xref: /linux/net/ipv4/tcp_input.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73 
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83 
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90 
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93 
94 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
95 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
96 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
97 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
98 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
99 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
100 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
101 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
102 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
108 
109 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114 
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117 
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123 	struct inet_connection_sock *icsk = inet_csk(sk);
124 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
125 	unsigned int len;
126 
127 	icsk->icsk_ack.last_seg_size = 0;
128 
129 	/* skb->len may jitter because of SACKs, even if peer
130 	 * sends good full-sized frames.
131 	 */
132 	len = skb_shinfo(skb)->gso_size ? : skb->len;
133 	if (len >= icsk->icsk_ack.rcv_mss) {
134 		icsk->icsk_ack.rcv_mss = len;
135 	} else {
136 		/* Otherwise, we make more careful check taking into account,
137 		 * that SACKs block is variable.
138 		 *
139 		 * "len" is invariant segment length, including TCP header.
140 		 */
141 		len += skb->data - skb_transport_header(skb);
142 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143 		    /* If PSH is not set, packet should be
144 		     * full sized, provided peer TCP is not badly broken.
145 		     * This observation (if it is correct 8)) allows
146 		     * to handle super-low mtu links fairly.
147 		     */
148 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150 			/* Subtract also invariant (if peer is RFC compliant),
151 			 * tcp header plus fixed timestamp option length.
152 			 * Resulting "len" is MSS free of SACK jitter.
153 			 */
154 			len -= tcp_sk(sk)->tcp_header_len;
155 			icsk->icsk_ack.last_seg_size = len;
156 			if (len == lss) {
157 				icsk->icsk_ack.rcv_mss = len;
158 				return;
159 			}
160 		}
161 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164 	}
165 }
166 
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169 	struct inet_connection_sock *icsk = inet_csk(sk);
170 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171 
172 	if (quickacks == 0)
173 		quickacks = 2;
174 	if (quickacks > icsk->icsk_ack.quick)
175 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177 
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180 	struct inet_connection_sock *icsk = inet_csk(sk);
181 	tcp_incr_quickack(sk);
182 	icsk->icsk_ack.pingpong = 0;
183 	icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185 
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189 
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192 	const struct inet_connection_sock *icsk = inet_csk(sk);
193 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195 
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198 	if (tp->ecn_flags & TCP_ECN_OK)
199 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201 
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204 	if (tcp_hdr(skb)->cwr)
205 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207 
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212 
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215 	if (tp->ecn_flags & TCP_ECN_OK) {
216 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218 		/* Funny extension: if ECT is not set on a segment,
219 		 * it is surely retransmit. It is not in ECN RFC,
220 		 * but Linux follows this rule. */
221 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222 			tcp_enter_quickack_mode((struct sock *)tp);
223 	}
224 }
225 
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229 		tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231 
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235 		tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237 
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241 		return 1;
242 	return 0;
243 }
244 
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249 
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253 		     sizeof(struct sk_buff);
254 
255 	if (sk->sk_sndbuf < 3 * sndmem)
256 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258 
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283 
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287 	struct tcp_sock *tp = tcp_sk(sk);
288 	/* Optimize this! */
289 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
290 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291 
292 	while (tp->rcv_ssthresh <= window) {
293 		if (truesize <= skb->len)
294 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295 
296 		truesize >>= 1;
297 		window >>= 1;
298 	}
299 	return 0;
300 }
301 
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304 	struct tcp_sock *tp = tcp_sk(sk);
305 
306 	/* Check #1 */
307 	if (tp->rcv_ssthresh < tp->window_clamp &&
308 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
309 	    !tcp_memory_pressure) {
310 		int incr;
311 
312 		/* Check #2. Increase window, if skb with such overhead
313 		 * will fit to rcvbuf in future.
314 		 */
315 		if (tcp_win_from_space(skb->truesize) <= skb->len)
316 			incr = 2 * tp->advmss;
317 		else
318 			incr = __tcp_grow_window(sk, skb);
319 
320 		if (incr) {
321 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322 					       tp->window_clamp);
323 			inet_csk(sk)->icsk_ack.quick |= 1;
324 		}
325 	}
326 }
327 
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329 
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332 	struct tcp_sock *tp = tcp_sk(sk);
333 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334 
335 	/* Try to select rcvbuf so that 4 mss-sized segments
336 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
337 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
338 	 */
339 	while (tcp_win_from_space(rcvmem) < tp->advmss)
340 		rcvmem += 128;
341 	if (sk->sk_rcvbuf < 4 * rcvmem)
342 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344 
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350 	struct tcp_sock *tp = tcp_sk(sk);
351 	int maxwin;
352 
353 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354 		tcp_fixup_rcvbuf(sk);
355 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356 		tcp_fixup_sndbuf(sk);
357 
358 	tp->rcvq_space.space = tp->rcv_wnd;
359 
360 	maxwin = tcp_full_space(sk);
361 
362 	if (tp->window_clamp >= maxwin) {
363 		tp->window_clamp = maxwin;
364 
365 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366 			tp->window_clamp = max(maxwin -
367 					       (maxwin >> sysctl_tcp_app_win),
368 					       4 * tp->advmss);
369 	}
370 
371 	/* Force reservation of one segment. */
372 	if (sysctl_tcp_app_win &&
373 	    tp->window_clamp > 2 * tp->advmss &&
374 	    tp->window_clamp + tp->advmss > maxwin)
375 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376 
377 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378 	tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380 
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384 	struct tcp_sock *tp = tcp_sk(sk);
385 	struct inet_connection_sock *icsk = inet_csk(sk);
386 
387 	icsk->icsk_ack.quick = 0;
388 
389 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391 	    !tcp_memory_pressure &&
392 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394 				    sysctl_tcp_rmem[2]);
395 	}
396 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399 
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409 	struct tcp_sock *tp = tcp_sk(sk);
410 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411 
412 	hint = min(hint, tp->rcv_wnd / 2);
413 	hint = min(hint, TCP_MIN_RCVMSS);
414 	hint = max(hint, TCP_MIN_MSS);
415 
416 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418 
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432 	u32 new_sample = tp->rcv_rtt_est.rtt;
433 	long m = sample;
434 
435 	if (m == 0)
436 		m = 1;
437 
438 	if (new_sample != 0) {
439 		/* If we sample in larger samples in the non-timestamp
440 		 * case, we could grossly overestimate the RTT especially
441 		 * with chatty applications or bulk transfer apps which
442 		 * are stalled on filesystem I/O.
443 		 *
444 		 * Also, since we are only going for a minimum in the
445 		 * non-timestamp case, we do not smooth things out
446 		 * else with timestamps disabled convergence takes too
447 		 * long.
448 		 */
449 		if (!win_dep) {
450 			m -= (new_sample >> 3);
451 			new_sample += m;
452 		} else if (m < new_sample)
453 			new_sample = m << 3;
454 	} else {
455 		/* No previous measure. */
456 		new_sample = m << 3;
457 	}
458 
459 	if (tp->rcv_rtt_est.rtt != new_sample)
460 		tp->rcv_rtt_est.rtt = new_sample;
461 }
462 
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465 	if (tp->rcv_rtt_est.time == 0)
466 		goto new_measure;
467 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468 		return;
469 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470 
471 new_measure:
472 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473 	tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475 
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477 					  const struct sk_buff *skb)
478 {
479 	struct tcp_sock *tp = tcp_sk(sk);
480 	if (tp->rx_opt.rcv_tsecr &&
481 	    (TCP_SKB_CB(skb)->end_seq -
482 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485 
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492 	struct tcp_sock *tp = tcp_sk(sk);
493 	int time;
494 	int space;
495 
496 	if (tp->rcvq_space.time == 0)
497 		goto new_measure;
498 
499 	time = tcp_time_stamp - tp->rcvq_space.time;
500 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501 		return;
502 
503 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504 
505 	space = max(tp->rcvq_space.space, space);
506 
507 	if (tp->rcvq_space.space != space) {
508 		int rcvmem;
509 
510 		tp->rcvq_space.space = space;
511 
512 		if (sysctl_tcp_moderate_rcvbuf &&
513 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514 			int new_clamp = space;
515 
516 			/* Receive space grows, normalize in order to
517 			 * take into account packet headers and sk_buff
518 			 * structure overhead.
519 			 */
520 			space /= tp->advmss;
521 			if (!space)
522 				space = 1;
523 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
524 				  16 + sizeof(struct sk_buff));
525 			while (tcp_win_from_space(rcvmem) < tp->advmss)
526 				rcvmem += 128;
527 			space *= rcvmem;
528 			space = min(space, sysctl_tcp_rmem[2]);
529 			if (space > sk->sk_rcvbuf) {
530 				sk->sk_rcvbuf = space;
531 
532 				/* Make the window clamp follow along.  */
533 				tp->window_clamp = new_clamp;
534 			}
535 		}
536 	}
537 
538 new_measure:
539 	tp->rcvq_space.seq = tp->copied_seq;
540 	tp->rcvq_space.time = tcp_time_stamp;
541 }
542 
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555 	struct tcp_sock *tp = tcp_sk(sk);
556 	struct inet_connection_sock *icsk = inet_csk(sk);
557 	u32 now;
558 
559 	inet_csk_schedule_ack(sk);
560 
561 	tcp_measure_rcv_mss(sk, skb);
562 
563 	tcp_rcv_rtt_measure(tp);
564 
565 	now = tcp_time_stamp;
566 
567 	if (!icsk->icsk_ack.ato) {
568 		/* The _first_ data packet received, initialize
569 		 * delayed ACK engine.
570 		 */
571 		tcp_incr_quickack(sk);
572 		icsk->icsk_ack.ato = TCP_ATO_MIN;
573 	} else {
574 		int m = now - icsk->icsk_ack.lrcvtime;
575 
576 		if (m <= TCP_ATO_MIN / 2) {
577 			/* The fastest case is the first. */
578 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579 		} else if (m < icsk->icsk_ack.ato) {
580 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
582 				icsk->icsk_ack.ato = icsk->icsk_rto;
583 		} else if (m > icsk->icsk_rto) {
584 			/* Too long gap. Apparently sender failed to
585 			 * restart window, so that we send ACKs quickly.
586 			 */
587 			tcp_incr_quickack(sk);
588 			sk_mem_reclaim(sk);
589 		}
590 	}
591 	icsk->icsk_ack.lrcvtime = now;
592 
593 	TCP_ECN_check_ce(tp, skb);
594 
595 	if (skb->len >= 128)
596 		tcp_grow_window(sk, skb);
597 }
598 
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601 	struct dst_entry *dst = __sk_dst_get(sk);
602 	u32 rto_min = TCP_RTO_MIN;
603 
604 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606 	return rto_min;
607 }
608 
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620 	struct tcp_sock *tp = tcp_sk(sk);
621 	long m = mrtt; /* RTT */
622 
623 	/*	The following amusing code comes from Jacobson's
624 	 *	article in SIGCOMM '88.  Note that rtt and mdev
625 	 *	are scaled versions of rtt and mean deviation.
626 	 *	This is designed to be as fast as possible
627 	 *	m stands for "measurement".
628 	 *
629 	 *	On a 1990 paper the rto value is changed to:
630 	 *	RTO = rtt + 4 * mdev
631 	 *
632 	 * Funny. This algorithm seems to be very broken.
633 	 * These formulae increase RTO, when it should be decreased, increase
634 	 * too slowly, when it should be increased quickly, decrease too quickly
635 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636 	 * does not matter how to _calculate_ it. Seems, it was trap
637 	 * that VJ failed to avoid. 8)
638 	 */
639 	if (m == 0)
640 		m = 1;
641 	if (tp->srtt != 0) {
642 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
643 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
644 		if (m < 0) {
645 			m = -m;		/* m is now abs(error) */
646 			m -= (tp->mdev >> 2);   /* similar update on mdev */
647 			/* This is similar to one of Eifel findings.
648 			 * Eifel blocks mdev updates when rtt decreases.
649 			 * This solution is a bit different: we use finer gain
650 			 * for mdev in this case (alpha*beta).
651 			 * Like Eifel it also prevents growth of rto,
652 			 * but also it limits too fast rto decreases,
653 			 * happening in pure Eifel.
654 			 */
655 			if (m > 0)
656 				m >>= 3;
657 		} else {
658 			m -= (tp->mdev >> 2);   /* similar update on mdev */
659 		}
660 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
661 		if (tp->mdev > tp->mdev_max) {
662 			tp->mdev_max = tp->mdev;
663 			if (tp->mdev_max > tp->rttvar)
664 				tp->rttvar = tp->mdev_max;
665 		}
666 		if (after(tp->snd_una, tp->rtt_seq)) {
667 			if (tp->mdev_max < tp->rttvar)
668 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669 			tp->rtt_seq = tp->snd_nxt;
670 			tp->mdev_max = tcp_rto_min(sk);
671 		}
672 	} else {
673 		/* no previous measure. */
674 		tp->srtt = m << 3;	/* take the measured time to be rtt */
675 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
676 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677 		tp->rtt_seq = tp->snd_nxt;
678 	}
679 }
680 
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686 	const struct tcp_sock *tp = tcp_sk(sk);
687 	/* Old crap is replaced with new one. 8)
688 	 *
689 	 * More seriously:
690 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691 	 *    It cannot be less due to utterly erratic ACK generation made
692 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
694 	 *    is invisible. Actually, Linux-2.4 also generates erratic
695 	 *    ACKs in some circumstances.
696 	 */
697 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698 
699 	/* 2. Fixups made earlier cannot be right.
700 	 *    If we do not estimate RTO correctly without them,
701 	 *    all the algo is pure shit and should be replaced
702 	 *    with correct one. It is exactly, which we pretend to do.
703 	 */
704 
705 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
706 	 * guarantees that rto is higher.
707 	 */
708 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
709 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
710 }
711 
712 /* Save metrics learned by this TCP session.
713    This function is called only, when TCP finishes successfully
714    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
715  */
716 void tcp_update_metrics(struct sock *sk)
717 {
718 	struct tcp_sock *tp = tcp_sk(sk);
719 	struct dst_entry *dst = __sk_dst_get(sk);
720 
721 	if (sysctl_tcp_nometrics_save)
722 		return;
723 
724 	dst_confirm(dst);
725 
726 	if (dst && (dst->flags & DST_HOST)) {
727 		const struct inet_connection_sock *icsk = inet_csk(sk);
728 		int m;
729 		unsigned long rtt;
730 
731 		if (icsk->icsk_backoff || !tp->srtt) {
732 			/* This session failed to estimate rtt. Why?
733 			 * Probably, no packets returned in time.
734 			 * Reset our results.
735 			 */
736 			if (!(dst_metric_locked(dst, RTAX_RTT)))
737 				dst->metrics[RTAX_RTT - 1] = 0;
738 			return;
739 		}
740 
741 		rtt = dst_metric_rtt(dst, RTAX_RTT);
742 		m = rtt - tp->srtt;
743 
744 		/* If newly calculated rtt larger than stored one,
745 		 * store new one. Otherwise, use EWMA. Remember,
746 		 * rtt overestimation is always better than underestimation.
747 		 */
748 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
749 			if (m <= 0)
750 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
751 			else
752 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
753 		}
754 
755 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
756 			unsigned long var;
757 			if (m < 0)
758 				m = -m;
759 
760 			/* Scale deviation to rttvar fixed point */
761 			m >>= 1;
762 			if (m < tp->mdev)
763 				m = tp->mdev;
764 
765 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
766 			if (m >= var)
767 				var = m;
768 			else
769 				var -= (var - m) >> 2;
770 
771 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
772 		}
773 
774 		if (tp->snd_ssthresh >= 0xFFFF) {
775 			/* Slow start still did not finish. */
776 			if (dst_metric(dst, RTAX_SSTHRESH) &&
777 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
780 			if (!dst_metric_locked(dst, RTAX_CWND) &&
781 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782 				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
783 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
784 			   icsk->icsk_ca_state == TCP_CA_Open) {
785 			/* Cong. avoidance phase, cwnd is reliable. */
786 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787 				dst->metrics[RTAX_SSTHRESH-1] =
788 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
789 			if (!dst_metric_locked(dst, RTAX_CWND))
790 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
791 		} else {
792 			/* Else slow start did not finish, cwnd is non-sense,
793 			   ssthresh may be also invalid.
794 			 */
795 			if (!dst_metric_locked(dst, RTAX_CWND))
796 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
797 			if (dst_metric(dst, RTAX_SSTHRESH) &&
798 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
799 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
800 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
801 		}
802 
803 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
804 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
805 			    tp->reordering != sysctl_tcp_reordering)
806 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
807 		}
808 	}
809 }
810 
811 /* Numbers are taken from RFC3390.
812  *
813  * John Heffner states:
814  *
815  *	The RFC specifies a window of no more than 4380 bytes
816  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
817  *	is a bit misleading because they use a clamp at 4380 bytes
818  *	rather than use a multiplier in the relevant range.
819  */
820 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
821 {
822 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
823 
824 	if (!cwnd) {
825 		if (tp->mss_cache > 1460)
826 			cwnd = 2;
827 		else
828 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
829 	}
830 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831 }
832 
833 /* Set slow start threshold and cwnd not falling to slow start */
834 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
835 {
836 	struct tcp_sock *tp = tcp_sk(sk);
837 	const struct inet_connection_sock *icsk = inet_csk(sk);
838 
839 	tp->prior_ssthresh = 0;
840 	tp->bytes_acked = 0;
841 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
842 		tp->undo_marker = 0;
843 		if (set_ssthresh)
844 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
845 		tp->snd_cwnd = min(tp->snd_cwnd,
846 				   tcp_packets_in_flight(tp) + 1U);
847 		tp->snd_cwnd_cnt = 0;
848 		tp->high_seq = tp->snd_nxt;
849 		tp->snd_cwnd_stamp = tcp_time_stamp;
850 		TCP_ECN_queue_cwr(tp);
851 
852 		tcp_set_ca_state(sk, TCP_CA_CWR);
853 	}
854 }
855 
856 /*
857  * Packet counting of FACK is based on in-order assumptions, therefore TCP
858  * disables it when reordering is detected
859  */
860 static void tcp_disable_fack(struct tcp_sock *tp)
861 {
862 	/* RFC3517 uses different metric in lost marker => reset on change */
863 	if (tcp_is_fack(tp))
864 		tp->lost_skb_hint = NULL;
865 	tp->rx_opt.sack_ok &= ~2;
866 }
867 
868 /* Take a notice that peer is sending D-SACKs */
869 static void tcp_dsack_seen(struct tcp_sock *tp)
870 {
871 	tp->rx_opt.sack_ok |= 4;
872 }
873 
874 /* Initialize metrics on socket. */
875 
876 static void tcp_init_metrics(struct sock *sk)
877 {
878 	struct tcp_sock *tp = tcp_sk(sk);
879 	struct dst_entry *dst = __sk_dst_get(sk);
880 
881 	if (dst == NULL)
882 		goto reset;
883 
884 	dst_confirm(dst);
885 
886 	if (dst_metric_locked(dst, RTAX_CWND))
887 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
888 	if (dst_metric(dst, RTAX_SSTHRESH)) {
889 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
890 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
891 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
892 	}
893 	if (dst_metric(dst, RTAX_REORDERING) &&
894 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
895 		tcp_disable_fack(tp);
896 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
897 	}
898 
899 	if (dst_metric(dst, RTAX_RTT) == 0)
900 		goto reset;
901 
902 	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
903 		goto reset;
904 
905 	/* Initial rtt is determined from SYN,SYN-ACK.
906 	 * The segment is small and rtt may appear much
907 	 * less than real one. Use per-dst memory
908 	 * to make it more realistic.
909 	 *
910 	 * A bit of theory. RTT is time passed after "normal" sized packet
911 	 * is sent until it is ACKed. In normal circumstances sending small
912 	 * packets force peer to delay ACKs and calculation is correct too.
913 	 * The algorithm is adaptive and, provided we follow specs, it
914 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
915 	 * tricks sort of "quick acks" for time long enough to decrease RTT
916 	 * to low value, and then abruptly stops to do it and starts to delay
917 	 * ACKs, wait for troubles.
918 	 */
919 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
920 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
921 		tp->rtt_seq = tp->snd_nxt;
922 	}
923 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
924 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
925 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
926 	}
927 	tcp_set_rto(sk);
928 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
929 		goto reset;
930 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
931 	tp->snd_cwnd_stamp = tcp_time_stamp;
932 	return;
933 
934 reset:
935 	/* Play conservative. If timestamps are not
936 	 * supported, TCP will fail to recalculate correct
937 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
938 	 */
939 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
940 		tp->srtt = 0;
941 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
942 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
943 	}
944 }
945 
946 static void tcp_update_reordering(struct sock *sk, const int metric,
947 				  const int ts)
948 {
949 	struct tcp_sock *tp = tcp_sk(sk);
950 	if (metric > tp->reordering) {
951 		int mib_idx;
952 
953 		tp->reordering = min(TCP_MAX_REORDERING, metric);
954 
955 		/* This exciting event is worth to be remembered. 8) */
956 		if (ts)
957 			mib_idx = LINUX_MIB_TCPTSREORDER;
958 		else if (tcp_is_reno(tp))
959 			mib_idx = LINUX_MIB_TCPRENOREORDER;
960 		else if (tcp_is_fack(tp))
961 			mib_idx = LINUX_MIB_TCPFACKREORDER;
962 		else
963 			mib_idx = LINUX_MIB_TCPSACKREORDER;
964 
965 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
966 #if FASTRETRANS_DEBUG > 1
967 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
968 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
969 		       tp->reordering,
970 		       tp->fackets_out,
971 		       tp->sacked_out,
972 		       tp->undo_marker ? tp->undo_retrans : 0);
973 #endif
974 		tcp_disable_fack(tp);
975 	}
976 }
977 
978 /* This must be called before lost_out is incremented */
979 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
980 {
981 	if ((tp->retransmit_skb_hint == NULL) ||
982 	    before(TCP_SKB_CB(skb)->seq,
983 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
984 		tp->retransmit_skb_hint = skb;
985 
986 	if (!tp->lost_out ||
987 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
988 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
989 }
990 
991 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
992 {
993 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
994 		tcp_verify_retransmit_hint(tp, skb);
995 
996 		tp->lost_out += tcp_skb_pcount(skb);
997 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
998 	}
999 }
1000 
1001 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1002 					    struct sk_buff *skb)
1003 {
1004 	tcp_verify_retransmit_hint(tp, skb);
1005 
1006 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1007 		tp->lost_out += tcp_skb_pcount(skb);
1008 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1009 	}
1010 }
1011 
1012 /* This procedure tags the retransmission queue when SACKs arrive.
1013  *
1014  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1015  * Packets in queue with these bits set are counted in variables
1016  * sacked_out, retrans_out and lost_out, correspondingly.
1017  *
1018  * Valid combinations are:
1019  * Tag  InFlight	Description
1020  * 0	1		- orig segment is in flight.
1021  * S	0		- nothing flies, orig reached receiver.
1022  * L	0		- nothing flies, orig lost by net.
1023  * R	2		- both orig and retransmit are in flight.
1024  * L|R	1		- orig is lost, retransmit is in flight.
1025  * S|R  1		- orig reached receiver, retrans is still in flight.
1026  * (L|S|R is logically valid, it could occur when L|R is sacked,
1027  *  but it is equivalent to plain S and code short-curcuits it to S.
1028  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1029  *
1030  * These 6 states form finite state machine, controlled by the following events:
1031  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1032  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1033  * 3. Loss detection event of one of three flavors:
1034  *	A. Scoreboard estimator decided the packet is lost.
1035  *	   A'. Reno "three dupacks" marks head of queue lost.
1036  *	   A''. Its FACK modfication, head until snd.fack is lost.
1037  *	B. SACK arrives sacking data transmitted after never retransmitted
1038  *	   hole was sent out.
1039  *	C. SACK arrives sacking SND.NXT at the moment, when the
1040  *	   segment was retransmitted.
1041  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1042  *
1043  * It is pleasant to note, that state diagram turns out to be commutative,
1044  * so that we are allowed not to be bothered by order of our actions,
1045  * when multiple events arrive simultaneously. (see the function below).
1046  *
1047  * Reordering detection.
1048  * --------------------
1049  * Reordering metric is maximal distance, which a packet can be displaced
1050  * in packet stream. With SACKs we can estimate it:
1051  *
1052  * 1. SACK fills old hole and the corresponding segment was not
1053  *    ever retransmitted -> reordering. Alas, we cannot use it
1054  *    when segment was retransmitted.
1055  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1056  *    for retransmitted and already SACKed segment -> reordering..
1057  * Both of these heuristics are not used in Loss state, when we cannot
1058  * account for retransmits accurately.
1059  *
1060  * SACK block validation.
1061  * ----------------------
1062  *
1063  * SACK block range validation checks that the received SACK block fits to
1064  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1065  * Note that SND.UNA is not included to the range though being valid because
1066  * it means that the receiver is rather inconsistent with itself reporting
1067  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1068  * perfectly valid, however, in light of RFC2018 which explicitly states
1069  * that "SACK block MUST reflect the newest segment.  Even if the newest
1070  * segment is going to be discarded ...", not that it looks very clever
1071  * in case of head skb. Due to potentional receiver driven attacks, we
1072  * choose to avoid immediate execution of a walk in write queue due to
1073  * reneging and defer head skb's loss recovery to standard loss recovery
1074  * procedure that will eventually trigger (nothing forbids us doing this).
1075  *
1076  * Implements also blockage to start_seq wrap-around. Problem lies in the
1077  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1078  * there's no guarantee that it will be before snd_nxt (n). The problem
1079  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1080  * wrap (s_w):
1081  *
1082  *         <- outs wnd ->                          <- wrapzone ->
1083  *         u     e      n                         u_w   e_w  s n_w
1084  *         |     |      |                          |     |   |  |
1085  * |<------------+------+----- TCP seqno space --------------+---------->|
1086  * ...-- <2^31 ->|                                           |<--------...
1087  * ...---- >2^31 ------>|                                    |<--------...
1088  *
1089  * Current code wouldn't be vulnerable but it's better still to discard such
1090  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1091  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1092  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1093  * equal to the ideal case (infinite seqno space without wrap caused issues).
1094  *
1095  * With D-SACK the lower bound is extended to cover sequence space below
1096  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1097  * again, D-SACK block must not to go across snd_una (for the same reason as
1098  * for the normal SACK blocks, explained above). But there all simplicity
1099  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1100  * fully below undo_marker they do not affect behavior in anyway and can
1101  * therefore be safely ignored. In rare cases (which are more or less
1102  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1103  * fragmentation and packet reordering past skb's retransmission. To consider
1104  * them correctly, the acceptable range must be extended even more though
1105  * the exact amount is rather hard to quantify. However, tp->max_window can
1106  * be used as an exaggerated estimate.
1107  */
1108 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1109 				  u32 start_seq, u32 end_seq)
1110 {
1111 	/* Too far in future, or reversed (interpretation is ambiguous) */
1112 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1113 		return 0;
1114 
1115 	/* Nasty start_seq wrap-around check (see comments above) */
1116 	if (!before(start_seq, tp->snd_nxt))
1117 		return 0;
1118 
1119 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1120 	 * start_seq == snd_una is non-sensical (see comments above)
1121 	 */
1122 	if (after(start_seq, tp->snd_una))
1123 		return 1;
1124 
1125 	if (!is_dsack || !tp->undo_marker)
1126 		return 0;
1127 
1128 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1129 	if (!after(end_seq, tp->snd_una))
1130 		return 0;
1131 
1132 	if (!before(start_seq, tp->undo_marker))
1133 		return 1;
1134 
1135 	/* Too old */
1136 	if (!after(end_seq, tp->undo_marker))
1137 		return 0;
1138 
1139 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1140 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1141 	 */
1142 	return !before(start_seq, end_seq - tp->max_window);
1143 }
1144 
1145 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1146  * Event "C". Later note: FACK people cheated me again 8), we have to account
1147  * for reordering! Ugly, but should help.
1148  *
1149  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1150  * less than what is now known to be received by the other end (derived from
1151  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1152  * retransmitted skbs to avoid some costly processing per ACKs.
1153  */
1154 static void tcp_mark_lost_retrans(struct sock *sk)
1155 {
1156 	const struct inet_connection_sock *icsk = inet_csk(sk);
1157 	struct tcp_sock *tp = tcp_sk(sk);
1158 	struct sk_buff *skb;
1159 	int cnt = 0;
1160 	u32 new_low_seq = tp->snd_nxt;
1161 	u32 received_upto = tcp_highest_sack_seq(tp);
1162 
1163 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1164 	    !after(received_upto, tp->lost_retrans_low) ||
1165 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1166 		return;
1167 
1168 	tcp_for_write_queue(skb, sk) {
1169 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1170 
1171 		if (skb == tcp_send_head(sk))
1172 			break;
1173 		if (cnt == tp->retrans_out)
1174 			break;
1175 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1176 			continue;
1177 
1178 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1179 			continue;
1180 
1181 		if (after(received_upto, ack_seq) &&
1182 		    (tcp_is_fack(tp) ||
1183 		     !before(received_upto,
1184 			     ack_seq + tp->reordering * tp->mss_cache))) {
1185 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1186 			tp->retrans_out -= tcp_skb_pcount(skb);
1187 
1188 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1189 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1190 		} else {
1191 			if (before(ack_seq, new_low_seq))
1192 				new_low_seq = ack_seq;
1193 			cnt += tcp_skb_pcount(skb);
1194 		}
1195 	}
1196 
1197 	if (tp->retrans_out)
1198 		tp->lost_retrans_low = new_low_seq;
1199 }
1200 
1201 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1202 			   struct tcp_sack_block_wire *sp, int num_sacks,
1203 			   u32 prior_snd_una)
1204 {
1205 	struct tcp_sock *tp = tcp_sk(sk);
1206 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1207 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1208 	int dup_sack = 0;
1209 
1210 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1211 		dup_sack = 1;
1212 		tcp_dsack_seen(tp);
1213 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1214 	} else if (num_sacks > 1) {
1215 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1216 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1217 
1218 		if (!after(end_seq_0, end_seq_1) &&
1219 		    !before(start_seq_0, start_seq_1)) {
1220 			dup_sack = 1;
1221 			tcp_dsack_seen(tp);
1222 			NET_INC_STATS_BH(sock_net(sk),
1223 					LINUX_MIB_TCPDSACKOFORECV);
1224 		}
1225 	}
1226 
1227 	/* D-SACK for already forgotten data... Do dumb counting. */
1228 	if (dup_sack &&
1229 	    !after(end_seq_0, prior_snd_una) &&
1230 	    after(end_seq_0, tp->undo_marker))
1231 		tp->undo_retrans--;
1232 
1233 	return dup_sack;
1234 }
1235 
1236 struct tcp_sacktag_state {
1237 	int reord;
1238 	int fack_count;
1239 	int flag;
1240 };
1241 
1242 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1243  * the incoming SACK may not exactly match but we can find smaller MSS
1244  * aligned portion of it that matches. Therefore we might need to fragment
1245  * which may fail and creates some hassle (caller must handle error case
1246  * returns).
1247  *
1248  * FIXME: this could be merged to shift decision code
1249  */
1250 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1251 				 u32 start_seq, u32 end_seq)
1252 {
1253 	int in_sack, err;
1254 	unsigned int pkt_len;
1255 	unsigned int mss;
1256 
1257 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1258 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1259 
1260 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1261 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1262 		mss = tcp_skb_mss(skb);
1263 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1264 
1265 		if (!in_sack) {
1266 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1267 			if (pkt_len < mss)
1268 				pkt_len = mss;
1269 		} else {
1270 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1271 			if (pkt_len < mss)
1272 				return -EINVAL;
1273 		}
1274 
1275 		/* Round if necessary so that SACKs cover only full MSSes
1276 		 * and/or the remaining small portion (if present)
1277 		 */
1278 		if (pkt_len > mss) {
1279 			unsigned int new_len = (pkt_len / mss) * mss;
1280 			if (!in_sack && new_len < pkt_len) {
1281 				new_len += mss;
1282 				if (new_len > skb->len)
1283 					return 0;
1284 			}
1285 			pkt_len = new_len;
1286 		}
1287 		err = tcp_fragment(sk, skb, pkt_len, mss);
1288 		if (err < 0)
1289 			return err;
1290 	}
1291 
1292 	return in_sack;
1293 }
1294 
1295 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1296 			  struct tcp_sacktag_state *state,
1297 			  int dup_sack, int pcount)
1298 {
1299 	struct tcp_sock *tp = tcp_sk(sk);
1300 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1301 	int fack_count = state->fack_count;
1302 
1303 	/* Account D-SACK for retransmitted packet. */
1304 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1305 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1306 			tp->undo_retrans--;
1307 		if (sacked & TCPCB_SACKED_ACKED)
1308 			state->reord = min(fack_count, state->reord);
1309 	}
1310 
1311 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1312 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1313 		return sacked;
1314 
1315 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1316 		if (sacked & TCPCB_SACKED_RETRANS) {
1317 			/* If the segment is not tagged as lost,
1318 			 * we do not clear RETRANS, believing
1319 			 * that retransmission is still in flight.
1320 			 */
1321 			if (sacked & TCPCB_LOST) {
1322 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1323 				tp->lost_out -= pcount;
1324 				tp->retrans_out -= pcount;
1325 			}
1326 		} else {
1327 			if (!(sacked & TCPCB_RETRANS)) {
1328 				/* New sack for not retransmitted frame,
1329 				 * which was in hole. It is reordering.
1330 				 */
1331 				if (before(TCP_SKB_CB(skb)->seq,
1332 					   tcp_highest_sack_seq(tp)))
1333 					state->reord = min(fack_count,
1334 							   state->reord);
1335 
1336 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1337 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1338 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1339 			}
1340 
1341 			if (sacked & TCPCB_LOST) {
1342 				sacked &= ~TCPCB_LOST;
1343 				tp->lost_out -= pcount;
1344 			}
1345 		}
1346 
1347 		sacked |= TCPCB_SACKED_ACKED;
1348 		state->flag |= FLAG_DATA_SACKED;
1349 		tp->sacked_out += pcount;
1350 
1351 		fack_count += pcount;
1352 
1353 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1354 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1355 		    before(TCP_SKB_CB(skb)->seq,
1356 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1357 			tp->lost_cnt_hint += pcount;
1358 
1359 		if (fack_count > tp->fackets_out)
1360 			tp->fackets_out = fack_count;
1361 	}
1362 
1363 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1364 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1365 	 * are accounted above as well.
1366 	 */
1367 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1368 		sacked &= ~TCPCB_SACKED_RETRANS;
1369 		tp->retrans_out -= pcount;
1370 	}
1371 
1372 	return sacked;
1373 }
1374 
1375 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1376 			   struct tcp_sacktag_state *state,
1377 			   unsigned int pcount, int shifted, int mss)
1378 {
1379 	struct tcp_sock *tp = tcp_sk(sk);
1380 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1381 
1382 	BUG_ON(!pcount);
1383 
1384 	/* Tweak before seqno plays */
1385 	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1386 	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1387 		tp->lost_cnt_hint += pcount;
1388 
1389 	TCP_SKB_CB(prev)->end_seq += shifted;
1390 	TCP_SKB_CB(skb)->seq += shifted;
1391 
1392 	skb_shinfo(prev)->gso_segs += pcount;
1393 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1394 	skb_shinfo(skb)->gso_segs -= pcount;
1395 
1396 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1397 	 * in theory this shouldn't be necessary but as long as DSACK
1398 	 * code can come after this skb later on it's better to keep
1399 	 * setting gso_size to something.
1400 	 */
1401 	if (!skb_shinfo(prev)->gso_size) {
1402 		skb_shinfo(prev)->gso_size = mss;
1403 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1404 	}
1405 
1406 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1407 	if (skb_shinfo(skb)->gso_segs <= 1) {
1408 		skb_shinfo(skb)->gso_size = 0;
1409 		skb_shinfo(skb)->gso_type = 0;
1410 	}
1411 
1412 	/* We discard results */
1413 	tcp_sacktag_one(skb, sk, state, 0, pcount);
1414 
1415 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1416 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1417 
1418 	if (skb->len > 0) {
1419 		BUG_ON(!tcp_skb_pcount(skb));
1420 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1421 		return 0;
1422 	}
1423 
1424 	/* Whole SKB was eaten :-) */
1425 
1426 	if (skb == tp->retransmit_skb_hint)
1427 		tp->retransmit_skb_hint = prev;
1428 	if (skb == tp->scoreboard_skb_hint)
1429 		tp->scoreboard_skb_hint = prev;
1430 	if (skb == tp->lost_skb_hint) {
1431 		tp->lost_skb_hint = prev;
1432 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1433 	}
1434 
1435 	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1436 	if (skb == tcp_highest_sack(sk))
1437 		tcp_advance_highest_sack(sk, skb);
1438 
1439 	tcp_unlink_write_queue(skb, sk);
1440 	sk_wmem_free_skb(sk, skb);
1441 
1442 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1443 
1444 	return 1;
1445 }
1446 
1447 /* I wish gso_size would have a bit more sane initialization than
1448  * something-or-zero which complicates things
1449  */
1450 static int tcp_skb_seglen(struct sk_buff *skb)
1451 {
1452 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1453 }
1454 
1455 /* Shifting pages past head area doesn't work */
1456 static int skb_can_shift(struct sk_buff *skb)
1457 {
1458 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1459 }
1460 
1461 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1462  * skb.
1463  */
1464 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1465 					  struct tcp_sacktag_state *state,
1466 					  u32 start_seq, u32 end_seq,
1467 					  int dup_sack)
1468 {
1469 	struct tcp_sock *tp = tcp_sk(sk);
1470 	struct sk_buff *prev;
1471 	int mss;
1472 	int pcount = 0;
1473 	int len;
1474 	int in_sack;
1475 
1476 	if (!sk_can_gso(sk))
1477 		goto fallback;
1478 
1479 	/* Normally R but no L won't result in plain S */
1480 	if (!dup_sack &&
1481 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1482 		goto fallback;
1483 	if (!skb_can_shift(skb))
1484 		goto fallback;
1485 	/* This frame is about to be dropped (was ACKed). */
1486 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1487 		goto fallback;
1488 
1489 	/* Can only happen with delayed DSACK + discard craziness */
1490 	if (unlikely(skb == tcp_write_queue_head(sk)))
1491 		goto fallback;
1492 	prev = tcp_write_queue_prev(sk, skb);
1493 
1494 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1495 		goto fallback;
1496 
1497 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1498 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1499 
1500 	if (in_sack) {
1501 		len = skb->len;
1502 		pcount = tcp_skb_pcount(skb);
1503 		mss = tcp_skb_seglen(skb);
1504 
1505 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1506 		 * drop this restriction as unnecessary
1507 		 */
1508 		if (mss != tcp_skb_seglen(prev))
1509 			goto fallback;
1510 	} else {
1511 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1512 			goto noop;
1513 		/* CHECKME: This is non-MSS split case only?, this will
1514 		 * cause skipped skbs due to advancing loop btw, original
1515 		 * has that feature too
1516 		 */
1517 		if (tcp_skb_pcount(skb) <= 1)
1518 			goto noop;
1519 
1520 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1521 		if (!in_sack) {
1522 			/* TODO: head merge to next could be attempted here
1523 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1524 			 * though it might not be worth of the additional hassle
1525 			 *
1526 			 * ...we can probably just fallback to what was done
1527 			 * previously. We could try merging non-SACKed ones
1528 			 * as well but it probably isn't going to buy off
1529 			 * because later SACKs might again split them, and
1530 			 * it would make skb timestamp tracking considerably
1531 			 * harder problem.
1532 			 */
1533 			goto fallback;
1534 		}
1535 
1536 		len = end_seq - TCP_SKB_CB(skb)->seq;
1537 		BUG_ON(len < 0);
1538 		BUG_ON(len > skb->len);
1539 
1540 		/* MSS boundaries should be honoured or else pcount will
1541 		 * severely break even though it makes things bit trickier.
1542 		 * Optimize common case to avoid most of the divides
1543 		 */
1544 		mss = tcp_skb_mss(skb);
1545 
1546 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1547 		 * drop this restriction as unnecessary
1548 		 */
1549 		if (mss != tcp_skb_seglen(prev))
1550 			goto fallback;
1551 
1552 		if (len == mss) {
1553 			pcount = 1;
1554 		} else if (len < mss) {
1555 			goto noop;
1556 		} else {
1557 			pcount = len / mss;
1558 			len = pcount * mss;
1559 		}
1560 	}
1561 
1562 	if (!skb_shift(prev, skb, len))
1563 		goto fallback;
1564 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss))
1565 		goto out;
1566 
1567 	/* Hole filled allows collapsing with the next as well, this is very
1568 	 * useful when hole on every nth skb pattern happens
1569 	 */
1570 	if (prev == tcp_write_queue_tail(sk))
1571 		goto out;
1572 	skb = tcp_write_queue_next(sk, prev);
1573 
1574 	if (!skb_can_shift(skb) ||
1575 	    (skb == tcp_send_head(sk)) ||
1576 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1577 	    (mss != tcp_skb_seglen(skb)))
1578 		goto out;
1579 
1580 	len = skb->len;
1581 	if (skb_shift(prev, skb, len)) {
1582 		pcount += tcp_skb_pcount(skb);
1583 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss);
1584 	}
1585 
1586 out:
1587 	state->fack_count += pcount;
1588 	return prev;
1589 
1590 noop:
1591 	return skb;
1592 
1593 fallback:
1594 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1595 	return NULL;
1596 }
1597 
1598 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1599 					struct tcp_sack_block *next_dup,
1600 					struct tcp_sacktag_state *state,
1601 					u32 start_seq, u32 end_seq,
1602 					int dup_sack_in)
1603 {
1604 	struct tcp_sock *tp = tcp_sk(sk);
1605 	struct sk_buff *tmp;
1606 
1607 	tcp_for_write_queue_from(skb, sk) {
1608 		int in_sack = 0;
1609 		int dup_sack = dup_sack_in;
1610 
1611 		if (skb == tcp_send_head(sk))
1612 			break;
1613 
1614 		/* queue is in-order => we can short-circuit the walk early */
1615 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1616 			break;
1617 
1618 		if ((next_dup != NULL) &&
1619 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1620 			in_sack = tcp_match_skb_to_sack(sk, skb,
1621 							next_dup->start_seq,
1622 							next_dup->end_seq);
1623 			if (in_sack > 0)
1624 				dup_sack = 1;
1625 		}
1626 
1627 		/* skb reference here is a bit tricky to get right, since
1628 		 * shifting can eat and free both this skb and the next,
1629 		 * so not even _safe variant of the loop is enough.
1630 		 */
1631 		if (in_sack <= 0) {
1632 			tmp = tcp_shift_skb_data(sk, skb, state,
1633 						 start_seq, end_seq, dup_sack);
1634 			if (tmp != NULL) {
1635 				if (tmp != skb) {
1636 					skb = tmp;
1637 					continue;
1638 				}
1639 
1640 				in_sack = 0;
1641 			} else {
1642 				in_sack = tcp_match_skb_to_sack(sk, skb,
1643 								start_seq,
1644 								end_seq);
1645 			}
1646 		}
1647 
1648 		if (unlikely(in_sack < 0))
1649 			break;
1650 
1651 		if (in_sack) {
1652 			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1653 								  state,
1654 								  dup_sack,
1655 								  tcp_skb_pcount(skb));
1656 
1657 			if (!before(TCP_SKB_CB(skb)->seq,
1658 				    tcp_highest_sack_seq(tp)))
1659 				tcp_advance_highest_sack(sk, skb);
1660 		}
1661 
1662 		state->fack_count += tcp_skb_pcount(skb);
1663 	}
1664 	return skb;
1665 }
1666 
1667 /* Avoid all extra work that is being done by sacktag while walking in
1668  * a normal way
1669  */
1670 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1671 					struct tcp_sacktag_state *state,
1672 					u32 skip_to_seq)
1673 {
1674 	tcp_for_write_queue_from(skb, sk) {
1675 		if (skb == tcp_send_head(sk))
1676 			break;
1677 
1678 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1679 			break;
1680 
1681 		state->fack_count += tcp_skb_pcount(skb);
1682 	}
1683 	return skb;
1684 }
1685 
1686 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1687 						struct sock *sk,
1688 						struct tcp_sack_block *next_dup,
1689 						struct tcp_sacktag_state *state,
1690 						u32 skip_to_seq)
1691 {
1692 	if (next_dup == NULL)
1693 		return skb;
1694 
1695 	if (before(next_dup->start_seq, skip_to_seq)) {
1696 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1697 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1698 				       next_dup->start_seq, next_dup->end_seq,
1699 				       1);
1700 	}
1701 
1702 	return skb;
1703 }
1704 
1705 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1706 {
1707 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1708 }
1709 
1710 static int
1711 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1712 			u32 prior_snd_una)
1713 {
1714 	const struct inet_connection_sock *icsk = inet_csk(sk);
1715 	struct tcp_sock *tp = tcp_sk(sk);
1716 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1717 			      TCP_SKB_CB(ack_skb)->sacked);
1718 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1719 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1720 	struct tcp_sack_block *cache;
1721 	struct tcp_sacktag_state state;
1722 	struct sk_buff *skb;
1723 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1724 	int used_sacks;
1725 	int found_dup_sack = 0;
1726 	int i, j;
1727 	int first_sack_index;
1728 
1729 	state.flag = 0;
1730 	state.reord = tp->packets_out;
1731 
1732 	if (!tp->sacked_out) {
1733 		if (WARN_ON(tp->fackets_out))
1734 			tp->fackets_out = 0;
1735 		tcp_highest_sack_reset(sk);
1736 	}
1737 
1738 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1739 					 num_sacks, prior_snd_una);
1740 	if (found_dup_sack)
1741 		state.flag |= FLAG_DSACKING_ACK;
1742 
1743 	/* Eliminate too old ACKs, but take into
1744 	 * account more or less fresh ones, they can
1745 	 * contain valid SACK info.
1746 	 */
1747 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1748 		return 0;
1749 
1750 	if (!tp->packets_out)
1751 		goto out;
1752 
1753 	used_sacks = 0;
1754 	first_sack_index = 0;
1755 	for (i = 0; i < num_sacks; i++) {
1756 		int dup_sack = !i && found_dup_sack;
1757 
1758 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1759 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1760 
1761 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1762 					    sp[used_sacks].start_seq,
1763 					    sp[used_sacks].end_seq)) {
1764 			int mib_idx;
1765 
1766 			if (dup_sack) {
1767 				if (!tp->undo_marker)
1768 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1769 				else
1770 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1771 			} else {
1772 				/* Don't count olds caused by ACK reordering */
1773 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1774 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1775 					continue;
1776 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1777 			}
1778 
1779 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1780 			if (i == 0)
1781 				first_sack_index = -1;
1782 			continue;
1783 		}
1784 
1785 		/* Ignore very old stuff early */
1786 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1787 			continue;
1788 
1789 		used_sacks++;
1790 	}
1791 
1792 	/* order SACK blocks to allow in order walk of the retrans queue */
1793 	for (i = used_sacks - 1; i > 0; i--) {
1794 		for (j = 0; j < i; j++) {
1795 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1796 				struct tcp_sack_block tmp;
1797 
1798 				tmp = sp[j];
1799 				sp[j] = sp[j + 1];
1800 				sp[j + 1] = tmp;
1801 
1802 				/* Track where the first SACK block goes to */
1803 				if (j == first_sack_index)
1804 					first_sack_index = j + 1;
1805 			}
1806 		}
1807 	}
1808 
1809 	skb = tcp_write_queue_head(sk);
1810 	state.fack_count = 0;
1811 	i = 0;
1812 
1813 	if (!tp->sacked_out) {
1814 		/* It's already past, so skip checking against it */
1815 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1816 	} else {
1817 		cache = tp->recv_sack_cache;
1818 		/* Skip empty blocks in at head of the cache */
1819 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1820 		       !cache->end_seq)
1821 			cache++;
1822 	}
1823 
1824 	while (i < used_sacks) {
1825 		u32 start_seq = sp[i].start_seq;
1826 		u32 end_seq = sp[i].end_seq;
1827 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1828 		struct tcp_sack_block *next_dup = NULL;
1829 
1830 		if (found_dup_sack && ((i + 1) == first_sack_index))
1831 			next_dup = &sp[i + 1];
1832 
1833 		/* Event "B" in the comment above. */
1834 		if (after(end_seq, tp->high_seq))
1835 			state.flag |= FLAG_DATA_LOST;
1836 
1837 		/* Skip too early cached blocks */
1838 		while (tcp_sack_cache_ok(tp, cache) &&
1839 		       !before(start_seq, cache->end_seq))
1840 			cache++;
1841 
1842 		/* Can skip some work by looking recv_sack_cache? */
1843 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1844 		    after(end_seq, cache->start_seq)) {
1845 
1846 			/* Head todo? */
1847 			if (before(start_seq, cache->start_seq)) {
1848 				skb = tcp_sacktag_skip(skb, sk, &state,
1849 						       start_seq);
1850 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1851 						       &state,
1852 						       start_seq,
1853 						       cache->start_seq,
1854 						       dup_sack);
1855 			}
1856 
1857 			/* Rest of the block already fully processed? */
1858 			if (!after(end_seq, cache->end_seq))
1859 				goto advance_sp;
1860 
1861 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1862 						       &state,
1863 						       cache->end_seq);
1864 
1865 			/* ...tail remains todo... */
1866 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1867 				/* ...but better entrypoint exists! */
1868 				skb = tcp_highest_sack(sk);
1869 				if (skb == NULL)
1870 					break;
1871 				state.fack_count = tp->fackets_out;
1872 				cache++;
1873 				goto walk;
1874 			}
1875 
1876 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1877 			/* Check overlap against next cached too (past this one already) */
1878 			cache++;
1879 			continue;
1880 		}
1881 
1882 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1883 			skb = tcp_highest_sack(sk);
1884 			if (skb == NULL)
1885 				break;
1886 			state.fack_count = tp->fackets_out;
1887 		}
1888 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1889 
1890 walk:
1891 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1892 				       start_seq, end_seq, dup_sack);
1893 
1894 advance_sp:
1895 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1896 		 * due to in-order walk
1897 		 */
1898 		if (after(end_seq, tp->frto_highmark))
1899 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1900 
1901 		i++;
1902 	}
1903 
1904 	/* Clear the head of the cache sack blocks so we can skip it next time */
1905 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1906 		tp->recv_sack_cache[i].start_seq = 0;
1907 		tp->recv_sack_cache[i].end_seq = 0;
1908 	}
1909 	for (j = 0; j < used_sacks; j++)
1910 		tp->recv_sack_cache[i++] = sp[j];
1911 
1912 	tcp_mark_lost_retrans(sk);
1913 
1914 	tcp_verify_left_out(tp);
1915 
1916 	if ((state.reord < tp->fackets_out) &&
1917 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1918 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1919 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1920 
1921 out:
1922 
1923 #if FASTRETRANS_DEBUG > 0
1924 	WARN_ON((int)tp->sacked_out < 0);
1925 	WARN_ON((int)tp->lost_out < 0);
1926 	WARN_ON((int)tp->retrans_out < 0);
1927 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1928 #endif
1929 	return state.flag;
1930 }
1931 
1932 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1933  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1934  */
1935 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1936 {
1937 	u32 holes;
1938 
1939 	holes = max(tp->lost_out, 1U);
1940 	holes = min(holes, tp->packets_out);
1941 
1942 	if ((tp->sacked_out + holes) > tp->packets_out) {
1943 		tp->sacked_out = tp->packets_out - holes;
1944 		return 1;
1945 	}
1946 	return 0;
1947 }
1948 
1949 /* If we receive more dupacks than we expected counting segments
1950  * in assumption of absent reordering, interpret this as reordering.
1951  * The only another reason could be bug in receiver TCP.
1952  */
1953 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1954 {
1955 	struct tcp_sock *tp = tcp_sk(sk);
1956 	if (tcp_limit_reno_sacked(tp))
1957 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1958 }
1959 
1960 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1961 
1962 static void tcp_add_reno_sack(struct sock *sk)
1963 {
1964 	struct tcp_sock *tp = tcp_sk(sk);
1965 	tp->sacked_out++;
1966 	tcp_check_reno_reordering(sk, 0);
1967 	tcp_verify_left_out(tp);
1968 }
1969 
1970 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1971 
1972 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1973 {
1974 	struct tcp_sock *tp = tcp_sk(sk);
1975 
1976 	if (acked > 0) {
1977 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1978 		if (acked - 1 >= tp->sacked_out)
1979 			tp->sacked_out = 0;
1980 		else
1981 			tp->sacked_out -= acked - 1;
1982 	}
1983 	tcp_check_reno_reordering(sk, acked);
1984 	tcp_verify_left_out(tp);
1985 }
1986 
1987 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1988 {
1989 	tp->sacked_out = 0;
1990 }
1991 
1992 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1993 {
1994 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1995 }
1996 
1997 /* F-RTO can only be used if TCP has never retransmitted anything other than
1998  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1999  */
2000 int tcp_use_frto(struct sock *sk)
2001 {
2002 	const struct tcp_sock *tp = tcp_sk(sk);
2003 	const struct inet_connection_sock *icsk = inet_csk(sk);
2004 	struct sk_buff *skb;
2005 
2006 	if (!sysctl_tcp_frto)
2007 		return 0;
2008 
2009 	/* MTU probe and F-RTO won't really play nicely along currently */
2010 	if (icsk->icsk_mtup.probe_size)
2011 		return 0;
2012 
2013 	if (tcp_is_sackfrto(tp))
2014 		return 1;
2015 
2016 	/* Avoid expensive walking of rexmit queue if possible */
2017 	if (tp->retrans_out > 1)
2018 		return 0;
2019 
2020 	skb = tcp_write_queue_head(sk);
2021 	if (tcp_skb_is_last(sk, skb))
2022 		return 1;
2023 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2024 	tcp_for_write_queue_from(skb, sk) {
2025 		if (skb == tcp_send_head(sk))
2026 			break;
2027 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2028 			return 0;
2029 		/* Short-circuit when first non-SACKed skb has been checked */
2030 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2031 			break;
2032 	}
2033 	return 1;
2034 }
2035 
2036 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2037  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2038  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2039  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2040  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2041  * bits are handled if the Loss state is really to be entered (in
2042  * tcp_enter_frto_loss).
2043  *
2044  * Do like tcp_enter_loss() would; when RTO expires the second time it
2045  * does:
2046  *  "Reduce ssthresh if it has not yet been made inside this window."
2047  */
2048 void tcp_enter_frto(struct sock *sk)
2049 {
2050 	const struct inet_connection_sock *icsk = inet_csk(sk);
2051 	struct tcp_sock *tp = tcp_sk(sk);
2052 	struct sk_buff *skb;
2053 
2054 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2055 	    tp->snd_una == tp->high_seq ||
2056 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2057 	     !icsk->icsk_retransmits)) {
2058 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2059 		/* Our state is too optimistic in ssthresh() call because cwnd
2060 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2061 		 * recovery has not yet completed. Pattern would be this: RTO,
2062 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2063 		 * up here twice).
2064 		 * RFC4138 should be more specific on what to do, even though
2065 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2066 		 * due to back-off and complexity of triggering events ...
2067 		 */
2068 		if (tp->frto_counter) {
2069 			u32 stored_cwnd;
2070 			stored_cwnd = tp->snd_cwnd;
2071 			tp->snd_cwnd = 2;
2072 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2073 			tp->snd_cwnd = stored_cwnd;
2074 		} else {
2075 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2076 		}
2077 		/* ... in theory, cong.control module could do "any tricks" in
2078 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2079 		 * counter would have to be faked before the call occurs. We
2080 		 * consider that too expensive, unlikely and hacky, so modules
2081 		 * using these in ssthresh() must deal these incompatibility
2082 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2083 		 */
2084 		tcp_ca_event(sk, CA_EVENT_FRTO);
2085 	}
2086 
2087 	tp->undo_marker = tp->snd_una;
2088 	tp->undo_retrans = 0;
2089 
2090 	skb = tcp_write_queue_head(sk);
2091 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2092 		tp->undo_marker = 0;
2093 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2094 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2095 		tp->retrans_out -= tcp_skb_pcount(skb);
2096 	}
2097 	tcp_verify_left_out(tp);
2098 
2099 	/* Too bad if TCP was application limited */
2100 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2101 
2102 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2103 	 * The last condition is necessary at least in tp->frto_counter case.
2104 	 */
2105 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2106 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2107 	    after(tp->high_seq, tp->snd_una)) {
2108 		tp->frto_highmark = tp->high_seq;
2109 	} else {
2110 		tp->frto_highmark = tp->snd_nxt;
2111 	}
2112 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2113 	tp->high_seq = tp->snd_nxt;
2114 	tp->frto_counter = 1;
2115 }
2116 
2117 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2118  * which indicates that we should follow the traditional RTO recovery,
2119  * i.e. mark everything lost and do go-back-N retransmission.
2120  */
2121 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2122 {
2123 	struct tcp_sock *tp = tcp_sk(sk);
2124 	struct sk_buff *skb;
2125 
2126 	tp->lost_out = 0;
2127 	tp->retrans_out = 0;
2128 	if (tcp_is_reno(tp))
2129 		tcp_reset_reno_sack(tp);
2130 
2131 	tcp_for_write_queue(skb, sk) {
2132 		if (skb == tcp_send_head(sk))
2133 			break;
2134 
2135 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2136 		/*
2137 		 * Count the retransmission made on RTO correctly (only when
2138 		 * waiting for the first ACK and did not get it)...
2139 		 */
2140 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2141 			/* For some reason this R-bit might get cleared? */
2142 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2143 				tp->retrans_out += tcp_skb_pcount(skb);
2144 			/* ...enter this if branch just for the first segment */
2145 			flag |= FLAG_DATA_ACKED;
2146 		} else {
2147 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2148 				tp->undo_marker = 0;
2149 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2150 		}
2151 
2152 		/* Marking forward transmissions that were made after RTO lost
2153 		 * can cause unnecessary retransmissions in some scenarios,
2154 		 * SACK blocks will mitigate that in some but not in all cases.
2155 		 * We used to not mark them but it was causing break-ups with
2156 		 * receivers that do only in-order receival.
2157 		 *
2158 		 * TODO: we could detect presence of such receiver and select
2159 		 * different behavior per flow.
2160 		 */
2161 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2162 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2163 			tp->lost_out += tcp_skb_pcount(skb);
2164 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2165 		}
2166 	}
2167 	tcp_verify_left_out(tp);
2168 
2169 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2170 	tp->snd_cwnd_cnt = 0;
2171 	tp->snd_cwnd_stamp = tcp_time_stamp;
2172 	tp->frto_counter = 0;
2173 	tp->bytes_acked = 0;
2174 
2175 	tp->reordering = min_t(unsigned int, tp->reordering,
2176 			       sysctl_tcp_reordering);
2177 	tcp_set_ca_state(sk, TCP_CA_Loss);
2178 	tp->high_seq = tp->snd_nxt;
2179 	TCP_ECN_queue_cwr(tp);
2180 
2181 	tcp_clear_all_retrans_hints(tp);
2182 }
2183 
2184 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2185 {
2186 	tp->retrans_out = 0;
2187 	tp->lost_out = 0;
2188 
2189 	tp->undo_marker = 0;
2190 	tp->undo_retrans = 0;
2191 }
2192 
2193 void tcp_clear_retrans(struct tcp_sock *tp)
2194 {
2195 	tcp_clear_retrans_partial(tp);
2196 
2197 	tp->fackets_out = 0;
2198 	tp->sacked_out = 0;
2199 }
2200 
2201 /* Enter Loss state. If "how" is not zero, forget all SACK information
2202  * and reset tags completely, otherwise preserve SACKs. If receiver
2203  * dropped its ofo queue, we will know this due to reneging detection.
2204  */
2205 void tcp_enter_loss(struct sock *sk, int how)
2206 {
2207 	const struct inet_connection_sock *icsk = inet_csk(sk);
2208 	struct tcp_sock *tp = tcp_sk(sk);
2209 	struct sk_buff *skb;
2210 
2211 	/* Reduce ssthresh if it has not yet been made inside this window. */
2212 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2213 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2214 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2215 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2216 		tcp_ca_event(sk, CA_EVENT_LOSS);
2217 	}
2218 	tp->snd_cwnd	   = 1;
2219 	tp->snd_cwnd_cnt   = 0;
2220 	tp->snd_cwnd_stamp = tcp_time_stamp;
2221 
2222 	tp->bytes_acked = 0;
2223 	tcp_clear_retrans_partial(tp);
2224 
2225 	if (tcp_is_reno(tp))
2226 		tcp_reset_reno_sack(tp);
2227 
2228 	if (!how) {
2229 		/* Push undo marker, if it was plain RTO and nothing
2230 		 * was retransmitted. */
2231 		tp->undo_marker = tp->snd_una;
2232 	} else {
2233 		tp->sacked_out = 0;
2234 		tp->fackets_out = 0;
2235 	}
2236 	tcp_clear_all_retrans_hints(tp);
2237 
2238 	tcp_for_write_queue(skb, sk) {
2239 		if (skb == tcp_send_head(sk))
2240 			break;
2241 
2242 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2243 			tp->undo_marker = 0;
2244 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2245 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2246 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2247 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2248 			tp->lost_out += tcp_skb_pcount(skb);
2249 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2250 		}
2251 	}
2252 	tcp_verify_left_out(tp);
2253 
2254 	tp->reordering = min_t(unsigned int, tp->reordering,
2255 			       sysctl_tcp_reordering);
2256 	tcp_set_ca_state(sk, TCP_CA_Loss);
2257 	tp->high_seq = tp->snd_nxt;
2258 	TCP_ECN_queue_cwr(tp);
2259 	/* Abort F-RTO algorithm if one is in progress */
2260 	tp->frto_counter = 0;
2261 }
2262 
2263 /* If ACK arrived pointing to a remembered SACK, it means that our
2264  * remembered SACKs do not reflect real state of receiver i.e.
2265  * receiver _host_ is heavily congested (or buggy).
2266  *
2267  * Do processing similar to RTO timeout.
2268  */
2269 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2270 {
2271 	if (flag & FLAG_SACK_RENEGING) {
2272 		struct inet_connection_sock *icsk = inet_csk(sk);
2273 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2274 
2275 		tcp_enter_loss(sk, 1);
2276 		icsk->icsk_retransmits++;
2277 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2278 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2279 					  icsk->icsk_rto, TCP_RTO_MAX);
2280 		return 1;
2281 	}
2282 	return 0;
2283 }
2284 
2285 static inline int tcp_fackets_out(struct tcp_sock *tp)
2286 {
2287 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2288 }
2289 
2290 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2291  * counter when SACK is enabled (without SACK, sacked_out is used for
2292  * that purpose).
2293  *
2294  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2295  * segments up to the highest received SACK block so far and holes in
2296  * between them.
2297  *
2298  * With reordering, holes may still be in flight, so RFC3517 recovery
2299  * uses pure sacked_out (total number of SACKed segments) even though
2300  * it violates the RFC that uses duplicate ACKs, often these are equal
2301  * but when e.g. out-of-window ACKs or packet duplication occurs,
2302  * they differ. Since neither occurs due to loss, TCP should really
2303  * ignore them.
2304  */
2305 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2306 {
2307 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2308 }
2309 
2310 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2311 {
2312 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2313 }
2314 
2315 static inline int tcp_head_timedout(struct sock *sk)
2316 {
2317 	struct tcp_sock *tp = tcp_sk(sk);
2318 
2319 	return tp->packets_out &&
2320 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2321 }
2322 
2323 /* Linux NewReno/SACK/FACK/ECN state machine.
2324  * --------------------------------------
2325  *
2326  * "Open"	Normal state, no dubious events, fast path.
2327  * "Disorder"   In all the respects it is "Open",
2328  *		but requires a bit more attention. It is entered when
2329  *		we see some SACKs or dupacks. It is split of "Open"
2330  *		mainly to move some processing from fast path to slow one.
2331  * "CWR"	CWND was reduced due to some Congestion Notification event.
2332  *		It can be ECN, ICMP source quench, local device congestion.
2333  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2334  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2335  *
2336  * tcp_fastretrans_alert() is entered:
2337  * - each incoming ACK, if state is not "Open"
2338  * - when arrived ACK is unusual, namely:
2339  *	* SACK
2340  *	* Duplicate ACK.
2341  *	* ECN ECE.
2342  *
2343  * Counting packets in flight is pretty simple.
2344  *
2345  *	in_flight = packets_out - left_out + retrans_out
2346  *
2347  *	packets_out is SND.NXT-SND.UNA counted in packets.
2348  *
2349  *	retrans_out is number of retransmitted segments.
2350  *
2351  *	left_out is number of segments left network, but not ACKed yet.
2352  *
2353  *		left_out = sacked_out + lost_out
2354  *
2355  *     sacked_out: Packets, which arrived to receiver out of order
2356  *		   and hence not ACKed. With SACKs this number is simply
2357  *		   amount of SACKed data. Even without SACKs
2358  *		   it is easy to give pretty reliable estimate of this number,
2359  *		   counting duplicate ACKs.
2360  *
2361  *       lost_out: Packets lost by network. TCP has no explicit
2362  *		   "loss notification" feedback from network (for now).
2363  *		   It means that this number can be only _guessed_.
2364  *		   Actually, it is the heuristics to predict lossage that
2365  *		   distinguishes different algorithms.
2366  *
2367  *	F.e. after RTO, when all the queue is considered as lost,
2368  *	lost_out = packets_out and in_flight = retrans_out.
2369  *
2370  *		Essentially, we have now two algorithms counting
2371  *		lost packets.
2372  *
2373  *		FACK: It is the simplest heuristics. As soon as we decided
2374  *		that something is lost, we decide that _all_ not SACKed
2375  *		packets until the most forward SACK are lost. I.e.
2376  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2377  *		It is absolutely correct estimate, if network does not reorder
2378  *		packets. And it loses any connection to reality when reordering
2379  *		takes place. We use FACK by default until reordering
2380  *		is suspected on the path to this destination.
2381  *
2382  *		NewReno: when Recovery is entered, we assume that one segment
2383  *		is lost (classic Reno). While we are in Recovery and
2384  *		a partial ACK arrives, we assume that one more packet
2385  *		is lost (NewReno). This heuristics are the same in NewReno
2386  *		and SACK.
2387  *
2388  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2389  *  deflation etc. CWND is real congestion window, never inflated, changes
2390  *  only according to classic VJ rules.
2391  *
2392  * Really tricky (and requiring careful tuning) part of algorithm
2393  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2394  * The first determines the moment _when_ we should reduce CWND and,
2395  * hence, slow down forward transmission. In fact, it determines the moment
2396  * when we decide that hole is caused by loss, rather than by a reorder.
2397  *
2398  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2399  * holes, caused by lost packets.
2400  *
2401  * And the most logically complicated part of algorithm is undo
2402  * heuristics. We detect false retransmits due to both too early
2403  * fast retransmit (reordering) and underestimated RTO, analyzing
2404  * timestamps and D-SACKs. When we detect that some segments were
2405  * retransmitted by mistake and CWND reduction was wrong, we undo
2406  * window reduction and abort recovery phase. This logic is hidden
2407  * inside several functions named tcp_try_undo_<something>.
2408  */
2409 
2410 /* This function decides, when we should leave Disordered state
2411  * and enter Recovery phase, reducing congestion window.
2412  *
2413  * Main question: may we further continue forward transmission
2414  * with the same cwnd?
2415  */
2416 static int tcp_time_to_recover(struct sock *sk)
2417 {
2418 	struct tcp_sock *tp = tcp_sk(sk);
2419 	__u32 packets_out;
2420 
2421 	/* Do not perform any recovery during F-RTO algorithm */
2422 	if (tp->frto_counter)
2423 		return 0;
2424 
2425 	/* Trick#1: The loss is proven. */
2426 	if (tp->lost_out)
2427 		return 1;
2428 
2429 	/* Not-A-Trick#2 : Classic rule... */
2430 	if (tcp_dupack_heurestics(tp) > tp->reordering)
2431 		return 1;
2432 
2433 	/* Trick#3 : when we use RFC2988 timer restart, fast
2434 	 * retransmit can be triggered by timeout of queue head.
2435 	 */
2436 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2437 		return 1;
2438 
2439 	/* Trick#4: It is still not OK... But will it be useful to delay
2440 	 * recovery more?
2441 	 */
2442 	packets_out = tp->packets_out;
2443 	if (packets_out <= tp->reordering &&
2444 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2445 	    !tcp_may_send_now(sk)) {
2446 		/* We have nothing to send. This connection is limited
2447 		 * either by receiver window or by application.
2448 		 */
2449 		return 1;
2450 	}
2451 
2452 	return 0;
2453 }
2454 
2455 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2456  * is against sacked "cnt", otherwise it's against facked "cnt"
2457  */
2458 static void tcp_mark_head_lost(struct sock *sk, int packets)
2459 {
2460 	struct tcp_sock *tp = tcp_sk(sk);
2461 	struct sk_buff *skb;
2462 	int cnt, oldcnt;
2463 	int err;
2464 	unsigned int mss;
2465 
2466 	WARN_ON(packets > tp->packets_out);
2467 	if (tp->lost_skb_hint) {
2468 		skb = tp->lost_skb_hint;
2469 		cnt = tp->lost_cnt_hint;
2470 	} else {
2471 		skb = tcp_write_queue_head(sk);
2472 		cnt = 0;
2473 	}
2474 
2475 	tcp_for_write_queue_from(skb, sk) {
2476 		if (skb == tcp_send_head(sk))
2477 			break;
2478 		/* TODO: do this better */
2479 		/* this is not the most efficient way to do this... */
2480 		tp->lost_skb_hint = skb;
2481 		tp->lost_cnt_hint = cnt;
2482 
2483 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2484 			break;
2485 
2486 		oldcnt = cnt;
2487 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2488 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2489 			cnt += tcp_skb_pcount(skb);
2490 
2491 		if (cnt > packets) {
2492 			if (tcp_is_sack(tp) || (oldcnt >= packets))
2493 				break;
2494 
2495 			mss = skb_shinfo(skb)->gso_size;
2496 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2497 			if (err < 0)
2498 				break;
2499 			cnt = packets;
2500 		}
2501 
2502 		tcp_skb_mark_lost(tp, skb);
2503 	}
2504 	tcp_verify_left_out(tp);
2505 }
2506 
2507 /* Account newly detected lost packet(s) */
2508 
2509 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2510 {
2511 	struct tcp_sock *tp = tcp_sk(sk);
2512 
2513 	if (tcp_is_reno(tp)) {
2514 		tcp_mark_head_lost(sk, 1);
2515 	} else if (tcp_is_fack(tp)) {
2516 		int lost = tp->fackets_out - tp->reordering;
2517 		if (lost <= 0)
2518 			lost = 1;
2519 		tcp_mark_head_lost(sk, lost);
2520 	} else {
2521 		int sacked_upto = tp->sacked_out - tp->reordering;
2522 		if (sacked_upto < fast_rexmit)
2523 			sacked_upto = fast_rexmit;
2524 		tcp_mark_head_lost(sk, sacked_upto);
2525 	}
2526 
2527 	/* New heuristics: it is possible only after we switched
2528 	 * to restart timer each time when something is ACKed.
2529 	 * Hence, we can detect timed out packets during fast
2530 	 * retransmit without falling to slow start.
2531 	 */
2532 	if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2533 		struct sk_buff *skb;
2534 
2535 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2536 			: tcp_write_queue_head(sk);
2537 
2538 		tcp_for_write_queue_from(skb, sk) {
2539 			if (skb == tcp_send_head(sk))
2540 				break;
2541 			if (!tcp_skb_timedout(sk, skb))
2542 				break;
2543 
2544 			tcp_skb_mark_lost(tp, skb);
2545 		}
2546 
2547 		tp->scoreboard_skb_hint = skb;
2548 
2549 		tcp_verify_left_out(tp);
2550 	}
2551 }
2552 
2553 /* CWND moderation, preventing bursts due to too big ACKs
2554  * in dubious situations.
2555  */
2556 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2557 {
2558 	tp->snd_cwnd = min(tp->snd_cwnd,
2559 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2560 	tp->snd_cwnd_stamp = tcp_time_stamp;
2561 }
2562 
2563 /* Lower bound on congestion window is slow start threshold
2564  * unless congestion avoidance choice decides to overide it.
2565  */
2566 static inline u32 tcp_cwnd_min(const struct sock *sk)
2567 {
2568 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2569 
2570 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2571 }
2572 
2573 /* Decrease cwnd each second ack. */
2574 static void tcp_cwnd_down(struct sock *sk, int flag)
2575 {
2576 	struct tcp_sock *tp = tcp_sk(sk);
2577 	int decr = tp->snd_cwnd_cnt + 1;
2578 
2579 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2580 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2581 		tp->snd_cwnd_cnt = decr & 1;
2582 		decr >>= 1;
2583 
2584 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2585 			tp->snd_cwnd -= decr;
2586 
2587 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2588 		tp->snd_cwnd_stamp = tcp_time_stamp;
2589 	}
2590 }
2591 
2592 /* Nothing was retransmitted or returned timestamp is less
2593  * than timestamp of the first retransmission.
2594  */
2595 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2596 {
2597 	return !tp->retrans_stamp ||
2598 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2599 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2600 }
2601 
2602 /* Undo procedures. */
2603 
2604 #if FASTRETRANS_DEBUG > 1
2605 static void DBGUNDO(struct sock *sk, const char *msg)
2606 {
2607 	struct tcp_sock *tp = tcp_sk(sk);
2608 	struct inet_sock *inet = inet_sk(sk);
2609 
2610 	if (sk->sk_family == AF_INET) {
2611 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2612 		       msg,
2613 		       &inet->daddr, ntohs(inet->dport),
2614 		       tp->snd_cwnd, tcp_left_out(tp),
2615 		       tp->snd_ssthresh, tp->prior_ssthresh,
2616 		       tp->packets_out);
2617 	}
2618 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2619 	else if (sk->sk_family == AF_INET6) {
2620 		struct ipv6_pinfo *np = inet6_sk(sk);
2621 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2622 		       msg,
2623 		       &np->daddr, ntohs(inet->dport),
2624 		       tp->snd_cwnd, tcp_left_out(tp),
2625 		       tp->snd_ssthresh, tp->prior_ssthresh,
2626 		       tp->packets_out);
2627 	}
2628 #endif
2629 }
2630 #else
2631 #define DBGUNDO(x...) do { } while (0)
2632 #endif
2633 
2634 static void tcp_undo_cwr(struct sock *sk, const int undo)
2635 {
2636 	struct tcp_sock *tp = tcp_sk(sk);
2637 
2638 	if (tp->prior_ssthresh) {
2639 		const struct inet_connection_sock *icsk = inet_csk(sk);
2640 
2641 		if (icsk->icsk_ca_ops->undo_cwnd)
2642 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2643 		else
2644 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2645 
2646 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2647 			tp->snd_ssthresh = tp->prior_ssthresh;
2648 			TCP_ECN_withdraw_cwr(tp);
2649 		}
2650 	} else {
2651 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2652 	}
2653 	tcp_moderate_cwnd(tp);
2654 	tp->snd_cwnd_stamp = tcp_time_stamp;
2655 }
2656 
2657 static inline int tcp_may_undo(struct tcp_sock *tp)
2658 {
2659 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2660 }
2661 
2662 /* People celebrate: "We love our President!" */
2663 static int tcp_try_undo_recovery(struct sock *sk)
2664 {
2665 	struct tcp_sock *tp = tcp_sk(sk);
2666 
2667 	if (tcp_may_undo(tp)) {
2668 		int mib_idx;
2669 
2670 		/* Happy end! We did not retransmit anything
2671 		 * or our original transmission succeeded.
2672 		 */
2673 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2674 		tcp_undo_cwr(sk, 1);
2675 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2676 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2677 		else
2678 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2679 
2680 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2681 		tp->undo_marker = 0;
2682 	}
2683 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2684 		/* Hold old state until something *above* high_seq
2685 		 * is ACKed. For Reno it is MUST to prevent false
2686 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2687 		tcp_moderate_cwnd(tp);
2688 		return 1;
2689 	}
2690 	tcp_set_ca_state(sk, TCP_CA_Open);
2691 	return 0;
2692 }
2693 
2694 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2695 static void tcp_try_undo_dsack(struct sock *sk)
2696 {
2697 	struct tcp_sock *tp = tcp_sk(sk);
2698 
2699 	if (tp->undo_marker && !tp->undo_retrans) {
2700 		DBGUNDO(sk, "D-SACK");
2701 		tcp_undo_cwr(sk, 1);
2702 		tp->undo_marker = 0;
2703 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2704 	}
2705 }
2706 
2707 /* Undo during fast recovery after partial ACK. */
2708 
2709 static int tcp_try_undo_partial(struct sock *sk, int acked)
2710 {
2711 	struct tcp_sock *tp = tcp_sk(sk);
2712 	/* Partial ACK arrived. Force Hoe's retransmit. */
2713 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2714 
2715 	if (tcp_may_undo(tp)) {
2716 		/* Plain luck! Hole if filled with delayed
2717 		 * packet, rather than with a retransmit.
2718 		 */
2719 		if (tp->retrans_out == 0)
2720 			tp->retrans_stamp = 0;
2721 
2722 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2723 
2724 		DBGUNDO(sk, "Hoe");
2725 		tcp_undo_cwr(sk, 0);
2726 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2727 
2728 		/* So... Do not make Hoe's retransmit yet.
2729 		 * If the first packet was delayed, the rest
2730 		 * ones are most probably delayed as well.
2731 		 */
2732 		failed = 0;
2733 	}
2734 	return failed;
2735 }
2736 
2737 /* Undo during loss recovery after partial ACK. */
2738 static int tcp_try_undo_loss(struct sock *sk)
2739 {
2740 	struct tcp_sock *tp = tcp_sk(sk);
2741 
2742 	if (tcp_may_undo(tp)) {
2743 		struct sk_buff *skb;
2744 		tcp_for_write_queue(skb, sk) {
2745 			if (skb == tcp_send_head(sk))
2746 				break;
2747 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2748 		}
2749 
2750 		tcp_clear_all_retrans_hints(tp);
2751 
2752 		DBGUNDO(sk, "partial loss");
2753 		tp->lost_out = 0;
2754 		tcp_undo_cwr(sk, 1);
2755 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2756 		inet_csk(sk)->icsk_retransmits = 0;
2757 		tp->undo_marker = 0;
2758 		if (tcp_is_sack(tp))
2759 			tcp_set_ca_state(sk, TCP_CA_Open);
2760 		return 1;
2761 	}
2762 	return 0;
2763 }
2764 
2765 static inline void tcp_complete_cwr(struct sock *sk)
2766 {
2767 	struct tcp_sock *tp = tcp_sk(sk);
2768 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2769 	tp->snd_cwnd_stamp = tcp_time_stamp;
2770 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2771 }
2772 
2773 static void tcp_try_keep_open(struct sock *sk)
2774 {
2775 	struct tcp_sock *tp = tcp_sk(sk);
2776 	int state = TCP_CA_Open;
2777 
2778 	if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2779 		state = TCP_CA_Disorder;
2780 
2781 	if (inet_csk(sk)->icsk_ca_state != state) {
2782 		tcp_set_ca_state(sk, state);
2783 		tp->high_seq = tp->snd_nxt;
2784 	}
2785 }
2786 
2787 static void tcp_try_to_open(struct sock *sk, int flag)
2788 {
2789 	struct tcp_sock *tp = tcp_sk(sk);
2790 
2791 	tcp_verify_left_out(tp);
2792 
2793 	if (!tp->frto_counter && tp->retrans_out == 0)
2794 		tp->retrans_stamp = 0;
2795 
2796 	if (flag & FLAG_ECE)
2797 		tcp_enter_cwr(sk, 1);
2798 
2799 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2800 		tcp_try_keep_open(sk);
2801 		tcp_moderate_cwnd(tp);
2802 	} else {
2803 		tcp_cwnd_down(sk, flag);
2804 	}
2805 }
2806 
2807 static void tcp_mtup_probe_failed(struct sock *sk)
2808 {
2809 	struct inet_connection_sock *icsk = inet_csk(sk);
2810 
2811 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2812 	icsk->icsk_mtup.probe_size = 0;
2813 }
2814 
2815 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2816 {
2817 	struct tcp_sock *tp = tcp_sk(sk);
2818 	struct inet_connection_sock *icsk = inet_csk(sk);
2819 
2820 	/* FIXME: breaks with very large cwnd */
2821 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2822 	tp->snd_cwnd = tp->snd_cwnd *
2823 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2824 		       icsk->icsk_mtup.probe_size;
2825 	tp->snd_cwnd_cnt = 0;
2826 	tp->snd_cwnd_stamp = tcp_time_stamp;
2827 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2828 
2829 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2830 	icsk->icsk_mtup.probe_size = 0;
2831 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2832 }
2833 
2834 /* Do a simple retransmit without using the backoff mechanisms in
2835  * tcp_timer. This is used for path mtu discovery.
2836  * The socket is already locked here.
2837  */
2838 void tcp_simple_retransmit(struct sock *sk)
2839 {
2840 	const struct inet_connection_sock *icsk = inet_csk(sk);
2841 	struct tcp_sock *tp = tcp_sk(sk);
2842 	struct sk_buff *skb;
2843 	unsigned int mss = tcp_current_mss(sk, 0);
2844 	u32 prior_lost = tp->lost_out;
2845 
2846 	tcp_for_write_queue(skb, sk) {
2847 		if (skb == tcp_send_head(sk))
2848 			break;
2849 		if (tcp_skb_seglen(skb) > mss &&
2850 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2851 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2852 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2853 				tp->retrans_out -= tcp_skb_pcount(skb);
2854 			}
2855 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2856 		}
2857 	}
2858 
2859 	tcp_clear_retrans_hints_partial(tp);
2860 
2861 	if (prior_lost == tp->lost_out)
2862 		return;
2863 
2864 	if (tcp_is_reno(tp))
2865 		tcp_limit_reno_sacked(tp);
2866 
2867 	tcp_verify_left_out(tp);
2868 
2869 	/* Don't muck with the congestion window here.
2870 	 * Reason is that we do not increase amount of _data_
2871 	 * in network, but units changed and effective
2872 	 * cwnd/ssthresh really reduced now.
2873 	 */
2874 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2875 		tp->high_seq = tp->snd_nxt;
2876 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2877 		tp->prior_ssthresh = 0;
2878 		tp->undo_marker = 0;
2879 		tcp_set_ca_state(sk, TCP_CA_Loss);
2880 	}
2881 	tcp_xmit_retransmit_queue(sk);
2882 }
2883 
2884 /* Process an event, which can update packets-in-flight not trivially.
2885  * Main goal of this function is to calculate new estimate for left_out,
2886  * taking into account both packets sitting in receiver's buffer and
2887  * packets lost by network.
2888  *
2889  * Besides that it does CWND reduction, when packet loss is detected
2890  * and changes state of machine.
2891  *
2892  * It does _not_ decide what to send, it is made in function
2893  * tcp_xmit_retransmit_queue().
2894  */
2895 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2896 {
2897 	struct inet_connection_sock *icsk = inet_csk(sk);
2898 	struct tcp_sock *tp = tcp_sk(sk);
2899 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2900 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2901 				    (tcp_fackets_out(tp) > tp->reordering));
2902 	int fast_rexmit = 0, mib_idx;
2903 
2904 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2905 		tp->sacked_out = 0;
2906 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2907 		tp->fackets_out = 0;
2908 
2909 	/* Now state machine starts.
2910 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2911 	if (flag & FLAG_ECE)
2912 		tp->prior_ssthresh = 0;
2913 
2914 	/* B. In all the states check for reneging SACKs. */
2915 	if (tcp_check_sack_reneging(sk, flag))
2916 		return;
2917 
2918 	/* C. Process data loss notification, provided it is valid. */
2919 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2920 	    before(tp->snd_una, tp->high_seq) &&
2921 	    icsk->icsk_ca_state != TCP_CA_Open &&
2922 	    tp->fackets_out > tp->reordering) {
2923 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2924 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2925 	}
2926 
2927 	/* D. Check consistency of the current state. */
2928 	tcp_verify_left_out(tp);
2929 
2930 	/* E. Check state exit conditions. State can be terminated
2931 	 *    when high_seq is ACKed. */
2932 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2933 		WARN_ON(tp->retrans_out != 0);
2934 		tp->retrans_stamp = 0;
2935 	} else if (!before(tp->snd_una, tp->high_seq)) {
2936 		switch (icsk->icsk_ca_state) {
2937 		case TCP_CA_Loss:
2938 			icsk->icsk_retransmits = 0;
2939 			if (tcp_try_undo_recovery(sk))
2940 				return;
2941 			break;
2942 
2943 		case TCP_CA_CWR:
2944 			/* CWR is to be held something *above* high_seq
2945 			 * is ACKed for CWR bit to reach receiver. */
2946 			if (tp->snd_una != tp->high_seq) {
2947 				tcp_complete_cwr(sk);
2948 				tcp_set_ca_state(sk, TCP_CA_Open);
2949 			}
2950 			break;
2951 
2952 		case TCP_CA_Disorder:
2953 			tcp_try_undo_dsack(sk);
2954 			if (!tp->undo_marker ||
2955 			    /* For SACK case do not Open to allow to undo
2956 			     * catching for all duplicate ACKs. */
2957 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2958 				tp->undo_marker = 0;
2959 				tcp_set_ca_state(sk, TCP_CA_Open);
2960 			}
2961 			break;
2962 
2963 		case TCP_CA_Recovery:
2964 			if (tcp_is_reno(tp))
2965 				tcp_reset_reno_sack(tp);
2966 			if (tcp_try_undo_recovery(sk))
2967 				return;
2968 			tcp_complete_cwr(sk);
2969 			break;
2970 		}
2971 	}
2972 
2973 	/* F. Process state. */
2974 	switch (icsk->icsk_ca_state) {
2975 	case TCP_CA_Recovery:
2976 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2977 			if (tcp_is_reno(tp) && is_dupack)
2978 				tcp_add_reno_sack(sk);
2979 		} else
2980 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2981 		break;
2982 	case TCP_CA_Loss:
2983 		if (flag & FLAG_DATA_ACKED)
2984 			icsk->icsk_retransmits = 0;
2985 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2986 			tcp_reset_reno_sack(tp);
2987 		if (!tcp_try_undo_loss(sk)) {
2988 			tcp_moderate_cwnd(tp);
2989 			tcp_xmit_retransmit_queue(sk);
2990 			return;
2991 		}
2992 		if (icsk->icsk_ca_state != TCP_CA_Open)
2993 			return;
2994 		/* Loss is undone; fall through to processing in Open state. */
2995 	default:
2996 		if (tcp_is_reno(tp)) {
2997 			if (flag & FLAG_SND_UNA_ADVANCED)
2998 				tcp_reset_reno_sack(tp);
2999 			if (is_dupack)
3000 				tcp_add_reno_sack(sk);
3001 		}
3002 
3003 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3004 			tcp_try_undo_dsack(sk);
3005 
3006 		if (!tcp_time_to_recover(sk)) {
3007 			tcp_try_to_open(sk, flag);
3008 			return;
3009 		}
3010 
3011 		/* MTU probe failure: don't reduce cwnd */
3012 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3013 		    icsk->icsk_mtup.probe_size &&
3014 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3015 			tcp_mtup_probe_failed(sk);
3016 			/* Restores the reduction we did in tcp_mtup_probe() */
3017 			tp->snd_cwnd++;
3018 			tcp_simple_retransmit(sk);
3019 			return;
3020 		}
3021 
3022 		/* Otherwise enter Recovery state */
3023 
3024 		if (tcp_is_reno(tp))
3025 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3026 		else
3027 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3028 
3029 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3030 
3031 		tp->high_seq = tp->snd_nxt;
3032 		tp->prior_ssthresh = 0;
3033 		tp->undo_marker = tp->snd_una;
3034 		tp->undo_retrans = tp->retrans_out;
3035 
3036 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3037 			if (!(flag & FLAG_ECE))
3038 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3039 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3040 			TCP_ECN_queue_cwr(tp);
3041 		}
3042 
3043 		tp->bytes_acked = 0;
3044 		tp->snd_cwnd_cnt = 0;
3045 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3046 		fast_rexmit = 1;
3047 	}
3048 
3049 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3050 		tcp_update_scoreboard(sk, fast_rexmit);
3051 	tcp_cwnd_down(sk, flag);
3052 	tcp_xmit_retransmit_queue(sk);
3053 }
3054 
3055 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3056 {
3057 	tcp_rtt_estimator(sk, seq_rtt);
3058 	tcp_set_rto(sk);
3059 	inet_csk(sk)->icsk_backoff = 0;
3060 }
3061 
3062 /* Read draft-ietf-tcplw-high-performance before mucking
3063  * with this code. (Supersedes RFC1323)
3064  */
3065 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3066 {
3067 	/* RTTM Rule: A TSecr value received in a segment is used to
3068 	 * update the averaged RTT measurement only if the segment
3069 	 * acknowledges some new data, i.e., only if it advances the
3070 	 * left edge of the send window.
3071 	 *
3072 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3073 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3074 	 *
3075 	 * Changed: reset backoff as soon as we see the first valid sample.
3076 	 * If we do not, we get strongly overestimated rto. With timestamps
3077 	 * samples are accepted even from very old segments: f.e., when rtt=1
3078 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3079 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3080 	 * in window is lost... Voila.	 			--ANK (010210)
3081 	 */
3082 	struct tcp_sock *tp = tcp_sk(sk);
3083 
3084 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3085 }
3086 
3087 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3088 {
3089 	/* We don't have a timestamp. Can only use
3090 	 * packets that are not retransmitted to determine
3091 	 * rtt estimates. Also, we must not reset the
3092 	 * backoff for rto until we get a non-retransmitted
3093 	 * packet. This allows us to deal with a situation
3094 	 * where the network delay has increased suddenly.
3095 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3096 	 */
3097 
3098 	if (flag & FLAG_RETRANS_DATA_ACKED)
3099 		return;
3100 
3101 	tcp_valid_rtt_meas(sk, seq_rtt);
3102 }
3103 
3104 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3105 				      const s32 seq_rtt)
3106 {
3107 	const struct tcp_sock *tp = tcp_sk(sk);
3108 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3109 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3110 		tcp_ack_saw_tstamp(sk, flag);
3111 	else if (seq_rtt >= 0)
3112 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3113 }
3114 
3115 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3116 {
3117 	const struct inet_connection_sock *icsk = inet_csk(sk);
3118 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3119 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3120 }
3121 
3122 /* Restart timer after forward progress on connection.
3123  * RFC2988 recommends to restart timer to now+rto.
3124  */
3125 static void tcp_rearm_rto(struct sock *sk)
3126 {
3127 	struct tcp_sock *tp = tcp_sk(sk);
3128 
3129 	if (!tp->packets_out) {
3130 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3131 	} else {
3132 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3133 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3134 	}
3135 }
3136 
3137 /* If we get here, the whole TSO packet has not been acked. */
3138 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3139 {
3140 	struct tcp_sock *tp = tcp_sk(sk);
3141 	u32 packets_acked;
3142 
3143 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3144 
3145 	packets_acked = tcp_skb_pcount(skb);
3146 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3147 		return 0;
3148 	packets_acked -= tcp_skb_pcount(skb);
3149 
3150 	if (packets_acked) {
3151 		BUG_ON(tcp_skb_pcount(skb) == 0);
3152 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3153 	}
3154 
3155 	return packets_acked;
3156 }
3157 
3158 /* Remove acknowledged frames from the retransmission queue. If our packet
3159  * is before the ack sequence we can discard it as it's confirmed to have
3160  * arrived at the other end.
3161  */
3162 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3163 			       u32 prior_snd_una)
3164 {
3165 	struct tcp_sock *tp = tcp_sk(sk);
3166 	const struct inet_connection_sock *icsk = inet_csk(sk);
3167 	struct sk_buff *skb;
3168 	u32 now = tcp_time_stamp;
3169 	int fully_acked = 1;
3170 	int flag = 0;
3171 	u32 pkts_acked = 0;
3172 	u32 reord = tp->packets_out;
3173 	u32 prior_sacked = tp->sacked_out;
3174 	s32 seq_rtt = -1;
3175 	s32 ca_seq_rtt = -1;
3176 	ktime_t last_ackt = net_invalid_timestamp();
3177 
3178 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3179 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3180 		u32 end_seq;
3181 		u32 acked_pcount;
3182 		u8 sacked = scb->sacked;
3183 
3184 		/* Determine how many packets and what bytes were acked, tso and else */
3185 		if (after(scb->end_seq, tp->snd_una)) {
3186 			if (tcp_skb_pcount(skb) == 1 ||
3187 			    !after(tp->snd_una, scb->seq))
3188 				break;
3189 
3190 			acked_pcount = tcp_tso_acked(sk, skb);
3191 			if (!acked_pcount)
3192 				break;
3193 
3194 			fully_acked = 0;
3195 			end_seq = tp->snd_una;
3196 		} else {
3197 			acked_pcount = tcp_skb_pcount(skb);
3198 			end_seq = scb->end_seq;
3199 		}
3200 
3201 		/* MTU probing checks */
3202 		if (fully_acked && icsk->icsk_mtup.probe_size &&
3203 		    !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
3204 			tcp_mtup_probe_success(sk, skb);
3205 		}
3206 
3207 		if (sacked & TCPCB_RETRANS) {
3208 			if (sacked & TCPCB_SACKED_RETRANS)
3209 				tp->retrans_out -= acked_pcount;
3210 			flag |= FLAG_RETRANS_DATA_ACKED;
3211 			ca_seq_rtt = -1;
3212 			seq_rtt = -1;
3213 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3214 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3215 		} else {
3216 			ca_seq_rtt = now - scb->when;
3217 			last_ackt = skb->tstamp;
3218 			if (seq_rtt < 0) {
3219 				seq_rtt = ca_seq_rtt;
3220 			}
3221 			if (!(sacked & TCPCB_SACKED_ACKED))
3222 				reord = min(pkts_acked, reord);
3223 		}
3224 
3225 		if (sacked & TCPCB_SACKED_ACKED)
3226 			tp->sacked_out -= acked_pcount;
3227 		if (sacked & TCPCB_LOST)
3228 			tp->lost_out -= acked_pcount;
3229 
3230 		tp->packets_out -= acked_pcount;
3231 		pkts_acked += acked_pcount;
3232 
3233 		/* Initial outgoing SYN's get put onto the write_queue
3234 		 * just like anything else we transmit.  It is not
3235 		 * true data, and if we misinform our callers that
3236 		 * this ACK acks real data, we will erroneously exit
3237 		 * connection startup slow start one packet too
3238 		 * quickly.  This is severely frowned upon behavior.
3239 		 */
3240 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
3241 			flag |= FLAG_DATA_ACKED;
3242 		} else {
3243 			flag |= FLAG_SYN_ACKED;
3244 			tp->retrans_stamp = 0;
3245 		}
3246 
3247 		if (!fully_acked)
3248 			break;
3249 
3250 		tcp_unlink_write_queue(skb, sk);
3251 		sk_wmem_free_skb(sk, skb);
3252 		tp->scoreboard_skb_hint = NULL;
3253 		if (skb == tp->retransmit_skb_hint)
3254 			tp->retransmit_skb_hint = NULL;
3255 		if (skb == tp->lost_skb_hint)
3256 			tp->lost_skb_hint = NULL;
3257 	}
3258 
3259 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3260 		tp->snd_up = tp->snd_una;
3261 
3262 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3263 		flag |= FLAG_SACK_RENEGING;
3264 
3265 	if (flag & FLAG_ACKED) {
3266 		const struct tcp_congestion_ops *ca_ops
3267 			= inet_csk(sk)->icsk_ca_ops;
3268 
3269 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3270 		tcp_rearm_rto(sk);
3271 
3272 		if (tcp_is_reno(tp)) {
3273 			tcp_remove_reno_sacks(sk, pkts_acked);
3274 		} else {
3275 			/* Non-retransmitted hole got filled? That's reordering */
3276 			if (reord < prior_fackets)
3277 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3278 
3279 			/* No need to care for underflows here because
3280 			 * the lost_skb_hint gets NULLed if we're past it
3281 			 * (or something non-trivial happened)
3282 			 */
3283 			if (tcp_is_fack(tp))
3284 				tp->lost_cnt_hint -= pkts_acked;
3285 			else
3286 				tp->lost_cnt_hint -= prior_sacked - tp->sacked_out;
3287 		}
3288 
3289 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3290 
3291 		if (ca_ops->pkts_acked) {
3292 			s32 rtt_us = -1;
3293 
3294 			/* Is the ACK triggering packet unambiguous? */
3295 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3296 				/* High resolution needed and available? */
3297 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3298 				    !ktime_equal(last_ackt,
3299 						 net_invalid_timestamp()))
3300 					rtt_us = ktime_us_delta(ktime_get_real(),
3301 								last_ackt);
3302 				else if (ca_seq_rtt > 0)
3303 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3304 			}
3305 
3306 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3307 		}
3308 	}
3309 
3310 #if FASTRETRANS_DEBUG > 0
3311 	WARN_ON((int)tp->sacked_out < 0);
3312 	WARN_ON((int)tp->lost_out < 0);
3313 	WARN_ON((int)tp->retrans_out < 0);
3314 	if (!tp->packets_out && tcp_is_sack(tp)) {
3315 		icsk = inet_csk(sk);
3316 		if (tp->lost_out) {
3317 			printk(KERN_DEBUG "Leak l=%u %d\n",
3318 			       tp->lost_out, icsk->icsk_ca_state);
3319 			tp->lost_out = 0;
3320 		}
3321 		if (tp->sacked_out) {
3322 			printk(KERN_DEBUG "Leak s=%u %d\n",
3323 			       tp->sacked_out, icsk->icsk_ca_state);
3324 			tp->sacked_out = 0;
3325 		}
3326 		if (tp->retrans_out) {
3327 			printk(KERN_DEBUG "Leak r=%u %d\n",
3328 			       tp->retrans_out, icsk->icsk_ca_state);
3329 			tp->retrans_out = 0;
3330 		}
3331 	}
3332 #endif
3333 	return flag;
3334 }
3335 
3336 static void tcp_ack_probe(struct sock *sk)
3337 {
3338 	const struct tcp_sock *tp = tcp_sk(sk);
3339 	struct inet_connection_sock *icsk = inet_csk(sk);
3340 
3341 	/* Was it a usable window open? */
3342 
3343 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3344 		icsk->icsk_backoff = 0;
3345 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3346 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3347 		 * This function is not for random using!
3348 		 */
3349 	} else {
3350 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3351 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3352 					  TCP_RTO_MAX);
3353 	}
3354 }
3355 
3356 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3357 {
3358 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3359 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3360 }
3361 
3362 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3363 {
3364 	const struct tcp_sock *tp = tcp_sk(sk);
3365 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3366 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3367 }
3368 
3369 /* Check that window update is acceptable.
3370  * The function assumes that snd_una<=ack<=snd_next.
3371  */
3372 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3373 					const u32 ack, const u32 ack_seq,
3374 					const u32 nwin)
3375 {
3376 	return (after(ack, tp->snd_una) ||
3377 		after(ack_seq, tp->snd_wl1) ||
3378 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3379 }
3380 
3381 /* Update our send window.
3382  *
3383  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3384  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3385  */
3386 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3387 				 u32 ack_seq)
3388 {
3389 	struct tcp_sock *tp = tcp_sk(sk);
3390 	int flag = 0;
3391 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3392 
3393 	if (likely(!tcp_hdr(skb)->syn))
3394 		nwin <<= tp->rx_opt.snd_wscale;
3395 
3396 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3397 		flag |= FLAG_WIN_UPDATE;
3398 		tcp_update_wl(tp, ack, ack_seq);
3399 
3400 		if (tp->snd_wnd != nwin) {
3401 			tp->snd_wnd = nwin;
3402 
3403 			/* Note, it is the only place, where
3404 			 * fast path is recovered for sending TCP.
3405 			 */
3406 			tp->pred_flags = 0;
3407 			tcp_fast_path_check(sk);
3408 
3409 			if (nwin > tp->max_window) {
3410 				tp->max_window = nwin;
3411 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3412 			}
3413 		}
3414 	}
3415 
3416 	tp->snd_una = ack;
3417 
3418 	return flag;
3419 }
3420 
3421 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3422  * continue in congestion avoidance.
3423  */
3424 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3425 {
3426 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3427 	tp->snd_cwnd_cnt = 0;
3428 	tp->bytes_acked = 0;
3429 	TCP_ECN_queue_cwr(tp);
3430 	tcp_moderate_cwnd(tp);
3431 }
3432 
3433 /* A conservative spurious RTO response algorithm: reduce cwnd using
3434  * rate halving and continue in congestion avoidance.
3435  */
3436 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3437 {
3438 	tcp_enter_cwr(sk, 0);
3439 }
3440 
3441 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3442 {
3443 	if (flag & FLAG_ECE)
3444 		tcp_ratehalving_spur_to_response(sk);
3445 	else
3446 		tcp_undo_cwr(sk, 1);
3447 }
3448 
3449 /* F-RTO spurious RTO detection algorithm (RFC4138)
3450  *
3451  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3452  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3453  * window (but not to or beyond highest sequence sent before RTO):
3454  *   On First ACK,  send two new segments out.
3455  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3456  *                  algorithm is not part of the F-RTO detection algorithm
3457  *                  given in RFC4138 but can be selected separately).
3458  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3459  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3460  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3461  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3462  *
3463  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3464  * original window even after we transmit two new data segments.
3465  *
3466  * SACK version:
3467  *   on first step, wait until first cumulative ACK arrives, then move to
3468  *   the second step. In second step, the next ACK decides.
3469  *
3470  * F-RTO is implemented (mainly) in four functions:
3471  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3472  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3473  *     called when tcp_use_frto() showed green light
3474  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3475  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3476  *     to prove that the RTO is indeed spurious. It transfers the control
3477  *     from F-RTO to the conventional RTO recovery
3478  */
3479 static int tcp_process_frto(struct sock *sk, int flag)
3480 {
3481 	struct tcp_sock *tp = tcp_sk(sk);
3482 
3483 	tcp_verify_left_out(tp);
3484 
3485 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3486 	if (flag & FLAG_DATA_ACKED)
3487 		inet_csk(sk)->icsk_retransmits = 0;
3488 
3489 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3490 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3491 		tp->undo_marker = 0;
3492 
3493 	if (!before(tp->snd_una, tp->frto_highmark)) {
3494 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3495 		return 1;
3496 	}
3497 
3498 	if (!tcp_is_sackfrto(tp)) {
3499 		/* RFC4138 shortcoming in step 2; should also have case c):
3500 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3501 		 * data, winupdate
3502 		 */
3503 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3504 			return 1;
3505 
3506 		if (!(flag & FLAG_DATA_ACKED)) {
3507 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3508 					    flag);
3509 			return 1;
3510 		}
3511 	} else {
3512 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3513 			/* Prevent sending of new data. */
3514 			tp->snd_cwnd = min(tp->snd_cwnd,
3515 					   tcp_packets_in_flight(tp));
3516 			return 1;
3517 		}
3518 
3519 		if ((tp->frto_counter >= 2) &&
3520 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3521 		     ((flag & FLAG_DATA_SACKED) &&
3522 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3523 			/* RFC4138 shortcoming (see comment above) */
3524 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3525 			    (flag & FLAG_NOT_DUP))
3526 				return 1;
3527 
3528 			tcp_enter_frto_loss(sk, 3, flag);
3529 			return 1;
3530 		}
3531 	}
3532 
3533 	if (tp->frto_counter == 1) {
3534 		/* tcp_may_send_now needs to see updated state */
3535 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3536 		tp->frto_counter = 2;
3537 
3538 		if (!tcp_may_send_now(sk))
3539 			tcp_enter_frto_loss(sk, 2, flag);
3540 
3541 		return 1;
3542 	} else {
3543 		switch (sysctl_tcp_frto_response) {
3544 		case 2:
3545 			tcp_undo_spur_to_response(sk, flag);
3546 			break;
3547 		case 1:
3548 			tcp_conservative_spur_to_response(tp);
3549 			break;
3550 		default:
3551 			tcp_ratehalving_spur_to_response(sk);
3552 			break;
3553 		}
3554 		tp->frto_counter = 0;
3555 		tp->undo_marker = 0;
3556 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3557 	}
3558 	return 0;
3559 }
3560 
3561 /* This routine deals with incoming acks, but not outgoing ones. */
3562 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3563 {
3564 	struct inet_connection_sock *icsk = inet_csk(sk);
3565 	struct tcp_sock *tp = tcp_sk(sk);
3566 	u32 prior_snd_una = tp->snd_una;
3567 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3568 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3569 	u32 prior_in_flight;
3570 	u32 prior_fackets;
3571 	int prior_packets;
3572 	int frto_cwnd = 0;
3573 
3574 	/* If the ack is newer than sent or older than previous acks
3575 	 * then we can probably ignore it.
3576 	 */
3577 	if (after(ack, tp->snd_nxt))
3578 		goto uninteresting_ack;
3579 
3580 	if (before(ack, prior_snd_una))
3581 		goto old_ack;
3582 
3583 	if (after(ack, prior_snd_una))
3584 		flag |= FLAG_SND_UNA_ADVANCED;
3585 
3586 	if (sysctl_tcp_abc) {
3587 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3588 			tp->bytes_acked += ack - prior_snd_una;
3589 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3590 			/* we assume just one segment left network */
3591 			tp->bytes_acked += min(ack - prior_snd_una,
3592 					       tp->mss_cache);
3593 	}
3594 
3595 	prior_fackets = tp->fackets_out;
3596 	prior_in_flight = tcp_packets_in_flight(tp);
3597 
3598 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3599 		/* Window is constant, pure forward advance.
3600 		 * No more checks are required.
3601 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3602 		 */
3603 		tcp_update_wl(tp, ack, ack_seq);
3604 		tp->snd_una = ack;
3605 		flag |= FLAG_WIN_UPDATE;
3606 
3607 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3608 
3609 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3610 	} else {
3611 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3612 			flag |= FLAG_DATA;
3613 		else
3614 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3615 
3616 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3617 
3618 		if (TCP_SKB_CB(skb)->sacked)
3619 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3620 
3621 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3622 			flag |= FLAG_ECE;
3623 
3624 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3625 	}
3626 
3627 	/* We passed data and got it acked, remove any soft error
3628 	 * log. Something worked...
3629 	 */
3630 	sk->sk_err_soft = 0;
3631 	icsk->icsk_probes_out = 0;
3632 	tp->rcv_tstamp = tcp_time_stamp;
3633 	prior_packets = tp->packets_out;
3634 	if (!prior_packets)
3635 		goto no_queue;
3636 
3637 	/* See if we can take anything off of the retransmit queue. */
3638 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3639 
3640 	if (tp->frto_counter)
3641 		frto_cwnd = tcp_process_frto(sk, flag);
3642 	/* Guarantee sacktag reordering detection against wrap-arounds */
3643 	if (before(tp->frto_highmark, tp->snd_una))
3644 		tp->frto_highmark = 0;
3645 
3646 	if (tcp_ack_is_dubious(sk, flag)) {
3647 		/* Advance CWND, if state allows this. */
3648 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3649 		    tcp_may_raise_cwnd(sk, flag))
3650 			tcp_cong_avoid(sk, ack, prior_in_flight);
3651 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3652 				      flag);
3653 	} else {
3654 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3655 			tcp_cong_avoid(sk, ack, prior_in_flight);
3656 	}
3657 
3658 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3659 		dst_confirm(sk->sk_dst_cache);
3660 
3661 	return 1;
3662 
3663 no_queue:
3664 	/* If this ack opens up a zero window, clear backoff.  It was
3665 	 * being used to time the probes, and is probably far higher than
3666 	 * it needs to be for normal retransmission.
3667 	 */
3668 	if (tcp_send_head(sk))
3669 		tcp_ack_probe(sk);
3670 	return 1;
3671 
3672 old_ack:
3673 	if (TCP_SKB_CB(skb)->sacked) {
3674 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3675 		if (icsk->icsk_ca_state == TCP_CA_Open)
3676 			tcp_try_keep_open(sk);
3677 	}
3678 
3679 uninteresting_ack:
3680 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3681 	return 0;
3682 }
3683 
3684 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3685  * But, this can also be called on packets in the established flow when
3686  * the fast version below fails.
3687  */
3688 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3689 		       int estab)
3690 {
3691 	unsigned char *ptr;
3692 	struct tcphdr *th = tcp_hdr(skb);
3693 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3694 
3695 	ptr = (unsigned char *)(th + 1);
3696 	opt_rx->saw_tstamp = 0;
3697 
3698 	while (length > 0) {
3699 		int opcode = *ptr++;
3700 		int opsize;
3701 
3702 		switch (opcode) {
3703 		case TCPOPT_EOL:
3704 			return;
3705 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3706 			length--;
3707 			continue;
3708 		default:
3709 			opsize = *ptr++;
3710 			if (opsize < 2) /* "silly options" */
3711 				return;
3712 			if (opsize > length)
3713 				return;	/* don't parse partial options */
3714 			switch (opcode) {
3715 			case TCPOPT_MSS:
3716 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3717 					u16 in_mss = get_unaligned_be16(ptr);
3718 					if (in_mss) {
3719 						if (opt_rx->user_mss &&
3720 						    opt_rx->user_mss < in_mss)
3721 							in_mss = opt_rx->user_mss;
3722 						opt_rx->mss_clamp = in_mss;
3723 					}
3724 				}
3725 				break;
3726 			case TCPOPT_WINDOW:
3727 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3728 				    !estab && sysctl_tcp_window_scaling) {
3729 					__u8 snd_wscale = *(__u8 *)ptr;
3730 					opt_rx->wscale_ok = 1;
3731 					if (snd_wscale > 14) {
3732 						if (net_ratelimit())
3733 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3734 							       "scaling value %d >14 received.\n",
3735 							       snd_wscale);
3736 						snd_wscale = 14;
3737 					}
3738 					opt_rx->snd_wscale = snd_wscale;
3739 				}
3740 				break;
3741 			case TCPOPT_TIMESTAMP:
3742 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3743 				    ((estab && opt_rx->tstamp_ok) ||
3744 				     (!estab && sysctl_tcp_timestamps))) {
3745 					opt_rx->saw_tstamp = 1;
3746 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3747 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3748 				}
3749 				break;
3750 			case TCPOPT_SACK_PERM:
3751 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3752 				    !estab && sysctl_tcp_sack) {
3753 					opt_rx->sack_ok = 1;
3754 					tcp_sack_reset(opt_rx);
3755 				}
3756 				break;
3757 
3758 			case TCPOPT_SACK:
3759 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3760 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3761 				   opt_rx->sack_ok) {
3762 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3763 				}
3764 				break;
3765 #ifdef CONFIG_TCP_MD5SIG
3766 			case TCPOPT_MD5SIG:
3767 				/*
3768 				 * The MD5 Hash has already been
3769 				 * checked (see tcp_v{4,6}_do_rcv()).
3770 				 */
3771 				break;
3772 #endif
3773 			}
3774 
3775 			ptr += opsize-2;
3776 			length -= opsize;
3777 		}
3778 	}
3779 }
3780 
3781 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3782 {
3783 	__be32 *ptr = (__be32 *)(th + 1);
3784 
3785 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3786 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3787 		tp->rx_opt.saw_tstamp = 1;
3788 		++ptr;
3789 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3790 		++ptr;
3791 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3792 		return 1;
3793 	}
3794 	return 0;
3795 }
3796 
3797 /* Fast parse options. This hopes to only see timestamps.
3798  * If it is wrong it falls back on tcp_parse_options().
3799  */
3800 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3801 				  struct tcp_sock *tp)
3802 {
3803 	if (th->doff == sizeof(struct tcphdr) >> 2) {
3804 		tp->rx_opt.saw_tstamp = 0;
3805 		return 0;
3806 	} else if (tp->rx_opt.tstamp_ok &&
3807 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3808 		if (tcp_parse_aligned_timestamp(tp, th))
3809 			return 1;
3810 	}
3811 	tcp_parse_options(skb, &tp->rx_opt, 1);
3812 	return 1;
3813 }
3814 
3815 #ifdef CONFIG_TCP_MD5SIG
3816 /*
3817  * Parse MD5 Signature option
3818  */
3819 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3820 {
3821 	int length = (th->doff << 2) - sizeof (*th);
3822 	u8 *ptr = (u8*)(th + 1);
3823 
3824 	/* If the TCP option is too short, we can short cut */
3825 	if (length < TCPOLEN_MD5SIG)
3826 		return NULL;
3827 
3828 	while (length > 0) {
3829 		int opcode = *ptr++;
3830 		int opsize;
3831 
3832 		switch(opcode) {
3833 		case TCPOPT_EOL:
3834 			return NULL;
3835 		case TCPOPT_NOP:
3836 			length--;
3837 			continue;
3838 		default:
3839 			opsize = *ptr++;
3840 			if (opsize < 2 || opsize > length)
3841 				return NULL;
3842 			if (opcode == TCPOPT_MD5SIG)
3843 				return ptr;
3844 		}
3845 		ptr += opsize - 2;
3846 		length -= opsize;
3847 	}
3848 	return NULL;
3849 }
3850 #endif
3851 
3852 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3853 {
3854 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3855 	tp->rx_opt.ts_recent_stamp = get_seconds();
3856 }
3857 
3858 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3859 {
3860 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3861 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3862 		 * extra check below makes sure this can only happen
3863 		 * for pure ACK frames.  -DaveM
3864 		 *
3865 		 * Not only, also it occurs for expired timestamps.
3866 		 */
3867 
3868 		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3869 		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3870 			tcp_store_ts_recent(tp);
3871 	}
3872 }
3873 
3874 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3875  *
3876  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3877  * it can pass through stack. So, the following predicate verifies that
3878  * this segment is not used for anything but congestion avoidance or
3879  * fast retransmit. Moreover, we even are able to eliminate most of such
3880  * second order effects, if we apply some small "replay" window (~RTO)
3881  * to timestamp space.
3882  *
3883  * All these measures still do not guarantee that we reject wrapped ACKs
3884  * on networks with high bandwidth, when sequence space is recycled fastly,
3885  * but it guarantees that such events will be very rare and do not affect
3886  * connection seriously. This doesn't look nice, but alas, PAWS is really
3887  * buggy extension.
3888  *
3889  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3890  * states that events when retransmit arrives after original data are rare.
3891  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3892  * the biggest problem on large power networks even with minor reordering.
3893  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3894  * up to bandwidth of 18Gigabit/sec. 8) ]
3895  */
3896 
3897 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3898 {
3899 	struct tcp_sock *tp = tcp_sk(sk);
3900 	struct tcphdr *th = tcp_hdr(skb);
3901 	u32 seq = TCP_SKB_CB(skb)->seq;
3902 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3903 
3904 	return (/* 1. Pure ACK with correct sequence number. */
3905 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3906 
3907 		/* 2. ... and duplicate ACK. */
3908 		ack == tp->snd_una &&
3909 
3910 		/* 3. ... and does not update window. */
3911 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3912 
3913 		/* 4. ... and sits in replay window. */
3914 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3915 }
3916 
3917 static inline int tcp_paws_discard(const struct sock *sk,
3918 				   const struct sk_buff *skb)
3919 {
3920 	const struct tcp_sock *tp = tcp_sk(sk);
3921 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3922 		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3923 		!tcp_disordered_ack(sk, skb));
3924 }
3925 
3926 /* Check segment sequence number for validity.
3927  *
3928  * Segment controls are considered valid, if the segment
3929  * fits to the window after truncation to the window. Acceptability
3930  * of data (and SYN, FIN, of course) is checked separately.
3931  * See tcp_data_queue(), for example.
3932  *
3933  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3934  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3935  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3936  * (borrowed from freebsd)
3937  */
3938 
3939 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3940 {
3941 	return	!before(end_seq, tp->rcv_wup) &&
3942 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3943 }
3944 
3945 /* When we get a reset we do this. */
3946 static void tcp_reset(struct sock *sk)
3947 {
3948 	/* We want the right error as BSD sees it (and indeed as we do). */
3949 	switch (sk->sk_state) {
3950 	case TCP_SYN_SENT:
3951 		sk->sk_err = ECONNREFUSED;
3952 		break;
3953 	case TCP_CLOSE_WAIT:
3954 		sk->sk_err = EPIPE;
3955 		break;
3956 	case TCP_CLOSE:
3957 		return;
3958 	default:
3959 		sk->sk_err = ECONNRESET;
3960 	}
3961 
3962 	if (!sock_flag(sk, SOCK_DEAD))
3963 		sk->sk_error_report(sk);
3964 
3965 	tcp_done(sk);
3966 }
3967 
3968 /*
3969  * 	Process the FIN bit. This now behaves as it is supposed to work
3970  *	and the FIN takes effect when it is validly part of sequence
3971  *	space. Not before when we get holes.
3972  *
3973  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3974  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3975  *	TIME-WAIT)
3976  *
3977  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3978  *	close and we go into CLOSING (and later onto TIME-WAIT)
3979  *
3980  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3981  */
3982 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3983 {
3984 	struct tcp_sock *tp = tcp_sk(sk);
3985 
3986 	inet_csk_schedule_ack(sk);
3987 
3988 	sk->sk_shutdown |= RCV_SHUTDOWN;
3989 	sock_set_flag(sk, SOCK_DONE);
3990 
3991 	switch (sk->sk_state) {
3992 	case TCP_SYN_RECV:
3993 	case TCP_ESTABLISHED:
3994 		/* Move to CLOSE_WAIT */
3995 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3996 		inet_csk(sk)->icsk_ack.pingpong = 1;
3997 		break;
3998 
3999 	case TCP_CLOSE_WAIT:
4000 	case TCP_CLOSING:
4001 		/* Received a retransmission of the FIN, do
4002 		 * nothing.
4003 		 */
4004 		break;
4005 	case TCP_LAST_ACK:
4006 		/* RFC793: Remain in the LAST-ACK state. */
4007 		break;
4008 
4009 	case TCP_FIN_WAIT1:
4010 		/* This case occurs when a simultaneous close
4011 		 * happens, we must ack the received FIN and
4012 		 * enter the CLOSING state.
4013 		 */
4014 		tcp_send_ack(sk);
4015 		tcp_set_state(sk, TCP_CLOSING);
4016 		break;
4017 	case TCP_FIN_WAIT2:
4018 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4019 		tcp_send_ack(sk);
4020 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4021 		break;
4022 	default:
4023 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4024 		 * cases we should never reach this piece of code.
4025 		 */
4026 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4027 		       __func__, sk->sk_state);
4028 		break;
4029 	}
4030 
4031 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4032 	 * Probably, we should reset in this case. For now drop them.
4033 	 */
4034 	__skb_queue_purge(&tp->out_of_order_queue);
4035 	if (tcp_is_sack(tp))
4036 		tcp_sack_reset(&tp->rx_opt);
4037 	sk_mem_reclaim(sk);
4038 
4039 	if (!sock_flag(sk, SOCK_DEAD)) {
4040 		sk->sk_state_change(sk);
4041 
4042 		/* Do not send POLL_HUP for half duplex close. */
4043 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4044 		    sk->sk_state == TCP_CLOSE)
4045 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4046 		else
4047 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4048 	}
4049 }
4050 
4051 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4052 				  u32 end_seq)
4053 {
4054 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4055 		if (before(seq, sp->start_seq))
4056 			sp->start_seq = seq;
4057 		if (after(end_seq, sp->end_seq))
4058 			sp->end_seq = end_seq;
4059 		return 1;
4060 	}
4061 	return 0;
4062 }
4063 
4064 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4065 {
4066 	struct tcp_sock *tp = tcp_sk(sk);
4067 
4068 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4069 		int mib_idx;
4070 
4071 		if (before(seq, tp->rcv_nxt))
4072 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4073 		else
4074 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4075 
4076 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4077 
4078 		tp->rx_opt.dsack = 1;
4079 		tp->duplicate_sack[0].start_seq = seq;
4080 		tp->duplicate_sack[0].end_seq = end_seq;
4081 		tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
4082 	}
4083 }
4084 
4085 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4086 {
4087 	struct tcp_sock *tp = tcp_sk(sk);
4088 
4089 	if (!tp->rx_opt.dsack)
4090 		tcp_dsack_set(sk, seq, end_seq);
4091 	else
4092 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4093 }
4094 
4095 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4096 {
4097 	struct tcp_sock *tp = tcp_sk(sk);
4098 
4099 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4100 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4101 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4102 		tcp_enter_quickack_mode(sk);
4103 
4104 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4105 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4106 
4107 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4108 				end_seq = tp->rcv_nxt;
4109 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4110 		}
4111 	}
4112 
4113 	tcp_send_ack(sk);
4114 }
4115 
4116 /* These routines update the SACK block as out-of-order packets arrive or
4117  * in-order packets close up the sequence space.
4118  */
4119 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4120 {
4121 	int this_sack;
4122 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4123 	struct tcp_sack_block *swalk = sp + 1;
4124 
4125 	/* See if the recent change to the first SACK eats into
4126 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4127 	 */
4128 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4129 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4130 			int i;
4131 
4132 			/* Zap SWALK, by moving every further SACK up by one slot.
4133 			 * Decrease num_sacks.
4134 			 */
4135 			tp->rx_opt.num_sacks--;
4136 			tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4137 					       tp->rx_opt.dsack;
4138 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4139 				sp[i] = sp[i + 1];
4140 			continue;
4141 		}
4142 		this_sack++, swalk++;
4143 	}
4144 }
4145 
4146 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
4147 				 struct tcp_sack_block *sack2)
4148 {
4149 	__u32 tmp;
4150 
4151 	tmp = sack1->start_seq;
4152 	sack1->start_seq = sack2->start_seq;
4153 	sack2->start_seq = tmp;
4154 
4155 	tmp = sack1->end_seq;
4156 	sack1->end_seq = sack2->end_seq;
4157 	sack2->end_seq = tmp;
4158 }
4159 
4160 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4161 {
4162 	struct tcp_sock *tp = tcp_sk(sk);
4163 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4164 	int cur_sacks = tp->rx_opt.num_sacks;
4165 	int this_sack;
4166 
4167 	if (!cur_sacks)
4168 		goto new_sack;
4169 
4170 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4171 		if (tcp_sack_extend(sp, seq, end_seq)) {
4172 			/* Rotate this_sack to the first one. */
4173 			for (; this_sack > 0; this_sack--, sp--)
4174 				tcp_sack_swap(sp, sp - 1);
4175 			if (cur_sacks > 1)
4176 				tcp_sack_maybe_coalesce(tp);
4177 			return;
4178 		}
4179 	}
4180 
4181 	/* Could not find an adjacent existing SACK, build a new one,
4182 	 * put it at the front, and shift everyone else down.  We
4183 	 * always know there is at least one SACK present already here.
4184 	 *
4185 	 * If the sack array is full, forget about the last one.
4186 	 */
4187 	if (this_sack >= TCP_NUM_SACKS) {
4188 		this_sack--;
4189 		tp->rx_opt.num_sacks--;
4190 		sp--;
4191 	}
4192 	for (; this_sack > 0; this_sack--, sp--)
4193 		*sp = *(sp - 1);
4194 
4195 new_sack:
4196 	/* Build the new head SACK, and we're done. */
4197 	sp->start_seq = seq;
4198 	sp->end_seq = end_seq;
4199 	tp->rx_opt.num_sacks++;
4200 	tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
4201 }
4202 
4203 /* RCV.NXT advances, some SACKs should be eaten. */
4204 
4205 static void tcp_sack_remove(struct tcp_sock *tp)
4206 {
4207 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4208 	int num_sacks = tp->rx_opt.num_sacks;
4209 	int this_sack;
4210 
4211 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4212 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4213 		tp->rx_opt.num_sacks = 0;
4214 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
4215 		return;
4216 	}
4217 
4218 	for (this_sack = 0; this_sack < num_sacks;) {
4219 		/* Check if the start of the sack is covered by RCV.NXT. */
4220 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4221 			int i;
4222 
4223 			/* RCV.NXT must cover all the block! */
4224 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4225 
4226 			/* Zap this SACK, by moving forward any other SACKS. */
4227 			for (i=this_sack+1; i < num_sacks; i++)
4228 				tp->selective_acks[i-1] = tp->selective_acks[i];
4229 			num_sacks--;
4230 			continue;
4231 		}
4232 		this_sack++;
4233 		sp++;
4234 	}
4235 	if (num_sacks != tp->rx_opt.num_sacks) {
4236 		tp->rx_opt.num_sacks = num_sacks;
4237 		tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4238 				       tp->rx_opt.dsack;
4239 	}
4240 }
4241 
4242 /* This one checks to see if we can put data from the
4243  * out_of_order queue into the receive_queue.
4244  */
4245 static void tcp_ofo_queue(struct sock *sk)
4246 {
4247 	struct tcp_sock *tp = tcp_sk(sk);
4248 	__u32 dsack_high = tp->rcv_nxt;
4249 	struct sk_buff *skb;
4250 
4251 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4252 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4253 			break;
4254 
4255 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4256 			__u32 dsack = dsack_high;
4257 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4258 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4259 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4260 		}
4261 
4262 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4263 			SOCK_DEBUG(sk, "ofo packet was already received \n");
4264 			__skb_unlink(skb, &tp->out_of_order_queue);
4265 			__kfree_skb(skb);
4266 			continue;
4267 		}
4268 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4269 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4270 			   TCP_SKB_CB(skb)->end_seq);
4271 
4272 		__skb_unlink(skb, &tp->out_of_order_queue);
4273 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4274 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4275 		if (tcp_hdr(skb)->fin)
4276 			tcp_fin(skb, sk, tcp_hdr(skb));
4277 	}
4278 }
4279 
4280 static int tcp_prune_ofo_queue(struct sock *sk);
4281 static int tcp_prune_queue(struct sock *sk);
4282 
4283 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4284 {
4285 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4286 	    !sk_rmem_schedule(sk, size)) {
4287 
4288 		if (tcp_prune_queue(sk) < 0)
4289 			return -1;
4290 
4291 		if (!sk_rmem_schedule(sk, size)) {
4292 			if (!tcp_prune_ofo_queue(sk))
4293 				return -1;
4294 
4295 			if (!sk_rmem_schedule(sk, size))
4296 				return -1;
4297 		}
4298 	}
4299 	return 0;
4300 }
4301 
4302 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4303 {
4304 	struct tcphdr *th = tcp_hdr(skb);
4305 	struct tcp_sock *tp = tcp_sk(sk);
4306 	int eaten = -1;
4307 
4308 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4309 		goto drop;
4310 
4311 	__skb_pull(skb, th->doff * 4);
4312 
4313 	TCP_ECN_accept_cwr(tp, skb);
4314 
4315 	if (tp->rx_opt.dsack) {
4316 		tp->rx_opt.dsack = 0;
4317 		tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
4318 	}
4319 
4320 	/*  Queue data for delivery to the user.
4321 	 *  Packets in sequence go to the receive queue.
4322 	 *  Out of sequence packets to the out_of_order_queue.
4323 	 */
4324 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4325 		if (tcp_receive_window(tp) == 0)
4326 			goto out_of_window;
4327 
4328 		/* Ok. In sequence. In window. */
4329 		if (tp->ucopy.task == current &&
4330 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4331 		    sock_owned_by_user(sk) && !tp->urg_data) {
4332 			int chunk = min_t(unsigned int, skb->len,
4333 					  tp->ucopy.len);
4334 
4335 			__set_current_state(TASK_RUNNING);
4336 
4337 			local_bh_enable();
4338 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4339 				tp->ucopy.len -= chunk;
4340 				tp->copied_seq += chunk;
4341 				eaten = (chunk == skb->len && !th->fin);
4342 				tcp_rcv_space_adjust(sk);
4343 			}
4344 			local_bh_disable();
4345 		}
4346 
4347 		if (eaten <= 0) {
4348 queue_and_out:
4349 			if (eaten < 0 &&
4350 			    tcp_try_rmem_schedule(sk, skb->truesize))
4351 				goto drop;
4352 
4353 			skb_set_owner_r(skb, sk);
4354 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4355 		}
4356 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4357 		if (skb->len)
4358 			tcp_event_data_recv(sk, skb);
4359 		if (th->fin)
4360 			tcp_fin(skb, sk, th);
4361 
4362 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4363 			tcp_ofo_queue(sk);
4364 
4365 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4366 			 * gap in queue is filled.
4367 			 */
4368 			if (skb_queue_empty(&tp->out_of_order_queue))
4369 				inet_csk(sk)->icsk_ack.pingpong = 0;
4370 		}
4371 
4372 		if (tp->rx_opt.num_sacks)
4373 			tcp_sack_remove(tp);
4374 
4375 		tcp_fast_path_check(sk);
4376 
4377 		if (eaten > 0)
4378 			__kfree_skb(skb);
4379 		else if (!sock_flag(sk, SOCK_DEAD))
4380 			sk->sk_data_ready(sk, 0);
4381 		return;
4382 	}
4383 
4384 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4385 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4386 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4387 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4388 
4389 out_of_window:
4390 		tcp_enter_quickack_mode(sk);
4391 		inet_csk_schedule_ack(sk);
4392 drop:
4393 		__kfree_skb(skb);
4394 		return;
4395 	}
4396 
4397 	/* Out of window. F.e. zero window probe. */
4398 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4399 		goto out_of_window;
4400 
4401 	tcp_enter_quickack_mode(sk);
4402 
4403 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4404 		/* Partial packet, seq < rcv_next < end_seq */
4405 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4406 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4407 			   TCP_SKB_CB(skb)->end_seq);
4408 
4409 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4410 
4411 		/* If window is closed, drop tail of packet. But after
4412 		 * remembering D-SACK for its head made in previous line.
4413 		 */
4414 		if (!tcp_receive_window(tp))
4415 			goto out_of_window;
4416 		goto queue_and_out;
4417 	}
4418 
4419 	TCP_ECN_check_ce(tp, skb);
4420 
4421 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4422 		goto drop;
4423 
4424 	/* Disable header prediction. */
4425 	tp->pred_flags = 0;
4426 	inet_csk_schedule_ack(sk);
4427 
4428 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4429 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4430 
4431 	skb_set_owner_r(skb, sk);
4432 
4433 	if (!skb_peek(&tp->out_of_order_queue)) {
4434 		/* Initial out of order segment, build 1 SACK. */
4435 		if (tcp_is_sack(tp)) {
4436 			tp->rx_opt.num_sacks = 1;
4437 			tp->rx_opt.dsack     = 0;
4438 			tp->rx_opt.eff_sacks = 1;
4439 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4440 			tp->selective_acks[0].end_seq =
4441 						TCP_SKB_CB(skb)->end_seq;
4442 		}
4443 		__skb_queue_head(&tp->out_of_order_queue, skb);
4444 	} else {
4445 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4446 		u32 seq = TCP_SKB_CB(skb)->seq;
4447 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4448 
4449 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4450 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4451 
4452 			if (!tp->rx_opt.num_sacks ||
4453 			    tp->selective_acks[0].end_seq != seq)
4454 				goto add_sack;
4455 
4456 			/* Common case: data arrive in order after hole. */
4457 			tp->selective_acks[0].end_seq = end_seq;
4458 			return;
4459 		}
4460 
4461 		/* Find place to insert this segment. */
4462 		do {
4463 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4464 				break;
4465 		} while ((skb1 = skb1->prev) !=
4466 			 (struct sk_buff *)&tp->out_of_order_queue);
4467 
4468 		/* Do skb overlap to previous one? */
4469 		if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4470 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4471 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4472 				/* All the bits are present. Drop. */
4473 				__kfree_skb(skb);
4474 				tcp_dsack_set(sk, seq, end_seq);
4475 				goto add_sack;
4476 			}
4477 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4478 				/* Partial overlap. */
4479 				tcp_dsack_set(sk, seq,
4480 					      TCP_SKB_CB(skb1)->end_seq);
4481 			} else {
4482 				skb1 = skb1->prev;
4483 			}
4484 		}
4485 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4486 
4487 		/* And clean segments covered by new one as whole. */
4488 		while ((skb1 = skb->next) !=
4489 		       (struct sk_buff *)&tp->out_of_order_queue &&
4490 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4491 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4492 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4493 						 end_seq);
4494 				break;
4495 			}
4496 			__skb_unlink(skb1, &tp->out_of_order_queue);
4497 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4498 					 TCP_SKB_CB(skb1)->end_seq);
4499 			__kfree_skb(skb1);
4500 		}
4501 
4502 add_sack:
4503 		if (tcp_is_sack(tp))
4504 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4505 	}
4506 }
4507 
4508 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4509 					struct sk_buff_head *list)
4510 {
4511 	struct sk_buff *next = skb->next;
4512 
4513 	__skb_unlink(skb, list);
4514 	__kfree_skb(skb);
4515 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4516 
4517 	return next;
4518 }
4519 
4520 /* Collapse contiguous sequence of skbs head..tail with
4521  * sequence numbers start..end.
4522  * Segments with FIN/SYN are not collapsed (only because this
4523  * simplifies code)
4524  */
4525 static void
4526 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4527 	     struct sk_buff *head, struct sk_buff *tail,
4528 	     u32 start, u32 end)
4529 {
4530 	struct sk_buff *skb;
4531 
4532 	/* First, check that queue is collapsible and find
4533 	 * the point where collapsing can be useful. */
4534 	for (skb = head; skb != tail;) {
4535 		/* No new bits? It is possible on ofo queue. */
4536 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4537 			skb = tcp_collapse_one(sk, skb, list);
4538 			continue;
4539 		}
4540 
4541 		/* The first skb to collapse is:
4542 		 * - not SYN/FIN and
4543 		 * - bloated or contains data before "start" or
4544 		 *   overlaps to the next one.
4545 		 */
4546 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4547 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4548 		     before(TCP_SKB_CB(skb)->seq, start) ||
4549 		     (skb->next != tail &&
4550 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4551 			break;
4552 
4553 		/* Decided to skip this, advance start seq. */
4554 		start = TCP_SKB_CB(skb)->end_seq;
4555 		skb = skb->next;
4556 	}
4557 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4558 		return;
4559 
4560 	while (before(start, end)) {
4561 		struct sk_buff *nskb;
4562 		unsigned int header = skb_headroom(skb);
4563 		int copy = SKB_MAX_ORDER(header, 0);
4564 
4565 		/* Too big header? This can happen with IPv6. */
4566 		if (copy < 0)
4567 			return;
4568 		if (end - start < copy)
4569 			copy = end - start;
4570 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4571 		if (!nskb)
4572 			return;
4573 
4574 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4575 		skb_set_network_header(nskb, (skb_network_header(skb) -
4576 					      skb->head));
4577 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4578 						skb->head));
4579 		skb_reserve(nskb, header);
4580 		memcpy(nskb->head, skb->head, header);
4581 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4582 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4583 		__skb_queue_before(list, skb, nskb);
4584 		skb_set_owner_r(nskb, sk);
4585 
4586 		/* Copy data, releasing collapsed skbs. */
4587 		while (copy > 0) {
4588 			int offset = start - TCP_SKB_CB(skb)->seq;
4589 			int size = TCP_SKB_CB(skb)->end_seq - start;
4590 
4591 			BUG_ON(offset < 0);
4592 			if (size > 0) {
4593 				size = min(copy, size);
4594 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4595 					BUG();
4596 				TCP_SKB_CB(nskb)->end_seq += size;
4597 				copy -= size;
4598 				start += size;
4599 			}
4600 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4601 				skb = tcp_collapse_one(sk, skb, list);
4602 				if (skb == tail ||
4603 				    tcp_hdr(skb)->syn ||
4604 				    tcp_hdr(skb)->fin)
4605 					return;
4606 			}
4607 		}
4608 	}
4609 }
4610 
4611 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4612  * and tcp_collapse() them until all the queue is collapsed.
4613  */
4614 static void tcp_collapse_ofo_queue(struct sock *sk)
4615 {
4616 	struct tcp_sock *tp = tcp_sk(sk);
4617 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4618 	struct sk_buff *head;
4619 	u32 start, end;
4620 
4621 	if (skb == NULL)
4622 		return;
4623 
4624 	start = TCP_SKB_CB(skb)->seq;
4625 	end = TCP_SKB_CB(skb)->end_seq;
4626 	head = skb;
4627 
4628 	for (;;) {
4629 		skb = skb->next;
4630 
4631 		/* Segment is terminated when we see gap or when
4632 		 * we are at the end of all the queue. */
4633 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4634 		    after(TCP_SKB_CB(skb)->seq, end) ||
4635 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4636 			tcp_collapse(sk, &tp->out_of_order_queue,
4637 				     head, skb, start, end);
4638 			head = skb;
4639 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4640 				break;
4641 			/* Start new segment */
4642 			start = TCP_SKB_CB(skb)->seq;
4643 			end = TCP_SKB_CB(skb)->end_seq;
4644 		} else {
4645 			if (before(TCP_SKB_CB(skb)->seq, start))
4646 				start = TCP_SKB_CB(skb)->seq;
4647 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4648 				end = TCP_SKB_CB(skb)->end_seq;
4649 		}
4650 	}
4651 }
4652 
4653 /*
4654  * Purge the out-of-order queue.
4655  * Return true if queue was pruned.
4656  */
4657 static int tcp_prune_ofo_queue(struct sock *sk)
4658 {
4659 	struct tcp_sock *tp = tcp_sk(sk);
4660 	int res = 0;
4661 
4662 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4663 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4664 		__skb_queue_purge(&tp->out_of_order_queue);
4665 
4666 		/* Reset SACK state.  A conforming SACK implementation will
4667 		 * do the same at a timeout based retransmit.  When a connection
4668 		 * is in a sad state like this, we care only about integrity
4669 		 * of the connection not performance.
4670 		 */
4671 		if (tp->rx_opt.sack_ok)
4672 			tcp_sack_reset(&tp->rx_opt);
4673 		sk_mem_reclaim(sk);
4674 		res = 1;
4675 	}
4676 	return res;
4677 }
4678 
4679 /* Reduce allocated memory if we can, trying to get
4680  * the socket within its memory limits again.
4681  *
4682  * Return less than zero if we should start dropping frames
4683  * until the socket owning process reads some of the data
4684  * to stabilize the situation.
4685  */
4686 static int tcp_prune_queue(struct sock *sk)
4687 {
4688 	struct tcp_sock *tp = tcp_sk(sk);
4689 
4690 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4691 
4692 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4693 
4694 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4695 		tcp_clamp_window(sk);
4696 	else if (tcp_memory_pressure)
4697 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4698 
4699 	tcp_collapse_ofo_queue(sk);
4700 	tcp_collapse(sk, &sk->sk_receive_queue,
4701 		     sk->sk_receive_queue.next,
4702 		     (struct sk_buff *)&sk->sk_receive_queue,
4703 		     tp->copied_seq, tp->rcv_nxt);
4704 	sk_mem_reclaim(sk);
4705 
4706 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4707 		return 0;
4708 
4709 	/* Collapsing did not help, destructive actions follow.
4710 	 * This must not ever occur. */
4711 
4712 	tcp_prune_ofo_queue(sk);
4713 
4714 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4715 		return 0;
4716 
4717 	/* If we are really being abused, tell the caller to silently
4718 	 * drop receive data on the floor.  It will get retransmitted
4719 	 * and hopefully then we'll have sufficient space.
4720 	 */
4721 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4722 
4723 	/* Massive buffer overcommit. */
4724 	tp->pred_flags = 0;
4725 	return -1;
4726 }
4727 
4728 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4729  * As additional protections, we do not touch cwnd in retransmission phases,
4730  * and if application hit its sndbuf limit recently.
4731  */
4732 void tcp_cwnd_application_limited(struct sock *sk)
4733 {
4734 	struct tcp_sock *tp = tcp_sk(sk);
4735 
4736 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4737 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4738 		/* Limited by application or receiver window. */
4739 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4740 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4741 		if (win_used < tp->snd_cwnd) {
4742 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4743 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4744 		}
4745 		tp->snd_cwnd_used = 0;
4746 	}
4747 	tp->snd_cwnd_stamp = tcp_time_stamp;
4748 }
4749 
4750 static int tcp_should_expand_sndbuf(struct sock *sk)
4751 {
4752 	struct tcp_sock *tp = tcp_sk(sk);
4753 
4754 	/* If the user specified a specific send buffer setting, do
4755 	 * not modify it.
4756 	 */
4757 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4758 		return 0;
4759 
4760 	/* If we are under global TCP memory pressure, do not expand.  */
4761 	if (tcp_memory_pressure)
4762 		return 0;
4763 
4764 	/* If we are under soft global TCP memory pressure, do not expand.  */
4765 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4766 		return 0;
4767 
4768 	/* If we filled the congestion window, do not expand.  */
4769 	if (tp->packets_out >= tp->snd_cwnd)
4770 		return 0;
4771 
4772 	return 1;
4773 }
4774 
4775 /* When incoming ACK allowed to free some skb from write_queue,
4776  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4777  * on the exit from tcp input handler.
4778  *
4779  * PROBLEM: sndbuf expansion does not work well with largesend.
4780  */
4781 static void tcp_new_space(struct sock *sk)
4782 {
4783 	struct tcp_sock *tp = tcp_sk(sk);
4784 
4785 	if (tcp_should_expand_sndbuf(sk)) {
4786 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4787 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4788 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4789 				     tp->reordering + 1);
4790 		sndmem *= 2 * demanded;
4791 		if (sndmem > sk->sk_sndbuf)
4792 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4793 		tp->snd_cwnd_stamp = tcp_time_stamp;
4794 	}
4795 
4796 	sk->sk_write_space(sk);
4797 }
4798 
4799 static void tcp_check_space(struct sock *sk)
4800 {
4801 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4802 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4803 		if (sk->sk_socket &&
4804 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4805 			tcp_new_space(sk);
4806 	}
4807 }
4808 
4809 static inline void tcp_data_snd_check(struct sock *sk)
4810 {
4811 	tcp_push_pending_frames(sk);
4812 	tcp_check_space(sk);
4813 }
4814 
4815 /*
4816  * Check if sending an ack is needed.
4817  */
4818 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4819 {
4820 	struct tcp_sock *tp = tcp_sk(sk);
4821 
4822 	    /* More than one full frame received... */
4823 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4824 	     /* ... and right edge of window advances far enough.
4825 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4826 	      */
4827 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4828 	    /* We ACK each frame or... */
4829 	    tcp_in_quickack_mode(sk) ||
4830 	    /* We have out of order data. */
4831 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4832 		/* Then ack it now */
4833 		tcp_send_ack(sk);
4834 	} else {
4835 		/* Else, send delayed ack. */
4836 		tcp_send_delayed_ack(sk);
4837 	}
4838 }
4839 
4840 static inline void tcp_ack_snd_check(struct sock *sk)
4841 {
4842 	if (!inet_csk_ack_scheduled(sk)) {
4843 		/* We sent a data segment already. */
4844 		return;
4845 	}
4846 	__tcp_ack_snd_check(sk, 1);
4847 }
4848 
4849 /*
4850  *	This routine is only called when we have urgent data
4851  *	signaled. Its the 'slow' part of tcp_urg. It could be
4852  *	moved inline now as tcp_urg is only called from one
4853  *	place. We handle URGent data wrong. We have to - as
4854  *	BSD still doesn't use the correction from RFC961.
4855  *	For 1003.1g we should support a new option TCP_STDURG to permit
4856  *	either form (or just set the sysctl tcp_stdurg).
4857  */
4858 
4859 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4860 {
4861 	struct tcp_sock *tp = tcp_sk(sk);
4862 	u32 ptr = ntohs(th->urg_ptr);
4863 
4864 	if (ptr && !sysctl_tcp_stdurg)
4865 		ptr--;
4866 	ptr += ntohl(th->seq);
4867 
4868 	/* Ignore urgent data that we've already seen and read. */
4869 	if (after(tp->copied_seq, ptr))
4870 		return;
4871 
4872 	/* Do not replay urg ptr.
4873 	 *
4874 	 * NOTE: interesting situation not covered by specs.
4875 	 * Misbehaving sender may send urg ptr, pointing to segment,
4876 	 * which we already have in ofo queue. We are not able to fetch
4877 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4878 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4879 	 * situations. But it is worth to think about possibility of some
4880 	 * DoSes using some hypothetical application level deadlock.
4881 	 */
4882 	if (before(ptr, tp->rcv_nxt))
4883 		return;
4884 
4885 	/* Do we already have a newer (or duplicate) urgent pointer? */
4886 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4887 		return;
4888 
4889 	/* Tell the world about our new urgent pointer. */
4890 	sk_send_sigurg(sk);
4891 
4892 	/* We may be adding urgent data when the last byte read was
4893 	 * urgent. To do this requires some care. We cannot just ignore
4894 	 * tp->copied_seq since we would read the last urgent byte again
4895 	 * as data, nor can we alter copied_seq until this data arrives
4896 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4897 	 *
4898 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4899 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4900 	 * and expect that both A and B disappear from stream. This is _wrong_.
4901 	 * Though this happens in BSD with high probability, this is occasional.
4902 	 * Any application relying on this is buggy. Note also, that fix "works"
4903 	 * only in this artificial test. Insert some normal data between A and B and we will
4904 	 * decline of BSD again. Verdict: it is better to remove to trap
4905 	 * buggy users.
4906 	 */
4907 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4908 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4909 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4910 		tp->copied_seq++;
4911 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4912 			__skb_unlink(skb, &sk->sk_receive_queue);
4913 			__kfree_skb(skb);
4914 		}
4915 	}
4916 
4917 	tp->urg_data = TCP_URG_NOTYET;
4918 	tp->urg_seq = ptr;
4919 
4920 	/* Disable header prediction. */
4921 	tp->pred_flags = 0;
4922 }
4923 
4924 /* This is the 'fast' part of urgent handling. */
4925 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4926 {
4927 	struct tcp_sock *tp = tcp_sk(sk);
4928 
4929 	/* Check if we get a new urgent pointer - normally not. */
4930 	if (th->urg)
4931 		tcp_check_urg(sk, th);
4932 
4933 	/* Do we wait for any urgent data? - normally not... */
4934 	if (tp->urg_data == TCP_URG_NOTYET) {
4935 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4936 			  th->syn;
4937 
4938 		/* Is the urgent pointer pointing into this packet? */
4939 		if (ptr < skb->len) {
4940 			u8 tmp;
4941 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4942 				BUG();
4943 			tp->urg_data = TCP_URG_VALID | tmp;
4944 			if (!sock_flag(sk, SOCK_DEAD))
4945 				sk->sk_data_ready(sk, 0);
4946 		}
4947 	}
4948 }
4949 
4950 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4951 {
4952 	struct tcp_sock *tp = tcp_sk(sk);
4953 	int chunk = skb->len - hlen;
4954 	int err;
4955 
4956 	local_bh_enable();
4957 	if (skb_csum_unnecessary(skb))
4958 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4959 	else
4960 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4961 						       tp->ucopy.iov);
4962 
4963 	if (!err) {
4964 		tp->ucopy.len -= chunk;
4965 		tp->copied_seq += chunk;
4966 		tcp_rcv_space_adjust(sk);
4967 	}
4968 
4969 	local_bh_disable();
4970 	return err;
4971 }
4972 
4973 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4974 					    struct sk_buff *skb)
4975 {
4976 	__sum16 result;
4977 
4978 	if (sock_owned_by_user(sk)) {
4979 		local_bh_enable();
4980 		result = __tcp_checksum_complete(skb);
4981 		local_bh_disable();
4982 	} else {
4983 		result = __tcp_checksum_complete(skb);
4984 	}
4985 	return result;
4986 }
4987 
4988 static inline int tcp_checksum_complete_user(struct sock *sk,
4989 					     struct sk_buff *skb)
4990 {
4991 	return !skb_csum_unnecessary(skb) &&
4992 	       __tcp_checksum_complete_user(sk, skb);
4993 }
4994 
4995 #ifdef CONFIG_NET_DMA
4996 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4997 				  int hlen)
4998 {
4999 	struct tcp_sock *tp = tcp_sk(sk);
5000 	int chunk = skb->len - hlen;
5001 	int dma_cookie;
5002 	int copied_early = 0;
5003 
5004 	if (tp->ucopy.wakeup)
5005 		return 0;
5006 
5007 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5008 		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5009 
5010 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5011 
5012 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5013 							 skb, hlen,
5014 							 tp->ucopy.iov, chunk,
5015 							 tp->ucopy.pinned_list);
5016 
5017 		if (dma_cookie < 0)
5018 			goto out;
5019 
5020 		tp->ucopy.dma_cookie = dma_cookie;
5021 		copied_early = 1;
5022 
5023 		tp->ucopy.len -= chunk;
5024 		tp->copied_seq += chunk;
5025 		tcp_rcv_space_adjust(sk);
5026 
5027 		if ((tp->ucopy.len == 0) ||
5028 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5029 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5030 			tp->ucopy.wakeup = 1;
5031 			sk->sk_data_ready(sk, 0);
5032 		}
5033 	} else if (chunk > 0) {
5034 		tp->ucopy.wakeup = 1;
5035 		sk->sk_data_ready(sk, 0);
5036 	}
5037 out:
5038 	return copied_early;
5039 }
5040 #endif /* CONFIG_NET_DMA */
5041 
5042 /* Does PAWS and seqno based validation of an incoming segment, flags will
5043  * play significant role here.
5044  */
5045 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5046 			      struct tcphdr *th, int syn_inerr)
5047 {
5048 	struct tcp_sock *tp = tcp_sk(sk);
5049 
5050 	/* RFC1323: H1. Apply PAWS check first. */
5051 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5052 	    tcp_paws_discard(sk, skb)) {
5053 		if (!th->rst) {
5054 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5055 			tcp_send_dupack(sk, skb);
5056 			goto discard;
5057 		}
5058 		/* Reset is accepted even if it did not pass PAWS. */
5059 	}
5060 
5061 	/* Step 1: check sequence number */
5062 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5063 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5064 		 * (RST) segments are validated by checking their SEQ-fields."
5065 		 * And page 69: "If an incoming segment is not acceptable,
5066 		 * an acknowledgment should be sent in reply (unless the RST
5067 		 * bit is set, if so drop the segment and return)".
5068 		 */
5069 		if (!th->rst)
5070 			tcp_send_dupack(sk, skb);
5071 		goto discard;
5072 	}
5073 
5074 	/* Step 2: check RST bit */
5075 	if (th->rst) {
5076 		tcp_reset(sk);
5077 		goto discard;
5078 	}
5079 
5080 	/* ts_recent update must be made after we are sure that the packet
5081 	 * is in window.
5082 	 */
5083 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5084 
5085 	/* step 3: check security and precedence [ignored] */
5086 
5087 	/* step 4: Check for a SYN in window. */
5088 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5089 		if (syn_inerr)
5090 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5091 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5092 		tcp_reset(sk);
5093 		return -1;
5094 	}
5095 
5096 	return 1;
5097 
5098 discard:
5099 	__kfree_skb(skb);
5100 	return 0;
5101 }
5102 
5103 /*
5104  *	TCP receive function for the ESTABLISHED state.
5105  *
5106  *	It is split into a fast path and a slow path. The fast path is
5107  * 	disabled when:
5108  *	- A zero window was announced from us - zero window probing
5109  *        is only handled properly in the slow path.
5110  *	- Out of order segments arrived.
5111  *	- Urgent data is expected.
5112  *	- There is no buffer space left
5113  *	- Unexpected TCP flags/window values/header lengths are received
5114  *	  (detected by checking the TCP header against pred_flags)
5115  *	- Data is sent in both directions. Fast path only supports pure senders
5116  *	  or pure receivers (this means either the sequence number or the ack
5117  *	  value must stay constant)
5118  *	- Unexpected TCP option.
5119  *
5120  *	When these conditions are not satisfied it drops into a standard
5121  *	receive procedure patterned after RFC793 to handle all cases.
5122  *	The first three cases are guaranteed by proper pred_flags setting,
5123  *	the rest is checked inline. Fast processing is turned on in
5124  *	tcp_data_queue when everything is OK.
5125  */
5126 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5127 			struct tcphdr *th, unsigned len)
5128 {
5129 	struct tcp_sock *tp = tcp_sk(sk);
5130 	int res;
5131 
5132 	/*
5133 	 *	Header prediction.
5134 	 *	The code loosely follows the one in the famous
5135 	 *	"30 instruction TCP receive" Van Jacobson mail.
5136 	 *
5137 	 *	Van's trick is to deposit buffers into socket queue
5138 	 *	on a device interrupt, to call tcp_recv function
5139 	 *	on the receive process context and checksum and copy
5140 	 *	the buffer to user space. smart...
5141 	 *
5142 	 *	Our current scheme is not silly either but we take the
5143 	 *	extra cost of the net_bh soft interrupt processing...
5144 	 *	We do checksum and copy also but from device to kernel.
5145 	 */
5146 
5147 	tp->rx_opt.saw_tstamp = 0;
5148 
5149 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5150 	 *	if header_prediction is to be made
5151 	 *	'S' will always be tp->tcp_header_len >> 2
5152 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5153 	 *  turn it off	(when there are holes in the receive
5154 	 *	 space for instance)
5155 	 *	PSH flag is ignored.
5156 	 */
5157 
5158 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5159 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5160 		int tcp_header_len = tp->tcp_header_len;
5161 
5162 		/* Timestamp header prediction: tcp_header_len
5163 		 * is automatically equal to th->doff*4 due to pred_flags
5164 		 * match.
5165 		 */
5166 
5167 		/* Check timestamp */
5168 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5169 			/* No? Slow path! */
5170 			if (!tcp_parse_aligned_timestamp(tp, th))
5171 				goto slow_path;
5172 
5173 			/* If PAWS failed, check it more carefully in slow path */
5174 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5175 				goto slow_path;
5176 
5177 			/* DO NOT update ts_recent here, if checksum fails
5178 			 * and timestamp was corrupted part, it will result
5179 			 * in a hung connection since we will drop all
5180 			 * future packets due to the PAWS test.
5181 			 */
5182 		}
5183 
5184 		if (len <= tcp_header_len) {
5185 			/* Bulk data transfer: sender */
5186 			if (len == tcp_header_len) {
5187 				/* Predicted packet is in window by definition.
5188 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5189 				 * Hence, check seq<=rcv_wup reduces to:
5190 				 */
5191 				if (tcp_header_len ==
5192 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5193 				    tp->rcv_nxt == tp->rcv_wup)
5194 					tcp_store_ts_recent(tp);
5195 
5196 				/* We know that such packets are checksummed
5197 				 * on entry.
5198 				 */
5199 				tcp_ack(sk, skb, 0);
5200 				__kfree_skb(skb);
5201 				tcp_data_snd_check(sk);
5202 				return 0;
5203 			} else { /* Header too small */
5204 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5205 				goto discard;
5206 			}
5207 		} else {
5208 			int eaten = 0;
5209 			int copied_early = 0;
5210 
5211 			if (tp->copied_seq == tp->rcv_nxt &&
5212 			    len - tcp_header_len <= tp->ucopy.len) {
5213 #ifdef CONFIG_NET_DMA
5214 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5215 					copied_early = 1;
5216 					eaten = 1;
5217 				}
5218 #endif
5219 				if (tp->ucopy.task == current &&
5220 				    sock_owned_by_user(sk) && !copied_early) {
5221 					__set_current_state(TASK_RUNNING);
5222 
5223 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5224 						eaten = 1;
5225 				}
5226 				if (eaten) {
5227 					/* Predicted packet is in window by definition.
5228 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5229 					 * Hence, check seq<=rcv_wup reduces to:
5230 					 */
5231 					if (tcp_header_len ==
5232 					    (sizeof(struct tcphdr) +
5233 					     TCPOLEN_TSTAMP_ALIGNED) &&
5234 					    tp->rcv_nxt == tp->rcv_wup)
5235 						tcp_store_ts_recent(tp);
5236 
5237 					tcp_rcv_rtt_measure_ts(sk, skb);
5238 
5239 					__skb_pull(skb, tcp_header_len);
5240 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5241 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5242 				}
5243 				if (copied_early)
5244 					tcp_cleanup_rbuf(sk, skb->len);
5245 			}
5246 			if (!eaten) {
5247 				if (tcp_checksum_complete_user(sk, skb))
5248 					goto csum_error;
5249 
5250 				/* Predicted packet is in window by definition.
5251 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5252 				 * Hence, check seq<=rcv_wup reduces to:
5253 				 */
5254 				if (tcp_header_len ==
5255 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5256 				    tp->rcv_nxt == tp->rcv_wup)
5257 					tcp_store_ts_recent(tp);
5258 
5259 				tcp_rcv_rtt_measure_ts(sk, skb);
5260 
5261 				if ((int)skb->truesize > sk->sk_forward_alloc)
5262 					goto step5;
5263 
5264 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5265 
5266 				/* Bulk data transfer: receiver */
5267 				__skb_pull(skb, tcp_header_len);
5268 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5269 				skb_set_owner_r(skb, sk);
5270 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5271 			}
5272 
5273 			tcp_event_data_recv(sk, skb);
5274 
5275 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5276 				/* Well, only one small jumplet in fast path... */
5277 				tcp_ack(sk, skb, FLAG_DATA);
5278 				tcp_data_snd_check(sk);
5279 				if (!inet_csk_ack_scheduled(sk))
5280 					goto no_ack;
5281 			}
5282 
5283 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5284 				__tcp_ack_snd_check(sk, 0);
5285 no_ack:
5286 #ifdef CONFIG_NET_DMA
5287 			if (copied_early)
5288 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5289 			else
5290 #endif
5291 			if (eaten)
5292 				__kfree_skb(skb);
5293 			else
5294 				sk->sk_data_ready(sk, 0);
5295 			return 0;
5296 		}
5297 	}
5298 
5299 slow_path:
5300 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5301 		goto csum_error;
5302 
5303 	/*
5304 	 *	Standard slow path.
5305 	 */
5306 
5307 	res = tcp_validate_incoming(sk, skb, th, 1);
5308 	if (res <= 0)
5309 		return -res;
5310 
5311 step5:
5312 	if (th->ack)
5313 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5314 
5315 	tcp_rcv_rtt_measure_ts(sk, skb);
5316 
5317 	/* Process urgent data. */
5318 	tcp_urg(sk, skb, th);
5319 
5320 	/* step 7: process the segment text */
5321 	tcp_data_queue(sk, skb);
5322 
5323 	tcp_data_snd_check(sk);
5324 	tcp_ack_snd_check(sk);
5325 	return 0;
5326 
5327 csum_error:
5328 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5329 
5330 discard:
5331 	__kfree_skb(skb);
5332 	return 0;
5333 }
5334 
5335 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5336 					 struct tcphdr *th, unsigned len)
5337 {
5338 	struct tcp_sock *tp = tcp_sk(sk);
5339 	struct inet_connection_sock *icsk = inet_csk(sk);
5340 	int saved_clamp = tp->rx_opt.mss_clamp;
5341 
5342 	tcp_parse_options(skb, &tp->rx_opt, 0);
5343 
5344 	if (th->ack) {
5345 		/* rfc793:
5346 		 * "If the state is SYN-SENT then
5347 		 *    first check the ACK bit
5348 		 *      If the ACK bit is set
5349 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5350 		 *        a reset (unless the RST bit is set, if so drop
5351 		 *        the segment and return)"
5352 		 *
5353 		 *  We do not send data with SYN, so that RFC-correct
5354 		 *  test reduces to:
5355 		 */
5356 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5357 			goto reset_and_undo;
5358 
5359 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5360 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5361 			     tcp_time_stamp)) {
5362 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5363 			goto reset_and_undo;
5364 		}
5365 
5366 		/* Now ACK is acceptable.
5367 		 *
5368 		 * "If the RST bit is set
5369 		 *    If the ACK was acceptable then signal the user "error:
5370 		 *    connection reset", drop the segment, enter CLOSED state,
5371 		 *    delete TCB, and return."
5372 		 */
5373 
5374 		if (th->rst) {
5375 			tcp_reset(sk);
5376 			goto discard;
5377 		}
5378 
5379 		/* rfc793:
5380 		 *   "fifth, if neither of the SYN or RST bits is set then
5381 		 *    drop the segment and return."
5382 		 *
5383 		 *    See note below!
5384 		 *                                        --ANK(990513)
5385 		 */
5386 		if (!th->syn)
5387 			goto discard_and_undo;
5388 
5389 		/* rfc793:
5390 		 *   "If the SYN bit is on ...
5391 		 *    are acceptable then ...
5392 		 *    (our SYN has been ACKed), change the connection
5393 		 *    state to ESTABLISHED..."
5394 		 */
5395 
5396 		TCP_ECN_rcv_synack(tp, th);
5397 
5398 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5399 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5400 
5401 		/* Ok.. it's good. Set up sequence numbers and
5402 		 * move to established.
5403 		 */
5404 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5405 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5406 
5407 		/* RFC1323: The window in SYN & SYN/ACK segments is
5408 		 * never scaled.
5409 		 */
5410 		tp->snd_wnd = ntohs(th->window);
5411 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5412 
5413 		if (!tp->rx_opt.wscale_ok) {
5414 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5415 			tp->window_clamp = min(tp->window_clamp, 65535U);
5416 		}
5417 
5418 		if (tp->rx_opt.saw_tstamp) {
5419 			tp->rx_opt.tstamp_ok	   = 1;
5420 			tp->tcp_header_len =
5421 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5422 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5423 			tcp_store_ts_recent(tp);
5424 		} else {
5425 			tp->tcp_header_len = sizeof(struct tcphdr);
5426 		}
5427 
5428 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5429 			tcp_enable_fack(tp);
5430 
5431 		tcp_mtup_init(sk);
5432 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5433 		tcp_initialize_rcv_mss(sk);
5434 
5435 		/* Remember, tcp_poll() does not lock socket!
5436 		 * Change state from SYN-SENT only after copied_seq
5437 		 * is initialized. */
5438 		tp->copied_seq = tp->rcv_nxt;
5439 		smp_mb();
5440 		tcp_set_state(sk, TCP_ESTABLISHED);
5441 
5442 		security_inet_conn_established(sk, skb);
5443 
5444 		/* Make sure socket is routed, for correct metrics.  */
5445 		icsk->icsk_af_ops->rebuild_header(sk);
5446 
5447 		tcp_init_metrics(sk);
5448 
5449 		tcp_init_congestion_control(sk);
5450 
5451 		/* Prevent spurious tcp_cwnd_restart() on first data
5452 		 * packet.
5453 		 */
5454 		tp->lsndtime = tcp_time_stamp;
5455 
5456 		tcp_init_buffer_space(sk);
5457 
5458 		if (sock_flag(sk, SOCK_KEEPOPEN))
5459 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5460 
5461 		if (!tp->rx_opt.snd_wscale)
5462 			__tcp_fast_path_on(tp, tp->snd_wnd);
5463 		else
5464 			tp->pred_flags = 0;
5465 
5466 		if (!sock_flag(sk, SOCK_DEAD)) {
5467 			sk->sk_state_change(sk);
5468 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5469 		}
5470 
5471 		if (sk->sk_write_pending ||
5472 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5473 		    icsk->icsk_ack.pingpong) {
5474 			/* Save one ACK. Data will be ready after
5475 			 * several ticks, if write_pending is set.
5476 			 *
5477 			 * It may be deleted, but with this feature tcpdumps
5478 			 * look so _wonderfully_ clever, that I was not able
5479 			 * to stand against the temptation 8)     --ANK
5480 			 */
5481 			inet_csk_schedule_ack(sk);
5482 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5483 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5484 			tcp_incr_quickack(sk);
5485 			tcp_enter_quickack_mode(sk);
5486 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5487 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5488 
5489 discard:
5490 			__kfree_skb(skb);
5491 			return 0;
5492 		} else {
5493 			tcp_send_ack(sk);
5494 		}
5495 		return -1;
5496 	}
5497 
5498 	/* No ACK in the segment */
5499 
5500 	if (th->rst) {
5501 		/* rfc793:
5502 		 * "If the RST bit is set
5503 		 *
5504 		 *      Otherwise (no ACK) drop the segment and return."
5505 		 */
5506 
5507 		goto discard_and_undo;
5508 	}
5509 
5510 	/* PAWS check. */
5511 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5512 	    tcp_paws_check(&tp->rx_opt, 0))
5513 		goto discard_and_undo;
5514 
5515 	if (th->syn) {
5516 		/* We see SYN without ACK. It is attempt of
5517 		 * simultaneous connect with crossed SYNs.
5518 		 * Particularly, it can be connect to self.
5519 		 */
5520 		tcp_set_state(sk, TCP_SYN_RECV);
5521 
5522 		if (tp->rx_opt.saw_tstamp) {
5523 			tp->rx_opt.tstamp_ok = 1;
5524 			tcp_store_ts_recent(tp);
5525 			tp->tcp_header_len =
5526 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5527 		} else {
5528 			tp->tcp_header_len = sizeof(struct tcphdr);
5529 		}
5530 
5531 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5532 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5533 
5534 		/* RFC1323: The window in SYN & SYN/ACK segments is
5535 		 * never scaled.
5536 		 */
5537 		tp->snd_wnd    = ntohs(th->window);
5538 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5539 		tp->max_window = tp->snd_wnd;
5540 
5541 		TCP_ECN_rcv_syn(tp, th);
5542 
5543 		tcp_mtup_init(sk);
5544 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5545 		tcp_initialize_rcv_mss(sk);
5546 
5547 		tcp_send_synack(sk);
5548 #if 0
5549 		/* Note, we could accept data and URG from this segment.
5550 		 * There are no obstacles to make this.
5551 		 *
5552 		 * However, if we ignore data in ACKless segments sometimes,
5553 		 * we have no reasons to accept it sometimes.
5554 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5555 		 * is not flawless. So, discard packet for sanity.
5556 		 * Uncomment this return to process the data.
5557 		 */
5558 		return -1;
5559 #else
5560 		goto discard;
5561 #endif
5562 	}
5563 	/* "fifth, if neither of the SYN or RST bits is set then
5564 	 * drop the segment and return."
5565 	 */
5566 
5567 discard_and_undo:
5568 	tcp_clear_options(&tp->rx_opt);
5569 	tp->rx_opt.mss_clamp = saved_clamp;
5570 	goto discard;
5571 
5572 reset_and_undo:
5573 	tcp_clear_options(&tp->rx_opt);
5574 	tp->rx_opt.mss_clamp = saved_clamp;
5575 	return 1;
5576 }
5577 
5578 /*
5579  *	This function implements the receiving procedure of RFC 793 for
5580  *	all states except ESTABLISHED and TIME_WAIT.
5581  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5582  *	address independent.
5583  */
5584 
5585 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5586 			  struct tcphdr *th, unsigned len)
5587 {
5588 	struct tcp_sock *tp = tcp_sk(sk);
5589 	struct inet_connection_sock *icsk = inet_csk(sk);
5590 	int queued = 0;
5591 	int res;
5592 
5593 	tp->rx_opt.saw_tstamp = 0;
5594 
5595 	switch (sk->sk_state) {
5596 	case TCP_CLOSE:
5597 		goto discard;
5598 
5599 	case TCP_LISTEN:
5600 		if (th->ack)
5601 			return 1;
5602 
5603 		if (th->rst)
5604 			goto discard;
5605 
5606 		if (th->syn) {
5607 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5608 				return 1;
5609 
5610 			/* Now we have several options: In theory there is
5611 			 * nothing else in the frame. KA9Q has an option to
5612 			 * send data with the syn, BSD accepts data with the
5613 			 * syn up to the [to be] advertised window and
5614 			 * Solaris 2.1 gives you a protocol error. For now
5615 			 * we just ignore it, that fits the spec precisely
5616 			 * and avoids incompatibilities. It would be nice in
5617 			 * future to drop through and process the data.
5618 			 *
5619 			 * Now that TTCP is starting to be used we ought to
5620 			 * queue this data.
5621 			 * But, this leaves one open to an easy denial of
5622 			 * service attack, and SYN cookies can't defend
5623 			 * against this problem. So, we drop the data
5624 			 * in the interest of security over speed unless
5625 			 * it's still in use.
5626 			 */
5627 			kfree_skb(skb);
5628 			return 0;
5629 		}
5630 		goto discard;
5631 
5632 	case TCP_SYN_SENT:
5633 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5634 		if (queued >= 0)
5635 			return queued;
5636 
5637 		/* Do step6 onward by hand. */
5638 		tcp_urg(sk, skb, th);
5639 		__kfree_skb(skb);
5640 		tcp_data_snd_check(sk);
5641 		return 0;
5642 	}
5643 
5644 	res = tcp_validate_incoming(sk, skb, th, 0);
5645 	if (res <= 0)
5646 		return -res;
5647 
5648 	/* step 5: check the ACK field */
5649 	if (th->ack) {
5650 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5651 
5652 		switch (sk->sk_state) {
5653 		case TCP_SYN_RECV:
5654 			if (acceptable) {
5655 				tp->copied_seq = tp->rcv_nxt;
5656 				smp_mb();
5657 				tcp_set_state(sk, TCP_ESTABLISHED);
5658 				sk->sk_state_change(sk);
5659 
5660 				/* Note, that this wakeup is only for marginal
5661 				 * crossed SYN case. Passively open sockets
5662 				 * are not waked up, because sk->sk_sleep ==
5663 				 * NULL and sk->sk_socket == NULL.
5664 				 */
5665 				if (sk->sk_socket)
5666 					sk_wake_async(sk,
5667 						      SOCK_WAKE_IO, POLL_OUT);
5668 
5669 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5670 				tp->snd_wnd = ntohs(th->window) <<
5671 					      tp->rx_opt.snd_wscale;
5672 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5673 					    TCP_SKB_CB(skb)->seq);
5674 
5675 				/* tcp_ack considers this ACK as duplicate
5676 				 * and does not calculate rtt.
5677 				 * Fix it at least with timestamps.
5678 				 */
5679 				if (tp->rx_opt.saw_tstamp &&
5680 				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5681 					tcp_ack_saw_tstamp(sk, 0);
5682 
5683 				if (tp->rx_opt.tstamp_ok)
5684 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5685 
5686 				/* Make sure socket is routed, for
5687 				 * correct metrics.
5688 				 */
5689 				icsk->icsk_af_ops->rebuild_header(sk);
5690 
5691 				tcp_init_metrics(sk);
5692 
5693 				tcp_init_congestion_control(sk);
5694 
5695 				/* Prevent spurious tcp_cwnd_restart() on
5696 				 * first data packet.
5697 				 */
5698 				tp->lsndtime = tcp_time_stamp;
5699 
5700 				tcp_mtup_init(sk);
5701 				tcp_initialize_rcv_mss(sk);
5702 				tcp_init_buffer_space(sk);
5703 				tcp_fast_path_on(tp);
5704 			} else {
5705 				return 1;
5706 			}
5707 			break;
5708 
5709 		case TCP_FIN_WAIT1:
5710 			if (tp->snd_una == tp->write_seq) {
5711 				tcp_set_state(sk, TCP_FIN_WAIT2);
5712 				sk->sk_shutdown |= SEND_SHUTDOWN;
5713 				dst_confirm(sk->sk_dst_cache);
5714 
5715 				if (!sock_flag(sk, SOCK_DEAD))
5716 					/* Wake up lingering close() */
5717 					sk->sk_state_change(sk);
5718 				else {
5719 					int tmo;
5720 
5721 					if (tp->linger2 < 0 ||
5722 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5723 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5724 						tcp_done(sk);
5725 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5726 						return 1;
5727 					}
5728 
5729 					tmo = tcp_fin_time(sk);
5730 					if (tmo > TCP_TIMEWAIT_LEN) {
5731 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5732 					} else if (th->fin || sock_owned_by_user(sk)) {
5733 						/* Bad case. We could lose such FIN otherwise.
5734 						 * It is not a big problem, but it looks confusing
5735 						 * and not so rare event. We still can lose it now,
5736 						 * if it spins in bh_lock_sock(), but it is really
5737 						 * marginal case.
5738 						 */
5739 						inet_csk_reset_keepalive_timer(sk, tmo);
5740 					} else {
5741 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5742 						goto discard;
5743 					}
5744 				}
5745 			}
5746 			break;
5747 
5748 		case TCP_CLOSING:
5749 			if (tp->snd_una == tp->write_seq) {
5750 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5751 				goto discard;
5752 			}
5753 			break;
5754 
5755 		case TCP_LAST_ACK:
5756 			if (tp->snd_una == tp->write_seq) {
5757 				tcp_update_metrics(sk);
5758 				tcp_done(sk);
5759 				goto discard;
5760 			}
5761 			break;
5762 		}
5763 	} else
5764 		goto discard;
5765 
5766 	/* step 6: check the URG bit */
5767 	tcp_urg(sk, skb, th);
5768 
5769 	/* step 7: process the segment text */
5770 	switch (sk->sk_state) {
5771 	case TCP_CLOSE_WAIT:
5772 	case TCP_CLOSING:
5773 	case TCP_LAST_ACK:
5774 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5775 			break;
5776 	case TCP_FIN_WAIT1:
5777 	case TCP_FIN_WAIT2:
5778 		/* RFC 793 says to queue data in these states,
5779 		 * RFC 1122 says we MUST send a reset.
5780 		 * BSD 4.4 also does reset.
5781 		 */
5782 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5783 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5784 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5785 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5786 				tcp_reset(sk);
5787 				return 1;
5788 			}
5789 		}
5790 		/* Fall through */
5791 	case TCP_ESTABLISHED:
5792 		tcp_data_queue(sk, skb);
5793 		queued = 1;
5794 		break;
5795 	}
5796 
5797 	/* tcp_data could move socket to TIME-WAIT */
5798 	if (sk->sk_state != TCP_CLOSE) {
5799 		tcp_data_snd_check(sk);
5800 		tcp_ack_snd_check(sk);
5801 	}
5802 
5803 	if (!queued) {
5804 discard:
5805 		__kfree_skb(skb);
5806 	}
5807 	return 0;
5808 }
5809 
5810 EXPORT_SYMBOL(sysctl_tcp_ecn);
5811 EXPORT_SYMBOL(sysctl_tcp_reordering);
5812 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5813 EXPORT_SYMBOL(tcp_parse_options);
5814 #ifdef CONFIG_TCP_MD5SIG
5815 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5816 #endif
5817 EXPORT_SYMBOL(tcp_rcv_established);
5818 EXPORT_SYMBOL(tcp_rcv_state_process);
5819 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5820