xref: /linux/net/ipv4/tcp_input.c (revision b04df400c30235fa347313c9e2a0695549bd2c8e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 
82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
83 
84 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
85 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
86 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
87 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
88 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
89 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
90 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
91 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
94 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
100 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
101 
102 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
103 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
104 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
105 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
106 
107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
109 
110 #define REXMIT_NONE	0 /* no loss recovery to do */
111 #define REXMIT_LOST	1 /* retransmit packets marked lost */
112 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
113 
114 #if IS_ENABLED(CONFIG_TLS_DEVICE)
115 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
116 
117 void clean_acked_data_enable(struct inet_connection_sock *icsk,
118 			     void (*cad)(struct sock *sk, u32 ack_seq))
119 {
120 	icsk->icsk_clean_acked = cad;
121 	static_branch_inc(&clean_acked_data_enabled);
122 }
123 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
124 
125 void clean_acked_data_disable(struct inet_connection_sock *icsk)
126 {
127 	static_branch_dec(&clean_acked_data_enabled);
128 	icsk->icsk_clean_acked = NULL;
129 }
130 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
131 #endif
132 
133 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
134 			     unsigned int len)
135 {
136 	static bool __once __read_mostly;
137 
138 	if (!__once) {
139 		struct net_device *dev;
140 
141 		__once = true;
142 
143 		rcu_read_lock();
144 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
145 		if (!dev || len >= dev->mtu)
146 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
147 				dev ? dev->name : "Unknown driver");
148 		rcu_read_unlock();
149 	}
150 }
151 
152 /* Adapt the MSS value used to make delayed ack decision to the
153  * real world.
154  */
155 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
156 {
157 	struct inet_connection_sock *icsk = inet_csk(sk);
158 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
159 	unsigned int len;
160 
161 	icsk->icsk_ack.last_seg_size = 0;
162 
163 	/* skb->len may jitter because of SACKs, even if peer
164 	 * sends good full-sized frames.
165 	 */
166 	len = skb_shinfo(skb)->gso_size ? : skb->len;
167 	if (len >= icsk->icsk_ack.rcv_mss) {
168 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
169 					       tcp_sk(sk)->advmss);
170 		/* Account for possibly-removed options */
171 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
172 				   MAX_TCP_OPTION_SPACE))
173 			tcp_gro_dev_warn(sk, skb, len);
174 	} else {
175 		/* Otherwise, we make more careful check taking into account,
176 		 * that SACKs block is variable.
177 		 *
178 		 * "len" is invariant segment length, including TCP header.
179 		 */
180 		len += skb->data - skb_transport_header(skb);
181 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
182 		    /* If PSH is not set, packet should be
183 		     * full sized, provided peer TCP is not badly broken.
184 		     * This observation (if it is correct 8)) allows
185 		     * to handle super-low mtu links fairly.
186 		     */
187 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
188 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
189 			/* Subtract also invariant (if peer is RFC compliant),
190 			 * tcp header plus fixed timestamp option length.
191 			 * Resulting "len" is MSS free of SACK jitter.
192 			 */
193 			len -= tcp_sk(sk)->tcp_header_len;
194 			icsk->icsk_ack.last_seg_size = len;
195 			if (len == lss) {
196 				icsk->icsk_ack.rcv_mss = len;
197 				return;
198 			}
199 		}
200 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
201 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
202 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
203 	}
204 }
205 
206 static void tcp_incr_quickack(struct sock *sk)
207 {
208 	struct inet_connection_sock *icsk = inet_csk(sk);
209 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
210 
211 	if (quickacks == 0)
212 		quickacks = 2;
213 	if (quickacks > icsk->icsk_ack.quick)
214 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
215 }
216 
217 static void tcp_enter_quickack_mode(struct sock *sk)
218 {
219 	struct inet_connection_sock *icsk = inet_csk(sk);
220 	tcp_incr_quickack(sk);
221 	icsk->icsk_ack.pingpong = 0;
222 	icsk->icsk_ack.ato = TCP_ATO_MIN;
223 }
224 
225 /* Send ACKs quickly, if "quick" count is not exhausted
226  * and the session is not interactive.
227  */
228 
229 static bool tcp_in_quickack_mode(struct sock *sk)
230 {
231 	const struct inet_connection_sock *icsk = inet_csk(sk);
232 	const struct dst_entry *dst = __sk_dst_get(sk);
233 
234 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
235 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
236 }
237 
238 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
239 {
240 	if (tp->ecn_flags & TCP_ECN_OK)
241 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
242 }
243 
244 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
245 {
246 	if (tcp_hdr(skb)->cwr)
247 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
248 }
249 
250 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
251 {
252 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
253 }
254 
255 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
256 {
257 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
258 	case INET_ECN_NOT_ECT:
259 		/* Funny extension: if ECT is not set on a segment,
260 		 * and we already seen ECT on a previous segment,
261 		 * it is probably a retransmit.
262 		 */
263 		if (tp->ecn_flags & TCP_ECN_SEEN)
264 			tcp_enter_quickack_mode((struct sock *)tp);
265 		break;
266 	case INET_ECN_CE:
267 		if (tcp_ca_needs_ecn((struct sock *)tp))
268 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
269 
270 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
271 			/* Better not delay acks, sender can have a very low cwnd */
272 			tcp_enter_quickack_mode((struct sock *)tp);
273 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
274 		}
275 		tp->ecn_flags |= TCP_ECN_SEEN;
276 		break;
277 	default:
278 		if (tcp_ca_needs_ecn((struct sock *)tp))
279 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
280 		tp->ecn_flags |= TCP_ECN_SEEN;
281 		break;
282 	}
283 }
284 
285 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
286 {
287 	if (tp->ecn_flags & TCP_ECN_OK)
288 		__tcp_ecn_check_ce(tp, skb);
289 }
290 
291 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
292 {
293 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
294 		tp->ecn_flags &= ~TCP_ECN_OK;
295 }
296 
297 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
298 {
299 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
300 		tp->ecn_flags &= ~TCP_ECN_OK;
301 }
302 
303 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
304 {
305 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
306 		return true;
307 	return false;
308 }
309 
310 /* Buffer size and advertised window tuning.
311  *
312  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
313  */
314 
315 static void tcp_sndbuf_expand(struct sock *sk)
316 {
317 	const struct tcp_sock *tp = tcp_sk(sk);
318 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
319 	int sndmem, per_mss;
320 	u32 nr_segs;
321 
322 	/* Worst case is non GSO/TSO : each frame consumes one skb
323 	 * and skb->head is kmalloced using power of two area of memory
324 	 */
325 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
326 		  MAX_TCP_HEADER +
327 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
328 
329 	per_mss = roundup_pow_of_two(per_mss) +
330 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
331 
332 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
333 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
334 
335 	/* Fast Recovery (RFC 5681 3.2) :
336 	 * Cubic needs 1.7 factor, rounded to 2 to include
337 	 * extra cushion (application might react slowly to EPOLLOUT)
338 	 */
339 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
340 	sndmem *= nr_segs * per_mss;
341 
342 	if (sk->sk_sndbuf < sndmem)
343 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
344 }
345 
346 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
347  *
348  * All tcp_full_space() is split to two parts: "network" buffer, allocated
349  * forward and advertised in receiver window (tp->rcv_wnd) and
350  * "application buffer", required to isolate scheduling/application
351  * latencies from network.
352  * window_clamp is maximal advertised window. It can be less than
353  * tcp_full_space(), in this case tcp_full_space() - window_clamp
354  * is reserved for "application" buffer. The less window_clamp is
355  * the smoother our behaviour from viewpoint of network, but the lower
356  * throughput and the higher sensitivity of the connection to losses. 8)
357  *
358  * rcv_ssthresh is more strict window_clamp used at "slow start"
359  * phase to predict further behaviour of this connection.
360  * It is used for two goals:
361  * - to enforce header prediction at sender, even when application
362  *   requires some significant "application buffer". It is check #1.
363  * - to prevent pruning of receive queue because of misprediction
364  *   of receiver window. Check #2.
365  *
366  * The scheme does not work when sender sends good segments opening
367  * window and then starts to feed us spaghetti. But it should work
368  * in common situations. Otherwise, we have to rely on queue collapsing.
369  */
370 
371 /* Slow part of check#2. */
372 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
373 {
374 	struct tcp_sock *tp = tcp_sk(sk);
375 	/* Optimize this! */
376 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
377 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
378 
379 	while (tp->rcv_ssthresh <= window) {
380 		if (truesize <= skb->len)
381 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
382 
383 		truesize >>= 1;
384 		window >>= 1;
385 	}
386 	return 0;
387 }
388 
389 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
390 {
391 	struct tcp_sock *tp = tcp_sk(sk);
392 
393 	/* Check #1 */
394 	if (tp->rcv_ssthresh < tp->window_clamp &&
395 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
396 	    !tcp_under_memory_pressure(sk)) {
397 		int incr;
398 
399 		/* Check #2. Increase window, if skb with such overhead
400 		 * will fit to rcvbuf in future.
401 		 */
402 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
403 			incr = 2 * tp->advmss;
404 		else
405 			incr = __tcp_grow_window(sk, skb);
406 
407 		if (incr) {
408 			incr = max_t(int, incr, 2 * skb->len);
409 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
410 					       tp->window_clamp);
411 			inet_csk(sk)->icsk_ack.quick |= 1;
412 		}
413 	}
414 }
415 
416 /* 3. Tuning rcvbuf, when connection enters established state. */
417 static void tcp_fixup_rcvbuf(struct sock *sk)
418 {
419 	u32 mss = tcp_sk(sk)->advmss;
420 	int rcvmem;
421 
422 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
423 		 tcp_default_init_rwnd(mss);
424 
425 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
426 	 * Allow enough cushion so that sender is not limited by our window
427 	 */
428 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
429 		rcvmem <<= 2;
430 
431 	if (sk->sk_rcvbuf < rcvmem)
432 		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
433 }
434 
435 /* 4. Try to fixup all. It is made immediately after connection enters
436  *    established state.
437  */
438 void tcp_init_buffer_space(struct sock *sk)
439 {
440 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
441 	struct tcp_sock *tp = tcp_sk(sk);
442 	int maxwin;
443 
444 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
445 		tcp_fixup_rcvbuf(sk);
446 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
447 		tcp_sndbuf_expand(sk);
448 
449 	tp->rcvq_space.space = tp->rcv_wnd;
450 	tcp_mstamp_refresh(tp);
451 	tp->rcvq_space.time = tp->tcp_mstamp;
452 	tp->rcvq_space.seq = tp->copied_seq;
453 
454 	maxwin = tcp_full_space(sk);
455 
456 	if (tp->window_clamp >= maxwin) {
457 		tp->window_clamp = maxwin;
458 
459 		if (tcp_app_win && maxwin > 4 * tp->advmss)
460 			tp->window_clamp = max(maxwin -
461 					       (maxwin >> tcp_app_win),
462 					       4 * tp->advmss);
463 	}
464 
465 	/* Force reservation of one segment. */
466 	if (tcp_app_win &&
467 	    tp->window_clamp > 2 * tp->advmss &&
468 	    tp->window_clamp + tp->advmss > maxwin)
469 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
470 
471 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
472 	tp->snd_cwnd_stamp = tcp_jiffies32;
473 }
474 
475 /* 5. Recalculate window clamp after socket hit its memory bounds. */
476 static void tcp_clamp_window(struct sock *sk)
477 {
478 	struct tcp_sock *tp = tcp_sk(sk);
479 	struct inet_connection_sock *icsk = inet_csk(sk);
480 	struct net *net = sock_net(sk);
481 
482 	icsk->icsk_ack.quick = 0;
483 
484 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
485 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
486 	    !tcp_under_memory_pressure(sk) &&
487 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
488 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
489 				    net->ipv4.sysctl_tcp_rmem[2]);
490 	}
491 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
492 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
493 }
494 
495 /* Initialize RCV_MSS value.
496  * RCV_MSS is an our guess about MSS used by the peer.
497  * We haven't any direct information about the MSS.
498  * It's better to underestimate the RCV_MSS rather than overestimate.
499  * Overestimations make us ACKing less frequently than needed.
500  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
501  */
502 void tcp_initialize_rcv_mss(struct sock *sk)
503 {
504 	const struct tcp_sock *tp = tcp_sk(sk);
505 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
506 
507 	hint = min(hint, tp->rcv_wnd / 2);
508 	hint = min(hint, TCP_MSS_DEFAULT);
509 	hint = max(hint, TCP_MIN_MSS);
510 
511 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
512 }
513 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
514 
515 /* Receiver "autotuning" code.
516  *
517  * The algorithm for RTT estimation w/o timestamps is based on
518  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
519  * <http://public.lanl.gov/radiant/pubs.html#DRS>
520  *
521  * More detail on this code can be found at
522  * <http://staff.psc.edu/jheffner/>,
523  * though this reference is out of date.  A new paper
524  * is pending.
525  */
526 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
527 {
528 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
529 	long m = sample;
530 
531 	if (new_sample != 0) {
532 		/* If we sample in larger samples in the non-timestamp
533 		 * case, we could grossly overestimate the RTT especially
534 		 * with chatty applications or bulk transfer apps which
535 		 * are stalled on filesystem I/O.
536 		 *
537 		 * Also, since we are only going for a minimum in the
538 		 * non-timestamp case, we do not smooth things out
539 		 * else with timestamps disabled convergence takes too
540 		 * long.
541 		 */
542 		if (!win_dep) {
543 			m -= (new_sample >> 3);
544 			new_sample += m;
545 		} else {
546 			m <<= 3;
547 			if (m < new_sample)
548 				new_sample = m;
549 		}
550 	} else {
551 		/* No previous measure. */
552 		new_sample = m << 3;
553 	}
554 
555 	tp->rcv_rtt_est.rtt_us = new_sample;
556 }
557 
558 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
559 {
560 	u32 delta_us;
561 
562 	if (tp->rcv_rtt_est.time == 0)
563 		goto new_measure;
564 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
565 		return;
566 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
567 	if (!delta_us)
568 		delta_us = 1;
569 	tcp_rcv_rtt_update(tp, delta_us, 1);
570 
571 new_measure:
572 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
573 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
574 }
575 
576 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
577 					  const struct sk_buff *skb)
578 {
579 	struct tcp_sock *tp = tcp_sk(sk);
580 
581 	if (tp->rx_opt.rcv_tsecr &&
582 	    (TCP_SKB_CB(skb)->end_seq -
583 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
584 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
585 		u32 delta_us;
586 
587 		if (!delta)
588 			delta = 1;
589 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
590 		tcp_rcv_rtt_update(tp, delta_us, 0);
591 	}
592 }
593 
594 /*
595  * This function should be called every time data is copied to user space.
596  * It calculates the appropriate TCP receive buffer space.
597  */
598 void tcp_rcv_space_adjust(struct sock *sk)
599 {
600 	struct tcp_sock *tp = tcp_sk(sk);
601 	u32 copied;
602 	int time;
603 
604 	trace_tcp_rcv_space_adjust(sk);
605 
606 	tcp_mstamp_refresh(tp);
607 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
608 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
609 		return;
610 
611 	/* Number of bytes copied to user in last RTT */
612 	copied = tp->copied_seq - tp->rcvq_space.seq;
613 	if (copied <= tp->rcvq_space.space)
614 		goto new_measure;
615 
616 	/* A bit of theory :
617 	 * copied = bytes received in previous RTT, our base window
618 	 * To cope with packet losses, we need a 2x factor
619 	 * To cope with slow start, and sender growing its cwin by 100 %
620 	 * every RTT, we need a 4x factor, because the ACK we are sending
621 	 * now is for the next RTT, not the current one :
622 	 * <prev RTT . ><current RTT .. ><next RTT .... >
623 	 */
624 
625 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
626 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
627 		int rcvmem, rcvbuf;
628 		u64 rcvwin, grow;
629 
630 		/* minimal window to cope with packet losses, assuming
631 		 * steady state. Add some cushion because of small variations.
632 		 */
633 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
634 
635 		/* Accommodate for sender rate increase (eg. slow start) */
636 		grow = rcvwin * (copied - tp->rcvq_space.space);
637 		do_div(grow, tp->rcvq_space.space);
638 		rcvwin += (grow << 1);
639 
640 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
641 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
642 			rcvmem += 128;
643 
644 		do_div(rcvwin, tp->advmss);
645 		rcvbuf = min_t(u64, rcvwin * rcvmem,
646 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
647 		if (rcvbuf > sk->sk_rcvbuf) {
648 			sk->sk_rcvbuf = rcvbuf;
649 
650 			/* Make the window clamp follow along.  */
651 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
652 		}
653 	}
654 	tp->rcvq_space.space = copied;
655 
656 new_measure:
657 	tp->rcvq_space.seq = tp->copied_seq;
658 	tp->rcvq_space.time = tp->tcp_mstamp;
659 }
660 
661 /* There is something which you must keep in mind when you analyze the
662  * behavior of the tp->ato delayed ack timeout interval.  When a
663  * connection starts up, we want to ack as quickly as possible.  The
664  * problem is that "good" TCP's do slow start at the beginning of data
665  * transmission.  The means that until we send the first few ACK's the
666  * sender will sit on his end and only queue most of his data, because
667  * he can only send snd_cwnd unacked packets at any given time.  For
668  * each ACK we send, he increments snd_cwnd and transmits more of his
669  * queue.  -DaveM
670  */
671 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
672 {
673 	struct tcp_sock *tp = tcp_sk(sk);
674 	struct inet_connection_sock *icsk = inet_csk(sk);
675 	u32 now;
676 
677 	inet_csk_schedule_ack(sk);
678 
679 	tcp_measure_rcv_mss(sk, skb);
680 
681 	tcp_rcv_rtt_measure(tp);
682 
683 	now = tcp_jiffies32;
684 
685 	if (!icsk->icsk_ack.ato) {
686 		/* The _first_ data packet received, initialize
687 		 * delayed ACK engine.
688 		 */
689 		tcp_incr_quickack(sk);
690 		icsk->icsk_ack.ato = TCP_ATO_MIN;
691 	} else {
692 		int m = now - icsk->icsk_ack.lrcvtime;
693 
694 		if (m <= TCP_ATO_MIN / 2) {
695 			/* The fastest case is the first. */
696 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
697 		} else if (m < icsk->icsk_ack.ato) {
698 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
699 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
700 				icsk->icsk_ack.ato = icsk->icsk_rto;
701 		} else if (m > icsk->icsk_rto) {
702 			/* Too long gap. Apparently sender failed to
703 			 * restart window, so that we send ACKs quickly.
704 			 */
705 			tcp_incr_quickack(sk);
706 			sk_mem_reclaim(sk);
707 		}
708 	}
709 	icsk->icsk_ack.lrcvtime = now;
710 
711 	tcp_ecn_check_ce(tp, skb);
712 
713 	if (skb->len >= 128)
714 		tcp_grow_window(sk, skb);
715 }
716 
717 /* Called to compute a smoothed rtt estimate. The data fed to this
718  * routine either comes from timestamps, or from segments that were
719  * known _not_ to have been retransmitted [see Karn/Partridge
720  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
721  * piece by Van Jacobson.
722  * NOTE: the next three routines used to be one big routine.
723  * To save cycles in the RFC 1323 implementation it was better to break
724  * it up into three procedures. -- erics
725  */
726 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
727 {
728 	struct tcp_sock *tp = tcp_sk(sk);
729 	long m = mrtt_us; /* RTT */
730 	u32 srtt = tp->srtt_us;
731 
732 	/*	The following amusing code comes from Jacobson's
733 	 *	article in SIGCOMM '88.  Note that rtt and mdev
734 	 *	are scaled versions of rtt and mean deviation.
735 	 *	This is designed to be as fast as possible
736 	 *	m stands for "measurement".
737 	 *
738 	 *	On a 1990 paper the rto value is changed to:
739 	 *	RTO = rtt + 4 * mdev
740 	 *
741 	 * Funny. This algorithm seems to be very broken.
742 	 * These formulae increase RTO, when it should be decreased, increase
743 	 * too slowly, when it should be increased quickly, decrease too quickly
744 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
745 	 * does not matter how to _calculate_ it. Seems, it was trap
746 	 * that VJ failed to avoid. 8)
747 	 */
748 	if (srtt != 0) {
749 		m -= (srtt >> 3);	/* m is now error in rtt est */
750 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
751 		if (m < 0) {
752 			m = -m;		/* m is now abs(error) */
753 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
754 			/* This is similar to one of Eifel findings.
755 			 * Eifel blocks mdev updates when rtt decreases.
756 			 * This solution is a bit different: we use finer gain
757 			 * for mdev in this case (alpha*beta).
758 			 * Like Eifel it also prevents growth of rto,
759 			 * but also it limits too fast rto decreases,
760 			 * happening in pure Eifel.
761 			 */
762 			if (m > 0)
763 				m >>= 3;
764 		} else {
765 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
766 		}
767 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
768 		if (tp->mdev_us > tp->mdev_max_us) {
769 			tp->mdev_max_us = tp->mdev_us;
770 			if (tp->mdev_max_us > tp->rttvar_us)
771 				tp->rttvar_us = tp->mdev_max_us;
772 		}
773 		if (after(tp->snd_una, tp->rtt_seq)) {
774 			if (tp->mdev_max_us < tp->rttvar_us)
775 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
776 			tp->rtt_seq = tp->snd_nxt;
777 			tp->mdev_max_us = tcp_rto_min_us(sk);
778 		}
779 	} else {
780 		/* no previous measure. */
781 		srtt = m << 3;		/* take the measured time to be rtt */
782 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
783 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
784 		tp->mdev_max_us = tp->rttvar_us;
785 		tp->rtt_seq = tp->snd_nxt;
786 	}
787 	tp->srtt_us = max(1U, srtt);
788 }
789 
790 static void tcp_update_pacing_rate(struct sock *sk)
791 {
792 	const struct tcp_sock *tp = tcp_sk(sk);
793 	u64 rate;
794 
795 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
796 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
797 
798 	/* current rate is (cwnd * mss) / srtt
799 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
800 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
801 	 *
802 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
803 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
804 	 *	 end of slow start and should slow down.
805 	 */
806 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
807 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
808 	else
809 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
810 
811 	rate *= max(tp->snd_cwnd, tp->packets_out);
812 
813 	if (likely(tp->srtt_us))
814 		do_div(rate, tp->srtt_us);
815 
816 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
817 	 * without any lock. We want to make sure compiler wont store
818 	 * intermediate values in this location.
819 	 */
820 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
821 					     sk->sk_max_pacing_rate));
822 }
823 
824 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
825  * routine referred to above.
826  */
827 static void tcp_set_rto(struct sock *sk)
828 {
829 	const struct tcp_sock *tp = tcp_sk(sk);
830 	/* Old crap is replaced with new one. 8)
831 	 *
832 	 * More seriously:
833 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
834 	 *    It cannot be less due to utterly erratic ACK generation made
835 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
836 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
837 	 *    is invisible. Actually, Linux-2.4 also generates erratic
838 	 *    ACKs in some circumstances.
839 	 */
840 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
841 
842 	/* 2. Fixups made earlier cannot be right.
843 	 *    If we do not estimate RTO correctly without them,
844 	 *    all the algo is pure shit and should be replaced
845 	 *    with correct one. It is exactly, which we pretend to do.
846 	 */
847 
848 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
849 	 * guarantees that rto is higher.
850 	 */
851 	tcp_bound_rto(sk);
852 }
853 
854 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
855 {
856 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
857 
858 	if (!cwnd)
859 		cwnd = TCP_INIT_CWND;
860 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
861 }
862 
863 /* Take a notice that peer is sending D-SACKs */
864 static void tcp_dsack_seen(struct tcp_sock *tp)
865 {
866 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
867 	tp->rack.dsack_seen = 1;
868 }
869 
870 /* It's reordering when higher sequence was delivered (i.e. sacked) before
871  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
872  * distance is approximated in full-mss packet distance ("reordering").
873  */
874 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
875 				      const int ts)
876 {
877 	struct tcp_sock *tp = tcp_sk(sk);
878 	const u32 mss = tp->mss_cache;
879 	u32 fack, metric;
880 
881 	fack = tcp_highest_sack_seq(tp);
882 	if (!before(low_seq, fack))
883 		return;
884 
885 	metric = fack - low_seq;
886 	if ((metric > tp->reordering * mss) && mss) {
887 #if FASTRETRANS_DEBUG > 1
888 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
889 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
890 			 tp->reordering,
891 			 0,
892 			 tp->sacked_out,
893 			 tp->undo_marker ? tp->undo_retrans : 0);
894 #endif
895 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
896 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
897 	}
898 
899 	tp->rack.reord = 1;
900 	/* This exciting event is worth to be remembered. 8) */
901 	NET_INC_STATS(sock_net(sk),
902 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
903 }
904 
905 /* This must be called before lost_out is incremented */
906 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
907 {
908 	if (!tp->retransmit_skb_hint ||
909 	    before(TCP_SKB_CB(skb)->seq,
910 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
911 		tp->retransmit_skb_hint = skb;
912 }
913 
914 /* Sum the number of packets on the wire we have marked as lost.
915  * There are two cases we care about here:
916  * a) Packet hasn't been marked lost (nor retransmitted),
917  *    and this is the first loss.
918  * b) Packet has been marked both lost and retransmitted,
919  *    and this means we think it was lost again.
920  */
921 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
922 {
923 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
924 
925 	if (!(sacked & TCPCB_LOST) ||
926 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
927 		tp->lost += tcp_skb_pcount(skb);
928 }
929 
930 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
931 {
932 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
933 		tcp_verify_retransmit_hint(tp, skb);
934 
935 		tp->lost_out += tcp_skb_pcount(skb);
936 		tcp_sum_lost(tp, skb);
937 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
938 	}
939 }
940 
941 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
942 {
943 	tcp_verify_retransmit_hint(tp, skb);
944 
945 	tcp_sum_lost(tp, skb);
946 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
947 		tp->lost_out += tcp_skb_pcount(skb);
948 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
949 	}
950 }
951 
952 /* This procedure tags the retransmission queue when SACKs arrive.
953  *
954  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
955  * Packets in queue with these bits set are counted in variables
956  * sacked_out, retrans_out and lost_out, correspondingly.
957  *
958  * Valid combinations are:
959  * Tag  InFlight	Description
960  * 0	1		- orig segment is in flight.
961  * S	0		- nothing flies, orig reached receiver.
962  * L	0		- nothing flies, orig lost by net.
963  * R	2		- both orig and retransmit are in flight.
964  * L|R	1		- orig is lost, retransmit is in flight.
965  * S|R  1		- orig reached receiver, retrans is still in flight.
966  * (L|S|R is logically valid, it could occur when L|R is sacked,
967  *  but it is equivalent to plain S and code short-curcuits it to S.
968  *  L|S is logically invalid, it would mean -1 packet in flight 8))
969  *
970  * These 6 states form finite state machine, controlled by the following events:
971  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
972  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
973  * 3. Loss detection event of two flavors:
974  *	A. Scoreboard estimator decided the packet is lost.
975  *	   A'. Reno "three dupacks" marks head of queue lost.
976  *	B. SACK arrives sacking SND.NXT at the moment, when the
977  *	   segment was retransmitted.
978  * 4. D-SACK added new rule: D-SACK changes any tag to S.
979  *
980  * It is pleasant to note, that state diagram turns out to be commutative,
981  * so that we are allowed not to be bothered by order of our actions,
982  * when multiple events arrive simultaneously. (see the function below).
983  *
984  * Reordering detection.
985  * --------------------
986  * Reordering metric is maximal distance, which a packet can be displaced
987  * in packet stream. With SACKs we can estimate it:
988  *
989  * 1. SACK fills old hole and the corresponding segment was not
990  *    ever retransmitted -> reordering. Alas, we cannot use it
991  *    when segment was retransmitted.
992  * 2. The last flaw is solved with D-SACK. D-SACK arrives
993  *    for retransmitted and already SACKed segment -> reordering..
994  * Both of these heuristics are not used in Loss state, when we cannot
995  * account for retransmits accurately.
996  *
997  * SACK block validation.
998  * ----------------------
999  *
1000  * SACK block range validation checks that the received SACK block fits to
1001  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1002  * Note that SND.UNA is not included to the range though being valid because
1003  * it means that the receiver is rather inconsistent with itself reporting
1004  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1005  * perfectly valid, however, in light of RFC2018 which explicitly states
1006  * that "SACK block MUST reflect the newest segment.  Even if the newest
1007  * segment is going to be discarded ...", not that it looks very clever
1008  * in case of head skb. Due to potentional receiver driven attacks, we
1009  * choose to avoid immediate execution of a walk in write queue due to
1010  * reneging and defer head skb's loss recovery to standard loss recovery
1011  * procedure that will eventually trigger (nothing forbids us doing this).
1012  *
1013  * Implements also blockage to start_seq wrap-around. Problem lies in the
1014  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1015  * there's no guarantee that it will be before snd_nxt (n). The problem
1016  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1017  * wrap (s_w):
1018  *
1019  *         <- outs wnd ->                          <- wrapzone ->
1020  *         u     e      n                         u_w   e_w  s n_w
1021  *         |     |      |                          |     |   |  |
1022  * |<------------+------+----- TCP seqno space --------------+---------->|
1023  * ...-- <2^31 ->|                                           |<--------...
1024  * ...---- >2^31 ------>|                                    |<--------...
1025  *
1026  * Current code wouldn't be vulnerable but it's better still to discard such
1027  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1028  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1029  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1030  * equal to the ideal case (infinite seqno space without wrap caused issues).
1031  *
1032  * With D-SACK the lower bound is extended to cover sequence space below
1033  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1034  * again, D-SACK block must not to go across snd_una (for the same reason as
1035  * for the normal SACK blocks, explained above). But there all simplicity
1036  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1037  * fully below undo_marker they do not affect behavior in anyway and can
1038  * therefore be safely ignored. In rare cases (which are more or less
1039  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1040  * fragmentation and packet reordering past skb's retransmission. To consider
1041  * them correctly, the acceptable range must be extended even more though
1042  * the exact amount is rather hard to quantify. However, tp->max_window can
1043  * be used as an exaggerated estimate.
1044  */
1045 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1046 				   u32 start_seq, u32 end_seq)
1047 {
1048 	/* Too far in future, or reversed (interpretation is ambiguous) */
1049 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1050 		return false;
1051 
1052 	/* Nasty start_seq wrap-around check (see comments above) */
1053 	if (!before(start_seq, tp->snd_nxt))
1054 		return false;
1055 
1056 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1057 	 * start_seq == snd_una is non-sensical (see comments above)
1058 	 */
1059 	if (after(start_seq, tp->snd_una))
1060 		return true;
1061 
1062 	if (!is_dsack || !tp->undo_marker)
1063 		return false;
1064 
1065 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1066 	if (after(end_seq, tp->snd_una))
1067 		return false;
1068 
1069 	if (!before(start_seq, tp->undo_marker))
1070 		return true;
1071 
1072 	/* Too old */
1073 	if (!after(end_seq, tp->undo_marker))
1074 		return false;
1075 
1076 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1077 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1078 	 */
1079 	return !before(start_seq, end_seq - tp->max_window);
1080 }
1081 
1082 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1083 			    struct tcp_sack_block_wire *sp, int num_sacks,
1084 			    u32 prior_snd_una)
1085 {
1086 	struct tcp_sock *tp = tcp_sk(sk);
1087 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1088 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1089 	bool dup_sack = false;
1090 
1091 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1092 		dup_sack = true;
1093 		tcp_dsack_seen(tp);
1094 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1095 	} else if (num_sacks > 1) {
1096 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1097 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1098 
1099 		if (!after(end_seq_0, end_seq_1) &&
1100 		    !before(start_seq_0, start_seq_1)) {
1101 			dup_sack = true;
1102 			tcp_dsack_seen(tp);
1103 			NET_INC_STATS(sock_net(sk),
1104 					LINUX_MIB_TCPDSACKOFORECV);
1105 		}
1106 	}
1107 
1108 	/* D-SACK for already forgotten data... Do dumb counting. */
1109 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1110 	    !after(end_seq_0, prior_snd_una) &&
1111 	    after(end_seq_0, tp->undo_marker))
1112 		tp->undo_retrans--;
1113 
1114 	return dup_sack;
1115 }
1116 
1117 struct tcp_sacktag_state {
1118 	u32	reord;
1119 	/* Timestamps for earliest and latest never-retransmitted segment
1120 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1121 	 * but congestion control should still get an accurate delay signal.
1122 	 */
1123 	u64	first_sackt;
1124 	u64	last_sackt;
1125 	struct rate_sample *rate;
1126 	int	flag;
1127 	unsigned int mss_now;
1128 };
1129 
1130 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1131  * the incoming SACK may not exactly match but we can find smaller MSS
1132  * aligned portion of it that matches. Therefore we might need to fragment
1133  * which may fail and creates some hassle (caller must handle error case
1134  * returns).
1135  *
1136  * FIXME: this could be merged to shift decision code
1137  */
1138 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1139 				  u32 start_seq, u32 end_seq)
1140 {
1141 	int err;
1142 	bool in_sack;
1143 	unsigned int pkt_len;
1144 	unsigned int mss;
1145 
1146 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1147 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1148 
1149 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1150 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1151 		mss = tcp_skb_mss(skb);
1152 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1153 
1154 		if (!in_sack) {
1155 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1156 			if (pkt_len < mss)
1157 				pkt_len = mss;
1158 		} else {
1159 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1160 			if (pkt_len < mss)
1161 				return -EINVAL;
1162 		}
1163 
1164 		/* Round if necessary so that SACKs cover only full MSSes
1165 		 * and/or the remaining small portion (if present)
1166 		 */
1167 		if (pkt_len > mss) {
1168 			unsigned int new_len = (pkt_len / mss) * mss;
1169 			if (!in_sack && new_len < pkt_len)
1170 				new_len += mss;
1171 			pkt_len = new_len;
1172 		}
1173 
1174 		if (pkt_len >= skb->len && !in_sack)
1175 			return 0;
1176 
1177 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1178 				   pkt_len, mss, GFP_ATOMIC);
1179 		if (err < 0)
1180 			return err;
1181 	}
1182 
1183 	return in_sack;
1184 }
1185 
1186 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1187 static u8 tcp_sacktag_one(struct sock *sk,
1188 			  struct tcp_sacktag_state *state, u8 sacked,
1189 			  u32 start_seq, u32 end_seq,
1190 			  int dup_sack, int pcount,
1191 			  u64 xmit_time)
1192 {
1193 	struct tcp_sock *tp = tcp_sk(sk);
1194 
1195 	/* Account D-SACK for retransmitted packet. */
1196 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1197 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1198 		    after(end_seq, tp->undo_marker))
1199 			tp->undo_retrans--;
1200 		if ((sacked & TCPCB_SACKED_ACKED) &&
1201 		    before(start_seq, state->reord))
1202 				state->reord = start_seq;
1203 	}
1204 
1205 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1206 	if (!after(end_seq, tp->snd_una))
1207 		return sacked;
1208 
1209 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1210 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1211 
1212 		if (sacked & TCPCB_SACKED_RETRANS) {
1213 			/* If the segment is not tagged as lost,
1214 			 * we do not clear RETRANS, believing
1215 			 * that retransmission is still in flight.
1216 			 */
1217 			if (sacked & TCPCB_LOST) {
1218 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1219 				tp->lost_out -= pcount;
1220 				tp->retrans_out -= pcount;
1221 			}
1222 		} else {
1223 			if (!(sacked & TCPCB_RETRANS)) {
1224 				/* New sack for not retransmitted frame,
1225 				 * which was in hole. It is reordering.
1226 				 */
1227 				if (before(start_seq,
1228 					   tcp_highest_sack_seq(tp)) &&
1229 				    before(start_seq, state->reord))
1230 					state->reord = start_seq;
1231 
1232 				if (!after(end_seq, tp->high_seq))
1233 					state->flag |= FLAG_ORIG_SACK_ACKED;
1234 				if (state->first_sackt == 0)
1235 					state->first_sackt = xmit_time;
1236 				state->last_sackt = xmit_time;
1237 			}
1238 
1239 			if (sacked & TCPCB_LOST) {
1240 				sacked &= ~TCPCB_LOST;
1241 				tp->lost_out -= pcount;
1242 			}
1243 		}
1244 
1245 		sacked |= TCPCB_SACKED_ACKED;
1246 		state->flag |= FLAG_DATA_SACKED;
1247 		tp->sacked_out += pcount;
1248 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1249 
1250 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1251 		if (tp->lost_skb_hint &&
1252 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1253 			tp->lost_cnt_hint += pcount;
1254 	}
1255 
1256 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1257 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1258 	 * are accounted above as well.
1259 	 */
1260 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1261 		sacked &= ~TCPCB_SACKED_RETRANS;
1262 		tp->retrans_out -= pcount;
1263 	}
1264 
1265 	return sacked;
1266 }
1267 
1268 /* Shift newly-SACKed bytes from this skb to the immediately previous
1269  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1270  */
1271 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1272 			    struct sk_buff *skb,
1273 			    struct tcp_sacktag_state *state,
1274 			    unsigned int pcount, int shifted, int mss,
1275 			    bool dup_sack)
1276 {
1277 	struct tcp_sock *tp = tcp_sk(sk);
1278 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1279 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1280 
1281 	BUG_ON(!pcount);
1282 
1283 	/* Adjust counters and hints for the newly sacked sequence
1284 	 * range but discard the return value since prev is already
1285 	 * marked. We must tag the range first because the seq
1286 	 * advancement below implicitly advances
1287 	 * tcp_highest_sack_seq() when skb is highest_sack.
1288 	 */
1289 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1290 			start_seq, end_seq, dup_sack, pcount,
1291 			skb->skb_mstamp);
1292 	tcp_rate_skb_delivered(sk, skb, state->rate);
1293 
1294 	if (skb == tp->lost_skb_hint)
1295 		tp->lost_cnt_hint += pcount;
1296 
1297 	TCP_SKB_CB(prev)->end_seq += shifted;
1298 	TCP_SKB_CB(skb)->seq += shifted;
1299 
1300 	tcp_skb_pcount_add(prev, pcount);
1301 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1302 	tcp_skb_pcount_add(skb, -pcount);
1303 
1304 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1305 	 * in theory this shouldn't be necessary but as long as DSACK
1306 	 * code can come after this skb later on it's better to keep
1307 	 * setting gso_size to something.
1308 	 */
1309 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1310 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1311 
1312 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1313 	if (tcp_skb_pcount(skb) <= 1)
1314 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1315 
1316 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1317 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1318 
1319 	if (skb->len > 0) {
1320 		BUG_ON(!tcp_skb_pcount(skb));
1321 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1322 		return false;
1323 	}
1324 
1325 	/* Whole SKB was eaten :-) */
1326 
1327 	if (skb == tp->retransmit_skb_hint)
1328 		tp->retransmit_skb_hint = prev;
1329 	if (skb == tp->lost_skb_hint) {
1330 		tp->lost_skb_hint = prev;
1331 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1332 	}
1333 
1334 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1335 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1336 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1337 		TCP_SKB_CB(prev)->end_seq++;
1338 
1339 	if (skb == tcp_highest_sack(sk))
1340 		tcp_advance_highest_sack(sk, skb);
1341 
1342 	tcp_skb_collapse_tstamp(prev, skb);
1343 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1344 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1345 
1346 	tcp_rtx_queue_unlink_and_free(skb, sk);
1347 
1348 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1349 
1350 	return true;
1351 }
1352 
1353 /* I wish gso_size would have a bit more sane initialization than
1354  * something-or-zero which complicates things
1355  */
1356 static int tcp_skb_seglen(const struct sk_buff *skb)
1357 {
1358 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1359 }
1360 
1361 /* Shifting pages past head area doesn't work */
1362 static int skb_can_shift(const struct sk_buff *skb)
1363 {
1364 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1365 }
1366 
1367 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1368  * skb.
1369  */
1370 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1371 					  struct tcp_sacktag_state *state,
1372 					  u32 start_seq, u32 end_seq,
1373 					  bool dup_sack)
1374 {
1375 	struct tcp_sock *tp = tcp_sk(sk);
1376 	struct sk_buff *prev;
1377 	int mss;
1378 	int pcount = 0;
1379 	int len;
1380 	int in_sack;
1381 
1382 	/* Normally R but no L won't result in plain S */
1383 	if (!dup_sack &&
1384 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1385 		goto fallback;
1386 	if (!skb_can_shift(skb))
1387 		goto fallback;
1388 	/* This frame is about to be dropped (was ACKed). */
1389 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1390 		goto fallback;
1391 
1392 	/* Can only happen with delayed DSACK + discard craziness */
1393 	prev = skb_rb_prev(skb);
1394 	if (!prev)
1395 		goto fallback;
1396 
1397 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1398 		goto fallback;
1399 
1400 	if (!tcp_skb_can_collapse_to(prev))
1401 		goto fallback;
1402 
1403 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1404 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1405 
1406 	if (in_sack) {
1407 		len = skb->len;
1408 		pcount = tcp_skb_pcount(skb);
1409 		mss = tcp_skb_seglen(skb);
1410 
1411 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1412 		 * drop this restriction as unnecessary
1413 		 */
1414 		if (mss != tcp_skb_seglen(prev))
1415 			goto fallback;
1416 	} else {
1417 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1418 			goto noop;
1419 		/* CHECKME: This is non-MSS split case only?, this will
1420 		 * cause skipped skbs due to advancing loop btw, original
1421 		 * has that feature too
1422 		 */
1423 		if (tcp_skb_pcount(skb) <= 1)
1424 			goto noop;
1425 
1426 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1427 		if (!in_sack) {
1428 			/* TODO: head merge to next could be attempted here
1429 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1430 			 * though it might not be worth of the additional hassle
1431 			 *
1432 			 * ...we can probably just fallback to what was done
1433 			 * previously. We could try merging non-SACKed ones
1434 			 * as well but it probably isn't going to buy off
1435 			 * because later SACKs might again split them, and
1436 			 * it would make skb timestamp tracking considerably
1437 			 * harder problem.
1438 			 */
1439 			goto fallback;
1440 		}
1441 
1442 		len = end_seq - TCP_SKB_CB(skb)->seq;
1443 		BUG_ON(len < 0);
1444 		BUG_ON(len > skb->len);
1445 
1446 		/* MSS boundaries should be honoured or else pcount will
1447 		 * severely break even though it makes things bit trickier.
1448 		 * Optimize common case to avoid most of the divides
1449 		 */
1450 		mss = tcp_skb_mss(skb);
1451 
1452 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1453 		 * drop this restriction as unnecessary
1454 		 */
1455 		if (mss != tcp_skb_seglen(prev))
1456 			goto fallback;
1457 
1458 		if (len == mss) {
1459 			pcount = 1;
1460 		} else if (len < mss) {
1461 			goto noop;
1462 		} else {
1463 			pcount = len / mss;
1464 			len = pcount * mss;
1465 		}
1466 	}
1467 
1468 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1469 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1470 		goto fallback;
1471 
1472 	if (!skb_shift(prev, skb, len))
1473 		goto fallback;
1474 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1475 		goto out;
1476 
1477 	/* Hole filled allows collapsing with the next as well, this is very
1478 	 * useful when hole on every nth skb pattern happens
1479 	 */
1480 	skb = skb_rb_next(prev);
1481 	if (!skb)
1482 		goto out;
1483 
1484 	if (!skb_can_shift(skb) ||
1485 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1486 	    (mss != tcp_skb_seglen(skb)))
1487 		goto out;
1488 
1489 	len = skb->len;
1490 	if (skb_shift(prev, skb, len)) {
1491 		pcount += tcp_skb_pcount(skb);
1492 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1493 				len, mss, 0);
1494 	}
1495 
1496 out:
1497 	return prev;
1498 
1499 noop:
1500 	return skb;
1501 
1502 fallback:
1503 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1504 	return NULL;
1505 }
1506 
1507 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1508 					struct tcp_sack_block *next_dup,
1509 					struct tcp_sacktag_state *state,
1510 					u32 start_seq, u32 end_seq,
1511 					bool dup_sack_in)
1512 {
1513 	struct tcp_sock *tp = tcp_sk(sk);
1514 	struct sk_buff *tmp;
1515 
1516 	skb_rbtree_walk_from(skb) {
1517 		int in_sack = 0;
1518 		bool dup_sack = dup_sack_in;
1519 
1520 		/* queue is in-order => we can short-circuit the walk early */
1521 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1522 			break;
1523 
1524 		if (next_dup  &&
1525 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1526 			in_sack = tcp_match_skb_to_sack(sk, skb,
1527 							next_dup->start_seq,
1528 							next_dup->end_seq);
1529 			if (in_sack > 0)
1530 				dup_sack = true;
1531 		}
1532 
1533 		/* skb reference here is a bit tricky to get right, since
1534 		 * shifting can eat and free both this skb and the next,
1535 		 * so not even _safe variant of the loop is enough.
1536 		 */
1537 		if (in_sack <= 0) {
1538 			tmp = tcp_shift_skb_data(sk, skb, state,
1539 						 start_seq, end_seq, dup_sack);
1540 			if (tmp) {
1541 				if (tmp != skb) {
1542 					skb = tmp;
1543 					continue;
1544 				}
1545 
1546 				in_sack = 0;
1547 			} else {
1548 				in_sack = tcp_match_skb_to_sack(sk, skb,
1549 								start_seq,
1550 								end_seq);
1551 			}
1552 		}
1553 
1554 		if (unlikely(in_sack < 0))
1555 			break;
1556 
1557 		if (in_sack) {
1558 			TCP_SKB_CB(skb)->sacked =
1559 				tcp_sacktag_one(sk,
1560 						state,
1561 						TCP_SKB_CB(skb)->sacked,
1562 						TCP_SKB_CB(skb)->seq,
1563 						TCP_SKB_CB(skb)->end_seq,
1564 						dup_sack,
1565 						tcp_skb_pcount(skb),
1566 						skb->skb_mstamp);
1567 			tcp_rate_skb_delivered(sk, skb, state->rate);
1568 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1569 				list_del_init(&skb->tcp_tsorted_anchor);
1570 
1571 			if (!before(TCP_SKB_CB(skb)->seq,
1572 				    tcp_highest_sack_seq(tp)))
1573 				tcp_advance_highest_sack(sk, skb);
1574 		}
1575 	}
1576 	return skb;
1577 }
1578 
1579 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1580 					   struct tcp_sacktag_state *state,
1581 					   u32 seq)
1582 {
1583 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1584 	struct sk_buff *skb;
1585 
1586 	while (*p) {
1587 		parent = *p;
1588 		skb = rb_to_skb(parent);
1589 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1590 			p = &parent->rb_left;
1591 			continue;
1592 		}
1593 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1594 			p = &parent->rb_right;
1595 			continue;
1596 		}
1597 		return skb;
1598 	}
1599 	return NULL;
1600 }
1601 
1602 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1603 					struct tcp_sacktag_state *state,
1604 					u32 skip_to_seq)
1605 {
1606 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1607 		return skb;
1608 
1609 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1610 }
1611 
1612 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1613 						struct sock *sk,
1614 						struct tcp_sack_block *next_dup,
1615 						struct tcp_sacktag_state *state,
1616 						u32 skip_to_seq)
1617 {
1618 	if (!next_dup)
1619 		return skb;
1620 
1621 	if (before(next_dup->start_seq, skip_to_seq)) {
1622 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1623 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1624 				       next_dup->start_seq, next_dup->end_seq,
1625 				       1);
1626 	}
1627 
1628 	return skb;
1629 }
1630 
1631 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1632 {
1633 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1634 }
1635 
1636 static int
1637 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1638 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1639 {
1640 	struct tcp_sock *tp = tcp_sk(sk);
1641 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1642 				    TCP_SKB_CB(ack_skb)->sacked);
1643 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1644 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1645 	struct tcp_sack_block *cache;
1646 	struct sk_buff *skb;
1647 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1648 	int used_sacks;
1649 	bool found_dup_sack = false;
1650 	int i, j;
1651 	int first_sack_index;
1652 
1653 	state->flag = 0;
1654 	state->reord = tp->snd_nxt;
1655 
1656 	if (!tp->sacked_out)
1657 		tcp_highest_sack_reset(sk);
1658 
1659 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1660 					 num_sacks, prior_snd_una);
1661 	if (found_dup_sack) {
1662 		state->flag |= FLAG_DSACKING_ACK;
1663 		tp->delivered++; /* A spurious retransmission is delivered */
1664 	}
1665 
1666 	/* Eliminate too old ACKs, but take into
1667 	 * account more or less fresh ones, they can
1668 	 * contain valid SACK info.
1669 	 */
1670 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1671 		return 0;
1672 
1673 	if (!tp->packets_out)
1674 		goto out;
1675 
1676 	used_sacks = 0;
1677 	first_sack_index = 0;
1678 	for (i = 0; i < num_sacks; i++) {
1679 		bool dup_sack = !i && found_dup_sack;
1680 
1681 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1682 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1683 
1684 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1685 					    sp[used_sacks].start_seq,
1686 					    sp[used_sacks].end_seq)) {
1687 			int mib_idx;
1688 
1689 			if (dup_sack) {
1690 				if (!tp->undo_marker)
1691 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1692 				else
1693 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1694 			} else {
1695 				/* Don't count olds caused by ACK reordering */
1696 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1697 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1698 					continue;
1699 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1700 			}
1701 
1702 			NET_INC_STATS(sock_net(sk), mib_idx);
1703 			if (i == 0)
1704 				first_sack_index = -1;
1705 			continue;
1706 		}
1707 
1708 		/* Ignore very old stuff early */
1709 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1710 			continue;
1711 
1712 		used_sacks++;
1713 	}
1714 
1715 	/* order SACK blocks to allow in order walk of the retrans queue */
1716 	for (i = used_sacks - 1; i > 0; i--) {
1717 		for (j = 0; j < i; j++) {
1718 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1719 				swap(sp[j], sp[j + 1]);
1720 
1721 				/* Track where the first SACK block goes to */
1722 				if (j == first_sack_index)
1723 					first_sack_index = j + 1;
1724 			}
1725 		}
1726 	}
1727 
1728 	state->mss_now = tcp_current_mss(sk);
1729 	skb = NULL;
1730 	i = 0;
1731 
1732 	if (!tp->sacked_out) {
1733 		/* It's already past, so skip checking against it */
1734 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1735 	} else {
1736 		cache = tp->recv_sack_cache;
1737 		/* Skip empty blocks in at head of the cache */
1738 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1739 		       !cache->end_seq)
1740 			cache++;
1741 	}
1742 
1743 	while (i < used_sacks) {
1744 		u32 start_seq = sp[i].start_seq;
1745 		u32 end_seq = sp[i].end_seq;
1746 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1747 		struct tcp_sack_block *next_dup = NULL;
1748 
1749 		if (found_dup_sack && ((i + 1) == first_sack_index))
1750 			next_dup = &sp[i + 1];
1751 
1752 		/* Skip too early cached blocks */
1753 		while (tcp_sack_cache_ok(tp, cache) &&
1754 		       !before(start_seq, cache->end_seq))
1755 			cache++;
1756 
1757 		/* Can skip some work by looking recv_sack_cache? */
1758 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1759 		    after(end_seq, cache->start_seq)) {
1760 
1761 			/* Head todo? */
1762 			if (before(start_seq, cache->start_seq)) {
1763 				skb = tcp_sacktag_skip(skb, sk, state,
1764 						       start_seq);
1765 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1766 						       state,
1767 						       start_seq,
1768 						       cache->start_seq,
1769 						       dup_sack);
1770 			}
1771 
1772 			/* Rest of the block already fully processed? */
1773 			if (!after(end_seq, cache->end_seq))
1774 				goto advance_sp;
1775 
1776 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1777 						       state,
1778 						       cache->end_seq);
1779 
1780 			/* ...tail remains todo... */
1781 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1782 				/* ...but better entrypoint exists! */
1783 				skb = tcp_highest_sack(sk);
1784 				if (!skb)
1785 					break;
1786 				cache++;
1787 				goto walk;
1788 			}
1789 
1790 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1791 			/* Check overlap against next cached too (past this one already) */
1792 			cache++;
1793 			continue;
1794 		}
1795 
1796 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1797 			skb = tcp_highest_sack(sk);
1798 			if (!skb)
1799 				break;
1800 		}
1801 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1802 
1803 walk:
1804 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1805 				       start_seq, end_seq, dup_sack);
1806 
1807 advance_sp:
1808 		i++;
1809 	}
1810 
1811 	/* Clear the head of the cache sack blocks so we can skip it next time */
1812 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1813 		tp->recv_sack_cache[i].start_seq = 0;
1814 		tp->recv_sack_cache[i].end_seq = 0;
1815 	}
1816 	for (j = 0; j < used_sacks; j++)
1817 		tp->recv_sack_cache[i++] = sp[j];
1818 
1819 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1820 		tcp_check_sack_reordering(sk, state->reord, 0);
1821 
1822 	tcp_verify_left_out(tp);
1823 out:
1824 
1825 #if FASTRETRANS_DEBUG > 0
1826 	WARN_ON((int)tp->sacked_out < 0);
1827 	WARN_ON((int)tp->lost_out < 0);
1828 	WARN_ON((int)tp->retrans_out < 0);
1829 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1830 #endif
1831 	return state->flag;
1832 }
1833 
1834 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1835  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1836  */
1837 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1838 {
1839 	u32 holes;
1840 
1841 	holes = max(tp->lost_out, 1U);
1842 	holes = min(holes, tp->packets_out);
1843 
1844 	if ((tp->sacked_out + holes) > tp->packets_out) {
1845 		tp->sacked_out = tp->packets_out - holes;
1846 		return true;
1847 	}
1848 	return false;
1849 }
1850 
1851 /* If we receive more dupacks than we expected counting segments
1852  * in assumption of absent reordering, interpret this as reordering.
1853  * The only another reason could be bug in receiver TCP.
1854  */
1855 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1856 {
1857 	struct tcp_sock *tp = tcp_sk(sk);
1858 
1859 	if (!tcp_limit_reno_sacked(tp))
1860 		return;
1861 
1862 	tp->reordering = min_t(u32, tp->packets_out + addend,
1863 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1864 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1865 }
1866 
1867 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1868 
1869 static void tcp_add_reno_sack(struct sock *sk)
1870 {
1871 	struct tcp_sock *tp = tcp_sk(sk);
1872 	u32 prior_sacked = tp->sacked_out;
1873 
1874 	tp->sacked_out++;
1875 	tcp_check_reno_reordering(sk, 0);
1876 	if (tp->sacked_out > prior_sacked)
1877 		tp->delivered++; /* Some out-of-order packet is delivered */
1878 	tcp_verify_left_out(tp);
1879 }
1880 
1881 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1882 
1883 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1884 {
1885 	struct tcp_sock *tp = tcp_sk(sk);
1886 
1887 	if (acked > 0) {
1888 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1889 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1890 		if (acked - 1 >= tp->sacked_out)
1891 			tp->sacked_out = 0;
1892 		else
1893 			tp->sacked_out -= acked - 1;
1894 	}
1895 	tcp_check_reno_reordering(sk, acked);
1896 	tcp_verify_left_out(tp);
1897 }
1898 
1899 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1900 {
1901 	tp->sacked_out = 0;
1902 }
1903 
1904 void tcp_clear_retrans(struct tcp_sock *tp)
1905 {
1906 	tp->retrans_out = 0;
1907 	tp->lost_out = 0;
1908 	tp->undo_marker = 0;
1909 	tp->undo_retrans = -1;
1910 	tp->sacked_out = 0;
1911 }
1912 
1913 static inline void tcp_init_undo(struct tcp_sock *tp)
1914 {
1915 	tp->undo_marker = tp->snd_una;
1916 	/* Retransmission still in flight may cause DSACKs later. */
1917 	tp->undo_retrans = tp->retrans_out ? : -1;
1918 }
1919 
1920 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1921  * and reset tags completely, otherwise preserve SACKs. If receiver
1922  * dropped its ofo queue, we will know this due to reneging detection.
1923  */
1924 void tcp_enter_loss(struct sock *sk)
1925 {
1926 	const struct inet_connection_sock *icsk = inet_csk(sk);
1927 	struct tcp_sock *tp = tcp_sk(sk);
1928 	struct net *net = sock_net(sk);
1929 	struct sk_buff *skb;
1930 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1931 	bool is_reneg;			/* is receiver reneging on SACKs? */
1932 	bool mark_lost;
1933 
1934 	/* Reduce ssthresh if it has not yet been made inside this window. */
1935 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1936 	    !after(tp->high_seq, tp->snd_una) ||
1937 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1938 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1939 		tp->prior_cwnd = tp->snd_cwnd;
1940 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1941 		tcp_ca_event(sk, CA_EVENT_LOSS);
1942 		tcp_init_undo(tp);
1943 	}
1944 	tp->snd_cwnd	   = 1;
1945 	tp->snd_cwnd_cnt   = 0;
1946 	tp->snd_cwnd_stamp = tcp_jiffies32;
1947 
1948 	tp->retrans_out = 0;
1949 	tp->lost_out = 0;
1950 
1951 	if (tcp_is_reno(tp))
1952 		tcp_reset_reno_sack(tp);
1953 
1954 	skb = tcp_rtx_queue_head(sk);
1955 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1956 	if (is_reneg) {
1957 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1958 		tp->sacked_out = 0;
1959 		/* Mark SACK reneging until we recover from this loss event. */
1960 		tp->is_sack_reneg = 1;
1961 	}
1962 	tcp_clear_all_retrans_hints(tp);
1963 
1964 	skb_rbtree_walk_from(skb) {
1965 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1966 			     is_reneg);
1967 		if (mark_lost)
1968 			tcp_sum_lost(tp, skb);
1969 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1970 		if (mark_lost) {
1971 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1972 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1973 			tp->lost_out += tcp_skb_pcount(skb);
1974 		}
1975 	}
1976 	tcp_verify_left_out(tp);
1977 
1978 	/* Timeout in disordered state after receiving substantial DUPACKs
1979 	 * suggests that the degree of reordering is over-estimated.
1980 	 */
1981 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1982 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1983 		tp->reordering = min_t(unsigned int, tp->reordering,
1984 				       net->ipv4.sysctl_tcp_reordering);
1985 	tcp_set_ca_state(sk, TCP_CA_Loss);
1986 	tp->high_seq = tp->snd_nxt;
1987 	tcp_ecn_queue_cwr(tp);
1988 
1989 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1990 	 * loss recovery is underway except recurring timeout(s) on
1991 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1992 	 */
1993 	tp->frto = net->ipv4.sysctl_tcp_frto &&
1994 		   (new_recovery || icsk->icsk_retransmits) &&
1995 		   !inet_csk(sk)->icsk_mtup.probe_size;
1996 }
1997 
1998 /* If ACK arrived pointing to a remembered SACK, it means that our
1999  * remembered SACKs do not reflect real state of receiver i.e.
2000  * receiver _host_ is heavily congested (or buggy).
2001  *
2002  * To avoid big spurious retransmission bursts due to transient SACK
2003  * scoreboard oddities that look like reneging, we give the receiver a
2004  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2005  * restore sanity to the SACK scoreboard. If the apparent reneging
2006  * persists until this RTO then we'll clear the SACK scoreboard.
2007  */
2008 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2009 {
2010 	if (flag & FLAG_SACK_RENEGING) {
2011 		struct tcp_sock *tp = tcp_sk(sk);
2012 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2013 					  msecs_to_jiffies(10));
2014 
2015 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2016 					  delay, TCP_RTO_MAX);
2017 		return true;
2018 	}
2019 	return false;
2020 }
2021 
2022 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2023  * counter when SACK is enabled (without SACK, sacked_out is used for
2024  * that purpose).
2025  *
2026  * With reordering, holes may still be in flight, so RFC3517 recovery
2027  * uses pure sacked_out (total number of SACKed segments) even though
2028  * it violates the RFC that uses duplicate ACKs, often these are equal
2029  * but when e.g. out-of-window ACKs or packet duplication occurs,
2030  * they differ. Since neither occurs due to loss, TCP should really
2031  * ignore them.
2032  */
2033 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2034 {
2035 	return tp->sacked_out + 1;
2036 }
2037 
2038 /* Linux NewReno/SACK/ECN state machine.
2039  * --------------------------------------
2040  *
2041  * "Open"	Normal state, no dubious events, fast path.
2042  * "Disorder"   In all the respects it is "Open",
2043  *		but requires a bit more attention. It is entered when
2044  *		we see some SACKs or dupacks. It is split of "Open"
2045  *		mainly to move some processing from fast path to slow one.
2046  * "CWR"	CWND was reduced due to some Congestion Notification event.
2047  *		It can be ECN, ICMP source quench, local device congestion.
2048  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2049  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2050  *
2051  * tcp_fastretrans_alert() is entered:
2052  * - each incoming ACK, if state is not "Open"
2053  * - when arrived ACK is unusual, namely:
2054  *	* SACK
2055  *	* Duplicate ACK.
2056  *	* ECN ECE.
2057  *
2058  * Counting packets in flight is pretty simple.
2059  *
2060  *	in_flight = packets_out - left_out + retrans_out
2061  *
2062  *	packets_out is SND.NXT-SND.UNA counted in packets.
2063  *
2064  *	retrans_out is number of retransmitted segments.
2065  *
2066  *	left_out is number of segments left network, but not ACKed yet.
2067  *
2068  *		left_out = sacked_out + lost_out
2069  *
2070  *     sacked_out: Packets, which arrived to receiver out of order
2071  *		   and hence not ACKed. With SACKs this number is simply
2072  *		   amount of SACKed data. Even without SACKs
2073  *		   it is easy to give pretty reliable estimate of this number,
2074  *		   counting duplicate ACKs.
2075  *
2076  *       lost_out: Packets lost by network. TCP has no explicit
2077  *		   "loss notification" feedback from network (for now).
2078  *		   It means that this number can be only _guessed_.
2079  *		   Actually, it is the heuristics to predict lossage that
2080  *		   distinguishes different algorithms.
2081  *
2082  *	F.e. after RTO, when all the queue is considered as lost,
2083  *	lost_out = packets_out and in_flight = retrans_out.
2084  *
2085  *		Essentially, we have now a few algorithms detecting
2086  *		lost packets.
2087  *
2088  *		If the receiver supports SACK:
2089  *
2090  *		RFC6675/3517: It is the conventional algorithm. A packet is
2091  *		considered lost if the number of higher sequence packets
2092  *		SACKed is greater than or equal the DUPACK thoreshold
2093  *		(reordering). This is implemented in tcp_mark_head_lost and
2094  *		tcp_update_scoreboard.
2095  *
2096  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2097  *		(2017-) that checks timing instead of counting DUPACKs.
2098  *		Essentially a packet is considered lost if it's not S/ACKed
2099  *		after RTT + reordering_window, where both metrics are
2100  *		dynamically measured and adjusted. This is implemented in
2101  *		tcp_rack_mark_lost.
2102  *
2103  *		If the receiver does not support SACK:
2104  *
2105  *		NewReno (RFC6582): in Recovery we assume that one segment
2106  *		is lost (classic Reno). While we are in Recovery and
2107  *		a partial ACK arrives, we assume that one more packet
2108  *		is lost (NewReno). This heuristics are the same in NewReno
2109  *		and SACK.
2110  *
2111  * Really tricky (and requiring careful tuning) part of algorithm
2112  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2113  * The first determines the moment _when_ we should reduce CWND and,
2114  * hence, slow down forward transmission. In fact, it determines the moment
2115  * when we decide that hole is caused by loss, rather than by a reorder.
2116  *
2117  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2118  * holes, caused by lost packets.
2119  *
2120  * And the most logically complicated part of algorithm is undo
2121  * heuristics. We detect false retransmits due to both too early
2122  * fast retransmit (reordering) and underestimated RTO, analyzing
2123  * timestamps and D-SACKs. When we detect that some segments were
2124  * retransmitted by mistake and CWND reduction was wrong, we undo
2125  * window reduction and abort recovery phase. This logic is hidden
2126  * inside several functions named tcp_try_undo_<something>.
2127  */
2128 
2129 /* This function decides, when we should leave Disordered state
2130  * and enter Recovery phase, reducing congestion window.
2131  *
2132  * Main question: may we further continue forward transmission
2133  * with the same cwnd?
2134  */
2135 static bool tcp_time_to_recover(struct sock *sk, int flag)
2136 {
2137 	struct tcp_sock *tp = tcp_sk(sk);
2138 
2139 	/* Trick#1: The loss is proven. */
2140 	if (tp->lost_out)
2141 		return true;
2142 
2143 	/* Not-A-Trick#2 : Classic rule... */
2144 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2145 		return true;
2146 
2147 	return false;
2148 }
2149 
2150 /* Detect loss in event "A" above by marking head of queue up as lost.
2151  * For non-SACK(Reno) senders, the first "packets" number of segments
2152  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2153  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2154  * the maximum SACKed segments to pass before reaching this limit.
2155  */
2156 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2157 {
2158 	struct tcp_sock *tp = tcp_sk(sk);
2159 	struct sk_buff *skb;
2160 	int cnt, oldcnt, lost;
2161 	unsigned int mss;
2162 	/* Use SACK to deduce losses of new sequences sent during recovery */
2163 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2164 
2165 	WARN_ON(packets > tp->packets_out);
2166 	skb = tp->lost_skb_hint;
2167 	if (skb) {
2168 		/* Head already handled? */
2169 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2170 			return;
2171 		cnt = tp->lost_cnt_hint;
2172 	} else {
2173 		skb = tcp_rtx_queue_head(sk);
2174 		cnt = 0;
2175 	}
2176 
2177 	skb_rbtree_walk_from(skb) {
2178 		/* TODO: do this better */
2179 		/* this is not the most efficient way to do this... */
2180 		tp->lost_skb_hint = skb;
2181 		tp->lost_cnt_hint = cnt;
2182 
2183 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2184 			break;
2185 
2186 		oldcnt = cnt;
2187 		if (tcp_is_reno(tp) ||
2188 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2189 			cnt += tcp_skb_pcount(skb);
2190 
2191 		if (cnt > packets) {
2192 			if (tcp_is_sack(tp) ||
2193 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2194 			    (oldcnt >= packets))
2195 				break;
2196 
2197 			mss = tcp_skb_mss(skb);
2198 			/* If needed, chop off the prefix to mark as lost. */
2199 			lost = (packets - oldcnt) * mss;
2200 			if (lost < skb->len &&
2201 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2202 					 lost, mss, GFP_ATOMIC) < 0)
2203 				break;
2204 			cnt = packets;
2205 		}
2206 
2207 		tcp_skb_mark_lost(tp, skb);
2208 
2209 		if (mark_head)
2210 			break;
2211 	}
2212 	tcp_verify_left_out(tp);
2213 }
2214 
2215 /* Account newly detected lost packet(s) */
2216 
2217 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2218 {
2219 	struct tcp_sock *tp = tcp_sk(sk);
2220 
2221 	if (tcp_is_reno(tp)) {
2222 		tcp_mark_head_lost(sk, 1, 1);
2223 	} else {
2224 		int sacked_upto = tp->sacked_out - tp->reordering;
2225 		if (sacked_upto >= 0)
2226 			tcp_mark_head_lost(sk, sacked_upto, 0);
2227 		else if (fast_rexmit)
2228 			tcp_mark_head_lost(sk, 1, 1);
2229 	}
2230 }
2231 
2232 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2233 {
2234 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2235 	       before(tp->rx_opt.rcv_tsecr, when);
2236 }
2237 
2238 /* skb is spurious retransmitted if the returned timestamp echo
2239  * reply is prior to the skb transmission time
2240  */
2241 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2242 				     const struct sk_buff *skb)
2243 {
2244 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2245 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2246 }
2247 
2248 /* Nothing was retransmitted or returned timestamp is less
2249  * than timestamp of the first retransmission.
2250  */
2251 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2252 {
2253 	return !tp->retrans_stamp ||
2254 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2255 }
2256 
2257 /* Undo procedures. */
2258 
2259 /* We can clear retrans_stamp when there are no retransmissions in the
2260  * window. It would seem that it is trivially available for us in
2261  * tp->retrans_out, however, that kind of assumptions doesn't consider
2262  * what will happen if errors occur when sending retransmission for the
2263  * second time. ...It could the that such segment has only
2264  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2265  * the head skb is enough except for some reneging corner cases that
2266  * are not worth the effort.
2267  *
2268  * Main reason for all this complexity is the fact that connection dying
2269  * time now depends on the validity of the retrans_stamp, in particular,
2270  * that successive retransmissions of a segment must not advance
2271  * retrans_stamp under any conditions.
2272  */
2273 static bool tcp_any_retrans_done(const struct sock *sk)
2274 {
2275 	const struct tcp_sock *tp = tcp_sk(sk);
2276 	struct sk_buff *skb;
2277 
2278 	if (tp->retrans_out)
2279 		return true;
2280 
2281 	skb = tcp_rtx_queue_head(sk);
2282 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2283 		return true;
2284 
2285 	return false;
2286 }
2287 
2288 static void DBGUNDO(struct sock *sk, const char *msg)
2289 {
2290 #if FASTRETRANS_DEBUG > 1
2291 	struct tcp_sock *tp = tcp_sk(sk);
2292 	struct inet_sock *inet = inet_sk(sk);
2293 
2294 	if (sk->sk_family == AF_INET) {
2295 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2296 			 msg,
2297 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2298 			 tp->snd_cwnd, tcp_left_out(tp),
2299 			 tp->snd_ssthresh, tp->prior_ssthresh,
2300 			 tp->packets_out);
2301 	}
2302 #if IS_ENABLED(CONFIG_IPV6)
2303 	else if (sk->sk_family == AF_INET6) {
2304 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2305 			 msg,
2306 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2307 			 tp->snd_cwnd, tcp_left_out(tp),
2308 			 tp->snd_ssthresh, tp->prior_ssthresh,
2309 			 tp->packets_out);
2310 	}
2311 #endif
2312 #endif
2313 }
2314 
2315 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2316 {
2317 	struct tcp_sock *tp = tcp_sk(sk);
2318 
2319 	if (unmark_loss) {
2320 		struct sk_buff *skb;
2321 
2322 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2323 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2324 		}
2325 		tp->lost_out = 0;
2326 		tcp_clear_all_retrans_hints(tp);
2327 	}
2328 
2329 	if (tp->prior_ssthresh) {
2330 		const struct inet_connection_sock *icsk = inet_csk(sk);
2331 
2332 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2333 
2334 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2335 			tp->snd_ssthresh = tp->prior_ssthresh;
2336 			tcp_ecn_withdraw_cwr(tp);
2337 		}
2338 	}
2339 	tp->snd_cwnd_stamp = tcp_jiffies32;
2340 	tp->undo_marker = 0;
2341 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2342 }
2343 
2344 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2345 {
2346 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2347 }
2348 
2349 /* People celebrate: "We love our President!" */
2350 static bool tcp_try_undo_recovery(struct sock *sk)
2351 {
2352 	struct tcp_sock *tp = tcp_sk(sk);
2353 
2354 	if (tcp_may_undo(tp)) {
2355 		int mib_idx;
2356 
2357 		/* Happy end! We did not retransmit anything
2358 		 * or our original transmission succeeded.
2359 		 */
2360 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2361 		tcp_undo_cwnd_reduction(sk, false);
2362 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2363 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2364 		else
2365 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2366 
2367 		NET_INC_STATS(sock_net(sk), mib_idx);
2368 	} else if (tp->rack.reo_wnd_persist) {
2369 		tp->rack.reo_wnd_persist--;
2370 	}
2371 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2372 		/* Hold old state until something *above* high_seq
2373 		 * is ACKed. For Reno it is MUST to prevent false
2374 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2375 		if (!tcp_any_retrans_done(sk))
2376 			tp->retrans_stamp = 0;
2377 		return true;
2378 	}
2379 	tcp_set_ca_state(sk, TCP_CA_Open);
2380 	tp->is_sack_reneg = 0;
2381 	return false;
2382 }
2383 
2384 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2385 static bool tcp_try_undo_dsack(struct sock *sk)
2386 {
2387 	struct tcp_sock *tp = tcp_sk(sk);
2388 
2389 	if (tp->undo_marker && !tp->undo_retrans) {
2390 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2391 					       tp->rack.reo_wnd_persist + 1);
2392 		DBGUNDO(sk, "D-SACK");
2393 		tcp_undo_cwnd_reduction(sk, false);
2394 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2395 		return true;
2396 	}
2397 	return false;
2398 }
2399 
2400 /* Undo during loss recovery after partial ACK or using F-RTO. */
2401 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2402 {
2403 	struct tcp_sock *tp = tcp_sk(sk);
2404 
2405 	if (frto_undo || tcp_may_undo(tp)) {
2406 		tcp_undo_cwnd_reduction(sk, true);
2407 
2408 		DBGUNDO(sk, "partial loss");
2409 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2410 		if (frto_undo)
2411 			NET_INC_STATS(sock_net(sk),
2412 					LINUX_MIB_TCPSPURIOUSRTOS);
2413 		inet_csk(sk)->icsk_retransmits = 0;
2414 		if (frto_undo || tcp_is_sack(tp)) {
2415 			tcp_set_ca_state(sk, TCP_CA_Open);
2416 			tp->is_sack_reneg = 0;
2417 		}
2418 		return true;
2419 	}
2420 	return false;
2421 }
2422 
2423 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2424  * It computes the number of packets to send (sndcnt) based on packets newly
2425  * delivered:
2426  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2427  *	cwnd reductions across a full RTT.
2428  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2429  *      But when the retransmits are acked without further losses, PRR
2430  *      slow starts cwnd up to ssthresh to speed up the recovery.
2431  */
2432 static void tcp_init_cwnd_reduction(struct sock *sk)
2433 {
2434 	struct tcp_sock *tp = tcp_sk(sk);
2435 
2436 	tp->high_seq = tp->snd_nxt;
2437 	tp->tlp_high_seq = 0;
2438 	tp->snd_cwnd_cnt = 0;
2439 	tp->prior_cwnd = tp->snd_cwnd;
2440 	tp->prr_delivered = 0;
2441 	tp->prr_out = 0;
2442 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2443 	tcp_ecn_queue_cwr(tp);
2444 }
2445 
2446 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2447 {
2448 	struct tcp_sock *tp = tcp_sk(sk);
2449 	int sndcnt = 0;
2450 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2451 
2452 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2453 		return;
2454 
2455 	tp->prr_delivered += newly_acked_sacked;
2456 	if (delta < 0) {
2457 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2458 			       tp->prior_cwnd - 1;
2459 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2460 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2461 		   !(flag & FLAG_LOST_RETRANS)) {
2462 		sndcnt = min_t(int, delta,
2463 			       max_t(int, tp->prr_delivered - tp->prr_out,
2464 				     newly_acked_sacked) + 1);
2465 	} else {
2466 		sndcnt = min(delta, newly_acked_sacked);
2467 	}
2468 	/* Force a fast retransmit upon entering fast recovery */
2469 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2470 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2471 }
2472 
2473 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2474 {
2475 	struct tcp_sock *tp = tcp_sk(sk);
2476 
2477 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2478 		return;
2479 
2480 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2481 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2482 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2483 		tp->snd_cwnd = tp->snd_ssthresh;
2484 		tp->snd_cwnd_stamp = tcp_jiffies32;
2485 	}
2486 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2487 }
2488 
2489 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2490 void tcp_enter_cwr(struct sock *sk)
2491 {
2492 	struct tcp_sock *tp = tcp_sk(sk);
2493 
2494 	tp->prior_ssthresh = 0;
2495 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2496 		tp->undo_marker = 0;
2497 		tcp_init_cwnd_reduction(sk);
2498 		tcp_set_ca_state(sk, TCP_CA_CWR);
2499 	}
2500 }
2501 EXPORT_SYMBOL(tcp_enter_cwr);
2502 
2503 static void tcp_try_keep_open(struct sock *sk)
2504 {
2505 	struct tcp_sock *tp = tcp_sk(sk);
2506 	int state = TCP_CA_Open;
2507 
2508 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2509 		state = TCP_CA_Disorder;
2510 
2511 	if (inet_csk(sk)->icsk_ca_state != state) {
2512 		tcp_set_ca_state(sk, state);
2513 		tp->high_seq = tp->snd_nxt;
2514 	}
2515 }
2516 
2517 static void tcp_try_to_open(struct sock *sk, int flag)
2518 {
2519 	struct tcp_sock *tp = tcp_sk(sk);
2520 
2521 	tcp_verify_left_out(tp);
2522 
2523 	if (!tcp_any_retrans_done(sk))
2524 		tp->retrans_stamp = 0;
2525 
2526 	if (flag & FLAG_ECE)
2527 		tcp_enter_cwr(sk);
2528 
2529 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2530 		tcp_try_keep_open(sk);
2531 	}
2532 }
2533 
2534 static void tcp_mtup_probe_failed(struct sock *sk)
2535 {
2536 	struct inet_connection_sock *icsk = inet_csk(sk);
2537 
2538 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2539 	icsk->icsk_mtup.probe_size = 0;
2540 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2541 }
2542 
2543 static void tcp_mtup_probe_success(struct sock *sk)
2544 {
2545 	struct tcp_sock *tp = tcp_sk(sk);
2546 	struct inet_connection_sock *icsk = inet_csk(sk);
2547 
2548 	/* FIXME: breaks with very large cwnd */
2549 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2550 	tp->snd_cwnd = tp->snd_cwnd *
2551 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2552 		       icsk->icsk_mtup.probe_size;
2553 	tp->snd_cwnd_cnt = 0;
2554 	tp->snd_cwnd_stamp = tcp_jiffies32;
2555 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2556 
2557 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2558 	icsk->icsk_mtup.probe_size = 0;
2559 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2560 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2561 }
2562 
2563 /* Do a simple retransmit without using the backoff mechanisms in
2564  * tcp_timer. This is used for path mtu discovery.
2565  * The socket is already locked here.
2566  */
2567 void tcp_simple_retransmit(struct sock *sk)
2568 {
2569 	const struct inet_connection_sock *icsk = inet_csk(sk);
2570 	struct tcp_sock *tp = tcp_sk(sk);
2571 	struct sk_buff *skb;
2572 	unsigned int mss = tcp_current_mss(sk);
2573 
2574 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2575 		if (tcp_skb_seglen(skb) > mss &&
2576 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2577 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2578 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2579 				tp->retrans_out -= tcp_skb_pcount(skb);
2580 			}
2581 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2582 		}
2583 	}
2584 
2585 	tcp_clear_retrans_hints_partial(tp);
2586 
2587 	if (!tp->lost_out)
2588 		return;
2589 
2590 	if (tcp_is_reno(tp))
2591 		tcp_limit_reno_sacked(tp);
2592 
2593 	tcp_verify_left_out(tp);
2594 
2595 	/* Don't muck with the congestion window here.
2596 	 * Reason is that we do not increase amount of _data_
2597 	 * in network, but units changed and effective
2598 	 * cwnd/ssthresh really reduced now.
2599 	 */
2600 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2601 		tp->high_seq = tp->snd_nxt;
2602 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2603 		tp->prior_ssthresh = 0;
2604 		tp->undo_marker = 0;
2605 		tcp_set_ca_state(sk, TCP_CA_Loss);
2606 	}
2607 	tcp_xmit_retransmit_queue(sk);
2608 }
2609 EXPORT_SYMBOL(tcp_simple_retransmit);
2610 
2611 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2612 {
2613 	struct tcp_sock *tp = tcp_sk(sk);
2614 	int mib_idx;
2615 
2616 	if (tcp_is_reno(tp))
2617 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2618 	else
2619 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2620 
2621 	NET_INC_STATS(sock_net(sk), mib_idx);
2622 
2623 	tp->prior_ssthresh = 0;
2624 	tcp_init_undo(tp);
2625 
2626 	if (!tcp_in_cwnd_reduction(sk)) {
2627 		if (!ece_ack)
2628 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2629 		tcp_init_cwnd_reduction(sk);
2630 	}
2631 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2632 }
2633 
2634 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2635  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2636  */
2637 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2638 			     int *rexmit)
2639 {
2640 	struct tcp_sock *tp = tcp_sk(sk);
2641 	bool recovered = !before(tp->snd_una, tp->high_seq);
2642 
2643 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2644 	    tcp_try_undo_loss(sk, false))
2645 		return;
2646 
2647 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2648 		/* Step 3.b. A timeout is spurious if not all data are
2649 		 * lost, i.e., never-retransmitted data are (s)acked.
2650 		 */
2651 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2652 		    tcp_try_undo_loss(sk, true))
2653 			return;
2654 
2655 		if (after(tp->snd_nxt, tp->high_seq)) {
2656 			if (flag & FLAG_DATA_SACKED || is_dupack)
2657 				tp->frto = 0; /* Step 3.a. loss was real */
2658 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2659 			tp->high_seq = tp->snd_nxt;
2660 			/* Step 2.b. Try send new data (but deferred until cwnd
2661 			 * is updated in tcp_ack()). Otherwise fall back to
2662 			 * the conventional recovery.
2663 			 */
2664 			if (!tcp_write_queue_empty(sk) &&
2665 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2666 				*rexmit = REXMIT_NEW;
2667 				return;
2668 			}
2669 			tp->frto = 0;
2670 		}
2671 	}
2672 
2673 	if (recovered) {
2674 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2675 		tcp_try_undo_recovery(sk);
2676 		return;
2677 	}
2678 	if (tcp_is_reno(tp)) {
2679 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2680 		 * delivered. Lower inflight to clock out (re)tranmissions.
2681 		 */
2682 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2683 			tcp_add_reno_sack(sk);
2684 		else if (flag & FLAG_SND_UNA_ADVANCED)
2685 			tcp_reset_reno_sack(tp);
2686 	}
2687 	*rexmit = REXMIT_LOST;
2688 }
2689 
2690 /* Undo during fast recovery after partial ACK. */
2691 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2692 {
2693 	struct tcp_sock *tp = tcp_sk(sk);
2694 
2695 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2696 		/* Plain luck! Hole if filled with delayed
2697 		 * packet, rather than with a retransmit. Check reordering.
2698 		 */
2699 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2700 
2701 		/* We are getting evidence that the reordering degree is higher
2702 		 * than we realized. If there are no retransmits out then we
2703 		 * can undo. Otherwise we clock out new packets but do not
2704 		 * mark more packets lost or retransmit more.
2705 		 */
2706 		if (tp->retrans_out)
2707 			return true;
2708 
2709 		if (!tcp_any_retrans_done(sk))
2710 			tp->retrans_stamp = 0;
2711 
2712 		DBGUNDO(sk, "partial recovery");
2713 		tcp_undo_cwnd_reduction(sk, true);
2714 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2715 		tcp_try_keep_open(sk);
2716 		return true;
2717 	}
2718 	return false;
2719 }
2720 
2721 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2722 {
2723 	struct tcp_sock *tp = tcp_sk(sk);
2724 
2725 	/* Use RACK to detect loss */
2726 	if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2727 		u32 prior_retrans = tp->retrans_out;
2728 
2729 		tcp_rack_mark_lost(sk);
2730 		if (prior_retrans > tp->retrans_out)
2731 			*ack_flag |= FLAG_LOST_RETRANS;
2732 	}
2733 }
2734 
2735 static bool tcp_force_fast_retransmit(struct sock *sk)
2736 {
2737 	struct tcp_sock *tp = tcp_sk(sk);
2738 
2739 	return after(tcp_highest_sack_seq(tp),
2740 		     tp->snd_una + tp->reordering * tp->mss_cache);
2741 }
2742 
2743 /* Process an event, which can update packets-in-flight not trivially.
2744  * Main goal of this function is to calculate new estimate for left_out,
2745  * taking into account both packets sitting in receiver's buffer and
2746  * packets lost by network.
2747  *
2748  * Besides that it updates the congestion state when packet loss or ECN
2749  * is detected. But it does not reduce the cwnd, it is done by the
2750  * congestion control later.
2751  *
2752  * It does _not_ decide what to send, it is made in function
2753  * tcp_xmit_retransmit_queue().
2754  */
2755 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2756 				  bool is_dupack, int *ack_flag, int *rexmit)
2757 {
2758 	struct inet_connection_sock *icsk = inet_csk(sk);
2759 	struct tcp_sock *tp = tcp_sk(sk);
2760 	int fast_rexmit = 0, flag = *ack_flag;
2761 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2762 				     tcp_force_fast_retransmit(sk));
2763 
2764 	if (!tp->packets_out && tp->sacked_out)
2765 		tp->sacked_out = 0;
2766 
2767 	/* Now state machine starts.
2768 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2769 	if (flag & FLAG_ECE)
2770 		tp->prior_ssthresh = 0;
2771 
2772 	/* B. In all the states check for reneging SACKs. */
2773 	if (tcp_check_sack_reneging(sk, flag))
2774 		return;
2775 
2776 	/* C. Check consistency of the current state. */
2777 	tcp_verify_left_out(tp);
2778 
2779 	/* D. Check state exit conditions. State can be terminated
2780 	 *    when high_seq is ACKed. */
2781 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2782 		WARN_ON(tp->retrans_out != 0);
2783 		tp->retrans_stamp = 0;
2784 	} else if (!before(tp->snd_una, tp->high_seq)) {
2785 		switch (icsk->icsk_ca_state) {
2786 		case TCP_CA_CWR:
2787 			/* CWR is to be held something *above* high_seq
2788 			 * is ACKed for CWR bit to reach receiver. */
2789 			if (tp->snd_una != tp->high_seq) {
2790 				tcp_end_cwnd_reduction(sk);
2791 				tcp_set_ca_state(sk, TCP_CA_Open);
2792 			}
2793 			break;
2794 
2795 		case TCP_CA_Recovery:
2796 			if (tcp_is_reno(tp))
2797 				tcp_reset_reno_sack(tp);
2798 			if (tcp_try_undo_recovery(sk))
2799 				return;
2800 			tcp_end_cwnd_reduction(sk);
2801 			break;
2802 		}
2803 	}
2804 
2805 	/* E. Process state. */
2806 	switch (icsk->icsk_ca_state) {
2807 	case TCP_CA_Recovery:
2808 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2809 			if (tcp_is_reno(tp) && is_dupack)
2810 				tcp_add_reno_sack(sk);
2811 		} else {
2812 			if (tcp_try_undo_partial(sk, prior_snd_una))
2813 				return;
2814 			/* Partial ACK arrived. Force fast retransmit. */
2815 			do_lost = tcp_is_reno(tp) ||
2816 				  tcp_force_fast_retransmit(sk);
2817 		}
2818 		if (tcp_try_undo_dsack(sk)) {
2819 			tcp_try_keep_open(sk);
2820 			return;
2821 		}
2822 		tcp_rack_identify_loss(sk, ack_flag);
2823 		break;
2824 	case TCP_CA_Loss:
2825 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2826 		tcp_rack_identify_loss(sk, ack_flag);
2827 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2828 		      (*ack_flag & FLAG_LOST_RETRANS)))
2829 			return;
2830 		/* Change state if cwnd is undone or retransmits are lost */
2831 		/* fall through */
2832 	default:
2833 		if (tcp_is_reno(tp)) {
2834 			if (flag & FLAG_SND_UNA_ADVANCED)
2835 				tcp_reset_reno_sack(tp);
2836 			if (is_dupack)
2837 				tcp_add_reno_sack(sk);
2838 		}
2839 
2840 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2841 			tcp_try_undo_dsack(sk);
2842 
2843 		tcp_rack_identify_loss(sk, ack_flag);
2844 		if (!tcp_time_to_recover(sk, flag)) {
2845 			tcp_try_to_open(sk, flag);
2846 			return;
2847 		}
2848 
2849 		/* MTU probe failure: don't reduce cwnd */
2850 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2851 		    icsk->icsk_mtup.probe_size &&
2852 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2853 			tcp_mtup_probe_failed(sk);
2854 			/* Restores the reduction we did in tcp_mtup_probe() */
2855 			tp->snd_cwnd++;
2856 			tcp_simple_retransmit(sk);
2857 			return;
2858 		}
2859 
2860 		/* Otherwise enter Recovery state */
2861 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2862 		fast_rexmit = 1;
2863 	}
2864 
2865 	if (do_lost)
2866 		tcp_update_scoreboard(sk, fast_rexmit);
2867 	*rexmit = REXMIT_LOST;
2868 }
2869 
2870 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2871 {
2872 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2873 	struct tcp_sock *tp = tcp_sk(sk);
2874 
2875 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2876 		/* If the remote keeps returning delayed ACKs, eventually
2877 		 * the min filter would pick it up and overestimate the
2878 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2879 		 */
2880 		return;
2881 	}
2882 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2883 			   rtt_us ? : jiffies_to_usecs(1));
2884 }
2885 
2886 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2887 			       long seq_rtt_us, long sack_rtt_us,
2888 			       long ca_rtt_us, struct rate_sample *rs)
2889 {
2890 	const struct tcp_sock *tp = tcp_sk(sk);
2891 
2892 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2893 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2894 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2895 	 * is acked (RFC6298).
2896 	 */
2897 	if (seq_rtt_us < 0)
2898 		seq_rtt_us = sack_rtt_us;
2899 
2900 	/* RTTM Rule: A TSecr value received in a segment is used to
2901 	 * update the averaged RTT measurement only if the segment
2902 	 * acknowledges some new data, i.e., only if it advances the
2903 	 * left edge of the send window.
2904 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2905 	 */
2906 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2907 	    flag & FLAG_ACKED) {
2908 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2909 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2910 
2911 		seq_rtt_us = ca_rtt_us = delta_us;
2912 	}
2913 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2914 	if (seq_rtt_us < 0)
2915 		return false;
2916 
2917 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2918 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2919 	 * values will be skipped with the seq_rtt_us < 0 check above.
2920 	 */
2921 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2922 	tcp_rtt_estimator(sk, seq_rtt_us);
2923 	tcp_set_rto(sk);
2924 
2925 	/* RFC6298: only reset backoff on valid RTT measurement. */
2926 	inet_csk(sk)->icsk_backoff = 0;
2927 	return true;
2928 }
2929 
2930 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2931 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2932 {
2933 	struct rate_sample rs;
2934 	long rtt_us = -1L;
2935 
2936 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2937 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2938 
2939 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2940 }
2941 
2942 
2943 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2944 {
2945 	const struct inet_connection_sock *icsk = inet_csk(sk);
2946 
2947 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2948 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2949 }
2950 
2951 /* Restart timer after forward progress on connection.
2952  * RFC2988 recommends to restart timer to now+rto.
2953  */
2954 void tcp_rearm_rto(struct sock *sk)
2955 {
2956 	const struct inet_connection_sock *icsk = inet_csk(sk);
2957 	struct tcp_sock *tp = tcp_sk(sk);
2958 
2959 	/* If the retrans timer is currently being used by Fast Open
2960 	 * for SYN-ACK retrans purpose, stay put.
2961 	 */
2962 	if (tp->fastopen_rsk)
2963 		return;
2964 
2965 	if (!tp->packets_out) {
2966 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2967 	} else {
2968 		u32 rto = inet_csk(sk)->icsk_rto;
2969 		/* Offset the time elapsed after installing regular RTO */
2970 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2971 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2972 			s64 delta_us = tcp_rto_delta_us(sk);
2973 			/* delta_us may not be positive if the socket is locked
2974 			 * when the retrans timer fires and is rescheduled.
2975 			 */
2976 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2977 		}
2978 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2979 					  TCP_RTO_MAX);
2980 	}
2981 }
2982 
2983 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2984 static void tcp_set_xmit_timer(struct sock *sk)
2985 {
2986 	if (!tcp_schedule_loss_probe(sk, true))
2987 		tcp_rearm_rto(sk);
2988 }
2989 
2990 /* If we get here, the whole TSO packet has not been acked. */
2991 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2992 {
2993 	struct tcp_sock *tp = tcp_sk(sk);
2994 	u32 packets_acked;
2995 
2996 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2997 
2998 	packets_acked = tcp_skb_pcount(skb);
2999 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3000 		return 0;
3001 	packets_acked -= tcp_skb_pcount(skb);
3002 
3003 	if (packets_acked) {
3004 		BUG_ON(tcp_skb_pcount(skb) == 0);
3005 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3006 	}
3007 
3008 	return packets_acked;
3009 }
3010 
3011 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3012 			   u32 prior_snd_una)
3013 {
3014 	const struct skb_shared_info *shinfo;
3015 
3016 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3017 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3018 		return;
3019 
3020 	shinfo = skb_shinfo(skb);
3021 	if (!before(shinfo->tskey, prior_snd_una) &&
3022 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3023 		tcp_skb_tsorted_save(skb) {
3024 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3025 		} tcp_skb_tsorted_restore(skb);
3026 	}
3027 }
3028 
3029 /* Remove acknowledged frames from the retransmission queue. If our packet
3030  * is before the ack sequence we can discard it as it's confirmed to have
3031  * arrived at the other end.
3032  */
3033 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3034 			       u32 prior_snd_una,
3035 			       struct tcp_sacktag_state *sack)
3036 {
3037 	const struct inet_connection_sock *icsk = inet_csk(sk);
3038 	u64 first_ackt, last_ackt;
3039 	struct tcp_sock *tp = tcp_sk(sk);
3040 	u32 prior_sacked = tp->sacked_out;
3041 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3042 	struct sk_buff *skb, *next;
3043 	bool fully_acked = true;
3044 	long sack_rtt_us = -1L;
3045 	long seq_rtt_us = -1L;
3046 	long ca_rtt_us = -1L;
3047 	u32 pkts_acked = 0;
3048 	u32 last_in_flight = 0;
3049 	bool rtt_update;
3050 	int flag = 0;
3051 
3052 	first_ackt = 0;
3053 
3054 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3055 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3056 		const u32 start_seq = scb->seq;
3057 		u8 sacked = scb->sacked;
3058 		u32 acked_pcount;
3059 
3060 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3061 
3062 		/* Determine how many packets and what bytes were acked, tso and else */
3063 		if (after(scb->end_seq, tp->snd_una)) {
3064 			if (tcp_skb_pcount(skb) == 1 ||
3065 			    !after(tp->snd_una, scb->seq))
3066 				break;
3067 
3068 			acked_pcount = tcp_tso_acked(sk, skb);
3069 			if (!acked_pcount)
3070 				break;
3071 			fully_acked = false;
3072 		} else {
3073 			acked_pcount = tcp_skb_pcount(skb);
3074 		}
3075 
3076 		if (unlikely(sacked & TCPCB_RETRANS)) {
3077 			if (sacked & TCPCB_SACKED_RETRANS)
3078 				tp->retrans_out -= acked_pcount;
3079 			flag |= FLAG_RETRANS_DATA_ACKED;
3080 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3081 			last_ackt = skb->skb_mstamp;
3082 			WARN_ON_ONCE(last_ackt == 0);
3083 			if (!first_ackt)
3084 				first_ackt = last_ackt;
3085 
3086 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3087 			if (before(start_seq, reord))
3088 				reord = start_seq;
3089 			if (!after(scb->end_seq, tp->high_seq))
3090 				flag |= FLAG_ORIG_SACK_ACKED;
3091 		}
3092 
3093 		if (sacked & TCPCB_SACKED_ACKED) {
3094 			tp->sacked_out -= acked_pcount;
3095 		} else if (tcp_is_sack(tp)) {
3096 			tp->delivered += acked_pcount;
3097 			if (!tcp_skb_spurious_retrans(tp, skb))
3098 				tcp_rack_advance(tp, sacked, scb->end_seq,
3099 						 skb->skb_mstamp);
3100 		}
3101 		if (sacked & TCPCB_LOST)
3102 			tp->lost_out -= acked_pcount;
3103 
3104 		tp->packets_out -= acked_pcount;
3105 		pkts_acked += acked_pcount;
3106 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3107 
3108 		/* Initial outgoing SYN's get put onto the write_queue
3109 		 * just like anything else we transmit.  It is not
3110 		 * true data, and if we misinform our callers that
3111 		 * this ACK acks real data, we will erroneously exit
3112 		 * connection startup slow start one packet too
3113 		 * quickly.  This is severely frowned upon behavior.
3114 		 */
3115 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3116 			flag |= FLAG_DATA_ACKED;
3117 		} else {
3118 			flag |= FLAG_SYN_ACKED;
3119 			tp->retrans_stamp = 0;
3120 		}
3121 
3122 		if (!fully_acked)
3123 			break;
3124 
3125 		next = skb_rb_next(skb);
3126 		if (unlikely(skb == tp->retransmit_skb_hint))
3127 			tp->retransmit_skb_hint = NULL;
3128 		if (unlikely(skb == tp->lost_skb_hint))
3129 			tp->lost_skb_hint = NULL;
3130 		tcp_rtx_queue_unlink_and_free(skb, sk);
3131 	}
3132 
3133 	if (!skb)
3134 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3135 
3136 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3137 		tp->snd_up = tp->snd_una;
3138 
3139 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3140 		flag |= FLAG_SACK_RENEGING;
3141 
3142 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3143 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3144 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3145 
3146 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3147 		    last_in_flight && !prior_sacked && fully_acked &&
3148 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3149 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3150 			/* Conservatively mark a delayed ACK. It's typically
3151 			 * from a lone runt packet over the round trip to
3152 			 * a receiver w/o out-of-order or CE events.
3153 			 */
3154 			flag |= FLAG_ACK_MAYBE_DELAYED;
3155 		}
3156 	}
3157 	if (sack->first_sackt) {
3158 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3159 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3160 	}
3161 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3162 					ca_rtt_us, sack->rate);
3163 
3164 	if (flag & FLAG_ACKED) {
3165 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3166 		if (unlikely(icsk->icsk_mtup.probe_size &&
3167 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3168 			tcp_mtup_probe_success(sk);
3169 		}
3170 
3171 		if (tcp_is_reno(tp)) {
3172 			tcp_remove_reno_sacks(sk, pkts_acked);
3173 		} else {
3174 			int delta;
3175 
3176 			/* Non-retransmitted hole got filled? That's reordering */
3177 			if (before(reord, prior_fack))
3178 				tcp_check_sack_reordering(sk, reord, 0);
3179 
3180 			delta = prior_sacked - tp->sacked_out;
3181 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3182 		}
3183 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3184 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3185 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3186 		 * after when the head was last (re)transmitted. Otherwise the
3187 		 * timeout may continue to extend in loss recovery.
3188 		 */
3189 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3190 	}
3191 
3192 	if (icsk->icsk_ca_ops->pkts_acked) {
3193 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3194 					     .rtt_us = sack->rate->rtt_us,
3195 					     .in_flight = last_in_flight };
3196 
3197 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3198 	}
3199 
3200 #if FASTRETRANS_DEBUG > 0
3201 	WARN_ON((int)tp->sacked_out < 0);
3202 	WARN_ON((int)tp->lost_out < 0);
3203 	WARN_ON((int)tp->retrans_out < 0);
3204 	if (!tp->packets_out && tcp_is_sack(tp)) {
3205 		icsk = inet_csk(sk);
3206 		if (tp->lost_out) {
3207 			pr_debug("Leak l=%u %d\n",
3208 				 tp->lost_out, icsk->icsk_ca_state);
3209 			tp->lost_out = 0;
3210 		}
3211 		if (tp->sacked_out) {
3212 			pr_debug("Leak s=%u %d\n",
3213 				 tp->sacked_out, icsk->icsk_ca_state);
3214 			tp->sacked_out = 0;
3215 		}
3216 		if (tp->retrans_out) {
3217 			pr_debug("Leak r=%u %d\n",
3218 				 tp->retrans_out, icsk->icsk_ca_state);
3219 			tp->retrans_out = 0;
3220 		}
3221 	}
3222 #endif
3223 	return flag;
3224 }
3225 
3226 static void tcp_ack_probe(struct sock *sk)
3227 {
3228 	struct inet_connection_sock *icsk = inet_csk(sk);
3229 	struct sk_buff *head = tcp_send_head(sk);
3230 	const struct tcp_sock *tp = tcp_sk(sk);
3231 
3232 	/* Was it a usable window open? */
3233 	if (!head)
3234 		return;
3235 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3236 		icsk->icsk_backoff = 0;
3237 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3238 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3239 		 * This function is not for random using!
3240 		 */
3241 	} else {
3242 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3243 
3244 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3245 					  when, TCP_RTO_MAX);
3246 	}
3247 }
3248 
3249 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3250 {
3251 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3252 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3253 }
3254 
3255 /* Decide wheather to run the increase function of congestion control. */
3256 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3257 {
3258 	/* If reordering is high then always grow cwnd whenever data is
3259 	 * delivered regardless of its ordering. Otherwise stay conservative
3260 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3261 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3262 	 * cwnd in tcp_fastretrans_alert() based on more states.
3263 	 */
3264 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3265 		return flag & FLAG_FORWARD_PROGRESS;
3266 
3267 	return flag & FLAG_DATA_ACKED;
3268 }
3269 
3270 /* The "ultimate" congestion control function that aims to replace the rigid
3271  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3272  * It's called toward the end of processing an ACK with precise rate
3273  * information. All transmission or retransmission are delayed afterwards.
3274  */
3275 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3276 			     int flag, const struct rate_sample *rs)
3277 {
3278 	const struct inet_connection_sock *icsk = inet_csk(sk);
3279 
3280 	if (icsk->icsk_ca_ops->cong_control) {
3281 		icsk->icsk_ca_ops->cong_control(sk, rs);
3282 		return;
3283 	}
3284 
3285 	if (tcp_in_cwnd_reduction(sk)) {
3286 		/* Reduce cwnd if state mandates */
3287 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3288 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3289 		/* Advance cwnd if state allows */
3290 		tcp_cong_avoid(sk, ack, acked_sacked);
3291 	}
3292 	tcp_update_pacing_rate(sk);
3293 }
3294 
3295 /* Check that window update is acceptable.
3296  * The function assumes that snd_una<=ack<=snd_next.
3297  */
3298 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3299 					const u32 ack, const u32 ack_seq,
3300 					const u32 nwin)
3301 {
3302 	return	after(ack, tp->snd_una) ||
3303 		after(ack_seq, tp->snd_wl1) ||
3304 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3305 }
3306 
3307 /* If we update tp->snd_una, also update tp->bytes_acked */
3308 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3309 {
3310 	u32 delta = ack - tp->snd_una;
3311 
3312 	sock_owned_by_me((struct sock *)tp);
3313 	tp->bytes_acked += delta;
3314 	tp->snd_una = ack;
3315 }
3316 
3317 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3318 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3319 {
3320 	u32 delta = seq - tp->rcv_nxt;
3321 
3322 	sock_owned_by_me((struct sock *)tp);
3323 	tp->bytes_received += delta;
3324 	tp->rcv_nxt = seq;
3325 }
3326 
3327 /* Update our send window.
3328  *
3329  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3330  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3331  */
3332 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3333 				 u32 ack_seq)
3334 {
3335 	struct tcp_sock *tp = tcp_sk(sk);
3336 	int flag = 0;
3337 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3338 
3339 	if (likely(!tcp_hdr(skb)->syn))
3340 		nwin <<= tp->rx_opt.snd_wscale;
3341 
3342 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3343 		flag |= FLAG_WIN_UPDATE;
3344 		tcp_update_wl(tp, ack_seq);
3345 
3346 		if (tp->snd_wnd != nwin) {
3347 			tp->snd_wnd = nwin;
3348 
3349 			/* Note, it is the only place, where
3350 			 * fast path is recovered for sending TCP.
3351 			 */
3352 			tp->pred_flags = 0;
3353 			tcp_fast_path_check(sk);
3354 
3355 			if (!tcp_write_queue_empty(sk))
3356 				tcp_slow_start_after_idle_check(sk);
3357 
3358 			if (nwin > tp->max_window) {
3359 				tp->max_window = nwin;
3360 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3361 			}
3362 		}
3363 	}
3364 
3365 	tcp_snd_una_update(tp, ack);
3366 
3367 	return flag;
3368 }
3369 
3370 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3371 				   u32 *last_oow_ack_time)
3372 {
3373 	if (*last_oow_ack_time) {
3374 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3375 
3376 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3377 			NET_INC_STATS(net, mib_idx);
3378 			return true;	/* rate-limited: don't send yet! */
3379 		}
3380 	}
3381 
3382 	*last_oow_ack_time = tcp_jiffies32;
3383 
3384 	return false;	/* not rate-limited: go ahead, send dupack now! */
3385 }
3386 
3387 /* Return true if we're currently rate-limiting out-of-window ACKs and
3388  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3389  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3390  * attacks that send repeated SYNs or ACKs for the same connection. To
3391  * do this, we do not send a duplicate SYNACK or ACK if the remote
3392  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3393  */
3394 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3395 			  int mib_idx, u32 *last_oow_ack_time)
3396 {
3397 	/* Data packets without SYNs are not likely part of an ACK loop. */
3398 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3399 	    !tcp_hdr(skb)->syn)
3400 		return false;
3401 
3402 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3403 }
3404 
3405 /* RFC 5961 7 [ACK Throttling] */
3406 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3407 {
3408 	/* unprotected vars, we dont care of overwrites */
3409 	static u32 challenge_timestamp;
3410 	static unsigned int challenge_count;
3411 	struct tcp_sock *tp = tcp_sk(sk);
3412 	struct net *net = sock_net(sk);
3413 	u32 count, now;
3414 
3415 	/* First check our per-socket dupack rate limit. */
3416 	if (__tcp_oow_rate_limited(net,
3417 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3418 				   &tp->last_oow_ack_time))
3419 		return;
3420 
3421 	/* Then check host-wide RFC 5961 rate limit. */
3422 	now = jiffies / HZ;
3423 	if (now != challenge_timestamp) {
3424 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3425 		u32 half = (ack_limit + 1) >> 1;
3426 
3427 		challenge_timestamp = now;
3428 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3429 	}
3430 	count = READ_ONCE(challenge_count);
3431 	if (count > 0) {
3432 		WRITE_ONCE(challenge_count, count - 1);
3433 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3434 		tcp_send_ack(sk);
3435 	}
3436 }
3437 
3438 static void tcp_store_ts_recent(struct tcp_sock *tp)
3439 {
3440 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3441 	tp->rx_opt.ts_recent_stamp = get_seconds();
3442 }
3443 
3444 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3445 {
3446 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3447 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3448 		 * extra check below makes sure this can only happen
3449 		 * for pure ACK frames.  -DaveM
3450 		 *
3451 		 * Not only, also it occurs for expired timestamps.
3452 		 */
3453 
3454 		if (tcp_paws_check(&tp->rx_opt, 0))
3455 			tcp_store_ts_recent(tp);
3456 	}
3457 }
3458 
3459 /* This routine deals with acks during a TLP episode.
3460  * We mark the end of a TLP episode on receiving TLP dupack or when
3461  * ack is after tlp_high_seq.
3462  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3463  */
3464 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3465 {
3466 	struct tcp_sock *tp = tcp_sk(sk);
3467 
3468 	if (before(ack, tp->tlp_high_seq))
3469 		return;
3470 
3471 	if (flag & FLAG_DSACKING_ACK) {
3472 		/* This DSACK means original and TLP probe arrived; no loss */
3473 		tp->tlp_high_seq = 0;
3474 	} else if (after(ack, tp->tlp_high_seq)) {
3475 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3476 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3477 		 */
3478 		tcp_init_cwnd_reduction(sk);
3479 		tcp_set_ca_state(sk, TCP_CA_CWR);
3480 		tcp_end_cwnd_reduction(sk);
3481 		tcp_try_keep_open(sk);
3482 		NET_INC_STATS(sock_net(sk),
3483 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3484 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3485 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3486 		/* Pure dupack: original and TLP probe arrived; no loss */
3487 		tp->tlp_high_seq = 0;
3488 	}
3489 }
3490 
3491 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3492 {
3493 	const struct inet_connection_sock *icsk = inet_csk(sk);
3494 
3495 	if (icsk->icsk_ca_ops->in_ack_event)
3496 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3497 }
3498 
3499 /* Congestion control has updated the cwnd already. So if we're in
3500  * loss recovery then now we do any new sends (for FRTO) or
3501  * retransmits (for CA_Loss or CA_recovery) that make sense.
3502  */
3503 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3504 {
3505 	struct tcp_sock *tp = tcp_sk(sk);
3506 
3507 	if (rexmit == REXMIT_NONE)
3508 		return;
3509 
3510 	if (unlikely(rexmit == 2)) {
3511 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3512 					  TCP_NAGLE_OFF);
3513 		if (after(tp->snd_nxt, tp->high_seq))
3514 			return;
3515 		tp->frto = 0;
3516 	}
3517 	tcp_xmit_retransmit_queue(sk);
3518 }
3519 
3520 /* Returns the number of packets newly acked or sacked by the current ACK */
3521 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3522 {
3523 	const struct net *net = sock_net(sk);
3524 	struct tcp_sock *tp = tcp_sk(sk);
3525 	u32 delivered;
3526 
3527 	delivered = tp->delivered - prior_delivered;
3528 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3529 	if (flag & FLAG_ECE) {
3530 		tp->delivered_ce += delivered;
3531 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3532 	}
3533 	return delivered;
3534 }
3535 
3536 /* This routine deals with incoming acks, but not outgoing ones. */
3537 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3538 {
3539 	struct inet_connection_sock *icsk = inet_csk(sk);
3540 	struct tcp_sock *tp = tcp_sk(sk);
3541 	struct tcp_sacktag_state sack_state;
3542 	struct rate_sample rs = { .prior_delivered = 0 };
3543 	u32 prior_snd_una = tp->snd_una;
3544 	bool is_sack_reneg = tp->is_sack_reneg;
3545 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3546 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3547 	bool is_dupack = false;
3548 	int prior_packets = tp->packets_out;
3549 	u32 delivered = tp->delivered;
3550 	u32 lost = tp->lost;
3551 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3552 	u32 prior_fack;
3553 
3554 	sack_state.first_sackt = 0;
3555 	sack_state.rate = &rs;
3556 
3557 	/* We very likely will need to access rtx queue. */
3558 	prefetch(sk->tcp_rtx_queue.rb_node);
3559 
3560 	/* If the ack is older than previous acks
3561 	 * then we can probably ignore it.
3562 	 */
3563 	if (before(ack, prior_snd_una)) {
3564 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3565 		if (before(ack, prior_snd_una - tp->max_window)) {
3566 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3567 				tcp_send_challenge_ack(sk, skb);
3568 			return -1;
3569 		}
3570 		goto old_ack;
3571 	}
3572 
3573 	/* If the ack includes data we haven't sent yet, discard
3574 	 * this segment (RFC793 Section 3.9).
3575 	 */
3576 	if (after(ack, tp->snd_nxt))
3577 		goto invalid_ack;
3578 
3579 	if (after(ack, prior_snd_una)) {
3580 		flag |= FLAG_SND_UNA_ADVANCED;
3581 		icsk->icsk_retransmits = 0;
3582 
3583 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3584 		if (static_branch_unlikely(&clean_acked_data_enabled))
3585 			if (icsk->icsk_clean_acked)
3586 				icsk->icsk_clean_acked(sk, ack);
3587 #endif
3588 	}
3589 
3590 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3591 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3592 
3593 	/* ts_recent update must be made after we are sure that the packet
3594 	 * is in window.
3595 	 */
3596 	if (flag & FLAG_UPDATE_TS_RECENT)
3597 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3598 
3599 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3600 		/* Window is constant, pure forward advance.
3601 		 * No more checks are required.
3602 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3603 		 */
3604 		tcp_update_wl(tp, ack_seq);
3605 		tcp_snd_una_update(tp, ack);
3606 		flag |= FLAG_WIN_UPDATE;
3607 
3608 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3609 
3610 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3611 	} else {
3612 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3613 
3614 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3615 			flag |= FLAG_DATA;
3616 		else
3617 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3618 
3619 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3620 
3621 		if (TCP_SKB_CB(skb)->sacked)
3622 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3623 							&sack_state);
3624 
3625 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3626 			flag |= FLAG_ECE;
3627 			ack_ev_flags |= CA_ACK_ECE;
3628 		}
3629 
3630 		if (flag & FLAG_WIN_UPDATE)
3631 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3632 
3633 		tcp_in_ack_event(sk, ack_ev_flags);
3634 	}
3635 
3636 	/* We passed data and got it acked, remove any soft error
3637 	 * log. Something worked...
3638 	 */
3639 	sk->sk_err_soft = 0;
3640 	icsk->icsk_probes_out = 0;
3641 	tp->rcv_tstamp = tcp_jiffies32;
3642 	if (!prior_packets)
3643 		goto no_queue;
3644 
3645 	/* See if we can take anything off of the retransmit queue. */
3646 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3647 
3648 	tcp_rack_update_reo_wnd(sk, &rs);
3649 
3650 	if (tp->tlp_high_seq)
3651 		tcp_process_tlp_ack(sk, ack, flag);
3652 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3653 	if (flag & FLAG_SET_XMIT_TIMER)
3654 		tcp_set_xmit_timer(sk);
3655 
3656 	if (tcp_ack_is_dubious(sk, flag)) {
3657 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3658 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3659 				      &rexmit);
3660 	}
3661 
3662 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3663 		sk_dst_confirm(sk);
3664 
3665 	delivered = tcp_newly_delivered(sk, delivered, flag);
3666 	lost = tp->lost - lost;			/* freshly marked lost */
3667 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3668 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3669 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3670 	tcp_xmit_recovery(sk, rexmit);
3671 	return 1;
3672 
3673 no_queue:
3674 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3675 	if (flag & FLAG_DSACKING_ACK) {
3676 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3677 				      &rexmit);
3678 		tcp_newly_delivered(sk, delivered, flag);
3679 	}
3680 	/* If this ack opens up a zero window, clear backoff.  It was
3681 	 * being used to time the probes, and is probably far higher than
3682 	 * it needs to be for normal retransmission.
3683 	 */
3684 	tcp_ack_probe(sk);
3685 
3686 	if (tp->tlp_high_seq)
3687 		tcp_process_tlp_ack(sk, ack, flag);
3688 	return 1;
3689 
3690 invalid_ack:
3691 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3692 	return -1;
3693 
3694 old_ack:
3695 	/* If data was SACKed, tag it and see if we should send more data.
3696 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3697 	 */
3698 	if (TCP_SKB_CB(skb)->sacked) {
3699 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3700 						&sack_state);
3701 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3702 				      &rexmit);
3703 		tcp_newly_delivered(sk, delivered, flag);
3704 		tcp_xmit_recovery(sk, rexmit);
3705 	}
3706 
3707 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3708 	return 0;
3709 }
3710 
3711 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3712 				      bool syn, struct tcp_fastopen_cookie *foc,
3713 				      bool exp_opt)
3714 {
3715 	/* Valid only in SYN or SYN-ACK with an even length.  */
3716 	if (!foc || !syn || len < 0 || (len & 1))
3717 		return;
3718 
3719 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3720 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3721 		memcpy(foc->val, cookie, len);
3722 	else if (len != 0)
3723 		len = -1;
3724 	foc->len = len;
3725 	foc->exp = exp_opt;
3726 }
3727 
3728 static void smc_parse_options(const struct tcphdr *th,
3729 			      struct tcp_options_received *opt_rx,
3730 			      const unsigned char *ptr,
3731 			      int opsize)
3732 {
3733 #if IS_ENABLED(CONFIG_SMC)
3734 	if (static_branch_unlikely(&tcp_have_smc)) {
3735 		if (th->syn && !(opsize & 1) &&
3736 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3737 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3738 			opt_rx->smc_ok = 1;
3739 	}
3740 #endif
3741 }
3742 
3743 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3744  * But, this can also be called on packets in the established flow when
3745  * the fast version below fails.
3746  */
3747 void tcp_parse_options(const struct net *net,
3748 		       const struct sk_buff *skb,
3749 		       struct tcp_options_received *opt_rx, int estab,
3750 		       struct tcp_fastopen_cookie *foc)
3751 {
3752 	const unsigned char *ptr;
3753 	const struct tcphdr *th = tcp_hdr(skb);
3754 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3755 
3756 	ptr = (const unsigned char *)(th + 1);
3757 	opt_rx->saw_tstamp = 0;
3758 
3759 	while (length > 0) {
3760 		int opcode = *ptr++;
3761 		int opsize;
3762 
3763 		switch (opcode) {
3764 		case TCPOPT_EOL:
3765 			return;
3766 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3767 			length--;
3768 			continue;
3769 		default:
3770 			opsize = *ptr++;
3771 			if (opsize < 2) /* "silly options" */
3772 				return;
3773 			if (opsize > length)
3774 				return;	/* don't parse partial options */
3775 			switch (opcode) {
3776 			case TCPOPT_MSS:
3777 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3778 					u16 in_mss = get_unaligned_be16(ptr);
3779 					if (in_mss) {
3780 						if (opt_rx->user_mss &&
3781 						    opt_rx->user_mss < in_mss)
3782 							in_mss = opt_rx->user_mss;
3783 						opt_rx->mss_clamp = in_mss;
3784 					}
3785 				}
3786 				break;
3787 			case TCPOPT_WINDOW:
3788 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3789 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3790 					__u8 snd_wscale = *(__u8 *)ptr;
3791 					opt_rx->wscale_ok = 1;
3792 					if (snd_wscale > TCP_MAX_WSCALE) {
3793 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3794 								     __func__,
3795 								     snd_wscale,
3796 								     TCP_MAX_WSCALE);
3797 						snd_wscale = TCP_MAX_WSCALE;
3798 					}
3799 					opt_rx->snd_wscale = snd_wscale;
3800 				}
3801 				break;
3802 			case TCPOPT_TIMESTAMP:
3803 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3804 				    ((estab && opt_rx->tstamp_ok) ||
3805 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3806 					opt_rx->saw_tstamp = 1;
3807 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3808 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3809 				}
3810 				break;
3811 			case TCPOPT_SACK_PERM:
3812 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3813 				    !estab && net->ipv4.sysctl_tcp_sack) {
3814 					opt_rx->sack_ok = TCP_SACK_SEEN;
3815 					tcp_sack_reset(opt_rx);
3816 				}
3817 				break;
3818 
3819 			case TCPOPT_SACK:
3820 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3821 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3822 				   opt_rx->sack_ok) {
3823 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3824 				}
3825 				break;
3826 #ifdef CONFIG_TCP_MD5SIG
3827 			case TCPOPT_MD5SIG:
3828 				/*
3829 				 * The MD5 Hash has already been
3830 				 * checked (see tcp_v{4,6}_do_rcv()).
3831 				 */
3832 				break;
3833 #endif
3834 			case TCPOPT_FASTOPEN:
3835 				tcp_parse_fastopen_option(
3836 					opsize - TCPOLEN_FASTOPEN_BASE,
3837 					ptr, th->syn, foc, false);
3838 				break;
3839 
3840 			case TCPOPT_EXP:
3841 				/* Fast Open option shares code 254 using a
3842 				 * 16 bits magic number.
3843 				 */
3844 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3845 				    get_unaligned_be16(ptr) ==
3846 				    TCPOPT_FASTOPEN_MAGIC)
3847 					tcp_parse_fastopen_option(opsize -
3848 						TCPOLEN_EXP_FASTOPEN_BASE,
3849 						ptr + 2, th->syn, foc, true);
3850 				else
3851 					smc_parse_options(th, opt_rx, ptr,
3852 							  opsize);
3853 				break;
3854 
3855 			}
3856 			ptr += opsize-2;
3857 			length -= opsize;
3858 		}
3859 	}
3860 }
3861 EXPORT_SYMBOL(tcp_parse_options);
3862 
3863 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3864 {
3865 	const __be32 *ptr = (const __be32 *)(th + 1);
3866 
3867 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3868 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3869 		tp->rx_opt.saw_tstamp = 1;
3870 		++ptr;
3871 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3872 		++ptr;
3873 		if (*ptr)
3874 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3875 		else
3876 			tp->rx_opt.rcv_tsecr = 0;
3877 		return true;
3878 	}
3879 	return false;
3880 }
3881 
3882 /* Fast parse options. This hopes to only see timestamps.
3883  * If it is wrong it falls back on tcp_parse_options().
3884  */
3885 static bool tcp_fast_parse_options(const struct net *net,
3886 				   const struct sk_buff *skb,
3887 				   const struct tcphdr *th, struct tcp_sock *tp)
3888 {
3889 	/* In the spirit of fast parsing, compare doff directly to constant
3890 	 * values.  Because equality is used, short doff can be ignored here.
3891 	 */
3892 	if (th->doff == (sizeof(*th) / 4)) {
3893 		tp->rx_opt.saw_tstamp = 0;
3894 		return false;
3895 	} else if (tp->rx_opt.tstamp_ok &&
3896 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3897 		if (tcp_parse_aligned_timestamp(tp, th))
3898 			return true;
3899 	}
3900 
3901 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3902 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3903 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3904 
3905 	return true;
3906 }
3907 
3908 #ifdef CONFIG_TCP_MD5SIG
3909 /*
3910  * Parse MD5 Signature option
3911  */
3912 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3913 {
3914 	int length = (th->doff << 2) - sizeof(*th);
3915 	const u8 *ptr = (const u8 *)(th + 1);
3916 
3917 	/* If not enough data remaining, we can short cut */
3918 	while (length >= TCPOLEN_MD5SIG) {
3919 		int opcode = *ptr++;
3920 		int opsize;
3921 
3922 		switch (opcode) {
3923 		case TCPOPT_EOL:
3924 			return NULL;
3925 		case TCPOPT_NOP:
3926 			length--;
3927 			continue;
3928 		default:
3929 			opsize = *ptr++;
3930 			if (opsize < 2 || opsize > length)
3931 				return NULL;
3932 			if (opcode == TCPOPT_MD5SIG)
3933 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3934 		}
3935 		ptr += opsize - 2;
3936 		length -= opsize;
3937 	}
3938 	return NULL;
3939 }
3940 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3941 #endif
3942 
3943 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3944  *
3945  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3946  * it can pass through stack. So, the following predicate verifies that
3947  * this segment is not used for anything but congestion avoidance or
3948  * fast retransmit. Moreover, we even are able to eliminate most of such
3949  * second order effects, if we apply some small "replay" window (~RTO)
3950  * to timestamp space.
3951  *
3952  * All these measures still do not guarantee that we reject wrapped ACKs
3953  * on networks with high bandwidth, when sequence space is recycled fastly,
3954  * but it guarantees that such events will be very rare and do not affect
3955  * connection seriously. This doesn't look nice, but alas, PAWS is really
3956  * buggy extension.
3957  *
3958  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3959  * states that events when retransmit arrives after original data are rare.
3960  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3961  * the biggest problem on large power networks even with minor reordering.
3962  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3963  * up to bandwidth of 18Gigabit/sec. 8) ]
3964  */
3965 
3966 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3967 {
3968 	const struct tcp_sock *tp = tcp_sk(sk);
3969 	const struct tcphdr *th = tcp_hdr(skb);
3970 	u32 seq = TCP_SKB_CB(skb)->seq;
3971 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3972 
3973 	return (/* 1. Pure ACK with correct sequence number. */
3974 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3975 
3976 		/* 2. ... and duplicate ACK. */
3977 		ack == tp->snd_una &&
3978 
3979 		/* 3. ... and does not update window. */
3980 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3981 
3982 		/* 4. ... and sits in replay window. */
3983 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3984 }
3985 
3986 static inline bool tcp_paws_discard(const struct sock *sk,
3987 				   const struct sk_buff *skb)
3988 {
3989 	const struct tcp_sock *tp = tcp_sk(sk);
3990 
3991 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3992 	       !tcp_disordered_ack(sk, skb);
3993 }
3994 
3995 /* Check segment sequence number for validity.
3996  *
3997  * Segment controls are considered valid, if the segment
3998  * fits to the window after truncation to the window. Acceptability
3999  * of data (and SYN, FIN, of course) is checked separately.
4000  * See tcp_data_queue(), for example.
4001  *
4002  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4003  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4004  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4005  * (borrowed from freebsd)
4006  */
4007 
4008 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4009 {
4010 	return	!before(end_seq, tp->rcv_wup) &&
4011 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4012 }
4013 
4014 /* When we get a reset we do this. */
4015 void tcp_reset(struct sock *sk)
4016 {
4017 	trace_tcp_receive_reset(sk);
4018 
4019 	/* We want the right error as BSD sees it (and indeed as we do). */
4020 	switch (sk->sk_state) {
4021 	case TCP_SYN_SENT:
4022 		sk->sk_err = ECONNREFUSED;
4023 		break;
4024 	case TCP_CLOSE_WAIT:
4025 		sk->sk_err = EPIPE;
4026 		break;
4027 	case TCP_CLOSE:
4028 		return;
4029 	default:
4030 		sk->sk_err = ECONNRESET;
4031 	}
4032 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4033 	smp_wmb();
4034 
4035 	tcp_write_queue_purge(sk);
4036 	tcp_done(sk);
4037 
4038 	if (!sock_flag(sk, SOCK_DEAD))
4039 		sk->sk_error_report(sk);
4040 }
4041 
4042 /*
4043  * 	Process the FIN bit. This now behaves as it is supposed to work
4044  *	and the FIN takes effect when it is validly part of sequence
4045  *	space. Not before when we get holes.
4046  *
4047  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4048  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4049  *	TIME-WAIT)
4050  *
4051  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4052  *	close and we go into CLOSING (and later onto TIME-WAIT)
4053  *
4054  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4055  */
4056 void tcp_fin(struct sock *sk)
4057 {
4058 	struct tcp_sock *tp = tcp_sk(sk);
4059 
4060 	inet_csk_schedule_ack(sk);
4061 
4062 	sk->sk_shutdown |= RCV_SHUTDOWN;
4063 	sock_set_flag(sk, SOCK_DONE);
4064 
4065 	switch (sk->sk_state) {
4066 	case TCP_SYN_RECV:
4067 	case TCP_ESTABLISHED:
4068 		/* Move to CLOSE_WAIT */
4069 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4070 		inet_csk(sk)->icsk_ack.pingpong = 1;
4071 		break;
4072 
4073 	case TCP_CLOSE_WAIT:
4074 	case TCP_CLOSING:
4075 		/* Received a retransmission of the FIN, do
4076 		 * nothing.
4077 		 */
4078 		break;
4079 	case TCP_LAST_ACK:
4080 		/* RFC793: Remain in the LAST-ACK state. */
4081 		break;
4082 
4083 	case TCP_FIN_WAIT1:
4084 		/* This case occurs when a simultaneous close
4085 		 * happens, we must ack the received FIN and
4086 		 * enter the CLOSING state.
4087 		 */
4088 		tcp_send_ack(sk);
4089 		tcp_set_state(sk, TCP_CLOSING);
4090 		break;
4091 	case TCP_FIN_WAIT2:
4092 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4093 		tcp_send_ack(sk);
4094 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4095 		break;
4096 	default:
4097 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4098 		 * cases we should never reach this piece of code.
4099 		 */
4100 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4101 		       __func__, sk->sk_state);
4102 		break;
4103 	}
4104 
4105 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4106 	 * Probably, we should reset in this case. For now drop them.
4107 	 */
4108 	skb_rbtree_purge(&tp->out_of_order_queue);
4109 	if (tcp_is_sack(tp))
4110 		tcp_sack_reset(&tp->rx_opt);
4111 	sk_mem_reclaim(sk);
4112 
4113 	if (!sock_flag(sk, SOCK_DEAD)) {
4114 		sk->sk_state_change(sk);
4115 
4116 		/* Do not send POLL_HUP for half duplex close. */
4117 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4118 		    sk->sk_state == TCP_CLOSE)
4119 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4120 		else
4121 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4122 	}
4123 }
4124 
4125 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4126 				  u32 end_seq)
4127 {
4128 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4129 		if (before(seq, sp->start_seq))
4130 			sp->start_seq = seq;
4131 		if (after(end_seq, sp->end_seq))
4132 			sp->end_seq = end_seq;
4133 		return true;
4134 	}
4135 	return false;
4136 }
4137 
4138 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4139 {
4140 	struct tcp_sock *tp = tcp_sk(sk);
4141 
4142 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4143 		int mib_idx;
4144 
4145 		if (before(seq, tp->rcv_nxt))
4146 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4147 		else
4148 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4149 
4150 		NET_INC_STATS(sock_net(sk), mib_idx);
4151 
4152 		tp->rx_opt.dsack = 1;
4153 		tp->duplicate_sack[0].start_seq = seq;
4154 		tp->duplicate_sack[0].end_seq = end_seq;
4155 	}
4156 }
4157 
4158 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4159 {
4160 	struct tcp_sock *tp = tcp_sk(sk);
4161 
4162 	if (!tp->rx_opt.dsack)
4163 		tcp_dsack_set(sk, seq, end_seq);
4164 	else
4165 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4166 }
4167 
4168 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4169 {
4170 	struct tcp_sock *tp = tcp_sk(sk);
4171 
4172 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4173 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4174 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4175 		tcp_enter_quickack_mode(sk);
4176 
4177 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4178 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4179 
4180 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4181 				end_seq = tp->rcv_nxt;
4182 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4183 		}
4184 	}
4185 
4186 	tcp_send_ack(sk);
4187 }
4188 
4189 /* These routines update the SACK block as out-of-order packets arrive or
4190  * in-order packets close up the sequence space.
4191  */
4192 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4193 {
4194 	int this_sack;
4195 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4196 	struct tcp_sack_block *swalk = sp + 1;
4197 
4198 	/* See if the recent change to the first SACK eats into
4199 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4200 	 */
4201 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4202 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4203 			int i;
4204 
4205 			/* Zap SWALK, by moving every further SACK up by one slot.
4206 			 * Decrease num_sacks.
4207 			 */
4208 			tp->rx_opt.num_sacks--;
4209 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4210 				sp[i] = sp[i + 1];
4211 			continue;
4212 		}
4213 		this_sack++, swalk++;
4214 	}
4215 }
4216 
4217 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4218 {
4219 	struct tcp_sock *tp = tcp_sk(sk);
4220 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4221 	int cur_sacks = tp->rx_opt.num_sacks;
4222 	int this_sack;
4223 
4224 	if (!cur_sacks)
4225 		goto new_sack;
4226 
4227 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4228 		if (tcp_sack_extend(sp, seq, end_seq)) {
4229 			/* Rotate this_sack to the first one. */
4230 			for (; this_sack > 0; this_sack--, sp--)
4231 				swap(*sp, *(sp - 1));
4232 			if (cur_sacks > 1)
4233 				tcp_sack_maybe_coalesce(tp);
4234 			return;
4235 		}
4236 	}
4237 
4238 	/* Could not find an adjacent existing SACK, build a new one,
4239 	 * put it at the front, and shift everyone else down.  We
4240 	 * always know there is at least one SACK present already here.
4241 	 *
4242 	 * If the sack array is full, forget about the last one.
4243 	 */
4244 	if (this_sack >= TCP_NUM_SACKS) {
4245 		this_sack--;
4246 		tp->rx_opt.num_sacks--;
4247 		sp--;
4248 	}
4249 	for (; this_sack > 0; this_sack--, sp--)
4250 		*sp = *(sp - 1);
4251 
4252 new_sack:
4253 	/* Build the new head SACK, and we're done. */
4254 	sp->start_seq = seq;
4255 	sp->end_seq = end_seq;
4256 	tp->rx_opt.num_sacks++;
4257 }
4258 
4259 /* RCV.NXT advances, some SACKs should be eaten. */
4260 
4261 static void tcp_sack_remove(struct tcp_sock *tp)
4262 {
4263 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4264 	int num_sacks = tp->rx_opt.num_sacks;
4265 	int this_sack;
4266 
4267 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4268 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4269 		tp->rx_opt.num_sacks = 0;
4270 		return;
4271 	}
4272 
4273 	for (this_sack = 0; this_sack < num_sacks;) {
4274 		/* Check if the start of the sack is covered by RCV.NXT. */
4275 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4276 			int i;
4277 
4278 			/* RCV.NXT must cover all the block! */
4279 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4280 
4281 			/* Zap this SACK, by moving forward any other SACKS. */
4282 			for (i = this_sack+1; i < num_sacks; i++)
4283 				tp->selective_acks[i-1] = tp->selective_acks[i];
4284 			num_sacks--;
4285 			continue;
4286 		}
4287 		this_sack++;
4288 		sp++;
4289 	}
4290 	tp->rx_opt.num_sacks = num_sacks;
4291 }
4292 
4293 /**
4294  * tcp_try_coalesce - try to merge skb to prior one
4295  * @sk: socket
4296  * @dest: destination queue
4297  * @to: prior buffer
4298  * @from: buffer to add in queue
4299  * @fragstolen: pointer to boolean
4300  *
4301  * Before queueing skb @from after @to, try to merge them
4302  * to reduce overall memory use and queue lengths, if cost is small.
4303  * Packets in ofo or receive queues can stay a long time.
4304  * Better try to coalesce them right now to avoid future collapses.
4305  * Returns true if caller should free @from instead of queueing it
4306  */
4307 static bool tcp_try_coalesce(struct sock *sk,
4308 			     struct sk_buff *to,
4309 			     struct sk_buff *from,
4310 			     bool *fragstolen)
4311 {
4312 	int delta;
4313 
4314 	*fragstolen = false;
4315 
4316 	/* Its possible this segment overlaps with prior segment in queue */
4317 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4318 		return false;
4319 
4320 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4321 		return false;
4322 
4323 	atomic_add(delta, &sk->sk_rmem_alloc);
4324 	sk_mem_charge(sk, delta);
4325 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4326 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4327 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4328 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4329 
4330 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4331 		TCP_SKB_CB(to)->has_rxtstamp = true;
4332 		to->tstamp = from->tstamp;
4333 	}
4334 
4335 	return true;
4336 }
4337 
4338 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4339 {
4340 	sk_drops_add(sk, skb);
4341 	__kfree_skb(skb);
4342 }
4343 
4344 /* This one checks to see if we can put data from the
4345  * out_of_order queue into the receive_queue.
4346  */
4347 static void tcp_ofo_queue(struct sock *sk)
4348 {
4349 	struct tcp_sock *tp = tcp_sk(sk);
4350 	__u32 dsack_high = tp->rcv_nxt;
4351 	bool fin, fragstolen, eaten;
4352 	struct sk_buff *skb, *tail;
4353 	struct rb_node *p;
4354 
4355 	p = rb_first(&tp->out_of_order_queue);
4356 	while (p) {
4357 		skb = rb_to_skb(p);
4358 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4359 			break;
4360 
4361 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4362 			__u32 dsack = dsack_high;
4363 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4364 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4365 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4366 		}
4367 		p = rb_next(p);
4368 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4369 
4370 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4371 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4372 			tcp_drop(sk, skb);
4373 			continue;
4374 		}
4375 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4376 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4377 			   TCP_SKB_CB(skb)->end_seq);
4378 
4379 		tail = skb_peek_tail(&sk->sk_receive_queue);
4380 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4381 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4382 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4383 		if (!eaten)
4384 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4385 		else
4386 			kfree_skb_partial(skb, fragstolen);
4387 
4388 		if (unlikely(fin)) {
4389 			tcp_fin(sk);
4390 			/* tcp_fin() purges tp->out_of_order_queue,
4391 			 * so we must end this loop right now.
4392 			 */
4393 			break;
4394 		}
4395 	}
4396 }
4397 
4398 static bool tcp_prune_ofo_queue(struct sock *sk);
4399 static int tcp_prune_queue(struct sock *sk);
4400 
4401 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4402 				 unsigned int size)
4403 {
4404 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4405 	    !sk_rmem_schedule(sk, skb, size)) {
4406 
4407 		if (tcp_prune_queue(sk) < 0)
4408 			return -1;
4409 
4410 		while (!sk_rmem_schedule(sk, skb, size)) {
4411 			if (!tcp_prune_ofo_queue(sk))
4412 				return -1;
4413 		}
4414 	}
4415 	return 0;
4416 }
4417 
4418 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4419 {
4420 	struct tcp_sock *tp = tcp_sk(sk);
4421 	struct rb_node **p, *parent;
4422 	struct sk_buff *skb1;
4423 	u32 seq, end_seq;
4424 	bool fragstolen;
4425 
4426 	tcp_ecn_check_ce(tp, skb);
4427 
4428 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4429 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4430 		tcp_drop(sk, skb);
4431 		return;
4432 	}
4433 
4434 	/* Disable header prediction. */
4435 	tp->pred_flags = 0;
4436 	inet_csk_schedule_ack(sk);
4437 
4438 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4439 	seq = TCP_SKB_CB(skb)->seq;
4440 	end_seq = TCP_SKB_CB(skb)->end_seq;
4441 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4442 		   tp->rcv_nxt, seq, end_seq);
4443 
4444 	p = &tp->out_of_order_queue.rb_node;
4445 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4446 		/* Initial out of order segment, build 1 SACK. */
4447 		if (tcp_is_sack(tp)) {
4448 			tp->rx_opt.num_sacks = 1;
4449 			tp->selective_acks[0].start_seq = seq;
4450 			tp->selective_acks[0].end_seq = end_seq;
4451 		}
4452 		rb_link_node(&skb->rbnode, NULL, p);
4453 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4454 		tp->ooo_last_skb = skb;
4455 		goto end;
4456 	}
4457 
4458 	/* In the typical case, we are adding an skb to the end of the list.
4459 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4460 	 */
4461 	if (tcp_try_coalesce(sk, tp->ooo_last_skb,
4462 			     skb, &fragstolen)) {
4463 coalesce_done:
4464 		tcp_grow_window(sk, skb);
4465 		kfree_skb_partial(skb, fragstolen);
4466 		skb = NULL;
4467 		goto add_sack;
4468 	}
4469 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4470 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4471 		parent = &tp->ooo_last_skb->rbnode;
4472 		p = &parent->rb_right;
4473 		goto insert;
4474 	}
4475 
4476 	/* Find place to insert this segment. Handle overlaps on the way. */
4477 	parent = NULL;
4478 	while (*p) {
4479 		parent = *p;
4480 		skb1 = rb_to_skb(parent);
4481 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4482 			p = &parent->rb_left;
4483 			continue;
4484 		}
4485 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4486 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4487 				/* All the bits are present. Drop. */
4488 				NET_INC_STATS(sock_net(sk),
4489 					      LINUX_MIB_TCPOFOMERGE);
4490 				__kfree_skb(skb);
4491 				skb = NULL;
4492 				tcp_dsack_set(sk, seq, end_seq);
4493 				goto add_sack;
4494 			}
4495 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4496 				/* Partial overlap. */
4497 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4498 			} else {
4499 				/* skb's seq == skb1's seq and skb covers skb1.
4500 				 * Replace skb1 with skb.
4501 				 */
4502 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4503 						&tp->out_of_order_queue);
4504 				tcp_dsack_extend(sk,
4505 						 TCP_SKB_CB(skb1)->seq,
4506 						 TCP_SKB_CB(skb1)->end_seq);
4507 				NET_INC_STATS(sock_net(sk),
4508 					      LINUX_MIB_TCPOFOMERGE);
4509 				__kfree_skb(skb1);
4510 				goto merge_right;
4511 			}
4512 		} else if (tcp_try_coalesce(sk, skb1,
4513 					    skb, &fragstolen)) {
4514 			goto coalesce_done;
4515 		}
4516 		p = &parent->rb_right;
4517 	}
4518 insert:
4519 	/* Insert segment into RB tree. */
4520 	rb_link_node(&skb->rbnode, parent, p);
4521 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4522 
4523 merge_right:
4524 	/* Remove other segments covered by skb. */
4525 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4526 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4527 			break;
4528 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4529 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4530 					 end_seq);
4531 			break;
4532 		}
4533 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4534 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4535 				 TCP_SKB_CB(skb1)->end_seq);
4536 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4537 		tcp_drop(sk, skb1);
4538 	}
4539 	/* If there is no skb after us, we are the last_skb ! */
4540 	if (!skb1)
4541 		tp->ooo_last_skb = skb;
4542 
4543 add_sack:
4544 	if (tcp_is_sack(tp))
4545 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4546 end:
4547 	if (skb) {
4548 		tcp_grow_window(sk, skb);
4549 		skb_condense(skb);
4550 		skb_set_owner_r(skb, sk);
4551 	}
4552 }
4553 
4554 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4555 		  bool *fragstolen)
4556 {
4557 	int eaten;
4558 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4559 
4560 	__skb_pull(skb, hdrlen);
4561 	eaten = (tail &&
4562 		 tcp_try_coalesce(sk, tail,
4563 				  skb, fragstolen)) ? 1 : 0;
4564 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4565 	if (!eaten) {
4566 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4567 		skb_set_owner_r(skb, sk);
4568 	}
4569 	return eaten;
4570 }
4571 
4572 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4573 {
4574 	struct sk_buff *skb;
4575 	int err = -ENOMEM;
4576 	int data_len = 0;
4577 	bool fragstolen;
4578 
4579 	if (size == 0)
4580 		return 0;
4581 
4582 	if (size > PAGE_SIZE) {
4583 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4584 
4585 		data_len = npages << PAGE_SHIFT;
4586 		size = data_len + (size & ~PAGE_MASK);
4587 	}
4588 	skb = alloc_skb_with_frags(size - data_len, data_len,
4589 				   PAGE_ALLOC_COSTLY_ORDER,
4590 				   &err, sk->sk_allocation);
4591 	if (!skb)
4592 		goto err;
4593 
4594 	skb_put(skb, size - data_len);
4595 	skb->data_len = data_len;
4596 	skb->len = size;
4597 
4598 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4599 		goto err_free;
4600 
4601 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4602 	if (err)
4603 		goto err_free;
4604 
4605 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4606 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4607 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4608 
4609 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4610 		WARN_ON_ONCE(fragstolen); /* should not happen */
4611 		__kfree_skb(skb);
4612 	}
4613 	return size;
4614 
4615 err_free:
4616 	kfree_skb(skb);
4617 err:
4618 	return err;
4619 
4620 }
4621 
4622 void tcp_data_ready(struct sock *sk)
4623 {
4624 	const struct tcp_sock *tp = tcp_sk(sk);
4625 	int avail = tp->rcv_nxt - tp->copied_seq;
4626 
4627 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4628 		return;
4629 
4630 	sk->sk_data_ready(sk);
4631 }
4632 
4633 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4634 {
4635 	struct tcp_sock *tp = tcp_sk(sk);
4636 	bool fragstolen;
4637 	int eaten;
4638 
4639 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4640 		__kfree_skb(skb);
4641 		return;
4642 	}
4643 	skb_dst_drop(skb);
4644 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4645 
4646 	tcp_ecn_accept_cwr(tp, skb);
4647 
4648 	tp->rx_opt.dsack = 0;
4649 
4650 	/*  Queue data for delivery to the user.
4651 	 *  Packets in sequence go to the receive queue.
4652 	 *  Out of sequence packets to the out_of_order_queue.
4653 	 */
4654 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4655 		if (tcp_receive_window(tp) == 0)
4656 			goto out_of_window;
4657 
4658 		/* Ok. In sequence. In window. */
4659 queue_and_out:
4660 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4661 			sk_forced_mem_schedule(sk, skb->truesize);
4662 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4663 			goto drop;
4664 
4665 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4666 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4667 		if (skb->len)
4668 			tcp_event_data_recv(sk, skb);
4669 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4670 			tcp_fin(sk);
4671 
4672 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4673 			tcp_ofo_queue(sk);
4674 
4675 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4676 			 * gap in queue is filled.
4677 			 */
4678 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4679 				inet_csk(sk)->icsk_ack.pingpong = 0;
4680 		}
4681 
4682 		if (tp->rx_opt.num_sacks)
4683 			tcp_sack_remove(tp);
4684 
4685 		tcp_fast_path_check(sk);
4686 
4687 		if (eaten > 0)
4688 			kfree_skb_partial(skb, fragstolen);
4689 		if (!sock_flag(sk, SOCK_DEAD))
4690 			tcp_data_ready(sk);
4691 		return;
4692 	}
4693 
4694 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4695 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4696 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4697 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4698 
4699 out_of_window:
4700 		tcp_enter_quickack_mode(sk);
4701 		inet_csk_schedule_ack(sk);
4702 drop:
4703 		tcp_drop(sk, skb);
4704 		return;
4705 	}
4706 
4707 	/* Out of window. F.e. zero window probe. */
4708 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4709 		goto out_of_window;
4710 
4711 	tcp_enter_quickack_mode(sk);
4712 
4713 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4714 		/* Partial packet, seq < rcv_next < end_seq */
4715 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4716 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4717 			   TCP_SKB_CB(skb)->end_seq);
4718 
4719 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4720 
4721 		/* If window is closed, drop tail of packet. But after
4722 		 * remembering D-SACK for its head made in previous line.
4723 		 */
4724 		if (!tcp_receive_window(tp))
4725 			goto out_of_window;
4726 		goto queue_and_out;
4727 	}
4728 
4729 	tcp_data_queue_ofo(sk, skb);
4730 }
4731 
4732 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4733 {
4734 	if (list)
4735 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4736 
4737 	return skb_rb_next(skb);
4738 }
4739 
4740 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4741 					struct sk_buff_head *list,
4742 					struct rb_root *root)
4743 {
4744 	struct sk_buff *next = tcp_skb_next(skb, list);
4745 
4746 	if (list)
4747 		__skb_unlink(skb, list);
4748 	else
4749 		rb_erase(&skb->rbnode, root);
4750 
4751 	__kfree_skb(skb);
4752 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4753 
4754 	return next;
4755 }
4756 
4757 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4758 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4759 {
4760 	struct rb_node **p = &root->rb_node;
4761 	struct rb_node *parent = NULL;
4762 	struct sk_buff *skb1;
4763 
4764 	while (*p) {
4765 		parent = *p;
4766 		skb1 = rb_to_skb(parent);
4767 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4768 			p = &parent->rb_left;
4769 		else
4770 			p = &parent->rb_right;
4771 	}
4772 	rb_link_node(&skb->rbnode, parent, p);
4773 	rb_insert_color(&skb->rbnode, root);
4774 }
4775 
4776 /* Collapse contiguous sequence of skbs head..tail with
4777  * sequence numbers start..end.
4778  *
4779  * If tail is NULL, this means until the end of the queue.
4780  *
4781  * Segments with FIN/SYN are not collapsed (only because this
4782  * simplifies code)
4783  */
4784 static void
4785 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4786 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4787 {
4788 	struct sk_buff *skb = head, *n;
4789 	struct sk_buff_head tmp;
4790 	bool end_of_skbs;
4791 
4792 	/* First, check that queue is collapsible and find
4793 	 * the point where collapsing can be useful.
4794 	 */
4795 restart:
4796 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4797 		n = tcp_skb_next(skb, list);
4798 
4799 		/* No new bits? It is possible on ofo queue. */
4800 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4801 			skb = tcp_collapse_one(sk, skb, list, root);
4802 			if (!skb)
4803 				break;
4804 			goto restart;
4805 		}
4806 
4807 		/* The first skb to collapse is:
4808 		 * - not SYN/FIN and
4809 		 * - bloated or contains data before "start" or
4810 		 *   overlaps to the next one.
4811 		 */
4812 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4813 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4814 		     before(TCP_SKB_CB(skb)->seq, start))) {
4815 			end_of_skbs = false;
4816 			break;
4817 		}
4818 
4819 		if (n && n != tail &&
4820 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4821 			end_of_skbs = false;
4822 			break;
4823 		}
4824 
4825 		/* Decided to skip this, advance start seq. */
4826 		start = TCP_SKB_CB(skb)->end_seq;
4827 	}
4828 	if (end_of_skbs ||
4829 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4830 		return;
4831 
4832 	__skb_queue_head_init(&tmp);
4833 
4834 	while (before(start, end)) {
4835 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4836 		struct sk_buff *nskb;
4837 
4838 		nskb = alloc_skb(copy, GFP_ATOMIC);
4839 		if (!nskb)
4840 			break;
4841 
4842 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4843 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4844 		if (list)
4845 			__skb_queue_before(list, skb, nskb);
4846 		else
4847 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4848 		skb_set_owner_r(nskb, sk);
4849 
4850 		/* Copy data, releasing collapsed skbs. */
4851 		while (copy > 0) {
4852 			int offset = start - TCP_SKB_CB(skb)->seq;
4853 			int size = TCP_SKB_CB(skb)->end_seq - start;
4854 
4855 			BUG_ON(offset < 0);
4856 			if (size > 0) {
4857 				size = min(copy, size);
4858 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4859 					BUG();
4860 				TCP_SKB_CB(nskb)->end_seq += size;
4861 				copy -= size;
4862 				start += size;
4863 			}
4864 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4865 				skb = tcp_collapse_one(sk, skb, list, root);
4866 				if (!skb ||
4867 				    skb == tail ||
4868 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4869 					goto end;
4870 			}
4871 		}
4872 	}
4873 end:
4874 	skb_queue_walk_safe(&tmp, skb, n)
4875 		tcp_rbtree_insert(root, skb);
4876 }
4877 
4878 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4879  * and tcp_collapse() them until all the queue is collapsed.
4880  */
4881 static void tcp_collapse_ofo_queue(struct sock *sk)
4882 {
4883 	struct tcp_sock *tp = tcp_sk(sk);
4884 	struct sk_buff *skb, *head;
4885 	u32 start, end;
4886 
4887 	skb = skb_rb_first(&tp->out_of_order_queue);
4888 new_range:
4889 	if (!skb) {
4890 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4891 		return;
4892 	}
4893 	start = TCP_SKB_CB(skb)->seq;
4894 	end = TCP_SKB_CB(skb)->end_seq;
4895 
4896 	for (head = skb;;) {
4897 		skb = skb_rb_next(skb);
4898 
4899 		/* Range is terminated when we see a gap or when
4900 		 * we are at the queue end.
4901 		 */
4902 		if (!skb ||
4903 		    after(TCP_SKB_CB(skb)->seq, end) ||
4904 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4905 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4906 				     head, skb, start, end);
4907 			goto new_range;
4908 		}
4909 
4910 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4911 			start = TCP_SKB_CB(skb)->seq;
4912 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4913 			end = TCP_SKB_CB(skb)->end_seq;
4914 	}
4915 }
4916 
4917 /*
4918  * Clean the out-of-order queue to make room.
4919  * We drop high sequences packets to :
4920  * 1) Let a chance for holes to be filled.
4921  * 2) not add too big latencies if thousands of packets sit there.
4922  *    (But if application shrinks SO_RCVBUF, we could still end up
4923  *     freeing whole queue here)
4924  *
4925  * Return true if queue has shrunk.
4926  */
4927 static bool tcp_prune_ofo_queue(struct sock *sk)
4928 {
4929 	struct tcp_sock *tp = tcp_sk(sk);
4930 	struct rb_node *node, *prev;
4931 
4932 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4933 		return false;
4934 
4935 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4936 	node = &tp->ooo_last_skb->rbnode;
4937 	do {
4938 		prev = rb_prev(node);
4939 		rb_erase(node, &tp->out_of_order_queue);
4940 		tcp_drop(sk, rb_to_skb(node));
4941 		sk_mem_reclaim(sk);
4942 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4943 		    !tcp_under_memory_pressure(sk))
4944 			break;
4945 		node = prev;
4946 	} while (node);
4947 	tp->ooo_last_skb = rb_to_skb(prev);
4948 
4949 	/* Reset SACK state.  A conforming SACK implementation will
4950 	 * do the same at a timeout based retransmit.  When a connection
4951 	 * is in a sad state like this, we care only about integrity
4952 	 * of the connection not performance.
4953 	 */
4954 	if (tp->rx_opt.sack_ok)
4955 		tcp_sack_reset(&tp->rx_opt);
4956 	return true;
4957 }
4958 
4959 /* Reduce allocated memory if we can, trying to get
4960  * the socket within its memory limits again.
4961  *
4962  * Return less than zero if we should start dropping frames
4963  * until the socket owning process reads some of the data
4964  * to stabilize the situation.
4965  */
4966 static int tcp_prune_queue(struct sock *sk)
4967 {
4968 	struct tcp_sock *tp = tcp_sk(sk);
4969 
4970 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4971 
4972 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4973 
4974 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4975 		tcp_clamp_window(sk);
4976 	else if (tcp_under_memory_pressure(sk))
4977 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4978 
4979 	tcp_collapse_ofo_queue(sk);
4980 	if (!skb_queue_empty(&sk->sk_receive_queue))
4981 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4982 			     skb_peek(&sk->sk_receive_queue),
4983 			     NULL,
4984 			     tp->copied_seq, tp->rcv_nxt);
4985 	sk_mem_reclaim(sk);
4986 
4987 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4988 		return 0;
4989 
4990 	/* Collapsing did not help, destructive actions follow.
4991 	 * This must not ever occur. */
4992 
4993 	tcp_prune_ofo_queue(sk);
4994 
4995 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4996 		return 0;
4997 
4998 	/* If we are really being abused, tell the caller to silently
4999 	 * drop receive data on the floor.  It will get retransmitted
5000 	 * and hopefully then we'll have sufficient space.
5001 	 */
5002 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5003 
5004 	/* Massive buffer overcommit. */
5005 	tp->pred_flags = 0;
5006 	return -1;
5007 }
5008 
5009 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5010 {
5011 	const struct tcp_sock *tp = tcp_sk(sk);
5012 
5013 	/* If the user specified a specific send buffer setting, do
5014 	 * not modify it.
5015 	 */
5016 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5017 		return false;
5018 
5019 	/* If we are under global TCP memory pressure, do not expand.  */
5020 	if (tcp_under_memory_pressure(sk))
5021 		return false;
5022 
5023 	/* If we are under soft global TCP memory pressure, do not expand.  */
5024 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5025 		return false;
5026 
5027 	/* If we filled the congestion window, do not expand.  */
5028 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5029 		return false;
5030 
5031 	return true;
5032 }
5033 
5034 /* When incoming ACK allowed to free some skb from write_queue,
5035  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5036  * on the exit from tcp input handler.
5037  *
5038  * PROBLEM: sndbuf expansion does not work well with largesend.
5039  */
5040 static void tcp_new_space(struct sock *sk)
5041 {
5042 	struct tcp_sock *tp = tcp_sk(sk);
5043 
5044 	if (tcp_should_expand_sndbuf(sk)) {
5045 		tcp_sndbuf_expand(sk);
5046 		tp->snd_cwnd_stamp = tcp_jiffies32;
5047 	}
5048 
5049 	sk->sk_write_space(sk);
5050 }
5051 
5052 static void tcp_check_space(struct sock *sk)
5053 {
5054 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5055 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5056 		/* pairs with tcp_poll() */
5057 		smp_mb();
5058 		if (sk->sk_socket &&
5059 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5060 			tcp_new_space(sk);
5061 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5062 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5063 		}
5064 	}
5065 }
5066 
5067 static inline void tcp_data_snd_check(struct sock *sk)
5068 {
5069 	tcp_push_pending_frames(sk);
5070 	tcp_check_space(sk);
5071 }
5072 
5073 /*
5074  * Check if sending an ack is needed.
5075  */
5076 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5077 {
5078 	struct tcp_sock *tp = tcp_sk(sk);
5079 
5080 	    /* More than one full frame received... */
5081 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5082 	     /* ... and right edge of window advances far enough.
5083 	      * (tcp_recvmsg() will send ACK otherwise).
5084 	      * If application uses SO_RCVLOWAT, we want send ack now if
5085 	      * we have not received enough bytes to satisfy the condition.
5086 	      */
5087 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5088 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5089 	    /* We ACK each frame or... */
5090 	    tcp_in_quickack_mode(sk) ||
5091 	    /* We have out of order data. */
5092 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5093 		/* Then ack it now */
5094 		tcp_send_ack(sk);
5095 	} else {
5096 		/* Else, send delayed ack. */
5097 		tcp_send_delayed_ack(sk);
5098 	}
5099 }
5100 
5101 static inline void tcp_ack_snd_check(struct sock *sk)
5102 {
5103 	if (!inet_csk_ack_scheduled(sk)) {
5104 		/* We sent a data segment already. */
5105 		return;
5106 	}
5107 	__tcp_ack_snd_check(sk, 1);
5108 }
5109 
5110 /*
5111  *	This routine is only called when we have urgent data
5112  *	signaled. Its the 'slow' part of tcp_urg. It could be
5113  *	moved inline now as tcp_urg is only called from one
5114  *	place. We handle URGent data wrong. We have to - as
5115  *	BSD still doesn't use the correction from RFC961.
5116  *	For 1003.1g we should support a new option TCP_STDURG to permit
5117  *	either form (or just set the sysctl tcp_stdurg).
5118  */
5119 
5120 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5121 {
5122 	struct tcp_sock *tp = tcp_sk(sk);
5123 	u32 ptr = ntohs(th->urg_ptr);
5124 
5125 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5126 		ptr--;
5127 	ptr += ntohl(th->seq);
5128 
5129 	/* Ignore urgent data that we've already seen and read. */
5130 	if (after(tp->copied_seq, ptr))
5131 		return;
5132 
5133 	/* Do not replay urg ptr.
5134 	 *
5135 	 * NOTE: interesting situation not covered by specs.
5136 	 * Misbehaving sender may send urg ptr, pointing to segment,
5137 	 * which we already have in ofo queue. We are not able to fetch
5138 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5139 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5140 	 * situations. But it is worth to think about possibility of some
5141 	 * DoSes using some hypothetical application level deadlock.
5142 	 */
5143 	if (before(ptr, tp->rcv_nxt))
5144 		return;
5145 
5146 	/* Do we already have a newer (or duplicate) urgent pointer? */
5147 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5148 		return;
5149 
5150 	/* Tell the world about our new urgent pointer. */
5151 	sk_send_sigurg(sk);
5152 
5153 	/* We may be adding urgent data when the last byte read was
5154 	 * urgent. To do this requires some care. We cannot just ignore
5155 	 * tp->copied_seq since we would read the last urgent byte again
5156 	 * as data, nor can we alter copied_seq until this data arrives
5157 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5158 	 *
5159 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5160 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5161 	 * and expect that both A and B disappear from stream. This is _wrong_.
5162 	 * Though this happens in BSD with high probability, this is occasional.
5163 	 * Any application relying on this is buggy. Note also, that fix "works"
5164 	 * only in this artificial test. Insert some normal data between A and B and we will
5165 	 * decline of BSD again. Verdict: it is better to remove to trap
5166 	 * buggy users.
5167 	 */
5168 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5169 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5170 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5171 		tp->copied_seq++;
5172 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5173 			__skb_unlink(skb, &sk->sk_receive_queue);
5174 			__kfree_skb(skb);
5175 		}
5176 	}
5177 
5178 	tp->urg_data = TCP_URG_NOTYET;
5179 	tp->urg_seq = ptr;
5180 
5181 	/* Disable header prediction. */
5182 	tp->pred_flags = 0;
5183 }
5184 
5185 /* This is the 'fast' part of urgent handling. */
5186 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5187 {
5188 	struct tcp_sock *tp = tcp_sk(sk);
5189 
5190 	/* Check if we get a new urgent pointer - normally not. */
5191 	if (th->urg)
5192 		tcp_check_urg(sk, th);
5193 
5194 	/* Do we wait for any urgent data? - normally not... */
5195 	if (tp->urg_data == TCP_URG_NOTYET) {
5196 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5197 			  th->syn;
5198 
5199 		/* Is the urgent pointer pointing into this packet? */
5200 		if (ptr < skb->len) {
5201 			u8 tmp;
5202 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5203 				BUG();
5204 			tp->urg_data = TCP_URG_VALID | tmp;
5205 			if (!sock_flag(sk, SOCK_DEAD))
5206 				sk->sk_data_ready(sk);
5207 		}
5208 	}
5209 }
5210 
5211 /* Accept RST for rcv_nxt - 1 after a FIN.
5212  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5213  * FIN is sent followed by a RST packet. The RST is sent with the same
5214  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5215  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5216  * ACKs on the closed socket. In addition middleboxes can drop either the
5217  * challenge ACK or a subsequent RST.
5218  */
5219 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5220 {
5221 	struct tcp_sock *tp = tcp_sk(sk);
5222 
5223 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5224 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5225 					       TCPF_CLOSING));
5226 }
5227 
5228 /* Does PAWS and seqno based validation of an incoming segment, flags will
5229  * play significant role here.
5230  */
5231 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5232 				  const struct tcphdr *th, int syn_inerr)
5233 {
5234 	struct tcp_sock *tp = tcp_sk(sk);
5235 	bool rst_seq_match = false;
5236 
5237 	/* RFC1323: H1. Apply PAWS check first. */
5238 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5239 	    tp->rx_opt.saw_tstamp &&
5240 	    tcp_paws_discard(sk, skb)) {
5241 		if (!th->rst) {
5242 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5243 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5244 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5245 						  &tp->last_oow_ack_time))
5246 				tcp_send_dupack(sk, skb);
5247 			goto discard;
5248 		}
5249 		/* Reset is accepted even if it did not pass PAWS. */
5250 	}
5251 
5252 	/* Step 1: check sequence number */
5253 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5254 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5255 		 * (RST) segments are validated by checking their SEQ-fields."
5256 		 * And page 69: "If an incoming segment is not acceptable,
5257 		 * an acknowledgment should be sent in reply (unless the RST
5258 		 * bit is set, if so drop the segment and return)".
5259 		 */
5260 		if (!th->rst) {
5261 			if (th->syn)
5262 				goto syn_challenge;
5263 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5264 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5265 						  &tp->last_oow_ack_time))
5266 				tcp_send_dupack(sk, skb);
5267 		} else if (tcp_reset_check(sk, skb)) {
5268 			tcp_reset(sk);
5269 		}
5270 		goto discard;
5271 	}
5272 
5273 	/* Step 2: check RST bit */
5274 	if (th->rst) {
5275 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5276 		 * FIN and SACK too if available):
5277 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5278 		 * the right-most SACK block,
5279 		 * then
5280 		 *     RESET the connection
5281 		 * else
5282 		 *     Send a challenge ACK
5283 		 */
5284 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5285 		    tcp_reset_check(sk, skb)) {
5286 			rst_seq_match = true;
5287 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5288 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5289 			int max_sack = sp[0].end_seq;
5290 			int this_sack;
5291 
5292 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5293 			     ++this_sack) {
5294 				max_sack = after(sp[this_sack].end_seq,
5295 						 max_sack) ?
5296 					sp[this_sack].end_seq : max_sack;
5297 			}
5298 
5299 			if (TCP_SKB_CB(skb)->seq == max_sack)
5300 				rst_seq_match = true;
5301 		}
5302 
5303 		if (rst_seq_match)
5304 			tcp_reset(sk);
5305 		else {
5306 			/* Disable TFO if RST is out-of-order
5307 			 * and no data has been received
5308 			 * for current active TFO socket
5309 			 */
5310 			if (tp->syn_fastopen && !tp->data_segs_in &&
5311 			    sk->sk_state == TCP_ESTABLISHED)
5312 				tcp_fastopen_active_disable(sk);
5313 			tcp_send_challenge_ack(sk, skb);
5314 		}
5315 		goto discard;
5316 	}
5317 
5318 	/* step 3: check security and precedence [ignored] */
5319 
5320 	/* step 4: Check for a SYN
5321 	 * RFC 5961 4.2 : Send a challenge ack
5322 	 */
5323 	if (th->syn) {
5324 syn_challenge:
5325 		if (syn_inerr)
5326 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5327 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5328 		tcp_send_challenge_ack(sk, skb);
5329 		goto discard;
5330 	}
5331 
5332 	return true;
5333 
5334 discard:
5335 	tcp_drop(sk, skb);
5336 	return false;
5337 }
5338 
5339 /*
5340  *	TCP receive function for the ESTABLISHED state.
5341  *
5342  *	It is split into a fast path and a slow path. The fast path is
5343  * 	disabled when:
5344  *	- A zero window was announced from us - zero window probing
5345  *        is only handled properly in the slow path.
5346  *	- Out of order segments arrived.
5347  *	- Urgent data is expected.
5348  *	- There is no buffer space left
5349  *	- Unexpected TCP flags/window values/header lengths are received
5350  *	  (detected by checking the TCP header against pred_flags)
5351  *	- Data is sent in both directions. Fast path only supports pure senders
5352  *	  or pure receivers (this means either the sequence number or the ack
5353  *	  value must stay constant)
5354  *	- Unexpected TCP option.
5355  *
5356  *	When these conditions are not satisfied it drops into a standard
5357  *	receive procedure patterned after RFC793 to handle all cases.
5358  *	The first three cases are guaranteed by proper pred_flags setting,
5359  *	the rest is checked inline. Fast processing is turned on in
5360  *	tcp_data_queue when everything is OK.
5361  */
5362 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5363 			 const struct tcphdr *th)
5364 {
5365 	unsigned int len = skb->len;
5366 	struct tcp_sock *tp = tcp_sk(sk);
5367 
5368 	/* TCP congestion window tracking */
5369 	trace_tcp_probe(sk, skb);
5370 
5371 	tcp_mstamp_refresh(tp);
5372 	if (unlikely(!sk->sk_rx_dst))
5373 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5374 	/*
5375 	 *	Header prediction.
5376 	 *	The code loosely follows the one in the famous
5377 	 *	"30 instruction TCP receive" Van Jacobson mail.
5378 	 *
5379 	 *	Van's trick is to deposit buffers into socket queue
5380 	 *	on a device interrupt, to call tcp_recv function
5381 	 *	on the receive process context and checksum and copy
5382 	 *	the buffer to user space. smart...
5383 	 *
5384 	 *	Our current scheme is not silly either but we take the
5385 	 *	extra cost of the net_bh soft interrupt processing...
5386 	 *	We do checksum and copy also but from device to kernel.
5387 	 */
5388 
5389 	tp->rx_opt.saw_tstamp = 0;
5390 
5391 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5392 	 *	if header_prediction is to be made
5393 	 *	'S' will always be tp->tcp_header_len >> 2
5394 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5395 	 *  turn it off	(when there are holes in the receive
5396 	 *	 space for instance)
5397 	 *	PSH flag is ignored.
5398 	 */
5399 
5400 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5401 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5402 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5403 		int tcp_header_len = tp->tcp_header_len;
5404 
5405 		/* Timestamp header prediction: tcp_header_len
5406 		 * is automatically equal to th->doff*4 due to pred_flags
5407 		 * match.
5408 		 */
5409 
5410 		/* Check timestamp */
5411 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5412 			/* No? Slow path! */
5413 			if (!tcp_parse_aligned_timestamp(tp, th))
5414 				goto slow_path;
5415 
5416 			/* If PAWS failed, check it more carefully in slow path */
5417 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5418 				goto slow_path;
5419 
5420 			/* DO NOT update ts_recent here, if checksum fails
5421 			 * and timestamp was corrupted part, it will result
5422 			 * in a hung connection since we will drop all
5423 			 * future packets due to the PAWS test.
5424 			 */
5425 		}
5426 
5427 		if (len <= tcp_header_len) {
5428 			/* Bulk data transfer: sender */
5429 			if (len == tcp_header_len) {
5430 				/* Predicted packet is in window by definition.
5431 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5432 				 * Hence, check seq<=rcv_wup reduces to:
5433 				 */
5434 				if (tcp_header_len ==
5435 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5436 				    tp->rcv_nxt == tp->rcv_wup)
5437 					tcp_store_ts_recent(tp);
5438 
5439 				/* We know that such packets are checksummed
5440 				 * on entry.
5441 				 */
5442 				tcp_ack(sk, skb, 0);
5443 				__kfree_skb(skb);
5444 				tcp_data_snd_check(sk);
5445 				return;
5446 			} else { /* Header too small */
5447 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5448 				goto discard;
5449 			}
5450 		} else {
5451 			int eaten = 0;
5452 			bool fragstolen = false;
5453 
5454 			if (tcp_checksum_complete(skb))
5455 				goto csum_error;
5456 
5457 			if ((int)skb->truesize > sk->sk_forward_alloc)
5458 				goto step5;
5459 
5460 			/* Predicted packet is in window by definition.
5461 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5462 			 * Hence, check seq<=rcv_wup reduces to:
5463 			 */
5464 			if (tcp_header_len ==
5465 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5466 			    tp->rcv_nxt == tp->rcv_wup)
5467 				tcp_store_ts_recent(tp);
5468 
5469 			tcp_rcv_rtt_measure_ts(sk, skb);
5470 
5471 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5472 
5473 			/* Bulk data transfer: receiver */
5474 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5475 					      &fragstolen);
5476 
5477 			tcp_event_data_recv(sk, skb);
5478 
5479 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5480 				/* Well, only one small jumplet in fast path... */
5481 				tcp_ack(sk, skb, FLAG_DATA);
5482 				tcp_data_snd_check(sk);
5483 				if (!inet_csk_ack_scheduled(sk))
5484 					goto no_ack;
5485 			}
5486 
5487 			__tcp_ack_snd_check(sk, 0);
5488 no_ack:
5489 			if (eaten)
5490 				kfree_skb_partial(skb, fragstolen);
5491 			tcp_data_ready(sk);
5492 			return;
5493 		}
5494 	}
5495 
5496 slow_path:
5497 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5498 		goto csum_error;
5499 
5500 	if (!th->ack && !th->rst && !th->syn)
5501 		goto discard;
5502 
5503 	/*
5504 	 *	Standard slow path.
5505 	 */
5506 
5507 	if (!tcp_validate_incoming(sk, skb, th, 1))
5508 		return;
5509 
5510 step5:
5511 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5512 		goto discard;
5513 
5514 	tcp_rcv_rtt_measure_ts(sk, skb);
5515 
5516 	/* Process urgent data. */
5517 	tcp_urg(sk, skb, th);
5518 
5519 	/* step 7: process the segment text */
5520 	tcp_data_queue(sk, skb);
5521 
5522 	tcp_data_snd_check(sk);
5523 	tcp_ack_snd_check(sk);
5524 	return;
5525 
5526 csum_error:
5527 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5528 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5529 
5530 discard:
5531 	tcp_drop(sk, skb);
5532 }
5533 EXPORT_SYMBOL(tcp_rcv_established);
5534 
5535 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5536 {
5537 	struct tcp_sock *tp = tcp_sk(sk);
5538 	struct inet_connection_sock *icsk = inet_csk(sk);
5539 
5540 	tcp_set_state(sk, TCP_ESTABLISHED);
5541 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5542 
5543 	if (skb) {
5544 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5545 		security_inet_conn_established(sk, skb);
5546 	}
5547 
5548 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5549 
5550 	/* Prevent spurious tcp_cwnd_restart() on first data
5551 	 * packet.
5552 	 */
5553 	tp->lsndtime = tcp_jiffies32;
5554 
5555 	if (sock_flag(sk, SOCK_KEEPOPEN))
5556 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5557 
5558 	if (!tp->rx_opt.snd_wscale)
5559 		__tcp_fast_path_on(tp, tp->snd_wnd);
5560 	else
5561 		tp->pred_flags = 0;
5562 }
5563 
5564 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5565 				    struct tcp_fastopen_cookie *cookie)
5566 {
5567 	struct tcp_sock *tp = tcp_sk(sk);
5568 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5569 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5570 	bool syn_drop = false;
5571 
5572 	if (mss == tp->rx_opt.user_mss) {
5573 		struct tcp_options_received opt;
5574 
5575 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5576 		tcp_clear_options(&opt);
5577 		opt.user_mss = opt.mss_clamp = 0;
5578 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5579 		mss = opt.mss_clamp;
5580 	}
5581 
5582 	if (!tp->syn_fastopen) {
5583 		/* Ignore an unsolicited cookie */
5584 		cookie->len = -1;
5585 	} else if (tp->total_retrans) {
5586 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5587 		 * acknowledges data. Presumably the remote received only
5588 		 * the retransmitted (regular) SYNs: either the original
5589 		 * SYN-data or the corresponding SYN-ACK was dropped.
5590 		 */
5591 		syn_drop = (cookie->len < 0 && data);
5592 	} else if (cookie->len < 0 && !tp->syn_data) {
5593 		/* We requested a cookie but didn't get it. If we did not use
5594 		 * the (old) exp opt format then try so next time (try_exp=1).
5595 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5596 		 */
5597 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5598 	}
5599 
5600 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5601 
5602 	if (data) { /* Retransmit unacked data in SYN */
5603 		skb_rbtree_walk_from(data) {
5604 			if (__tcp_retransmit_skb(sk, data, 1))
5605 				break;
5606 		}
5607 		tcp_rearm_rto(sk);
5608 		NET_INC_STATS(sock_net(sk),
5609 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5610 		return true;
5611 	}
5612 	tp->syn_data_acked = tp->syn_data;
5613 	if (tp->syn_data_acked) {
5614 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5615 		/* SYN-data is counted as two separate packets in tcp_ack() */
5616 		if (tp->delivered > 1)
5617 			--tp->delivered;
5618 	}
5619 
5620 	tcp_fastopen_add_skb(sk, synack);
5621 
5622 	return false;
5623 }
5624 
5625 static void smc_check_reset_syn(struct tcp_sock *tp)
5626 {
5627 #if IS_ENABLED(CONFIG_SMC)
5628 	if (static_branch_unlikely(&tcp_have_smc)) {
5629 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5630 			tp->syn_smc = 0;
5631 	}
5632 #endif
5633 }
5634 
5635 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5636 					 const struct tcphdr *th)
5637 {
5638 	struct inet_connection_sock *icsk = inet_csk(sk);
5639 	struct tcp_sock *tp = tcp_sk(sk);
5640 	struct tcp_fastopen_cookie foc = { .len = -1 };
5641 	int saved_clamp = tp->rx_opt.mss_clamp;
5642 	bool fastopen_fail;
5643 
5644 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5645 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5646 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5647 
5648 	if (th->ack) {
5649 		/* rfc793:
5650 		 * "If the state is SYN-SENT then
5651 		 *    first check the ACK bit
5652 		 *      If the ACK bit is set
5653 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5654 		 *        a reset (unless the RST bit is set, if so drop
5655 		 *        the segment and return)"
5656 		 */
5657 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5658 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5659 			goto reset_and_undo;
5660 
5661 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5662 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5663 			     tcp_time_stamp(tp))) {
5664 			NET_INC_STATS(sock_net(sk),
5665 					LINUX_MIB_PAWSACTIVEREJECTED);
5666 			goto reset_and_undo;
5667 		}
5668 
5669 		/* Now ACK is acceptable.
5670 		 *
5671 		 * "If the RST bit is set
5672 		 *    If the ACK was acceptable then signal the user "error:
5673 		 *    connection reset", drop the segment, enter CLOSED state,
5674 		 *    delete TCB, and return."
5675 		 */
5676 
5677 		if (th->rst) {
5678 			tcp_reset(sk);
5679 			goto discard;
5680 		}
5681 
5682 		/* rfc793:
5683 		 *   "fifth, if neither of the SYN or RST bits is set then
5684 		 *    drop the segment and return."
5685 		 *
5686 		 *    See note below!
5687 		 *                                        --ANK(990513)
5688 		 */
5689 		if (!th->syn)
5690 			goto discard_and_undo;
5691 
5692 		/* rfc793:
5693 		 *   "If the SYN bit is on ...
5694 		 *    are acceptable then ...
5695 		 *    (our SYN has been ACKed), change the connection
5696 		 *    state to ESTABLISHED..."
5697 		 */
5698 
5699 		tcp_ecn_rcv_synack(tp, th);
5700 
5701 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5702 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5703 
5704 		/* Ok.. it's good. Set up sequence numbers and
5705 		 * move to established.
5706 		 */
5707 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5708 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5709 
5710 		/* RFC1323: The window in SYN & SYN/ACK segments is
5711 		 * never scaled.
5712 		 */
5713 		tp->snd_wnd = ntohs(th->window);
5714 
5715 		if (!tp->rx_opt.wscale_ok) {
5716 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5717 			tp->window_clamp = min(tp->window_clamp, 65535U);
5718 		}
5719 
5720 		if (tp->rx_opt.saw_tstamp) {
5721 			tp->rx_opt.tstamp_ok	   = 1;
5722 			tp->tcp_header_len =
5723 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5724 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5725 			tcp_store_ts_recent(tp);
5726 		} else {
5727 			tp->tcp_header_len = sizeof(struct tcphdr);
5728 		}
5729 
5730 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5731 		tcp_initialize_rcv_mss(sk);
5732 
5733 		/* Remember, tcp_poll() does not lock socket!
5734 		 * Change state from SYN-SENT only after copied_seq
5735 		 * is initialized. */
5736 		tp->copied_seq = tp->rcv_nxt;
5737 
5738 		smc_check_reset_syn(tp);
5739 
5740 		smp_mb();
5741 
5742 		tcp_finish_connect(sk, skb);
5743 
5744 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5745 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5746 
5747 		if (!sock_flag(sk, SOCK_DEAD)) {
5748 			sk->sk_state_change(sk);
5749 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5750 		}
5751 		if (fastopen_fail)
5752 			return -1;
5753 		if (sk->sk_write_pending ||
5754 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5755 		    icsk->icsk_ack.pingpong) {
5756 			/* Save one ACK. Data will be ready after
5757 			 * several ticks, if write_pending is set.
5758 			 *
5759 			 * It may be deleted, but with this feature tcpdumps
5760 			 * look so _wonderfully_ clever, that I was not able
5761 			 * to stand against the temptation 8)     --ANK
5762 			 */
5763 			inet_csk_schedule_ack(sk);
5764 			tcp_enter_quickack_mode(sk);
5765 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5766 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5767 
5768 discard:
5769 			tcp_drop(sk, skb);
5770 			return 0;
5771 		} else {
5772 			tcp_send_ack(sk);
5773 		}
5774 		return -1;
5775 	}
5776 
5777 	/* No ACK in the segment */
5778 
5779 	if (th->rst) {
5780 		/* rfc793:
5781 		 * "If the RST bit is set
5782 		 *
5783 		 *      Otherwise (no ACK) drop the segment and return."
5784 		 */
5785 
5786 		goto discard_and_undo;
5787 	}
5788 
5789 	/* PAWS check. */
5790 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5791 	    tcp_paws_reject(&tp->rx_opt, 0))
5792 		goto discard_and_undo;
5793 
5794 	if (th->syn) {
5795 		/* We see SYN without ACK. It is attempt of
5796 		 * simultaneous connect with crossed SYNs.
5797 		 * Particularly, it can be connect to self.
5798 		 */
5799 		tcp_set_state(sk, TCP_SYN_RECV);
5800 
5801 		if (tp->rx_opt.saw_tstamp) {
5802 			tp->rx_opt.tstamp_ok = 1;
5803 			tcp_store_ts_recent(tp);
5804 			tp->tcp_header_len =
5805 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5806 		} else {
5807 			tp->tcp_header_len = sizeof(struct tcphdr);
5808 		}
5809 
5810 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5811 		tp->copied_seq = tp->rcv_nxt;
5812 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5813 
5814 		/* RFC1323: The window in SYN & SYN/ACK segments is
5815 		 * never scaled.
5816 		 */
5817 		tp->snd_wnd    = ntohs(th->window);
5818 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5819 		tp->max_window = tp->snd_wnd;
5820 
5821 		tcp_ecn_rcv_syn(tp, th);
5822 
5823 		tcp_mtup_init(sk);
5824 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5825 		tcp_initialize_rcv_mss(sk);
5826 
5827 		tcp_send_synack(sk);
5828 #if 0
5829 		/* Note, we could accept data and URG from this segment.
5830 		 * There are no obstacles to make this (except that we must
5831 		 * either change tcp_recvmsg() to prevent it from returning data
5832 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5833 		 *
5834 		 * However, if we ignore data in ACKless segments sometimes,
5835 		 * we have no reasons to accept it sometimes.
5836 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5837 		 * is not flawless. So, discard packet for sanity.
5838 		 * Uncomment this return to process the data.
5839 		 */
5840 		return -1;
5841 #else
5842 		goto discard;
5843 #endif
5844 	}
5845 	/* "fifth, if neither of the SYN or RST bits is set then
5846 	 * drop the segment and return."
5847 	 */
5848 
5849 discard_and_undo:
5850 	tcp_clear_options(&tp->rx_opt);
5851 	tp->rx_opt.mss_clamp = saved_clamp;
5852 	goto discard;
5853 
5854 reset_and_undo:
5855 	tcp_clear_options(&tp->rx_opt);
5856 	tp->rx_opt.mss_clamp = saved_clamp;
5857 	return 1;
5858 }
5859 
5860 /*
5861  *	This function implements the receiving procedure of RFC 793 for
5862  *	all states except ESTABLISHED and TIME_WAIT.
5863  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5864  *	address independent.
5865  */
5866 
5867 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5868 {
5869 	struct tcp_sock *tp = tcp_sk(sk);
5870 	struct inet_connection_sock *icsk = inet_csk(sk);
5871 	const struct tcphdr *th = tcp_hdr(skb);
5872 	struct request_sock *req;
5873 	int queued = 0;
5874 	bool acceptable;
5875 
5876 	switch (sk->sk_state) {
5877 	case TCP_CLOSE:
5878 		goto discard;
5879 
5880 	case TCP_LISTEN:
5881 		if (th->ack)
5882 			return 1;
5883 
5884 		if (th->rst)
5885 			goto discard;
5886 
5887 		if (th->syn) {
5888 			if (th->fin)
5889 				goto discard;
5890 			/* It is possible that we process SYN packets from backlog,
5891 			 * so we need to make sure to disable BH right there.
5892 			 */
5893 			local_bh_disable();
5894 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5895 			local_bh_enable();
5896 
5897 			if (!acceptable)
5898 				return 1;
5899 			consume_skb(skb);
5900 			return 0;
5901 		}
5902 		goto discard;
5903 
5904 	case TCP_SYN_SENT:
5905 		tp->rx_opt.saw_tstamp = 0;
5906 		tcp_mstamp_refresh(tp);
5907 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5908 		if (queued >= 0)
5909 			return queued;
5910 
5911 		/* Do step6 onward by hand. */
5912 		tcp_urg(sk, skb, th);
5913 		__kfree_skb(skb);
5914 		tcp_data_snd_check(sk);
5915 		return 0;
5916 	}
5917 
5918 	tcp_mstamp_refresh(tp);
5919 	tp->rx_opt.saw_tstamp = 0;
5920 	req = tp->fastopen_rsk;
5921 	if (req) {
5922 		bool req_stolen;
5923 
5924 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5925 		    sk->sk_state != TCP_FIN_WAIT1);
5926 
5927 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
5928 			goto discard;
5929 	}
5930 
5931 	if (!th->ack && !th->rst && !th->syn)
5932 		goto discard;
5933 
5934 	if (!tcp_validate_incoming(sk, skb, th, 0))
5935 		return 0;
5936 
5937 	/* step 5: check the ACK field */
5938 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5939 				      FLAG_UPDATE_TS_RECENT |
5940 				      FLAG_NO_CHALLENGE_ACK) > 0;
5941 
5942 	if (!acceptable) {
5943 		if (sk->sk_state == TCP_SYN_RECV)
5944 			return 1;	/* send one RST */
5945 		tcp_send_challenge_ack(sk, skb);
5946 		goto discard;
5947 	}
5948 	switch (sk->sk_state) {
5949 	case TCP_SYN_RECV:
5950 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
5951 		if (!tp->srtt_us)
5952 			tcp_synack_rtt_meas(sk, req);
5953 
5954 		/* Once we leave TCP_SYN_RECV, we no longer need req
5955 		 * so release it.
5956 		 */
5957 		if (req) {
5958 			inet_csk(sk)->icsk_retransmits = 0;
5959 			reqsk_fastopen_remove(sk, req, false);
5960 			/* Re-arm the timer because data may have been sent out.
5961 			 * This is similar to the regular data transmission case
5962 			 * when new data has just been ack'ed.
5963 			 *
5964 			 * (TFO) - we could try to be more aggressive and
5965 			 * retransmitting any data sooner based on when they
5966 			 * are sent out.
5967 			 */
5968 			tcp_rearm_rto(sk);
5969 		} else {
5970 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5971 			tp->copied_seq = tp->rcv_nxt;
5972 		}
5973 		smp_mb();
5974 		tcp_set_state(sk, TCP_ESTABLISHED);
5975 		sk->sk_state_change(sk);
5976 
5977 		/* Note, that this wakeup is only for marginal crossed SYN case.
5978 		 * Passively open sockets are not waked up, because
5979 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5980 		 */
5981 		if (sk->sk_socket)
5982 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5983 
5984 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5985 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5986 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5987 
5988 		if (tp->rx_opt.tstamp_ok)
5989 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5990 
5991 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5992 			tcp_update_pacing_rate(sk);
5993 
5994 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5995 		tp->lsndtime = tcp_jiffies32;
5996 
5997 		tcp_initialize_rcv_mss(sk);
5998 		tcp_fast_path_on(tp);
5999 		break;
6000 
6001 	case TCP_FIN_WAIT1: {
6002 		int tmo;
6003 
6004 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6005 		 * Fast Open socket and this is the first acceptable
6006 		 * ACK we have received, this would have acknowledged
6007 		 * our SYNACK so stop the SYNACK timer.
6008 		 */
6009 		if (req) {
6010 			/* We no longer need the request sock. */
6011 			reqsk_fastopen_remove(sk, req, false);
6012 			tcp_rearm_rto(sk);
6013 		}
6014 		if (tp->snd_una != tp->write_seq)
6015 			break;
6016 
6017 		tcp_set_state(sk, TCP_FIN_WAIT2);
6018 		sk->sk_shutdown |= SEND_SHUTDOWN;
6019 
6020 		sk_dst_confirm(sk);
6021 
6022 		if (!sock_flag(sk, SOCK_DEAD)) {
6023 			/* Wake up lingering close() */
6024 			sk->sk_state_change(sk);
6025 			break;
6026 		}
6027 
6028 		if (tp->linger2 < 0) {
6029 			tcp_done(sk);
6030 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6031 			return 1;
6032 		}
6033 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6034 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6035 			/* Receive out of order FIN after close() */
6036 			if (tp->syn_fastopen && th->fin)
6037 				tcp_fastopen_active_disable(sk);
6038 			tcp_done(sk);
6039 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6040 			return 1;
6041 		}
6042 
6043 		tmo = tcp_fin_time(sk);
6044 		if (tmo > TCP_TIMEWAIT_LEN) {
6045 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6046 		} else if (th->fin || sock_owned_by_user(sk)) {
6047 			/* Bad case. We could lose such FIN otherwise.
6048 			 * It is not a big problem, but it looks confusing
6049 			 * and not so rare event. We still can lose it now,
6050 			 * if it spins in bh_lock_sock(), but it is really
6051 			 * marginal case.
6052 			 */
6053 			inet_csk_reset_keepalive_timer(sk, tmo);
6054 		} else {
6055 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6056 			goto discard;
6057 		}
6058 		break;
6059 	}
6060 
6061 	case TCP_CLOSING:
6062 		if (tp->snd_una == tp->write_seq) {
6063 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6064 			goto discard;
6065 		}
6066 		break;
6067 
6068 	case TCP_LAST_ACK:
6069 		if (tp->snd_una == tp->write_seq) {
6070 			tcp_update_metrics(sk);
6071 			tcp_done(sk);
6072 			goto discard;
6073 		}
6074 		break;
6075 	}
6076 
6077 	/* step 6: check the URG bit */
6078 	tcp_urg(sk, skb, th);
6079 
6080 	/* step 7: process the segment text */
6081 	switch (sk->sk_state) {
6082 	case TCP_CLOSE_WAIT:
6083 	case TCP_CLOSING:
6084 	case TCP_LAST_ACK:
6085 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6086 			break;
6087 		/* fall through */
6088 	case TCP_FIN_WAIT1:
6089 	case TCP_FIN_WAIT2:
6090 		/* RFC 793 says to queue data in these states,
6091 		 * RFC 1122 says we MUST send a reset.
6092 		 * BSD 4.4 also does reset.
6093 		 */
6094 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6095 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6096 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6097 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6098 				tcp_reset(sk);
6099 				return 1;
6100 			}
6101 		}
6102 		/* Fall through */
6103 	case TCP_ESTABLISHED:
6104 		tcp_data_queue(sk, skb);
6105 		queued = 1;
6106 		break;
6107 	}
6108 
6109 	/* tcp_data could move socket to TIME-WAIT */
6110 	if (sk->sk_state != TCP_CLOSE) {
6111 		tcp_data_snd_check(sk);
6112 		tcp_ack_snd_check(sk);
6113 	}
6114 
6115 	if (!queued) {
6116 discard:
6117 		tcp_drop(sk, skb);
6118 	}
6119 	return 0;
6120 }
6121 EXPORT_SYMBOL(tcp_rcv_state_process);
6122 
6123 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6124 {
6125 	struct inet_request_sock *ireq = inet_rsk(req);
6126 
6127 	if (family == AF_INET)
6128 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6129 				    &ireq->ir_rmt_addr, port);
6130 #if IS_ENABLED(CONFIG_IPV6)
6131 	else if (family == AF_INET6)
6132 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6133 				    &ireq->ir_v6_rmt_addr, port);
6134 #endif
6135 }
6136 
6137 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6138  *
6139  * If we receive a SYN packet with these bits set, it means a
6140  * network is playing bad games with TOS bits. In order to
6141  * avoid possible false congestion notifications, we disable
6142  * TCP ECN negotiation.
6143  *
6144  * Exception: tcp_ca wants ECN. This is required for DCTCP
6145  * congestion control: Linux DCTCP asserts ECT on all packets,
6146  * including SYN, which is most optimal solution; however,
6147  * others, such as FreeBSD do not.
6148  */
6149 static void tcp_ecn_create_request(struct request_sock *req,
6150 				   const struct sk_buff *skb,
6151 				   const struct sock *listen_sk,
6152 				   const struct dst_entry *dst)
6153 {
6154 	const struct tcphdr *th = tcp_hdr(skb);
6155 	const struct net *net = sock_net(listen_sk);
6156 	bool th_ecn = th->ece && th->cwr;
6157 	bool ect, ecn_ok;
6158 	u32 ecn_ok_dst;
6159 
6160 	if (!th_ecn)
6161 		return;
6162 
6163 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6164 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6165 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6166 
6167 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6168 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6169 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6170 		inet_rsk(req)->ecn_ok = 1;
6171 }
6172 
6173 static void tcp_openreq_init(struct request_sock *req,
6174 			     const struct tcp_options_received *rx_opt,
6175 			     struct sk_buff *skb, const struct sock *sk)
6176 {
6177 	struct inet_request_sock *ireq = inet_rsk(req);
6178 
6179 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6180 	req->cookie_ts = 0;
6181 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6182 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6183 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6184 	tcp_rsk(req)->last_oow_ack_time = 0;
6185 	req->mss = rx_opt->mss_clamp;
6186 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6187 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6188 	ireq->sack_ok = rx_opt->sack_ok;
6189 	ireq->snd_wscale = rx_opt->snd_wscale;
6190 	ireq->wscale_ok = rx_opt->wscale_ok;
6191 	ireq->acked = 0;
6192 	ireq->ecn_ok = 0;
6193 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6194 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6195 	ireq->ir_mark = inet_request_mark(sk, skb);
6196 #if IS_ENABLED(CONFIG_SMC)
6197 	ireq->smc_ok = rx_opt->smc_ok;
6198 #endif
6199 }
6200 
6201 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6202 				      struct sock *sk_listener,
6203 				      bool attach_listener)
6204 {
6205 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6206 					       attach_listener);
6207 
6208 	if (req) {
6209 		struct inet_request_sock *ireq = inet_rsk(req);
6210 
6211 		ireq->ireq_opt = NULL;
6212 #if IS_ENABLED(CONFIG_IPV6)
6213 		ireq->pktopts = NULL;
6214 #endif
6215 		atomic64_set(&ireq->ir_cookie, 0);
6216 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6217 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6218 		ireq->ireq_family = sk_listener->sk_family;
6219 	}
6220 
6221 	return req;
6222 }
6223 EXPORT_SYMBOL(inet_reqsk_alloc);
6224 
6225 /*
6226  * Return true if a syncookie should be sent
6227  */
6228 static bool tcp_syn_flood_action(const struct sock *sk,
6229 				 const struct sk_buff *skb,
6230 				 const char *proto)
6231 {
6232 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6233 	const char *msg = "Dropping request";
6234 	bool want_cookie = false;
6235 	struct net *net = sock_net(sk);
6236 
6237 #ifdef CONFIG_SYN_COOKIES
6238 	if (net->ipv4.sysctl_tcp_syncookies) {
6239 		msg = "Sending cookies";
6240 		want_cookie = true;
6241 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6242 	} else
6243 #endif
6244 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6245 
6246 	if (!queue->synflood_warned &&
6247 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6248 	    xchg(&queue->synflood_warned, 1) == 0)
6249 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6250 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6251 
6252 	return want_cookie;
6253 }
6254 
6255 static void tcp_reqsk_record_syn(const struct sock *sk,
6256 				 struct request_sock *req,
6257 				 const struct sk_buff *skb)
6258 {
6259 	if (tcp_sk(sk)->save_syn) {
6260 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6261 		u32 *copy;
6262 
6263 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6264 		if (copy) {
6265 			copy[0] = len;
6266 			memcpy(&copy[1], skb_network_header(skb), len);
6267 			req->saved_syn = copy;
6268 		}
6269 	}
6270 }
6271 
6272 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6273 		     const struct tcp_request_sock_ops *af_ops,
6274 		     struct sock *sk, struct sk_buff *skb)
6275 {
6276 	struct tcp_fastopen_cookie foc = { .len = -1 };
6277 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6278 	struct tcp_options_received tmp_opt;
6279 	struct tcp_sock *tp = tcp_sk(sk);
6280 	struct net *net = sock_net(sk);
6281 	struct sock *fastopen_sk = NULL;
6282 	struct request_sock *req;
6283 	bool want_cookie = false;
6284 	struct dst_entry *dst;
6285 	struct flowi fl;
6286 
6287 	/* TW buckets are converted to open requests without
6288 	 * limitations, they conserve resources and peer is
6289 	 * evidently real one.
6290 	 */
6291 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6292 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6293 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6294 		if (!want_cookie)
6295 			goto drop;
6296 	}
6297 
6298 	if (sk_acceptq_is_full(sk)) {
6299 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6300 		goto drop;
6301 	}
6302 
6303 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6304 	if (!req)
6305 		goto drop;
6306 
6307 	tcp_rsk(req)->af_specific = af_ops;
6308 	tcp_rsk(req)->ts_off = 0;
6309 
6310 	tcp_clear_options(&tmp_opt);
6311 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6312 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6313 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6314 			  want_cookie ? NULL : &foc);
6315 
6316 	if (want_cookie && !tmp_opt.saw_tstamp)
6317 		tcp_clear_options(&tmp_opt);
6318 
6319 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6320 		tmp_opt.smc_ok = 0;
6321 
6322 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6323 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6324 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6325 
6326 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6327 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6328 
6329 	af_ops->init_req(req, sk, skb);
6330 
6331 	if (security_inet_conn_request(sk, skb, req))
6332 		goto drop_and_free;
6333 
6334 	if (tmp_opt.tstamp_ok)
6335 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6336 
6337 	dst = af_ops->route_req(sk, &fl, req);
6338 	if (!dst)
6339 		goto drop_and_free;
6340 
6341 	if (!want_cookie && !isn) {
6342 		/* Kill the following clause, if you dislike this way. */
6343 		if (!net->ipv4.sysctl_tcp_syncookies &&
6344 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6345 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6346 		    !tcp_peer_is_proven(req, dst)) {
6347 			/* Without syncookies last quarter of
6348 			 * backlog is filled with destinations,
6349 			 * proven to be alive.
6350 			 * It means that we continue to communicate
6351 			 * to destinations, already remembered
6352 			 * to the moment of synflood.
6353 			 */
6354 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6355 				    rsk_ops->family);
6356 			goto drop_and_release;
6357 		}
6358 
6359 		isn = af_ops->init_seq(skb);
6360 	}
6361 
6362 	tcp_ecn_create_request(req, skb, sk, dst);
6363 
6364 	if (want_cookie) {
6365 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6366 		req->cookie_ts = tmp_opt.tstamp_ok;
6367 		if (!tmp_opt.tstamp_ok)
6368 			inet_rsk(req)->ecn_ok = 0;
6369 	}
6370 
6371 	tcp_rsk(req)->snt_isn = isn;
6372 	tcp_rsk(req)->txhash = net_tx_rndhash();
6373 	tcp_openreq_init_rwin(req, sk, dst);
6374 	if (!want_cookie) {
6375 		tcp_reqsk_record_syn(sk, req, skb);
6376 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6377 	}
6378 	if (fastopen_sk) {
6379 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6380 				    &foc, TCP_SYNACK_FASTOPEN);
6381 		/* Add the child socket directly into the accept queue */
6382 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6383 		sk->sk_data_ready(sk);
6384 		bh_unlock_sock(fastopen_sk);
6385 		sock_put(fastopen_sk);
6386 	} else {
6387 		tcp_rsk(req)->tfo_listener = false;
6388 		if (!want_cookie)
6389 			inet_csk_reqsk_queue_hash_add(sk, req,
6390 				tcp_timeout_init((struct sock *)req));
6391 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6392 				    !want_cookie ? TCP_SYNACK_NORMAL :
6393 						   TCP_SYNACK_COOKIE);
6394 		if (want_cookie) {
6395 			reqsk_free(req);
6396 			return 0;
6397 		}
6398 	}
6399 	reqsk_put(req);
6400 	return 0;
6401 
6402 drop_and_release:
6403 	dst_release(dst);
6404 drop_and_free:
6405 	reqsk_free(req);
6406 drop:
6407 	tcp_listendrop(sk);
6408 	return 0;
6409 }
6410 EXPORT_SYMBOL(tcp_conn_request);
6411