1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 83 84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 90 #define FLAG_ECE 0x40 /* ECE in this ACK */ 91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 100 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 101 102 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 103 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 104 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 105 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 106 107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 109 110 #define REXMIT_NONE 0 /* no loss recovery to do */ 111 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 112 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 113 114 #if IS_ENABLED(CONFIG_TLS_DEVICE) 115 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled); 116 117 void clean_acked_data_enable(struct inet_connection_sock *icsk, 118 void (*cad)(struct sock *sk, u32 ack_seq)) 119 { 120 icsk->icsk_clean_acked = cad; 121 static_branch_inc(&clean_acked_data_enabled); 122 } 123 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 124 125 void clean_acked_data_disable(struct inet_connection_sock *icsk) 126 { 127 static_branch_dec(&clean_acked_data_enabled); 128 icsk->icsk_clean_acked = NULL; 129 } 130 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 131 #endif 132 133 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 134 unsigned int len) 135 { 136 static bool __once __read_mostly; 137 138 if (!__once) { 139 struct net_device *dev; 140 141 __once = true; 142 143 rcu_read_lock(); 144 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 145 if (!dev || len >= dev->mtu) 146 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 147 dev ? dev->name : "Unknown driver"); 148 rcu_read_unlock(); 149 } 150 } 151 152 /* Adapt the MSS value used to make delayed ack decision to the 153 * real world. 154 */ 155 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 156 { 157 struct inet_connection_sock *icsk = inet_csk(sk); 158 const unsigned int lss = icsk->icsk_ack.last_seg_size; 159 unsigned int len; 160 161 icsk->icsk_ack.last_seg_size = 0; 162 163 /* skb->len may jitter because of SACKs, even if peer 164 * sends good full-sized frames. 165 */ 166 len = skb_shinfo(skb)->gso_size ? : skb->len; 167 if (len >= icsk->icsk_ack.rcv_mss) { 168 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 169 tcp_sk(sk)->advmss); 170 /* Account for possibly-removed options */ 171 if (unlikely(len > icsk->icsk_ack.rcv_mss + 172 MAX_TCP_OPTION_SPACE)) 173 tcp_gro_dev_warn(sk, skb, len); 174 } else { 175 /* Otherwise, we make more careful check taking into account, 176 * that SACKs block is variable. 177 * 178 * "len" is invariant segment length, including TCP header. 179 */ 180 len += skb->data - skb_transport_header(skb); 181 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 182 /* If PSH is not set, packet should be 183 * full sized, provided peer TCP is not badly broken. 184 * This observation (if it is correct 8)) allows 185 * to handle super-low mtu links fairly. 186 */ 187 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 188 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 189 /* Subtract also invariant (if peer is RFC compliant), 190 * tcp header plus fixed timestamp option length. 191 * Resulting "len" is MSS free of SACK jitter. 192 */ 193 len -= tcp_sk(sk)->tcp_header_len; 194 icsk->icsk_ack.last_seg_size = len; 195 if (len == lss) { 196 icsk->icsk_ack.rcv_mss = len; 197 return; 198 } 199 } 200 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 201 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 203 } 204 } 205 206 static void tcp_incr_quickack(struct sock *sk) 207 { 208 struct inet_connection_sock *icsk = inet_csk(sk); 209 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 210 211 if (quickacks == 0) 212 quickacks = 2; 213 if (quickacks > icsk->icsk_ack.quick) 214 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 215 } 216 217 static void tcp_enter_quickack_mode(struct sock *sk) 218 { 219 struct inet_connection_sock *icsk = inet_csk(sk); 220 tcp_incr_quickack(sk); 221 icsk->icsk_ack.pingpong = 0; 222 icsk->icsk_ack.ato = TCP_ATO_MIN; 223 } 224 225 /* Send ACKs quickly, if "quick" count is not exhausted 226 * and the session is not interactive. 227 */ 228 229 static bool tcp_in_quickack_mode(struct sock *sk) 230 { 231 const struct inet_connection_sock *icsk = inet_csk(sk); 232 const struct dst_entry *dst = __sk_dst_get(sk); 233 234 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 235 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 236 } 237 238 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 239 { 240 if (tp->ecn_flags & TCP_ECN_OK) 241 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 242 } 243 244 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 245 { 246 if (tcp_hdr(skb)->cwr) 247 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 248 } 249 250 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 251 { 252 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 253 } 254 255 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 256 { 257 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 258 case INET_ECN_NOT_ECT: 259 /* Funny extension: if ECT is not set on a segment, 260 * and we already seen ECT on a previous segment, 261 * it is probably a retransmit. 262 */ 263 if (tp->ecn_flags & TCP_ECN_SEEN) 264 tcp_enter_quickack_mode((struct sock *)tp); 265 break; 266 case INET_ECN_CE: 267 if (tcp_ca_needs_ecn((struct sock *)tp)) 268 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 269 270 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 271 /* Better not delay acks, sender can have a very low cwnd */ 272 tcp_enter_quickack_mode((struct sock *)tp); 273 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 274 } 275 tp->ecn_flags |= TCP_ECN_SEEN; 276 break; 277 default: 278 if (tcp_ca_needs_ecn((struct sock *)tp)) 279 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 280 tp->ecn_flags |= TCP_ECN_SEEN; 281 break; 282 } 283 } 284 285 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 286 { 287 if (tp->ecn_flags & TCP_ECN_OK) 288 __tcp_ecn_check_ce(tp, skb); 289 } 290 291 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 292 { 293 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 294 tp->ecn_flags &= ~TCP_ECN_OK; 295 } 296 297 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 298 { 299 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 300 tp->ecn_flags &= ~TCP_ECN_OK; 301 } 302 303 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 304 { 305 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 306 return true; 307 return false; 308 } 309 310 /* Buffer size and advertised window tuning. 311 * 312 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 313 */ 314 315 static void tcp_sndbuf_expand(struct sock *sk) 316 { 317 const struct tcp_sock *tp = tcp_sk(sk); 318 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 319 int sndmem, per_mss; 320 u32 nr_segs; 321 322 /* Worst case is non GSO/TSO : each frame consumes one skb 323 * and skb->head is kmalloced using power of two area of memory 324 */ 325 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 326 MAX_TCP_HEADER + 327 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 328 329 per_mss = roundup_pow_of_two(per_mss) + 330 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 331 332 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 333 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 334 335 /* Fast Recovery (RFC 5681 3.2) : 336 * Cubic needs 1.7 factor, rounded to 2 to include 337 * extra cushion (application might react slowly to EPOLLOUT) 338 */ 339 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 340 sndmem *= nr_segs * per_mss; 341 342 if (sk->sk_sndbuf < sndmem) 343 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 344 } 345 346 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 347 * 348 * All tcp_full_space() is split to two parts: "network" buffer, allocated 349 * forward and advertised in receiver window (tp->rcv_wnd) and 350 * "application buffer", required to isolate scheduling/application 351 * latencies from network. 352 * window_clamp is maximal advertised window. It can be less than 353 * tcp_full_space(), in this case tcp_full_space() - window_clamp 354 * is reserved for "application" buffer. The less window_clamp is 355 * the smoother our behaviour from viewpoint of network, but the lower 356 * throughput and the higher sensitivity of the connection to losses. 8) 357 * 358 * rcv_ssthresh is more strict window_clamp used at "slow start" 359 * phase to predict further behaviour of this connection. 360 * It is used for two goals: 361 * - to enforce header prediction at sender, even when application 362 * requires some significant "application buffer". It is check #1. 363 * - to prevent pruning of receive queue because of misprediction 364 * of receiver window. Check #2. 365 * 366 * The scheme does not work when sender sends good segments opening 367 * window and then starts to feed us spaghetti. But it should work 368 * in common situations. Otherwise, we have to rely on queue collapsing. 369 */ 370 371 /* Slow part of check#2. */ 372 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 373 { 374 struct tcp_sock *tp = tcp_sk(sk); 375 /* Optimize this! */ 376 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 377 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 378 379 while (tp->rcv_ssthresh <= window) { 380 if (truesize <= skb->len) 381 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 382 383 truesize >>= 1; 384 window >>= 1; 385 } 386 return 0; 387 } 388 389 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 390 { 391 struct tcp_sock *tp = tcp_sk(sk); 392 393 /* Check #1 */ 394 if (tp->rcv_ssthresh < tp->window_clamp && 395 (int)tp->rcv_ssthresh < tcp_space(sk) && 396 !tcp_under_memory_pressure(sk)) { 397 int incr; 398 399 /* Check #2. Increase window, if skb with such overhead 400 * will fit to rcvbuf in future. 401 */ 402 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 403 incr = 2 * tp->advmss; 404 else 405 incr = __tcp_grow_window(sk, skb); 406 407 if (incr) { 408 incr = max_t(int, incr, 2 * skb->len); 409 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 410 tp->window_clamp); 411 inet_csk(sk)->icsk_ack.quick |= 1; 412 } 413 } 414 } 415 416 /* 3. Tuning rcvbuf, when connection enters established state. */ 417 static void tcp_fixup_rcvbuf(struct sock *sk) 418 { 419 u32 mss = tcp_sk(sk)->advmss; 420 int rcvmem; 421 422 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 423 tcp_default_init_rwnd(mss); 424 425 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 426 * Allow enough cushion so that sender is not limited by our window 427 */ 428 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 429 rcvmem <<= 2; 430 431 if (sk->sk_rcvbuf < rcvmem) 432 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 433 } 434 435 /* 4. Try to fixup all. It is made immediately after connection enters 436 * established state. 437 */ 438 void tcp_init_buffer_space(struct sock *sk) 439 { 440 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 441 struct tcp_sock *tp = tcp_sk(sk); 442 int maxwin; 443 444 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 445 tcp_fixup_rcvbuf(sk); 446 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 447 tcp_sndbuf_expand(sk); 448 449 tp->rcvq_space.space = tp->rcv_wnd; 450 tcp_mstamp_refresh(tp); 451 tp->rcvq_space.time = tp->tcp_mstamp; 452 tp->rcvq_space.seq = tp->copied_seq; 453 454 maxwin = tcp_full_space(sk); 455 456 if (tp->window_clamp >= maxwin) { 457 tp->window_clamp = maxwin; 458 459 if (tcp_app_win && maxwin > 4 * tp->advmss) 460 tp->window_clamp = max(maxwin - 461 (maxwin >> tcp_app_win), 462 4 * tp->advmss); 463 } 464 465 /* Force reservation of one segment. */ 466 if (tcp_app_win && 467 tp->window_clamp > 2 * tp->advmss && 468 tp->window_clamp + tp->advmss > maxwin) 469 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 470 471 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 472 tp->snd_cwnd_stamp = tcp_jiffies32; 473 } 474 475 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 476 static void tcp_clamp_window(struct sock *sk) 477 { 478 struct tcp_sock *tp = tcp_sk(sk); 479 struct inet_connection_sock *icsk = inet_csk(sk); 480 struct net *net = sock_net(sk); 481 482 icsk->icsk_ack.quick = 0; 483 484 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 485 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 486 !tcp_under_memory_pressure(sk) && 487 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 488 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 489 net->ipv4.sysctl_tcp_rmem[2]); 490 } 491 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 492 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 493 } 494 495 /* Initialize RCV_MSS value. 496 * RCV_MSS is an our guess about MSS used by the peer. 497 * We haven't any direct information about the MSS. 498 * It's better to underestimate the RCV_MSS rather than overestimate. 499 * Overestimations make us ACKing less frequently than needed. 500 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 501 */ 502 void tcp_initialize_rcv_mss(struct sock *sk) 503 { 504 const struct tcp_sock *tp = tcp_sk(sk); 505 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 506 507 hint = min(hint, tp->rcv_wnd / 2); 508 hint = min(hint, TCP_MSS_DEFAULT); 509 hint = max(hint, TCP_MIN_MSS); 510 511 inet_csk(sk)->icsk_ack.rcv_mss = hint; 512 } 513 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 514 515 /* Receiver "autotuning" code. 516 * 517 * The algorithm for RTT estimation w/o timestamps is based on 518 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 519 * <http://public.lanl.gov/radiant/pubs.html#DRS> 520 * 521 * More detail on this code can be found at 522 * <http://staff.psc.edu/jheffner/>, 523 * though this reference is out of date. A new paper 524 * is pending. 525 */ 526 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 527 { 528 u32 new_sample = tp->rcv_rtt_est.rtt_us; 529 long m = sample; 530 531 if (new_sample != 0) { 532 /* If we sample in larger samples in the non-timestamp 533 * case, we could grossly overestimate the RTT especially 534 * with chatty applications or bulk transfer apps which 535 * are stalled on filesystem I/O. 536 * 537 * Also, since we are only going for a minimum in the 538 * non-timestamp case, we do not smooth things out 539 * else with timestamps disabled convergence takes too 540 * long. 541 */ 542 if (!win_dep) { 543 m -= (new_sample >> 3); 544 new_sample += m; 545 } else { 546 m <<= 3; 547 if (m < new_sample) 548 new_sample = m; 549 } 550 } else { 551 /* No previous measure. */ 552 new_sample = m << 3; 553 } 554 555 tp->rcv_rtt_est.rtt_us = new_sample; 556 } 557 558 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 559 { 560 u32 delta_us; 561 562 if (tp->rcv_rtt_est.time == 0) 563 goto new_measure; 564 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 565 return; 566 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 567 if (!delta_us) 568 delta_us = 1; 569 tcp_rcv_rtt_update(tp, delta_us, 1); 570 571 new_measure: 572 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 573 tp->rcv_rtt_est.time = tp->tcp_mstamp; 574 } 575 576 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 577 const struct sk_buff *skb) 578 { 579 struct tcp_sock *tp = tcp_sk(sk); 580 581 if (tp->rx_opt.rcv_tsecr && 582 (TCP_SKB_CB(skb)->end_seq - 583 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 584 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 585 u32 delta_us; 586 587 if (!delta) 588 delta = 1; 589 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 590 tcp_rcv_rtt_update(tp, delta_us, 0); 591 } 592 } 593 594 /* 595 * This function should be called every time data is copied to user space. 596 * It calculates the appropriate TCP receive buffer space. 597 */ 598 void tcp_rcv_space_adjust(struct sock *sk) 599 { 600 struct tcp_sock *tp = tcp_sk(sk); 601 u32 copied; 602 int time; 603 604 trace_tcp_rcv_space_adjust(sk); 605 606 tcp_mstamp_refresh(tp); 607 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 608 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 609 return; 610 611 /* Number of bytes copied to user in last RTT */ 612 copied = tp->copied_seq - tp->rcvq_space.seq; 613 if (copied <= tp->rcvq_space.space) 614 goto new_measure; 615 616 /* A bit of theory : 617 * copied = bytes received in previous RTT, our base window 618 * To cope with packet losses, we need a 2x factor 619 * To cope with slow start, and sender growing its cwin by 100 % 620 * every RTT, we need a 4x factor, because the ACK we are sending 621 * now is for the next RTT, not the current one : 622 * <prev RTT . ><current RTT .. ><next RTT .... > 623 */ 624 625 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 626 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 627 int rcvmem, rcvbuf; 628 u64 rcvwin, grow; 629 630 /* minimal window to cope with packet losses, assuming 631 * steady state. Add some cushion because of small variations. 632 */ 633 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 634 635 /* Accommodate for sender rate increase (eg. slow start) */ 636 grow = rcvwin * (copied - tp->rcvq_space.space); 637 do_div(grow, tp->rcvq_space.space); 638 rcvwin += (grow << 1); 639 640 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 641 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 642 rcvmem += 128; 643 644 do_div(rcvwin, tp->advmss); 645 rcvbuf = min_t(u64, rcvwin * rcvmem, 646 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 647 if (rcvbuf > sk->sk_rcvbuf) { 648 sk->sk_rcvbuf = rcvbuf; 649 650 /* Make the window clamp follow along. */ 651 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 652 } 653 } 654 tp->rcvq_space.space = copied; 655 656 new_measure: 657 tp->rcvq_space.seq = tp->copied_seq; 658 tp->rcvq_space.time = tp->tcp_mstamp; 659 } 660 661 /* There is something which you must keep in mind when you analyze the 662 * behavior of the tp->ato delayed ack timeout interval. When a 663 * connection starts up, we want to ack as quickly as possible. The 664 * problem is that "good" TCP's do slow start at the beginning of data 665 * transmission. The means that until we send the first few ACK's the 666 * sender will sit on his end and only queue most of his data, because 667 * he can only send snd_cwnd unacked packets at any given time. For 668 * each ACK we send, he increments snd_cwnd and transmits more of his 669 * queue. -DaveM 670 */ 671 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 672 { 673 struct tcp_sock *tp = tcp_sk(sk); 674 struct inet_connection_sock *icsk = inet_csk(sk); 675 u32 now; 676 677 inet_csk_schedule_ack(sk); 678 679 tcp_measure_rcv_mss(sk, skb); 680 681 tcp_rcv_rtt_measure(tp); 682 683 now = tcp_jiffies32; 684 685 if (!icsk->icsk_ack.ato) { 686 /* The _first_ data packet received, initialize 687 * delayed ACK engine. 688 */ 689 tcp_incr_quickack(sk); 690 icsk->icsk_ack.ato = TCP_ATO_MIN; 691 } else { 692 int m = now - icsk->icsk_ack.lrcvtime; 693 694 if (m <= TCP_ATO_MIN / 2) { 695 /* The fastest case is the first. */ 696 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 697 } else if (m < icsk->icsk_ack.ato) { 698 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 699 if (icsk->icsk_ack.ato > icsk->icsk_rto) 700 icsk->icsk_ack.ato = icsk->icsk_rto; 701 } else if (m > icsk->icsk_rto) { 702 /* Too long gap. Apparently sender failed to 703 * restart window, so that we send ACKs quickly. 704 */ 705 tcp_incr_quickack(sk); 706 sk_mem_reclaim(sk); 707 } 708 } 709 icsk->icsk_ack.lrcvtime = now; 710 711 tcp_ecn_check_ce(tp, skb); 712 713 if (skb->len >= 128) 714 tcp_grow_window(sk, skb); 715 } 716 717 /* Called to compute a smoothed rtt estimate. The data fed to this 718 * routine either comes from timestamps, or from segments that were 719 * known _not_ to have been retransmitted [see Karn/Partridge 720 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 721 * piece by Van Jacobson. 722 * NOTE: the next three routines used to be one big routine. 723 * To save cycles in the RFC 1323 implementation it was better to break 724 * it up into three procedures. -- erics 725 */ 726 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 727 { 728 struct tcp_sock *tp = tcp_sk(sk); 729 long m = mrtt_us; /* RTT */ 730 u32 srtt = tp->srtt_us; 731 732 /* The following amusing code comes from Jacobson's 733 * article in SIGCOMM '88. Note that rtt and mdev 734 * are scaled versions of rtt and mean deviation. 735 * This is designed to be as fast as possible 736 * m stands for "measurement". 737 * 738 * On a 1990 paper the rto value is changed to: 739 * RTO = rtt + 4 * mdev 740 * 741 * Funny. This algorithm seems to be very broken. 742 * These formulae increase RTO, when it should be decreased, increase 743 * too slowly, when it should be increased quickly, decrease too quickly 744 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 745 * does not matter how to _calculate_ it. Seems, it was trap 746 * that VJ failed to avoid. 8) 747 */ 748 if (srtt != 0) { 749 m -= (srtt >> 3); /* m is now error in rtt est */ 750 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 751 if (m < 0) { 752 m = -m; /* m is now abs(error) */ 753 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 754 /* This is similar to one of Eifel findings. 755 * Eifel blocks mdev updates when rtt decreases. 756 * This solution is a bit different: we use finer gain 757 * for mdev in this case (alpha*beta). 758 * Like Eifel it also prevents growth of rto, 759 * but also it limits too fast rto decreases, 760 * happening in pure Eifel. 761 */ 762 if (m > 0) 763 m >>= 3; 764 } else { 765 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 766 } 767 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 768 if (tp->mdev_us > tp->mdev_max_us) { 769 tp->mdev_max_us = tp->mdev_us; 770 if (tp->mdev_max_us > tp->rttvar_us) 771 tp->rttvar_us = tp->mdev_max_us; 772 } 773 if (after(tp->snd_una, tp->rtt_seq)) { 774 if (tp->mdev_max_us < tp->rttvar_us) 775 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 776 tp->rtt_seq = tp->snd_nxt; 777 tp->mdev_max_us = tcp_rto_min_us(sk); 778 } 779 } else { 780 /* no previous measure. */ 781 srtt = m << 3; /* take the measured time to be rtt */ 782 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 783 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 784 tp->mdev_max_us = tp->rttvar_us; 785 tp->rtt_seq = tp->snd_nxt; 786 } 787 tp->srtt_us = max(1U, srtt); 788 } 789 790 static void tcp_update_pacing_rate(struct sock *sk) 791 { 792 const struct tcp_sock *tp = tcp_sk(sk); 793 u64 rate; 794 795 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 796 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 797 798 /* current rate is (cwnd * mss) / srtt 799 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 800 * In Congestion Avoidance phase, set it to 120 % the current rate. 801 * 802 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 803 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 804 * end of slow start and should slow down. 805 */ 806 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 807 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 808 else 809 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 810 811 rate *= max(tp->snd_cwnd, tp->packets_out); 812 813 if (likely(tp->srtt_us)) 814 do_div(rate, tp->srtt_us); 815 816 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 817 * without any lock. We want to make sure compiler wont store 818 * intermediate values in this location. 819 */ 820 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 821 sk->sk_max_pacing_rate)); 822 } 823 824 /* Calculate rto without backoff. This is the second half of Van Jacobson's 825 * routine referred to above. 826 */ 827 static void tcp_set_rto(struct sock *sk) 828 { 829 const struct tcp_sock *tp = tcp_sk(sk); 830 /* Old crap is replaced with new one. 8) 831 * 832 * More seriously: 833 * 1. If rtt variance happened to be less 50msec, it is hallucination. 834 * It cannot be less due to utterly erratic ACK generation made 835 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 836 * to do with delayed acks, because at cwnd>2 true delack timeout 837 * is invisible. Actually, Linux-2.4 also generates erratic 838 * ACKs in some circumstances. 839 */ 840 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 841 842 /* 2. Fixups made earlier cannot be right. 843 * If we do not estimate RTO correctly without them, 844 * all the algo is pure shit and should be replaced 845 * with correct one. It is exactly, which we pretend to do. 846 */ 847 848 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 849 * guarantees that rto is higher. 850 */ 851 tcp_bound_rto(sk); 852 } 853 854 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 855 { 856 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 857 858 if (!cwnd) 859 cwnd = TCP_INIT_CWND; 860 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 861 } 862 863 /* Take a notice that peer is sending D-SACKs */ 864 static void tcp_dsack_seen(struct tcp_sock *tp) 865 { 866 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 867 tp->rack.dsack_seen = 1; 868 } 869 870 /* It's reordering when higher sequence was delivered (i.e. sacked) before 871 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 872 * distance is approximated in full-mss packet distance ("reordering"). 873 */ 874 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 875 const int ts) 876 { 877 struct tcp_sock *tp = tcp_sk(sk); 878 const u32 mss = tp->mss_cache; 879 u32 fack, metric; 880 881 fack = tcp_highest_sack_seq(tp); 882 if (!before(low_seq, fack)) 883 return; 884 885 metric = fack - low_seq; 886 if ((metric > tp->reordering * mss) && mss) { 887 #if FASTRETRANS_DEBUG > 1 888 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 889 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 890 tp->reordering, 891 0, 892 tp->sacked_out, 893 tp->undo_marker ? tp->undo_retrans : 0); 894 #endif 895 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 896 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 897 } 898 899 tp->rack.reord = 1; 900 /* This exciting event is worth to be remembered. 8) */ 901 NET_INC_STATS(sock_net(sk), 902 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 903 } 904 905 /* This must be called before lost_out is incremented */ 906 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 907 { 908 if (!tp->retransmit_skb_hint || 909 before(TCP_SKB_CB(skb)->seq, 910 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 911 tp->retransmit_skb_hint = skb; 912 } 913 914 /* Sum the number of packets on the wire we have marked as lost. 915 * There are two cases we care about here: 916 * a) Packet hasn't been marked lost (nor retransmitted), 917 * and this is the first loss. 918 * b) Packet has been marked both lost and retransmitted, 919 * and this means we think it was lost again. 920 */ 921 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 922 { 923 __u8 sacked = TCP_SKB_CB(skb)->sacked; 924 925 if (!(sacked & TCPCB_LOST) || 926 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 927 tp->lost += tcp_skb_pcount(skb); 928 } 929 930 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 931 { 932 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 933 tcp_verify_retransmit_hint(tp, skb); 934 935 tp->lost_out += tcp_skb_pcount(skb); 936 tcp_sum_lost(tp, skb); 937 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 938 } 939 } 940 941 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 942 { 943 tcp_verify_retransmit_hint(tp, skb); 944 945 tcp_sum_lost(tp, skb); 946 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 947 tp->lost_out += tcp_skb_pcount(skb); 948 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 949 } 950 } 951 952 /* This procedure tags the retransmission queue when SACKs arrive. 953 * 954 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 955 * Packets in queue with these bits set are counted in variables 956 * sacked_out, retrans_out and lost_out, correspondingly. 957 * 958 * Valid combinations are: 959 * Tag InFlight Description 960 * 0 1 - orig segment is in flight. 961 * S 0 - nothing flies, orig reached receiver. 962 * L 0 - nothing flies, orig lost by net. 963 * R 2 - both orig and retransmit are in flight. 964 * L|R 1 - orig is lost, retransmit is in flight. 965 * S|R 1 - orig reached receiver, retrans is still in flight. 966 * (L|S|R is logically valid, it could occur when L|R is sacked, 967 * but it is equivalent to plain S and code short-curcuits it to S. 968 * L|S is logically invalid, it would mean -1 packet in flight 8)) 969 * 970 * These 6 states form finite state machine, controlled by the following events: 971 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 972 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 973 * 3. Loss detection event of two flavors: 974 * A. Scoreboard estimator decided the packet is lost. 975 * A'. Reno "three dupacks" marks head of queue lost. 976 * B. SACK arrives sacking SND.NXT at the moment, when the 977 * segment was retransmitted. 978 * 4. D-SACK added new rule: D-SACK changes any tag to S. 979 * 980 * It is pleasant to note, that state diagram turns out to be commutative, 981 * so that we are allowed not to be bothered by order of our actions, 982 * when multiple events arrive simultaneously. (see the function below). 983 * 984 * Reordering detection. 985 * -------------------- 986 * Reordering metric is maximal distance, which a packet can be displaced 987 * in packet stream. With SACKs we can estimate it: 988 * 989 * 1. SACK fills old hole and the corresponding segment was not 990 * ever retransmitted -> reordering. Alas, we cannot use it 991 * when segment was retransmitted. 992 * 2. The last flaw is solved with D-SACK. D-SACK arrives 993 * for retransmitted and already SACKed segment -> reordering.. 994 * Both of these heuristics are not used in Loss state, when we cannot 995 * account for retransmits accurately. 996 * 997 * SACK block validation. 998 * ---------------------- 999 * 1000 * SACK block range validation checks that the received SACK block fits to 1001 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1002 * Note that SND.UNA is not included to the range though being valid because 1003 * it means that the receiver is rather inconsistent with itself reporting 1004 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1005 * perfectly valid, however, in light of RFC2018 which explicitly states 1006 * that "SACK block MUST reflect the newest segment. Even if the newest 1007 * segment is going to be discarded ...", not that it looks very clever 1008 * in case of head skb. Due to potentional receiver driven attacks, we 1009 * choose to avoid immediate execution of a walk in write queue due to 1010 * reneging and defer head skb's loss recovery to standard loss recovery 1011 * procedure that will eventually trigger (nothing forbids us doing this). 1012 * 1013 * Implements also blockage to start_seq wrap-around. Problem lies in the 1014 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1015 * there's no guarantee that it will be before snd_nxt (n). The problem 1016 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1017 * wrap (s_w): 1018 * 1019 * <- outs wnd -> <- wrapzone -> 1020 * u e n u_w e_w s n_w 1021 * | | | | | | | 1022 * |<------------+------+----- TCP seqno space --------------+---------->| 1023 * ...-- <2^31 ->| |<--------... 1024 * ...---- >2^31 ------>| |<--------... 1025 * 1026 * Current code wouldn't be vulnerable but it's better still to discard such 1027 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1028 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1029 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1030 * equal to the ideal case (infinite seqno space without wrap caused issues). 1031 * 1032 * With D-SACK the lower bound is extended to cover sequence space below 1033 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1034 * again, D-SACK block must not to go across snd_una (for the same reason as 1035 * for the normal SACK blocks, explained above). But there all simplicity 1036 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1037 * fully below undo_marker they do not affect behavior in anyway and can 1038 * therefore be safely ignored. In rare cases (which are more or less 1039 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1040 * fragmentation and packet reordering past skb's retransmission. To consider 1041 * them correctly, the acceptable range must be extended even more though 1042 * the exact amount is rather hard to quantify. However, tp->max_window can 1043 * be used as an exaggerated estimate. 1044 */ 1045 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1046 u32 start_seq, u32 end_seq) 1047 { 1048 /* Too far in future, or reversed (interpretation is ambiguous) */ 1049 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1050 return false; 1051 1052 /* Nasty start_seq wrap-around check (see comments above) */ 1053 if (!before(start_seq, tp->snd_nxt)) 1054 return false; 1055 1056 /* In outstanding window? ...This is valid exit for D-SACKs too. 1057 * start_seq == snd_una is non-sensical (see comments above) 1058 */ 1059 if (after(start_seq, tp->snd_una)) 1060 return true; 1061 1062 if (!is_dsack || !tp->undo_marker) 1063 return false; 1064 1065 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1066 if (after(end_seq, tp->snd_una)) 1067 return false; 1068 1069 if (!before(start_seq, tp->undo_marker)) 1070 return true; 1071 1072 /* Too old */ 1073 if (!after(end_seq, tp->undo_marker)) 1074 return false; 1075 1076 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1077 * start_seq < undo_marker and end_seq >= undo_marker. 1078 */ 1079 return !before(start_seq, end_seq - tp->max_window); 1080 } 1081 1082 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1083 struct tcp_sack_block_wire *sp, int num_sacks, 1084 u32 prior_snd_una) 1085 { 1086 struct tcp_sock *tp = tcp_sk(sk); 1087 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1088 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1089 bool dup_sack = false; 1090 1091 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1092 dup_sack = true; 1093 tcp_dsack_seen(tp); 1094 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1095 } else if (num_sacks > 1) { 1096 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1097 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1098 1099 if (!after(end_seq_0, end_seq_1) && 1100 !before(start_seq_0, start_seq_1)) { 1101 dup_sack = true; 1102 tcp_dsack_seen(tp); 1103 NET_INC_STATS(sock_net(sk), 1104 LINUX_MIB_TCPDSACKOFORECV); 1105 } 1106 } 1107 1108 /* D-SACK for already forgotten data... Do dumb counting. */ 1109 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1110 !after(end_seq_0, prior_snd_una) && 1111 after(end_seq_0, tp->undo_marker)) 1112 tp->undo_retrans--; 1113 1114 return dup_sack; 1115 } 1116 1117 struct tcp_sacktag_state { 1118 u32 reord; 1119 /* Timestamps for earliest and latest never-retransmitted segment 1120 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1121 * but congestion control should still get an accurate delay signal. 1122 */ 1123 u64 first_sackt; 1124 u64 last_sackt; 1125 struct rate_sample *rate; 1126 int flag; 1127 unsigned int mss_now; 1128 }; 1129 1130 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1131 * the incoming SACK may not exactly match but we can find smaller MSS 1132 * aligned portion of it that matches. Therefore we might need to fragment 1133 * which may fail and creates some hassle (caller must handle error case 1134 * returns). 1135 * 1136 * FIXME: this could be merged to shift decision code 1137 */ 1138 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1139 u32 start_seq, u32 end_seq) 1140 { 1141 int err; 1142 bool in_sack; 1143 unsigned int pkt_len; 1144 unsigned int mss; 1145 1146 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1147 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1148 1149 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1150 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1151 mss = tcp_skb_mss(skb); 1152 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1153 1154 if (!in_sack) { 1155 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1156 if (pkt_len < mss) 1157 pkt_len = mss; 1158 } else { 1159 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1160 if (pkt_len < mss) 1161 return -EINVAL; 1162 } 1163 1164 /* Round if necessary so that SACKs cover only full MSSes 1165 * and/or the remaining small portion (if present) 1166 */ 1167 if (pkt_len > mss) { 1168 unsigned int new_len = (pkt_len / mss) * mss; 1169 if (!in_sack && new_len < pkt_len) 1170 new_len += mss; 1171 pkt_len = new_len; 1172 } 1173 1174 if (pkt_len >= skb->len && !in_sack) 1175 return 0; 1176 1177 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1178 pkt_len, mss, GFP_ATOMIC); 1179 if (err < 0) 1180 return err; 1181 } 1182 1183 return in_sack; 1184 } 1185 1186 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1187 static u8 tcp_sacktag_one(struct sock *sk, 1188 struct tcp_sacktag_state *state, u8 sacked, 1189 u32 start_seq, u32 end_seq, 1190 int dup_sack, int pcount, 1191 u64 xmit_time) 1192 { 1193 struct tcp_sock *tp = tcp_sk(sk); 1194 1195 /* Account D-SACK for retransmitted packet. */ 1196 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1197 if (tp->undo_marker && tp->undo_retrans > 0 && 1198 after(end_seq, tp->undo_marker)) 1199 tp->undo_retrans--; 1200 if ((sacked & TCPCB_SACKED_ACKED) && 1201 before(start_seq, state->reord)) 1202 state->reord = start_seq; 1203 } 1204 1205 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1206 if (!after(end_seq, tp->snd_una)) 1207 return sacked; 1208 1209 if (!(sacked & TCPCB_SACKED_ACKED)) { 1210 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1211 1212 if (sacked & TCPCB_SACKED_RETRANS) { 1213 /* If the segment is not tagged as lost, 1214 * we do not clear RETRANS, believing 1215 * that retransmission is still in flight. 1216 */ 1217 if (sacked & TCPCB_LOST) { 1218 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1219 tp->lost_out -= pcount; 1220 tp->retrans_out -= pcount; 1221 } 1222 } else { 1223 if (!(sacked & TCPCB_RETRANS)) { 1224 /* New sack for not retransmitted frame, 1225 * which was in hole. It is reordering. 1226 */ 1227 if (before(start_seq, 1228 tcp_highest_sack_seq(tp)) && 1229 before(start_seq, state->reord)) 1230 state->reord = start_seq; 1231 1232 if (!after(end_seq, tp->high_seq)) 1233 state->flag |= FLAG_ORIG_SACK_ACKED; 1234 if (state->first_sackt == 0) 1235 state->first_sackt = xmit_time; 1236 state->last_sackt = xmit_time; 1237 } 1238 1239 if (sacked & TCPCB_LOST) { 1240 sacked &= ~TCPCB_LOST; 1241 tp->lost_out -= pcount; 1242 } 1243 } 1244 1245 sacked |= TCPCB_SACKED_ACKED; 1246 state->flag |= FLAG_DATA_SACKED; 1247 tp->sacked_out += pcount; 1248 tp->delivered += pcount; /* Out-of-order packets delivered */ 1249 1250 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1251 if (tp->lost_skb_hint && 1252 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1253 tp->lost_cnt_hint += pcount; 1254 } 1255 1256 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1257 * frames and clear it. undo_retrans is decreased above, L|R frames 1258 * are accounted above as well. 1259 */ 1260 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1261 sacked &= ~TCPCB_SACKED_RETRANS; 1262 tp->retrans_out -= pcount; 1263 } 1264 1265 return sacked; 1266 } 1267 1268 /* Shift newly-SACKed bytes from this skb to the immediately previous 1269 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1270 */ 1271 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1272 struct sk_buff *skb, 1273 struct tcp_sacktag_state *state, 1274 unsigned int pcount, int shifted, int mss, 1275 bool dup_sack) 1276 { 1277 struct tcp_sock *tp = tcp_sk(sk); 1278 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1279 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1280 1281 BUG_ON(!pcount); 1282 1283 /* Adjust counters and hints for the newly sacked sequence 1284 * range but discard the return value since prev is already 1285 * marked. We must tag the range first because the seq 1286 * advancement below implicitly advances 1287 * tcp_highest_sack_seq() when skb is highest_sack. 1288 */ 1289 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1290 start_seq, end_seq, dup_sack, pcount, 1291 skb->skb_mstamp); 1292 tcp_rate_skb_delivered(sk, skb, state->rate); 1293 1294 if (skb == tp->lost_skb_hint) 1295 tp->lost_cnt_hint += pcount; 1296 1297 TCP_SKB_CB(prev)->end_seq += shifted; 1298 TCP_SKB_CB(skb)->seq += shifted; 1299 1300 tcp_skb_pcount_add(prev, pcount); 1301 BUG_ON(tcp_skb_pcount(skb) < pcount); 1302 tcp_skb_pcount_add(skb, -pcount); 1303 1304 /* When we're adding to gso_segs == 1, gso_size will be zero, 1305 * in theory this shouldn't be necessary but as long as DSACK 1306 * code can come after this skb later on it's better to keep 1307 * setting gso_size to something. 1308 */ 1309 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1310 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1311 1312 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1313 if (tcp_skb_pcount(skb) <= 1) 1314 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1315 1316 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1317 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1318 1319 if (skb->len > 0) { 1320 BUG_ON(!tcp_skb_pcount(skb)); 1321 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1322 return false; 1323 } 1324 1325 /* Whole SKB was eaten :-) */ 1326 1327 if (skb == tp->retransmit_skb_hint) 1328 tp->retransmit_skb_hint = prev; 1329 if (skb == tp->lost_skb_hint) { 1330 tp->lost_skb_hint = prev; 1331 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1332 } 1333 1334 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1335 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1336 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1337 TCP_SKB_CB(prev)->end_seq++; 1338 1339 if (skb == tcp_highest_sack(sk)) 1340 tcp_advance_highest_sack(sk, skb); 1341 1342 tcp_skb_collapse_tstamp(prev, skb); 1343 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1344 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1345 1346 tcp_rtx_queue_unlink_and_free(skb, sk); 1347 1348 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1349 1350 return true; 1351 } 1352 1353 /* I wish gso_size would have a bit more sane initialization than 1354 * something-or-zero which complicates things 1355 */ 1356 static int tcp_skb_seglen(const struct sk_buff *skb) 1357 { 1358 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1359 } 1360 1361 /* Shifting pages past head area doesn't work */ 1362 static int skb_can_shift(const struct sk_buff *skb) 1363 { 1364 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1365 } 1366 1367 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1368 * skb. 1369 */ 1370 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1371 struct tcp_sacktag_state *state, 1372 u32 start_seq, u32 end_seq, 1373 bool dup_sack) 1374 { 1375 struct tcp_sock *tp = tcp_sk(sk); 1376 struct sk_buff *prev; 1377 int mss; 1378 int pcount = 0; 1379 int len; 1380 int in_sack; 1381 1382 /* Normally R but no L won't result in plain S */ 1383 if (!dup_sack && 1384 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1385 goto fallback; 1386 if (!skb_can_shift(skb)) 1387 goto fallback; 1388 /* This frame is about to be dropped (was ACKed). */ 1389 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1390 goto fallback; 1391 1392 /* Can only happen with delayed DSACK + discard craziness */ 1393 prev = skb_rb_prev(skb); 1394 if (!prev) 1395 goto fallback; 1396 1397 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1398 goto fallback; 1399 1400 if (!tcp_skb_can_collapse_to(prev)) 1401 goto fallback; 1402 1403 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1404 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1405 1406 if (in_sack) { 1407 len = skb->len; 1408 pcount = tcp_skb_pcount(skb); 1409 mss = tcp_skb_seglen(skb); 1410 1411 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1412 * drop this restriction as unnecessary 1413 */ 1414 if (mss != tcp_skb_seglen(prev)) 1415 goto fallback; 1416 } else { 1417 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1418 goto noop; 1419 /* CHECKME: This is non-MSS split case only?, this will 1420 * cause skipped skbs due to advancing loop btw, original 1421 * has that feature too 1422 */ 1423 if (tcp_skb_pcount(skb) <= 1) 1424 goto noop; 1425 1426 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1427 if (!in_sack) { 1428 /* TODO: head merge to next could be attempted here 1429 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1430 * though it might not be worth of the additional hassle 1431 * 1432 * ...we can probably just fallback to what was done 1433 * previously. We could try merging non-SACKed ones 1434 * as well but it probably isn't going to buy off 1435 * because later SACKs might again split them, and 1436 * it would make skb timestamp tracking considerably 1437 * harder problem. 1438 */ 1439 goto fallback; 1440 } 1441 1442 len = end_seq - TCP_SKB_CB(skb)->seq; 1443 BUG_ON(len < 0); 1444 BUG_ON(len > skb->len); 1445 1446 /* MSS boundaries should be honoured or else pcount will 1447 * severely break even though it makes things bit trickier. 1448 * Optimize common case to avoid most of the divides 1449 */ 1450 mss = tcp_skb_mss(skb); 1451 1452 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1453 * drop this restriction as unnecessary 1454 */ 1455 if (mss != tcp_skb_seglen(prev)) 1456 goto fallback; 1457 1458 if (len == mss) { 1459 pcount = 1; 1460 } else if (len < mss) { 1461 goto noop; 1462 } else { 1463 pcount = len / mss; 1464 len = pcount * mss; 1465 } 1466 } 1467 1468 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1469 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1470 goto fallback; 1471 1472 if (!skb_shift(prev, skb, len)) 1473 goto fallback; 1474 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1475 goto out; 1476 1477 /* Hole filled allows collapsing with the next as well, this is very 1478 * useful when hole on every nth skb pattern happens 1479 */ 1480 skb = skb_rb_next(prev); 1481 if (!skb) 1482 goto out; 1483 1484 if (!skb_can_shift(skb) || 1485 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1486 (mss != tcp_skb_seglen(skb))) 1487 goto out; 1488 1489 len = skb->len; 1490 if (skb_shift(prev, skb, len)) { 1491 pcount += tcp_skb_pcount(skb); 1492 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1493 len, mss, 0); 1494 } 1495 1496 out: 1497 return prev; 1498 1499 noop: 1500 return skb; 1501 1502 fallback: 1503 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1504 return NULL; 1505 } 1506 1507 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1508 struct tcp_sack_block *next_dup, 1509 struct tcp_sacktag_state *state, 1510 u32 start_seq, u32 end_seq, 1511 bool dup_sack_in) 1512 { 1513 struct tcp_sock *tp = tcp_sk(sk); 1514 struct sk_buff *tmp; 1515 1516 skb_rbtree_walk_from(skb) { 1517 int in_sack = 0; 1518 bool dup_sack = dup_sack_in; 1519 1520 /* queue is in-order => we can short-circuit the walk early */ 1521 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1522 break; 1523 1524 if (next_dup && 1525 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1526 in_sack = tcp_match_skb_to_sack(sk, skb, 1527 next_dup->start_seq, 1528 next_dup->end_seq); 1529 if (in_sack > 0) 1530 dup_sack = true; 1531 } 1532 1533 /* skb reference here is a bit tricky to get right, since 1534 * shifting can eat and free both this skb and the next, 1535 * so not even _safe variant of the loop is enough. 1536 */ 1537 if (in_sack <= 0) { 1538 tmp = tcp_shift_skb_data(sk, skb, state, 1539 start_seq, end_seq, dup_sack); 1540 if (tmp) { 1541 if (tmp != skb) { 1542 skb = tmp; 1543 continue; 1544 } 1545 1546 in_sack = 0; 1547 } else { 1548 in_sack = tcp_match_skb_to_sack(sk, skb, 1549 start_seq, 1550 end_seq); 1551 } 1552 } 1553 1554 if (unlikely(in_sack < 0)) 1555 break; 1556 1557 if (in_sack) { 1558 TCP_SKB_CB(skb)->sacked = 1559 tcp_sacktag_one(sk, 1560 state, 1561 TCP_SKB_CB(skb)->sacked, 1562 TCP_SKB_CB(skb)->seq, 1563 TCP_SKB_CB(skb)->end_seq, 1564 dup_sack, 1565 tcp_skb_pcount(skb), 1566 skb->skb_mstamp); 1567 tcp_rate_skb_delivered(sk, skb, state->rate); 1568 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1569 list_del_init(&skb->tcp_tsorted_anchor); 1570 1571 if (!before(TCP_SKB_CB(skb)->seq, 1572 tcp_highest_sack_seq(tp))) 1573 tcp_advance_highest_sack(sk, skb); 1574 } 1575 } 1576 return skb; 1577 } 1578 1579 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1580 struct tcp_sacktag_state *state, 1581 u32 seq) 1582 { 1583 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1584 struct sk_buff *skb; 1585 1586 while (*p) { 1587 parent = *p; 1588 skb = rb_to_skb(parent); 1589 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1590 p = &parent->rb_left; 1591 continue; 1592 } 1593 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1594 p = &parent->rb_right; 1595 continue; 1596 } 1597 return skb; 1598 } 1599 return NULL; 1600 } 1601 1602 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1603 struct tcp_sacktag_state *state, 1604 u32 skip_to_seq) 1605 { 1606 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1607 return skb; 1608 1609 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1610 } 1611 1612 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1613 struct sock *sk, 1614 struct tcp_sack_block *next_dup, 1615 struct tcp_sacktag_state *state, 1616 u32 skip_to_seq) 1617 { 1618 if (!next_dup) 1619 return skb; 1620 1621 if (before(next_dup->start_seq, skip_to_seq)) { 1622 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1623 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1624 next_dup->start_seq, next_dup->end_seq, 1625 1); 1626 } 1627 1628 return skb; 1629 } 1630 1631 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1632 { 1633 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1634 } 1635 1636 static int 1637 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1638 u32 prior_snd_una, struct tcp_sacktag_state *state) 1639 { 1640 struct tcp_sock *tp = tcp_sk(sk); 1641 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1642 TCP_SKB_CB(ack_skb)->sacked); 1643 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1644 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1645 struct tcp_sack_block *cache; 1646 struct sk_buff *skb; 1647 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1648 int used_sacks; 1649 bool found_dup_sack = false; 1650 int i, j; 1651 int first_sack_index; 1652 1653 state->flag = 0; 1654 state->reord = tp->snd_nxt; 1655 1656 if (!tp->sacked_out) 1657 tcp_highest_sack_reset(sk); 1658 1659 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1660 num_sacks, prior_snd_una); 1661 if (found_dup_sack) { 1662 state->flag |= FLAG_DSACKING_ACK; 1663 tp->delivered++; /* A spurious retransmission is delivered */ 1664 } 1665 1666 /* Eliminate too old ACKs, but take into 1667 * account more or less fresh ones, they can 1668 * contain valid SACK info. 1669 */ 1670 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1671 return 0; 1672 1673 if (!tp->packets_out) 1674 goto out; 1675 1676 used_sacks = 0; 1677 first_sack_index = 0; 1678 for (i = 0; i < num_sacks; i++) { 1679 bool dup_sack = !i && found_dup_sack; 1680 1681 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1682 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1683 1684 if (!tcp_is_sackblock_valid(tp, dup_sack, 1685 sp[used_sacks].start_seq, 1686 sp[used_sacks].end_seq)) { 1687 int mib_idx; 1688 1689 if (dup_sack) { 1690 if (!tp->undo_marker) 1691 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1692 else 1693 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1694 } else { 1695 /* Don't count olds caused by ACK reordering */ 1696 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1697 !after(sp[used_sacks].end_seq, tp->snd_una)) 1698 continue; 1699 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1700 } 1701 1702 NET_INC_STATS(sock_net(sk), mib_idx); 1703 if (i == 0) 1704 first_sack_index = -1; 1705 continue; 1706 } 1707 1708 /* Ignore very old stuff early */ 1709 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1710 continue; 1711 1712 used_sacks++; 1713 } 1714 1715 /* order SACK blocks to allow in order walk of the retrans queue */ 1716 for (i = used_sacks - 1; i > 0; i--) { 1717 for (j = 0; j < i; j++) { 1718 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1719 swap(sp[j], sp[j + 1]); 1720 1721 /* Track where the first SACK block goes to */ 1722 if (j == first_sack_index) 1723 first_sack_index = j + 1; 1724 } 1725 } 1726 } 1727 1728 state->mss_now = tcp_current_mss(sk); 1729 skb = NULL; 1730 i = 0; 1731 1732 if (!tp->sacked_out) { 1733 /* It's already past, so skip checking against it */ 1734 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1735 } else { 1736 cache = tp->recv_sack_cache; 1737 /* Skip empty blocks in at head of the cache */ 1738 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1739 !cache->end_seq) 1740 cache++; 1741 } 1742 1743 while (i < used_sacks) { 1744 u32 start_seq = sp[i].start_seq; 1745 u32 end_seq = sp[i].end_seq; 1746 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1747 struct tcp_sack_block *next_dup = NULL; 1748 1749 if (found_dup_sack && ((i + 1) == first_sack_index)) 1750 next_dup = &sp[i + 1]; 1751 1752 /* Skip too early cached blocks */ 1753 while (tcp_sack_cache_ok(tp, cache) && 1754 !before(start_seq, cache->end_seq)) 1755 cache++; 1756 1757 /* Can skip some work by looking recv_sack_cache? */ 1758 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1759 after(end_seq, cache->start_seq)) { 1760 1761 /* Head todo? */ 1762 if (before(start_seq, cache->start_seq)) { 1763 skb = tcp_sacktag_skip(skb, sk, state, 1764 start_seq); 1765 skb = tcp_sacktag_walk(skb, sk, next_dup, 1766 state, 1767 start_seq, 1768 cache->start_seq, 1769 dup_sack); 1770 } 1771 1772 /* Rest of the block already fully processed? */ 1773 if (!after(end_seq, cache->end_seq)) 1774 goto advance_sp; 1775 1776 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1777 state, 1778 cache->end_seq); 1779 1780 /* ...tail remains todo... */ 1781 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1782 /* ...but better entrypoint exists! */ 1783 skb = tcp_highest_sack(sk); 1784 if (!skb) 1785 break; 1786 cache++; 1787 goto walk; 1788 } 1789 1790 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1791 /* Check overlap against next cached too (past this one already) */ 1792 cache++; 1793 continue; 1794 } 1795 1796 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1797 skb = tcp_highest_sack(sk); 1798 if (!skb) 1799 break; 1800 } 1801 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1802 1803 walk: 1804 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1805 start_seq, end_seq, dup_sack); 1806 1807 advance_sp: 1808 i++; 1809 } 1810 1811 /* Clear the head of the cache sack blocks so we can skip it next time */ 1812 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1813 tp->recv_sack_cache[i].start_seq = 0; 1814 tp->recv_sack_cache[i].end_seq = 0; 1815 } 1816 for (j = 0; j < used_sacks; j++) 1817 tp->recv_sack_cache[i++] = sp[j]; 1818 1819 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1820 tcp_check_sack_reordering(sk, state->reord, 0); 1821 1822 tcp_verify_left_out(tp); 1823 out: 1824 1825 #if FASTRETRANS_DEBUG > 0 1826 WARN_ON((int)tp->sacked_out < 0); 1827 WARN_ON((int)tp->lost_out < 0); 1828 WARN_ON((int)tp->retrans_out < 0); 1829 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1830 #endif 1831 return state->flag; 1832 } 1833 1834 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1835 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1836 */ 1837 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1838 { 1839 u32 holes; 1840 1841 holes = max(tp->lost_out, 1U); 1842 holes = min(holes, tp->packets_out); 1843 1844 if ((tp->sacked_out + holes) > tp->packets_out) { 1845 tp->sacked_out = tp->packets_out - holes; 1846 return true; 1847 } 1848 return false; 1849 } 1850 1851 /* If we receive more dupacks than we expected counting segments 1852 * in assumption of absent reordering, interpret this as reordering. 1853 * The only another reason could be bug in receiver TCP. 1854 */ 1855 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1856 { 1857 struct tcp_sock *tp = tcp_sk(sk); 1858 1859 if (!tcp_limit_reno_sacked(tp)) 1860 return; 1861 1862 tp->reordering = min_t(u32, tp->packets_out + addend, 1863 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1864 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1865 } 1866 1867 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1868 1869 static void tcp_add_reno_sack(struct sock *sk) 1870 { 1871 struct tcp_sock *tp = tcp_sk(sk); 1872 u32 prior_sacked = tp->sacked_out; 1873 1874 tp->sacked_out++; 1875 tcp_check_reno_reordering(sk, 0); 1876 if (tp->sacked_out > prior_sacked) 1877 tp->delivered++; /* Some out-of-order packet is delivered */ 1878 tcp_verify_left_out(tp); 1879 } 1880 1881 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1882 1883 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1884 { 1885 struct tcp_sock *tp = tcp_sk(sk); 1886 1887 if (acked > 0) { 1888 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1889 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1890 if (acked - 1 >= tp->sacked_out) 1891 tp->sacked_out = 0; 1892 else 1893 tp->sacked_out -= acked - 1; 1894 } 1895 tcp_check_reno_reordering(sk, acked); 1896 tcp_verify_left_out(tp); 1897 } 1898 1899 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1900 { 1901 tp->sacked_out = 0; 1902 } 1903 1904 void tcp_clear_retrans(struct tcp_sock *tp) 1905 { 1906 tp->retrans_out = 0; 1907 tp->lost_out = 0; 1908 tp->undo_marker = 0; 1909 tp->undo_retrans = -1; 1910 tp->sacked_out = 0; 1911 } 1912 1913 static inline void tcp_init_undo(struct tcp_sock *tp) 1914 { 1915 tp->undo_marker = tp->snd_una; 1916 /* Retransmission still in flight may cause DSACKs later. */ 1917 tp->undo_retrans = tp->retrans_out ? : -1; 1918 } 1919 1920 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1921 * and reset tags completely, otherwise preserve SACKs. If receiver 1922 * dropped its ofo queue, we will know this due to reneging detection. 1923 */ 1924 void tcp_enter_loss(struct sock *sk) 1925 { 1926 const struct inet_connection_sock *icsk = inet_csk(sk); 1927 struct tcp_sock *tp = tcp_sk(sk); 1928 struct net *net = sock_net(sk); 1929 struct sk_buff *skb; 1930 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1931 bool is_reneg; /* is receiver reneging on SACKs? */ 1932 bool mark_lost; 1933 1934 /* Reduce ssthresh if it has not yet been made inside this window. */ 1935 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1936 !after(tp->high_seq, tp->snd_una) || 1937 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1938 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1939 tp->prior_cwnd = tp->snd_cwnd; 1940 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1941 tcp_ca_event(sk, CA_EVENT_LOSS); 1942 tcp_init_undo(tp); 1943 } 1944 tp->snd_cwnd = 1; 1945 tp->snd_cwnd_cnt = 0; 1946 tp->snd_cwnd_stamp = tcp_jiffies32; 1947 1948 tp->retrans_out = 0; 1949 tp->lost_out = 0; 1950 1951 if (tcp_is_reno(tp)) 1952 tcp_reset_reno_sack(tp); 1953 1954 skb = tcp_rtx_queue_head(sk); 1955 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1956 if (is_reneg) { 1957 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1958 tp->sacked_out = 0; 1959 /* Mark SACK reneging until we recover from this loss event. */ 1960 tp->is_sack_reneg = 1; 1961 } 1962 tcp_clear_all_retrans_hints(tp); 1963 1964 skb_rbtree_walk_from(skb) { 1965 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1966 is_reneg); 1967 if (mark_lost) 1968 tcp_sum_lost(tp, skb); 1969 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1970 if (mark_lost) { 1971 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1972 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1973 tp->lost_out += tcp_skb_pcount(skb); 1974 } 1975 } 1976 tcp_verify_left_out(tp); 1977 1978 /* Timeout in disordered state after receiving substantial DUPACKs 1979 * suggests that the degree of reordering is over-estimated. 1980 */ 1981 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1982 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1983 tp->reordering = min_t(unsigned int, tp->reordering, 1984 net->ipv4.sysctl_tcp_reordering); 1985 tcp_set_ca_state(sk, TCP_CA_Loss); 1986 tp->high_seq = tp->snd_nxt; 1987 tcp_ecn_queue_cwr(tp); 1988 1989 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1990 * loss recovery is underway except recurring timeout(s) on 1991 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1992 */ 1993 tp->frto = net->ipv4.sysctl_tcp_frto && 1994 (new_recovery || icsk->icsk_retransmits) && 1995 !inet_csk(sk)->icsk_mtup.probe_size; 1996 } 1997 1998 /* If ACK arrived pointing to a remembered SACK, it means that our 1999 * remembered SACKs do not reflect real state of receiver i.e. 2000 * receiver _host_ is heavily congested (or buggy). 2001 * 2002 * To avoid big spurious retransmission bursts due to transient SACK 2003 * scoreboard oddities that look like reneging, we give the receiver a 2004 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2005 * restore sanity to the SACK scoreboard. If the apparent reneging 2006 * persists until this RTO then we'll clear the SACK scoreboard. 2007 */ 2008 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2009 { 2010 if (flag & FLAG_SACK_RENEGING) { 2011 struct tcp_sock *tp = tcp_sk(sk); 2012 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2013 msecs_to_jiffies(10)); 2014 2015 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2016 delay, TCP_RTO_MAX); 2017 return true; 2018 } 2019 return false; 2020 } 2021 2022 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2023 * counter when SACK is enabled (without SACK, sacked_out is used for 2024 * that purpose). 2025 * 2026 * With reordering, holes may still be in flight, so RFC3517 recovery 2027 * uses pure sacked_out (total number of SACKed segments) even though 2028 * it violates the RFC that uses duplicate ACKs, often these are equal 2029 * but when e.g. out-of-window ACKs or packet duplication occurs, 2030 * they differ. Since neither occurs due to loss, TCP should really 2031 * ignore them. 2032 */ 2033 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2034 { 2035 return tp->sacked_out + 1; 2036 } 2037 2038 /* Linux NewReno/SACK/ECN state machine. 2039 * -------------------------------------- 2040 * 2041 * "Open" Normal state, no dubious events, fast path. 2042 * "Disorder" In all the respects it is "Open", 2043 * but requires a bit more attention. It is entered when 2044 * we see some SACKs or dupacks. It is split of "Open" 2045 * mainly to move some processing from fast path to slow one. 2046 * "CWR" CWND was reduced due to some Congestion Notification event. 2047 * It can be ECN, ICMP source quench, local device congestion. 2048 * "Recovery" CWND was reduced, we are fast-retransmitting. 2049 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2050 * 2051 * tcp_fastretrans_alert() is entered: 2052 * - each incoming ACK, if state is not "Open" 2053 * - when arrived ACK is unusual, namely: 2054 * * SACK 2055 * * Duplicate ACK. 2056 * * ECN ECE. 2057 * 2058 * Counting packets in flight is pretty simple. 2059 * 2060 * in_flight = packets_out - left_out + retrans_out 2061 * 2062 * packets_out is SND.NXT-SND.UNA counted in packets. 2063 * 2064 * retrans_out is number of retransmitted segments. 2065 * 2066 * left_out is number of segments left network, but not ACKed yet. 2067 * 2068 * left_out = sacked_out + lost_out 2069 * 2070 * sacked_out: Packets, which arrived to receiver out of order 2071 * and hence not ACKed. With SACKs this number is simply 2072 * amount of SACKed data. Even without SACKs 2073 * it is easy to give pretty reliable estimate of this number, 2074 * counting duplicate ACKs. 2075 * 2076 * lost_out: Packets lost by network. TCP has no explicit 2077 * "loss notification" feedback from network (for now). 2078 * It means that this number can be only _guessed_. 2079 * Actually, it is the heuristics to predict lossage that 2080 * distinguishes different algorithms. 2081 * 2082 * F.e. after RTO, when all the queue is considered as lost, 2083 * lost_out = packets_out and in_flight = retrans_out. 2084 * 2085 * Essentially, we have now a few algorithms detecting 2086 * lost packets. 2087 * 2088 * If the receiver supports SACK: 2089 * 2090 * RFC6675/3517: It is the conventional algorithm. A packet is 2091 * considered lost if the number of higher sequence packets 2092 * SACKed is greater than or equal the DUPACK thoreshold 2093 * (reordering). This is implemented in tcp_mark_head_lost and 2094 * tcp_update_scoreboard. 2095 * 2096 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2097 * (2017-) that checks timing instead of counting DUPACKs. 2098 * Essentially a packet is considered lost if it's not S/ACKed 2099 * after RTT + reordering_window, where both metrics are 2100 * dynamically measured and adjusted. This is implemented in 2101 * tcp_rack_mark_lost. 2102 * 2103 * If the receiver does not support SACK: 2104 * 2105 * NewReno (RFC6582): in Recovery we assume that one segment 2106 * is lost (classic Reno). While we are in Recovery and 2107 * a partial ACK arrives, we assume that one more packet 2108 * is lost (NewReno). This heuristics are the same in NewReno 2109 * and SACK. 2110 * 2111 * Really tricky (and requiring careful tuning) part of algorithm 2112 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2113 * The first determines the moment _when_ we should reduce CWND and, 2114 * hence, slow down forward transmission. In fact, it determines the moment 2115 * when we decide that hole is caused by loss, rather than by a reorder. 2116 * 2117 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2118 * holes, caused by lost packets. 2119 * 2120 * And the most logically complicated part of algorithm is undo 2121 * heuristics. We detect false retransmits due to both too early 2122 * fast retransmit (reordering) and underestimated RTO, analyzing 2123 * timestamps and D-SACKs. When we detect that some segments were 2124 * retransmitted by mistake and CWND reduction was wrong, we undo 2125 * window reduction and abort recovery phase. This logic is hidden 2126 * inside several functions named tcp_try_undo_<something>. 2127 */ 2128 2129 /* This function decides, when we should leave Disordered state 2130 * and enter Recovery phase, reducing congestion window. 2131 * 2132 * Main question: may we further continue forward transmission 2133 * with the same cwnd? 2134 */ 2135 static bool tcp_time_to_recover(struct sock *sk, int flag) 2136 { 2137 struct tcp_sock *tp = tcp_sk(sk); 2138 2139 /* Trick#1: The loss is proven. */ 2140 if (tp->lost_out) 2141 return true; 2142 2143 /* Not-A-Trick#2 : Classic rule... */ 2144 if (tcp_dupack_heuristics(tp) > tp->reordering) 2145 return true; 2146 2147 return false; 2148 } 2149 2150 /* Detect loss in event "A" above by marking head of queue up as lost. 2151 * For non-SACK(Reno) senders, the first "packets" number of segments 2152 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2153 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2154 * the maximum SACKed segments to pass before reaching this limit. 2155 */ 2156 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2157 { 2158 struct tcp_sock *tp = tcp_sk(sk); 2159 struct sk_buff *skb; 2160 int cnt, oldcnt, lost; 2161 unsigned int mss; 2162 /* Use SACK to deduce losses of new sequences sent during recovery */ 2163 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2164 2165 WARN_ON(packets > tp->packets_out); 2166 skb = tp->lost_skb_hint; 2167 if (skb) { 2168 /* Head already handled? */ 2169 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2170 return; 2171 cnt = tp->lost_cnt_hint; 2172 } else { 2173 skb = tcp_rtx_queue_head(sk); 2174 cnt = 0; 2175 } 2176 2177 skb_rbtree_walk_from(skb) { 2178 /* TODO: do this better */ 2179 /* this is not the most efficient way to do this... */ 2180 tp->lost_skb_hint = skb; 2181 tp->lost_cnt_hint = cnt; 2182 2183 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2184 break; 2185 2186 oldcnt = cnt; 2187 if (tcp_is_reno(tp) || 2188 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2189 cnt += tcp_skb_pcount(skb); 2190 2191 if (cnt > packets) { 2192 if (tcp_is_sack(tp) || 2193 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2194 (oldcnt >= packets)) 2195 break; 2196 2197 mss = tcp_skb_mss(skb); 2198 /* If needed, chop off the prefix to mark as lost. */ 2199 lost = (packets - oldcnt) * mss; 2200 if (lost < skb->len && 2201 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2202 lost, mss, GFP_ATOMIC) < 0) 2203 break; 2204 cnt = packets; 2205 } 2206 2207 tcp_skb_mark_lost(tp, skb); 2208 2209 if (mark_head) 2210 break; 2211 } 2212 tcp_verify_left_out(tp); 2213 } 2214 2215 /* Account newly detected lost packet(s) */ 2216 2217 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2218 { 2219 struct tcp_sock *tp = tcp_sk(sk); 2220 2221 if (tcp_is_reno(tp)) { 2222 tcp_mark_head_lost(sk, 1, 1); 2223 } else { 2224 int sacked_upto = tp->sacked_out - tp->reordering; 2225 if (sacked_upto >= 0) 2226 tcp_mark_head_lost(sk, sacked_upto, 0); 2227 else if (fast_rexmit) 2228 tcp_mark_head_lost(sk, 1, 1); 2229 } 2230 } 2231 2232 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2233 { 2234 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2235 before(tp->rx_opt.rcv_tsecr, when); 2236 } 2237 2238 /* skb is spurious retransmitted if the returned timestamp echo 2239 * reply is prior to the skb transmission time 2240 */ 2241 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2242 const struct sk_buff *skb) 2243 { 2244 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2245 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2246 } 2247 2248 /* Nothing was retransmitted or returned timestamp is less 2249 * than timestamp of the first retransmission. 2250 */ 2251 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2252 { 2253 return !tp->retrans_stamp || 2254 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2255 } 2256 2257 /* Undo procedures. */ 2258 2259 /* We can clear retrans_stamp when there are no retransmissions in the 2260 * window. It would seem that it is trivially available for us in 2261 * tp->retrans_out, however, that kind of assumptions doesn't consider 2262 * what will happen if errors occur when sending retransmission for the 2263 * second time. ...It could the that such segment has only 2264 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2265 * the head skb is enough except for some reneging corner cases that 2266 * are not worth the effort. 2267 * 2268 * Main reason for all this complexity is the fact that connection dying 2269 * time now depends on the validity of the retrans_stamp, in particular, 2270 * that successive retransmissions of a segment must not advance 2271 * retrans_stamp under any conditions. 2272 */ 2273 static bool tcp_any_retrans_done(const struct sock *sk) 2274 { 2275 const struct tcp_sock *tp = tcp_sk(sk); 2276 struct sk_buff *skb; 2277 2278 if (tp->retrans_out) 2279 return true; 2280 2281 skb = tcp_rtx_queue_head(sk); 2282 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2283 return true; 2284 2285 return false; 2286 } 2287 2288 static void DBGUNDO(struct sock *sk, const char *msg) 2289 { 2290 #if FASTRETRANS_DEBUG > 1 2291 struct tcp_sock *tp = tcp_sk(sk); 2292 struct inet_sock *inet = inet_sk(sk); 2293 2294 if (sk->sk_family == AF_INET) { 2295 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2296 msg, 2297 &inet->inet_daddr, ntohs(inet->inet_dport), 2298 tp->snd_cwnd, tcp_left_out(tp), 2299 tp->snd_ssthresh, tp->prior_ssthresh, 2300 tp->packets_out); 2301 } 2302 #if IS_ENABLED(CONFIG_IPV6) 2303 else if (sk->sk_family == AF_INET6) { 2304 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2305 msg, 2306 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2307 tp->snd_cwnd, tcp_left_out(tp), 2308 tp->snd_ssthresh, tp->prior_ssthresh, 2309 tp->packets_out); 2310 } 2311 #endif 2312 #endif 2313 } 2314 2315 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2316 { 2317 struct tcp_sock *tp = tcp_sk(sk); 2318 2319 if (unmark_loss) { 2320 struct sk_buff *skb; 2321 2322 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2323 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2324 } 2325 tp->lost_out = 0; 2326 tcp_clear_all_retrans_hints(tp); 2327 } 2328 2329 if (tp->prior_ssthresh) { 2330 const struct inet_connection_sock *icsk = inet_csk(sk); 2331 2332 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2333 2334 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2335 tp->snd_ssthresh = tp->prior_ssthresh; 2336 tcp_ecn_withdraw_cwr(tp); 2337 } 2338 } 2339 tp->snd_cwnd_stamp = tcp_jiffies32; 2340 tp->undo_marker = 0; 2341 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2342 } 2343 2344 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2345 { 2346 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2347 } 2348 2349 /* People celebrate: "We love our President!" */ 2350 static bool tcp_try_undo_recovery(struct sock *sk) 2351 { 2352 struct tcp_sock *tp = tcp_sk(sk); 2353 2354 if (tcp_may_undo(tp)) { 2355 int mib_idx; 2356 2357 /* Happy end! We did not retransmit anything 2358 * or our original transmission succeeded. 2359 */ 2360 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2361 tcp_undo_cwnd_reduction(sk, false); 2362 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2363 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2364 else 2365 mib_idx = LINUX_MIB_TCPFULLUNDO; 2366 2367 NET_INC_STATS(sock_net(sk), mib_idx); 2368 } else if (tp->rack.reo_wnd_persist) { 2369 tp->rack.reo_wnd_persist--; 2370 } 2371 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2372 /* Hold old state until something *above* high_seq 2373 * is ACKed. For Reno it is MUST to prevent false 2374 * fast retransmits (RFC2582). SACK TCP is safe. */ 2375 if (!tcp_any_retrans_done(sk)) 2376 tp->retrans_stamp = 0; 2377 return true; 2378 } 2379 tcp_set_ca_state(sk, TCP_CA_Open); 2380 tp->is_sack_reneg = 0; 2381 return false; 2382 } 2383 2384 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2385 static bool tcp_try_undo_dsack(struct sock *sk) 2386 { 2387 struct tcp_sock *tp = tcp_sk(sk); 2388 2389 if (tp->undo_marker && !tp->undo_retrans) { 2390 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2391 tp->rack.reo_wnd_persist + 1); 2392 DBGUNDO(sk, "D-SACK"); 2393 tcp_undo_cwnd_reduction(sk, false); 2394 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2395 return true; 2396 } 2397 return false; 2398 } 2399 2400 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2401 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2402 { 2403 struct tcp_sock *tp = tcp_sk(sk); 2404 2405 if (frto_undo || tcp_may_undo(tp)) { 2406 tcp_undo_cwnd_reduction(sk, true); 2407 2408 DBGUNDO(sk, "partial loss"); 2409 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2410 if (frto_undo) 2411 NET_INC_STATS(sock_net(sk), 2412 LINUX_MIB_TCPSPURIOUSRTOS); 2413 inet_csk(sk)->icsk_retransmits = 0; 2414 if (frto_undo || tcp_is_sack(tp)) { 2415 tcp_set_ca_state(sk, TCP_CA_Open); 2416 tp->is_sack_reneg = 0; 2417 } 2418 return true; 2419 } 2420 return false; 2421 } 2422 2423 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2424 * It computes the number of packets to send (sndcnt) based on packets newly 2425 * delivered: 2426 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2427 * cwnd reductions across a full RTT. 2428 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2429 * But when the retransmits are acked without further losses, PRR 2430 * slow starts cwnd up to ssthresh to speed up the recovery. 2431 */ 2432 static void tcp_init_cwnd_reduction(struct sock *sk) 2433 { 2434 struct tcp_sock *tp = tcp_sk(sk); 2435 2436 tp->high_seq = tp->snd_nxt; 2437 tp->tlp_high_seq = 0; 2438 tp->snd_cwnd_cnt = 0; 2439 tp->prior_cwnd = tp->snd_cwnd; 2440 tp->prr_delivered = 0; 2441 tp->prr_out = 0; 2442 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2443 tcp_ecn_queue_cwr(tp); 2444 } 2445 2446 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2447 { 2448 struct tcp_sock *tp = tcp_sk(sk); 2449 int sndcnt = 0; 2450 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2451 2452 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2453 return; 2454 2455 tp->prr_delivered += newly_acked_sacked; 2456 if (delta < 0) { 2457 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2458 tp->prior_cwnd - 1; 2459 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2460 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2461 !(flag & FLAG_LOST_RETRANS)) { 2462 sndcnt = min_t(int, delta, 2463 max_t(int, tp->prr_delivered - tp->prr_out, 2464 newly_acked_sacked) + 1); 2465 } else { 2466 sndcnt = min(delta, newly_acked_sacked); 2467 } 2468 /* Force a fast retransmit upon entering fast recovery */ 2469 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2470 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2471 } 2472 2473 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2474 { 2475 struct tcp_sock *tp = tcp_sk(sk); 2476 2477 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2478 return; 2479 2480 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2481 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2482 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2483 tp->snd_cwnd = tp->snd_ssthresh; 2484 tp->snd_cwnd_stamp = tcp_jiffies32; 2485 } 2486 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2487 } 2488 2489 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2490 void tcp_enter_cwr(struct sock *sk) 2491 { 2492 struct tcp_sock *tp = tcp_sk(sk); 2493 2494 tp->prior_ssthresh = 0; 2495 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2496 tp->undo_marker = 0; 2497 tcp_init_cwnd_reduction(sk); 2498 tcp_set_ca_state(sk, TCP_CA_CWR); 2499 } 2500 } 2501 EXPORT_SYMBOL(tcp_enter_cwr); 2502 2503 static void tcp_try_keep_open(struct sock *sk) 2504 { 2505 struct tcp_sock *tp = tcp_sk(sk); 2506 int state = TCP_CA_Open; 2507 2508 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2509 state = TCP_CA_Disorder; 2510 2511 if (inet_csk(sk)->icsk_ca_state != state) { 2512 tcp_set_ca_state(sk, state); 2513 tp->high_seq = tp->snd_nxt; 2514 } 2515 } 2516 2517 static void tcp_try_to_open(struct sock *sk, int flag) 2518 { 2519 struct tcp_sock *tp = tcp_sk(sk); 2520 2521 tcp_verify_left_out(tp); 2522 2523 if (!tcp_any_retrans_done(sk)) 2524 tp->retrans_stamp = 0; 2525 2526 if (flag & FLAG_ECE) 2527 tcp_enter_cwr(sk); 2528 2529 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2530 tcp_try_keep_open(sk); 2531 } 2532 } 2533 2534 static void tcp_mtup_probe_failed(struct sock *sk) 2535 { 2536 struct inet_connection_sock *icsk = inet_csk(sk); 2537 2538 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2539 icsk->icsk_mtup.probe_size = 0; 2540 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2541 } 2542 2543 static void tcp_mtup_probe_success(struct sock *sk) 2544 { 2545 struct tcp_sock *tp = tcp_sk(sk); 2546 struct inet_connection_sock *icsk = inet_csk(sk); 2547 2548 /* FIXME: breaks with very large cwnd */ 2549 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2550 tp->snd_cwnd = tp->snd_cwnd * 2551 tcp_mss_to_mtu(sk, tp->mss_cache) / 2552 icsk->icsk_mtup.probe_size; 2553 tp->snd_cwnd_cnt = 0; 2554 tp->snd_cwnd_stamp = tcp_jiffies32; 2555 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2556 2557 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2558 icsk->icsk_mtup.probe_size = 0; 2559 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2560 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2561 } 2562 2563 /* Do a simple retransmit without using the backoff mechanisms in 2564 * tcp_timer. This is used for path mtu discovery. 2565 * The socket is already locked here. 2566 */ 2567 void tcp_simple_retransmit(struct sock *sk) 2568 { 2569 const struct inet_connection_sock *icsk = inet_csk(sk); 2570 struct tcp_sock *tp = tcp_sk(sk); 2571 struct sk_buff *skb; 2572 unsigned int mss = tcp_current_mss(sk); 2573 2574 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2575 if (tcp_skb_seglen(skb) > mss && 2576 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2577 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2578 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2579 tp->retrans_out -= tcp_skb_pcount(skb); 2580 } 2581 tcp_skb_mark_lost_uncond_verify(tp, skb); 2582 } 2583 } 2584 2585 tcp_clear_retrans_hints_partial(tp); 2586 2587 if (!tp->lost_out) 2588 return; 2589 2590 if (tcp_is_reno(tp)) 2591 tcp_limit_reno_sacked(tp); 2592 2593 tcp_verify_left_out(tp); 2594 2595 /* Don't muck with the congestion window here. 2596 * Reason is that we do not increase amount of _data_ 2597 * in network, but units changed and effective 2598 * cwnd/ssthresh really reduced now. 2599 */ 2600 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2601 tp->high_seq = tp->snd_nxt; 2602 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2603 tp->prior_ssthresh = 0; 2604 tp->undo_marker = 0; 2605 tcp_set_ca_state(sk, TCP_CA_Loss); 2606 } 2607 tcp_xmit_retransmit_queue(sk); 2608 } 2609 EXPORT_SYMBOL(tcp_simple_retransmit); 2610 2611 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2612 { 2613 struct tcp_sock *tp = tcp_sk(sk); 2614 int mib_idx; 2615 2616 if (tcp_is_reno(tp)) 2617 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2618 else 2619 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2620 2621 NET_INC_STATS(sock_net(sk), mib_idx); 2622 2623 tp->prior_ssthresh = 0; 2624 tcp_init_undo(tp); 2625 2626 if (!tcp_in_cwnd_reduction(sk)) { 2627 if (!ece_ack) 2628 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2629 tcp_init_cwnd_reduction(sk); 2630 } 2631 tcp_set_ca_state(sk, TCP_CA_Recovery); 2632 } 2633 2634 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2635 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2636 */ 2637 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2638 int *rexmit) 2639 { 2640 struct tcp_sock *tp = tcp_sk(sk); 2641 bool recovered = !before(tp->snd_una, tp->high_seq); 2642 2643 if ((flag & FLAG_SND_UNA_ADVANCED) && 2644 tcp_try_undo_loss(sk, false)) 2645 return; 2646 2647 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2648 /* Step 3.b. A timeout is spurious if not all data are 2649 * lost, i.e., never-retransmitted data are (s)acked. 2650 */ 2651 if ((flag & FLAG_ORIG_SACK_ACKED) && 2652 tcp_try_undo_loss(sk, true)) 2653 return; 2654 2655 if (after(tp->snd_nxt, tp->high_seq)) { 2656 if (flag & FLAG_DATA_SACKED || is_dupack) 2657 tp->frto = 0; /* Step 3.a. loss was real */ 2658 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2659 tp->high_seq = tp->snd_nxt; 2660 /* Step 2.b. Try send new data (but deferred until cwnd 2661 * is updated in tcp_ack()). Otherwise fall back to 2662 * the conventional recovery. 2663 */ 2664 if (!tcp_write_queue_empty(sk) && 2665 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2666 *rexmit = REXMIT_NEW; 2667 return; 2668 } 2669 tp->frto = 0; 2670 } 2671 } 2672 2673 if (recovered) { 2674 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2675 tcp_try_undo_recovery(sk); 2676 return; 2677 } 2678 if (tcp_is_reno(tp)) { 2679 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2680 * delivered. Lower inflight to clock out (re)tranmissions. 2681 */ 2682 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2683 tcp_add_reno_sack(sk); 2684 else if (flag & FLAG_SND_UNA_ADVANCED) 2685 tcp_reset_reno_sack(tp); 2686 } 2687 *rexmit = REXMIT_LOST; 2688 } 2689 2690 /* Undo during fast recovery after partial ACK. */ 2691 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2692 { 2693 struct tcp_sock *tp = tcp_sk(sk); 2694 2695 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2696 /* Plain luck! Hole if filled with delayed 2697 * packet, rather than with a retransmit. Check reordering. 2698 */ 2699 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2700 2701 /* We are getting evidence that the reordering degree is higher 2702 * than we realized. If there are no retransmits out then we 2703 * can undo. Otherwise we clock out new packets but do not 2704 * mark more packets lost or retransmit more. 2705 */ 2706 if (tp->retrans_out) 2707 return true; 2708 2709 if (!tcp_any_retrans_done(sk)) 2710 tp->retrans_stamp = 0; 2711 2712 DBGUNDO(sk, "partial recovery"); 2713 tcp_undo_cwnd_reduction(sk, true); 2714 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2715 tcp_try_keep_open(sk); 2716 return true; 2717 } 2718 return false; 2719 } 2720 2721 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2722 { 2723 struct tcp_sock *tp = tcp_sk(sk); 2724 2725 /* Use RACK to detect loss */ 2726 if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2727 u32 prior_retrans = tp->retrans_out; 2728 2729 tcp_rack_mark_lost(sk); 2730 if (prior_retrans > tp->retrans_out) 2731 *ack_flag |= FLAG_LOST_RETRANS; 2732 } 2733 } 2734 2735 static bool tcp_force_fast_retransmit(struct sock *sk) 2736 { 2737 struct tcp_sock *tp = tcp_sk(sk); 2738 2739 return after(tcp_highest_sack_seq(tp), 2740 tp->snd_una + tp->reordering * tp->mss_cache); 2741 } 2742 2743 /* Process an event, which can update packets-in-flight not trivially. 2744 * Main goal of this function is to calculate new estimate for left_out, 2745 * taking into account both packets sitting in receiver's buffer and 2746 * packets lost by network. 2747 * 2748 * Besides that it updates the congestion state when packet loss or ECN 2749 * is detected. But it does not reduce the cwnd, it is done by the 2750 * congestion control later. 2751 * 2752 * It does _not_ decide what to send, it is made in function 2753 * tcp_xmit_retransmit_queue(). 2754 */ 2755 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2756 bool is_dupack, int *ack_flag, int *rexmit) 2757 { 2758 struct inet_connection_sock *icsk = inet_csk(sk); 2759 struct tcp_sock *tp = tcp_sk(sk); 2760 int fast_rexmit = 0, flag = *ack_flag; 2761 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2762 tcp_force_fast_retransmit(sk)); 2763 2764 if (!tp->packets_out && tp->sacked_out) 2765 tp->sacked_out = 0; 2766 2767 /* Now state machine starts. 2768 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2769 if (flag & FLAG_ECE) 2770 tp->prior_ssthresh = 0; 2771 2772 /* B. In all the states check for reneging SACKs. */ 2773 if (tcp_check_sack_reneging(sk, flag)) 2774 return; 2775 2776 /* C. Check consistency of the current state. */ 2777 tcp_verify_left_out(tp); 2778 2779 /* D. Check state exit conditions. State can be terminated 2780 * when high_seq is ACKed. */ 2781 if (icsk->icsk_ca_state == TCP_CA_Open) { 2782 WARN_ON(tp->retrans_out != 0); 2783 tp->retrans_stamp = 0; 2784 } else if (!before(tp->snd_una, tp->high_seq)) { 2785 switch (icsk->icsk_ca_state) { 2786 case TCP_CA_CWR: 2787 /* CWR is to be held something *above* high_seq 2788 * is ACKed for CWR bit to reach receiver. */ 2789 if (tp->snd_una != tp->high_seq) { 2790 tcp_end_cwnd_reduction(sk); 2791 tcp_set_ca_state(sk, TCP_CA_Open); 2792 } 2793 break; 2794 2795 case TCP_CA_Recovery: 2796 if (tcp_is_reno(tp)) 2797 tcp_reset_reno_sack(tp); 2798 if (tcp_try_undo_recovery(sk)) 2799 return; 2800 tcp_end_cwnd_reduction(sk); 2801 break; 2802 } 2803 } 2804 2805 /* E. Process state. */ 2806 switch (icsk->icsk_ca_state) { 2807 case TCP_CA_Recovery: 2808 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2809 if (tcp_is_reno(tp) && is_dupack) 2810 tcp_add_reno_sack(sk); 2811 } else { 2812 if (tcp_try_undo_partial(sk, prior_snd_una)) 2813 return; 2814 /* Partial ACK arrived. Force fast retransmit. */ 2815 do_lost = tcp_is_reno(tp) || 2816 tcp_force_fast_retransmit(sk); 2817 } 2818 if (tcp_try_undo_dsack(sk)) { 2819 tcp_try_keep_open(sk); 2820 return; 2821 } 2822 tcp_rack_identify_loss(sk, ack_flag); 2823 break; 2824 case TCP_CA_Loss: 2825 tcp_process_loss(sk, flag, is_dupack, rexmit); 2826 tcp_rack_identify_loss(sk, ack_flag); 2827 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2828 (*ack_flag & FLAG_LOST_RETRANS))) 2829 return; 2830 /* Change state if cwnd is undone or retransmits are lost */ 2831 /* fall through */ 2832 default: 2833 if (tcp_is_reno(tp)) { 2834 if (flag & FLAG_SND_UNA_ADVANCED) 2835 tcp_reset_reno_sack(tp); 2836 if (is_dupack) 2837 tcp_add_reno_sack(sk); 2838 } 2839 2840 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2841 tcp_try_undo_dsack(sk); 2842 2843 tcp_rack_identify_loss(sk, ack_flag); 2844 if (!tcp_time_to_recover(sk, flag)) { 2845 tcp_try_to_open(sk, flag); 2846 return; 2847 } 2848 2849 /* MTU probe failure: don't reduce cwnd */ 2850 if (icsk->icsk_ca_state < TCP_CA_CWR && 2851 icsk->icsk_mtup.probe_size && 2852 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2853 tcp_mtup_probe_failed(sk); 2854 /* Restores the reduction we did in tcp_mtup_probe() */ 2855 tp->snd_cwnd++; 2856 tcp_simple_retransmit(sk); 2857 return; 2858 } 2859 2860 /* Otherwise enter Recovery state */ 2861 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2862 fast_rexmit = 1; 2863 } 2864 2865 if (do_lost) 2866 tcp_update_scoreboard(sk, fast_rexmit); 2867 *rexmit = REXMIT_LOST; 2868 } 2869 2870 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2871 { 2872 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2873 struct tcp_sock *tp = tcp_sk(sk); 2874 2875 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2876 /* If the remote keeps returning delayed ACKs, eventually 2877 * the min filter would pick it up and overestimate the 2878 * prop. delay when it expires. Skip suspected delayed ACKs. 2879 */ 2880 return; 2881 } 2882 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2883 rtt_us ? : jiffies_to_usecs(1)); 2884 } 2885 2886 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2887 long seq_rtt_us, long sack_rtt_us, 2888 long ca_rtt_us, struct rate_sample *rs) 2889 { 2890 const struct tcp_sock *tp = tcp_sk(sk); 2891 2892 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2893 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2894 * Karn's algorithm forbids taking RTT if some retransmitted data 2895 * is acked (RFC6298). 2896 */ 2897 if (seq_rtt_us < 0) 2898 seq_rtt_us = sack_rtt_us; 2899 2900 /* RTTM Rule: A TSecr value received in a segment is used to 2901 * update the averaged RTT measurement only if the segment 2902 * acknowledges some new data, i.e., only if it advances the 2903 * left edge of the send window. 2904 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2905 */ 2906 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2907 flag & FLAG_ACKED) { 2908 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2909 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2910 2911 seq_rtt_us = ca_rtt_us = delta_us; 2912 } 2913 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2914 if (seq_rtt_us < 0) 2915 return false; 2916 2917 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2918 * always taken together with ACK, SACK, or TS-opts. Any negative 2919 * values will be skipped with the seq_rtt_us < 0 check above. 2920 */ 2921 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2922 tcp_rtt_estimator(sk, seq_rtt_us); 2923 tcp_set_rto(sk); 2924 2925 /* RFC6298: only reset backoff on valid RTT measurement. */ 2926 inet_csk(sk)->icsk_backoff = 0; 2927 return true; 2928 } 2929 2930 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2931 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2932 { 2933 struct rate_sample rs; 2934 long rtt_us = -1L; 2935 2936 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2937 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2938 2939 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2940 } 2941 2942 2943 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2944 { 2945 const struct inet_connection_sock *icsk = inet_csk(sk); 2946 2947 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2948 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2949 } 2950 2951 /* Restart timer after forward progress on connection. 2952 * RFC2988 recommends to restart timer to now+rto. 2953 */ 2954 void tcp_rearm_rto(struct sock *sk) 2955 { 2956 const struct inet_connection_sock *icsk = inet_csk(sk); 2957 struct tcp_sock *tp = tcp_sk(sk); 2958 2959 /* If the retrans timer is currently being used by Fast Open 2960 * for SYN-ACK retrans purpose, stay put. 2961 */ 2962 if (tp->fastopen_rsk) 2963 return; 2964 2965 if (!tp->packets_out) { 2966 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2967 } else { 2968 u32 rto = inet_csk(sk)->icsk_rto; 2969 /* Offset the time elapsed after installing regular RTO */ 2970 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2971 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2972 s64 delta_us = tcp_rto_delta_us(sk); 2973 /* delta_us may not be positive if the socket is locked 2974 * when the retrans timer fires and is rescheduled. 2975 */ 2976 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2977 } 2978 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2979 TCP_RTO_MAX); 2980 } 2981 } 2982 2983 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2984 static void tcp_set_xmit_timer(struct sock *sk) 2985 { 2986 if (!tcp_schedule_loss_probe(sk, true)) 2987 tcp_rearm_rto(sk); 2988 } 2989 2990 /* If we get here, the whole TSO packet has not been acked. */ 2991 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2992 { 2993 struct tcp_sock *tp = tcp_sk(sk); 2994 u32 packets_acked; 2995 2996 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 2997 2998 packets_acked = tcp_skb_pcount(skb); 2999 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3000 return 0; 3001 packets_acked -= tcp_skb_pcount(skb); 3002 3003 if (packets_acked) { 3004 BUG_ON(tcp_skb_pcount(skb) == 0); 3005 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3006 } 3007 3008 return packets_acked; 3009 } 3010 3011 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3012 u32 prior_snd_una) 3013 { 3014 const struct skb_shared_info *shinfo; 3015 3016 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3017 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3018 return; 3019 3020 shinfo = skb_shinfo(skb); 3021 if (!before(shinfo->tskey, prior_snd_una) && 3022 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3023 tcp_skb_tsorted_save(skb) { 3024 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3025 } tcp_skb_tsorted_restore(skb); 3026 } 3027 } 3028 3029 /* Remove acknowledged frames from the retransmission queue. If our packet 3030 * is before the ack sequence we can discard it as it's confirmed to have 3031 * arrived at the other end. 3032 */ 3033 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3034 u32 prior_snd_una, 3035 struct tcp_sacktag_state *sack) 3036 { 3037 const struct inet_connection_sock *icsk = inet_csk(sk); 3038 u64 first_ackt, last_ackt; 3039 struct tcp_sock *tp = tcp_sk(sk); 3040 u32 prior_sacked = tp->sacked_out; 3041 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3042 struct sk_buff *skb, *next; 3043 bool fully_acked = true; 3044 long sack_rtt_us = -1L; 3045 long seq_rtt_us = -1L; 3046 long ca_rtt_us = -1L; 3047 u32 pkts_acked = 0; 3048 u32 last_in_flight = 0; 3049 bool rtt_update; 3050 int flag = 0; 3051 3052 first_ackt = 0; 3053 3054 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3055 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3056 const u32 start_seq = scb->seq; 3057 u8 sacked = scb->sacked; 3058 u32 acked_pcount; 3059 3060 tcp_ack_tstamp(sk, skb, prior_snd_una); 3061 3062 /* Determine how many packets and what bytes were acked, tso and else */ 3063 if (after(scb->end_seq, tp->snd_una)) { 3064 if (tcp_skb_pcount(skb) == 1 || 3065 !after(tp->snd_una, scb->seq)) 3066 break; 3067 3068 acked_pcount = tcp_tso_acked(sk, skb); 3069 if (!acked_pcount) 3070 break; 3071 fully_acked = false; 3072 } else { 3073 acked_pcount = tcp_skb_pcount(skb); 3074 } 3075 3076 if (unlikely(sacked & TCPCB_RETRANS)) { 3077 if (sacked & TCPCB_SACKED_RETRANS) 3078 tp->retrans_out -= acked_pcount; 3079 flag |= FLAG_RETRANS_DATA_ACKED; 3080 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3081 last_ackt = skb->skb_mstamp; 3082 WARN_ON_ONCE(last_ackt == 0); 3083 if (!first_ackt) 3084 first_ackt = last_ackt; 3085 3086 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3087 if (before(start_seq, reord)) 3088 reord = start_seq; 3089 if (!after(scb->end_seq, tp->high_seq)) 3090 flag |= FLAG_ORIG_SACK_ACKED; 3091 } 3092 3093 if (sacked & TCPCB_SACKED_ACKED) { 3094 tp->sacked_out -= acked_pcount; 3095 } else if (tcp_is_sack(tp)) { 3096 tp->delivered += acked_pcount; 3097 if (!tcp_skb_spurious_retrans(tp, skb)) 3098 tcp_rack_advance(tp, sacked, scb->end_seq, 3099 skb->skb_mstamp); 3100 } 3101 if (sacked & TCPCB_LOST) 3102 tp->lost_out -= acked_pcount; 3103 3104 tp->packets_out -= acked_pcount; 3105 pkts_acked += acked_pcount; 3106 tcp_rate_skb_delivered(sk, skb, sack->rate); 3107 3108 /* Initial outgoing SYN's get put onto the write_queue 3109 * just like anything else we transmit. It is not 3110 * true data, and if we misinform our callers that 3111 * this ACK acks real data, we will erroneously exit 3112 * connection startup slow start one packet too 3113 * quickly. This is severely frowned upon behavior. 3114 */ 3115 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3116 flag |= FLAG_DATA_ACKED; 3117 } else { 3118 flag |= FLAG_SYN_ACKED; 3119 tp->retrans_stamp = 0; 3120 } 3121 3122 if (!fully_acked) 3123 break; 3124 3125 next = skb_rb_next(skb); 3126 if (unlikely(skb == tp->retransmit_skb_hint)) 3127 tp->retransmit_skb_hint = NULL; 3128 if (unlikely(skb == tp->lost_skb_hint)) 3129 tp->lost_skb_hint = NULL; 3130 tcp_rtx_queue_unlink_and_free(skb, sk); 3131 } 3132 3133 if (!skb) 3134 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3135 3136 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3137 tp->snd_up = tp->snd_una; 3138 3139 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3140 flag |= FLAG_SACK_RENEGING; 3141 3142 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3143 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3144 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3145 3146 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3147 last_in_flight && !prior_sacked && fully_acked && 3148 sack->rate->prior_delivered + 1 == tp->delivered && 3149 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3150 /* Conservatively mark a delayed ACK. It's typically 3151 * from a lone runt packet over the round trip to 3152 * a receiver w/o out-of-order or CE events. 3153 */ 3154 flag |= FLAG_ACK_MAYBE_DELAYED; 3155 } 3156 } 3157 if (sack->first_sackt) { 3158 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3159 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3160 } 3161 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3162 ca_rtt_us, sack->rate); 3163 3164 if (flag & FLAG_ACKED) { 3165 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3166 if (unlikely(icsk->icsk_mtup.probe_size && 3167 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3168 tcp_mtup_probe_success(sk); 3169 } 3170 3171 if (tcp_is_reno(tp)) { 3172 tcp_remove_reno_sacks(sk, pkts_acked); 3173 } else { 3174 int delta; 3175 3176 /* Non-retransmitted hole got filled? That's reordering */ 3177 if (before(reord, prior_fack)) 3178 tcp_check_sack_reordering(sk, reord, 0); 3179 3180 delta = prior_sacked - tp->sacked_out; 3181 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3182 } 3183 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3184 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3185 /* Do not re-arm RTO if the sack RTT is measured from data sent 3186 * after when the head was last (re)transmitted. Otherwise the 3187 * timeout may continue to extend in loss recovery. 3188 */ 3189 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3190 } 3191 3192 if (icsk->icsk_ca_ops->pkts_acked) { 3193 struct ack_sample sample = { .pkts_acked = pkts_acked, 3194 .rtt_us = sack->rate->rtt_us, 3195 .in_flight = last_in_flight }; 3196 3197 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3198 } 3199 3200 #if FASTRETRANS_DEBUG > 0 3201 WARN_ON((int)tp->sacked_out < 0); 3202 WARN_ON((int)tp->lost_out < 0); 3203 WARN_ON((int)tp->retrans_out < 0); 3204 if (!tp->packets_out && tcp_is_sack(tp)) { 3205 icsk = inet_csk(sk); 3206 if (tp->lost_out) { 3207 pr_debug("Leak l=%u %d\n", 3208 tp->lost_out, icsk->icsk_ca_state); 3209 tp->lost_out = 0; 3210 } 3211 if (tp->sacked_out) { 3212 pr_debug("Leak s=%u %d\n", 3213 tp->sacked_out, icsk->icsk_ca_state); 3214 tp->sacked_out = 0; 3215 } 3216 if (tp->retrans_out) { 3217 pr_debug("Leak r=%u %d\n", 3218 tp->retrans_out, icsk->icsk_ca_state); 3219 tp->retrans_out = 0; 3220 } 3221 } 3222 #endif 3223 return flag; 3224 } 3225 3226 static void tcp_ack_probe(struct sock *sk) 3227 { 3228 struct inet_connection_sock *icsk = inet_csk(sk); 3229 struct sk_buff *head = tcp_send_head(sk); 3230 const struct tcp_sock *tp = tcp_sk(sk); 3231 3232 /* Was it a usable window open? */ 3233 if (!head) 3234 return; 3235 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3236 icsk->icsk_backoff = 0; 3237 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3238 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3239 * This function is not for random using! 3240 */ 3241 } else { 3242 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3243 3244 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3245 when, TCP_RTO_MAX); 3246 } 3247 } 3248 3249 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3250 { 3251 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3252 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3253 } 3254 3255 /* Decide wheather to run the increase function of congestion control. */ 3256 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3257 { 3258 /* If reordering is high then always grow cwnd whenever data is 3259 * delivered regardless of its ordering. Otherwise stay conservative 3260 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3261 * new SACK or ECE mark may first advance cwnd here and later reduce 3262 * cwnd in tcp_fastretrans_alert() based on more states. 3263 */ 3264 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3265 return flag & FLAG_FORWARD_PROGRESS; 3266 3267 return flag & FLAG_DATA_ACKED; 3268 } 3269 3270 /* The "ultimate" congestion control function that aims to replace the rigid 3271 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3272 * It's called toward the end of processing an ACK with precise rate 3273 * information. All transmission or retransmission are delayed afterwards. 3274 */ 3275 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3276 int flag, const struct rate_sample *rs) 3277 { 3278 const struct inet_connection_sock *icsk = inet_csk(sk); 3279 3280 if (icsk->icsk_ca_ops->cong_control) { 3281 icsk->icsk_ca_ops->cong_control(sk, rs); 3282 return; 3283 } 3284 3285 if (tcp_in_cwnd_reduction(sk)) { 3286 /* Reduce cwnd if state mandates */ 3287 tcp_cwnd_reduction(sk, acked_sacked, flag); 3288 } else if (tcp_may_raise_cwnd(sk, flag)) { 3289 /* Advance cwnd if state allows */ 3290 tcp_cong_avoid(sk, ack, acked_sacked); 3291 } 3292 tcp_update_pacing_rate(sk); 3293 } 3294 3295 /* Check that window update is acceptable. 3296 * The function assumes that snd_una<=ack<=snd_next. 3297 */ 3298 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3299 const u32 ack, const u32 ack_seq, 3300 const u32 nwin) 3301 { 3302 return after(ack, tp->snd_una) || 3303 after(ack_seq, tp->snd_wl1) || 3304 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3305 } 3306 3307 /* If we update tp->snd_una, also update tp->bytes_acked */ 3308 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3309 { 3310 u32 delta = ack - tp->snd_una; 3311 3312 sock_owned_by_me((struct sock *)tp); 3313 tp->bytes_acked += delta; 3314 tp->snd_una = ack; 3315 } 3316 3317 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3318 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3319 { 3320 u32 delta = seq - tp->rcv_nxt; 3321 3322 sock_owned_by_me((struct sock *)tp); 3323 tp->bytes_received += delta; 3324 tp->rcv_nxt = seq; 3325 } 3326 3327 /* Update our send window. 3328 * 3329 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3330 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3331 */ 3332 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3333 u32 ack_seq) 3334 { 3335 struct tcp_sock *tp = tcp_sk(sk); 3336 int flag = 0; 3337 u32 nwin = ntohs(tcp_hdr(skb)->window); 3338 3339 if (likely(!tcp_hdr(skb)->syn)) 3340 nwin <<= tp->rx_opt.snd_wscale; 3341 3342 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3343 flag |= FLAG_WIN_UPDATE; 3344 tcp_update_wl(tp, ack_seq); 3345 3346 if (tp->snd_wnd != nwin) { 3347 tp->snd_wnd = nwin; 3348 3349 /* Note, it is the only place, where 3350 * fast path is recovered for sending TCP. 3351 */ 3352 tp->pred_flags = 0; 3353 tcp_fast_path_check(sk); 3354 3355 if (!tcp_write_queue_empty(sk)) 3356 tcp_slow_start_after_idle_check(sk); 3357 3358 if (nwin > tp->max_window) { 3359 tp->max_window = nwin; 3360 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3361 } 3362 } 3363 } 3364 3365 tcp_snd_una_update(tp, ack); 3366 3367 return flag; 3368 } 3369 3370 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3371 u32 *last_oow_ack_time) 3372 { 3373 if (*last_oow_ack_time) { 3374 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3375 3376 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3377 NET_INC_STATS(net, mib_idx); 3378 return true; /* rate-limited: don't send yet! */ 3379 } 3380 } 3381 3382 *last_oow_ack_time = tcp_jiffies32; 3383 3384 return false; /* not rate-limited: go ahead, send dupack now! */ 3385 } 3386 3387 /* Return true if we're currently rate-limiting out-of-window ACKs and 3388 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3389 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3390 * attacks that send repeated SYNs or ACKs for the same connection. To 3391 * do this, we do not send a duplicate SYNACK or ACK if the remote 3392 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3393 */ 3394 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3395 int mib_idx, u32 *last_oow_ack_time) 3396 { 3397 /* Data packets without SYNs are not likely part of an ACK loop. */ 3398 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3399 !tcp_hdr(skb)->syn) 3400 return false; 3401 3402 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3403 } 3404 3405 /* RFC 5961 7 [ACK Throttling] */ 3406 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3407 { 3408 /* unprotected vars, we dont care of overwrites */ 3409 static u32 challenge_timestamp; 3410 static unsigned int challenge_count; 3411 struct tcp_sock *tp = tcp_sk(sk); 3412 struct net *net = sock_net(sk); 3413 u32 count, now; 3414 3415 /* First check our per-socket dupack rate limit. */ 3416 if (__tcp_oow_rate_limited(net, 3417 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3418 &tp->last_oow_ack_time)) 3419 return; 3420 3421 /* Then check host-wide RFC 5961 rate limit. */ 3422 now = jiffies / HZ; 3423 if (now != challenge_timestamp) { 3424 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3425 u32 half = (ack_limit + 1) >> 1; 3426 3427 challenge_timestamp = now; 3428 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3429 } 3430 count = READ_ONCE(challenge_count); 3431 if (count > 0) { 3432 WRITE_ONCE(challenge_count, count - 1); 3433 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3434 tcp_send_ack(sk); 3435 } 3436 } 3437 3438 static void tcp_store_ts_recent(struct tcp_sock *tp) 3439 { 3440 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3441 tp->rx_opt.ts_recent_stamp = get_seconds(); 3442 } 3443 3444 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3445 { 3446 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3447 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3448 * extra check below makes sure this can only happen 3449 * for pure ACK frames. -DaveM 3450 * 3451 * Not only, also it occurs for expired timestamps. 3452 */ 3453 3454 if (tcp_paws_check(&tp->rx_opt, 0)) 3455 tcp_store_ts_recent(tp); 3456 } 3457 } 3458 3459 /* This routine deals with acks during a TLP episode. 3460 * We mark the end of a TLP episode on receiving TLP dupack or when 3461 * ack is after tlp_high_seq. 3462 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3463 */ 3464 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3465 { 3466 struct tcp_sock *tp = tcp_sk(sk); 3467 3468 if (before(ack, tp->tlp_high_seq)) 3469 return; 3470 3471 if (flag & FLAG_DSACKING_ACK) { 3472 /* This DSACK means original and TLP probe arrived; no loss */ 3473 tp->tlp_high_seq = 0; 3474 } else if (after(ack, tp->tlp_high_seq)) { 3475 /* ACK advances: there was a loss, so reduce cwnd. Reset 3476 * tlp_high_seq in tcp_init_cwnd_reduction() 3477 */ 3478 tcp_init_cwnd_reduction(sk); 3479 tcp_set_ca_state(sk, TCP_CA_CWR); 3480 tcp_end_cwnd_reduction(sk); 3481 tcp_try_keep_open(sk); 3482 NET_INC_STATS(sock_net(sk), 3483 LINUX_MIB_TCPLOSSPROBERECOVERY); 3484 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3485 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3486 /* Pure dupack: original and TLP probe arrived; no loss */ 3487 tp->tlp_high_seq = 0; 3488 } 3489 } 3490 3491 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3492 { 3493 const struct inet_connection_sock *icsk = inet_csk(sk); 3494 3495 if (icsk->icsk_ca_ops->in_ack_event) 3496 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3497 } 3498 3499 /* Congestion control has updated the cwnd already. So if we're in 3500 * loss recovery then now we do any new sends (for FRTO) or 3501 * retransmits (for CA_Loss or CA_recovery) that make sense. 3502 */ 3503 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3504 { 3505 struct tcp_sock *tp = tcp_sk(sk); 3506 3507 if (rexmit == REXMIT_NONE) 3508 return; 3509 3510 if (unlikely(rexmit == 2)) { 3511 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3512 TCP_NAGLE_OFF); 3513 if (after(tp->snd_nxt, tp->high_seq)) 3514 return; 3515 tp->frto = 0; 3516 } 3517 tcp_xmit_retransmit_queue(sk); 3518 } 3519 3520 /* Returns the number of packets newly acked or sacked by the current ACK */ 3521 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3522 { 3523 const struct net *net = sock_net(sk); 3524 struct tcp_sock *tp = tcp_sk(sk); 3525 u32 delivered; 3526 3527 delivered = tp->delivered - prior_delivered; 3528 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3529 if (flag & FLAG_ECE) { 3530 tp->delivered_ce += delivered; 3531 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3532 } 3533 return delivered; 3534 } 3535 3536 /* This routine deals with incoming acks, but not outgoing ones. */ 3537 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3538 { 3539 struct inet_connection_sock *icsk = inet_csk(sk); 3540 struct tcp_sock *tp = tcp_sk(sk); 3541 struct tcp_sacktag_state sack_state; 3542 struct rate_sample rs = { .prior_delivered = 0 }; 3543 u32 prior_snd_una = tp->snd_una; 3544 bool is_sack_reneg = tp->is_sack_reneg; 3545 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3546 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3547 bool is_dupack = false; 3548 int prior_packets = tp->packets_out; 3549 u32 delivered = tp->delivered; 3550 u32 lost = tp->lost; 3551 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3552 u32 prior_fack; 3553 3554 sack_state.first_sackt = 0; 3555 sack_state.rate = &rs; 3556 3557 /* We very likely will need to access rtx queue. */ 3558 prefetch(sk->tcp_rtx_queue.rb_node); 3559 3560 /* If the ack is older than previous acks 3561 * then we can probably ignore it. 3562 */ 3563 if (before(ack, prior_snd_una)) { 3564 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3565 if (before(ack, prior_snd_una - tp->max_window)) { 3566 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3567 tcp_send_challenge_ack(sk, skb); 3568 return -1; 3569 } 3570 goto old_ack; 3571 } 3572 3573 /* If the ack includes data we haven't sent yet, discard 3574 * this segment (RFC793 Section 3.9). 3575 */ 3576 if (after(ack, tp->snd_nxt)) 3577 goto invalid_ack; 3578 3579 if (after(ack, prior_snd_una)) { 3580 flag |= FLAG_SND_UNA_ADVANCED; 3581 icsk->icsk_retransmits = 0; 3582 3583 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3584 if (static_branch_unlikely(&clean_acked_data_enabled)) 3585 if (icsk->icsk_clean_acked) 3586 icsk->icsk_clean_acked(sk, ack); 3587 #endif 3588 } 3589 3590 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3591 rs.prior_in_flight = tcp_packets_in_flight(tp); 3592 3593 /* ts_recent update must be made after we are sure that the packet 3594 * is in window. 3595 */ 3596 if (flag & FLAG_UPDATE_TS_RECENT) 3597 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3598 3599 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3600 /* Window is constant, pure forward advance. 3601 * No more checks are required. 3602 * Note, we use the fact that SND.UNA>=SND.WL2. 3603 */ 3604 tcp_update_wl(tp, ack_seq); 3605 tcp_snd_una_update(tp, ack); 3606 flag |= FLAG_WIN_UPDATE; 3607 3608 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3609 3610 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3611 } else { 3612 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3613 3614 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3615 flag |= FLAG_DATA; 3616 else 3617 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3618 3619 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3620 3621 if (TCP_SKB_CB(skb)->sacked) 3622 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3623 &sack_state); 3624 3625 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3626 flag |= FLAG_ECE; 3627 ack_ev_flags |= CA_ACK_ECE; 3628 } 3629 3630 if (flag & FLAG_WIN_UPDATE) 3631 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3632 3633 tcp_in_ack_event(sk, ack_ev_flags); 3634 } 3635 3636 /* We passed data and got it acked, remove any soft error 3637 * log. Something worked... 3638 */ 3639 sk->sk_err_soft = 0; 3640 icsk->icsk_probes_out = 0; 3641 tp->rcv_tstamp = tcp_jiffies32; 3642 if (!prior_packets) 3643 goto no_queue; 3644 3645 /* See if we can take anything off of the retransmit queue. */ 3646 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3647 3648 tcp_rack_update_reo_wnd(sk, &rs); 3649 3650 if (tp->tlp_high_seq) 3651 tcp_process_tlp_ack(sk, ack, flag); 3652 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3653 if (flag & FLAG_SET_XMIT_TIMER) 3654 tcp_set_xmit_timer(sk); 3655 3656 if (tcp_ack_is_dubious(sk, flag)) { 3657 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3658 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3659 &rexmit); 3660 } 3661 3662 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3663 sk_dst_confirm(sk); 3664 3665 delivered = tcp_newly_delivered(sk, delivered, flag); 3666 lost = tp->lost - lost; /* freshly marked lost */ 3667 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3668 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3669 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3670 tcp_xmit_recovery(sk, rexmit); 3671 return 1; 3672 3673 no_queue: 3674 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3675 if (flag & FLAG_DSACKING_ACK) { 3676 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3677 &rexmit); 3678 tcp_newly_delivered(sk, delivered, flag); 3679 } 3680 /* If this ack opens up a zero window, clear backoff. It was 3681 * being used to time the probes, and is probably far higher than 3682 * it needs to be for normal retransmission. 3683 */ 3684 tcp_ack_probe(sk); 3685 3686 if (tp->tlp_high_seq) 3687 tcp_process_tlp_ack(sk, ack, flag); 3688 return 1; 3689 3690 invalid_ack: 3691 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3692 return -1; 3693 3694 old_ack: 3695 /* If data was SACKed, tag it and see if we should send more data. 3696 * If data was DSACKed, see if we can undo a cwnd reduction. 3697 */ 3698 if (TCP_SKB_CB(skb)->sacked) { 3699 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3700 &sack_state); 3701 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3702 &rexmit); 3703 tcp_newly_delivered(sk, delivered, flag); 3704 tcp_xmit_recovery(sk, rexmit); 3705 } 3706 3707 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3708 return 0; 3709 } 3710 3711 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3712 bool syn, struct tcp_fastopen_cookie *foc, 3713 bool exp_opt) 3714 { 3715 /* Valid only in SYN or SYN-ACK with an even length. */ 3716 if (!foc || !syn || len < 0 || (len & 1)) 3717 return; 3718 3719 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3720 len <= TCP_FASTOPEN_COOKIE_MAX) 3721 memcpy(foc->val, cookie, len); 3722 else if (len != 0) 3723 len = -1; 3724 foc->len = len; 3725 foc->exp = exp_opt; 3726 } 3727 3728 static void smc_parse_options(const struct tcphdr *th, 3729 struct tcp_options_received *opt_rx, 3730 const unsigned char *ptr, 3731 int opsize) 3732 { 3733 #if IS_ENABLED(CONFIG_SMC) 3734 if (static_branch_unlikely(&tcp_have_smc)) { 3735 if (th->syn && !(opsize & 1) && 3736 opsize >= TCPOLEN_EXP_SMC_BASE && 3737 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3738 opt_rx->smc_ok = 1; 3739 } 3740 #endif 3741 } 3742 3743 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3744 * But, this can also be called on packets in the established flow when 3745 * the fast version below fails. 3746 */ 3747 void tcp_parse_options(const struct net *net, 3748 const struct sk_buff *skb, 3749 struct tcp_options_received *opt_rx, int estab, 3750 struct tcp_fastopen_cookie *foc) 3751 { 3752 const unsigned char *ptr; 3753 const struct tcphdr *th = tcp_hdr(skb); 3754 int length = (th->doff * 4) - sizeof(struct tcphdr); 3755 3756 ptr = (const unsigned char *)(th + 1); 3757 opt_rx->saw_tstamp = 0; 3758 3759 while (length > 0) { 3760 int opcode = *ptr++; 3761 int opsize; 3762 3763 switch (opcode) { 3764 case TCPOPT_EOL: 3765 return; 3766 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3767 length--; 3768 continue; 3769 default: 3770 opsize = *ptr++; 3771 if (opsize < 2) /* "silly options" */ 3772 return; 3773 if (opsize > length) 3774 return; /* don't parse partial options */ 3775 switch (opcode) { 3776 case TCPOPT_MSS: 3777 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3778 u16 in_mss = get_unaligned_be16(ptr); 3779 if (in_mss) { 3780 if (opt_rx->user_mss && 3781 opt_rx->user_mss < in_mss) 3782 in_mss = opt_rx->user_mss; 3783 opt_rx->mss_clamp = in_mss; 3784 } 3785 } 3786 break; 3787 case TCPOPT_WINDOW: 3788 if (opsize == TCPOLEN_WINDOW && th->syn && 3789 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3790 __u8 snd_wscale = *(__u8 *)ptr; 3791 opt_rx->wscale_ok = 1; 3792 if (snd_wscale > TCP_MAX_WSCALE) { 3793 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3794 __func__, 3795 snd_wscale, 3796 TCP_MAX_WSCALE); 3797 snd_wscale = TCP_MAX_WSCALE; 3798 } 3799 opt_rx->snd_wscale = snd_wscale; 3800 } 3801 break; 3802 case TCPOPT_TIMESTAMP: 3803 if ((opsize == TCPOLEN_TIMESTAMP) && 3804 ((estab && opt_rx->tstamp_ok) || 3805 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3806 opt_rx->saw_tstamp = 1; 3807 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3808 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3809 } 3810 break; 3811 case TCPOPT_SACK_PERM: 3812 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3813 !estab && net->ipv4.sysctl_tcp_sack) { 3814 opt_rx->sack_ok = TCP_SACK_SEEN; 3815 tcp_sack_reset(opt_rx); 3816 } 3817 break; 3818 3819 case TCPOPT_SACK: 3820 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3821 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3822 opt_rx->sack_ok) { 3823 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3824 } 3825 break; 3826 #ifdef CONFIG_TCP_MD5SIG 3827 case TCPOPT_MD5SIG: 3828 /* 3829 * The MD5 Hash has already been 3830 * checked (see tcp_v{4,6}_do_rcv()). 3831 */ 3832 break; 3833 #endif 3834 case TCPOPT_FASTOPEN: 3835 tcp_parse_fastopen_option( 3836 opsize - TCPOLEN_FASTOPEN_BASE, 3837 ptr, th->syn, foc, false); 3838 break; 3839 3840 case TCPOPT_EXP: 3841 /* Fast Open option shares code 254 using a 3842 * 16 bits magic number. 3843 */ 3844 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3845 get_unaligned_be16(ptr) == 3846 TCPOPT_FASTOPEN_MAGIC) 3847 tcp_parse_fastopen_option(opsize - 3848 TCPOLEN_EXP_FASTOPEN_BASE, 3849 ptr + 2, th->syn, foc, true); 3850 else 3851 smc_parse_options(th, opt_rx, ptr, 3852 opsize); 3853 break; 3854 3855 } 3856 ptr += opsize-2; 3857 length -= opsize; 3858 } 3859 } 3860 } 3861 EXPORT_SYMBOL(tcp_parse_options); 3862 3863 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3864 { 3865 const __be32 *ptr = (const __be32 *)(th + 1); 3866 3867 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3868 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3869 tp->rx_opt.saw_tstamp = 1; 3870 ++ptr; 3871 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3872 ++ptr; 3873 if (*ptr) 3874 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3875 else 3876 tp->rx_opt.rcv_tsecr = 0; 3877 return true; 3878 } 3879 return false; 3880 } 3881 3882 /* Fast parse options. This hopes to only see timestamps. 3883 * If it is wrong it falls back on tcp_parse_options(). 3884 */ 3885 static bool tcp_fast_parse_options(const struct net *net, 3886 const struct sk_buff *skb, 3887 const struct tcphdr *th, struct tcp_sock *tp) 3888 { 3889 /* In the spirit of fast parsing, compare doff directly to constant 3890 * values. Because equality is used, short doff can be ignored here. 3891 */ 3892 if (th->doff == (sizeof(*th) / 4)) { 3893 tp->rx_opt.saw_tstamp = 0; 3894 return false; 3895 } else if (tp->rx_opt.tstamp_ok && 3896 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3897 if (tcp_parse_aligned_timestamp(tp, th)) 3898 return true; 3899 } 3900 3901 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3902 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3903 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3904 3905 return true; 3906 } 3907 3908 #ifdef CONFIG_TCP_MD5SIG 3909 /* 3910 * Parse MD5 Signature option 3911 */ 3912 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3913 { 3914 int length = (th->doff << 2) - sizeof(*th); 3915 const u8 *ptr = (const u8 *)(th + 1); 3916 3917 /* If not enough data remaining, we can short cut */ 3918 while (length >= TCPOLEN_MD5SIG) { 3919 int opcode = *ptr++; 3920 int opsize; 3921 3922 switch (opcode) { 3923 case TCPOPT_EOL: 3924 return NULL; 3925 case TCPOPT_NOP: 3926 length--; 3927 continue; 3928 default: 3929 opsize = *ptr++; 3930 if (opsize < 2 || opsize > length) 3931 return NULL; 3932 if (opcode == TCPOPT_MD5SIG) 3933 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3934 } 3935 ptr += opsize - 2; 3936 length -= opsize; 3937 } 3938 return NULL; 3939 } 3940 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3941 #endif 3942 3943 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3944 * 3945 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3946 * it can pass through stack. So, the following predicate verifies that 3947 * this segment is not used for anything but congestion avoidance or 3948 * fast retransmit. Moreover, we even are able to eliminate most of such 3949 * second order effects, if we apply some small "replay" window (~RTO) 3950 * to timestamp space. 3951 * 3952 * All these measures still do not guarantee that we reject wrapped ACKs 3953 * on networks with high bandwidth, when sequence space is recycled fastly, 3954 * but it guarantees that such events will be very rare and do not affect 3955 * connection seriously. This doesn't look nice, but alas, PAWS is really 3956 * buggy extension. 3957 * 3958 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3959 * states that events when retransmit arrives after original data are rare. 3960 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3961 * the biggest problem on large power networks even with minor reordering. 3962 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3963 * up to bandwidth of 18Gigabit/sec. 8) ] 3964 */ 3965 3966 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3967 { 3968 const struct tcp_sock *tp = tcp_sk(sk); 3969 const struct tcphdr *th = tcp_hdr(skb); 3970 u32 seq = TCP_SKB_CB(skb)->seq; 3971 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3972 3973 return (/* 1. Pure ACK with correct sequence number. */ 3974 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3975 3976 /* 2. ... and duplicate ACK. */ 3977 ack == tp->snd_una && 3978 3979 /* 3. ... and does not update window. */ 3980 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3981 3982 /* 4. ... and sits in replay window. */ 3983 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3984 } 3985 3986 static inline bool tcp_paws_discard(const struct sock *sk, 3987 const struct sk_buff *skb) 3988 { 3989 const struct tcp_sock *tp = tcp_sk(sk); 3990 3991 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3992 !tcp_disordered_ack(sk, skb); 3993 } 3994 3995 /* Check segment sequence number for validity. 3996 * 3997 * Segment controls are considered valid, if the segment 3998 * fits to the window after truncation to the window. Acceptability 3999 * of data (and SYN, FIN, of course) is checked separately. 4000 * See tcp_data_queue(), for example. 4001 * 4002 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4003 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4004 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4005 * (borrowed from freebsd) 4006 */ 4007 4008 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4009 { 4010 return !before(end_seq, tp->rcv_wup) && 4011 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4012 } 4013 4014 /* When we get a reset we do this. */ 4015 void tcp_reset(struct sock *sk) 4016 { 4017 trace_tcp_receive_reset(sk); 4018 4019 /* We want the right error as BSD sees it (and indeed as we do). */ 4020 switch (sk->sk_state) { 4021 case TCP_SYN_SENT: 4022 sk->sk_err = ECONNREFUSED; 4023 break; 4024 case TCP_CLOSE_WAIT: 4025 sk->sk_err = EPIPE; 4026 break; 4027 case TCP_CLOSE: 4028 return; 4029 default: 4030 sk->sk_err = ECONNRESET; 4031 } 4032 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4033 smp_wmb(); 4034 4035 tcp_write_queue_purge(sk); 4036 tcp_done(sk); 4037 4038 if (!sock_flag(sk, SOCK_DEAD)) 4039 sk->sk_error_report(sk); 4040 } 4041 4042 /* 4043 * Process the FIN bit. This now behaves as it is supposed to work 4044 * and the FIN takes effect when it is validly part of sequence 4045 * space. Not before when we get holes. 4046 * 4047 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4048 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4049 * TIME-WAIT) 4050 * 4051 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4052 * close and we go into CLOSING (and later onto TIME-WAIT) 4053 * 4054 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4055 */ 4056 void tcp_fin(struct sock *sk) 4057 { 4058 struct tcp_sock *tp = tcp_sk(sk); 4059 4060 inet_csk_schedule_ack(sk); 4061 4062 sk->sk_shutdown |= RCV_SHUTDOWN; 4063 sock_set_flag(sk, SOCK_DONE); 4064 4065 switch (sk->sk_state) { 4066 case TCP_SYN_RECV: 4067 case TCP_ESTABLISHED: 4068 /* Move to CLOSE_WAIT */ 4069 tcp_set_state(sk, TCP_CLOSE_WAIT); 4070 inet_csk(sk)->icsk_ack.pingpong = 1; 4071 break; 4072 4073 case TCP_CLOSE_WAIT: 4074 case TCP_CLOSING: 4075 /* Received a retransmission of the FIN, do 4076 * nothing. 4077 */ 4078 break; 4079 case TCP_LAST_ACK: 4080 /* RFC793: Remain in the LAST-ACK state. */ 4081 break; 4082 4083 case TCP_FIN_WAIT1: 4084 /* This case occurs when a simultaneous close 4085 * happens, we must ack the received FIN and 4086 * enter the CLOSING state. 4087 */ 4088 tcp_send_ack(sk); 4089 tcp_set_state(sk, TCP_CLOSING); 4090 break; 4091 case TCP_FIN_WAIT2: 4092 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4093 tcp_send_ack(sk); 4094 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4095 break; 4096 default: 4097 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4098 * cases we should never reach this piece of code. 4099 */ 4100 pr_err("%s: Impossible, sk->sk_state=%d\n", 4101 __func__, sk->sk_state); 4102 break; 4103 } 4104 4105 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4106 * Probably, we should reset in this case. For now drop them. 4107 */ 4108 skb_rbtree_purge(&tp->out_of_order_queue); 4109 if (tcp_is_sack(tp)) 4110 tcp_sack_reset(&tp->rx_opt); 4111 sk_mem_reclaim(sk); 4112 4113 if (!sock_flag(sk, SOCK_DEAD)) { 4114 sk->sk_state_change(sk); 4115 4116 /* Do not send POLL_HUP for half duplex close. */ 4117 if (sk->sk_shutdown == SHUTDOWN_MASK || 4118 sk->sk_state == TCP_CLOSE) 4119 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4120 else 4121 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4122 } 4123 } 4124 4125 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4126 u32 end_seq) 4127 { 4128 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4129 if (before(seq, sp->start_seq)) 4130 sp->start_seq = seq; 4131 if (after(end_seq, sp->end_seq)) 4132 sp->end_seq = end_seq; 4133 return true; 4134 } 4135 return false; 4136 } 4137 4138 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4139 { 4140 struct tcp_sock *tp = tcp_sk(sk); 4141 4142 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4143 int mib_idx; 4144 4145 if (before(seq, tp->rcv_nxt)) 4146 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4147 else 4148 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4149 4150 NET_INC_STATS(sock_net(sk), mib_idx); 4151 4152 tp->rx_opt.dsack = 1; 4153 tp->duplicate_sack[0].start_seq = seq; 4154 tp->duplicate_sack[0].end_seq = end_seq; 4155 } 4156 } 4157 4158 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4159 { 4160 struct tcp_sock *tp = tcp_sk(sk); 4161 4162 if (!tp->rx_opt.dsack) 4163 tcp_dsack_set(sk, seq, end_seq); 4164 else 4165 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4166 } 4167 4168 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4169 { 4170 struct tcp_sock *tp = tcp_sk(sk); 4171 4172 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4173 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4174 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4175 tcp_enter_quickack_mode(sk); 4176 4177 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4178 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4179 4180 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4181 end_seq = tp->rcv_nxt; 4182 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4183 } 4184 } 4185 4186 tcp_send_ack(sk); 4187 } 4188 4189 /* These routines update the SACK block as out-of-order packets arrive or 4190 * in-order packets close up the sequence space. 4191 */ 4192 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4193 { 4194 int this_sack; 4195 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4196 struct tcp_sack_block *swalk = sp + 1; 4197 4198 /* See if the recent change to the first SACK eats into 4199 * or hits the sequence space of other SACK blocks, if so coalesce. 4200 */ 4201 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4202 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4203 int i; 4204 4205 /* Zap SWALK, by moving every further SACK up by one slot. 4206 * Decrease num_sacks. 4207 */ 4208 tp->rx_opt.num_sacks--; 4209 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4210 sp[i] = sp[i + 1]; 4211 continue; 4212 } 4213 this_sack++, swalk++; 4214 } 4215 } 4216 4217 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4218 { 4219 struct tcp_sock *tp = tcp_sk(sk); 4220 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4221 int cur_sacks = tp->rx_opt.num_sacks; 4222 int this_sack; 4223 4224 if (!cur_sacks) 4225 goto new_sack; 4226 4227 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4228 if (tcp_sack_extend(sp, seq, end_seq)) { 4229 /* Rotate this_sack to the first one. */ 4230 for (; this_sack > 0; this_sack--, sp--) 4231 swap(*sp, *(sp - 1)); 4232 if (cur_sacks > 1) 4233 tcp_sack_maybe_coalesce(tp); 4234 return; 4235 } 4236 } 4237 4238 /* Could not find an adjacent existing SACK, build a new one, 4239 * put it at the front, and shift everyone else down. We 4240 * always know there is at least one SACK present already here. 4241 * 4242 * If the sack array is full, forget about the last one. 4243 */ 4244 if (this_sack >= TCP_NUM_SACKS) { 4245 this_sack--; 4246 tp->rx_opt.num_sacks--; 4247 sp--; 4248 } 4249 for (; this_sack > 0; this_sack--, sp--) 4250 *sp = *(sp - 1); 4251 4252 new_sack: 4253 /* Build the new head SACK, and we're done. */ 4254 sp->start_seq = seq; 4255 sp->end_seq = end_seq; 4256 tp->rx_opt.num_sacks++; 4257 } 4258 4259 /* RCV.NXT advances, some SACKs should be eaten. */ 4260 4261 static void tcp_sack_remove(struct tcp_sock *tp) 4262 { 4263 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4264 int num_sacks = tp->rx_opt.num_sacks; 4265 int this_sack; 4266 4267 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4268 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4269 tp->rx_opt.num_sacks = 0; 4270 return; 4271 } 4272 4273 for (this_sack = 0; this_sack < num_sacks;) { 4274 /* Check if the start of the sack is covered by RCV.NXT. */ 4275 if (!before(tp->rcv_nxt, sp->start_seq)) { 4276 int i; 4277 4278 /* RCV.NXT must cover all the block! */ 4279 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4280 4281 /* Zap this SACK, by moving forward any other SACKS. */ 4282 for (i = this_sack+1; i < num_sacks; i++) 4283 tp->selective_acks[i-1] = tp->selective_acks[i]; 4284 num_sacks--; 4285 continue; 4286 } 4287 this_sack++; 4288 sp++; 4289 } 4290 tp->rx_opt.num_sacks = num_sacks; 4291 } 4292 4293 /** 4294 * tcp_try_coalesce - try to merge skb to prior one 4295 * @sk: socket 4296 * @dest: destination queue 4297 * @to: prior buffer 4298 * @from: buffer to add in queue 4299 * @fragstolen: pointer to boolean 4300 * 4301 * Before queueing skb @from after @to, try to merge them 4302 * to reduce overall memory use and queue lengths, if cost is small. 4303 * Packets in ofo or receive queues can stay a long time. 4304 * Better try to coalesce them right now to avoid future collapses. 4305 * Returns true if caller should free @from instead of queueing it 4306 */ 4307 static bool tcp_try_coalesce(struct sock *sk, 4308 struct sk_buff *to, 4309 struct sk_buff *from, 4310 bool *fragstolen) 4311 { 4312 int delta; 4313 4314 *fragstolen = false; 4315 4316 /* Its possible this segment overlaps with prior segment in queue */ 4317 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4318 return false; 4319 4320 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4321 return false; 4322 4323 atomic_add(delta, &sk->sk_rmem_alloc); 4324 sk_mem_charge(sk, delta); 4325 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4326 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4327 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4328 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4329 4330 if (TCP_SKB_CB(from)->has_rxtstamp) { 4331 TCP_SKB_CB(to)->has_rxtstamp = true; 4332 to->tstamp = from->tstamp; 4333 } 4334 4335 return true; 4336 } 4337 4338 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4339 { 4340 sk_drops_add(sk, skb); 4341 __kfree_skb(skb); 4342 } 4343 4344 /* This one checks to see if we can put data from the 4345 * out_of_order queue into the receive_queue. 4346 */ 4347 static void tcp_ofo_queue(struct sock *sk) 4348 { 4349 struct tcp_sock *tp = tcp_sk(sk); 4350 __u32 dsack_high = tp->rcv_nxt; 4351 bool fin, fragstolen, eaten; 4352 struct sk_buff *skb, *tail; 4353 struct rb_node *p; 4354 4355 p = rb_first(&tp->out_of_order_queue); 4356 while (p) { 4357 skb = rb_to_skb(p); 4358 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4359 break; 4360 4361 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4362 __u32 dsack = dsack_high; 4363 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4364 dsack_high = TCP_SKB_CB(skb)->end_seq; 4365 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4366 } 4367 p = rb_next(p); 4368 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4369 4370 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4371 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4372 tcp_drop(sk, skb); 4373 continue; 4374 } 4375 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4376 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4377 TCP_SKB_CB(skb)->end_seq); 4378 4379 tail = skb_peek_tail(&sk->sk_receive_queue); 4380 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4381 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4382 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4383 if (!eaten) 4384 __skb_queue_tail(&sk->sk_receive_queue, skb); 4385 else 4386 kfree_skb_partial(skb, fragstolen); 4387 4388 if (unlikely(fin)) { 4389 tcp_fin(sk); 4390 /* tcp_fin() purges tp->out_of_order_queue, 4391 * so we must end this loop right now. 4392 */ 4393 break; 4394 } 4395 } 4396 } 4397 4398 static bool tcp_prune_ofo_queue(struct sock *sk); 4399 static int tcp_prune_queue(struct sock *sk); 4400 4401 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4402 unsigned int size) 4403 { 4404 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4405 !sk_rmem_schedule(sk, skb, size)) { 4406 4407 if (tcp_prune_queue(sk) < 0) 4408 return -1; 4409 4410 while (!sk_rmem_schedule(sk, skb, size)) { 4411 if (!tcp_prune_ofo_queue(sk)) 4412 return -1; 4413 } 4414 } 4415 return 0; 4416 } 4417 4418 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4419 { 4420 struct tcp_sock *tp = tcp_sk(sk); 4421 struct rb_node **p, *parent; 4422 struct sk_buff *skb1; 4423 u32 seq, end_seq; 4424 bool fragstolen; 4425 4426 tcp_ecn_check_ce(tp, skb); 4427 4428 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4429 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4430 tcp_drop(sk, skb); 4431 return; 4432 } 4433 4434 /* Disable header prediction. */ 4435 tp->pred_flags = 0; 4436 inet_csk_schedule_ack(sk); 4437 4438 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4439 seq = TCP_SKB_CB(skb)->seq; 4440 end_seq = TCP_SKB_CB(skb)->end_seq; 4441 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4442 tp->rcv_nxt, seq, end_seq); 4443 4444 p = &tp->out_of_order_queue.rb_node; 4445 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4446 /* Initial out of order segment, build 1 SACK. */ 4447 if (tcp_is_sack(tp)) { 4448 tp->rx_opt.num_sacks = 1; 4449 tp->selective_acks[0].start_seq = seq; 4450 tp->selective_acks[0].end_seq = end_seq; 4451 } 4452 rb_link_node(&skb->rbnode, NULL, p); 4453 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4454 tp->ooo_last_skb = skb; 4455 goto end; 4456 } 4457 4458 /* In the typical case, we are adding an skb to the end of the list. 4459 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4460 */ 4461 if (tcp_try_coalesce(sk, tp->ooo_last_skb, 4462 skb, &fragstolen)) { 4463 coalesce_done: 4464 tcp_grow_window(sk, skb); 4465 kfree_skb_partial(skb, fragstolen); 4466 skb = NULL; 4467 goto add_sack; 4468 } 4469 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4470 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4471 parent = &tp->ooo_last_skb->rbnode; 4472 p = &parent->rb_right; 4473 goto insert; 4474 } 4475 4476 /* Find place to insert this segment. Handle overlaps on the way. */ 4477 parent = NULL; 4478 while (*p) { 4479 parent = *p; 4480 skb1 = rb_to_skb(parent); 4481 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4482 p = &parent->rb_left; 4483 continue; 4484 } 4485 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4486 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4487 /* All the bits are present. Drop. */ 4488 NET_INC_STATS(sock_net(sk), 4489 LINUX_MIB_TCPOFOMERGE); 4490 __kfree_skb(skb); 4491 skb = NULL; 4492 tcp_dsack_set(sk, seq, end_seq); 4493 goto add_sack; 4494 } 4495 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4496 /* Partial overlap. */ 4497 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4498 } else { 4499 /* skb's seq == skb1's seq and skb covers skb1. 4500 * Replace skb1 with skb. 4501 */ 4502 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4503 &tp->out_of_order_queue); 4504 tcp_dsack_extend(sk, 4505 TCP_SKB_CB(skb1)->seq, 4506 TCP_SKB_CB(skb1)->end_seq); 4507 NET_INC_STATS(sock_net(sk), 4508 LINUX_MIB_TCPOFOMERGE); 4509 __kfree_skb(skb1); 4510 goto merge_right; 4511 } 4512 } else if (tcp_try_coalesce(sk, skb1, 4513 skb, &fragstolen)) { 4514 goto coalesce_done; 4515 } 4516 p = &parent->rb_right; 4517 } 4518 insert: 4519 /* Insert segment into RB tree. */ 4520 rb_link_node(&skb->rbnode, parent, p); 4521 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4522 4523 merge_right: 4524 /* Remove other segments covered by skb. */ 4525 while ((skb1 = skb_rb_next(skb)) != NULL) { 4526 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4527 break; 4528 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4529 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4530 end_seq); 4531 break; 4532 } 4533 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4534 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4535 TCP_SKB_CB(skb1)->end_seq); 4536 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4537 tcp_drop(sk, skb1); 4538 } 4539 /* If there is no skb after us, we are the last_skb ! */ 4540 if (!skb1) 4541 tp->ooo_last_skb = skb; 4542 4543 add_sack: 4544 if (tcp_is_sack(tp)) 4545 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4546 end: 4547 if (skb) { 4548 tcp_grow_window(sk, skb); 4549 skb_condense(skb); 4550 skb_set_owner_r(skb, sk); 4551 } 4552 } 4553 4554 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4555 bool *fragstolen) 4556 { 4557 int eaten; 4558 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4559 4560 __skb_pull(skb, hdrlen); 4561 eaten = (tail && 4562 tcp_try_coalesce(sk, tail, 4563 skb, fragstolen)) ? 1 : 0; 4564 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4565 if (!eaten) { 4566 __skb_queue_tail(&sk->sk_receive_queue, skb); 4567 skb_set_owner_r(skb, sk); 4568 } 4569 return eaten; 4570 } 4571 4572 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4573 { 4574 struct sk_buff *skb; 4575 int err = -ENOMEM; 4576 int data_len = 0; 4577 bool fragstolen; 4578 4579 if (size == 0) 4580 return 0; 4581 4582 if (size > PAGE_SIZE) { 4583 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4584 4585 data_len = npages << PAGE_SHIFT; 4586 size = data_len + (size & ~PAGE_MASK); 4587 } 4588 skb = alloc_skb_with_frags(size - data_len, data_len, 4589 PAGE_ALLOC_COSTLY_ORDER, 4590 &err, sk->sk_allocation); 4591 if (!skb) 4592 goto err; 4593 4594 skb_put(skb, size - data_len); 4595 skb->data_len = data_len; 4596 skb->len = size; 4597 4598 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4599 goto err_free; 4600 4601 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4602 if (err) 4603 goto err_free; 4604 4605 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4606 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4607 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4608 4609 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4610 WARN_ON_ONCE(fragstolen); /* should not happen */ 4611 __kfree_skb(skb); 4612 } 4613 return size; 4614 4615 err_free: 4616 kfree_skb(skb); 4617 err: 4618 return err; 4619 4620 } 4621 4622 void tcp_data_ready(struct sock *sk) 4623 { 4624 const struct tcp_sock *tp = tcp_sk(sk); 4625 int avail = tp->rcv_nxt - tp->copied_seq; 4626 4627 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4628 return; 4629 4630 sk->sk_data_ready(sk); 4631 } 4632 4633 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4634 { 4635 struct tcp_sock *tp = tcp_sk(sk); 4636 bool fragstolen; 4637 int eaten; 4638 4639 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4640 __kfree_skb(skb); 4641 return; 4642 } 4643 skb_dst_drop(skb); 4644 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4645 4646 tcp_ecn_accept_cwr(tp, skb); 4647 4648 tp->rx_opt.dsack = 0; 4649 4650 /* Queue data for delivery to the user. 4651 * Packets in sequence go to the receive queue. 4652 * Out of sequence packets to the out_of_order_queue. 4653 */ 4654 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4655 if (tcp_receive_window(tp) == 0) 4656 goto out_of_window; 4657 4658 /* Ok. In sequence. In window. */ 4659 queue_and_out: 4660 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4661 sk_forced_mem_schedule(sk, skb->truesize); 4662 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4663 goto drop; 4664 4665 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4666 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4667 if (skb->len) 4668 tcp_event_data_recv(sk, skb); 4669 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4670 tcp_fin(sk); 4671 4672 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4673 tcp_ofo_queue(sk); 4674 4675 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4676 * gap in queue is filled. 4677 */ 4678 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4679 inet_csk(sk)->icsk_ack.pingpong = 0; 4680 } 4681 4682 if (tp->rx_opt.num_sacks) 4683 tcp_sack_remove(tp); 4684 4685 tcp_fast_path_check(sk); 4686 4687 if (eaten > 0) 4688 kfree_skb_partial(skb, fragstolen); 4689 if (!sock_flag(sk, SOCK_DEAD)) 4690 tcp_data_ready(sk); 4691 return; 4692 } 4693 4694 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4695 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4696 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4697 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4698 4699 out_of_window: 4700 tcp_enter_quickack_mode(sk); 4701 inet_csk_schedule_ack(sk); 4702 drop: 4703 tcp_drop(sk, skb); 4704 return; 4705 } 4706 4707 /* Out of window. F.e. zero window probe. */ 4708 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4709 goto out_of_window; 4710 4711 tcp_enter_quickack_mode(sk); 4712 4713 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4714 /* Partial packet, seq < rcv_next < end_seq */ 4715 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4716 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4717 TCP_SKB_CB(skb)->end_seq); 4718 4719 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4720 4721 /* If window is closed, drop tail of packet. But after 4722 * remembering D-SACK for its head made in previous line. 4723 */ 4724 if (!tcp_receive_window(tp)) 4725 goto out_of_window; 4726 goto queue_and_out; 4727 } 4728 4729 tcp_data_queue_ofo(sk, skb); 4730 } 4731 4732 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4733 { 4734 if (list) 4735 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4736 4737 return skb_rb_next(skb); 4738 } 4739 4740 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4741 struct sk_buff_head *list, 4742 struct rb_root *root) 4743 { 4744 struct sk_buff *next = tcp_skb_next(skb, list); 4745 4746 if (list) 4747 __skb_unlink(skb, list); 4748 else 4749 rb_erase(&skb->rbnode, root); 4750 4751 __kfree_skb(skb); 4752 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4753 4754 return next; 4755 } 4756 4757 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4758 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4759 { 4760 struct rb_node **p = &root->rb_node; 4761 struct rb_node *parent = NULL; 4762 struct sk_buff *skb1; 4763 4764 while (*p) { 4765 parent = *p; 4766 skb1 = rb_to_skb(parent); 4767 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4768 p = &parent->rb_left; 4769 else 4770 p = &parent->rb_right; 4771 } 4772 rb_link_node(&skb->rbnode, parent, p); 4773 rb_insert_color(&skb->rbnode, root); 4774 } 4775 4776 /* Collapse contiguous sequence of skbs head..tail with 4777 * sequence numbers start..end. 4778 * 4779 * If tail is NULL, this means until the end of the queue. 4780 * 4781 * Segments with FIN/SYN are not collapsed (only because this 4782 * simplifies code) 4783 */ 4784 static void 4785 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4786 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4787 { 4788 struct sk_buff *skb = head, *n; 4789 struct sk_buff_head tmp; 4790 bool end_of_skbs; 4791 4792 /* First, check that queue is collapsible and find 4793 * the point where collapsing can be useful. 4794 */ 4795 restart: 4796 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4797 n = tcp_skb_next(skb, list); 4798 4799 /* No new bits? It is possible on ofo queue. */ 4800 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4801 skb = tcp_collapse_one(sk, skb, list, root); 4802 if (!skb) 4803 break; 4804 goto restart; 4805 } 4806 4807 /* The first skb to collapse is: 4808 * - not SYN/FIN and 4809 * - bloated or contains data before "start" or 4810 * overlaps to the next one. 4811 */ 4812 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4813 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4814 before(TCP_SKB_CB(skb)->seq, start))) { 4815 end_of_skbs = false; 4816 break; 4817 } 4818 4819 if (n && n != tail && 4820 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4821 end_of_skbs = false; 4822 break; 4823 } 4824 4825 /* Decided to skip this, advance start seq. */ 4826 start = TCP_SKB_CB(skb)->end_seq; 4827 } 4828 if (end_of_skbs || 4829 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4830 return; 4831 4832 __skb_queue_head_init(&tmp); 4833 4834 while (before(start, end)) { 4835 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4836 struct sk_buff *nskb; 4837 4838 nskb = alloc_skb(copy, GFP_ATOMIC); 4839 if (!nskb) 4840 break; 4841 4842 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4843 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4844 if (list) 4845 __skb_queue_before(list, skb, nskb); 4846 else 4847 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4848 skb_set_owner_r(nskb, sk); 4849 4850 /* Copy data, releasing collapsed skbs. */ 4851 while (copy > 0) { 4852 int offset = start - TCP_SKB_CB(skb)->seq; 4853 int size = TCP_SKB_CB(skb)->end_seq - start; 4854 4855 BUG_ON(offset < 0); 4856 if (size > 0) { 4857 size = min(copy, size); 4858 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4859 BUG(); 4860 TCP_SKB_CB(nskb)->end_seq += size; 4861 copy -= size; 4862 start += size; 4863 } 4864 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4865 skb = tcp_collapse_one(sk, skb, list, root); 4866 if (!skb || 4867 skb == tail || 4868 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4869 goto end; 4870 } 4871 } 4872 } 4873 end: 4874 skb_queue_walk_safe(&tmp, skb, n) 4875 tcp_rbtree_insert(root, skb); 4876 } 4877 4878 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4879 * and tcp_collapse() them until all the queue is collapsed. 4880 */ 4881 static void tcp_collapse_ofo_queue(struct sock *sk) 4882 { 4883 struct tcp_sock *tp = tcp_sk(sk); 4884 struct sk_buff *skb, *head; 4885 u32 start, end; 4886 4887 skb = skb_rb_first(&tp->out_of_order_queue); 4888 new_range: 4889 if (!skb) { 4890 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4891 return; 4892 } 4893 start = TCP_SKB_CB(skb)->seq; 4894 end = TCP_SKB_CB(skb)->end_seq; 4895 4896 for (head = skb;;) { 4897 skb = skb_rb_next(skb); 4898 4899 /* Range is terminated when we see a gap or when 4900 * we are at the queue end. 4901 */ 4902 if (!skb || 4903 after(TCP_SKB_CB(skb)->seq, end) || 4904 before(TCP_SKB_CB(skb)->end_seq, start)) { 4905 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4906 head, skb, start, end); 4907 goto new_range; 4908 } 4909 4910 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4911 start = TCP_SKB_CB(skb)->seq; 4912 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4913 end = TCP_SKB_CB(skb)->end_seq; 4914 } 4915 } 4916 4917 /* 4918 * Clean the out-of-order queue to make room. 4919 * We drop high sequences packets to : 4920 * 1) Let a chance for holes to be filled. 4921 * 2) not add too big latencies if thousands of packets sit there. 4922 * (But if application shrinks SO_RCVBUF, we could still end up 4923 * freeing whole queue here) 4924 * 4925 * Return true if queue has shrunk. 4926 */ 4927 static bool tcp_prune_ofo_queue(struct sock *sk) 4928 { 4929 struct tcp_sock *tp = tcp_sk(sk); 4930 struct rb_node *node, *prev; 4931 4932 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4933 return false; 4934 4935 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4936 node = &tp->ooo_last_skb->rbnode; 4937 do { 4938 prev = rb_prev(node); 4939 rb_erase(node, &tp->out_of_order_queue); 4940 tcp_drop(sk, rb_to_skb(node)); 4941 sk_mem_reclaim(sk); 4942 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4943 !tcp_under_memory_pressure(sk)) 4944 break; 4945 node = prev; 4946 } while (node); 4947 tp->ooo_last_skb = rb_to_skb(prev); 4948 4949 /* Reset SACK state. A conforming SACK implementation will 4950 * do the same at a timeout based retransmit. When a connection 4951 * is in a sad state like this, we care only about integrity 4952 * of the connection not performance. 4953 */ 4954 if (tp->rx_opt.sack_ok) 4955 tcp_sack_reset(&tp->rx_opt); 4956 return true; 4957 } 4958 4959 /* Reduce allocated memory if we can, trying to get 4960 * the socket within its memory limits again. 4961 * 4962 * Return less than zero if we should start dropping frames 4963 * until the socket owning process reads some of the data 4964 * to stabilize the situation. 4965 */ 4966 static int tcp_prune_queue(struct sock *sk) 4967 { 4968 struct tcp_sock *tp = tcp_sk(sk); 4969 4970 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4971 4972 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4973 4974 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4975 tcp_clamp_window(sk); 4976 else if (tcp_under_memory_pressure(sk)) 4977 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4978 4979 tcp_collapse_ofo_queue(sk); 4980 if (!skb_queue_empty(&sk->sk_receive_queue)) 4981 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4982 skb_peek(&sk->sk_receive_queue), 4983 NULL, 4984 tp->copied_seq, tp->rcv_nxt); 4985 sk_mem_reclaim(sk); 4986 4987 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4988 return 0; 4989 4990 /* Collapsing did not help, destructive actions follow. 4991 * This must not ever occur. */ 4992 4993 tcp_prune_ofo_queue(sk); 4994 4995 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4996 return 0; 4997 4998 /* If we are really being abused, tell the caller to silently 4999 * drop receive data on the floor. It will get retransmitted 5000 * and hopefully then we'll have sufficient space. 5001 */ 5002 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5003 5004 /* Massive buffer overcommit. */ 5005 tp->pred_flags = 0; 5006 return -1; 5007 } 5008 5009 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5010 { 5011 const struct tcp_sock *tp = tcp_sk(sk); 5012 5013 /* If the user specified a specific send buffer setting, do 5014 * not modify it. 5015 */ 5016 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5017 return false; 5018 5019 /* If we are under global TCP memory pressure, do not expand. */ 5020 if (tcp_under_memory_pressure(sk)) 5021 return false; 5022 5023 /* If we are under soft global TCP memory pressure, do not expand. */ 5024 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5025 return false; 5026 5027 /* If we filled the congestion window, do not expand. */ 5028 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5029 return false; 5030 5031 return true; 5032 } 5033 5034 /* When incoming ACK allowed to free some skb from write_queue, 5035 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5036 * on the exit from tcp input handler. 5037 * 5038 * PROBLEM: sndbuf expansion does not work well with largesend. 5039 */ 5040 static void tcp_new_space(struct sock *sk) 5041 { 5042 struct tcp_sock *tp = tcp_sk(sk); 5043 5044 if (tcp_should_expand_sndbuf(sk)) { 5045 tcp_sndbuf_expand(sk); 5046 tp->snd_cwnd_stamp = tcp_jiffies32; 5047 } 5048 5049 sk->sk_write_space(sk); 5050 } 5051 5052 static void tcp_check_space(struct sock *sk) 5053 { 5054 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5055 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5056 /* pairs with tcp_poll() */ 5057 smp_mb(); 5058 if (sk->sk_socket && 5059 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5060 tcp_new_space(sk); 5061 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5062 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5063 } 5064 } 5065 } 5066 5067 static inline void tcp_data_snd_check(struct sock *sk) 5068 { 5069 tcp_push_pending_frames(sk); 5070 tcp_check_space(sk); 5071 } 5072 5073 /* 5074 * Check if sending an ack is needed. 5075 */ 5076 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5077 { 5078 struct tcp_sock *tp = tcp_sk(sk); 5079 5080 /* More than one full frame received... */ 5081 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5082 /* ... and right edge of window advances far enough. 5083 * (tcp_recvmsg() will send ACK otherwise). 5084 * If application uses SO_RCVLOWAT, we want send ack now if 5085 * we have not received enough bytes to satisfy the condition. 5086 */ 5087 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5088 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5089 /* We ACK each frame or... */ 5090 tcp_in_quickack_mode(sk) || 5091 /* We have out of order data. */ 5092 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5093 /* Then ack it now */ 5094 tcp_send_ack(sk); 5095 } else { 5096 /* Else, send delayed ack. */ 5097 tcp_send_delayed_ack(sk); 5098 } 5099 } 5100 5101 static inline void tcp_ack_snd_check(struct sock *sk) 5102 { 5103 if (!inet_csk_ack_scheduled(sk)) { 5104 /* We sent a data segment already. */ 5105 return; 5106 } 5107 __tcp_ack_snd_check(sk, 1); 5108 } 5109 5110 /* 5111 * This routine is only called when we have urgent data 5112 * signaled. Its the 'slow' part of tcp_urg. It could be 5113 * moved inline now as tcp_urg is only called from one 5114 * place. We handle URGent data wrong. We have to - as 5115 * BSD still doesn't use the correction from RFC961. 5116 * For 1003.1g we should support a new option TCP_STDURG to permit 5117 * either form (or just set the sysctl tcp_stdurg). 5118 */ 5119 5120 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5121 { 5122 struct tcp_sock *tp = tcp_sk(sk); 5123 u32 ptr = ntohs(th->urg_ptr); 5124 5125 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5126 ptr--; 5127 ptr += ntohl(th->seq); 5128 5129 /* Ignore urgent data that we've already seen and read. */ 5130 if (after(tp->copied_seq, ptr)) 5131 return; 5132 5133 /* Do not replay urg ptr. 5134 * 5135 * NOTE: interesting situation not covered by specs. 5136 * Misbehaving sender may send urg ptr, pointing to segment, 5137 * which we already have in ofo queue. We are not able to fetch 5138 * such data and will stay in TCP_URG_NOTYET until will be eaten 5139 * by recvmsg(). Seems, we are not obliged to handle such wicked 5140 * situations. But it is worth to think about possibility of some 5141 * DoSes using some hypothetical application level deadlock. 5142 */ 5143 if (before(ptr, tp->rcv_nxt)) 5144 return; 5145 5146 /* Do we already have a newer (or duplicate) urgent pointer? */ 5147 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5148 return; 5149 5150 /* Tell the world about our new urgent pointer. */ 5151 sk_send_sigurg(sk); 5152 5153 /* We may be adding urgent data when the last byte read was 5154 * urgent. To do this requires some care. We cannot just ignore 5155 * tp->copied_seq since we would read the last urgent byte again 5156 * as data, nor can we alter copied_seq until this data arrives 5157 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5158 * 5159 * NOTE. Double Dutch. Rendering to plain English: author of comment 5160 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5161 * and expect that both A and B disappear from stream. This is _wrong_. 5162 * Though this happens in BSD with high probability, this is occasional. 5163 * Any application relying on this is buggy. Note also, that fix "works" 5164 * only in this artificial test. Insert some normal data between A and B and we will 5165 * decline of BSD again. Verdict: it is better to remove to trap 5166 * buggy users. 5167 */ 5168 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5169 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5170 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5171 tp->copied_seq++; 5172 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5173 __skb_unlink(skb, &sk->sk_receive_queue); 5174 __kfree_skb(skb); 5175 } 5176 } 5177 5178 tp->urg_data = TCP_URG_NOTYET; 5179 tp->urg_seq = ptr; 5180 5181 /* Disable header prediction. */ 5182 tp->pred_flags = 0; 5183 } 5184 5185 /* This is the 'fast' part of urgent handling. */ 5186 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5187 { 5188 struct tcp_sock *tp = tcp_sk(sk); 5189 5190 /* Check if we get a new urgent pointer - normally not. */ 5191 if (th->urg) 5192 tcp_check_urg(sk, th); 5193 5194 /* Do we wait for any urgent data? - normally not... */ 5195 if (tp->urg_data == TCP_URG_NOTYET) { 5196 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5197 th->syn; 5198 5199 /* Is the urgent pointer pointing into this packet? */ 5200 if (ptr < skb->len) { 5201 u8 tmp; 5202 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5203 BUG(); 5204 tp->urg_data = TCP_URG_VALID | tmp; 5205 if (!sock_flag(sk, SOCK_DEAD)) 5206 sk->sk_data_ready(sk); 5207 } 5208 } 5209 } 5210 5211 /* Accept RST for rcv_nxt - 1 after a FIN. 5212 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5213 * FIN is sent followed by a RST packet. The RST is sent with the same 5214 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5215 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5216 * ACKs on the closed socket. In addition middleboxes can drop either the 5217 * challenge ACK or a subsequent RST. 5218 */ 5219 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5220 { 5221 struct tcp_sock *tp = tcp_sk(sk); 5222 5223 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5224 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5225 TCPF_CLOSING)); 5226 } 5227 5228 /* Does PAWS and seqno based validation of an incoming segment, flags will 5229 * play significant role here. 5230 */ 5231 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5232 const struct tcphdr *th, int syn_inerr) 5233 { 5234 struct tcp_sock *tp = tcp_sk(sk); 5235 bool rst_seq_match = false; 5236 5237 /* RFC1323: H1. Apply PAWS check first. */ 5238 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5239 tp->rx_opt.saw_tstamp && 5240 tcp_paws_discard(sk, skb)) { 5241 if (!th->rst) { 5242 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5243 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5244 LINUX_MIB_TCPACKSKIPPEDPAWS, 5245 &tp->last_oow_ack_time)) 5246 tcp_send_dupack(sk, skb); 5247 goto discard; 5248 } 5249 /* Reset is accepted even if it did not pass PAWS. */ 5250 } 5251 5252 /* Step 1: check sequence number */ 5253 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5254 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5255 * (RST) segments are validated by checking their SEQ-fields." 5256 * And page 69: "If an incoming segment is not acceptable, 5257 * an acknowledgment should be sent in reply (unless the RST 5258 * bit is set, if so drop the segment and return)". 5259 */ 5260 if (!th->rst) { 5261 if (th->syn) 5262 goto syn_challenge; 5263 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5264 LINUX_MIB_TCPACKSKIPPEDSEQ, 5265 &tp->last_oow_ack_time)) 5266 tcp_send_dupack(sk, skb); 5267 } else if (tcp_reset_check(sk, skb)) { 5268 tcp_reset(sk); 5269 } 5270 goto discard; 5271 } 5272 5273 /* Step 2: check RST bit */ 5274 if (th->rst) { 5275 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5276 * FIN and SACK too if available): 5277 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5278 * the right-most SACK block, 5279 * then 5280 * RESET the connection 5281 * else 5282 * Send a challenge ACK 5283 */ 5284 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5285 tcp_reset_check(sk, skb)) { 5286 rst_seq_match = true; 5287 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5288 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5289 int max_sack = sp[0].end_seq; 5290 int this_sack; 5291 5292 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5293 ++this_sack) { 5294 max_sack = after(sp[this_sack].end_seq, 5295 max_sack) ? 5296 sp[this_sack].end_seq : max_sack; 5297 } 5298 5299 if (TCP_SKB_CB(skb)->seq == max_sack) 5300 rst_seq_match = true; 5301 } 5302 5303 if (rst_seq_match) 5304 tcp_reset(sk); 5305 else { 5306 /* Disable TFO if RST is out-of-order 5307 * and no data has been received 5308 * for current active TFO socket 5309 */ 5310 if (tp->syn_fastopen && !tp->data_segs_in && 5311 sk->sk_state == TCP_ESTABLISHED) 5312 tcp_fastopen_active_disable(sk); 5313 tcp_send_challenge_ack(sk, skb); 5314 } 5315 goto discard; 5316 } 5317 5318 /* step 3: check security and precedence [ignored] */ 5319 5320 /* step 4: Check for a SYN 5321 * RFC 5961 4.2 : Send a challenge ack 5322 */ 5323 if (th->syn) { 5324 syn_challenge: 5325 if (syn_inerr) 5326 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5327 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5328 tcp_send_challenge_ack(sk, skb); 5329 goto discard; 5330 } 5331 5332 return true; 5333 5334 discard: 5335 tcp_drop(sk, skb); 5336 return false; 5337 } 5338 5339 /* 5340 * TCP receive function for the ESTABLISHED state. 5341 * 5342 * It is split into a fast path and a slow path. The fast path is 5343 * disabled when: 5344 * - A zero window was announced from us - zero window probing 5345 * is only handled properly in the slow path. 5346 * - Out of order segments arrived. 5347 * - Urgent data is expected. 5348 * - There is no buffer space left 5349 * - Unexpected TCP flags/window values/header lengths are received 5350 * (detected by checking the TCP header against pred_flags) 5351 * - Data is sent in both directions. Fast path only supports pure senders 5352 * or pure receivers (this means either the sequence number or the ack 5353 * value must stay constant) 5354 * - Unexpected TCP option. 5355 * 5356 * When these conditions are not satisfied it drops into a standard 5357 * receive procedure patterned after RFC793 to handle all cases. 5358 * The first three cases are guaranteed by proper pred_flags setting, 5359 * the rest is checked inline. Fast processing is turned on in 5360 * tcp_data_queue when everything is OK. 5361 */ 5362 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5363 const struct tcphdr *th) 5364 { 5365 unsigned int len = skb->len; 5366 struct tcp_sock *tp = tcp_sk(sk); 5367 5368 /* TCP congestion window tracking */ 5369 trace_tcp_probe(sk, skb); 5370 5371 tcp_mstamp_refresh(tp); 5372 if (unlikely(!sk->sk_rx_dst)) 5373 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5374 /* 5375 * Header prediction. 5376 * The code loosely follows the one in the famous 5377 * "30 instruction TCP receive" Van Jacobson mail. 5378 * 5379 * Van's trick is to deposit buffers into socket queue 5380 * on a device interrupt, to call tcp_recv function 5381 * on the receive process context and checksum and copy 5382 * the buffer to user space. smart... 5383 * 5384 * Our current scheme is not silly either but we take the 5385 * extra cost of the net_bh soft interrupt processing... 5386 * We do checksum and copy also but from device to kernel. 5387 */ 5388 5389 tp->rx_opt.saw_tstamp = 0; 5390 5391 /* pred_flags is 0xS?10 << 16 + snd_wnd 5392 * if header_prediction is to be made 5393 * 'S' will always be tp->tcp_header_len >> 2 5394 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5395 * turn it off (when there are holes in the receive 5396 * space for instance) 5397 * PSH flag is ignored. 5398 */ 5399 5400 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5401 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5402 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5403 int tcp_header_len = tp->tcp_header_len; 5404 5405 /* Timestamp header prediction: tcp_header_len 5406 * is automatically equal to th->doff*4 due to pred_flags 5407 * match. 5408 */ 5409 5410 /* Check timestamp */ 5411 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5412 /* No? Slow path! */ 5413 if (!tcp_parse_aligned_timestamp(tp, th)) 5414 goto slow_path; 5415 5416 /* If PAWS failed, check it more carefully in slow path */ 5417 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5418 goto slow_path; 5419 5420 /* DO NOT update ts_recent here, if checksum fails 5421 * and timestamp was corrupted part, it will result 5422 * in a hung connection since we will drop all 5423 * future packets due to the PAWS test. 5424 */ 5425 } 5426 5427 if (len <= tcp_header_len) { 5428 /* Bulk data transfer: sender */ 5429 if (len == tcp_header_len) { 5430 /* Predicted packet is in window by definition. 5431 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5432 * Hence, check seq<=rcv_wup reduces to: 5433 */ 5434 if (tcp_header_len == 5435 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5436 tp->rcv_nxt == tp->rcv_wup) 5437 tcp_store_ts_recent(tp); 5438 5439 /* We know that such packets are checksummed 5440 * on entry. 5441 */ 5442 tcp_ack(sk, skb, 0); 5443 __kfree_skb(skb); 5444 tcp_data_snd_check(sk); 5445 return; 5446 } else { /* Header too small */ 5447 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5448 goto discard; 5449 } 5450 } else { 5451 int eaten = 0; 5452 bool fragstolen = false; 5453 5454 if (tcp_checksum_complete(skb)) 5455 goto csum_error; 5456 5457 if ((int)skb->truesize > sk->sk_forward_alloc) 5458 goto step5; 5459 5460 /* Predicted packet is in window by definition. 5461 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5462 * Hence, check seq<=rcv_wup reduces to: 5463 */ 5464 if (tcp_header_len == 5465 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5466 tp->rcv_nxt == tp->rcv_wup) 5467 tcp_store_ts_recent(tp); 5468 5469 tcp_rcv_rtt_measure_ts(sk, skb); 5470 5471 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5472 5473 /* Bulk data transfer: receiver */ 5474 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5475 &fragstolen); 5476 5477 tcp_event_data_recv(sk, skb); 5478 5479 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5480 /* Well, only one small jumplet in fast path... */ 5481 tcp_ack(sk, skb, FLAG_DATA); 5482 tcp_data_snd_check(sk); 5483 if (!inet_csk_ack_scheduled(sk)) 5484 goto no_ack; 5485 } 5486 5487 __tcp_ack_snd_check(sk, 0); 5488 no_ack: 5489 if (eaten) 5490 kfree_skb_partial(skb, fragstolen); 5491 tcp_data_ready(sk); 5492 return; 5493 } 5494 } 5495 5496 slow_path: 5497 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5498 goto csum_error; 5499 5500 if (!th->ack && !th->rst && !th->syn) 5501 goto discard; 5502 5503 /* 5504 * Standard slow path. 5505 */ 5506 5507 if (!tcp_validate_incoming(sk, skb, th, 1)) 5508 return; 5509 5510 step5: 5511 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5512 goto discard; 5513 5514 tcp_rcv_rtt_measure_ts(sk, skb); 5515 5516 /* Process urgent data. */ 5517 tcp_urg(sk, skb, th); 5518 5519 /* step 7: process the segment text */ 5520 tcp_data_queue(sk, skb); 5521 5522 tcp_data_snd_check(sk); 5523 tcp_ack_snd_check(sk); 5524 return; 5525 5526 csum_error: 5527 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5528 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5529 5530 discard: 5531 tcp_drop(sk, skb); 5532 } 5533 EXPORT_SYMBOL(tcp_rcv_established); 5534 5535 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5536 { 5537 struct tcp_sock *tp = tcp_sk(sk); 5538 struct inet_connection_sock *icsk = inet_csk(sk); 5539 5540 tcp_set_state(sk, TCP_ESTABLISHED); 5541 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5542 5543 if (skb) { 5544 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5545 security_inet_conn_established(sk, skb); 5546 } 5547 5548 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5549 5550 /* Prevent spurious tcp_cwnd_restart() on first data 5551 * packet. 5552 */ 5553 tp->lsndtime = tcp_jiffies32; 5554 5555 if (sock_flag(sk, SOCK_KEEPOPEN)) 5556 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5557 5558 if (!tp->rx_opt.snd_wscale) 5559 __tcp_fast_path_on(tp, tp->snd_wnd); 5560 else 5561 tp->pred_flags = 0; 5562 } 5563 5564 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5565 struct tcp_fastopen_cookie *cookie) 5566 { 5567 struct tcp_sock *tp = tcp_sk(sk); 5568 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5569 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5570 bool syn_drop = false; 5571 5572 if (mss == tp->rx_opt.user_mss) { 5573 struct tcp_options_received opt; 5574 5575 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5576 tcp_clear_options(&opt); 5577 opt.user_mss = opt.mss_clamp = 0; 5578 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5579 mss = opt.mss_clamp; 5580 } 5581 5582 if (!tp->syn_fastopen) { 5583 /* Ignore an unsolicited cookie */ 5584 cookie->len = -1; 5585 } else if (tp->total_retrans) { 5586 /* SYN timed out and the SYN-ACK neither has a cookie nor 5587 * acknowledges data. Presumably the remote received only 5588 * the retransmitted (regular) SYNs: either the original 5589 * SYN-data or the corresponding SYN-ACK was dropped. 5590 */ 5591 syn_drop = (cookie->len < 0 && data); 5592 } else if (cookie->len < 0 && !tp->syn_data) { 5593 /* We requested a cookie but didn't get it. If we did not use 5594 * the (old) exp opt format then try so next time (try_exp=1). 5595 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5596 */ 5597 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5598 } 5599 5600 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5601 5602 if (data) { /* Retransmit unacked data in SYN */ 5603 skb_rbtree_walk_from(data) { 5604 if (__tcp_retransmit_skb(sk, data, 1)) 5605 break; 5606 } 5607 tcp_rearm_rto(sk); 5608 NET_INC_STATS(sock_net(sk), 5609 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5610 return true; 5611 } 5612 tp->syn_data_acked = tp->syn_data; 5613 if (tp->syn_data_acked) { 5614 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5615 /* SYN-data is counted as two separate packets in tcp_ack() */ 5616 if (tp->delivered > 1) 5617 --tp->delivered; 5618 } 5619 5620 tcp_fastopen_add_skb(sk, synack); 5621 5622 return false; 5623 } 5624 5625 static void smc_check_reset_syn(struct tcp_sock *tp) 5626 { 5627 #if IS_ENABLED(CONFIG_SMC) 5628 if (static_branch_unlikely(&tcp_have_smc)) { 5629 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5630 tp->syn_smc = 0; 5631 } 5632 #endif 5633 } 5634 5635 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5636 const struct tcphdr *th) 5637 { 5638 struct inet_connection_sock *icsk = inet_csk(sk); 5639 struct tcp_sock *tp = tcp_sk(sk); 5640 struct tcp_fastopen_cookie foc = { .len = -1 }; 5641 int saved_clamp = tp->rx_opt.mss_clamp; 5642 bool fastopen_fail; 5643 5644 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5645 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5646 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5647 5648 if (th->ack) { 5649 /* rfc793: 5650 * "If the state is SYN-SENT then 5651 * first check the ACK bit 5652 * If the ACK bit is set 5653 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5654 * a reset (unless the RST bit is set, if so drop 5655 * the segment and return)" 5656 */ 5657 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5658 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5659 goto reset_and_undo; 5660 5661 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5662 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5663 tcp_time_stamp(tp))) { 5664 NET_INC_STATS(sock_net(sk), 5665 LINUX_MIB_PAWSACTIVEREJECTED); 5666 goto reset_and_undo; 5667 } 5668 5669 /* Now ACK is acceptable. 5670 * 5671 * "If the RST bit is set 5672 * If the ACK was acceptable then signal the user "error: 5673 * connection reset", drop the segment, enter CLOSED state, 5674 * delete TCB, and return." 5675 */ 5676 5677 if (th->rst) { 5678 tcp_reset(sk); 5679 goto discard; 5680 } 5681 5682 /* rfc793: 5683 * "fifth, if neither of the SYN or RST bits is set then 5684 * drop the segment and return." 5685 * 5686 * See note below! 5687 * --ANK(990513) 5688 */ 5689 if (!th->syn) 5690 goto discard_and_undo; 5691 5692 /* rfc793: 5693 * "If the SYN bit is on ... 5694 * are acceptable then ... 5695 * (our SYN has been ACKed), change the connection 5696 * state to ESTABLISHED..." 5697 */ 5698 5699 tcp_ecn_rcv_synack(tp, th); 5700 5701 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5702 tcp_ack(sk, skb, FLAG_SLOWPATH); 5703 5704 /* Ok.. it's good. Set up sequence numbers and 5705 * move to established. 5706 */ 5707 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5708 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5709 5710 /* RFC1323: The window in SYN & SYN/ACK segments is 5711 * never scaled. 5712 */ 5713 tp->snd_wnd = ntohs(th->window); 5714 5715 if (!tp->rx_opt.wscale_ok) { 5716 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5717 tp->window_clamp = min(tp->window_clamp, 65535U); 5718 } 5719 5720 if (tp->rx_opt.saw_tstamp) { 5721 tp->rx_opt.tstamp_ok = 1; 5722 tp->tcp_header_len = 5723 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5724 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5725 tcp_store_ts_recent(tp); 5726 } else { 5727 tp->tcp_header_len = sizeof(struct tcphdr); 5728 } 5729 5730 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5731 tcp_initialize_rcv_mss(sk); 5732 5733 /* Remember, tcp_poll() does not lock socket! 5734 * Change state from SYN-SENT only after copied_seq 5735 * is initialized. */ 5736 tp->copied_seq = tp->rcv_nxt; 5737 5738 smc_check_reset_syn(tp); 5739 5740 smp_mb(); 5741 5742 tcp_finish_connect(sk, skb); 5743 5744 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5745 tcp_rcv_fastopen_synack(sk, skb, &foc); 5746 5747 if (!sock_flag(sk, SOCK_DEAD)) { 5748 sk->sk_state_change(sk); 5749 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5750 } 5751 if (fastopen_fail) 5752 return -1; 5753 if (sk->sk_write_pending || 5754 icsk->icsk_accept_queue.rskq_defer_accept || 5755 icsk->icsk_ack.pingpong) { 5756 /* Save one ACK. Data will be ready after 5757 * several ticks, if write_pending is set. 5758 * 5759 * It may be deleted, but with this feature tcpdumps 5760 * look so _wonderfully_ clever, that I was not able 5761 * to stand against the temptation 8) --ANK 5762 */ 5763 inet_csk_schedule_ack(sk); 5764 tcp_enter_quickack_mode(sk); 5765 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5766 TCP_DELACK_MAX, TCP_RTO_MAX); 5767 5768 discard: 5769 tcp_drop(sk, skb); 5770 return 0; 5771 } else { 5772 tcp_send_ack(sk); 5773 } 5774 return -1; 5775 } 5776 5777 /* No ACK in the segment */ 5778 5779 if (th->rst) { 5780 /* rfc793: 5781 * "If the RST bit is set 5782 * 5783 * Otherwise (no ACK) drop the segment and return." 5784 */ 5785 5786 goto discard_and_undo; 5787 } 5788 5789 /* PAWS check. */ 5790 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5791 tcp_paws_reject(&tp->rx_opt, 0)) 5792 goto discard_and_undo; 5793 5794 if (th->syn) { 5795 /* We see SYN without ACK. It is attempt of 5796 * simultaneous connect with crossed SYNs. 5797 * Particularly, it can be connect to self. 5798 */ 5799 tcp_set_state(sk, TCP_SYN_RECV); 5800 5801 if (tp->rx_opt.saw_tstamp) { 5802 tp->rx_opt.tstamp_ok = 1; 5803 tcp_store_ts_recent(tp); 5804 tp->tcp_header_len = 5805 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5806 } else { 5807 tp->tcp_header_len = sizeof(struct tcphdr); 5808 } 5809 5810 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5811 tp->copied_seq = tp->rcv_nxt; 5812 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5813 5814 /* RFC1323: The window in SYN & SYN/ACK segments is 5815 * never scaled. 5816 */ 5817 tp->snd_wnd = ntohs(th->window); 5818 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5819 tp->max_window = tp->snd_wnd; 5820 5821 tcp_ecn_rcv_syn(tp, th); 5822 5823 tcp_mtup_init(sk); 5824 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5825 tcp_initialize_rcv_mss(sk); 5826 5827 tcp_send_synack(sk); 5828 #if 0 5829 /* Note, we could accept data and URG from this segment. 5830 * There are no obstacles to make this (except that we must 5831 * either change tcp_recvmsg() to prevent it from returning data 5832 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5833 * 5834 * However, if we ignore data in ACKless segments sometimes, 5835 * we have no reasons to accept it sometimes. 5836 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5837 * is not flawless. So, discard packet for sanity. 5838 * Uncomment this return to process the data. 5839 */ 5840 return -1; 5841 #else 5842 goto discard; 5843 #endif 5844 } 5845 /* "fifth, if neither of the SYN or RST bits is set then 5846 * drop the segment and return." 5847 */ 5848 5849 discard_and_undo: 5850 tcp_clear_options(&tp->rx_opt); 5851 tp->rx_opt.mss_clamp = saved_clamp; 5852 goto discard; 5853 5854 reset_and_undo: 5855 tcp_clear_options(&tp->rx_opt); 5856 tp->rx_opt.mss_clamp = saved_clamp; 5857 return 1; 5858 } 5859 5860 /* 5861 * This function implements the receiving procedure of RFC 793 for 5862 * all states except ESTABLISHED and TIME_WAIT. 5863 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5864 * address independent. 5865 */ 5866 5867 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5868 { 5869 struct tcp_sock *tp = tcp_sk(sk); 5870 struct inet_connection_sock *icsk = inet_csk(sk); 5871 const struct tcphdr *th = tcp_hdr(skb); 5872 struct request_sock *req; 5873 int queued = 0; 5874 bool acceptable; 5875 5876 switch (sk->sk_state) { 5877 case TCP_CLOSE: 5878 goto discard; 5879 5880 case TCP_LISTEN: 5881 if (th->ack) 5882 return 1; 5883 5884 if (th->rst) 5885 goto discard; 5886 5887 if (th->syn) { 5888 if (th->fin) 5889 goto discard; 5890 /* It is possible that we process SYN packets from backlog, 5891 * so we need to make sure to disable BH right there. 5892 */ 5893 local_bh_disable(); 5894 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5895 local_bh_enable(); 5896 5897 if (!acceptable) 5898 return 1; 5899 consume_skb(skb); 5900 return 0; 5901 } 5902 goto discard; 5903 5904 case TCP_SYN_SENT: 5905 tp->rx_opt.saw_tstamp = 0; 5906 tcp_mstamp_refresh(tp); 5907 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5908 if (queued >= 0) 5909 return queued; 5910 5911 /* Do step6 onward by hand. */ 5912 tcp_urg(sk, skb, th); 5913 __kfree_skb(skb); 5914 tcp_data_snd_check(sk); 5915 return 0; 5916 } 5917 5918 tcp_mstamp_refresh(tp); 5919 tp->rx_opt.saw_tstamp = 0; 5920 req = tp->fastopen_rsk; 5921 if (req) { 5922 bool req_stolen; 5923 5924 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5925 sk->sk_state != TCP_FIN_WAIT1); 5926 5927 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 5928 goto discard; 5929 } 5930 5931 if (!th->ack && !th->rst && !th->syn) 5932 goto discard; 5933 5934 if (!tcp_validate_incoming(sk, skb, th, 0)) 5935 return 0; 5936 5937 /* step 5: check the ACK field */ 5938 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5939 FLAG_UPDATE_TS_RECENT | 5940 FLAG_NO_CHALLENGE_ACK) > 0; 5941 5942 if (!acceptable) { 5943 if (sk->sk_state == TCP_SYN_RECV) 5944 return 1; /* send one RST */ 5945 tcp_send_challenge_ack(sk, skb); 5946 goto discard; 5947 } 5948 switch (sk->sk_state) { 5949 case TCP_SYN_RECV: 5950 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 5951 if (!tp->srtt_us) 5952 tcp_synack_rtt_meas(sk, req); 5953 5954 /* Once we leave TCP_SYN_RECV, we no longer need req 5955 * so release it. 5956 */ 5957 if (req) { 5958 inet_csk(sk)->icsk_retransmits = 0; 5959 reqsk_fastopen_remove(sk, req, false); 5960 /* Re-arm the timer because data may have been sent out. 5961 * This is similar to the regular data transmission case 5962 * when new data has just been ack'ed. 5963 * 5964 * (TFO) - we could try to be more aggressive and 5965 * retransmitting any data sooner based on when they 5966 * are sent out. 5967 */ 5968 tcp_rearm_rto(sk); 5969 } else { 5970 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 5971 tp->copied_seq = tp->rcv_nxt; 5972 } 5973 smp_mb(); 5974 tcp_set_state(sk, TCP_ESTABLISHED); 5975 sk->sk_state_change(sk); 5976 5977 /* Note, that this wakeup is only for marginal crossed SYN case. 5978 * Passively open sockets are not waked up, because 5979 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5980 */ 5981 if (sk->sk_socket) 5982 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5983 5984 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5985 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5986 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5987 5988 if (tp->rx_opt.tstamp_ok) 5989 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5990 5991 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5992 tcp_update_pacing_rate(sk); 5993 5994 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5995 tp->lsndtime = tcp_jiffies32; 5996 5997 tcp_initialize_rcv_mss(sk); 5998 tcp_fast_path_on(tp); 5999 break; 6000 6001 case TCP_FIN_WAIT1: { 6002 int tmo; 6003 6004 /* If we enter the TCP_FIN_WAIT1 state and we are a 6005 * Fast Open socket and this is the first acceptable 6006 * ACK we have received, this would have acknowledged 6007 * our SYNACK so stop the SYNACK timer. 6008 */ 6009 if (req) { 6010 /* We no longer need the request sock. */ 6011 reqsk_fastopen_remove(sk, req, false); 6012 tcp_rearm_rto(sk); 6013 } 6014 if (tp->snd_una != tp->write_seq) 6015 break; 6016 6017 tcp_set_state(sk, TCP_FIN_WAIT2); 6018 sk->sk_shutdown |= SEND_SHUTDOWN; 6019 6020 sk_dst_confirm(sk); 6021 6022 if (!sock_flag(sk, SOCK_DEAD)) { 6023 /* Wake up lingering close() */ 6024 sk->sk_state_change(sk); 6025 break; 6026 } 6027 6028 if (tp->linger2 < 0) { 6029 tcp_done(sk); 6030 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6031 return 1; 6032 } 6033 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6034 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6035 /* Receive out of order FIN after close() */ 6036 if (tp->syn_fastopen && th->fin) 6037 tcp_fastopen_active_disable(sk); 6038 tcp_done(sk); 6039 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6040 return 1; 6041 } 6042 6043 tmo = tcp_fin_time(sk); 6044 if (tmo > TCP_TIMEWAIT_LEN) { 6045 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6046 } else if (th->fin || sock_owned_by_user(sk)) { 6047 /* Bad case. We could lose such FIN otherwise. 6048 * It is not a big problem, but it looks confusing 6049 * and not so rare event. We still can lose it now, 6050 * if it spins in bh_lock_sock(), but it is really 6051 * marginal case. 6052 */ 6053 inet_csk_reset_keepalive_timer(sk, tmo); 6054 } else { 6055 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6056 goto discard; 6057 } 6058 break; 6059 } 6060 6061 case TCP_CLOSING: 6062 if (tp->snd_una == tp->write_seq) { 6063 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6064 goto discard; 6065 } 6066 break; 6067 6068 case TCP_LAST_ACK: 6069 if (tp->snd_una == tp->write_seq) { 6070 tcp_update_metrics(sk); 6071 tcp_done(sk); 6072 goto discard; 6073 } 6074 break; 6075 } 6076 6077 /* step 6: check the URG bit */ 6078 tcp_urg(sk, skb, th); 6079 6080 /* step 7: process the segment text */ 6081 switch (sk->sk_state) { 6082 case TCP_CLOSE_WAIT: 6083 case TCP_CLOSING: 6084 case TCP_LAST_ACK: 6085 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6086 break; 6087 /* fall through */ 6088 case TCP_FIN_WAIT1: 6089 case TCP_FIN_WAIT2: 6090 /* RFC 793 says to queue data in these states, 6091 * RFC 1122 says we MUST send a reset. 6092 * BSD 4.4 also does reset. 6093 */ 6094 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6095 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6096 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6097 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6098 tcp_reset(sk); 6099 return 1; 6100 } 6101 } 6102 /* Fall through */ 6103 case TCP_ESTABLISHED: 6104 tcp_data_queue(sk, skb); 6105 queued = 1; 6106 break; 6107 } 6108 6109 /* tcp_data could move socket to TIME-WAIT */ 6110 if (sk->sk_state != TCP_CLOSE) { 6111 tcp_data_snd_check(sk); 6112 tcp_ack_snd_check(sk); 6113 } 6114 6115 if (!queued) { 6116 discard: 6117 tcp_drop(sk, skb); 6118 } 6119 return 0; 6120 } 6121 EXPORT_SYMBOL(tcp_rcv_state_process); 6122 6123 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6124 { 6125 struct inet_request_sock *ireq = inet_rsk(req); 6126 6127 if (family == AF_INET) 6128 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6129 &ireq->ir_rmt_addr, port); 6130 #if IS_ENABLED(CONFIG_IPV6) 6131 else if (family == AF_INET6) 6132 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6133 &ireq->ir_v6_rmt_addr, port); 6134 #endif 6135 } 6136 6137 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6138 * 6139 * If we receive a SYN packet with these bits set, it means a 6140 * network is playing bad games with TOS bits. In order to 6141 * avoid possible false congestion notifications, we disable 6142 * TCP ECN negotiation. 6143 * 6144 * Exception: tcp_ca wants ECN. This is required for DCTCP 6145 * congestion control: Linux DCTCP asserts ECT on all packets, 6146 * including SYN, which is most optimal solution; however, 6147 * others, such as FreeBSD do not. 6148 */ 6149 static void tcp_ecn_create_request(struct request_sock *req, 6150 const struct sk_buff *skb, 6151 const struct sock *listen_sk, 6152 const struct dst_entry *dst) 6153 { 6154 const struct tcphdr *th = tcp_hdr(skb); 6155 const struct net *net = sock_net(listen_sk); 6156 bool th_ecn = th->ece && th->cwr; 6157 bool ect, ecn_ok; 6158 u32 ecn_ok_dst; 6159 6160 if (!th_ecn) 6161 return; 6162 6163 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6164 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6165 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6166 6167 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6168 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6169 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6170 inet_rsk(req)->ecn_ok = 1; 6171 } 6172 6173 static void tcp_openreq_init(struct request_sock *req, 6174 const struct tcp_options_received *rx_opt, 6175 struct sk_buff *skb, const struct sock *sk) 6176 { 6177 struct inet_request_sock *ireq = inet_rsk(req); 6178 6179 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6180 req->cookie_ts = 0; 6181 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6182 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6183 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6184 tcp_rsk(req)->last_oow_ack_time = 0; 6185 req->mss = rx_opt->mss_clamp; 6186 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6187 ireq->tstamp_ok = rx_opt->tstamp_ok; 6188 ireq->sack_ok = rx_opt->sack_ok; 6189 ireq->snd_wscale = rx_opt->snd_wscale; 6190 ireq->wscale_ok = rx_opt->wscale_ok; 6191 ireq->acked = 0; 6192 ireq->ecn_ok = 0; 6193 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6194 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6195 ireq->ir_mark = inet_request_mark(sk, skb); 6196 #if IS_ENABLED(CONFIG_SMC) 6197 ireq->smc_ok = rx_opt->smc_ok; 6198 #endif 6199 } 6200 6201 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6202 struct sock *sk_listener, 6203 bool attach_listener) 6204 { 6205 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6206 attach_listener); 6207 6208 if (req) { 6209 struct inet_request_sock *ireq = inet_rsk(req); 6210 6211 ireq->ireq_opt = NULL; 6212 #if IS_ENABLED(CONFIG_IPV6) 6213 ireq->pktopts = NULL; 6214 #endif 6215 atomic64_set(&ireq->ir_cookie, 0); 6216 ireq->ireq_state = TCP_NEW_SYN_RECV; 6217 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6218 ireq->ireq_family = sk_listener->sk_family; 6219 } 6220 6221 return req; 6222 } 6223 EXPORT_SYMBOL(inet_reqsk_alloc); 6224 6225 /* 6226 * Return true if a syncookie should be sent 6227 */ 6228 static bool tcp_syn_flood_action(const struct sock *sk, 6229 const struct sk_buff *skb, 6230 const char *proto) 6231 { 6232 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6233 const char *msg = "Dropping request"; 6234 bool want_cookie = false; 6235 struct net *net = sock_net(sk); 6236 6237 #ifdef CONFIG_SYN_COOKIES 6238 if (net->ipv4.sysctl_tcp_syncookies) { 6239 msg = "Sending cookies"; 6240 want_cookie = true; 6241 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6242 } else 6243 #endif 6244 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6245 6246 if (!queue->synflood_warned && 6247 net->ipv4.sysctl_tcp_syncookies != 2 && 6248 xchg(&queue->synflood_warned, 1) == 0) 6249 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6250 proto, ntohs(tcp_hdr(skb)->dest), msg); 6251 6252 return want_cookie; 6253 } 6254 6255 static void tcp_reqsk_record_syn(const struct sock *sk, 6256 struct request_sock *req, 6257 const struct sk_buff *skb) 6258 { 6259 if (tcp_sk(sk)->save_syn) { 6260 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6261 u32 *copy; 6262 6263 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6264 if (copy) { 6265 copy[0] = len; 6266 memcpy(©[1], skb_network_header(skb), len); 6267 req->saved_syn = copy; 6268 } 6269 } 6270 } 6271 6272 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6273 const struct tcp_request_sock_ops *af_ops, 6274 struct sock *sk, struct sk_buff *skb) 6275 { 6276 struct tcp_fastopen_cookie foc = { .len = -1 }; 6277 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6278 struct tcp_options_received tmp_opt; 6279 struct tcp_sock *tp = tcp_sk(sk); 6280 struct net *net = sock_net(sk); 6281 struct sock *fastopen_sk = NULL; 6282 struct request_sock *req; 6283 bool want_cookie = false; 6284 struct dst_entry *dst; 6285 struct flowi fl; 6286 6287 /* TW buckets are converted to open requests without 6288 * limitations, they conserve resources and peer is 6289 * evidently real one. 6290 */ 6291 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6292 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6293 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6294 if (!want_cookie) 6295 goto drop; 6296 } 6297 6298 if (sk_acceptq_is_full(sk)) { 6299 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6300 goto drop; 6301 } 6302 6303 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6304 if (!req) 6305 goto drop; 6306 6307 tcp_rsk(req)->af_specific = af_ops; 6308 tcp_rsk(req)->ts_off = 0; 6309 6310 tcp_clear_options(&tmp_opt); 6311 tmp_opt.mss_clamp = af_ops->mss_clamp; 6312 tmp_opt.user_mss = tp->rx_opt.user_mss; 6313 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6314 want_cookie ? NULL : &foc); 6315 6316 if (want_cookie && !tmp_opt.saw_tstamp) 6317 tcp_clear_options(&tmp_opt); 6318 6319 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6320 tmp_opt.smc_ok = 0; 6321 6322 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6323 tcp_openreq_init(req, &tmp_opt, skb, sk); 6324 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6325 6326 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6327 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6328 6329 af_ops->init_req(req, sk, skb); 6330 6331 if (security_inet_conn_request(sk, skb, req)) 6332 goto drop_and_free; 6333 6334 if (tmp_opt.tstamp_ok) 6335 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6336 6337 dst = af_ops->route_req(sk, &fl, req); 6338 if (!dst) 6339 goto drop_and_free; 6340 6341 if (!want_cookie && !isn) { 6342 /* Kill the following clause, if you dislike this way. */ 6343 if (!net->ipv4.sysctl_tcp_syncookies && 6344 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6345 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6346 !tcp_peer_is_proven(req, dst)) { 6347 /* Without syncookies last quarter of 6348 * backlog is filled with destinations, 6349 * proven to be alive. 6350 * It means that we continue to communicate 6351 * to destinations, already remembered 6352 * to the moment of synflood. 6353 */ 6354 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6355 rsk_ops->family); 6356 goto drop_and_release; 6357 } 6358 6359 isn = af_ops->init_seq(skb); 6360 } 6361 6362 tcp_ecn_create_request(req, skb, sk, dst); 6363 6364 if (want_cookie) { 6365 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6366 req->cookie_ts = tmp_opt.tstamp_ok; 6367 if (!tmp_opt.tstamp_ok) 6368 inet_rsk(req)->ecn_ok = 0; 6369 } 6370 6371 tcp_rsk(req)->snt_isn = isn; 6372 tcp_rsk(req)->txhash = net_tx_rndhash(); 6373 tcp_openreq_init_rwin(req, sk, dst); 6374 if (!want_cookie) { 6375 tcp_reqsk_record_syn(sk, req, skb); 6376 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6377 } 6378 if (fastopen_sk) { 6379 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6380 &foc, TCP_SYNACK_FASTOPEN); 6381 /* Add the child socket directly into the accept queue */ 6382 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6383 sk->sk_data_ready(sk); 6384 bh_unlock_sock(fastopen_sk); 6385 sock_put(fastopen_sk); 6386 } else { 6387 tcp_rsk(req)->tfo_listener = false; 6388 if (!want_cookie) 6389 inet_csk_reqsk_queue_hash_add(sk, req, 6390 tcp_timeout_init((struct sock *)req)); 6391 af_ops->send_synack(sk, dst, &fl, req, &foc, 6392 !want_cookie ? TCP_SYNACK_NORMAL : 6393 TCP_SYNACK_COOKIE); 6394 if (want_cookie) { 6395 reqsk_free(req); 6396 return 0; 6397 } 6398 } 6399 reqsk_put(req); 6400 return 0; 6401 6402 drop_and_release: 6403 dst_release(dst); 6404 drop_and_free: 6405 reqsk_free(req); 6406 drop: 6407 tcp_listendrop(sk); 6408 return 0; 6409 } 6410 EXPORT_SYMBOL(tcp_conn_request); 6411