->prior_ssthresh, 2380 tp->packets_out); 2381 } 2382 #endif 2383 } 2384 #else 2385 #define DBGUNDO(x...) do { } while (0) 2386 #endif 2387 2388 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2389 { 2390 struct tcp_sock *tp = tcp_sk(sk); 2391 2392 if (unmark_loss) { 2393 struct sk_buff *skb; 2394 2395 tcp_for_write_queue(skb, sk) { 2396 if (skb == tcp_send_head(sk)) 2397 break; 2398 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2399 } 2400 tp->lost_out = 0; 2401 tcp_clear_all_retrans_hints(tp); 2402 } 2403 2404 if (tp->prior_ssthresh) { 2405 const struct inet_connection_sock *icsk = inet_csk(sk); 2406 2407 if (icsk->icsk_ca_ops->undo_cwnd) 2408 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2409 else 2410 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2411 2412 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2413 tp->snd_ssthresh = tp->prior_ssthresh; 2414 tcp_ecn_withdraw_cwr(tp); 2415 } 2416 } else { 2417 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2418 } 2419 tp->snd_cwnd_stamp = tcp_time_stamp; 2420 tp->undo_marker = 0; 2421 } 2422 2423 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2424 { 2425 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2426 } 2427 2428 /* People celebrate: "We love our President!" */ 2429 static bool tcp_try_undo_recovery(struct sock *sk) 2430 { 2431 struct tcp_sock *tp = tcp_sk(sk); 2432 2433 if (tcp_may_undo(tp)) { 2434 int mib_idx; 2435 2436 /* Happy end! We did not retransmit anything 2437 * or our original transmission succeeded. 2438 */ 2439 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2440 tcp_undo_cwnd_reduction(sk, false); 2441 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2442 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2443 else 2444 mib_idx = LINUX_MIB_TCPFULLUNDO; 2445 2446 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2447 } 2448 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2449 /* Hold old state until something *above* high_seq 2450 * is ACKed. For Reno it is MUST to prevent false 2451 * fast retransmits (RFC2582). SACK TCP is safe. */ 2452 tcp_moderate_cwnd(tp); 2453 if (!tcp_any_retrans_done(sk)) 2454 tp->retrans_stamp = 0; 2455 return true; 2456 } 2457 tcp_set_ca_state(sk, TCP_CA_Open); 2458 return false; 2459 } 2460 2461 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2462 static bool tcp_try_undo_dsack(struct sock *sk) 2463 { 2464 struct tcp_sock *tp = tcp_sk(sk); 2465 2466 if (tp->undo_marker && !tp->undo_retrans) { 2467 DBGUNDO(sk, "D-SACK"); 2468 tcp_undo_cwnd_reduction(sk, false); 2469 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2470 return true; 2471 } 2472 return false; 2473 } 2474 2475 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2476 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2477 { 2478 struct tcp_sock *tp = tcp_sk(sk); 2479 2480 if (frto_undo || tcp_may_undo(tp)) { 2481 tcp_undo_cwnd_reduction(sk, true); 2482 2483 DBGUNDO(sk, "partial loss"); 2484 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2485 if (frto_undo) 2486 NET_INC_STATS_BH(sock_net(sk), 2487 LINUX_MIB_TCPSPURIOUSRTOS); 2488 inet_csk(sk)->icsk_retransmits = 0; 2489 if (frto_undo || tcp_is_sack(tp)) 2490 tcp_set_ca_state(sk, TCP_CA_Open); 2491 return true; 2492 } 2493 return false; 2494 } 2495 2496 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2497 * It computes the number of packets to send (sndcnt) based on packets newly 2498 * delivered: 2499 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2500 * cwnd reductions across a full RTT. 2501 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2502 * But when the retransmits are acked without further losses, PRR 2503 * slow starts cwnd up to ssthresh to speed up the recovery. 2504 */ 2505 static void tcp_init_cwnd_reduction(struct sock *sk) 2506 { 2507 struct tcp_sock *tp = tcp_sk(sk); 2508 2509 tp->high_seq = tp->snd_nxt; 2510 tp->tlp_high_seq = 0; 2511 tp->snd_cwnd_cnt = 0; 2512 tp->prior_cwnd = tp->snd_cwnd; 2513 tp->prr_delivered = 0; 2514 tp->prr_out = 0; 2515 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2516 tcp_ecn_queue_cwr(tp); 2517 } 2518 2519 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, 2520 int fast_rexmit, int flag) 2521 { 2522 struct tcp_sock *tp = tcp_sk(sk); 2523 int sndcnt = 0; 2524 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2525 int newly_acked_sacked = prior_unsacked - 2526 (tp->packets_out - tp->sacked_out); 2527 2528 tp->prr_delivered += newly_acked_sacked; 2529 if (delta < 0) { 2530 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2531 tp->prior_cwnd - 1; 2532 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2533 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2534 !(flag & FLAG_LOST_RETRANS)) { 2535 sndcnt = min_t(int, delta, 2536 max_t(int, tp->prr_delivered - tp->prr_out, 2537 newly_acked_sacked) + 1); 2538 } else { 2539 sndcnt = min(delta, newly_acked_sacked); 2540 } 2541 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2542 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2543 } 2544 2545 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2546 { 2547 struct tcp_sock *tp = tcp_sk(sk); 2548 2549 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2550 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2551 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2552 tp->snd_cwnd = tp->snd_ssthresh; 2553 tp->snd_cwnd_stamp = tcp_time_stamp; 2554 } 2555 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2556 } 2557 2558 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2559 void tcp_enter_cwr(struct sock *sk) 2560 { 2561 struct tcp_sock *tp = tcp_sk(sk); 2562 2563 tp->prior_ssthresh = 0; 2564 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2565 tp->undo_marker = 0; 2566 tcp_init_cwnd_reduction(sk); 2567 tcp_set_ca_state(sk, TCP_CA_CWR); 2568 } 2569 } 2570 EXPORT_SYMBOL(tcp_enter_cwr); 2571 2572 static void tcp_try_keep_open(struct sock *sk) 2573 { 2574 struct tcp_sock *tp = tcp_sk(sk); 2575 int state = TCP_CA_Open; 2576 2577 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2578 state = TCP_CA_Disorder; 2579 2580 if (inet_csk(sk)->icsk_ca_state != state) { 2581 tcp_set_ca_state(sk, state); 2582 tp->high_seq = tp->snd_nxt; 2583 } 2584 } 2585 2586 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) 2587 { 2588 struct tcp_sock *tp = tcp_sk(sk); 2589 2590 tcp_verify_left_out(tp); 2591 2592 if (!tcp_any_retrans_done(sk)) 2593 tp->retrans_stamp = 0; 2594 2595 if (flag & FLAG_ECE) 2596 tcp_enter_cwr(sk); 2597 2598 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2599 tcp_try_keep_open(sk); 2600 } else { 2601 tcp_cwnd_reduction(sk, prior_unsacked, 0, flag); 2602 } 2603 } 2604 2605 static void tcp_mtup_probe_failed(struct sock *sk) 2606 { 2607 struct inet_connection_sock *icsk = inet_csk(sk); 2608 2609 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2610 icsk->icsk_mtup.probe_size = 0; 2611 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2612 } 2613 2614 static void tcp_mtup_probe_success(struct sock *sk) 2615 { 2616 struct tcp_sock *tp = tcp_sk(sk); 2617 struct inet_connection_sock *icsk = inet_csk(sk); 2618 2619 /* FIXME: breaks with very large cwnd */ 2620 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2621 tp->snd_cwnd = tp->snd_cwnd * 2622 tcp_mss_to_mtu(sk, tp->mss_cache) / 2623 icsk->icsk_mtup.probe_size; 2624 tp->snd_cwnd_cnt = 0; 2625 tp->snd_cwnd_stamp = tcp_time_stamp; 2626 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2627 2628 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2629 icsk->icsk_mtup.probe_size = 0; 2630 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2631 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2632 } 2633 2634 /* Do a simple retransmit without using the backoff mechanisms in 2635 * tcp_timer. This is used for path mtu discovery. 2636 * The socket is already locked here. 2637 */ 2638 void tcp_simple_retransmit(struct sock *sk) 2639 { 2640 const struct inet_connection_sock *icsk = inet_csk(sk); 2641 struct tcp_sock *tp = tcp_sk(sk); 2642 struct sk_buff *skb; 2643 unsigned int mss = tcp_current_mss(sk); 2644 u32 prior_lost = tp->lost_out; 2645 2646 tcp_for_write_queue(skb, sk) { 2647 if (skb == tcp_send_head(sk)) 2648 break; 2649 if (tcp_skb_seglen(skb) > mss && 2650 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2651 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2652 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2653 tp->retrans_out -= tcp_skb_pcount(skb); 2654 } 2655 tcp_skb_mark_lost_uncond_verify(tp, skb); 2656 } 2657 } 2658 2659 tcp_clear_retrans_hints_partial(tp); 2660 2661 if (prior_lost == tp->lost_out) 2662 return; 2663 2664 if (tcp_is_reno(tp)) 2665 tcp_limit_reno_sacked(tp); 2666 2667 tcp_verify_left_out(tp); 2668 2669 /* Don't muck with the congestion window here. 2670 * Reason is that we do not increase amount of _data_ 2671 * in network, but units changed and effective 2672 * cwnd/ssthresh really reduced now. 2673 */ 2674 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2675 tp->high_seq = tp->snd_nxt; 2676 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2677 tp->prior_ssthresh = 0; 2678 tp->undo_marker = 0; 2679 tcp_set_ca_state(sk, TCP_CA_Loss); 2680 } 2681 tcp_xmit_retransmit_queue(sk); 2682 } 2683 EXPORT_SYMBOL(tcp_simple_retransmit); 2684 2685 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2686 { 2687 struct tcp_sock *tp = tcp_sk(sk); 2688 int mib_idx; 2689 2690 if (tcp_is_reno(tp)) 2691 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2692 else 2693 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2694 2695 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2696 2697 tp->prior_ssthresh = 0; 2698 tcp_init_undo(tp); 2699 2700 if (!tcp_in_cwnd_reduction(sk)) { 2701 if (!ece_ack) 2702 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2703 tcp_init_cwnd_reduction(sk); 2704 } 2705 tcp_set_ca_state(sk, TCP_CA_Recovery); 2706 } 2707 2708 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2709 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2710 */ 2711 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) 2712 { 2713 struct tcp_sock *tp = tcp_sk(sk); 2714 bool recovered = !before(tp->snd_una, tp->high_seq); 2715 2716 if ((flag & FLAG_SND_UNA_ADVANCED) && 2717 tcp_try_undo_loss(sk, false)) 2718 return; 2719 2720 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2721 /* Step 3.b. A timeout is spurious if not all data are 2722 * lost, i.e., never-retransmitted data are (s)acked. 2723 */ 2724 if ((flag & FLAG_ORIG_SACK_ACKED) && 2725 tcp_try_undo_loss(sk, true)) 2726 return; 2727 2728 if (after(tp->snd_nxt, tp->high_seq)) { 2729 if (flag & FLAG_DATA_SACKED || is_dupack) 2730 tp->frto = 0; /* Step 3.a. loss was real */ 2731 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2732 tp->high_seq = tp->snd_nxt; 2733 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 2734 TCP_NAGLE_OFF); 2735 if (after(tp->snd_nxt, tp->high_seq)) 2736 return; /* Step 2.b */ 2737 tp->frto = 0; 2738 } 2739 } 2740 2741 if (recovered) { 2742 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2743 tcp_try_undo_recovery(sk); 2744 return; 2745 } 2746 if (tcp_is_reno(tp)) { 2747 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2748 * delivered. Lower inflight to clock out (re)tranmissions. 2749 */ 2750 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2751 tcp_add_reno_sack(sk); 2752 else if (flag & FLAG_SND_UNA_ADVANCED) 2753 tcp_reset_reno_sack(tp); 2754 } 2755 tcp_xmit_retransmit_queue(sk); 2756 } 2757 2758 /* Undo during fast recovery after partial ACK. */ 2759 static bool tcp_try_undo_partial(struct sock *sk, const int acked, 2760 const int prior_unsacked, int flag) 2761 { 2762 struct tcp_sock *tp = tcp_sk(sk); 2763 2764 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2765 /* Plain luck! Hole if filled with delayed 2766 * packet, rather than with a retransmit. 2767 */ 2768 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2769 2770 /* We are getting evidence that the reordering degree is higher 2771 * than we realized. If there are no retransmits out then we 2772 * can undo. Otherwise we clock out new packets but do not 2773 * mark more packets lost or retransmit more. 2774 */ 2775 if (tp->retrans_out) { 2776 tcp_cwnd_reduction(sk, prior_unsacked, 0, flag); 2777 return true; 2778 } 2779 2780 if (!tcp_any_retrans_done(sk)) 2781 tp->retrans_stamp = 0; 2782 2783 DBGUNDO(sk, "partial recovery"); 2784 tcp_undo_cwnd_reduction(sk, true); 2785 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2786 tcp_try_keep_open(sk); 2787 return true; 2788 } 2789 return false; 2790 } 2791 2792 /* Process an event, which can update packets-in-flight not trivially. 2793 * Main goal of this function is to calculate new estimate for left_out, 2794 * taking into account both packets sitting in receiver's buffer and 2795 * packets lost by network. 2796 * 2797 * Besides that it does CWND reduction, when packet loss is detected 2798 * and changes state of machine. 2799 * 2800 * It does _not_ decide what to send, it is made in function 2801 * tcp_xmit_retransmit_queue(). 2802 */ 2803 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2804 const int prior_unsacked, 2805 bool is_dupack, int flag) 2806 { 2807 struct inet_connection_sock *icsk = inet_csk(sk); 2808 struct tcp_sock *tp = tcp_sk(sk); 2809 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2810 (tcp_fackets_out(tp) > tp->reordering)); 2811 int fast_rexmit = 0; 2812 2813 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2814 tp->sacked_out = 0; 2815 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2816 tp->fackets_out = 0; 2817 2818 /* Now state machine starts. 2819 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2820 if (flag & FLAG_ECE) 2821 tp->prior_ssthresh = 0; 2822 2823 /* B. In all the states check for reneging SACKs. */ 2824 if (tcp_check_sack_reneging(sk, flag)) 2825 return; 2826 2827 /* C. Check consistency of the current state. */ 2828 tcp_verify_left_out(tp); 2829 2830 /* D. Check state exit conditions. State can be terminated 2831 * when high_seq is ACKed. */ 2832 if (icsk->icsk_ca_state == TCP_CA_Open) { 2833 WARN_ON(tp->retrans_out != 0); 2834 tp->retrans_stamp = 0; 2835 } else if (!before(tp->snd_una, tp->high_seq)) { 2836 switch (icsk->icsk_ca_state) { 2837 case TCP_CA_CWR: 2838 /* CWR is to be held something *above* high_seq 2839 * is ACKed for CWR bit to reach receiver. */ 2840 if (tp->snd_una != tp->high_seq) { 2841 tcp_end_cwnd_reduction(sk); 2842 tcp_set_ca_state(sk, TCP_CA_Open); 2843 } 2844 break; 2845 2846 case TCP_CA_Recovery: 2847 if (tcp_is_reno(tp)) 2848 tcp_reset_reno_sack(tp); 2849 if (tcp_try_undo_recovery(sk)) 2850 return; 2851 tcp_end_cwnd_reduction(sk); 2852 break; 2853 } 2854 } 2855 2856 /* E. Process state. */ 2857 switch (icsk->icsk_ca_state) { 2858 case TCP_CA_Recovery: 2859 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2860 if (tcp_is_reno(tp) && is_dupack) 2861 tcp_add_reno_sack(sk); 2862 } else { 2863 if (tcp_try_undo_partial(sk, acked, prior_unsacked, flag)) 2864 return; 2865 /* Partial ACK arrived. Force fast retransmit. */ 2866 do_lost = tcp_is_reno(tp) || 2867 tcp_fackets_out(tp) > tp->reordering; 2868 } 2869 if (tcp_try_undo_dsack(sk)) { 2870 tcp_try_keep_open(sk); 2871 return; 2872 } 2873 break; 2874 case TCP_CA_Loss: 2875 tcp_process_loss(sk, flag, is_dupack); 2876 if (icsk->icsk_ca_state != TCP_CA_Open && 2877 !(flag & FLAG_LOST_RETRANS)) 2878 return; 2879 /* Change state if cwnd is undone or retransmits are lost */ 2880 default: 2881 if (tcp_is_reno(tp)) { 2882 if (flag & FLAG_SND_UNA_ADVANCED) 2883 tcp_reset_reno_sack(tp); 2884 if (is_dupack) 2885 tcp_add_reno_sack(sk); 2886 } 2887 2888 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2889 tcp_try_undo_dsack(sk); 2890 2891 if (!tcp_time_to_recover(sk, flag)) { 2892 tcp_try_to_open(sk, flag, prior_unsacked); 2893 return; 2894 } 2895 2896 /* MTU probe failure: don't reduce cwnd */ 2897 if (icsk->icsk_ca_state < TCP_CA_CWR && 2898 icsk->icsk_mtup.probe_size && 2899 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2900 tcp_mtup_probe_failed(sk); 2901 /* Restores the reduction we did in tcp_mtup_probe() */ 2902 tp->snd_cwnd++; 2903 tcp_simple_retransmit(sk); 2904 return; 2905 } 2906 2907 /* Otherwise enter Recovery state */ 2908 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2909 fast_rexmit = 1; 2910 } 2911 2912 if (do_lost) 2913 tcp_update_scoreboard(sk, fast_rexmit); 2914 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit, flag); 2915 tcp_xmit_retransmit_queue(sk); 2916 } 2917 2918 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2919 long seq_rtt_us, long sack_rtt_us) 2920 { 2921 const struct tcp_sock *tp = tcp_sk(sk); 2922 2923 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2924 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2925 * Karn's algorithm forbids taking RTT if some retransmitted data 2926 * is acked (RFC6298). 2927 */ 2928 if (flag & FLAG_RETRANS_DATA_ACKED) 2929 seq_rtt_us = -1L; 2930 2931 if (seq_rtt_us < 0) 2932 seq_rtt_us = sack_rtt_us; 2933 2934 /* RTTM Rule: A TSecr value received in a segment is used to 2935 * update the averaged RTT measurement only if the segment 2936 * acknowledges some new data, i.e., only if it advances the 2937 * left edge of the send window. 2938 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2939 */ 2940 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2941 flag & FLAG_ACKED) 2942 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr); 2943 2944 if (seq_rtt_us < 0) 2945 return false; 2946 2947 tcp_rtt_estimator(sk, seq_rtt_us); 2948 tcp_set_rto(sk); 2949 2950 /* RFC6298: only reset backoff on valid RTT measurement. */ 2951 inet_csk(sk)->icsk_backoff = 0; 2952 return true; 2953 } 2954 2955 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2956 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp) 2957 { 2958 struct tcp_sock *tp = tcp_sk(sk); 2959 long seq_rtt_us = -1L; 2960 2961 if (synack_stamp && !tp->total_retrans) 2962 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp); 2963 2964 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets 2965 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack() 2966 */ 2967 if (!tp->srtt_us) 2968 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L); 2969 } 2970 2971 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2972 { 2973 const struct inet_connection_sock *icsk = inet_csk(sk); 2974 2975 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2976 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2977 } 2978 2979 /* Restart timer after forward progress on connection. 2980 * RFC2988 recommends to restart timer to now+rto. 2981 */ 2982 void tcp_rearm_rto(struct sock *sk) 2983 { 2984 const struct inet_connection_sock *icsk = inet_csk(sk); 2985 struct tcp_sock *tp = tcp_sk(sk); 2986 2987 /* If the retrans timer is currently being used by Fast Open 2988 * for SYN-ACK retrans purpose, stay put. 2989 */ 2990 if (tp->fastopen_rsk) 2991 return; 2992 2993 if (!tp->packets_out) { 2994 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2995 } else { 2996 u32 rto = inet_csk(sk)->icsk_rto; 2997 /* Offset the time elapsed after installing regular RTO */ 2998 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2999 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3000 struct sk_buff *skb = tcp_write_queue_head(sk); 3001 const u32 rto_time_stamp = 3002 tcp_skb_timestamp(skb) + rto; 3003 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 3004 /* delta may not be positive if the socket is locked 3005 * when the retrans timer fires and is rescheduled. 3006 */ 3007 if (delta > 0) 3008 rto = delta; 3009 } 3010 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3011 TCP_RTO_MAX); 3012 } 3013 } 3014 3015 /* This function is called when the delayed ER timer fires. TCP enters 3016 * fast recovery and performs fast-retransmit. 3017 */ 3018 void tcp_resume_early_retransmit(struct sock *sk) 3019 { 3020 struct tcp_sock *tp = tcp_sk(sk); 3021 3022 tcp_rearm_rto(sk); 3023 3024 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3025 if (!tp->do_early_retrans) 3026 return; 3027 3028 tcp_enter_recovery(sk, false); 3029 tcp_update_scoreboard(sk, 1); 3030 tcp_xmit_retransmit_queue(sk); 3031 } 3032 3033 /* If we get here, the whole TSO packet has not been acked. */ 3034 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3035 { 3036 struct tcp_sock *tp = tcp_sk(sk); 3037 u32 packets_acked; 3038 3039 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3040 3041 packets_acked = tcp_skb_pcount(skb); 3042 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3043 return 0; 3044 packets_acked -= tcp_skb_pcount(skb); 3045 3046 if (packets_acked) { 3047 BUG_ON(tcp_skb_pcount(skb) == 0); 3048 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3049 } 3050 3051 return packets_acked; 3052 } 3053 3054 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3055 u32 prior_snd_una) 3056 { 3057 const struct skb_shared_info *shinfo; 3058 3059 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3060 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK))) 3061 return; 3062 3063 shinfo = skb_shinfo(skb); 3064 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) && 3065 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1)) 3066 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3067 } 3068 3069 /* Remove acknowledged frames from the retransmission queue. If our packet 3070 * is before the ack sequence we can discard it as it's confirmed to have 3071 * arrived at the other end. 3072 */ 3073 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3074 u32 prior_snd_una, 3075 struct tcp_sacktag_state *sack) 3076 { 3077 const struct inet_connection_sock *icsk = inet_csk(sk); 3078 struct skb_mstamp first_ackt, last_ackt, now; 3079 struct tcp_sock *tp = tcp_sk(sk); 3080 u32 prior_sacked = tp->sacked_out; 3081 u32 reord = tp->packets_out; 3082 bool fully_acked = true; 3083 long sack_rtt_us = -1L; 3084 long seq_rtt_us = -1L; 3085 long ca_rtt_us = -1L; 3086 struct sk_buff *skb; 3087 u32 pkts_acked = 0; 3088 bool rtt_update; 3089 int flag = 0; 3090 3091 first_ackt.v64 = 0; 3092 3093 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3094 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3095 u8 sacked = scb->sacked; 3096 u32 acked_pcount; 3097 3098 tcp_ack_tstamp(sk, skb, prior_snd_una); 3099 3100 /* Determine how many packets and what bytes were acked, tso and else */ 3101 if (after(scb->end_seq, tp->snd_una)) { 3102 if (tcp_skb_pcount(skb) == 1 || 3103 !after(tp->snd_una, scb->seq)) 3104 break; 3105 3106 acked_pcount = tcp_tso_acked(sk, skb); 3107 if (!acked_pcount) 3108 break; 3109 3110 fully_acked = false; 3111 } else { 3112 /* Speedup tcp_unlink_write_queue() and next loop */ 3113 prefetchw(skb->next); 3114 acked_pcount = tcp_skb_pcount(skb); 3115 } 3116 3117 if (unlikely(sacked & TCPCB_RETRANS)) { 3118 if (sacked & TCPCB_SACKED_RETRANS) 3119 tp->retrans_out -= acked_pcount; 3120 flag |= FLAG_RETRANS_DATA_ACKED; 3121 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3122 last_ackt = skb->skb_mstamp; 3123 WARN_ON_ONCE(last_ackt.v64 == 0); 3124 if (!first_ackt.v64) 3125 first_ackt = last_ackt; 3126 3127 reord = min(pkts_acked, reord); 3128 if (!after(scb->end_seq, tp->high_seq)) 3129 flag |= FLAG_ORIG_SACK_ACKED; 3130 } 3131 3132 if (sacked & TCPCB_SACKED_ACKED) 3133 tp->sacked_out -= acked_pcount; 3134 if (sacked & TCPCB_LOST) 3135 tp->lost_out -= acked_pcount; 3136 3137 tp->packets_out -= acked_pcount; 3138 pkts_acked += acked_pcount; 3139 3140 /* Initial outgoing SYN's get put onto the write_queue 3141 * just like anything else we transmit. It is not 3142 * true data, and if we misinform our callers that 3143 * this ACK acks real data, we will erroneously exit 3144 * connection startup slow start one packet too 3145 * quickly. This is severely frowned upon behavior. 3146 */ 3147 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3148 flag |= FLAG_DATA_ACKED; 3149 } else { 3150 flag |= FLAG_SYN_ACKED; 3151 tp->retrans_stamp = 0; 3152 } 3153 3154 if (!fully_acked) 3155 break; 3156 3157 tcp_unlink_write_queue(skb, sk); 3158 sk_wmem_free_skb(sk, skb); 3159 if (unlikely(skb == tp->retransmit_skb_hint)) 3160 tp->retransmit_skb_hint = NULL; 3161 if (unlikely(skb == tp->lost_skb_hint)) 3162 tp->lost_skb_hint = NULL; 3163 } 3164 3165 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3166 tp->snd_up = tp->snd_una; 3167 3168 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3169 flag |= FLAG_SACK_RENEGING; 3170 3171 skb_mstamp_get(&now); 3172 if (likely(first_ackt.v64)) { 3173 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt); 3174 ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt); 3175 } 3176 if (sack->first_sackt.v64) { 3177 sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt); 3178 ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt); 3179 } 3180 3181 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us); 3182 3183 if (flag & FLAG_ACKED) { 3184 tcp_rearm_rto(sk); 3185 if (unlikely(icsk->icsk_mtup.probe_size && 3186 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3187 tcp_mtup_probe_success(sk); 3188 } 3189 3190 if (tcp_is_reno(tp)) { 3191 tcp_remove_reno_sacks(sk, pkts_acked); 3192 } else { 3193 int delta; 3194 3195 /* Non-retransmitted hole got filled? That's reordering */ 3196 if (reord < prior_fackets) 3197 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3198 3199 delta = tcp_is_fack(tp) ? pkts_acked : 3200 prior_sacked - tp->sacked_out; 3201 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3202 } 3203 3204 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3205 3206 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3207 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) { 3208 /* Do not re-arm RTO if the sack RTT is measured from data sent 3209 * after when the head was last (re)transmitted. Otherwise the 3210 * timeout may continue to extend in loss recovery. 3211 */ 3212 tcp_rearm_rto(sk); 3213 } 3214 3215 if (icsk->icsk_ca_ops->pkts_acked) 3216 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us); 3217 3218 #if FASTRETRANS_DEBUG > 0 3219 WARN_ON((int)tp->sacked_out < 0); 3220 WARN_ON((int)tp->lost_out < 0); 3221 WARN_ON((int)tp->retrans_out < 0); 3222 if (!tp->packets_out && tcp_is_sack(tp)) { 3223 icsk = inet_csk(sk); 3224 if (tp->lost_out) { 3225 pr_debug("Leak l=%u %d\n", 3226 tp->lost_out, icsk->icsk_ca_state); 3227 tp->lost_out = 0; 3228 } 3229 if (tp->sacked_out) { 3230 pr_debug("Leak s=%u %d\n", 3231 tp->sacked_out, icsk->icsk_ca_state); 3232 tp->sacked_out = 0; 3233 } 3234 if (tp->retrans_out) { 3235 pr_debug("Leak r=%u %d\n", 3236 tp->retrans_out, icsk->icsk_ca_state); 3237 tp->retrans_out = 0; 3238 } 3239 } 3240 #endif 3241 return flag; 3242 } 3243 3244 static void tcp_ack_probe(struct sock *sk) 3245 { 3246 const struct tcp_sock *tp = tcp_sk(sk); 3247 struct inet_connection_sock *icsk = inet_csk(sk); 3248 3249 /* Was it a usable window open? */ 3250 3251 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3252 icsk->icsk_backoff = 0; 3253 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3254 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3255 * This function is not for random using! 3256 */ 3257 } else { 3258 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3259 3260 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3261 when, TCP_RTO_MAX); 3262 } 3263 } 3264 3265 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3266 { 3267 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3268 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3269 } 3270 3271 /* Decide wheather to run the increase function of congestion control. */ 3272 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3273 { 3274 if (tcp_in_cwnd_reduction(sk)) 3275 return false; 3276 3277 /* If reordering is high then always grow cwnd whenever data is 3278 * delivered regardless of its ordering. Otherwise stay conservative 3279 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3280 * new SACK or ECE mark may first advance cwnd here and later reduce 3281 * cwnd in tcp_fastretrans_alert() based on more states. 3282 */ 3283 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) 3284 return flag & FLAG_FORWARD_PROGRESS; 3285 3286 return flag & FLAG_DATA_ACKED; 3287 } 3288 3289 /* Check that window update is acceptable. 3290 * The function assumes that snd_una<=ack<=snd_next. 3291 */ 3292 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3293 const u32 ack, const u32 ack_seq, 3294 const u32 nwin) 3295 { 3296 return after(ack, tp->snd_una) || 3297 after(ack_seq, tp->snd_wl1) || 3298 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3299 } 3300 3301 /* If we update tp->snd_una, also update tp->bytes_acked */ 3302 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3303 { 3304 u32 delta = ack - tp->snd_una; 3305 3306 u64_stats_update_begin(&tp->syncp); 3307 tp->bytes_acked += delta; 3308 u64_stats_update_end(&tp->syncp); 3309 tp->snd_una = ack; 3310 } 3311 3312 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3313 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3314 { 3315 u32 delta = seq - tp->rcv_nxt; 3316 3317 u64_stats_update_begin(&tp->syncp); 3318 tp->bytes_received += delta; 3319 u64_stats_update_end(&tp->syncp); 3320 tp->rcv_nxt = seq; 3321 } 3322 3323 /* Update our send window. 3324 * 3325 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3326 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3327 */ 3328 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3329 u32 ack_seq) 3330 { 3331 struct tcp_sock *tp = tcp_sk(sk); 3332 int flag = 0; 3333 u32 nwin = ntohs(tcp_hdr(skb)->window); 3334 3335 if (likely(!tcp_hdr(skb)->syn)) 3336 nwin <<= tp->rx_opt.snd_wscale; 3337 3338 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3339 flag |= FLAG_WIN_UPDATE; 3340 tcp_update_wl(tp, ack_seq); 3341 3342 if (tp->snd_wnd != nwin) { 3343 tp->snd_wnd = nwin; 3344 3345 /* Note, it is the only place, where 3346 * fast path is recovered for sending TCP. 3347 */ 3348 tp->pred_flags = 0; 3349 tcp_fast_path_check(sk); 3350 3351 if (tcp_send_head(sk)) 3352 tcp_slow_start_after_idle_check(sk); 3353 3354 if (nwin > tp->max_window) { 3355 tp->max_window = nwin; 3356 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3357 } 3358 } 3359 } 3360 3361 tcp_snd_una_update(tp, ack); 3362 3363 return flag; 3364 } 3365 3366 /* Return true if we're currently rate-limiting out-of-window ACKs and 3367 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3368 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3369 * attacks that send repeated SYNs or ACKs for the same connection. To 3370 * do this, we do not send a duplicate SYNACK or ACK if the remote 3371 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3372 */ 3373 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3374 int mib_idx, u32 *last_oow_ack_time) 3375 { 3376 /* Data packets without SYNs are not likely part of an ACK loop. */ 3377 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3378 !tcp_hdr(skb)->syn) 3379 goto not_rate_limited; 3380 3381 if (*last_oow_ack_time) { 3382 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); 3383 3384 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3385 NET_INC_STATS_BH(net, mib_idx); 3386 return true; /* rate-limited: don't send yet! */ 3387 } 3388 } 3389 3390 *last_oow_ack_time = tcp_time_stamp; 3391 3392 not_rate_limited: 3393 return false; /* not rate-limited: go ahead, send dupack now! */ 3394 } 3395 3396 /* RFC 5961 7 [ACK Throttling] */ 3397 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3398 { 3399 /* unprotected vars, we dont care of overwrites */ 3400 static u32 challenge_timestamp; 3401 static unsigned int challenge_count; 3402 struct tcp_sock *tp = tcp_sk(sk); 3403 u32 now; 3404 3405 /* First check our per-socket dupack rate limit. */ 3406 if (tcp_oow_rate_limited(sock_net(sk), skb, 3407 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3408 &tp->last_oow_ack_time)) 3409 return; 3410 3411 /* Then check the check host-wide RFC 5961 rate limit. */ 3412 now = jiffies / HZ; 3413 if (now != challenge_timestamp) { 3414 challenge_timestamp = now; 3415 challenge_count = 0; 3416 } 3417 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3418 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3419 tcp_send_ack(sk); 3420 } 3421 } 3422 3423 static void tcp_store_ts_recent(struct tcp_sock *tp) 3424 { 3425 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3426 tp->rx_opt.ts_recent_stamp = get_seconds(); 3427 } 3428 3429 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3430 { 3431 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3432 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3433 * extra check below makes sure this can only happen 3434 * for pure ACK frames. -DaveM 3435 * 3436 * Not only, also it occurs for expired timestamps. 3437 */ 3438 3439 if (tcp_paws_check(&tp->rx_opt, 0)) 3440 tcp_store_ts_recent(tp); 3441 } 3442 } 3443 3444 /* This routine deals with acks during a TLP episode. 3445 * We mark the end of a TLP episode on receiving TLP dupack or when 3446 * ack is after tlp_high_seq. 3447 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3448 */ 3449 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3450 { 3451 struct tcp_sock *tp = tcp_sk(sk); 3452 3453 if (before(ack, tp->tlp_high_seq)) 3454 return; 3455 3456 if (flag & FLAG_DSACKING_ACK) { 3457 /* This DSACK means original and TLP probe arrived; no loss */ 3458 tp->tlp_high_seq = 0; 3459 } else if (after(ack, tp->tlp_high_seq)) { 3460 /* ACK advances: there was a loss, so reduce cwnd. Reset 3461 * tlp_high_seq in tcp_init_cwnd_reduction() 3462 */ 3463 tcp_init_cwnd_reduction(sk); 3464 tcp_set_ca_state(sk, TCP_CA_CWR); 3465 tcp_end_cwnd_reduction(sk); 3466 tcp_try_keep_open(sk); 3467 NET_INC_STATS_BH(sock_net(sk), 3468 LINUX_MIB_TCPLOSSPROBERECOVERY); 3469 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3470 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3471 /* Pure dupack: original and TLP probe arrived; no loss */ 3472 tp->tlp_high_seq = 0; 3473 } 3474 } 3475 3476 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3477 { 3478 const struct inet_connection_sock *icsk = inet_csk(sk); 3479 3480 if (icsk->icsk_ca_ops->in_ack_event) 3481 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3482 } 3483 3484 /* This routine deals with incoming acks, but not outgoing ones. */ 3485 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3486 { 3487 struct inet_connection_sock *icsk = inet_csk(sk); 3488 struct tcp_sock *tp = tcp_sk(sk); 3489 struct tcp_sacktag_state sack_state; 3490 u32 prior_snd_una = tp->snd_una; 3491 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3492 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3493 bool is_dupack = false; 3494 u32 prior_fackets; 3495 int prior_packets = tp->packets_out; 3496 const int prior_unsacked = tp->packets_out - tp->sacked_out; 3497 int acked = 0; /* Number of packets newly acked */ 3498 3499 sack_state.first_sackt.v64 = 0; 3500 3501 /* We very likely will need to access write queue head. */ 3502 prefetchw(sk->sk_write_queue.next); 3503 3504 /* If the ack is older than previous acks 3505 * then we can probably ignore it. 3506 */ 3507 if (before(ack, prior_snd_una)) { 3508 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3509 if (before(ack, prior_snd_una - tp->max_window)) { 3510 tcp_send_challenge_ack(sk, skb); 3511 return -1; 3512 } 3513 goto old_ack; 3514 } 3515 3516 /* If the ack includes data we haven't sent yet, discard 3517 * this segment (RFC793 Section 3.9). 3518 */ 3519 if (after(ack, tp->snd_nxt)) 3520 goto invalid_ack; 3521 3522 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3523 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3524 tcp_rearm_rto(sk); 3525 3526 if (after(ack, prior_snd_una)) { 3527 flag |= FLAG_SND_UNA_ADVANCED; 3528 icsk->icsk_retransmits = 0; 3529 } 3530 3531 prior_fackets = tp->fackets_out; 3532 3533 /* ts_recent update must be made after we are sure that the packet 3534 * is in window. 3535 */ 3536 if (flag & FLAG_UPDATE_TS_RECENT) 3537 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3538 3539 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3540 /* Window is constant, pure forward advance. 3541 * No more checks are required. 3542 * Note, we use the fact that SND.UNA>=SND.WL2. 3543 */ 3544 tcp_update_wl(tp, ack_seq); 3545 tcp_snd_una_update(tp, ack); 3546 flag |= FLAG_WIN_UPDATE; 3547 3548 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3549 3550 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3551 } else { 3552 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3553 3554 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3555 flag |= FLAG_DATA; 3556 else 3557 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3558 3559 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3560 3561 if (TCP_SKB_CB(skb)->sacked) 3562 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3563 &sack_state); 3564 3565 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3566 flag |= FLAG_ECE; 3567 ack_ev_flags |= CA_ACK_ECE; 3568 } 3569 3570 if (flag & FLAG_WIN_UPDATE) 3571 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3572 3573 tcp_in_ack_event(sk, ack_ev_flags); 3574 } 3575 3576 /* We passed data and got it acked, remove any soft error 3577 * log. Something worked... 3578 */ 3579 sk->sk_err_soft = 0; 3580 icsk->icsk_probes_out = 0; 3581 tp->rcv_tstamp = tcp_time_stamp; 3582 if (!prior_packets) 3583 goto no_queue; 3584 3585 /* See if we can take anything off of the retransmit queue. */ 3586 acked = tp->packets_out; 3587 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, 3588 &sack_state); 3589 acked -= tp->packets_out; 3590 3591 if (tcp_ack_is_dubious(sk, flag)) { 3592 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3593 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3594 is_dupack, flag); 3595 } 3596 if (tp->tlp_high_seq) 3597 tcp_process_tlp_ack(sk, ack, flag); 3598 3599 /* Advance cwnd if state allows */ 3600 if (tcp_may_raise_cwnd(sk, flag)) 3601 tcp_cong_avoid(sk, ack, acked); 3602 3603 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3604 struct dst_entry *dst = __sk_dst_get(sk); 3605 if (dst) 3606 dst_confirm(dst); 3607 } 3608 3609 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3610 tcp_schedule_loss_probe(sk); 3611 tcp_update_pacing_rate(sk); 3612 return 1; 3613 3614 no_queue: 3615 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3616 if (flag & FLAG_DSACKING_ACK) 3617 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3618 is_dupack, flag); 3619 /* If this ack opens up a zero window, clear backoff. It was 3620 * being used to time the probes, and is probably far higher than 3621 * it needs to be for normal retransmission. 3622 */ 3623 if (tcp_send_head(sk)) 3624 tcp_ack_probe(sk); 3625 3626 if (tp->tlp_high_seq) 3627 tcp_process_tlp_ack(sk, ack, flag); 3628 return 1; 3629 3630 invalid_ack: 3631 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3632 return -1; 3633 3634 old_ack: 3635 /* If data was SACKed, tag it and see if we should send more data. 3636 * If data was DSACKed, see if we can undo a cwnd reduction. 3637 */ 3638 if (TCP_SKB_CB(skb)->sacked) { 3639 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3640 &sack_state); 3641 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3642 is_dupack, flag); 3643 } 3644 3645 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3646 return 0; 3647 } 3648 3649 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3650 bool syn, struct tcp_fastopen_cookie *foc, 3651 bool exp_opt) 3652 { 3653 /* Valid only in SYN or SYN-ACK with an even length. */ 3654 if (!foc || !syn || len < 0 || (len & 1)) 3655 return; 3656 3657 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3658 len <= TCP_FASTOPEN_COOKIE_MAX) 3659 memcpy(foc->val, cookie, len); 3660 else if (len != 0) 3661 len = -1; 3662 foc->len = len; 3663 foc->exp = exp_opt; 3664 } 3665 3666 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3667 * But, this can also be called on packets in the established flow when 3668 * the fast version below fails. 3669 */ 3670 void tcp_parse_options(const struct sk_buff *skb, 3671 struct tcp_options_received *opt_rx, int estab, 3672 struct tcp_fastopen_cookie *foc) 3673 { 3674 const unsigned char *ptr; 3675 const struct tcphdr *th = tcp_hdr(skb); 3676 int length = (th->doff * 4) - sizeof(struct tcphdr); 3677 3678 ptr = (const unsigned char *)(th + 1); 3679 opt_rx->saw_tstamp = 0; 3680 3681 while (length > 0) { 3682 int opcode = *ptr++; 3683 int opsize; 3684 3685 switch (opcode) { 3686 case TCPOPT_EOL: 3687 return; 3688 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3689 length--; 3690 continue; 3691 default: 3692 opsize = *ptr++; 3693 if (opsize < 2) /* "silly options" */ 3694 return; 3695 if (opsize > length) 3696 return; /* don't parse partial options */ 3697 switch (opcode) { 3698 case TCPOPT_MSS: 3699 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3700 u16 in_mss = get_unaligned_be16(ptr); 3701 if (in_mss) { 3702 if (opt_rx->user_mss && 3703 opt_rx->user_mss < in_mss) 3704 in_mss = opt_rx->user_mss; 3705 opt_rx->mss_clamp = in_mss; 3706 } 3707 } 3708 break; 3709 case TCPOPT_WINDOW: 3710 if (opsize == TCPOLEN_WINDOW && th->syn && 3711 !estab && sysctl_tcp_window_scaling) { 3712 __u8 snd_wscale = *(__u8 *)ptr; 3713 opt_rx->wscale_ok = 1; 3714 if (snd_wscale > 14) { 3715 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3716 __func__, 3717 snd_wscale); 3718 snd_wscale = 14; 3719 } 3720 opt_rx->snd_wscale = snd_wscale; 3721 } 3722 break; 3723 case TCPOPT_TIMESTAMP: 3724 if ((opsize == TCPOLEN_TIMESTAMP) && 3725 ((estab && opt_rx->tstamp_ok) || 3726 (!estab && sysctl_tcp_timestamps))) { 3727 opt_rx->saw_tstamp = 1; 3728 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3729 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3730 } 3731 break; 3732 case TCPOPT_SACK_PERM: 3733 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3734 !estab && sysctl_tcp_sack) { 3735 opt_rx->sack_ok = TCP_SACK_SEEN; 3736 tcp_sack_reset(opt_rx); 3737 } 3738 break; 3739 3740 case TCPOPT_SACK: 3741 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3742 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3743 opt_rx->sack_ok) { 3744 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3745 } 3746 break; 3747 #ifdef CONFIG_TCP_MD5SIG 3748 case TCPOPT_MD5SIG: 3749 /* 3750 * The MD5 Hash has already been 3751 * checked (see tcp_v{4,6}_do_rcv()). 3752 */ 3753 break; 3754 #endif 3755 case TCPOPT_FASTOPEN: 3756 tcp_parse_fastopen_option( 3757 opsize - TCPOLEN_FASTOPEN_BASE, 3758 ptr, th->syn, foc, false); 3759 break; 3760 3761 case TCPOPT_EXP: 3762 /* Fast Open option shares code 254 using a 3763 * 16 bits magic number. 3764 */ 3765 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3766 get_unaligned_be16(ptr) == 3767 TCPOPT_FASTOPEN_MAGIC) 3768 tcp_parse_fastopen_option(opsize - 3769 TCPOLEN_EXP_FASTOPEN_BASE, 3770 ptr + 2, th->syn, foc, true); 3771 break; 3772 3773 } 3774 ptr += opsize-2; 3775 length -= opsize; 3776 } 3777 } 3778 } 3779 EXPORT_SYMBOL(tcp_parse_options); 3780 3781 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3782 { 3783 const __be32 *ptr = (const __be32 *)(th + 1); 3784 3785 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3786 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3787 tp->rx_opt.saw_tstamp = 1; 3788 ++ptr; 3789 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3790 ++ptr; 3791 if (*ptr) 3792 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3793 else 3794 tp->rx_opt.rcv_tsecr = 0; 3795 return true; 3796 } 3797 return false; 3798 } 3799 3800 /* Fast parse options. This hopes to only see timestamps. 3801 * If it is wrong it falls back on tcp_parse_options(). 3802 */ 3803 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3804 const struct tcphdr *th, struct tcp_sock *tp) 3805 { 3806 /* In the spirit of fast parsing, compare doff directly to constant 3807 * values. Because equality is used, short doff can be ignored here. 3808 */ 3809 if (th->doff == (sizeof(*th) / 4)) { 3810 tp->rx_opt.saw_tstamp = 0; 3811 return false; 3812 } else if (tp->rx_opt.tstamp_ok && 3813 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3814 if (tcp_parse_aligned_timestamp(tp, th)) 3815 return true; 3816 } 3817 3818 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3819 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3820 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3821 3822 return true; 3823 } 3824 3825 #ifdef CONFIG_TCP_MD5SIG 3826 /* 3827 * Parse MD5 Signature option 3828 */ 3829 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3830 { 3831 int length = (th->doff << 2) - sizeof(*th); 3832 const u8 *ptr = (const u8 *)(th + 1); 3833 3834 /* If the TCP option is too short, we can short cut */ 3835 if (length < TCPOLEN_MD5SIG) 3836 return NULL; 3837 3838 while (length > 0) { 3839 int opcode = *ptr++; 3840 int opsize; 3841 3842 switch (opcode) { 3843 case TCPOPT_EOL: 3844 return NULL; 3845 case TCPOPT_NOP: 3846 length--; 3847 continue; 3848 default: 3849 opsize = *ptr++; 3850 if (opsize < 2 || opsize > length) 3851 return NULL; 3852 if (opcode == TCPOPT_MD5SIG) 3853 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3854 } 3855 ptr += opsize - 2; 3856 length -= opsize; 3857 } 3858 return NULL; 3859 } 3860 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3861 #endif 3862 3863 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3864 * 3865 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3866 * it can pass through stack. So, the following predicate verifies that 3867 * this segment is not used for anything but congestion avoidance or 3868 * fast retransmit. Moreover, we even are able to eliminate most of such 3869 * second order effects, if we apply some small "replay" window (~RTO) 3870 * to timestamp space. 3871 * 3872 * All these measures still do not guarantee that we reject wrapped ACKs 3873 * on networks with high bandwidth, when sequence space is recycled fastly, 3874 * but it guarantees that such events will be very rare and do not affect 3875 * connection seriously. This doesn't look nice, but alas, PAWS is really 3876 * buggy extension. 3877 * 3878 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3879 * states that events when retransmit arrives after original data are rare. 3880 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3881 * the biggest problem on large power networks even with minor reordering. 3882 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3883 * up to bandwidth of 18Gigabit/sec. 8) ] 3884 */ 3885 3886 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3887 { 3888 const struct tcp_sock *tp = tcp_sk(sk); 3889 const struct tcphdr *th = tcp_hdr(skb); 3890 u32 seq = TCP_SKB_CB(skb)->seq; 3891 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3892 3893 return (/* 1. Pure ACK with correct sequence number. */ 3894 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3895 3896 /* 2. ... and duplicate ACK. */ 3897 ack == tp->snd_una && 3898 3899 /* 3. ... and does not update window. */ 3900 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3901 3902 /* 4. ... and sits in replay window. */ 3903 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3904 } 3905 3906 static inline bool tcp_paws_discard(const struct sock *sk, 3907 const struct sk_buff *skb) 3908 { 3909 const struct tcp_sock *tp = tcp_sk(sk); 3910 3911 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3912 !tcp_disordered_ack(sk, skb); 3913 } 3914 3915 /* Check segment sequence number for validity. 3916 * 3917 * Segment controls are considered valid, if the segment 3918 * fits to the window after truncation to the window. Acceptability 3919 * of data (and SYN, FIN, of course) is checked separately. 3920 * See tcp_data_queue(), for example. 3921 * 3922 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3923 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3924 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3925 * (borrowed from freebsd) 3926 */ 3927 3928 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3929 { 3930 return !before(end_seq, tp->rcv_wup) && 3931 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3932 } 3933 3934 /* When we get a reset we do this. */ 3935 void tcp_reset(struct sock *sk) 3936 { 3937 /* We want the right error as BSD sees it (and indeed as we do). */ 3938 switch (sk->sk_state) { 3939 case TCP_SYN_SENT: 3940 sk->sk_err = ECONNREFUSED; 3941 break; 3942 case TCP_CLOSE_WAIT: 3943 sk->sk_err = EPIPE; 3944 break; 3945 case TCP_CLOSE: 3946 return; 3947 default: 3948 sk->sk_err = ECONNRESET; 3949 } 3950 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3951 smp_wmb(); 3952 3953 if (!sock_flag(sk, SOCK_DEAD)) 3954 sk->sk_error_report(sk); 3955 3956 tcp_done(sk); 3957 } 3958 3959 /* 3960 * Process the FIN bit. This now behaves as it is supposed to work 3961 * and the FIN takes effect when it is validly part of sequence 3962 * space. Not before when we get holes. 3963 * 3964 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3965 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3966 * TIME-WAIT) 3967 * 3968 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3969 * close and we go into CLOSING (and later onto TIME-WAIT) 3970 * 3971 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3972 */ 3973 static void tcp_fin(struct sock *sk) 3974 { 3975 struct tcp_sock *tp = tcp_sk(sk); 3976 3977 inet_csk_schedule_ack(sk); 3978 3979 sk->sk_shutdown |= RCV_SHUTDOWN; 3980 sock_set_flag(sk, SOCK_DONE); 3981 3982 switch (sk->sk_state) { 3983 case TCP_SYN_RECV: 3984 case TCP_ESTABLISHED: 3985 /* Move to CLOSE_WAIT */ 3986 tcp_set_state(sk, TCP_CLOSE_WAIT); 3987 inet_csk(sk)->icsk_ack.pingpong = 1; 3988 break; 3989 3990 case TCP_CLOSE_WAIT: 3991 case TCP_CLOSING: 3992 /* Received a retransmission of the FIN, do 3993 * nothing. 3994 */ 3995 break; 3996 case TCP_LAST_ACK: 3997 /* RFC793: Remain in the LAST-ACK state. */ 3998 break; 3999 4000 case TCP_FIN_WAIT1: 4001 /* This case occurs when a simultaneous close 4002 * happens, we must ack the received FIN and 4003 * enter the CLOSING state. 4004 */ 4005 tcp_send_ack(sk); 4006 tcp_set_state(sk, TCP_CLOSING); 4007 break; 4008 case TCP_FIN_WAIT2: 4009 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4010 tcp_send_ack(sk); 4011 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4012 break; 4013 default: 4014 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4015 * cases we should never reach this piece of code. 4016 */ 4017 pr_err("%s: Impossible, sk->sk_state=%d\n", 4018 __func__, sk->sk_state); 4019 break; 4020 } 4021 4022 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4023 * Probably, we should reset in this case. For now drop them. 4024 */ 4025 __skb_queue_purge(&tp->out_of_order_queue); 4026 if (tcp_is_sack(tp)) 4027 tcp_sack_reset(&tp->rx_opt); 4028 sk_mem_reclaim(sk); 4029 4030 if (!sock_flag(sk, SOCK_DEAD)) { 4031 sk->sk_state_change(sk); 4032 4033 /* Do not send POLL_HUP for half duplex close. */ 4034 if (sk->sk_shutdown == SHUTDOWN_MASK || 4035 sk->sk_state == TCP_CLOSE) 4036 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4037 else 4038 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4039 } 4040 } 4041 4042 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4043 u32 end_seq) 4044 { 4045 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4046 if (before(seq, sp->start_seq)) 4047 sp->start_seq = seq; 4048 if (after(end_seq, sp->end_seq)) 4049 sp->end_seq = end_seq; 4050 return true; 4051 } 4052 return false; 4053 } 4054 4055 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4056 { 4057 struct tcp_sock *tp = tcp_sk(sk); 4058 4059 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4060 int mib_idx; 4061 4062 if (before(seq, tp->rcv_nxt)) 4063 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4064 else 4065 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4066 4067 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4068 4069 tp->rx_opt.dsack = 1; 4070 tp->duplicate_sack[0].start_seq = seq; 4071 tp->duplicate_sack[0].end_seq = end_seq; 4072 } 4073 } 4074 4075 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4076 { 4077 struct tcp_sock *tp = tcp_sk(sk); 4078 4079 if (!tp->rx_opt.dsack) 4080 tcp_dsack_set(sk, seq, end_seq); 4081 else 4082 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4083 } 4084 4085 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4086 { 4087 struct tcp_sock *tp = tcp_sk(sk); 4088 4089 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4090 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4091 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4092 tcp_enter_quickack_mode(sk); 4093 4094 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4095 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4096 4097 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4098 end_seq = tp->rcv_nxt; 4099 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4100 } 4101 } 4102 4103 tcp_send_ack(sk); 4104 } 4105 4106 /* These routines update the SACK block as out-of-order packets arrive or 4107 * in-order packets close up the sequence space. 4108 */ 4109 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4110 { 4111 int this_sack; 4112 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4113 struct tcp_sack_block *swalk = sp + 1; 4114 4115 /* See if the recent change to the first SACK eats into 4116 * or hits the sequence space of other SACK blocks, if so coalesce. 4117 */ 4118 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4119 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4120 int i; 4121 4122 /* Zap SWALK, by moving every further SACK up by one slot. 4123 * Decrease num_sacks. 4124 */ 4125 tp->rx_opt.num_sacks--; 4126 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4127 sp[i] = sp[i + 1]; 4128 continue; 4129 } 4130 this_sack++, swalk++; 4131 } 4132 } 4133 4134 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4135 { 4136 struct tcp_sock *tp = tcp_sk(sk); 4137 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4138 int cur_sacks = tp->rx_opt.num_sacks; 4139 int this_sack; 4140 4141 if (!cur_sacks) 4142 goto new_sack; 4143 4144 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4145 if (tcp_sack_extend(sp, seq, end_seq)) { 4146 /* Rotate this_sack to the first one. */ 4147 for (; this_sack > 0; this_sack--, sp--) 4148 swap(*sp, *(sp - 1)); 4149 if (cur_sacks > 1) 4150 tcp_sack_maybe_coalesce(tp); 4151 return; 4152 } 4153 } 4154 4155 /* Could not find an adjacent existing SACK, build a new one, 4156 * put it at the front, and shift everyone else down. We 4157 * always know there is at least one SACK present already here. 4158 * 4159 * If the sack array is full, forget about the last one. 4160 */ 4161 if (this_sack >= TCP_NUM_SACKS) { 4162 this_sack--; 4163 tp->rx_opt.num_sacks--; 4164 sp--; 4165 } 4166 for (; this_sack > 0; this_sack--, sp--) 4167 *sp = *(sp - 1); 4168 4169 new_sack: 4170 /* Build the new head SACK, and we're done. */ 4171 sp->start_seq = seq; 4172 sp->end_seq = end_seq; 4173 tp->rx_opt.num_sacks++; 4174 } 4175 4176 /* RCV.NXT advances, some SACKs should be eaten. */ 4177 4178 static void tcp_sack_remove(struct tcp_sock *tp) 4179 { 4180 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4181 int num_sacks = tp->rx_opt.num_sacks; 4182 int this_sack; 4183 4184 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4185 if (skb_queue_empty(&tp->out_of_order_queue)) { 4186 tp->rx_opt.num_sacks = 0; 4187 return; 4188 } 4189 4190 for (this_sack = 0; this_sack < num_sacks;) { 4191 /* Check if the start of the sack is covered by RCV.NXT. */ 4192 if (!before(tp->rcv_nxt, sp->start_seq)) { 4193 int i; 4194 4195 /* RCV.NXT must cover all the block! */ 4196 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4197 4198 /* Zap this SACK, by moving forward any other SACKS. */ 4199 for (i = this_sack+1; i < num_sacks; i++) 4200 tp->selective_acks[i-1] = tp->selective_acks[i]; 4201 num_sacks--; 4202 continue; 4203 } 4204 this_sack++; 4205 sp++; 4206 } 4207 tp->rx_opt.num_sacks = num_sacks; 4208 } 4209 4210 /** 4211 * tcp_try_coalesce - try to merge skb to prior one 4212 * @sk: socket 4213 * @to: prior buffer 4214 * @from: buffer to add in queue 4215 * @fragstolen: pointer to boolean 4216 * 4217 * Before queueing skb @from after @to, try to merge them 4218 * to reduce overall memory use and queue lengths, if cost is small. 4219 * Packets in ofo or receive queues can stay a long time. 4220 * Better try to coalesce them right now to avoid future collapses. 4221 * Returns true if caller should free @from instead of queueing it 4222 */ 4223 static bool tcp_try_coalesce(struct sock *sk, 4224 struct sk_buff *to, 4225 struct sk_buff *from, 4226 bool *fragstolen) 4227 { 4228 int delta; 4229 4230 *fragstolen = false; 4231 4232 /* Its possible this segment overlaps with prior segment in queue */ 4233 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4234 return false; 4235 4236 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4237 return false; 4238 4239 atomic_add(delta, &sk->sk_rmem_alloc); 4240 sk_mem_charge(sk, delta); 4241 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4242 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4243 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4244 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4245 return true; 4246 } 4247 4248 /* This one checks to see if we can put data from the 4249 * out_of_order queue into the receive_queue. 4250 */ 4251 static void tcp_ofo_queue(struct sock *sk) 4252 { 4253 struct tcp_sock *tp = tcp_sk(sk); 4254 __u32 dsack_high = tp->rcv_nxt; 4255 struct sk_buff *skb, *tail; 4256 bool fragstolen, eaten; 4257 4258 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4259 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4260 break; 4261 4262 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4263 __u32 dsack = dsack_high; 4264 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4265 dsack_high = TCP_SKB_CB(skb)->end_seq; 4266 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4267 } 4268 4269 __skb_unlink(skb, &tp->out_of_order_queue); 4270 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4271 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4272 __kfree_skb(skb); 4273 continue; 4274 } 4275 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4276 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4277 TCP_SKB_CB(skb)->end_seq); 4278 4279 tail = skb_peek_tail(&sk->sk_receive_queue); 4280 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4281 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4282 if (!eaten) 4283 __skb_queue_tail(&sk->sk_receive_queue, skb); 4284 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4285 tcp_fin(sk); 4286 if (eaten) 4287 kfree_skb_partial(skb, fragstolen); 4288 } 4289 } 4290 4291 static bool tcp_prune_ofo_queue(struct sock *sk); 4292 static int tcp_prune_queue(struct sock *sk); 4293 4294 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4295 unsigned int size) 4296 { 4297 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4298 !sk_rmem_schedule(sk, skb, size)) { 4299 4300 if (tcp_prune_queue(sk) < 0) 4301 return -1; 4302 4303 if (!sk_rmem_schedule(sk, skb, size)) { 4304 if (!tcp_prune_ofo_queue(sk)) 4305 return -1; 4306 4307 if (!sk_rmem_schedule(sk, skb, size)) 4308 return -1; 4309 } 4310 } 4311 return 0; 4312 } 4313 4314 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4315 { 4316 struct tcp_sock *tp = tcp_sk(sk); 4317 struct sk_buff *skb1; 4318 u32 seq, end_seq; 4319 4320 tcp_ecn_check_ce(tp, skb); 4321 4322 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4323 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4324 __kfree_skb(skb); 4325 return; 4326 } 4327 4328 /* Disable header prediction. */ 4329 tp->pred_flags = 0; 4330 inet_csk_schedule_ack(sk); 4331 4332 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4333 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4334 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4335 4336 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4337 if (!skb1) { 4338 /* Initial out of order segment, build 1 SACK. */ 4339 if (tcp_is_sack(tp)) { 4340 tp->rx_opt.num_sacks = 1; 4341 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4342 tp->selective_acks[0].end_seq = 4343 TCP_SKB_CB(skb)->end_seq; 4344 } 4345 __skb_queue_head(&tp->out_of_order_queue, skb); 4346 goto end; 4347 } 4348 4349 seq = TCP_SKB_CB(skb)->seq; 4350 end_seq = TCP_SKB_CB(skb)->end_seq; 4351 4352 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4353 bool fragstolen; 4354 4355 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4356 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4357 } else { 4358 tcp_grow_window(sk, skb); 4359 kfree_skb_partial(skb, fragstolen); 4360 skb = NULL; 4361 } 4362 4363 if (!tp->rx_opt.num_sacks || 4364 tp->selective_acks[0].end_seq != seq) 4365 goto add_sack; 4366 4367 /* Common case: data arrive in order after hole. */ 4368 tp->selective_acks[0].end_seq = end_seq; 4369 goto end; 4370 } 4371 4372 /* Find place to insert this segment. */ 4373 while (1) { 4374 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4375 break; 4376 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4377 skb1 = NULL; 4378 break; 4379 } 4380 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4381 } 4382 4383 /* Do skb overlap to previous one? */ 4384 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4385 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4386 /* All the bits are present. Drop. */ 4387 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4388 __kfree_skb(skb); 4389 skb = NULL; 4390 tcp_dsack_set(sk, seq, end_seq); 4391 goto add_sack; 4392 } 4393 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4394 /* Partial overlap. */ 4395 tcp_dsack_set(sk, seq, 4396 TCP_SKB_CB(skb1)->end_seq); 4397 } else { 4398 if (skb_queue_is_first(&tp->out_of_order_queue, 4399 skb1)) 4400 skb1 = NULL; 4401 else 4402 skb1 = skb_queue_prev( 4403 &tp->out_of_order_queue, 4404 skb1); 4405 } 4406 } 4407 if (!skb1) 4408 __skb_queue_head(&tp->out_of_order_queue, skb); 4409 else 4410 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4411 4412 /* And clean segments covered by new one as whole. */ 4413 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4414 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4415 4416 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4417 break; 4418 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4419 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4420 end_seq); 4421 break; 4422 } 4423 __skb_unlink(skb1, &tp->out_of_order_queue); 4424 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4425 TCP_SKB_CB(skb1)->end_seq); 4426 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4427 __kfree_skb(skb1); 4428 } 4429 4430 add_sack: 4431 if (tcp_is_sack(tp)) 4432 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4433 end: 4434 if (skb) { 4435 tcp_grow_window(sk, skb); 4436 skb_set_owner_r(skb, sk); 4437 } 4438 } 4439 4440 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4441 bool *fragstolen) 4442 { 4443 int eaten; 4444 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4445 4446 __skb_pull(skb, hdrlen); 4447 eaten = (tail && 4448 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4449 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4450 if (!eaten) { 4451 __skb_queue_tail(&sk->sk_receive_queue, skb); 4452 skb_set_owner_r(skb, sk); 4453 } 4454 return eaten; 4455 } 4456 4457 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4458 { 4459 struct sk_buff *skb; 4460 bool fragstolen; 4461 4462 if (size == 0) 4463 return 0; 4464 4465 skb = alloc_skb(size, sk->sk_allocation); 4466 if (!skb) 4467 goto err; 4468 4469 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4470 goto err_free; 4471 4472 if (memcpy_from_msg(skb_put(skb, size), msg, size)) 4473 goto err_free; 4474 4475 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4476 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4477 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4478 4479 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4480 WARN_ON_ONCE(fragstolen); /* should not happen */ 4481 __kfree_skb(skb); 4482 } 4483 return size; 4484 4485 err_free: 4486 kfree_skb(skb); 4487 err: 4488 return -ENOMEM; 4489 } 4490 4491 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4492 { 4493 struct tcp_sock *tp = tcp_sk(sk); 4494 int eaten = -1; 4495 bool fragstolen = false; 4496 4497 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4498 goto drop; 4499 4500 skb_dst_drop(skb); 4501 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4502 4503 tcp_ecn_accept_cwr(tp, skb); 4504 4505 tp->rx_opt.dsack = 0; 4506 4507 /* Queue data for delivery to the user. 4508 * Packets in sequence go to the receive queue. 4509 * Out of sequence packets to the out_of_order_queue. 4510 */ 4511 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4512 if (tcp_receive_window(tp) == 0) 4513 goto out_of_window; 4514 4515 /* Ok. In sequence. In window. */ 4516 if (tp->ucopy.task == current && 4517 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4518 sock_owned_by_user(sk) && !tp->urg_data) { 4519 int chunk = min_t(unsigned int, skb->len, 4520 tp->ucopy.len); 4521 4522 __set_current_state(TASK_RUNNING); 4523 4524 local_bh_enable(); 4525 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4526 tp->ucopy.len -= chunk; 4527 tp->copied_seq += chunk; 4528 eaten = (chunk == skb->len); 4529 tcp_rcv_space_adjust(sk); 4530 } 4531 local_bh_disable(); 4532 } 4533 4534 if (eaten <= 0) { 4535 queue_and_out: 4536 if (eaten < 0) { 4537 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4538 sk_forced_mem_schedule(sk, skb->truesize); 4539 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4540 goto drop; 4541 } 4542 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4543 } 4544 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4545 if (skb->len) 4546 tcp_event_data_recv(sk, skb); 4547 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4548 tcp_fin(sk); 4549 4550 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4551 tcp_ofo_queue(sk); 4552 4553 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4554 * gap in queue is filled. 4555 */ 4556 if (skb_queue_empty(&tp->out_of_order_queue)) 4557 inet_csk(sk)->icsk_ack.pingpong = 0; 4558 } 4559 4560 if (tp->rx_opt.num_sacks) 4561 tcp_sack_remove(tp); 4562 4563 tcp_fast_path_check(sk); 4564 4565 if (eaten > 0) 4566 kfree_skb_partial(skb, fragstolen); 4567 if (!sock_flag(sk, SOCK_DEAD)) 4568 sk->sk_data_ready(sk); 4569 return; 4570 } 4571 4572 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4573 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4574 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4575 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4576 4577 out_of_window: 4578 tcp_enter_quickack_mode(sk); 4579 inet_csk_schedule_ack(sk); 4580 drop: 4581 __kfree_skb(skb); 4582 return; 4583 } 4584 4585 /* Out of window. F.e. zero window probe. */ 4586 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4587 goto out_of_window; 4588 4589 tcp_enter_quickack_mode(sk); 4590 4591 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4592 /* Partial packet, seq < rcv_next < end_seq */ 4593 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4594 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4595 TCP_SKB_CB(skb)->end_seq); 4596 4597 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4598 4599 /* If window is closed, drop tail of packet. But after 4600 * remembering D-SACK for its head made in previous line. 4601 */ 4602 if (!tcp_receive_window(tp)) 4603 goto out_of_window; 4604 goto queue_and_out; 4605 } 4606 4607 tcp_data_queue_ofo(sk, skb); 4608 } 4609 4610 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4611 struct sk_buff_head *list) 4612 { 4613 struct sk_buff *next = NULL; 4614 4615 if (!skb_queue_is_last(list, skb)) 4616 next = skb_queue_next(list, skb); 4617 4618 __skb_unlink(skb, list); 4619 __kfree_skb(skb); 4620 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4621 4622 return next; 4623 } 4624 4625 /* Collapse contiguous sequence of skbs head..tail with 4626 * sequence numbers start..end. 4627 * 4628 * If tail is NULL, this means until the end of the list. 4629 * 4630 * Segments with FIN/SYN are not collapsed (only because this 4631 * simplifies code) 4632 */ 4633 static void 4634 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4635 struct sk_buff *head, struct sk_buff *tail, 4636 u32 start, u32 end) 4637 { 4638 struct sk_buff *skb, *n; 4639 bool end_of_skbs; 4640 4641 /* First, check that queue is collapsible and find 4642 * the point where collapsing can be useful. */ 4643 skb = head; 4644 restart: 4645 end_of_skbs = true; 4646 skb_queue_walk_from_safe(list, skb, n) { 4647 if (skb == tail) 4648 break; 4649 /* No new bits? It is possible on ofo queue. */ 4650 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4651 skb = tcp_collapse_one(sk, skb, list); 4652 if (!skb) 4653 break; 4654 goto restart; 4655 } 4656 4657 /* The first skb to collapse is: 4658 * - not SYN/FIN and 4659 * - bloated or contains data before "start" or 4660 * overlaps to the next one. 4661 */ 4662 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4663 (tcp_win_from_space(skb->truesize) > skb->len || 4664 before(TCP_SKB_CB(skb)->seq, start))) { 4665 end_of_skbs = false; 4666 break; 4667 } 4668 4669 if (!skb_queue_is_last(list, skb)) { 4670 struct sk_buff *next = skb_queue_next(list, skb); 4671 if (next != tail && 4672 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4673 end_of_skbs = false; 4674 break; 4675 } 4676 } 4677 4678 /* Decided to skip this, advance start seq. */ 4679 start = TCP_SKB_CB(skb)->end_seq; 4680 } 4681 if (end_of_skbs || 4682 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4683 return; 4684 4685 while (before(start, end)) { 4686 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4687 struct sk_buff *nskb; 4688 4689 nskb = alloc_skb(copy, GFP_ATOMIC); 4690 if (!nskb) 4691 return; 4692 4693 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4694 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4695 __skb_queue_before(list, skb, nskb); 4696 skb_set_owner_r(nskb, sk); 4697 4698 /* Copy data, releasing collapsed skbs. */ 4699 while (copy > 0) { 4700 int offset = start - TCP_SKB_CB(skb)->seq; 4701 int size = TCP_SKB_CB(skb)->end_seq - start; 4702 4703 BUG_ON(offset < 0); 4704 if (size > 0) { 4705 size = min(copy, size); 4706 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4707 BUG(); 4708 TCP_SKB_CB(nskb)->end_seq += size; 4709 copy -= size; 4710 start += size; 4711 } 4712 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4713 skb = tcp_collapse_one(sk, skb, list); 4714 if (!skb || 4715 skb == tail || 4716 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4717 return; 4718 } 4719 } 4720 } 4721 } 4722 4723 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4724 * and tcp_collapse() them until all the queue is collapsed. 4725 */ 4726 static void tcp_collapse_ofo_queue(struct sock *sk) 4727 { 4728 struct tcp_sock *tp = tcp_sk(sk); 4729 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4730 struct sk_buff *head; 4731 u32 start, end; 4732 4733 if (!skb) 4734 return; 4735 4736 start = TCP_SKB_CB(skb)->seq; 4737 end = TCP_SKB_CB(skb)->end_seq; 4738 head = skb; 4739 4740 for (;;) { 4741 struct sk_buff *next = NULL; 4742 4743 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4744 next = skb_queue_next(&tp->out_of_order_queue, skb); 4745 skb = next; 4746 4747 /* Segment is terminated when we see gap or when 4748 * we are at the end of all the queue. */ 4749 if (!skb || 4750 after(TCP_SKB_CB(skb)->seq, end) || 4751 before(TCP_SKB_CB(skb)->end_seq, start)) { 4752 tcp_collapse(sk, &tp->out_of_order_queue, 4753 head, skb, start, end); 4754 head = skb; 4755 if (!skb) 4756 break; 4757 /* Start new segment */ 4758 start = TCP_SKB_CB(skb)->seq; 4759 end = TCP_SKB_CB(skb)->end_seq; 4760 } else { 4761 if (before(TCP_SKB_CB(skb)->seq, start)) 4762 start = TCP_SKB_CB(skb)->seq; 4763 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4764 end = TCP_SKB_CB(skb)->end_seq; 4765 } 4766 } 4767 } 4768 4769 /* 4770 * Purge the out-of-order queue. 4771 * Return true if queue was pruned. 4772 */ 4773 static bool tcp_prune_ofo_queue(struct sock *sk) 4774 { 4775 struct tcp_sock *tp = tcp_sk(sk); 4776 bool res = false; 4777 4778 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4779 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4780 __skb_queue_purge(&tp->out_of_order_queue); 4781 4782 /* Reset SACK state. A conforming SACK implementation will 4783 * do the same at a timeout based retransmit. When a connection 4784 * is in a sad state like this, we care only about integrity 4785 * of the connection not performance. 4786 */ 4787 if (tp->rx_opt.sack_ok) 4788 tcp_sack_reset(&tp->rx_opt); 4789 sk_mem_reclaim(sk); 4790 res = true; 4791 } 4792 return res; 4793 } 4794 4795 /* Reduce allocated memory if we can, trying to get 4796 * the socket within its memory limits again. 4797 * 4798 * Return less than zero if we should start dropping frames 4799 * until the socket owning process reads some of the data 4800 * to stabilize the situation. 4801 */ 4802 static int tcp_prune_queue(struct sock *sk) 4803 { 4804 struct tcp_sock *tp = tcp_sk(sk); 4805 4806 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4807 4808 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4809 4810 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4811 tcp_clamp_window(sk); 4812 else if (tcp_under_memory_pressure(sk)) 4813 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4814 4815 tcp_collapse_ofo_queue(sk); 4816 if (!skb_queue_empty(&sk->sk_receive_queue)) 4817 tcp_collapse(sk, &sk->sk_receive_queue, 4818 skb_peek(&sk->sk_receive_queue), 4819 NULL, 4820 tp->copied_seq, tp->rcv_nxt); 4821 sk_mem_reclaim(sk); 4822 4823 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4824 return 0; 4825 4826 /* Collapsing did not help, destructive actions follow. 4827 * This must not ever occur. */ 4828 4829 tcp_prune_ofo_queue(sk); 4830 4831 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4832 return 0; 4833 4834 /* If we are really being abused, tell the caller to silently 4835 * drop receive data on the floor. It will get retransmitted 4836 * and hopefully then we'll have sufficient space. 4837 */ 4838 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4839 4840 /* Massive buffer overcommit. */ 4841 tp->pred_flags = 0; 4842 return -1; 4843 } 4844 4845 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4846 { 4847 const struct tcp_sock *tp = tcp_sk(sk); 4848 4849 /* If the user specified a specific send buffer setting, do 4850 * not modify it. 4851 */ 4852 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4853 return false; 4854 4855 /* If we are under global TCP memory pressure, do not expand. */ 4856 if (tcp_under_memory_pressure(sk)) 4857 return false; 4858 4859 /* If we are under soft global TCP memory pressure, do not expand. */ 4860 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4861 return false; 4862 4863 /* If we filled the congestion window, do not expand. */ 4864 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 4865 return false; 4866 4867 return true; 4868 } 4869 4870 /* When incoming ACK allowed to free some skb from write_queue, 4871 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4872 * on the exit from tcp input handler. 4873 * 4874 * PROBLEM: sndbuf expansion does not work well with largesend. 4875 */ 4876 static void tcp_new_space(struct sock *sk) 4877 { 4878 struct tcp_sock *tp = tcp_sk(sk); 4879 4880 if (tcp_should_expand_sndbuf(sk)) { 4881 tcp_sndbuf_expand(sk); 4882 tp->snd_cwnd_stamp = tcp_time_stamp; 4883 } 4884 4885 sk->sk_write_space(sk); 4886 } 4887 4888 static void tcp_check_space(struct sock *sk) 4889 { 4890 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4891 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4892 /* pairs with tcp_poll() */ 4893 smp_mb__after_atomic(); 4894 if (sk->sk_socket && 4895 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4896 tcp_new_space(sk); 4897 } 4898 } 4899 4900 static inline void tcp_data_snd_check(struct sock *sk) 4901 { 4902 tcp_push_pending_frames(sk); 4903 tcp_check_space(sk); 4904 } 4905 4906 /* 4907 * Check if sending an ack is needed. 4908 */ 4909 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4910 { 4911 struct tcp_sock *tp = tcp_sk(sk); 4912 4913 /* More than one full frame received... */ 4914 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4915 /* ... and right edge of window advances far enough. 4916 * (tcp_recvmsg() will send ACK otherwise). Or... 4917 */ 4918 __tcp_select_window(sk) >= tp->rcv_wnd) || 4919 /* We ACK each frame or... */ 4920 tcp_in_quickack_mode(sk) || 4921 /* We have out of order data. */ 4922 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4923 /* Then ack it now */ 4924 tcp_send_ack(sk); 4925 } else { 4926 /* Else, send delayed ack. */ 4927 tcp_send_delayed_ack(sk); 4928 } 4929 } 4930 4931 static inline void tcp_ack_snd_check(struct sock *sk) 4932 { 4933 if (!inet_csk_ack_scheduled(sk)) { 4934 /* We sent a data segment already. */ 4935 return; 4936 } 4937 __tcp_ack_snd_check(sk, 1); 4938 } 4939 4940 /* 4941 * This routine is only called when we have urgent data 4942 * signaled. Its the 'slow' part of tcp_urg. It could be 4943 * moved inline now as tcp_urg is only called from one 4944 * place. We handle URGent data wrong. We have to - as 4945 * BSD still doesn't use the correction from RFC961. 4946 * For 1003.1g we should support a new option TCP_STDURG to permit 4947 * either form (or just set the sysctl tcp_stdurg). 4948 */ 4949 4950 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 4951 { 4952 struct tcp_sock *tp = tcp_sk(sk); 4953 u32 ptr = ntohs(th->urg_ptr); 4954 4955 if (ptr && !sysctl_tcp_stdurg) 4956 ptr--; 4957 ptr += ntohl(th->seq); 4958 4959 /* Ignore urgent data that we've already seen and read. */ 4960 if (after(tp->copied_seq, ptr)) 4961 return; 4962 4963 /* Do not replay urg ptr. 4964 * 4965 * NOTE: interesting situation not covered by specs. 4966 * Misbehaving sender may send urg ptr, pointing to segment, 4967 * which we already have in ofo queue. We are not able to fetch 4968 * such data and will stay in TCP_URG_NOTYET until will be eaten 4969 * by recvmsg(). Seems, we are not obliged to handle such wicked 4970 * situations. But it is worth to think about possibility of some 4971 * DoSes using some hypothetical application level deadlock. 4972 */ 4973 if (before(ptr, tp->rcv_nxt)) 4974 return; 4975 4976 /* Do we already have a newer (or duplicate) urgent pointer? */ 4977 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4978 return; 4979 4980 /* Tell the world about our new urgent pointer. */ 4981 sk_send_sigurg(sk); 4982 4983 /* We may be adding urgent data when the last byte read was 4984 * urgent. To do this requires some care. We cannot just ignore 4985 * tp->copied_seq since we would read the last urgent byte again 4986 * as data, nor can we alter copied_seq until this data arrives 4987 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4988 * 4989 * NOTE. Double Dutch. Rendering to plain English: author of comment 4990 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4991 * and expect that both A and B disappear from stream. This is _wrong_. 4992 * Though this happens in BSD with high probability, this is occasional. 4993 * Any application relying on this is buggy. Note also, that fix "works" 4994 * only in this artificial test. Insert some normal data between A and B and we will 4995 * decline of BSD again. Verdict: it is better to remove to trap 4996 * buggy users. 4997 */ 4998 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4999 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5000 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5001 tp->copied_seq++; 5002 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5003 __skb_unlink(skb, &sk->sk_receive_queue); 5004 __kfree_skb(skb); 5005 } 5006 } 5007 5008 tp->urg_data = TCP_URG_NOTYET; 5009 tp->urg_seq = ptr; 5010 5011 /* Disable header prediction. */ 5012 tp->pred_flags = 0; 5013 } 5014 5015 /* This is the 'fast' part of urgent handling. */ 5016 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5017 { 5018 struct tcp_sock *tp = tcp_sk(sk); 5019 5020 /* Check if we get a new urgent pointer - normally not. */ 5021 if (th->urg) 5022 tcp_check_urg(sk, th); 5023 5024 /* Do we wait for any urgent data? - normally not... */ 5025 if (tp->urg_data == TCP_URG_NOTYET) { 5026 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5027 th->syn; 5028 5029 /* Is the urgent pointer pointing into this packet? */ 5030 if (ptr < skb->len) { 5031 u8 tmp; 5032 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5033 BUG(); 5034 tp->urg_data = TCP_URG_VALID | tmp; 5035 if (!sock_flag(sk, SOCK_DEAD)) 5036 sk->sk_data_ready(sk); 5037 } 5038 } 5039 } 5040 5041 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5042 { 5043 struct tcp_sock *tp = tcp_sk(sk); 5044 int chunk = skb->len - hlen; 5045 int err; 5046 5047 local_bh_enable(); 5048 if (skb_csum_unnecessary(skb)) 5049 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5050 else 5051 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5052 5053 if (!err) { 5054 tp->ucopy.len -= chunk; 5055 tp->copied_seq += chunk; 5056 tcp_rcv_space_adjust(sk); 5057 } 5058 5059 local_bh_disable(); 5060 return err; 5061 } 5062 5063 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5064 struct sk_buff *skb) 5065 { 5066 __sum16 result; 5067 5068 if (sock_owned_by_user(sk)) { 5069 local_bh_enable(); 5070 result = __tcp_checksum_complete(skb); 5071 local_bh_disable(); 5072 } else { 5073 result = __tcp_checksum_complete(skb); 5074 } 5075 return result; 5076 } 5077 5078 static inline bool tcp_checksum_complete_user(struct sock *sk, 5079 struct sk_buff *skb) 5080 { 5081 return !skb_csum_unnecessary(skb) && 5082 __tcp_checksum_complete_user(sk, skb); 5083 } 5084 5085 /* Does PAWS and seqno based validation of an incoming segment, flags will 5086 * play significant role here. 5087 */ 5088 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5089 const struct tcphdr *th, int syn_inerr) 5090 { 5091 struct tcp_sock *tp = tcp_sk(sk); 5092 5093 /* RFC1323: H1. Apply PAWS check first. */ 5094 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5095 tcp_paws_discard(sk, skb)) { 5096 if (!th->rst) { 5097 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5098 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5099 LINUX_MIB_TCPACKSKIPPEDPAWS, 5100 &tp->last_oow_ack_time)) 5101 tcp_send_dupack(sk, skb); 5102 goto discard; 5103 } 5104 /* Reset is accepted even if it did not pass PAWS. */ 5105 } 5106 5107 /* Step 1: check sequence number */ 5108 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5109 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5110 * (RST) segments are validated by checking their SEQ-fields." 5111 * And page 69: "If an incoming segment is not acceptable, 5112 * an acknowledgment should be sent in reply (unless the RST 5113 * bit is set, if so drop the segment and return)". 5114 */ 5115 if (!th->rst) { 5116 if (th->syn) 5117 goto syn_challenge; 5118 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5119 LINUX_MIB_TCPACKSKIPPEDSEQ, 5120 &tp->last_oow_ack_time)) 5121 tcp_send_dupack(sk, skb); 5122 } 5123 goto discard; 5124 } 5125 5126 /* Step 2: check RST bit */ 5127 if (th->rst) { 5128 /* RFC 5961 3.2 : 5129 * If sequence number exactly matches RCV.NXT, then 5130 * RESET the connection 5131 * else 5132 * Send a challenge ACK 5133 */ 5134 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5135 tcp_reset(sk); 5136 else 5137 tcp_send_challenge_ack(sk, skb); 5138 goto discard; 5139 } 5140 5141 /* step 3: check security and precedence [ignored] */ 5142 5143 /* step 4: Check for a SYN 5144 * RFC 5961 4.2 : Send a challenge ack 5145 */ 5146 if (th->syn) { 5147 syn_challenge: 5148 if (syn_inerr) 5149 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5150 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5151 tcp_send_challenge_ack(sk, skb); 5152 goto discard; 5153 } 5154 5155 return true; 5156 5157 discard: 5158 __kfree_skb(skb); 5159 return false; 5160 } 5161 5162 /* 5163 * TCP receive function for the ESTABLISHED state. 5164 * 5165 * It is split into a fast path and a slow path. The fast path is 5166 * disabled when: 5167 * - A zero window was announced from us - zero window probing 5168 * is only handled properly in the slow path. 5169 * - Out of order segments arrived. 5170 * - Urgent data is expected. 5171 * - There is no buffer space left 5172 * - Unexpected TCP flags/window values/header lengths are received 5173 * (detected by checking the TCP header against pred_flags) 5174 * - Data is sent in both directions. Fast path only supports pure senders 5175 * or pure receivers (this means either the sequence number or the ack 5176 * value must stay constant) 5177 * - Unexpected TCP option. 5178 * 5179 * When these conditions are not satisfied it drops into a standard 5180 * receive procedure patterned after RFC793 to handle all cases. 5181 * The first three cases are guaranteed by proper pred_flags setting, 5182 * the rest is checked inline. Fast processing is turned on in 5183 * tcp_data_queue when everything is OK. 5184 */ 5185 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5186 const struct tcphdr *th, unsigned int len) 5187 { 5188 struct tcp_sock *tp = tcp_sk(sk); 5189 5190 if (unlikely(!sk->sk_rx_dst)) 5191 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5192 /* 5193 * Header prediction. 5194 * The code loosely follows the one in the famous 5195 * "30 instruction TCP receive" Van Jacobson mail. 5196 * 5197 * Van's trick is to deposit buffers into socket queue 5198 * on a device interrupt, to call tcp_recv function 5199 * on the receive process context and checksum and copy 5200 * the buffer to user space. smart... 5201 * 5202 * Our current scheme is not silly either but we take the 5203 * extra cost of the net_bh soft interrupt processing... 5204 * We do checksum and copy also but from device to kernel. 5205 */ 5206 5207 tp->rx_opt.saw_tstamp = 0; 5208 5209 /* pred_flags is 0xS?10 << 16 + snd_wnd 5210 * if header_prediction is to be made 5211 * 'S' will always be tp->tcp_header_len >> 2 5212 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5213 * turn it off (when there are holes in the receive 5214 * space for instance) 5215 * PSH flag is ignored. 5216 */ 5217 5218 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5219 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5220 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5221 int tcp_header_len = tp->tcp_header_len; 5222 5223 /* Timestamp header prediction: tcp_header_len 5224 * is automatically equal to th->doff*4 due to pred_flags 5225 * match. 5226 */ 5227 5228 /* Check timestamp */ 5229 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5230 /* No? Slow path! */ 5231 if (!tcp_parse_aligned_timestamp(tp, th)) 5232 goto slow_path; 5233 5234 /* If PAWS failed, check it more carefully in slow path */ 5235 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5236 goto slow_path; 5237 5238 /* DO NOT update ts_recent here, if checksum fails 5239 * and timestamp was corrupted part, it will result 5240 * in a hung connection since we will drop all 5241 * future packets due to the PAWS test. 5242 */ 5243 } 5244 5245 if (len <= tcp_header_len) { 5246 /* Bulk data transfer: sender */ 5247 if (len == tcp_header_len) { 5248 /* Predicted packet is in window by definition. 5249 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5250 * Hence, check seq<=rcv_wup reduces to: 5251 */ 5252 if (tcp_header_len == 5253 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5254 tp->rcv_nxt == tp->rcv_wup) 5255 tcp_store_ts_recent(tp); 5256 5257 /* We know that such packets are checksummed 5258 * on entry. 5259 */ 5260 tcp_ack(sk, skb, 0); 5261 __kfree_skb(skb); 5262 tcp_data_snd_check(sk); 5263 return; 5264 } else { /* Header too small */ 5265 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5266 goto discard; 5267 } 5268 } else { 5269 int eaten = 0; 5270 bool fragstolen = false; 5271 5272 if (tp->ucopy.task == current && 5273 tp->copied_seq == tp->rcv_nxt && 5274 len - tcp_header_len <= tp->ucopy.len && 5275 sock_owned_by_user(sk)) { 5276 __set_current_state(TASK_RUNNING); 5277 5278 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5279 /* Predicted packet is in window by definition. 5280 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5281 * Hence, check seq<=rcv_wup reduces to: 5282 */ 5283 if (tcp_header_len == 5284 (sizeof(struct tcphdr) + 5285 TCPOLEN_TSTAMP_ALIGNED) && 5286 tp->rcv_nxt == tp->rcv_wup) 5287 tcp_store_ts_recent(tp); 5288 5289 tcp_rcv_rtt_measure_ts(sk, skb); 5290 5291 __skb_pull(skb, tcp_header_len); 5292 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5293 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5294 eaten = 1; 5295 } 5296 } 5297 if (!eaten) { 5298 if (tcp_checksum_complete_user(sk, skb)) 5299 goto csum_error; 5300 5301 if ((int)skb->truesize > sk->sk_forward_alloc) 5302 goto step5; 5303 5304 /* Predicted packet is in window by definition. 5305 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5306 * Hence, check seq<=rcv_wup reduces to: 5307 */ 5308 if (tcp_header_len == 5309 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5310 tp->rcv_nxt == tp->rcv_wup) 5311 tcp_store_ts_recent(tp); 5312 5313 tcp_rcv_rtt_measure_ts(sk, skb); 5314 5315 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5316 5317 /* Bulk data transfer: receiver */ 5318 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5319 &fragstolen); 5320 } 5321 5322 tcp_event_data_recv(sk, skb); 5323 5324 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5325 /* Well, only one small jumplet in fast path... */ 5326 tcp_ack(sk, skb, FLAG_DATA); 5327 tcp_data_snd_check(sk); 5328 if (!inet_csk_ack_scheduled(sk)) 5329 goto no_ack; 5330 } 5331 5332 __tcp_ack_snd_check(sk, 0); 5333 no_ack: 5334 if (eaten) 5335 kfree_skb_partial(skb, fragstolen); 5336 sk->sk_data_ready(sk); 5337 return; 5338 } 5339 } 5340 5341 slow_path: 5342 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5343 goto csum_error; 5344 5345 if (!th->ack && !th->rst && !th->syn) 5346 goto discard; 5347 5348 /* 5349 * Standard slow path. 5350 */ 5351 5352 if (!tcp_validate_incoming(sk, skb, th, 1)) 5353 return; 5354 5355 step5: 5356 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5357 goto discard; 5358 5359 tcp_rcv_rtt_measure_ts(sk, skb); 5360 5361 /* Process urgent data. */ 5362 tcp_urg(sk, skb, th); 5363 5364 /* step 7: process the segment text */ 5365 tcp_data_queue(sk, skb); 5366 5367 tcp_data_snd_check(sk); 5368 tcp_ack_snd_check(sk); 5369 return; 5370 5371 csum_error: 5372 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 5373 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5374 5375 discard: 5376 __kfree_skb(skb); 5377 } 5378 EXPORT_SYMBOL(tcp_rcv_established); 5379 5380 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5381 { 5382 struct tcp_sock *tp = tcp_sk(sk); 5383 struct inet_connection_sock *icsk = inet_csk(sk); 5384 5385 tcp_set_state(sk, TCP_ESTABLISHED); 5386 5387 if (skb) { 5388 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5389 security_inet_conn_established(sk, skb); 5390 } 5391 5392 /* Make sure socket is routed, for correct metrics. */ 5393 icsk->icsk_af_ops->rebuild_header(sk); 5394 5395 tcp_init_metrics(sk); 5396 5397 tcp_init_congestion_control(sk); 5398 5399 /* Prevent spurious tcp_cwnd_restart() on first data 5400 * packet. 5401 */ 5402 tp->lsndtime = tcp_time_stamp; 5403 5404 tcp_init_buffer_space(sk); 5405 5406 if (sock_flag(sk, SOCK_KEEPOPEN)) 5407 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5408 5409 if (!tp->rx_opt.snd_wscale) 5410 __tcp_fast_path_on(tp, tp->snd_wnd); 5411 else 5412 tp->pred_flags = 0; 5413 5414 if (!sock_flag(sk, SOCK_DEAD)) { 5415 sk->sk_state_change(sk); 5416 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5417 } 5418 } 5419 5420 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5421 struct tcp_fastopen_cookie *cookie) 5422 { 5423 struct tcp_sock *tp = tcp_sk(sk); 5424 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5425 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5426 bool syn_drop = false; 5427 5428 if (mss == tp->rx_opt.user_mss) { 5429 struct tcp_options_received opt; 5430 5431 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5432 tcp_clear_options(&opt); 5433 opt.user_mss = opt.mss_clamp = 0; 5434 tcp_parse_options(synack, &opt, 0, NULL); 5435 mss = opt.mss_clamp; 5436 } 5437 5438 if (!tp->syn_fastopen) { 5439 /* Ignore an unsolicited cookie */ 5440 cookie->len = -1; 5441 } else if (tp->total_retrans) { 5442 /* SYN timed out and the SYN-ACK neither has a cookie nor 5443 * acknowledges data. Presumably the remote received only 5444 * the retransmitted (regular) SYNs: either the original 5445 * SYN-data or the corresponding SYN-ACK was dropped. 5446 */ 5447 syn_drop = (cookie->len < 0 && data); 5448 } else if (cookie->len < 0 && !tp->syn_data) { 5449 /* We requested a cookie but didn't get it. If we did not use 5450 * the (old) exp opt format then try so next time (try_exp=1). 5451 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5452 */ 5453 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5454 } 5455 5456 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5457 5458 if (data) { /* Retransmit unacked data in SYN */ 5459 tcp_for_write_queue_from(data, sk) { 5460 if (data == tcp_send_head(sk) || 5461 __tcp_retransmit_skb(sk, data)) 5462 break; 5463 } 5464 tcp_rearm_rto(sk); 5465 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5466 return true; 5467 } 5468 tp->syn_data_acked = tp->syn_data; 5469 if (tp->syn_data_acked) 5470 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5471 return false; 5472 } 5473 5474 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5475 const struct tcphdr *th, unsigned int len) 5476 { 5477 struct inet_connection_sock *icsk = inet_csk(sk); 5478 struct tcp_sock *tp = tcp_sk(sk); 5479 struct tcp_fastopen_cookie foc = { .len = -1 }; 5480 int saved_clamp = tp->rx_opt.mss_clamp; 5481 5482 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5483 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5484 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5485 5486 if (th->ack) { 5487 /* rfc793: 5488 * "If the state is SYN-SENT then 5489 * first check the ACK bit 5490 * If the ACK bit is set 5491 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5492 * a reset (unless the RST bit is set, if so drop 5493 * the segment and return)" 5494 */ 5495 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5496 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5497 goto reset_and_undo; 5498 5499 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5500 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5501 tcp_time_stamp)) { 5502 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5503 goto reset_and_undo; 5504 } 5505 5506 /* Now ACK is acceptable. 5507 * 5508 * "If the RST bit is set 5509 * If the ACK was acceptable then signal the user "error: 5510 * connection reset", drop the segment, enter CLOSED state, 5511 * delete TCB, and return." 5512 */ 5513 5514 if (th->rst) { 5515 tcp_reset(sk); 5516 goto discard; 5517 } 5518 5519 /* rfc793: 5520 * "fifth, if neither of the SYN or RST bits is set then 5521 * drop the segment and return." 5522 * 5523 * See note below! 5524 * --ANK(990513) 5525 */ 5526 if (!th->syn) 5527 goto discard_and_undo; 5528 5529 /* rfc793: 5530 * "If the SYN bit is on ... 5531 * are acceptable then ... 5532 * (our SYN has been ACKed), change the connection 5533 * state to ESTABLISHED..." 5534 */ 5535 5536 tcp_ecn_rcv_synack(tp, th); 5537 5538 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5539 tcp_ack(sk, skb, FLAG_SLOWPATH); 5540 5541 /* Ok.. it's good. Set up sequence numbers and 5542 * move to established. 5543 */ 5544 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5545 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5546 5547 /* RFC1323: The window in SYN & SYN/ACK segments is 5548 * never scaled. 5549 */ 5550 tp->snd_wnd = ntohs(th->window); 5551 5552 if (!tp->rx_opt.wscale_ok) { 5553 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5554 tp->window_clamp = min(tp->window_clamp, 65535U); 5555 } 5556 5557 if (tp->rx_opt.saw_tstamp) { 5558 tp->rx_opt.tstamp_ok = 1; 5559 tp->tcp_header_len = 5560 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5561 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5562 tcp_store_ts_recent(tp); 5563 } else { 5564 tp->tcp_header_len = sizeof(struct tcphdr); 5565 } 5566 5567 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5568 tcp_enable_fack(tp); 5569 5570 tcp_mtup_init(sk); 5571 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5572 tcp_initialize_rcv_mss(sk); 5573 5574 /* Remember, tcp_poll() does not lock socket! 5575 * Change state from SYN-SENT only after copied_seq 5576 * is initialized. */ 5577 tp->copied_seq = tp->rcv_nxt; 5578 5579 smp_mb(); 5580 5581 tcp_finish_connect(sk, skb); 5582 5583 if ((tp->syn_fastopen || tp->syn_data) && 5584 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5585 return -1; 5586 5587 if (sk->sk_write_pending || 5588 icsk->icsk_accept_queue.rskq_defer_accept || 5589 icsk->icsk_ack.pingpong) { 5590 /* Save one ACK. Data will be ready after 5591 * several ticks, if write_pending is set. 5592 * 5593 * It may be deleted, but with this feature tcpdumps 5594 * look so _wonderfully_ clever, that I was not able 5595 * to stand against the temptation 8) --ANK 5596 */ 5597 inet_csk_schedule_ack(sk); 5598 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5599 tcp_enter_quickack_mode(sk); 5600 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5601 TCP_DELACK_MAX, TCP_RTO_MAX); 5602 5603 discard: 5604 __kfree_skb(skb); 5605 return 0; 5606 } else { 5607 tcp_send_ack(sk); 5608 } 5609 return -1; 5610 } 5611 5612 /* No ACK in the segment */ 5613 5614 if (th->rst) { 5615 /* rfc793: 5616 * "If the RST bit is set 5617 * 5618 * Otherwise (no ACK) drop the segment and return." 5619 */ 5620 5621 goto discard_and_undo; 5622 } 5623 5624 /* PAWS check. */ 5625 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5626 tcp_paws_reject(&tp->rx_opt, 0)) 5627 goto discard_and_undo; 5628 5629 if (th->syn) { 5630 /* We see SYN without ACK. It is attempt of 5631 * simultaneous connect with crossed SYNs. 5632 * Particularly, it can be connect to self. 5633 */ 5634 tcp_set_state(sk, TCP_SYN_RECV); 5635 5636 if (tp->rx_opt.saw_tstamp) { 5637 tp->rx_opt.tstamp_ok = 1; 5638 tcp_store_ts_recent(tp); 5639 tp->tcp_header_len = 5640 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5641 } else { 5642 tp->tcp_header_len = sizeof(struct tcphdr); 5643 } 5644 5645 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5646 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5647 5648 /* RFC1323: The window in SYN & SYN/ACK segments is 5649 * never scaled. 5650 */ 5651 tp->snd_wnd = ntohs(th->window); 5652 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5653 tp->max_window = tp->snd_wnd; 5654 5655 tcp_ecn_rcv_syn(tp, th); 5656 5657 tcp_mtup_init(sk); 5658 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5659 tcp_initialize_rcv_mss(sk); 5660 5661 tcp_send_synack(sk); 5662 #if 0 5663 /* Note, we could accept data and URG from this segment. 5664 * There are no obstacles to make this (except that we must 5665 * either change tcp_recvmsg() to prevent it from returning data 5666 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5667 * 5668 * However, if we ignore data in ACKless segments sometimes, 5669 * we have no reasons to accept it sometimes. 5670 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5671 * is not flawless. So, discard packet for sanity. 5672 * Uncomment this return to process the data. 5673 */ 5674 return -1; 5675 #else 5676 goto discard; 5677 #endif 5678 } 5679 /* "fifth, if neither of the SYN or RST bits is set then 5680 * drop the segment and return." 5681 */ 5682 5683 discard_and_undo: 5684 tcp_clear_options(&tp->rx_opt); 5685 tp->rx_opt.mss_clamp = saved_clamp; 5686 goto discard; 5687 5688 reset_and_undo: 5689 tcp_clear_options(&tp->rx_opt); 5690 tp->rx_opt.mss_clamp = saved_clamp; 5691 return 1; 5692 } 5693 5694 /* 5695 * This function implements the receiving procedure of RFC 793 for 5696 * all states except ESTABLISHED and TIME_WAIT. 5697 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5698 * address independent. 5699 */ 5700 5701 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5702 const struct tcphdr *th, unsigned int len) 5703 { 5704 struct tcp_sock *tp = tcp_sk(sk); 5705 struct inet_connection_sock *icsk = inet_csk(sk); 5706 struct request_sock *req; 5707 int queued = 0; 5708 bool acceptable; 5709 u32 synack_stamp; 5710 5711 tp->rx_opt.saw_tstamp = 0; 5712 5713 switch (sk->sk_state) { 5714 case TCP_CLOSE: 5715 goto discard; 5716 5717 case TCP_LISTEN: 5718 if (th->ack) 5719 return 1; 5720 5721 if (th->rst) 5722 goto discard; 5723 5724 if (th->syn) { 5725 if (th->fin) 5726 goto discard; 5727 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5728 return 1; 5729 5730 /* Now we have several options: In theory there is 5731 * nothing else in the frame. KA9Q has an option to 5732 * send data with the syn, BSD accepts data with the 5733 * syn up to the [to be] advertised window and 5734 * Solaris 2.1 gives you a protocol error. For now 5735 * we just ignore it, that fits the spec precisely 5736 * and avoids incompatibilities. It would be nice in 5737 * future to drop through and process the data. 5738 * 5739 * Now that TTCP is starting to be used we ought to 5740 * queue this data. 5741 * But, this leaves one open to an easy denial of 5742 * service attack, and SYN cookies can't defend 5743 * against this problem. So, we drop the data 5744 * in the interest of security over speed unless 5745 * it's still in use. 5746 */ 5747 kfree_skb(skb); 5748 return 0; 5749 } 5750 goto discard; 5751 5752 case TCP_SYN_SENT: 5753 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5754 if (queued >= 0) 5755 return queued; 5756 5757 /* Do step6 onward by hand. */ 5758 tcp_urg(sk, skb, th); 5759 __kfree_skb(skb); 5760 tcp_data_snd_check(sk); 5761 return 0; 5762 } 5763 5764 req = tp->fastopen_rsk; 5765 if (req) { 5766 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5767 sk->sk_state != TCP_FIN_WAIT1); 5768 5769 if (!tcp_check_req(sk, skb, req, true)) 5770 goto discard; 5771 } 5772 5773 if (!th->ack && !th->rst && !th->syn) 5774 goto discard; 5775 5776 if (!tcp_validate_incoming(sk, skb, th, 0)) 5777 return 0; 5778 5779 /* step 5: check the ACK field */ 5780 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5781 FLAG_UPDATE_TS_RECENT) > 0; 5782 5783 switch (sk->sk_state) { 5784 case TCP_SYN_RECV: 5785 if (!acceptable) 5786 return 1; 5787 5788 /* Once we leave TCP_SYN_RECV, we no longer need req 5789 * so release it. 5790 */ 5791 if (req) { 5792 synack_stamp = tcp_rsk(req)->snt_synack; 5793 tp->total_retrans = req->num_retrans; 5794 reqsk_fastopen_remove(sk, req, false); 5795 } else { 5796 synack_stamp = tp->lsndtime; 5797 /* Make sure socket is routed, for correct metrics. */ 5798 icsk->icsk_af_ops->rebuild_header(sk); 5799 tcp_init_congestion_control(sk); 5800 5801 tcp_mtup_init(sk); 5802 tp->copied_seq = tp->rcv_nxt; 5803 tcp_init_buffer_space(sk); 5804 } 5805 smp_mb(); 5806 tcp_set_state(sk, TCP_ESTABLISHED); 5807 sk->sk_state_change(sk); 5808 5809 /* Note, that this wakeup is only for marginal crossed SYN case. 5810 * Passively open sockets are not waked up, because 5811 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5812 */ 5813 if (sk->sk_socket) 5814 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5815 5816 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5817 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5818 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5819 tcp_synack_rtt_meas(sk, synack_stamp); 5820 5821 if (tp->rx_opt.tstamp_ok) 5822 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5823 5824 if (req) { 5825 /* Re-arm the timer because data may have been sent out. 5826 * This is similar to the regular data transmission case 5827 * when new data has just been ack'ed. 5828 * 5829 * (TFO) - we could try to be more aggressive and 5830 * retransmitting any data sooner based on when they 5831 * are sent out. 5832 */ 5833 tcp_rearm_rto(sk); 5834 } else 5835 tcp_init_metrics(sk); 5836 5837 tcp_update_pacing_rate(sk); 5838 5839 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5840 tp->lsndtime = tcp_time_stamp; 5841 5842 tcp_initialize_rcv_mss(sk); 5843 tcp_fast_path_on(tp); 5844 break; 5845 5846 case TCP_FIN_WAIT1: { 5847 struct dst_entry *dst; 5848 int tmo; 5849 5850 /* If we enter the TCP_FIN_WAIT1 state and we are a 5851 * Fast Open socket and this is the first acceptable 5852 * ACK we have received, this would have acknowledged 5853 * our SYNACK so stop the SYNACK timer. 5854 */ 5855 if (req) { 5856 /* Return RST if ack_seq is invalid. 5857 * Note that RFC793 only says to generate a 5858 * DUPACK for it but for TCP Fast Open it seems 5859 * better to treat this case like TCP_SYN_RECV 5860 * above. 5861 */ 5862 if (!acceptable) 5863 return 1; 5864 /* We no longer need the request sock. */ 5865 reqsk_fastopen_remove(sk, req, false); 5866 tcp_rearm_rto(sk); 5867 } 5868 if (tp->snd_una != tp->write_seq) 5869 break; 5870 5871 tcp_set_state(sk, TCP_FIN_WAIT2); 5872 sk->sk_shutdown |= SEND_SHUTDOWN; 5873 5874 dst = __sk_dst_get(sk); 5875 if (dst) 5876 dst_confirm(dst); 5877 5878 if (!sock_flag(sk, SOCK_DEAD)) { 5879 /* Wake up lingering close() */ 5880 sk->sk_state_change(sk); 5881 break; 5882 } 5883 5884 if (tp->linger2 < 0 || 5885 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5886 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5887 tcp_done(sk); 5888 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5889 return 1; 5890 } 5891 5892 tmo = tcp_fin_time(sk); 5893 if (tmo > TCP_TIMEWAIT_LEN) { 5894 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5895 } else if (th->fin || sock_owned_by_user(sk)) { 5896 /* Bad case. We could lose such FIN otherwise. 5897 * It is not a big problem, but it looks confusing 5898 * and not so rare event. We still can lose it now, 5899 * if it spins in bh_lock_sock(), but it is really 5900 * marginal case. 5901 */ 5902 inet_csk_reset_keepalive_timer(sk, tmo); 5903 } else { 5904 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5905 goto discard; 5906 } 5907 break; 5908 } 5909 5910 case TCP_CLOSING: 5911 if (tp->snd_una == tp->write_seq) { 5912 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5913 goto discard; 5914 } 5915 break; 5916 5917 case TCP_LAST_ACK: 5918 if (tp->snd_una == tp->write_seq) { 5919 tcp_update_metrics(sk); 5920 tcp_done(sk); 5921 goto discard; 5922 } 5923 break; 5924 } 5925 5926 /* step 6: check the URG bit */ 5927 tcp_urg(sk, skb, th); 5928 5929 /* step 7: process the segment text */ 5930 switch (sk->sk_state) { 5931 case TCP_CLOSE_WAIT: 5932 case TCP_CLOSING: 5933 case TCP_LAST_ACK: 5934 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5935 break; 5936 case TCP_FIN_WAIT1: 5937 case TCP_FIN_WAIT2: 5938 /* RFC 793 says to queue data in these states, 5939 * RFC 1122 says we MUST send a reset. 5940 * BSD 4.4 also does reset. 5941 */ 5942 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5943 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5944 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5945 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5946 tcp_reset(sk); 5947 return 1; 5948 } 5949 } 5950 /* Fall through */ 5951 case TCP_ESTABLISHED: 5952 tcp_data_queue(sk, skb); 5953 queued = 1; 5954 break; 5955 } 5956 5957 /* tcp_data could move socket to TIME-WAIT */ 5958 if (sk->sk_state != TCP_CLOSE) { 5959 tcp_data_snd_check(sk); 5960 tcp_ack_snd_check(sk); 5961 } 5962 5963 if (!queued) { 5964 discard: 5965 __kfree_skb(skb); 5966 } 5967 return 0; 5968 } 5969 EXPORT_SYMBOL(tcp_rcv_state_process); 5970 5971 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 5972 { 5973 struct inet_request_sock *ireq = inet_rsk(req); 5974 5975 if (family == AF_INET) 5976 net_dbg_ratelimited("drop open request from %pI4/%u\n", 5977 &ireq->ir_rmt_addr, port); 5978 #if IS_ENABLED(CONFIG_IPV6) 5979 else if (family == AF_INET6) 5980 net_dbg_ratelimited("drop open request from %pI6/%u\n", 5981 &ireq->ir_v6_rmt_addr, port); 5982 #endif 5983 } 5984 5985 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 5986 * 5987 * If we receive a SYN packet with these bits set, it means a 5988 * network is playing bad games with TOS bits. In order to 5989 * avoid possible false congestion notifications, we disable 5990 * TCP ECN negotiation. 5991 * 5992 * Exception: tcp_ca wants ECN. This is required for DCTCP 5993 * congestion control: Linux DCTCP asserts ECT on all packets, 5994 * including SYN, which is most optimal solution; however, 5995 * others, such as FreeBSD do not. 5996 */ 5997 static void tcp_ecn_create_request(struct request_sock *req, 5998 const struct sk_buff *skb, 5999 const struct sock *listen_sk, 6000 const struct dst_entry *dst) 6001 { 6002 const struct tcphdr *th = tcp_hdr(skb); 6003 const struct net *net = sock_net(listen_sk); 6004 bool th_ecn = th->ece && th->cwr; 6005 bool ect, ecn_ok; 6006 u32 ecn_ok_dst; 6007 6008 if (!th_ecn) 6009 return; 6010 6011 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6012 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6013 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6014 6015 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6016 (ecn_ok_dst & DST_FEATURE_ECN_CA)) 6017 inet_rsk(req)->ecn_ok = 1; 6018 } 6019 6020 static void tcp_openreq_init(struct request_sock *req, 6021 const struct tcp_options_received *rx_opt, 6022 struct sk_buff *skb, const struct sock *sk) 6023 { 6024 struct inet_request_sock *ireq = inet_rsk(req); 6025 6026 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6027 req->cookie_ts = 0; 6028 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6029 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6030 tcp_rsk(req)->snt_synack = tcp_time_stamp; 6031 tcp_rsk(req)->last_oow_ack_time = 0; 6032 req->mss = rx_opt->mss_clamp; 6033 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6034 ireq->tstamp_ok = rx_opt->tstamp_ok; 6035 ireq->sack_ok = rx_opt->sack_ok; 6036 ireq->snd_wscale = rx_opt->snd_wscale; 6037 ireq->wscale_ok = rx_opt->wscale_ok; 6038 ireq->acked = 0; 6039 ireq->ecn_ok = 0; 6040 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6041 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6042 ireq->ir_mark = inet_request_mark(sk, skb); 6043 } 6044 6045 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6046 struct sock *sk_listener) 6047 { 6048 struct request_sock *req = reqsk_alloc(ops, sk_listener); 6049 6050 if (req) { 6051 struct inet_request_sock *ireq = inet_rsk(req); 6052 6053 kmemcheck_annotate_bitfield(ireq, flags); 6054 ireq->opt = NULL; 6055 atomic64_set(&ireq->ir_cookie, 0); 6056 ireq->ireq_state = TCP_NEW_SYN_RECV; 6057 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6058 ireq->ireq_family = sk_listener->sk_family; 6059 } 6060 6061 return req; 6062 } 6063 EXPORT_SYMBOL(inet_reqsk_alloc); 6064 6065 /* 6066 * Return true if a syncookie should be sent 6067 */ 6068 static bool tcp_syn_flood_action(struct sock *sk, 6069 const struct sk_buff *skb, 6070 const char *proto) 6071 { 6072 const char *msg = "Dropping request"; 6073 bool want_cookie = false; 6074 struct listen_sock *lopt; 6075 6076 #ifdef CONFIG_SYN_COOKIES 6077 if (sysctl_tcp_syncookies) { 6078 msg = "Sending cookies"; 6079 want_cookie = true; 6080 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6081 } else 6082 #endif 6083 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6084 6085 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt; 6086 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) { 6087 lopt->synflood_warned = 1; 6088 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6089 proto, ntohs(tcp_hdr(skb)->dest), msg); 6090 } 6091 return want_cookie; 6092 } 6093 6094 static void tcp_reqsk_record_syn(const struct sock *sk, 6095 struct request_sock *req, 6096 const struct sk_buff *skb) 6097 { 6098 if (tcp_sk(sk)->save_syn) { 6099 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6100 u32 *copy; 6101 6102 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6103 if (copy) { 6104 copy[0] = len; 6105 memcpy(©[1], skb_network_header(skb), len); 6106 req->saved_syn = copy; 6107 } 6108 } 6109 } 6110 6111 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6112 const struct tcp_request_sock_ops *af_ops, 6113 struct sock *sk, struct sk_buff *skb) 6114 { 6115 struct tcp_options_received tmp_opt; 6116 struct request_sock *req; 6117 struct tcp_sock *tp = tcp_sk(sk); 6118 struct dst_entry *dst = NULL; 6119 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6120 bool want_cookie = false, fastopen; 6121 struct flowi fl; 6122 struct tcp_fastopen_cookie foc = { .len = -1 }; 6123 int err; 6124 6125 6126 /* TW buckets are converted to open requests without 6127 * limitations, they conserve resources and peer is 6128 * evidently real one. 6129 */ 6130 if ((sysctl_tcp_syncookies == 2 || 6131 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6132 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6133 if (!want_cookie) 6134 goto drop; 6135 } 6136 6137 6138 /* Accept backlog is full. If we have already queued enough 6139 * of warm entries in syn queue, drop request. It is better than 6140 * clogging syn queue with openreqs with exponentially increasing 6141 * timeout. 6142 */ 6143 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 6144 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6145 goto drop; 6146 } 6147 6148 req = inet_reqsk_alloc(rsk_ops, sk); 6149 if (!req) 6150 goto drop; 6151 6152 tcp_rsk(req)->af_specific = af_ops; 6153 6154 tcp_clear_options(&tmp_opt); 6155 tmp_opt.mss_clamp = af_ops->mss_clamp; 6156 tmp_opt.user_mss = tp->rx_opt.user_mss; 6157 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 6158 6159 if (want_cookie && !tmp_opt.saw_tstamp) 6160 tcp_clear_options(&tmp_opt); 6161 6162 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6163 tcp_openreq_init(req, &tmp_opt, skb, sk); 6164 6165 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6166 inet_rsk(req)->ir_iif = sk->sk_bound_dev_if; 6167 6168 af_ops->init_req(req, sk, skb); 6169 6170 if (security_inet_conn_request(sk, skb, req)) 6171 goto drop_and_free; 6172 6173 if (!want_cookie && !isn) { 6174 /* VJ's idea. We save last timestamp seen 6175 * from the destination in peer table, when entering 6176 * state TIME-WAIT, and check against it before 6177 * accepting new connection request. 6178 * 6179 * If "isn" is not zero, this request hit alive 6180 * timewait bucket, so that all the necessary checks 6181 * are made in the function processing timewait state. 6182 */ 6183 if (tcp_death_row.sysctl_tw_recycle) { 6184 bool strict; 6185 6186 dst = af_ops->route_req(sk, &fl, req, &strict); 6187 6188 if (dst && strict && 6189 !tcp_peer_is_proven(req, dst, true, 6190 tmp_opt.saw_tstamp)) { 6191 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 6192 goto drop_and_release; 6193 } 6194 } 6195 /* Kill the following clause, if you dislike this way. */ 6196 else if (!sysctl_tcp_syncookies && 6197 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6198 (sysctl_max_syn_backlog >> 2)) && 6199 !tcp_peer_is_proven(req, dst, false, 6200 tmp_opt.saw_tstamp)) { 6201 /* Without syncookies last quarter of 6202 * backlog is filled with destinations, 6203 * proven to be alive. 6204 * It means that we continue to communicate 6205 * to destinations, already remembered 6206 * to the moment of synflood. 6207 */ 6208 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6209 rsk_ops->family); 6210 goto drop_and_release; 6211 } 6212 6213 isn = af_ops->init_seq(skb); 6214 } 6215 if (!dst) { 6216 dst = af_ops->route_req(sk, &fl, req, NULL); 6217 if (!dst) 6218 goto drop_and_free; 6219 } 6220 6221 tcp_ecn_create_request(req, skb, sk, dst); 6222 6223 if (want_cookie) { 6224 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6225 req->cookie_ts = tmp_opt.tstamp_ok; 6226 if (!tmp_opt.tstamp_ok) 6227 inet_rsk(req)->ecn_ok = 0; 6228 } 6229 6230 tcp_rsk(req)->snt_isn = isn; 6231 tcp_openreq_init_rwin(req, sk, dst); 6232 fastopen = !want_cookie && 6233 tcp_try_fastopen(sk, skb, req, &foc, dst); 6234 err = af_ops->send_synack(sk, dst, &fl, req, 6235 skb_get_queue_mapping(skb), &foc); 6236 if (!fastopen) { 6237 if (err || want_cookie) 6238 goto drop_and_free; 6239 6240 tcp_rsk(req)->tfo_listener = false; 6241 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6242 } 6243 tcp_reqsk_record_syn(sk, req, skb); 6244 6245 return 0; 6246 6247 drop_and_release: 6248 dst_release(dst); 6249 drop_and_free: 6250 reqsk_free(req); 6251 drop: 6252 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 6253 return 0; 6254 } 6255 EXPORT_SYMBOL(tcp_conn_request); 6256