1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #include <linux/mm.h> 65 #include <linux/module.h> 66 #include <linux/sysctl.h> 67 #include <net/dst.h> 68 #include <net/tcp.h> 69 #include <net/inet_common.h> 70 #include <linux/ipsec.h> 71 #include <asm/unaligned.h> 72 #include <net/netdma.h> 73 74 int sysctl_tcp_timestamps __read_mostly = 1; 75 int sysctl_tcp_window_scaling __read_mostly = 1; 76 int sysctl_tcp_sack __read_mostly = 1; 77 int sysctl_tcp_fack __read_mostly = 1; 78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 79 int sysctl_tcp_ecn __read_mostly; 80 int sysctl_tcp_dsack __read_mostly = 1; 81 int sysctl_tcp_app_win __read_mostly = 31; 82 int sysctl_tcp_adv_win_scale __read_mostly = 2; 83 84 int sysctl_tcp_stdurg __read_mostly; 85 int sysctl_tcp_rfc1337 __read_mostly; 86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 87 int sysctl_tcp_frto __read_mostly = 2; 88 int sysctl_tcp_frto_response __read_mostly; 89 int sysctl_tcp_nometrics_save __read_mostly; 90 91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 92 int sysctl_tcp_abc __read_mostly; 93 94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 100 #define FLAG_ECE 0x40 /* ECE in this ACK */ 101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 103 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 104 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 105 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 106 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 107 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 108 109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 114 115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 117 118 /* Adapt the MSS value used to make delayed ack decision to the 119 * real world. 120 */ 121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 122 { 123 struct inet_connection_sock *icsk = inet_csk(sk); 124 const unsigned int lss = icsk->icsk_ack.last_seg_size; 125 unsigned int len; 126 127 icsk->icsk_ack.last_seg_size = 0; 128 129 /* skb->len may jitter because of SACKs, even if peer 130 * sends good full-sized frames. 131 */ 132 len = skb_shinfo(skb)->gso_size ? : skb->len; 133 if (len >= icsk->icsk_ack.rcv_mss) { 134 icsk->icsk_ack.rcv_mss = len; 135 } else { 136 /* Otherwise, we make more careful check taking into account, 137 * that SACKs block is variable. 138 * 139 * "len" is invariant segment length, including TCP header. 140 */ 141 len += skb->data - skb_transport_header(skb); 142 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 143 /* If PSH is not set, packet should be 144 * full sized, provided peer TCP is not badly broken. 145 * This observation (if it is correct 8)) allows 146 * to handle super-low mtu links fairly. 147 */ 148 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 149 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 150 /* Subtract also invariant (if peer is RFC compliant), 151 * tcp header plus fixed timestamp option length. 152 * Resulting "len" is MSS free of SACK jitter. 153 */ 154 len -= tcp_sk(sk)->tcp_header_len; 155 icsk->icsk_ack.last_seg_size = len; 156 if (len == lss) { 157 icsk->icsk_ack.rcv_mss = len; 158 return; 159 } 160 } 161 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 162 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 164 } 165 } 166 167 static void tcp_incr_quickack(struct sock *sk) 168 { 169 struct inet_connection_sock *icsk = inet_csk(sk); 170 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 171 172 if (quickacks == 0) 173 quickacks = 2; 174 if (quickacks > icsk->icsk_ack.quick) 175 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 176 } 177 178 void tcp_enter_quickack_mode(struct sock *sk) 179 { 180 struct inet_connection_sock *icsk = inet_csk(sk); 181 tcp_incr_quickack(sk); 182 icsk->icsk_ack.pingpong = 0; 183 icsk->icsk_ack.ato = TCP_ATO_MIN; 184 } 185 186 /* Send ACKs quickly, if "quick" count is not exhausted 187 * and the session is not interactive. 188 */ 189 190 static inline int tcp_in_quickack_mode(const struct sock *sk) 191 { 192 const struct inet_connection_sock *icsk = inet_csk(sk); 193 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 194 } 195 196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 197 { 198 if (tp->ecn_flags & TCP_ECN_OK) 199 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 200 } 201 202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb) 203 { 204 if (tcp_hdr(skb)->cwr) 205 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 206 } 207 208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 209 { 210 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 211 } 212 213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb) 214 { 215 if (tp->ecn_flags & TCP_ECN_OK) { 216 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags)) 217 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 218 /* Funny extension: if ECT is not set on a segment, 219 * it is surely retransmit. It is not in ECN RFC, 220 * but Linux follows this rule. */ 221 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags))) 222 tcp_enter_quickack_mode((struct sock *)tp); 223 } 224 } 225 226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th) 227 { 228 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 229 tp->ecn_flags &= ~TCP_ECN_OK; 230 } 231 232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th) 233 { 234 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 235 tp->ecn_flags &= ~TCP_ECN_OK; 236 } 237 238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th) 239 { 240 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 241 return 1; 242 return 0; 243 } 244 245 /* Buffer size and advertised window tuning. 246 * 247 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 248 */ 249 250 static void tcp_fixup_sndbuf(struct sock *sk) 251 { 252 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 253 sizeof(struct sk_buff); 254 255 if (sk->sk_sndbuf < 3 * sndmem) 256 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 257 } 258 259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 260 * 261 * All tcp_full_space() is split to two parts: "network" buffer, allocated 262 * forward and advertised in receiver window (tp->rcv_wnd) and 263 * "application buffer", required to isolate scheduling/application 264 * latencies from network. 265 * window_clamp is maximal advertised window. It can be less than 266 * tcp_full_space(), in this case tcp_full_space() - window_clamp 267 * is reserved for "application" buffer. The less window_clamp is 268 * the smoother our behaviour from viewpoint of network, but the lower 269 * throughput and the higher sensitivity of the connection to losses. 8) 270 * 271 * rcv_ssthresh is more strict window_clamp used at "slow start" 272 * phase to predict further behaviour of this connection. 273 * It is used for two goals: 274 * - to enforce header prediction at sender, even when application 275 * requires some significant "application buffer". It is check #1. 276 * - to prevent pruning of receive queue because of misprediction 277 * of receiver window. Check #2. 278 * 279 * The scheme does not work when sender sends good segments opening 280 * window and then starts to feed us spaghetti. But it should work 281 * in common situations. Otherwise, we have to rely on queue collapsing. 282 */ 283 284 /* Slow part of check#2. */ 285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 286 { 287 struct tcp_sock *tp = tcp_sk(sk); 288 /* Optimize this! */ 289 int truesize = tcp_win_from_space(skb->truesize) >> 1; 290 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 291 292 while (tp->rcv_ssthresh <= window) { 293 if (truesize <= skb->len) 294 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 295 296 truesize >>= 1; 297 window >>= 1; 298 } 299 return 0; 300 } 301 302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb) 303 { 304 struct tcp_sock *tp = tcp_sk(sk); 305 306 /* Check #1 */ 307 if (tp->rcv_ssthresh < tp->window_clamp && 308 (int)tp->rcv_ssthresh < tcp_space(sk) && 309 !tcp_memory_pressure) { 310 int incr; 311 312 /* Check #2. Increase window, if skb with such overhead 313 * will fit to rcvbuf in future. 314 */ 315 if (tcp_win_from_space(skb->truesize) <= skb->len) 316 incr = 2 * tp->advmss; 317 else 318 incr = __tcp_grow_window(sk, skb); 319 320 if (incr) { 321 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 322 tp->window_clamp); 323 inet_csk(sk)->icsk_ack.quick |= 1; 324 } 325 } 326 } 327 328 /* 3. Tuning rcvbuf, when connection enters established state. */ 329 330 static void tcp_fixup_rcvbuf(struct sock *sk) 331 { 332 struct tcp_sock *tp = tcp_sk(sk); 333 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 334 335 /* Try to select rcvbuf so that 4 mss-sized segments 336 * will fit to window and corresponding skbs will fit to our rcvbuf. 337 * (was 3; 4 is minimum to allow fast retransmit to work.) 338 */ 339 while (tcp_win_from_space(rcvmem) < tp->advmss) 340 rcvmem += 128; 341 if (sk->sk_rcvbuf < 4 * rcvmem) 342 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 343 } 344 345 /* 4. Try to fixup all. It is made immediately after connection enters 346 * established state. 347 */ 348 static void tcp_init_buffer_space(struct sock *sk) 349 { 350 struct tcp_sock *tp = tcp_sk(sk); 351 int maxwin; 352 353 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 354 tcp_fixup_rcvbuf(sk); 355 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 356 tcp_fixup_sndbuf(sk); 357 358 tp->rcvq_space.space = tp->rcv_wnd; 359 360 maxwin = tcp_full_space(sk); 361 362 if (tp->window_clamp >= maxwin) { 363 tp->window_clamp = maxwin; 364 365 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 366 tp->window_clamp = max(maxwin - 367 (maxwin >> sysctl_tcp_app_win), 368 4 * tp->advmss); 369 } 370 371 /* Force reservation of one segment. */ 372 if (sysctl_tcp_app_win && 373 tp->window_clamp > 2 * tp->advmss && 374 tp->window_clamp + tp->advmss > maxwin) 375 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 376 377 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 378 tp->snd_cwnd_stamp = tcp_time_stamp; 379 } 380 381 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 382 static void tcp_clamp_window(struct sock *sk) 383 { 384 struct tcp_sock *tp = tcp_sk(sk); 385 struct inet_connection_sock *icsk = inet_csk(sk); 386 387 icsk->icsk_ack.quick = 0; 388 389 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 390 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 391 !tcp_memory_pressure && 392 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 393 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 394 sysctl_tcp_rmem[2]); 395 } 396 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 397 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 398 } 399 400 /* Initialize RCV_MSS value. 401 * RCV_MSS is an our guess about MSS used by the peer. 402 * We haven't any direct information about the MSS. 403 * It's better to underestimate the RCV_MSS rather than overestimate. 404 * Overestimations make us ACKing less frequently than needed. 405 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 406 */ 407 void tcp_initialize_rcv_mss(struct sock *sk) 408 { 409 struct tcp_sock *tp = tcp_sk(sk); 410 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 411 412 hint = min(hint, tp->rcv_wnd / 2); 413 hint = min(hint, TCP_MIN_RCVMSS); 414 hint = max(hint, TCP_MIN_MSS); 415 416 inet_csk(sk)->icsk_ack.rcv_mss = hint; 417 } 418 419 /* Receiver "autotuning" code. 420 * 421 * The algorithm for RTT estimation w/o timestamps is based on 422 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 423 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 424 * 425 * More detail on this code can be found at 426 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 427 * though this reference is out of date. A new paper 428 * is pending. 429 */ 430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 431 { 432 u32 new_sample = tp->rcv_rtt_est.rtt; 433 long m = sample; 434 435 if (m == 0) 436 m = 1; 437 438 if (new_sample != 0) { 439 /* If we sample in larger samples in the non-timestamp 440 * case, we could grossly overestimate the RTT especially 441 * with chatty applications or bulk transfer apps which 442 * are stalled on filesystem I/O. 443 * 444 * Also, since we are only going for a minimum in the 445 * non-timestamp case, we do not smooth things out 446 * else with timestamps disabled convergence takes too 447 * long. 448 */ 449 if (!win_dep) { 450 m -= (new_sample >> 3); 451 new_sample += m; 452 } else if (m < new_sample) 453 new_sample = m << 3; 454 } else { 455 /* No previous measure. */ 456 new_sample = m << 3; 457 } 458 459 if (tp->rcv_rtt_est.rtt != new_sample) 460 tp->rcv_rtt_est.rtt = new_sample; 461 } 462 463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 464 { 465 if (tp->rcv_rtt_est.time == 0) 466 goto new_measure; 467 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 468 return; 469 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1); 470 471 new_measure: 472 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 473 tp->rcv_rtt_est.time = tcp_time_stamp; 474 } 475 476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 477 const struct sk_buff *skb) 478 { 479 struct tcp_sock *tp = tcp_sk(sk); 480 if (tp->rx_opt.rcv_tsecr && 481 (TCP_SKB_CB(skb)->end_seq - 482 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 483 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 484 } 485 486 /* 487 * This function should be called every time data is copied to user space. 488 * It calculates the appropriate TCP receive buffer space. 489 */ 490 void tcp_rcv_space_adjust(struct sock *sk) 491 { 492 struct tcp_sock *tp = tcp_sk(sk); 493 int time; 494 int space; 495 496 if (tp->rcvq_space.time == 0) 497 goto new_measure; 498 499 time = tcp_time_stamp - tp->rcvq_space.time; 500 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 501 return; 502 503 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 504 505 space = max(tp->rcvq_space.space, space); 506 507 if (tp->rcvq_space.space != space) { 508 int rcvmem; 509 510 tp->rcvq_space.space = space; 511 512 if (sysctl_tcp_moderate_rcvbuf && 513 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 514 int new_clamp = space; 515 516 /* Receive space grows, normalize in order to 517 * take into account packet headers and sk_buff 518 * structure overhead. 519 */ 520 space /= tp->advmss; 521 if (!space) 522 space = 1; 523 rcvmem = (tp->advmss + MAX_TCP_HEADER + 524 16 + sizeof(struct sk_buff)); 525 while (tcp_win_from_space(rcvmem) < tp->advmss) 526 rcvmem += 128; 527 space *= rcvmem; 528 space = min(space, sysctl_tcp_rmem[2]); 529 if (space > sk->sk_rcvbuf) { 530 sk->sk_rcvbuf = space; 531 532 /* Make the window clamp follow along. */ 533 tp->window_clamp = new_clamp; 534 } 535 } 536 } 537 538 new_measure: 539 tp->rcvq_space.seq = tp->copied_seq; 540 tp->rcvq_space.time = tcp_time_stamp; 541 } 542 543 /* There is something which you must keep in mind when you analyze the 544 * behavior of the tp->ato delayed ack timeout interval. When a 545 * connection starts up, we want to ack as quickly as possible. The 546 * problem is that "good" TCP's do slow start at the beginning of data 547 * transmission. The means that until we send the first few ACK's the 548 * sender will sit on his end and only queue most of his data, because 549 * he can only send snd_cwnd unacked packets at any given time. For 550 * each ACK we send, he increments snd_cwnd and transmits more of his 551 * queue. -DaveM 552 */ 553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 554 { 555 struct tcp_sock *tp = tcp_sk(sk); 556 struct inet_connection_sock *icsk = inet_csk(sk); 557 u32 now; 558 559 inet_csk_schedule_ack(sk); 560 561 tcp_measure_rcv_mss(sk, skb); 562 563 tcp_rcv_rtt_measure(tp); 564 565 now = tcp_time_stamp; 566 567 if (!icsk->icsk_ack.ato) { 568 /* The _first_ data packet received, initialize 569 * delayed ACK engine. 570 */ 571 tcp_incr_quickack(sk); 572 icsk->icsk_ack.ato = TCP_ATO_MIN; 573 } else { 574 int m = now - icsk->icsk_ack.lrcvtime; 575 576 if (m <= TCP_ATO_MIN / 2) { 577 /* The fastest case is the first. */ 578 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 579 } else if (m < icsk->icsk_ack.ato) { 580 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 581 if (icsk->icsk_ack.ato > icsk->icsk_rto) 582 icsk->icsk_ack.ato = icsk->icsk_rto; 583 } else if (m > icsk->icsk_rto) { 584 /* Too long gap. Apparently sender failed to 585 * restart window, so that we send ACKs quickly. 586 */ 587 tcp_incr_quickack(sk); 588 sk_mem_reclaim(sk); 589 } 590 } 591 icsk->icsk_ack.lrcvtime = now; 592 593 TCP_ECN_check_ce(tp, skb); 594 595 if (skb->len >= 128) 596 tcp_grow_window(sk, skb); 597 } 598 599 static u32 tcp_rto_min(struct sock *sk) 600 { 601 struct dst_entry *dst = __sk_dst_get(sk); 602 u32 rto_min = TCP_RTO_MIN; 603 604 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 605 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 606 return rto_min; 607 } 608 609 /* Called to compute a smoothed rtt estimate. The data fed to this 610 * routine either comes from timestamps, or from segments that were 611 * known _not_ to have been retransmitted [see Karn/Partridge 612 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 613 * piece by Van Jacobson. 614 * NOTE: the next three routines used to be one big routine. 615 * To save cycles in the RFC 1323 implementation it was better to break 616 * it up into three procedures. -- erics 617 */ 618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 619 { 620 struct tcp_sock *tp = tcp_sk(sk); 621 long m = mrtt; /* RTT */ 622 623 /* The following amusing code comes from Jacobson's 624 * article in SIGCOMM '88. Note that rtt and mdev 625 * are scaled versions of rtt and mean deviation. 626 * This is designed to be as fast as possible 627 * m stands for "measurement". 628 * 629 * On a 1990 paper the rto value is changed to: 630 * RTO = rtt + 4 * mdev 631 * 632 * Funny. This algorithm seems to be very broken. 633 * These formulae increase RTO, when it should be decreased, increase 634 * too slowly, when it should be increased quickly, decrease too quickly 635 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 636 * does not matter how to _calculate_ it. Seems, it was trap 637 * that VJ failed to avoid. 8) 638 */ 639 if (m == 0) 640 m = 1; 641 if (tp->srtt != 0) { 642 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 643 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 644 if (m < 0) { 645 m = -m; /* m is now abs(error) */ 646 m -= (tp->mdev >> 2); /* similar update on mdev */ 647 /* This is similar to one of Eifel findings. 648 * Eifel blocks mdev updates when rtt decreases. 649 * This solution is a bit different: we use finer gain 650 * for mdev in this case (alpha*beta). 651 * Like Eifel it also prevents growth of rto, 652 * but also it limits too fast rto decreases, 653 * happening in pure Eifel. 654 */ 655 if (m > 0) 656 m >>= 3; 657 } else { 658 m -= (tp->mdev >> 2); /* similar update on mdev */ 659 } 660 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 661 if (tp->mdev > tp->mdev_max) { 662 tp->mdev_max = tp->mdev; 663 if (tp->mdev_max > tp->rttvar) 664 tp->rttvar = tp->mdev_max; 665 } 666 if (after(tp->snd_una, tp->rtt_seq)) { 667 if (tp->mdev_max < tp->rttvar) 668 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 669 tp->rtt_seq = tp->snd_nxt; 670 tp->mdev_max = tcp_rto_min(sk); 671 } 672 } else { 673 /* no previous measure. */ 674 tp->srtt = m << 3; /* take the measured time to be rtt */ 675 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 676 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 677 tp->rtt_seq = tp->snd_nxt; 678 } 679 } 680 681 /* Calculate rto without backoff. This is the second half of Van Jacobson's 682 * routine referred to above. 683 */ 684 static inline void tcp_set_rto(struct sock *sk) 685 { 686 const struct tcp_sock *tp = tcp_sk(sk); 687 /* Old crap is replaced with new one. 8) 688 * 689 * More seriously: 690 * 1. If rtt variance happened to be less 50msec, it is hallucination. 691 * It cannot be less due to utterly erratic ACK generation made 692 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 693 * to do with delayed acks, because at cwnd>2 true delack timeout 694 * is invisible. Actually, Linux-2.4 also generates erratic 695 * ACKs in some circumstances. 696 */ 697 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 698 699 /* 2. Fixups made earlier cannot be right. 700 * If we do not estimate RTO correctly without them, 701 * all the algo is pure shit and should be replaced 702 * with correct one. It is exactly, which we pretend to do. 703 */ 704 705 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 706 * guarantees that rto is higher. 707 */ 708 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 709 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 710 } 711 712 /* Save metrics learned by this TCP session. 713 This function is called only, when TCP finishes successfully 714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 715 */ 716 void tcp_update_metrics(struct sock *sk) 717 { 718 struct tcp_sock *tp = tcp_sk(sk); 719 struct dst_entry *dst = __sk_dst_get(sk); 720 721 if (sysctl_tcp_nometrics_save) 722 return; 723 724 dst_confirm(dst); 725 726 if (dst && (dst->flags & DST_HOST)) { 727 const struct inet_connection_sock *icsk = inet_csk(sk); 728 int m; 729 unsigned long rtt; 730 731 if (icsk->icsk_backoff || !tp->srtt) { 732 /* This session failed to estimate rtt. Why? 733 * Probably, no packets returned in time. 734 * Reset our results. 735 */ 736 if (!(dst_metric_locked(dst, RTAX_RTT))) 737 dst->metrics[RTAX_RTT - 1] = 0; 738 return; 739 } 740 741 rtt = dst_metric_rtt(dst, RTAX_RTT); 742 m = rtt - tp->srtt; 743 744 /* If newly calculated rtt larger than stored one, 745 * store new one. Otherwise, use EWMA. Remember, 746 * rtt overestimation is always better than underestimation. 747 */ 748 if (!(dst_metric_locked(dst, RTAX_RTT))) { 749 if (m <= 0) 750 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt); 751 else 752 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3)); 753 } 754 755 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 756 unsigned long var; 757 if (m < 0) 758 m = -m; 759 760 /* Scale deviation to rttvar fixed point */ 761 m >>= 1; 762 if (m < tp->mdev) 763 m = tp->mdev; 764 765 var = dst_metric_rtt(dst, RTAX_RTTVAR); 766 if (m >= var) 767 var = m; 768 else 769 var -= (var - m) >> 2; 770 771 set_dst_metric_rtt(dst, RTAX_RTTVAR, var); 772 } 773 774 if (tp->snd_ssthresh >= 0xFFFF) { 775 /* Slow start still did not finish. */ 776 if (dst_metric(dst, RTAX_SSTHRESH) && 777 !dst_metric_locked(dst, RTAX_SSTHRESH) && 778 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 779 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 780 if (!dst_metric_locked(dst, RTAX_CWND) && 781 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 782 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd; 783 } else if (tp->snd_cwnd > tp->snd_ssthresh && 784 icsk->icsk_ca_state == TCP_CA_Open) { 785 /* Cong. avoidance phase, cwnd is reliable. */ 786 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 787 dst->metrics[RTAX_SSTHRESH-1] = 788 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 789 if (!dst_metric_locked(dst, RTAX_CWND)) 790 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1; 791 } else { 792 /* Else slow start did not finish, cwnd is non-sense, 793 ssthresh may be also invalid. 794 */ 795 if (!dst_metric_locked(dst, RTAX_CWND)) 796 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1; 797 if (dst_metric(dst, RTAX_SSTHRESH) && 798 !dst_metric_locked(dst, RTAX_SSTHRESH) && 799 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH)) 800 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 801 } 802 803 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 804 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering && 805 tp->reordering != sysctl_tcp_reordering) 806 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 807 } 808 } 809 } 810 811 /* Numbers are taken from RFC3390. 812 * 813 * John Heffner states: 814 * 815 * The RFC specifies a window of no more than 4380 bytes 816 * unless 2*MSS > 4380. Reading the pseudocode in the RFC 817 * is a bit misleading because they use a clamp at 4380 bytes 818 * rather than use a multiplier in the relevant range. 819 */ 820 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 821 { 822 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 823 824 if (!cwnd) { 825 if (tp->mss_cache > 1460) 826 cwnd = 2; 827 else 828 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 829 } 830 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 831 } 832 833 /* Set slow start threshold and cwnd not falling to slow start */ 834 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 835 { 836 struct tcp_sock *tp = tcp_sk(sk); 837 const struct inet_connection_sock *icsk = inet_csk(sk); 838 839 tp->prior_ssthresh = 0; 840 tp->bytes_acked = 0; 841 if (icsk->icsk_ca_state < TCP_CA_CWR) { 842 tp->undo_marker = 0; 843 if (set_ssthresh) 844 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 845 tp->snd_cwnd = min(tp->snd_cwnd, 846 tcp_packets_in_flight(tp) + 1U); 847 tp->snd_cwnd_cnt = 0; 848 tp->high_seq = tp->snd_nxt; 849 tp->snd_cwnd_stamp = tcp_time_stamp; 850 TCP_ECN_queue_cwr(tp); 851 852 tcp_set_ca_state(sk, TCP_CA_CWR); 853 } 854 } 855 856 /* 857 * Packet counting of FACK is based on in-order assumptions, therefore TCP 858 * disables it when reordering is detected 859 */ 860 static void tcp_disable_fack(struct tcp_sock *tp) 861 { 862 /* RFC3517 uses different metric in lost marker => reset on change */ 863 if (tcp_is_fack(tp)) 864 tp->lost_skb_hint = NULL; 865 tp->rx_opt.sack_ok &= ~2; 866 } 867 868 /* Take a notice that peer is sending D-SACKs */ 869 static void tcp_dsack_seen(struct tcp_sock *tp) 870 { 871 tp->rx_opt.sack_ok |= 4; 872 } 873 874 /* Initialize metrics on socket. */ 875 876 static void tcp_init_metrics(struct sock *sk) 877 { 878 struct tcp_sock *tp = tcp_sk(sk); 879 struct dst_entry *dst = __sk_dst_get(sk); 880 881 if (dst == NULL) 882 goto reset; 883 884 dst_confirm(dst); 885 886 if (dst_metric_locked(dst, RTAX_CWND)) 887 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 888 if (dst_metric(dst, RTAX_SSTHRESH)) { 889 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 890 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 891 tp->snd_ssthresh = tp->snd_cwnd_clamp; 892 } 893 if (dst_metric(dst, RTAX_REORDERING) && 894 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 895 tcp_disable_fack(tp); 896 tp->reordering = dst_metric(dst, RTAX_REORDERING); 897 } 898 899 if (dst_metric(dst, RTAX_RTT) == 0) 900 goto reset; 901 902 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 903 goto reset; 904 905 /* Initial rtt is determined from SYN,SYN-ACK. 906 * The segment is small and rtt may appear much 907 * less than real one. Use per-dst memory 908 * to make it more realistic. 909 * 910 * A bit of theory. RTT is time passed after "normal" sized packet 911 * is sent until it is ACKed. In normal circumstances sending small 912 * packets force peer to delay ACKs and calculation is correct too. 913 * The algorithm is adaptive and, provided we follow specs, it 914 * NEVER underestimate RTT. BUT! If peer tries to make some clever 915 * tricks sort of "quick acks" for time long enough to decrease RTT 916 * to low value, and then abruptly stops to do it and starts to delay 917 * ACKs, wait for troubles. 918 */ 919 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) { 920 tp->srtt = dst_metric_rtt(dst, RTAX_RTT); 921 tp->rtt_seq = tp->snd_nxt; 922 } 923 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) { 924 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR); 925 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 926 } 927 tcp_set_rto(sk); 928 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 929 goto reset; 930 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 931 tp->snd_cwnd_stamp = tcp_time_stamp; 932 return; 933 934 reset: 935 /* Play conservative. If timestamps are not 936 * supported, TCP will fail to recalculate correct 937 * rtt, if initial rto is too small. FORGET ALL AND RESET! 938 */ 939 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 940 tp->srtt = 0; 941 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 942 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 943 } 944 } 945 946 static void tcp_update_reordering(struct sock *sk, const int metric, 947 const int ts) 948 { 949 struct tcp_sock *tp = tcp_sk(sk); 950 if (metric > tp->reordering) { 951 int mib_idx; 952 953 tp->reordering = min(TCP_MAX_REORDERING, metric); 954 955 /* This exciting event is worth to be remembered. 8) */ 956 if (ts) 957 mib_idx = LINUX_MIB_TCPTSREORDER; 958 else if (tcp_is_reno(tp)) 959 mib_idx = LINUX_MIB_TCPRENOREORDER; 960 else if (tcp_is_fack(tp)) 961 mib_idx = LINUX_MIB_TCPFACKREORDER; 962 else 963 mib_idx = LINUX_MIB_TCPSACKREORDER; 964 965 NET_INC_STATS_BH(sock_net(sk), mib_idx); 966 #if FASTRETRANS_DEBUG > 1 967 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 968 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 969 tp->reordering, 970 tp->fackets_out, 971 tp->sacked_out, 972 tp->undo_marker ? tp->undo_retrans : 0); 973 #endif 974 tcp_disable_fack(tp); 975 } 976 } 977 978 /* This must be called before lost_out is incremented */ 979 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 980 { 981 if ((tp->retransmit_skb_hint == NULL) || 982 before(TCP_SKB_CB(skb)->seq, 983 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 984 tp->retransmit_skb_hint = skb; 985 986 if (!tp->lost_out || 987 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 988 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 989 } 990 991 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 992 { 993 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 994 tcp_verify_retransmit_hint(tp, skb); 995 996 tp->lost_out += tcp_skb_pcount(skb); 997 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 998 } 999 } 1000 1001 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 1002 struct sk_buff *skb) 1003 { 1004 tcp_verify_retransmit_hint(tp, skb); 1005 1006 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1007 tp->lost_out += tcp_skb_pcount(skb); 1008 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1009 } 1010 } 1011 1012 /* This procedure tags the retransmission queue when SACKs arrive. 1013 * 1014 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1015 * Packets in queue with these bits set are counted in variables 1016 * sacked_out, retrans_out and lost_out, correspondingly. 1017 * 1018 * Valid combinations are: 1019 * Tag InFlight Description 1020 * 0 1 - orig segment is in flight. 1021 * S 0 - nothing flies, orig reached receiver. 1022 * L 0 - nothing flies, orig lost by net. 1023 * R 2 - both orig and retransmit are in flight. 1024 * L|R 1 - orig is lost, retransmit is in flight. 1025 * S|R 1 - orig reached receiver, retrans is still in flight. 1026 * (L|S|R is logically valid, it could occur when L|R is sacked, 1027 * but it is equivalent to plain S and code short-curcuits it to S. 1028 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1029 * 1030 * These 6 states form finite state machine, controlled by the following events: 1031 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1032 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1033 * 3. Loss detection event of one of three flavors: 1034 * A. Scoreboard estimator decided the packet is lost. 1035 * A'. Reno "three dupacks" marks head of queue lost. 1036 * A''. Its FACK modfication, head until snd.fack is lost. 1037 * B. SACK arrives sacking data transmitted after never retransmitted 1038 * hole was sent out. 1039 * C. SACK arrives sacking SND.NXT at the moment, when the 1040 * segment was retransmitted. 1041 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1042 * 1043 * It is pleasant to note, that state diagram turns out to be commutative, 1044 * so that we are allowed not to be bothered by order of our actions, 1045 * when multiple events arrive simultaneously. (see the function below). 1046 * 1047 * Reordering detection. 1048 * -------------------- 1049 * Reordering metric is maximal distance, which a packet can be displaced 1050 * in packet stream. With SACKs we can estimate it: 1051 * 1052 * 1. SACK fills old hole and the corresponding segment was not 1053 * ever retransmitted -> reordering. Alas, we cannot use it 1054 * when segment was retransmitted. 1055 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1056 * for retransmitted and already SACKed segment -> reordering.. 1057 * Both of these heuristics are not used in Loss state, when we cannot 1058 * account for retransmits accurately. 1059 * 1060 * SACK block validation. 1061 * ---------------------- 1062 * 1063 * SACK block range validation checks that the received SACK block fits to 1064 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1065 * Note that SND.UNA is not included to the range though being valid because 1066 * it means that the receiver is rather inconsistent with itself reporting 1067 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1068 * perfectly valid, however, in light of RFC2018 which explicitly states 1069 * that "SACK block MUST reflect the newest segment. Even if the newest 1070 * segment is going to be discarded ...", not that it looks very clever 1071 * in case of head skb. Due to potentional receiver driven attacks, we 1072 * choose to avoid immediate execution of a walk in write queue due to 1073 * reneging and defer head skb's loss recovery to standard loss recovery 1074 * procedure that will eventually trigger (nothing forbids us doing this). 1075 * 1076 * Implements also blockage to start_seq wrap-around. Problem lies in the 1077 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1078 * there's no guarantee that it will be before snd_nxt (n). The problem 1079 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1080 * wrap (s_w): 1081 * 1082 * <- outs wnd -> <- wrapzone -> 1083 * u e n u_w e_w s n_w 1084 * | | | | | | | 1085 * |<------------+------+----- TCP seqno space --------------+---------->| 1086 * ...-- <2^31 ->| |<--------... 1087 * ...---- >2^31 ------>| |<--------... 1088 * 1089 * Current code wouldn't be vulnerable but it's better still to discard such 1090 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1091 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1092 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1093 * equal to the ideal case (infinite seqno space without wrap caused issues). 1094 * 1095 * With D-SACK the lower bound is extended to cover sequence space below 1096 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1097 * again, D-SACK block must not to go across snd_una (for the same reason as 1098 * for the normal SACK blocks, explained above). But there all simplicity 1099 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1100 * fully below undo_marker they do not affect behavior in anyway and can 1101 * therefore be safely ignored. In rare cases (which are more or less 1102 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1103 * fragmentation and packet reordering past skb's retransmission. To consider 1104 * them correctly, the acceptable range must be extended even more though 1105 * the exact amount is rather hard to quantify. However, tp->max_window can 1106 * be used as an exaggerated estimate. 1107 */ 1108 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1109 u32 start_seq, u32 end_seq) 1110 { 1111 /* Too far in future, or reversed (interpretation is ambiguous) */ 1112 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1113 return 0; 1114 1115 /* Nasty start_seq wrap-around check (see comments above) */ 1116 if (!before(start_seq, tp->snd_nxt)) 1117 return 0; 1118 1119 /* In outstanding window? ...This is valid exit for D-SACKs too. 1120 * start_seq == snd_una is non-sensical (see comments above) 1121 */ 1122 if (after(start_seq, tp->snd_una)) 1123 return 1; 1124 1125 if (!is_dsack || !tp->undo_marker) 1126 return 0; 1127 1128 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1129 if (!after(end_seq, tp->snd_una)) 1130 return 0; 1131 1132 if (!before(start_seq, tp->undo_marker)) 1133 return 1; 1134 1135 /* Too old */ 1136 if (!after(end_seq, tp->undo_marker)) 1137 return 0; 1138 1139 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1140 * start_seq < undo_marker and end_seq >= undo_marker. 1141 */ 1142 return !before(start_seq, end_seq - tp->max_window); 1143 } 1144 1145 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1146 * Event "C". Later note: FACK people cheated me again 8), we have to account 1147 * for reordering! Ugly, but should help. 1148 * 1149 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1150 * less than what is now known to be received by the other end (derived from 1151 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1152 * retransmitted skbs to avoid some costly processing per ACKs. 1153 */ 1154 static void tcp_mark_lost_retrans(struct sock *sk) 1155 { 1156 const struct inet_connection_sock *icsk = inet_csk(sk); 1157 struct tcp_sock *tp = tcp_sk(sk); 1158 struct sk_buff *skb; 1159 int cnt = 0; 1160 u32 new_low_seq = tp->snd_nxt; 1161 u32 received_upto = tcp_highest_sack_seq(tp); 1162 1163 if (!tcp_is_fack(tp) || !tp->retrans_out || 1164 !after(received_upto, tp->lost_retrans_low) || 1165 icsk->icsk_ca_state != TCP_CA_Recovery) 1166 return; 1167 1168 tcp_for_write_queue(skb, sk) { 1169 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1170 1171 if (skb == tcp_send_head(sk)) 1172 break; 1173 if (cnt == tp->retrans_out) 1174 break; 1175 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1176 continue; 1177 1178 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1179 continue; 1180 1181 if (after(received_upto, ack_seq) && 1182 (tcp_is_fack(tp) || 1183 !before(received_upto, 1184 ack_seq + tp->reordering * tp->mss_cache))) { 1185 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1186 tp->retrans_out -= tcp_skb_pcount(skb); 1187 1188 tcp_skb_mark_lost_uncond_verify(tp, skb); 1189 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1190 } else { 1191 if (before(ack_seq, new_low_seq)) 1192 new_low_seq = ack_seq; 1193 cnt += tcp_skb_pcount(skb); 1194 } 1195 } 1196 1197 if (tp->retrans_out) 1198 tp->lost_retrans_low = new_low_seq; 1199 } 1200 1201 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb, 1202 struct tcp_sack_block_wire *sp, int num_sacks, 1203 u32 prior_snd_una) 1204 { 1205 struct tcp_sock *tp = tcp_sk(sk); 1206 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1207 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1208 int dup_sack = 0; 1209 1210 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1211 dup_sack = 1; 1212 tcp_dsack_seen(tp); 1213 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1214 } else if (num_sacks > 1) { 1215 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1216 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1217 1218 if (!after(end_seq_0, end_seq_1) && 1219 !before(start_seq_0, start_seq_1)) { 1220 dup_sack = 1; 1221 tcp_dsack_seen(tp); 1222 NET_INC_STATS_BH(sock_net(sk), 1223 LINUX_MIB_TCPDSACKOFORECV); 1224 } 1225 } 1226 1227 /* D-SACK for already forgotten data... Do dumb counting. */ 1228 if (dup_sack && 1229 !after(end_seq_0, prior_snd_una) && 1230 after(end_seq_0, tp->undo_marker)) 1231 tp->undo_retrans--; 1232 1233 return dup_sack; 1234 } 1235 1236 struct tcp_sacktag_state { 1237 int reord; 1238 int fack_count; 1239 int flag; 1240 }; 1241 1242 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1243 * the incoming SACK may not exactly match but we can find smaller MSS 1244 * aligned portion of it that matches. Therefore we might need to fragment 1245 * which may fail and creates some hassle (caller must handle error case 1246 * returns). 1247 * 1248 * FIXME: this could be merged to shift decision code 1249 */ 1250 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1251 u32 start_seq, u32 end_seq) 1252 { 1253 int in_sack, err; 1254 unsigned int pkt_len; 1255 unsigned int mss; 1256 1257 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1258 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1259 1260 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1261 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1262 mss = tcp_skb_mss(skb); 1263 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1264 1265 if (!in_sack) { 1266 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1267 if (pkt_len < mss) 1268 pkt_len = mss; 1269 } else { 1270 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1271 if (pkt_len < mss) 1272 return -EINVAL; 1273 } 1274 1275 /* Round if necessary so that SACKs cover only full MSSes 1276 * and/or the remaining small portion (if present) 1277 */ 1278 if (pkt_len > mss) { 1279 unsigned int new_len = (pkt_len / mss) * mss; 1280 if (!in_sack && new_len < pkt_len) { 1281 new_len += mss; 1282 if (new_len > skb->len) 1283 return 0; 1284 } 1285 pkt_len = new_len; 1286 } 1287 err = tcp_fragment(sk, skb, pkt_len, mss); 1288 if (err < 0) 1289 return err; 1290 } 1291 1292 return in_sack; 1293 } 1294 1295 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk, 1296 struct tcp_sacktag_state *state, 1297 int dup_sack, int pcount) 1298 { 1299 struct tcp_sock *tp = tcp_sk(sk); 1300 u8 sacked = TCP_SKB_CB(skb)->sacked; 1301 int fack_count = state->fack_count; 1302 1303 /* Account D-SACK for retransmitted packet. */ 1304 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1305 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1306 tp->undo_retrans--; 1307 if (sacked & TCPCB_SACKED_ACKED) 1308 state->reord = min(fack_count, state->reord); 1309 } 1310 1311 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1312 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1313 return sacked; 1314 1315 if (!(sacked & TCPCB_SACKED_ACKED)) { 1316 if (sacked & TCPCB_SACKED_RETRANS) { 1317 /* If the segment is not tagged as lost, 1318 * we do not clear RETRANS, believing 1319 * that retransmission is still in flight. 1320 */ 1321 if (sacked & TCPCB_LOST) { 1322 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1323 tp->lost_out -= pcount; 1324 tp->retrans_out -= pcount; 1325 } 1326 } else { 1327 if (!(sacked & TCPCB_RETRANS)) { 1328 /* New sack for not retransmitted frame, 1329 * which was in hole. It is reordering. 1330 */ 1331 if (before(TCP_SKB_CB(skb)->seq, 1332 tcp_highest_sack_seq(tp))) 1333 state->reord = min(fack_count, 1334 state->reord); 1335 1336 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1337 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) 1338 state->flag |= FLAG_ONLY_ORIG_SACKED; 1339 } 1340 1341 if (sacked & TCPCB_LOST) { 1342 sacked &= ~TCPCB_LOST; 1343 tp->lost_out -= pcount; 1344 } 1345 } 1346 1347 sacked |= TCPCB_SACKED_ACKED; 1348 state->flag |= FLAG_DATA_SACKED; 1349 tp->sacked_out += pcount; 1350 1351 fack_count += pcount; 1352 1353 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1354 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1355 before(TCP_SKB_CB(skb)->seq, 1356 TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1357 tp->lost_cnt_hint += pcount; 1358 1359 if (fack_count > tp->fackets_out) 1360 tp->fackets_out = fack_count; 1361 } 1362 1363 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1364 * frames and clear it. undo_retrans is decreased above, L|R frames 1365 * are accounted above as well. 1366 */ 1367 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1368 sacked &= ~TCPCB_SACKED_RETRANS; 1369 tp->retrans_out -= pcount; 1370 } 1371 1372 return sacked; 1373 } 1374 1375 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1376 struct tcp_sacktag_state *state, 1377 unsigned int pcount, int shifted, int mss) 1378 { 1379 struct tcp_sock *tp = tcp_sk(sk); 1380 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1381 1382 BUG_ON(!pcount); 1383 1384 /* Tweak before seqno plays */ 1385 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint && 1386 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq)) 1387 tp->lost_cnt_hint += pcount; 1388 1389 TCP_SKB_CB(prev)->end_seq += shifted; 1390 TCP_SKB_CB(skb)->seq += shifted; 1391 1392 skb_shinfo(prev)->gso_segs += pcount; 1393 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1394 skb_shinfo(skb)->gso_segs -= pcount; 1395 1396 /* When we're adding to gso_segs == 1, gso_size will be zero, 1397 * in theory this shouldn't be necessary but as long as DSACK 1398 * code can come after this skb later on it's better to keep 1399 * setting gso_size to something. 1400 */ 1401 if (!skb_shinfo(prev)->gso_size) { 1402 skb_shinfo(prev)->gso_size = mss; 1403 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1404 } 1405 1406 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1407 if (skb_shinfo(skb)->gso_segs <= 1) { 1408 skb_shinfo(skb)->gso_size = 0; 1409 skb_shinfo(skb)->gso_type = 0; 1410 } 1411 1412 /* We discard results */ 1413 tcp_sacktag_one(skb, sk, state, 0, pcount); 1414 1415 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1416 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1417 1418 if (skb->len > 0) { 1419 BUG_ON(!tcp_skb_pcount(skb)); 1420 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1421 return 0; 1422 } 1423 1424 /* Whole SKB was eaten :-) */ 1425 1426 if (skb == tp->retransmit_skb_hint) 1427 tp->retransmit_skb_hint = prev; 1428 if (skb == tp->scoreboard_skb_hint) 1429 tp->scoreboard_skb_hint = prev; 1430 if (skb == tp->lost_skb_hint) { 1431 tp->lost_skb_hint = prev; 1432 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1433 } 1434 1435 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags; 1436 if (skb == tcp_highest_sack(sk)) 1437 tcp_advance_highest_sack(sk, skb); 1438 1439 tcp_unlink_write_queue(skb, sk); 1440 sk_wmem_free_skb(sk, skb); 1441 1442 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1443 1444 return 1; 1445 } 1446 1447 /* I wish gso_size would have a bit more sane initialization than 1448 * something-or-zero which complicates things 1449 */ 1450 static int tcp_skb_seglen(struct sk_buff *skb) 1451 { 1452 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1453 } 1454 1455 /* Shifting pages past head area doesn't work */ 1456 static int skb_can_shift(struct sk_buff *skb) 1457 { 1458 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1459 } 1460 1461 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1462 * skb. 1463 */ 1464 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1465 struct tcp_sacktag_state *state, 1466 u32 start_seq, u32 end_seq, 1467 int dup_sack) 1468 { 1469 struct tcp_sock *tp = tcp_sk(sk); 1470 struct sk_buff *prev; 1471 int mss; 1472 int pcount = 0; 1473 int len; 1474 int in_sack; 1475 1476 if (!sk_can_gso(sk)) 1477 goto fallback; 1478 1479 /* Normally R but no L won't result in plain S */ 1480 if (!dup_sack && 1481 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1482 goto fallback; 1483 if (!skb_can_shift(skb)) 1484 goto fallback; 1485 /* This frame is about to be dropped (was ACKed). */ 1486 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1487 goto fallback; 1488 1489 /* Can only happen with delayed DSACK + discard craziness */ 1490 if (unlikely(skb == tcp_write_queue_head(sk))) 1491 goto fallback; 1492 prev = tcp_write_queue_prev(sk, skb); 1493 1494 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1495 goto fallback; 1496 1497 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1498 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1499 1500 if (in_sack) { 1501 len = skb->len; 1502 pcount = tcp_skb_pcount(skb); 1503 mss = tcp_skb_seglen(skb); 1504 1505 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1506 * drop this restriction as unnecessary 1507 */ 1508 if (mss != tcp_skb_seglen(prev)) 1509 goto fallback; 1510 } else { 1511 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1512 goto noop; 1513 /* CHECKME: This is non-MSS split case only?, this will 1514 * cause skipped skbs due to advancing loop btw, original 1515 * has that feature too 1516 */ 1517 if (tcp_skb_pcount(skb) <= 1) 1518 goto noop; 1519 1520 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1521 if (!in_sack) { 1522 /* TODO: head merge to next could be attempted here 1523 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1524 * though it might not be worth of the additional hassle 1525 * 1526 * ...we can probably just fallback to what was done 1527 * previously. We could try merging non-SACKed ones 1528 * as well but it probably isn't going to buy off 1529 * because later SACKs might again split them, and 1530 * it would make skb timestamp tracking considerably 1531 * harder problem. 1532 */ 1533 goto fallback; 1534 } 1535 1536 len = end_seq - TCP_SKB_CB(skb)->seq; 1537 BUG_ON(len < 0); 1538 BUG_ON(len > skb->len); 1539 1540 /* MSS boundaries should be honoured or else pcount will 1541 * severely break even though it makes things bit trickier. 1542 * Optimize common case to avoid most of the divides 1543 */ 1544 mss = tcp_skb_mss(skb); 1545 1546 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1547 * drop this restriction as unnecessary 1548 */ 1549 if (mss != tcp_skb_seglen(prev)) 1550 goto fallback; 1551 1552 if (len == mss) { 1553 pcount = 1; 1554 } else if (len < mss) { 1555 goto noop; 1556 } else { 1557 pcount = len / mss; 1558 len = pcount * mss; 1559 } 1560 } 1561 1562 if (!skb_shift(prev, skb, len)) 1563 goto fallback; 1564 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss)) 1565 goto out; 1566 1567 /* Hole filled allows collapsing with the next as well, this is very 1568 * useful when hole on every nth skb pattern happens 1569 */ 1570 if (prev == tcp_write_queue_tail(sk)) 1571 goto out; 1572 skb = tcp_write_queue_next(sk, prev); 1573 1574 if (!skb_can_shift(skb) || 1575 (skb == tcp_send_head(sk)) || 1576 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1577 (mss != tcp_skb_seglen(skb))) 1578 goto out; 1579 1580 len = skb->len; 1581 if (skb_shift(prev, skb, len)) { 1582 pcount += tcp_skb_pcount(skb); 1583 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss); 1584 } 1585 1586 out: 1587 state->fack_count += pcount; 1588 return prev; 1589 1590 noop: 1591 return skb; 1592 1593 fallback: 1594 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1595 return NULL; 1596 } 1597 1598 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1599 struct tcp_sack_block *next_dup, 1600 struct tcp_sacktag_state *state, 1601 u32 start_seq, u32 end_seq, 1602 int dup_sack_in) 1603 { 1604 struct tcp_sock *tp = tcp_sk(sk); 1605 struct sk_buff *tmp; 1606 1607 tcp_for_write_queue_from(skb, sk) { 1608 int in_sack = 0; 1609 int dup_sack = dup_sack_in; 1610 1611 if (skb == tcp_send_head(sk)) 1612 break; 1613 1614 /* queue is in-order => we can short-circuit the walk early */ 1615 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1616 break; 1617 1618 if ((next_dup != NULL) && 1619 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1620 in_sack = tcp_match_skb_to_sack(sk, skb, 1621 next_dup->start_seq, 1622 next_dup->end_seq); 1623 if (in_sack > 0) 1624 dup_sack = 1; 1625 } 1626 1627 /* skb reference here is a bit tricky to get right, since 1628 * shifting can eat and free both this skb and the next, 1629 * so not even _safe variant of the loop is enough. 1630 */ 1631 if (in_sack <= 0) { 1632 tmp = tcp_shift_skb_data(sk, skb, state, 1633 start_seq, end_seq, dup_sack); 1634 if (tmp != NULL) { 1635 if (tmp != skb) { 1636 skb = tmp; 1637 continue; 1638 } 1639 1640 in_sack = 0; 1641 } else { 1642 in_sack = tcp_match_skb_to_sack(sk, skb, 1643 start_seq, 1644 end_seq); 1645 } 1646 } 1647 1648 if (unlikely(in_sack < 0)) 1649 break; 1650 1651 if (in_sack) { 1652 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk, 1653 state, 1654 dup_sack, 1655 tcp_skb_pcount(skb)); 1656 1657 if (!before(TCP_SKB_CB(skb)->seq, 1658 tcp_highest_sack_seq(tp))) 1659 tcp_advance_highest_sack(sk, skb); 1660 } 1661 1662 state->fack_count += tcp_skb_pcount(skb); 1663 } 1664 return skb; 1665 } 1666 1667 /* Avoid all extra work that is being done by sacktag while walking in 1668 * a normal way 1669 */ 1670 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1671 struct tcp_sacktag_state *state, 1672 u32 skip_to_seq) 1673 { 1674 tcp_for_write_queue_from(skb, sk) { 1675 if (skb == tcp_send_head(sk)) 1676 break; 1677 1678 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1679 break; 1680 1681 state->fack_count += tcp_skb_pcount(skb); 1682 } 1683 return skb; 1684 } 1685 1686 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1687 struct sock *sk, 1688 struct tcp_sack_block *next_dup, 1689 struct tcp_sacktag_state *state, 1690 u32 skip_to_seq) 1691 { 1692 if (next_dup == NULL) 1693 return skb; 1694 1695 if (before(next_dup->start_seq, skip_to_seq)) { 1696 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1697 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1698 next_dup->start_seq, next_dup->end_seq, 1699 1); 1700 } 1701 1702 return skb; 1703 } 1704 1705 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache) 1706 { 1707 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1708 } 1709 1710 static int 1711 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, 1712 u32 prior_snd_una) 1713 { 1714 const struct inet_connection_sock *icsk = inet_csk(sk); 1715 struct tcp_sock *tp = tcp_sk(sk); 1716 unsigned char *ptr = (skb_transport_header(ack_skb) + 1717 TCP_SKB_CB(ack_skb)->sacked); 1718 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1719 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1720 struct tcp_sack_block *cache; 1721 struct tcp_sacktag_state state; 1722 struct sk_buff *skb; 1723 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1724 int used_sacks; 1725 int found_dup_sack = 0; 1726 int i, j; 1727 int first_sack_index; 1728 1729 state.flag = 0; 1730 state.reord = tp->packets_out; 1731 1732 if (!tp->sacked_out) { 1733 if (WARN_ON(tp->fackets_out)) 1734 tp->fackets_out = 0; 1735 tcp_highest_sack_reset(sk); 1736 } 1737 1738 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1739 num_sacks, prior_snd_una); 1740 if (found_dup_sack) 1741 state.flag |= FLAG_DSACKING_ACK; 1742 1743 /* Eliminate too old ACKs, but take into 1744 * account more or less fresh ones, they can 1745 * contain valid SACK info. 1746 */ 1747 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1748 return 0; 1749 1750 if (!tp->packets_out) 1751 goto out; 1752 1753 used_sacks = 0; 1754 first_sack_index = 0; 1755 for (i = 0; i < num_sacks; i++) { 1756 int dup_sack = !i && found_dup_sack; 1757 1758 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1759 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1760 1761 if (!tcp_is_sackblock_valid(tp, dup_sack, 1762 sp[used_sacks].start_seq, 1763 sp[used_sacks].end_seq)) { 1764 int mib_idx; 1765 1766 if (dup_sack) { 1767 if (!tp->undo_marker) 1768 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1769 else 1770 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1771 } else { 1772 /* Don't count olds caused by ACK reordering */ 1773 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1774 !after(sp[used_sacks].end_seq, tp->snd_una)) 1775 continue; 1776 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1777 } 1778 1779 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1780 if (i == 0) 1781 first_sack_index = -1; 1782 continue; 1783 } 1784 1785 /* Ignore very old stuff early */ 1786 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1787 continue; 1788 1789 used_sacks++; 1790 } 1791 1792 /* order SACK blocks to allow in order walk of the retrans queue */ 1793 for (i = used_sacks - 1; i > 0; i--) { 1794 for (j = 0; j < i; j++) { 1795 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1796 struct tcp_sack_block tmp; 1797 1798 tmp = sp[j]; 1799 sp[j] = sp[j + 1]; 1800 sp[j + 1] = tmp; 1801 1802 /* Track where the first SACK block goes to */ 1803 if (j == first_sack_index) 1804 first_sack_index = j + 1; 1805 } 1806 } 1807 } 1808 1809 skb = tcp_write_queue_head(sk); 1810 state.fack_count = 0; 1811 i = 0; 1812 1813 if (!tp->sacked_out) { 1814 /* It's already past, so skip checking against it */ 1815 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1816 } else { 1817 cache = tp->recv_sack_cache; 1818 /* Skip empty blocks in at head of the cache */ 1819 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1820 !cache->end_seq) 1821 cache++; 1822 } 1823 1824 while (i < used_sacks) { 1825 u32 start_seq = sp[i].start_seq; 1826 u32 end_seq = sp[i].end_seq; 1827 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1828 struct tcp_sack_block *next_dup = NULL; 1829 1830 if (found_dup_sack && ((i + 1) == first_sack_index)) 1831 next_dup = &sp[i + 1]; 1832 1833 /* Event "B" in the comment above. */ 1834 if (after(end_seq, tp->high_seq)) 1835 state.flag |= FLAG_DATA_LOST; 1836 1837 /* Skip too early cached blocks */ 1838 while (tcp_sack_cache_ok(tp, cache) && 1839 !before(start_seq, cache->end_seq)) 1840 cache++; 1841 1842 /* Can skip some work by looking recv_sack_cache? */ 1843 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1844 after(end_seq, cache->start_seq)) { 1845 1846 /* Head todo? */ 1847 if (before(start_seq, cache->start_seq)) { 1848 skb = tcp_sacktag_skip(skb, sk, &state, 1849 start_seq); 1850 skb = tcp_sacktag_walk(skb, sk, next_dup, 1851 &state, 1852 start_seq, 1853 cache->start_seq, 1854 dup_sack); 1855 } 1856 1857 /* Rest of the block already fully processed? */ 1858 if (!after(end_seq, cache->end_seq)) 1859 goto advance_sp; 1860 1861 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1862 &state, 1863 cache->end_seq); 1864 1865 /* ...tail remains todo... */ 1866 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1867 /* ...but better entrypoint exists! */ 1868 skb = tcp_highest_sack(sk); 1869 if (skb == NULL) 1870 break; 1871 state.fack_count = tp->fackets_out; 1872 cache++; 1873 goto walk; 1874 } 1875 1876 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1877 /* Check overlap against next cached too (past this one already) */ 1878 cache++; 1879 continue; 1880 } 1881 1882 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1883 skb = tcp_highest_sack(sk); 1884 if (skb == NULL) 1885 break; 1886 state.fack_count = tp->fackets_out; 1887 } 1888 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1889 1890 walk: 1891 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1892 start_seq, end_seq, dup_sack); 1893 1894 advance_sp: 1895 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1896 * due to in-order walk 1897 */ 1898 if (after(end_seq, tp->frto_highmark)) 1899 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1900 1901 i++; 1902 } 1903 1904 /* Clear the head of the cache sack blocks so we can skip it next time */ 1905 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1906 tp->recv_sack_cache[i].start_seq = 0; 1907 tp->recv_sack_cache[i].end_seq = 0; 1908 } 1909 for (j = 0; j < used_sacks; j++) 1910 tp->recv_sack_cache[i++] = sp[j]; 1911 1912 tcp_mark_lost_retrans(sk); 1913 1914 tcp_verify_left_out(tp); 1915 1916 if ((state.reord < tp->fackets_out) && 1917 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1918 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1919 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1920 1921 out: 1922 1923 #if FASTRETRANS_DEBUG > 0 1924 WARN_ON((int)tp->sacked_out < 0); 1925 WARN_ON((int)tp->lost_out < 0); 1926 WARN_ON((int)tp->retrans_out < 0); 1927 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1928 #endif 1929 return state.flag; 1930 } 1931 1932 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1933 * packets_out. Returns zero if sacked_out adjustement wasn't necessary. 1934 */ 1935 static int tcp_limit_reno_sacked(struct tcp_sock *tp) 1936 { 1937 u32 holes; 1938 1939 holes = max(tp->lost_out, 1U); 1940 holes = min(holes, tp->packets_out); 1941 1942 if ((tp->sacked_out + holes) > tp->packets_out) { 1943 tp->sacked_out = tp->packets_out - holes; 1944 return 1; 1945 } 1946 return 0; 1947 } 1948 1949 /* If we receive more dupacks than we expected counting segments 1950 * in assumption of absent reordering, interpret this as reordering. 1951 * The only another reason could be bug in receiver TCP. 1952 */ 1953 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1954 { 1955 struct tcp_sock *tp = tcp_sk(sk); 1956 if (tcp_limit_reno_sacked(tp)) 1957 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1958 } 1959 1960 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1961 1962 static void tcp_add_reno_sack(struct sock *sk) 1963 { 1964 struct tcp_sock *tp = tcp_sk(sk); 1965 tp->sacked_out++; 1966 tcp_check_reno_reordering(sk, 0); 1967 tcp_verify_left_out(tp); 1968 } 1969 1970 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1971 1972 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1973 { 1974 struct tcp_sock *tp = tcp_sk(sk); 1975 1976 if (acked > 0) { 1977 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1978 if (acked - 1 >= tp->sacked_out) 1979 tp->sacked_out = 0; 1980 else 1981 tp->sacked_out -= acked - 1; 1982 } 1983 tcp_check_reno_reordering(sk, acked); 1984 tcp_verify_left_out(tp); 1985 } 1986 1987 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1988 { 1989 tp->sacked_out = 0; 1990 } 1991 1992 static int tcp_is_sackfrto(const struct tcp_sock *tp) 1993 { 1994 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 1995 } 1996 1997 /* F-RTO can only be used if TCP has never retransmitted anything other than 1998 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 1999 */ 2000 int tcp_use_frto(struct sock *sk) 2001 { 2002 const struct tcp_sock *tp = tcp_sk(sk); 2003 const struct inet_connection_sock *icsk = inet_csk(sk); 2004 struct sk_buff *skb; 2005 2006 if (!sysctl_tcp_frto) 2007 return 0; 2008 2009 /* MTU probe and F-RTO won't really play nicely along currently */ 2010 if (icsk->icsk_mtup.probe_size) 2011 return 0; 2012 2013 if (tcp_is_sackfrto(tp)) 2014 return 1; 2015 2016 /* Avoid expensive walking of rexmit queue if possible */ 2017 if (tp->retrans_out > 1) 2018 return 0; 2019 2020 skb = tcp_write_queue_head(sk); 2021 if (tcp_skb_is_last(sk, skb)) 2022 return 1; 2023 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 2024 tcp_for_write_queue_from(skb, sk) { 2025 if (skb == tcp_send_head(sk)) 2026 break; 2027 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2028 return 0; 2029 /* Short-circuit when first non-SACKed skb has been checked */ 2030 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2031 break; 2032 } 2033 return 1; 2034 } 2035 2036 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 2037 * recovery a bit and use heuristics in tcp_process_frto() to detect if 2038 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 2039 * keep retrans_out counting accurate (with SACK F-RTO, other than head 2040 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 2041 * bits are handled if the Loss state is really to be entered (in 2042 * tcp_enter_frto_loss). 2043 * 2044 * Do like tcp_enter_loss() would; when RTO expires the second time it 2045 * does: 2046 * "Reduce ssthresh if it has not yet been made inside this window." 2047 */ 2048 void tcp_enter_frto(struct sock *sk) 2049 { 2050 const struct inet_connection_sock *icsk = inet_csk(sk); 2051 struct tcp_sock *tp = tcp_sk(sk); 2052 struct sk_buff *skb; 2053 2054 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 2055 tp->snd_una == tp->high_seq || 2056 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 2057 !icsk->icsk_retransmits)) { 2058 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2059 /* Our state is too optimistic in ssthresh() call because cwnd 2060 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 2061 * recovery has not yet completed. Pattern would be this: RTO, 2062 * Cumulative ACK, RTO (2xRTO for the same segment does not end 2063 * up here twice). 2064 * RFC4138 should be more specific on what to do, even though 2065 * RTO is quite unlikely to occur after the first Cumulative ACK 2066 * due to back-off and complexity of triggering events ... 2067 */ 2068 if (tp->frto_counter) { 2069 u32 stored_cwnd; 2070 stored_cwnd = tp->snd_cwnd; 2071 tp->snd_cwnd = 2; 2072 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2073 tp->snd_cwnd = stored_cwnd; 2074 } else { 2075 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2076 } 2077 /* ... in theory, cong.control module could do "any tricks" in 2078 * ssthresh(), which means that ca_state, lost bits and lost_out 2079 * counter would have to be faked before the call occurs. We 2080 * consider that too expensive, unlikely and hacky, so modules 2081 * using these in ssthresh() must deal these incompatibility 2082 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 2083 */ 2084 tcp_ca_event(sk, CA_EVENT_FRTO); 2085 } 2086 2087 tp->undo_marker = tp->snd_una; 2088 tp->undo_retrans = 0; 2089 2090 skb = tcp_write_queue_head(sk); 2091 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2092 tp->undo_marker = 0; 2093 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2094 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2095 tp->retrans_out -= tcp_skb_pcount(skb); 2096 } 2097 tcp_verify_left_out(tp); 2098 2099 /* Too bad if TCP was application limited */ 2100 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2101 2102 /* Earlier loss recovery underway (see RFC4138; Appendix B). 2103 * The last condition is necessary at least in tp->frto_counter case. 2104 */ 2105 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 2106 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 2107 after(tp->high_seq, tp->snd_una)) { 2108 tp->frto_highmark = tp->high_seq; 2109 } else { 2110 tp->frto_highmark = tp->snd_nxt; 2111 } 2112 tcp_set_ca_state(sk, TCP_CA_Disorder); 2113 tp->high_seq = tp->snd_nxt; 2114 tp->frto_counter = 1; 2115 } 2116 2117 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 2118 * which indicates that we should follow the traditional RTO recovery, 2119 * i.e. mark everything lost and do go-back-N retransmission. 2120 */ 2121 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 2122 { 2123 struct tcp_sock *tp = tcp_sk(sk); 2124 struct sk_buff *skb; 2125 2126 tp->lost_out = 0; 2127 tp->retrans_out = 0; 2128 if (tcp_is_reno(tp)) 2129 tcp_reset_reno_sack(tp); 2130 2131 tcp_for_write_queue(skb, sk) { 2132 if (skb == tcp_send_head(sk)) 2133 break; 2134 2135 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2136 /* 2137 * Count the retransmission made on RTO correctly (only when 2138 * waiting for the first ACK and did not get it)... 2139 */ 2140 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 2141 /* For some reason this R-bit might get cleared? */ 2142 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 2143 tp->retrans_out += tcp_skb_pcount(skb); 2144 /* ...enter this if branch just for the first segment */ 2145 flag |= FLAG_DATA_ACKED; 2146 } else { 2147 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2148 tp->undo_marker = 0; 2149 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2150 } 2151 2152 /* Marking forward transmissions that were made after RTO lost 2153 * can cause unnecessary retransmissions in some scenarios, 2154 * SACK blocks will mitigate that in some but not in all cases. 2155 * We used to not mark them but it was causing break-ups with 2156 * receivers that do only in-order receival. 2157 * 2158 * TODO: we could detect presence of such receiver and select 2159 * different behavior per flow. 2160 */ 2161 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2162 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2163 tp->lost_out += tcp_skb_pcount(skb); 2164 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2165 } 2166 } 2167 tcp_verify_left_out(tp); 2168 2169 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2170 tp->snd_cwnd_cnt = 0; 2171 tp->snd_cwnd_stamp = tcp_time_stamp; 2172 tp->frto_counter = 0; 2173 tp->bytes_acked = 0; 2174 2175 tp->reordering = min_t(unsigned int, tp->reordering, 2176 sysctl_tcp_reordering); 2177 tcp_set_ca_state(sk, TCP_CA_Loss); 2178 tp->high_seq = tp->snd_nxt; 2179 TCP_ECN_queue_cwr(tp); 2180 2181 tcp_clear_all_retrans_hints(tp); 2182 } 2183 2184 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2185 { 2186 tp->retrans_out = 0; 2187 tp->lost_out = 0; 2188 2189 tp->undo_marker = 0; 2190 tp->undo_retrans = 0; 2191 } 2192 2193 void tcp_clear_retrans(struct tcp_sock *tp) 2194 { 2195 tcp_clear_retrans_partial(tp); 2196 2197 tp->fackets_out = 0; 2198 tp->sacked_out = 0; 2199 } 2200 2201 /* Enter Loss state. If "how" is not zero, forget all SACK information 2202 * and reset tags completely, otherwise preserve SACKs. If receiver 2203 * dropped its ofo queue, we will know this due to reneging detection. 2204 */ 2205 void tcp_enter_loss(struct sock *sk, int how) 2206 { 2207 const struct inet_connection_sock *icsk = inet_csk(sk); 2208 struct tcp_sock *tp = tcp_sk(sk); 2209 struct sk_buff *skb; 2210 2211 /* Reduce ssthresh if it has not yet been made inside this window. */ 2212 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2213 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2214 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2215 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2216 tcp_ca_event(sk, CA_EVENT_LOSS); 2217 } 2218 tp->snd_cwnd = 1; 2219 tp->snd_cwnd_cnt = 0; 2220 tp->snd_cwnd_stamp = tcp_time_stamp; 2221 2222 tp->bytes_acked = 0; 2223 tcp_clear_retrans_partial(tp); 2224 2225 if (tcp_is_reno(tp)) 2226 tcp_reset_reno_sack(tp); 2227 2228 if (!how) { 2229 /* Push undo marker, if it was plain RTO and nothing 2230 * was retransmitted. */ 2231 tp->undo_marker = tp->snd_una; 2232 } else { 2233 tp->sacked_out = 0; 2234 tp->fackets_out = 0; 2235 } 2236 tcp_clear_all_retrans_hints(tp); 2237 2238 tcp_for_write_queue(skb, sk) { 2239 if (skb == tcp_send_head(sk)) 2240 break; 2241 2242 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2243 tp->undo_marker = 0; 2244 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2245 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2246 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2247 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2248 tp->lost_out += tcp_skb_pcount(skb); 2249 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2250 } 2251 } 2252 tcp_verify_left_out(tp); 2253 2254 tp->reordering = min_t(unsigned int, tp->reordering, 2255 sysctl_tcp_reordering); 2256 tcp_set_ca_state(sk, TCP_CA_Loss); 2257 tp->high_seq = tp->snd_nxt; 2258 TCP_ECN_queue_cwr(tp); 2259 /* Abort F-RTO algorithm if one is in progress */ 2260 tp->frto_counter = 0; 2261 } 2262 2263 /* If ACK arrived pointing to a remembered SACK, it means that our 2264 * remembered SACKs do not reflect real state of receiver i.e. 2265 * receiver _host_ is heavily congested (or buggy). 2266 * 2267 * Do processing similar to RTO timeout. 2268 */ 2269 static int tcp_check_sack_reneging(struct sock *sk, int flag) 2270 { 2271 if (flag & FLAG_SACK_RENEGING) { 2272 struct inet_connection_sock *icsk = inet_csk(sk); 2273 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2274 2275 tcp_enter_loss(sk, 1); 2276 icsk->icsk_retransmits++; 2277 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2278 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2279 icsk->icsk_rto, TCP_RTO_MAX); 2280 return 1; 2281 } 2282 return 0; 2283 } 2284 2285 static inline int tcp_fackets_out(struct tcp_sock *tp) 2286 { 2287 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2288 } 2289 2290 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2291 * counter when SACK is enabled (without SACK, sacked_out is used for 2292 * that purpose). 2293 * 2294 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2295 * segments up to the highest received SACK block so far and holes in 2296 * between them. 2297 * 2298 * With reordering, holes may still be in flight, so RFC3517 recovery 2299 * uses pure sacked_out (total number of SACKed segments) even though 2300 * it violates the RFC that uses duplicate ACKs, often these are equal 2301 * but when e.g. out-of-window ACKs or packet duplication occurs, 2302 * they differ. Since neither occurs due to loss, TCP should really 2303 * ignore them. 2304 */ 2305 static inline int tcp_dupack_heurestics(struct tcp_sock *tp) 2306 { 2307 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2308 } 2309 2310 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 2311 { 2312 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 2313 } 2314 2315 static inline int tcp_head_timedout(struct sock *sk) 2316 { 2317 struct tcp_sock *tp = tcp_sk(sk); 2318 2319 return tp->packets_out && 2320 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2321 } 2322 2323 /* Linux NewReno/SACK/FACK/ECN state machine. 2324 * -------------------------------------- 2325 * 2326 * "Open" Normal state, no dubious events, fast path. 2327 * "Disorder" In all the respects it is "Open", 2328 * but requires a bit more attention. It is entered when 2329 * we see some SACKs or dupacks. It is split of "Open" 2330 * mainly to move some processing from fast path to slow one. 2331 * "CWR" CWND was reduced due to some Congestion Notification event. 2332 * It can be ECN, ICMP source quench, local device congestion. 2333 * "Recovery" CWND was reduced, we are fast-retransmitting. 2334 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2335 * 2336 * tcp_fastretrans_alert() is entered: 2337 * - each incoming ACK, if state is not "Open" 2338 * - when arrived ACK is unusual, namely: 2339 * * SACK 2340 * * Duplicate ACK. 2341 * * ECN ECE. 2342 * 2343 * Counting packets in flight is pretty simple. 2344 * 2345 * in_flight = packets_out - left_out + retrans_out 2346 * 2347 * packets_out is SND.NXT-SND.UNA counted in packets. 2348 * 2349 * retrans_out is number of retransmitted segments. 2350 * 2351 * left_out is number of segments left network, but not ACKed yet. 2352 * 2353 * left_out = sacked_out + lost_out 2354 * 2355 * sacked_out: Packets, which arrived to receiver out of order 2356 * and hence not ACKed. With SACKs this number is simply 2357 * amount of SACKed data. Even without SACKs 2358 * it is easy to give pretty reliable estimate of this number, 2359 * counting duplicate ACKs. 2360 * 2361 * lost_out: Packets lost by network. TCP has no explicit 2362 * "loss notification" feedback from network (for now). 2363 * It means that this number can be only _guessed_. 2364 * Actually, it is the heuristics to predict lossage that 2365 * distinguishes different algorithms. 2366 * 2367 * F.e. after RTO, when all the queue is considered as lost, 2368 * lost_out = packets_out and in_flight = retrans_out. 2369 * 2370 * Essentially, we have now two algorithms counting 2371 * lost packets. 2372 * 2373 * FACK: It is the simplest heuristics. As soon as we decided 2374 * that something is lost, we decide that _all_ not SACKed 2375 * packets until the most forward SACK are lost. I.e. 2376 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2377 * It is absolutely correct estimate, if network does not reorder 2378 * packets. And it loses any connection to reality when reordering 2379 * takes place. We use FACK by default until reordering 2380 * is suspected on the path to this destination. 2381 * 2382 * NewReno: when Recovery is entered, we assume that one segment 2383 * is lost (classic Reno). While we are in Recovery and 2384 * a partial ACK arrives, we assume that one more packet 2385 * is lost (NewReno). This heuristics are the same in NewReno 2386 * and SACK. 2387 * 2388 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2389 * deflation etc. CWND is real congestion window, never inflated, changes 2390 * only according to classic VJ rules. 2391 * 2392 * Really tricky (and requiring careful tuning) part of algorithm 2393 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2394 * The first determines the moment _when_ we should reduce CWND and, 2395 * hence, slow down forward transmission. In fact, it determines the moment 2396 * when we decide that hole is caused by loss, rather than by a reorder. 2397 * 2398 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2399 * holes, caused by lost packets. 2400 * 2401 * And the most logically complicated part of algorithm is undo 2402 * heuristics. We detect false retransmits due to both too early 2403 * fast retransmit (reordering) and underestimated RTO, analyzing 2404 * timestamps and D-SACKs. When we detect that some segments were 2405 * retransmitted by mistake and CWND reduction was wrong, we undo 2406 * window reduction and abort recovery phase. This logic is hidden 2407 * inside several functions named tcp_try_undo_<something>. 2408 */ 2409 2410 /* This function decides, when we should leave Disordered state 2411 * and enter Recovery phase, reducing congestion window. 2412 * 2413 * Main question: may we further continue forward transmission 2414 * with the same cwnd? 2415 */ 2416 static int tcp_time_to_recover(struct sock *sk) 2417 { 2418 struct tcp_sock *tp = tcp_sk(sk); 2419 __u32 packets_out; 2420 2421 /* Do not perform any recovery during F-RTO algorithm */ 2422 if (tp->frto_counter) 2423 return 0; 2424 2425 /* Trick#1: The loss is proven. */ 2426 if (tp->lost_out) 2427 return 1; 2428 2429 /* Not-A-Trick#2 : Classic rule... */ 2430 if (tcp_dupack_heurestics(tp) > tp->reordering) 2431 return 1; 2432 2433 /* Trick#3 : when we use RFC2988 timer restart, fast 2434 * retransmit can be triggered by timeout of queue head. 2435 */ 2436 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2437 return 1; 2438 2439 /* Trick#4: It is still not OK... But will it be useful to delay 2440 * recovery more? 2441 */ 2442 packets_out = tp->packets_out; 2443 if (packets_out <= tp->reordering && 2444 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2445 !tcp_may_send_now(sk)) { 2446 /* We have nothing to send. This connection is limited 2447 * either by receiver window or by application. 2448 */ 2449 return 1; 2450 } 2451 2452 return 0; 2453 } 2454 2455 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is 2456 * is against sacked "cnt", otherwise it's against facked "cnt" 2457 */ 2458 static void tcp_mark_head_lost(struct sock *sk, int packets) 2459 { 2460 struct tcp_sock *tp = tcp_sk(sk); 2461 struct sk_buff *skb; 2462 int cnt, oldcnt; 2463 int err; 2464 unsigned int mss; 2465 2466 WARN_ON(packets > tp->packets_out); 2467 if (tp->lost_skb_hint) { 2468 skb = tp->lost_skb_hint; 2469 cnt = tp->lost_cnt_hint; 2470 } else { 2471 skb = tcp_write_queue_head(sk); 2472 cnt = 0; 2473 } 2474 2475 tcp_for_write_queue_from(skb, sk) { 2476 if (skb == tcp_send_head(sk)) 2477 break; 2478 /* TODO: do this better */ 2479 /* this is not the most efficient way to do this... */ 2480 tp->lost_skb_hint = skb; 2481 tp->lost_cnt_hint = cnt; 2482 2483 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq)) 2484 break; 2485 2486 oldcnt = cnt; 2487 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2488 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2489 cnt += tcp_skb_pcount(skb); 2490 2491 if (cnt > packets) { 2492 if (tcp_is_sack(tp) || (oldcnt >= packets)) 2493 break; 2494 2495 mss = skb_shinfo(skb)->gso_size; 2496 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2497 if (err < 0) 2498 break; 2499 cnt = packets; 2500 } 2501 2502 tcp_skb_mark_lost(tp, skb); 2503 } 2504 tcp_verify_left_out(tp); 2505 } 2506 2507 /* Account newly detected lost packet(s) */ 2508 2509 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2510 { 2511 struct tcp_sock *tp = tcp_sk(sk); 2512 2513 if (tcp_is_reno(tp)) { 2514 tcp_mark_head_lost(sk, 1); 2515 } else if (tcp_is_fack(tp)) { 2516 int lost = tp->fackets_out - tp->reordering; 2517 if (lost <= 0) 2518 lost = 1; 2519 tcp_mark_head_lost(sk, lost); 2520 } else { 2521 int sacked_upto = tp->sacked_out - tp->reordering; 2522 if (sacked_upto < fast_rexmit) 2523 sacked_upto = fast_rexmit; 2524 tcp_mark_head_lost(sk, sacked_upto); 2525 } 2526 2527 /* New heuristics: it is possible only after we switched 2528 * to restart timer each time when something is ACKed. 2529 * Hence, we can detect timed out packets during fast 2530 * retransmit without falling to slow start. 2531 */ 2532 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) { 2533 struct sk_buff *skb; 2534 2535 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint 2536 : tcp_write_queue_head(sk); 2537 2538 tcp_for_write_queue_from(skb, sk) { 2539 if (skb == tcp_send_head(sk)) 2540 break; 2541 if (!tcp_skb_timedout(sk, skb)) 2542 break; 2543 2544 tcp_skb_mark_lost(tp, skb); 2545 } 2546 2547 tp->scoreboard_skb_hint = skb; 2548 2549 tcp_verify_left_out(tp); 2550 } 2551 } 2552 2553 /* CWND moderation, preventing bursts due to too big ACKs 2554 * in dubious situations. 2555 */ 2556 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2557 { 2558 tp->snd_cwnd = min(tp->snd_cwnd, 2559 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2560 tp->snd_cwnd_stamp = tcp_time_stamp; 2561 } 2562 2563 /* Lower bound on congestion window is slow start threshold 2564 * unless congestion avoidance choice decides to overide it. 2565 */ 2566 static inline u32 tcp_cwnd_min(const struct sock *sk) 2567 { 2568 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2569 2570 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2571 } 2572 2573 /* Decrease cwnd each second ack. */ 2574 static void tcp_cwnd_down(struct sock *sk, int flag) 2575 { 2576 struct tcp_sock *tp = tcp_sk(sk); 2577 int decr = tp->snd_cwnd_cnt + 1; 2578 2579 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2580 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2581 tp->snd_cwnd_cnt = decr & 1; 2582 decr >>= 1; 2583 2584 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2585 tp->snd_cwnd -= decr; 2586 2587 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2588 tp->snd_cwnd_stamp = tcp_time_stamp; 2589 } 2590 } 2591 2592 /* Nothing was retransmitted or returned timestamp is less 2593 * than timestamp of the first retransmission. 2594 */ 2595 static inline int tcp_packet_delayed(struct tcp_sock *tp) 2596 { 2597 return !tp->retrans_stamp || 2598 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2599 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2600 } 2601 2602 /* Undo procedures. */ 2603 2604 #if FASTRETRANS_DEBUG > 1 2605 static void DBGUNDO(struct sock *sk, const char *msg) 2606 { 2607 struct tcp_sock *tp = tcp_sk(sk); 2608 struct inet_sock *inet = inet_sk(sk); 2609 2610 if (sk->sk_family == AF_INET) { 2611 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2612 msg, 2613 &inet->daddr, ntohs(inet->dport), 2614 tp->snd_cwnd, tcp_left_out(tp), 2615 tp->snd_ssthresh, tp->prior_ssthresh, 2616 tp->packets_out); 2617 } 2618 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2619 else if (sk->sk_family == AF_INET6) { 2620 struct ipv6_pinfo *np = inet6_sk(sk); 2621 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2622 msg, 2623 &np->daddr, ntohs(inet->dport), 2624 tp->snd_cwnd, tcp_left_out(tp), 2625 tp->snd_ssthresh, tp->prior_ssthresh, 2626 tp->packets_out); 2627 } 2628 #endif 2629 } 2630 #else 2631 #define DBGUNDO(x...) do { } while (0) 2632 #endif 2633 2634 static void tcp_undo_cwr(struct sock *sk, const int undo) 2635 { 2636 struct tcp_sock *tp = tcp_sk(sk); 2637 2638 if (tp->prior_ssthresh) { 2639 const struct inet_connection_sock *icsk = inet_csk(sk); 2640 2641 if (icsk->icsk_ca_ops->undo_cwnd) 2642 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2643 else 2644 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2645 2646 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 2647 tp->snd_ssthresh = tp->prior_ssthresh; 2648 TCP_ECN_withdraw_cwr(tp); 2649 } 2650 } else { 2651 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2652 } 2653 tcp_moderate_cwnd(tp); 2654 tp->snd_cwnd_stamp = tcp_time_stamp; 2655 } 2656 2657 static inline int tcp_may_undo(struct tcp_sock *tp) 2658 { 2659 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2660 } 2661 2662 /* People celebrate: "We love our President!" */ 2663 static int tcp_try_undo_recovery(struct sock *sk) 2664 { 2665 struct tcp_sock *tp = tcp_sk(sk); 2666 2667 if (tcp_may_undo(tp)) { 2668 int mib_idx; 2669 2670 /* Happy end! We did not retransmit anything 2671 * or our original transmission succeeded. 2672 */ 2673 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2674 tcp_undo_cwr(sk, 1); 2675 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2676 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2677 else 2678 mib_idx = LINUX_MIB_TCPFULLUNDO; 2679 2680 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2681 tp->undo_marker = 0; 2682 } 2683 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2684 /* Hold old state until something *above* high_seq 2685 * is ACKed. For Reno it is MUST to prevent false 2686 * fast retransmits (RFC2582). SACK TCP is safe. */ 2687 tcp_moderate_cwnd(tp); 2688 return 1; 2689 } 2690 tcp_set_ca_state(sk, TCP_CA_Open); 2691 return 0; 2692 } 2693 2694 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2695 static void tcp_try_undo_dsack(struct sock *sk) 2696 { 2697 struct tcp_sock *tp = tcp_sk(sk); 2698 2699 if (tp->undo_marker && !tp->undo_retrans) { 2700 DBGUNDO(sk, "D-SACK"); 2701 tcp_undo_cwr(sk, 1); 2702 tp->undo_marker = 0; 2703 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2704 } 2705 } 2706 2707 /* Undo during fast recovery after partial ACK. */ 2708 2709 static int tcp_try_undo_partial(struct sock *sk, int acked) 2710 { 2711 struct tcp_sock *tp = tcp_sk(sk); 2712 /* Partial ACK arrived. Force Hoe's retransmit. */ 2713 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2714 2715 if (tcp_may_undo(tp)) { 2716 /* Plain luck! Hole if filled with delayed 2717 * packet, rather than with a retransmit. 2718 */ 2719 if (tp->retrans_out == 0) 2720 tp->retrans_stamp = 0; 2721 2722 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2723 2724 DBGUNDO(sk, "Hoe"); 2725 tcp_undo_cwr(sk, 0); 2726 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2727 2728 /* So... Do not make Hoe's retransmit yet. 2729 * If the first packet was delayed, the rest 2730 * ones are most probably delayed as well. 2731 */ 2732 failed = 0; 2733 } 2734 return failed; 2735 } 2736 2737 /* Undo during loss recovery after partial ACK. */ 2738 static int tcp_try_undo_loss(struct sock *sk) 2739 { 2740 struct tcp_sock *tp = tcp_sk(sk); 2741 2742 if (tcp_may_undo(tp)) { 2743 struct sk_buff *skb; 2744 tcp_for_write_queue(skb, sk) { 2745 if (skb == tcp_send_head(sk)) 2746 break; 2747 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2748 } 2749 2750 tcp_clear_all_retrans_hints(tp); 2751 2752 DBGUNDO(sk, "partial loss"); 2753 tp->lost_out = 0; 2754 tcp_undo_cwr(sk, 1); 2755 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2756 inet_csk(sk)->icsk_retransmits = 0; 2757 tp->undo_marker = 0; 2758 if (tcp_is_sack(tp)) 2759 tcp_set_ca_state(sk, TCP_CA_Open); 2760 return 1; 2761 } 2762 return 0; 2763 } 2764 2765 static inline void tcp_complete_cwr(struct sock *sk) 2766 { 2767 struct tcp_sock *tp = tcp_sk(sk); 2768 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2769 tp->snd_cwnd_stamp = tcp_time_stamp; 2770 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2771 } 2772 2773 static void tcp_try_keep_open(struct sock *sk) 2774 { 2775 struct tcp_sock *tp = tcp_sk(sk); 2776 int state = TCP_CA_Open; 2777 2778 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker) 2779 state = TCP_CA_Disorder; 2780 2781 if (inet_csk(sk)->icsk_ca_state != state) { 2782 tcp_set_ca_state(sk, state); 2783 tp->high_seq = tp->snd_nxt; 2784 } 2785 } 2786 2787 static void tcp_try_to_open(struct sock *sk, int flag) 2788 { 2789 struct tcp_sock *tp = tcp_sk(sk); 2790 2791 tcp_verify_left_out(tp); 2792 2793 if (!tp->frto_counter && tp->retrans_out == 0) 2794 tp->retrans_stamp = 0; 2795 2796 if (flag & FLAG_ECE) 2797 tcp_enter_cwr(sk, 1); 2798 2799 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2800 tcp_try_keep_open(sk); 2801 tcp_moderate_cwnd(tp); 2802 } else { 2803 tcp_cwnd_down(sk, flag); 2804 } 2805 } 2806 2807 static void tcp_mtup_probe_failed(struct sock *sk) 2808 { 2809 struct inet_connection_sock *icsk = inet_csk(sk); 2810 2811 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2812 icsk->icsk_mtup.probe_size = 0; 2813 } 2814 2815 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb) 2816 { 2817 struct tcp_sock *tp = tcp_sk(sk); 2818 struct inet_connection_sock *icsk = inet_csk(sk); 2819 2820 /* FIXME: breaks with very large cwnd */ 2821 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2822 tp->snd_cwnd = tp->snd_cwnd * 2823 tcp_mss_to_mtu(sk, tp->mss_cache) / 2824 icsk->icsk_mtup.probe_size; 2825 tp->snd_cwnd_cnt = 0; 2826 tp->snd_cwnd_stamp = tcp_time_stamp; 2827 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 2828 2829 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2830 icsk->icsk_mtup.probe_size = 0; 2831 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2832 } 2833 2834 /* Do a simple retransmit without using the backoff mechanisms in 2835 * tcp_timer. This is used for path mtu discovery. 2836 * The socket is already locked here. 2837 */ 2838 void tcp_simple_retransmit(struct sock *sk) 2839 { 2840 const struct inet_connection_sock *icsk = inet_csk(sk); 2841 struct tcp_sock *tp = tcp_sk(sk); 2842 struct sk_buff *skb; 2843 unsigned int mss = tcp_current_mss(sk, 0); 2844 u32 prior_lost = tp->lost_out; 2845 2846 tcp_for_write_queue(skb, sk) { 2847 if (skb == tcp_send_head(sk)) 2848 break; 2849 if (tcp_skb_seglen(skb) > mss && 2850 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2851 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2852 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2853 tp->retrans_out -= tcp_skb_pcount(skb); 2854 } 2855 tcp_skb_mark_lost_uncond_verify(tp, skb); 2856 } 2857 } 2858 2859 tcp_clear_retrans_hints_partial(tp); 2860 2861 if (prior_lost == tp->lost_out) 2862 return; 2863 2864 if (tcp_is_reno(tp)) 2865 tcp_limit_reno_sacked(tp); 2866 2867 tcp_verify_left_out(tp); 2868 2869 /* Don't muck with the congestion window here. 2870 * Reason is that we do not increase amount of _data_ 2871 * in network, but units changed and effective 2872 * cwnd/ssthresh really reduced now. 2873 */ 2874 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2875 tp->high_seq = tp->snd_nxt; 2876 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2877 tp->prior_ssthresh = 0; 2878 tp->undo_marker = 0; 2879 tcp_set_ca_state(sk, TCP_CA_Loss); 2880 } 2881 tcp_xmit_retransmit_queue(sk); 2882 } 2883 2884 /* Process an event, which can update packets-in-flight not trivially. 2885 * Main goal of this function is to calculate new estimate for left_out, 2886 * taking into account both packets sitting in receiver's buffer and 2887 * packets lost by network. 2888 * 2889 * Besides that it does CWND reduction, when packet loss is detected 2890 * and changes state of machine. 2891 * 2892 * It does _not_ decide what to send, it is made in function 2893 * tcp_xmit_retransmit_queue(). 2894 */ 2895 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag) 2896 { 2897 struct inet_connection_sock *icsk = inet_csk(sk); 2898 struct tcp_sock *tp = tcp_sk(sk); 2899 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 2900 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2901 (tcp_fackets_out(tp) > tp->reordering)); 2902 int fast_rexmit = 0, mib_idx; 2903 2904 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2905 tp->sacked_out = 0; 2906 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2907 tp->fackets_out = 0; 2908 2909 /* Now state machine starts. 2910 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2911 if (flag & FLAG_ECE) 2912 tp->prior_ssthresh = 0; 2913 2914 /* B. In all the states check for reneging SACKs. */ 2915 if (tcp_check_sack_reneging(sk, flag)) 2916 return; 2917 2918 /* C. Process data loss notification, provided it is valid. */ 2919 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) && 2920 before(tp->snd_una, tp->high_seq) && 2921 icsk->icsk_ca_state != TCP_CA_Open && 2922 tp->fackets_out > tp->reordering) { 2923 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering); 2924 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS); 2925 } 2926 2927 /* D. Check consistency of the current state. */ 2928 tcp_verify_left_out(tp); 2929 2930 /* E. Check state exit conditions. State can be terminated 2931 * when high_seq is ACKed. */ 2932 if (icsk->icsk_ca_state == TCP_CA_Open) { 2933 WARN_ON(tp->retrans_out != 0); 2934 tp->retrans_stamp = 0; 2935 } else if (!before(tp->snd_una, tp->high_seq)) { 2936 switch (icsk->icsk_ca_state) { 2937 case TCP_CA_Loss: 2938 icsk->icsk_retransmits = 0; 2939 if (tcp_try_undo_recovery(sk)) 2940 return; 2941 break; 2942 2943 case TCP_CA_CWR: 2944 /* CWR is to be held something *above* high_seq 2945 * is ACKed for CWR bit to reach receiver. */ 2946 if (tp->snd_una != tp->high_seq) { 2947 tcp_complete_cwr(sk); 2948 tcp_set_ca_state(sk, TCP_CA_Open); 2949 } 2950 break; 2951 2952 case TCP_CA_Disorder: 2953 tcp_try_undo_dsack(sk); 2954 if (!tp->undo_marker || 2955 /* For SACK case do not Open to allow to undo 2956 * catching for all duplicate ACKs. */ 2957 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) { 2958 tp->undo_marker = 0; 2959 tcp_set_ca_state(sk, TCP_CA_Open); 2960 } 2961 break; 2962 2963 case TCP_CA_Recovery: 2964 if (tcp_is_reno(tp)) 2965 tcp_reset_reno_sack(tp); 2966 if (tcp_try_undo_recovery(sk)) 2967 return; 2968 tcp_complete_cwr(sk); 2969 break; 2970 } 2971 } 2972 2973 /* F. Process state. */ 2974 switch (icsk->icsk_ca_state) { 2975 case TCP_CA_Recovery: 2976 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2977 if (tcp_is_reno(tp) && is_dupack) 2978 tcp_add_reno_sack(sk); 2979 } else 2980 do_lost = tcp_try_undo_partial(sk, pkts_acked); 2981 break; 2982 case TCP_CA_Loss: 2983 if (flag & FLAG_DATA_ACKED) 2984 icsk->icsk_retransmits = 0; 2985 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 2986 tcp_reset_reno_sack(tp); 2987 if (!tcp_try_undo_loss(sk)) { 2988 tcp_moderate_cwnd(tp); 2989 tcp_xmit_retransmit_queue(sk); 2990 return; 2991 } 2992 if (icsk->icsk_ca_state != TCP_CA_Open) 2993 return; 2994 /* Loss is undone; fall through to processing in Open state. */ 2995 default: 2996 if (tcp_is_reno(tp)) { 2997 if (flag & FLAG_SND_UNA_ADVANCED) 2998 tcp_reset_reno_sack(tp); 2999 if (is_dupack) 3000 tcp_add_reno_sack(sk); 3001 } 3002 3003 if (icsk->icsk_ca_state == TCP_CA_Disorder) 3004 tcp_try_undo_dsack(sk); 3005 3006 if (!tcp_time_to_recover(sk)) { 3007 tcp_try_to_open(sk, flag); 3008 return; 3009 } 3010 3011 /* MTU probe failure: don't reduce cwnd */ 3012 if (icsk->icsk_ca_state < TCP_CA_CWR && 3013 icsk->icsk_mtup.probe_size && 3014 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3015 tcp_mtup_probe_failed(sk); 3016 /* Restores the reduction we did in tcp_mtup_probe() */ 3017 tp->snd_cwnd++; 3018 tcp_simple_retransmit(sk); 3019 return; 3020 } 3021 3022 /* Otherwise enter Recovery state */ 3023 3024 if (tcp_is_reno(tp)) 3025 mib_idx = LINUX_MIB_TCPRENORECOVERY; 3026 else 3027 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 3028 3029 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3030 3031 tp->high_seq = tp->snd_nxt; 3032 tp->prior_ssthresh = 0; 3033 tp->undo_marker = tp->snd_una; 3034 tp->undo_retrans = tp->retrans_out; 3035 3036 if (icsk->icsk_ca_state < TCP_CA_CWR) { 3037 if (!(flag & FLAG_ECE)) 3038 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3039 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 3040 TCP_ECN_queue_cwr(tp); 3041 } 3042 3043 tp->bytes_acked = 0; 3044 tp->snd_cwnd_cnt = 0; 3045 tcp_set_ca_state(sk, TCP_CA_Recovery); 3046 fast_rexmit = 1; 3047 } 3048 3049 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3050 tcp_update_scoreboard(sk, fast_rexmit); 3051 tcp_cwnd_down(sk, flag); 3052 tcp_xmit_retransmit_queue(sk); 3053 } 3054 3055 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3056 { 3057 tcp_rtt_estimator(sk, seq_rtt); 3058 tcp_set_rto(sk); 3059 inet_csk(sk)->icsk_backoff = 0; 3060 } 3061 3062 /* Read draft-ietf-tcplw-high-performance before mucking 3063 * with this code. (Supersedes RFC1323) 3064 */ 3065 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3066 { 3067 /* RTTM Rule: A TSecr value received in a segment is used to 3068 * update the averaged RTT measurement only if the segment 3069 * acknowledges some new data, i.e., only if it advances the 3070 * left edge of the send window. 3071 * 3072 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3073 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3074 * 3075 * Changed: reset backoff as soon as we see the first valid sample. 3076 * If we do not, we get strongly overestimated rto. With timestamps 3077 * samples are accepted even from very old segments: f.e., when rtt=1 3078 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3079 * answer arrives rto becomes 120 seconds! If at least one of segments 3080 * in window is lost... Voila. --ANK (010210) 3081 */ 3082 struct tcp_sock *tp = tcp_sk(sk); 3083 3084 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3085 } 3086 3087 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3088 { 3089 /* We don't have a timestamp. Can only use 3090 * packets that are not retransmitted to determine 3091 * rtt estimates. Also, we must not reset the 3092 * backoff for rto until we get a non-retransmitted 3093 * packet. This allows us to deal with a situation 3094 * where the network delay has increased suddenly. 3095 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3096 */ 3097 3098 if (flag & FLAG_RETRANS_DATA_ACKED) 3099 return; 3100 3101 tcp_valid_rtt_meas(sk, seq_rtt); 3102 } 3103 3104 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3105 const s32 seq_rtt) 3106 { 3107 const struct tcp_sock *tp = tcp_sk(sk); 3108 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3109 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3110 tcp_ack_saw_tstamp(sk, flag); 3111 else if (seq_rtt >= 0) 3112 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3113 } 3114 3115 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3116 { 3117 const struct inet_connection_sock *icsk = inet_csk(sk); 3118 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3119 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3120 } 3121 3122 /* Restart timer after forward progress on connection. 3123 * RFC2988 recommends to restart timer to now+rto. 3124 */ 3125 static void tcp_rearm_rto(struct sock *sk) 3126 { 3127 struct tcp_sock *tp = tcp_sk(sk); 3128 3129 if (!tp->packets_out) { 3130 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3131 } else { 3132 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3133 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3134 } 3135 } 3136 3137 /* If we get here, the whole TSO packet has not been acked. */ 3138 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3139 { 3140 struct tcp_sock *tp = tcp_sk(sk); 3141 u32 packets_acked; 3142 3143 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3144 3145 packets_acked = tcp_skb_pcount(skb); 3146 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3147 return 0; 3148 packets_acked -= tcp_skb_pcount(skb); 3149 3150 if (packets_acked) { 3151 BUG_ON(tcp_skb_pcount(skb) == 0); 3152 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3153 } 3154 3155 return packets_acked; 3156 } 3157 3158 /* Remove acknowledged frames from the retransmission queue. If our packet 3159 * is before the ack sequence we can discard it as it's confirmed to have 3160 * arrived at the other end. 3161 */ 3162 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3163 u32 prior_snd_una) 3164 { 3165 struct tcp_sock *tp = tcp_sk(sk); 3166 const struct inet_connection_sock *icsk = inet_csk(sk); 3167 struct sk_buff *skb; 3168 u32 now = tcp_time_stamp; 3169 int fully_acked = 1; 3170 int flag = 0; 3171 u32 pkts_acked = 0; 3172 u32 reord = tp->packets_out; 3173 u32 prior_sacked = tp->sacked_out; 3174 s32 seq_rtt = -1; 3175 s32 ca_seq_rtt = -1; 3176 ktime_t last_ackt = net_invalid_timestamp(); 3177 3178 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3179 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3180 u32 end_seq; 3181 u32 acked_pcount; 3182 u8 sacked = scb->sacked; 3183 3184 /* Determine how many packets and what bytes were acked, tso and else */ 3185 if (after(scb->end_seq, tp->snd_una)) { 3186 if (tcp_skb_pcount(skb) == 1 || 3187 !after(tp->snd_una, scb->seq)) 3188 break; 3189 3190 acked_pcount = tcp_tso_acked(sk, skb); 3191 if (!acked_pcount) 3192 break; 3193 3194 fully_acked = 0; 3195 end_seq = tp->snd_una; 3196 } else { 3197 acked_pcount = tcp_skb_pcount(skb); 3198 end_seq = scb->end_seq; 3199 } 3200 3201 /* MTU probing checks */ 3202 if (fully_acked && icsk->icsk_mtup.probe_size && 3203 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) { 3204 tcp_mtup_probe_success(sk, skb); 3205 } 3206 3207 if (sacked & TCPCB_RETRANS) { 3208 if (sacked & TCPCB_SACKED_RETRANS) 3209 tp->retrans_out -= acked_pcount; 3210 flag |= FLAG_RETRANS_DATA_ACKED; 3211 ca_seq_rtt = -1; 3212 seq_rtt = -1; 3213 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3214 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3215 } else { 3216 ca_seq_rtt = now - scb->when; 3217 last_ackt = skb->tstamp; 3218 if (seq_rtt < 0) { 3219 seq_rtt = ca_seq_rtt; 3220 } 3221 if (!(sacked & TCPCB_SACKED_ACKED)) 3222 reord = min(pkts_acked, reord); 3223 } 3224 3225 if (sacked & TCPCB_SACKED_ACKED) 3226 tp->sacked_out -= acked_pcount; 3227 if (sacked & TCPCB_LOST) 3228 tp->lost_out -= acked_pcount; 3229 3230 tp->packets_out -= acked_pcount; 3231 pkts_acked += acked_pcount; 3232 3233 /* Initial outgoing SYN's get put onto the write_queue 3234 * just like anything else we transmit. It is not 3235 * true data, and if we misinform our callers that 3236 * this ACK acks real data, we will erroneously exit 3237 * connection startup slow start one packet too 3238 * quickly. This is severely frowned upon behavior. 3239 */ 3240 if (!(scb->flags & TCPCB_FLAG_SYN)) { 3241 flag |= FLAG_DATA_ACKED; 3242 } else { 3243 flag |= FLAG_SYN_ACKED; 3244 tp->retrans_stamp = 0; 3245 } 3246 3247 if (!fully_acked) 3248 break; 3249 3250 tcp_unlink_write_queue(skb, sk); 3251 sk_wmem_free_skb(sk, skb); 3252 tp->scoreboard_skb_hint = NULL; 3253 if (skb == tp->retransmit_skb_hint) 3254 tp->retransmit_skb_hint = NULL; 3255 if (skb == tp->lost_skb_hint) 3256 tp->lost_skb_hint = NULL; 3257 } 3258 3259 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3260 tp->snd_up = tp->snd_una; 3261 3262 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3263 flag |= FLAG_SACK_RENEGING; 3264 3265 if (flag & FLAG_ACKED) { 3266 const struct tcp_congestion_ops *ca_ops 3267 = inet_csk(sk)->icsk_ca_ops; 3268 3269 tcp_ack_update_rtt(sk, flag, seq_rtt); 3270 tcp_rearm_rto(sk); 3271 3272 if (tcp_is_reno(tp)) { 3273 tcp_remove_reno_sacks(sk, pkts_acked); 3274 } else { 3275 /* Non-retransmitted hole got filled? That's reordering */ 3276 if (reord < prior_fackets) 3277 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3278 3279 /* No need to care for underflows here because 3280 * the lost_skb_hint gets NULLed if we're past it 3281 * (or something non-trivial happened) 3282 */ 3283 if (tcp_is_fack(tp)) 3284 tp->lost_cnt_hint -= pkts_acked; 3285 else 3286 tp->lost_cnt_hint -= prior_sacked - tp->sacked_out; 3287 } 3288 3289 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3290 3291 if (ca_ops->pkts_acked) { 3292 s32 rtt_us = -1; 3293 3294 /* Is the ACK triggering packet unambiguous? */ 3295 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3296 /* High resolution needed and available? */ 3297 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3298 !ktime_equal(last_ackt, 3299 net_invalid_timestamp())) 3300 rtt_us = ktime_us_delta(ktime_get_real(), 3301 last_ackt); 3302 else if (ca_seq_rtt > 0) 3303 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3304 } 3305 3306 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3307 } 3308 } 3309 3310 #if FASTRETRANS_DEBUG > 0 3311 WARN_ON((int)tp->sacked_out < 0); 3312 WARN_ON((int)tp->lost_out < 0); 3313 WARN_ON((int)tp->retrans_out < 0); 3314 if (!tp->packets_out && tcp_is_sack(tp)) { 3315 icsk = inet_csk(sk); 3316 if (tp->lost_out) { 3317 printk(KERN_DEBUG "Leak l=%u %d\n", 3318 tp->lost_out, icsk->icsk_ca_state); 3319 tp->lost_out = 0; 3320 } 3321 if (tp->sacked_out) { 3322 printk(KERN_DEBUG "Leak s=%u %d\n", 3323 tp->sacked_out, icsk->icsk_ca_state); 3324 tp->sacked_out = 0; 3325 } 3326 if (tp->retrans_out) { 3327 printk(KERN_DEBUG "Leak r=%u %d\n", 3328 tp->retrans_out, icsk->icsk_ca_state); 3329 tp->retrans_out = 0; 3330 } 3331 } 3332 #endif 3333 return flag; 3334 } 3335 3336 static void tcp_ack_probe(struct sock *sk) 3337 { 3338 const struct tcp_sock *tp = tcp_sk(sk); 3339 struct inet_connection_sock *icsk = inet_csk(sk); 3340 3341 /* Was it a usable window open? */ 3342 3343 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3344 icsk->icsk_backoff = 0; 3345 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3346 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3347 * This function is not for random using! 3348 */ 3349 } else { 3350 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3351 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3352 TCP_RTO_MAX); 3353 } 3354 } 3355 3356 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 3357 { 3358 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3359 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 3360 } 3361 3362 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3363 { 3364 const struct tcp_sock *tp = tcp_sk(sk); 3365 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3366 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 3367 } 3368 3369 /* Check that window update is acceptable. 3370 * The function assumes that snd_una<=ack<=snd_next. 3371 */ 3372 static inline int tcp_may_update_window(const struct tcp_sock *tp, 3373 const u32 ack, const u32 ack_seq, 3374 const u32 nwin) 3375 { 3376 return (after(ack, tp->snd_una) || 3377 after(ack_seq, tp->snd_wl1) || 3378 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 3379 } 3380 3381 /* Update our send window. 3382 * 3383 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3384 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3385 */ 3386 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 3387 u32 ack_seq) 3388 { 3389 struct tcp_sock *tp = tcp_sk(sk); 3390 int flag = 0; 3391 u32 nwin = ntohs(tcp_hdr(skb)->window); 3392 3393 if (likely(!tcp_hdr(skb)->syn)) 3394 nwin <<= tp->rx_opt.snd_wscale; 3395 3396 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3397 flag |= FLAG_WIN_UPDATE; 3398 tcp_update_wl(tp, ack, ack_seq); 3399 3400 if (tp->snd_wnd != nwin) { 3401 tp->snd_wnd = nwin; 3402 3403 /* Note, it is the only place, where 3404 * fast path is recovered for sending TCP. 3405 */ 3406 tp->pred_flags = 0; 3407 tcp_fast_path_check(sk); 3408 3409 if (nwin > tp->max_window) { 3410 tp->max_window = nwin; 3411 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3412 } 3413 } 3414 } 3415 3416 tp->snd_una = ack; 3417 3418 return flag; 3419 } 3420 3421 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3422 * continue in congestion avoidance. 3423 */ 3424 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3425 { 3426 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3427 tp->snd_cwnd_cnt = 0; 3428 tp->bytes_acked = 0; 3429 TCP_ECN_queue_cwr(tp); 3430 tcp_moderate_cwnd(tp); 3431 } 3432 3433 /* A conservative spurious RTO response algorithm: reduce cwnd using 3434 * rate halving and continue in congestion avoidance. 3435 */ 3436 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3437 { 3438 tcp_enter_cwr(sk, 0); 3439 } 3440 3441 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3442 { 3443 if (flag & FLAG_ECE) 3444 tcp_ratehalving_spur_to_response(sk); 3445 else 3446 tcp_undo_cwr(sk, 1); 3447 } 3448 3449 /* F-RTO spurious RTO detection algorithm (RFC4138) 3450 * 3451 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3452 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3453 * window (but not to or beyond highest sequence sent before RTO): 3454 * On First ACK, send two new segments out. 3455 * On Second ACK, RTO was likely spurious. Do spurious response (response 3456 * algorithm is not part of the F-RTO detection algorithm 3457 * given in RFC4138 but can be selected separately). 3458 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3459 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3460 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3461 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3462 * 3463 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3464 * original window even after we transmit two new data segments. 3465 * 3466 * SACK version: 3467 * on first step, wait until first cumulative ACK arrives, then move to 3468 * the second step. In second step, the next ACK decides. 3469 * 3470 * F-RTO is implemented (mainly) in four functions: 3471 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3472 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3473 * called when tcp_use_frto() showed green light 3474 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3475 * - tcp_enter_frto_loss() is called if there is not enough evidence 3476 * to prove that the RTO is indeed spurious. It transfers the control 3477 * from F-RTO to the conventional RTO recovery 3478 */ 3479 static int tcp_process_frto(struct sock *sk, int flag) 3480 { 3481 struct tcp_sock *tp = tcp_sk(sk); 3482 3483 tcp_verify_left_out(tp); 3484 3485 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3486 if (flag & FLAG_DATA_ACKED) 3487 inet_csk(sk)->icsk_retransmits = 0; 3488 3489 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3490 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3491 tp->undo_marker = 0; 3492 3493 if (!before(tp->snd_una, tp->frto_highmark)) { 3494 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3495 return 1; 3496 } 3497 3498 if (!tcp_is_sackfrto(tp)) { 3499 /* RFC4138 shortcoming in step 2; should also have case c): 3500 * ACK isn't duplicate nor advances window, e.g., opposite dir 3501 * data, winupdate 3502 */ 3503 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3504 return 1; 3505 3506 if (!(flag & FLAG_DATA_ACKED)) { 3507 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3508 flag); 3509 return 1; 3510 } 3511 } else { 3512 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3513 /* Prevent sending of new data. */ 3514 tp->snd_cwnd = min(tp->snd_cwnd, 3515 tcp_packets_in_flight(tp)); 3516 return 1; 3517 } 3518 3519 if ((tp->frto_counter >= 2) && 3520 (!(flag & FLAG_FORWARD_PROGRESS) || 3521 ((flag & FLAG_DATA_SACKED) && 3522 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3523 /* RFC4138 shortcoming (see comment above) */ 3524 if (!(flag & FLAG_FORWARD_PROGRESS) && 3525 (flag & FLAG_NOT_DUP)) 3526 return 1; 3527 3528 tcp_enter_frto_loss(sk, 3, flag); 3529 return 1; 3530 } 3531 } 3532 3533 if (tp->frto_counter == 1) { 3534 /* tcp_may_send_now needs to see updated state */ 3535 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3536 tp->frto_counter = 2; 3537 3538 if (!tcp_may_send_now(sk)) 3539 tcp_enter_frto_loss(sk, 2, flag); 3540 3541 return 1; 3542 } else { 3543 switch (sysctl_tcp_frto_response) { 3544 case 2: 3545 tcp_undo_spur_to_response(sk, flag); 3546 break; 3547 case 1: 3548 tcp_conservative_spur_to_response(tp); 3549 break; 3550 default: 3551 tcp_ratehalving_spur_to_response(sk); 3552 break; 3553 } 3554 tp->frto_counter = 0; 3555 tp->undo_marker = 0; 3556 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3557 } 3558 return 0; 3559 } 3560 3561 /* This routine deals with incoming acks, but not outgoing ones. */ 3562 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 3563 { 3564 struct inet_connection_sock *icsk = inet_csk(sk); 3565 struct tcp_sock *tp = tcp_sk(sk); 3566 u32 prior_snd_una = tp->snd_una; 3567 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3568 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3569 u32 prior_in_flight; 3570 u32 prior_fackets; 3571 int prior_packets; 3572 int frto_cwnd = 0; 3573 3574 /* If the ack is newer than sent or older than previous acks 3575 * then we can probably ignore it. 3576 */ 3577 if (after(ack, tp->snd_nxt)) 3578 goto uninteresting_ack; 3579 3580 if (before(ack, prior_snd_una)) 3581 goto old_ack; 3582 3583 if (after(ack, prior_snd_una)) 3584 flag |= FLAG_SND_UNA_ADVANCED; 3585 3586 if (sysctl_tcp_abc) { 3587 if (icsk->icsk_ca_state < TCP_CA_CWR) 3588 tp->bytes_acked += ack - prior_snd_una; 3589 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3590 /* we assume just one segment left network */ 3591 tp->bytes_acked += min(ack - prior_snd_una, 3592 tp->mss_cache); 3593 } 3594 3595 prior_fackets = tp->fackets_out; 3596 prior_in_flight = tcp_packets_in_flight(tp); 3597 3598 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3599 /* Window is constant, pure forward advance. 3600 * No more checks are required. 3601 * Note, we use the fact that SND.UNA>=SND.WL2. 3602 */ 3603 tcp_update_wl(tp, ack, ack_seq); 3604 tp->snd_una = ack; 3605 flag |= FLAG_WIN_UPDATE; 3606 3607 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3608 3609 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3610 } else { 3611 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3612 flag |= FLAG_DATA; 3613 else 3614 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3615 3616 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3617 3618 if (TCP_SKB_CB(skb)->sacked) 3619 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3620 3621 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3622 flag |= FLAG_ECE; 3623 3624 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3625 } 3626 3627 /* We passed data and got it acked, remove any soft error 3628 * log. Something worked... 3629 */ 3630 sk->sk_err_soft = 0; 3631 icsk->icsk_probes_out = 0; 3632 tp->rcv_tstamp = tcp_time_stamp; 3633 prior_packets = tp->packets_out; 3634 if (!prior_packets) 3635 goto no_queue; 3636 3637 /* See if we can take anything off of the retransmit queue. */ 3638 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3639 3640 if (tp->frto_counter) 3641 frto_cwnd = tcp_process_frto(sk, flag); 3642 /* Guarantee sacktag reordering detection against wrap-arounds */ 3643 if (before(tp->frto_highmark, tp->snd_una)) 3644 tp->frto_highmark = 0; 3645 3646 if (tcp_ack_is_dubious(sk, flag)) { 3647 /* Advance CWND, if state allows this. */ 3648 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3649 tcp_may_raise_cwnd(sk, flag)) 3650 tcp_cong_avoid(sk, ack, prior_in_flight); 3651 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, 3652 flag); 3653 } else { 3654 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3655 tcp_cong_avoid(sk, ack, prior_in_flight); 3656 } 3657 3658 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3659 dst_confirm(sk->sk_dst_cache); 3660 3661 return 1; 3662 3663 no_queue: 3664 /* If this ack opens up a zero window, clear backoff. It was 3665 * being used to time the probes, and is probably far higher than 3666 * it needs to be for normal retransmission. 3667 */ 3668 if (tcp_send_head(sk)) 3669 tcp_ack_probe(sk); 3670 return 1; 3671 3672 old_ack: 3673 if (TCP_SKB_CB(skb)->sacked) { 3674 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3675 if (icsk->icsk_ca_state == TCP_CA_Open) 3676 tcp_try_keep_open(sk); 3677 } 3678 3679 uninteresting_ack: 3680 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3681 return 0; 3682 } 3683 3684 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3685 * But, this can also be called on packets in the established flow when 3686 * the fast version below fails. 3687 */ 3688 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, 3689 int estab) 3690 { 3691 unsigned char *ptr; 3692 struct tcphdr *th = tcp_hdr(skb); 3693 int length = (th->doff * 4) - sizeof(struct tcphdr); 3694 3695 ptr = (unsigned char *)(th + 1); 3696 opt_rx->saw_tstamp = 0; 3697 3698 while (length > 0) { 3699 int opcode = *ptr++; 3700 int opsize; 3701 3702 switch (opcode) { 3703 case TCPOPT_EOL: 3704 return; 3705 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3706 length--; 3707 continue; 3708 default: 3709 opsize = *ptr++; 3710 if (opsize < 2) /* "silly options" */ 3711 return; 3712 if (opsize > length) 3713 return; /* don't parse partial options */ 3714 switch (opcode) { 3715 case TCPOPT_MSS: 3716 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3717 u16 in_mss = get_unaligned_be16(ptr); 3718 if (in_mss) { 3719 if (opt_rx->user_mss && 3720 opt_rx->user_mss < in_mss) 3721 in_mss = opt_rx->user_mss; 3722 opt_rx->mss_clamp = in_mss; 3723 } 3724 } 3725 break; 3726 case TCPOPT_WINDOW: 3727 if (opsize == TCPOLEN_WINDOW && th->syn && 3728 !estab && sysctl_tcp_window_scaling) { 3729 __u8 snd_wscale = *(__u8 *)ptr; 3730 opt_rx->wscale_ok = 1; 3731 if (snd_wscale > 14) { 3732 if (net_ratelimit()) 3733 printk(KERN_INFO "tcp_parse_options: Illegal window " 3734 "scaling value %d >14 received.\n", 3735 snd_wscale); 3736 snd_wscale = 14; 3737 } 3738 opt_rx->snd_wscale = snd_wscale; 3739 } 3740 break; 3741 case TCPOPT_TIMESTAMP: 3742 if ((opsize == TCPOLEN_TIMESTAMP) && 3743 ((estab && opt_rx->tstamp_ok) || 3744 (!estab && sysctl_tcp_timestamps))) { 3745 opt_rx->saw_tstamp = 1; 3746 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3747 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3748 } 3749 break; 3750 case TCPOPT_SACK_PERM: 3751 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3752 !estab && sysctl_tcp_sack) { 3753 opt_rx->sack_ok = 1; 3754 tcp_sack_reset(opt_rx); 3755 } 3756 break; 3757 3758 case TCPOPT_SACK: 3759 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3760 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3761 opt_rx->sack_ok) { 3762 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3763 } 3764 break; 3765 #ifdef CONFIG_TCP_MD5SIG 3766 case TCPOPT_MD5SIG: 3767 /* 3768 * The MD5 Hash has already been 3769 * checked (see tcp_v{4,6}_do_rcv()). 3770 */ 3771 break; 3772 #endif 3773 } 3774 3775 ptr += opsize-2; 3776 length -= opsize; 3777 } 3778 } 3779 } 3780 3781 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th) 3782 { 3783 __be32 *ptr = (__be32 *)(th + 1); 3784 3785 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3786 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3787 tp->rx_opt.saw_tstamp = 1; 3788 ++ptr; 3789 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3790 ++ptr; 3791 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3792 return 1; 3793 } 3794 return 0; 3795 } 3796 3797 /* Fast parse options. This hopes to only see timestamps. 3798 * If it is wrong it falls back on tcp_parse_options(). 3799 */ 3800 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 3801 struct tcp_sock *tp) 3802 { 3803 if (th->doff == sizeof(struct tcphdr) >> 2) { 3804 tp->rx_opt.saw_tstamp = 0; 3805 return 0; 3806 } else if (tp->rx_opt.tstamp_ok && 3807 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 3808 if (tcp_parse_aligned_timestamp(tp, th)) 3809 return 1; 3810 } 3811 tcp_parse_options(skb, &tp->rx_opt, 1); 3812 return 1; 3813 } 3814 3815 #ifdef CONFIG_TCP_MD5SIG 3816 /* 3817 * Parse MD5 Signature option 3818 */ 3819 u8 *tcp_parse_md5sig_option(struct tcphdr *th) 3820 { 3821 int length = (th->doff << 2) - sizeof (*th); 3822 u8 *ptr = (u8*)(th + 1); 3823 3824 /* If the TCP option is too short, we can short cut */ 3825 if (length < TCPOLEN_MD5SIG) 3826 return NULL; 3827 3828 while (length > 0) { 3829 int opcode = *ptr++; 3830 int opsize; 3831 3832 switch(opcode) { 3833 case TCPOPT_EOL: 3834 return NULL; 3835 case TCPOPT_NOP: 3836 length--; 3837 continue; 3838 default: 3839 opsize = *ptr++; 3840 if (opsize < 2 || opsize > length) 3841 return NULL; 3842 if (opcode == TCPOPT_MD5SIG) 3843 return ptr; 3844 } 3845 ptr += opsize - 2; 3846 length -= opsize; 3847 } 3848 return NULL; 3849 } 3850 #endif 3851 3852 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3853 { 3854 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3855 tp->rx_opt.ts_recent_stamp = get_seconds(); 3856 } 3857 3858 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3859 { 3860 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3861 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3862 * extra check below makes sure this can only happen 3863 * for pure ACK frames. -DaveM 3864 * 3865 * Not only, also it occurs for expired timestamps. 3866 */ 3867 3868 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 3869 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 3870 tcp_store_ts_recent(tp); 3871 } 3872 } 3873 3874 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3875 * 3876 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3877 * it can pass through stack. So, the following predicate verifies that 3878 * this segment is not used for anything but congestion avoidance or 3879 * fast retransmit. Moreover, we even are able to eliminate most of such 3880 * second order effects, if we apply some small "replay" window (~RTO) 3881 * to timestamp space. 3882 * 3883 * All these measures still do not guarantee that we reject wrapped ACKs 3884 * on networks with high bandwidth, when sequence space is recycled fastly, 3885 * but it guarantees that such events will be very rare and do not affect 3886 * connection seriously. This doesn't look nice, but alas, PAWS is really 3887 * buggy extension. 3888 * 3889 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3890 * states that events when retransmit arrives after original data are rare. 3891 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3892 * the biggest problem on large power networks even with minor reordering. 3893 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3894 * up to bandwidth of 18Gigabit/sec. 8) ] 3895 */ 3896 3897 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3898 { 3899 struct tcp_sock *tp = tcp_sk(sk); 3900 struct tcphdr *th = tcp_hdr(skb); 3901 u32 seq = TCP_SKB_CB(skb)->seq; 3902 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3903 3904 return (/* 1. Pure ACK with correct sequence number. */ 3905 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3906 3907 /* 2. ... and duplicate ACK. */ 3908 ack == tp->snd_una && 3909 3910 /* 3. ... and does not update window. */ 3911 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3912 3913 /* 4. ... and sits in replay window. */ 3914 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3915 } 3916 3917 static inline int tcp_paws_discard(const struct sock *sk, 3918 const struct sk_buff *skb) 3919 { 3920 const struct tcp_sock *tp = tcp_sk(sk); 3921 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 3922 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 3923 !tcp_disordered_ack(sk, skb)); 3924 } 3925 3926 /* Check segment sequence number for validity. 3927 * 3928 * Segment controls are considered valid, if the segment 3929 * fits to the window after truncation to the window. Acceptability 3930 * of data (and SYN, FIN, of course) is checked separately. 3931 * See tcp_data_queue(), for example. 3932 * 3933 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3934 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3935 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3936 * (borrowed from freebsd) 3937 */ 3938 3939 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 3940 { 3941 return !before(end_seq, tp->rcv_wup) && 3942 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3943 } 3944 3945 /* When we get a reset we do this. */ 3946 static void tcp_reset(struct sock *sk) 3947 { 3948 /* We want the right error as BSD sees it (and indeed as we do). */ 3949 switch (sk->sk_state) { 3950 case TCP_SYN_SENT: 3951 sk->sk_err = ECONNREFUSED; 3952 break; 3953 case TCP_CLOSE_WAIT: 3954 sk->sk_err = EPIPE; 3955 break; 3956 case TCP_CLOSE: 3957 return; 3958 default: 3959 sk->sk_err = ECONNRESET; 3960 } 3961 3962 if (!sock_flag(sk, SOCK_DEAD)) 3963 sk->sk_error_report(sk); 3964 3965 tcp_done(sk); 3966 } 3967 3968 /* 3969 * Process the FIN bit. This now behaves as it is supposed to work 3970 * and the FIN takes effect when it is validly part of sequence 3971 * space. Not before when we get holes. 3972 * 3973 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3974 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3975 * TIME-WAIT) 3976 * 3977 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3978 * close and we go into CLOSING (and later onto TIME-WAIT) 3979 * 3980 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3981 */ 3982 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 3983 { 3984 struct tcp_sock *tp = tcp_sk(sk); 3985 3986 inet_csk_schedule_ack(sk); 3987 3988 sk->sk_shutdown |= RCV_SHUTDOWN; 3989 sock_set_flag(sk, SOCK_DONE); 3990 3991 switch (sk->sk_state) { 3992 case TCP_SYN_RECV: 3993 case TCP_ESTABLISHED: 3994 /* Move to CLOSE_WAIT */ 3995 tcp_set_state(sk, TCP_CLOSE_WAIT); 3996 inet_csk(sk)->icsk_ack.pingpong = 1; 3997 break; 3998 3999 case TCP_CLOSE_WAIT: 4000 case TCP_CLOSING: 4001 /* Received a retransmission of the FIN, do 4002 * nothing. 4003 */ 4004 break; 4005 case TCP_LAST_ACK: 4006 /* RFC793: Remain in the LAST-ACK state. */ 4007 break; 4008 4009 case TCP_FIN_WAIT1: 4010 /* This case occurs when a simultaneous close 4011 * happens, we must ack the received FIN and 4012 * enter the CLOSING state. 4013 */ 4014 tcp_send_ack(sk); 4015 tcp_set_state(sk, TCP_CLOSING); 4016 break; 4017 case TCP_FIN_WAIT2: 4018 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4019 tcp_send_ack(sk); 4020 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4021 break; 4022 default: 4023 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4024 * cases we should never reach this piece of code. 4025 */ 4026 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 4027 __func__, sk->sk_state); 4028 break; 4029 } 4030 4031 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4032 * Probably, we should reset in this case. For now drop them. 4033 */ 4034 __skb_queue_purge(&tp->out_of_order_queue); 4035 if (tcp_is_sack(tp)) 4036 tcp_sack_reset(&tp->rx_opt); 4037 sk_mem_reclaim(sk); 4038 4039 if (!sock_flag(sk, SOCK_DEAD)) { 4040 sk->sk_state_change(sk); 4041 4042 /* Do not send POLL_HUP for half duplex close. */ 4043 if (sk->sk_shutdown == SHUTDOWN_MASK || 4044 sk->sk_state == TCP_CLOSE) 4045 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4046 else 4047 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4048 } 4049 } 4050 4051 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4052 u32 end_seq) 4053 { 4054 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4055 if (before(seq, sp->start_seq)) 4056 sp->start_seq = seq; 4057 if (after(end_seq, sp->end_seq)) 4058 sp->end_seq = end_seq; 4059 return 1; 4060 } 4061 return 0; 4062 } 4063 4064 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4065 { 4066 struct tcp_sock *tp = tcp_sk(sk); 4067 4068 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4069 int mib_idx; 4070 4071 if (before(seq, tp->rcv_nxt)) 4072 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4073 else 4074 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4075 4076 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4077 4078 tp->rx_opt.dsack = 1; 4079 tp->duplicate_sack[0].start_seq = seq; 4080 tp->duplicate_sack[0].end_seq = end_seq; 4081 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1; 4082 } 4083 } 4084 4085 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4086 { 4087 struct tcp_sock *tp = tcp_sk(sk); 4088 4089 if (!tp->rx_opt.dsack) 4090 tcp_dsack_set(sk, seq, end_seq); 4091 else 4092 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4093 } 4094 4095 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 4096 { 4097 struct tcp_sock *tp = tcp_sk(sk); 4098 4099 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4100 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4101 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4102 tcp_enter_quickack_mode(sk); 4103 4104 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4105 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4106 4107 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4108 end_seq = tp->rcv_nxt; 4109 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4110 } 4111 } 4112 4113 tcp_send_ack(sk); 4114 } 4115 4116 /* These routines update the SACK block as out-of-order packets arrive or 4117 * in-order packets close up the sequence space. 4118 */ 4119 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4120 { 4121 int this_sack; 4122 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4123 struct tcp_sack_block *swalk = sp + 1; 4124 4125 /* See if the recent change to the first SACK eats into 4126 * or hits the sequence space of other SACK blocks, if so coalesce. 4127 */ 4128 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4129 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4130 int i; 4131 4132 /* Zap SWALK, by moving every further SACK up by one slot. 4133 * Decrease num_sacks. 4134 */ 4135 tp->rx_opt.num_sacks--; 4136 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 4137 tp->rx_opt.dsack; 4138 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4139 sp[i] = sp[i + 1]; 4140 continue; 4141 } 4142 this_sack++, swalk++; 4143 } 4144 } 4145 4146 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, 4147 struct tcp_sack_block *sack2) 4148 { 4149 __u32 tmp; 4150 4151 tmp = sack1->start_seq; 4152 sack1->start_seq = sack2->start_seq; 4153 sack2->start_seq = tmp; 4154 4155 tmp = sack1->end_seq; 4156 sack1->end_seq = sack2->end_seq; 4157 sack2->end_seq = tmp; 4158 } 4159 4160 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4161 { 4162 struct tcp_sock *tp = tcp_sk(sk); 4163 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4164 int cur_sacks = tp->rx_opt.num_sacks; 4165 int this_sack; 4166 4167 if (!cur_sacks) 4168 goto new_sack; 4169 4170 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4171 if (tcp_sack_extend(sp, seq, end_seq)) { 4172 /* Rotate this_sack to the first one. */ 4173 for (; this_sack > 0; this_sack--, sp--) 4174 tcp_sack_swap(sp, sp - 1); 4175 if (cur_sacks > 1) 4176 tcp_sack_maybe_coalesce(tp); 4177 return; 4178 } 4179 } 4180 4181 /* Could not find an adjacent existing SACK, build a new one, 4182 * put it at the front, and shift everyone else down. We 4183 * always know there is at least one SACK present already here. 4184 * 4185 * If the sack array is full, forget about the last one. 4186 */ 4187 if (this_sack >= TCP_NUM_SACKS) { 4188 this_sack--; 4189 tp->rx_opt.num_sacks--; 4190 sp--; 4191 } 4192 for (; this_sack > 0; this_sack--, sp--) 4193 *sp = *(sp - 1); 4194 4195 new_sack: 4196 /* Build the new head SACK, and we're done. */ 4197 sp->start_seq = seq; 4198 sp->end_seq = end_seq; 4199 tp->rx_opt.num_sacks++; 4200 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 4201 } 4202 4203 /* RCV.NXT advances, some SACKs should be eaten. */ 4204 4205 static void tcp_sack_remove(struct tcp_sock *tp) 4206 { 4207 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4208 int num_sacks = tp->rx_opt.num_sacks; 4209 int this_sack; 4210 4211 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4212 if (skb_queue_empty(&tp->out_of_order_queue)) { 4213 tp->rx_opt.num_sacks = 0; 4214 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 4215 return; 4216 } 4217 4218 for (this_sack = 0; this_sack < num_sacks;) { 4219 /* Check if the start of the sack is covered by RCV.NXT. */ 4220 if (!before(tp->rcv_nxt, sp->start_seq)) { 4221 int i; 4222 4223 /* RCV.NXT must cover all the block! */ 4224 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4225 4226 /* Zap this SACK, by moving forward any other SACKS. */ 4227 for (i=this_sack+1; i < num_sacks; i++) 4228 tp->selective_acks[i-1] = tp->selective_acks[i]; 4229 num_sacks--; 4230 continue; 4231 } 4232 this_sack++; 4233 sp++; 4234 } 4235 if (num_sacks != tp->rx_opt.num_sacks) { 4236 tp->rx_opt.num_sacks = num_sacks; 4237 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 4238 tp->rx_opt.dsack; 4239 } 4240 } 4241 4242 /* This one checks to see if we can put data from the 4243 * out_of_order queue into the receive_queue. 4244 */ 4245 static void tcp_ofo_queue(struct sock *sk) 4246 { 4247 struct tcp_sock *tp = tcp_sk(sk); 4248 __u32 dsack_high = tp->rcv_nxt; 4249 struct sk_buff *skb; 4250 4251 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4252 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4253 break; 4254 4255 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4256 __u32 dsack = dsack_high; 4257 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4258 dsack_high = TCP_SKB_CB(skb)->end_seq; 4259 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4260 } 4261 4262 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4263 SOCK_DEBUG(sk, "ofo packet was already received \n"); 4264 __skb_unlink(skb, &tp->out_of_order_queue); 4265 __kfree_skb(skb); 4266 continue; 4267 } 4268 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4269 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4270 TCP_SKB_CB(skb)->end_seq); 4271 4272 __skb_unlink(skb, &tp->out_of_order_queue); 4273 __skb_queue_tail(&sk->sk_receive_queue, skb); 4274 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4275 if (tcp_hdr(skb)->fin) 4276 tcp_fin(skb, sk, tcp_hdr(skb)); 4277 } 4278 } 4279 4280 static int tcp_prune_ofo_queue(struct sock *sk); 4281 static int tcp_prune_queue(struct sock *sk); 4282 4283 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size) 4284 { 4285 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4286 !sk_rmem_schedule(sk, size)) { 4287 4288 if (tcp_prune_queue(sk) < 0) 4289 return -1; 4290 4291 if (!sk_rmem_schedule(sk, size)) { 4292 if (!tcp_prune_ofo_queue(sk)) 4293 return -1; 4294 4295 if (!sk_rmem_schedule(sk, size)) 4296 return -1; 4297 } 4298 } 4299 return 0; 4300 } 4301 4302 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4303 { 4304 struct tcphdr *th = tcp_hdr(skb); 4305 struct tcp_sock *tp = tcp_sk(sk); 4306 int eaten = -1; 4307 4308 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4309 goto drop; 4310 4311 __skb_pull(skb, th->doff * 4); 4312 4313 TCP_ECN_accept_cwr(tp, skb); 4314 4315 if (tp->rx_opt.dsack) { 4316 tp->rx_opt.dsack = 0; 4317 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks; 4318 } 4319 4320 /* Queue data for delivery to the user. 4321 * Packets in sequence go to the receive queue. 4322 * Out of sequence packets to the out_of_order_queue. 4323 */ 4324 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4325 if (tcp_receive_window(tp) == 0) 4326 goto out_of_window; 4327 4328 /* Ok. In sequence. In window. */ 4329 if (tp->ucopy.task == current && 4330 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4331 sock_owned_by_user(sk) && !tp->urg_data) { 4332 int chunk = min_t(unsigned int, skb->len, 4333 tp->ucopy.len); 4334 4335 __set_current_state(TASK_RUNNING); 4336 4337 local_bh_enable(); 4338 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4339 tp->ucopy.len -= chunk; 4340 tp->copied_seq += chunk; 4341 eaten = (chunk == skb->len && !th->fin); 4342 tcp_rcv_space_adjust(sk); 4343 } 4344 local_bh_disable(); 4345 } 4346 4347 if (eaten <= 0) { 4348 queue_and_out: 4349 if (eaten < 0 && 4350 tcp_try_rmem_schedule(sk, skb->truesize)) 4351 goto drop; 4352 4353 skb_set_owner_r(skb, sk); 4354 __skb_queue_tail(&sk->sk_receive_queue, skb); 4355 } 4356 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4357 if (skb->len) 4358 tcp_event_data_recv(sk, skb); 4359 if (th->fin) 4360 tcp_fin(skb, sk, th); 4361 4362 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4363 tcp_ofo_queue(sk); 4364 4365 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4366 * gap in queue is filled. 4367 */ 4368 if (skb_queue_empty(&tp->out_of_order_queue)) 4369 inet_csk(sk)->icsk_ack.pingpong = 0; 4370 } 4371 4372 if (tp->rx_opt.num_sacks) 4373 tcp_sack_remove(tp); 4374 4375 tcp_fast_path_check(sk); 4376 4377 if (eaten > 0) 4378 __kfree_skb(skb); 4379 else if (!sock_flag(sk, SOCK_DEAD)) 4380 sk->sk_data_ready(sk, 0); 4381 return; 4382 } 4383 4384 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4385 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4386 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4387 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4388 4389 out_of_window: 4390 tcp_enter_quickack_mode(sk); 4391 inet_csk_schedule_ack(sk); 4392 drop: 4393 __kfree_skb(skb); 4394 return; 4395 } 4396 4397 /* Out of window. F.e. zero window probe. */ 4398 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4399 goto out_of_window; 4400 4401 tcp_enter_quickack_mode(sk); 4402 4403 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4404 /* Partial packet, seq < rcv_next < end_seq */ 4405 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4406 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4407 TCP_SKB_CB(skb)->end_seq); 4408 4409 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4410 4411 /* If window is closed, drop tail of packet. But after 4412 * remembering D-SACK for its head made in previous line. 4413 */ 4414 if (!tcp_receive_window(tp)) 4415 goto out_of_window; 4416 goto queue_and_out; 4417 } 4418 4419 TCP_ECN_check_ce(tp, skb); 4420 4421 if (tcp_try_rmem_schedule(sk, skb->truesize)) 4422 goto drop; 4423 4424 /* Disable header prediction. */ 4425 tp->pred_flags = 0; 4426 inet_csk_schedule_ack(sk); 4427 4428 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4429 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4430 4431 skb_set_owner_r(skb, sk); 4432 4433 if (!skb_peek(&tp->out_of_order_queue)) { 4434 /* Initial out of order segment, build 1 SACK. */ 4435 if (tcp_is_sack(tp)) { 4436 tp->rx_opt.num_sacks = 1; 4437 tp->rx_opt.dsack = 0; 4438 tp->rx_opt.eff_sacks = 1; 4439 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4440 tp->selective_acks[0].end_seq = 4441 TCP_SKB_CB(skb)->end_seq; 4442 } 4443 __skb_queue_head(&tp->out_of_order_queue, skb); 4444 } else { 4445 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 4446 u32 seq = TCP_SKB_CB(skb)->seq; 4447 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4448 4449 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4450 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4451 4452 if (!tp->rx_opt.num_sacks || 4453 tp->selective_acks[0].end_seq != seq) 4454 goto add_sack; 4455 4456 /* Common case: data arrive in order after hole. */ 4457 tp->selective_acks[0].end_seq = end_seq; 4458 return; 4459 } 4460 4461 /* Find place to insert this segment. */ 4462 do { 4463 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4464 break; 4465 } while ((skb1 = skb1->prev) != 4466 (struct sk_buff *)&tp->out_of_order_queue); 4467 4468 /* Do skb overlap to previous one? */ 4469 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue && 4470 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4471 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4472 /* All the bits are present. Drop. */ 4473 __kfree_skb(skb); 4474 tcp_dsack_set(sk, seq, end_seq); 4475 goto add_sack; 4476 } 4477 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4478 /* Partial overlap. */ 4479 tcp_dsack_set(sk, seq, 4480 TCP_SKB_CB(skb1)->end_seq); 4481 } else { 4482 skb1 = skb1->prev; 4483 } 4484 } 4485 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4486 4487 /* And clean segments covered by new one as whole. */ 4488 while ((skb1 = skb->next) != 4489 (struct sk_buff *)&tp->out_of_order_queue && 4490 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 4491 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4492 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4493 end_seq); 4494 break; 4495 } 4496 __skb_unlink(skb1, &tp->out_of_order_queue); 4497 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4498 TCP_SKB_CB(skb1)->end_seq); 4499 __kfree_skb(skb1); 4500 } 4501 4502 add_sack: 4503 if (tcp_is_sack(tp)) 4504 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4505 } 4506 } 4507 4508 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4509 struct sk_buff_head *list) 4510 { 4511 struct sk_buff *next = skb->next; 4512 4513 __skb_unlink(skb, list); 4514 __kfree_skb(skb); 4515 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4516 4517 return next; 4518 } 4519 4520 /* Collapse contiguous sequence of skbs head..tail with 4521 * sequence numbers start..end. 4522 * Segments with FIN/SYN are not collapsed (only because this 4523 * simplifies code) 4524 */ 4525 static void 4526 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4527 struct sk_buff *head, struct sk_buff *tail, 4528 u32 start, u32 end) 4529 { 4530 struct sk_buff *skb; 4531 4532 /* First, check that queue is collapsible and find 4533 * the point where collapsing can be useful. */ 4534 for (skb = head; skb != tail;) { 4535 /* No new bits? It is possible on ofo queue. */ 4536 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4537 skb = tcp_collapse_one(sk, skb, list); 4538 continue; 4539 } 4540 4541 /* The first skb to collapse is: 4542 * - not SYN/FIN and 4543 * - bloated or contains data before "start" or 4544 * overlaps to the next one. 4545 */ 4546 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4547 (tcp_win_from_space(skb->truesize) > skb->len || 4548 before(TCP_SKB_CB(skb)->seq, start) || 4549 (skb->next != tail && 4550 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 4551 break; 4552 4553 /* Decided to skip this, advance start seq. */ 4554 start = TCP_SKB_CB(skb)->end_seq; 4555 skb = skb->next; 4556 } 4557 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4558 return; 4559 4560 while (before(start, end)) { 4561 struct sk_buff *nskb; 4562 unsigned int header = skb_headroom(skb); 4563 int copy = SKB_MAX_ORDER(header, 0); 4564 4565 /* Too big header? This can happen with IPv6. */ 4566 if (copy < 0) 4567 return; 4568 if (end - start < copy) 4569 copy = end - start; 4570 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4571 if (!nskb) 4572 return; 4573 4574 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4575 skb_set_network_header(nskb, (skb_network_header(skb) - 4576 skb->head)); 4577 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4578 skb->head)); 4579 skb_reserve(nskb, header); 4580 memcpy(nskb->head, skb->head, header); 4581 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4582 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4583 __skb_queue_before(list, skb, nskb); 4584 skb_set_owner_r(nskb, sk); 4585 4586 /* Copy data, releasing collapsed skbs. */ 4587 while (copy > 0) { 4588 int offset = start - TCP_SKB_CB(skb)->seq; 4589 int size = TCP_SKB_CB(skb)->end_seq - start; 4590 4591 BUG_ON(offset < 0); 4592 if (size > 0) { 4593 size = min(copy, size); 4594 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4595 BUG(); 4596 TCP_SKB_CB(nskb)->end_seq += size; 4597 copy -= size; 4598 start += size; 4599 } 4600 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4601 skb = tcp_collapse_one(sk, skb, list); 4602 if (skb == tail || 4603 tcp_hdr(skb)->syn || 4604 tcp_hdr(skb)->fin) 4605 return; 4606 } 4607 } 4608 } 4609 } 4610 4611 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4612 * and tcp_collapse() them until all the queue is collapsed. 4613 */ 4614 static void tcp_collapse_ofo_queue(struct sock *sk) 4615 { 4616 struct tcp_sock *tp = tcp_sk(sk); 4617 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4618 struct sk_buff *head; 4619 u32 start, end; 4620 4621 if (skb == NULL) 4622 return; 4623 4624 start = TCP_SKB_CB(skb)->seq; 4625 end = TCP_SKB_CB(skb)->end_seq; 4626 head = skb; 4627 4628 for (;;) { 4629 skb = skb->next; 4630 4631 /* Segment is terminated when we see gap or when 4632 * we are at the end of all the queue. */ 4633 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 4634 after(TCP_SKB_CB(skb)->seq, end) || 4635 before(TCP_SKB_CB(skb)->end_seq, start)) { 4636 tcp_collapse(sk, &tp->out_of_order_queue, 4637 head, skb, start, end); 4638 head = skb; 4639 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 4640 break; 4641 /* Start new segment */ 4642 start = TCP_SKB_CB(skb)->seq; 4643 end = TCP_SKB_CB(skb)->end_seq; 4644 } else { 4645 if (before(TCP_SKB_CB(skb)->seq, start)) 4646 start = TCP_SKB_CB(skb)->seq; 4647 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4648 end = TCP_SKB_CB(skb)->end_seq; 4649 } 4650 } 4651 } 4652 4653 /* 4654 * Purge the out-of-order queue. 4655 * Return true if queue was pruned. 4656 */ 4657 static int tcp_prune_ofo_queue(struct sock *sk) 4658 { 4659 struct tcp_sock *tp = tcp_sk(sk); 4660 int res = 0; 4661 4662 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4663 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4664 __skb_queue_purge(&tp->out_of_order_queue); 4665 4666 /* Reset SACK state. A conforming SACK implementation will 4667 * do the same at a timeout based retransmit. When a connection 4668 * is in a sad state like this, we care only about integrity 4669 * of the connection not performance. 4670 */ 4671 if (tp->rx_opt.sack_ok) 4672 tcp_sack_reset(&tp->rx_opt); 4673 sk_mem_reclaim(sk); 4674 res = 1; 4675 } 4676 return res; 4677 } 4678 4679 /* Reduce allocated memory if we can, trying to get 4680 * the socket within its memory limits again. 4681 * 4682 * Return less than zero if we should start dropping frames 4683 * until the socket owning process reads some of the data 4684 * to stabilize the situation. 4685 */ 4686 static int tcp_prune_queue(struct sock *sk) 4687 { 4688 struct tcp_sock *tp = tcp_sk(sk); 4689 4690 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4691 4692 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4693 4694 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4695 tcp_clamp_window(sk); 4696 else if (tcp_memory_pressure) 4697 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4698 4699 tcp_collapse_ofo_queue(sk); 4700 tcp_collapse(sk, &sk->sk_receive_queue, 4701 sk->sk_receive_queue.next, 4702 (struct sk_buff *)&sk->sk_receive_queue, 4703 tp->copied_seq, tp->rcv_nxt); 4704 sk_mem_reclaim(sk); 4705 4706 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4707 return 0; 4708 4709 /* Collapsing did not help, destructive actions follow. 4710 * This must not ever occur. */ 4711 4712 tcp_prune_ofo_queue(sk); 4713 4714 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4715 return 0; 4716 4717 /* If we are really being abused, tell the caller to silently 4718 * drop receive data on the floor. It will get retransmitted 4719 * and hopefully then we'll have sufficient space. 4720 */ 4721 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4722 4723 /* Massive buffer overcommit. */ 4724 tp->pred_flags = 0; 4725 return -1; 4726 } 4727 4728 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4729 * As additional protections, we do not touch cwnd in retransmission phases, 4730 * and if application hit its sndbuf limit recently. 4731 */ 4732 void tcp_cwnd_application_limited(struct sock *sk) 4733 { 4734 struct tcp_sock *tp = tcp_sk(sk); 4735 4736 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4737 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4738 /* Limited by application or receiver window. */ 4739 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4740 u32 win_used = max(tp->snd_cwnd_used, init_win); 4741 if (win_used < tp->snd_cwnd) { 4742 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4743 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4744 } 4745 tp->snd_cwnd_used = 0; 4746 } 4747 tp->snd_cwnd_stamp = tcp_time_stamp; 4748 } 4749 4750 static int tcp_should_expand_sndbuf(struct sock *sk) 4751 { 4752 struct tcp_sock *tp = tcp_sk(sk); 4753 4754 /* If the user specified a specific send buffer setting, do 4755 * not modify it. 4756 */ 4757 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4758 return 0; 4759 4760 /* If we are under global TCP memory pressure, do not expand. */ 4761 if (tcp_memory_pressure) 4762 return 0; 4763 4764 /* If we are under soft global TCP memory pressure, do not expand. */ 4765 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 4766 return 0; 4767 4768 /* If we filled the congestion window, do not expand. */ 4769 if (tp->packets_out >= tp->snd_cwnd) 4770 return 0; 4771 4772 return 1; 4773 } 4774 4775 /* When incoming ACK allowed to free some skb from write_queue, 4776 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4777 * on the exit from tcp input handler. 4778 * 4779 * PROBLEM: sndbuf expansion does not work well with largesend. 4780 */ 4781 static void tcp_new_space(struct sock *sk) 4782 { 4783 struct tcp_sock *tp = tcp_sk(sk); 4784 4785 if (tcp_should_expand_sndbuf(sk)) { 4786 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 4787 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 4788 int demanded = max_t(unsigned int, tp->snd_cwnd, 4789 tp->reordering + 1); 4790 sndmem *= 2 * demanded; 4791 if (sndmem > sk->sk_sndbuf) 4792 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4793 tp->snd_cwnd_stamp = tcp_time_stamp; 4794 } 4795 4796 sk->sk_write_space(sk); 4797 } 4798 4799 static void tcp_check_space(struct sock *sk) 4800 { 4801 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4802 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4803 if (sk->sk_socket && 4804 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4805 tcp_new_space(sk); 4806 } 4807 } 4808 4809 static inline void tcp_data_snd_check(struct sock *sk) 4810 { 4811 tcp_push_pending_frames(sk); 4812 tcp_check_space(sk); 4813 } 4814 4815 /* 4816 * Check if sending an ack is needed. 4817 */ 4818 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4819 { 4820 struct tcp_sock *tp = tcp_sk(sk); 4821 4822 /* More than one full frame received... */ 4823 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 4824 /* ... and right edge of window advances far enough. 4825 * (tcp_recvmsg() will send ACK otherwise). Or... 4826 */ 4827 && __tcp_select_window(sk) >= tp->rcv_wnd) || 4828 /* We ACK each frame or... */ 4829 tcp_in_quickack_mode(sk) || 4830 /* We have out of order data. */ 4831 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4832 /* Then ack it now */ 4833 tcp_send_ack(sk); 4834 } else { 4835 /* Else, send delayed ack. */ 4836 tcp_send_delayed_ack(sk); 4837 } 4838 } 4839 4840 static inline void tcp_ack_snd_check(struct sock *sk) 4841 { 4842 if (!inet_csk_ack_scheduled(sk)) { 4843 /* We sent a data segment already. */ 4844 return; 4845 } 4846 __tcp_ack_snd_check(sk, 1); 4847 } 4848 4849 /* 4850 * This routine is only called when we have urgent data 4851 * signaled. Its the 'slow' part of tcp_urg. It could be 4852 * moved inline now as tcp_urg is only called from one 4853 * place. We handle URGent data wrong. We have to - as 4854 * BSD still doesn't use the correction from RFC961. 4855 * For 1003.1g we should support a new option TCP_STDURG to permit 4856 * either form (or just set the sysctl tcp_stdurg). 4857 */ 4858 4859 static void tcp_check_urg(struct sock *sk, struct tcphdr *th) 4860 { 4861 struct tcp_sock *tp = tcp_sk(sk); 4862 u32 ptr = ntohs(th->urg_ptr); 4863 4864 if (ptr && !sysctl_tcp_stdurg) 4865 ptr--; 4866 ptr += ntohl(th->seq); 4867 4868 /* Ignore urgent data that we've already seen and read. */ 4869 if (after(tp->copied_seq, ptr)) 4870 return; 4871 4872 /* Do not replay urg ptr. 4873 * 4874 * NOTE: interesting situation not covered by specs. 4875 * Misbehaving sender may send urg ptr, pointing to segment, 4876 * which we already have in ofo queue. We are not able to fetch 4877 * such data and will stay in TCP_URG_NOTYET until will be eaten 4878 * by recvmsg(). Seems, we are not obliged to handle such wicked 4879 * situations. But it is worth to think about possibility of some 4880 * DoSes using some hypothetical application level deadlock. 4881 */ 4882 if (before(ptr, tp->rcv_nxt)) 4883 return; 4884 4885 /* Do we already have a newer (or duplicate) urgent pointer? */ 4886 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4887 return; 4888 4889 /* Tell the world about our new urgent pointer. */ 4890 sk_send_sigurg(sk); 4891 4892 /* We may be adding urgent data when the last byte read was 4893 * urgent. To do this requires some care. We cannot just ignore 4894 * tp->copied_seq since we would read the last urgent byte again 4895 * as data, nor can we alter copied_seq until this data arrives 4896 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4897 * 4898 * NOTE. Double Dutch. Rendering to plain English: author of comment 4899 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4900 * and expect that both A and B disappear from stream. This is _wrong_. 4901 * Though this happens in BSD with high probability, this is occasional. 4902 * Any application relying on this is buggy. Note also, that fix "works" 4903 * only in this artificial test. Insert some normal data between A and B and we will 4904 * decline of BSD again. Verdict: it is better to remove to trap 4905 * buggy users. 4906 */ 4907 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4908 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4909 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4910 tp->copied_seq++; 4911 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4912 __skb_unlink(skb, &sk->sk_receive_queue); 4913 __kfree_skb(skb); 4914 } 4915 } 4916 4917 tp->urg_data = TCP_URG_NOTYET; 4918 tp->urg_seq = ptr; 4919 4920 /* Disable header prediction. */ 4921 tp->pred_flags = 0; 4922 } 4923 4924 /* This is the 'fast' part of urgent handling. */ 4925 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 4926 { 4927 struct tcp_sock *tp = tcp_sk(sk); 4928 4929 /* Check if we get a new urgent pointer - normally not. */ 4930 if (th->urg) 4931 tcp_check_urg(sk, th); 4932 4933 /* Do we wait for any urgent data? - normally not... */ 4934 if (tp->urg_data == TCP_URG_NOTYET) { 4935 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4936 th->syn; 4937 4938 /* Is the urgent pointer pointing into this packet? */ 4939 if (ptr < skb->len) { 4940 u8 tmp; 4941 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4942 BUG(); 4943 tp->urg_data = TCP_URG_VALID | tmp; 4944 if (!sock_flag(sk, SOCK_DEAD)) 4945 sk->sk_data_ready(sk, 0); 4946 } 4947 } 4948 } 4949 4950 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4951 { 4952 struct tcp_sock *tp = tcp_sk(sk); 4953 int chunk = skb->len - hlen; 4954 int err; 4955 4956 local_bh_enable(); 4957 if (skb_csum_unnecessary(skb)) 4958 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4959 else 4960 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4961 tp->ucopy.iov); 4962 4963 if (!err) { 4964 tp->ucopy.len -= chunk; 4965 tp->copied_seq += chunk; 4966 tcp_rcv_space_adjust(sk); 4967 } 4968 4969 local_bh_disable(); 4970 return err; 4971 } 4972 4973 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4974 struct sk_buff *skb) 4975 { 4976 __sum16 result; 4977 4978 if (sock_owned_by_user(sk)) { 4979 local_bh_enable(); 4980 result = __tcp_checksum_complete(skb); 4981 local_bh_disable(); 4982 } else { 4983 result = __tcp_checksum_complete(skb); 4984 } 4985 return result; 4986 } 4987 4988 static inline int tcp_checksum_complete_user(struct sock *sk, 4989 struct sk_buff *skb) 4990 { 4991 return !skb_csum_unnecessary(skb) && 4992 __tcp_checksum_complete_user(sk, skb); 4993 } 4994 4995 #ifdef CONFIG_NET_DMA 4996 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 4997 int hlen) 4998 { 4999 struct tcp_sock *tp = tcp_sk(sk); 5000 int chunk = skb->len - hlen; 5001 int dma_cookie; 5002 int copied_early = 0; 5003 5004 if (tp->ucopy.wakeup) 5005 return 0; 5006 5007 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 5008 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 5009 5010 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 5011 5012 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 5013 skb, hlen, 5014 tp->ucopy.iov, chunk, 5015 tp->ucopy.pinned_list); 5016 5017 if (dma_cookie < 0) 5018 goto out; 5019 5020 tp->ucopy.dma_cookie = dma_cookie; 5021 copied_early = 1; 5022 5023 tp->ucopy.len -= chunk; 5024 tp->copied_seq += chunk; 5025 tcp_rcv_space_adjust(sk); 5026 5027 if ((tp->ucopy.len == 0) || 5028 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5029 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5030 tp->ucopy.wakeup = 1; 5031 sk->sk_data_ready(sk, 0); 5032 } 5033 } else if (chunk > 0) { 5034 tp->ucopy.wakeup = 1; 5035 sk->sk_data_ready(sk, 0); 5036 } 5037 out: 5038 return copied_early; 5039 } 5040 #endif /* CONFIG_NET_DMA */ 5041 5042 /* Does PAWS and seqno based validation of an incoming segment, flags will 5043 * play significant role here. 5044 */ 5045 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5046 struct tcphdr *th, int syn_inerr) 5047 { 5048 struct tcp_sock *tp = tcp_sk(sk); 5049 5050 /* RFC1323: H1. Apply PAWS check first. */ 5051 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5052 tcp_paws_discard(sk, skb)) { 5053 if (!th->rst) { 5054 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5055 tcp_send_dupack(sk, skb); 5056 goto discard; 5057 } 5058 /* Reset is accepted even if it did not pass PAWS. */ 5059 } 5060 5061 /* Step 1: check sequence number */ 5062 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5063 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5064 * (RST) segments are validated by checking their SEQ-fields." 5065 * And page 69: "If an incoming segment is not acceptable, 5066 * an acknowledgment should be sent in reply (unless the RST 5067 * bit is set, if so drop the segment and return)". 5068 */ 5069 if (!th->rst) 5070 tcp_send_dupack(sk, skb); 5071 goto discard; 5072 } 5073 5074 /* Step 2: check RST bit */ 5075 if (th->rst) { 5076 tcp_reset(sk); 5077 goto discard; 5078 } 5079 5080 /* ts_recent update must be made after we are sure that the packet 5081 * is in window. 5082 */ 5083 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5084 5085 /* step 3: check security and precedence [ignored] */ 5086 5087 /* step 4: Check for a SYN in window. */ 5088 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5089 if (syn_inerr) 5090 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5091 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN); 5092 tcp_reset(sk); 5093 return -1; 5094 } 5095 5096 return 1; 5097 5098 discard: 5099 __kfree_skb(skb); 5100 return 0; 5101 } 5102 5103 /* 5104 * TCP receive function for the ESTABLISHED state. 5105 * 5106 * It is split into a fast path and a slow path. The fast path is 5107 * disabled when: 5108 * - A zero window was announced from us - zero window probing 5109 * is only handled properly in the slow path. 5110 * - Out of order segments arrived. 5111 * - Urgent data is expected. 5112 * - There is no buffer space left 5113 * - Unexpected TCP flags/window values/header lengths are received 5114 * (detected by checking the TCP header against pred_flags) 5115 * - Data is sent in both directions. Fast path only supports pure senders 5116 * or pure receivers (this means either the sequence number or the ack 5117 * value must stay constant) 5118 * - Unexpected TCP option. 5119 * 5120 * When these conditions are not satisfied it drops into a standard 5121 * receive procedure patterned after RFC793 to handle all cases. 5122 * The first three cases are guaranteed by proper pred_flags setting, 5123 * the rest is checked inline. Fast processing is turned on in 5124 * tcp_data_queue when everything is OK. 5125 */ 5126 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5127 struct tcphdr *th, unsigned len) 5128 { 5129 struct tcp_sock *tp = tcp_sk(sk); 5130 int res; 5131 5132 /* 5133 * Header prediction. 5134 * The code loosely follows the one in the famous 5135 * "30 instruction TCP receive" Van Jacobson mail. 5136 * 5137 * Van's trick is to deposit buffers into socket queue 5138 * on a device interrupt, to call tcp_recv function 5139 * on the receive process context and checksum and copy 5140 * the buffer to user space. smart... 5141 * 5142 * Our current scheme is not silly either but we take the 5143 * extra cost of the net_bh soft interrupt processing... 5144 * We do checksum and copy also but from device to kernel. 5145 */ 5146 5147 tp->rx_opt.saw_tstamp = 0; 5148 5149 /* pred_flags is 0xS?10 << 16 + snd_wnd 5150 * if header_prediction is to be made 5151 * 'S' will always be tp->tcp_header_len >> 2 5152 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5153 * turn it off (when there are holes in the receive 5154 * space for instance) 5155 * PSH flag is ignored. 5156 */ 5157 5158 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5159 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5160 int tcp_header_len = tp->tcp_header_len; 5161 5162 /* Timestamp header prediction: tcp_header_len 5163 * is automatically equal to th->doff*4 due to pred_flags 5164 * match. 5165 */ 5166 5167 /* Check timestamp */ 5168 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5169 /* No? Slow path! */ 5170 if (!tcp_parse_aligned_timestamp(tp, th)) 5171 goto slow_path; 5172 5173 /* If PAWS failed, check it more carefully in slow path */ 5174 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5175 goto slow_path; 5176 5177 /* DO NOT update ts_recent here, if checksum fails 5178 * and timestamp was corrupted part, it will result 5179 * in a hung connection since we will drop all 5180 * future packets due to the PAWS test. 5181 */ 5182 } 5183 5184 if (len <= tcp_header_len) { 5185 /* Bulk data transfer: sender */ 5186 if (len == tcp_header_len) { 5187 /* Predicted packet is in window by definition. 5188 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5189 * Hence, check seq<=rcv_wup reduces to: 5190 */ 5191 if (tcp_header_len == 5192 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5193 tp->rcv_nxt == tp->rcv_wup) 5194 tcp_store_ts_recent(tp); 5195 5196 /* We know that such packets are checksummed 5197 * on entry. 5198 */ 5199 tcp_ack(sk, skb, 0); 5200 __kfree_skb(skb); 5201 tcp_data_snd_check(sk); 5202 return 0; 5203 } else { /* Header too small */ 5204 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5205 goto discard; 5206 } 5207 } else { 5208 int eaten = 0; 5209 int copied_early = 0; 5210 5211 if (tp->copied_seq == tp->rcv_nxt && 5212 len - tcp_header_len <= tp->ucopy.len) { 5213 #ifdef CONFIG_NET_DMA 5214 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5215 copied_early = 1; 5216 eaten = 1; 5217 } 5218 #endif 5219 if (tp->ucopy.task == current && 5220 sock_owned_by_user(sk) && !copied_early) { 5221 __set_current_state(TASK_RUNNING); 5222 5223 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5224 eaten = 1; 5225 } 5226 if (eaten) { 5227 /* Predicted packet is in window by definition. 5228 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5229 * Hence, check seq<=rcv_wup reduces to: 5230 */ 5231 if (tcp_header_len == 5232 (sizeof(struct tcphdr) + 5233 TCPOLEN_TSTAMP_ALIGNED) && 5234 tp->rcv_nxt == tp->rcv_wup) 5235 tcp_store_ts_recent(tp); 5236 5237 tcp_rcv_rtt_measure_ts(sk, skb); 5238 5239 __skb_pull(skb, tcp_header_len); 5240 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5241 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5242 } 5243 if (copied_early) 5244 tcp_cleanup_rbuf(sk, skb->len); 5245 } 5246 if (!eaten) { 5247 if (tcp_checksum_complete_user(sk, skb)) 5248 goto csum_error; 5249 5250 /* Predicted packet is in window by definition. 5251 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5252 * Hence, check seq<=rcv_wup reduces to: 5253 */ 5254 if (tcp_header_len == 5255 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5256 tp->rcv_nxt == tp->rcv_wup) 5257 tcp_store_ts_recent(tp); 5258 5259 tcp_rcv_rtt_measure_ts(sk, skb); 5260 5261 if ((int)skb->truesize > sk->sk_forward_alloc) 5262 goto step5; 5263 5264 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5265 5266 /* Bulk data transfer: receiver */ 5267 __skb_pull(skb, tcp_header_len); 5268 __skb_queue_tail(&sk->sk_receive_queue, skb); 5269 skb_set_owner_r(skb, sk); 5270 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5271 } 5272 5273 tcp_event_data_recv(sk, skb); 5274 5275 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5276 /* Well, only one small jumplet in fast path... */ 5277 tcp_ack(sk, skb, FLAG_DATA); 5278 tcp_data_snd_check(sk); 5279 if (!inet_csk_ack_scheduled(sk)) 5280 goto no_ack; 5281 } 5282 5283 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5284 __tcp_ack_snd_check(sk, 0); 5285 no_ack: 5286 #ifdef CONFIG_NET_DMA 5287 if (copied_early) 5288 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5289 else 5290 #endif 5291 if (eaten) 5292 __kfree_skb(skb); 5293 else 5294 sk->sk_data_ready(sk, 0); 5295 return 0; 5296 } 5297 } 5298 5299 slow_path: 5300 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5301 goto csum_error; 5302 5303 /* 5304 * Standard slow path. 5305 */ 5306 5307 res = tcp_validate_incoming(sk, skb, th, 1); 5308 if (res <= 0) 5309 return -res; 5310 5311 step5: 5312 if (th->ack) 5313 tcp_ack(sk, skb, FLAG_SLOWPATH); 5314 5315 tcp_rcv_rtt_measure_ts(sk, skb); 5316 5317 /* Process urgent data. */ 5318 tcp_urg(sk, skb, th); 5319 5320 /* step 7: process the segment text */ 5321 tcp_data_queue(sk, skb); 5322 5323 tcp_data_snd_check(sk); 5324 tcp_ack_snd_check(sk); 5325 return 0; 5326 5327 csum_error: 5328 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5329 5330 discard: 5331 __kfree_skb(skb); 5332 return 0; 5333 } 5334 5335 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5336 struct tcphdr *th, unsigned len) 5337 { 5338 struct tcp_sock *tp = tcp_sk(sk); 5339 struct inet_connection_sock *icsk = inet_csk(sk); 5340 int saved_clamp = tp->rx_opt.mss_clamp; 5341 5342 tcp_parse_options(skb, &tp->rx_opt, 0); 5343 5344 if (th->ack) { 5345 /* rfc793: 5346 * "If the state is SYN-SENT then 5347 * first check the ACK bit 5348 * If the ACK bit is set 5349 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5350 * a reset (unless the RST bit is set, if so drop 5351 * the segment and return)" 5352 * 5353 * We do not send data with SYN, so that RFC-correct 5354 * test reduces to: 5355 */ 5356 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 5357 goto reset_and_undo; 5358 5359 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5360 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5361 tcp_time_stamp)) { 5362 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5363 goto reset_and_undo; 5364 } 5365 5366 /* Now ACK is acceptable. 5367 * 5368 * "If the RST bit is set 5369 * If the ACK was acceptable then signal the user "error: 5370 * connection reset", drop the segment, enter CLOSED state, 5371 * delete TCB, and return." 5372 */ 5373 5374 if (th->rst) { 5375 tcp_reset(sk); 5376 goto discard; 5377 } 5378 5379 /* rfc793: 5380 * "fifth, if neither of the SYN or RST bits is set then 5381 * drop the segment and return." 5382 * 5383 * See note below! 5384 * --ANK(990513) 5385 */ 5386 if (!th->syn) 5387 goto discard_and_undo; 5388 5389 /* rfc793: 5390 * "If the SYN bit is on ... 5391 * are acceptable then ... 5392 * (our SYN has been ACKed), change the connection 5393 * state to ESTABLISHED..." 5394 */ 5395 5396 TCP_ECN_rcv_synack(tp, th); 5397 5398 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5399 tcp_ack(sk, skb, FLAG_SLOWPATH); 5400 5401 /* Ok.. it's good. Set up sequence numbers and 5402 * move to established. 5403 */ 5404 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5405 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5406 5407 /* RFC1323: The window in SYN & SYN/ACK segments is 5408 * never scaled. 5409 */ 5410 tp->snd_wnd = ntohs(th->window); 5411 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 5412 5413 if (!tp->rx_opt.wscale_ok) { 5414 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5415 tp->window_clamp = min(tp->window_clamp, 65535U); 5416 } 5417 5418 if (tp->rx_opt.saw_tstamp) { 5419 tp->rx_opt.tstamp_ok = 1; 5420 tp->tcp_header_len = 5421 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5422 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5423 tcp_store_ts_recent(tp); 5424 } else { 5425 tp->tcp_header_len = sizeof(struct tcphdr); 5426 } 5427 5428 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5429 tcp_enable_fack(tp); 5430 5431 tcp_mtup_init(sk); 5432 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5433 tcp_initialize_rcv_mss(sk); 5434 5435 /* Remember, tcp_poll() does not lock socket! 5436 * Change state from SYN-SENT only after copied_seq 5437 * is initialized. */ 5438 tp->copied_seq = tp->rcv_nxt; 5439 smp_mb(); 5440 tcp_set_state(sk, TCP_ESTABLISHED); 5441 5442 security_inet_conn_established(sk, skb); 5443 5444 /* Make sure socket is routed, for correct metrics. */ 5445 icsk->icsk_af_ops->rebuild_header(sk); 5446 5447 tcp_init_metrics(sk); 5448 5449 tcp_init_congestion_control(sk); 5450 5451 /* Prevent spurious tcp_cwnd_restart() on first data 5452 * packet. 5453 */ 5454 tp->lsndtime = tcp_time_stamp; 5455 5456 tcp_init_buffer_space(sk); 5457 5458 if (sock_flag(sk, SOCK_KEEPOPEN)) 5459 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5460 5461 if (!tp->rx_opt.snd_wscale) 5462 __tcp_fast_path_on(tp, tp->snd_wnd); 5463 else 5464 tp->pred_flags = 0; 5465 5466 if (!sock_flag(sk, SOCK_DEAD)) { 5467 sk->sk_state_change(sk); 5468 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5469 } 5470 5471 if (sk->sk_write_pending || 5472 icsk->icsk_accept_queue.rskq_defer_accept || 5473 icsk->icsk_ack.pingpong) { 5474 /* Save one ACK. Data will be ready after 5475 * several ticks, if write_pending is set. 5476 * 5477 * It may be deleted, but with this feature tcpdumps 5478 * look so _wonderfully_ clever, that I was not able 5479 * to stand against the temptation 8) --ANK 5480 */ 5481 inet_csk_schedule_ack(sk); 5482 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5483 icsk->icsk_ack.ato = TCP_ATO_MIN; 5484 tcp_incr_quickack(sk); 5485 tcp_enter_quickack_mode(sk); 5486 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5487 TCP_DELACK_MAX, TCP_RTO_MAX); 5488 5489 discard: 5490 __kfree_skb(skb); 5491 return 0; 5492 } else { 5493 tcp_send_ack(sk); 5494 } 5495 return -1; 5496 } 5497 5498 /* No ACK in the segment */ 5499 5500 if (th->rst) { 5501 /* rfc793: 5502 * "If the RST bit is set 5503 * 5504 * Otherwise (no ACK) drop the segment and return." 5505 */ 5506 5507 goto discard_and_undo; 5508 } 5509 5510 /* PAWS check. */ 5511 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5512 tcp_paws_check(&tp->rx_opt, 0)) 5513 goto discard_and_undo; 5514 5515 if (th->syn) { 5516 /* We see SYN without ACK. It is attempt of 5517 * simultaneous connect with crossed SYNs. 5518 * Particularly, it can be connect to self. 5519 */ 5520 tcp_set_state(sk, TCP_SYN_RECV); 5521 5522 if (tp->rx_opt.saw_tstamp) { 5523 tp->rx_opt.tstamp_ok = 1; 5524 tcp_store_ts_recent(tp); 5525 tp->tcp_header_len = 5526 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5527 } else { 5528 tp->tcp_header_len = sizeof(struct tcphdr); 5529 } 5530 5531 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5532 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5533 5534 /* RFC1323: The window in SYN & SYN/ACK segments is 5535 * never scaled. 5536 */ 5537 tp->snd_wnd = ntohs(th->window); 5538 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5539 tp->max_window = tp->snd_wnd; 5540 5541 TCP_ECN_rcv_syn(tp, th); 5542 5543 tcp_mtup_init(sk); 5544 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5545 tcp_initialize_rcv_mss(sk); 5546 5547 tcp_send_synack(sk); 5548 #if 0 5549 /* Note, we could accept data and URG from this segment. 5550 * There are no obstacles to make this. 5551 * 5552 * However, if we ignore data in ACKless segments sometimes, 5553 * we have no reasons to accept it sometimes. 5554 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5555 * is not flawless. So, discard packet for sanity. 5556 * Uncomment this return to process the data. 5557 */ 5558 return -1; 5559 #else 5560 goto discard; 5561 #endif 5562 } 5563 /* "fifth, if neither of the SYN or RST bits is set then 5564 * drop the segment and return." 5565 */ 5566 5567 discard_and_undo: 5568 tcp_clear_options(&tp->rx_opt); 5569 tp->rx_opt.mss_clamp = saved_clamp; 5570 goto discard; 5571 5572 reset_and_undo: 5573 tcp_clear_options(&tp->rx_opt); 5574 tp->rx_opt.mss_clamp = saved_clamp; 5575 return 1; 5576 } 5577 5578 /* 5579 * This function implements the receiving procedure of RFC 793 for 5580 * all states except ESTABLISHED and TIME_WAIT. 5581 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5582 * address independent. 5583 */ 5584 5585 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5586 struct tcphdr *th, unsigned len) 5587 { 5588 struct tcp_sock *tp = tcp_sk(sk); 5589 struct inet_connection_sock *icsk = inet_csk(sk); 5590 int queued = 0; 5591 int res; 5592 5593 tp->rx_opt.saw_tstamp = 0; 5594 5595 switch (sk->sk_state) { 5596 case TCP_CLOSE: 5597 goto discard; 5598 5599 case TCP_LISTEN: 5600 if (th->ack) 5601 return 1; 5602 5603 if (th->rst) 5604 goto discard; 5605 5606 if (th->syn) { 5607 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5608 return 1; 5609 5610 /* Now we have several options: In theory there is 5611 * nothing else in the frame. KA9Q has an option to 5612 * send data with the syn, BSD accepts data with the 5613 * syn up to the [to be] advertised window and 5614 * Solaris 2.1 gives you a protocol error. For now 5615 * we just ignore it, that fits the spec precisely 5616 * and avoids incompatibilities. It would be nice in 5617 * future to drop through and process the data. 5618 * 5619 * Now that TTCP is starting to be used we ought to 5620 * queue this data. 5621 * But, this leaves one open to an easy denial of 5622 * service attack, and SYN cookies can't defend 5623 * against this problem. So, we drop the data 5624 * in the interest of security over speed unless 5625 * it's still in use. 5626 */ 5627 kfree_skb(skb); 5628 return 0; 5629 } 5630 goto discard; 5631 5632 case TCP_SYN_SENT: 5633 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5634 if (queued >= 0) 5635 return queued; 5636 5637 /* Do step6 onward by hand. */ 5638 tcp_urg(sk, skb, th); 5639 __kfree_skb(skb); 5640 tcp_data_snd_check(sk); 5641 return 0; 5642 } 5643 5644 res = tcp_validate_incoming(sk, skb, th, 0); 5645 if (res <= 0) 5646 return -res; 5647 5648 /* step 5: check the ACK field */ 5649 if (th->ack) { 5650 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 5651 5652 switch (sk->sk_state) { 5653 case TCP_SYN_RECV: 5654 if (acceptable) { 5655 tp->copied_seq = tp->rcv_nxt; 5656 smp_mb(); 5657 tcp_set_state(sk, TCP_ESTABLISHED); 5658 sk->sk_state_change(sk); 5659 5660 /* Note, that this wakeup is only for marginal 5661 * crossed SYN case. Passively open sockets 5662 * are not waked up, because sk->sk_sleep == 5663 * NULL and sk->sk_socket == NULL. 5664 */ 5665 if (sk->sk_socket) 5666 sk_wake_async(sk, 5667 SOCK_WAKE_IO, POLL_OUT); 5668 5669 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5670 tp->snd_wnd = ntohs(th->window) << 5671 tp->rx_opt.snd_wscale; 5672 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 5673 TCP_SKB_CB(skb)->seq); 5674 5675 /* tcp_ack considers this ACK as duplicate 5676 * and does not calculate rtt. 5677 * Fix it at least with timestamps. 5678 */ 5679 if (tp->rx_opt.saw_tstamp && 5680 tp->rx_opt.rcv_tsecr && !tp->srtt) 5681 tcp_ack_saw_tstamp(sk, 0); 5682 5683 if (tp->rx_opt.tstamp_ok) 5684 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5685 5686 /* Make sure socket is routed, for 5687 * correct metrics. 5688 */ 5689 icsk->icsk_af_ops->rebuild_header(sk); 5690 5691 tcp_init_metrics(sk); 5692 5693 tcp_init_congestion_control(sk); 5694 5695 /* Prevent spurious tcp_cwnd_restart() on 5696 * first data packet. 5697 */ 5698 tp->lsndtime = tcp_time_stamp; 5699 5700 tcp_mtup_init(sk); 5701 tcp_initialize_rcv_mss(sk); 5702 tcp_init_buffer_space(sk); 5703 tcp_fast_path_on(tp); 5704 } else { 5705 return 1; 5706 } 5707 break; 5708 5709 case TCP_FIN_WAIT1: 5710 if (tp->snd_una == tp->write_seq) { 5711 tcp_set_state(sk, TCP_FIN_WAIT2); 5712 sk->sk_shutdown |= SEND_SHUTDOWN; 5713 dst_confirm(sk->sk_dst_cache); 5714 5715 if (!sock_flag(sk, SOCK_DEAD)) 5716 /* Wake up lingering close() */ 5717 sk->sk_state_change(sk); 5718 else { 5719 int tmo; 5720 5721 if (tp->linger2 < 0 || 5722 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5723 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5724 tcp_done(sk); 5725 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5726 return 1; 5727 } 5728 5729 tmo = tcp_fin_time(sk); 5730 if (tmo > TCP_TIMEWAIT_LEN) { 5731 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5732 } else if (th->fin || sock_owned_by_user(sk)) { 5733 /* Bad case. We could lose such FIN otherwise. 5734 * It is not a big problem, but it looks confusing 5735 * and not so rare event. We still can lose it now, 5736 * if it spins in bh_lock_sock(), but it is really 5737 * marginal case. 5738 */ 5739 inet_csk_reset_keepalive_timer(sk, tmo); 5740 } else { 5741 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5742 goto discard; 5743 } 5744 } 5745 } 5746 break; 5747 5748 case TCP_CLOSING: 5749 if (tp->snd_una == tp->write_seq) { 5750 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5751 goto discard; 5752 } 5753 break; 5754 5755 case TCP_LAST_ACK: 5756 if (tp->snd_una == tp->write_seq) { 5757 tcp_update_metrics(sk); 5758 tcp_done(sk); 5759 goto discard; 5760 } 5761 break; 5762 } 5763 } else 5764 goto discard; 5765 5766 /* step 6: check the URG bit */ 5767 tcp_urg(sk, skb, th); 5768 5769 /* step 7: process the segment text */ 5770 switch (sk->sk_state) { 5771 case TCP_CLOSE_WAIT: 5772 case TCP_CLOSING: 5773 case TCP_LAST_ACK: 5774 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5775 break; 5776 case TCP_FIN_WAIT1: 5777 case TCP_FIN_WAIT2: 5778 /* RFC 793 says to queue data in these states, 5779 * RFC 1122 says we MUST send a reset. 5780 * BSD 4.4 also does reset. 5781 */ 5782 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5783 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5784 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5785 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5786 tcp_reset(sk); 5787 return 1; 5788 } 5789 } 5790 /* Fall through */ 5791 case TCP_ESTABLISHED: 5792 tcp_data_queue(sk, skb); 5793 queued = 1; 5794 break; 5795 } 5796 5797 /* tcp_data could move socket to TIME-WAIT */ 5798 if (sk->sk_state != TCP_CLOSE) { 5799 tcp_data_snd_check(sk); 5800 tcp_ack_snd_check(sk); 5801 } 5802 5803 if (!queued) { 5804 discard: 5805 __kfree_skb(skb); 5806 } 5807 return 0; 5808 } 5809 5810 EXPORT_SYMBOL(sysctl_tcp_ecn); 5811 EXPORT_SYMBOL(sysctl_tcp_reordering); 5812 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 5813 EXPORT_SYMBOL(tcp_parse_options); 5814 #ifdef CONFIG_TCP_MD5SIG 5815 EXPORT_SYMBOL(tcp_parse_md5sig_option); 5816 #endif 5817 EXPORT_SYMBOL(tcp_rcv_established); 5818 EXPORT_SYMBOL(tcp_rcv_state_process); 5819 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 5820