xref: /linux/net/ipv4/tcp_input.c (revision b3f6df9f21c6efc4641613188204aa0742bc9e22)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91 
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94 
95 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
102 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105 
106 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
109 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
110 
111 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
112 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
113 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
114 
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116 
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 
119 /* Adapt the MSS value used to make delayed ack decision to the
120  * real world.
121  */
122 static void tcp_measure_rcv_mss(struct sock *sk,
123 				const struct sk_buff *skb)
124 {
125 	struct inet_connection_sock *icsk = inet_csk(sk);
126 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
127 	unsigned int len;
128 
129 	icsk->icsk_ack.last_seg_size = 0;
130 
131 	/* skb->len may jitter because of SACKs, even if peer
132 	 * sends good full-sized frames.
133 	 */
134 	len = skb_shinfo(skb)->gso_size ?: skb->len;
135 	if (len >= icsk->icsk_ack.rcv_mss) {
136 		icsk->icsk_ack.rcv_mss = len;
137 	} else {
138 		/* Otherwise, we make more careful check taking into account,
139 		 * that SACKs block is variable.
140 		 *
141 		 * "len" is invariant segment length, including TCP header.
142 		 */
143 		len += skb->data - skb_transport_header(skb);
144 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145 		    /* If PSH is not set, packet should be
146 		     * full sized, provided peer TCP is not badly broken.
147 		     * This observation (if it is correct 8)) allows
148 		     * to handle super-low mtu links fairly.
149 		     */
150 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
152 			/* Subtract also invariant (if peer is RFC compliant),
153 			 * tcp header plus fixed timestamp option length.
154 			 * Resulting "len" is MSS free of SACK jitter.
155 			 */
156 			len -= tcp_sk(sk)->tcp_header_len;
157 			icsk->icsk_ack.last_seg_size = len;
158 			if (len == lss) {
159 				icsk->icsk_ack.rcv_mss = len;
160 				return;
161 			}
162 		}
163 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
166 	}
167 }
168 
169 static void tcp_incr_quickack(struct sock *sk)
170 {
171 	struct inet_connection_sock *icsk = inet_csk(sk);
172 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173 
174 	if (quickacks==0)
175 		quickacks=2;
176 	if (quickacks > icsk->icsk_ack.quick)
177 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 }
179 
180 void tcp_enter_quickack_mode(struct sock *sk)
181 {
182 	struct inet_connection_sock *icsk = inet_csk(sk);
183 	tcp_incr_quickack(sk);
184 	icsk->icsk_ack.pingpong = 0;
185 	icsk->icsk_ack.ato = TCP_ATO_MIN;
186 }
187 
188 /* Send ACKs quickly, if "quick" count is not exhausted
189  * and the session is not interactive.
190  */
191 
192 static inline int tcp_in_quickack_mode(const struct sock *sk)
193 {
194 	const struct inet_connection_sock *icsk = inet_csk(sk);
195 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 }
197 
198 /* Buffer size and advertised window tuning.
199  *
200  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
201  */
202 
203 static void tcp_fixup_sndbuf(struct sock *sk)
204 {
205 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
206 		     sizeof(struct sk_buff);
207 
208 	if (sk->sk_sndbuf < 3 * sndmem)
209 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
210 }
211 
212 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
213  *
214  * All tcp_full_space() is split to two parts: "network" buffer, allocated
215  * forward and advertised in receiver window (tp->rcv_wnd) and
216  * "application buffer", required to isolate scheduling/application
217  * latencies from network.
218  * window_clamp is maximal advertised window. It can be less than
219  * tcp_full_space(), in this case tcp_full_space() - window_clamp
220  * is reserved for "application" buffer. The less window_clamp is
221  * the smoother our behaviour from viewpoint of network, but the lower
222  * throughput and the higher sensitivity of the connection to losses. 8)
223  *
224  * rcv_ssthresh is more strict window_clamp used at "slow start"
225  * phase to predict further behaviour of this connection.
226  * It is used for two goals:
227  * - to enforce header prediction at sender, even when application
228  *   requires some significant "application buffer". It is check #1.
229  * - to prevent pruning of receive queue because of misprediction
230  *   of receiver window. Check #2.
231  *
232  * The scheme does not work when sender sends good segments opening
233  * window and then starts to feed us spaghetti. But it should work
234  * in common situations. Otherwise, we have to rely on queue collapsing.
235  */
236 
237 /* Slow part of check#2. */
238 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
239 {
240 	struct tcp_sock *tp = tcp_sk(sk);
241 	/* Optimize this! */
242 	int truesize = tcp_win_from_space(skb->truesize)/2;
243 	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
244 
245 	while (tp->rcv_ssthresh <= window) {
246 		if (truesize <= skb->len)
247 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
248 
249 		truesize >>= 1;
250 		window >>= 1;
251 	}
252 	return 0;
253 }
254 
255 static void tcp_grow_window(struct sock *sk,
256 			    struct sk_buff *skb)
257 {
258 	struct tcp_sock *tp = tcp_sk(sk);
259 
260 	/* Check #1 */
261 	if (tp->rcv_ssthresh < tp->window_clamp &&
262 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
263 	    !tcp_memory_pressure) {
264 		int incr;
265 
266 		/* Check #2. Increase window, if skb with such overhead
267 		 * will fit to rcvbuf in future.
268 		 */
269 		if (tcp_win_from_space(skb->truesize) <= skb->len)
270 			incr = 2*tp->advmss;
271 		else
272 			incr = __tcp_grow_window(sk, skb);
273 
274 		if (incr) {
275 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
276 			inet_csk(sk)->icsk_ack.quick |= 1;
277 		}
278 	}
279 }
280 
281 /* 3. Tuning rcvbuf, when connection enters established state. */
282 
283 static void tcp_fixup_rcvbuf(struct sock *sk)
284 {
285 	struct tcp_sock *tp = tcp_sk(sk);
286 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
287 
288 	/* Try to select rcvbuf so that 4 mss-sized segments
289 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
290 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
291 	 */
292 	while (tcp_win_from_space(rcvmem) < tp->advmss)
293 		rcvmem += 128;
294 	if (sk->sk_rcvbuf < 4 * rcvmem)
295 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
296 }
297 
298 /* 4. Try to fixup all. It is made immediately after connection enters
299  *    established state.
300  */
301 static void tcp_init_buffer_space(struct sock *sk)
302 {
303 	struct tcp_sock *tp = tcp_sk(sk);
304 	int maxwin;
305 
306 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
307 		tcp_fixup_rcvbuf(sk);
308 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
309 		tcp_fixup_sndbuf(sk);
310 
311 	tp->rcvq_space.space = tp->rcv_wnd;
312 
313 	maxwin = tcp_full_space(sk);
314 
315 	if (tp->window_clamp >= maxwin) {
316 		tp->window_clamp = maxwin;
317 
318 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
319 			tp->window_clamp = max(maxwin -
320 					       (maxwin >> sysctl_tcp_app_win),
321 					       4 * tp->advmss);
322 	}
323 
324 	/* Force reservation of one segment. */
325 	if (sysctl_tcp_app_win &&
326 	    tp->window_clamp > 2 * tp->advmss &&
327 	    tp->window_clamp + tp->advmss > maxwin)
328 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
329 
330 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
331 	tp->snd_cwnd_stamp = tcp_time_stamp;
332 }
333 
334 /* 5. Recalculate window clamp after socket hit its memory bounds. */
335 static void tcp_clamp_window(struct sock *sk)
336 {
337 	struct tcp_sock *tp = tcp_sk(sk);
338 	struct inet_connection_sock *icsk = inet_csk(sk);
339 
340 	icsk->icsk_ack.quick = 0;
341 
342 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
343 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
344 	    !tcp_memory_pressure &&
345 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
346 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
347 				    sysctl_tcp_rmem[2]);
348 	}
349 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
350 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
351 }
352 
353 
354 /* Initialize RCV_MSS value.
355  * RCV_MSS is an our guess about MSS used by the peer.
356  * We haven't any direct information about the MSS.
357  * It's better to underestimate the RCV_MSS rather than overestimate.
358  * Overestimations make us ACKing less frequently than needed.
359  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
360  */
361 void tcp_initialize_rcv_mss(struct sock *sk)
362 {
363 	struct tcp_sock *tp = tcp_sk(sk);
364 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
365 
366 	hint = min(hint, tp->rcv_wnd/2);
367 	hint = min(hint, TCP_MIN_RCVMSS);
368 	hint = max(hint, TCP_MIN_MSS);
369 
370 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
371 }
372 
373 /* Receiver "autotuning" code.
374  *
375  * The algorithm for RTT estimation w/o timestamps is based on
376  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
377  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
378  *
379  * More detail on this code can be found at
380  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
381  * though this reference is out of date.  A new paper
382  * is pending.
383  */
384 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
385 {
386 	u32 new_sample = tp->rcv_rtt_est.rtt;
387 	long m = sample;
388 
389 	if (m == 0)
390 		m = 1;
391 
392 	if (new_sample != 0) {
393 		/* If we sample in larger samples in the non-timestamp
394 		 * case, we could grossly overestimate the RTT especially
395 		 * with chatty applications or bulk transfer apps which
396 		 * are stalled on filesystem I/O.
397 		 *
398 		 * Also, since we are only going for a minimum in the
399 		 * non-timestamp case, we do not smooth things out
400 		 * else with timestamps disabled convergence takes too
401 		 * long.
402 		 */
403 		if (!win_dep) {
404 			m -= (new_sample >> 3);
405 			new_sample += m;
406 		} else if (m < new_sample)
407 			new_sample = m << 3;
408 	} else {
409 		/* No previous measure. */
410 		new_sample = m << 3;
411 	}
412 
413 	if (tp->rcv_rtt_est.rtt != new_sample)
414 		tp->rcv_rtt_est.rtt = new_sample;
415 }
416 
417 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
418 {
419 	if (tp->rcv_rtt_est.time == 0)
420 		goto new_measure;
421 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
422 		return;
423 	tcp_rcv_rtt_update(tp,
424 			   jiffies - tp->rcv_rtt_est.time,
425 			   1);
426 
427 new_measure:
428 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
429 	tp->rcv_rtt_est.time = tcp_time_stamp;
430 }
431 
432 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
433 {
434 	struct tcp_sock *tp = tcp_sk(sk);
435 	if (tp->rx_opt.rcv_tsecr &&
436 	    (TCP_SKB_CB(skb)->end_seq -
437 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
438 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
439 }
440 
441 /*
442  * This function should be called every time data is copied to user space.
443  * It calculates the appropriate TCP receive buffer space.
444  */
445 void tcp_rcv_space_adjust(struct sock *sk)
446 {
447 	struct tcp_sock *tp = tcp_sk(sk);
448 	int time;
449 	int space;
450 
451 	if (tp->rcvq_space.time == 0)
452 		goto new_measure;
453 
454 	time = tcp_time_stamp - tp->rcvq_space.time;
455 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
456 	    tp->rcv_rtt_est.rtt == 0)
457 		return;
458 
459 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
460 
461 	space = max(tp->rcvq_space.space, space);
462 
463 	if (tp->rcvq_space.space != space) {
464 		int rcvmem;
465 
466 		tp->rcvq_space.space = space;
467 
468 		if (sysctl_tcp_moderate_rcvbuf &&
469 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
470 			int new_clamp = space;
471 
472 			/* Receive space grows, normalize in order to
473 			 * take into account packet headers and sk_buff
474 			 * structure overhead.
475 			 */
476 			space /= tp->advmss;
477 			if (!space)
478 				space = 1;
479 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
480 				  16 + sizeof(struct sk_buff));
481 			while (tcp_win_from_space(rcvmem) < tp->advmss)
482 				rcvmem += 128;
483 			space *= rcvmem;
484 			space = min(space, sysctl_tcp_rmem[2]);
485 			if (space > sk->sk_rcvbuf) {
486 				sk->sk_rcvbuf = space;
487 
488 				/* Make the window clamp follow along.  */
489 				tp->window_clamp = new_clamp;
490 			}
491 		}
492 	}
493 
494 new_measure:
495 	tp->rcvq_space.seq = tp->copied_seq;
496 	tp->rcvq_space.time = tcp_time_stamp;
497 }
498 
499 /* There is something which you must keep in mind when you analyze the
500  * behavior of the tp->ato delayed ack timeout interval.  When a
501  * connection starts up, we want to ack as quickly as possible.  The
502  * problem is that "good" TCP's do slow start at the beginning of data
503  * transmission.  The means that until we send the first few ACK's the
504  * sender will sit on his end and only queue most of his data, because
505  * he can only send snd_cwnd unacked packets at any given time.  For
506  * each ACK we send, he increments snd_cwnd and transmits more of his
507  * queue.  -DaveM
508  */
509 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
510 {
511 	struct tcp_sock *tp = tcp_sk(sk);
512 	struct inet_connection_sock *icsk = inet_csk(sk);
513 	u32 now;
514 
515 	inet_csk_schedule_ack(sk);
516 
517 	tcp_measure_rcv_mss(sk, skb);
518 
519 	tcp_rcv_rtt_measure(tp);
520 
521 	now = tcp_time_stamp;
522 
523 	if (!icsk->icsk_ack.ato) {
524 		/* The _first_ data packet received, initialize
525 		 * delayed ACK engine.
526 		 */
527 		tcp_incr_quickack(sk);
528 		icsk->icsk_ack.ato = TCP_ATO_MIN;
529 	} else {
530 		int m = now - icsk->icsk_ack.lrcvtime;
531 
532 		if (m <= TCP_ATO_MIN/2) {
533 			/* The fastest case is the first. */
534 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
535 		} else if (m < icsk->icsk_ack.ato) {
536 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
537 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
538 				icsk->icsk_ack.ato = icsk->icsk_rto;
539 		} else if (m > icsk->icsk_rto) {
540 			/* Too long gap. Apparently sender failed to
541 			 * restart window, so that we send ACKs quickly.
542 			 */
543 			tcp_incr_quickack(sk);
544 			sk_stream_mem_reclaim(sk);
545 		}
546 	}
547 	icsk->icsk_ack.lrcvtime = now;
548 
549 	TCP_ECN_check_ce(tp, skb);
550 
551 	if (skb->len >= 128)
552 		tcp_grow_window(sk, skb);
553 }
554 
555 /* Called to compute a smoothed rtt estimate. The data fed to this
556  * routine either comes from timestamps, or from segments that were
557  * known _not_ to have been retransmitted [see Karn/Partridge
558  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
559  * piece by Van Jacobson.
560  * NOTE: the next three routines used to be one big routine.
561  * To save cycles in the RFC 1323 implementation it was better to break
562  * it up into three procedures. -- erics
563  */
564 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
565 {
566 	struct tcp_sock *tp = tcp_sk(sk);
567 	long m = mrtt; /* RTT */
568 
569 	/*	The following amusing code comes from Jacobson's
570 	 *	article in SIGCOMM '88.  Note that rtt and mdev
571 	 *	are scaled versions of rtt and mean deviation.
572 	 *	This is designed to be as fast as possible
573 	 *	m stands for "measurement".
574 	 *
575 	 *	On a 1990 paper the rto value is changed to:
576 	 *	RTO = rtt + 4 * mdev
577 	 *
578 	 * Funny. This algorithm seems to be very broken.
579 	 * These formulae increase RTO, when it should be decreased, increase
580 	 * too slowly, when it should be increased quickly, decrease too quickly
581 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
582 	 * does not matter how to _calculate_ it. Seems, it was trap
583 	 * that VJ failed to avoid. 8)
584 	 */
585 	if (m == 0)
586 		m = 1;
587 	if (tp->srtt != 0) {
588 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
589 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
590 		if (m < 0) {
591 			m = -m;		/* m is now abs(error) */
592 			m -= (tp->mdev >> 2);   /* similar update on mdev */
593 			/* This is similar to one of Eifel findings.
594 			 * Eifel blocks mdev updates when rtt decreases.
595 			 * This solution is a bit different: we use finer gain
596 			 * for mdev in this case (alpha*beta).
597 			 * Like Eifel it also prevents growth of rto,
598 			 * but also it limits too fast rto decreases,
599 			 * happening in pure Eifel.
600 			 */
601 			if (m > 0)
602 				m >>= 3;
603 		} else {
604 			m -= (tp->mdev >> 2);   /* similar update on mdev */
605 		}
606 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
607 		if (tp->mdev > tp->mdev_max) {
608 			tp->mdev_max = tp->mdev;
609 			if (tp->mdev_max > tp->rttvar)
610 				tp->rttvar = tp->mdev_max;
611 		}
612 		if (after(tp->snd_una, tp->rtt_seq)) {
613 			if (tp->mdev_max < tp->rttvar)
614 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
615 			tp->rtt_seq = tp->snd_nxt;
616 			tp->mdev_max = TCP_RTO_MIN;
617 		}
618 	} else {
619 		/* no previous measure. */
620 		tp->srtt = m<<3;	/* take the measured time to be rtt */
621 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
622 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
623 		tp->rtt_seq = tp->snd_nxt;
624 	}
625 }
626 
627 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
628  * routine referred to above.
629  */
630 static inline void tcp_set_rto(struct sock *sk)
631 {
632 	const struct tcp_sock *tp = tcp_sk(sk);
633 	/* Old crap is replaced with new one. 8)
634 	 *
635 	 * More seriously:
636 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
637 	 *    It cannot be less due to utterly erratic ACK generation made
638 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
639 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
640 	 *    is invisible. Actually, Linux-2.4 also generates erratic
641 	 *    ACKs in some circumstances.
642 	 */
643 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
644 
645 	/* 2. Fixups made earlier cannot be right.
646 	 *    If we do not estimate RTO correctly without them,
647 	 *    all the algo is pure shit and should be replaced
648 	 *    with correct one. It is exactly, which we pretend to do.
649 	 */
650 }
651 
652 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
653  * guarantees that rto is higher.
654  */
655 static inline void tcp_bound_rto(struct sock *sk)
656 {
657 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
658 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
659 }
660 
661 /* Save metrics learned by this TCP session.
662    This function is called only, when TCP finishes successfully
663    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
664  */
665 void tcp_update_metrics(struct sock *sk)
666 {
667 	struct tcp_sock *tp = tcp_sk(sk);
668 	struct dst_entry *dst = __sk_dst_get(sk);
669 
670 	if (sysctl_tcp_nometrics_save)
671 		return;
672 
673 	dst_confirm(dst);
674 
675 	if (dst && (dst->flags&DST_HOST)) {
676 		const struct inet_connection_sock *icsk = inet_csk(sk);
677 		int m;
678 
679 		if (icsk->icsk_backoff || !tp->srtt) {
680 			/* This session failed to estimate rtt. Why?
681 			 * Probably, no packets returned in time.
682 			 * Reset our results.
683 			 */
684 			if (!(dst_metric_locked(dst, RTAX_RTT)))
685 				dst->metrics[RTAX_RTT-1] = 0;
686 			return;
687 		}
688 
689 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
690 
691 		/* If newly calculated rtt larger than stored one,
692 		 * store new one. Otherwise, use EWMA. Remember,
693 		 * rtt overestimation is always better than underestimation.
694 		 */
695 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
696 			if (m <= 0)
697 				dst->metrics[RTAX_RTT-1] = tp->srtt;
698 			else
699 				dst->metrics[RTAX_RTT-1] -= (m>>3);
700 		}
701 
702 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
703 			if (m < 0)
704 				m = -m;
705 
706 			/* Scale deviation to rttvar fixed point */
707 			m >>= 1;
708 			if (m < tp->mdev)
709 				m = tp->mdev;
710 
711 			if (m >= dst_metric(dst, RTAX_RTTVAR))
712 				dst->metrics[RTAX_RTTVAR-1] = m;
713 			else
714 				dst->metrics[RTAX_RTTVAR-1] -=
715 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
716 		}
717 
718 		if (tp->snd_ssthresh >= 0xFFFF) {
719 			/* Slow start still did not finish. */
720 			if (dst_metric(dst, RTAX_SSTHRESH) &&
721 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
722 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
723 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
724 			if (!dst_metric_locked(dst, RTAX_CWND) &&
725 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
726 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
727 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
728 			   icsk->icsk_ca_state == TCP_CA_Open) {
729 			/* Cong. avoidance phase, cwnd is reliable. */
730 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
731 				dst->metrics[RTAX_SSTHRESH-1] =
732 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
733 			if (!dst_metric_locked(dst, RTAX_CWND))
734 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
735 		} else {
736 			/* Else slow start did not finish, cwnd is non-sense,
737 			   ssthresh may be also invalid.
738 			 */
739 			if (!dst_metric_locked(dst, RTAX_CWND))
740 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
741 			if (dst->metrics[RTAX_SSTHRESH-1] &&
742 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
743 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
744 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
745 		}
746 
747 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
748 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
749 			    tp->reordering != sysctl_tcp_reordering)
750 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
751 		}
752 	}
753 }
754 
755 /* Numbers are taken from RFC2414.  */
756 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
757 {
758 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
759 
760 	if (!cwnd) {
761 		if (tp->mss_cache > 1460)
762 			cwnd = 2;
763 		else
764 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
765 	}
766 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
767 }
768 
769 /* Set slow start threshold and cwnd not falling to slow start */
770 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
771 {
772 	struct tcp_sock *tp = tcp_sk(sk);
773 	const struct inet_connection_sock *icsk = inet_csk(sk);
774 
775 	tp->prior_ssthresh = 0;
776 	tp->bytes_acked = 0;
777 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
778 		tp->undo_marker = 0;
779 		if (set_ssthresh)
780 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
781 		tp->snd_cwnd = min(tp->snd_cwnd,
782 				   tcp_packets_in_flight(tp) + 1U);
783 		tp->snd_cwnd_cnt = 0;
784 		tp->high_seq = tp->snd_nxt;
785 		tp->snd_cwnd_stamp = tcp_time_stamp;
786 		TCP_ECN_queue_cwr(tp);
787 
788 		tcp_set_ca_state(sk, TCP_CA_CWR);
789 	}
790 }
791 
792 /* Initialize metrics on socket. */
793 
794 static void tcp_init_metrics(struct sock *sk)
795 {
796 	struct tcp_sock *tp = tcp_sk(sk);
797 	struct dst_entry *dst = __sk_dst_get(sk);
798 
799 	if (dst == NULL)
800 		goto reset;
801 
802 	dst_confirm(dst);
803 
804 	if (dst_metric_locked(dst, RTAX_CWND))
805 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
806 	if (dst_metric(dst, RTAX_SSTHRESH)) {
807 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
808 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
809 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
810 	}
811 	if (dst_metric(dst, RTAX_REORDERING) &&
812 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
813 		tp->rx_opt.sack_ok &= ~2;
814 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
815 	}
816 
817 	if (dst_metric(dst, RTAX_RTT) == 0)
818 		goto reset;
819 
820 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
821 		goto reset;
822 
823 	/* Initial rtt is determined from SYN,SYN-ACK.
824 	 * The segment is small and rtt may appear much
825 	 * less than real one. Use per-dst memory
826 	 * to make it more realistic.
827 	 *
828 	 * A bit of theory. RTT is time passed after "normal" sized packet
829 	 * is sent until it is ACKed. In normal circumstances sending small
830 	 * packets force peer to delay ACKs and calculation is correct too.
831 	 * The algorithm is adaptive and, provided we follow specs, it
832 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
833 	 * tricks sort of "quick acks" for time long enough to decrease RTT
834 	 * to low value, and then abruptly stops to do it and starts to delay
835 	 * ACKs, wait for troubles.
836 	 */
837 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
838 		tp->srtt = dst_metric(dst, RTAX_RTT);
839 		tp->rtt_seq = tp->snd_nxt;
840 	}
841 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
842 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
843 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
844 	}
845 	tcp_set_rto(sk);
846 	tcp_bound_rto(sk);
847 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
848 		goto reset;
849 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
850 	tp->snd_cwnd_stamp = tcp_time_stamp;
851 	return;
852 
853 reset:
854 	/* Play conservative. If timestamps are not
855 	 * supported, TCP will fail to recalculate correct
856 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
857 	 */
858 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
859 		tp->srtt = 0;
860 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
861 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
862 	}
863 }
864 
865 static void tcp_update_reordering(struct sock *sk, const int metric,
866 				  const int ts)
867 {
868 	struct tcp_sock *tp = tcp_sk(sk);
869 	if (metric > tp->reordering) {
870 		tp->reordering = min(TCP_MAX_REORDERING, metric);
871 
872 		/* This exciting event is worth to be remembered. 8) */
873 		if (ts)
874 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
875 		else if (IsReno(tp))
876 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
877 		else if (IsFack(tp))
878 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
879 		else
880 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
881 #if FASTRETRANS_DEBUG > 1
882 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
883 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
884 		       tp->reordering,
885 		       tp->fackets_out,
886 		       tp->sacked_out,
887 		       tp->undo_marker ? tp->undo_retrans : 0);
888 #endif
889 		/* Disable FACK yet. */
890 		tp->rx_opt.sack_ok &= ~2;
891 	}
892 }
893 
894 /* This procedure tags the retransmission queue when SACKs arrive.
895  *
896  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
897  * Packets in queue with these bits set are counted in variables
898  * sacked_out, retrans_out and lost_out, correspondingly.
899  *
900  * Valid combinations are:
901  * Tag  InFlight	Description
902  * 0	1		- orig segment is in flight.
903  * S	0		- nothing flies, orig reached receiver.
904  * L	0		- nothing flies, orig lost by net.
905  * R	2		- both orig and retransmit are in flight.
906  * L|R	1		- orig is lost, retransmit is in flight.
907  * S|R  1		- orig reached receiver, retrans is still in flight.
908  * (L|S|R is logically valid, it could occur when L|R is sacked,
909  *  but it is equivalent to plain S and code short-curcuits it to S.
910  *  L|S is logically invalid, it would mean -1 packet in flight 8))
911  *
912  * These 6 states form finite state machine, controlled by the following events:
913  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
914  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
915  * 3. Loss detection event of one of three flavors:
916  *	A. Scoreboard estimator decided the packet is lost.
917  *	   A'. Reno "three dupacks" marks head of queue lost.
918  *	   A''. Its FACK modfication, head until snd.fack is lost.
919  *	B. SACK arrives sacking data transmitted after never retransmitted
920  *	   hole was sent out.
921  *	C. SACK arrives sacking SND.NXT at the moment, when the
922  *	   segment was retransmitted.
923  * 4. D-SACK added new rule: D-SACK changes any tag to S.
924  *
925  * It is pleasant to note, that state diagram turns out to be commutative,
926  * so that we are allowed not to be bothered by order of our actions,
927  * when multiple events arrive simultaneously. (see the function below).
928  *
929  * Reordering detection.
930  * --------------------
931  * Reordering metric is maximal distance, which a packet can be displaced
932  * in packet stream. With SACKs we can estimate it:
933  *
934  * 1. SACK fills old hole and the corresponding segment was not
935  *    ever retransmitted -> reordering. Alas, we cannot use it
936  *    when segment was retransmitted.
937  * 2. The last flaw is solved with D-SACK. D-SACK arrives
938  *    for retransmitted and already SACKed segment -> reordering..
939  * Both of these heuristics are not used in Loss state, when we cannot
940  * account for retransmits accurately.
941  */
942 static int
943 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
944 {
945 	const struct inet_connection_sock *icsk = inet_csk(sk);
946 	struct tcp_sock *tp = tcp_sk(sk);
947 	unsigned char *ptr = (skb_transport_header(ack_skb) +
948 			      TCP_SKB_CB(ack_skb)->sacked);
949 	struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
950 	struct sk_buff *cached_skb;
951 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
952 	int reord = tp->packets_out;
953 	int prior_fackets;
954 	u32 lost_retrans = 0;
955 	int flag = 0;
956 	int found_dup_sack = 0;
957 	int cached_fack_count;
958 	int i;
959 	int first_sack_index;
960 
961 	if (!tp->sacked_out)
962 		tp->fackets_out = 0;
963 	prior_fackets = tp->fackets_out;
964 
965 	/* Check for D-SACK. */
966 	if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
967 		found_dup_sack = 1;
968 		tp->rx_opt.sack_ok |= 4;
969 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
970 	} else if (num_sacks > 1 &&
971 			!after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
972 			!before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
973 		found_dup_sack = 1;
974 		tp->rx_opt.sack_ok |= 4;
975 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
976 	}
977 
978 	/* D-SACK for already forgotten data...
979 	 * Do dumb counting. */
980 	if (found_dup_sack &&
981 			!after(ntohl(sp[0].end_seq), prior_snd_una) &&
982 			after(ntohl(sp[0].end_seq), tp->undo_marker))
983 		tp->undo_retrans--;
984 
985 	/* Eliminate too old ACKs, but take into
986 	 * account more or less fresh ones, they can
987 	 * contain valid SACK info.
988 	 */
989 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
990 		return 0;
991 
992 	/* SACK fastpath:
993 	 * if the only SACK change is the increase of the end_seq of
994 	 * the first block then only apply that SACK block
995 	 * and use retrans queue hinting otherwise slowpath */
996 	flag = 1;
997 	for (i = 0; i < num_sacks; i++) {
998 		__be32 start_seq = sp[i].start_seq;
999 		__be32 end_seq = sp[i].end_seq;
1000 
1001 		if (i == 0) {
1002 			if (tp->recv_sack_cache[i].start_seq != start_seq)
1003 				flag = 0;
1004 		} else {
1005 			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1006 			    (tp->recv_sack_cache[i].end_seq != end_seq))
1007 				flag = 0;
1008 		}
1009 		tp->recv_sack_cache[i].start_seq = start_seq;
1010 		tp->recv_sack_cache[i].end_seq = end_seq;
1011 	}
1012 	/* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1013 	for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1014 		tp->recv_sack_cache[i].start_seq = 0;
1015 		tp->recv_sack_cache[i].end_seq = 0;
1016 	}
1017 
1018 	first_sack_index = 0;
1019 	if (flag)
1020 		num_sacks = 1;
1021 	else {
1022 		int j;
1023 		tp->fastpath_skb_hint = NULL;
1024 
1025 		/* order SACK blocks to allow in order walk of the retrans queue */
1026 		for (i = num_sacks-1; i > 0; i--) {
1027 			for (j = 0; j < i; j++){
1028 				if (after(ntohl(sp[j].start_seq),
1029 					  ntohl(sp[j+1].start_seq))){
1030 					struct tcp_sack_block_wire tmp;
1031 
1032 					tmp = sp[j];
1033 					sp[j] = sp[j+1];
1034 					sp[j+1] = tmp;
1035 
1036 					/* Track where the first SACK block goes to */
1037 					if (j == first_sack_index)
1038 						first_sack_index = j+1;
1039 				}
1040 
1041 			}
1042 		}
1043 	}
1044 
1045 	/* clear flag as used for different purpose in following code */
1046 	flag = 0;
1047 
1048 	/* Use SACK fastpath hint if valid */
1049 	cached_skb = tp->fastpath_skb_hint;
1050 	cached_fack_count = tp->fastpath_cnt_hint;
1051 	if (!cached_skb) {
1052 		cached_skb = tcp_write_queue_head(sk);
1053 		cached_fack_count = 0;
1054 	}
1055 
1056 	for (i=0; i<num_sacks; i++, sp++) {
1057 		struct sk_buff *skb;
1058 		__u32 start_seq = ntohl(sp->start_seq);
1059 		__u32 end_seq = ntohl(sp->end_seq);
1060 		int fack_count;
1061 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1062 
1063 		skb = cached_skb;
1064 		fack_count = cached_fack_count;
1065 
1066 		/* Event "B" in the comment above. */
1067 		if (after(end_seq, tp->high_seq))
1068 			flag |= FLAG_DATA_LOST;
1069 
1070 		tcp_for_write_queue_from(skb, sk) {
1071 			int in_sack, pcount;
1072 			u8 sacked;
1073 
1074 			if (skb == tcp_send_head(sk))
1075 				break;
1076 
1077 			cached_skb = skb;
1078 			cached_fack_count = fack_count;
1079 			if (i == first_sack_index) {
1080 				tp->fastpath_skb_hint = skb;
1081 				tp->fastpath_cnt_hint = fack_count;
1082 			}
1083 
1084 			/* The retransmission queue is always in order, so
1085 			 * we can short-circuit the walk early.
1086 			 */
1087 			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1088 				break;
1089 
1090 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1091 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1092 
1093 			pcount = tcp_skb_pcount(skb);
1094 
1095 			if (pcount > 1 && !in_sack &&
1096 			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1097 				unsigned int pkt_len;
1098 
1099 				in_sack = !after(start_seq,
1100 						 TCP_SKB_CB(skb)->seq);
1101 
1102 				if (!in_sack)
1103 					pkt_len = (start_seq -
1104 						   TCP_SKB_CB(skb)->seq);
1105 				else
1106 					pkt_len = (end_seq -
1107 						   TCP_SKB_CB(skb)->seq);
1108 				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1109 					break;
1110 				pcount = tcp_skb_pcount(skb);
1111 			}
1112 
1113 			fack_count += pcount;
1114 
1115 			sacked = TCP_SKB_CB(skb)->sacked;
1116 
1117 			/* Account D-SACK for retransmitted packet. */
1118 			if ((dup_sack && in_sack) &&
1119 			    (sacked & TCPCB_RETRANS) &&
1120 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1121 				tp->undo_retrans--;
1122 
1123 			/* The frame is ACKed. */
1124 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1125 				if (sacked&TCPCB_RETRANS) {
1126 					if ((dup_sack && in_sack) &&
1127 					    (sacked&TCPCB_SACKED_ACKED))
1128 						reord = min(fack_count, reord);
1129 				} else {
1130 					/* If it was in a hole, we detected reordering. */
1131 					if (fack_count < prior_fackets &&
1132 					    !(sacked&TCPCB_SACKED_ACKED))
1133 						reord = min(fack_count, reord);
1134 				}
1135 
1136 				/* Nothing to do; acked frame is about to be dropped. */
1137 				continue;
1138 			}
1139 
1140 			if ((sacked&TCPCB_SACKED_RETRANS) &&
1141 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1142 			    (!lost_retrans || after(end_seq, lost_retrans)))
1143 				lost_retrans = end_seq;
1144 
1145 			if (!in_sack)
1146 				continue;
1147 
1148 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1149 				if (sacked & TCPCB_SACKED_RETRANS) {
1150 					/* If the segment is not tagged as lost,
1151 					 * we do not clear RETRANS, believing
1152 					 * that retransmission is still in flight.
1153 					 */
1154 					if (sacked & TCPCB_LOST) {
1155 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1156 						tp->lost_out -= tcp_skb_pcount(skb);
1157 						tp->retrans_out -= tcp_skb_pcount(skb);
1158 
1159 						/* clear lost hint */
1160 						tp->retransmit_skb_hint = NULL;
1161 					}
1162 				} else {
1163 					/* New sack for not retransmitted frame,
1164 					 * which was in hole. It is reordering.
1165 					 */
1166 					if (!(sacked & TCPCB_RETRANS) &&
1167 					    fack_count < prior_fackets)
1168 						reord = min(fack_count, reord);
1169 
1170 					if (sacked & TCPCB_LOST) {
1171 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1172 						tp->lost_out -= tcp_skb_pcount(skb);
1173 
1174 						/* clear lost hint */
1175 						tp->retransmit_skb_hint = NULL;
1176 					}
1177 					/* SACK enhanced F-RTO detection.
1178 					 * Set flag if and only if non-rexmitted
1179 					 * segments below frto_highmark are
1180 					 * SACKed (RFC4138; Appendix B).
1181 					 * Clearing correct due to in-order walk
1182 					 */
1183 					if (after(end_seq, tp->frto_highmark)) {
1184 						flag &= ~FLAG_ONLY_ORIG_SACKED;
1185 					} else {
1186 						if (!(sacked & TCPCB_RETRANS))
1187 							flag |= FLAG_ONLY_ORIG_SACKED;
1188 					}
1189 				}
1190 
1191 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1192 				flag |= FLAG_DATA_SACKED;
1193 				tp->sacked_out += tcp_skb_pcount(skb);
1194 
1195 				if (fack_count > tp->fackets_out)
1196 					tp->fackets_out = fack_count;
1197 			} else {
1198 				if (dup_sack && (sacked&TCPCB_RETRANS))
1199 					reord = min(fack_count, reord);
1200 			}
1201 
1202 			/* D-SACK. We can detect redundant retransmission
1203 			 * in S|R and plain R frames and clear it.
1204 			 * undo_retrans is decreased above, L|R frames
1205 			 * are accounted above as well.
1206 			 */
1207 			if (dup_sack &&
1208 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1209 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1210 				tp->retrans_out -= tcp_skb_pcount(skb);
1211 				tp->retransmit_skb_hint = NULL;
1212 			}
1213 		}
1214 	}
1215 
1216 	/* Check for lost retransmit. This superb idea is
1217 	 * borrowed from "ratehalving". Event "C".
1218 	 * Later note: FACK people cheated me again 8),
1219 	 * we have to account for reordering! Ugly,
1220 	 * but should help.
1221 	 */
1222 	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1223 		struct sk_buff *skb;
1224 
1225 		tcp_for_write_queue(skb, sk) {
1226 			if (skb == tcp_send_head(sk))
1227 				break;
1228 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1229 				break;
1230 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1231 				continue;
1232 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1233 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1234 			    (IsFack(tp) ||
1235 			     !before(lost_retrans,
1236 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1237 				     tp->mss_cache))) {
1238 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1239 				tp->retrans_out -= tcp_skb_pcount(skb);
1240 
1241 				/* clear lost hint */
1242 				tp->retransmit_skb_hint = NULL;
1243 
1244 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1245 					tp->lost_out += tcp_skb_pcount(skb);
1246 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1247 					flag |= FLAG_DATA_SACKED;
1248 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1249 				}
1250 			}
1251 		}
1252 	}
1253 
1254 	tp->left_out = tp->sacked_out + tp->lost_out;
1255 
1256 	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1257 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1258 		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1259 
1260 #if FASTRETRANS_DEBUG > 0
1261 	BUG_TRAP((int)tp->sacked_out >= 0);
1262 	BUG_TRAP((int)tp->lost_out >= 0);
1263 	BUG_TRAP((int)tp->retrans_out >= 0);
1264 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1265 #endif
1266 	return flag;
1267 }
1268 
1269 /* F-RTO can only be used if TCP has never retransmitted anything other than
1270  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1271  */
1272 int tcp_use_frto(struct sock *sk)
1273 {
1274 	const struct tcp_sock *tp = tcp_sk(sk);
1275 	struct sk_buff *skb;
1276 
1277 	if (!sysctl_tcp_frto)
1278 		return 0;
1279 
1280 	if (IsSackFrto())
1281 		return 1;
1282 
1283 	/* Avoid expensive walking of rexmit queue if possible */
1284 	if (tp->retrans_out > 1)
1285 		return 0;
1286 
1287 	skb = tcp_write_queue_head(sk);
1288 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1289 	tcp_for_write_queue_from(skb, sk) {
1290 		if (skb == tcp_send_head(sk))
1291 			break;
1292 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1293 			return 0;
1294 		/* Short-circuit when first non-SACKed skb has been checked */
1295 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1296 			break;
1297 	}
1298 	return 1;
1299 }
1300 
1301 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1302  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1303  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1304  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1305  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1306  * bits are handled if the Loss state is really to be entered (in
1307  * tcp_enter_frto_loss).
1308  *
1309  * Do like tcp_enter_loss() would; when RTO expires the second time it
1310  * does:
1311  *  "Reduce ssthresh if it has not yet been made inside this window."
1312  */
1313 void tcp_enter_frto(struct sock *sk)
1314 {
1315 	const struct inet_connection_sock *icsk = inet_csk(sk);
1316 	struct tcp_sock *tp = tcp_sk(sk);
1317 	struct sk_buff *skb;
1318 
1319 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1320 	    tp->snd_una == tp->high_seq ||
1321 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1322 	     !icsk->icsk_retransmits)) {
1323 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1324 		/* Our state is too optimistic in ssthresh() call because cwnd
1325 		 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1326 		 * recovery has not yet completed. Pattern would be this: RTO,
1327 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1328 		 * up here twice).
1329 		 * RFC4138 should be more specific on what to do, even though
1330 		 * RTO is quite unlikely to occur after the first Cumulative ACK
1331 		 * due to back-off and complexity of triggering events ...
1332 		 */
1333 		if (tp->frto_counter) {
1334 			u32 stored_cwnd;
1335 			stored_cwnd = tp->snd_cwnd;
1336 			tp->snd_cwnd = 2;
1337 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1338 			tp->snd_cwnd = stored_cwnd;
1339 		} else {
1340 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1341 		}
1342 		/* ... in theory, cong.control module could do "any tricks" in
1343 		 * ssthresh(), which means that ca_state, lost bits and lost_out
1344 		 * counter would have to be faked before the call occurs. We
1345 		 * consider that too expensive, unlikely and hacky, so modules
1346 		 * using these in ssthresh() must deal these incompatibility
1347 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1348 		 */
1349 		tcp_ca_event(sk, CA_EVENT_FRTO);
1350 	}
1351 
1352 	tp->undo_marker = tp->snd_una;
1353 	tp->undo_retrans = 0;
1354 
1355 	skb = tcp_write_queue_head(sk);
1356 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1357 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1358 		tp->retrans_out -= tcp_skb_pcount(skb);
1359 	}
1360 	tcp_sync_left_out(tp);
1361 
1362 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1363 	 * The last condition is necessary at least in tp->frto_counter case.
1364 	 */
1365 	if (IsSackFrto() && (tp->frto_counter ||
1366 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1367 	    after(tp->high_seq, tp->snd_una)) {
1368 		tp->frto_highmark = tp->high_seq;
1369 	} else {
1370 		tp->frto_highmark = tp->snd_nxt;
1371 	}
1372 	tcp_set_ca_state(sk, TCP_CA_Disorder);
1373 	tp->high_seq = tp->snd_nxt;
1374 	tp->frto_counter = 1;
1375 }
1376 
1377 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1378  * which indicates that we should follow the traditional RTO recovery,
1379  * i.e. mark everything lost and do go-back-N retransmission.
1380  */
1381 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1382 {
1383 	struct tcp_sock *tp = tcp_sk(sk);
1384 	struct sk_buff *skb;
1385 	int cnt = 0;
1386 
1387 	tp->sacked_out = 0;
1388 	tp->lost_out = 0;
1389 	tp->fackets_out = 0;
1390 	tp->retrans_out = 0;
1391 
1392 	tcp_for_write_queue(skb, sk) {
1393 		if (skb == tcp_send_head(sk))
1394 			break;
1395 		cnt += tcp_skb_pcount(skb);
1396 		/*
1397 		 * Count the retransmission made on RTO correctly (only when
1398 		 * waiting for the first ACK and did not get it)...
1399 		 */
1400 		if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1401 			tp->retrans_out += tcp_skb_pcount(skb);
1402 			/* ...enter this if branch just for the first segment */
1403 			flag |= FLAG_DATA_ACKED;
1404 		} else {
1405 			TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1406 		}
1407 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1408 
1409 			/* Do not mark those segments lost that were
1410 			 * forward transmitted after RTO
1411 			 */
1412 			if (!after(TCP_SKB_CB(skb)->end_seq,
1413 				   tp->frto_highmark)) {
1414 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1415 				tp->lost_out += tcp_skb_pcount(skb);
1416 			}
1417 		} else {
1418 			tp->sacked_out += tcp_skb_pcount(skb);
1419 			tp->fackets_out = cnt;
1420 		}
1421 	}
1422 	tcp_sync_left_out(tp);
1423 
1424 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1425 	tp->snd_cwnd_cnt = 0;
1426 	tp->snd_cwnd_stamp = tcp_time_stamp;
1427 	tp->undo_marker = 0;
1428 	tp->frto_counter = 0;
1429 
1430 	tp->reordering = min_t(unsigned int, tp->reordering,
1431 					     sysctl_tcp_reordering);
1432 	tcp_set_ca_state(sk, TCP_CA_Loss);
1433 	tp->high_seq = tp->frto_highmark;
1434 	TCP_ECN_queue_cwr(tp);
1435 
1436 	clear_all_retrans_hints(tp);
1437 }
1438 
1439 void tcp_clear_retrans(struct tcp_sock *tp)
1440 {
1441 	tp->left_out = 0;
1442 	tp->retrans_out = 0;
1443 
1444 	tp->fackets_out = 0;
1445 	tp->sacked_out = 0;
1446 	tp->lost_out = 0;
1447 
1448 	tp->undo_marker = 0;
1449 	tp->undo_retrans = 0;
1450 }
1451 
1452 /* Enter Loss state. If "how" is not zero, forget all SACK information
1453  * and reset tags completely, otherwise preserve SACKs. If receiver
1454  * dropped its ofo queue, we will know this due to reneging detection.
1455  */
1456 void tcp_enter_loss(struct sock *sk, int how)
1457 {
1458 	const struct inet_connection_sock *icsk = inet_csk(sk);
1459 	struct tcp_sock *tp = tcp_sk(sk);
1460 	struct sk_buff *skb;
1461 	int cnt = 0;
1462 
1463 	/* Reduce ssthresh if it has not yet been made inside this window. */
1464 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1465 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1466 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1467 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1468 		tcp_ca_event(sk, CA_EVENT_LOSS);
1469 	}
1470 	tp->snd_cwnd	   = 1;
1471 	tp->snd_cwnd_cnt   = 0;
1472 	tp->snd_cwnd_stamp = tcp_time_stamp;
1473 
1474 	tp->bytes_acked = 0;
1475 	tcp_clear_retrans(tp);
1476 
1477 	/* Push undo marker, if it was plain RTO and nothing
1478 	 * was retransmitted. */
1479 	if (!how)
1480 		tp->undo_marker = tp->snd_una;
1481 
1482 	tcp_for_write_queue(skb, sk) {
1483 		if (skb == tcp_send_head(sk))
1484 			break;
1485 		cnt += tcp_skb_pcount(skb);
1486 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1487 			tp->undo_marker = 0;
1488 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1489 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1490 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1491 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1492 			tp->lost_out += tcp_skb_pcount(skb);
1493 		} else {
1494 			tp->sacked_out += tcp_skb_pcount(skb);
1495 			tp->fackets_out = cnt;
1496 		}
1497 	}
1498 	tcp_sync_left_out(tp);
1499 
1500 	tp->reordering = min_t(unsigned int, tp->reordering,
1501 					     sysctl_tcp_reordering);
1502 	tcp_set_ca_state(sk, TCP_CA_Loss);
1503 	tp->high_seq = tp->snd_nxt;
1504 	TCP_ECN_queue_cwr(tp);
1505 	/* Abort FRTO algorithm if one is in progress */
1506 	tp->frto_counter = 0;
1507 
1508 	clear_all_retrans_hints(tp);
1509 }
1510 
1511 static int tcp_check_sack_reneging(struct sock *sk)
1512 {
1513 	struct sk_buff *skb;
1514 
1515 	/* If ACK arrived pointing to a remembered SACK,
1516 	 * it means that our remembered SACKs do not reflect
1517 	 * real state of receiver i.e.
1518 	 * receiver _host_ is heavily congested (or buggy).
1519 	 * Do processing similar to RTO timeout.
1520 	 */
1521 	if ((skb = tcp_write_queue_head(sk)) != NULL &&
1522 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1523 		struct inet_connection_sock *icsk = inet_csk(sk);
1524 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1525 
1526 		tcp_enter_loss(sk, 1);
1527 		icsk->icsk_retransmits++;
1528 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1529 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1530 					  icsk->icsk_rto, TCP_RTO_MAX);
1531 		return 1;
1532 	}
1533 	return 0;
1534 }
1535 
1536 static inline int tcp_fackets_out(struct tcp_sock *tp)
1537 {
1538 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1539 }
1540 
1541 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1542 {
1543 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1544 }
1545 
1546 static inline int tcp_head_timedout(struct sock *sk)
1547 {
1548 	struct tcp_sock *tp = tcp_sk(sk);
1549 
1550 	return tp->packets_out &&
1551 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1552 }
1553 
1554 /* Linux NewReno/SACK/FACK/ECN state machine.
1555  * --------------------------------------
1556  *
1557  * "Open"	Normal state, no dubious events, fast path.
1558  * "Disorder"   In all the respects it is "Open",
1559  *		but requires a bit more attention. It is entered when
1560  *		we see some SACKs or dupacks. It is split of "Open"
1561  *		mainly to move some processing from fast path to slow one.
1562  * "CWR"	CWND was reduced due to some Congestion Notification event.
1563  *		It can be ECN, ICMP source quench, local device congestion.
1564  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1565  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1566  *
1567  * tcp_fastretrans_alert() is entered:
1568  * - each incoming ACK, if state is not "Open"
1569  * - when arrived ACK is unusual, namely:
1570  *	* SACK
1571  *	* Duplicate ACK.
1572  *	* ECN ECE.
1573  *
1574  * Counting packets in flight is pretty simple.
1575  *
1576  *	in_flight = packets_out - left_out + retrans_out
1577  *
1578  *	packets_out is SND.NXT-SND.UNA counted in packets.
1579  *
1580  *	retrans_out is number of retransmitted segments.
1581  *
1582  *	left_out is number of segments left network, but not ACKed yet.
1583  *
1584  *		left_out = sacked_out + lost_out
1585  *
1586  *     sacked_out: Packets, which arrived to receiver out of order
1587  *		   and hence not ACKed. With SACKs this number is simply
1588  *		   amount of SACKed data. Even without SACKs
1589  *		   it is easy to give pretty reliable estimate of this number,
1590  *		   counting duplicate ACKs.
1591  *
1592  *       lost_out: Packets lost by network. TCP has no explicit
1593  *		   "loss notification" feedback from network (for now).
1594  *		   It means that this number can be only _guessed_.
1595  *		   Actually, it is the heuristics to predict lossage that
1596  *		   distinguishes different algorithms.
1597  *
1598  *	F.e. after RTO, when all the queue is considered as lost,
1599  *	lost_out = packets_out and in_flight = retrans_out.
1600  *
1601  *		Essentially, we have now two algorithms counting
1602  *		lost packets.
1603  *
1604  *		FACK: It is the simplest heuristics. As soon as we decided
1605  *		that something is lost, we decide that _all_ not SACKed
1606  *		packets until the most forward SACK are lost. I.e.
1607  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1608  *		It is absolutely correct estimate, if network does not reorder
1609  *		packets. And it loses any connection to reality when reordering
1610  *		takes place. We use FACK by default until reordering
1611  *		is suspected on the path to this destination.
1612  *
1613  *		NewReno: when Recovery is entered, we assume that one segment
1614  *		is lost (classic Reno). While we are in Recovery and
1615  *		a partial ACK arrives, we assume that one more packet
1616  *		is lost (NewReno). This heuristics are the same in NewReno
1617  *		and SACK.
1618  *
1619  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1620  *  deflation etc. CWND is real congestion window, never inflated, changes
1621  *  only according to classic VJ rules.
1622  *
1623  * Really tricky (and requiring careful tuning) part of algorithm
1624  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1625  * The first determines the moment _when_ we should reduce CWND and,
1626  * hence, slow down forward transmission. In fact, it determines the moment
1627  * when we decide that hole is caused by loss, rather than by a reorder.
1628  *
1629  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1630  * holes, caused by lost packets.
1631  *
1632  * And the most logically complicated part of algorithm is undo
1633  * heuristics. We detect false retransmits due to both too early
1634  * fast retransmit (reordering) and underestimated RTO, analyzing
1635  * timestamps and D-SACKs. When we detect that some segments were
1636  * retransmitted by mistake and CWND reduction was wrong, we undo
1637  * window reduction and abort recovery phase. This logic is hidden
1638  * inside several functions named tcp_try_undo_<something>.
1639  */
1640 
1641 /* This function decides, when we should leave Disordered state
1642  * and enter Recovery phase, reducing congestion window.
1643  *
1644  * Main question: may we further continue forward transmission
1645  * with the same cwnd?
1646  */
1647 static int tcp_time_to_recover(struct sock *sk)
1648 {
1649 	struct tcp_sock *tp = tcp_sk(sk);
1650 	__u32 packets_out;
1651 
1652 	/* Do not perform any recovery during FRTO algorithm */
1653 	if (tp->frto_counter)
1654 		return 0;
1655 
1656 	/* Trick#1: The loss is proven. */
1657 	if (tp->lost_out)
1658 		return 1;
1659 
1660 	/* Not-A-Trick#2 : Classic rule... */
1661 	if (tcp_fackets_out(tp) > tp->reordering)
1662 		return 1;
1663 
1664 	/* Trick#3 : when we use RFC2988 timer restart, fast
1665 	 * retransmit can be triggered by timeout of queue head.
1666 	 */
1667 	if (tcp_head_timedout(sk))
1668 		return 1;
1669 
1670 	/* Trick#4: It is still not OK... But will it be useful to delay
1671 	 * recovery more?
1672 	 */
1673 	packets_out = tp->packets_out;
1674 	if (packets_out <= tp->reordering &&
1675 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1676 	    !tcp_may_send_now(sk)) {
1677 		/* We have nothing to send. This connection is limited
1678 		 * either by receiver window or by application.
1679 		 */
1680 		return 1;
1681 	}
1682 
1683 	return 0;
1684 }
1685 
1686 /* If we receive more dupacks than we expected counting segments
1687  * in assumption of absent reordering, interpret this as reordering.
1688  * The only another reason could be bug in receiver TCP.
1689  */
1690 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1691 {
1692 	struct tcp_sock *tp = tcp_sk(sk);
1693 	u32 holes;
1694 
1695 	holes = max(tp->lost_out, 1U);
1696 	holes = min(holes, tp->packets_out);
1697 
1698 	if ((tp->sacked_out + holes) > tp->packets_out) {
1699 		tp->sacked_out = tp->packets_out - holes;
1700 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1701 	}
1702 }
1703 
1704 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1705 
1706 static void tcp_add_reno_sack(struct sock *sk)
1707 {
1708 	struct tcp_sock *tp = tcp_sk(sk);
1709 	tp->sacked_out++;
1710 	tcp_check_reno_reordering(sk, 0);
1711 	tcp_sync_left_out(tp);
1712 }
1713 
1714 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1715 
1716 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1717 {
1718 	struct tcp_sock *tp = tcp_sk(sk);
1719 
1720 	if (acked > 0) {
1721 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1722 		if (acked-1 >= tp->sacked_out)
1723 			tp->sacked_out = 0;
1724 		else
1725 			tp->sacked_out -= acked-1;
1726 	}
1727 	tcp_check_reno_reordering(sk, acked);
1728 	tcp_sync_left_out(tp);
1729 }
1730 
1731 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1732 {
1733 	tp->sacked_out = 0;
1734 	tp->left_out = tp->lost_out;
1735 }
1736 
1737 /* Mark head of queue up as lost. */
1738 static void tcp_mark_head_lost(struct sock *sk,
1739 			       int packets, u32 high_seq)
1740 {
1741 	struct tcp_sock *tp = tcp_sk(sk);
1742 	struct sk_buff *skb;
1743 	int cnt;
1744 
1745 	BUG_TRAP(packets <= tp->packets_out);
1746 	if (tp->lost_skb_hint) {
1747 		skb = tp->lost_skb_hint;
1748 		cnt = tp->lost_cnt_hint;
1749 	} else {
1750 		skb = tcp_write_queue_head(sk);
1751 		cnt = 0;
1752 	}
1753 
1754 	tcp_for_write_queue_from(skb, sk) {
1755 		if (skb == tcp_send_head(sk))
1756 			break;
1757 		/* TODO: do this better */
1758 		/* this is not the most efficient way to do this... */
1759 		tp->lost_skb_hint = skb;
1760 		tp->lost_cnt_hint = cnt;
1761 		cnt += tcp_skb_pcount(skb);
1762 		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1763 			break;
1764 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1765 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1766 			tp->lost_out += tcp_skb_pcount(skb);
1767 
1768 			/* clear xmit_retransmit_queue hints
1769 			 *  if this is beyond hint */
1770 			if (tp->retransmit_skb_hint != NULL &&
1771 			    before(TCP_SKB_CB(skb)->seq,
1772 				   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1773 				tp->retransmit_skb_hint = NULL;
1774 
1775 		}
1776 	}
1777 	tcp_sync_left_out(tp);
1778 }
1779 
1780 /* Account newly detected lost packet(s) */
1781 
1782 static void tcp_update_scoreboard(struct sock *sk)
1783 {
1784 	struct tcp_sock *tp = tcp_sk(sk);
1785 
1786 	if (IsFack(tp)) {
1787 		int lost = tp->fackets_out - tp->reordering;
1788 		if (lost <= 0)
1789 			lost = 1;
1790 		tcp_mark_head_lost(sk, lost, tp->high_seq);
1791 	} else {
1792 		tcp_mark_head_lost(sk, 1, tp->high_seq);
1793 	}
1794 
1795 	/* New heuristics: it is possible only after we switched
1796 	 * to restart timer each time when something is ACKed.
1797 	 * Hence, we can detect timed out packets during fast
1798 	 * retransmit without falling to slow start.
1799 	 */
1800 	if (!IsReno(tp) && tcp_head_timedout(sk)) {
1801 		struct sk_buff *skb;
1802 
1803 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1804 			: tcp_write_queue_head(sk);
1805 
1806 		tcp_for_write_queue_from(skb, sk) {
1807 			if (skb == tcp_send_head(sk))
1808 				break;
1809 			if (!tcp_skb_timedout(sk, skb))
1810 				break;
1811 
1812 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1813 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1814 				tp->lost_out += tcp_skb_pcount(skb);
1815 
1816 				/* clear xmit_retrans hint */
1817 				if (tp->retransmit_skb_hint &&
1818 				    before(TCP_SKB_CB(skb)->seq,
1819 					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1820 
1821 					tp->retransmit_skb_hint = NULL;
1822 			}
1823 		}
1824 
1825 		tp->scoreboard_skb_hint = skb;
1826 
1827 		tcp_sync_left_out(tp);
1828 	}
1829 }
1830 
1831 /* CWND moderation, preventing bursts due to too big ACKs
1832  * in dubious situations.
1833  */
1834 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1835 {
1836 	tp->snd_cwnd = min(tp->snd_cwnd,
1837 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1838 	tp->snd_cwnd_stamp = tcp_time_stamp;
1839 }
1840 
1841 /* Lower bound on congestion window is slow start threshold
1842  * unless congestion avoidance choice decides to overide it.
1843  */
1844 static inline u32 tcp_cwnd_min(const struct sock *sk)
1845 {
1846 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1847 
1848 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1849 }
1850 
1851 /* Decrease cwnd each second ack. */
1852 static void tcp_cwnd_down(struct sock *sk)
1853 {
1854 	struct tcp_sock *tp = tcp_sk(sk);
1855 	int decr = tp->snd_cwnd_cnt + 1;
1856 
1857 	tp->snd_cwnd_cnt = decr&1;
1858 	decr >>= 1;
1859 
1860 	if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1861 		tp->snd_cwnd -= decr;
1862 
1863 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1864 	tp->snd_cwnd_stamp = tcp_time_stamp;
1865 }
1866 
1867 /* Nothing was retransmitted or returned timestamp is less
1868  * than timestamp of the first retransmission.
1869  */
1870 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1871 {
1872 	return !tp->retrans_stamp ||
1873 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1874 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1875 }
1876 
1877 /* Undo procedures. */
1878 
1879 #if FASTRETRANS_DEBUG > 1
1880 static void DBGUNDO(struct sock *sk, const char *msg)
1881 {
1882 	struct tcp_sock *tp = tcp_sk(sk);
1883 	struct inet_sock *inet = inet_sk(sk);
1884 
1885 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1886 	       msg,
1887 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1888 	       tp->snd_cwnd, tp->left_out,
1889 	       tp->snd_ssthresh, tp->prior_ssthresh,
1890 	       tp->packets_out);
1891 }
1892 #else
1893 #define DBGUNDO(x...) do { } while (0)
1894 #endif
1895 
1896 static void tcp_undo_cwr(struct sock *sk, const int undo)
1897 {
1898 	struct tcp_sock *tp = tcp_sk(sk);
1899 
1900 	if (tp->prior_ssthresh) {
1901 		const struct inet_connection_sock *icsk = inet_csk(sk);
1902 
1903 		if (icsk->icsk_ca_ops->undo_cwnd)
1904 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1905 		else
1906 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1907 
1908 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1909 			tp->snd_ssthresh = tp->prior_ssthresh;
1910 			TCP_ECN_withdraw_cwr(tp);
1911 		}
1912 	} else {
1913 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1914 	}
1915 	tcp_moderate_cwnd(tp);
1916 	tp->snd_cwnd_stamp = tcp_time_stamp;
1917 
1918 	/* There is something screwy going on with the retrans hints after
1919 	   an undo */
1920 	clear_all_retrans_hints(tp);
1921 }
1922 
1923 static inline int tcp_may_undo(struct tcp_sock *tp)
1924 {
1925 	return tp->undo_marker &&
1926 		(!tp->undo_retrans || tcp_packet_delayed(tp));
1927 }
1928 
1929 /* People celebrate: "We love our President!" */
1930 static int tcp_try_undo_recovery(struct sock *sk)
1931 {
1932 	struct tcp_sock *tp = tcp_sk(sk);
1933 
1934 	if (tcp_may_undo(tp)) {
1935 		/* Happy end! We did not retransmit anything
1936 		 * or our original transmission succeeded.
1937 		 */
1938 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1939 		tcp_undo_cwr(sk, 1);
1940 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1941 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1942 		else
1943 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1944 		tp->undo_marker = 0;
1945 	}
1946 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1947 		/* Hold old state until something *above* high_seq
1948 		 * is ACKed. For Reno it is MUST to prevent false
1949 		 * fast retransmits (RFC2582). SACK TCP is safe. */
1950 		tcp_moderate_cwnd(tp);
1951 		return 1;
1952 	}
1953 	tcp_set_ca_state(sk, TCP_CA_Open);
1954 	return 0;
1955 }
1956 
1957 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1958 static void tcp_try_undo_dsack(struct sock *sk)
1959 {
1960 	struct tcp_sock *tp = tcp_sk(sk);
1961 
1962 	if (tp->undo_marker && !tp->undo_retrans) {
1963 		DBGUNDO(sk, "D-SACK");
1964 		tcp_undo_cwr(sk, 1);
1965 		tp->undo_marker = 0;
1966 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1967 	}
1968 }
1969 
1970 /* Undo during fast recovery after partial ACK. */
1971 
1972 static int tcp_try_undo_partial(struct sock *sk, int acked)
1973 {
1974 	struct tcp_sock *tp = tcp_sk(sk);
1975 	/* Partial ACK arrived. Force Hoe's retransmit. */
1976 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1977 
1978 	if (tcp_may_undo(tp)) {
1979 		/* Plain luck! Hole if filled with delayed
1980 		 * packet, rather than with a retransmit.
1981 		 */
1982 		if (tp->retrans_out == 0)
1983 			tp->retrans_stamp = 0;
1984 
1985 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1986 
1987 		DBGUNDO(sk, "Hoe");
1988 		tcp_undo_cwr(sk, 0);
1989 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1990 
1991 		/* So... Do not make Hoe's retransmit yet.
1992 		 * If the first packet was delayed, the rest
1993 		 * ones are most probably delayed as well.
1994 		 */
1995 		failed = 0;
1996 	}
1997 	return failed;
1998 }
1999 
2000 /* Undo during loss recovery after partial ACK. */
2001 static int tcp_try_undo_loss(struct sock *sk)
2002 {
2003 	struct tcp_sock *tp = tcp_sk(sk);
2004 
2005 	if (tcp_may_undo(tp)) {
2006 		struct sk_buff *skb;
2007 		tcp_for_write_queue(skb, sk) {
2008 			if (skb == tcp_send_head(sk))
2009 				break;
2010 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2011 		}
2012 
2013 		clear_all_retrans_hints(tp);
2014 
2015 		DBGUNDO(sk, "partial loss");
2016 		tp->lost_out = 0;
2017 		tp->left_out = tp->sacked_out;
2018 		tcp_undo_cwr(sk, 1);
2019 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2020 		inet_csk(sk)->icsk_retransmits = 0;
2021 		tp->undo_marker = 0;
2022 		if (!IsReno(tp))
2023 			tcp_set_ca_state(sk, TCP_CA_Open);
2024 		return 1;
2025 	}
2026 	return 0;
2027 }
2028 
2029 static inline void tcp_complete_cwr(struct sock *sk)
2030 {
2031 	struct tcp_sock *tp = tcp_sk(sk);
2032 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2033 	tp->snd_cwnd_stamp = tcp_time_stamp;
2034 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2035 }
2036 
2037 static void tcp_try_to_open(struct sock *sk, int flag)
2038 {
2039 	struct tcp_sock *tp = tcp_sk(sk);
2040 
2041 	tcp_sync_left_out(tp);
2042 
2043 	if (tp->retrans_out == 0)
2044 		tp->retrans_stamp = 0;
2045 
2046 	if (flag&FLAG_ECE)
2047 		tcp_enter_cwr(sk, 1);
2048 
2049 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2050 		int state = TCP_CA_Open;
2051 
2052 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
2053 			state = TCP_CA_Disorder;
2054 
2055 		if (inet_csk(sk)->icsk_ca_state != state) {
2056 			tcp_set_ca_state(sk, state);
2057 			tp->high_seq = tp->snd_nxt;
2058 		}
2059 		tcp_moderate_cwnd(tp);
2060 	} else {
2061 		tcp_cwnd_down(sk);
2062 	}
2063 }
2064 
2065 static void tcp_mtup_probe_failed(struct sock *sk)
2066 {
2067 	struct inet_connection_sock *icsk = inet_csk(sk);
2068 
2069 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2070 	icsk->icsk_mtup.probe_size = 0;
2071 }
2072 
2073 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2074 {
2075 	struct tcp_sock *tp = tcp_sk(sk);
2076 	struct inet_connection_sock *icsk = inet_csk(sk);
2077 
2078 	/* FIXME: breaks with very large cwnd */
2079 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2080 	tp->snd_cwnd = tp->snd_cwnd *
2081 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2082 		       icsk->icsk_mtup.probe_size;
2083 	tp->snd_cwnd_cnt = 0;
2084 	tp->snd_cwnd_stamp = tcp_time_stamp;
2085 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2086 
2087 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2088 	icsk->icsk_mtup.probe_size = 0;
2089 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2090 }
2091 
2092 
2093 /* Process an event, which can update packets-in-flight not trivially.
2094  * Main goal of this function is to calculate new estimate for left_out,
2095  * taking into account both packets sitting in receiver's buffer and
2096  * packets lost by network.
2097  *
2098  * Besides that it does CWND reduction, when packet loss is detected
2099  * and changes state of machine.
2100  *
2101  * It does _not_ decide what to send, it is made in function
2102  * tcp_xmit_retransmit_queue().
2103  */
2104 static void
2105 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2106 		      int prior_packets, int flag)
2107 {
2108 	struct inet_connection_sock *icsk = inet_csk(sk);
2109 	struct tcp_sock *tp = tcp_sk(sk);
2110 	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
2111 
2112 	/* Some technical things:
2113 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
2114 	if (!tp->packets_out)
2115 		tp->sacked_out = 0;
2116 	/* 2. SACK counts snd_fack in packets inaccurately. */
2117 	if (tp->sacked_out == 0)
2118 		tp->fackets_out = 0;
2119 
2120 	/* Now state machine starts.
2121 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2122 	if (flag&FLAG_ECE)
2123 		tp->prior_ssthresh = 0;
2124 
2125 	/* B. In all the states check for reneging SACKs. */
2126 	if (tp->sacked_out && tcp_check_sack_reneging(sk))
2127 		return;
2128 
2129 	/* C. Process data loss notification, provided it is valid. */
2130 	if ((flag&FLAG_DATA_LOST) &&
2131 	    before(tp->snd_una, tp->high_seq) &&
2132 	    icsk->icsk_ca_state != TCP_CA_Open &&
2133 	    tp->fackets_out > tp->reordering) {
2134 		tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2135 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2136 	}
2137 
2138 	/* D. Synchronize left_out to current state. */
2139 	tcp_sync_left_out(tp);
2140 
2141 	/* E. Check state exit conditions. State can be terminated
2142 	 *    when high_seq is ACKed. */
2143 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2144 		BUG_TRAP(tp->retrans_out == 0);
2145 		tp->retrans_stamp = 0;
2146 	} else if (!before(tp->snd_una, tp->high_seq)) {
2147 		switch (icsk->icsk_ca_state) {
2148 		case TCP_CA_Loss:
2149 			icsk->icsk_retransmits = 0;
2150 			if (tcp_try_undo_recovery(sk))
2151 				return;
2152 			break;
2153 
2154 		case TCP_CA_CWR:
2155 			/* CWR is to be held something *above* high_seq
2156 			 * is ACKed for CWR bit to reach receiver. */
2157 			if (tp->snd_una != tp->high_seq) {
2158 				tcp_complete_cwr(sk);
2159 				tcp_set_ca_state(sk, TCP_CA_Open);
2160 			}
2161 			break;
2162 
2163 		case TCP_CA_Disorder:
2164 			tcp_try_undo_dsack(sk);
2165 			if (!tp->undo_marker ||
2166 			    /* For SACK case do not Open to allow to undo
2167 			     * catching for all duplicate ACKs. */
2168 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
2169 				tp->undo_marker = 0;
2170 				tcp_set_ca_state(sk, TCP_CA_Open);
2171 			}
2172 			break;
2173 
2174 		case TCP_CA_Recovery:
2175 			if (IsReno(tp))
2176 				tcp_reset_reno_sack(tp);
2177 			if (tcp_try_undo_recovery(sk))
2178 				return;
2179 			tcp_complete_cwr(sk);
2180 			break;
2181 		}
2182 	}
2183 
2184 	/* F. Process state. */
2185 	switch (icsk->icsk_ca_state) {
2186 	case TCP_CA_Recovery:
2187 		if (prior_snd_una == tp->snd_una) {
2188 			if (IsReno(tp) && is_dupack)
2189 				tcp_add_reno_sack(sk);
2190 		} else {
2191 			int acked = prior_packets - tp->packets_out;
2192 			if (IsReno(tp))
2193 				tcp_remove_reno_sacks(sk, acked);
2194 			is_dupack = tcp_try_undo_partial(sk, acked);
2195 		}
2196 		break;
2197 	case TCP_CA_Loss:
2198 		if (flag&FLAG_DATA_ACKED)
2199 			icsk->icsk_retransmits = 0;
2200 		if (!tcp_try_undo_loss(sk)) {
2201 			tcp_moderate_cwnd(tp);
2202 			tcp_xmit_retransmit_queue(sk);
2203 			return;
2204 		}
2205 		if (icsk->icsk_ca_state != TCP_CA_Open)
2206 			return;
2207 		/* Loss is undone; fall through to processing in Open state. */
2208 	default:
2209 		if (IsReno(tp)) {
2210 			if (tp->snd_una != prior_snd_una)
2211 				tcp_reset_reno_sack(tp);
2212 			if (is_dupack)
2213 				tcp_add_reno_sack(sk);
2214 		}
2215 
2216 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2217 			tcp_try_undo_dsack(sk);
2218 
2219 		if (!tcp_time_to_recover(sk)) {
2220 			tcp_try_to_open(sk, flag);
2221 			return;
2222 		}
2223 
2224 		/* MTU probe failure: don't reduce cwnd */
2225 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2226 		    icsk->icsk_mtup.probe_size &&
2227 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2228 			tcp_mtup_probe_failed(sk);
2229 			/* Restores the reduction we did in tcp_mtup_probe() */
2230 			tp->snd_cwnd++;
2231 			tcp_simple_retransmit(sk);
2232 			return;
2233 		}
2234 
2235 		/* Otherwise enter Recovery state */
2236 
2237 		if (IsReno(tp))
2238 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2239 		else
2240 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2241 
2242 		tp->high_seq = tp->snd_nxt;
2243 		tp->prior_ssthresh = 0;
2244 		tp->undo_marker = tp->snd_una;
2245 		tp->undo_retrans = tp->retrans_out;
2246 
2247 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2248 			if (!(flag&FLAG_ECE))
2249 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2250 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2251 			TCP_ECN_queue_cwr(tp);
2252 		}
2253 
2254 		tp->bytes_acked = 0;
2255 		tp->snd_cwnd_cnt = 0;
2256 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2257 	}
2258 
2259 	if (is_dupack || tcp_head_timedout(sk))
2260 		tcp_update_scoreboard(sk);
2261 	tcp_cwnd_down(sk);
2262 	tcp_xmit_retransmit_queue(sk);
2263 }
2264 
2265 /* Read draft-ietf-tcplw-high-performance before mucking
2266  * with this code. (Supersedes RFC1323)
2267  */
2268 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2269 {
2270 	/* RTTM Rule: A TSecr value received in a segment is used to
2271 	 * update the averaged RTT measurement only if the segment
2272 	 * acknowledges some new data, i.e., only if it advances the
2273 	 * left edge of the send window.
2274 	 *
2275 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2276 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2277 	 *
2278 	 * Changed: reset backoff as soon as we see the first valid sample.
2279 	 * If we do not, we get strongly overestimated rto. With timestamps
2280 	 * samples are accepted even from very old segments: f.e., when rtt=1
2281 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2282 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2283 	 * in window is lost... Voila.	 			--ANK (010210)
2284 	 */
2285 	struct tcp_sock *tp = tcp_sk(sk);
2286 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2287 	tcp_rtt_estimator(sk, seq_rtt);
2288 	tcp_set_rto(sk);
2289 	inet_csk(sk)->icsk_backoff = 0;
2290 	tcp_bound_rto(sk);
2291 }
2292 
2293 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2294 {
2295 	/* We don't have a timestamp. Can only use
2296 	 * packets that are not retransmitted to determine
2297 	 * rtt estimates. Also, we must not reset the
2298 	 * backoff for rto until we get a non-retransmitted
2299 	 * packet. This allows us to deal with a situation
2300 	 * where the network delay has increased suddenly.
2301 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2302 	 */
2303 
2304 	if (flag & FLAG_RETRANS_DATA_ACKED)
2305 		return;
2306 
2307 	tcp_rtt_estimator(sk, seq_rtt);
2308 	tcp_set_rto(sk);
2309 	inet_csk(sk)->icsk_backoff = 0;
2310 	tcp_bound_rto(sk);
2311 }
2312 
2313 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2314 				      const s32 seq_rtt)
2315 {
2316 	const struct tcp_sock *tp = tcp_sk(sk);
2317 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2318 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2319 		tcp_ack_saw_tstamp(sk, flag);
2320 	else if (seq_rtt >= 0)
2321 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2322 }
2323 
2324 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2325 			   u32 in_flight, int good)
2326 {
2327 	const struct inet_connection_sock *icsk = inet_csk(sk);
2328 	icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2329 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2330 }
2331 
2332 /* Restart timer after forward progress on connection.
2333  * RFC2988 recommends to restart timer to now+rto.
2334  */
2335 
2336 static void tcp_ack_packets_out(struct sock *sk)
2337 {
2338 	struct tcp_sock *tp = tcp_sk(sk);
2339 
2340 	if (!tp->packets_out) {
2341 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2342 	} else {
2343 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2344 	}
2345 }
2346 
2347 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2348 			 __u32 now, __s32 *seq_rtt)
2349 {
2350 	struct tcp_sock *tp = tcp_sk(sk);
2351 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2352 	__u32 seq = tp->snd_una;
2353 	__u32 packets_acked;
2354 	int acked = 0;
2355 
2356 	/* If we get here, the whole TSO packet has not been
2357 	 * acked.
2358 	 */
2359 	BUG_ON(!after(scb->end_seq, seq));
2360 
2361 	packets_acked = tcp_skb_pcount(skb);
2362 	if (tcp_trim_head(sk, skb, seq - scb->seq))
2363 		return 0;
2364 	packets_acked -= tcp_skb_pcount(skb);
2365 
2366 	if (packets_acked) {
2367 		__u8 sacked = scb->sacked;
2368 
2369 		acked |= FLAG_DATA_ACKED;
2370 		if (sacked) {
2371 			if (sacked & TCPCB_RETRANS) {
2372 				if (sacked & TCPCB_SACKED_RETRANS)
2373 					tp->retrans_out -= packets_acked;
2374 				acked |= FLAG_RETRANS_DATA_ACKED;
2375 				*seq_rtt = -1;
2376 			} else if (*seq_rtt < 0)
2377 				*seq_rtt = now - scb->when;
2378 			if (sacked & TCPCB_SACKED_ACKED)
2379 				tp->sacked_out -= packets_acked;
2380 			if (sacked & TCPCB_LOST)
2381 				tp->lost_out -= packets_acked;
2382 			if (sacked & TCPCB_URG) {
2383 				if (tp->urg_mode &&
2384 				    !before(seq, tp->snd_up))
2385 					tp->urg_mode = 0;
2386 			}
2387 		} else if (*seq_rtt < 0)
2388 			*seq_rtt = now - scb->when;
2389 
2390 		if (tp->fackets_out) {
2391 			__u32 dval = min(tp->fackets_out, packets_acked);
2392 			tp->fackets_out -= dval;
2393 		}
2394 		tp->packets_out -= packets_acked;
2395 
2396 		BUG_ON(tcp_skb_pcount(skb) == 0);
2397 		BUG_ON(!before(scb->seq, scb->end_seq));
2398 	}
2399 
2400 	return acked;
2401 }
2402 
2403 /* Remove acknowledged frames from the retransmission queue. */
2404 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2405 {
2406 	struct tcp_sock *tp = tcp_sk(sk);
2407 	const struct inet_connection_sock *icsk = inet_csk(sk);
2408 	struct sk_buff *skb;
2409 	__u32 now = tcp_time_stamp;
2410 	int acked = 0;
2411 	int prior_packets = tp->packets_out;
2412 	__s32 seq_rtt = -1;
2413 	ktime_t last_ackt = net_invalid_timestamp();
2414 
2415 	while ((skb = tcp_write_queue_head(sk)) &&
2416 	       skb != tcp_send_head(sk)) {
2417 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2418 		__u8 sacked = scb->sacked;
2419 
2420 		/* If our packet is before the ack sequence we can
2421 		 * discard it as it's confirmed to have arrived at
2422 		 * the other end.
2423 		 */
2424 		if (after(scb->end_seq, tp->snd_una)) {
2425 			if (tcp_skb_pcount(skb) > 1 &&
2426 			    after(tp->snd_una, scb->seq))
2427 				acked |= tcp_tso_acked(sk, skb,
2428 						       now, &seq_rtt);
2429 			break;
2430 		}
2431 
2432 		/* Initial outgoing SYN's get put onto the write_queue
2433 		 * just like anything else we transmit.  It is not
2434 		 * true data, and if we misinform our callers that
2435 		 * this ACK acks real data, we will erroneously exit
2436 		 * connection startup slow start one packet too
2437 		 * quickly.  This is severely frowned upon behavior.
2438 		 */
2439 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2440 			acked |= FLAG_DATA_ACKED;
2441 		} else {
2442 			acked |= FLAG_SYN_ACKED;
2443 			tp->retrans_stamp = 0;
2444 		}
2445 
2446 		/* MTU probing checks */
2447 		if (icsk->icsk_mtup.probe_size) {
2448 			if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2449 				tcp_mtup_probe_success(sk, skb);
2450 			}
2451 		}
2452 
2453 		if (sacked) {
2454 			if (sacked & TCPCB_RETRANS) {
2455 				if (sacked & TCPCB_SACKED_RETRANS)
2456 					tp->retrans_out -= tcp_skb_pcount(skb);
2457 				acked |= FLAG_RETRANS_DATA_ACKED;
2458 				seq_rtt = -1;
2459 			} else if (seq_rtt < 0) {
2460 				seq_rtt = now - scb->when;
2461 				last_ackt = skb->tstamp;
2462 			}
2463 			if (sacked & TCPCB_SACKED_ACKED)
2464 				tp->sacked_out -= tcp_skb_pcount(skb);
2465 			if (sacked & TCPCB_LOST)
2466 				tp->lost_out -= tcp_skb_pcount(skb);
2467 			if (sacked & TCPCB_URG) {
2468 				if (tp->urg_mode &&
2469 				    !before(scb->end_seq, tp->snd_up))
2470 					tp->urg_mode = 0;
2471 			}
2472 		} else if (seq_rtt < 0) {
2473 			seq_rtt = now - scb->when;
2474 			last_ackt = skb->tstamp;
2475 		}
2476 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2477 		tcp_packets_out_dec(tp, skb);
2478 		tcp_unlink_write_queue(skb, sk);
2479 		sk_stream_free_skb(sk, skb);
2480 		clear_all_retrans_hints(tp);
2481 	}
2482 
2483 	if (acked&FLAG_ACKED) {
2484 		u32 pkts_acked = prior_packets - tp->packets_out;
2485 		const struct tcp_congestion_ops *ca_ops
2486 			= inet_csk(sk)->icsk_ca_ops;
2487 
2488 		tcp_ack_update_rtt(sk, acked, seq_rtt);
2489 		tcp_ack_packets_out(sk);
2490 
2491 		/* Is the ACK triggering packet unambiguous? */
2492 		if (acked & FLAG_RETRANS_DATA_ACKED)
2493 			last_ackt = net_invalid_timestamp();
2494 
2495 		if (ca_ops->pkts_acked)
2496 			ca_ops->pkts_acked(sk, pkts_acked, last_ackt);
2497 	}
2498 
2499 #if FASTRETRANS_DEBUG > 0
2500 	BUG_TRAP((int)tp->sacked_out >= 0);
2501 	BUG_TRAP((int)tp->lost_out >= 0);
2502 	BUG_TRAP((int)tp->retrans_out >= 0);
2503 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2504 		const struct inet_connection_sock *icsk = inet_csk(sk);
2505 		if (tp->lost_out) {
2506 			printk(KERN_DEBUG "Leak l=%u %d\n",
2507 			       tp->lost_out, icsk->icsk_ca_state);
2508 			tp->lost_out = 0;
2509 		}
2510 		if (tp->sacked_out) {
2511 			printk(KERN_DEBUG "Leak s=%u %d\n",
2512 			       tp->sacked_out, icsk->icsk_ca_state);
2513 			tp->sacked_out = 0;
2514 		}
2515 		if (tp->retrans_out) {
2516 			printk(KERN_DEBUG "Leak r=%u %d\n",
2517 			       tp->retrans_out, icsk->icsk_ca_state);
2518 			tp->retrans_out = 0;
2519 		}
2520 	}
2521 #endif
2522 	*seq_rtt_p = seq_rtt;
2523 	return acked;
2524 }
2525 
2526 static void tcp_ack_probe(struct sock *sk)
2527 {
2528 	const struct tcp_sock *tp = tcp_sk(sk);
2529 	struct inet_connection_sock *icsk = inet_csk(sk);
2530 
2531 	/* Was it a usable window open? */
2532 
2533 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2534 		   tp->snd_una + tp->snd_wnd)) {
2535 		icsk->icsk_backoff = 0;
2536 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2537 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2538 		 * This function is not for random using!
2539 		 */
2540 	} else {
2541 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2542 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2543 					  TCP_RTO_MAX);
2544 	}
2545 }
2546 
2547 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2548 {
2549 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2550 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2551 }
2552 
2553 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2554 {
2555 	const struct tcp_sock *tp = tcp_sk(sk);
2556 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2557 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2558 }
2559 
2560 /* Check that window update is acceptable.
2561  * The function assumes that snd_una<=ack<=snd_next.
2562  */
2563 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2564 					const u32 ack_seq, const u32 nwin)
2565 {
2566 	return (after(ack, tp->snd_una) ||
2567 		after(ack_seq, tp->snd_wl1) ||
2568 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2569 }
2570 
2571 /* Update our send window.
2572  *
2573  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2574  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2575  */
2576 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2577 				 u32 ack_seq)
2578 {
2579 	struct tcp_sock *tp = tcp_sk(sk);
2580 	int flag = 0;
2581 	u32 nwin = ntohs(tcp_hdr(skb)->window);
2582 
2583 	if (likely(!tcp_hdr(skb)->syn))
2584 		nwin <<= tp->rx_opt.snd_wscale;
2585 
2586 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2587 		flag |= FLAG_WIN_UPDATE;
2588 		tcp_update_wl(tp, ack, ack_seq);
2589 
2590 		if (tp->snd_wnd != nwin) {
2591 			tp->snd_wnd = nwin;
2592 
2593 			/* Note, it is the only place, where
2594 			 * fast path is recovered for sending TCP.
2595 			 */
2596 			tp->pred_flags = 0;
2597 			tcp_fast_path_check(sk);
2598 
2599 			if (nwin > tp->max_window) {
2600 				tp->max_window = nwin;
2601 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2602 			}
2603 		}
2604 	}
2605 
2606 	tp->snd_una = ack;
2607 
2608 	return flag;
2609 }
2610 
2611 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2612  * continue in congestion avoidance.
2613  */
2614 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2615 {
2616 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2617 	tp->snd_cwnd_cnt = 0;
2618 	TCP_ECN_queue_cwr(tp);
2619 	tcp_moderate_cwnd(tp);
2620 }
2621 
2622 /* A conservative spurious RTO response algorithm: reduce cwnd using
2623  * rate halving and continue in congestion avoidance.
2624  */
2625 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2626 {
2627 	tcp_enter_cwr(sk, 0);
2628 }
2629 
2630 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2631 {
2632 	if (flag&FLAG_ECE)
2633 		tcp_ratehalving_spur_to_response(sk);
2634 	else
2635 		tcp_undo_cwr(sk, 1);
2636 }
2637 
2638 /* F-RTO spurious RTO detection algorithm (RFC4138)
2639  *
2640  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2641  * comments). State (ACK number) is kept in frto_counter. When ACK advances
2642  * window (but not to or beyond highest sequence sent before RTO):
2643  *   On First ACK,  send two new segments out.
2644  *   On Second ACK, RTO was likely spurious. Do spurious response (response
2645  *                  algorithm is not part of the F-RTO detection algorithm
2646  *                  given in RFC4138 but can be selected separately).
2647  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2648  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2649  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2650  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2651  *
2652  * Rationale: if the RTO was spurious, new ACKs should arrive from the
2653  * original window even after we transmit two new data segments.
2654  *
2655  * SACK version:
2656  *   on first step, wait until first cumulative ACK arrives, then move to
2657  *   the second step. In second step, the next ACK decides.
2658  *
2659  * F-RTO is implemented (mainly) in four functions:
2660  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
2661  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2662  *     called when tcp_use_frto() showed green light
2663  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2664  *   - tcp_enter_frto_loss() is called if there is not enough evidence
2665  *     to prove that the RTO is indeed spurious. It transfers the control
2666  *     from F-RTO to the conventional RTO recovery
2667  */
2668 static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
2669 {
2670 	struct tcp_sock *tp = tcp_sk(sk);
2671 
2672 	tcp_sync_left_out(tp);
2673 
2674 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
2675 	if (flag&FLAG_DATA_ACKED)
2676 		inet_csk(sk)->icsk_retransmits = 0;
2677 
2678 	if (!before(tp->snd_una, tp->frto_highmark)) {
2679 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2680 		return 1;
2681 	}
2682 
2683 	if (!IsSackFrto() || IsReno(tp)) {
2684 		/* RFC4138 shortcoming in step 2; should also have case c):
2685 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
2686 		 * data, winupdate
2687 		 */
2688 		if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2689 		    !(flag&FLAG_FORWARD_PROGRESS))
2690 			return 1;
2691 
2692 		if (!(flag&FLAG_DATA_ACKED)) {
2693 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2694 					    flag);
2695 			return 1;
2696 		}
2697 	} else {
2698 		if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2699 			/* Prevent sending of new data. */
2700 			tp->snd_cwnd = min(tp->snd_cwnd,
2701 					   tcp_packets_in_flight(tp));
2702 			return 1;
2703 		}
2704 
2705 		if ((tp->frto_counter >= 2) &&
2706 		    (!(flag&FLAG_FORWARD_PROGRESS) ||
2707 		     ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2708 			/* RFC4138 shortcoming (see comment above) */
2709 			if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2710 				return 1;
2711 
2712 			tcp_enter_frto_loss(sk, 3, flag);
2713 			return 1;
2714 		}
2715 	}
2716 
2717 	if (tp->frto_counter == 1) {
2718 		/* Sending of the next skb must be allowed or no FRTO */
2719 		if (!tcp_send_head(sk) ||
2720 		    after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2721 				     tp->snd_una + tp->snd_wnd)) {
2722 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2723 					    flag);
2724 			return 1;
2725 		}
2726 
2727 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2728 		tp->frto_counter = 2;
2729 		return 1;
2730 	} else {
2731 		switch (sysctl_tcp_frto_response) {
2732 		case 2:
2733 			tcp_undo_spur_to_response(sk, flag);
2734 			break;
2735 		case 1:
2736 			tcp_conservative_spur_to_response(tp);
2737 			break;
2738 		default:
2739 			tcp_ratehalving_spur_to_response(sk);
2740 			break;
2741 		}
2742 		tp->frto_counter = 0;
2743 	}
2744 	return 0;
2745 }
2746 
2747 /* This routine deals with incoming acks, but not outgoing ones. */
2748 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2749 {
2750 	struct inet_connection_sock *icsk = inet_csk(sk);
2751 	struct tcp_sock *tp = tcp_sk(sk);
2752 	u32 prior_snd_una = tp->snd_una;
2753 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2754 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2755 	u32 prior_in_flight;
2756 	s32 seq_rtt;
2757 	int prior_packets;
2758 	int frto_cwnd = 0;
2759 
2760 	/* If the ack is newer than sent or older than previous acks
2761 	 * then we can probably ignore it.
2762 	 */
2763 	if (after(ack, tp->snd_nxt))
2764 		goto uninteresting_ack;
2765 
2766 	if (before(ack, prior_snd_una))
2767 		goto old_ack;
2768 
2769 	if (sysctl_tcp_abc) {
2770 		if (icsk->icsk_ca_state < TCP_CA_CWR)
2771 			tp->bytes_acked += ack - prior_snd_una;
2772 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
2773 			/* we assume just one segment left network */
2774 			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2775 	}
2776 
2777 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2778 		/* Window is constant, pure forward advance.
2779 		 * No more checks are required.
2780 		 * Note, we use the fact that SND.UNA>=SND.WL2.
2781 		 */
2782 		tcp_update_wl(tp, ack, ack_seq);
2783 		tp->snd_una = ack;
2784 		flag |= FLAG_WIN_UPDATE;
2785 
2786 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2787 
2788 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2789 	} else {
2790 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2791 			flag |= FLAG_DATA;
2792 		else
2793 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2794 
2795 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
2796 
2797 		if (TCP_SKB_CB(skb)->sacked)
2798 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2799 
2800 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
2801 			flag |= FLAG_ECE;
2802 
2803 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2804 	}
2805 
2806 	/* We passed data and got it acked, remove any soft error
2807 	 * log. Something worked...
2808 	 */
2809 	sk->sk_err_soft = 0;
2810 	tp->rcv_tstamp = tcp_time_stamp;
2811 	prior_packets = tp->packets_out;
2812 	if (!prior_packets)
2813 		goto no_queue;
2814 
2815 	prior_in_flight = tcp_packets_in_flight(tp);
2816 
2817 	/* See if we can take anything off of the retransmit queue. */
2818 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2819 
2820 	if (tp->frto_counter)
2821 		frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
2822 
2823 	if (tcp_ack_is_dubious(sk, flag)) {
2824 		/* Advance CWND, if state allows this. */
2825 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2826 		    tcp_may_raise_cwnd(sk, flag))
2827 			tcp_cong_avoid(sk, ack,  seq_rtt, prior_in_flight, 0);
2828 		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2829 	} else {
2830 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2831 			tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2832 	}
2833 
2834 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2835 		dst_confirm(sk->sk_dst_cache);
2836 
2837 	return 1;
2838 
2839 no_queue:
2840 	icsk->icsk_probes_out = 0;
2841 
2842 	/* If this ack opens up a zero window, clear backoff.  It was
2843 	 * being used to time the probes, and is probably far higher than
2844 	 * it needs to be for normal retransmission.
2845 	 */
2846 	if (tcp_send_head(sk))
2847 		tcp_ack_probe(sk);
2848 	return 1;
2849 
2850 old_ack:
2851 	if (TCP_SKB_CB(skb)->sacked)
2852 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2853 
2854 uninteresting_ack:
2855 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2856 	return 0;
2857 }
2858 
2859 
2860 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2861  * But, this can also be called on packets in the established flow when
2862  * the fast version below fails.
2863  */
2864 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2865 {
2866 	unsigned char *ptr;
2867 	struct tcphdr *th = tcp_hdr(skb);
2868 	int length=(th->doff*4)-sizeof(struct tcphdr);
2869 
2870 	ptr = (unsigned char *)(th + 1);
2871 	opt_rx->saw_tstamp = 0;
2872 
2873 	while (length > 0) {
2874 		int opcode=*ptr++;
2875 		int opsize;
2876 
2877 		switch (opcode) {
2878 			case TCPOPT_EOL:
2879 				return;
2880 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2881 				length--;
2882 				continue;
2883 			default:
2884 				opsize=*ptr++;
2885 				if (opsize < 2) /* "silly options" */
2886 					return;
2887 				if (opsize > length)
2888 					return;	/* don't parse partial options */
2889 				switch (opcode) {
2890 				case TCPOPT_MSS:
2891 					if (opsize==TCPOLEN_MSS && th->syn && !estab) {
2892 						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2893 						if (in_mss) {
2894 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2895 								in_mss = opt_rx->user_mss;
2896 							opt_rx->mss_clamp = in_mss;
2897 						}
2898 					}
2899 					break;
2900 				case TCPOPT_WINDOW:
2901 					if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
2902 						if (sysctl_tcp_window_scaling) {
2903 							__u8 snd_wscale = *(__u8 *) ptr;
2904 							opt_rx->wscale_ok = 1;
2905 							if (snd_wscale > 14) {
2906 								if (net_ratelimit())
2907 									printk(KERN_INFO "tcp_parse_options: Illegal window "
2908 									       "scaling value %d >14 received.\n",
2909 									       snd_wscale);
2910 								snd_wscale = 14;
2911 							}
2912 							opt_rx->snd_wscale = snd_wscale;
2913 						}
2914 					break;
2915 				case TCPOPT_TIMESTAMP:
2916 					if (opsize==TCPOLEN_TIMESTAMP) {
2917 						if ((estab && opt_rx->tstamp_ok) ||
2918 						    (!estab && sysctl_tcp_timestamps)) {
2919 							opt_rx->saw_tstamp = 1;
2920 							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2921 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2922 						}
2923 					}
2924 					break;
2925 				case TCPOPT_SACK_PERM:
2926 					if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2927 						if (sysctl_tcp_sack) {
2928 							opt_rx->sack_ok = 1;
2929 							tcp_sack_reset(opt_rx);
2930 						}
2931 					}
2932 					break;
2933 
2934 				case TCPOPT_SACK:
2935 					if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2936 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2937 					   opt_rx->sack_ok) {
2938 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2939 					}
2940 					break;
2941 #ifdef CONFIG_TCP_MD5SIG
2942 				case TCPOPT_MD5SIG:
2943 					/*
2944 					 * The MD5 Hash has already been
2945 					 * checked (see tcp_v{4,6}_do_rcv()).
2946 					 */
2947 					break;
2948 #endif
2949 				}
2950 
2951 				ptr+=opsize-2;
2952 				length-=opsize;
2953 		}
2954 	}
2955 }
2956 
2957 /* Fast parse options. This hopes to only see timestamps.
2958  * If it is wrong it falls back on tcp_parse_options().
2959  */
2960 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2961 				  struct tcp_sock *tp)
2962 {
2963 	if (th->doff == sizeof(struct tcphdr)>>2) {
2964 		tp->rx_opt.saw_tstamp = 0;
2965 		return 0;
2966 	} else if (tp->rx_opt.tstamp_ok &&
2967 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2968 		__be32 *ptr = (__be32 *)(th + 1);
2969 		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2970 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2971 			tp->rx_opt.saw_tstamp = 1;
2972 			++ptr;
2973 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2974 			++ptr;
2975 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2976 			return 1;
2977 		}
2978 	}
2979 	tcp_parse_options(skb, &tp->rx_opt, 1);
2980 	return 1;
2981 }
2982 
2983 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2984 {
2985 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2986 	tp->rx_opt.ts_recent_stamp = get_seconds();
2987 }
2988 
2989 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2990 {
2991 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2992 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2993 		 * extra check below makes sure this can only happen
2994 		 * for pure ACK frames.  -DaveM
2995 		 *
2996 		 * Not only, also it occurs for expired timestamps.
2997 		 */
2998 
2999 		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3000 		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3001 			tcp_store_ts_recent(tp);
3002 	}
3003 }
3004 
3005 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3006  *
3007  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3008  * it can pass through stack. So, the following predicate verifies that
3009  * this segment is not used for anything but congestion avoidance or
3010  * fast retransmit. Moreover, we even are able to eliminate most of such
3011  * second order effects, if we apply some small "replay" window (~RTO)
3012  * to timestamp space.
3013  *
3014  * All these measures still do not guarantee that we reject wrapped ACKs
3015  * on networks with high bandwidth, when sequence space is recycled fastly,
3016  * but it guarantees that such events will be very rare and do not affect
3017  * connection seriously. This doesn't look nice, but alas, PAWS is really
3018  * buggy extension.
3019  *
3020  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3021  * states that events when retransmit arrives after original data are rare.
3022  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3023  * the biggest problem on large power networks even with minor reordering.
3024  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3025  * up to bandwidth of 18Gigabit/sec. 8) ]
3026  */
3027 
3028 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3029 {
3030 	struct tcp_sock *tp = tcp_sk(sk);
3031 	struct tcphdr *th = tcp_hdr(skb);
3032 	u32 seq = TCP_SKB_CB(skb)->seq;
3033 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3034 
3035 	return (/* 1. Pure ACK with correct sequence number. */
3036 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3037 
3038 		/* 2. ... and duplicate ACK. */
3039 		ack == tp->snd_una &&
3040 
3041 		/* 3. ... and does not update window. */
3042 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3043 
3044 		/* 4. ... and sits in replay window. */
3045 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3046 }
3047 
3048 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3049 {
3050 	const struct tcp_sock *tp = tcp_sk(sk);
3051 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3052 		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3053 		!tcp_disordered_ack(sk, skb));
3054 }
3055 
3056 /* Check segment sequence number for validity.
3057  *
3058  * Segment controls are considered valid, if the segment
3059  * fits to the window after truncation to the window. Acceptability
3060  * of data (and SYN, FIN, of course) is checked separately.
3061  * See tcp_data_queue(), for example.
3062  *
3063  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3064  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3065  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3066  * (borrowed from freebsd)
3067  */
3068 
3069 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3070 {
3071 	return	!before(end_seq, tp->rcv_wup) &&
3072 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3073 }
3074 
3075 /* When we get a reset we do this. */
3076 static void tcp_reset(struct sock *sk)
3077 {
3078 	/* We want the right error as BSD sees it (and indeed as we do). */
3079 	switch (sk->sk_state) {
3080 		case TCP_SYN_SENT:
3081 			sk->sk_err = ECONNREFUSED;
3082 			break;
3083 		case TCP_CLOSE_WAIT:
3084 			sk->sk_err = EPIPE;
3085 			break;
3086 		case TCP_CLOSE:
3087 			return;
3088 		default:
3089 			sk->sk_err = ECONNRESET;
3090 	}
3091 
3092 	if (!sock_flag(sk, SOCK_DEAD))
3093 		sk->sk_error_report(sk);
3094 
3095 	tcp_done(sk);
3096 }
3097 
3098 /*
3099  * 	Process the FIN bit. This now behaves as it is supposed to work
3100  *	and the FIN takes effect when it is validly part of sequence
3101  *	space. Not before when we get holes.
3102  *
3103  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3104  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3105  *	TIME-WAIT)
3106  *
3107  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3108  *	close and we go into CLOSING (and later onto TIME-WAIT)
3109  *
3110  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3111  */
3112 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3113 {
3114 	struct tcp_sock *tp = tcp_sk(sk);
3115 
3116 	inet_csk_schedule_ack(sk);
3117 
3118 	sk->sk_shutdown |= RCV_SHUTDOWN;
3119 	sock_set_flag(sk, SOCK_DONE);
3120 
3121 	switch (sk->sk_state) {
3122 		case TCP_SYN_RECV:
3123 		case TCP_ESTABLISHED:
3124 			/* Move to CLOSE_WAIT */
3125 			tcp_set_state(sk, TCP_CLOSE_WAIT);
3126 			inet_csk(sk)->icsk_ack.pingpong = 1;
3127 			break;
3128 
3129 		case TCP_CLOSE_WAIT:
3130 		case TCP_CLOSING:
3131 			/* Received a retransmission of the FIN, do
3132 			 * nothing.
3133 			 */
3134 			break;
3135 		case TCP_LAST_ACK:
3136 			/* RFC793: Remain in the LAST-ACK state. */
3137 			break;
3138 
3139 		case TCP_FIN_WAIT1:
3140 			/* This case occurs when a simultaneous close
3141 			 * happens, we must ack the received FIN and
3142 			 * enter the CLOSING state.
3143 			 */
3144 			tcp_send_ack(sk);
3145 			tcp_set_state(sk, TCP_CLOSING);
3146 			break;
3147 		case TCP_FIN_WAIT2:
3148 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
3149 			tcp_send_ack(sk);
3150 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3151 			break;
3152 		default:
3153 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3154 			 * cases we should never reach this piece of code.
3155 			 */
3156 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3157 			       __FUNCTION__, sk->sk_state);
3158 			break;
3159 	}
3160 
3161 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3162 	 * Probably, we should reset in this case. For now drop them.
3163 	 */
3164 	__skb_queue_purge(&tp->out_of_order_queue);
3165 	if (tp->rx_opt.sack_ok)
3166 		tcp_sack_reset(&tp->rx_opt);
3167 	sk_stream_mem_reclaim(sk);
3168 
3169 	if (!sock_flag(sk, SOCK_DEAD)) {
3170 		sk->sk_state_change(sk);
3171 
3172 		/* Do not send POLL_HUP for half duplex close. */
3173 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3174 		    sk->sk_state == TCP_CLOSE)
3175 			sk_wake_async(sk, 1, POLL_HUP);
3176 		else
3177 			sk_wake_async(sk, 1, POLL_IN);
3178 	}
3179 }
3180 
3181 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3182 {
3183 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3184 		if (before(seq, sp->start_seq))
3185 			sp->start_seq = seq;
3186 		if (after(end_seq, sp->end_seq))
3187 			sp->end_seq = end_seq;
3188 		return 1;
3189 	}
3190 	return 0;
3191 }
3192 
3193 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3194 {
3195 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3196 		if (before(seq, tp->rcv_nxt))
3197 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3198 		else
3199 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3200 
3201 		tp->rx_opt.dsack = 1;
3202 		tp->duplicate_sack[0].start_seq = seq;
3203 		tp->duplicate_sack[0].end_seq = end_seq;
3204 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3205 	}
3206 }
3207 
3208 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3209 {
3210 	if (!tp->rx_opt.dsack)
3211 		tcp_dsack_set(tp, seq, end_seq);
3212 	else
3213 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3214 }
3215 
3216 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3217 {
3218 	struct tcp_sock *tp = tcp_sk(sk);
3219 
3220 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3221 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3222 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3223 		tcp_enter_quickack_mode(sk);
3224 
3225 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3226 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3227 
3228 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3229 				end_seq = tp->rcv_nxt;
3230 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3231 		}
3232 	}
3233 
3234 	tcp_send_ack(sk);
3235 }
3236 
3237 /* These routines update the SACK block as out-of-order packets arrive or
3238  * in-order packets close up the sequence space.
3239  */
3240 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3241 {
3242 	int this_sack;
3243 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3244 	struct tcp_sack_block *swalk = sp+1;
3245 
3246 	/* See if the recent change to the first SACK eats into
3247 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3248 	 */
3249 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3250 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3251 			int i;
3252 
3253 			/* Zap SWALK, by moving every further SACK up by one slot.
3254 			 * Decrease num_sacks.
3255 			 */
3256 			tp->rx_opt.num_sacks--;
3257 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3258 			for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3259 				sp[i] = sp[i+1];
3260 			continue;
3261 		}
3262 		this_sack++, swalk++;
3263 	}
3264 }
3265 
3266 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3267 {
3268 	__u32 tmp;
3269 
3270 	tmp = sack1->start_seq;
3271 	sack1->start_seq = sack2->start_seq;
3272 	sack2->start_seq = tmp;
3273 
3274 	tmp = sack1->end_seq;
3275 	sack1->end_seq = sack2->end_seq;
3276 	sack2->end_seq = tmp;
3277 }
3278 
3279 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3280 {
3281 	struct tcp_sock *tp = tcp_sk(sk);
3282 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3283 	int cur_sacks = tp->rx_opt.num_sacks;
3284 	int this_sack;
3285 
3286 	if (!cur_sacks)
3287 		goto new_sack;
3288 
3289 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3290 		if (tcp_sack_extend(sp, seq, end_seq)) {
3291 			/* Rotate this_sack to the first one. */
3292 			for (; this_sack>0; this_sack--, sp--)
3293 				tcp_sack_swap(sp, sp-1);
3294 			if (cur_sacks > 1)
3295 				tcp_sack_maybe_coalesce(tp);
3296 			return;
3297 		}
3298 	}
3299 
3300 	/* Could not find an adjacent existing SACK, build a new one,
3301 	 * put it at the front, and shift everyone else down.  We
3302 	 * always know there is at least one SACK present already here.
3303 	 *
3304 	 * If the sack array is full, forget about the last one.
3305 	 */
3306 	if (this_sack >= 4) {
3307 		this_sack--;
3308 		tp->rx_opt.num_sacks--;
3309 		sp--;
3310 	}
3311 	for (; this_sack > 0; this_sack--, sp--)
3312 		*sp = *(sp-1);
3313 
3314 new_sack:
3315 	/* Build the new head SACK, and we're done. */
3316 	sp->start_seq = seq;
3317 	sp->end_seq = end_seq;
3318 	tp->rx_opt.num_sacks++;
3319 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3320 }
3321 
3322 /* RCV.NXT advances, some SACKs should be eaten. */
3323 
3324 static void tcp_sack_remove(struct tcp_sock *tp)
3325 {
3326 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3327 	int num_sacks = tp->rx_opt.num_sacks;
3328 	int this_sack;
3329 
3330 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3331 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3332 		tp->rx_opt.num_sacks = 0;
3333 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3334 		return;
3335 	}
3336 
3337 	for (this_sack = 0; this_sack < num_sacks; ) {
3338 		/* Check if the start of the sack is covered by RCV.NXT. */
3339 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3340 			int i;
3341 
3342 			/* RCV.NXT must cover all the block! */
3343 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3344 
3345 			/* Zap this SACK, by moving forward any other SACKS. */
3346 			for (i=this_sack+1; i < num_sacks; i++)
3347 				tp->selective_acks[i-1] = tp->selective_acks[i];
3348 			num_sacks--;
3349 			continue;
3350 		}
3351 		this_sack++;
3352 		sp++;
3353 	}
3354 	if (num_sacks != tp->rx_opt.num_sacks) {
3355 		tp->rx_opt.num_sacks = num_sacks;
3356 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3357 	}
3358 }
3359 
3360 /* This one checks to see if we can put data from the
3361  * out_of_order queue into the receive_queue.
3362  */
3363 static void tcp_ofo_queue(struct sock *sk)
3364 {
3365 	struct tcp_sock *tp = tcp_sk(sk);
3366 	__u32 dsack_high = tp->rcv_nxt;
3367 	struct sk_buff *skb;
3368 
3369 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3370 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3371 			break;
3372 
3373 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3374 			__u32 dsack = dsack_high;
3375 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3376 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3377 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3378 		}
3379 
3380 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3381 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3382 			__skb_unlink(skb, &tp->out_of_order_queue);
3383 			__kfree_skb(skb);
3384 			continue;
3385 		}
3386 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3387 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3388 			   TCP_SKB_CB(skb)->end_seq);
3389 
3390 		__skb_unlink(skb, &tp->out_of_order_queue);
3391 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3392 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3393 		if (tcp_hdr(skb)->fin)
3394 			tcp_fin(skb, sk, tcp_hdr(skb));
3395 	}
3396 }
3397 
3398 static int tcp_prune_queue(struct sock *sk);
3399 
3400 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3401 {
3402 	struct tcphdr *th = tcp_hdr(skb);
3403 	struct tcp_sock *tp = tcp_sk(sk);
3404 	int eaten = -1;
3405 
3406 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3407 		goto drop;
3408 
3409 	__skb_pull(skb, th->doff*4);
3410 
3411 	TCP_ECN_accept_cwr(tp, skb);
3412 
3413 	if (tp->rx_opt.dsack) {
3414 		tp->rx_opt.dsack = 0;
3415 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3416 						    4 - tp->rx_opt.tstamp_ok);
3417 	}
3418 
3419 	/*  Queue data for delivery to the user.
3420 	 *  Packets in sequence go to the receive queue.
3421 	 *  Out of sequence packets to the out_of_order_queue.
3422 	 */
3423 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3424 		if (tcp_receive_window(tp) == 0)
3425 			goto out_of_window;
3426 
3427 		/* Ok. In sequence. In window. */
3428 		if (tp->ucopy.task == current &&
3429 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3430 		    sock_owned_by_user(sk) && !tp->urg_data) {
3431 			int chunk = min_t(unsigned int, skb->len,
3432 							tp->ucopy.len);
3433 
3434 			__set_current_state(TASK_RUNNING);
3435 
3436 			local_bh_enable();
3437 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3438 				tp->ucopy.len -= chunk;
3439 				tp->copied_seq += chunk;
3440 				eaten = (chunk == skb->len && !th->fin);
3441 				tcp_rcv_space_adjust(sk);
3442 			}
3443 			local_bh_disable();
3444 		}
3445 
3446 		if (eaten <= 0) {
3447 queue_and_out:
3448 			if (eaten < 0 &&
3449 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3450 			     !sk_stream_rmem_schedule(sk, skb))) {
3451 				if (tcp_prune_queue(sk) < 0 ||
3452 				    !sk_stream_rmem_schedule(sk, skb))
3453 					goto drop;
3454 			}
3455 			sk_stream_set_owner_r(skb, sk);
3456 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3457 		}
3458 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3459 		if (skb->len)
3460 			tcp_event_data_recv(sk, skb);
3461 		if (th->fin)
3462 			tcp_fin(skb, sk, th);
3463 
3464 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3465 			tcp_ofo_queue(sk);
3466 
3467 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3468 			 * gap in queue is filled.
3469 			 */
3470 			if (skb_queue_empty(&tp->out_of_order_queue))
3471 				inet_csk(sk)->icsk_ack.pingpong = 0;
3472 		}
3473 
3474 		if (tp->rx_opt.num_sacks)
3475 			tcp_sack_remove(tp);
3476 
3477 		tcp_fast_path_check(sk);
3478 
3479 		if (eaten > 0)
3480 			__kfree_skb(skb);
3481 		else if (!sock_flag(sk, SOCK_DEAD))
3482 			sk->sk_data_ready(sk, 0);
3483 		return;
3484 	}
3485 
3486 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3487 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3488 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3489 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3490 
3491 out_of_window:
3492 		tcp_enter_quickack_mode(sk);
3493 		inet_csk_schedule_ack(sk);
3494 drop:
3495 		__kfree_skb(skb);
3496 		return;
3497 	}
3498 
3499 	/* Out of window. F.e. zero window probe. */
3500 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3501 		goto out_of_window;
3502 
3503 	tcp_enter_quickack_mode(sk);
3504 
3505 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3506 		/* Partial packet, seq < rcv_next < end_seq */
3507 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3508 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3509 			   TCP_SKB_CB(skb)->end_seq);
3510 
3511 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3512 
3513 		/* If window is closed, drop tail of packet. But after
3514 		 * remembering D-SACK for its head made in previous line.
3515 		 */
3516 		if (!tcp_receive_window(tp))
3517 			goto out_of_window;
3518 		goto queue_and_out;
3519 	}
3520 
3521 	TCP_ECN_check_ce(tp, skb);
3522 
3523 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3524 	    !sk_stream_rmem_schedule(sk, skb)) {
3525 		if (tcp_prune_queue(sk) < 0 ||
3526 		    !sk_stream_rmem_schedule(sk, skb))
3527 			goto drop;
3528 	}
3529 
3530 	/* Disable header prediction. */
3531 	tp->pred_flags = 0;
3532 	inet_csk_schedule_ack(sk);
3533 
3534 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3535 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3536 
3537 	sk_stream_set_owner_r(skb, sk);
3538 
3539 	if (!skb_peek(&tp->out_of_order_queue)) {
3540 		/* Initial out of order segment, build 1 SACK. */
3541 		if (tp->rx_opt.sack_ok) {
3542 			tp->rx_opt.num_sacks = 1;
3543 			tp->rx_opt.dsack     = 0;
3544 			tp->rx_opt.eff_sacks = 1;
3545 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3546 			tp->selective_acks[0].end_seq =
3547 						TCP_SKB_CB(skb)->end_seq;
3548 		}
3549 		__skb_queue_head(&tp->out_of_order_queue,skb);
3550 	} else {
3551 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3552 		u32 seq = TCP_SKB_CB(skb)->seq;
3553 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3554 
3555 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3556 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3557 
3558 			if (!tp->rx_opt.num_sacks ||
3559 			    tp->selective_acks[0].end_seq != seq)
3560 				goto add_sack;
3561 
3562 			/* Common case: data arrive in order after hole. */
3563 			tp->selective_acks[0].end_seq = end_seq;
3564 			return;
3565 		}
3566 
3567 		/* Find place to insert this segment. */
3568 		do {
3569 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3570 				break;
3571 		} while ((skb1 = skb1->prev) !=
3572 			 (struct sk_buff*)&tp->out_of_order_queue);
3573 
3574 		/* Do skb overlap to previous one? */
3575 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3576 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3577 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3578 				/* All the bits are present. Drop. */
3579 				__kfree_skb(skb);
3580 				tcp_dsack_set(tp, seq, end_seq);
3581 				goto add_sack;
3582 			}
3583 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3584 				/* Partial overlap. */
3585 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3586 			} else {
3587 				skb1 = skb1->prev;
3588 			}
3589 		}
3590 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3591 
3592 		/* And clean segments covered by new one as whole. */
3593 		while ((skb1 = skb->next) !=
3594 		       (struct sk_buff*)&tp->out_of_order_queue &&
3595 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3596 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3597 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3598 			       break;
3599 		       }
3600 		       __skb_unlink(skb1, &tp->out_of_order_queue);
3601 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3602 		       __kfree_skb(skb1);
3603 		}
3604 
3605 add_sack:
3606 		if (tp->rx_opt.sack_ok)
3607 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3608 	}
3609 }
3610 
3611 /* Collapse contiguous sequence of skbs head..tail with
3612  * sequence numbers start..end.
3613  * Segments with FIN/SYN are not collapsed (only because this
3614  * simplifies code)
3615  */
3616 static void
3617 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3618 	     struct sk_buff *head, struct sk_buff *tail,
3619 	     u32 start, u32 end)
3620 {
3621 	struct sk_buff *skb;
3622 
3623 	/* First, check that queue is collapsible and find
3624 	 * the point where collapsing can be useful. */
3625 	for (skb = head; skb != tail; ) {
3626 		/* No new bits? It is possible on ofo queue. */
3627 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3628 			struct sk_buff *next = skb->next;
3629 			__skb_unlink(skb, list);
3630 			__kfree_skb(skb);
3631 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3632 			skb = next;
3633 			continue;
3634 		}
3635 
3636 		/* The first skb to collapse is:
3637 		 * - not SYN/FIN and
3638 		 * - bloated or contains data before "start" or
3639 		 *   overlaps to the next one.
3640 		 */
3641 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3642 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3643 		     before(TCP_SKB_CB(skb)->seq, start) ||
3644 		     (skb->next != tail &&
3645 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3646 			break;
3647 
3648 		/* Decided to skip this, advance start seq. */
3649 		start = TCP_SKB_CB(skb)->end_seq;
3650 		skb = skb->next;
3651 	}
3652 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3653 		return;
3654 
3655 	while (before(start, end)) {
3656 		struct sk_buff *nskb;
3657 		int header = skb_headroom(skb);
3658 		int copy = SKB_MAX_ORDER(header, 0);
3659 
3660 		/* Too big header? This can happen with IPv6. */
3661 		if (copy < 0)
3662 			return;
3663 		if (end-start < copy)
3664 			copy = end-start;
3665 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3666 		if (!nskb)
3667 			return;
3668 
3669 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3670 		skb_set_network_header(nskb, (skb_network_header(skb) -
3671 					      skb->head));
3672 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
3673 						skb->head));
3674 		skb_reserve(nskb, header);
3675 		memcpy(nskb->head, skb->head, header);
3676 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3677 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3678 		__skb_insert(nskb, skb->prev, skb, list);
3679 		sk_stream_set_owner_r(nskb, sk);
3680 
3681 		/* Copy data, releasing collapsed skbs. */
3682 		while (copy > 0) {
3683 			int offset = start - TCP_SKB_CB(skb)->seq;
3684 			int size = TCP_SKB_CB(skb)->end_seq - start;
3685 
3686 			BUG_ON(offset < 0);
3687 			if (size > 0) {
3688 				size = min(copy, size);
3689 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3690 					BUG();
3691 				TCP_SKB_CB(nskb)->end_seq += size;
3692 				copy -= size;
3693 				start += size;
3694 			}
3695 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3696 				struct sk_buff *next = skb->next;
3697 				__skb_unlink(skb, list);
3698 				__kfree_skb(skb);
3699 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3700 				skb = next;
3701 				if (skb == tail ||
3702 				    tcp_hdr(skb)->syn ||
3703 				    tcp_hdr(skb)->fin)
3704 					return;
3705 			}
3706 		}
3707 	}
3708 }
3709 
3710 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3711  * and tcp_collapse() them until all the queue is collapsed.
3712  */
3713 static void tcp_collapse_ofo_queue(struct sock *sk)
3714 {
3715 	struct tcp_sock *tp = tcp_sk(sk);
3716 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3717 	struct sk_buff *head;
3718 	u32 start, end;
3719 
3720 	if (skb == NULL)
3721 		return;
3722 
3723 	start = TCP_SKB_CB(skb)->seq;
3724 	end = TCP_SKB_CB(skb)->end_seq;
3725 	head = skb;
3726 
3727 	for (;;) {
3728 		skb = skb->next;
3729 
3730 		/* Segment is terminated when we see gap or when
3731 		 * we are at the end of all the queue. */
3732 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3733 		    after(TCP_SKB_CB(skb)->seq, end) ||
3734 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3735 			tcp_collapse(sk, &tp->out_of_order_queue,
3736 				     head, skb, start, end);
3737 			head = skb;
3738 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3739 				break;
3740 			/* Start new segment */
3741 			start = TCP_SKB_CB(skb)->seq;
3742 			end = TCP_SKB_CB(skb)->end_seq;
3743 		} else {
3744 			if (before(TCP_SKB_CB(skb)->seq, start))
3745 				start = TCP_SKB_CB(skb)->seq;
3746 			if (after(TCP_SKB_CB(skb)->end_seq, end))
3747 				end = TCP_SKB_CB(skb)->end_seq;
3748 		}
3749 	}
3750 }
3751 
3752 /* Reduce allocated memory if we can, trying to get
3753  * the socket within its memory limits again.
3754  *
3755  * Return less than zero if we should start dropping frames
3756  * until the socket owning process reads some of the data
3757  * to stabilize the situation.
3758  */
3759 static int tcp_prune_queue(struct sock *sk)
3760 {
3761 	struct tcp_sock *tp = tcp_sk(sk);
3762 
3763 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3764 
3765 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3766 
3767 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3768 		tcp_clamp_window(sk);
3769 	else if (tcp_memory_pressure)
3770 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3771 
3772 	tcp_collapse_ofo_queue(sk);
3773 	tcp_collapse(sk, &sk->sk_receive_queue,
3774 		     sk->sk_receive_queue.next,
3775 		     (struct sk_buff*)&sk->sk_receive_queue,
3776 		     tp->copied_seq, tp->rcv_nxt);
3777 	sk_stream_mem_reclaim(sk);
3778 
3779 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3780 		return 0;
3781 
3782 	/* Collapsing did not help, destructive actions follow.
3783 	 * This must not ever occur. */
3784 
3785 	/* First, purge the out_of_order queue. */
3786 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3787 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3788 		__skb_queue_purge(&tp->out_of_order_queue);
3789 
3790 		/* Reset SACK state.  A conforming SACK implementation will
3791 		 * do the same at a timeout based retransmit.  When a connection
3792 		 * is in a sad state like this, we care only about integrity
3793 		 * of the connection not performance.
3794 		 */
3795 		if (tp->rx_opt.sack_ok)
3796 			tcp_sack_reset(&tp->rx_opt);
3797 		sk_stream_mem_reclaim(sk);
3798 	}
3799 
3800 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3801 		return 0;
3802 
3803 	/* If we are really being abused, tell the caller to silently
3804 	 * drop receive data on the floor.  It will get retransmitted
3805 	 * and hopefully then we'll have sufficient space.
3806 	 */
3807 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3808 
3809 	/* Massive buffer overcommit. */
3810 	tp->pred_flags = 0;
3811 	return -1;
3812 }
3813 
3814 
3815 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3816  * As additional protections, we do not touch cwnd in retransmission phases,
3817  * and if application hit its sndbuf limit recently.
3818  */
3819 void tcp_cwnd_application_limited(struct sock *sk)
3820 {
3821 	struct tcp_sock *tp = tcp_sk(sk);
3822 
3823 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3824 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3825 		/* Limited by application or receiver window. */
3826 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3827 		u32 win_used = max(tp->snd_cwnd_used, init_win);
3828 		if (win_used < tp->snd_cwnd) {
3829 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3830 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3831 		}
3832 		tp->snd_cwnd_used = 0;
3833 	}
3834 	tp->snd_cwnd_stamp = tcp_time_stamp;
3835 }
3836 
3837 static int tcp_should_expand_sndbuf(struct sock *sk)
3838 {
3839 	struct tcp_sock *tp = tcp_sk(sk);
3840 
3841 	/* If the user specified a specific send buffer setting, do
3842 	 * not modify it.
3843 	 */
3844 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3845 		return 0;
3846 
3847 	/* If we are under global TCP memory pressure, do not expand.  */
3848 	if (tcp_memory_pressure)
3849 		return 0;
3850 
3851 	/* If we are under soft global TCP memory pressure, do not expand.  */
3852 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3853 		return 0;
3854 
3855 	/* If we filled the congestion window, do not expand.  */
3856 	if (tp->packets_out >= tp->snd_cwnd)
3857 		return 0;
3858 
3859 	return 1;
3860 }
3861 
3862 /* When incoming ACK allowed to free some skb from write_queue,
3863  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3864  * on the exit from tcp input handler.
3865  *
3866  * PROBLEM: sndbuf expansion does not work well with largesend.
3867  */
3868 static void tcp_new_space(struct sock *sk)
3869 {
3870 	struct tcp_sock *tp = tcp_sk(sk);
3871 
3872 	if (tcp_should_expand_sndbuf(sk)) {
3873 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3874 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3875 		    demanded = max_t(unsigned int, tp->snd_cwnd,
3876 						   tp->reordering + 1);
3877 		sndmem *= 2*demanded;
3878 		if (sndmem > sk->sk_sndbuf)
3879 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3880 		tp->snd_cwnd_stamp = tcp_time_stamp;
3881 	}
3882 
3883 	sk->sk_write_space(sk);
3884 }
3885 
3886 static void tcp_check_space(struct sock *sk)
3887 {
3888 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3889 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3890 		if (sk->sk_socket &&
3891 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3892 			tcp_new_space(sk);
3893 	}
3894 }
3895 
3896 static inline void tcp_data_snd_check(struct sock *sk)
3897 {
3898 	tcp_push_pending_frames(sk);
3899 	tcp_check_space(sk);
3900 }
3901 
3902 /*
3903  * Check if sending an ack is needed.
3904  */
3905 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3906 {
3907 	struct tcp_sock *tp = tcp_sk(sk);
3908 
3909 	    /* More than one full frame received... */
3910 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3911 	     /* ... and right edge of window advances far enough.
3912 	      * (tcp_recvmsg() will send ACK otherwise). Or...
3913 	      */
3914 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3915 	    /* We ACK each frame or... */
3916 	    tcp_in_quickack_mode(sk) ||
3917 	    /* We have out of order data. */
3918 	    (ofo_possible &&
3919 	     skb_peek(&tp->out_of_order_queue))) {
3920 		/* Then ack it now */
3921 		tcp_send_ack(sk);
3922 	} else {
3923 		/* Else, send delayed ack. */
3924 		tcp_send_delayed_ack(sk);
3925 	}
3926 }
3927 
3928 static inline void tcp_ack_snd_check(struct sock *sk)
3929 {
3930 	if (!inet_csk_ack_scheduled(sk)) {
3931 		/* We sent a data segment already. */
3932 		return;
3933 	}
3934 	__tcp_ack_snd_check(sk, 1);
3935 }
3936 
3937 /*
3938  *	This routine is only called when we have urgent data
3939  *	signaled. Its the 'slow' part of tcp_urg. It could be
3940  *	moved inline now as tcp_urg is only called from one
3941  *	place. We handle URGent data wrong. We have to - as
3942  *	BSD still doesn't use the correction from RFC961.
3943  *	For 1003.1g we should support a new option TCP_STDURG to permit
3944  *	either form (or just set the sysctl tcp_stdurg).
3945  */
3946 
3947 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3948 {
3949 	struct tcp_sock *tp = tcp_sk(sk);
3950 	u32 ptr = ntohs(th->urg_ptr);
3951 
3952 	if (ptr && !sysctl_tcp_stdurg)
3953 		ptr--;
3954 	ptr += ntohl(th->seq);
3955 
3956 	/* Ignore urgent data that we've already seen and read. */
3957 	if (after(tp->copied_seq, ptr))
3958 		return;
3959 
3960 	/* Do not replay urg ptr.
3961 	 *
3962 	 * NOTE: interesting situation not covered by specs.
3963 	 * Misbehaving sender may send urg ptr, pointing to segment,
3964 	 * which we already have in ofo queue. We are not able to fetch
3965 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3966 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3967 	 * situations. But it is worth to think about possibility of some
3968 	 * DoSes using some hypothetical application level deadlock.
3969 	 */
3970 	if (before(ptr, tp->rcv_nxt))
3971 		return;
3972 
3973 	/* Do we already have a newer (or duplicate) urgent pointer? */
3974 	if (tp->urg_data && !after(ptr, tp->urg_seq))
3975 		return;
3976 
3977 	/* Tell the world about our new urgent pointer. */
3978 	sk_send_sigurg(sk);
3979 
3980 	/* We may be adding urgent data when the last byte read was
3981 	 * urgent. To do this requires some care. We cannot just ignore
3982 	 * tp->copied_seq since we would read the last urgent byte again
3983 	 * as data, nor can we alter copied_seq until this data arrives
3984 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3985 	 *
3986 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3987 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3988 	 * and expect that both A and B disappear from stream. This is _wrong_.
3989 	 * Though this happens in BSD with high probability, this is occasional.
3990 	 * Any application relying on this is buggy. Note also, that fix "works"
3991 	 * only in this artificial test. Insert some normal data between A and B and we will
3992 	 * decline of BSD again. Verdict: it is better to remove to trap
3993 	 * buggy users.
3994 	 */
3995 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3996 	    !sock_flag(sk, SOCK_URGINLINE) &&
3997 	    tp->copied_seq != tp->rcv_nxt) {
3998 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3999 		tp->copied_seq++;
4000 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4001 			__skb_unlink(skb, &sk->sk_receive_queue);
4002 			__kfree_skb(skb);
4003 		}
4004 	}
4005 
4006 	tp->urg_data   = TCP_URG_NOTYET;
4007 	tp->urg_seq    = ptr;
4008 
4009 	/* Disable header prediction. */
4010 	tp->pred_flags = 0;
4011 }
4012 
4013 /* This is the 'fast' part of urgent handling. */
4014 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4015 {
4016 	struct tcp_sock *tp = tcp_sk(sk);
4017 
4018 	/* Check if we get a new urgent pointer - normally not. */
4019 	if (th->urg)
4020 		tcp_check_urg(sk,th);
4021 
4022 	/* Do we wait for any urgent data? - normally not... */
4023 	if (tp->urg_data == TCP_URG_NOTYET) {
4024 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4025 			  th->syn;
4026 
4027 		/* Is the urgent pointer pointing into this packet? */
4028 		if (ptr < skb->len) {
4029 			u8 tmp;
4030 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4031 				BUG();
4032 			tp->urg_data = TCP_URG_VALID | tmp;
4033 			if (!sock_flag(sk, SOCK_DEAD))
4034 				sk->sk_data_ready(sk, 0);
4035 		}
4036 	}
4037 }
4038 
4039 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4040 {
4041 	struct tcp_sock *tp = tcp_sk(sk);
4042 	int chunk = skb->len - hlen;
4043 	int err;
4044 
4045 	local_bh_enable();
4046 	if (skb_csum_unnecessary(skb))
4047 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4048 	else
4049 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4050 						       tp->ucopy.iov);
4051 
4052 	if (!err) {
4053 		tp->ucopy.len -= chunk;
4054 		tp->copied_seq += chunk;
4055 		tcp_rcv_space_adjust(sk);
4056 	}
4057 
4058 	local_bh_disable();
4059 	return err;
4060 }
4061 
4062 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4063 {
4064 	__sum16 result;
4065 
4066 	if (sock_owned_by_user(sk)) {
4067 		local_bh_enable();
4068 		result = __tcp_checksum_complete(skb);
4069 		local_bh_disable();
4070 	} else {
4071 		result = __tcp_checksum_complete(skb);
4072 	}
4073 	return result;
4074 }
4075 
4076 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4077 {
4078 	return !skb_csum_unnecessary(skb) &&
4079 		__tcp_checksum_complete_user(sk, skb);
4080 }
4081 
4082 #ifdef CONFIG_NET_DMA
4083 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4084 {
4085 	struct tcp_sock *tp = tcp_sk(sk);
4086 	int chunk = skb->len - hlen;
4087 	int dma_cookie;
4088 	int copied_early = 0;
4089 
4090 	if (tp->ucopy.wakeup)
4091 		return 0;
4092 
4093 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4094 		tp->ucopy.dma_chan = get_softnet_dma();
4095 
4096 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4097 
4098 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4099 			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4100 
4101 		if (dma_cookie < 0)
4102 			goto out;
4103 
4104 		tp->ucopy.dma_cookie = dma_cookie;
4105 		copied_early = 1;
4106 
4107 		tp->ucopy.len -= chunk;
4108 		tp->copied_seq += chunk;
4109 		tcp_rcv_space_adjust(sk);
4110 
4111 		if ((tp->ucopy.len == 0) ||
4112 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4113 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4114 			tp->ucopy.wakeup = 1;
4115 			sk->sk_data_ready(sk, 0);
4116 		}
4117 	} else if (chunk > 0) {
4118 		tp->ucopy.wakeup = 1;
4119 		sk->sk_data_ready(sk, 0);
4120 	}
4121 out:
4122 	return copied_early;
4123 }
4124 #endif /* CONFIG_NET_DMA */
4125 
4126 /*
4127  *	TCP receive function for the ESTABLISHED state.
4128  *
4129  *	It is split into a fast path and a slow path. The fast path is
4130  * 	disabled when:
4131  *	- A zero window was announced from us - zero window probing
4132  *        is only handled properly in the slow path.
4133  *	- Out of order segments arrived.
4134  *	- Urgent data is expected.
4135  *	- There is no buffer space left
4136  *	- Unexpected TCP flags/window values/header lengths are received
4137  *	  (detected by checking the TCP header against pred_flags)
4138  *	- Data is sent in both directions. Fast path only supports pure senders
4139  *	  or pure receivers (this means either the sequence number or the ack
4140  *	  value must stay constant)
4141  *	- Unexpected TCP option.
4142  *
4143  *	When these conditions are not satisfied it drops into a standard
4144  *	receive procedure patterned after RFC793 to handle all cases.
4145  *	The first three cases are guaranteed by proper pred_flags setting,
4146  *	the rest is checked inline. Fast processing is turned on in
4147  *	tcp_data_queue when everything is OK.
4148  */
4149 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4150 			struct tcphdr *th, unsigned len)
4151 {
4152 	struct tcp_sock *tp = tcp_sk(sk);
4153 
4154 	/*
4155 	 *	Header prediction.
4156 	 *	The code loosely follows the one in the famous
4157 	 *	"30 instruction TCP receive" Van Jacobson mail.
4158 	 *
4159 	 *	Van's trick is to deposit buffers into socket queue
4160 	 *	on a device interrupt, to call tcp_recv function
4161 	 *	on the receive process context and checksum and copy
4162 	 *	the buffer to user space. smart...
4163 	 *
4164 	 *	Our current scheme is not silly either but we take the
4165 	 *	extra cost of the net_bh soft interrupt processing...
4166 	 *	We do checksum and copy also but from device to kernel.
4167 	 */
4168 
4169 	tp->rx_opt.saw_tstamp = 0;
4170 
4171 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4172 	 *	if header_prediction is to be made
4173 	 *	'S' will always be tp->tcp_header_len >> 2
4174 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4175 	 *  turn it off	(when there are holes in the receive
4176 	 *	 space for instance)
4177 	 *	PSH flag is ignored.
4178 	 */
4179 
4180 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4181 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4182 		int tcp_header_len = tp->tcp_header_len;
4183 
4184 		/* Timestamp header prediction: tcp_header_len
4185 		 * is automatically equal to th->doff*4 due to pred_flags
4186 		 * match.
4187 		 */
4188 
4189 		/* Check timestamp */
4190 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4191 			__be32 *ptr = (__be32 *)(th + 1);
4192 
4193 			/* No? Slow path! */
4194 			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4195 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4196 				goto slow_path;
4197 
4198 			tp->rx_opt.saw_tstamp = 1;
4199 			++ptr;
4200 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4201 			++ptr;
4202 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4203 
4204 			/* If PAWS failed, check it more carefully in slow path */
4205 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4206 				goto slow_path;
4207 
4208 			/* DO NOT update ts_recent here, if checksum fails
4209 			 * and timestamp was corrupted part, it will result
4210 			 * in a hung connection since we will drop all
4211 			 * future packets due to the PAWS test.
4212 			 */
4213 		}
4214 
4215 		if (len <= tcp_header_len) {
4216 			/* Bulk data transfer: sender */
4217 			if (len == tcp_header_len) {
4218 				/* Predicted packet is in window by definition.
4219 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4220 				 * Hence, check seq<=rcv_wup reduces to:
4221 				 */
4222 				if (tcp_header_len ==
4223 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4224 				    tp->rcv_nxt == tp->rcv_wup)
4225 					tcp_store_ts_recent(tp);
4226 
4227 				/* We know that such packets are checksummed
4228 				 * on entry.
4229 				 */
4230 				tcp_ack(sk, skb, 0);
4231 				__kfree_skb(skb);
4232 				tcp_data_snd_check(sk);
4233 				return 0;
4234 			} else { /* Header too small */
4235 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4236 				goto discard;
4237 			}
4238 		} else {
4239 			int eaten = 0;
4240 			int copied_early = 0;
4241 
4242 			if (tp->copied_seq == tp->rcv_nxt &&
4243 			    len - tcp_header_len <= tp->ucopy.len) {
4244 #ifdef CONFIG_NET_DMA
4245 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4246 					copied_early = 1;
4247 					eaten = 1;
4248 				}
4249 #endif
4250 				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4251 					__set_current_state(TASK_RUNNING);
4252 
4253 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4254 						eaten = 1;
4255 				}
4256 				if (eaten) {
4257 					/* Predicted packet is in window by definition.
4258 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4259 					 * Hence, check seq<=rcv_wup reduces to:
4260 					 */
4261 					if (tcp_header_len ==
4262 					    (sizeof(struct tcphdr) +
4263 					     TCPOLEN_TSTAMP_ALIGNED) &&
4264 					    tp->rcv_nxt == tp->rcv_wup)
4265 						tcp_store_ts_recent(tp);
4266 
4267 					tcp_rcv_rtt_measure_ts(sk, skb);
4268 
4269 					__skb_pull(skb, tcp_header_len);
4270 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4271 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4272 				}
4273 				if (copied_early)
4274 					tcp_cleanup_rbuf(sk, skb->len);
4275 			}
4276 			if (!eaten) {
4277 				if (tcp_checksum_complete_user(sk, skb))
4278 					goto csum_error;
4279 
4280 				/* Predicted packet is in window by definition.
4281 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4282 				 * Hence, check seq<=rcv_wup reduces to:
4283 				 */
4284 				if (tcp_header_len ==
4285 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4286 				    tp->rcv_nxt == tp->rcv_wup)
4287 					tcp_store_ts_recent(tp);
4288 
4289 				tcp_rcv_rtt_measure_ts(sk, skb);
4290 
4291 				if ((int)skb->truesize > sk->sk_forward_alloc)
4292 					goto step5;
4293 
4294 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4295 
4296 				/* Bulk data transfer: receiver */
4297 				__skb_pull(skb,tcp_header_len);
4298 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4299 				sk_stream_set_owner_r(skb, sk);
4300 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4301 			}
4302 
4303 			tcp_event_data_recv(sk, skb);
4304 
4305 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4306 				/* Well, only one small jumplet in fast path... */
4307 				tcp_ack(sk, skb, FLAG_DATA);
4308 				tcp_data_snd_check(sk);
4309 				if (!inet_csk_ack_scheduled(sk))
4310 					goto no_ack;
4311 			}
4312 
4313 			__tcp_ack_snd_check(sk, 0);
4314 no_ack:
4315 #ifdef CONFIG_NET_DMA
4316 			if (copied_early)
4317 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4318 			else
4319 #endif
4320 			if (eaten)
4321 				__kfree_skb(skb);
4322 			else
4323 				sk->sk_data_ready(sk, 0);
4324 			return 0;
4325 		}
4326 	}
4327 
4328 slow_path:
4329 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4330 		goto csum_error;
4331 
4332 	/*
4333 	 * RFC1323: H1. Apply PAWS check first.
4334 	 */
4335 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4336 	    tcp_paws_discard(sk, skb)) {
4337 		if (!th->rst) {
4338 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4339 			tcp_send_dupack(sk, skb);
4340 			goto discard;
4341 		}
4342 		/* Resets are accepted even if PAWS failed.
4343 
4344 		   ts_recent update must be made after we are sure
4345 		   that the packet is in window.
4346 		 */
4347 	}
4348 
4349 	/*
4350 	 *	Standard slow path.
4351 	 */
4352 
4353 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4354 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4355 		 * (RST) segments are validated by checking their SEQ-fields."
4356 		 * And page 69: "If an incoming segment is not acceptable,
4357 		 * an acknowledgment should be sent in reply (unless the RST bit
4358 		 * is set, if so drop the segment and return)".
4359 		 */
4360 		if (!th->rst)
4361 			tcp_send_dupack(sk, skb);
4362 		goto discard;
4363 	}
4364 
4365 	if (th->rst) {
4366 		tcp_reset(sk);
4367 		goto discard;
4368 	}
4369 
4370 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4371 
4372 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4373 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4374 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4375 		tcp_reset(sk);
4376 		return 1;
4377 	}
4378 
4379 step5:
4380 	if (th->ack)
4381 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4382 
4383 	tcp_rcv_rtt_measure_ts(sk, skb);
4384 
4385 	/* Process urgent data. */
4386 	tcp_urg(sk, skb, th);
4387 
4388 	/* step 7: process the segment text */
4389 	tcp_data_queue(sk, skb);
4390 
4391 	tcp_data_snd_check(sk);
4392 	tcp_ack_snd_check(sk);
4393 	return 0;
4394 
4395 csum_error:
4396 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4397 
4398 discard:
4399 	__kfree_skb(skb);
4400 	return 0;
4401 }
4402 
4403 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4404 					 struct tcphdr *th, unsigned len)
4405 {
4406 	struct tcp_sock *tp = tcp_sk(sk);
4407 	struct inet_connection_sock *icsk = inet_csk(sk);
4408 	int saved_clamp = tp->rx_opt.mss_clamp;
4409 
4410 	tcp_parse_options(skb, &tp->rx_opt, 0);
4411 
4412 	if (th->ack) {
4413 		/* rfc793:
4414 		 * "If the state is SYN-SENT then
4415 		 *    first check the ACK bit
4416 		 *      If the ACK bit is set
4417 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4418 		 *        a reset (unless the RST bit is set, if so drop
4419 		 *        the segment and return)"
4420 		 *
4421 		 *  We do not send data with SYN, so that RFC-correct
4422 		 *  test reduces to:
4423 		 */
4424 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4425 			goto reset_and_undo;
4426 
4427 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4428 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4429 			     tcp_time_stamp)) {
4430 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4431 			goto reset_and_undo;
4432 		}
4433 
4434 		/* Now ACK is acceptable.
4435 		 *
4436 		 * "If the RST bit is set
4437 		 *    If the ACK was acceptable then signal the user "error:
4438 		 *    connection reset", drop the segment, enter CLOSED state,
4439 		 *    delete TCB, and return."
4440 		 */
4441 
4442 		if (th->rst) {
4443 			tcp_reset(sk);
4444 			goto discard;
4445 		}
4446 
4447 		/* rfc793:
4448 		 *   "fifth, if neither of the SYN or RST bits is set then
4449 		 *    drop the segment and return."
4450 		 *
4451 		 *    See note below!
4452 		 *                                        --ANK(990513)
4453 		 */
4454 		if (!th->syn)
4455 			goto discard_and_undo;
4456 
4457 		/* rfc793:
4458 		 *   "If the SYN bit is on ...
4459 		 *    are acceptable then ...
4460 		 *    (our SYN has been ACKed), change the connection
4461 		 *    state to ESTABLISHED..."
4462 		 */
4463 
4464 		TCP_ECN_rcv_synack(tp, th);
4465 
4466 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4467 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4468 
4469 		/* Ok.. it's good. Set up sequence numbers and
4470 		 * move to established.
4471 		 */
4472 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4473 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4474 
4475 		/* RFC1323: The window in SYN & SYN/ACK segments is
4476 		 * never scaled.
4477 		 */
4478 		tp->snd_wnd = ntohs(th->window);
4479 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4480 
4481 		if (!tp->rx_opt.wscale_ok) {
4482 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4483 			tp->window_clamp = min(tp->window_clamp, 65535U);
4484 		}
4485 
4486 		if (tp->rx_opt.saw_tstamp) {
4487 			tp->rx_opt.tstamp_ok	   = 1;
4488 			tp->tcp_header_len =
4489 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4490 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4491 			tcp_store_ts_recent(tp);
4492 		} else {
4493 			tp->tcp_header_len = sizeof(struct tcphdr);
4494 		}
4495 
4496 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4497 			tp->rx_opt.sack_ok |= 2;
4498 
4499 		tcp_mtup_init(sk);
4500 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4501 		tcp_initialize_rcv_mss(sk);
4502 
4503 		/* Remember, tcp_poll() does not lock socket!
4504 		 * Change state from SYN-SENT only after copied_seq
4505 		 * is initialized. */
4506 		tp->copied_seq = tp->rcv_nxt;
4507 		smp_mb();
4508 		tcp_set_state(sk, TCP_ESTABLISHED);
4509 
4510 		security_inet_conn_established(sk, skb);
4511 
4512 		/* Make sure socket is routed, for correct metrics.  */
4513 		icsk->icsk_af_ops->rebuild_header(sk);
4514 
4515 		tcp_init_metrics(sk);
4516 
4517 		tcp_init_congestion_control(sk);
4518 
4519 		/* Prevent spurious tcp_cwnd_restart() on first data
4520 		 * packet.
4521 		 */
4522 		tp->lsndtime = tcp_time_stamp;
4523 
4524 		tcp_init_buffer_space(sk);
4525 
4526 		if (sock_flag(sk, SOCK_KEEPOPEN))
4527 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4528 
4529 		if (!tp->rx_opt.snd_wscale)
4530 			__tcp_fast_path_on(tp, tp->snd_wnd);
4531 		else
4532 			tp->pred_flags = 0;
4533 
4534 		if (!sock_flag(sk, SOCK_DEAD)) {
4535 			sk->sk_state_change(sk);
4536 			sk_wake_async(sk, 0, POLL_OUT);
4537 		}
4538 
4539 		if (sk->sk_write_pending ||
4540 		    icsk->icsk_accept_queue.rskq_defer_accept ||
4541 		    icsk->icsk_ack.pingpong) {
4542 			/* Save one ACK. Data will be ready after
4543 			 * several ticks, if write_pending is set.
4544 			 *
4545 			 * It may be deleted, but with this feature tcpdumps
4546 			 * look so _wonderfully_ clever, that I was not able
4547 			 * to stand against the temptation 8)     --ANK
4548 			 */
4549 			inet_csk_schedule_ack(sk);
4550 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4551 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4552 			tcp_incr_quickack(sk);
4553 			tcp_enter_quickack_mode(sk);
4554 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4555 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4556 
4557 discard:
4558 			__kfree_skb(skb);
4559 			return 0;
4560 		} else {
4561 			tcp_send_ack(sk);
4562 		}
4563 		return -1;
4564 	}
4565 
4566 	/* No ACK in the segment */
4567 
4568 	if (th->rst) {
4569 		/* rfc793:
4570 		 * "If the RST bit is set
4571 		 *
4572 		 *      Otherwise (no ACK) drop the segment and return."
4573 		 */
4574 
4575 		goto discard_and_undo;
4576 	}
4577 
4578 	/* PAWS check. */
4579 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4580 		goto discard_and_undo;
4581 
4582 	if (th->syn) {
4583 		/* We see SYN without ACK. It is attempt of
4584 		 * simultaneous connect with crossed SYNs.
4585 		 * Particularly, it can be connect to self.
4586 		 */
4587 		tcp_set_state(sk, TCP_SYN_RECV);
4588 
4589 		if (tp->rx_opt.saw_tstamp) {
4590 			tp->rx_opt.tstamp_ok = 1;
4591 			tcp_store_ts_recent(tp);
4592 			tp->tcp_header_len =
4593 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4594 		} else {
4595 			tp->tcp_header_len = sizeof(struct tcphdr);
4596 		}
4597 
4598 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4599 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4600 
4601 		/* RFC1323: The window in SYN & SYN/ACK segments is
4602 		 * never scaled.
4603 		 */
4604 		tp->snd_wnd    = ntohs(th->window);
4605 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4606 		tp->max_window = tp->snd_wnd;
4607 
4608 		TCP_ECN_rcv_syn(tp, th);
4609 
4610 		tcp_mtup_init(sk);
4611 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4612 		tcp_initialize_rcv_mss(sk);
4613 
4614 
4615 		tcp_send_synack(sk);
4616 #if 0
4617 		/* Note, we could accept data and URG from this segment.
4618 		 * There are no obstacles to make this.
4619 		 *
4620 		 * However, if we ignore data in ACKless segments sometimes,
4621 		 * we have no reasons to accept it sometimes.
4622 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4623 		 * is not flawless. So, discard packet for sanity.
4624 		 * Uncomment this return to process the data.
4625 		 */
4626 		return -1;
4627 #else
4628 		goto discard;
4629 #endif
4630 	}
4631 	/* "fifth, if neither of the SYN or RST bits is set then
4632 	 * drop the segment and return."
4633 	 */
4634 
4635 discard_and_undo:
4636 	tcp_clear_options(&tp->rx_opt);
4637 	tp->rx_opt.mss_clamp = saved_clamp;
4638 	goto discard;
4639 
4640 reset_and_undo:
4641 	tcp_clear_options(&tp->rx_opt);
4642 	tp->rx_opt.mss_clamp = saved_clamp;
4643 	return 1;
4644 }
4645 
4646 
4647 /*
4648  *	This function implements the receiving procedure of RFC 793 for
4649  *	all states except ESTABLISHED and TIME_WAIT.
4650  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4651  *	address independent.
4652  */
4653 
4654 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4655 			  struct tcphdr *th, unsigned len)
4656 {
4657 	struct tcp_sock *tp = tcp_sk(sk);
4658 	struct inet_connection_sock *icsk = inet_csk(sk);
4659 	int queued = 0;
4660 
4661 	tp->rx_opt.saw_tstamp = 0;
4662 
4663 	switch (sk->sk_state) {
4664 	case TCP_CLOSE:
4665 		goto discard;
4666 
4667 	case TCP_LISTEN:
4668 		if (th->ack)
4669 			return 1;
4670 
4671 		if (th->rst)
4672 			goto discard;
4673 
4674 		if (th->syn) {
4675 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4676 				return 1;
4677 
4678 			/* Now we have several options: In theory there is
4679 			 * nothing else in the frame. KA9Q has an option to
4680 			 * send data with the syn, BSD accepts data with the
4681 			 * syn up to the [to be] advertised window and
4682 			 * Solaris 2.1 gives you a protocol error. For now
4683 			 * we just ignore it, that fits the spec precisely
4684 			 * and avoids incompatibilities. It would be nice in
4685 			 * future to drop through and process the data.
4686 			 *
4687 			 * Now that TTCP is starting to be used we ought to
4688 			 * queue this data.
4689 			 * But, this leaves one open to an easy denial of
4690 			 * service attack, and SYN cookies can't defend
4691 			 * against this problem. So, we drop the data
4692 			 * in the interest of security over speed unless
4693 			 * it's still in use.
4694 			 */
4695 			kfree_skb(skb);
4696 			return 0;
4697 		}
4698 		goto discard;
4699 
4700 	case TCP_SYN_SENT:
4701 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4702 		if (queued >= 0)
4703 			return queued;
4704 
4705 		/* Do step6 onward by hand. */
4706 		tcp_urg(sk, skb, th);
4707 		__kfree_skb(skb);
4708 		tcp_data_snd_check(sk);
4709 		return 0;
4710 	}
4711 
4712 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4713 	    tcp_paws_discard(sk, skb)) {
4714 		if (!th->rst) {
4715 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4716 			tcp_send_dupack(sk, skb);
4717 			goto discard;
4718 		}
4719 		/* Reset is accepted even if it did not pass PAWS. */
4720 	}
4721 
4722 	/* step 1: check sequence number */
4723 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4724 		if (!th->rst)
4725 			tcp_send_dupack(sk, skb);
4726 		goto discard;
4727 	}
4728 
4729 	/* step 2: check RST bit */
4730 	if (th->rst) {
4731 		tcp_reset(sk);
4732 		goto discard;
4733 	}
4734 
4735 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4736 
4737 	/* step 3: check security and precedence [ignored] */
4738 
4739 	/*	step 4:
4740 	 *
4741 	 *	Check for a SYN in window.
4742 	 */
4743 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4744 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4745 		tcp_reset(sk);
4746 		return 1;
4747 	}
4748 
4749 	/* step 5: check the ACK field */
4750 	if (th->ack) {
4751 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4752 
4753 		switch (sk->sk_state) {
4754 		case TCP_SYN_RECV:
4755 			if (acceptable) {
4756 				tp->copied_seq = tp->rcv_nxt;
4757 				smp_mb();
4758 				tcp_set_state(sk, TCP_ESTABLISHED);
4759 				sk->sk_state_change(sk);
4760 
4761 				/* Note, that this wakeup is only for marginal
4762 				 * crossed SYN case. Passively open sockets
4763 				 * are not waked up, because sk->sk_sleep ==
4764 				 * NULL and sk->sk_socket == NULL.
4765 				 */
4766 				if (sk->sk_socket) {
4767 					sk_wake_async(sk,0,POLL_OUT);
4768 				}
4769 
4770 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4771 				tp->snd_wnd = ntohs(th->window) <<
4772 					      tp->rx_opt.snd_wscale;
4773 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4774 					    TCP_SKB_CB(skb)->seq);
4775 
4776 				/* tcp_ack considers this ACK as duplicate
4777 				 * and does not calculate rtt.
4778 				 * Fix it at least with timestamps.
4779 				 */
4780 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4781 				    !tp->srtt)
4782 					tcp_ack_saw_tstamp(sk, 0);
4783 
4784 				if (tp->rx_opt.tstamp_ok)
4785 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4786 
4787 				/* Make sure socket is routed, for
4788 				 * correct metrics.
4789 				 */
4790 				icsk->icsk_af_ops->rebuild_header(sk);
4791 
4792 				tcp_init_metrics(sk);
4793 
4794 				tcp_init_congestion_control(sk);
4795 
4796 				/* Prevent spurious tcp_cwnd_restart() on
4797 				 * first data packet.
4798 				 */
4799 				tp->lsndtime = tcp_time_stamp;
4800 
4801 				tcp_mtup_init(sk);
4802 				tcp_initialize_rcv_mss(sk);
4803 				tcp_init_buffer_space(sk);
4804 				tcp_fast_path_on(tp);
4805 			} else {
4806 				return 1;
4807 			}
4808 			break;
4809 
4810 		case TCP_FIN_WAIT1:
4811 			if (tp->snd_una == tp->write_seq) {
4812 				tcp_set_state(sk, TCP_FIN_WAIT2);
4813 				sk->sk_shutdown |= SEND_SHUTDOWN;
4814 				dst_confirm(sk->sk_dst_cache);
4815 
4816 				if (!sock_flag(sk, SOCK_DEAD))
4817 					/* Wake up lingering close() */
4818 					sk->sk_state_change(sk);
4819 				else {
4820 					int tmo;
4821 
4822 					if (tp->linger2 < 0 ||
4823 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4824 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4825 						tcp_done(sk);
4826 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4827 						return 1;
4828 					}
4829 
4830 					tmo = tcp_fin_time(sk);
4831 					if (tmo > TCP_TIMEWAIT_LEN) {
4832 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4833 					} else if (th->fin || sock_owned_by_user(sk)) {
4834 						/* Bad case. We could lose such FIN otherwise.
4835 						 * It is not a big problem, but it looks confusing
4836 						 * and not so rare event. We still can lose it now,
4837 						 * if it spins in bh_lock_sock(), but it is really
4838 						 * marginal case.
4839 						 */
4840 						inet_csk_reset_keepalive_timer(sk, tmo);
4841 					} else {
4842 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4843 						goto discard;
4844 					}
4845 				}
4846 			}
4847 			break;
4848 
4849 		case TCP_CLOSING:
4850 			if (tp->snd_una == tp->write_seq) {
4851 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4852 				goto discard;
4853 			}
4854 			break;
4855 
4856 		case TCP_LAST_ACK:
4857 			if (tp->snd_una == tp->write_seq) {
4858 				tcp_update_metrics(sk);
4859 				tcp_done(sk);
4860 				goto discard;
4861 			}
4862 			break;
4863 		}
4864 	} else
4865 		goto discard;
4866 
4867 	/* step 6: check the URG bit */
4868 	tcp_urg(sk, skb, th);
4869 
4870 	/* step 7: process the segment text */
4871 	switch (sk->sk_state) {
4872 	case TCP_CLOSE_WAIT:
4873 	case TCP_CLOSING:
4874 	case TCP_LAST_ACK:
4875 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4876 			break;
4877 	case TCP_FIN_WAIT1:
4878 	case TCP_FIN_WAIT2:
4879 		/* RFC 793 says to queue data in these states,
4880 		 * RFC 1122 says we MUST send a reset.
4881 		 * BSD 4.4 also does reset.
4882 		 */
4883 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4884 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4885 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4886 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4887 				tcp_reset(sk);
4888 				return 1;
4889 			}
4890 		}
4891 		/* Fall through */
4892 	case TCP_ESTABLISHED:
4893 		tcp_data_queue(sk, skb);
4894 		queued = 1;
4895 		break;
4896 	}
4897 
4898 	/* tcp_data could move socket to TIME-WAIT */
4899 	if (sk->sk_state != TCP_CLOSE) {
4900 		tcp_data_snd_check(sk);
4901 		tcp_ack_snd_check(sk);
4902 	}
4903 
4904 	if (!queued) {
4905 discard:
4906 		__kfree_skb(skb);
4907 	}
4908 	return 0;
4909 }
4910 
4911 EXPORT_SYMBOL(sysctl_tcp_ecn);
4912 EXPORT_SYMBOL(sysctl_tcp_reordering);
4913 EXPORT_SYMBOL(tcp_parse_options);
4914 EXPORT_SYMBOL(tcp_rcv_established);
4915 EXPORT_SYMBOL(tcp_rcv_state_process);
4916 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
4917