1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 83 84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 90 #define FLAG_ECE 0x40 /* ECE in this ACK */ 91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 100 101 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 102 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 103 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 104 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 105 106 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 107 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 108 109 #define REXMIT_NONE 0 /* no loss recovery to do */ 110 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 111 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 112 113 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 114 unsigned int len) 115 { 116 static bool __once __read_mostly; 117 118 if (!__once) { 119 struct net_device *dev; 120 121 __once = true; 122 123 rcu_read_lock(); 124 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 125 if (!dev || len >= dev->mtu) 126 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 127 dev ? dev->name : "Unknown driver"); 128 rcu_read_unlock(); 129 } 130 } 131 132 /* Adapt the MSS value used to make delayed ack decision to the 133 * real world. 134 */ 135 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 136 { 137 struct inet_connection_sock *icsk = inet_csk(sk); 138 const unsigned int lss = icsk->icsk_ack.last_seg_size; 139 unsigned int len; 140 141 icsk->icsk_ack.last_seg_size = 0; 142 143 /* skb->len may jitter because of SACKs, even if peer 144 * sends good full-sized frames. 145 */ 146 len = skb_shinfo(skb)->gso_size ? : skb->len; 147 if (len >= icsk->icsk_ack.rcv_mss) { 148 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 149 tcp_sk(sk)->advmss); 150 /* Account for possibly-removed options */ 151 if (unlikely(len > icsk->icsk_ack.rcv_mss + 152 MAX_TCP_OPTION_SPACE)) 153 tcp_gro_dev_warn(sk, skb, len); 154 } else { 155 /* Otherwise, we make more careful check taking into account, 156 * that SACKs block is variable. 157 * 158 * "len" is invariant segment length, including TCP header. 159 */ 160 len += skb->data - skb_transport_header(skb); 161 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 162 /* If PSH is not set, packet should be 163 * full sized, provided peer TCP is not badly broken. 164 * This observation (if it is correct 8)) allows 165 * to handle super-low mtu links fairly. 166 */ 167 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 168 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 169 /* Subtract also invariant (if peer is RFC compliant), 170 * tcp header plus fixed timestamp option length. 171 * Resulting "len" is MSS free of SACK jitter. 172 */ 173 len -= tcp_sk(sk)->tcp_header_len; 174 icsk->icsk_ack.last_seg_size = len; 175 if (len == lss) { 176 icsk->icsk_ack.rcv_mss = len; 177 return; 178 } 179 } 180 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 181 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 182 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 183 } 184 } 185 186 static void tcp_incr_quickack(struct sock *sk) 187 { 188 struct inet_connection_sock *icsk = inet_csk(sk); 189 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 190 191 if (quickacks == 0) 192 quickacks = 2; 193 if (quickacks > icsk->icsk_ack.quick) 194 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 195 } 196 197 static void tcp_enter_quickack_mode(struct sock *sk) 198 { 199 struct inet_connection_sock *icsk = inet_csk(sk); 200 tcp_incr_quickack(sk); 201 icsk->icsk_ack.pingpong = 0; 202 icsk->icsk_ack.ato = TCP_ATO_MIN; 203 } 204 205 /* Send ACKs quickly, if "quick" count is not exhausted 206 * and the session is not interactive. 207 */ 208 209 static bool tcp_in_quickack_mode(struct sock *sk) 210 { 211 const struct inet_connection_sock *icsk = inet_csk(sk); 212 const struct dst_entry *dst = __sk_dst_get(sk); 213 214 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 215 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 216 } 217 218 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 219 { 220 if (tp->ecn_flags & TCP_ECN_OK) 221 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 222 } 223 224 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 225 { 226 if (tcp_hdr(skb)->cwr) 227 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 228 } 229 230 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 231 { 232 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 233 } 234 235 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 236 { 237 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 238 case INET_ECN_NOT_ECT: 239 /* Funny extension: if ECT is not set on a segment, 240 * and we already seen ECT on a previous segment, 241 * it is probably a retransmit. 242 */ 243 if (tp->ecn_flags & TCP_ECN_SEEN) 244 tcp_enter_quickack_mode((struct sock *)tp); 245 break; 246 case INET_ECN_CE: 247 if (tcp_ca_needs_ecn((struct sock *)tp)) 248 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 249 250 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 251 /* Better not delay acks, sender can have a very low cwnd */ 252 tcp_enter_quickack_mode((struct sock *)tp); 253 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 254 } 255 tp->ecn_flags |= TCP_ECN_SEEN; 256 break; 257 default: 258 if (tcp_ca_needs_ecn((struct sock *)tp)) 259 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 260 tp->ecn_flags |= TCP_ECN_SEEN; 261 break; 262 } 263 } 264 265 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 266 { 267 if (tp->ecn_flags & TCP_ECN_OK) 268 __tcp_ecn_check_ce(tp, skb); 269 } 270 271 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 272 { 273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 274 tp->ecn_flags &= ~TCP_ECN_OK; 275 } 276 277 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 278 { 279 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 280 tp->ecn_flags &= ~TCP_ECN_OK; 281 } 282 283 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 284 { 285 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 286 return true; 287 return false; 288 } 289 290 /* Buffer size and advertised window tuning. 291 * 292 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 293 */ 294 295 static void tcp_sndbuf_expand(struct sock *sk) 296 { 297 const struct tcp_sock *tp = tcp_sk(sk); 298 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 299 int sndmem, per_mss; 300 u32 nr_segs; 301 302 /* Worst case is non GSO/TSO : each frame consumes one skb 303 * and skb->head is kmalloced using power of two area of memory 304 */ 305 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 306 MAX_TCP_HEADER + 307 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 308 309 per_mss = roundup_pow_of_two(per_mss) + 310 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 311 312 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 313 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 314 315 /* Fast Recovery (RFC 5681 3.2) : 316 * Cubic needs 1.7 factor, rounded to 2 to include 317 * extra cushion (application might react slowly to POLLOUT) 318 */ 319 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 320 sndmem *= nr_segs * per_mss; 321 322 if (sk->sk_sndbuf < sndmem) 323 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 324 } 325 326 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 327 * 328 * All tcp_full_space() is split to two parts: "network" buffer, allocated 329 * forward and advertised in receiver window (tp->rcv_wnd) and 330 * "application buffer", required to isolate scheduling/application 331 * latencies from network. 332 * window_clamp is maximal advertised window. It can be less than 333 * tcp_full_space(), in this case tcp_full_space() - window_clamp 334 * is reserved for "application" buffer. The less window_clamp is 335 * the smoother our behaviour from viewpoint of network, but the lower 336 * throughput and the higher sensitivity of the connection to losses. 8) 337 * 338 * rcv_ssthresh is more strict window_clamp used at "slow start" 339 * phase to predict further behaviour of this connection. 340 * It is used for two goals: 341 * - to enforce header prediction at sender, even when application 342 * requires some significant "application buffer". It is check #1. 343 * - to prevent pruning of receive queue because of misprediction 344 * of receiver window. Check #2. 345 * 346 * The scheme does not work when sender sends good segments opening 347 * window and then starts to feed us spaghetti. But it should work 348 * in common situations. Otherwise, we have to rely on queue collapsing. 349 */ 350 351 /* Slow part of check#2. */ 352 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 353 { 354 struct tcp_sock *tp = tcp_sk(sk); 355 /* Optimize this! */ 356 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 357 int window = tcp_win_from_space(sk, sysctl_tcp_rmem[2]) >> 1; 358 359 while (tp->rcv_ssthresh <= window) { 360 if (truesize <= skb->len) 361 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 362 363 truesize >>= 1; 364 window >>= 1; 365 } 366 return 0; 367 } 368 369 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 370 { 371 struct tcp_sock *tp = tcp_sk(sk); 372 373 /* Check #1 */ 374 if (tp->rcv_ssthresh < tp->window_clamp && 375 (int)tp->rcv_ssthresh < tcp_space(sk) && 376 !tcp_under_memory_pressure(sk)) { 377 int incr; 378 379 /* Check #2. Increase window, if skb with such overhead 380 * will fit to rcvbuf in future. 381 */ 382 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 383 incr = 2 * tp->advmss; 384 else 385 incr = __tcp_grow_window(sk, skb); 386 387 if (incr) { 388 incr = max_t(int, incr, 2 * skb->len); 389 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 390 tp->window_clamp); 391 inet_csk(sk)->icsk_ack.quick |= 1; 392 } 393 } 394 } 395 396 /* 3. Tuning rcvbuf, when connection enters established state. */ 397 static void tcp_fixup_rcvbuf(struct sock *sk) 398 { 399 u32 mss = tcp_sk(sk)->advmss; 400 int rcvmem; 401 402 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 403 tcp_default_init_rwnd(mss); 404 405 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 406 * Allow enough cushion so that sender is not limited by our window 407 */ 408 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 409 rcvmem <<= 2; 410 411 if (sk->sk_rcvbuf < rcvmem) 412 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 413 } 414 415 /* 4. Try to fixup all. It is made immediately after connection enters 416 * established state. 417 */ 418 void tcp_init_buffer_space(struct sock *sk) 419 { 420 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 421 struct tcp_sock *tp = tcp_sk(sk); 422 int maxwin; 423 424 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 425 tcp_fixup_rcvbuf(sk); 426 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 427 tcp_sndbuf_expand(sk); 428 429 tp->rcvq_space.space = tp->rcv_wnd; 430 tcp_mstamp_refresh(tp); 431 tp->rcvq_space.time = tp->tcp_mstamp; 432 tp->rcvq_space.seq = tp->copied_seq; 433 434 maxwin = tcp_full_space(sk); 435 436 if (tp->window_clamp >= maxwin) { 437 tp->window_clamp = maxwin; 438 439 if (tcp_app_win && maxwin > 4 * tp->advmss) 440 tp->window_clamp = max(maxwin - 441 (maxwin >> tcp_app_win), 442 4 * tp->advmss); 443 } 444 445 /* Force reservation of one segment. */ 446 if (tcp_app_win && 447 tp->window_clamp > 2 * tp->advmss && 448 tp->window_clamp + tp->advmss > maxwin) 449 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 450 451 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 452 tp->snd_cwnd_stamp = tcp_jiffies32; 453 } 454 455 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 456 static void tcp_clamp_window(struct sock *sk) 457 { 458 struct tcp_sock *tp = tcp_sk(sk); 459 struct inet_connection_sock *icsk = inet_csk(sk); 460 461 icsk->icsk_ack.quick = 0; 462 463 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 464 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 465 !tcp_under_memory_pressure(sk) && 466 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 467 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 468 sysctl_tcp_rmem[2]); 469 } 470 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 471 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 472 } 473 474 /* Initialize RCV_MSS value. 475 * RCV_MSS is an our guess about MSS used by the peer. 476 * We haven't any direct information about the MSS. 477 * It's better to underestimate the RCV_MSS rather than overestimate. 478 * Overestimations make us ACKing less frequently than needed. 479 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 480 */ 481 void tcp_initialize_rcv_mss(struct sock *sk) 482 { 483 const struct tcp_sock *tp = tcp_sk(sk); 484 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 485 486 hint = min(hint, tp->rcv_wnd / 2); 487 hint = min(hint, TCP_MSS_DEFAULT); 488 hint = max(hint, TCP_MIN_MSS); 489 490 inet_csk(sk)->icsk_ack.rcv_mss = hint; 491 } 492 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 493 494 /* Receiver "autotuning" code. 495 * 496 * The algorithm for RTT estimation w/o timestamps is based on 497 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 498 * <http://public.lanl.gov/radiant/pubs.html#DRS> 499 * 500 * More detail on this code can be found at 501 * <http://staff.psc.edu/jheffner/>, 502 * though this reference is out of date. A new paper 503 * is pending. 504 */ 505 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 506 { 507 u32 new_sample = tp->rcv_rtt_est.rtt_us; 508 long m = sample; 509 510 if (m == 0) 511 m = 1; 512 513 if (new_sample != 0) { 514 /* If we sample in larger samples in the non-timestamp 515 * case, we could grossly overestimate the RTT especially 516 * with chatty applications or bulk transfer apps which 517 * are stalled on filesystem I/O. 518 * 519 * Also, since we are only going for a minimum in the 520 * non-timestamp case, we do not smooth things out 521 * else with timestamps disabled convergence takes too 522 * long. 523 */ 524 if (!win_dep) { 525 m -= (new_sample >> 3); 526 new_sample += m; 527 } else { 528 m <<= 3; 529 if (m < new_sample) 530 new_sample = m; 531 } 532 } else { 533 /* No previous measure. */ 534 new_sample = m << 3; 535 } 536 537 tp->rcv_rtt_est.rtt_us = new_sample; 538 } 539 540 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 541 { 542 u32 delta_us; 543 544 if (tp->rcv_rtt_est.time == 0) 545 goto new_measure; 546 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 547 return; 548 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 549 tcp_rcv_rtt_update(tp, delta_us, 1); 550 551 new_measure: 552 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 553 tp->rcv_rtt_est.time = tp->tcp_mstamp; 554 } 555 556 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 557 const struct sk_buff *skb) 558 { 559 struct tcp_sock *tp = tcp_sk(sk); 560 561 if (tp->rx_opt.rcv_tsecr && 562 (TCP_SKB_CB(skb)->end_seq - 563 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 564 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 565 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 566 567 tcp_rcv_rtt_update(tp, delta_us, 0); 568 } 569 } 570 571 /* 572 * This function should be called every time data is copied to user space. 573 * It calculates the appropriate TCP receive buffer space. 574 */ 575 void tcp_rcv_space_adjust(struct sock *sk) 576 { 577 struct tcp_sock *tp = tcp_sk(sk); 578 int time; 579 int copied; 580 581 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 582 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 583 return; 584 585 /* Number of bytes copied to user in last RTT */ 586 copied = tp->copied_seq - tp->rcvq_space.seq; 587 if (copied <= tp->rcvq_space.space) 588 goto new_measure; 589 590 /* A bit of theory : 591 * copied = bytes received in previous RTT, our base window 592 * To cope with packet losses, we need a 2x factor 593 * To cope with slow start, and sender growing its cwin by 100 % 594 * every RTT, we need a 4x factor, because the ACK we are sending 595 * now is for the next RTT, not the current one : 596 * <prev RTT . ><current RTT .. ><next RTT .... > 597 */ 598 599 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 600 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 601 int rcvwin, rcvmem, rcvbuf; 602 603 /* minimal window to cope with packet losses, assuming 604 * steady state. Add some cushion because of small variations. 605 */ 606 rcvwin = (copied << 1) + 16 * tp->advmss; 607 608 /* If rate increased by 25%, 609 * assume slow start, rcvwin = 3 * copied 610 * If rate increased by 50%, 611 * assume sender can use 2x growth, rcvwin = 4 * copied 612 */ 613 if (copied >= 614 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 615 if (copied >= 616 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 617 rcvwin <<= 1; 618 else 619 rcvwin += (rcvwin >> 1); 620 } 621 622 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 623 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 624 rcvmem += 128; 625 626 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 627 if (rcvbuf > sk->sk_rcvbuf) { 628 sk->sk_rcvbuf = rcvbuf; 629 630 /* Make the window clamp follow along. */ 631 tp->window_clamp = rcvwin; 632 } 633 } 634 tp->rcvq_space.space = copied; 635 636 new_measure: 637 tp->rcvq_space.seq = tp->copied_seq; 638 tp->rcvq_space.time = tp->tcp_mstamp; 639 } 640 641 /* There is something which you must keep in mind when you analyze the 642 * behavior of the tp->ato delayed ack timeout interval. When a 643 * connection starts up, we want to ack as quickly as possible. The 644 * problem is that "good" TCP's do slow start at the beginning of data 645 * transmission. The means that until we send the first few ACK's the 646 * sender will sit on his end and only queue most of his data, because 647 * he can only send snd_cwnd unacked packets at any given time. For 648 * each ACK we send, he increments snd_cwnd and transmits more of his 649 * queue. -DaveM 650 */ 651 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 652 { 653 struct tcp_sock *tp = tcp_sk(sk); 654 struct inet_connection_sock *icsk = inet_csk(sk); 655 u32 now; 656 657 inet_csk_schedule_ack(sk); 658 659 tcp_measure_rcv_mss(sk, skb); 660 661 tcp_rcv_rtt_measure(tp); 662 663 now = tcp_jiffies32; 664 665 if (!icsk->icsk_ack.ato) { 666 /* The _first_ data packet received, initialize 667 * delayed ACK engine. 668 */ 669 tcp_incr_quickack(sk); 670 icsk->icsk_ack.ato = TCP_ATO_MIN; 671 } else { 672 int m = now - icsk->icsk_ack.lrcvtime; 673 674 if (m <= TCP_ATO_MIN / 2) { 675 /* The fastest case is the first. */ 676 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 677 } else if (m < icsk->icsk_ack.ato) { 678 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 679 if (icsk->icsk_ack.ato > icsk->icsk_rto) 680 icsk->icsk_ack.ato = icsk->icsk_rto; 681 } else if (m > icsk->icsk_rto) { 682 /* Too long gap. Apparently sender failed to 683 * restart window, so that we send ACKs quickly. 684 */ 685 tcp_incr_quickack(sk); 686 sk_mem_reclaim(sk); 687 } 688 } 689 icsk->icsk_ack.lrcvtime = now; 690 691 tcp_ecn_check_ce(tp, skb); 692 693 if (skb->len >= 128) 694 tcp_grow_window(sk, skb); 695 } 696 697 /* Called to compute a smoothed rtt estimate. The data fed to this 698 * routine either comes from timestamps, or from segments that were 699 * known _not_ to have been retransmitted [see Karn/Partridge 700 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 701 * piece by Van Jacobson. 702 * NOTE: the next three routines used to be one big routine. 703 * To save cycles in the RFC 1323 implementation it was better to break 704 * it up into three procedures. -- erics 705 */ 706 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 707 { 708 struct tcp_sock *tp = tcp_sk(sk); 709 long m = mrtt_us; /* RTT */ 710 u32 srtt = tp->srtt_us; 711 712 /* The following amusing code comes from Jacobson's 713 * article in SIGCOMM '88. Note that rtt and mdev 714 * are scaled versions of rtt and mean deviation. 715 * This is designed to be as fast as possible 716 * m stands for "measurement". 717 * 718 * On a 1990 paper the rto value is changed to: 719 * RTO = rtt + 4 * mdev 720 * 721 * Funny. This algorithm seems to be very broken. 722 * These formulae increase RTO, when it should be decreased, increase 723 * too slowly, when it should be increased quickly, decrease too quickly 724 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 725 * does not matter how to _calculate_ it. Seems, it was trap 726 * that VJ failed to avoid. 8) 727 */ 728 if (srtt != 0) { 729 m -= (srtt >> 3); /* m is now error in rtt est */ 730 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 731 if (m < 0) { 732 m = -m; /* m is now abs(error) */ 733 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 734 /* This is similar to one of Eifel findings. 735 * Eifel blocks mdev updates when rtt decreases. 736 * This solution is a bit different: we use finer gain 737 * for mdev in this case (alpha*beta). 738 * Like Eifel it also prevents growth of rto, 739 * but also it limits too fast rto decreases, 740 * happening in pure Eifel. 741 */ 742 if (m > 0) 743 m >>= 3; 744 } else { 745 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 746 } 747 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 748 if (tp->mdev_us > tp->mdev_max_us) { 749 tp->mdev_max_us = tp->mdev_us; 750 if (tp->mdev_max_us > tp->rttvar_us) 751 tp->rttvar_us = tp->mdev_max_us; 752 } 753 if (after(tp->snd_una, tp->rtt_seq)) { 754 if (tp->mdev_max_us < tp->rttvar_us) 755 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 756 tp->rtt_seq = tp->snd_nxt; 757 tp->mdev_max_us = tcp_rto_min_us(sk); 758 } 759 } else { 760 /* no previous measure. */ 761 srtt = m << 3; /* take the measured time to be rtt */ 762 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 763 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 764 tp->mdev_max_us = tp->rttvar_us; 765 tp->rtt_seq = tp->snd_nxt; 766 } 767 tp->srtt_us = max(1U, srtt); 768 } 769 770 static void tcp_update_pacing_rate(struct sock *sk) 771 { 772 const struct tcp_sock *tp = tcp_sk(sk); 773 u64 rate; 774 775 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 776 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 777 778 /* current rate is (cwnd * mss) / srtt 779 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 780 * In Congestion Avoidance phase, set it to 120 % the current rate. 781 * 782 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 783 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 784 * end of slow start and should slow down. 785 */ 786 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 787 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 788 else 789 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 790 791 rate *= max(tp->snd_cwnd, tp->packets_out); 792 793 if (likely(tp->srtt_us)) 794 do_div(rate, tp->srtt_us); 795 796 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 797 * without any lock. We want to make sure compiler wont store 798 * intermediate values in this location. 799 */ 800 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 801 sk->sk_max_pacing_rate); 802 } 803 804 /* Calculate rto without backoff. This is the second half of Van Jacobson's 805 * routine referred to above. 806 */ 807 static void tcp_set_rto(struct sock *sk) 808 { 809 const struct tcp_sock *tp = tcp_sk(sk); 810 /* Old crap is replaced with new one. 8) 811 * 812 * More seriously: 813 * 1. If rtt variance happened to be less 50msec, it is hallucination. 814 * It cannot be less due to utterly erratic ACK generation made 815 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 816 * to do with delayed acks, because at cwnd>2 true delack timeout 817 * is invisible. Actually, Linux-2.4 also generates erratic 818 * ACKs in some circumstances. 819 */ 820 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 821 822 /* 2. Fixups made earlier cannot be right. 823 * If we do not estimate RTO correctly without them, 824 * all the algo is pure shit and should be replaced 825 * with correct one. It is exactly, which we pretend to do. 826 */ 827 828 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 829 * guarantees that rto is higher. 830 */ 831 tcp_bound_rto(sk); 832 } 833 834 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 835 { 836 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 837 838 if (!cwnd) 839 cwnd = TCP_INIT_CWND; 840 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 841 } 842 843 /* 844 * Packet counting of FACK is based on in-order assumptions, therefore TCP 845 * disables it when reordering is detected 846 */ 847 void tcp_disable_fack(struct tcp_sock *tp) 848 { 849 /* RFC3517 uses different metric in lost marker => reset on change */ 850 if (tcp_is_fack(tp)) 851 tp->lost_skb_hint = NULL; 852 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 853 } 854 855 /* Take a notice that peer is sending D-SACKs */ 856 static void tcp_dsack_seen(struct tcp_sock *tp) 857 { 858 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 859 tp->rack.dsack_seen = 1; 860 } 861 862 static void tcp_update_reordering(struct sock *sk, const int metric, 863 const int ts) 864 { 865 struct tcp_sock *tp = tcp_sk(sk); 866 int mib_idx; 867 868 if (WARN_ON_ONCE(metric < 0)) 869 return; 870 871 if (metric > tp->reordering) { 872 tp->reordering = min(sock_net(sk)->ipv4.sysctl_tcp_max_reordering, metric); 873 874 #if FASTRETRANS_DEBUG > 1 875 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 876 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 877 tp->reordering, 878 tp->fackets_out, 879 tp->sacked_out, 880 tp->undo_marker ? tp->undo_retrans : 0); 881 #endif 882 tcp_disable_fack(tp); 883 } 884 885 tp->rack.reord = 1; 886 887 /* This exciting event is worth to be remembered. 8) */ 888 if (ts) 889 mib_idx = LINUX_MIB_TCPTSREORDER; 890 else if (tcp_is_reno(tp)) 891 mib_idx = LINUX_MIB_TCPRENOREORDER; 892 else if (tcp_is_fack(tp)) 893 mib_idx = LINUX_MIB_TCPFACKREORDER; 894 else 895 mib_idx = LINUX_MIB_TCPSACKREORDER; 896 897 NET_INC_STATS(sock_net(sk), mib_idx); 898 } 899 900 /* This must be called before lost_out is incremented */ 901 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 902 { 903 if (!tp->retransmit_skb_hint || 904 before(TCP_SKB_CB(skb)->seq, 905 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 906 tp->retransmit_skb_hint = skb; 907 } 908 909 /* Sum the number of packets on the wire we have marked as lost. 910 * There are two cases we care about here: 911 * a) Packet hasn't been marked lost (nor retransmitted), 912 * and this is the first loss. 913 * b) Packet has been marked both lost and retransmitted, 914 * and this means we think it was lost again. 915 */ 916 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 917 { 918 __u8 sacked = TCP_SKB_CB(skb)->sacked; 919 920 if (!(sacked & TCPCB_LOST) || 921 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 922 tp->lost += tcp_skb_pcount(skb); 923 } 924 925 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 926 { 927 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 928 tcp_verify_retransmit_hint(tp, skb); 929 930 tp->lost_out += tcp_skb_pcount(skb); 931 tcp_sum_lost(tp, skb); 932 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 933 } 934 } 935 936 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 937 { 938 tcp_verify_retransmit_hint(tp, skb); 939 940 tcp_sum_lost(tp, skb); 941 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 942 tp->lost_out += tcp_skb_pcount(skb); 943 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 944 } 945 } 946 947 /* This procedure tags the retransmission queue when SACKs arrive. 948 * 949 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 950 * Packets in queue with these bits set are counted in variables 951 * sacked_out, retrans_out and lost_out, correspondingly. 952 * 953 * Valid combinations are: 954 * Tag InFlight Description 955 * 0 1 - orig segment is in flight. 956 * S 0 - nothing flies, orig reached receiver. 957 * L 0 - nothing flies, orig lost by net. 958 * R 2 - both orig and retransmit are in flight. 959 * L|R 1 - orig is lost, retransmit is in flight. 960 * S|R 1 - orig reached receiver, retrans is still in flight. 961 * (L|S|R is logically valid, it could occur when L|R is sacked, 962 * but it is equivalent to plain S and code short-curcuits it to S. 963 * L|S is logically invalid, it would mean -1 packet in flight 8)) 964 * 965 * These 6 states form finite state machine, controlled by the following events: 966 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 967 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 968 * 3. Loss detection event of two flavors: 969 * A. Scoreboard estimator decided the packet is lost. 970 * A'. Reno "three dupacks" marks head of queue lost. 971 * A''. Its FACK modification, head until snd.fack is lost. 972 * B. SACK arrives sacking SND.NXT at the moment, when the 973 * segment was retransmitted. 974 * 4. D-SACK added new rule: D-SACK changes any tag to S. 975 * 976 * It is pleasant to note, that state diagram turns out to be commutative, 977 * so that we are allowed not to be bothered by order of our actions, 978 * when multiple events arrive simultaneously. (see the function below). 979 * 980 * Reordering detection. 981 * -------------------- 982 * Reordering metric is maximal distance, which a packet can be displaced 983 * in packet stream. With SACKs we can estimate it: 984 * 985 * 1. SACK fills old hole and the corresponding segment was not 986 * ever retransmitted -> reordering. Alas, we cannot use it 987 * when segment was retransmitted. 988 * 2. The last flaw is solved with D-SACK. D-SACK arrives 989 * for retransmitted and already SACKed segment -> reordering.. 990 * Both of these heuristics are not used in Loss state, when we cannot 991 * account for retransmits accurately. 992 * 993 * SACK block validation. 994 * ---------------------- 995 * 996 * SACK block range validation checks that the received SACK block fits to 997 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 998 * Note that SND.UNA is not included to the range though being valid because 999 * it means that the receiver is rather inconsistent with itself reporting 1000 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1001 * perfectly valid, however, in light of RFC2018 which explicitly states 1002 * that "SACK block MUST reflect the newest segment. Even if the newest 1003 * segment is going to be discarded ...", not that it looks very clever 1004 * in case of head skb. Due to potentional receiver driven attacks, we 1005 * choose to avoid immediate execution of a walk in write queue due to 1006 * reneging and defer head skb's loss recovery to standard loss recovery 1007 * procedure that will eventually trigger (nothing forbids us doing this). 1008 * 1009 * Implements also blockage to start_seq wrap-around. Problem lies in the 1010 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1011 * there's no guarantee that it will be before snd_nxt (n). The problem 1012 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1013 * wrap (s_w): 1014 * 1015 * <- outs wnd -> <- wrapzone -> 1016 * u e n u_w e_w s n_w 1017 * | | | | | | | 1018 * |<------------+------+----- TCP seqno space --------------+---------->| 1019 * ...-- <2^31 ->| |<--------... 1020 * ...---- >2^31 ------>| |<--------... 1021 * 1022 * Current code wouldn't be vulnerable but it's better still to discard such 1023 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1024 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1025 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1026 * equal to the ideal case (infinite seqno space without wrap caused issues). 1027 * 1028 * With D-SACK the lower bound is extended to cover sequence space below 1029 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1030 * again, D-SACK block must not to go across snd_una (for the same reason as 1031 * for the normal SACK blocks, explained above). But there all simplicity 1032 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1033 * fully below undo_marker they do not affect behavior in anyway and can 1034 * therefore be safely ignored. In rare cases (which are more or less 1035 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1036 * fragmentation and packet reordering past skb's retransmission. To consider 1037 * them correctly, the acceptable range must be extended even more though 1038 * the exact amount is rather hard to quantify. However, tp->max_window can 1039 * be used as an exaggerated estimate. 1040 */ 1041 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1042 u32 start_seq, u32 end_seq) 1043 { 1044 /* Too far in future, or reversed (interpretation is ambiguous) */ 1045 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1046 return false; 1047 1048 /* Nasty start_seq wrap-around check (see comments above) */ 1049 if (!before(start_seq, tp->snd_nxt)) 1050 return false; 1051 1052 /* In outstanding window? ...This is valid exit for D-SACKs too. 1053 * start_seq == snd_una is non-sensical (see comments above) 1054 */ 1055 if (after(start_seq, tp->snd_una)) 1056 return true; 1057 1058 if (!is_dsack || !tp->undo_marker) 1059 return false; 1060 1061 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1062 if (after(end_seq, tp->snd_una)) 1063 return false; 1064 1065 if (!before(start_seq, tp->undo_marker)) 1066 return true; 1067 1068 /* Too old */ 1069 if (!after(end_seq, tp->undo_marker)) 1070 return false; 1071 1072 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1073 * start_seq < undo_marker and end_seq >= undo_marker. 1074 */ 1075 return !before(start_seq, end_seq - tp->max_window); 1076 } 1077 1078 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1079 struct tcp_sack_block_wire *sp, int num_sacks, 1080 u32 prior_snd_una) 1081 { 1082 struct tcp_sock *tp = tcp_sk(sk); 1083 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1084 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1085 bool dup_sack = false; 1086 1087 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1088 dup_sack = true; 1089 tcp_dsack_seen(tp); 1090 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1091 } else if (num_sacks > 1) { 1092 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1093 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1094 1095 if (!after(end_seq_0, end_seq_1) && 1096 !before(start_seq_0, start_seq_1)) { 1097 dup_sack = true; 1098 tcp_dsack_seen(tp); 1099 NET_INC_STATS(sock_net(sk), 1100 LINUX_MIB_TCPDSACKOFORECV); 1101 } 1102 } 1103 1104 /* D-SACK for already forgotten data... Do dumb counting. */ 1105 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1106 !after(end_seq_0, prior_snd_una) && 1107 after(end_seq_0, tp->undo_marker)) 1108 tp->undo_retrans--; 1109 1110 return dup_sack; 1111 } 1112 1113 struct tcp_sacktag_state { 1114 int reord; 1115 int fack_count; 1116 /* Timestamps for earliest and latest never-retransmitted segment 1117 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1118 * but congestion control should still get an accurate delay signal. 1119 */ 1120 u64 first_sackt; 1121 u64 last_sackt; 1122 struct rate_sample *rate; 1123 int flag; 1124 unsigned int mss_now; 1125 }; 1126 1127 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1128 * the incoming SACK may not exactly match but we can find smaller MSS 1129 * aligned portion of it that matches. Therefore we might need to fragment 1130 * which may fail and creates some hassle (caller must handle error case 1131 * returns). 1132 * 1133 * FIXME: this could be merged to shift decision code 1134 */ 1135 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1136 u32 start_seq, u32 end_seq) 1137 { 1138 int err; 1139 bool in_sack; 1140 unsigned int pkt_len; 1141 unsigned int mss; 1142 1143 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1144 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1145 1146 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1147 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1148 mss = tcp_skb_mss(skb); 1149 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1150 1151 if (!in_sack) { 1152 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1153 if (pkt_len < mss) 1154 pkt_len = mss; 1155 } else { 1156 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1157 if (pkt_len < mss) 1158 return -EINVAL; 1159 } 1160 1161 /* Round if necessary so that SACKs cover only full MSSes 1162 * and/or the remaining small portion (if present) 1163 */ 1164 if (pkt_len > mss) { 1165 unsigned int new_len = (pkt_len / mss) * mss; 1166 if (!in_sack && new_len < pkt_len) 1167 new_len += mss; 1168 pkt_len = new_len; 1169 } 1170 1171 if (pkt_len >= skb->len && !in_sack) 1172 return 0; 1173 1174 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1175 pkt_len, mss, GFP_ATOMIC); 1176 if (err < 0) 1177 return err; 1178 } 1179 1180 return in_sack; 1181 } 1182 1183 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1184 static u8 tcp_sacktag_one(struct sock *sk, 1185 struct tcp_sacktag_state *state, u8 sacked, 1186 u32 start_seq, u32 end_seq, 1187 int dup_sack, int pcount, 1188 u64 xmit_time) 1189 { 1190 struct tcp_sock *tp = tcp_sk(sk); 1191 int fack_count = state->fack_count; 1192 1193 /* Account D-SACK for retransmitted packet. */ 1194 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1195 if (tp->undo_marker && tp->undo_retrans > 0 && 1196 after(end_seq, tp->undo_marker)) 1197 tp->undo_retrans--; 1198 if (sacked & TCPCB_SACKED_ACKED) 1199 state->reord = min(fack_count, state->reord); 1200 } 1201 1202 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1203 if (!after(end_seq, tp->snd_una)) 1204 return sacked; 1205 1206 if (!(sacked & TCPCB_SACKED_ACKED)) { 1207 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1208 1209 if (sacked & TCPCB_SACKED_RETRANS) { 1210 /* If the segment is not tagged as lost, 1211 * we do not clear RETRANS, believing 1212 * that retransmission is still in flight. 1213 */ 1214 if (sacked & TCPCB_LOST) { 1215 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1216 tp->lost_out -= pcount; 1217 tp->retrans_out -= pcount; 1218 } 1219 } else { 1220 if (!(sacked & TCPCB_RETRANS)) { 1221 /* New sack for not retransmitted frame, 1222 * which was in hole. It is reordering. 1223 */ 1224 if (before(start_seq, 1225 tcp_highest_sack_seq(tp))) 1226 state->reord = min(fack_count, 1227 state->reord); 1228 if (!after(end_seq, tp->high_seq)) 1229 state->flag |= FLAG_ORIG_SACK_ACKED; 1230 if (state->first_sackt == 0) 1231 state->first_sackt = xmit_time; 1232 state->last_sackt = xmit_time; 1233 } 1234 1235 if (sacked & TCPCB_LOST) { 1236 sacked &= ~TCPCB_LOST; 1237 tp->lost_out -= pcount; 1238 } 1239 } 1240 1241 sacked |= TCPCB_SACKED_ACKED; 1242 state->flag |= FLAG_DATA_SACKED; 1243 tp->sacked_out += pcount; 1244 tp->delivered += pcount; /* Out-of-order packets delivered */ 1245 1246 fack_count += pcount; 1247 1248 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1249 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1250 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1251 tp->lost_cnt_hint += pcount; 1252 1253 if (fack_count > tp->fackets_out) 1254 tp->fackets_out = fack_count; 1255 } 1256 1257 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1258 * frames and clear it. undo_retrans is decreased above, L|R frames 1259 * are accounted above as well. 1260 */ 1261 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1262 sacked &= ~TCPCB_SACKED_RETRANS; 1263 tp->retrans_out -= pcount; 1264 } 1265 1266 return sacked; 1267 } 1268 1269 /* Shift newly-SACKed bytes from this skb to the immediately previous 1270 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1271 */ 1272 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1273 struct sk_buff *skb, 1274 struct tcp_sacktag_state *state, 1275 unsigned int pcount, int shifted, int mss, 1276 bool dup_sack) 1277 { 1278 struct tcp_sock *tp = tcp_sk(sk); 1279 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1280 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1281 1282 BUG_ON(!pcount); 1283 1284 /* Adjust counters and hints for the newly sacked sequence 1285 * range but discard the return value since prev is already 1286 * marked. We must tag the range first because the seq 1287 * advancement below implicitly advances 1288 * tcp_highest_sack_seq() when skb is highest_sack. 1289 */ 1290 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1291 start_seq, end_seq, dup_sack, pcount, 1292 skb->skb_mstamp); 1293 tcp_rate_skb_delivered(sk, skb, state->rate); 1294 1295 if (skb == tp->lost_skb_hint) 1296 tp->lost_cnt_hint += pcount; 1297 1298 TCP_SKB_CB(prev)->end_seq += shifted; 1299 TCP_SKB_CB(skb)->seq += shifted; 1300 1301 tcp_skb_pcount_add(prev, pcount); 1302 BUG_ON(tcp_skb_pcount(skb) < pcount); 1303 tcp_skb_pcount_add(skb, -pcount); 1304 1305 /* When we're adding to gso_segs == 1, gso_size will be zero, 1306 * in theory this shouldn't be necessary but as long as DSACK 1307 * code can come after this skb later on it's better to keep 1308 * setting gso_size to something. 1309 */ 1310 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1311 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1312 1313 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1314 if (tcp_skb_pcount(skb) <= 1) 1315 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1316 1317 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1318 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1319 1320 if (skb->len > 0) { 1321 BUG_ON(!tcp_skb_pcount(skb)); 1322 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1323 return false; 1324 } 1325 1326 /* Whole SKB was eaten :-) */ 1327 1328 if (skb == tp->retransmit_skb_hint) 1329 tp->retransmit_skb_hint = prev; 1330 if (skb == tp->lost_skb_hint) { 1331 tp->lost_skb_hint = prev; 1332 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1333 } 1334 1335 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1336 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1337 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1338 TCP_SKB_CB(prev)->end_seq++; 1339 1340 if (skb == tcp_highest_sack(sk)) 1341 tcp_advance_highest_sack(sk, skb); 1342 1343 tcp_skb_collapse_tstamp(prev, skb); 1344 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1345 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1346 1347 tcp_rtx_queue_unlink_and_free(skb, sk); 1348 1349 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1350 1351 return true; 1352 } 1353 1354 /* I wish gso_size would have a bit more sane initialization than 1355 * something-or-zero which complicates things 1356 */ 1357 static int tcp_skb_seglen(const struct sk_buff *skb) 1358 { 1359 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1360 } 1361 1362 /* Shifting pages past head area doesn't work */ 1363 static int skb_can_shift(const struct sk_buff *skb) 1364 { 1365 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1366 } 1367 1368 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1369 * skb. 1370 */ 1371 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1372 struct tcp_sacktag_state *state, 1373 u32 start_seq, u32 end_seq, 1374 bool dup_sack) 1375 { 1376 struct tcp_sock *tp = tcp_sk(sk); 1377 struct sk_buff *prev; 1378 int mss; 1379 int pcount = 0; 1380 int len; 1381 int in_sack; 1382 1383 if (!sk_can_gso(sk)) 1384 goto fallback; 1385 1386 /* Normally R but no L won't result in plain S */ 1387 if (!dup_sack && 1388 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1389 goto fallback; 1390 if (!skb_can_shift(skb)) 1391 goto fallback; 1392 /* This frame is about to be dropped (was ACKed). */ 1393 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1394 goto fallback; 1395 1396 /* Can only happen with delayed DSACK + discard craziness */ 1397 prev = skb_rb_prev(skb); 1398 if (!prev) 1399 goto fallback; 1400 1401 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1402 goto fallback; 1403 1404 if (!tcp_skb_can_collapse_to(prev)) 1405 goto fallback; 1406 1407 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1408 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1409 1410 if (in_sack) { 1411 len = skb->len; 1412 pcount = tcp_skb_pcount(skb); 1413 mss = tcp_skb_seglen(skb); 1414 1415 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1416 * drop this restriction as unnecessary 1417 */ 1418 if (mss != tcp_skb_seglen(prev)) 1419 goto fallback; 1420 } else { 1421 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1422 goto noop; 1423 /* CHECKME: This is non-MSS split case only?, this will 1424 * cause skipped skbs due to advancing loop btw, original 1425 * has that feature too 1426 */ 1427 if (tcp_skb_pcount(skb) <= 1) 1428 goto noop; 1429 1430 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1431 if (!in_sack) { 1432 /* TODO: head merge to next could be attempted here 1433 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1434 * though it might not be worth of the additional hassle 1435 * 1436 * ...we can probably just fallback to what was done 1437 * previously. We could try merging non-SACKed ones 1438 * as well but it probably isn't going to buy off 1439 * because later SACKs might again split them, and 1440 * it would make skb timestamp tracking considerably 1441 * harder problem. 1442 */ 1443 goto fallback; 1444 } 1445 1446 len = end_seq - TCP_SKB_CB(skb)->seq; 1447 BUG_ON(len < 0); 1448 BUG_ON(len > skb->len); 1449 1450 /* MSS boundaries should be honoured or else pcount will 1451 * severely break even though it makes things bit trickier. 1452 * Optimize common case to avoid most of the divides 1453 */ 1454 mss = tcp_skb_mss(skb); 1455 1456 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1457 * drop this restriction as unnecessary 1458 */ 1459 if (mss != tcp_skb_seglen(prev)) 1460 goto fallback; 1461 1462 if (len == mss) { 1463 pcount = 1; 1464 } else if (len < mss) { 1465 goto noop; 1466 } else { 1467 pcount = len / mss; 1468 len = pcount * mss; 1469 } 1470 } 1471 1472 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1473 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1474 goto fallback; 1475 1476 if (!skb_shift(prev, skb, len)) 1477 goto fallback; 1478 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1479 goto out; 1480 1481 /* Hole filled allows collapsing with the next as well, this is very 1482 * useful when hole on every nth skb pattern happens 1483 */ 1484 skb = skb_rb_next(prev); 1485 if (!skb) 1486 goto out; 1487 1488 if (!skb_can_shift(skb) || 1489 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1490 (mss != tcp_skb_seglen(skb))) 1491 goto out; 1492 1493 len = skb->len; 1494 if (skb_shift(prev, skb, len)) { 1495 pcount += tcp_skb_pcount(skb); 1496 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1497 len, mss, 0); 1498 } 1499 1500 out: 1501 state->fack_count += pcount; 1502 return prev; 1503 1504 noop: 1505 return skb; 1506 1507 fallback: 1508 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1509 return NULL; 1510 } 1511 1512 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1513 struct tcp_sack_block *next_dup, 1514 struct tcp_sacktag_state *state, 1515 u32 start_seq, u32 end_seq, 1516 bool dup_sack_in) 1517 { 1518 struct tcp_sock *tp = tcp_sk(sk); 1519 struct sk_buff *tmp; 1520 1521 skb_rbtree_walk_from(skb) { 1522 int in_sack = 0; 1523 bool dup_sack = dup_sack_in; 1524 1525 /* queue is in-order => we can short-circuit the walk early */ 1526 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1527 break; 1528 1529 if (next_dup && 1530 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1531 in_sack = tcp_match_skb_to_sack(sk, skb, 1532 next_dup->start_seq, 1533 next_dup->end_seq); 1534 if (in_sack > 0) 1535 dup_sack = true; 1536 } 1537 1538 /* skb reference here is a bit tricky to get right, since 1539 * shifting can eat and free both this skb and the next, 1540 * so not even _safe variant of the loop is enough. 1541 */ 1542 if (in_sack <= 0) { 1543 tmp = tcp_shift_skb_data(sk, skb, state, 1544 start_seq, end_seq, dup_sack); 1545 if (tmp) { 1546 if (tmp != skb) { 1547 skb = tmp; 1548 continue; 1549 } 1550 1551 in_sack = 0; 1552 } else { 1553 in_sack = tcp_match_skb_to_sack(sk, skb, 1554 start_seq, 1555 end_seq); 1556 } 1557 } 1558 1559 if (unlikely(in_sack < 0)) 1560 break; 1561 1562 if (in_sack) { 1563 TCP_SKB_CB(skb)->sacked = 1564 tcp_sacktag_one(sk, 1565 state, 1566 TCP_SKB_CB(skb)->sacked, 1567 TCP_SKB_CB(skb)->seq, 1568 TCP_SKB_CB(skb)->end_seq, 1569 dup_sack, 1570 tcp_skb_pcount(skb), 1571 skb->skb_mstamp); 1572 tcp_rate_skb_delivered(sk, skb, state->rate); 1573 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1574 list_del_init(&skb->tcp_tsorted_anchor); 1575 1576 if (!before(TCP_SKB_CB(skb)->seq, 1577 tcp_highest_sack_seq(tp))) 1578 tcp_advance_highest_sack(sk, skb); 1579 } 1580 1581 state->fack_count += tcp_skb_pcount(skb); 1582 } 1583 return skb; 1584 } 1585 1586 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1587 struct tcp_sacktag_state *state, 1588 u32 seq) 1589 { 1590 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1591 struct sk_buff *skb; 1592 int unack_bytes; 1593 1594 while (*p) { 1595 parent = *p; 1596 skb = rb_to_skb(parent); 1597 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1598 p = &parent->rb_left; 1599 continue; 1600 } 1601 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1602 p = &parent->rb_right; 1603 continue; 1604 } 1605 1606 state->fack_count = 0; 1607 unack_bytes = TCP_SKB_CB(skb)->seq - tcp_sk(sk)->snd_una; 1608 if (state->mss_now && unack_bytes > 0) 1609 state->fack_count = unack_bytes / state->mss_now; 1610 1611 return skb; 1612 } 1613 return NULL; 1614 } 1615 1616 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1617 struct tcp_sacktag_state *state, 1618 u32 skip_to_seq) 1619 { 1620 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1621 return skb; 1622 1623 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1624 } 1625 1626 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1627 struct sock *sk, 1628 struct tcp_sack_block *next_dup, 1629 struct tcp_sacktag_state *state, 1630 u32 skip_to_seq) 1631 { 1632 if (!next_dup) 1633 return skb; 1634 1635 if (before(next_dup->start_seq, skip_to_seq)) { 1636 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1637 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1638 next_dup->start_seq, next_dup->end_seq, 1639 1); 1640 } 1641 1642 return skb; 1643 } 1644 1645 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1646 { 1647 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1648 } 1649 1650 static int 1651 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1652 u32 prior_snd_una, struct tcp_sacktag_state *state) 1653 { 1654 struct tcp_sock *tp = tcp_sk(sk); 1655 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1656 TCP_SKB_CB(ack_skb)->sacked); 1657 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1658 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1659 struct tcp_sack_block *cache; 1660 struct sk_buff *skb; 1661 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1662 int used_sacks; 1663 bool found_dup_sack = false; 1664 int i, j; 1665 int first_sack_index; 1666 1667 state->flag = 0; 1668 state->reord = tp->packets_out; 1669 1670 if (!tp->sacked_out) { 1671 if (WARN_ON(tp->fackets_out)) 1672 tp->fackets_out = 0; 1673 tcp_highest_sack_reset(sk); 1674 } 1675 1676 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1677 num_sacks, prior_snd_una); 1678 if (found_dup_sack) { 1679 state->flag |= FLAG_DSACKING_ACK; 1680 tp->delivered++; /* A spurious retransmission is delivered */ 1681 } 1682 1683 /* Eliminate too old ACKs, but take into 1684 * account more or less fresh ones, they can 1685 * contain valid SACK info. 1686 */ 1687 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1688 return 0; 1689 1690 if (!tp->packets_out) 1691 goto out; 1692 1693 used_sacks = 0; 1694 first_sack_index = 0; 1695 for (i = 0; i < num_sacks; i++) { 1696 bool dup_sack = !i && found_dup_sack; 1697 1698 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1699 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1700 1701 if (!tcp_is_sackblock_valid(tp, dup_sack, 1702 sp[used_sacks].start_seq, 1703 sp[used_sacks].end_seq)) { 1704 int mib_idx; 1705 1706 if (dup_sack) { 1707 if (!tp->undo_marker) 1708 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1709 else 1710 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1711 } else { 1712 /* Don't count olds caused by ACK reordering */ 1713 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1714 !after(sp[used_sacks].end_seq, tp->snd_una)) 1715 continue; 1716 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1717 } 1718 1719 NET_INC_STATS(sock_net(sk), mib_idx); 1720 if (i == 0) 1721 first_sack_index = -1; 1722 continue; 1723 } 1724 1725 /* Ignore very old stuff early */ 1726 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1727 continue; 1728 1729 used_sacks++; 1730 } 1731 1732 /* order SACK blocks to allow in order walk of the retrans queue */ 1733 for (i = used_sacks - 1; i > 0; i--) { 1734 for (j = 0; j < i; j++) { 1735 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1736 swap(sp[j], sp[j + 1]); 1737 1738 /* Track where the first SACK block goes to */ 1739 if (j == first_sack_index) 1740 first_sack_index = j + 1; 1741 } 1742 } 1743 } 1744 1745 state->mss_now = tcp_current_mss(sk); 1746 state->fack_count = 0; 1747 skb = NULL; 1748 i = 0; 1749 1750 if (!tp->sacked_out) { 1751 /* It's already past, so skip checking against it */ 1752 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1753 } else { 1754 cache = tp->recv_sack_cache; 1755 /* Skip empty blocks in at head of the cache */ 1756 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1757 !cache->end_seq) 1758 cache++; 1759 } 1760 1761 while (i < used_sacks) { 1762 u32 start_seq = sp[i].start_seq; 1763 u32 end_seq = sp[i].end_seq; 1764 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1765 struct tcp_sack_block *next_dup = NULL; 1766 1767 if (found_dup_sack && ((i + 1) == first_sack_index)) 1768 next_dup = &sp[i + 1]; 1769 1770 /* Skip too early cached blocks */ 1771 while (tcp_sack_cache_ok(tp, cache) && 1772 !before(start_seq, cache->end_seq)) 1773 cache++; 1774 1775 /* Can skip some work by looking recv_sack_cache? */ 1776 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1777 after(end_seq, cache->start_seq)) { 1778 1779 /* Head todo? */ 1780 if (before(start_seq, cache->start_seq)) { 1781 skb = tcp_sacktag_skip(skb, sk, state, 1782 start_seq); 1783 skb = tcp_sacktag_walk(skb, sk, next_dup, 1784 state, 1785 start_seq, 1786 cache->start_seq, 1787 dup_sack); 1788 } 1789 1790 /* Rest of the block already fully processed? */ 1791 if (!after(end_seq, cache->end_seq)) 1792 goto advance_sp; 1793 1794 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1795 state, 1796 cache->end_seq); 1797 1798 /* ...tail remains todo... */ 1799 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1800 /* ...but better entrypoint exists! */ 1801 skb = tcp_highest_sack(sk); 1802 if (!skb) 1803 break; 1804 state->fack_count = tp->fackets_out; 1805 cache++; 1806 goto walk; 1807 } 1808 1809 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1810 /* Check overlap against next cached too (past this one already) */ 1811 cache++; 1812 continue; 1813 } 1814 1815 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1816 skb = tcp_highest_sack(sk); 1817 if (!skb) 1818 break; 1819 state->fack_count = tp->fackets_out; 1820 } 1821 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1822 1823 walk: 1824 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1825 start_seq, end_seq, dup_sack); 1826 1827 advance_sp: 1828 i++; 1829 } 1830 1831 /* Clear the head of the cache sack blocks so we can skip it next time */ 1832 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1833 tp->recv_sack_cache[i].start_seq = 0; 1834 tp->recv_sack_cache[i].end_seq = 0; 1835 } 1836 for (j = 0; j < used_sacks; j++) 1837 tp->recv_sack_cache[i++] = sp[j]; 1838 1839 if ((state->reord < tp->fackets_out) && 1840 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1841 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1842 1843 tcp_verify_left_out(tp); 1844 out: 1845 1846 #if FASTRETRANS_DEBUG > 0 1847 WARN_ON((int)tp->sacked_out < 0); 1848 WARN_ON((int)tp->lost_out < 0); 1849 WARN_ON((int)tp->retrans_out < 0); 1850 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1851 #endif 1852 return state->flag; 1853 } 1854 1855 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1856 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1857 */ 1858 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1859 { 1860 u32 holes; 1861 1862 holes = max(tp->lost_out, 1U); 1863 holes = min(holes, tp->packets_out); 1864 1865 if ((tp->sacked_out + holes) > tp->packets_out) { 1866 tp->sacked_out = tp->packets_out - holes; 1867 return true; 1868 } 1869 return false; 1870 } 1871 1872 /* If we receive more dupacks than we expected counting segments 1873 * in assumption of absent reordering, interpret this as reordering. 1874 * The only another reason could be bug in receiver TCP. 1875 */ 1876 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1877 { 1878 struct tcp_sock *tp = tcp_sk(sk); 1879 if (tcp_limit_reno_sacked(tp)) 1880 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1881 } 1882 1883 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1884 1885 static void tcp_add_reno_sack(struct sock *sk) 1886 { 1887 struct tcp_sock *tp = tcp_sk(sk); 1888 u32 prior_sacked = tp->sacked_out; 1889 1890 tp->sacked_out++; 1891 tcp_check_reno_reordering(sk, 0); 1892 if (tp->sacked_out > prior_sacked) 1893 tp->delivered++; /* Some out-of-order packet is delivered */ 1894 tcp_verify_left_out(tp); 1895 } 1896 1897 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1898 1899 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1900 { 1901 struct tcp_sock *tp = tcp_sk(sk); 1902 1903 if (acked > 0) { 1904 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1905 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1906 if (acked - 1 >= tp->sacked_out) 1907 tp->sacked_out = 0; 1908 else 1909 tp->sacked_out -= acked - 1; 1910 } 1911 tcp_check_reno_reordering(sk, acked); 1912 tcp_verify_left_out(tp); 1913 } 1914 1915 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1916 { 1917 tp->sacked_out = 0; 1918 } 1919 1920 void tcp_clear_retrans(struct tcp_sock *tp) 1921 { 1922 tp->retrans_out = 0; 1923 tp->lost_out = 0; 1924 tp->undo_marker = 0; 1925 tp->undo_retrans = -1; 1926 tp->fackets_out = 0; 1927 tp->sacked_out = 0; 1928 } 1929 1930 static inline void tcp_init_undo(struct tcp_sock *tp) 1931 { 1932 tp->undo_marker = tp->snd_una; 1933 /* Retransmission still in flight may cause DSACKs later. */ 1934 tp->undo_retrans = tp->retrans_out ? : -1; 1935 } 1936 1937 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1938 * and reset tags completely, otherwise preserve SACKs. If receiver 1939 * dropped its ofo queue, we will know this due to reneging detection. 1940 */ 1941 void tcp_enter_loss(struct sock *sk) 1942 { 1943 const struct inet_connection_sock *icsk = inet_csk(sk); 1944 struct tcp_sock *tp = tcp_sk(sk); 1945 struct net *net = sock_net(sk); 1946 struct sk_buff *skb; 1947 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1948 bool is_reneg; /* is receiver reneging on SACKs? */ 1949 bool mark_lost; 1950 1951 /* Reduce ssthresh if it has not yet been made inside this window. */ 1952 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1953 !after(tp->high_seq, tp->snd_una) || 1954 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1955 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1956 tp->prior_cwnd = tp->snd_cwnd; 1957 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1958 tcp_ca_event(sk, CA_EVENT_LOSS); 1959 tcp_init_undo(tp); 1960 } 1961 tp->snd_cwnd = 1; 1962 tp->snd_cwnd_cnt = 0; 1963 tp->snd_cwnd_stamp = tcp_jiffies32; 1964 1965 tp->retrans_out = 0; 1966 tp->lost_out = 0; 1967 1968 if (tcp_is_reno(tp)) 1969 tcp_reset_reno_sack(tp); 1970 1971 skb = tcp_rtx_queue_head(sk); 1972 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1973 if (is_reneg) { 1974 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1975 tp->sacked_out = 0; 1976 tp->fackets_out = 0; 1977 } 1978 tcp_clear_all_retrans_hints(tp); 1979 1980 skb_rbtree_walk_from(skb) { 1981 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1982 is_reneg); 1983 if (mark_lost) 1984 tcp_sum_lost(tp, skb); 1985 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1986 if (mark_lost) { 1987 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1988 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1989 tp->lost_out += tcp_skb_pcount(skb); 1990 } 1991 } 1992 tcp_verify_left_out(tp); 1993 1994 /* Timeout in disordered state after receiving substantial DUPACKs 1995 * suggests that the degree of reordering is over-estimated. 1996 */ 1997 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1998 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1999 tp->reordering = min_t(unsigned int, tp->reordering, 2000 net->ipv4.sysctl_tcp_reordering); 2001 tcp_set_ca_state(sk, TCP_CA_Loss); 2002 tp->high_seq = tp->snd_nxt; 2003 tcp_ecn_queue_cwr(tp); 2004 2005 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2006 * loss recovery is underway except recurring timeout(s) on 2007 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2008 * 2009 * In theory F-RTO can be used repeatedly during loss recovery. 2010 * In practice this interacts badly with broken middle-boxes that 2011 * falsely raise the receive window, which results in repeated 2012 * timeouts and stop-and-go behavior. 2013 */ 2014 tp->frto = net->ipv4.sysctl_tcp_frto && 2015 (new_recovery || icsk->icsk_retransmits) && 2016 !inet_csk(sk)->icsk_mtup.probe_size; 2017 } 2018 2019 /* If ACK arrived pointing to a remembered SACK, it means that our 2020 * remembered SACKs do not reflect real state of receiver i.e. 2021 * receiver _host_ is heavily congested (or buggy). 2022 * 2023 * To avoid big spurious retransmission bursts due to transient SACK 2024 * scoreboard oddities that look like reneging, we give the receiver a 2025 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2026 * restore sanity to the SACK scoreboard. If the apparent reneging 2027 * persists until this RTO then we'll clear the SACK scoreboard. 2028 */ 2029 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2030 { 2031 if (flag & FLAG_SACK_RENEGING) { 2032 struct tcp_sock *tp = tcp_sk(sk); 2033 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2034 msecs_to_jiffies(10)); 2035 2036 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2037 delay, TCP_RTO_MAX); 2038 return true; 2039 } 2040 return false; 2041 } 2042 2043 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2044 { 2045 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2046 } 2047 2048 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2049 * counter when SACK is enabled (without SACK, sacked_out is used for 2050 * that purpose). 2051 * 2052 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2053 * segments up to the highest received SACK block so far and holes in 2054 * between them. 2055 * 2056 * With reordering, holes may still be in flight, so RFC3517 recovery 2057 * uses pure sacked_out (total number of SACKed segments) even though 2058 * it violates the RFC that uses duplicate ACKs, often these are equal 2059 * but when e.g. out-of-window ACKs or packet duplication occurs, 2060 * they differ. Since neither occurs due to loss, TCP should really 2061 * ignore them. 2062 */ 2063 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2064 { 2065 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2066 } 2067 2068 /* Linux NewReno/SACK/FACK/ECN state machine. 2069 * -------------------------------------- 2070 * 2071 * "Open" Normal state, no dubious events, fast path. 2072 * "Disorder" In all the respects it is "Open", 2073 * but requires a bit more attention. It is entered when 2074 * we see some SACKs or dupacks. It is split of "Open" 2075 * mainly to move some processing from fast path to slow one. 2076 * "CWR" CWND was reduced due to some Congestion Notification event. 2077 * It can be ECN, ICMP source quench, local device congestion. 2078 * "Recovery" CWND was reduced, we are fast-retransmitting. 2079 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2080 * 2081 * tcp_fastretrans_alert() is entered: 2082 * - each incoming ACK, if state is not "Open" 2083 * - when arrived ACK is unusual, namely: 2084 * * SACK 2085 * * Duplicate ACK. 2086 * * ECN ECE. 2087 * 2088 * Counting packets in flight is pretty simple. 2089 * 2090 * in_flight = packets_out - left_out + retrans_out 2091 * 2092 * packets_out is SND.NXT-SND.UNA counted in packets. 2093 * 2094 * retrans_out is number of retransmitted segments. 2095 * 2096 * left_out is number of segments left network, but not ACKed yet. 2097 * 2098 * left_out = sacked_out + lost_out 2099 * 2100 * sacked_out: Packets, which arrived to receiver out of order 2101 * and hence not ACKed. With SACKs this number is simply 2102 * amount of SACKed data. Even without SACKs 2103 * it is easy to give pretty reliable estimate of this number, 2104 * counting duplicate ACKs. 2105 * 2106 * lost_out: Packets lost by network. TCP has no explicit 2107 * "loss notification" feedback from network (for now). 2108 * It means that this number can be only _guessed_. 2109 * Actually, it is the heuristics to predict lossage that 2110 * distinguishes different algorithms. 2111 * 2112 * F.e. after RTO, when all the queue is considered as lost, 2113 * lost_out = packets_out and in_flight = retrans_out. 2114 * 2115 * Essentially, we have now a few algorithms detecting 2116 * lost packets. 2117 * 2118 * If the receiver supports SACK: 2119 * 2120 * RFC6675/3517: It is the conventional algorithm. A packet is 2121 * considered lost if the number of higher sequence packets 2122 * SACKed is greater than or equal the DUPACK thoreshold 2123 * (reordering). This is implemented in tcp_mark_head_lost and 2124 * tcp_update_scoreboard. 2125 * 2126 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2127 * (2017-) that checks timing instead of counting DUPACKs. 2128 * Essentially a packet is considered lost if it's not S/ACKed 2129 * after RTT + reordering_window, where both metrics are 2130 * dynamically measured and adjusted. This is implemented in 2131 * tcp_rack_mark_lost. 2132 * 2133 * FACK (Disabled by default. Subsumbed by RACK): 2134 * It is the simplest heuristics. As soon as we decided 2135 * that something is lost, we decide that _all_ not SACKed 2136 * packets until the most forward SACK are lost. I.e. 2137 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2138 * It is absolutely correct estimate, if network does not reorder 2139 * packets. And it loses any connection to reality when reordering 2140 * takes place. We use FACK by default until reordering 2141 * is suspected on the path to this destination. 2142 * 2143 * If the receiver does not support SACK: 2144 * 2145 * NewReno (RFC6582): in Recovery we assume that one segment 2146 * is lost (classic Reno). While we are in Recovery and 2147 * a partial ACK arrives, we assume that one more packet 2148 * is lost (NewReno). This heuristics are the same in NewReno 2149 * and SACK. 2150 * 2151 * Really tricky (and requiring careful tuning) part of algorithm 2152 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2153 * The first determines the moment _when_ we should reduce CWND and, 2154 * hence, slow down forward transmission. In fact, it determines the moment 2155 * when we decide that hole is caused by loss, rather than by a reorder. 2156 * 2157 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2158 * holes, caused by lost packets. 2159 * 2160 * And the most logically complicated part of algorithm is undo 2161 * heuristics. We detect false retransmits due to both too early 2162 * fast retransmit (reordering) and underestimated RTO, analyzing 2163 * timestamps and D-SACKs. When we detect that some segments were 2164 * retransmitted by mistake and CWND reduction was wrong, we undo 2165 * window reduction and abort recovery phase. This logic is hidden 2166 * inside several functions named tcp_try_undo_<something>. 2167 */ 2168 2169 /* This function decides, when we should leave Disordered state 2170 * and enter Recovery phase, reducing congestion window. 2171 * 2172 * Main question: may we further continue forward transmission 2173 * with the same cwnd? 2174 */ 2175 static bool tcp_time_to_recover(struct sock *sk, int flag) 2176 { 2177 struct tcp_sock *tp = tcp_sk(sk); 2178 2179 /* Trick#1: The loss is proven. */ 2180 if (tp->lost_out) 2181 return true; 2182 2183 /* Not-A-Trick#2 : Classic rule... */ 2184 if (tcp_dupack_heuristics(tp) > tp->reordering) 2185 return true; 2186 2187 return false; 2188 } 2189 2190 /* Detect loss in event "A" above by marking head of queue up as lost. 2191 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2192 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2193 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2194 * the maximum SACKed segments to pass before reaching this limit. 2195 */ 2196 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2197 { 2198 struct tcp_sock *tp = tcp_sk(sk); 2199 struct sk_buff *skb; 2200 int cnt, oldcnt, lost; 2201 unsigned int mss; 2202 /* Use SACK to deduce losses of new sequences sent during recovery */ 2203 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2204 2205 WARN_ON(packets > tp->packets_out); 2206 skb = tp->lost_skb_hint; 2207 if (skb) { 2208 /* Head already handled? */ 2209 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2210 return; 2211 cnt = tp->lost_cnt_hint; 2212 } else { 2213 skb = tcp_rtx_queue_head(sk); 2214 cnt = 0; 2215 } 2216 2217 skb_rbtree_walk_from(skb) { 2218 /* TODO: do this better */ 2219 /* this is not the most efficient way to do this... */ 2220 tp->lost_skb_hint = skb; 2221 tp->lost_cnt_hint = cnt; 2222 2223 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2224 break; 2225 2226 oldcnt = cnt; 2227 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2228 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2229 cnt += tcp_skb_pcount(skb); 2230 2231 if (cnt > packets) { 2232 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2233 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2234 (oldcnt >= packets)) 2235 break; 2236 2237 mss = tcp_skb_mss(skb); 2238 /* If needed, chop off the prefix to mark as lost. */ 2239 lost = (packets - oldcnt) * mss; 2240 if (lost < skb->len && 2241 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2242 lost, mss, GFP_ATOMIC) < 0) 2243 break; 2244 cnt = packets; 2245 } 2246 2247 tcp_skb_mark_lost(tp, skb); 2248 2249 if (mark_head) 2250 break; 2251 } 2252 tcp_verify_left_out(tp); 2253 } 2254 2255 /* Account newly detected lost packet(s) */ 2256 2257 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2258 { 2259 struct tcp_sock *tp = tcp_sk(sk); 2260 2261 if (tcp_is_reno(tp)) { 2262 tcp_mark_head_lost(sk, 1, 1); 2263 } else if (tcp_is_fack(tp)) { 2264 int lost = tp->fackets_out - tp->reordering; 2265 if (lost <= 0) 2266 lost = 1; 2267 tcp_mark_head_lost(sk, lost, 0); 2268 } else { 2269 int sacked_upto = tp->sacked_out - tp->reordering; 2270 if (sacked_upto >= 0) 2271 tcp_mark_head_lost(sk, sacked_upto, 0); 2272 else if (fast_rexmit) 2273 tcp_mark_head_lost(sk, 1, 1); 2274 } 2275 } 2276 2277 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2278 { 2279 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2280 before(tp->rx_opt.rcv_tsecr, when); 2281 } 2282 2283 /* skb is spurious retransmitted if the returned timestamp echo 2284 * reply is prior to the skb transmission time 2285 */ 2286 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2287 const struct sk_buff *skb) 2288 { 2289 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2290 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2291 } 2292 2293 /* Nothing was retransmitted or returned timestamp is less 2294 * than timestamp of the first retransmission. 2295 */ 2296 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2297 { 2298 return !tp->retrans_stamp || 2299 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2300 } 2301 2302 /* Undo procedures. */ 2303 2304 /* We can clear retrans_stamp when there are no retransmissions in the 2305 * window. It would seem that it is trivially available for us in 2306 * tp->retrans_out, however, that kind of assumptions doesn't consider 2307 * what will happen if errors occur when sending retransmission for the 2308 * second time. ...It could the that such segment has only 2309 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2310 * the head skb is enough except for some reneging corner cases that 2311 * are not worth the effort. 2312 * 2313 * Main reason for all this complexity is the fact that connection dying 2314 * time now depends on the validity of the retrans_stamp, in particular, 2315 * that successive retransmissions of a segment must not advance 2316 * retrans_stamp under any conditions. 2317 */ 2318 static bool tcp_any_retrans_done(const struct sock *sk) 2319 { 2320 const struct tcp_sock *tp = tcp_sk(sk); 2321 struct sk_buff *skb; 2322 2323 if (tp->retrans_out) 2324 return true; 2325 2326 skb = tcp_rtx_queue_head(sk); 2327 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2328 return true; 2329 2330 return false; 2331 } 2332 2333 static void DBGUNDO(struct sock *sk, const char *msg) 2334 { 2335 #if FASTRETRANS_DEBUG > 1 2336 struct tcp_sock *tp = tcp_sk(sk); 2337 struct inet_sock *inet = inet_sk(sk); 2338 2339 if (sk->sk_family == AF_INET) { 2340 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2341 msg, 2342 &inet->inet_daddr, ntohs(inet->inet_dport), 2343 tp->snd_cwnd, tcp_left_out(tp), 2344 tp->snd_ssthresh, tp->prior_ssthresh, 2345 tp->packets_out); 2346 } 2347 #if IS_ENABLED(CONFIG_IPV6) 2348 else if (sk->sk_family == AF_INET6) { 2349 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2350 msg, 2351 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2352 tp->snd_cwnd, tcp_left_out(tp), 2353 tp->snd_ssthresh, tp->prior_ssthresh, 2354 tp->packets_out); 2355 } 2356 #endif 2357 #endif 2358 } 2359 2360 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2361 { 2362 struct tcp_sock *tp = tcp_sk(sk); 2363 2364 if (unmark_loss) { 2365 struct sk_buff *skb; 2366 2367 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2368 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2369 } 2370 tp->lost_out = 0; 2371 tcp_clear_all_retrans_hints(tp); 2372 } 2373 2374 if (tp->prior_ssthresh) { 2375 const struct inet_connection_sock *icsk = inet_csk(sk); 2376 2377 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2378 2379 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2380 tp->snd_ssthresh = tp->prior_ssthresh; 2381 tcp_ecn_withdraw_cwr(tp); 2382 } 2383 } 2384 tp->snd_cwnd_stamp = tcp_jiffies32; 2385 tp->undo_marker = 0; 2386 } 2387 2388 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2389 { 2390 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2391 } 2392 2393 /* People celebrate: "We love our President!" */ 2394 static bool tcp_try_undo_recovery(struct sock *sk) 2395 { 2396 struct tcp_sock *tp = tcp_sk(sk); 2397 2398 if (tcp_may_undo(tp)) { 2399 int mib_idx; 2400 2401 /* Happy end! We did not retransmit anything 2402 * or our original transmission succeeded. 2403 */ 2404 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2405 tcp_undo_cwnd_reduction(sk, false); 2406 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2407 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2408 else 2409 mib_idx = LINUX_MIB_TCPFULLUNDO; 2410 2411 NET_INC_STATS(sock_net(sk), mib_idx); 2412 } else if (tp->rack.reo_wnd_persist) { 2413 tp->rack.reo_wnd_persist--; 2414 } 2415 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2416 /* Hold old state until something *above* high_seq 2417 * is ACKed. For Reno it is MUST to prevent false 2418 * fast retransmits (RFC2582). SACK TCP is safe. */ 2419 if (!tcp_any_retrans_done(sk)) 2420 tp->retrans_stamp = 0; 2421 return true; 2422 } 2423 tcp_set_ca_state(sk, TCP_CA_Open); 2424 return false; 2425 } 2426 2427 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2428 static bool tcp_try_undo_dsack(struct sock *sk) 2429 { 2430 struct tcp_sock *tp = tcp_sk(sk); 2431 2432 if (tp->undo_marker && !tp->undo_retrans) { 2433 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2434 tp->rack.reo_wnd_persist + 1); 2435 DBGUNDO(sk, "D-SACK"); 2436 tcp_undo_cwnd_reduction(sk, false); 2437 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2438 return true; 2439 } 2440 return false; 2441 } 2442 2443 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2444 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2445 { 2446 struct tcp_sock *tp = tcp_sk(sk); 2447 2448 if (frto_undo || tcp_may_undo(tp)) { 2449 tcp_undo_cwnd_reduction(sk, true); 2450 2451 DBGUNDO(sk, "partial loss"); 2452 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2453 if (frto_undo) 2454 NET_INC_STATS(sock_net(sk), 2455 LINUX_MIB_TCPSPURIOUSRTOS); 2456 inet_csk(sk)->icsk_retransmits = 0; 2457 if (frto_undo || tcp_is_sack(tp)) 2458 tcp_set_ca_state(sk, TCP_CA_Open); 2459 return true; 2460 } 2461 return false; 2462 } 2463 2464 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2465 * It computes the number of packets to send (sndcnt) based on packets newly 2466 * delivered: 2467 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2468 * cwnd reductions across a full RTT. 2469 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2470 * But when the retransmits are acked without further losses, PRR 2471 * slow starts cwnd up to ssthresh to speed up the recovery. 2472 */ 2473 static void tcp_init_cwnd_reduction(struct sock *sk) 2474 { 2475 struct tcp_sock *tp = tcp_sk(sk); 2476 2477 tp->high_seq = tp->snd_nxt; 2478 tp->tlp_high_seq = 0; 2479 tp->snd_cwnd_cnt = 0; 2480 tp->prior_cwnd = tp->snd_cwnd; 2481 tp->prr_delivered = 0; 2482 tp->prr_out = 0; 2483 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2484 tcp_ecn_queue_cwr(tp); 2485 } 2486 2487 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2488 { 2489 struct tcp_sock *tp = tcp_sk(sk); 2490 int sndcnt = 0; 2491 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2492 2493 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2494 return; 2495 2496 tp->prr_delivered += newly_acked_sacked; 2497 if (delta < 0) { 2498 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2499 tp->prior_cwnd - 1; 2500 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2501 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2502 !(flag & FLAG_LOST_RETRANS)) { 2503 sndcnt = min_t(int, delta, 2504 max_t(int, tp->prr_delivered - tp->prr_out, 2505 newly_acked_sacked) + 1); 2506 } else { 2507 sndcnt = min(delta, newly_acked_sacked); 2508 } 2509 /* Force a fast retransmit upon entering fast recovery */ 2510 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2511 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2512 } 2513 2514 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2515 { 2516 struct tcp_sock *tp = tcp_sk(sk); 2517 2518 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2519 return; 2520 2521 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2522 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2523 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2524 tp->snd_cwnd = tp->snd_ssthresh; 2525 tp->snd_cwnd_stamp = tcp_jiffies32; 2526 } 2527 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2528 } 2529 2530 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2531 void tcp_enter_cwr(struct sock *sk) 2532 { 2533 struct tcp_sock *tp = tcp_sk(sk); 2534 2535 tp->prior_ssthresh = 0; 2536 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2537 tp->undo_marker = 0; 2538 tcp_init_cwnd_reduction(sk); 2539 tcp_set_ca_state(sk, TCP_CA_CWR); 2540 } 2541 } 2542 EXPORT_SYMBOL(tcp_enter_cwr); 2543 2544 static void tcp_try_keep_open(struct sock *sk) 2545 { 2546 struct tcp_sock *tp = tcp_sk(sk); 2547 int state = TCP_CA_Open; 2548 2549 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2550 state = TCP_CA_Disorder; 2551 2552 if (inet_csk(sk)->icsk_ca_state != state) { 2553 tcp_set_ca_state(sk, state); 2554 tp->high_seq = tp->snd_nxt; 2555 } 2556 } 2557 2558 static void tcp_try_to_open(struct sock *sk, int flag) 2559 { 2560 struct tcp_sock *tp = tcp_sk(sk); 2561 2562 tcp_verify_left_out(tp); 2563 2564 if (!tcp_any_retrans_done(sk)) 2565 tp->retrans_stamp = 0; 2566 2567 if (flag & FLAG_ECE) 2568 tcp_enter_cwr(sk); 2569 2570 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2571 tcp_try_keep_open(sk); 2572 } 2573 } 2574 2575 static void tcp_mtup_probe_failed(struct sock *sk) 2576 { 2577 struct inet_connection_sock *icsk = inet_csk(sk); 2578 2579 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2580 icsk->icsk_mtup.probe_size = 0; 2581 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2582 } 2583 2584 static void tcp_mtup_probe_success(struct sock *sk) 2585 { 2586 struct tcp_sock *tp = tcp_sk(sk); 2587 struct inet_connection_sock *icsk = inet_csk(sk); 2588 2589 /* FIXME: breaks with very large cwnd */ 2590 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2591 tp->snd_cwnd = tp->snd_cwnd * 2592 tcp_mss_to_mtu(sk, tp->mss_cache) / 2593 icsk->icsk_mtup.probe_size; 2594 tp->snd_cwnd_cnt = 0; 2595 tp->snd_cwnd_stamp = tcp_jiffies32; 2596 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2597 2598 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2599 icsk->icsk_mtup.probe_size = 0; 2600 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2601 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2602 } 2603 2604 /* Do a simple retransmit without using the backoff mechanisms in 2605 * tcp_timer. This is used for path mtu discovery. 2606 * The socket is already locked here. 2607 */ 2608 void tcp_simple_retransmit(struct sock *sk) 2609 { 2610 const struct inet_connection_sock *icsk = inet_csk(sk); 2611 struct tcp_sock *tp = tcp_sk(sk); 2612 struct sk_buff *skb; 2613 unsigned int mss = tcp_current_mss(sk); 2614 u32 prior_lost = tp->lost_out; 2615 2616 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2617 if (tcp_skb_seglen(skb) > mss && 2618 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2619 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2620 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2621 tp->retrans_out -= tcp_skb_pcount(skb); 2622 } 2623 tcp_skb_mark_lost_uncond_verify(tp, skb); 2624 } 2625 } 2626 2627 tcp_clear_retrans_hints_partial(tp); 2628 2629 if (prior_lost == tp->lost_out) 2630 return; 2631 2632 if (tcp_is_reno(tp)) 2633 tcp_limit_reno_sacked(tp); 2634 2635 tcp_verify_left_out(tp); 2636 2637 /* Don't muck with the congestion window here. 2638 * Reason is that we do not increase amount of _data_ 2639 * in network, but units changed and effective 2640 * cwnd/ssthresh really reduced now. 2641 */ 2642 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2643 tp->high_seq = tp->snd_nxt; 2644 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2645 tp->prior_ssthresh = 0; 2646 tp->undo_marker = 0; 2647 tcp_set_ca_state(sk, TCP_CA_Loss); 2648 } 2649 tcp_xmit_retransmit_queue(sk); 2650 } 2651 EXPORT_SYMBOL(tcp_simple_retransmit); 2652 2653 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2654 { 2655 struct tcp_sock *tp = tcp_sk(sk); 2656 int mib_idx; 2657 2658 if (tcp_is_reno(tp)) 2659 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2660 else 2661 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2662 2663 NET_INC_STATS(sock_net(sk), mib_idx); 2664 2665 tp->prior_ssthresh = 0; 2666 tcp_init_undo(tp); 2667 2668 if (!tcp_in_cwnd_reduction(sk)) { 2669 if (!ece_ack) 2670 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2671 tcp_init_cwnd_reduction(sk); 2672 } 2673 tcp_set_ca_state(sk, TCP_CA_Recovery); 2674 } 2675 2676 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2677 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2678 */ 2679 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2680 int *rexmit) 2681 { 2682 struct tcp_sock *tp = tcp_sk(sk); 2683 bool recovered = !before(tp->snd_una, tp->high_seq); 2684 2685 if ((flag & FLAG_SND_UNA_ADVANCED) && 2686 tcp_try_undo_loss(sk, false)) 2687 return; 2688 2689 /* The ACK (s)acks some never-retransmitted data meaning not all 2690 * the data packets before the timeout were lost. Therefore we 2691 * undo the congestion window and state. This is essentially 2692 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2693 * a retransmitted skb is permantly marked, we can apply such an 2694 * operation even if F-RTO was not used. 2695 */ 2696 if ((flag & FLAG_ORIG_SACK_ACKED) && 2697 tcp_try_undo_loss(sk, tp->undo_marker)) 2698 return; 2699 2700 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2701 if (after(tp->snd_nxt, tp->high_seq)) { 2702 if (flag & FLAG_DATA_SACKED || is_dupack) 2703 tp->frto = 0; /* Step 3.a. loss was real */ 2704 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2705 tp->high_seq = tp->snd_nxt; 2706 /* Step 2.b. Try send new data (but deferred until cwnd 2707 * is updated in tcp_ack()). Otherwise fall back to 2708 * the conventional recovery. 2709 */ 2710 if (!tcp_write_queue_empty(sk) && 2711 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2712 *rexmit = REXMIT_NEW; 2713 return; 2714 } 2715 tp->frto = 0; 2716 } 2717 } 2718 2719 if (recovered) { 2720 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2721 tcp_try_undo_recovery(sk); 2722 return; 2723 } 2724 if (tcp_is_reno(tp)) { 2725 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2726 * delivered. Lower inflight to clock out (re)tranmissions. 2727 */ 2728 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2729 tcp_add_reno_sack(sk); 2730 else if (flag & FLAG_SND_UNA_ADVANCED) 2731 tcp_reset_reno_sack(tp); 2732 } 2733 *rexmit = REXMIT_LOST; 2734 } 2735 2736 /* Undo during fast recovery after partial ACK. */ 2737 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2738 { 2739 struct tcp_sock *tp = tcp_sk(sk); 2740 2741 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2742 /* Plain luck! Hole if filled with delayed 2743 * packet, rather than with a retransmit. 2744 */ 2745 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2746 2747 /* We are getting evidence that the reordering degree is higher 2748 * than we realized. If there are no retransmits out then we 2749 * can undo. Otherwise we clock out new packets but do not 2750 * mark more packets lost or retransmit more. 2751 */ 2752 if (tp->retrans_out) 2753 return true; 2754 2755 if (!tcp_any_retrans_done(sk)) 2756 tp->retrans_stamp = 0; 2757 2758 DBGUNDO(sk, "partial recovery"); 2759 tcp_undo_cwnd_reduction(sk, true); 2760 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2761 tcp_try_keep_open(sk); 2762 return true; 2763 } 2764 return false; 2765 } 2766 2767 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2768 { 2769 struct tcp_sock *tp = tcp_sk(sk); 2770 2771 /* Use RACK to detect loss */ 2772 if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2773 u32 prior_retrans = tp->retrans_out; 2774 2775 tcp_rack_mark_lost(sk); 2776 if (prior_retrans > tp->retrans_out) 2777 *ack_flag |= FLAG_LOST_RETRANS; 2778 } 2779 } 2780 2781 /* Process an event, which can update packets-in-flight not trivially. 2782 * Main goal of this function is to calculate new estimate for left_out, 2783 * taking into account both packets sitting in receiver's buffer and 2784 * packets lost by network. 2785 * 2786 * Besides that it updates the congestion state when packet loss or ECN 2787 * is detected. But it does not reduce the cwnd, it is done by the 2788 * congestion control later. 2789 * 2790 * It does _not_ decide what to send, it is made in function 2791 * tcp_xmit_retransmit_queue(). 2792 */ 2793 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2794 bool is_dupack, int *ack_flag, int *rexmit) 2795 { 2796 struct inet_connection_sock *icsk = inet_csk(sk); 2797 struct tcp_sock *tp = tcp_sk(sk); 2798 int fast_rexmit = 0, flag = *ack_flag; 2799 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2800 (tcp_fackets_out(tp) > tp->reordering)); 2801 2802 if (!tp->packets_out && tp->sacked_out) 2803 tp->sacked_out = 0; 2804 if (!tp->sacked_out && tp->fackets_out) 2805 tp->fackets_out = 0; 2806 2807 /* Now state machine starts. 2808 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2809 if (flag & FLAG_ECE) 2810 tp->prior_ssthresh = 0; 2811 2812 /* B. In all the states check for reneging SACKs. */ 2813 if (tcp_check_sack_reneging(sk, flag)) 2814 return; 2815 2816 /* C. Check consistency of the current state. */ 2817 tcp_verify_left_out(tp); 2818 2819 /* D. Check state exit conditions. State can be terminated 2820 * when high_seq is ACKed. */ 2821 if (icsk->icsk_ca_state == TCP_CA_Open) { 2822 WARN_ON(tp->retrans_out != 0); 2823 tp->retrans_stamp = 0; 2824 } else if (!before(tp->snd_una, tp->high_seq)) { 2825 switch (icsk->icsk_ca_state) { 2826 case TCP_CA_CWR: 2827 /* CWR is to be held something *above* high_seq 2828 * is ACKed for CWR bit to reach receiver. */ 2829 if (tp->snd_una != tp->high_seq) { 2830 tcp_end_cwnd_reduction(sk); 2831 tcp_set_ca_state(sk, TCP_CA_Open); 2832 } 2833 break; 2834 2835 case TCP_CA_Recovery: 2836 if (tcp_is_reno(tp)) 2837 tcp_reset_reno_sack(tp); 2838 if (tcp_try_undo_recovery(sk)) 2839 return; 2840 tcp_end_cwnd_reduction(sk); 2841 break; 2842 } 2843 } 2844 2845 /* E. Process state. */ 2846 switch (icsk->icsk_ca_state) { 2847 case TCP_CA_Recovery: 2848 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2849 if (tcp_is_reno(tp) && is_dupack) 2850 tcp_add_reno_sack(sk); 2851 } else { 2852 if (tcp_try_undo_partial(sk, acked)) 2853 return; 2854 /* Partial ACK arrived. Force fast retransmit. */ 2855 do_lost = tcp_is_reno(tp) || 2856 tcp_fackets_out(tp) > tp->reordering; 2857 } 2858 if (tcp_try_undo_dsack(sk)) { 2859 tcp_try_keep_open(sk); 2860 return; 2861 } 2862 tcp_rack_identify_loss(sk, ack_flag); 2863 break; 2864 case TCP_CA_Loss: 2865 tcp_process_loss(sk, flag, is_dupack, rexmit); 2866 tcp_rack_identify_loss(sk, ack_flag); 2867 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2868 (*ack_flag & FLAG_LOST_RETRANS))) 2869 return; 2870 /* Change state if cwnd is undone or retransmits are lost */ 2871 /* fall through */ 2872 default: 2873 if (tcp_is_reno(tp)) { 2874 if (flag & FLAG_SND_UNA_ADVANCED) 2875 tcp_reset_reno_sack(tp); 2876 if (is_dupack) 2877 tcp_add_reno_sack(sk); 2878 } 2879 2880 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2881 tcp_try_undo_dsack(sk); 2882 2883 tcp_rack_identify_loss(sk, ack_flag); 2884 if (!tcp_time_to_recover(sk, flag)) { 2885 tcp_try_to_open(sk, flag); 2886 return; 2887 } 2888 2889 /* MTU probe failure: don't reduce cwnd */ 2890 if (icsk->icsk_ca_state < TCP_CA_CWR && 2891 icsk->icsk_mtup.probe_size && 2892 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2893 tcp_mtup_probe_failed(sk); 2894 /* Restores the reduction we did in tcp_mtup_probe() */ 2895 tp->snd_cwnd++; 2896 tcp_simple_retransmit(sk); 2897 return; 2898 } 2899 2900 /* Otherwise enter Recovery state */ 2901 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2902 fast_rexmit = 1; 2903 } 2904 2905 if (do_lost) 2906 tcp_update_scoreboard(sk, fast_rexmit); 2907 *rexmit = REXMIT_LOST; 2908 } 2909 2910 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2911 { 2912 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2913 struct tcp_sock *tp = tcp_sk(sk); 2914 2915 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2916 rtt_us ? : jiffies_to_usecs(1)); 2917 } 2918 2919 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2920 long seq_rtt_us, long sack_rtt_us, 2921 long ca_rtt_us, struct rate_sample *rs) 2922 { 2923 const struct tcp_sock *tp = tcp_sk(sk); 2924 2925 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2926 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2927 * Karn's algorithm forbids taking RTT if some retransmitted data 2928 * is acked (RFC6298). 2929 */ 2930 if (seq_rtt_us < 0) 2931 seq_rtt_us = sack_rtt_us; 2932 2933 /* RTTM Rule: A TSecr value received in a segment is used to 2934 * update the averaged RTT measurement only if the segment 2935 * acknowledges some new data, i.e., only if it advances the 2936 * left edge of the send window. 2937 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2938 */ 2939 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2940 flag & FLAG_ACKED) { 2941 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2942 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2943 2944 seq_rtt_us = ca_rtt_us = delta_us; 2945 } 2946 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2947 if (seq_rtt_us < 0) 2948 return false; 2949 2950 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2951 * always taken together with ACK, SACK, or TS-opts. Any negative 2952 * values will be skipped with the seq_rtt_us < 0 check above. 2953 */ 2954 tcp_update_rtt_min(sk, ca_rtt_us); 2955 tcp_rtt_estimator(sk, seq_rtt_us); 2956 tcp_set_rto(sk); 2957 2958 /* RFC6298: only reset backoff on valid RTT measurement. */ 2959 inet_csk(sk)->icsk_backoff = 0; 2960 return true; 2961 } 2962 2963 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2964 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2965 { 2966 struct rate_sample rs; 2967 long rtt_us = -1L; 2968 2969 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2970 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2971 2972 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2973 } 2974 2975 2976 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2977 { 2978 const struct inet_connection_sock *icsk = inet_csk(sk); 2979 2980 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2981 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2982 } 2983 2984 /* Restart timer after forward progress on connection. 2985 * RFC2988 recommends to restart timer to now+rto. 2986 */ 2987 void tcp_rearm_rto(struct sock *sk) 2988 { 2989 const struct inet_connection_sock *icsk = inet_csk(sk); 2990 struct tcp_sock *tp = tcp_sk(sk); 2991 2992 /* If the retrans timer is currently being used by Fast Open 2993 * for SYN-ACK retrans purpose, stay put. 2994 */ 2995 if (tp->fastopen_rsk) 2996 return; 2997 2998 if (!tp->packets_out) { 2999 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3000 } else { 3001 u32 rto = inet_csk(sk)->icsk_rto; 3002 /* Offset the time elapsed after installing regular RTO */ 3003 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3004 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3005 s64 delta_us = tcp_rto_delta_us(sk); 3006 /* delta_us may not be positive if the socket is locked 3007 * when the retrans timer fires and is rescheduled. 3008 */ 3009 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3010 } 3011 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3012 TCP_RTO_MAX); 3013 } 3014 } 3015 3016 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3017 static void tcp_set_xmit_timer(struct sock *sk) 3018 { 3019 if (!tcp_schedule_loss_probe(sk)) 3020 tcp_rearm_rto(sk); 3021 } 3022 3023 /* If we get here, the whole TSO packet has not been acked. */ 3024 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3025 { 3026 struct tcp_sock *tp = tcp_sk(sk); 3027 u32 packets_acked; 3028 3029 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3030 3031 packets_acked = tcp_skb_pcount(skb); 3032 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3033 return 0; 3034 packets_acked -= tcp_skb_pcount(skb); 3035 3036 if (packets_acked) { 3037 BUG_ON(tcp_skb_pcount(skb) == 0); 3038 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3039 } 3040 3041 return packets_acked; 3042 } 3043 3044 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3045 u32 prior_snd_una) 3046 { 3047 const struct skb_shared_info *shinfo; 3048 3049 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3050 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3051 return; 3052 3053 shinfo = skb_shinfo(skb); 3054 if (!before(shinfo->tskey, prior_snd_una) && 3055 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3056 tcp_skb_tsorted_save(skb) { 3057 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3058 } tcp_skb_tsorted_restore(skb); 3059 } 3060 } 3061 3062 /* Remove acknowledged frames from the retransmission queue. If our packet 3063 * is before the ack sequence we can discard it as it's confirmed to have 3064 * arrived at the other end. 3065 */ 3066 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3067 u32 prior_snd_una, int *acked, 3068 struct tcp_sacktag_state *sack) 3069 { 3070 const struct inet_connection_sock *icsk = inet_csk(sk); 3071 u64 first_ackt, last_ackt; 3072 struct tcp_sock *tp = tcp_sk(sk); 3073 u32 prior_sacked = tp->sacked_out; 3074 u32 reord = tp->packets_out; 3075 struct sk_buff *skb, *next; 3076 bool fully_acked = true; 3077 long sack_rtt_us = -1L; 3078 long seq_rtt_us = -1L; 3079 long ca_rtt_us = -1L; 3080 u32 pkts_acked = 0; 3081 u32 last_in_flight = 0; 3082 bool rtt_update; 3083 int flag = 0; 3084 3085 first_ackt = 0; 3086 3087 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3088 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3089 u8 sacked = scb->sacked; 3090 u32 acked_pcount; 3091 3092 tcp_ack_tstamp(sk, skb, prior_snd_una); 3093 3094 /* Determine how many packets and what bytes were acked, tso and else */ 3095 if (after(scb->end_seq, tp->snd_una)) { 3096 if (tcp_skb_pcount(skb) == 1 || 3097 !after(tp->snd_una, scb->seq)) 3098 break; 3099 3100 acked_pcount = tcp_tso_acked(sk, skb); 3101 if (!acked_pcount) 3102 break; 3103 fully_acked = false; 3104 } else { 3105 acked_pcount = tcp_skb_pcount(skb); 3106 } 3107 3108 if (unlikely(sacked & TCPCB_RETRANS)) { 3109 if (sacked & TCPCB_SACKED_RETRANS) 3110 tp->retrans_out -= acked_pcount; 3111 flag |= FLAG_RETRANS_DATA_ACKED; 3112 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3113 last_ackt = skb->skb_mstamp; 3114 WARN_ON_ONCE(last_ackt == 0); 3115 if (!first_ackt) 3116 first_ackt = last_ackt; 3117 3118 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3119 reord = min(pkts_acked, reord); 3120 if (!after(scb->end_seq, tp->high_seq)) 3121 flag |= FLAG_ORIG_SACK_ACKED; 3122 } 3123 3124 if (sacked & TCPCB_SACKED_ACKED) { 3125 tp->sacked_out -= acked_pcount; 3126 } else if (tcp_is_sack(tp)) { 3127 tp->delivered += acked_pcount; 3128 if (!tcp_skb_spurious_retrans(tp, skb)) 3129 tcp_rack_advance(tp, sacked, scb->end_seq, 3130 skb->skb_mstamp); 3131 } 3132 if (sacked & TCPCB_LOST) 3133 tp->lost_out -= acked_pcount; 3134 3135 tp->packets_out -= acked_pcount; 3136 pkts_acked += acked_pcount; 3137 tcp_rate_skb_delivered(sk, skb, sack->rate); 3138 3139 /* Initial outgoing SYN's get put onto the write_queue 3140 * just like anything else we transmit. It is not 3141 * true data, and if we misinform our callers that 3142 * this ACK acks real data, we will erroneously exit 3143 * connection startup slow start one packet too 3144 * quickly. This is severely frowned upon behavior. 3145 */ 3146 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3147 flag |= FLAG_DATA_ACKED; 3148 } else { 3149 flag |= FLAG_SYN_ACKED; 3150 tp->retrans_stamp = 0; 3151 } 3152 3153 if (!fully_acked) 3154 break; 3155 3156 next = skb_rb_next(skb); 3157 if (unlikely(skb == tp->retransmit_skb_hint)) 3158 tp->retransmit_skb_hint = NULL; 3159 if (unlikely(skb == tp->lost_skb_hint)) 3160 tp->lost_skb_hint = NULL; 3161 tcp_rtx_queue_unlink_and_free(skb, sk); 3162 } 3163 3164 if (!skb) 3165 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3166 3167 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3168 tp->snd_up = tp->snd_una; 3169 3170 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3171 flag |= FLAG_SACK_RENEGING; 3172 3173 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3174 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3175 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3176 } 3177 if (sack->first_sackt) { 3178 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3179 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3180 } 3181 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3182 ca_rtt_us, sack->rate); 3183 3184 if (flag & FLAG_ACKED) { 3185 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3186 if (unlikely(icsk->icsk_mtup.probe_size && 3187 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3188 tcp_mtup_probe_success(sk); 3189 } 3190 3191 if (tcp_is_reno(tp)) { 3192 tcp_remove_reno_sacks(sk, pkts_acked); 3193 } else { 3194 int delta; 3195 3196 /* Non-retransmitted hole got filled? That's reordering */ 3197 if (reord < prior_fackets && reord <= tp->fackets_out) 3198 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3199 3200 delta = tcp_is_fack(tp) ? pkts_acked : 3201 prior_sacked - tp->sacked_out; 3202 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3203 } 3204 3205 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3206 3207 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3208 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3209 /* Do not re-arm RTO if the sack RTT is measured from data sent 3210 * after when the head was last (re)transmitted. Otherwise the 3211 * timeout may continue to extend in loss recovery. 3212 */ 3213 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3214 } 3215 3216 if (icsk->icsk_ca_ops->pkts_acked) { 3217 struct ack_sample sample = { .pkts_acked = pkts_acked, 3218 .rtt_us = sack->rate->rtt_us, 3219 .in_flight = last_in_flight }; 3220 3221 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3222 } 3223 3224 #if FASTRETRANS_DEBUG > 0 3225 WARN_ON((int)tp->sacked_out < 0); 3226 WARN_ON((int)tp->lost_out < 0); 3227 WARN_ON((int)tp->retrans_out < 0); 3228 if (!tp->packets_out && tcp_is_sack(tp)) { 3229 icsk = inet_csk(sk); 3230 if (tp->lost_out) { 3231 pr_debug("Leak l=%u %d\n", 3232 tp->lost_out, icsk->icsk_ca_state); 3233 tp->lost_out = 0; 3234 } 3235 if (tp->sacked_out) { 3236 pr_debug("Leak s=%u %d\n", 3237 tp->sacked_out, icsk->icsk_ca_state); 3238 tp->sacked_out = 0; 3239 } 3240 if (tp->retrans_out) { 3241 pr_debug("Leak r=%u %d\n", 3242 tp->retrans_out, icsk->icsk_ca_state); 3243 tp->retrans_out = 0; 3244 } 3245 } 3246 #endif 3247 *acked = pkts_acked; 3248 return flag; 3249 } 3250 3251 static void tcp_ack_probe(struct sock *sk) 3252 { 3253 struct inet_connection_sock *icsk = inet_csk(sk); 3254 struct sk_buff *head = tcp_send_head(sk); 3255 const struct tcp_sock *tp = tcp_sk(sk); 3256 3257 /* Was it a usable window open? */ 3258 if (!head) 3259 return; 3260 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3261 icsk->icsk_backoff = 0; 3262 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3263 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3264 * This function is not for random using! 3265 */ 3266 } else { 3267 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3268 3269 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3270 when, TCP_RTO_MAX); 3271 } 3272 } 3273 3274 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3275 { 3276 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3277 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3278 } 3279 3280 /* Decide wheather to run the increase function of congestion control. */ 3281 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3282 { 3283 /* If reordering is high then always grow cwnd whenever data is 3284 * delivered regardless of its ordering. Otherwise stay conservative 3285 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3286 * new SACK or ECE mark may first advance cwnd here and later reduce 3287 * cwnd in tcp_fastretrans_alert() based on more states. 3288 */ 3289 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3290 return flag & FLAG_FORWARD_PROGRESS; 3291 3292 return flag & FLAG_DATA_ACKED; 3293 } 3294 3295 /* The "ultimate" congestion control function that aims to replace the rigid 3296 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3297 * It's called toward the end of processing an ACK with precise rate 3298 * information. All transmission or retransmission are delayed afterwards. 3299 */ 3300 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3301 int flag, const struct rate_sample *rs) 3302 { 3303 const struct inet_connection_sock *icsk = inet_csk(sk); 3304 3305 if (icsk->icsk_ca_ops->cong_control) { 3306 icsk->icsk_ca_ops->cong_control(sk, rs); 3307 return; 3308 } 3309 3310 if (tcp_in_cwnd_reduction(sk)) { 3311 /* Reduce cwnd if state mandates */ 3312 tcp_cwnd_reduction(sk, acked_sacked, flag); 3313 } else if (tcp_may_raise_cwnd(sk, flag)) { 3314 /* Advance cwnd if state allows */ 3315 tcp_cong_avoid(sk, ack, acked_sacked); 3316 } 3317 tcp_update_pacing_rate(sk); 3318 } 3319 3320 /* Check that window update is acceptable. 3321 * The function assumes that snd_una<=ack<=snd_next. 3322 */ 3323 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3324 const u32 ack, const u32 ack_seq, 3325 const u32 nwin) 3326 { 3327 return after(ack, tp->snd_una) || 3328 after(ack_seq, tp->snd_wl1) || 3329 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3330 } 3331 3332 /* If we update tp->snd_una, also update tp->bytes_acked */ 3333 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3334 { 3335 u32 delta = ack - tp->snd_una; 3336 3337 sock_owned_by_me((struct sock *)tp); 3338 tp->bytes_acked += delta; 3339 tp->snd_una = ack; 3340 } 3341 3342 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3343 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3344 { 3345 u32 delta = seq - tp->rcv_nxt; 3346 3347 sock_owned_by_me((struct sock *)tp); 3348 tp->bytes_received += delta; 3349 tp->rcv_nxt = seq; 3350 } 3351 3352 /* Update our send window. 3353 * 3354 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3355 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3356 */ 3357 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3358 u32 ack_seq) 3359 { 3360 struct tcp_sock *tp = tcp_sk(sk); 3361 int flag = 0; 3362 u32 nwin = ntohs(tcp_hdr(skb)->window); 3363 3364 if (likely(!tcp_hdr(skb)->syn)) 3365 nwin <<= tp->rx_opt.snd_wscale; 3366 3367 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3368 flag |= FLAG_WIN_UPDATE; 3369 tcp_update_wl(tp, ack_seq); 3370 3371 if (tp->snd_wnd != nwin) { 3372 tp->snd_wnd = nwin; 3373 3374 /* Note, it is the only place, where 3375 * fast path is recovered for sending TCP. 3376 */ 3377 tp->pred_flags = 0; 3378 tcp_fast_path_check(sk); 3379 3380 if (!tcp_write_queue_empty(sk)) 3381 tcp_slow_start_after_idle_check(sk); 3382 3383 if (nwin > tp->max_window) { 3384 tp->max_window = nwin; 3385 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3386 } 3387 } 3388 } 3389 3390 tcp_snd_una_update(tp, ack); 3391 3392 return flag; 3393 } 3394 3395 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3396 u32 *last_oow_ack_time) 3397 { 3398 if (*last_oow_ack_time) { 3399 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3400 3401 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3402 NET_INC_STATS(net, mib_idx); 3403 return true; /* rate-limited: don't send yet! */ 3404 } 3405 } 3406 3407 *last_oow_ack_time = tcp_jiffies32; 3408 3409 return false; /* not rate-limited: go ahead, send dupack now! */ 3410 } 3411 3412 /* Return true if we're currently rate-limiting out-of-window ACKs and 3413 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3414 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3415 * attacks that send repeated SYNs or ACKs for the same connection. To 3416 * do this, we do not send a duplicate SYNACK or ACK if the remote 3417 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3418 */ 3419 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3420 int mib_idx, u32 *last_oow_ack_time) 3421 { 3422 /* Data packets without SYNs are not likely part of an ACK loop. */ 3423 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3424 !tcp_hdr(skb)->syn) 3425 return false; 3426 3427 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3428 } 3429 3430 /* RFC 5961 7 [ACK Throttling] */ 3431 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3432 { 3433 /* unprotected vars, we dont care of overwrites */ 3434 static u32 challenge_timestamp; 3435 static unsigned int challenge_count; 3436 struct tcp_sock *tp = tcp_sk(sk); 3437 struct net *net = sock_net(sk); 3438 u32 count, now; 3439 3440 /* First check our per-socket dupack rate limit. */ 3441 if (__tcp_oow_rate_limited(net, 3442 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3443 &tp->last_oow_ack_time)) 3444 return; 3445 3446 /* Then check host-wide RFC 5961 rate limit. */ 3447 now = jiffies / HZ; 3448 if (now != challenge_timestamp) { 3449 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3450 u32 half = (ack_limit + 1) >> 1; 3451 3452 challenge_timestamp = now; 3453 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3454 } 3455 count = READ_ONCE(challenge_count); 3456 if (count > 0) { 3457 WRITE_ONCE(challenge_count, count - 1); 3458 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3459 tcp_send_ack(sk); 3460 } 3461 } 3462 3463 static void tcp_store_ts_recent(struct tcp_sock *tp) 3464 { 3465 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3466 tp->rx_opt.ts_recent_stamp = get_seconds(); 3467 } 3468 3469 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3470 { 3471 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3472 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3473 * extra check below makes sure this can only happen 3474 * for pure ACK frames. -DaveM 3475 * 3476 * Not only, also it occurs for expired timestamps. 3477 */ 3478 3479 if (tcp_paws_check(&tp->rx_opt, 0)) 3480 tcp_store_ts_recent(tp); 3481 } 3482 } 3483 3484 /* This routine deals with acks during a TLP episode. 3485 * We mark the end of a TLP episode on receiving TLP dupack or when 3486 * ack is after tlp_high_seq. 3487 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3488 */ 3489 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3490 { 3491 struct tcp_sock *tp = tcp_sk(sk); 3492 3493 if (before(ack, tp->tlp_high_seq)) 3494 return; 3495 3496 if (flag & FLAG_DSACKING_ACK) { 3497 /* This DSACK means original and TLP probe arrived; no loss */ 3498 tp->tlp_high_seq = 0; 3499 } else if (after(ack, tp->tlp_high_seq)) { 3500 /* ACK advances: there was a loss, so reduce cwnd. Reset 3501 * tlp_high_seq in tcp_init_cwnd_reduction() 3502 */ 3503 tcp_init_cwnd_reduction(sk); 3504 tcp_set_ca_state(sk, TCP_CA_CWR); 3505 tcp_end_cwnd_reduction(sk); 3506 tcp_try_keep_open(sk); 3507 NET_INC_STATS(sock_net(sk), 3508 LINUX_MIB_TCPLOSSPROBERECOVERY); 3509 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3510 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3511 /* Pure dupack: original and TLP probe arrived; no loss */ 3512 tp->tlp_high_seq = 0; 3513 } 3514 } 3515 3516 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3517 { 3518 const struct inet_connection_sock *icsk = inet_csk(sk); 3519 3520 if (icsk->icsk_ca_ops->in_ack_event) 3521 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3522 } 3523 3524 /* Congestion control has updated the cwnd already. So if we're in 3525 * loss recovery then now we do any new sends (for FRTO) or 3526 * retransmits (for CA_Loss or CA_recovery) that make sense. 3527 */ 3528 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3529 { 3530 struct tcp_sock *tp = tcp_sk(sk); 3531 3532 if (rexmit == REXMIT_NONE) 3533 return; 3534 3535 if (unlikely(rexmit == 2)) { 3536 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3537 TCP_NAGLE_OFF); 3538 if (after(tp->snd_nxt, tp->high_seq)) 3539 return; 3540 tp->frto = 0; 3541 } 3542 tcp_xmit_retransmit_queue(sk); 3543 } 3544 3545 /* This routine deals with incoming acks, but not outgoing ones. */ 3546 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3547 { 3548 struct inet_connection_sock *icsk = inet_csk(sk); 3549 struct tcp_sock *tp = tcp_sk(sk); 3550 struct tcp_sacktag_state sack_state; 3551 struct rate_sample rs = { .prior_delivered = 0 }; 3552 u32 prior_snd_una = tp->snd_una; 3553 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3554 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3555 bool is_dupack = false; 3556 u32 prior_fackets; 3557 int prior_packets = tp->packets_out; 3558 u32 delivered = tp->delivered; 3559 u32 lost = tp->lost; 3560 int acked = 0; /* Number of packets newly acked */ 3561 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3562 3563 sack_state.first_sackt = 0; 3564 sack_state.rate = &rs; 3565 3566 /* We very likely will need to access rtx queue. */ 3567 prefetch(sk->tcp_rtx_queue.rb_node); 3568 3569 /* If the ack is older than previous acks 3570 * then we can probably ignore it. 3571 */ 3572 if (before(ack, prior_snd_una)) { 3573 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3574 if (before(ack, prior_snd_una - tp->max_window)) { 3575 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3576 tcp_send_challenge_ack(sk, skb); 3577 return -1; 3578 } 3579 goto old_ack; 3580 } 3581 3582 /* If the ack includes data we haven't sent yet, discard 3583 * this segment (RFC793 Section 3.9). 3584 */ 3585 if (after(ack, tp->snd_nxt)) 3586 goto invalid_ack; 3587 3588 if (after(ack, prior_snd_una)) { 3589 flag |= FLAG_SND_UNA_ADVANCED; 3590 icsk->icsk_retransmits = 0; 3591 } 3592 3593 prior_fackets = tp->fackets_out; 3594 rs.prior_in_flight = tcp_packets_in_flight(tp); 3595 3596 /* ts_recent update must be made after we are sure that the packet 3597 * is in window. 3598 */ 3599 if (flag & FLAG_UPDATE_TS_RECENT) 3600 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3601 3602 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3603 /* Window is constant, pure forward advance. 3604 * No more checks are required. 3605 * Note, we use the fact that SND.UNA>=SND.WL2. 3606 */ 3607 tcp_update_wl(tp, ack_seq); 3608 tcp_snd_una_update(tp, ack); 3609 flag |= FLAG_WIN_UPDATE; 3610 3611 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3612 3613 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3614 } else { 3615 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3616 3617 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3618 flag |= FLAG_DATA; 3619 else 3620 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3621 3622 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3623 3624 if (TCP_SKB_CB(skb)->sacked) 3625 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3626 &sack_state); 3627 3628 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3629 flag |= FLAG_ECE; 3630 ack_ev_flags |= CA_ACK_ECE; 3631 } 3632 3633 if (flag & FLAG_WIN_UPDATE) 3634 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3635 3636 tcp_in_ack_event(sk, ack_ev_flags); 3637 } 3638 3639 /* We passed data and got it acked, remove any soft error 3640 * log. Something worked... 3641 */ 3642 sk->sk_err_soft = 0; 3643 icsk->icsk_probes_out = 0; 3644 tp->rcv_tstamp = tcp_jiffies32; 3645 if (!prior_packets) 3646 goto no_queue; 3647 3648 /* See if we can take anything off of the retransmit queue. */ 3649 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3650 &sack_state); 3651 3652 tcp_rack_update_reo_wnd(sk, &rs); 3653 3654 if (tp->tlp_high_seq) 3655 tcp_process_tlp_ack(sk, ack, flag); 3656 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3657 if (flag & FLAG_SET_XMIT_TIMER) 3658 tcp_set_xmit_timer(sk); 3659 3660 if (tcp_ack_is_dubious(sk, flag)) { 3661 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3662 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3663 } 3664 3665 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3666 sk_dst_confirm(sk); 3667 3668 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3669 lost = tp->lost - lost; /* freshly marked lost */ 3670 tcp_rate_gen(sk, delivered, lost, sack_state.rate); 3671 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3672 tcp_xmit_recovery(sk, rexmit); 3673 return 1; 3674 3675 no_queue: 3676 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3677 if (flag & FLAG_DSACKING_ACK) 3678 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3679 /* If this ack opens up a zero window, clear backoff. It was 3680 * being used to time the probes, and is probably far higher than 3681 * it needs to be for normal retransmission. 3682 */ 3683 tcp_ack_probe(sk); 3684 3685 if (tp->tlp_high_seq) 3686 tcp_process_tlp_ack(sk, ack, flag); 3687 return 1; 3688 3689 invalid_ack: 3690 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3691 return -1; 3692 3693 old_ack: 3694 /* If data was SACKed, tag it and see if we should send more data. 3695 * If data was DSACKed, see if we can undo a cwnd reduction. 3696 */ 3697 if (TCP_SKB_CB(skb)->sacked) { 3698 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3699 &sack_state); 3700 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3701 tcp_xmit_recovery(sk, rexmit); 3702 } 3703 3704 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3705 return 0; 3706 } 3707 3708 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3709 bool syn, struct tcp_fastopen_cookie *foc, 3710 bool exp_opt) 3711 { 3712 /* Valid only in SYN or SYN-ACK with an even length. */ 3713 if (!foc || !syn || len < 0 || (len & 1)) 3714 return; 3715 3716 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3717 len <= TCP_FASTOPEN_COOKIE_MAX) 3718 memcpy(foc->val, cookie, len); 3719 else if (len != 0) 3720 len = -1; 3721 foc->len = len; 3722 foc->exp = exp_opt; 3723 } 3724 3725 static void smc_parse_options(const struct tcphdr *th, 3726 struct tcp_options_received *opt_rx, 3727 const unsigned char *ptr, 3728 int opsize) 3729 { 3730 #if IS_ENABLED(CONFIG_SMC) 3731 if (static_branch_unlikely(&tcp_have_smc)) { 3732 if (th->syn && !(opsize & 1) && 3733 opsize >= TCPOLEN_EXP_SMC_BASE && 3734 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3735 opt_rx->smc_ok = 1; 3736 } 3737 #endif 3738 } 3739 3740 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3741 * But, this can also be called on packets in the established flow when 3742 * the fast version below fails. 3743 */ 3744 void tcp_parse_options(const struct net *net, 3745 const struct sk_buff *skb, 3746 struct tcp_options_received *opt_rx, int estab, 3747 struct tcp_fastopen_cookie *foc) 3748 { 3749 const unsigned char *ptr; 3750 const struct tcphdr *th = tcp_hdr(skb); 3751 int length = (th->doff * 4) - sizeof(struct tcphdr); 3752 3753 ptr = (const unsigned char *)(th + 1); 3754 opt_rx->saw_tstamp = 0; 3755 3756 while (length > 0) { 3757 int opcode = *ptr++; 3758 int opsize; 3759 3760 switch (opcode) { 3761 case TCPOPT_EOL: 3762 return; 3763 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3764 length--; 3765 continue; 3766 default: 3767 opsize = *ptr++; 3768 if (opsize < 2) /* "silly options" */ 3769 return; 3770 if (opsize > length) 3771 return; /* don't parse partial options */ 3772 switch (opcode) { 3773 case TCPOPT_MSS: 3774 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3775 u16 in_mss = get_unaligned_be16(ptr); 3776 if (in_mss) { 3777 if (opt_rx->user_mss && 3778 opt_rx->user_mss < in_mss) 3779 in_mss = opt_rx->user_mss; 3780 opt_rx->mss_clamp = in_mss; 3781 } 3782 } 3783 break; 3784 case TCPOPT_WINDOW: 3785 if (opsize == TCPOLEN_WINDOW && th->syn && 3786 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3787 __u8 snd_wscale = *(__u8 *)ptr; 3788 opt_rx->wscale_ok = 1; 3789 if (snd_wscale > TCP_MAX_WSCALE) { 3790 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3791 __func__, 3792 snd_wscale, 3793 TCP_MAX_WSCALE); 3794 snd_wscale = TCP_MAX_WSCALE; 3795 } 3796 opt_rx->snd_wscale = snd_wscale; 3797 } 3798 break; 3799 case TCPOPT_TIMESTAMP: 3800 if ((opsize == TCPOLEN_TIMESTAMP) && 3801 ((estab && opt_rx->tstamp_ok) || 3802 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3803 opt_rx->saw_tstamp = 1; 3804 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3805 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3806 } 3807 break; 3808 case TCPOPT_SACK_PERM: 3809 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3810 !estab && net->ipv4.sysctl_tcp_sack) { 3811 opt_rx->sack_ok = TCP_SACK_SEEN; 3812 tcp_sack_reset(opt_rx); 3813 } 3814 break; 3815 3816 case TCPOPT_SACK: 3817 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3818 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3819 opt_rx->sack_ok) { 3820 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3821 } 3822 break; 3823 #ifdef CONFIG_TCP_MD5SIG 3824 case TCPOPT_MD5SIG: 3825 /* 3826 * The MD5 Hash has already been 3827 * checked (see tcp_v{4,6}_do_rcv()). 3828 */ 3829 break; 3830 #endif 3831 case TCPOPT_FASTOPEN: 3832 tcp_parse_fastopen_option( 3833 opsize - TCPOLEN_FASTOPEN_BASE, 3834 ptr, th->syn, foc, false); 3835 break; 3836 3837 case TCPOPT_EXP: 3838 /* Fast Open option shares code 254 using a 3839 * 16 bits magic number. 3840 */ 3841 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3842 get_unaligned_be16(ptr) == 3843 TCPOPT_FASTOPEN_MAGIC) 3844 tcp_parse_fastopen_option(opsize - 3845 TCPOLEN_EXP_FASTOPEN_BASE, 3846 ptr + 2, th->syn, foc, true); 3847 else 3848 smc_parse_options(th, opt_rx, ptr, 3849 opsize); 3850 break; 3851 3852 } 3853 ptr += opsize-2; 3854 length -= opsize; 3855 } 3856 } 3857 } 3858 EXPORT_SYMBOL(tcp_parse_options); 3859 3860 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3861 { 3862 const __be32 *ptr = (const __be32 *)(th + 1); 3863 3864 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3865 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3866 tp->rx_opt.saw_tstamp = 1; 3867 ++ptr; 3868 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3869 ++ptr; 3870 if (*ptr) 3871 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3872 else 3873 tp->rx_opt.rcv_tsecr = 0; 3874 return true; 3875 } 3876 return false; 3877 } 3878 3879 /* Fast parse options. This hopes to only see timestamps. 3880 * If it is wrong it falls back on tcp_parse_options(). 3881 */ 3882 static bool tcp_fast_parse_options(const struct net *net, 3883 const struct sk_buff *skb, 3884 const struct tcphdr *th, struct tcp_sock *tp) 3885 { 3886 /* In the spirit of fast parsing, compare doff directly to constant 3887 * values. Because equality is used, short doff can be ignored here. 3888 */ 3889 if (th->doff == (sizeof(*th) / 4)) { 3890 tp->rx_opt.saw_tstamp = 0; 3891 return false; 3892 } else if (tp->rx_opt.tstamp_ok && 3893 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3894 if (tcp_parse_aligned_timestamp(tp, th)) 3895 return true; 3896 } 3897 3898 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3899 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3900 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3901 3902 return true; 3903 } 3904 3905 #ifdef CONFIG_TCP_MD5SIG 3906 /* 3907 * Parse MD5 Signature option 3908 */ 3909 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3910 { 3911 int length = (th->doff << 2) - sizeof(*th); 3912 const u8 *ptr = (const u8 *)(th + 1); 3913 3914 /* If the TCP option is too short, we can short cut */ 3915 if (length < TCPOLEN_MD5SIG) 3916 return NULL; 3917 3918 while (length > 0) { 3919 int opcode = *ptr++; 3920 int opsize; 3921 3922 switch (opcode) { 3923 case TCPOPT_EOL: 3924 return NULL; 3925 case TCPOPT_NOP: 3926 length--; 3927 continue; 3928 default: 3929 opsize = *ptr++; 3930 if (opsize < 2 || opsize > length) 3931 return NULL; 3932 if (opcode == TCPOPT_MD5SIG) 3933 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3934 } 3935 ptr += opsize - 2; 3936 length -= opsize; 3937 } 3938 return NULL; 3939 } 3940 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3941 #endif 3942 3943 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3944 * 3945 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3946 * it can pass through stack. So, the following predicate verifies that 3947 * this segment is not used for anything but congestion avoidance or 3948 * fast retransmit. Moreover, we even are able to eliminate most of such 3949 * second order effects, if we apply some small "replay" window (~RTO) 3950 * to timestamp space. 3951 * 3952 * All these measures still do not guarantee that we reject wrapped ACKs 3953 * on networks with high bandwidth, when sequence space is recycled fastly, 3954 * but it guarantees that such events will be very rare and do not affect 3955 * connection seriously. This doesn't look nice, but alas, PAWS is really 3956 * buggy extension. 3957 * 3958 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3959 * states that events when retransmit arrives after original data are rare. 3960 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3961 * the biggest problem on large power networks even with minor reordering. 3962 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3963 * up to bandwidth of 18Gigabit/sec. 8) ] 3964 */ 3965 3966 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3967 { 3968 const struct tcp_sock *tp = tcp_sk(sk); 3969 const struct tcphdr *th = tcp_hdr(skb); 3970 u32 seq = TCP_SKB_CB(skb)->seq; 3971 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3972 3973 return (/* 1. Pure ACK with correct sequence number. */ 3974 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3975 3976 /* 2. ... and duplicate ACK. */ 3977 ack == tp->snd_una && 3978 3979 /* 3. ... and does not update window. */ 3980 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3981 3982 /* 4. ... and sits in replay window. */ 3983 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3984 } 3985 3986 static inline bool tcp_paws_discard(const struct sock *sk, 3987 const struct sk_buff *skb) 3988 { 3989 const struct tcp_sock *tp = tcp_sk(sk); 3990 3991 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3992 !tcp_disordered_ack(sk, skb); 3993 } 3994 3995 /* Check segment sequence number for validity. 3996 * 3997 * Segment controls are considered valid, if the segment 3998 * fits to the window after truncation to the window. Acceptability 3999 * of data (and SYN, FIN, of course) is checked separately. 4000 * See tcp_data_queue(), for example. 4001 * 4002 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4003 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4004 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4005 * (borrowed from freebsd) 4006 */ 4007 4008 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4009 { 4010 return !before(end_seq, tp->rcv_wup) && 4011 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4012 } 4013 4014 /* When we get a reset we do this. */ 4015 void tcp_reset(struct sock *sk) 4016 { 4017 trace_tcp_receive_reset(sk); 4018 4019 /* We want the right error as BSD sees it (and indeed as we do). */ 4020 switch (sk->sk_state) { 4021 case TCP_SYN_SENT: 4022 sk->sk_err = ECONNREFUSED; 4023 break; 4024 case TCP_CLOSE_WAIT: 4025 sk->sk_err = EPIPE; 4026 break; 4027 case TCP_CLOSE: 4028 return; 4029 default: 4030 sk->sk_err = ECONNRESET; 4031 } 4032 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4033 smp_wmb(); 4034 4035 tcp_done(sk); 4036 4037 if (!sock_flag(sk, SOCK_DEAD)) 4038 sk->sk_error_report(sk); 4039 } 4040 4041 /* 4042 * Process the FIN bit. This now behaves as it is supposed to work 4043 * and the FIN takes effect when it is validly part of sequence 4044 * space. Not before when we get holes. 4045 * 4046 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4047 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4048 * TIME-WAIT) 4049 * 4050 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4051 * close and we go into CLOSING (and later onto TIME-WAIT) 4052 * 4053 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4054 */ 4055 void tcp_fin(struct sock *sk) 4056 { 4057 struct tcp_sock *tp = tcp_sk(sk); 4058 4059 inet_csk_schedule_ack(sk); 4060 4061 sk->sk_shutdown |= RCV_SHUTDOWN; 4062 sock_set_flag(sk, SOCK_DONE); 4063 4064 switch (sk->sk_state) { 4065 case TCP_SYN_RECV: 4066 case TCP_ESTABLISHED: 4067 /* Move to CLOSE_WAIT */ 4068 tcp_set_state(sk, TCP_CLOSE_WAIT); 4069 inet_csk(sk)->icsk_ack.pingpong = 1; 4070 break; 4071 4072 case TCP_CLOSE_WAIT: 4073 case TCP_CLOSING: 4074 /* Received a retransmission of the FIN, do 4075 * nothing. 4076 */ 4077 break; 4078 case TCP_LAST_ACK: 4079 /* RFC793: Remain in the LAST-ACK state. */ 4080 break; 4081 4082 case TCP_FIN_WAIT1: 4083 /* This case occurs when a simultaneous close 4084 * happens, we must ack the received FIN and 4085 * enter the CLOSING state. 4086 */ 4087 tcp_send_ack(sk); 4088 tcp_set_state(sk, TCP_CLOSING); 4089 break; 4090 case TCP_FIN_WAIT2: 4091 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4092 tcp_send_ack(sk); 4093 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4094 break; 4095 default: 4096 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4097 * cases we should never reach this piece of code. 4098 */ 4099 pr_err("%s: Impossible, sk->sk_state=%d\n", 4100 __func__, sk->sk_state); 4101 break; 4102 } 4103 4104 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4105 * Probably, we should reset in this case. For now drop them. 4106 */ 4107 skb_rbtree_purge(&tp->out_of_order_queue); 4108 if (tcp_is_sack(tp)) 4109 tcp_sack_reset(&tp->rx_opt); 4110 sk_mem_reclaim(sk); 4111 4112 if (!sock_flag(sk, SOCK_DEAD)) { 4113 sk->sk_state_change(sk); 4114 4115 /* Do not send POLL_HUP for half duplex close. */ 4116 if (sk->sk_shutdown == SHUTDOWN_MASK || 4117 sk->sk_state == TCP_CLOSE) 4118 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4119 else 4120 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4121 } 4122 } 4123 4124 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4125 u32 end_seq) 4126 { 4127 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4128 if (before(seq, sp->start_seq)) 4129 sp->start_seq = seq; 4130 if (after(end_seq, sp->end_seq)) 4131 sp->end_seq = end_seq; 4132 return true; 4133 } 4134 return false; 4135 } 4136 4137 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4138 { 4139 struct tcp_sock *tp = tcp_sk(sk); 4140 4141 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4142 int mib_idx; 4143 4144 if (before(seq, tp->rcv_nxt)) 4145 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4146 else 4147 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4148 4149 NET_INC_STATS(sock_net(sk), mib_idx); 4150 4151 tp->rx_opt.dsack = 1; 4152 tp->duplicate_sack[0].start_seq = seq; 4153 tp->duplicate_sack[0].end_seq = end_seq; 4154 } 4155 } 4156 4157 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4158 { 4159 struct tcp_sock *tp = tcp_sk(sk); 4160 4161 if (!tp->rx_opt.dsack) 4162 tcp_dsack_set(sk, seq, end_seq); 4163 else 4164 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4165 } 4166 4167 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4168 { 4169 struct tcp_sock *tp = tcp_sk(sk); 4170 4171 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4172 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4173 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4174 tcp_enter_quickack_mode(sk); 4175 4176 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4177 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4178 4179 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4180 end_seq = tp->rcv_nxt; 4181 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4182 } 4183 } 4184 4185 tcp_send_ack(sk); 4186 } 4187 4188 /* These routines update the SACK block as out-of-order packets arrive or 4189 * in-order packets close up the sequence space. 4190 */ 4191 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4192 { 4193 int this_sack; 4194 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4195 struct tcp_sack_block *swalk = sp + 1; 4196 4197 /* See if the recent change to the first SACK eats into 4198 * or hits the sequence space of other SACK blocks, if so coalesce. 4199 */ 4200 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4201 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4202 int i; 4203 4204 /* Zap SWALK, by moving every further SACK up by one slot. 4205 * Decrease num_sacks. 4206 */ 4207 tp->rx_opt.num_sacks--; 4208 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4209 sp[i] = sp[i + 1]; 4210 continue; 4211 } 4212 this_sack++, swalk++; 4213 } 4214 } 4215 4216 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4217 { 4218 struct tcp_sock *tp = tcp_sk(sk); 4219 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4220 int cur_sacks = tp->rx_opt.num_sacks; 4221 int this_sack; 4222 4223 if (!cur_sacks) 4224 goto new_sack; 4225 4226 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4227 if (tcp_sack_extend(sp, seq, end_seq)) { 4228 /* Rotate this_sack to the first one. */ 4229 for (; this_sack > 0; this_sack--, sp--) 4230 swap(*sp, *(sp - 1)); 4231 if (cur_sacks > 1) 4232 tcp_sack_maybe_coalesce(tp); 4233 return; 4234 } 4235 } 4236 4237 /* Could not find an adjacent existing SACK, build a new one, 4238 * put it at the front, and shift everyone else down. We 4239 * always know there is at least one SACK present already here. 4240 * 4241 * If the sack array is full, forget about the last one. 4242 */ 4243 if (this_sack >= TCP_NUM_SACKS) { 4244 this_sack--; 4245 tp->rx_opt.num_sacks--; 4246 sp--; 4247 } 4248 for (; this_sack > 0; this_sack--, sp--) 4249 *sp = *(sp - 1); 4250 4251 new_sack: 4252 /* Build the new head SACK, and we're done. */ 4253 sp->start_seq = seq; 4254 sp->end_seq = end_seq; 4255 tp->rx_opt.num_sacks++; 4256 } 4257 4258 /* RCV.NXT advances, some SACKs should be eaten. */ 4259 4260 static void tcp_sack_remove(struct tcp_sock *tp) 4261 { 4262 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4263 int num_sacks = tp->rx_opt.num_sacks; 4264 int this_sack; 4265 4266 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4267 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4268 tp->rx_opt.num_sacks = 0; 4269 return; 4270 } 4271 4272 for (this_sack = 0; this_sack < num_sacks;) { 4273 /* Check if the start of the sack is covered by RCV.NXT. */ 4274 if (!before(tp->rcv_nxt, sp->start_seq)) { 4275 int i; 4276 4277 /* RCV.NXT must cover all the block! */ 4278 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4279 4280 /* Zap this SACK, by moving forward any other SACKS. */ 4281 for (i = this_sack+1; i < num_sacks; i++) 4282 tp->selective_acks[i-1] = tp->selective_acks[i]; 4283 num_sacks--; 4284 continue; 4285 } 4286 this_sack++; 4287 sp++; 4288 } 4289 tp->rx_opt.num_sacks = num_sacks; 4290 } 4291 4292 /** 4293 * tcp_try_coalesce - try to merge skb to prior one 4294 * @sk: socket 4295 * @dest: destination queue 4296 * @to: prior buffer 4297 * @from: buffer to add in queue 4298 * @fragstolen: pointer to boolean 4299 * 4300 * Before queueing skb @from after @to, try to merge them 4301 * to reduce overall memory use and queue lengths, if cost is small. 4302 * Packets in ofo or receive queues can stay a long time. 4303 * Better try to coalesce them right now to avoid future collapses. 4304 * Returns true if caller should free @from instead of queueing it 4305 */ 4306 static bool tcp_try_coalesce(struct sock *sk, 4307 struct sk_buff *to, 4308 struct sk_buff *from, 4309 bool *fragstolen) 4310 { 4311 int delta; 4312 4313 *fragstolen = false; 4314 4315 /* Its possible this segment overlaps with prior segment in queue */ 4316 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4317 return false; 4318 4319 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4320 return false; 4321 4322 atomic_add(delta, &sk->sk_rmem_alloc); 4323 sk_mem_charge(sk, delta); 4324 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4325 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4326 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4327 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4328 4329 if (TCP_SKB_CB(from)->has_rxtstamp) { 4330 TCP_SKB_CB(to)->has_rxtstamp = true; 4331 to->tstamp = from->tstamp; 4332 } 4333 4334 return true; 4335 } 4336 4337 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4338 { 4339 sk_drops_add(sk, skb); 4340 __kfree_skb(skb); 4341 } 4342 4343 /* This one checks to see if we can put data from the 4344 * out_of_order queue into the receive_queue. 4345 */ 4346 static void tcp_ofo_queue(struct sock *sk) 4347 { 4348 struct tcp_sock *tp = tcp_sk(sk); 4349 __u32 dsack_high = tp->rcv_nxt; 4350 bool fin, fragstolen, eaten; 4351 struct sk_buff *skb, *tail; 4352 struct rb_node *p; 4353 4354 p = rb_first(&tp->out_of_order_queue); 4355 while (p) { 4356 skb = rb_to_skb(p); 4357 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4358 break; 4359 4360 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4361 __u32 dsack = dsack_high; 4362 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4363 dsack_high = TCP_SKB_CB(skb)->end_seq; 4364 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4365 } 4366 p = rb_next(p); 4367 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4368 4369 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4370 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4371 tcp_drop(sk, skb); 4372 continue; 4373 } 4374 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4375 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4376 TCP_SKB_CB(skb)->end_seq); 4377 4378 tail = skb_peek_tail(&sk->sk_receive_queue); 4379 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4380 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4381 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4382 if (!eaten) 4383 __skb_queue_tail(&sk->sk_receive_queue, skb); 4384 else 4385 kfree_skb_partial(skb, fragstolen); 4386 4387 if (unlikely(fin)) { 4388 tcp_fin(sk); 4389 /* tcp_fin() purges tp->out_of_order_queue, 4390 * so we must end this loop right now. 4391 */ 4392 break; 4393 } 4394 } 4395 } 4396 4397 static bool tcp_prune_ofo_queue(struct sock *sk); 4398 static int tcp_prune_queue(struct sock *sk); 4399 4400 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4401 unsigned int size) 4402 { 4403 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4404 !sk_rmem_schedule(sk, skb, size)) { 4405 4406 if (tcp_prune_queue(sk) < 0) 4407 return -1; 4408 4409 while (!sk_rmem_schedule(sk, skb, size)) { 4410 if (!tcp_prune_ofo_queue(sk)) 4411 return -1; 4412 } 4413 } 4414 return 0; 4415 } 4416 4417 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4418 { 4419 struct tcp_sock *tp = tcp_sk(sk); 4420 struct rb_node **p, *parent; 4421 struct sk_buff *skb1; 4422 u32 seq, end_seq; 4423 bool fragstolen; 4424 4425 tcp_ecn_check_ce(tp, skb); 4426 4427 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4428 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4429 tcp_drop(sk, skb); 4430 return; 4431 } 4432 4433 /* Disable header prediction. */ 4434 tp->pred_flags = 0; 4435 inet_csk_schedule_ack(sk); 4436 4437 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4438 seq = TCP_SKB_CB(skb)->seq; 4439 end_seq = TCP_SKB_CB(skb)->end_seq; 4440 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4441 tp->rcv_nxt, seq, end_seq); 4442 4443 p = &tp->out_of_order_queue.rb_node; 4444 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4445 /* Initial out of order segment, build 1 SACK. */ 4446 if (tcp_is_sack(tp)) { 4447 tp->rx_opt.num_sacks = 1; 4448 tp->selective_acks[0].start_seq = seq; 4449 tp->selective_acks[0].end_seq = end_seq; 4450 } 4451 rb_link_node(&skb->rbnode, NULL, p); 4452 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4453 tp->ooo_last_skb = skb; 4454 goto end; 4455 } 4456 4457 /* In the typical case, we are adding an skb to the end of the list. 4458 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4459 */ 4460 if (tcp_try_coalesce(sk, tp->ooo_last_skb, 4461 skb, &fragstolen)) { 4462 coalesce_done: 4463 tcp_grow_window(sk, skb); 4464 kfree_skb_partial(skb, fragstolen); 4465 skb = NULL; 4466 goto add_sack; 4467 } 4468 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4469 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4470 parent = &tp->ooo_last_skb->rbnode; 4471 p = &parent->rb_right; 4472 goto insert; 4473 } 4474 4475 /* Find place to insert this segment. Handle overlaps on the way. */ 4476 parent = NULL; 4477 while (*p) { 4478 parent = *p; 4479 skb1 = rb_to_skb(parent); 4480 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4481 p = &parent->rb_left; 4482 continue; 4483 } 4484 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4485 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4486 /* All the bits are present. Drop. */ 4487 NET_INC_STATS(sock_net(sk), 4488 LINUX_MIB_TCPOFOMERGE); 4489 __kfree_skb(skb); 4490 skb = NULL; 4491 tcp_dsack_set(sk, seq, end_seq); 4492 goto add_sack; 4493 } 4494 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4495 /* Partial overlap. */ 4496 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4497 } else { 4498 /* skb's seq == skb1's seq and skb covers skb1. 4499 * Replace skb1 with skb. 4500 */ 4501 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4502 &tp->out_of_order_queue); 4503 tcp_dsack_extend(sk, 4504 TCP_SKB_CB(skb1)->seq, 4505 TCP_SKB_CB(skb1)->end_seq); 4506 NET_INC_STATS(sock_net(sk), 4507 LINUX_MIB_TCPOFOMERGE); 4508 __kfree_skb(skb1); 4509 goto merge_right; 4510 } 4511 } else if (tcp_try_coalesce(sk, skb1, 4512 skb, &fragstolen)) { 4513 goto coalesce_done; 4514 } 4515 p = &parent->rb_right; 4516 } 4517 insert: 4518 /* Insert segment into RB tree. */ 4519 rb_link_node(&skb->rbnode, parent, p); 4520 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4521 4522 merge_right: 4523 /* Remove other segments covered by skb. */ 4524 while ((skb1 = skb_rb_next(skb)) != NULL) { 4525 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4526 break; 4527 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4528 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4529 end_seq); 4530 break; 4531 } 4532 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4533 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4534 TCP_SKB_CB(skb1)->end_seq); 4535 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4536 tcp_drop(sk, skb1); 4537 } 4538 /* If there is no skb after us, we are the last_skb ! */ 4539 if (!skb1) 4540 tp->ooo_last_skb = skb; 4541 4542 add_sack: 4543 if (tcp_is_sack(tp)) 4544 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4545 end: 4546 if (skb) { 4547 tcp_grow_window(sk, skb); 4548 skb_condense(skb); 4549 skb_set_owner_r(skb, sk); 4550 } 4551 } 4552 4553 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4554 bool *fragstolen) 4555 { 4556 int eaten; 4557 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4558 4559 __skb_pull(skb, hdrlen); 4560 eaten = (tail && 4561 tcp_try_coalesce(sk, tail, 4562 skb, fragstolen)) ? 1 : 0; 4563 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4564 if (!eaten) { 4565 __skb_queue_tail(&sk->sk_receive_queue, skb); 4566 skb_set_owner_r(skb, sk); 4567 } 4568 return eaten; 4569 } 4570 4571 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4572 { 4573 struct sk_buff *skb; 4574 int err = -ENOMEM; 4575 int data_len = 0; 4576 bool fragstolen; 4577 4578 if (size == 0) 4579 return 0; 4580 4581 if (size > PAGE_SIZE) { 4582 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4583 4584 data_len = npages << PAGE_SHIFT; 4585 size = data_len + (size & ~PAGE_MASK); 4586 } 4587 skb = alloc_skb_with_frags(size - data_len, data_len, 4588 PAGE_ALLOC_COSTLY_ORDER, 4589 &err, sk->sk_allocation); 4590 if (!skb) 4591 goto err; 4592 4593 skb_put(skb, size - data_len); 4594 skb->data_len = data_len; 4595 skb->len = size; 4596 4597 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4598 goto err_free; 4599 4600 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4601 if (err) 4602 goto err_free; 4603 4604 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4605 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4606 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4607 4608 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4609 WARN_ON_ONCE(fragstolen); /* should not happen */ 4610 __kfree_skb(skb); 4611 } 4612 return size; 4613 4614 err_free: 4615 kfree_skb(skb); 4616 err: 4617 return err; 4618 4619 } 4620 4621 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4622 { 4623 struct tcp_sock *tp = tcp_sk(sk); 4624 bool fragstolen; 4625 int eaten; 4626 4627 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4628 __kfree_skb(skb); 4629 return; 4630 } 4631 skb_dst_drop(skb); 4632 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4633 4634 tcp_ecn_accept_cwr(tp, skb); 4635 4636 tp->rx_opt.dsack = 0; 4637 4638 /* Queue data for delivery to the user. 4639 * Packets in sequence go to the receive queue. 4640 * Out of sequence packets to the out_of_order_queue. 4641 */ 4642 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4643 if (tcp_receive_window(tp) == 0) 4644 goto out_of_window; 4645 4646 /* Ok. In sequence. In window. */ 4647 queue_and_out: 4648 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4649 sk_forced_mem_schedule(sk, skb->truesize); 4650 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4651 goto drop; 4652 4653 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4654 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4655 if (skb->len) 4656 tcp_event_data_recv(sk, skb); 4657 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4658 tcp_fin(sk); 4659 4660 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4661 tcp_ofo_queue(sk); 4662 4663 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4664 * gap in queue is filled. 4665 */ 4666 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4667 inet_csk(sk)->icsk_ack.pingpong = 0; 4668 } 4669 4670 if (tp->rx_opt.num_sacks) 4671 tcp_sack_remove(tp); 4672 4673 tcp_fast_path_check(sk); 4674 4675 if (eaten > 0) 4676 kfree_skb_partial(skb, fragstolen); 4677 if (!sock_flag(sk, SOCK_DEAD)) 4678 sk->sk_data_ready(sk); 4679 return; 4680 } 4681 4682 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4683 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4684 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4685 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4686 4687 out_of_window: 4688 tcp_enter_quickack_mode(sk); 4689 inet_csk_schedule_ack(sk); 4690 drop: 4691 tcp_drop(sk, skb); 4692 return; 4693 } 4694 4695 /* Out of window. F.e. zero window probe. */ 4696 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4697 goto out_of_window; 4698 4699 tcp_enter_quickack_mode(sk); 4700 4701 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4702 /* Partial packet, seq < rcv_next < end_seq */ 4703 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4704 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4705 TCP_SKB_CB(skb)->end_seq); 4706 4707 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4708 4709 /* If window is closed, drop tail of packet. But after 4710 * remembering D-SACK for its head made in previous line. 4711 */ 4712 if (!tcp_receive_window(tp)) 4713 goto out_of_window; 4714 goto queue_and_out; 4715 } 4716 4717 tcp_data_queue_ofo(sk, skb); 4718 } 4719 4720 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4721 { 4722 if (list) 4723 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4724 4725 return skb_rb_next(skb); 4726 } 4727 4728 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4729 struct sk_buff_head *list, 4730 struct rb_root *root) 4731 { 4732 struct sk_buff *next = tcp_skb_next(skb, list); 4733 4734 if (list) 4735 __skb_unlink(skb, list); 4736 else 4737 rb_erase(&skb->rbnode, root); 4738 4739 __kfree_skb(skb); 4740 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4741 4742 return next; 4743 } 4744 4745 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4746 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4747 { 4748 struct rb_node **p = &root->rb_node; 4749 struct rb_node *parent = NULL; 4750 struct sk_buff *skb1; 4751 4752 while (*p) { 4753 parent = *p; 4754 skb1 = rb_to_skb(parent); 4755 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4756 p = &parent->rb_left; 4757 else 4758 p = &parent->rb_right; 4759 } 4760 rb_link_node(&skb->rbnode, parent, p); 4761 rb_insert_color(&skb->rbnode, root); 4762 } 4763 4764 /* Collapse contiguous sequence of skbs head..tail with 4765 * sequence numbers start..end. 4766 * 4767 * If tail is NULL, this means until the end of the queue. 4768 * 4769 * Segments with FIN/SYN are not collapsed (only because this 4770 * simplifies code) 4771 */ 4772 static void 4773 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4774 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4775 { 4776 struct sk_buff *skb = head, *n; 4777 struct sk_buff_head tmp; 4778 bool end_of_skbs; 4779 4780 /* First, check that queue is collapsible and find 4781 * the point where collapsing can be useful. 4782 */ 4783 restart: 4784 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4785 n = tcp_skb_next(skb, list); 4786 4787 /* No new bits? It is possible on ofo queue. */ 4788 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4789 skb = tcp_collapse_one(sk, skb, list, root); 4790 if (!skb) 4791 break; 4792 goto restart; 4793 } 4794 4795 /* The first skb to collapse is: 4796 * - not SYN/FIN and 4797 * - bloated or contains data before "start" or 4798 * overlaps to the next one. 4799 */ 4800 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4801 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4802 before(TCP_SKB_CB(skb)->seq, start))) { 4803 end_of_skbs = false; 4804 break; 4805 } 4806 4807 if (n && n != tail && 4808 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4809 end_of_skbs = false; 4810 break; 4811 } 4812 4813 /* Decided to skip this, advance start seq. */ 4814 start = TCP_SKB_CB(skb)->end_seq; 4815 } 4816 if (end_of_skbs || 4817 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4818 return; 4819 4820 __skb_queue_head_init(&tmp); 4821 4822 while (before(start, end)) { 4823 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4824 struct sk_buff *nskb; 4825 4826 nskb = alloc_skb(copy, GFP_ATOMIC); 4827 if (!nskb) 4828 break; 4829 4830 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4831 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4832 if (list) 4833 __skb_queue_before(list, skb, nskb); 4834 else 4835 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4836 skb_set_owner_r(nskb, sk); 4837 4838 /* Copy data, releasing collapsed skbs. */ 4839 while (copy > 0) { 4840 int offset = start - TCP_SKB_CB(skb)->seq; 4841 int size = TCP_SKB_CB(skb)->end_seq - start; 4842 4843 BUG_ON(offset < 0); 4844 if (size > 0) { 4845 size = min(copy, size); 4846 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4847 BUG(); 4848 TCP_SKB_CB(nskb)->end_seq += size; 4849 copy -= size; 4850 start += size; 4851 } 4852 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4853 skb = tcp_collapse_one(sk, skb, list, root); 4854 if (!skb || 4855 skb == tail || 4856 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4857 goto end; 4858 } 4859 } 4860 } 4861 end: 4862 skb_queue_walk_safe(&tmp, skb, n) 4863 tcp_rbtree_insert(root, skb); 4864 } 4865 4866 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4867 * and tcp_collapse() them until all the queue is collapsed. 4868 */ 4869 static void tcp_collapse_ofo_queue(struct sock *sk) 4870 { 4871 struct tcp_sock *tp = tcp_sk(sk); 4872 struct sk_buff *skb, *head; 4873 u32 start, end; 4874 4875 skb = skb_rb_first(&tp->out_of_order_queue); 4876 new_range: 4877 if (!skb) { 4878 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4879 return; 4880 } 4881 start = TCP_SKB_CB(skb)->seq; 4882 end = TCP_SKB_CB(skb)->end_seq; 4883 4884 for (head = skb;;) { 4885 skb = skb_rb_next(skb); 4886 4887 /* Range is terminated when we see a gap or when 4888 * we are at the queue end. 4889 */ 4890 if (!skb || 4891 after(TCP_SKB_CB(skb)->seq, end) || 4892 before(TCP_SKB_CB(skb)->end_seq, start)) { 4893 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4894 head, skb, start, end); 4895 goto new_range; 4896 } 4897 4898 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4899 start = TCP_SKB_CB(skb)->seq; 4900 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4901 end = TCP_SKB_CB(skb)->end_seq; 4902 } 4903 } 4904 4905 /* 4906 * Clean the out-of-order queue to make room. 4907 * We drop high sequences packets to : 4908 * 1) Let a chance for holes to be filled. 4909 * 2) not add too big latencies if thousands of packets sit there. 4910 * (But if application shrinks SO_RCVBUF, we could still end up 4911 * freeing whole queue here) 4912 * 4913 * Return true if queue has shrunk. 4914 */ 4915 static bool tcp_prune_ofo_queue(struct sock *sk) 4916 { 4917 struct tcp_sock *tp = tcp_sk(sk); 4918 struct rb_node *node, *prev; 4919 4920 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4921 return false; 4922 4923 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4924 node = &tp->ooo_last_skb->rbnode; 4925 do { 4926 prev = rb_prev(node); 4927 rb_erase(node, &tp->out_of_order_queue); 4928 tcp_drop(sk, rb_to_skb(node)); 4929 sk_mem_reclaim(sk); 4930 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4931 !tcp_under_memory_pressure(sk)) 4932 break; 4933 node = prev; 4934 } while (node); 4935 tp->ooo_last_skb = rb_to_skb(prev); 4936 4937 /* Reset SACK state. A conforming SACK implementation will 4938 * do the same at a timeout based retransmit. When a connection 4939 * is in a sad state like this, we care only about integrity 4940 * of the connection not performance. 4941 */ 4942 if (tp->rx_opt.sack_ok) 4943 tcp_sack_reset(&tp->rx_opt); 4944 return true; 4945 } 4946 4947 /* Reduce allocated memory if we can, trying to get 4948 * the socket within its memory limits again. 4949 * 4950 * Return less than zero if we should start dropping frames 4951 * until the socket owning process reads some of the data 4952 * to stabilize the situation. 4953 */ 4954 static int tcp_prune_queue(struct sock *sk) 4955 { 4956 struct tcp_sock *tp = tcp_sk(sk); 4957 4958 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4959 4960 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4961 4962 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4963 tcp_clamp_window(sk); 4964 else if (tcp_under_memory_pressure(sk)) 4965 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4966 4967 tcp_collapse_ofo_queue(sk); 4968 if (!skb_queue_empty(&sk->sk_receive_queue)) 4969 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4970 skb_peek(&sk->sk_receive_queue), 4971 NULL, 4972 tp->copied_seq, tp->rcv_nxt); 4973 sk_mem_reclaim(sk); 4974 4975 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4976 return 0; 4977 4978 /* Collapsing did not help, destructive actions follow. 4979 * This must not ever occur. */ 4980 4981 tcp_prune_ofo_queue(sk); 4982 4983 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4984 return 0; 4985 4986 /* If we are really being abused, tell the caller to silently 4987 * drop receive data on the floor. It will get retransmitted 4988 * and hopefully then we'll have sufficient space. 4989 */ 4990 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4991 4992 /* Massive buffer overcommit. */ 4993 tp->pred_flags = 0; 4994 return -1; 4995 } 4996 4997 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4998 { 4999 const struct tcp_sock *tp = tcp_sk(sk); 5000 5001 /* If the user specified a specific send buffer setting, do 5002 * not modify it. 5003 */ 5004 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5005 return false; 5006 5007 /* If we are under global TCP memory pressure, do not expand. */ 5008 if (tcp_under_memory_pressure(sk)) 5009 return false; 5010 5011 /* If we are under soft global TCP memory pressure, do not expand. */ 5012 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5013 return false; 5014 5015 /* If we filled the congestion window, do not expand. */ 5016 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5017 return false; 5018 5019 return true; 5020 } 5021 5022 /* When incoming ACK allowed to free some skb from write_queue, 5023 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5024 * on the exit from tcp input handler. 5025 * 5026 * PROBLEM: sndbuf expansion does not work well with largesend. 5027 */ 5028 static void tcp_new_space(struct sock *sk) 5029 { 5030 struct tcp_sock *tp = tcp_sk(sk); 5031 5032 if (tcp_should_expand_sndbuf(sk)) { 5033 tcp_sndbuf_expand(sk); 5034 tp->snd_cwnd_stamp = tcp_jiffies32; 5035 } 5036 5037 sk->sk_write_space(sk); 5038 } 5039 5040 static void tcp_check_space(struct sock *sk) 5041 { 5042 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5043 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5044 /* pairs with tcp_poll() */ 5045 smp_mb(); 5046 if (sk->sk_socket && 5047 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5048 tcp_new_space(sk); 5049 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5050 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5051 } 5052 } 5053 } 5054 5055 static inline void tcp_data_snd_check(struct sock *sk) 5056 { 5057 tcp_push_pending_frames(sk); 5058 tcp_check_space(sk); 5059 } 5060 5061 /* 5062 * Check if sending an ack is needed. 5063 */ 5064 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5065 { 5066 struct tcp_sock *tp = tcp_sk(sk); 5067 5068 /* More than one full frame received... */ 5069 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5070 /* ... and right edge of window advances far enough. 5071 * (tcp_recvmsg() will send ACK otherwise). Or... 5072 */ 5073 __tcp_select_window(sk) >= tp->rcv_wnd) || 5074 /* We ACK each frame or... */ 5075 tcp_in_quickack_mode(sk) || 5076 /* We have out of order data. */ 5077 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5078 /* Then ack it now */ 5079 tcp_send_ack(sk); 5080 } else { 5081 /* Else, send delayed ack. */ 5082 tcp_send_delayed_ack(sk); 5083 } 5084 } 5085 5086 static inline void tcp_ack_snd_check(struct sock *sk) 5087 { 5088 if (!inet_csk_ack_scheduled(sk)) { 5089 /* We sent a data segment already. */ 5090 return; 5091 } 5092 __tcp_ack_snd_check(sk, 1); 5093 } 5094 5095 /* 5096 * This routine is only called when we have urgent data 5097 * signaled. Its the 'slow' part of tcp_urg. It could be 5098 * moved inline now as tcp_urg is only called from one 5099 * place. We handle URGent data wrong. We have to - as 5100 * BSD still doesn't use the correction from RFC961. 5101 * For 1003.1g we should support a new option TCP_STDURG to permit 5102 * either form (or just set the sysctl tcp_stdurg). 5103 */ 5104 5105 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5106 { 5107 struct tcp_sock *tp = tcp_sk(sk); 5108 u32 ptr = ntohs(th->urg_ptr); 5109 5110 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5111 ptr--; 5112 ptr += ntohl(th->seq); 5113 5114 /* Ignore urgent data that we've already seen and read. */ 5115 if (after(tp->copied_seq, ptr)) 5116 return; 5117 5118 /* Do not replay urg ptr. 5119 * 5120 * NOTE: interesting situation not covered by specs. 5121 * Misbehaving sender may send urg ptr, pointing to segment, 5122 * which we already have in ofo queue. We are not able to fetch 5123 * such data and will stay in TCP_URG_NOTYET until will be eaten 5124 * by recvmsg(). Seems, we are not obliged to handle such wicked 5125 * situations. But it is worth to think about possibility of some 5126 * DoSes using some hypothetical application level deadlock. 5127 */ 5128 if (before(ptr, tp->rcv_nxt)) 5129 return; 5130 5131 /* Do we already have a newer (or duplicate) urgent pointer? */ 5132 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5133 return; 5134 5135 /* Tell the world about our new urgent pointer. */ 5136 sk_send_sigurg(sk); 5137 5138 /* We may be adding urgent data when the last byte read was 5139 * urgent. To do this requires some care. We cannot just ignore 5140 * tp->copied_seq since we would read the last urgent byte again 5141 * as data, nor can we alter copied_seq until this data arrives 5142 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5143 * 5144 * NOTE. Double Dutch. Rendering to plain English: author of comment 5145 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5146 * and expect that both A and B disappear from stream. This is _wrong_. 5147 * Though this happens in BSD with high probability, this is occasional. 5148 * Any application relying on this is buggy. Note also, that fix "works" 5149 * only in this artificial test. Insert some normal data between A and B and we will 5150 * decline of BSD again. Verdict: it is better to remove to trap 5151 * buggy users. 5152 */ 5153 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5154 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5155 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5156 tp->copied_seq++; 5157 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5158 __skb_unlink(skb, &sk->sk_receive_queue); 5159 __kfree_skb(skb); 5160 } 5161 } 5162 5163 tp->urg_data = TCP_URG_NOTYET; 5164 tp->urg_seq = ptr; 5165 5166 /* Disable header prediction. */ 5167 tp->pred_flags = 0; 5168 } 5169 5170 /* This is the 'fast' part of urgent handling. */ 5171 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5172 { 5173 struct tcp_sock *tp = tcp_sk(sk); 5174 5175 /* Check if we get a new urgent pointer - normally not. */ 5176 if (th->urg) 5177 tcp_check_urg(sk, th); 5178 5179 /* Do we wait for any urgent data? - normally not... */ 5180 if (tp->urg_data == TCP_URG_NOTYET) { 5181 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5182 th->syn; 5183 5184 /* Is the urgent pointer pointing into this packet? */ 5185 if (ptr < skb->len) { 5186 u8 tmp; 5187 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5188 BUG(); 5189 tp->urg_data = TCP_URG_VALID | tmp; 5190 if (!sock_flag(sk, SOCK_DEAD)) 5191 sk->sk_data_ready(sk); 5192 } 5193 } 5194 } 5195 5196 /* Accept RST for rcv_nxt - 1 after a FIN. 5197 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5198 * FIN is sent followed by a RST packet. The RST is sent with the same 5199 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5200 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5201 * ACKs on the closed socket. In addition middleboxes can drop either the 5202 * challenge ACK or a subsequent RST. 5203 */ 5204 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5205 { 5206 struct tcp_sock *tp = tcp_sk(sk); 5207 5208 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5209 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5210 TCPF_CLOSING)); 5211 } 5212 5213 /* Does PAWS and seqno based validation of an incoming segment, flags will 5214 * play significant role here. 5215 */ 5216 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5217 const struct tcphdr *th, int syn_inerr) 5218 { 5219 struct tcp_sock *tp = tcp_sk(sk); 5220 bool rst_seq_match = false; 5221 5222 /* RFC1323: H1. Apply PAWS check first. */ 5223 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5224 tp->rx_opt.saw_tstamp && 5225 tcp_paws_discard(sk, skb)) { 5226 if (!th->rst) { 5227 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5228 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5229 LINUX_MIB_TCPACKSKIPPEDPAWS, 5230 &tp->last_oow_ack_time)) 5231 tcp_send_dupack(sk, skb); 5232 goto discard; 5233 } 5234 /* Reset is accepted even if it did not pass PAWS. */ 5235 } 5236 5237 /* Step 1: check sequence number */ 5238 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5239 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5240 * (RST) segments are validated by checking their SEQ-fields." 5241 * And page 69: "If an incoming segment is not acceptable, 5242 * an acknowledgment should be sent in reply (unless the RST 5243 * bit is set, if so drop the segment and return)". 5244 */ 5245 if (!th->rst) { 5246 if (th->syn) 5247 goto syn_challenge; 5248 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5249 LINUX_MIB_TCPACKSKIPPEDSEQ, 5250 &tp->last_oow_ack_time)) 5251 tcp_send_dupack(sk, skb); 5252 } else if (tcp_reset_check(sk, skb)) { 5253 tcp_reset(sk); 5254 } 5255 goto discard; 5256 } 5257 5258 /* Step 2: check RST bit */ 5259 if (th->rst) { 5260 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5261 * FIN and SACK too if available): 5262 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5263 * the right-most SACK block, 5264 * then 5265 * RESET the connection 5266 * else 5267 * Send a challenge ACK 5268 */ 5269 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5270 tcp_reset_check(sk, skb)) { 5271 rst_seq_match = true; 5272 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5273 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5274 int max_sack = sp[0].end_seq; 5275 int this_sack; 5276 5277 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5278 ++this_sack) { 5279 max_sack = after(sp[this_sack].end_seq, 5280 max_sack) ? 5281 sp[this_sack].end_seq : max_sack; 5282 } 5283 5284 if (TCP_SKB_CB(skb)->seq == max_sack) 5285 rst_seq_match = true; 5286 } 5287 5288 if (rst_seq_match) 5289 tcp_reset(sk); 5290 else { 5291 /* Disable TFO if RST is out-of-order 5292 * and no data has been received 5293 * for current active TFO socket 5294 */ 5295 if (tp->syn_fastopen && !tp->data_segs_in && 5296 sk->sk_state == TCP_ESTABLISHED) 5297 tcp_fastopen_active_disable(sk); 5298 tcp_send_challenge_ack(sk, skb); 5299 } 5300 goto discard; 5301 } 5302 5303 /* step 3: check security and precedence [ignored] */ 5304 5305 /* step 4: Check for a SYN 5306 * RFC 5961 4.2 : Send a challenge ack 5307 */ 5308 if (th->syn) { 5309 syn_challenge: 5310 if (syn_inerr) 5311 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5312 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5313 tcp_send_challenge_ack(sk, skb); 5314 goto discard; 5315 } 5316 5317 return true; 5318 5319 discard: 5320 tcp_drop(sk, skb); 5321 return false; 5322 } 5323 5324 /* 5325 * TCP receive function for the ESTABLISHED state. 5326 * 5327 * It is split into a fast path and a slow path. The fast path is 5328 * disabled when: 5329 * - A zero window was announced from us - zero window probing 5330 * is only handled properly in the slow path. 5331 * - Out of order segments arrived. 5332 * - Urgent data is expected. 5333 * - There is no buffer space left 5334 * - Unexpected TCP flags/window values/header lengths are received 5335 * (detected by checking the TCP header against pred_flags) 5336 * - Data is sent in both directions. Fast path only supports pure senders 5337 * or pure receivers (this means either the sequence number or the ack 5338 * value must stay constant) 5339 * - Unexpected TCP option. 5340 * 5341 * When these conditions are not satisfied it drops into a standard 5342 * receive procedure patterned after RFC793 to handle all cases. 5343 * The first three cases are guaranteed by proper pred_flags setting, 5344 * the rest is checked inline. Fast processing is turned on in 5345 * tcp_data_queue when everything is OK. 5346 */ 5347 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5348 const struct tcphdr *th) 5349 { 5350 unsigned int len = skb->len; 5351 struct tcp_sock *tp = tcp_sk(sk); 5352 5353 tcp_mstamp_refresh(tp); 5354 if (unlikely(!sk->sk_rx_dst)) 5355 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5356 /* 5357 * Header prediction. 5358 * The code loosely follows the one in the famous 5359 * "30 instruction TCP receive" Van Jacobson mail. 5360 * 5361 * Van's trick is to deposit buffers into socket queue 5362 * on a device interrupt, to call tcp_recv function 5363 * on the receive process context and checksum and copy 5364 * the buffer to user space. smart... 5365 * 5366 * Our current scheme is not silly either but we take the 5367 * extra cost of the net_bh soft interrupt processing... 5368 * We do checksum and copy also but from device to kernel. 5369 */ 5370 5371 tp->rx_opt.saw_tstamp = 0; 5372 5373 /* pred_flags is 0xS?10 << 16 + snd_wnd 5374 * if header_prediction is to be made 5375 * 'S' will always be tp->tcp_header_len >> 2 5376 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5377 * turn it off (when there are holes in the receive 5378 * space for instance) 5379 * PSH flag is ignored. 5380 */ 5381 5382 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5383 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5384 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5385 int tcp_header_len = tp->tcp_header_len; 5386 5387 /* Timestamp header prediction: tcp_header_len 5388 * is automatically equal to th->doff*4 due to pred_flags 5389 * match. 5390 */ 5391 5392 /* Check timestamp */ 5393 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5394 /* No? Slow path! */ 5395 if (!tcp_parse_aligned_timestamp(tp, th)) 5396 goto slow_path; 5397 5398 /* If PAWS failed, check it more carefully in slow path */ 5399 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5400 goto slow_path; 5401 5402 /* DO NOT update ts_recent here, if checksum fails 5403 * and timestamp was corrupted part, it will result 5404 * in a hung connection since we will drop all 5405 * future packets due to the PAWS test. 5406 */ 5407 } 5408 5409 if (len <= tcp_header_len) { 5410 /* Bulk data transfer: sender */ 5411 if (len == tcp_header_len) { 5412 /* Predicted packet is in window by definition. 5413 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5414 * Hence, check seq<=rcv_wup reduces to: 5415 */ 5416 if (tcp_header_len == 5417 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5418 tp->rcv_nxt == tp->rcv_wup) 5419 tcp_store_ts_recent(tp); 5420 5421 /* We know that such packets are checksummed 5422 * on entry. 5423 */ 5424 tcp_ack(sk, skb, 0); 5425 __kfree_skb(skb); 5426 tcp_data_snd_check(sk); 5427 return; 5428 } else { /* Header too small */ 5429 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5430 goto discard; 5431 } 5432 } else { 5433 int eaten = 0; 5434 bool fragstolen = false; 5435 5436 if (tcp_checksum_complete(skb)) 5437 goto csum_error; 5438 5439 if ((int)skb->truesize > sk->sk_forward_alloc) 5440 goto step5; 5441 5442 /* Predicted packet is in window by definition. 5443 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5444 * Hence, check seq<=rcv_wup reduces to: 5445 */ 5446 if (tcp_header_len == 5447 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5448 tp->rcv_nxt == tp->rcv_wup) 5449 tcp_store_ts_recent(tp); 5450 5451 tcp_rcv_rtt_measure_ts(sk, skb); 5452 5453 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5454 5455 /* Bulk data transfer: receiver */ 5456 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5457 &fragstolen); 5458 5459 tcp_event_data_recv(sk, skb); 5460 5461 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5462 /* Well, only one small jumplet in fast path... */ 5463 tcp_ack(sk, skb, FLAG_DATA); 5464 tcp_data_snd_check(sk); 5465 if (!inet_csk_ack_scheduled(sk)) 5466 goto no_ack; 5467 } 5468 5469 __tcp_ack_snd_check(sk, 0); 5470 no_ack: 5471 if (eaten) 5472 kfree_skb_partial(skb, fragstolen); 5473 sk->sk_data_ready(sk); 5474 return; 5475 } 5476 } 5477 5478 slow_path: 5479 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5480 goto csum_error; 5481 5482 if (!th->ack && !th->rst && !th->syn) 5483 goto discard; 5484 5485 /* 5486 * Standard slow path. 5487 */ 5488 5489 if (!tcp_validate_incoming(sk, skb, th, 1)) 5490 return; 5491 5492 step5: 5493 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5494 goto discard; 5495 5496 tcp_rcv_rtt_measure_ts(sk, skb); 5497 5498 /* Process urgent data. */ 5499 tcp_urg(sk, skb, th); 5500 5501 /* step 7: process the segment text */ 5502 tcp_data_queue(sk, skb); 5503 5504 tcp_data_snd_check(sk); 5505 tcp_ack_snd_check(sk); 5506 return; 5507 5508 csum_error: 5509 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5510 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5511 5512 discard: 5513 tcp_drop(sk, skb); 5514 } 5515 EXPORT_SYMBOL(tcp_rcv_established); 5516 5517 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5518 { 5519 struct tcp_sock *tp = tcp_sk(sk); 5520 struct inet_connection_sock *icsk = inet_csk(sk); 5521 5522 tcp_set_state(sk, TCP_ESTABLISHED); 5523 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5524 5525 if (skb) { 5526 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5527 security_inet_conn_established(sk, skb); 5528 } 5529 5530 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5531 5532 /* Prevent spurious tcp_cwnd_restart() on first data 5533 * packet. 5534 */ 5535 tp->lsndtime = tcp_jiffies32; 5536 5537 if (sock_flag(sk, SOCK_KEEPOPEN)) 5538 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5539 5540 if (!tp->rx_opt.snd_wscale) 5541 __tcp_fast_path_on(tp, tp->snd_wnd); 5542 else 5543 tp->pred_flags = 0; 5544 } 5545 5546 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5547 struct tcp_fastopen_cookie *cookie) 5548 { 5549 struct tcp_sock *tp = tcp_sk(sk); 5550 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5551 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5552 bool syn_drop = false; 5553 5554 if (mss == tp->rx_opt.user_mss) { 5555 struct tcp_options_received opt; 5556 5557 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5558 tcp_clear_options(&opt); 5559 opt.user_mss = opt.mss_clamp = 0; 5560 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5561 mss = opt.mss_clamp; 5562 } 5563 5564 if (!tp->syn_fastopen) { 5565 /* Ignore an unsolicited cookie */ 5566 cookie->len = -1; 5567 } else if (tp->total_retrans) { 5568 /* SYN timed out and the SYN-ACK neither has a cookie nor 5569 * acknowledges data. Presumably the remote received only 5570 * the retransmitted (regular) SYNs: either the original 5571 * SYN-data or the corresponding SYN-ACK was dropped. 5572 */ 5573 syn_drop = (cookie->len < 0 && data); 5574 } else if (cookie->len < 0 && !tp->syn_data) { 5575 /* We requested a cookie but didn't get it. If we did not use 5576 * the (old) exp opt format then try so next time (try_exp=1). 5577 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5578 */ 5579 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5580 } 5581 5582 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5583 5584 if (data) { /* Retransmit unacked data in SYN */ 5585 skb_rbtree_walk_from(data) { 5586 if (__tcp_retransmit_skb(sk, data, 1)) 5587 break; 5588 } 5589 tcp_rearm_rto(sk); 5590 NET_INC_STATS(sock_net(sk), 5591 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5592 return true; 5593 } 5594 tp->syn_data_acked = tp->syn_data; 5595 if (tp->syn_data_acked) 5596 NET_INC_STATS(sock_net(sk), 5597 LINUX_MIB_TCPFASTOPENACTIVE); 5598 5599 tcp_fastopen_add_skb(sk, synack); 5600 5601 return false; 5602 } 5603 5604 static void smc_check_reset_syn(struct tcp_sock *tp) 5605 { 5606 #if IS_ENABLED(CONFIG_SMC) 5607 if (static_branch_unlikely(&tcp_have_smc)) { 5608 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5609 tp->syn_smc = 0; 5610 } 5611 #endif 5612 } 5613 5614 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5615 const struct tcphdr *th) 5616 { 5617 struct inet_connection_sock *icsk = inet_csk(sk); 5618 struct tcp_sock *tp = tcp_sk(sk); 5619 struct tcp_fastopen_cookie foc = { .len = -1 }; 5620 int saved_clamp = tp->rx_opt.mss_clamp; 5621 bool fastopen_fail; 5622 5623 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5624 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5625 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5626 5627 if (th->ack) { 5628 /* rfc793: 5629 * "If the state is SYN-SENT then 5630 * first check the ACK bit 5631 * If the ACK bit is set 5632 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5633 * a reset (unless the RST bit is set, if so drop 5634 * the segment and return)" 5635 */ 5636 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5637 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5638 goto reset_and_undo; 5639 5640 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5641 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5642 tcp_time_stamp(tp))) { 5643 NET_INC_STATS(sock_net(sk), 5644 LINUX_MIB_PAWSACTIVEREJECTED); 5645 goto reset_and_undo; 5646 } 5647 5648 /* Now ACK is acceptable. 5649 * 5650 * "If the RST bit is set 5651 * If the ACK was acceptable then signal the user "error: 5652 * connection reset", drop the segment, enter CLOSED state, 5653 * delete TCB, and return." 5654 */ 5655 5656 if (th->rst) { 5657 tcp_reset(sk); 5658 goto discard; 5659 } 5660 5661 /* rfc793: 5662 * "fifth, if neither of the SYN or RST bits is set then 5663 * drop the segment and return." 5664 * 5665 * See note below! 5666 * --ANK(990513) 5667 */ 5668 if (!th->syn) 5669 goto discard_and_undo; 5670 5671 /* rfc793: 5672 * "If the SYN bit is on ... 5673 * are acceptable then ... 5674 * (our SYN has been ACKed), change the connection 5675 * state to ESTABLISHED..." 5676 */ 5677 5678 tcp_ecn_rcv_synack(tp, th); 5679 5680 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5681 tcp_ack(sk, skb, FLAG_SLOWPATH); 5682 5683 /* Ok.. it's good. Set up sequence numbers and 5684 * move to established. 5685 */ 5686 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5687 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5688 5689 /* RFC1323: The window in SYN & SYN/ACK segments is 5690 * never scaled. 5691 */ 5692 tp->snd_wnd = ntohs(th->window); 5693 5694 if (!tp->rx_opt.wscale_ok) { 5695 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5696 tp->window_clamp = min(tp->window_clamp, 65535U); 5697 } 5698 5699 if (tp->rx_opt.saw_tstamp) { 5700 tp->rx_opt.tstamp_ok = 1; 5701 tp->tcp_header_len = 5702 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5703 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5704 tcp_store_ts_recent(tp); 5705 } else { 5706 tp->tcp_header_len = sizeof(struct tcphdr); 5707 } 5708 5709 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_fack) 5710 tcp_enable_fack(tp); 5711 5712 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5713 tcp_initialize_rcv_mss(sk); 5714 5715 /* Remember, tcp_poll() does not lock socket! 5716 * Change state from SYN-SENT only after copied_seq 5717 * is initialized. */ 5718 tp->copied_seq = tp->rcv_nxt; 5719 5720 smc_check_reset_syn(tp); 5721 5722 smp_mb(); 5723 5724 tcp_finish_connect(sk, skb); 5725 5726 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5727 tcp_rcv_fastopen_synack(sk, skb, &foc); 5728 5729 if (!sock_flag(sk, SOCK_DEAD)) { 5730 sk->sk_state_change(sk); 5731 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5732 } 5733 if (fastopen_fail) 5734 return -1; 5735 if (sk->sk_write_pending || 5736 icsk->icsk_accept_queue.rskq_defer_accept || 5737 icsk->icsk_ack.pingpong) { 5738 /* Save one ACK. Data will be ready after 5739 * several ticks, if write_pending is set. 5740 * 5741 * It may be deleted, but with this feature tcpdumps 5742 * look so _wonderfully_ clever, that I was not able 5743 * to stand against the temptation 8) --ANK 5744 */ 5745 inet_csk_schedule_ack(sk); 5746 tcp_enter_quickack_mode(sk); 5747 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5748 TCP_DELACK_MAX, TCP_RTO_MAX); 5749 5750 discard: 5751 tcp_drop(sk, skb); 5752 return 0; 5753 } else { 5754 tcp_send_ack(sk); 5755 } 5756 return -1; 5757 } 5758 5759 /* No ACK in the segment */ 5760 5761 if (th->rst) { 5762 /* rfc793: 5763 * "If the RST bit is set 5764 * 5765 * Otherwise (no ACK) drop the segment and return." 5766 */ 5767 5768 goto discard_and_undo; 5769 } 5770 5771 /* PAWS check. */ 5772 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5773 tcp_paws_reject(&tp->rx_opt, 0)) 5774 goto discard_and_undo; 5775 5776 if (th->syn) { 5777 /* We see SYN without ACK. It is attempt of 5778 * simultaneous connect with crossed SYNs. 5779 * Particularly, it can be connect to self. 5780 */ 5781 tcp_set_state(sk, TCP_SYN_RECV); 5782 5783 if (tp->rx_opt.saw_tstamp) { 5784 tp->rx_opt.tstamp_ok = 1; 5785 tcp_store_ts_recent(tp); 5786 tp->tcp_header_len = 5787 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5788 } else { 5789 tp->tcp_header_len = sizeof(struct tcphdr); 5790 } 5791 5792 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5793 tp->copied_seq = tp->rcv_nxt; 5794 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5795 5796 /* RFC1323: The window in SYN & SYN/ACK segments is 5797 * never scaled. 5798 */ 5799 tp->snd_wnd = ntohs(th->window); 5800 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5801 tp->max_window = tp->snd_wnd; 5802 5803 tcp_ecn_rcv_syn(tp, th); 5804 5805 tcp_mtup_init(sk); 5806 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5807 tcp_initialize_rcv_mss(sk); 5808 5809 tcp_send_synack(sk); 5810 #if 0 5811 /* Note, we could accept data and URG from this segment. 5812 * There are no obstacles to make this (except that we must 5813 * either change tcp_recvmsg() to prevent it from returning data 5814 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5815 * 5816 * However, if we ignore data in ACKless segments sometimes, 5817 * we have no reasons to accept it sometimes. 5818 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5819 * is not flawless. So, discard packet for sanity. 5820 * Uncomment this return to process the data. 5821 */ 5822 return -1; 5823 #else 5824 goto discard; 5825 #endif 5826 } 5827 /* "fifth, if neither of the SYN or RST bits is set then 5828 * drop the segment and return." 5829 */ 5830 5831 discard_and_undo: 5832 tcp_clear_options(&tp->rx_opt); 5833 tp->rx_opt.mss_clamp = saved_clamp; 5834 goto discard; 5835 5836 reset_and_undo: 5837 tcp_clear_options(&tp->rx_opt); 5838 tp->rx_opt.mss_clamp = saved_clamp; 5839 return 1; 5840 } 5841 5842 /* 5843 * This function implements the receiving procedure of RFC 793 for 5844 * all states except ESTABLISHED and TIME_WAIT. 5845 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5846 * address independent. 5847 */ 5848 5849 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5850 { 5851 struct tcp_sock *tp = tcp_sk(sk); 5852 struct inet_connection_sock *icsk = inet_csk(sk); 5853 const struct tcphdr *th = tcp_hdr(skb); 5854 struct request_sock *req; 5855 int queued = 0; 5856 bool acceptable; 5857 5858 switch (sk->sk_state) { 5859 case TCP_CLOSE: 5860 goto discard; 5861 5862 case TCP_LISTEN: 5863 if (th->ack) 5864 return 1; 5865 5866 if (th->rst) 5867 goto discard; 5868 5869 if (th->syn) { 5870 if (th->fin) 5871 goto discard; 5872 /* It is possible that we process SYN packets from backlog, 5873 * so we need to make sure to disable BH right there. 5874 */ 5875 local_bh_disable(); 5876 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5877 local_bh_enable(); 5878 5879 if (!acceptable) 5880 return 1; 5881 consume_skb(skb); 5882 return 0; 5883 } 5884 goto discard; 5885 5886 case TCP_SYN_SENT: 5887 tp->rx_opt.saw_tstamp = 0; 5888 tcp_mstamp_refresh(tp); 5889 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5890 if (queued >= 0) 5891 return queued; 5892 5893 /* Do step6 onward by hand. */ 5894 tcp_urg(sk, skb, th); 5895 __kfree_skb(skb); 5896 tcp_data_snd_check(sk); 5897 return 0; 5898 } 5899 5900 tcp_mstamp_refresh(tp); 5901 tp->rx_opt.saw_tstamp = 0; 5902 req = tp->fastopen_rsk; 5903 if (req) { 5904 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5905 sk->sk_state != TCP_FIN_WAIT1); 5906 5907 if (!tcp_check_req(sk, skb, req, true)) 5908 goto discard; 5909 } 5910 5911 if (!th->ack && !th->rst && !th->syn) 5912 goto discard; 5913 5914 if (!tcp_validate_incoming(sk, skb, th, 0)) 5915 return 0; 5916 5917 /* step 5: check the ACK field */ 5918 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5919 FLAG_UPDATE_TS_RECENT | 5920 FLAG_NO_CHALLENGE_ACK) > 0; 5921 5922 if (!acceptable) { 5923 if (sk->sk_state == TCP_SYN_RECV) 5924 return 1; /* send one RST */ 5925 tcp_send_challenge_ack(sk, skb); 5926 goto discard; 5927 } 5928 switch (sk->sk_state) { 5929 case TCP_SYN_RECV: 5930 if (!tp->srtt_us) 5931 tcp_synack_rtt_meas(sk, req); 5932 5933 /* Once we leave TCP_SYN_RECV, we no longer need req 5934 * so release it. 5935 */ 5936 if (req) { 5937 inet_csk(sk)->icsk_retransmits = 0; 5938 reqsk_fastopen_remove(sk, req, false); 5939 /* Re-arm the timer because data may have been sent out. 5940 * This is similar to the regular data transmission case 5941 * when new data has just been ack'ed. 5942 * 5943 * (TFO) - we could try to be more aggressive and 5944 * retransmitting any data sooner based on when they 5945 * are sent out. 5946 */ 5947 tcp_rearm_rto(sk); 5948 } else { 5949 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 5950 tp->copied_seq = tp->rcv_nxt; 5951 } 5952 smp_mb(); 5953 tcp_set_state(sk, TCP_ESTABLISHED); 5954 sk->sk_state_change(sk); 5955 5956 /* Note, that this wakeup is only for marginal crossed SYN case. 5957 * Passively open sockets are not waked up, because 5958 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5959 */ 5960 if (sk->sk_socket) 5961 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5962 5963 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5964 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5965 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5966 5967 if (tp->rx_opt.tstamp_ok) 5968 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5969 5970 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5971 tcp_update_pacing_rate(sk); 5972 5973 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5974 tp->lsndtime = tcp_jiffies32; 5975 5976 tcp_initialize_rcv_mss(sk); 5977 tcp_fast_path_on(tp); 5978 break; 5979 5980 case TCP_FIN_WAIT1: { 5981 int tmo; 5982 5983 /* If we enter the TCP_FIN_WAIT1 state and we are a 5984 * Fast Open socket and this is the first acceptable 5985 * ACK we have received, this would have acknowledged 5986 * our SYNACK so stop the SYNACK timer. 5987 */ 5988 if (req) { 5989 /* We no longer need the request sock. */ 5990 reqsk_fastopen_remove(sk, req, false); 5991 tcp_rearm_rto(sk); 5992 } 5993 if (tp->snd_una != tp->write_seq) 5994 break; 5995 5996 tcp_set_state(sk, TCP_FIN_WAIT2); 5997 sk->sk_shutdown |= SEND_SHUTDOWN; 5998 5999 sk_dst_confirm(sk); 6000 6001 if (!sock_flag(sk, SOCK_DEAD)) { 6002 /* Wake up lingering close() */ 6003 sk->sk_state_change(sk); 6004 break; 6005 } 6006 6007 if (tp->linger2 < 0) { 6008 tcp_done(sk); 6009 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6010 return 1; 6011 } 6012 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6013 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6014 /* Receive out of order FIN after close() */ 6015 if (tp->syn_fastopen && th->fin) 6016 tcp_fastopen_active_disable(sk); 6017 tcp_done(sk); 6018 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6019 return 1; 6020 } 6021 6022 tmo = tcp_fin_time(sk); 6023 if (tmo > TCP_TIMEWAIT_LEN) { 6024 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6025 } else if (th->fin || sock_owned_by_user(sk)) { 6026 /* Bad case. We could lose such FIN otherwise. 6027 * It is not a big problem, but it looks confusing 6028 * and not so rare event. We still can lose it now, 6029 * if it spins in bh_lock_sock(), but it is really 6030 * marginal case. 6031 */ 6032 inet_csk_reset_keepalive_timer(sk, tmo); 6033 } else { 6034 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6035 goto discard; 6036 } 6037 break; 6038 } 6039 6040 case TCP_CLOSING: 6041 if (tp->snd_una == tp->write_seq) { 6042 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6043 goto discard; 6044 } 6045 break; 6046 6047 case TCP_LAST_ACK: 6048 if (tp->snd_una == tp->write_seq) { 6049 tcp_update_metrics(sk); 6050 tcp_done(sk); 6051 goto discard; 6052 } 6053 break; 6054 } 6055 6056 /* step 6: check the URG bit */ 6057 tcp_urg(sk, skb, th); 6058 6059 /* step 7: process the segment text */ 6060 switch (sk->sk_state) { 6061 case TCP_CLOSE_WAIT: 6062 case TCP_CLOSING: 6063 case TCP_LAST_ACK: 6064 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6065 break; 6066 /* fall through */ 6067 case TCP_FIN_WAIT1: 6068 case TCP_FIN_WAIT2: 6069 /* RFC 793 says to queue data in these states, 6070 * RFC 1122 says we MUST send a reset. 6071 * BSD 4.4 also does reset. 6072 */ 6073 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6074 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6075 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6076 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6077 tcp_reset(sk); 6078 return 1; 6079 } 6080 } 6081 /* Fall through */ 6082 case TCP_ESTABLISHED: 6083 tcp_data_queue(sk, skb); 6084 queued = 1; 6085 break; 6086 } 6087 6088 /* tcp_data could move socket to TIME-WAIT */ 6089 if (sk->sk_state != TCP_CLOSE) { 6090 tcp_data_snd_check(sk); 6091 tcp_ack_snd_check(sk); 6092 } 6093 6094 if (!queued) { 6095 discard: 6096 tcp_drop(sk, skb); 6097 } 6098 return 0; 6099 } 6100 EXPORT_SYMBOL(tcp_rcv_state_process); 6101 6102 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6103 { 6104 struct inet_request_sock *ireq = inet_rsk(req); 6105 6106 if (family == AF_INET) 6107 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6108 &ireq->ir_rmt_addr, port); 6109 #if IS_ENABLED(CONFIG_IPV6) 6110 else if (family == AF_INET6) 6111 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6112 &ireq->ir_v6_rmt_addr, port); 6113 #endif 6114 } 6115 6116 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6117 * 6118 * If we receive a SYN packet with these bits set, it means a 6119 * network is playing bad games with TOS bits. In order to 6120 * avoid possible false congestion notifications, we disable 6121 * TCP ECN negotiation. 6122 * 6123 * Exception: tcp_ca wants ECN. This is required for DCTCP 6124 * congestion control: Linux DCTCP asserts ECT on all packets, 6125 * including SYN, which is most optimal solution; however, 6126 * others, such as FreeBSD do not. 6127 */ 6128 static void tcp_ecn_create_request(struct request_sock *req, 6129 const struct sk_buff *skb, 6130 const struct sock *listen_sk, 6131 const struct dst_entry *dst) 6132 { 6133 const struct tcphdr *th = tcp_hdr(skb); 6134 const struct net *net = sock_net(listen_sk); 6135 bool th_ecn = th->ece && th->cwr; 6136 bool ect, ecn_ok; 6137 u32 ecn_ok_dst; 6138 6139 if (!th_ecn) 6140 return; 6141 6142 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6143 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6144 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6145 6146 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6147 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6148 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6149 inet_rsk(req)->ecn_ok = 1; 6150 } 6151 6152 static void tcp_openreq_init(struct request_sock *req, 6153 const struct tcp_options_received *rx_opt, 6154 struct sk_buff *skb, const struct sock *sk) 6155 { 6156 struct inet_request_sock *ireq = inet_rsk(req); 6157 6158 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6159 req->cookie_ts = 0; 6160 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6161 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6162 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6163 tcp_rsk(req)->last_oow_ack_time = 0; 6164 req->mss = rx_opt->mss_clamp; 6165 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6166 ireq->tstamp_ok = rx_opt->tstamp_ok; 6167 ireq->sack_ok = rx_opt->sack_ok; 6168 ireq->snd_wscale = rx_opt->snd_wscale; 6169 ireq->wscale_ok = rx_opt->wscale_ok; 6170 ireq->acked = 0; 6171 ireq->ecn_ok = 0; 6172 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6173 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6174 ireq->ir_mark = inet_request_mark(sk, skb); 6175 #if IS_ENABLED(CONFIG_SMC) 6176 ireq->smc_ok = rx_opt->smc_ok; 6177 #endif 6178 } 6179 6180 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6181 struct sock *sk_listener, 6182 bool attach_listener) 6183 { 6184 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6185 attach_listener); 6186 6187 if (req) { 6188 struct inet_request_sock *ireq = inet_rsk(req); 6189 6190 kmemcheck_annotate_bitfield(ireq, flags); 6191 ireq->ireq_opt = NULL; 6192 #if IS_ENABLED(CONFIG_IPV6) 6193 ireq->pktopts = NULL; 6194 #endif 6195 atomic64_set(&ireq->ir_cookie, 0); 6196 ireq->ireq_state = TCP_NEW_SYN_RECV; 6197 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6198 ireq->ireq_family = sk_listener->sk_family; 6199 } 6200 6201 return req; 6202 } 6203 EXPORT_SYMBOL(inet_reqsk_alloc); 6204 6205 /* 6206 * Return true if a syncookie should be sent 6207 */ 6208 static bool tcp_syn_flood_action(const struct sock *sk, 6209 const struct sk_buff *skb, 6210 const char *proto) 6211 { 6212 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6213 const char *msg = "Dropping request"; 6214 bool want_cookie = false; 6215 struct net *net = sock_net(sk); 6216 6217 #ifdef CONFIG_SYN_COOKIES 6218 if (net->ipv4.sysctl_tcp_syncookies) { 6219 msg = "Sending cookies"; 6220 want_cookie = true; 6221 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6222 } else 6223 #endif 6224 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6225 6226 if (!queue->synflood_warned && 6227 net->ipv4.sysctl_tcp_syncookies != 2 && 6228 xchg(&queue->synflood_warned, 1) == 0) 6229 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6230 proto, ntohs(tcp_hdr(skb)->dest), msg); 6231 6232 return want_cookie; 6233 } 6234 6235 static void tcp_reqsk_record_syn(const struct sock *sk, 6236 struct request_sock *req, 6237 const struct sk_buff *skb) 6238 { 6239 if (tcp_sk(sk)->save_syn) { 6240 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6241 u32 *copy; 6242 6243 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6244 if (copy) { 6245 copy[0] = len; 6246 memcpy(©[1], skb_network_header(skb), len); 6247 req->saved_syn = copy; 6248 } 6249 } 6250 } 6251 6252 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6253 const struct tcp_request_sock_ops *af_ops, 6254 struct sock *sk, struct sk_buff *skb) 6255 { 6256 struct tcp_fastopen_cookie foc = { .len = -1 }; 6257 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6258 struct tcp_options_received tmp_opt; 6259 struct tcp_sock *tp = tcp_sk(sk); 6260 struct net *net = sock_net(sk); 6261 struct sock *fastopen_sk = NULL; 6262 struct request_sock *req; 6263 bool want_cookie = false; 6264 struct dst_entry *dst; 6265 struct flowi fl; 6266 6267 /* TW buckets are converted to open requests without 6268 * limitations, they conserve resources and peer is 6269 * evidently real one. 6270 */ 6271 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6272 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6273 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6274 if (!want_cookie) 6275 goto drop; 6276 } 6277 6278 if (sk_acceptq_is_full(sk)) { 6279 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6280 goto drop; 6281 } 6282 6283 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6284 if (!req) 6285 goto drop; 6286 6287 tcp_rsk(req)->af_specific = af_ops; 6288 tcp_rsk(req)->ts_off = 0; 6289 6290 tcp_clear_options(&tmp_opt); 6291 tmp_opt.mss_clamp = af_ops->mss_clamp; 6292 tmp_opt.user_mss = tp->rx_opt.user_mss; 6293 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6294 want_cookie ? NULL : &foc); 6295 6296 if (want_cookie && !tmp_opt.saw_tstamp) 6297 tcp_clear_options(&tmp_opt); 6298 6299 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6300 tcp_openreq_init(req, &tmp_opt, skb, sk); 6301 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6302 6303 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6304 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6305 6306 af_ops->init_req(req, sk, skb); 6307 6308 if (security_inet_conn_request(sk, skb, req)) 6309 goto drop_and_free; 6310 6311 if (tmp_opt.tstamp_ok) 6312 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6313 6314 dst = af_ops->route_req(sk, &fl, req); 6315 if (!dst) 6316 goto drop_and_free; 6317 6318 if (!want_cookie && !isn) { 6319 /* Kill the following clause, if you dislike this way. */ 6320 if (!net->ipv4.sysctl_tcp_syncookies && 6321 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6322 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6323 !tcp_peer_is_proven(req, dst)) { 6324 /* Without syncookies last quarter of 6325 * backlog is filled with destinations, 6326 * proven to be alive. 6327 * It means that we continue to communicate 6328 * to destinations, already remembered 6329 * to the moment of synflood. 6330 */ 6331 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6332 rsk_ops->family); 6333 goto drop_and_release; 6334 } 6335 6336 isn = af_ops->init_seq(skb); 6337 } 6338 6339 tcp_ecn_create_request(req, skb, sk, dst); 6340 6341 if (want_cookie) { 6342 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6343 req->cookie_ts = tmp_opt.tstamp_ok; 6344 if (!tmp_opt.tstamp_ok) 6345 inet_rsk(req)->ecn_ok = 0; 6346 } 6347 6348 tcp_rsk(req)->snt_isn = isn; 6349 tcp_rsk(req)->txhash = net_tx_rndhash(); 6350 tcp_openreq_init_rwin(req, sk, dst); 6351 if (!want_cookie) { 6352 tcp_reqsk_record_syn(sk, req, skb); 6353 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6354 } 6355 if (fastopen_sk) { 6356 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6357 &foc, TCP_SYNACK_FASTOPEN); 6358 /* Add the child socket directly into the accept queue */ 6359 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6360 sk->sk_data_ready(sk); 6361 bh_unlock_sock(fastopen_sk); 6362 sock_put(fastopen_sk); 6363 } else { 6364 tcp_rsk(req)->tfo_listener = false; 6365 if (!want_cookie) 6366 inet_csk_reqsk_queue_hash_add(sk, req, 6367 tcp_timeout_init((struct sock *)req)); 6368 af_ops->send_synack(sk, dst, &fl, req, &foc, 6369 !want_cookie ? TCP_SYNACK_NORMAL : 6370 TCP_SYNACK_COOKIE); 6371 if (want_cookie) { 6372 reqsk_free(req); 6373 return 0; 6374 } 6375 } 6376 reqsk_put(req); 6377 return 0; 6378 6379 drop_and_release: 6380 dst_release(dst); 6381 drop_and_free: 6382 reqsk_free(req); 6383 drop: 6384 tcp_listendrop(sk); 6385 return 0; 6386 } 6387 EXPORT_SYMBOL(tcp_conn_request); 6388